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Preface

In this Ninth Edition of Probability and Statistical Inference, Bob Hogg and Elliot
Tanis are excited to add a third person to their writing team to contribute to the
continued success of this text. Dale Zimmerman is the Robert V. Hogg Professor in
the Department of Statistics and Actuarial Science at the University of Iowa. Dale
has rewritten several parts of the text, making the terminology more consistent and
contributing much to a substantial revision. The text is designed for a two-semester
course, but it can be adapted for a one-semester course. A good calculus background
is needed, but no previous study of probability or statistics is required.

CONTENT AND COURSE PLANNING

In this revision, the first five chapters on probability are much the same as in the
eighth edition. They include the following topics: probability, conditional probability,
independence, Bayes’ theorem, discrete and continuous distributions, certain math-
ematical expectations, bivariate distributions along with marginal and conditional
distributions, correlation, functions of random variables and their distributions,
including the moment-generating function technique, and the central limit theorem.
While this strong probability coverage of the course is important for all students, it
has been particularly helpful to actuarial students who are studying for Exam P in
the Society of Actuaries’ series (or Exam 1 of the Casualty Actuarial Society).

The greatest change to this edition is in the statistical inference coverage, now
Chapters 6–9. The first two of these chapters provide an excellent presentation
of estimation. Chapter 6 covers point estimation, including descriptive and order
statistics, maximum likelihood estimators and their distributions, sufficient statis-
tics, and Bayesian estimation. Interval estimation is covered in Chapter 7, including
the topics of confidence intervals for means and proportions, distribution-free con-
fidence intervals for percentiles, confidence intervals for regression coefficients, and
resampling methods (in particular, bootstrapping).

The last two chapters are about tests of statistical hypotheses. Chapter 8 consid-
ers terminology and standard tests on means and proportions, the Wilcoxon tests,
the power of a test, best critical regions (Neyman/Pearson) and likelihood ratio
tests. The topics in Chapter 9 are standard chi-square tests, analysis of variance
including general factorial designs, and some procedures associated with regression,
correlation, and statistical quality control.

The first semester of the course should contain most of the topics in Chapters
1–5. The second semester includes some topics omitted there and many of those
in Chapters 6–9. A more basic course might omit some of the (optional) starred
sections, but we believe that the order of topics will give the instructor the flexibility
needed in his or her course. The usual nonparametric and Bayesian techniques are
placed at appropriate places in the text rather than in separate chapters. We find that
many persons like the applications associated with statistical quality control in the
last section. Overall, one of the authors, Hogg, believes that the presentation (at a
somewhat reduced mathematical level) is much like that given in the earlier editions
of Hogg and Craig (see References).
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vi Preface

The Prologue suggests many fields in which statistical methods can be used. In
the Epilogue, the importance of understanding variation is stressed, particularly for
its need in continuous quality improvement as described in the usual Six-Sigma pro-
grams. At the end of each chapter we give some interesting historical comments,
which have proved to be very worthwhile in the past editions.

The answers given in this text for questions that involve the standard distribu-
tions were calculated using our probability tables which, of course, are rounded off
for printing. If you use a statistical package, your answers may differ slightly from
those given.

ANCILLARIES

Data sets from this textbook are available on Pearson Education’s Math & Statistics
Student Resources website: http://www.pearsonhighered.com/mathstatsresources.

An Instructor’s Solutions Manual containing worked-out solutions to the even-
numbered exercises in the text is available for download from Pearson Education’s
Instructor Resource Center at www.pearsonhighered.com/irc. Some of the numer-
ical exercises were solved with Maple. For additional exercises that involve sim-
ulations, a separate manual, Probability & Statistics: Explorations with MAPLE,
second edition, by Zaven Karian and Elliot Tanis, is also available for download from
Pearson Education’s Instructor Resource Center. Several exercises in that manual
also make use of the power of Maple as a computer algebra system.

If you find any errors in this text, please send them to tanis@hope.edu so that
they can be corrected in a future printing. These errata will also be posted on
http://www.math.hope.edu/tanis/.
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would like to thank the reviewers of the eighth edition who made suggestions for
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tanis@hope.edu
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Prologue

The discipline of statistics deals with the collection and analysis of data. Advances
in computing technology, particularly in relation to changes in science and business,
have increased the need for more statistical scientists to examine the huge amount
of data being collected. We know that data are not equivalent to information. Once
data (hopefully of high quality) are collected, there is a strong need for statisticians
to make sense of them. That is, data must be analyzed in order to provide informa-
tion upon which decisions can be made. In light of this great demand, opportunities
for the discipline of statistics have never been greater, and there is a special need for
more bright young persons to go into statistical science.

If we think of fields in which data play a major part, the list is almost endless:
accounting, actuarial science, atmospheric science, biological science, economics,
educational measurement, environmental science, epidemiology, finance, genetics,
manufacturing, marketing, medicine, pharmaceutical industries, psychology, sociol-
ogy, sports, and on and on. Because statistics is useful in all of these areas, it really
should be taught as an applied science. Nevertheless, to go very far in such an applied
science, it is necessary to understand the importance of creating models for each sit-
uation under study. Now, no model is ever exactly right, but some are extremely
useful as an approximation to the real situation. Most appropriate models in statis-
tics require a certain mathematical background in probability. Accordingly, while
alluding to applications in the examples and the exercises, this textbook is really
about the mathematics needed for the appreciation of probabilistic models necessary
for statistical inferences.

In a sense, statistical techniques are really the heart of the scientific method.
Observations are made that suggest conjectures. These conjectures are tested, and
data are collected and analyzed, providing information about the truth of the
conjectures. Sometimes the conjectures are supported by the data, but often the
conjectures need to be modified and more data must be collected to test the mod-
ifications, and so on. Clearly, in this iterative process, statistics plays a major role
with its emphasis on the proper design and analysis of experiments and the resulting
inferences upon which decisions can be made. Through statistics, information is pro-
vided that is relevant to taking certain actions, including improving manufactured
products, providing better services, marketing new products or services, forecasting
energy needs, classifying diseases better, and so on.

Statisticians recognize that there are often small errors in their inferences, and
they attempt to quantify the probabilities of those mistakes and make them as small
as possible. That these uncertainties even exist is due to the fact that there is variation
in the data. Even though experiments are repeated under seemingly the same condi-
tions, the results vary from trial to trial. We try to improve the quality of the data by
making them as reliable as possible, but the data simply do not fall on given patterns.
In light of this uncertainty, the statistician tries to determine the pattern in the best
possible way, always explaining the error structures of the statistical estimates.

This is an important lesson to be learned: Variation is almost everywhere. It is
the statistician’s job to understand variation. Often, as in manufacturing, the desire is
to reduce variation because the products will be more consistent. In other words, car
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viii Prologue

doors will fit better in the manufacturing of automobiles if the variation is decreased
by making each door closer to its target values.

Many statisticians in industry have stressed the need for “statistical thinking”
in everyday operations. This need is based upon three points (two of which have
been mentioned in the preceding paragraph): (1) Variation exists in all processes;
(2) understanding and reducing undesirable variation is a key to success; and (3)
all work occurs in a system of interconnected processes. W. Edwards Deming, an
esteemed statistician and quality improvement “guru,” stressed these three points,
particularly the third one. He would carefully note that you could not maximize
the total operation by maximizing the individual components unless they are inde-
pendent of each other. However, in most instances, they are highly dependent, and
persons in different departments must work together in creating the best products
and services. If not, what one unit does to better itself could very well hurt others.
He often cited an orchestra as an illustration of the need for the members to work
together to create an outcome that is consistent and desirable.

Any student of statistics should understand the nature of variability and the
necessity for creating probabilistic models of that variability. We cannot avoid mak-
ing inferences and decisions in the face of this uncertainty; however, these inferences
and decisions are greatly influenced by the probabilistic models selected. Some
persons are better model builders than others and accordingly will make better infer-
ences and decisions. The assumptions needed for each statistical model are carefully
examined; it is hoped that thereby the reader will become a better model builder.

Finally, we must mention how modern statistical analyses have become depen-
dent upon the computer. Statisticians and computer scientists really should work
together in areas of exploratory data analysis and “data mining.” Statistical software
development is critical today, for the best of it is needed in complicated data anal-
yses. In light of this growing relationship between these two fields, it is good advice
for bright students to take substantial offerings in statistics and in computer science.

Students majoring in statistics, computer science, or a joint program are in great
demand in the workplace and in graduate programs. Clearly, they can earn advanced
degrees in statistics or computer science or both. But, more important, they are
highly desirable candidates for graduate work in other areas: actuarial science, indus-
trial engineering, finance, marketing, accounting, management science, psychology,
economics, law, sociology, medicine, health sciences, etc. So many fields have been
“mathematized” that their programs are begging for majors in statistics or computer
science. Often, such students become “stars” in these other areas. We truly hope that
we can interest students enough that they want to study more statistics. If they do,
they will find that the opportunities for very successful careers are numerous.
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1Probability

1.1 Properties of Probability
1.2 Methods of Enumeration
1.3 Conditional Probability

1.4 Independent Events
1.5 Bayes’ Theorem

1.1 PROPERTIES OF PROBABILITY
It is usually difficult to explain to the general public what statisticians do. Many think
of us as “math nerds” who seem to enjoy dealing with numbers. And there is some
truth to that concept. But if we consider the bigger picture, many recognize that
statisticians can be extremely helpful in many investigations.

Consider the following:

1. There is some problem or situation that needs to be considered; so statisticians
are often asked to work with investigators or research scientists.

2. Suppose that some measure (or measures) is needed to help us understand
the situation better. The measurement problem is often extremely difficult, and
creating good measures is a valuable skill. As an illustration, in higher educa-
tion, how do we measure good teaching? This is a question to which we have
not found a satisfactory answer, although several measures, such as student
evaluations, have been used in the past.

3. After the measuring instrument has been developed, we must collect data
through observation, possibly the results of a survey or an experiment.

4. Using these data, statisticians summarize the results, often with descriptive
statistics and graphical methods.

5. These summaries are then used to analyze the situation. Here it is possible that
statisticians make what are called statistical inferences.

6. Finally, a report is presented, along with some recommendations that are based
upon the data and the analysis of them. Frequently such a recommendation
might be to perform the survey or experiment again, possibly changing some of
the questions or factors involved. This is how statistics is used in what is referred
to as the scientific method, because often the analysis of the data suggests other
experiments. Accordingly, the scientist must consider different possibilities in
his or her search for an answer and thus performs similar experiments over and
over again.

1



2 Chapter 1 Probability

The discipline of statistics deals with the collection and analysis of data. When
measurements are taken, even seemingly under the same conditions, the results usu-
ally vary. Despite this variability, a statistician tries to find a pattern; yet due to the
“noise,” not all of the data fit into the pattern. In the face of the variability, the
statistician must still determine the best way to describe the pattern. Accordingly,
statisticians know that mistakes will be made in data analysis, and they try to mini-
mize those errors as much as possible and then give bounds on the possible errors.
By considering these bounds, decision makers can decide how much confidence they
want to place in the data and in their analysis of them. If the bounds are wide, per-
haps more data should be collected. If, however, the bounds are narrow, the person
involved in the study might want to make a decision and proceed accordingly.

Variability is a fact of life, and proper statistical methods can help us understand
data collected under inherent variability. Because of this variability, many decisions
have to be made that involve uncertainties. In medical research, interest may cen-
ter on the effectiveness of a new vaccine for mumps; an agronomist must decide
whether an increase in yield can be attributed to a new strain of wheat; a meteo-
rologist is interested in predicting the probability of rain; the state legislature must
decide whether decreasing speed limits will result in fewer accidents; the admissions
officer of a college must predict the college performance of an incoming freshman;
a biologist is interested in estimating the clutch size for a particular type of bird;
an economist desires to estimate the unemployment rate; an environmentalist tests
whether new controls have resulted in a reduction in pollution.

In reviewing the preceding (relatively short) list of possible areas of applications
of statistics, the reader should recognize that good statistics is closely associated with
careful thinking in many investigations. As an illustration, students should appreci-
ate how statistics is used in the endless cycle of the scientific method. We observe
nature and ask questions, we run experiments and collect data that shed light on
these questions, we analyze the data and compare the results of the analysis with
what we previously thought, we raise new questions, and on and on. Or if you like,
statistics is clearly part of the important “plan–do–study–act” cycle: Questions are
raised and investigations planned and carried out. The resulting data are studied and
analyzed and then acted upon, often raising new questions.

There are many aspects of statistics. Some people get interested in the subject
by collecting data and trying to make sense out of their observations. In some cases
the answers are obvious and little training in statistical methods is necessary. But if
a person goes very far in many investigations, he or she soon realizes that there is a
need for some theory to help describe the error structure associated with the various
estimates of the patterns. That is, at some point appropriate probability and math-
ematical models are required to make sense out of complicated data sets. Statistics
and the probabilistic foundation on which statistical methods are based can provide
the models to help people do this. So in this book, we are more concerned with
the mathematical, rather than the applied, aspects of statistics. Still, we give enough
real examples so that the reader can get a good sense of a number of important
applications of statistical methods.

In the study of statistics, we consider experiments for which the outcome can-
not be predicted with certainty. Such experiments are called random experiments.
Although the specific outcome of a random experiment cannot be predicted with
certainty before the experiment is performed, the collection of all possible outcomes
is known and can be described and perhaps listed. The collection of all possible out-
comes is denoted by S and is called the outcome space. Given an outcome space
S, let A be a part of the collection of outcomes in S; that is, A ⊂ S. Then A is
called an event. When the random experiment is performed and the outcome of the
experiment is in A, we say that event A has occurred.



Section 1.1 Properties of Probability 3

Since, in studying probability, the words set and event are interchangeable, the
reader might want to review algebra of sets. Here we remind the reader of some
terminology:

• ∅ denotes the null or empty set;

• A ⊂ B means A is a subset of B;

• A ∪ B is the union of A and B;

• A ∩ B is the intersection of A and B;

• A′ is the complement of A (i.e., all elements in S that are not in A).

Some of these sets are depicted by the shaded regions in Figure 1.1-1, in which S is
the interior of the rectangles. Such figures are called Venn diagrams.

Special terminology associated with events that is often used by statisticians
includes the following:

1. A1, A2, . . . , Ak are mutually exclusive events means that Ai ∩ Aj = ∅, i �= j; that
is, A1, A2, . . . , Ak are disjoint sets;

2. A1, A2, . . . , Ak are exhaustive events means that A1 ∪ A2 ∪ · · · ∪ Ak = S.

So if A1, A2, . . . , Ak are mutually exclusive and exhaustive events, we know that
Ai ∩ Aj = ∅, i �= j, and A1 ∪ A2 ∪ · · · ∪ Ak = S.

Set operations satisfy several properties. For example, if A, B, and C are subsets
of S, we have the following:

Commutative Laws

A ∪ B = B ∪ A

A ∩ B = B ∩ A

S

A A B

A B

C

A B

S

S S

(b) A ∪ B

(c) A ∩ B (d) A ∪ B ∪ C

(a) A´

Figure 1.1-1 Algebra of sets
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Associative Laws

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C)

Distributive Laws

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

De Morgan’s Laws

(A ∪ B)′ = A′ ∩ B′

(A ∩ B)′ = A′ ∪ B′

A Venn diagram will be used to justify the first of De Morgan’s laws. In
Figure 1.1-2(a), A ∪ B is represented by horizontal lines, and thus (A ∪ B)′ is the
region represented by vertical lines. In Figure 1.1-2(b), A′ is indicated with hori-
zontal lines, and B′ is indicated with vertical lines. An element belongs to A′ ∩ B′
if it belongs to both A′ and B′. Thus the crosshatched region represents A′ ∩ B′.
Clearly, this crosshatched region is the same as that shaded with vertical lines in
Figure 1.1-2(a).

We are interested in defining what is meant by the probability of event A,
denoted by P(A) and often called the chance of A occurring. To help us understand
what is meant by the probability of A, consider repeating the experiment a number
of times—say, n times. Count the number of times that event A actually occurred
throughout these n performances; this number is called the frequency of event A
and is denoted by N (A). The ratio N (A)/n is called the relative frequency of event
A in these n repetitions of the experiment. A relative frequency is usually very unsta-
ble for small values of n, but it tends to stabilize as n increases. This suggests that we
associate with event A a number—say, p—that is equal to the number about which
the relative frequency tends to stabilize. This number p can then be taken as the num-
ber that the relative frequency of event A will be near in future performances of the
experiment. Thus, although we cannot predict the outcome of a random experiment
with certainty, if we know p, for a large value of n, we can predict fairly accurately
the relative frequency associated with event A. The number p assigned to event A is

A

(a) (b)

B A B

Figure 1.1-2 Venn diagrams illustrating
De Morgan’s laws



Section 1.1 Properties of Probability 5

called the probability of event A and is denoted by P(A). That is, P(A) represents
the proportion of outcomes of a random experiment that terminate in the event A
as the number of trials of that experiment increases without bound.

The next example will help to illustrate some of the ideas just presented.

Example
1.1-1

A fair six-sided die is rolled six times. If the face numbered k is the outcome on roll
k for k = 1, 2, . . . , 6, we say that a match has occurred. The experiment is called a
success if at least one match occurs during the six trials. Otherwise, the experiment
is called a failure. The sample space is S = {success, failure}. Let A = {success}. We
would like to assign a value to P(A). Accordingly, this experiment was simulated
500 times on a computer. Figure 1.1-3 depicts the results of this simulation, and the
following table summarizes a few of the results:

n N (A) N (A)/n

50 37 0.740

100 69 0.690

250 172 0.688

500 330 0.660

The probability of event A is not intuitively obvious, but it will be shown in Example
1.4-6 that P(A) = 1 − (1 − 1/6)6 = 0.665. This assignment is certainly supported by
the simulation (although not proved by it).

Example 1.1-1 shows that at times intuition cannot be used to assign probabil-
ities, although simulation can perhaps help to assign a probability empirically. The
next example illustrates where intuition can help in assigning a probability to an
event.

freq/n

n
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400 500

Figure 1.1-3 Fraction of experiments having at least one
match



6 Chapter 1 Probability

Example
1.1-2

A disk 2 inches in diameter is thrown at random on a tiled floor, where each tile
is a square with sides 4 inches in length. Let C be the event that the disk will land
entirely on one tile. In order to assign a value to P(C), consider the center of the disk.
In what region must the center lie to ensure that the disk lies entirely on one tile?
If you draw a picture, it should be clear that the center must lie within a square
having sides of length 2 and with its center coincident with the center of a tile.
Since the area of this square is 4 and the area of a tile is 16, it makes sense to let
P(C) = 4/16.

Sometimes the nature of an experiment is such that the probability of A can
be assigned easily. For example, when a state lottery randomly selects a three-digit
integer, we would expect each of the 1000 possible three-digit numbers to have the
same chance of being selected, namely, 1/1000. If we let A = {233, 323, 332}, then
it makes sense to let P(A) = 3/1000. Or if we let B = {234, 243, 324, 342, 423, 432},
then we would let P(B) = 6/1000, the probability of the event B. Probabilities of
events associated with many random experiments are perhaps not quite as obvious
and straightforward as was seen in Example 1.1-1.

So we wish to associate with A a number P(A) about which the relative fre-
quency N (A)/n of the event A tends to stabilize with large n. A function such as
P(A) that is evaluated for a set A is called a set function. In this section, we consider
the probability set function P(A) and discuss some of its properties. In succeeding
sections, we shall describe how the probability set function is defined for particular
experiments.

To help decide what properties the probability set function should satisfy, con-
sider properties possessed by the relative frequency N (A)/n. For example, N (A)/n
is always nonnegative. If A = S, the sample space, then the outcome of the experi-
ment will always belong to S, and thus N (S)/n = 1. Also, if A and B are two mutually
exclusive events, then N (A ∪ B)/n = N (A)/n + N (B)/n. Hopefully, these remarks
will help to motivate the following definition.

Definition 1.1-1
Probability is a real-valued set function P that assigns, to each event A in the
sample space S, a number P(A), called the probability of the event A, such that
the following properties are satisfied:

(a) P(A) ≥ 0;

(b) P(S) = 1;

(c) if A1, A2, A3, . . . are events and Ai ∩ Aj = ∅, i �= j, then

P(A1 ∪ A2 ∪ · · · ∪ Ak) = P(A1) + P(A2) + · · · + P(Ak)

for each positive integer k, and

P(A1 ∪ A2 ∪ A3 ∪ · · · ) = P(A1) + P(A2) + P(A3) + · · ·
for an infinite, but countable, number of events.

The theorems that follow give some other important properties of the probabil-
ity set function. When one considers these theorems, it is important to understand
the theoretical concepts and proofs. However, if the reader keeps the relative
frequency concept in mind, the theorems should also have some intuitive appeal.
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Theorem
1.1-1

For each event A,

P(A) = 1 − P(A′).

Proof [See Figure 1.1-1(a).] We have

S = A ∪ A′ and A ∩ A′ = ∅.

Thus, from properties (b) and (c), it follows that

1 = P(A) + P(A′).

Hence

P(A) = 1 − P(A′). �

Example
1.1-3

A fair coin is flipped successively until the same face is observed on successive flips.
Let A = {x : x = 3, 4, 5, . . .}; that is, A is the event that it will take three or more flips
of the coin to observe the same face on two consecutive flips. To find P(A), we first
find the probability of A′ = {x : x = 2}, the complement of A. In two flips of a coin,
the possible outcomes are {HH, HT, TH, TT}, and we assume that each of these four
points has the same chance of being observed. Thus,

P(A′) = P({HH, TT}) = 2
4

.

It follows from Theorem 1.1-1 that

P(A) = 1 − P(A′) = 1 − 2
4

= 2
4

.

Theorem
1.1-2

P(∅) = 0.

Proof In Theorem 1.1-1, take A = ∅ so that A′ = S. Then

P(∅) = 1 − P(S) = 1 − 1 = 0. �

Theorem
1.1-3

If events A and B are such that A ⊂ B, then P(A) ≤ P(B).

Proof We have

B = A ∪ (B ∩ A′) and A ∩ (B ∩ A′) = ∅.

Hence, from property (c),

P(B) = P(A) + P(B ∩ A′) ≥ P(A)

because, from property (a),

P(B ∩ A′) ≥ 0. �
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Theorem
1.1-4

For each event A, P(A) ≤ 1.

Proof Since A ⊂ S, we have, by Theorem 1.1-3 and property (b),

P(A) ≤ P(S) = 1,

which gives the desired result. �

Property (a), along with Theorem 1.1-4, shows that, for each event A,

0 ≤ P(A) ≤ 1.

Theorem
1.1-5

If A and B are any two events, then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof [See Figure 1.1-1(b).] The event A ∪ B can be represented as a union of
mutually exclusive events, namely,

A ∪ B = A ∪ (A′ ∩ B).

Hence, by property (c),

P(A ∪ B) = P(A) + P(A′ ∩ B). (1.1-1)

However,

B = (A ∩ B) ∪ (A′ ∩ B),

which is a union of mutually exclusive events. Thus,

P(B) = P(A ∩ B) + P(A′ ∩ B)

and

P(A′ ∩ B) = P(B) − P(A ∩ B).

If the right-hand side of this equation is substituted into Equation 1.1-1, we obtain

P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

which is the desired result. �

Example
1.1-4

A faculty leader was meeting two students in Paris, one arriving by train from
Amsterdam and the other arriving by train from Brussels at approximately the same
time. Let A and B be the events that the respective trains are on time. Suppose we
know from past experience that P(A) = 0.93, P(B) = 0.89, and P(A ∩ B) = 0.87.
Then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

= 0.93 + 0.89 − 0.87 = 0.95

is the probability that at least one train is on time.
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Theorem
1.1-6

If A, B, and C are any three events, then

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B)

−P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C).

Proof [See Figure 1.1-1(d).] Write

A ∪ B ∪ C = A ∪ (B ∪ C)

and apply Theorem 1.1-5. The details are left as an exercise. �

Example
1.1-5

A survey was taken of a group’s viewing habits of sporting events on TV during
the last year. Let A = {watched football}, B = {watched basketball}, C = {watched
baseball}. The results indicate that if a person is selected at random from the sur-
veyed group, then P(A) = 0.43, P(B) = 0.40, P(C) = 0.32, P(A ∩ B) = 0.29,
P(A ∩ C) = 0.22, P(B ∩ C) = 0.20, and P(A ∩ B ∩ C) = 0.15. It then follows
that

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C)

−P(B ∩ C) + P(A ∩ B ∩ C)

= 0.43 + 0.40 + 0.32 − 0.29 − 0.22 − 0.20 + 0.15

= 0.59

is the probability that this person watched at least one of these sports.

Let a probability set function be defined on a sample space S. Let
S = {e1, e2, . . . , em}, where each ei is a possible outcome of the experiment. The
integer m is called the total number of ways in which the random experiment can
terminate. If each of these outcomes has the same probability of occurring, we say
that the m outcomes are equally likely. That is,

P({ei}) = 1
m

, i = 1, 2, . . . , m.

If the number of outcomes in an event A is h, then the integer h is called the number
of ways that are favorable to the event A. In this case, P(A) is equal to the number
of ways favorable to the event A divided by the total number of ways in which the
experiment can terminate. That is, under this assumption of equally likely outcomes,
we have

P(A) = h
m

= N(A)
N(S)

,

where h = N(A) is the number of ways A can occur and m = N(S) is the number of
ways S can occur. Exercise 1.1-15 considers this assignment of probability in a more
theoretical manner.

It should be emphasized that in order to assign the probability h/m to the event
A, we must assume that each of the outcomes e1, e2, . . . , em has the same probability
1/m. This assumption is then an important part of our probability model; if it is not
realistic in an application, then the probability of the event A cannot be computed in
this way. Actually, we have used this result in the simple case given in Example 1.1-3
because it seemed realistic to assume that each of the possible outcomes in
S = {HH, HT, TH, TT} had the same chance of being observed.
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Example
1.1-6

Let a card be drawn at random from an ordinary deck of 52 playing cards. Then the
sample space S is the set of m = 52 different cards, and it is reasonable to assume
that each of these cards has the same probability of selection, 1/52. Accordingly,
if A is the set of outcomes that are kings, then P(A) = 4/52 = 1/13 because
there are h = 4 kings in the deck. That is, 1/13 is the probability of drawing a card
that is a king, provided that each of the 52 cards has the same probability of being
drawn.

In Example 1.1-6, the computations are very easy because there is no difficulty in
the determination of the appropriate values of h and m. However, instead of draw-
ing only one card, suppose that 13 are taken at random and without replacement.
Then we can think of each possible 13-card hand as being an outcome in a sample
space, and it is reasonable to assume that each of these outcomes has the same prob-
ability. For example, using the preceding method to assign the probability of a hand
consisting of seven spades and six hearts, we must be able to count the number h
of all such hands as well as the number m of possible 13-card hands. In these more
complicated situations, we need better methods of determining h and m. We discuss
some of these counting techniques in Section 1.2.

Exercises

1.1-1. Of a group of patients having injuries, 28% visit
both a physical therapist and a chiropractor and 8% visit
neither. Say that the probability of visiting a physical ther-
apist exceeds the probability of visiting a chiropractor
by 16%. What is the probability of a randomly selected
person from this group visiting a physical therapist?

1.1-2. An insurance company looks at its auto insurance
customers and finds that (a) all insure at least one car, (b)
85% insure more than one car, (c) 23% insure a sports
car, and (d) 17% insure more than one car, including a
sports car. Find the probability that a customer selected at
random insures exactly one car and it is not a sports car.

1.1-3. Draw one card at random from a standard deck of
cards. The sample space S is the collection of the 52 cards.
Assume that the probability set function assigns 1/52 to
each of the 52 outcomes. Let

A = {x : x is a jack, queen, or king},
B = {x : x is a 9, 10, or jack and x is red},
C = {x : x is a club},
D = {x : x is a diamond, a heart, or a spade}.

Find (a) P(A), (b) P(A ∩ B), (c) P(A ∪ B), (d) P(C ∪ D),
and (e) P(C ∩ D).

1.1-4. A fair coin is tossed four times, and the sequence of
heads and tails is observed.

(a) List each of the 16 sequences in the sample space S.

(b) Let events A, B, C, and D be given by A = {at least
3 heads}, B = {at most 2 heads}, C = {heads on
the third toss}, and D = {1 head and 3 tails}. If the
probability set function assigns 1/16 to each outcome

in the sample space, find (i) P(A), (ii) P(A ∩ B), (iii)
P(B), (iv) P(A ∩ C), (v) P(D), (vi) P(A ∪ C), and (vii)
P(B ∩ D).

1.1-5. Consider the trial on which a 3 is first observed in
successive rolls of a six-sided die. Let A be the event that
3 is observed on the first trial. Let B be the event that at
least two trials are required to observe a 3. Assuming that
each side has probability 1/6, find (a) P(A), (b) P(B), and
(c) P(A ∪ B).

1.1-6. If P(A) = 0.4, P(B) = 0.5, and P(A∩B) = 0.3, find
(a) P(A ∪ B), (b) P(A ∩ B′), and (c) P(A′ ∪ B′).

1.1-7. Given that P(A ∪ B) = 0.76 and P(A ∪ B′) = 0.87,
find P(A).

1.1-8. During a visit to a primary care physician’s office,
the probability of having neither lab work nor referral to a
specialist is 0.21. Of those coming to that office, the prob-
ability of having lab work is 0.41 and the probability of
having a referral is 0.53. What is the probability of having
both lab work and a referral?

1.1-9. Roll a fair six-sided die three times. Let A1 =
{1 or 2 on the first roll}, A2 = {3 or 4 on the second roll},
and A3 = {5 or 6 on the third roll}. It is given that
P(Ai) = 1/3, i = 1, 2, 3; P(Ai ∩ Aj) = (1/3)2, i �= j; and
P(A1 ∩ A2 ∩ A3) = (1/3)3.

(a) Use Theorem 1.1-6 to find P(A1 ∪ A2 ∪ A3).

(b) Show that P(A1 ∪ A2 ∪ A3) = 1 − (1 − 1/3)3.

1.1-10. Prove Theorem 1.1-6.
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1.1-11. A typical roulette wheel used in a casino has 38
slots that are numbered 1, 2, 3, . . . , 36, 0, 00, respectively.
The 0 and 00 slots are colored green. Half of the remain-
ing slots are red and half are black. Also, half of the
integers between 1 and 36 inclusive are odd, half are even,
and 0 and 00 are defined to be neither odd nor even. A
ball is rolled around the wheel and ends up in one of the
slots; we assume that each slot has equal probability of
1/38, and we are interested in the number of the slot into
which the ball falls.

(a) Define the sample space S.

(b) Let A = {0, 00}. Give the value of P(A).

(c) Let B = {14, 15, 17, 18}. Give the value of P(B).

(d) Let D = {x : x is odd}. Give the value of P(D).

1.1-12. Let x equal a number that is selected randomly
from the closed interval from zero to one, [0, 1]. Use your
intuition to assign values to

(a) P({x : 0 ≤ x ≤ 1/3}).

(b) P({x : 1/3 ≤ x ≤ 1}).

(c) P({x : x = 1/3}).

(d) P({x : 1/2 < x < 5}).

1.1-13. Divide a line segment into two parts by selecting
a point at random. Use your intuition to assign a proba-
bility to the event that the longer segment is at least two
times longer than the shorter segment.

1.1-14. Let the interval [−r, r] be the base of a semicircle.
If a point is selected at random from this interval, assign
a probability to the event that the length of the perpen-
dicular segment from the point to the semicircle is less
than r/2.

1.1-15. Let S = A1 ∪ A2 ∪ · · · ∪ Am, where events
A1, A2, . . . , Am are mutually exclusive and exhaustive.

(a) If P(A1) = P(A2) = · · · = P(Am), show that P(Ai) =
1/m, i = 1, 2, . . . , m.

(b) If A = A1 ∪A2 ∪· · ·∪Ah, where h < m, and (a) holds,
prove that P(A) = h/m.

1.1-16. Let pn, n = 0, 1, 2, . . . , be the probability that
an automobile policyholder will file for n claims in a
five-year period. The actuary involved makes the assump-
tion that pn+1 = (1/4)pn. What is the probability that
the holder will file two or more claims during this
period?

1.2 METHODS OF ENUMERATION
In this section, we develop counting techniques that are useful in determining the
number of outcomes associated with the events of certain random experiments. We
begin with a consideration of the multiplication principle.

Multiplication Principle: Suppose that an experiment (or procedure) E1 has n1
outcomes and, for each of these possible outcomes, an experiment (procedure) E2
has n2 possible outcomes. Then the composite experiment (procedure) E1E2 that
consists of performing first E1 and then E2 has n1n2 possible outcomes.

Example
1.2-1

Let E1 denote the selection of a rat from a cage containing one female (F) rat and
one male (M) rat. Let E2 denote the administering of either drug A (A), drug B (B),
or a placebo (P) to the selected rat. Then the outcome for the composite experiment
can be denoted by an ordered pair, such as (F, P). In fact, the set of all possible
outcomes, namely, (2)(3) = 6 of them, can be denoted by the following rectangular
array:

(F, A) (F, B) (F, P)

(M, A) (M, B) (M, P)

Another way of illustrating the multiplication principle is with a tree diagram
like that in Figure 1.2-1. The diagram shows that there are n1 = 2 possibilities
(branches) for the sex of the rat and that, for each of these outcomes, there are
n2 = 3 possibilities (branches) for the drug.

Clearly, the multiplication principle can be extended to a sequence of
more than two experiments or procedures. Suppose that the experiment Ei has
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Figure 1.2-1 Tree diagram

ni (i = 1, 2, . . . , m) possible outcomes after previous experiments have been per-
formed. Then the composite experiment E1E2 · · · Em that consists of performing E1,
then E2, . . . , and finally Em has n1n2 · · · nm possible outcomes.

Example
1.2-2

A certain food service gives the following choices for dinner: E1, soup or tomato
juice; E2, steak or shrimp; E3, French fried potatoes, mashed potatoes, or a baked
potato; E4, corn or peas; E5, jello, tossed salad, cottage cheese, or coleslaw; E6, cake,
cookies, pudding, brownie, vanilla ice cream, chocolate ice cream, or orange sherbet;
E7, coffee, tea, milk, or punch. How many different dinner selections are possible if
one of the listed choices is made for each of E1, E2, . . . , and E7? By the multiplication
principle, there are

(2)(2)(3)(2)(4)(7)(4) = 2688

different combinations.

Although the multiplication principle is fairly simple and easy to understand, it
will be extremely useful as we now develop various counting techniques.

Suppose that n positions are to be filled with n different objects. There are n
choices for filling the first position, n − 1 for the second, . . . , and 1 choice for the last
position. So, by the multiplication principle, there are

n(n − 1) · · · (2)(1) = n!
possible arrangements. The symbol n! is read “n factorial.” We define 0! = 1; that is,
we say that zero positions can be filled with zero objects in one way.

Definition 1.2-1
Each of the n! arrangements (in a row) of n different objects is called a
permutation of the n objects.

Example
1.2-3

The number of permutations of the four letters a, b, c, and d is clearly 4! = 24.
However, the number of possible four-letter code words using the four letters
a, b, c, and d if letters may be repeated is 44 = 256, because in this case each selection
can be performed in four ways.
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If only r positions are to be filled with objects selected from n different objects,
r ≤ n, then the number of possible ordered arrangements is

nPr = n(n − 1)(n − 2) · · · (n − r + 1).

That is, there are n ways to fill the first position, (n − 1) ways to fill the second, and
so on, until there are [n − (r − 1)] = (n − r + 1) ways to fill the rth position.

In terms of factorials, we have

nPr = n(n − 1) · · · (n − r + 1)(n − r) · · · (3)(2)(1)
(n − r) · · · (3)(2)(1)

= n!
(n − r)! .

Definition 1.2-2
Each of the nPr arrangements is called a permutation of n objects taken r at a
time.

Example
1.2-4

The number of possible four-letter code words, selecting from the 26 letters in the
alphabet, in which all four letters are different is

26P4 = (26)(25)(24)(23) = 26!
22! = 358,800.

Example
1.2-5

The number of ways of selecting a president, a vice president, a secretary, and a
treasurer in a club consisting of 10 persons is

10P4 = 10 · 9 · 8 · 7 = 10!
6! = 5040.

Suppose that a set contains n objects. Consider the problem of drawing r objects
from this set. The order in which the objects are drawn may or may not be impor-
tant. In addition, it is possible that a drawn object is replaced before the next object
is drawn. Accordingly, we give some definitions and show how the multiplication
principle can be used to count the number of possibilities.

Definition 1.2-3
If r objects are selected from a set of n objects, and if the order of selection is
noted, then the selected set of r objects is called an ordered sample of size r.

Definition 1.2-4
Sampling with replacement occurs when an object is selected and then replaced
before the next object is selected.

By the multiplication principle, the number of possible ordered samples of size
r taken from a set of n objects is nr when sampling with replacement.

Example
1.2-6

A die is rolled seven times. The number of possible ordered samples is 67 = 279,936.
Note that rolling a die is equivalent to sampling with replacement from the set
{1,2,3,4,5,6}.
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Example
1.2-7

An urn contains 10 balls numbered 0, 1, 2, . . . , 9. If 4 balls are selected one at
a time and with replacement, then the number of possible ordered samples is
104 = 10,000. Note that this is the number of four-digit integers between 0000 and
9999, inclusive.

Definition 1.2-5
Sampling without replacement occurs when an object is not replaced after it has
been selected.

By the multiplication principle, the number of possible ordered samples of size
r taken from a set of n objects without replacement is

n(n − 1) · · · (n − r + 1) = n!
(n − r)! ,

which is equivalent to nPr, the number of permutations of n objects taken r at a time.

Example
1.2-8

The number of ordered samples of 5 cards that can be drawn without replacement
from a standard deck of 52 playing cards is

(52)(51)(50)(49)(48) = 52!
47! = 311,875,200.

REMARK Note that it must be true that r ≤ n when sampling without replacement,
but r can exceed n when sampling with replacement.

Often the order of selection is not important and interest centers only on the
selected set of r objects. That is, we are interested in the number of subsets of size
r that can be selected from a set of n different objects. In order to find the number
of (unordered) subsets of size r, we count, in two different ways, the number of
ordered subsets of size r that can be taken from the n distinguishable objects. Then,
equating the two answers, we are able to count the number of (unordered) subsets of
size r.

Let C denote the number of (unordered) subsets of size r that can be selected
from n different objects. We can obtain each of the nPr ordered subsets by first
selecting one of the C unordered subsets of r objects and then ordering these r
objects. Since the latter ordering can be carried out in r! ways, the multiplication
principle yields (C)(r!) ordered subsets; so (C)(r!) must equal nPr. Thus, we have

(C)(r!) = n!
(n − r)! ,

or

C = n!
r! (n − r)! .

We denote this answer by either nCr or
(n

r

)
; that is,

nCr =
(

n
r

)
= n!

r! (n − r)! .
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Accordingly, a set of n different objects possesses(
n
r

)
= n!

r! (n − r)!
unordered subsets of size r ≤ n.

We could also say that the number of ways in which r objects can be selected
without replacement from n objects when the order of selection is disregarded is(

n
r

)
= nCr, and the latter expression can be read as “n choose r.” This result

motivates the next definition.

Definition 1.2-6
Each of the nCr unordered subsets is called a combination of n objects taken
r at a time, where

nCr =
(

n
r

)
= n!

r! (n − r)! .

Example
1.2-9

The number of possible 5-card hands (in 5-card poker) drawn from a deck of 52
playing cards is

52C5 =
(

52
5

)
= 52!

5! 47! = 2,598,960.

Example
1.2-10

The number of possible 13-card hands (in bridge) that can be selected from a deck
of 52 playing cards is

52C13 =
(

52
13

)
= 52!

13! 39! = 635,013,559,600.

The numbers
(

n
r

)
are frequently called binomial coefficients, since they arise in

the expansion of a binomial. We illustrate this property by giving a justification of
the binomial expansion

(a + b)n =
n∑

r=0

(
n
r

)
bran−r. (1.2-1)

For each summand in the expansion of

(a + b)n = (a + b)(a + b) · · · (a + b),

either an a or a b is selected from each of the n factors. One possible product is
then bran−r; this occurs when b is selected from each of r factors and a from each of

the remaining n − r factors. But the latter operation can be completed in
(

n
r

)
ways,

which then must be the coefficient of bran−r, as shown in Equation 1.2-1.
The binomial coefficients are given in Table I in Appendix B for selected values

of n and r. Note that for some combinations of n and r, the table uses the fact that(
n
r

)
= n!

r! (n − r)! = n!
(n − r)! r! =

(
n

n − r

)
.
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That is, the number of ways in which r objects can be selected out of n objects is
equal to the number of ways in which n − r objects can be selected out of n objects.

Example
1.2-11

Assume that each of the
(

52
5

)
= 2,598,960 five-card hands drawn from a deck of

52 playing cards has the same probability of being selected. Then the number of
possible 5-card hands that are all spades (event A) is

N(A) =
(

13
5

)(
39
0

)
,

because the 5 spades can be selected from the 13 spades in
(

13
5

)
ways, after which

zero nonspades can be selected in
(

39
0

)
= 1 way. We have(

13
5

)
= 13!

5!8! = 1287

from Table I in Appendix B. Thus, the probability of an all-spade five-card hand is

P(A) = N(A)
N(S)

= 1287
2,598,960

= 0.000495.

Suppose now that the event B is the set of outcomes in which exactly three cards
are kings and exactly two cards are queens. We can select the three kings in any

one of
(

4
3

)
ways and the two queens in any one of

(
4
2

)
ways. By the multiplication

principle, the number of outcomes in B is

N(B) =
(

4
3

)(
4
2

)(
44
0

)
,

where
(

44
0

)
gives the number of ways in which 0 cards are selected out of the

nonkings and nonqueens and of course is equal to 1. Thus,

P(B) = N(B)
N(S)

=

(
4
3

)(
4
2

)(
44
0

)
(

52
5

) = 24
2,598,960

= 0.0000092.

Finally, let C be the set of outcomes in which there are exactly two kings, two queens,
and one jack. Then

P(C) = N(C)
N(S)

=

(
4
2

)(
4
2

)(
4
1

)(
40
0

)
(

52
5

) = 144
2,598,960

= 0.000055

because the numerator of this fraction is the number of outcomes in C.

Now suppose that a set contains n objects of two types: r of one type and n− r of
the other type. The number of permutations of n different objects is n!. However, in
this case, the objects are not all distinguishable. To count the number of distinguish-
able arrangements, first select r out of the n positions for the objects of the first type.
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This can be done in
(

n
r

)
ways. Then fill in the remaining positions with the objects

of the second type. Thus, the number of distinguishable arrangements is

nCr =
(

n
r

)
= n!

r! (n − r)! .

Definition 1.2-7
Each of the nCr permutations of n objects, r of one type and n − r of another
type, is called a distinguishable permutation.

Example
1.2-12

A coin is flipped 10 times and the sequence of heads and tails is observed. The num-
ber of possible 10-tuplets that result in four heads and six tails is(

10
4

)
= 10!

4! 6! = 10!
6! 4! =

(
10
6

)
= 210.

Example
1.2-13

In an orchid show, seven orchids are to be placed along one side of the greenhouse.
There are four lavender orchids and three white orchids. Considering only the color
of the orchids, we see that the number of lineups of the orchids is(

7
4

)
= 7!

4! 3! = 35.

If the colors of the seven orchids are white, lavender, yellow, mauve, crimson, orange,
and pink, the number of different displays is 7! = 5040.

The foregoing results can be extended. Suppose that in a set of n objects, n1 are
similar, n2 are similar, . . . , ns are similar, where n1 + n2 + · · · + ns = n. Then the
number of distinguishable permutations of the n objects is (see Exercise 1.2-15)(

n
n1, n2, . . . , ns

)
= n!

n1! n2! · · · ns! . (1.2-2)

Example
1.2-14

Among nine orchids for a line of orchids along one wall, three are white, four laven-
der, and two yellow. The number of different color displays is then(

9
3, 4, 2

)
= 9!

3! 4! 2! = 1260.

The argument used in determining the binomial coefficients in the expansion of
(a+b)n can be extended to find the expansion of (a1 +a2 +· · ·+as)n. The coefficient
of a1

n1 a2
n2 · · · as

ns , where n1 + n2 + · · · + ns = n, is(
n

n1, n2, . . . , ns

)
= n!

n1! n2! · · · ns! .

This is sometimes called a multinomial coefficient.
When r objects are selected out of n objects, we are often interested in the

number of possible outcomes. We have seen that for ordered samples, there are
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nr possible outcomes when sampling with replacement and nPr outcomes when sam-
pling without replacement. For unordered samples, there are nCr outcomes when
sampling without replacement. Each of the preceding outcomes is equally likely,
provided that the experiment is performed in a fair manner.

REMARK Although not needed as often in the study of probability, it is interesting
to count the number of possible samples of size r that can be selected out of n objects
when the order is irrelevant and when sampling with replacement. For example, if
a six-sided die is rolled 10 times (or 10 six-sided dice are rolled once), how many
possible unordered outcomes are there? To count the number of possible outcomes,
think of listing r 0’s for the r objects that are to be selected. Then insert (n − 1) |’s to
partition the r objects into n sets, the first set giving objects of the first kind, and so
on. So if n = 6 and r = 10 in the die illustration, a possible outcome is

0 0 | | 0 0 0 | 0 | 0 0 0 | 0,

which says there are two 1’s, zero 2’s, three 3’s, one 4, three 5’s, and one 6. In gen-
eral, each outcome is a permutation of r 0’s and (n − 1) |’s. Each distinguishable
permutation is equivalent to an unordered sample. The number of distinguishable
permutations, and hence the number of unordered samples of size r that can be
selected out of n objects when sampling with replacement, is

n−1+rCr = (n − 1 + r)!
r! (n − 1)! .

Exercises

1.2-1. A boy found a bicycle lock for which the combina-
tion was unknown. The correct combination is a four-digit
number, d1d2d3d4, where di, i = 1, 2, 3, 4, is selected
from 1, 2, 3, 4, 5, 6, 7, and 8. How many different lock
combinations are possible with such a lock?

1.2-2. In designing an experiment, the researcher can
often choose many different levels of the various fac-
tors in order to try to find the best combination at which
to operate. As an illustration, suppose the researcher is
studying a certain chemical reaction and can choose four
levels of temperature, five different pressures, and two
different catalysts.
(a) To consider all possible combinations, how many

experiments would need to be conducted?

(b) Often in preliminary experimentation, each factor is
restricted to two levels. With the three factors noted,
how many experiments would need to be run to cover
all possible combinations with each of the three fac-
tors at two levels? (Note: This is often called a 23

design.)

1.2-3. How many different license plates are possible if a
state uses

(a) Two letters followed by a four-digit integer (leading
zeros are permissible and the letters and digits can be
repeated)?

(b) Three letters followed by a three-digit integer? (In
practice, it is possible that certain “spellings” are ruled
out.)

1.2-4. The “eating club” is hosting a make-your-own sun-
dae at which the following are provided:

Ice Cream Flavors Toppings

Chocolate Caramel

Cookies ‘n’ cream Hot fudge

Strawberry Marshmallow

Vanilla M&M’s

Nuts

Strawberries

(a) How many sundaes are possible using one flavor of
ice cream and three different toppings?

(b) How many sundaes are possible using one flavor of
ice cream and from zero to six toppings?

(c) How many different combinations of flavors of three
scoops of ice cream are possible if it is permissible to
make all three scoops the same flavor?
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1.2-5. How many four-letter code words are possible
using the letters in IOWA if

(a) The letters may not be repeated?

(b) The letters may be repeated?

1.2-6. Suppose that Novak Djokovic and Roger Federer
are playing a tennis match in which the first player to win
three sets wins the match. Using D and F for the winning
player of a set, in how many ways could this tennis match
end?

1.2-7. In a state lottery, four digits are drawn at random
one at a time with replacement from 0 to 9. Suppose
that you win if any permutation of your selected inte-
gers is drawn. Give the probability of winning if you
select

(a) 6, 7, 8, 9.

(b) 6, 7, 8, 8.

(c) 7, 7, 8, 8.

(d) 7, 8, 8, 8.

1.2-8. How many different varieties of pizza can be made
if you have the following choice: small, medium, or large
size; thin ‘n’ crispy, hand-tossed, or pan crust; and 12 top-
pings (cheese is automatic), from which you may select
from 0 to 12?

1.2-9. The World Series in baseball continues until either
the American League team or the National League team
wins four games. How many different orders are possible
(e.g., ANNAAA means the American League team wins
in six games) if the series goes

(a) Four games?

(b) Five games?

(c) Six games?

(d) Seven games?

1.2-10. Pascal’s triangle gives a method for calculating the
binomial coefficients; it begins as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...
...

...
...

...

The nth row of this triangle gives the coefficients for
(a + b)n−1. To find an entry in the table other than a 1
on the boundary, add the two nearest numbers in the row
directly above. The equation(

n
r

)
=

(
n − 1

r

)
+

(
n − 1
r − 1

)
,

called Pascal’s equation, explains why Pascal’s triangle
works. Prove that this equation is correct.

1.2-11. Three students (S) and six faculty members (F)
are on a panel discussing a new college policy.

(a) In how many different ways can the nine participants
be lined up at a table in the front of the auditorium?

(b) How many lineups are possible, considering only the
labels S and F?

(c) For each of the nine participants, you are to decide
whether the participant did a good job or a poor job
stating his or her opinion of the new policy; that is,
give each of the nine participants a grade of G or P.
How many different “scorecards” are possible?

1.2-12. Prove

n∑
r=0

(−1)r
(

n
r

)
= 0 and

n∑
r=0

(
n
r

)
= 2n.

Hint: Consider (1 − 1)n and (1 + 1)n, or use Pascal’s
equation and proof by induction.

1.2-13. A bridge hand is found by taking 13 cards at
random and without replacement from a deck of 52 play-
ing cards. Find the probability of drawing each of the
following hands.

(a) One in which there are 5 spades, 4 hearts, 3 diamonds,
and 1 club.

(b) One in which there are 5 spades, 4 hearts, 2 diamonds,
and 2 clubs.

(c) One in which there are 5 spades, 4 hearts, 1 diamond,
and 3 clubs.

(d) Suppose you are dealt 5 cards of one suit, 4 cards of
another. Would the probability of having the other
suits split 3 and 1 be greater than the probability of
having them split 2 and 2?

1.2-14. A bag of 36 dum-dum pops (suckers) contains up
to 10 flavors. That is, there are from 0 to 36 suckers of
each of 10 flavors in the bag. How many different flavor
combinations are possible?

1.2-15. Prove Equation 1.2-2. Hint: First select n1 posi-

tions in
(

n
n1

)
ways. Then select n2 from the remaining

n − n1 positions in
(

n − n1

n2

)
ways, and so on. Finally, use

the multiplication rule.

1.2-16. A box of candy hearts contains 52 hearts, of which
19 are white, 10 are tan, 7 are pink, 3 are purple, 5 are yel-
low, 2 are orange, and 6 are green. If you select nine pieces
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of candy randomly from the box, without replacement,
give the probability that

(a) Three of the hearts are white.

(b) Three are white, two are tan, one is pink, one is yellow,
and two are green.

1.2-17. A poker hand is defined as drawing 5 cards at
random without replacement from a deck of 52 playing
cards. Find the probability of each of the following poker
hands:

(a) Four of a kind (four cards of equal face value and one
card of a different value).

(b) Full house (one pair and one triple of cards with equal
face value).

(c) Three of a kind (three equal face values plus two cards
of different values).

(d) Two pairs (two pairs of equal face value plus one card
of a different value).

(e) One pair (one pair of equal face value plus three cards
of different values).

1.3 CONDITIONAL PROBABILITY
We introduce the idea of conditional probability by means of an example.

Example
1.3-1

Suppose that we are given 20 tulip bulbs that are similar in appearance and told that
8 will bloom early, 12 will bloom late, 13 will be red, and 7 will be yellow, in accor-
dance with the various combinations listed in Table 1.3-1. If one bulb is selected at
random, the probability that it will produce a red tulip (R) is given by P(R) = 13/20,
under the assumption that each bulb is “equally likely.” Suppose, however, that
close examination of the bulb will reveal whether it will bloom early (E) or late
(L). If we consider an outcome only if it results in a tulip bulb that will bloom
early, only eight outcomes in the sample space are now of interest. Thus, under this
limitation, it is natural to assign the probability 5/8 to R; that is, P(R | E) = 5/8,
where P(R | E) is read as the probability of R given that E has occurred. Note
that

P(R | E) = 5
8

= N(R ∩ E)
N(E)

= N(R ∩ E)/20
N(E)/20

= P(R ∩ E)
P(E)

,

where N(R ∩ E) and N(E) are the numbers of outcomes in events R ∩ E and E,
respectively.

This example illustrates a number of common situations. That is, in some ran-
dom experiments, we are interested only in those outcomes which are elements of a
subset B of the sample space S. This means, for our purposes, that the sample space
is effectively the subset B. We are now confronted with the problem of defining a
probability set function with B as the “new” sample space. That is, for a given event

Table 1.3-1 Tulip combinations

Early (E) Late (L) Totals

Red (R) 5 8 13

Yellow (Y) 3 4 7

Totals 8 12 20
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A, we want to define P(A | B), the probability of A, considering only those outcomes
of the random experiment that are elements of B. The previous example gives us
the clue to that definition. That is, for experiments in which each outcome is equally
likely, it makes sense to define P(A | B) by

P(A | B) = N(A ∩ B)
N(B)

,

where N(A∩B) and N(B) are the numbers of outcomes in A∩B and B, respectively.
If we then divide the numerator and the denominator of this fraction by N(S), the
number of outcomes in the sample space, we have

P(A | B) = N(A ∩ B)/N(S)
N(B)/N(S)

= P(A ∩ B)
P(B)

.

We are thus led to the following definition.

Definition 1.3-1
The conditional probability of an event A, given that event B has occurred, is
defined by

P(A | B) = P(A ∩ B)
P(B)

,

provided that P(B) > 0.

A formal use of the definition is given in the next example.

Example
1.3-2

If P(A) = 0.4, P(B) = 0.5, and P(A ∩ B) = 0.3, then P(A | B) = 0.3/0.5 = 0.6;
P(B | A) = P(A ∩ B)/P(A) = 0.3/0.4 = 0.75.

We can think of “given B” as specifying the new sample space for which, to
determine P(A | B), we now want to calculate the probability of that part of A that
is contained in B. The next two examples illustrate this idea.

Example
1.3-3

Suppose that P(A) = 0.7, P(B) = 0.3, and P(A ∩ B) = 0.2. These probabilities are
listed on the Venn diagram in Figure 1.3-1. Given that the outcome of the experiment
belongs to B, what then is the probability of A? We are effectively restricting the
sample space to B; of the probability P(B) = 0.3, 0.2 corresponds to P(A ∩ B) and
hence to A. That is, 0.2/0.3 = 2/3 of the probability of B corresponds to A. Of course,
by the formal definition, we also obtain

P(A | B) = P(A ∩ B)
P(B)

= 0.2
0.3

= 2
3

.

Example
1.3-4

A pair of fair four-sided dice is rolled and the sum is determined. Let A be the event
that a sum of 3 is rolled, and let B be the event that a sum of 3 or a sum of 5 is rolled.
In a sequence of rolls, the probability that a sum of 3 is rolled before a sum of 5 is
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0.2

0.2 0.10.5

BA

Figure 1.3-1 Conditional probability

rolled can be thought of as the conditional probability of a sum of 3 given that a sum
of 3 or 5 has occurred; that is, the conditional probability of A given B is

P(A | B) = P(A ∩ B)
P(B)

= P(A)
P(B)

= 2/16
6/16

= 2
6

.

Note that for this example, the only outcomes of interest are those having a sum of
3 or a sum of 5, and of these six equally likely outcomes, two have a sum of 3. (See
Figure 1.3-2 and Exercise 1.3-13.)

It is interesting to note that conditional probability satisfies the axioms for a
probability function, namely, with P(B) > 0,

(a) P(A | B) ≥ 0;

(b) P(B | B) = 1;

(1, 4) (2, 4) (4, 4)(3, 4)

(1, 3)

(4, 2)(1, 2) (2, 2) (3, 2)

A

x

y

(2, 3) (3, 3) (4, 3)

(4, 1)(2, 1) (3, 1)(1, 1)

B

1

1

2

3

4

2 3 4

Figure 1.3-2 Dice example
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(c) if A1, A2, A3, . . . are mutually exclusive events, then

P(A1 ∪ A2 ∪ · · · ∪ Ak | B) = P(A1 | B) + P(A2 | B) + · · · + P(Ak | B),

for each positive integer k, and

P(A1 ∪ A2 ∪ · · · | B) = P(A1 | B) + P(A2 | B) + · · · ,

for an infinite, but countable, number of events.

Properties (a) and (b) are evident because

P(A | B) = P(A ∩ B)
P(B)

≥ 0,

since P(A ∩ B) ≥ 0, P(B) > 0, and

P(B | B) = P(B ∩ B)
P(B)

= P(B)
P(B)

= 1.

Property (c) holds because, for the second part of (c),

P(A1 ∪ A2 ∪ · · · | B) = P[(A1 ∪ A2 ∪ · · · ) ∩ B]
P(B)

= P[(A1 ∩ B) ∪ (A2 ∩ B) ∪ · · · ]
P(B)

.

But (A1 ∩ B), (A2 ∩ B), . . . are also mutually exclusive events; so

P(A1 ∪ A2 ∪ · · · | B) = P(A1 ∩ B) + P(A2 ∩ B) + · · ·
P(B)

= P(A1 ∩ B)
P(B)

+ P(A2 ∩ B)
P(B)

+ · · ·
= P(A1 | B) + P(A2 | B) + · · · .

The first part of property (c) is proved in a similar manner.
Note that, as a consequence, results analogous to those given by Theorems 1.1-1

through 1.1-6 hold for conditional probabilities. For example,

P(A′ | B) = 1 − P(A | B)

is true.
Many times, the conditional probability of an event is clear because of the nature

of an experiment. The next example illustrates this.

Example
1.3-5

At a county fair carnival game there are 25 balloons on a board, of which 10 balloons
are yellow, 8 are red, and 7 are green. A player throws darts at the balloons to win a
prize and randomly hits one of them. Given that the first balloon hit is yellow, what is
the probability that the next balloon hit is also yellow? Of the 24 remaining balloons,
9 are yellow, so a natural value to assign to this conditional probability is 9/24.

In Example 1.3-5, let A be the event that the first balloon hit is yellow, and let B
be the event that the second balloon hit is yellow. Suppose that we are interested in
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the probability that both balloons hit are yellow. That is, we are interested in finding
P(A ∩ B). We noted in that example that

P(B | A) = P(A ∩ B)
P(A)

= 9
24

.

Thus, multiplying through by P(A), we have

P(A ∩ B) = P(A)P(B | A) = P(A)
(

9
24

)
, (1.3-1)

or

P(A ∩ B) =
(

10
25

)(
9

24

)
.

That is, Equation 1.3-1 gives us a general rule for the probability of the intersection
of two events once we know the conditional probability P(B | A).

Definition 1.3-2
The probability that two events, A and B, both occur is given by the multiplica-
tion rule,

P(A ∩ B) = P(A)P(B | A),

provided P(A) > 0 or by

P(A ∩ B) = P(B)P(A | B)

provided P(B) > 0.

Sometimes, after considering the nature of the random experiment, one can
make reasonable assumptions so that it is easier to assign P(B) and P(A | B) rather
than P(A ∩ B). Then P(A ∩ B) can be computed with these assignments. This
approach will be illustrated in Examples 1.3-6 and 1.3-7.

Example
1.3-6

A bowl contains seven blue chips and three red chips. Two chips are to be drawn suc-
cessively at random and without replacement. We want to compute the probability
that the first draw results in a red chip (A) and the second draw results in a blue chip
(B). It is reasonable to assign the following probabilities:

P(A) = 3
10

and P(B | A) = 7
9

.

The probability of obtaining red on the first draw and blue on the second draw is

P(A ∩ B) = 3
10

· 7
9

= 7
30

.

Note that in many instances it is possible to compute a probability by two
seemingly different methods. For instance, consider Example 1.3-6, but find the
probability of drawing a red chip on each of the two draws. Following that example,
it is

3
10

· 2
9

= 1
15

.
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However, we can also find this probability by using combinations as follows:(
3
2

)(
7
0

)
(

10
2

) =
(3)(2)
(1)(2)
(10)(9)
(1)(2)

= 1
15

.

Thus, we obtain the same answer, as we should, provided that our reasoning is
consistent with the underlying assumptions.

Example
1.3-7

From an ordinary deck of playing cards, cards are to be drawn successively at random
and without replacement. The probability that the third spade appears on the sixth
draw is computed as follows: Let A be the event of two spades in the first five cards
drawn, and let B be the event of a spade on the sixth draw. Thus, the probability that
we wish to compute is P(A ∩ B). It is reasonable to take

P(A) =

(
13
2

)(
39
3

)
(

52
5

) = 0.274 and P(B | A) = 11
47

= 0.234.

The desired probability, P(A ∩ B), is the product of those numbers:

P(A ∩ B) = (0.274)(0.234) = 0.064.

Example
1.3-8

Continuing with Example 1.3-4, in which a pair of four-sided dice is rolled, the prob-
ability of rolling a sum of 3 on the first roll and then, continuing the sequence of
rolls, rolling a sum of 3 before rolling a sum of 5 is

2
16

· 2
6

= 4
96

= 1
24

.

The multiplication rule can be extended to three or more events. In the case of
three events, using the multiplication rule for two events, we have

P(A ∩ B ∩ C) = P[(A ∩ B) ∩ C]

= P(A ∩ B)P(C | A ∩ B).

But

P(A ∩ B) = P(A)P(B | A).

Hence,

P(A ∩ B ∩ C) = P(A)P(B | A)P(C | A ∩ B).

This type of argument can be used to extend the multiplication rule to more
than three events, and the general formula for k events can be officially proved by
mathematical induction.

Example
1.3-9

Four cards are to be dealt successively at random and without replacement from
an ordinary deck of playing cards. The probability of receiving, in order, a spade, a
heart, a diamond, and a club is
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13
52

· 13
51

· 13
50

· 13
49

,

a result that follows from the extension of the multiplication rule and reasonable
assignments to the probabilities involved.

Example
1.3-10

A grade school boy has five blue and four white marbles in his left pocket and four
blue and five white marbles in his right pocket. If he transfers one marble at random
from his left to his right pocket, what is the probability of his then drawing a blue
marble from his right pocket? For notation, let BL, BR, and WL denote drawing blue
from left pocket, blue from right pocket, and white from left pocket, respectively.
Then

P(BR) = P(BL ∩ BR) + P(WL ∩ BR)

= P(BL)P(BR | BL) + P(WL)P(BR | WL)

= 5
9

· 5
10

+ 4
9

· 4
10

= 41
90

is the desired probability.

Example
1.3-11

An insurance company sells several types of insurance policies, including auto poli-
cies and homeowner policies. Let A1 be those people with an auto policy only, A2
those people with a homeowner policy only, and A3 those people with both an
auto and homeowner policy (but no other policies). For a person randomly selected
from the company’s policy holders, suppose that P(A1) = 0.3, P(A2) = 0.2, and
P(A3) = 0.2. Further, let B be the event that the person will renew at least one
of these policies. Say from past experience that we assign the conditional prob-
abilities P(B | A1) = 0.6, P(B | A2) = 0.7, and P(B | A3) = 0.8. Given that the
person selected at random has an auto or homeowner policy, what is the conditional
probability that the person will renew at least one of those policies? The desired
probability is

P(B | A1 ∪ A2 ∪ A3) = P(A1 ∩ B) + P(A2 ∩ B) + P(A3 ∩ B)
P(A1) + P(A2) + P(A3)

= (0.3)(0.6) + (0.2)(0.7) + (0.2)(0.8)
0.3 + 0.2 + 0.2

= 0.48
0.70

= 0.686.

Example
1.3-12

An electronic device has two components, C1 and C2, but it will operate if at least
one of the components is working properly. Each component has its own switch,
and both switches must be turned on, one after the other, for the device to begin
operating. Thus, the device can begin to operate by either switching C1 on first and
then C2, or vice versa. If C1 is switched on first, it fails immediately with probabil-
ity 0.01, whereas if C2 is switched on first, it fails immediately with probability 0.02.
Furthermore, if C1 is switched on first and fails, the probability that C2 fails immedi-
ately when it is switched on is 0.025, due to added strain. Similarly, if C2 is switched
on first and fails, the probability that C1 fails immediately when it is switched on is
0.015. Thus, the probability that the device fails to operate after switching on C1 first
and then C2 is

P(C1 fails)P(C2 fails | C1 fails) = (0.01)(0.025) = 0.00025,
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while the probability that the device fails to operate after switching on C2 first and
then C1 is

P(C2 fails)P(C1 fails | C2 fails) = (0.02)(0.015) = 0.0003.

The device therefore is more likely to operate properly if C1 is switched on first.

Exercises

1.3-1. A common test for AIDS is called the ELISA
(enzyme-linked immunosorbent assay) test. Among 1
million people who are given the ELISA test, we can
expect results similar to those given in the following table:

B1: Carry B2: Do Not
AIDS Virus Carry Aids Virus Totals

A1: Test
Positive

4,885 73,630 78,515

A2: Test
Negative

115 921,370 921,485

Totals 5,000 995,000 1,000,000

If one of these 1 million people is selected randomly,
find the following probabilities: (a) P(B1), (b) P(A1), (c)
P(A1 | B2), (d) P(B1 | A1). (e) In words, what do parts (c)
and (d) say?

1.3-2. The following table classifies 1456 people by their
gender and by whether or not they favor a gun law.

Male (S1) Female (S2) Totals

Favor (A1) 392 649 1041

Oppose (A2) 241 174 415

Totals 633 823 1456

Compute the following probabilities if one of these 1456
persons is selected randomly: (a) P(A1), (b) P(A1 | S1), (c)
P(A1 | S2). (d) Interpret your answers to parts (b) and (c).

1.3-3. Let A1 and A2 be the events that a person is left-
eye dominant or right-eye dominant, respectively. When a
person folds his or her hands, let B1 and B2 be the events
that the left thumb and right thumb, respectively, are on
top. A survey in one statistics class yielded the following
table:

B1 B2 Totals

A1 5 7 12

A2 14 9 23

Totals 19 16 35

If a student is selected randomly, find the following prob-
abilities: (a) P(A1 ∩ B1), (b) P(A1 ∪ B1), (c) P(A1 | B1),
(d) P(B2 | A2). (e) If the students had their hands folded
and you hoped to select a right-eye-dominant student,
would you select a “right thumb on top” or a “left thumb
on top” student? Why?

1.3-4. Two cards are drawn successively and without
replacement from an ordinary deck of playing cards.
Compute the probability of drawing

(a) Two hearts.

(b) A heart on the first draw and a club on the second
draw.

(c) A heart on the first draw and an ace on the second
draw.

Hint: In part (c), note that a heart can be drawn by getting
the ace of hearts or one of the other 12 hearts.

1.3-5. Suppose that the alleles for eye color for a cer-
tain male fruit fly are (R, W) and the alleles for eye color
for the mating female fruit fly are (R, W), where R and
W represent red and white, respectively. Their offspring
receive one allele for eye color from each parent.

(a) Define the sample space of the alleles for eye color for
the offspring.

(b) Assume that each of the four possible outcomes has
equal probability. If an offspring ends up with either
two white alleles or one red and one white allele
for eye color, its eyes will look white. Given that an
offspring’s eyes look white, what is the conditional
probability that it has two white alleles for eye color?

1.3-6. A researcher finds that, of 982 men who died in
2002, 221 died from some heart disease. Also, of the 982
men, 334 had at least one parent who had some heart dis-
ease. Of the latter 334 men, 111 died from some heart
disease. A man is selected from the group of 982. Given
that neither of his parents had some heart disease, find the
conditional probability that this man died of some heart
disease.

1.3-7. An urn contains four colored balls: two orange
and two blue. Two balls are selected at random without
replacement, and you are told that at least one of them is
orange. What is the probability that the other ball is also
orange?

1.3-8. An urn contains 17 balls marked LOSE and 3 balls
marked WIN. You and an opponent take turns selecting a
single ball at random from the urn without replacement.
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The person who selects the third WIN ball wins the game.
It does not matter who selected the first two WIN balls.

(a) If you draw first, find the probability that you win the
game on your second draw.

(b) If you draw first, find the probability that your oppo-
nent wins the game on his second draw.

(c) If you draw first, what is the probability that
you win? Hint: You could win on your second,
third, fourth, . . . , or tenth draw, but not on your
first.

(d) Would you prefer to draw first or second? Why?

1.3-9. An urn contains four balls numbered 1 through 4.
The balls are selected one at a time without replacement.
A match occurs if the ball numbered m is the mth ball
selected. Let the event Ai denote a match on the ith draw,
i = 1, 2, 3, 4.

(a) Show that P(Ai) = 3!
4! for each i.

(b) Show that P(Ai ∩ Aj) = 2!
4! , i �= j.

(c) Show that P(Ai ∩ Aj ∩ Ak) = 1!
4! , i �= j, i �= k, j �= k.

(d) Show that the probability of at least one match is

P(A1 ∪ A2 ∪ A3 ∪ A4) = 1 − 1
2! + 1

3! − 1
4! .

(e) Extend this exercise so that there are n balls in the
urn. Show that the probability of at least one match is

P(A1 ∪ A2 ∪ · · · ∪ An)

= 1 − 1
2! + 1

3! − 1
4! + · · · + (−1)n+1

n!

= 1 −
(

1 − 1
1! + 1

2! − 1
3! + · · · + (−1)n

n!
)

.

(f) What is the limit of this probability as n increases
without bound?

1.3-10. A single card is drawn at random from each of six
well-shuffled decks of playing cards. Let A be the event
that all six cards drawn are different.

(a) Find P(A).

(b) Find the probability that at least two of the drawn
cards match.

1.3-11. Consider the birthdays of the students in a class of
size r. Assume that the year consists of 365 days.

(a) How many different ordered samples of birthdays
are possible (r in sample) allowing repetitions (with
replacement)?

(b) The same as part (a), except requiring that all the
students have different birthdays (without replace-
ment)?

(c) If we can assume that each ordered outcome in
part (a) has the same probability, what is the prob-
ability that at least two students have the same
birthday?

(d) For what value of r is the probability in part
(c) about equal to 1/2? Is this number surpris-
ingly small? Hint: Use a calculator or computer to
find r.

1.3-12. You are a member of a class of 18 students. A
bowl contains 18 chips: 1 blue and 17 red. Each student
is to take 1 chip from the bowl without replacement. The
student who draws the blue chip is guaranteed an A for
the course.

(a) If you have a choice of drawing first, fifth, or last,
which position would you choose? Justify your choice
on the basis of probability.

(b) Suppose the bowl contains 2 blue and 16 red chips.
What position would you now choose?

1.3-13. In the gambling game “craps,” a pair of dice is
rolled and the outcome of the experiment is the sum of
the points on the up sides of the six-sided dice. The bettor
wins on the first roll if the sum is 7 or 11. The bettor loses
on the first roll if the sum is 2, 3, or 12. If the sum is 4, 5, 6,
8, 9, or l0, that number is called the bettor’s “point.” Once
the point is established, the rule is as follows: If the bettor
rolls a 7 before the point, the bettor loses; but if the point
is rolled before a 7, the bettor wins.

(a) List the 36 outcomes in the sample space for the roll
of a pair of dice. Assume that each of them has a
probability of 1/36.

(b) Find the probability that the bettor wins on the first
roll. That is, find the probability of rolling a 7 or 11,
P(7 or 11).

(c) Given that 8 is the outcome on the first roll, find the
probability that the bettor now rolls the point 8 before
rolling a 7 and thus wins. Note that at this stage in the
game the only outcomes of interest are 7 and 8. Thus
find P(8 | 7 or 8).

(d) The probability that a bettor rolls an 8 on the first roll
and then wins is given by P(8)P(8 | 7 or 8). Show that
this probability is (5/36)(5/11).

(e) Show that the total probability that a bettor wins in
the game of craps is 0.49293. Hint: Note that the bet-
tor can win in one of several mutually exclusive ways:
by rolling a 7 or an 11 on the first roll or by estab-
lishing one of the points 4, 5, 6, 8, 9, or 10 on the first
roll and then obtaining that point on successive rolls
before a 7 comes up.

1.3-14. Paper is often tested for “burst strength” and
“tear strength.” Say we classify these strengths as low,
middle, and high. Then, after examining 100 pieces of
paper, we find the following:
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Burst Strength

Tear Strength A1 (low) A2 (middle) A3 (high)

B1 (low) 7 11 13

B2 (middle) 11 21 9

B3 (high) 12 9 7

If we select one of the pieces at random, what are the
probabilities that it has the following characteristics:

(a) A1?

(b) A3 ∩ B2?

(c) A2 ∪ B3?

(d) A1, given that it is B2?

(e) B1, given that it is A3?

1.3-15. An urn contains eight red and seven blue balls.
A second urn contains an unknown number of red balls
and nine blue balls. A ball is drawn from each urn at ran-
dom, and the probability of getting two balls of the same
color is 151/300. How many red balls are in the second
urn?

1.3-16. Bowl A contains three red and two white chips,
and bowl B contains four red and three white chips. A
chip is drawn at random from bowl A and transferred to
bowl B. Compute the probability of then drawing a red
chip from bowl B.

1.4 INDEPENDENT EVENTS
For certain pairs of events, the occurrence of one of them may or may not change
the probability of the occurrence of the other. In the latter case, they are said to be
independent events. However, before giving the formal definition of independence,
let us consider an example.

Example
1.4-1

Flip a fair coin twice and observe the sequence of heads and tails. The sample space
is then

S = {HH, HT, TH, TT}.
It is reasonable to assign a probability of 1/4 to each of these four outcomes. Let

A = {heads on the first flip} = {HH, HT},
B = {tails on the second flip} = {HT, TT},
C = {tails on both flips} = {TT}.

Then P(B) = 2/4 = 1/2. Now, on the one hand, if we are given that C has occurred,
then P(B | C) = 1, because C ⊂ B. That is, the knowledge of the occurrence of C has
changed the probability of B. On the other hand, if we are given that A has occurred,
then

P(B | A) = P(A ∩ B)
P(A)

= 1/4
2/4

= 1
2

= P(B).

So the occurrence of A has not changed the probability of B. Hence, the probability
of B does not depend upon knowledge about event A, so we say that A and B are
independent events. That is, events A and B are independent if the occurrence of
one of them does not affect the probability of the occurrence of the other. A more
mathematical way of saying this is

P(B | A) = P(B) or P(A | B) = P(A),

provided that P(A) > 0 or, in the latter case, P(B) > 0. With the first of these
equalities and the multiplication rule (Definition 1.3-2), we have

P(A ∩ B) = P(A)P(B | A) = P(A)P(B).
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The second of these equalities, namely, P(A | B) = P(A), gives us the same result:

P(A ∩ B) = P(B)P(A | B) = P(B)P(A).

This example motivates the following definition of independent events.

Definition 1.4-1
Events A and B are independent if and only if P(A∩B) = P(A)P(B). Otherwise,
A and B are called dependent events.

Events that are independent are sometimes called statistically independent,
stochastically independent, or independent in a probabilistic sense, but in most
instances we use independent without a modifier if there is no possibility of mis-
understanding. It is interesting to note that the definition always holds if P(A) = 0
or P(B) = 0, because then P(A ∩ B) = 0, since (A ∩ B) ⊂ A and (A ∩ B) ⊂ B. Thus,
the left-hand and right-hand members of P(A ∩ B) = P(A)P(B) are both equal to
zero and thus are equal to each other.

Example
1.4-2

A red die and a white die are rolled. Let event A = {4 on the red die} and event
B = {sum of dice is odd}. Of the 36 equally likely outcomes, 6 are favorable to A, 18
are favorable to B, and 3 are favorable to A ∩ B. Then, assuming the dice are fair,

P(A)P(B) = 6
36

· 18
36

= 3
36

= P(A ∩ B).

Hence, A and B are independent by Definition 1.4-1.

Example
1.4-3

A red die and a white die are rolled. Let event C = {5 on red die} and event D =
{sum of dice is 11}. Of the 36 equally likely outcomes, 6 are favorable to C, 2 are
favorable to D, and 1 is favorable to C ∩ D. Then, assuming the dice are fair,

P(C)P(D) = 6
36

· 2
36

= 1
108

�= 1
36

= P(C ∩ D).

Hence, C and D are dependent events by Definition 1.4-1.

Theorem
1.4-1

If A and B are independent events, then the following pairs of events are also
independent:

(a) A and B′;
(b) A′ and B;

(c) A′ and B′.

Proof We know that conditional probability satisfies the axioms for a probability
function. Hence, if P(A) > 0, then P(B′ | A) = 1 − P(B | A). Thus,
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P(A ∩ B′) = P(A)P(B′ | A) = P(A)[1 − P(B | A)]

= P(A)[1 − P(B)]

= P(A)P(B′),

since P(B | A) = P(B) by hypothesis. Consequently, A and B′ are independent
events. The proofs of parts (b) and (c) are left as exercises. �

Before extending the definition of independent events to more than two events,
we present the following example.

Example
1.4-4

An urn contains four balls numbered 1, 2, 3, and 4. One ball is to be drawn at random
from the urn. Let the events A, B, and C be defined by A = {1, 2}, B = {1, 3}, and
C = {1, 4}. Then P(A) = P(B) = P(C) = 1/2. Furthermore,

P(A ∩ B) = 1
4

= P(A)P(B),

P(A ∩ C) = 1
4

= P(A)P(C),

P(B ∩ C) = 1
4

= P(B)P(C),

which implies that A, B, and C are independent in pairs (called pairwise indepen-
dence). However, since A ∩ B ∩ C = {1}, we have

P(A ∩ B ∩ C) = 1
4

�= 1
8

= P(A)P(B)P(C).

That is, something seems to be lacking for the complete independence of A, B,
and C.

This example illustrates the reason for the second condition in the next
definition.

Definition 1.4-2
Events A, B, and C are mutually independent if and only if the following two
conditions hold:

(a) A, B, and C are pairwise independent; that is,

P(A ∩ B) = P(A)P(B), P(A ∩ C) = P(A)P(C),

and

P(B ∩ C) = P(B)P(C).

(b) P(A ∩ B ∩ C) = P(A)P(B)P(C).

Definition 1.4-2 can be extended to the mutual independence of four or more
events. In such an extension, each pair, triple, quartet, and so on, must satisfy this
type of multiplication rule. If there is no possibility of misunderstanding, independent
is often used without the modifier mutually when several events are considered.
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Example
1.4-5

A rocket has a built-in redundant system. In this system, if component K1 fails, it is
bypassed and component K2 is used. If component K2 fails, it is bypassed and com-
ponent K3 is used. (An example of a system with these kinds of components is three
computer systems.) Suppose that the probability of failure of any one component
is 0.15, and assume that the failures of these components are mutually independent
events. Let Ai denote the event that component Ki fails for i = 1, 2, 3. Because the
system fails if K1 fails and K2 fails and K3 fails, the probability that the system does
not fail is given by

P[(A1 ∩ A2 ∩ A3)′] = 1 − P(A1 ∩ A2 ∩ A3)

= 1 − P(A1)P(A2)P(A3)

= 1 − (0.15)3

= 0.9966.

One way to increase the reliability of such a system is to add more components
(realizing that this also adds weight and takes up space). For example, if a fourth
component K4 were added to this system, the probability that the system does not
fail is

P[(A1 ∩ A2 ∩ A3 ∩ A4)′] = 1 − (0.15)4 = 0.9995.

If A, B, and C are mutually independent events, then the following events are
also independent:

(a) A and (B ∩ C);

(b) A and (B ∪ C);

(c) A′ and (B ∩ C′).

In addition, A′, B′, and C′ are mutually independent. (The proofs and illustrations
of these results are left as exercises.)

Many experiments consist of a sequence of n trials that are mutually indepen-
dent. If the outcomes of the trials, in fact, do not have anything to do with one
another, then events, such that each is associated with a different trial, should be
independent in the probability sense. That is, if the event Ai is associated with the
ith trial, i= 1, 2, . . . , n, then

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2) · · · P(An).

Example
1.4-6

A fair six-sided die is rolled six independent times. Let Ai be the event that side
i is observed on the ith roll, called a match on the ith trial, i = 1, 2, . . . , 6. Thus,
P(Ai) = 1/6 and P(A′

i) = 1 − 1/6 = 5/6. If we let B denote the event that at least
one match occurs, then B′ is the event that no matches occur. Hence,

P(B) = 1 − P(B′) = 1 − P(A′
1 ∩ A′

2 ∩ · · · ∩ A′
6)

= 1 − 5
6

· 5
6

· 5
6

· 5
6

· 5
6

· 5
6

= 1 −
(

5
6

)6

.

Example
1.4-7

The probability that a company’s workforce has at least one accident during a certain
month is (0.01)k, where k is the number of days in that month (say, February has 28
days). Assume that the numbers of accidents is independent from month to month.
If the company’s year starts with January, the probability that the first accident is in
April is
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P(none in Jan., none in Feb., none in March, at least one in April) =
(1 − 0.31)(1 − 0.28)(1 − 0.31)(0.30) = (0.69)(0.72)(0.69)(0.30)

= 0.103.

Example
1.4-8

Three inspectors look at a critical component of a product. Their probabilities of
detecting a defect are different, namely, 0.99, 0.98, and 0.96, respectively. If we
assume independence, then the probability of at least one detecting the defect is

1 − (0.01)(0.02)(0.04) = 0.999992.

The probability of only one finding the defect is

(0.99)(0.02)(0.04) + (0.01)(0.98)(0.04) + (0.01)(0.02)(0.96) = 0.001376.

As an exercise, compute the following probabilities: (a) that exactly two find the
defect, (b) that all three find the defect.

Example
1.4-9

Suppose that on five consecutive days an “instant winner” lottery ticket is purchased
and the probability of winning is 1/5 on each day. Assuming independent trials, we
have

P(WWLLL) =
(

1
5

)2(4
5

)3

,

P(LWLWL) = 4
5

· 1
5

· 4
5

· 1
5

· 4
5

=
(

1
5

)2(4
5

)3

.

In general, the probability of purchasing two winning tickets and three losing
tickets is (

5
2

)(
1
5

)2(4
5

)3

= 5!
2!3!

(
1
5

)2(4
5

)3

= 0.2048,

because there are
(

5
2

)
ways to select the positions (or the days) for the winning

tickets and each of these
(

5
2

)
ways has the probability (1/5)2(4/5)3.

Exercises

1.4-1. Let A and B be independent events with P(A) =
0.7 and P(B) = 0.2. Compute (a) P(A ∩ B), (b) P(A ∪ B),
and (c) P(A′ ∪ B′).

1.4-2. Let P(A) = 0.3 and P(B) = 0.6.

(a) Find P(A ∪ B) when A and B are independent.

(b) Find P(A | B) when A and B are mutually exclusive.

1.4-3. Let A and B be independent events with P(A) =
1/4 and P(B) = 2/3. Compute (a) P(A∩B), (b) P(A∩B′),
(c) P(A′ ∩ B′), (d) P[(A ∪ B)′], and (e) P(A′ ∩ B).

1.4-4. Prove parts (b) and (c) of Theorem 1.4-1.

1.4-5. If P(A) = 0.8, P(B) = 0.5, and P(A ∪ B) = 0.9, are
A and B independent events? Why or why not?

1.4-6. Show that if A, B, and C are mutually independent,
then the following pairs of events are independent: A and
(B ∩ C), A and (B ∪ C), A′ and (B ∩ C′). Show also that
A′, B′, and C′ are mutually independent.

1.4-7. Each of three football players will attempt to kick
a field goal from the 25-yard line. Let Ai denote the
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event that the field goal is made by player i, i = 1, 2, 3.
Assume that A1, A2, A3 are mutually independent and
that P(A1) = 0.5, P(A2) = 0.7, P(A3) = 0.6.

(a) Compute the probability that exactly one player is
successful.

(b) Compute the probability that exactly two players
make a field goal (i.e., one misses).

1.4-8. Die A has orange on one face and blue on five
faces, Die B has orange on two faces and blue on four
faces, Die C has orange on three faces and blue on three
faces. All are fair dice. If the three dice are rolled, find
the probability that exactly two of the three dice come up
orange.

1.4-9. Suppose that A, B, and C are mutually indepen-
dent events and that P(A) = 0.5, P(B) = 0.8, and P(C) =
0.9. Find the probabilities that (a) all three events occur,
(b) exactly two of the three events occur, and (c) none of
the events occurs.

1.4-10. Let D1, D2, D3 be three four-sided dice whose
sides have been labeled as follows:

D1 : 0 3 3 3 D2 : 2 2 2 5 D3 : 1 1 4 6

The three dice are rolled at random. Let A, B, and C
be the events that the outcome on die D1 is larger than
the outcome on D2, the outcome on D2 is larger than
the outcome on D3, and the outcome on D3 is larger
than the outcome on D1, respectively. Show that (a)
P(A) = 9/16, (b) P(B) = 9/16, and (c) P(C) = 10/16.
Do you find it interesting that each of the probabilities
that D1 “beats” D2, D2 “beats” D3, and D3 “beats” D1
is greater than 1/2? Thus, it is difficult to determine the
“best” die.

1.4-11. Let A and B be two events.

(a) If the events A and B are mutually exclusive, are A
and B always independent? If the answer is no, can
they ever be independent? Explain.

(b) If A ⊂ B, can A and B ever be independent events?
Explain.

1.4-12. Flip an unbiased coin five independent times.
Compute the probability of

(a) HHTHT.

(b) THHHT.

(c) HTHTH.

(d) Three heads occurring in the five trials.

1.4-13. An urn contains two red balls and four white
balls. Sample successively five times at random and with
replacement, so that the trials are independent. Compute

the probability of each of the two sequences WWR WR
and R WWWR.

1.4-14. In Example 1.4-5, suppose that the probability of
failure of a component is p = 0.4. Find the probability
that the system does not fail if the number of redundant
components is

(a) 3.

(b) 8.

1.4-15. An urn contains 10 red and 10 white balls. The
balls are drawn from the urn at random, one at a time.
Find the probabilities that the fourth white ball is the
fourth, fifth, sixth, or seventh ball drawn if the sampling
is done

(a) With replacement.

(b) Without replacement.

(c) In the World Series, the American League (red) and
National League (white) teams play until one team
wins four games. Do you think that the urn model pre-
sented in this exercise could be used to describe the
probabilities of a 4-, 5-, 6-, or 7-game series? (Note
that either “red” or “white” could win.) If your answer
is yes, would you choose sampling with or without
replacement in your model? (For your information,
the numbers of 4-, 5-, 6-, and 7-game series, up to
and including 2012, were 21, 24, 23, 36. This ignores
games that ended in a tie, which occurred in 1907,
1912, and 1922. Also, it does not include the 1903 and
1919–1921 series, in which the winner had to take five
out of nine games. The World Series was canceled in
1994.)

1.4-16. An urn contains five balls, one marked WIN and
four marked LOSE. You and another player take turns
selecting a ball at random from the urn, one at a time.
The first person to select the WIN ball is the winner. If
you draw first, find the probability that you will win if the
sampling is done

(a) With replacement.

(b) Without replacement.

1.4-17. Each of the 12 students in a class is given a fair
12-sided die. In addition, each student is numbered from
1 to 12.

(a) If the students roll their dice, what is the probability
that there is at least one “match” (e.g., student 4 rolls
a 4)?

(b) If you are a member of this class, what is the probabil-
ity that at least one of the other 11 students rolls the
same number as you do?

1.4-18. An eight-team single-elimination tournament is
set up as follows:
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F

Winner

A E

D

GC

B

H

For example, eight students (called A–H) set up a tour-
nament among themselves. The top-listed student in each
bracket calls heads or tails when his or her opponent flips
a coin. If the call is correct, the student moves on to the
next bracket.

(a) How many coin flips are required to determine the
tournament winner?

(b) What is the probability that you can predict all of the
winners?

(c) In NCAA Division I basketball, after the “play-in”
games, 64 teams participate in a single-elimination
tournament to determine the national champion.
Considering only the remaining 64 teams, how many

games are required to determine the national cham-
pion?

(d) Assume that for any given game, either team has
an equal chance of winning. (That is probably not
true.) On page 43 of the March 22, 1999, issue, Time
claimed that the “mathematical odds of predicting all
63 NCAA games correctly is 1 in 75 million.” Do you
agree with this statement? If not, why not?

1.4-19. Extend Example 1.4-6 to an n-sided die. That is,
suppose that a fair n-sided die is rolled n independent
times. A match occurs if side i is observed on the ith trial,
i = 1, 2, . . . , n.

(a) Show that the probability of at least one match is

1 −
(

n − 1
n

)n

= 1 −
(

1 − 1
n

)n

.

(b) Find the limit of this probability as n increases without
bound.

1.4-20. Hunters A and B shoot at a target with probabil-
ities of p1 and p2, respectively. Assuming independence,
can p1 and p2 be selected so that P(zero hits) = P(one
hit) = P(two hits)?

1.5 BAYES’ THEOREM
We begin this section by illustrating Bayes’ theorem with an example.

Example
1.5-1

Bowl B1 contains two red and four white chips, bowl B2 contains one red and two
white chips, and bowl B3 contains five red and four white chips. Say that the prob-
abilities for selecting the bowls are not the same but are given by P(B1) = 1/3,
P(B2) = 1/6, and P(B3) = 1/2, where B1, B2, and B3 are the events that bowls
B1, B2, and B3 are respectively chosen. The experiment consists of selecting a bowl
with these probabilities and then drawing a chip at random from that bowl. Let us
compute the probability of event R, drawing a red chip—say, P(R). Note that P(R)
is dependent first of all on which bowl is selected and then on the probability of
drawing a red chip from the selected bowl. That is, the event R is the union of the
mutually exclusive events B1 ∩ R, B2 ∩ R, and B3 ∩ R. Thus,

P(R) = P(B1 ∩ R) + P(B2 ∩ R) + P(B3 ∩ R)

= P(B1)P(R | B1) + P(B2)P(R | B2) + P(B3)P(R | B3)

= 1
3

· 2
6

+ 1
6

· 1
3

+ 1
2

· 5
9

= 4
9

.

Suppose now that the outcome of the experiment is a red chip, but we do not know
from which bowl it was drawn. Accordingly, we compute the conditional probability
that the chip was drawn from bowl B1, namely, P(B1 | R). From the definition of
conditional probability and the preceding result, we have
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P(B1 | R) = P(B1 ∩ R)
P(R)

= P(B1)P(R | B1)
P(B1)P(R | B1) + P(B2)P(R | B2) + P(B3)P(R | B3)

= (1/3)(2/6)
(1/3)(2/6) + (1/6)(1/3) + (1/2)(5/9)

= 2
8

.

Similarly,

P(B2 | R) = P(B2 ∩ R)
P(R)

= (1/6)(1/3)
4/9

= 1
8

and

P(B3 | R) = P(B3 ∩ R)
P(R)

= (1/2)(5/9)
4/9

= 5
8

.

Note that the conditional probabilities P(B1 | R), P(B2 | R), and P(B3 | R) have
changed from the original probabilities P(B1), P(B2), and P(B3) in a way that agrees
with your intuition. Once the red chip has been observed, the probability concerning
B3 seems more favorable than originally because B3 has a larger percentage of red
chips than do B1 and B2. The conditional probabilities of B1 and B2 decrease from
their original ones once the red chip is observed. Frequently, the original probabili-
ties are called prior probabilities and the conditional probabilities are the posterior
probabilities.

We generalize the result of Example 1.5-1. Let B1, B2, . . . , Bm constitute a
partition of the sample space S. That is,

S = B1 ∪ B2 ∪ · · · ∪ Bm and Bi ∩ Bj = ∅, i �= j.

Of course, the events B1, B2, . . . , Bm are mutually exclusive and exhaustive (since
the union of the disjoint sets equals the sample space S). Furthermore, suppose the
prior probability of the event Bi is positive; that is, P(Bi) > 0, i = 1, . . . , m. If A is an
event, then A is the union of m mutually exclusive events, namely,

A = (B1 ∩ A) ∪ (B2 ∩ A) ∪ · · · ∪ (Bm ∩ A).

Thus,

P(A) =
m∑

i=1

P(Bi ∩ A)

=
m∑

i=1

P(Bi)P(A | Bi), (1.5-1)

which is sometimes called the law of total probability. If P(A) > 0, then

P(Bk | A) = P(Bk ∩ A)
P(A)

, k = 1, 2, . . . , m. (1.5-2)

Using Equation 1.5-1 and replacing P(A) in Equation 1.5-2, we have Bayes’
theorem:
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P(Bk | A) = P(Bk)P(A | Bk)
m∑

i=1

P(Bi)P(A | Bi)

, k = 1, 2, . . . , m.

The conditional probability P(Bk | A) is often called the posterior probability of Bk.
The next example illustrates one application of Bayes’ theorem.

Example
1.5-2

In a certain factory, machines I, II, and III are all producing springs of the same
length. Of their production, machines I, II, and III respectively produce 2%, 1%,
and 3% defective springs. Of the total production of springs in the factory, machine
I produces 35%, machine II produces 25%, and machine III produces 40%. If one
spring is selected at random from the total springs produced in a day, by the law of
total probability, P(D) equals, in an obvious notation,

P(D) = P(I)P(D | I) + P(II)P(D | II) + P(III)P(D | III)

=
(

35
100

)(
2

100

)
+

(
25

100

)(
1

100

)
+

(
40

100

)(
3

100

)
= 215

10,000
.

If the selected spring is defective, the conditional probability that it was produced by
machine III is, by Bayes’ formula,

P(III | D) = P(III)P(D | III)
P(D)

= (40/100)(3/100)
215/10,000

= 120
215

.

Note how the posterior probability of III increased from the prior probability of III
after the defective spring was observed, because III produces a larger percentage of
defectives than do I and II.

Example
1.5-3

A Pap smear is a screening procedure used to detect cervical cancer. For women
with this cancer, there are about 16% false negatives; that is,

P(T− = test negative | C+ = cancer) = 0.16.

Thus,

P(T+ = test positive | C+ = cancer) = 0.84.

For women without cancer, there are about 10% false positives; that is,

P(T+ | C− = not cancer) = 0.10.

Hence,

P(T− | C− = not cancer) = 0.90.

In the United States, there are about 8 women in 100,000 who have this cancer;
that is,

P(C+) = 0.00008; so P(C−) = 0.99992.
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By Bayes’ theorem and the law of total probability,

P(C+ | T+) = P(C+ and T+)
P(T+)

= (0.00008)(0.84)
(0.00008)(0.84) + (0.99992)(0.10)

= 672
672 + 999,920

= 0.000672.

What this means is that for every million positive Pap smears, only 672 represent
true cases of cervical cancer. This low ratio makes one question the value of the pro-
cedure. The reason that it is ineffective is that the percentage of women having that
cancer is so small and the error rates of the procedure—namely, 0.16 and 0.10—are
so high. On the other hand, the test does give good information in a sense. The
posterior probability of cancer, given a positive test, is about eight times the prior
probability.

Exercises

1.5-1. Bowl B1 contains two white chips, bowl B2 contains
two red chips, bowl B3 contains two white and two red
chips, and bowl B4 contains three white chips and one
red chip. The probabilities of selecting bowl B1, B2, B3,
or B4 are 1/2, 1/4, 1/8, and 1/8, respectively. A bowl is
selected using these probabilities and a chip is then drawn
at random. Find

(a) P(W), the probability of drawing a white chip.

(b) P(B1 | W), the conditional probability that bowl B1
had been selected, given that a white chip was drawn.

1.5-2. Bean seeds from supplier A have an 85% ger-
mination rate and those from supplier B have a 75%
germination rate. A seed-packaging company purchases
40% of its bean seeds from supplier A and 60% from
supplier B and mixes these seeds together.

(a) Find the probability P(G) that a seed selected at
random from the mixed seeds will germinate.

(b) Given that a seed germinates, find the probability that
the seed was purchased from supplier A.

1.5-3. A doctor is concerned about the relationship
between blood pressure and irregular heartbeats. Among
her patients, she classifies blood pressures as high, nor-
mal, or low and heartbeats as regular or irregular and
finds that (a) 16% have high blood pressure; (b) 19%
have low blood pressure; (c) 17% have an irregular heart-
beat; (d) of those with an irregular heartbeat, 35% have
high blood pressure; and (e) of those with normal blood
pressure, 11% have an irregular heartbeat. What percent-
age of her patients have a regular heartbeat and low blood
pressure?

1.5-4. Assume that an insurance company knows the
following probabilities relating to automobile accidents
(where the second column refers to the probability that

the policyholder has at least one accident during the
annual policy period):

Age of
Driver

Probability of
Accident

Fraction of Company’s
Insured Drivers

16–25 0.05 0.10

26–50 0.02 0.55

51–65 0.03 0.20

66–90 0.04 0.15

A randomly selected driver from the company’s insured
drivers has an accident. What is the conditional probabil-
ity that the driver is in the 16–25 age group?

1.5-5. At a hospital’s emergency room, patients are clas-
sified and 20% of them are critical, 30% are serious, and
50% are stable. Of the critical ones, 30% die; of the seri-
ous, 10% die; and of the stable, 1% die. Given that a
patient dies, what is the conditional probability that the
patient was classified as critical?

1.5-6. A life insurance company issues standard, pre-
ferred, and ultrapreferred policies. Of the company’s
policyholders of a certain age, 60% have standard poli-
cies and a probability of 0.01 of dying in the next year,
30% have preferred policies and a probability of 0.008 of
dying in the next year, and 10% have ultrapreferred poli-
cies and a probability of 0.007 of dying in the next year.
A policyholder of that age dies in the next year. What are
the conditional probabilities of the deceased having had a
standard, a preferred, and an ultrapreferred policy?

1.5-7. A chemist wishes to detect an impurity in a certain
compound that she is making. There is a test that detects
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an impurity with probability 0.90; however, this test indi-
cates that an impurity is there when it is not about 5%
of the time. The chemist produces compounds with the
impurity about 20% of the time; that is, 80% do not have
the impurity. A compound is selected at random from
the chemist’s output. The test indicates that an impurity
is present. What is the conditional probability that the
compound actually has an impurity?

1.5-8. A store sells four brands of tablets. The least
expensive brand, B1, accounts for 40% of the sales. The
other brands (in order of their price) have the following
percentages of sales: B2, 30%; B3, 20%; and B4, 10%. The
respective probabilities of needing repair during warranty
are 0.10 for B1, 0.05 for B2, 0.03 for B3, and 0.02 for B4.
A randomly selected purchaser has a tablet that needs
repair under warranty. What are the four conditional
probabilities of being brand Bi, i = 1, 2, 3, 4?

1.5-9. There is a new diagnostic test for a disease that
occurs in about 0.05% of the population. The test is not
perfect, but will detect a person with the disease 99% of
the time. It will, however, say that a person without the
disease has the disease about 3% of the time. A person
is selected at random from the population, and the test
indicates that this person has the disease. What are the
conditional probabilities that

(a) the person has the disease?

(b) the person does not have the disease?

Discuss. Hint: Note that the fraction 0.0005 of diseased
persons in the population is much smaller than the error
probabilities of 0.01 and 0.03.

1.5-10. Suppose we want to investigate the percentage of
abused children in a certain population. To do this, doc-
tors examine some of these children taken at random
from that population. However, doctors are not perfect:
They sometimes classify an abused child (A+) as one not
abused (D−) or they classify a nonabused child (A−) as
one that is abused (D+). Suppose these error rates are
P(D− | A+) = 0.08 and P(D+ | A−) = 0.05, respectively;
thus, P(D+ | A+) = 0.92 and P(D− | A−) = 0.95 are the
probabilities of the correct decisions. Let us pretend that
only 2% of all children are abused; that is, P(A+) = 0.02
and P(A−) = 0.98.

(a) Select a child at random. What is the probability that
the doctor classifies this child as abused? That is,
compute

P(D+) = P(A+)P(D+ | A+) + P(A−)P(D+ | A−).

(b) Compute P(A− | D+) and P(A+ | D+).

(c) Compute P(A− | D−) and P(A+ | D−).

(d) Are the probabilities in (b) and (c) alarming? This
happens because the error rates of 0.08 and 0.05 are
high relative to the fraction 0.02 of abused children in
the population.

1.5-11. At the beginning of a certain study of a group
of persons, 15% were classified as heavy smokers, 30%
as light smokers, and 55% as nonsmokers. In the five-
year study, it was determined that the death rates of
the heavy and light smokers were five and three times
that of the nonsmokers, respectively. A randomly selected
participant died over the five-year period; calculate the
probability that the participant was a nonsmoker.

1.5-12. A test indicates the presence of a particular dis-
ease 90% of the time when the disease is present and the
presence of the disease 2% of the time when the disease is
not present. If 0.5% of the population has the disease, cal-
culate the conditional probability that a person selected at
random has the disease if the test indicates the presence
of the disease.

1.5-13. A hospital receives two fifths of its flu vaccine
from Company A and the remainder from Company B.
Each shipment contains a large number of vials of vac-
cine. From Company A, 3% of the vials are ineffective;
from Company B, 2% are ineffective. A hospital tests n =
25 randomly selected vials from one shipment and finds
that 2 are ineffective. What is the conditional probability
that this shipment came from Company A?

1.5-14. Two processes of a company produce rolls of
materials: The rolls of Process I are 3% defective and the
rolls of Process II are 1% defective. Process I produces
60% of the company’s output, Process II 40%. A roll is
selected at random from the total output. Given that this
roll is defective, what is the conditional probability that it
is from Process I?

HISTORICAL COMMENTS Most probabilists would say that the mathematics of
probability began when, in 1654, Chevalier de Méré, a French nobleman who liked
to gamble, challenged Blaise Pascal to explain a puzzle and a problem created from
his observations concerning rolls of dice. Of course, there was gambling well before
this, and actually, almost 200 years before this challenge, a Franciscan monk, Luca
Paccioli, proposed essentially the same puzzle. Here it is:

A and B are playing a fair game of balla. They agree to continue until one has six
wins. However, the game actually stops when A has won five and B three. How
should the stakes be divided?
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And over 100 years before de Méré’s challenge, a 16th-century doctor, Girolamo
Cardano, who was also a gambler, had figured out the answers to many dice prob-
lems, but not the one that de Méré proposed. Chevalier de Méré had observed this:
If a single fair die is tossed 4 times, the probability of obtaining at least one six was
slightly greater than 1/2. However, keeping the same proportions, if a pair of dice
is tossed 24 times, the probability of obtaining at least one double-six seemed to be
slightly less than 1/2; at least de Méré was losing money betting on it. This is when he
approached Blaise Pascal with the challenge. Not wanting to work on the problems
alone, Pascal formed a partnership with Pierre de Fermat, a brilliant young mathe-
matician. It was this 1654 correspondence between Pascal and Fermat that started
the theory of probability.

Today an average student in probability could solve both problems easily. For
the puzzle, note that B could win with six rounds only by winning the next three
rounds, which has probability of (1/2)3 = 1/8 because it was a fair game of balla.
Thus, A’s probability of winning six rounds is 1 − 1/8 = 7/8, and stakes should be
divided seven units to one. For the dice problem, the probability of at least one six
in four rolls of a die is

1 −
(

5
6

)4

= 0.518,

while the probability of rolling at least one double-six in 24 rolls of a pair of dice is

1 −
(

35
36

)24

= 0.491.

It seems amazing to us that de Méré could have observed enough trials of those
events to detect the slight difference in those probabilities. However, he won betting
on the first but lost by betting on the second.

Incidentally, the solution to the balla puzzle led to a generalization—namely, the
binomial distribution—and to the famous Pascal triangle. Of course, Fermat was the
great mathematician associated with “Fermat’s last theorem.”

The Reverend Thomas Bayes, who was born in 1701, was a Nonconformist
(a Protestant who rejected most of the rituals of the Church of England). While
he published nothing in mathematics when he was alive, two works were published
after his death, one of which contained the essence of Bayes’ theorem and a very
original way of using data to modify prior probabilities to create posterior probabili-
ties. It has had such an influence on modern statistics that many modern statisticians
are associated with the neo-Bayesian movement and we devote Sections 6.8 and 6.9
to some of these methods.
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2Discrete Distributions

2.1 Random Variables of the Discrete Type
2.2 Mathematical Expectation
2.3 Special Mathematical Expectations

2.4 The Binomial Distribution
2.5 The Negative Binomial Distribution
2.6 The Poisson Distribution

2.1 RANDOM VARIABLES OF THE DISCRETE TYPE
An outcome space S may be difficult to describe if the elements of S are not numbers.
We shall now discuss how we can use a rule by which each outcome of a random
experiment, an element s of S, may be associated with a real number x. We begin the
discussion with an example.

Example
2.1-1

A rat is selected at random from a cage and its sex is determined. The set of possi-
ble outcomes is female and male. Thus, the outcome space is S = {female, male} =
{F, M}. Let X be a function defined on S such that X(F) = 0 and X(M) = 1. X is then
a real-valued function that has the outcome space S as its domain and the set of real
numbers {x : x = 0, 1} as its range. We call X a random variable, and in this example,
the space associated with X is the set of numbers {x : x = 0, 1}.

We now formulate the definition of a random variable.

Definition 2.1-1
Given a random experiment with an outcome space S, a function X that assigns
one and only one real number X(s) = x to each element s in S is called a random
variable. The space of X is the set of real numbers {x : X(s) = x, s ∈ S}, where
s ∈ S means that the element s belongs to the set S.

REMARK As we give examples of random variables and their probability distribu-
tions, the reader will soon recognize that, when observing a random experiment, the
experimenter must take some type of measurement (or measurements). This mea-
surement can be thought of as the outcome of a random variable. We would simply
like to know the probability of a measurement resulting in A, a subset of the space
of X. If this is known for all subsets A, then we know the probability distribution of
the random variable. Obviously, in practice, we often do not know this distribution
exactly. Hence, statisticians make conjectures about these distributions; that is, we

41
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construct probabilistic models for random variables. The ability of a statistician to
model a real situation appropriately is a valuable trait. In this chapter we introduce
some probability models in which the spaces of the random variables consist of sets
of integers.

It may be that the set S has elements that are themselves real numbers. In such
an instance, we could write X(s) = s, so that X is the identity function and the space
of X is also S. This situation is illustrated in Example 2.1-2.

Example
2.1-2

Let the random experiment be the cast of a die. Then the outcome space associated
with this experiment is S = {1, 2, 3, 4, 5, 6}, with the elements of S indicating the
number of spots on the side facing up. For each s ∈ S, let X(s) = s. The space of the
random variable X is then {1, 2, 3, 4, 5, 6}.

If we associate a probability of 1/6 with each outcome, then, for example,
P(X = 5) = 1/6, P(2 ≤ X ≤ 5) = 4/6, and P(X ≤ 2) = 2/6 seem to be rea-
sonable assignments, where, in this example, {2 ≤ X ≤ 5} means {X = 2, 3, 4, or 5}
and {X ≤ 2} means {X = 1 or 2}.

The student will no doubt recognize two major difficulties here:

1. In many practical situations, the probabilities assigned to the events are
unknown.

2. Since there are many ways of defining a function X on S, which function do we
want to use?

As a matter of fact, the solutions to these problems in particular cases are major
concerns in applied statistics. In considering (2), statisticians try to determine what
measurement (or measurements) should be taken on an outcome; that is, how best
do we “mathematize” the outcome? These measurement problems are most difficult
and can be answered only by getting involved in a practical project. For (1), we often
need to estimate these probabilities or percentages through repeated observations
(called sampling). For example, what percentage of newborn girls in the University
of Iowa Hospital weigh less than 7 pounds? Here a newborn baby girl is the outcome,
and we have measured her one way (by weight), but obviously there are many other
ways of measuring her. If we let X be the weight in pounds, we are interested in
the probability P(X < 7), and we can estimate this probability only by repeated
observations. One obvious way of estimating it is by the use of the relative frequency
of {X < 7} after a number of observations. If it is reasonable to make additional
assumptions, we will study other ways of estimating that probability. It is this latter
aspect with which the field of mathematical statistics is concerned. That is, if we
assume certain models, we find that the theory of statistics can explain how best to
draw conclusions or make predictions.

In many instances, it is clear exactly what function X the experimenter wants to
define on the outcome space. For example, the caster in the dice game called craps
is concerned about the sum of the spots (say X) that are facing upward on the pair
of dice. Hence, we go directly to the space of X, which we shall denote by the same
letter S. After all, in the dice game the caster is directly concerned only with the
probabilities associated with X. Thus, for convenience, in many instances the reader
can think of the space of X as being the outcome space.

Let X denote a random variable with space S. Suppose that we know how
the probability is distributed over the various subsets A of S; that is, we can com-
pute P(X ∈ A). In this sense, we speak of the distribution of the random variable
X, meaning, of course, the distribution of probability associated with the space
S of X.
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Let X denote a random variable with one-dimensional space S, a subset of the
real numbers. Suppose that the space S contains a countable number of points; that
is, either S contains a finite number of points, or the points of S can be put into a
one-to-one correspondence with the positive integers. Such a set S is called a set
of discrete points or simply a discrete outcome space. Furthermore, any random
variable defined on such an S can assume at most a countable number of values,
and is therefore called a random variable of the discrete type. The corresponding
probability distribution likewise is said to be of the discrete type.

For a random variable X of the discrete type, the probability P(X = x) is
frequently denoted by f (x), and this function f (x) is called the probability mass
function. Note that some authors refer to f (x) as the probability function, the fre-
quency function, or the probability density function. In the discrete case, we shall
use “probability mass function,” and it is hereafter abbreviated pmf.

Let f (x) be the pmf of the random variable X of the discrete type, and let S be
the space of X. Since f (x) = P(X = x) for x ∈ S, f (x) must be nonnegative for x ∈ S,
and we want all these probabilities to add to 1 because each P(X = x) represents the
fraction of times x can be expected to occur. Moreover, to determine the probability
associated with the event A ∈ S, we would sum the probabilities of the x values in A.
This leads us to the following definition.

Definition 2.1-2
The pmf f (x) of a discrete random variable X is a function that satisfies the
following properties:

(a) f (x) > 0, x ∈ S;

(b)
∑
x∈S

f (x) = 1;

(c) P(X ∈ A) =
∑
x∈A

f (x), where A ⊂ S.

Of course, we usually let f (x) = 0 when x /∈ S; thus, the domain of f (x) is the
set of real numbers. When we define the pmf f (x) and do not say “zero elsewhere,”
we tacitly mean that f (x) has been defined at all x’s in the space S and it is assumed
that f (x) = 0 elsewhere; that is, f (x) = 0 when x /∈ S. Since the probability
P(X = x) = f (x) > 0 when x ∈ S, and since S contains all the outcomes with positive
probabilities associated with X, we sometimes refer to S as the support of X as well
as the space of X.

Cumulative probabilities are often of interest. We call the function defined by

F(x) = P(X ≤ x), −∞ < x < ∞,

the cumulative distribution function and abbreviate it as cdf. The cdf is sometimes
referred to as the distribution function of the random variable X. Values of the cdf
of certain random variables are given in the appendix and will be pointed out as we
use them (see Appendix B, Tables II, III, IV, Va, VI, VII, and IX).

When a pmf is constant on the space or support, we say that the distribution
is uniform over that space. As an illustration, in Example 2.1-2 X has a discrete
uniform distribution on S = {1, 2, 3, 4, 5, 6} and its pmf is

f (x) = 1
6

, x = 1, 2, 3, 4, 5, 6.

We can generalize this result by letting X have a discrete uniform distribution over
the first m positive integers, so that its pmf is



44 Chapter 2 Discrete Distributions

f (x) = 1
m

, x = 1, 2, 3, . . . , m.

The cdf of X is defined as follows where k = 1, 2, . . . , m − 1. We have

F(x) = P(X ≤ x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x < 1,
k
m

, k ≤ x < k + 1,

1, m ≤ x.

Note that this is a step function with a jump of size 1/m for x = 1, 2, . . . , m.
We now give an example in which X does not have a uniform distribution.

Example
2.1-3

Roll a fair four-sided die twice, and let X be the maximum of the two outcomes. The
outcome space for this experiment is S0 = {(d1, d2) : d1 = 1, 2, 3, 4; d2 = 1, 2, 3, 4},
where we assume that each of these 16 points has probability 1/16. Then P(X =
1) = P[(1, 1)] = 1/16, P(X = 2) = P[{(1, 2), (2, 1), (2, 2)}] = 3/16, and similarly
P(X = 3) = 5/16 and P(X = 4) = 7/16. That is, the pmf of X can be written simply
as

f (x) = P(X = x) = 2x − 1
16

, x = 1, 2, 3, 4. (2.1-1)

We could add that f (x) = 0 elsewhere; but if we do not, the reader should take f (x)
to equal zero when x /∈ S = {1, 2, 3, 4}.

A better understanding of a particular probability distribution can often be
obtained with a graph that depicts the pmf of X. Note that the graph of the pmf
when f (x) > 0 would be simply the set of points {[x, f (x)] : x ∈ S}, where S is the
space of X. Two types of graphs can be used to give a better visual appreciation of
the pmf: a line graph and a probability histogram. A line graph of the pmf f (x) of
the random variable X is a graph having a vertical line segment drawn from (x, 0) to
[x, f (x)] at each x in S, the space of X. If X can assume only integer values, a proba-
bility histogram of the pmf f (x) is a graphical representation that has a rectangle of
height f (x) and a base of length 1, centered at x for each x ∈ S, the space of X. Thus,
the area of each rectangle is equal to the respective probability f (x), and the total
area of a probability histogram is 1.

Figure 2.1-1 displays a line graph and a probability histogram for the pmf f (x)
defined in Equation 2.1-1.

Our next probability model uses the material in Section 1.2 on methods of enu-
meration. Consider a collection of N = N1+N2 similar objects, N1 of them belonging
to one of two dichotomous classes (red chips, say) and N2 of them belonging to
the second class (blue chips, say). A collection of n objects is selected from these
N objects at random and without replacement. Find the probability that exactly x
(where the nonnegative integer x satisfies x ≤ n, x ≤ N1, and n − x ≤ N2) of these
n objects belong to the first class and n − x belong to the second. Of course, we can

select x objects from the first class in any one of
(

N1

x

)
ways and n−x objects from the

second class in any one of
(

N2

n − x

)
ways. By the multiplication principle, the prod-

uct
(

N1

x

)(
N2

n − x

)
equals the number of ways the joint operation can be performed.
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Figure 2.1-1 Line graph and probability histogram

If we assume that each of the
(

N
n

)
ways of selecting n objects from N = N1 + N2

objects has the same probability, it follows that the desired probability is

f (x) = P(X = x) =

(
N1

x

)(
N2

n − x

)
(

N
n

) ,

where the space S is the collection of nonnegative integers x that satisfies the
inequalities x ≤ n, x ≤ N1, and n − x ≤ N2. We say that the random variable X
has a hypergeometric distribution.

Example
2.1-4

Some examples of hypergeometric probability histograms are given in Figure 2.1-2.
The values of N1, N2, and n are given with each figure.

Example
2.1-5

In a small pond there are 50 fish, 10 of which have been tagged. If a fisherman’s
catch consists of 7 fish selected at random and without replacement, and X denotes
the number of tagged fish, the probability that exactly 2 tagged fish are caught is

P(X = 2) =

(
10
2

)(
40
5

)
(

50
7

) = (45)(658,008)
99,884,400

= 246,753
832,370

= 0.2964.

Example
2.1-6

A lot (collection) consisting of 100 fuses is inspected by the following procedure:
Five fuses are chosen at random and tested; if all five blow at the correct amperage,
the lot is accepted. Suppose that the lot contains 20 defective fuses. If X is a random
variable equal to the number of defective fuses in the sample of 5, the probability of
accepting the lot is

P(X = 0) =

(
20
0

)(
80
5

)
(

100
5

) = 19,513
61,110

= 0.3193.
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Figure 2.1-2 Hypergeometric probability histograms

More generally, the pmf of X is

f (x) = P(X = x) =

(
20
x

)(
80

5 − x

)
(

100
5

) , x = 0, 1, 2, 3, 4, 5.

In Section 1.1, we discussed the relationship between the probability P(A) of an
event A and the relative frequency N (A)/n of occurrences of event A in n repetitions
of an experiment. We shall now extend those ideas.

Suppose that a random experiment is repeated n independent times. Let A =
{X = x}, the event that x is the outcome of the experiment. Then we would expect
the relative frequency N (A)/n to be close to f (x). The next example illustrates this
property.

Example
2.1-7

A fair four-sided die with outcomes 1, 2, 3, and 4 is rolled twice. Let X equal the sum
of the two outcomes. Then the possible values of X are 2, 3, 4, 5, 6, 7, and 8. The
following argument suggests that the pmf of X is given by f (x) = (4 − |x − 5|)/16,
for x = 2, 3, 4, 5, 6, 7, 8 [i.e., f (2) = 1/16, f (3) = 2/16, f (4) = 3/16, f (5) = 4/16,
f (6) = 3/16, f (7) = 2/16, and f (8) = 1/16]: Intuitively, these probabilities seem
correct if we think of the 16 points (result on first roll, result on second roll) and
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Table 2.1-1 Sum of two tetrahedral dice

Number of Observations Relative Frequency Probability of
x of x of x {X = x}, f (x)

2 71 0.071 0.0625

3 124 0.124 0.1250

4 194 0.194 0.1875

5 258 0.258 0.2500

6 177 0.177 0.1875

7 122 0.122 0.1250

8 54 0.054 0.0625

assume that each has probability 1/16. Then note that X = 2 only for the point
(1, 1), X = 3 for the two points (2, 1) and (1, 2), and so on. This experiment was
simulated 1000 times on a computer. Table 2.1-1 lists the results and compares the
relative frequencies with the corresponding probabilities.

A graph can be used to display the results shown in Table 2.1-1. The probability
histogram of the pmf f (x) of X is given by the dotted lines in Figure 2.1-3. It is super-
imposed over the shaded histogram that represents the observed relative frequencies
of the corresponding x values. The shaded histogram is the relative frequency
histogram. For random experiments of the discrete type, this relative frequency
histogram of a set of data gives an estimate of the probability histogram of the asso-
ciated random variable when the latter is unknown. (Estimation is considered in
detail later in the book.)

x

h(x), f(x)

0.05

2 31

0.10

0.15

0.20

0.25

4 5 6 7 8

Figure 2.1-3 Sum of two tetrahedral dice
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Exercises

2.1-1. Let the pmf of X be defined by f (x) = x/9,
x = 2, 3, 4.

(a) Draw a line graph for this pmf.

(b) Draw a probability histogram for this pmf.

2.1-2. Let a chip be taken at random from a bowl that
contains six white chips, three red chips, and one blue
chip. Let the random variable X = 1 if the outcome is
a white chip, let X = 5 if the outcome is a red chip, and
let X = 10 if the outcome is a blue chip.

(a) Find the pmf of X.

(b) Graph the pmf as a line graph.

2.1-3. For each of the following, determine the constant
c so that f (x) satisfies the conditions of being a pmf for
a random variable X, and then depict each pmf as a line
graph:

(a) f (x) = x/c, x = 1, 2, 3, 4.

(b) f (x) = cx, x = 1, 2, 3, . . . , 10.

(c) f (x) = c(1/4)x, x = 1, 2, 3, . . . .

(d) f (x) = c(x + 1)2, x = 0, 1, 2, 3.

(e) f (x) = x/c, x = 1, 2, 3, . . . , n.

(f) f (x) = c
(x + 1)(x + 2)

, x = 0, 1, 2, 3, . . . .

Hint: In part ( f ), write f (x) = 1/(x + 1) − 1/(x + 2).

2.1-4. The state of Michigan generates a three-digit num-
ber at random twice a day, seven days a week for its Daily
3 game. The numbers are generated one digit at a time.
Consider the following set of 50 three-digit numbers as
150 one-digit integers that were generated at random:

169 938 506 757 594 656 444 809 321 545

732 146 713 448 861 612 881 782 209 752

571 701 852 924 766 633 696 023 601 789

137 098 534 826 642 750 827 689 979 000

933 451 945 464 876 866 236 617 418 988

Let X denote the outcome when a single digit is gener-
ated.

(a) With true random numbers, what is the pmf of X?
Draw the probability histogram.

(b) For the 150 observations, determine the relative fre-
quencies of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively.

(c) Draw the relative frequency histogram of the obser-
vations on the same graph paper as that of the proba-
bility histogram. Use a colored or dashed line for the
relative frequency histogram.

2.1-5. The pmf of X is f (x) = (5 − x)/10, x = 1, 2, 3, 4.

(a) Graph the pmf as a line graph.

(b) Use the following independent observations of X,
simulated on a computer, to construct a table like
Table 2.1-1:

3 1 2 2 3 2 2 2 1 3 3 2 3 2 4 4 2 1 1 3

3 1 2 2 1 1 4 2 3 1 1 1 2 1 3 1 1 3 3 1

1 1 1 1 1 4 1 3 1 2 4 1 1 2 3 4 3 1 4 2

2 1 3 2 1 4 1 1 1 2 1 3 4 3 2 1 4 4 1 3

2 2 2 1 2 3 1 1 4 2 1 4 2 1 2 3 1 4 2 3

(c) Construct a probability histogram and a relative fre-
quency histogram like Figure 2.1-3.

2.1-6. Let a random experiment be the casting of a pair
of fair dice, each having six faces, and let the random
variable X denote the sum of the dice.

(a) With reasonable assumptions, determine the pmf f (x)
of X. Hint: Picture the sample space consisting of the
36 points (result on first die, result on second die),
and assume that each has probability 1/36. Find the
probability of each possible outcome of X, namely,
x = 2, 3, 4, . . . , 12.

(b) Draw a probability histogram for f (x).

2.1-7. Let a random experiment be the casting of a pair
of fair six-sided dice and let X equal the minimum of the
two outcomes.

(a) With reasonable assumptions, find the pmf of X.

(b) Draw a probability histogram of the pmf of X.

(c) Let Y equal the range of the two outcomes (i.e., the
absolute value of the difference of the largest and the
smallest outcomes). Determine the pmf g(y) of Y for
y = 0, 1, 2, 3, 4, 5.

(d) Draw a probability histogram for g(y).

2.1-8. A fair four-sided die has two faces numbered 0 and
two faces numbered 2. Another fair four-sided die has its
faces numbered 0, 1, 4, and 5. The two dice are rolled.
Let X and Y be the respective outcomes of the roll. Let
W = X + Y.

(a) Determine the pmf of W.

(b) Draw a probability histogram of the pmf of W.

2.1-9. The pmf of X is f (x) = (1 + |x − 3|)/11,
for x = 1, 2, 3, 4, 5. Graph this pmf as a line graph.
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2.1-10. Suppose there are 3 defective items in a lot (col-
lection) of 50 items. A sample of size 10 is taken at
random and without replacement. Let X denote the num-
ber of defective items in the sample. Find the probability
that the sample contains

(a) Exactly one defective item.

(b) At most one defective item.

2.1-11. In a lot (collection) of 100 light bulbs, there are 5
defective bulbs. An inspector inspects 10 bulbs selected at
random. Find the probability of finding at least one defec-
tive bulb. Hint: First compute the probability of finding
no defectives in the sample.

2.1-12. Let X be the number of accidents per week in a
factory. Let the pmf of X be

f (x) = 1
(x + 1)(x + 2)

= 1
x + 1

− 1
x + 2

, x = 0, 1, 2, . . . .

Find the conditional probability of X ≥ 4, given that
X ≥ 1.

2.1-13. A professor gave her students six essay questions
from which she will select three for a test. A student has
time to study for only three of these questions. What is
the probability that, of the questions studied,

(a) at least one is selected for the test?

(b) all three are selected?

(c) exactly two are selected?

2.1-14. Often in buying a product at a supermarket, there
is a concern about the item being underweight. Suppose
there are 20 “one-pound” packages of frozen ground
turkey on display and 3 of them are underweight. A
consumer group buys 5 of the 20 packages at random.
What is the probability of at least one of the five being
underweight?

2.1-15. Five cards are selected at random without replace-
ment from a standard, thoroughly shuffled 52-card deck

of playing cards. Let X equal the number of face cards
(kings, queens, jacks) in the hand. Forty observations of
X yielded the following data:

2 1 2 1 0 0 1 0 1 1 0 2 0 2 3 0 1 1 0 3

1 2 0 2 0 2 0 1 0 1 1 2 1 0 1 1 2 1 1 0

(a) Argue that the pmf of X is

f (x) =

(
12
x

)(
40

5 − x

)
(

52
5

) , x = 0, 1, 2, 3, 4, 5,

and thus, that f (0) = 2109/8330, f (1) = 703/1666,
f (2) = 209/833, f (3) = 55/833, f (4) = 165/21,658,
and f (5) = 33/108,290.

(b) Draw a probability histogram for this distribution.

(c) Determine the relative frequencies of 0, 1, 2, 3, and
superimpose the relative frequency histogram on your
probability histogram.

2.1-16. (Michigan Mathematics Prize Competition, 1992,
Part II) From the set {1, 2, 3, . . . , n}, k distinct integers
are selected at random and arranged in numerical order
(from lowest to highest). Let P(i, r, k, n) denote the prob-
ability that integer i is in position r. For example, observe
that P(1, 2, k, n) = 0, as it is impossible for the number 1
to be in the second position after ordering.

(a) Compute P(2, 1, 6, 10).

(b) Find a general formula for P(i, r, k, n).

2.1-17. A bag contains 144 ping-pong balls. More than
half of the balls are painted orange and the rest are
painted blue. Two balls are drawn at random without
replacement. The probability of drawing two balls of the
same color is the same as the probability of drawing two
balls of different colors. How many orange balls are in
the bag?

2.2 MATHEMATICAL EXPECTATION
An extremely important concept in summarizing important characteristics of distri-
butions of probability is that of mathematical expectation, which we introduce with
an example.

Example
2.2-1

An enterprising young man who needs a little extra money devises a game of chance
in which some of his friends might wish to participate. The game that he proposes
is to let the participant cast a fair die and then receive a payment according to
the following schedule: If the event A = {1, 2, 3} occurs, he receives one dollar; if
B = {4, 5} occurs, he receives two dollars; and if C = {6} occurs, he receives three
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dollars. If X is a random variable that represents the payoff, then the pmf of X is
given by

f (x) = (4 − x)/6, x = 1, 2, 3;

that is, f (1) = 3/6, f (2) = 2/6, f (3) = 1/6. If the game is repeated a large number
of times, the payment of one dollar would occur about 3/6 of the times, two dollars
about 2/6 of the times, and three dollars about 1/6 of the times. Thus, the average
payment would be

(1)
(

3
6

)
+ (2)

(
2
6

)
+ (3)

(
1
6

)
= 10

6
= 5

3
.

That is, the young man expects to pay 5/3 of a dollar “on the average.” This is called
the mathematical expectation of the payment. If the young man could charge two
dollars to play the game, he could make 2 − 5/3 = 1/3 of a dollar on the average
each play. Note that this mathematical expectation can be written

E(X) =
3∑

x=1

xf (x)

and is often denoted by the Greek letter μ, which is called the mean of X or of its
distribution.

Suppose that we are interested in another function of X, say u(X). Let us call
it Y = u(X). Of course, Y is a random variable and has a pmf. For illustration, in
Example 2.2-1, Y = X2 has the pmf

g(y) = (4 − √
y )/6, y = 1, 4, 9;

that is, g(1) = 3/6, g(4) = 2/6, g(9) = 1/6. Moreover, where SY is the space of Y, the
mean of Y is

μY =
∑

y∈SY

y g(y) = (1)
(

3
6

)
+ (4)

(
2
6

)
+ (9)

(
1
6

)
= 20

6
= 10

3
.

Participants in the young man’s game might be more willing to play this game for 4
dollars as they can win 9 − 4 = 5 dollars and lose only 4 − 1 = 3 dollars. Note that
the young man can expect to win 4 − 10/3 = 2/3 of a dollar on the average each
play. A game based upon Z = X3 might even be more attractive to participants if
the young man charges 10 dollars to play this game. Then the participant could win
27 − 10 = 17 dollars and lose only 10 − 1 = 9 dollars. The details of this latter game
are covered in Exercise 2.2-5.

In any case, it is important to note that

E(Y) =
∑

y∈SY

y g(y) =
∑

x∈SX

x2f (x) = 20
6

= 10
3

.

That is, the same value is obtained by either formula. While we have not proved, for
a general function u(x), that if Y = u(X), then∑

y∈SY

y g(y) =
∑

x∈SX

u(x) f (x);
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we have illustrated it in this simple case. This discussion suggests the more general
definition of mathematical expectation of a function of X.

Definition 2.2-1
If f (x) is the pmf of the random variable X of the discrete type with space S, and
if the summation∑

x∈S

u(x)f (x), which is sometimes written
∑

S

u(x)f (x),

exists, then the sum is called the mathematical expectation or the expected value
of u(X), and it is denoted by E[u(X)]. That is,

E[u(X)] =
∑
x∈S

u(x)f (x).

We can think of the expected value E[u(X)] as a weighted mean of u(x), x ∈ S,
where the weights are the probabilities f (x) = P(X = x), x ∈ S.

REMARK The usual definition of mathematical expectation of u(X) requires that
the sum converge absolutely—that is, that∑

x∈S

|u(x)| f (x)

converge and be finite. The reason for the absolute convergence is that it allows one,
in the advanced proof of ∑

x∈SX

u(x)f (x) =
∑

y∈SY

yg(y),

to rearrange the order of the terms in the x-summation. In this book, each u(x) is
such that the convergence is absolute.

We provide another example.

Example
2.2-2

Let the random variable X have the pmf

f (x) = 1
3

, x ∈ SX ,

where SX = {−1, 0, 1}. Let u(X) = X2. Then

E(X2) =
∑

x∈SX

x2f (x) = (−1)2
(

1
3

)
+ (0)2

(
1
3

)
+ (1)2

(
1
3

)
= 2

3
.

However, the support of the random variable Y = X2 is SY = {0, 1} and

P(Y = 0) = P(X = 0) = 1
3

,

P(Y = 1) = P(X = −1) + P(X = 1) = 1
3

+ 1
3

= 2
3

.
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That is,

g(y) =

⎧⎪⎨⎪⎩
1
3

, y = 0,

2
3

, y = 1;

and SY = {0, 1}. Hence,

μY = E(Y) =
∑

y∈SY

y g(y) = (0)
(

1
3

)
+ (1)

(
2
3

)
= 2

3
,

which again illustrates the preceding observation.

Before presenting additional examples, we list some useful facts about mathe-
matical expectation in the following theorem.

Theorem
2.2-1

When it exists, the mathematical expectation E satisfies the following properties:

(a) If c is a constant, then E(c) = c.

(b) If c is a constant and u is a function, then

E[c u(X)] = cE[u(X)].

(c) If c1 and c2 are constants and u1 and u2 are functions, then

E[c1u1(X) + c2u2(X)] = c1E[u1(X)] + c2E[u2(X)].

Proof First, for the proof of (a), we have

E(c) =
∑
x∈S

cf (x) = c
∑
x∈S

f (x) = c

because ∑
x∈S

f (x) = 1.

Next, to prove (b), we see that

E[c u(X)] =
∑
x∈S

c u(x)f (x)

= c
∑
x∈S

u(x)f (x)

= c E[u(X)].

Finally, the proof of (c) is given by

E[c1u1(X) + c2u2(X)] =
∑
x∈S

[c1u1(x) + c2u2(x)] f (x)

=
∑
x∈S

c1u1(x)f (x) +
∑
x∈S

c2u2(x)f (x).

By applying (b), we obtain

E[c1u1(X) + c2u2(X)] = c1E[u1(X)] + c2E[u2(X)]. �
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Property (c) can be extended to more than two terms by mathematical induc-
tion; that is, we have

(c′) E

⎡⎣ k∑
i=1

ci ui(X)

⎤⎦ =
k∑

i=1

ci E[ui(X)].

Because of property (c′), the mathematical expectation E is often called a linear
or distributive operator.

Example
2.2-3

Let X have the pmf

f (x) = x
10

, x = 1, 2, 3, 4.

Then the mean of X is

μ = E(X) =
4∑

x=1

x
( x

10

)
= (1)

(
1

10

)
+ (2)

(
2

10

)
+ (3)

(
3
10

)
+ (4)

(
4
10

)
= 3,

E(X2) =
4∑

x=1

x2
( x

10

)
= (1)2

(
1

10

)
+ (2)2

(
2

10

)
+ (3)2

(
3
10

)
+ (4)2

(
4
10

)
= 10,

and

E[X(5 − X)] = 5E(X) − E(X2) = (5)(3) − 10 = 5.

Example
2.2-4

Let u(x) = (x − b)2, where b is not a function of X, and suppose E[(X − b)2] exists.
To find that value of b for which E[(X − b)2] is a minimum, we write

g(b) = E[(X − b)2] = E[X2 − 2bX + b2]

= E(X2) − 2bE(X) + b2

because E(b2) = b2. To find the minimum, we differentiate g(b) with respect to b,
set g′(b) = 0, and solve for b as follows:

g′(b) = −2E(X) + 2b = 0,

b = E(X).

Since g′′(b) = 2 > 0, the mean of X, μ = E(X), is the value of b that minimizes
E[(X − b)2].

Example
2.2-5

Let X have a hypergeometric distribution in which n objects are selected from
N = N1 + N2 objects as described in Section 2.1. Then

μ = E(X) =
∑
x∈S

x

(
N1

x

)(
N2

n − x

)
(

N
n

) .
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Since the first term of this summation equals zero when x = 0, and since(
N
n

)
=

(
N
n

)(
N − 1
n − 1

)
,

we can write

E(X) =
∑

0<x∈S

x
N1!

x!(N1 − x)!

(
N2

n − x

)
(

N
n

)(
N − 1
n − 1

) .

Of course, x/x! = 1/(x − 1)! when x �= 0; thus,

E(X) =
( n

N

) ∑
0<x∈S

(N1)(N1 − 1)!
(x − 1)!(N1 − x)!

(
N2

n − x

)
(

N − 1
n − 1

)

= n
(

N1

N

) ∑
0<x∈S

(
N1 − 1
x − 1

)(
N2

n − 1 − (x − 1)

)
(

N − 1
n − 1

) .

However, when x > 0, the summand of this last expression represents the probability
of obtaining, say, x − 1 red chips if n − 1 chips are selected from N1 − 1 red chips and
N2 blue chips. Since the summation is over all possible values of x − 1, it must sum
to 1, as it is the sum of all possible probabilities of x − 1. Thus,

μ = E(X) = n
(

N1

N

)
,

which is a result that agrees with our intuition: We expect the number X of red chips
to equal the product of the number n of selections and the fraction N1/N of red chips
in the original collection.

Example
2.2-6

Say an experiment has probability of success p, where 0 < p < 1, and probability of
failure 1 − p = q. This experiment is repeated independently until the first success
occurs; say this happens on the X trial. Clearly the space of X is SX = {1, 2, 3, 4, . . .}.
What is P(X = x), where x ∈ SX? We must observe x − 1 failures and then a success
to have this happen. Thus, due to the independence, the probability is

f (x) = P(X = x) =
x−1 q′s︷ ︸︸ ︷

q · q · · · q ·p = qx−1p, x ∈ SX .

Since p and q are positive, this is a pmf because∑
x∈SX

qx−1p = p(1 + q + q2 + q3 + · · · ) = p
1 − q

= p
p

= 1.

The mean of this geometric distribution is

μ =
∞∑

x=1

xf (x) = (1)p + (2)qp + (3)q2p + · · ·
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and

qμ = (q)p + (2)q2p + (3)q3p + · · · .

If we subtract the second of these two equations from the first, we have

(1 − q)μ = p + pq + pq2 + pq3 + · · ·
= (p)(1 + q + q2 + q3 + · · · )

= (p)
(

1
1 − q

)
= 1.

That is,

μ = 1
1 − q

= 1
p

.

For illustration, if p = 1/10, we would expect μ = 10 trials are needed on the average
to observe a success. This certainly agrees with our intuition.

Exercises

2.2-1. Find E(X) for each of the distributions given in
Exercise 2.1-3.

2.2-2. Let the random variable X have the pmf

f (x) = (|x| + 1)2

9
, x = −1, 0, 1.

Compute E(X), E(X2), and E(3X2 − 2X + 4).

2.2-3. Let the random variable X be the number of days
that a certain patient needs to be in the hospital. Suppose
X has the pmf

f (x) = 5 − x
10

, x = 1, 2, 3, 4.

If the patient is to receive $200 from an insurance com-
pany for each of the first two days in the hospital and $100
for each day after the first two days, what is the expected
payment for the hospitalization?

2.2-4. An insurance company sells an automobile policy
with a deductible of one unit. Let X be the amount of the
loss having pmf

f (x) =
⎧⎨⎩ 0.9, x = 0,

c
x

, x = 1, 2, 3, 4, 5, 6,

where c is a constant. Determine c and the expected value
of the amount the insurance company must pay.

2.2-5. In Example 2.2-1 let Z = u(X) = X3.

(a) Find the pmf of Z, say h(z).

(b) Find E(Z).

(c) How much, on average, can the young man expect to
win on each play if he charges $10 per play?

2.2-6. Let the pmf of X be defined by f (x) = 6/(π2x2),
x = 1, 2, 3, . . .. Show that E(X) = +∞ and thus, does not
exist.

2.2-7. In the gambling game chuck-a-luck, for a $1 bet it is
possible to win $1, $2, or $3 with respective probabilities
75/216, 15/216, and 1/216. One dollar is lost with probabil-
ity 125/216. Let X equal the payoff for this game and find
E(X). Note that when a bet is won, the $1 that was bet, in
addition to the $1, $2, or $3 that is won, is returned to the
bettor.

2.2-8. Let X be a random variable with support
{1, 2, 3, 5, 15, 25, 50}, each point of which has the same
probability 1/7. Argue that c = 5 is the value that mini-
mizes h(c) = E( |X − c| ). Compare c with the value of b
that minimizes g(b) = E[(X − b)2].

2.2-9. A roulette wheel used in a U.S. casino has 38 slots,
of which 18 are red, 18 are black, and 2 are green. A
roulette wheel used in a French casino has 37 slots, of
which 18 are red, 18 are black, and 1 is green. A ball is
rolled around the wheel and ends up in one of the slots
with equal probability. Suppose that a player bets on red.
If a $1 bet is placed, the player wins $1 if the ball ends up
in a red slot. (The player’s $1 bet is returned.) If the ball
ends up in a black or green slot, the player loses $1. Find
the expected value of this game to the player in

(a) The United States.

(b) France.

2.2-10. In the casino game called high–low, there are
three possible bets. Assume that $1 is the size of the bet.
A pair of fair six-sided dice is rolled and their sum is cal-
culated. If you bet low, you win $1 if the sum of the dice is
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{2, 3, 4, 5, 6}. If you bet high, you win $1 if the sum of the
dice is {8, 9, 10, 11, 12}. If you bet on {7}, you win $4 if a
sum of 7 is rolled. Otherwise, you lose on each of the three
bets. In all three cases, your original dollar is returned if
you win. Find the expected value of the game to the bettor
for each of these three bets.

2.2-11. In the gambling game craps (see Exercise 1.3-
13), the player wins $1 with probability 0.49293 and loses
$1 with probability 0.50707 for each $1 bet. What is the
expected value of the game to the player?

2.2-12. Suppose that a school has 20 classes: 16 with 25
students in each, three with 100 students in each, and one
with 300 students, for a total of 1000 students.

(a) What is the average class size?

(b) Select a student randomly out of the 1000 students.
Let the random variable X equal the size of the class
to which this student belongs, and define the pmf of
X.

(c) Find E(X), the expected value of X. Does this answer
surprise you?

2.3 SPECIAL MATHEMATICAL EXPECTATIONS
Let us consider an example in which x ∈ {1, 2, 3} and the pmf is given by f (1) =
3/6, f (2) = 2/6, f (3) = 1/6. That is, the probability that the random variable X
equals 1, denoted by P(X = 1), is f (1) = 3/6. Likewise, P(X = 2) = f (2) = 2/6
and P(X = 3) = f (3) = 1/6. Of course, f (x) > 0 when x ∈ S, and it must be the
case that ∑

x∈S

f (x) = f (1) + f (2) + f (3) = 1.

We can think of the points 1, 2, 3 as having weights (probabilities) 3/6, 2/6, 1/6, and
their weighted mean (weighted average) is

μ = E(X) = 1 · 3
6

+ 2 · 2
6

+ 3 · 1
6

= 10
6

= 5
3

,

which, in this illustration, does not equal one of the x values in S. As a matter of fact,
it is two thirds of the way between x = 1 and x = 2.

In Section 2.2 we called μ = E(X) the mean of the random variable X
(or of its distribution). In general, suppose the random variable X has the space
S = {u1, u2, . . . , uk} and these points have respective probabilities P(X = ui) =
f (ui) > 0, where f (x) is the pmf. Of course,∑

x∈S

f (x) = 1

and the mean of the random variable X (or of its distribution) is

μ =
∑
x∈S

xf (x) = u1f (u1) + u2f (u2) + · · · + ukf (uk).

That is, in the notation of Section 2.2, μ = E(X).
Now, ui is the distance of that ith point from the origin. In mechanics, the product

of a distance and its weight is called a moment, so uif (ui) is a moment having a
moment arm of length ui. The sum of such products would be the moment of the
system of distances and weights. Actually, it is called the first moment about the
origin, since the distances are simply to the first power and the lengths of the arms
(distances) are measured from the origin. However, if we compute the first moment
about the mean μ, then, since here a moment arm equals (x − μ), we have∑

x∈S

(x − μ)f (x) = E[(X − μ)] = E(X) − E(μ)

= μ − μ = 0.
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That is, that first moment about μ is equal to zero. In mechanics μ is called the
centroid. The last equation implies that if a fulcrum is placed at the centroid μ, then
the system of weights would balance, as the sum of the positive moments (when
x > μ) about μ equals the sum of the negative moments (when x < μ). In our first
illustration, μ = 10/6 is the centroid, so the negative moment(

1 − 10
6

)
· 3

6
= −12

36
= −1

3

equals the sum of the two positive moments(
2 − 10

6

)
· 2

6
+

(
3 − 10

6

)
· 1

6
= 12

36
= 1

3
.

Since μ = E(X), it follows from Example 2.2-4 that b=μ minimizes E[(X−b)2].
Also, Example 2.2-5 shows that

μ = n
(

N1

N

)
is the mean of the hypergeometric distribution. Moreover, μ = 1/p is the mean of
the geometric distribution from Example 2.2-6.

Statisticians often find it valuable to compute the second moment about the
mean μ. It is called the second moment because the distances are raised to the
second power, and it is equal to E[(X − μ)2]; that is,∑

x∈S

(x − μ)2f (x) = (u1 − μ)2f (u1) + (u2 − μ)2f (u2) + · · · + (uk − μ)2f (uk).

This weighted mean of the squares of those distances is called the variance of the
random variable X (or of its distribution). The positive square root of the variance
is called the standard deviation of X and is denoted by the Greek letter σ (sigma).
Thus, the variance is σ 2, sometimes denoted by Var(X). That is, σ 2 = E[(X −μ)2] =
Var(X). In our first illustration, since μ = 10/6, the variance equals

σ 2 = Var(X) =
(

1 − 10
6

)2

· 3
6

+
(

2 − 10
6

)2

· 2
6

+
(

3 − 10
6

)2

· 1
6

= 120
216

= 5
9

.

Hence, the standard deviation is

σ =
√

σ 2 =
√

120
216

= 0.745.

It is worth noting that the variance can be computed in another way, because

σ 2 = E[(X − μ)2] = E[X2 − 2μX + μ2]

= E(X2) − 2μE(X) + μ2

= E(X2) − μ2.

That is, the variance σ 2 equals the difference of the second moment about the origin
and the square of the mean. For our first illustration,

σ 2 =
3∑

x=1

x2f (x) − μ2

= 12
(

3
6

)
+ 22

(
2
6

)
+ 32

(
1
6

)
−

(
10
6

)2

= 20
6

− 100
36

= 120
216

= 5
9

,

which agrees with our previous computation.
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Example
2.3-1

Let X equal the number of spots on the side facing upward after a fair six-sided die
is rolled. A reasonable probability model is given by the pmf

f (x) = P(X = x) = 1
6

, x = 1, 2, 3, 4, 5, 6.

The mean of X is

μ = E(X) =
6∑

x=1

x
(

1
6

)
= 1 + 2 + 3 + 4 + 5 + 6

6
= 7

2
.

The second moment about the origin is

E(X2) =
6∑

x=1

x2
(

1
6

)
= 12 + 22 + 32 + 42 + 52 + 62

6
= 91

6
.

Thus, the variance equals

σ 2 = 91
6

−
(

7
2

)2

= 182 − 147
12

= 35
12

.

The standard deviation is σ = √
35/12 = 1.708.

Although most students understand that μ = E(X) is, in some sense, a measure
of the middle of the distribution of X, it is more difficult to get much of a feeling
for the variance and the standard deviation. The next example illustrates that the
standard deviation is a measure of the dispersion, or spread, of the points belonging
to the space S.

Example
2.3-2

Let X have the pmf f (x) = 1/3, x = −1, 0, 1. Here the mean is

μ =
1∑

x=−1

xf (x) = (−1)
(

1
3

)
+ (0)

(
1
3

)
+ (1)

(
1
3

)
= 0.

Accordingly, the variance, denoted by σ 2
X , is

σ 2
X = E[(X − 0)2]

=
1∑

x=−1

x2f (x)

= (−1)2
(

1
3

)
+ (0)2

(
1
3

)
+ (1)2

(
1
3

)
= 2

3
,

so the standard deviation is σX = √
2/3. Next, let another random variable Y have

the pmf g(y) = 1/3, y = −2, 0, 2. Its mean is also zero, and it is easy to show that
Var(Y) = 8/3, so the standard deviation of Y is σY = 2

√
2/3. Here the standard

deviation of Y is twice that of the standard deviation of X, reflecting the fact that
the probability of Y is spread out twice as much as that of X.
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Example
2.3-3

Let X have a uniform distribution on the first m positive integers. The mean of X is

μ = E(X) =
m∑

x=1

x
(

1
m

)
= 1

m

m∑
x=1

x

=
(

1
m

)
m(m + 1)

2
= m + 1

2
.

To find the variance of X, we first find

E(X2) =
m∑

x=1

x2
(

1
m

)
= 1

m

m∑
x=1

x2

=
(

1
m

)
m(m + 1)(2m + 1)

6
= (m + 1)(2m + 1)

6
.

Thus, the variance of X is

σ 2 = Var(X) = E[(X − μ)2]

= E(X2) − μ2 = (m + 1)(2m + 1)
6

−
(

m + 1
2

)2

= m2 − 1
12

.

For example, we find that if X equals the outcome when rolling a fair six-sided
die, the pmf of X is

f (x) = 1
6

, x = 1, 2, 3, 4, 5, 6;

the respective mean and variance of X are

μ = 6 + 1
2

= 3.5 and σ 2 = 62 − 1
12

= 35
12

,

which agrees with calculations of Example 2.3-1.

Now let X be a random variable with mean μX and variance σ 2
X . Of course,

Y = aX +b, where a and b are constants, is a random variable, too. The mean of Y is

μY = E(Y) = E(aX + b) = aE(X) + b = aμX + b.

Moreover, the variance of Y is

σ 2
Y = E[(Y − μY)2] = E[(aX + b − aμX − b)2] = E[a2(X − μX)2] = a2σ 2

X .

Thus, σY = |a|σX . To illustrate, note in Example 2.3-2 that the relationship
between the two distributions could be explained by defining Y = 2X, so that
σ 2

Y = 4σ 2
X and consequently σY = 2σX , which we had observed there. In addition,

we see that adding or subtracting a constant from X does not change the variance.
For illustration, Var(X − 1) = Var(X), because a = 1 and b = −1. Also note that
Var(−X) = Var(X) because here a = −1 and b = 0.

Let r be a positive integer. If

E(Xr) =
∑
x∈S

xrf (x)
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is finite, it is called the rth moment of the distribution about the origin. In addition,
the expectation

E[(X − b)r] =
∑
x∈S

(x − b)rf (x)

is called the rth moment of the distribution about b.
For a given positive integer r,

E[(X)r] = E[X(X − 1)(X − 2) · · · (X − r + 1)]

is called the rth factorial moment. We note that the second factorial moment is equal
to the difference of the second and first moments about 0:

E[X(X − 1)] = E(X2) − E(X).

There is another formula that can be used to compute the variance. This formula
uses the second factorial moment and sometimes simplifies the calculations. First
find the values of E(X) and E[X(X − 1)]. Then

σ 2 = E[X(X − 1)] + E(X) − [E(X)]2,

since, by the distributive property of E, this becomes

σ 2 = E(X2) − E(X) + E(X) − [E(X)]2 = E(X2) − μ2.

Example
2.3-4

In Example 2.2-5 concerning the hypergeometric distribution, we found that the
mean of that distribution is

μ = E(X) = n
(

N1

N

)
= np,

where p = N1/N, the fraction of red chips in the N chips. In Exercise 2.3-10, it is
determined that

E[X(X − 1)] = (n)(n − 1)(N1)(N1 − 1)
N(N − 1)

.

Thus, the variance of X is E[X(X − 1)] + E(X) − [E(X)]2, namely,

σ 2 = n(n − 1)(N1)(N1 − 1)
N(N − 1)

+ nN1

N
−

(
nN1

N

)2

.

After some straightforward algebra, we find that

σ 2 = n
(

N1

N

)(
N2

N

)(
N − n
N − 1

)
= np(1 − p)

(
N − n
N − 1

)
.

We now define a function that will help us generate the moments of a dis-
tribution. Thus, this function is called the moment-generating function. Although
this generating characteristic is extremely important, there is a uniqueness property
that is even more important. We first define the new function and then explain this
uniqueness property before showing how it can be used to compute the moments
of X.
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Definition 2.3-1
Let X be a random variable of the discrete type with pmf f (x) and space S. If
there is a positive number h such that

E(etX) =
∑
x∈S

etxf (x)

exists and is finite for −h < t < h, then the function defined by

M(t) = E(etX)

is called the moment-generating function of X (or of the distribution of X). This
function is often abbreviated as mgf.

First, it is evident that if we set t = 0, we have M(0) = 1. Moreover, if the space
of S is {b1, b2, b3, . . .}, then the moment-generating function is given by the expansion

M(t) = etb1f (b1) + etb2 f (b2) + etb3 f (b3) + · · · .

Thus, the coefficient of etbi is the probability

f (bi) = P(X = bi).

Accordingly, if two random variables (or two distributions of probability) have the
same moment-generating function, they must have the same distribution of proba-
bility. That is, if the two random variables had the two probability mass functions
f (x) and g(y), as well as the same space S = {b1, b2, b3, . . .}, and if

etb1 f (b1) + etb2 f (b2) + · · · = etb1 g(b1) + etb2 g(b2) + · · · (2.3-1)

for all t, −h < t < h, then mathematical transform theory requires that

f (bi) = g(bi), i = 1, 2, 3, . . . .

So we see that the moment-generating function of a discrete random variable
uniquely determines the distribution of that random variable. In other words, if
the mgf exists, there is one and only one distribution of probability associated with
that mgf.

REMARK From elementary algebra, we can get some understanding of why
Equation 2.3-1 requires that f (bi) = g(bi). In that equation, let et = w and say the
points in the support, namely, b1, b2, . . . , bk, are positive integers, the largest of which
is m. Then Equation 2.3-1 provides the equality of two mth-degree polynomials in
w for an uncountable number of values of w. A fundamental theorem of algebra
requires that the corresponding coefficients of the two polynomials be equal; that is,
f (bi) = g(bi), i = 1, 2, . . . , k.

Example
2.3-5

If X has the mgf

M(t) = et
(

3
6

)
+ e2t

(
2
6

)
+ e3t

(
1
6

)
, −∞ < t < ∞,

then the support of X is S = {1, 2, 3} and the associated probabilities are

P(X = 1) = 3
6

, P(X = 2) = 2
6

, P(X = 3) = 1
6

.
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We could write this, if we choose to do so, by saying that X has the pmf

f (x) = 4 − x
6

, x = 1, 2, 3.

Example
2.3-6

Suppose the mgf of X is

M(t) = et/2
1 − et/2

, t < ln 2.

Until we expand M(t), we cannot detect the coefficients of ebit. Recalling that

(1 − z)−1 = 1 + z + z2 + z3 + · · · , −1 < z < 1,

we have

et

2

(
1 − et

2

)−1

= et

2

(
1 + et

2
+ e2t

22
+ e3t

23
+ · · ·

)

= (
et)(1

2

)1

+
(

e2t
)(1

2

)2

+
(

e3t
)(1

2

)3

+ · · ·

when et/2 < 1 and thus t < ln 2. That is,

P(X = x) =
(

1
2

)x

when x is a positive integer, or, equivalently, the pmf of X is

f (x) =
(

1
2

)x

, x = 1, 2, 3, . . . .

From the theory of Laplace transforms, it can be shown that the existence of
M(t), for −h < t < h, implies that derivatives of M(t) of all orders exist at t =
0; hence, M(t) is continuous at t = 0. Moreover, it is permissible to interchange
differentiation and summation as the series converges uniformly. Thus,

M′(t) =
∑
x∈S

xetxf (x),

M′′(t) =
∑
x∈S

x2etxf (x),

and for each positive integer r,

M(r)(t) =
∑
x∈S

xretxf (x).

Setting t = 0, we see that

M′(0) =
∑
x∈S

xf (x) = E(X),

M′′(0) =
∑
x∈S

x2f (x) = E(X2),



Section 2.3 Special Mathematical Expectations 63

and, in general,

M(r)(0) =
∑
x∈S

xrf (x) = E(Xr).

In particular, if the moment-generating function exists, then

M′(0) = E(X) = μ and M′′(0) − [M′(0)]2 = E(X2) − [E(X)]2 = σ 2.

The preceding argument shows that we can find the moments of X by differen-
tiating M(t). In using this technique, it must be emphasized that first we evaluate the
summation representing M(t) to obtain a closed-form solution and then we differ-
entiate that solution to obtain the moments of X. The next example illustrates the
use of the moment-generating function for finding the first and second moments and
then the mean and variance of the geometric distribution.

Example
2.3-7

Suppose X has the geometric distribution of Example 2.2-6; that is, the pmf of X is

f (x) = qx−1p, x = 1, 2, 3, . . . .

Then the mgf of X is

M(t) = E(etX) =
∞∑

x=1

etxqx−1p =
(

p
q

) ∞∑
x=1

(qet)x

=
(

p
q

)
[(qet) + (qet)2 + (qet)3 + · · · ]

=
(

p
q

)
qet

1 − qet = pet

1 − qet , provided qet < 1 or t < − ln q.

Note that − ln q = h is positive. To find the mean and the variance of X, we first
differentiate M(t) twice:

M′(t) = (1 − qet)(pet) − pet(−qet)
(1 − qet)2

= pet

(1 − qet)2

and

M′′(t) = (1 − qet)2pet − pet(2)(1 − qet)(−qet)
(1 − qet)4

= pet(1 + qet)
(1 − qet)3

.

Of course, M(0) = 1 and M(t) is continuous at t = 0 as we were able to differentiate
at t = 0. With 1 − q = p,

M′(0) = p
(1 − q)2

= 1
p

= μ

and

M′′(0) = p(1 + q)
(1 − q)3

= 1 + q
p2

.

Thus,

σ 2 = M′′(0) − [M′(0)]2 = 1 + q
p2

− 1
p2

= q
p2

.
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Exercises

2.3-1. Find the mean and variance for the following dis-
crete distributions:

(a) f (x) = 1
5

, x = 5, 10, 15, 20, 25.

(b) f (x) = 1, x = 5.

(c) f (x) = 4 − x
6

, x = 1, 2, 3.

2.3-2. For each of the following distributions, find μ =
E(X), E[X(X −1)], and σ 2 = E[X(X −1)]+E(X)−μ2:

(a) f (x) = 3!
x!(3 − x)!

(
1
4

)x(3
4

)3−x

, x = 0, 1, 2, 3.

(b) f (x) = 4!
x!(4 − x)!

(
1
2

)4

, x = 0, 1, 2, 3, 4.

2.3-3. Given E(X + 4) = 10 and E[(X + 4)2] = 116,
determine (a) Var(X + 4), (b) μ = E(X), and (c) σ 2 =
Var(X).

2.3-4. Let μ and σ 2 denote the mean and variance of
the random variable X. Determine E[(X − μ)/σ ] and
E{[(X − μ)/σ ]2}.
2.3-5. Consider an experiment that consists of selecting
a card at random from an ordinary deck of cards. Let
the random variable X equal the value of the selected
card, where Ace = 1, Jack = 11, Queen = 12, and
King = 13. Thus, the space of X is S = {1, 2, 3, . . . , 13}.
If the experiment is performed in an unbiased manner,
assign probabilities to these 13 outcomes and compute the
mean μ of this probability distribution.

2.3-6. Place eight chips in a bowl: Three have the num-
ber 1 on them, two have the number 2, and three have
the number 3. Say each chip has a probability of 1/8
of being drawn at random. Let the random variable X
equal the number on the chip that is selected, so that the
space of X is S = {1, 2, 3}. Make reasonable probability
assignments to each of these three outcomes, and com-
pute the mean μ and the variance σ 2 of this probability
distribution.

2.3-7. Let X equal an integer selected at random from the
first m positive integers, {1, 2, . . . , m}. Find the value of m
for which E(X) = Var(X). (See Zerger in the references.)

2.3-8. Let X equal the larger outcome when a pair of fair
four-sided dice is rolled. The pmf of X is

f (x) = 2x − 1
16

, x = 1, 2, 3, 4.

Find the mean, variance, and standard deviation of X.

2.3-9. A warranty is written on a product worth $10,000
so that the buyer is given $8000 if it fails in the first year,

$6000 if it fails in the second, $4000 if it fails in the third,
$2000 if it fails in the fourth, and zero after that. The prob-
ability that the product fails in the first year is 0.1, and the
probability that it fails in any subsequent year, provided
that it did not fail prior to that year, is 0.1. What is the
expected value of the warranty?

2.3-10. To find the variance of a hypergeometric random
variable in Example 2.3-4 we used the fact that

E[X(X − 1)] = N1(N1 − 1)(n)(n − 1)
N(N − 1)

.

Prove this result by making the change of variables
k = x − 2 and noting that(

N
n

)
= N(N − 1)

n(n − 1)

(
N − 2
n − 2

)
.

2.3-11. If the moment-generating function of X is

M(t) = 2
5

et + 1
5

e2t + 2
5

e3t,

find the mean, variance, and pmf of X.

2.3-12. Let X equal the number of people selected at ran-
dom that you must ask in order to find someone with the
same birthday as yours. Assume that each day of the year
is equally likely, and ignore February 29.

(a) What is the pmf of X?

(b) Give the values of the mean, variance, and standard
deviation of X.

(c) Find P(X > 400) and P(X < 300).

2.3-13. For each question on a multiple-choice test, there
are five possible answers, of which exactly one is cor-
rect. If a student selects answers at random, give the
probability that the first question answered correctly is
question 4.

2.3-14. The probability that a machine produces a defec-
tive item is 0.01. Each item is checked as it is produced.
Assume that these are independent trials, and compute
the probability that at least 100 items must be checked to
find one that is defective.

2.3-15. Apples are packaged automatically in 3-pound
bags. Suppose that 4% of the time the bag of apples
weighs less than 3 pounds. If you select bags randomly
and weigh them in order to discover one underweight bag
of apples, find the probability that the number of bags that
must be selected is

(a) At least 20.

(b) At most 20.

(c) Exactly 20.
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2.3-16. Let X equal the number of flips of a fair coin
that are required to observe the same face on consecutive
flips.

(a) Find the pmf of X. Hint: Draw a tree diagram.

(b) Find the moment-generating function of X.

(c) Use the mgf to find the values of (i) the mean and (ii)
the variance of X.

(d) Find the values of (i) P(X ≤ 3), (ii) P(X ≥ 5), and
(iii) P(X = 3).

2.3-17. Let X equal the number of flips of a fair coin that
are required to observe heads–tails on consecutive flips.

(a) Find the pmf of X. Hint: Draw a tree diagram.

(b) Show that the mgf of X is M(t) = e2t/(et − 2)2.

(c) Use the mgf to find the values of (i) the mean and (ii)
the variance of X.

(d) Find the values of (i) P(X ≤ 3), (ii) P(X ≥ 5), and
(iii) P(X = 3).

2.3-18. Let X have a geometric distribution. Show that

P(X > k + j | X > k) = P(X > j),

where k and j are nonnegative integers. Note: We some-
times say that in this situation there has been loss of
memory.

2.3-19. Given a random permutation of the integers in
the set {1, 2, 3, 4, 5}, let X equal the number of integers
that are in their natural position. The moment-generating
function of X is

M(t) = 44
120

+ 45
120

et + 20
120

e2t + 10
120

e3t + 1
120

e5t.

(a) Find the mean and variance of X.

(b) Find the probability that at least one integer is in its
natural position.

(c) Draw a graph of the probability histogram of the pmf
of X.

2.4 THE BINOMIAL DISTRIBUTION
The probability models for random experiments that will be described in this section
occur frequently in applications.

A Bernoulli experiment is a random experiment, the outcome of which can be
classified in one of two mutually exclusive and exhaustive ways—say, success or fail-
ure (e.g., female or male, life or death, nondefective or defective). A sequence of
Bernoulli trials occurs when a Bernoulli experiment is performed several indepen-
dent times and the probability of success—say, p—remains the same from trial to
trial. That is, in such a sequence we let p denote the probability of success on each
trial. In addition, we shall frequently let q = 1 − p denote the probability of failure;
that is, we shall use q and 1 − p interchangeably.

Example
2.4-1

Suppose that the probability of germination of a beet seed is 0.8 and the germination
of a seed is called a success. If we plant 10 seeds and can assume that the germi-
nation of one seed is independent of the germination of another seed, this would
correspond to 10 Bernoulli trials with p = 0.8.

Example
2.4-2

In the Michigan daily lottery the probability of winning when placing a six-way
boxed bet is 0.006. A bet placed on each of 12 successive days would correspond
to 12 Bernoulli trials with p = 0.006.

Let X be a random variable associated with a Bernoulli trial by defining it as
follows:

X (success) = 1 and X (failure) = 0.

That is, the two outcomes, success and failure, are denoted by one and zero,
respectively. The pmf of X can be written as

f (x) = px(1 − p)1−x, x = 0, 1,
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and we say that X has a Bernoulli distribution. The expected value of X is

μ = E(X) =
1∑

x=0

x px(1 − p)1−x = (0)(1 − p) + (1)(p) = p,

and the variance of X is

σ 2 = Var(X) =
1∑

x=0

(x − p)2px(1 − p)1−x

= (0 − p)2(1 − p) + (1 − p)2p = p(1 − p) = pq.

It follows that the standard deviation of X is

σ =
√

p(1 − p) = √
pq.

In a sequence of n Bernoulli trials, we shall let Xi denote the Bernoulli random
variable associated with the ith trial. An observed sequence of n Bernoulli trials will
then be an n-tuple of zeros and ones, and we often call this collection a random
sample of size n from a Bernoulli distribution.

Example
2.4-3

Out of millions of instant lottery tickets, suppose that 20% are winners. If five such
tickets are purchased, then (0, 0, 0, 1, 0) is a possible observed sequence in which
the fourth ticket is a winner and the other four are losers. Assuming indepen-
dence among winning and losing tickets, we observe that the probability of this
outcome is

(0.8)(0.8)(0.8)(0.2)(0.8) = (0.2)(0.8)4.

Example
2.4-4

If five beet seeds are planted in a row, a possible observed sequence would be
(1, 0, 1, 0, 1) in which the first, third, and fifth seeds germinated and the other two
did not. If the probability of germination is p = 0.8, the probability of this outcome
is, assuming independence,

(0.8)(0.2)(0.8)(0.2)(0.8) = (0.8)3(0.2)2.

In a sequence of Bernoulli trials, we are often interested in the total number of
successes but not the actual order of their occurrences. If we let the random variable
X equal the number of observed successes in n Bernoulli trials, then the possible
values of X are 0, 1, 2, . . . , n. If x successes occur, where x = 0, 1, 2, . . . , n, then n − x
failures occur. The number of ways of selecting x positions for the x successes in the
n trials is (

n
x

)
= n!

x!(n − x)! .

Since the trials are independent and since the probabilities of success and failure on
each trial are, respectively, p and q = 1 − p, the probability of each of these ways
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is px(1 − p)n−x. Thus, f (x), the pmf of X, is the sum of the probabilities of the
(

n
x

)
mutually exclusive events; that is,

f (x) =
(

n
x

)
px(1 − p)n−x, x = 0, 1, 2, . . . , n.

These probabilities are called binomial probabilities, and the random variable X is
said to have a binomial distribution.

Summarizing, a binomial experiment satisfies the following properties:

1. A Bernoulli (success–failure) experiment is performed n times, where n is a
(non-random) constant.

2. The trials are independent.

3. The probability of success on each trial is a constant p; the probability of failure
is q = 1 − p.

4. The random variable X equals the number of successes in the n trials.

A binomial distribution will be denoted by the symbol b(n, p), and we say that
the distribution of X is b(n, p). The constants n and p are called the parameters of
the binomial distribution; they correspond to the number n of independent trials and
the probability p of success on each trial. Thus, if we say that the distribution of X
is b(12, 1/4), we mean that X is the number of successes in a random sample of size
n = 12 from a Bernoulli distribution with p = 1/4.

Example
2.4-5

In the instant lottery with 20% winning tickets, if X is equal to the number of winning
tickets among n = 8 that are purchased, then the probability of purchasing two
winning tickets is

f (2) = P(X = 2) =
(

8
2

)
(0.2)2(0.8)6 = 0.2936.

The distribution of the random variable X is b(8, 0.2).

Example
2.4-6

In order to obtain a better feeling for the effect of the parameters n and p
on the distribution of probabilities, four probability histograms are displayed in
Figure 2.4-1.

Example
2.4-7

In Example 2.4-1, the number X of seeds that germinate in n = 10 independent trials
is b(10, 0.8); that is,

f (x) =
(

10
x

)
(0.8)x(0.2)10−x, x = 0, 1, 2, . . . , 10.

In particular,

P(X ≤ 8) = 1 − P(X = 9) − P(X = 10)

= 1 − 10(0.8)9(0.2) − (0.8)10 = 0.6242.

Also, with a little more work, we could compute

P(X ≤ 6) =
6∑

x=0

(
10
x

)
(0.8)x(0.2)10−x = 0.1209.
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Figure 2.4-1 Binomial probability histograms

Recall that cumulative probabilities like those in the previous example are
given by the cumulative distribution function (cdf) of X or sometimes called the
distribution function (df) of X, defined by

F(x) = P(X ≤ x), −∞ < x < ∞.

We tend to use the cdf (rather than the pmf) to obtain probabilities of events involv-
ing a b(n, p) random variable X. Tables of this cdf are given in Table II in Appendix B
for selected values of n and p.

For the binomial distribution given in Example 2.4-7, namely, the b(10, 0.8)
distribution, the distribution function is defined by

F(x) = P(X ≤ x) =
�x�∑
y=0

(
10
y

)
(0.8)y(0.2)10−y,

where �x� is the greatest integer in x. A graph of this cdf is shown in Figure 2.4-2.
Note that the vertical jumps at the integers in this step function are equal to the
probabilities associated with those respective integers.

Example
2.4-8

Leghorn chickens are raised for laying eggs. Let p = 0.5 be the probability that a
newly hatched chick is a female. Assuming independence, let X equal the number
of female chicks out of 10 newly hatched chicks selected at random. Then the distri-
bution of X is b(10, 0.5). From Table II in Appendix B, the probability of 5 or fewer
female chicks is

P(X ≤ 5) = 0.6230.
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Figure 2.4-2 Distribution function for the b(10, 0.8)
distribution

The probability of exactly 6 female chicks is

P(X = 6) =
(

10
6

)(
1
2

)6(1
2

)4

= P(X ≤ 6) − P(X ≤ 5)

= 0.8281 − 0.6230 = 0.2051,

since P(X ≤ 6) = 0.8281. The probability of at least 6 female chicks is

P(X ≥ 6) = 1 − P(X ≤ 5) = 1 − 0.6230 = 0.3770.

Although probabilities for the binomial distribution b(n, p) are given in Table
II in Appendix B for selected values of p that are less than or equal to 0.5, the next
example demonstrates that this table can also be used for values of p that are greater
than 0.5. In later sections we learn how to approximate certain binomial probabilities
with those of other distributions. In addition, you may use your calculator and/or a
statistical package such as Minitab to find binomial probabilities.

Example
2.4-9

Suppose that we are in one of those rare times when 65% of the American public
approve of the way the president of the United States is handling the job. Take a
random sample of n = 8 Americans and let Y equal the number who give approval.
Then, to a very good approximation, the distribution of Y is b(8, 0.65). (Y would
have the stated distribution exactly if the sampling were done with replacement, but
most public opinion polling uses sampling without replacement.) To find P(Y ≥ 6),
note that

P(Y ≥ 6) = P(8 − Y ≤ 8 − 6) = P(X ≤ 2),

where X = 8 − Y counts the number who disapprove. Since q = 1 − p = 0.35
equals the probability of disapproval by each person selected, the distribution of X is
b(8, 0.35). (See Figure 2.4-3.) From Table II in Appendix B, since P(X ≤ 2) = 0.4278,
it follows that P(Y ≥ 6) = 0.4278.
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Figure 2.4-3 Presidential approval histogram

Similarly,

P(Y ≤ 5) = P(8 − Y ≥ 8 − 5)

= P(X ≥ 3) = 1 − P(X ≤ 2)

= 1 − 0.4278 = 0.5722

and

P(Y = 5) = P(8 − Y = 8 − 5)

= P(X = 3) = P(X ≤ 3) − P(X ≤ 2)

= 0.7064 − 0.4278 = 0.2786.

Recall that if n is a positive integer, then

(a + b)n =
n∑

x=0

(
n
x

)
bxan−x.

Thus, if we use this binomial expansion with b = p and a = 1 − p, then the sum of
the binomial probabilities is

n∑
x=0

(
n
x

)
px(1 − p)n−x = [(1 − p) + p]n = 1,

a result that had to follow from the fact that f (x) is a pmf.
We now use the binomial expansion to find the mgf for a binomial random

variable and then the mean and variance.
The mgf is

M(t) = E(etX) =
n∑

x=0

etx
(

n
x

)
px(1 − p)n−x

=
n∑

x=0

(
n
x

)
(pet)x(1 − p)n−x

= [
(1 − p) + pet]n , −∞ < t < ∞,
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from the expansion of (a + b)n with a = 1 − p and b = pet. It is interesting to note
that here and elsewhere the mgf is usually rather easy to compute if the pmf has a
factor involving an exponential, like px in the binomial pmf.

The first two derivatives of M(t) are

M′(t) = n[(1 − p) + pet]n−1(pet)

and

M′′(t) = n(n − 1)[(1 − p) + pet]n−2(pet)2 + n[(1 − p) + pet]n−1(pet).

Thus,

μ = E(X) = M′(0) = np

and

σ 2 = E(X2) − [E(X)]2 = M′′(0) − [M′(0)]2

= n(n − 1)p2 + np − (np)2 = np(1 − p).

Note that when p is the probability of success on each trial, the expected number of
successes in n trials is np, a result that agrees with our intuition.

In the special case when n = 1, X has a Bernoulli distribution and

M(t) = (1 − p) + pet

for all real values of t, μ = p, and σ 2 = p(1 − p).

Example
2.4-10

Suppose that observation over a long period of time has disclosed that, on the
average, 1 out of 10 items produced by a process is defective. Select five items
independently from the production line and test them. Let X denote the number
of defective items among the n = 5 items. Then X is b(5, 0.1). Furthermore,

E(X) = 5(0.1) = 0.5, Var(X) = 5(0.1)(0.9) = 0.45.

For example, the probability of observing at most one defective item is

P(X ≤ 1) =
(

5
0

)
(0.1)0(0.9)5 +

(
5
1

)
(0.1)1(0.9)4 = 0.9185.

Suppose that an urn contains N1 success balls and N2 failure balls. Let
p = N1/(N1 + N2), and let X equal the number of success balls in a random sam-
ple of size n that is taken from this urn. If the sampling is done one at a time with
replacement, then the distribution of X is b(n, p); if the sampling is done without
replacement, then X has a hypergeometric distribution with pmf

f (x) =

(
N1

x

)(
N2

n − x

)
(

N1 + N2

n

) ,

where x is a nonnegative integer such that x ≤ n, x ≤ N1, and n − x ≤ N2. When
N1 + N2 is large and n is relatively small, it makes little difference if the sampling
is done with or without replacement. In Figure 2.4-4, the probability histograms are
compared for different combinations of n, N1, and N2.
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Figure 2.4-4 Binomial and hypergeometric (shaded) probability histograms

Exercises

2.4-1. An urn contains 7 red and 11 white balls. Draw one
ball at random from the urn. Let X = 1 if a red ball is
drawn, and let X = 0 if a white ball is drawn. Give the
pmf, mean, and variance of X.

2.4-2. Suppose that in Exercise 2.4-1, X = 1 if a red ball
is drawn and X = −1 if a white ball is drawn. Give the
pmf, mean, and variance of X.

2.4-3. On a six-question multiple-choice test there are
five possible answers for each question, of which one is
correct (C) and four are incorrect (I). If a student guesses
randomly and independently, find the probability of

(a) Being correct only on questions 1 and 4 (i.e., scoring
C, I, I, C, I, I).

(b) Being correct on two questions.

2.4-4. It is claimed that 15% of the ducks in a partic-
ular region have patent schistosome infection. Suppose
that seven ducks are selected at random. Let X equal the
number of ducks that are infected.

(a) Assuming independence, how is X distributed?

(b) Find (i) P(X ≥ 2), (ii) P(X = 1), and (iii) P(X ≤ 3).

2.4-5. In a lab experiment involving inorganic syntheses
of molecular precursors to organometallic ceramics, the

final step of a five-step reaction involves the formation
of a metal–metal bond. The probability of such a bond
forming is p = 0.20. Let X equal the number of successful
reactions out of n = 25 such experiments.

(a) Find the probability that X is at most 4.

(b) Find the probability that X is at least 5.

(c) Find the probability that X is equal to 6.

(d) Give the mean, variance, and standard deviation of X.

2.4-6. It is believed that approximately 75% of American
youth now have insurance due to the health care law.
Suppose this is true, and let X equal the number of
American youth in a random sample of n = 15 with
private health insurance.

(a) How is X distributed?

(b) Find the probability that X is at least 10.

(c) Find the probability that X is at most 10.

(d) Find the probability that X is equal to 10.

(e) Give the mean, variance, and standard deviation of X.

2.4-7. Suppose that 2000 points are selected indepen-
dently and at random from the unit square {(x, y) : 0 ≤
x < 1, 0 ≤ y < 1}. Let W equal the number of points that
fall into A = {(x, y) : x2 + y2 < 1}.
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(a) How is W distributed?

(b) Give the mean, variance, and standard deviation of W.

(c) What is the expected value of W/500?

(d) Use the computer to select 2000 pairs of random num-
bers. Determine the value of W and use that value to
find an estimate for π . (Of course, we know the real
value of π , and more will be said about estimation
later in this text.)

(e) How could you extend part (d) to estimate the volume
V = (4/3)π of a ball of radius 1 in 3-space?

(f) How could you extend these techniques to estimate
the “volume” of a ball of radius 1 in n-space?

2.4-8. A boiler has four relief valves. The probability that
each opens properly is 0.99.

(a) Find the probability that at least one opens properly.

(b) Find the probability that all four open properly.

2.4-9. Suppose that the percentage of American drivers
who are multitaskers (e.g., talk on cell phones, eat a
snack, or text message at the same time they are driv-
ing) is approximately 80%. In a random sample of n = 20
drivers, let X equal the number of multitaskers.

(a) How is X distributed?

(b) Give the values of the mean, variance, and standard
deviation of X.

(c) Find the following probabilities: (i) P(X = 15),
(ii) P(X > 15), and (iii) P(X ≤ 15).

2.4-10. A certain type of mint has a label weight of 20.4
grams. Suppose that the probability is 0.90 that a mint
weighs more than 20.7 grams. Let X equal the number
of mints that weigh more than 20.7 grams in a sample of
eight mints selected at random.

(a) How is X distributed if we assume independence?

(b) Find (i) P(X = 8), (ii) P(X ≤ 6), and (iii) P(X ≥ 6).

2.4-11. A random variable X has a binomial distribution
with mean 6 and variance 3.6. Find P(X = 4).

2.4-12. In the casino game chuck-a-luck, three fair six-
sided dice are rolled. One possible bet is $1 on fives, and
the payoff is equal to $1 for each five on that roll. In addi-
tion, the dollar bet is returned if at least one five is rolled.
The dollar that was bet is lost only if no fives are rolled.
Let X denote the payoff for this game. Then X can equal
−l, l, 2, or 3.

(a) Determine the pmf f (x).

(b) Calculate μ, σ 2, and σ .

(c) Depict the pmf as a probability histogram.

2.4-13. It is claimed that for a particular lottery, 1/10 of
the 50 million tickets will win a prize. What is the proba-
bility of winning at least one prize if you purchase (a) 10
tickets or (b) 15 tickets?

2.4-14. For the lottery described in Exercise 2.4-13, find
the smallest number of tickets that must be purchased so

that the probability of winning at least one prize is greater
than (a) 0.50; (b) 0.95.

2.4-15. A hospital obtains 40% of its flu vaccine from
Company A, 50% from Company B, and 10% from
Company C. From past experience, it is known that 3%
of the vials from A are ineffective, 2% from B are ineffec-
tive, and 5% from C are ineffective. The hospital tests five
vials from each shipment. If at least one of the five is inef-
fective, find the conditional probability of that shipment’s
having come from C.

2.4-16. A company starts a fund of M dollars from which
it pays $1000 to each employee who achieves high perfor-
mance during the year. The probability of each employee
achieving this goal is 0.10 and is independent of the prob-
abilities of the other employees doing so. If there are
n = 10 employees, how much should M equal so that the
fund has a probability of at least 99% of covering those
payments?

2.4-17. Your stockbroker is free to take your calls about
60% of the time; otherwise, he is talking to another client
or is out of the office. You call him at five random times
during a given month. (Assume independence.)

(a) What is the probability that he will take every one of
the five calls?

(b) What is the probability that he will accept exactly
three of your five calls?

(c) What is the probability that he will accept at least one
of the calls?

2.4-18. In group testing for a certain disease, a blood sam-
ple was taken from each of n individuals and part of each
sample was placed in a common pool. The latter was then
tested. If the result was negative, there was no more test-
ing and all n individuals were declared negative with one
test. If, however, the combined result was found positive,
all individuals were tested, requiring n+1 tests. If p = 0.05
is the probability of a person’s having the disease and
n = 5, compute the expected number of tests needed,
assuming independence.

2.4-19. Define the pmf and give the values of μ, σ 2, and
σ when the moment-generating function of X is defined
by

(a) M(t) = 1/3 + (2/3)et.

(b) M(t) = (0.25 + 0.75et)12.

2.4-20. (i) Give the name of the distribution of X (if it has
a name), (ii) find the values of μ and σ 2, and (iii) calcu-
late P(1 ≤ X ≤ 2) when the moment-generating function
of X is given by

(a) M(t) = (0.3 + 0.7et)5.

(b) M(t) = 0.3et

1 − 0.7et , t < − ln(0.7).

(c) M(t) = 0.45 + 0.55et.

(d) M(t) = 0.3et + 0.4e2t + 0.2e3t + 0.1e4t.

(e) M(t) = ∑10
x=1 (0.1)etx.
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2.5 THE NEGATIVE BINOMIAL DISTRIBUTION
We turn now to the situation in which we observe a sequence of independent
Bernoulli trials until exactly r successes occur, where r is a fixed positive integer.
Let the random variable X denote the number of trials needed to observe the rth
success. That is, X is the trial number on which the rth success is observed. By the
multiplication rule of probabilities, the pmf of X—say, g(x)—equals the product of the
probability (

x − 1
r − 1

)
pr−1(1 − p)x−r =

(
x − 1
r − 1

)
pr−1qx−r

of obtaining exactly r − 1 successes in the first x − 1 trials and the probability p of a
success on the rth trial. Thus, the pmf of X is

g(x) =
(

x − 1
r − 1

)
pr(1 − p)x−r =

(
x − 1
r − 1

)
prqx−r, x = r, r + 1, . . . .

We say that X has a negative binomial distribution.

REMARK The reason for calling this distribution the negative binomial distribution
is as follows: Consider h(w) = (1 − w)−r, the binomial (1 − w) with the negative
exponent −r. Using Maclaurin’s series expansion, we have

(1 − w)−r =
∞∑

k=0

h(k)(0)
k! wk =

∞∑
k=0

(
r + k − 1

r − 1

)
wk, −1 < w < 1.

If we let x = k + r in the summation, then k = x − r and

(1 − w)−r =
∞∑

x=r

(
r + x − r − 1

r − 1

)
wx−r =

∞∑
x=r

(
x − 1
r − 1

)
wx−r,

the summand of which is, except for the factor pr, the negative binomial probability
when w = q. In particular, the sum of the probabilities for the negative binomial
distribution is 1 because

∞∑
x=r

g(x) =
∞∑

x=r

(
x − 1
r − 1

)
prqx−r = pr(1 − q)−r = 1.

If r = 1 in the negative binomial distribution, we note that X has a geometric
distribution, since the pmf consists of terms of a geometric series, namely,

g(x) = p(1 − p)x−1, x = 1, 2, 3, . . . .

Recall that for a geometric series, the sum is given by

∞∑
k=0

ark =
∞∑

k=1

ark−1 = a
1 − r

when |r| < 1. Thus, for the geometric distribution,

∞∑
x=1

g(x) =
∞∑

x=1

(1 − p)x−1p = p
1 − (1 − p)

= 1,

so that g(x) does satisfy the properties of a pmf.
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From the sum of a geometric series, we also note that when k is an integer,

P(X > k) =
∞∑

x=k+1

(1 − p)x−1p = (1 − p)kp
1 − (1 − p)

= (1 − p)k = qk.

Thus, the value of the cdf at a positive integer k is

P(X ≤ k) =
k∑

x=1

(1 − p)x−1p = 1 − P(X > k) = 1 − (1 − p)k = 1 − qk.

Example
2.5-1

Some biology students were checking eye color in a large number of fruit flies. For
the individual fly, suppose that the probability of white eyes is 1/4 and the probability
of red eyes is 3/4, and that we may treat these observations as independent Bernoulli
trials. The probability that at least four flies have to be checked for eye color to
observe a white-eyed fly is given by

P(X ≥ 4) = P(X > 3) = q3 =
(

3
4

)3

= 27
64

= 0.4219.

The probability that at most four flies have to be checked for eye color to observe a
white-eyed fly is given by

P(X ≤ 4) = 1 − q4 = 1 −
(

3
4

)4

= 175
256

= 0.6836.

The probability that the first fly with white eyes is the fourth fly considered is

P(X = 4) = q4−1p =
(

3
4

)3(1
4

)
= 27

256
= 0.1055.

It is also true that

P(X = 4) = P(X ≤ 4) − P(X ≤ 3)

= [1 − (3/4)4] − [1 − (3/4)3]

=
(

3
4

)3(1
4

)
.

We now show that the mean and the variance of a negative binomial random
variable X are, respectively,

μ = E(X) = r
p

and σ 2 = rq
p2

= r(1 − p)
p2

.

In particular, if r = 1, so that X has a geometric distribution, then

μ = 1
p

and σ 2 = q
p2

= 1 − p
p2

.

The mean μ = 1/p agrees with our intuition. Let’s check: If p = 1/6, then we would
expect, on the average, 1/(1/6) = 6 trials before the first success.
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To find these moments, we determine the mgf of the negative binomial distribu-
tion. It is

M(t) =
∞∑

x=r

etx
(

x − 1
r − 1

)
pr(1 − p)x−r

= (
pet)r

∞∑
x=r

(
x − 1
r − 1

) [
(1 − p)et]x−r

= (pet)r

[1 − (1 − p)et]r , where (1 − p)et < 1

(or, equivalently, when t < − ln(1 − p)). Thus,

M′(t) = (pet)r(−r)[1 − (1 − p)et]−r−1[−(1 − p)et]

+ r(pet)r−1(pet)[1 − (1 − p)et]−r

= r(pet)r[1 − (1 − p)et]−r−1

and

M′′(t) = r(pet)r(−r − 1)[1 − (1 − p)et]−r−2[−(1 − p)et]

+ r2(pet)r−1(pet)[1 − (1 − p)et]−r−1.

Accordingly,

M′(0) = rprp−r−1 = rp−1

and

M′′(0) = r(r + 1)prp−r−2(1 − p) + r2prp−r−1

= rp−2[(1 − p)(r + 1) + rp] = rp−2(r + 1 − p).

Hence, we have

μ = r
p

and σ 2 = r(r + 1 − p)
p2

− r2

p2
= r(1 − p)

p2
.

Even these calculations are a little messy, so a somewhat easier way is given in
Exercises 2.5-5 and 2.5-6.

Example
2.5-2

Suppose that during practice a basketball player can make a free throw 80% of the
time. Furthermore, assume that a sequence of free-throw shooting can be thought
of as independent Bernoulli trials. Let X equal the minimum number of free throws
that this player must attempt to make a total of 10 shots. The pmf of X is

g(x) =
(

x − 1
10 − 1

)
(0.80)10(0.20)x−10, x = 10, 11, 12, . . . .

The mean, variance, and standard deviation of X are, respectively,

μ = 10
(

1
0.80

)
= 12.5, σ 2 = 10(0.20)

0.802
= 3.125, and σ = 1.768.
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And we have, for example,

P(X = 12) = g(12) =
(

11
9

)
(0.80)10(0.20)2 = 0.2362.

Example
2.5-3

To consider the effect of p and r on the negative binomial distribution, Figure 2.5-1
gives the probability histograms for four combinations of p and r. Note that since
r = 1 in the first of these, it represents a geometric pmf.

When the moment-generating function exists, derivatives of all orders exist at
t = 0. Thus, it is possible to represent M(t) as a Maclaurin series, namely,

M(t) = M(0) + M′(0)
(

t
1!
)

+ M′′(0)

(
t2

2!

)
+ M′′′(0)

(
t3

3!

)
+ · · · .

If the Maclaurin series expansion of M(t) exists and the moments are given, we can
sometimes sum the Maclaurin series to obtain the closed form of M(t). This approach
is illustrated in the next example.

Example
2.5-4

Let the moments of X be defined by

E(Xr) = 0.8, r = 1, 2, 3, . . . .

x
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0.15

0.20

5 10 15 20

x

f(x)

f(x)

x
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0.10

0.15
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15 20 25 30

f(x)
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0.10
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0.20

0.25
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r = 1, p = 0.25 r = 4, p = 0.6

r = 7, p = 0.7 r = 15, p = 0.7

15 20
x

f(x)
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0.10

0.15

0.20

0.25

5 10 15 20

Figure 2.5-1 Negative binomial probability histograms
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The moment-generating function of X is then

M(t) = M(0) +
∞∑

r=1

0.8
(

tr

r!
)

= 1 + 0.8
∞∑

r=1

tr

r!

= 0.2 + 0.8
∞∑

r=0

tr

r! = 0.2e0t + 0.8e1t.

Thus,

P(X = 0) = 0.2 and P(X = 1) = 0.8.

This is an illustration of a Bernoulli distribution.

The next example gives an application of the geometric distribution.

Example
2.5-5

A fair six-sided die is rolled until each face is observed at least once. On the average,
how many rolls of the die are needed? It always takes one roll to observe the first
outcome. To observe a different face from the first roll is like observing a geometric
random variable with p = 5/6 and q = 1/6. So on the average it takes 1/(5/6) = 6/5
rolls. After two different faces have been observed, the probability of observing a
new face is 4/6, so it will take, on the average, 1/(4/6) = 6/4 rolls. Continuing in this
manner, the answer is

1 + 6
5

+ 6
4

+ 6
3

+ 6
2

+ 6
1

= 147
10

= 14.7

rolls, on the average.

Exercises

2.5-1. An excellent free-throw shooter attempts several
free throws until she misses.

(a) If p = 0.9 is her probability of making a free throw,
what is the probability of having the first miss on the
13th attempt or later?

(b) If she continues shooting until she misses three, what
is the probability that the third miss occurs on the 30th
attempt?

2.5-2. Show that 63/512 is the probability that the fifth
head is observed on the tenth independent flip of a fair
coin.

2.5-3. Suppose that a basketball player different from the
ones in Example 2.5-2 and in Exercise 2.5-1 can make a
free throw 60% of the time. Let X equal the minimum
number of free throws that this player must attempt to
make a total of 10 shots.

(a) Give the mean, variance, and standard deviation of X.

(b) Find P(X = 16).

2.5-4. Suppose an airport metal detector catches a person
with metal 99% of the time. That is, it misses detecting
a person with metal 1% of the time. Assume indepen-
dence of people carrying metal. What is the probability
that the first metal-carrying person missed (not detected)
is among the first 50 metal-carrying persons scanned?

2.5-5. Let the moment-generating function M(t) of X
exist for −h < t < h. Consider the function R(t) =
ln M(t). The first two derivatives of R(t) are, respectively,

R′(t) = M′(t)
M(t)

and R′′(t) = M(t)M′′(t) − [M′(t)]2

[M(t)]2
.

Setting t = 0, show that

(a) μ = R′(0).

(b) σ 2 = R′′(0).

2.5-6. Use the result of Exercise 2.5-5 to find the mean
and variance of the

(a) Bernoulli distribution.

(b) Binomial distribution.
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(c) Geometric distribution.

(d) Negative binomial distribution.

2.5-7. If E(Xr) = 5r, r = 1, 2, 3, . . ., find the moment-
generating function M(t) of X and the pmf of X.

2.5-8. The probability that a company’s work force has
no accidents in a given month is 0.7. The numbers of acci-
dents from month to month are independent. What is
the probability that the third month in a year is the first
month that at least one accident occurs?

2.5-9. One of four different prizes was randomly put into
each box of a cereal. If a family decided to buy this cereal

until it obtained at least one of each of the four differ-
ent prizes, what is the expected number of boxes of cereal
that must be purchased?

2.5-10. In 2012, Red Rose tea randomly began placing 1
of 12 English porcelain miniature figurines in a l00-bag
box of the tea, selecting from 12 nautical figurines.

(a) On the average, how many boxes of tea must be pur-
chased by a customer to obtain a complete collection
consisting of the 12 nautical figurines?

(b) If the customer uses one tea bag per day, how long can
a customer expect to take, on the average, to obtain a
complete collection?

2.6 THE POISSON DISTRIBUTION
Some experiments result in counting the number of times particular events occur at
given times or with given physical objects. For example, we could count the number
of cell phone calls passing through a relay tower between 9 and l0 a.m., the number
of flaws in 100 feet of wire, the number of customers that arrive at a ticket window
between 12 noon and 2 p.m., or the number of defects in a 100-foot roll of aluminum
screen that is 2 feet wide. Counting such events can be looked upon as observations
of a random variable associated with an approximate Poisson process, provided that
the conditions in the following definition are satisfied.

Definition 2.6-1
Let the number of occurrences of some event in a given continuous interval be
counted. Then we have an approximate Poisson process with parameter λ > 0 if
the following conditions are satisfied:

(a) The numbers of occurrences in nonoverlapping subintervals are indepen-
dent.

(b) The probability of exactly one occurrence in a sufficiently short subinterval
of length h is approximately λh.

(c) The probability of two or more occurrences in a sufficiently short subinter-
val is essentially zero.

REMARK We use approximate to modify the Poisson process since we use approx-
imately in (b) and essentially in (c) to avoid the “little o” notation. Occasionally, we
simply say “Poisson process” and drop approximate.

Suppose that an experiment satisfies the preceding three conditions of an
approximate Poisson process. Let X denote the number of occurrences in an interval
of length 1 (where “length 1” represents one unit of the quantity under consid-
eration). We would like to find an approximation for P(X = x), where x is a
nonnegative integer. To achieve this, we partition the unit interval into n subin-
tervals of equal length 1/n. If n is sufficiently large (i.e., much larger than x), we
shall approximate the probability that there are x occurrences in this unit interval
by finding the probability that exactly x of these n subintervals each has one occur-
rence. The probability of one occurrence in any one subinterval of length 1/n is
approximately λ(1/n), by condition (b). The probability of two or more occurrences
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in any one subinterval is essentially zero, by condition (c). So, for each subinterval,
there is exactly one occurrence with a probability of approximately λ(1/n). Consider
the occurrence or nonoccurrence in each subinterval as a Bernoulli trial. By condi-
tion (a), we have a sequence of n Bernoulli trials with probability p approximately
equal to λ(1/n). Thus, an approximation for P(X = x) is given by the binomial
probability

n!
x! (n − x)!

(
λ

n

)x(
1 − λ

n

)n−x

.

If n increases without bound, then

lim
n→∞

n!
x! (n − x)!

(
λ

n

)x(
1 − λ

n

)n−x

= lim
n→∞

n(n − 1) · · · (n − x + 1)
nx

λx

x!
(

1 − λ

n

)n(
1 − λ

n

)−x

.

Now, for fixed x, we have

lim
n→∞

n(n − 1) · · · (n − x + 1)
nx = lim

n→∞

[
(1)

(
1 − 1

n

)
· · ·

(
1 − x − 1

n

)]
= 1,

lim
n→∞

(
1 − λ

n

)n

= e−λ,

lim
n→∞

(
1 − λ

n

)−x

= 1.

Thus,

lim
n→∞

n!
x! (n − x)!

(
λ

n

)x(
1 − λ

n

)n−x

= λxe−λ

x! = P(X = x).

The distribution of probability associated with this process has a special name. We
say that the random variable X has a Poisson distribution if its pmf is of the form

f (x) = λxe−λ

x! , x = 0, 1, 2, . . . ,

where λ > 0.
It is easy to see that f (x) has the properties of a pmf because, clearly, f (x) ≥ 0

and, from the Maclaurin series expansion of eλ, we have

∞∑
x=0

λxe−λ

x! = e−λ
∞∑

x=0

λx

x! = e−λeλ = 1.

To discover the exact role of the parameter λ > 0, let us find some of the
characteristics of the Poisson distribution. The mgf of X is

M(t) = E(etX) =
∞∑

x=0

etx λxe−λ

x! = e−λ
∞∑

x=0

(λet)x

x! .

From the series representation of the exponential function, we have

M(t) = e−λeλet = eλ(et−1)
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for all real values of t. Now,

M′(t) = λeteλ(et−1)

and

M′′(t) = (λet)2eλ(et−1) + λeteλ(et−1).

The values of the mean and variance of X are, respectively,

μ = M′(0) = λ

and

σ 2 = M′′(0) − [M′(0)]2 = (λ2 + λ) − λ2 = λ.

That is, for the Poisson distribution, μ = σ 2 = λ.

REMARK It is also possible to find the mean and the variance for the Poisson dis-
tribution directly, without using the mgf. The mean for the Poisson distribution is
given by

E(X) =
∞∑

x=0

x
λxe−λ

x! = e−λ
∞∑

x=1

λx

(x − 1)!

because (0)f (0) = 0 and x/x! = 1/(x − 1)! when x > 0. If we let k = x − 1, then

E(X) = e−λ
∞∑

k=0

λk+1

k! = λ e−λ
∞∑

k=0

λk

k!
= λ e−λeλ = λ.

To find the variance, we first determine the second factorial moment
E[X(X − 1)]. We have

E[X(X − 1)] =
∞∑

x=0

x(x − 1)
λxe−λ

x! = e−λ
∞∑

x=2

λx

(x − 2)!

because (0)(0 − 1)f (0) = 0, (1)(1 − 1)f (1) = 0, and x(x − 1)/x! = 1/(x − 2)! when
x > 1. If we let k = x − 2, then

E[X(X − 1)] = e−λ
∞∑

k=0

λk+2

k! = λ2e−λ
∞∑

k=0

λk

k!

= λ2e−λeλ = λ2.

Thus,

Var(X) = E(X2) − [E(X)]2 = E[X(X − 1)] + E(X) − [E(X)]2

= λ2 + λ − λ2 = λ.

We again see that, for the Poisson distribution, μ = σ 2 = λ.

Table III in Appendix B gives values of the cdf of a Poisson random variable for
selected values of λ. This table is illustrated in the next example.
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Example
2.6-1

Let X have a Poisson distribution with a mean of λ = 5. Then, using Table III in
Appendix B, we obtain

P(X ≤ 6) =
6∑

x=0

5xe−5

x! = 0.762,

P(X > 5) = 1 − P(X ≤ 5) = 1 − 0.616 = 0.384,

and

P(X = 6) = P(X ≤ 6) − P(X ≤ 5) = 0.762 − 0.616 = 0.146.

Example
2.6-2

To see the effect of λ on the pmf f (x) of X, Figure 2.6-1 shows the probability
histograms of f (x) for four different values of λ.

If events in an approximate Poisson process occur at a mean rate of λ per unit,
then the expected number of occurrences in an interval of length t is λt. For exam-
ple, let X equal the number of alpha particles emitted by barium-133 in one second
and counted by a Geiger counter. If the mean number of emitted particles is 60
per second, then the expected number of emitted particles in 1/10 of a second is
60(1/10) = 6. Moreover, the number of emitted particles, say X, in a time interval
of length t has the Poisson pmf

f (x) = (λt)xe−λt

x! , x = 0, 1, 2, . . . .
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Figure 2.6-1 Poisson probability histograms
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This equation follows if we treat the interval of length t as if it were the “unit
interval” with mean λt instead of λ.

Example
2.6-3

A USB flash drive is sometimes used to back up computer files. However, in the past,
a less reliable backup system that was used was a computer tape, and flaws occurred
on these tapes. In a particular situation, flaws (bad records) on a used computer
tape occurred on the average of one flaw per 1200 feet. If one assumes a Poisson
distribution, what is the distribution of X, the number of flaws in a 4800-foot roll?
The expected number of flaws in 4800 = 4(1200) feet is 4; that is, E(X) = 4. Thus,
the pmf of X is

f (x) = 4xe−4

x! , x = 0, 1, 2, . . . ,

and, in particular,

P(X = 0)= 40e−4

0! = e−4 = 0.018,

P(X ≤ 4)=0.629,

by Table III in Appendix B.

Example
2.6-4

In a large city, telephone calls to 911 come on the average of two every 3 minutes. If
one assumes an approximate Poisson process, what is the probability of five or more
calls arriving in a 9-minute period? Let X denote the number of calls in a 9-minute
period. We see that E(X) = 6; that is, on the average, six calls will arrive during a
9-minute period. Thus,

P(X ≥ 5)=1 − P(X ≤ 4) = 1 −
4∑

x=0

6xe−6

x!
=1 − 0.285 = 0.715,

by Table III in Appendix B.

Not only is the Poisson distribution important in its own right, but it can also be
used to approximate probabilities for a binomial distribution. Earlier we saw that if
X has a Poisson distribution with parameter λ, then with n large,

P(X = x) ≈
(

n
x

)(
λ

n

)x(
1 − λ

n

)n−x

,

where p = λ/n, so that λ = np in the above binomial probability. That is, if X has
the binomial distribution b(n, p) with large n and small p, then

(np)xe−np

x! ≈
(

n
x

)
px(1 − p)n−x.

This approximation is reasonably good if n is large. But since λ was a fixed con-
stant in that earlier argument, p should be small, because np = λ. In particular, the
approximation is quite accurate if n ≥ 20 and p ≤ 0.05 or if n ≥ 100 and p ≤ 0.10,
but it is not bad in other situations violating these bounds somewhat, such as n = 50
and p = 0.12.
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Example
2.6-5

A manufacturer of Christmas tree light bulbs knows that 2% of its bulbs are defec-
tive. Assuming independence, the number of defective bulbs in a box of 100 bulbs
has a binomial distribution with parameters n = 100 and p = 0.02. To approximate
the probability that a box of 100 of these bulbs contains at most three defective bulbs,
we use the Poisson distribution with λ = 100(0.02) = 2, which gives

3∑
x=0

2xe−2

x! = 0.857,

from Table III in Appendix B. Using the binomial distribution, we obtain, after some
tedious calculations,

3∑
x=0

(
100
x

)
(0.02)x(0.98)100−x = 0.859.

Hence, in this case, the Poisson approximation is extremely close to the true value,
but much easier to find.

REMARK With the availability of statistical computer packages and statistical cal-
culators, it is often very easy to find binomial probabilities. So do not use the Poisson
approximation if you are able to find the probability exactly.

Example
2.6-6

In Figure 2.6-2, Poisson probability histograms have been superimposed on shaded
binomial probability histograms so that we can see whether or not these are close to
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Figure 2.6-2 Binomial (shaded) and Poisson probability histograms
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each other. If the distribution of X is b(n, p), the approximating Poisson distribution
has a mean of λ = np. Note that the approximation is not good when p is large (e.g.,
p = 0.30).

Exercises

2.6-1. Let X have a Poisson distribution with a mean of 4.
Find

(a) P(2 ≤ X ≤ 5).

(b) P(X ≥ 3).

(c) P(X ≤ 3).

2.6-2. Let X have a Poisson distribution with a variance
of 3. Find P(X = 2).

2.6-3. Customers arrive at a travel agency at a mean rate
of 11 per hour. Assuming that the number of arrivals per
hour has a Poisson distribution, give the probability that
more than 10 customers arrive in a given hour.

2.6-4. Find P(X = 4) if X has a Poisson distribution
such that 3P(X = 1) = P(X = 2).

2.6-5. Flaws in a certain type of drapery material appear
on the average of one in 150 square feet. If we assume a
Poisson distribution, find the probability of at most one
flaw appearing in 225 square feet.

2.6-6. A certain type of aluminum screen that is 2 feet
wide has, on the average, one flaw in a 100-foot roll. Find
the probability that a 50-foot roll has no flaws.

2.6-7. With probability 0.001, a prize of $499 is won in
the Michigan Daily Lottery when a $1 straight bet is
placed. Let Y equal the number of $499 prizes won by
a gambler after placing n straight bets. Note that Y is
b(n, 0.001). After placing n = 2000 $1 bets, the gambler
is behind or even if {Y ≤ 4}. Use the Poisson distribution
to approximate P(Y ≤ 4) when n = 2000.

2.6-8. Suppose that the probability of suffering a side
effect from a certain flu vaccine is 0.005. If 1000 persons
are inoculated, find the approximate probability that

(a) At most 1 person suffers.

(b) 4, 5, or 6 persons suffer.

2.6-9. A store selling newspapers orders only n = 4 of
a certain newspaper because the manager does not get
many calls for that publication. If the number of requests
per day follows a Poisson distribution with mean 3,

(a) What is the expected value of the number sold?

(b) What is the minimum number that the manager
should order so that the chance of having more
requests than available newspapers is less than 0.05?

2.6-10. The mean of a Poisson random variable X is
μ = 9. Compute

P(μ − 2σ < X < μ + 2σ ).

2.6-11. An airline always overbooks if possible. A partic-
ular plane has 95 seats on a flight in which a ticket sells
for $300. The airline sells 100 such tickets for this flight.

(a) If the probability of an individual not showing up is
0.05, assuming independence, what is the probability
that the airline can accommodate all the passengers
who do show up?

(b) If the airline must return the $300 price plus a penalty
of $400 to each passenger that cannot get on the
flight, what is the expected payout (penalty plus ticket
refund) that the airline will pay?

2.6-12. A baseball team loses $100,000 for each consecu-
tive day it rains. Say X, the number of consecutive days
it rains at the beginning of the season, has a Poisson dis-
tribution with mean 0.2. What is the expected loss before
the opening game?

2.6-13. Assume that a policyholder is four times more
likely to file exactly two claims as to file exactly three
claims. Assume also that the number X of claims
of this policyholder is Poisson. Determine the expectation
E(X2).

HISTORICAL COMMENTS The next major items advanced in probability the-
ory were by the Bernoullis, a remarkable Swiss family of mathematicians of the
late 1600s to the late 1700s. There were eight mathematicians among them, but we
shall mention just three of them: Jacob, Nicolaus II, and Daniel. While writing Ars
Conjectandi (The Art of Conjecture), Jacob died in 1705, and a nephew, Nicolaus II,
edited the work for publication. However, it was Jacob who discovered the important
law of large numbers, which is included in our Section 5.8.
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Another nephew of Jacob, Daniel, noted in his St. Petersburg paper that
“expected values are computed by multiplying each possible gain by the number of
ways in which it can occur and then dividing the sum of these products by the total
number of cases.” His cousin, Nicolaus II, then proposed the so-called St. Petersburg
paradox: Peter continues to toss a coin until a head first appears—say, on the xth
trial—and he then pays Paul 2x−1 units (originally ducats, but for convenience we
use dollars). With each additional throw, the number of dollars has doubled. How
much should another person pay Paul to take his place in this game? Clearly,

E(2X−1) =
∞∑

x=1

(2x−1)
(

1
2x

)
=

∞∑
x=1

1
2

= ∞.

However, if we consider this as a practical problem, would someone be willing to
give Paul $1000 to take his place even though there is this unlimited expected value?
We doubt it and Daniel doubted it, and it made him think about the utility of money.
For example, to most of us, $3 million is not worth three times $1 million. To convince
you of that, suppose you had exactly $1 million and a very rich man offers to bet you
$2 million against your $1 million on the flip of a coin. You will have zero or $3
million after the flip, so your expected value is

($0)
(

1
2

)
+ ($3,000,000)

(
1
2

)
= $1,500,000,

much more than your $1 million. Seemingly, then, this is a great bet and one that
Bill Gates might take. However, remember you have $1 million for certain and you
could have zero with probability 1/2. None of us with limited resources should con-
sider taking that bet, because the utility of that extra money to us is not worth the
utility of the first $1 million. Now, each of us has our own utility function. Two dollars
is worth twice as much as one dollar for practically all of us. But is $200,000 worth
twice as much as $100,000? It depends upon your situation; so while the utility func-
tion is a straight line for the first several dollars, it still increases but begins to bend
downward someplace as the amount of money increases. This occurs at different
spots for all of us. Bob Hogg, one of the authors of this text, would bet $1000 against
$2000 on a flip of the coin anytime, but probably not $100,000 against $200,000, so
Hogg’s utility function has started to bend downward someplace between $1000 and
$100,000. Daniel Bernoulli made this observation, and it is extremely useful in all
kinds of businesses.

As an illustration, in insurance, most of us know that the premium we pay for
all types of insurance is greater than what the company expects to pay us; that is
how they make money. Seemingly, insurance is a bad bet, but it really isn’t always.
It is true that we should self-insure less expensive items—those whose value is on
that straight part of the utility function. We have even heard the “rule” that you not
insure anything worth less than two months’ salary; this is a fairly good guide, but
each of us has our own utility function and must make that decision. Hogg can afford
losses in the $5000 to $10,000 range (not that he likes them, of course), but he does
not want to pay losses of $100,000 or more. So his utility function for negative values
of the argument follows that straight line for relatively small negative amounts but
again bends down for large negative amounts. If you insure expensive items, you will
discover that the expected utility in absolute value will now exceed the premium.
This is why most people insure their life, their home, and their car (particularly on
the liability side). They should not, however, insure their golf clubs, eyeglasses, furs,
or jewelry (unless the latter two items are extremely valuable).
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3Continuous Distributions

3.1 Random Variables of the Continuous Type
3.2 The Exponential, Gamma, and Chi-Square

Distributions

3.3 The Normal Distribution
3.4* Additional Models

3.1 RANDOM VARIABLES OF THE CONTINUOUS TYPE
Let the random variable X denote the outcome when a point is selected at random
from an interval [a, b], −∞ < a < b < ∞. If the experiment is performed in a fair
manner, it is reasonable to assume that the probability that the point is selected from
the interval [a, x], a ≤ x ≤ b, is (x−a)/(b−a). That is, the probability is proportional
to the length of the interval, so the the cdf (cumulative distribution function) of X is

F(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x < a,

x − a
b − a

, a ≤ x < b,

1, b ≤ x,

which can be written as

F(x) =
∫ x

−∞
f (y) dy,

where

f (x) = 1
b − a

, a ≤ x ≤ b,

and equals zero elsewhere. That is, F ′(x) = f (x), and we call f (x) the probability
density function (pdf) of X.

Of course, students will note that F ′(x) does not exist at x = a and at x = b.
However, since F(x) is continuous and cannot assign probability to individual points,
we can define f (x) at x = a and at x = b with any value. Most often, in this case, we
take f (a) = f (b) = 1/(b − a) or take f (a) = f (b) = 0. Because X is a continuous-
type random variable, F ′(x) is equal to the pdf of X whenever F ′(x) exists; thus, when
a < x < b, we have f (x) = F ′(x) = 1/(b − a).

87
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Figure 3.1-1 Uniform pdf and cdf

The random variable X has a uniform distribution if its pdf is equal to a constant
on its support. In particular, if the support is the interval [a, b], then

f (x) = 1
b − a

, a ≤ x ≤ b.

Moreover, we shall say that X is U(a, b). This distribution is also referred to as rect-
angular, because the graph of f (x) suggests that name. Figure 3.1-1 shows the graph
of f (x) and the cdf F(x) when a = 0.30 and b = 1.55.

Now there are many probability density functions that could describe probabil-
ities associated with a random variable X. Thus, we say that the probability density
function (pdf) of a random variable X of the continuous type, with space S that is an
interval or union of intervals, is an integrable function f (x) satisfying the following
conditions:

(a) f (x) ≥ 0, x ∈ S.

(b)
∫

S f (x) dx = 1.

(c) If (a, b) ⊆ S, then the probability of the event {a < X < b} is

P(a < X < b) =
∫ b

a
f (x) dx.

The corresponding distribution of probability is said to be of the continuous type.
The cumulative distribution function (cdf) or distribution function of a random

variable X of the continuous type, defined in terms of the pdf of X, is given by

F(x) = P(X ≤ x) =
∫ x

−∞
f (t) dt, −∞ < x < ∞.

Here, again, F(x) accumulates (or, more simply, cumulates) all of the probability less
than or equal to x. From the fundamental theorem of calculus, we have, for x values
for which the derivative F ′(x) exists, F ′(x) = f (x).

Example
3.1-1

Let Y be a continuous random variable with pdf g(y) = 2y, 0 < y < 1. The cdf of
Y is defined by

G(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, y < 0,∫ y

0
2t dt = y2, 0 ≤ y < 1,

1, 1 ≤ y.
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Figure 3.1-2 Continuous distribution pdf and cdf

Figure 3.1-2 gives the graph of the pdf g(y) and the graph of the cdf G(y). For
examples of computations of probabilities, consider

P
(

1
2

< Y ≤ 3
4

)
= G

(
3
4

)
− G

(
1
2

)
=

(
3
4

)2

−
(

1
2

)2

= 5
16

and

P
(

1
4

≤ Y < 2
)

= G(2) − G
(

1
4

)
= 1 −

(
1
4

)2

= 15
16

.

Recall that the pmf f (x) of a random variable of the discrete type is bounded by
1 because f (x) gives a probability, namely,

f (x) = P(X = x).

For random variables of the continuous type, the pdf does not have to be bounded.
[See Exercises 3.1-7(c) and 3.1-8(c).] The restriction is that the area between the
pdf and the x-axis must equal 1. Furthermore, the pdf of a random variable X of
the continuous type does not need to be a continuous function. For example, the
function

f (x) =

⎧⎪⎨⎪⎩
1
2

, 0 < x < 1 or 2 < x < 3,

0, elsewhere,

enjoys the properties of a pdf of a distribution of the continuous type and yet has
discontinuities at x = 0, 1, 2, and 3. However, the cdf associated with a distribution
of the continuous type is always a continuous function.

For continuous-type random variables, the definitions associated with mathe-
matical expectation are the same as those in the discrete case except that integrals
replace summations. As an illustration, let X be a continuous random variable with
a pdf f (x). Then the expected value of X, or the mean of X, is

μ = E(X) =
∫ ∞

−∞
xf (x) dx,
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the variance of X is

σ 2 = Var(X) = E[(X − μ)2] =
∫ ∞

−∞
(x − μ)2f (x) dx,

the standard deviation of X is

σ =
√

Var(X),

and the moment-generating function (mgf), if it exists, is

M(t) =
∫ ∞

−∞
etxf (x) dx, −h < t < h.

Moreover, results such as σ 2 = E(X2) − μ2, μ = M′(0), and σ 2 = M′′(0) − [M′(0)]2

are still valid. Again, it is important to note that the mgf, if it is finite for −h < t < h
for some h > 0, completely determines the distribution.

REMARK In both the discrete and continuous cases, note that if the rth moment,
E(Xr), exists and is finite, then the same is true of all lower-order moments,
E(Xk), k = 1, 2, . . . , r − 1. However, the converse is not true; for example, the first
moment can exist and be finite, but the second moment is not necessarily finite. (See
Exercise 3.1-11.) Moreover, if E(etX) exists and is finite for −h < t < h, then all
moments exist and are finite, but the converse is not necessarily true.

The mean, variance, and moment-generating function of X, which is U(0, 1), are
not difficult to calculate. (See Exercise 3.1-1.) They are, respectively,

μ = a + b
2

, σ 2 = (b − a)2

12
,

M(t) =

⎧⎪⎨⎪⎩
etb − eta

t(b − a)
, t �= 0,

1, t = 0.

An important uniform distribution is that for which a = 0 and b = 1, namely,
U(0, 1). If X is U(0, 1), approximate values of X can be simulated on most com-
puters with the use of a random-number generator. In fact, it should be called a
pseudo-random-number generator because the programs that produce the random
numbers are usually such that if the starting number (the seed number) is known,
all subsequent numbers in the sequence may be determined by simple arithmetical
operations. Yet, despite their deterministic origin, these computer-produced num-
bers do behave as if they were truly randomly generated, and we shall not encumber
our terminology by adding pseudo. (Examples of computer-produced random num-
bers are given in Appendix B in Table VIII.) Place a decimal point in front of each
of the four-digit entries so that each is a number between 0 and 1.

Example
3.1-2

Let X have the pdf

f (x) = 1
100

, 0 < x < 100,

so that X is U(0, 100). The mean and the variance are, respectively,

μ = 0 + 100
2

= 50 and σ 2 = (100 − 0)2

12
= 10,000

12
.
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The standard deviation is σ = 100/
√

12, which is 100 times that of the U(0, 1) distri-
bution. This agrees with our intuition, since the standard deviation is a measure of
spread and U(0, 100) is clearly spread out 100 times more than U(0, 1).

Example
3.1-3

For the random variable Y in Example 3.1-1,

μ = E(Y) =
∫ 1

0
y (2y) dy =

[(
2
3

)
y3

]1

0
= 2

3

and

σ 2 = Var(Y) = E(Y2) − μ2

=
∫ 1

0
y2(2y) dy −

(
2
3

)2

=
[(

1
2

)
y4

]1

0
− 4

9
= 1

18

are the mean and variance, respectively, of Y.

Example
3.1-4

Let X have the pdf

f (x) =
{

xe−x, 0 ≤ x < ∞,

0, elsewhere.

Then

M(t) =
∫ ∞

0
etxxe−x dx = lim

b→∞

∫ b

0
xe−(1−t)x dx

= lim
b→∞

[
−xe−(1−t)x

1 − t
− e−(1−t)x

(1 − t)2

]b

0

= lim
b→∞

[
−be−(1−t)b

1 − t
− e−(1−t)b

(1 − t)2

]
+ 1

(1 − t)2

= 1
(1 − t)2

,

provided that t < 1. Note that M(0) = 1, which is true for every mgf. Now,

M′(t) = 2
(1 − t)3

and M′′(t) = 6
(1 − t)4

.

Thus,

μ = M′(0) = 2

and

σ 2 = M′′(0) − [M′(0)]2 = 6 − 22 = 2.

The (100p)th percentile is a number πp such that the area under f (x) to the left
of πp is p. That is,

p =
∫ πp

−∞
f (x) dx = F(πp).
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The 50th percentile is called the median. We let m = π0.50. The 25th and 75th per-
centiles are called the first and third quartiles, respectively, and are denoted by
q1 = π0.25 and q3 = π0.75. Of course, the median m = π0.50 = q2 is also called
the second quartile.

Example
3.1-5

The time X in months until the failure of a certain product has the pdf

f (x) = 3x2

43
e−(x/4)3

, 0 < x < ∞.

Its cdf is

F(x) =
{

0, −∞ < x < 0,

1 − e−(x/4)3
, 0 ≤ x < ∞.

For example, the 30th percentile, π0.3, is given by

F(π0.3) = 0.3

or, equivalently,

1 − e−(π0.3/4)3 = 0.3,

ln(0.7) = −(π0.3/4)3,

π0.3 = −4 3
√

ln(0.7) = 2.84.

Likewise, π0.9 is found by

F(π0.9) = 0.9;

so

π0.9 = −4 3
√

ln(0.1) = 5.28.

Thus,

P(2.84 < X < 5.28) = 0.6.

The 30th and 90th percentiles are shown in Figure 3.1-3.

We conclude this section with an example that reviews its important ideas.
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Figure 3.1-3 Illustration of percentiles π0.30 and π0.90
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Example
3.1-6

Let X have the pdf

f (x) = e−x−1, −1 < x < ∞.

Then

P(X ≥ 1) =
∫ ∞

1
e−x−1dx = e−1 [−e−x]∞

1 = e−2 = 0.135.

Also,

M(t) = E(etX) =
∫ ∞

−1
etxe−x−1dx

= e−1

[
−e−(1−t)x

1 − t

]∞

−1

= e−t(1 − t)−1, t < 1.

Thus, since

M′(t) = (e−t)(1 − t)−2 − e−t(1 − t)−1

and

M′′(t) = (e−t)(2)(1 − t)−3 − 2e−t(1 − t)−2 + e−t(1 − t)−1,

we have

μ = M′(0) = 0 and σ 2 = M′′(0) − [M′(0)]2 = 1.

The cdf is

F(x) =
∫ x

−1
e−w−1dw = e−1 [−e−w]x

−1

= e−1
[
e1 − e−x

]
= 1 − e−x−1, −1 < x < ∞,

and zero for x ≤ −1.
As an illustration, the median, π0.5, is found by solving

F(π0.5) = 0.5,

which is equivalent to

−π0.5 − 1 = ln(0.5);

so

π0.5 = ln 2 − 1 = −0.307.

Exercises

3.1-1. Show that the mean, variance, and mgf of the
uniform distribution are as given in this section.

3.1-2. Let f (x) = 1/2, −1 ≤ x ≤ 1, be the pdf of X. Graph
the pdf and cdf, and record the mean and variance of X.

3.1-3. Customers arrive randomly at a bank teller’s win-
dow. Given that one customer arrived during a partic-
ular 10-minute period, let X equal the time within the
10 minutes that the customer arrived. If X is U(0, 10),
find



94 Chapter 3 Continuous Distributions

(a) The pdf of X.

(b) P(X ≥ 8).

(c) P(2 ≤ X < 8).

(d) E(X).

(e) Var(X).

3.1-4. If the mgf of X is

M(t) = e5t − e4t

t
, t �= 0, and M(0) = 1,

find (a) E(X), (b) Var(X), and (c) P(4.2 < X ≤ 4.7).

3.1-5. Let Y have a uniform distribution U(0, 1), and let

W = a + (b − a)Y, a < b.

(a) Find the cdf of W.
Hint: Find P[a + (b − a)Y ≤ w].

(b) How is W distributed?

3.1-6. A grocery store has n watermelons to sell and
makes $1.00 on each sale. Say the number of consumers
of these watermelons is a random variable with a distri-
bution that can be approximated by

f (x) = 1
200

, 0 < x < 200,

a pdf of the continuous type. If the grocer does not have
enough watermelons to sell to all consumers, she fig-
ures that she loses $5.00 in goodwill from each unhappy
customer. But if she has surplus watermelons, she loses
50 cents on each extra watermelon. What should n be
to maximize profit? Hint: If X ≤ n, then her profit is
(1.00)X + (−0.50)(n − X); but if X > n, her profit is
(1.00)n+(−5.00)(X−n). Find the expected value of profit
as a function of n, and then select n to maximize that
function.

3.1-7. For each of the following functions, (i) find the con-
stant c so that f (x) is a pdf of a random variable X, (ii) find
the cdf, F(x) = P(X ≤ x), (iii) sketch graphs of the pdf
f (x) and the cdf F(x), and (iv) find μ and σ 2:

(a) f (x) = 4xc, 0 ≤ x ≤ 1.

(b) f (x) = c
√

x, 0 ≤ x ≤ 4.

(c) f (x) = c/x3/4, 0 < x < 1.

3.1-8. For each of the following functions, (i) find the con-
stant c so that f (x) is a pdf of a random variable X, (ii)
find the cdf, F(x) = P(X ≤ x), (iii) sketch graphs of the
pdf f (x) and the distribution function F(x), and (iv) find
μ and σ 2:

(a) f (x) = x3/4, 0 < x < c.

(b) f (x) = (3/16)x2, −c < x < c.

(c) f (x) = c/
√

x, 0 < x < 1. Is this pdf bounded?

3.1-9. Let the random variable X have the pdf f (x) =
2(1 − x), 0 ≤ x ≤ 1, zero elsewhere.

(a) Sketch the graph of this pdf.

(b) Determine and sketch the graph of the cdf of X.

(c) Find (i) P(0 ≤ X ≤ 1/2), (ii) P(1/4 ≤ X ≤ 3/4),
(iii) P(X = 3/4), and (iv) P(X ≥ 3/4).

3.1-10. The pdf of X is f (x) = c/x2, 1 < x < ∞.

(a) Calculate the value of c so that f (x) is a pdf.

(b) Show that E(X) is not finite.

3.1-11. The pdf of Y is g(y) = d/y3, 1 < y < ∞.

(a) Calculate the value of d so that g(y) is a pdf.

(b) Find E(Y).

(c) Show that Var(Y) is not finite.

3.1-12. Sketch the graphs of the following pdfs and find
and sketch the graphs of the cdfs associated with these
distributions (note carefully the relationship between the
shape of the graph of the pdf and the concavity of the
graph of the cdf):

(a) f (x) =
(

3
2

)
x2, −1 < x < 1.

(b) f (x) = 1
2

, −1 < x < 1.

(c) f (x) =
{

x + 1, −1 < x < 0,

1 − x, 0 ≤ x < 1.

3.1-13. The logistic distribution is associated with the cdf
F(x) = (1 + e−x)−1, −∞ < x < ∞. Find the pdf of the
logistic distribution and show that its graph is symmetric
about x = 0.

3.1-14. Let f (x) = 1/2, 0 < x < 1 or 2 < x < 3, zero
elsewhere, be the pdf of X.

(a) Sketch the graph of this pdf.

(b) Define the cdf of X and sketch its graph.

(c) Find q1 = π0.25.

(d) Find m = π0.50. Is it unique?

(e) Find q3 = π0.75.

3.1-15. The life X (in years) of a voltage regulator of a car
has the pdf

f (x) = 3x2

73
e−(x/7)3

, 0 < x < ∞.

(a) What is the probability that this regulator will last at
least 7 years?

(b) Given that it has lasted at least 7 years, what is the
conditional probability that it will last at least another
3.5 years?
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3.1-16. Let f (x) = (x + 1)/2, −1 < x < 1. Find (a) π0.64,
(b) q1 = π0.25, and (c) π0.81.

3.1-17. An insurance agent receives a bonus if the loss
ratio L on his business is less than 0.5, where L is the total
losses (say, X) divided by the total premiums (say, T). The
bonus equals (0.5 − L)(T/30) if L < 0.5 and equals zero
otherwise. If X (in $100,000) has the pdf

f (x) = 3
x4

, x > 1,

and if T (in $100,000) equals 3, determine the expected
value of the bonus.

3.1-18. The weekly demand X for propane gas (in thou-
sands of gallons) has the pdf

f (x) = 4x3e−x4
, 0 < x < ∞.

If the stockpile consists of two thousand gallons at the
beginning of each week (and nothing extra is received
during the week), what is the probability of not being able
to meet the demand during a given week?

3.1-19. The total amount of medical claims (in $100,000)
of the employees of a company has the pdf that is given
by f (x) = 30x(1 − x)4, 0 < x < 1. Find

(a) The mean and the standard deviation of the total in
dollars.

(b) The probability that the total exceeds $20,000.

3.1-20. Nicol (see References) lets the pdf of X be
defined by

f (x) =

⎧⎪⎪⎨⎪⎪⎩
x, 0 ≤ x ≤ 1,

c/x3, 1 ≤ x < ∞,

0, elsewhere.

Find

(a) The value of c so that f (x) is a pdf.

(b) The mean of X (if it exists).

(c) The variance of X (if it exists).

(d) P(1/2 ≤ X ≤ 2).

3.1-21. Let X1, X2, . . . , Xk be random variables of the
continuous type, and let f1(x), f2(x), . . . , fk(x) be their cor-
responding pdfs, each with sample space S = (−∞, ∞).
Also, let c1, c2, . . . , ck be nonnegative constants such that∑k

i=1 ci = 1.

(a) Show that
∑k

i=1 cifi(x) is a pdf of a continuous-type
random variable on S.

(b) If X is a continuous-type random variable with pdf∑k
i=1 cifi(x) on S, E(Xi) = μi, and Var(Xi) = σ 2

i
for i = 1, . . . , k, find the mean and the variance
of X.

3.2 THE EXPONENTIAL, GAMMA, AND CHI-SQUARE DISTRIBUTIONS
We turn now to a continuous distribution that is related to the Poisson distribution.
When previously observing a process of the (approximate) Poisson type, we counted
the number of occurrences in a given interval. This number was a discrete-type ran-
dom variable with a Poisson distribution. But not only is the number of occurrences
a random variable; the waiting times between successive occurrences are also ran-
dom variables. However, the latter are of the continuous type, since each of them can
assume any positive value. In particular, let W denote the waiting time until the first
occurrence during the observation of a Poisson process in which the mean number of
occurrences in the unit interval is λ. Then W is a continuous-type random variable,
and we proceed to find its cdf.

Because this waiting time is nonnegative, the cdf F(w) = 0, w < 0. For w ≥ 0,

F(w) = P(W ≤ w) = 1 − P(W > w)

= 1 − P(no occurrences in [0, w] )

= 1 − e−λw,

since we previously discovered that e−λw equals the probability of no occurrences in
an interval of length w. That is, if the mean number of occurrences per unit interval
is λ, then the mean number of occurrences in an interval of length w is proportional
to w, and hence is given by λw. Thus, when w > 0, the pdf of W is

F ′(w) = f (w) = λ e−λw.
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We often let λ = 1/θ and say that the random variable X has an exponential
distribution if its pdf is defined by

f (x) = 1
θ

e−x/θ , 0 ≤ x < ∞,

where the parameter θ > 0. Accordingly, the waiting time W until the first occur-
rence in a Poisson process has an exponential distribution with θ = 1/λ. To deter-
mine the exact meaning of the parameter θ , we first find the moment-generating
function of X. It is

M(t) =
∫ ∞

0
etx

(
1
θ

)
e−x/θ dx = lim

b→∞

∫ b

0

(
1
θ

)
e−(1−θ t)x/θ dx

= lim
b→∞

[
−e−(1−θ t)x/θ

1 − θ t

]b

0

= 1
1 − θ t

, t <
1
θ

.

Thus,

M′(t) = θ

(1 − θ t)2

and

M′′(t) = 2θ2

(1 − θ t)3
.

Hence, for an exponential distribution, we have

μ = M′(0) = θ and σ 2 = M′′(0) − [M′(0)]2 = θ2.

So if λ is the mean number of occurrences in the unit interval, then θ = 1/λ is the
mean waiting time for the first occurrence. In particular, suppose that λ = 7 is the
mean number of occurrences per minute; then the mean waiting time for the first
occurrence is 1/7 of a minute, a result that agrees with our intuition.

Example
3.2-1

Let X have an exponential distribution with a mean of θ = 20. Then the pdf of X is

f (x) = 1
20

e−x/20, 0 ≤ x < ∞.

The probability that X is less than 18 is

P(X < 18) =
∫ 18

0

1
20

e−x/20 dx = 1 − e−18/20 = 0.593.

Let X have an exponential distribution with mean μ = θ . Then the cdf of X is

F(x) =
{

0, −∞ < x < 0,

1 − e−x/θ , 0 ≤ x < ∞.

The pdf and cdf are graphed in Figure 3.2-1 for θ = 5. The median, m, is found by
solving F(m) = 0.5. That is,

1 − e−m/θ = 0.5.
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Figure 3.2-1 Exponential pdf, f (x), and cdf, F(x)

Thus,

m = −θ ln(0.5) = θ ln(2).

So with θ = 5, the median is m = −5 ln(0.5) = 3.466. Both the median and the mean
θ = 5 are indicated on the graphs.

It is useful to note that for an exponential random variable X with mean θ , we
have

P(X > x) = 1 − F(x) = 1 − (1 − e−x/θ )

= e−x/θ when x > 0.

Example
3.2-2

Customers arrive in a certain shop according to an approximate Poisson process at
a mean rate of 20 per hour. What is the probability that the shopkeeper will have
to wait more than 5 minutes for the arrival of the first customer? Let X denote the
waiting time in minutes until the first customer arrives, and note that λ = 1/3 is the
expected number of arrivals per minute. Thus,

θ = 1
λ

= 3

and

f (x) = 1
3

e−(1/3)x, 0 ≤ x < ∞.

Hence,

P(X > 5) =
∫ ∞

5

1
3

e−(1/3)x dx = e−5/3 = 0.1889.

The median time until the first arrival is

m = −3 ln(0.5) = 2.0794.

Example
3.2-3

Suppose that a certain type of electronic component has an exponential distribution
with a mean life of 500 hours. If X denotes the life of this component (or the time to
failure of this component), then

P(X > x) =
∫ ∞

x

1
500

e−t/500 dt = e−x/500.
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If the component has been in operation for 300 hours, the conditional probability
that it will last for another 600 hours is

P(X > 900 | X > 300) = P(X > 900)
P(X > 300)

= e−900/500

e−300/500
= e−6/5.

It is important to note that this conditional probability is exactly equal to
P(X > 600) = e−6/5. That is, the probability that the component will last an
additional 600 hours, given that it has operated for 300 hours, is the same as the
probability that it will last 600 hours when first put into operation. Thus, for such
components, an old component is as good as a new one, and we say that the fail-
ure rate is constant. Certainly, with a constant failure rate, there is no advantage in
replacing components that are operating satisfactorily. Obviously, however, this is
not true in practice, because most components would have an increasing failure rate
with time; hence, the exponential distribution is probably not the best model for the
probability distribution of such a life.

REMARK In Exercise 3.2-3, the result of Example 3.2-3 is generalized; that is, if
the component has an exponential distribution, then the probability that it will last
a time of at least x + y units, given that it has lasted at least x units, is exactly the
same as the probability that it will last at least y units when first put into operation.
In effect, this statement says that the exponential distribution has a “forgetfulness”
(or “no memory”) property. It is also interesting to observe that, for continuous
random variables whose support is (0, ∞), the exponential distribution is the only
continuous-type distribution with this forgetfulness property. Recall, however, that
when we considered distributions of the discrete type, we noted that the geometric
distribution has the property as well. (See Exercise 2.3-18.)

In the (approximate) Poisson process with mean λ, we have seen that the waiting
time until the first occurrence has an exponential distribution. We now let W denote
the waiting time until the αth occurrence and find the distribution of W.

The cdf of W when w ≥ 0 is given by

F(w) = P(W ≤ w) = 1 − P(W > w)

= 1 − P(fewer than α occurrences in [0, w])

= 1 −
α−1∑
k=0

(λw)ke−λw

k! , (3.2-1)

since the number of occurrences in the interval [0, w] has a Poisson distribution with
mean λw. Because W is a continuous-type random variable, F ′(w), if it exists, is equal
to the pdf of W. Also, provided that w > 0, we have

F ′(w) = λe−λw − e−λw
α−1∑
k=1

[
k(λw)k−1λ

k! − (λw)kλ

k!

]

= λe−λw − e−λw

[
λ − λ(λw)α−1

(α − 1)!

]

= λ(λw)α−1

(α − 1)! e−λw.
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If w < 0, then F(w) = 0 and F ′(w) = 0. A pdf of this form is said to be one of the
gamma type, and the random variable W is said to have a gamma distribution.

Before determining the characteristics of the gamma distribution, let us consider
the gamma function for which the distribution is named. The gamma function is
defined by

�(t) =
∫ ∞

0
yt−1e−y dy, 0 < t.

This integral is positive for 0 < t because the integrand is positive. Values of it are
often given in a table of integrals. If t > 1, integration of the gamma function of t by
parts yields

�(t) =
[
−yt−1e−y

]∞
0

+
∫ ∞

0
(t − 1)yt−2e−y dy

= (t − 1)
∫ ∞

0
yt−2e−y dy = (t − 1)�(t − 1).

For example, �(6) = 5�(5) and �(3) = 2�(2) = (2)(1)�(1). Whenever t = n, a
positive integer, we have, by repeated application of �(t) = (t − 1)�(t − 1),

�(n) = (n − 1)�(n − 1) = (n − 1)(n − 2) · · · (2)(1)�(1).

However,

�(1) =
∫ ∞

0
e−y dy = 1.

Thus, when n is a positive integer, we have

�(n) = (n − 1)!.

For this reason, the gamma function is called the generalized factorial. [Incidentally,
�(1) corresponds to 0!, and we have noted that �(1) = 1, which is consistent with
earlier discussions.]

Let us now formally define the pdf of the gamma distribution and find its
characteristics. The random variable X has a gamma distribution if its pdf is
defined by

f (x) = 1
�(α)θα

xα−1e−x/θ , 0 ≤ x < ∞.

Hence, W, the waiting time until the αth occurrence in an approximate Poisson
process, has a gamma distribution with parameters α and θ = 1/λ. To see that f (x)
actually has the properties of a pdf, note that f (x) ≥ 0 and∫ ∞

−∞
f (x) dx =

∫ ∞

0

xα−1e−x/θ

�(α)θα
dx,

which, by the change of variables y = x/θ , equals∫ ∞

0

(θy)α−1e−y

�(α)θα
θ dy = 1

�(α)

∫ ∞

0
yα−1e−y dy = �(α)

�(α)
= 1.
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The moment-generating function of X is (see Exercise 3.2-7)

M(t) = 1
(1 − θ t)α

, t < 1/θ .

The mean and variance are (see Exercise 3.2-10)

μ = αθ and σ 2 = αθ2.

Example
3.2-4

Suppose the number of customers per hour arriving at a shop follows a Poisson
process with mean 30. That is, if a minute is our unit, then λ = 1/2. What is the
probability that the shopkeeper will wait more than 5 minutes before both of the
first two customers arrive? If X denotes the waiting time in minutes until the sec-
ond customer arrives, then X has a gamma distribution with α = 2, θ = 1/λ = 2.
Hence,

P(X > 5) =
∫ ∞

5

x2−1e−x/2

�(2)22
dx =

∫ ∞

5

xe−x/2

4
dx

= 1
4

[
(−2)xe−x/2 − 4e−x/2

]∞
5

= 7
2

e−5/2 = 0.287.

We could also have used Equation 3.2-1 with λ = 1/θ because α is an integer.
From that equation, we have

P(X > x) =
α−1∑
k=0

(x/θ)k e−x/θ

k! .

Thus, with x = 5, α = 2, and θ = 2, this is equal to

P(X > 5) =
2−1∑
k=0

(5/2)k e−5/2

k!

= e−5/2
(

1 + 5
2

)
=

(
7
2

)
e−5/2.

Example
3.2-5

Telephone calls arrive at an office at a mean rate of λ = 2 per minute according to a
Poisson process. Let X denote the waiting time in minutes until the fifth call arrives.
The pdf of X, with α = 5 and θ = 1/λ = 1/2, is

f (x) = 25x4

4! e−2x, 0 ≤ x < ∞.

The mean and the variance of X are, respectively, μ = 5/2 and σ 2 = 5/4.

In order to see the effect of the parameters on the shape of the gamma pdf,
several combinations of α and θ have been used for graphs that are displayed in
Figure 3.2-2. Note that for a fixed θ , as α increases, the probability moves to the
right. The same is true for increasing θ with fixed α. Since θ = 1/λ, as θ increases, λ

decreases. That is, if θ2 > θ1, then λ2 = 1/θ2 < λ1 = 1/θ1. So if the mean number of
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Figure 3.2-2 Gamma pdfs: θ = 4, α = 1/4, 1, 2, 3, 4; α = 4, θ = 5/6, 1, 2, 3, 4

changes per unit decreases, the waiting time to observe α changes can be expected
to increase.

We now consider a special case of the gamma distribution that plays an impor-
tant role in statistics. Let X have a gamma distribution with θ = 2 and α = r/2,
where r is a positive integer. The pdf of X is

f (x) = 1
�(r/2)2r/2

xr/2−1e−x/2, 0 < x < ∞.

We say that X has a chi-square distribution with r degrees of freedom, which we
abbreviate by saying that X is χ2(r). The mean and the variance of this chi-square
distribution are, respectively,

μ = αθ =
( r

2

)
2 = r and σ 2 = αθ2 =

( r
2

)
22 = 2r.

That is, the mean equals the number of degrees of freedom, and the variance equals
twice the number of degrees of freedom. An explanation of “number of degrees
of freedom” is given later. From the results concerning the more general gamma
distribution, we see that its moment-generating function is

M(t) = (1 − 2t)−r/2, t <
1
2

.

In Figure 3.2-3, the graphs of chi-square pdfs for r = 2, 3, 5, and 8 are given. Note
the relationship between the mean μ (= r) and the point at which the pdf attains its
maximum. (See Exercise 3.2-15.)

Because the chi-square distribution is so important in applications, tables have
been prepared, giving the values of the cdf,

F(x) =
∫ x

0

1
�(r/2)2r/2

wr/2−1e−w/2 dw,

for selected values of r and x. (For an example, see Table IV in Appendix B.)

Example
3.2-6

Let X have a chi-square distribution with r = 5 degrees of freedom. Then, using
Table IV in Appendix B, we obtain

P(1.145 ≤ X ≤ 12.83) = F(12.83) − F(1.145) = 0.975 − 0.050 = 0.925
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Figure 3.2-3 Chi-square pdfs with r = 2, 3, 5, 8

and

P(X > 15.09) = 1 − F(15.09) = 1 − 0.99 = 0.01.

Example
3.2-7

If X is χ2(7), then two constants, a and b, such that

P(a < X < b) = 0.95

are a = 1.690 and b = 16.01. Other constants a and b can be found, and we are
restricted in our choices only by the limited table.

Probabilities like that of Example 3.2-7 are so important in statistical applica-
tions that we use special symbols for a and b. Let α be a positive probability (i.e.,
usually less than 0.5), and let X have a chi-square distribution with r degrees of
freedom. Then χ2

α(r) is a number such that

P[X ≥ χ2
α(r)] = α.

That is, χ2
α(r) is the 100(1 − α)th percentile (or upper 100αth percent point) of the

chi-square distribution with r degrees of freedom. Then the 100α percentile is the
number χ2

1−α
(r) such that

P[X ≤ χ2
1−α(r)] = α.

That is, the probability to the right of χ2
1−α

(r) is 1 − α. (See Figure 3.2-4.)

Example
3.2-8

Let X have a chi-square distribution with five degrees of freedom. Then, using Table
IV in Appendix B, we find that χ2

0.10(5) = 9.236 and χ2
0.90(5) = 1.610. These are the

points, with α = 0.10, that are indicated in Figure 3.2-4.

Example
3.2-9

If customers arrive at a shop on the average of 30 per hour in accordance with a
Poisson process, what is the probability that the shopkeeper will have to wait longer
than 9.390 minutes for the first nine customers to arrive? Note that the mean rate of
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Figure 3.2-4 Chi-square tails, r = 5, α = 0.10

arrivals per minute is λ = 1/2. Thus, θ = 2 and α = r/2 = 9. If X denotes the waiting
time until the ninth arrival, then X is χ2(18). Hence,

P(X > 9.390) = 1 − 0.05 = 0.95.

Example
3.2-10

If X has an exponential distribution with a mean of 2, then the pdf of X is

f (x) = 1
2

e−x/2 = x2/2−1e−x/2

�(2/2)22/2
, 0 ≤ x < ∞.

That is, X is χ2(2). As an illustration,

P(0.051 < X < 7.378) = 0.975 − 0.025 = 0.95.

Exercises

3.2-1. What are the pdf, the mean, and the variance of X
if the moment-generating function of X is given by the
following?

(a) M(t) = 1
1 − 3t

, t < 1/3.

(b) M(t) = 3
3 − t

, t < 3.

3.2-2. Telephone calls arrive at a doctor’s office according
to a Poisson process on the average of two every 3 min-
utes. Let X denote the waiting time until the first call that
arrives after 10 a.m.

(a) What is the pdf of X?

(b) Find P(X > 2).

3.2-3. Let X have an exponential distribution with mean
θ > 0. Show that

P(X > x + y | X > x) = P(X > y).

3.2-4. Let F(x) be the cdf of the continuous-type random
variable X, and assume that F(x) = 0 for x ≤ 0 and
0 < F(x) < 1 for 0 < x. Prove that if

P(X > x + y | X > x) = P(X > y),
then

F(x) = 1 − e−λx, 0 < x.

Hint: Show that g(x) = 1 − F(x) satisfies the functional
equation

g(x + y) = g(x)g(y),

which implies that g(x) = acx.
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3.2-5. There are times when a shifted exponential model
is appropriate. That is, let the pdf of X be

f (x) = 1
θ

e−(x−δ)/θ , δ < x < ∞.

(a) Define the cdf of X.

(b) Calculate the mean and variance of X.

3.2-6. A certain type of aluminum screen 2 feet in width
has, on the average, three flaws in a l00-foot roll.

(a) What is the probability that the first 40 feet in a roll
contain no flaws?

(b) What assumption did you make to solve part (a)?

3.2-7. Find the moment-generating function for the
gamma distribution with parameters α and θ .

Hint: In the integral representing E(etX), change
variables by letting y = (1 − θ t)x/θ , where 1 − θ t > 0.

3.2-8. If X has a gamma distribution with θ = 4 and
α = 2, find P(X < 5).

3.2-9. If the moment-generating function of a random
variable W is

M(t) = (1 − 7t)−20,

find the pdf, mean, and variance of W.

3.2-10. Use the moment-generating function of a gamma
distribution to show that E(X) = αθ and Var(X) = αθ2.

3.2-11. If X is χ2(17), find

(a) P(X < 7.564).

(b) P(X > 27.59).

(c) P(6.408 < X < 27.59).

(d) χ2
0.95(17).

(e) χ2
0.025(17).

3.2-12. Let X equal the number of alpha particle emis-
sions of carbon-14 that are counted by a Geiger counter
each second. Assume that the distribution of X is Poisson
with mean 16. Let W equal the time in seconds before the
seventh count is made.

(a) Give the distribution of W.

(b) Find P(W ≤ 0.5). Hint: Use Equation 3.2-1 with
λw = 8.

3.2-13. If X is χ2(23), find the following:

(a) P(14.85 < X < 32.01).

(b) Constants a and b such that P(a < X < b) = 0.95 and
P(X < a) = 0.025.

(c) The mean and variance of X.

(d) χ2
0.05(23) and χ2

0.95(23).

3.2-14. If X is χ2(12), find constants a and b such that

P(a < X < b) = 0.90 and P(X < a) = 0.05.

3.2-15. Let the distribution of X be χ2(r).

(a) Find the point at which the pdf of X attains its max-
imum when r ≥ 2. This is the mode of a χ2(r)
distribution.

(b) Find the points of inflection for the pdf of X when
r ≥ 4.

(c) Use the results of parts (a) and (b) to sketch the pdf
of X when r = 4 and when r = 10.

3.2-16. Cars arrive at a tollbooth at a mean rate of 5 cars
every 10 minutes according to a Poisson process. Find the
probability that the toll collector will have to wait longer
than 26.30 minutes before collecting the eighth toll.

3.2-17. If 15 observations are taken independently from a
chi-square distribution with 4 degrees of freedom, find the
probability that at most 3 of the 15 observations exceed
7.779.

3.2-18. Say the serum cholesterol level (X) of U.S. males
ages 25–34 follows a translated gamma distribution with
pdf

f (x) = x − 80
502

e−(x − 80)/50, 80 < x < ∞.

(a) What are the mean and the variance of this distribu-
tion?

(b) What is the mode?

(c) What percentage have a serum cholesterol level less
than 200? Hint: Integrate by parts.

3.2-19. A bakery sells rolls in units of a dozen. The
demand X (in 1000 units) for rolls has a gamma distri-
bution with parameters α = 3, θ = 0.5, where θ is in
units of days per 1000 units of rolls. It costs $2 to make
a unit that sells for $5 on the first day when the rolls
are fresh. Any leftover units are sold on the second day
for $1. How many units should be made to maximize the
expected value of the profit?

3.2-20. The initial value of an appliance is $700 and its
dollar value in the future is given by

v(t) = 100 (23−t − 1), 0 ≤ t ≤ 3,

where t is time in years. Thus, after the first three years,
the appliance is worth nothing as far as the warranty is
concerned. If it fails in the first three years, the warranty
pays v(t). Compute the expected value of the payment
on the warranty if T has an exponential distribution with
mean 5.

3.2-21. A loss (in $100,000) due to fire in a building has a
pdf f (x) = (1/6)e−x/6, 0 < x < ∞. Given that the loss is
greater than 5, find the probability that it is greater than 8.
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3.2-22. Let X have a logistic distribution with pdf

f (x) = e−x

(1 + e−x)2
, −∞ < x < ∞.

Show that

Y = 1
1 + e−X

has a U(0, 1) distribution.

Hint: Find G(y) = P(Y ≤ y) = P
(

1
1 + e−X

≤ y
)

when 0 < y < 1.

3.2-23. Some dental insurance policies cover the insurer
only up to a certain amount, say, M. (This seems to us to
be a dumb type of insurance policy because most people
should want to protect themselves against large losses.)
Say the dental expense X is a random variable with pdf
f (x) = (0.001)e−x/1000, 0 < x < ∞. Find M so that
P(X < M) = 0.08.

3.2-24. Let the random variable X be equal to the num-
ber of days that it takes a high-risk driver to have an
accident. Assume that X has an exponential distribution.
If P(X < 50) = 0.25, compute P(X > 100 | X > 50).

3.3 THE NORMAL DISTRIBUTION
When observed over a large population, many variables have a “bell-shaped” rela-
tive frequency distribution, i.e., one that is approximately symmetric and relatively
higher in the middle of the range of values than at the extremes. Examples include
such variables as scholastic aptitude test scores, physical measurements (height,
weight, length) of organisms, and repeated measurements of the same quantity on
different occasions or by different observers. A very useful family of probability
distributions for such variables are the normal distributions.

In this section, we give the definition of the pdf for the normal distribution,
verify that it is a pdf, and then justify the use of μ and σ 2 in its formula. That is,
we will show that μ and σ 2 are actually the mean and the variance of this distribu-
tion. Toward that end, the random variable X has a normal distribution if its pdf is
defined by

f (x) = 1

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
, −∞ < x < ∞,

where μ and σ are parameters satisfying −∞ < μ < ∞ and 0 < σ < ∞, and also
where exp[v] means ev. Briefly, we say that X is N(μ, σ 2).

Clearly, f (x) > 0. We now evaluate the integral

I =
∫ ∞

−∞
1

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
dx

and show that it is equal to 1. In I, change the variables of integration by letting
z = (x − μ)/σ . Then

I =
∫ ∞

−∞
1√
2π

e−z2/2 dz.

Since I > 0, it follows that if I2 = 1, then I = 1. Now,

I2 = 1
2π

[∫ ∞

−∞
e−x2/2 dx

][∫ ∞

−∞
e−y2/2 dy

]
,
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or, equivalently,

I2 = 1
2π

∫ ∞

−∞

∫ ∞

−∞
exp

(
−x2 + y2

2

)
dx dy.

Letting x = r cos θ , y = r sin θ (i.e., using polar coordinates), we have

I2 = 1
2π

∫ 2π

0

∫ ∞

0
e−r2/2r dr dθ

= 1
2π

∫ 2π

0
dθ = 1

2π
2π = 1.

Thus, I = 1, and we have shown that f (x) has the properties of a pdf. The moment-
generating function of X is

M(t) =
∫ ∞

−∞
etx

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
dx

=
∫ ∞

−∞
1

σ
√

2π
exp

{
− 1

2σ 2
[x2 − 2(μ + σ 2t)x + μ2]

}
dx.

To evaluate this integral, we complete the square in the exponent:

x2 − 2(μ + σ 2t)x + μ2 = [x − (μ + σ 2t)]2 − 2μσ 2t − σ 4t2.

Hence,

M(t) = exp

(
2μσ 2t + σ 4t2

2σ 2

)∫ ∞

−∞
1

σ
√

2π
exp

{
− 1

2σ 2
[x − (μ + σ 2t)]2

}
dx.

Note that the integrand in the last integral is like the pdf of a normal distribution
with μ replaced by μ+σ 2t. However, the normal pdf integrates to 1 for all real μ—in
particular, when μ is replaced by μ + σ 2t. Thus,

M(t) = exp

(
2μσ 2t + σ 4t2

2σ 2

)
= exp

(
μt + σ 2t2

2

)
.

Now,

M′(t) = (μ + σ 2t) exp

(
μt + σ 2t2

2

)
and

M′′(t) = [(μ + σ 2t)2 + σ 2] exp

(
μt + σ 2t2

2

)
.

Consequently,

E(X)=M′(0) = μ,

Var(X)=M′′(0) − [M′(0)]2 = μ2 + σ 2 − μ2 = σ 2.

That is, the parameters μ and σ 2 in the pdf of X are the mean and the variance
of X.
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Example
3.3-1

If the pdf of X is

f (x) = 1√
32π

exp

[
− (x + 7)2

32

]
, −∞ < x < ∞,

then X is N(−7, 16). That is, X has a normal distribution with a mean μ = −7, a
variance σ 2 = 16, and the moment-generating function

M(t) = exp(−7t + 8t2).

Example
3.3-2

If the moment-generating function of X is

M(t) = exp(5t + 12t2),

then X is N(5, 24), and its pdf is

f (x) = 1√
48π

exp

[
− (x − 5)2

48

]
, −∞ < x < ∞.

If Z is N(0, 1), we shall say that Z has a standard normal distribution. Moreover,
the cdf of Z is


(z) = P(Z ≤ z) =
∫ z

−∞
1√
2π

e−w2/2 dw.

It is not possible to evaluate this integral by finding an antiderivative that can
be expressed as an elementary function. However, numerical approximations for
integrals of this type have been tabulated and are given in Tables Va and Vb in
Appendix B. The bell-shaped curved in Figure 3.3-1 represents the graph of the pdf
of Z, and the shaded area equals 
(z0).

Values of 
(z) for z ≥ 0 are given in Table Va in Appendix B. Because of the
symmetry of the standard normal pdf, it is true that 
(−z) = 1 − 
(z) for all real z.
Thus, Table Va is enough. However, it is sometimes convenient to be able to read

z

f(z)

0.1

−3 −2 −1 0 1 2 3

0.2

0.3

0.4

Φ(z0)

z0

Figure 3.3-1 Standard normal pdf
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(−z), for z > 0, directly from a table. This can be done by using values in Table Vb
in Appendix B, which lists right-tail probabilities. Again, because of the symmetry
of the standard normal pdf, when z > 0, 
(−z) = P(Z ≤ −z) = P(Z > z) can be
read directly from Table Vb.

Example
3.3-3

If Z is N(0, 1), then, using Table Va in Appendix B, we obtain

P(Z ≤ 1.24) = 
(1.24) = 0.8925,

P(1.24 ≤ Z ≤ 2.37) = 
(2.37) − 
(1.24) = 0.9911 − 0.8925 = 0.0986,

P(−2.37 ≤ Z ≤ −1.24) = P(1.24 ≤ Z ≤ 2.37) = 0.0986.

Now, using Table Vb, we find that

P(Z > 1.24) = 0.1075,

P(Z ≤ −2.14) = P(Z ≥ 2.14) = 0.0162,

and using both tables, we obtain

P(−2.14 ≤ Z ≤ 0.77) = P(Z ≤ 0.77) − P(Z ≤ −2.14)

= 0.7794 − 0.0162 = 0.7632.

There are times when we want to read the normal probability table in the oppo-
site way, essentially finding the inverse of the standard normal cdf. That is, given a
probability p, we find a constant a so that P(Z ≤ a) = p. This situation is illustrated
in the next example.

Example
3.3-4

If the distribution of Z is N(0, 1), then to find constants a and b such that

P(Z ≤ a) = 0.9147 and P(Z ≥ b) = 0.0526,

we find the respective probabilities in Tables Va and Vb in Appendix B and read off
the corresponding values of z. From Table Va, we see that a = 1.37, and from Table
Vb, we see that b = 1.62.

In statistical applications, we are often interested in finding a number zα such
that

P(Z ≥ zα) = α,

where Z is N(0, 1) and α is usually less than 0.5. That is, zα is the 100(1 − α)th per-
centile (sometimes called the upper 100α percent point) for the standard normal
distribution. (See Figure 3.3-2.) The value of zα is given in Table Va for selected
values of α. For other values of α, zα can be found in Table Vb.

Because of the symmetry of the normal pdf,

P(Z ≤ −zα) = P(Z ≥ zα) = α.

Also, since the subscript of zα is the right-tail probability,

z1−α = −zα .

For example,

z0.95 = z1−0.05 = −z0.05.
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z

f(z)

0.1

−3 −2 −1 10 2 3

0.2

0.3

0.4

zα

α

Figure 3.3-2 Upper 100α percent point, zα

Example
3.3-5

To find z0.0125, note that

P(Z ≥ z0.0125) = 0.0125.

Thus,

z0.0125 = 2.24,

from Table Vb in Appendix B. Also,

z0.05 = 1.645 and z0.025 = 1.960,

from the last rows of Table Va.

REMARK Recall that the (100p)th percentile, πp, for a random variable X is a
number such that P(X ≤ πp) = p. If Z is N(0, 1), then since

P(Z ≥ zα) = α,

it follows that

P(Z < zα) = 1 − α.

Thus, zα is the 100(1 − α)th percentile for the standard normal distribution, N(0, 1).
For example, z0.05 = 1.645 is the 100(1 − 0.05) = 95th percentile and z0.95 = −1.645
is the 100(1 − 0.95) = 5th percentile.

The next theorem shows that if X is N(μ, σ 2), the random variable (X − μ)/σ
is N(0, 1). Hence, Tables Va and Vb in Appendix B can be used to find probabilities
relating to X.
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Theorem
3.3-1

If X is N(μ, σ 2), then Z = (X − μ)/σ is N(0, 1).

Proof The cdf of Z is

P(Z ≤ z) = P
(

X − μ

σ
≤ z

)
= P(X ≤ zσ + μ)

=
∫ zσ+μ

−∞
1

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
dx.

Now, for the integral representing P(Z ≤ z), we use the change of variable of
integration given by w = (x − μ)/σ (i.e., x = wσ + μ) to obtain

P(Z ≤ z) =
∫ z

−∞
1√
2π

e−w2/2 dw.

But this is the expression for 
(z), the cdf of a standardized normal random
variable. Hence, Z is N(0, 1). �

REMARK If X is any random variable for which E(X) = μ and E[(X − μ)2] = σ 2

exist and Z = (X − μ)/σ , then

μZ = E(Z) = E
[

X − μ

σ

]
= E(X) − μ

σ
= 0

and

σ 2
Z = E

[(
X − μ

σ

)2
]

= E[(X − μ)2 ]
σ 2

= σ 2

σ 2
= 1.

That is, the mean and the variance of Z are 0 and 1, respectively, no matter what
the distribution of X. The important aspect of the theorem is that if X is nor-
mally distributed, then Z is normally distributed—of course with zero mean and unit
variance. Z is often called the standard score associated with X.

Theorem 3.3-1 can be used to find probabilities relating to X, which is N(μ, σ 2),
as follows:

P(a ≤ X ≤ b) = P
(

a − μ

σ
≤ X − μ

σ
≤ b − μ

σ

)
= 


(
b − μ

σ

)
− 


(
a − μ

σ

)
,

since (X − μ)/σ is N(0, 1).

Example
3.3-6

If X is N(3, 16), then

P(4 ≤ X ≤ 8) = P
(

4 − 3
4

≤ X − 3
4

≤ 8 − 3
4

)
= 
(1.25) − 
(0.25) = 0.8944 − 0.5987 = 0.2957,

P(0 ≤ X ≤ 5) = P
(

0 − 3
4

≤ Z ≤ 5 − 3
4

)
= 
(0.5) − 
(−0.75) = 0.6915 − 0.2266 = 0.4649,
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and

P(−2 ≤ X ≤ 1)=P
(−2 − 3

4
≤ Z ≤ 1 − 3

4

)
=
(−0.5) − 
(−1.25) = 0.3085 − 0.1056 = 0.2029.

Example
3.3-7

If X is N(25, 36), we find a constant c such that

P(|X − 25| ≤ c) = 0.9544.

We want

P
(−c

6
≤ X − 25

6
≤ c

6

)
= 0.9544.

Thus,



( c

6

)
−

[
1 − 


( c
6

)]
= 0.9544

and



( c

6

)
= 0.9772.

Hence, c/6 = 2 and c = 12. That is, the probability that X falls within two stan-
dard deviations of its mean is the same as the probability that the standard normal
variable Z falls within two units (standard deviations) of zero.

In the next theorem, we give a relationship between the chi-square and normal
distributions.

Theorem
3.3-2

If the random variable X is N(μ, σ 2), σ 2 > 0, then the random variable V =
(X − μ)2/σ 2 = Z2 is χ2(1).

Proof Because V = Z2, where Z = (X − μ)/σ is N(0, 1), the cdf G(v) of V is, for
v ≥ 0,

G(v) = P(Z2 ≤ v) = P(−√
v ≤ Z ≤ √

v ).

That is, with v ≥ 0,

G(v) =
∫ √

v

−√
v

1√
2π

e−z2/2 dz = 2
∫ √

v

0

1√
2π

e−z2/2 dz.

If we change the variable of integration by writing z = √
y, then, since

d
dy

(
√

y ) = 1
2
√

y
,

we have

G(v) =
∫ v

0

1√
2πy

e−y/2 dy, 0 ≤ v.
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Of course, G(v) = 0 when v < 0. Hence, the pdf g(v) = G′(v) of the continuous-
type random variable V is, by one form of the fundamental theorem of calculus,

g(v) = 1√
π

√
2

v1/2−1 e−v/2, 0 < v < ∞.

Since g(v) is a pdf, it must be true that∫ ∞

0

1√
π

√
2

v1/2−1 e−v/2 dv = 1.

The change of variables x = v/2 yields

1 = 1√
π

∫ ∞

0
x1/2−1 e−x dx = 1√

π
�

(
1
2

)
.

Hence, �(1/2) = √
π , and it follows that V is χ2(1). �

Example
3.3-8

If Z is N(0, 1), then

P(|Z| < 1.96 = √
3.841 ) = 0.95

and, of course,

P(Z2 < 3.841) = 0.95

from the chi-square table with r = 1.

Exercises

3.3-1. If Z is N(0, 1), find

(a) P(0.53 < Z ≤ 2.06). (b) P(−0.79 ≤ Z < 1.52).

(c) P(Z > −1.77). (d) P(Z > 2.89).

(e) P(|Z| < 1.96). (f) P(|Z| < 1).

(g) P(|Z| < 2). (h) P(|Z| < 3).

3.3-2. If Z is N(0, 1), find

(a) P(0 ≤ Z ≤ 0.87). (b) P(−2.64 ≤ Z ≤ 0).

(c) P(−2.13 ≤ Z ≤ −0.56). (d) P(|Z| > 1.39).

(e) P(Z < −1.62). (f) P(|Z| > 1).

(g) P(|Z| > 2). (h) P(|Z| > 3).

3.3-3. If Z is N(0, 1), find values of c such that

(a) P(Z ≥ c) = 0.025. (b) P(|Z| ≤ c) = 0.95.

(c) P(Z > c) = 0.05. (d) P(|Z| ≤ c) = 0.90.

3.3-4. Find the values of (a) z0.10, (b) −z0.05, (c) −z0.0485,
and (d) z0.9656.

3.3-5. If X is normally distributed with a mean of 6 and a
variance of 25, find

(a) P(6 ≤ X ≤ 12). (b) P(0 ≤ X ≤ 8).

(c) P(−2 < X ≤ 0). (d) P(X > 21).

(e) P(|X − 6| < 5). (f) P(|X − 6| < 10).

(g) P(|X − 6| < 15). (h) P(|X − 6| < 12.41).

3.3-6. If the moment-generating function of X is M(t) =
exp(166t + 200t2), find

(a) The mean of X. (b) The variance of X.

(c) P(170 < X < 200). (d) P(148 ≤ X ≤ 172).

3.3-7. If X is N(650, 625), find

(a) P(600 ≤ X < 660).

(b) A constant c > 0 such that P(|X − 650| ≤ c) = 0.9544.
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3.3-8. Let the distribution of X be N(μ, σ 2). Show that
the points of inflection of the graph of the pdf of X occur
at x = μ ± σ .

3.3-9. Find the distribution of W = X2 when

(a) X is N(0, 4),

(b) X is N(0, σ 2).

3.3-10. If X is N(μ, σ 2), show that the distribution of
Y = aX + b is N(aμ + b, a2σ 2), a �= 0. Hint: Find the cdf
P(Y ≤ y) of Y, and in the resulting integral, let w = ax+b
or, equivalently, x = (w − b)/a.

3.3-11. A candy maker produces mints that have a label
weight of 20.4 grams. Assume that the distribution of the
weights of these mints is N(21.37, 0.16).

(a) Let X denote the weight of a single mint selected at
random from the production line. Find P(X > 22.07).

(b) Suppose that 15 mints are selected independently
and weighed. Let Y equal the number of these
mints that weigh less than 20.857 grams. Find
P(Y ≤ 2).

3.3-12. If the moment-generating function of X is given
by M(t) = e500t+5000t2 , find P[27, 060 ≤ (X − 500)2 ≤
50, 240].

3.3-13. The serum zinc level X in micrograms per
deciliter for males between ages 15 and 17 has a distri-
bution that is approximately normal with μ = 90 and
σ = 15. Compute the conditional probability P(X >

120 | X > 105).

3.3-14. The strength X of a certain material is such that
its distribution is found by X = eY , where Y is N(10, 1).
Find the cdf and pdf of X, and compute P(10, 000 <

X < 20, 000). Note: F(x) = P(X ≤ x) = P(eY ≤ x) =
P(Y ≤ ln x) so that the random variable X is said to have
a lognormal distribution.

3.3-15. The “fill” problem is important in many indus-
tries, such as those making cereal, toothpaste, beer, and so
on. If an industry claims that it is selling 12 ounces of its
product in a container, it must have a mean greater than
12 ounces, or else the FDA will crack down, although the
FDA will allow a very small percentage of the containers
to have less than 12 ounces.

(a) If the content X of a container has a N(12.1, σ 2)
distribution, find σ so that P(X < 12) = 0.01.

(b) If σ = 0.05, find μ so that P(X < 12) = 0.01.

3.3-16. The graphs of the moment-generating functions
of three normal distributions—N(0, 1), N(−1, 1), and
N(2, 1)—are given in Figure 3.3-3(a). Identify them.

3.3-17. Figure 3.3-3(b) shows the graphs of the following
three moment-generating functions near the origin:

g1(t) =
1

1 − 4t
, t < 1/4,

g2(t) =
1

(1 − 2t)2
, t < 1/2,

g3(t) = e4t+t2/2.

Why do these three graphs look so similar around t = 0?

(b)(a) (c)

1

2

3

4

−2 −1 0 1 2

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

–0.02 –0.01 0 0.01 0.02

(b)(a)

Figure 3.3-3 Moment-generating functions
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3.4* ADDITIONAL MODELS
The binomial, Poisson, gamma, chi-square, and normal models are frequently used in
statistics. However, many other interesting and very useful models can be found. We
begin with a modification of one of the postulates of an approximate Poisson process
as given in Section 2.6. In that definition, the numbers of occurrences in nonover-
lapping intervals are independent, and the probability of at least two occurrences
in a sufficiently small interval is essentially zero. We continue to use these postu-
lates, but now we say that the probability of exactly one occurrence in a sufficiently
short interval of length h is approximately λh, where λ is a nonnegative function of
the position of this interval. To be explicit, say p(x, w) is the probability of x occur-
rences in the interval (0, w), 0 ≤ w. Then the last postulate, in more formal terms,
becomes

p(x + 1, w + h) − p(x, w) ≈ λ(w)h,

where λ(w) is a nonnegative function of w. This means that if we want the approxi-
mate probability of zero occurrences in the interval (0, w+h), we could take, from the
independence of the occurrences, the probability of zero occurrences in the interval
(0, w) times that of zero occurrences in the interval (w, w + h). That is,

p(0, w + h) ≈ p(0, w)[1 − λ(w)h],

because the probability of one or more occurrences in (w, w + h) is about equal to
λ(w)h. Equivalently,

p(0, w + h) − p(0, w)
h

≈ −λ(w)p(0, w).

Taking limits as h → 0, we have

d
dw

[p(0, w)] = −λ(w)p(0, w).

That is, the resulting equation is

d
dw [p(0, w)]

p(0, w)
= −λ(w);

thus,

ln p(0, w) = −
∫

λ(w) dw + c1.

Therefore,

p(0, w) = exp
[
−
∫

λ(w) dw + c1

]
= c2 exp

[
−
∫

λ(w) dw
]

,

where c2 = ec1 . However, the boundary condition of the probability of zero occur-
rences in an interval of length zero must be 1; that is, p(0, 0) = 1. So if we
select

H(w) =
∫

λ(w) dw
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to be such that H(0) = 0, then c2 = 1. That is,

p(0, w) = e−H(w),

where H′(w) = λ(w) and H(0) = 0. Hence,

H(w) =
∫ w

0
λ(t) dt.

Suppose that we now let the continuous-type random variable W be the interval
necessary to produce the first occurrence. Then the cdf of W is

G(w) = P(W ≤ w) = 1 − P(W > w), 0 ≤ w.

Because zero occurrences in the interval (0, w) are the same as W > w, then

G(w) = 1 − p(0, w) = 1 − e−H(w), 0 ≤ w.

The pdf of W is

g(w) = G′(w) = H′(w)e−H(w) = λ(w) exp
[
−
∫ w

0
λ(t) dt

]
, 0 ≤ w.

From this formula, we see immediately that, in terms of g(w) and G(w),

λ(w) = g(w)
1 − G(w)

.

In many applications of this result, W can be thought of as a random time inter-
val. For example, if one occurrence means the “death” or “failure” of the item under
consideration, then W is actually the length of life of the item. Usually, λ(w), which
is commonly called the failure rate or force of mortality, is an increasing function of
w. That is, the larger w (the older the item), the better is the chance of failure within
a short interval of length h, namely, λ(w)h. As we review the exponential distribu-
tion of Section 3.2, we note that there λ(w) is a constant; that is, the failure rate or
force of mortality does not increase as the item gets older. If this were true in human
populations, it would mean that a person 80 years old would have as much chance
of living another year as would a person 20 years old (sort of a mathematical “foun-
tain of youth”). However, a constant failure rate (force of mortality) is not the case
in most human populations or in most populations of manufactured items. That is,
the failure rate λ(w) is usually an increasing function of w. We give two important
examples of useful probabilistic models.

Example
3.4-1

Let

H(w) =
(

w
β

)α

, 0 ≤ w,

so that the failure rate is

λ(w) = H′(w) = αwα−1

βα
,

where α > 0, β > 0. Then the pdf of W is

g(w) = αwα−1

βα
exp

[
−
(

w
β

)α]
, 0 ≤ w.
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w
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Figure 3.4-1 Weibull probability density functions

Frequently, in engineering, this distribution, with appropriate values of α and β, is
excellent for describing the life of a manufactured item. Often α is greater than 1
but less than 5. This pdf is frequently called that of the Weibull distribution and, in
model fitting, is a strong competitor of the gamma pdf.

The mean and variance of the Weibull distribution are

μ = β �

(
1 + 1

α

)
,

σ 2 = β 2

{
�

(
1 + 2

α

)
−

[
�

(
1 + 1

α

)] 2
}

.

Some graphs of Weibull pdfs are shown in Figure 3.4-1.

Example
3.4-2

People are often shocked to learn that human mortality increases almost exponen-
tially once a person reaches 25 years of age. Depending on which mortality table is
used, one finds that the increase is about 10% each year, which means that the rate
of mortality will double about every 7 years. (See the Rule of 72 as explained in the
Historical Comments at the end of this chapter.) Although this fact can be shocking,
we can be thankful that the force of mortality starts very low. The probability that a
man in reasonably good health at age 63 dies within the next year is only about 1%.
Now, assuming an exponential force of mortality, we have

λ(w) = H′(w) = aebw, a > 0, b > 0.

Thus,

H(w) =
∫ w

0
aebt dt = a

b
ebw − a

b
.

Hence,

G(w) = 1 − exp
[
− a

b
ebw + a

b

]
, 0 ≤ w,

and

g(w) = aebw exp
[
− a

b
ebw + a

b

]
, 0 ≤ w,
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Figure 3.4-2 Gompertz law probability density functions

respectively, are, the cdf and the pdf associated with the famous Gompertz law
found in actuarial science. Some graphs of pdfs associated with the Gompertz law
are shown in Figure 3.4-2. Note that the mode of the Gompertz distribution is
ln(b/a)/b.

Both the gamma and Weibull distributions are skewed. In many studies (life
testing, response times, incomes, etc.), these are valuable distributions for selecting
a model.

Thus far we have considered random variables that are either discrete or con-
tinuous. In most applications, these are the types that are encountered. However, on
some occasions, combinations of the two types of random variables are found. That
is, in some experiments, positive probability is assigned to each of certain points and
also is spread over an interval of outcomes, each point of which has zero probability.
An illustration will help clarify these remarks.

Example
3.4-3

A bulb for a projector is tested by turning it on, letting it burn for 1 hour, and then
turning it off. Let X equal the length of time that the bulb performs satisfactorily
during this test. There is a positive probability that the bulb will burn out when it is
turned on; hence,

0 < P(X = 0) < 1,

It could also burn out during the 1-hour period during which it is lit; thus,

P(0 < X < 1) > 0,

with P(X = x) = 0 when x ∈ (0, 1). In addition, P(X = 1) > 0. The act of turning the
bulb off after 1 hour so that the actual failure time beyond 1 hour is not observed is
called censoring, a phenomenon considered later in this section.

The cdf for a distribution of the mixed type will be a combination of those for the
discrete and continuous types. That is, at each point of positive probability the cdf
will be discontinuous, so that the height of the step there equals the corresponding
probability; at all other points the cdf will be continuous.
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Example
3.4-4

Let X have a cdf defined by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0,

x2

4
, 0 ≤ x < 1,

1
2

, 1 ≤ x < 2,

x
3

, 2 ≤ x < 3,

1, 3 ≤ x.

This cdf is depicted in Figure 3.4-3 and can be used to compute probabilities. As an
illustration, consider

P(0 < X < 1) = 1
4

,

P(0 < X ≤ 1) = 1
2

,

P(X = 1) = 1
4

.

Example
3.4-5

Consider the following game: A fair coin is tossed. If the outcome is heads, the player
receives $2. If the outcome is tails, the player spins a balanced spinner that has a
scale from 0 to 1. The player then receives that fraction of a dollar associated with
the point selected by the spinner. If X denotes the amount received, the space of X
is S = [0, 1) ∪ {2}. The cdf of X is defined by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0,

x
2

, 0 ≤ x < 1,

1
2

, 1 ≤ x < 2,

1, 2 ≤ x.

The graph of the cdf F(x) is given in Figure 3.4-3.
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Figure 3.4-3 Mixed distribution functions



Section 3.4* Additional Models 119

Suppose that the random variable X has a distribution of the mixed type. To find
the expectation of the function u(X) of X, a combination of a sum and a Riemann
integral is used, as shown in Example 3.4-6.

Example
3.4-6

We shall find the mean and variance of the random variable given in Example 3.4-4.
Note that there, F ′(x) = x/2 when 0 < x < 1 and F ′(x) = 1/3 when 2 < x < 3; also,
P(X = 1) = 1/4 and P(X = 2) = 1/6. Accordingly, we have

μ = E(X) =
∫ 1

0
x
(x

2

)
dx + 1

(
1
4

)
+ 2

(
1
6

)
+

∫ 3

2
x
(

1
3

)
dx

=
[

x3

6

]1

0

+ 1
4

+ 1
3

+
[

x2

6

]3

2

= 19
12

and

σ 2 = E(X2) − [E(X)]2

=
∫ 1

0
x2

(x
2

)
dx + 12

(
1
4

)
+ 22

(
1
6

)
+

∫ 3

2
x2

(
1
3

)
dx −

(
19
12

)2

= 31
48

.

Frequently, in life testing, we know that the length of life—say, X—exceeds the
number b, but the exact value of X is unknown. This phenomenon is called censor-
ing. It can happen, for instance, when a subject in a cancer study simply disappears;
the investigator knows that the subject has lived a certain number of months, but the
exact length of the subject’s life is unknown. Or it might happen when an investigator
does not have enough time to observe the moments of deaths of all the animals—say,
rats—in some study. Censoring can also occur in the insurance industry, in the case
of a loss with a limited-pay policy in which the top amount is exceeded but it is not
known by how much.

Example
3.4-7

Reinsurance companies are concerned with large losses because they might agree,
for example, to cover losses due to wind damages that are between $2 million and $10
million. Say that X equals the size of a wind loss in millions of dollars, and suppose
that X has the cdf

F(x) = 1 −
(

10
10 + x

)3

, 0 ≤ x < ∞.

If losses beyond $10 million are reported only as 10, then Y = X, X ≤ 10, and
Y = 10, X > 10, and the cdf of this censored distribution is

G(y) =

⎧⎪⎨⎪⎩ 1 −
(

10
10 + y

)3

, 0 ≤ y < 10,

1, 10 ≤ y < ∞,

which has a jump of [10/(10 + 10)]3 = 1/8 at y = 10.
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Example
3.4-8

A car worth 24 units (1 unit = $1000) is insured for a year with a one-unit deductible
policy. The probability of no damage in a year is 0.95, and the probability of being
totaled is 0.01. If the damage is partial, with probability 0.04, then this damage
follows the pdf

f (x) = 25
24

1
(x + 1)2

, 0 < x < 24.

In computing the expected payment, the insurance company recognizes that it will
make zero payment if X ≤ 1, 24−1 = 23 if the car is totaled, and X−1 if 1 < X < 24.
Thus, the expected payment is

(0)(0.95)+(0)(0.04)
∫ 1

0

25
24

1
(x + 1)2

dx+(23)(0.01)+(0.04)
∫ 24

1
(x−1)

25
24

1
(x + 1)2

dx.

That is, the answer is

0.23 + (0.04)(1.67) = 0.297,

because the last integral is equal to

∫ 24

1
(x + 1 − 2)

25
24

1
(x + 1)2

dx = (−2)
∫ 24

1

25
24

1
(x + 1)2

dx +
∫ 24

1

25
24

1
(x + 1)

dx

= (−2)
[

25
24

−1
(x + 1)

]24

1
+

[
25
24

ln(x + 1)
]24

1

= 1.67.

Exercises

3.4-1. Let the life W (in years) of the usual family car
have a Weibull distribution with α = 2. Show that β

must equal 10 for P(W > 5) = e−1/4 ≈ 0.7788. Hint:
P(W > 5) = e−H(5).

3.4-2. Suppose that the length W of a man’s life does fol-
low the Gompertz distribution with λ(w) = a(1.1)w =
ae(ln 1.1)w, P(63 < W < 64) = 0.01. Determine the
constant a and P(W ≤ 71 | 70 < W).

3.4-3. Let Y1 be the smallest observation of three
independent random variables W1, W2, W3, each with a
Weibull distribution with parameters α and β. Show that
Y1 has a Weibull distribution. What are the parameters of
this latter distribution? Hint:

G(y1) = P(Y1 ≤ y1) = 1 − P(y1 < Wi, i = 1, 2, 3)

= 1 − [P(y1 < W1)]3.

3.4-4. A frequent force of mortality used in actuarial sci-
ence is λ(w) = aebw + c. Find the cdf and pdf associated
with this Makeham’s law.

3.4-5. From the graph of the first cdf of X in Figure 3.4-4,
determine the indicated probabilities:

(a) P(X < 0). (b) P(X < −1). (c) P(X ≤ −1).

(d) P(X < 1). (e) P
(
−1 ≤ X < 1

2

)
. (f) P(−1 < X ≤ 1).

3.4-6. Determine the indicated probabilities from the
graph of the second cdf of X in Figure 3.4-4:

(a) P
(
− 1

2 ≤X ≤ 1
2

)
. (b) P

(
1
2 <X <1

)
. (c) P

(
3
4 <X <2

)
.

(d) P(X > 1). (e) P(2 < X < 3). (f) P(2 < X ≤ 3).
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Figure 3.4-4 Mixed distribution functions

3.4-7. Let X be a random variable of the mixed type
having the cdf

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0,

x2

4
, 0 ≤ x < 1,

x + 1
4

, 1 ≤ x < 2,

1, 2 ≤ x.

(a) Carefully sketch the graph of F(x).

(b) Find the mean and the variance of X.

(c) Find P(1/4 < X < 1), P(X = 1), P(X = 1/2), and
P(1/2 ≤ X < 2).

3.4-8. Find the mean and variance of X if the cdf of X is

F(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x < 0,

1 −
(

2
3

)
e−x, 0 ≤ x.

3.4-9. Consider the following game: A fair die is rolled.
If the outcome is even, the player receives a number of
dollars equal to the outcome on the die. If the outcome
is odd, a number is selected at random from the interval
[0, 1) with a balanced spinner, and the player receives that
fraction of a dollar associated with the point selected.

(a) Define and sketch the cdf of X, the amount received.

(b) Find the expected value of X.

3.4-10. The weekly gravel demand X (in tons) follows the
pdf

f (x) =
(

1
5

)
e−x/5, 0 < x < ∞.

However, the owner of the gravel pit can produce at most
only 4 tons of gravel per week. Compute the expected
value of the tons sold per week by the owner.

3.4-11. The lifetime X of a certain device has an expo-
nential distribution with mean five years. However, the
device is not observed on a continuous basis until after
three years. Hence, we actually observe Y = max(X, 3).
Compute E(Y).

3.4-12. Let X have an exponential distribution with
θ = 1; that is, the pdf of X is f (x) = e−x, 0 < x < ∞.
Let T be defined by T = ln X, so that the cdf of T is

G(t) = P(ln X ≤ t) = P(X ≤ et).

(a) Show that the pdf of T is

g(t) = ete−et
, −∞ < x < ∞,

which is the pdf of an extreme-value distribution.

(b) Let W be defined by T = α + β ln W, where −∞ <

α < ∞ and β > 0. Show that W has a Weibull
distribution.

3.4-13. A loss X on a car has a mixed distribution with
p = 0.95 on zero and p = 0.05 on an exponential distribu-
tion with a mean of $5000. If the loss X on a car is greater
than the deductible of $500, the difference X −500 is paid
to the owner of the car. Considering zero (if X ≤ 500) as
a possible payment, determine the mean and the standard
deviation of the payment.

3.4-14. A customer buys a $1000 deductible policy on
her $31,000 car. The probability of having an accident
in which the loss is greater than $1000 is 0.03, and then
that loss, as a fraction of the value of the car minus the
deductible, has the pdf f (x) = 6(1 − x)5, 0 < x < 1.

(a) What is the probability that the insurance company
must pay the customer more than $2000?

(b) What does the company expect to pay?
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3.4-15. A certain machine has a life X that has an expo-
nential distribution with mean 10. The warranty is such
that 100% of the price is returned if the machine fails in
the first year, and 50% of the price is returned for a failure
during the second year, and nothing is returned after that.
If the machine cost $2500, what are the expected value
and the standard deviation of the return on the warranty?

3.4-16. A certain machine has a life X that has an expo-
nential distribution with mean 10. The warranty is such
that $m is returned if the machine fails in the first year,
(0.5)m of the price is returned for a failure during the
second year, and nothing is returned after that. If the
machine cost $2500, find m so that the expected payment
is $200.

3.4-17. Some banks now compound daily, but report only
on a quarterly basis. It seems to us that it would be eas-
ier to compound every instant, for then a dollar invested
at an annual rate of i for t years would be worth eti. [You
might find it interesting to prove this statement by taking
the limit of (1 + i/n)nt as n → ∞.] If X is a random rate
with pdf f (x) = ce−x, 0.04 < x < 0.08, find the pdf of the
value of one dollar after three years invested at the rate
of X.

3.4-18. The time X to failure of a machine has pdf f (x) =
(x/4)3e−(x/4)4

, 0 < x < ∞. Compute P(X > 5 | X > 4).

3.4-19. Suppose the birth weight (X) in grams of U.S.
infants has an approximate Weibull model with pdf

f (x) = 3x2

35003
e−(x/3500)3

, 0 < x < ∞.

Given that a birth weight is greater than 3000, what is the
conditional probability that it exceeds 4000?

3.4-20. Let X be the failure time (in months) of a certain
insulating material. The distribution of X is modeled by
the pdf

f (x) = 2x
502

e−(x/50)2
, 0 < x < ∞.

Find

(a) P(40 < X < 60),

(b) P(X > 80).

3.4-21. In a medical experiment, a rat has been exposed
to some radiation. The experimenters believe that the
rat’s survival time X (in weeks) has the pdf

f (x) = 3x2

1203
e−(x/120)3

, 0 < x < ∞.

(a) What is the probability that the rat survives at least
100 weeks?

(b) Find the expected value of the survival time. Hint: In
the integral representing E(X), let y = (x/120)3 and
get the answer in terms of a gamma function.

HISTORICAL COMMENTS In this chapter, we studied several continuous dis-
tributions, including the very important normal distribution. Actually, the true
importance of the normal distribution is given in Chapter 5, where we consider the
central limit theorem and its generalizations. Together, that theorem and its gener-
alizations imply that the sum of several random influences on some measurement
suggests that the measurement has an approximate normal distribution. For exam-
ple, in a study of the length of chicken eggs, different hens produce different eggs,
the person measuring the eggs makes a difference, the way the egg is placed in a
“holder” is a factor, the caliper used is important, and so on. Thus, the length of an
egg might have an approximate normal distribution.

Sometimes instructors force grades to be normally distributed because they
“grade on a (normal) curve.” This is done too often, and it means that a certain
percentage of the students should get A’s, a certain percentage B’s, etc. We believe
that all students should be able to earn A’s if they satisfy certain appropriate criteria.
Thus, we think that it is wrong to restrict grades to a normal curve.

The normal distribution is symmetric, but many important distributions, like the
gamma and Weibull, are skewed. We learned that the Weibull distribution has a
failure rate equal to λ(x) = αxα−1/βα , for α ≥ 1, and this distribution is appropriate
for the length of the life of many manufactured products. It is interesting to note
that if α = 1, the failure rate is a constant, meaning that an old part is as good as
a new one. If this were true for the lives of humans, an old man would have the
same chance of living 50 more years as would a young man. That is, we would have a
“mathematical fountain of youth.” Unfortunately, as we learned in this chapter, the
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failure rate of humans is increasing with age and is close to being exponential [say,
λ(x) = aebx, a > 0, b > 0], leading to the Gompertz distribution. As a matter of fact,
most would find that the force of mortality is such that it increases about 10% each
year; so by the Rule of 72, it would double about every 72/10 = 7.2. Fortunately, it
is very small for persons in their twenties.

The Rule of 72 comes from answering the following question: “How long does it
take money to double in value if the interest rate is i?” Assuming the compounding
is on an annual basis and that you begin with $1, after one year you have $(1 + i),
and after two years the number of dollars you have is

(1 + i) + i(1 + i) = (1 + i)2.

Continuing this process, the equation that we have to solve is

(1 + i)n = 2,

the solution of which is

n = ln 2
ln(1 + i)

.

To approximate the value of n, recall that ln 2 ≈ 0.693 and use the series expansion
of ln(1 + i) to obtain

n ≈ 0.693

i − i2

2
+ i3

3
− · · ·

.

Due to the alternating series in the denominator, the denominator is a little less than
i. Frequently, brokers increase the numerator a little (say to 0.72) and simply divide
by i, obtaining the “well-known Rule of 72,” namely,

n ≈ 72
100i

.

For example, if i = 0.08, then n ≈ 72/8 = 9 provides an excellent approximation
(the answer is about 9.006). Many persons find that the Rule of 72 is extremely
useful when dealing with money matters.
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4Bivariate Distributions

4.1 Bivariate Distributions of the Discrete Type
4.2 The Correlation Coefficient
4.3 Conditional Distributions

4.4 Bivariate Distributions of the Continuous
Type

4.5 The Bivariate Normal Distribution

4.1 BIVARIATE DISTRIBUTIONS OF THE DISCRETE TYPE
So far, we have taken only one measurement on a single item under observation.
However, it is clear in many practical cases that it is possible, and often very desir-
able, to take more than one measurement of a random observation. Suppose, for
example, that we are observing female college students to obtain information about
some of their physical characteristics, such as height, x, and weight, y, because we are
trying to determine a relationship between those two characteristics. For instance,
there may be some pattern between height and weight that can be described by
an appropriate curve y = u(x). Certainly, not all of the points observed will be
on this curve, but we want to attempt to find the “best” curve to describe the
relationship and then say something about the variation of the points around the
curve.

Another example might concern high school rank—say, x—and the ACT
(or SAT) score—say, y—of incoming college students. What is the relationship
between these two characteristics? More importantly, how can we use those mea-
surements to predict a third one, such as first-year college GPA—say, z—with
a function z = v(x, y)? This is a very important problem for college admission
offices, particularly when it comes to awarding an athletic scholarship, because the
incoming student–athlete must satisfy certain conditions before receiving such an
award.

Definition 4.1-1
Let X and Y be two random variables defined on a discrete space. Let S denote
the corresponding two-dimensional space of X and Y, the two random vari-
ables of the discrete type. The probability that X = x and Y = y is denoted by
f (x, y) = P(X = x, Y = y). The function f (x, y) is called the joint probability
mass function (joint pmf) of X and Y and has the following properties:

125
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(a) 0 ≤ f (x, y) ≤ 1.

(b)
∑∑
(x,y)∈S

f (x, y) = 1.

(c) P[(X, Y) ∈ A] =
∑∑
(x,y)∈A

f (x, y), where A is a subset of the space S.

The following example will make this definition more meaningful.

Example
4.1-1

Roll a pair of fair dice. For each of the 36 sample points with probability 1/36, let
X denote the smaller and Y the larger outcome on the dice. For example, if the
outcome is (3, 2), then the observed values are X = 2, Y = 3. The event {X = 2,
Y = 3} could occur in one of two ways—(3, 2) or (2, 3)—so its probability is

1
36

+ 1
36

= 2
36

.

If the outcome is (2, 2), then the observed values are X = 2, Y = 2. Since the event
{X = 2, Y = 2} can occur in only one way, P(X = 2, Y = 2) = 1/36. The joint pmf
of X and Y is given by the probabilities

f (x, y) =

⎧⎪⎪⎨⎪⎪⎩
1

36
, 1 ≤ x = y ≤ 6,

2
36

, 1 ≤ x < y ≤ 6,

when x and y are integers. Figure 4.1-1 depicts the probabilities of the various points
of the space S.
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Figure 4.1-1 Discrete joint pmf
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Notice that certain numbers have been recorded in the bottom and left-hand
margins of Figure 4.1-1. These numbers are the respective column and row totals
of the probabilities. The column totals are the respective probabilities that X will
assume the values in the x space SX = {1, 2, 3, 4, 5, 6}, and the row totals are
the respective probabilities that Y will assume the values in the y space SY =
{1, 2, 3, 4, 5, 6}. That is, the totals describe the probability mass functions of X and
Y, respectively. Since each collection of these probabilities is frequently recorded
in the margins and satisfies the properties of a pmf of one random variable, each is
called a marginal pmf.

Definition 4.1-2
Let X and Y have the joint probability mass function f (x, y) with space S. The
probability mass function of X alone, which is called the marginal probability
mass function of X, is defined by

fX(x) =
∑

y

f (x, y) = P(X = x), x ∈ SX ,

where the summation is taken over all possible y values for each given x in the
x space SX . That is, the summation is over all (x, y) in S with a given x value.
Similarly, the marginal probability mass function of Y is defined by

fY(y) =
∑

x

f (x, y) = P(Y = y), y ∈ SY ,

where the summation is taken over all possible x values for each given y in the
y space SY . The random variables X and Y are independent if and only if, for
every x ∈ SX and every y ∈ SY ,

P(X = x, Y = y) = P(X = x)P(Y = y)

or, equivalently,

f (x, y) = fX(x)fY(y);

otherwise, X and Y are said to be dependent.

We note in Example 4.1-1 that X and Y are dependent because there are many
x and y values for which f (x, y) �= fX(x)fY(y). For instance,

fX(1)fY(1) =
(

11
36

)(
1

36

)
�= 1

36
= f (1, 1).

Example
4.1-2

Let the joint pmf of X and Y be defined by

f (x, y) = x + y
21

, x = 1, 2, 3, y = 1, 2.

Then

fX(x) =
∑

y

f (x, y) =
2∑

y=1

x + y
21

= x + 1
21

+ x + 2
21

= 2x + 3
21

, x = 1, 2, 3,
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and

fY(y) =
∑

x

f (x, y) =
3∑

x=1

x + y
21

= 6 + 3y
21

= 2 + y
7

, y = 1, 2.

Note that both fX(x) and fY(y) satisfy the properties of a probability mass function.
Since f (x, y) �= fX(x)fY(y), X and Y are dependent.

Example
4.1-3

Let the joint pmf of X and Y be

f (x, y) = xy2

30
, x = 1, 2, 3, y = 1, 2.

The marginal probability mass functions are

fX(x) =
2∑

y=1

xy2

30
= x

6
, x = 1, 2, 3,

and

fY(y) =
3∑

x=1

xy2

30
= y2

5
, y = 1, 2.

Then f (x, y) = fX(x)fY(y) for x = 1, 2, 3 and y = 1, 2; thus, X and Y are independent.
(See Figure 4.1-2.)

12/304/30

2/30

8/30

3/30

x
3

6/30

24/30

1/30

21
15/3010/305/30

y

1

2

Figure 4.1-2 Joint pmf f (x, y) = xy2

30
, x = 1, 2, 3 and y = 1, 2

Example
4.1-4

Let the joint pmf of X and Y be

f (x, y) = xy2

13
, (x, y) = (1, 1), (1, 2), (2, 2).
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Then the pmf of X is

fX(x) =

⎧⎪⎪⎨⎪⎪⎩
5
13

, x = 1,

8
13

, x = 2,

and that of Y is

fY(y) =

⎧⎪⎪⎨⎪⎪⎩
1

13
, y = 1,

12
13

, y = 2.

X and Y are dependent because fX(2)fY(1) = (8/13)(1/13) �= 0 = f (2, 1).

Note that in Example 4.1-4 the support S of X and Y is “triangular.” Whenever
the support S is not “rectangular,” the random variables must be dependent, because
S cannot then equal the product set {(x, y) : x ∈ SX , y ∈ SY}. That is, if we observe that
the support S of X and Y is not a product set, then X and Y must be dependent. For
example, in Example 4.1-4, X and Y are dependent because S = {(1, 1), (1, 2), (2, 2)}
is not a product set. On the other hand, if S equals the product set {(x, y) : x ∈ SX ,
y ∈ SY} and if the formula for f (x, y) is the product of an expression in x alone and
an expression in y alone, then X and Y are independent, as shown in Example 4.1-3.
Example 4.1-2 illustrates the fact that the support can be rectangular, but the formula
for f (x, y) is not such a product, and thus X and Y are dependent.

It is possible to define a probability histogram for a joint pmf just as we did for
a pmf for a single random variable. Suppose that X and Y have a joint pmf f (x, y)
with space S, where S is a set of pairs of integers. At a point (x, y) in S, construct a
“rectangular column” that is centered at (x, y) and has a one-unit-by-one-unit base
and a height equal to f (x, y). Note that f (x, y) is equal to the “volume” of this rect-
angular column. Furthermore, the sum of the volumes of the rectangular columns in
this probability histogram is equal to 1.

Example
4.1-5

Let the joint pmf of X and Y be that of Example 4.1-3, namely,

f (x, y) = xy2

30
, x = 1, 2, 3, y = 1, 2.

The probability histogram is shown in Figure 4.1-3.

Sometimes it is convenient to replace the symbols X and Y representing random
variables by X1 and X2. This is particularly true in situations in which we have more
than two random variables; so we use X and Y sometimes and then X1 and X2 at
other times. The reader will see the advantage of the use of subscripts as we go
further in the text.

Let X1 and X2 be random variables of the discrete type with the joint pmf
f (x1, x2) on the space S. If u(X1, X2) is a function of these two random variables,
then

E[u(X1, X2)] =
∑∑
(x1, x2)∈S

u(x1, x2)f (x1, x2),

if it exists, is called the mathematical expectation (or expected value) of u(X1, X2).
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x

y1

3
2

0

0.2

0.4

1

2

3

f(x, y)

Figure 4.1-3 Joint pmf f (x, y) = xy2

30
, x = 1, 2, 3 and

y = 1, 2

REMARK The same remarks can be made here that were made in the univariate
case, namely, that ∑∑

(x1, x2)∈S

|u(x1, x2)| f (x1, x2)

must converge and be finite in order for the expectation to exist. Also, Y = u(X1, X2)
is a random variable—say, with pmf g(y) on space SY—and it is true that∑∑

(x1, x2)∈S

u(x1, x2)f (x1, x2) =
∑

y∈SY

y g(y).

Example
4.1-6

There are eight similar chips in a bowl: three marked (0, 0), two marked (1, 0), two
marked (0, 1), and one marked (1, 1). A player selects a chip at random and is
given the sum of the two coordinates in dollars. If X1 and X2 represent those two
coordinates, respectively, their joint pmf is

f (x1, x2) = 3 − x1 − x2

8
, x1 = 0, 1 and x2 = 0, 1.

Thus,

E(X1 + X2) =
1∑

x2=0

1∑
x1=0

(x1 + x2)
3 − x1 − x2

8

= (0)
(

3
8

)
+ (1)

(
2
8

)
+ (1)

(
2
8

)
+ (2)

(
1
8

)
= 3

4
.

That is, the expected payoff is 75�c.

The following mathematical expectations, if they exist, have special names:

(a) If ui(X1, X2) = Xi for i = 1, 2, then

E[ui(X1, X2)] = E(Xi) = μi

is called the mean of Xi, for i = 1, 2.
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(b) If ui(X1, X2) = (Xi − μi)2 for i = 1, 2, then

E[ui(X1, X2)] = E[(Xi − μi)2] = σ 2
i = Var(Xi)

is called the variance of Xi, for i = 1, 2.

The mean μi and the variance σ 2
i can be computed from the joint pmf f (x1, x2)

or the marginal pmf fi(xi), i = 1, 2.
We give extensions of two important univariate distributions—the hypergeo-

metric distribution and the binomial distribution—through examples.

Example
4.1-7

Consider a population of 200 students who have just finished a first course in calcu-
lus. Of these 200, 40 have earned A’s, 60 B’s, and 100 C’s, D’s, or F’s. A sample of size
25 is taken at random and without replacement from this population in a way that
each possible sample has probability

1(
200
25

)
of being selected. Within the sample of 25, let X be the number of A students, Y the
number of B students, and 25 − X − Y the number of other students. The space S of
(X, Y) is defined by the collection of nonnegative integers (x, y) such that x+y ≤ 25.
The joint pmf of X, Y is

f (x, y) =

(
40
x

)(
60
y

)(
100

25 − x − y

)
(

200
25

) ,

for (x, y) ∈ S, where it is understood that
(

k
j

)
= 0 if j > k. Without actually

summing, we know that the marginal pmf of X is

fX(x) =

(
40
x

)(
160

25 − x

)
(

200
25

) , x = 0, 1, 2, . . . , 25,

since X alone has a hypergeometric distribution. Of course, the function fY(y) is also
a hypergeometric pmf and

f (x, y) �= fX(x)fY(y),

so X and Y are dependent. Note that the space S is not “rectangular,” which implies
that the random variables are dependent.

We now extend the binomial distribution to a trinomial distribution. Here we
have three mutually exclusive and exhaustive ways for an experiment to terminate:
perfect, “seconds,” and defective. We repeat the experiment n independent times,
and the probabilities pX , pY , pZ = 1 − pX − pY of perfect, seconds, and defective,
respectively, remain the same from trial to trial. In the n trials, let X = number of
perfect items, Y = number of seconds, and Z = n−X −Y = number of defectives. If
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x and y are nonnegative integers such that x + y ≤ n, then the probability of having
x perfects, y seconds, and n − x − y defectives, in that order, is

px
Xpy

Y(1 − pX − pY)n−x−y.

However, if we want P(X = x, Y = y), then we must recognize that X = x, Y = y
can be achieved in (

n
x, y, n − x − y

)
= n!

x!y!(n − x − y)!
different ways. Hence, the trinomial pmf is

f (x, y) = P(X = x, Y = y)

= n!
x!y!(n − x − y)! px

X py
Y(1 − pX − pY)n−x−y,

where x and y are nonnegative integers such that x + y ≤ n. Without summing,
we know that X is b(n, pX) and Y is b(n, pY); thus, X and Y are dependent, as the
product of these marginal probability mass functions is not equal to f (x, y).

Example
4.1-8

In manufacturing a certain item, it is found that about 95% of the items are good
ones, 4% are “seconds,” and 1% are defective. A company has a program of quality
control by statistical methods, and each hour an online inspector observes 20 items
selected at random, counting the number X of seconds and the number Y of defec-
tives. Let us find the probability that, in this sample of size n = 20, at least two
seconds or at least two defective items are discovered. If we let A = {(x, y) : x ≥
2 or y ≥ 2}, then

P(A) = 1 − P(A′)
= 1 − P(X = 0 or 1 and Y = 0 or 1)

= 1 − 20!
0!0!20! (0.04)0(0.01)0(0.95)20 − 20!

1!0!19! (0.04)1(0.01)0(0.95)19

− 20!
0!1!19! (0.04)0(0.01)1(0.95)19 − 20!

1!1!18! (0.04)1(0.01)1(0.95)18

= 0.204.

0

0
1

2
3

4
5

y5
4

3
2

1
0

0.15

0.10

0.05

f(x, y)

x

Figure 4.1-4 Trinomial distribution, pX = 1/5, pY = 2/5, and n = 5
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Example
4.1-9

Let X and Y have a trinomial distribution with parameters pX = 1/5, pY = 2/5,
and n = 5. The probability histogram for the joint pmf of X and Y is shown in
Figure 4.1-4.

Exercises

4.1-1. For each of the following functions, determine
the constant c so that f (x, y) satisfies the conditions of
being a joint pmf for two discrete random variables X
and Y:

(a) f (x, y) = c(x + 2y), x = 1, 2, y = 1, 2, 3.

(b) f (x, y) = c(x + y), x = 1, 2, 3, y = 1, . . . , x.

(c) f (x, y) = c, x and y are integers such that 6 ≤ x+y
≤ 8, 0 ≤ y ≤ 5.

(d) f (x, y) = c
(

1
4

)x(1
3

)y

, x = 1, 2, . . . , y = 1, 2, . . . .

4.1-2. Roll a pair of four-sided dice, one red and one
black, each of which has possible outcomes 1, 2, 3, 4 that
have equal probabilities. Let X equal the outcome on
the red die, and let Y equal the outcome on the black
die.

(a) On graph paper, show the space of X and Y.

(b) Define the joint pmf on the space (similar to Figure
4.1-1).

(c) Give the marginal pmf of X in the margin.

(d) Give the marginal pmf of Y in the margin.

(e) Are X and Y dependent or independent? Why or why
not?

4.1-3. Let the joint pmf of X and Y be defined by

f (x, y) = x + y
32

, x = 1, 2, y = 1, 2, 3, 4.

(a) Find fX(x), the marginal pmf of X.

(b) Find fY(y), the marginal pmf of Y.

(c) Find P(X > Y).

(d) Find P(Y = 2X).

(e) Find P(X + Y = 3).

(f) Find P(X ≤ 3 − Y).

(g) Are X and Y independent or dependent? Why or why
not?

(h) Find the means and the variances of X and Y.

4.1-4. Select an (even) integer randomly from the set
{0, 2, 4, 6, 8}. Then select an integer randomly from the
set {0, 1, 2, 3, 4}. Let X equal the integer that is selected
from the first set and let Y equal the sum of the two
integers.

(a) Show the joint pmf of X and Y on the space of X
and Y.

(b) Compute the marginal pmfs.

(c) Are X and Y independent? Why or why not?

4.1-5. Roll a pair of four-sided dice, one red and one
black. Let X equal the outcome on the red die and let
Y equal the sum of the two dice.

(a) On graph paper, describe the space of X and Y.

(b) Define the joint pmf on the space (similar to Figure
4.1-1).

(c) Give the marginal pmf of X in the margin.

(d) Give the marginal pmf of Y in the margin.

(e) Are X and Y dependent or independent? Why or why
not?

4.1-6. The torque required to remove bolts in a steel
plate is rated as very high, high, average, and low, and
these occur about 30%, 40%, 20%, and 10% of the time,
respectively. Suppose n = 25 bolts are rated; what is the
probability of rating 7 very high, 8 high, 6 average, and 4
low? Assume independence of the 25 trials.

4.1-7. A particle starts at (0, 0) and moves in one-unit
independent steps with equal probabilities of 1/4 in each
of the four directions: north, south, east, and west. Let
S equal the east–west position and T the north–south
position after n steps.

(a) Define the joint pmf of S and T with n = 3. On a
two–dimensional graph, give the probabilities of the
joint pmf and the marginal pmfs (similar to Figure
4.1-1).

(b) What are the marginal distributions of X and Y?

4.1-8. In a smoking survey among boys between the ages
of 12 and 17, 78% prefer to date nonsmokers, 1% prefer
to date smokers, and 21% don’t care. Suppose seven such
boys are selected randomly. Let X equal the number who
prefer to date nonsmokers and Y equal the number who
prefer to date smokers.

(a) Determine the joint pmf of X and Y. Be sure to
include the support of the pmf.

(b) Find the marginal pmf of X. Again include the sup-
port.
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4.1-9. A manufactured item is classified as good, a “sec-
ond,” or defective with probabilities 6/10, 3/10, and 1/10,
respectively. Fifteen such items are selected at random
from the production line. Let X denote the number of
good items, Y the number of seconds, and 15 − X − Y
the number of defective items.

(a) Give the joint pmf of X and Y, f (x, y).

(b) Sketch the set of integers (x, y) for which f (x, y) > 0.
From the shape of this region, can X and Y be
independent? Why or why not?

(c) Find P(X = 10, Y = 4).

(d) Give the marginal pmf of X.

(e) Find P(X ≤ 11).

4.2 THE CORRELATION COEFFICIENT
In Section 4.1, we introduced the mathematical expectation of a function of two
random variables—say, X, Y. We gave the respective special names of the mean and
variance of X and Y to

μX = E(X); μY = E(Y) and σ 2
X = E[(X − μX)2]; σ 2

Y = E[(Y − μY)2].

Now we introduce two more special names:

(a) If u(X, Y) = (X − μX)(Y − μY), then

E[u(X, Y)] = E[(X − μX)(Y − μY)] = σXY = Cov(X, Y)

is called the covariance of X and Y.

(b) If the standard deviations σX and σY are positive, then

ρ = Cov(X, Y)
σXσY

= σXY

σXσY

is called the correlation coefficient of X and Y.

It is convenient that the mean and the variance of X can be computed from
either the joint pmf (or pdf) or the marginal pmf (or pdf) of X. For example, in the
discrete case,

μX = E(X) =
∑

x

∑
y

xf (x, y)

=
∑

x

x

⎡⎣∑
y

f (x, y)

⎤⎦ =
∑

x

xfX(x).

However, to compute the covariance, we need the joint pmf (or pdf).
Before considering the significance of the covariance and the correlation coeffi-

cient, let us note a few simple facts. First,

E[(X − μX)(Y − μY)] = E(XY − μXY − μYX + μXμY)

= E(XY) − μXE(Y) − μYE(X) + μXμY ,

because, even in the bivariate situation, E is still a linear or distributive operator.
(See Exercise 4.4-12.) Thus,

Cov(X, Y) = E(XY) − μXμY − μYμX + μXμY = E(XY) − μXμY .

Since ρ = Cov(X, Y)/σXσY , we also have

E(XY) = μXμY + ρσXσY .
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That is, the expected value of the product of two random variables is equal to the
product μXμY of their expectations, plus their covariance ρσXσY .

A simple example at this point would be helpful.

Example
4.2-1

Let X and Y have the joint pmf

f (x, y) = x + 2y
18

, x = 1, 2, y = 1, 2.

The marginal probability mass functions are, respectively,

fX(x) =
2∑

y=1

x + 2y
18

= 2x + 6
18

= x + 3
9

, x = 1, 2,

and

fY(y) =
2∑

x=1

x + 2y
18

= 3 + 4y
18

, y = 1, 2.

Since f (x, y) �≡ fX(x)fY(y), X and Y are dependent. The mean and the variance of X
are, respectively,

μX =
2∑

x=1

x
x + 3

9
= (1)

(
4
9

)
+ (2)

(
5
9

)
= 14

9

and

σ 2
X =

2∑
x=1

x2 x + 3
9

−
(

14
9

)2

= 24
9

− 196
81

= 20
81

.

The mean and the variance of Y are, respectively,

μY =
2∑

y=1

y
3 + 4y

18
= (1)

(
7

18

)
+ (2)

(
11
18

)
= 29

18

and

σ 2
Y =

2∑
y=1

y2 3 + 4y
18

−
(

29
18

)2

= 51
18

− 841
324

= 77
324

.

The covariance of X and Y is

Cov(X, Y) =
2∑

x=1

2∑
y=1

xy
x + 2y

18
−

(
14
9

)(
29
18

)

= (1)(1)
(

3
18

)
+ (2)(1)

(
4

18

)
+ (1)(2)

(
5
18

)
+ (2)(2)

(
6

18

)
−

(
14
9

)(
29
18

)
= 45

18
− 406

162
= − 1

162
.
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Hence, the correlation coefficient is

ρ = −1/162√
(20/81)(77/324)

= −1√
1540

= −0.025.

Insight into the correlation coefficient ρ of two discrete random variables X and
Y may be gained by thoughtfully examining the definition of ρ, namely,

ρ =
∑

x

∑
y

(x − μX)(y − μY)f (x, y)

σXσY
,

where μX , μY , σX , and σY denote the respective means and standard deviations. If
positive probabilities are assigned to pairs (x, y) in which both x and y are either
simultaneously above or simultaneously below their respective means, then the cor-
responding terms in the summation that defines ρ are positive because both factors
(x − μX) and (y − μY) will be positive or both will be negative. If, on the one hand,
pairs (x, y), which yield large positive products (x − μX)(y − μY), contain most of
the probability of the distribution, then the correlation coefficient will tend to be
positive. If, on the other hand, the points (x, y), in which one component is below its
mean and the other above its mean, have most of the probability, then the coefficient
of correlation will tend to be negative because the products (x − μX)(y − μY) having
higher probabilities are negative. (See Exercise 4.2-4.) This interpretation of the sign
of the correlation coefficient will play an important role in subsequent work.

To gain additional insight into the meaning of the correlation coefficient ρ,
consider the following problem: Think of the points (x, y) in the space S and their
corresponding probabilities. Let us consider all possible lines in two-dimensional
space, each with finite slope, that pass through the point associated with the means,
namely, (μX , μY). These lines are of the form y − μY = b(x − μX) or, equivalently,
y = μY +b(x−μX). For each point in S—say, (x0, y0), so that f (x0, y0) > 0—consider
the vertical distance from that point to one of the aforesaid lines. Since y0 is the
height of the point above the x-axis and μY +b(x0 −μX) is the height of the point on
the line that is directly above or below the point (x0, y0), the absolute value of the
difference of these two heights is the vertical distance from the point (x0, y0) to the
line y = μY + b(x − μX). That is, the required distance is |y0 − μY − b(x0 − μX)|.
Let us now square this distance and take the weighted average of all such squares;
in other words, let us consider the mathematical expectation

E{[(Y − μY) − b(X − μX)]2} = K(b).

The problem is to find that line (or that b) which minimizes this expectation of the
square [Y −μY −b(X −μX)]2. This is an application of the principle of least squares,
and the line is sometimes called the least squares regression line.

The solution of the problem is very easy, since

K(b) = E[(Y − μY)2 − 2b(X − μX)(Y − μY) + b2(X − μX)2]

= σ 2
Y − 2bρσXσY + b2σ 2

X ,

because E is a linear operator and E[(X − μX)(Y − μY)] = ρσXσY . Accordingly, the
derivative

K′(b) = −2ρσXσY + 2bσ 2
X

equals zero at b = ρσY/σX , and we see that K(b) obtains its minimum for that b,
since K′′(b) = 2σ 2

X > 0. Consequently, the least squares regression line (the line of
the given form that is the best fit in the foregoing sense) is
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y = μY + ρ
σY

σX
(x − μX).

Of course, if ρ > 0, the slope of the line is positive; but if ρ < 0, the slope is negative.
It is also instructive to note the value of the minimum of

K(b) = E
{

[(Y − μY) − b(X − μX)]2
}

= σ 2
Y − 2bρσXσY + b2σ 2

X .

This minimum is

K
(

ρ
σY

σX

)
= σ 2

Y − 2ρ
σY

σX
ρσXσY +

(
ρ

σY

σX

)2

σ 2
X

= σ 2
Y − 2ρ2σ 2

Y + ρ2σ 2
Y = σ 2

Y (1 − ρ2).

Since K(b) is the expected value of a square, it must be nonnegative for all b, and
we see that σ 2

Y (1 − ρ2) ≥ 0; that is, ρ2 ≤ 1, and hence −1 ≤ ρ ≤ 1, which is
an important property of the correlation coefficient ρ. On the one hand, if ρ = 0,
then K(ρσY/σX) = σ 2

Y ; on the other hand, if ρ is close to 1 or −1, then K(ρσY/σX) is
relatively small. That is, the vertical deviations of the points with positive probability
from the line y = μY + ρ(σY/σX)(x − μX) are small if ρ is close to 1 or −1 because
K(ρσY/σX) is the expectation of the square of those deviations. Thus, ρ measures, in
this sense, the amount of linearity in the probability distribution. As a matter of fact,
in the discrete case, all the points of positive probability lie on this straight line if and
only if ρ is equal to 1 or −1.

REMARK More generally, we could have fitted the line y = a + bx by the same
application of the principle of least squares. We would then have proved that the
“best” line actually passes through the point (μX , μY). Recall that, in the preceding
discussion, we assumed our line to be of that form. Students will find this derivation
to be an interesting exercise using partial derivatives. (See Exercise 4.2-5.)

The next example illustrates a joint discrete distribution for which ρ is nega-
tive. In Figure 4.2-1, the line of best fit, or the least squares regression line, is also
drawn.

Example
4.2-2

Let X equal the number of ones and Y the number of twos and threes when a pair of
fair four-sided dice is rolled. Then X and Y have a trinomial distribution with joint
pmf

f (x, y) = 2!
x!y!(2 − x − y)!

(
1
4

)x(2
4

)y(1
4

)2−x−y

, 0 ≤ x + y ≤ 2,

where x and y are nonnegative integers. Since the marginal pmf of X is b(2, 1/4) and
the marginal pmf of Y is b(2, 1/2), it follows that μX = 1/2, Var(X) = 6/16 = 3/8,
μY = 1, and Var(Y) = 1/2. Also, since E(XY) = (1)(1)(4/16) = 1/4, we have
Cov(X, Y) = 1/4 − (1/2)(1) = −1/4; therefore, the correlation coefficient is ρ =
−1/

√
3. Using these values for the parameters, we obtain the line of best fit, namely,

y = 1 +
(

− 1√
3

)√
1/2
3/8

(
x − 1

2

)
= −2

3
x + 4

3
.

The joint pmf is displayed in Figure 4.2-1 along with the line of best fit.
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Figure 4.2-1 Trinomial distribution

Suppose that X and Y are independent, so that f (x, y) ≡ fX(x)fY(y). Suppose
also that we want to find the expected value of the product u(X)v(Y). Subject to the
existence of the expectations, we know that

E[u(X)v(Y)] =
∑
SX

∑
SY

u(x)v(y)f (x, y)

=
∑
SX

∑
SY

u(x)v(y)fX(x)fY(y)

=
∑
SX

u(x)fX(x)
∑
SY

v(y)fY(y)

= E[u(X)]E[v(Y)].

This formula can be used to show that the correlation coefficient of two independent
variables is zero. For, in standard notation, we have

Cov(X, Y) = E[(X − μX)(Y − μY)]

= E(X − μX)E(Y − μY) = 0.

The converse of this equation is not necessarily true, however: Zero correlation
does not, in general, imply independence. It is most important to keep the relation-
ship straight: Independence implies zero correlation, but zero correlation does not
necessarily imply independence. We now illustrate the latter proposition.

Example
4.2-3

Let X and Y have the joint pmf

f (x, y) = 1
3

, (x, y) = (0, 1), (1, 0), (2, 1).

Since the support is not “rectangular,” X and Y must be dependent. The means of
X and Y are μX = 1 and μY = 2/3, respectively. Hence,

Cov(X, Y) = E(XY) − μXμY

= (0)(1)
(

1
3

)
+ (1)(0)

(
1
3

)
+ (2)(1)

(
1
3

)
− (1)

(
2
3

)
= 0.

That is, ρ = 0, but X and Y are dependent.
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Exercises

4.2-1. Let the random variables X and Y have the joint
pmf

f (x, y) = x + y
32

, x = 1, 2, y = 1, 2, 3, 4.

Find the means μX and μY , the variances σ 2
X and σ 2

Y , and
the correlation coefficient ρ.

4.2-2. Let X and Y have the joint pmf defined by f (0, 0) =
f (1, 2) = 0.2, f (0, 1) = f (1, 1) = 0.3.

(a) Depict the points and corresponding probabilities on
a graph.

(b) Give the marginal pmfs in the “margins.”

(c) Compute μX , μY , σ 2
X , σ 2

Y , Cov(X, Y), and ρ.

(d) Find the equation of the least squares regression line
and draw it on your graph. Does the line make sense
to you intuitively?

4.2-3. Roll a fair four-sided die twice. Let X equal the
outcome on the first roll, and let Y equal the sum of the
two rolls.

(a) Determine μX , μY , σ 2
X , σ 2

Y , Cov(X, Y), and ρ.

(b) Find the equation of the least squares regression line
and draw it on your graph. Does the line make sense
to you intuitively?

4.2-4. Let X and Y have a trinomial distribution with
parameters n = 3, pX = 1/6, and pY = 1/2. Find

(a) E(X).

(b) E(Y).

(c) Var(X).

(d) Var(Y).

(e) Cov(X, Y).

(f) ρ.

Note that ρ = −√
pXpY/[(1 − pX)(1 − pY)] in this case.

(Indeed, the formula holds in general for the trinomial
distribution; see Example 4.3-3.)

4.2-5. Let X and Y be random variables with respective
means μX and μY , respective variances σ 2

X and σ 2
Y , and

correlation coefficient ρ. Fit the line y = a + bx by the
method of least squares to the probability distribution by
minimizing the expectation

K(a, b) = E[(Y − a − bX)2]

with respect to a and b. Hint: Consider ∂K/∂a = 0 and
∂K/∂b = 0, and solve simultaneously.

4.2-6. The joint pmf of X and Y is f (x, y) = 1/6, 0 ≤
x + y ≤ 2, where x and y are nonnegative integers.

(a) Sketch the support of X and Y.

(b) Record the marginal pmfs fX(x) and fY(y) in the
“margins.”

(c) Compute Cov(X, Y).

(d) Determine ρ, the correlation coefficient.

(e) Find the best-fitting line and draw it on your figure.

4.2-7. Let the joint pmf of X and Y be

f (x, y) = 1/4, (x, y) ∈ S = {(0, 0), (1, 1), (1, −1), (2, 0)}.
(a) Are X and Y independent?

(b) Calculate Cov(X, Y) and ρ.

This exercise also illustrates the fact that dependent ran-
dom variables can have a correlation coefficient of zero.

4.2-8. A certain raw material is classified as to moisture
content X (in percent) and impurity Y (in percent). Let
X and Y have the joint pmf given by

x

y 1 2 3 4

2 0.10 0.20 0.30 0.05

1 0.05 0.05 0.15 0.10

(a) Find the marginal pmfs, the means, and the variances.

(b) Find the covariance and the correlation coefficient of
X and Y.

(c) If additional heating is needed with high moisture
content and additional filtering with high impurity
such that the additional cost is given by the function
C = 2X + 10Y2 in dollars, find E(C).

4.2-9. A car dealer sells X cars each day and always tries
to sell an extended warranty on each of these cars. (In
our opinion, most of these warranties are not good deals.)
Let Y be the number of extended warranties sold; then
Y ≤ X. The joint pmf of X and Y is given by

f (x, y) = c(x + 1)(4 − x)(y + 1)(3 − y),

x = 0, 1, 2, 3, y = 0, 1, 2, with y ≤ x.

(a) Find the value of c.

(b) Sketch the support of X and Y.

(c) Record the marginal pmfs fX(x) and fY(y) in the
“margins.”

(d) Are X and Y independent?

(e) Compute μX and σ 2
X .

(f) Compute μY and σ 2
Y .
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(g) Compute Cov(X, Y).

(h) Determine ρ, the correlation coefficient.

(i) Find the best-fitting line and draw it on your figure.

4.2-10. If the correlation coefficient ρ exists, show that ρ

satisfies the inequality −1 ≤ ρ ≤ 1. Hint: Consider the
discriminant of the nonnegative quadratic function that is
given by h(v) = E{[(X − μX) + v(Y − μY)]2}.

4.3 CONDITIONAL DISTRIBUTIONS
Let X and Y have a joint discrete distribution with pmf f (x, y) on space S. Say
the marginal probability mass functions are fX(x) and fY(y) with spaces SX and SY ,
respectively. Let event A = {X = x} and event B = {Y = y}, (x, y) ∈ S. Thus,
A ∩ B = {X = x, Y = y}. Because

P(A ∩ B) = P(X = x, Y = y) = f (x, y)

and

P(B) = P(Y = y) = fY(y) > 0 (since y ∈ SY),

the conditional probability of event A given event B is

P(A | B) = P(A ∩ B)
P(B)

= f (x, y)
fY(y)

.

This formula leads to the following definition.

Definition 4.3-1
The conditional probability mass function of X, given that Y = y, is defined by

g(x | y) = f (x, y)
fY(y)

, provided that fY(y) > 0.

Similarly, the conditional probability mass function of Y, given that X = x, is
defined by

h(y | x) = f (x, y)
fX(x)

, provided that fX(x) > 0.

Example
4.3-1

Let X and Y have the joint pmf

f (x, y) = x + y
21

, x = 1, 2, 3, y = 1, 2.

In Example 4.1-2, we showed that

fX(x) = 2x + 3
21

, x = 1, 2, 3,

and

fY(y) = y + 2
7

, y = 1, 2.
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Thus, the conditional pmf of X, given that Y = y, is equal to

g(x | y) = (x + y)/21
(y + 2)/7

= x + y
3y + 6

, x = 1, 2, 3, when y = 1 or 2.

For example,

P(X = 2 | Y = 2) = g(2 | 2) = 4
12

= 1
3

.

Similarly, the conditional pmf of Y, given that X = x, is equal to

h(y | x) = x + y
2x + 3

, y = 1, 2, when x = 1, 2, or 3.

The joint pmf f (x, y) is depicted in Figure 4.3-1(a) along with the marginal pmfs.
Now, if y = 2, we would expect the outcomes of x—namely, 1, 2, and 3—to occur in
the ratio 3:4:5. This is precisely what g(x | y) does:

g(1 | 2) = 1 + 2
12

, g(2 | 2) = 2 + 2
12

, g(3 | 2) = 3 + 2
12

.

Figure 4.3-1(b) displays g(x | 1) and g(x | 2), while Figure 4.3-1(c) gives h(y | 1),
h(y | 2), and h(y | 3). Compare the probabilities in Figure 4.3-1(c) with those in
Figure 4.3-1(a). They should agree with your intuition as well as with the formula
for h(y | x).

y
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5/21 7/21
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x
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3/7

4/7

4/91
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1 2 3
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Figure 4.3-1 Joint, marginal, and conditional pmfs
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Note that 0 ≤ h(y | x). If we sum h(y | x) over y for that fixed x, we obtain∑
y

h(y | x) =
∑

y

f (x, y)
fX(x)

= fX(x)
fX(x)

= 1.

Thus, h(y | x) satisfies the conditions of a probability mass function, and we can
compute conditional probabilities such as

P(a < Y < b | X = x) =
∑

{y:a<y<b}
h(y | x)

and conditional expectations such as

E[u(Y) | X = x] =
∑

y

u(y)h(y | x)

in a manner similar to those associated with unconditional probabilities and expec-
tations.

Two special conditional expectations are the conditional mean of Y, given that
X = x, defined by

μY|x = E(Y | x) =
∑

y

y h(y | x),

and the conditional variance of Y, given that X = x, defined by

σ 2
Y|x = E{[Y − E(Y | x)]2 | x} =

∑
y

[y − E(Y | x)]2 h(y | x),

which can be computed with

σ 2
Y|x = E(Y2 | x) − [E(Y | x)]2.

The conditional mean μX|y and the conditional variance σ 2
X|y are given by similar

expressions.

Example
4.3-2

We use the background of Example 4.3-1 and compute μY|x and σ 2
Y|x when x = 3:

μY|3 = E(Y | X = 3) =
2∑

y=1

y h(y | 3)

=
2∑

y=1

y
(

3 + y
9

)
= 1

(
4
9

)
+ 2

(
5
9

)
= 14

9
,

and

σ 2
Y|3 = E

[(
Y − 14

9

)2
∣∣∣∣∣X = 3

]
=

2∑
y=1

(
y − 14

9

)2(3 + y
9

)

= 25
81

(
4
9

)
+ 16

81

(
5
9

)
= 20

81
.

The conditional mean of X, given that Y = y, is a function of y alone; the con-
ditional mean of Y, given that X = x, is a function of x alone. Suppose that the
latter conditional mean is a linear function of x; that is, E(Y | x) = a + bx. Let us find
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the constants a and b in terms of characteristics μX , μY , σ 2
X , σ 2

Y , and ρ. This devel-
opment will shed additional light on the correlation coefficient ρ; accordingly, we
assume that the respective standard deviations σX and σY are both positive, so that
the correlation coefficient will exist.

It is given that∑
y

y h(y | x) =
∑

y

y
f (x, y)
fX(x)

= a + bx, for x ∈ SX ,

where SX is the space of X and SY is the space of Y. Hence,∑
y

y f (x, y) = (a + bx)fX(x), for x ∈ SX , (4.3-1)

and ∑
x∈SX

∑
y

y f (x, y) =
∑

x∈SX

(a + bx)fX(x).

That is, with μX and μY representing the respective means, we have

μY = a + bμX . (4.3-2)

In addition, if we multiply both members of Equation 4.3-1 by x and sum the
resulting products, we obtain∑

x∈SX

∑
y

xy f (x, y) =
∑

x∈SX

(ax + bx2)fX(x).

That is,

E(XY) = aE(X) + bE(X2)

or, equivalently,

μXμY + ρσXσY = aμX + b(μ2
X + σ 2

X). (4.3-3)

The solution of Equations 4.3-2 and 4.3-3 is

a = μY − ρ
σY

σX
μX and b = ρ

σY

σX
,

which implies that if E(Y | x) is linear, it is given by

E(Y | x) = μY + ρ
σY

σX
(x − μX).

So if the conditional mean of Y, given that X = x, is linear, it is exactly the same as
the best-fitting line (least squares regression line) considered in Section 4.2.

By symmetry, if the conditional mean of X, given that Y = y, is linear, then

E(X | y) = μX + ρ
σX

σY
(y − μY).

We see that the point [x = μX , E(Y | X = μX) = μY] satisfies the expression
for E(Y | x) and [E(X | Y = μY) = μX , y = μY] satisfies the expression for E(X | y).
That is, the point (μX , μY) is on each of the two lines. In addition, we note that the
product of the coefficient of x in E(Y | x) and the coefficient of y in E(X | y) equals ρ2

and the ratio of these two coefficients equals σ 2
Y /σ 2

X . These observations sometimes
prove useful in particular problems.
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Example
4.3-3

Let X and Y have the trinomial pmf with parameters n, pX , pY , and 1−pX −pY = pZ.
That is,

f (x, y) = n!
x! y! (n − x − y)! px

X py
Y pn−x−y

Z ,

where x and y are nonnegative integers such that x + y ≤ n. From the develop-
ment of the trinomial distribution, we note that X and Y have marginal binomial
distributions b(n, pX) and b(n, pY), respectively. Thus,

h(y | x) = f (x, y)
fX(x)

= (n − x)!
y! (n − x − y)!

(
pY

1 − pX

)y( pZ

1 − pX

)n−x−y

,

y = 0, 1, 2, . . . , n − x.

That is, the conditional pmf of Y, given that X = x, is binomial, or

b
[

n − x,
pY

1 − pX

]
,

and thus has conditional mean

E(Y | x) = (n − x)
pY

1 − pX
.

In a similar manner, we obtain

E(X | y) = (n − y)
pX

1 − pY
.

Since each of the conditional means is linear, the product of the respective coeffi-
cients of x and y is

ρ2 =
( −pY

1 − pX

)( −pX

1 − pY

)
= pXpY

(1 − pX)(1 − pY)
.

However, ρ must be negative because the coefficients of x and y are negative; thus,

ρ = −
√

pXpY

(1 − pX)(1 − pY)
.
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(a) Conditional pmfs of Y, given x (b) Conditional pmfs of X, given y

Figure 4.3-2 Conditional pmfs for the trinomial distribution
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In the next example we again look at conditional pmfs when X and Y have a
trinomial distribution.

Example
4.3-4

Let X and Y have a trinomial distribution with pX = 1/3, pY = 1/3, and n = 5.
Using a result from the last example, we find that the conditional distribution of Y,
given that X = x, is b(5 − x, (1/3)/(1 − 1/3)), or b(5 − x, 1/2). The pmfs h(y | x) for
x = 0, 1, . . . , 5 are plotted in Figure 4.3-2(a). Note that the orientation of the axes
was selected so that the shapes of these pmfs can be seen. Similarly, the conditional
distribution of X, given that Y = y, is b(n−y, 1/2). The pmfs g(x | y) for y = 0, 1, . . . , 5
are shown in Figure 4.3-2(b).

Exercises

4.3-1. Let X and Y have the joint pmf

f (x, y) = x + y
32

, x = 1, 2, y = 1, 2, 3, 4.

(a) Display the joint pmf and the marginal pmfs on a
graph like Figure 4.3-1(a).

(b) Find g(x | y) and draw a figure like Figure 4.3-1(b),
depicting the conditional pmfs for y = 1, 2, 3, and 4.

(c) Find h(y | x) and draw a figure like Figure 4.3-1(c),
depicting the conditional pmfs for x = 1 and 2.

(d) Find P(1 ≤ Y ≤ 3 | X = 1), P(Y ≤ 2 | X = 2), and
P(X = 2 | Y = 3).

(e) Find E(Y | X = 1) and Var(Y | X = 1).

4.3-2. Let the joint pmf f (x, y) of X and Y be given by the
following:

(x, y) f (x, y)

(1, 1) 3/8

(2, 1) 1/8

(1, 2) 1/8

(2, 2) 3/8

Find the two conditional probability mass functions and
the corresponding means and variances.

4.3-3. Let W equal the weight of laundry soap in a
1-kilogram box that is distributed in Southeast Asia.
Suppose that P(W < 1) = 0.02 and P(W > 1.072) = 0.08.
Call a box of soap light, good, or heavy depending on
whether {W < 1}, {1 ≤ W ≤ 1.072}, or {W > 1.072},
respectively. In n = 50 independent observations of these

boxes, let X equal the number of light boxes and Y the
number of good boxes.

(a) What is the joint pmf of X and Y?

(b) Give the name of the distribution of Y along with the
values of the parameters of this distribution.

(c) Given that X = 3, how is Y distributed conditionally?

(d) Determine E(Y | X = 3).

(e) Find ρ, the correlation coefficient of X and Y.

4.3-4. The alleles for eye color in a certain male fruit fly
are (R, W). The alleles for eye color in the mating female
fruit fly are (R, W). Their offspring receive one allele for
eye color from each parent. If an offspring ends up with
either (W, W), (R, W), or (W, R), its eyes will look white.
Let X equal the number of offspring having white eyes.
Let Y equal the number of white-eyed offspring having
(R, W) or (W, R) alleles.

(a) If the total number of offspring is n = 400, how is X
distributed?

(b) Give the values of E(X) and Var(X).

(c) Given that X = 300, how is Y distributed?

(d) Give the value of E(Y | X = 300) and the value of
Var(Y | X = 300).

4.3-5. Let X and Y have a trinomial distribution with
n = 2, pX = 1/4, and pY = 1/2.

(a) Give E(Y | x).

(b) Compare your answer in part (a) with the equation
of the line of best fit in Example 4.2-2. Are they the
same? Why or why not?

4.3-6. An insurance company sells both homeowners’
insurance and automobile deductible insurance. Let X be
the deductible on the homeowners’ insurance and Y the
deductible on automobile insurance. Among those who
take both types of insurance with this company, we find
the following probabilities:
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x

y 100 500 1000

1000 0.05 0.10 0.15

500 0.10 0.20 0.05

100 0.20 0.10 0.05

(a) Compute the following probabilities:
P(X = 500), P(Y = 500), P(Y = 500 | X = 500),
P(Y = 100 | X = 500).

(b) Compute the means μX , μY , and the variances σ 2
X ,

σ 2
Y .

(c) Compute the conditional means E(X | Y = 100),
E(Y | X = 500).

(d) Compute Cov(X, Y).

(e) Find the correlation coefficient, ρ.

4.3-7. Using the joint pmf from Exercise 4.2-3, find
the value of E(Y | x) for x = 1, 2, 3, 4. Do the points
[x, E(Y | x)] lie on the best-fitting line?

4.3-8. A fair six-sided die is rolled 30 independent times.
Let X be the number of ones and Y the number of
twos.

(a) What is the joint pmf of X and Y?

(b) Find the conditional pmf of X, given Y = y.

(c) Compute E(X2 − 4XY + 3Y2).

4.3-9. Let X and Y have a uniform distribution on the set
of points with integer coordinates in S = {(x, y) : 0 ≤ x ≤
7, x ≤ y ≤ x + 2}. That is, f (x, y) = 1/24, (x, y) ∈ S, and
both x and y are integers. Find

(a) fX(x).

(b) h(y | x).

(c) E(Y | x).

(d) σ 2
Y | x.

(e) fY(y).

4.3-10. Let fX(x) = 1/10, x = 0, 1, 2, . . . , 9, and h(y | x) =
1/(10 − x), y = x, x + 1, . . . , 9. Find

(a) f (x, y).

(b) fY(y).

(c) E(Y | x).

4.3-11. Choose a random integer X from the interval
[0, 4]. Then choose a random integer Y from the interval
[0, x], where x is the observed value of X. Make assump-
tions about the marginal pmf fX(x) and the conditional
pmf h(y | x) and compute P(X + Y > 4).

4.4 BIVARIATE DISTRIBUTIONS OF THE CONTINUOUS TYPE
The idea of joint distributions of two random variables of the discrete type can be
extended to that of two random variables of the continuous type. The definitions
are really the same except that integrals replace summations. The joint probability
density function (joint pdf) of two continuous-type random variables is an integrable
function f (x, y) with the following properties:

(a) f (x, y) ≥ 0, where f (x, y) = 0 when (x, y) is not in the support (space) S of X
and Y.

(b)
∫ ∞
−∞

∫ ∞
−∞ f (x, y) dx dy = 1.

(c) P[(X, Y) ∈ A] = ∫∫
A

f (x, y) dx dy, where {(X, Y) ∈ A} is an event defined in the

plane.

Property (c) implies that P[(X, Y) ∈ A] is the volume of the solid over the region
A in the xy-plane and bounded by the surface z = f (x, y).

The mathematical expectations are the same as the discrete case, with integrals
replacing summations. The following, if they exist, have special names.

The respective marginal pdfs of continuous-type random variables X and Y are
given by

fX(x) =
∫ ∞

−∞
f (x, y) dy, x ∈ SX ,



Section 4.4 Bivariate Distributions of the Continuous Type 147

and

fY(y) =
∫ ∞

−∞
f (x, y) dx, y ∈ SY ,

where SX and SY are the respective spaces of X and Y. The definitions associ-
ated with mathematical expectations in the continuous case are the same as those
associated with the discrete case after replacing the summations with integrations.

Example
4.4-1

Let X and Y have the joint pdf

f (x, y) =
(

4
3

)
(1 − xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

The marginal pdfs are

fX(x) =
∫ 1

0

(
4
3

)
(1 − xy) dy =

(
4
3

)(
1 − x

2

)
, 0 ≤ x ≤ 1,

and

fY(y) =
∫ 1

0

(
4
3

)
(1 − xy) dx =

(
4
3

)(
1 − y

2

)
, 0 ≤ y ≤ 1.

The following probability is computed by a double integral:

P(Y ≤ X/2) =
∫ 1

0

∫ x/2

0

(
4
3

)
(1 − xy) dy dx

=
∫ 1

0

(
4
3

)(
x
2

− x3

8

)
dx

=
(

4
3

)(
1
4

− 1
32

)
= 7

24
.

The mean of X is

μX = E(X) =
∫ 1

0

∫ 1

0
x
(

4
3

)
(1 − xy) dy =

∫ 1

0
x
(

4
3

)(
1 − x

2

)
dx

=
(

4
3

)(
1
2

− 1
6

)
= 4

9
.

Likewise, the mean of Y is

μY = E(Y) = 4
9

.

The variance of X is

Var(X) = σ 2
X = E(X2) − [E(X)]2 =

∫ 1

0

∫ 1

0
x2

(
4
3

)
(1 − xy) dy −

(
4
9

)2

=
∫ 1

0
x2

(
4
3

)(
1 − x

2

)
dx − 16

81

=
(

4
3

)(
1
3

− 1
8

)
− 16

81
= 13

162
.
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Likewise, the variance of Y is

Var(Y) = σ 2
Y = 13

162
.

From these calculations, we see that the means and variances could be calculated
using the marginal pdfs instead of the joint pdf.

Example
4.4-2

Let X and Y have the joint pdf

f (x, y) = 3
2

x2(1 − |y| ), −1 < x < 1, −1 < y < 1.

The graph of z = f (x, y) is given in Figure 4.4-1. Let A = {(x, y) : 0 < x < 1, 0 <

y < x}. Then the probability that (X, Y) falls into A is given by

P[(X, Y) ∈ A] =
∫ 1

0

∫ x

0

3
2

x2(1 − y) dy dx =
∫ 1

0

3
2

x2

[
y − y2

2

]x

0

dx

=
∫ 1

0

3
2

(
x3 − x4

2

)
dx = 3

2

[
x4

4
− x5

10

]1

0

= 9
40

.

The means are

μX = E(X) =
∫ 1

−1
x · 3

2
x2 dx =

[
3
8

x4
]1

−1
= 0

and

μY = E(Y) =
∫ 1

−1
y(1 − |y|) dy =

∫ 0

−1
y(1 + y) dy +

∫ 1

0
y(1 − y) dy

= −1
2

+ 1
3

+ 1
2

− 1
3

= 0.

We leave the computation of the variances as Exercise 4.4-6.

x

y
−1.2 −0.8 −0.4

0

0

0.4

0.8

1.2

0.4
0.8

1.2

f(x, y)

−1

0
−0.5

0.5
1

Figure 4.4-1 Joint pdf f (x, y) = 3
2

x2(1 − |y| ), −1 < x < 1, −1 < y < 1
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Example
4.4-3

Let X and Y have the joint pdf

f (x, y) = 2, 0 ≤ x ≤ y ≤ 1.

Then S = {(x, y) : 0 ≤ x ≤ y ≤ 1} is the support; for example,

P
(

0 ≤ X ≤ 1
2

, 0 ≤ Y ≤ 1
2

)
= P

(
0 ≤ X ≤ Y, 0 ≤ Y ≤ 1

2

)
=

∫ 1/2

0

∫ y

0
2 dx dy =

∫ 1/2

0
2y dy = 1

4
.

You should draw a figure to illustrate the set of points for which f (x, y) > 0 and
then shade the region over which the integral is taken. The given probability is the
volume above this shaded region under the surface z = 2. The marginal pdfs are
given by

fX(x) =
∫ 1

x
2 dy = 2(1 − x), 0 ≤ x ≤ 1,

and

fY(y) =
∫ y

0
2 dx = 2y, 0 ≤ y ≤ 1.

Three illustrations of expected values are

E(X) =
∫ 1

0

∫ 1

x
2x dy dx =

∫ 1

0
2x(1 − x) dx = 1

3
,

E(Y) =
∫ 1

0

∫ y

0
2y dx dy =

∫ 1

0
2y2 dy = 2

3
,

and

E(Y2) =
∫ 1

0

∫ y

0
2y2 dx dy =

∫ 1

0
2y3 dy = 1

2
.

From these calculations we see that E(X), E(Y), and E(Y2) could be calculated from
the marginal pdfs instead of the joint one.

The definition of independent random variables of the continuous type carries
over naturally from the discrete case. That is, X and Y are independent if and only
if the joint pdf factors into the product of their marginal pdfs; namely,

f (x, y) ≡ fX(x)fY(y), x ∈ SX , y ∈ SY .

Example
4.4-4

(In this example, as in most, it is helpful to draw the support.) Let X and Y have the
joint pdf

f (x, y) = cx2y, −y ≤ x ≤ 1, 0 ≤ y ≤ 1.
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To determine the value of the constant c, we evaluate∫ 1

0

∫ 1

−y
cx2y dx dy =

∫ 1

0

c
3

(y + y4) dy

= c
3

(
1
2

+ 1
5

)
= 7c

30
;

so

7c
30

= 1 and thus c = 30
7

.

The marginal pdfs are

fX(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ 1

−x

30
7

x2y dy = 15
7

x2(1 − x2), −1 ≤ x ≤ 0,

∫ 1

0

30
7

x2y dy = 15
7

x2, 0 < x < 1,

and

fY(y) =
∫ 1

−y

30
7

x2y dx = 10
7

(y + y4), 0 ≤ y ≤ 1.

For illustration, we calculate two probabilities, in the first of which we use the
marginal pdf fX(x). We have

P(X ≤ 0) =
∫ 0

−1

15
7

x2(1 − x2) dx = 15
7

(
1
3

− 1
5

)
= 2

7

and

P(0 ≤ Y ≤ X ≤ 1) =
∫ 1

0

∫ x

0

30
7

x2y dy dx =
∫ 1

0

15
7

x4 dx = 3
7

.

In Exercise 4.4-8, the reader is asked to calculate the means and the variances of
X and Y.

In Section 4.2, we used discrete random variables to define the correlation
coefficient and related concepts. These ideas carry over to the continuous case
with the usual modifications—in particular, with integrals replacing summations.
We illustrate the continuous relationships in the following example and also in
Exercises 4.4-13 and 4.4-14.

Example
4.4-5

Let X and Y have the joint pdf

f (x, y) = 1, x ≤ y ≤ x + 1, 0 ≤ x ≤ 1.

Then

fX(x) =
∫ x+1

x
1 dy = 1, 0 ≤ x ≤ 1,
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and

fY(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ y

0
1 dx = y, 0 ≤ y ≤ 1,

∫ 1

y−1
1 dx = 2 − y, 1 ≤ y ≤ 2.

Also,

μX =
∫ 1

0
x · 1 dx = 1

2
,

μY =
∫ 1

0
y · y dy +

∫ 2

1
y(2 − y) dy = 1

3
+ 2

3
= 1,

E(X2) =
∫ 1

0
x2 · 1 dx = 1

3
,

E(Y2) =
∫ 1

0
y2 · y dy +

∫ 2

1
y2(2 − y) dy = 1

4
+

(
14
3

− 15
4

)
= 7

6
,

E(XY) =
∫ 1

0

∫ x+1

x
xy · 1 dy dx =

∫ 1

0

1
2

x (2x + 1) dx = 7
12

.

Thus,

σ 2
X = 1

3
−

(
1
2

)2

= 1
12

, σ 2
Y = 7

6
− 12 = 1

6
,

and

Cov(X, Y) = 7
12

−
(

1
2

)
(1) = 1

12
.

Therefore,

ρ = 1/12√
(1/12)(1/6)

= 1√
2

=
√

2
2

,

and the least squares regression line is

y = 1 +
√

2
2

√
1/6√
1/12

(
x − 1

2

)
= x + 1

2
.

The latter expression agrees with our intuition since the joint pdf is constant on its
support.

In Section 4.3, we used random variables of the discrete type to introduce the
new definitions. These definitions also hold for random variables of the continuous
type. Let X and Y have a distribution of the continuous type with joint pdf f (x, y)
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and marginal pdfs fX(x) and fY(y), respectively. Then the conditional pdf, mean, and
variance of Y, given that X = x, are, respectively,

h(y | x) = f (x, y)
fX(x)

, provided that fX(x) > 0;

E(Y | x) =
∫ ∞

−∞
y h(y | x) dy;

and

Var(Y | x) = E{[Y − E(Y | x)]2 | x}

=
∫ ∞

−∞
[y − E(Y | x)]2 h(y | x) dy

= E[Y2 | x] − [E(Y | x)]2.

Similar expressions are associated with the conditional distribution of X, given that
Y = y.

Example
4.4-6

Let X and Y be the random variables of Example 4.4-3. Thus,

f (x, y) = 2, 0 ≤ x ≤ y ≤ 1,

fX(x) = 2(1 − x), 0 ≤ x ≤ 1,

fY(y) = 2y, 0 ≤ y ≤ 1.

Before we actually find the conditional pdf of Y, given that X = x, we shall give an
intuitive argument. The joint pdf is constant over the triangular region bounded by
y = x, y = 1, and x = 0. If the value of X is known (say, X = x), then the possible
values of Y are between x and 1. Furthermore, we would expect Y to be uniformly
distributed on the interval [x, 1]. That is, we would anticipate that h(y | x) = 1/(1−x),
x ≤ y ≤ 1.

More formally now, by definition, we have

h(y | x) = f (x, y)
fX(x)

= 2
2(1 − x)

= 1
1 − x

, x ≤ y ≤ 1, 0 ≤ x ≤ 1.

The conditional mean of Y, given that X = x, is

E(Y | x) =
∫ 1

x
y

1
1 − x

dy =
[

y2

2(1 − x)

]y=1

y=x

= 1 + x
2

, 0 ≤ x ≤ 1.

Similarly, it can be shown that

E(X | y) = y
2

, 0 ≤ y ≤ 1.
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The conditional variance of Y, given that X = x, is

E{[Y − E(Y | x)]2 | x} =
∫ 1

x

(
y − 1 + x

2

)2 1
1 − x

dy

=
[

1
3(1 − x)

(
y − 1 + x

2

)3
]y=1

y=x

= (1 − x)2

12
.

Recall that if a random variable W is U(a, b), then E(W) = (a + b)/2 and Var(W) =
(b − a)2/12. Since the conditional distribution of Y, given that X = x, is U(x, 1),
we could have inferred immediately that E(Y | x) = (x + 1)/2 and Var(Y | x) =
(1 − x)2/12.

An illustration of a computation of a conditional probability is

P
(

3
4

≤ Y ≤ 7
8

∣∣∣∣X = 1
4

)
=

∫ 7/8

3/4
h
(

y

∣∣∣∣1
4

)
dy

=
∫ 7/8

3/4

1
3/4

dy = 1
6

.

In general, if E(Y | x) is linear, then

E(Y | x) = μY + ρ

(
σY

σX

)
(x − μX).

If E(X | y) is linear, then

E(X | y) = μX + ρ

(
σX

σY

)
(y − μY).

Thus, in Example 4.4-6, the product of the coefficients of x in E(Y | x) and y in
E(X | y) is ρ2 = 1/4. It follows that ρ = 1/2, since each coefficient is positive.
Because the ratio of those coefficients is equal to σ 2

Y /σ 2
X = 1, we have σ 2

X = σ 2
Y .

Exercises

4.4-1. Let f (x, y) = (3/16)xy2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, be
the joint pdf of X and Y.

(a) Find fX(x) and fY(y), the marginal probability density
functions.

(b) Are the two random variables independent? Why or
why not?

(c) Compute the means and variances of X and Y.

(d) Find P(X ≤ Y).

4.4-2. Let X and Y have the joint pdf f (x, y) = x + y,
0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(a) Find the marginal pdfs fX(x) and fY(y) and show that
f (x, y) �≡ fX(x)fY(y). Thus, X and Y are dependent.

(b) Compute (i) μX , (ii) μY , (iii) σ 2
X , and (iv) σ 2

Y .

4.4-3. Let f (x, y) = 2e−x−y, 0 ≤ x ≤ y < ∞, be
the joint pdf of X and Y. Find fX(x) and fY(y), the
marginal pdfs of X and Y, respectively. Are X and Y
independent?

4.4-4. Let f (x, y) = 3/2, x2 ≤ y ≤ 1, 0 ≤ x ≤ 1, be the
joint pdf of X and Y.

(a) Find P(0 ≤ X ≤ 1/2).

(b) Find P(1/2 ≤ Y ≤ 1).

(c) Find P(X ≥ 1/2, Y ≥ 1/2).

(d) Are X and Y independent? Why or why not?

4.4-5. For each of the following functions, determine the
value of c for which the function is a joint pdf of two
continuous random variables X and Y.
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(a) f (x, y) = cxy, 0 ≤ x ≤ 1, x2 ≤ y ≤ x.

(b) f (x, y) = c(1 + x2y), 0 ≤ x ≤ y ≤ 1.

(c) f (x, y) = cyex, 0 ≤ x ≤ y2, 0 ≤ y ≤ 1.

(d) f (x, y) = c sin(x + y), 0 ≤ x ≤ π/2, 0 ≤ y ≤ π/2.

4.4-6. Using Example 4.4-2,

(a) Determine the variances of X and Y.

(b) Find P(−X ≤ Y).

4.4-7. Let f (x, y) = 4/3, 0 < x < 1, x3 < y < 1, zero
elsewhere.

(a) Sketch the region where f (x, y) > 0.

(b) Find P(X > Y).

4.4-8. Using the background of Example 4.4-4, calculate
the means and variances of X and Y.

4.4-9. Two construction companies make bids of X and Y
(in $100,000’s) on a remodeling project. The joint pdf of
X and Y is uniform on the space 2 < x < 2.5, 2 < y < 2.3.
If X and Y are within 0.1 of each other, the companies
will be asked to rebid; otherwise, the low bidder will be
awarded the contract. What is the probability that they
will be asked to rebid?

4.4-10. Let T1 and T2 be random times for a company to
complete two steps in a certain process. Say T1 and T2 are
measured in days and they have the joint pdf that is uni-
form over the space 1 < t1 < 10, 2 < t2 < 6, t1 + 2t2 < 14.
What is P(T1 + T2 > 10)?

4.4-11. Let X and Y have the joint pdf f (x, y) = cx(1−y),
0 < y < 1, and 0 < x < 1 − y.

(a) Determine c.

(b) Compute P(Y < X | X ≤ 1/4).

4.4-12. Show that in the bivariate situation, E is a linear
or distributive operator. That is, for constants a1 and a2,
show that

E[a1u1(X, Y) + a2u2(X, Y)] = a1E[u1(X, Y)] + a2E[u2(X, Y)].

4.4-13. Let X and Y be random variables of the continu-
ous type having the joint pdf

f (x, y) = 2, 0 ≤ y ≤ x ≤ 1.

Draw a graph that illustrates the domain of this pdf.

(a) Find the marginal pdfs of X and Y.

(b) Compute μX , μY , σ 2
X , σ 2

Y , Cov(X, Y), and ρ.

(c) Determine the equation of the least squares regres-
sion line and draw it on your graph. Does the line
make sense to you intuitively?

4.4-14. Let X and Y be random variables of the continu-
ous type having the joint pdf

f (x, y) = 8xy, 0 ≤ x ≤ y ≤ 1.

Draw a graph that illustrates the domain of this pdf.

(a) Find the marginal pdfs of X and Y.

(b) Compute μX , μY , σ 2
X , σ 2

Y , Cov(X, Y), and ρ.

(c) Determine the equation of the least squares regres-
sion line and draw it on your graph. Does the line
make sense to you intuitively?

4.4-15. An automobile repair shop makes an initial esti-
mate X (in thousands of dollars) of the amount of money
needed to fix a car after an accident. Say X has the pdf

f (x) = 2 e−2(x−0.2), 0.2 < x < ∞.

Given that X = x, the final payment Y has a uniform dis-
tribution between x−0.1 and x+0.1. What is the expected
value of Y?

4.4-16. For the random variables defined in Example 4.4-
3, calculate the correlation coefficient directly from the
definition

ρ = Cov(X, Y)
σXσY

.

4.4-17. Let f (x, y) = 1/40, 0 ≤ x ≤ 10, 10 − x ≤ y ≤
14 − x, be the joint pdf of X and Y.

(a) Sketch the region for which f (x, y) > 0.

(b) Find fX(x), the marginal pdf of X.

(c) Determine h(y | x), the conditional pdf of Y, given
that X = x.

(d) Calculate E(Y | x), the conditional mean of Y, given
that X = x.

4.4-18. Let f (x, y) = 1/8, 0 ≤ y ≤ 4, y ≤ x ≤ y + 2, be the
joint pdf of X and Y.

(a) Sketch the region for which f (x, y) > 0.

(b) Find fX(x), the marginal pdf of X.

(c) Find fY(y), the marginal pdf of Y.

(d) Determine h(y | x), the conditional pdf of Y, given
that X = x.

(e) Determine g(x | y), the conditional pdf of X, given
that Y = y.

(f) Compute E(Y | x), the conditional mean of Y, given
that X = x.

(g) Compute E(X | y), the conditional mean of X, given
that Y = y.

(h) Graph y = E(Y | x) on your sketch in part (a). Is
y = E(Y | x) linear?

(i) Graph x = E(X | y) on your sketch in part (a). Is
x = E(X | y) linear?

4.4-19. Let X have a uniform distribution U(0, 2), and let
the conditional distribution of Y, given that X = x, be
U(0, x2).

(a) Determine f (x, y), the joint pdf of X and Y.

(b) Calculate fY(y), the marginal pdf of Y.
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(c) Compute E(X | y), the conditional mean of X, given
that Y = y.

(d) Find E(Y | x), the conditional mean of Y, given that
X = x.

4.4-20. Let X have a uniform distribution on the interval
(0, 1). Given that X = x, let Y have a uniform distribution
on the interval (0, x + 1).

(a) Find the joint pdf of X and Y. Sketch the region where
f (x, y) > 0.

(b) Find E(Y | x), the conditional mean of Y, given that
X = x. Draw this line on the region sketched in part
(a).

(c) Find fY(y), the marginal pdf of Y. Be sure to include
the domain.

4.5 THE BIVARIATE NORMAL DISTRIBUTION
Let X and Y be random variables with joint pdf f (x, y) of the continuous type. Many
applications are concerned with the conditional distribution of one of the random
variables—say, Y, given that X = x. For example, X and Y might be a student’s
grade point averages from high school and from the first year in college, respectively.
Persons in the field of educational testing and measurement are extremely interested
in the conditional distribution of Y, given that X = x, in such situations.

Suppose that we have an application in which we can make the following three
assumptions about the conditional distribution of Y, given X = x:

(a) It is normal for each real x.

(b) Its mean, E(Y | x), is a linear function of x.

(c) Its variance is constant; that is, it does not depend upon the given value of x.

Of course, assumption (b), along with a result given in Section 4.3, implies that

E(Y | x) = μY + ρ
σY

σX
(x − μX).

Let us consider the implication of assumption (c). The conditional variance is
given by

σ 2
Y|x =

∫ ∞

−∞

[
y − μY − ρ

σY

σX
(x − μX)

]2

h(y | x) dy,

where h(y | x) is the conditional pdf of Y given that X = x. Multiply each member
of this equation by fX(x) and integrate on x. Since σ 2

Y|x is a constant, the left-hand

member is equal to σ 2
Y|x. Thus, we have

σ 2
Y|x =

∫ ∞

−∞

∫ ∞

−∞

[
y − μY − ρ

σY

σX
(x − μX)

]2

h(y | x)fX(x) dy dx. (4.5-1)

However, h(y | x)fX(x) = f (x, y); hence, the right-hand member is just an expectation
and Equation 4.5-1 can be written as

σ 2
Y|x = E

[
(Y − μY)2 − 2ρ

σY

σX
(X − μX)(Y − μY) + ρ2 σ 2

Y

σ 2
X

(X − μX)2

]
.
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But using the fact that the expectation E is a linear operator and recalling that
E[(X − μX)(Y − μY)] = ρσXσY , we have

σ 2
Y|x = σ 2

Y − 2ρ
σY

σX
ρσXσY + ρ2 σ 2

Y

σ 2
X

σ 2
X

= σ 2
Y − 2ρ2σ 2

Y + ρ2σ 2
Y = σ 2

Y (1 − ρ2).

That is, the conditional variance of Y, for each given x, is σ 2
Y (1 − ρ2). These facts

about the conditional mean and variance, along with assumption (a), require that
the conditional pdf of Y, given that X = x, be

h(y | x) = 1

σY

√
2π

√
1 − ρ2

exp

[
− [y − μY − ρ(σY/σX)(x − μX)]2

2σ 2
Y (1 − ρ2)

]
,

−∞ < y < ∞, for every real x.

Before we make any assumptions about the distribution of X, we give an
example and a figure to illustrate the implications of our current assumptions.

Example
4.5-1

Let μX = 10, σ 2
X = 9, μY = 12, σ 2

Y = 16, and ρ = 0.6. We have seen that assumptions
(a), (b), and (c) imply that the conditional distribution of Y, given that X = x, is

N
[

12 + (0.6)
(

4
3

)
(x − 10), 16(1 − 0.62)

]
.

In Figure 4.5-1, the conditional mean line

E(Y | x) = 12 + (0.6)
(

4
3

)
(x − 10) = 0.8x + 4

has been graphed. For each of x = 5, 10, and 15, the conditional pdf of Y, given that
X = x, is displayed.

Up to this point, nothing has been said about the distribution of X other than
that it has mean μX and positive variance σ 2

X . Suppose, in addition, we assume that
this distribution is also normal; that is, the marginal pdf of X is

fX(x) = 1

σX

√
2π

exp

[
− (x − μX)2

2σ 2
X

]
, −∞ < x < ∞.

x

y

h(y|x)

0
5

10
15

20 0
4

8
12

16
20

0

0.05

0.10

Figure 4.5-1 Conditional pdf of Y, given that x = 5, 10, 15



Section 4.5 The Bivariate Normal Distribution 157

Hence, the joint pdf of X and Y is given by the product

f (x, y) = h(y | x)fX(x) = 1

2πσXσY

√
1 − ρ2

exp
[
−q(x, y)

2

]
, (4.5-2)

where it can be shown (see Exercise 4.5-2) that

q(x, y) = 1
1 − ρ2

[(
x − μX

σX

)2

− 2ρ

(
x − μX

σX

)(
y − μY

σY

)
+

(
y − μY

σY

)2
]

.

A joint pdf of this form is called a bivariate normal pdf.

Example
4.5-2

Let us assume that in a certain population of college students, the respective grade
point averages—say, X and Y—in high school and the first year in college have an
approximate bivariate normal distribution with parameters μX = 2.9, μY = 2.4,
σX = 0.4, σY = 0.5, and ρ = 0.8.

Then, for example,

P(2.1 < Y < 3.3) = P
(

2.1 − 2.4
0.5

<
Y − 2.4

0.5
<

3.3 − 2.4
0.5

)
= 
(1.8) − 
(−0.6) = 0.6898.

Since the conditional pdf of Y, given that X = 3.2, is normal with mean

2.4 + (0.8)
(

0.5
0.4

)
(3.2 − 2.9) = 2.7

and standard deviation (0.5)
√

1 − 0.64 = 0.3, we have

P(2.1 < Y < 3.3 | X = 3.2)

= P
(

2.1 − 2.7
0.3

<
Y − 2.7

0.3
<

3.3 − 2.7
0.3

∣∣∣∣X = 3.2
)

= 
(2) − 
(−2) = 0.9544.

From a practical point of view, however, the reader should be warned that the cor-
relation coefficient of these grade point averages is, in many instances, much smaller
than 0.8.

Since x and y enter the bivariate normal pdf in a similar manner, the roles of
X and Y could have been interchanged. That is, Y could have been assigned the
marginal normal pdf N(μY , σ 2

Y ), and the conditional pdf of X, given that Y = y,
would have then been normal, with mean μX + ρ(σX/σY)(y − μY) and variance
σ 2

X(1 − ρ2). Although this property is fairly obvious, we do want to make special
note of it.

In order to have a better understanding of the geometry of the bivariate normal
distribution, consider the graph of z = f (x, y), where f (x, y) is given by Equation
4.5-2. If we intersect this surface with planes parallel to the yz-plane (i.e., with
x = x0), we have

f (x0, y) = fX(x0)h(y | x0).

In this equation, fX(x0) is a constant and h(y | x0) is a normal pdf. Thus, z = f (x0, y)
is bell-shaped; that is, has the shape of a normal pdf. However, note that it is not
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necessarily a pdf, because of the factor fX(x0). Similarly, intersections of the surface
z = f (x, y) with planes y = y0 parallel to the xz-plane will be bell-shaped.

If

0 < z0 <
1

2πσXσY

√
1 − ρ2

,

then

0 < z02πσXσY

√
1 − ρ2 < 1.

If we intersect z = f (x, y) with the plane z = z0, which is parallel to the xy-plane,
then we have

z02πσXσY

√
1 − ρ2 = exp

[−q(x, y)
2

]
.

We show that these intersections are ellipses by taking the natural logarithm of each
side to obtain(

x − μX

σX

)2

− 2ρ

(
x − μX

σX

)(
y − μY

σY

)
+

(
y − μY

σY

)2

= −2(1 − ρ2) ln(z02πσXσY

√
1 − ρ2 ).

Example
4.5-3

With μX = 10, σ 2
X = 9, μY = 12, σ 2

Y = 16, and ρ = 0.6, the bivariate normal pdf has
been graphed in Figure 4.5-2(a). For ρ = 0.6, level curves, or contours, are given in
Figure 4.5-2(b). The conditional mean line,

E(Y | x) = 12 + (0.6)
(

4
3

)
(x − 10) = 0.8x + 4,

is also drawn on Figure 4.5-2(b). Note that this line intersects the level curves at
points through which vertical tangents can be drawn to the ellipses.
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Figure 4.5-2 Bivariate normal, μX = 10, σ 2
X = 9, μY = 12, σ 2

Y = 16, ρ = 0.6
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We close this section by observing another important property of the correlation
coefficient ρ if X and Y have a bivariate normal distribution. In Equation 4.5-2 of
the product h(y | x)fX(x), let us consider the factor h(y | x) if ρ = 0. We see that this
product, which is the joint pdf of X and Y, equals fX(x)fY(y) because when ρ = 0,
h(y | x) is a normal pdf with mean μY and variance σ 2

Y . That is, if ρ = 0, then the joint
pdf factors into the product of the two marginal probability density functions, and
hence X and Y are independent random variables. Of course, if X and Y are any
independent random variables (not necessarily normal), then ρ, if it exists, is always
equal to zero. Hence, we have proved the following theorem.

Theorem
4.5-1

If X and Y have a bivariate normal distribution with correlation coefficient ρ, then
X and Y are independent if and only if ρ = 0.

Thus, in the bivariate normal case, ρ = 0 does imply independence of X and Y.
Note that these characteristics of the bivariate normal distribution can be extended
to the trivariate normal distribution or, more generally, the multivariate normal
distribution. This is done in more advanced texts that assume some knowledge of
matrices [e.g., Hogg, McKean, and Craig (2013)].

Exercises

4.5-1. Let X and Y have a bivariate normal distribution
with parameters μX = −3, μY = 10, σ 2

X = 25, σ 2
Y = 9, and

ρ = 3/5. Compute

(a) P(−5 < X < 5).

(b) P(−5 < X < 5 | Y = 13).

(c) P(7 < Y < 16).

(d) P(7 < Y < 16 | X = 2).

4.5-2. Show that the expression in the exponent of
Equation 4.5-2 is equal to the function q(x, y) given in the
text.

4.5-3. Let X and Y have a bivariate normal distribution
with parameters μX = 2.8, μY = 110, σ 2

X = 0.16, σ 2
Y =

100, and ρ = 0.6. Compute

(a) P(106 < Y < 124).

(b) P(106 < Y < 124 | X = 3.2).

4.5-4. Let X and Y have a bivariate normal distribution
with μX = 70, σ 2

X = 100, μY = 80, σ 2
Y = 169, and

ρ = 5/13. Find

(a) E(Y | X = 72).

(b) Var(Y | X = 72).

(c) P(Y ≤ 84, | X = 72).

4.5-5. Let X denote the height in centimeters and Y the
weight in kilograms of male college students. Assume
that X and Y have a bivariate normal distribution with
parameters μX = 185, σ 2

X = 100, μY = 84, σ 2
Y = 64, and

ρ = 3/5.

(a) Determine the conditional distribution of Y, given
that X = 190.

(b) Find P(86.4 < Y < 95.36 | X = 190).

4.5-6. For a freshman taking introductory statistics and
majoring in psychology, let X equal the student’s ACT
mathematics score and Y the student’s ACT verbal score.
Assume that X and Y have a bivariate normal distribu-
tion with μX = 22.7, σ 2

X = 17.64, μY = 22.7, σ 2
Y = 12.25,

and ρ = 0.78.

(a) Find P(18.5 < Y < 25.5).

(b) Find E(Y | x).

(c) Find Var(Y | x).

(d) Find P(18.5 < Y < 25.5 | X = 23).

(e) Find P(18.5 < Y < 25.5 | X = 25).

(f) For x = 21, 23, and 25, draw a graph of z = h(y | x)
similar to Figure 4.5-1.

4.5-7. For a pair of gallinules, let X equal the weight in
grams of the male and Y the weight in grams of the
female. Assume that X and Y have a bivariate normal dis-
tribution with μX = 415, σ 2

X = 611, μY = 347, σ 2
Y = 689,

and ρ = −0.25. Find

(a) P(309.2 < Y < 380.6).

(b) E(Y | x).

(c) Var(Y | x).

(d) P(309.2 < Y < 380.6 | X = 385.1).
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4.5-8. Let X and Y have a bivariate normal distribution
with parameters μX = 10, σ 2

X = 9, μY = 15, σ 2
Y = 16, and

ρ = 0. Find

(a) P(13.6 < Y < 17.2).

(b) E(Y | x).

(c) Var(Y | x).

(d) P(13.6 < Y < 17.2 | X = 9.1).

4.5-9. Let X and Y have a bivariate normal distribution.
Find two different lines, a(x) and b(x), parallel to and
equidistant from E(Y | x), such that

P[a(x) < Y < b(x) | X = x] = 0.9544

for all real x. Plot a(x), b(x), and E(Y | x) when μX = 2,
μY = −1, σX = 3, σY = 5, and ρ = 3/5.

4.5-10. In a college health fitness program, let X denote
the weight in kilograms of a male freshman at the begin-
ning of the program and Y denote his weight change
during a semester. Assume that X and Y have a bivari-
ate normal distribution with μX = 72.30, σ 2

X = 110.25,
μY = 2.80, σ 2

Y = 2.89, and ρ = −0.57. (The lighter stu-
dents tend to gain weight, while the heavier students tend
to lose weight.) Find

(a) P(2.80 ≤ Y ≤ 5.35).

(b) P(2.76 ≤ y ≤ 5.34 | X = 82.3).

4.5-11. For a female freshman in a health fitness program,
let X equal her percentage of body fat at the beginning

of the program and Y equal the change in her percent-
age of body fat measured at the end of the program.
Assume that X and Y have a bivariate normal distribu-
tion with μX = 24.5, σ 2

X = 4.82 = 23.04, μY = −0.2,
σ 2

Y = 3.02 = 9.0, and ρ = −0.32. Find

(a) P(1.3 ≤ Y ≤ 5.8).

(b) μY|x, the conditional mean of Y, given that X = x.

(c) σ 2
Y|x, the conditional variance of Y, given that X = x.

(d) P(1.3 ≤ Y ≤ 5.8 | X = 18).

4.5-12. Let

f (x, y) =
(

1
2π

)
e−(x2+y2)/2

[
1 + xye−(x2+y2−2)/2

]
,

− ∞ < x < ∞, −∞ < y < ∞.

Show that f (x, y) is a joint pdf and the two marginal pdfs
are each normal. Note that X and Y can each be normal,
but their joint pdf is not bivariate normal.

4.5-13. An obstetrician does ultrasound examinations on
her patients between their 16th and 25th weeks of preg-
nancy to check the growth of each fetus. Let X equal the
widest diameter of the fetal head, and let Y equal the
length of the femur, both measurements in mm. Assume
that X and Y have a bivariate normal distribution with
μX = 60.6, σX = 11.2, μY = 46.8, σY = 8.4, and ρ = 0.94.

(a) Find P(40.5 < Y < 48.9).

(b) Find P(40.5 < Y < 48.9 | X = 68.6).

HISTORICAL COMMENTS Now that we have studied conditional distribu-
tions, it might be appropriate to point out that there is a group of statisticians
called Bayesians who believe in the following approach (it is considered again in
Chapter 6): They treat the parameter θ (such as μ, σ 2, α, and β in the various dis-
tributions) as a random variable with a pmf (or pdf), say, g(θ). Suppose another
random variable X, given θ , has the pmf (or pdf) f (x | θ). Say the prior probabilities
can be described by g(θ) so that the marginal pmf (or pdf) of X is given by the sum
(or integral)

h(x) =
∑
θ

g(θ)f (x | θ).

Thus, the conditional pmf (or pdf) of θ , given that X = x, is

k(θ | x) = g(θ)f (x | θ)
h(x)

= g(θ)f (x | θ)∑
τ

g(τ )f (x | τ )
.

With a little thought you can recognize this formula as Bayes’ theorem. Here the
posterior probabilities, k(θ | x), of θ change from the prior probabilities given by
g(θ), after X is observed to be x. Repeating the experiment n independent times
(see Chapter 5), we obtain n values of x—say, x1, x2, . . . , xn. The Bayesians use the
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posterior distribution k(θ | x1, x2, . . . , xn) to make their inferences about the param-
eter θ because they then know the conditional probabilities of θ , given x1, x2, . . . , xn.

It is interesting to note that the Reverend Thomas Bayes, a minister who started
this method of thinking, never published a mathematical article in his lifetime, and
his famous paper was published about two years after his death. Clearly, he was not
working for tenure at some university! More will be noted about Bayesian methods
in Chapter 6.



This page intentionally left blank 
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5Distributions of Functions
of Random Variables

5.1 Functions of One Random Variable
5.2 Transformations of Two Random Variables
5.3 Several Random Variables
5.4 The Moment-Generating Function Technique
5.5 Random Functions Associated with Normal

Distributions

5.6 The Central Limit Theorem
5.7 Approximations for Discrete Distributions
5.8 Chebyshev’s Inequality and Convergence in

Probability
5.9 Limiting Moment-Generating Functions

5.1 FUNCTIONS OF ONE RANDOM VARIABLE
Let X be a random variable of the continuous type. If we consider a function of X—
say, Y = u(X)—then Y must also be a random variable that has its own distribution.
If we can find its cdf, say,

G(y) = P(Y ≤ y) = P[u(X) ≤ y],

then its pdf is given by g(y) = G′(y). We now illustrate the distribution function
technique by two examples.

Example
5.1-1

Let X have a gamma distribution with pdf

f (x) = 1
�(α)θα

xα−1e−x/θ , 0 < x < ∞,

where α > 0, θ > 0. Let Y = eX , so that the support of Y is 1 < y < ∞. For each y
in the support, the cdf of Y is

G(y) = P(Y ≤ y) = P(eX ≤ y) = P(X ≤ ln y).

That is,

G(y) =
∫ ln y

0

1
�(α)θα

xα−1e−x/θ dx,

and thus the pdf g(y) = G′(y) of Y is

g(y) = 1
�(α)θα

(ln y)α−1e−(ln y)/θ
(

1
y

)
, 1 < y < ∞.

163
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Figure 5.1-1 Loggamma probability density functions

Equivalently, we have

g(y) = 1
�(α)θα

(ln y)α−1

y1+1/θ
, 1 < y < ∞,

which is called a loggamma pdf. (See Figure 5.1-1 for some graphs.) Note that αθ

and αθ2 are the mean and the variance, not of Y, but of the original random variable
X = ln Y. For the loggamma distribution,

μ = 1
(1 − θ)α

, θ < 1,

σ 2 = 1
(1 − 2θ)α

− 1
(1 − θ)2α

, θ <
1
2

.

There is another interesting distribution, this one involving a transformation of
a uniform random variable.

Example
5.1-2

A spinner is mounted at the point (0, 1). Let w be the smallest angle between the
y-axis and the spinner. (See Figure 5.1-2.) Assume that w is the value of a random
variable W that has a uniform distribution on the interval (−π/2, π/2). That is, W is
U(−π/2, π/2), and the cdf of W is

P(W ≤ w) = F(w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, −∞ < w < −π

2
,(

w + π

2

)( 1
π

)
, −π

2
≤ w <

π

2
,

1,
π

2
≤ w < ∞.

The relationship between x and w is given by x = tan w; that is, x is the point on the
x-axis which is the intersection of that axis and the linear extension of the spinner.
To find the distribution of the random variable X = tan W, we note that the cdf of
X is given by

G(x) = P(X ≤ x) = P(tan W ≤ x) = P(W ≤ arctan x)

= F(arctan x) =
(

arctan x + π

2

)( 1
π

)
, −∞ < x < ∞.
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Figure 5.1-2 Spinner and Cauchy pdf

The last equality follows because −π/2 < w = arctan x < π/2. The pdf of X is
given by

g(x) = G′(x) = 1
π(1 + x2)

, −∞ < x < ∞.

Figure 5.1-2 shows the graph of this Cauchy pdf. In Exercise 5.1-12, you will be asked
to show that E(X) does not exist, because the tails of the Cauchy pdf contain too
much probability for this pdf to “balance” at x = 0.

Thus far, the examples have illustrated the use of the cdf technique. By making
a simple observation, we can sometimes shortcut the cdf technique by using what
is frequently called the change-of-variable technique. Let X be a continuous-type
random variable with pdf f (x) with support c1 < x < c2. We begin this discussion
by taking Y = u(X) as a continuous increasing function of X with inverse function
X = v(Y). Say the support of X, namely, c1 < x < c2, maps onto d1 = u(c1) < y <

d2 = u(c2), the support of Y. Then the cdf of Y is

G(y) = P(Y ≤ y) = P[u(X) ≤ y] = P[X ≤ v( y)], d1 < y < d2,

since u and v are continuous increasing functions. Of course, G(y) = 0, y ≤ d1, and
G(y) = 1, y ≥ d2. Thus,

G(y) =
∫ v(y)

c1

f (x) dx, d1 < y < d2.

The derivative, G′(y) = g(y), of such an expression is given by

G′(y) = g(y) = f [v(y)][v′(y)], d1 < y < d2.

Of course, G′(y) = g(y) = 0 if y < d1 or y > d2. We may let g(d1) = g(d2) = 0.
To illustrate, let us consider again Example 5.1-1 with Y = eX , where X has pdf

f (x) = 1
�(α)θα

xα−1e−x/θ , 0 < x < ∞.

Here c1 = 0 and c2 = ∞; thus, d1 = 1 and d2 = ∞. Also, X = ln Y = v(Y). Since
v′(y) = 1/y, the pdf of Y is
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g(y) = 1
�(α)θα

(ln y)α−1e−(ln y)/θ
(

1
y

)
, 1 < y < ∞,

which is the same result as that obtained in Example 5.1-1.
Suppose now the function Y = u(X) and its inverse X = v(Y) are continuous

decreasing functions. Then the mapping of c1 < x < c2 is d1 = u(c1) > y > d2 =
u(c2).

Since u and v are decreasing functions, we have

G(y) = P(Y ≤ y) = P[u(X) ≤ y] = P[X ≥ v(y)] =
∫ c2

v(y)
f (x) dx, d2 < y < d1.

Accordingly, from calculus, we obtain

G′(y) = g(y) = f [v(y)][−v′(y)], d2 < y < d1,

and G′(y) = g(y) = 0 elsewhere. Note that in both the increasing and decreasing
cases, we could write

g(y) = f [v(y)] |v′(y)|, y ∈ SY , (5.1-1)

where SY is the support of Y found by mapping the support of X (say, SX) onto SY .
The absolute value |v′(y)| assures that g(y) is nonnegative.

The change-of-variable technique thus consists of using Equation 5.1-1 to obtain
the pdf of Y directly, bypassing the determination of an expression for the cdf of Y.

Example
5.1-3

Let X have the pdf

f (x) = 3(1 − x)2, 0 < x < 1.

Say Y = (1 − X)3 = u(X), a decreasing function of X. Thus, X = 1 − Y1/3 = v(Y)
and 0 < x < 1 is mapped onto 0 < y < 1. Since

v′(y) = − 1
3y 2/3

,

we have

g(y) = 3[1 − (1 − y1/3)]2
∣∣∣∣ −1
3y 2/3

∣∣∣∣ , 0 < y < 1.

That is,

g(y) = 3y 2/3
(

1
3y 2/3

)
= 1, 0 < y < 1;

so Y = (1 − X)3 has the uniform distribution U(0, 1).

As we have seen, it is sometimes easier to use the change-of-variable technique
than the cdf technique. However, there are many occasions in which the latter is
more convenient to use. As a matter of fact, we had to use the cdf in finding the
gamma distribution from the Poisson process. (See Section 3.2.) We again use the
cdf technique to prove two theorems involving the uniform distribution.
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Theorem
5.1-1

Let Y have a distribution that is U(0, 1). Let F(x) have the properties of a cdf of the
continuous type with F(a) = 0, F(b) = 1, and suppose that F(x) is strictly increas-
ing on the support a < x < b, where a and b could be −∞ and ∞, respectively.
Then the random variable X defined by X = F−1(Y) is a continuous-type random
variable with cdf F(x).

Proof The cdf of X is

P(X ≤ x) = P[F−1(Y) ≤ x], a < x < b.

Since F(x) is strictly increasing, {F−1(Y) ≤ x} is equivalent to {Y ≤ F(x)}. It follows
that

P(X ≤ x) = P[Y ≤ F(x)], a < x < b.

But Y is U(0, 1); so P(Y ≤ y) = y for 0 < y < 1, and accordingly,

P(X ≤ x) = P[Y ≤ F(x)] = F(x), 0 < F(x) < 1.

That is, the cdf of X is F(x). �

The next example illustrates how Theorem 5.1-1 can be used to simulate
observations from a given distribution.

Example
5.1-4

To help appreciate the large probability in the tails of the Cauchy distribution, it is
useful to simulate some observations of a Cauchy random variable. We can begin
with a random number, Y, that is an observation from the U(0, 1) distribution. From
the distribution function of X, namely, G(x), which is that of the Cauchy distribution
given in Example 5.1-2, we have

y = G(x) =
(

arctan x + π

2

)( 1
π

)
, −∞ < x < ∞,

or, equivalently,

x = tan
(
πy − π

2

)
. (5.1-2)

The latter expression provides observations of X.
In Table 5.1-1, the values of y are the first 10 random numbers in the last

column of Table IX in Appendix B. The corresponding values of x are given by
Equation 5.1-2. Although most of these observations from the Cauchy distribution
are relatively small in magnitude, we see that a very large value (in magnitude)
occurs occasionally. Another way of looking at this situation is by considering

Table 5.1-1 Cauchy observations

y x y x

0.1514 −1.9415 0.2354 −1.0962
0.6697 0.5901 0.9662 9.3820
0.0527 −5.9847 0.0043 −74.0211
0.4749 −0.0790 0.1003 −3.0678
0.2900 −0.7757 0.9192 3.8545
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sightings (or firing of a gun) from an observation tower, here with coordinates (0, 1),
at independent random angles, each with the uniform distribution U(−π/2, π/2); the
target points would then be at Cauchy observations.

The following probability integral transformation theorem is the converse of
Theorem 5.1-1.

Theorem
5.1-2

Let X have the cdf F(x) of the continuous type that is strictly increasing on the
support a < x < b. Then the random variable Y, defined by Y = F(X), has a
distribution that is U(0, 1).

Proof Since F(a) = 0 and F(b) = 1, the cdf of Y is

P(Y ≤ y) = P[F(X) ≤ y], 0 < y < 1.

However, {F(X) ≤ y} is equivalent to {X ≤ F−1(y)}; thus,

P(Y ≤ y) = P[X ≤ F−1(y)], 0 < y < 1.

Since P(X ≤ x) = F(x), we have

P(Y ≤ y) = P[X ≤ F−1(y)] = F[F−1(y)] = y, 0 < y < 1,

which is the cdf of a U(0, 1) random variable. �

REMARK Although in our statements and proofs of Theorems 5.1-1 and 5.1-2, we
required F(x) to be strictly increasing, this restriction can be dropped and both theo-
rems are still true. In our exposition, we did not want to bother students with certain
difficulties that are experienced if F(x) is not strictly increasing.

Another observation concerns the situation in which the transformation Y =
u(X) is not one-to-one, as it has been up to this point in this section. For example,
let Y = X2, where X is Cauchy. Here −∞ < x < ∞ maps onto 0 ≤ y < ∞, so

G(y) = P(X2 ≤ y) = P(−√
y ≤ X ≤ √

y )

=
∫ √

y

−√
y

f (x) dx, 0 ≤ y < ∞,

where

f (x) = 1
π(1 + x2)

, −∞ < x < ∞.

Thus,

G′(y) = g(y) = f (
√

y )
∣∣∣∣ 1
2
√

y

∣∣∣∣ + f (−√
y )

∣∣∣∣ −1
2
√

y

∣∣∣∣
= 1

π(1 + y)
√

y
, 0 ≤ y < ∞.

That is, in this case of a two-to-one transformation, there is a need to sum two
terms, each of which is similar to a counterpart term in the one-to-one case; but here
x1 = √

y and x2 = −√
y, 0 < y < ∞, give the two inverse functions, respectively.
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With careful thought, we can handle many situations that generalize this parti-
cular example.

Example
5.1-5

Let X have the pdf

f (x) = x2

3
, −1 < x < 2.

Then the random variable Y = X2 will have the support 0 ≤ y < 4. Now, on the
one hand, for 0 < y < 1, we obtain the two-to-one transformation represented by
x1 = −√

y for −1 < x1 < 0 and by x2 = √
y for 0 < x2 < 1. On the other hand, if

1 < y < 4, the one-to-one transformation is represented by x2 = √
y, 1 < x2 < 2.

Since

dx1

dy
= −1

2
√

y
and

dx2

dy
= 1

2
√

y
,

it follows that the pdf of Y = X2 is

g(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−√

y )2

3

∣∣∣∣ −1
2
√

y

∣∣∣∣ + (
√

y )2

3

∣∣∣∣ 1
2
√

y

∣∣∣∣ =
√

y

3
, 0 < y < 1,

(
√

y )2

3

∣∣∣∣ 1
2
√

y

∣∣∣∣ =
√

y

6
, 1 < y < 4.

Note that if 0 < y < 1, the pdf is the sum of two terms, but if 1 < y < 4,
then there is only one term. These different expressions in g(y) correspond to
the two types of transformations, namely, the two-to-one and the one-to-one
transformations, respectively.

The change-of-variable technique can be used for a variable X of the discrete
type, but there is one major difference: The pmf f (x) = P(X = x), x ∈ SX , represents
probability. Note that the support SX consists of a countable number of points, say,
c1, c2, c3, . . . . Let Y = u(X) be a one-to-one transformation with inverse X = v(Y).
The function y = u(x) maps SX onto d1 = u(c1), d2 = u(c2), d3 = u(c3), . . ., which
we denote by SY . Hence, the pmf of Y is

g(y) = P(Y = y) = P[u(X) = y] = P[X = v(y)], y ∈ SY .

Since P(X = x) = f (x), we have g(y) = f [v(y)], y ∈ SY . Note that, in this discrete
case, the value of the derivative, namely, |v′(y)|, is not needed.

Example
5.1-6

Let X have a Poisson distribution with λ = 4; thus, the pmf is

f (x) = 4xe−4

x! , x = 0, 1, 2, . . . .

If Y = √
X, then, since X = Y2, we have

g(y) = 4y2
e−4

(y2)! , y = 0, 1,
√

2,
√

3, . . . .
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Example
5.1-7

Let the distribution of X be binomial with parameters n and p. Since X has a discrete
distribution, Y = u(X) will also have a discrete distribution, with the same proba-
bilities as those in the support of X. For example, with n = 3, p = 1/4, and Y = X2,
we have

g(y) =
(

3√
y

)(
1
4

)√
y(3

4

)3−√
y

, y = 0, 1, 4, 9.

Exercises

5.1-1. Let X have the pdf f (x) = 4x3, 0 < x < 1. Find the
pdf of Y = X2.

5.1-2. Let X have the pdf f (x) = xe−x2/2, 0 < x < ∞.
Find the pdf of Y = X2.

5.1-3. Let X have a gamma distribution with α = 3 and
θ = 2. Determine the pdf of Y = √

X.

5.1-4. The pdf of X is f (x) = 2x, 0 < x < 1.

(a) Find the cdf of X.

(b) Describe how an observation of X can be simulated.

(c) Simulate 10 observations of X.

5.1-5. The pdf of X is f (x) = θ xθ−1, 0 < x < 1, 0 < θ <

∞. Let Y = −2θ ln X. How is Y distributed?

5.1-6. Let X have a logistic distribution with pdf

f (x) = e−x

(1 + e−x)2
, −∞ < x < ∞.

Show that

Y = 1
1 + e−X

has a U(0, 1) distribution.

5.1-7. A sum of $50,000 is invested at a rate R, selected
from a uniform distribution on the interval (0.03, 0.07).
Once R is selected, the sum is compounded instanta-
neously for a year, so that X = 50000 eR dollars is the
amount at the end of that year.

(a) Find the cdf and pdf of X.

(b) Verify that X = 50000 eR is defined correctly if the
compounding is done instantaneously. Hint: Divide
the year into n equal parts, calculate the value of the
amount at the end of each part, and then take the limit
as n → ∞.

5.1-8. The lifetime (in years) of a manufactured product
is Y = 5X0.7, where X has an exponential distribution
with mean 1. Find the cdf and pdf of Y.

5.1-9. Statisticians frequently use the extreme value dis-
tribution given by the cdf

F(x) = 1 − exp
[
−e(x − θ1)/θ2

]
, −∞ < x < ∞.

A simple case is when θ1 = 0 and θ2 = 1, giving

F(x) = 1 − exp
[−ex] , −∞ < x < ∞.

Let Y = eX or X = ln Y; then the support of Y is
0 < y < ∞.

(a) Show that the distribution of Y is exponential when
θ1 = 0 and θ2 = 1.

(b) Find the cdf and the pdf of Y when θ1 �= 0 and θ2 > 0.

(c) Let θ1 = ln β and θ2 = 1/α in the cdf and pdf of Y.
What is this distribution?

(d) As suggested by its name, the extreme value distribu-
tion can be used to model the longest home run, the
deepest mine, the greatest flood, and so on. Suppose
the length X (in feet) of the maximum of someone’s
home runs was modeled by an extreme value distribu-
tion with θ1 = 550 and θ2 = 25. What is the probability
that X exceeds 500 feet?

5.1-10. Let X have the uniform distribution U(−1, 3).
Find the pdf of Y = X2.

5.1-11. Let X have a Cauchy distribution. Find

(a) P(X > 1).

(b) P(X > 5).

(c) P(X > 10).

5.1-12. Let f (x) = 1/[π(1 + x2)], −∞ < x < ∞, be the
pdf of the Cauchy random variable X. Show that E(X)
does not exist.

5.1-13. If the distribution of X is N(μ, σ 2), then
M(t) = E(etX) = exp(μt + σ 2t2/2). We then say that
Y = eX has a lognormal distribution because X = ln Y.

(a) Show that the pdf of Y is

g(y) = 1

y
√

2πσ 2
exp[−(ln y − μ)2/2σ 2], 0 < y < ∞.

(b) Using M(t), find (i) E(Y) = E(eX) = M(1), (ii)
E(Y2) = E(e2X) = M(2), and (iii) Var(Y).
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5.1-14. Let X be N(0, 1). Find the pdf of Y = |X|, a distri-
bution that is often called the half-normal. Hint: Here y ∈
Sy = {y : 0 < y < ∞}. Consider the two transformations
x1 = −y, −∞ < x1 < 0, and x2 = y, 0 < y < ∞.

5.1-15. Let Y = X2.

(a) Find the pdf of Y when the distribution of X is N(0, 1).

(b) Find the pdf of Y when the pdf of X is f (x) =
(3/2)x2, − 1 < x < 1.

5.2 TRANSFORMATIONS OF TWO RANDOM VARIABLES
In Section 5.1, we considered the transformation of one random variable X with
pdf f (x). In particular, in the continuous case, if Y = u(X) was an increasing or
decreasing function of X, with inverse X = v(Y), then the pdf of Y was

g(y) = |v′(y)| f [v(y)], c < y < d,

where the support c < y < d corresponds to the support of X, say, a < x < b,
through the transformation x = v(y).

There is one note of warning here: If the function Y = u(X) does not have
a single-valued inverse, the determination of the distribution of Y will not be as
simple. As a matter of fact, we did consider two examples in Section 5.1 in which
there were two inverse functions, and we exercised special care in those examples.
Here, we will not consider problems with many inverses; however, such a warning is
nonetheless appropriate.

When two random variables are involved, many interesting problems can result.
In the case of a single-valued inverse, the rule is about the same as that in the
one-variable case, with the derivative being replaced by the Jacobian. That is, if X1
and X2 are two continuous-type random variables with joint pdf f (x1, x2), and if
Y1 = u1(X1, X2), Y2 = u2(X1, X2) has the single-valued inverse X1 = v1(Y1, Y2),
X2 = v2(Y1, Y2), then the joint pdf of Y1 and Y2 is

g(y1, y2) = |J| f [v1(y1, y2), v2(y1, y2)] , (y1, y2) ∈ SY ,

where the Jacobian J is the determinant

J =

∣∣∣∣∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣∣∣∣ .

Of course, we find the support SY of Y1, Y2 by considering the mapping of the sup-
port SX of X1, X2 under the transformation y1 = u1(x1, x2), y2 = u2(x1, x2). This
method of finding the distribution of Y1 and Y2 is called the change-of-variables
technique.

It is often the mapping of the support SX of X1, X2 into that (say, SY) of Y1, Y2
which causes the biggest challenge. That is, in most cases, it is easy to solve for x1 and
x2 in terms of y1 and y2, say,

x1 = v1(y1, y2), x2 = v2(y1, y2),
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and then to compute the Jacobian

J =

∣∣∣∣∣∣∣∣∣∣
∂v1(y1, y2)

∂y1

∂v1(y1, y2)
∂y2

∂v2(y1, y2)
∂y1

∂v2(y1, y2)
∂y2

∣∣∣∣∣∣∣∣∣∣
.

However, the mapping of (x1, x2) ∈ SX into (y1, y2) ∈ SY can be more difficult. Let
us consider two simple examples.

Example
5.2-1

Let X1, X2 have the joint pdf

f (x1, x2) = 2, 0 < x1 < x2 < 1.

Consider the transformation

Y1 = X1

X2
, Y2 = X2.

It is certainly easy enough to solve for x1 and x2, namely,

x1 = y1y2, x2 = y2,

and compute

J =
∣∣∣∣∣∣

y2 y1

0 1

∣∣∣∣∣∣ = y2.

Let us now consider SX , which is depicted in Figure 5.2-1(a). The boundaries of SX

are not part of the support, but let us see how they map. The points for which x1 = 0,
0 < x2 < 1, map into y1 = 0, 0 < y2 < 1; the points for which x2 = 1, 0 ≤ x1 < 1,
map into y2 = 1, 0 ≤ y1 < 1; and 0 < x1 = x2 ≤ 1 maps into y1 = 1, 0 < y2 ≤ 1.
We depict these line segments in Figure 5.2-1(b) and mark them with the symbols
corresponding to the line segments in Figure 5.2-1(a).

SY

y2

y1

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

x2

x1

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6

(a) Support of X1, X2 (b) Support of Y1, Y2

0.8 1.0

SX

x2 = x1

Figure 5.2-1 Mapping from x1, x2 to y1, y2
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We note that the points for which y2 = 0, 0 ≤ y1 < 1, all map into the single
point x1 = 0, x2 = 0. That is, this is a many-to-one mapping, and yet we are restrict-
ing ourselves to one-to-one mappings. However, the boundaries are not part of our
support! Thus, SY is as depicted in Figure 5.2-1(b), and, according to the rule, the
joint pdf of Y1, Y2 is

g(y1, y2) = |y2| · 2 = 2y2, 0 < y1 < 1, 0 < y2 < 1.

It is interesting to note that the marginal probability density functions are

g1(y1) =
∫ 1

0
2y2 dy2 = 1, 0 < y1 < 1,

and

g2(y2) =
∫ 1

0
2y2 dy1 = 2y2, 0 < y2 < 1.

Hence, Y1 = X1/X2 and Y2 = X2 are independent. Even though the computation
of Y1 depends very much on the value of Y2, still Y1 and Y2 are independent in the
probability sense.

Example
5.2-2

Let X1 and X2 be independent random variables, each with pdf

f (x) = e−x, 0 < x < ∞.

Hence, their joint pdf is

f (x1)f (x2) = e−x1−x2 , 0 < x1 < ∞, 0 < x2 < ∞.

Let us consider

Y1 = X1 − X2, Y2 = X1 + X2.

Thus,

x1 = y1 + y2

2
, x2 = y2 − y1

2
,

with

J =

∣∣∣∣∣∣∣∣∣
1
2

1
2

−1
2

1
2

∣∣∣∣∣∣∣∣∣ = 1
2

.

The region SX is depicted in Figure 5.2-2(a). The line segments on the boundary,
namely, x1 = 0, 0 < x2 < ∞, and x2 = 0, 0 < x1 < ∞, map into the line segments
y1 + y2 = 0, y2 > y1 and y1 = y2, y2 > −y1, respectively. These are shown in
Figure 5.2-2(b), and the support of SY is depicted there. Since the region SY is not
bounded by horizontal and vertical line segments, Y1 and Y2 are dependent.

The joint pdf of Y1 and Y2 is

g(y1, y2) = 1
2

e−y2 , −y2 < y1 < y2, 0 < y2 < ∞.
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1

2

3

4

5

SX

1

2

3

4

5

1 2 3

(a) Support of X1, X2 (b) Support of Y1, Y2

−4 −2 20 44 5
x1 y1

x2

y2

y2 = −y1 y2 = y1

SY

Figure 5.2-2 Mapping from x1, x2 to y1, y2

The probability P(Y1 ≥ 0, Y2 ≤ 4) is given by∫ 4

0

∫ 4

y1

1
2

e−y2 dy2 dy1 or
∫ 4

0

∫ y2

0

1
2

e−y2 dy1 dy2.

While neither of these integrals is difficult to evaluate, we choose the latter one to
obtain ∫ 4

0

1
2

y2e−y2 dy2 =
[

1
2

(−y2)e−y2 − 1
2

e−y2

]4

0

= 1
2

− 2e−4 − 1
2

e−4 = 1
2

[
1 − 5e−4

]
.

The marginal pdf of Y2 is

g2(y2) =
∫ y2

−y2

1
2

e−y2 dy1 = y2e−y2 , 0 < y2 < ∞.

This is a gamma pdf with shape parameter 2 and scale parameter 1. The pdf of Y1 is

g1(y1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ ∞

−y1

1
2

e−y2 dy2 = 1
2

ey1 , −∞ < y1 ≤ 0,

∫ ∞

y1

1
2

e−y2 dy2 = 1
2

e−y1 , 0 < y1 < ∞.

That is, the expression for g1(y1) depends on the location of y1, although this could
be written as

g1(y1) = 1
2

e−|y1|, −∞ < y1 < ∞,

which is called a double exponential pdf, or sometimes the Laplace pdf.

We now consider two examples that yield two important distributions. The
second of these uses the cdf technique rather than the change-of-variable method.
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Example
5.2-3

Let X1 and X2 have independent gamma distributions with parameters α, θ and β,
θ , respectively. That is, the joint pdf of X1 and X2 is

f (x1, x2) = 1
�(α)�(β)θα+β

xα−1
1 xβ−1

2 exp
(

−x1 + x2

θ

)
, 0 < x1 < ∞, 0 < x2 < ∞.

Consider

Y1 = X1

X1 + X2
, Y2 = X1 + X2,

or, equivalently,

X1 = Y1Y2, X2 = Y2 − Y1Y2.

The Jacobian is

J =
∣∣∣∣∣∣

y2 y1

−y2 1 − y1

∣∣∣∣∣∣ = y2(1 − y1) + y1y2 = y2.

Thus, the joint pdf g(y1, y2) of Y1 and Y2 is

g(y1, y2) = |y2| 1
�(α)�(β)θα+β

(y1y2)α−1(y2 − y1y2)β−1e−y2/θ ,

where the support is 0 < y1 < 1, 0 < y2 < ∞, which is the mapping of 0 <

xi < ∞, i = 1, 2. To see the shape of this joint pdf, z = g(y1, y2) is graphed in
Figure 5.2-3(a) with α = 4, β = 7, and θ = 1 and in Figure 5.2-3(b) with α = 8, β =
3, and θ = 1. To find the marginal pdf of Y1, we integrate this joint pdf on y2. We see
that the marginal pdf of Y1 is

g1(y1) = yα−1
1 (1 − y1)β−1

�(α)�(β)

∫ ∞

0

yα+β−1
2

θα+β
e−y2/θ dy2.

But the integral in this expression is that of a gamma pdf with parameters α + β and
θ , except for �(α + β) in the denominator; hence, the integral equals �(α + β), and
we have

g1(y1) = �(α + β)
�(α)�(β)

yα−1
1 (1 − y1)β−1, 0 < y1 < 1.

0

0.5

1

(b) α = 8, β = 3, θ = 1

0

10

20

y1
y2

0.1

0

0.2

0.3

g(y1, y2)

0
0.5

1 0

10

20

y1
y2

0.1

0.2

0.3

g(y1, y2)

(a) α = 4, β = 7, θ = 1

Figure 5.2-3 Joint pdf of z = g(y1, y2)
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y

g(y)

α = 8
β = 3
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β = 7 β = 4

0.5
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0.2 0.4 0.6 0.8 1.0

Figure 5.2-4 Beta distribution pdfs

We say that Y1 has a beta pdf with parameters α and β. (See Figure 5.2-4.) Note the
relationship between Figure 5.2-3 and Figure 5.2-4.

The next example illustrates the distribution function technique. You will calcu-
late the same results in Exercise 5.2-2, but using the change-of-variable technique.

Example
5.2-4

We let

F = U/r1

V/r2
,

where U and V are independent chi-square variables with r1 and r2 degrees of
freedom, respectively. Thus, the joint pdf of U and V is

g(u, v) = ur1/2−1e−u/2

�(r1/2)2r1/2

vr2/2−1e−v/2

�(r2/2)2r2/2
, 0 < u < ∞, 0 < v < ∞.

In this derivation, we let W = F to avoid using f as a symbol for a variable. The cdf
F(w) = P(W ≤ w) of W is

F(w) = P
(

U/r1

V/r2
≤ w

)
= P

(
U ≤ r1

r2
w V

)

=
∫ ∞

0

∫ (r1/r2)wv

0
g(u, v) du dv.

That is,

F(w) = 1
�(r1/2)�(r2/2)

∫ ∞

0

[∫ (r1/r2)wv

0

ur1/2−1e−u/2

2(r1+r2)/2
du

]
vr2/2−1e−v/2 dv.

The pdf of W is the derivative of the cdf; so, applying the fundamental theo-
rem of calculus to the inner integral, exchanging the operations of integration and
differentiation (which is permissible in this case), we have
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f (w) = F ′(w)

= 1
�(r1/2)�(r2/2)

∫ ∞

0

[(r1/r2)vw]r1/2−1

2(r1+r2)/2
e−(r1/2r2)(vw)

(
r1

r2
v
)

vr2/2−1e−v/2 dv

= (r1/r2)r1/2wr1/2−1

�(r1/2)�(r2/2)

∫ ∞

0

v(r1+r2)/2−1

2(r1+r2)/2
e−(v/2)[1+(r1/r2)w] dv.

In the integral, we make the change of variable

y =
(

1 + r1

r2
w
)

v, so that
dv
dy

= 1
1 + (r1/r2)w

.

Thus, we have

f (w) = (r1/r2)r1/2�[(r1 + r2)/2]wr1/2−1

�(r1/2)�(r2/2)[1 + (r1w/r2)](r1+r2)/2

∫ ∞

0

y(r1+r2)/2−1e−y/2

�[(r1 + r2)/2]2(r1+r2)/2
dy

= (r1/r2)r1/2�[(r1 + r2)/2]wr1/2−1

�(r1/2)�(r2/2)[1 + (r1w/r2)](r1+r2)/2
,

the pdf of the W = F distribution with r1 and r2 degrees of freedom. Note that the
integral in this last expression for f (w) is equal to 1 because the integrand is like a
pdf of a chi-square distribution with r1 + r2 degrees of freedom. Graphs of pdfs for
the F distribution are given in Figure 5.2-5.

To find probabilities for an F random variable with r1 (numerator) and r2
(denominator) degrees of freedom, use your calculator, or a computer program, or
Table VII in Appendix B. Table VII is limited but is adequate for most of the appli-
cations in this text. For notation, if W has an F distribution with r1 and r2 degrees of
freedom, we say that the distribution of W is F(r1, r2). For a right-tail probability of
α, we write

P[W ≥ Fα(r1, r2)] = α.

f (x)

r1 = 2, r2 = 4

r1 = 12, r2 = 12

r1 = 9, r2 = 9

r1 = 4, r2 = 6

x

0.2

1 2 3 4

0.4

0.6

0.8

1.0

Figure 5.2-5 Graphs of F pdfs
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For a left-tail probability of α, where α is generally small, we note that if the
distribution of W is F(r1, r2), then the distribution of 1/W is F(r2, r1). Since

α = P[W ≤ F1−α(r1, r2)] = P[1/W ≥ 1/F1−α(r1, r2)]

and

P[1/W ≥ Fα(r2, r1)] = α,

it follows that

1
F1−α(r1, r2)

= Fα(r2, r1) or F1−α(r1, r2) = 1
Fα(r2, r1)

.

Example
5.2-5

Let the distribution of W be F(4, 6). From Table VII, we see that

F0.05(4, 6) = 4.53;

P(W ≤ 9.15) = 0.99.

That is, F0.01(4, 6) = 9.15. We also note that

F0.95(4, 6) = 1
F0.05(6, 4)

= 1
6.16

= 0.1623;

F0.99(4, 6) = 1
F0.01(6, 4)

= 1
15.21

.

It follows that

P(1/15.21 ≤ W ≤ 9.15) = 0.98;

P(1/6.16 ≤ W ≤ 4.53) = 0.90.

Example
5.2-6

(Box–Muller Transformation) Consider the following transformation, where X1 and
X2 are independent, each with the uniform distribution U(0, 1): Let

Z1 = √−2 ln X1 cos(2πX2), Z2 = √−2 ln X1 sin(2πX2)

or, equivalently, with Q = Z2
1 + Z2

2,

X1 = exp

(
−Z2

1 + Z2
2

2

)
= e−Q/2, X2 = 1

2π
arctan

(
Z2

Z1

)
,

which has Jacobian

J =

∣∣∣∣∣∣∣
−z1e−q/2 −z2e−q/2

−z2

2π(z2
1 + z2

2)

z1

2π(z2
1 + z2

2)

∣∣∣∣∣∣∣ = −1
2π

e−q/2.

Since the joint pdf of X1 and X2 is

f (x1, x2) = 1, 0 < x1 < 1, 0 < x2 < 1,
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it follows that the joint pdf of Z1 and Z2 is

g(z1, z2) =
∣∣∣∣−1
2π

e−q/2
∣∣∣∣ (1)

= 1
2π

exp

(
−z2

1 + z2
2

2

)
, −∞ < z1 < ∞, − ∞ < z2 < ∞.

Note that there is some difficulty with the definition of this transformation, par-
ticularly when z1 = 0. However, these difficulties occur at events with probability
zero and hence cause no problems. (See Exercise 5.2-15.) Summarizing, from two
independent U(0, 1) random variables we have generated two independent N(0, 1)
random variables through this Box–Muller transformation.

Exercises

5.2-1. Let X1, X2 denote two independent random vari-
ables, each with a χ2(2) distribution. Find the joint pdf of
Y1 = X1 and Y2 = X2 + X1. Note that the support of Y1,
Y2 is 0 < y1 < y2 < ∞. Also, find the marginal pdf of
each of Y1 and Y2. Are Y1 and Y2 independent?

5.2-2. Let X1 and X2 be independent chi-square random
variables with r1 and r2 degrees of freedom, respectively.
Let Y1 = (X1/r1)/(X2/r2) and Y2 = X2.

(a) Find the joint pdf of Y1 and Y2.

(b) Determine the marginal pdf of Y1 and show that Y1
has an F distribution. (This is another, but equivalent,
way of finding the pdf of F.)

5.2-3. Find the mean and the variance of an F random
variable with r1 and r2 degrees of freedom by first finding
E(U), E(1/V), E(U2), and E(1/V2).

5.2-4. Let the distribution of W be F(9, 24). Find the
following:

(a) F0.05(9, 24).

(b) F0.95(9, 24).

(c) P(0.277 ≤ W ≤ 2.70).

5.2-5. Let the distribution of W be F(8, 4). Find the
following:

(a) F0.01(8, 4).

(b) F0.99(8, 4).

(c) P(0.198 ≤ W ≤ 8.98).

5.2-6. Let X1 and X2 have independent gamma distri-
butions with parameters α, θ and β, θ , respectively. Let
W = X1/(X1 + X2). Use a method similar to that given
in the derivation of the F distribution (Example 5.2-4) to
show that the pdf of W is

g(w) = �(α + β)
�(α)�(β)

wα−1(1 − w)β−1, 0 < w < 1.

We say that W has a beta distribution with parameters α

and β. (See Example 5.2-3.)

5.2-7. Let X1 and X2 be independent chi-square random
variables with r1 and r2 degrees of freedom, respectively.
Show that

(a) U = X1/(X1 + X2) has a beta distribution with
α = r1/2 and β = r2/2.

(b) V = X2/(X1 + X2) has a beta distribution with
α = r2/2 and β = r1/2.

5.2-8. Let X have a beta distribution with parameters α

and β. (See Example 5.2-3.)

(a) Show that the mean and variance of X are, respec-
tively,

μ = α

α + β
and σ 2 = αβ

(α + β + 1)(α + β)2
.

(b) Show that when α > 1 and β > 1, the mode is at
x = (α − 1)/(α + β − 2).

5.2-9. Determine the constant c such that f (x) =
cx3(1 − x)6, 0 < x < 1, is a pdf.

5.2-10. When α and β are integers and 0 < p < 1, we
have∫ p

0

�(α + β)
�(α)�(β)

yα−1(1 − y)β−1 dy =
n∑

y=α

(
n
y

)
py(1 − p)n−y,

where n = α + β − 1. Verify this formula when α = 4 and
β = 3. Hint: Integrate the left member by parts several
times.

5.2-11. Evaluate∫ 0.4

0

�(7)
�(4)�(3)

y3(1 − y)2 dy

(a) Using integration.

(b) Using the result of Exercise 5.2-10.
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5.2-12. Let W1, W2 be independent, each with a Cauchy
distribution. In this exercise we find the pdf of the sample
mean, (W1 + W2)/2.

(a) Show that the pdf of X1 = (1/2)W1 is

f (x1) = 2

π
(
1 + 4x2

1

) , −∞ < x1 < ∞.

(b) Let Y1 = X1 + X2 = W and Y2 = X1, where
X2 = (1/2)W2. Show that the joint pdf of Y1 and Y2 is

g(y1, y2) = f (y1 − y2)f (y2), −∞ < y1 < ∞,

−∞ < y2 < ∞.

(c) Show that the pdf of Y1 = W is given by the convolu-
tion formula,

g1(y1) =
∫ ∞

−∞
f (y1 − y2)f (y2) dy2.

(d) Show that

g1(y1) = 1

π
(
1 + y2

1

) , −∞ < y1 < ∞.

That is, the pdf of W is the same as that of an
individual W.

5.2-13. Let X1, X2 be independent random variables rep-
resenting lifetimes (in hours) of two key components of a

device that fails when and only when both components
fail. Say each Xi has an exponential distribution with
mean 1000. Let Y1 = min(X1, X2) and Y2 = max(X1, X2),
so that the space of Y1, Y2 is 0 < y1 < y2 < ∞.

(a) Find G(y1, y2) = P(Y1 ≤ y1, Y2 ≤ y2).

(b) Compute the probability that the device fails after
1200 hours; that is, compute P(Y2 > 1200).

5.2-14. A company provides earthquake insurance. The
premium X is modeled by the pdf

f (x) = x
52

e−x/5, 0 < x < ∞,

while the claims Y have the pdf

g( y) = 1
5

e−y/5, 0 < y < ∞.

If X and Y are independent, find the pdf of Z = X/Y.

5.2-15. In Example 5.2-6, verify that the given transfor-
mation maps {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1} onto
{(z1, z2) : −∞ < z1 < ∞, −∞ < z2 < ∞}, except for a set
of points that has probability 0. Hint: What is the image
of vertical line segments? What is the image of horizontal
line segments?

5.2-16. Let W have an F distribution with parameters
r1 and r2. Show that Z = 1/[1 + (r1/r2)W] has a beta
distribution.

5.3 SEVERAL RANDOM VARIABLES
In Section 5.2, we introduced several distributions concerning two random variables.
Each of these random variables could be thought of as a measurement in some ran-
dom experiment. In this section, we consider the possibility of performing several
random experiments or one random experiment several times in which each trial
results in one measurement that can be considered a random variable. That is, we
obtain one random variable from each experiment, and thus we obtain a collec-
tion of several random variables from the several experiments. Further, suppose that
these experiments are performed in such a way that the events associated with any
one of them are independent of the events associated with others, and hence the
corresponding random variables are, in the probabilistic sense, independent.

Recall from Section 5.2 that if X1 and X2 are random variables of the discrete
type with probability mass functions f1(x1) and f2(x2), respectively, and if

P(X1 = x1 and X2 = x2) = P(X1 = x1) P(X2 = x2)

= f1(x1)f2(x2), x1 ∈ S1, x2 ∈ S2,

then X1 and X2 are said to be independent, and the joint pmf is f1(x1)f2(x2).
Sometimes the two random experiments are exactly the same. For example, we

could roll a fair die twice, resulting first in X1 and then in X2. It is reasonable to
say that the pmf of X1 is f (x1) = 1/6, x1 = 1, 2, . . . , 6, and the pmf of X2 is f (x2) =
1/6, x2 = 1, 2, . . . , 6. Assuming independence, which would be a fair way to perform
the experiments, the joint pmf is then
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f (x1)f (x2) =
(

1
6

)(
1
6

)
= 1

36
, x1 = 1, 2, . . . , 6; x2 = 1, 2, . . . , 6.

In general, if the pmf f (x) of the independent random variables X1 and X2 is the
same, then the joint pmf is f (x1)f (x2). Moreover, in this case, the collection of the two
random variables X1, X2 is called a random sample of size n = 2 from a distribution
with pmf f (x). Hence, in the two rolls of the fair die, we say that we have a random
sample of size n = 2 from the uniform distribution on the space {1, 2, 3, 4, 5, 6}.

Example
5.3-1

Let X1 and X2 be two independent random variables resulting from two rolls of a
fair die. That is, X1, X2 is a random sample of size n = 2 from a distribution with pmf
f (x) = 1/6, x = 1, 2, . . . , 6. We have

E(X1) = E(X2) =
6∑

x=1

xf (x) = 3.5.

Moreover,

Var(X1) = Var(X2) =
6∑

x=1

(x − 3.5)2f (x) = 35
12

.

In addition, from independence,

E(X1X2) = E(X1)E(X2) = (3.5)(3.5) = 12.25

and

E[(X1 − 3.5)(X2 − 3.5)] = E(X1 − 3.5)E(X2 − 3.5) = 0.

If Y = X1 + X2, then

E(Y) = E(X1) + E(X2) = 3.5 + 3.5 = 7

and

Var(Y) = E
[
(X1 + X2 − 7)2

]
= E

{
[(X1 − 3.5) + (X2 − 3.5)]2

}
= E

[
(X1 − 3.5)2

]
+ E [2(X1 − 3.5)(X2 − 3.5)] + E

[
(X2 − 3.5)2

]
= Var(X1) + (2)(0) + Var(X2)

= (2)
(

35
12

)
= 35

6
.

In Example 5.3-1, we can find the pmf g(y) of Y = X1 + X2. Since the space of
Y is {2, 3, 4, . . . , 12}, we have, by a rather straightforward calculation,

g(2) = P(X1 = 1, X2 = 1) = f (1)f (1) =
(

1
6

)(
1
6

)
= 1

36
,

g(3) = P(X1 = 1, X2 = 2 or X1 = 2, X2 = 1) =
(

1
6

)(
1
6

)
+

(
1
6

)(
1
6

)
= 2

36
,

g(4) = P(X1 = 1, X2 = 3 or X1 = 2, X2 = 2 or X1 = 3, X2 = 1) = 3
36

,
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and so on. This results in the pmf given by

y 2 3 4 5 6 7 8 9 10 11 12

g(y)
1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

With this pmf, it is simple to calculate

E(Y) =
12∑

y=2

y g(y) = 7

and

Var(Y) =
12∑

y=2

(y − 7)2 g(y) = 35
6

,

which agrees with the results of Example 5.3-1.
All of the definitions and results concerning two random variables of the dis-

crete type can be carried over to two random variables of the continuous type.
Moreover, the notions about two independent random variables can be extended
to n independent random variables, which can be thought of as measurements on
the outcomes of n random experiments. That is, if X1, X2, . . . , Xn are independent,
then the joint pmf or pdf is the product of the respective pmfs or pdfs, namely,
f1(x1)f2(x2) · · · fn(xn).

If all n of the distributions are the same, then the collection of n independent
and identically distributed random variables, X1, X2, . . . , Xn, is said to be a random
sample of size n from that common distribution. If f (x) is the common pmf or pdf of
these n random variables, then the joint pmf or pdf is f (x1)f (x2) · · · f (xn).

Example
5.3-2

Let X1, X2, X3 be a random sample from a distribution with pdf

f (x) = e−x, 0 < x < ∞.

The joint pdf of these three random variables is

f (x1, x2, x3) = (e−x1 )(e−x2)(e−x3 ) = e−x1−x2−x3 , 0 < xi < ∞, i = 1, 2, 3.

The probability
P(0 < X1 < 1, 2 < X2 < 4, 3 < X3 < 7)

=
(∫ 1

0
e−x1 dx1

)(∫ 4

2
e−x2 dx2

)(∫ 7

3
e−x3 dx3

)

= (1 − e−1)(e−2 − e−4)(e−3 − e−7),

because of the independence of X1, X2, X3.

Example
5.3-3

An electronic device runs until one of its three components fails. The lifetimes (in
weeks), X1, X2, X3, of these components are independent, and each has the Weibull
pdf

f (x) = 2x
25

e−(x/5)2
, 0 < x < ∞.
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The probability that the device stops running in the first three weeks is equal to

1 − P(X1 > 3, X2 > 3, X3 > 3) = 1 − P(X1 > 3)P(X2 > 3)P(X3 > 3)

= 1 −
(∫ ∞

3
f (x)dx

)3

= 1 −
([

−e−(x/5)2
]∞

3

)3

= 1 −
[
e−(3/5)2

]3 = 0.660.

Of course, when we are dealing with n random variables that are not indepen-
dent, the joint pmf (or pdf) could be represented as

f (x1, x2, . . . , xn), (x1, x2, . . . , xn) ∈ S.

The mathematical expectation (or expected value) of u(X1, X2, . . . , Xn) is given by

E[u(X1, X2, . . . , Xn)] =
∑∑

· · ·
∑

S
u(x1, x2, . . . , xn)f (x1, x2, . . . , xn)

in the discrete case. (Replace summations with integrals in the continuous case.) Of
course, Y = u(X1, X2, . . . , Xn) has a distribution with a pmf (or pdf), say g(y). It is
true, but we do not prove it, that

E(Y) =
∑

y

y g(y) =
∑∑

· · ·
∑

S
u(x1, x2, . . . , xn)f (x1, x2, . . . , xn).

In case X1, X2, . . . , Xn are independent random variables with pmfs (or pdfs) f1(x1),
f2(x2), . . . , fn(xn), respectively, then

f (x1, x2, . . . , xn) = f1(x1), f2(x2), . . . , fn(xn).

The next theorem proves that the expected value of the product of functions of
n independent random variables is the product of their expected values.

Theorem
5.3-1

Say X1, X2, . . . , Xn are independent random variables and Y = u1(X1) u2(X2) · · ·
un(Xn). If E[ui(Xi)], i = 1, 2, . . . , n, exist, then

E(Y) = E[u1(X1) u2(X2) · · · un(Xn)] = E[u1(X1)]E[u2(X2)] · · · E[un(Xn)].

Proof In the discrete case, we have

E [u1(X1)u2(X2) · · · un(Xn)]

=
∑
x1

∑
x2

· · ·
∑
xn

u1(x1) u2(x2) · · · un(xn)f1(x1)f2(x2) · · · fn(xn)

=
∑
x1

u1(x1)f1(x1)
∑
x2

u2(x2)f2(x2) · · ·
∑
xn

un(xn)fn(xn)

= E[u1(X1)]E[u2(x2)] · · · E[un(Xn)].

In the proof of the continuous case, obvious changes are made; in particular,
integrals replace summations. �
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REMARK Sometimes students recognize that X2 = (X)(X) and thus believe that
E(X2) is equal to [E(X)][E(X)] = [E(X)]2 because Theorem 5.3-1 states that the
expected value of the product is the product of the expected values. However,
note the hypothesis of independence in the theorem, and certainly X is not inde-
pendent of itself. Incidentally, if E(X2) did equal [E(X)]2, then the variance of
X, or

σ 2 = E(X2) − [E(X)]2,

would always equal zero. This happens only in the case of degenerate (one-point)
distributions.

We now prove an important theorem about the mean and the variance of a linear
combination of random variables.

Theorem
5.3-2

If X1, X2, . . . , Xn are n independent random variables with respective means
μ1, μ2, . . . , μn and variances σ 2

1 , σ 2
2 , . . . , σ 2

n , then the mean and the variance of
Y = ∑n

i=1 aiXi, where a1, a2, . . . , an are real constants, are, respectively,

μY =
n∑

i=1

aiμi and σ 2
Y =

n∑
i=1

a2
i σ 2

i .

Proof We have

μY = E(Y) = E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE(Xi) =
n∑

i=1

aiμi,

because the expected value of the sum is the sum of the expected values (i.e., E is
a linear operator). Also,

σ 2
Y = E[(Y − μY)2] = E

⎡⎣(
n∑

i=1

aiXi −
n∑

i=1

aiμi

)2
⎤⎦

= E

⎧⎨⎩
[

n∑
i=1

ai(Xi − μi)

]2
⎫⎬⎭ = E

⎡⎣ n∑
i=1

n∑
j=1

aiaj(Xi − μi)(Xj − μj)

⎤⎦.

Again using the fact that E is a linear operator, we obtain

σ 2
Y =

n∑
i=1

n∑
j=1

aiaj E
[
(Xi − μi)(Xj − μj)

]
.

However, if i �= j, then from the independence of Xi and Xj, we have

E
[
(Xi − μi)(Xj − μj)

] = E(Xi − μi)E(Xj − μj) = (μi − μi)(μj − μj) = 0.

Thus, the variance can be written as

σ 2
Y =

n∑
i=1

a2
i E[(Xi − μi)2] =

n∑
i=1

a2
i σ

2
i . �
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REMARK Although Theorem 5.3-2 gives the mean and the variance of a linear
function of independent random variables, the proof can easily be modified to the
case in which Xi and Xj are correlated. Then

E
[
(Xi − μi)(Xj − μj)

] = ρijσiσj,

instead of zero, where ρij is the correlation coefficient of Xi and Xj. Thus,

σ 2
Y =

n∑
i=1

a2
i σ

2
i + 2

∑∑
i<j

aiajρijσiσj,

where the factor 2 appears because the sum is over i < j and

aiajρijσiσj = ajaiρjiσjσi.

The mean of Y is still the same in both cases, namely,

μY =
n∑

i=1

aiμi.

We give two illustrations of the theorem.

Example
5.3-4

Let the independent random variables X1 and X2 have respective means μ1 = −4
and μ2 = 3 and variances σ 2

1 = 4 and σ 2
2 = 9. Then the mean and the variance of

Y = 3X1 − 2X2 are, respectively,

μY = (3)(−4) + (−2)(3) = −18

and

σ 2
Y = (3)2(4) + (−2)2(9) = 72.

Example
5.3-5

Let X1, X2 be a random sample from a distribution with mean μ and variance σ 2.
Let Y = X1 − X2; then

μY = μ − μ = 0

and

σ 2
Y = (1)2σ 2 + (−1)2σ 2 = 2σ 2.

Now consider the mean of a random sample, X1, X2, . . . , Xn, from a distribution
with mean μ and variance σ 2, namely,

X = X1 + X2 + · · · + Xn

n
,

which is a linear function with each ai = 1/n. Then

μX =
n∑

i=1

(
1
n

)
μ = μ and σ 2

X
=

n∑
i=1

(
1
n

)2

σ 2 = σ 2

n
.

That is, the mean of X is that of the distribution from which the sample arose, but the
variance of X is that of the underlying distribution divided by n. Any function of the
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sample observations, X1, X2, . . . , Xn, that does not have any unknown parameters
is called a statistic, so here X is a statistic and also an estimator of the distribution
mean μ. Another important statistic is the sample variance

S2 = 1
n − 1

n∑
i=1

(Xi − X )2,

and later we find that S2 is an estimator of σ 2.

Exercises

5.3-1. Let X1 and X2 be independent Poisson random
variables with respective means λ1 = 2 and λ2 = 3. Find

(a) P(X1 = 3, X2 = 5).

(b) P(X1 + X2 = 1).
Hint. Note that this event can occur if and only if
{X1 = 1, X2 = 0} or {X1 = 0, X2 = 1}.

5.3-2. Let X1 and X2 be independent random vari-
ables with respective binomial distributions b(3, 1/2) and
b(5, 1/2). Determine

(a) P(X1 = 2, X2 = 4).

(b) P(X1 + X2 = 7).

5.3-3. Let X1 and X2 be independent random variables
with probability density functions f1(x1)=2x1, 0< x1 < 1,
and f2(x2) = 4x3

2, 0 < x2 < 1, respectively. Compute

(a) P(0.5 < X1 < 1 and 0.4 < X2 < 0.8).

(b) E
(
X2

1 X3
2

)
.

5.3-4. Let X1 and X2 be a random sample of size
n = 2 from the exponential distribution with pdf f (x) =
2e−2x, 0 < x < ∞. Find

(a) P(0.5 < X1 < 1.0, 0.7 < X2 < 1.2).

(b) E[X1(X2 − 0.5)2].

5.3-5. Let X1 and X2 be observations of a random sam-
ple of size n = 2 from a distribution with pmf f (x) = x/6,
x = 1, 2, 3. Then find the pmf of Y = X1 + X2. Determine
the mean and the variance of the sum in two ways.

5.3-6. Let X1 and X2 be a random sample of size n = 2
from a distribution with pdf f (x) = 6x(1 − x), 0 < x < 1.
Find the mean and the variance of Y = X1 + X2.

5.3-7. The distributions of incomes in two cities follow the
two Pareto-type pdfs

f (x) = 2
x3

, 1 < x < ∞, and g( y) = 3
y4

, 1 < y < ∞,

respectively. Here one unit represents $20,000. One per-
son with income is selected at random from each city.
Let X and Y be their respective incomes. Compute
P(X < Y).

5.3-8. Suppose two independent claims are made on two
insured homes, where each claim has pdf

f (x) = 4
x5

, 1 < x < ∞,

in which the unit is $1000. Find the expected value of the
larger claim. Hint: If X1 and X2 are the two independent
claims and Y = max(X1, X2), then

G(y) = P(Y ≤ y) = P(X1 ≤ y)P(X2 ≤ y) = [P(X ≤ y)]2.

Find g(y) = G′(y) and E(Y).

5.3-9. Let X1, X2 be a random sample of size n = 2
from a distribution with pdf f (x) = 3x2, 0 < x < 1.
Determine

(a) P(max Xi < 3/4) = P(X1 < 3/4, X2 < 3/4).

(b) The mean and the variance of Y = X1 + X2.

5.3-10. Let X1, X2, X3 denote a random sample of size
n = 3 from a distribution with the geometric pmf

f (x) =
(

3
4

)(
1
4

)x−1

, x = 1, 2, 3, . . . .

(a) Compute P(X1 = 1, X2 = 3, X3 = 1).

(b) Determine P(X1 + X2 + X3 = 5).

(c) If Y equals the maximum of X1, X2, X3, find

P(Y ≤ 2) = P(X1 ≤ 2)P(X2 ≤ 2)P(X3 ≤ 2).

5.3-11. Let X1, X2, X3 be three independent random vari-
ables with binomial distributions b(4, 1/2), b(6, 1/3), and
b(12, 1/6), respectively. Find

(a) P(X1 = 2, X2 = 2, X3 = 5).

(b) E(X1X2X3).

(c) The mean and the variance of Y = X1 + X2 + X3.

5.3-12. Let X1, X2, X3 be a random sample of size n = 3
from the exponential distribution with pdf f (x) = e−x,
0 < x < ∞. Find

P(1 < min Xi) = P(1 < X1, 1 < X2, 1 < X3).
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5.3-13. A device contains three components, each of
which has a lifetime in hours with the pdf

f (x) = 2x
102

e−(x/10)2
, 0 < x < ∞.

The device fails with the failure of one of the components.
Assuming independent lifetimes, what is the probability
that the device fails in the first hour of its operation?
Hint: G( y) = P(Y ≤ y) = 1 − P(Y > y) = 1 − P
(all three > y).

5.3-14. Let X1, X2, X3 be independent random variables
that represent lifetimes (in hours) of three key compo-
nents of a device. Say their respective distributions are
exponential with means 1000, 1500, and 2000. Let Y be
the minimum of X1, X2, X3 and compute P(Y > 1000).

5.3-15. Three drugs are being tested for use as the treat-
ment of a certain disease. Let p1, p2, and p3 represent
the probabilities of success for the respective drugs. As
three patients come in, each is given one of the drugs in a
random order. After n = 10 “triples” and assuming inde-
pendence, compute the probability that the maximum
number of successes with one of the drugs exceeds eight
if, in fact, p1 = p2 = p3 = 0.7.

5.3-16. Each of eight bearings in a bearing assembly has
a diameter (in millimeters) that has the pdf

f (x) = 10x9, 0 < x < 1.

Assuming independence, find the cdf and the pdf of the
maximum diameter (say, Y) of the eight bearings and
compute P(0.9999 < Y < 1).

5.3-17. In considering medical insurance for a certain
operation, let X equal the amount (in dollars) paid for
the doctor and let Y equal the amount paid to the hospi-
tal. In the past, the variances have been Var(X) = 8100,
Var(Y) = 10,000, and Var(X + Y) = 20,000. Due to
increased expenses, it was decided to increase the doc-
tor’s fee by $500 and increase the hospital charge Y by

8%. Calculate the variance of X + 500 + (1.08)Y, the new
total claim.

5.3-18. The lifetime in months of a certain part has a
gamma distribution with α = θ = 2. A company buys
three such parts and uses one until it fails, replacing it
with a second part. When the latter fails, it is replaced by
the third part. What are the mean and the variance of the
total lifetime (the sum of the lifetimes of the three parts)
associated with this situation?

5.3-19. Two components operate in parallel in a device,
so the device fails when and only when both components
fail. The lifetimes, X1 and X2, of the respective compo-
nents are independent and identically distributed with an
exponential distribution with θ = 2. The cost of operating
the device is Z = 2Y1 + Y2, where Y1 = min(X1, X2) and
Y2 = max(X1, X2). Compute E(Z).

5.3-20. Let X and Y be independent random variables
with nonzero variances. Find the correlation coefficient of
W = XY and V = X in terms of the means and variances
of X and Y.

5.3-21. Flip n = 8 fair coins and remove all that came up
heads. Flip the remaining coins (that came up tails) and
remove the heads again. Continue flipping the remain-
ing coins until each has come up heads. We shall find
the pmf of Y, the number of trials needed. Let Xi equal
the number of flips required to observe heads on coin
i, i = 1, 2, . . . , 8. Then Y = max(X1, X2, . . . , X8).

(a) Show that P(Y ≤ y) = [1 − (1/2)y]8.

(b) Show that the pmf of Y is defined by P(Y = y) =
[1 − (1/2)y]8 − [1 − (1/2)y−1]8, y = 1, 2, . . . .

(c) Use a computer algebra system such as Maple or
Mathematica to show that the mean of Y is E(Y) =
13,315,424/3,011,805 = 4.421.

(d) What happens to the expected value of Y as the
number of coins is doubled?

5.4 THE MOMENT-GENERATING FUNCTION TECHNIQUE
The first three sections of this chapter presented several techniques for determin-
ing the distribution of a function of random variables with known distributions.
Another technique for this purpose is the moment-generating function technique.
If Y = u(X1, X2, . . . , Xn), we have noted that we can find E(Y) by evaluat-
ing E[u(X1, X2, . . . , Xn)]. It is also true that we can find E[etY ] by evaluating
E[etu(X1, X2, ..., Xn)]. We begin with a simple example.

Example
5.4-1

Let X1 and X2 be independent random variables with uniform distributions on
{1, 2, 3, 4}. Let Y = X1 + X2. For example, Y could equal the sum when two fair
four-sided dice are rolled. The mgf of Y is

MY(t) = E
(

etY
)

= E
[
et(X1+X2)

]
= E

(
etX1etX2

)
.
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The independence of X1 and X2 implies that

MY(t) = E
(

etX1
)

E
(

etX2
)

.

In this example, X1 and X2 have the same pmf, namely,

f (x) = 1
4

, x = 1, 2, 3, 4,

and thus the same mgf,

MX(t) = 1
4

et + 1
4

e2t + 1
4

e3t + 1
4

e4t.

It then follows that MY(t) = [MX(t)]2 equals

1
16

e2t + 2
16

e3t + 3
16

e4t + 4
16

e5t + 3
16

e6t + 2
16

e7t + 1
16

e8t.

Note that the coefficient of ebt is equal to the probability P(Y = b); for example,
4/16 = P(Y = 5). Thus, we can find the distribution of Y by determining its mgf.

In some applications, it is sufficient to know the mean and variance of a lin-
ear combination of random variables, say, Y. However, it is often helpful to know
exactly how Y is distributed. The next theorem can frequently be used to find the
distribution of a linear combination of independent random variables.

Theorem
5.4-1

If X1, X2, . . . , Xn are independent random variables with respective moment-
generating functions MXi(t), i = 1, 2, 3, . . . , n, where −hi < t < hi, i = 1, 2, . . . , n,
for positive numbers hi, i = 1, 2, . . . , n, then the moment-generating function of
Y = ∑n

i=1 aiXi is

MY(t) =
n∏

i=1

MXi (ait), where − hi < ait < hi, i = 1, 2, . . . , n.

Proof From Theorem 5.3-1, the mgf of Y is given by

MY(t) = E
[
etY

]
= E

[
et(a1X1+a2X2+···+anXn)

]
= E

[
ea1tX1ea2tX2 · · · eantXn

]
= E

[
ea1tX1

]
E
[
ea2tX2

]
· · · E

[
eantXn

]
.

However, since

E
(

etXi
)

= MXi(t),

it follows that

E
(

eaitXi
)

= MXi(ait).

Thus, we have

MY(t) = MX1 (a1t)MX2(a2t) · · · MXn (ant) =
n∏

i=1

MXi(ait). �
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A corollary follows immediately, and it will be used in some important examples.

Corollary
5.4-1

If X1, X2, . . . , Xn are observations of a random sample from a distribution with
moment-generating function M(t), where −h < t < h, then

(a) the moment-generating function of Y = ∑n
i=1 Xi is

MY(t) =
n∏

i=1

M(t) = [M(t)]n, − h < t < h;

(b) the moment-generating function of X = ∑n
i=1(1/n)Xi is

MX(t) =
n∏

i=1

M
(

t
n

)
=

[
M

(
t
n

)]n

, − h <
t
n

< h.

Proof For (a), let ai = 1, i = 1, 2, . . . , n, in Theorem 5.4-1. For (b), take ai = 1/n,
i = 1, 2, . . . , n. �

The next two examples and the exercises give some important applications
of Theorem 5.4-1 and its corollary. Recall that the mgf, once found, uniquely
determines the distribution of the random variable under consideration.

Example
5.4-2

Let X1, X2, . . . , Xn denote the outcomes of n Bernoulli trials, each with probability
of success p. The mgf of Xi, i = 1, 2, . . . , n, is

M(t) = q + pet, − ∞ < t < ∞.

If

Y =
n∑

i=1

Xi,

then

MY(t) =
n∏

i=1

(q + pet) = (q + pet)n, −∞ < t < ∞.

Thus, we again see that Y is b(n, p).

Example
5.4-3

Let X1, X2, X3 be the observations of a random sample of size n = 3 from the expo-
nential distribution having mean θ and, of course, mgf M(t) = 1/(1 − θ t), t < 1/θ .
The mgf of Y = X1 + X2 + X3 is

MY(t) =
[
(1 − θ t)−1

]3 = (1 − θ t)−3, t < 1/θ ,

which is that of a gamma distribution with parameters α = 3 and θ . Thus, Y has this
distribution. On the other hand, the mgf of X is

MX(t) =
[(

1 − θ t
3

)−1
]3

=
(

1 − θ t
3

)−3

, t < 3/θ .

Hence, the distribution of X is gamma with the parameters α = 3 and θ/3,
respectively.
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Theorem
5.4-2

Let X1, X2, . . . , Xn be independent chi-square random variables with r1, r2, . . . , rn
degrees of freedom, respectively. Then Y = X1+X2+· · ·+Xn is χ2(r1+r2+· · ·+rn).

Proof By Theorem 5.4-1 with each a = 1, the mgf of Y is

MY(t) =
n∏

i=1

MXi(t) = (1 − 2t)−r1/2(1 − 2t)−r2/2 · · · (1 − 2t)−rn/2

= (1 − 2t)−�ri/2, with t < 1/2,

which is the mgf of a χ2(r1+r2+ · · · + rn). Thus, Y is χ2(r1+r2+ · · · + rn). �

The next two corollaries combine and extend the results of Theorems 3.3-2 and
5.4-2 and give one interpretation of degrees of freedom.

Corollary
5.4-2

Let Z1, Z2, . . . , Zn have standard normal distributions, N(0, 1). If these random
variables are independent, then W = Z2

1 + Z2
2 + · · · + Z2

n has a distribution that is
χ2(n).

Proof By Theorem 3.3-2, Z2
i is χ2(1) for i = 1, 2, . . . , n. From Theorem 5.4-2, with

Y = W and ri = 1, it follows that W is χ2(n). �

Corollary
5.4-3

If X1, X2, . . . , Xn are independent and have normal distributions N(μi, σ 2
i ), i =

1, 2, . . . , n, respectively, then the distribution of

W =
n∑

i=1

(Xi − μi)2

σ 2
i

is χ2(n).

Proof This follows from Corollary 5.4-2, since Zi = (Xi −μi)/σi is N(0, 1), and thus

Z2
i = (Xi − μi)2

σ 2
i

is χ2(1), i = 1, 2, . . . , n. �

Exercises

5.4-1. Let X1, X2, X3 be a random sample of size 3 from
the distribution with pmf f (x) = 1/4, x = 1, 2, 3, 4.
For example, observe three independent rolls of a fair
four-sided die.

(a) Find the pmf of Y = X1 + X2 + X3.

(b) Sketch a bar graph of the pmf of Y.

5.4-2. Let X1 and X2 have independent distributions
b(n1, p) and b(n2, p). Find the mgf of Y = X1 + X2. How
is Y distributed?

5.4-3. Let X1, X2, X3 be mutually independent random
variables with Poisson distributions having means 2, 1,
and 4, respectively.
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(a) Find the mgf of the sum Y = X1 + X2 + X3.

(b) How is Y distributed?

(c) Compute P(3 ≤ Y ≤ 9).

5.4-4. Generalize Exercise 5.4-3 by showing that the sum
of n independent Poisson random variables with respec-
tive means μ1, μ2, . . . , μn is Poisson with mean

μ1 + μ2 + · · · + μn.

5.4-5. Let Z1, Z2, . . . , Z7 be a random sample from the
standard normal distribution N(0, 1). Let W = Z2

1 + Z2
2 +

· · · + Z2
7. Find P(1.69 < W < 14.07).

5.4-6. Let X1, X2, X3, X4, X5 be a random sample of size
5 from a geometric distribution with p = 1/3.

(a) Find the mgf of Y = X1 + X2 + X3 + X4 + X5.

(b) How is Y distributed?

5.4-7. Let X1, X2, X3 denote a random sample of size 3
from a gamma distribution with α = 7 and θ = 5.

(a) Find the mgf of Y = X1 + X2 + X3.

(b) How is Y distributed?

5.4-8. Let W = X1 + X2 + · · · + Xh, a sum of h mutually
independent and identically distributed exponential ran-
dom variables with mean θ . Show that W has a gamma
distribution with parameters α = h and θ , respectively.

5.4-9. Let X and Y, with respective pmfs f (x) and g( y),
be independent discrete random variables, each of whose
support is a subset of the nonnegative integers 0, 1, 2, . . . .
Show that the pmf of W = X + Y is given by the
convolution formula

h(w) =
w∑

x=0

f (x)g(w − x), w = 0, 1, 2, . . . .

Hint: Argue that h(w) = P(W = w) is the probability
of the w + 1 mutually exclusive events (x, y = w − x),
x = 0, 1, . . . , w.

5.4-10. Let X equal the outcome when a fair four-sided
die that has its faces numbered 0, 1, 2, and 3 is rolled. Let
Y equal the outcome when a fair four-sided die that has
its faces numbered 0, 4, 8, and 12 is rolled.

(a) Define the mgf of X.

(b) Define the mgf of Y.

(c) Let W = X + Y, the sum when the pair of dice is
rolled. Find the mgf of W.

(d) Give the pmf of W; that is, determine P(W = w),
w = 0, 1, . . . , 15, from the mgf of W.

5.4-11. Let X and Y equal the outcomes when two fair
six-sided dice are rolled. Let W = X + Y. Assuming
independence, find the pmf of W when

(a) The first die has three faces numbered 0 and three
faces numbered 2, and the second die has its faces
numbered 0, 1, 4, 5, 8, and 9.

(b) The faces on the first die are numbered 0, 1, 2, 3, 4,
and 5, and the faces on the second die are numbered
0, 6, 12, 18, 24, and 30.

5.4-12. Let X and Y be the outcomes when a pair of fair
eight-sided dice is rolled. Let W = X + Y. How should
the faces of the dice be numbered so that W has a uniform
distribution on 0, 1, . . . , 15?

5.4-13. Let X1, X2, . . . , X8 be a random sample from a
distribution having pmf f (x) = (x + 1)/6, x = 0, 1, 2.

(a) Use Exercise 5.4-9 to find the pmf of W1 = X1 + X2.

(b) What is the pmf of W2 = X3 + X4?

(c) Now find the pmf of W = W1 + W2 = X1 + X2 +
X3 + X4.

(d) Find the pmf of Y = X1 + X2 + · · · + X8.

(e) Construct probability histograms for X1, W1, W, and
Y. Are these histograms skewed or symmetric?

5.4-14. The number of accidents in a period of one week
follows a Poisson distribution with mean 2. The numbers
of accidents from week to week are independent. What is
the probability of exactly seven accidents in a given three
weeks? Hint: See Exercise 5.4-4.

5.4-15. Given a fair four-sided die, let Y equal the num-
ber of rolls needed to observe each face at least once.

(a) Argue that Y = X1 + X2 + X3 + X4, where Xi has a
geometric distribution with pi = (5−i)/4, i = 1, 2, 3, 4,
and X1, X2, X3, X4 are independent.

(b) Find the mean and variance of Y.

(c) Find P(Y = y), y = 4, 5, 6, 7.

5.4-16. The number X of sick days taken during a year by
an employee follows a Poisson distribution with mean 2.
Let us observe four such employees. Assuming indepen-
dence, compute the probability that their total number of
sick days exceeds 10.

5.4-17. In a study concerning a new treatment of a cer-
tain disease, two groups of 25 participants in each were
followed for five years. Those in one group took the old
treatment and those in the other took the new treat-
ment. The theoretical dropout rate for an individual was
50% in both groups over that 5-year period. Let X be
the number that dropped out in the first group and Y
the number in the second group. Assuming independence
where needed, give the sum that equals the probabil-
ity that Y ≥ X + 2. Hint: What is the distribution of
Y − X + 25?

5.4-18. The number of cracks on a highway aver-
ages 0.5 per mile and follows a Poisson distribution.
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Assuming independence (which may not be a good
assumption; why?), what is the probability that, in a
40-mile stretch of that highway, there are fewer than 15
cracks?

5.4-19. A doorman at a hotel is trying to get three taxi-
cabs for three different couples. The arrival of empty
cabs has an exponential distribution with mean 2 minutes.
Assuming independence, what is the probability that the
doorman will get all three couples taken care of within 6
minutes?

5.4-20. The time X in minutes of a visit to a cardiovascu-
lar disease specialist by a patient is modeled by a gamma
pdf with α = 1.5 and θ = 10. Suppose that you are such
a patient and have four patients ahead of you. Assuming

independence, what integral gives the probability that you
will wait more than 90 minutes?

5.4-21. Let X and Y be independent with distributions
N(5, 16) and N(6, 9), respectively. Evaluate P(X > Y) =
P(X − Y > 0).

5.4-22. Let X1 and X2 be two independent random vari-
ables. Let X1 and Y = X1 + X2 be χ2(r1) and χ2(r),
respectively, where r1 < r.

(a) Find the mgf of X2.

(b) What is its distribution?

5.4-23. Let X be N(0, 1). Use the mgf technique to show
that Y = X2 is χ2(1). Hint: Evaluate the integral repre-
senting E(etX2

) by writing w = x
√

1 − 2t.

5.5 RANDOM FUNCTIONS ASSOCIATED WITH NORMAL
DISTRIBUTIONS

In statistical applications, it is often assumed that the population from which a sam-
ple is taken is normally distributed, N(μ, σ 2). There is then interest in estimating
the parameters μ and σ 2 or in testing conjectures about these parameters. The usual
statistics that are used in these activities are the sample mean X and the sample vari-
ance S2; thus, we need to know something about the distribution of these statistics
or functions of these statistics.

We now use the mgf technique of Section 5.4 to prove a theorem that deals with
linear functions of independent normally distributed random variables.

Theorem
5.5-1

If X1, X2, . . . , Xn are n mutually independent normal variables with means
μ1, μ2, . . . , μn and variances σ 2

1 , σ 2
2 , . . . , σ 2

n , respectively, then the linear function

Y =
n∑

i=1

ciXi

has the normal distribution

N

(
n∑

i=1

ciμi,
n∑

i=1

c2
i σ

2
i

)
.

Proof By Theorem 5.4-1, we have, with −∞ < cit < ∞, or −∞ < t < ∞,

MY(t) =
n∏

i=1

MXi(cit) =
n∏

i=1

exp
(
μicit + σ 2

i c2
i t2/2

)
because MXi(t) = exp(μit + σ 2

i t2/2), i = 1, 2, . . . , n. Thus,

MY(t) = exp

[(
n∑

i=1

ciμi

)
t +

(
n∑

i=1

c2
i σ

2
i

)(
t2

2

)]
.
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This is the mgf of a distribution that is

N

(
n∑

i=1

ciμi,
n∑

i=1

c2
i σ

2
i

)
.

Thus, Y has this normal distribution. �

From Theorem 5.5-1, we observe that the difference of two independent nor-
mally distributed random variables, say, Y = X1 − X2, has the normal distribution
N(μ1 − μ2, σ 2

1 + σ 2
2 ).

Example
5.5-1

Let X1 and X2 equal the number of pounds of butterfat produced by two Holstein
cows (one selected at random from those on the Koopman farm and one selected
at random from those on the Vliestra farm, respectively) during the 305-day lac-
tation period following the births of calves. Assume that the distribution of X1
is N(693.2, 22820) and the distribution of X2 is N(631.7, 19205). Moreover, let X1
and X2 be independent. We shall find P(X1 > X2). That is, we shall find the
probability that the butterfat produced by the Koopman farm cow exceeds that
produced by the Vliestra farm cow. (Sketch pdfs on the same graph for these
two normal distributions.) If we let Y = X1 − X2, then the distribution of Y is
N(693.2 − 631.7, 22820 + 19205). Thus,

P(X1 > X2) = P(Y > 0) = P
(

Y − 61.5√
42025

>
0 − 61.5

205

)
= P(Z > −0.30) = 0.6179.

Corollary
5.5-1

If X1, X2, . . . , Xn are observations of a random sample of size n from the normal
distribution N(μ, σ 2), then the distribution of the sample mean X = (1/n)

∑n
i=1 Xi

is N(μ, σ 2/n).

Proof Let ci = 1/n, μi = μ, and σ 2
i = σ 2 in Theorem 5.5-1. �

Corollary 5.5-1 shows that if X1, X2, . . . , Xn is a random sample from the nor-
mal distribution, N(μ, σ 2), then the probability distribution of X is also normal with
the same mean μ but a variance σ 2/n. This means that X has a greater probabil-
ity of falling into an interval containing μ than does a single observation, say, X1.
For example, if μ = 50, σ 2 = 16, and n = 64, then P(49 < X < 51) = 0.9544,
whereas P(49 < X1 < 51) = 0.1974. This property is illustrated again in the next
example.

Example
5.5-2

Let X1, X2, . . . , Xn be a random sample from the N(50, 16) distribution. We know
that the distribution of X is N(50, 16/n). To illustrate the effect of n, the graph of the
pdf of X is given in Figure 5.5-1 for n = 1, 4, 16, and 64. When n = 64, compare the
areas that represent P(49 < X < 51) and P(49 < X1 < 51).
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n = 64

x

0.2

0.4

0.6

0.8

40 45 50 55 60

n = 16

n = 4

n = 1

f(  )x

Figure 5.5-1 pdfs of means of samples from N(50, 16)

The next theorem gives an important result that will be used in statistical appli-
cations. In connection with those applications, we will use the sample variance S2

to estimate the variance, σ 2, when sampling from the normal distribution, N(μ, σ 2).
(More will be said about S2 at the time of its use.)

Theorem
5.5-2

Let X1, X2, . . . , Xn be observations of a random sample of size n from the normal
distribution N(μ, σ 2). Then the sample mean,

X = 1
n

n∑
i=1

Xi,

and the sample variance,

S2 = 1
n − 1

n∑
i=1

(Xi − X)2,

are independent and

(n − 1)S2

σ 2
=

∑n
i=1 (Xi − X)2

σ 2
is χ2(n−1).

Proof We are not prepared to prove the independence of X and S2 at this time (see
Section 6.7 for a proof), so we accept it without proof here. To prove the second
part, note that

W =
n∑

i=1

(
Xi − μ

σ

)2

=
n∑

i=1

[
(Xi − X) + (X − μ)

σ

]2

=
n∑

i=1

(
Xi − X

σ

)2

+ n(X − μ)2

σ 2
(5.5-1)
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because the cross-product term is equal to

2
n∑

i=1

(
X − μ

) (
Xi − X

)
σ 2

=
2
(

X − μ
)

σ 2

n∑
i=1

(
Xi − X

)
= 0.

But Yi = (Xi − μ)/σ , i = 1, 2, . . . n, are standardized normal variables that are
independent. Hence, W = ∑n

i=1 Y2
i is χ2(n) by Corollary 5.4-3. Moreover, since X

is N(μ, σ 2/n), it follows that

Z2 =
(

X − μ

σ/
√

n

)2

= n(X − μ)2

σ 2

is χ2(1) by Theorem 3.3-2. In this notation, Equation 5.5-1 becomes

W = (n − 1)S2

σ 2
+ Z2.

However, from the fact that X and S2 are independent, it follows that Z2 and S2

are also independent. In the mgf of W, this independence permits us to write

E
[
etW

]
= E

[
e

t
{

(n−1)S2/σ 2+Z2
}]

= E
[
et(n−1)S2/σ 2

etZ2
]

= E
[
et(n−1)S2/σ 2

]
E
[
etZ2

]
.

Since W and Z2 have chi-square distributions, we can substitute their mgfs to
obtain

(1 − 2t)−n/2 = E
[
et(n−1)S2/σ 2

]
(1 − 2t)−1/2.

Equivalently, we have

E
[
et(n−1)S2/σ 2

]
= (1 − 2t)−(n−1)/2, t <

1
2

.

This, of course, is the mgf of a χ2(n−1)-variable; accordingly, (n − 1)S2/σ 2 has that
distribution. �

Combining the results of Corollary 5.4-3 and Theorem 5.5-2, we see that when
sampling is from a normal distribution,

U =
n∑

i=1

(Xi − μ)2

σ 2

is χ2(n) and

W =
n∑

i=1

(Xi − X)2

σ 2

is χ2(n−1). That is, when the population mean, μ, in
∑n

i=1(Xi−μ)2 is replaced by the
sample mean, X, one degree of freedom is lost. There are more general situations in
which a degree of freedom is lost for each parameter estimated in certain chi-square
random variables, some of which are found in Chapters 7, 8, and 9.
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Example
5.5-3

Let X1, X2, X3, X4 be a random sample of size 4 from the normal distribution,
N(76.4, 383). Then

U =
4∑

i=1

(Xi − 76.4)2

383
is χ2(4),

W =
4∑

i=1

(Xi − X)2

383
is χ2(3),

and, for examples,

P(0.711 ≤ U ≤ 7.779) = 0.90 − 0.05 = 0.85,

P(0.352 ≤ W ≤ 6.251) = 0.90 − 0.05 = 0.85.

In later sections, we shall illustrate the importance of the chi-square distribution
in applications.

We now prove a theorem that is the basis for some of the most important
inferences in statistics.

Theorem
5.5-3

(Student’s t distribution) Let

T = Z√
U/r

,

where Z is a random variable that is N(0, 1), U is a random variable that is χ2(r),
and Z and U are independent. Then T has a t distribution with pdf

f (t) = �((r + 1)/2)√
πr �(r/2)

1

(1 + t2/r)(r+1)/2
, −∞ < t < ∞.

Proof The joint pdf of Z and U is

g(z, u) = 1√
2π

e−z2/2 1
�(r/2)2r/2

ur/2−1e−u/2, −∞ < z < ∞, 0 < u < ∞.

The cdf F(t) = P(T ≤ t) of T is given by

F(t) = P
(

Z/
√

U/r ≤ t
)

= P
(

Z ≤ √
U/r t

)
=

∫ ∞

0

∫ √
(u/r) t

−∞
g(z, u) dz du.

That is,

F(t) = 1√
π �(r/2)

∫ ∞

0

[∫ √
(u/r) t

−∞
e−z2/2

2(r+1)/2
dz

]
ur/2−1e−u/2 du.

The pdf of T is the derivative of the cdf; so, applying the fundamental theorem of
calculus to the inner integral (interchanging the derivative and integral operators
is permitted here), we find that
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f (t) = F ′(t) = 1√
π �(r/2)

∫ ∞

0

e−(u/2)(t2/r)

2(r+1)/2

√
u
r

ur/2−1e−u/2 du

= 1√
πr �(r/2)

∫ ∞

0

u(r+1)/2−1

2(r+1)/2
e−(u/2)(1+t2/r) du.

In the integral, make the change of variables

y = (1 + t2/r)u, so that
du
dy

= 1
1 + t2/r

.

Thus,

f (t) = �[(r + 1)/2]√
πr �(r/2)

[
1

(1 + t2/r)(r+1)/2

] ∫ ∞

0

y(r+1)/2−1

�[(r + 1)/2] 2(r+1)/2
e−y/2 dy.

The integral in this last expression for f (t) is equal to 1 because the integrand is
like the pdf of a chi-square distribution with r + 1 degrees of freedom. Hence, the
pdf is

f (t) = �[(r + 1)/2]√
πr �(r/2)

1

(1 + t2/r)(r+1)/2
, −∞ < t < ∞. �

Graphs of the pdf of T when r = 1, 3, and 7, along with the N(0, 1) pdf, are
given in Figure 5.5-2(a). In this figure, we see that the tails of the t distribution are
heavier than those of a normal one; that is, there is more extreme probability in the
t distribution than in the standardized normal one.

To find probabilities for a t random variable with r degrees of freedom, use your
calculator, a computer program, or Table VI in Appendix B. If T has a t distribution
with r degrees of freedom, we say that the distribution of T is t(r). Furthermore,
right-tail probabilities of size α are denoted by tα(r). [See Figure 5.5-2(b).]

0.1

0.2

0.3

0.4

−3 −2 −1

(a) (b)

10 2 3

T, r = 7 T, r = 7

T, r = 1 (Cauchy)

T, r = 3

N(0, 1)

α = 0.10

tα(7)

0.1

0.2

0.3

0.4

−3 −2 −1 0 2 3

Figure 5.5-2 t distribution pdfs and right-tail probability
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Example
5.5-4

Let the distribution of T be t(11). Then

t0.05(11) = 1.796 and − t0.05(11) = −1.796.

Thus,

P(−1.796 ≤ T ≤ 1.796) = 0.90.

We can also find values of the cdf such as

P(T ≤ 2.201) = 0.975 and P(T ≤ −1.363) = 0.10.

We can use the results of Corollary 5.5-1 and Theorems 5.5-2 and 5.5-3 to con-
struct an important T random variable. Given a random sample X1, X2, . . . , Xn from
a normal distribution, N(μ, σ 2), let

Z = X − μ

σ/
√

n
and U = (n − 1)S2

σ 2
.

Then the distribution of Z is N(0, 1) by Corollary 5.5-1. Theorem 5.5-2 tells us that
the distribution of U is χ2(n−1) and that Z and U are independent. Thus,

T =
X − μ

σ/
√

n√√√√ (n − 1)S2

σ 2

/
(n − 1)

= X − μ

S/
√

n
(5.5-2)

has a Student’s t distribution (see Historical Comments) with r = n − 1 degrees
of freedom by Theorem 5.5-3. We use this T in Section 7.1 to construct con-
fidence intervals for an unknown mean μ of a normal distribution. (See also
Exercise 5.5-16.)

Exercises

5.5-1. Let X1, X2, . . . , X16 be a random sample from a
normal distribution N(77, 25). Compute

(a) P(77 < X < 79.5). (b) P(74.2 < X < 78.4).

5.5-2. Let X be N(50, 36). Using the same set of axes,
sketch the graphs of the probability density functions of

(a) X.

(b) X, the mean of a random sample of size 9 from this
distribution.

(c) X, the mean of a random sample of size 36 from this
distribution.

5.5-3. Let X equal the widest diameter (in millimeters)
of the fetal head measured between the 16th and 25th
weeks of pregnancy. Assume that the distribution of X
is N(46.58, 40.96). Let X be the sample mean of a random
sample of n = 16 observations of X.

(a) Give the values of E(X) and Var(X).

(b) Find P(44.42 ≤ X ≤ 48.98).

5.5-4. Let X equal the weight of the soap in a “6-pound”
box. Assume that the distribution of X is N(6.05, 0.0004).

(a) Find P(X < 6.0171).

(b) If nine boxes of soap are selected at random from the
production line, find the probability that at most two
boxes weigh less than 6.0171 pounds each. Hint: Let Y
equal the number of boxes that weigh less than 6.0171
pounds.

(c) Let X be the sample mean of the nine boxes. Find
P(X ≤ 6.035).

5.5-5. Let X equal the weight (in grams) of a nail of the
type that is used for making decks. Assume that the dis-
tribution of X is N(8.78, 0.16). Let X be the mean of a
random sample of the weights of n = 9 nails.
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(a) Sketch, on the same set of axes, the graphs of the pdfs
of X and of X.

(b) Let S2 be the sample variance of the nine weights.
Find constants a and b so that P(a ≤ S2 ≤ b) = 0.90.

Hint: Because 8S2/0.16 is χ2(8) and P(a ≤ S2 ≤ b) is
equivalent to P(8a/0.16 ≤ 8S2/0.16 ≤ 8b/0.16), you can
find 8a/0.16 and 8b/0.16 in Table IV in Appendix B.

5.5-6. At a heat-treating company, iron castings and steel
forgings are heat-treated to achieve desired mechani-
cal properties and machinability. One steel forging is
annealed to soften the part for each machining. Two
lots of this part, made of 1020 steel, are heat-treated in
two different furnaces. The specification for this part is
36-66 on the Rockwell G scale. Let X1 and X2 equal the
respective hardness measurements for parts selected ran-
domly from furnaces 1 and 2. Assume that the distribu-
tions of X1 and X2 are N(47.88, 2.19) and N(43.04, 14.89),
respectively.

(a) Sketch the pdfs of X1 and X2 on the same graph.

(b) Compute P(X1 > X2), assuming independence of X1
and X2.

5.5-7. Suppose that the distribution of the weight of a
prepackaged “1-pound bag” of carrots is N(1.18, 0.072)
and the distribution of the weight of a prepackaged
“3-pound bag” of carrots is N(3.22, 0.092). Selecting bags
at random, find the probability that the sum of three
1-pound bags exceeds the weight of one 3-pound bag.
Hint: First determine the distribution of Y, the sum of
the three, and then compute P(Y > W), where W is the
weight of the 3-pound bag.

5.5-8. Let X denote the wing length in millimeters of a
male gallinule and Y the wing length in millimeters of a
female gallinule. Assume that X is N(184.09, 39.37) and
Y is N(171.93, 50.88) and that X and Y are independent.
If a male and a female gallinule are captured, what is the
probability that X is greater than Y?

5.5-9. Suppose that the length of life in hours (say, X) of
a light bulb manufactured by company A is N(800, 14400)
and the length of life in hours (say, Y) of a light bulb
manufactured by company B is N(850, 2500). One bulb
is randomly selected from each company and is burned
until “death.”

(a) Find the probability that the length of life of the bulb
from company A exceeds the length of life of the bulb
from company B by at least 15 hours.

(b) Find the probability that at least one of the bulbs
“lives” for at least 920 hours.

5.5-10. A consumer buys n light bulbs, each of which has
a lifetime that has a mean of 800 hours, a standard devia-
tion of 100 hours, and a normal distribution. A light bulb
is replaced by another as soon as it burns out. Assuming

independence of the lifetimes, find the smallest n so that
the succession of light bulbs produces light for at least
10,000 hours with a probability of 0.90.

5.5-11. A marketing research firm suggests to a com-
pany that two possible competing products can gener-
ate incomes X and Y (in millions) that are N(3, 1)
and N(3.5, 4), respectively. Clearly, P(X < Y) > 1/2.
However, the company would prefer the one with the
smaller variance if, in fact, P(X > 2) > P(Y > 2). Which
product does the company select?

5.5-12. Let the independent random variables X1 and X2
be N(0, 1) and χ2(r), respectively. Let Y1 = X1/

√
X2/r

and Y2 = X2.

(a) Find the joint pdf of Y1 and Y2.

(b) Determine the marginal pdf of Y1 and show that Y1
has a t distribution. (This is another, equivalent, way
of finding the pdf of T.)

5.5-13. Let Z1, Z2, and Z3 have independent standard
normal distributions, N(0, 1).

(a) Find the distribution of

W = Z1√(
Z2

2 + Z2
3

)
/2

.

(b) Show that

V = Z1√
(Z2

1 + Z2
2)/2

has pdf f (v) = 1/
(
π
√

2 − v2
)

, − √
2 < v <

√
2.

(c) Find the mean of V.

(d) Find the standard deviation of V.

(e) Why are the distributions of W and V so different?

5.5-14. Let T have a t distribution with r degrees of free-
dom. Show that E(T) = 0 provided that r ≥ 2, and
Var(T) = r/(r − 2) provided that r ≥ 3, by first finding
E(Z), E(1/

√
U), E(Z2), and E(1/U).

5.5-15. Let the distribution of T be t(17). Find

(a) t0.01(17).

(b) t0.95(17).

(c) P(−1.740 ≤ T ≤ 1.740).

5.5-16. Let n = 9 in the T statistic defined in Equ-
ation 5.5-2.

(a) Find t0.025 so that P(−t0.025 ≤ T ≤ t0.025) = 0.95.

(b) Solve the inequality [−t0.025 ≤ T ≤ t0.025] so that μ is
in the middle.
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5.6 THE CENTRAL LIMIT THEOREM
In Section 5.4, we found that the mean X of a random sample of size n from a dis-
tribution with mean μ and variance σ 2 > 0 is a random variable with the properties
that

E(X) = μ and Var(X) = σ 2

n
.

As n increases, the variance of X decreases. Consequently, the distribution of X
clearly depends on n, and we see that we are dealing with sequences of distributions.

In Theorem 5.5-1, we considered the pdf of X when sampling is from the normal
distribution N(μ, σ 2). We showed that the distribution of X is N(μ, σ 2/n), and in
Figure 5.5-1, by graphing the pdfs for several values of n, we illustrated the property
that as n increases, the probability becomes concentrated in a small interval centered
at μ. That is, as n increases, X tends to converge to μ, or ( X − μ) tends to converge
to 0 in a probability sense. (See Section 5.8.)

In general, if we let

W =
√

n
σ

( X − μ) = X − μ

σ/
√

n
= Y − nμ√

n σ
,

where Y is the sum of a random sample of size n from some distribution with mean
μ and variance σ 2, then, for each positive integer n,

E(W) = E

[
X − μ

σ/
√

n

]
= E(X) − μ

σ/
√

n
= μ − μ

σ/
√

n
= 0

and

Var(W) = E(W2) = E

[
(X − μ)2

σ 2/n

]
=

E
[
(X − μ)2

]
σ 2/n

= σ 2/n
σ 2/n

= 1.

Thus, while X−μ tends to “degenerate” to zero, the factor
√

n/σ in
√

n(X−μ)/σ
“spreads out” the probability enough to prevent this degeneration. What, then, is the
distribution of W as n increases? One observation that might shed some light on the
answer to this question can be made immediately. If the sample arises from a normal
distribution, then, from Theorem 5.5-1, we know that X is N(μ, σ 2/n), and hence W
is N(0, 1) for each positive n. Thus, in the limit, the distribution of W must be N(0, 1).
So if the solution of the question does not depend on the underlying distribution (i.e.,
it is unique), the answer must be N(0, 1). As we will see, that is exactly the case, and
this result is so important that it is called the central limit theorem, the proof of
which is given in Section 5.9.

Theorem
5.6-1

(Central Limit Theorem) If X is the mean of a random sample X1, X2, . . . , Xn of
size n from a distribution with a finite mean μ and a finite positive variance σ 2,
then the distribution of

W = X − μ

σ/
√

n
=

∑n
i=1 Xi − nμ√

n σ

is N(0, 1) in the limit as n → ∞.



Section 5.6 The Central Limit Theorem 201

When n is “sufficiently large,” a practical use of the central limit theorem is
approximating the cdf of W, namely,

P(W ≤ w) ≈
∫ w

−∞
1√
2π

e−z2/2 dz = 
(w).

We present some illustrations of this application, discuss the notion of “sufficiently
large,” and try to give an intuitive feeling for the central limit theorem.

Example
5.6-1

Let X be the mean of a random sample of n = 25 currents (in milliamperes) in a
strip of wire in which each measurement has a mean of 15 and a variance of 4. Then
X has an approximate N(15, 4/25) distribution. As an illustration,

P(14.4 < X < 15.6) = P

(
14.4 − 15

0.4
<

X − 15
0.4

<
15.6 − 15

0.4

)
≈ 
(1.5) − 
(−1.5) = 0.9332 − 0.0668 = 0.8664.

Example
5.6-2

Let X1, X2, . . . , X20 denote a random sample of size 20 from the uniform distribution
U(0, 1). Here E(Xi) = 1/2 and Var(Xi) = 1/12, for i = 1, 2, . . . , 20. If Y = X1 +X2 +
· · · + X20, then

P(Y ≤ 9.1) = P

(
Y − 20(1/2)√

20/12
≤ 9.1 − 10√

20/12

)
= P(W ≤ −0.697)

≈ 
(−0.697)

= 0.2429.

Also,

P(8.5 ≤ Y ≤ 11.7) = P

(
8.5 − 10√

5/3
≤ Y − 10√

5/3
≤ 11.7 − 10√

5/3

)
= P(−1.162 ≤ W ≤ 1.317)

≈ 
(1.317) − 
(−1.162)

= 0.9061 − 0.1226 = 0.7835.

Example
5.6-3

Let X denote the mean of a random sample of size 25 from the distribution whose
pdf is f (x) = x3/4, 0 < x < 2. It is easy to show that μ = 8/5 = 1.6 and σ 2 = 8/75.
Thus,

P(1.5 ≤ X ≤ 1.65) = P

(
1.5 − 1.6√
8/75/

√
25

≤ X − 1.6√
8/75/

√
25

≤ 1.65 − 1.6√
8/75/

√
25

)
= P(−1.531 ≤ W ≤ 0.765)

≈ 
(0.765) − 
(−1.531)

= 0.7779 − 0.0629 = 0.7150.

These examples show how the central limit theorem can be used for approxi-
mating certain probabilities concerning the mean X or the sum Y = ∑n

i=1 Xi of a
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random sample. That is, X is approximately N(μ, σ 2/n), and Y is approximately
N(nμ, nσ 2), when n is “sufficiently large,” where μ and σ 2 are, respectively, the
mean and the variance of the underlying distribution from which the sample arose.
Generally, if n is greater than 25 or 30, these approximations will be good. However,
if the underlying distribution is symmetric, unimodal, and of the continuous type,
a value of n as small as 4 or 5 can yield an adequate approximation. Moreover, if
the original distribution is approximately normal, X would have a distribution very
close to normal when n equals 2 or 3. In fact, we know that if the sample is taken
from N(μ, σ 2), X is exactly N(μ, σ 2/n) for every n = 1, 2, 3, . . . .

The examples that follow will help to illustrate the previous remarks and will
give the reader a better intuitive feeling about the central limit theorem. In particu-
lar, we shall see how the size of n affects the distribution of X and Y = ∑n

i=1 Xi for
samples from several underlying distributions.

Example
5.6-4

Let X1, X2, X3, X4 be a random sample of size 4 from the uniform distribution U(0, 1)
with pdf f (x) = 1, 0 < x < 1. Then μ = 1/2 and σ 2 = 1/12. We shall compare the
graph of the pdf of

Y =
n∑

i=1

Xi

with the graph of the N[n(1/2), n(1/12)] pdf for n = 2 and 4, respectively.
By methods given in Section 5.2, we can determine that the pdf of Y = X1+X2 is

g(y) =
⎧⎨⎩ y, 0 < y ≤ 1,

2 − y, 1 < y < 2.

This is the triangular pdf that is graphed in Figure 5.6-1(a). In this figure, the
N[2(1/2), 2(1/12)] pdf is also graphed.

Moreover, the pdf of Y = X1 + X2 + X3 + X4 is

g( y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y3

6
, 0 ≤ y < 1,

−3y3 + 12y2 − 12y + 4
6

, 1 ≤ y < 2,

3y3 − 24y2 + 60y − 44
6

, 2 ≤ y < 3,

−y3 + 12y2 − 48y + 64
6

, 3 ≤ y ≤ 4.

This pdf is graphed in Figure 5.6-1(b) along with the N[4(1/2), 4(1/12)] pdf. If we
are interested in finding P(1.7 ≤ Y ≤ 3.2), we can do so by evaluating∫ 3.2

1.7
g(y) dy,

which is tedious. (See Exercise 5.6-9.) It is much easier to use a normal approxima-
tion, which results in a number close to the exact value.

In Example 5.6-4 and Exercise 5.6-9, we show that even for a small value of n,
such as n = 4, the sum of the sample items has an approximate normal distribution.
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Figure 5.6-1 pdfs of sums of uniform random variables

The next example illustrates that, for some underlying distributions (particularly
skewed ones), n must be quite large in order for us to obtain a satisfactory approx-
imation. To keep the scale on the horizontal axis the same for each value of n, we
will use the following result: Let f (x) and F(x), respectively, be the pdf and cdf of
a random variable, X, of the continuous type having mean μ and variance σ 2. Let
W = (X − μ)/σ . The cdf of W is given by

G(w)=P(W ≤ w) = P
(

X − μ

σ
≤ w

)
=P(X ≤ σw + μ) = F(σw + μ).

Thus, the pdf of W is given by

g(w) = F ′(σw + μ) = σ f (σw + μ).

Example
5.6-5

Let X1, X2, . . . , Xn be a random sample of size n from a chi-square distribution with
one degree of freedom. If

Y =
n∑

i=1

Xi,

then Y is χ2(n), and it follows that E(Y) = n and Var(Y) = 2n. Let

W = Y − n√
2n

.

The pdf of W is given by

g(w) = √
2n

(
√

2n w + n)n/2−1

�
(n

2

)
2n/2

e−(
√

2n w+n)/2, −n/
√

2n < w < ∞.

Note that w > −n/
√

2n corresponds to y > 0. In Figure 5.6-2, the graphs of W are
given along with the N(0, 1) pdf for n = 20 and 100, respectively.

In order to gain an intuitive idea about how the sample size n affects the distri-
bution of W = ( X − μ)/(σ/

√
n ), it is helpful to simulate values of W on a computer
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Figure 5.6-2 pdfs of sums of chi-square random variables

using different values of n and different underlying distributions. The next example
illustrates this simulation.

REMARK Recall that we simulate observations from a distribution of X having a
continuous-type cdf F(x) as follows: Suppose F(a) = 0, F(b) = 1, and F(x) is strictly
increasing for a < x < b. Let Y = F(x) and let the distribution of Y be U(0, 1).
If y is an observed value of Y, then x = F−1( y) is an observed value of X. (See
Section 5.1.) Thus, if y is the value of a computer-generated random number, then
x = F−1( y) is the simulated value of X.

Example
5.6-6

It is often difficult to find the exact distribution of the random variable W =
( X − μ)/(σ/

√
n ), unless you use a computer algebra system such as Maple. In this

example, we give some empirical evidence about the distribution of W by simulating
random samples on the computer. We also superimpose the theoretical pdf of W,
which we found by using Maple. Let X1, X2, . . . , Xn denote a random sample of size
n from the distribution with pdf f (x), cdf F(x), mean μ, and variance σ 2. We simu-
lated 1000 random samples of size n = 2 and n = 7 from each of two distributions.
We then computed the value of W for each sample, thus obtaining 1000 observed
values of W. Next, we constructed a histogram of these 1000 values by using 21
intervals of equal length. A relative frequency histogram of the observations of W,
the pdf for the standard normal distribution, and the theoretical pdf of W are given
in Figures 5.6-3 and 5.6-4.

(a) In Figure 5.6-3, f (x) = (x+1)/2 and F(x) = (x+1)2/4 for −1 < x < 1; μ = 1/3,
σ 2 = 2/9; and n = 2 and 7. This underlying distribution is skewed to the left.

(b) In Figure 5.6-4, f (x) = (3/2)x2 and F(x) = (x3 + 1)/2 for −1 < x < 1; μ = 0,
σ 2 = 3/5; and n = 2 and 7. [Sketch the graph of y = f (x). Give an argument
as to why the histogram for n = 2 looks the way it does.] This underlying
distribution is U-shaped; thus, W does not follow a normal distribution with
small n.

Note that these examples have not proved anything. They are presented to give
evidence of the truth of the central limit theorem, and they do give a nice feeling for
what is happening.
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So far, all the illustrations have concerned distributions of the continuous type.
However, the hypotheses for the central limit theorem do not require the distribu-
tion to be continuous. We shall consider applications of the central limit theorem for
discrete-type distributions in the next section.

Exercises

5.6-1. Let X be the mean of a random sample of size
12 from the uniform distribution on the interval (0, 1).
Approximate P(1/2 ≤ X ≤ 2/3).

5.6-2. Let Y = X1 + X2 + · · · + X15 be the sum of a ran-
dom sample of size 15 from the distribution whose pdf is
f (x) = (3/2)x2, −1 < x < 1. Using the pdf of Y, we find
that P(−0.3 ≤ Y ≤ 1.5) = 0.22788. Use the central limit
theorem to approximate this probability.

5.6-3. Let X be the mean of a random sample of size
36 from an exponential distribution with mean 3.
Approximate P(2.5 ≤ X ≤ 4).

5.6-4. Approximate P(39.75 ≤ X ≤ 41.25), where X is
the mean of a random sample of size 32 from a distribu-
tion with mean μ = 40 and variance σ 2 = 8.

5.6-5. Let X1, X2, . . . , X18 be a random sample of size 18
from a chi-square distribution with r = 1. Recall that
μ = 1 and σ 2 = 2.

(a) How is Y = ∑18
i=1 Xi distributed?

(b) Using the result of part (a), we see from Table IV in
Appendix B that

P(Y ≤ 9.390) = 0.05 and P(Y ≤ 34.80) = 0.99.

Compare these two probabilities with the approxima-
tions found with the use of the central limit theorem.

5.6-6. A random sample of size n = 18 is taken from the
distribution with pdf f (x) = 1 − x/2, 0 ≤ x ≤ 2.

(a) Find μ and σ 2. (b) Find P(2/3 ≤ X ≤ 5/6),
approximately.
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5.6-7. Let X equal the maximal oxygen intake of a human
on a treadmill, where the measurements are in milliliters
of oxygen per minute per kilogram of weight. Assume
that, for a particular population, the mean of X is μ =
54.030 and the standard deviation is σ = 5.8. Let X be
the sample mean of a random sample of size n = 47. Find
P(52.761 ≤ X ≤ 54.453), approximately.

5.6-8. Let X equal the weight in grams of a minia-
ture candy bar. Assume that μ = E(X) = 24.43 and
σ 2 = Var(X) = 2.20. Let X be the sample mean of a
random sample of n = 30 candy bars. Find

(a) E(X). (b) Var(X). (c) P(24.17 ≤ X ≤ 24.82),
approximately.

5.6-9. In Example 5.6-4, compute P(1.7 ≤ Y ≤ 3.2)
with n = 4 and compare your answer with the normal
approximation of this probability.

5.6-10. Let X and Y equal the respective numbers of
hours a randomly selected child watches movies or car-
toons on TV during a certain month. From experience,
it is known that E(X) = 30, E(Y) = 50, Var(X) = 52,
Var(Y) = 64, and Cov(X, Y) = 14. Twenty-five children
are selected at random. Let Z equal the total number of
hours these 25 children watch TV movies or cartoons in
the next month. Approximate P(1970 < Z < 2090). Hint:
Use the remark after Theorem 5.3-2.

5.6-11. A company has a one-year group life policy that
divides its employees into two classes as follows:

Class Probability of Death Benefit Number in Class

A 0.01 $20,000 1000

B 0.03 $10,000 500

The insurance company wants to collect a premium that
equals the 90th percentile of the distribution of the total
claims. What should that premium be?

5.6-12. At certain times during the year, a bus company
runs a special van holding 10 passengers from Iowa City
to Chicago. After the opening of sales of the tickets, the
time (in minutes) between sales of tickets for the trip has
a gamma distribution with α = 3 and θ = 2.

(a) Assuming independence, record an integral that gives
the probability of being sold out within one hour.

(b) Approximate the answer in part (a).

5.6-13. The tensile strength X of paper, in pounds per
square inch, has μ = 30 and σ = 3. A random sample
of size n = 100 is taken from the distribution of tensile
strengths. Compute the probability that the sample mean
X is greater than 29.5 pounds per square inch.

5.6-14. Suppose that the sick leave taken by the typical
worker per year has μ = 10, σ = 2, measured in days.
A firm has n = 20 employees. Assuming independence,
how many sick days should the firm budget if the finan-
cial officer wants the probability of exceeding the number
of days budgeted to be less than 20%?

5.6-15. Let X1, X2, X3, X4 represent the random times in
days needed to complete four steps of a project. These
times are independent and have gamma distributions with
common θ = 2 and α1 = 3, α2 = 2, α3 = 5, α4 = 3, respec-
tively. One step must be completed before the next can
be started. Let Y equal the total time needed to complete
the project.

(a) Find an integral that represents P(Y ≤ 25).

(b) Using a normal distribution, approximate the answer
to part (a). Is this approach justified?

5.7 APPROXIMATIONS FOR DISCRETE DISTRIBUTIONS
In this section, we illustrate how the normal distribution can be used to approximate
probabilities for certain discrete-type distributions. One of the more important dis-
crete distributions is the binomial distribution. To see how the central limit theorem
can be applied, recall that a binomial random variable can be described as the sum
of Bernoulli random variables. That is, let X1, X2, . . . , Xn be a random sample from a
Bernoulli distribution with mean μ = p and variance σ 2 = p(1−p), where 0 < p < 1.
Then Y = ∑n

i=1 Xi is b(n, p). The central limit theorem states that the distribution of

W = Y − np√
np(1 − p)

= X − p√
p(1 − p)/n

is N(0, 1) in the limit as n → ∞. Thus, if n is “sufficiently large,” the distribution of
Y is approximately N[np, np(1 − p)], and probabilities for the binomial distribution
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b(n, p) can be approximated with this normal distribution. A rule often stated is
that n is sufficiently large if np ≥ 5 and n(1 − p) ≥ 5.

Note that we shall be approximating probabilities for a discrete distribution with
probabilities for a continuous distribution. Let us discuss a reasonable procedure
in this situation. If V is N(μ, σ 2), then P(a < V < b) is equivalent to the area
bounded by the pdf of V, the v-axis, v = a, and v = b. Now recall that for a Y that is
b(n, p), the probability histogram for Y was defined as follows: For each y such that
k − 1/2 < y = k < k + 1/2, let

f (k) = n!
k!(n − k)! pk(1 − p)n−k, k = 0, 1, 2, . . . , n.

Then P(Y = k) can be represented by the area of the rectangle with a height of
P(Y = k) and a base of length 1 centered at k. Figure 5.7-1 shows the graph of the
probability histogram for the binomial distribution b(4, 1/4). In using the normal
distribution to approximate probabilities for the binomial distribution, areas under
the pdf for the normal distribution will be used to approximate areas of rectangles in
the probability histogram for the binomial distribution. Since these rectangles have
unit base centered at the integers, this is called a half-unit correction for continuity.
Note that, for an integer k,

P(Y = k) = P(k − 1/2 < Y < k + 1/2).

Example
5.7-1

Let the distribution of Y be b(10, 1/2). Then, by the central limit theorem, P(a <

Y < b) can be approximated with the use of the normal distribution with mean
10(1/2) = 5 and variance 10(1/2)(1/2) = 5/2. Figure 5.7-2(a) shows the graph
of the probability histogram for b(10, 1/2) and the graph of the pdf of the normal
distribution N(5, 5/2). Note that the area of the rectangle whose base is(

k − 1
2

, k + 1
2

)
and the area under the normal curve between k−1/2 and k+1/2 are approximately
equal for each integer k in Figure 5.7-2(a), illustrating the half-unit correction for
continuity.

f(y)

y

0.1

0.2

0.3

0.4

10 2 3 4

Figure 5.7-1 Probability histogram for
b(4, 1/4)
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Figure 5.7-2 Normal approximation for the binomial distribution

Example
5.7-2

Let Y be b(18, 1/6). Because np = 18(1/6) = 3 < 5, the normal approximation
is not as good here. Figure 5.7-2(b) illustrates this by depicting the skewed prob-
ability histogram for b(18, 1/6) and the symmetric pdf of the normal distribution
N(3, 5/2).

Example
5.7-3

Let Y have the binomial distribution of Example 5.7-1 and Figure 5.7-2(a), namely,
b(10, 1/2). Then

P(3 ≤ Y < 6) = P(2.5 ≤ Y ≤ 5.5),

because P(Y = 6) is not in the desired answer. But the latter equals

P

(
2.5 − 5√

10/4
≤ Y − 5√

10/4
≤ 5.5 − 5√

10/4

)
≈ 
(0.316) − 
(−1.581)

= 0.6240 − 0.0570 = 0.5670.

Using Table II in Appendix B, we find that P(3 ≤ Y < 6) = 0.5683.

Example
5.7-4

Let Y be b(36, 1/2). Then, since

μ = (36)(1/2) = 18 and σ 2 = (36)(1/2)(1/2) = 9,

it follows that

P(12 < Y ≤ 18) = P(12.5 ≤ Y ≤ 18.5)

= P
(

12.5 − 18√
9

≤ Y − 18√
9

≤ 18.5 − 18√
9

)
≈ 
(0.167) − 
(−1.833)

= 0.5329.

Note that 12 was increased to 12.5 because P(Y = 12) is not included in the desired
probability. Using the binomial formula, we find that

P(12 < Y ≤ 18) = P(13 ≤ Y ≤ 18) = 0.5334.
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(You may verify this answer using your calculator or Minitab.) Also,

P(Y = 20) = P(19.5 ≤ Y ≤ 20.5)

= P
(

19.5 − 18√
9

≤ Y − 18√
9

≤ 20.5 − 18√
9

)
≈ 
(0.833) − 
(0.5)

= 0.1060.

Using the binomial formula, we have P(Y = 20) = 0.1063. So, in this situation, the
approximations are extremely good.

Note that, in general, if Y is b(n, p), n is large, and k = 0, 1, . . . , n, then

P(Y ≤ k) ≈ 


(
k + 1/2 − np√

npq

)
and

P(Y < k) ≈ 


(
k − 1/2 − np√

npq

)
,

because in the first case k is included and in the second it is not.
We now show how the Poisson distribution with large enough mean can be

approximated with the use of a normal distribution.

Example
5.7-5

A random variable having a Poisson distribution with mean 20 can be thought of
as the sum Y of the observations of a random sample of size 20 from a Poisson
distribution with mean 1. Thus,

W = Y − 20√
20

has a distribution that is approximately N(0, 1), and the distribution of Y is approx-
imately N(20, 20). (See Figure 5.7-3.) For example, using a half-unit correction for
continuity,

P(16 < Y ≤ 21) = P(16.5 ≤ Y ≤ 21.5)

= P
(

16.5 − 20√
20

≤ Y − 20√
20

≤ 21.5 − 20√
20

)
≈ 
(0.335) − 
(−0.783)

= 0.4142.

Note that 16 is increased to 16.5 because Y = 16 is not included in the event
{16 < Y ≤ 21}. The answer obtained with the Poisson formula is 0.4226.

In general, if Y has a Poisson distribution with mean λ, then the distribution of

W = Y − λ√
λ

is approximately N(0, 1) when λ is sufficiently large.
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Figure 5.7-3 Normal approximation of Poisson, λ = 20

REMARK If you have a statistical calculator or a statistics computer package, use
it to compute discrete probabilities. However, it is important to learn how to apply
the central limit theorem.

Exercises

5.7-1. Let the distribution of Y be b(25, 1/2). Find the
given probabilities in two ways: exactly, using Table II in
Appendix B; and approximately, using the central limit
theorem. Compare the two results in each of the three
cases.

(a) P(10 < Y ≤ 12). (b) P(12 ≤ Y < 15). (c) P(Y = 12).

5.7-2. Suppose that among gifted seventh-graders who
score very high on a mathematics exam, approximately
20% are left-handed or ambidextrous. Let X equal the
number of left-handed or ambidextrous students among
a random sample of n = 25 gifted seventh-graders. Find
P(2 < X < 9)

(a) Using Table II in Appendix B.

(b) Approximately, using the central limit theorem.

REMARK Since X has a skewed distribution, the
approximation is not as good as that for the symmetrical
distribution where p = 0.50, even though np = 5.

5.7-3. A public opinion poll in Southern California was
conducted to determine whether southern Californians
are prepared for the “big earthquake” that experts pre-
dict will devastate the region sometime in the next 50
years. It was learned that “60% have not secured objects
in their homes that might fall and cause injury and dam-
age during a temblor.” In a random sample of n = 864
southern Californians, let X equal the number who “have

not secured objects in their homes.” Find P(496 ≤ X ≤
548), approximately.

5.7-4. Let X equal the number out of n = 48 mature
aster seeds that will germinate when p = 0.75 is the prob-
ability that a particular seed germinates. Approximate
P(35 ≤ X ≤ 40).

5.7-5. Let X1, X2, . . . , X48 be a random sample of size 48
from the distribution with pdf f (x) = 1/x2, 1 < x < ∞.
Approximate the probability that at most 10 of these ran-
dom variables have values greater than 4. Hint: Let the
ith trial be a success if Xi > 4, i = 1, 2, . . . , 48, and let Y
equal the number of successes.

5.7-6. In adults, the pneumococcus bacterium causes 70%
of pneumonia cases. In a random sample of n = 84
adults who have pneumonia, let X equal the number
whose pneumonia was caused by the pneumococcus bac-
terium. Use the normal distribution to find P(X ≤ 52),
approximately.

5.7-7. Let X equal the number of alpha particles emit-
ted by barium-133 per second and counted by a Geiger
counter. Assume that X has a Poisson distribution with
λ = 49. Approximate P(45 < X < 60).

5.7-8. A candy maker produces mints that have a label
weight of 20.4 grams. Assume that the distribution of the
weights of these mints is N(21.37, 0.16).
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(a) Let X denote the weight of a single mint selected
at random from the production line. Find P(X <

20.857).

(b) During a particular shift, 100 mints are selected at ran-
dom and weighed. Let Y equal the number of these
mints that weigh less than 20.857 grams. Approximate
P(Y ≤ 5).

(c) Let X equal the sample mean of the 100 mints selected
and weighed on a particular shift. Find P(21.31 ≤ X ≤
21.39).

5.7-9. Let X1, X2, . . . , X30 be a random sample of size
30 from a Poisson distribution with a mean of 2/3.
Approximate

(a) P

(
15 <

30∑
i=1

Xi ≤ 22

)
. (b) P

(
21 ≤

30∑
i=1

Xi < 27

)
.

5.7-10. In the casino game roulette, the probability of
winning with a bet on red is p = 18/38. Let Y equal the
number of winning bets out of 1000 independent bets that
are placed. Find P(Y > 500), approximately.

5.7-11. About 60% of all Americans have a sedentary
lifestyle. Select n = 96 Americans at random. (Assume
independence.) What is the probability that between 50
and 60, inclusive, do not exercise regularly?

5.7-12. If X is b(100, 0.1), find the approximate value of
P(12 ≤ X ≤ 14), using

(a) The normal approximation.

(b) The Poisson approximation.

(c) The binomial.

5.7-13. Let X1, X2, . . . , X36 be a random sample of size
36 from the geometric distribution with pmf f (x) =
(1/4)x−1(3/4), x = 1, 2, 3, . . . . Approximate

(a) P

(
46 ≤

36∑
i=1

Xi ≤ 49

)
. (b) P(1.25 ≤ X ≤ 1.50).

Hint: Observe that the distribution of the sum is of the
discrete type.

5.7-14. A die is rolled 24 independent times. Let Y be
the sum of the 24 resulting values. Recalling that Y is a
random variable of the discrete type, approximate

(a) P(Y ≥ 86). (b) P(Y < 86). (c) P(70 < Y ≤ 86).

5.7-15. In the United States, the probability that a child
dies in his or her first year of life is about p = 0.01. (It is
actually slightly less than this.) Consider a group of 5000
such infants. What is the probability that between 45 and
53, inclusive, die in the first year of life?

5.7-16. Let Y equal the sum of n = 100 Bernoulli trials.
That is, Y is b(100, p). For each of (i) p = 0.1, (ii) p = 0.5,
and (iii) p = 0.8,

(a) Draw the approximating normal pdfs, all on the same
graph.

(b) Find P( | Y/100 − p | ≤ 0.015), approximately.

5.7-17. The number of trees in one acre has a Poisson
distribution with mean 60. Assuming independence, com-
pute P(5950 ≤ X ≤ 6100), approximately, where X is the
number of trees in 100 acres.

5.7-18. Assume that the background noise X of a digi-
tal signal has a normal distribution with μ = 0 volts and
σ = 0.5 volt. If we observe n = 100 independent measure-
ments of this noise, what is the probability that at least 7
of them exceed 0.98 in absolute value?

(a) Use the Poisson distribution to approximate this
probability.

(b) Use the normal distribution to approximate this
probability.

(c) Use the binomial distribution to approximate this
probability.

PROBABILISTIC COMMENTS (Simulation: Central Limit Theorem) As we
think about what de Moivre, Laplace, and Gauss discovered in their times, we see
that it was truly amazing. Of course, de Moivre could compute the probabilities asso-
ciated with various binomial distributions and see how they “piled up” in that bell
shape, and he came up with the normal formula. Now, Laplace and Gauss had an
even tougher task, as they could not easily find the probabilities associated with the
sample mean X, even with simple underlying distributions. As an illustration, sup-
pose the random sample X1, X2, . . . , Xn arises from a uniform distribution on the
space [0, 1). It is extremely difficult to compute probabilities about X unless n is
very small, such as n = 2 or n = 3. Today, of course, we can use a computer algebra
system (CAS) to simulate the distribution of X for any sample size and get fairly
accurate estimates of the probabilities associated with X. We did this 10,000 times
for n = 6, which resulted in Figure 5.7-4. In this chapter, we learned that X has an
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Figure 5.7-4 Simulation of 10,000 xs for samples of size
6 from U(0, 1)

approximate normal distribution with mean 1/2 and variance 1/72. We could then
superimpose this normal pdf on the graph of the histogram for comparison. (Rather
than superimposing the normal pdf, we used the actual pdf of X that is shown in
the display that follows.) From the histogram, we see the bell-shaped curve result-
ing from this simulation. None of these three outstanding mathematicians had the
advantage of the computer. Today, a researcher with a new idea about a probability
distribution can check easily with a simulation to see if it is worth devoting more
time to the idea.

The simulated xs were grouped into 18 classes with equal lengths of 1/18. The
frequencies of the 18 classes are

0, 1, 9, 72, 223, 524, 957, 1467, 1744, 1751, 1464, 954, 528, 220, 69, 15, 2, 0.

Using these data, we can estimate certain probabilities, for example,

P
(

1
6

≤ X ≤ 2
6

)
≈ 72 + 223 + 524

10,000
= 0.0819

and

P
(

11
18

≤ X ≤ 1
)

≈ 954 + 528 + 220 + 69 + 15 + 2 + 0
10,000

= 0.1788.

With a CAS, it is sometimes possible to find pdfs that involve rather complex
calculations. For example, Maple was used to find the actual pdf of X for this exam-
ple. It is this pdf that is superimposed on the histogram. Letting u = x, we find that
the pdf is given by
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g(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6

(
324u5

5

)
, 0 < u < 1/6,

6
(

1
20

− 324u5 + 324u4 − 108u3 + 18u2 − 3u
2

)
, 1/6 ≤ u < 2/6,

6
(

−79
20

+ 117u
2

+ 648u5 − 1296u4 + 972u3 − 342u2
)

, 2/6 ≤ u < 3/6,

6
(

731
20

− 693u
2

− 648u5 + 1944u4 − 2268u3
)

, 3/6 ≤ u < 4/6,

6
(
−1829

20
+ 1227u

2
− 1602u2 + 2052u3 + 324u5 − 1296u4

)
, 4/6 ≤ u < 5/6,

6

(
324

5
− 324u + 648u2 − 648u3 + 324u4 − 324u5

5

)
, 5/6 ≤ u < 1.

We can also calculate ∫ 2/6

1/6
g(u) du = 19

240
= 0.0792

and ∫ 1

11/18
g(u) du = 5, 818

32, 805
= 0.17735.

Although these integrations are not difficult, they are tedious to do by hand. �

5.8 CHEBYSHEV’S INEQUALITY AND CONVERGENCE IN PROBABILITY
In this section, we use Chebyshev’s inequality to show, in another sense, that the
sample mean, X, is a good statistic to use to estimate a population mean μ; the
relative frequency of success in n independent Bernoulli trials, Y/n, is a good statistic
for estimating p. We examine the effect of the sample size n on these estimates.

We begin by showing that Chebyshev’s inequality gives added significance to
the standard deviation in terms of bounding certain probabilities. The inequality is
valid for all distributions for which the standard deviation exists. The proof is given
for the discrete case, but it holds for the continuous case, with integrals replacing
summations.

Theorem
5.8-1

(Chebyshev’s Inequality) If the random variable X has a mean μ and variance σ 2,
then, for every k ≥ 1,

P(|X − μ| ≥ kσ ) ≤ 1
k2

.

Proof Let f (x) denote the pmf of X. Then
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σ 2 = E[(X − μ)2] =
∑
x∈S

(x − μ)2f (x)

=
∑
x∈A

(x − μ)2f (x) +
∑
x∈A′

(x − μ)2f (x), (5.8-1)

where

A = {x : |x − μ| ≥ kσ }.
The second term in the right-hand member of Equation 5.8-1 is the sum of non-
negative numbers and thus is greater than or equal to zero. Hence,

σ 2 ≥
∑
x∈A

(x − μ)2f (x).

However, in A, |x − μ| ≥ kσ ; so

σ 2 ≥
∑
x∈A

(kσ )2f (x) = k2σ 2
∑
x∈A

f (x).

But the latter summation equals P(X ∈ A); thus,

σ 2 ≥ k2σ 2P(X ∈ A) = k2σ 2P(|X − μ| ≥ kσ ).

That is,

P(|X − μ| ≥ kσ ) ≤ 1
k2

. �

Corollary
5.8-1

If ε = kσ , then

P(|X − μ| ≥ ε) ≤ σ 2

ε2
.

�

In words, Chebyshev’s inequality states that the probability that X differs from
its mean by at least k standard deviations is less than or equal to 1/k2. It follows that
the probability that X differs from its mean by less than k standard deviations is at
least 1 − 1/k2. That is,

P(|X − μ| < kσ ) ≥ 1 − 1
k2

.

From the corollary, it also follows that

P(|X − μ| < ε) ≥ 1 − σ 2

ε2
.

Thus, Chebyshev’s inequality can be used as a bound for certain probabilities.
However, in many instances, the bound is not very close to the true probability.

Example
5.8-1

If it is known that X has a mean of 25 and a variance of 16, then, since σ = 4, a lower
bound for P(17 < X < 33) is given by
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P(17 < X < 33) = P(|X − 25| < 8)

= P(|X − 25| < 2σ ) ≥ 1 − 1
4

= 0.75

and an upper bound for P(|X − 25| ≥ 12) is found to be

P(|X − 25| ≥ 12) = P(|X − μ| ≥ 3σ ) ≤ 1
9

.

Note that the results of the last example hold for any distribution with mean
25 and standard deviation 4. But, even stronger, the probability that any random
variable X differs from its mean by 3 or more standard deviations is at most 1/9,
which may be seen by letting k = 3 in the theorem. Also, the probability that any
random variable X differs from its mean by less than two standard deviations is at
least 3/4, which may be seen by letting k = 2.

The following consideration partially indicates the value of Chebyshev’s
inequality in theoretical discussions: If Y is the number of successes in n indepen-
dent Bernoulli trials with probability p of success on each trial, then Y is b(n, p).
Furthermore, Y/n gives the relative frequency of success, and when p is unknown,
Y/n can be used as an estimate of its mean p. To gain some insight into the close-
ness of Y/n to p, we shall use Chebyshev’s inequality. With ε > 0, we note from
Corollary 5.8-1 that, since Var(Y/n) = pq/n, it follows that

P
( ∣∣∣∣Y

n
− p

∣∣∣∣ ≥ ε

)
≤ pq/n

ε2

or, equivalently,

P
( ∣∣∣∣Y

n
− p

∣∣∣∣ < ε

)
≥ 1 − pq

nε2
. (5.8-2)

On the one hand, when p is completely unknown, we can use the fact that
pq = p(1 − p) is a maximum when p = 1/2 in order to find a lower bound for
the probability in Equation 5.8-2. That is,

1 − pq
nε2

≥ 1 − (1/2)(1/2)
nε2

.

For example, if ε = 0.05 and n = 400, then

P
( ∣∣∣∣ Y

400
− p

∣∣∣∣ < 0.05
)

≥ 1 − (1/2)(1/2)
400(0.0025)

= 0.75.

On the other hand, if it is known that p is equal to 1/10, we would have

P
( ∣∣∣∣ Y

400
− p

∣∣∣∣ < 0.05
)

≥ 1 − (0.1)(0.9)
400(0.0025)

= 0.91.

Note that Chebyshev’s inequality is applicable to all distributions with a finite vari-
ance, and thus the bound is not always a tight one; that is, the bound is not necessarily
close to the true probability.

In general, however, it should be noted that, with fixed ε > 0 and 0 < p < 1, we
have

lim
n→∞ P

( ∣∣∣∣ Y
400

− p

∣∣∣∣ < ε

)
≥ lim

n→∞

(
1 − pq

nε2

)
= 1.
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But since the probability of every event is less than or equal to 1, it must be that

lim
n→∞ P

( ∣∣∣∣ Y
400

− p

∣∣∣∣ < ε

)
= 1.

That is, the probability that the relative frequency Y/n is within ε of p is arbitrarily
close to 1 when n is large enough. This is one form of the law of large numbers, and
we say that Y/n converges in probability to p.

A more general form of the law of large numbers is found by considering the
mean X of a random sample from a distribution with mean μ and variance σ 2. This
form of the law is more general because the relative frequency Y/n can be thought
of as X when the sample arises from a Bernoulli distribution. To derive it, we note
that

E( X ) = μ and Var( X ) = σ 2

n
.

Thus, from Corollary 5.8-1, for every ε > 0, we have

P[ | X − μ | ≥ ε ] ≤ σ 2/n
ε2

= σ 2

nε2
.

Since probability is nonnegative, it follows that

lim
n→∞ P(| X − μ | ≥ ε) ≤ lim

n→∞
σ 2

ε2n
= 0,

which implies that

lim
n→∞ P(| X − μ | ≥ ε) = 0,

or, equivalently,

lim
n→∞ P(| X − μ | < ε) = 1.

The preceding discussion shows that the probability associated with the distri-
bution of X becomes concentrated in an arbitrarily small interval centered at μ as n
increases. This is a more general form of the law of large numbers, and we say that
X converges in probability to μ.

Exercises

5.8-1. If X is a random variable with mean 33 and vari-
ance 16, use Chebyshev’s inequality to find

(a) A lower bound for P(23 < X < 43).

(b) An upper bound for P(|X − 33| ≥ 14).

5.8-2. If E(X) = 17 and E(X2) = 298, use Chebyshev’s
inequality to determine

(a) A lower bound for P(10 < X < 24).

(b) An upper bound for P(|X − 17| ≥ 16).

5.8-3. Let X denote the outcome when a fair die is rolled.
Then μ = 7/2 and σ 2 = 35/12. Note that the maximum
deviation of X from μ equals 5/2. Express this deviation
in terms of the number of standard deviations; that is,

find k, where kσ = 5/2. Determine a lower bound for
P(|X − 3.5| < 2.5).

5.8-4. If the distribution of Y is b(n, 0.5), give a lower
bound for P(|Y/n − 0.5| < 0.08) when

(a) n = 100.

(b) n = 500.

(c) n = 1000.

5.8-5. If the distribution of Y is b(n, 0.25), give a lower
bound for P(|Y/n − 0.25| < 0.05) when

(a) n = 100.

(b) n = 500.

(c) n = 1000.
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5.8-6. Let X be the mean of a random sample of size
n = 15 from a distribution with mean μ = 80 and vari-
ance σ 2 = 60. Use Chebyshev’s inequality to find a lower
bound for P(75 < X < 85).

5.8-7. Suppose that W is a continuous random variable
with mean 0 and a symmetric pdf f (w) and cdf F(w), but
for which the variance is not specified (and may not exist).
Suppose further that W is such that

P(|W − 0| < k) = 1 − 1
k2

for k ≥ 1. (Note that this equality would be equivalent to
the equality in Chebyshev’s inequality if the variance of
W were equal to 1.) Then the cdf satisfies

F(w) − F(−w) = 1 − 1
w2

, w ≥ 1.

Also, the symmetry assumption implies that

F(−w) = 1 − F(w).

(a) Show that the pdf of W is

f (w) =

⎧⎪⎨⎪⎩
1

|w|3 , |w| > 1,

0, |w| ≤ 1.

(b) Find the mean and the variance of W and interpret
your results.

(c) Graph the cdf of W.

5.9 LIMITING MOMENT-GENERATING FUNCTIONS
We begin this section by showing that the binomial distribution can be approximated
by the Poisson distribution when n is sufficiently large and p is fairly small. Of course,
we proved this in Section 2.6 by showing that, under these conditions, the binomial
pmf is close to that of the Poisson. Here, however, we show that the binomial mgf is
close to that of the Poisson distribution. We do so by taking the limit of a mgf.

Consider the mgf of Y, which is b(n, p). We shall take the limit of this function
as n → ∞ such that np = λ is a constant; thus, p → 0. The mgf of Y is

M(t) = (1 − p + pet)n.

Because p = λ/n, we have

M(t) =
[

1 − λ

n
+ λ

n
et
]n

=
[

1 + λ(et − 1)
n

]n

.

Since

lim
n→∞

(
1 + b

n

)n

= eb,

we have

lim
n→∞ M(t) = eλ(et−1),

which exists for all real t. But this is the mgf of a Poisson random variable with mean
λ. Hence, this Poisson distribution seems like a reasonable approximation to the
binomial distribution when n is large and p is small. That approximation is usually
found to be fairly successful if n ≥ 20 and p ≤ 0.05 and is found to be very successful
if n ≥ 100 and p ≤ 0.10, but it is not bad if these bounds are violated somewhat. That
is, the approximation could be used in other situations, too; we only want to stress
that it becomes better with larger n and smaller p.

The preceding result illustrates the theorem we now state without proof.
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Theorem
5.9-1

If a sequence of mgfs approaches a certain mgf, say, M(t), for t in an open interval
around 0, then the limit of the corresponding distributions must be the distribution
corresponding to M(t).

REMARK This theorem certainly appeals to one’s intuition! In a more advanced
course, the theorem is proven, and there the existence of the mgf is not even needed,
for we would use the characteristic function φ(t) = E(eitX) instead.

The next example illustrates graphically the convergence of the binomial mgfs
to that of a Poisson distribution.

Example
5.9-1

Consider the mgf for the Poisson distribution with λ = 5 and those for three binomial
distributions for which np = 5, namely, b(50, 1/10), b(100, 1/20), and b(200, 1/40).
These four mgfs are, respectively,

M(t) = e5(et−1), −∞ < t < ∞,

M(t) = (0.9 + 0.1et)50, −∞ < t < ∞,

M(t) = (0.75 + 0.25et)20, −∞ < t < ∞,

M(t) = (0.5 + 0.5et)10, −∞ < t < ∞.

The graphs of these mgfs are shown in Figure 5.9-1. Although the proof and the
figure show the convergence of the binomial mgfs to that of the Poisson distribution,
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Figure 5.9-1 Poisson approximation to the binomial distribution
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the last three graphs in Figure 5.9-1 show more clearly how the Poisson distribution
can be used to approximate binomial probabilities with large n and small p.

The next example gives a numerical approximation.

Example
5.9-2

Let Y be b(50, 1/25). Then

P(Y ≤ 1) =
(

24
25

)50

+ 50
(

1
25

)(
24
25

)49

= 0.400.

Since λ = np = 2, the Poisson approximation is

P(Y ≤ 1) ≈ 0.406,

from Table III in Appendix B, or note that 3e−2 = 0.406.

Theorem 5.9-1 is used to prove the central limit theorem. To help in under-
standing this proof, let us first consider a different problem: that of the limiting
distribution of the mean X of a random sample X1, X2, . . . , Xn from a distribution
with mean μ. If the distribution has mgf M(t), then the mgf of X is [M(t/n)]n. But,
by Taylor’s expansion, there exists a number t1 between 0 and t/n such that

M
(

t
n

)
= M(0) + M′(t1)

t
n

= 1 + μt
n

+ [M′(t1) − M′(0)]t
n

,

because M(0) = 1 and M′(0) = μ. Since M′(t) is continuous at t = 0 and since t1 → 0
as n → ∞, it follows that

lim
n→∞[M′(t1) − M′(0)] = 0.

Thus, using a result from advanced calculus, we obtain

lim
n→∞

[
M

(
t
n

)]n

= lim
n→∞

{
1 + μt

n
+ [M′(t1) − M′(0)]t

n

}n

= eμt

for all real t. But this limit is the mgf of a degenerate distribution with all of the
probability on μ. Accordingly, X has this limiting distribution, indicating that X
converges to μ in a certain sense. This is one form of the law of large numbers.

We have seen that, in some probability sense, X converges to μ in the limit, or,
equivalently, X − μ converges to zero. Let us multiply the difference X − μ by some
function of n so that the result will not converge to zero. In our search for such a
function, it is natural to consider

W = X − μ

σ/
√

n
=

√
n( X − μ)

σ
= Y − nμ√

n σ
,

where Y is the sum of the observations of the random sample. The reason for this
is that, by the remark after the proof of Theorem 3.3-1, W is a standardized random
variable. That is, W has mean 0 and variance 1 for each positive integer n. We are
now ready to prove the central limit theorem, which is stated in Section 5.6.
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Proof (of the Central Limit Theorem):
We first consider

E[exp(tW)] = E

{
exp

[(
t√
nσ

)( n∑
i=1

Xi − nμ

)]}

= E
{

exp
[(

t√
n

)(
X1 − μ

σ

)]
· · · exp

[(
t√
n

)(
Xn − μ

σ

)]}

= E
{

exp
[(

t√
n

)(
X1 − μ

σ

)]}
· · · E

{
exp

[(
t√
n

)(
Xn − μ

σ

)]}
,

which follows from the independence of X1, X2, . . . , Xn. Then

E[exp(tW)] =
[

m
(

t√
n

)]n

, −h <
t√
n

< h,

where

m(t) = E
{

exp
[

t
(

Xi − μ

σ

)]}
, −h < t < h,

is the common mgf of each

Yi = Xi − μ

σ
, i = 1, 2, . . . , n.

Since E(Yi) = 0 and E(Y2
i ) = 1, it must be that

m(0) = 1, m′(0) = E
(

Xi − μ

σ

)
= 0, m′′(0) = E

[(
Xi − μ

σ

)2
]

= 1.

Hence, using Taylor’s formula with a remainder, we know that there exists a
number t1 between 0 and t such that

m(t) = m(0) + m′(0)t + m′′(t1)t2

2
= 1 + m′′(t1)t2

2
.

Adding and subtracting t2/2, we have

m(t) = 1 + t2

2
+ [m′′(t1) − 1]t2

2
.

Using this expression of m(t) in E[exp(tW)], we can represent the mgf of W by

E[exp(tW)] =
{

1 + 1
2

(
t√
n

)2

+ 1
2

[m′′(t1) − 1]
(

t√
n

)2
}n

=
{

1 + t2

2n
+ [m′′(t1) − 1]t2

2n

}n

, −√
n h < t <

√
n h,

where now t1 is between 0 and t/
√

n. Since m′′(t) is continuous at t = 0 and t1 → 0
as n → ∞, we have

lim
n→∞[m′′(t1) − 1] = 1 − 1 = 0.
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Thus, using a result from advanced calculus, we obtain

lim
n→∞ E[exp(tW)] = lim

n→∞

{
1 + t2

2n
+ [m′′(t1) − 1]t2

2n

}n

= lim
n→∞

{
1 + t2

2n

}n

= et2/2

for all real t. We know that et2/2 is the mgf of the standard normal distribution,
N(0, 1). It then follows that the limiting distribution of

W = X − μ

σ/
√

n
=

∑n
i=1 Xi − nμ√

n σ

is N(0, 1). This completes the proof of the central limit theorem. �

Examples of the use of the central limit theorem as an approximating distribu-
tion were given in Sections 5.6 and 5.7.

To help appreciate the proof of the central limit theorem, the next example
graphically illustrates the convergence of the mgfs for two distributions.

Example
5.9-3

Let X1, X2, . . . , Xn be a random sample of size n from an exponential distribution
with θ = 2. The mgf of ( X − θ)/(θ/

√
n ) is

Mn(t) = e−t
√

n

(1 − t/
√

n )n
, t <

√
n.

The central limit theorem says that, as n increases, this mgf approaches that of the
standard normal distribution, namely,

M(t) = et2/2.

The mgfs for M(t) and Mn(t), n = 5, 15, 50, are shown in Figure 5.9-2(a). [See also
Figure 5.6-2, in which samples were taken from a χ2(1) distribution, and recall that
the exponential distribution with θ = 2 is χ2(2).]

In Example 5.6-6, a U-shaped distribution was considered for which the pdf is
f (x) = (3/2)x2, −1 < x < 1. For this distribution, μ = 0 and σ 2 = 3/5. Its mgf, for
t �= 0, is

M(t) =
(

3
2

)
ett2 − 2ett + 2et − e−tt2 − 2e−tt − 2e−t

t3
.

Of course, M(0) = 1. The mgf of

Wn = X − 0√
3/(5n)

is

E[etWn ] =
{

E

[
exp

(√
5

3n
t

)]}n

=
[

M

(√
5

3n
t

)]n

.
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Figure 5.9-2 Convergence of moment-generating functions

The graphs of these mgfs when n = 2, 5, 10 and the graph of the mgf for the standard
normal distribution are shown in Figure 5.9-2(b). Note how much more quickly the
mgfs converge compared with those for the exponential distribution.

Exercises

5.9-1. Let Y be the number of defectives in a box of 50
articles taken from the output of a machine. Each article
is defective with probability 0.01. Find the probability that
Y = 0, 1, 2, or 3

(a) By using the binomial distribution.

(b) By using the Poisson approximation.

5.9-2. The probability that a certain type of inocula-
tion takes effect is 0.995. Use the Poisson distribution to
approximate the probability that at most 2 out of 400 peo-
ple given the inoculation find that it has not taken effect.
Hint: Let p = 1 − 0.995 = 0.005.

5.9-3. Let S2 be the sample variance of a random sample
of size n from N(μ, σ 2). Show that the limit, as n → ∞, of
the mgf of S2 is eσ 2t. Thus, in the limit, the distribution of
S2 is degenerate with probability 1 at σ 2.

5.9-4. Let Y be χ2(n). Use the central limit theorem to
demonstrate that W = (Y − n)/

√
2n has a limiting cdf

that is N(0, 1). Hint: Think of Y as being the sum of a
random sample from a certain distribution.

5.9-5. Let Y have a Poisson distribution with mean 3n.
Use the central limit theorem to show that the limiting
distribution of W = (Y − 3n)/

√
3n is N(0, 1).

HISTORICAL COMMENTS In this chapter, we have discussed the t and F dis-
tributions, among many other important ones. However, we should make a few
comments about both of them. W. S. Gosset published his work on the t distri-
bution under the pseudonym “A Student” because Guinness did not want other
breweries to know that they were using statistical methods. We have also heard the
story that Gosset did not want Guinness to know that he was spending all his extra
time on statistics; so he used “A Student,” and it has become Student’s t ever since.
Whichever account is true, Gosset, in a sense, was lucky to discover the t distribution
because he made two educated guesses, one of which involved the Pearson family of
distributions. Incidentally, Karl Pearson, another famous statistician, had proposed
this family a few years earlier. A few years later, the great statistician Sir Ronald A.
Fisher (possibly the greatest statistician) actually proved that T had the t distribu-
tion that Gosset had discovered. Concerning the F distribution, Fisher had worked
with a function of what is now called F. It was George Snedecor of Iowa State
University who put it in its present form and called it F (probably to honor Fisher),
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and Snedecor’s was a much more useful form, as we will see later. We should also
note that Fisher had been knighted, but so were three other statisticians: Sir Maurice
G. Kendall, Sir David R. Cox, and Sir Adrian Smith. (The latter two are still alive.)
Their knighthood at least proves that the monarch of England appreciated some
statistical efforts.

Another important person in the history of probability is Abraham de Moivre,
who was born in France in 1667, but, as a Protestant, he did not fare very well in
that Catholic country. As a matter of fact, he was imprisoned for about two years
for his beliefs. After his release, he went to England, but led a gloomy life there, as
he could not find an academic position. So de Moivre supported himself by tutoring
or consulting with gamblers or insurance brokers. After publishing The Doctrine of
Chance, he turned to a project that Nicolaus Bernoulli had suggested to him. Using
the fact that Y is b(n, p), he discovered that the relative frequency of successes,
namely, Y/n, which Jacob Bernoulli had proved converged in probability to p, had
an interesting approximating distribution itself. De Moivre had discovered the well-
known bell-shaped curve called the normal distribution, and a special case of the
central limit theorem. Although de Moivre did not have computers in his day, we
show that if X is b(100, 1/2), then X/100 has the pmf displayed in Figure 5.9-3.

This distribution allowed de Moivre to determine a measure of spread, which we
now call a standard deviation. Also, he could determine the approximate probability
of Y/n falling into given intervals containing p. De Moivre was truly impressed with
the orderliness of these random relative frequencies, which he attributed to the plan
of the Almighty. Despite his great works, Abraham de Moivre died a bitter and
antisocial man, blind and in poverty, at the age of 87.

Two additional persons whom we would like to mention in the history of proba-
bility are Carl Friedrich Gauss and Marquis Pierre Simon de Laplace. Gauss was 29
years junior to Laplace, and Gauss was so secretive about his work that it is difficult
to tell who discovered the central limit theorem first. The theorem was a general-
ization of de Moivre’s result. In de Moivre’s case, he was sampling from a Bernoulli
distribution where Xi = 1 or 0 on the ith trial. Then

Y
n

=
n∑

i=1

Xi

n
= X,

the relative frequency of success, has that approximate normal distribution of de
Moivre’s. Laplace and Gauss were sampling from any distribution, provided that the
second moment existed, and they found that the sample mean X had an approximate
normal distribution. Seemingly, the central limit theorem was published in 1809 by
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Figure 5.9-3 Line graphs for the distribution of X/100
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Laplace, just before Gauss’s Theoria Motus in 1810. For some reason, the normal
distribution is often referred to as the Gaussian distribution; people seem to forget
about Laplace’s contribution and (worse than that) de Moivre’s original work 83
years earlier. Since then, there have been many more generalizations of the central
limit theorem; in particular, most estimators of parameters in the regular case have
approximate normal distributions.

There are many good histories of probability and statistics. However, the two
that we find particularly interesting are Peter L. Bernstein’s Against the Gods: The
Remarkable Story of Risk (New York: John Wiley & Sons, Inc., 1996) and Stephen
M. Stigler’s The History of Statistics: The Measurement of Uncertainty Before 1900
(Cambridge, MA: Harvard University Press, 1986).

The reason we try to model any random phenomenon with a probability distri-
bution is that if our model is reasonably good, we know the approximate percentages
of being above or below certain marks. Having such information helps us make
certain decisions—sometimes very important ones.

With these models, we learned how to simulate random variables having cer-
tain distributions. In many situations in practice, we cannot calculate exact solutions
of equations that have numerous random variables. Thus, we simulate the random
variables in question many times, leading to an approximate distribution of the ran-
dom solution. “Monte Carlo” is a term often attached to such a simulation, and we
believe that it was first used in a computer simulation of nuclear fission associated
with the atom bomb in World War II. Of course, the name “Monte Carlo” was taken
from that city, which is famous for gambling in its casinos.
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6.1 DESCRIPTIVE STATISTICS
In Chapter 2, we considered probability distributions of random variables whose
space S contains a countable number of outcomes: either a finite number of out-
comes or outcomes that can be put into a one-to-one correspondence with the
positive integers. Such a random variable is said to be of the discrete type, and its
distribution of probabilities is of the discrete type.

Of course, many experiments or observations of random phenomena do not
have integers or other discrete numbers as outcomes, but instead are measurements
selected from an interval of numbers. For example, you could find the length of time
that it takes when waiting in line to buy frozen yogurt. Or the weight of a “1-pound”
package of hot dogs could be any number between 0.94 pounds and 1.25 pounds.
The weight of a miniature Baby Ruth candy bar could be any number between 20
and 27 grams. Even though such times and weights could be selected from an inter-
val of values, times and weights are generally rounded off so that the data often look
like discrete data. If, conceptually, the measurements could come from an interval
of possible outcomes, we call them data from a distribution of the continuous type
or, more simply, continuous-type data.

Given a set of continuous-type data, we shall group the data into classes and
then construct a histogram of the grouped data. This will help us better visualize the
data. The following guidelines and terminology will be used to group continuous-
type data into classes of equal length (these guidelines can also be used for sets of
discrete data that have a large range).

1. Determine the largest (maximum) and smallest (minimum) observations. The
range is the difference, R = maximum − minimum.

2. In general, select from k = 5 to k = 20 classes, which are nonoverlapping inter-
vals, usually of equal length. These classes should cover the interval from the
minimum to the maximum.

3. Each interval begins and ends halfway between two possible values of the
measurements, which have been rounded off to a given number of decimal
places.

225
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4. The first interval should begin about as much below the smallest value as the
last interval ends above the largest.

5. The intervals are called class intervals and the boundaries are called class
boundaries. We shall denote these k class intervals by

(c0, c1], (c1, c2], . . . , (ck−1, ck].

6. The class limits are the smallest and the largest possible observed (recorded)
values in a class.

7. The class mark is the midpoint of a class.

A frequency table is constructed that lists the class intervals, the class limits, a
tabulation of the measurements in the various classes, the frequency fi of each class,
and the class marks. A column is sometimes used to construct a relative frequency
(density) histogram. With class intervals of equal length, a frequency histogram is
constructed by drawing, for each class, a rectangle having as its base the class interval
and a height equal to the frequency of the class. For the relative frequency histogram,
each rectangle has an area equal to the relative frequency fi/n of the observations
for the class. That is, the function defined by

h(x) = fi

(n)(ci − ci−1)
, for ci−1 < x ≤ ci, i = 1, 2, . . . , k,

is called a relative frequency histogram or density histogram, where fi is the fre-
quency of the ith class and n is the total number of observations. Clearly, if the class
intervals are of equal length, the relative frequency histogram, h(x), is proportional
to the frequency histogram fi, for ci−1 < x ≤ ci, i = 1, 2, . . . , k. The frequency his-
togram should be used only in those situations in which the class intervals are of
equal length. A relative frequency histogram can be treated as an estimate of the
underlying pdf.

Example
6.1-1

The weights in grams of 40 miniature Baby Ruth candy bars, with the weights
ordered, are given in Table 6.1-1.

We shall group these data and then construct a histogram to visualize the dis-
tribution of weights. The range of the data is R = 26.7 − 20.5 = 6.2. The interval
(20.5, 26.7) could be covered with k = 8 classes of width 0.8 or with k = 9 classes
of width 0.7. (There are other possibilities.) We shall use k = 7 classes of width
0.9. The first class interval will be (20.45, 21.35) and the last class interval will be
(25.85, 26.75). The data are grouped in Table 6.1-2.

A relative frequency histogram of these data is given in Figure 6.1-1. Note that
the total area of this histogram is equal to 1. We could also construct a frequency
histogram in which the heights of the rectangles would be equal to the frequen-
cies of the classes. The shape of the two histograms is the same. Later we will see

Table 6.1-1 Candy bar weights

20.5 20.7 20.8 21.0 21.0 21.4 21.5 22.0 22.1 22.5

22.6 22.6 22.7 22.7 22.9 22.9 23.1 23.3 23.4 23.5

23.6 23.6 23.6 23.9 24.1 24.3 24.5 24.5 24.8 24.8

24.9 24.9 25.1 25.1 25.2 25.6 25.8 25.9 26.1 26.7
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Table 6.1-2 Frequency table of candy bar weights

Class Interval Class Limits Tabulation Frequency (fi) h(x) Class Marks

(20.45, 21.35) 20.5–21.3 � 5 5/36 20.9

(21.35, 22.25) 21.4–22.2 4 4/36 21.8

(22.25, 23.15) 22.3–23.1 � 8 8/36 22.7

(23.15, 24.05) 23.2–24.0 � 7 7/36 23.6

(24.05, 24.95) 24.1–24.9 � 8 8/36 24.5

(24.95, 25.85) 25.0–25.8 � 5 5/36 25.4

(25.85, 26.75) 25.9–26.7 3 3/36 26.3

the reason for preferring the relative frequency histogram. In particular, we will be
superimposing on the relative frequency histogram the graph of a pdf.

Suppose that we now consider the situation in which we actually perform a
certain random experiment n times, obtaining n observed values of the random
variable—say, x1, x2, . . . , xn. Often the collection is referred to as a sample. It is pos-
sible that some of these values might be the same, but we do not worry about this at
this time. We artificially create a probability distribution by placing the weight 1/n
on each of these x-values. Note that these weights are positive and sum to 1, so we
have a distribution we call the empirical distribution, since it is determined by the
data x1, x2, . . . , xn. The mean of the empirical distribution is

n∑
i=1

xi

(
1
n

)
= 1

n

n∑
i=1

xi,

h(x)

x

0.05

0.10

0.15

0.20

0.25

 20.9  21.8  22.7  23.6  24.5  25.4  26.3

Figure 6.1-1 Relative frequency histogram of weights of
candy bars
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which is the arithmetic mean of the observations x1, x2, . . . , xn. We denote this mean
by x and call it the sample mean (or mean of the sample x1, x2, . . . , xn). That is, the
sample mean is

x = 1
n

n∑
i=1

xi,

which is, in some sense, an estimate of μ if the latter is unknown.
Likewise, the variance of the empirical distribution is

v =
n∑

i=1

(xi − x )2
(

1
n

)
= 1

n

n∑
i=1

(xi − x )2,

which can be written as

v =
n∑

i=1

x2
i

(
1
n

)
− x 2 = 1

n

n∑
i=1

x2
i − x 2,

that is, the second moment about the origin minus the square of the mean. However,
v is not called the sample variance, but

s2 =
[

n
n − 1

]
v = 1

n − 1

n∑
i=1

(xi − x )2

is, because we will see later that, in some sense, s2 is a better estimate of an unknown
σ 2 than is v. Thus, the sample variance is

s2 = 1
n − 1

n∑
i=1

(xi − x )2.

REMARK It is easy to expand the sum of squares; we have

n∑
i=1

(xi − x )2 =
n∑

i=1

x2
i −

(∑n
i=1 xi

)2

n
.

Many find that the right-hand expression makes the computation easier than first
taking the n differences, xi − x, i = 1, 2, . . . , n; squaring them; and then summing.
There is another advantage when x has many digits to the right of the decimal point.
If that is the case, then xi − x must be rounded off, and that creates an error in the
sum of squares. In the easier form, that rounding off is not necessary until the com-
putation is completed. Of course, if you are using a statistical calculator or statistics
package on the computer, all of these computations are done for you.

The sample standard deviation, s = √
s2 ≥ 0, is a measure of how dispersed the

data are from the sample mean. At this stage of your study of statistics, it is difficult
to get a good understanding or meaning of the standard deviation s, but you can
roughly think of it as the average distance of the values x1, x2, . . . , xn from the mean
x. This is not true exactly, for, in general,

s ≥ 1
n

n∑
i=1

|xi − x|,

but it is fair to say that s is somewhat larger, yet of the same magnitude, as the
average of the distances of x1, x2, . . . , xn from x.
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Example
6.1-2

Rolling a fair six-sided die five times could result in the following sample of n = 5
observations:

x1 = 3, x2 = 1, x3 = 2, x4 = 6, x5 = 3.

In this case,

x = 3 + 1 + 2 + 6 + 3
5

= 3

and

s2 = (3 − 3)2 + (1 − 3)2 + (2 − 3)2 + (6 − 3)2 + (3 − 3)2

4
= 14

4
= 3.5.

It follows that s = √
14/4 = 1.87. We had noted that s can roughly be thought of

as the average distance that the x-values are away from the sample mean x. In this
example, the distances from the sample mean, x = 3, are 0, 2, 1, 3, 0, with an average
of 1.2, which is less than s = 1.87. In general, s will be somewhat larger than this
average distance.

There is an alternative way of computing s2, because s2 = [n/(n − 1)]v and

v = 1
n

n∑
i=1

(xi − x)2 = 1
n

n∑
i=1

x2
i − x2.

It follows that

s2 =
∑n

i=1 x2
i − nx2

n − 1
=

∑n
i=1 x2

i − 1
n

(∑n
i=1 xi

)2

n − 1
.

Given a set of measurements, the sample mean is the center of the data such
that the deviations from that center sum to zero; that is,

∑n
i=1(xi − x) = 0, where

x1, x2, . . . , xn and x are a given set of observations of X1, X2, . . . , Xn and X. The sam-
ple standard deviation s, an observed value of S, gives a measure of how spread out
the data are from the sample mean. If the histogram is “mound-shaped” or “bell-
shaped,” the following empirical rule gives rough approximations to the percentages
of the data that fall between certain points. These percentages clearly are associated
with the normal distribution.

Empirical Rule: Let x1, x2, . . . , xn have a sample mean x and sample standard
deviation s. If the histogram of these data is “bell-shaped,” then, for large samples,

• approximately 68% of the data are in the interval (x − s, x + s),

• approximately 95% of the data are in the interval (x − 2s, x + 2s),

• approximately 99.7% of the data are in the interval (x − 3s, x + 3s).

For the data in Example 6.1-1, the sample mean is x = 23.505 and the standard
deviation is s = 1.641. The number of weights that fall within one standard deviation
of the mean, (23.505 − 1.641, 23.505 + 1.641), is 27, or 67.5%. For these particular
weights, 100% fall within two standard deviations of x. Thus, the histogram is missing
part of the “bell” in the tails in order for the empirical rule to hold.

When you draw a histogram, it is useful to indicate the location of x, as well as
that of the points x ± s and x ± 2s.
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There is a refinement of the relative frequency histogram that can be made when
the class intervals are of equal length. The relative frequency polygon smooths out
the corresponding histogram somewhat. To form such a polygon, mark the midpoints
at the top of each “bar” of the histogram. Connect adjacent midpoints with straight-
line segments. On each of the two end bars, draw a line segment from the top middle
mark through the middle point of the outer vertical line of the bar. Of course, if the
area underneath the tops of the relative frequency histogram is equal to 1, which
it should be, then the area underneath the relative frequency polygon is also equal
to 1, because the areas lost and gained cancel out by a consideration of congruent
triangles. This idea is made clear in the next example.

Example
6.1-3

A manufacturer of fluoride toothpaste regularly measures the concentration of flu-
oride in the toothpaste to make sure that it is within the specification of 0.85 to
1.10 mg/g. Table 6.1-3 lists 100 such measurements.

The minimum of these measurements is 0.85 and the maximum is 1.06. The
range is 1.06 − 0.85 = 0.21. We shall use k = 8 classes of length 0.03. Note that
8(0.03) = 0.24 > 0.21. We start at 0.835 and end at 1.075. These boundaries are
the same distance below the minimum and above the maximum. In Table 6.1-4, we
also give the values of the heights of each rectangle in the relative frequency his-
togram, so that the total area of the histogram is 1. These heights are given by the
formula

h(x) = fi

(0.03)(100)
= fi

3
.

The plots of the relative frequency histogram and polygon are given in Figure 6.1-2.
If you are using a computer program to analyze a set of data, it is very easy

to find the sample mean, the sample variance, and the sample standard deviation.
However, if you have only grouped data or if you are not using a computer, you
can obtain close approximations of these values by computing the mean u and

Table 6.1-3 Concentrations of fluoride in mg/g in toothpaste

0.98 0.92 0.89 0.90 0.94 0.99 0.86 0.85 1.06 1.01

1.03 0.85 0.95 0.90 1.03 0.87 1.02 0.88 0.92 0.88

0.88 0.90 0.98 0.96 0.98 0.93 0.98 0.92 1.00 0.95

0.88 0.90 1.01 0.98 0.85 0.91 0.95 1.01 0.88 0.89

0.99 0.95 0.90 0.88 0.92 0.89 0.90 0.95 0.93 0.96

0.93 0.91 0.92 0.86 0.87 0.91 0.89 0.93 0.93 0.95

0.92 0.88 0.87 0.98 0.98 0.91 0.93 1.00 0.90 0.93

0.89 0.97 0.98 0.91 0.88 0.89 1.00 0.93 0.92 0.97

0.97 0.91 0.85 0.92 0.87 0.86 0.91 0.92 0.95 0.97

0.88 1.05 0.91 0.89 0.92 0.94 0.90 1.00 0.90 0.93
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Table 6.1-4 Frequency table of fluoride concentrations

Class Class Mark Frequency
Interval (ui) Tabulation (fi) h(x) = fi/3

(0.835, 0.865) 0.85 � 7 7/3

(0.865, 0.895) 0.88 � � � � 20 20/3

(0.895, 0.925) 0.91 � � � � � 27 27/3

(0.925, 0.955) 0.94 � � � 18 18/3

(0.955, 0.985) 0.97 � � 14 14/3

(0.985, 1.015) 1.00 � 9 9/3

(1.015, 1.045) 1.03 3 3/3

(1.045, 1.075) 1.06 2 2/3

h(x)

x

1

2

3

4

5

6

7

8

9

0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06 1.09

Figure 6.1-2 Concentrations of fluoride in toothpaste

variance s2
u of the grouped data, using the class marks weighted with their respective

frequencies. We have

u = 1
n

k∑
i=1

fiui

= 1
100

8∑
i=1

fiui = 92.83
100

= 0.9283,
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s2
u = 1

n − 1

k∑
i=1

fi(ui − u)2 =
∑k

i=1 fiu2
i − 1

n

(∑k
i=1 fiui

)2

n − 1

= 0.237411
99

= 0.002398.

Thus,

su = √
0.002398 = 0.04897.

These results compare rather favorably with x = 0.9293 and sx = 0.04895 of the
original data.

In some situations, it is not necessarily desirable to use class intervals of equal
widths in the construction of the frequency distribution and histogram. This is partic-
ularly true if the data are skewed with a very long tail. We now present an illustration
in which it seems desirable to use class intervals of unequal widths; thus, we cannot
use the relative frequency polygon.

Example
6.1-4

The following 40 losses, due to wind-related catastrophes, were recorded to the near-
est $1 million (these data include only losses of $2 million or more; for convenience,
they have been ordered and recorded in millions):

2 2 2 2 2 2 2 2 2 2

2 2 3 3 3 3 4 4 4 5

5 5 5 6 6 6 6 8 8 9

15 17 22 23 24 24 25 27 32 43

The selection of class boundaries is more subjective in this case. It makes sense
to let c0 = 1.5 and c1 = 2.5 because only values of $2 million or more are recorded
and there are 12 observations equal to 2. We could then let c2 = 6.5, c3 = 29.5, and
c4 = 49.5, yielding the following relative frequency histogram:

h(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12
40

, 1.5 < x ≤ 2.5,

15
(40)(4)

, 2.5 < x ≤ 6.5,

11
(40)(23)

, 6.5 < x ≤ 29.5,

2
(40)(20)

, 29.5 < x ≤ 49.5.

This histogram is displayed in Figure 6.1-3. It takes some experience before a person
can display a relative frequency histogram that is most meaningful.

The areas of the four rectangles—0.300, 0.375, 0.275, and 0.050—are the respec-
tive relative frequencies. It is important to note in the case of unequal widths among
class intervals that the areas, not the heights, of the rectangles are proportional to
the frequencies. In particular, the first and second classes have frequencies f1 = 12
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h(x)

x

0.1

0.2

0.3

10 20 30 40 50

Figure 6.1-3 Relative frequency histogram of losses

and f2 = 15, yet the height of the first is greater than the height of the second, while
here f1 < f2. If we have equal widths among the class intervals, then the heights are
proportional to the frequencies.

For continuous-type data, the interval with the largest class height is called the
modal class and the respective class mark is called the mode. Hence, in the last
example, x = 2 is the mode and (1.5, 2.5) the modal class.

Example
6.1-5

The following table lists 105 observations of X, the times in minutes between calls
to 911:

30 17 65 8 38 35 4 19 7 14 12 4 5 4 2

7 5 12 50 33 10 15 2 10 1 5 30 41 21 31

1 18 12 5 24 7 6 31 1 3 2 22 1 30 2

1 3 12 12 9 28 6 50 63 5 17 11 23 2 46

90 13 21 55 43 5 19 47 24 4 6 27 4 6 37

16 41 68 9 5 28 42 3 42 8 52 2 11 41 4

35 21 3 17 10 16 1 68 105 45 23 5 10 12 17

To help determine visually whether the exponential model in Example 3.2-1 is per-
haps appropriate for this situation, we shall look at two graphs. First, we have
constructed a relative frequency histogram, h(x), of these data in Figure 6.1-4(a),
with f (x) = (1/20)e−x/20 superimposed. Second, we have also constructed the empir-
ical cdf of these data in Figure 6.1-4(b), with the theoretical cdf superimposed. Note
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f(x), h(x) F(x), Fn(x)

x
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x
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0.8

1.0

200 40 60 80 10090 18 27 36 45 54

(a) Histogram and pdf of X (b) Theoretical and empirical cdfs

63 72 81 90 99 108

Figure 6.1-4 Times between calls to 911

that Fn(x), the empirical cumulative distribution function, is a step function with a
vertical step of size 1/n at each observation of X. If k observations are equal, the
step at that value is k/n.

STATISTICAL COMMENTS (Simpson’s Paradox) While most of the first five
chapters were about probability and probability distributions, we now mention some
statistical concepts. The relative frequency, f/n, is called a statistic and is used to
estimate a probability, p, which is usually unknown. For example, if a major league
batter gets f = 152 hits in n = 500 official at bats during the season, then the relative
frequency f/n = 0.304 is an estimate of his probability of getting a hit and is called
his batting average for that season.

Once while speaking to a group of coaches, one of us (Hogg) made the comment
that it would be possible for batter A to have a higher average than batter B for each
season during their careers and yet B could have a better overall average at the end
of their careers. While no coach spoke up, you could tell that they were thinking,
“And that guy is supposed to know something about math.”

Of course, the following simple example convinced them that the statement was
true: Suppose A and B played only two seasons, with these results:

Player A Player B

Season AB Hits Average AB Hits Average

1 500 126 0.252 300 75 0.250

2 300 90 0.300 500 145 0.290

Totals 800 216 0.270 800 220 0.275

Clearly, A beats B in the two individual seasons, but B has a better overall average.
Note that during their better season (the second), B had more at bats than did A.
This kind of result is often called Simpson’s paradox and it can happen in real life.
(See Exercises 6.1-10 and 6.1-11.) �
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Exercises

6.1-1. One characteristic of a car’s storage console that is
checked by the manufacturer is the time in seconds that
it takes for the lower storage compartment door to open
completely. A random sample of size n = 5 yielded the
following times:

1.1 0.9 1.4 1.1 1.0

(a) Find the sample mean, x.

(b) Find the sample variance, s2.

(c) Find the sample standard deviation, s.

6.1-2. A leakage test was conducted to determine the
effectiveness of a seal designed to keep the inside of a
plug airtight. An air needle was inserted into the plug,
which was then placed underwater. Next, the pressure was
increased until leakage was observed. The magnitude of
this pressure in psi was recorded for 10 trials:

3.1 3.5 3.3 3.7 4.5 4.2 2.8 3.9 3.5 3.3

Find the sample mean and sample standard deviation for
these 10 measurements.

6.1-3. During the course of an internship at a company
that manufactures diesel engine fuel injector pumps, a stu-
dent had to measure the category “plungers that force
the fuel out of the pumps.” This category is based on a
relative scale, measuring the difference in diameter (in
microns or micrometers) of a plunger from that of an
absolute minimum acceptable diameter. For 96 plungers
randomly taken from the production line, the data are as
follows:

17.1 19.3 18.0 19.4 16.5 14.4 15.8 16.6 18.5 14.9

14.8 16.3 20.8 17.8 14.8 15.6 16.7 16.1 17.1 16.5

18.8 19.3 18.1 16.1 18.0 17.2 16.8 17.3 14.4 14.1

16.9 17.6 15.5 17.8 17.2 17.4 18.1 18.4 17.8 16.7

17.2 13.7 18.0 15.6 17.8 17.0 17.7 11.9 15.9 17.8

15.5 14.6 15.6 15.1 15.4 16.1 16.6 17.1 19.1 15.0

17.6 19.7 17.1 13.6 15.6 16.3 14.8 17.4 14.8 14.9

14.1 17.8 19.8 18.9 15.6 16.1 15.9 15.7 22.1 16.1

18.9 21.5 17.4 12.3 20.2 14.9 17.1 15.0 14.4 14.7

15.9 19.0 16.6 15.3 17.7 15.8

(a) Calculate the sample mean and the sample standard
deviation of these measurements.

(b) Use the class boundaries 10.95, 11.95, . . . , 22.95 to
construct a histogram of the data.

6.1-4. Ledolter and Hogg (see References) report that
a manufacturer of metal alloys is concerned about cus-
tomer complaints regarding the lack of uniformity in the
melting points of one of the firm’s alloy filaments. Fifty fil-
aments are selected and their melting points determined.
The following results were obtained:

320 326 325 318 322 320 329 317 316 331

320 320 317 329 316 308 321 319 322 335

318 313 327 314 329 323 327 323 324 314

308 305 328 330 322 310 324 314 312 318

313 320 324 311 317 325 328 319 310 324

(a) Construct a frequency distribution and display the
histogram of the data.

(b) Calculate the sample mean and sample standard devi-
ation.

(c) Locate x and x ± s, and x ± 2s on your histogram.
How many observations lie within one standard devi-
ation of the mean? How many lie within two standard
deviations of the mean?

6.1-5. In the casino game roulette, if a player bets $1 on
red, the probability of winning $1 is 18/38 and the prob-
ability of losing $1 is 20/38. Let X equal the number
of successive $1 bets that a player makes before losing
$5. One hundred observations of X were simulated on a
computer, yielding the following data:

23 127 877 65 101 45 61 95 21 43

53 49 89 9 75 93 71 39 25 91

15 131 63 63 41 7 37 13 19 413

65 43 35 23 135 703 83 7 17 65

49 177 61 21 9 27 507 7 5 87

13 213 85 83 75 95 247 1815 7 13

71 67 19 615 11 15 7 131 47 25

25 5 471 11 5 13 75 19 307 33

57 65 9 57 35 19 9 33 11 51

27 9 19 63 109 515 443 11 63 9
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(a) Find the sample mean and sample standard deviation
of these data.

(b) Construct a relative frequency histogram of the data,
using about 10 classes. The classes do not need to be
of the same length.

(c) Locate x, x ± s, x ± 2s, and x ± 3s on your histogram.

(d) In your opinion, does the median or sample mean give
a better measure of the center of these data?

6.1-6. An insurance company experienced the following
mobile home losses in 10,000’s of dollars for 50 catas-
trophic events:

1 2 2 3 3 4 4 5 5 5

5 6 7 7 9 9 9 10 11 12

22 24 28 29 31 33 36 38 38 38

39 41 48 49 53 55 74 82 117 134

192 207 224 225 236 280 301 308 351 527

(a) Using class boundaries 0.5, 5.5, 17.5, 38.5, 163.5, and
549.5, group these data into five classes.

(b) Construct a relative frequency histogram of the data.

(c) Describe the distribution of losses.

6.1-7. Ledolter and Hogg (see References) report 64
observations that are a sample of daily weekday after-
noon (3 to 7 p.m.) lead concentrations (in micrograms per
cubic meter, μg/m3). The following data were recorded at
an air-monitoring station near the San Diego Freeway in
Los Angeles during the fall of 1976:

6.7 5.4 5.2 6.0 8.7 6.0 6.4 8.3 5.3 5.9 7.6

5.0 6.9 6.8 4.9 6.3 5.0 6.0 7.2 8.0 8.1 7.2

10.9 9.2 8.6 6.2 6.1 6.5 7.8 6.2 8.5 6.4 8.1

2.1 6.1 6.5 7.9 14.1 9.5 10.6 8.4 8.3 5.9 6.0

6.4 3.9 9.9 7.6 6.8 8.6 8.5 11.2 7.0 7.1 6.0

9.0 10.1 8.0 6.8 7.3 9.7 9.3 3.2 6.4

(a) Construct a frequency distribution of the data and dis-
play the results in the form of a histogram. Is this
distribution symmetric?

(b) Calculate the sample mean and sample standard devi-
ation.

(c) Locate x and x ± s on your histogram. How many
observations lie within one standard deviation of the

mean? How many lie within two standard deviations
of the mean?

6.1-8. A small part for an automobile rearview mirror
was produced on two different punch presses. In order to
describe the distribution of the weights of those parts, a
random sample was selected, and each piece was weighed
in grams, resulting in the following data set:

3.968 3.534 4.032 3.912 3.572 4.014 3.682 3.608

3.669 3.705 4.023 3.588 3.945 3.871 3.744 3.711

3.645 3.977 3.888 3.948 3.551 3.796 3.657 3.667

3.799 4.010 3.704 3.642 3.681 3.554 4.025 4.079

3.621 3.575 3.714 4.017 4.082 3.660 3.692 3.905

3.977 3.961 3.948 3.994 3.958 3.860 3.965 3.592

3.681 3.861 3.662 3.995 4.010 3.999 3.993 4.004

3.700 4.008 3.627 3.970 3.647 3.847 3.628 3.646

3.674 3.601 4.029 3.603 3.619 4.009 4.015 3.615

3.672 3.898 3.959 3.607 3.707 3.978 3.656 4.027

3.645 3.643 3.898 3.635 3.865 3.631 3.929 3.635

3.511 3.539 3.830 3.925 3.971 3.646 3.669 3.931

4.028 3.665 3.681 3.984 3.664 3.893 3.606 3.699

3.997 3.936 3.976 3.627 3.536 3.695 3.981 3.587

3.680 3.888 3.921 3.953 3.847 3.645 4.042 3.692

3.910 3.672 3.957 3.961 3.950 3.904 3.928 3.984

3.721 3.927 3.621 4.038 4.047 3.627 3.774 3.983

3.658 4.034 3.778

(a) Using about 10 (say, 8 to 12) classes, construct a
frequency distribution.

(b) Draw a histogram of the data.

(c) Describe the shape of the distribution represented by
the histogram.

6.1-9. Old Faithful is a geyser in Yellowstone National
Park. Tourists always want to know when the next erup-
tion will occur, so data have been collected to help make
those predictions. In the following data set, observations
were made on several consecutive days, and the data
recorded give the starting time of the eruption (STE); the
duration of the eruption, in seconds (DIS); the predicted
time until the next eruption, in minutes (PTM); the actual
time until the next eruption, in minutes (ATM); and the
duration of the eruption, in minutes (DIM).
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STE DIS PTM ATM DIM STE DIS PTM ATM DIM

706 150 65 72 2.500 1411 110 55 65 1.833

818 268 89 88 4.467 616 289 89 97 4.817

946 140 65 62 2.333 753 114 58 52 1.900

1048 300 95 87 5.000 845 271 89 94 4.517

1215 101 55 57 1.683 1019 120 58 60 2.000

1312 270 89 94 4.500 1119 279 89 84 4.650

651 270 89 91 4.500 1253 109 55 63 1.817

822 125 59 51 2.083 1356 295 95 91 4.917

913 262 89 98 4.367 608 240 85 83 4.000

1051 95 55 59 1.583 731 259 86 84 4.317

1150 270 89 93 4.500 855 128 60 71 2.133

637 273 89 86 4.550 1006 287 92 83 4.783

803 104 55 70 1.733 1129 253 65 70 4.217

913 129 62 63 2.150 1239 284 89 81 4.733

1016 264 89 91 4.400 608 120 58 60 2.000

1147 239 82 82 3.983 708 283 92 91 4.717

1309 106 55 58 1.767 839 115 58 51 1.917

716 259 85 97 4.317 930 254 85 85 4.233

853 115 55 59 1.917 1055 94 55 55 1.567

952 275 89 90 4.583 1150 274 89 98 4.567

1122 110 55 58 1.833 1328 128 64 49 2.133

1220 286 92 98 4.767 557 270 93 85 4.500

735 115 55 55 1.917 722 103 58 65 1.717

830 266 89 107 4.433 827 287 89 102 4.783

1017 105 55 61 1.750 1009 111 55 56 1.850

1118 275 89 82 4.583 1105 275 89 86 4.583

1240 226 79 91 3.767 1231 104 55 62 1.733

(a) Construct a histogram of the durations of the erup-
tions, in seconds. Use 10 to 12 classes.

(b) Calculate the sample mean and locate it on your his-
togram. Does it give a good measure of the average
length of an eruption? Why or why not?

(c) Construct a histogram of the lengths of the times
between eruptions. Use 10 to 12 classes.

(d) Calculate the sample mean and locate it on your his-
togram. Does it give a good measure of the average
length of the times between eruptions?

6.1-10. In 1985, Kent Hrbek of the Minnesota Twins and
Dion James of the Milwaukee Brewers had the following
numbers of hits (H) and official at bats (AB) on grass and
artificial turf:

Hrbek James

Playing Surface AB H BA AB H BA

Grass 204 50 329 93

Artificial Turf 355 124 58 21

Total 559 174 387 114

(a) Find the batting average BA (namely, H/AB) of each
player on grass.

(b) Find the BA of each player on artificial turf.

(c) Find the season batting averages for the two players.

(d) Interpret your results.

6.1-11. In 1985, Al Bumbry of the Baltimore Orioles and
Darrell Brown of the Minnesota Twins had the following
numbers of hits (H) and official at bats (AB) on grass and
artificial turf:

Bumbry Brown

Playing Surface AB H BA AB H BA

Grass 295 77 92 18

Artificial Turf 49 16 168 53

Total 344 93 260 71

(a) Find the batting average BA (namely, H/AB) of each
player on grass.

(b) Find the BA of each player on artificial turf.

(c) Find the season batting averages for the two players.

(d) Interpret your results.



238 Chapter 6 Point Estimation

6.2 EXPLORATORY DATA ANALYSIS
To explore the other characteristics of an unknown distribution, we need to take
a sample of n observations, x1, x2, . . . , xn, from that distribution and often need to
order them from the smallest to the largest. One convenient way of doing this is to
use a stem-and-leaf display, a method that was started by John W. Tukey. [For more
details, see the books by Tukey (1977) and Velleman and Hoaglin (1981).]

Possibly the easiest way to begin is with an example to which all of us can relate.
Say we have the following 50 test scores on a statistics examination:

93 77 67 72 52 83 66 84 59 63

75 97 84 73 81 42 61 51 91 87

34 54 71 47 79 70 65 57 90 83

58 69 82 76 71 60 38 81 74 69

68 76 85 58 45 73 75 42 93 65

We can do much the same thing as a frequency table and histogram can, but keep the
original values, through a stem-and-leaf display. For this particular data set, we could
use the following procedure: The first number in the set, 93, is recorded by treating
the 9 (in the tens place) as the stem and the 3 (in the units place) as the corresponding
leaf. Note that this leaf of 3 is the first digit after the stem of 9 in Table 6.2-1. The
second number, 77, is that given by the leaf of 7 after the stem of 7; the third number,
67, by the leaf of 7 after the stem of 6; the fourth number, 72, as the leaf of 2 after
the stem of 7 (note that this is the second leaf on the 7 stem); and so on. Table 6.2-1
is an example of a stem-and-leaf display. If the leaves are carefully aligned vertically,
this table has the same effect as a histogram, but the original numbers are not lost.

It is useful to modify the stem-and-leaf display by ordering the leaves in each row
from smallest to largest. The resulting stem-and-leaf diagram is called an ordered
stem-and-leaf display. Table 6.2-2 uses the data from Table 6.2-1 to produce an
ordered stem-and-leaf display.

There is another modification that can also be helpful. Suppose that we want
two rows of leaves with each original stem. We can do this by recording leaves 0, 1,
2, 3, and 4 with a stem adjoined with an asterisk (∗) and leaves 5, 6, 7, 8, and 9 with

Table 6.2-1 Stem-and-leaf display of scores from 50
statistics examinations

Stems Leaves Frequency

3 4 8 2

4 2 7 5 2 4

5 2 9 1 4 7 8 8 7

6 7 6 3 1 5 9 0 9 8 5 10

7 7 2 5 3 1 9 0 6 1 4 6 3 5 13

8 3 4 4 1 7 3 2 1 5 9

9 3 7 1 0 3 5
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Table 6.2-2 Ordered stem-and-leaf display of statistics
examinations

Stems Leaves Frequency

3 4 8 2

4 2 2 5 7 4

5 1 2 4 7 8 8 9 7

6 0 1 3 5 5 6 7 8 9 9 10

7 0 1 1 2 3 3 4 5 5 6 6 7 9 13

8 1 1 2 3 3 4 4 5 7 9

9 0 1 3 3 7 5

a stem adjoined with a dot (•). Of course, in our example, by going from 7 original
classes to 14 classes, we lose a certain amount of smoothness with this particular data
set, as illustrated in Table 6.2-3, which is also ordered.

Tukey suggested another modification, which is used in the next example.

Table 6.2-3 Ordered stem-and-leaf display of
statistics examinations

Stems Leaves Frequency

3∗ 4 1

3• 8 1

4∗ 2 2 2

4• 5 7 2

5∗ 1 2 4 3

5• 7 8 8 9 4

6∗ 0 1 3 3

6• 5 5 6 7 8 9 9 7

7∗ 0 1 1 2 3 3 4 7

7• 5 5 6 6 7 9 6

8∗ 1 1 2 3 3 4 4 7

8• 5 7 2

9∗ 0 1 3 3 4

9• 7 1
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Example
6.2-1

The following numbers represent ACT composite scores for 60 entering freshmen at
a certain college:

26 19 22 28 31 29 25 23 20 33 23 26
30 27 26 29 20 23 18 24 29 27 32 24
25 26 22 29 21 24 20 28 23 26 30 19
27 21 32 28 29 23 25 21 28 22 25 24
19 24 35 26 25 20 31 27 23 26 30 29

An ordered stem-and-leaf display of these scores is given in Table 6.2-4, where leaves
are recorded as zeros and ones with a stem adjoined with an asterisk (∗), twos and
threes with a stem adjoined with t, fours and fives with a stem adjoined with f, sixes
and sevens with a stem adjoined with s, and eights and nines with a stem adjoined
with a dot (•).

There is a reason for constructing ordered stem-and-leaf diagrams. For a sample
of n observations, x1, x2, . . . , xn, when the observations are ordered from smallest
to largest, the resulting ordered data are called the order statistics of the sam-
ple. Statisticians have found that order statistics and certain of their functions are
extremely valuable; we will provide some theory concerning them in Section 6.3. It
is very easy to determine the values of the sample in order from an ordered stem-
and-leaf display. As an illustration, consider the values in Table 6.2-2 or Table 6.2-3.
The order statistics of the 50 test scores are given in Table 6.2-5.

Sometimes we give ranks to these order statistics and use the rank as the sub-
script on y. The first order statistic y1 = 34 has rank 1; the second order statistic
y2 = 38 has rank 2; the third order statistic y3 = 42 has rank 3; the fourth order statis-
tic y4 = 42 has rank 4, . . . ; and the 50th order statistic y50 = 97 has rank 50. It is also
about as easy to determine these values from the ordered stem-and-leaf display. We
see that y1 ≤ y2 ≤ · · · ≤ y50.

Table 6.2-4 Ordered stem-and-leaf display of 60
ACT scores

Stems Leaves Frequency

1• 8 9 9 9 4

2∗ 0 0 0 0 1 1 1 7

2t 2 2 2 3 3 3 3 3 3 9

2f 4 4 4 4 4 5 5 5 5 5 10

2s 6 6 6 6 6 6 6 7 7 7 7 11

2• 8 8 8 8 9 9 9 9 9 9 10

3∗ 0 0 0 1 1 5

3t 2 2 3 3

3f 5 1
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Table 6.2-5 Order statistics of 50 exam scores

34 38 42 42 45 47 51 52 54 57

58 58 59 60 61 63 65 65 66 67

68 69 69 70 71 71 72 73 73 74

75 75 76 76 77 79 81 81 82 83

83 84 84 85 87 90 91 93 93 97

From either these order statistics or the corresponding ordered stem-and-leaf
display, it is rather easy to find the sample percentiles. If 0 < p < 1, then the (100p)th
sample percentile has approximately np sample observations less than it and also
n(1−p) sample observations greater than it. One way of achieving this is to take the
(100p)th sample percentile as the (n + 1)pth order statistic, provided that (n + 1)p is
an integer. If (n + 1)p is not an integer but is equal to r plus some proper fraction—
say, a/b—use a weighted average of the rth and the (r + 1)st order statistics. That is,
define the (100p)th sample percentile as

π̃p = yr + (a/b)(yr+1 − yr) = (1 − a/b)yr + (a/b)yr+1.

Note that this formula is simply a linear interpolation between yr and yr+1.
[If p < 1/(n + 1) or p > n/(n + 1), that sample percentile is not defined.]

As an illustration, consider the 50 ordered test scores. With p = 1/2, we find
the 50th percentile by averaging the 25th and 26th order statistics, since (n + 1)p =
(51)(1/2) = 25.5. Thus, the 50th percentile is

π̃0.50 = (1/2)y25 + (1/2)y26 = (71 + 71)/2 = 71.

With p = 1/4, we have (n + 1)p = (51)(1/4) = 12.75, and the 25th sample percentile is
then

π̃0.25 = (1 − 0.75)y12 + (0.75)y13 = (0.25)(58) + (0.75)(59) = 58.75.

With p = 3/4, so that (n + 1)p = (51)(3/4) = 38.25, the 75th sample percentile is

π̃0.75 = (1 − 0.25)y38 + (0.25)y39 = (0.75)(81) + (0.25)(82) = 81.25.

Note that approximately 50%, 25%, and 75% of the sample observations are less
than 71, 58.75, and 81.25, respectively.

Special names are given to certain percentiles. The 50th percentile is the median
of the sample. The 25th, 50th, and 75th percentiles are, respectively, the first, second,
and third quartiles of the sample. For notation, we let q̃1 = π̃0.25, q̃2 = m̃ = π̃0.50,
and q̃3 = π̃0.75. The 10th, 20th, . . . , and 90th percentiles are the deciles of the sample,
so note that the 50th percentile is also the median, the second quartile, and the fifth
decile. With the set of 50 test scores, since (51)(2/10) = 10.2 and (51)(9/10) = 45.9, the
second and ninth deciles are, respectively,

π̃0.20 = (0.8)y10 + (0.2)y11 = (0.8)(57) + (0.2)(58) = 57.2

and

π̃0.90 = (0.1)y45 + (0.9)y46 = (0.1)(87) + (0.9)(90) = 89.7.
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The second decile is commonly called the 20th percentile, and the ninth decile is the
90th percentile.

Example
6.2-2

We illustrate the preceding ideas with the fluoride data given in Table 6.1-3. For
convenience, we use 0.02 as the length of a class interval. The ordered stem-and-leaf
display is given in Table 6.2-6.

This ordered stem-and-leaf diagram is useful for finding sample percentiles of
the data.

We now find some of the sample percentiles associated with the fluoride data.
Since n = 100, (n + 1)(0.25) = 25.25, (n + 1)(0.50) = 50.5, and (n + 1)(0.75) = 75.75,
so that the 25th, 50th, and 75th percentiles are, respectively,

π̃0.25 = (0.75)y25 + (0.25)y26 = (0.75)(0.89) + (0.25)(0.89) = 0.89,

π̃0.50 = (0.50)y50 + (0.50)y51 = (0.50)(0.92) + (0.50)(0.92) = 0.92,

π̃0.75 = (0.25)y75 + (0.75)y76 = (0.25)(0.97) + (0.75)(0.97) = 0.97.

These three percentiles are often called the first quartile, the median or second quar-
tile, and the third quartile, respectively. Along with the smallest (the minimum)
and largest (the maximum) values, they give the five-number summary of a set of
data. Furthermore, the difference between the third and first quartiles is called the
interquartile range, IQR. Here, it is equal to

q̃3 − q̃1 = π̃0.75 − π̃0.25 = 0.97 − 0.89 = 0.08.

Table 6.2-6 Ordered stem-and-leaf diagram of fluoride
concentrations

Stems Leaves Frequency

0.8f 5 5 5 5 4

0.8s 6 6 6 7 7 7 7 7

0.8• 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 16

0.9∗ 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 17

0.9t 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 19

0.9f 4 4 5 5 5 5 5 5 5 9

0.9s 6 6 7 7 7 7 6

0.9• 8 8 8 8 8 8 8 8 9 9 10

1.0∗ 0 0 0 0 1 1 1 7

1.0t 2 3 3 3

1.0f 5 1

1.0s 6 1
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One graphical means for displaying the five-number summary of a set of data
is called a box-and-whisker diagram. To construct a horizontal box-and-whisker dia-
gram, or, more simply, a box plot, draw a horizontal axis that is scaled to the data.
Above the axis, draw a rectangular box with the left and right sides drawn at q̃1 and
q̃3 and with a vertical line segment drawn at the median, q̃2 = m̃. A left whisker is
drawn as a horizontal line segment from the minimum to the midpoint of the left
side of the box, and a right whisker is drawn as a horizontal line segment from the
midpoint of the right side of the box to the maximum. Note that the length of the
box is equal to the IQR. The left and right whiskers represent the first and fourth
quarters of the data, while the two middle quarters of the data are represented,
respectively, by the two sections of the box, one to the left and one to the right of the
median line.

Example
6.2-3

Using the fluoride data shown in Table 6.2-6, we found that the five-number
summary is given by

y1 = 0.85, q̃1 = 0.89, q̃2 = m̃ = 0.92, q̃3 = 0.97, y100 = 1.06.

The box plot of these data is given in Figure 6.2-1. The fact that the long whisker is
to the right and the right half of the box is larger than the left half of the box leads
us to say that these data are slightly skewed to the right. Note that this skewness can
also be seen in the histogram and in the stem-and-leaf diagram.

The next example illustrates how the box plot depicts data that are skewed to
the left.

Example
6.2-4

The following data give the ordered weights (in grams) of 39 gold coins that were
produced during the reign of Verica, a pre-Roman British king:

4.90 5.06 5.07 5.08 5.15 5.17 5.18 5.19 5.24 5.25

5.25 5.25 5.25 5.27 5.27 5.27 5.27 5.28 5.28 5.28

5.29 5.30 5.30 5.30 5.30 5.31 5.31 5.31 5.31 5.31

5.32 5.32 5.33 5.34 5.35 5.35 5.35 5.36 5.37

0.82 0.85 0.88 0.91 0.94 0.97 1.00 1.03 1.06 1.09

Figure 6.2-1 Box plot of fluoride concentrations
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4.9 5.0 5.1 5.2 5.3 5.4

Figure 6.2-2 Box plot for weights of 39 gold coins

For these data, the minimum is 4.90 and the maximum is 5.37. Since

(39 + 1)(1/4) = 10, (39 + 1)(2/4) = 20, (39 + 1)(3/4) = 30,

we have

q̃1 = y10 = 5.25,

m̃ = y20 = 5.28,

q̃3 = y30 = 5.31.

Thus, the five-number summary is given by

y1 = 4.90, q̃1 = 5.25, q̃2 = m̃ = 5.28, q̃3 = 5.31, y39 = 5.37.

The box plot associated with the given data is shown in Figure 6.2-2. Note that the
box plot indicates that the data are skewed to the left.

Sometimes we are interested in picking out observations that seem to be much
larger or much smaller than most of the other observations. That is, we are look-
ing for outliers. Tukey suggested a method for defining outliers that is resistant to
the effect of one or two extreme values and makes use of the IQR. In a box-and-
whisker diagram, construct inner fences to the left and right of the box at a distance
of 1.5 times the IQR. Outer fences are constructed in the same way at a distance
of 3 times the IQR. Observations that lie between the inner and outer fences are
called suspected outliers. Observations that lie beyond the outer fences are called
outliers. The observations beyond the inner fences are denoted with a circle (•), and
the whiskers are drawn only to the extreme values within or on the inner fences.
When you are analyzing a set of data, suspected outliers deserve a closer look and
outliers should be looked at very carefully. It does not follow that suspected outliers
should be removed from the data, unless some error (such as a recording error) has
been made. Moreover, it is sometimes important to determine the cause of extreme
values, because outliers can often provide useful insights into the situation under
consideration (such as a better way of doing things).

STATISTICAL COMMENTS There is a story that statisticians tell about Ralph
Sampson, who was an excellent basketball player at the University of Virginia in the
early 1980s and later was drafted by the Houston Rockets. He supposedly majored in
communication studies at Virginia, and it is reported that the department there said
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that the average starting salary of their majors was much higher than those in the
sciences; that happened because of Sampson’s high starting salary with the Rockets.
If this story is true, it would have been much more appropriate to report the median
starting salary of majors and this median salary would have been much lower than
the median starting salaries in the sciences. �

Example
6.2-5

Continuing with Example 6.2-4, we find that the interquartile range is IQR =
5.31 − 5.25 = 0.06. Thus, the inner fences would be constructed at a distance of
1.5(0.06) = 0.09 to the left and right of the box, and the outer fences would be con-
structed at a distance of 3(0.06) = 0.18 to the left and right of the box. Figure 6.2-3
shows a box plot with the fences. Of course, since the maximum is 0.06 greater than
q̃3, there are no fences to the right. From this box plot, we see that there are three
suspected outliers and two outliers. (You may speculate as to why there are out-
liers with these data and why they fall to the left — that is, they are lighter than
expected.) Note that many computer programs use an asterisk to plot outliers and
suspected outliers, and do not print fences.

Some functions of two or more order statistics are quite important in modern
statistics. We mention and illustrate one more, along with the range and the IQR,
using the 100 fluoride concentrations shown in Table 6.2-6.

(a) Midrange = average of the extremes

= y1 + yn

2
= 0.85 + 1.06

2
= 0.955.

(b) Range = difference of the extremes.

(c) Interquartile range = difference of third and first quartiles

= q̃3 − q̃1 = 0.97 − 0.89 = 0.08.

Thus, we see that the mean, the median, and the midrange are measures of the
middle of the sample. In some sense, the standard deviation, the range, and the
interquartile range provide measures of spread of the sample.

4.9 5.0 5.1 5.2 5.3 5.4

Figure 6.2-3 Box plot for weights of 39 gold coins with
fences and outliers
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Exercises

6.2-1. In Exercise 6.1-3, measurements for 96 plungers
are given. Use those measurements to

(a) Construct a stem-and-leaf diagram using integer
stems.

(b) Find the five-number summary of the data.

(c) Construct a box-and-whisker diagram. Are there any
outliers?

6.2-2. When you purchase “1-pound bags” of carrots, you
can buy either “baby” carrots or regular carrots. We shall
compare the weights of 75 bags of each of these types of
carrots. The following table gives the weights of the bags
of baby carrots:

1.03 1.03 1.06 1.02 1.03 1.03 1.03 1.02 1.03 1.03

1.06 1.04 1.05 1.03 1.04 1.03 1.05 1.06 1.04 1.04

1.03 1.04 1.04 1.06 1.03 1.04 1.05 1.04 1.04 1.02

1.03 1.05 1.05 1.03 1.04 1.03 1.04 1.04 1.03 1.04

1.03 1.04 1.04 1.04 1.05 1.04 1.04 1.03 1.03 1.05

1.04 1.04 1.05 1.04 1.03 1.03 1.05 1.03 1.04 1.05

1.04 1.04 1.04 1.05 1.03 1.04 1.04 1.04 1.04 1.03

1.05 1.05 1.05 1.03 1.04

This table gives the weights of the regular-sized carrots:

1.29 1.10 1.28 1.29 1.23 1.20 1.31 1.25 1.13 1.26

1.19 1.33 1.24 1.20 1.26 1.24 1.11 1.14 1.15 1.15

1.19 1.26 1.14 1.20 1.20 1.20 1.24 1.25 1.28 1.24

1.26 1.20 1.30 1.23 1.26 1.16 1.34 1.10 1.22 1.27

1.21 1.09 1.23 1.03 1.32 1.21 1.23 1.34 1.19 1.18

1.20 1.20 1.13 1.43 1.19 1.05 1.16 1.19 1.07 1.21

1.36 1.21 1.00 1.23 1.22 1.13 1.24 1.10 1.18 1.26

1.12 1.10 1.19 1.10 1.24

(a) Calculate the five-number summary of each set of
weights.

(b) On the same graph, construct box plots for each set of
weights.

(c) If the carrots are the same price per package, which
is the better buy? Which type of carrots would you
select?

6.2-3. Here are underwater weights in kilograms for 82
male students:

3.7 3.6 4.0 4.3 3.8 3.4 4.1 4.0 3.7 3.4 3.5 3.8 3.7 4.9

3.5 3.8 3.3 4.8 3.4 4.6 3.5 5.3 4.4 4.2 2.5 3.1 5.2 3.8

3.3 3.4 4.1 4.6 4.0 1.4 4.3 3.8 4.7 4.4 5.0 3.2 3.1 4.2

4.9 4.5 3.8 4.2 2.7 3.8 3.8 2.0 3.4 4.9 3.3 4.3 5.6 3.2

4.7 4.5 5.2 5.0 5.0 4.0 3.8 5.3 4.5 3.8 3.8 3.4 3.6 3.3

4.2 5.1 4.0 4.7 6.5 4.4 3.6 4.7 4.5 2.3 4.0 3.7

Here are underwater weights in kilograms for 100 female
students:

2.0 2.0 2.1 1.6 1.9 2.0 2.0 1.3 1.3 1.2 2.3 1.9

2.1 1.2 2.0 1.6 1.1 2.2 2.2 1.4 1.7 2.4 1.8 1.7

2.0 2.1 1.6 1.7 1.8 0.7 1.9 1.7 1.7 1.1 2.0 2.3

0.5 1.3 2.7 1.8 2.0 1.7 1.2 0.7 1.1 1.1 1.7 1.7

1.2 1.2 0.7 2.3 1.7 2.4 1.0 2.4 1.4 1.9 2.5 2.2

2.1 1.4 2.4 1.8 2.5 1.3 0.5 1.7 1.9 1.8 1.3 2.0

2.2 1.7 2.0 2.5 1.2 1.4 1.4 1.2 2.2 2.0 1.8 1.4

1.9 1.4 1.3 2.5 1.2 1.5 0.8 2.0 2.2 1.8 2.0 1.6

1.5 1.6 1.5 2.6

(a) Group each set of data into classes with a class width
of 0.5 kilograms and in which the class marks are
0.5, 1.0, 1.5, . . . .

(b) Draw histograms of the grouped data.

(c) Construct box-and-whisker diagrams of the data and
draw them on the same graph. Describe what this
graph shows.

6.2-4. An insurance company experienced the following
mobile home losses in 10,000’s of dollars for 50 catas-
trophic events:

1 2 2 3 3 4 4 5 5 5

5 6 7 7 9 9 9 10 11 12

22 24 28 29 31 33 36 38 38 38

39 41 48 49 53 55 74 82 117 134

192 207 224 225 236 280 301 308 351 527

(a) Find the five-number summary of the data and draw
a box-and-whisker diagram.

(b) Calculate the IQR and the locations of the inner and
outer fences.

(c) Draw a box plot that shows the fences, suspected
outliers, and outliers.

(d) Describe the distribution of losses. (See Exercise
6.1-6.)
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6.2-5. In Exercise 6.1-5, data are given for the number of
$1 bets a player can make in roulette before losing $5. Use
those data to respond to the following:

(a) Determine the order statistics.

(b) Find the five-number summary of the data.

(c) Draw a box-and-whisker diagram.

(d) Find the locations of the inner and outer fences, and
draw a box plot that shows the fences, the suspected
outliers, and the outliers.

(e) In your opinion, does the median or sample mean give
a better measure of the center of the data?

6.2-6. In the casino game roulette, if a player bets $1 on
red (or on black or on odd or on even), the probability
of winning $1 is 18/38 and the probability of losing $1 is
20/38. Suppose that a player begins with $5 and makes
successive $1 bets. Let Y equal the player’s maximum cap-
ital before losing the $5. One hundred observations of
Y were simulated on a computer, yielding the following
data:

25 9 5 5 5 9 6 5 15 45

55 6 5 6 24 21 16 5 8 7

7 5 5 35 13 9 5 18 6 10

19 16 21 8 13 5 9 10 10 6

23 8 5 10 15 7 5 5 24 9

11 34 12 11 17 11 16 5 15 5

12 6 5 5 7 6 17 20 7 8

8 6 10 11 6 7 5 12 11 18

6 21 6 5 24 7 16 21 23 15

11 8 6 8 14 11 6 9 6 10

(a) Construct an ordered stem-and-leaf display.

(b) Find the five-number summary of the data and draw
a box-and-whisker diagram.

(c) Calculate the IQR and the locations of the inner and
outer fences.

(d) Draw a box plot that shows the fences, suspected
outliers, and outliers.

(e) Find the 90th percentile.

6.2-7. Let X denote the concentration of calcium car-
bonate (CaCO3) in milligrams per liter. Following are 20
observations of X:

130.8 129.9 131.5 131.2 129.5

132.7 131.5 127.8 133.7 132.2

134.8 131.7 133.9 129.8 131.4

128.8 132.7 132.8 131.4 131.3

(a) Construct an ordered stem-and-leaf display, using
stems of 127, 128, . . . , 134.

(b) Find the midrange, range, interquartile range, median,
sample mean, and sample variance.

(c) Draw a box-and-whisker diagram.

6.2-8. The weights (in grams) of 25 indicator housings
used on gauges are as follows:

102.0 106.3 106.6 108.8 107.7

106.1 105.9 106.7 106.8 110.2

101.7 106.6 106.3 110.2 109.9

102.0 105.8 109.1 106.7 107.3

102.0 106.8 110.0 107.9 109.3

(a) Construct an ordered stem-and-leaf display, using
integers as the stems and tenths as the leaves.

(b) Find the five-number summary of the data and draw
a box plot.

(c) Are there any suspected outliers? Are there any out-
liers?

6.2-9. In Exercise 6.1-4, the melting points of a firm’s
alloy filaments are given for a sample of 50 filaments.

(a) Construct a stem-and-leaf diagram of those melting
points, using as stems 30f , 30s, . . . , 33f .

(b) Find the five-number summary for these melting
points.

(c) Construct a box-and-whisker diagram.

(d) Describe the symmetry of the data.

6.2-10. In Exercise 6.1-7, lead concentrations near the
San Diego Freeway in 1976 are given. During the fall
of 1977, the weekday afternoon lead concentrations (in
μg/m3) at the measurement station near the San Diego
Freeway in Los Angeles were as follows:

9.5 10.7 8.3 9.8 9.1 9.4 9.6 11.9 9.5 12.6 10.5

8.9 11.4 12.0 12.4 9.9 10.9 12.3 11.0 9.2 9.3 9.3

10.5 9.4 9.4 8.2 10.4 9.3 8.7 9.8 9.1 2.9 9.8

5.7 8.2 8.1 8.8 9.7 8.1 8.8 10.3 8.6 10.2 9.4

14.8 9.9 9.3 8.2 9.9 11.6 8.7 5.0 9.9 6.3 6.5

10.2 8.8 8.0 8.7 8.9 6.8 6.6 7.3 16.7

(a) Construct a frequency distribution and display the
results in the form of a histogram. Is this distribution
symmetric?

(b) Calculate the sample mean and sample standard devi-
ation.
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(c) Locate x, x ± s on your histogram. How many obser-
vations lie within one standard deviation of the mean?
How many lie within two standard deviations of the
mean?

(d) Using the data from Exercise 6.1-7 and the data from
this exercise, construct a back-to-back stem-and-leaf
diagram with integer stems in the center and the
leaves for 1976 going to the left and those for 1977
going to the right.

(e) Construct box-and-whisker displays of both sets of
data on the same graph.

(f) Use your numerical and graphical results to interpret
what you see.

REMARK In the spring of 1977, a new traffic lane was
added to the freeway. This lane reduced traffic congestion
but increased traffic speed.

6.3 ORDER STATISTICS
Order statistics are the observations of the random sample, arranged, or ordered,
in magnitude from the smallest to the largest. In recent years, the importance of
order statistics has increased owing to the more frequent use of nonparametric infer-
ences and robust procedures. However, order statistics have always been prominent
because, among other things, they are needed to determine rather simple statistics
such as the sample median, the sample range, and the empirical cdf. Recall that in
Section 6.2 we discussed observed order statistics in connection with descriptive and
exploratory statistical methods. We will consider certain interesting aspects about
their distributions in this section.

In most of our discussions about order statistics, we will assume that the n
independent observations come from a continuous-type distribution. This means,
among other things, that the probability of any two observations being equal is zero.
That is, the probability is 1 that the observations can be ordered from smallest to
largest without having two equal values. Of course, in practice, we do frequently
observe ties; but if the probability of a tie is small, the distribution theory that fol-
lows will hold approximately. Thus, in the discussion here, we are assuming that the
probability of a tie is zero.

Example
6.3-1

The values x1 = 0.62, x2 = 0.98, x3 = 0.31, x4 = 0.81, and x5 = 0.53 are the n = 5
observed values of five independent trials of an experiment with pdf f (x) = 2x,
0 < x < 1. The observed order statistics are

y1 = 0.31 < y2 = 0.53 < y3 = 0.62 < y4 = 0.81 < y5 = 0.98.

Recall that the middle observation in the ordered arrangement, here y3 = 0.62, is
called the sample median and the difference of the largest and the smallest, here

y5 − y1 = 0.98 − 0.31 = 0.67,

is called the sample range.

If X1, X2, . . . , Xn are observations of a random sample of size n from a
continuous-type distribution, we let the random variables

Y1 < Y2 < · · · < Yn
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denote the order statistics of that sample. That is,

Y1 = smallest of X1, X2, . . . , Xn,

Y2 = second smallest of X1, X2, . . . , Xn,
...

Yn = largest of X1, X2, . . . , Xn.

There is a very simple procedure for determining the cdf of the rth order statis-
tic, Yr. This procedure depends on the binomial distribution and is illustrated in
Example 6.3-2.

Example
6.3-2

Let Y1 < Y2 < Y3 < Y4 < Y5 be the order statistics associated with n indepen-
dent observations X1, X2, X3, X4, X5, each from the distribution with pdf f (x) = 2x,
0 < x < 1. Consider P(Y4 < 1/2). For the event {Y4 < 1/2} to occur, at least
four of the random variables X1, X2, X3, X4, X5 must be less than 1/2, because Y4
is the fourth smallest among the five observations. Thus, if the event {Xi < 1/2},
i = 1, 2, . . . , 5, is called “success,” we must have at least four successes in the five
mutually independent trials, each of which has probability of success

P
(

Xi ≤ 1
2

)
=

∫ 1/2

0
2x dx =

(
1
2

)2

= 1
4

.

Hence,

P
(

Y4 ≤ 1
2

)
=

(
5
4

)(
1
4

)4(3
4

)
+

(
1
4

)5

= 0.0156.

In general, if 0 < y < 1, then the cdf of Y4 is

G(y) = P(Y4 < y) =
(

5
4

)
(y2)4(1 − y2) + (y2)5,

since this represents the probability of at least four “successes” in five independent
trials, each of which has probability of success

P(Xi < y) =
∫ y

0
2x dx = y2.

For 0 < y < 1, the pdf of Y4 is therefore

g(y) = G′(y) =
(

5
4

)
4(y2)3(2y)(1 − y2) +

(
5
4

)
(y2)4(−2y) + 5(y2)4(2y)

= 5!
3! 1! (y2)3(1 − y2)(2y), 0 < y < 1.

Note that in this example the cdf of each X is F(x) = x2 when 0 < x < 1. Thus,

g(y) = 5!
3! 1! [F(y)]3 [1 − F(y)] f (y), 0 < y < 1.

The preceding example should make the following generalization easier to read:
Let Y1 < Y2 < · · · < Yn be the order statistics of n independent observations from
a distribution of the continuous type with cdf F(x) and pdf F ′(x) = f (x), where
0 < F(x) < 1 for a < x < b and F(a) = 0, F(b) = 1. (It is possible that a = −∞
and/or b = +∞.) The event that the rth order statistic Yr is at most y, {Yr ≤ y}, can
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occur if and only if at least r of the n observations are less than or equal to y. That
is, here the probability of “success” on each trial is F(y), and we must have at least r
successes. Thus,

Gr(y) = P(Yr ≤ y) =
n∑

k=r

(
n
k

)
[F(y)]k[1 − F(y)]n−k.

Rewriting this slightly, we have

Gr(y) =
n−1∑
k=r

(
n
k

)
[F(y)]k[1 − F(y)]n−k + [F(y)]n.

Hence, the pdf of Yr is

gr(y) = G′
r(y) =

n−1∑
k=r

(
n
k

)
(k)[F(y)]k−1f (y)[1 − F(y)]n−k

+
n−1∑
k=r

(
n
k

)
[F(y)]k(n − k)[1 − F(y)]n−k−1[−f (y)]

+ n[F(y)]n−1f (y). (6.3-1)

However, since(
n
k

)
k = n!

(k − 1)! (n − k)! and
(

n
k

)
(n − k) = n!

k! (n − k − 1)! ,

it follows that the pdf of Yr is

gr(y) = n!
(r − 1)! (n − r)! [F(y)]r−1[1 − F(y)]n−rf (y), a < y < b,

which is the first term of the first summation in gr(y) = G′
r(y), Equation 6.3-1. The

remaining terms in gr(y) = G′
r(y) sum to zero because the second term of the first

summation (when k = r + 1) equals the negative of the first term in the second
summation (when k = r), and so on. Finally, the last term of the second summation
equals the negative of n[F(y)]n−1f (y). To see this clearly, the student is urged to write
out a number of terms in these summations. (See Exercise 6.3-4.)

It is worth noting that the pdf of the smallest order statistic is

g1(y) = n[1 − F(y)]n−1f (y), a < y < b,

and the pdf of the largest order statistic is

gn(y) = n[F(y)]n−1f (y), a < y < b.

REMARK There is one quite satisfactory way to construct heuristically the expres-
sion for the pdf of Yr. To do this, we must recall the multinomial probability and
then consider the probability element gr(y)(�y) of Yr. If the length �y is very small,
gr(y)(�y) represents approximately the probability

P(y < Yr ≤ y + �y).

Thus, we want the probability, gr(y)(�y), that (r−1) items fall less than y, that (n−r)
items are greater than y + �y, and that one item falls between y and y + �y. Recall
that the probabilities on a single trial are
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P(X ≤ y) = F(y),

P(X > y + �y) = 1 − F(y + �y) ≈ 1 − F(y),

P(y < X ≤ y + �y) ≈ f (y)(�y).

Thus, the multinomial probability is approximately

gr(y)(�y) = n!
(r − 1)! 1! (n − r)! [F(y)]r−1[1 − F(y)]n−r[f (y)(�y)].

If we divide both sides by the length �y, the formula for gr(y) results.

Example
6.3-3

Returning to Example 6.3-2, we shall now graph the pdfs of the order statistics
Y1 < Y2 < Y3 < Y4 < Y5 when sampling from a distribution with pdf f (x) =
2x, 0 < x < 1, and cdf F(x) = x2, 0 < x < 1. These graphs are given in Figure 6.3-1.
The respective pdfs and their means are as follows:

g1(y) = 10y(1 − y2)4, 0 < y < 1; μ1 =
256
693

,

g2(y) = 40y3(1 − y2)3, 0 < y < 1; μ2 =
128
231

,

g3(y) = 60y5(1 − y2)2, 0 < y < 1; μ3 =
160
231

,

g4(y) = 40y7(1 − y2), 0 < y < 1; μ4 =
80
99

,

g5(y) = 10y9, 0 < y < 1; μ5 =
10
11

.

Recall that in Theorem 5.1-2 we proved that if X has a cdf F(x) of the con-
tinuous type, then F(X) has a uniform distribution on the interval from 0 to 1. If
Y1 < Y2 < · · · < Yn are the order statistics of n independent observations
X1, X2, . . . , Xn, then

F(Y1) < F(Y2) < · · · < F(Yn),

r = 1 r = 2

r = 3

r = 4

r = 5

2

4

6

8

10

0.2 0.4 0.6 0.8 1

Figure 6.3-1 pdfs of order statistics,
f (x) = 2x, 0 < x < 1
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because F is a nondecreasing function and the probability of an equality is again
zero. Note that this ordering could be looked upon as an ordering of the mutually
independent random variables F(X1), F(X2), . . . , F(Xn), each of which is U(0, 1).
That is,

W1 = F(Y1) < W2 = F(Y2) < · · · < Wn = F(Yn)

can be thought of as the order statistics of n independent observations from that
uniform distribution. Since the cdf of U(0, 1) is G(w) = w, 0 < w < 1, the pdf of the
rth order statistic, Wr = F(Yr), is

hr(w) = n!
(r − 1)! (n − r)! wr−1(1 − w)n−r, 0 < w < 1.

Of course, the mean, E(Wr) = E[F(Yr)] of Wr = F(Yr), is given by the integral

E(Wr) =
∫ 1

0
w

n!
(r − 1)! (n − r)! wr−1(1 − w)n−r dw.

This integral can be evaluated by integrating by parts several times, but it is easier to
obtain the answer if we rewrite the integration as follows:

E(Wr) =
(

r
n + 1

)∫ 1

0

(n + 1)!
r! (n − r)!w

r(1 − w)n−r dw.

The integrand in this last expression can be thought of as the pdf of the (r + 1)st
order statistic of n + 1 independent observations from a U(0, 1) distribution. This is
a beta pdf with α = r + 1 and β = n − r + 1; hence, the integral must equal 1, and it
follows that

E(Wr) = r
n + 1

, r = 1, 2, . . . , n.

There is an extremely interesting interpretation of Wr = F(Yr). Note that F(Yr)
is the cumulated probability up to and including Yr or, equivalently, the area under
f (x) = F ′(x) but less than Yr. Consequently, F(Yr) can be treated as a random area.
Since F(Yr−1) is also a random area, F(Yr) − F(Yr−1) is the random area under
f (x) between Yr−1 and Yr. The expected value of the random area between any two
adjacent order statistics is then

E[F(Yr) − F(Yr−1)] = E[F(Yr)] − E[F(Yr−1)]

= r
n + 1

− r − 1
n + 1

= 1
n + 1

.

Also, it is easy to show (see Exercise 6.3-6) that

E[F(Y1)] = 1
n + 1

and E[1 − F(Yn)] = 1
n + 1

.

That is, the order statistics Y1 < Y2 < · · · < Yn partition the support of X into n + 1
parts and thus create n + 1 areas under f (x) and above the x-axis. On the average,
each of the n + 1 areas equals 1/(n + 1).

If we recall that the (100p)th percentile πp is such that the area under f (x) to the
left of πp is p, then the preceding discussion suggests that we let Yr be an estimator
of πp, where p = r/(n + 1). For this reason, we define the (100p)th percentile of the
sample as Yr, where r = (n+1)p. In case (n+1)p is not an integer, we use a weighted
average (or an average) of the two adjacent order statistics Yr and Yr+1, where r is
the greatest integer [(n + 1)p] (or, �(n + 1)p�) in (n + 1)p. In particular, the sample
median is
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m̃ =

⎧⎪⎨⎪⎩
Y(n+1)/2, when n is odd,

Yn/2 + Y(n/2)+1

2
, when n is even.

Example
6.3-4

Let X equal the weight of soap in a “1000-gram” bottle. A random sample of n = 12
observations of X yielded the following weights, which have been ordered:

1013 1019 1021 1024 1026 1028

1033 1035 1039 1040 1043 1047

Since n = 12 is even, the sample median is

m̃ = y6 + y7

2
= 1028 + 1033

2
= 1030.5.

The location of the 25th percentile (or first quartile) is

(n + 1)(0.25) = (12 + 1)(0.25) = 3.25.

Thus, using a weighted average, we find that the first quartile is

q̃1 = y3 + (0.25)(y4 − y3) = (0.75)y3 + (0.25)y4

= (0.75)(1021) + (0.25)(1024) = 1021.75.

Similarly, the 75th percentile (or third quartile) is

q̃3 = y9 + (0.75)(y10 − y9) = (0.25)y9 + (0.75)y10

= (0.25)(1039) + (0.75)(1040) = 1039.75,

because (12 + 1)(0.75) = 9.75. Since (12 + 1)(0.60) = 7.8, the 60th percentile is

π̃0.60 = (0.2)y7 + (0.8)y8 = (0.2)(1033) + (0.8)(1035) = 1034.6.

The (100p)th percentile of a distribution is often called the quantile of order
p. So if y1 ≤ y2 ≤ · · · ≤ yn are the order statistics associated with the sample
x1, x2, . . . , xn, then yr is called the sample quantile of order r/(n+1) as well as the
100r/(n+1)th sample percentile. Also, the percentile πp of a theoretical distribution
is the quantile of order p. Now, suppose the theoretical distribution is a good model
for the observations. Then we plot (yr, πp), where p = r/(n+1), for several values of
r (possibly even for all r values, r = 1, 2, . . . , n); we would expect these points (yr, πp)
to lie close to a line through the origin with slope equal to 1 because yr ≈ πp. If they
are not close to that line, then we would doubt that the theoretical distribution is a
good model for the observations. The plot of (yr, πp) for several values of r is called
the quantile–quantile plot or, more simply, the q–q plot.

Given a set of observations of a random variable X, how can we decide, for
example, whether or not X has an approximate normal distribution? If we have a
large number of observations of X, a stem-and-leaf diagram or a histogram of the
observations can often be helpful. (See Exercises 6.2-1 and 6.1-3, respectively.) For
small samples, a q–q plot can be used to check on whether the sample arises from
a normal distribution. For example, suppose the quantiles of a sample were plotted
against the corresponding quantiles of a certain normal distribution and the pairs
of points generated were on a straight line with slope 1 and intercept 0. Of course,
we would then believe that we have an ideal sample from that normal distribution
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with that certain mean and standard deviation. Such a plot, however, requires that
we know the mean and the standard deviation of this normal distribution, and we
usually do not. However, since the quantile, qp, of N(μ, σ 2) is related to the corre-
sponding one, z1−p, of N(0, 1) by qp = μ + σz1−p, we can always plot the quantiles
of the sample against the corresponding ones of N(0, 1) and get the needed informa-
tion. That is, if the sample quantiles are plotted as the x-coordinates of the pairs and
the N(0, 1) quantiles as the y-coordinates, and if the graph is almost a straight line,
then it is reasonable to assume that the sample arises from a normal distribution.
Moreover, the reciprocal of the slope of that straight line is a good estimate of the
standard deviation σ because z1−p = (qp − μ)/σ .

Example
6.3-5

In researching groundwater it is often important to know the characteristics of the
soil at a certain site. Many of these characteristics, such as porosity, are at least par-
tially dependent upon the grain size. The diameter of individual grains of soil can be
measured. Here are the diameters (in mm) of 30 randomly selected grains:

1.24 1.36 1.28 1.31 1.35 1.20 1.39 1.35 1.41 1.31

1.28 1.26 1.37 1.49 1.32 1.40 1.33 1.28 1.25 1.39

1.38 1.34 1.40 1.27 1.33 1.36 1.43 1.33 1.29 1.34

For these data, x = 1.33 and s2 = 0.0040. May we assume that these are observa-
tions of a random variable X that is N(1.33, 0.0040)? To help answer this question,
we shall construct a q–q plot of the standard normal quantiles that correspond to
p = 1/31, 2/31, . . . , 30/31 versus the ordered observations. To find these quantiles, it
is helpful to use the computer.

k Diameters
in mm (x)

p = k/31 z1−p k Diameters
in mm (x)

p = k/31 z1−p

1 1.20 0.0323 −1.85 16 1.34 0.5161 0.04

2 1.24 0.0645 −1.52 17 1.34 0.5484 0.12

3 1.25 0.0968 −1.30 18 1.35 0.5806 0.20

4 1.26 0.1290 −1.13 19 1.35 0.6129 0.29

5 1.27 0.1613 −0.99 20 1.36 0.6452 0.37

6 1.28 0.1935 −0.86 21 1.36 0.6774 0.46

7 1.28 0.2258 −0.75 22 1.37 0.7097 0.55

8 1.28 0.2581 −0.65 23 1.38 0.7419 0.65

9 1.29 0.2903 −0.55 24 1.39 0.7742 0.75

10 1.31 0.3226 −0.46 25 1.39 0.8065 0.86

11 1.31 0.3548 −0.37 26 1.40 0.8387 0.99

12 1.32 0.3871 −0.29 27 1.40 0.8710 1.13

13 1.33 0.4194 −0.20 28 1.41 0.9032 1.30

14 1.33 0.4516 −0.12 29 1.43 0.9355 1.52

15 1.33 0.4839 −0.04 30 1.49 0.9677 1.85
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Figure 6.3-2 q–q plot, N(0, 1) quantiles versus
grain diameters

A q–q plot of these data is shown in Figure 6.3-2. Note that the points do fall
close to a straight line, so the normal probability model seems to be appropriate on
the basis of these few data.

Exercises

6.3-1. Some biology students were interested in analyz-
ing the amount of time that bees spend gathering nectar
in flower patches. Thirty-nine bees visited a high-density
flower patch and spent the following times (in seconds)
gathering nectar:

235 210 95 146 195 840 185 610 680 990

146 404 119 47 9 4 10 169 270 95

329 151 211 127 154 35 225 140 158 116

46 113 149 420 120 45 10 18 105

(a) Find the order statistics.

(b) Find the median and 80th percentile of the sample.

(c) Determine the first and third quartiles (i.e., 25th and
75th percentiles) of the sample.

6.3-2. Let X equal the forced vital capacity (the volume
of air a person can expel from his or her lungs) of a male
freshman. Seventeen observations of X, which have been
ordered, are

3.7 3.8 4.0 4.3 4.7 4.8 4.9 5.0

5.2 5.4 5.6 5.6 5.6 5.7 6.2 6.8 7.6

(a) Find the median, the first quartile, and the third
quartile.

(b) Find the 35th and 65th percentiles.

6.3-3. Let Y1 < Y2 < Y3 < Y4 < Y5 be the order statis-
tics of five independent observations from an exponential
distribution that has a mean of θ = 3.

(a) Find the pdf of the sample median Y3.

(b) Compute the probability that Y4 is less than 5.

(c) Determine P(1 < Y1).

6.3-4. In the expression for gr(y) = G′
r(y) in Equat-

ion 6.3-1, let n = 6, and r = 3, and write out the
summations, showing that the “telescoping” suggested in
the text is achieved.

6.3-5. Let Y1 < Y2 < · · · < Y8 be the order statistics of
eight independent observations from a continuous-type
distribution with 70th percentile π0.7 = 27.3.

(a) Determine P(Y7 < 27.3).

(b) Find P(Y5 < 27.3 < Y8).

6.3-6. Let W1 < W2 < · · · < Wn be the order statistics of
n independent observations from a U(0, 1) distribution.

(a) Find the pdf of W1 and that of Wn.

(b) Use the results of (a) to verify that E(W1) = 1/(n+1)
and E(Wn) = n/(n + 1).

(c) Show that the pdf of Wr is beta.

6.3-7. Let Y1 < Y2 < · · · < Y19 be the order statistics
of n = 19 independent observations from the exponential
distribution with mean θ .
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(a) What is the pdf of Y1?

(b) Using integration, find the value of E[F(Y1)], where
F is the cdf of the exponential distribution.

6.3-8. Let W1 < W2 < · · · < Wn be the order statistics of
n independent observations from a U(0, 1) distribution.

(a) Show that E(W2
r ) = r(r + 1)/(n + 1)(n + 2), using

a technique similar to that used in determining that
E(Wr) = r/(n + 1).

(b) Find the variance of Wr.

6.3-9. Let Y1 < Y2 < · · · < Yn be the order statistics of a
random sample of size n from an exponential distribution
with pdf f (x) = e−x, 0 < x < ∞.

(a) Find the pdf of Yr.

(b) Determine the pdf of U = e−Yr .

6.3-10. Use the heuristic argument to show that the joint
pdf of the two order statistics Yi < Yj is

g (yi, yj) = n!
(i − 1)!(j − i − 1)!(n − j)!
× [F(yi)]i−1[F(yj) − F(yi)]j−i−1

× [1 − F(yj)]n−jf (yi)f (yj), −∞ <yi <yj <∞.

6.3-11. Use the result of Exercise 6.3-10.

(a) Find the joint pdf of Y1 and Yn, the first and the nth
order statistics of a random sample of size n from the
U(0, 1) distribution.

(b) Find the joint and the marginal pdfs of W1 = Y1/Yn
and W2 = Yn.

(c) Are W1 and W2 independent?

(d) Use simulation to confirm your theoretical results.

6.3-12. Nine measurements are taken on the strength of
a certain metal. In order, they are 7.2, 8.9, 9.7, 10.5, 10.9,

11.7, 12.9, 13.9, 15.3, and these values correspond to the
10th, 20th, . . . , 90th percentiles of this sample. Construct
a q–q plot of the measurements against the same per-
centiles of N(0, 1). Does it seem reasonable that the
underlying distribution of strengths could be normal?

6.3-13. Some measurements (in mm) were made on spec-
imens of the spider Sosippus floridanus, which is native to
Florida. Here are the lengths of nine female spiders and
nine male spiders.

Female spiders 11.06 13.87 12.93 15.08 17.82

14.14 12.26 17.82 20.17

Male spiders 12.26 11.66 12.53 13.00 11.79

12.46 10.65 10.39 12.26

(a) Construct a q–q plot of the female spider lengths. Do
they appear to be normally distributed?

(b) Construct a q–q plot of the male spider lengths. Do
they appear to be normally distributed?

6.3-14. An interior automotive supplier places several
electrical wires in a harness. A pull test measures the force
required to pull spliced wires apart. A customer requires
that each wire that is spliced into the harness withstand
a pull force of 20 pounds. Let X equal the pull force
required to pull a spliced wire apart. The following data
give the values of a random sample of n = 20 observations
of X:

28.8 24.4 30.1 25.6 26.4 23.9 22.1 22.5 27.6 28.1

20.8 27.7 24.4 25.1 24.6 26.3 28.2 22.2 26.3 24.4

(a) Construct a q–q plot, using the ordered array and the
corresponding quantiles of N(0, 1).

(b) Does X appear to have a normal distribution?

6.4 MAXIMUM LIKELIHOOD ESTIMATION
In earlier chapters, we alluded to estimating characteristics of the distribution from
the corresponding ones of the sample, hoping that the latter would be reasonably
close to the former. For example, the sample mean x can be thought of as an estimate
of the distribution mean μ, and the sample variance s2 can be used as an estimate of
the distribution variance σ 2. Even the relative frequency histogram associated with
a sample can be taken as an estimate of the pdf of the underlying distribution. But
how good are these estimates? What makes an estimate good? Can we say anything
about the closeness of an estimate to an unknown parameter?

In this section, we consider random variables for which the functional form of
the pmf or pdf is known, but the distribution depends on an unknown parameter
(say, θ) that may have any value in a set (say, �) called the parameter space. For
example, perhaps it is known that f (x; θ) = (1/θ)e−x/θ , 0 < x < ∞, and that θ ∈ � =
{θ : 0 < θ < ∞}. In certain instances, it might be necessary for the experimenter to
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select precisely one member of the family {f (x, θ), θ ∈ �} as the most likely pdf of the
random variable. That is, the experimenter needs a point estimate of the parameter
θ , namely, the value of the parameter that corresponds to the selected pdf.

In one common estimation scenario, we take a random sample from the dis-
tribution to elicit some information about the unknown parameter θ . That is, we
repeat the experiment n independent times, observe the sample, X1, X2, . . . , Xn, and
try to estimate the value of θ by using the observations x1, x2, . . . , xn. The function of
X1, X2, . . . , Xn used to estimate θ—say, the statistic u(X1, X2, . . . , Xn)—is called an
estimator of θ . We want it to be such that the computed estimate u(x1, x2, . . . , xn) is
usually close to θ . Since we are estimating one member of θ ∈ �, such an estimator
is often called a point estimator.

The following example should help motivate one principle that is often used in
finding point estimates: Suppose that X is b(1, p), so that the pmf of X is

f (x; p) = px(1 − p)1−x, x = 0, 1, 0 ≤ p ≤ 1.

We note that p ∈ � = {p : 0 ≤ p ≤ 1}, where � represents the parameter
space—that is, the space of all possible values of the parameter p. Given a ran-
dom sample X1, X2, . . . , Xn, the problem is to find an estimator u(X1, X2, . . . , Xn)
such that u(x1, x2, . . . , xn) is a good point estimate of p, where x1, x2, . . . , xn are the
observed values of the random sample. Now, the probability that X1, X2, . . . , Xn
takes these particular values is (with � xi denoting

∑n
i=1 xi)

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

pxi(1 − p)1−xi = p� xi(1 − p)n−� xi ,

which is the joint pmf of X1, X2, . . . , Xn evaluated at the observed values. One
reasonable way to proceed toward finding a good estimate of p is to regard this
probability (or joint pmf) as a function of p and find the value of p that maximizes
it. That is, we find the p value most likely to have produced these sample values.
The joint pmf, when regarded as a function of p, is frequently called the likelihood
function. Thus, here the likelihood function is

L(p) = L(p; x1, x2, . . . , xn)

= f (x1; p)f (x2; p) · · · f (xn; p)

= p� xi(1 − p)n−� xi , 0 ≤ p ≤ 1.

If �n
i=1xi = 0, then L(p) = (1−p)n, which is maximized over p ∈ [0, 1] by taking

p̂ = 0. If, on the other hand, �n
i=1xi = n, then L(p) = pn and this is maximized over

p ∈ [0, 1] by taking p̂ = 1. If �n
i=1xi equals neither 0 nor n, then L(0) = L(1) = 0

while L(p) > 0 for all p ∈ (0, 1); thus, in this case it suffices to maximize L(p) for
0 < p < 1, which we do by standard methods of calculus. The derivative of L(p) is

L′(p) = (� xi)p� xi−1(1 − p)n−� xi − (n − � xi)p� xi(1 − p)n−� xi−1.

Setting this first derivative equal to zero gives us, with the restriction that 0 < p < 1,

p� xi(1 − p)n−� xi

(
� xi

p
− n − � xi

1 − p

)
= 0.

Since 0 < p < 1, the preceding equation equals zero when

� xi

p
− n − � xi

1 − p
= 0. (6.4-1)
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Multiplying each member of Equation 6.4-1 by p(1 − p) and simplifying, we obtain

n∑
i=1

xi − np = 0

or, equivalently,

p =
∑n

i=1 xi

n
= x.

It can be shown that L′′(x) < 0, so that L(x) is a maximum. The corresponding
statistic, namely, (

∑n
i=1 Xi)/n = X, is called the maximum likelihood estimator and

is denoted by p̂; that is,

p̂ = 1
n

n∑
i=1

Xi = X.

When finding a maximum likelihood estimator, it is often easier to find the value
of the parameter that maximizes the natural logarithm of the likelihood function
rather than the value of the parameter that maximizes the likelihood function itself.
Because the natural logarithm function is a strictly increasing function, the solutions
will be the same. To see this, note that for 0 < p < 1, the example we have been
considering gives us

ln L(p) =
(

n∑
i=1

xi

)
ln p +

(
n −

n∑
i=1

xi

)
ln(1 − p).

To find the maximum, we set the first derivative equal to zero to obtain

d [ln L(p)]
dp

=
(

n∑
i=1

xi

)(
1
p

)
+

(
n −

n∑
i=1

xi

)( −1
1 − p

)
= 0,

which is the same as Equation 6.4-1. Thus, the solution is p = x and the maximum
likelihood estimator for p is p̂ = X.

Motivated by the preceding example, we present the formal definition of
maximum likelihood estimators (this definition is used in both the discrete and
continuous cases).

Let X1, X2, . . . , Xn be a random sample from a distribution that depends on
one or more unknown parameters θ1, θ2, . . . , θm with pmf or pdf that is denoted
by f (x; θ1, θ2, . . . , θm). Suppose that (θ1, θ2, . . . , θm) is restricted to a given parameter
space �. Then the joint pmf or pdf of X1, X2, . . . , Xn, namely,

L(θ1, θ2, . . . , θm) = f (x1; θ1, . . . , θm)f (x2; θ1, . . . , θm)

· · · f (xn; θ1, . . . , θm), (θ1, θ2, . . . , θm) ∈ �,

when regarded as a function of θ1, θ2, . . . , θm, is called the likelihood function. Say

[u1(x1, . . . , xn), u2(x1, . . . , xn), . . . , um(x1, . . . , xn)]
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is that m-tuple in � that maximizes L(θ1, θ2, . . . , θm). Then

θ̂1 = u1(X1, . . . , Xn),

θ̂2 = u2(X1, . . . , Xn),

...

θ̂m = um(X1, . . . , Xn)

are maximum likelihood estimators of θ1, θ2, . . . , θm, respectively; and the corre-
sponding observed values of these statistics, namely,

u1(x1, . . . , xn), u2(x1, . . . , xn), . . . , um(x1, . . . , xn),

are called maximum likelihood estimates. In many practical cases, these estimators
(and estimates) are unique.

For many applications, there is just one unknown parameter. In these cases, the
likelihood function is given by

L(θ) =
n∏

i=1

f (xi; θ).

Some additional examples will help clarify these definitions.

Example
6.4-1

Let X1, X2, . . . , Xn be a random sample from the exponential distribution with pdf

f (x; θ) = 1
θ

e−x/θ , 0 < x < ∞, θ ∈ � = {θ : 0 < θ < ∞}.

The likelihood function is given by

L(θ) = L(θ ; x1, x2, . . . , xn)

=
(

1
θ

e−x1/θ

)(
1
θ

e−x2/θ

)
· · ·

(
1
θ

e−xn/θ

)

= 1
θn exp

(−∑n
i=1 xi

θ

)
, 0 < θ < ∞.

The natural logarithm of L(θ) is

ln L(θ) = −(n) ln(θ) − 1
θ

n∑
i=1

xi, 0 < θ < ∞.

Thus,

d [ln L(θ)]
dθ

= −n
θ

+
∑n

i=1 xi

θ2
= 0.

The solution of this equation for θ is

θ = 1
n

n∑
i=1

xi = x.
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Note that

d [ln L(θ)]
dθ

= 1
θ

(
−n + n x

θ

) > 0, θ < x,

= 0, θ = x,

< 0, θ > x.

Hence, ln L(θ) does have a maximum at x, and it follows that the maximum likeli-
hood estimator for θ is

θ̂ = X = 1
n

n∑
i=1

Xi.

Example
6.4-2

Let X1, X2, . . . , Xn be a random sample from the geometric distribution with pmf
f (x; p) = (1 − p)x−1p, x = 1, 2, 3, . . . . The likelihood function is given by

L(p) = (1 − p)x1−1p(1 − p)x2−1p · · · (1 − p)xn−1p

= pn(1 − p)� xi−n, 0 ≤ p ≤ 1.

The natural logarithm of L(p) is

ln L(p) = n ln p +
(

n∑
i=1

xi − n

)
ln(1 − p), 0 < p < 1.

Thus, restricting p to 0 < p < 1, so as to be able to take the derivative, we have

d ln L(p)
dp

= n
p

−
∑n

i=1 xi − n
1 − p

= 0.

Solving for p, we obtain

p = n∑n
i=1 xi

= 1
x

,

and, by the second derivative test, this solution provides a maximum. So the
maximum likelihood estimator of p is

p̂ = n∑n
i=1 Xi

= 1

X
.

This estimator agrees with our intuition because, in n observations of a geometric
random variable, there are n successes in the

∑n
i=1 xi trials. Thus, the estimate of p is

the number of successes divided by the total number of trials.

In the following important example, we find the maximum likelihood estimators
of the parameters associated with the normal distribution.

Example
6.4-3

Let X1, X2, . . . , Xn be a random sample from N(θ1, θ2), where

� = {(θ1, θ2) : −∞ < θ1 < ∞, 0 < θ2 < ∞}.
That is, here we let θ1 = μ and θ2 = σ 2. Then

L(θ1, θ2) =
n∏

i=1

1√
2πθ2

exp

[
− (xi − θ1)2

2θ2

]
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or, equivalently,

L(θ1, θ2) =
(

1√
2πθ2

)n

exp

[
−∑n

i=1(xi − θ1)2

2θ2

]
, (θ1, θ2) ∈ �.

The natural logarithm of the likelihood function is

ln L(θ1, θ2) = −n
2

ln(2πθ2) −
∑n

i=1 (xi − θ1)2

2θ2
.

The partial derivatives with respect to θ1 and θ2 are

∂ (ln L)
∂ θ1

= 1
θ2

n∑
i=1

(xi − θ1)

and

∂ (ln L)
∂ θ2

= −n
2θ2

+ 1

2θ2
2

n∑
i=1

(xi − θ1)2.

The equation ∂ (ln L)/∂ θ1 = 0 has the solution θ1 = x. Setting ∂ (ln L)/∂ θ2 = 0 and
replacing θ1 by x yields

θ2 = 1
n

n∑
i=1

(xi − x)2.

By considering the usual condition on the second-order partial derivatives, we see
that these solutions do provide a maximum. Thus, the maximum likelihood estima-
tors of μ = θ1 and σ 2 = θ2 are

θ̂1 = X and θ̂2 = 1
n

n∑
i=1

(Xi − X)2 = V.

It is interesting to note that in our first illustration, where p̂ = X, and in
Example 6.4-1, where θ̂ = X, the expected value of the estimator is equal to the
corresponding parameter. This observation leads to the following definition.

Definition 6.4-1
If E[u(X1, X2, . . . , Xn)] = θ , then the statistic u(X1, X2, . . . , Xn) is called an
unbiased estimator of θ . Otherwise, it is said to be biased.

Example
6.4-4

Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample X1, X2, X3, X4
from a uniform distribution with pdf f (x; θ) = 1/θ , 0 < x ≤ θ . The likelihood
function is

L(θ) =
(

1
θ

)4

, 0 < xi ≤ θ , i = 1, 2, 3, 4,

and equals zero if θ < xi or if xi ≤ 0. To maximize L(θ), we must make θ as small as
possible; hence, the maximum likelihood estimator is

θ̂ = max(Xi) = Y4



262 Chapter 6 Point Estimation

because θ cannot be less than any Xi. Since F(x; θ) = x/θ , 0 < x ≤ θ , the pdf of
Y4 is

g4(y4) = 4!
3!1!

(y4

θ

)3
(

1
θ

)
= 4

y3
4

θ4
, 0 < y4 ≤ θ .

Accordingly,

E(Y4) =
∫ θ

0
y4 · 4

y3
4

θ4
dy4 = 4

5
θ

and Y4 is a biased estimator of θ . However, 5Y4/4 is unbiased.

Example
6.4-5

We have shown that when sampling from N(θ1 = μ, θ2 = σ 2), one finds that the
maximum likelihood estimators of μ and σ 2 are

θ̂1 = μ̂ = X and θ̂2 = σ̂ 2 = (n − 1)S2

n
.

Recalling that the distribution of X is N(μ, σ 2/n), we see that E(X) = μ; thus, X is
an unbiased estimator of μ.

In Theorem 5.5-2, we showed that the distribution of (n − 1)S2/σ 2 is χ2(n−1).
Hence,

E(S2) = E

[
σ 2

n − 1
(n − 1)S2

σ 2

]
= σ 2

n − 1
(n − 1) = σ 2.

That is, the sample variance

S2 = 1
n − 1

n∑
i=1

(Xi − X)2

is an unbiased estimator of σ 2. Consequently, since

E(θ̂2) = n − 1
n

E(S2) = n − 1
n

σ 2,

θ̂2 is a biased estimator of θ2 = σ 2.

Sometimes it is impossible to find maximum likelihood estimators in a conve-
nient closed form, and numerical methods must be used to maximize the likelihood
function. For example, suppose that X1, X2, . . . , Xn is a random sample from a
gamma distribution with parameters α = θ1 and β = θ2, where θ1 > 0, θ2 > 0. It
is difficult to maximize

L(θ1, θ2; x1, . . . , xn) =
[

1

�(θ1)θθ1
2

]n

(x1x2 · · · xn)θ1−1 exp

(
−

n∑
i=1

xi/θ2

)

with respect to θ1 and θ2, owing to the presence of the gamma function �(θ1). Thus,
numerical methods must be used to maximize L once x1, x2, . . . , xn are observed.

There are other ways, however, to easily obtain point estimates of θ1 and θ2.
One of the early methods was to simply equate the first sample moment to the first
theoretical moment. Next, if needed, the two second moments are equated, then the
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third moments, and so on, until we have enough equations to solve for the parame-
ters. As an illustration, in the gamma distribution situation, let us simply equate the
first two moments of the distribution to the corresponding moments of the empirical
distribution. This seems like a reasonable way in which to find estimators, since the
empirical distribution converges in some sense to the probability distribution, and
hence corresponding moments should be about equal. In this situation, we have

θ1θ2 = X, θ1θ
2
2 = V,

the solutions of which are

θ̃1 = X
2

V
and θ̃2 = V

X
.

We say that these latter two statistics, θ̃1 and θ̃2, are respective estimators of θ1 and
θ2 found by the method of moments.

To generalize this discussion, let X1, X2, . . . , Xn be a random sample of size n
from a distribution with pdf f (x; θ1, θ2, . . . , θr), (θ1, . . . , θr) ∈ �. The expectation
E(Xk) is frequently called the kth moment of the distribution, k = 1, 2, 3, . . . . The
sum Mk = ∑n

i=1 Xk
i /n is the kth moment of the sample, k = 1, 2, 3, . . . . The method

of moments can be described as follows. Equate E(Xk) to Mk, beginning with
k = 1 and continuing until there are enough equations to provide unique solutions
for θ1, θ2, . . . , θr — say, hi(M1, M2, . . .), i = 1, 2, . . . , r, respectively. Note that this
could be done in an equivalent manner by equating μ = E(X) to X and E[(X −μ)k]
to

∑n
i=1 (Xi − X)k/n, k = 2, 3, and so on, until unique solutions for θ1, θ2, . . . , θr

are obtained. This alternative procedure was used in the preceding illustration. In
most practical cases, the estimator θ̃i = hi(M1, M2, . . .) of θi, found by the method of
moments, is an estimator of θi that in some sense gets close to that parameter when
n is large, i = 1, 2, . . . , r.

The next two examples—the first for a one-parameter family and the second for
a two-parameter family—illustrate the method-of-moments technique for finding
estimators.

Example
6.4-6

Let X1, X2, . . . , Xn be a random sample of size n from the distribution with pdf
f (x; θ) = θxθ−1, 0 < x < 1, 0 < θ < ∞. Sketch the graphs of this pdf for
θ = 1/4, 1, and 4. Note that sets of observations for these three values of θ would
look very different. How do we estimate the value of θ? The mean of this distribution
is given by

E(X) =
∫ 1

0
x θ xθ−1 dx = θ

θ + 1
.

We shall set the distribution mean equal to the sample mean and solve for θ . We
have

x = θ

θ + 1
.

Solving for θ , we obtain the method-of-moments estimator,

θ̃ = X

1 − X
.

Thus, an estimate of θ by the method of moments is x/(1 − x).
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Recall that in the method of moments, if two parameters have to be estimated,
the first two sample moments are set equal to the first two distribution moments that
are given in terms of the unknown parameters. These two equations are then solved
simultaneously for the unknown parameters.

Example
6.4-7

Let the distribution of X be N(μ, σ 2). Then

E(X) = μ and E(X2) = σ 2 + μ2.

For a random sample of size n, the first two moments are given by

m1 = 1
n

n∑
i=1

xi and m2 = 1
n

n∑
i=1

x2
i .

We set m1 = E(X) and m2 = E(X2) and solve for μ and σ 2. That is,

1
n

n∑
i=1

xi = μ and
1
n

n∑
i=1

x2
i = σ 2 + μ2.

The first equation yields x as the estimate of μ. Replacing μ2 with x2 in the second
equation and solving for σ 2, we obtain

1
n

n∑
i=1

x2
i − x2 =

n∑
i=1

(xi − x)2

n
= v

as the solution of σ 2. Thus, the method-of-moments estimators for μ and σ 2 are
μ̃ = X and σ̃ 2 = V, which are the same as the maximum likelihood estimators. Of
course, μ̃ = X is unbiased, whereas σ̃ 2 = V is biased.

In Example 6.4-5, we showed that X and S2 are unbiased estimators of μ and σ 2,
respectively, when one is sampling from a normal distribution. This is also true when
one is sampling from any distribution with a finite variance σ 2. That is, E(X) = μ

and E(S2) = σ 2, provided that the sample arises from a distribution with variance
σ 2 < ∞. (See Exercise 6.4-11.) Although S2 is an unbiased estimator of σ 2, S is a
biased estimator of σ . In Exercise 6.4-14, you are asked to show that, when one is
sampling from a normal distribution, cS is an unbiased estimator of σ , where

c =
√

n − 1 �

(
n − 1

2

)
√

2 �
(n

2

) .

REMARK Later we show that S2 is an unbiased estimator of σ 2, provided it exists,
for every distribution, not just the normal.

Exercises

6.4-1. Let X1, X2, . . . , Xn be a random sample from
N(μ, σ 2), where the mean θ = μ is such that −∞ <

θ < ∞ and σ 2 is a known positive number. Show that
the maximum likelihood estimator for θ is θ̂ = X.

6.4-2. A random sample X1, X2, . . . , Xn of size
n is taken from N( μ, σ 2), where the variance
θ = σ 2 is such that 0 < θ < ∞ and μ is
a known real number. Show that the maximum
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likelihood estimator for θ is θ̂ = (1/n)
∑n

i=1 (Xi − μ)2

and that this estimator is an unbiased estimator of θ .

6.4-3. A random sample X1, X2, . . . , Xn of size n is taken
from a Poisson distribution with a mean of λ, 0 < λ < ∞.

(a) Show that the maximum likelihood estimator for λ is
λ̂ = X.

(b) Let X equal the number of flaws per 100 feet of a used
computer tape. Assume that X has a Poisson distribu-
tion with a mean of λ. If 40 observations of X yielded
5 zeros, 7 ones, 12 twos, 9 threes, 5 fours, 1 five, and 1
six, find the maximum likelihood estimate of λ.

6.4-4. For determining half-lives of radioactive isotopes,
it is important to know what the background radiation is
in a given detector over a specific period. The following
data were taken in a γ -ray detection experiment over 98
ten-second intervals:

58 50 57 58 64 63 54 64 59 41 43 56 60 50

46 59 54 60 59 60 67 52 65 63 55 61 68 58

63 36 42 54 58 54 40 60 64 56 61 51 48 50

60 42 62 67 58 49 66 58 57 59 52 54 53 53

57 43 73 65 45 43 57 55 73 62 68 55 51 55

53 68 58 53 51 73 44 50 53 62 58 47 63 59

59 56 60 59 50 52 62 51 66 51 56 53 59 57

Assume that these data are observations of a Poisson
random variable with mean λ.

(a) Find the values of x and s2.

(b) What is the value of the maximum likelihood estima-
tor of λ?

(c) Is S2 an unbiased estimator of λ?

(d) Which of x and s2 would you recommend for estimat-
ing λ? Why? You could compare the variance of X
with the variance of S2, which is

Var(S2) = λ(2λn + n − 1)
n(n − 1)

.

6.4-5. Let X1, X2, . . . , Xn be a random sample from dis-
tributions with the given probability density functions. In
each case, find the maximum likelihood estimator θ̂ .

(a) f (x; θ) = (1/θ2) x e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(b) f (x; θ) = (1/2θ3) x2 e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(c) f (x; θ) = (1/2) e−|x−θ |, −∞ < x < ∞, −∞< θ <∞.

Hint: Finding θ involves minimizing
∑ |xi − θ |, which

is a difficult problem. When n = 5, do it for x1 = 6.1,
x2 = −1.1, x3 = 3.2, x4 = 0.7, and x5 = 1.7, and you
will see the answer. (See also Exercise 2.2-8.)

6.4-6. Find the maximum likelihood estimates for θ1 = μ

and θ2 = σ 2 if a random sample of size 15 from N(μ, σ 2)
yielded the following values:

31.5 36.9 33.8 30.1 33.9

35.2 29.6 34.4 30.5 34.2

31.6 36.7 35.8 34.5 32.7

6.4-7. Let f (x; θ) = θxθ−1, 0 < x < 1, θ ∈ � = {θ : 0 <

θ < ∞}. Let X1, X2, . . . , Xn denote a random sample of
size n from this distribution.

(a) Sketch the pdf of X for (i) θ = 1/2, (ii) θ = 1, and (iii)
θ = 2.

(b) Show that θ̂ = −n/ ln
(∏n

i=1 Xi
)

is the maximum
likelihood estimator of θ .

(c) For each of the following three sets of 10 observa-
tions from the given distribution, calculate the values
of the maximum likelihood estimate and the method-
of-moments estimate of θ :

(i) 0.0256 0.3051 0.0278 0.8971 0.0739

0.3191 0.7379 0.3671 0.9763 0.0102

(ii) 0.9960 0.3125 0.4374 0.7464 0.8278

0.9518 0.9924 0.7112 0.2228 0.8609

(iii) 0.4698 0.3675 0.5991 0.9513 0.6049

0.9917 0.1551 0.0710 0.2110 0.2154

6.4-8. Let f (x; θ) = (1/θ)x(1−θ)/θ , 0 < x < 1, 0 < θ <

∞.

(a) Show that the maximum likelihood estimator of θ is
θ̂ = −(1/n)

∑n
i=1 ln Xi.

(b) Show that E( θ̂ ) = θ and thus that θ̂ is an unbiased
estimator of θ .

6.4-9. Let X1, X2, . . . , Xn be a random sample of size n
from the exponential distribution whose pdf is f (x; θ) =
(1/θ)e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(a) Show that X is an unbiased estimator of θ .

(b) Show that the variance of X is θ2/n.

(c) What is a good estimate of θ if a random sample of
size 5 yielded the sample values 3.5, 8.1, 0.9, 4.4, and
0.5?

6.4-10. Let X1, X2, . . . , Xn be a random sample of size n
from a geometric distribution for which p is the probabil-
ity of success.

(a) Use the method of moments to find a point estimate
for p.

(b) Explain intuitively why your estimate makes good
sense.
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(c) Use the following data to give a point estimate of p:

3 34 7 4 19 2 1 19 43 2

22 4 19 11 7 1 2 21 15 16

6.4-11. Let X1, X2, . . . , Xn be a random sample from a
distribution having finite variance σ 2. Show that

S2 =
n∑

i=1

(Xi − X)2

n − 1

is an unbiased estimator of σ 2. Hint: Write

S2 = 1
n − 1

(
n∑

i=1

X2
i − nX

2
)

and compute E(S2).

6.4-12. Let X1, X2, . . . , Xn be a random sample from
b(1, p) (i.e., n Bernoulli trials). Thus,

Y =
n∑

i=1

Xi is b(n, p).

(a) Show that X = Y/n is an unbiased estimator of p.

(b) Show that Var(X) = p(1 − p)/n.

(c) Show that E[X(1 − X)/n] = (n − 1)[p(1 − p)/n2].

(d) Find the value of c so that cX(1 − X) is an unbiased
estimator of Var(X) = p(1 − p)/n.

6.4-13. Let X1, X2, . . . , Xn be a random sample from a
uniform distribution on the interval (θ − 1, θ + 1).

(a) Find the method-of-moments estimator of θ .

(b) Is your estimator in part (a) an unbiased estimator of
θ?

(c) Given the following n = 5 observations of X, give a
point estimate of θ :

6.61 7.70 6.98 8.36 7.26

(d) The method-of-moments estimator actually has
greater variance than the maximum likelihood estima-
tor of θ , namely [min(Xi)+max(Xi)]/2. Compute the
value of the latter estimator for the n = 5 observations
in (c).

6.4-14. Let X1, X2, . . . , Xn be a random sample of size n
from a normal distribution.

(a) Show that an unbiased estimator of σ is cS, where

c =
√

n − 1 �

(
n − 1

2

)
√

2 �
(n

2

) .

Hint: Recall that the distribution of (n − 1)S2/σ 2 is
χ2(n−1).

(b) Find the value of c when n = 5; when n = 6.

(c) Graph c as a function of n. What is the limit of c as n
increases without bound?

6.4-15. Given the following 25 observations from a
gamma distribution with mean μ = αθ and variance
σ 2 = αθ2, use the method-of-moments estimators to find
point estimates of α and θ :

6.9 7.3 6.7 6.4 6.3 5.9 7.0 7.1 6.5 7.6 7.2 7.1 6.1

7.3 7.6 7.6 6.7 6.3 5.7 6.7 7.5 5.3 5.4 7.4 6.9

6.4-16. An urn contains 64 balls, of which N1 are orange
and N2 are blue. A random sample of n = 8 balls is
selected from the urn without replacement, and X is equal
to the number of orange balls in the sample. This exper-
iment was repeated 30 times (the 8 balls being returned
to the urn before each repetition), yielding the following
data:

3 0 0 1 1 1 1 3 1 1 2 0 1 3 1

0 1 0 2 1 1 2 3 2 2 4 3 1 1 2

Using these data, guess the value of N1 and give a reason
for your guess.

6.4-17. Let the pdf of X be defined by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
4
θ2

)
x, 0 < x ≤ θ

2
,

−
(

4
θ2

)
x + 4

θ
,

θ

2
< x ≤ θ ,

0, elsewhere,

where θ ∈ � = {θ : 0 <θ ≤ 2}.
(a) Sketch the graph of this pdf when θ = 1/2, θ = 1, and

θ = 2.

(b) Find an estimator of θ by the method of moments.

(c) For the following observations of X, give a point
estimate of θ :

0.3206 0.2408 0.2577 0.3557 0.4188

0.5601 0.0240 0.5422 0.4532 0.5592

6.4-18. Let independent random samples, each of size
n, be taken from the k normal distributions with means
μj = c + d[j − (k + 1)/2], j = 1, 2, . . . , k, respectively,
and common variance σ 2. Find the maximum likelihood
estimators of c and d.

6.4-19. Let the independent normal random vari-
ables Y1, Y2, . . . , Yn have the respective distributions
N(μ, γ 2x2

i ), i = 1, 2, . . . , n, where x1, x2, . . . , xn are known
but not all the same and no one of which is equal to
zero. Find the maximum likelihood estimators for μ

and γ 2.
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6.5 A SIMPLE REGRESSION PROBLEM
There is often interest in the relation between two variables—for example, the
temperature at which a certain chemical reaction is performed and the yield of a
chemical compound resulting from the reaction. Frequently, one of these variables,
say, x, is known in advance of the other, so there is interest in predicting a future ran-
dom variable Y. Since Y is a random variable, we cannot predict its future observed
value Y = y with certainty. Let us first concentrate on the problem of estimating the
mean of Y—that is, E(Y | x). Now, E(Y | x) is usually a function of x. For example,
in our illustration with the yield, say Y, of the chemical reaction, we might expect
E(Y | x) to increase with increasing temperature x. Sometimes E(Y | x) = μ(x) is
assumed to be of a given form, such as linear, quadratic, or exponential; that is,
μ(x) could be assumed to be equal to α + βx, α + βx + γ x2, or αeβx. To estimate
E(Y | x) = μ(x), or, equivalently, the parameters α, β, and γ , we observe the random
variable Y for each of n possibly different values of x—say, x1, x2, . . . , xn. Once the n
independent experiments have been performed, we have n pairs of known numbers
(x1, y1), (x2, y2), . . . , (xn, yn). These pairs are then used to estimate the mean E(Y | x).
Problems like this are often classified under regression because E(Y | x) = μ(x) is
frequently called a regression curve.

REMARK A model for the mean that is of the form α + βx + γ x2 is called a linear
model because it is linear in the parameters, α, β, and γ . Note, however, that a plot
of this model versus x is not a straight line unless γ = 0. Thus, a linear model may be
nonlinear in x. On the other hand, αeβx is not a linear model, because it is not linear
in α and β.

Let us begin with the case in which E(Y | x) = μ(x) is a linear function of x. The
data points are (x1, y1), (x2, y2), . . . , (xn, yn), so the first problem is that of fitting a
straight line to the set of data. (See Figure 6.5-1.) In addition to assuming that the
mean of Y is a linear function, we assume that, for a particular value of x, the value
of Y will differ from its mean by a random amount ε. We further assume that the
distribution of ε is N(0, σ 2). So we have, for our linear model,

Yi = α1 + βxi + εi,

y

x66

70

74

78

82

86

90

94

48 52 56 60 64 68 72 76 80 84

y = μ(x)

(xi, yi)

(xi, μ(xi))

Figure 6.5-1 Scatter plot and the line y = μ(x)
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where εi, for i = 1, 2, . . . , n, are independent and N(0, σ 2). The unknown parameters
α1 and β are the Y-intercept and slope, respectively, of the line μ(x) = α1 + βx.

We shall now find point estimates, specifically maximum likelihood estimates,
for α1, β, and σ 2. For convenience, we let α1 = α − β x, so that

Yi = α + β(xi − x) + εi, where x = 1
n

n∑
i=1

xi.

Then Yi is equal to a nonrandom quantity, α+β(xi−x), plus a mean-zero normal ran-
dom variable εi. Hence, Y1, Y2, . . . , Yn are mutually independent normal variables
with respective means α + β(xi − x), i = 1, 2, . . . , n, and unknown variance σ 2. Their
joint pdf is therefore the product of the individual probability density functions; that
is, the likelihood function equals

L(α, β, σ 2) =
n∏

i=1

1√
2πσ 2

exp

{
− [yi − α − β(xi − x)]2

2σ 2

}

=
(

1
2πσ 2

)n/2

exp

{
−
∑n

i=1 [yi − α − β(xi − x)]2

2σ 2

}
.

To maximize L(α, β, σ 2) or, equivalently, to minimize

− ln L(α, β, σ 2) = n
2

ln(2πσ 2) +
∑n

i=1 [yi − α − β(xi − x)]2

2σ 2
,

we must select α and β to minimize

H(α, β) =
n∑

i=1

[yi − α − β(xi − x)]2.

Since |yi − α − β(xi − x)| = |yi − μ(xi)| is the vertical distance from the point
(xi, yi) to the line y = μ(x), we note that H(α, β) represents the sum of the squares
of those distances. Thus, selecting α and β so that the sum of the squares is mini-
mized means that we are fitting the straight line to the data by the method of least
squares. Accordingly, the maximum likelihood estimates of α and β are also called
least squares estimates.

To minimize H(α, β), we find the two first-order partial derivatives

∂H(α, β)
∂α

= 2
n∑

i=1

[yi − α − β(xi − x)](−1)

and

∂H(α, β)
∂β

= 2
n∑

i=1

[yi − α − β(xi − x)][−(xi − x)].

Setting ∂H(α, β)/∂α = 0, we obtain

n∑
i=1

yi − nα − β

n∑
i=1

(xi − x) = 0.
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Since
n∑

i=1

(xi − x) = 0,

we have
n∑

i=1

yi − nα = 0;

thus,

α̂ = Y.

With α replaced by y, the equation ∂H(α, β)/∂β = 0 yields

n∑
i=1

(yi − y)(xi − x) − β

n∑
i=1

(xi − x)2 = 0

or, equivalently,

β̂ =
∑n

i=1 (Yi − Y)(xi − x)∑n
i=1 (xi − x)2

=
∑n

i=1 Yi(xi − x)∑n
i=1 (xi − x)2

.

Standard methods of multivariate calculus can be used to show that this solution
obtained by equating the first-order partial derivatives of H(α, β) to zero is indeed
a point of minimum. Hence, the line that best estimates the mean line, μ(x) =
α + β(xi − x), is α̂ + β̂(xi − x), where

α̂ = y (6.5-1)

and

β̂ =
∑n

i=1 yi(xi − x)∑n
i=1 (xi − x)2

=
∑n

i=1 xiyi −
(

1
n

)(∑n
i=1 xi

)(∑n
i=1 yi

)
∑n

i=1 x2
i −

(
1
n

)(∑n
i=1 xi

)2 . (6.5-2)

To find the maximum likelihood estimator of σ 2, consider the partial derivative

∂[− ln L(α, β, σ 2)]
∂(σ 2)

= n
2σ 2

−
∑n

i=1 [yi − α − β(xi − x)]2

2(σ 2)2
.

Setting this equal to zero and replacing α and β by their solutions α̂ and β̂, we obtain

σ̂ 2 = 1
n

n∑
i=1

[Yi − α̂ − β̂(xi − x)]2. (6.5-3)

A formula that is useful in calculating nσ̂ 2 is

nσ̂ 2 =
n∑

i=1

y2
i − 1

n

(
n∑

i=1

yi

)2

− β̂

n∑
i=1

xiyi + β̂

(
1
n

)( n∑
i=1

xi

)(
n∑

i=1

yi

)
. (6.5-4)

Note that the summand in Equation 6.5-3 for σ̂ 2 is the square of the difference
between the value of Yi and the estimated mean of Yi. Let Ŷi = α̂ + β̂(xi − x),
the estimated mean value of Yi, given x. The difference

Yi − Ŷi = Yi − α̂ − β̂(xi − x)
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Table 6.5-1 Calculations for test score data

x y x2 xy y2 ŷ y − ŷ (y − ŷ)2

70 77 4,900 5,390 5,929 82.561566 −5.561566 30.931016

74 94 5,476 6,956 8,836 85.529956 8.470044 71.741645

72 88 5,184 6,336 7,744 84.045761 3.954239 15.636006

68 80 4,624 5,440 6,400 81.077371 −1.077371 1.160728

58 71 3,364 4,118 5,041 73.656395 −2.656395 7.056434

54 76 2,916 4,104 5,776 70.688004 5.311996 28.217302

82 88 6,724 7,216 7,744 91.466737 −3.466737 12.018265

64 80 4,096 5,120 6,400 78.108980 1.891020 3.575957

80 90 6,400 7,200 8,100 89.982542 0.017458 0.000305

61 69 3,721 4,209 4,761 75.882687 −6.882687 47.371380

683 813 47,405 56,089 66,731 812.999999 0.000001 217.709038

is called the ith residual, i = 1, 2, . . . , n. The maximum likelihood estimate of σ 2 is
then the sum of the squares of the residuals divided by n. It should always be true
that the sum of the residuals is equal to zero. However, in practice, due to rounding
off, the sum of the observed residuals, yi − ŷi, sometimes differs slightly from zero. A
graph of the residuals plotted as a scatter plot of the points xi, yi − ŷi, i = 1, 2, . . . , n,
can show whether or not linear regression provides the best fit.

Example
6.5-1

The data plotted in Figure 6.5-1 are 10 pairs of test scores of 10 students in a
psychology class, x being the score on a preliminary test and y the score on the
final examination. The values of x and y are shown in Table 6.5-1. The sums that
are needed to calculate estimates of the parameters are also given. Of course, the
estimates of α and β have to be found before the residuals can be calculated.

Thus, α̂ = 813/10 = 81.3, and

β̂ = 56, 089 − (683)(813)/10
47, 405 − (683)(683)/10

= 561.1
756.1

= 0.742.

Since x = 683/10 = 68.3, the least squares regression line is

ŷ = 81.3 + (0.742)(x − 68.3).

The maximum likelihood estimate of σ 2 is

σ̂ 2 = 217.709038
10

= 21.7709.

A plot of the residuals for these data is shown in Figure 6.5-2.

We shall now consider the problem of finding the distributions of α̂, β̂, and
σ̂ 2 (or distributions of functions of these estimators). We would like to be able to
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Figure 6.5-2 Residuals plot for data in Table 6.5-1

say something about the error of the estimates to find confidence intervals for the
parameters.

The preceding discussion treated x1, x2, . . . , xn as nonrandom constants. Of
course, many times they can be set by the experimenter; for example, an exper-
imental chemist might produce a compound at many different temperatures. But
these numbers might instead be observations on an earlier random variable, such
as an SAT score or a preliminary test grade (as in Example 6.5-1). Nevertheless,
we consider the problem on the condition that the x-values are given in either case.
Thus, in finding the distributions of α̂, β̂, and σ̂ 2, the only random variables are
Y1, Y2, . . . , Yn.

Since α̂ is a linear function of independent and normally distributed random
variables, α̂ has a normal distribution with mean

E( α̂ ) = E

(
1
n

n∑
i=1

Yi

)
= 1

n

n∑
i=1

E(Yi)

= 1
n

n∑
i=1

[α + β(xi − x )] = α

and variance

Var( α̂ ) =
(

1
n

)2 n∑
i=1

Var(Yi) = σ 2

n
.

The estimator β̂ is also a linear function of Y1, Y2, . . . , Yn and hence has a normal
distribution with mean

E( β̂ ) =
∑n

i=1 (xi − x )E(Yi)∑n
i=1 (xi − x )2

=
∑n

i=1 (xi − x )[α + β(xi − x )]∑n
i=1 (xi − x )2

= α
∑n

i=1 (xi − x ) + β
∑n

i=1 (xi − x )2∑n
i=1 (xi − x )2

= β
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and variance

Var( β̂ ) =
n∑

i=1

[
xi − x∑n

j=1 (xj − x )2

]2

Var(Yi)

=
∑n

i=1 (xi − x )2[∑n
i=1 (xi − x )2

]2
σ 2 = σ 2∑n

i=1 (xi − x )2
.

STATISTICAL COMMENTS We now give an illustration (see Ledolter and Hogg
in the References) using data from the Challenger explosion on January 28, 1986. It
would not be appropriate to actually carry out an analysis of these data using the
regression methods introduced in this section, for they require the variables to be
continuous while in this case the Y variable is discrete. Rather, we present the illus-
tration to make the point that it can be very important to examine the relationship
between two variables, and to do so using all available data.

The Challenger space shuttle was launched from Cape Kennedy in Florida on
a very cold January morning. Meteorologists had forecasted temperatures (as of
January 27) in the range of 26◦–29◦ Fahrenheit. The night before the launch there
was much debate among engineers and NASA officials whether a launch under such
low-temperature conditions would be advisable. Several engineers advised against a
launch because they thought that O-ring failures were related to temperature. Data
on O-ring failures experienced in previous launches were available and were studied
the night before the launch. There were seven previous incidents of known distressed
O-rings. Figure 6.5-3(a) displays this information; it is a simple scatter plot of the
number of distressed rings per launch against temperature at launch.

From this plot alone, there does not seem to be a strong relationship between the
number of O-ring failures and temperature. On the basis of this information, along
with many other technical and political considerations, it was decided to launch the
Challenger space shuttle. As you all know, the launch resulted in disaster: the loss of
seven lives and billions of dollars, and a serious setback to the space program.

One may argue that engineers looked at the scatter plot of the number of fail-
ures against temperature but could not see a relationship. However, this argument
misses the fact that engineers did not display all the data that were relevant to the
question. They looked only at instances in which there were failures; they ignored

forecasted
temperatures
at launch time

number of
distressed rings

temp.
(°F)
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(b)
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(a)

Figure 6.5-3 Number of distressed rings per launch versus temperature
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the cases where there were no failures. In fact, there were 17 previous launches in
which no failures occurred. A scatter plot of the number of distressed O-rings per
launch against temperature using data from all previous shuttle launches is given in
Figure 6.5-3(b).

It is difficult to look at these data and not see a relationship between failures
and temperature. Moreover, one recognizes that an extrapolation is required and
that an inference about the number of failures outside the observed range of tem-
perature is needed. The actual temperature at launch was 31◦F, while the lowest
temperature recorded at a previous launch was 53◦F. It is always very dangerous
to extrapolate inferences to a region for which one does not have data. If NASA
officials had looked at this plot, certainly the launch would have been delayed. This
example shows why it is important to have statistically minded engineers involved in
important decisions.

These comments raise two interesting points: (1) It is important to produce a
scatter plot of one variable against another. (2) It is also important to plot relevant
data. Yes, it is true that some data were used in making the decision to launch the
Challenger. But not all the relevant data were utilized. To make good decisions, it
takes knowledge of statistics as well as subject knowledge, common sense, and an
ability to question the relevance of information. �

Exercises

6.5-1. Show that the residuals, Yi − Ŷi (i = 1, 2, . . . , n),
from the least squares fit of the simple linear regression
model sum to zero.

6.5-2. In some situations where the regression model is
useful, it is known that the mean of Y when X = 0 is
equal to 0, i.e., Yi = βxi + εi where εi for i = 1, 2, . . . , n
are independent and N(0, σ 2).

(a) Obtain the maximum likelihood estimators, β̂ and σ̂ 2,
of β and σ 2 under this model.

(b) Find the distributions of β̂ and σ̂ 2. (You may use, with-
out proof, the fact that β̂ and σ̂ 2 are independent,
together with Theorem 9.3-1.)

6.5-3. The midterm and final exam scores of 10 students
in a statistics course are tabulated as shown.

(a) Calculate the least squares regression line for these
data.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Find the value of σ̂ 2.

Midterm Final Midterm Final

70 87 67 73

74 79 70 83

80 88 64 79

84 98 74 91

80 96 82 94

6.5-4. The final grade in a calculus course was predicted
on the basis of the student’s high school grade point aver-
age in mathematics, Scholastic Aptitude Test (SAT) score
in mathematics, and score on a mathematics entrance
examination. The predicted grades x and the earned
grades y for 10 students are given (2.0 represents a C, 2.3
a C+, 2.7 a B–, etc.).

(a) Calculate the least squares regression line for these
data.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Find the value of σ̂ 2.

x y x y

2.0 1.3 2.7 3.0

3.3 3.3 4.0 4.0

3.7 3.3 3.7 3.0

2.0 2.0 3.0 2.7

2.3 1.7 2.3 3.0

6.5-5. A student who considered himself to be a “car guy”
was interested in how the horsepower and weight of a car
affected the time that it takes the car to go from 0 to 60
mph. The following table gives, for each of 14 cars, the
horsepower, the time in seconds to go from 0 to 60 mph,
and the weight in pounds:
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Horsepower 0–60 Weight Horsepower 0–60 Weight

230 8.1 3516 282 6.2 3627

225 7.8 3690 300 6.4 3892

375 4.7 2976 220 7.7 3377

322 6.6 4215 250 7.0 3625

190 8.4 3761 315 5.3 3230

150 8.4 2940 200 6.2 2657

178 7.2 2818 300 5.5 3518

(a) Calculate the least squares regression line for “0–60”
versus horsepower.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Calculate the least squares regression line for “0–60”
versus weight.

(d) Plot the points and the least squares regression line on
the same graph.

(e) Which of the two variables, horsepower or weight, has
the most effect on the “0–60” time?

6.5-6. Let x and y equal the ACT scores in social sci-
ence and natural science, respectively, for a student who
is applying for admission to a small liberal arts college. A
sample of n = 15 such students yielded the following data:

x y x y x y

32 28 30 27 26 32

23 25 17 23 16 22

23 24 20 30 21 28

23 32 17 18 24 31

26 31 18 18 30 26

(a) Calculate the least squares regression line for these
data.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Find point estimates for α, β, and σ 2.

6.5-7. The Federal Trade Commission measured the num-
ber of milligrams of tar and carbon monoxide (CO) per
cigarette for all domestic cigarettes. Let x and y equal
the measurements of tar and CO, respectively, for 100-
millimeter filtered and mentholated cigarettes. A sample
of 12 brands yielded the following data:

Brand x y Brand x y

Capri 9 6 Now 3 4

Carlton 4 6 Salem 17 18

Kent 14 14 Triumph 6 8

Kool Milds 12 12 True 7 8

Marlboro Lights 10 12 Vantage 8 13

Merit Ultras 5 7 Virginia Slims 15 13

(a) Calculate the least squares regression line for these
data.

(b) Plot the points and the least squares regression line on
the same graph.

(c) Find point estimates for α, β, and σ 2.

6.5-8. The data in the following table, part of a set of data
collected by Ledolter and Hogg (see References), pro-
vide the number of miles per gallon (mpg) for city and
highway driving of 2007 midsize-model cars, as well as the
curb weight of the cars:

mpg mpg Curb
Type City Hwy Weight

Ford Fusion V6 SE 20 28 3230

Chevrolet Sebring Sedan Base 24 32 3287

Toyota Camry Solara SE 24 34 3240

Honda Accord Sedan 20 29 3344

Audi A6 3.2 21 29 3825

BMW 5-series 525i Sedan 20 29 3450

Chrysler PT Cruiser Base 22 29 3076

Mercedes E-Class E350 Sedan 19 26 3740

Volkswagen Passat Sedan 2.0T 23 32 3305

Nissan Altima 2.5 26 35 3055

Kia Optima LX 24 34 3142

(a) Find the least squares regression line for highway mpg
(y) and city mpg (x).

(b) Plot the points and the least squares regression line on
the same graph.

(c) Repeat parts (a) and (b) for the regression of highway
mpg (y) on curb weight (x).

6.5-9. Using an Instron 4204, rectangular strips of
Plexiglas� were stretched to failure in a tensile test. The
following data give the change in length, in millimeters
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(mm), before breaking (x) and the cross–sectional area in
square millimeters (mm2) (y):

(5.28, 52.36) (5.40, 52.58) (4.65, 51.07) (4.76, 52.28) (5.55, 53.02)

(5.73, 52.10) (5.84, 52.61) (4.97, 52.21) (5.50, 52.39) (6.24, 53.77)

(a) Find the equation of the least squares regression line.

(b) Plot the points and the line on the same graph.

(c) Interpret your output.

6.5-10. The “golden ratio” is φ = (1 + √
5)/2. John Putz,

a mathematician who was interested in music, analyzed
Mozart’s sonata movements, which are divided into two
distinct sections, both of which are repeated in perfor-
mance (see References). The length of the “Exposition”
in measures is represented by a and the length of the
“Development and Recapitulation” is represented by b.
Putz’s conjecture was that Mozart divided his movements
close to the golden ratio. That is, Putz was interested in
studying whether a scatter plot of a + b against b not only
would be linear, but also would actually fall along the line
y = φx. Here are the data in tabular form, in which the
first column identifies the piece and movement by the
Köchel cataloging system:

(a) Make a scatter plot of the points a + b against the
points b. Is this plot linear?

(b) Find the equation of the least squares regression line.
Superimpose it on the scatter plot.

Köchel a b a + b Köchel a b a + b

279, I 38 62 100 279, II 28 46 74

279, III 56 102 158 280, I 56 88 144

280, II 24 36 60 280, III 77 113 190

281, I 40 69 109 281, II 46 60 106

282, I 15 18 33 282, III 39 63 102

283, I 53 67 120 283, II 14 23 37

283, III 102 171 273 284, I 51 76 127

309, I 58 97 155 311, I 39 73 112

310, I 49 84 133 330, I 58 92 150

330, III 68 103 171 332, I 93 136 229

332, III 90 155 245 333, I 63 102 165

333, II 31 50 81 457, I 74 93 167

533, I 102 137 239 533, II 46 76 122

545, I 28 45 73 547a, I 78 118 196

570, I 79 130 209

(c) On the scatter plot, superimpose the line y = φx.
Compare this line with the least squares regression
line (graphically if you wish).

(d) Find the sample mean of the points (a + b)/b. Is the
mean close to φ?

6.6* ASYMPTOTIC DISTRIBUTIONS OF MAXIMUM LIKELIHOOD
ESTIMATORS

Let us consider a distribution of the continuous type with pdf f (x; θ) such that the
parameter θ is not involved in the support of the distribution. Moreover, we want
f (x; θ) to possess a number of mathematical properties that we do not list here.
However, in particular, we want to be able to find the maximum likelihood estimator
θ̂ by solving

∂[ln L(θ)]
∂θ

= 0,

where here we use a partial derivative sign because L(θ) involves x1, x2, . . . , xn, too.
That is,

∂[ln L(θ̂)]
∂θ

= 0,

where now, with θ̂ in this expression, L( θ̂ ) = f (X1; θ̂ )f (X2; θ̂ ) · · · f (Xn; θ̂ ). We can
approximate the left-hand member of this latter equation by a linear function found
from the first two terms of a Taylor’s series expanded about θ , namely,
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∂[ln L(θ)]
∂θ

+ ( θ̂ − θ)
∂2[ln L(θ)]

∂θ2
≈ 0,

when L(θ) = f (X1; θ)f (X2; θ) · · · f (Xn; θ).
Obviously, this approximation is good enough only if θ̂ is close to θ , and an

adequate mathematical proof involves those conditions, which we have not given
here. (See Hogg, McKean, and Craig, 2013.) But a heuristic argument can be made
by solving for θ̂ − θ to obtain

θ̂ − θ =
∂[ln L(θ)]

∂θ

−∂2[ln L(θ)]
∂θ2

. (6.6-1)

Recall that

ln L(θ) = ln f (X1; θ) + ln f (X2; θ) + · · · + ln f (Xn; θ)

and

∂ ln L(θ)
∂θ

=
n∑

i=1

∂[ln f (Xi; θ)]
∂θ

, (6.6-2)

which is the numerator in Equation 6.6-1. However, Equation 6.6-2 gives the sum of
the n independent and identically distributed random variables

Yi = ∂[ln f (Xi; θ)]
∂θ

, i = 1, 2, . . . , n,

and thus, by the central limit theorem, has an approximate normal distribution with
mean (in the continuous case) equal to∫ ∞

−∞
∂[ln f (x; θ)]

∂θ
f (x; θ) dx =

∫ ∞

−∞
∂[f (x; θ)]

∂θ

f (x; θ)
f (x; θ)

dx

=
∫ ∞

−∞
∂[f (x; θ)]

∂θ
dx

= ∂

∂θ

[∫ ∞

−∞
f (x; θ) dx

]
= ∂

∂θ
[1]

= 0.

Clearly, we need a certain mathematical condition that makes it permissible to inter-
change the operations of integration and differentiation in those last steps. Of course,
the integral of f (x; θ) is equal to 1 because it is a pdf.

Since we now know that the mean of each Y is∫ ∞

−∞
∂[ln f (x; θ)]

∂θ
f (x; θ) dx = 0,

let us take derivatives of each member of this equation with respect to θ , obtaining∫ ∞

−∞

{
∂2[ln f (x; θ)]

∂θ2
f (x; θ) + ∂[ln f (x; θ)]

∂θ

∂[f (x; θ)]
∂θ

}
dx = 0.
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However,

∂[f (x; θ)]
∂θ

= ∂[ln f (x; θ)]
∂θ

f (x; θ);

so ∫ ∞

−∞

{
∂[ln f (x; θ)]

∂θ

}2

f (x; θ) dx = −
∫ ∞

−∞
∂2[ln f (x; θ)]

∂θ2
f (x; θ) dx.

Since E(Y) = 0, this last expression provides the variance of Y = ∂[ln f (X; θ)]/∂θ .
Then the variance of the sum in Equation 6.6-2 is n times this value, namely,

−nE

{
∂2[ln f (X; θ)]

∂θ2

}
.

Let us rewrite Equation 6.6-1 as

√
n ( θ̂ − θ)⎛⎝ 1√

−E{∂2[ln f (X; θ)]/∂θ2}

⎞⎠ =

⎛⎝ ∂[ln L(θ)]/∂θ√
−nE{∂2[ln f (X; θ)]/∂θ2}

⎞⎠
⎛⎜⎜⎝ − 1

n
∂2[ln L(θ)]

∂θ2

E{−∂2[ln f (X; θ)]/∂θ2}

⎞⎟⎟⎠
. (6.6-3)

Since it is the sum of n independent random variables (see Equation 6.6-2),

∂[ln f (Xi; θ)]/∂θ , i = 1, 2, . . . , n,

the numerator of the right-hand member of Equation 6.6-3 has an approximate
N(0, 1) distribution, and the aforementioned unstated mathematical conditions
require, in some sense, that

− 1
n

∂2[ln L(θ)]
∂θ2

converge to E{−∂2[ln f (X; θ)]/∂θ2}.

Accordingly, the ratios given in Equation 6.6-3 must be approximately N(0, 1). That
is, θ̂ has an approximate normal distribution with mean θ and standard deviation

1√−nE{∂2[ln f (X; θ)]/∂θ2} .

Example
6.6-1

(Continuation of Example 6.4-1.) With the underlying exponential pdf

f (x; θ) = 1
θ

e−x/θ , 0 < x < ∞, θ ∈ � = {θ : 0 < θ < ∞},

X is the maximum likelihood estimator. Since

ln f (x; θ) = − ln θ − x
θ

and

∂[ln f (x; θ)]
∂θ

= −1
θ

+ x
θ2

and
∂2[ln f (x; θ)]

∂θ
= 1

θ2
− 2x

θ3
,
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we have

−E
[

1
θ2

− 2X
θ3

]
= − 1

θ2
+ 2θ

θ3
= 1

θ2
,

because E(X) = θ . That is, X has an approximate normal distribution with mean
θ and standard deviation θ/

√
n. Thus, the random interval X ± 1.96(θ/

√
n ) has an

approximate probability of 0.95 that it covers θ . Substituting the observed x for θ , as
well as for X, we say that x ± 1.96 x/

√
n is an approximate 95% confidence interval

for θ .

While the development of the preceding result used a continuous-type distri-
bution, the result holds for the discrete type also, as long as the support does not
involve the parameter. This is illustrated in the next example.

Example
6.6-2

(Continuation of Exercise 6.4-3.) If the random sample arises from a Poisson
distribution with pmf

f (x; λ) = λxe−λ

x! , x = 0, 1, 2, . . . ; λ ∈ � = {λ : 0 < λ < ∞},

then the maximum likelihood estimator for λ is λ̂ = X. Now,

ln f (x; λ) = x ln λ − λ − ln x!.
Also,

∂[ln f (x; λ)]
∂λ

= x
λ

− 1 and
∂2[ln f (x; λ)]

∂λ2
= − x

λ2
.

Thus,

−E
(
− X

λ2

)
= λ

λ2
= 1

λ
,

and λ̂ = X has an approximate normal distribution with mean λ and standard devia-
tion

√
λ/n. Finally, x±1.645

√
x/n serves as an approximate 90% confidence interval

for λ. With the data in Exercise 6.4-3, x = 2.225, and it follows that this interval
ranges from 1.837 to 2.613.

It is interesting that there is another theorem which is somewhat related to the
preceding result in that the variance of θ̂ serves as a lower bound for the variance
of every unbiased estimator of θ . Thus, we know that if a certain unbiased esti-
mator has a variance equal to that lower bound, we cannot find a better one, and
hence that estimator is the best in the sense of being the minimum-variance unbi-
ased estimator. So, in the limit, the maximum likelihood estimator is this type of best
estimator.

We describe this Rao–Cramér inequality here without proof. Let X1, X2, . . . ,
Xn be a random sample from a distribution of the continuous type with pdf f (x; θ),
θ ∈ � = {θ : c < θ < d}, where the support of X does not depend upon θ , so that
we can differentiate, with respect to θ , under integral signs like that in the following
integral: ∫ ∞

−∞
f (x; θ) dx = 1.
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If Y = u(X1, X2, . . . , Xn) is an unbiased estimator of θ , then

Var(Y) ≥ 1

n
∫ ∞
−∞{[∂ ln f (x; θ)/∂θ ]}2f (x; θ) dx

= −1

n
∫ ∞
−∞[∂2 ln f (x; θ)/∂θ2] f (x; θ) dx

.

Note that the integrals in the denominators are, respectively, the expectations

E

{[
∂ ln f (X; θ)

∂θ

]2
}

and E

[
∂2 ln f (X; θ)

∂θ2

]
;

sometimes one is easier to compute than the other. Note also that although the Rao–
Cramér lower bound has been stated only for a continuous-type distribution, it is
also true for a discrete-type distribution, with summations replacing integrals.

We have computed this lower bound for each of two distributions: exponential
with mean θ and Poisson with mean λ. Those respective lower bounds were θ2/n and
λ/n. (See Examples 6.6-1 and 6.6-2.) Since, in each case, the variance of X equals the
lower bound, then X is the minimum-variance unbiased estimator.

Let us consider another example.

Example
6.6-3

(Continuation of Exercise 6.4-7.) Let the pdf of X be given by

f (x; θ) = θxθ−1, 0 < x < 1, θ ∈ � = {θ : 0 < θ < ∞}.

We then have

ln f (x; θ) = ln θ + (θ − 1) ln x,

∂ ln f (x; θ)
∂θ

= 1
θ

+ ln x,

and

∂2 ln f (x; θ)
∂θ2

= − 1
θ2

.

Since E(−1/θ2) = −1/θ2, the greatest lower bound of the variance of every
unbiased estimator of θ is θ2/n. Moreover, the maximum likelihood estimator
θ̂ = −n/ ln

∏n
i=1 Xi has an approximate normal distribution with mean θ and vari-

ance θ2/n. Thus, in a limiting sense, θ̂ is the minimum variance unbiased estimator
of θ .

To measure the value of estimators, their variances are compared with the Rao–
Cramér lower bound. The ratio of the Rao–Cramér lower bound to the actual
variance of any unbiased estimator is called the efficiency of that estimator. An esti-
mator with an efficiency of, say, 50%, means that 1/0.5 = 2 times as many sample
observations are needed to do as well in estimation as can be done with the minimum
variance unbiased estimator (the 100% efficient estimator).
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Exercises

6.6-1. Let X1, X2, . . . , Xn be a random sample from
N(θ , σ 2), where σ 2 is known.

(a) Show that Y = (X1 + X2)/2 is an unbiased estimator
of θ .

(b) Find the Rao–Cramér lower bound for the variance of
an unbiased estimator of θ for a general n.

(c) What is the efficiency of Y in part (a)?

6.6-2. Let X1, X2, . . . , Xn denote a random sample from
b(1, p). We know that X is an unbiased estimator of
p and that Var( X ) = p(1 − p)/n. (See Exercise
6.4-12.)

(a) Find the Rao–Cramér lower bound for the variance of
every unbiased estimator of p.

(b) What is the efficiency of X as an estimator
of p?

6.6-3. (Continuation of Exercise 6.4-2.) In sampling from
a normal distribution with known mean μ, the maximum
likelihood estimator of θ = σ 2 is θ̂ = ∑n

i=1(Xi − μ)2/n.

(a) Determine the Rao–Cramér lower bound.

(b) What is the approximate distribution of θ̂?

(c) What is the exact distribution of nθ̂/θ , where θ = σ 2?

6.6-4. Find the Rao–Cramér lower bound, and thus the
asymptotic variance of the maximum likelihood estima-
tor θ̂ , if the random sample X1, X2, . . . , Xn is taken from
each of the distributions having the following pdfs:

(a) f (x; θ) = (1/θ2) x e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(b) f (x; θ) = (1/2θ3) x2 e−x/θ , 0 < x < ∞, 0 < θ < ∞.

(c) f (x; θ) = (1/θ) x(1−θ)/θ , 0 < x < 1, 0 < θ < ∞.

6.7 SUFFICIENT STATISTICS
We first define a sufficient statistic Y = u(X1, X2, . . . , Xn) for a parameter, using a
statement that, in most books, is given as a necessary and sufficient condition for suf-
ficiency, namely, the well-known Fisher–Neyman factorization theorem. We do this
because we find that readers at the introductory level can apply such a definition
easily. However, using this definition, we shall note, by examples, its implications,
one of which is also sometimes used as the definition of sufficiency. An understand-
ing of Example 6.7-3 is most important in an appreciation of the value of sufficient
statistics.

Definition 6.7-1
(Factorization Theorem) Let X1, X2, . . . , Xn denote random variables with joint
pdf or pmf f (x1, x2, . . . , xn; θ), which depends on the parameter θ . The statistic
Y = u(X1, X2, . . . , Xn) is sufficient for θ if and only if

f (x1, x2, . . . , xn; θ) = φ[u(x1, x2, . . . , xn); θ ]h(x1, x2, . . . , xn),

where φ depends on x1, x2, . . . , xn only through u(x1, . . . , xn) and h(x1, . . . , xn)
does not depend on θ .

Let us consider several important examples and consequences of this defini-
tion. We first note, however, that in all instances in this book the random variables
X1, X2, . . . , Xn will be of a random sample, and hence their joint pdf or pmf will be
of the form

f (x1; θ)f (x2; θ) · · · f (xn; θ).

Example
6.7-1

Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution with
parameter λ > 0. Then
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f (x1; λ)f (x2; λ) · · · f (xn; λ) = λ�xie−nλ

x1!x2! · · · xn! = (λnxe−nλ)
(

1
x1!x2! · · · xn!

)
,

where x = (1/n)
∑n

i=1 xi. Thus, from the factorization theorem (Definition 6.7-1),
it is clear that the sample mean X is a sufficient statistic for λ. It can easily be
shown that the maximum likelihood estimator for λ is also X, so here the maximum
likelihood estimator is a function of a sufficient statistic.

In Example 6.7-1, if we replace nx by
∑n

i=1 xi, it is quite obvious that the sum∑n
i=1 Xi is also a sufficient statistic for λ. This certainly agrees with our intuition,

because if we know one of the statistics X and
∑n

i=1 Xi, we can easily find the other.
If we generalize this idea, we see that if Y is sufficient for a parameter θ , then every
single-valued function of Y not involving θ , but with a single-valued inverse, is also
a sufficient statistic for θ . The reason is that if we know either Y or that function
of Y, we know the other. More formally, if W = v(Y) = v[u(X1, X2, . . . , Xn)] is
that function and Y = v−1(W) is the single-valued inverse, then the factorization
theorem can be written as

f (x1, x2, . . . , xn; θ) = φ[v−1{v[u(x1, x2, . . . , xn)]}; θ ] h(x1, x2, . . . , xn).

The first factor of the right-hand member of this equation depends on x1, x2, . . . , xn
through v[u(x1, x2, . . . , xn)], so W = v[u(X1, X2, . . . , Xn)] is a sufficient statistic for θ .
We illustrate this fact and the factorization theorem with an underlying distribution
of the continuous type.

Example
6.7-2

Let X1, X2, . . . , Xn be a random sample from N(μ, 1), −∞ < μ < ∞. The joint pdf
of these random variables is

1
(2π)n/2

exp

[
−1

2

n∑
i=1

(xi − μ)2

]

= 1
(2π)n/2

exp

[
−1

2

n∑
i=1

[(xi − x) + (x − μ)]2

]

=
{

exp
[
−n

2
(x − μ)2

]}{
1

(2π)n/2
exp

[
−1

2

n∑
i=1

(xi − x)2

]}
.

From the factorization theorem, we see that X is sufficient for μ. Now, X
3

is also
sufficient for μ, because knowing X

3
is equivalent to having knowledge of the value

of X. However, X
2

does not have this property, and it is not sufficient for μ.

One extremely important consequence of the sufficiency of a statistic Y is that
the conditional probability of any given event A in the support of X1, X2, . . . , Xn,
given that Y = y, does not depend on θ . This consequence is sometimes used as the
definition of sufficiency and is illustrated in the next example.

Example
6.7-3

Let X1, X2, . . . , Xn be a random sample from a distribution with pmf

f (x; p) = px(1 − p)1−x, x = 0, 1,
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where the parameter p is between 0 and 1. We know that

Y = X1 + X2 + · · · + Xn

is b(n, p) and Y is sufficient for p because the joint pmf of X1, X2, . . . , Xn is

px1 (1 − p)1−x1 · · · pxn (1 − p)1−xn = [p�xi(1 − p)n−�xi](1),

where φ(y; p) = py(1−p)n−y and h(x1, x2, . . . , xn) = 1. What, then, is the conditional
probability P(X1 = x1, . . . , Xn = xn | Y = y), where y = 0, 1, . . . , n − 1, or n? Unless
the sum of the nonnegative integers x1, x2, . . . , xn equals y, this conditional probabil-
ity is obviously equal to zero, which does not depend on p. Hence, it is interesting to
consider the solution only when y = x1 +· · ·+ xn. From the definition of conditional
probability, we have

P(X1 = x1, . . . , Xn = xn | Y = y) = P(X1 = x1, . . . , Xn = xn)
P(Y = y)

= px1 (1 − p)1−x1 · · · pxn (1 − p)1−xn(
n
y

)
py(1 − p)n−y

= 1(
n
y

) ,

where y = x1 + · · · + xn. Since y equals the number of ones in the collection
x1, x2, . . . , xn, this answer is only the probability of selecting a particular arrange-
ment, namely, x1, x2, . . . , xn, of y ones and n − y zeros, and does not depend on
the parameter p. That is, given that the sufficient statistic Y = y, the condi-
tional probability of X1 = x1, X2 = x2, . . . , Xn = xn does not depend on the
parameter p.

It is interesting to observe that the underlying pdf or pmf in Examples 6.7-1,
6.7-2, and 6.7-3 can be written in the exponential form

f (x; θ) = exp[K(x)p(θ) + S(x) + q(θ)],

where the support is free of θ . That is, we have, respectively,

e−λλx

x! = exp{x ln λ − ln x! − λ}, x = 0, 1, 2, . . . ,

1√
2π

e−(x−μ)2/2 = exp

{
xμ − x2

2
− μ2

2
− 1

2
ln(2π)

}
, −∞ < x < ∞,

and

px(1 − p)1−x = exp
{

x ln
(

p
1 − p

)
+ ln(1 − p)

}
, x = 0, 1.

In each of these examples, the sum
∑n

i=1 Xi of the observations of the ran-
dom sample is a sufficient statistic for the parameter. This idea is generalized by
Theorem 6.7-1.
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Theorem
6.7-1

Let X1, X2, . . . , Xn be a random sample from a distribution with a pdf or pmf of the
exponential form

f (x; θ) = exp[K(x)p(θ) + S(x) + q(θ)]

on a support free of θ . Then the statistic
∑n

i=1 K(Xi) is sufficient for θ .

Proof The joint pdf (pmf) of X1, X2, . . . , Xn is

exp

[
p(θ)

n∑
i=1

K(xi) +
n∑

i=1

S(xi) + nq(θ)

]

=
{

exp

[
p(θ)

n∑
i=1

K(xi) + nq(θ)

]}{
exp

[
n∑

i=1

S(xi)

]}
.

In accordance with the factorization theorem, the statistic
∑n

i=1 K(Xi) is sufficient
for θ . �

In many cases, Theorem 6.7-1 permits the student to find a sufficient statistic for
a parameter with very little effort, as shown in the next example.

Example
6.7-4

Let X1, X2, . . . , Xn be a random sample from an exponential distribution with pdf

f (x; θ) = 1
θ

e−x/θ = exp
[

x
(

−1
θ

)
− ln θ

]
, 0 < x < ∞,

provided that 0 < θ < ∞. Here, K(x) = x. Thus,
∑n

i=1 Xi is sufficient for θ ; of course,
X = ∑n

i=1 Xi/n is also sufficient.

Note that if there is a sufficient statistic for the parameter under considera-
tion and if the maximum likelihood estimator of this parameter is unique, then the
maximum likelihood estimator is a function of the sufficient statistic. To see this
heuristically, consider the following: If a sufficient statistic exists, then the likelihood
function is

L(θ) = f (x1, x2, . . . , xn; θ) = φ[u(x1, x2, . . . , xn); θ ] h(x1, x2, . . . , xn).

Since h(x1, x2, . . . , xn) does not depend on θ , we maximize L(θ) by maximizing
φ[u(x1, x2, . . . , xn); θ ]. But φ is a function of x1, x2, . . . , xn only through the statistic
u(x1, x2, . . . , xn). Thus, if there is a unique value of θ that maximizes φ, then it must
be a function of u(x1, x2, . . . , xn). That is, θ̂ is a function of the sufficient statistic
u(X1, X2, . . . , Xn). This fact was alluded to in Example 6.7-1, but it could be checked
with the use of other examples and exercises.

In many cases, we have two (or more) parameters—say, θ1 and θ2. All of the pre-
ceding concepts can be extended to these situations. For example, Definition 6.7-1
(the factorization theorem) becomes the following in the case of two parameters: If

f (x1, . . . , xn; θ1, θ2) = φ[u1(x1, . . . , xn), u2(x1, . . . , xn); θ1, θ2]h(x1, . . . , xn),

where φ depends on x1, x2, . . . , xn only through u1(x1, . . . , xn), u2(x1, . . . , xn), and
h(x1, x2, . . . , xn) does not depend upon θ1 or θ2, then Y1 = u1(X1, X2, . . . , Xn) and
Y2 = u2(X1, X2, . . . , Xn) are jointly sufficient statistics for θ1 and θ2.
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Example
6.7-5

Let X1, X2, . . . , Xn denote a random sample from a normal distribution N(θ1 =
μ, θ2 = σ 2). Then

n∏
i=1

f (xi; θ1, θ2) =
(

1√
2πθ2

)n

exp

[
−

n∑
i=1

(xi − θ1)2

/
2θ2

]

= exp

[(
− 1

2θ2

) n∑
i=1

x2
i +

(
θ1

θ2

) n∑
i=1

xi − nθ2
1

2θ2
− n ln

√
2πθ2

]
· (1).

Thus,

Y1 =
n∑

i=1

X2
i and Y2 =

n∑
i=1

Xi

are joint sufficient statistics for θ1 and θ2. Of course, the single-valued functions of
Y1 and Y2, namely,

X = Y2

n
and S2 = Y1 − Y2

2/n

n − 1
,

are also joint sufficient statistics for θ1 and θ2.

Actually, we can see from Definition 6.7-1 and Example 6.7-5 that if we can
write the pdf in the exponential form, it is easy to find joint sufficient statistics. In
that example,

f (x; θ1, θ2) = exp

(
−1
2θ2

x2 + θ1

θ2
x − θ2

1

2θ2
− ln

√
2πθ2

)
;

so

Y1 =
n∑

i=1

X2
i and Y2 =

n∑
i=1

Xi

are joint sufficient statistics for θ1 and θ2. A much more complicated illustration is
given if we take a random sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from a bivariate
normal distribution with parameters θ1 = μX , θ2 = μY , θ3 = σ 2

X , θ4 = σ 2
Y , and

θ5 = ρ. In Exercise 6.7-3, we write the bivariate normal pdf f (x, y; θ1, θ2, θ3, θ4, θ5)
in exponential form and see that Z1 = ∑n

i=1 X2
i , Z2 = ∑n

i=1 Y2
i , Z3 = ∑n

i=1 XiYi,
Z4 = ∑n

i=1 Xi, and Z5 = ∑n
i=1 Yi are joint sufficient statistics for θ1, θ2, θ3, θ4, and

θ5. Of course, the single-valued functions

X = Z4

n
, Y = Z5

n
, S2

X = Z1 − Z2
4/n

n − 1
,

S2
Y = Z2 − Z2

5/n

n − 1
, R = (Z3 − Z4Z5/n)/(n − 1)

SXSY

are also joint sufficient statistics for those parameters.
The important point to stress for cases in which sufficient statistics exist is that

once the sufficient statistics are given, there is no additional information about
the parameters left in the remaining (conditional) distribution. That is, all statis-
tical inferences should be based upon the sufficient statistics. To help convince the
reader of this in point estimation, we state and prove the well-known Rao–Blackwell
theorem.
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Theorem
6.7-2

Let X1, X2, . . . , Xn be a random sample from a distribution with pdf or pmf
f (x; θ), θ ∈ �. Let Y1 = u1(X1, X2, . . . , Xn) be a sufficient statistic for θ , and let
Y2 = u2(X1, X2, . . . , Xn) be an unbiased estimator of θ , where Y2 is not a function
of Y1 alone. Then E(Y2 | y1) = u(y1) defines a statistic u(Y1), a function of the suf-
ficient statistic Y1, which is an unbiased estimator of θ , and its variance is less than
that of Y2.

Proof Let g(y1, y2; θ) be the joint pdf or pmf of Y1 and Y2. Let g1(y1; θ) be the
marginal of Y1; thus,

g(y1, y2; θ)
g1(y1; θ)

= h(y2 | y1)

is the conditional pdf or pmf of Y2, given that Y1 = y1. This equation does not
depend upon θ , since Y1 is a sufficient statistic for θ . Of course, in the continuous
case,

u(y1) =
∫

S2

y2h(y2 | y1) dy2 =
∫

S2

y2
g(y1, y2; θ)
g1(y1; θ)

dy2

and

E[u(Y1)] =
∫

S1

(∫
S2

y2
g(y1, y2; θ)
g1(y1; θ)

dy2

)
g1(y1; θ) dy1

=
∫

S1

∫
S2

y2 g(y1, y2; θ) dy2 dy1 = θ ,

because Y2 is an unbiased estimator of θ . Thus, u(Y1) is also an unbiased estimator
of θ .

Now, consider

Var(Y2) = E[(Y2 − θ)2] = E[{Y2 − u(Y1) + u(Y1) − θ}2]

= E[{Y2 − u(Y1)}2] + E[{u(Y1) − θ}2] + 2E[{Y2 − u(Y1)}{u(Y1) − θ}].
But the latter expression (i.e., the third term) is equal to

2
∫

S1

[u(y1) − θ ]
{∫

S2

[y2 − u(y1)] h(y2 | y1) dy2

}
g(y1; θ) dy1 = 0,

because u(y1) is the mean E(Y2 | y1) of Y2 in the conditional distribution given by
h(y2 | y1). Thus,

Var(Y2) = E[{Y2 − u(Y1)}2] + Var[u(Y1)].

However, E[{(Y2 −u(Y1)}2 ≥ 0, as it is the expected value of a positive expression.
Therefore,

Var(Y2) ≥ Var[u(Y1)]. �

The importance of this theorem is that it shows that for every other unbiased
estimator of θ , we can always find an unbiased estimator based on the sufficient
statistic that has a variance at least as small as the first unbiased estimator. Hence,
in that sense, the one based upon the sufficient statistic is at least as good as the first
one. More importantly, we might as well begin our search for an unbiased estimator
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with the smallest variance by considering only those unbiased estimators based upon
the sufficient statistics. Moreover, in an advanced course we show that if the under-
lying distribution is described by a pdf or pmf of the exponential form, then, if an
unbiased estimator exists, there is only one function of the sufficient statistic that is
unbiased. That is, that unbiased estimator is unique. (See Hogg, McKean, and Craig,
2013.)

There is one other useful result involving a sufficient statistic Y for a parameter
θ , particularly with a pdf of the exponential form. It is that if another statistic Z has
a distribution that is free of θ , then Y and Z are independent. This is the reason
Z = (n − 1)S2 is independent of Y = X when the sample arises from a distribution
that is N(θ , σ 2). The sample mean is a sufficient statistic for θ , and

Z = (n − 1)S2 =
n∑

i=1

(Xi − X)2

has a distribution that is free of θ . To see this, we note that the mgf of Z, namely,
E(etZ), is∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
t

n∑
i=1

(xi − x)2

](
1√

2πσ

)n

exp

[
−
∑

(xi − θ)2

2σ 2

]
dx1dx2 . . . dxn.

Changing variables by letting xi − θ = wi, i = 1, 2, . . . , n, the preceding expression
becomes∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
t

n∑
i=1

(wi − w)2

](
1√

2πσ

)n

exp

[
−
∑

w2
i

2σ 2

]
dw1dw2 . . . dwn,

which is free of θ .
An outline of the proof of this result is given by noting that∫

y
[h(z | y) − g2(z)] g1(y; θ) dy = g2(z) − g2(z) = 0

for all θ ∈ �. However, h(z | y) is free of θ due to the hypothesis of sufficiency; so
h(z | y) − g2(z) is free of θ , since Z has a distribution that is free of θ . Since N(θ , σ 2)
is of the exponential form, Y = X has a pdf g1(y | θ) that requires h(z | y) − g2(z) to
be equal to zero. That is,

h(z | y) = g2(z),

which means that Z and Y are independent. This proves the independence of X and
S2, which was stated in Theorem 5.5-2.

Example
6.7-6

Let X1, X2, . . . , Xn be a random sample from a gamma distribution with α (given)
and θ > 0, which is of exponential form. Now, Y = ∑n

i=1 Xi is a sufficient statistic
for θ , since the gamma pdf is of the exponential form. Clearly, then,

Z =
∑n

i=1 aiXi∑n
i=1 Xi

,

where not all constants a1, a2, . . . , an are equal, has a distribution that is free of the
spread parameter θ because the mgf of Z, namely,

E(etZ) =
∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0

et�aiXi/�Xi

[�(α)]nθnα
(x1x2 · · · xn)α−1e−�xi/θ dx1dx2 . . . dxn,
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and does not depend upon θ , as is seen by the transformation wi = xi/θ , i =
1, 2, . . . , n. So Y and Z are independent statistics.

This special case of the independence of Y and Z concerning one sufficient
statistic Y and one parameter θ was first observed by Hogg (1953) and then gen-
eralized to several sufficient statistics for more than one parameter by Basu (1955)
and is usually called Basu’s theorem.

Due to these results, sufficient statistics are extremely important and estimation
problems are based upon them when they exist.

Exercises

6.7-1. Let X1, X2, . . . , Xn be a random sample from
N(0, σ 2).

(a) Find a sufficient statistic Y for σ 2.

(b) Show that the maximum likelihood estimator for σ 2 is
a function of Y.

(c) Is the maximum likelihood estimator for σ 2 unbiased?

6.7-2. Let X1, X2, . . . , Xn be a random sample from a
Poisson distribution with mean λ > 0. Find the condi-
tional probability P(X1 = x1, . . . , Xn = xn| Y = y),
where Y = X1 + · · · + Xn and the nonnegative integers
x1, x2, . . . , xn sum to y. Note that this probability does not
depend on λ.

6.7-3. Write the bivariate normal pdf f (x, y; θ1, θ2, θ3, θ4, θ5)
in exponential form and show that Z1 = ∑n

i=1 X2
i ,

Z2 = ∑n
i=1 Y2

i , Z3 = ∑n
i=1 XiYi, Z4 = ∑n

i=1 Xi, and
Z5 = ∑n

i=1 Yi are joint sufficient statistics for θ1, θ2, θ3,
θ4, and θ5.

6.7-4. Let X1, X2, . . . , Xn be a random sample from a dis-
tribution with pdf f (x; θ) = θxθ−1, 0 < x < 1, where
0 < θ .

(a) Find a sufficient statistic Y for θ .

(b) Show that the maximum likelihood estimator θ̂ is a
function of Y.

(c) Argue that θ̂ is also sufficient for θ .

6.7-5. Let X1, X2, . . . , Xn be a random sample from a
gamma distribution with α = 1 and 1/θ > 0. Show that
Y = ∑n

i=1 Xi is a sufficient statistic, Y has a gamma dis-
tribution with parameters n and 1/θ , and (n − 1)/Y is an
unbiased estimator of θ .

6.7-6. Let X1, X2, . . . , Xn be a random sample from
a gamma distribution with known parameter α and
unknown parameter θ > 0.

(a) Show that Y = ∑n
i=1 Xi is a sufficient statistic for θ .

(b) Show that the maximum likelihood estimator of θ is a
function of Y and is an unbiased estimator of θ .

6.7-7. Let X1, X2, . . . , Xn be a random sample from the
distribution with pmf f (x; p) = p(1−p)x−1, x = 1, 2, 3, . . .,
where 0 < p ≤ 1.

(a) Show that Y = ∑n
i=1 Xi is a sufficient statistic for p.

(b) Find a function of Y that is an unbiased estimator of
θ = 1/p.

6.7-8. Let X1, X2, . . . , Xn be a random sample from
N(0, θ), where σ 2 = θ > 0 is unknown. Argue that
the sufficient statistic Y = ∑n

i=1 X2
i for θ and Z =∑n

i=1 aiXi/
∑n

i=1 Xi are independent. Hint: Let xi =
θwi, i = 1, 2, . . . , n, in the multivariate integral represent-
ing E[etZ].

6.7-9. Let X1, X2, . . . , Xn be a random sample from
N(θ1, θ2). Show that the sufficient statistics Y1 = X and
Y2 = S2 are independent of the statistic

Z =
n−1∑
i=1

(Xi+1 − Xi)2

S2

because Z has a distribution that is free of θ1 and θ2.
Hint: Let wi = (xi − θ1)/

√
θ2, i = 1, 2, . . . , n, in the

multivariate integral representing E[etZ].

6.7-10. Find a sufficient statistic for θ , given a ran-
dom sample, X1, X2, . . . , Xn, from a distribution with pdf
f (x; θ) = {�(2θ)/[�(θ)]2}xθ−1(1 − x)θ−1, 0 < x < 1.

6.7-11. Let X1, X2, . . . , Xn be a random sample from a
distribution with pdf f (x; θ) = (1/2)θ3x2e−θx, 0 < x < ∞.
Show that Y = ∑n

i=1 Xi and Z = (X1 + X2)/Y are
independent.

6.7-12. Let X1, X2, . . . , Xn be a random sample from
N(0, σ 2), where n is odd. Let Y and Z be the mean and
median of the sample. Argue that Y and Z − Y are inde-
pendent so that the variance of Z is Var(Y)+Var(Z −Y).
We know that Var(Y) = σ 2/n, so that we could estimate
the Var(Z − Y) by Monte Carlo. This might be more effi-
cient than estimating Var(Z) directly since Var(Z − Y) ≤
Var(Z). This scheme is often called the Monte Carlo
Swindle.
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6.8 BAYESIAN ESTIMATION
We now describe another approach to estimation that is used by a group of statis-
ticians who call themselves Bayesians. To understand their approach fully would
require more text than we can allocate to this topic, but let us begin this brief intro-
duction by considering a simple application of the theorem of the Reverend Thomas
Bayes. (See Section 1.5.)

Example
6.8-1

Suppose we know that we are going to select an observation from a Poisson distri-
bution with mean λ equal to 2 or 4. Moreover, prior to performing the experiment,
we believe that λ = 2 has about four times as much chance of being the parameter
as does λ = 4; that is, the prior probabilities are P(λ = 2) = 0.8 and P(λ = 4) = 0.2.
The experiment is now performed and we observe that x = 6. At this point, our
intuition tells us that λ = 2 seems less likely than before, as the observation x = 6 is
much more probable with λ = 4 than with λ = 2, because, in an obvious notation,

P(X = 6 | λ = 2) = 0.995 − 0.983 = 0.012

and

P(X = 6 | λ = 4) = 0.889 − 0.785 = 0.104,

from Table III in Appendix B. Our intuition can be supported by computing the
conditional probability of λ = 2, given that X = 6:

P(λ = 2 | X = 6) = P(λ = 2, X = 6)
P(X = 6)

= P(λ = 2)P(X = 6 | λ = 2)
P(λ = 2)P(X = 6 | λ = 2) + P(λ = 4)P(X = 6 | λ = 4)

= (0.8)(0.012)
(0.8)(0.012) + (0.2)(0.104)

= 0.316.

This conditional probability is called the posterior probability of λ = 2, given the
single data point (here, x = 6). In a similar fashion, the posterior probability of λ = 4
is found to be 0.684. Thus, we see that the probability of λ = 2 has decreased from
0.8 (the prior probability) to 0.316 (the posterior probability) with the observation
of x = 6.

In a more practical application, the parameter, say, θ can take many more than
two values as in Example 6.8-1. Somehow Bayesians must assign prior probabilities
to this total parameter space through a prior pdf h(θ). They have developed proce-
dures for assessing these prior probabilities, and we simply cannot do justice to these
methods here. Somehow h(θ) reflects the prior weights that the Bayesian wants to
assign to the various possible values of θ . In some instances, if h(θ) is a constant and
thus θ has the uniform prior distribution, we say that the Bayesian has a noninfor-
mative prior. If, in fact, some knowledge of θ exists in advance of experimentation,
noninformative priors should be avoided if at all possible.

Also, in more practical examples, we usually take several observations, not just
one. That is, we take a random sample, and there is frequently a good statistic, say,
Y, for the parameter θ . Suppose we are considering a continuous case and the pdf of
Y, say, g(y; θ), can be thought of as the conditional pdf of Y, given θ . [Henceforth in
this section, we write g(y; θ) = g(y | θ).] Thus, we can treat

g(y | θ)h(θ) = k(y, θ)
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as the joint pdf of the statistic Y and the parameter. Of course, the marginal pdf of
Y is

k1(y) =
∫ ∞

−∞
h(θ)g(y | θ) dθ .

Consequently,

k(y, θ)
k1(y)

= g(y | θ)h(θ)
k1(y)

= k(θ | y)

would serve as the conditional pdf of the parameter, given that Y = y. This formula
is essentially Bayes’ theorem, and k(θ | y) is called the posterior pdf of θ , given that
Y = y.

Bayesians believe that everything which needs to be known about the parameter
is summarized in this posterior pdf k(θ | y). Suppose, for example, that they were
pressed into making a point estimate of the parameter θ . They would note that they
would be guessing the value of a random variable, here θ , given its pdf k(θ | y). There
are many ways that this could be done: The mean, the median, or the mode of that
distribution would be reasonable guesses. However, in the final analysis, the best
guess would clearly depend upon the penalties for various errors created by incorrect
guesses. For instance, if we were penalized by taking the square of the error between
the guess, say, w(y), and the real value of the parameter θ , clearly we would use the
conditional mean

w(y) =
∫ ∞

−∞
θk(θ | y) dθ

as our Bayes estimate of θ . The reason is that, in general, if Z is a random variable,
then the function of b, E[(Z − b)2], is minimized by b = E(Z). (See Example 2.2-4.)
Likewise, if the penalty (loss) function is the absolute value of the error, |θ − w(y)|,
then we use the median of the distribution, because with any random variable Z,
E[ |Z − b| ] is minimized when b equals the median of the distribution of Z. (See
Exercise 2.2-8.)

Example
6.8-2

Suppose that Y has a binomial distribution with parameters n and p = θ . Then the
pmf of Y, given θ , is

g(y | θ) =
(

n
y

)
θy(1 − θ)n−y, y = 0, 1, 2, . . . , n.

Let us take the prior pdf of the parameter to be the beta pdf:

h(θ) = �(α + β)
�(α)�(β)

θα−1(1 − θ)β−1, 0 < θ < 1.

Such a prior pdf provides a Bayesian a great deal of flexibility through the selection
of the parameters α and β. Thus, the joint probabilities can be described by a product
of a binomial pmf with parameters n and θ and this beta pdf, namely,

k(y, θ) =
(

n
y

)
�(α + β)
�(α)�(β)

θy+α−1(1 − θ)n−y+β−1,
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on the support given by y = 0, 1, 2, . . . , n and 0 < θ < 1. We find

k1(y) =
∫ 1

0
k(y, θ) dθ

=
(

n
y

)
�(α + β)
�(α)�(β)

�(α + y)�(n + β − y)
�(n + α + β)

on the support y = 0, 1, 2, . . . , n by comparing the integral with one involving a beta
pdf with parameters y + α and n − y + β. Therefore,

k(θ | y) = k(y, θ)
k1(y)

= �(n + α + β)
�(α + y)�(n + β − y)

θy+α−1(1 − θ)n−y+β−1, 0 < θ < 1,

which is a beta pdf with parameters y + α and n − y + β. With the squared error loss
function we must minimize, with respect to w(y), the integral∫ 1

0
[θ − w(y)]2 k(θ | y) dθ ,

to obtain the Bayes estimator. But, as noted earlier, if Z is a random variable with
a second moment, then E[(Z − b)2] is minimized by b = E(Z). In the preceding
integration, θ is like the Z with pdf k(θ | y), and w(y) is like the b, so the minimization
is accomplished by taking

w(y) = E(θ | y) = α + y
α + β + n

,

which is the mean of the beta distribution with parameters y + α and n − y + β. (See
Exercise 5.2-8.) It is instructive to note that this Bayes estimator can be written as

w(y) =
(

n
α + β + n

)(y
n

)
+

(
α + β

α + β + n

)(
α

α + β

)
,

which is a weighted average of the maximum likelihood estimate y/n of θ and the
mean α/(α + β) of the prior pdf of the parameter. Moreover, the respective weights
are n/(α + β + n) and (α + β)/(α + β + n). Thus, we see that α and β should be
selected so that not only is α/(α + β) the desired prior mean, but also the sum α + β

plays a role corresponding to a sample size. That is, if we want our prior opinion to
have as much weight as a sample size of 20, we would take α+β = 20. So if our prior
mean is 3/4, we select α = 15 and β = 5. That is, the prior pdf of θ is beta(15, 5). If we
observe n = 40 and y = 28, then the posterior pdf is beta(28+15 = 43, 12+5 = 17).
The prior and posterior pdfs are shown in Figure 6.8-1.

In Example 6.8-2, it is quite convenient to note that it is not really necessary to
determine k1(y) to find k(θ | y). If we divide k(y, θ) by k1(y), we get the product of a
factor that depends on y but does not depend on θ—say, c(y)—and we have

θy+α−1(1 − θ)n−y+β−1.

That is,

k(θ | y) = c(y) θy+α−1(1 − θ)n−y+β−1, 0 < θ < 1.
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beta(15, 5)

beta(43, 17)

θ

1

2

3
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Figure 6.8-1 Beta prior and posterior pdfs

However, c(y) must be that “constant” needed to make k(θ | y) a pdf, namely,

c(y) = �(n + α + β)
�(y + α)�(n − y + β)

.

Accordingly, Bayesians frequently write that k(θ | y) is proportional to k(y, θ) =
g(y | θ)h(θ); that is,

k(θ | y) ∝ g(y | θ) h(θ).

Then, to actually form the pdf k(θ | y), they simply find the “constant” (which is, of
course, actually some function of y) such that the expression integrates to 1.

Example
6.8-3

Suppose that Y = X is the mean of a random sample of size n that arises from
the normal distribution N(θ , σ 2), where σ 2 is known. Then g(y | θ) is N(θ , σ 2/n).
Suppose further that we are able to assign prior weights to θ through a prior pdf
h(θ) that is N(θ0, σ 2

0 ). Then we have

k(θ | y) ∝ 1√
2π (σ/

√
n)

1√
2πσ0

exp

[
− (y − θ)2

2(σ 2/n)
− (θ − θ0)2

2σ 2
0

]
.

If we eliminate all constant factors (including factors involving y only), then

k(θ | y) ∝ exp

[
− (σ 2

0 + σ 2/n)θ2 − 2(yσ 2
0 + θ0σ

2/n)θ

2(σ 2/n)σ 2
0

]
.

This expression can be simplified by completing the square, to read (after eliminating
factors not involving θ)

k(θ | y) ∝ exp

{
− [θ − (yσ 2

0 + θ0σ
2/n)/(σ 2

0 + σ 2/n)]2

[2(σ 2/n)σ 2
0 ]/[σ 2

0 + (σ 2/n)]

}
.

That is, the posterior pdf of the parameter is obviously normal with mean

yσ 2
0 + θ0σ

2/n

σ 2
0 + σ 2/n

=
(

σ 2
0

σ 2
0 + σ 2/n

)
y +

(
σ 2/n

σ 2
0 + σ 2/n

)
θ0
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and variance (σ 2/n)σ 2
0 /(σ 2

0 + σ 2/n). If the squared error loss function is used, then
this posterior mean is the Bayes estimator. Again, note that it is a weighted aver-
age of the maximum likelihood estimate y = x and the prior mean θ0. The Bayes
estimator w(y) will always be a value between the prior judgment and the usual esti-
mate. Note also, here and in Example 6.8-2, that the Bayes estimator gets closer
to the maximum likelihood estimate as n increases. Thus, the Bayesian procedures
permit the decision maker to enter his or her prior opinions into the solution in a
very formal way so that the influence of those prior notions will be less and less as n
increases.

In Bayesian statistics, all the information is contained in the posterior pdf
k(θ | y). In Examples 6.8-2 and 6.8-3, we found Bayesian point estimates with the
use of the squared error loss function. Note that if the loss function is the absolute
value of the error, |w(y) − θ |, then the Bayes estimator would be the median of the
posterior distribution of the parameter, which is given by k(θ | y). Hence, the Bayes
estimator changes—as it should—with different loss functions.

Finally, if an interval estimate of θ is desired, we would find two functions of
y—say, u(y) and v(y)—such that∫ v(y)

u(y)
k(θ | y) dθ = 1 − α,

where α is small—say, α = 0.05. Then the observed interval from u(y) to v(y) would
serve as an interval estimate for the parameter in the sense that the posterior prob-
ability of the parameter’s being in that interval is 1 − α. In Example 6.8-3, where the
posterior pdf of the parameter was normal, the interval

yσ 2
0 + θ0σ

2/n

σ 2
0 + σ 2/n

± 1.96

√√√√ (σ 2/n)σ 2
0

σ 2
0 + σ 2/n

serves as an interval estimate for θ with posterior probability of 0.95.
In closing this short section on Bayesian estimation, note that we could have

begun with the sample observations X1, X2, . . . , Xn, rather than some statistic Y.
Then, in our discussion, we would replace g(y | θ) by the likelihood function

L(θ) = f (x1 | θ)f (x2 | θ) · · · f (xn | θ),

which is the joint pdf of X1, X2, . . . , Xn, given θ . Thus, we find that

k(θ | x1, x2, . . . , xn) ∝ h(θ)f (x1 | θ)f (x2 | θ) · · · f (xn | θ) = h(θ)L(θ).

Now, k(θ | x1, x2, . . . , xn) contains all the information about θ , given the data. Thus,
depending on the loss function, we would choose our Bayes estimate of θ as some
characteristic of this posterior distribution, such as the mean or the median. It is
interesting to observe that if the loss function is zero for some small neighbor-
hood about the true parameter θ and is some large positive constant otherwise, then
the Bayes estimate, w(x1, x2, . . . , xn), is essentially the mode of this conditional pdf,
k(θ | x1, x2, . . . , xn). The reason for this is that we want to take the estimate so that
it has as much posterior probability as possible in a small neighborhood around it.
Finally, note that if h(θ) is a constant (a noninformative prior), then this Bayes esti-
mate using the mode is exactly the same as the maximum likelihood estimate. More
generally, if h(θ) is not a constant, then the Bayes estimate using the mode can be
thought of as a weighted maximum likelihood estimate in which the weights reflect
prior opinion about θ . That is, that value of θ which maximizes h(θ)L(θ) is the mode
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of the posterior distribution of the parameter given the data and can be used as the
Bayes estimate associated with the appropriate loss function.

Example
6.8-4

Let us consider again Example 6.8-2, but now say that X1, X2, . . ., Xn is a random
sample from the Bernoulli distribution with pmf

f (x | θ) = θx(1 − θ)1−x, x = 0, 1.

With the same prior pdf of θ , the joint distribution of X1, X2, . . . , Xn and θ is given by

�(α + β)
�(α)�(β)

θα−1(1 − θ)β−1θ
∑n

i=1 xi(1 − θ)n−∑n
i=1 xi , 0 < θ < 1, xi = 0, 1.

Of course, the posterior pdf of θ , given that X1 = x1, X2 = x2, . . . , Xn = xn, is such
that

k(θ | x1, x2, . . . , xn) ∝ θ
∑n

i=1 xi+α−1(1 − θ)n−∑n
i=1 xi+β−1, 0 < θ < 1,

which is beta with α∗ = ∑
xi + α, β∗ = n − ∑

xi + β. The conditional mean of θ is∑n
i=1 xi + α

n + α + β
=

(
n

n + α + β

)(∑n
i=1 xi

n

)
+

(
α + β

n + α + β

)(
α

α + β

)
,

which, with y = ∑
xi, is exactly the same result as that of Example 6.8-2.

Exercises

6.8-1. Let Y be the sum of the observations of a random
sample from a Poisson distribution with mean θ . Let the
prior pdf of θ be gamma with parameters α and β.

(a) Find the posterior pdf of θ , given that Y = y.

(b) If the loss function is [w(y) − θ ]2, find the Bayesian
point estimate w(y).

(c) Show that w(y) found in (b) is a weighted average of
the maximum likelihood estimate y/n and the prior
mean αβ, with respective weights of n/(n + 1/β) and
(1/β)/(n + 1/β).

6.8-2. Let X1, X2, . . . , Xn be a random sample from a
gamma distribution with known α and with θ = 1/τ . Say
τ has a prior pdf that is gamma with parameters α0 and
θ0, so that the prior mean is α0θ0.

(a) Find the posterior pdf of τ , given that X1 = x1, X2 =
x2, . . . , Xn = xn.

(b) Find the mean of the posterior distribution found in
part (a), and write it as a function of the sample mean
X and α0θ0.

(c) Explain how you would find a 95% interval estimate
of τ if n = 10, α = 3, α0 = 10, and θ0 = 2.

6.8-3. In Example 6.8-2, take n = 30, α = 15, and β = 5.

(a) Using the squared error loss, compute the expected
loss (risk function) associated with the Bayes estima-
tor w(Y).

(b) The risk function associated with the usual estimator
Y/n is, of course, θ(1 − θ)/30. Find those values of
θ for which the risk function in part (a) is less than
θ(1−θ)/30. In particular, if the prior mean α/(α+β) =
3/4 is a reasonable guess, then the risk function in
part (a) is the better of the two (i.e., is smaller in a
neighborhood of θ = 3/4) for what values of θ?

6.8-4. Consider a random sample X1, X2, . . . , Xn from a
distribution with pdf

f (x | θ) = 3θx2e−θx3
, 0 < x < ∞.

Let θ have a prior pdf that is gamma with α = 4 and the
usual θ = 1/4. Find the conditional mean of θ , given that
X1 = x1, X2 = x2, . . . , Xn = xn.

6.8-5. In Example 6.8-3, suppose the loss function
|θ − w(Y)| is used. What is the Bayes estimator w(Y)?

6.8-6. Let Y be the largest order statistic of a random
sample of size n from a distribution with pdf f (x | θ) =
1/θ , 0 < x < θ . Say θ has the prior pdf

h(θ) = βαβ/θβ+1, α < θ < ∞,

where α > 0, β > 0.

(a) If w(Y) is the Bayes estimator of θ and [θ − w(Y)]2 is
the loss function, find w(Y).

(b) If n = 4, α = 1, and β = 2, find the Bayesian estimator
w(Y) if the loss function is |θ − w(Y)|.
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6.8-7. Refer to Example 6.8-3. Suppose we select σ 2
0 =

dσ 2, where σ 2 is known in that example. What value do
we assign to d so that the variance of the posterior pdf
of the parameter is two thirds of the variance of Y = X,
namely, σ 2/n?

6.8-8. Consider the likelihood function L(α, β, σ 2) of
Section 6.5. Let α and β be independent with priors
N(α1, σ 2

1 ) and N(β0, σ 2
0 ). Determine the posterior mean

of α + β(x − x).

6.9* MORE BAYESIAN CONCEPTS
Let X1, X2, . . . , Xn be a random sample from a distribution with pdf (pmf) f (x | θ),
and let h(θ) be the prior pdf. Then the distribution associated with the marginal pdf
of X1, X2, . . . , Xn, namely,

k1(x1, x2, . . . , xn) =
∫ ∞

−∞
f (x1 | θ) f (x2 | θ) · · · f (xn | θ) h(θ) dθ ,

is called the predictive distribution because it provides the best description of the
probabilities on X1, X2, . . . , Xn. Often this creates some interesting distributions. For
example, suppose there is only one X with the normal pdf

f (x | θ) =
√

θ√
2π

e−(θx2)/2, −∞ < x < ∞.

Here, θ = 1/σ 2, the inverse of the variance, is called the precision of X. Say this
precision has the gamma pdf

h(θ) = 1
�(α)βα

θα−1e−θ/β , 0 < θ < ∞.

Then the predictive pdf is

k1(x) =
∫ ∞

0

θα+ 1
2 −1e

−
(

x2

2 + 1
β

)
θ

�(α)βα
√

2π
dθ

= �(α + 1/2)

�(α)βα
√

2π

1
(1/β + x2/2)α+1/2

, −∞ < x < ∞.

Note that if α = r/2 and β = 2/r, where r is a positive integer, then

k1(x) ∝ 1

(1 + x2/r)(r+1)/2
, −∞ < x < ∞,

which is a t pdf with r degrees of freedom. So if the inverse of the variance—or
precision θ—of a normal distribution varies as a gamma random variable, a gener-
alization of a t distribution has been created that has heavier tails than the normal
distribution. This mixture of normals (different from a mixed distribution) is attained
by weighing with the gamma distribution in a process often called compounding.

Another illustration of compounding is given in the next example.

Example
6.9-1

Suppose X has a gamma distribution with the two parameters k and θ−1. (That is, the
usual α is replaced by k and θ by its reciprocal.) Say h(θ) is gamma with parameters
α and β, so that
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k1(x) =
∫ ∞

0

θkxk−1e−θx

�(k)
1

�(α)βα
θα−1e−θ/β dθ

=
∫ ∞

0

xk−1θk+α−1e−θ(x+1/β)

�(k)�(α)βα
dθ

= �(k + α)xk−1

�(k)�(α)βα

1
(x + 1/β)k+α

= �(k + x)βkxk−1

�(k)�(α)(1 + βx)k+α
, 0 < x < ∞.

Of course, this is a generalization of the F distribution, which we obtain by letting
α = r2/2, k = r1/2, and β = r1/r2.

Note how well the prior h(θ) “fits” with f (x | θ) or f (x1 | θ)f (x2 | θ) · · · f (xn | θ) in
all of our examples, and the posterior distribution is of exactly the same form as the
prior. In Example 6.8-2, both the prior and the posterior were beta. In Example 6.8-
3, both the prior and posterior were normal. In Example 6.9-1, both the prior and
the posterior (if we had found it) were gamma. When this type of pairing occurs, we
say that that class of prior pdfs (pmfs) is a conjugate family of priors. Obviously, this
makes the mathematics easier, and usually the parameters in the prior distribution
give us enough flexibility to obtain good fits.

Example
6.9-2

(Berry, 1996) This example deals with predictive probabilities, and it concerns the
breakage of glass panels in high-rise buildings. One such case involved 39 panels,
and of the 39 panels that broke, it was known that 3 broke due to nickel sulfide
(NiS) stones found in them. Loss of evidence prevented the causes of breakage of
the other 36 panels from being known. So the court wanted to know whether the
manufacturer of the panels or the builder was at fault for the breakage of these 36
panels.

From expert testimony, it was thought that usually about 5% breakage is caused
by NiS stones. That is, if this value of p is selected from a beta distribution, we have

α

α + β
= 0.05. (6.9-1)

Moreover, the expert thought that if two panels from the same lot break and one
breakage was caused by NiS stones, then, due to the pervasive nature of the man-
ufacturing process, the probability of the second panel breaking due to NiS stones
increases to about 95%. Thus, the posterior estimate of p (see Example 6.8-2) with
one “success” after one trial is

α + 1
α + β + 1

= 0.95. (6.9-2)

Solving Equations 6.9-1 and 6.9-2 for α and β, we obtain

α = 1
360

and β = 19
360

.

Now updating the posterior probability with 3 “successes” out of 3 trials, we obtain
the posterior estimate of p:

α + 3
α + β + 3

= 1/360 + 3
20/360 + 3

= 1081
1100

= 0.983.
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Of course, the court that heard the case wanted to know the expert’s opinion
about the probability that all of the remaining 36 panels broke because of NiS stones.
Using updated probabilities after the third break, then the fourth, and so on, we
obtain the product(

1/360 + 3
20/360 + 3

)(
1/360 + 4
20/360 + 4

)(
1/360 + 5

20/360 + 5

)
· · ·

(
1/360 + 38

20/360 + 38

)
= 0.8664.

That is, the expert held that the probability that all 36 breakages were caused by NiS
stones was about 87%, which is the needed value in the court’s decision.

We now look at a situation in which we have two unknown parameters; we
will use, for convenience, what is called a noninformative prior, which usually
puts uniform distributions on the parameters. Let us begin with a random sample
X1, X2, . . . , Xn from the normal distribution N(θ1, θ2), and suppose we have little
prior knowledge about θ1 and θ2. We then use the noninformative prior that θ1 and
ln θ2 are uniform and independent; that is,

h1(θ1)h2(θ2) ∝ 1
θ2

, −∞ < θ1 < ∞, 0 < θ2 < ∞.

Of course, we immediately note that we cannot find a constant c such that c/θ2 is a
joint pdf on that support. That is, this noninformative prior pdf is not a pdf at all;
hence, it is called an improper prior. However, we use it anyway, because it will be
satisfactory when multiplied by the joint pdf of X1, X2, . . . , Xn. We have the product(

1
θ2

)(
1√

2πθ2

)n

exp

[
−

n∑
i=1

(xi − θ1)2

2θ2

]
.

Thus,

k12(θ1, θ2 | x1, x2, . . . , xn) ∝
(

1
θ2

)n
2 + 1

exp
[
−1

2

{
(n − 1)s2 + n(x − θ1)2

}
/θ2

]
since

∑n
i=1(xi − θ1)2 = (n − 1)s2 + n(x − θ1)2 = D. It then follows that

k1(θ1 | x1, x2, . . . , xn) ∝
∫ ∞

0
k12(θ1, θ2 | x1, x2, . . . , xn) dθ2.

Changing variables by letting z = 1/θ2, we obtain

k1(θ1 | x1, x2, . . . , xn) ∝
∫ ∞

0

zn/2+1

z2
e− 1

2 Dzdz

∝ D−n/2 =
[
(n − 1)s2 + n(x − θ1)2

]−n/2
.

To get this pdf in a more familiar form, let t = (θ1 − x)/(s/
√

n ), with Jacobian s/
√

n,
to yield

k(t | x1, x2, . . . , xn) ∝ 1

[1 + t2/(n − 1)][(n−1)+1]/2
, −∞ < t < ∞.

That is, the conditional pdf of t, given x1, x2, . . . , xn, is Student’s t with n − 1 degrees
of freedom. Thus, a (1 − α) probability interval for θ1 is given by

−tα/2 <
θ1 − x
s/

√
n

< tα/2,
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or

x − tα/2 s/
√

n < θ1 < x + tα/2 s/
√

n.

The reason we get the same answer in this case is that we use a noninformative
prior. Bayesians do not like to use a noninformative prior if they really know some-
thing about the parameters. For example, say they believe that the precision 1/θ2 has
a gamma distribution with parameters α and β instead of the noninformative prior.
Then finding the conditional pdf of θ1 becomes a much more difficult integration.
However, it can be done, but we leave it to a more advanced course. (See Hogg,
McKean, and Craig, 2013.)

Example
6.9-3

(Johnson and Albert, 1999) The data in this example, a sample of n = 13
measurements of the National Oceanographic and Atmospheric Administration
(NOAA)/Environmental Protection Agency (EPA) ultraviolet (UV) index taken in
Los Angeles, were collected from archival data of every Sunday in October during
the years 1995–1997 in a database maintained by NOAA. The 13 UV readings are

7, 6, 5, 5, 3, 6, 5, 5, 3, 5, 5, 4, 4,

and, although they are integer values, we assume that they are taken from a N(μ, σ 2)
distribution.

The Bayesian analysis, using a noninformative prior in the preceding discussion,
implies that, with μ = θ1,

μ − 4.846
0.317

, where x = 4.846 and
s√
n

= 0.317,

has a posterior t distribution with n − 1 = 12 degrees of freedom. For example, a
posterior 95% probability interval for μ is

(4.846 − [t0.025(12)][0.317], 4.846 + [t0.025(12)][0.317]) = (4.155, 5.537).

Example
6.9-4

Tsutakawa et. al. (1985) discuss mortality rates from stomach cancer over the period
1972–1981 in males aged 45–64 in 84 cities in Missouri. Ten-year observed mortality
rates in 20 of these cities are listed in Table 6.9-1, where yi represents the number
of deaths due to stomach cancer among this subpopulation in city i from 1972–1981,
and ni is the estimated size of this subpopulation in city i at the beginning of 1977
(estimated by linear interpolation from the 1970 and 1980 U.S. Census figures). Let
pi, i = 1, 2, . . . , 20, represent the corresponding probabilities of death due to stom-
ach cancer, and assume that p1, p2, . . . , p20 are taken independently from a beta
distribution with parameters α and β. Then the posterior mean of pi is

p̂i

(
ni

ni + α + β

)
+

(
α

α + β

)(
α + β

ni + α + β

)
, i = 1, 2, . . . , 20,

where p̂i = yi/ni. Of course, the parameters α and β are unknown, but we have
assumed that p1, p2, . . . , p20 arose from a similar distribution for these cities in
Missouri; that is, we assume that our prior knowledge concerning the proportions
is exchangeable. So it would be reasonable to estimate α/(α + β), the prior mean of
a proportion, with the formula

y = y1 + y2 + · · · + y20

n1 + n2 + · · · + n20
= 71

71,478
= 0.000993,
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Table 6.9-1 Cancer mortality rates

yi ni p̂i Posterior Estimate yi ni p̂i Posterior Estimate

0 1083 0 0.00073 0 855 0 0.00077

2 3461 0.00058 0.00077 0 657 0 0.00081

1 1208 0.00083 0.00095 1 1025 0.00098 0.00099

0 527 0 0.00084 2 1668 0.00120 0.00107

1 583 0.00172 0.00111 3 582 0.00515 0.00167

0 917 0 0.00076 1 857 0.00117 0.00103

1 680 0.00147 0.00108 1 917 0.00109 0.00102

54 53637 0.00101 0.00101 0 874 0 0.00077

0 395 0 0.00088 1 581 0.00172 0.00111

3 588 0.00510 0.00167 0 383 0 0.00088

for the data given in Table 6.9-1. Thus, the posterior estimate of pi is found by shrink-
ing p̂i toward the pooled estimate of the mean α/(α + β)—namely, y. That is, the
posterior estimate is

p̂i

(
ni

ni + α + β

)
+ y

(
α + β

ni + α + β

)
.

The only question remaining is how much weight should be given to the prior, repre-
sented by α +β, relative to n1, n2, . . . , n20. Considering the sizes of the samples from
the various cities, we selected α + β = 3000 (which means that the prior is worth
about a sample of size 3000), which resulted in the posterior probabilities given in
Table 6.9-1. Note how this type of shrinkage tends to pull the posterior estimates
much closer to the average, particularly those associated with small sample sizes.
Baseball fans might try this type of shrinkage in predicting some of the final batting
averages of the better batters about a quarter of the way through the season.

It is clear that difficult integration caused Bayesians great problems until very
recent times, in which advances in computer methods “solved” many of these prob-
lems. As a simple illustration, suppose the pdf of a statistic Y is f (y | θ) and the prior
pdf h(θ) is such that

k(θ | y) = f (y | θ) h(θ)∫ ∞
−∞ f (y | τ ) h(τ ) dτ

is not a nice pdf with which to deal. In particular, say that we have a squared error
loss and we wish to determine E(θ | y), namely,

δ(y) =
∫ ∞
−∞ θ f (y | θ) h(θ) dθ∫ ∞
−∞ f (y | θ) h(θ) dθ

,

but cannot do it easily. Let f (y | θ) = w(θ). Then we wish to evaluate the ratio

E[θ w(θ)]
E[w(θ)]

,
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where y is given and the expected values are taken with respect to θ . To do so, we
simply generate a number of θ values, say, θ1, θ2, . . . , θm (where m is large), from the
distribution given by h(θ). Then we estimate the numerator and denominator of the
desired ratio by

m∑
i=1

θi w(θi)
m

and
m∑

i=1

w(θi)
m

,

respectively, to obtain

τ =
∑m

i=1 θi w(θi)/m∑m
i=1 w(θi)/m

.

In addition to this simple Monte Carlo procedure, there are additional ones that
are extremely useful in Bayesian inferences. Two of these are the Gibbs sampler and
the Markov chain Monte Carlo (MCMC). The latter is used in hierarchical Bayes
models in which the prior has another parameter that has its own prior (called the
hyperprior). That is, we have

f (y | θ), h(θ | τ ), and g(τ ).

Hence,

k(θ , τ | y) = f (y | θ) h(θ | τ ) g(τ )∫ ∞
−∞

∫ ∞
−∞ f (y | η) h(η | v) g(v) dη dv

and

k1(θ | y) =
∫ ∞

−∞
k(θ , τ | y) dτ .

Thus, a Bayes estimator, for a squared error loss, is∫ ∞

−∞
θ k1(θ | y) dθ .

Using the Gibbs sampler, we can generate a stream of values (θ1, τ1), (θ2, τ2), . . .
that allows us to estimate k(θ , τ | y) and

∫ ∞
−∞ θ k1(θ | y) dθ . These procedures are the

MCMC procedures. (For additional references, see Hogg, McKean, and Craig, 2013.)

Exercises

6.9-1. Let X have a Poisson distribution with parameter
θ . Let θ be �(α, β). Show that the marginal pmf of X (the
compound distribution) is

k1(x) = �(α + x) βx

�(α) x! (1 + β)α+x , x = 0, 1, 2, 3, . . . ,

which is a generalization of the negative binomial distri-
bution.

6.9-2. Suppose X is b(n, θ) and θ is beta(α, β). Show that
the marginal pdf of X (the compound distribution) is

k1(x) = n!�(α + β) �(x + α) �(n − x + β)
x! (n − x)!�(α) �(β) �(n + α + β)

,

for x = 0, 1, 2, . . . , n.

6.9-3. Let X have the geometric pmf θ(1 − θ)x−1, x =
1, 2, 3, . . . , where θ is beta with parameters α and β. Show
that the compound pmf is

�(α + β) �(α + 1) �(β + x − 1)
�(α) �(β) �(α + β + x)

, x = 1, 2, 3, . . . .

With α = 1, this is one form of Zipf’s law,

β

(β + x)(β + x − 1)
, x = 1, 2, 3, . . . .

6.9-4. Let X have the pdf

f (x | θ) = θτxτ−1e−θxτ
, 0 < x < ∞,
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where the distribution of θ is �(α, β). Find the com-
pound distribution of X, which is called the Burr
distribution.

6.9-5. Let X1, X2, . . . , Xn be a random sample from a
gamma distribution with α = 1, θ . Let h(θ) ∝ 1/θ , 0 <

θ < ∞, be an improper noninformative prior.

(a) Find the posterior pdf of θ .

(b) Change variables by letting z = 1/θ , and show that
the posterior distribution of Z is �(n, 1/y), where y =∑n

i=1 xi.

(c) Use 2yz to obtain a (1 − α) probability interval for z
and, of course, for θ .

6.9-6. Let X1, X2 be a random sample from the Cauchy
distribution with pdf

f (x | θ1, θ2) = 1
π

θ2

θ2
2 + (x − θ1)2

,

− ∞ < x < ∞, − ∞ < θ1 < ∞, 0 < θ2 < ∞.

Consider the noninformative prior h(θ1, θ2) ∝ 1 on that
support. Obtain the posterior pdf (except for constants)
of θ1, θ2 if x1 = 3 and x2 = 7. For estimates, find θ1, θ2 that
maximizes this posterior pdf; that is, find the mode of that
posterior. (This might require some reasonable “trial and
error” or an advanced method of maximizing a function
of two variables.)

HISTORICAL COMMENTS When a statistician thinks of estimation, he or she
recalls R. A. Fisher’s contributions to many aspects of the subject: maximum likeli-
hood, estimation, efficiency, and sufficiency. Of course, many more statisticians have
contributed to that discipline since the 1920s. It would be an interesting exercise
for the reader to go through the tables of contents of the Journal of the American
Statistical Association, the Annals of Statistics, and related journals to observe how
many articles are about estimation. Often our friends ask, “What is there left to
do in mathematics?” University libraries are full of expanding journals of new
mathematics, including statistics.

We must observe that most maximum likelihood estimators have approximate
normal distributions for large sample sizes, and we give a heuristic proof of it in
this chapter. These estimators are of what is called the regular cases—in particular,
those cases in which the parameters are not in the endpoints of the support of X.
Abraham de Moivre proved this theorem for p̂ of the binomial distribution, and
Laplace and Gauss did so for X in a number of other distributions. This is the real
reason the normal distribution is so important: Most estimators of parameters have
approximate normal distributions, allowing us to construct confidence intervals (see
Chapter 7) and perform tests (see Chapter 8) with such estimates.

The Neo-Bayesian movement in America really started with J. Savage in the
1950s. Initially, Bayesians were limited in their work because it was extremely diffi-
cult to compute certain distributions, such as the conditional one, k(θ | x1, x2, . . ., xn).
However, toward the end of the 1970s, computers were becoming more useful and
thus computing was much easier. In particular, the Bayesians developed Gibbs sam-
pling and Markov chain Monte Carlo (MCMC). It is our opinion that the Bayesians
will continue to expand and Bayes methods will be a major approach to statisti-
cal inferences, possibly even dominating professional applications. This is difficult
for three fairly classical (non-Bayesian) statisticians (as we are) to admit, but, in all
fairness, we cannot ignore the strong trend toward Bayesian methods.
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7.1 CONFIDENCE INTERVALS FOR MEANS
Given a random sample X1, X2, . . . , Xn from a normal distribution N(μ, σ 2), we
shall now consider the closeness of X, the unbiased estimator of μ, to the unknown
mean μ. To do this, we use the error structure (distribution) of X, namely, that X is
N(μ, σ 2/n) (see Corollary 5.5-1), to construct what is called a confidence interval for
the unknown parameter μ when the variance σ 2 is known. For the probability 1 −α,
we can find a number zα/2 from Table V in Appendix B such that

P

(
−zα/2 ≤ X − μ

σ/
√

n
≤ zα/2

)
= 1 − α.

For example, if 1 − α = 0.95, then zα/2 = z0.025 = 1.96, and if 1 − α = 0.90, then
zα/2 = z0.05 = 1.645. Now, recalling that σ > 0, we see that the following inequalities
are equivalent:

−zα/2 ≤ X − μ

σ/
√

n
≤ zα/2,

−zα/2

(
σ√
n

)
≤ X − μ ≤ zα/2

(
σ√
n

)
,

−X − zα/2

(
σ√
n

)
≤ −μ ≤ − X + zα/2

(
σ√
n

)
,

X + zα/2

(
σ√
n

)
≥ μ ≥ X − zα/2

(
σ√
n

)
.

301



302 Chapter 7 Interval Estimation

Thus, since the probability of the first of these is 1 −α, the probability of the last
must also be 1 − α, because the latter is true if and only if the former is true. That is,
we have

P
[

X − zα/2

(
σ√
n

)
≤ μ ≤ X + zα/2

(
σ√
n

)]
= 1 − α.

So the probability that the random interval[
X − zα/2

(
σ√
n

)
, X + zα/2

(
σ√
n

)]
includes the unknown mean μ is 1 − α.

Once the sample is observed and the sample mean computed to equal x, the
interval [ x − zα/2(σ/

√
n ), x + zα/2(σ/

√
n )] becomes known. Since the probability

that the random interval covers μ before the sample is drawn is equal to 1 − α,
we now call the computed interval, x ± zα/2(σ/

√
n ) (for brevity), a 100(1 − α)%

confidence interval for the unknown mean μ. For example, x ± 1.96(σ/
√

n ) is a 95%
confidence interval for μ. The number 100(1 − α)%, or equivalently, 1 − α, is called
the confidence coefficient.

We see that the confidence interval for μ is centered at the point estimate x
and is completed by subtracting and adding the quantity zα/2(σ/

√
n ). Note that as n

increases, zα/2(σ/
√

n ) decreases, resulting in a shorter confidence interval with the
same confidence coefficient 1−α. A shorter confidence interval gives a more precise
estimate of μ, regardless of the confidence we have in the estimate of μ. Statisticians
who are not restricted by time, money, effort, or the availability of observations can
obviously make the confidence interval as short as they like by increasing the sample
size n. For a fixed sample size n, the length of the confidence interval can also be
shortened by decreasing the confidence coefficient 1 − α. But if this is done, we
achieve a shorter confidence interval at the expense of losing some confidence.

Example
7.1-1

Let X equal the length of life of a 60-watt light bulb marketed by a certain manufac-
turer. Assume that the distribution of X is N(μ, 1296). If a random sample of n = 27
bulbs is tested until they burn out, yielding a sample mean of x = 1478 hours, then a
95% confidence interval for μ is[

x − z0.025

(
σ√
n

)
, x + z0.025

(
σ√
n

)]
=

[
1478 − 1.96

(
36√
27

)
, 1478 + 1.96

(
36√
27

)]
= [1478 − 13.58, 1478 + 13.58]

= [1464.42, 1491.58].

The next example will help to give a better intuitive feeling for the interpretation
of a confidence interval.

Example
7.1-2

Let x be the observed sample mean of five observations of a random sample from
the normal distribution N(μ, 16). A 90% confidence interval for the unknown mean
μ is [

x − 1.645

√
16
5

, x + 1.645

√
16
5

]
.
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Figure 7.1-1 Confidence intervals using z and t

For a particular sample, this interval either does or does not contain the mean μ.
However, if many such intervals were calculated, about 90% of them should contain
the mean μ. Fifty random samples of size 5 from the normal distribution N(50, 16)
were simulated on a computer. A 90% confidence interval was calculated for each
random sample, as if the mean were unknown. Figure 7.1-1(a) depicts each of these
50 intervals as a line segment. Note that 45 (or 90%) of them contain the mean,
μ = 50. In other simulations of 50 confidence intervals, the number of 90% con-
fidence intervals containing the mean could be larger or smaller. [In fact, if W is a
random variable that counts the number of 90% confidence intervals containing the
mean, then the distribution of W is b(50, 0.90).]

If we cannot assume that the distribution from which the sample arose is nor-
mal, we can still obtain an approximate confidence interval for μ. By the central limit
theorem, provided that n is large enough, the ratio ( X −μ)/(σ/

√
n ) has the approx-

imate normal distribution N(0, 1) when the underlying distribution is not normal. In
this case,

P

(
−zα/2 ≤ X − μ

σ/
√

n
≤ zα/2

)
≈ 1 − α,

and [
x − zα/2

(
σ√
n

)
, x + zα/2

(
σ√
n

)]
is an approximate 100(1 − α)% confidence interval for μ.

The closeness of the approximate probability 1 − α to the exact probability
depends on both the underlying distribution and the sample size. When the under-
lying distribution is unimodal (has only one mode), symmetric, and continuous, the
approximation is usually quite good even for small n, such as n = 5. As the under-
lying distribution becomes “less normal” (i.e., badly skewed or discrete), a larger
sample size might be required to keep a reasonably accurate approximation. But, in
almost all cases, an n of at least 30 is usually adequate.

Example
7.1-3

Let X equal the amount of orange juice (in grams per day) consumed by an
American. Suppose it is known that the standard deviation of X is σ = 96. To esti-
mate the mean μ of X, an orange growers’ association took a random sample of
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n = 576 Americans and found that they consumed, on the average, x = 133 grams
of orange juice per day. Thus, an approximate 90% confidence interval for μ is

133 ± 1.645
(

96√
576

)
, or [133 − 6.58, 133 + 6.58] = [126.42, 139.58].

If σ 2 is unknown and the sample size n is 30 or greater, we shall use the fact
that the ratio ( X −μ)/(S/

√
n ) has an approximate normal distribution N(0, 1). This

statement is true whether or not the underlying distribution is normal. However, if
the underlying distribution is badly skewed or contaminated with occasional outliers,
most statisticians would prefer to have a larger sample size—say, 50 or more—and
even that might not produce good results. After this next example, we consider what
to do when n is small.

Example
7.1-4

Lake Macatawa, an inlet lake on the east side of Lake Michigan, is divided into an
east basin and a west basin. To measure the effect on the lake of salting city streets in
the winter, students took 32 samples of water from the west basin and measured the
amount of sodium in parts per million in order to make a statistical inference about
the unknown mean μ. They obtained the following data:

13.0 18.5 16.4 14.8 19.4 17.3 23.2 24.9

20.8 19.3 18.8 23.1 15.2 19.9 19.1 18.1

25.1 16.8 20.4 17.4 25.2 23.1 15.3 19.4

16.0 21.7 15.2 21.3 21.5 16.8 15.6 17.6

For these data, x = 19.07 and s2 = 10.60. Thus, an approximate 95% confidence
interval for μ is

x ± 1.96
(

s√
n

)
, or 19.07 ± 1.96

√
10.60

32
, or [17.94, 20.20].

So we have found a confidence interval for the mean μ of a normal distribution,
assuming that the value of the standard deviation σ is known or assuming that σ is
unknown but the sample size is large. However, in many applications, the sample
sizes are small and we do not know the value of the standard deviation, although in
some cases we might have a very good idea about its value. For example, a manu-
facturer of light bulbs probably has a good notion from past experience of the value
of the standard deviation of the length of life of different types of light bulbs. But
certainly, most of the time, the investigator will not have any more idea about the
standard deviation than about the mean—and frequently less. Let us consider how
to proceed under these circumstances.

If the random sample arises from a normal distribution, we use the fact that

T = X − μ

S/
√

n

has a t distribution with r = n − 1 degrees of freedom (see Equation 5.5-2), where S2

is the usual unbiased estimator of σ 2. Select tα/2(n−1) so that P[T ≥ tα/2(n−1)] = α/2.
[See Figure 5.5-2(b) and Table VI in Appendix B.] Then
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1 − α = P

[
−tα/2(n−1) ≤ X − μ

S/
√

n
≤ tα/2(n−1)

]

= P
[
−tα/2(n−1)

(
S√
n

)
≤ X − μ ≤ tα/2(n−1)

(
S√
n

)]

= P
[
−X − tα/2(n−1)

(
S√
n

)
≤ −μ ≤ −X + tα/2(n−1)

(
S√
n

)]

= P
[

X − tα/2(n−1)
(

S√
n

)
≤ μ ≤ X + tα/2(n−1)

(
S√
n

)]
.

Thus, the observations of a random sample provide x and s2, and[
x − tα/2(n−1)

(
s√
n

)
, x + tα/2(n−1)

(
s√
n

)]
is a 100(1 − α)% confidence interval for μ.

Example
7.1-5

Let X equal the amount of butterfat in pounds produced by a typical cow during a
305-day milk production period between her first and second calves. Assume that
the distribution of X is N(μ, σ 2). To estimate μ, a farmer measured the butterfat
production for n = 20 cows and obtained the following data:

481 537 513 583 453 510 570 500 457 555

618 327 350 643 499 421 505 637 599 392

For these data, x = 507.50 and s = 89.75. Thus, a point estimate of μ is x = 507.50.
Since t0.05(19) = 1.729, a 90% confidence interval for μ is

507.50 ± 1.729
(

89.75√
20

)
or

507.50 ± 34.70, or equivalently, [472.80, 542.20].

Let T have a t distribution with n−1 degrees of freedom. Then tα/2(n−1) > zα/2.
Consequently, we would expect the interval x ± zα/2(σ/

√
n ) to be shorter than the

interval x± tα/2(n−1)(s/
√

n ). After all, we have more information, namely, the value
of σ , in constructing the first interval. However, the length of the second interval
is very much dependent on the value of s. If the observed s is smaller than σ , a
shorter confidence interval could result by the second procedure. But on the average,
x ± zα/2(σ/

√
n ) is the shorter of the two confidence intervals (Exercise 7.1-14).

Example
7.1-6

In Example 7.1-2, 50 confidence intervals were simulated for the mean of a nor-
mal distribution, assuming that the variance was known. For those same data, since
t0.05(4) = 2.132, x ± 2.132(s/

√
5 ) was used to calculate a 90% confidence interval

for μ. For those particular 50 intervals, 46 contained the mean μ = 50. These 50
intervals are depicted in Figure 7.1-1(b). Note the different lengths of the intervals.
Some are longer and some are shorter than the corresponding z intervals. The aver-
age length of the 50 t intervals is 7.137, which is quite close to the expected length of
such an interval: 7.169. (See Exercise 7.1-14.) The length of the intervals that use z
and σ = 4 is 5.885.
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If we are not able to assume that the underlying distribution is normal, but μ and
σ are both unknown, approximate confidence intervals for μ can still be constructed
with the formula

T = X − μ

S/
√

n
,

which now only has an approximate t distribution. Generally, this approximation is
quite good (i.e., it is robust) for many nonnormal distributions; in particular, it works
well if the underlying distribution is symmetric, unimodal, and of the continuous
type. However, if the distribution is highly skewed, there is great danger in using that
approximation. In such a situation, it would be safer to use certain nonparametric
methods for finding a confidence interval for the median of the distribution, one of
which is given in Section 7.5.

There is one other aspect of confidence intervals that should be mentioned. So
far, we have created only what are called two-sided confidence intervals for the mean
μ. Sometimes, however, we might want only a lower (or upper) bound on μ. We
proceed as follows.

Say X is the mean of a random sample of size n from the normal distribution
N(μ, σ 2), where, for the moment, assume that σ 2 is known. Then

P

(
X − μ

σ/
√

n
≤ zα

)
= 1 − α,

or equivalently,

P
[

X − zα

(
σ√
n

)
≤ μ

]
= 1 − α.

Once X is observed to be equal to x, it follows that [ x − zα(σ/
√

n ), ∞) is a
100(1 − α)% one-sided confidence interval for μ. That is, with the confidence coef-
ficient 1 − α, x − zα(σ/

√
n ) is a lower bound for μ. Similarly, (−∞, x + zα(σ/

√
n )]

is a one-sided confidence interval for μ and x + zα(σ/
√

n ) provides an upper bound
for μ with confidence coefficient 1 − α.

When σ is unknown, we would use T = (X −μ)/(S/
√

n ) to find the correspond-
ing lower or upper bounds for μ, namely,

x − tα(n−1)(s/
√

n ) and x + tα(n−1)(s/
√

n ).

Exercises

7.1-1. A random sample of size 16 from the normal distri-
bution N(μ, 25) yielded x = 73.8. Find a 95% confidence
interval for μ.

7.1-2. A random sample of size 8 from N(μ, 72) yielded
x = 85. Find the following confidence intervals for μ:

(a) 99%. (b) 95%. (c) 90%. (d) 80%.

7.1-3. To determine the effect of 100% nitrate on the
growth of pea plants, several specimens were planted and
then watered with 100% nitrate every day. At the end of

two weeks, the plants were measured. Here are data on
seven of them:

17.5 14.5 15.2 14.0 17.3 18.0 13.8

Assume that these data are a random sample from a
normal distribution N(μ, σ 2).

(a) Find the value of a point estimate of μ.

(b) Find the value of a point estimate of σ .

(c) Give the endpoints for a 90% confidence interval
for μ.



Section 7.1 Confidence Intervals for Means 307

7.1-4. Let X equal the weight in grams of a “52-gram”
snack pack of candies. Assume that the distribution of X
is N(μ, 4). A random sample of n = 10 observations of X
yielded the following data:

55.95 56.54 57.58 55.13 57.48

56.06 59.93 58.30 52.57 58.46

(a) Give a point estimate for μ.

(b) Find the endpoints for a 95% confidence interval
for μ.

(c) On the basis of these very limited data, what is the
probability that an individual snack pack selected at
random is filled with less than 52 grams of candy?

7.1-5. As a clue to the amount of organic waste in Lake
Macatawa (see Example 7.1-4), a count was made of the
number of bacteria colonies in 100 milliliters of water.
The number of colonies, in hundreds, for n = 30 samples
of water from the east basin yielded

93 140 8 120 3 120 33 70 91 61

7 100 19 98 110 23 14 94 57 9

66 53 28 76 58 9 73 49 37 92

Find an approximate 90% confidence interval for the
mean number (say, μE) of colonies in 100 milliliters of
water in the east basin.

7.1-6. To determine whether the bacteria count was lower
in the west basin of Lake Macatawa than in the east
basin, n = 37 samples of water were taken from the
west basin and the number of bacteria colonies in 100
milliliters of water was counted. The sample characteris-
tics were x = 11.95 and s = 11.80, measured in hundreds
of colonies. Find an approximate 95% confidence inter-
val for the mean number of colonies (say, μW) in 100
milliliters of water in the west basin.

7.1-7. Thirteen tons of cheese, including “22-pound”
wheels (label weight), is stored in some old gypsum mines.
A random sample of n = 9 of these wheels yielded the
following weights in pounds:

21.50 18.95 18.55 19.40 19.15

22.35 22.90 22.20 23.10

Assuming that the distribution of the weights of the
wheels of cheese is N(μ, σ 2), find a 95% confidence
interval for μ.

7.1-8. Assume that the yield per acre for a particular vari-
ety of soybeans is N(μ, σ 2). For a random sample of n = 5
plots, the yields in bushels per acre were 37.4, 48.8, 46.9,
55.0, and 44.0.

(a) Give a point estimate for μ.

(b) Find a 90% confidence interval for μ.

7.1-9. During the Friday night shift, n = 28 mints were
selected at random from a production line and weighed.
They had an average weight of x = 21.45 grams and a
standard deviation of s = 0.31 grams. Give the lower end-
point of a 90% one-sided confidence interval for μ, the
mean weight of all the mints.

7.1-10. A leakage test was conducted to determine the
effectiveness of a seal designed to keep the inside of a
plug airtight. An air needle was inserted into the plug, and
the plug and needle were placed under water. The pres-
sure was then increased until leakage was observed. Let
X equal the pressure in pounds per square inch. Assume
that the distribution of X is N(μ, σ 2). The following
n = 10 observations of X were obtained:

3.1 3.3 4.5 2.8 3.5 3.5 3.7 4.2 3.9 3.3

Use the observations to

(a) Find a point estimate of μ.

(b) Find a point estimate of σ .

(c) Find a 95% one-sided confidence interval for μ that
provides an upper bound for μ.

7.1-11. Students took n = 35 samples of water from the
east basin of Lake Macatawa (see Example 7.1-4) and
measured the amount of sodium in parts per million. For
their data, they calculated x = 24.11 and s2 = 24.44. Find
an approximate 90% confidence interval for μ, the mean
of the amount of sodium in parts per million.

7.1-12. In nuclear physics, detectors are often used to
measure the energy of a particle. To calibrate a detector,
particles of known energy are directed into it. The val-
ues of signals from 15 different detectors, for the same
energy, are

260 216 259 206 265 284 291 229

232 250 225 242 240 252 236

(a) Find a 95% confidence interval for μ, assuming that
these are observations from a N(μ, σ 2) distribution.

(b) Construct a box-and-whisker diagram of the data.

(c) Are these detectors doing a good job or a poor job of
putting out the same signal for the same input energy?

7.1-13. A study was conducted to measure (1) the amount
of cervical spine movement induced by different methods
of gaining access to the mouth and nose to begin resusci-
tation of a football player who is wearing a helmet and (2)
the time it takes to complete each method. One method
involves using a manual screwdriver to remove the side
clips holding the face mask in place and then flipping
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the mask up. Twelve measured times in seconds for the
manual screwdriver are

33.8 31.6 28.5 29.9 29.8 26.0 35.7 27.2 29.1 32.1 26.1 24.1

Assume that these are independent observations of a
normally distributed random variable that is N(μ, σ 2).

(a) Find point estimates of μ and σ .

(b) Find a 95% one-sided confidence interval for μ that
provides an upper bound for μ.

(c) Does the assumption of normality seem to be justi-
fied? Why?

7.1-14. Let X1, X2, . . . , Xn be a random sample of size
n from the normal distribution N(μ, σ 2). Calculate the
expected length of a 95% confidence interval for μ,
assuming that n = 5 and the variance is

(a) known.

(b) unknown.

Hint: To find E(S), first determine E[
√

(n − 1)S2/σ 2 ],
recalling that (n − 1)S2/σ 2 is χ2(n − 1). (See Exercise
6.4-14.)

7.1-15. An automotive supplier of interior parts places
several electrical wires in a harness. A pull test measures
the force required to pull spliced wires apart. A customer
requires that each wire spliced into the harness must with-
stand a pull force of 20 pounds. Let X equal the pull force
required to pull 20 gauge wires apart. Assume that the

distribution of X is N(μ, σ 2). The following data give 20
observations of X:

28.8 24.4 30.1 25.6 26.4 23.9 22.1 22.5 27.6 28.1

20.8 27.7 24.4 25.1 24.6 26.3 28.2 22.2 26.3 24.4

(a) Find point estimates for μ and σ .

(b) Find a 99% one-sided confidence interval for μ that
provides a lower bound for μ.

7.1-16. Let S2 be the variance of a random sample of
size n from N(μ, σ 2). Using the fact that (n − 1)S2/σ 2 is
χ2(n−1), note that the probability

P

[
a ≤ (n − 1)S2

σ 2
≤ b

]
= 1 − α,

where a = χ2
1−α/2(n−1) and b = χ2

α/2(n−1). Rewrite the
inequalities to obtain

P

[
(n − 1)S2

b
≤ σ 2 ≤ (n − 1)S2

a

]
= 1 − α.

If n = 13 and 12S2 = ∑13
i=1(xi − x)2 = 128.41, show that

[6.11, 24.57] is a 90% confidence interval for the variance
σ 2. Accordingly, [2.47, 4.96] is a 90% confidence interval
for σ .

7.1-17. Let X be the mean of a random sample of size n
from N(μ, 9). Find n so that P( X−1 < μ < X+1) = 0.90.

7.2 CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO MEANS
Suppose that we are interested in comparing the means of two normal distributions.
Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be, respectively, two independent random
samples of sizes n and m from the two normal distributions N(μX , σ 2

X) and N(μY , σ 2
Y ).

Suppose, for now, that σ 2
X and σ 2

Y are known. The random samples are independent;
thus, the respective sample means X and Y are also independent and have distribu-
tions N(μX , σ 2

X/n) and N(μY , σ 2
Y /m). Consequently, the distribution of W = X − Y

is N(μX − μY , σ 2
X/n + σ 2

Y /m) and

P

⎛⎝−zα/2 ≤ ( X − Y ) − (μX − μY)√
σ 2

X/n + σ 2
Y /m

≤ zα/2

⎞⎠ = 1 − α,

which can be rewritten as

P[( X − Y ) − zα/2σW ≤ μX − μY ≤ ( X − Y ) + zα/2σW] = 1 − α,

where σW =
√

σ 2
X/n + σ 2

Y /m is the standard deviation of X − Y. Once the
experiments have been performed and the means x and y computed, the interval

[ x − y − zα/2σW , x − y + zα/2σW]
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or, equivalently, x−y±zα/2σW provides a 100(1−α)% confidence interval for μX−μY .
Note that this interval is centered at the point estimate x − y of μX − μY and is
completed by subtracting and adding the product of zα/2 and the standard deviation
of the point estimator.

Example
7.2-1

In the preceding discussion, let n = 15, m = 8, x = 70.1, y = 75.3, σ 2
X = 60, σ 2

Y = 40,
and 1 − α = 0.90. Thus, 1 − α/2 = 0.95 = 
(1.645). Hence,

1.645σW = 1.645

√
60
15

+ 40
8

= 4.935,

and, since x − y = −5.2, it follows that

[−5.2 − 4.935, −5.2 + 4.935] = [−10.135, −0.265]

is a 90% confidence interval for μX − μY . Because the confidence interval does not
include zero, we suspect that μY is greater than μX .

If the sample sizes are large and σX and σY are unknown, we can replace σ 2
X and

σ 2
Y with s2

x and s2
y, where s2

x and s2
y are the values of the respective unbiased estimates

of the variances. This means that

x − y ± zα/2

√
s2

x

n
+ s2

y

m

serves as an approximate 100(1 − α)% confidence interval for μX − μY .
Now consider the problem of constructing confidence intervals for the differ-

ence of the means of two normal distributions when the variances are unknown but
the sample sizes are small. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be two indepen-
dent random samples from the distributions N(μX , σ 2

X) and N(μY , σ 2
Y ), respectively.

If the sample sizes are not large (say, considerably smaller than 30), this problem
can be a difficult one. However, even in these cases, if we can assume common, but
unknown, variances (say, σ 2

X = σ 2
Y = σ 2), there is a way out of our difficulty.

We know that

Z = X − Y − (μX − μY)√
σ 2/n + σ 2/m

is N(0, 1). Moreover, since the random samples are independent,

U = (n − 1)S2
X

σ 2
+ (m − 1)S2

Y

σ 2

is the sum of two independent chi-square random variables; thus, the distribution of
U is χ2(n+m−2). In addition, the independence of the sample means and sample
variances implies that Z and U are independent. According to the definition of a T
random variable,

T = Z√
U/(n + m − 2)
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has a t distribution with n + m − 2 degrees of freedom. That is,

T =
X − Y − (μX − μY)√

σ 2/n + σ 2/m√√√√[
(n − 1)S2

X

σ 2
+ (m − 1)S2

Y

σ 2

]/
(n + m − 2)

= X − Y − (μX − μY)√√√√[
(n − 1)S2

X + (m − 1)S2
Y

n + m − 2

][
1
n

+ 1
m

]
has a t distribution with r = n + m − 2 degrees of freedom. Thus, with
t0 = tα/2(n+m−2), we have

P(−t0 ≤ T ≤ t0) = 1 − α.

Solving the inequalities for μX − μY yields

P

(
X − Y − t0SP

√
1
n

+ 1
m

≤ μX − μY ≤ X − Y + t0SP

√
1
n

+ 1
m

)
,

where the pooled estimator of the common standard deviation is

SP =
√

(n − 1)S2
X + (m − 1)S2

Y

n + m − 2
.

If x, y, and sp are the observed values of X, Y, and SP, then[
x − y − t0sp

√
1
n

+ 1
m

, x − y + t0sp

√
1
n

+ 1
m

]

is a 100(1 − α)% confidence interval for μX − μY .

Example
7.2-2

Suppose that scores on a standardized test in mathematics taken by students from
large and small high schools are N(μX , σ 2) and N(μY , σ 2), respectively, where σ 2 is
unknown. If a random sample of n = 9 students from large high schools yielded
x = 81.31, s2

x = 60.76, and a random sample of m = 15 students from small high
schools yielded y = 78.61, s2

y = 48.24, then the endpoints for a 95% confidence
interval for μX − μY are given by

81.31 − 78.61 ± 2.074

√
8(60.76) + 14(48.24)

22

√
1
9

+ 1
15

because t0.025(22) = 2.074. The 95% confidence interval is [−3.65, 9.05].

REMARKS The assumption of equal variances, namely, σ 2
X = σ 2

Y , can be modified
somewhat so that we are still able to find a confidence interval for μX − μY . That is,
if we know the ratio σ 2

X/σ 2
Y of the variances, we can still make this type of statistical
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inference by using a random variable with a t distribution. (See Exercise 7.2-8.)
However, if we do not know the ratio of the variances and yet suspect that the
unknown σ 2

X and σ 2
Y differ by a great deal, what do we do? It is safest to return to

X − Y − (μX − μY)√
σ 2

X/n + σ 2
Y /m

for the inference about μX − μY but replacing σ 2
X and σ 2

Y by their respective
estimators S2

X and S2
Y . That is, consider

W = X − Y − (μX − μY)√
S2

X/n + S2
Y/m

.

What is the distribution of W? As before, we note that if n and m are large
enough and the underlying distributions are close to normal (or at least not badly
skewed), then W has an approximate normal distribution and a confidence interval
for μX − μY can be found by considering

P(−zα/2 ≤ W ≤ zα/2) ≈ 1 − α.

However, for smaller n and m, Welch has proposed a Student’s t distribution as the
approximating one for W. Welch’s proposal was later modified by Aspin. [See A. A.
Aspin, “Tables for Use in Comparisons Whose Accuracy Involves Two Variances,
Separately Estimated,” Biometrika, 36 (1949), pp. 290–296, with an appendix by
B. L. Welch in which he makes the suggestion used here.] The approximating
Student’s t distribution has r degrees of freedom, where

1
r

= c2

n − 1
+ (1 − c)2

m − 1
and c = s2

x/n
s2

x/n + s2
y/m

.

An equivalent formula for r is

r =

(
s2

x

n
+ s2

y

m

)2

1
n − 1

(
s2

x

n

)2

+ 1
m − 1

(
s2

y

m

)2
. (7.2-1)

In particular, the assignment of r by this rule provides protection in the case in which
the smaller sample size is associated with the larger variance by greatly reducing the
number of degrees of freedom from the usual n + m − 2. Of course, this reduction
increases the value of tα/2. If r is not an integer, then use the greatest integer in r; that
is, use [r] as the number of degrees of freedom associated with the approximating
Student’s t distribution. An approximate 100(1−α)% confidence interval for μX−μY

is given by

x − y ± tα/2(r)

√
s2

x

n
+ s2

y

m
.
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It is interesting to consider the two-sample T in more detail. It is

T = X − Y − (μX − μY)√
(n − 1)S2

X + (m − 1)S2
Y

n + m − 2

(
1
n

+ 1
m

) (7.2-2)

= X − Y − (μX − μY)√√√√[
(n − 1)S2

X

nm
+ (m − 1)S2

Y

nm

][
n + m

n + m − 2

] .

Now, since (n − 1)/n ≈ 1, (m − 1)/m ≈ 1, and (n + m)/(n + m − 2) ≈ 1, we have

T ≈ X − Y − (μX − μY)√
S2

X

m
+ S2

Y

n

.

We note that, in this form, each variance is divided by the wrong sample size! That
is, if the sample sizes are large or the variances known, we would like√

S2
X

n
+ S2

Y

m
or

√
σ 2

X

n
+ σ 2

Y

m

in the denominator; so T seems to change the sample sizes. Thus, using this T is
particularly bad when the sample sizes and the variances are unequal; hence, caution
must be taken in using that T to construct a confidence interval for μX − μY . That
is, if n < m and σ 2

X < σ 2
Y , then T does not have a distribution which is close to that

of a Student t-distribution with n + m − 2 degrees of freedom: Instead, its spread is
much less than the Student t’s as the term s2

y/n in the denominator is much larger
than it should be. By contrast, if m < n and σ 2

X < σ 2
Y , then s2

x/m + s2
y/n is generally

smaller than it should be and the distribution of T is spread out more than that of
the Student t.

There is a way out of this difficulty, however: When the underlying distribu-
tions are close to normal, but the sample sizes and the variances are seemingly much
different, we suggest the use of

W = X − Y − (μX − μY)√
S2

X

n
+ S2

Y

m

, (7.2-3)

where Welch proved that W has an approximate t distribution with [r] degrees of
freedom, with the number of degrees of freedom given by Equation 7.2-1.

Example
7.2-3

To help understand the preceding remarks, a simulation was done with Maple. In
order to obtain a q–q plot of the quantiles of a t distribution, a CAS or some type
of computer program is very important because of the challenge in finding these
quantiles.

Maple was used to simulate N = 500 observations of T (Equation 7.2-2) and
N = 500 observations of W (Equation 7.2-3). In Figure 7.2-1, n = 6, m = 18, the
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Figure 7.2-1 Observations of T and of W, n = 6, m = 18, σ 2
X = 1, σ 2

Y = 36

X observations were generated from the N(0, 1) distribution, and the Y observa-
tions were generated from the N(0, 36) distribution. For the value of r for Welch’s
approximate t distribution, we used the distribution variances rather than the sample
variances so that we could use the same r for each of the 500 values of W.

For the simulation results shown in Figure 7.2-2, n = 18, m = 6, the X obser-
vations were generated from the N(0, 1) distribution, and the Y observations were
generated from the N(0, 36) distribution. In both cases, Welch’s W with a corrected
number of r degrees of freedom is much better than the usual T when the variances
and sample sizes are unequal, as they are in these examples.

In some applications, two measurements—say, X and Y—are taken on the same
subject. In these cases, X and Y may be dependent random variables. Many times
these are “before” and “after” measurements, such as weight before and after par-
ticipating in a diet-and-exercise program. To compare the means of X and Y, it is
not permissible to use the t statistics and confidence intervals that we just devel-
oped, because in that situation X and Y are independent. Instead, we proceed as
follows.

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be n pairs of dependent measurements. Let
Di = Xi − Yi, i = 1, 2, . . . , n. Suppose that D1, D2, . . . , Dn can be thought of as
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Figure 7.2-2 Observations of T and of W, n = 18, m = 6, σ 2
X = 1, σ 2

Y = 36

a random sample from N(μD, σ 2
D), where μD and σD are the mean and standard

deviation of each difference. To form a confidence interval for μX − μY , use

T = D − μD

SD/
√

n
,

where D and SD are, respectively, the sample mean and sample standard deviation of
the n differences. Thus, T is a t statistic with n−1 degrees of freedom. The endpoints
for a 100(1 − α)% confidence interval for μD = μX − μY are then

d ± tα/2(n−1)
sd√

n
,

where d and sd are the observed mean and standard deviation of the sample of the
D values. Of course, this is like the confidence interval for a single mean, presented
in the last section.

Example
7.2-4

An experiment was conducted to compare people’s reaction times to a red light
versus a green light. When signaled with either the red or the green light, the subject
was asked to hit a switch to turn off the light. When the switch was hit, a clock was
turned off and the reaction time in seconds was recorded. The following results give
the reaction times for eight subjects:
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Subject Red (x) Green (y) d = x − y

1 0.30 0.43 –0.13

2 0.23 0.32 –0.09

3 0.41 0.58 –0.17

4 0.53 0.46 0.07

5 0.24 0.27 –0.03

6 0.36 0.41 –0.05

7 0.38 0.38 0.00

8 0.51 0.61 –0.10

For these data, d = −0.0625 and sd = 0.0765. To form a 95% confidence interval for
μD = μX − μY , we find, from Table VI in Appendix B, that t0.025(7) = 2.365. Thus,
the endpoints for the confidence interval are

−0.0625 ± 2.365
0.0765√

8
, or [−0.1265, 0.0015].

In this very limited data set, zero is included in the confidence interval but is close
to the endpoint 0.0015. We suspect that if more data were taken, zero might not be
included in the confidence interval. If that actually were to happen, it would seem
that people react faster to a red light.

Of course, we can find one-sided confidence intervals for the difference of the
means, μX −μY . Suppose we believe that we have changed some characteristic of the
X distribution and created a Y distribution such that we think that μX > μY . Let us
find a one-sided 95% confidence interval that is a lower bound for μX − μY . Say this
lower bound is greater than zero. Then we would feel 95% confident that the mean
μX is larger than the mean μY . That is, the change that was made seemed to decrease
the mean; this would be good in some cases, such as golf or racing. In other cases,
in which we hope the change would be such that μX < μY , we would find a one-
sided confidence interval which is an upper bound for μX − μY , and we would hope
that it would be less than zero. These ideas are illustrated in Exercises 7.2-5, 7.2-10,
and 7.2-11.

Exercises

7.2-1. The length of life of brand X light bulbs is assumed
to be N(μX , 784). The length of life of brand Y light
bulbs is assumed to be N(μY , 627) and independent of
X. If a random sample of n = 56 brand X light bulbs
yielded a mean of x = 937.4 hours and a random sam-
ple of size m = 57 brand Y light bulbs yielded a mean

of y = 988.9 hours, find a 90% confidence interval for
μX − μY .

7.2-2. Let X1, X2, . . . , X5 be a random sample of SAT
mathematics scores, assumed to be N(μX , σ 2), and let
Y1, Y2, . . . , Y8 be an independent random sample of SAT
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verbal scores, assumed to be N(μY , σ 2). If the following
data are observed, find a 90% confidence interval for
μX − μY :

x1 = 644 x2 = 493 x3 = 532 x4 = 462 x5 = 565

y1 = 623 y2 = 472 y3 = 492 y4 = 661 y5 = 540

y6 = 502 y7 = 549 y8 = 518

7.2-3. Independent random samples of the heights of
adult males living in two countries yielded the follow-
ing results: n = 12, x = 65.7 inches, sx = 4 inches and
m = 15, y = 68.2 inches, sy = 3 inches. Find an approxi-
mate 98% confidence interval for the difference μX − μY

of the means of the populations of heights. Assume that
σ 2

X = σ 2
Y .

7.2-4. [Medicine and Science in Sports and Exercise (Jan-
uary 1990).] Let X and Y equal, respectively, the blood
volumes in milliliters for a male who is a paraplegic
and participates in vigorous physical activities and for
a male who is able-bodied and participates in every-
day, ordinary activities. Assume that X is N(μX , σ 2

X)
and Y is N(μY , σ 2

Y). Following are n = 7 observations
of X:

1612 1352 1456 1222 1560 1456 1924

Following are m = 10 observations of Y:

1082 1300 1092 1040 910

1248 1092 1040 1092 1288

Use the observations of X and Y to

(a) Give a point estimate for μX − μY .

(b) Find a 95% confidence interval for μX − μY . Since
the variances σ 2

X and σ 2
Y might not be equal, use

Welch’s T.

7.2-5. A biologist who studies spiders was interested in
comparing the lengths of female and male green lynx
spiders. Assume that the length X of the male spider is
approximately N(μX , σ 2

X) and the length Y of the female
spider is approximately N(μY , σ 2

Y ). Following are n = 30
observations of X:

5.20 4.70 5.75 7.50 6.45 6.55

4.70 4.80 5.95 5.20 6.35 6.95

5.70 6.20 5.40 6.20 5.85 6.80

5.65 5.50 5.65 5.85 5.75 6.35

5.75 5.95 5.90 7.00 6.10 5.80

Following are m = 30 observations of Y:

8.25 9.95 5.90 7.05 8.45 7.55

9.80 10.80 6.60 7.55 8.10 9.10

6.10 9.30 8.75 7.00 7.80 8.00

9.00 6.30 8.35 8.70 8.00 7.50

9.50 8.30 7.05 8.30 7.95 9.60

The units of measurement for both sets of observa-
tions are millimeters. Find an approximate one-sided
95% confidence interval that is an upper bound for
μX − μY .

7.2-6. A test was conducted to determine whether a
wedge on the end of a plug fitting designed to hold a seal
onto the plug was doing its job. The data taken were in the
form of measurements of the force required to remove a
seal from the plug with the wedge in place (say, X) and
the force required without the plug (say, Y). Assume that
the distributions of X and Y are N(μX , σ 2) and N(μY , σ 2),
respectively. Ten independent observations of X are

3.26 2.26 2.62 2.62 2.36 3.00 2.62 2.40 2.30 2.40

Ten independent observations of Y are

1.80 1.46 1.54 1.42 1.32 1.56 1.36 1.64 2.00 1.54

(a) Find a 95% confidence interval for μX − μY .

(b) Construct box-and-whisker diagrams of these data on
the same figure.

(c) Is the wedge necessary?

7.2-7. An automotive supplier is considering changing its
electrical wire harness to save money. The idea is to
replace a current 20-gauge wire with a 22-gauge wire.
Since not all wires in the harness can be changed, the new
wire must work with the current wire splice process. To
determine whether the new wire is compatible, random
samples were selected and measured with a pull test. A
pull test measures the force required to pull the spliced
wires apart. The minimum pull force required by the cus-
tomer is 20 pounds. Twenty observations of the forces
needed for the current wire are

28.8 24.4 30.1 25.6 26.4 23.9 22.1 22.5 27.6 28.1

20.8 27.7 24.4 25.1 24.6 26.3 28.2 22.2 26.3 24.4

Twenty observations of the forces needed for the new
wire are

14.1 12.2 14.0 14.6 8.5 12.6 13.7 14.8 14.1 13.2

12.1 11.4 10.1 14.2 13.6 13.1 11.9 14.8 11.1 13.5
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(a) Does the current wire meet the customer’s specifica-
tions?

(b) Find a 90% confidence interval for the difference of
the means for these two sets of wire.

(c) Construct box-and-whisker diagrams of the two sets
of data on the same figure.

(d) What is your recommendation for this company?

7.2-8. Let X, Y, S2
X , and S2

Y be the respective sample
means and unbiased estimates of the variances obtained
from independent samples of sizes n and m from the
normal distributions N(μX , σ 2

X) and N(μY , σ 2
Y ), where μX ,

μY , σ 2
X , and σ 2

Y are unknown. If σ 2
X/σ 2

Y = d, a known
constant,

(a) Argue that
(X − Y) − (μX − μY)√

dσ 2
Y /n + σ 2

Y /m
is N(0, 1).

(b) Argue that
(n − 1)S2

X

dσ 2
Y

+ (m − 1)S2
Y

σ 2
Y

is χ2(n+m−2).

(c) Argue that the two random variables in (a) and (b)
are independent.

(d) With these results, construct a random variable (not
depending upon σ 2

Y ) that has a t distribution and that
can be used to construct a confidence interval for
μX − μY .

7.2-9. Students in a semester-long health-fitness program
have their percentage of body fat measured at the begin-
ning of the semester and at the end of the semester. The
following measurements give these percentages for 10
men and for 10 women:

Males Females

Pre-program Post-program Pre-program Post-program
% % % %

11.10 9.97 22.90 22.89

19.50 15.80 31.60 33.47

14.00 13.02 27.70 25.75

8.30 9.28 21.70 19.80

12.40 11.51 19.36 18.00

7.89 7.40 25.03 22.33

12.10 10.70 26.90 25.26

8.30 10.40 25.75 24.90

12.31 11.40 23.63 21.80

10.00 11.95 25.06 24.28

(a) Find a 90% confidence interval for the mean of the
difference in the percentages for the males.

(b) Find a 90% confidence interval for the mean of the
difference in the percentages for the females.

(c) On the basis of these data, have these percentages
decreased?

(d) If possible, check whether each set of differences
comes from a normal distribution.

7.2-10. Twenty-four 9th- and 10th-grade high school girls
were put on an ultraheavy rope-jumping program. The
following data give the time difference for each girl
(“before program time” minus “after program time”) for
the 40-yard dash:

0.28 0.01 0.13 0.33 –0.03 0.07 –0.18 –0.14

–0.33 0.01 0.22 0.29 –0.08 0.23 0.08 0.04

–0.30 –0.08 0.09 0.70 0.33 –0.34 0.50 0.06

(a) Give a point estimate of μD, the mean of the differ-
ence in race times.

(b) Find a one-sided 95% confidence interval that is a
lower bound for μD.

(c) Does it look like the rope-jumping program was
effective?

7.2-11. The Biomechanics Lab at Hope College tested
healthy old women and healthy young women to discover
whether or not lower extremity response time to a stimu-
lus is a function of age. Let X and Y respectively equal the
independent response times for these two groups when
taking steps in the anterior direction. Find a one-sided
95% confidence interval that is a lower bound for μX −μY

if n = 60 observations of X yielded x = 671 and sx = 129,
while m = 60 observations of Y yielded y = 480 and
sy = 93.

7.2-12. Let X and Y equal the hardness of the hot and
cold water, respectively, in a campus building. Hardness
is measured in terms of the calcium ion concentration
(in ppm). The following data were collected (n = 12
observations of X and m = 10 observations of Y):

x: 133.5 137.2 136.3 133.3 137.5 135.4

138.4 137.1 136.5 139.4 137.9 136.8

y: 134.0 134.7 136.0 132.7 134.6 135.2

135.9 135.6 135.8 134.2

(a) Calculate the sample means and the sample variances
of these data.
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(b) Construct a 95% confidence interval for μX − μY ,
assuming that the distributions of X and Y are
N(μX , σ 2

X) and N(μY , σ 2
Y ), respectively.

(c) Construct box plots of the two sets of data on the same
graph.

(d) Do the means seem to be equal or different?

7.2-13. Ledolter and Hogg (see References) report that
two rubber compounds were tested for tensile strength.
Rectangular materials were prepared and pulled in a lon-
gitudinal direction. A sample of 14 specimens, 7 from
compound A and 7 from compound B, was prepared, but
it was later found that two B specimens were defective
and they had to be removed from the test. The tensile
strength (in units of 100 pounds per square inch) of the
remaining specimens are as follows:

A: 32 30 33 32 29 34 32

B: 33 35 36 37 35

Calculate a 95% confidence interval for the differ-
ence of the mean tensile strengths of the two rubber
compounds. State your assumptions.

7.2-14. Let S2
X and S2

Y be the respective variances of
two independent random samples of sizes n and m
from N(μX , σ 2

X) and N(μY , σ 2
Y ). Use the fact that F =

[S2
Y/σ 2

Y ]/[S2
X/σ 2

X] has an F distribution, with parameters
r1 = m−1 and r2 = n−1, to rewrite P(c ≤ F ≤ d) = 1−α,
where c = F1−α/2(r1, r2) and d = Fα/2(r1, r2), so that

P

(
c

S2
X

S2
Y

≤ σ 2
X

σ 2
Y

≤ d
S2

X

S2
Y

)
= 1 − α.

If the observed values are n = 13, m = 9, 12s2
x = 128.41,

and 8s2
y = 36.72, show that a 98% confidence interval for

the ratio of the two variances, σ 2
X/σ 2

Y , is [0.41, 10.49], so
that [0.64, 3.24] is a 98% confidence interval for σX/σY .

7.3 CONFIDENCE INTERVALS FOR PROPORTIONS
We have suggested that the histogram is a good description of how the observations
of a random sample are distributed. We might naturally inquire about the accuracy
of those relative frequencies (or percentages) associated with the various classes. To
illustrate, in Example 6.1-1 concerning the weights of n = 40 candy bars, we found
that the relative frequency of the class interval (22.25, 23.15) was 8/40 = 0.20, or
20%. If we think of this collection of 40 weights as a random sample observed from
a larger population of candy bar weights, how close is 20% to the true percentage (or
0.20 to the true proportion) of weights in that class interval for the entire population
of weights for this type of candy bar?

In considering this problem, we generalize it somewhat by treating the class
interval (22.25, 23.15) as “success.” That is, there is some true probability of suc-
cess, p—namely, the proportion of the population in that interval. Let Y equal the
frequency of measurements in the interval out of the n observations, so that (under
the assumptions of independence and constant probability p) Y has the binomial
distribution b(n, p). Thus, the problem is to determine the accuracy of the rela-
tive frequency Y/n as an estimator of p. We solve this problem by finding, for the
unknown p, a confidence interval based on Y/n.

In general, when observing n Bernoulli trials with probability p of success on
each trial, we shall find a confidence interval for p based on Y/n, where Y is the
number of successes and Y/n is an unbiased point estimator for p.

In Section 5.7, we noted that

Y − np√
np(1 − p)

= (Y/n) − p√
p(1 − p)/n

has an approximate normal distribution N(0, 1), provided that n is large enough. This
means that, for a given probability 1−α, we can find a zα/2 in Table V in Appendix B
such that
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P

[
−zα/2 ≤ (Y/n) − p√

p(1 − p)/n
≤ zα/2

]
≈ 1 − α. (7.3-1)

If we proceed as we did when we found a confidence interval for μ in Section 7.1,
we would obtain

P

[
Y
n

− zα/2

√
p(1 − p)

n
≤ p ≤ Y

n
+ zα/2

√
p(1 − p)

n

]
≈ 1 − α.

Unfortunately, the unknown parameter p appears in the endpoints of this inequality.
There are two ways out of this dilemma. First, we could make an additional approx-
imation, namely, replacing p with Y/n in p (1 − p)/n in the endpoints. That is, if n is
large enough, it is still true that

P

[
Y
n

− zα/2

√
(Y/n)(1 − Y/n)

n
≤ p ≤ Y

n
+ zα/2

√
(Y/n)(1 − Y/n)

n

]
≈ 1 − α.

Thus, for large n, if the observed Y equals y, then the interval[
y
n

− zα/2

√
(y/n)(1 − y/n)

n
,

y
n

+ zα/2

√
(y/n)(1 − y/n)

n

]

serves as an approximate 100(1 − α)% confidence interval for p. Frequently, this
interval is written as

y
n

± zα/2

√
(y/n)(1 − y/n)

n
(7.3-2)

for brevity. This formulation clearly notes, as does x ± zα/2(σ/
√

n) in Section 7.1, the
reliability of the estimate y/n, namely, that we are 100(1 − α)% confident that p is
within zα/2

√
(y/n)(1 − y/n)/n of p̂ = y/n.

A second way to solve for p in the inequality in Equation 7.3-1 is to note that

|Y/n − p|√
p (1 − p)/n

≤ zα/2

is equivalent to

H(p) =
(

Y
n

− p
)2

− z2
α/2 p(1 − p)

n
≤ 0. (7.3-3)

But H(p) is a quadratic expression in p. Thus, we can find those values of p for
which H(p) ≤ 0 by finding the two zeros of H(p). Letting p̂ = Y/n and z0 = zα/2 in
Equation 7.3-3, we have

H(p) =
(

1 + z2
0

n

)
p2 −

(
2 p̂ + z2

0

n

)
p + p̂ 2.

By the quadratic formula, the zeros of H(p) are, after simplifications,

p̂ + z2
0/(2n) ± z0

√
p̂ (1 − p̂ )/n + z2

0/(4n2)

1 + z2
0/n

, (7.3-4)
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and these zeros give the endpoints for an approximate 100(1 − α)% confidence
interval for p. If n is large, z2

0/(2n), z2
0/(4n2), and z2

0/n are small. Thus, the confi-
dence intervals given by Equations 7.3-2 and 7.3-4 are approximately equal when n is
large.

Example
7.3-1

Let us return to the example of the histogram of the candy bar weights,
Example 6.1-1, with n = 40 and y/n = 8/40 = 0.20. If 1 − α = 0.90, so that
zα/2 = 1.645, then, using Equation 7.3-2, we find that the endpoints

0.20 ± 1.645

√
(0.20)(0.80)

40

serve as an approximate 90% confidence interval for the true fraction p. That is,
[0.096, 0.304], which is the same as [9.6%, 30.4%], is an approximate 90% confi-
dence interval for the percentage of weights of the entire population in the interval
(22.25, 23.15). If we had used the endpoints given by Equation 7.3-4, the confidence
interval would be [0.117, 0.321]. Because of the small sample size, there is a non-
negligible difference in these intervals. If the sample size had been n = 400 and
y = 80, so that y/n = 80/400 = 0.20, the two 90% confidence intervals would have
been [0.167, 0.233] and [0.169, 0.235], respectively, which differ very little.

Example
7.3-2

In a certain political campaign, one candidate has a poll taken at random among
the voting population. The results are that y = 185 out of n = 351 voters favor this
candidate. Even though y/n = 185/351 = 0.527, should the candidate feel very con-
fident of winning? From Equation 7.3-2, an approximate 95% confidence interval
for the fraction p of the voting population who favor the candidate is

0.527 ± 1.96

√
(0.527)(0.473)

351

or, equivalently, [0.475, 0.579]. Thus, there is a good possibility that p is less than
50%, and the candidate should certainly take this possibility into account in
campaigning.

One-sided confidence intervals are sometimes appropriate for p. For example,
we may be interested in an upper bound on the proportion of defectives in manu-
facturing some item. Or we may be interested in a lower bound on the proportion
of voters who favor a particular candidate. The one-sided confidence interval for
p given by [

0,
y
n

+ zα

√
(y/n)[1 − (y/n)]

n

]

provides an upper bound for p, while[
y
n

− zα

√
(y/n)[1 − (y/n)]

n
, 1

]

provides a lower bound for p.
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REMARK Sometimes the confidence intervals suggested here are not very close to
having the stated confidence coefficient. This is particularly true if n is small or if
one of Y or n − Y is close to zero. It is obvious that something is wrong if Y = 0 or
n − Y = 0, because the radical is then equal to zero.

It has been suggested (see, e.g., Agresti and Coull, 1998) that we use
p̃ = (Y + 2)/(n + 4) as an estimator for p in those cases because the results are
usually much better. It is true that p̃ is a biased estimator of p, but it is a Bayes
shrinkage estimator if we use the beta prior pdf with parameters α = 2, β = 2. In
those cases in which n is small or Y or n − Y is close to zero,

p̃ ± zα/2

√
p̃(1 − p̃)/(n + 4) (7.3-5)

provides a much better 100(1 − α)% confidence interval for p. A similar statement
can be made about one-sided confidence intervals.

Look again at Equation 7.3-4. If we form a 95% confidence interval using this
equation, we find that z0 = 1.96 ≈ 2. Thus, a 95% confidence interval is centered
approximately at

p̂ + z2
0/(2n)

1 + z2
0/n

= y + z2
0/2

n + z2
0

≈ y + 2
n + 4

.

This result is consistent with Equation 7.3-5 for 95% confidence intervals.

Example
7.3-3

Returning to the data in Example 7.3-1, and using Equation 7.3-5, we have
p̃ = (8 + 2)/(40 + 4) = 0.227. Thus, a 90% confidence interval is

0.227 ± 1.645

√
(0.227)(0.773)

44
,

or [0.123, 0.331]. If it had been true that y = 80 and n = 400, the confidence interval
given by Equation 7.3-5 would have been [0.170, 0.236].

Frequently, there are two (or more) possible independent ways of performing an
experiment; suppose these have probabilities of success p1 and p2, respectively. Let
n1 and n2 be the number of independent trials associated with these two methods,
and let us say that they result in Y1 and Y2 successes, respectively. In order to make
a statistical inference about the difference p1 − p2, we proceed as follows.

Since the independent random variables Y1/n1 and Y2/n2 have respective
means p1 and p2 and variances p1(1 − p1)/n1 and p2(1 − p2)/n2, we know from
Section 5.4 that the difference Y1/n1 − Y2/n2 must have mean p1 − p2 and variance

p1(1 − p1)
n1

+ p2(1 − p2)
n2

.

(Recall that the variances are added to get the variance of a difference of two
independent random variables.) Moreover, the fact that Y1/n1 and Y2/n2 have
approximate normal distributions would suggest that the difference

Y1

n1
− Y2

n2
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would have an approximate normal distribution with the above mean and variance.
(See Theorem 5.5-1.) That is,

(Y1/n1) − (Y2/n2) − (p1 − p2)√
p1(1 − p1)/n1 + p2(1 − p2)/n2

has an approximate normal distribution N(0, 1). If we now replace p1 and p2 in the
denominator of this ratio by Y1/n1 and Y2/n2, respectively, it is still true for large
enough n1 and n2 that the new ratio will be approximately N(0, 1). Thus, for a given
1 − α, we can find zα/2 from Table V in Appendix B, so that

P

[
−zα/2 ≤ (Y1/n1) − (Y2/n2) − (p1 − p2)√

(Y1/n1)(1 − Y1/n1)/n1 + (Y2/n2)(1 − Y2/n2)/n2
≤ zα/2

]
≈ 1 − α.

Once Y1 and Y2 are observed to be y1 and y2, respectively, this approximation can
be solved to obtain an approximate 100(1 − α)% confidence interval

y1

n1
− y2

n2
± zα/2

√
(y1/n1)(1 − y1/n1)

n1
+ (y2/n2)(1 − y2/n2)

n2

for the unknown difference p1−p2. Note again how this form indicates the reliability
of the estimate y1/n1 − y2/n2 of the difference p1 − p2.

Example
7.3-4

Two detergents were tested for their ability to remove stains of a certain type. An
inspector judged the first one to be successful on 63 out of 91 independent trials and
the second one to be successful on 42 out of 79 independent trials. The respective
relative frequencies of success are 63/91 = 0.692 and 42/79 = 0.532. An approximate
90% confidence interval for the difference p1 − p2 of the two detergents is(

63
91

− 42
79

)
± 1.645

√
(63/91)(28/91)

91
+ (42/79)(37/79)

79

or, equivalently, [0.039, 0.283]. Accordingly, since this interval does not include zero,
it seems that the first detergent is probably better than the second one for removing
the type of stains in question.

Exercises

7.3-1. A machine shop manufactures toggle levers. A
lever is flawed if a standard nut cannot be screwed onto
the threads. Let p equal the proportion of flawed toggle
levers that the shop manufactures. If there were 24 flawed
levers out of a sample of 642 that were selected randomly
from the production line,

(a) Give a point estimate of p.

(b) Use Equation 7.3-2 to find an approximate 95% con-
fidence interval for p.

(c) Use Equation 7.3-4 to find an approximate 95% con-
fidence interval for p.

(d) Use Equation 7.3-5 to find an approximate 95% con-
fidence interval for p.

(e) Find a one-sided 95% confidence interval for p that
provides an upper bound for p.

7.3-2. Let p equal the proportion of letters mailed in the
Netherlands that are delivered the next day. Suppose that
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y = 142 out of a random sample of n = 200 letters were
delivered the day after they were mailed.

(a) Give a point estimate of p.

(b) Use Equation 7.3-2 to find an approximate 90% con-
fidence interval for p.

(c) Use Equation 7.3-4 to find an approximate 90% con-
fidence interval for p.

(d) Use Equation 7.3-5 to find an approximate 90% con-
fidence interval for p.

(e) Find a one-sided 90% confidence interval for p that
provides a lower bound for p.

7.3-3. Let p equal the proportion of triathletes who suf-
fered a training-related overuse injury during the past
year. Out of 330 triathletes who responded to a survey,
167 indicated that they had suffered such an injury during
the past year.

(a) Use these data to give a point estimate of p.

(b) Use these data to find an approximate 90% confi-
dence interval for p.

(c) Do you think that the 330 triathletes who responded
to the survey may be considered a random sample
from the population of triathletes?

7.3-4. Let p equal the proportion of Americans who favor
the death penalty. If a random sample of n = 1234
Americans yielded y = 864 who favored the death
penalty, find an approximate 95% confidence interval
for p.

7.3-5. In order to estimate the proportion, p, of a large
class of college freshmen that had high school GPAs from
3.2 to 3.6, inclusive, a sample of n = 50 students was
taken. It was found that y = 9 students fell into this
interval.

(a) Give a point estimate of p.

(b) Use Equation 7.3-2 to find an approximate 95% con-
fidence interval for p.

(c) Use Equation 7.3-4 to find an approximate 95% con-
fidence interval for p.

(d) Use Equation 7.3-5 to find an approximate 95% con-
fidence interval for p.

7.3-6. Let p equal the proportion of Americans who
select jogging as one of their recreational activities. If
1497 out of a random sample of 5757 selected jogging, find
an approximate 98% confidence interval for p.

7.3-7. In developing countries in Africa and the
Americas, let p1 and p2 be the respective proportions
of women with nutritional anemia. Find an approxi-

mate 90% confidence interval for p1 − p2, given that a
random sample of n1 = 2100 African women yielded
y1 = 840 with nutritional anemia and a random sample
of n2 = 1900 women from the Americas yielded y2 = 323
women with nutritional anemia.

7.3-8. A proportion, p, that many public opinion polls
estimate is the number of Americans who would say yes
to the question, “If something were to happen to the
president of the United States, do you think that the
vice president would be qualified to take over as pres-
ident?” In one such random sample of 1022 adults, 388
said yes.

(a) On the basis of the given data, find a point estimate
of p.

(b) Find an approximate 90% confidence interval for p.

(c) Give updated answers to this question if new poll
results are available.

7.3-9. Consider the following two groups of women:
Group 1 consists of women who spend less than $500
annually on clothes; Group 2 comprises women who
spend over $1000 annually on clothes. Let p1 and p2 equal
the proportions of women in these two groups, respec-
tively, who believe that clothes are too expensive. If 1009
out of a random sample of 1230 women from group 1 and
207 out of a random sample 340 from group 2 believe that
clothes are too expensive,

(a) Give a point estimate of p1 − p2.

(b) Find an approximate 95% confidence interval for
p1 − p2.

7.3-10. A candy manufacturer selects mints at random
from the production line and weighs them. For one week,
the day shift weighed n1 = 194 mints and the night shift
weighed n2 = 162 mints. The numbers of these mints that
weighed at most 21 grams was y1 = 28 for the day shift
and y2 = 11 for the night shift. Let p1 and p2 denote the
proportions of mints that weigh at most 21 grams for the
day and night shifts, respectively.

(a) Give a point estimate of p1.

(b) Give the endpoints for a 95% confidence interval
for p1.

(c) Give a point estimate of p1 − p2.

(d) Find a one-sided 95% confidence interval that gives a
lower bound for p1 − p2.

7.3-11. For developing countries in Asia (excluding
China) and Africa, let p1 and p2 be the respective pro-
portions of preschool children with chronic malnutrition
(stunting). If respective random samples of n1 = 1300
and n2 = 1100 yielded y1 = 520 and y2 = 385 chil-
dren with chronic malnutrition, find an approximate 95%
confidence interval for p1 − p2.
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7.3-12. An environmental survey contained a question
asking what respondents thought was the major cause of
air pollution in this country, giving the choices “automo-
biles,” “factories,” and “incinerators.” Two versions of the
test, A and B, were used. Let pA and pB be the respective
proportions of people using forms A and B who select
“factories.” If 170 out of 460 people who used version

A chose “factories” and 141 out of 440 people who used
version B chose “factories,”

(a) Find a 95% confidence interval for pA − pB.

(b) Do the versions seem to be consistent concerning this
answer? Why or why not?

7.4 SAMPLE SIZE
In statistical consulting, the first question frequently asked is, “How large should the
sample size be to estimate a mean?” In order to convince the inquirer that the answer
will depend on the variation associated with the random variable under observation,
the statistician could correctly respond, “Only one observation is needed, provided
that the standard deviation of the distribution is zero.” That is, if σ equals zero, then
the value of that one observation would necessarily equal the unknown mean of the
distribution. This, of course, is an extreme case and one that is not met in practice;
however, it should help convince people that the smaller the variance, the smaller
is the sample size needed to achieve a given degree of accuracy. This assertion will
become clearer as we consider several examples. Let us begin with a problem that
involves a statistical inference about the unknown mean of a distribution.

Example
7.4-1

A mathematics department wishes to evaluate a new method of teaching calculus
with a computer. At the end of the course, the evaluation will be made on the basis
of scores of the participating students on a standard test. There is particular inter-
est in estimating μ, the mean score for students taking the course. Thus, there is a
desire to determine the number of students, n, who are to be selected at random
from a larger group of students to take the course. Since new computing equipment
must be purchased, the department cannot afford to let all of the school’s students
take calculus the new way. In addition, some of the staff question the value of this
approach and hence do not want to expose every student to this new procedure. So,
let us find the sample size n such that we are fairly confident that x ± 1 contains the
unknown test mean μ. From past experience, it is believed that the standard devi-
ation associated with this type of test is about 15. (The mean is also known when
students take the standard calculus course.) Accordingly, using the fact that the sam-
ple mean of the test scores, X, is approximately N(μ, σ 2/n), we see that the interval
given by x ± 1.96(15/

√
n ) will serve as an approximate 95% confidence interval for

μ. That is, we want

1.96
(

15√
n

)
= 1

or, equivalently,
√

n = 29.4, and thus n ≈ 864.36,

or n = 865 because n must be an integer.

It is quite likely that, in the preceding example, it had not been anticipated
that as many as 865 students would be needed in this study. If that is the case, the
statistician must discuss with those involved in the experiment whether or not the
accuracy and the confidence level could be relaxed some. For example, rather than
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requiring x ± 1 to be a 95% confidence interval for μ, possibly x ± 2 would be a
satisfactory 80% one. If this modification is acceptable, we now have

1.282
(

15√
n

)
= 2

or, equivalently,
√

n = 9.615, so that n ≈ 92.4.

Since n must be an integer, we would probably use 93 in practice. Most likely, the
persons involved in the project would find that a more reasonable sample size. Of
course, any sample size greater than 93 could be used. Then either the length of
the confidence interval could be decreased from x ± 2 or the confidence coefficient
could be increased from 80%, or a combination of both approaches could be taken.
Also, since there might be some question as to whether the standard deviation σ

actually equals 15, the sample standard deviation s would no doubt be used in the
construction of the interval. For instance, suppose that the sample characteristics
observed are

n = 145, x = 77.2, s = 13.2;

then

x ± 1.282s√
n

, or 77.2 ± 1.41,

provides an approximate 80% confidence interval for μ.
In general, if we want the 100(1−α)% confidence interval for μ, x±zα/2(σ/

√
n ),

to be no longer than that given by x ± ε, then the sample size n is the solution of

ε = zα/2σ√
n

, where 
(zα/2) = 1 − α

2
.

That is,

n = z2
α/2σ

2

ε2
, (7.4-1)

where it is assumed that σ 2 is known. We sometimes call ε = zα/2(σ/
√

n ) the maxi-
mum error of the estimate. If the experimenter has no idea about the value of σ 2, it
may be necessary to first take a preliminary sample to estimate σ 2.

The type of statistic we see most often in newspapers and magazines is an esti-
mate of a proportion p. We might, for example, want to know the percentage of
the labor force that is unemployed or the percentage of voters favoring a certain
candidate. Sometimes extremely important decisions are made on the basis of these
estimates. If this is the case, we would most certainly desire short confidence inter-
vals for p with large confidence coefficients. We recognize that these conditions
will require a large sample size. If, to the contrary, the fraction p being estimated
is not too important, an estimate associated with a longer confidence interval with a
smaller confidence coefficient is satisfactory, and in that case a smaller sample size
can be used.

Example
7.4-2

Suppose we know that the unemployment rate has been about 8% (0.08). However,
we wish to update our estimate in order to make an important decision about the
national economic policy. Accordingly, let us say we wish to be 99% confident that
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the new estimate of p is within 0.001 of the true p. If we assume Bernoulli trials
(an assumption that might be questioned), the relative frequency y/n, based upon a
large sample size n, provides the approximate 99% confidence interval:

y
n

± 2.576

√
(y/n)(1 − y/n)

n
.

Although we do not know y/n exactly before sampling, since y/n will be near 0.08,
we do know that

2.576

√
(y/n)(1 − y/n)

n
≈ 2.576

√
(0.08)(0.92)

n
,

and we want this number to equal 0.001. That is,

2.576

√
(0.08)(0.92)

n
= 0.001

or, equivalently,

√
n = 2576

√
0.0736, and then n ≈ 488,394.

That is, under our assumptions, such a sample size is needed in order to achieve the
reliability and the accuracy desired. Because n is so large, we would probably be
willing to increase the error, say, to 0.01, and perhaps reduce the confidence level to
98%. In that case,

√
n = (2.326/0.01)

√
0.0736 and n ≈ 3,982,

which is a more reasonable sample size.

From the preceding example, we hope that the student will recognize how
important it is to know the sample size (or the length of the confidence interval
and the confidence coefficient) before he or she can place much weight on a state-
ment such as “Fifty-one percent of the voters seem to favor candidate A, 46% favor
candidate B, and 3% are undecided.” Is this statement based on a sample of 100
or 2000 or 10,000 voters? If we assume Bernoulli trials, the approximate 95% con-
fidence intervals for the fraction of voters favoring candidate A in these cases are,
respectively, [0.41, 0.61], [0.49, 0.53], and [0.50, 0.52]. Quite obviously, the first inter-
val, with n = 100, does not assure candidate A of the support of at least half the
voters, whereas the interval with n = 10,000 is more convincing.

In general, to find the required sample size to estimate p, recall that the point
estimate of p is p̂ = y/n and an approximate 1 − α confidence interval for p is

p̂ ± zα/2

√
p̂ (1 − p̂ )

n
.

Suppose we want an estimate of p that is within ε of the unknown p with 100(1−α)%
confidence, where ε = zα/2

√
p̂ (1 − p̂ )/n is the maximum error of the point estimate

p̂ = y/n. Since p̂ is unknown before the experiment is run, we cannot use the value
of p̂ in our determination of n. However, if it is known that p is about equal to p∗,
the necessary sample size n is the solution of

ε = zα/2
√

p∗(1 − p∗)√
n

.
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That is,

n = z2
α/2p∗(1 − p∗)

ε2
. (7.4-2)

Often, however, we do not have a strong prior idea about p, as we did in
Example 7.4-2 about the rate of unemployment. It is interesting to observe that no
matter what value p takes between 0 and 1, it is always true that p∗(1 − p∗) ≤ 1/4.
Hence,

n = z2
α/2p∗(1 − p∗)

ε2
≤ z2

α/2

4ε2
.

Thus, if we want the 100(1 − α)% confidence interval for p to be no longer than
y/n ± ε, a solution for n that provides this protection is

n = z2
α/2

4ε2
. (7.4-3)

REMARK Up to this point in the text, we have used the “hat” (̂ ) notation to indi-
cate an estimator, as in p̂ = Y/n and μ̂ = X. Note, however, that in the previous
discussion we used p̂ = y/n, an estimate of p. Occasionally, statisticians find it con-
venient to use the “hat” notation for an estimate as well as an estimator. It is usually
clear from the context which is being used.

Example
7.4-3

A possible gubernatorial candidate wants to assess initial support among the voters
before making an announcement about her candidacy. If the fraction p of voters
who are favorable, without any advance publicity, is around 0.15, the candidate will
enter the race. From a poll of n voters selected at random, the candidate would like
the estimate y/n to be within 0.03 of p. That is, the decision will be based on a 95%
confidence interval of the form y/n±0.03. Since the candidate has no idea about the
magnitude of p, a consulting statistician formulates the equation

n = (1.96)2

4(0.03)2
= 1067.11.

Thus, the sample size should be around 1068 to achieve the desired reliability and
accuracy. Suppose that 1068 voters around the state were selected at random and
interviewed and y = 214 express support for the candidate. Then p̂ = 214/1068 =
0.20 is a point estimate of p, and an approximate 95% confidence interval
for p is

0.20 ± 1.96
√

(0.20)(0.80)/n, or 0.20 ± 0.024.

That is, we are 95% confident that p belongs to the interval [0.176, 0.224]. On the
basis of this sample, the candidate decided to run for office. Note that, for a confi-
dence coefficient of 95%, we found a sample size so that the maximum error of the
estimate would be 0.03. From the data that were collected, the maximum error of
the estimate is only 0.024. We ended up with a smaller error because we found the
sample size assuming that p = 0.50, while, in fact, p is closer to 0.20.
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Suppose that you want to estimate the proportion p of a student body that favors
a new policy. How large should the sample be? If p is close to 1/2 and you want to be
95% confident that the maximum error of the estimate is ε = 0.02, then

n = (1.96)2

4(0.02)2
= 2401.

Such a sample size makes sense at a large university. However, if you are a student
at a small college, the entire enrollment could be less than 2401. Thus, we now give a
procedure that can be used to determine the sample size when the population is not
so large relative to the desired sample size.

Let N equal the size of a population, and assume that N1 individuals in the pop-
ulation have a certain characteristic C (e.g., favor a new policy). Let p = N1/N, the
proportion with this characteristic. Then 1−p = 1−N1/N. If we take a sample of size
n without replacement, then X, the number of observations with the characteristic
C, has a hypergeometric distribution. The mean and variance of X are, respectively,

μ = n
(

N1

N

)
= np

and

σ 2 = n
(

N1

N

)(
1 − N1

N

)(
N − n
N − 1

)
= np(1 − p)

(
N − n
N − 1

)
.

The mean and variance of X/n are, respectively,

E
(

X
n

)
= μ

n
= p

and

Var
(

X
n

)
= σ 2

n2
= p(1 − p)

n

(
N − n
N − 1

)
.

To find an approximate confidence interval for p, we can use the normal
approximation:

P

⎡⎢⎢⎢⎢⎣−zα/2 ≤
X
n

− p√
p(1 − p)

n

(
N − n
N − 1

) ≤ zα/2

⎤⎥⎥⎥⎥⎦ ≈ 1 − α.

Thus,

1 − α ≈ P

[
X
n

− zα/2

√
p(1 − p)

n

(
N − n
N − 1

)
≤ p ≤ X

n
+ zα/2

√
p(1 − p)

n

(
N − n
N − 1

)]
.

Replacing p under the radical with p̂ = x/n, we find that an approximate 1 − α

confidence interval for p is

p̂ ± zα/2

√
p̂ (1 − p̂ )

n

(
N − n
N − 1

)
.
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This is similar to the confidence interval for p when the distribution of X is b(n, p).
If N is large relative to n, then

N − n
N − 1

= 1 − n/N
1 − 1/N

≈ 1,

so in this case the two intervals are essentially equal.
Suppose now that we are interested in determining the sample size n that is

required to have 1 − α confidence that the maximum error of the estimate of p is ε.
We let

ε = zα/2

√
p(1 − p)

n

(
N − n
N − 1

)
and solve for n. After some simplification, we obtain

n = Nz2
α/2 p(1 − p)

(N − 1)ε2 + z2
α/2 p(1 − p)

= z2
α/2p(1 − p)/ε2

N − 1
N

+ z2
α/2 p(1 − p)/ε2

N

.

If we let

m = z2
α/2p∗(1 − p∗)

ε2
,

which is the n value given by Equation 7.4-2, then we choose

n = m

1 + m − 1
N

for our sample size n.
If we know nothing about p, we set p∗ = 1/2 to determine m. For example, if the

size of the student body is N = 4000 and 1 −α = 0.95, ε = 0.02, and we let p∗ = 1/2,
then m = 2401 and

n = 2401
1 + 2400/4000

= 1501,

rounded up to the nearest integer. Thus, we would sample approximately 37.5% of
the student body.

Example
7.4-4

Suppose that a college of N = 3000 students is interested in assessing student sup-
port for a new form for teacher evaluation. To estimate the proportion p in favor
of the new form, how large a sample is required so that the maximum error of the
estimate of p is ε = 0.03 with 95% confidence? If we assume that p is completely
unknown, we use p∗ = 1/2 to obtain

m = (1.96)2

4(0.03)2
= 1068,
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rounded up to the nearest integer. Thus, the desired sample size is

n = 1068
1 + 1067/3000

= 788,

rounded up to the nearest integer.

Exercises

7.4-1. Let X equal the tarsus length for a male grackle.
Assume that the distribution of X is N(μ, 4.84). Find the
sample size n that is needed so that we are 95% confident
that the maximum error of the estimate of μ is 0.4.

7.4-2. Let X equal the excess weight of soap in a “1000-
gram” bottle. Assume that the distribution of X is
N(μ, 169). What sample size is required so that we have
95% confidence that the maximum error of the estimate
of μ is 1.5?

7.4-3. A company packages powdered soap in “6-pound”
boxes. The sample mean and standard deviation of
the soap in these boxes are currently 6.09 pounds and
0.02 pound, respectively. If the mean fill can be low-
ered by 0.01 pound, $14,000 would be saved per year.
Adjustments were made in the filling equipment, but
it can be assumed that the standard deviation remains
unchanged.

(a) How large a sample is needed so that the maximum
error of the estimate of the new μ is ε = 0.001 with
90% confidence?

(b) A random sample of size n = 1219 yielded x = 6.048
and s = 0.022. Calculate a 90% confidence interval
for μ.

(c) Estimate the savings per year with these new adjust-
ments.

(d) Estimate the proportion of boxes that will now weigh
less than 6 pounds.

7.4-4. Measurements of the length in centimeters of n =
29 fish yielded an average length of x = 16.82 and s2 =
34.9. Determine the size of a new sample so that x ± 0.5 is
an approximate 95% confidence interval for μ.

7.4-5. A quality engineer wanted to be 98% confident
that the maximum error of the estimate of the mean
strength, μ, of the left hinge on a vanity cover molded
by a machine is 0.25. A preliminary sample of size n = 32
parts yielded a sample mean of x = 35.68 and a standard
deviation of s = 1.723.

(a) How large a sample is required?

(b) Does this seem to be a reasonable sample size? (Note
that destructive testing is needed to obtain the data.)

7.4-6. A manufacturer sells a light bulb that has a mean
life of 1450 hours with a standard deviation of 33.7 hours.
A new manufacturing process is being tested, and there
is interest in knowing the mean life μ of the new bulbs.
How large a sample is required so that x±5 is a 95% con-
fidence interval for μ? You may assume that the change
in the standard deviation is minimal.

7.4-7. For a public opinion poll for a close presidential
election, let p denote the proportion of voters who favor
candidate A. How large a sample should be taken if
we want the maximum error of the estimate of p to be
equal to

(a) 0.03 with 95% confidence?

(b) 0.02 with 95% confidence?

(c) 0.03 with 90% confidence?

7.4-8. Some college professors and students examined
137 Canadian geese for patent schistosome in the year
they hatched. Of these 137 birds, 54 were infected. The
professors and students were interested in estimating p,
the proportion of infected birds of this type. For future
studies, determine the sample size n so that the estimate
of p is within ε = 0.04 of the unknown p with 90%
confidence.

7.4-9. A die has been loaded to change the probability
of rolling a 6. In order to estimate p, the new probability
of rolling a 6, how many times must the die be rolled so
that we are 99% confident that the maximum error of the
estimate of p is ε = 0.02?

7.4-10. A seed distributor claims that 80% of its beet
seeds will germinate. How many seeds must be tested for
germination in order to estimate p, the true proportion
that will germinate, so that the maximum error of the
estimate is ε = 0.03 with 90% confidence?

7.4-11. Some dentists were interested in studying the
fusion of embryonic rat palates by a standard trans-
plantation technique. When no treatment is used, the
probability of fusion equals approximately 0.89. The den-
tists would like to estimate p, the probability of fusion,
when vitamin A is lacking.

(a) How large a sample n of rat embryos is needed for
y/n ± 0.10 to be a 95% confidence interval for p?
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(b) If y = 44 out of n = 60 palates showed fusion, give a
95% confidence interval for p.

7.4-12. Let p equal the proportion of college students
who favor a new policy for alcohol consumption on cam-
pus. How large a sample is required to estimate p so that
the maximum error of the estimate of p is 0.04 with 95%
confidence when the size of the student body is

(a) N = 1500?

(b) N = 15,000?

(c) N = 25,000?

7.4-13. Out of 1000 welds that have been made on a
tower, it is suspected that 15% are defective. To estimate
p, the proportion of defective welds, how many welds

must be inspected to have approximately 95% confidence
that the maximum error of the estimate of p is 0.04?

7.4-14. If Y1/n and Y2/n are the respective independent
relative frequencies of success associated with the two
binomial distributions b(n, p1) and b(n, p2), compute n
such that the approximate probability that the random
interval (Y1/n − Y2/n) ± 0.05 covers p1 − p2 is at
least 0.80. Hint: Take p∗

1 = p∗
2 = 1/2 to provide an upper

bound for n.

7.4-15. If X and Y are the respective means of two inde-
pendent random samples of the same size n, find n if
we want x − y ± 4 to be a 90% confidence interval for
μX − μY . Assume that the standard deviations are known
to be σX = 15 and σY = 25.

7.5 DISTRIBUTION-FREE CONFIDENCE INTERVALS FOR PERCENTILES
In Section 6.3, we defined sample percentiles in terms of order statistics and noted
that the sample percentiles can be used to estimate corresponding distribution per-
centiles. In this section, we use order statistics to construct confidence intervals
for unknown distribution percentiles. Since little is assumed about the underlying
distribution (except that it is of the continuous type) in the construction of these
confidence intervals, they are often called distribution-free confidence intervals.

If Y1 < Y2 < Y3 < Y4 < Y5 are the order statistics of a random sample of
size n = 5 from a continuous-type distribution, then the sample median Y3 could be
thought of as an estimator of the distribution median π0.5. We shall let m = π0.5. We
could simply use the sample median Y3 as an estimator of the distribution median
m. However, we are certain that all of us recognize that, with only a sample of size
5, we would be quite lucky if the observed Y3 = y3 were very close to m. Thus, we
now describe how a confidence interval can be constructed for m.

Instead of simply using Y3 as an estimator of m, let us also compute the
probability that the random interval (Y1, Y5) includes m. That is, let us determine
P(Y1 < m < Y5). Doing this is easy if we say that we have success if an individual
observation—say, X—is less than m; then the probability of success on one of the
independent trials is P(X < m) = 0.5. In order for the first order statistic Y1 to be
less than m and the last order statistic Y5 to be greater than m, we must have at least
one success, but not five successes. That is,

P(Y1 < m < Y5) =
4∑

k=1

(
5
k

)(
1
2

)k(1
2

)5−k

= 1 −
(

1
2

)5

−
(

1
2

)5

= 15
16

.

So the probability that the random interval (Y1, Y5) includes m is 15/16 ≈ 0.94.
Suppose now that this random sample is actually taken and the order statistics are
observed to equal y1 < y2 < y3 < y4 < y5, respectively. Then (y1, y5) is a 94%
confidence interval for m.

It is interesting to note what happens as the sample size increases. Let Y1 <

Y2 < · · · < Yn be the order statistics of a random sample of size n from a distribution
of the continuous type. Then P(Y1 < m < Yn) is the probability that there is at least
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one “success” but not n successes, where the probability of success on each trial is
P(X < m) = 0.5. Consequently,

P(Y1 < m < Yn) =
n−1∑
k=1

(
n
k

)(
1
2

)k(1
2

)n−k

= 1 −
(

1
2

)n

−
(

1
2

)n

= 1 −
(

1
2

)n−1

.

This probability increases as n increases, so that the corresponding confidence
interval (y1, yn) would have the very large confidence coefficient 1 − (1/2)n−1.
Unfortunately, the interval (y1, yn) tends to get wider as n increases; thus, we are not
“pinning down” m very well. However, if we used the interval (y2, yn−1) or (y3, yn−2),
we would obtain shorter intervals, but also smaller confidence coefficients. Let us
investigate this possibility further.

With the order statistics Y1 < Y2 < · · · < Yn associated with a random sample
of size n from a continuous-type distribution, consider P(Yi < m < Yj), where i < j.
For example, we might want

P(Y2 < m < Yn−1) or P(Y3 < m < Yn−2).

On each of the n independent trials, we say that we have success if that X is less than
m; thus, the probability of success on each trial is P(X < m) = 0.5. Consequently, to
have the ith order statistic Yi less than m and the jth order statistic greater than m,
we must have at least i successes but fewer than j successes (or else Yj < m). That is,

P(Yi < m < Yj) =
j−1∑
k=i

(
n
k

)(
1
2

)k(1
2

)n−k

= 1 − α.

For particular values of n, i, and j, this probability—say, 1 − α—which is the sum
of probabilities from a binomial distribution, can be calculated directly or approx-
imated by an area under the normal pdf, provided that n is large enough. The
observed interval (yi, yj) could then serve as a 100(1 − α)% confidence interval for
the unknown distribution median.

Example
7.5-1

The lengths in centimeters of n = 9 fish of a particular species captured off the New
England coast were 32.5, 27.6, 29.3, 30.1, 15.5, 21.7, 22.8, 21.2, and 19.0. Thus, the
observed order statistics are

15.5 < 19.0 < 21.2 < 21.7 < 22.8 < 27.6 < 29.3 < 30.1 < 32.5.

Before the sample is drawn, we know that

P(Y2 < m < Y8) =
7∑

k=2

(
9
k

)(
1
2

)k(1
2

)9−k

= 0.9805 − 0.0195 = 0.9610,

from Table II in Appendix B. Thus, the confidence interval (y2 = 19.0, y8 = 30.1)
for m, the median of the lengths of all fish of this species, has a 96.1% confidence
coefficient.
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So that the student need not compute many of these probabilities, Table 7.5-1
lists the necessary information for constructing confidence intervals of the form
(yi, yn+1−i) for the unknown m for sample sizes n = 5, 6, . . . , 20. The subscript i is
selected so that the confidence coefficient P(Yi < m < Yn+1−i) is greater than 90%
and as close to 95% as possible.

For sample sizes larger than 20, we approximate those binomial probabilities
with areas under the normal curve. To illustrate how good these approximations are,
we compute the probability corresponding to n = 16 in Table 7.5-1. Here, using
Table II, we have

1 − α = P(Y5 < m < Y12) =
11∑

k=5

(
16
k

)(
1
2

)k(1
2

)16−k

= P(W = 5, 6, . . . , 11)

= 0.9616 − 0.0384 = 0.9232,

where W is b(16, 1/2). The normal approximation gives

1 − α = P(4.5 < W < 11.5) = P
(

4.5 − 8
2

<
W − 8

2
<

11.5 − 8
2

)
,

because W has mean np = 8 and variance np(1 − p) = 4. The standardized variable
Z = (W − 8)/2 has an approximate normal distribution. Thus,

1 − α ≈ 


(
3.5
2

)
− 


(−3.5
2

)
= 
(1.75) − 
(−1.75)

= 0.9599 − 0.0401 = 0.9198.

This value compares very favorably with the probability 0.9232 recorded in
Table 7.5-1. (Note that Minitab or some other computer program can also be
used.)

Table 7.5-1 Information for confidence intervals for m

n (i, n+1−i) P(Yi <m<Yn+1−i) n (i, n+1−i) P(Yi <m<Yn+1−i)

5 (1, 5) 0.9376 13 (3, 11) 0.9776

6 (1, 6) 0.9688 14 (4, 11) 0.9426

7 (1, 7) 0.9844 15 (4, 12) 0.9648

8 (2, 7) 0.9296 16 (5, 12) 0.9232

9 (2, 8) 0.9610 17 (5, 13) 0.9510

10 (2, 9) 0.9786 18 (5, 14) 0.9692

11 (3, 9) 0.9346 19 (6, 14) 0.9364

12 (3, 10) 0.9614 20 (6, 15) 0.9586



334 Chapter 7 Interval Estimation

The argument used to find a confidence interval for the median m of a distribu-
tion of the continuous type can be applied to any percentile πp. In this case, we say
that we have success on a single trial if that X is less than πp. Thus, the probability of
success on each of the independent trials is P(X < πp) = p. Accordingly, with i < j,
1−α = P(Yi < πp < Yj) is the probability that we have at least i successes but fewer
than j successes. Hence,

1 − α = P(Yi < πp < Yj) =
j−1∑
k=i

(
n
k

)
pk(1 − p)n−k.

Once the sample is observed and the order statistics determined, the known interval
(yi, yj) could serve as a 100(1−α)% confidence interval for the unknown distribution
percentile πp.

Example
7.5-2

Let the following numbers represent the order statistics of the n = 27 observations
obtained in a random sample from a certain population of incomes (measured in
hundreds of dollars):

261 269 271 274 279 280 283 284 286

287 292 293 296 300 304 305 313 321

322 329 341 343 356 364 391 417 476

Say we are interested in estimating the 25th percentile, π0.25, of the population.
Since (n + 1)p = 28(1/4) = 7, the seventh order statistic, namely, y7 = 283,
would be a point estimate of π0.25. To find a confidence interval for π0.25, let us
move down and up a few order statistics from y7—say, to y4 and y10. What is the
confidence coefficient associated with the interval (y4, y10)? Before the sample was
drawn, we had

1 − α = P(Y4 < π0.25 < Y10) =
9∑

k=4

(
27
k

)
(0.25)k(0.75)27−k = 0.8201.

For the normal approximation, we use W, which is b(27, 1/4) with mean 27/4 = 6.75
and variance 81/16. Hence,

1 − α = P(4 ≤ W ≤ 9) = P(3.5 < W < 9.5)

≈ 


(
9.5 − 6.75

9/4

)
− 


(
3.5 − 6.75

9/4

)

= 


(
11
9

)
− 


(
−13

9

)
= 0.8149.

Thus, (y4 = 274, y10 = 287) is an 82.01% (or approximate 81.49%) confidence
interval for π0.25. Note that we could choose other intervals, such as (y3 = 271,
y11 = 292), and these would have different confidence coefficients. The persons
involved in the study must select the desired confidence coefficient, and then
the appropriate order statistics are taken, usually quite symmetrically about the
(n + 1)pth order statistic.
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When the number of observations is large, it is important to be able to determine
the order statistics rather easily. As illustrated in the next example, a stem-and-leaf
diagram, as introduced in Section 6.2, can be helpful in determining the needed order
statistics.

Example
7.5-3

The measurements of butterfat produced by n = 90 cows during a 305-day milk
production period following their first calf are summarized in Table 7.5-2, in which
each leaf consists of two digits. From this display, it is quite easy to see that y8 = 392.

Table 7.5-2 Ordered stem-and-leaf diagram of butterfat production

Stems Leaves

2s 74

2•
3∗
3t 27 39

3f 45 50

3s

3• 80 88 92 94 95

4∗ 17 18

4t 21 22 27 34 37 39

4f 44 52 53 53 57 58

4s 60 64 66 70 70 72 75 78

4• 81 86 89 91 92 94 96 97 99

5∗ 00 00 01 02 05 09 10 13 13 16

5t 24 26 31 32 32 37 37 39

5f 40 41 44 55

5s 61 70 73 74

5• 83 83 86 93 99

6∗ 07 08 11 12 13 17 18 19

6t 27 28 35 37

6f 43 43 45

6s 72

6• 91 96
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It takes a little more work to show that y38 = 494 and y53 = 526 creates an interval
(494, 526) which serves as a confidence interval for the unknown median m of all
butterfat production for the given breed of cows. Its confidence coefficient is

P(Y38 < m < Y53) =
52∑

k=38

(
90
k

)(
1
2

)k(1
2

)90−k

≈ 


(
52.5 − 45√

22.5

)
− 


(
37.5 − 45√

22.5

)
= 
(1.58) − 
(−1.58) = 0.8858.

Similarly, (y17 = 437, y29 = 470) is a confidence interval for the first quartile,
π0.25, with confidence coefficient

P(Y17 < π0.25 < Y29) ≈ 


(
28.5 − 22.5√

16.875

)
− 


(
16.5 − 22.5√

16.875

)
= 
(1.46) − 
(−1.46) = 0.8558.

Using the binomial distribution, the confidence coefficients are 0.8867 and 0.8569,
respectively.

It is interesting to compare the length of a confidence interval for the mean
μ obtained with x ± tα/2(n−1)(s/

√
n ) against the length of a 100(1 − α)% confi-

dence interval for the median m obtained with the distribution-free techniques of
this section. Usually, if the sample arises from a distribution that does not deviate
too much from the normal, the confidence interval based upon x is much shorter.
After all, we assume much more when we create that confidence interval. With the
distribution-free method, all we assume is that the distribution is of the continuous
type. So if the distribution is highly skewed or heavy-tailed so that outliers could
exist, a distribution-free technique is safer and much more robust. Moreover, the
distribution-free technique provides a way to get confidence intervals for various
percentiles, and investigators are often interested in such intervals.

Exercises

7.5-1. Let Y1 < Y2 < Y3 < Y4 < Y5 < Y6 be the order
statistics of a random sample of size n = 6 from a distri-
bution of the continuous type having (100p)th percentile
πp. Compute

(a) P(Y2 < π0.5 < Y5).

(b) P(Y1 < π0.25 < Y4).

(c) P(Y4 < π0.9 < Y6).

7.5-2. For n = 12 year-2007 model sedans whose horse-
power is between 290 and 390, the following measure-
ments give the time in seconds for the car to go from 0
to 60 mph:

6.0 6.3 5.0 6.0 5.7 5.9 6.8 5.5 5.4 4.8 5.4 5.8

(a) Find a 96.14% confidence interval for the median, m.

(b) The interval (y1, y7) could serve as a confidence
interval for π0.3. Find it and give its confidence
coefficient.

7.5-3. A sample of n = 9 electrochromic mirrors was
used to measure the following low-end reflectivity
percentages:

7.12 7.22 6.78 6.31 5.99 6.58 7.80 7.40 7.05

(a) Find the endpoints for an approximate 95% confi-
dence interval for the median, m.

(b) The interval (y3, y7) could serve as a confidence inter-
val for m. Find it and give its confidence coefficient.
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7.5-4. Let m denote the median weight of “80-pound”
bags of water softener pellets. Use the following random
sample of n = 14 weights to find an approximate 95%
confidence interval for m:

80.51 80.28 80.40 80.35 80.38 80.28 80.27

80.16 80.59 80.56 80.32 80.27 80.53 80.32

(a) Find a 94.26% confidence interval for m.

(b) The interval (y6, y12) could serve as a confidence
interval for π0.6. What is its confidence coefficient?

7.5-5. A biologist who studies spiders selected a ran-
dom sample of 20 male green lynx spiders (a spider that
does not weave a web, but chases and leaps on its prey)
and measured the lengths (in millimeters) of one of the
front legs of the 20 spiders. Use the following measure-
ments to construct a confidence interval for m that has a
confidence coefficient about equal to 0.95:

15.10 13.55 15.75 20.00 15.45

13.60 16.45 14.05 16.95 19.05

16.40 17.05 15.25 16.65 16.25

17.75 15.40 16.80 17.55 19.05

7.5-6. A company manufactures mints that have a label
weight of 20.4 grams. The company regularly samples
from the production line and weighs the selected mints.
During two mornings of production it sampled 81 mints,
obtaining the following weights:

21.8 21.7 21.7 21.6 21.3 21.6 21.5 21.3 21.2

21.0 21.6 21.6 21.6 21.5 21.4 21.8 21.7 21.6

21.6 21.3 21.9 21.9 21.6 21.0 20.7 21.8 21.7

21.7 21.4 20.9 22.0 21.3 21.2 21.0 21.0 21.9

21.7 21.5 21.5 21.1 21.3 21.3 21.2 21.0 20.8

21.6 21.6 21.5 21.5 21.2 21.5 21.4 21.4 21.3

21.2 21.8 21.7 21.7 21.6 20.5 21.8 21.7 21.5

21.4 21.4 21.9 21.8 21.7 21.4 21.3 20.9 21.9

20.7 21.1 20.8 20.6 20.6 22.0 22.0 21.7 21.6

(a) Construct an ordered stem-and-leaf display using
stems of 20f , 20s, 20•, 21∗, . . . , 22∗.

(b) Find (i) the three quartiles, (ii) the 60th percentile, and
(iii) the 15th percentile.

(c) Find approximate 95% confidence intervals for (i)
π0.25, (ii) m = π0.5, and (iii) π0.75.

7.5-7. Here are the weights (in grams) of 25 indicator
housings used on gauges (see Exercise 6.2-8):

102.0 106.3 106.6 108.8 107.7

106.1 105.9 106.7 106.8 110.2

101.7 106.6 106.3 110.2 109.9

102.0 105.8 109.1 106.7 107.3

102.0 106.8 110.0 107.9 109.3

(a) List the observations in order of magnitude.

(b) Give point estimates of π0.25, m, and π0.75.

(c) Find the following confidence intervals and, from
Table II in Appendix B, state the associated confi-
dence coefficient:

(i) (y3, y10), a confidence interval for π0.25.
(ii) (y9, y17), a confidence interval for the median m.

(iii) (y16, y23), a confidence interval for π0.75.

(d) Use x ± tα/2(24)(s/
√

25 ) to find a confidence inter-
val for μ, whose confidence coefficient corresponds
to that of (c), part (ii). Compare these two confidence
intervals of the middles.

7.5-8. The biologist of Exercise 7.5-5 also selected a ran-
dom sample of 20 female green lynx spiders and measured
the length (again in millimeters) of one of their front legs.
Use the following data to construct a confidence interval
for m that has a confidence coefficient about equal to 0.95:

15.85 18.00 11.45 15.60 16.10

18.80 12.85 15.15 13.30 16.65

16.25 16.15 15.25 12.10 16.20

14.80 14.60 17.05 14.15 15.85

7.5-9. Let X equal the amount of fluoride in a cer-
tain brand of toothpaste. The specifications are 0.85–
1.10 mg/g. Table 6.1-3 lists 100 such measurements.

(a) Give a point estimate of the median m = π0.50.

(b) Find an approximate 95% confidence interval for the
median m. If possible, use a computer to find the exact
confidence level.

(c) Give a point estimate for the first quartile.

(d) Find an approximate 95% confidence interval for the
first quartile and, if possible, give the exact confidence
coefficient.

(e) Give a point estimate for the third quartile.

(f) Find an approximate 95% confidence interval for the
third quartile and, if possible, give the exact confi-
dence coefficient.

7.5-10. When placed in solutions of varying ionic
strength, paramecia grow blisters in order to counter-
act the flow of water. The following 60 measurements in
microns are blister lengths:
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7.42 5.73 3.80 5.20 11.66 8.51 6.31 8.49

10.31 6.92 7.36 5.92 6.74 8.93 9.61 11.38

12.78 11.43 6.57 13.50 10.58 8.03 10.07 8.71

10.09 11.16 7.22 10.10 6.32 10.30 10.75 11.51

11.55 11.41 9.40 4.74 6.52 12.10 6.01 5.73

7.57 7.80 6.84 6.95 8.93 8.92 5.51 6.71

10.40 13.44 9.33 8.57 7.08 8.11 13.34 6.58

8.82 7.70 12.22 7.46

(a) Construct an ordered stem-and-leaf diagram.

(b) Give a point estimate of the median m = π0.50.

(c) Find an approximate 95% confidence interval for m.

(d) Give a point estimate for the 40th percentile, π0.40.

(e) Find an approximate 90% confidence interval for
π0.40.

7.5-11. Using the weights of Verica’s 39 gold coins given
in Example 6.2-4, find approximate 95% confidence inter-
vals for π0.25, π0.5, and π0.75. Give the exact confidence
coefficients for the intervals.

7.5-12. Let Y1 < Y2 < · · · < Y8 be the order statistics of
eight independent observations from a continuous-type
distribution with 70th percentile π0.7 = 27.3.

(a) Determine P(Y7 < 27.3).

(b) Find P(Y5 < 27.3 < Y8).

7.6* MORE REGRESSION
In this section, we develop confidence intervals for important quantities in the linear
regression model using the notation and assumptions of Section 6.5. It can be shown
(Exercise 7.6-13) that

n∑
i=1

[Yi − α − β(xi − x )]2 =
n∑

i=1

{( α̂ − α) + ( β̂ − β)(xi − x )

+ [Yi − α̂ − β̂(xi − x )]}2

= n( α̂ − α)2 + ( β̂ − β)2
n∑

i=1

(xi − x )2

+
n∑

i=1

[Yi − α̂ − β̂(xi − x )]2. (7.6-1)

From the fact that Yi, α̂, and β̂ have normal distributions, it follows that each of

[Yi − α − β(xi − x )]2

σ 2
,

( α̂ − α)2[
σ 2

n

] , and
( β̂ − β)2[

σ 2∑n
i=1 (xi − x )2

]
has a chi-square distribution with one degree of freedom. Since Y1, Y2, . . . , Yn are
mutually independent, ∑n

i=1 [Yi − α − β(xi − x )]2

σ 2

is χ2(n). That is, the left-hand member of Equation 7.6-1 divided by σ 2 is χ2(n) and
is equal to the sum of two χ2(1) variables and∑n

i=1 [Yi − α̂ − β̂(xi − x )]2

σ 2
= nσ̂ 2

σ 2
≥ 0.

Thus, we might guess that nσ̂ 2/σ 2 is χ2(n−2). This is true, and moreover, α̂, β̂, and σ̂ 2

are mutually independent. [For a proof, see Hogg, McKean, and Craig, Introduction
to Mathematical Statistics, 7th ed. (Upper Saddle River, NJ: Prentice Hall, 2013).]
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Suppose now that we are interested in forming a confidence interval for β, the
slope of the line. We can use the fact that

T1 =

√√√√ n∑
i=1

(xi − x )2
(

β̂ − β

σ

)
√

nσ̂ 2

σ 2(n − 2)

= β̂ − β√
nσ̂ 2

(n − 2)
∑n

i=1 (xi − x )2

has a t distribution with n − 2 degrees of freedom. Therefore,

P

⎡⎢⎢⎢⎢⎣−tγ /2(n−2) ≤ β̂ − β√
nσ̂ 2

(n − 2)
∑n

i=1 (xi − x )2

≤ tγ /2(n−2)

⎤⎥⎥⎥⎥⎦ = 1 − γ ,

and it follows that⎡⎣β̂ − tγ /2(n−2)

√
nσ̂ 2

(n − 2)
∑n

i=1 (xi − x )2
,

β̂ + tγ /2(n−2)

√
nσ̂ 2

(n − 2)
∑n

i=1 (xi − x )2

⎤⎦
is a 100(1 − γ )% confidence interval for β.

Similarly,

T2 =

√
n( α̂ − α)

σ√
nσ̂ 2

σ 2(n − 2)

= α̂ − α√
σ̂ 2

n − 2

has a t distribution with n − 2 degrees of freedom. Thus, T2 can be used to make
inferences about α. (See Exercise 7.6-14.) The fact that nσ̂ 2/σ 2 has a chi-square
distribution with n − 2 degrees of freedom can be used to make inferences about the
variance σ 2. (See Exercise 7.6-15.)

We have noted that Ŷ = α̂ + β̂(x − x ) is a point estimate for the mean of Y for
some given x, or we could think of this as a prediction of the value of Y for this given
x. But how close is Ŷ to the mean of Y or to Y itself? We shall now find a confidence
interval for α+β(x−x ) and a prediction interval for Y, given a particular value of x.

To find a confidence interval for

E(Y) = μ(x) = α + β(x − x ),

let

Ŷ = α̂ + β̂ (x − x ).

Recall that Ŷ is a linear combination of normally and independently distributed
random variables α̂ and β̂, so Ŷ has a normal distribution. Furthermore,

E(Ŷ) = E[ α̂ + β̂ (x − x )]

= α + β(x − x )
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and

Var(Ŷ) = Var[̂α + β̂ (x − x )]

= σ 2

n
+ σ 2∑n

i=1 (xi − x )2
(x − x )2

= σ 2

[
1
n

+ (x − x )2∑n
i=1 (xi − x )2

]
.

Recall that the distribution of nσ̂ 2/σ 2 is χ2(n−2). Since α̂ and β̂ are independent of
σ̂ 2, we can form the t statistic

T =

α̂ + β̂(x − x ) − [α + β(x − x )]

σ

√
1
n

+ (x − x )2∑n
i=1 (xi − x )2√
nσ̂ 2

(n − 2)σ 2

,

which has a t distribution with r = n−2 degrees of freedom. Next we select tγ /2(n−2)
from Table VI in Appendix B so that

P[−tγ /2(n−2) ≤ T ≤ tγ /2(n−2)] = 1 − γ .

This becomes

P[̂α + β̂(x − x ) − ctγ /2(n−2) ≤ α + β(x − x )

≤ α̂ + β̂(x − x ) + ctγ /2(n−2)]

= 1 − γ ,

where

c =
√

nσ̂ 2

n − 2

√
1
n

+ (x − x )2∑n
i=1(xi − x )2

.

Thus, the endpoints for a 100(1 − γ )% confidence interval for μ(x) = α + β(x − x )
are

α̂ + β̂(x − x ) ± ctγ /2(n−2).

Note that the width of this interval depends on the particular value of x, because c
depends on x. (See Example 7.6-1.)

We have used (x1, y1), (x2, y2), . . . , (xn, yn) to estimate α and β. Suppose that we
are given a value of x, say, xn+1. A point estimate of the corresponding value of Y is

ŷn+1 = α̂ + β̂(xn+1 − x ).

However, ŷn+1 is just one possible value of the random variable

Yn+1 = α + β(xn+1 − x ) + εn+1.

What can we say about possible values for Yn+1? We shall now obtain a prediction
interval for Yn+1 when x = xn+1 that is similar to the confidence interval for the
mean of Y when x = xn+1.

We have

Yn+1 = α + β(xn+1 − x ) + εn+1,
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where εn+1 is N(0, σ 2). Now,

W = Yn+1 − α̂ − β̂ (xn+1 − x )

is a linear combination of normally and independently distributed random variables,
so W has a normal distribution. The mean of W is

E(W) = E[Yn+1 − α̂ − β̂ (xn+1 − x )]

= α + β(xn+1 − x ) − α − β(xn+1 − x ) = 0.

Since Yn+1, α̂ and β̂ are independent, the variance of W is

Var(W) = σ 2 + σ 2

n
+ σ 2∑n

i=1 (xi − x )2
(xn+1 − x )2

= σ 2

[
1 + 1

n
+ (xn+1 − x )2∑n

i=1 (xi − x )2

]
.

Recall that nσ̂ 2/[(n − 2)σ 2] is χ2(n−2). Since Yn+1, α̂, and β̂ are independent of σ̂ 2,
we can form the t statistic

T =

Yn+1 − α̂ − β̂ (xn+1 − x )

σ

√
1 + 1

n
+ (xn+1 − x )2∑n

i=1 (xi − x )2√
nσ̂ 2

(n − 2)σ 2

,

which has a t distribution with r = n − 2 degrees of freedom. Now we select a
constant tγ /2(n−2) from Table VI in Appendix B so that

P[−tγ /2(n−2) ≤ T ≤ tγ /2(n−2)] = 1 − γ .

Solving this inequality for Yn+1, we have

P[̂α + β̂ (xn+1 − x ) − d tγ /2(n−2) ≤ Yn+1

≤ α̂ + β̂(xn+1 − x ) + dtγ /2(n−2)]

= 1 − γ ,

where

d =
√

nσ̂ 2

n − 2

√
1 + 1

n
+ (xn+1 − x )2∑n

i=1(xi − x )2
.

Thus, the endpoints for a 100(1 − γ )% prediction interval for Yn+1 are

α̂ + β̂(xn+1 − x ) ± dtγ /2(n−2).

Observe that

d2 = c2 + nσ̂ 2

n − 2

when xn+1 = x, implying that the 100(1 − γ )% prediction interval for Y at X = x is
somewhat wider than the 100(1−γ )% prediction interval for μ(x). This makes sense,
since the difference between one observation of Y (at a given X) and its predictor
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tends to vary more than the difference between the mean of the entire population
of Y values (at the same X) and its estimator.

The collection of all 100(1−γ )% confidence intervals for {μ(x) : −∞ < x < ∞}
is called a pointwise 100(1 − γ )% confidence band for μ(x). Similarly, the collection
of all 100(1 − γ )% prediction intervals for {Y(x) = α + βx + ε : −∞ < x < ∞} is
called a pointwise 100(1 − γ )% prediction band for Y. Note, from the expressions
for c and d in the confidence and prediction intervals, respectively, that these bands
are narrowest at x = x.

We shall now use the data in Example 6.5-1 to illustrate a 95% confidence inter-
val for μ(x) and a 95% prediction interval for Y for a given value of x. To find such
intervals, we use Equations 6.5-1, 6.5-2, and 6.5-4.

Example
7.6-1

To find a 95% confidence interval for μ(x) using the data in Example 6.5-1, note
that we have already found that x = 68.3, α̂ = 81.3, β̂ = 561.1/756.1 = 0.7421, and
σ̂ 2 = 21.7709. We also need

n∑
i=1

(xi − x )2 =
n∑

i=1

x2
i −

(
1
n

)( n∑
i=1

xi

)2

= 47, 405 − 6832

10
= 756.1.

For 95% confidence, t0.025(8) = 2.306. When x = 60, the endpoints for a 95%
confidence interval for μ(60) are

81.3 + 0.7421(60 − 68.3) ±
⎡⎣√

10(21.7709)
8

√
1

10
+ (60 − 68.3)2

756.1

⎤⎦(2.306),

or

75.1406 ± 5.2589.

Similarly, when x = 70, the endpoints for a 95% confidence interval for μ(70) are

82.5616 ± 3.8761.

Note that the lengths of these intervals depend on the particular value of x. A point-
wise 95% confidence band for μ(x) is graphed in Figure 7.6-1(a) along with the
scatter diagram and ŷ = α̂ + β̂ (x − x ).

The endpoints for a 95% prediction interval for Y when x = 60 are

81.3 + 0.7421(60 − 68.3) ±
⎡⎣√

10(21.7709)
8

√
1.1 + (60 − 68.3)2

756.1

⎤⎦(2.306),

or

75.1406 ± 13.1289.

Note that this interval is much wider than the confidence interval for μ(60). In
Figure 7.6-1(b), the pointwise 95% prediction band for Y is graphed along with the
scatter diagram and the least squares regression line.
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Figure 7.6-1 A pointwise 95% (a) confidence band for μ(x) and (b) prediction band for Y

We now generalize the simple regression model to the multiple regression case.
Suppose we observe several x-values—say, x1, x2, . . . , xk—along with the y-value. For
example, suppose that x1 equals the student’s ACT composite score, x2 equals the
student’s high school class rank, and y equals the student’s first-year GPA in col-
lege. We want to estimate a regression function E(Y) = μ(x1, x2, . . . , xk) from some
observed data. If

μ(x1, x2, . . . , xk) = β1x1 + β2x2 + · · · + βkxk,

then we say that we have a linear model because this expression is linear in the
coefficients β1, β2, . . . , βk.

To illustrate, note that the model in Section 6.5 is linear in α = β1 and β = β2,
with x1 = 1 and x2 = x, giving the mean α + βx. (For convenience, there the mean
of the x-values was subtracted from x.) Suppose, however, that we had wished to
use the cubic function β1 + β2x + β3x2 + β4x3 as the mean. This cubic expression
still provides a linear model (i.e., linear in the β-values), and we would take x1 = 1,
x2 = x, x3 = x2, and x4 = x3.

Say our n observation points are

(x1j, x2j, . . . , xkj, yj), j = 1, 2, . . . , n.

To fit the linear model β1x1 + β2x2 + · · · + βkxk by the method of least squares, we
minimize

G =
n∑

j=1

(yj − β1x1j − β2x2j − · · · − βkxkj)2.

If we equate the k first order partial derivatives

∂G
∂βi

=
n∑

j=1

(−2)(yj − β1x1j − β2x2j − · · · − βkxkj)(xij), i = 1, 2, . . . , k,
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to zero, we obtain the k normal equations

β1

n∑
j=1

x2
1j + β2

n∑
j=1

x1jx2j + · · · + βk

n∑
j=1

x1jxkj =
n∑

j=1

x1jyj,

β1

n∑
j=1

x2jx1j + β2

n∑
j=1

x2
2j + · · · + βk

n∑
j=1

x2jxkj =
n∑

j=1

x2jyj,

...
...

. . .
...

...

β1

n∑
j=1

xkjx1j + β2

n∑
j=1

xkjx2j + · · · + βk

n∑
j=1

x2
kj =

n∑
j=1

xkjyj.

The solution of the preceding k equations provides the least squares estimates of
β1, β2, . . . , βk. These estimates are also maximum likelihood estimates of β1, β2, . . . ,
βk, provided that the random variables Y1, Y2, . . . , Yn are mutually independent and
Yj is N(β1x1j + β2x2j + · · · + βkxkj, σ 2), j = 1, 2, . . . , n.

Example
7.6-2

By the method of least squares, we fit y = β1x1 + β2x2 + β3x3 to the five observed
points (x1, x2, x3, y):

(1, 1, 0, 4), (1, 0, 1, 3), (1, 2, 3, 2), (1, 3, 0, 6), (1, 0, 0, 1).

Note that x1 = 1 in each point, so we are really fitting y = β1 + β2x2 + β3x3. Since

5∑
j=1

x2
1j = 5,

5∑
j=1

x1jx2j = 6,
5∑

j=1

x1jx3j = 4,
5∑

j=1

x1jyj = 16,

5∑
j=1

x2jx1j = 6,
5∑

j=1

x2
2j = 14,

5∑
j=1

x2jx3j = 6,
5∑

j=1

x2jyj = 26,

5∑
j=1

x3jx1j = 4,
5∑

j=1

x3jx2j = 6,
5∑

j=1

x2
3j = 10,

5∑
j=1

x3jyj = 9,

the normal equations are

5β1 + 6β2 + 4β3 = 16,

6β1 + 14β2 + 6β3 = 26,

4β1 + 6β2 + 10β3 = 9.

Solving these three linear equations in three unknowns, we obtain

β̂1 = 274
112

, β̂2 = 127
112

, β̂3 = − 85
112

.

Thus, the least squares fit is

y = 274x1 + 127x2 − 85x3

112
.

If x1 always equals 1, then the equation reads

y = 274 + 127x2 − 85x3

112
.
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It is interesting to observe that the usual two-sample problem is actually a lin-
ear model. Let β1 = μ1 and β2 = μ2, and consider n pairs of (x1, x2) that equal
(1, 0) and m pairs that equal (0, 1). This would require each of the first n variables
Y1, Y2, . . . , Yn to have the mean

β1 · 1 + β2 · 0 = β1 = μ1

and the next m variables Yn+1, Yn+2, . . . , Yn+m to have the mean

β1 · 0 + β2 · 1 = β2 = μ2.

This is the background of the two-sample problem, but with the usual X1, X2, . . . , Xn
and Y1, Y2, . . . , Ym replaced by Y1, Y2, . . . , Yn and Yn+1, Yn+2, . . . , Yn+m,
respectively.

Exercises

7.6-1. The mean of Y when x = 0 in the simple lin-
ear regression model is α − β x = α1. The least squares
estimator of α1 is α̂ − β̂ x = α̂1.

(a) Find the distribution of α̂1 under the usual model
assumptions.

(b) Obtain an expression for a 100(1 − γ )% two-sided
confidence interval for α1.

7.6-2. Obtain a two-sided 100(1 − γ )% prediction inter-
val for the average of m future independent observations
taken at the same X-value, x∗.

7.6-3. For the data given in Exercise 6.5-3, with the usual
assumptions,

(a) Find a 95% confidence interval for μ(x) when x =
68, 75, and 82.

(b) Find a 95% prediction interval for Y when x = 68, 75,
and 82.

7.6-4. For the data given in Exercise 6.5-4, with the usual
assumptions,

(a) Find a 95% confidence interval for μ(x) when x = 2, 3,
and 4.

(b) Find a 95% prediction interval for Y when x = 2, 3,
and 4.

7.6-5. For the cigarette data in Exercise 6.5-7, with the
usual assumptions,

(a) Find a 95% confidence interval for μ(x) when x =
5, 10, and 15.

(b) Determine a 95% prediction interval for Y when x =
5, 10, and 15.

7.6-6. A computer center recorded the number of pro-
grams it maintained during each of 10 consecutive years.

(a) Calculate the least squares regression line for the data
shown.

(b) Plot the points and the line on the same graph.

(c) Find a 95% prediction interval for the number of
programs in year 11 under the usual assumptions.

Year Number of Programs

1 430

2 480

3 565

4 790

5 885

6 960

7 1200

8 1380

9 1530

10 1591

7.6-7. For the ACT scores in Exercise 6.5-6, with the usual
assumptions,

(a) Find a 95% confidence interval for μ(x) when x =
17, 20, 23, 26, and 29.

(b) Determine a 90% prediction interval for Y when x =
17, 20, 23, 26, and 29.

7.6-8. By the method of least squares, fit the regres-
sion plane y = β1 + β2x1 + β3x2 to the following 12
observations of (x1, x2, y): (1, 1, 6), (0, 2, 3), (3, 0, 10),
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(–2, 0, –4), (–1, 2, 0), (0, 0, 1), (2, 1, 8), (–1, –1, –2),
(0, –3, –3), (2, 1, 5), (1, 1, 1), (–1, 0, –2).

7.6-9. By the method of least squares, fit the cubic equa-
tion y = β1+β2x+β3x2+β4x3 to the following 10 observed
data points (x, y): (0, 1), (–1, –3), (0, 3), (1, 3), (–1, –1),
(2, 10), (0, 0), (–2, –9), (–1, –2), (2, 8).

7.6-10. We would like to fit the quadratic curve y = β1 +
β2x + β3x2 to a set of points (x1, y1), (x2, y2), . . . , (xn, yn)
by the method of least squares. To do this, let

h(β1, β2, β3) =
n∑

i=1

(yi − β1 − β2xi − β3x2
i )2.

(a) By setting the three first partial derivatives of h with
respect to β1, β2, and β3 equal to 0, show that β1, β2,
and β3 satisfy the following set of equations (called
normal equations), all of which are sums going from 1
to n:

β1n + β2

∑
xi + β3

∑
x2

i =
∑

yi;

β1

∑
xi + β2

∑
x2

i + β3

∑
x3

i =
∑

xi yi;

β1

∑
x2

i + β2

∑
x3

i + β3

∑
x4

i =
∑

x2
i yi.

(b) For the data

(6.91, 17.52) (4.32, 22.69) (2.38, 17.61) (7.98, 14.29)

(8.26, 10.77) (2.00, 12.87) (3.10, 18.63) (7.69, 16.77)

(2.21, 14.97) (3.42, 19.16) (8.18, 11.15) (5.39, 22.41)

(1.19, 7.50) (3.21, 19.06) (5.47, 23.89) (7.35, 16.63)

(2.32, 15.09) (7.54, 14.75) (1.27, 10.75) (7.33,17.42)

(8.41, 9.40) (8.72, 9.83) (6.09, 22.33) (5.30, 21.37)

(7.30, 17.36)

n = 25,
∑

xi = 133.34,
∑

x2
i = 867.75,

∑
x3

i =
6197.21,

∑
x4

i = 46,318.88,
∑

yi = 404.22,
∑

xiyi =
2138.38, and

∑
x2

i yi = 13,380.30. Show that
a = −1.88, b = 9.86, and c = −0.995.

(c) Plot the points and the linear regression line for these
data.

(d) Calculate and plot the residuals. Does linear regres-
sion seem to be appropriate?

(e) Show that the least squares quadratic regression line
is ŷ = −1.88 + 9.86x − 0.995x2.

(f) Plot the points and this least squares quadratic regres-
sion curve on the same graph.

(g) Plot the residuals for quadratic regression and com-
pare this plot with that in part (d).

7.6-11. (The information presented in this exercise comes
from the Westview Blueberry Farm and National Oceanic
and Atmospheric Administration Reports [NOAA].) For
the following paired data, (x, y), x gives the Holland,
Michigan, rainfall for June, and y gives the blueberry
production in thousands of pounds from the Westview
Blueberry Farm:

(4.11, 56.2) (5.49, 45.3) (5.35, 31.0) (6.53, 30.1)

(5.18, 40.0) (4.89, 38.5) (2.09, 50.0) (1.40, 45.8)

(4.52, 45.9) (1.11, 32.4) (0.60, 18.2) (3.80, 56.1)

The data are from 1971 to 1989 for those years in which
the last frost occurred May 10 or earlier.

(a) Find the correlation coefficient for these data.

(b) Find the least squares regression line.

(c) Make a scatter plot of the data with the least squares
regression line on the plot.

(d) Calculate and plot the residuals. Does linear regres-
sion seem to be appropriate?

(e) Find the least squares quadratic regression curve.

(f) Calculate and plot the residuals. Does quadratic
regression seem to be appropriate?

(g) Give a short interpretation of your results.

7.6-12. Explain why the model μ(x) = β1eβ2x is not a
linear model. Would taking the logarithms of both sides
yield a linear model for ln μ(x)?

7.6-13. Show that
n∑

i=1

[Yi − α − β(xi − x )]2

= n( α̂ − α)2 + ( β̂ − β)2
n∑

i=1

(xi − x )2

+
n∑

i=1

[Yi − α̂ − β̂(xi − x )]2.

7.6-14. Show that the endpoints for a 100(1 − γ )% confi-
dence interval for α are

α̂ ± tγ /2(n−2)

√
σ̂ 2

n − 2
.

7.6-15. Show that a 100(1 − γ )% confidence interval for
σ 2 is [

nσ̂ 2

χ2
γ /2(n−2)

,
nσ̂ 2

χ2
1−γ /2(n−2)

]
.

7.6-16. Find 95% confidence intervals for α, β, and σ 2 for
the predicted and earned grades data in Exercise 6.5-4.
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7.6-17. Find 95% confidence intervals for α, β, and σ 2 for
the midterm and final exam scores data in Exercise 6.5-3.

7.6-18. Using the cigarette data in Exercise 6.5-7, find
95% confidence intervals for α, β, and σ 2 under the usual
assumptions.

7.6-19. Using the data in Exercise 6.5-8(a), find 95%
confidence intervals for α, β, and σ 2.

7.6-20. Using the ACT scores in Exercise 6.5-6, find 95%
confidence intervals for α, β, and σ 2 under the usual
assumptions.

7.7* RESAMPLING METHODS
Sampling and resampling methods have become more useful in recent years due to
the power of computers. These methods are even used in introductory courses to
convince students that statistics have distributions—that is, that statistics are random
variables with distributions. At this stage in the book, the reader should be convinced
that this is true, although we did use some sampling in Section 5.6 to help sell the idea
that the sample mean has an approximate normal distribution.

Resampling methods, however, are used for more than showing that statistics
have certain distributions. Rather, they are needed in finding approximate distribu-
tions of certain statistics that are used to make statistical inferences. We already
know a great deal about the distribution of X, and resampling methods are not
needed for X. In particular, X has an approximate normal distribution with mean μ

and standard deviation σ/
√

n. Of course, if the latter is unknown, we can estimate
it by s/

√
n and note that ( X − μ)/(s/

√
n ) has an approximate N(0, 1) distribution,

provided that the sample size is large enough and the underlying distribution is not
too badly skewed with a long, heavy tail.

We know something about the distribution of S2 if the random sample arises
from a normal distribution or one fairly close to it. However, the statistic S2 is not
very robust, in that its distribution changes a great deal as the underlying distribution
changes. It is not like X, which always has an approximate normal distribution, pro-
vided that the mean μ and variance σ 2 of the underlying distribution exist. So what
do we do about distributions of statistics like the sample variance S2, whose distribu-
tion depends so much on having a given underlying distribution? We use resampling
methods that essentially substitute computation for theory. We need to have some
idea about the distributions of these various estimators to find confidence intervals
for the corresponding parameters.

Let us now explain resampling. Suppose that we need to find the distribution of
some statistic, such as S2, but we do not believe that we are sampling from a normal
distribution. We observe the values of X1, X2, . . . , Xn to be x1, x2, . . . , xn. Actually, if
we know nothing about the underlying distribution, then the empirical distribution
found by placing the weight 1/n on each xi is the best estimate of that distribu-
tion. Therefore, to get some idea about the distribution of S2, let us take a random
sample of size n from this empirical distribution; then we are sampling from the n
values with replacement. We compute S2 for that sample; say it is s2

1. We then do
it again, getting s2

2. And again, we compute s2
3. We continue to do this a large num-

ber of times, say, N, where N might be 1000, 2000, or even 10,000. Once we have
these N values of S2, we can construct a histogram, a stem-and-leaf display, or a q–q
plot—anything to help us get some information about the distribution of S2 when
the sample arises from this empirical distribution, which is an estimate of the real
underlying distribution. Clearly, we must use the computer for all of this sampling.
We illustrate the resampling procedure by using, not S2, but a statistic called the
trimmed mean.
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Although we usually do not know the underlying distribution, we state that, in
this illustration, it is of the Cauchy type, because there are certain basic ideas we
want to review or introduce for the first time. The pdf of the Cauchy is

f (x) = 1
π(1 + x2)

, −∞ < x < ∞.

The cdf is

F(x) =
∫ x

−∞
1

π(1 + w2)
dw = 1

π
arctan x + 1

2
, −∞ < x < ∞.

If we want to generate some X-values that have this distribution, we let Y have the
uniform distribution U(0, 1) and define X by

Y = F(X) = 1
π

arctan X + 1
2

or, equivalently,

X = tan
[
π

(
Y − 1

2

)]
.

We can generate 40 values of Y on the computer and then calculate the 40 values
of X. Let us now add θ = 5 to each X-value to create a sample from a Cauchy
distribution with a median of 5. That is, we have a random sample of 40 W-values,
where W = X +5. We will consider some statistics used to estimate the median, θ , of
this distribution. Of course, usually the value of the median is unknown, but here we
know that it is equal to θ = 5, and our statistics are estimates of this known number.
These 40 values of W are as follows, after ordering:

−7.34 −5.92 −2.98 0.19 0.77 0.95 2.86 3.17 3.76 4.20

4.20 4.27 4.31 4.42 4.60 4.73 4.84 4.87 4.90 4.96

4.98 5.00 5.09 5.09 5.14 5.22 5.23 5.42 5.50 5.83

5.94 5.95 6.00 6.01 6.24 6.82 9.62 10.03 18.27 93.62

It is interesting to observe that many of these 40 values are between 3 and 7 and
hence are close to θ = 5; it is almost as if they had arisen from a normal distribution
with mean μ = 5 and σ 2 = 1. But then we note the outliers; these very large or
small values occur because of the heavy and long tails of the Cauchy distribution
and suggest that the sample mean X is not a very good estimator of the middle. And
it is not in this sample, because x = 6.67. In a more theoretical course, it can be shown
that, due to the fact that the mean μ and the variance σ 2 do not exist for a Cauchy
distribution, X is not any better than a single observation Xi in estimating the median
θ . The sample median m̃ is a much better estimate of θ , as it is not influenced by
the outliers. Here the median equals 4.97, which is fairly close to 5. Actually, the
maximum likelihood estimator found by maximizing

L(θ) =
40∏

i=1

1
π [1 + (xi − θ)2]

is extremely good but requires difficult numerical methods to compute. Then
advanced theory shows that, in the case of a Cauchy distribution, a trimmed mean,
found by ordering the sample, discarding the smallest and largest 3/8 = 37.5% of the
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sample, and averaging the middle 25%, is almost as good as the maximum likelihood
estimator but is much easier to compute. This trimmed mean is usually denoted by
X0.375; we use Xt for brevity, and here xt = 4.96. For this sample, it is not quite as
good as the median; but, for most samples, it is better. Trimmed means are often very
useful and many times are used with a smaller trimming percentage. For example,
in sporting events such as skating and diving, often the smallest and largest of the
judges’ scores are discarded.

For this Cauchy example, let us resample from the empirical distribution created
by placing the “probability” 1/40 on each of our 40 observations. With each of these
samples, we find our trimmed mean Xt. That is, we order the observations of each
resample and average the middle 25% of the order statistics—namely, the middle 10
order statistics. We do this N = 1000 times, thus obtaining N = 1000 values of Xt.
These values are summarized with the histogram in Figure 7.7-1(a).

From this resampling procedure, which is called bootstrapping, we have some
idea about the distribution if the sample arises from the empirical distribution and,
hopefully, from the underlying distribution, which is approximated by the empirical
distribution. While the distribution of the sample mean X is not normal if the sample
arises from a Cauchy-type distribution, the approximate distribution of Xt is normal.
From the histogram of trimmed mean values in Figure 7.7-1(a), that looks to be the
case. This observation is supported by the q–q plot in Figure 7.7-1(b) of the quantiles
of a standard normal distribution versus those of the 1000 xt-values: The plot is very
close to being a straight line.

How do we find a confidence interval for θ? Recall that the middle of the dis-
tribution of Xt − θ is zero. So a guess at θ would be the amount needed to move
the histogram of Xt-values over so that zero is more or less in the middle of the
translated histogram. We recognize that this histogram was generated from the orig-
inal sample X1, X2, . . . , X40 and thus is really only an estimate of the distribution
of Xt.

We could get a point estimate of θ by moving it over until its median (or mean)
is at zero. Clearly, however, some error is incurred in doing so—and we really want
some bounds for θ as given by a confidence interval.

To find that confidence interval, let us proceed as follows: In the N = 1000
resampled values of Xt, we find two points—say, c and d—such that about 25 val-
ues are less than c and about 25 are greater than d. That is, c and d are about on
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Figure 7.7-1 N = 1000 observations of trimmed means
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the respective 2.5th and 97.5th percentiles of the empirical distribution of these
N = 1000 resampled Xt-values. Thus, θ should be big enough so that over 2.5%
of the Xt-values are less than c and small enough so that over 2.5% of the Xt-values
are greater than d. This requires that c < θ and θ < d; thus, [c, d] serves as an
approximate 95% confidence interval for θ as found by the percentile method. With
our bootstrapped distribution of N = 1000 Xt-values, this 95% confidence inter-
val for θ runs from 4.58 to 5.30, and these two points are marked on the histogram
and the q–q plot. Clearly, we could change this percentage to other values, such
as 90%.

This percentile method, associated with the bootstrap method, is a nonparamet-
ric procedure, as we make no assumptions about the underlying distribution. It is
interesting to compare the answer it produces with that obtained by using the order
statistics Y1 < Y2 < · · · < Y40. If the sample arises from a continuous-type dis-
tribution, then, with the use of a calculator or computer, we have, when θ is the
median,

P(Y14 < θ < Y27) =
26∑

k=14

(
40
k

)(
1
2

)40

= 0.9615.

(See Section 7.5.) Since, in our illustration, Y14 = 4.42 and Y27 = 5.23, the interval
[4.42, 5.23] is an approximate 96% confidence interval for θ . Of course, θ = 5 is
included in each of the two confidence intervals. In this case, the bootstrap confi-
dence interval is a little more symmetric about θ = 5 and somewhat shorter, but it
did require much more work.

We have now illustrated bootstrapping, which allows us to substitute computa-
tion for theory to make statistical inferences about characteristics of the underlying
distribution. This method is becoming more important as we encounter complicated
data sets that clearly do not satisfy certain underlying assumptions. For example,
consider the distribution of T = ( X − μ)/(S/

√
n ) when the random sample arises

from an exponential distribution that has pdf f (x) = e−x, 0 < x < ∞, with mean
μ = 1. First, we will not use resampling, but we will simulate the distribution of T
when the sample size n = 16 by taking N = 1000 random samples from this known
exponential distribution. Here

F(x) =
∫ x

0
e−w dw = 1 − e−x, 0 < x < ∞.

So Y = F(X) means

X = − ln(1 − Y)

and X has that given exponential distribution with μ = 1, provided that Y has the
uniform distribution U(0, 1). With the computer, we select n = 16 values of Y,
determine the corresponding n = 16 values of X, and, finally, compute the value
of T = ( X − 1)/(S/

√
16 )—say, T1. We repeat this process over and over again,

obtaining not only T1, but also the values of T2, T3, . . . , T1000. We have done this
and display the histogram of the 1000 T-values in Figure 7.7-2(a). Moreover the q–q
plot with quantiles of N(0, 1) on the y-axis is displayed in Figure 7.7-2(b). Both the
histogram and the q–q plot show that the distribution of T in this case is skewed to
the left.

In the preceding illustration, we knew the underlying distribution. Let us now
sample from the exponential distribution with mean μ = 1, but add a value θ to
each X. Thus, we will try to estimate the new mean θ + 1. The authors know the



Section 7.7* Resampling Methods 351

0.1

0.2

0.3

0.4

–7 –6 –5 –4 –3 –2 –1 0 1 2

−3

−2

−1

1

2

3

–7 –6 –5 –4 –3 –2 –1 1 2

(a) 1000 observations of T (b) N(0,1) quantiles versus T quantiles

Figure 7.7-2 T observations from an exponential distribution

value of θ , but the readers do not know it at this time. The observed 16 values of this
random sample are

11.9776 9.3889 9.9798 13.4676 9.2895 10.1242 9.5798 9.3148

9.0605 9.1680 11.0394 9.1083 10.3720 9.0523 13.2969 10.5852

At this point we are trying to find a confidence interval for μ = θ + 1, and
we pretend that we do not know that the underlying distribution is exponential.
Actually, this is the case in practice: We do not know the underlying distribution. So
we use the empirical distribution as the best guess of the underlying distribution; it
is found by placing the weight 1/16 on each of the observations. The mean of this
empirical distribution is x = 10.3003. Therefore, we obtain some idea about the
distribution of T by now simulating

T = X − 10.3003

S/
√

16

with N = 1000 random samples from the empirical distribution.
We obtain t1, t2, . . . , t1000, and these values are used to construct a histogram,

shown in Figure 7.7-3(a), and a q–q plot, illustrated in Figure 7.7-3(b). These two
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Figure 7.7-3 T observations from an empirical distribution
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figures look somewhat like those in Figure 7.7-2. Moreover, the 0.025th and 0.975th
quantiles of the 1000 t-values are c = −3.1384 and d = 1.8167, respectively.

Now we have some idea about the 2.5th and 97.5th percentiles of the T
distribution. Hence, as a very rough approximation, we can write

P

(
−3.1384 ≤ X − μ

S/
√

16
≤ 1.8167

)
≈ 0.95.

This formula leads to the rough approximate 95% confidence interval

[ x − 1.8167s/
√

16, x − (−3.1384)s/
√

16 ]

once the x and s of the original sample are substituted. With x = 10.3003 and
s = 1.4544, we have

[10.3003 − 1.8167(1.4544)/4, 10.3003 + 3.1384(1.4544)/4] = [9.6397, 11.4414]

as a 95% approximate confidence interval for μ = θ + 1. Note that, because we
added θ = 9 to each x-value, the interval does cover θ + 1 = 10.

It is easy to see how this procedure gets its name, because it is like “pulling
yourself up by your own bootstraps,” with the empirical distribution acting as the
bootstraps.

Exercises

7.7-1. If time and computing facilities are available, con-
sider the following 40 losses, due to wind-related catastro-
phes, that were recorded to the nearest $1 million (these
data include only those losses of $2 million or more, and,
for convenience, they have been ordered and recorded in
millions of dollars):

2 2 2 2 2 2 2 2 2 2

2 2 3 3 3 3 4 4 4 5

5 5 5 6 6 6 6 8 8 9

15 17 22 23 24 24 25 27 32 43

To illustrate bootstrapping, take resamples of size n = 40
as many as N = 100 times, computing the value of
T = ( X − 5)/(S/

√
40 ) each time. Here the value 5 is the

median of the original sample. Construct a histogram of
the bootstrapped values of T.

7.7-2. Consider the following 16 observed values,
rounded to the nearest tenth, from the exponential
distribution that was given in this section:

12.0 9.4 10.0 13.5 9.3 10.1 9.6 9.3

9.1 9.2 11.0 9.1 10.4 9.1 13.3 10.6

(a) Take resamples of size n = 16 from these observa-
tions about N = 200, times and compute s2 each
time. Construct a histogram of these 200 bootstrapped
values of S2.

(b) Simulate N = 200 random samples of size n = 16
from an exponential distribution with θ equal to the
mean of the data in part (a) minus 9. For each sam-
ple, calculate the value of s2. Construct a histogram of
these 200 values of S2.

(c) Construct a q–q plot of the two sets of sample vari-
ances and compare these two empirical distributions
of S2.

7.7-3. Refer to the data in Example 7.5-1 and take resam-
ples of size n = 9 exactly N = 1000 times and compute
the fifth order statistic, y5, each time.

(a) Construct a histogram of these N = 1000 fifth order
statistics.

(b) Find a point estimate of the median, π0.50.

(c) Also, calculate a 96% confidence interval for π0.50
by finding two numbers, the first of which has
(1000)(0.02) = 20 values less than it and the second
has 20 values greater than it. How does this interval
compare to the one given in that example?
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7.7-4. Refer to the data in Example 7.5-2 and take resam-
ples of size n = 27 exactly N = 500 times and compute
the seventh order statistic, y7, each time.

(a) Construct a histogram of these N = 500 seventh order
statistics.

(b) Give a point estimate of π0.25.

(c) Find an 82% confidence interval for π0.25 by finding
two numbers, the first of which has (500)(0.09) = 45
values less than it and the second has 205 values
greater than it.

(d) How does this interval compare to the one given in
that example?

7.7-5. Let X1, X2, . . . , X21 and Y1, Y2, . . . , X21 be inde-
pendent random samples of sizes n = 21 and m = 21
from N(0, 1) distributions. Then F = S2

X/S2
Y has an F

distribution with 20 and 20 degrees of freedom.

(a) Illustrate this situation empirically by simulating 100
observations of F.
(i) Plot a relative frequency histogram with the

F(20, 20) pdf superimposed.
(ii) Construct a q–q plot of the quantiles of F(20, 20)

versus the order statistics of your simulated data.
Is the plot linear?

(b) Consider the following 21 observations of the N(0, 1)
random variable X:

0.1616 −0.8593 0.3105 0.3932 −0.2357 0.9697 1.3633

−0.4166 0.7540 −1.0570 −0.1287 −0.6172 0.3208 0.9637

0.2494 −1.1907 −2.4699 −0.1931 1.2274 −1.2826 −1.1532

Consider also the following 21 observations of the
N(0, 1) random variable Y:

0.4419 −0.2313 0.9233 −0.1203 1.7659 −0.2022 0.9036

−0.4996 −0.8778 −0.8574 2.7574 1.1033 0.7066 1.3595

−0.0056 −0.5545 −0.1491 −0.9774 −0.0868 1.7462 −0.2636

Sampling with replacement, resample with a sample
of size 21 from each of these sets of observations.
Calculate the value of w = s2

x/s2
y. Repeat in order to

simulate 100 observations of W from these two empir-
ical distributions. Use the same graphical comparisons
that you used in part (a) to see if the 100 observations
represent observations from an approximate F(20, 20)
distribution.

(c) Consider the following 21 observations of the expo-
nential random variable X with mean 1:

0.6958 1.6394 0.2464 1.5827 0.0201 0.4544 0.8427

0.6385 0.1307 1.0223 1.3423 1.6653 0.0081 5.2150

0.5453 0.08440 1.2346 0.5721 1.5167 0.4843 0.9145

Consider also the following 21 observations of the
exponential random variable Y with mean 1:

1.1921 0.3708 0.0874 0.5696 0.1192 0.0164 1.6482

0.2453 0.4522 3.2312 1.4745 0.8870 2.8097 0.8533

0.1466 0.9494 0.0485 4.4379 1.1244 0.2624 1.3655

Sampling with replacement, resample with a sample
of size 21 from each of these sets of observations.
Calculate the value of w = s2

x/s2
y. Repeat in order to

simulate 100 observations of W from these two empir-
ical distributions. Use the same graphical comparisons
that you used in part (a) to see if the 100 observations
represent observations from an approximate F(20, 20)
distribution.

7.7-6. The following 54 pairs of data give, for Old Faithful
geyser, the duration in minutes of an eruption and the
time in minutes until the next eruption:

(2.500, 72) (4.467, 88) (2.333, 62) (5.000, 87) (1.683, 57) (4.500, 94)

(4.500, 91) (2.083, 51) (4.367, 98) (1.583, 59) (4.500, 93) (4.550, 86)

(1.733, 70) (2.150, 63) (4.400, 91) (3.983, 82) (1.767, 58) (4.317, 97)

(1.917, 59) (4.583, 90) (1.833, 58) (4.767, 98) (1.917, 55) (4.433, 107)

(1.750, 61) (4.583, 82) (3.767, 91) (1.833, 65) (4.817, 97) (1.900, 52)

(4.517, 94) (2.000, 60) (4.650, 84) (1.817, 63) (4.917, 91) (4.000, 83)

(4.317, 84) (2.133, 71) (4.783, 83) (4.217, 70) (4.733, 81) (2.000, 60)

(4.717, 91) (1.917, 51) (4.233, 85) (1.567, 55) (4.567, 98) (2.133, 49)

(4.500, 85) (1.717, 65) (4.783, 102) (1.850, 56) (4.583, 86) (1.733, 62)

(a) Calculate the correlation coefficient, and construct a
scatterplot, of these data.

(b) To estimate the distribution of the correlation coef-
ficient, R, resample 500 samples of size 54 from the
empirical distribution, and for each sample, calculate
the value of R.

(c) Construct a histogram of these 500 observations of R.

(d) Simulate 500 samples of size 54 from a bivariate
normal distribution with correlation coefficient equal
to the correlation coefficient of the geyser data.
For each sample of 54, calculate the correlation
coefficient.

(e) Construct a histogram of the 500 observations of the
correlation coefficient.

(f) Construct a q–q plot of the 500 observations of R from
the bivariate normal distribution of part (d) versus the
500 observations in part (b). Do the two distributions
of R appear to be about equal?
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HISTORICAL COMMENTS One topic among many important ones in this chap-
ter is regression, a technique that leads to a mathematical model of the result of some
process in terms of some associated (explanatory) variables. We create such models
to give us some idea of the value of a response variable if we know the values of
certain explanatory variables. If we have an idea of the form of the equation relating
these variables, then we can “fit” this model to the data; that is, we can determine
approximate values for the unknown parameters in the model from the data. Now,
no model is exactly correct; but, as the well-known statistician George Box observed,
“Some are useful.” That is, while models may be wrong and we should check them
as best we can, they may be good enough approximations to shed some light on the
issues of interest.

Once satisfactory models are found, they may be used

1. to determine the effect of each explanatory variable (some may have very little
effect and can be dropped),

2. to estimate the response variable for given values of important explanatory
variables,

3. to predict the future, such as upcoming sales (although this sometimes should
be done with great care),

4. to often substitute a cheaper explanatory variable for an expensive one that
is difficult to obtain [such as chemical oxygen demand (COD) for biological
oxygen demand (BOD)].

The name bootstrap and the resulting technique were first used by Brad Efron
of Stanford University. Efron knew that the expression “to pull oneself up by his
or her own bootstraps” seems to come from The Surprising Adventures of Baron
Munchausen by Rudolph Erich Raspe. The baron had fallen from the sky and found
himself in a hole 9 fathoms deep and had no idea how to get out. He comments as
follows: “Looking down I observed that I had on a pair of boots with exceptionally
sturdy straps. Grasping them firmly, I pulled with all my might. Soon I had hoisted
myself to the top and stepped out on terra firma without further ado.”

Of course, in statistical bootstrapping, statisticians pull themselves up by their
bootstraps (the empirical distributions) by recognizing that the empirical distribu-
tion is the best estimate of the underlying distribution without a lot of other assump-
tions. So they use the empirical distribution as if it is the underlying distribution to
find approximate distributions of statistics of interest.
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8.1 TESTS ABOUT ONE MEAN
We begin this chapter on tests of statistical hypotheses with an application in which
we define many of the terms associated with testing.

Example
8.1-1

Let X equal the breaking strength of a steel bar. If the bar is manufactured by pro-
cess I, X is N(50, 36), i.e., X is normally distributed with μ = 50 and σ 2 = 36. It is
hoped that if process II (a new process) is used, X will be N(55, 36). Given a large
number of steel bars manufactured by process II, how could we test whether the
five-unit increase in the mean breaking strength was realized?

In this problem, we are assuming that X is N(μ, 36) and μ is equal to 50 or 55.
We want to test the simple null hypothesis H0: μ = 50 against the simple alterna-
tive hypothesis H1: μ = 55. Note that each of these hypotheses completely specifies
the distribution of X. That is, H0 states that X is N(50, 36) and H1 states that X
is N(55, 36). (If the alternative hypothesis had been H1: μ > 50, it would be a
composite hypothesis, because it is composed of all normal distributions with = 36
and means greater than 50.) In order to test which of the two hypotheses, H0 or
H1, is true, we shall set up a rule based on the breaking strengths x1, x2, . . . , xn
of n bars (the observed values of a random sample of size n from this new nor-
mal distribution). The rule leads to a decision to accept or reject H0; hence, it is
necessary to partition the sample space into two parts—say, C and C′—so that if
(x1, x2, . . . , xn) ∈ C, H0 is rejected, and if (x1, x2, . . . , xn) ∈ C′, H0 is accepted
(not rejected). The rejection region C for H0 is called the critical region for the
test. Often, the partitioning of the sample space is specified in terms of the val-
ues of a statistic called the test statistic. In this example, we could let X be the
test statistic and, say, take C = {(x1, x2, . . . , xn) : x ≥ 53}; that is, we will reject
H0 if x ≥ 53. If (x1, x2, . . . , xn) ∈ C when H0 is true, H0 would be rejected when
it is true, a Type I error. If (x1, x2, . . . , xn) ∈ C′ when H1 is true, H0 would be
accepted (i.e., not rejected) when in fact H1 is true, a Type II error. The proba-
bility of a Type I error is called the significance level of the test and is denoted by
α. That is, α = P[(X1, X2, . . . , Xn) ∈ C; H0] is the probability that (X1, X2, . . . , Xn)

355
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falls into C when H0 is true. The probability of a Type II error is denoted by β; that
is, β = P[(X1, X2, . . . , Xn) ∈ C′; H1] is the probability of accepting (failing to reject)
H0 when it is false.

As an illustration, suppose n = 16 bars were tested and C = {x : x ≥ 53}. Then
X is N(50, 36/16) when H0 is true and is N(55, 36/16) when H1 is true. Thus,

α = P( X ≥ 53; H0) = P

(
X − 50

6/4
≥ 53 − 50

6/4
; H0

)

= 1 − 
(2) = 0.0228

and

β = P( X < 53; H1) = P

(
X − 55

6/4
<

53 − 55
6/4

; H1

)

= 


(
−4

3

)
= 1 − 0.9087 = 0.0913.

Figure 8.1-1 shows the graphs of the probability density functions of X when H0 and
H1, respectively, are true. Note that by changing the critical region, C, it is possible
to decrease (increase) the size of α but this leads to an increase (decrease) in the size
of β. Both α and β can be decreased if the sample size n is increased.

Through another example, we define a p-value obtained in testing a hypothesis
about a mean.

Example
8.1-2

Assume that the underlying distribution is normal with unknown mean μ but known
variance σ 2 = 100. Say we are testing the simple null hypothesis H0: μ = 60
against the composite alternative hypothesis H1: μ > 60 with a sample mean X
based on n = 52 observations. Suppose that we obtain the observed sample mean
of x = 62.75. If we compute the probability of obtaining an X of that value of 62.75
or greater when μ = 60, then we obtain the p-value associated with x = 62.75.
That is,

f(x)

H0 H1

αβ

0

0.1

0.2

45 50 55 60
x

Figure 8.1-1 pdf of X under H0 and H1
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p-value = P(X ≥ 62.75; μ = 60)

= P

(
X − 60

10/
√

52
≥ 62.75 − 60

10/
√

52
; μ = 60

)

= 1 − 


(
62.75 − 60

10/
√

52

)
= 1 − 
(1.983) = 0.0237.

If this p-value is small, we tend to reject the hypothesis H0: μ = 60. For example,
rejecting H0: μ = 60 if the p-value is less than or equal to α = 0.05 is exactly the
same as rejecting H0 if

x ≥ 60 + (1.645)
(

10√
52

)
= 62.281.

Here

p-value = 0.0237 < α = 0.05 and x = 62.75 > 62.281.

To help the reader keep the definition of p-value in mind, we note that it can be
thought of as that tail-end probability, under H0, of the distribution of the statistic
(here X) beyond the observed value of the statistic. (See Figure 8.1-2 for the p-value
associated with x = 62.75.)

If the alternative were the two-sided H1: μ �= 60, then the p-value would have
been double 0.0237; that is, then the p-value = 2(0.0237) = 0.0474 because we
include both tails.

When we sample from a normal distribution, the null hypothesis is generally of
the form H0: μ = μ0. There are three possibilities of interest for a composite alterna-
tive hypothesis: (i) that μ has increased, or H1: μ > μ0; (ii) that μ has decreased, or
H1: μ < μ0; and (iii) that μ has changed, but it is not known whether it has increased
or decreased, which leads to the two-sided alternative hypothesis, or H1: μ �= μ0.

To test H0: μ = μ0 against one of these three alternative hypotheses, a random
sample is taken from the distribution and an observed sample mean, x, that is close to
μ0 supports H0. The closeness of x to μ0 is measured in terms of standard deviations
of X, σ/

√
n, when σ is known, a measure that is sometimes called the standard error

of the mean. Thus, the test statistic could be defined by

p-value = 0.02370.05

0.10

0.15

0.20

0.25

0.30

56 58 60 62 64

f(x)

x

Figure 8.1-2 Illustration of p-value
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Table 8.1-1 Tests of hypotheses about one mean, variance known

H0 H1 Critical Region

μ = μ0 μ > μ0 z ≥ zα or x ≥ μ0 + zασ/
√

n

μ = μ0 μ < μ0 z ≤ −zα or x ≤ μ0 − zασ/
√

n

μ = μ0 μ �= μ0 |z| ≥ zα/2 or |x − μ0| ≥ zα/2σ/
√

n

Z = X − μ0√
σ 2/n

= X − μ0

σ/
√

n
, (8.1-1)

and the critical regions, at a significance level α, for the three respective alternative
hypotheses would be (i) z ≥ zα , (ii) z ≤ −zα , and (iii) |z| ≥ zα/2. In terms of x, these
three critical regions become (i) x ≥ μ0 + zα(σ/

√
n ), (ii) x ≤ μ0 − zα(σ/

√
n ), and

(iii) |x − μ0| ≥ zα/2(σ/
√

n ).
The three tests and critical regions are summarized in Table 8.1-1. The underly-

ing assumption is that the distribution is N(μ, σ 2) and σ 2 is known.
It is usually the case that the variance σ 2 is not known. Accordingly, we now take

a more realistic position and assume that the variance is unknown. Suppose our null
hypothesis is H0: μ = μ0 and the two-sided alternative hypothesis is H1: μ �= μ0.
Recall from Section 7.1, for a random sample X1, X2, . . . , Xn taken from a normal
distribution N(μ, σ 2), a confidence interval for μ is based on

T = X − μ√
S2/n

= X − μ

S/
√

n
.

This suggests that T might be a good statistic to use for the test of H0: μ = μ0 with μ

replaced by μ0. In addition, it is the natural statistic to use if we replace σ 2/n by its
unbiased estimator S2/n in (X − μ0)/

√
σ 2/n in Equation 8.1-1. If μ = μ0, we know

that T has a t distribution with n − 1 degrees of freedom. Thus, with μ = μ0,

P[ |T| ≥ tα/2(n−1)] = P

[
|X − μ0|

S/
√

n
≥ tα/2(n−1)

]
= α.

Accordingly, if x and s are, respectively, the sample mean and sample standard
deviation, then the rule that rejects H0: μ = μ0 and accepts H1: μ �= μ0 if and
only if

|t| = |x − μ0|
s/

√
n

≥ tα/2(n−1)

provides a test of this hypothesis with significance level α. Note that this rule is
equivalent to rejecting H0: μ = μ0 if μ0 is not in the open 100(1 − α)% confidence
interval (

x − tα/2(n−1)
[
s/

√
n
]

, x + tα/2(n−1)
[
s/

√
n
])

.

Table 8.1-2 summarizes tests of hypotheses for a single mean, along with the
three possible alternative hypotheses, when the underlying distribution is N(μ, σ 2),
σ 2 is unknown, t = (x − μ0)/(s/

√
n ), and n ≤ 30. If n > 30, we use Table 8.1-1 for

approximate tests, with σ replaced by s.
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Table 8.1-2 Tests of hypotheses for one mean, variance unknown

H0 H1 Critical Region

μ = μ0 μ > μ0 t ≥ tα(n − 1) or x ≥ μ0 + tα(n − 1)s/
√

n

μ = μ0 μ < μ0 t ≤ −tα(n − 1) or x ≤ μ0 − tα(n − 1)s/
√

n

μ = μ0 μ �= μ0 |t| ≥ tα/2(n − 1) or |x − μ0| ≥ tα/2(n − 1)s/
√

n

Example
8.1-3

Let X (in millimeters) equal the growth in 15 days of a tumor induced in a mouse.
Assume that the distribution of X is N(μ, σ 2). We shall test the null hypothesis H0:
μ = μ0 = 4.0 mm against the two-sided alternative hypothesis H1: μ �= 4.0. If we
use n = 9 observations and a significance level of α = 0.10, the critical region is

|t| = |x − 4.0|
s/

√
9

≥ tα/2(8) = 1.860.

If we are given that n = 9, x = 4.3, and s = 1.2, we see that

t = 4.3 − 4.0

1.2/
√

9
= 0.3

0.4
= 0.75.

Thus,

|t| = |0.75| < 1.860,

and we accept (do not reject) H0: μ = 4.0 at the α = 10% significance level. (See
Figure 8.1-3.) The p-value is the two-sided probability of |T| ≥ 0.75, namely,

p-value = P(|T| ≥ 0.75) = 2P(T ≥ 0.75).

With our t tables with eight degrees of freedom, we cannot find this p-value exactly.
It is about 0.50, because

P(|T| ≥ 0.706) = 2P(T ≥ 0.706) = 0.50.

However, Minitab gives a p-value of 0.4747. (See Figure 8.1-3.)

α/2 = 0.05α/2 = 0.05

p-value

t = 0.75

0.1

0.2

0.3

0.4

−3 −2 −1 3210

0.1

0.2

0.3

0.4

−3 −2 −1 3210

Figure 8.1-3 Test about mean of tumor growths
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REMARK In discussing the test of a statistical hypothesis, the word accept H0 might
better be replaced by do not reject H0. That is, if, in Example 8.1-3, x is close enough
to 4.0 so that we accept μ = 4.0, we do not want that acceptance to imply that μ

is actually equal to 4.0. We want to say that the data do not deviate enough from
μ = 4.0 for us to reject that hypothesis; that is, we do not reject μ = 4.0 with these
observed data. With this understanding, we sometimes use accept, and sometimes
fail to reject or do not reject, the null hypothesis.

The next example illustrates the use of the t statistic with a one-sided alternative
hypothesis.

Example
8.1-4

In attempting to control the strength of the wastes discharged into a nearby river, a
paper firm has taken a number of measures. Members of the firm believe that they
have reduced the oxygen-consuming power of their wastes from a previous mean
μ of 500 (measured in parts per million of permanganate). They plan to test H0:
μ = 500 against H1: μ < 500, using readings taken on n = 25 consecutive days.
If these 25 values can be treated as a random sample, then the critical region, for a
significance level of α = 0.01, is

t = x − 500

s/
√

25
≤ −t0.01(24) = −2.492.

The observed values of the sample mean and sample standard deviation were x =
308.8 and s = 115.15. Since

t = 308.8 − 500

115.15/
√

25
= −8.30 < −2.492,

we clearly reject the null hypothesis and accept H1: μ < 500. Note, however, that
although an improvement has been made, there still might exist the question of
whether the improvement is adequate. The one-sided 99% confidence interval for
μ, namely,

[0, 308.8 + 2.492(115.25/
√

25 )] = [0, 366.191],

provides an upper bound for μ and may help the company answer this question.

Oftentimes, there is interest in comparing the means of two different distribu-
tions or populations. We must consider two situations: that in which X and Y are
dependent and that in which X and Y are independent. We consider the independent
case in the next section.

If X and Y are dependent, let W = X − Y, and the hypothesis that μX = μY

would be replaced with the hypothesis H0: μW = 0. For example, suppose that X
and Y equal the resting pulse rate for a person before and after taking an eight-
week program in aerobic dance. We would be interested in testing H0: μW = 0 (no
change) against H1: μW > 0 (the aerobic dance program decreased the mean resting
pulse rate). Because X and Y are measurements on the same person, X and Y are
clearly dependent. If we can assume that the distribution of W is (approximately)
N(μW , σ 2), then we can choose to use the appropriate t test for a single mean from
Table 8.1-2. This is often called a paired t test.
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Example
8.1-5

Twenty-four girls in the 9th and 10th grades were put on an ultraheavy rope-jumping
program. Someone thought that such a program would increase their speed in the 40-
yard dash. Let W equal the difference in time to run the 40-yard dash—the “before-
program time” minus the “after-program time.” Assume that the distribution of W
is approximately N(μW , σ 2

W). We shall test the null hypothesis H0: μW = 0 against the
alternative hypothesis H1: μW > 0. The test statistic and the critical region that has
an α = 0.05 significance level are given by

t = w − 0

sw/
√

24
≥ t0.05(23) = 1.714.

The following data give the difference in time that it took each girl to run the 40-yard
dash, with positive numbers indicating a faster time after the program:

0.28 0.01 0.13 0.33 −0.03 0.07 −0.18 −0.14

−0.33 0.01 0.22 0.29 −0.08 0.23 0.08 0.04

−0.30 −0.08 0.09 0.70 0.33 −0.34 0.50 0.06

For these data, w = 0.0788 and sw = 0.2549. Thus, the observed value of the test
statistic is

t = 0.0788 − 0

0.2549/
√

24
= 1.514.

Since 1.514 < 1.714, the null hypothesis is not rejected. Note, however, that
t0.10(23) = 1.319 and t = 1.514 > 1.319. Hence, the null hypothesis would be rejected
at an α = 0.10 significance level. Another way of saying this is that

0.05 < p-value < 0.10.

It would be instructive to draw a figure illustrating this double inequality.

There are two ways of viewing a statistical test. One of these is through the
p-value of the test; this approach is becoming more popular and is included in most
computer printouts, so we mention it again. After observing the test statistic, we can
say that the p-value is the probability, under the hypothesis H0, of the test statistic
being at least as extreme (in the direction of rejection of H0) as the observed one.
That is, the p-value is the tail-end probability. As an illustration, say a golfer averages
about 90 for an 18-hole round, with a standard deviation of 3, and she takes some
lessons to improve. To test her possible improvement, namely, H0: μ = 90, against
H1: μ < 90, she plays n = 16 rounds of golf. Assume a normal distribution with
σ = 3. If the golfer averaged x = 87.9375, then

p-value = P(X ≤ 87.9375) = P

(
X − 90

3/4
≤ 87.9375 − 90

3/4

)
= 0.0030.

The fact that the p-value is less than 0.05 is equivalent to the fact that x < 88.77,
because P(X ≤ 88.77; μ = 90) = 0.05. Since x = 87.9375 is an observed value
of a random variable, namely, X, it follows that the p-value, a function of x, is also
an observed value of a random variable. That is, before the random experiment is
performed, the probability that the p-value is less than or equal to α is approxi-
mately equal to α when the null hypothesis is true. Many statisticians believe that
the observed p-value provides an understandable measure of the truth of H0: The
smaller the p-value, the less they believe in H0.
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Two additional examples of the p-value may be based on Examples 8.1-3 and
8.1-4. In two-sided tests for means and proportions, the p-value is the probability
of the extreme values in both directions. With the mouse data (Example 8.1-3), the
p-value is

p-value = P(|T| ≥ 0.75).

In Table VI in Appendix B, we see that if T has a t distribution with eight degrees
of freedom, then P(T ≥ 0.706) = 0.25. Thus, P(|T| ≥ 0.706) = 0.50 and the p-value
will be a little smaller than 0.50. In fact, P(|T| ≥ 0.75) = 0.4747 (a probability that
was found with Minitab), which is not less than α = 0.10; hence, we do not reject H0
at that significance level. In the example concerned with waste (Example 8.1-4), the
p-value is essentially zero, since P(T ≤ −8.30) ≈ 0, where T has a t distribution with
24 degrees of freedom. Consequently, we reject H0.

The other way of looking at tests of hypotheses is through the consideration of
confidence intervals, particularly for two-sided alternatives and the corresponding
tests. For example, with the mouse data (Example 8.1-3), a 90% confidence interval
for the unknown mean is

4.3 ± (1.86)(1.2)/
√

9, or [3.56, 5.04],

since t0.05(8) = 1.86. Note that this confidence interval covers the hypothesized
value μ = 4.0 and we do not reject H0: μ = 4.0. If the confidence interval did not
cover μ = 4.0, then we would have rejected H0: μ = 4.0. Many statisticians believe
that estimation is much more important than tests of hypotheses and accordingly
approach statistical tests through confidence intervals. For one-sided tests, we use
one-sided confidence intervals.

Exercises

8.1-1. Assume that IQ scores for a certain population are
approximately N(μ, 100). To test H0: μ = 110 against the
one-sided alternative hypothesis H1: μ > 110, we take a
random sample of size n = 16 from this population and
observe x = 113.5.

(a) Do we accept or reject H0 at the 5% significance
level?

(b) Do we accept or reject H0 at the 10% significance
level?

(c) What is the p-value of this test?

8.1-2. Assume that the weight of cereal in a “12.6-
ounce box” is N(μ, 0.22). The Food and Drug Association
(FDA) allows only a small percentage of boxes to contain
less than 12.6 ounces. We shall test the null hypothesis H0:
μ = 13 against the alternative hypothesis H1: μ < 13.

(a) Use a random sample of n = 25 to define the test
statistic and the critical region that has a significance
level of α = 0.025.

(b) If x = 12.9, what is your conclusion?

(c) What is the p-value of this test?

8.1-3. Let X equal the Brinell hardness measurement
of ductile iron subcritically annealed. Assume that the
distribution of X is N(μ, 100). We shall test the null
hypothesis H0: μ = 170 against the alternative hypothesis
H1: μ > 170, using n = 25 observations of X.

(a) Define the test statistic and a critical region that has a
significance level of α = 0.05. Sketch a figure showing
this critical region.

(b) A random sample of n = 25 observations of X yielded
the following measurements:

170 167 174 179 179 156 163 156 187

156 183 179 174 179 170 156 187

179 183 174 187 167 159 170 179

Calculate the value of the test statistic and state your
conclusion clearly.

(c) Give the approximate p-value of this test.

8.1-4. Let X equal the thickness of spearmint gum man-
ufactured for vending machines. Assume that the dis-
tribution of X is N(μ, σ 2). The target thickness is 7.5
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hundredths of an inch. We shall test the null hypothesis
H0: μ = 7.5 against a two-sided alternative hypothesis,
using 10 observations.

(a) Define the test statistic and critical region for an α =
0.05 significance level. Sketch a figure illustrating this
critical region.

(b) Calculate the value of the test statistic and state your
decision clearly, using the following n = 10 thick-
nesses in hundredths of an inch for pieces of gum
that were selected randomly from the production
line:

7.65 7.60 7.65 7.70 7.55

7.55 7.40 7.40 7.50 7.50

(c) Is μ = 7.50 contained in a 95% confidence interval
for μ?

8.1-5. The mean birth weight of infants in the United
States is μ = 3315 grams. Let X be the birth weight
(in grams) of a randomly selected infant in Jerusalem.
Assume that the distribution of X is N(μ, σ 2), where μ

and σ 2 are unknown. We shall test the null hypothesis H0:
μ = 3315 against the alternative hypothesis H1: μ < 3315,
using n = 30 randomly selected Jerusalem infants.

(a) Define a critical region that has a significance level of
α = 0.05.

(b) If the random sample of n = 30 yielded x = 3189 and
s = 488, what would be your conclusion?

(c) What is the approximate p-value of your test?

8.1-6. Let X equal the forced vital capacity (FVC) in
liters for a female college student. (The FVC is the
amount of air that a student can force out of her lungs.)
Assume that the distribution of X is approximately
N(μ, σ 2). Suppose it is known that μ = 3.4 liters. A vol-
leyball coach claims that the FVC of volleyball players is
greater than 3.4. She plans to test her claim with a random
sample of size n = 9.

(a) Define the null hypothesis.

(b) Define the alternative (coach’s) hypothesis.

(c) Define the test statistic.

(d) Define a critical region for which α = 0.05. Draw a
figure illustrating your critical region.

(e) Calculate the value of the test statistic given that the
random sample yielded the following FVCs:

3.4 3.6 3.8 3.3 3.4 3.5 3.7 3.6 3.7

(f) What is your conclusion?

(g) What is the approximate p-value of this test?

8.1-7. Vitamin B6 is one of the vitamins in a multiple vita-
min pill manufactured by a pharmaceutical company. The
pills are produced with a mean of 50 mg of vitamin B6
per pill. The company believes that there is a deteriora-
tion of 1 mg/month, so that after 3 months it expects that
μ = 47. A consumer group suspects that μ < 47 after 3
months.

(a) Define a critical region to test H0: μ = 47 against H1:
μ < 47 at an α = 0.05 significance level based on a
random sample of size n = 20.

(b) If the 20 pills yielded a mean of x = 46.94 with a stan-
dard deviation of s = 0.15, what is your conclusion?

(c) What is the approximate p-value of this test?

8.1-8. A company that manufactures brackets for an
automaker regularly selects brackets from the produc-
tion line and performs a torque test. The goal is for
mean torque to equal 125. Let X equal the torque and
assume that X is N(μ, σ 2). We shall use a sample of size
n = 15 to test H0: μ = 125 against a two-sided alternative
hypothesis.

(a) Give the test statistic and a critical region with signif-
icance level α = 0.05. Sketch a figure illustrating the
critical region.

(b) Use the following observations to calculate the value
of the test statistic and state your conclusion:

128 149 136 114 126 142 124 136

122 118 122 129 118 122 129

8.1-9. The ornamental ground cover Vinca minor is
spreading rapidly through the Hope College Biology
Field Station because it can outcompete the small, native
woody vegetation. In an attempt to discover whether
Vinca minor utilized natural chemical weapons to inhibit
the growth of the native vegetation, Hope biology stu-
dents conducted an experiment in which they treated
33 sunflower seedlings with extracts taken from Vinca
minor roots for several weeks and then measured the
heights of the seedlings. Let X equal the height of one
of these seedlings and assume that the distribution of X is
N(μ, σ 2). The observed growths (in cm) were

11.5 11.8 15.7 16.1 14.1 10.5 15.2 19.0 12.8 12.4 19.2

13.5 16.5 13.5 14.4 16.7 10.9 13.0 15.1 17.1 13.3 12.4

8.5 14.3 12.9 11.1 15.0 13.3 15.8 13.5 9.3 12.2 10.3

The students also planted some control sunflower
seedlings that had a mean height of 15.7 cm. We shall test
the null hypothesis H0: μ = 15.7 against the alternative
hypothesis H1: μ < 15.7.
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(a) Calculate the value of the test statistic and give limits
for the p-value of this test.

(b) What is your conclusion?

(c) Find an approximate 98% one-sided confidence inter-
val that gives an upper bound for μ.

8.1-10. In a mechanical testing lab, Plexiglass� strips are
stretched to failure. Let X equal the change in length in
mm before breaking. Assume that the distribution of X is
N(μ, σ 2). We shall test the null hypothesis H0: μ = 5.70
against the alternative hypothesis H1: μ > 5.70, using
n = 8 observations of X.

(a) Define the test statistic and a critical region that has a
significance level of α = 0.05. Sketch a figure showing
this critical region.

(b) A random sample of eight observations of X yielded
the following data:

5.71 5.80 6.03 5.87 6.22 5.92 5.57 5.83

Calculate the value of the test statistic and state your
conclusion clearly.

(c) Give the approximate value of or bounds for the
p-value of this test.

8.1-11. A vendor of milk products produces and sells low-
fat dry milk to a company that uses it to produce baby
formula. In order to determine the fat content of the milk,
both the company and the vendor take an observation
from each lot and test it for fat content in percent. Ten
sets of paired test results are as follows:

Lot Number
Company Test

Results (x)
Vendor Test
Results (y)

1 0.50 0.79

2 0.58 0.71

3 0.90 0.82

4 1.17 0.82

5 1.14 0.73

6 1.25 0.77

7 0.75 0.72

8 1.22 0.79

9 0.74 0.72

10 0.80 0.91

Let μD denote the mean of the difference x − y. Test H0:
μD = 0 against H1: μD > 0, using a paired t test with the
differences. Let α = 0.05.

8.1-12. To test whether a golf ball of brand A can be hit
a greater distance off the tee than a golf ball of brand B,
each of 17 golfers hit a ball of each brand, 8 hitting ball
A before ball B and 9 hitting ball B before ball A. The
results in yards are as follows:

Distance Distance Distance Distance
for for for for

Golfer Ball A Ball B Golfer Ball A Ball B

1 265 252 10 274 260

2 272 276 11 274 267

3 246 243 12 269 267

4 260 246 13 244 251

5 274 275 14 212 222

6 263 246 15 235 235

7 255 244 16 254 255

8 258 245 17 224 231

9 276 259

Assume that the differences of the paired A distance and
B distance are approximately normally distributed, and
test the null hypothesis H0: μD = 0 against the alternative
hypothesis H1: μD > 0, using a paired t test with the 17
differences. Let α = 0.05.

8.1-13. A company that manufactures motors receives
reels of 10,000 terminals per reel. Before using a reel of
terminals, 20 terminals are randomly selected to be tested.
The test is the amount of pressure needed to pull the ter-
minal apart from its mate. This amount of pressure should
continue to increase from test to test as the terminal
is “roughed up.” (Since this kind of testing is destruc-
tive testing, a terminal that is tested cannot be used in a
motor.) Let W equal the difference of the pressures: “test
No. 1 pressure” minus “test No. 2 pressure.” Assume that
the distribution of W is N(μW , σ 2

W). We shall test the null
hypothesis H0: μW = 0 against the alternative hypothesis
H1: μW < 0, using 20 pairs of observations.

(a) Give the test statistic and a critical region that has
a significance level of α = 0.05. Sketch a figure
illustrating this critical region.

(b) Use the following data to calculate the value of the
test statistic, and state your conclusion clearly:
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Terminal Test 1 Test 2 Terminal Test 1 Test 2

1 2.5 3.8 11 7.3 8.2

2 4.0 3.9 12 7.2 6.6

3 5.2 4.7 13 5.9 6.8

4 4.9 6.0 14 7.5 6.6

5 5.2 5.7 15 7.1 7.5

6 6.0 5.7 16 7.2 7.5

7 5.2 5.0 17 6.1 7.3

8 6.6 6.2 18 6.3 7.1

9 6.7 7.3 19 6.5 7.2

10 6.6 6.5 20 6.5 6.7

(c) What would the conclusion be if α = 0.01?

(d) What is the approximate p-value of this test?

8.1-14. A researcher claims that she can reduce the vari-
ance of N(μ, 100) by a new manufacturing process. If S2

is the variance of a random sample of size n from this new
distribution, she tests H0: σ 2 = 100 against H1: σ 2 < 100
by rejecting H0 if (n − 1)S2/100 ≤ χ2

1−α
(n − 1) since

(n − 1)S2/100 is χ2(n − 1) when H0 is true.

(a) If n = 23, s2 = 32.52, and α = 0.025, would she reject
H0?

(b) Based on the same distributional result, what would
be a reasonable test of H0: σ 2 = 100 against a two-
sided alternative hypothesis H1: σ 2 �= 100 when α =
0.05?

8.1-15. Let X1, X2, . . . , X19 be a random sample of size
n = 19 from the normal distribution N(μ, σ 2).

(a) Find a critical region, C, of size α = 0.05 for testing
H0: σ 2 = 30 against H1: σ 2 = 80.

(b) Find the approximate value of β, the probability of a
Type II error, for the critical region C of part (a).

8.2 TESTS OF THE EQUALITY OF TWO MEANS
Let independent random variables X and Y have normal distributions N(μX , σ 2

X)
and N(μY , σ 2

Y ), respectively. There are times when we are interested in testing
whether the distributions of X and Y are the same. So if the assumption of nor-
mality is valid, we would be interested in testing whether the two means are equal.
(A test for the equality of the two variances is given in the next section.)

When X and Y are independent and normally distributed, we can test hypothe-
ses about their means with the same t statistic that we used to construct a confidence
interval for μX − μY in Section 7.2. Recall that the t statistic used to construct the
confidence interval assumed that the variances of X and Y were equal. (That is why
we shall consider a test for the equality of two variances in the next section.)

We begin with an example and then give a table that lists some hypotheses
and critical regions. A botanist is interested in comparing the growth response of
dwarf pea stems against two different levels of the hormone indoleacetic acid (IAA).
Using 16-day-old pea plants, the botanist obtains 5-mm sections and floats these
sections on solutions with different hormone concentrations to observe the effect
of the hormone on the growth of the pea stem. Let X and Y denote, respectively,
the independent growths that can be attributed to the hormone during the first 26
hours after sectioning for (0.5)(10)−4 and 10−4 levels of concentration of IAA. The
botanist would like to test the null hypothesis H0: μX − μY = 0 against the alterna-
tive hypothesis H1: μX − μY < 0. If we can assume that X and Y are independent and
normally distributed with a common variance, and if we assume respective random
samples of sizes n and m, then we can find a test based on the statistic

T = X − Y√
{[(n − 1)S2

X + (m − 1)S2
Y]/(n + m − 2)}(1/n + 1/m)

(8.2-1)

= X − Y

SP

√
1/n + 1/m

,
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where

SP =
√

(n − 1)S2
X + (m − 1)S2

Y

n + m − 2
. (8.2-2)

Now, T has a t distribution with r = n + m − 2 degrees of freedom when H0 is true
and the variances are equal. Thus, the hypothesis H0 will be rejected in favor of H1
if the observed value of T is less than −tα(n+m−2).

Example
8.2-1

In the preceding discussion, the botanist measured the growths of pea stem seg-
ments, in millimeters, for n = 11 observations of X:

0.8 1.8 1.0 0.1 0.9 1.7 1.0 1.4 0.9 1.2 0.5

She did the same with m = 13 observations of Y:

1.0 0.8 1.6 2.6 1.3 1.1 2.4

1.8 2.5 1.4 1.9 2.0 1.2

For these data, x = 1.03, s2
x = 0.24, y = 1.66, and s2

y = 0.35. The critical region for
testing H0: μX − μY = 0 against H1: μX − μY < 0 is t ≤ −t0.05(22) = −1.717, where
t is the two-sample t found in Equation 8.2-1. Since

t = 1.03 − 1.66√{[10(0.24) + 12(0.35)]/(11 + 13 − 2)}(1/11 + 1/13)

= −2.81 < − 1.717,

H0 is clearly rejected at an α = 0.05 significance level. Notice that the approximate
p-value of this test is 0.005, because −t0.005(22) = −2.819. (See Figure 8.2-1.) Notice
also that the sample variances do not differ too much; thus, most statisticians would
use this two-sample t test.

It is instructive to construct box-and-whisker diagrams to gain a visual com-
parison of the two samples. For these two sets of data, the five-number summaries
(minimum, three quartiles, maximum) are

0.1 0.8 1.0 1.4 1.8

T, r = 22 d.f.T, r = 22 d.f

α = 0.05
0.1

0.2

0.3

0.4

−3 −2 −1 3210

0.1

0.2

0.3

0.4

−3 −2 −1 3210

p-value

Figure 8.2-1 Critical region and p-value for pea stem growths
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Y

X

0.5 1.0 1.5 2.0 2.5

Figure 8.2-2 Box plots for pea stem growths

for the X sample and

0.8 1.15 1.6 2.2 2.6

for the Y sample. The two box plots are shown in Figure 8.2-2.

Assuming independent random samples of sizes n and m, let x, y, and s2
p rep-

resent the observed unbiased estimates of the respective parameters μX , μY , and
σ 2

X = σ 2
Y of two normal distributions with a common variance. Then α-level tests of

certain hypotheses are given in Table 8.2-1 when σ 2
X = σ 2

Y . If the common-variance
assumption is violated, but not too badly, the test is satisfactory, but the significance
levels are only approximate. The t statistic and sp are given in Equations 8.2-1 and
8.2-2, respectively.

REMARK Again, to emphasize the relationship between confidence intervals and
tests of hypotheses, we note that each of the tests in Table 8.2-1 has a corresponding
confidence interval. For example, the first one-sided test is equivalent to saying that
we reject H0: μX − μY = 0 if zero is not in the one-sided confidence interval with
lower bound

x − y − tα(n+m−2)sp
√

1/n + 1/m.

Table 8.2-1 Tests of hypotheses for equality of two means

H0 H1 Critical Region

μX = μY μX > μY t ≥ tα(n+m−2) or

x − y ≥ tα(n+m−2)sp
√

1/n + 1/m

μX = μY μX < μY t ≤ −tα(n+m−2) or

x − y ≤ −tα(n+m−2)sp
√

1/n + 1/m

μX = μY μX �= μY |t| ≥ tα/2(n+m−2) or

|x − y| ≥ tα/2(n+m−2)sp
√

1/n + 1/m
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Example
8.2-2

A product is packaged by a machine with 24 filler heads numbered 1 to 24, with the
odd-numbered heads on one side of the machine and the even on the other side. Let
X and Y equal the fill weights in grams when a package is filled by an odd-numbered
head and an even-numbered head, respectively. Assume that the distributions of X
and Y are N(μX , σ 2) and N(μY , σ 2), respectively, and that X and Y are independent.
We would like to test the null hypothesis H0: μX − μY = 0 against the alternative
hypothesis H1: μX − μY �= 0. To perform the test, after the machine has been set
up and is running, we shall select one package at random from each filler head and
weigh it. The test statistic is that given by Equation 8.2-1 with n = m = 12. At an
α = 0.10 significance level, the critical region is |t| ≥ t0.05(22) = 1.717.

For the n = 12 observations of X, namely,

1071 1076 1070 1083 1082 1067

1078 1080 1075 1084 1075 1080

x = 1076.75 and s2
x = 29.30. For the m = 12 observations of Y, namely,

1074 1069 1075 1067 1068 1079

1082 1064 1070 1073 1072 1075

y = 1072.33 and s2
y = 26.24. The calculated value of the test statistic is

t = 1076.75 − 1072.33√
11(29.30) + 11(26.24)

22

(
1

12
+ 1

12

) = 2.05.

Since

|t| = |2.05| = 2.05 > 1.717,

the null hypothesis is rejected at an α = 0.10 significance level. Note, however, that

|t| = 2.05 < 2.074 = t0.025(22),

so that the null hypothesis would not be rejected at an α = 0.05 significance level.
That is, the p-value is between 0.05 and 0.10.

Again, it is instructive to construct box plots on the same graph for these two
sets of data. The box plots in Figure 8.2-3 were constructed with the use of the five-
number summary for the observations of X (1067, 1072, 1077, 1081.5, and 1084) and
the five-number summary for the observations of Y (1064, 1068.25, 1072.5, 1075,
and 1082). It looks like additional sampling would be advisable to test that the filler
heads on the two sides of the machine are filling in a similar manner. If not, some
corrective action needs to be taken.

We would like to give two modifications of tests about two means. First, if we
are able to assume that we know the variances of X and Y, then the appropriate test
statistic to use for testing H0: μX = μY is

Z = X − Y√
σ 2

X

n
+ σ 2

Y

m

, (8.2-3)
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Y

X

1065 1070 1075 1080 1085

Figure 8.2-3 Box plots for fill weights

which has a standard normal distribution when the null hypothesis is true and,
of course, when the populations are normally distributed. Second, if the vari-
ances are unknown and the sample sizes are large, replace σ 2

X with S2
X and σ 2

Y

with S2
Y in Equation 8.2-3. The resulting statistic will have an approximate N(0, 1)

distribution.

Example
8.2-3

The target thickness for Fruit Flavored Gum and for Fruit Flavored Bubble Gum
is 6.7 hundredths of an inch. Let the independent random variables X and Y equal
the respective thicknesses of these gums in hundredths of an inch, and assume that
their distributions are N(μX , σ 2

X) and N(μY , σ 2
Y ), respectively. Because bubble gum

has more elasticity than regular gum, it seems as if it would be harder to roll it
out to the correct thickness. Thus, we shall test the null hypothesis H0: μX = μY

against the alternative hypothesis H1: μX < μY , using samples of sizes n = 50 and
m = 40.

Because the variances are unknown and the sample sizes are large, the test
statistic that is used is

Z = X − Y√
S2

X

50
+ S2

Y

40

.

At an approximate significance level of α = 0.01, the critical region is

z ≤ −z0.01 = −2.326.

The observed values of X were

6.85 6.60 6.70 6.75 6.75 6.90 6.85 6.90 6.70 6.85

6.60 6.70 6.75 6.70 6.70 6.70 6.55 6.60 6.95 6.95

6.80 6.80 6.70 6.75 6.60 6.70 6.65 6.55 6.55 6.60

6.60 6.70 6.80 6.75 6.60 6.75 6.50 6.75 6.70 6.65

6.70 6.70 6.55 6.65 6.60 6.65 6.60 6.65 6.80 6.60
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X

Y

6.5 6.6 6.7 6.8 6.9 7.0 7.1

Figure 8.2-4 Box plots for gum thicknesses

for which x = 6.701 and sx = 0.108. The observed values of Y were

7.10 7.05 6.70 6.75 6.90 6.90 6.65 6.60 6.55 6.55

6.85 6.90 6.60 6.85 6.95 7.10 6.95 6.90 7.15 7.05

6.70 6.90 6.85 6.95 7.05 6.75 6.90 6.80 6.70 6.75

6.90 6.90 6.70 6.70 6.90 6.90 6.70 6.70 6.90 6.95

for which y = 6.841 and sy = 0.155. Since the calculated value of the test statistic is

z = 6.701 − 6.841√
0.1082/50 + 0.1552/40

= −4.848 < −2.326,

the null hypothesis is clearly rejected.
The box-and-whisker diagrams in Figure 8.2-4 were constructed with the use of

the five-number summary of the observations of X (6.50, 6.60, 6.70, 6.75, and 6.95)
and the five-number summary of the observations of Y (6.55, 6.70, 6.90, 6.94, and
7.15). This graphical display also confirms our conclusion.

REMARK To have satisfactory tests, our assumptions must be satisfied reasonably
well. As long as the underlying distributions have finite means and variances and
are not highly skewed, the normal assumptions are not too critical, as X and Y
have approximate normal distributions by the central limit theorem. As distribu-
tions become nonnormal and highly skewed, the sample mean and sample variance
become more dependent, and that causes problems in using the Student’s t as an
approximating distribution for T. In these cases, some of the nonparametric methods
described later could be used. (See Section 8.4.)

When the distributions are close to normal, but the variances seem to differ
by a great deal, the t statistic should again be avoided, particularly if the sample
sizes are also different. In that case, use Z or the modification produced by substi-
tuting the sample variances for the distribution variances. In the latter situation, if
n and m are large enough, there is no problem. With small n and m, most statisti-
cians would use Welch’s suggestion (or other modifications of it); that is, they would
use an approximating Student’s t distribution with r degrees of freedom, where r is
given by Equation 7.2-1. We actually give a test for the equality of variances that
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could be employed to decide whether to use T or a modification of Z. However,
most statisticians do not place much confidence in this test of σ 2

X = σ 2
Y and would

use a modification of Z (possibly Welch’s) if they suspected that the variances dif-
fered greatly. Alternatively, nonparametric methods described in Section 8.4 could
be used.

Exercises

(In some of the exercises that follow, we must make
assumptions such as the existence of normal distributions
with equal variances.)

8.2-1. The botanist in Example 8.2-1 is really interested
in testing for synergistic interaction. That is, given the
two hormones gibberellin (GA3) and indoleacetic acid
(IAA), let X1 and X2 equal the growth responses (in
mm) of dwarf pea stem segments to GA3 and IAA,
respectively and separately. Also, let X = X1 + X2 and
let Y equal the growth response when both hormones
are present. Assuming that X is N(μX , σ 2) and Y is
N(μY , σ 2), the botanist is interested in testing the hypoth-
esis H0: μX = μY against the alternative hypothesis of
synergistic interaction H1: μX < μY .

(a) Using n = m = 10 observations of X and Y, define
the test statistic and the critical region. Sketch a fig-
ure of the t pdf and show the critical region on your
figure. Let α = 0.05.

(b) Given n = 10 observations of X, namely,

2.1 2.6 2.6 3.4 2.1 1.7 2.6 2.6 2.2 1.2

and m = 10 observations of Y, namely,

3.5 3.9 3.0 2.3 2.1 3.1 3.6 1.8 2.9 3.3

calculate the value of the test statistic and state your
conclusion. Locate the test statistic on your figure.

(c) Construct two box plots on the same figure. Does this
confirm your conclusion?

8.2-2. Let X and Y denote the weights in grams of male
and female common gallinules, respectively. Assume that
X is N(μX , σ 2

X) and Y is N(μY , σ 2
Y ).

(a) Given n = 16 observations of X and m = 13 observa-
tions of Y, define a test statistic and a critical region
for testing the null hypothesis H0: μX = μY against
the one-sided alternative hypothesis H1: μX > μY . Let
α = 0.01. (Assume that the variances are equal.)

(b) Given that x = 415.16, s2
x = 1356.75, y = 347.40, and

s2
y = 692.21, calculate the value of the test statistic and

state your conclusion.

(c) Although we assumed that σ 2
X = σ 2

Y , let us say we sus-
pect that that equality is not valid. Thus, use the test
proposed by Welch.

8.2-3. Let X equal the weight in grams of a Low-Fat
Strawberry Kudo and Y the weight of a Low-Fat Blue-
berry Kudo. Assume that the distributions of X and Y are
N(μX , σ 2

X) and N(μY , σ 2
Y ), respectively. Let

21.7 21.0 21.2 20.7 20.4 21.9 20.2 21.6 20.6

be n = 9 observations of X, and let

21.5 20.5 20.3 21.6 21.7 21.3 23.0

21.3 18.9 20.0 20.4 20.8 20.3

be m = 13 observations of Y. Use these observations to
answer the following questions:

(a) Test the null hypothesis H0: μX = μY against a two-
sided alternative hypothesis. You may select the sig-
nificance level. Assume that the variances are equal.

(b) Construct and interpret box-and-whisker diagrams to
support your conclusions.

8.2-4. Among the data collected for the World Health
Organization air quality monitoring project is a measure
of suspended particles, in μg/m3. Let X and Y equal
the concentration of suspended particles in μg/m3 in the
city centers (commercial districts), of Melbourne and
Houston, respectively. Using n = 13 observations of X
and m = 16 observations of Y, we shall test H0: μX = μY

against H1: μX < μY .

(a) Define the test statistic and critical region, assuming
that the variances are equal. Let α = 0.05.

(b) If x = 72.9, sx = 25.6, y = 81.7, and sy = 28.3,
calculate the value of the test statistic and state your
conclusion.

(c) Give bounds for the p-value of this test.

8.2-5. Some nurses in county public health conducted a
survey of women who had received inadequate prena-
tal care. They used information from birth certificates to
select mothers for the survey. The mothers selected were
divided into two groups: 14 mothers who said they had
five or fewer prenatal visits and 14 mothers who said
they had six or more prenatal visits. Let X and Y equal
the respective birth weights of the babies from these two
sets of mothers, and assume that the distribution of X is
N(μX , σ 2) and the distribution of Y is N(μY , σ 2).
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(a) Define the test statistic and critical region for test-
ing H0: μX − μY = 0 against H1: μX − μY < 0. Let
α = 0.05.

(b) Given that the observations of X were

49 108 110 82 93 114 134

114 96 52 101 114 120 116

and the observations of Y were

133 108 93 119 119 98 106

131 87 153 116 129 97 110

calculate the value of the test statistic and state your
conclusion.

(c) Approximate the p-value.

(d) Construct box plots on the same figure for these two
sets of data. Do the box plots support your conclu-
sion?

8.2-6. Let X and Y equal the forces required to pull
stud No. 3 and stud No. 4 out of a window that has
been manufactured for an automobile. Assume that the
distributions of X and Y are N(μX , σ 2

X) and N(μY , σ 2
Y ),

respectively.

(a) If m = n = 10 observations are selected randomly,
define a test statistic and a critical region for test-
ing H0: μX − μY = 0 against a two-sided alternative
hypothesis. Let α = 0.05. Assume that the variances
are equal.

(b) Given n = 10 observations of X, namely,

111 120 139 136 138 149 143 145 111 123

and m = 10 observations of Y, namely,

152 155 133 134 119 155 142 146 157 149

calculate the value of the test statistic and state your
conclusion clearly.

(c) What is the approximate p-value of this test?

(d) Construct box plots on the same figure for these two
sets of data. Do the box plots confirm your decision in
part (b)?

8.2-7. Let X and Y equal the number of milligrams of
tar in filtered and nonfiltered cigarettes, respectively.
Assume that the distributions of X and Y are N(μX , σ 2

X)
and N(μY , σ 2

Y ), respectively. We shall test the null hypoth-
esis H0: μX − μY = 0 against the alternative hypothesis
H1: μX − μY < 0, using random samples of sizes n = 9
and m = 11 observations of X and Y, respectively.

(a) Define the test statistic and a critical region that
has an α = 0.01 significance level. Sketch a figure
illustrating this critical region.

(b) Given n = 9 observations of X, namely,

0.9 1.1 0.1 0.7 0.4 0.9 0.8 1.0 0.4

and m = 11 observations of Y, namely,

1.5 0.9 1.6 0.5 1.4 1.9 1.0 1.2 1.3 1.6 2.1

calculate the value of the test statistic and state your
conclusion clearly. Locate the value of the test statistic
on your figure.

8.2-8. Let X and Y denote the tarsus lengths of male and
female grackles, respectively. Assume that X is N(μX , σ 2

X)
and Y is N(μY , σ 2

Y ). Given that n = 25, x = 33.80,
s2

x = 4.88, m = 29, y = 31.66, and s2
y = 5.81, test the

null hypothesis H0: μX = μY against H1: μX > μY with
α = 0.01.

8.2-9. When a stream is turbid, it is not completely clear
due to suspended solids in the water. The higher the tur-
bidity, the less clear is the water. A stream was studied
on 26 days, half during dry weather (say, observations of
X) and the other half immediately after a significant rain-
fall (say, observations of Y). Assume that the distributions
of X and Y are N(μX , σ 2) and N(μY , σ 2), respectively.
The following turbidities were recorded in units of NTUs
(nephelometric turbidity units):

x: 2.9 14.9 1.0 12.6 9.4 7.6 3.6

3.1 2.7 4.8 3.4 7.1 7.2

y: 7.8 4.2 2.4 12.9 17.3 10.4 5.9

4.9 5.1 8.4 10.8 23.4 9.7

(a) Test the null hypothesis H0: μX = μY against H1:
μX < μY . Give bounds for the p-value and state your
conclusion.

(b) Draw box-and-whisker diagrams on the same graph.
Does this figure confirm your answer?

8.2-10. Plants convert carbon dioxide (CO2) in the atmo-
sphere, along with water and energy from sunlight, into
the energy they need for growth and reproduction.
Experiments were performed under normal atmospheric
air conditions and in air with enriched CO2 concentra-
tions to determine the effect on plant growth. The plants
were given the same amount of water and light for a four-
week period. The following table gives the plant growths
in grams:

Normal Air 4.67 4.21 2.18 3.91 4.09 5.24 2.94 4.71

4.04 5.79 3.80 4.38

Enriched Air 5.04 4.52 6.18 7.01 4.36 1.81 6.22 5.70

On the basis of these data, determine whether CO2-
enriched atmosphere increases plant growth.

8.2-11. Let X equal the fill weight in April and Y the fill
weight in June for an 8-pound box of bleach. We shall test
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the null hypothesis H0: μX−μY = 0 against the alternative
hypothesis H1: μX − μY > 0 given that n = 90 observa-
tions of X yielded x = 8.10 and sx = 0.117 and m = 110
observations of Y yielded y = 8.07 and sy = 0.054.

(a) What is your conclusion if α = 0.05?
Hint: Do the variances seem to be equal?

(b) What is the approximate p-value of this test?

8.2-12. Let X and Y denote the respective lengths of
male and female green lynx spiders. Assume that the
distributions of X and Y are N(μX , σ 2

X) and N(μY , σ 2
Y ),

respectively, and that σ 2
Y > σ 2

X . Thus, use the modifica-
tion of Z to test the hypothesis H0: μX − μY = 0 against
the alternative hypothesis H1: μX − μY < 0.

(a) Define the test statistic and a critical region that has a
significance level of α = 0.025.

(b) Using the data given in Exercise 7.2-5, calculate the
value of the test statistic and state your conclusion.

(c) Draw two box-and-whisker diagrams on the same fig-
ure. Does your figure confirm the conclusion of this
exercise?

8.2-13. Students looked at the effect of a certain fertilizer
on plant growth. The students tested this fertilizer on one
group of plants (Group A) and did not give fertilizer to
a second group (Group B). The growths of the plants, in
mm, over six weeks were as follows:

Group A: 55 61 33 57 17 46 50 42 71 51 63

Group B: 31 27 12 44 9 25 34 53 33 21 32

(a) Test the null hypothesis that the mean growths
are equal against the alternative that the fertilizer
enhanced growth. Assume that the variances are
equal.

(b) Construct box plots of the two sets of growths on
the same graph. Does this confirm your answer to
part (a)?

8.2-14. An ecology laboratory studied tree dispersion
patterns for the sugar maple, whose seeds are dispersed
by the wind, and the American beech, whose seeds are
dispersed by mammals. In a plot of area 50 m by 50 m,
they measured distances between like trees, yielding the
following distances in meters for 19 American beech trees
and 19 sugar maple trees:

American beech: 5.00 5.00 6.50 4.25 4.25 8.80 6.50

7.15 6.15 2.70 2.70 11.40 9.70

6.10 9.35 2.85 4.50 4.50 6.50

sugar maple: 6.00 4.00 6.00 6.45 5.00 5.00 5.50

2.35 2.35 3.90 3.90 5.35 3.15

2.10 4.80 3.10 5.15 3.10 6.25

(a) Test the null hypothesis that the means are equal
against the one-sided alternative that the mean for
the distances between beech trees is greater than that
between maple trees.

(b) Construct two box plots to confirm your answer.

8.2-15. Say X and Y are independent random variables
with distributions that are N(μX , σ 2

X) and N(μY , σ 2
Y ). We

wish to test H0: σ 2
X = σ 2

Y against H1: σ 2
X > σ 2

Y .

(a) Argue that, if H0 is true, the ratio of the two vari-
ances of the samples of sizes n and m, S2

X/S2
Y , has an

F(n−1, m−1) distribution.

(b) If n = m = 31, x = 8.153, s2
x = 1.410, y = 5.917,

s2
y = 0.4399, s2

x/s2
y = 3.2053, and α = 0.01, show that

H0 is rejected and H1 is accepted since 3.2053 > 2.39.

(c) Where did the 2.39 come from?

8.2-16. To measure air pollution in a home, let X and
Y equal the amount of suspended particulate matter (in
μg/m3) measured during a 24-hour period in a home in
which there is no smoker and a home in which there is a
smoker, respectively. We shall test the null hypothesis H0:
σ 2

X/σ 2
Y = 1 against the one-sided alternative hypothesis

H1: σ 2
X/σ 2

Y > 1.

(a) If a random sample of size n = 9 yielded x = 93
and sx = 12.9 while a random sample of size m = 11
yielded y = 132 and sy = 7.1, define a critical region
and give your conclusion if α = 0.05.

(b) Now test H0: μX = μY against H1: μX < μY if
α = 0.05.

8.2-17. Consider the distributions N(μX , 400) and
N(μY , 225). Let θ = μX − μY . Say x and y denote the
observed means of two independent random samples,
each of size n, from the respective distributions. Say we
reject H0: θ = 0 and accept H1: θ > 0 if x − y ≥ c. Let
K(θ) be the power function of the test. Find n and c so
that K(0) = 0.05 and K(10) = 0.90, approximately.

8.3 TESTS ABOUT PROPORTIONS
Suppose a manufacturer of a certain printed circuit observes that approximately a
proportion p = 0.06 of the circuits fail. An engineer and statistician working together
suggest some changes that might improve the design of the product. To test this new
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procedure, it was agreed that n = 200 circuits would be produced by the proposed
method and then checked. Let Y equal the number of these 200 circuits that fail.
Clearly, if the number of failures, Y, is such that Y/200 is about equal to 0.06, then
it seems that the new procedure has not resulted in an improvement. Also, on the
one hand, if Y is small, so that Y/200 is about 0.02 or 0.03, we might believe that the
new method is better than the old. On the other hand, if Y/200 is 0.09 or 0.10, the
proposed method has perhaps caused a greater proportion of failures.

What we need to establish is a formal rule that tells us when to accept the new
procedure as an improvement. In addition, we must know the consequences of this
rule. As an example of such a rule, we could accept the new procedure as an improve-
ment if Y ≤ 7 or Y/n ≤ 0.035. We do note, however, that the probability of failure
could still be about p = 0.06 even with the new procedure, and yet we could observe
7 or fewer failures in n = 200 trials. That is, we could erroneously accept the new
method as being an improvement when, in fact, it was not. This decision is a mistake
we call a Type I error. By contrast, the new procedure might actually improve the
product so that p is much smaller, say, p = 0.03, and yet we could observe y = 9
failures, so that y/200 = 0.045. Thus, we could, again erroneously, not accept the
new method as resulting in an improvement when, in fact, it had. This decision is a
mistake we call a Type II error. We must study the probabilities of these two types
of errors to understand fully the consequences of our rule.

Let us begin by modeling the situation. If we believe that these trials, con-
ducted under the new procedure, are independent, and that each trial has about
the same probability of failure, then Y is binomial b(200, p). We wish to make a sta-
tistical inference about p using the unbiased estimator p̂ = Y/200. Of course, we
could construct a one-sided confidence interval—say, one that has 95% confidence
of providing an upper bound for p—and obtain[

0, p̂ + 1.645

√
p̂ (1 − p̂ )

200

]
.

This inference is appropriate and many statisticians simply make it. If the limits of
this confidence interval contain 0.06, they would not say that the new procedure is
necessarily better, at least until more data are taken. If, however, the upper limit
of the confidence interval is less than 0.06, then those same statisticians would feel
95% confident that the true p is now less than 0.06. Hence, they would support the
conclusion that the new procedure has improved the manufacturing of the printed
circuits in question.

While this use of confidence intervals is highly appropriate, and later we indi-
cate the relationship of confidence intervals to tests of hypotheses, every student
of statistics should also have some understanding of the basic concepts in the latter
area. Here, in our illustration, we are testing whether the probability of failure has
or has not decreased from 0.06 when the new manufacturing procedure is used. The
null hypothesis is H0: p = 0.06 and the alternative hypothesis is H1: p < 0.06. Since,
in our illustration, we make a Type I error if Y ≤ 7 when, in fact, p = 0.06, we can
calculate the probability of this error. We denote that probability by α and call it the
significance level of the test. Under our assumptions, it is

α = P(Y ≤ 7; p = 0.06) =
7∑

y=0

(
200
y

)
(0.06)y(0.94)200−y.

Since n is rather large and p is small, these binomial probabilities can be approxi-
mated very well by Poisson probabilities with λ = 200(0.06) = 12. That is, from the
Poisson table, the probability of a Type I error is
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α ≈
7∑

y=0

12ye−12

y! = 0.090.

Thus, the approximate significance level of this test is α = 0.090. (Using the binomial
distribution, we find that the exact value of α is 0.0829, which you can easily verify
with Minitab.)

This value of α is reasonably small. However, what about the probability of a
Type II error in case p has been improved to, say, 0.03? This error occurs if Y > 7
when, in fact, p = 0.03; hence, its probability, denoted by β, is

β = P(Y > 7; p = 0.03) =
200∑
y=8

(
200
y

)
(0.03)y(0.97)200−y.

Again, we use the Poisson approximation, here with λ = 200(0.03) = 6, to obtain

β ≈ 1 −
7∑

y=0

6ye−6

y! = 1 − 0.744 = 0.256.

(The binomial distribution tells us that the exact probability is 0.2539, so the approx-
imation is very good.) The engineer and the statistician who created the new
procedure probably are not too pleased with this answer. That is, they might note
that if their new procedure of manufacturing circuits has actually decreased the
probability of failure to 0.03 from 0.06 (a big improvement), there is still a good
chance, 0.256, that H0: p = 0.06 is accepted and their improvement rejected. In
Section 8.5, more will be said about modifying tests so that satisfactory values of the
probabilities of the two types of errors, namely, α and β, can be obtained; however,
to decrease both of them, we need larger sample sizes.

Without worrying more about the probability of the Type II error here, we
present a frequently used procedure for testing H0: p = p0, where p0 is some
specified probability of success. This test is based upon the fact that the number
of successes Y in n independent Bernoulli trials is such that Y/n has an approximate
normal distribution N[p0, p0(1 − p0)/n], provided that H0: p = p0 is true and n is
large. Suppose the alternative hypothesis is H1: p > p0; that is, it has been hypothe-
sized by a research worker that something has been done to increase the probability
of success. Consider the test of H0: p = p0 against H1: p > p0 that rejects H0 and
accepts H1 if and only if

Z = Y/n − p0√
p0(1 − p0)/n

≥ zα .

That is, if Y/n exceeds p0 by zα standard deviations of Y/n, we reject H0 and accept
the hypothesis H1: p > p0. Since, under H0, Z is approximately N(0, 1), the approx-
imate probability of this occurring when H0: p = p0 is true is α. So the significance
level of this test is approximately α.

If the alternative is H1: p < p0 instead of H1: p > p0, then the appropriate
α-level test is given by Z ≤ −zα . Hence, if Y/n is smaller than p0 by zα standard
deviations of Y/n, we accept H1: p < p0.

Example
8.3-1

It was claimed that many commercially manufactured dice are not fair because the
“spots” are really indentations, so that, for example, the 6-side is lighter than the
1-side. Let p equal the probability of rolling a 6 with one of these dice. To test H0:
p = 1/6 against the alternative hypothesis H1: p > 1/6, several such dice will be
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rolled to yield a total of n = 8000 observations. Let Y equal the number of times
that 6 resulted in the 8000 trials. The test statistic is

Z = Y/n − 1/6√
(1/6)(5/6)/n

= Y/8000 − 1/6√
(1/6)(5/6)/8000

.

If we use a significance level of α = 0.05, the critical region is

z ≥ z0.05 = 1.645.

The results of the experiment yielded y = 1389, so the calculated value of the test
statistic is

z = 1389/8000 − 1/6√
(1/6)(5/6)/8000

= 1.67.

Since

z = 1.67 > 1.645,

the null hypothesis is rejected, and the experimental results indicate that these dice
favor a 6 more than a fair die would. (You could perform your own experiment to
check out other dice.)

There are times when a two-sided alternative is appropriate; that is, here we
test H0: p = p0 against H1: p �= p0. For example, suppose that the pass rate in the
usual beginning statistics course is p0. There has been an intervention (say, some new
teaching method) and it is not known whether the pass rate will increase, decrease, or
stay about the same. Thus, we test the null (no-change) hypothesis H0: p = p0 against
the two-sided alternative H1: p �= p0. A test with the approximate significance level
α for doing this is to reject H0: p = p0 if

|Z| = |Y/n − p0|√
p0(1 − p0)/n

≥ zα/2,

since, under H0, P(|Z| ≥ zα/2) ≈ α. These tests of approximate significance level α

are summarized in Table 8.3-1. The rejection region for H0 is often called the critical
region of the test, and we use that terminology in the table.

The p-value associated with a test is the probability, under the null hypothesis
H0, that the test statistic (a random variable) is equal to or exceeds the observed
value (a constant) of the test statistic in the direction of the alternative hypothesis.

Table 8.3-1 Tests of hypotheses for one proportion

H0 H1 Critical Region

p = p0 p > p0 z = y/n − p0√
p0(1 − p0)/n

≥ zα

p = p0 p < p0 z = y/n − p0√
p0(1 − p0)/n

≤ −zα

p = p0 p �= p0 |z| = |y/n − p0|√
p0(1 − p0)/n

≥ zα/2
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Rather than select the critical region ahead of time, the p-value of a test can be
reported and the reader then makes a decision. In Example 8.3-1, the value of the
test statistic was z = 1.67. Because the alternative hypothesis was H1: p > 1/6, the
p-value is

P(Z ≥ 1.67) = 0.0475.

Note that this p-value is less than α = 0.05, which would lead to the rejection of H0
at an α = 0.05 significance level. If the alternative hypothesis were two sided, H1:
p �= 1/6, then the p-value would be P(|Z| ≥ 1.67) = 0.095 and would not lead to the
rejection of H0 at α = 0.05.

Often there is interest in tests about p1 and p2, the probabilities of success for
two different distributions or the proportions of two different populations having a
certain characteristic. For example, if p1 and p2 denote the respective proportions of
homeowners and renters who vote in favor of a proposal to reduce property taxes, a
politician might be interested in testing H0: p1 = p2 against the one-sided alternative
hypothesis H1: p1 > p2.

Let Y1 and Y2 represent, respectively, the numbers of observed successes in n1
and n2 independent trials with probabilities of success p1 and p2. Recall that the
distribution of p̂1 = Y1/n1 is approximately N[p1, p1(1 − p1)/n1] and the distribu-
tion of p̂2 = Y2/n2 is approximately N[p2, p2(1 − p2)/n2]. Thus, the distribution of
p̂1 − p̂2 = Y1/n1 − Y2/n2 is approximately N[p1 − p2, p1(1 − p1)/n1 + p2(1 − p2)/n2].
It follows that the distribution of

Z = Y1/n1 − Y2/n2 − (p1 − p2)√
p1(1 − p1)/n1 + p2(1 − p2)/n2

(8.3-1)

is approximately N(0, 1). To test H0: p1 − p2 = 0 or, equivalently, H0: p1 = p2,
let p = p1 = p2 be the common value under H0. We shall estimate p with p̂ =
(Y1 + Y2)/(n1 + n2). Replacing p1 and p2 in the denominator of Equation 8.3-1 with
this estimate, we obtain the test statistic

Z = p̂1 − p̂2 − 0√
p̂ (1 − p̂ )(1/n1 + 1/n2)

,

which has an approximate N(0, 1) distribution for large sample sizes when the null
hypothesis is true.

The three possible alternative hypotheses and their critical regions are summa-
rized in Table 8.3-2.

Table 8.3-2 Tests of Hypotheses for two proportions

H0 H1 Critical Region

p1 = p2 p1 > p2 z = p̂1 − p̂2√
p̂ (1 − p̂ )(1/n1 + 1/n2)

≥ zα

p1 = p2 p1 < p2 z = p̂1 − p̂2√
p̂ (1 − p̂ )(1/n1 + 1/n2)

≤ −zα

p1 = p2 p1 �= p2 |z| = |̂p1 − p̂2|√
p̂ (1 − p̂ )(1/n1 + 1/n2)

≥ zα/2
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REMARK In testing both H0: p = p0 and H0: p1 = p2, statisticians sometimes use
different denominators for z. For tests of single proportions,

√
p0(1 − p0)/n can be

replaced by
√

(y/n)(1 − y/n)/n, and for tests of the equality of two proportions, the
following denominator can be used:

√
p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2
.

We do not have a strong preference one way or the other since the two methods pro-
vide about the same numerical result. The substitutions do provide better estimates
of the standard deviations of the numerators when the null hypotheses are clearly
false. There is some advantage to this result if the null hypothesis is likely to be false.
In addition, the substitutions tie together the use of confidence intervals and tests of
hypotheses. For example, if the null hypothesis is H0: p = p0, then the alternative
hypothesis H1: p < p0 is accepted if

z = p̂ − p0√
p̂ (1 − p̂ )

n

≤ −zα .

This formula is equivalent to the statement that

p0 /∈
[

0, p̂ + zα

√
p̂ (1 − p̂ )

n

)
,

where the latter is a one-sided confidence interval providing an upper bound for p.
Or if the alternative hypothesis is H1: p �= p0, then H0 is rejected if

|̂p − p0|√
p̂ (1 − p̂ )

n

≥ zα/2.

This inequality is equivalent to

p0 /∈
(

p̂ − zα/2

√
p̂ (1 − p̂ )

n
, p̂ + zα/2

√
p̂ (1 − p̂ )

n

)
,

where the latter is a confidence interval for p. However, using the forms given in
Tables 8.3-1 and 8.3-2, we do get better approximations to α-level significance tests.
Thus, there are trade-offs, and it is difficult to say that one is better than the other.
Fortunately, the numerical answers are about the same.

In the second situation in which the estimates of p1 and p2 are the observed
p̂1 = y1/n1 and p̂2 = y2/n2, we have, with large values of n1 and n2, an approximate
95% confidence interval for p1 − p2 given by

y1

n1
− y2

n2
± 1.96

√
(y1/n1)(1 − y1/n1)

n1
+ (y2/n2)(1 − y2/n2)

n2
.
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If p1 − p2 = 0 is not in this interval, we reject H0: p1 − p2 = 0 at the α = 0.05
significance level. This is equivalent to saying that we reject H0: p1 − p2 = 0 if∣∣∣∣y1

n1
− y2

n2

∣∣∣∣√
(y1/n1)(1 − y1/n1)

n1
+ (y2/n2)(1 − y2/n2)

n2

≥ 1.96.

In general, if the estimator θ̂ (often, the maximum likelihood estimator) of θ has
an approximate (sometimes exact) normal distribution N(θ , σ 2

θ̂
), then H0: θ = θ0 is

rejected in favor of H1: θ �= θ0 at the approximate (sometimes exact) α significance
level if

θ0 /∈ ( θ̂ − zα/2 σθ̂ , θ̂ + zα/2 σθ̂ )

or, equivalently,

|θ̂ − θ0|
σθ̂

≥ zα/2.

Note that σθ̂ often depends upon some unknown parameter that must be estimated
and substituted in σθ̂ to obtain σ̂θ̂ . Sometimes σθ̂ or its estimate is called the stan-
dard error of θ̂ . This was the case in our last illustration when, with θ = p1 − p2 and
θ̂ = p̂1 − p̂2, we substituted y1/n1 for p1 and y2/n2 for p2 in√

p1(1 − p1)
n1

+ p2(1 − p2)
n2

to obtain the standard error of p̂1 − p̂2 = θ̂ .

Exercises

8.3-1. Let Y be b(100, p). To test H0: p = 0.08 against H1:
p < 0.08, we reject H0 and accept H1 if and only if Y ≤ 6.

(a) Determine the significance level α of the test.

(b) Find the probability of the Type II error if, in fact,
p = 0.04.

8.3-2. A bowl contains two red balls, two white balls, and
a fifth ball that is either red or white. Let p denote the
probability of drawing a red ball from the bowl. We shall
test the simple null hypothesis H0: p = 3/5 against the
simple alternative hypothesis H1: p = 2/5. Draw four
balls at random from the bowl, one at a time and with
replacement. Let X equal the number of red balls drawn.

(a) Define a critical region C for this test in terms of X.

(b) For the critical region C defined in part (a), find the
values of α and β.

8.3-3. Let Y be b(192, p). We reject H0: p = 0.75 and
accept H1: p > 0.75 if and only if Y ≥ 152. Use the normal
approximation to determine

(a) α = P(Y ≥ 152; p = 0.75).

(b) β = P(Y < 152) when p = 0.80.

8.3-4. Let p denote the probability that, for a particu-
lar tennis player, the first serve is good. Since p = 0.40,
this player decided to take lessons in order to increase
p. When the lessons are completed, the hypothesis H0:
p = 0.40 will be tested against H1: p > 0.40 on the basis
of n = 25 trials. Let y equal the number of first serves
that are good, and let the critical region be defined by
C = {y : y ≥ 13}.
(a) Determine α = P(Y ≥ 13; p = 0.40). Use Table II in

the appendix.

(b) Find β = P(Y < 13) when p = 0.60; that is, β =
P(Y ≤ 12; p = 0.60). Use Table II.

8.3-5. If a newborn baby has a birth weight that is less
than 2500 grams (5.5 pounds), we say that the baby has
a low birth weight. The proportion of babies with a low
birth weight is an indicator of lack of nutrition for the
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mothers. For the United States, approximately 7% of
babies have a low birth weight. Let p equal the propor-
tion of babies born in the Sudan who weigh less than 2500
grams. We shall test the null hypothesis H0: p = 0.07
against the alternative hypothesis H1: p > 0.07. In a ran-
dom sample of n = 209 babies, y = 23 weighed less than
2500 grams.

(a) What is your conclusion at a significance level of
α = 0.05?

(b) What is your conclusion at a significance level of
α = 0.01?

(c) Find the p-value for this test.

8.3-6. It was claimed that 75% of all dentists recommend
a certain brand of gum for their gum-chewing patients.
A consumer group doubted this claim and decided to
test H0: p = 0.75 against the alternative hypothesis H1:
p < 0.75, where p is the proportion of dentists who recom-
mend that brand of gum. A survey of 390 dentists found
that 273 recommended the given brand of gum.

(a) Which hypothesis would you accept if the significance
level is α = 0.05?

(b) Which hypothesis would you accept if the significance
level is α = 0.01?

(c) Find the p-value for this test.

8.3-7. The management of the Tigers baseball team
decided to sell only low-alcohol beer in their ballpark to
help combat rowdy fan conduct. They claimed that more
than 40% of the fans would approve of this decision. Let
p equal the proportion of Tiger fans on opening day who
approved of the decision. We shall test the null hypoth-
esis H0: p = 0.40 against the alternative hypothesis H1:
p > 0.40.

(a) Define a critical region that has an α = 0.05 signifi-
cance level.

(b) If, out of a random sample of n = 1278 fans, y = 550
said that they approved of the new policy, what is your
conclusion?

8.3-8. Let p equal the proportion of drivers who use a
seat belt in a state that does not have a mandatory seat
belt law. It was claimed that p = 0.14. An advertising
campaign was conducted to increase this proportion. Two
months after the campaign, y = 104 out of a random sam-
ple of n = 590 drivers were wearing their seat belts. Was
the campaign successful?

(a) Define the null and alternative hypotheses.

(b) Define a critical region with an α = 0.01 significance
level.

(c) What is your conclusion?

8.3-9. According to a population census in 1986, the per-
centage of males who are 18 or 19 years old and are
married was 3.7%. We shall test whether this percentage
increased from 1986 to 1988.

(a) Define the null and alternative hypotheses.

(b) Define a critical region that has an approximate sig-
nificance level of α = 0.01. Sketch a standard normal
pdf to illustrate this critical region.

(c) If y = 20 out of a random sample of n = 300 males,
each 18 or 19 years old, were married (U.S. Bureau
of the Census, Statistical Abstract of the United States:
1988), what is your conclusion? Show the calculated
value of the test statistic on your figure in part (b).

8.3-10. Because of tourism in the state, it was proposed
that public schools in Michigan begin after Labor Day. To
determine whether support for this change was greater
than 65%, a public poll was taken. Let p equal the pro-
portion of Michigan adults who favor a post–Labor Day
start. We shall test H0: p = 0.65 against H1: p > 0.65.

(a) Define a test statistic and an α = 0.025 critical region.

(b) Given that 414 out of a sample of 600 favor a post–
Labor Day start, calculate the value of the test statis-
tic.

(c) Find the p-value and state your conclusion.

(d) Find a 95% one-sided confidence interval that gives a
lower bound for p.

8.3-11. A machine shop that manufactures toggle levers
has both a day and a night shift. A toggle lever is defec-
tive if a standard nut cannot be screwed onto the threads.
Let p1 and p2 be the proportion of defective levers among
those manufactured by the day and night shifts, respec-
tively. We shall test the null hypothesis, H0: p1 = p2,
against a two-sided alternative hypothesis based on two
random samples, each of 1000 levers taken from the
production of the respective shifts.

(a) Define the test statistic and a critical region that has
an α = 0.05 significance level. Sketch a standard
normal pdf illustrating this critical region.

(b) If y1 = 37 and y2 = 53 defectives were observed
for the day and night shifts, respectively, calculate
the value of the test statistic. Locate the calculated
test statistic on your figure in part (a) and state your
conclusion.

8.3-12. Let p equal the proportion of yellow candies in a
package of mixed colors. It is claimed that p = 0.20.

(a) Define a test statistic and critical region with a signifi-
cance level of α = 0.05 for testing H0: p = 0.20 against
a two-sided alternative hypothesis.
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(b) To perform the test, each of 20 students counted the
number of yellow candies, y, and the total number of
candies, n, in a 48.1-gram package, yielding the follow-
ing ratios, y/n: 8/56, 13/55, 12/58, 13/56, 14/57, 5/54,
14/56, 15/57, 11/54, 13/55, 10/57, 8/59, 10/54, 11/55,
12/56, 11/57, 6/54, 7/58, 12/58, 14/58. If each individual
tests H0: p = 0.20, what proportion of the students
rejected the null hypothesis?

(c) If we may assume that the null hypothesis is true, what
proportion of the students would you have expected
to reject the null hypothesis?

(d) For each of the 20 ratios in part (b), a 95% con-
fidence interval for p can be calculated. What pro-
portion of these 95% confidence intervals contain
p = 0.20?

(e) If the 20 results are pooled so that
∑20

i=1 yi equals the
number of yellow candies and

∑20
i=1 ni equals the total

sample size, do we reject H0: p = 0.20?

8.3-13. Let pm and pf be the respective proportions of
male and female white-crowned sparrows that return to
their hatching site. Give the endpoints for a 95% con-
fidence interval for pm − pf if 124 out of 894 males
and 70 out of 700 females returned (The Condor, 1992,
pp. 117–133). Does your result agree with the conclu-
sion of a test of H0: p1 = p2 against H1: p1 �= p2 with
α = 0.05?

8.3-14. For developing countries in Africa and the
Americas, let p1 and p2 be the respective proportions of
babies with a low birth weight (below 2500 grams). We
shall test H0: p1 = p2 against the alternative hypothesis
H1: p1 > p2.

(a) Define a critical region that has an α = 0.05 signifi-
cance level.

(b) If respective random samples of sizes n1 = 900 and
n2 = 700 yielded y1 = 135 and y2 = 77 babies with a
low birth weight, what is your conclusion?

(c) What would your decision be with a significance level
of α = 0.01?

(d) What is the p-value of your test?

8.3-15. Each of six students has a deck of cards and
selects a card randomly from his or her deck.

(a) Show that the probability of at least one match is
equal to 0.259.

(b) Now let each of the students randomly select an inte-
ger from 1–52, inclusive. Let p equal the probability
of at least one match. Test the null hypothesis H0: p =
0.259 against an appropriate alternative hypothesis.
Give a reason for your alternative.

(c) Perform this experiment a large number of times.
What is your conclusion?

8.3-16. Let p be the fraction of engineers who do
not understand certain basic statistical concepts.
Unfortunately, in the past, this number has been high,
about p = 0.73. A new program to improve the knowl-
edge of statistical methods has been implemented, and
it is expected that under this program p would decrease
from the aforesaid 0.73 value. To test H0: p = 0.73 against
H1: p < 0.73, 300 engineers in the new program were
tested and 204 (i.e., 68%) did not comprehend certain
basic statistical concepts. Compute the p-value to deter-
mine whether this result indicates progress. That is, can
we reject H0 is favor of H1? Use α = 0.05.

8.4 THE WILCOXON TESTS
As mentioned earlier in the text, at times it is clear that the normality assumptions
are not met and that other procedures, sometimes referred to as nonparametric
or distribution-free methods, should be considered. For example, suppose some
hypothesis, say, H0: m = m0, against H1: m �= m0, is made about the unknown
median, m, of a continuous-type distribution. From the data, we could construct a
100(1 − α)% confidence interval for m, and if m0 is not in that interval, we would
reject H0 at the α significance level.

Now let X be a continuous-type random variable and let m denote the median
of X. To test the hypothesis H0: m = m0 against an appropriate alternative hypoth-
esis, we could also use a sign test. That is, if X1, X2, . . . , Xn denote the observations
of a random sample from this distribution, and if we let Y equal the number of neg-
ative differences among X1 − m0, X2 − m0, . . . , Xn − m0, then Y has the binomial
distribution b(n, 1/2) under H0 and is the test statistic for the sign test. If Y is too
large or too small, we reject H0: m = m0.
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Example
8.4-1

Let X denote the length of time in seconds between two calls entering a call center.
Let m be the unique median of this continuous-type distribution. We test the null
hypothesis H0: m = 6.2 against the alternative hypothesis H1: m < 6.2. Table II in
Appendix B tells us that if Y is the number of lengths of time between calls in a
random sample of size 20 that are less than 6.2, then the critical region C = {y : y ≥
14} has a significance level of α = 0.0577. A random sample of size 20 yielded the
following data:

6.8 5.7 6.9 5.3 4.1 9.8 1.7 7.0

2.1 19.0 18.9 16.9 10.4 44.1 2.9 2.4

4.8 18.9 4.8 7.9

Since y = 9, the null hypothesis is not rejected.

The sign test can also be used to test the hypothesis that two possibly dependent
continuous-type random variables X and Y are such that p = P(X > Y) = 1/2.
To test the hypothesis H0: p = 1/2 against an appropriate alternative hypothesis,
consider the independent pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn). Let W denote the
number of pairs for which Xk − Yk > 0. When H0 is true, W is b(n, 1/2), and the test
can be based upon the statistic W. For example, say X is the length of the right foot
of a person and Y the length of the corresponding left foot. Thus, there is a natural
pairing, and here H0: p = P(X > Y) = 1/2 suggests that either foot of a particular
individual is equally likely to be longer.

One major objection to the sign test is that it does not take into account the mag-
nitude of the differences X1−m0, . . . , Xn−m0. We now discuss a test of Wilcoxon that
does take into account the magnitude of the differences |Xk − m0|, k = 1, 2, . . . , n.
However, in addition to assuming that the random variable X is of the continuous
type, we must also assume that the pdf of X is symmetric about the median in order
to find the distribution of this new statistic. Because of the continuity assumption,
we assume, in the discussion which follows, that no two observations are equal and
that no observation is equal to the median.

We are interested in testing the hypothesis H0: m = m0, where m0 is some
given constant. With our random sample X1, X2, . . . , Xn, we rank the absolute
values |X1 − m0|, |X2 − m0|, . . . , |Xn − m0| in ascending order according to mag-
nitude. That is, for k = 1, 2, . . . , n, we let Rk denote the rank of |Xk − m0| among
|X1 − m0|, |X2 − m0|, . . . , |Xn − m0|. Note that R1, R2, . . . , Rn is a permutation of the
first n positive integers, 1, 2, . . . , n. Now, with each Rk, we associate the sign of the
difference Xk − m0; that is, if Xk − m0 > 0, we use Rk, but if Xk − m0 < 0, we
use −Rk. The Wilcoxon statistic W is the sum of these n signed ranks, and therefore
is often called the Wilcoxon signed rank statistic.

Example
8.4-2

Suppose the lengths of n = 10 sunfish are

xi : 5.0 3.9 5.2 5.5 2.8 6.1 6.4 2.6 1.7 4.3

We shall test H0: m = 3.7 against the alternative hypothesis H1: m > 3.7. Thus,
we have

xk − m0: 1.3, 0.2, 1.5, 1.8, −0.9, 2.4, 2.7, −1.1, −2.0, 0.6

|xk − m0|: 1.3, 0.2, 1.5, 1.8, 0.9, 2.4, 2.7, 1.1, 2.0, 0.6

Ranks: 5, 1, 6, 7, 3, 9, 10, 4, 8, 2

Signed Ranks: 5, 1, 6, 7, −3, 9, 10, −4, −8, 2
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Therefore, the Wilcoxon statistic is equal to

W = 5 + 1 + 6 + 7 − 3 + 9 + 10 − 4 − 8 + 2 = 25.

Incidentally, the positive answer seems reasonable because the number of the 10
lengths that are less than 3.7 is 3, which is the statistic used in the sign test.

If the hypothesis H0: m = m0 is true, about one half of the differences would
be negative and thus about one half of the signs would be negative. Hence, it seems
that the hypothesis H0: m = m0 is supported if the observed value of W is close to
zero. If the alternative hypothesis is H1: m > m0, we would reject H0 if the observed
W = w is too large, since, in this case, the larger deviations |Xk−m0| would usually be
associated with observations for which xk −m0 > 0. That is, the critical region would
be of the form {w : w ≥ c1}. If the alternative hypothesis is H1: m < m0, the critical
region would be of the form {w : w ≤ c2}. Of course, the critical region would be of
the form {w : w ≤ c3 or w ≥ c4} for a two-sided alternative hypothesis H1: m �= m0.
In order to find the values of c1, c2, c3, and c4 that yield desired significance levels, it
is necessary to determine the distribution of W under H0. Accordingly, we consider
certain characteristics of this distribution.

When H0: m = m0 is true,

P(Xk < m0) = P(Xk > m0) = 1
2

, k = 1, 2, . . . , n.

Hence, the probability is 1/2 that a negative sign is associated with the rank Rk
of |Xk − m0|. Moreover, the assignments of these n signs are independent because
X1, X2, . . . , Xn are mutually independent. In addition, W is a sum that contains the
integers 1, 2, . . . , n, each with a positive or negative sign. Since the underlying distri-
bution is symmetric, it seems intuitively obvious that W has the same distribution as
the random variable

V =
n∑

k=1

Vk,

where V1, V2, . . . , Vn are independent and

P(Vk = k) = P(Vk = −k) = 1
2

, k = 1, 2, . . . , n.

That is, V is a sum that contains the integers 1, 2, . . . , n, and these integers receive
their algebraic signs by independent assignments.

Since W and V have the same distribution, their means and variances are equal,
and we can easily find those of V. Now, the mean of Vk is

E(Vk) = −k
(

1
2

)
+ k

(
1
2

)
= 0;

thus,

E(W) = E(V) =
n∑

k=1

E(Vk) = 0.

The variance of Vk is

Var(Vk) = E(V2
k) = (−k)2

(
1
2

)
+ (k)2

(
1
2

)
= k2.
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Hence,

Var(W) = Var(V) =
n∑

k=1

Var(Vk) =
n∑

k=1

k2 = n(n + 1)(2n + 1)
6

.

We shall not try to find the distribution of W in general, since that pmf does
not have a convenient expression. However, we demonstrate how we could find the
distribution of W (or V) with enough patience and computer support. Recall that
the moment-generating function of Vi is

Mk(t) = et(−k)
(

1
2

)
+ et(+k)

(
1
2

)
= e−kt + ekt

2
, k = 1, 2, . . . , n.

Let n = 2; then the moment-generating function of V1 + V2 is

M(t) = E[et(V1+V2)].

From the independence of V1 and V2, we obtain

M(t) = E(etV1 )E(etV2 )

=
(

e−t + et

2

)(
e−2t + e2t

2

)

= e−3t + e−t + et + e3t

4
.

This means that each of the points −3, −1, 1, 3 in the support of V1 + V2 has
probability 1/4.

Next let n = 3; then the moment-generating function of V1 + V2 + V3 is

M(t) = E[et(V1+V2+V3)]

= E[et(V1+V2)]E(etV3 )

=
(

e−3t + e−t + et + e3t

4

)(
e−3t + e3t

2

)

= e−6t + e−4t + e−2t + 2e0 + e2t + e4t + e6t

8
.

Thus, the points −6, −4, −2, 0, 2, 4, and 6 in the support of V1 + V2 + V3 have the
respective probabilities 1/8, 1/8, 1/8, 2/8, 1/8, 1/8, and 1/8. Obviously, this proce-
dure can be continued for n = 4, 5, 6, . . . , but it is rather tedious. Fortunately,
however, even though V1, V2, . . . , Vn are not identically distributed random vari-
ables, the sum V of them still has an approximate normal distribution for large
samples. To obtain this normal approximation for V (or W), a more general form
of the central limit theorem, due to Liapounov, can be used which allows us to say
that the standardized random variable

Z = W − 0√
n(n + 1)(2n + 1)/6

is approximately N(0, 1) when H0 is true. We accept this theorem without proof,
so that we can use this normal distribution to approximate probabilities such as
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P(W ≥ c; H0) ≈ P(Z ≥ zα ; H0) when the sample size n is sufficiently large. The
next example illustrates this approximation.

Example
8.4-3

The moment-generating function of W or of V is given by

M(t) =
n∏

i=1

e−kt + ekt

2
.

Using a computer algebra system such as Maple, we can expand M(t) and find the
coefficients of ekt, which is equal to P(W = k). In Figure 8.4-1, we have drawn
a probability histogram for the distribution of W along with the approximating
N[0, n(n + 1)(2n + 1)/6] pdf for n = 4 (a poor approximation) and for n = 10.
It is important to note that the widths of the rectangles in the probability histogram
are equal to 2, so the “half-unit correction for continuity” mentioned in Section 5.7
now is equal to 1.

Example
8.4-4

Let m be the median of a symmetric distribution of the continuous type. To test the
hypothesis H0: m = 160 against the alternative hypothesis H1: m > 160, we take a
random sample of size n = 16. For an approximate significance level of α = 0.05, H0
is rejected if the computed W = w is such that

z = w√
16(17)(33)/6

≥ 1.645,

or

w ≥ 1.645

√
16(17)(33)

6
= 63.626.

Say the observed values of a random sample are 176.9, 158.3, 152.1, 158.8, 172.4,
169.8, 159.7, 162.7, 156.6, 174.5, 184.4, 165.2, 147.8, 177.8, 160.1, and 160.5. In
Table 8.4-1, the magnitudes of the differences |xk − 160| have been ordered and
ranked. Those differences xk − 160 which were negative have been underlined, and
the ranks are under the ordered values. For this set of data,

w = 1 − 2 + 3 − 4 − 5 + 6 + · · · + 16 = 60.

0.01

0.03

0.05

0.07

5 10

(a) n = 4 (b) n = 10

−10 −5 0

0.005

0.010

0.015

0.020

10 30 50−50 −30 −10

Figure 8.4-1 The Wilcoxon distribution
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Table 8.4-1 Ordered absolute differences from 160

0.1 0.3 0.5 1.2 1.7 2.7 3.4 5.2

1 2 3 4 5 6 7 8

7.9 9.8 12.2 12.4 14.5 16.9 17.8 24.4

9 10 11 12 13 14 15 16

Since 60 < 63.626, H0 is not rejected at the 0.05 significance level. It is interest-
ing to note that H0 would have been rejected at α = 0.10, since, with a unit correction
made for continuity, the approximate p-value is

p-value = P(W ≥ 60)

= P

(
W − 0√

(16)(17)(33)/6
≥ 59 − 0√

(16)(17)(33)/6

)
≈ P(Z ≥ 1.525) = 0.0636.

(Maple produces a p-value equal to 4,251/65,536 = 0.0649.) Such a p-value would
indicate that the data are too few to reject H0, but if the pattern continues, we shall
most certainly reject H0 with a larger sample size.

Although theoretically we could ignore the possibilities that xk = m0 for some
k and that |xk − m0| = |xj − m0| for some k �= j, these situations do occur in appli-
cations. Usually, in practice, if xk = m0 for some k, that observation is deleted and
the test is performed with a reduced sample size. If the absolute values of the differ-
ences from m0 of two or more observations are equal, each observation is assigned
the average of the corresponding ranks. The change this causes in the distribution
of W is not very great, provided that the number of ties is relatively small; thus, we
continue using the same normal approximation.

We now give an example that has some tied observations.

Example
8.4-5

We consider some paired data for percentage of body fat measured at the beginning
and the end of a semester. Let m equal the median of the differences, x − y. We
shall use the Wilcoxon statistic to test the null hypothesis H0: m = 0 against the
alternative hypothesis H1: m > 0 with the differences given below. Since there are
n = 25 nonzero differences, we reject H0 if

z = w − 0√
(25)(26)(51)/6

≥ 1.645

or, equivalently, if

w ≥ 1.645

√
(25)(26)(51)

6
= 122.27

at an approximate α = 0.05 significance level. The 26 differences are

1.8 −3.1 0.1 1.1 0.6 −5.1 9.2 0.2 0.4

0.0 1.9 −0.4 −1.5 1.4 −1.0 2.2 0.8 −0.4

2.0 −5.8 −3.4 −2.3 3.0 2.7 0.2 3.2
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Table 8.4-2 Ordered absolute values, changes in percentage of body fat

0.1 0.2 0.2 0.4 0.4 0.4 0.6 0.8 1.0 1.1 1.4 1.5 1.8

1 2.5 2.5 5 5 5 7 8 9 10 11 12 13

1.9 2.0 2.2 2.3 2.7 3.0 3.1 3.2 3.4 5.1 5.8 9.2

14 15 16 17 18 19 20 21 22 23 24 25

Table 8.4-2 lists the ordered nonzero absolute values, with those that were origi-
nally negative underlined. The rank is under each observation. Note that in the case
of ties, the average of the ranks of the tied measurements is given.

The value of the Wilcoxon statistic is

w = 1 + 2.5 + 2.5 + 5 − 5 − 5 + · · · + 25 = 51.

Since 51 < 122.27, we fail to reject the null hypothesis. The approximate p-value of
this test, using the continuity correction, is

p-value = P(W ≥ 51)

≈ P

(
Z ≥ 50 − 0√

(25)(26)(51)/6

)
= P(Z ≥ 0.673) = 0.2505.

Another method due to Wilcoxon for testing the equality of two distributions
of the continuous type uses the magnitudes of the observations. For this test, it is
assumed that the respective cdfs F and G have the same shape and spread but pos-
sibly different locations; that is, there exists a constant c such that F(x) = G(x + c)
for all x. To proceed with the test, place the combined sample of x1, x2, . . . , xn1 and
y1, y2, . . . , yn2 in increasing order of magnitude. Assign the ranks 1, 2, 3, . . . , n1 + n2
to the ordered values. In the case of ties, assign the average of the ranks associated
with the tied values. Let w equal the sum of the ranks of y1, y2, . . . , yn2 . If the dis-
tribution of Y is shifted to the right of that of X, the values of Y would tend to
be larger than the values of X and w would usually be larger than expected when
F(z) = G(z). If mX and mY are the respective medians, the critical region for testing
H0: mX = mY against H1: mX < mY would be of the form w ≥ c. Similarly, if the
alternative hypothesis is mX > mY , the critical region would be of the form w ≤ c.

We shall not derive the distribution of W. However, if n1 and n2 are both greater
than 7, and there are no ties, a normal approximation can be used. With F(z) = G(z),
the mean and variance of W are

μW = n2(n1 + n2 + 1)
2

and

Var(W) = n1n2(n1 + n2 + 1)
12

,

and the statistic

Z = W − n2(n1 + n2 + 1)/2√
n1n2(n1 + n2 + 1)/12

is approximately N(0, 1).
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Example
8.4-6

The weights of of the contents of n1 = 8 and n2 = 8 tins of cinnamon pack-
aged by companies A and B, respectively, selected at random, yielded the following
observations of X and Y:

x: 117.1 121.3 127.8 121.9 117.4 124.5 119.5 115.1

y: 123.5 125.3 126.5 127.9 122.1 125.6 129.8 117.2

The critical region for testing H0: mX = mY against H1: mX < mY is of the form
w ≥ c. Since n1 = n2 = 8, at an approximate α = 0.05 significance level H0 is
rejected if

z = w − 8(8 + 8 + 1)/2√
[(8)(8)(8 + 8 + 1)]/12

≥ 1.645,

or

w ≥ 1.645

√
(8)(8)(17)

12
+ 4(17) = 83.66.

To calculate the value of W, it is sometimes helpful to construct a back-to-back
stem-and-leaf display. In such a display, the stems are put in the center and the leaves
go to the left and the right. (See Table 8.4-3.)

Reading from this two-sided stem-and-leaf display, we show the combined sam-
ple in Table 8.4-4, with the Company B (y) weights underlined. The ranks are given
beneath the values.

From Table 8.4-4, the computed W is

w = 3 + 8 + 9 + 11 + 12 + 13 + 15 + 16 = 87 > 83.66.

Table 8.4-3 Back-to-back
stem-and-leaf diagram
of weights of cinnamon

x Leaves Stems y Leaves

51 11f

74 71 11s 72

95 11•
19 13 12∗

12t 21 35

45 12f 53 56

78 12s 65 79

12• 98

Multiply numbers by 10−1.
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Table 8.4-4 Combined ordered samples

115.1 117.1 117.2 117.4 119.5 121.3 121.9 122.1

1 2 3 4 5 6 7 8

123.5 124.5 125.3 125.6 126.5 127.8 127.9 129.8

9 10 11 12 13 14 15 16

Thus, H0 is rejected. Finally, making a half-unit correction for continuity, we see that
the p-value of this test is

p-value = P(W ≥ 87)

= P
(

W − 68√
90.667

≥ 86.5 − 68√
90.667

)
≈ P(Z ≥ 1.943) = 0.0260.

Exercises

8.4-1. It is claimed that the median weight m of certain
loads of candy is 40,000 pounds.

(a) Use the following 13 observations and the Wilcoxon
statistic to test the null hypothesis H0: m = 40,000
against the one-sided alternative hypothesis H1: m <

40,000 at an approximate significance level of α =
0.05:

41,195 39,485 41,229 36,840 38,050 40,890 38,345

34,930 39,245 31,031 40,780 38,050 30,906

(b) What is the approximate p-value of this test?

(c) Use the sign test to test the same hypothesis.

(d) Calculate the p-value from the sign test and compare
it with the p-value obtained from the Wilcoxon test.

8.4-2. A course in economics was taught to two groups
of students, one in a classroom situation and the other
online. There were 24 students in each group. The stu-
dents were first paired according to cumulative grade
point averages and background in economics, and then
assigned to the courses by a flip of a coin. (The procedure
was repeated 24 times.) At the end of the course each class
was given the same final examination. Use the Wilcoxon
test to test the hypothesis that the two methods of teach-
ing are equally effective against a two-sided alternative.
The differences in the final scores for each pair of students
were as follows (the online student’s score was subtracted
from the corresponding classroom student’s score):

14 −4 −6 −2 −1 18

6 12 8 −4 13 7

2 6 21 7 −2 11

−3 −14 −2 17 −4 −5

8.4-3. Let X equal the weight (in grams) of a Hershey’s
grape-flavored Jolly Rancher. Denote the median of X
by m. We shall test H0: m = 5.900 against H1: m > 5.900.
A random sample of size n = 25 yielded the following
ordered data:

5.625 5.665 5.697 5.837 5.863 5.870 5.878 5.884 5.908

5.967 6.019 6.020 6.029 6.032 6.037 6.045 6.049

6.050 6.079 6.116 6.159 6.186 6.199 6.307 6.387

(a) Use the sign test to test the hypothesis.

(b) Use the Wilcoxon test statistic to test the hypothesis.

(c) Use a t test to test the hypothesis.

(d) Write a short comparison of the three tests.

8.4-4. The outcomes on n = 10 simulations of a Cauchy
random variable were −1.9415, 0.5901, −5.9848, −0.0790,
−0.7757, −1.0962, 9.3820, −74.0216, −3.0678, and 3.8545.
For the Cauchy distribution, the mean does not exist, but
for this one, the median is believed to equal zero. Use the
Wilcoxon test and these data to test H0: m = 0 against the
alternative hypothesis H1: m �= 0. Let α ≈ 0.05.
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8.4-5. Let x equal a student’s GPA in the fall semester
and y the same student’s GPA in the spring semester. Let
m equal the median of the differences, x − y. We shall
test the null hypothesis H0: m = 0 against an appropriate
alternative hypothesis that you select on the basis of your
past experience. Use a Wilcoxon test and the following 15
observations of paired data to test H0:

x y x y

2.88 3.22 3.98 3.76

3.67 3.49 4.00 3.96

2.76 2.54 3.39 3.52

2.34 2.17 2.59 2.36

2.46 2.53 2.78 2.62

3.20 2.98 2.85 3.06

3.17 2.98 3.25 3.16

2.90 2.84

8.4-6. Let m equal the median of the posttest grip
strengths in the right arms of male freshmen in a study
of health dynamics. We shall use observations on n = 15
such students to test the null hypothesis H0: m = 50
against the alternative hypothesis H1: m > 50.

(a) Using the Wilcoxon statistic, define a critical region
that has an approximate significance level of α = 0.05.

(b) Given the observed values

58.0 52.5 46.0 57.5 52.0 45.5 65.5 71.0

57.0 54.0 48.0 58.0 35.5 44.0 53.0

what is your conclusion?

(c) What is the p-value of this test?

8.4-7. Let X equal the weight in pounds of a “1-pound”
bag of carrots. Let m equal the median weight of a popu-
lation of these bags. Test the null hypothesis H0: m = 1.14
against the alternative hypothesis H1: m > 1.14.

(a) With a sample of size n = 14, use the Wilcoxon
statistic to define a critical region. Use α ≈ 0.10.

(b) What would be your conclusion if the observed
weights were

1.12 1.13 1.19 1.25 1.06 1.31 1.12

1.23 1.29 1.17 1.20 1.11 1.18 1.23

(c) What is the p-value of your test?

8.4-8. A pharmaceutical company is interested in testing
the effect of humidity on the weight of pills that are sold in
aluminum packaging. Let X and Y denote the respective

weights of pills and their packaging (in grams), when the
packaging is good and when it is defective, after the pill
has spent 1 week in a chamber containing 100% humidity
and heated to 30 ◦C.

(a) Use the Wilcoxon test to test H0: mX = mY against
H0: mX − mY < 0 on the following random samples of
n1 = 12 observations of X and n2 = 12 observations
of Y:

x: 0.7565 0.7720 0.7776 0.7750 0.7494 0.7615

0.7741 0.7701 0.7712 0.7719 0.7546 0.7719

y: 0.7870 0.7750 0.7720 0.7876 0.7795 0.7972

0.7815 0.7811 0.7731 0.7613 0.7816 0.7851

What is the p-value?

(b) Construct and interpret a q–q plot of these data. Hint:
This is a q–q plot of the empirical distribution of X
against that of Y.

8.4-9. Let us compare the failure times of a certain type
of light bulb produced by two different manufacturers, X
and Y, by testing 10 bulbs selected at random from each
of the outputs. The data, in hundreds of hours used before
failure, are

x: 5.6 4.6 6.8 4.9 6.1 5.3 4.5 5.8 5.4 4.7

y: 7.2 8.1 5.1 7.3 6.9 7.8 5.9 6.7 6.5 7.1

(a) Use the Wilcoxon test to test the equality of medians
of the failure times at the approximate 5% signifi-
cance level. What is the p-value?

(b) Construct and interpret a q–q plot of these data. Hint:
This is a q–q plot of the empirical distribution of X
against that of Y.

8.4-10. Let X and Y denote the heights of blue spruce
trees, measured in centimeters, growing in two large
fields. We shall compare these heights by measuring 12
trees selected at random from each of the fields. Take
α ≈ 0.05, and use the statistic W—the sum of the ranks of
the observations of Y in the combined sample—to test the
hypothesis H0: mX = mY against the alternative hypoth-
esis H1: mX < mY on the basis of the following n1 = 12
observations of X and n2 = 12 observations of Y.

x: 90.4 77.2 75.9 83.2 84.0 90.2

87.6 67.4 77.6 69.3 83.3 72.7

y: 92.7 78.9 82.5 88.6 95.0 94.4

73.1 88.3 90.4 86.5 84.7 87.5

8.4-11. Let X and Y equal the sizes of grocery orders
from, respectively, a south-side and a north-side food
store of the same chain. We shall test the null hypothesis
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H0: mX = mY against a two-sided alternative, using the
following ordered observations:

x: 5.13 8.22 11.81 13.77 15.36

23.71 31.39 34.65 40.17 75.58

y: 4.42 6.47 7.12 10.50 12.12

12.57 21.29 33.14 62.84 72.05

(a) Use the Wilcoxon test when α = 0.05. What is the
p-value of this two-sided test?

(b) Construct a q–q plot and interpret it. Hint: This is a
q–q plot of the empirical distribution of X against that
of Y.

8.4-12. A charter bus line has 48-passenger and 38-
passenger buses. Let m48 and m38 denote the median
number of miles traveled per day by the respective
buses. With α = 0.05, use the Wilcoxon statistic to
test H0: m48 = m38 against the one-sided alternative H1:
m48 > m38. Use the following data, which give the num-
bers of miles traveled per day for respective random
samples of sizes 9 and 11:

48-passenger buses: 331 308 300 414 253

323 452 396 104

38-passenger buses: 248 393 260 355 279 184

386 450 432 196 197

8.4-13. A company manufactures and packages soap
powder in 6-pound boxes. The quality assurance depart-
ment was interested in comparing the fill weights of
packages from the east and west lines. Taking random
samples from the two lines, the department obtained the
following weights:

East line (x): 6.06 6.04 6.11 6.06 6.06

6.07 6.06 6.08 6.05 6.09

West line (y): 6.08 6.03 6.04 6.07 6.11

6.08 6.08 6.10 6.06 6.04

(a) Let mX and mY denote the median weights for the east
and west lines, respectively. Test H0: mX = mY against
a two-sided alternative hypothesis, using the Wilcoxon
test with α ≈ 0.05. Find the p-value of this two-sided
test.

(b) Construct and interpret a q–q plot of these data.

8.4-14. In Exercise 8.2-13, data are given that show the
effect of a certain fertilizer on plant growth. The growths
of the plants in mm over six weeks are repeated here,
where Group A received fertilizer and Group B did not:

Group A: 55 61 33 57 17 46 50 42 71 51 63

Group B: 31 27 12 44 9 25 34 53 33 21 32

We shall test the hypothesis that fertilizer enhanced
the growth of the plants.

(a) Construct a back-to-back stem-and-leaf display in
which the stems are put down the center of the dia-
gram and the Group A leaves go to the left while the
Group B leaves go to the right.

(b) Calculate the value of the Wilcoxon statistic and give
your conclusion.

(c) How does this result compare with that using the t test
in Exercise 8.2-13?

8.4-15. With α = 0.05, use the Wilcoxon statistic to test
H0: mX = mY against a two-sided alternative. Use the fol-
lowing observations of X and Y, which have been ordered
for your convenience:

x: −2.3864 −2.2171 −1.9148 −1.9097 −1.4883

−1.2007 −1.1077 −0.3601 0.4325 1.0598

1.3035 1.5241 1.7133 1.7656 2.4912

y: −1.7613 −0.9391 −0.7437 −0.5530 −0.2469

0.0647 0.2031 0.3219 0.3579 0.6431

0.6557 0.6724 0.6762 0.9041 1.3571

8.4-16. Data were collected during a step-direction
experiment in the biomechanics laboratory at Hope
College. The goal of the study is to establish differences
in stepping responses between healthy young and healthy
older adults. In one part of the experiment, the subjects
are told in what direction they should take a step. Then,
when given a signal, the subject takes a step in that direc-
tion, and the time it takes for them to lift their foot to
take the step is measured. The direction is repeated a few
times throughout the testing, and for each subject, a mean
of all the “liftoff” times in a certain direction is calculated.
The mean liftoff times (in thousandths of a second) for
the anterior direction, ordered for your convenience, are
as follows:

Young Subjects 397 433 450 468 485 488 498 504 561

565 569 576 577 579 581 586 696

Older Subjects 463 538 549 573 588 590 594 626 627

653 674 728 818 835 863 888 936

(a) Construct a back-to-back stem-and-leaf display. Use
stems 3•, 4∗, . . . , 9∗.

(b) Use the Wilcoxon statistic to test the null hypoth-
esis that the response times are equal against the
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alternative that the times for the young subjects are
less than that for the older subjects.

(c) What outcome does a t test give?

8.4-17. Some measurements in mm were made on a
species of spiders, named Sosippus floridanus, that are
native to Florida. There are 10 female spiders and 10 male
spiders. The body lengths and the lengths of their front
and back legs are repeated here:

Female
body

lengths

Female
front
legs

Female
back
legs

Male
body

lengths

Male
front
legs

Male
back
legs

11.06 15.03 19.29 12.26 21.22 25.54

13.87 17.96 22.74 11.66 18.62 23.94

12.93 17.56 21.28 12.53 18.62 23.94

15.08 21.22 25.54 13.00 19.95 25.80

17.82 22.61 28.86 11.79 19.15 25.40

14.14 20.08 25.14 12.46 19.02 25.27

12.26 16.49 20.22 10.65 17.29 22.21

17.82 18.75 24.61 10.39 17.02 21.81

20.17 23.01 28.46 12.26 18.49 23.41

16.88 22.48 28.59 14.07 22.61 28.86

In this exercise, we shall use the Wilcoxon statistic
to compare the sizes of the female and male spiders. For

each of the following instructions, construct back-to-back
stem-and-leaf displays:

(a) Test the null hypothesis that the body lengths of
female and male spiders are equal against the alter-
native hypothesis that female spiders are longer.

(b) Test the null hypothesis that the lengths of the front
legs of the female and male spiders are equal against
a two-sided alternative.

(c) Test the null hypothesis that the lengths of the back
legs of the female and male spiders are equal against
a two-sided alternative.

8.4-18. In Exercise 8.2-10, growth data are given for
plants in normal air and for plants in CO2-enriched air.
Those data are repeated here:

Normal Air (x) 4.67 4.21 2.18 3.91 4.09 5.24 2.94 4.71

4.04 5.79 3.80 4.38

Enriched Air (y) 5.04 4.52 6.18 7.01 4.36 1.81 6.22 5.70

In this exercise, we shall test the null hypothesis that the
medians are equal, namely, H0: mX = mY , against the
alternative hypothesis H1: mX < mY . You may select the
significance level. However, give the approximate p-value
or state clearly why you arrived at a particular conclusion,
for each of the tests. Show your work.

(a) What is your conclusion from the Wilcoxon test?

(b) What was your conclusion from the t test in
Exercise 8.2-10?

(c) Write a comparison of these two tests.

8.5 POWER OF A STATISTICAL TEST
In Chapter 8, we gave several tests of fairly common statistical hypotheses in such a
way that we described the significance level α and the p-values of each. Of course,
those tests were based on good (sufficient) statistics of the parameters, when the
latter exist. In this section, we consider the probability of making the other type of
error: accepting the null hypothesis H0 when the alternative hypothesis H1 is true.
This consideration leads to ways to find most powerful tests of the null hypothesis
H0 against the alternative hypothesis H1.

The first example introduces a new concept using a test about p, the probability
of success. The sample size is kept small so that Table II in Appendix B can be used
to find probabilities. The application is one that you can actually perform.

Example
8.5-1

Assume that when given a name tag, a person puts it on either the right or left side.
Let p equal the probability that the name tag is placed on the right side. We shall
test the null hypothesis H0: p = 1/2 against the composite alternative hypothesis
H1: p < 1/2. (Included with the null hypothesis are those values of p which are
greater than 1/2; that is, we could think of H0 as H0: p ≥ 1/2.) We shall give name
tags to a random sample of n = 20 people, denoting the placements of their name
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tags with Bernoulli random variables, X1, X2, . . . , X20, where Xi = 1 if a person places
the name tag on the right and Xi = 0 if a person places the name tag on the left. For
our test statistic, we can then use Y = ∑20

i=1 Xi, which has the binomial distribution
b(20, p). Say the critical region is defined by C = {y : y ≤ 6} or, equivalently, by
{(x1, x2, . . . , x20) :

∑20
i=1 xi ≤ 6}. Since Y is b(20, 1/2) if p = 1/2, the significance level

of the corresponding test is

α = P
(

Y ≤ 6; p = 1
2

)
=

6∑
y=0

(
20
y

)(
1
2

)20

= 0.0577,

from Table II in Appendix B. Of course, the probability β of a Type II error has
different values, with different values of p selected from the composite alternative
hypothesis H1: p < 1/2. For example, with p = 1/4,

β = P
(

7 ≤ Y ≤ 20; p = 1
4

)
=

20∑
y=7

(
20
y

)(
1
4

)y(3
4

)20−y

= 0.2142,

whereas with p = 1/10,

β = P
(

7 ≤ Y ≤ 20; p = 1
10

)
=

20∑
y=7

(
20
y

)(
1
10

)y( 9
10

)20−y

= 0.0024.

Instead of considering the probability β of accepting H0 when H1 is true, we could
compute the probability K of rejecting H0 when H1 is true. After all, β and K = 1−β

provide the same information. Since K is a function of p, we denote this explicitly by
writing K(p). The probability

K(p) =
6∑

y=0

(
20
y

)
py(1 − p)20−y, 0 < p ≤ 1

2
,

is called the power function of the test. Of course, α = K(1/2) = 0.0577, 1−K(1/4) =
0.2142, and 1 − K(1/10) = 0.0024. The value of the power function at a specified
p is called the power of the test at that point. For instance, K(1/4) = 0.7858 and
K(1/10) = 0.9976 are the powers at p = 1/4 and p = 1/10, respectively. An accept-
able power function assumes small values when H0 is true and larger values when p
differs much from p = 1/2. (See Figure 8.5-1 for a graph of this power function.)

In Example 8.5-1, we introduced the new concept of the power function of a
test. We now show how the sample size can be selected so as to create a test with
appropriate power.

Example
8.5-2

Let X1, X2, . . . , Xn be a random sample of size n from the normal distribution
N(μ, 100), which we can suppose is a possible distribution of scores of students in
a statistics course that uses a new method of teaching (e.g., computer-related mate-
rials). We wish to decide between H0: μ = 60 (the no-change hypothesis because,
let us say, this was the mean by the previous method of teaching) and the research
worker’s hypothesis H1: μ > 60. Let us consider a sample of size n = 25. Of course,
the sample mean X is the maximum likelihood estimator of μ; thus, it seems reason-
able to base our decision on this statistic. Initially, we use the rule to reject H0 and
accept H1 if and only if x ≥ 62. What are the consequences of this test? These are
summarized in the power function of the test.
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p

K(p)
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0.4

0.6

0.8
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0.1 0.2 0.3 0.4 0.5

Figure 8.5-1 Power function: K(p) = P(Y ≤ 6; p),
where Y is b(20, p)

We first find the probability of rejecting H0: μ = 60 for various values of μ ≥ 60.
The probability of rejecting H0 is given by

K(μ) = P( X ≥ 62; μ),

because this test calls for the rejection of H0: μ = 60 when x ≥ 62. When the new
process has the general mean μ, X has the normal distribution N(μ, 100/25 = 4).
Accordingly,

K(μ) = P

(
X − μ

2
≥ 62 − μ

2
; μ

)

= 1 − 


(
62 − μ

2

)
, 60 ≤ μ,

is the probability of rejecting H0: μ = 60 by using this particular test. Several values
of K(μ) are given in Table 8.5-1. Figure 8.5-2 depicts the graph of the function K(μ).

Table 8.5-1 Values of the
power
function

μ K(μ)

60 0.1587

61 0.3085

62 0.5000

63 0.6915

64 0.8413

65 0.9332

66 0.9772

K(μ)

α

β

μ

0.2

0.4

0.6

0.8

1.0

58 60 62 64 66 68

Figure 8.5-2 Power function
K(μ) = 1 − 
([62 − μ]/2)
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The probability K(μ) of rejecting H0: μ = 60 is called the power function of
the test. At the value μ1 of the parameter, K(μ1) is the power at μ1. The power at
μ = 60 is K(60) = 0.1587, and this is the probability of rejecting H0: μ = 60 when
H0 is true. That is, K(60) = 0.1587 = α is the probability of a Type I error and is
called the significance level of the test.

The power at μ = 65 is K(65) = 0.9332, and this is the probability of making
the correct decision (namely, rejecting H0: μ = 60 when μ = 65). Hence, we are
pleased that here it is large. When μ = 65, 1 − K(65) = 0.0668 is the probability of
not rejecting H0: μ = 60 when μ = 65; that is, it is the probability of a Type II error
and is denoted by β = 0.0668. These α- and β-values are displayed in Figure 8.5-2.
Clearly, the probability β = 1 − K(μ1) of a Type II error depends on which value—
say, μ1—is taken in the alternative hypothesis H1: μ > 60. Thus, while β = 0.0668
when μ = 65, β is equal to 1 − K(63) = 0.3085 when μ = 63.

Frequently, statisticians like to have the significance level α smaller than
0.1587—say, around 0.05 or less—because it is a probability of an error, namely, a
Type I error. Thus, if we would like α = 0.05, then, with n = 25, we can no longer
use the critical region x ≥ 62; rather, we use x ≥ c, where c is selected such that

K(60) = P(X ≥ c; μ = 60) = 0.05.

However, when μ = 60, X is N(60, 4), and it follows that

K(60) = P

(
X − 60

2
≥ c − 60

2
; μ = 60

)

= 1 − 


(
c − 60

2

)
= 0.05.

From Table Va in Appendix B, we have

c − 60
2

= 1.645 = z0.05 and c = 60 + 3.29 = 63.29.

Although this change reduces α from 0.1587 to 0.05, it increases β at μ = 65 from
0.0668 to

β = 1 − P(X ≥ 63.29; μ = 65)

= 1 − P

(
X − 65

2
≥ 63.29 − 65

2
; μ = 65

)
= 
(−0.855) = 0.1963.

In general, without changing the sample size or the type of test of the hypothesis,
a decrease in α causes an increase in β, and a decrease in β causes an increase
in α. Both probabilities α and β of the two types of errors can be decreased only
by increasing the sample size or, in some way, constructing a better test of the
hypothesis.

For example, if n = 100 and we desire a test with significance level α = 0.05,
then, since X is N(μ, 100/100 = 1),

α = P(X ≥ c; μ = 60) = 0.05

means that

P

(
X − 60

1
≥ c − 60

1
; μ = 60

)
= 0.05
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and c − 60 = 1.645. Thus, c = 61.645. The power function is

K(μ) = P(X ≥ 61.645; μ)

= P

(
X − μ

1
≥ 61.645 − μ

1
; μ

)
= 1 − 
(61.645 − μ).

In particular, this means that at μ = 65,

β = 1 − K(μ) = 
(61.645 − 65) = 
(−3.355) = 0.0004;

so, with n = 100, both α and β have decreased from their respective original values
of 0.1587 and 0.0668 when n = 25.

Rather than guess at the value of n, an ideal power function determines the
sample size. Let us use a critical region of the form x ≥ c. Further, suppose that we
want α = 0.025 and, when μ = 65, β = 0.05. Thus, since X is N(μ, 100/n), it follows
that

0.025 = P(X ≥ c; μ = 60) = 1 − 


(
c − 60
10/

√
n

)
and

0.05 = 1 − P(X ≥ c; μ = 65) = 


(
c − 65
10/

√
n

)
.

That is,

c − 60
10/

√
n

= 1.96 and
c − 65
10/

√
n

= −1.645.

Solving these equations simultaneously for c and 10/
√

n, we obtain

c = 60 + 1.96
5

3.605
= 62.718;

10√
n

= 5
3.605

.

Hence,
√

n = 7.21 and n = 51.98.

Since n must be an integer, we would use n = 52 and thus obtain α ≈ 0.025 and
β ≈ 0.05.

The next example is an extension of Example 8.5-1.

Example
8.5-3

To test H0: p = 1/2 against H1: p < 1/2, we take a random sample of Bernoulli
trials, X1, X2, . . . , Xn, and use for our test statistic Y = ∑n

i=1 Xi, which has a binomial
distribution b(n, p). Let the critical region be defined by C = {y : y ≤ c}. The power
function for this test is defined by K(p) = P(Y ≤ c; p). We shall find the values
of n and c so that K(1/2) ≈ 0.05 and K(1/4) ≈ 0.90. That is, we would like the
significance level to be α = K(1/2) = 0.05 and the power at p = 1/4 to equal 0.90.
We proceed as follows: Since

0.05 = P
(

Y ≤ c; p = 1
2

)
= P

(
Y − n/2√

n(1/2)(1/2)
≤ c − n/2√

n(1/2)(1/2)

)
,
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it follows that

(c − n/2)/
√

n/4 ≈ −1.645;

and since

0.90 = P
(

Y ≤ c; p = 1
4

)
= P

(
Y − n/4√

n(1/4)(3/4)
≤ c − n/4√

n(1/4)(3/4)

)
,

it follows that

(c − n/4)/
√

3n/16 ≈ 1.282.

Therefore,

n
4

≈ 1.645

√
n
4

+ 1.282

√
3n
16

and
√

n ≈ 4(1.378) = 5.512.

Thus, n is approximately 30.4, and we round upward to 31. From either of the first
two approximate equalities, we find that c is about equal to 10.9. Using n = 31 and
c = 10.9 means that K(1/2) = 0.05 and K(1/4) = 0.90 are only approximate. In fact,
since Y must be an integer, we could let c = 10.5. Then, with n = 31,

α = K
(

1
2

)
= P

(
Y ≤ 10.5; p = 1

2

)
≈ 0.0362;

K
(

1
4

)
= P

(
Y ≤ 10.5; p = 1

4

)
≈ 0.8730.

Or we could let c = 11.5 and n = 32, in which case

α = K
(

1
2

)
= P

(
Y ≤ 11.5; p = 1

2

)
≈ 0.0558;

K
(

1
4

)
= P

(
Y ≤ 11.5; p = 1

4

)
≈ 0.9235.

Exercises

8.5-1. A certain size of bag is designed to hold 25 pounds
of potatoes. A farmer fills such bags in the field. Assume
that the weight X of potatoes in a bag is N(μ, 9). We shall
test the null hypothesis H0: μ = 25 against the alternative
hypothesis H1: μ < 25. Let X1, X2, X3, X4 be a random
sample of size 4 from this distribution, and let the critical
region C for this test be defined by x ≤ 22.5, where x is
the observed value of X.

(a) What is the power function K(μ) of this test? In par-
ticular, what is the significance level α = K(25) for
your test?

(b) If the random sample of four bags of potatoes yielded
the values x1 = 21.24, x2 = 24.81, x3 = 23.62, and
x4 = 26.82, would your test lead you to accept or
reject H0?

(c) What is the p-value associated with x in part (b)?

8.5-2. Let X equal the number of milliliters of a liquid in a
bottle that has a label volume of 350 ml. Assume that the
distribution of X is N(μ, 4). To test the null hypothesis H0:
μ = 355 against the alternative hypothesis H1: μ < 355,
let the critical region be defined by C = {x : x ≤ 354.05},
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where x is the sample mean of the contents of a random
sample of n = 12 bottles.

(a) Find the power function K(μ) for this test.

(b) What is the (approximate) significance level of the
test?

(c) Find the values of K(354.05) and K(353.1), and sketch
the graph of the power function.

(d) Use the following 12 observations to state your con-
clusion from this test:

350 353 354 356 353 352
354 355 357 353 354 355

(e) What is the approximate p-value of the test?

8.5-3. Assume that SAT mathematics scores of students
who attend small liberal arts colleges are N(μ, 8100). We
shall test H0: μ = 530 against the alternative hypothesis
H1: μ < 530. Given a random sample of size n = 36 SAT
mathematics scores, let the critical region be defined by
C = {x : x ≤ 510.77}, where x is the observed mean of the
sample.

(a) Find the power function, K(μ), for this test.

(b) What is the value of the significance level of the test?

(c) What is the value of K(510.77)?

(d) Sketch the graph of the power function.

(e) What is the p-value associated with (i) x = 507.35;
(ii) x = 497.45?

8.5-4. Let X be N(μ, 100). To test H0: μ = 80 against
H1: μ > 80, let the critical region be defined by C =
{(x1, x2, . . . , x25) : x ≥ 83}, where x is the sample mean
of a random sample of size n = 25 from this distribution.

(a) What is the power function K(μ) for this test?

(b) What is the significance level of the test?

(c) What are the values of K(80), K(83), and K(86)?

(d) Sketch the graph of the power function.

(e) What is the p-value corresponding to x = 83.41?

8.5-5. Let X equal the yield of alfalfa in tons per acre
per year. Assume that X is N(1.5, 0.09). It is hoped that
a new fertilizer will increase the average yield. We shall
test the null hypothesis H0: μ = 1.5 against the alternative
hypothesis H1: μ > 1.5. Assume that the variance contin-
ues to equal σ 2 = 0.09 with the new fertilizer. Using X,
the mean of a random sample of size n, as the test statistic,
reject H0 if x ≥ c. Find n and c so that the power function
K(μ) = P(X ≥ c : μ) is such that α = K(1.5) = 0.05 and
K(1.7) = 0.95.

8.5-6. Let X equal the butterfat production (in pounds)
of a Holstein cow during the 305-day milking period fol-
lowing the birth of a calf. Assume that the distribution of
X is N(μ, 1402). To test the null hypothesis H0: μ = 715

against the alternative hypothesis H1: μ < 715, let the
critical region be defined by C = {x : x ≤ 668.94}, where
x is the sample mean of n = 25 butterfat weights from 25
cows selected at random.

(a) Find the power function K(μ) for this test.

(b) What is the significance level of the test?

(c) What are the values of K(668.94) and K(622.88)?

(d) Sketch a graph of the power function.

(e) What conclusion do you draw from the following 25
observations of X?

425 710 661 664 732 714 934 761 744

653 725 657 421 573 535 602 537 405

874 791 721 849 567 468 975

(f) What is the approximate p-value of the test?

8.5-7. In Exercise 8.5-6, let C = {x : x ≤ c} be the criti-
cal region. Find values for n and c so that the significance
level of this test is α = 0.05 and the power at μ = 650 is
0.90.

8.5-8. Let X have a Bernoulli distribution with pmf

f (x; p) = px(1 − p)1−x, x = 0, 1, 0 ≤ p ≤ 1.

We would like to test the null hypothesis H0: p ≤ 0.4
against the alternative hypothesis H1: p > 0.4. For the
test statistic, use Y = ∑n

i=1 Xi, where X1, X2, . . . , Xn is a
random sample of size n from this Bernoulli distribution.
Let the critical region be of the form C = {y : y ≥ c}.
(a) Let n = 100. On the same set of axes, sketch the

graphs of the power functions corresponding to the
three critical regions, C1 = {y : y ≥ 40}, C2 = {y :
y ≥ 50}, and C3 = {y : y ≥ 60}. Use the normal
approximation to compute the probabilities.

(b) Let C = {y : y ≥ 0.45n}. On the same set of axes,
sketch the graphs of the power functions corres-
ponding to the three samples of sizes 10, 100, and
1000.

8.5-9. Let p denote the probability that, for a particu-
lar tennis player, the first serve is good. Since p = 0.40,
this player decided to take lessons in order to increase
p. When the lessons are completed, the hypothesis
H0: p = 0.40 will be tested against H1: p > 0.40 on the
basis of n = 25 trials. Let y equal the number of first
serves that are good, and let the critical region be defined
by C = {y : y ≥ 14}.
(a) Find the power function K(p) for this test.

(b) What is the value of the significance level, α =
K(0.40)? Use Table II in Appendix B.

(c) Evaluate K(p) at p = 0.45, 0.50, 0.60, 0.70, 0.80, and
0.90. Use Table II.
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(d) Sketch the graph of the power function.

(e) If y = 15 following the lessons, would H0 be rejected?

(f) What is the p-value associated with y = 15?

8.5-10. Let X1, X2, . . . , X8 be a random sample of size
n = 8 from a Poisson distribution with mean λ. Reject
the simple null hypothesis H0: λ = 0.5, and accept H1:
λ > 0.5, if the observed sum

∑8
i=1 xi ≥ 8.

(a) Compute the significance level α of the test.

(b) Find the power function K(λ) of the test as a sum of
Poisson probabilities.

(c) Using Table III in Appendix B, determine K(0.75),
K(1), and K(1.25).

8.5-11. Let p equal the fraction defective of a certain
manufactured item. To test H0: p = 1/26 against H1:
p > 1/26, we inspect n items selected at random and

let Y be the number of defective items in this sample.
We reject H0 if the observed y ≥ c. Find n and c so
that α = K(1/26) ≈ 0.05 and K(1/10) ≈ 0.90, where
K(p) = P(Y ≥ c; p). Hint: Use either the normal or
Poisson approximation to help solve this exercise.

8.5-12. Let X1, X2, X3 be a random sample of size n = 3
from an exponential distribution with mean θ > 0. Reject
the simple null hypothesis H0: θ = 2, and accept the com-
posite alternative hypothesis H1: θ < 2, if the observed
sum

∑3
i=1 xi ≤ 2.

(a) What is the power function K(θ), written as an inte-
gral?

(b) Using integration by parts, define the power function
as a summation.

(c) With the help of Table III in Appendix B, determine
α = K(2), K(1), K(1/2), and K(1/4).

8.6 BEST CRITICAL REGIONS
In this section, we consider the properties a satisfactory hypothesis test (or critical
region) should possess. To introduce our investigation, we begin with a nonstatistical
example.

Example
8.6-1

Say that you have α dollars with which to buy books. Further, suppose that you are
not interested in the books themselves, but only in filling as much of your book-
shelves as possible. How do you decide which books to buy? Does the following
approach seem reasonable? First of all, take all the available free books. Then start
choosing those books for which the cost of filling an inch of bookshelf is smallest.
That is, choose those books for which the ratio c/w is a minimum, where w is the
width of the book in inches and c is the cost of the book. Continue choosing books
this way until you have spent the α dollars.

To see how Example 8.6-1 provides the background for selecting a good critical
region of size α, let us consider a test of the simple hypothesis H0: θ = θ0 against a
simple alternative hypothesis H1: θ = θ1. In this discussion, we assume that the ran-
dom variables X1, X2, . . . , Xn under consideration have a joint pmf of the discrete
type, which we here denote by L(θ ; x1, x2, . . . , xn). That is,

P(X1 = x1, X2 = x2, . . . , Xn = xn) = L(θ ; x1, x2, . . . , xn).

A critical region C of size α is a set of points (x1, x2, . . . , xn) with probability α when
θ = θ0. For a good test, this set C of points should have a large probability when
θ = θ1, because, under H1: θ = θ1, we wish to reject H0: θ = θ0. Accordingly, the
first point we would place in the critical region C is the one with the smallest ratio:

L(θ0; x1, x2, . . . , xn)
L(θ1; x1, x2, . . . , xn)

.
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That is, the “cost” in terms of probability under H0: θ = θ0 is small compared
with the probability that we can “buy” if θ = θ1. The next point to add to C would
be the one with the next-smallest ratio. We would continue to add points to C in this
manner until the probability of C, under H0: θ = θ0, equals α. In this way, for the
given significance level α, we have achieved the region C with the largest probability
when H1: θ = θ1 is true. We now formalize this discussion by defining a best critical
region and proving the well-known Neyman–Pearson lemma.

Definition 8.6-1
Consider the test of the simple null hypothesis H0: θ = θ0 against the simple
alternative hypothesis H1: θ = θ1. Let C be a critical region of size α; that is,
α = P(C; θ0). Then C is a best critical region of size α if, for every other critical
region D of size α = P(D; θ0), we have

P(C; θ1) ≥ P(D; θ1).

That is, when H1: θ = θ1 is true, the probability of rejecting H0: θ = θ0 with the
use of the critical region C is at least as great as the corresponding probability
with the use of any other critical region D of size α.

Thus, a best critical region of size α is the critical region that has the great-
est power among all critical regions of size α. The Neyman–Pearson lemma gives
sufficient conditions for a best critical region of size α.

Theorem
8.6-1

(Neyman–Pearson Lemma) Let X1, X2, . . . , Xn be a random sample of size n from
a distribution with pdf or pmf f (x; θ), where θ0 and θ1 are two possible values of θ .
Denote the joint pdf or pmf of X1, X2, . . . , Xn by the likelihood function

L(θ) = L(θ ; x1, x2, . . . , xn) = f (x1; θ)f (x2; θ) · · · f (xn; θ).

If there exist a positive constant k and a subset C of the sample space such that

(a) P[(X1, X2, . . . , Xn) ∈ C; θ0] = α,

(b)
L(θ0)
L(θ1)

≤ k for (x1, x2, . . . , xn) ∈ C, and

(c)
L(θ0)
L(θ1)

≥ k for (x1, x2, . . . , xn) ∈ C′,

then C is a best critical region of size α for testing the simple null hypothesis H0:
θ = θ0 against the simple alternative hypothesis H1: θ = θ1.

Proof We prove the theorem when the random variables are of the continuous
type; for discrete-type random variables, replace the integral signs by summation
signs. To simplify the exposition, we shall use the following notation:∫

B
L(θ) =

∫
· · ·
B

∫
L(θ ; x1, x2, . . . , xn) dx1 dx2 · · · dxn.

Assume that there exists another critical region of size α—say, D—such that, in this
new notation,

α =
∫

C
L(θ0) =

∫
D

L(θ0).
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Then we have

0 =
∫

C
L(θ0) −

∫
D

L(θ0)

=
∫

C∩D′
L(θ0) +

∫
C∩D

L(θ0) −
∫

C∩D
L(θ0) −

∫
C′∩D

L(θ0).

Hence,

0 =
∫

C∩D′
L(θ0) −

∫
C′∩D

L(θ0).

By hypothesis (b), kL(θ1) ≥ L(θ0) at each point in C and therefore in C ∩ D′; thus,

k
∫

C∩D′
L(θ1) ≥

∫
C∩D′

L(θ0).

By hypothesis (c), kL(θ1) ≤ L(θ0) at each point in C′ and therefore in C′ ∩ D; thus,
we obtain

k
∫

C′∩D
L(θ1) ≤

∫
C′∩D

L(θ0).

Consequently,

0 =
∫

C∩D′
L(θ0) −

∫
C′∩D

L(θ0) ≤ (k)
{∫

C∩D′
L(θ1) −

∫
C′∩D

L(θ1)
}

.

That is,

0 ≤ (k)
{∫

C∩D′
L(θ1) +

∫
C∩D

L(θ1) −
∫

C∩D
L(θ1) −

∫
C′∩D

L(θ1)
}

or, equivalently,

0 ≤ (k)
{∫

C
L(θ1) −

∫
D

L(θ1)
}

.

Thus, ∫
C

L(θ1) ≥
∫

D
L(θ1);

that is, P(C; θ1) ≥ P(D; θ1). Since that is true for every critical region D of size α,
C is a best critical region of size α. �

For a realistic application of the Neyman–Pearson lemma, consider the next
example, in which the test is based on a random sample from a normal distribution.

Example
8.6-2

Let X1, X2, . . . , Xn be a random sample from the normal distribution N(μ, 36). We
shall find the best critical region for testing the simple hypothesis H0: μ = 50 against
the simple alternative hypothesis H1: μ = 55. Using the ratio of the likelihood func-
tions, namely, L(50)/L(55), we shall find those points in the sample space for which
this ratio is less than or equal to some positive constant k. That is, we shall solve the
following inequality:
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L(50)
L(55)

=
(72π)−n/2 exp

[
−
(

1
72

) n∑
i = 1

(xi − 50)2

]

(72π)−n/2 exp

[
−
(

1
72

) n∑
i = 1

(xi − 55)2

]

= exp

[
−
(

1
72

)(
10

n∑
i = 1

xi + n502 − n552

)]
≤ k.

If we take the natural logarithm of each member of the inequality, we find that

−10
n∑

i = 1

xi − n502 + n552 ≤ (72) ln k.

Thus,

1
n

n∑
i = 1

xi ≥ − 1
10n

[n502 − n552 + (72) ln k]

or, equivalently,

x ≥ c,

where c = −(1/10n)[n502 − n552 + (72) ln k]. Hence, L(50)/L(55) ≤ k is equivalent
to x ≥ c. According to the Neyman–Pearson lemma, a best critical region is

C = {(x1, x2, . . . , xn) : x ≥ c},
where c is selected so that the size of the critical region is α. Say n = 16 and c = 53.
Then, since X is N(50, 36/16) under H0, we have

α = P( X ≥ 53; μ = 50)

= P

(
X − 50

6/4
≥ 3

6/4
; μ = 50

)
= 1 − 
(2) = 0.0228.

This last example illustrates what is often true, namely, that the inequality

L(θ0)/L(θ1) ≤ k

can be expressed in terms of a function u(x1, x2, . . . , xn), say,

u(x1, . . . , xn) ≤ c1

or

u(x1, . . . , xn) ≥ c2,

where c1 or c2 is selected so that the size of the critical region is α. Thus, the test
can be based on the statistic u(x1, . . . , xn). As an example, if we want α to be a given
value—say, 0.05—we could then choose our c1 or c2. In Example 8.6-2, with α = 0.05,
we want
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0.05 = P( X ≥ c; μ = 50)

= P

(
X − 50

6/4
≥ c − 50

6/4
; μ = 50

)
= 1 − 


(
c − 50

6/4

)
.

Hence, it must be true that (c − 50)/(3/2) = 1.645, or, equivalently,

c = 50 + 3
2

(1.645) ≈ 52.47.

Example
8.6-3

Let X1, X2, . . . , Xn denote a random sample of size n from a Poisson distribution
with mean λ. A best critical region for testing H0: λ = 2 against H1: λ = 5 is given by

L(2)
L(5)

= 2�xie−2n

x1!x2! · · · xn!
x1!x2! · · · xn!

5�xi e−5n
≤ k.

This inequality can be written as(
2
5

)�xi

e3n ≤ k, or (�xi) ln
(

2
5

)
+ 3n ≤ ln k.

Since ln(2/5) < 0, the latter inequality is the same as

n∑
i = 1

xi ≥ ln k − 3n
ln(2/5)

= c.

If n = 4 and c = 13, then

α = P

( 4∑
i = 1

Xi ≥ 13; λ = 2

)
= 1 − 0.936 = 0.064,

from Table III in Appendix B, since
∑4

i = 1 Xi has a Poisson distribution with mean 8
when λ = 2.

When H0: θ = θ0 and H1: θ = θ1 are both simple hypotheses, a critical region
of size α is a best critical region if the probability of rejecting H0 when H1 is true
is a maximum compared with all other critical regions of size α. The test using the
best critical region is called a most powerful test, because it has the greatest value
of the power function at θ = θ1 compared with that of other tests with significance
level α. If H1 is a composite hypothesis, the power of a test depends on each simple
alternative in H1.

Definition 8.6-2
A test defined by a critical region C of size α is a uniformly most powerful test
if it is a most powerful test against each simple alternative in H1. The critical
region C is called a uniformly most powerful critical region of size α.

Let us consider again Example 8.6-2 when the alternative hypothesis is
composite.
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Example
8.6-4

Let X1, X2, . . . , Xn be a random sample from N(μ, 36). We have seen that, in test-
ing H0: μ = 50 against H1: μ = 55, a best critical region C is defined by C =
{(x1, x2, . . . , xn) : x ≥ c}, where c is selected so that the significance level is α. Now
consider testing H0: μ = 50 against the one-sided composite alternative hypothesis
H1: μ > 50. For each simple hypothesis in H1—say, μ = μ1—the quotient of the
likelihood functions is

L(50)
L(μ1)

=
(72π)−n/2 exp

[
−
(

1
72

) n∑
i = 1

(xi − 50)2

]

(72π)−n/2 exp

[
−
(

1
72

) n∑
i = 1

(xi − μ1)2

]

= exp

[
− 1

72

{
2(μ1 − 50)

n∑
i = 1

xi + n(502 − μ2
1)

}]
.

Now, L(50)/L(μ1) ≤ k if and only if

x ≥ (−72) ln(k)
2n(μ1 − 50)

+ 50 + μ1

2
= c.

Thus, the best critical region of size α for testing H0: μ = 50 against H1: μ = μ1,
where μ1 > 50, is given by C = {(x1, x2, . . . , xn) : x ≥ c}, where c is selected such
that P( X ≥ c; H0 : μ = 50) = α. Note that the same value of c can be used for
each μ1 > 50, but (of course) k does not remain the same. Since the critical region
C defines a test that is most powerful against each simple alternative μ1 > 50, this
is a uniformly most powerful test, and C is a uniformly most powerful critical region
of size α. Again, if α = 0.05, then c ≈ 52.47.

Example
8.6-5

Let Y have the binomial distribution b(n, p). To find a uniformly most powerful test
of the simple null hypothesis H0: p = p0 against the one-sided alternative hypothesis
H1: p > p0, consider, with p1 > p0,

L(p0)
L(p1)

=

(
n
y

)
py

0(1 − p0)n−y(
n
y

)
py

1(1 − p1)n−y
≤ k.

This is equivalent to [
p0(1 − p1)
p1(1 − p0)

]y [1 − p0

1 − p1

]n

≤ k

and

y ln
[

p0(1 − p1)
p1(1 − p0)

]
≤ ln k − n ln

[
1 − p0

1 − p1

]
.

Since p0 < p1, we have p0(1 − p1) < p1(1 − p0). Thus, ln[p0(1 − p1)/p1(1 − p0)] < 0.
It follows that

y
n

≥ ln k − n ln[(1 − p0)/(1 − p1)]
n ln[p0(1 − p1)/p1(1 − p0)]

= c

for each p1 > p0.
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It is interesting to note that if the alternative hypothesis is the one-sided H1:
p < p0, then a uniformly most powerful test is of the form (y/n) ≤ c. Thus, the tests
of H0: p = p0 against the one-sided alternatives given in Table 8.3-1 are uniformly
most powerful.

Exercise 8.6-5 will demonstrate that uniformly most powerful tests do not
always exist; in particular, they usually do not exist when the composite alternative
hypothesis is two sided.

REMARK We close this section with one easy but important observation: If a suffi-
cient statistic Y = u(X1, X2, . . . , Xn) exists for θ , then, by the factorization theorem
(Definition 6.7-1),

L(θ0)
L(θ1)

= φ[u(x1, x2, . . . , xn); θ0] h(x1, x2, . . . , xn)
φ[u(x1, x2, . . . , xn); θ1] h(x1, x2, . . . , xn)

= φ[u(x1, x2, . . . , xn); θ0)
φ[u(x1, x2, . . . , xn); θ1]

.

Thus, L(θ0)/L(θ1) ≤ k provides a critical region that is a function of the obser-
vations x1, x2, . . . xn only through the observed value of the sufficient statistic
y = u(x1, x2, . . . , xn). Hence, best critical and uniformly most powerful critical
regions are based upon sufficient statistics when they exist.

Exercises

8.6-1. Let X1, X2, . . . , Xn be a random sample from a
normal distribution N(μ, 64).

(a) Show that C = {(x1, x2, . . . , xn) : x ≤ c} is a
best critical region for testing H0: μ = 80 against
H1: μ = 76.

(b) Find n and c so that α ≈ 0.05 and β ≈ 0.05.

8.6-2. Let X1, X2, . . . , Xn be a random sample from
N(0, σ 2).

(a) Show that C = {(x1, x2, . . . , xn) :
∑n

i = 1 x2
i ≥ c} is

a best critical region for testing H0: σ 2 = 4 against
H1: σ 2 = 16.

(b) If n = 15, find the value of c so that α = 0.05. Hint:
Recall that

∑n
i = 1 X2

i /σ 2 is χ2(n).

(c) If n = 15 and c is the value found in part (b), find
the approximate value of β = P(

∑n
i = 1 X2

i < c;
σ 2 = 16).

8.6-3. Let X have an exponential distribution with a
mean of θ ; that is, the pdf of X is f (x; θ) = (1/θ)e−x/θ ,
0 < x < ∞. Let X1, X2, . . . , Xn be a random sample from
this distribution.

(a) Show that a best critical region for testing H0: θ = 3
against H1: θ = 5 can be based on the statistic∑n

i = 1 Xi.

(b) If n = 12, use the fact that (2/θ)
∑12

i = 1 Xi is χ2(24) to
find a best critical region of size α = 0.10.

(c) If n = 12, find a best critical region of size α = 0.10
for testing H0: θ = 3 against H1: θ = 7.

(d) If H1: θ > 3, is the common region found in parts (b)
and (c) a uniformly most powerful critical region of
size α = 0.10?

8.6-4. Let X1, X2, . . . , Xn be a random sample of
Bernoulli trials b(1, p).

(a) Show that a best critical region for testing H0: p = 0.9
against H1: p = 0.8 can be based on the statistic
Y = ∑n

i = 1 Xi, which is b(n, p).

(b) If C = {(x1, x2, . . . , xn) :
∑n

i = 1 xi ≤ n(0.85)} and
Y = ∑n

i = 1 Xi, find the value of n such that α =
P[ Y ≤ n(0.85); p = 0.9 ] ≈ 0.10. Hint: Use the
normal approximation for the binomial distribution.

(c) What is the approximate value of β = P[ Y >

n(0.85); p = 0.8 ] for the test given in part (b)?
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(d) Is the test of part (b) a uniformly most powerful test
when the alternative hypothesis is H1: p < 0.9?

8.6-5. Let X1, X2, . . . , Xn be a random sample from the
normal distribution N(μ, 36).

(a) Show that a uniformly most powerful critical region
for testing H0: μ = 50 against H1: μ < 50 is given by
C2 = {x : x ≤ c}.

(b) With this result and that of Example 8.6-4, argue that
a uniformly most powerful test for testing H0: μ = 50
against H1: μ �= 50 does not exist.

8.6-6. Let X1, X2, . . . , Xn be a random sample from the
normal distribution N(μ, 9). To test the hypothesis H0:
μ = 80 against H1: μ �= 80, consider the following three
critical regions: C1 = {x : x ≥ c1}, C2 = {x : x ≤ c2}, and
C3 = {x : |x − 80| ≥ c3}.
(a) If n = 16, find the values of c1, c2, c3 such that the

size of each critical region is 0.05. That is, find c1, c2,
c3 such that

0.05 = P(X ∈ C1; μ = 80) = P(X ∈ C2; μ = 80)

= P(X ∈ C3; μ = 80).

(b) On the same graph paper, sketch the power functions
for these three critical regions.

8.6-7. Let X1, X2, . . . , X10 be a random sample of size 10
from a Poisson distribution with mean μ.

(a) Show that a uniformly most powerful critical region
for testing H0: μ = 0.5 against H1: μ > 0.5 can be
defined with the use of the statistic

∑10
i = 1 Xi.

(b) What is a uniformly most powerful critical region of
size α = 0.068? Recall that

∑10
i = 1 Xi has a Poisson

distribution with mean 10μ.

(c) Sketch the power function of this test.

8.6-8. Consider a random sample X1, X2, . . . , Xn from a
distribution with pdf f (x; θ) = θ(1 − x)θ−1, 0 < x <

1, where 0 < θ . Find the form of the uniformly most
powerful test of H0: θ = 1 against H1: θ > 1.

8.6-9. Let X1, X2, . . . , X5 be a random sample from the
Bernoulli distribution p(x; θ) = θx(1 − θ)1−x. We reject
H0: θ = 1/2 and accept H1: θ < 1/2 if Y = ∑5

i = 1 Xi ≤ c.
Show that this is a uniformly most powerful test and find
the power function K(θ) if c = 1.

8.7* LIKELIHOOD RATIO TESTS
In this section, we consider a general test-construction method that is applicable
when either or both of the null and alternative hypotheses—say, H0 and H1—are
composite. We continue to assume that the functional form of the pdf is known,
but that it depends on one or more unknown parameters. That is, we assume that
the pdf of X is f (x; θ), where θ represents one or more unknown parameters. We
let � denote the total parameter space—that is, the set of all possible values of the
parameter θ given by either H0 or H1. These hypotheses will be stated as

H0 : θ ∈ ω, H1 : θ ∈ ω′,

where ω is a subset of � and ω′ is the complement of ω with respect to �. The test
will be constructed with the use of a ratio of likelihood functions that have been
maximized in ω and �, respectively. In a sense, this is a natural generalization of
the ratio appearing in the Neyman–Pearson lemma when the two hypotheses were
simple.

Definition 8.7-1
The likelihood ratio is the quotient

λ = L(ω̂)

L(�̂)
,

where L(ω̂) is the maximum of the likelihood function with respect to θ when
θ ∈ ω and L(�̂) is the maximum of the likelihood function with respect to θ

when θ ∈ �.
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Because λ is the quotient of nonnegative functions, λ ≥ 0. In addition, since
ω ⊂ �, it follows that L(ω̂) ≤ L(�̂) and hence λ ≤ 1. Thus, 0 ≤ λ ≤ 1. If the
maximum of L in ω is much smaller than that in �, it would seem that the data
x1, x2, . . . , xn do not support the hypothesis H0: θ ∈ ω. That is, a small value of the
ratio λ = L(ω̂)/L(�̂) would lead to the rejection of H0. In contrast, a value of the
ratio λ that is close to 1 would support the null hypothesis H0. This reasoning leads
us to the next definition.

Definition 8.7-2
To test H0: θ ∈ ω against H1: θ ∈ ω′, the critical region for the likelihood ratio
test is the set of points in the sample space for which

λ = L(ω̂)

L(�̂)
≤ k,

where 0 < k < 1 and k is selected so that the test has a desired significance
level α.

The next example illustrates these definitions.

Example
8.7-1

Assume that the weight X in ounces of a “10-pound” bag of sugar is N(μ, 5). We
shall test the hypothesis H0: μ = 162 against the alternative hypothesis H1: μ �= 162.
Thus, � = {μ : −∞ < μ < ∞} and ω = {162}. To find the likelihood ratio, we need
L(ω̂) and L(�̂). When H0 is true, μ can take on only one value, namely, μ = 162.
Hence, L(ω̂) = L(162). To find L(�̂), we must find the value of μ that maximizes
L(μ). Recall that μ̂ = x is the maximum likelihood estimate of μ. Then L(�̂) = L(x),
and the likelihood ratio λ = L(ω̂)/L(�̂) is given by

λ =
(10π)−n/2 exp

[
−
(

1
10

) n∑
i = 1

(xi − 162)2

]

(10π)−n/2 exp

[
−
(

1
10

) n∑
i = 1

(xi − x)2

]

=
exp

[
−
(

1
10

) n∑
i = 1

(xi − x)2 −
( n

10

)
(x − 162)2

]

exp

[
−

(
1

10

) n∑
i = 1

(xi − x)2

]

= exp
[
− n

10
(x − 162)2

]
.

On the one hand, a value of x close to 162 would tend to support H0, and in that
case λ is close to 1. On the other hand, an x that differs from 162 by too much would
tend to support H1. (See Figure 8.7-1 for the graph of this likelihood ratio when
n = 5.)

A critical region for a likelihood ratio is given by λ ≤ k, where k is selected so
that the significance level of the test is α. Using this criterion and simplifying the
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Figure 8.7-1 The likelihood ratio for testing
H0 : μ = 162

inequality as we do when we use the Neyman–Pearson lemma, we find that λ ≤ k is
equivalent to each of the following inequalities:

−
( n

10

)
(x − 162)2 ≤ ln k,

(x − 162)2 ≥ −
(

10
n

)
ln k,

|x − 162|√
5/

√
n

≥
√−(10/n) ln k√

5/
√

n
= c.

Since Z = ( X − 162)/(
√

5/
√

n ) is N(0, 1) when H0: μ = 162 is true, let c = zα/2.
Thus, the critical region is

C =
{

x :
|x − 162|√

5/
√

n
≥ zα/2

}
.

To illustrate, if α = 0.05, then z0.025 = 1.96.

As illustrated in Example 8.7-1, the inequality λ ≤ k can often be expressed in
terms of a statistic whose distribution is known. Also, note that although the likeli-
hood ratio test is an intuitive test, it leads to the same critical region as that given by
the Neyman–Pearson lemma when H0 and H1 are both simple hypotheses.

Suppose now that the random sample X1, X2, . . . , Xn arises from the normal
population N(μ, σ 2), where both μ and σ 2 are unknown. Let us consider the likeli-
hood ratio test of the null hypothesis H0: μ = μ0 against the two-sided alternative
hypothesis H1: μ �= μ0. For this test,

ω = {(μ, σ 2) : μ = μ0, 0 < σ 2 < ∞}

and

� = {(μ, σ 2) : −∞ < μ < ∞, 0 < σ 2 < ∞}.
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If (μ, σ 2) ∈ �, then the observed maximum likelihood estimates are μ̂ = x and
σ̂ 2 = (1/n)

∑n
i = 1(xi − x)2.

Thus,

L(�̂) =

⎡⎢⎢⎣ 1

2π

(
1
n

)∑n
i = 1 (xi − x)2

⎤⎥⎥⎦
n/2

exp

⎡⎢⎢⎣−
∑n

i = 1 (xi − x)2(
2
n

)∑n
i = 1 (xi − x)2

⎤⎥⎥⎦

=
[

ne−1

2π
∑n

i = 1 (xi − x)2

]n/2

.

Similarly, if (μ, σ 2) ∈ ω, then the observed maximum likelihood estimates are
μ̂ = μ0 and σ̂ 2 = (1/n)

∑n
i = 1(xi − μ0)2. Hence,

L(ω̂) =

⎡⎢⎢⎣ 1

2π

(
1
n

)∑n
i = 1 (xi − μ0)2

⎤⎥⎥⎦
n/2

exp

⎡⎢⎢⎣−
∑n

i = 1 (xi − μ0)2(
2
n

)∑n
i = 1 (xi − μ0)2

⎤⎥⎥⎦

=
[

ne−1

2π
∑n

i = 1 (xi − μ0)2

]n/2

.

The likelihood ratio λ = L(ω̂)/L(�̂) for this test is

λ =

[
ne−1

2π
∑n

i = 1 (xi − μ0)2

]n/2

[
ne−1

2π
∑n

i = 1 (xi − x)2

]n/2
=

[ ∑n
i = 1 (xi − x)2∑n

i = 1 (xi − μ0)2

]n/2

.

However, note that

∑
n
i = 1 (xi − μ0)2 =

∑
n
i = 1 (xi − x + x − μ0)2 =

∑
n
i = 1 (xi − x)2 + n( x − μ0)2.

If this substitution is made in the denominator of λ, we have

λ =
[ ∑n

i = 1 (xi − x)2∑n
i = 1 (xi − x)2 + n( x − μ0)2

]n/2

=

⎡⎢⎢⎢⎣ 1

1 + n( x − μ0)2∑n
i = 1 (xi − x)2

⎤⎥⎥⎥⎦
n/2

.
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Note that λ is close to 1 when x is close to μ0 and λ is small when x and μ0 differ by
a great deal. The likelihood ratio test, given by the inequality λ ≤ k, is the same as

1

1 + n( x − μ0)2∑n
i = 1 (xi − x )2

≤ k2/n

or, equivalently,

n( x − μ0)2

1
n − 1

∑n
i = 1 (xi − x )2

≥ (n − 1)(k−2/n − 1).

When H0 is true,
√

n( X − μ0)/σ is N(0, 1) and
∑n

i = 1(Xi − X )2/σ 2 has an
independent chi-square distribution χ2(n−1). Hence, under H0,

T =
√

n( X − μ0)/σ√∑n
i = 1 (Xi − X )2/[σ 2(n − 1)]

=
√

n(X − μ0)√∑n
i = 1 (Xi − X )2/(n − 1)

= X − μ0

S/
√

n

has a t distribution with r = n − 1 degrees of freedom. In accordance with the
likelihood ratio test criterion, H0 is rejected if the observed

T2 ≥ (n − 1)(k−2/n − 1).

That is, we reject H0: μ = μ0 and accept H1: μ �= μ0 at the α level of significance if
the observed |T| ≥ tα/2(n − 1).

Note that this test is exactly the same as that listed in Table 8.1-2 for testing H0:
μ = μ0 against H1: μ �= μ0. That is, the test listed there is a likelihood ratio test. As
a matter of fact, all six of the tests given in Tables 8.1-2 and 8.2-1 are likelihood ratio
tests. Thus, the examples and exercises associated with those tables are illustrations
of the use of such tests.

The final development of this section concerns a test about the variance of a
normal population. Let X1, X2, . . . , Xn be a random sample from N(μ, σ 2), where μ

and σ 2 are unknown. We wish to test H0: σ 2 = σ 2
0 against H1: σ 2 �= σ 2

0 . For this
purpose, we have

ω = {(μ, σ 2) : −∞ < μ < ∞, σ 2 = σ 2
0 }

and

� = {(μ, σ 2) : −∞ < μ < ∞, 0 < σ 2 < ∞}.
As in the test concerning the mean, we obtain

L(�̂) =
[

ne−1

2π
∑n

i = 1 (xi − x)2

]n/2

.

If (μ, σ 2) ∈ ω, then μ̂ = x and σ̂ 2 = σ 2
0 ; thus,

L(ω̂) =
(

1

2πσ 2
0

)n/2

exp

[
−
∑n

i = 1 (xi − x )2

2σ 2
0

]
.
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Accordingly, the likelihood ratio test λ = L(ω̂)/L(�̂) is

λ =
(w

n

)n/2
exp

(
−w

2
+ n

2

)
≤ k,

where w = ∑n
i = 1(xi − x )2/σ 2

0 . Solving this inequality for w, we obtain a solution of
the form w ≤ c1 or w ≥ c2, where the constants c1 and c2 are appropriate functions of
the constants k and n so as to achieve the desired significance level α. However these
values of c1 and c2 do not place probability α/2 in each of the two regions w ≤ c1 and
w ≥ c2. Since W = ∑n

i = 1(Xi−X )2/σ 2
0 is χ2(n − 1) if H0: σ 2 = σ 2

0 is true, most statis-
ticians modify this test slightly by taking c1 = χ2

1−α/2(n − 1) and c2 = χ2
α/2(n − 1).

As a matter of fact, most tests involving normal assumptions are likelihood ratio
tests or modifications of them; included are tests involving regression and analysis
of variance (see Chapter 9).

REMARK Note that likelihood ratio tests are based on sufficient statistics when
they exist, as was also true of best critical and uniformly most powerful critical
regions.

Exercises

8.7-1. In Example 8.7-1, suppose that n = 20 and x =
161.1.

(a) Is H0 accepted if α = 0.10?

(b) Is H0 accepted if α = 0.05?

(c) What is the p-value of this test?

8.7-2. Assume that the weight X in ounces of a “10-
ounce” box of cornflakes is N(μ, 0.03). Let X1, X2, . . . , Xn
be a random sample from this distribution.

(a) To test the hypothesis H0: μ ≥ 10.35 against the alter-
native hypothesis H1: μ < 10.35, what is the critical
region of size α = 0.05 specified by the likelihood
ratio test criterion? Hint: Note that if μ ≥ 10.35 and
x < 10.35, then μ̂ = 10.35.

(b) If a random sample of n = 50 boxes yielded a sam-
ple mean of x = 10.31, is H0 rejected? Hint: Find the
critical value zα when H0 is true by taking μ = 10.35,
which is the extreme value in μ ≥ 10.35.

(c) What is the p-value of this test?

8.7-3. Let X1, X2, . . . , Xn be a random sample of size n
from the normal distribution N(μ, 100).

(a) To test H0: μ = 230 against H1: μ > 230, what is
the critical region specified by the likelihood ratio test
criterion?

(b) Is this test uniformly most powerful?

(c) If a random sample of n = 16 yielded x = 232.6, is H0
accepted at a significance level of α = 0.10?

(d) What is the p-value of this test?

8.7-4. Let X1, X2, . . . , Xn be a random sample of size n
from the normal distribution N(μ, σ 2

0 ), where σ 2
0 is known

but μ is unknown.

(a) Find the likelihood ratio test for H0: μ = μ0 against
H1: μ �= μ0. Show that this critical region for a
test with significance level α is given by |X − μ0| >

zα/2σ0/
√

n.

(b) Test H0: μ = 59 against H1: μ �= 59 when σ 2 = 225
and a sample of size n = 100 yielded x = 56.13. Let
α = 0.05.

(c) What is the p-value of this test? Note that H1 is a
two-sided alternative.

8.7-5. It is desired to test the hypothesis H0: μ = 30
against the alternative hypothesis H1: μ �= 30, where μ

is the mean of a normal distribution and σ 2 is unknown.
If a random sample of size n = 9 has x = 32.8 and s = 4,
is H0 accepted at an α = 0.05 significance level? What is
the approximate p-value of this test?

8.7-6. To test H0: μ = 335 against H1: μ < 335 under
normal assumptions, a random sample of size 17 yielded
x = 324.8 and s = 40. Is H0 accepted at an α = 0.10
significance level?

8.7-7. Let X have a normal distribution in which μ and
σ 2 are both unknown. It is desired to test H0: μ = 1.80
against H1: μ > 1.80 at an α = 0.10 significance level. If
a random sample of size n = 121 yielded x = 1.84 and
s = 0.20, is H0 accepted or rejected? What is the p-value
of this test?
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8.7-8. Let X1, X2, . . . , Xn be a random sample from an
exponential distribution with mean θ . Show that the like-
lihood ratio test of H0: θ = θ0 against H1: θ �= θ0 has a
critical region of the form

∑n
i = 1 xi ≤ c1 or

∑n
i = 1 xi ≥ c2.

How would you modify this test so that chi-square tables
can be used easily?

8.7-9. Let independent random samples of sizes n and m
be taken respectively from two normal distributions with
unknown means μX and μY and unknown variances σ 2

X

and σ 2
Y .

(a) Show that when σ 2
X = σ 2

Y , the likelihood ratio for test-
ing H0: μX = μY against H1: μX �= μY is a function of
the usual two-sample t statistic.

(b) Show that the likelihood ratio for testing H0: σ 2
X =

σ 2
Y against H1: σ 2

X �= σ 2
Y is a function of the usual

two-sample F statistic.

8.7-10. Referring back to Exercise 6.4-19, find the likeli-
hood ratio test of H0: γ = 1, μ unspecified, against all
alternatives.

8.7-11. Let Y1, Y2, . . . , Yn be n independent random
variables with normal distributions N(βxi, σ 2), where
x1, x2, . . . , xn are known and not all equal and β and σ 2

are unknown parameters.

(a) Find the likelihood ratio test for H0: β = 0 against H1:
β �= 0.

(b) Can this test be based on a statistic with a well-known
distribution?

HISTORICAL COMMENTS Most of the tests presented in this section result from
the use of methods found in the theories of Jerzy Neyman and Egon Pearson, a son
of Karl Pearson. Neyman and Pearson formed a team, particularly in the 1920s and
1930s, which produced theoretical results that were important contributions to the
area of testing statistical hypotheses.

Neyman and Pearson knew, in testing hypotheses, that they needed a critical
region that had high probability when the alternative was true, but they did not
have a procedure to find the best one. Neyman was thinking about this late one
day when his wife told him they had to attend a concert. He kept thinking of this
problem during the concert and finally, in the middle of the concert, the solution
came to him: Select points in the critical region for which the ratio of the pdf under
the alternative hypothesis to that under the null hypothesis is as large as possible.
Hence, the Neyman–Pearson lemma was born. Sometimes solutions occur at the
strangest times.

Shortly after Wilcoxon proposed his two-sample test, Mann and Whitney sug-
gested a test based on the estimate of the probability P(X < Y). In this test, they
let U equal the number of times that Xi < Yj, i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.
Using the data in Example 8.4-6, we find that the computed U is u = 51 among all
n1n2 = (8)(8) = 64 pairs of (X, Y). Thus, the estimate of P(X < Y) is 51/64 or, in
general, u/n1n2. At the time of the Mann–Whitney suggestion, it was noted that U
was just a linear function of Wilcoxon’s W and hence really provided the same test.
That relationship is

U = W − n2(n2 + 1)
2

,

which in our special case is

51 = 87 − 8(9)
2

= 87 − 36.

Thus, we often read about the test of Mann, Whitney, and Wilcoxon. From this obser-
vation, this test could be thought of as one testing H0: P(X < Y) = 1/2 against the
alternative H1: P(X < Y) > 1/2 with critical region of the form w ≥ c.

Note that the two-sample Wilcoxon test is much less sensitive to extreme val-
ues than is the Student’s t test based on X − Y. Therefore, if there is considerable
skewness or contamination, these proposed distribution-free tests are much safer. In
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particular, that of Wilcoxon is quite good and does not lose too much power in case
the distributions are close to normal ones. It is important to note that the one-sample
Wilcoxon test requires symmetry of the underlying distribution, but the two-sample
Wilcoxon test does not and thus can be used for skewed distributions.

From theoretical developments beyond the scope of this text, the two Wilcoxon
tests are strong competitors of the usual one- and two-sample tests based upon nor-
mality assumptions, so the Wilcoxon tests should be considered if those assumptions
are questioned.

Computer programs, including Minitab, will calculate the value of the Wilcoxon
or Mann–Whitney statistic. However, it is instructive to do these tests by hand so
that you can see what is being calculated!
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9More Tests

9.1 Chi-Square Goodness-of-Fit Tests
9.2 Contingency Tables
9.3 One-Factor Analysis of Variance
9.4 Two-Way Analysis of Variance

9.5* General Factorial and 2k Factorial Designs
9.6* Tests Concerning Regression and Correlation
9.7* Statistical Quality Control

9.1 CHI-SQUARE GOODNESS-OF-FIT TESTS
We now consider applications of the very important chi-square statistic, first pro-
posed by Karl Pearson in 1900. As the reader will see, it is a very adaptable
test statistic and can be used for many different types of tests. In particular,
one application allows us to test the appropriateness of different probabilistic
models.

So that the reader can get some idea as to why Pearson first proposed his chi-
square statistic, we begin with the binomial case. That is, let Y1 be b(n, p1), where
0 < p1 < 1. According to the central limit theorem,

Z = Y1 − np1√
np1(1 − p1)

has a distribution that is approximately N(0, 1) for large n, particularly when np1 ≥ 5
and n(1 − p1) ≥ 5. Thus, it is not surprising that Q1 = Z2 is approximately χ2(1). If
we let Y2 = n − Y1 and p2 = 1 − p1, we see that Q1 may be written as

Q1 = (Y1 − np1)2

np1(1 − p1)
= (Y1 − np1)2

np1
+ (Y1 − np1)2

n(1 − p1)
.

Since

(Y1 − np1)2 = (n − Y1 − n[1 − p1])2 = (Y2 − np2)2,

we have

Q1 = (Y1 − np1)2

np1
+ (Y2 − np2)2

np2
.

Let us now carefully consider each term in this last expression for Q1. Of course,
Y1 is the number of “successes,” and np1 is the expected number of “successes”; that
is, E(Y1) = np1. Likewise, Y2 and np2 are, respectively, the number and the expected

415
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number of “failures.” So each numerator consists of the square of the difference of
an observed number and an expected number. Note that Q1 can be written as

Q1 =
2∑

i=1

(Yi − npi)2

npi
, (9.1-1)

and we have seen intuitively that it has an approximate chi-square distribution with
one degree of freedom. In a sense, Q1 measures the “closeness” of the observed
numbers to the corresponding expected numbers. For example, if the observed val-
ues of Y1 and Y2 equal their expected values, then the computed Q1 is equal to
q1 = 0; but if they differ much from them, then the computed Q1 = q1 is relatively
large.

To generalize, we let an experiment have k (instead of only two) mutually
exclusive and exhaustive outcomes, say, A1, A2, . . . , Ak. Let pi = P(Ai), and thus∑k

i=1 pi = 1. The experiment is repeated n independent times, and we let Yi rep-
resent the number of times the experiment results in Ai, i = 1, 2, . . . , k. This joint
distribution of Y1, Y2, . . . , Yk−1 is a straightforward generalization of the binomial
distribution, as follows.

In considering the joint pmf, we see that

f (y1, y2, . . . , yk−1) = P(Y1 = y1, Y2 = y2, . . . , Yk−1 = yk−1),

where y1, y2, . . . , yk−1 are nonnegative integers such that y1 + y2 + · · · + yk−1 ≤ n.
Note that we do not need to consider Yk, since, once the other k−1 random variables
are observed to equal y1, y2, . . . , yk−1, respectively, we know that

Yk = n − y1 − y2 − · · · − yk−1 = yk, say.

From the independence of the trials, the probability of each particular arrangement
of y1 A1s, y2 A2s, . . . , yk Aks is

py1
1 py2

2 · · · pyk
k .

The number of such arrangements is the multinomial coefficient(
n

y1, y2, . . . , yk

)
= n!

y1! y2! · · · yk! .

Hence, the product of these two expressions gives the joint pmf of Y1, Y2, . . . , Yk−1:

f (y1, y2, . . . , yk−1) = n!
y1! y2! · · · yk! py1

1 py2
2 · · · pyk

k .

(Recall that yk = n − y1 − y2 − · · · − yk−1.)
Pearson then constructed an expression similar to Q1 (Equation 9.1-1), which

involves Y1 and Y2 = n − Y1, that we denote by Qk−1, which involves
Y1, Y2, . . . , Yk−1, and Yk = n − Y1 − Y2 − · · · − Yk−1, namely,

Qk−1 =
k∑

i=1

(Yi − npi)2

npi
.

He argued that Qk−1 has an approximate chi-square distribution with k − 1 degrees
of freedom in much the same way we argued that Q1 is approximately χ2(1). We
accept Pearson’s conclusion, as the proof is beyond the level of this text.

Some writers suggest that n should be large enough so that npi ≥ 5,
i = 1, 2, . . . , k, to be certain that the approximating distribution is adequate. This is
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probably good advice for the beginner to follow, although we have seen the approx-
imation work very well when npi ≥ 1, i = 1, 2, . . . , k. The important thing to guard
against is allowing some particular npi to become so small that the corresponding
term in Qk−1, namely, (Yi − npi)2/npi, tends to dominate the others because of
its small denominator. In any case, it is important to realize that Qk−1 has only an
approximate chi-square distribution.

We shall now show how we can use the fact that Qk−1 is approximately χ2(k−1)
to test hypotheses about probabilities of various outcomes. Let an experiment have
k mutually exclusive and exhaustive outcomes, A1, A2, . . . , Ak. We would like to test
whether pi = P(Ai) is equal to a known number pi0, i = 1, 2, . . . , k. That is, we shall
test the hypothesis

H0 : pi = pi0, i = 1, 2, . . . , k.

In order to test such a hypothesis, we shall take a sample of size n; that is, we repeat
the experiment n independent times. We tend to favor H0 if the observed number of
times that Ai occurred, say, yi, and the number of times Ai was expected to occur if
H0 were true, namely, npi0, are approximately equal. That is, if

qk−1 =
k∑

i=1

(yi − npi0)2

npi0

is “small,” we tend to favor H0. Since the distribution of Qk−1 is approximately
χ2(k−1), we shall reject H0 if qk−1 ≥ χ2

α(k−1), where α is the desired significance
level of the test.

Example
9.1-1

If persons are asked to record a string of random digits, such as

3 7 2 4 1 9 7 2 1 5 0 8 . . . ,

we usually find that they are reluctant to record the same or even the two clos-
est numbers in adjacent positions. And yet, in true random-digit generation, the
probability of the next digit being the same as the preceding one is p10 = 1/10,
the probability of the next being only one away from the preceding (assuming that
0 is one away from 9) is p20 = 2/10, and the probability of all other possibilities
is p30 = 7/10. We shall test one person’s concept of a random sequence by asking
her to record a string of 51 digits that seems to represent a random-digit generation.
Thus, we shall test

H0 : p1 = p10 = 1
10

, p2 = p20 = 2
10

, p3 = p30 = 7
10

.

The critical region for an α = 0.05 significance level is q2 ≥ χ2
0.05(2) = 5.991. The

sequence of digits was as follows:

5 8 3 1 9 4 6 7 9 2 6 3 0

8 7 5 1 3 6 2 1 9 5 4 8 0

3 7 1 4 6 0 4 3 8 2 7 3 9

8 5 6 1 8 7 0 3 5 2 5 2
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We went through this listing and observed how many times the next digit was the
same as or was one away from the preceding one:

Frequency Expected Number

Same 0 50(1/10) = 5

One away 8 50(2/10) = 10

Other 42 50(7/10) = 35

Total 50 50

The computed chi-square statistic is

(0 − 5)2

5
+ (8 − 10)2

10
+ (42 − 35)2

35
= 6.8 > 5.991 = χ2

0.05(2).

Thus, we would say that this string of 51 digits does not seem to be random.

One major disadvantage in the use of the chi-square test is that it is a many-
sided test. That is, the alternative hypothesis is very general, and it would be difficult
to restrict alternatives to situations such as H1: p1 > p10, p2 > p20, p3 < p30 (with
k = 3). As a matter of fact, some statisticians would probably test H0 against this
particular alternative H1 by using a linear function of Y1, Y2, and Y3. However, that
sort of discussion is beyond the scope of the book because it involves knowing more
about the distributions of linear functions of the dependent random variables Y1, Y2,
and Y3. In any case, the student who truly recognizes that this chi-square statistic
tests H0: pi = pi0, i = 1, 2, . . . , k, against all alternatives can usually appreciate the
fact that it is more difficult to reject H0 at a given significance level α when the chi-
square statistic is used than it would be if some appropriate “one-sided” test statistic
were available.

Many experiments yield a set of data, say, x1, x2, . . . , xn, and the experimenter is
often interested in determining whether these data can be treated as the observed
values of a random sample X1, X2, . . . , Xn from a given distribution. That is, would
this proposed distribution be a reasonable probabilistic model for these sample
items? To see how the chi-square test can help us answer questions of this sort,
consider a very simple example.

Example
9.1-2

Let X denote the number of heads that occur when four coins are tossed at ran-
dom. Under the assumption that the four coins are independent and the probability
of heads on each coin is 1/2, X is b(4, 1/2). One hundred repetitions of this experi-
ment resulted in 0, 1, 2, 3, and 4 heads being observed on 7, 18, 40, 31, and 4 trials,
respectively. Do these results support the assumptions? That is, is b(4, 1/2) a reason-
able model for the distribution of X? To answer this, we begin by letting A1 = {0},
A2 = {1}, A3 = {2}, A4 = {3}, and A5 = {4}. If pi0 = P(X ∈ Ai) when X is
b(4, 1/2), then
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p10 = p50 =
(

4
0

)(
1
2

)4

= 1
16

= 0.0625,

p20 = p40 =
(

4
1

)(
1
2

)4

= 4
16

= 0.25,

p30 =
(

4
2

)(
1
2

)4

= 6
16

= 0.375.

At an approximate α = 0.05 significance level, the null hypothesis

H0 : pi = pi0, i = 1, 2, . . . , 5,

is rejected if the observed value of Q4 is greater than χ2
0.05(4) = 9.488. If we use

the 100 repetitions of this experiment that resulted in the observed values y1 = 7,
y2 = 18, y3 = 40, y4 = 31, and y5 = 4, of Y1, Y2, . . . , Y5, respectively, then the
computed value of Q4 is

q4 = (7 − 6.25)2

6.25
+ (18 − 25)2

25
+ (40 − 37.5)2

37.5
+ (31 − 25)2

25
+ (4 − 6.25)2

6.25
= 4.47.

Since 4.47 < 9.488, the hypothesis is not rejected. That is, the data support the
hypothesis that b(4, 1/2) is a reasonable probabilistic model for X. Recall that the
mean of a chi-square random variable is its number of degrees of freedom. In this
example, the mean is 4 and the observed value of Q4 is 4.47, just a little greater than
the mean.

Thus far, all the hypotheses H0 tested with the chi-square statistic Qk−1 have
been simple ones (i.e., completely specified—namely, in H0: pi = pi0, i = 1, 2, . . . , k,
each pi0 has been known). This is not always the case, and it frequently happens that
p10, p20, . . . , pk0 are functions of one or more unknown parameters. For example,
suppose that the hypothesized model for X in Example 9.1-2 was H0: X is b(4, p),
0 < p < 1. Then

pi0 = P(X ∈ Ai) = 4!
(i − 1)!(5 − i)!pi−1(1 − p)5−i, i = 1, 2, . . . , 5,

which is a function of the unknown parameter p. Of course, if H0: pi = pi0,
i = 1, 2, . . . , 5, is true, then, for large n,

Q4 =
5∑

i=1

(Yi − npi0)2

npi0

still has an approximate chi-square distribution with four degrees of freedom. The
difficulty is that when Y1, Y2, . . . , Y5 are observed to be equal to y1, y2, . . . , y5, Q4
cannot be computed, since p10, p20, . . . , p50 (and hence Q4) are functions of the
unknown parameter p.

One way out of the difficulty would be to estimate p from the data and then
carry out the computations with the use of this estimate. It is interesting to note
the following: Say the estimation of p is carried out by minimizing Q4 with respect
to p, yielding p̃. This p̃ is sometimes called a minimum chi-square estimator of p.
If, then, this p̃ is used in Q4, the statistic Q4 still has an approximate chi-square
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distribution, but with only 4 − 1 = 3 degrees of freedom. That is, the number of
degrees of freedom of the approximating chi-square distribution is reduced by one
for each parameter estimated by the minimum chi-square technique. We accept this
result without proof (as it is a rather difficult one). Although we have considered
it when pi0, i = 1, 2, . . . , k, is a function of only one parameter, it holds when there
is more than one unknown parameter, say, d. Hence, in a more general situation,
the test would be completed by computing Qk−1, using Yi and the estimated pi0,
i = 1, 2, . . . , k, to obtain qk−1 (i.e., qk−1 is the minimized chi-square). This value qk−1
would then be compared with a critical value χ2

α(k−1−d). In our special case, the
computed (minimized) chi-square q4 would be compared with χ2

α(3).
There is still one trouble with all of this: It is usually very difficult to find

minimum chi-square estimators. Hence, most statisticians usually use some reason-
able method of estimating the parameters. (Maximum likelihood is satisfactory.)
They then compute qk−1, recognizing that it is somewhat larger than the minimized
chi-square, and compare it with χ2

α(k − 1 − d). Note that this approach provides
a slightly larger probability of rejecting H0 than would the scheme in which the
minimized chi-square were used because the computed qk−1 is larger than the
minimum qk−1.

Example
9.1-3

Let X denote the number of alpha particles emitted by barium-133 in one tenth of
a second. The following 50 observations of X were taken with a Geiger counter in a
fixed position:

7 4 3 6 4 4 5 3 5 3

5 5 3 2 5 4 3 3 7 6

6 4 3 11 9 6 7 4 5 4

7 3 2 8 6 7 4 1 9 8

4 8 9 3 9 7 7 9 3 10

The experimenter is interested in determining whether X has a Poisson distribution.
To test H0: X is Poisson, we first estimate the mean of X—say, λ—with the sample
mean, x = 5.4, of these 50 observations. We then partition the set of outcomes for
this experiment into the sets A1 = {0, 1, 2, 3}, A2 = {4}, A3 = {5}, A4 = {6}, A5 = {7},
and A6 = {8, 9, 10, . . .}. (Note that we combined {0, 1, 2, 3} into one set A1 and
{8, 9, 10, . . .} into another A6 so that the expected number of outcomes for each set
would be at least five when H0 is true.) In Table 9.1-1, the data are grouped and the
estimated probabilities specified by the hypothesis that X has a Poisson distribution

Table 9.1-1 Grouped Geiger counter data

Outcome

A1 A2 A3 A4 A5 A6

Frequency 13 9 6 5 7 10

Probability 0.213 0.160 0.173 0.156 0.120 0.178

Expected (50pi) 10.65 8.00 8.65 7.80 6.00 8.90
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with an estimated λ̂ = x = 5.4 are given. Since one parameter was estimated, Q6−1
has an approximate chi-square distribution with r = 6−1−1 = 4 degrees of freedom.
Also, since

q5 = [13 − 50(0.213)]2

50(0.213)
+ · · · + [10 − 50(0.178)]2

50(0.178)

= 2.763 < 9.488 = χ2
0.05(4),

H0 is not rejected at the 5% significance level. That is, with only these data, we are
quite willing to accept the model that X has a Poisson distribution.

Let us now consider the problem of testing a model for the distribution of a
random variable W of the continuous type. That is, if F(w) is the distribution function
of W, we wish to test

H0 : F(w) = F0(w),

where F0(w) is some known distribution function of the continuous type. Recall that
we have considered problems of this type in which we used q–q plots. In order to use
the chi-square statistic, we must partition the set of possible values of W into k sets.
One way this can be done is as follows: Partition the interval [0, 1] into k sets with
the points b0, b1, b2, . . . , bk, where

0 = b0 < b1 < b2 < · · · < bk = 1.

Let ai = F−1
0 (bi), i = 1, 2, . . . , k − 1; A1 = (−∞, a1], Ai = (ai−1, ai] for

i = 2, 3, . . . , k − 1, and Ak = (ak−1, ∞); and pi = P(W ∈ Ai), i = 1, 2, . . . , k. Let
Yi denote the number of times the observed value of W belongs to Ai, i = 1, 2, . . . , k,
in n independent repetitions of the experiment. Then Y1, Y2, . . . , Yk have a multi-
nomial distribution with parameters n, p1, p2, . . . , pk−1. Also, let pi0 = P(W ∈ Ai)
when the distribution function of W is F0(w). The hypothesis that we actually test is
a modification of H0, namely,

H′
0 : pi = pi0, i = 1, 2, . . . , k.

This hypothesis is rejected if the observed value of the chi-square statistic

Qk−1 =
k∑

i=1

(Yi − npi0)2

npi0

is at least as great as χ2
α(k−1). If the hypothesis H′

0: pi = pi0, i = 1, 2, . . . , k, is not
rejected, we do not reject the hypothesis H0: F(w) = F0(w).

Example
9.1-4

Example 6.1-5 gives 105 observations of the times in minutes between calls to 911.
Also given is a histogram of these data, with the exponential pdf with θ = 20 super-
imposed. We shall now use a chi-square goodness-of-fit test to see whether or not
this is an appropriate model for the data. That is, if X is equal to the time between
calls to 911, we shall test the null hypothesis that the distribution of X is exponen-
tial with a mean of θ = 20. Table 9.1-2 groups the data into nine classes and gives
the probabilities and expected values of these classes. Using the frequencies and
expected values, the chi-square goodness-of-fit statistic is

q8 = (41 − 38.0520)2

38.0520
+ (22 − 24.2655)2

24.2655
+ · · · + (2 − 2.8665)2

2.8665
= 4.6861.



422 Chapter 9 More Tests

Table 9.1-2 Summary of times between calls to 911

Class Frequency Probability Expected

A1 = [0, 9] 41 0.3624 38.0520

A2 = (9, 18] 22 0.2311 24.2655

A3 = (18, 27] 11 0.1473 15.4665

A4 = (27, 36] 10 0.0939 9.8595

A5 = (36, 45] 9 0.0599 6.2895

A6 = (45, 54] 5 0.0382 4.0110

A7 = (54, 63] 2 0.0244 2.5620

A8 = (63, 72] 3 0.0155 1.6275

A9 = (72, ∞) 2 0.0273 2.8665

The p-value associated with this test is 0.7905, which means that it is an extremely
good fit.

Note that we assumed that we knew θ = 20. We could also have run this test let-
ting θ = x, remembering that we then lose one degree of freedom. For this example,
the outcome would be about the same.

It is also true, in dealing with models of random variables of the continuous type,
that we must frequently estimate unknown parameters. For example, let H0 be that
W is N(μ, σ 2), where μ and σ 2 are unknown. With a random sample W1, W2, . . . , Wn,
we first can estimate μ and σ 2, possibly with w and s2

w. We partition the space
{w : −∞ < w < ∞} into k mutually disjoint sets A1, A2, . . . , Ak. We then use the
estimates of μ and σ 2—say, w and s2 = s2

w, respectively, to estimate

p̂i0 =
∫

Ai

1

s
√

2π
exp

[
− (w − w)2

2s2

]
dw,

i = 1, 2, . . . , k. Using the observed frequencies y1, y2, . . . , yk of A1, A2, . . . , Ak,
respectively, from the observed random sample w1, w2, . . . , wn, and p̂10, p̂20, . . . , p̂k0
estimated with w and s2 = s2

w, we compare the computed

qk−1 =
k∑

i=1

(yi − n̂pi0)2

n̂pi0

with χ2
α(k−1−2). This value qk−1 will again be somewhat larger than that which

would be found using minimum chi-square estimation, and certain caution should be
observed. Several exercises illustrate the procedure in which one or more parame-
ters must be estimated. Finally, note that the methods given in this section frequently
are classified under the more general title of goodness-of-fit tests. In particular, then,
the tests in this section would be chi-square goodness-of-fit tests.
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Exercises

9.1-1. A 1-pound bag of candy-coated chocolate-covered
peanuts contained 224 pieces of candy, each colored
brown, orange, green, or yellow. Test the null hypothesis
that the machine filling these bags treats the four colors
of candy equally likely; that is, test

H0 : pB = pO = pG = pY = 1
4

.

The observed values were 42 brown, 64 orange, 53 green,
and 65 yellow candies. You may select the significance
level or give an approximate p-value.

9.1-2. A particular brand of candy-coated chocolate
comes in five different colors that we shall denote as A1 =
{brown}, A2 = {yellow}, A3 = {orange}, A4 = {green}, and
A5 = {coffee}. Let pi equal the probability that the color
of a piece of candy selected at random belongs to Ai,
i = 1, 2, . . . , 5. Test the null hypothesis

H0 : p1 = 0.4, p2 = 0.2, p3 = 0.2, p4 = 0.1, p5 = 0.1,

using a random sample of n = 580 pieces of candy whose
colors yielded the respective frequencies 224, 119, 130, 48,
and 59. You may select the significance level or give an
approximate p-value.

9.1-3. In the Michigan Lottery Daily3 Game, twice a day
a three-digit integer is generated one digit at a time. Let pi
denote the probability of generating digit i, i = 0, 1, . . . , 9.
Let α = 0.05, and use the following 50 digits to test
H0: p0 = p1 = · · · = p9 = 1/10:

1 6 9 9 3 8 5 0 6 7

4 7 5 9 4 6 5 6 4 4

4 8 0 9 3 2 1 5 4 5

7 3 2 1 4 6 7 1 3 4

4 8 8 6 1 6 1 2 8 8

9.1-4. In a biology laboratory, students use corn to test
the Mendelian theory of inheritance. The theory claims
that frequencies of the four categories “smooth and yel-
low,” “wrinkled and yellow,” “smooth and purple,” and
“wrinkled and purple” will occur in the ratio 9:3:3:1. If a
student counted 124, 30, 43, and 11, respectively, for these
four categories, would these data support the Mendelian
theory? Let α = 0.05.

9.1-5. Let X equal the number of female children in a
three-child family. We shall use a chi-square goodness-of-
fit statistic to test the null hypothesis that the distribution
of X is b(3, 0.5).

(a) Define the test statistic and critical region, using an
α = 0.05 significance level.

(b) Among students who were taking statistics, 52 came
from families with three children. For these families,

x = 0, 1, 2, and 3 for 5, 17, 24, and 6 families, respec-
tively. Calculate the value of the test statistic and
state your conclusion, considering how the sample was
selected.

9.1-6. It has been claimed that, for a penny minted in 1999
or earlier, the probability of observing heads upon spin-
ning the penny is p = 0.30. Three students got together,
and they would each spin a penny and record the num-
ber X of heads out of the three spins. They repeated this
experiment n = 200 times, observing 0, 1, 2, and 3 heads
57, 95, 38, and 10 times, respectively. Use these data to
test the hypotheses that X is b(3, 0.30). Give limits for
the p-value of this test. In addition, out of the 600 spins,
calculate the number of heads occurring and then a 95%
confidence interval for p.

9.1-7. A rare type of heredity change causes the bac-
terium in E. coli to become resistant to the drug strep-
tomycin. This type of change, called mutation, can be
detected by plating many bacteria on petri dishes con-
taining an antibiotic medium. Any colonies that grow on
this medium result from a single mutant cell. A sample
of n = 150 petri dishes of streptomycin agar were each
plated with 106 bacteria, and the numbers of colonies
were counted on each dish. The observed results were
that 92 dishes had 0 colonies, 46 had 1, 8 had 2, 3 had
3, and 1 dish had 4 colonies. Let X equal the number of
colonies per dish. Test the hypothesis that X has a Poisson
distribution. Use x = 0.5 as an estimate of λ. Let α = 0.01.

9.1-8. For determining the half-lives of radioactive iso-
topes, it is important to know what the background radi-
ation is for a given detector over a certain period. A
γ -ray detection experiment over 300 one-second intervals
yielded the following data:

0 2 4 6 6 1 7 4 6 1 1 2 3 6 4 2 7 4 4 2

2 5 4 4 4 1 2 4 3 2 2 5 0 3 1 1 0 0 5 2

7 1 3 3 3 2 3 1 4 1 3 5 3 5 1 3 3 0 3 2

6 1 1 4 6 3 6 4 4 2 2 4 3 3 6 1 6 2 5 0

6 3 4 3 1 1 4 6 1 5 1 1 4 1 4 1 1 1 3 3

4 3 3 2 5 2 1 3 5 3 2 7 0 4 2 3 3 5 6 1

4 2 6 4 2 0 4 4 7 3 5 2 2 3 1 3 1 3 6 5

4 8 2 2 4 2 2 1 4 7 5 2 1 1 4 1 4 3 6 2

1 1 2 2 2 2 3 5 4 3 2 2 3 3 2 4 4 3 2 2

3 6 1 1 3 3 2 1 4 5 5 1 2 3 3 1 3 7 2 5

4 2 0 6 2 3 2 3 0 4 4 5 2 5 3 0 4 6 2 2

2 2 2 5 2 2 3 4 2 3 7 1 1 7 1 3 6 0 5 3

0 0 3 3 0 2 4 3 1 2 3 3 3 4 3 2 2 7 5 3

5 1 1 2 2 6 1 3 1 4 4 2 3 4 5 1 3 4 3 1

0 3 7 4 0 5 2 5 4 4 2 2 3 2 4 6 5 5 3 4
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Do these look like observations of a Poisson random vari-
able with mean λ = 3? To answer this question, do the
following:

(a) Find the frequencies of 0, 1, 2, . . . , 8.

(b) Calculate the sample mean and sample variance. Are
they approximately equal to each other?

(c) Construct a probability histogram with λ = 3 and a
relative frequency histogram on the same graph.

(d) Use α = 0.05 and a chi-square goodness-of-fit test to
answer this question.

9.1-9. Let X equal the amount of butterfat (in pounds)
produced by 90 cows during a 305-day milk produc-
tion period following the birth of their first calf. Test
the hypothesis that the distribution of X is N(μ, σ 2),
using k = 10 classes of equal probability. You may take
x = 511.633 and sx = 87.576 as estimates of μ and σ ,
respectively. The data are as follows:

486 537 513 583 453 510 570 500 458 555

618 327 350 643 500 497 421 505 637 599

392 574 492 635 460 696 593 422 499 524

539 339 472 427 532 470 417 437 388 481

537 489 418 434 466 464 544 475 608 444

573 611 586 613 645 540 494 532 691 478

513 583 457 612 628 516 452 501 453 643

541 439 627 619 617 394 607 502 395 470

531 526 496 561 491 380 345 274 672 509

9.1-10. A biologist is studying the life cycle of the avian
schistosome that causes swimmer’s itch. His study uses
Menganser ducks for the adult parasites and aquatic
snails as intermediate hosts for the larval stages. The
life history is cyclic. (For more information, see http://
swimmersitch.org/.) As a part of this study, the biologist
and his students used snails from a natural population to
measure the distances (in cm) that snails travel per day.
The conjecture is that snails that had a patent infection
would not travel as far as those without without such an
infection.

Here are the measurements in cm that snails traveled
per day. There are 39 in the infected group and 31 in the
control group.

Distances for Infected Snail Group (ordered):

263 238 226 220 170 155 139 123 119 107 107 97 90

90 90 79 75 74 71 66 60 55 47 47 47 45

43 41 40 39 38 38 35 32 32 28 19 10 10

Distances for Control Snail Group (ordered):

314 300 274 246 190 186 185 182 180 141 132

129 110 100 95 95 93 83 55 52 50 48

48 44 40 32 30 25 24 18 7

(a) Find the sample means and sample standard devia-
tions for the two groups of snails.

(b) Make box plots of the two groups of snails on the
same graph.

(c) For the control snail group, test the hypothesis that
the distances come from an exponential distribution.
Use x as an estimate of θ . Group the data into 5
or 10 classes, with equal probabilities for each class.
Thus, the expected value will be either 6.2 or 3.1,
respectively.

(d) For the infected snail group, test the hypothesis that
the distances come from a gamma distribution with
α = 2 and θ = 42. Use 10 classes with equal probabili-
ties so that the expected value of each class is 3.9. Use
Minitab or some other computer program to calculate
the boundaries of the classes.

9.1-11. In Exercise 6.1-4, data are given for the melting
points for 50 metal alloy filaments. Here the data are
repeated:

320 326 325 318 322 320 329 317 316 331

320 320 317 329 316 308 321 319 322 335

318 313 327 314 329 323 327 323 324 314

308 305 328 330 322 310 324 314 312 318

313 320 324 311 317 325 328 319 310 324

Test the hypothesis that these are observations of a
normally distributed random variable. Note that you must
estimate two parameters: μ and σ .

9.2 CONTINGENCY TABLES
In this section, we demonstrate the flexibility of the chi-square test. We first look
at a method for testing whether two or more multinomial distributions are equal,
sometimes called a test for homogeneity. Then we consider a test for independence of
attributes of classification. Both of these lead to a similar test statistic.

http://swimmersitch.org/
http://swimmersitch.org/
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Suppose that each of two independent experiments can end in one of the k
mutually exclusive and exhaustive events A1, A2, . . . , Ak. Let

pij = P(Ai), i = 1, 2, . . . , k, j = 1, 2.

That is, p11, p21, . . . , pk1 are the probabilities of the events in the first experi-
ment, and p12, p22, . . . , pk2 are those associated with the second experiment. Let
the experiments be repeated n1 and n2 independent times, respectively. Also,
let Y11, Y21, . . . , Yk1 be the frequencies of A1, A2, . . . , Ak associated with the n1
independent trials of the first experiment. Similarly, let Y12, Y22, . . . , Yk2 be the
respective frequencies associated with the n2 trials of the second experiment. Of
course,

∑k
i=1 Yij = nj, j = 1, 2. From the sampling distribution theory corresponding

to the basic chi-square test, we know that each of

k∑
i=1

(Yij − njpij)2

njpij
, j = 1, 2,

has an approximate chi-square distribution with k − 1 degrees of freedom. Since
the two experiments are independent (and thus the two chi-square statistics are
independent), the sum

2∑
j=1

k∑
i=1

(Yij − njpij)2

njpij

is approximately chi-square with k − 1 + k − 1 = 2k − 2 degrees of freedom.
Usually, the pij, i = 1, 2, . . . , k, j = 1, 2, are unknown, and frequently we wish to

test the hypothesis

H0 : p11 = p12, p21 = p22, . . . , pk1 = pk2;

that is, H0 is the hypothesis that the corresponding probabilities associated with the
two independent experiments are equal. Under H0, we can estimate the unknown

pi1 = pi2, i = 1, 2, . . . , k,

by using the relative frequency (Yi1 + Yi2)/(n1 + n2), i = 1, 2, . . . , k. That is, if H0
is true, we can say that the two experiments are actually parts of a larger one in
which Yi1 + Yi2 is the frequency of the event Ai, i = 1, 2, . . . , k. Note that we have to
estimate only the k − 1 probabilities pi1 = pi2, using

Yi1 + Yi2

n1 + n2
, i = 1, 2, . . . , k − 1,

since the sum of the k probabilities must equal 1. That is, the estimator of pk1 =
pk2 is

1 − Y11 + Y12

n1 + n2
− · · · − Yk−1,1 + Yk−1,2

n1 + n2
= Yk1 + Yk2

n1 + n2
.

Substituting these estimators, we find that

Q =
2∑

j=1

k∑
i=1

[Yij − nj(Yi1 + Yi2)/(n1 + n2)]2

nj(Yi1 + Yi2)/(n1 + n2)



426 Chapter 9 More Tests

has an approximate chi-square distribution with 2k − 2 − (k − 1) = k − 1 degrees
of freedom. Here k − 1 is subtracted from 2k − 2, because that is the number of
estimated parameters. The critical region for testing H0 is of the form

q ≥ χ2
α(k−1).

Example
9.2-1

To test two methods of instruction, 50 students are selected at random from each of
two groups. At the end of the instruction period, each student is assigned a grade
(A, B, C, D, or F) by an evaluating team. The data are recorded as follows:

Grade

A B C D F Totals

Group I 8 13 16 10 3 50

Group II 4 9 14 16 7 50

Accordingly, if the hypothesis H0 that the corresponding probabilities are equal is
true, then the respective estimates of the probabilities are

8 + 4
100

= 0.12, 0.22, 0.30, 0.26,
3 + 7
100

= 0.10.

Thus, the estimates of n1pi1 = n2pi2 are 6, 11, 15, 13, and 5, respectively. Hence, the
computed value of Q is

q = (8 − 6)2

6
+ (13 − 11)2

11
+ (16 − 15)2

15
+ (10 − 13)2

13
+ (3 − 5)2

5

+ (4 − 6)2

6
+ (9 − 11)2

11
+ (14 − 15)2

15
+ (16 − 13)2

13
+ (7 − 5)2

5

= 4
6

+ 4
11

+ 1
15

+ 9
13

+ 4
5

+ 4
6

+ 4
11

+ 1
15

+ 9
13

+ 4
5

= 5.18.

Now, under H0, Q has an approximate chi-square distribution with k − 1 = 4
degrees of freedom, so the α = 0.05 critical region is q ≥ 9.488 = χ2

0.05(4). Here
q = 5.18 < 9.488, and hence H0 is not rejected at the 5% significance level.
Furthermore, the p-value for q = 5.18 is 0.269, which is greater than most signifi-
cance levels. Thus, with these data, we cannot say that there is a difference between
the two methods of instruction.

It is fairly obvious how this procedure can be extended to testing the equality of
h independent multinomial distributions. That is, let

pij = P(Ai), i = 1, 2, . . . , k, j = 1, 2, . . . , h,

and test

H0 : pi1 = pi2 = · · · = pih = pi, i = 1, 2, . . . , k.
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Repeat the jth experiment nj independent times, and let Y1j, Y2j, . . . , Ykj denote the
frequencies of the respective events A1, A2, . . . , Ak. Now,

Q =
h∑

j=1

k∑
i=1

(Yij − njpij)2

njpij

has an approximate chi-square distribution with h(k−1) degrees of freedom. Under
H0, we must estimate k − 1 probabilities, using

p̂i =
∑h

j=1 Yij∑h
j=1 nj

, i = 1, 2, . . . , k − 1,

because the estimate of pk follows from p̂k = 1 − p̂1 − p̂2 − · · · − p̂k−1. We use these
estimates to obtain

Q =
h∑

j=1

k∑
i=1

(Yij − nĵpi)2

nĵpi
,

which has an approximate chi-square distribution, with its degrees of freedom given
by h(k − 1) − (k − 1) = (h − 1)(k − 1).

Let us see how we can use the preceding procedures to test the equality
of two or more independent distributions that are not necessarily multinomial.
Suppose first that we are given random variables U and V with distribution func-
tions F(u) and G(v), respectively. It is sometimes of interest to test the hypothesis
H0: F(x) = G(x) for all x. Previously, we considered tests of μU = μV , σ 2

U = σ 2
V . In

Section 8.4, we will look at the two-sample Wilcoxon test. Now we shall assume only
that the distributions are independent and of the continuous type.

We are interested in testing the hypothesis H0: F(x) = G(x) for all x. This
hypothesis will be replaced by another one. Partition the real line into k mutually
disjoint sets A1, A2, . . . , Ak. Let

pi1 = P(U ∈ Ai), i = 1, 2, . . . , k,

and

pi2 = P(V ∈ Ai), i = 1, 2, . . . , k.

We observe that if F(x) = G(x) for all x, then pi1 = pi2, i = 1, 2, . . . , k. We replace
the hypothesis H0: F(x) = G(x) with the less restrictive hypothesis H′

0: pi1 = pi2,
i = 1, 2, . . . , k. That is, we are now essentially interested in testing the equality of two
multinomial distributions.

Let n1 and n2 denote the number of independent observations of U and V,
respectively. For i = 1, 2, . . . , k, let Yij denote the number of these observations of
U and V, j = 1, 2, respectively, that fall into a set Ai. At this point, we proceed to
make the test of H′

0 as described earlier. Of course, if H′
0 is rejected at the (approx-

imate) significance level α, then H0 is rejected with the same probability. However,
if H′

0 is true, H0 is not necessarily true. Thus, if H′
0 is not rejected, then we do not

reject H0.
In applications, the question of how to select A1, A2, . . . , Ak is frequently raised.

Obviously, there is no single choice for k or for the dividing marks of the partition.
But it is interesting to observe that the combined sample can be used in this selec-
tion without upsetting the approximate distribution of Q. For example, suppose that
n1 = n2 = 20. Then we could easily select the dividing marks of the partition so that
k = 4, and one fourth of the combined sample falls into each of the four sets.
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Example
9.2-2

Select, at random, 20 cars of each of two comparable major-brand models. All 40
cars are submitted to accelerated life testing; that is, they are driven many miles over
very poor roads in a short time, and their failure times (in weeks) are recorded as
follows:

Brand U: 25 31 20 42 39 19 35 36 44 26

38 31 29 41 43 36 28 31 25 38

Brand V: 28 17 33 25 31 21 16 19 31 27

23 19 25 22 29 32 24 20 34 26

If we use 23.5, 28.5, and 34.5 as dividing marks, we note that exactly one fourth of
the 40 cars fall into each of the resulting four sets. Thus, the data can be summarized
as follows:

A1 A2 A3 A4 Totals

Brand U 2 4 4 10 20

Brand V 8 6 6 0 20

The estimate of each pi is 10/40 = 1/4, which, multiplied by nj = 20, gives 5. Hence,
the computed Q is

q = (2 − 5)2

5
+ (4 − 5)2

5
+ (4 − 5)2

5
+ (10 − 5)2

5
+ (8 − 5)2

5

+ (6 − 5)2

5
+ (6 − 5)2

5
+ (0 − 5)2

5

= 72
5

= 14.4 > 7.815 = χ2
0.05(3).

Also, the p-value is 0.0024. Thus, it seems that the two brands of cars have differ-
ent distributions for the length of life under accelerated life testing. Brand U seems
better than brand V.

Again, it should be clear how this approach can be extended to more than two
distributions, and this extension will be illustrated in the exercises.

Now let us suppose that a random experiment results in an outcome that can
be classified by two different attributes, such as height and weight. Assume that the
first attribute is assigned to one and only one of k mutually exclusive and exhaustive
event—say A1, A2, . . . , Ak—and the second attribute falls into one and only one of h
mutually exclusive and exhaustive events—say, B1, B2, . . . , Bh. Let the probability of
Ai ∩ Bj be defined by

pij = P(Ai ∩ Bj), i = 1, 2, . . . , k, j = 1, 2, . . . , h.

The random experiment is to be repeated n independent times, and Yij will
denote the frequency of the event Ai ∩ Bj. Since there are kh such events as Ai ∩ Bj,
the random variable

Qkh−1 =
h∑

j=1

k∑
i=1

(Yij − npij)2

npij
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has an approximate chi-square distribution with kh−1 degrees of freedom, provided
that n is large.

Suppose that we wish to test the hypothesis of the independence of the A and B
attributes, namely,

H0 : P(Ai ∩ Bj) = P(Ai)P(Bj), i = 1, 2, . . . , k, j = 1, 2, . . . , h.

Let us denote P(Ai) by pi· and P(Bj) by p·j; that is,

pi· =
h∑

j=1

pij = P(Ai) and p·j =
k∑

i=1

pij = P(Bj).

Of course,

1 =
h∑

j=1

k∑
i=1

pij =
h∑

j=1

p·j =
k∑

i=1

pi·.

Then the hypothesis can be formulated as

H0 : pij = pi·p·j, i = 1, 2, . . . , k, j = 1, 2, . . . , h.

To test H0, we can use Qkh−1 with pij replaced by pi·p·j. But if pi·, i = 1, 2, . . . , k,
and p·j, j = 1, 2, . . . , h, are unknown, as they usually are in applications, we cannot
compute Qkh−1 once the frequencies are observed. In such a case, we estimate these
unknown parameters by

p̂i· = yi·
n

, where yi· =
h∑

j=1

yij

is the observed frequency of Ai, i = 1, 2, . . . , k; and

p̂·j = y·j
n

, where y·j =
k∑

i=1

yij

is the observed frequency of Bj, j = 1, 2, . . . , h. Since
∑k

i=1 pi· = ∑h
j=1 p·j = 1, we

actually estimate only k−1+h−1 = k+h−2 parameters. So if these estimates are
used in Qkh−1, with pij = pi·p·j, then, according to the rule stated earlier, the random
variable

Q =
h∑

j=1

k∑
i=1

[Yij − n(Yi·/n)(Y·j/n)]2

n(Yi·/n)(Y·j/n)

has an approximate chi-square distribution with kh−1− (k+h−2) = (k−1)(h−1)
degrees of freedom, provided that H0 is true. The hypothesis H0 is rejected if the
computed value of this statistic exceeds χ2

α[(k−1)(h−1)].

Example
9.2-3

The 400 undergraduate students in a random sample at the University of Iowa were
classified according to the college in which the students were enrolled and according
to their gender. The results are recorded in Table 9.2-1, called a k × h contingency
table, where, in this case, k = 2 and h = 5. (Do not be concerned about the numbers
in parentheses at this point.) Incidentally, these data do actually reflect the compo-
sition of the undergraduate colleges at Iowa, but they were modified a little to make
the computations easier in this example.
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Table 9.2-1 Undergraduates at the University of Iowa

College

Gender Business Engineering Liberal Arts Nursing Pharmacy Totals

Male 21 16 145 2 6 190

(16.625) (9.5) (152) (7.125) (4.75)

Female 14 4 175 13 4 210

(18.375) (10.5) (168) (7.875) (5.25)

Totals 35 20 320 15 10 400

We desire to test the null hypothesis H0: pij = pi·p·j, i = 1, 2 and j = 1, 2, 3, 4, 5,
that the college in which a student enrolls is independent of the gender of that
student. Under H0, estimates of the probabilities are

p̂1· = 190
400

= 0.475 and p̂2· = 210
400

= 0.525

and

p̂·1 = 35
400

= 0.0875, p̂·2 = 0.05, p̂·3 = 0.8, p̂·4 = 0.0375, p̂·5 = 0.025.

The expected numbers n(yi·/n)(y·j/n) are computed as follows:

400(0.475)(0.0875) = 16.625,

400(0.525)(0.0875) = 18.375,

400(0.475)(0.05) = 9.5,

and so on. These are the values recorded in parentheses in Table 9.2-1. The computed
chi-square statistic is

q = (21 − 16.625)2

16.625
+ (14 − 18.375)2

18.375
+ · · · + (4 − 5.25)2

5.25

= 1.15 + 1.04 + 4.45 + 4.02 + 0.32 + 0.29 + 3.69

+ 3.34 + 0.33 + 0.30 = 18.93.

Since the number of degrees of freedom equals (k − 1)(h − 1) = 4, this q = 18.93 >

13.28 = χ2
0.01(4), and we reject H0 at the α = 0.01 significance level. Moreover, since

the first two terms of q come from the business college, the next two from engi-
neering, and so on, it is clear that the enrollments in engineering and nursing are
more highly dependent on gender than in the other colleges, because they have con-
tributed the most to the value of the chi-square statistic. It is also interesting to note
that one expected number is less than 5, namely, 4.75. However, as the associated
term in q does not contribute an unusual amount to the chi-square value, it does not
concern us.
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It is fairly obvious how to extend the preceding testing procedure to more than
two attributes. For example, if the third attribute falls into one and only one of
m mutually exclusive and exhaustive events—say, C1, C2, . . . , Cm—then we test the
independence of the three attributes by using

Q =
m∑

r=1

h∑
j=1

k∑
i=1

[Yijr − n(Yi··/n)(Y·j·/n)(Y··r/n)]2

n(Yi··/n)(Y·j·/n)(Y··r/n)
,

where Yijr, Yi··, Y·j·, and Y··r are the respective observed frequencies of the events
Ai ∩ Bj ∩ Cr, Ai, Bj, and Cr in n independent trials of the experiment. If n is large
and if the three attributes are independent, then Q has an approximate chi-square
distribution with khm − 1 − (k − 1) − (h − 1) − (m − 1) = khm − k − h − m + 2
degrees of freedom.

Rather than explore this extension further, it is more instructive to note some
interesting uses of contingency tables.

Example
9.2-4

Say we observed 30 values x1, x2, . . . , x30 that are claimed to be the values of a
random sample. That is, the corresponding random variables X1, X2, . . . , X30 were
supposed to be mutually independent and each of these random variables is sup-
posed to have the same distribution. Say, however, by looking at the 30 values, we
detect an upward trend which indicates that there might have been some depen-
dence and/or the random variables did not actually have the same distribution. One
simple way to test whether they could be thought of as being observed values of a
random sample is the following: Mark each x high (H) or low (L), depending on
whether it is above or below the sample median. Then divide the x values into three
groups: x1, . . . , x10; x11, . . . , x20; and x21, . . . , x30. Certainly, if the observations are
those of a random sample, we would expect five H’s and five L’s in each group. That
is, the attribute classified as H or L should be independent of the group number. The
summary of these data provides a 3 × 2 contingency table. For example, say the 30
values are

5.6 8.2 7.8 4.8 5.5 8.1 6.7 7.7 9.3 6.9

8.2 10.1 7.5 6.9 11.1 9.2 8.7 10.3 10.7 10.0

9.2 11.6 10.3 11.7 9.9 10.6 10.0 11.4 10.9 11.1

The median can be taken to be the average of the two middle observations in mag-
nitude, namely, 9.2 and 9.3. Marking each item H or L after comparing it with this
median, we obtain the following 3 × 2 contingency table:

Group L H Totals

1 9 1 10

2 5 5 10

3 1 9 10

Totals 15 15 30
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Here each n(yi·/n)(y·j/n) = 30(10/30)(15/30) = 5, so that the computed value of
Q is

q = (9 − 5)2

5
+ (1 − 5)2

5
+ (5 − 5)2

5
+ (5 − 5)2

5
+ (1 − 5)2

5
+ (9 − 5)2

5

= 12.8 > 5.991 = χ2
0.05(2),

since in this instance (k − 1)(h − 1) = 2 degrees of freedom. (The p-value is 0.0017.)
Hence, we reject the conjecture that these 30 values could be the observations of a
random sample. Obviously, modifications could be made to this scheme: dividing the
sample into more (or fewer) than three groups and rating items differently, such as
low (L), middle (M), and high (H).

It cannot be emphasized enough that the chi-square statistic can be used fairly
effectively in almost any situation in which there should be independence. For
example, suppose that we have a group of workers who have essentially the same
qualifications (training, experience, etc.). Many believe that the salary and gender of
the workers should be independent attributes, yet there have been several claims in
special cases that there is a dependence—or discrimination—in attributes associated
with such a problem.

Example
9.2-5

Two groups of workers have the same qualifications for a particular type of work.
Their experience in salaries is summarized by the following 2 × 5 contingency table,
in which the upper bound of each salary range is not included in that listing:

Salary (Thousands of Dollars)

Group 27–29 29–31 31–33 33–35 35 and over Totals

1 6 11 16 14 13 60

2 5 9 8 6 2 30

Totals 11 20 24 20 15 90

To test whether the group assignment and the salaries seem to be independent
with these data at the α = 0.05 significance level, we compute

q = [6 − 90(60/90)(11/90)]2

90(60/90)(11/90)
+ · · · + [2 − 90(30/90)(15/90)]2

90(30/90)(15/90)

= 4.752 < 9.488 = χ2
0.05(4).

Also, the p-value is 0.314. Hence, with these limited data, group assignment and
salaries seem to be independent.

Before turning to the exercises, note that we could have thought of the last two
examples in this section as testing the equality of two or more multinomial distri-
butions. In Example 9.2-4, the three groups define three binomial distributions, and
in Example 9.2-5, the two groups define two multinomial distributions. What would
have happened if we had used the computations outlined earlier in the section? It is
interesting to note that we obtain exactly the same value of chi-square and in each
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case the number of degrees of freedom is equal to (k−1)(h−1). Hence, it makes no
difference whether we think of it as a test of independence or a test of the equality
of several multinomial distributions. Our advice is to use the terminology that seems
most natural for the particular situation.

Exercises

9.2-1. We wish to see if two groups of nurses distribute
their time in six different categories about the same way.
That is, the hypothesis under consideration is H0: pi1 =
pi2, i = 1, 2, . . . , 6. To test this hypothesis, nurses are
observed at random throughout several days, each obser-
vation resulting in a mark in one of the six categories. A
summary of the results is given by the following frequency
table:

Category

1 2 3 4 5 6 Totals

Group I 95 36 71 21 45 32 300

Group II 53 26 43 18 32 28 200

Use a chi-square test with α = 0.05.

9.2-2. Suppose that a third group of nurses was observed
along with groups I and II of Exercise 9.2-1, resulting in
the respective frequencies 130, 75, 136, 33, 61, and 65. Test
H0: pi1 = pi2 = pi3, i = 1, 2, . . . , 6, at the α = 0.025
significance level.

9.2-3. Each of two comparable classes of 15 students
responded to two different methods of instructions, giving
the following scores on a standardized test:

Class U: 91 42 39 62 55 82 67 44

51 77 61 52 76 41 59

Class V: 80 71 55 67 61 93 49 78

57 88 79 81 63 51 75

Use a chi-square test with α = 0.05 to test the equality of
the distributions of test scores by dividing the combined
sample into three equal parts (low, middle, high).

9.2-4. Suppose that a third class (W) of 15 students was
observed along with classes U and V of Exercise 9.2-3,
resulting in scores of

91 73 67 83 59 98 87 69

78 80 65 94 82 74 85

Again, use a chi-square test with α = 0.05 to test the
equality of the three distributions by dividing the com-
bined sample into three equal parts.

9.2-5. In the following contingency table, 1015 individu-
als are classified by gender and by whether they favor,
oppose, or have no opinion on a complete ban on smoking
in public places:

Smoking in Public Places

Gender Favor Oppose No Opinion Totals

Male 262 231 10 503

Female 302 205 5 512

Totals 564 436 15 1015

Test the null hypothesis that gender and opinion on smok-
ing in public places are independent. Give the approxi-
mate p-value of this test.

9.2-6. A random survey of 100 students asked each stu-
dent to select the most preferred form of recreational
activity from five choices. Following are the results of the
survey:

Recreational Choice

Baseball Jogging
Gender Basketball Softball Swimming Running Tennis Totals

Male 21 5 9 12 13 60

Female 9 3 1 15 12 40

Totals 30 8 10 27 25 100

Test whether the choice is independent of the gender
of the respondent. Approximate the p-value of the test.
Would we reject the null hypothesis at α = 0.05?

9.2-7. One hundred music majors in a random sample
were classified as follows by gender and by the kind of
instrument (including voice) that they played:
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Instrument

Gender Piano Woodwind Brass String Vocal Totals

Male 4 11 15 6 9 45

Female 7 18 6 6 18 55

Totals 11 29 21 12 27 100

Test whether the selection of instrument is independent of
the gender of the respondent. Approximate the p-value of
this test.

9.2-8. A student who uses a certain college’s recreational
facilities was interested in whether there is a difference
between the facilities used by men and those used by
women. Use α = 0.05 and the following data to test the
null hypothesis that facility and gender are independent
attributes:

Facility

Racquetball
Gender Court Track Totals

Male 51 30 81

Female 43 48 91

Totals 94 78 172

9.2-9. A survey of high school girls classified them by two
attributes: whether or not they participated in sports and
whether or not they had one or more older brothers. Use
the following data to test the null hypothesis that these
two attributes of classification are independent:

Participated in Sports

Older Brother(s) Yes No Totals

Yes 12 8 20

No 13 27 40

Totals 25 35 60

Approximate the p-value of this test. Do we reject the null
hypothesis if α = 0.05?

9.2-10. A random sample of 50 women who were tested
for cholesterol was classified according to age and choles-
terol level and grouped into the following contingency
table.

Cholesterol Level

Age <180 180–210 >210 Totals

<50 5 11 9 25

≥50 4 3 18 25

Totals 9 14 27 50

Test the null hypothesis H0: Age and cholesterol level
are independent attributes of classification. What is your
conclusion if α = 0.01?

9.2-11. Although high school grades and testing scores,
such as SAT or ACT, can be used to predict first-year col-
lege grade-point average (GPA), many educators claim
that a more important factor influencing GPA is the living
conditions of students. In particular, it is claimed that the
roommate of the student will have a great influence on his
or her grades. To test this hypothesis, suppose we selected
at random 200 students and classified each according to
the following two attributes:

(a) Ranking of the student’s roommate on a scale from
1 to 5, with 1 denoting a person who was difficult
to live with and discouraged scholarship, and 5 sig-
nifying a person who was congenial and encouraged
scholarship.

(b) The student’s first-year GPA.

Say this classification gives the following 5×4 contingency
table:

Grade-Point Average

Rank of Under
Roommate 2.00 2.00–2.69 2.70–3.19 3.20–4.00 Totals

1 8 9 10 4 31

2 5 11 15 11 42

3 6 7 20 14 47

4 3 5 22 23 53

5 1 3 11 12 27

Totals 23 35 78 64 200

Compute the chi-square statistic used to test the inde-
pendence of the two attributes, and compare it with the
critical value associated with α = 0.05.

9.2-12. In a psychology experiment, 140 students were
divided into majors emphasizing left-hemisphere brain
skills (e.g., philosophy, physics, and mathematics) and
majors emphasizing right-hemisphere skills (e.g., art,
music, theater, and dance). They were also classified into
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one of three groups on the basis of hand posture (right
noninverted, left inverted, and left noninverted). The data
are as follows:

LH RH

RN 89 29

LI 5 4

LN 5 8

Do these data show sufficient evidence to reject the claim
that the choice of college major is independent of hand
posture? Let α = 0.025.

9.2-13. A study was conducted to determine the media
credibility for reporting news. Those surveyed were asked
to give their age, gender, education, and the most credible
medium. The results of the survey are as follows:

Most Credible Medium

Age Newspaper Television Radio Totals

Under 35 30 68 10 108

35–54 61 79 20 160

Over 54 98 43 21 162

Totals 189 190 51 430

Most Credible Medium

Gender Newspaper Television Radio Totals

Male 92 108 19 219

Female 97 81 32 210

Totals 189 189 51 429

Most Credible Medium

Education Newspaper Television Radio Totals

Grade School 45 22 6 73

High School 94 115 30 239

College 49 52 13 114

Totals 188 189 49 426

(a) Test whether media credibility and age are indepen-
dent.

(b) Test whether media credibility and gender are inde-
pendent.

(c) Test whether media credibility and education are
independent.

(d) Give the approximate p-value for each test.

9.3 ONE-FACTOR ANALYSIS OF VARIANCE
Frequently, experimenters want to compare more than two treatments: yields of sev-
eral different corn hybrids; results due to three or more teaching techniques; or miles
per gallon obtained from many different types of compact cars. Sometimes the dif-
ferent treatment distributions of the resulting observations are due to changing the
level of a certain factor (e.g., different doses of a given drug). Thus, the consideration
of the equality of the different means of the various distributions comes under the
analysis of a one-factor experiment.

In Section 8.2, we discussed how to compare the means of two normal distri-
butions. More generally, let us now consider m normal distributions with unknown
means μ1, μ2, . . . , μm and an unknown, but common, variance σ 2. One inference
that we wish to consider is a test of the equality of the m means, namely, H0:
μ1 = μ2 = · · · = μm = μ, with μ unspecified, against all possible alternative
hypotheses H1. In order to test this hypothesis, we shall take independent random
samples from these distributions. Let Xi1, Xi2, . . . , Xini represent a random sample of
size ni from the normal distribution N(μi, σ 2), i = 1, 2, . . . , m. In Table 9.3-1, we have
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Table 9.3-1 One-factor random samples

Means

X1: X11 X12 · · · X1n1 X1·

X2: X21 X22 · · · X2n2 X2·

...
...

...
...

...
...

Xm: Xm1 Xm2 · · · Xmnm Xm·

Grand Mean: X ··

indicated these random samples along with the row means (sample means), where,
with n = n1 + n2 + · · · + nm,

X ·· = 1
n

m∑
i=1

ni∑
j=1

Xij and Xi· = 1
ni

ni∑
j=1

Xij, i = 1, 2, . . . , m.

The dot in the notation for the means, X ·· and Xi·, indicates the index over which
the average is taken. Here X ·· is an average taken over both indices, while Xi· is
taken over just the index j.

To determine a critical region for a test of H0, we shall first partition the sum of
squares associated with the variance of the combined samples into two parts. This
sum of squares is given by

SS(TO) =
m∑

i=1

ni∑
j=1

(Xij − X ··)2

=
m∑

i=1

ni∑
j=1

(Xij − Xi· + Xi· − X ··)2

=
m∑

i=1

ni∑
j=1

(Xij − Xi·)2 +
m∑

i=1

ni∑
j=1

(Xi· − X ··)2

+ 2
m∑

i=1

ni∑
j=1

(Xij − Xi·)(Xi· − X ··).

The last term of the right-hand member of this identity may be written as

2
m∑

i=1

⎡⎣(Xi· − X ··)
ni∑

j=1

(Xij − Xi·)

⎤⎦ = 2
m∑

i=1

(Xi· − X ··)(niXi· − niXi·) = 0,

and the preceding term may be written as

m∑
i=1

ni∑
j=1

(Xi· − X ··)2 =
m∑

i=1

ni(Xi· − X ··)2.
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Thus,

SS(TO) =
m∑

i=1

ni∑
j=1

(Xij − Xi·)2 +
m∑

i=1

ni(Xi· − X ··)2.

For notation, let

SS(TO) =
m∑

i=1

ni∑
j=1

(Xij − X ··)2, the total sum of squares;

SS(E) =
m∑

i=1

ni∑
j=1

(Xij − Xi·)2, the sum of squares within treatments,

groups, or classes, often called the error

sum of squares;

SS(T) =
m∑

i=1

ni (Xi· − X ··)2, the sum of squares among the different
treatments, groups, or classes, often called

the between-treatment sum of squares.

Hence,

SS(TO) = SS(E) + SS(T).

When H0 is true, we may regard Xij, i = 1, 2, . . . , m, j = 1, 2, . . . , ni, as a random
sample of size n = n1 + n2 + · · · + nm from the normal distribution N(μ, σ 2). Then
SS(TO)/(n − 1) is an unbiased estimator of σ 2 because SS(TO)/σ 2 is χ2(n−1), so
that E[SS(TO)/σ 2] = n − 1 and E[SS(TO)/(n − 1)] = σ 2. An unbiased estimator of
σ 2 based only on the sample from the ith distribution is

Wi =

ni∑
j=1

(Xij − Xi·)2

ni − 1
for i = 1, 2, . . . , m,

because (ni − 1)Wi/σ
2 is χ2(ni−1). Thus,

E
[

(ni − 1)Wi

σ 2

]
= ni − 1,

and so

E(Wi) = σ 2, i = 1, 2, . . . , m.

It follows that the sum of m of these independent chi-square random variables,
namely,

m∑
i=1

(ni − 1)Wi

σ 2
= SS(E)

σ 2
,

is also chi-square with (n1 −1)+(n2 −1)+· · ·+(nm −1) = n−m degrees of freedom.
Hence, SS(E)/(n − m) is an unbiased estimator of σ 2. We now have

SS(TO)
σ 2

= SS(E)
σ 2

+ SS(T)
σ 2

,
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where

SS(TO)
σ 2

is χ2(n−1) and
SS(E)

σ 2
is χ2(n−m).

Because SS(T) ≥ 0, there is a theorem (see subsequent remark) which states
that SS(E) and SS(T) are independent and the distribution of SS(T)/σ 2 is
χ2(m−1).

REMARK The sums of squares, SS(T), SS(E), and SS(TO), are examples of
quadratic forms in the variables Xij, i = 1, 2, . . . , m, j = 1, 2, . . . , ni. That is, each
term in these sums of squares is of second degree in Xij. Furthermore, the coeffi-
cients of the variables are real numbers, so these sums of squares are called real
quadratic forms. The next theorem, stated without proof, is used in this chapter.
[For a proof, see Hogg, McKean, and Craig, Introduction to Mathematical Statistics,
7th ed. (Upper Saddle River: Prentice Hall, 2013).]

Theorem
9.3-1

Let Q = Q1 + Q2 + · · · + Qk, where Q, Q1, . . . , Qk are k + 1 real quadratic
forms in n mutually independent random variables normally distributed with the
same variance σ 2. Let Q/σ 2, Q1/σ

2, . . . , Qk−1/σ
2 have chi-square distributions

with r, r1, . . . , rk−1 degrees of freedom, respectively. If Qk is nonnegative, then

(a) Q1, . . . , Qk are mutually independent, and hence,

(b) Qk/σ 2 has a chi-square distribution with r − (r1 + · · ·+ rk−1) = rk degrees of
freedom.

Since, under H0, SS(T)/σ 2 is χ2(m−1), we have E[SS(T)/σ 2] = m−1 and it fol-
lows that E[SS(T)/(m − 1)] = σ 2. Now, the estimator of σ 2, namely, SS(E)/(n − m),
which is based on SS(E), is always unbiased, whether H0 is true or false. However,
if the means μ1, μ2, . . . , μm are not equal, the expected value of the estimator
that is based on SS(T) will be greater than σ 2. To make this last statement clear,
we have

E[SS(T)] = E

[
m∑

i=1

ni(Xi· − X ··)2

]
= E

[
m∑

i=1

niX
2
i· − nX

2
··

]

=
m∑

i=1

ni{Var(Xi·) + [E(Xi·)]2} − n{Var(X ··) + [E(X ··)]2}

=
m∑

i=1

ni

{
σ 2

ni
+ μ2

i

}
− n

{
σ 2

n
+ μ2

}

= (m − 1)σ 2 +
m∑

i=1

ni(μi − μ)2,

where μ = (1/n)
∑m

i=1 niμi. If μ1 = μ2 = · · · = μm = μ, then

E
(

SS(T)
m − 1

)
= σ 2.
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If the means are not all equal, then

E
[

SS(T)
m − 1

]
= σ 2 +

m∑
i=1

ni
(μi − μ)2

m − 1
> σ 2.

We can base our test of H0 on the ratio of SS(T)/(m − 1) and SS(E)/(n − m),
both of which are unbiased estimators of σ 2, provided that H0: μ1 = μ2 = · · · = μm
is true, so that, under H0, the ratio would assume values near 1. However, in the case
that the means μ1, μ2, . . . , μm begin to differ, this ratio tends to become large, since
E[SS(T)/(m − 1)] gets larger. Under H0, the ratio

SS(T)/(m − 1)
SS(E)/(n − m)

= [SS(T)/σ 2]/(m − 1)
[SS(E)/σ 2]/(n − m)

= F

has an F distribution with m−1 and n−m degrees of freedom because SS(T)/σ 2 and
SS(E)/σ 2 are independent chi-square variables. We would reject H0 if the observed
value of F is too large because this would indicate that we have a relatively large
SS(T), suggesting that the means are unequal. Thus, the critical region is of the form
F ≥ Fα(m−1, n−m).

The information used for tests of the equality of several means is often summa-
rized in an analysis-of-variance table, or ANOVA table, like that given in Table 9.3-2,
where the mean square (MS) is the sum of squares (SS) divided by its degrees of
freedom.

Example
9.3-1

Let X1, X2, X3, X4 be independent random variables that have normal distributions
N(μi, σ 2), i = 1, 2, 3, 4. We shall test

H0 : μ1 = μ2 = μ3 = μ4 = μ

against all alternatives on the basis of a random sample of size ni = 3 from each of
the four distributions. A critical region of size α = 0.05 is given by

F = SS(T)/(4 − 1)
SS(E)/(12 − 4)

≥ 4.07 = F0.05(3, 8).

The observed data are shown in Table 9.3-3. (Clearly, these data are not observations
from normal distributions; they were selected to illustrate the calculations.)

Table 9.3-2 Analysis-of-variance table

Source Sum of Squares (SS) Degrees of Freedom Mean Square (MS) F Ratio

Treatment SS(T) m − 1 MS(T) = SS(T)
m − 1

MS(T)
MS(E)

Error SS(E) n − m MS(E) = SS(E)
n − m

Total SS(TO) n − 1
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Table 9.3-3 Illustrative data

Observations Xi·

x1: 13 8 9 10

x2: 15 11 13 13

x3: 8 12 7 9

x4: 11 15 10 12

x·· 11

For the given data, the calculated SS(TO), SS(E), and SS(T) are

SS(TO) = (13 − 11)2 + (8 − 11)2 + · · · + (15 − 11)2 + (10 − 11)2 = 80,

SS(E) = (13 − 10)2 + (8 − 10)2 + · · · + (15 − 12)2 + (10 − 12)2 = 50,

SS(T) = 3[(10 − 11)2 + (13 − 11)2 + (9 − 11)2 + (12 − 11)2] = 30.

Note that since SS(TO) = SS(E) + SS(T), only two of the three values need to be
calculated directly from the data. Here the computed value of F is

30/3
50/8

= 1.6 < 4.07,

and H0 is not rejected. The p-value is the probability, under H0, of obtaining an F
that is at least as large as this computed value of F. It is often given by computer
programs.

The information for this example is summarized in Table 9.3-4. Again, we note
that (here and elsewhere) the F statistic is the ratio of two appropriate mean
squares.

Formulas that sometimes simplify the calculations of SS(TO), SS(T), and SS(E)
(and also reduce roundoff errors created by subtracting the averages from the
observations) are

Table 9.3-4 ANOVA table for illustrative data

Sum of Squares Degrees of Mean Square
Source (SS) Freedom (MS) F Ratio p-value

Treatment 30 3 30/3 1.6 0.264

Error 50 8 50/8

Total 80 11
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SS(TO) =
m∑

i=1

ni∑
j=1

X2
ij − 1

n

⎡⎣ m∑
i=1

ni∑
j=1

Xij

⎤⎦2

,

SS(T) =
m∑

i=1

1
ni

⎡⎣ ni∑
j=1

Xij

⎤⎦2

− 1
n

⎡⎣ m∑
i=1

ni∑
j=1

Xij

⎤⎦2

,

and

SS(E) = SS(TO) − SS(T).

It is interesting to note that in these formulas each square is divided by the num-
ber of observations in the sum being squared: X2

ij by 1, (
∑ni

j=1 Xij)2 by ni, and

(
∑m

i=1
∑ni

j=1 Xij)2 by n. The preceding formulas are used in Example 9.3-2. Although
they are useful, you are encouraged to use appropriate statistical packages on a
computer to aid you with these calculations.

If the sample sizes are all at least equal to 7, insight can be gained by plot-
ting box-and-whisker diagrams on the same figure, for each of the samples. This
technique is also illustrated in Example 9.3-2.

Example
9.3-2

A window that is manufactured for an automobile has five studs for attaching it. A
company that manufactures these windows performs “pullout tests” to determine
the force needed to pull a stud out of the window. Let Xi, i = 1, 2, 3, 4, 5, equal the
force required at position i, and assume that the distribution of Xi is N(μi, σ 2). We
shall test the null hypothesis H0: μ1 = μ2 = μ3 = μ4 = μ5, using seven independent
observations at each position. At an α = 0.01 significance level, H0 is rejected if the
computed

F = SS(T)/(5 − 1)
SS(E)/(35 − 5)

≥ 4.02 = F0.01(4, 30).

The observed data, along with certain sums, are given in Table 9.3-5. For these
data,

Table 9.3-5 Pullout test data

Observations
7∑

j=1

xij

7∑
j=1

x2
ij

x1: 92 90 87 105 86 83 102 645 59,847

x2: 100 108 98 110 114 97 94 721 74,609

x3: 143 149 138 136 139 120 145 970 134,936

x4: 147 144 160 149 152 131 134 1017 148,367

x5: 142 155 119 134 133 146 152 981 138,415

Totals 4334 556,174
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SS(TO) = 556, 174 − 1
35

(4334)2 = 19,500.97,

SS(T) = 1
7

(6452 + 7212 + 9702 + 10172 + 9812 )

− 1
35

(4334)2 = 16,672.11,

SS(E) = 19,500.97 − 16,672.11 = 2828.86.

Since the computed F is

F = 16,672.11/4
2828.86/30

= 44.20,

the null hypothesis is clearly rejected. This information obtained from the equations
is summarized in Table 9.3-6.

But why is H0 rejected? The box-and-whisker diagrams shown in Figure 9.3-1
help to answer this question. It looks like the forces required to pull out studs in
positions 1 and 2 are similar, and those in positions 3, 4, and 5 are quite similar,
but different from, positions 1 and 2. (See Exercise 9.3-10.) An examination of the
window would confirm that this is the case.

As with the two-sample t test, the F test works quite well even if the underly-
ing distributions are nonnormal, unless they are highly skewed or the variances are
quite different. In these latter cases, we might need to transform the observations

Table 9.3-6 ANOVA table for pullout tests

Source Sum of Squares (SS) Degrees of Freedom Mean Square (MS) F

Treatment 16,672.11 4 4, 168.03 44.20

Error 2,828.86 30 94.30

Total 19,500.97 34

X1

80 100 120 140 160

X2

X3

X4

X5

Figure 9.3-1 Box plots for pullout tests
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to make the data more symmetric with about the same variances or to use certain
nonparametric methods that are beyond the scope of this text.

Exercises

(In some of the exercises that follow, we must make
assumptions, such as normal distributions with equal vari-
ances.)

9.3-1. Let μ1, μ2, μ3 be, respectively, the means of three
normal distributions with a common, but unknown, vari-
ance σ 2. In order to test, at the α = 0.05 significance level,
the hypothesis H0: μ1 = μ2 = μ3 against all possible
alternative hypotheses, we take a random sample of size
4 from each of these distributions. Determine whether we
accept or reject H0 if the observed values from the three
distributions are, respectively, as follows:

x1: 5 9 6 8

x2: 11 13 10 12

x3: 10 6 9 9

9.3-2. Let μi be the average yield in bushels per acre of
variety i of corn, i = 1, 2, 3, 4. In order to test the hypoth-
esis H0: μ1 = μ2 = μ3 = μ4 at the 5% significance level,
four test plots for each of the four varieties of corn are
planted. Determine whether we accept or reject H0 if the
yield in bushels per acre of the four varieties of corn are,
respectively, as follows:

x1: 158.82 166.99 164.30 168.73

x2: 176.84 165.69 167.87 166.18

x3: 180.16 168.84 170.65 173.58

x4: 151.58 163.51 164.57 160.75

9.3-3. Four groups of three pigs each were fed individu-
ally four different feeds for a specified length of time to
test the hypothesis H0: μ1 = μ2 = μ3 = μ4, where μi,
i = 1, 2, 3, 4, is the mean weight gain for each of the feeds.
Determine whether the null hypothesis is accepted or
rejected at a 5% significance level if the observed weight
gains in pounds are, respectively, as follows:

x1: 194.11 182.80 187.43

x2: 216.06 203.50 216.88

x3: 178.10 189.20 181.33

x4: 197.11 202.68 209.18

9.3-4. Ledolter and Hogg (see References) report that a
civil engineer wishes to compare the strengths of three
different types of beams, one (A) made of steel and two
(B and C) made of different and more expensive alloys.

A certain deflection (in units of 0.001 inch) was measured
for each beam when submitted to a given force; thus, a
small deflection would indicate a beam of great strength.
The order statistics for the three samples, of respective
sizes n1 = 8, n2 = 6, and n3 = 6, are as follows:

A: 79 82 83 84 85 86 86 87

B: 74 75 76 77 78 82

C: 77 78 79 79 79 82

(a) Use these data, α = 0.05, and the F test to test the
equality of the three means.

(b) For each set of data, construct box-and-whisker dia-
grams on the same figure and give an interpretation
of your diagrams.

9.3-5. The female cuckoo lays her eggs in other birds’
nests. The “foster parents” are usually deceived, proba-
bly because of the similarity in sizes of their own eggs
and cuckoo eggs. Latter (see References) investigated this
possible explanation and measured the lengths of cuckoo
eggs (in mm) that were found in the nests of three species.
Following are his results:

Hedge sparrow: 22.0 23.9 20.9 23.8 25.0

24.0 21.7 23.8 22.8 23.1

23.1 23.5 23.0 23.0

Robin: 21.8 23.0 23.3 22.4 23.0

23.0 23.0 22.4 23.9 22.3

22.0 22.6 22.0 22.1 21.1

23.0

Wren: 19.8 22.1 21.5 20.9 22.0

21.0 22.3 21.0 20.3 20.9

22.0 20.0 20.8 21.2 21.0

(a) Construct an ANOVA table to test the equality of the
three means.

(b) For each set of data, construct box-and-whisker dia-
grams on the same figure.

(c) Interpret your results.

9.3-6. Let X1, X2, X3, X4 equal the cholesterol level of a
woman under the age of 50, a man under 50, a woman 50
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or older, and a man 50 or older, respectively. Assume that
the distribution of Xi is N(μi, σ 2), i = 1, 2, 3, 4. We shall
test the null hypothesis H0: μ1 = μ2 = μ3 = μ4, using
seven observations of each Xi.

(a) Give a critical region for an α = 0.05 significance
level.

(b) Construct an ANOVA table and state your conclu-
sion, using the following data:

x1: 221 213 202 183 185 197 162

x2: 271 192 189 209 227 236 142

x3: 262 193 224 201 161 178 265

x4: 192 253 248 278 232 267 289

(c) Give bounds on the p-value for this test.

(d) For each set of data, construct box-and-whisker dia-
grams on the same figure and give an interpretation
of your diagram.

9.3-7. Montgomery (see References) examines the
strengths of a synthetic fiber that may be affected by
the percentage of cotton in the fiber. Five levels of this
percentage are considered, with five observations taken
at each level.

Percentage Tensile Strength
of Cotton in lb/in2

15 7 7 15 11 9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35 7 10 11 15 11

Use the F test, with α = 0.05, to see if there are differ-
ences in the breaking strengths due to the percentages of
cotton used.

9.3-8. Different sizes of nails are packaged in “1-pound”
boxes. Let Xi equal the weight of a box with nail size
(4i)C, i = 1, 2, 3, 4, 5, where 4C, 8C, 12C, 16C, and 20C are
the sizes of the sinkers from smallest to largest. Assume
that the distribution of Xi is N(μi, σ 2). To test the null
hypothesis that the mean weights of “1-pound” boxes are
all equal for different sizes of nails, we shall use ran-
dom samples of size 7, weighing the nails to the nearest
hundredth of a pound.

(a) Give a critical region for an α = 0.05 significance
level.

(b) Construct an ANOVA table and state your conclu-
sion, using the following data:

x1: 1.03 1.04 1.07 1.03 1.08 1.06 1.07

x2: 1.03 1.10 1.08 1.05 1.06 1.06 1.05

x3: 1.03 1.08 1.06 1.02 1.04 1.04 1.07

x4: 1.10 1.10 1.09 1.09 1.06 1.05 1.08

x5: 1.04 1.06 1.07 1.06 1.05 1.07 1.05

(c) For each set of data, construct box-and-whisker dia-
grams on the same figure and give an interpretation
of your diagrams.

9.3-9. Let Xi, i = 1, 2, 3, 4, equal the distance (in yards)
that a golf ball travels when hit from a tee, where i denotes
the index of the ith manufacturer. Assume that the distri-
bution of Xi is N(μi, σ 2), i = 1, 2, 3, 4, when a ball is hit
by a certain golfer. We shall test the null hypothesis H0:
μ1 = μ2 = μ3 = μ4, using three observations of each
random variable.

(a) Give a critical region for an α = 0.05 significance
level.

(b) Construct an ANOVA table and state your conclu-
sion, using the following data:

x1: 240 221 265

x2: 286 256 272

x3: 259 245 232

x4: 239 215 223

(c) What would your conclusion be if α = 0.025?

(d) What is the approximate p-value of this test?

9.3-10. From the box-and-whisker diagrams in Figure
9.3-1, it looks like the means of X1 and X2 could be equal
and also that the means of X3, X4, and X5 could be equal
but different from the first two.

(a) Using the data in Example 9.3-2, as well as a t test and
an F test, test H0: μ1 = μ2 against a two-sided alter-
native hypothesis. Let α = 0.05. Do the F and t tests
give the same result?

(b) Using the data in Example 9.3-2, test H0: μ3 = μ4 =
μ5. Let α = 0.05.

9.3-11. The driver of a diesel-powered automobile
decided to test the quality of three types of diesel fuel
sold in the area. The test is to be based on miles per gal-
lon (mpg). Make the usual assumptions, take α = 0.05,
and use the following data to test the null hypothesis that
the three means are equal:

Brand A: 38.7 39.2 40.1 38.9

Brand B: 41.9 42.3 41.3

Brand C: 40.8 41.2 39.5 38.9 40.3



Section 9.4 Two-Way Analysis of Variance 445

9.3-12. A particular process puts a coating on a piece of
glass so that it is sensitive to touch. Randomly throughout
the day, pieces of glass are selected from the produc-
tion line and the resistance is measured at 12 different
locations on the glass. On each of three different days,
December 6, December 7, and December 22, the follow-
ing data give the means of the 12 measurements on each
of 11 pieces of glass:

December 6: 175.05 177.44 181.94 176.51 182.12 164.34

163.20 168.12 171.26 171.92 167.87

December 7: 175.93 176.62 171.39 173.90 178.34 172.90

174.67 174.27 177.16 184.13 167.21

December 22: 167.27 161.48 161.86 173.83 170.75 172.90

173.27 170.82 170.93 173.89 177.68

(a) Use these data to test whether the means on all three
days are equal.

(b) Use box-and-whisker diagrams to confirm your
answer.

9.3-13. For an aerosol product, there are three weights:
the tare weight (container weight), the concentrate
weight, and the propellant weight. Let X1, X2, X3 denote
the propellant weights on three different days. Assume
that each of these independent random variables has a
normal distribution with common variance and respective
means μ1, μ2, and μ3. We shall test the null hypothesis
H0: μ1 = μ2 = μ3, using nine observations of each of the
random variables.

(a) Give a critical region for an α = 0.01 significance
level.

(b) Construct an ANOVA table and state your conclu-
sion, using the following data:

x1: 43.06 43.32 42.63 42.86 43.05

42.87 42.94 42.80 42.36

x2: 42.33 42.81 42.13 42.41 42.39

42.10 42.42 41.42 42.52

x3: 42.83 42.57 42.96 43.16 42.25

42.24 42.20 41.97 42.61

(c) For each set of data, construct box-and-whisker dia-
grams on the same figure and give an interpretation
of your diagrams.

9.3-14. Ledolter and Hogg (see References) report the
comparison of three workers with different experience
who manufacture brake wheels for a magnetic brake.
Worker A has four years of experience, worker B has
seven years, and worker C has one year. The company is
concerned about the product’s quality, which is measured
by the difference between the specified diameter and the
actual diameter of the brake wheel. On a given day, the
supervisor selects nine brake wheels at random from the
output of each worker. The following data give the dif-
ferences between the specified and actual diameters in
hundredths of an inch:

Worker A: 2.0 3.0 2.3 3.5 3.0 2.0 4.0 4.5 3.0

Worker B: 1.5 3.0 4.5 3.0 3.0 2.0 2.5 1.0 2.0

Worker C: 2.5 3.0 2.0 2.5 1.5 2.5 2.5 3.0 3.5

(a) Test whether there are statistically significant dif-
ferences in the quality among the three different
workers.

(b) Do box plots of the data confirm your answer in
part (a)?

9.3-15. Ledolter and Hogg (see References) report that
an operator of a feedlot wants to compare the effective-
ness of three different cattle feed supplements. He selects
a random sample of 15 one-year-old heifers from his lot of
over 1000 and divides them into three groups at random.
Each group gets a different feed supplement. Upon not-
ing that one heifer in group A was lost due to an accident,
the operator records the gains in weight (in pounds) over
a six-month period as follows:

Group A: 500 650 530 680

Group B: 700 620 780 830 860

Group C: 500 520 400 580 410

(a) Test whether there are differences in the mean weight
gains due to the three different feed supplements.

(b) Do box plots of the data confirm your answer in
part (a)?

9.4 TWO-WAY ANALYSIS OF VARIANCE
The test of the equality of several means, considered in Section 9.3, is an example of
a statistical inference method called the analysis of variance (ANOVA). This method
derives its name from the fact that the quadratic form SS(TO) = (n−1)S2—the total
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sum of squares about the combined sample mean—is decomposed into its compo-
nents and analyzed. In this section, other problems in the analysis of variance will
be investigated; here we restrict our considerations to the two-factor case, but the
reader can see how it can be extended to three-factor and other cases.

Consider a situation in which it is desirable to investigate the effects of two fac-
tors that influence an outcome of an experiment. For example, a teaching method
(lecture, discussion, computer assisted, television, etc.) and the size of a class might
influence a student’s score on a standard test; or the type of car and the grade of
gasoline used might change the number of miles per gallon. In this latter example, if
the number of miles per gallon is not affected by the grade of gasoline, we would no
doubt use the least expensive grade.

The first analysis-of-variance model that we discuss is referred to as a two-
way classification with one observation per cell. Assume that there are two factors
(attributes), one of which has a levels and the other b levels. There are thus n = ab
possible combinations, each of which determines a cell. Let us think of these cells
as being arranged in a rows and b columns. Here we take one observation per cell,
and we denote the observation in the ith row and jth column by Xij. Assume fur-
ther that Xij is N(μij, σ 2), i = 1, 2, . . . , a, and j = 1, 2, . . . , b; and the n = ab random
variables are independent. [The assumptions of normality and homogeneous (same)
variances can be somewhat relaxed in applications, with little change in the signifi-
cance levels of the resulting tests.] We shall assume that the means μij are composed
of a row effect, a column effect, and an overall effect in some additive way, namely,
μij = μ + αi + βj, where

∑a
i=1 αi = 0 and

∑b
j=1 βj = 0. The parameter αi represents

the ith row effect, and the parameter βj represents the jth column effect.

REMARK There is no loss in generality in assuming that

a∑
i=1

αi =
b∑

j=1

βj = 0.

To see this, let μij = μ′ + α′
i + β ′

j . Write

α ′ =
(

1
a

) a∑
i=1

α′
i and β ′ =

(
1
b

) b∑
j=1

β ′
j .

We have

μij = (μ′ + α ′ + β ′) + (α′
i − α ′) + (β ′

j − β ′) = μ + αi + βj,

where
∑a

i=1 αi = 0 and
∑b

j=1 βj = 0. The reader is asked to find μ, αi, and βj for one
display of μij in Exercise 9.4-2.

To test the hypothesis that there is no row effect, we would test HA: α1 =
α2 = · · · = αa = 0, since

∑a
i=1 αi = 0. Similarly, to test that there is no col-

umn effect, we would test HB: β1 = β2 = · · · = βb = 0, since
∑b

j=1 βj = 0. To
test these hypotheses, we shall again partition the total sum of squares into several
components. Letting

Xi· = 1
b

b∑
j=1

Xij, X ·j = 1
a

a∑
i=1

Xij, X ·· = 1
ab

a∑
i=1

b∑
j=1

Xij,
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we have

SS(TO) =
a∑

i=1

b∑
j=1

(Xij − X ··)2

=
a∑

i=1

b∑
j=1

[(Xi· − X ··) + (X ·j − X ··) + (Xij − Xi· − X ·j + X ··)]2

= b
a∑

i=1

(Xi· − X ··)2 + a
b∑

j=1

(X ·j − X ··)2

+
a∑

i=1

b∑
j=1

(Xij − Xi· − X ·j + X ··)2

= SS(A) + SS(B) + SS(E),

where SS(A) is the sum of squares among levels of factor A, or among rows; SS(B)
is the sum of squares among levels of factor B, or among columns; and SS(E) is
the error or residual sum of squares. In Exercise 9.4-4, the reader is asked to show
that the three cross-product terms in the square of the trinomial sum to zero. The
distribution of the error sum of squares does not depend on the mean μij, provided
that the additive model is correct. Hence, its distribution is the same whether HA

or HB is true or not, and thus SS(E) acts as a “measuring stick,” as did SS(E) in
Section 9.3. This can be seen more clearly by writing

SS(E) =
a∑

i=1

b∑
j=1

(Xij − Xi· − X ·j + X ··)2

=
a∑

i=1

b∑
j=1

[Xij − (Xi· − X ··) − (X ·j − X ··) − X ··]2

and noting the similarity of the summand in the right-hand member to

Xij − μij = Xij − αi − βj − μ.

We now show that SS(A)/σ 2, SS(B)/σ 2, and SS(E)/σ 2 are independent chi-
square variables, provided that both HA and HB are true—that is, when all the
means μij have a common value μ. To do this, we first note that SS(TO)/σ 2 is
χ2(ab−1). In addition, from Section 9.3, we see that expressions such as SS(A)/σ 2

and SS(B)/σ 2 are chi-square variables, namely, χ2(a−1) and χ2(b−1), by replac-
ing the ni of Section 9.3 by a and b, respectively. Obviously, SS(E) ≥ 0, and hence
by Theorem 9.3-1, SS(A)/σ 2, SS(B)/σ 2, and SS(E)/σ 2 are independent chi-square
variables with a − 1, b − 1, and ab − 1 − (a − 1) − (b − 1) = (a − 1)(b − 1) degrees
of freedom, respectively.

To test the hypothesis HA: α1 = α2 = · · · = αa = 0, we shall use the row sum of
squares SS(A) and the residual sum of squares SS(E). When HA is true, SS(A)/σ 2

and SS(E)/σ 2 are independent chi-square variables with a − 1 and (a − 1)(b − 1)
degrees of freedom, respectively. Thus, SS(A)/(a−1) and SS(E)/[(a−1)(b−1)] are
both unbiased estimators of σ 2 when HA is true. However, E[SS(A)/(a − 1)] > σ 2

when HA is not true, and hence we would reject HA when

FA = SS(A)/[σ 2(a − 1)]
SS(E)/[σ 2(a − 1)(b − 1)]

= SS(A)/(a − 1)
SS(E)/[(a − 1)(b − 1)]
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is “too large.” Since FA has an F distribution with a − 1 and (a − 1)(b − 1) degrees
of freedom when HA is true, HA is rejected if the observed value of FA equals or
exceeds Fα[a−1, (a−1)(b−1)].

Similarly, the test of the hypothesis HB: β1 = β2 = · · · = βb = 0 against all
alternatives can be based on

FB = SS(B)/[σ 2(b − 1)]
SS(E)/[σ 2(a − 1)(b − 1)]

= SS(B)/(b − 1)
SS(E)/[(a − 1)(b − 1)]

,

which has an F distribution with b−1 and (a−1)(b−1) degrees of freedom, provided
that HB is true.

Table 9.4-1 is the ANOVA table that summarizes the information needed for
these tests of hypotheses. The formulas for FA and FB show that each of them is a
ratio of two mean squares.

Example
9.4-1

Each of three cars is driven with each of four different brands of gasoline. The
number of miles per gallon driven for each of the ab = (3)(4) = 12 different
combinations is recorded in Table 9.4-2.

We would like to test whether we can expect the same mileage for each of these
four brands of gasoline. In our notation, we test the hypothesis

HB : β1 = β2 = β3 = β4 = 0

Table 9.4-1 Two-way ANOVA table, one observation per cell

Source Sum of Squares (SS) Degrees of Freedom Mean Square (MS) F

Factor A SS(A) a − 1 MS(A) = SS(A)
a − 1

MS(A)
MS(E)(row)

Factor B SS(B) b − 1 MS(B) = SS(B)
b − 1

MS(B)
MS(E)(column)

Error SS(E) (a − 1)(b − 1) MS(E) = SS(E)
(a − 1)(b − 1)

Total SS(TO) ab − 1

Table 9.4-2 Gas mileage data

Gasoline

Car 1 2 3 4 Xi·

1 26 28 31 31 29

2 24 25 28 27 26

3 25 25 28 26 26

X ·j 25 26 29 28 27
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against all alternatives. At a 1% significance level, we shall reject HB if the computed
F, namely,

SS(B)/(4 − 1)
SS(E)/[(3 − 1)(4 − 1)]

≥ 9.78 = F0.01(3, 6).

We have

SS(B) = 3[(25 − 27)2 + (26 − 27)2 + (29 − 27)2 + (28 − 27)2] = 30;

SS(E) = (26 − 29 − 25 + 27)2 + (24 − 26 − 25 + 27)2 + · · ·
+ (26 − 26 − 28 + 27)2 = 4.

Hence, the computed F is

30/3
4/6

= 15 > 9.78,

and the hypothesis HB is rejected. That is, the gasolines seem to give different
performances (at least with these three cars).

The information for this example is summarized in Table 9.4-3.

In a two-way classification problem, particular combinations of the two fac-
tors might interact differently from what is expected from the additive model. For
instance, in Example 9.4-1, gasoline 3 seemed to be the best gasoline and car 1 the
best car; however, it sometimes happens that the two best do not “mix” well and
the joint performance is poor. That is, there might be a strange interaction between
this combination of car and gasoline, and accordingly, the joint performance is not as
good as expected. Sometimes it happens that we get good results from a combination
of some of the poorer levels of each factor. This phenomenon is called interaction,
and it frequently occurs in practice (e.g., in chemistry). In order to test for possi-
ble interaction, we shall consider a two-way classification problem in which c > 1
independent observations per cell are taken.

Assume that Xijk, i = 1, 2, . . . , a; j = 1, 2, . . . , b; and k = 1, 2, . . . , c, are n = abc
random variables that are mutually independent and have normal distributions with
a common, but unknown, variance σ 2. The mean of each Xijk, k = 1, 2, . . . , c,
is μij = μ + αi + βj + γij, where

∑a
i=1 αi = 0,

∑b
j=1 βj = 0,

∑a
i=1 γij = 0,

and
∑b

j=1 γij = 0. The parameter γij is called the interaction associated with cell (i, j).
That is, the interaction between the ith level of one classification and the jth level of

Table 9.4-3 ANOVA table for gas mileage data

Sum of Squares Degrees of Mean Square
Source (SS) Freedom (MS) F p-value

Row (A) 24 2 12 18 0.003

Column (B) 30 3 10 15 0.003

Error 4 6 2/3

Total 58 11
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the other classification is γij. In Exercise 9.4-6, the reader is asked to determine μ,
αi, βj, and γij for some given μij.

To test the hypotheses that (a) the row effects are equal to zero, (b) the column
effects are equal to zero, and (c) there is no interaction, we shall again partition the
total sum of squares into several components. Letting

Xij· = 1
c

c∑
k=1

Xijk,

Xi·· = 1
bc

b∑
j=1

c∑
k=1

Xijk,

X ·j· = 1
ac

a∑
i=1

c∑
k=1

Xijk,

X ··· = 1
abc

a∑
i=1

b∑
j=1

c∑
k=1

Xijk,

we have

SS(TO) =
a∑

i=1

b∑
j=1

c∑
k=1

(Xijk − X ···)2

= bc
a∑

i=1

(Xi·· − X ···)2 + ac
b∑

j=1

(X ·j· − X ···)2

+c
a∑

i=1

b∑
j=1

(Xij· − Xi·· − X ·j· + X ···)2 +
a∑

i=1

b∑
j=1

c∑
k=1

(Xijk − Xij·)2

= SS(A) + SS(B) + SS(AB) + SS(E),

where SS(A) is the row sum of squares, or the sum of squares among levels of factor
A; SS(B) is the column sum of squares, or the sum of squares among levels of factor
B; SS(AB) is the interaction sum of squares; and SS(E) is the error sum of squares.
Again, we can show that the cross-product terms sum to zero.

To consider the joint distribution of SS(A), SS(B), SS(AB), and SS(E), let
us assume that all the means equal the same value μ. Of course, we know that
SS(TO)/σ 2 is χ2(abc − 1). Also, by letting the ni of Section 9.3 equal bc and ac,
respectively, we know that SS(A)/σ 2 and SS(B)/σ 2 are χ2(a − 1) and χ2(b − 1).
Moreover, ∑c

k=1 (Xijk − Xij·)2

σ 2

is χ2(c − 1); hence, SS(E)/σ 2 is the sum of ab independent chi-square variables
such as this and thus is χ2[ab(c − 1)]. Of course SS(AB) ≥ 0; so, according to
Theorem 9.3-1, SS(A)/σ 2, SS(B)/σ 2, SS(AB)/σ 2, and SS(E)/σ 2 are mutually inde-
pendent chi-square variables with a − 1, b − 1, (a − 1)(b − 1), and ab(c − 1) degrees
of freedom, respectively.

To test the hypotheses concerning row, column, and interaction effects, we form
F statistics in which the numerators are affected by deviations from the respective
hypotheses, whereas the denominator is a function of SS(E), whose distribution
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depends only on the value of σ 2 and not on the values of the cell means. Hence,
SS(E) acts as our measuring stick here.

The statistic for testing the hypothesis

HAB : γij = 0, i = 1, 2, . . . , a; j = 1, 2, . . . , b,

against all alternatives is

FAB = c
∑a

i=1
∑b

j=1 (Xij· − Xi·· − X ·j· + X ···)2/[σ 2(a − 1)(b − 1)]∑a
i=1

∑b
j=1

∑c
k=1 (Xijk − Xij·)2/[σ 2ab(c − 1)]

= SS(AB)/[(a − 1)(b − 1)]
SS(E)/[ab(c − 1)]

,

which has an F distribution with (a − 1)(b − 1) and ab(c − 1) degrees of freedom
when HAB is true. If the computed FAB ≥ Fα[(a−1)(b−1), ab(c−1)], we reject HAB and
say that there is a difference among the means, since there seems to be interaction.
Most statisticians do not proceed to test row and column effects if HAB is rejected.

The statistic for testing the hypothesis

HA : α1 = α2 = · · · = αa = 0

against all alternatives is

FA = bc
∑a

i=1 (Xi·· − X ···)2/[σ 2(a − 1)]∑a
i=1

∑b
j=1

∑c
k=1 (Xijk − Xij·)2/[σ 2ab(c − 1)]

= SS(A)/(a − 1)
SS(E)/[ab(c − 1)]

,

which has an F distribution with a − 1 and ab(c − 1) degrees of freedom when HA is
true. The statistic for testing the hypothesis

HB : β1 = β2 = · · · = βb = 0

against all alternatives is

FB = ac
∑b

j=1 (X ·j· − X ···)2/[σ 2(b − 1)]∑a
i=1

∑b
j=1

∑c
k=1 (Xijk − Xij·)2/[σ 2ab(c − 1)]

= SS(B)/(b − 1)
SS(E)/[ab(c − 1)]

,

which has an F distribution with b − 1 and ab(c − 1) degrees of freedom when HB is
true. Each of these hypotheses is rejected if the observed value of F is greater than
a given constant that is selected to yield the desired significance level.

Table 9.4-4 is the ANOVA table that summarizes the information needed for
these tests of hypotheses.

Example
9.4-2

Consider the following experiment: One hundred eight people were randomly
divided into 6 groups with 18 people in each group. Each person was given sets
of three numbers to add. The three numbers were either in a “down array” or an
“across array,” representing the two levels of factor A. The levels of factor B are
determined by the number of digits in the numbers to be added: one-digit, two-digit,
or three-digit numbers. Table 9.4-5 illustrates this experiment with a sample problem
for each cell; note, however, that an individual person works problems only of one of
these types. Each person was placed in one of the six groups and was told to work as
many problems as possible in 90 seconds. The measurement that was recorded was
the average number of problems worked correctly in two trials.
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Table 9.4-4 Two-way ANOVA table, c observations per cell

Sum of Squares Degrees of Mean Square
Source (SS) Freedom (MS) F

Factor A SS(A) a − 1 MS(A) = SS(A)
a − 1

MS(A)
MS(E)(row)

Factor B SS(B) b − 1 MS(B) = SS(B)
b − 1

MS(B)
MS(E)(column)

Factor AB SS(AB) (a − 1)(b − 1) MS(AB) = SS(AB)
(a − 1)(b − 1)

MS(AB)
MS(E)

(interaction)

Error SS(E) ab(c − 1) MS(E) = SS(E)
ab(c − 1)

Total SS(TO) abc − 1

Table 9.4-5 Illustration of arrays for numbers of digits

Number of Digits

Type of Array 1 2 3

Down 5 25 259

3 69 567

8 37 130

Across 5 + 3 + 8 = 25 + 69 + 37 = 259 + 567 + 130 =

Whenever this many subjects are used, a computer becomes an invaluable tool.
A computer program provided the summary shown in Table 9.4-6 of the sample
means of the rows, the columns, and the six cells. Each cell mean is the average for
18 people.

Simply considering these means, we can see clearly that there is a column effect:
It is not surprising that it is easier to add one-digit than three-digit numbers.

The most interesting feature of these results is that they show the possibility of
interaction. The largest cell mean occurs for those adding one-digit numbers in an
across array. Note, however, that for two- and three-digit numbers, the down arrays
have larger means than the across arrays.

The computer provided the ANOVA table given in Table 9.4-7. The number
of degrees of freedom for SS(E) is not in our F table in Appendix B. However,
the rightmost column, obtained from the computer printout, provides the p-value
of each test, namely, the probability of obtaining an F as large as or larger than
the calculated F ratio. Note, for example, that, to test for interaction, F = 5.51
and the p-value is 0.0053. Thus, the hypothesis of no interaction would be rejected
at the α = 0.05 or α = 0.01 significance level, but it would not be rejected with
α = 0.001.
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Table 9.4-6 Cell, row, and column means for adding numbers

Number of Digits

Type of Array 1 2 3 Row Means

Down 23.806 10.694 6.278 13.593

Across 26.056 6.750 3.944 12.250

Column means 24.931 8.722 5.111

Table 9.4-7 ANOVA table for adding numbers

Source Sum of Squares Degrees of Freedom Mean Square F p-value

Factor A 48.678 1 48.669 2.885 0.0925
(array)

Factor B 8022.73 2 4011.363 237.778 <0.0001
(number
of digits)

Interaction 185.92 2 92.961 5.510 0.0053

Error 1720.76 102 16.870

Total 9978.08 107

Exercises

(In some of the exercises that follow, we must make
assumptions, such as normal distributions with equal vari-
ances.)

9.4-1. For the data given in Example 9.4-1, test the
hypothesis HA: α1 = α2 = α3 = 0 against all alternatives
at the 5% significance level.

9.4-2. With a = 3 and b = 4, find μ, αi, and βj if μij,
i = 1, 2, 3 and j = 1, 2, 3, 4, are given by

6 3 7 8

10 7 11 12

8 5 9 10

Note that in an “additive” model such as this one, one row
(column) can be determined by adding a constant value to
each of the elements of another row (column).

9.4-3. We wish to compare compressive strengths of con-
crete corresponding to a = 3 different drying methods
(treatments). Concrete is mixed in batches that are just
large enough to produce three cylinders. Although care
is taken to achieve uniformity, we expect some variability
among the b = 5 batches used to obtain the following
compressive strengths (there is little reason to suspect
interaction; hence, only one observation is taken in each
cell):

Batch

Treatment B1 B2 B3 B4 B5

A1 52 47 44 51 42

A2 60 55 49 52 43

A3 56 48 45 44 38
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(a) Use the 5% significance level and test HA: α1 = α2 =
α3 = 0 against all alternatives.

(b) Use the 5% significance level and test HB: β1 = β2 =
β3 = β4 = β5 = 0 against all alternatives. (See
Ledolter and Hogg in References.)

9.4-4. Show that the cross-product terms formed from
(Xi· − X ··), (X ·j − X ··), and (Xij − Xi· − X ·j + X ··) sum to
zero, i = 1, 2, . . . a and j = 1, 2, . . . , b. Hint: For example,
write

a∑
i=1

b∑
j=1

(X ·j − X ··)(Xij − Xi· − X ·j + X ··)

=
b∑

j=1

(X ·j − X ··)
a∑

i=1

[(Xij − X ·j) − (Xi· − X ··)]

and sum each term in the inner summation, as grouped
here, to get zero.

9.4-5. A psychology student was interested in testing how
food consumption by rats would be affected by a partic-
ular drug. She used two levels of one attribute, namely,
drug and placebo, and four levels of a second attribute,
namely, male (M), castrated (C), female (F), and ovariec-
tomized (O). For each cell, she observed five rats. The
amount of food consumed in grams per 24 hours is listed
in the following table:

M C F O

Drug 22.56 16.54 18.58 18.20

25.02 24.64 15.44 14.56

23.66 24.62 16.12 15.54

17.22 19.06 16.88 16.82

22.58 20.12 17.58 14.56

Placebo 25.64 22.50 17.82 19.74

28.84 24.48 15.76 17.48

26.00 25.52 12.96 16.46

26.02 24.76 15.00 16.44

23.24 20.62 19.54 15.70

(a) Use the 5% significance level and test HAB: γij = 0,
i = 1, 2, j = 1, 2, 3, 4.

(b) Use the 5% significance level and test HA: α1 =
α2 = 0.

(c) Use the 5% significance level and test HB: β1 = β2 =
β3 = β4 = 0.

(d) How could you modify this model so that there
are three attributes of classification, each with two
levels?

9.4-6. With a = 3 and b = 4, find μ, αi, βj, and γij if μij,
i = 1, 2, 3 and j = 1, 2, 3, 4, are given by

6 7 7 12

10 3 11 8

8 5 9 10

Note the difference between the layout here and that
in Exercise 9.4-2. Does the interaction help explain the
difference?

9.4-7. In order to test whether four brands of gasoline
give equal performance in terms of mileage, each of three
cars was driven with each of the four brands of gasoline.
Then each of the (3)(4) = 12 possible combinations was
repeated four times. The number of miles per gallon for
each of the four repetitions in each cell is recorded in the
following table:

Brand of Gasoline

Car 1 2 3 4

1 31.0 24.9 26.3 30.0 25.8 29.4 27.8 27.3

26.2 28.8 25.2 31.6 24.5 24.8 28.2 30.4

2 30.6 29.5 25.5 26.8 26.6 23.7 28.1 27.1

30.8 28.9 27.4 29.4 28.2 26.1 31.5 29.1

3 24.2 23.1 27.4 28.1 25.2 26.7 26.3 26.4

26.8 27.4 26.4 26.9 27.7 28.1 27.9 28.8

Test the hypotheses HAB: no interaction, HA: no row
effect, and HB: no column effect, each at the 5% signif-
icance level.

9.4-8. There is another way of looking at Exercise 9.3-6,
namely, as a two-factor analysis-of-variance problem with
the levels of gender being female and male, the levels of
age being less than 50 and at least 50, and the measure-
ment for each subject being their cholesterol level. The
data would then be set up as follows:
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Age

Gender <50 ≥50

221 262

213 193

202 224

Female 183 201

185 161

197 178

162 265

271 192

192 253

189 248

Male 209 278

227 232

236 267

142 289

(a) Test HAB: γij = 0, i = 1, 2; j = 1, 2 (no interaction).

(b) Test HA: α1 = α2 = 0 (no row effect).

(c) Test HB: β1 = β2 = 0 (no column effect).

Use a 5% significance level for each test.

9.4-9. Ledolter and Hogg (see References) report that
volunteers who had a smoking history classified as heavy,
moderate, and nonsmoker were accepted until nine men
were in each category. Three men in each category were
randomly assigned to each of the following three stress
tests: bicycle ergometer, treadmill, and step tests. The
time until maximum oxygen uptake was recorded in min-
utes as follows:

Test

Smoking History Bicycle Treadmill Step Test

Nonsmoker 12.8, 13.5, 11.2 16.2, 18.1, 17.8 22.6, 19.3, 18.9

Moderate 10.9, 11.1, 9.8 15.5, 13.8, 16.2 20.1, 21.0, 15.9

Heavy 8.7, 9.2, 7.5 14.7, 13.2, 8.1 16.2, 16.1, 17.8

(a) Analyze the results of this experiment. Obtain the
ANOVA table and test for main effects and interac-
tions.

(b) Use box plots to compare the data graphically.

9.5* GENERAL FACTORIAL AND 2K FACTORIAL DESIGNS
In Section 9.4, we studied two-factor experiments in which the A factor is performed
at a levels and the B factor has b levels. Without replications, we need ab-level com-
binations, and with c replications with each of these combinations, we need a total
of abc experiments.

Let us now consider a situation with three factors—say, A, B, and C, with a, b, and
c levels, respectively. Here there are a total of abc-level combinations, and if, at each
of these combinations, we have d replications, there is a need for abcd experiments.
Once these experiments are run, in some random order, and the data collected, there
are computer programs available to calculate the entries in the ANOVA table, as in
Table 9.5-1.

The main effects (A, B, and C) and the two-factor interactions (AB, AC, and
BC) have the same interpretations as in the two-factor ANOVA. The three-factor
interaction represents that part of the model for the means μijh, i = 1, 2, . . . , a;
j = 1, 2, . . . , b; h = 1, 2, . . . , c, that cannot be explained by a model including only
the main effects and two-factor interactions. In particular, if, for each fixed h, the
“plane” created by μijh is “parallel” to the “plane” created by every other fixed h,
then the three-factor interaction is equal to zero. Usually, higher-order interactions
tend to be small.



456 Chapter 9 More Tests

Table 9.5-1 ANOVA table

Source SS d.f. MS F

A SS(A) a − 1 MS(A) MS(A)/MS(E)

B SS(B) b − 1 MS(B) MS(B)/MS(E)

C SS(C) c − 1 MS(C) MS(C)/MS(E)

AB SS(AB) (a − 1)(b − 1) MS(AB) MS(AB)/MS(E)

AC SS(AC) (a − 1)(c − 1) MS(AC) MS(AC)/MS(E)

BC SS(BC) (b − 1)(c − 1) MS(BC) MS(BC)/MS(E)

ABC SS(ABC) (a − 1)(b − 1)(c − 1) MS(ABC) MS(ABC)/MS(E)

Error SS(E) abc(d − 1) MS(E)

Total SS(TO) abcd − 1

In the testing sequence, we test the three-factor interaction first by checking to
see whether or not

MS(ABC)/MS(E) ≥ Fα[(a−1)(b−1)(c−1), abc(d−1)].

If this inequality holds, the ABC interaction is significant at the α level. We would
then not continue testing the two-factor interactions and the main effects with those
F values, but analyze the data otherwise. For example, for each fixed h, we could
look at a two-factor ANOVA for factors A and B. Of course, if the inequality does
not hold, we next check the two-factor interactions with the appropriate F values. If
these are not significant, we check the main effects, A, B, and C.

Factorial analyses with three or more factors require many experiments, par-
ticularly if each factor has several levels. Often, in the health, social, and physical
sciences, experimenters want to consider several factors (maybe as many as 10, 20,
or even hundreds), and they cannot afford to run that many experiments. This is
particularly true with preliminary or screening investigations, in which they want to
detect the factors that seem most important. In these cases, they often consider fac-
torial experiments such that each of k factors is run at just two levels, frequently
without replication. We consider only this situation, although the reader should rec-
ognize that it has many variations. In particular, there are methods for investigating
only fractions of these 2k designs. The reader interested in more information should
refer to a good book on the design of experiments, such as that by Box, Hunter, and
Hunter (see References). Many statisticians in industry believe that these statistical
methods are the most useful in improving product and process designs. Hence, this
is clearly an extremely important topic, as many industries are greatly concerned
about the quality of their products.

In factorial experiments in which each of the k factors is considered at only two
levels, those levels are selected at some reasonable low and high values. That is, with
the help of someone in the field, the typical range of each factor is considered. For
instance, if we are considering baking temperatures in the range from 300◦ to 375◦,
a representative low is selected—say, 320◦—and a representative high is selected—
say 355◦. There is no formula for these selections, and someone familiar with the
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experiment would help make them. Often, it happens that only two different types
of a material (e.g., fabric) are considered and one is called low and the other high.

Thus, we select a low and high for each factor and code them as −1 and +1 or,
more simply, − and +, respectively. We give three 2k designs, for k = 2, 3, and 4, in
standard order in Tables 9.5-2, 9.5-3, and 9.5-4, respectively. From these three tables,
we can easily note what is meant by standard order. The A column starts with a
minus sign and then the sign alternates. The B column begins with two minus signs
and then the signs alternate in blocks of two. The C column has 4 minus signs and
then 4 plus signs, and so on. The D column starts with 8 minus signs and then 8 plus
signs. It is easy to extend this idea to 2k designs, where k ≥ 5. To illustrate, under
the E column in a 25 design, we have 16 minus signs followed by 16 plus signs, which
together account for the 32 experiments.

To be absolutely certain what these runs mean, consider run number 12 in
Table 9.5-4: A is set at its high level, B at its high, C at its low, and D at its high
level. The value X12 is the random observation resulting from this one combina-
tion of these four settings. It must be emphasized that the runs are not necessarily
performed in the order 1, 2, 3, . . . , 2k; in fact, they should be performed in a random

Table 9.5-2 22 Design

22 Design

Run A B Observation

1 − − X1

2 + − X2

3 − + X3

4 + + X4

Table 9.5-3 23 Design

23 Design

Run A B C Observation

1 − − − X1

2 + − − X2

3 − + − X3

4 + + − X4

5 − − + X5

6 + − + X6

7 − + + X7

8 + + + X8
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Table 9.5-4 24 Design

24 Design

Run A B C D Observation

1 − − − − X1

2 + − − − X2

3 − + − − X3

4 + + − − X4

5 − − + − X5

6 + − + − X6

7 − + + − X7

8 + + + − X8

9 − − − + X9

10 + − − + X10

11 − + − + X11

12 + + − + X12

13 − − + + X13

14 + − + + X14

15 − + + + X15

16 + + + + X16

order if at all possible. That is, in a 23 design, we might perform the experiment in
the order 3, 2, 8, 6, 5, 1, 4, 7 if this, in fact, was a random selection of a permutation
of the first eight positive integers.

Once all 2k experiments have been run, it is possible to consider the total sum
of squares

2k∑
i=1

(Xi − X)2

and decompose it very easily into 2k − 1 parts, which represent the respective

measurements (estimators) of the k main effects,
(

k
2

)
two-factor interactions,

(
k
3

)
three-factor interactions, and so on, until we have the one k-factor interaction. We
illustrate this decomposition with the 23 design in Table 9.5-5. Note that column
AB is found by formally multiplying the elements of column A by the correspond-
ing ones in B. Likewise, AC is found by multiplying the elements of column A by
the corresponding ones in column C, and so on, until column ABC is the prod-
uct of the corresponding elements of columns A, B, and C. Next, we construct
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Table 9.5-5 23 Design decomposition

23 Design

Run A B C AB AC BC ABC Observation

1 − − − + + + − X1

2 + − − − − + + X2

3 − + − − + − + X3

4 + + − + − − − X4

5 − − + + − − + X5

6 + − + − + − − X6

7 − + + − − + − X7

8 + + + + + + + X8

seven linear forms, using these seven columns of signs with the corresponding
observations. The resulting measures (estimates) of the main effects (A, B, C), the
two-factor interactions (AB, AC, BC), and the three-factor interaction (ABC) are
then found by dividing the linear forms by 2k = 23 = 8. (Some statisticians divide by
2k−1 = 23−1 = 4.) These are denoted by

[A] = (−X1 + X2 − X3 + X4 − X5 + X6 − X7 + X8)/8,

[B] = (−X1 − X2 + X3 + X4 − X5 − X6 + X7 + X8)/8,

[C] = (−X1 − X2 − X3 − X4 + X5 + X6 + X7 + X8)/8,

[AB] = (+X1 − X2 − X3 + X4 + X5 − X6 − X7 + X8)/8,

[AC] = (+X1 − X2 + X3 − X4 − X5 + X6 − X7 + X8)/8,

[BC] = (+X1 + X2 − X3 − X4 − X5 − X6 + X7 + X8)/8,

[ABC] = (−X1 + X2 + X3 − X4 + X5 − X6 − X7 + X8)/8.

With assumptions of normality, mutual independence, and common variance σ 2,
under the overall null hypothesis of the equality of all the means, each of these
measures has a normal distribution with mean zero and variance σ 2/8 (in gen-
eral, σ 2/2k). This implies that the square of each measure divided by σ 2/8 is χ2(1).
Moreover, it can be shown (see Exercise 9.5-2) that

8∑
i=1

(
Xi − X

)2 = 8
(

[A]2 + [B]2 + [C]2 + [AB]2 + [AC]2 + [BC]2 + [ABC]2
)

.

So, by Theorem 9.3-1, the terms on the right-hand side, divided by σ 2, are mutu-
ally independent random variables, each being χ2(1). While it requires a little more
theory, it follows that the linear forms [A], [B], [C], [AB], [AC], [BC], and [ABC]
are mutually independent N(0, σ 2/8) random variables.
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Since we have assumed that we have not run any replications, how can we obtain
an estimate of σ 2 to see if any of the main effects or interactions are significant? To
help us, we fall back on the use of a q–q plot because, under the overall null hypothe-
sis, those seven measures are mutually independently, normally distributed variables
with the same mean and variance. Thus, a q–q plot of the normal percentiles against
the corresponding ordered values of the measures should be about on a straight
line if, in fact, the null hypothesis is true. If one of these points is “out of line,” we
might believe that the overall null hypothesis is not true and that the effect asso-
ciated with the factor represented with that point is significant. It is possible that
two or three points might be out of line; then all corresponding effects (main or
interaction) should be investigated. Clearly, this is not a formal test, but it has been
extremely successful in practice.

As an illustration, we use the data from an experiment designed to evaluate the
effects of laundering on a certain fire-retardant treatment for fabrics. These data,
somewhat modified, were taken from Experimental Statistics, National Bureau of
Standards Handbook 91, by Mary G. Natrella (Washington, DC: U.S. Government
Printing Office, 1963). Factor A is the type of fabric (sateen or monk’s cloth), factor
B corresponds to two different fire-retardant treatments, and factor C describes the
laundering conditions (no laundering, after one laundering). The observations are

Table 9.5-6 Seven measures ordered

Identity of Effect Ordered Effect Percentile Percentile from N(0, 1)

[A] −8.06 12.5 −1.15

[AB] −2.19 25.0 −0.67

[AC] −0.31 37.5 −0.32

[ABC] 0.31 50.0 0.00

[C] 0.56 62.5 0.32

[BC] 0.81 75.0 0.67

[B] 1.56 87.5 1.15

[AB]
[AC]

[B]

[BC]

[C]

[A]

[ABC]

−1.0

−0.5

0.5

1.0

−8 −7 −6 −5 −4 −3 −2 −1 1 2

Figure 9.5-1 A q–q plot of normal
percentiles versus estimated effects
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inches burned, measured on a standard-size fabric after a flame test. They are as
follows, in standard order:

x1 = 41.0, x2 = 30.5, x3 = 47.5, x4 = 27.0,

x5 = 39.5, x6 = 26.5, x7 = 48.0, x8 = 27.5.

Thus, the measures of the effects are

[A] = (−41.0 + 30.5 − 47.5 + 27.0 − 39.5 + 26.5 − 48.0 + 27.5)/8 = −8.06,

[B] = (−41.0 − 30.5 + 47.5 + 27.0 − 39.5 − 26.5 + 48.0 + 27.5)/8 = 1.56,

[C] = (−41.0 − 30.5 − 47.5 − 27.0 + 39.5 + 26.5 + 48.0 + 27.5)/8 = 0.56,

[AB] = (+41.0 − 30.5 − 47.5 + 27.0 + 39.5 − 26.5 − 48.0 + 27.5)/8 = −2.19,

[AC] = (+41.0 − 30.5 + 47.5 − 27.0 − 39.5 + 26.5 − 48.0 + 27.5)/8 = −0.31,

[BC] = (+41.0 + 30.5 − 47.5 − 27.0 − 39.5 − 26.5 + 48.0 + 27.5)/8 = 0.81,

[ABC] = (−41.0 + 30.5 + 47.5 − 27.0 + 39.5 − 26.5 − 48.0 + 27.5)/8 = 0.31.

In Table 9.5-6, we order these seven measures, determine their percentiles, and
find the corresponding percentiles of the standard normal distribution.

The q–q plot is given in Figure 9.5-1. Each point has been identified with its
effect. A straight line fits six of those points reasonably well, but the point associated
with [A] = −8.06 is far from this straight line. Hence, the main effect of factor A (the
type of fabric) seems to be significant. It is interesting to note that the laundering
factor, C, does not seem to be a significant factor.

Exercises

9.5-1. Write out a 22 design, displaying the A, B, and AB
columns for the four runs.

(a) If X1, X2, X3, and X4 are the four observations for the
respective runs in standard order, write out the three
linear forms, [A], [B], and [AB], that measure the two
main effects and the interaction. These linear forms
should include the divisor 22 = 4.

(b) Show that
∑4

i=1 (Xi − X)2 = 4([A]2 + [B]2 + [AB]2).

(c) Under the null hypothesis that all the means are equal
and with the usual assumptions (normality, mutual
independence, and common variance), what can you
say about the distributions of the expressions in (b)
after each is divided by σ 2?

9.5-2. Show that, in a 23 design,

8∑
i=1

(Xi − X)2

= 8
(

[A]2 + [B]2 + [C]2 + [AB]2 + [AC]2 + [BC]2 + [ABC]2
)

.

Hint: Since both the right and the left members of this
equation are symmetric in the variables X1, X2, . . . , X8,
it is necessary to show only that the corresponding coef-
ficients of X1Xi, i = 1, 2, . . . , 8, are the same in each
member of the equation. Of course, recall that X = (X1 +
X2 + · · · + X8)/8.

9.5-3. Show that the unbiased estimator of the variance
σ 2 from a sample of size n = 2 is one half of the
square of the difference of the two observations. Thus,
show that, if a 2k design is replicated, say, with Xi1 and
Xi2, i = 1, 2, . . . , 2k, then the estimate of the common
σ 2 is

1
2k+1

2k∑
i=1

(Xi1 − Xi2)2 = MS(E).

Under the usual assumptions, this equation implies that
each of 2k[A]2/MS(E), 2k[B]2/MS(E), 2k[AB]2/MS(E),
and so on has an F(1, 2k) distribution under the null
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hypothesis. This approach, of course, would provide tests
for the significance of the various effects, including inter-
actions.

9.5-4. Ledolter and Hogg (see References) note that per-
cent yields from a certain chemical reaction for changing
temperature (factor A), reaction time (factor B), and con-
centration (factor C) are x1 = 79.7, x2 = 74.3, x3 = 76.7,
x4 = 70.0, x5 = 84.0, x6 = 81.3, x7 = 87.3, and x8 = 73.7,
in standard order with a 23 design.

(a) Estimate the main effects, the three two-factor inter-
actions, and the three-factor interaction.

(b) Construct an appropriate q–q plot to see if any of
these effects seem to be significantly larger than the
others.

9.5-5. Box, Hunter, and Hunter (see References) studied
the effects of catalyst charge (10 pounds = −1, 20 pounds
= +1), temperature (220 ◦C = − 1, 240 ◦C = +1), pres-
sure (50 psi = −1, 80 psi = +1), and concentration (10%
= −1, 12% = +1) on percent conversion (X) of a certain
chemical. The results of a 24 design, in standard order, are

x1 = 71, x2 = 61, x3 = 90, x4 = 82, x5 = 68, x6 = 61,

x7 = 87, x8 = 80, x9 = 61, x10 = 50, x11 = 89,

x12 = 83, x13 = 59, x14 = 51, x15 = 85, x16 = 78.

(a) Estimate the main effects and the two-, three-, and
four-factor interactions.

(b) Construct an appropriate q–q plot and assess the
significance of the various effects.

9.6* TESTS CONCERNING REGRESSION AND CORRELATION
In Section 6.5, we considered the estimation of the parameters of a very simple
regression curve, namely, a straight line. We can use confidence intervals for the
parameters to test hypotheses about them. For example, with the same model as
that in Section 6.5, we could test the hypothesis H0: β = β0 by using a t random
variable that was used for a confidence interval with β replaced by β0, namely,

T1 = β̂ − β0√
nσ̂ 2

(n − 2)
∑n

i=1 (xi − x)2

.

The null hypothesis, along with three possible alternative hypotheses, is given in
Table 9.6-1; these tests are equivalent to stating that we reject H0 if β0 is not in
certain confidence intervals. For example, the first test is equivalent to rejecting H0
if β0 is not in the one-sided confidence interval with lower bound

β̂ − tα(n−2)

√
nσ̂ 2

(n − 2)
∑n

i=1 (xi − x)2
.

Often we let β0 = 0 and test the hypothesis H0: β = 0. That is, we test the null
hypothesis that the slope is equal to zero.

Table 9.6-1 Tests about the slope of the regression line

H0 H1 Critical Region

β = β0 β > β0 t1 ≥ tα(n−2)

β = β0 β < β0 t1 ≤ −tα(n−2)

β = β0 β �= β0 |t1| ≥ tα/2(n−2)
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Example
9.6-1

Let x equal a student’s preliminary test score in a psychology course and y equal the
same student’s score on the final examination. With n = 10 students, we shall test
H0: β = 0 against H1: β �= 0. At the 0.01 significance level, the critical region is
|t1| ≥ t0.005(8) = 3.355. Using the data in Example 6.5-1, we find that the observed
value of T1 is

t1 = 0.742 − 0√
10(21.7709)/8(756.1)

= 0.742
0.1897

= 3.911.

Thus, we reject H0 and conclude that a student’s score on the final examination is
related to his or her preliminary test score.

We consider tests about the correlation coefficient ρ of a bivariate normal dis-
tribution. Let X and Y have a bivariate normal distribution. We know that if the
correlation coefficient ρ is zero, then X and Y are independent random variables.
Furthermore, the value of ρ gives a measure of the linear relationship between X
and Y. We now give methods for using the sample correlation coefficient to test the
hypothesis H0: ρ = 0 and also to form a confidence interval for ρ.

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote a random sample from a bivariate
normal distribution with parameters μX , μY , σ 2

X , σ 2
Y , and ρ. That is, the n pairs of

(X, Y) are independent, and each pair has the same bivariate normal distribution.
The sample correlation coefficient is

R = [1/(n − 1)]
∑n

i=1 (Xi − X)(Yi − Y)√
[1/(n − 1)]

∑n
i=1 (Xi − X)2

√
[1/(n − 1)]

∑n
i=1(Yi − Y)2

= SXY

SXSY
.

We note that

R
SY

SX
= SXY

S2
X

= [1/(n − 1)]
∑n

i=1 (Xi − X)(Yi − Y)

[1/(n − 1)]
∑n

i=1 (Xi − X)2

is exactly the solution that we obtained for β̂ in Section 6.5 when the X-values were
fixed at X1 = x1, X2 = x2, . . . , Xn = xn. Let us consider these values fixed temporar-
ily so that we are considering conditional distributions, given X1 = x1, . . . , Xn = xn.
Moreover, if H0: ρ = 0 is true, then Y1, Y2, . . . , Yn are independent of X1, X2, . . . , Xn
and β = ρσY/σX = 0. Under these conditions, the conditional distribution of

β̂ =
∑n

i=1 (Xi − X)(Yi − Y)∑n
i=1 (Xi − X)2

,

given that X1 = x1, X2 = x2, . . . , Xn = xn, is N[0, σ 2
Y /(n − 1)s2

x] when s2
x > 0.

Moreover, recall from Section 6.5 that the conditional distribution of∑n
i=1 [Yi − Y − (SXY/S2

X)(Xi − X)]2

σ 2
Y

= (n − 1)S2
Y(1 − R2)

σ 2
Y

,

given that X1 = x1, . . . , Xn = xn, is χ2(n − 2) and is independent of β̂. (See
Exercise 9.6-6.) Thus, when ρ = 0, the conditional distribution of

T = (RSY/SX)/(σY/
√

n − 1 SX)√
[(n − 1) S2

Y (1 − R2)/σ 2
Y ][1/(n − 2)]

= R
√

n − 2√
1 − R2

is t with n − 2 degrees of freedom. However, since the conditional distribution of T,
given that X1 = x1, . . . , Xn = xn, does not depend on x1, x2, . . . , xn, the unconditional
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distribution of T must be t with n−2 degrees of freedom, and T and (X1, X2, . . . , Xn)
are independent when ρ = 0.

REMARK It is interesting to note that in the discussion about the distribution of
T, the assumption that (X, Y) has a bivariate normal distribution can be relaxed.
Specifically, if X and Y are independent and Y has a normal distribution, then T has
a t distribution regardless of the distribution of X. Obviously, the roles of X and Y
can be reversed in all of this development. In particular, if X and Y are independent,
then T and Y1, Y2, . . . , Yn are also independent.

Now T can be used to test H0: ρ = 0. If the alternative hypothesis is H1:
ρ > 0, we would use the critical region defined by the observed T ≥ tα(n−2), since
large T implies large R. Obvious modifications would be made for the alternative
hypotheses H1: ρ < 0 and H1: ρ �= 0, the latter leading to a two-sided test.

Using the pdf h(t) of T, we can find the distribution function and pdf of R when
−1 < r < 1, provided that ρ = 0:

G(r) = P(R ≤ r) = P

(
T ≤ r

√
n − 2√

1 − r2

)

=
∫ r

√
n−2/

√
1−r2

−∞
h(t) dt

=
∫ r

√
n−2/

√
1−r2

−∞
�[(n − 1)/2]

�(1/2) �[(n − 2)/2]
1√

n − 2

(
1 + t2

n − 2

)−(n−1)/2

dt.

The derivative of G(r), with respect to r, is (see Appendix D.4)

g(r) = h

(
r
√

n − 2√
1 − r2

)
d(r

√
n − 2/

√
1 − r2 )

dr
,

which equals

g(r) = �[(n − 1)/2]
�(1/2) �[(n − 2)/2]

(1 − r2)(n−4)/2, −1 < r < 1.

Thus, to test the hypothesis H0: ρ = 0 against the alternative hypothesis H1: ρ �= 0
at a significance level α, select either a constant rα/2(n−2) or a constant tα/2(n−2)
so that

α = P( | R | ≥ rα/2(n−2); H0) = P( | T | ≥ tα/2(n−2); H0),

depending on the availability of R or T tables.
It is interesting to graph the pdf of R. Note in particular that if n = 4, g(r) = 1/2,

−1 < r < 1, and if n = 6, g(r) = (3/4)(1 − r2), −1 < r < 1. The graphs of the pdf of
R when n = 8 and when n = 14 are given in Figure 9.6-1. Recall that this is the pdf
of R when ρ = 0. As n increases, R is more likely to equal values close to 0.

Table IX in Appendix B lists selected values of the distribution function of R
when ρ = 0. For example, if n = 8, then the number of degrees of freedom is 6
and P(R ≤ 0.7887) = 0.99. Also, if α = 0.10, then rα/2(6) = r0.05(6) = 0.6215. [See
Figure 9.6-1(a).]

It is also possible to obtain an approximate test of size α by using the fact that

W = 1
2

ln
1 + R
1 − R
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Figure 9.6-1 R pdfs when n = 8 and n = 14

has an approximate normal distribution with mean (1/2) ln[(1 + ρ)/(1 − ρ)] and
variance 1/(n − 3). We accept this statement without proof. (See Exercise 9.6-8.)
Thus, a test of H0: ρ = ρ0 can be based on the statistic

Z =
1
2

ln
1 + R
1 − R

− 1
2

ln
1 + ρ0

1 − ρ0√
1

n − 3

,

which has a distribution that is approximately N(0, 1) under H0. Notice that this
approximate size-α test can be used to test a null hypothesis specifying a nonzero
population correlation coefficient, whereas the exact size-α test may be used only
in conjunction with the null hypothesis H0: ρ = 0. Also, notice that the sample size
must be at least n = 4 for the approximate test, but n = 3 is sufficient for the
exact test.

Example
9.6-2

We would like to test the hypothesis H0: ρ = 0 against H1: ρ �= 0 at an α = 0.05
significance level. A random sample of size 18 from a bivariate normal distribution
yielded a sample correlation coefficient of r = 0.35. From Table XI in Appendix B,
since 0.35 < 0.4683, H0 is accepted (not rejected) at an α = 0.05 significance level.
Using the t distribution, we would reject H0 if |t| ≥ 2.120 = t0.025(16). Since

t = 0.35
√

16√
1 − (0.35)2

= 1.495,

H0 is not rejected. If we had used the normal approximation for Z, H0 would be
rejected if |z| ≥ 1.96. Because

z = (1/2) ln[(1 + 0.35)/(1 − 0.35)] − 0√
1/(18 − 3)

= 1.415,

H0 is not rejected.

To develop an approximate 100(1 − α)% confidence interval for ρ, we use the
normal approximation for the distribution of Z. Thus, we select a constant c = zα/2
from Table V in Appendix B so that
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P

(
−c ≤ (1/2) ln[(1 + R)/(1 − R)] − (1/2) ln[(1 + ρ)/(1 − ρ)]√

1/(n − 3)
≤ c

)
≈ 1 − α.

After several algebraic manipulations, this formula becomes

P

(
1 + R − (1 − R) exp(2c/

√
n − 3)

1 + R + (1 − R) exp(2c/
√

n − 3)
≤ ρ ≤

1 + R − (1 − R) exp(−2c/
√

n − 3)

1 + R + (1 − R) exp(−2c/
√

n − 3)

)
≈ 1 − α.

Example
9.6-3

Suppose that a random sample of size 12 from a bivariate normal distribution yielded
a correlation coefficient of r = 0.6. An approximate 95% confidence interval for ρ

would be⎡⎢⎢⎣1 + 0.6 − (1 − 0.6) exp
(

2(1.96)
3

)
1 + 0.6 + (1 − 0.6) exp

(
2(1.96)

3

) ,
1 + 0.6 − (1 − 0.6) exp

(−2(1.96)
3

)
1 + 0.6 + (1 − 0.6) exp

(−2(1.96)
3

)
⎤⎥⎥⎦

= [0.040, 0.873].

If the sample size had been n = 39 and r = 0.6, the approximate 95% confidence
interval would have been [0.351, 0.770].

Exercises

(In some of the exercises that follow, we must make
assumptions of normal distributions with the usual nota-
tion.)

9.6-1. For the data given in Exercise 6.5-3, use a t test
to test H0: β = 0 against H1: β > 0 at the α = 0.025
significance level.

9.6-2. For the data given in Exercise 6.5-4, use a t test
to test H0: β = 0 against H1: β > 0 at the α = 0.025
significance level.

9.6-3. A random sample of size n = 27 from a bivariate
normal distribution yielded a sample correlation coeffi-
cient of r = −0.45. Would the hypothesis H0: ρ = 0 be
rejected in favor of H1: ρ �= 0 at an α = 0.05 significance
level?

9.6-4. In bowling, it is often possible to score well in the
first game and then bowl poorly in the second game, or
vice versa. The following six pairs of numbers give the
scores of the first and second games bowled by the same
person on six consecutive Tuesday evenings:

Game 1: 170 190 200 183 187 178

Game 2: 197 178 150 176 205 153

Assume a bivariate normal distribution, and use these
scores to test the hypothesis H0: ρ = 0 against H1: ρ �= 0
at α = 0.10.

9.6-5. A random sample of size 28 from a bivariate nor-
mal distribution yielded a sample correlation coefficient
of r = 0.65. Find an approximate 90% confidence interval
for ρ.

9.6-6. By squaring the binomial expression [(Yi − Y) −
(SxY/s2

x)(xi − x)], show that

n∑
i=1

[(Yi − Y) − (SxY/s2
x)(xi − x)]2

=
n∑

i=1

(Yi − Y)2 − 2
(

SxY

s2
x

) n∑
i=1

(xi − x)(Yi − Y)

+S2
xY

s4
x

n∑
i=1

(xi − x)2

equals (n − 1)S2
Y(1 − R2), where X1 = x1, X2 = x2, . . . ,

Xn = xn. Hint: Replace SxY = ∑n
i=1(xi−x)(Yi−Y)/(n−1)

by RsxSY .
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9.6-7. To help determine whether gallinules selected their
mate on the basis of weight, 14 pairs of gallinules were
captured and weighed. Test the null hypothesis H0: ρ = 0
against a two-sided alternative at an α = 0.01 signifi-
cance level. Given that the male and female weights for
the n = 14 pairs of birds yielded a sample correlation
coefficient of r = −0.252, would H0 be rejected?

9.6-8. In sampling from a bivariate normal distribution,
it is true that the sample correlation coefficient R has an
approximate normal distribution N[ρ, (1 − ρ2)2/n] if the
sample size n is large. Since, for large n, R is close to ρ,
use two terms of the Taylor’s expansion of u(R) about ρ

and determine that function u(R) such that it has a vari-
ance which is (essentially) free of p. (The solution of this
exercise explains why the transformation (1/2) ln[(1+R)/
(1 − R)] was suggested.)

9.6-9. Show that when ρ = 0,

(a) The points of inflection for the graph of the pdf of R
are at r = ±1/

√
n − 5 for n ≥ 7.

(b) E(R) = 0.

(c) Var(R) = 1/(n − 1), n ≥ 3. Hint: Note that E(R2) =
E[1 − (1 − R2)].

9.6-10. In a college health fitness program, let X equal
the weight in kilograms of a female freshman at the begin-
ning of the program and let Y equal her change in weight
during the semester. We shall use the following data for
n = 16 observations of (x, y) to test the null hypothesis
H0: ρ = 0 against a two-sided alternative hypothesis:

(61.4, −3.2) (62.9, 1.4) (58.7, 1.3) (49.3, 0.6)

(71.3, 0.2) (81.5,−2.2) (60.8, 0.9) (50.2, 0.2)

(60.3, 2.0) (54.6, 0.3) (51.1, 3.7) (53.3, 0.2)

(81.0, −0.5) (67.6, −0.8) (71.4, −0.1) (72.1, −0.1)

(a) What is the conclusion if α = 0.10?

(b) What is the conclusion if α = 0.05?

9.6-11. Let X and Y have a bivariate normal distribution
with correlation coefficient ρ. To test H0: ρ = 0 against
H1: ρ �= 0, a random sample of n pairs of observations
is selected. Suppose that the sample correlation coeffi-
cient is r = 0.68. Using a significance level of α = 0.05,
find the smallest value of the sample size n so that H0 is
rejected.

9.6-12. In Exercise 6.5-5, data are given for horsepower,
the time it takes a car to go from 0 to 60, and the weight
in pounds of a car, for 14 cars. Those data are repeated
here:

Horsepower 0–60 Weight Horsepower 0–60 Weight

230 8.1 3516 282 6.2 3627

225 7.8 3690 300 6.4 3892

375 4.7 2976 220 7.7 3377

322 6.6 4215 250 7.0 3625

190 8.4 3761 315 5.3 3230

150 8.4 2940 200 6.2 2657

178 7.2 2818 300 5.5 3518

(a) Let ρ be the correlation coefficient of horsepower and
weight. Test H0: ρ = 0 against H1: ρ �= 0.

(b) Let ρ be the correlation coefficient of horsepower and
“0–60.” Test H0: ρ = 0 against H1: ρ < 0.

(c) Let ρ be the correlation coefficient of weight and
“0–60.” Test H0: ρ = 0 against H1: ρ �= 0.

9.7* STATISTICAL QUALITY CONTROL
Statistical methods can be used in many scientific fields, such as medical research,
engineering, chemistry, and psychology. Often, it is necessary to compare two ways
of doing something—say, the old way and a possible new way. We collect data on
each way, quite possibly in a laboratory situation, and try to decide whether the new
way is actually better than the old. Needless to say, it would be terrible to change to
the new way at great expense, only to find out that it is really not any better than
the old. That is, suppose the lab results indicate, by some statistical method, that the
new is seemingly better than the old. Can we actually extrapolate those outcomes in
the lab to the situations in the real world? Clearly, statisticians cannot make these
decisions, but they should be made by some professional who knows both statistics
and the specialty in question very well. The statistical analysis might provide helpful
guidelines, but we still need the expert to make the final decision.
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However, even before investigating possible changes in any process, it is
extremely important to determine exactly what the process in question is doing at
the present time. Often, people in charge of an organization do not understand the
capabilities of many of its processes. Simply measuring what is going on frequently
leads to improvements. In many cases, measurement is easy, such as determining
the diameter of a bolt, but sometimes it is extremely difficult, as in evaluating good
teaching or many other service activities. But if at all possible, we encourage those
involved to begin to “listen” to their processes; that is, they should measure what
is going on in their organization. These measurements alone often are the begin-
ning of desirable improvements. While most of our remarks in this chapter concern
measurements made in manufacturing, service industries frequently find them just
as useful.

At one time, some manufacturing plants would make parts to be used in the
construction of some piece of equipment. Say a particular line in the plant, mak-
ing a certain part, might produce several hundreds of them each day. These items
would then be sent on to an inspection cage, where they would be checked for
goodness, often several days or even weeks later. Occasionally, the inspectors would
discover many defectives among the items made, say, two weeks ago. There was lit-
tle that could be done at that point except scrap or rework the defective parts, both
expensive outcomes.

In the 1920s, W. A. Shewhart, who was working for AT&T Bell Labs, recog-
nized that this was an undesirable situation and suggested that, with some suitable
frequency, a sample of these parts should be taken as they were being made.
If the sample indicated that the items were satisfactory, the manufacturing pro-
cess would continue. But if the sampled parts were not satisfactory, corrections
should be made then so that things became satisfactory. This idea led to what are
commonly called Shewhart control charts—the basis of what was called statistical
quality control in those early days; today it is often referred to as statistical process
control.

Shewhart control charts consist of calculated values of a statistic, say, x, plotted
in sequence. That is, in making products, every so often (each hour, each day, or each
week, depending upon how many items are being produced) a sample of size n of
them is taken, and they are measured, resulting in the observations x1, x2, . . . , xn.
The average x and the standard deviation s are computed. This is done k times, and
the k values of x and s are averaged, resulting in x and s, respectively; usually, k is
equal to some number between 10 and 30.

The central limit theorem states that if the true mean μ and standard deviation
σ of the process were known, then almost all of the x-values would plot between
μ−3σ/

√
n and μ+3σ/

√
n, unless the system has actually changed. However, suppose

we know neither μ nor σ , and thus μ is estimated by x and 3σ/
√

n by A3s, where x
and s are the respective means of the k observations of x and s, and where A3 is a
factor depending upon n that can be found in books on statistical quality control.
A few values of A3 (and some other constants that will be used later) are given in
Table 9.7-1 for typical values of n.

The estimates of μ±3σ/
√

n are called the upper control limit (UCL), x+A3s, and
the lower control limit (LCL), x − A3s, and x provides the estimate of the centerline.
A typical plot is given in Figure 9.7-1. Here, in the 13th sampling period, x is outside
the control limits, indicating that the process has changed and that some investiga-
tion and action are needed to correct this change, which seems like an upward shift
in the process.

Note that there is a control chart for the s values, too. From sampling distribution
theory, values of B3 and B4 have been determined and are given in Table 9.7-1, so
we know that almost all the s-values should be between B3s and B4s if there is no
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Table 9.7-1 Some constants used with control charts

n A3 B3 B4 A2 D3 D4

4 1.63 0 2.27 0.73 0 2.28

5 1.43 0 2.09 0.58 0 2.11

6 1.29 0.03 1.97 0.48 0 2.00

8 1.10 0.185 1.815 0.37 0.14 1.86

10 0.98 0.28 1.72 0.31 0.22 1.78

20 0.68 0.51 1.49 0.18 0.41 1.59

LCL

UCL

0.5

1.0

1.5

2.0

2 64 10 12 148

 x 

Figure 9.7-1 Typical control chart

change in the underlying distribution. So again, if an individual s-value is outside
these control limits, some action should be taken, as it seems as if there has been a
change in the variation of the underlying distribution.

Often, when these charts are first constructed after k = 10 to 30 sampling peri-
ods, many points fall outside the control limits. A team consisting of workers, the
manager of the process, the supervisor, an engineer, and even a statistician should
try to find the reasons that this has occurred, and the situation should be corrected.
After this is done and the points plot within the control limits, the process is “in
statistical control.” However, being in statistical control is not a guarantee of satis-
faction with the products. Since A3s is an estimate of 3σ/

√
n, it follows that

√
nA3s is

an estimate of 3σ , and with an underlying distribution close to a normal one, almost
all items would be between x ± √

nA3s. If these limits are too wide, then corrections
must be made again.

If the variation is under control (i.e., if x and s are within their control limits),
we say that the variations seen in x and s are due to common causes. If prod-
ucts made under such a system with these existing common causes are satisfactory,
then production continues. If either x or s, however, is outside the control limits,
that is an indication that some special causes are at work, and they must be cor-
rected. That is, a team should investigate the problem and some action should be
taken.
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Table 9.7-2 Console opening times

Group x1 x2 x3 x4 x5 x s R

1 1.2 1.8 1.7 1.3 1.4 1.480 0.259 0.60

2 1.5 1.2 1.0 1.0 1.8 1.300 0.346 0.80

3 0.9 1.6 1.0 1.0 1.0 1.100 0.283 0.70

4 1.3 0.9 0.9 1.2 1.0 1.060 0.182 0.40

5 0.7 0.8 0.9 0.6 0.8 0.760 0.114 0.30

6 1.2 0.9 1.1 1.0 1.0 1.040 0.104 0.30

7 1.1 0.9 1.1 1.0 1.4 1.100 0.187 0.50

8 1.4 0.9 0.9 1.1 1.0 1.060 0.207 0.50

9 1.3 1.4 1.1 1.5 1.6 1.380 0.192 0.50

10 1.6 1.5 1.4 1.3 1.5 1.460 0.114 0.30

x = 1.174 s = 0.200 R = 0.49

Example
9.7-1

A company produces a storage console. Twice a day, nine critical characteristics are
tested on five consoles that are selected randomly from the production line. One of
these characteristics is the time it takes the lower storage component door to open
completely. Table 9.7-2 lists the opening times in seconds for the consoles that were
tested during one week. Also included in the table are the sample means, the sample
standard deviations, and the ranges.

The upper control limit (UCL) and the lower control limit (LCL) for x are found
using A3 in Table 9.7-1 with n = 5 as follows:

UCL = x + A3s = 1.174 + 1.43(0.20) = 1.460

and

LCL = x − A3s = 1.174 − 1.43(0.20) = 0.888.

These control limits and the sample means are plotted on the x chart in Figure 9.7-2.
There should be some concern about the fifth sampling period; thus, there should be
an investigation to determine why that particular x is below the LCL.

The UCL and LCL for s are found using B3 and B4 in Table 9.7-1 with n = 5 as
follows:

UCL = B4s = 2.09(0.200) = 0.418

and

LCL = B3s = 0(0.200) = 0.
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Figure 9.7-2 The x chart and s chart
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Figure 9.7-3 Plot of 50 console opening times and R chart

These control limits and the sample standard deviations are plotted on the s chart in
Figure 9.7-2.

Almost all of the observations should lie between x ± √
n A3s; namely,

1.174 + √
5 (1.43)(0.20) = 1.814

and

1.174 − √
5 (1.43)(0.20) = 0.534.

This situation is illustrated in Figure 9.7-3, in which all 50 observations do fall within
these control limits.

In most books on statistical quality control, there is an alternative way of con-
structing the limits on an x chart. For each sample, we compute the range, R, which is
the absolute value of the difference of the extremes of the sample. This computation
is much easier than that for calculating s. After k samples are taken, we compute
the average of these R-values, obtaining R as well as x. The statistic A2 R serves
as an estimate of 3σ/

√
n, where A2 is found in Table 9.7-1. Thus, the estimates of

μ ± 3σ/
√

n, namely, x ± A2 R, can be used as the UCL and LCL of an x chart.
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In addition,
√

nA2 R is an estimate of 3σ ; so, with an underlying distribution
that is close to a normal one, we find that almost all observations are within the
limits x ± √

nA2 R.
Moreover, an R chart can be constructed with centerline R and control limits

equal to D3R and D4R, where D3 and D4 are given in Table 9.7-1 and were deter-
mined so that almost all R-values should be between the control limits if there is no
change in the underlying distribution. Thus, a value of R falling outside those lim-
its would indicate a change in the spread of the underlying distribution, and some
corrective action should be considered.

The use of R, rather than s, is illustrated in the next example.

Example
9.7-2

Using the data in Example 9.7-1, we compute UCL and LCL for an x chart. We use
x ± A2 R as follows:

UCL = x + A2 R = 1.174 + 0.58(0.49) = 1.458

and

LCL = x − A2 R = 1.174 − 0.58(0.49) = 0.890.

Note that these values are very close to the limits that we found for the x chart in
Figure 9.7-2 using x ± A3s. In addition, almost all of the observations should lie
within the limits x + √

nA2 R, which are

UCL = 1.174 + √
5 (0.58)(0.49) = 1.809

and

LCL = 1.174 − √
5 (0.58)(0.49) = 0.539.

Note that these are almost the same as the limits found in Example 9.7-1 and plotted
in Figure 9.7-3.

An R chart can be constructed with centerline R = 0.49 and control limits
given by

UCL = D4R = 2.11(0.49) = 1.034

and

LCL = D3R = 0(0.49) = 0.

Figure 9.7-3 illustrates this control chart for the range, and we see that its pattern is
similar to that of the s chart in Figure 9.7-2.

There are two other Shewhart control charts: the p and c charts. The central
limit theorem, which provided a justification for the three-sigma limits in the x
chart, also justifies the control limits in the p chart. Suppose the number of defec-
tives among n items that are selected randomly—say, D—has a binomial distribution
b(n, p). Then the limits p±3

√
p(1 − p)/n should include almost all of the D/n-values.
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However, p must be approximated by observing k values of D—say, D1, D2, . . . , Dk—
and computing what is called p in the statistical quality control literature,
namely,

p = D1 + D2 + · · · + Dk

kn
.

Thus, the LCL and UCL for the fraction defective, D/n, are respectively given by

LCL = p − 3
√

p(1 − p)/n

and

UCL = p + 3
√

p(1 − p)/n.

If the process is in control, almost all D/n-values are between the LCL and UCL.
Still, this may not be satisfactory and improvements might be needed to decrease
p. If it is satisfactory, however, let the process continue under these common causes
of variation until a point, D/n, outside the control limits would indicate that some
special cause has changed the variation. [Incidentally, if D/n is below the LCL, this
might very well indicate that some type of change for the better has been made, and
we want to find out why. In general, outlying statistics can often suggest that good
(as well as bad) breakthroughs have been made.]

The next example gives the results of a simple experiment that you can easily
duplicate.

Example
9.7-3

Let Di equal the number of yellow candies in a 1.69-ounce bag. Because the number
of pieces of candy varies slightly from bag to bag, we shall use an average value for
n when we construct the control limits. Table 9.7-3 lists, for 20 packages, the number
of pieces of candy in the package, the number of yellow ones, and the proportion of
yellow ones.

For these data,

20∑
i=1

ni = 1124 and
20∑

i=1

Di = 219.

It follows that

p = 219
1124

= 0.195 and n = 1124
20

≈ 56.

Thus, the LCL and UCL are respectively given by

LCL = p − 3
√

p(1 − p)/56 = 0.195 − 3
√

0.195(0.805)/56 = 0.036

and

UCL = p + 3
√

p(1 − p)/56 = 0.195 + 3
√

0.195(0.805)/56 = 0.354.

The control chart for p is depicted in Figure 9.7-4. (For your information the “true”
value for p is 0.20.)

Consider the following explanation of the c chart: Suppose the number of
flaws, say, C, on some product has a Poisson distribution with parameter λ. If λ is
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Table 9.7-3 Data on yellow candies

Package ni Di Di/ni Package ni Di Di/ni

1 56 8 0.14 11 57 10 0.18

2 55 13 0.24 12 59 8 0.14

3 58 12 0.21 13 54 10 0.19

4 56 13 0.23 14 55 11 0.20

5 57 14 0.25 15 56 12 0.21

6 54 5 0.09 16 57 11 0.19

7 56 14 0.25 17 54 6 0.11

8 57 15 0.26 18 58 7 0.12

9 54 11 0.20 19 58 12 0.21

10 55 13 0.24 20 58 14 0.24

LCL

UCL
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0.4

5 10 15 20

 p 

Figure 9.7-4 The p chart

sufficiently large, as in Example 5.7-5, we consider approximating the discrete
Poisson distribution with the continuous N(λ, λ) distribution. Thus, the interval from
λ − 3

√
λ to λ + 3

√
λ contains virtually all of the C-values. Since λ is unknown, how-

ever, it must be approximated by c, the average of the k values, c1, c2, . . . , ck. Hence
the two control limits for C are computed as

LCL = c − 3
√

c and UCL = c + 3
√

c.

The remarks made about the x and p charts apply to the c chart as well, but we must
remember that each c-value is the number of flaws on one manufactured item, not
an average x or a fraction defective D/n.
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Exercises

9.7-1. It is important to control the viscosity of liquid
dishwasher soap so that it flows out of the container but
does not run out too rapidly. Thus, samples are taken
randomly throughout the day and the viscosity is mea-
sured. Use the following 20 sets of 5 observations for this
exercise:

Observations x s R

158 147 158 159 169 158.20 7.79 22

151 166 151 143 169 156.00 11.05 26

153 174 151 164 185 165.40 14.33 34

168 140 180 176 154 163.60 16.52 40

160 187 145 164 158 162.80 15.29 42

169 153 149 144 157 154.40 9.48 25

156 183 157 140 162 159.60 15.47 43

158 160 180 154 160 162.40 10.14 26

164 168 154 158 164 161.60 5.55 14

159 153 170 158 170 162.00 7.65 17

150 161 169 166 154 160.00 7.97 19

157 138 155 134 165 149.80 13.22 31

161 172 156 145 153 157.40 10.01 27

143 152 152 156 163 153.20 7.26 20

179 157 135 172 143 157.20 18.63 44

154 165 145 152 145 152.20 8.23 20

171 189 144 154 147 161.00 18.83 45

187 147 159 167 151 162.20 15.85 40

153 168 148 188 152 161.80 16.50 40

165 155 140 157 176 158.60 13.28 36

(a) Calculate the values of x, s, and R.

(b) Use the values of A3 and s to construct an x chart.

(c) Construct an s chart.

(d) Use the values of A2 and R to construct an x chart.

(e) Construct an R chart.

(f) Do the charts indicate that viscosity is in statistical
control?

9.7-2. It is necessary to control the percentage of solids
in a product, so samples are taken randomly throughout
the day and the percentage of solids is measured. Use the
following 20 sets of 5 observations for this exercise:

Observations x s R

69.8 71.3 65.6 66.3 70.1 68.62 2.51 5.7

71.9 69.6 71.9 71.1 71.7 71.24 0.97 2.3

71.9 69.8 66.8 68.3 64.4 68.24 2.86 7.5

64.2 65.1 63.7 66.2 61.9 64.22 1.61 4.3

66.1 62.9 66.9 67.3 63.3 65.30 2.06 4.4

63.4 67.2 67.4 65.5 66.2 65.94 1.61 4.0

67.5 67.3 66.9 66.5 65.5 66.74 0.79 2.0

63.9 64.6 62.3 66.2 67.2 64.84 1.92 4.9

66.0 69.8 69.7 71.0 69.8 69.26 1.90 5.0

66.0 70.3 65.5 67.0 66.8 67.12 1.88 4.8

67.6 68.6 66.5 66.2 70.4 67.86 1.71 4.2

68.1 64.3 65.2 68.0 65.1 66.14 1.78 3.8

64.5 66.6 65.2 69.3 62.0 65.52 2.69 7.3

67.1 68.3 64.0 64.9 68.2 66.50 1.96 4.3

67.1 63.8 71.4 67.5 63.7 66.70 3.17 7.7

60.7 63.5 62.9 67.0 69.6 64.74 3.53 8.9

71.0 68.6 68.1 67.4 71.7 69.36 1.88 4.3

69.5 61.5 63.7 66.3 68.6 65.92 3.34 8.0

66.7 75.2 79.0 75.3 79.2 75.08 5.07 12.5

77.3 67.2 69.3 67.9 65.6 69.46 4.58 11.7

(a) Calculate the values of x, s, and R.

(b) Use the values of A3 and s to construct an x chart.

(c) Construct an s chart.

(d) Use the values of A2 and R to construct an x chart.

(e) Construct an R chart.

(f) Do the charts indicate that the percentage of solids in
this product is in statistical control?

9.7-3. It is important to control the net weight of a pack-
aged item; thus, items are selected randomly throughout
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the day from the production line and their weights are
recorded. Use the following 20 sets of 5 weights (in grams)
for this exercise (note that a weight recorded here is the
actual weight minus 330):

Observations x s R

7.97 8.10 7.73 8.26 7.30 7.872 0.3740 0.96

8.11 7.26 7.99 7.88 8.88 8.024 0.5800 1.62

7.60 8.23 8.07 8.51 8.05 8.092 0.3309 0.91

8.44 4.35 4.33 4.48 3.89 5.098 1.8815 4.55

5.11 4.05 5.62 4.13 5.01 4.784 0.6750 1.57

4.79 5.25 5.19 5.23 3.97 4.886 0.5458 1.28

4.47 4.58 5.35 5.86 5.61 5.174 0.6205 1.39

5.82 4.51 5.38 5.01 5.54 5.252 0.5077 1.31

5.06 4.98 4.13 4.58 4.35 4.620 0.3993 0.93

4.74 3.77 5.05 4.03 4.29 4.376 0.5199 1.28

4.05 3.71 4.73 3.51 4.76 4.152 0.5748 1.25

3.94 5.72 5.07 5.09 4.61 4.886 0.6599 1.78

4.63 3.79 4.69 5.13 4.66 4.580 0.4867 1.34

4.30 4.07 4.39 4.63 4.47 4.372 0.2079 0.56

4.05 4.14 4.01 3.95 4.05 4.040 0.0693 0.19

4.20 4.50 5.32 4.42 5.24 4.736 0.5094 1.12

4.54 5.23 4.32 4.66 3.86 4.522 0.4999 1.37

5.02 4.10 5.08 4.94 5.18 4.864 0.4360 1.08

4.80 4.73 4.82 4.69 4.27 4.662 0.2253 0.55

4.55 4.76 4.45 4.85 4.02 4.526 0.3249 0.83

(a) Calculate the values of x, s, and R.

(b) Use the values of A3 and s to construct an x chart.

(c) Construct an s chart.

(d) Use the values of A2 and R to construct an x chart.

(e) Construct an R chart.

(f) Do the charts indicate that these fill weights are in
statistical control?

9.7-4. A company has been producing bolts that are
about p = 0.02 defective, and this is satisfactory. To mon-
itor the quality of the process, 100 bolts are selected at
random each hour and the number of defective bolts
counted. With p = 0.02, compute the UCL and LCL of
the p chart. Then suppose that, over the next 24 hours,
the following numbers of defective bolts are observed:

4 1 1 0 5 2 1 3 4 3 1 0 0 4 1 1 6 2 0 0 2 8 7 5

Would any action have been required during this time?

9.7-5. To give some indication of how the values in
Table 9.7-1 are calculated, values of A3 are found in this
exercise. Let X1, X2, . . . , Xn be a random sample of size n
from the normal distribution N(μ, σ 2). Let S2 equal the
sample variance of this random sample.

(a) Use the fact that Y = (n − 1)S2/σ 2 has a distribution
that is χ2(n−1) to show that E[S2] = σ 2.

(b) Using the χ2(n−1) pdf, find the value of E(
√

Y).

(c) Show that

E
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√
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2
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2
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(d) Verify that

3√
n

⎡⎢⎢⎣
√
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(
n − 1

2

)
√

2 �
(n

2

)
⎤⎥⎥⎦ = A3,

found in Table 9.7-1 for n = 5 and n = 6. Thus, A3 s
approximates 3σ/

√
n.

9.7-6. In a woolen mill, 100-yard pieces are inspected. In
the last 20 observations, the following numbers of flaws
were found:

2 4 0 1 0 3 4 1 1 2 4 0 0 1 0 3 2 3 5 0

(a) Compute the control limits of the c chart and draw
this control chart.

(b) Is the process in statistical control?

9.7-7. In the past, n = 50 fuses are tested each hour and
p = 0.03 have been found defective. Calculate the UCL
and LCL. After a production error, say the true p shifts to
p = 0.05.

(a) What is the probability that the next observation
exceeds the UCL?

(b) What is the probability that at least one of the next
five observations exceeds the UCL? Hint: Assume
independence and compute the probability that none
of the next five observations exceeds the UCL.

9.7-8. Snee (see References) has measured the thickness
of the “ears” of paint cans. (The “ear” of a paint can is the
tab that secures the lid of the the can.) At periodic inter-
vals, samples of five paint cans are taken from a hopper
that collects the production from two machines, and the
thickness of each ear is measured. The results (in inches
× 1000) of 30 such samples are as follows:
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Observations x s R

29 36 39 34 34 34.4 3.64692 10

29 29 28 32 31 29.8 1.64317 4

34 34 39 38 37 36.4 2.30217 5

35 37 33 38 41 36.8 3.03315 8

30 29 31 38 29 31.4 3.78153 9

34 31 37 39 36 35.4 3.04959 8

30 35 33 40 36 34.8 3.70135 10

28 28 31 34 30 30.2 2.48998 6

32 36 38 38 35 35.8 2.48998 6

35 30 37 35 31 33.6 2.96648 7

35 30 35 38 35 34.6 2.88097 8

38 34 35 35 31 34.6 2.50998 7

34 35 33 30 34 33.2 1.92354 5

40 35 34 33 35 35.4 2.70185 7

34 35 38 35 30 34.4 2.88097 8

35 30 35 29 37 33.2 3.49285 8

40 31 38 35 31 35.0 4.06202 9

35 36 30 33 32 33.2 2.38747 6

35 34 35 30 36 34.0 2.34521 6

35 35 31 38 36 35.0 2.54951 7

32 36 36 32 36 34.4 2.19089 4

36 37 32 34 34 34.6 1.94936 5

29 34 33 37 35 33.6 2.96648 8

36 36 35 37 37 36.2 0.83666 2

36 30 35 33 31 33.0 2.54951 6

35 30 29 38 35 33.4 3.78153 9

Observations x s R

35 36 30 34 36 34.2 2.48998 6

35 30 36 29 35 33.0 3.24037 7

38 36 35 31 31 34.2 3.11448 7

30 34 40 28 30 32.4 4.77493 12

(a) Calculate the values of x, s, and R.

(b) Use the values of A3 and s to construct an x chart.

(c) Construct an s chart.

(d) Use the values of A2 and R to construct an x chart.

(e) Construct an R chart.

(f) Do the charts indicate that these fill weights are in
statistical control?

9.7-9. Ledolter and Hogg (see References) report that,
in the production of stainless steel pipes, the number of
defects per 100 feet should be controlled. From 15 ran-
domly selected pipes of length 100 feet, the following data
on the number of defects were observed:

6 10 8 1 7 9 7 4 5 10 3 4 9 8 5

(a) Compute the control limits of the c chart and draw
this control chart.

(b) Is the process in statistical control?

9.7-10. Suppose we find that the number of blemishes in
50-foot tin strips averages about c = 1.4. Calculate the
control limits. Say the process has gone out of control and
this average has increased to 3.

(a) What is the probability that the next observation will
exceed the UCL?

(b) What is the probability that at least 1 of the next 10
observations will exceed the UCL?

HISTORICAL COMMENTS Chi-square tests were the invention of Karl Pearson,
except that he had it wrong in the case in which parameters are estimated. When
R. A. Fisher was a brash young man, he told his senior, Pearson, that he should
reduce the number of degrees of freedom of the chi-square distribution by 1 for
every parameter that was estimated. Pearson never believed this (of course, Fisher
was correct), and, as editor of the very prestigious journal Biometrika, Pearson
blocked Fisher in his later professional life from publishing in that journal. Fisher
was disappointed, and the two men battled during their lifetimes; however, later
Fisher saw this conflict to be to his advantage, as it made him consider applied
journals in which to publish, and thus he became a better, more well-rounded
scientist.
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Another important item in this chapter is the analysis of variance (ANOVA).
This is just the beginning of what is called the design of experiments, developed
by R. A. Fisher. In our simple cases in this section, he shows how to test for the
best levels of factors in the one-factor and two-factor cases. We study a few impor-
tant generalizations in Section 9.5. The analysis of designed experiments was a huge
contribution by Fisher.

Quality improvement made a substantial change in manufacturing beginning in
the 1920s, with Walter A. Shewhart’s control charts. In fairness, it should be noted
that the British started a similar program about the same time. Statistical quality
control, as described in Section 9.7, really had a huge influence during World War II,
with many universities giving short courses in the subject. These courses continued
after the war, but the development of the importance of total quality improvement
lagged behind. W. Edwards Deming complained that the Japanese used his quality
ideas beginning in the 1950s, but the Americans did not adopt them until 1980. That
year NBC televised a program entitled If Japan Can, Why Can’t We?, and Deming
was the “star” of that broadcast. He related that the next day his phone “started
ringing off the hook.” Various companies requested that he spend one day with them
to get them started on the right path. According to Deming, they all wanted “instant
pudding,” and he noted that he had asked the Japanese to give him five years to
make the improvements he pioneered. Actually, using his philosophy, many of these
companies did achieve substantial results in quality sooner than that. However, it
was after the NBC program that Deming started his famous four-day courses, and
he taught his last one in December of 1993, about 10 days before his death at the
age of 93.

Many of these quality efforts in the 1970s and 1980s used the name “Total
Quality Management” or, later, “Continuous Process Improvements.” However, it
was Motorola’s Six Sigma program, which started in the late 1980s and has continued
for over 20 years since then, that has had the biggest impact. In addition to Motorola,
GE, Allied, and a large number of companies have used this system. In our opinion,
Six Sigma is the leading development in the quality improvement effort.



Epilogue
Clearly, there is much more to applied and theoretical statistics than can be studied
in one book. As mentioned in the Prologue, there is a huge demand for statistical sci-
entists in many fields to make sense out of the increasing volumes of data. Statistics
is needed to turn quality data into useful information upon which decisions can be
made. The striking thing about any data set is that there is variation; all the data
points simply do not lie on the pattern. It is the statistician’s job to find that pattern
and describe the variation about it. Done properly, this clearly helps the decision
maker significantly.

One observation about variation should be noted before any major adjustments
or decisions are made. Frequently, persons in charge jump at conclusions too quickly;
that is, major decisions are often made after too few observations. For illustration, we
know that if X1, X2, X3 are independent and identically distributed continuous-type
observations, then

P(X1 < X2 < X3) = 1
3!= 1

6
.

Yet if this occurred and these observations were taken on sales, say, and plotted in
time sequence, the fact that these three points were “going up" might suggest to
management that “the company is on a roll." In some cases, only two increasing
points might cause this reaction. If there is no change in the system, two or three
increasing points have respective probabilities of 1/2 and 1/6, and those probabili-
ties do not warrant that sort of reaction. If, on the other hand, we observe four or
five such points, with respective probabilities of 1/24 and 1/120, then an appropriate
reaction is in order.

An interesting question to ask is why statisticians treat 1/20 = 0.05 as the value
at which the probability of an event is considered small and often suggests some type
of action. Possibly it was because Ronald A. Fisher suggested that 1 out of 20 seemed
small enough. Obviously the value of 0.05 is not written in stone, but statisticians
seem to look for differences of two or three standard deviations as a guide for action.
Since many estimators have approximate normal distributions, such differences do
have small probabilities.

For illustration, suppose a candidate believes that he or she has at least 50%
of the votes. Yet in a poll of n = 400, only 160 favor that candidate; thus, the
standardized value

160 − 400(1/2)√
400(1/2)(1/2)

= −4

suggests that the candidate does not, in fact, have 50% of the votes. Depending upon
the financial situation, the candidate must change the approach and/or work harder,
or possibly even consider dropping from the race. However, we note that this simple
statistical analysis can be a guide in the decision process.

Another example is provided by W. A. Shewhart’s efforts at Bell Telephone
Laboratories in the 1920s in his quality improvement through statistical methods.
He conceived of the idea of sampling occasionally during the manufacturing process
rather than waiting until the items arrived at an inspection center at the end of the
line. To monitor the need for possible adjustments, certain statistics, like X and S,
were taken. If one of these had an unusual value, corrective action was taken before
too many more defective items were produced. If T is one of those statistics, an
unusual value of T was one that was outside the control limits μT ± 3σT , where the
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mean μT and the standard deviation σT of T would often be estimated from past
data coming from a satisfactory (in control) process.

While the three sigma limits have proved to be an effective guide, many compa-
nies are now considering six sigma limits. The Six Sigma program was first started by
Motorola, and it has its statistical underpinnings in the following. There are specifi-
cations in manufacturing items that are usually set by the engineers—or possibly by
customers. These are usually given in terms of a target value and upper and lower
specification limits, USL and LSL, respectively. The mean μ of the values resulting
from the process is hopefully close to the target value. The “specs" are six standard
deviations, 6σ , away from the target, where σ is the standard deviation associated
with the process. However, the mean μ is often dynamic, and these Six Sigma com-
panies try to keep it at least 4.5σ from the closest spec. If the values of the items
are distributed normally and nearest spec is 4.5σ from μ, there are only 3.4 defec-
tives per million. This is the goal of the Six Sigma companies, and they use many of
Deming’s ideas in their attempts to achieve this very worthwhile goal.

While an understanding of quality improvement ideas and basic statistical meth-
ods, like those in Section 9.7, is extremely important to the Six Sigma programs,
possibly the major factor is the attitude of the CEOs and other important adminis-
trators. There were many total quality management programs in the 1980s, but they
were not as successful as Six Sigma, for now each CEO is demanding, “Show me
the money!" That is, companies hire a Six Sigma expert to come in for four one-
week periods, about one month apart, for a fee of about $15,000 per person. If they
have 20 participants, this cost is $300,000 plus the four weeks of time “lost" to the
work process by each trainee. That is a great deal of money. However, each of these
individuals (sometimes a pair) has a project associated with some process that has
not been very efficient. They work on these projects using statistical methods dur-
ing the “off months" and report to the Six Sigma expert during the training weeks
to get advice. Often these projects, if successful, will save millions of dollars for a
company, and the expenses are well worth the benefits. As a matter of fact, if a par-
ticipant’s project saves the company at least $1 million, he or she earns a “Six Sigma
Black Belt." So the CEO does see the money saved, and thus the bottom line looks
extremely good to him or her.

While the reader has now studied enough statistics to appreciate the importance
of understanding variation, there are many more useful statistical techniques to be
studied if the reader is so inclined. For example, there are courses in regression and
time series in which we learn how to predict future observations. Or a study of design
of experiments can help an investigator select the most efficient levels of the vari-
ous factors. After all, if we have 10 factors and we run each at only two levels, we
have created 210 = 1024 runs. Can we perform only a fraction of these runs without
losing too much information? Additional study of multivariate analysis can lead to
interesting problems in classification. Say a doctor takes several measurements on
a patient and then classifies the patent’s disease as one of many possible diseases.
There are errors of misclassification, and statisticians can help reduce the probabil-
ities of those errors. Doctors—and statisticians—can make mistakes, and second or
third opinions should be asked for if there is some doubt.

As mentioned in the Prologue, the computer has opened the door to a wide
variety of new statistical techniques; and researchers, computer scientists, and statis-
ticians are working together to reduce huge amounts of data into nuggets of quality
information on which important decisions can be made. Statistics is an exciting field
that finds many useful applications in the social, health, and physical sciences. The
authors have found statistics to be a great profession; we hope a few of you find it
that way too. In any case, we hope that statistical thinking will make you more aware
of the need for understanding variation, which can have a great influence on your
daily life.
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Table I Binomial Coefficients (
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2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

11 1 11 55 165 330 462 462 330 165 55 11 1

12 1 12 66 220 495 792 924 792 495 220 66 12 1

13 1 13 78 286 715 1,287 1,716 1,716 1,287 715 286 78 13 1

14 1 14 91 364 1,001 2,002 3,003 3,432 3,003 2,002 1,001 364 91 14

15 1 15 105 455 1,365 3,003 5,005 6,435 6,435 5,005 3,003 1,365 455 105

16 1 16 120 560 1,820 4,368 8,008 11,440 12,870 11,440 8,008 4,368 1,820 560

17 1 17 136 680 2,380 6,188 12,376 19,448 24,310 24,310 19,448 12,376 6,188 2,380

18 1 18 153 816 3,060 8,568 18,564 31,824 43,758 48,620 43,758 31,824 18,564 8,568

19 1 19 171 969 3,876 11,628 27,132 50,388 75,582 92,378 92,378 75,582 50,388 27,132

20 1 20 190 1,140 4,845 15,504 38,760 77,520 125,970 167,960 184,756 167,960 125,970 77,520

21 1 21 210 1,330 5,985 20,349 54,264 116,280 203,490 293,930 352,716 352,716 293,930 203,490

22 1 22 231 1,540 7,315 26,334 74,613 170,544 319,770 497,420 646,646 705,432 646,646 497,420

23 1 23 253 1,771 8,855 33,649 100,947 245,157 490,314 817,190 1,144,066 1,352,078 1,352,078 1,144,066

24 1 24 276 2,024 10,626 42,504 134,596 346,104 735,471 1,307,504 1,961,256 2,496,144 2,704,156 2,496,144

25 1 25 300 2,300 12,650 53,130 177,100 480,700 1,081,575 2,042,975 3,268,760 4,457,400 5,200,300 5,200,300

26 1 26 325 2,600 14,950 65,780 230,230 657,800 1,562,275 3,124,550 5,311,735 7,726,160 9,657,700 10,400,600

For r > 13 you may use the identity
(

n
r

)
=

(
n

n − r

)
.



Table II The Binomial Distribution

x

f(x)

F(x)
b(8, 0.35)

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8 x

b(8, 0.35)

0.5

1.0

0 2 4 6 8

F(x) = P(X ≤ x) =
x∑

k=0

n!
k!(n − k)! pk(1 − p)n−k

p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4225 0.3600 0.3025 0.2500

1 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8775 0.8400 0.7975 0.7500

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2746 0.2160 0.1664 0.1250

1 0.9928 0.9720 0.9392 0.8960 0.8438 0.7840 0.7182 0.6480 0.5748 0.5000

2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9571 0.9360 0.9089 0.8750

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1785 0.1296 0.0915 0.0625

1 0.9860 0.9477 0.8905 0.8192 0.7383 0.6517 0.5630 0.4752 0.3910 0.3125

2 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875

3 1.0000 0.9999 0.9995 0.9984 0.9961 0.9919 0.9850 0.9744 0.9590 0.9375

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1160 0.0778 0.0503 0.0312

1 0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.3370 0.2562 0.1875

2 0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931 0.5000

3 1.0000 0.9995 0.9978 0.9933 0.9844 0.9692 0.9460 0.9130 0.8688 0.8125

4 1.0000 1.0000 0.9999 0.9997 0.9990 0.9976 0.9947 0.9898 0.9815 0.9688

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0754 0.0467 0.0277 0.0156

1 0.9672 0.8857 0.7765 0.6553 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094

2 0.9978 0.9842 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438

3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.8826 0.8208 0.7447 0.6562

4 1.0000 0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.9590 0.9308 0.8906

5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078

1 0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625



Table II continued

p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266

3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.8002 0.7102 0.6083 0.5000

4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734

5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9910 0.9812 0.9643 0.9375

6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9984 0.9963 0.9922

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

8 0 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039

1 0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.0632 0.0352

2 0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445

3 0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.4770 0.3633

4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367

5 1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555

6 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648

7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9983 0.9961

8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0207 0.0101 0.0046 0.0020

1 0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.1211 0.0705 0.0385 0.0195

2 0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.0898

3 0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539

4 1.0000 0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5000

5 1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461

6 1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.9502 0.9102

7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9986 0.9962 0.9909 0.9805

8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010

1 0.9139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0233 0.0107

2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547

3 0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1719

4 0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770

5 1.0000 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230

6 1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281

7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453

8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9893

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 0.5688 0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0005

1 0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 0.0059

2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0652 0.0327

3 0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133

4 0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744

5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5000

6 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256



Table II continued

p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

7 1.0000 1.0000 1.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867

8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.9941 0.9852 0.9673

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9978 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002

1 0.8816 0.6590 0.4435 0.2749 0.1584 0.0850 0.0424 0.0196 0.0083 0.0032

2 0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.0834 0.0421 0.0193

3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730

4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938

5 1.0000 0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872

6 1.0000 0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128

7 1.0000 1.0000 0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062

8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.9270

9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9968

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.5133 0.2542 0.1209 0.0550 0.0238 0.0097 0.0037 0.0013 0.0004 0.0001

1 0.8646 0.6213 0.3983 0.2336 0.1267 0.0637 0.0296 0.0126 0.0049 0.0017

2 0.9755 0.8661 0.6920 0.5017 0.3326 0.2025 0.1132 0.0579 0.0269 0.0112

3 0.9969 0.9658 0.8820 0.7473 0.5843 0.4206 0.2783 0.1686 0.0929 0.0461

4 0.9997 0.9935 0.9658 0.9009 0.7940 0.6543 0.5005 0.3530 0.2279 0.1334

5 1.0000 0.9991 0.9924 0.9700 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905

6 1.0000 0.9999 0.9987 0.9930 0.9757 0.9376 0.8705 0.7712 0.6437 0.5000

7 1.0000 1.0000 0.9998 0.9988 0.9944 0.9818 0,9538 0.9023 0.8212 0.7095

8 1.0000 1.0000 1.0000 0.9998 0.9990 0.9960 0.9874 0.9679 0.9302 0.8666

9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9975 0.9922 0.9797 0.9539

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9959 0.9888

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.0024 0.0008 0.0002 0.0001

1 0.8470 0.5846 0.3567 0.1979 0.1010 0.0475 0.0205 0.0081 0.0029 0.0009

2 0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.0839 0.0398 0.0170 0.0065

3 0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.0632 0.0287

4 0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.0898

5 1.0000 0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.2120

6 1.0000 0.9998 0.9978 0.9884 0.9617 0.9067 0.8164 0.6925 0.5461 0.3953

7 1.0000 1.0000 0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6047

8 1.0000 1.0000 1.0000 0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.7880

9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9983 0.9940 0.9825 0.9574 0.9102

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989 0.9961 0.9886 0.9713



Table II continued

p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9978 0.9935

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 0 0.4633 0.2059 0.0874 0.0352 0.0134 0.0047 0.0016 0.0005 0.0001 0.0000

1 0.8290 0.5490 0.3186 0.1671 0.0802 0.0353 0.0142 0.0052 0.0017 0.0005

2 0.9638 0.8159 0.6042 0.3980 0.2361 0.1268 0.0617 0.0271 0.0107 0.0037

3 0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.0424 0.0176

4 0.9994 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.0592

5 0.9999 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509

6 1.0000 0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036

7 1.0000 1.0000 0.9994 0.9958 0.9827 0.9500 0.8868 0.7869 0.6535 0.5000

8 1.0000 1.0000 0.9999 0.9992 0.9958 0.9848 0.9578 0.9050 0.8182 0.6964

9 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9972 0.9907 0.9745 0.9408

11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9937 0.9824

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9987 0.9989 0.9963

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 0.4401 0.1853 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000

1 0.8108 0.5147 0.2839 0.1407 0.0635 0.0261 0.0098 0.0033 0.0010 0.0003

2 0.9571 0.7892 0.5614 0.3518 0.1971 0.0994 0.0451 0.0183 0.0066 0.0021

3 0.9930 0.9316 0.7899 0.5981 0.4050 0.2459 0.1339 0,0651 0.0281 0.0106

4 0.9991 0.9830 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.0853 0.0384

5 0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.4900 0.3288 0.1976 0.1051

6 1.0000 0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.3660 0.2272

7 1.0000 0.9999 0.9989 0.9930 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018

8 1.0000 1.0000 0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982

9 1.0000 1.0000 1.0000 0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728

10 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949

11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9851 0.9616

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000

1 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000

2 0.9245 0.6769 0.4049 0.2061 0.0913 0.0355 0.0121 0.0036 0.0009 0.0002

3 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049 0.0013

4 0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.0510 0.0189 0.0059



Table II continued

p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

5 0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.0553 0.0207

6 1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577

7 1.0000 0.9996 0.9941 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1316

8 1.0000 0.9999 0.9987 0.9900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517

9 1.0000 1.0000 0.9998 0.9974 0.9861 0.9520 0.8782 0.7553 0.5914 0.4119

10 1.0000 1.0000 1.0000 0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881

11 1.0000 1.0000 1.0000 0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483

12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9790 0.9420 0.8684

13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9935 0.9786 0.9423

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9936 0.9793

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9941

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987

17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998

18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 0 0.2774 0.0718 0.0172 0.0038 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000

1 0.6424 0.2712 0.0931 0.0274 0.0070 0.0016 0.0003 0.0001 0.0000 0.0000

2 0.8729 0.5371 0.2537 0.0982 0.0321 0.0090 0.0021 0.0004 0.0001 0.0000

3 0.9659 0.7636 0.4711 0.2340 0.0962 0.0332 0.0097 0.0024 0.0005 0.0001

4 0.9928 0.9020 0.6821 0.4207 0.2137 0.0905 0.0320 0.0095 0.0023 0.0005

5 0.9988 0.9666 0.8385 0.6167 0.3783 0.1935 0.0826 0.0294 0.0086 0.0020

6 0.9998 0.9905 0.9305 0.7800 0.5611 0.3407 0.1734 0.0736 0.0258 0.0073

7 1.0000 0.9977 0.9745 0.8909 0.7265 0.5118 0.3061 0.1536 0.0639 0.0216

8 1.0000 0.9995 0.9920 0.9532 0.8506 0.6769 0.4668 0.2735 0.1340 0.0539

9 1.0000 0.9999 0.9979 0.9827 0.9287 0.8106 0.6303 0.4246 0.2424 0.1148

10 1.0000 1.0000 0.9995 0.9944 0.9703 0.9022 0.7712 0.5858 0.3843 0.2122

11 1.0000 1.0000 0.9999 0.9985 0.9893 0.9558 0.8746 0.7323 0.5426 0.3450

12 1.0000 1.0000 1.0000 0.9996 0.9966 0.9825 0.9396 0.8462 0.6937 0.5000

13 1.0000 1.0000 1.0000 0.9999 0.9991 0.9940 0.9745 0.9222 0.8173 0.6550

14 1.0000 1.0000 1,0000 1.0000 0.9998 0.9982 0.9907 0.9656 0.9040 0.7878

15 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9971 0.9868 0.9560 0.8852

16 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9957 0.9826 0.9461

17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9988 0.9942 0.9784

18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9927

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9980

20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995

21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

23 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

24 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000



Table III The Poisson Distribution

Poisson, λ = 3.8

x

0.05

0.10

0.15

0.20

0

f(x)

2 4 6 8 10 12 x

Poisson, λ = 3.8

0.2

0.4

0.6

0.8

1.0

0

F(x)

2 4 6 8 10 12

F(x) = P(X ≤ x) =
x∑

k=0

λke−λ

k!

λ = E(X)

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.905 0.819 0.741 0.670 0.607 0.549 0.497 0.449 0.407 0.368
1 0.995 0.982 0.963 0.938 0.910 0.878 0.844 0.809 0.772 0.736
2 1.000 0.999 0.996 0.992 0.986 0.977 0.966 0.953 0.937 0.920
3 1.000 1.000 1.000 0.999 0.998 0.997 0.994 0.991 0.987 0.981
4 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.996

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 0.333 0.301 0.273 0.247 0.223 0.202 0.183 0.165 0.150 0.135
1 0.699 0.663 0.627 0.592 0.558 0.525 0.493 0.463 0.434 0.406
2 0.900 0.879 0.857 0.833 0.809 0.783 0.757 0.731 0.704 0.677
3 0.974 0.966 0.957 0.946 0.934 0.921 0.907 0.891 0.875 0.857
4 0.995 0.992 0.989 0.986 0.981 0.976 0.970 0.964 0.956 0.947

5 0.999 0.998 0.998 0.997 0.996 0.994 0.992 0.990 0.987 0.983
6 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.997 0.995
7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

x 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

0 0.111 0.091 0.074 0.061 0.050 0.041 0.033 0.027 0.022 0.018
1 0.355 0.308 0.267 0.231 0.199 0.171 0.147 0.126 0.107 0.092
2 0.623 0.570 0.518 0.469 0.423 0.380 0.340 0.303 0.269 0.238
3 0.819 0.779 0.736 0.692 0.647 0.603 0.558 0.515 0.473 0.433
4 0.928 0.904 0.877 0.848 0.815 0.781 0.744 0.706 0.668 0.629

5 0.975 0.964 0.951 0.935 0.916 0.895 0.871 0.844 0.816 0.785
6 0.993 0.988 0.983 0.976 0.966 0.955 0.942 0.927 0.909 0.889
7 0.998 0.997 0.995 0.992 0.988 0.983 0.977 0.969 0.960 0.949
8 1.000 0.999 0.999 0.998 0.996 0.994 0.992 0.988 0.984 0.979
9 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.994 0.992

10 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997
11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table III continued

x 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

0 0.015 0.012 0.010 0.008 0.007 0.006 0.005 0.004 0.003 0.002
1 0.078 0.066 0.056 0.048 0.040 0.034 0.029 0.024 0.021 0.017
2 0.210 0.185 0.163 0.143 0.125 0.109 0.095 0.082 0.072 0.062
3 0.395 0.359 0.326 0.294 0.265 0.238 0.213 0.191 0.170 0.151
4 0.590 0.551 0.513 0.476 0.440 0.406 0.373 0.342 0.313 0.285

5 0.753 0.720 0.686 0.651 0.616 0.581 0.546 0.512 0.478 0.446
6 0.867 0.844 0.818 0.791 0.762 0.732 0.702 0.670 0.638 0.606
7 0.936 0.921 0.905 0.887 0.867 0.845 0.822 0.797 0.771 0.744
8 0.972 0.964 0.955 0.944 0.932 0.918 0.903 0.886 0.867 0.847
9 0.989 0.985 0.980 0.975 0.968 0.960 0.951 0.941 0.929 0.916

10 0.996 0.994 0.992 0.990 0.986 0.982 0.977 0.972 0.965 0.957
11 0.999 0.998 0.997 0.996 0.995 0.993 0.990 0.988 0.984 0.980
12 1.000 0.999 0.999 0.999 0.998 0.997 0.996 0.995 0.993 0.991
13 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.996
14 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

x 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

0 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.011 0.007 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000
2 0.043 0.030 0.020 0.014 0.009 0.006 0.004 0.003 0.002 0.001
3 0.112 0.082 0.059 0.042 0.030 0.021 0.015 0.010 0.007 0.005
4 0.224 0.173 0.132 0.100 0.074 0.055 0.040 0.029 0.021 0.015

5 0.369 0.301 0.241 0.191 0.150 0.116 0.089 0.067 0.050 0.038
6 0.527 0.450 0.378 0.313 0.256 0.207 0.165 0.130 0.102 0.079
7 0.673 0.599 0.525 0.453 0.386 0.324 0.269 0.220 0.179 0.143
8 0.792 0.729 0.662 0.593 0.523 0.456 0.392 0.333 0.279 0.232
9 0.877 0.830 0.776 0.717 0.653 0.587 0.522 0.458 0.397 0.341

10 0.933 0.901 0.862 0.816 0.763 0.706 0.645 0.583 0.521 0.460
11 0.966 0.947 0.921 0.888 0.849 0.803 0.752 0.697 0.639 0.579
12 0.984 0.973 0.957 0.936 0.909 0.876 0.836 0.792 0.742 0.689
13 0.993 0.987 0.978 0.966 0.949 0.926 0.898 0.864 0.825 0.781
14 0.997 0.994 0.990 0.983 0.973 0.959 0.940 0.917 0.888 0.854

15 0.999 0.998 0.995 0.992 0.986 0.978 0.967 0.951 0.932 0.907
16 1.000 0.999 0.998 0.996 0.993 0.989 0.982 0.973 0.960 0.944
17 1.000 1.000 0.999 0.998 0.997 0.995 0.991 0.986 0.978 0.968
18 1.000 1.000 1.000 0.999 0.999 0.998 0.096 0.993 0.988 0.982
19 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.994 0.991

20 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.997 0.995
21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table III continued

x 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.003 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
4 0.011 0.008 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.000

5 0.028 0.020 0.015 0.011 0.008 0.006 0.004 0.003 0.002 0.001
6 0.060 0.046 0.035 0.026 0.019 0.014 0.010 0.008 0.006 0.004
7 0.114 0.090 0.070 0.054 0.041 0.032 0.024 0.018 0.013 0.010
8 0.191 0.155 0.125 0.100 0.079 0.062 0.048 0.037 0.029 0.022
9 0.289 0.242 0.201 0.166 0.135 0.109 0.088 0.070 0.055 0.043

10 0.402 0.347 0.297 0.252 0.211 0.176 0.145 0.118 0.096 0.077
11 0.520 0.462 0.406 0.353 0.304 0.260 0.220 0.185 0.154 0.127
12 0.633 0.576 0.519 0.463 0.409 0.358 0.311 0.268 0.228 0.193
13 0.733 0.682 0.629 0.573 0.518 0.464 0.413 0.363 0.317 0.275
14 0.815 0.772 0.725 0.675 0.623 0.570 0.518 0.466 0.415 0.368

15 0.878 0.844 0.806 0.764 0.718 0.669 0.619 0.568 0.517 0.467
16 0.924 0.899 0.869 0.835 0.798 0.756 0.711 0.664 0.615 0.566
17 0.954 0.937 0.916 0.890 0.861 0.827 0.790 0.749 0.705 0.659
18 0.974 0.963 0.948 0.930 0.908 0.883 0.853 0.819 0.782 0.742
19 0.986 0.979 0.969 0.957 0.942 0.923 0.901 0.875 0.846 0.812

20 0.992 0.988 0.983 0.975 0.965 0.952 0.936 0.917 0.894 0.868
21 0.996 0.994 0.991 0.986 0.980 0.971 0.960 0.947 0.930 0.911
22 0.999 0.997 0.995 0.992 0.989 0.983 0.976 0.967 0.956 0.942
23 0.999 0.999 0.998 0.996 0.994 0.991 0.986 0.981 0.973 0.963
24 1.000 0.999 0.999 0.998 0.997 0.995 0.992 0.989 0.984 0.978

25 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.994 0.991 0.987
26 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.995 0.993
27 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996
28 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998
29 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999

30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
31 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
32 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
34 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



Table IV The Chi-Square Distribution

χ2(8)
χ2(8)

χ2
α(8)x0

0.05

0.10

2

α

4 6 8 10 12 14 16 18 20 2 4 6 8 10 16 18 200

0.05

0.10

P(X ≤ x) =
∫ x

0

1

�(r/2)2r/2
wr/2−1e−w/2dw

P(X ≤ x)

0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990

r χ2
0.99(r) χ2

0.975(r) χ2
0.95(r) χ2

0.90(r) χ2
0.10(r) χ2

0.05(r) χ2
0.025(r) χ2

0.01(r)

1 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635
2 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210
3 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.34
4 0.297 0.484 0.711 1.064 7.779 9.488 11.14 13.28
5 0.554 0.831 1.145 1.610 9.236 11.07 12.83 15.09

6 0.872 1.237 1.635 2.204 10.64 12.59 14.45 16.81
7 1.239 1.690 2.167 2.833 12.02 14.07 16.01 18.48
8 1.646 2.180 2.733 3.490 13.36 15.51 17.54 20.09
9 2.088 2.700 3.325 4.168 14.68 16.92 19.02 21.67

10 2.558 3.247 3.940 4.865 15.99 18.31 20.48 23.21

11 3.053 3.816 4.575 5.578 17.28 19.68 21.92 24.72
12 3.571 4.404 5.226 6.304 18.55 21.03 23.34 26.22
13 4.107 5.009 5.892 7.042 19.81 22.36 24.74 27.69
14 4.660 5.629 6.571 7.790 21.06 23.68 26.12 29.14
15 5.229 6.262 7.261 8.547 22.31 25.00 27.49 30.58

16 5.812 6.908 7.962 9.312 23.54 26.30 28.84 32.00
17 6.408 7.564 8.672 10.08 24.77 27.59 30.19 33.41
18 7.015 8.231 9.390 10.86 25.99 28.87 31.53 34.80
19 7.633 8.907 10.12 11.65 27.20 30.14 32.85 36.19
20 8.260 9.591 10.85 12.44 28.41 31.41 34.17 37.57

21 8.897 10.28 11.59 13.24 29.62 32.67 35.48 38.93
22 9.542 10.98 12.34 14.04 30.81 33.92 36.78 40.29
23 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64
24 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98
25 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31

26 12.20 13.84 15.38 17.29 35.56 38.88 41.92 45.64
27 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96
28 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28
29 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59
30 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89

40 22.16 24.43 26.51 29.05 51.80 55.76 59.34 63.69
50 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15
60 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38
70 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.4
80 53.34 57.15 60.39 64.28 96.58 101.9 106.6 112.3

This table is abridged and adapted from Table III in Biometrika Tables for Statisticians, edited by E.S.Pearson and H.O.Hartley.



Table Va The Standard Normal Distribution Function

Φ(z0)

z0

z

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

f(z)

P(Z ≤ z) = 
(z) =
∫ z

−∞
1√
2π

e−w2/2 dw


(−z) = 1 − 
(z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

α 0.400 0.300 0.200 0.100 0.050 0.025 0.020 0.010 0.005 0.001

zα 0.253 0.524 0.842 1.282 1.645 1.960 2.054 2.326 2.576 3.090
zα/2 0.842 1.036 1.282 1.645 1.960 2.240 2.326 2.576 2.807 3.291



Table Vb The Standard Normal Right-Tail Probabilities

zα
z

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

f(z)

α

P(Z > zα) = α

P(Z > z) = 1 − 
(z) = 
(−z)

zα 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002



Table VI The t Distribution

P(T � t) 

t

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3 tα(r)

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3

α

P(T ≤ t) =
∫ t

−∞
�[(r + 1)/2]√

πr �(r/2)(1 + w2/r)(r+1)/2
dw

P(T ≤ −t) = 1 − P(T ≤ t)

P(T ≤ t)

0.60 0.75 0.90 0.95 0.975 0.99 0.995

r t0.40(r) t0.25(r) t0.10(r) t0.05(r) t0.025(r) t0.01(r) t0.005(r)

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012
14 0.258 0.692 1.345 1.761 2.145 2.624 2.997
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750

∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576

This table is taken from Table III of Fisher and Yates: Statistical Tables for Biological, Agricultrual, and Medical Research, published by Longman Group Ltd.,
London (previously published by Oliver and Boyd, Edinburgh).
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Table VII The F Distribution

P(F ≤ f ) =
∫ f

0

�[(r1 + r2)/2](r1/r2)r1/2wr1/2−1

�(r1/2)�(r2/2)(1 + r1w/r2)(r1+r2)/2
dw

f0

0.2

0.4

0.6

P(F  � f ) 

1 2 3 4 5

Fα(4, 8)0

0.2

0.4

0.6

F(4, 8) 

α

1 2 3 5
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Table VII continued

P(F ≤ f ) =
∫ f

0

�[(r1 + r2)/2](r1/r2)r1/2wr1/2−1

�(r1/2)�(r2/2)(1 + r1w/r2)(r1+r2)/2
dw

Numerator Degrees of Freedom, r1Den.
d.f.

α P(F ≤ f ) r2 1 2 3 4 5 6 7 8 9 10

0.05 0.95 1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9
0.025 0.975 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28 968.63
0.01 0.99 4052 4999.5 5403 5625 5764 5859 5928 5981 6022 6056

0.05 0.95 2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
0.025 0.975 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40
0.01 0.99 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40

0.05 0.95 3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
0.025 0.975 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42
0.01 0.99 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23

0.05 0.95 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
0.025 0.975 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84
0.01 0.99 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55

0.05 0.95 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
0.025 0.975 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62
0.01 0.99 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05

0.05 0.95 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
0.025 0.975 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46
0.01 0.99 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87

0.05 0.95 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
0.025 0.975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76
0.01 0.99 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62

0.05 0.95 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
0.025 0.975 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30
0.01 0.99 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81

0.05 0.95 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14
0.025 0.975 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96
0.01 0.99 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26

0.05 0.95 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
0.025 0.975 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72
0.01 0.99 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
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Table VII continued

P(F ≤ f ) =
∫ f

0

�[(r1 + r2)/2](r1/r2)r1/2wr1/2−1

�(r1/2)�(r2/2)(1 + r1w/r2)(r1+r2)/2
dw

Numerator Degrees of Freedom, r1Den.
d.f.

α P(F ≤ f ) r2 1 2 3 4 5 6 7 8 9 10

0.05 0.95 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
0.025 0.975 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37
0.01 0.99 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30

0.05 0.95 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
0.025 0.975 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06
0.01 0.99 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80

0.05 0.95 20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
0.025 0.975 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77
0.01 0.99 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37

0.05 0.95 24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
0.025 0.975 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64
0.01 0.99 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

0.05 0.95 30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
0.025 0.975 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51
0.01 0.99 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98

0.05 0.95 40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
0.025 0.975 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39
0.01 0.99 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80

0.05 0.95 60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
0.025 0.975 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27
0.01 0.99 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63

0.05 0.95 120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91
0.025 0.975 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16
0.01 0.99 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47

0.05 0.95 ∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83
0.025 0.975 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05
0.01 0.99 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32
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Table VII continued

P(F ≤ f ) =
∫ f

0

�[(r1 + r2)/2](r1/r2)r1/2wr1/2−1

�(r1/2)�(r2/2)(1 + r1w/r2)(r1+r2)/2
dw

Numerator Degrees of Freedom, r1Den.
d.f.

α P(F ≤ f ) r2 12 15 20 24 30 40 60 120 ∞
0.05 0.95 1 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3
0.025 0.975 976.71 984.87 993.10 997.25 1001.4 1005.6 1009.8 1014.0 1018.3
0.01 0.99 6106 6157 6209 6235 6261 6287 6313 6339 6366

0.05 0.95 2 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
0.025 0.975 39.42 39.43 39.45 39.46 39.47 39.47 39.48 39.49 39.50
0.01 0.99 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50

0.05 0.95 3 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
0.025 0.975 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90
0.01 0.99 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13

0.05 0.95 4 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
0.025 0.975 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26
0.01 0.99 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

0.05 0.95 5 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
0.025 0.975 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02
0.01 0.99 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

0.05 0.95 6 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
0.025 0.975 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85
0.01 0.99 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88

0.05 0.95 7 3.57 3.51 3.41 3.41 3.38 3.34 3.30 3.27 3.23
0.025 0.975 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14
0.01 0.99 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

0.05 0.95 8 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
0.025 0.975 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67
0.01 0.99 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86

0.05 0.95 9 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71
0.025 0.975 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33
0.01 0.99 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31
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Table VII continued

P(F ≤ f ) =
∫ f

0

�[(r1 + r2)/2](r1/r2)r1/2wr1/2−1

�(r1/2)�(r2/2)(1 + r1w/r2)(r1+r2)/2
dw

Numerator Degrees of Freedom, r1Den.
d.f.

α P(F ≤ f ) r2 12 15 20 24 30 40 60 120 ∞
0.05 0.95 10 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
0.025 0.975 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08
0.01 0.99 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

0.05 0.95 12 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
0.025 0.975 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72
0.01 0.99 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

0.05 0.95 15 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
0.025 0.975 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40
0.01 0.99 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

0.05 0.95 20 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
0.025 0.975 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09
0.01 0.99 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

0.05 0.95 24 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
0.025 0.975 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94
0.01 0.99 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

0.05 0.95 30 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
0.025 0.975 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79
0.01 0.99 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

0.05 0.95 40 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
0.025 0.975 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64
0.01 0.99 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

0.05 0.95 60 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39
0.025 0.975 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48
0.01 0.99 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

0.05 0.95 120 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
0.025 0.975 2.05 1.95 1.82 1.76 1.69 1.61 1.53 1.43 1.31
0.01 0.99 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

0.05 0.95 ∞ 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
0.025 0.975 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00
0.01 0.99 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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Table VIII Random Numbers on the Interval (0, 1)

3407 1440 6960 8675 5649 5793 1514
5044 9859 4658 7779 7986 0520 6697
0045 4999 4930 7408 7551 3124 0527
7536 1448 7843 4801 3147 3071 4749
7653 4231 1233 4409 0609 6448 2900

6157 1144 4779 0951 3757 9562 2354
6593 8668 4871 0946 3155 3941 9662
3187 7434 0315 4418 1569 1101 0043
4780 1071 6814 2733 7968 8541 1003
9414 6170 2581 1398 2429 4763 9192

1948 2360 7244 9682 5418 0596 4971
1843 0914 9705 7861 6861 7865 7293
4944 8903 0460 0188 0530 7790 9118
3882 3195 8287 3298 9532 9066 8225
6596 9009 2055 4081 4842 7852 5915

4793 2503 2906 6807 2028 1075 7175
2112 0232 5334 1443 7306 6418 9639
0743 1083 8071 9779 5973 1141 4393
8856 5352 3384 8891 9189 1680 3192
8027 4975 2346 5786 0693 5615 2047

3134 1688 4071 3766 0570 2142 3492
0633 9002 1305 2256 5956 9256 8979
8771 6069 1598 4275 6017 5946 8189
2672 1304 2186 8279 2430 4896 3698
3136 1916 8886 8617 9312 5070 2720

6490 7491 6562 5355 3794 3555 7510
8628 0501 4618 3364 6709 1289 0543
9270 0504 5018 7013 4423 2147 4089
5723 3807 4997 4699 2231 3193 8130
6228 8874 7271 2621 5746 6333 0345

7645 3379 8376 3030 0351 8290 3640
6842 5836 6203 6171 2698 4086 5469
6126 7792 9337 7773 7286 4236 1788
4956 0215 3468 8038 6144 9753 3131
1327 4736 6229 8965 7215 6458 3937

9188 1516 5279 5433 2254 5768 8718
0271 9627 9442 9217 4656 7603 8826
2127 1847 1331 5122 8332 8195 3322
2102 9201 2911 7318 7670 6079 2676
1706 6011 5280 5552 5180 4630 4747

7501 7635 2301 0889 6955 8113 4364
5705 1900 7144 8707 9065 8163 9846
3234 2599 3295 9160 8441 0085 9317
5641 4935 7971 8917 1978 5649 5799
2127 1868 3664 9376 1984 6315 8396
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Table IX Distribution Function of the Correlation Coefficient R, ρ = 0

R p.d.f.
ν = 15 d.f.

r

1

−1 0

P(R ≤ r) 

1

R p.d.f.
ν = 15 d.f.

rα(v)

α

1

−1 0 1

P(R ≤ r) =
∫ r

−1

�[(n − 1)/2]
�(1/2)�[(n − 2)/2]

(1 − w2)(n−4)/2) dw

P(R ≤ r)

0.95 0.975 0.99 0.995ν = n − 2
degrees of
freedom r0.05(ν) r0.025(ν) r0.01(ν) r0.005(ν)

1 0.9877 0.9969 0.9995 0.9999
2 0.9000 0.9500 0.9800 0.9900
3 0.8053 0.8783 0.9343 0.9587
4 0.7292 0.8113 0.8822 0.9172
5 0.6694 0.7544 0.8329 0.8745

6 0.6215 0.7067 0.7887 0.8343
7 0.5822 0.6664 0.7497 0.7977
8 0.5493 0.6319 0.7154 0.7646
9 0.5214 0.6020 0.6850 0.7348

10 0.4972 0.5759 0.6581 0.7079

11 0.4761 0.5529 0.6338 0.6835
12 0.4575 0.5323 0.6120 0.6613
13 0.4408 0.5139 0.5922 0.6411
14 0.4258 0.4973 0.5742 0.6226
15 0.4123 0.4821 0.5577 0.6054

16 0.4000 0.4683 0.5425 0.5897
17 0.3887 0.4555 0.5285 0.5750
18 0.3783 0.4437 0.5154 0.5614
19 0.3687 0.4328 0.5033 0.5487
20 0.3597 0.4226 0.4920 0.5367

25 0.3232 0.3808 0.4450 0.4869
30 0.2959 0.3494 0.4092 0.4487
35 0.2746 0.3246 0.3809 0.4182
40 0.2572 0.3044 0.3578 0.3931
45 0.2428 0.2875 0.3383 0.3721

50 0.2306 0.2732 0.3218 0.3541
60 0.2108 0.2500 0.2948 0.3248
70 0.1954 0.2318 0.2736 0.3017
80 0.1829 0.2172 0.2565 0.2829
90 0.1725 0.2049 0.2422 0.2673

100 0.1638 0.1946 0.2300 0.2540
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Table X Discrete Distributions

Probability
Distribution and
Parameter Values

Probability
Mass

Function

Moment-
Generating

Function
Mean
E(X) Variance Var(X) Examples

Bernoulli pxq1−x, x = 0, 1 q + pet, p pq Experiment with two possible
0 < p < 1 −∞ < t < ∞ outcomes, say success and
q = 1 − p failure, p = P(success)

Binomial
(

n
x

)
pxqn−x, (q + pet)n, np npq Number of successes in

n = 1, 2, 3, . . . −∞ < t < ∞ a sequence of n Bernoulli
0 < p < 1 x = 0, 1, . . . , n trials, p = P(success)

Geometric qx−1p,
pet

1 − qet

1
p

q
p2

The number of trials to
0 < p < 1 x = 1, 2, . . . obtain the first success in a
q = 1 − p t < − ln(1 − p) sequence of Bernoulli trials

Hypergeometric Selecting n objects at random
x ≤ n, x ≤ N1

(
N1

x

)(
N2

n − x

)
(

N
n

) n
(

N1

N

)
n
(

N1

N

)(
N2

N

)(
N − n
N − 1

)
without replacement from a

n − x ≤ N2 set composed of two
N = N1 + N2 types of objects
N1 > 0, N2 > 0

Negative Binomial
(

x − 1
r − 1

)
prqx−r,

(pet)r

(1 − qet)r ,
r
p

rq
p2

The number of trials to
obtain the rth success in a

r = 1, 2, 3, . . . x = r, r + 1, . . . t < − ln(1 − p) sequence of Bernoulli trials
0 < p < 1

Poisson
λxe−λ

x! , eλ(et−1) λ λ Number of events occurring in
λ > 0 −∞ < t < ∞ a unit interval, events are

x = 0, 1, . . . occurring randomly at a mean
rate of λ per unit interval

Uniform
1
m

, x = 1, 2, . . . , m
m + 1

2
m2 − 1

12
Select an integer randomly

m > 0 from 1, 2, . . . , m
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Table XI Continuous Distributions

Probability
Distribution and
Parameter Values Probability Density Function

Moment-
Generating

Function
Mean
E(X) Variance Var(X) Examples

Beta
�(α + β)
�(α)�(β)

xα−1(1 − x)β−1,
α

α + β

αβ

(α + β + 1)(α + β)2
X = X1/(X1 + X2),

α > 0 where X1 and X2 have
β > 0 0 < x < 1 independent gamma

distributions with same θ

Chi-square
xr/2−1e−x/2

�(r/2)2r/2
,

1
(1 − 2t)r/2

, t <
1
2

r 2r Gamma distribution, θ = 2,
r = 1, 2, . . . α = r/2; sum of squares of r

0 < x < ∞ independent N(0, 1) random
variables

Exponential
1
θ

e−x/θ , 0 ≤ x < ∞ 1
1 − θ t

, t <
1
θ

θ θ2 Waiting time to first arrival
θ > 0 when observing a Poisson

process with a mean rate of
arrivals equal to λ = 1/θ

Gamma
xα−1e−x/θ

�(α)θα
,

1
(1 − θ t)α

, t <
1
θ

αθ αθ2 Waiting time to αth arrival
α > 0 when observing a Poisson
θ > 0 0 < x < ∞ process with a mean rate of

arrivals equal to λ = 1/θ

Normal
e−(x−μ)2/2σ 2

σ
√

2π
, eμt+σ 2t2/2 μ σ 2 Errors in measurements;

−∞ < μ < ∞ −∞ < t < ∞ heights of children;
σ > 0 −∞ < x < ∞ breaking strengths

Uniform
1

b − a
, a ≤ x ≤ b

etb − eta

t(b − a)
, t �= 0

a + b
2

(b − a)2

12
Select a point at random

−∞ < a < b < ∞ from the interval [a, b]1, t = 0
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Table XII Tests and Confidence Intervals

Distribution

θ : The
parameter
of interest

W: The variable used to test
H0: θ = θ0

Two-sided 1 − α

Confidence Interval for θ Comments

N(μ, σ 2) or n large μ
X − θ0

σ/
√

n
x ± zα/2

σ√
n

W is N(0, 1);
σ 2 known P(W ≥ zα/2) = α/2

N(μ, σ 2) μ
X − θ0

S/
√

n
x ± tα/2(n−1)

s√
n

W has a t distribution with
σ 2 unknown n − 1 degrees of freedom;

P[W ≥ tα/2(n−1)] = α/2

Any distribution μ
X − θ0

σ/
√

n
x ± zα/2

σ√
n

W has an approximate
with known N(0, 1) distribution for
variance, σ 2 n sufficiently large

N(μX , σ 2
X) μX − μY

X − Y − θ0√
σ 2

X

n
+ σ 2

Y

m

x − y ± zα/2

√
σ 2

X

n
+ σ 2

Y

m
W is N(0, 1)

N(μY , σ 2
Y )

σ 2
X , σ 2

Y known

N(μX , σ 2
X) μX − μY

X − Y − θ0√
S2

X

n
+ S2

Y

m

x − y ± zα/2

√
s2

x

n
+ s2

y

m
W is approximately N(0, 1)

N(μY , σ 2
Y ) if sample sizes are large

σ 2
X , σ 2

Y unknown

N(μX , σ 2
X) μX − μY

X − Y − θ0√
(n − 1)S2

X + (m − 1)S2
Y

n + m − 2

(
1
n

+ 1
m

) x − y ± tα/2(n+m−2)sp

√
1
n

+ 1
m

W has a t distribution with
r = n + m − 2 degrees of

freedomN(μY , σ 2
Y )

σ 2
X = σ 2

Y , unknown sp =
√

(n − 1)s2
x + (m − 1)s2

y

n + m − 2

D = X − Y μX − μY
D − θ0

SD/
√

n
d ± tα/2(n−1)

sd√
n

W has a t distribution with
is N(μX − μY , σ 2

D) n − 1 degrees of freedom

X and Y dependent
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Table XII continued

Distribution

θ : The
parameter
of interest

W: The variable used to test
H0: θ = θ0

Two-sided 1 − α

Confidence Interval for θ Comments

N(μ, σ 2) σ 2 (n − 1)S2

θ0

(n − 1)s2

χ2
α/2(n−1)

,
(n − 1)s2

χ2
1−α/2(n−1)

W is χ2(n−1),
μ unknown P[W ≤ χ2

1−α/2(n−1)] = α/2,
P[W ≥ χ2

α/2(n−1)] = α/2

N(μ, σ 2) σ
(n − 1)S2

θ2
0

√√√√ (n − 1)s2

χ2
α/2(n−1)

,

√√√√ (n − 1)s2

χ2
1−α/2(n−1)

W is χ2(n−1).

μ unknown P[W ≤ χ2
1−α/2(n−1)] = α/2,

P[W ≥ χ2
α/2(n−1)] = α/2

N(μX , σ 2
X)

σ 2
X

σ 2
Y

S2
Y

S2
X

θ0
s2

x/s2
y

Fα/2(n−1, m−1)
, Fα/2(m−1, n−1)

s2
x

s2
y

W has an F distribution with

N(μY , σ 2
Y ) m − 1 and n − 1 degrees

μX , μY unknown of freedom

b(n, p) p

Y
n

− θ0√(
Y
n

)(
1 − Y

n

)/
n

y
n

± zα/2

√( y
n

)(
1 − y

n

)/
n W is approximately N(0, 1)

for n sufficiently large

b(n, p) p p̃ ± zα/2
√

p̃(1 − p̃)/(n + 4) W is approximately N(0, 1)
p̃ = (y + 2)/(n + 4) for n sufficiently large

b(n1, p1) p1 − p2

Y1

n1
− Y2

n2
− θ0√(

Y1 + Y2

n1 + n2

)(
1 − Y1 + Y2

n1 + n2

)(
1
n1

+ 1
n2

) y1

n1
− y2

n2
± W is approximately N(0, 1)

b(n2, p2) when n1 and n2 are
sufficiently large

zα/2

√
y1

n1

(
1 − y1

n1

)/
n1 + y2

n2

(
1 − y2

n2

)/
n2
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AppendixAppendix

C
Answers to Odd-Numbered
Exercises

Chapter 1
1.1-1 0.68.
1.1-3 (a) 12/52; (b) 2/52; (c) 16/52; (d) 1; (e) 0.
1.1-5 (a) 1/6; (b) 5/6; (c) 1.
1.1-7 0.63.
1.1-9 (a) 3(1/3) − 3(1/3)2 + (1/3)3;

(b) P(A1 ∪ A2 ∪ A3) = 1 − [1 − 3(1/3) + 3(1/3)2

− (1/3)3] = 1 − (1 − 1/3)3.
1.1-11 (a) S = {00, 0, 1, 2, 3, . . . , 36};

(b) P(A) = 2/38;
(c) P(B) = 4/38;
(d) P(D) = 18/38.

1.1-13 2/3.
1.2-1 4096.
1.2-3 (a) 6,760,000; (b) 17,576,000.
1.2-5 (a) 24; (b) 256.
1.2-7 (a) 0.0024; (b) 0.0012; (c) 0.0006; (d) 0.0004.
1.2-9 (a) 2; (b) 8; (c) 20; (d) 40.
1.2-11 (a) 362,880; (b) 84; (c) 512.
1.2-13 (a) 0.00539; (b) 0.00882; (c) 0.00539; (d) Yes.
1.2-17 (a) 0.00024; (b) 0.00144; (c) 0.02113; (d) 0.04754;

(e) 0.42257.
1.3-1 (a) 5000/1,000,000; (b) 78,515/1,000,000;

(c) 73,630/995,000; (d) 4,885/78,515.
1.3-3 (a) 5/35; (b) 26/35; (c) 5/19; (d) 9/23; (e) Left.
1.3-5 (a) S = {(R, R), (R, W), (W, R), (W, W)}; (b) 1/3.
1.3-7 1/5.
1.3-9 (f) 1 − 1/e.
1.3-11 (a) 365r; (b) 365Pr; (c) 1 − 365Pr/365r; (d) 23.
1.3-13 (b) 8/36; (c) 5/11; (e) 8/36 + 2[(5/36)(5/11) +

(4/36)(4/10) + (3/36)(3/9)] = 0.49293.
1.3-15 11.
1.4-1 (a) 0.14; (b) 0.76; (c) 0.86.
1.4-3 (a) 1/6; (b) 1/12; (c) 1/4; (d) 1/4; (e) 1/2.

1.4-5 Yes; 0.9 = 0.8 + 0.5 − (0.8)(0.5).
1.4-7 (a) 0.29; (b) 0.44.
1.4-9 (a) 0.36; (b) 0.49; (c) 0.01.
1.4-11 (a) No, unless P(A) = 0 or P(B) = 0;

(b) Only if P(A) = 0 or P(B) = 1.
1.4-13 (2/3)3(1/3)2; (2/3)3(1/3)2.
1.4-15 (a) 1/16, 1/8, 5/32, 5/32;

(b) 14/323, 35/323, 105/646, 60/323;
(c) Neither model is very good.

1.4-17 (a) 1 − (11/12)12; (b) 1 − (11/12)11.
1.4-19 (b) 1 − 1/e.
1.5-1 (a) 21/32; (b) 16/21.
1.5-3 15.1%.
1.5-5 60/95 = 0.632.
1.5-7 0.8182.
1.5-9 (a) 495/30,480 = 0.016; (b) 29,985/30,480 = 0.984.
1.5-11 1/4.
1.5-13 0.54229.

Chapter 2
2.1-3 (a) 10; (b) 1/55; (c) 3; (d) 1/30; (e) n(n + 1)/2; (f) 1.
2.1-5 (b)

Relative
x Frequency Frequency f (x)

1 38 0.38 0.40
2 27 0.27 0.30
3 21 0.21 0.20
4 14 0.14 0.10

2.1-7 (a) f (x) = 13 − 2x
36

, x = 1, 2, 3, 4, 5, 6;

(b) g(0) = 6
36

, g(y) = 12 − 2y
36

, y = 1, 2, 3, 4, 5.

2.1-11 0.416.
2.1-13 (a) 19/20; (b) 1/20; (c) 9/20.
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2.1-15 (c)
Relative

x Frequency Frequency f (x)

0 13 0.325 0.2532
1 16 0.400 0.4220
2 9 0.225 0.2509
3 2 0.050 0.0660
4 0 0.000 0.0076
5 0 0.000 0.0003

2.1-17 78.
2.2-1 (a) 3; (b) 7; (c) 4/3; (d) 7/3; (e) (2n + 1)/3; (f) E(X) =

+∞, so does not exist.
2.2-3 $360.
2.2-5 (a) h(z) = (4 − z1/3)/6, z = 1, 8, 27; (b) 23/3 of a

dollar; (c) 7/3 of a dollar.
2.2-7 E(X) = −17/216 = −$0.0787.
2.2-9 (a) −$1/19; (b) −$1/37.
2.2-11 −$0.01414.
2.3-1 (a) 15; 50; (b) 5; 0; (c) 5/3; 5/9.
2.3-3 (a) 16; (b) 6; (c) 16.
2.3-5 μ = 7.
2.3-7 m = 7.
2.3-9 $1809.80.
2.3-11 μ = 2, σ 2 = 4/5,

f (x) =

⎧⎪⎨⎪⎩
2/5, x = 1,
1/5, x = 2,
2/5, x = 3.

2.3-13 (4/5)3(1/5).
2.3-15 (a) 0.4604; (b) 0.5580; (c) 0.0184.
2.3-17 (a) f (x) = (x − 1)/2x, x = 2, 3, . . .;

(c) μ = 4, σ 2 = 4;
(d) (i) 1/2, (ii) 5/16, (iii) 1/4.

2.3-19 (a) μ = 1, σ 2 = 1; (b) 19/30.
2.4-1 f (x) = (7/18)x(11/18)1−x, x = 0, 1; μ = 7/18; σ 2 =

77/324.
2.4-3 (a) (1/5)2(4/5)4 = 0.0164;

(b)
6!

2!4! (1/5)2(4/5)4 = 0.2458.

2.4-5 (a) 0.4207; (b) 0.5793; (c) 0.1633; (d) μ = 5, σ 2 = 4,
σ = 2.

2.4-7 (a) b(2000, π/4); (b) 1570.796, 337.096, 18.360; (c) π ;
(f) Vn = πn/2/�(n/2 + 1) is the volume of a ball of
radius 1 in n-space.

2.4-9 (a) b(20, 0.80); (b) μ = 16, σ 2 = 3.2, σ = 1.789;
(c) (i) 0.1746, (ii) 0.6296, (iii) 0.3704.

2.4-11 0.1268.

2.4-13 (a) 0.6513; (b) 0.7941.
2.4-15 0.178.
2.4-17 (a) 0.0778; (b) 0.3456; (c) 0.9898.
2.4-19 (a) b(1, 2/3); (b) b(12, 0.75).
2.5-1 (a) 0.912 = 0.2824; (b) 0.0236.
2.5-3 (a) μ = 10/0.60, σ 2 = 4/0.36, σ = 2/0.60;

(b) 0.1240.
2.5-7 M(t) = e5t, − ∞ < t < ∞, f (5) = 1.
2.5-9 25/3.
2.6-1 (a) 0.693; (b) 0.762; (c) 0.433.
2.6-3 0.540.
2.6-5 0.558.
2.6-7 0.947.
2.6-9 (a) 2.681; (b) n = 6.
2.6-11 (a) 0.564 using binomial, 0.560 using Poisson approx-

imation.
(b) $598.56 using binomial, $613.90 using Poisson

approximation.
2.6-13 21/16.

Chapter 3
3.1-3 (a) f (x) = 1/10, 0 < x < 10; (b) 0.2; (c) 0.6;

(d) μ = 5; (e) σ 2 = 25/3.
3.1-5 (a) G(w) = (w − a)/(b − a), a ≤ w ≤ b;

(b) U(a, b).
3.1-7 (a) (i) 3; (ii) F(x) = x4, 0 ≤ x ≤ 1; (iv) μ = 4/5, σ 2 =

2/75;

(b) (i) 3/16; (ii) F(x) = (1/8)x3/2, 0 ≤ x ≤ 4; (iv) μ =
12/5, σ 2 = 192/175;

(c) (i) 1/4; (ii) F(x) = x1/4, 0 ≤ x ≤ 1; (iv) μ =
1/5, σ 2 = 16/225.

3.1-9 (b)

F(x) =

⎧⎪⎨⎪⎩
0, x < 0,
x(2 − x), 0 ≤ x < 1,
1, 1 ≤ x.

(c) (i) 3/4, (ii) 1/2, (iii) 0, (iv) 1/16.
3.1-11 (a) d = 2; (b) E(Y) = 2; (c) E(Y2) = +∞.

3.1-13 f (x) = e−x

(1 + e−x)2
= e−x

(1 + e−x)2
e2x

e2x
= ex

(ex + 1)2
=

f (−x).
3.1-15 (a) 1/e; (b) 1/e19/8.
3.1-17 $740.74.
3.1-19 (a) μ = $28,571.43, σ = $15,971.91; (b) 0.6554.

3.1-21 (a)
∫ ∞
−∞

∑k
i=1 cifi(x) dx = ∑k

i=1 ci
∫ ∞
−∞ fi(x) dx =∑k

i=1 ci = 1;

(b) μ = ∑k
i=1 ciμi, σ 2 = ∑k

i=1 ci(σ
2
i + μ2

i ) − μ2.
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3.2-1 (a) f (x) = (1/3)e−x/3, 0 < x < ∞; μ = 3; σ 2 = 9;
(b) f (x) = 3e−3x, 0 < x < ∞; μ = 1/3; σ 2 = 1/9.

3.2-3 P(X >x + y | X >x) = P(X > x + y)
P(X > x)

= e−(x+y)/θ

e−x/θ
=

P(X > y).
3.2-5 (a) F(x) = 1 − e−(x−δ)/θ , δ ≤ x < ∞;

(b) θ + δ; θ2.

3.2-9 f (x) = 1

�(20)720
x19e−x/7, 0 ≤ x < ∞; μ = 140;

σ 2 = 980.
3.2-11 (a) 0.025; (b) 0.05; (c) 0.94; (d) 8.672; (e) 30.19.
3.2-13 (a) 0.80; (b) a = 11.69, b = 38.08; (c) μ = 23,

σ 2 = 46; (d) 35.17, 13.09.
3.2-15 (a) r − 2; (b) x = r − 2 ± √

2r − 4 , r ≥ 4.
3.2-17 0.9444.
3.2-19 1.96, or 1,960 units per day, yields an expected profit

of $3,304.96.
3.2-21 e−1/2.
3.2-23 M = 83.38.
3.3-1 (a) 0.2784; (b) 0.7209; (c) 0.9616; (d) 0.0019;

(e) 0.9500; (f) 0.6826; (g) 0.9544; (h) 0.9974.
3.3-3 (a) 1.96; (b) 1.96; (c) 1.645; (d) 1.645.
3.3-5 (a) 0.3849; (b) 0.5403; (c) 0.0603; (d) 0.0013;

(e) 0.6826; (f) 0.9544; (g) 0.9974; (h) 0.9869.
3.3-7 (a) 0.6326; (b) 50.
3.3-9 (a) Gamma (α = 1/2, θ = 8); (b) Gamma (α = 1/2,

θ = 2σ 2).
3.3-11 (a) 0.0401; (b) 0.8159.
3.3-13 0.1437.
3.3-15 (a) σ = 0.043; (b) μ = 12.116.
3.3-17 The three respective distributions are exponential

with θ = 4, χ2(4), and N(4, 1). Each has a mean of
4, so the slopes of the mgfs equal 4 at t = 0.

3.4-1 e−(5/10)2 = e−1/4 = 0.7788.
3.4-3 Weibull with parameters α and β/31/α .
3.4-5 (a) 0.5; (b) 0; (c) 0.25; (d) 0.75; (e) 0.625; (f) 0.75.
3.4-7 (b) μ = 31/24, σ 2 = 167/567; (c) 15/64; 1/4; 0; 11/16.
3.4-9 (a)

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0,

x/2, 0 ≤ x < 1,

1/2, 1 ≤ x < 2,

4/6, 2 ≤ x < 4,

5/6, 4 ≤ x < 6,

1, 6 ≤ x.

(b) $2.25.

3.4-11 3 + 5 e−3/5 = 5.744.
3.4-13 μ = $226.21, σ = $1,486.92.

3.4-15 μ = $345.54, σ = $780.97.

3.4-17 g(y) = c

3y4/3
for e0.12 < y < e0.24; c = 26.54414.

3.4-19 0.4219.
3.4-21 (a) e−(125/216); (b) 120 ∗ �(4/3) = 107.1575.

Chapter 4
4.1-1 (a) 1/33; (b) 1/24; (c) 1/18; (d) 6.
4.1-3 (a) fX (x) = (2x + 5)/16, x = 1, 2;

(b) fY(y) = (2y + 3)/32, y = 1, 2, 3, 4;
(c) 3/32; (d) 9/32; (e) 3/16; (f) 1/4; (g) Dependent;
(h) μX = 25/16; μY = 45/16; σ 2

X = 63/256; σ 2
Y =

295/256.
4.1-5 (b) f (x, y) = 1/16, x = 1, 2, 3, 4; y = x + 1, x + 2,

x + 3, x + 4;
(c) fX (x) = 1/4, x = 1, 2, 3, 4;
(d) fY(y) = (4 − |y − 5|)/16, y = 2, 3, 4, 5, 6, 7, 8;
(e) Dependent because the space is not rectangular.

4.1-7 (b) b(6, 1/2), b(6, 1/2).

4.1-9 (a) f (x, y) = 15!
x! y! (15 − x − y)!

(
6
10

)x( 3
10

)y( 1
10

)15−x−y
,

0 ≤ x + y ≤ 15;
(b) No, because the space is not rectangular;
(c) 0.0735;
(d) X is b(15, 0.6);
(e) 0.9095.

4.2-1 μX = 25/16; μY = 45/16; σ 2
X = 63/256; σ 2

Y =
295/256;
Cov(X, Y)=−5/256; ρ =−√

2,065/1,239=−0.0367.
4.2-3 (a) μX = 5/2; μY = 5; σ 2

X = 5/4; σ 2
Y = 5/2;

Cov(X, Y) = 5/4; ρ = √
2/2;

(b) y = x + 5/2.
4.2-5 a = μY − μX b, b = Cov(X, Y)/σ 2

X .
4.2-7 (a) No; (b) Cov(X, Y) = 0, ρ = 0.
4.2-9 (a) c = 1/154;

(c) fX (0) = 6/77, fX (1) = 21/77, fX (2) = 30/77,
fX (3) = 20/77;
fY(0) = 30/77, fY(1) = 32/77, fY(2) = 15/77;

(d) No;
(e) μX = 141/77, σ 2

X = 4836/5929;
(f) μY = 62/77, σ 2

Y = 3240/5929;
(g) Cov(X, Y) = 1422/5929;
(h) ρ = 79

√
12090/24180;

(i) y = 215/806 + (237/806)x.
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4.3-1 (d) 9/14, 7/18, 5/9; (e) 20/7, 55/49.

4.3-3 (a) f (x, y) = 50!
x! y! (50 − x − y)! (0.02)x(0.90)y(0.08)50−x−y,

0 ≤ x + y ≤ 50;
(b) Y is b(50, 0.90);
(c) b(47, 0.90/0.98);
(d) 2115/49; (e) ρ = −3/7.

4.3-5 (a) E(Y | x) = 2(2/3) − (2/3)x, x = 1, 2; (b) Yes.
4.3-7 E(Y | x) = x + 5/2, x = 1, 2, 3, 4; yes.
4.3-9 (a) fX (x) = 1/8, x = 0, 1, . . . , 7;

(b) h(y | x) = 1/3, y = x, x + 1, x + 2, for x =
0, 1, . . . , 7;

(c) E(Y | x) = x + 1, x = 0, 1, . . . , 7;
(d) σ 2

Y = 2/3;
(e)

fY(y) =

⎧⎪⎨⎪⎩
1/24, y = 0, 9,
2/24, y = 1, 8,
3/24, y = 2, 3, 4, 5, 6, 7.

4.3-11 fX (x) = 1/5 and h(y | x) = 1/[5(x + 1)], for x =
0, 1, 2, 3, 4, and y = 0 . . . x; P(X + Y > 4) = 13/50.

4.4-1 (a) fX (x) = x/2, 0 ≤ x ≤ 2; fY(y) = 3y2/8,
0 ≤ y ≤ 2;

(b) Yes, because fX (x)fY(y) = f (x, y);
(c) μX = 4/3; μY = 3/2; σ 2

X = 2/9; σ 2
Y = 3/20;

(d) 3/5.
4.4-3 fX (x) = 2e−2x, 0 < x < ∞; fY(y) = 2e−y(1 − e−y),

0 < y < ∞; no.
4.4-5 (a) c = 24; (b) c = 30/17; (c) c = 2/(e − 2);

(d) c = 1/2.
4.4-7 (b) 1/3.
4.4-9 11/30.
4.4-11 (a) c = 8; (b) 29/93.
4.4-13 (a) fX (x) = 4x(1 − x2), 0 ≤ x ≤ 1; fY(y) = 4y3, 0 ≤

y ≤ 1;
(b) μX = 8/15; μY = 4/5; σ 2

X = 11/225; σ 2
Y = 2/75;

Cov(X, Y) = 4/225; ρ = 2
√

66/33;
(c) y = 20/33 + (4/11)x.

4.4-15 E(Y | x) = x and E(X) = 0.700; thus, $700.
4.4-17 (b) fX (x) = 1/10, 0 ≤ x ≤ 10;

(c) h(y | x) = 1/4, 10 − x ≤ y ≤ 14 − x for 0 ≤ x ≤ 10;
(d) E(Y | x) = 12 − x.

4.4-19 (a) f (x, y) = 1/(2x2), 0 < x < 2, 0 < y < x2;
(b) fY(y) = (2 − √

y )/(4
√

y ), 0 < y < 4;
(c) E(X | y) = [2

√
y ln(2/

√
y )]/[2 − √

y ];
(d) E(Y | x) = x2/2.

4.5-1 (a) 0.6006; (b) 0.7888; (c) 0.8185; (d) 0.9371.

4.5-3 (a) 0.5746; (b) 0.7357.
4.5-5 (a) N(86.4, 40.96); (b) 0.4192.
4.5-7 (a) 0.8248;

(b) E(Y | x) = 457.1735 − 0.2655x;
(c) Var(Y | x) = 645.9375;
(d) 0.8079.

4.5-9 a(x) = x − 11, b(x) = x + 5.
4.5-11 (a) 0.2857; (b) μY|x = −0.2x + 4.7;

(c) σ 2
Y|x = 8.0784; (d) 0.4230.

4.5-13 (a) 0.3721; (b) 0.1084.

Chapter 5
5.1-1 g(y) = 2y, 0 < y < 1.
5.1-3 g(y) = (1/8)y5e−y2/2, 0 < y < ∞.
5.1-5 Exponential distribution with mean 2.
5.1-7 (a) F(x) = (ln x − ln c − 0.03)/0.04 and f (x) =

1/(0.04x), ce0.03 ≤ x ≤ ce0.07, where c = 50,000;
(b) The interest for each of n equal parts is R/n. The

amount at the end of the year is 50,000(1+R/n)n;
the limit as n → ∞ is 50,000 eR.

5.1-9 (a) G(y) = P(Y ≤ y) = P(X ≤ ln y) = 1 − e−y,
0 < y < ∞;

(b) G(y) = 1 − exp[−e(ln y−θ1)/θ2 ], 0 < y < ∞;
g(y) = exp[−e(ln y−θ1)/θ2 ][e(ln y−θ1)/θ2 ][1/θ2y],
0 < y < ∞;

(c) A Weibull distribution with G(y) = 1 −
e−(y/β)α , 0 < y < ∞;
g(y)= (αyα−1/βα)e−(y/β)α , 0<y<∞, where α is
the shape parameter and β is the scale parameter;

(d) exp(−e−2) = 0.873.

5.1-11 (a)
1
2

− arctan 1
π

= 0.25;

(b)
1
2

− arctan 5
π

= 0.0628;

(c)
1
2

− arctan 10
π

= 0.0317.

5.1-13 (b) (i) exp(μ + σ 2/2), (ii) exp(2μ + 2σ 2),
(iii) exp(2μ + 2σ 2) − exp(2μ + σ 2).

5.1-15 (a) g(y) = 1√
2πy

exp(−y/2), 0 < y < ∞;

(b) g(y) = 3
2
√

y, 0 < y < 1.

5.2-1 g(y1, y2) = (1/4)e−y2/2, 0 < y1 < y2 < ∞;

g1(y1) = (1/2)e−y1/2, 0 < y1 < ∞;

g2(y2) = (y2/4)e−y2/2, 0 < y2 < ∞; no.
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5.2-3 μ = r2
r2 − 2

, r2 > 2;

σ 2 = 2r2
2(r1 + r2 − 2)

r1(r2 − 2)2(r2 − 4)
, r2 > 4.

5.2-5 (a) 14.80; (b) 1/7.01 = 0.1427; (c) 0.95.
5.2-9 840.
5.2-11 (a) 0.1792; (b) 0.1792.
5.2-13 (a)

G(y1, y2) =
∫ y1

0

∫ y2

u
2(1/10002) exp[−(u + v)/1000] dv du

= 2 exp[−(y1 + y2)/1000] − exp[−y1/500]

− 2 exp[−y2/1000] + 1, 0 < y1 < y2 < ∞;

(b) 2e−6/5 − e−12/5 ≈ 0.5117.
5.3-1 (a) 0.0182; (b) 0.0337.
5.3-3 (a) 36/125; (b) 2/7.
5.3-5

g(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/36, y = 2,
4/36, y = 3,

10/36, y = 4,
12/36, y = 5,

9/36, y = 6;

μ = 14/3, σ 2 = 10/9.
5.3-7 2/5.
5.3-9 (a) 729/4096; (b) μ = 3/2; σ 2 = 3/40.
5.3-11 (a) 0.0035; (b) 8; (c) μY = 6, σ 2

Y = 4.
5.3-13 1 − e−3/100 ≈ 0.03.
5.3-15 0.0384.
5.3-17 $21,816.
5.3-19 5.
5.3-21 (c) Using Maple, we obtain μ = 13,315,424/3,011,805 =

4.4211.
(d) E(Y) = 5.377 with 16 coins, E(Y) = 6.355 with

32 coins.
5.4-1 (a)

g(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/64, y = 3, 12,
3/64, y = 4, 11,
6/64, y = 5, 10,

10/64, y = 6, 9,
12/64, y = 7, 8.

5.4-3 (a) M(t) = e7(et−1); (b) Poisson, λ = 7; (c) 0.800.
5.4-5 0.925.
5.4-7 (a) M(t) = 1/(1 − 5t)21, t < 1/5;

(b) gamma distribution, α = 21, θ = 5.

5.4-11 (a) g(w) = 1/12, w = 0, 1, 2, . . . , 11; (b) h(w) = 1/36,
w = 0, 1, 2, . . . , 35.

5.4-13 (a)

h1(w1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/36, w1 = 0,
4/36, w1 = 1,

10/36, w1 = 2,
12/36, w1 = 3,
9/36, w1 = 4;

(b) h2(w) = h1(w);
(c)

h(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/1296, w = 0
8/1296, w = 1,

36/1296, w = 2,
104/1296, w = 3,
214/1296, w = 4,
312/1296, w = 5,
324/1296, w = 6,
216/1296, w = 7,
81/1296, w = 8;

(d) With denominators equal to 68 = 1,679,616, the
respective numerators of 0, 1, . . . , 16 are 1, 16,
136, 784, 3,388, 11,536, 31,864, 72,592, 137,638,
217,776, 286,776, 311,472, 274,428, 190,512,
99,144, 34,992, 6,561;

(e) They are becoming more symmetrical as the
value of n increases.

5.4-15 (b) μY = 25/3, σ 2
Y = 130/9;

(c)

P(Y = y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
96/1024, y = 4,

144/1024, y = 5,
150/1024, y = 6,
135/1024, y = 7.

5.4-17 Y − X + 25 is b(50, 1/2);

P(Y − X ≥ 2) =
50∑

k=27

(
50
k

)(
1
2

)50
= 0.3359.

5.4-19 1 − 17/2e3 = 0.5768.
5.4-21 0.4207.
5.5-1 (a) 0.4772; (b) 0.8561.
5.5-3 (a) 46.58, 2.56; (b) 0.8447.
5.5-5 (b) 0.05466; 0.3102.
5.5-7 0.9830.
5.5-9 (a) 0.3085; (b) 0.2267.
5.5-11 0.8413 > 0.7734, select X.



514 Appendix C Answers to Odd-Numbered Exercises

5.5-13 (a) t(2); (c) μV = 0; (d) σV = 1;
(e) In part (b), numerator and denominator are not
independent.

5.5-15 (a) 2.567; (b) −1.740; (c) 0.90.
5.6-1 0.4772.
5.6-3 0.8185.
5.6-5 (a) χ2(18); (b) 0.0756, 0.9974.
5.6-7 0.6247.
5.6-9 P(1.7 ≤ Y ≤ 3.2) = 0.6749; the normal approxima-

tion is 0.6796.
5.6-11 $444,338.13.
5.6-13 0.9522.

5.6-15 (a)
∫ 25

0

1

�(13)213
y13−1e−y/2 dy = 0.4810;

(b) 0.4448 using normal approximation.
5.7-1 (a) 0.2878, 0.2881; (b) 0.4428, 0.4435; (c) 0.1550,

0.1554.
5.7-3 0.9258 using normal approximation, 0.9258 using

binomial.
5.7-5 0.3085.
5.7-7 0.6247 using normal approximation, 0.6148 using

Poisson.
5.7-9 (a) 0.5548; (b) 0.3823.
5.7-11 0.6813 using normal approximation, 0.6788 using

binomial.
5.7-13 (a) 0.3802; (b) 0.7571.
5.7-15 0.4734 using normal approximation; 0.4749 using

Poisson approximation with λ = 50; 0.4769 using
b(5000, 0.01).

5.7-17 0.6455 using normal approximation, 0.6449 using
Poisson.

5.8-1 (a) 0.84; (b) 0.082.
5.8-3 k = 1.464; 8/15.
5.8-5 (a) 0.25; (b) 0.85; (c) 0.925.
5.8-7 (a) E(W) = 0; the variance does not exist.
5.9-1 (a) 0.9984; (b) 0.998.

5.9-3 M(t) =
[

1 − 2tσ 2

n − 1

]−(n−1)/2

→ eσ 2t.

Chapter 6
6.1-1 (a) x = 1.1; (b) s2 = 0.035; (c) s = 0.1871.
6.1-3 (a) x = 16.706, s = 1.852;

(b) Frequencies: [1, 1, 2, 14, 18, 16, 23, 10, 7, 2, 1, 1].
6.1-5 (a) x = 112.12; s = 231.3576;

(d) Half of the observations are less than 48.
6.1-7 (b) x = 7.275, s = 1.967; (c) 47, 61.
6.1-9 (a) With class boundaries 90.5, 108.5, 126.5, . . . , 306.5:

Frequencies: [8, 11, 4, 1, 0, 0, 0, 1, 2, 12, 12, 3];

(b) x = 201;
(c) With class boundaries 47.5, 52.5, . . . , 107.5:

Frequencies: [4, 4, 9, 4, 4, 0, 3, 9, 7, 5, 4, 1];
(d) x = 76.35.

6.1-11 (a) 0.261, 0.196;
(b) 0.327, 0.315;
(c) 0.270, 0.273;
(d) Example of Simpson’s paradox.

6.2-1 (a) Stems Leaves Frequency

11 9 1
12 3 1
13 6 7 2
14 1 1 4 4 4 6 7 8 8 8 8 9 9 9 14
15 0 0 1 3 4 5 5 6 6 6 6 6 7 8 8 9 9 9 18
16 1 1 1 1 1 3 3 5 5 6 6 6 7 7 8 9 16
17 0 1 1 1 1 1 2 2 2 3 4 4 4 6 6 7 7 8 8 8 8 8 8 23
18 0 0 0 1 1 4 5 8 9 9 10
19 0 1 3 3 4 7 8 7
20 2 8 2
21 5 1
22 1 1

(Multiply numbers by 10−1.)

(b) 11.9, 15.5, 16.65, 17.8, 22.1;
(c) There are three suspected outliers: 11.9, 21.5,

22.1.
6.2-3 (a) Frequencies for males: [1, 1, 3, 4, 20, 23, 16, 10, 3,

0, 1],
Frequencies for females: [5, 14, 32, 36, 13];

(c) Five-number summary for males: 1.4, 3.5, 4.0,
4.525, 6.5;
Five-number summary for females: 0.5, 1.325, 1.7,
2.0, 2.7.

6.2-5 (b) Five-number summary: 5, 35/2, 48, 173/2, 1,815;
(d) Inner fence at 190, outer fence at 293.5;
(e) The median.

6.2-7 (a) Stems Leaves Frequency

127 8 1
128 8 1
129 5 8 9 3
130 8 1
131 2 3 4 4 5 5 7 7
132 2 7 7 8 4
133 7 9 2
134 8 1

(Multiply numbers by 10−1.)

(b) 131.3, 7.0, 2.575, 131.45, 131.47, 3.034;
(c) Five-number summary: 127.8, 130.125, 131.45,

132.70, 134.8.
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6.2-9 (a) Stems Leaves Frequency

30f 5 1
30s 0
30• 8 8 2
31∗ 0 0 1 3
31t 2 3 3 3
31f 4 4 4 3
31s 6 6 7 7 7 5
31• 8 8 8 9 9 5
32∗ 0 0 0 0 0 1 6
32t 2 2 2 3 3 5
32f 4 4 4 4 5 5 6
32s 6 7 7 3
32• 8 8 9 9 9 5
33∗ 0 1 2
33t 0
33f 5 1

(b) Five-number summary: 305, 315.5, 320, 325, 335.
6.3-1 (b) m̃ = 146, π̃0.80 = 270;

(c) q̃1 = 95, q̃3 = 225.
6.3-3 (a) g3(y) = 10(1 − e−y/3)2e−y, 0 < y < ∞;

(b) 5(1 − e−5/3)4e−5/3 + (1 − e−5/3)5 = 0.7599;
(c) e−5/3 = 0.1889.

6.3-5 (a) 0.2553; (b) 0.7483.

6.3-7 (a) g1(y) = 19(e−y/θ )18 1
θ

e−y/θ , 0 < y < ∞;
(b) 1/20.

6.3-9 (a) gr(y) = n!
(r − 1)!(n − r)! (1−e−y)r−1(e−y)n−re−y,

0 < y < ∞;
(b) A beta pdf with α = n − r + 1, β = r.

6.3-11 (a) g(y1, yn) = n!
(n − 2)! (yn − y1)(n−2), 0 < y1 <

yn < 1;
(b) h(w1, w2) = n(n−1)wn−1

2 (1−w1)n−2, 0 < w1 <

1, 0 < w2 < 1;

h1(w1) = (n − 1)(1 − w1)n−2, 0 < w1 < 1;

h2(w2) = nwn−1
2 , 0 < w2 < 1;

(c) Yes.
6.3-13 Both could be normal because of the linearity of the

q–q plots.
6.4-3 (b) x = 89/40 = 2.225.
6.4-5 (a) θ̂ = X/2; (b) θ̂ = X/3; (c) θ̂ equals the sample

median.
6.4-7 (c) (i) θ̂ = 0.5493, θ̃ = 0.5975, (ii) θ̂ = 2.2101,

θ̃ = 2.4004, (iii) θ̂ = 0.9588, θ̃ = 0.8646.
6.4-9 (c) x = 3.48.

6.4-13 (a) θ̃ = X; (b) Yes; (c) 7.382; (d) 7.485.
6.4-15 x = αθ , v = αθ2 so θ̃ = v/x = 0.0658, α̃ = x2/v =

102.4991.
6.4-17 (b) θ̃ = 2X; (c) 0.74646.

6.4-19 μ̂ =
∑n

i=1 yi/x2
i∑n

i=1 1/x2
i

; γ̂ 2 = 1
n

n∑
i=1

(yi − μ̂)2

x2
i

.

6.5-3 (a) ŷ = 86.8 + (842/829)(x − 74.5);

(c) σ̂ 2 = 17.9998.
6.5-5 (a) ŷ = 10.6 − 0.015x;

(c) ŷ = 5.47 + 0.0004x;
(e) Horsepower.

6.5-7 (a) ŷ = 0.819x + 2.575;
(c) α̂ = 10.083; β̂ = 0.819; σ̂ 2 = 3.294.

6.5-9 (a) ŷ = 46.59 + 1.085x.
6.6-1 (b) σ 2/n; (c) 2/n.
6.6-3 (a) 2θ2/n; (b) N(θ , 2θ2/n); (c) χ2(n).

6.7-1 (a)
n∑

i=1

X2
i ; (b) σ̂ 2 =

(
1
n

) n∑
i=1

X2
i ; (c) Yes.

6.7-7 (a) f (x; p) = exp{x ln(1 − p) + ln[p/(1 − p)]};
K(x) = x;

n∑
i=1

Xi is sufficient;

(b) X.
6.8-1 (a) k(θ | y) ∝ θα+y−1e−θ(n+1/β).

Thus, the posterior pdf of θ is gamma with parame-
ters α + y and 1/(n + 1/β);
(b) w(y) = E(θ | y) = (α + y)/(n + 1/β);

(c) w(y) =
( y

n

)( n
n + 1/β

)
+ (αβ)

(
1/β

n + 1/β

)
.

6.8-3 (a) E[{w(Y) − θ}2] = {E[w(Y) − θ ]}2 + Var[w(Y)]

= (74θ2 − 114θ + 45)/500;
(b) θ = 0.569 to θ = 0.872.

6.8-5 The posterior median (or posterior mean), because
the posterior pdf is symmetric.

6.8-7 d = 2/n.

6.9-5 (c) 2yz is χ2(2n);

⎛⎝χ2
1−α/2(2n)

2y
,
χ2

α/2(2n)

2y

⎞⎠ is the

interval for z, and the interval for θ is⎛⎝ 2y

χ2
α/2(2n)

,
2y

χ2
1−α/2(2n)

⎞⎠.

Chapter 7
7.1-1 [71.35, 76.25].
7.1-3 (a) x = 15.757; (b) s = 1.792; (c) [14.441, 17.073].
7.1-5 [48.467, 72.266] or [48.076, 72.657].
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7.1-7 [19.47, 22.33].
7.1-9 [21.373, ∞).
7.1-11 [22.74, 25.48].
7.1-13 (a) 29.49, 3.41; (b) [0, 31.259];

(c) Yes, because of the linearity of the q–q plot of the
data and the corresponding normal quantiles.

7.1-15 (a) x = 25.475, s = 2.4935; (b) [24.059, ∞).
7.1-17 25.
7.2-1 [−59.725, −43.275].
7.2-3 [−5.845, 0.845].
7.2-5 (−∞, −1.828].
7.2-7 (a) Yes, since a 95% confidence lower bound for μX

is 25.511;
(b) [11.5, 13.7];
(c) Do not change since a 95% confidence lower

bound for μY is 12.238.
7.2-9 (a) [−0.556, 1.450];

(b) [0.367, 1.863];
(c) No for men because the confidence interval con-

tains 0; Yes for women because the confidence
interval does not contain 0.

7.2-11 [157.227, ∞).
7.2-13 [−5.599, −1.373] assuming equal variances, other-

wise, [−5.577, −1.394].
7.3-1 (a) 0.0374; (b) [0.0227, 0.0521]; (c) [0.0252, 0.0550];

(d) [0.0251, 0.0554]; (e) [0, 0.0497].

7.3-3 (a) 0.5061; (b) [0.4608, 0.5513] or [0.4609, 0.5511] or
[0.4610, 0.5510]; (c) Not necessarily because there is
a danger of self-selection bias.

7.3-5 (a) 0.1800; (b) [0.0735, 0.2865]; (c) [0.0977, 0.3080];
(d) [0.0963, 0.3111].

7.3-7 [0.207, 0.253].
7.3-9 (a) 0.2115; (b) [0.1554, 0.2676].
7.3-11 [0.011, 0.089].
7.4-1 117.
7.4-3 (a) 1083; (b) [6.047, 6.049]; (c) $58,800; (d) 0.0145.
7.4-5 (a) 257; (b) Yes.
7.4-7 (a) 1068; (b) 2401; (c) 752.
7.4-9 2305.
7.4-11 (a) 38; (b) [0.621, 0.845].
7.4-13 235.
7.4-15 144.
7.5-1 (a) 0.7812; (b) 0.7844; (c) 0.4528.
7.5-3 (a) (6.31, 7.40); (b) (6.58, 7.22), 0.8204.
7.5-5 (15.40, 17.05).

7.5-7 (a)

Stems Leaves Frequency

101 7 1
102 0 0 0 3
103 0
104 0
105 8 9 2
106 1 3 3 6 6 7 7 8 8 9
107 3 7 9 3
108 8 1
109 1 3 9 3
110 0 2 2 3

(b) π̃0.25 = 106.0, m̃ = 106.7, π̃0.75 = 108.95;
(c) (i) (102.0, 106.6), 89.66%; (ii) (106.3, 107.7),

89.22%; (iii) (107.3, 110.0), 89.66%;
(d) [106.3, 107.7], 89.22%; [105.87, 107.63], 90%.

7.5-9 (a) π̃0.50 = m̃ = 0.92;
(b) (y41, y60) = (0.91, 0.93); 0.9426 using normal

approximation, 0.9431 using binomial;
(c) π̃0.25 = 0.89;
(d) (y17, y34) = (0.88, 0.90); 0.9504 using normal

approximation, 0.9513 using binomial;
(e) π̃0.75 = 0.97;
(f) (y67, y84) = (0.95, 0.98); 0.9504 using normal

approximation, 0.9513 using binomial.
7.5-11 y4 = 5.08 < π0.25 < y15 = 5.27, y14 = 5.27 < π0.5 <

y26 = 5.31, y24 = 5.30 < π0.75 < y35 = 5.35. The cor-
responding exact confidence coefficients are 0.9503,
0.9467, and 0.9602, respectively.

7.6-1 (a) Normal with mean α1 and variance

σ 2

(
1
n

+ x2∑n
i=1(xi − x)2

)
;

(b) α̂1 ± htγ /2(n−2), where

h = σ̂

√
n

n − 2

√√√√ 1
n

+ x2∑n
i=1(xi − x)2

.

7.6-3 (a) [75.283, 85.113], [83.838, 90.777], [89.107, 99.728];
(b) [68.206, 92.190], [75.833, 98.783], [82.258, 106.577].

7.6-5 (a) [4.897, 8.444], [9.464, 12.068], [12.718, 17.004];
(b) [1.899, 11.442], [6.149, 15.383], [9.940, 19.782].

7.6-7 (a) [19.669, 26.856], [22.122, 27.441], [24.048, 28.551],
[25.191, 30.445], [25.791, 32.882];

(b) [15.530, 30.996], [17.306, 32.256], [18.915, 33.684],
[20.351, 35.285], [21.618, 37.055].
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7.6-9 ŷ = 1.1037 + 2.0327x − 0.2974x2 + 0.6204x3.
7.6-11 (a) r = 0.143;

(b) ŷ = 37.68 + 0.83x;
(d) No;
(e) ŷ = 12.845 + 22.566x − 3.218x2;
(f) Yes.

7.6-17 [83.341, 90.259], [0.478, 1.553], [10.265, 82.578].
7.6-19 [29.987, 31.285], [0.923, 1.527], [0.428, 3.018].

Chapter 8
8.1-1 (a) 1.4 < 1.645, do not reject H0;

(b) 1.4 > 1.282, reject H0.
(c) p-value = 0.0808.

8.1-3 (a) z = (x − 170)/2, z ≥ 1.645;
(b) 1.260 < 1.645, do not reject H0;
(c) 0.1038.

8.1-5 (a) t = (x − 3, 315)/(s/
√

30) ≤ −1.699;
(b) −1.414 > −1.699, do not reject H0;
(c) 0.05 < p-value < 0.10 or p-value ≈ 0.08.

8.1-7 (a) t = (x − 47)/(s/
√

20) ≤ −1.729;
(b) −1.789 < −1.729, reject H0;
(c) 0.025 < p-value < 0.05, p-value ≈ 0.045.

8.1-9 (a) −4.60, p-value < 0.0001;
(b) Clearly, reject H0;
(c) [0, 14.573].

8.1-11 1.477 < 1.833, do not reject H0.
8.1-13 (a) t ≤ −1.729;

(b) t = −1.994 < −1.729, so we reject H0;
(c) t = −1.994 > −2.539, so we would fail to

reject H0;
(d) 0.025 < p-value < 0.05. In fact, p-value = 0.0304.

8.1-15 (a) χ2 ≥ 28.87 or s2 ≥ 48.117;
(b) β ≈ 0.10.

8.2-1 (a) (a) t ≤ −1.734; (b) t = −2.221 < −1.734,
reject H0.

8.2-3 (a) |t| = 0.374 < 2.086, do not reject H0 at α = 0.05.
8.2-5 (a) t < −1.706; (b) −1.714 < −1.706, reject H0;

(c) 0.025 < p-value < 0.05.
8.2-7 (a) t < −2.552; (b) t = −3.638 < −2.552, reject H0.
8.2-9 (a) t = −1.67, 0.05 < p-value < 0.10, p-value =

0.054, fail to reject H0.
8.2-11 (a) z = 2.245 > 1.645, reject H0; (b) p-value =

0.0124.
8.2-13 (a) t = 3.440, p-value < 0.005, reject H0.
8.2-15 (c) F0.01(30, 30) = 2.39.

8.2-17 About n = 54 and c = 5.6.
8.3-1 (a) 0.3032 using b(100, 0.08), 0.313 using Poisson

approximation, 0.2902 using normal approxima-
tion and continuity correction;

(b) 0.1064 using b(100, 0.04), 0.111 using Poisson
approximation, 0.1010 using normal approxima-
tion and continuity correction.

8.3-3 (a) α = 0.1056; (b) β = 0.3524.
8.3-5 (a) z = 2.269 > 1.645, reject H0;

(b) z = 2.269 < 2.326, do not reject H0;
(c) p-value = 0.0116.

8.3-7 (a) z = y/n − 0.40√
(0.40)(0.60)/n

≥ 1.645;

(b) z = 2.215 > 1.645, reject H0.
8.3-9 (a) H0: p = 0.037, H1: p > 0.037;

(b) z ≥ 2.326;
(c) z = 2.722 > 2.326, reject H0.

8.3-11 (a) |z| = |̂p1−p̂2|√
p̂(1−p̂)(1/n1+1/n2)

≥ 1.960;

(b) 1.726 < 1.960, do not reject H0.
8.3-13 [0.007, 0.070]; yes, because z = 2.346 > 1.96.

8.3-15 (a) P(at least one match) = 1 − P(no matches) =
1 − 52

52
· · · 47

52
= 0.259.

8.4-1 (a) −55 < −47.08, reject H0; (b) 0.0296;
(c) 9 < 10, do not reject H0; (d) p-value = 0.1334.

8.4-3 (a) y = 17, p-value = 0.0539;
(b) w = 171, p-value = 0.0111;
(c) t = 2.608, p-value = 0.0077.

8.4-5 w = 54, z = 1.533, p-value = 0.0626 for a one-sided
alternative, do not reject H0.

8.4-7 (a) z ≥ 1.282;
(b) w = 66, reject H0;
(c) p-value = 0.0207, making a unit correction for

continuity.
8.4-9 (a) w = 145 > 130.9 or z = 3.024 > 1.96, reject H0;

p-value ≈ 0.0025.
8.4-11 (a) C = {w : w ≤ 79 or w ≥ 131}, α ≈ 0.0539, w =

95, do not reject H0.
8.4-13 (a) C = {w : w ≤ 79 or w ≥ 131}, α ≈ 0.0539, w =

107.5, p-value = 0.8798, do not reject H0.
8.4-15 C = {w : w ≤ 184 or w ≥ 280}, α ≈ 0.0489, w = 241,

do not reject H0.
8.4-17 (a) w = 71, reject H0, p-value = 0.0057;

(b) w = 101, do not reject H0, p-value = 0.7913;
(c) w = 108, do not reject H0, p-value = 0.8501.

8.4-19 (b) w = 223.5 < 224.25, reject H0;
(c) p-value ≈ 0.01;
(d) Reject H0;
(e) The p-values are approximately equal.

8.5-1 (a) K(μ) = 


(
22.5 − μ

3/2

)
; α = 0.0478;

(b) x = 24.1225 > 22.5, do not reject H0;
(c) 0.2793.
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8.5-3 (a) K(μ) = 


(
510.77 − μ

15

)
;

(b) α = 0.10;
(c) 0.5000;
(d) (i) 0.0655, (ii) 0.0150.

8.5-5 n = 25, c = 1.6.
8.5-7 n = 40, c = 678.38.

8.5-9 (a) K(p) =
25∑

y=14

(
25
y

)
py(1 − p)25−y, 0.40 ≤ p ≤ 1.0;

(b) α = 0.0778;
(c) 0.1827, 0.3450, 0.7323, 0.9558, 0.9985, 1.0000;
(e) Yes;
(f) 0.0344.

8.5-11 With n = 130, c = 8.5, α ≈ 0.055, β ≈ 0.094.

8.6-1 (a)
L(80)
L(76)

= exp

⎡⎣ 6
128

n∑
i=1

xi − 624n
128

⎤⎦ ≤ k or

x ≤ c;
(b) n = 43, c = 78.

8.6-3 (a)
L(3)
L(5)

≤ k if and only if
n∑

i=1

xi ≥ (−15/2)[ln(k)−

ln(5/3)n] = c;
(b) x ≥ 4.15;
(c) x ≥ 4.15;
(d) Yes.

8.6-5 (a)
L(50)
L(μ1)

≤ k if and only if x ≤ (−72) ln(k)
2n(μ1 − 50)

+
50 + μ1

2
= c.

8.6-7 (a)
L(0.5)
L(μ)

≤ k if and only if
n∑

i=1

xi ≥

ln(k) + n(0.05 − μ)
ln(0.5/μ)

= c;

(b)
10∑

i=1

xi ≥ 9.

8.6-9 K(θ) = P(Y ≤ 1) = (1 − θ)5 + 5θ(1 − θ)4 =
(1 − θ)4(1 + 4θ), 0 < θ ≤ 1/2.

8.7-1 (a) |−1.80| > 1.645, reject H0;
(b) |−1.80| < 1.96, do not reject H0;
(c) p-value = 0.0718.

8.7-3 (a) x ≥ 230 + 10zα/
√

n or
x − 230
10/

√
n

≥ zα ;

(b) Yes; (c) 1.04 < 1.282, do not reject H0; (d)
p-value = 0.1492.

8.7-5 (a) |2.10| < 2.306, do not reject H0; 0.05 < p-value
< 0.10.

8.7-7 2.20 > 1.282, reject H0; p-value = 0.0139.
8.7-9 (a) When μX = μY = μ and σ 2

X = σ 2
Y = σ 2,

μ̂ =
∑n

i=1 xi + ∑m
i=1 yi

n + m
,

σ̂ 2 =
∑n

i=1(xi − μ̂)2 + ∑m
i=1(yi − μ̂)2

n + m
.

When μX �= μY and σ 2
X = σ 2

Y = σ 2,
μ̂X = x, μ̂Y = y,

σ̂ 2 =
∑n

i=1(xi − x)2 + ∑m
i=1(yi − y)2

n + m
.

λ = 1

{1 + (x − y)2/[
∑n

i=1(xi − x)2 + ∑m
i=1(yi − y)2]}(n+m)/2

,

which is a function of a t random variable with
n + m − 2 degrees of freedom,

t = c
x − y√∑n

i=1(xi − x)2 + ∑m
i=1(yi − y)2

;

(b) When H0 is true, μ̂X = x, μ̂Y = y,

σ̂ 2 =
∑n

i=1(xi − x)2 + ∑m
i=1(yi − ŷ)2

n + m
.

When H1 is true, μ̂X = x, μ̂Y = y,

σ̂ 2
X = 1

n

n∑
i=1

(xi − x)2, σ̂ 2
Y = 1

m

m∑
i=1

(yi − y)2.

λ = (n + m)(n+m)/2

nn/2mm/2

[∑m
i=1(yi − y)2/

∑n
i=1(xi − x)2

]m/2

[
1 + ∑m

i=1(yi − y)2/
∑n

i=1(xi − x)2
](n+m)/2

.

This is a function of an F random variable with

m − 1 and n − 1 degrees of freedom,

F =
∑m

i=1(yi − y)2/(m − 1)∑n
i=1(xi − x)2/(n − 1)

.

8.7-11 (a) β̂ =
∑n

i=1 xiyi∑n
i=1 x2

i

; σ̂ 2 = 1
n

n∑
i=1

(yi − β̂ xi)
2;

λ =
[

1

1 + β̂ 2 ∑n
i=1 x2

i /
∑n

i=1(yi − β̂ xi)2

]n/2

.

(b) λ is a function T = c
β̂

√∑n
i=1 x2

i√∑n
i=1(yi − β̂ xi)2

,

a t random variable with n − 1 degrees of free-
dom.

Chapter 9
9.1-1 6.25 < 7.815, do not reject if α = 0.05; p-value

≈ 0.10.
9.1-3 7.60 < 16.92, do not reject H0.
9.1-5 (a) q3 ≥ 7.815;

(b) q3 = 1.744 < 7.815, do not reject H0.
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9.1-7 Grouping last two classes: 2.75 < 9.210, not group-
ing: 3.46 < 11.34; in either case, do not reject H0.

9.1-9 Using 10 sets of equal probability, 4.44 < 14.07 =
χ2

0.05(7), so do not reject H0.
9.1-11 x = 320.10, s2 = 45.56; using class boundaries

303.5, 307.5, . . . , 335.5, q = 3.21 < 11.07 = χ2
0.05(5),

do not reject.
9.2-1 3.23 < 11.07, do not reject H0.
9.2-3 2.40 < 5.991, do not reject H0.
9.2-5 5.975 < χ2

0.05(2) = 5.991, do not reject the null
hypothesis; however, p-value ≈ 0.05.

9.2-7 8.449 < χ2
0.05(4) = 9.488, do not reject the null

hypothesis; 0.05 < p-value < 0.10; p-value = 0.076.
9.2-9 4.149 > χ2

0.05(1) = 3.841, reject the null hypothesis;
0.025 < p-value < 0.05; p-value ≈ 0.042.

9.2-11 23.78 > 21.03, reject hypothesis of independence.
9.2-13 (a) 39.591>9.488, reject hypothesis of independence;

(b) 7.117>5.991, reject hypothesis of independence;
(c) 11.399>9.488, reject hypothesis of independence.
(d) ≈ 0, 0.0285, 0.0224.

9.3-1 7.875 > 4.26, reject H0.
9.3-3 13.773 > 4.07, reject H0.

9.3-5 (a)

Source SS DF MS F p-value

Treatment 31.112 2 15.556 22.33 0.000

Error 29.261 42 0.697

Total 60.372 44

(b) The respective means are 23.114, 22.556, and
21.120, with the eggs of the shortest lengths in the
nests of the smallest bird.

9.3-7 14.757 > 2.87, reject H0.
9.3-9 (a) F ≥ 4.07;

(b)

Source SS DF MS F p-value

Treatment 3214.9 3 1071.6 4.1059 0.0489

Error 2088.0 8 261.0

Total 5302.9 11

4.1059 > 4.07, reject H0;

(c) 4.1059 < 5.42, do not reject H0;
(d) 0.025 < p-value < 0.05, p-value ≈ 0.05.

9.3-11 10.224 > 4.26, reject H0.
9.3-13 (a) F ≥ 5.61;

(b)

Source SS DF MS F p-value

Treatment 1.6092 2 0.8046 6.3372 0.0062

Error 3.0470 24 0.1270

Total 4.6562 26

6.3372 > 5.61, reject H0.

9.3-15 (a) F = 12.47, there seems to be a difference in feed
supplements;

(b) Yes, supplement B looks best and supplement C
the poorest.

9.4-1 18.00 > 5.14, reject HA.
9.4-3 (a) 7.624 > 4.46, reject HA;

(b) 15.539 > 3.84, reject HB.
9.4-5 (a) 1.723 < 2.90, accept HAB;

(b) 5.533 > 4.15, reject HA;
(c) 28.645 > 2.90, reject HB.

9.4-7 (a) 1.727 < 2.36, do not reject HAB;
(b) 2.238 < 3.26, do not reject HA;
(c) 2.063 < 2.87, do not reject HB.

9.4-9 (a)

Source SS DF MS F p-value

Smoking History 84.899 2 42.449 12.90 0.000

Test 298.072 2 149.036 45.28 0.000

Interaction 2.815 4 0.704 0.21 0.927

Error 59.247 18 3.291

Total 445.032 26

9.5-1 22 Design

Run A B AB Observations

1 − − + X1

2 + − − X2

3 − + − X3

4 + + + X4

(a) [A] = (−X1 + X2 − X3 + X4)/4,

[B] = (−X1 − X2 + X3 + X4)/4,

[AB] = (X1 − X2 − X3 + X4)/4;
(b) It is sufficient to compare the coefficients on

both sides of the equations of X2
1 , X1X2, X1X3,

and X1X4, which are 3/4, −1/2, −1/2, and −1/2,
respectively;

(c) Each is χ2(1).
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9.5-3 [A] is N(0, σ 2/2), so E[(X2 − X1)2/4] = σ 2/2 or
E[(X2 − X1)2/2] = σ 2.

9.5-5 (a) [A] = −4, [B] = 12, [C] = −1.125, [D] = −2.75,
[AB] = 0.5, [AC] = 0.375, [AD] = 0, [BC] =
−0.625, [BD] = 2.25, [CD] = −0.125, [ABC] =
−0.375, [ABD] = 0.25, [ACD] = −0.125,
[BCD] = −0.375, [ABCD] = −0.125;

(b) There is clearly a temperature (B) effect. There
is also a catalyst charge (A) effect and prob-
ably a concentration (D) and a temperature–
concentration (BD) effect.

9.6-1 4.359 > 2.306, reject H0.

9.6-3 −0.45 < −0.3808, reject H0.

9.6-5 [0.419, 0.802].

9.6-7 |r| = 0.252 < 0.6613, do not reject H0.

9.6-11 n = 9.

9.7-1 (a) x = 158.97, s = 12.1525, R = 30.55; (f) Yes.

9.7-3 (a) x = 5.176 + 330 = 335.176, s = 0.5214, R = 1.294;

(f) No.

9.7-5 (b) E(
√

Y ) =
√

2 �
(n

2

)
�

(
n − 1

2

) ;

(c) S = σ
√

Y√
n − 1

so E(S) =
√

2 �
(n

2

)
√

n − 1 �

(
n − 1

2

) σ .

9.7-7 LCL = 0, UCL = 0.1024; (a) 0.0378; (b) 0.1752.
9.7-9 (a) LCL = 0, UCL = 13.99; (b) Yes.



AppendixAppendix

D
Review of Selected
Mathematical Techniques

D.1 Algebra of Sets
D.2 Mathematical Tools for the Hypergeometric

Distribution
D.3 Limits

D.4 Infinite Series
D.5 Integration
D.6 Multivariate Calculus

D.1 ALGEBRA OF SETS
The totality of objects under consideration is called the universal set and is denoted
by S. Each object in S is called an element of S. If a set A is a collection of elements
that are also in S, then A is said to be a subset of S. In applications of probability, S
usually denotes the sample space. An event A is a collection of possible outcomes of
an experiment and is a subset of S. We say that event A has occurred if the outcome
of the experiment is an element of A. The set or event A may be described by listing
all of its elements or by defining the properties that its elements must satisfy.

Example
D.1-1

A four-sided die, called a tetrahedron, has four faces that are equilateral triangles.
These faces are numbered 1, 2, 3, 4. When the tetrahedron is rolled, the outcome of
the experiment is the number of the face that is down. If the tetrahedron is rolled
twice and we keep track of the first roll and the second roll, then the sample space is
that displayed in Figure D.1-1.

Let A be the event that the second roll is a 1 or a 2. That is,

A = {(x, y) : y = 1 or y = 2}.
Let

B = {(x, y) : x + y = 6} = {(2, 4), (3, 3), (4, 2)},
and let

C = {(x, y) : x + y ≥ 7} = {(4, 3), (3, 4), (4, 4)}.
Events A, B, and C are shown in Figure D.1-1.

When a is an element of A, we write a ∈ A. When a is not an element of A,
we write a /∈ A. So, in Example D.1-1, we have (3, 1) ∈ A and (1, 3) /∈ A. If every

521
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(2,3) (3,3)(1,3)

C

(3,2) (4,2)(2,2)(1,2)

(3,1) (4,1)(1,1) (2,1)

A

x

(3,4) (4,4)

(4,3)

(1,4)

y

B

(2,4)

1

2

3

4

1 2 3 4

Figure D.1-1 Sample space for two rolls of a four-sided
die

element of a set A is also an element of a set B, then A is a subset of B and we write
A ⊂ B. In probability, if event B occurs whenever event A occurs, then A ⊂ B. The
two sets A and B are equal (i.e., A = B) if A ⊂ B and B ⊂ A. Note that it is always
true that A ⊂ A and A ⊂ S, where S is the universal set. We denote the subset
that contains no elements by ∅. This set is called the null, or empty, set. For all sets
A, ∅ ⊂ A.

The set of elements of either A or B or possibly both A and B is called the union
of A and B and is denoted A ∪ B. The set of elements of both A and B is called
the intersection of A and B and is denoted A ∩ B. The complement of a set A is the
set of elements of the universal set S that are not in the set A and is denoted A′. In
probability, if A and B are two events, the event that at least one of the two events
has occurred is denoted by A ∪ B, and the event that both events have occurred is
denoted by A∩B. The event that A has not occurred is denoted by A′, and the event
that A has not occurred but B has occurred is denoted by A′ ∩B. If A∩B = ∅, we say
that A and B are mutually exclusive. In Example D.1-1, B ∪ C = {(x, y) : x + y ≥ 6},
A ∩ B = {(4, 2)}, and A ∩ C = ∅. Note that A and C are mutually exclusive. Also,
C′ = {(x, y) : x + y ≤ 6}.

The operations of union and intersection may be extended to more than two
sets. Let A1, A2, . . . , An be a finite collection of sets. Then the union

A1 ∪ A2 ∪ · · · ∪ An =
n⋃

k=1

Ak

is the set of elements that belong to at least one Ak, k = 1, 2, . . . , n. The intersection

A1 ∩ A2 ∩ · · · ∩ An =
n⋂

k=1

Ak

is the set of all elements that belong to every Ak, k = 1, 2, . . . , n. Similarly, let
A1, A2, . . . , An, . . . be a countable collection of sets. Then x belongs to the union

A1 ∪ A2 ∪ A3 ∪ · · · =
∞⋃

k=1

Ak
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if x belongs to at least one Ak, k = 1, 2, 3, . . . . Also, x belongs to the intersection

A1 ∩ A2 ∩ A3 ∩ · · · =
∞⋂

k=1

Ak

if x belongs to every Ak, k = 1, 2, 3, . . . .

Example
D.1-2

Let

Ak =
{

x :
10

k + 1
≤ x ≤ 10

}
, k = 1, 2, 3, . . . .

Then
8⋃

k=1

Ak =
{

x :
10
9

≤ x ≤ 10
}

;

∞⋃
k=1

Ak = {x : 0 < x ≤ 10}.

Note that the number zero is not in this latter union, since it is not in at least one of
the sets A1, A2, A3, . . . . Also,

8⋂
k=1

Ak = {x : 5 ≤ x ≤ 10} = A1

and
∞⋂

k=1

Ak = {x : 5 ≤ x ≤ 10} = A1,

since A1 ⊂ Ak, k = 1, 2, 3, . . . .

A convenient way to illustrate operations on sets is with a Venn diagram. In
Figure D.1-2, the universal set S is represented by the rectangle and its interior, and
the subsets of S are represented by the points enclosed by the ellipses, as well as by
the complement of the union of those subsets. The sets under consideration are the
shaded regions.

Set operations satisfy several properties. For example, if A, B, and C are subsets
of S, we have the following laws:

Commutative Laws: A ∪ B = B ∪ A

A ∩ B = B ∩ A

Associative Laws: (A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C)

Distributive Laws A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

De Morgan’s Laws: (A ∪ B)′ = A′ ∩ B′

(A ∩ B)′ = A′ ∪ B′
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A A B

A

A B

A B

C

S

S

S

S

A∪B

A∪B∪CA∩B

Figure D.1-2 Algebra of sets

A Venn diagram will be used to justify the first of De Morgan’s laws. In
Figure D.1-3(a), A ∪ B is represented by horizontal lines, and thus (A ∪ B)′ is the
region represented by vertical lines. In Figure D.1-3(b), A′ is indicated with hori-
zontal lines and B′ is indicated with vertical lines. An element belongs to A′ ∩ B′
if it belongs to both A′ and B′. Thus, the crosshatched region represents A′ ∩ B′.
Clearly, this crosshatched region is the same as that shaded with vertical lines in
Figure D.1-3(a).

A

(a) (b)

B A B

Figure D.1-3 Venn diagrams illustrating De
Morgan’s laws
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D.2 MATHEMATICAL TOOLS FOR THE HYPERGEOMETRIC
DISTRIBUTION

Let X have a hypergeometric distribution. That is, the pmf of X is

f (x) =

(
N1

x

)(
N2

n − x

)
(

N1 + N2

n

)

=

(
N1

x

)(
N2

n − x

)
(

N
n

) , x ≤ n, x ≤ N1, n − x ≤ N2.

To show that
∑n

x=0 f (x) = 1 and to find the mean and variance of X, we use the
following theorem.

Theorem
D.2-1

(
N
n

)
=

n∑
x=0

(
N1

x

)(
N2

n − x

)
,

where N = N1 + N2 and it is understood that
(

k
j

)
= 0 if j > k.

Proof Because N = N1 + N2, we have the identity

(1 + y)N ≡ (1 + y)N1 (1 + y)N2 . (D.2-1)

We will expand each of these binomials, and since the polynomials on each side
are identically equal, the coefficients of yn on each side of Equation D.2-1 must be
equal. Using the binomial expansion, we find that the expansion of the left side of
Equation D.2-1 is

(1 + y)N =
N∑

k=0

(
N
k

)
yk

=
(

N
0

)
+

(
N
1

)
y + · · · +

(
N
n

)
yn + · · · +

(
N
N

)
yN .

The right side of Equation D.2-1 becomes

(1 + y)N1 (1 + y)N2 =
[(

N1

0

)
+

(
N1

1

)
y + · · · +

(
N1

n

)
yn + · · · +

(
N1

N1

)
yN1

]

×
[(

N2

0

)
+

(
N2

1

)
y + · · · +

(
N2

n

)
yn + · · · +

(
N2

N2

)
yN2

]
.
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The coefficient of yn in this product is(
N1

0

)(
N2

n

)
+

(
N1

1

)(
N2

n − 1

)
+ · · · +

(
N1

n

)(
N2

0

)
=

n∑
x=0

(
N1

x

)(
N2

n − x

)
,

and this sum must be equal to
(

N
n

)
, the coefficient of yn on the left side of

Equation D.2-1. �

Using Theorem D.2-1, we find that if X has a hypergeometric distribution with
pmf f (x), then

n∑
x=0

f (x) =
n∑

x=0

(
N1

x

)(
N2

n − x

)
(

N
n

) = 1.

To find the mean and variance of a hypergeometric random variable, it is useful
to note that, with n > 0,

(
N
n

)
= N!

n! (N − n)! = N
n

· (N − 1)!
(n − 1)! (N − n)! = N

n

(
N − 1
n − 1

)
.

The mean of a hypergeometric random variable X is

μ =
n∑

x=0

xf (x)

=

n∑
x=1

x · N1!
x! (N1 − x)! · N2!

(n − x)! (N2 − n + x)!(
N
n

)

=
N1

n∑
x=1

(N1 − 1)!
(x − 1)! (N1 − x)! · N2!

(n − x)! (N2 − n + x)!(
N
n

) .

If we now make the change of variables k = x − 1 in the summation and replace

(
N
n

)
with

(
N
n

)(
N − 1
n − 1

)
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in the denominator, the previous equation becomes

μ = N1(
N
n

)
n−1∑
k=0

(N1 − 1)!
k! (N1 − 1 − k)! · N2!

(n − k − 1)! (N2 − n + k + 1)!(
N − 1
n − 1

)

= n
(

N1

N

) n−1∑
k=0

(
N1 − 1

k

)(
N2

n − 1 − k

)
(

N − 1
n − 1

) = n
(

N1

N

)
,

because, from Theorem D.2-1, the summation in the expression for μ is equal to(
N − 1
n − 1

)
.

Note that

Var(X) = σ 2 = E[(X − μ)2]

= E[X2] − μ2

= E[X(X − 1)] + E(X) − μ2.

So, to find the variance of X, we first find E[X(X − 1)]:

E[X(X − 1)] =
n∑

x=0

x(x − 1)f (x)

=

n∑
x=2

x(x − 1)
N1!

x! (N1 − x)! · N2!
(n − x)! (N2 − n + x)!(

N
n

)

= N1(N1 − 1)

n∑
x=2

(N1 − 2)!
(x − 2)! (N1 − x)! · N2!

(n − x)! (N2 − n + x)!(
N
n

) .

In the summation, let k = x − 2, and in the denominator, note that

(
N
n

)
= N!

n!(N − n)! = N(N − 1)
n(n − 1)

(
N − 2
n − 2

)
.
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Thus, from Theorem D.2-1,

E[X(X − 1)] = N1(N1 − 1)
N(N − 1)
n(n − 1)

n−2∑
k=0

(
N1 − 2

k

)(
N2

n − 2 − k

)
(

N − 2
n − 2

)

= N1(N1 − 1)(n)(n − 1)
N(N − 1)

.

Hence, the variance of a hypergeometric random variable is, after some algebraic
manipulations,

σ 2 = N1(N1 − 1)(n)(n − 1)
N(N − 1)

+ nN1

N
−

(
nN1

N

)2

= n
(

N1

N

)(
N2

N

)(
N − n
N − 1

)
.

D.3 LIMITS
We refer the reader to the many fine books on calculus for the definition of a limit
and the other concepts used in that subject. Here we simply remind you of some of
the techniques we find most useful in probability and statistics.

Early in a calculus course, the existence of the following limit, denoted by the
letter e, is discussed:

e = lim
t→0

(1 + t)1/t = lim
n→∞

(
1 + 1

n

)n

.

Of course, e is an irrational number, which, to six significant figures, equals 2.71828.
Often, it is rather easy to see the value of certain limits. For example, with

−1 < r < 1, the sum of the geometric progression allows us to write

lim
n→∞(1 + r + r2 + · · · + rn−1) = lim

n→∞

(
1 − rn

1 − r

)
= 1

1 − r
.

That is, the limit of the ratio (1−rn)/(1−r) is not difficult to find because lim
n→∞ rn = 0

when −1 < r < 1.
However, it is not that easy to determine the limit of every ratio; for example,

consider

lim
b→∞

(be−b) = lim
b→∞

(
b
eb

)
.

Since both the numerator and the denominator of the latter ratio are unbounded,
we can use L’Hôpital’s rule, taking the limit of the ratio of the derivative of the
numerator to the derivative of the denominator. We then have

lim
b→∞

(
b
eb

)
= lim

b→∞

(
1
eb

)
= 0.
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This result can be used in the evaluation of the integral∫ ∞

0
xe−x dx = lim

b→∞

∫ b

0
xe−x dx

= lim
b→∞

[−xe−x − e−x]b
0

= lim
b→∞

[
1 − be−b − e−b

]
= 1.

Note that

d
dx

[−xe−x − e−x ] = xe−x − e−x + e−x = xe−x;

that is, −xe−x − e−x is the antiderivative of xe−x.
Another limit of importance is

lim
n→∞

(
1 + b

n

)n

= lim
n→∞ en ln(1+b/n),

where b is a constant.
Since the exponential function is continuous, the limit can be taken to the

exponent. That is,

lim
n→∞ exp[n ln(1 + b/n)] = exp[ lim

n→∞ n ln(1 + b/n)].

By L’Hôpital’s rule, the limit in the exponent is equal to

lim
n→∞

ln(1 + b/n)
1/n

= lim
n→∞

−b/n2

1 + b/n
−1/n2

= lim
n→∞

b
1 + b/n

= b.

Since this limit is equal to b, the original limit is

lim
n→∞

(
1 + b

n

)n

= eb.

Applications of this limit in probability occur with b = −1, yielding

lim
n→∞

(
1 − 1

n

)n

= e−1.

D.4 INFINITE SERIES
A function f (x) possessing derivatives of all orders at x = b can be expanded in the
following Taylor series:

f (x) = f (b) + f ′(b)
1! (x − b) + f ′′(b)

2! (x − b)2 + f ′′′(b)
3! (x − b)3 + · · · .

If b = 0, we obtain the special case that is often called the Maclaurin series;

f (x) = f (0) + f ′(0)
1! x + f ′′(0)

2! x2 + f ′′′(0)
3! x3 + · · · .
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For example, if f (x) = ex, so that all derivatives of f (x) = ex are f (r)(x) = ex, then
f (r)(0) = 1, for r = 1, 2, 3, . . . . Thus, the Maclaurin series expansion of f (x) = ex is

ex = 1 + x
1! + x2

2! + x3

3! + x4

4! + · · · .

The ratio test,

lim
n→∞

∣∣∣∣ xn/n!
xn−1/(n − 1)!

∣∣∣∣ = lim
n→∞

∣∣∣x
n

∣∣∣ = 0,

shows that the Maclaurin series expansion of ex converges for all real values of x.
Note, for examples, that

e = 1 + 1
1! + 1

2! + 1
3! + · · ·

and

e−1 = 1 − 1
1! + 1

2! − 1
3! + · · · + (−1)n

n! + · · · .

As another example, consider

h(w) = (1 − w)−r,

where r is a positive integer. Here

h′(w) = r(1 − w)−(r+1),

h′′(w) = (r)(r + 1)(1 − w)−(r+2),

h′′′(w) = (r)(r + 1)(r + 2)(1 − w)−(r+3),

... .

In general, h(k)(0) = (r)(r + 1) · · · (r + k − 1) = (r + k − 1)!/(r − 1)!. Thus,

(1 − w)−r = 1 + (r + 1 − 1)!
(r − 1)! 1! w + (r + 2 − 1)!

(r − 1)! 2! w2 + · · · + (r + k − 1)!
(r − 1)! k! wk + · · ·

=
∞∑

k=0

(
r + k − 1

r − 1

)
wk.

This is often called the negative binomial series. Using the ratio test, we obtain

lim
n→∞

∣∣∣∣ wn(r + n − 1)!/[(r − 1)! n!]
wn−1(r + n − 2)!/[(r − 1)! (n − 1)!]

∣∣∣∣ = lim
n→∞

∣∣∣∣w(r + n − 1)
n

∣∣∣∣ = |w|.

Thus, the series converges when |w| < 1, or −1 < w < 1.
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A negative binomial random variable receives its name from this negative
binomial series. Before showing that relationship, we note that, for −1 < w < 1,

h(w) =
∞∑

k=0

(
r + k − 1

r − 1

)
wk = (1 − w)−r,

h′(w) =
∞∑

k=1

(
r + k − 1

r − 1

)
kwk−1 = r(1 − w)−r−1,

h′′(w) =
∞∑

k=2

(
r + k − 1

r − 1

)
k(k − 1)wk−2 = r(r + 1)(1 − w)−r−2.

The pmf of a negative binomial random variable X is

g(x) =
(

x − 1
r − 1

)
prqx−r, x = r, r + 1, r + 2, . . . .

In the series expansion for h(w) = (1 − w)−r, let x = k + r. Then

∞∑
x=r

(
x − 1
r − 1

)
wx−r = (1 − w)−r.

Letting w = q in this equation, we see that

∞∑
x=r

g(x) =
∞∑

x=r

(
x − 1
r − 1

)
prqx−r = pr(1 − q)−r = 1.

That is, g(x) does satisfy the properties of a pmf.
To find the mean of X, we first find

E(X − r) =
∞∑

x=r

(x − r)
(

x − 1
r − 1

)
prqx−r =

∞∑
x=r+1

(x − r)
(

x − 1
r − 1

)
prqx−r.

Letting k = x − r in this latter summation and using the expansion of h′(w) gives us

E(X − r) =
∞∑

k=1

(k)
(

r + k − 1
r − 1

)
prqk

= prq
∞∑

k=1

(k)
(

r + k − 1
r − 1

)
kqk−1

= prqr(1 − q)−r−1 = r
(

q
p

)
.

Thus,

E(X) = r + r
(

q
p

)

= r
(

1 + q
p

)
= r

(
1
p

)
.
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Similarly, using h′′(w), we can show that

E[(X − r)(X − r − 1)] =
(

q2

p2

)
(r)(r + 1).

Hence,

Var(X) = Var(X − r) =
(

q2

p2

)
(r)(r + 1) + r

(
q
p

)
− r2

(
q2

p2

)
= r

(
q
p2

)
.

A special case of the negative binomial series occurs when r = 1, whereupon we
obtain the well-known geometric series

(1 − w)−1 = 1 + w + w2 + w3 + · · · ,

provided that −1 < w < 1.
The geometric series gives its name to the geometric probability distribution.

Perhaps you recall the geometric series

g(r) =
∞∑

k=0

ark = a
1 − r

, (D.4-1)

for −1 < r < 1. To find the mean and the variance of a geometric random variable
X, simply let r = 1 in the respective formulas for the mean and the variance of
a negative binomial random variable. However, if you want to find the mean and
variance directly, you can use

g′(r) =
∞∑

k=1

akrk−1 = a
(1 − r)2

(D.4-2)

and

g′′(r) =
∞∑

k=2

ak(k − 1)rk−2 = 2a
(1 − r)3

(D.4-3)

to find E(X) and E[X(X − 1)], respectively.
In applications associated with the geometric random variable, it is also useful

to recall that the nth partial sum of a geometric series is

sn =
n−1∑
k=0

ark = a(1 − rn)
1 − r

.

A bonus in this section is a logarithmic series that produces a useful tool in daily
life. Consider

f (x) = ln(1 + x),

f ′(x) = (1 + x)−1,

f ′′(x) = (−1)(1 + x)−2,

f ′′′(x) = (−1)(−2)(1 + x)−3,

... .
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Thus, f (r)(0) = (−1)r−1(r − 1)! and

ln(1 + x) = 0!
1! x − 1!

2! x2 + 2!
3! x3 − 3!

4! x4 + · · ·

= x − x2

2
+ x3

3
− x4

4
+ · · · ,

which converges for −1 < x < 1.
Now consider the following question: “How long does it take money to double

in value if the interest rate is i?” Assuming that compounding is on an annual basis
and that you begin with $1, after one year you have $(1 + i), and after two years the
number of dollars you have is

(1 + i) + i(1 + i) = (1 + i)2.

Continuing this process, we find that the equation that we have to solve is

(1 + i)n = 2,

the solution of which is

n = ln 2
ln(1 + i)

.

To approximate the value of n, recall that ln 2 ≈ 0.693 and use the series expansion
of f (x) = ln(1 + x) to obtain

n ≈ 0.693

i − i2

2
+ i3

3
− · · ·

.

Due to the alternating series in the denominator, the denominator is a little less than
i. Frequently, brokers increase the numerator a little (say, to 0.72) and simply divide
by i, obtaining the “well-known Rule of 72,” namely,

n ≈ 72
100i

. (D.4-4)

For example, if i = 0.08, then n ≈ 72/8 = 9 provides an excellent approximation.
(The answer is about 9.006.) Many people find that the Rule of 72 is extremely useful
in dealing with money matters.

D.5 INTEGRATION
Say F ′(t) = f (t), a ≤ t ≤ b. Then∫ b

a
f (t) dt = F(b) − F(a).

Thus, if u(x) is such that u′(x) exists and a ≤ u(x), then∫ u(x)

a
f (t) dt = F[u(x)] − F(a).
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Taking derivatives of this latter equation, we obtain

d
dx

[∫ u(x)

a
f (t) dt

]
= F ′[u(x)]u′(x) = f [u(x)]u′(x).

For example, with 0 < v,

d
dv

[
2
∫ √

v

0

1√
2π

e−z2/2 dz

]
=

(
2√
2π

e−v/2
)

1
2
√

v
= v(1/2)−1 e−v/2

√
π 21/2

.

This formula is needed in proving that if Z is N(0, 1), then Z2 is χ2(1).
The preceding example could be worked by first changing variables in the

integral—that is, first using the fact that∫ b

a
f (x) dx =

∫ u(b)

u(a)
f [w(y)] w′(y) dy,

where the monotonically increasing (decreasing) function x = w(y) has derivative
w′(y) and inverse function y = u(x). In that example, a = 0, b = √

v, z = √
t,

z′ = 1/2
√

t, and t = z2, so that

2
∫ √

v

0

1√
2π

e−z2/2 dz = 2
∫ v

0

1√
2π

e−t/2
(

1

2
√

t

)
dt.

The derivative of the latter, by one form of the fundamental theorem of calculus, is

2
1√
2π

e−v/2
(

1
2
√

v

)
= v(1/2)−1 e−v/2

√
π 21/2

.

Integration by parts is frequently needed. It is based upon the derivative of the
product of two functions of x—say, u(x) and v(x). The derivative is

d
dx

[u(x)v(x)] = u(x)v′(x) + v(x)u′(x).

Thus,

[u(x)v(x)]b
a =

∫ b

a
u(x)v′(x) dx +

∫ b

a
v(x)u′(x) dx

or, equivalently, ∫ b

a
u(x)v′(x) dx = [u(x)v(x)]b

a −
∫ b

a
v(x)u′(x) dx.

For example, letting u(x) = x and v′(x) = e−x, we obtain∫ b

0
xe−x dx = [−xe−x]b

0 −
∫ b

0
(1)(−e−x) dx

= −be−b + [−e−x]b
0 = −be−b − e−b + 1,

because u′(x) = 1 and v(x) = −e−x.
With some thought about the product rule of differentiation, we see that it is not

always necessary to assign u(x) and v′(x), however. For example, an integral such as∫ b

0
x3e−x dx
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would require integration by parts three times, the first of which would assign
u(x) = x3 and v′(x) = e−x. But note that

d
dx

(−x3e−x) = x3e−x − 3x2e−x.

That is, −x3e−x is “almost” the antiderivative of x3e−x—except for the undesirable
term −3x2e−x. Clearly,

d
dx

(−x3e−x − 3x2e−x) = x3e−x − 3x2e−x + 3x2e−x − 6xe−x = x3e−x − 6xe−x.

So we eliminated that undesirable term −3x2e−x, but got another one, namely,
−6xe−x. However,

d
dx

(−x3e−x − 3x2e−x − 6xe−x) = x3e−x − 6e−x,

and finally,

d
dx

(−x3e−x − 3x2e−x − 6xe−x − 6e−x) = x3e−x.

That is,

−x3e−x − 3x2e−x − 6xe−x − 6e−x

is the antiderivative of x3e−x and can be written down without ever assigning
u and v.

As practice in this technique, consider∫ π/2

0
x2 cos x dx =

[
x2 sin x + 2x cos x − 2 sin x

]π/2

0
.

Now, x2 sin x is our first guess because we obtain x2 cos x when we differentiate the
sin x factor. But we get the undesirable term 2x sin x. That is why we add 2x cos x, as
the derivative of cos x is − sin x and −2x sin x eliminates 2x sin x. But the second term
of the derivative of 2x cos x is 2 cos x, which we get rid of by taking the derivative of
the next term, −2 sin x.

Possibly the best advice is to take the derivative of the right-hand member, here

x2 sin x + 2x cos x − 2 sin x,

and note how the terms cancel, leaving only x2 cos x. Then practice on integrals
such as ∫

x4e−x dx,
∫

x3 sin x dx,
∫

x5ex dx.

D.6 MULTIVARIATE CALCULUS
We really only make some suggestions about functions of two variables, say,

z = f (x, y).

But these remarks can be extended to more than two variables. The two first partial

derivatives with respect to x and y, denoted, respectively, by
∂z
∂x

and
∂z
∂y

, can be found
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in the usual manner of differentiating by treating the “other” variable as a constant.
For instance,

∂(x2y + sin x)
∂x

= 2xy + cos x

and

∂(exy2
)

∂y
= (exy2

)(2xy).

The second partial derivatives are simply first partial derivatives of the first
partial derivatives. If z = exy2

, then

∂

∂x

(
∂z
∂y

)
= ∂

∂x
(2xyexy2

) = 2xyexy2
(y2) + 2yexy2

.

For notation, we use

∂

∂x

(
∂z
∂x

)
= ∂2z

∂x2
,

∂

∂x

(
∂z
∂y

)
= ∂2z

∂x∂y
,

∂

∂y

(
∂z
∂x

)
= ∂2z

∂y∂x
,

∂

∂y

(
∂z
∂y

)
= ∂2z

∂y2
,

In general,

∂2z
∂x∂y

= ∂2z
∂y∂x

,

provided that the partial derivatives involved are continuous functions.
As you might guess, at a relative maximum or minimum of z = f (x, y), we have

∂z
∂x

= 0 and
∂z
∂y

= 0,

provided that the derivatives exist. To assure us that we have a maximum or
minimum, we need (

∂2z
∂x∂y

)2

−
(

∂2z
∂x2

)(
∂2z
∂y2

)
< 0.

Moreover, we have a relative minimum if
∂2z

∂x2
> 0 and a relative maximum if

∂2z

∂x2
< 0.

A major problem in statistics, called least squares, is to find a and b such that the
point (a, b) minimizes

K(a, b) =
n∑

i=1

(yi − a − bxi)2.

Thus, the solution of the two equations

∂K
∂a

=
n∑

i=1

2(yi − a − bxi)(−1) = 0
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and

∂K
∂b

=
n∑

i=1

2(yi − a − bxi)(−xi) = 0

could give us a point (a, b) that minimizes K(a, b). Taking second partial derivatives,
we obtain

∂2K
∂a2

=
n∑

i=1

2(−1)(−1) = 2n > 0,

∂2K
∂b2

=
n∑

i=1

2(−xi)(−xi) = 2
n∑

i=1

x2
i > 0,

and

∂2K
∂a∂b

=
n∑

i=1

2(−1)(−xi) = 2
n∑

i=1

xi ,

and note that (
2

n∑
i=1

xi

)2

− (2n)

(
2

n∑
i=1

x2
i

)
< 0

because (
∑n

i=1 xi)2 < n
∑n

i=1 x2
i provided that not all the xi are equal. Noting that

∂2z

∂x2
> 0, we see that the solution of the two equations,

∂K
∂a

= 0 and
∂K
∂b

= 0,

provides the only minimizing solution.
The double integral ∫∫

A

f (x, y) dx dy

can usually be evaluated by an iteration—that is, by evaluating two successive sin-
gle integrals. For example, say A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}, as given in
Figure D.6-1.

Then ∫∫
A

(x + x3y2) dx dy =
∫ 1

0

[ ∫ x

0
(x + x3y2) dy

]
dx

=
∫ 1

0

[
xy + x3y3

3

]x

0

dx

=
∫ 1

0

(
x2 + x6

3

)
dx =

[
x3

3
+ x7

3 · 7

]1

0

= 1
3

+ 1
21

= 8
21

.
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x

y

A

0.5

1

0.50
0

1

Figure D.6-1 A = {(x, y) :0 ≤ x ≤ 1, 0 ≤ y ≤ x}

When placing the limits on the iterated integral, note that, for each fixed x between
0 and 1, y is restricted to the interval from 0 to x. Also, in the inner integral on y, x is
treated as a constant.

In evaluating this double integral, we could have restricted y to the interval from
0 to 1. Then x would be between y and 1. That is, we would have evaluated the
iterated integral

∫ 1

0

[∫ 1

y
(x + x3y2) dx

]
dy =

∫ 1

0

[
x2

2
+ x4y2

4

]1

y

dy

=
∫ 1

0

[
1
2

+ y2

4
− y2

2
− y6

4

]
dy

=
[

y
2

− y3

3 · 4
− y7

7 · 4

]1

0

= 1
2

− 1
12

− 1
28

= 8
21

.

Finally, we can change variables in a double integral∫∫
A

f (x, y) dx dy.

If f (x, y) is a joint pdf of random variables X and Y of the continuous type, then
the double integral represents P[(X, Y) ∈ A]. Consider only one-to-one transfor-
mations—say, z = u1(x, y) and w = u2(x, y)—with inverse transformation given by
x = v1(z, w) and y = v2(z, w). The determinant of order 2,
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J =

∣∣∣∣∣∣∣∣∣
∂x
∂z

∂x
∂w

∂y
∂z

∂y
∂w

∣∣∣∣∣∣∣∣∣ ,

is called the Jacobian of the inverse transformation. Moreover, say the region A
maps onto the region B in (z, w) space. Since we are usually dealing with probabili-
ties in this book, we fixed the sign of the integral so that it is positive (by using the
absolute value of the Jacobian). Then it follows that∫∫

A

f (x, y) dx dy =
∫∫
B

f [v1(z, w), v2(z, w)] |J| dz dw.

To illustrate, let

f (x, y) = 1
2π

e−(x2+y2)/2, −∞ < x < ∞, − ∞ < y < ∞,

which is the joint pdf of two independent normal variables, each with mean 0 and
variance 1. Say A = {(x, y) : 0 ≤ x2 + y2 ≤ 1}, and consider

P(A) =
∫∫
A

f (x, y) dx dy.

This integration is impossible to deal with directly in the x, y variables. However,
consider the inverse transformation to polar coordinates, namely,

x = r cos θ , y = r sin θ ,

with Jacobian

J =
∣∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = r(cos2 θ + sin2 θ) = r.

Since A maps onto B = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ < 2π}, we have

P(A) =
∫ 2π

0

(∫ 1

0

1
2π

e−r2/2 r dr

)
dθ

=
∫ 2π

0

[
− 1

2π
e−r2/2

]1

0
dθ

=
∫ 2π

0

1
2π

(1 − e−1/2) dθ

= 1
2π

(1 − e−1/2) 2π = 1 − e−1/2.
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Analysis-of-variance table, 439
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Assignment of probability, 9
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Asymptotic distributions, 275

B
Basu’s theorem, 287
Bayes’ formula, 36
Bayes’ theorem, 35, 36
Bayes, Thomas, 40, 161, 288
Bayesian estimation, 288
Bernoulli

distribution, 66, 504
experiment, 65
trials, 65

Bernoulli distribution, 71
Bernoulli, Daniel, 85
Bernoulli, Jacob, 85
Bernoulli, Nicolaus II, 85
Bernstein, Peter L., 224
Best critical region, 400
Best-fitting line, 136
Beta distribution, 176, 179, 297, 505
Biased estimator, 261
Binomial coefficients, 15
Binomial distribution, 67, 206, 217, 249,

504
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Bivariate normal distribution, 157
Bootstrapping, 349
Box plot, 243
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Box–Muller transformation, 178
Box-and-whisker diagram, 243, 441
Burr distribution, 300

C
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Chi-square distribution, 101, 111, 190,
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422
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Column effects, 450
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Complement of A, 3
Complement of a set, 522
Composite hypothesis, 355
Compounding, 294
Conditional mean, 142, 152
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Conditional probability, 21
Conditional variance, 142, 152
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Confidence interval, 301
Confidence intervals

difference of means, 308, 506
distribution-free, 331
for σX/σY , 318
for means, 302, 305, 308, 506
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for proportions, 318, 507
for ratio of variances, 318
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for ρ, 465
for standard deviations, 308, 507
for variances, 308, 507
one-sided, 306, 320
ratio of variances, 507
two-sided, 306
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Contingency table, 429
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Continuous-type random variables, 88
Contours for bivariate normal

distribution, 158
Control charts

for flaws, 473
for p, 472
for the mean, 471
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for the standard deviation, 471

Converges in probability, 216
Convolution formula, 180, 191
Correlation analysis, 462

Correlation coefficient, 134
distribution, 464
of sample, 463

Covariance, 134
Cox, Sir David R., 223
Craps, 28
Critical region, 355, 376, 407
cdf, 88
Cumulative distribution function, 43,

68, 88

D
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continuous-type, 225
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de Fermat, Pierre, 40
de Laplace, Marquis Pierre Simon, 223
de Méré, Chevalier, 39
de Moivre, Abraham, 223, 300
De Morgan’s laws, 4, 523
Deciles, 241
Degrees of freedom, 101, 195, 439
Deming, W. Edwards, viii
Density histogram, 226
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Discrete outcome space, 43
Discrete-type random variables, 225
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Distribution
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beta, 176, 179, 297, 505
binomial, 67, 206, 217, 249, 504
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Burr, 300
Cauchy, 165, 348
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505
discrete uniform, 43, 504
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empirical, 227, 234
exponential, 96, 505
extreme value, 121, 170
F, 177, 295, 439, 447
gamma, 99, 294, 505
geometric, 54, 74, 504, 532
Gompertz, 117
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Laplace, 174
limiting, 218
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logistic, 94, 170
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Makeham, 120
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multinomial, 416, 424
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multivariate hypergeometric, 131
negative binomial, 74, 504, 531
normal, 105, 192, 201, 223, 505
of R, 464
of linear combination, 184
of sample mean, 193
Pareto, 186
Poisson, 80, 217, 504
rectangular, 88
shifted exponential, 104
standard normal, 107
Student’s t, 196, 199, 296
sum of chi-square variables, 190
t, 294
trinomial, 132, 139, 145
uniform, 43, 88, 504, 505
Weibull, 116, 122
Wilcoxon, 385
Zipf’s law, 299

Distribution function, 43, 68, 88
Distribution function technique, 163
Distribution-free confidence intervals,
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Distribution-free tests, 381
Distributive laws, 4, 523
Distributive operator, 53
Double exponential distribution, 174
Double integral, 537

E
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Efron, Brad, 354
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Empirical cumulative distribution

function, 234
Empirical distribution, 227, 234
Empty set, 3, 522
Equally likely outcomes, 9
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Estimator, 186, 257

biased, 261
efficiency of, 279
maximum likelihood, 258
method of moments, 263
minimum chi-square, 419
minimum variance unbiased, 279
point, 257
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unbiased, 261

Event(s), 2, 521
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exhaustive, 3
has occurred, 2
independent, 29, 30
mutually exclusive, 3

statistically independent, 30
Exchangeable, 297
Exhaustive events, 3
Expected value, 51, 129, 183, 184
Expected value of X, 89
Exploratory data analysis, 238
Exponential distribution, 96, 505
Exponential form, 282
Extreme value distribution, 121, 170

F
F distribution, 177, 295, 439, 447
Factorial designs, 455
Factorial moment, 60
Factorization Theorem, 280
Factors, 455
Failure rate, 115
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inner, 244
outer, 244

Fill problem, 113
First quartile, 92, 241, 242
Fisher, Ronald A., 479
Fisher, Sir Ronald A., 222, 300, 478
Fisher–Neyman factorization theorem,

280
Five-number summary, 242
Force of mortality, 115
Frequency histogram, 226

G
Gamma distribution, 99, 294, 505
Gamma function, 99
Gauss, Carl Friedrich, 223
Geometric distribution, 54, 74, 504, 532
Gibbs sampler, 299
Gompertz law, 117
Gosset, William Sealy, 222

H
Half normal distribution, 171
Half-unit correction for continuity, 207
Hierarchical Bayes models, 299
Histogram

density, 226
frequency, 226
probability, 44
relative frequency, 226

History, 39, 85, 122, 160, 222, 300, 354
Hypergeometric distribution, 45, 504,

525
Hyperprior, 299

I
Improper prior, 296
Independent, 182
Independent events, 29
Independent random variables, 127, 149

Independent trials, 32
Infinite series, 529
Inner fences, 244
Integration, 533
Interaction, 449
Interquartile range, 242, 245
Intersection of A and B, 3
Intersection of sets, 522
IQR, 242

J
Jacobian, 171, 296, 539
Joint probability density function, 146
Joint probability mass function, 125
Jointly sufficient statistics, 283

K
Kendall, Sir Maurice G., 223

L
Laplace pdf, 174
Law of large numbers, 85, 216
Least squares, 139
Least squares estimate, 268
Least squares regression line, 136
Level curves for bivariate normal

distribution, 158
L’Hôpital’s rule, 528
Liapounov, 384
Likelihood function, 257, 258
Likelihood ratio, 406
Limiting distribution, 218
Limiting moment-generating functions,

218
Limits, 528
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M
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Mann-Whitney-Wilcoxon test, 412
Maple, 212, 385
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Marginal probability density function,
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Marginal probability mass function, 127
Markov chain Monte Carlo (MCMC),

299
Mathematical expectation, 51, 129, 183
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Maximum, 242
Maximum error of the estimate, 325,

326
Maximum likelihood estimates, 259
Maximum likelihood estimator, 258
Mean, 89

of a random sample, 185
of distribution, 56
of empirical distribution, 228
of linear combination, 183
of sample, 228
of X, 56, 89, 130
trimmed, 348

Mean square, 439
Median, 92, 241, 242
Median test, 381
Method of least squares, 136, 139, 268,

343
Method of moments estimator, 263
Methods of enumeration, 11
Midrange, 245
Minimum, 242
Minimum chi-square estimator, 419
Minimum variance unbiased estimator,

279
Mixed type distribution, 117
Mixture of normals, 294
Modal class, 233
Mode, 233
Moment, 56, 60

second factorial, 60, 81
Moment-generating function, 61, 90
Monte Carlo procedure, 299
Monte Carlo Swindle, 287
Most powerful test, 403
Multinomial coefficients, 17, 416
Multinomial distribution, 416, 424
Multiple regression, 343
Multiplication principle, 11
Multiplication rule, 24
Multivariate calculus, 535
Multivariate hypergeometric

distribution, 131
Mutually exclusive, 522
Mutually exclusive events, 3
Mutually independent, 31

N
Negative binomial distribution, 74, 504,

531
Neyman, Jerzy, 412
Neyman–Pearson Lemma, 400
Noninformative prior, 288, 296
Nonparametric methods, 381
Normal distribution, 105, 192, 201, 223,

505
Normal equations, 344

Null hypothesis, 374
Null set, 3, 522

O
Old Faithful Geyser, 236
One-factor analysis of variance, 435
One-factor experiment, 435
Order statistics, 240, 248
Ordered sample, 13
Ordered stem-and-leaf display, 238, 242
Outcome space, 2, 41
Outer fences, 244
Outliers, 244

P
p chart, 472
p-value, 356, 376
Paccioli, Luca, 39
Paired t test, 360
Pairwise independent events, 31
Pap smear, 37
Parameter space, 256
Parameters, 67
Pareto distribution, 186
Partition, 36
Pascal’s equation, 19
Pascal’s triangle, 19
Pascal, Blaise, 39, 40
pdf, 87, 88
Pearson, Egon, 412
Pearson, Karl, 222, 415, 477
Penalty (loss) function, 289
Percentile, 91, 241

of the distribution, 252
of the sample, 242, 252

Percentile method, 350
Permutation, 12, 13
pmf, 43
Point estimator, 257
Pointwise confidence band, 342
Pointwise prediction band, 342
Poisson distribution, 80, 217, 504
Poisson process, 79
Poker, 20
Posterior pdf, 289
Posterior probability, 36, 288
Power function, 393
Power of a test, 393
Precision, 294
Prediction band for Y, 342
Prediction interval, 340
Predictive distribution, 294
Predictive probabilities, 295
Prior and posterior pdfs, 290
Prior probability, 36, 288
Probability, 2, 6

posterior, 36
prior, 36

Probability density function, 87, 88
Probability histogram, 44
Probability interval, 296
Probability mass function, 43
Probability of event A, 5
Probability value, 376
Pseudo-random numbers, 90

Q
Quadratic forms, 438
Quantile, 253
q-q plot, 253
Quantile-quantile plot, 253
Quartiles, 92, 241, 242

R
R chart, 471
Random experiments, 2
Random interval, 302
Random numbers, 90
Random sample, 66, 181, 182
Random variable, 41

of the discrete type, 43, 225
Range, 225, 245
Rao–Cramér inequality, 278
Rao-Blackwell Theorem, 284
Rao-Cramér lower bound, 279
Raspe, Rudolph Erich, 354
Ratio test, 530
Real quadratic forms, 438
Rectangular distribution, 88
Regression, 267
Relative frequency, 4
Relative frequency histogram,

47, 226
Relative frequency polygon, 230
Relevant data, 273
Resampling, 347
Residual, 270
Right-tail probability, 108
Row effects, 450
Rule of 72, 123, 533

S
s chart, 471
Sample, 227
Sample correlation coefficient, 463
Sample mean, 228
Sample mean distribution, 193
Sample median, 248
Sample percentiles, 241, 242
Sample range, 248
Sample size, 324

to estimate μ, 325
to estimate p, 327, 329

Sample space, 521
Sample standard deviation, 228
Sample variance, 186, 228



544 Index

Sampling
with replacement, 13
without replacement, 14

Sampson, Ralph, 244
Savage, Leonard J., 300
Scatter plot, 267
Second factorial moment, 81
Second quartile, 92, 241, 242
Set function, 6
Shewhart control charts, 468
Shewhart, W. A., 468, 478, 479
Shifted exponential distribution, 104
Shrinking, 298
Sign test, 381
Significance level, 355, 374
Simple alternative hypothesis, 355
Simple null hypothesis, 355
Simpson’s paradox, 234
Simulate, 5
Simulation, 167, 203
Six sigma program, 480
Skewed, 243
Smith, Sir Adrian, 223
Snedecor, George, 222
Space of X, 41
St. Petersburg paradox, 86
Standard deviation, 90

of X, 57, 90
of distribution, 57
of empirical distribution, 228
of sample, 228

Standard error, 379
Standard error of the mean, 357
Standard normal distribution, 107
Standard score, 110
Statistic, 186, 234
Statistical process control, 468
Statistical quality control, 468
Statistically independent events, 30
Stem-and-leaf display, 238, 388

back-to-back, 388

Stigler, Stephen M., 224
Stochastically independent, 30
Student’s t distribution, 196, 296
Subset, 3, 521
Sufficient statistic, 280
Sum of squares between treatments,

437
Sum of squares within treatments, 437
Support, 43
Suspected outliers, 244

T
t distribution, 196, 199, 294
Tail-end probability, 357
Taylor series, 529
Test for homogeneity, 424
Test statistics, 355
Testing probability models, 420
Tests of statistical hypotheses

critical region, 376
for correlation coefficient, 463
for difference of means, 367
for equality of multinomial

distributions, 424
for homogeneity, 424
for means, 436, 448
for medians, 381
for one mean, 358
for one proportion, 376
for slope of the regression line, 462
for two proportions, 377
paired t-test, 360
sign test, 381
two-sided, 376
Wilcoxon test, 382, 387

Third quartile, 92, 241, 242
Total sum of squares, 437
Transformation of random variables,

171
Tree diagram, 11
Trimmed mean, 348

Trinomial distribution, 132, 139, 145
Tukey, John W., 238, 244
Two factor ANOVA, 445
Two-sided test, 376
Type I error, 355, 374
Type II error, 355, 374

U
Unbiased estimator, 261
Uniform distribution, 43, 88, 504, 505
Uniformly most powerful critical

region, 403
Uniformly most powerful test, 403
Union of A and B, 3
Union of sets, 522
Unit correction for continuity, 385
Universal set, 521
Upper 100α percent point, 108
Upper control limit (UCL), 468

V
Variance, 90

of distribution, 57
of empirical distribution, 228
of sample, 228
of X, 57, 90, 131

Venn diagram, 3, 523
Verica, 243, 338

W
Waiting time, 95, 98
Weibull distribution, 116, 122
Welch’s modified T, 311, 312, 370
Welch, B. L., 312
Wilcoxon signed rank statistic, 382
Wilcoxon test, 382, 387
World Series, 19, 34

X
x chart, 471

Z
Zipf’s law, 299



Discrete Distributions

Bernoulli f (x) = px(1 − p)1−x, x = 0, 1
0 < p < 1 M(t) = 1 − p + pet, −∞ < t < ∞

μ = p, σ 2 = p(1 − p)

Binomial f (x) = n!
x!(n − x)! px(1 − p)n−x, x = 0, 1, 2, . . . , n

b(n, p)
0 < p < 1 M(t) = (1 − p + pet)n, −∞ < t < ∞

μ = np, σ 2 = np(1 − p)

Geometric f (x) = (1 − p)x−1p, x = 1, 2, 3, . . .
0 < p < 1

M(t) = pet

1 − (1 − p)et , t < − ln(1 − p)

μ = 1
p

, σ 2 = 1 − p
p2

Hypergeometric f (x) =

(
N1

x

)(
N2

n − x

)
(

N
n

) , x ≤ n, x ≤ N1, n − x ≤ N2

N1 > 0, N2 > 0
N = N1 + N2

μ = n
(

N1

N

)
, σ 2 = n

(
N1

N

)(
N2

N

)(
N − n
N − 1

)
Negative Binomial f (x) =

(
x − 1
r − 1

)
pr(1 − p)x−r, x = r, r + 1, r + 2, . . .

0 < p < 1

r = 1, 2, 3, . . . M(t) = (pet)r

[1 − (1 − p)et]r , t < − ln(1 − p)

μ = r
(

1
p

)
, σ 2 = r(1 − p)

p2

Poisson f (x) = λxe−λ

x! , x = 0, 1, 2, . . .

λ > 0
M(t) = eλ(et−1), −∞ < t < ∞
μ = λ, σ 2 = λ

Uniform f (x) = 1
m

, x = 1, 2, . . . , m
m > 0

μ = m + 1
2

, σ 2 = m2 − 1
12



Continuous Distributions

Beta f (x) = �(α + β)
�(α)�(β)

xα−1(1 − x)β−1, 0 < x < 1
α > 0
β > 0 μ = α

α + β
, σ 2 = αβ

(α + β + 1)(α + β)2

Chi-square f (x) = 1
�(r/2)2r/2

xr/2−1e−x/2, 0 < x < ∞
χ2(r)
r = 1, 2, . . . M(t) = 1

(1 − 2t)r/2
, t <

1
2

μ = r, σ 2 = 2r

Exponential f (x) = 1
θ

e−x/θ , 0 ≤ x < ∞
θ > 0

M(t) = 1
1 − θ t

, t <
1
θ

μ = θ , σ 2 = θ2

Gamma f (x) = 1
�(α)θα

xα−1e−x/θ , 0 < x < ∞
α > 0
θ > 0 M(t) = 1

(1 − θ t)α
, t <

1
θ

μ = αθ , σ 2 = αθ2

Normal f (x) = 1

σ
√

2π
e−(x−μ)2/2σ 2

, −∞ < x < ∞
N(μ, σ 2)

−∞ < μ < ∞ M(t) = eμt+σ 2t2/2, −∞ < t < ∞
σ > 0 E(X) = μ, Var(X) = σ 2

Uniform f (x) = 1
b − a

, a ≤ x ≤ b

U(a, b)

−∞ < a < b < ∞ M(t) = etb − eta

t(b − a)
, t �= 0; M(0) = 1

μ = a + b
2

, σ 2 = (b − a)2

12



Confidence Intervals

Parameter Assumptions Endpoints

μ N(μ, σ 2) or n large, x ± zα/2
σ√
n

σ 2 known

μ N(μ, σ 2) x ± tα/2(n−1)
s√
n

σ 2 unknown

μX − μY N(μX , σ 2
X) x − y ± zα/2

√
σ 2

X

n
+ σ 2

Y

m
N(μY , σ 2

Y )

σ 2
X , σ 2

Y known

μX − μY Variances unknown, x − y ± zα/2

√
s2

x

n
+ s2

y

m
large samples

μX − μY N(μX , σ 2
X) x − y ± tα/2(n+m−2)sp

√
1
n

+ 1
m

,

N(μY , σ 2
Y )

σ 2
X = σ 2

Y , unknown sp =
√

(n − 1)s2
x + (m − 1)s2

y

n + m − 2

μD = μX − μY X and Y normal, d ± tα/2(n−1)
sd√

nbut dependent

p b(n, p) y
n

± zα/2

√
(y/n)[1 − (y/n)]

nn is large

p1 − p2 b(n1, p1) y1

n1
− y2

n2
± zα/2

√
p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2
,

b(n2, p2)
p̂1 = y1/n1, p̂2 = y2/n2



Tests of Hypotheses

Hypotheses Assumptions Critical Region

H0: μ = μ0 N(μ, σ 2) or n large, z = x − μ0

σ/
√

n
≥ zα

H1: μ > μ0 σ 2 known

H0: μ = μ0 N(μ, σ 2) t = x − μ0

s/
√

n
≥ tα(n−1)

H1: μ > μ0 σ 2 unknown

H0: μX − μY = 0 N(μX , σ 2
X) z = x − y − 0√

(σ 2
X/n) + (σ 2

Y /m)
≥ zα

H1: μX − μY > 0 N(μY , σ 2
Y )

σ 2
X , σ 2

Y known

H0: μX − μY = 0 Variances unknown, z = x − y − 0√
(s2

x/n) + (s2
y/m)

≥ zα

H1: μX − μY > 0 large samples

H0: μX − μY = 0 N(μX , σ 2
X) t = x − y − 0

sp
√

(1/n) + (1/m)
≥ tα(n+m−2)

H1: μX − μY > 0 N(μY , σ 2
Y )

σ 2
X = σ 2

Y , unknown sp =
√

(n − 1)s2
x + (m − 1)s2

y

n + m − 2

H0: μD = μX − μY = 0 X and Y normal, t = d − 0
sd/

√
n

≥ tα(n−1)

H1: μD = μX − μY > 0 but dependent

H0: p = p0 b(n, p) z = (y/n) − p0√
p0(1 − p0)/n

≥ zα

H1: p > p0 n is large

H0: p1 − p2 = 0 b(n1, p1) z = (y1/n1) − (y2/n2) − 0√(
y1 + y2

n1 + n2

)(
1 − y1 + y2

n1 + n2

)(
1
n1

+ 1
n2

) ≥ zα

H1: p1 − p2 > 0 b(n2, p2)
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