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he purpose of the third edition is the same as that of the earlier editions: to pro-

vide a teaching instrument, in the classroom or independently. for the study of

compressible fluid flow, and at the same time to make this instrument under-
standable and enjoyable for the reader. As mentioned in the Preface to the First Edi-
tion, this book is intentionally written in a rather informal style in order to ralk to the
reader, to gain his or her interest, and to keep the reader absorbed from cover to
cover. Indeed, all of the philosophical aspects of the first two editions, including the
inclusion of a historical perspective, are carried over to the third edition.

The response to the first two editions from students, faculty, and practicing pro-
fessionals has been overwhelmingly favorable. Therefore, for the third edition. all of
the content of the second edition has been carried over virtually intact, with only
minor changes made here and there for updating. The principal difference between
the third and second editions is the addition of much new material, as follows:

1. Each chapter starts with a Preview Box, an educational tool that gives the
reader an overall perspective of the nature and importance of the material to be
discussed in that chapter. The Preview Boxes are designed to heighten the
reader’s interest in the chapter. Also, chapter roadmaps are provided to help the
reader see the bigger picture, and to navigate through the mathematical and
physical details buried in the chapter.

2. Increased emphasis has been placed on the physics associated with compress-
ible flow, in order to enhance the fundamental nature of the material.

3. To expedite this physical understanding, a number of new illustrative worked
examples have been added that explore the physics of compressible flow.

4. Because computational fluid dynamics (CFD) continues to take on a stronger
role in various aspects of compressible flow, the flavor of CFD in the third
edition has been strengthened. This is not a book on CFD. but CFD is
discussed in a self-contained fashion to the extent necessary to enhance the
fundamentals of compressible flow.

5. New homework problems have been added to the existing ones. There is a
solutions manual for the problems available from McGraw-Hill for the use of
the classroom instructor.

6. Consistent with all the new material, a number of new illustrations and pho-

tographs have been added.

This book is designed to be used in advanced undergraduate and first-year grad-
uate courses in compressible flow. The chapters divide into three general categories.
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Preface to The Third Edition

which the instructor can use to mold a course suitable to his or her needs:

1.

Chapters 1-5 make up the core of a basic introduction to classical compress-
ible flow, with the treatment of shock waves, expansion waves, and nozzle
flows. The mathematics in these chapters is mainly algebra.

Chapters 6-10 deal with slightly more advanced aspects of classical compress-
ible flow, with mathematics at the level of partial differential equations.
Chapters 11-17 cover more modern aspects of compressible flow, dealing with
such features as the use of computational fluid dynamics to study more com-
plex phenomena, and the general nature of high-temperature flows.

Taken in total, the book provides the twenty-first-century student with a bal-

anced treatment of both the classical and modern aspects of compressible flow.

Special thanks are given to various people who have been responsible for the

materialization of this third edition:

1.

My students, as well as students and readers from all over the world, who have
responded so enthusiastically to the first two editions, and who have provided
the ultimate joy to the author of being an engineering educator.

My family, who provide the other ultimate joy of being a husband, father, and
grandfather.

My colleagues at the University of Maryland, the National Air and Space
Museum, and at many other academic and research institutions, as well as
industry, around the world, who have helped to expand my horizons.

Susan Cunningham, who, as my scientific typist, has done an excellent job of
preparing the additional manuscript.

Finally, compressible flow is an exciting subject—exciting to learn, exciting to

teach, and exciting to write about. The purpose of this book is to excite the reader,
and to make the study of compressible flow an enjoyable experience. So this author
says—read on and enjoy.

John D. Anderson, Jr.



his book is designed to be a teaching instrument, in the classroom or indepen-

dently, for the study of compressible fluid flow. It is intentionally written in a

rather informal style in order to ralk to the reader, to gain his or her interest,
and to be absorbed from cover to cover. It is aimed primarily at senior undergradu-
ate and first-year graduate students in aerospace engineering, mechanical engineer-
ing, and engineering mechanics; it has also been written for use by the practicing
engineer who wants to obtain a cohesive picture of compressible flow from a modern
perspective. In addition, because the principles and results of compressible flow per-
meate virtually all fields of physical science, this book should be useful to engineers
in general, as well as to physicists and chemists.

This is a book on modern compressible flows. An extensive definition of the
word “modern” in this context is given in Sec. 1.6. In essence, this book presents the
fundamentals of classical compressible flow as they have evolved over the past two
centuries, but with added emphasis on two new dimensions that have become so im-
portant over the past two decades, namely:

L.  Modern computational fluid dvanamics. The high-speed digital computer has
revolutionized analytical fluid mechanics, and has made possible the solution
of problems heretofore intractable. The teaching of compressible flow today
must treat such numerical approaches as an integral part of the subject; this
is one facet of the present book. For example, the reader will find lengthy
discussions of finite-difference techniques, including the time-marching
approach, which has worked miracles for some important applications.

2. High-temperature flows. Modern compressible flow problems frequently
involve high-speed aerodynamics, combustion, and energy conversion, all of
which can be dominated by the flow of high-temperature gases. Therefore,
such high-temperature effects must be incorporated in any basic study of
compressible flow: this is another facet of the present book. For example,
the reader will find extensive presentations of both equilibrium and nonequilib-
rium flows, with application to some basic problems such as shock waves
and nozzle flows.

In short, the modern compressible flow of today is a mutually supportive mixture of
classical analysis along with computational techniques, with the treatment of high-
temperature effects being almost routine. One purpose of this book is to provide an
understanding of compressible flow from this modern point of view. Its intent is to
interrelate the important aspects of classical compressible flow with the recent
techniques of computational fluid dynamics and high-temperature gas dynamics. In
this sense, the present treatment is somewhat unique; it represents a substantial
departure from existing texts in classical compressible flow. However, at the same



Preface to The First Edition

time, the classical fundamentals along with their important physical implications are
discussed at length. Indeed, the first half of this book, as seen from a glance at the
Table of Contents, is very classical in scope. Chapters 1 through 7, with selections
from other chapters, constitute a solid, one-semester senior-level course. The second
half of the book provides the “modern” color. The entire book constitutes a complete
one-year course at the senior and first-year graduate levels.

Another unique aspect of this book is the inclusion of an historical perspective
on compressible flow. It is the author’s strong belief that an appreciation for the his-
torical background and traditions associated with modern technology should be an
integral part of engineering education. The vast majority of engineering profession-
als and students have little knowledge or appreciation of such history; the present
book attempts to fill this vacuum. For example, such questions are addressed as who
developed supersonic nozzles and under what circumstances, how did the modern
equations of compressible fluid flow develop over the centuries, who were Bernoulli,
Euler, Helmholtz, Rankine, Prandtl, Busemann, Glauert, etc., and what did they con-
tribute to the modern science of compressible flow? In this vein, the present book
continues the tradition established in one of the author’s previous books (Introduc-
tion to Flight: Its Engineering and History, McGraw-Hill, New York, 1978) wherein
historical notes are included with the technical material.

Homework problems are given at the end of most of the chapters. These prob-
lems are generally straightforward, and are designed to give the student a practical
understanding of the material.

In order to keep the book to a reasonable and affordable length, the topics of
transonic flow and viscous flow are not included. However, these are topics which
are best studied after the fundamental material of this book is mastered.

This book is the product of teaching the first-year graduate course in compress-
ible flow at the University of Maryland since 1973. Over the years, many students
have urged the author to expand the class notes into a book. Such encouragement
could not be ignored, and this book is the result. Therefore, it is dedicated in part to
all my students, with whom it has been a joy to teach and work.

This book is also dedicated to my wife, Sarah-Allen, and my two daughters,
Katherine and Elizabeth, who relinquished untold amounts of time with their hus-
band and father. Their understanding is much appreciated, and to them I once again
say hello. Also, hidden behind the scenes but ever so present are Edna Brothers and
Sue Osborn, who typed the manuscript with such dedication. In addition, the author
wishes to thank Dr. Richard Hallion, Curator of the National Air and Space Museum
of the Smithsonian Institution, for his helpful comments and for continually opening
the vast archives of the museum for the author’s historical research. Finally, I wish to
thank my many professional colleagues for stimulating discussions on compressible
flow and what constitutes a modern approach to its teaching. Hopefully, this book is
a reasonable answer.

John D. Anderson, Jr.



CHAPTER

Compressible Flow—Some
History and Introductory
Thoughts

It required an unhesitating boldness to undertake a venture so few thought could
succeed, an almost exuberant enthusiasm to carry across the many obstacles and
unknowns, but most of all a completely unprejudiced imagination in departing so
drastically from the known way.
J. van Lonkhuyzen, 1951, in discussing the problems faced in designing
the Bell XS-1, the first supersonic airplane



CHAPTER 1 Compressible Flow—Some History and Introductory Thoughts

PREVIEW BOX

Modern life is fast-paced. We put a premium on moving -~ by she aves generated in the air around the vehicle.
fast from one place to another. For long~di$tance travel, ~ Shock waves are an important aspect of compressible
flying is by far the fastest way to go. We fly in airplanes, flow—they occur in almost all practical situations where
which today are the result of an exponential growth in." supersonic flow exists. In this book, you will learn a lot
technology over the last 100 years. In 1930, airline pas- - about shock waves. When the Concorde-flies overhead
sengers were lumbering along in the likes of the Fokker = at supersonic speeds, a “soni¢ boom” is heatd by those
trimoter (Fig. 1.1), which cruised at about-100 mi/h. In  of uson the earth’s surface. The sonic boom is aresult of
this airplane, it took a total elapsed time of 36 hours to , es emanating from the supersonic vehicle.
fly from New York to Los Angeles, including 11 stops  Toc vironmental impact of the sonic boom lim-
along the way. By 1936, the new, streamlined Douglas  its th Concorde to supersonic speeds only over water.
DC-3 (Fig. 1.2) was flying passengers-at 180 mish, tak--  However, modern research i$ striving to-find & way to
ing 17 hours and 40 minutes from New York to Los.  design a “quiet” supetsonic airplane. Perhiaps some of
Angeles, making three stops along the way. By 1955, the - the readers of this book will help to unlock-§uch secrets
Douglas DC-7, the most advanced of the gerieration - - in ‘the future—maybe éven. pioneering the. advent of
of reciprocating ~engine/propeller-driven transports ~ practical hypersonic airplanes (more than five times the
(Fig. 1.3) made the same-trip-in 8 hours-with no stops.: -speed of sound). o my opinion, the future applications
However, this generation of airplane was quickly sup--  of compressible flow are boundless.
planted by the jet transport in 1958. Today, the modern Compressible flow is ‘the subject of this book.
Boeing 777 (Fig. 1.4) whisks us from New York to Los. . ‘Within: these pages you ‘will discover: the intellectual
Angeles nonstop in about 5-hours, cruising at 0.83 the  beauty ‘and the powerful applications of compressible
speed of sound. This airplane is powered by advanced, " flow, You w111 learn to appreciate why modern airplanes
third-generation turbofan engines, such as the Pratt and  are y they are, and to marvel at the won-
Whitney 4000 turbofan shown in Fig. 1.5, each capable  de ‘complex and interesting flow processes through
of producing up to 84,000 pounds of thrust, - aj] :. You will learn about supersonic - shock
Modern high-speed “airplanes and the-jet engines  waves most cases we would like to do with=
that power them are wonderful examples of the applicd- - out d. You will learn much more. You
tion of a branch of fluid dynamics called compressible  will learn the fundamental physical and mathematical
flow. Indeed, look again at the Boeing 777 shown in aspects of compressible flow, which you can apply to
Fig. 1.4 and the turbofan engine showninFig. 1.5-—they  any flow situation where the flow speeds exceed that. of
are compressible flow personified. The -principles of - about 0.3 the speed of sound..In the modern world-of
compressible flow dictate the external aerodynamic ka@mspace and mechanical engineering, an understand-
flow over the airplane. The internal flow through the  ing of the principles of compressible flow is essential.
turbofan—the inlet; compressor, combustion chamber, . The purpose of this book is to help you learn, under-
turbine, nozzle, and the fan—is all compressible flow. In-  stand, and appreciate these fundamental principles,
deed; jet engines are one of the bést.examples in modern _ whilé at the same time giving you some insight as to
technology of compressible flow machines, how compressible flow is practiced in the modermn engi-
Today we can transport curselves at speeds faster - neering world (hence the word “modern” in the title of
than sound—-supersonic speeds. The Anglo-French Con- . this book) ;
corde supersonic transport (Fig. 1.6) is-sucha vehicle. = Cc le flow is a fun subject. This book is de-
(A few years ago T had the opportunity to cross the  signec this feeling: The format of the book

Atlantic Ocean in the Concotde, taking off from New v al style are intended to provide a
York’s Kennedy Airport and. arriving at London’s smooth and intelligible learning process. To help this;
Heathrow Airport just 3 hour§.and 15 mifutes later— r begins with a preview box and road map to
what a way to travel!) Supetsonic flight is accompanied ;help you see the blgger pmmre, and to navigate around
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Figure 1.1 | Fokker Trimoter airliner, from the late 1920s.

(continued on next page)
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Preview Box 5

Figure 1.4 | Boeing 777 jet airliner, from the 1990s.

(continued on next page)
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Preview Box

some of the mathematical and physical details that are
buried in the chapter. The road map for the entire book is
given in Fig. 1.7. To help keep our equilibrium, we will
periodically refer to Fig. 1.7 as we progress through the
book. For now, let us just survey Fig. 1.7 for some gen-
eral guidance. After an introduction to the subject and a
brief review of thermodynamics (box 1 in Fig. 1.7), we
derive the governing fundamental conservation equa-
tions (box 2). We first obtain these equations in integral
form (box 3), which some people will argue is philo-
sophically a more fundamental form of the equations

COMPRESSIBLE FLOW

than the differential form obtained later in box 7. Using
just the integral form of the conservation equations, we
will study one-dimensional flow (box 4), including nor-
mal shock waves, oblique shock, and expansion waves
(box 3), and the quasi-one-dimensional flow through
nozzles and diffusers, with applications to wind tunnels
and rocket engines (box 6). All of these subjects can
be studied by application of the integral form of the
conservation equations, which usually reduce to alge-
braic equations for the application listed in boxes 4-6.
Boxes 1-6 frequently constitute a basic “first course” in

1. What it is, and how it blends
with thermodynamics

2. The governing conservation
equations

b !

17. High-temperature flows

3. In integral form

7. In differential form ]

8. Velocity potential equation

4. One-dimensional flow

10. Unsteady moving shock
and expansion waves I

9. Linearized flow

Normal shock waves
Flow with heat addition

11. Conical flow

Flow with friction ]

5. Oblique waves

12. Numerical techniques for
steady supersonic flow

|: Subsonic flow
Supersonic flow

- Oblique shock waves
— Expansion waves

l— Method of characteristics
—— Finite difference methods

— Wave interactions

13. Time-marching numerical
technique

6. Quasi-one-dimensional flow

- Nozzles

— Flow around blunt bodies
— Two-dimensional nozzle flows

— Diffusers
— Wind tunnels

14. Three-dimensional flows

and rocket engines |

15. Transonic flow

16. Hypersonic flow

Figure 1.7 | Roadmap for the book.

(continued on next page)
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om0t S e R T i

(continued from page 7)

compressible flow, and the mathematics. usually .does
ot go beyond that of algebra. However, to-deal with un-
steady and/or multidimensional flows, we have to step
to:box 7-and obtain the governing conservation equa-
tions in differential form. They take the form of 4 system
of coupled, highly nonlinear, partial differential equa-
tions..In some special cases for subsonic and supersonic
flows, they can be linearized (boxes 8 and'9), leading to
so=called “linearized flow.” However, in most cases; we
must cope with the nonlinear equations. The way we do
this, and the fascinating physical phenomena we dis-
cover along the way, is told in boxes 10-16 dealing with
unsteady flow, flow over cones; flows over supersonic
blunt-nosed bodies, three-dimensional flows over bod-
ies at an angle of attack to-a uniform free stream, and-the
very special characteristics of transonic and hypersomc
flows. ,

Our treatment of the material covered in boxes 4-6
and 8-16-in Fig. 1.7 assumes the gas to be calorically
perfect, ‘i.e., to have constant values of specific. heats.
This is valid as long as the temperature in the flow does
not exceed about 1000 K. The vast bulk of compressible
flow applications satisfy this criteria, including the flow
around the Concorde ‘when it is cruising ‘at Mach 2.
However, the flow over higher speed vehicles, as well as
the: flow: through parts-of ‘a jet engine, will encounter
temperatures -high enough that: the assumption. of a
calorically perfect gas isnot valid. Witness the flow over
parts of the Space Shuttle as it enters the atmosphere
at Mach 25, where flow temperatures can be as high as
8000 K, and the flow through rocket engines where tem-
peratures on the order of 4000 K or higher oceur in the
combustion chamber, At these temperatures, the flow is
chemically reacting, and- the analysis. of compressible
flow applications at these conditions must include. the
appropriate. physical-chemical effects. Hence, 1o round
out our study of compressible flow, toward the end of
this book we identify, discuss, and analyze these high-
temperature flow effects, This subject is somewhat self-
contained and is relatively independent of ‘the earlier
chapters; for this reason in Pig. 1.7 we show high-
temperatire flows in box 17 in an adjunct position
somewhat separate from the main structure. However,
this is- not to minimize its importance. In many high-
speed flow applications today, high-temperature effects
are very important. Any study of modeérn compressible
flow must include box 17,

We note that all of the material in this book, boxes 1
through 17 in Fig. 1.7, assumes inviscid flow, i.e., flow
with no friction, thermal conduction; or mass diffusion,
except for the special case of one-dimensional flow with
friction (box 4in Fig. 1.7). Flows where the dissipative
transport processes. of friction; thermal conduction, and -
mass diffusion are important are called viscous flows.
Viscous flow is a subject all by itself and is beyond the
scope of this-book. The assumption of inviscid flow may
at first sound ideal and restrictive—flows in the real
world are not so ideal. However, the important physics
that dictates compressible flow, such as the propagation
of pressure waves- through the flow; is essentially an
inviscid phenomena. Moreover; for the vast majority of
compressible flow-applications, the influence of the dis-
sipative transport phenomena is limited to small regions, .
such as the boundary layer along a solid surface. Hence,
the inviscid flows treated in this book are indeed very
practical and apply to a vast majority of everyday apph- .
cations of compressible flow:

Allof this constitutes a preview for the matenal that
is covered ‘in-this book—a broad, general view to give
you a better, almost philosophical feeling for what com- -
pressible flow is about. As we continue, gach'chapter has
its own preview box in order to enhance a broader under-
standing of the material in the chapter and to relate it to
the general view, In this fashion, the detailed material in
each chapter will:more readily.come tolife foryou. - =~

In regard to the present chapter, we start o wmh .
somg historical high-watér matks. in the application of
compressible flow; and then discuss some mtr d:
thoughts-that are essential for our understanding «
pressible flow in the subsequent chapters. For example
this'chapter we give a brief review of thermcdynamicﬁsf;- '
but only those aspects of thermodynamics that relate di-
rectly-to-our subsequent discussions. Compressible flows .
are usually high-energy flows, Imagine that'you are driv-
ing down the highway at 65 mph, and you stick your hand
out the window; your hand will literally feel the energy of
the 65-mph airstream, and it feels impressive. But 65 mph
is really a low velocity in the scheme of compressible
flow applications. Rather, imagine the energy you would
feel if you were traveling at 650 mph, near the speed of
sound, and you stick your hand out the window (defi-
nitely not recommended): You would feela lot of energy
in the flow. High-speed flows. are high-energy flows.
Thermodynamics is the study of energy changes and their




1.1 Historical High-Water Marks

effects on the properties of a system. Hence, compress- The remainder of this chapter simply deals with
ible flow embraces thermodynamics. 1 know of no com-  other introductory thoughts necessary to provide you
pressible flow problem that can be understood and solved ~ with smooth sailing through the rest of the book. I wish
without involving some aspect of thermodynamics. So  you a pleasant voyage.

that is why we start out with a review of thermodynamics.

1.1 | HISTORICAL HIGH-WATER MARKS

The year is 1893. In Chicago, the World Columbian Exposition has been opened by
President Grover Cleveland. During the year, more than 27 million people will visit
the 666-acre expanse of gleaming white buildings, specially constructed from a com-
posite of plaster of paris and jute fiber to simulate white marble. Located adjacent to
the newly endowed University of Chicago, the Exposition commemorates the dis-
covery of America by Christopher Columbus 400 years earlier. Exhibitions related to
engineering, architecture, and domestic and liberal arts, as well as collections of all
modes of transportation, are scattered over 150 buildings. In the largest. the Manu-
facturer’s and Liberal Arts Building, engineering exhibits from all over the world
herald the rapid advance of technology that will soon reach explosive proportions in
the twentieth century. Almost fost in this massive 3 1-acre building, under a roof of
iron and glass, is a small machine of great importance. A single-stage steam turbine
is being displayed by the Swedish engineer, Carl G. P. de Laval. The machine is less
than 6 ft long: designed for marine use, it has two independent turbine wheels. one
for forward motion and the other for the reverse direction. But what is novel about
this device is that the turbine blades are driven by a stream of hot, high-pressure
steam from a series of unique convergent-divergent nozzles. As sketched in Fig. 1.8,
these nozzles, with their convergent-divergent shape representing a complete depar-
ture from previous engineering applications, feed a high-speed flow of steam to the
blades of the turbine wheel. The deflection and consequent change in momentum
of the steam as it flows past the turbine blades exerts an impulse that rotates the
wheel to speeds previously unattainable—over 30,000 r/min. Little does de Laval
realize that his convergent-divergent steam nozzle will open the door to the super-
sonic wind tunnels and rocket engines of the midtwentieth century.

The year is now 1947. The morning of October 14 dawns bright and beautiful
over the Muroc Dry Lake, a large expanse of flat, hard lake bed in the Mojave Desert
in California. Beginning at 6:00 A.M., teams of engineers and technicians at the
Muroc Army Air Field ready a small rocket-powered airplane for flight. Painted
orange and resembling a 50-caliber machine gun bullet mated to a pair of straight,
stubby wings, the Bell XS-1 research vehicle is carefully installed in the bomb bay
of a four-engine B-29 bomber of World War II vintage. At 10:00 a.M. the B-29 with
its soon-to-be-historic cargo takes off and climbs to an altitude of 20,000 ft. In the
cockpit of the XS-1 is Captain Charles (Chuck) Yeager, a veteran P-51 pilot from the
European theater during the war. This morning Yeager is in pain from two broken
ribs incurred during a horseback riding accident the previous weekend. However. not
wishing to disrupt the events of the day. Yeager informs no one at Muroc about his
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Figure 1.8 | Schematic of de Laval’s
turbine incorporating a convergent-
divergent nozzle.

condition. At 10:26 A.M., at a speed of 250 mi/h (112 m/s), the brightly painted XS-1
drops free from the bomb bay of the B-29. Yeager fires his Reaction Motors XLR-11
rocket engine and, powered by 6000 Ib of thrust, the sleek airplane accelerates and
climbs rapidly. Trailing an exhaust jet of shock diamonds from the four convergent-
divergent rocket nozzles of the engine, the XS-1 is soon flying faster than Mach 0.85,
that speed beyond which there is no wind tunnel data on the problems of transonic
flight in 1947. Entering this unknown regime, Yeager momentarily shuts down two
of the four rocket chambers, and carefully tests the controls of the XS-1 as the Mach
meter in the cockpit registers 0.95 and still increasing. Small shock waves are now
dancing back and forth over the top surface of the wings. At an altitude of 40,000 ft,
the XS-1 finally starts to level off, and Yeager fires one of the two shutdown rocket
chambers. The Mach meter moves smoothly through 0.98, 0.99, to 1.02. Here, the
meter hesitates, then jumps to 1.06. A stronger bow shock wave is now formed in the
air ahead of the needlelike nose of the XS-1 as Yeager reaches a velocity of 700 mi/h,
Mach 1.06, at 43,000 ft. The flight is smooth; there is no violent buffeting of the air-
plane and no loss of control as was feared by some engineers. At this moment, Chuck
Yeager becomes the first pilot to successfully fly faster than the speed of sound, and
the small but beautiful Bell XS-1, shown in Fig. 1.9, becomes the first successful su-
personic airplane in the history of flight. (For more details, see Refs. 1 and 2 listed at
the back of this book.)

Today, both de Laval’s 10-hp turbine from the World Columbian Exhibition and
the orange Bell XS-1 are part of the collection of the Smithsonian Institution of
Washington, D.C., the former on display in the History of Technology Building and
the latter hanging with distinction from the roof of the National Air and Space
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Figure 1.9 | The Bell XS-1. first manned supersonic aircraft. (Courtesy
of the National Air and Space Museum.)

Museum. What these two machines have in common is that, separated by more than
half a century, they represent high-water marks in the engineering application of the
principles of compressible flow—where the density of the flow is not constant. In
both cases they represent marked departures from previous fluid dynamic practice
and experience.

The engineering fluid dynamic problems of the eighteenth, nineteenth, and early
twentieth centuries almost always involved either the flow of liquids or the low-
speed flow of gases; for both cases the assumption of constant density is quite valid.
Hence, the familiar Bernoulli’s equation

p+%pV2=const (1.1)

was invariably employed with success. However, with the advent of high-speed
flows, exemplified by de Laval’s convergent-divergent nozzle design and the super-
sonic flight of the Bell XS-1, the density can no longer be assumed constant through-
out the flowfield. Indeed, for such flows the density can sometimes vary by orders of
magnitude. Consequently, Eq. (1.1) no longer holds. In this light, such events were
indeed a marked departure from previous experience in fluid dynamics.

This book deals exclusively with that “marked departure,” i.e., it deals with
compressible flows, in which the density is nor constant. In modern engineering
applications, such flows are the rule rather than the exception. A few important
examples are the internal flows through rocket and gas turbine engines, high-speed
subsonic, transonic, supersonic, and hypersonic wind tunnels, the external flow over
modern airplanes designed to cruise taster than 0.3 of the speed of sound, and the
flow inside the common internal combustion reciprocating engine. The purpose of

1
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this book is to develop the fundamental concepts of compressible flow, and to illus-
trate their use.

1.2 | DEFINITION OF COMPRESSIBLE FLOW

Compressible flow is routinely defined as variable density flow, this is in contrast to
incompressible flow, where the density is assumed to be constant throughout. Obvi-
ously, in real life every flow of every fluid is compressible to some greater or lesser
extent; hence, a truly constant density (incompressible) flow is a myth. However, as
previously mentioned, for almost all liquid flows as well as for the flows of some
gases under certain conditions, the density changes are so small that the assumption
of constant density can be made with reasonable accuracy. In such cases, Bernoulli’s
equation, Eq. (1.1), can be applied with confidence. However, for the subject of this
book—compressible flow—Eq. (1.1) does not hold, and for our purposes here, the
reader should dismiss it from his or her thinking.

The simple definition of compressible flow as one in which the density is vari-
able requires more elaboration. Consider a small element of fluid of volume v. The
pressure exerted on the sides of the element by the neighboring fluid is p. Assume the
pressure is now increased by an infinitesimal amount dp. The volume of the element
will be correspondingly compressed by the amount dv. Since the volume is reduced,
dv is a negative quantity. The compressibility of the fluid, 7, is defined as

T = _ldv (1.2)

vdp

Physically, the compressibility is the fractional change in volume of the fluid element
per unit change in pressure. However, Eq. (1.2) is not sufficiently precise. We know
from experience that when a gas is compressed (say in a bicycle pump), its tempera-
ture tends to increase, depending on the amount of heat transferred into or out of the
gas through the boundaries of the system. Therefore, if the temperature of the fluid
element is held constant (due to some heat transfer mechanism), then the isothermal

compressibility is defined as
1/d
w=——(1> (1.3)
v\dp/,

On the other hand, if no heat is added to or taken away from the fluid element (if the
compression is adiabatic), and if no other dissipative transport mechanisms such as
viscosity and diffusion are important (if the compression is reversible), then the com-
pression of the fluid element takes place isentropically, and the isentropic compress-

ibility is defined as
1 /d
n:——(l) (1.4)
v \dp/,

where the subscript s denotes that the partial derivative is taken at constant entropy.
Compressibility is a property of the fluid. Liquids have very low values of
compressibility (z7 for water is 5 x 107/ m?/N at 1 atm) whereas gases have high



1.2 Definition of Compressible Flow

compressibilities (77 for air is 10~5 m?/N at 1 atm, more than four orders of magni-
tude larger than water). If the fluid element is assumed to have unit mass, v is the spe-
cific volume (volume per unit mass), and the density is o = 1/v. In terms of density,
Eq. (1.2) becomes

1d
r=-2 (1.5)
pdp

Therefore, whenever the fluid experiences a change in pressure, dp, the correspond-
ing change in density will be dp, where from Eq. (1.5)

dp = ptdp (1.6)

To this point, we have considered just the fluid itself, with compressibility being
a property of the fluid. Now assume that the fluid is in motion. Such flows are initi-
ated and maintained by forces on the fluid, usually created by, or at least accompanied
by, changes in the pressure. In particular, we shall see that high-speed flows generally
involve large pressure gradients. For a given change in pressure, dp, due to the flow,
Eq. (1.6) demonstrates that the resulting change in density will be small for liquids
(which have low values of 1), and large for gases (which have high values of t).
Therefore, for the flow of liquids, relatively large pressure gradients can create high
velocities without much change in density. Hence, such flows are usually assumed to
be incompressible, where p is constant. On the other hand, for the flow of gases with
their attendant large values of 7, moderate to strong pressure gradients lead to sub-
stantial changes in the density via Eq. (1.6). At the same time, such pressure gradients
create large velocity changes in the gas. Such flows are defined as compressible flows,
where p is a variable.

We shall prove later that for gas velocities less than about 0.3 of the speed of
sound, the associated pressure changes are small, and even though t is large for
gases, dp in Eq. (1.6) may still be small enough to dictate a small dp. For this reason,
the low-speed flow of gases can be assumed to be incompressible. For example, the
flight velocities of most airplanes from the time of the Wright brothers in 1903 to the
beginning of World War II in 1939 were generally less than 250 mi/h (112 m/s),
which is less than 0.3 of the speed of sound. As a result, the bulk of early aerody-
namic literature treats incompressible flow. On the other hand, flow velocities higher
than 0.3 of the speed of sound are associated with relatively large pressure changes,
accompanied by correspondingly large changes in density. Hence, compressibility
effects on airplane aerodynamics have been important since the advent of high-
performance aircraft in the 1940s. Indeed, for the modern high-speed subsonic and
supersonic aircraft of today, the older incompressible theories are wholly inadequate,
and compressible flow analyses must be used.

In summary, in this book a compressible flow will be considered as one where
the change in pressure, dp, over a characteristic length of the flow, multiplied by the
compressibility via Eq. (1.6), results in a fractional change in density, dp/p. which
is too large to be ignored. For most practical problems, if the density changes by
5 percent or more, the flow is considered to be compressible.

13



14

EXAMPLE 1.1

CHAPTER 1 Compressible Flow—Some History and Introductory Thoughts

Consider the low-speed flow of air over an airplane wing at standard sea level conditions; the
free-stream velocity far ahead of the wing is 100 mi/h. The flow accelerates over the wing,
reaching a maximum velocity of 150 mi/h at some point on the wing. What is the percentage
pressure change between this point and the free stream?

B Solution

Since the airspeeds are relatively low, let us (for the first and only time in this book) assume
incompressible flow, and use Bernoulli’s equation for this problem. (See Ref. 1 for an ele-
mentary discussion of Bernoulli’s equation, as well as Ref. 104 for a more detailed presenta-
tion of the role of this equation in the solution of incompressible flow. Here, we assume that
the reader is familiar with Bernoulli’s equation—its use and its limitations. If not, examine
carefully the appropriate discussions in Refs. 1 and 104.) Let points 1 and 2 denote the free
stream and wing points, respectively. Then, from Bernoulli’s equation,

pi+50ViE = prt 3oV
or pr—p2=3p(Va? - Vi?)

At standard sea level, p = 0.002377 slug/ft>. Also, using the handy conversion that 60 mi/h =
88 ft/s, we have V; = 100 mi/h = 147 ft/s and V, = 150 mi/h = 220 fi/s. (Note that, as
always in this book, we will use consistent units; for example, we will use either the English
Engineering System, as in this problem, or the International System. See the footnote in
Sec. 1.4 of this book, as well as Chap. 2 of Ref. 1. By using consistent units, none of our basic
equations will ever contain conversion factors, such as ¢, and J, as is found in some refer-
ences.) With this information, we have

Pr—P2= %P(sz - V12)
= $(0.002377)[(220)? — (147)] = 31.8 Ib/fi*

The fractional change in pressure referenced to the free-stream pressure, which at standard sea
level is p, = 2116 1b/ft?, is obtained as

pPi—p _ ﬁ = 0.015
) 2116

Therefore, the percentage change in pressure is 1.5 percent. In expanding over the wing surface,
the pressure changes by only 1.5 percent. This is a case where, in Eq. (1.6), dp is small, and
hence dp is small. The purpose of this example is to demonstrate that, in low-speed flow prob-
lems, the percentage change in pressure is always small, and this, through Eq. (1.6), justifies the
assumption of incompressible flow (dp = 0) for such flows. However, at high flow velocities,
the change in pressure is not small, and the density must be treated as variable. This is the regime
of compressible flow—the subject of this book. Note: Bernoulli’s equation used in this example
is good only for incompressible flow, therefore it will not appear again in any of our subsequent
discussions. Experience has shown that, because it is one of the first equations usually encoun-
tered by students in the study of fluid dynamics, there is a tendency to use Bernoulli’s equation
for situations where it is not valid. Compressible flow is one such situation. Therefore, for our
subsequent discussions in this book, remember never to invoke Bernoulli’s equation.
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1.3 1 FLOW REGIMES

The age of successtul manned flight began on December 17, 1903, when Orville and
Wilbur Wright took to the air in their historic Flyer [, and soared over the windswept
sand dunes of Kill Devil Hills in North Carolina. This age has continued to the pre-
sent with modern, high-performance subsonic and supersonic airplanes. as well as
the hypersonic atmospheric entry of space vehicles. In the twentieth century, manned
flight has been a major impetus for the advancement of fluid dynamics in general,
and compressible flow in particular. Hence, although the fundamentals of compress-
ible flow are applied to a whole spectrum of modern engineering problems, their
application to aerodynamics and propulsion geared to airplanes and missiles is fre-
quently encountered.

In this vein, it is useful to illustrate different regimes of compressible flow by
considering an aerodynamic body in a flowing gas, as sketched in Fig. 1.10. First,
consider some definitions. Far upstream of the body, the flow is uniform with a free-
stream velocity of V. A streamline is a curve in the flowfield that is tangent to the
local velocity vector V at every point along the curve. Figure 1.10 illustrates only a
few of the infinite number of streamlines around a body. Consider an arbitrary point
in the flowfield, where p, T, p, and V are the local pressure. temperature, density,
and vector velocity at that point. All of these quantities are point properties and vary
from one point to another in the flow. In Chap. 3, we will show the speed of sound a
to be a thermodynamic property of the gas; hence a also varies from point to point in
the flow. I a is the speed of sound in the uniform free stream, then the ratio V. /a~.
defines the free-stream Mach number M.,,. Similarly, the local Mach number M is
defined as M = V/a, and varies from point to point in the flowfield. Further physical
significance of Mach number will be discussed in Chap. 3. In the present section. M
simply will be used to define four different flow regimes in fluid dynamics, as dis-
cussed next.

1.3.1 Subsonic Flow

Consider the flow over an airfoil section as sketched in Fig. 1.10a. Here, the local
Mach number is everywhere less than unity. Such a flow. where M < 1 at every
point, and hence the flow velocity is everywhere less than the speed of sound. is
defined as subsonic flow. This flow is characterized by smooth streamlines and
continuously varying properties. Note that the initially straight and parallel stream-
lines in the free stream begin to deflect far upstream of the body, i.e.. the flow is
forewarned of the presence of the body. This is an important property of subsonic
flow and will be discussed further in Chap. 4. Also, as the flow passes over the air-
foil, the local velocity and Mach number on the top surface increase above
their free-stream values. However, if My is sufficiently less than 1. the local
Mach number everywhere will remain subsonic. For airfoils in common use, if
My, = 0.8, the flowfield is generally completely subsonic. Therefore, to the air-
plane aerodynamicist, the subsonic regime is loosely identified with a free stream
where M. < 0.8.

15
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Figure 1.10 | Illustration of different regimes of flow.
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1.3.2 Transonic Flow

If M, remains subsonic, but is sufficiently near 1, the flow expansion over the
top surface of the airfoil may result in locally supersonic regions, as sketched in
Fig. 1.10b. Such a mixed region flow is defined as transonic flow. In Fig. 1.10b, M
is less than 1 but high enough to produce a pocket of locally supersonic flow. In most
cases, as sketched in Fig. 1.10b, this pocket terminates with a shock wave across
which there is a discontinuous and sometimes rather severe change in flow proper-
ties. Shock waves will be discussed in Chap. 4. If M, is increased to slightly above
unity, this shock pattern will move to the trailing edge of the airfoil, and a second
shock wave appears upstream of the leading edge. This second shock wave is called
the bow shock, and is sketched in Fig. 1.10¢. (Referring to Sec. 1.1, this is the type of
flow pattern existing around the wing of the Bell XS-1 at the moment it was “break-
ing the sound barrier” at M, = 1.06.) In front of the bow shock, the streamlines are
straight and parallel, with a uniform supersonic free-stream Mach number. In passing
through that part of the bow shock that is nearly normal to the free stream, the flow
becomes subsonic. However, an extensive supersonic region again forms as the flow
expands over the airfoil surface, and again terminates with a trailing-edge shock.
Both flow patterns sketched in Figs. 1.105 and ¢ are characterized by mixed regions
of locally subsonic and supersonic flow. Such mixed flows are defined as transonic
flows, and 0.8 < M, < 1.2 is loosely defined as the transonic regime. Transonic
flow is discussed at length in Chap. 14.

1.3.3  Supersonic Flow

A flowfield where M > | everywhere is defined as supersonic. Consider the super-
sonic flow over the wedge-shaped body in Fig. 1.10d. A straight, oblique shock wave
is attached to the sharp nose of the wedge. Across this shock wave, the streamline di-
rection changes discontinuously. Ahead of the shock, the streamlines are straight,
parallel, and horizontal; behind the shock they remain straight and parallel but in the
direction of the wedge surface. Unlike the subsonic flow in Fig. 1.10q, the supersonic
uniform free stream is not forewarned of the presence of the body until the shock
wave is encountered. The flow is supersonic both upstream and (usually, but not
always) downstream of the oblique shock wave. There are dramatic physical and
mathematical differences between subsonic and supersonic flows, as will be dis-
cussed in subsequent chapters.

1.3.4 Hypersonic Flow

The temperature, pressure, and density of the flow increase almost explosively
across the shock wave shown in Fig. 1.10d. As M is increased to higher supersonic
speeds, these increases become more severe. At the same time, the oblique shock
wave moves closer to the surface, as sketched in Fig. 1.10e. For values of M, > 5,
the shock wave is very close to the surface, and the flowfield between the shock and
the body (the shock layer) becomes very hot—indeed, hot enough to dissociate or
even ionize the gas. Aspects of such high-temperature chemically reacting flows are
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discussed in Chaps. 16 and 17. These effects——thin shock layers and hot, chemically
reacting gases—add complexity to the analysis of such flows. For this reason, the
flow regime for M, > 5 is given a special label—hypersonic flow. The choice of
My, =5 as a dividing point between supersonic and hypersonic flow is a rule of
thumb. In reality, the special characteristics associated with hypersonic flow appear
gradually as M, is increased, and the Mach number at which they become important
depends greatly on the shape of the body and the free-stream density. Hypersonic
flow is the subject of Chap. 15.

It is interesting to note that incompressible flow is a special case of subsonic
flow; namely, it is the limiting case where M, — 0. Since Mo, = Vo /a0, we have
two possibilities:

My — 0 Dbecause Voo, — 0

My, — 0 because a,, — 00

The former corresponds to no flow and is trivial. The latter states that the speed of
sound in a truly incompressible flow would have to be infinitely large. This is com-
patible with Eq. (1.6), which states that, for a truly incompressible flow where
dp = 0, T must be zero, i.e., zero compressibility. We shall see in Chap. 3 that the
speed of sound is inversely proportional to the square root of 7; hence T = 0 implies
an infinite speed of sound.

There are other ways of classifying flowfields. For example, flows where the ef-
fects of viscosity, thermal conduction, and mass diffusion are important are called
viscous flows. Such phenomena are dissipative effects that change the entropy of the
flow, and are important in regions of large gradients of velocity, temperature, and
chemical composition. Examples are boundary layer flows, flow in long pipes,
and the thin shock layer on high-altitude hypersonic vehicles. Friction drag, flowfield
separation, and heat transfer all involve viscous effects. Therefore, viscous flows are
of major importance in the study of fluid dynamics. In contrast, flows in which vis-
cosity, thermal conduction, and diffusion are ignored are called inviscid flows. At first
glance, the assumption of inviscid flows may appear highly restrictive; however,
there are a number of important applications that do not involve flows with large gra-
dients, and that readily can be assumed to be inviscid. Examples are the large regions
of flow over wings and bodies outside the thin boundary layer on the surface, flow
through wind tunnels and rocket engine nozzles, and the flow over compressor and
turbine blades for jet engines. Surface pressure distributions, as well as aerodynamic
lift and moments on some bodies, can be accurately obtained by means of the as-
sumption of inviscid flow. In this book, viscous effects will not be treated except in
regard to their role in forming the internal structure and thickness of shock waves.
That is, this book deals with compressible, inviscid flows.

Finally, we will always consider the gas to be a continuum. Clearly, a gas is com-
posed of a large number of discrete atoms and/or molecules, all moving in a more or
less random fashion, and frequently colliding with each other. This microscopic
picture of a gas is essential to the understanding of the thermodynamic and chemical
properties of a high-temperature gas, as described in Chaps. 16 and 17. However,
in deriving the fundamental equations and concepts for fluid flows, we take advantage
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of the fact that a gas usually contains a large number of molecules (over 2 x 10! mol-
ecules/cm? for air at normal room conditions), and hence on a macroscopic basis, the
fluid behaves as if it were a continuous material. This continuum assumption is vio-
lated only when the mean distance an atom or molecule moves between collisions
(the mean free path) is so large that it is the same order of magnitude as the charac-
teristic dimension of the flow. This implies low density, or rarefied flow. The extreme
situation, where the mean free path is much larger than the characteristic length and
where virtually no molecular collisions take place in the flow, is called free-molecular
flow. In this case, the flow is essentially a stream of remotely spaced particles. Low-
density and free-molecular flows are rather special cases in the whole spectrum of
fluid dynamics, occurring in flight only at very high altitudes (above 200,000 ft), and
in special laboratory devices such as electron beams and low-pressure gas lasers. Such
rarefied gas effects are beyond the scope of this book.

1.4 1 A BRIEF REVIEW OF THERMODYNAMICS

The kinetic energy per unit mass, V2/2, of a high-speed flow is large. As the flow
moves over solid bodies or through ducts such as nozzles and diffusers, the local
velocity, hence local kinetic energy, changes. In contrast to low-speed or incom-
pressible flow, these energy changes are substantial enough to strongly interact with
other properties of the flow. Because in most cases high-speed flow and compressible
flow are synonymous, energy concepts play a major role in the study and under-
standing of compressible flow. In turn, the science of energy (and entropy) is ther-
modynamics; consequently, thermodynamics is an essential ingredient in the study of
compressible flow.

This section gives a brief outline of thermodynamic concepts and relations nec-
essary to our further discussions. This is in no way an exposition on thermodynam-
ics; rather it is a review of only those fundamental ideas and equations which will be
of direct use in subsequent chapters.

1.4.1 Perfect Gas

A gas is a collection of particles (molecules, atoms, ions, electrons, etc.) that are in
more or less random motion. Due to the electronic structure of these particles, a force
field pervades the space around them. The force field due to one particle reaches out
and interacts with neighboring particles, and vice versa. Hence, these fields are called
intermolecular forces. The intermolecular force varies with distance between parti-
cles; for most atoms and molecules it takes the form of a weak attractive force at
large distance, changing quickly to a strong repelling force at close distance. In gen-
eral, these intermolecular forces influence the motion of the particles; hence they also
influence the thermodynamic properties of the gas, which are nothing more than the
macroscopic ramification of the particle motion.

At the temperatures and pressures characteristic of many compressible flow
applications, the gas particles are, on the average, widely separated. The average
distance between particles is usually more than 10 molecular diameters, which
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corresponds to a very weak attractive force. As a result, for a large number of engi-
neering applications, the effect of intermolecular forces on the gas properties is neg-
ligible. By definition, a perfect gas is one in which intermolecular forces are
neglected. By ignoring intermolecular forces, the equation of state for a perfect gas
can be derived from the theoretical concepts of modern statistical mechanics or ki-
netic theory. However, historically it was first synthesized from laboratory measure-
ments by Robert Boyle in the seventeenth century, Jacques Charles in the eighteenth
century, and Joseph Gay-Lussac and John Dalton around 1800. The empirical result
which unfolded from these observations was

pV = MRT (1.7)

where p is pressure (N/m? or Ib/ft?), 7 is the volume of the system (m® or ft*),
M is the mass of the system (kg or slug), R is the specific gas constant [J/(kg - K) or
(ft - Ib)/(slug - °R)], which is a different value for different gases, and 7 is the tem-
perature (K or °R)." This equation of state can be written in many forms, most of
which are summarized here for the reader’s convenience. For example, if Eq. (1.7) is
divided by the mass of the system,

pv =RT (1.8)

where v is the specific volume (m’/kg or ft’/slug). Since the density o = 1/v,
Eq. (1.8) becomes

Along another track that is particularly useful in chemically reacting systems,
the early fundamental empirical observations also led to a form for the equation of

state:
pV = NRT (1.10)

where ./is the number of moles of gas in the system, and 7 is the universal gas con-
stant, which is the same for all gases. Recall that a mole of a substance is that amount
which contains a mass numerically equal to the molecular weight of the gas, and
which is identified with the particular system of units being used, i.e., a kilogram-
mole (kg - mol) or a slug-mole (slug - mol). For example, for pure diatomic oxygen
(02), 1 kg - mol has a mass of 32 kg, whereas 1 slug - mol has a mass of 32 slug.
Because the masses of different molecules are in the same ratio as their molecular
weights, 1 mol of different gases always contains the same number of molecules, i.e.,
1 kg - mol always contains 6.02 x 10% molecules, independent of the species of the
gas. Continuing with Eq. (1.10), dividing by the number of moles of the system yields

TTwo sets of consistent units will be used throughout this book, the International System (SI) and the
English Engineering System. In the SI system, the units of force, mass, length, time, and temperature are
the newton (N), kilogram (kg), meter (m), second (s), and Kelvin (K), respectively; in the English
Engineering System they are the pound (Ib), slug, foot (ft), second (s), and Rankine (°R), respectively.
The respective units of energy are joules (J) and foot-pounds (ft - 1b).
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p7’ = AT (1.11)

where 77 is the molar volume [m3/(kg - mol) or ft3/(slug - mol)]. Of more use in
gasdynamic problems is a form obtained by dividing Eq. (1.10) by the mass of the
system:

pv=nAT (1.12)

where v is the specific volume as before, and 7 is the mole-mass ratio [(kg - mol)/kg
and (slug - mol)/slug]. (Note that the kilograms and slugs in these units do not can-
cel, because the kilogram-mole and slug-mole are entities in themselves; the “kilo-
gram” and “slug” are just identifiers on the mole.) Also, Eq. (1.10) can be divided by
the system volume, yielding

p=CAT (1.13)

where C is the concentration [(kg - mol)y/m? or (slug - mol)/ft?].

Finally, the equation of state can be expressed in terms of particles. Let Ny be
the number of particles in a mole (Avogadro’s number, which for a kilogram-mole is
6.02 x 10% particles). Multiplying and dividing Eq. (1.13) by N4,

A
= (N O — )T 1.14
p = (NsC) ( NA) (1.14)

Examining the units, N4C is physically the number density (number of particles
per unit volume), and 4/N is the gas constant per particle, which is precisely the
Boltzmann constant k. Hence, Eq. (1.14) becomes

p = nkT (1.15)

where n denotes number density.

In summary, the reader will frequently encounter the different forms of the per-
fect gas equation of state just listed. However, do not be confused; they are all the
same thing and it is wise to become familiar with them all. In this book, particular use
will be made of Eqgs. (1.8), (1.9), and (1.12). Also, do not be confused by the variety
of gas constants. They are easily sorted out:

1. When the equation deals with moles, use the universal gas constant, which is
the “gas constant per mole.” It is the same for all gases, and equal to the
following in the two systems of units:

A = 8314 J/(kg - mol - K)
A =497 x 10* (ft - Ib)/(slug - mol - °R)
2. When the equation deals with mass, use the specific gas constant R, which is
the “gas constant per unit mass.” It is different for different gases, and is

related to the universal gas constant, R = A/ #, where . # is the molecular
weight. For air at standard conditions:

R =2871J/(kg - K)
R = 1716 (ft - Ib)/(slug - °R)
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3.  When the equation deals with particles, use the Boltzmann constant &, which is
the “gas constant per particle”:

k=138 x 1072 K
k =0.565 x 1072 (ft - Ib) /°R

How accurate is the assumption of a perfect gas? It has been experimentally de-
termined that, at low pressures (near 1 atm or less) and at high temperatures (standard
temperature, 273 K, and above), the value pv/RT for most pure gases deviates from
unity by less than 1 percent. However, at very cold temperatures and high pressures,
the molecules of the gas are more closely packed together, and consequently inter-
molecular forces become more important. Under these conditions, the gas is defined
as a real gas. In such cases, the perfect gas equation of state must be replaced by
more accurate relations such as the van der Waals equation

(p—i—%) (v—b) = RT (1.16)

where a and b are constants that depend on the type of gas. As a general rule of
thumb, deviations from the perfect gas equation of state vary approximately as p/T>.
In the vast majority of gasdynamic applications, the temperatures and pressures are
such that p = pRT can be applied with confidence. Such will be the case through-
out this book.

In the early 1950s, aerodynamicists were suddenly confronted with hypersonic
entry vehicles at velocities as high as 26,000 ft/s (8 km/s). The shock layers about
such vehicles were hot enough to cause chemical reactions in the airflow (dissocia-
tion, ionization, etc.). At that time, it became fashionable in the aerodynamic litera-
ture to denote such conditions as “real gas effects.” However, in classical physical
chemistry, a real gas is defined as one in which intermolecular forces are important,
and the definition is completely divorced from the idea of chemical reactions. In the
preceding paragraphs, we have followed such a classical definition. For a chemically
reacting gas, as will be discussed at length in Chap. 16, most problems can be treated
by assuming a mixture of perfect gases, where the relation p = pRT still holds.
However, because R = Z/.# and . # varies due to the chemical reactions, then R is
a variable throughout the flow. It is preferable, therefore, nor to identify such
phenomena as “ real gas effects,” and this term will not be used in this book. Rather,
we will deal with “chemically reacting mixtures of perfect gases,” which are the
subject of Chaps. 16 and 17.

A pressure vessel that has a volume of 10 m? is used to store high-pressure air for operating a
supersonic wind tunnel. If the air pressure and temperature inside the vessel are 20 atm and
300 K, respectively, what is the mass of air stored in the vessel?

| Solution
Recall that 1 atm = 1.01 x 10° N/m?. From Eq. (1.9)
P (20)(1.01 x 109

=2 VI X D) 9346 ke/m?
RT (287)(300) g



The total mass stored is then

M= 7p=

1.4 A Brief Review of Thermodynamics

(10)(23.46) = | 234.6 kg

Calculate the isothermal compressibility for air at a pressure of 0.5 atm.

H Solution
From Eq. (1.3)

From Egq. (1.8)

Thus

(81)) _RT
ap/r I

Hence

1 (dv
r=—|—
! v \dp

), -G53

We see that the isothermal compressibility for a perfect gas is simply the reciprocal of the

pressure:

TIr =

In terms of the International System
N/m?,

r =
In terms of the English Engineering S

Ir =

1
p

1

1
63 = | 2 atm~

of units, where p = (0.5)(1.01 x 10°) = 5.05 x 10*

1.98 x 10~ m?*N

ystem of units, where p = (0.5)(2116) = 1058 Ib/fi?,

9.45 x 107* f*/1b
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1.4.2 Internal Energy and Enthalpy

Returning to our microscopic view
tion, the individual kinetic energy

of a gas as a collection of particles in random mo-
of each particle contributes to the overall energy

of the gas. Moreover, if the particle is a molecule, its rotational and vibrational mo-

tions (see Chap. 16) also contribute

to the gas energy. Finally, the motion of electrons

in both atoms and molecules is a source of energy. This small sketch of atomic and
molecular energies will be enlarged to a massive portrait in Chap. 16; it is sufficient
to note here that the energy of a particle can consist of several different forms of mo-

tion. In turn, these energies, summ

ed over all the particles of the gas, constitute the
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internal energy, e, of the gas. Moreover, if the particles of the gas (called the system)
are rattling about in their state of “maximum disorder” (see again Chap. 16), the sys-
tem of particles will be in equilibrium.

Return now to the macroscopic view of the gas as a continuum. Here, equilib-
rium is evidenced by no gradients in velocity, pressure, temperature, and chemical
concentrations throughout the system, i.e., the system has uniform properties. For an
equilibrium system of a real gas where intermolecular forces are important, and also
for an equilibrium chemically reacting mixture of perfect gases, the internal energy
is a function of both temperature and volume. Let e denote the specific internal en-
ergy (internal energy per unit mass). Then, the enthalpy, h, is defined, per unit mass,
as h = e + pv, and we have

e=¢e(T,v)

b= k(T p) (1.17)

for both a real gas and a chemically reacting mixture of perfect gases.

If the gas is not chemically reacting, and if we ignore intermolecular forces, the
resulting system is a thermally perfect gas, where internal energy and enthalpy are
functions of temperature only, and where the specific heats at constant volume and
pressure, ¢, and ¢, are also functions of temperature only:

e=¢e(T)
h=h(T
1) (1.18)
de=c, dT
dh=c, dT

The temperature variation of ¢, and c, is associated with the vibrational and elec-
tronic motion of the particles, as will be explained in Chap. 16.
Finally, if the specific heats are constant, the system is a calorically perfect gas,
where
e=c,T
h=c,T
In Eq. (1.19), it has been assumed that h = e =0at T = 0.

In many compressible flow applications, the pressures and temperatures are
moderate enough that the gas can be considered to be calorically perfect. Indeed,
there is a large bulk of literature for flows with constant specific heats. For the first
half of this book, a calorically perfect gas will be assumed. This is the case for at-
mospheric air at temperatures below 1000 K. However, at higher temperatures the
vibrational motion of the O, and N, molecules in air becomes important, and the air
becomes thermally perfect, with specific heats that vary with temperature. Finally,
when the temperature exceeds 2500 K, the O, molecules begin to dissociate into
O atoms, and the air becomes chemically reacting. Above 4000 K, the N, molecules
begin to dissociate. For these chemically reacting cases, from Eqs. (1.17), e depends
on both T and v, and 4 depends on both 7" and p. (Actually, in equilibrium thermo-
dynamics, any state variable is uniquely determined by any two other state variables.
However, itis convenient to associate T and v with e, and T and p with h.) Chapters 16

(1.19)
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and 17 will discuss the thermodynamics and gasdynamics of both thermally perfect
and chemically reacting gases.
Consistent with Eq. (1.9) and the definition of enthalpy is the relation

¢p—cy=R (1.20)

where the specific heats at constant pressure and constant volume are defined as
(57)
cp=| ==
aT J,
d de
Cy =\ —
an v 57 ).

respectively. Equation (1.20) holds for a calorically perfect or a thermally perfect
gas. It is nor valid for either a chemically reacting or a real gas. Two useful forms of
Eq. (1.20) can be simply obtained as follows. Divide Eq. (1.20) by ¢,:

- —=— (1.21)

1 R
l——==—
14 Cp
Solving for ¢,
_ _YR
Cp = — (1.22)

Similarly, by dividing Eq. (1.20) by c,, we find that

R
= —— (1.23)
y —1

Equations (1.22) and (1.23) hold for a thermally or calorically perfect gas; they will
be useful in our subsequent treatment of compressible flow.

For the pressure vessel in Example 1.2, calculate the total internal energy of the gas stored in
the vessel.

H Solution
From Eq. (1.23)

R 287
Ch=—— = =717.5J/kg - K

EXAMPLE 1.4
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From Egq. (1.19)
e=c,T = (717.5)(300) = 2.153 x 10° J/kg

From Example 1.2, we calculated the mass of air in the vessel to be 234.6 kg. Thus, the total
internal energy is

E = Me = (234.6)(2.153 x 10°) = | 5.05 x 107 J

1.4.3 First Law of Thermodynamics

Consider a system, which is a fixed mass of gas separated from the surroundings by
a flexible boundary. For the time being, assume the system is stationary, i.e., it has no
directed kineétic energy. Let §¢g be an incremental amount of heat added to the system
across the boundary (say by direct radiation or thermal conduction). Also, let w de-
note the work done on the system by the surroundings (say by a displacement of
the boundary, squeezing the volume of the system to a smaller value). Due to the
molecular motion of the gas, the system has an internal energy e. (This is the specific
internal energy if we assume a system of unit mass.) The heat added and work done
on the system cause a change in energy, and since the system is stationary, this
change in energy is simply de:

8q +dw =de (1.24)

This is the first law of thermodynamics; it is an empirical result confirmed by labo-
ratory and practical experience. In Eq. (1.24), e is a state variable. Hence, de is an
exact differential, and its value depends only on the initial and final states of the sys-
tem. In contrast, 8q and w depend on the process in going from the initial and final
states. ‘

For a given de, there are in general an infinite number of different ways
(processes) by which heat can be added and work done on the system. We will be
primarily concerned with three types of processes:

1. Adiabatic process—one in which no heat is added to or taken away from the
system

2. Reversible process—one in which no dissipative phenomena occur, i.e., where
the effects of viscosity, thermal conductivity, and mass diffusion are absent

3. Isentropic process—one which is both adiabatic and reversible

For a reversible process, it can be easily proved (see any /good text on thermo-

dynamics) that §w = — p dv, where dv is an incremental change in specific volume
due to a displacement of the boundary of the system. Hence, Eq. (1.24) becomes
8q — pdv=de (1.25)

If, in addition, this process is also adiabatic (hence isentropic), Eq. (1.25) leads to
some extremely useful thermodynamic formulas. However, before obtaining these
formulas, it is useful to review the concept of entropy.
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1.4.4 Entropy and the Second Law of Thermodynamics

Consider a block of ice in contact with a red-hot plate of steel. Experience tells us
that the ice will warm up (and probably melt) and the steel plate will cool down.
However, Eq. (1.24) does not necessarily say this will happen. Indeed, the first law
allows that the ice may get cooler and the steel plate hotter—just as long as energy is
conserved during the process. Obviously, this does not happen; instead, nature im-
poses another condition on the process, a condition which tells us in which direction
a process will take place. To ascertain the proper direction of a process, let us define
a new state variable, the entropy, as

_ 8

T

where s is the entropy of the system, 84y i an incremental amount of heat added re-
versibly to the system, and T is the system temperature. Do not be confused by this
definition. It defines a change in entropy in terms of a reversible addition of heat,
8qrev. However, entropy is a state variable, and it can be used in conjunction with any
type of process, reversible or irreversible. The quantity 8¢y, is just an artifice; an ef-
fective value of 8g., can always be assigned to relate the initial and end points of an
irreversible process, where the actual amount of heat added is 8¢ . Indeed, an alterna-
tive and probably more lucid relation is

ds

5
ds = 7{; + dSimey (1.26)

Equation (1.26) applies in general; it states that the change in entropy during any in-
cremental process is equal to the actual heat added divided by the temperature, 6q/T,
plus a contribution from the irreversible dissipative phenomena of viscosity, thermal
conductivity, and mass diffusion occurring within the system, dsiye,. These dissipa-
tive phenomena always increase the entropy:

dSirrev = 0 (1.27)

The equal sign denotes a reversible process, where, by definition, the dissipative phe-
nomena are absent. Hence, a combination of Egs. (1.26) and (1.27) yields

3q
§ > — .
ds > T (1.28)

Furthermore, if the process is adiabatic, g = 0, and Eq. (1.28) becomes

ds >0 (1.29)

Equations (1.28) and (1.29) are forms of the second law of thermodynamics. The sec-
ond law tells us in what direction a process will take place. A process will proceed in
a direction such that the entropy of the system plus surroundings always increases, or
at best stays the same. In our example at the beginning of Section 1.4.4, consider the
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system to be both the ice and steel plate combined. The simultaneous heating of
the ice and cooling of the plate yields a net increase in entropy for the system. On the
other hand, the impossible situation of the ice getting cooler and the plate hotter
would yield a net decrease in entropy, a situation forbidden by the second law. In
summary, the concept of entropy in combination with the second law allows us to
predict the direction that nature takes.

1.4.5 Calculation of Entropy

Consider again the first law in the form of Eq. (1.25). If we assume that the heat is re-
versible, and we use the definition of entropy in the form dgry = T ds, then
Eq. (1.25) becomes

Tds — pdv=de

Tds =de+ pdv (1.30)

Another form can be obtained in terms of enthalpy. For example, by definition,

h=e+ pv
Differentiating, we obtain

dh=de+ pdv—+vdp (1.31)
Combining Egs. (1.30) and (1.31), we have

Tds=dh—vdp (1.32)

Equations (1.30) and (1.32) are important, and should be kept in mind as much as the
original form of the first law, Eq. (1.24).
For a thermally perfect gas, from Eq. (1.18), we have dh = ¢, dT. Substitution
into Eq. (1.32) gives
dT vdp

ds = Cp—T— hd T (133)

Substituting the perfect gas equation of state pv = RT into Eq. (1.33), we have

ds=c,— — R — 1.34
s Cp T p ( )
Integrating Eq. (1.34) between states 1 and 2,
L& ar D2
Sy — 8§ = ¢cp— — RIn —= (1.35)
/T. Pr P

Equation (1.35) holds for a thermally perfect gas. It can be evaluated if ¢, is known
as a function of T. If we further assume a calorically perfect gas, where ¢, is con-
stant, Eq. (1.35) yields

T.
ss—si=c,ln2—Rmn 22 (1.36)

T p1
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Similarly, starting with Eq. (1.30), and using de = ¢, dT, the change in entropy
can also be obtained as

T v
$7—5 =cpln == + RIn = (1.37)
T v

As an exercise, show this yourself. Equations (1.36) and (1.37) allow the calculation
of the change in entropy between two states of a calorically perfect gas in terms of ei-
ther the pressure and temperature, or the volume and temperature. Note that entropy

is a function of both p and T, or v and T, even for the simplest case of a calorically
perfect gas.

EXAMPLE L5

Consider the air in the pressure vessel in Example 1.2. Let us now heat the gas in the vessel.
Enough heat is added to increase the temperature to 600 K. Calculate the change in entropy of
the air inside the vessel.

B Solution

The vessel has a constant volume; hence as the air temperature is increased, the pressure also
increases. Let the subscripts 1 and 2 denote the conditions before and after heating, respec-
tively. Then, from Eq. (1.8),

pp_L_ 800
m T 300

In Example 1.4, we found that ¢, = 717.5 J/kg - K. Thus, from Eq. (1.20)
cp =0+ R=T17.5+287=10045Jkg-K

From Eq. (1.36)

T
(-,,lan R
1 Pi

1004.5In2 —287In2 = 497.3 J/kg - K

§2 — 8y

From Example 1.2, the mass of air inside the vessel is 234.6 kg. Thus, the total entropy
change is

S =8 = M(s, —s1) = (234.6)(4973) = | 1.167 x 10° J/K

1.4.6 Isentropic Relations

An isentropic process was already defined as adiabatic and reversible. For an adia-
batic process, 8g = 0, and for a reversible process, dsirev = 0. Hence, from
Eg. (1.26), an isentropic process is one in which ds = 0, i.e., the entropy is constant.
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Important relations for an isentropic process can be obtained directly from
Eqgs. (1.36) and (1.37), setting s, = s,. For example, from Eq. (1.36)

iy P2
O0=c,In—=—RIn=
P D1

T
lnt-:c—pln z

pp R T
cp/R
53 _ (%) (1.38)
1 1
Recalling Eq. (1.22),
YV
R y —1
and substituting into Eq. (1.38),
T v/v=1
% - (-TZ) (1.39)
1 1
Similarly, from Eq. (1.37)
O_C,)ln—2 +Rln2
1 v;
n2-_2pk
Uy R T]
T -cy/R
% - (%) (1.40)
1 1
From Egq. (1.23)
Cy 1
R y-—1
Substituting into Eq. (1.40), we have
7.\ V=D
Recall that p»/0; = v1/v,. Hence, from Eq. (1.41)
T 1/(y~1)
- (2)
Summarizing Egs. (1.39) and (1.42),
y y/y—1
D2 ) T
222y (22 1.43
D1 (Pl) (Tl) (1.43)

Equation (1.43) is important. It relates pressure, density, and temperature for an isen-
tropic process, and is very frequently used in the analysis of compressible flows.
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You might legitimately ask the questions why Eq. (1.43) is so important, and
why it is frequently used. Indeed, at first thought the concept of an isentropic
process itself may seem so restrictive—adiabatic as well as reversible—that one
might expect it to find only limited applications. However, such is not the case. For
example, consider the flows over an airfoil and through a rocket engine. In the re-
gions adjacent to the airfoil surface and the rocket nozzle walls, a boundary layer is
formed wherein the dissipative mechanisms of viscosity, thermal conduction, and
diffusion are strong. Hence, the entropy increases within these boundary layers. On
the other hand, consider the fluid elements outside the boundary layer, where dissi-
pative effects are negligible. Moreover, no heat is being added or taken away from
the fluid elements at these points—hence, the flow is adiabatic. As a result, the fluid
elements outside the boundary layer are experiencing adiabatic and reversible
processes—namiely, isentropic flow. Moreover, the viscous boundary layers are
usually thin, hence large regions of the flowfields are isentropic. Therefore, a study
of isentropic flows is directly applicable to many types of practical flow problems.
In turn, Eq. (1.43) is a powerful relation for such flows, valid for a calorically per-
fect gas.

This ends our brief review of thermodynamics. Its purpose has been to give a
quick summary of ideas and equations that will be employed throughout our subse-
quent discussions of compressible flow. Aspects of the thermodynamics associated
with a high-temperature chemically reacting gas will be developed as necessary in
Chap. 16.

Consider the flow through a rocket engine nozzle. Assume that the gas flow through the nozzle
is an isentropic expansion of a calorically perfect gas. In the combustion chamber, the gas
which results from the combustion of the rocket fuel and oxidizer is at a pressure and temper-
ature of 15 atm and 2500 K, respectively; the molecular weight and specific heat at constant
pressure of the combustion gas are 12 and 4157 J/kg - K, respectively. The gas expands to su-
personic speed through the nozzle, with a temperature of 1350 K at the nozzle exit. Calculate
the pressure at the exit.

H Solution

From our earlier discussion on the equation of state,

4 8314
R= = =2"=69238J/kg K
12

From Eq. (1.20)
¢y =Cp, — R =4157 - 692.8 = 3464 J/kg - K

Thus

c, 4157
c, 3464

1.2

EXAMPLLE L6
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From Eq. (1.43), we have

T y/y=1hH 1350 1.2/(1.2-1)
22 = (522 = 0.0248
P T 2500

p2 = 0.025p, = (0.0248)(15 atm) = | 0.372 atm

EXAMPLI 1.7

Calculate the isentropic compressibility for air at a pressure of 0.5 atm. Compare the result
with that for the isothermal compressibility obtained in Example 1.3.

u Solution
From Eq. (1.4), the isentropic compressibility is defined as

1(811)
=— | —
v \dp/

Since v = 1/p, we can write Eq. (1.4) as

1 /ap
== — E.1
" p(ap)x ED

The variation between p and p for an isentropic process is given by Eq. (1.43)

P _ (&)
14! L1

which is the same as writing

p=co’ (E2)
where c is a constant. From Eq. (E.2)
ap - p - )44
(—) =cyp' = —(p'TH = (E.3)
ap J; pY o

From Egs. (E.1) and (E.3),
c 1 (6;)) 1 (8p)—1 1 <)/p)—l
¢ p\dp /. p\0p/ P\ p

1
T, = — (E4)
yp

Recall from Example 1.3 that T = 1/p. Hence,

Hence,

=L (E.5)
y

Note that 7, is smaller than 77 by the factor y. From Example 1.3, we found that for p = 0.5 atm,
77 = 1.98 x 10~° m?/N. Hence, from Eq. (E.5)
198 x 1075

- = = -5 2
Ts 14 1.41 x 107’ m*/N
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1.5 AERODYNAMIC FORCES ON A BODY

The history of fluid dynamics is dominated by the quest to predict forces on a body
moving through a fluid—ships moving through water, and in the nincteenth and
twentieth centuries, aircraft moving through air, to name just a few examples.
Indeed, Newton'’s treatment of fluid flow in his Principia (1687) was oriented in part
toward the prediction of forces on an inclined surface. The calculation of aero-
dynamic and hydrodynamic forces still remains a central thrust of modern fluid
dynamics. This is especially true for compressible flow, which governs the aerody-
namic lift and drag on high-speed subsonic, transonic, supersonic, and hypersonic
airplanes, and missiles. Therefore, in several sections of this book, the fundamentals
of compressible flow will be applied to the practical calculation of aerodynamic
forces on high-speed bodies.

The mechanism by which nature transmits an aerodynamic force to a surface is
straightforward. This force stems from only two basic sources: surface pressure
and surface shear stress. Consider, for example, the airfoil of unit span sketched in
Fig. 1.11. Let s be the distance measured along the surface of the airfoil from the
nose. In general, the pressure p and shear stress t are functions of 5; p = p(s) and
T = 1(s). These pressure and shear stress distributions are the only means that nature
has to communicate an aerodynamic force to the airfoil. To be more specific, con-
sider an elemental surface area d S on which is exerted a pressure p acting normal to
d S and a shear stress T acting tangential to 45, as sketched in Fig. 1.11 Let n and m
be unit vectors perpendicular and parallel, respectively, to the element d.S, as shown
in Fig. 1.11. For future discussion, it is convenient to define a vector dS = ndsS;
hence dS is a vector normal to the surface with a magnitude dS. From Fig. 1.11, the
elemental force dF acting on dS is then

dF = -pndS +tmdS = —pdS+ tmdS (1.44)

Note from Fig. 1.11 that p acts toward the surface, whereas dS = ndS is directed
away from the surface. This is the reason for the minus sign in Eq. (1.44). The fotal

Voo Airfoil

Figure 1.11 | Sources of aerodynamic force; resultant force and its resolution
into lift and drag.

a3
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aerodynamic force F acting on the complete body is simply the sum of all the ele-
ment forces acting on all the elemental areas. This can be expressed as a surface in-
tegral, using Eq. (1.44):

F=#dF=—#pdS+#rmdS (1.45)

On the right-hand side of Eq. (1.45), the first integral is the pressure force on the
body, and the second is the shear, or friction force. The integrals are taken over the
complete surface of the body.

Consider x, y, z orthogonal coordinates as shown in Fig. 1.11. Let x and y be
parallel and perpendicular, respectively, to V. If F is the net aerodynamic force
from Eq. (1.45), then the lift L and drag D are defined as the components of F in
the y and x directions, respectively. In aerodynamics, V., is called the relative wind,
and lift and drag are always defined as perpendicular and parallel, respectively, to the
relative wind. For most practical aerodynamic shapes, L is generated mainly by the
surface pressure distribution; the shear stress distribution generally makes only a
small contribution. Hence from Eq. (1.45) and Fig. 1.11, the aerodynamic lift can be
approximated by

L ~ y component of [ — # p dS] (1.46)
With regard to drag, from Eq. (1.45) and Fig. 1.11,

D = x component of [—#p dS] + x component of [#rm dS] (1.47)

pressure drag skin-friction drag

In this book, inviscid flows are dealt with exclusively, as discussed in Sec. 1.3.
For many bodies, the inviscid flow accurately determines the surface pressure distri-
bution. For such bodies, the results of this book in conjunction with Eq. (1.46) allow
a reasonable prediction of lift. On the other hand, drag is due both to pressure and
shear stress distributions via Eq. (1.47). Since we will not be considering viscous
flows, we will not be able to calculate skin friction drag. Moreover, the pressure drag
in Eq. (1.47) is often influenced by flow separation from the body—also a viscous
effect. Hence, the fundamentals of inviscid compressible flow do not lead to an ac-
curate prediction of drag for many situations. However, for pressure drag on slender
supersonic shapes due to shock waves, so-called wave drag, inviscid techniques are
usually quite adequate, as we shall see in subsequent chapters.

A flat plate with a chord length of 3 ft and an infinite span (perpendicular to the page in
Fig. 1.12) is immersed in a Mach 2 flow at standard sea level conditions at an angle of attack
of 10°. The pressure distribution over the plate is as follows: upper surface, p, = const =
1132 Ib/ft?; lower surface, p; = const = 3568 Ib/ft>. The local shear stress is given by
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Pressure distribution

Shear stress distribution

Figure 1.12 | Geometry for Example 1.8.

7, = 13/E%2 where T, is in pounds per square feet and £ is the distance in feet along the
plate from the leading edge. Assume that the distribution of t,, over the top and bottom sur-
faces is the same. (We make this assumption for simplicity in this example. In reality, the
shear stress distributions over the top and bottom surfaces will be different because the flow
properties over these two surfaces are different.) Both the pressure and shear stress distribu-
tions are sketched qualitatively in Fig. 1.12. Calculate the lift and drag per unit span on
the plate.

#¥Solution
Considering a unit span,

3 3
—#pds = [—/ padé 4+ f P3 dé] n = [—(1132)(3) + (3568)(3)In = 7308n
0 0
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From Eq. (1.46)

L = y component of [ - #pdS] =7308cos 10° = | 7197 Ib |per unit span

From Egq. (1.47)
Pressure drag = wave drag = D,, = x component of [ - # p dS]

Hence

D, = 7308sin10° = | 1269 Ib |per unit span

Also from Eq. (1.46)

Skin-friction drag = Dy = x component of [ # m dS]

3 3
#rm ds = [13] g-“dgjl m = 16.25£%/5 )Om =39.13m
0

Hence, recalling that shear stress acts on both sides,

Dy =2(39.13)cos 10° = | 77.11b | per unit span

The total drag is
D =D, + Dy

D=12691b+77.11b= | 13461b

Note: For this example, the drag is mainly wave drag; skin-friction drag accounts for only
5.7 percent of the total drag. This illustrates an important point. For supersonic flow over slen-
der bodies at a reasonable angle of attack, the wave drag is the primary drag contributor at sea
level, far exceeding the skin-friction drag. For such applications, the inviscid methods dis-
cussed in this book suffice, because the wave drag (pressure drag) can be obtained from such
methods. We see here also why so much attention is focused on the reduction of wave drag—
because it is frequently the primary drag component. At smaller angles of attack, the relative
proportion of Dy to D increases. Also, at higher altitudes, where viscous effects become
stronger (the Reynolds number is lower), the relative proportion of Dy to D increases.

1.6 | MODERN COMPRESSIBLE FLOW

In Sec. 1.1, we saw how the convergent-divergent steam nozzles of de Laval helped
to usher compressible flow into the world of practical engineering applications. How-
ever, compressible flow did not begin to receive major attention until the advent of jet
propulsion and high-speed flight during World War II. Indeed, between 1945 and
1960, the fundamentals and applications of compressible flow became essentially
“classic,” generally characterized by

1. Treatment of a calorically perfect gas, i.e., constant specific heats.

2. Exact solutions of flows in one dimension, but usually approximate solutions
(based on linearized equations) for two- and three-dimensional flows. These
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solutions were closed form, yielding equations or formulas for the desired
information. Exceptions were the method of characteristics, an exact numerical
approach applicable to certain classes of compressible flows (see Chap. 11),
and the exact Taylor—Maccoll solution to the flow over a sharp, right-circular
cone at zero angle of attack (see Chap. 10). Both of these exceptions required
numerical solutions, which were laborious endeavors before the advent of the
modern high-speed digital computer.

Many good textbooks on classical compressible flow have been written since 1945.
Some of them are listed as Refs. 3 through 17 at the end of this book. The reader is
strongly encouraged to study these references, because a thorough understanding of
classical compressible flow is essential to modern applications.

Since approximately 1960, compressible flow has entered a “modern™ period,
characterized by

1. The necessity of dealing with high-temperature, chemically reacting gases
associated with hypersonic flight and rocket engines, hence requiring a major
extension and modification of the classical literature based on a calorically
perfect gas. (See, for example, Ref. 119.)

2. The rise of computational fluid dynamics, which is a new third dimension in
fluid dynamics, complementing the previous existing dimensions of pure
experiment and pure theory. With the advent of modern high-speed digital
computers, and the subsequent development of computational fluid dynamics
as a distinct discipline, the practical solution of the exact governing equations
for a myriad of complex compressible flow problems is now at hand. In brief,
computational fluid dynamics is the art of replacing the governing partial
differential equations of fluid flow with numbers, and advancing these numbers
in space and/or time to obtain a final numerical description of the complete
flowfield of interest. The end product of computational fluid dynamics is
indeed a collection of numbers, in contrast to a closed-form analytical solution.
However, in the long run the objective of most engineering analyses, closed-
form or otherwise, is a quantitative description of the problem, i.e., numbers.
(See, for example, Ref. 18.)

The modern compressible flow of today is a mutually supportive mixture of clas-
sical analyses along with computational techniques, with the treatment of noncalori-
cally perfect gases as almost routine. The purpose of this book is to provide an
understanding of compressible flow from this point of view. Its intent is to blend the
important aspects of classical compressible flow with the recent techniques of com-
putational fluid dynamics. Moreover, the first part of the book will deal almost ex-
clusively with a calorically perfect gas. In turn, the second part will contain a logical
extension to realms of high-temperature gases, and the results will be contrasted
with those from classical analyses. In addition, various historical aspects of the
development of compressible flow, both classical and modern, will be included along
with the technical material. In this fashion, it is hoped that the reader will gain an ap-
preciation of the heritage of the discipline. The author feels strongly that a knowledge
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of such historical traditions and events is important for a truly fundamental under-
standing of the discipline.

1.7 | SUMMARY

The compressibility is generically defined as

.- 1dv (12)
 wvdp '
hence
dp = ptdp (1.6)

From Egq. (1.6), a flow must be treated as compressible when the pressure gradients
in the flowfield are large enough such that, in combination with a large enough value
of the compressibility, 7, the resulting density changes are too large to ignore. For
gases, this occurs when the flow Mach number is greater than about 0.3. In short, for
high-speed flows, the density becomes a variable; such variable-density flows are
called compressible flows.

High-speed, compressible flow is also high-energy flow. Thermodynamics is the
science of energy and entropy; hence a study and application of compressible flow
involves a coupling of purely fluid dynamic fundamentals with the results of ther-
modynamics.

Compressible flow pertains to flows at Mach numbers from 0.3 to infinity. In turn,
this range of Mach number is subdivided into four regimes, each with its own distin-
guishing physical characteristics and different analytical methods. These regimes are
subsonic, transonic, supersonic, and hypersonic flow. Each of these regimes is dis-
cussed at length in this book.

PROBLEMS

1.1 At the nose of a missile in flight, the pressure and temperature are 5.6 atm
and 850°R, respectively. Calculate the density and specific volume.
(Note: 1 atm = 2116 1b/ft?.)

1.2 In the reservoir of a supersonic wind tunnel, the pressure and temperature of
air are 10 atm and 320 K, respectively. Calculate the density, the number
density, and the mole-mass ratio. (Note: 1 atm = 1.01 x 10° N/m?2.)

1.3 For a calorically perfect gas, derive the relation ¢, — ¢, = R. Repeat the
derivation for a thermally perfect gas.

1.4 The pressure and temperature ratios across a given portion of a shock wave in
air are po/p; = 4.5 and T,/T; = 1.687, where 1 and 2 denote conditions
ahead of and behind the shock wave, respectively. Calculate the change in
entropy in units of (a) (ft - Ib)/(slug - °R) and (b) J/(kg - K).

1.5 Assume that the flow of air through a given duct is isentropic. At one point in
the duct, the pressure and temperature are p; = 1800 1b/ft? and 77 = 500°R,
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1.7

Problems

respectively. At a second point, the temperature is 400°R. Calculate the

pressure and density at this second point.

Consider a room that is 20 ft long, 15 ft wide, and 8 ft high. For standard sea

level conditions, calculate the mass of air in the room in slugs. Calculate the

weight in pounds. (Note: If you do not know what standard sea level
conditions are, consult any aerodynamics text, such as Refs. 1 and 104, for
these values. Also, they can be obtained from any standard atmosphere table.)

In the infinitesimal neighborhood surrounding a point in an inviscid flow, the

small change in pressure, dp, that corresponds to a small change in velocity,

dV,is given by the differential relation dp = —pV dV. (This equation is

called Euler’s Equation; it is derived in chapter 6.)

a. Using this relation, derive a differential relation for the fractional change
in density, dp/p, as a function of the fractional change in velocity, dV/V,
with the compressibility T as a coefficient.

b. The velocity at a point in an isentropic flow of air is 10 m/s (a low speed
flow), and the density and pressure are 1.23 kg/m® and 1.01 x 10° N/m’
respectively (corresponding to standard sea level conditions). The
fractional change in velocity at the point is 0.01. Calculate the fractional
change in density.

c. Repeat part (b), except for a local velocity at the point of 1000 m/s
(a high-speed flow). Compare this result with that from part (b), and
comment on the differences.
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CHAPTER

Integral Forms of the
Conservation Equations
for Inviscid Flows

Mathematics up to the present day have been quite useless to us in regard to flying.
From the 14th Annual Report of the Aeronautical Society of Great
Britain, 1879

Mathematical theories from the happy hunting grounds of pure mathematicians are
found suitable to describe the airflow produced by aircraft with such excellent
accuracy that they can be applied directly to airplane design.

Theodore von Karman, 1954
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2.2 Approach

2.1 | PHILOSOPHY

Consider the flowfield over an arbitrary aerodynamic body. We are interested in cal-
culating the properties (p, p, T, V, etc.) of the flowfield at all points within the flow.
Why? Because, if we can calculate the flow properties throughout the flow, then we
can certainly compute them on the surface of the body. In turn, from the surface dis-
tributions of p. T, p, V, etc., we can compute the aerodynamic forces (lift and drag),
moments, and heat transfer on the body. Indeed, the calculation of such practical in-
formation is one of the main functions of theoretical fluid mechanics, whether the
body be a supersonic missile in flight, a submarine under water, or a high-rise apart-
ment building in a hurricane. The essential point here is that in order to obtain prac-
tical information on engineering devices involving fluid flows, it is frequently neces-
sary to approach the theoretical solution of the complete flowfield.

How do we calculate the flowfield properties? The answer is from equations, al-
gebraic, differential, or integral, which relate p, p, T. 'V, etc., to each other, along
with suitable boundary conditions for the problem. The equations are obtained from
the fundamental laws of nature applied to fluid flows. These laws and equations are
a necessary prerequisite for an understanding of compressible flow. Therefore, let us
proceed to establish these fundamental results.

2.2 APPROACH

In obtaining the basic equations of fluid motion, the following approach is always
taken:

1. Choose the appropriate fundamental physical principles from the laws of
nature, such as
a. Mass is conserved.
b. Force = mass x acceleration.
¢. Energy is conserved.

2. Apply these physical principles to a suitable model of the flow.

3. From this application, extract the mathematical equations which embody such
physical principles.

We first consider step 2, namely, what constitutes a suitable model of the flow?
This is a somewhat subtle question. In contrast to the dynamics of well-defined solid
bodies, on which it is usually apparent where to apply forces and moments, the dy-
namics of a fluid are complicated by the “squishy” nature of a rather elusive contin-
uous medium that generally extends over large regions in space. Consequently, fluid
dynamicists have to focus on specific regions of the flow, and apply the fundamental
laws to a subscale model of the fluid motion. Three such models can be employed.

2.2.1 Finite Control Volume Approach

Consider a general flowfield, as represented by the streamlines in Fig. 2.2. Let us
imagine a closed volume drawn within a finite region of the flow. This is defined as
a control volume with volume 7 and surface area S. The control volume may be
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J _/
5

—\

Finite control volume fixed Finite control volume moving with the
in space with the fluid moving fluid such that the same fluid particles
through it. are always in the same control volume

Figure 2.2 | Finite control volume approach.
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k

Volume, d%"
g Volume, d7~
A
——,_\\ V, M
__—,\\ B
Infinitesimal fluid element fixed in Infinitesimal fluid element moving along a
space with the fluid moving through it streamline with the velocity V equal to the

flow velocity at each point

Figure 2.3 | Infinitesimal fluid element approach.

either fixed in space with the fluid moving through it, or moving with the fluid such
that the same fluid particles are always inside it.

With the application of the already mentioned fundamental physical principles
to these finite control volumes, fixed or moving, integral equations for the fluid prop-
erties can be directly obtained. With some further manipulation, differential equa-
tions for the fluid properties can be indirectly extracted.

2.2.2 Infinitesimal Fluid Element Approach

Consider a general flowfield as represented by the streamlines in Fig. 2.3. Let us
imagine an infinitesimally small fluid element in the flow, with volume 47" The fluid
element is infinitesimal in the same sense as differential calculus; however, it is large
enough to contain a huge number of molecules so that it can be viewed as a continu-
ous medium (see the discussion of a continuum in Sec. 1.3). The fluid element may
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be fixed in space with the fluid moving through it, or it may be moving along a
streamline with velocity V equal to the flow velocity at each point. With the applica-
tion of the fundamental physical principles to these fluid elements, fixed or moving,
differential equations for the fluid properties can be directly obtained.

2.2.3 Molecular Approach

In actuality, of course, the motion of a fluid is a ramification of the mean molecular
motion of its particles. Therefore, a third model of the flow can be a microscopic ap-
proach wherein the fundamental laws of nature are applied directly to the molecules,
with suitable statistical averaging. This leads to the Boltzmann equation from kinetic
theory, from which the governing differential equations for the fluid properties can
be extracted. This is an elegant approach, with many advantages in the long run.
However, it is beyond the scope of the present book. The reader should consult the
authoritative book by Hirchfelder, Curtis, and Bird (Ref. 19) for more details.

In summary, although many variations on the theme can be found in different
texts for the derivation of the general equations of fluid flow, the flow model can
usually be categorized as one of the approaches described above. For the sake of
consistency, the model of a fixed finite control volume will be employed for the
remainder of this chapter.

2.3 1 CONTINUITY EQUATION

2.3.1 Physical Principle

Mass Can Be Neither Created Nor Destroyed. Let us apply this principle to the
model of a fixed control volume in a flow, as illustrated in Fig. 2.4. The volume
is 77 and the area of the closed surface is S. First, consider point B on the control
surface and an elemental area around B, dS. Let n be a unit vector normal to the sur-
face at B. Define dS = ndS. Also, let V and p be the local velocity and density at B.

y
n

s
_\__d[_/

-

z

Figure 2.4 | Fixed control volume for derivation
of the governing equations.
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The mass flow (slug/s or kg/s) through any elemental surface arbitrarily oriented in a
flowing fluid is equal to the product of density, the component of velocity normal to
the surface, and the area. (Prove this to yourself.) Letting s denote the mass flow
through d S, and referring to Fig. 2.4,

m=p(VcosB)dS = pV,dS =pV-dS 2.1

[Note: The product pV,, is called the mass flux, i.e., the flow of mass per unit area per
unit time. Whenever you see a product of (density x velocity) in fluid mechanics, it
can always be interpreted as mass flow per second per unit area perpendicular to the
velocity vector.] The net mass flow into the control volume through the entire control
surface S is the sum of the elemental mass flows from Eq. (2.1), namely,

—#pV-dS

s
where the minus sign denotes inflow (in the opposite direction of V and 4S in
Fig. 2.4). Consider now an infinitesimal volume d 7" inside the control volume. The
mass of this infinitesimal volume is o d 7. Hence, the total mass inside the control
volume is the sum of these elemental masses, namely,

frer

4
The time rate of change of this mass inside the control volume is therefore
3
— dv

ar JIf °
v

Finally, the physical principle that mass is conserved (given at the beginning of this
section) states that the net mass flow into the control volume must equal the rate of
increase of mass inside the control volume. In terms of the integrals just given, a
mathematical representation of this statement is simply

]
—#pV-dS:a’%#pd“// 2.2)
[ v

This equation is called the continuity equation; it is the integral formulation of the
conservation of mass principle as applied to a fluid flow. Equation (2.2) is quite gen-
eral; it applies to all flows, compressible or incompressible, viscous or inviscid.

2.4 | MOMENTUM EQUATION

2.4.1 Physical Principle

The Time Rate of Change of Momentum of a Body Equals the Net Force Exerted
on It. Written in vector form, this statement becomes

d
S mV)=F (2.3)



2.4 Momentum Equation

For constant mass, Eq. (2.3) yields

av
F=m i ma (24)
which is the more familiar form of Newton’s second law, namely, that force = mass x
acceleration. However, the physical principle with Eq. (2.3) is a more general
statement of Newton’s second law than Eq. (2.4). In this section, we wish to put
Newton’s second law [Eq. (2.3)] in fluid mechanic terms by employing the same con-
trol volume utilized in Sec. 2.3 and sketched in Fig. 2.4.
First, consider the forces on the control volume. Using some intuitive physical
sense, we can visualize these forces as two types:

1. Body forces acting on the fluid inside 7". These forces stem from “action at a
distance,” such as gravitational and electromagnetic forces that may be exerted
on the fluid inside 7~ due to force fields acting through space. Let f represent
the body force per unit mass of fluid. Considering an elemental volume, d 7,
inside 7, the elemental body force on d 7" is equal to the product of its mass
and the force per unit mass, namely, (p d 7")f. Hence, summing over the
complete control volume,

Total body force = ﬁpfd/l' 2.5
7

2. Surface forces acting on the boundary of the control volume. As discussed in
Sec. 1.5, surface forces in a fluid stem from two sources: pressure and shear
stress distributions over the surface. Since we are dealing with inviscid flows
here, the only surface force is therefore due to pressure. Consider the elemental
area dS sketched in Fig. 2.4. The elemental surface force acting on this area is
—pdS, where the minus sign signifies that pressure acts inward, opposite to
the outward direction of the vector dS. Hence, summing over the complete
control surface,

Total surface force due to pressure = — # pds (2.6)

S
Note that the sum of Eqs. (2.5) and (2.6) represent F in Eq. (2.3). That is, at any
given instant in time, the total force F acting on the control volume is

F :ﬁpfd“/’/ - #pds 2.7

N S

[Please note that, if an aerodynamic body were inserted inside the control volume,
there would be an additional force on the fluid—the equal and opposite reaction to
the force on the body. However, in dealing with control volumes, it is always possi-
ble to wrap the control surface around the body in such a fashion that the body is
always outside the control volume, and the body force then shows up as part of the
pressure distribution on the control surface. This is already taken into account by the
last term in Eq. (2.7).]
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Now consider the left-hand side of Eq. (2.3). In terms of our fluid dynamic
model, how is the time rate of change of momentum, m(dV/dr), expressed? To an-
swer this question, again use some physical intuition. Look at the control volume in
Fig. 2.4. Because it is fixed in space, mass flows into the control volume from the left
at the same time that other mass is streaming out toward the right. The mass flowing
in brings with it a certain momentum. At the same time, the mass flowing out also has
momentum. With this picture in mind, let A; represent the net rate of flow of mo-
mentum across the surface S. The elemental mass flow across dS is given by
Eq. (2.1) as pV =dS. With this elemental mass flow is associated a momentum flow
(or flux) (pV =dS)V. Note from Fig. 2.4 that, when the direction of V is away from
the control volume, this physically represents an outflow of momentum and mathe-
matically represents a positive value of V «dS. Conversely, when the direction of
V is toward the control volume, this physically represents an inflow of momentum
and mathematically represents a negative value of V «dS. The net rate of flow of
momentum, summed over the complete surface S, is

A= #(pV - dS)V (2.8)
s

At this stage, it would be tempting to claim that A; represents the left-hand side
of Eq. (2.3). However, consider an unsteady flow, where, by definition, the flow
properties at any given point in the flowfield are functions of time. Examples would
be the flow over a body that is oscillating back and forth with time, and the flow
through a nozzle where the supply valves are being twisted off and on. If our control
volume in Fig. 2.4 were drawn in such an unsteady flow, then the momentum of the
fluid inside the control volume would be fluctuating with time simply due to the time
variations in o and V. Therefore, A does not represent the whole contribution to the
left-hand side of Eq. (2.3). There is, in addition, a time rate of change of momentum
due to unsteady, transient effects in the flowfield inside 7. Let A, represent this fluc-
tuation in momentum. Also consider an elemental mass of fluid, o d 7. This mass has
momentum (o d'7")V. Summing over the complete control volume 7/, we have

Total momentum inside 7" = %ﬂ ovd7
o

Hence, the change in momentum in 7~ due to unsteady fluctuations in the local flow

properties is
0 a(pV)
Ay = — ViV = —dV 2.
2= o %P % o7 (2.9)
v 2

[Note that in Eq. (2.9) the partial derivative can be taken inside the integral because
we are considering a volume of integration that is fixed in space. If the limits of inte-
gration were not fixed, then Leibnitz’s rule from calculus would yield a different
form for the right-hand term of Eq. (2.9).]

Finally, the sum A; + A; represents the total instantaneous time rate of change
of momentum of the fluid as it flows through the control volume. This is the fluid
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mechanical counterpart of the left-hand side of Eq. (2.3), i.e.,

Bd—t(mV):Al+A2:#(;{)VodS)V%—‘%‘ia%‘Q d’’ (2.10)
s

7

Therefore, to repeat the physical principle stated at the beginning of this section,
the time rate of change of momentum of the fluid that is flowing through the control
volume at any instant is equal to the net force exerted on the fluid inside the volume.
In turn, these words can be directly translated into an equation by combining
Eqgs. (2.3), (2.7), and (2.10):

V) .. .
#(pv-dsw+]§§{ (gz d’ =%pfd7 ~#pds (2.11)
S

7 7 S

Equation (2.11) is called the momentum equation, it is the integral formulation of
Newton'’s second law applied to inviscid fluid flows. Note that Eq. (2.11) does not in-
clude the effects of friction. If friction were to be included, it would appear as an ad-
ditional surface force, namely, shear and normal viscous stresses integrated over the
control surface. If Fyjscous Tepresents this surface integral, then Eq. (2.11), modified
for the inclusion of friction, becomes:

a(pV)
#(pV - dS)V +ﬁ.—(—gt—l dr’ =ﬁpfd 7 #pds + Fliscous 2.11a)
< !

7 7 N

Since this book mainly treats inviscid flows, Eq. (2.11) is of primary interest here,
rather than Eq. (2.11a).

2.51 A COMMENT

The continuity equation, Eq. (2.2), and the momentum equation, Eq. (2.11), despite
their complicated-looking integral forms, are powerful tools in the analysis and
understanding of fluid flows. Although it may not be apparent at this stage in our dis-
cussion, these conservation equations will find definite practical applications in sub-
sequent chapters. It is important to become familiar with these equations and with the
energy equation to be discussed next, and to understand fully the physical funda-
mentals they embody.

For a study of incompressible flow, the continuity and momentum equations are
sufficient tools to do the job. These equations govern the mechanical aspects of such
flows. However, for a compressible flow, the principle of the conservation of energy
must be considered in addition to the continuity and momentum equations, for the
reasons discussed in Sec. 1.4. The energy equation is where thermodynamics enters
the game of compressible flow, and this is our next item of business.
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2.6 | ENERGY EQUATION

2.6.1 Physical Principle

Energy Can Be Neither Created Nor Destroyed; It Can Only Change in Form.
This fundamental principle is contained in the first law of thermodynamics, Eq. (1.24).
Let us apply the first law to the fluid flowing through the fixed control volume in
Fig. 2.4. Let

B, = rate of heat added to the fluid inside the control volume from the
surroundings

B, = rate of work done on the fluid inside the control volume

B; = rate of change of the energy of the fluid as it flows through the
control volume

From the first law,
B+ B, =B (2.12)

First, consider the rate of heat transferred to or from the fluid. This can be visu-
alized as volumetric heating of the fluid inside the control volume due to the absorp-
tion of radiation orginating outside the system, or the local emission of radiation by
the fluid itself, if the temperature inside the control volume is high enough. Also, if
the flow were viscous, there could be heat transferred across the boundary by thermal
conduction and diffusion; however, these effects are not considered here. Finally, if
the flow were chemically reacting, it might be tempting to consider energy released
or absorbed by such reactions as a volumetric heating term. This is done in many
treatments of reacting flows. However, the energy exchange due to chemical reac-
tions is more fundamentally treated as part of the overall internal energy of the gas
mixture and not as a separate heating term in the energy equation. This matter will be
discussed at length in Chaps. 16 and 17. In any event, we can simply handle the rate
of heat added to the control volume by first defining ¢ to be the rate of heat added
per unit mass, and then writing the rate of heat added to an elemental volume as
q(pd7"). Summing over the complete control volume,

-

Before considering the rate of work done on the fluid inside the control volume,
consider a simpler case of a solid object in motion, with a force F being exerted on
the object, as sketched in Fig. 2.5. The position of the object is measured from a fixed
origin by the radius vector r. In moving from position r; to r; over an interval of time
dt, the object is displaced through dr. By definition, the work done on the object
in time dt is F « dr. Hence, the time rate of doing work is simply F « dr/dt. But
dr/dt =V, the velocity of the moving object. Hence, we can state that

The rate of doing work | _ .y
on a moving body
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Figure 2.5 | Rate of doing work.

In words, the rate of work done on a moving body is equal to the product of its ve-
locity and the component of force in the direction of the velocity.

This result leads to an expression for B;, as follows. Consider the elemental area
dS of the control surface in Fig. 2.4. The pressure force on this elemental area is
—pdS, as explained in Sec. 2.4. From the result just reached, the rate of work done
on the fluid passing through dS with velocity V is (—p dS) - V. Hence, summing
over the complete control surface,

Rate of work done on
the fluid inside 7 due | = — #(p ds)- Vv 2.14)
to pressure forces on § <

In addition, consider an elemental volume inside the control volume. Recalling that
f is the body force per unit mass, the rate of work done on the elemental volume due
to body force is (of d 7 ') « V. Summing over the complete control volume,

Rate of work done on
the fluid inside 7 “due :%(pfd 7).V (2.15)
to body forces i

Thus, the total work done on the fluid inside the control volume is the sum of
Egs. (2.14) and (2.15),

Bz:_#pv.ds_i_ﬁp(f-V)d‘/' (2.16)

s 7

To visualize the energy inside the control volume, recall that in Sec. 1.4 the sys-
tem was stationary and the energy inside the system was the internal energy e (per
unit mass). However, the fluid inside the control volume in Fig. 2.4 is not stationary;
it is moving at the local velocity V with a consequent kinetic energy per unit mass of
V2/2. Hence, the energy per unit mass of the moving fluid is the sum of both internal
and kinetic energies, e + V%/2.

Keep in mind that mass flows into the control volume of Fig. 2.4 from the left at
the same time that other mass is streaming out towards the right. The mass flowing
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in brings with it a certain energy, while at the same time the mass flowing out also has
energy. The elemental mass flow across dS is given by Eq. (2.1) as pV + dS and
therefore the elemental flux of energy across d§ is (pV * dS)(e + V?/2). Summing
over the complete control surface,

Net rate of flow y2
of energy across = #(pV « dS) (e + ~2—> 2.17)
the control surface i

However, this is not necessarily the total energy change inside the control volume.
Analogous to the discussion surrounding Eq. (2.9), if the flow is unsteady there
is also a rate of change of energy due the local transient fluctuations of the flow-
field variables inside the control volume. The energy of an elemental volume is
p(e + V?/2)d7", and hence the energy inside the complete control volume at any in-

stant in time is
V2
— Vd¥
fo(e+%)

A

Therefore,
Time rate of change s
of energy inside 7" due 0 |4 a7
- . = — — / 2.18
to transient variations at prET 2 (2-18)
of the flowfield variables .

In turn, Bj; is the sum of Eqgs. (2.17) and (2.18):

By =2 L d%'+#( veas)(es (2.19)
ST\ 2 P €T '
A N

Repeating the physical principle stated at the beginning of this section, the rate
of heat added to the fluid plus the rate of work done on the fluid is equal to the rate
of change of energy of the fluid as it flows through the control volume, i.e., energy is
conserved. In turn, these words can be directly translated into an equation by com-
bining Eqs. (2.12), (2.13), (2.16), and (2.19):

ﬁqu“//—#pv- ds+j§§(p(f. V)dy
a S

e

S S Cs) AES e

(2.20)

Equation (2.20) is called the energy equation; it is the integral formulation of the first
law of thermodynamics applied to an inviscid fluid flow.



2.7 Final Comment

Note that Eq. (2.20) does not include these phenomena:

1. The rate of work done on the fluid inside the control volume by a rotating shaft
that crosses the control surface, Wpar.

The rate of work done by viscous stresses on the control surface, Wyiscous-

3. The heat added across the control surface due to thermal conduction and
diffusion. In combination with radiation, denote the total rate of heat addition
from all these effects as Q.

If all of these phenomena were included, then Eq. (2.20) would be modified as

Q + Wshut'{ + insuous - #PV +dS +%p(f- V) d7’

S I

—ﬁ[a +V2 d‘/‘+# +V2 V.dS 2.20
= |1rlet 3 plet 5 (2.20a)
S

7

For the inviscid flows treated in this book, there is no thermal conduction or diffusion
and there is no work done by viscous stresses. Moreover, for the basic flow problems
discussed in later chapters, there is no shaft work. Therefore, Eq. (2.20) is of primary
interest here, rather than Eq. (2.20a).

2.7 | FINAL COMMENT

The three conservation equations derived, Egs. (2.2), (2.11), and (2.20), in conjunc-
tion with the equation of state

p = pRT
and the thermodynamic relation
e =e(T,v)

(which simplifies to e = ¢, T for a calorically perfect gas) are sufficient tools to ana-
lyze inviscid compressible flows of an equilibrium gas—including equilibrium
chemically reacting gases. The more complex case of a nonequilibrium gas will be
treated in Chaps. 16 and 17. The conservation equations have been derived in inte-
gral form in this chapter; however, in Chap. 6 we will extract partial differential
equations of continuity, momentum, and energy from these integral forms. In the
meantime, we will do something even simpler: In the applications treated in Chaps. 3
through 5, the integral forms presented here will be applied to important, practical
problems where algebraic equations fortunately can be extracted for the conservation
principles.

Finally, note that Egs. (2.2), (2.11), and (2.20) are written in vector notation, and
therefore have the advantage of not being limited to any one particular coordinate
system: cartesian, cylindrical, spherical, etc. These equations describe the motion
of an inviscid fluid in three dimensions. They speak words—mass is conserved,
force = mass x acceleration, and energy is conserved. Never let the mathematical
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formulation cause you to lose sight of the physical meaning of these equations. In
their integral formulation they are particularly powerful equations from which all of
our subsequent analyses will follow.

2.8 | AN APPLICATION OF THE MOMENTUM
EQUATION: JET PROPULSION
ENGINE THRUST

The integral form of the conservation equations is immediately useful for many prac-
tical applications. We discuss one such important application here—the calculation
of the thrust of a jet propulsion device, such as a gas turbine jet engine, or a rocket
engine. Our purpose here simply is to illustrate the power of the equations derived in
this chapter. However, our choice of application to jet propulsion is not entirely arbi-
trary, because a study of flight propulsion is a fertile field for the principles of com-
pressible flow, as discussed in the preview box for Chap. 1.

This section highlights two important principles that we have already discussed:

1. The force exerted on a body by the fluid flow over or through the body is due
only to the pressure distribution and the shear stress distribution exerted over
the entire exposed surface of the body [see Sec. 1.5 and Eq. (1.45)].

2. The integral form of the momentum equation [see Sec. 2.4 and Eq. (2.11)].

All jet propulsion engines—turbojet engines, turbofans, ramjets, rockets, etc.—
depend on the flow of a gas through and around the engines. In turn, this gas flow
creates a pressure and shear stress distribution that are exerted over all the exposed
surface areas of the engine, and it is the net integrated result of these two local dis-
tributions that is the source of the thrust from the engine. The pressure and shear
stress distributions can be very complex, such as those exerted over the compressor
blades, combustor cans, turbine blades, and the nozzle of a turbojet engine, or more
simple such as those exerted over the walls of the combustion chamber and exhaust
nozzle of arocket engine. In each case, however, it is these two hands of nature—the
pressure and shear stress distributions—that reach out, grab hold of the engine, and
create the thrust.

It would seem, therefore, that the calculation of the thrust of a jet propulsion
device would require detailed theoretical or experimental measurements of pressure
and shear stress distributions exerted over every component of the engine. Obtaining
such complex data is most formidable to say the least. Fortunately, it is not necessary,
because the integral form of the momentum equation leads to a much simpler means
to calculate the thrust of a jet propulsion device. The purpose of this section is to
show how this is done, and to obtain a straightforward equation for the thrust of a jet
propulsion device. In the process, we will highlight the tremendous advantage that
sometimes comes from the use of the integral forms of the conservation equations
derived in this chapter.

The pressure distribution is by far the dominant contributor to the thrust; the
shear stress distribution has only a very small effect. Therefore, in what follows we
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Figure 2.6 | [tlustration of thrust on a balloon.

will neglect shear stress and consider the pressure distribution only. Also, the sim-
plest example of how pressure creates thrust is to consider a toy rubber balloon,
sketched in Fig. 2.6. Imagine that you inflate the balloon with air, tie the neck of the
balloon shut. and let go. The balloon will gradually sink to the ground under its own
weight. but it will not surge forward because there is no net thrust exerted on the bal-
loon. This is because the pressure distribution over the inside and outside surfaces of
the balloon integrates to a zero net force. This is sketched in Fig. 2.6a, where the ex-
ternal atmospheric pressure is p and the slightly higher internal pressure is p,. The
external pressure p., is equal on all parts of the closed external surface, and hence
integrates to a zero net force. Similarly, the internal pressure p; is equal on all parts
of the closed internal surface, and hence also integrates to a zero net force. As a re-
sult, there is no net pressure force on the balloon, i.e., no thrust. However, after you
inflate the balloon, imagine that you do not tie the neck shut, but rather pinch it shut
with your fingers for a moment, and then let go. The balloon will scoot forward and
propel itself through the air for a few moments. This case is illustrated in Fig. 2.6b.
Here. the neck of the balloon is open with area A;. The equal projected area on the
opposite side of the balloon is A». The internal pressure p; acts on the rubber surface
A, tending to push the balloon to the left. However, there is no corresponding rubber
surface area at A; for p; to push the balloon to the right, as is the case in Fig. 2.6a.
As a result, there is an imbalance of forces on the balloon in Fig. 2.6b, resulting in a
net thrust propelling the balloon to the left. The thrust is essentially equal to
(pi — Po)A>. This is the simplest example of how pressure distribution is the source
of thrust for a jet propulsion device, the device in this case being an inflated balloon
scooting through the air, with a jet of air exhausting in the opposite direction through
its open neck. The fundamental idea is the same for all jet propulsion devices.

Let us now consider the generic jet propulsion device sketched in Fig. 2.7a. The
device is represented by a duct through which air flows into the inlet at the left, is pres-
surized, is burned with fuel inside the duct, and is exhausted out the exit with an exit



CHAPTER 2 Integral Forms of the Conservation Equations for Inviscid Flows

f | Exit
- R B
Vo | % - , V.
—_— & ) E : Expansion | ——
! § : @ |
| &} 1 1 '
| ! A,
|
A; Positive x direction
(@) (&)
L4y
ST S A
A; —Ta \i -~ !
¢ V. { S p. V.
%0 A h e
O, === i e
| - c
-—» -
d -
A;—A) 7“~T-——T—"{—/ \ R
(© @

Figure 2.7 | Sketches for the development of the thrust equation.

jet velocity, V,. The internal pressure acting on the inside surface of the engine is p;,
which varies with location inside the engine, as sketched in Fig. 2.7b. The external
pressure acting on the outside surface of the engine is assumed to be the free-stream
ambient pressure p,, constant over the outside surface. (This, of course, is not cor-
rect because the pressure will vary as the air flows over the curved outside surface.
However, for an actual engine, the duct shown in Figs. 2.7a and » will be installed in
some type of housing, or nacelle, on a flight vehicle, which will certainly affect the ex-
ternal air pressure. The assumption of constant p, on the outer surface as sketched in
Fig. 2.7b yields a thrust value that is defined as the uninstalled engine thrust. Hence,
in this section we are deriving an equation for the uninstalled engine thrust.)

The net force on the engine due to the pressure distribution is given by
Eq. (1.45). With the shear stress neglected, this yields ‘

F= —#pds 2.21)

Recall that the minus sign in Eq. (2.21) is due to dS being directed away from the
surface, whereas the pressure exerts a force into the surface. The net force F is the
thrust of the engine. Because of the symmetry of the flow and the engine shown in
Fig. 2.7, F acts in the horizontal direction, which we will denote as the x direction.
Hence, Eq. (2.21) can be written in scalar form as

T=-— / (i dS), — / (Poo dS) (2.22)
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where the vector force F has been replaced by the scalar thrust T acting in the x di-
rection. The subscript x denotes the x component of the vector p 48, and the first and
second terms on the right-hand side represent the integrated force due to the internal
and external pressure distributions respectively. Let us take the positive x direction as
that acting toward the left, as shown in Fig. 2.7b.

Consider the last term in Eq. (2.22). Since po is a constant value, the integral
can be written as

/(poo ds), = pm/(ds).r (2.23)

Recall from Fig. 2.7b that the integral is taken over the outer surface, and that the
vector dS is directed away from the surface. For those vectors dS that are inclined to-
wards the positive x direction (toward the left in Fig. 2.7b), (d S), is positive, and for
those that are inclined towards the negative x direction (toward the right in Fig. 2.75),
(dS), is negative. Since (dS), is the x component of the vector dS, its absolute value
is simply the projection of the elemental area as seen by looking along the x axis.
Hence | [(dS),] is simply the net projected area of the solid surface as seen by look-
ing along the x axis, which is the inlet area minus the exit area, A; — A,. This pro-
jected area is sketched in Fig. 2.7¢. However, the sign of the integral f dS), 1s
determined by the net sum of the positive and negative components (d.S),. When A,
is less than A;, as is the case here, the sum of the negative components is greater than
the sum of the positive components (more of the surface area has rearward sloping
vectors dS than it has forward sloping). Hence, the sign of f (dS), is negative, and
we must rewrite

[ s = =tas)i= - a0
Hence, Eq. (2.23) becomes
/(poo dS)x = Pec /(a’S)x = poc(Ae — A) (2.24)
Substituting Eq. (2.24) into Eq. (2.22), we have
T = —/(p,- dS)y — Poo(Ae — Aj)
or,
T = —/(p,- dS)c + po(Ai — Ar) (2.25)

Recall that physically the last term in Eq. (2.25) is the force on the engine due to the
constant p, acting on the external surface. Since A, is smaller than A;, the force due
to poo acting on the rearward part of the surface pushing the engine toward the left in
Fig. 2.7b is larger than the force due to p acting on the forward part of the surface,
pushing the engine toward the right. Hence, physically the effect of p.. distributed
over the external surface must be a force toward the left in Fig. 2.75, i.e., adding to

B?
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the thrust. The last term in Eq. (2.25), p.(A; — A.), is indeed a positive value, con-
sistent with the physics discussed here.

Now consider the first term on the right-hand side of Eq. (2.25). Recall that it
physically represents the force exerted by the gas on the internal solid surface. To
make this explicit in the upcoming steps, we write Eq. (2.25) as

T = [—/(Pi dS)x] + Po(Ai — A (2.26)
force on solid surface due to the gas

To evaluate the integral in Eq. (2.26), we turn to the integral form of the mo-
mentum equation, Eq. (2.11). We apply this equation to the control volume defined
by the dashed lines in Fig. 2.7b, where the upper and lower boundaries of the control
volume are adjacent to the internal solid surface, and the left and right sides of the
control volume are drawn perpendicular across the inlet and exit, respectively. The
control volume is drawn in Fig. 2.7d. The dashed lines in Fig. 2.7d are not solid sur-
faces, but are simply the boundaries of the control volume that contains the gas that
flows through the jet engine. We make the assumption that the gas flowing into the
control volume through the inlet area A; at the left enters at the free-stream velocity
and pressure Vo, and poo, respectively. The gas flowing out of the control volume
through the exit area A, at the right leaves at the exit velocity and pressure V, and p,,
respectively. Along the upper and lower surfaces of the control volume, the sur-
roundings (in this case the surroundings are the solid internal surfaces of the engine)
exert a distributed pressure p; directed into the control volume. This distributed pres-
sure acting on the gas is equal and opposite to the distributed pressure acting on the
solid surface as sketched in Fig. 2.7b. This is Newton’s third law—for every action
there is an equal and opposite reaction. For example, if you press your hand down on
a desk with a force of 20 newtons, the desk presses back on your hand with an equal
and opposite force of 20 newtons. By analogy, your hand is the gas exerting a pres-
sure distribution on the internal surface of the engine (Fig. 2.7b), and the desk press-
ing back on your hand is the internal engine surface exerting an equal and opposite
pressure distribution on the gas (Fig. 2.7d).

The flow through the control volume in Fig. 2.7d is steady with no body forces
acting on it. Hence, for this case the momentum equation, Eq. (2.11), can be

written as
# (PV-+dS)V = —#pds 2.27)

Taking the x component of Eq. (2.27), we have
/(pV- ds) v, = —/(p dS), (2.28)

where V, is the x component of the flow velocity, and the integrals are taken along
the entire boundary of the control volume denoted by abcda in Fig. 2.7d. To evalu-
ate the left side of Eq. (2.28), note that there is no flow across the upper and lower
boundaries of the control volume, denoted by surfaces ab and cd, respectively, in
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Fig.2.7d,1.e., V and dS are everywhere mutually perpendicular along ab and ¢d, and
hence the dot product pV + dS = 0 along these boundaries. Thus,

/ (pV - dS)V, = / (pV - dS)V, = 0 (229)
ab cd

Along the inlet boundary ad, V and dS are in opposite directions (dS always acts
away from the control surface, in this case toward the left, whereas V is toward the
right). Hence, the dot product pV « dS is negative. Also, along ad, V, and p are uni-
form and equal to —V, and p, respectively. (Note that the positive x direction is
toward the left, as shown in Fig. 2.7b, and V,, is toward the right, hence along
adV, = —V.) Thus,

(pV . dS)vx = (‘-poovoo Az)(“voc)
ad

Since poo Voo A; is the mass flow across the inlet, denoted by m;, the last equation can
be written as

/ (pV + dS)V, = sit; Vi (230)
ad

Along the exit boundary bc, V and dS are in the same direction, and V, and p are
uniform, equal to —V, and p,, respectively. Hence,

(,OV * ds)vx = (pe Ve Ae)(_ve) - _me Ve (23])

be

where m, is the mass flow across the exit boundary. Returning to Eq. (2.28), the left
hand side can be written as

/(,OV'dS)szf (pV-ds>vr+f (pV-dS)V,
ab cd

+/ (V- dS)Ve+ [ (V- dSHV,
ad be

Substituting Egs. (2.29), (2.30), and (2.31) into this, we have
/(,oV- dS)V, =04+0+m; Voo —m,. V, (2.32)

Hence, Eq. (2.28) becomes

iy Ve — ritg Vo = — / (pdS). (233)

Finally, the integral on the right side of Eq. (2.33) is also taken over the entire bound-
ary of the control surface in Fig. 2.7d. Hence, in Eq. (2.33),

- / (pdS), = — / (pd$), ~ [ (pds$), - f (pdS), - ] (pdS).  (234)
ad bc ab cd
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From Fig. 2.74, note that along ad, dS acts to the left (the positive direction), and
along bc, dS acts to the right (the negative direction),

/ (pdS): = poo A 235)
ad

(P as), = —De A, (2.36)
bc

Along the boundaries ab and cd, p; is the distributed pressure acting on the gas due
to the equal and opposite reaction on the solid interior surface of the engine. Hence,
we can write

/ (pdS)s + / (pdS), = f (s dS). 237)
ab cd abed

Substituting Egs. (2.35)—(2.37) into (2.34), we have

- f (pdS)s = —peo Ai + po Ae — f (i dS). (2.38)
abcd

Substituting Eq. (2.38) into Eq. (2.33), we have

s Vo — ity Vi = —poc At + po Ae — / (p: dS). (2.30)

abed

The last term in Eq. (2.39) is physically the force on the gas due to the reaction from
the solid interior surface of the engine, i.e.,

_/ (pidS), = I:_/(pi dS)x:] (2.40)
abed force on the gas due to the solid surface

Hence, Eq. (2.39) can be written as

mi Voo — 11, V, = —poc A; + pe A,

+|:—/(pidS)x:| (2.41)
force on the gas due to the solid surface

or,

[— / (pidS )x:l
force on the gas due to the solid surface

= f’i’l,’ Voo — me Ve + Px Ai — Pe Ae (242)

Return to Eq. (2.26) for the engine thrust; here the bracketed term is the force on the
solid surface due to the gas, which from Newton’s third law is equal and opposite to



2.8 An Application of the Momentum Equation: Jet Propulsion Engine Thrust

the force on the gas due to the solid surface. That is,

[— / (pi dS) {l
force on the solid surface due to the gas

= —[— / (pi dsx} (2:43)
force on the gas due to the solid surface

Replacing the bracketed term on the right side of Eq. (2.43) with Eq. (2.42), we have

[—/ (p; dS), ]
force on the solid surface due to the gas

=m, V, —m; Voo + p, Ay — Psc A; (2.44)

Substituting Eq. (2.44) into Eq. (2.26), yields
T=m.V,—m; Vo« + pecAc — Poc Ai + prc(A; — AL)

Or,

T =m,Ve—mm; Voo + (pe — Px)As (2.45)

Equation (2.45) is the desired equation for the uninstalled engine thrust of a jet
propulsion device.

The derivation of the thrust equation in this section has been quite lengthy, but
our purpose was to illustrate an application of the integral form of the momentum
equation with all its details. Notice what happened. We started with the concept that
the thrust of the engine is due to the net integrated pressure distribution over all the
exposed solid surfaces of the engine, which is the fundamental source of the thrust.
However, for practical cases, the calculation or measurement of this detailed pressure
distribution is usually so complex and costly in terms of personpower and money that
is not done. On the other hand, we do not need the detailed pressure distribution to
calculate the thrust. Through the beauty of the integral form of the momentum equa-
tion, where the details of the pressure distribution inside the engine are buried inside
the control volume and hence do not explicitly appear in the integral form of the
equation, the thrust of the engine can be calculated just by knowing the net time rate
of change of the momentum of the gas exhausting out the exit compared to that en-
tering through the inlet, which is the physical meaning of the term (1, V, — m; V)
in Eq. (2.45), and by knowing the exit pressure p., which appears in the term
(pe — Poc)A. in Eq. (2.45). All of this simplification occurs with no loss of general-
ity or accuracy. The derivation of the straightforward thrust equation is one of the tri-
umphs of the integral form of the momentum equation.

Students of propulsion will recognize that the physical model sketched in
Fig. 2.7 making the assumption that the streamtube of air entering the inlet is at free-
stream conditions of V., py, and p., is only a special “on-design” case. In actual
flight, the conditions at the inlet can be slightly different than free-stream conditions.
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For the derivation of the thrust equation in this case, the streamtube is extended far
enough into the airflow ahead of the engine so that free-stream conditions do exist at
the inlet to the streamtube. For such an extended streamtube, its inlet area will be
different from the inlet area of the engine. However, in this case the resulting equa-
tion for the uninstalled engine thrust turns out to be the same as Eq. (2.45). See, for
example, the definitive book by Mattingly, Elements of Gas Turbine Propulsion,
McGraw-Hill, 1996, page 215, for more details.

Consider a turbojet-powered airplane flying at a velocity of 300 m/s at an altitude of 10 km,
where the free-stream pressure and density are 2.65 x 10* N/m? and 0.414 kg/m?, respec-
tively. The turbojet engine has inlet and exit areas of 2 m? and 1 m?, respectively. The veloc-
ity and pressure of the exhaust gas are 500 m/s and 2.3 x 10* N/m? respectively. The fuel-to-
air mass ratio is 0.05. Calculate the thrust of the engine.

E Solution
The mass flow of air through the inlet is

M; = Poo Voo A; = (0.414)(300)(2) = 248.4kg/s

Fuel is added and burned inside the engine at the ratio of 0.05 kg of fuel for every kg of air.
Hence, the mass flow at the exit, ., is
m, = 1.05 m; = 1.05(248.4) = 260.8 kg/s
From Eq. (2.45)
T =m, V.~ m; Voo + (P — Pc)Ac
= (260.8)(500) — (248.4)(300) + [(2.3 — 2.65) x 10*](1)
= 1.304 x 10° —0.7452 x 10° — 0.35 x 10*

= | 5.238 x 10*N

Since 4.45N = 11b, the thrust in pounds is

T=|(11,7711b

Consider a liquid-fueled rocket engine burning liquid hydrogen as the fuel and liquid oxygen
as the oxidizer. The hydrogen and oxygen are pumped into the combustion chamber at rates of
11 kg/s and 89 kg/s, respectively. The flow velocity and pressure at the exit of the engine are
4000 m/s and 1.2 x 10° N/m?, respectively. The exit area is 12 m?. The engine is part of a
rocket booster that is sending a payload into space. Calculate the thrust of the rocket engine as
it passes through an altitude of 35 km, where the ambient pressure is 0.584 x 10° N/m?.
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N Solution

For the case of a rocket engine, there is no mass flow of air through an inlet; the propellants
are injected directly into the combustion chamber. Hence, for a rocket engine, Eq. (2.45) be-
comes, with m; =0,

T=m V. +(p. — Px)A,

Since the total mass flow of propellants pumped into the combustion chamber is [1 4+ 89 =
100 kg/s, this is also the mass flow of the burned gases that exhausts through the rocket engine
nozzle. That is. m1, = 100 kg/s. Thus,

= (100)(4000) + [(1.2 — 0.584) x 107](12)

=4x10°+7392 x 10° = | 4.074 x 10° N

In pounds,

4074 x10°
- 4.45 -

91,549 1b

2.9 | SUMMARY

The analysis of compressible flow is based on three fundamental physical principles;
in turn, these principles are expressed in terms of the basic flow equations. They are:

1. Principle: Mass can be neither created nor destroyed.

Continuity equation:

%ff/de‘—}-//pV-dS:O (2.2)
7 S

2. Principle: Time rate of change of momentum of a body equals the net force
exerted on it. (Newton’s second law.)

Momentum equation:

9 .
E///de/ +f/(pV-dS)V
A S
:///pfd‘/‘—//pds (2.11)

7 S

3. Principle: Energy can be neither created nor destroyed, it can only change in
form.



64 CHAPTER 2 |Integral Forms of the Conservation Equations for Inviscid Flows

Energy equation:

%[V//p(e+v72>d7/+[fp<e+yz—2)v-ds
=[y//quv—[/pv-ds+f7[/p(f-V)dV (2.20)

These equations are expressed in integral form; such a form is particularly useful for
the topics to be discussed in Chapters 3—5. In Chapter 6, the preceding integral forms
will be reexpressed as partial differential equations.

PROBLEMS

21

2.2

When the National Advisory Committee for Aeronautics (NACA) measured
the lift and drag on airfoil models in the 1930s and 40s in their specially
designed airfoil wind tunnel at the Langley Aeronautical Laboratory, they
made wings that spanned the entire test section, with the wing tips butted
against the two side-walls of the tunnel. This was done to ensure that the flow
over each airfoil section of the wing was essentially two-dimensional (no
wing-tip effects). Such an arrangement prevented measuring the lift and drag
with a force balance. Instead, using a Pitot tube, the NACA obtained the drag
by measuring the velocity distribution behind the wing in a plane
perpendicular to the plane of the wing, i.e., the Pitot tube, located a fixed
distance downstream of the wing, traversed the height from the top to the
bottom of the test section. Using a control volume approach, derive a formula
for the drag per unit span on the model as a function of the integral of the
measured velocity distribution. For simplicity, assume incompressible flow.
In the same tests described in problem 2.1, the NACA measured the lift per
unit span by measuring the pressure distribution in the flow direction on the
top and bottom walls of the wind tunnel. Using a control volume approach,
derive a formula for the lift per unit span as a function of the integral of these
pressure distributions.
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One-Dimensional Flow

The Aeronautical engineer is pounding hard on the closed door leading into the
field of supersonic motion.
Theodore von Karman, 1941




66 CHAPTER 3 One-Dimensional Flow
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tion and friction, one-dimensicnal flow with

heat

heat addition is very useful for estimating the effect
of b g in a jet engine combustor can, and one-
dime al flow with friction provides an ‘excellent

pipes; to name just two lmponant applications.
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of one-dimensional flow, obtammg the 0ne-d1mns1ona1
continui
equations are algebraic equations, hernce the mathemat-
ics-in this chapter is sxmply algebra. Before moving on

to the three types of one~d1menswnal flow that are hzgh ‘

r the analysis of the gas flow through Iong :

, momentum  and energy equation. These

lighted in ghisycﬁapter, we take a side excursion to dis-

cuss some necessary general considerations that are not
limited to just one-dimensional flow. This side excursion
is shown at the right of the roadmap in Fig. 3.1, dealing
with the speed of sound and some vital alternative forms
of the energy equation. Then we return to the left side of
the roadmap, and deal sequentially with normal shock
waves, one-dimensional flow with heat addition, and
one-dimensional flow with friction. As we cover the ma-

terial highlighted in Fig. 3.1, we will be plunging into

some of the most important physical and mathematical
behavior that constitutes basic compressible flow. This
is important stuff, sotake a deep plunge, and make your-

self very comfortable with this material.

3.1  INTRODUCTION

On October 14, 1947, when Chuck Yeager nudged the Bell XS-1 to a speed slightly
over Mach 1 (see Sec. 1.1), he entered a new flight regime where shock waves dom-
inate the flowfield. At Mach 1.06, the bullet-shaped rocket-powered research air-
plane created a bow shock wave that was detached from the body, slightly upstream
of the nose, as sketched in Fig. 3.2a. During a later flight. on March 26, 1948, Yeager
pushed the XS-1 to Mach 1.45 in a dive. For this flight, the Mach number was high

Detached shock wave
(C] (a)

= 1.06
ﬁ-
Attached oblique
shock wave
Moo = 1.45 - ®)

Figure 3.2 | Attached and detached shock waves on a supersonic
vehicle.
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Figure 3.3a | Shock wave on the Apollo command module. Wind tunnel model at o = 33°
in the NASA Langley Mach 8 variable-density wind tunnel ion air. (Courtesy of the NASA
Langley Research Center.)

enough that the shock wave attached itself to the pointed nose of the aircraft, as
sketched in Fig. 3.2b. The difference between the two flows sketched in Fig. 3.2 is
that the bow shock is nearly normal to the free-stream direction as in Fig. 3.2a,
whereas the attached shock wave is oblique to the free-stream direction in Fig. 3.25.
For a blunt-nosed body in a supersonic flow, as shown in Fig. 3.3a, the bow shock
wave is always detached from the body. Moreover, near the nose, the shock is nearly
normal to the free stream; away from the nose, the shock gradually becomes oblique.
For further illustration, photographs taken in supersonic wind tunnels of shock
waves on various aerodynamic shapes are shown in Fig. 3.3.

The portions of the shock waves in Figs. 3.2 and 3.3 that are perpendicular to
the free stream are called normal shocks. A normal shock wave is illustrated in
Fig. 3.4, and it is an excellent example of a class of flowfields that is called one-
dimensional flow. By definition, a one-dimensional flow is one in which the flow-
field properties vary only with one coordinate direction—i.e., in Fig. 34, p, p, T,
and the velocity u are functions of x only. In this chapter, we will examine the
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Figure 3.3b | Shock waves on a sharp-nosed slender cone at angle of attack. (Courtesy of the
Naval Surface Weapons Center, White Oak, MD.)

properties of such one-dimensional flows, with normal shock waves as one impor-
tant example. As indicated in Figs. 3.2 and 3.3, normal shock waves play an im-
portant role in many supersonic flows.

Oblique shock waves are two-dimensional phenomena, and will be discussed
in Chap. 4. Also, consider the two streamtubes in Fig. 3.5. In Fig. 3.54, a truly one-
dimensional flow is illustrated, where the flowfield variables are a function of x only,
and as a consequence the streamtube area must be constant (as we shall prove later).
On the other hand, there are many flow problems wherein the streamtube area varies
with v, as sketched in Fig. 3.5b. For such a variable area streamtube, nature dictates
that the flowfield is three-dimensional flow, where the flow properties in general are
functions of x, v, and z. However, if the variation of area A = A(x) is gradual, it is
often convenient and sufficiently accurate to neglect the y and ¢ flow variations, and
to assume that the flow properties are functions of x only, as noted in Fig. 3.5b. This
is tantamount to assuming uniform properties across the flow at every x station.
Such a flow, where the area varies as A = A(x) but where it is assumed that p, p. T,
and u are still functions of x only, is defined as quasi-one-dimensional flow. This will
be the subject of Chap. 5.

In summary. the present chapter will treat one-dimensional, hence constant-area,
flows. The general integral conservation equations derived in Chap. 2 will be applied
to one-dimensional flow, yielding straightforward algebraic relations which allow us
to study the properties and characteristics of such flows.
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Figure 3.3¢ | Shock wave on a wind tunnel model of the space shuttle. (Courtesy of the
NASA Langley Research Center.)

13! Py > Py
T, T, >T
py by > Py
uy uy <y
> 2 x direction
M, >1 M, <1

®

Given conditions
ahead of the
shock wave

Unknown conditions
behind the shock wave
Normal shock

Figure 3.4 | Diagram of a normal shock.
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A = constuant

A= A(x)
p = px) p = p(x)
p = p(x) p = plx)
T = T(x) T = T(x)
u = u(x) u = u(x)

() One-dimensional tlow

(b) Quasi-one-dimensional flow

Figure 3.5 | Comparison between one-dimensional and quasi-one-dimensional flows.
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pl—Pi E—-’Pz i
cl—PLl ————— /“‘“ “‘L_’l €

Rectangular control volume4&—"

x direction

Figure 3.6 | Rectangular control volume for one-dimensional
flow.

3.2 | ONE-DIMENSIONAL FLOW EQUATIONS

Consider the flow through a one-dimensional region, as represented by the shaded
area in Fig. 3.6. This region may be a normal shock wave, or it may be a region with
heat addition; in either case. the flow properties change as a function of v as the gas
flows through the region. To the left of this region, the flowfield velocity, pressure,
temperature, density, and internal energy are u;. p;, T\. p;. and e,. respectively. To
the right of this region, the properties have changed, and are given by us. pa. Ts. pa,
and e>. (Since we are now dealing with one-dimensional flow, we are using u to de-
note velocity. Later on, in dealing with multidimensional flows, u is the x component
of velocity.) To calculate the changes, apply the integral conservation equations from
Chap. 2 to the rectangular control volume shown by the dashed lines in Fig. 3.6.
Since the flow is one-dimensional, u;. p;. T}, pi, and e, are uniform over the left-
hand side of the control volume, and similarly u>, p,. 7>, p2. and e, are unitorm

4!
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over the right-hand side of the control volume. Assume that the left- and right-hand
sides each have an area equal to A perpendicular to the flow. Also, assume that the
flow is steady, such that all derivatives with respect to time are zero, and assume that
body forces are not present.

With this information in mind, write the continuity equation (2.2):

a
— VedS = — av
#" at}%["

N a

For steady flow, Eq. (2.2) becomes

s

Evaluating the surface integral over the left-hand side, where V and dS are parallel
but in opposite directions, we obtain —p;u; A; over the right-hand side, where V and
dS are parallel and in the same direction, we obtain p,u2 A. The upper and lower hor-
izontal faces of the control volume both contribute nothing to the surface integral be-
cause V and dS are perpendicular to each other on these faces. Hence, from Eq. (3.1),

—p1u1A + pauz A =0

or L] = P2y (3.2)

Equation (3.2) is the continuity equation for steady one-dimensional flow.
The momentum equation (2.11) is repeated here for convenience:

#(pV- dS)V+ﬁ%tV) dV:ﬁpde—#pdS
s V4 s

-
The second term is zero because we are considering steady flow. Also, because there
are no body forces, the third term is zero. Hence, Eq. (2.11) becomes

#(pv . dS)V = —# pdS 33)
N S

Equation (3.3) is a vector equation. However, since we are dealing with one-
dimensional flow, we need to consider only the scalar x component of Eq. (3.3),

which is
ghiov- asy = -dhewas), (34)
N N

In Eq. (3.4), the expression (p dS), is the x component of the vector p dS. Evaluat-
ing the surface integrals in Eq. (3.4) over the left- and right-hand sides of the dashed
control volume in Fig. 3.6, we obtain

p1(—u1Auy + p2(u2A)uy = —(—p1A + p2A)

or p1+ p1ut = py + pou 3.5)
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Equation (3.5) is the momentum equation for steady one-dimensional flow.
The energy equation (2.20) is written here for convenience:

#[quy'—#pv-dSJrﬁp(f-V)d‘/'

) s 7
3 v? V2
= — +—1}|d7 e+ —|V-dS
Lo (ers)]ar+gpole+3)
v s
The first term on the left physically represents the total rate of heat added to the gas
inside the control volume. For simplicity, let us denote this volume integral by Q.

The third and fourth terms are zero because of zero body forces and steady flow, re-
spectively. Hence, Eq. (2.20) becomes

. V2
Q—#pV-dS:#p<e+—2—)V-dS (3.6)
S S

Evaluating the surface integrals over the left- and right-hand faces of the control vol-
ume in Fig. 3.6, we obtain

e "
Q — (=piy A+ pruz A) = —p (6’1 + 7‘) A+ (ez + —2—2) uyA

Rearranging,

0 uj u3
X+P1u1+01 e1+—2- uy = pruz + p2 €2+7 Uz 3.7

Dividing by Eq. (3.2), i.e., dividing the left-hand side of Eq. (3.7) by o1, and the
right-hand side by pu>,
o »p ui _p 3

2 Uy
Ll i “ 38
P1M1A+Pl+el+2 ,02+e2+2 38

Considering the first term in Eq. (3.8), Q is the net rate of heat (energy/s) added to
the control volume, and p;u; A is the mass flow (mass/s) through the control volume.
Hence, the ratio Q/pju; A is simply the heat added per unit mass, ¢. Also, in
Eq. (3.8) recall the definition of enthalpy, # = e + pv. Hence, Eq. (3.8) becomes

2 2

U U
hy+ =L =hy + =2 3.9
1+2+q 2+2 (3.9

Equation (3.9) is the energy equation for steady one-dimensional flow.

In summary, Egs. (3.2), (3.5), and (3.9) are the governing fundamental equa-
tions for steady one-dimensional flow. Look closely at these equations. They are
algebraic equations that relate properties at two different locations, 1 and 2, along
a one-dimensional, constant-area flow. The assumption of one-dimensionality has
afforded us the luxury of a great simplification over the integral equations from
Chap. 2. However, within the assumption of steady one-dimensional flow, the
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algebraic equations (3.2), (3.5), and (3.9) still represent the full authority and
power of the integral equations from whence they came—i.e., they still say that
mass is conserved [Eq. (3.2)], force equals time rate of change of momentum [Eq.
(3.5)], and energy is conserved [Eq. (3.9)]. Also, keep in mind that Eq. (3.5) ne-
glects body forces and viscous stresses, and that Eq. (3.9) does not include shaft
work, work done by viscous stresses, heat transfer due to thermal conduction or
diffusion, and changes in potential energy.

Returning to our roadmap in Fig. 3.1, we have finished the first box on the left-
hand side. Before proceeding down the left-hand column, in Secs. 3.3-3.5 we will
take the side excursion shown on the right-hand side of Fig. 3.1. Here we will deal
with some important general aspects of compressible flow that are not limited to one-
dimensional flow. It is necessary for us to define and discuss the speed of sound and
to obtain some alternative forms of the energy equation before we can move on to ad-
dress the remaining boxes in Fig. 3.1.

3.3 1 SPEED OF SOUND AND MACH NUMBER

As you read this page, look up for a moment and consider the air around you. The air
is composed of molecules that are moving about in a random motion with different
instantaneous velocities and energies at different times. However, over a period of
time, the average (mean) molecular velocity and energy can be defined, and for a per-
fect gas are functions of the temperature only. Now assume that a small firecracker
detonates nearby. The energy released by the firecracker is absorbed by the sur-
rounding air molecules, which results in an increase in their mean velocity. These
faster molecules collide with their neighbors, transferring some of their newly ac-
quired energy. In turn, these neighbors eventually collide with others, resulting in a
net transfer or propagation of the firecracker energy through space. This wave of en-
ergy travels through the air at a velocity that must be somewhat related to the mean
molecular velocity, because molecular collisions are propagating the wave. Through
the wave, the energy increase also causes the pressure (as well as density, tempera-
ture, etc.) to change slightly. As the wave passes by you, this small pressure variation
is picked up by your eardrum, and is transmitted to your brain as the sense of sound.
Therefore, such a weak wave is defined as a sound wave, and the purpose of this sec-
tion is to calculate how fast it is propagating through the air. As we will soon appre-
ciate, the speed of sound through a gas is one of the most important quantities in a
study of compressible flow.

Consider that the sound wave is moving with velocity a through the gas. Let us
hop on the wave and move with it. As we ride along with the wave, we see that the
air ahead of the wave moves toward the wave at the velocity a, as shown in Fig. 3.7.
Because there are changes in the flow properties through the wave, the flow behind
the wave moves away at a different velocity. However, these changes are slight. A
sound wave, by definition, is a weak wave. (If the changes through the wave are
strong, it is identified as a shock wave, which propagates at a higher velocity than a,
as we will soon see.) Therefore, consider the change in velocity through the sound
wave to be an infinitesimal quantity, da. Consequently, from our vantage point riding
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Figure 3.7 | Schematic of a sound
wave.

along with the wave, we see the picture shown in Fig. 3.7 where the wave appears to
be stationary, the flow ahead of it moves toward the wave at velocity a with pressure,
density, and temperature p, p, and 7, respectively, and the flow behind it moves
away from the wave at velocity a + da with pressure p + dp, density p + dp. and
temperature T 4+ dT.

The flow through the sound wave is one-dimensional and hence we can apply
the equations from Sec. 3.2 to the picture in Fig. 3.7. If regions | and 2 are in front of
and behind the wave, respectively, Eq. (3.2) yields

pa = (p+dp)a+da)
(3.10)
pa=pa-+adp+pda+dpda

The product of two infinitesimal quantities dp da is very small (of second order) in
comparison to the other terms in Eq. (3.10), and hence can be ignored. Thus, from
Eq. (3.10),

du
a=—p 2 (3.11)
Next, Eq. (3.5) yields
p+pa’ = (p+dp)+ (p+dp)a + da)’ (3.12)
Ignoring products of differentials as before, Eq. (3.12) becomes
dp = —2apda ~a’dp 3.13)
Solve Eq. (3.13) for da:
da = M (3.14)
—2ap

Substitute Eq. (3.14) into Eq. (3.11):

[dp/dp —}—az:l
a=—p|———

315
“2ap (3.15)
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Solving Eq. (3.15) for a2,

oot

dp

Pause for a moment and consider the physical process occurring through a sound

wave. First, the changes within the wave are slight, i.e., the flow gradients are small.

This implies that the irreversible, dissipative effects of friction and thermal conduc-

tion are negligible. Moreover, there is no heat addition to the flow inside the wave

(the gas is not being irradiated by a laser, for example). Hence, from Sec. 1.4, the

process inside the sound wave must be isentropic. In turn, the rate of change of pres-

sure with respect to density, dp/dp, which appears in Eq. (3.16) is an isentropic
change, and Eq. (3.16) can be written as

2_ (%
a _(Bp)s (3.17)

Equation (3.17) is a fundamental expression for the speed of sound. It shows that the
speed of sound is a direct measure of the compressibility of a gas, as defined in
Sec. 1.2. To see this more clearly, recall that p = 1/v, hence dp = —dv/v?. Thus,
Eq. (3.17) can be written as

az_(a_P) __(%_> PV
“\dp/, \ov/, T (1/v)(@v/dp),

Recalling the definition of isentropic compressibility, t;, given by Eq. (1.4), we find

Yy /(3_1’) Z\/E (3.18)
ap /, T

This confirms the statement in Sec. 1.3 that incompressible flow (r, = 0) implies an
infinite speed of sound.

For a calorically perfect gas, Eq. (3.18) becomes more tractable. In this case, the
isentropic relation {see Eq. (1.43)] becomes

(3.16)

pvl =c¢

where c¢ is a constant. Differentiating, and recalling that v = 1/p, we find

(3_1’)_@
i/, P

Hence, Eq. (3.18) becomes

a= _[— (3.19)
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Going one step further, from the equation of state. p/p = RT. Hence, Eq. (3.19)
becomes

a=yRT (3.20)

In summary, Eq. (3.18) gives a general relation tor the speed of sound in a gas;
this reduces to Eqgs. (3.19) and (3.20) for a perfect gas. Indeed. we will demonstrate
in Chap. 17 that Eqs. (3.19) and (3.20) hold for thermally perfect as well as calori-
cally perfect gases, but are invalid for chemically reacting gases or real gases. How-
ever, the general relation, Eq. (3.18). is valid for all gases.

Note that, for a perfect gas, Eq. (3.20) gives the speed of sound as a function of
temperature only; indeed. it is proportional to the square root of the temperature. This
is consistent with our previous discussion linking the speed of sound to the average
molecular velocity, which from kinetic theory is given by V8RT /. Note that the
speed of sound is about three-quarters of the average molecular velocity.

The speed of sound in air at standard sea level conditions is a useful value to
remember. It is

a, = 3409 m/fs = 1117 fi/s
Finally, recall that the Mach number was defined in Sec. [.3 as M = V/a,
which leads to the following classifications of different flow regimes:
M < 1 (subsonic flow)

M =1 (sonic tlow)

M > 1 (supersonic flow)

Also, it is interesting to attach some additional physical meaning to the Mach num-

ber at this stage of our discussion. Consider a fluid element moving along a stream-

line. The kinetic and internal energies per unit mass of this fluid element are V2/2

and e, respectively. Forming their ratio, and recalling Egs. (1.23) and (3.20), we have
Vi vl owvip v/2V: _yy =1

= = - = M-
e T RT/(y — 1) a*/(y—1 2

Thus, we see that, for a calorically perfect gas (where ¢ = ¢, T'), the square of the
Mach number is proportional to the ratio of kinetic to internal energy. 1t is a measure
of the directed motion of the gas compared to the random thermal motion of the
molecules.

3.4 1 SOME CONVENIENTLY DEFINED
FLOW PARAMETERS

In this chapter the fundamentals of one-dimensional compressible flow will be ap-
plied to the practical problems of normal shock waves, flow with heat addition, and
flow with wall friction. However, before making these applications an inventory of
useful definitions and supporting equations must be established. This is the purpose
of Secs. 3.4 and 3.5.

n
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To begin with, consider point A in an arbitrary flowfield, as sketched in Fig. 2.3.
At this point a fluid element is traveling at some Mach number M, velocity V, with
a static pressure and temperature p and T, respectively. Let us now imagine that we
take this fluid element and adiabatically slow it down (if M > 1) or speed it up
(if M < 1) until its Mach number at point A is 1. As we do this, common sense tells
us that the temperature will change. When the fluid element arrives at M = 1 (in our
imagination) from its initial state at M and T (its real properties at point A), the new
temperature (that it has in our imagination at Mach 1) is defined as T*. Furthermore,
we now define the speed of sound at this hypothetical Mach 1 condition as a*, where

a* =/yRT*

Therefore, for any given flow with a given M and T at some point A, we can associ-
ate with it values of T* and a* at the same point, as already defined. Means of cal-
culating T* (and hence a*) will be discussed in Sec. 3.5.

In the same spirit, consider again our fluid element at point A with velocity, tem-
perature, and pressure equal to V, T, and p, respectively. Let us now imagine that we
isentropically slow this fluid element to zero velocity, i.e., let us stagnate the fluid
element. The pressure and temperature which the fluid element achieves when V = 0
are defined as total pressure p, and total temperature T,, respectively. (They are fre-
quently called stagnation pressure and temperature; the adjectives “stagnation” and
“total” are synonymous.) Both p, and T, are properties associated with the fluid
element while it is in actuality moving at velocity V with an actual pressure and tem-
perature equal to p and T, respectively. The actual p and T are called static pressure
and static temperature, respectively, and are ramifications of the random molecular
motion at point A.

Using these definitions, we can introduce other parameters:

Characteristic Mach number M* = V /a*. (Note that the real Mach number is
M=V/a)

Stagnation speed of sound a, = +/yRT,.

Total (or stagnation) density p, = p,/RT,.

3.5 ALTERNATIVE FORMS OF THE
ENERGY EQUATION

Consider again Eq. (3.9). Assuming no heat addition, this becomes

u2 u2
hﬁujzhy+§ (3.21)

where points 1 and 2 correspond to the regions 1 and 2 identified in Fig. 3.6. Spe-
cializing further to a calorically perfect gas, where h = ¢, T, Eq. (3.21) becomes

2 2

Ui U
¢Tit+ 5 =T+ 2 (3.22)
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Using Eq. (1.22). this becomes

yRTL+gj__yRB Zi

= 3.23
y — 1 2 y —1 + 2 (3-29)
Since a = /yRT, Eq. (3.23) becomes
a% 4+ uy a% Uy .
y -1 oy (.29

From Eq. (3.19), this can also be written as

N 2 2
4 14! Uy 14 P2 us
- - — — -~ N ‘%
V—1<P|,)+2 V—1<Pz>+2 (3.29)

Since Eq. (3.21) was written for no heat addition, it, as well as the corollary
Eqgs. (3.22) through (3.25), holds for an adiabatic flow. With this in mind, let us re-
turn to the definitions presented in Sec. 3.4. Let point 1 in these equations correspond
to point A in Fig. 2.3, and let point 2 in these equations correspond to our imagined
conditions where the fluid element is brought adiabatically to Mach 1 at point A. The
actual speed of sound and velocity at point A are a and u, respectively. At the imag-
ined condition of Mach 1 (point 2 in the above equations), the speed of sound is ¢*
and the flow velocity is sonic, hence u, = a*. Thus, Eq. (3.24) yields

a2

y —1

(1*2 a*Z

y —1 2

L
2

a’ u? y+1
= 4
y —1 2 20y — 1)

or (3.26)

Equation (3.26) provides a formula from which the defined quantity «¢* can be
calculated for the given actual conditions of @ and u at any given point in a general
flowtield. Remember, the actual flowfield itself does not have to be adiabatic from
one point to the next, say from point A to point B in Fig. 2.3. In Eq. (3.26). the adia-
batic process is just in our minds as part of the definition of a* (see again Sec. 3.4).
Applied at point A in Fig. 2.3, Eq. (3.26) gives us the value of a* that is associated
with point A. Denote this value as a. Similarly, applied at point B, Eq. (3.26) gives
us the value of a” that is associated with point B, namely, aj,. If the actual flowfield
is nonadiabatic from A to B, then a’j # aj,. On the other hand, if the general flow-
field in Fig. 2.3 is adiabatic throughout, then a* is a constant value at every point in
the flow. Since many practical aerodynamic flows are reasonably adiabatic, this is an
important point to remember.

Now return to our definition of troral conditions in Sec. 3.4. Let point | in
Eq. (3.22) correspond to point A in Fig. 2.3, and let point 2 in Eq. (3.22) correspond
to our imagined conditions where the fluid element is brought to rest isentropically at
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point A. If T and u are the actual values of static temperature and velocity, respec-
tively, at point A, then T} = T and u; = u. Also, by definition of total conditions,
uy = 0 and T, = T,. Hence, Eq. (3.22) becomes

u2
T+ 5 =6T, (3.27)

Equation (3.27) provides a formula from which the defined total temperature, T,, can
be calculated for the given actual conditions of T and u at any point in a general flow-
field. Remember that total conditions are defined in Sec. 3.4 as those where the fluid
element is isentropically brought to rest. However, in the derivation of Eq. (3.27),
only the energy equation for an adiabatic fiow [Eq. (3.21)] is used. Isentropic condi-
tions have not been imposed so far. Hence, the definition of 7, such as expressed in
Eq. (3.27) is less restrictive than the definition of total conditions given in Sec. 3.4.
From Sec. 1.4, isentropic flow implies reversible and adiabatic conditions; Eq. (3.27)
tells us that, for the definition of T,,, only the “adiabatic” portion of the isentropic de-
finition is required. That is, we can now redefine 7, as that temperature that would
exist if the fluid element were brought to rest adiabatically. However, for the defini-
tion of total pressure, p,, and total density, p,, the imagined isentropic process is still
necessary, as defined in Sec. 3.4.

Several very useful equations for total conditions are obtained as shown next.
From Egs. (3.27) and (1.22),

7, u? u? u? y—1/(u 2
—_— =14 -—=1 =1 =1 —
T + 2¢,T + 2yRT/(y — 1) + 2a%/(y — 1) + 2 (a
Hence,
T, y—1 ,
7 =1t—M (3.28)

Equation (3.28) gives the ratio of total to static temperature at a point in a flow as a
function of the Mach number M at that point. Furthermore, for an isentropic process,
Eq. (1.43) holds, such that

Y T y/y—1
- e

Combining Egs. (3.28) and (3.29), we find

, -1 y/(r—1
% - (1 + ”TMZ) (3.30)

] 1 (=1
Lo _ (1 + Z—MZ) (3.31)
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Equations (3.30) and (3.31) give the ratios of total to static pressure and density, re-
spectively, at a point in the flow as a function of Mach number M at that point. Along
with Eq. (3.28), they represent important relations for total properties—so important
that their values are tabulated in Table A.1 (see Appendix A) as a function of M for
y = 1.4 (which corresponds to air at standard conditions).

It should be emphasized again that Eqs. (3.27), (3.28), (3.30), and (3.3 1) provide
formulas from which the defined quantities 7,,, p,, and p, can be calculated from the
actual conditions of M, u, T, p, and p at a given point in a general flowfield, as
sketched in Fig. 2.3. Again, the actual flowfield itself does nor have to be adiabatic or
isentropic from one point to the next. In these equations, the isentropic process is just
in our minds as part of the definition of total conditions at a point. Applied at point A
in Fig. 2.3, the above equations give us the values of T, p,, and p, associated with
point A. Similarly, applied at point B, the earlier equations give us the values of
T,, p,.and p, associated with point B. If the actual flow between A and B is nonadi-
abatic and irreversible, then T,, # T,,, po, # Pos> and p,, # p,,. On the other
hand, if the general flowfield is isentropic throughout, then 7,, p,. and p, are
constant values at every point in the flow. The idea of constant total (stagnation) con-
ditions in an isentropic flow will be very useful in our later discussions of various
practical applications in compressible flow—keep it in mind!

A few additional equations will be useful in subsequent sections. For example,
from Eq. (3.24),

a u* a; (3.32)

where «,, is the stagnation speed of sound defined in Sec. 3.4. From Egs. (3.26) and
(3.32),

Y + 1 a*Z . a(%
2y - y—1
Solving Eq. (3.33) for a*/a,, and invoking Eq. (3.20),

(a*)z—T*— 2 3.34
a) T, y+I1 939
Recall that p* and p* are defined for conditions at Mach 1; hence, Egs. (3.30) and

(3.31) with M =1 lead to
P 2 y/y=1)
— ()/T) (3.35)

(3.33)

—_

* 2 1/(y—-1)
L (y——l> (3.36)

+
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For air at standard conditions, where y = 1.4, these ratios are

T 0833
7,

*
P 0528
Po

*
2 0634
Po

which will be useful numbers to keep in mind for subsequent discussions. Finaily,
dividing Eq. (3.26) by u?, we have

(a/u)2+l_ y+1 (a*\’
y—1 2”2(y—1><u)
(1/M? _ y+1 (Lz_
y—1 2y-1 M*)
- 2
[y + /M2 = (y - 1)

1
2

(3.37)

Equation (3.37) provides a direct relation between the actual Mach number M and
the characteristic Mach number M*, defined in Sec. 3.4. Note from Eq. (3.37) that

M*=1 ifM=1

M* <1 ifM<1

M* > 1 ifM>1
1

M* — V_—i—l ifM— o
y—

Hence, qualitatively, M™* acts in the same fashion as M, except when M goes to in-
finity. In future discussions involving shock and expansion waves, M* will be a use-
ful parameter because it approaches a finite number as M approaches infinity.

All the equations in this section, either directly or indirectly, are alternative
forms of the original, fundamental energy equation for one-dimensional, adiabatic
flow, Eq. (3.21). Make certain that you examine these equations and their derivations
closely. It is important at this stage that you feel comfortable with these equations,
especially those with a box around them for emphasis.

3.5.1 A Comment on Generality

This section began with Eq. (3.21), which was obtained from the one-dimensional
energy equation, Eq. (3.9), specialized to adiabatic flow. The use of the x component
of the flow velocity, u, in Eq. (3.21) clearly identifies it with one-dimensional flow.
For one-dimensional flow, the velocity u is the velocity of the flow, and the use of the
symbol u is simply consistent with the geometry of the flow. However, Eq. (3.21) is
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a general statement of the energy equation for any steady, adiabatic flow, whether in
one, two, or three dimensions. For a general three-dimensional flow, the velocity at
any point in the flow is denoted by V. For a three-dimensional, steady, adiabatic flow,
Eq. (3.21) becomes
h Vi h i
y + ; = + 5
Similarly, for every form of the energy equation obtained in this section, u; and
u; can be replaced by V, and V2. So Egs. (3.21)~(3.37) hold with u replaced by V
everywhere. This general application of Eq. (3.21) to a three-dimensional case will
be rigorously derived in Chap. 6.

At a point in the flow over an F-15 high-performance fighter airplane, the pressure, tempera-
ture, and Mach number are 1890 Ib/ft*, 450°R, and 1.5, respectively. At this point, calculate
T,, po, T*, p*, and the flow velocity.

& Solution
From Table A.1, for M = 1.5: p,/jp = 3.671 and T,,/T = 1.45. Thus

Po = 3.671p = 3.671(1890) = | 6938 Ib/ft*

T, = 1.45T = 1.45(450) = | 652.5 R

From Table A.1, for M = 1.0: p,/p* = 1.893 and T,/T* = 1.2. Keeping in mind that, for our
imaginary process where the flow is slowed down isentropically to Mach 1, hence defining p*,
the total pressure is constant during this process; also, where the flow is slowed down adiabat-
ically to Mach 1, hence defining T, the total temperature is constant. Thus

«_ D" Do

1 ,
=, = (3.671)(1890) =| 3665 Ib/ft>
PP = ges BTDUBYD)
T = r T"T = ! (1.45)(450) = | 543.8°R
T, T 12 IR

Note: These answers exemplify the definitions of p,, T, p*. and T*. In the actual flow at
Mach 1.5, the actual static pressure and static temperature are 1890 Ib/ft> and 450°R, respec-
tively. However, the defined values that are associated with the flow at this point (but not ac-
tually in existence at this point) are p* = 3665 Ib/ft*, p, = 6938 Ib/ft*, T* = 543.8'R. and
T, = 652.5°R. Finally, the actual flow velocity is obtained from

V =Ma

where

a = /yRT = /(1.4)(1716)(450) = 1040 ft/s

V = (1.5)(1040) =| 1560 fu/s

EXAMPLE 3.1
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Return to Example 1.6. Calculate the Mach number and velocity at the exit of the rocket
nozzle.

u Solution

In the combustion chamber the flow velocity is very low; hence we can assume that the pres-
sure and temperature in the combustion chamber are essentially p, and 7,,, respectively. More-
over, since the flow expansion through the nozzle is isentropic, then p, and 7, are constant
values throughout the nozzle flow. From Eq. (3.30), we have at the nozzle exit (denoted by the

subscript 2)
" -1 yiy—1)
(3)-(o5)
p/, 2

172
o) , r—-byy
MF[_[(P_) i
y—1 P2
1/2
9 15 \o167
I -1 =1 2.919
[0.2 [(0.372)

a = Y RT; = /(1.2)(692.8)(1350) = 1059.4 m/s

Solving for M, we have

Vo = Mya, = (2.919)(1059.4) = | 3092 m/s

Note: An alternative solution to this problem, which constitutes a check on these results, is as
shown next. From Eq. (3.22)

2
o, T + % =c,T,
[Recall from Sec. 3.5.1 that the various forms of the energy equation obtained in this section
hold for flow of any dimensions—two or three dimensions as well as one dimension, this is be-
cause Eq. (3.21) is simply a statement that the total enthalpy, 4, = h + V?2/2, is constant for
any adiabatic flow, no matter what the dimension. This will become clear repeatedly as we
progress through the following chapters. Hence, Egs. (3.21) through (3.37) are general, and
are not in any way restricted to one-dimensional flow. Therefore, we can use Eq. (3.22) in the
form given here to solve our rocket nozzle flow, even though such flow is not constant-area
flow, i.e., it is not truly one-dimensional flow. Rather, this nozzle flow must be analyzed as
either a quasi-one-dimensional flow as discussed in Chap. 5, or more precisely as a two-
dimensional or axisymmetric flow as discussed in Chap. 11, because the flow through a noz-
zle encounters a changing, variable cross-sectional area as it expands through the nozzle.]
From Eq. (3.22) written above, solving for V5,

Vo = /2¢,(T, = T,) = /2(4157)(2500 — 1350) = 3092 m/s



35 Alternative Forms of the Energy Equation

This agrees with the value already obtained. Of course, since a> = 1059.4 m/s as obtained.
then
Iz 3092

M, = = =2919
a, 1059.4

which also agrees with the earlier results.

Return to Example 1.1. Calculate the percentage density change between the given point on
the wing and the free stream, assuming compressible flow.

H Solution
The standard sea level values of density and temperature are 0.002377 slug/ft’ and 519°R,
respectively. Also, for air,

YR (1.4)(1716)
C, = =
Py 0.4

= 6006 ft - Ib/slug - "R

Let points 1 and 2 in Eq. (3.22) denote the free stream and the wing points, respectively. Note:
The flow over the wing is adiabatic and frictionless; hence it is isentropic. From Eq. (3.22)

2 2
Cp Tl + Tl =Cp 7‘2 + 72
yi_y? (1472 — (220)?
=T+ —"—2=5194 " "7
2=ht T 26006)
=519 -2.23 =516.77°R
From Eq. (1.43)
. T\ /v =h . 25
(22 _ (31677 = (.9893
01 T, 519

0> = 0.9893(0.002377) = 0.002352 slug/ft’
Thus

p=py _ 0000025
o 0.002377

That is, the density changes by . This is a very small change and clearly justifies
the assumption of incompressible flow in the solution of Example 1.1. Moreover, note from

this material that the temperature change is only 2.23°R, which represents a .43 percent
change in temperature. This illustrates that low-speed flows are virtually constant temperature
flows, and this is why, in the analysis of inviscid incompressible flow, the energy equation is
never needed.

Consider again the rocket engine discussed in Examples 1.6 and 3.2. If the thrust of the engine
is 4.5 x 10° N at an altitude where the ambient pressure is 0.372 atm, calculate the mass flow
through the engine and the area of the exit.

EXAMPLL 3.3

EXAMPLE 3.4
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m Solution

From Example 1.6, the pressure at the exit is p, = 0.372 atm. From Example 3.2, the velocity
at the exit is V, = 3092 m/s. From the thrust equation, Eq. (2.45), applied to a rocket engine,
using the subscript 2 to denote exit conditions, we have

T=mV, + (Pl - poo)Ae

Since py = poo = 0.372 atm, the pressure term on the right-hand side of this equation is zero,
and we have

T 45x10°

= 145.5 kg/s
v, 3092

m =

From Example 1.6, we have for the specific gas constant of the gas expanding through the en-
gine, R = 692.8J/kg - K, and the temperature at the exit 7, = 1350 K. Hence, from the equa-
tion of state the density at the exit is (recalling that 1 atm = 1.01 x 10° N/m?)

P2 (0.372)(1.01 x 10%)

= RE, T T (692.8)(1350) 0.04 kg/m’
The mass flow is given by
= prAs Vs
or,
Ay = % = (—05%2—) =| 1.18m?

3.6 | NORMAL SHOCK RELATIONS

Let us now apply the previous information to the practical problem of a normal shock
wave. With this, we travel back to the left-hand side of our roadmap in Fig. 3.1, and
start discussing the physical phenomena that can cause a change in properties of a
one-dimensional (constant area) flow. Our first consideration is the case of a normal
shock wave. As discussed in Sec. 3.1, normal shocks occur frequently as part of
many supersonic flowfields. By definition, a normal shock wave is perpendicular to
the flow, as sketched in Fig. 3.4. The shock is a very thin region (the shock thickness
is usually on the order of a few molecular mean free paths, typically 10> cm for air
at standard conditions). The flow is supersonic ahead of the wave, and subsonic be-
hind it, as noted in Fig. 3.4. Furthermore, the static pressure, temperature, and den-
sity increase across the shock, whereas the velocity decreases, all of which we will
demonstrate shortly.

Nature establishes shock waves in a supersonic flow as a solution to a perplex-
ing problem having to do with the propagation of disturbances in the flow. To obtain
some preliminary physical feel for the creation of such shock waves, consider a flat-
faced cylinder mounted in a flow, as sketched in Fig. 3.8. Recall that the flow consists
of individual molecules, some of which impact on the face of the cylinder. There is
in general a change in molecular energy and momentum due to impact with the
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> (a) Subsonic flow
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Figure 3.8 | Comparison between subsonic and supersonic streamlines
for flow over a flat-faced cylinder or slab.

cylinder, which is seen as an obstruction by the molecules. Therefore, just as in our
example of the creation of a sound wave in Sec. 3.3, the random motion of the mol-
ecules communicates this change in energy and momentum to other regions of the
flow. The presence of the body tries to be propagated everywhere, including directly
upstream, by sound waves. In Fig. 3.84, the incoming stream is subsonic. Vo < a~c,
and the sound waves can work their way upstream and forewarn the flow about the
presence of the body. In this fashion, as shown in Fig. 3.8a, the flow streamlines
begin to change and the flow properties begin to compensate for the body far up-
stream (theoretically, an infinite distance upstream). In contrast, if the flow is super-
sonic, then Vi, > a.., and the sound waves can no longer propagate upstream. In-
stead, they tend to coalesce a short distance ahead of the body. In so doing. their
coalescence forms a thin shock wave, as shown in Fig. 3.8b. Ahead of the shock
wave, the flow has no idea of the presence of the body. Immediately behind the nor-
mal shock, however, the flow is subsonic, and hence the streamlines quickly com-
pensate for the obstruction. Although the picture shown in Fig. 3.8b is only one of
many situations in which nature creates shock waves, the physical mechanism just
discussed is quite general.

To begin a quantitative analysis of changes across a normal shock wave, con-
sider again Fig. 3.4. Here, the normal shock is assumed to be a discontinuity across
which the flow properties suddenly change. For purposes of discussion. assume that
all conditions are known ahead of the shock (region 1), and that we want to solve for
all conditions behind the shock (region 2). There is no heat added or taken away from
the flow as it traverses the shock wave (for example, we are not putting the shock in
a refrigerator, nor are we irradiating it with a laser); hence the flow across the shock
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wave is adiabatic. Therefore, the basic normal shock equations are obtained directly
from Egs. (3.2), (3.5), and (3.9) (with ¢ = 0) as

P11 = prun (continuity) (3.38)

p1+ pluf =p2+ pzug (momentum) (3.39)
u? u?

hy + _2_1 =hy + ?2 (energy) (3.40)

Equations (3.38) through (3.40) are general—they apply no matter what type of gas
is being considered. Also, in general they must be solved numerically for the proper-
ties behind the shock wave, as will be discussed in Chap. 17 for the cases of ther-
mally perfect and chemically reacting gases. However, for a calorically perfect gas,
we can immediately add the thermodynamic relations

p = pRT (3.41)
and h=c,T (3.42)

Equations (3.38) through (3.42) constitute five equations with five unknowns:
02, U2, P2, hy, and T. Hence, they can be solved algebraically, as follows.
First, divide Eq. (3.39) by (3.38):

D1 P2

— — = =uy — U (3.43)
P P2U3
Recalling that ¢ = /yp/p, Eq. (3.43) becomes
2 2
i L (3.44)
yur  yuz

Equation (3.44) is a combination of the continuity and momentum equations. The
energy equation (3.40) can be utilized in one of its alternative forms, namely,
Eq. (3.26), which yields

2 v+l o v-1

a? 5 2u% (3.45)

I —1
2_YH Ll Yol (3.46)

and a 5 5

Since the flow is adiabatic across the shock wave, a* in Eqs. (3.45) and (3.46) is the
same constant value (see Sec. 3.5). Substituting Eqgs. (3.45) and (3.46) into (3.44), we
obtain

or
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Dividing by (uy — uy),

+ 1 —1
Y a*2+y

=1
2yuiusy 2y

Solving for a*, this gives

a*’ = uyu (3.47)

Equation (3.47) is called the Prandtl relation, and is a useful intermediate relation for
normal shocks. For example, from this simple equation we obtain directly
Uy U

—_ _ * *
== MiM;

1
M* - * 3
or 2 M (3.48)

Based on our previous physical discussion, the flow ahead of a shock wave must be

supersonic, i.e., M| > 1. From Sec. 3.5, this implies M| > 1. Thus, from Eq. (3.48).

M3 < 1 and thus M, < 1. Hence, the Mach number behind the normal shock is al-

ways subsonic. This is a general result, not just limited to a calorically perfect gas.
Recall Eq. (3.37), which, solved for M*, gives

2+ DM

= 34
24 (y — hM? (3:49)
Substitute Eq. (3.49) into (3.48):
G+DME [ +DMI T
5 = 5 (3.50)
24 (y =DM} {24 (v — DM;
Solving Eq. (3.50) for M3:
1 —/21M?
M2 = -+5y )/21M; (350)
J/Ml —(y—=D/2

Equation (3.51) demonstrates that, for a calorically perfect gas with a constant value
of y, the Mach number behind the shock is a function of only the Mach number
ahead of the shock. It also shows that when M| = 1, then M> = 1. This is the case of
an infinitely weak normal shock, which is defined as a Mach wave. In contrast, as M,
increases above 1, the normal shock becomes stronger and M, becomes progres-
sively less than 1. However, in the limit, as M; — oo, M, approaches a finite mini-
mum value, M — /(y — 1)/2y, which for air is 0.378.

The upstream Mach number M, is a powerful parameter which dictates shock
wave properties. This is already seen in Eq. (3.51). Ratios of other properties across
the shock can also be found in terms of M,. For example, from Eq. (3.38) combined

8o
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with (3.47),
2 2
P U ”_12 = MP? (3.52)
oL ux  upup  a*
Substituting Eq. (3.49) into (3.52),
p_m_ (y+DMP (3.53)

P1 _uz _2+(y—1)M]2

To obtain the pressure ratio, return to the momentum equation (3.39),
2 2
P2 — p1 = Py — palt;

which, combined with Eq. (3.38), yields

u
p2— p1 = pru(uy — uz) = prui <1 - u_2> (3.54)
1
Dividing Eq. (3.54) by p,, and recalling that al2 = yp1/p1, we obtain
RP_ (1 - @) (3.55)
P1 U

Substitute Eq. (3.53) for u, /u, into Eq. (3.55):

— 2 - HM?
P (V + I)Ml
Equation (3.56) simplifies to
Py 2 o 3.57
P m( 1) (3.57)

To obtain the temperature ratio, recall the equation of state, p = pRT. Hence

2 (2)(2)
T, pi ) ’

Substituting Eqs. (3.57) and (3.53) into Eq. (3.58),

T hy 2)/ 2 :l |:2+ ()/ - I)MIZ:I
— ===+ (M- | — 1 .59
T\ h [+y+1( =1 (y + DM} 439

Examine Egs. (3.51), (3.53), (3.57), and (3.59). For a calorically perfect gas with
a given y, they give M, p2/p1, p2/p1, and To/ Ty as functions of M, only. This is
our first major demonstration of the importance of Mach number in the quantitative
governance of compressible flowfields. In contrast, as will be shown in Chap. 17 for
an equilibrium thermally perfect gas, the changes across a normal shock depend on
both M; and T;, whereas for an equilibrium chemically reacting gas they depend on
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M, Ty, and p,. Moreover, for such high-temperature cases, closed-form expressions
such as Egs. (3.51) through (3.59) are generally not possible, and the normal shock
properties must be calculated numerically. Hence, the simplicity brought about by
the calorically perfect gas assumption in this section is clearly evident. Fortunately,
the results of this section hold reasonably accurately up to approximately M| = 5 in
air at standard conditions. Beyond Mach 5, the temperature behind the normal shock
becomes high enough that y is no longer constant. However, the flow regime M| < 5
contains a large number of everyday practical problems, and therefore the results of
this section are extremely useful.

The limiting case of M| — oo can be visualized as u; — oo, where the calori-
cally perfect gas assumption is invalidated by high temperatures, or as a; — 0.
where the perfect gas equation of state is invalidated by extremely low temperatures.
Nevertheless, it is interesting to examine the variation of properties across the normal
shock as M| — oo in Egs. (3.51), (3.53), (3.57), and (3.59). We find, for y = 1.4,

1
lim M; = r-1. 0.378 (as discussed previously)

My—o 2y
Y
lim —

My—00 Py
. P2
lim —

M —oc P1

T

m
M —oo T

i
i
o

I
g =

=0

At the other extreme, for My = 1, Egs. (3.51), (3.53), (3.57), and (3.59) yield
M, = pajor = p2/py = T>/T) = 1. This is the case of an infinitely weak normal
shock degenerating into a Mach wave, where no finite changes occur across the
wave. This is the same as the sound wave discussed in Sec. 3.3.

Earlier in this section, it was stated that the flow ahead of the normal shock wave
must be supersonic. This is clear from our previous physical discussion on the for-
mation of shocks. However, it is interesting to note that Eqgs. (3.51), (3.53), (3.57),
and (3.59) mathematically hold for M, < | as well as M| > |. Therefore, to prove
that these equations have physical meaning only when M, > 1, we must appeal to
the second law of thermodynamics (see Sec. 1.4). From Eq. (1.36), repeated here,

T
$5 — 8§y :c,,ln—z—RlnB3

P
with Egs. (3.57) and (3.59), we have

2y 2 2+(V_1)M12i|}
N U I B R A VERNE Y | i il ¥
no "“{[+y+l(M‘ ])][ (v + DM}

2y )
_ : _(M? - 3.
Rln[l + w (M; 1)} (3.60)
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Equation (3.60) demonstrates that the entropy change across the normal shock is also
a function of M| only. Moreover, it shows that, if M; =1 then s, —s; =0, if
M, < 1thensy — 51 < 0, and if M; > 1 then s, — 51 > 0. Therefore, since it is nec-
essary that s, — s; > 0 from the second law, the upstream Mach number M; must be
greater than or equal to 1. Here is another example of how the second law tells us the
direction in which a physical process will proceed. If M, is subsonic, then Eq. (3.60)
says that the entropy decreases across the normal shock—an impossible situation.
The only physically possible case is M; > 1, which in turn dictates from Egs. (3.51),
(3.53),(3.57),and (3.59) that M> < 1, p»/p1 = 1, p2/p1 = 1,and T»/T; > 1. Thus,
we have now established the phenomena sketched in Fig. 3.4, namely, that across a
normal shock wave the pressure, density, and temperature increase, whereas the
velocity decreases and the Mach number decreases to a subsonic value.

What really causes the entropy increase across a shock wave? To answer this,
recall that the changes across the shock occur over a very short distance, on the order
of 107 ¢cm. Hence, the velocity and temperature gradients inside the shock structure
itself are very large. In regions of large gradients, the viscous effects of viscosity and
thermal conduction become important. In turn, these are dissipative, irreversible phe-
nomena that generate entropy. Therefore, the net entropy increase predicted by the
normal shock relations in conjunction with the second law of thermodynamics is ap-
propriately provided by nature in the form of friction and thermal conduction inside
the shock wave structure itself.

Finally, in this section we need to resolve one more question, namely, how do
the total (stagnation) conditions vary across a normal shock wave? Consider Fig. 3.9,
which illustrates the definition of total conditions before and after the shock. In
region 1 ahead of the shock, a fluid element is moving with actual conditions of

M, > 1 My <1

)
@—-» [
Lol

Fluid element
in real state
with M|, py,
Ty, and s;

Imaginary state 1a
where fluid element
has been brought to
rest isentropically.
Thus, in state la,
the pressure is p,,
(by definition).
Entropy is still s,.
Temperatureis T, .

O—

Real state with
My, Ty, 59

——

)
<

-

f —
1
L
e st —s,,
Imaginary state 2a
where fluid element
has been brought to
rest isentropically.
Thus, in state 24,
pressure is p, and
entropy is s,.
Temperature is T, .

i)

-

Figure 3.9 | Illustration of total (stagnation) conditions ahead of and behind
a normal shock wave.
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M\, pr, T, and 5;. Consider in this region the imaginary state 1a where the fluid
element has been brought to rest isentropically. Thus, by definition, the pressure and
temperature in state la are the total values p,,, and Ty, , respectively. The entropy at
state la is still s because the stagnating of the fluid element has been done isentrop-
ically. In region 2 behind the shock, a fluid element is moving with actual conditions
of Ms, p2, T,, and s,. Consider in this region the imaginary state 2a where the fluid
element has been brought to rest isentropically. Here, by definition, the pressure and
temperature in state 2a are the total values of p,, and T,,, respectively. The entropy
at state 2a is still s, by definition. The question is now raised how p,, and T,,, behind
the shock compare with p,, and T, , respectively, ahead of the shock. To answer this
question, consider Eq. (3.22), repeated here:

u2

1 u3
i+ 5 =¢h+ —zl

From Eq. (3.27), the total temperature is given by

u
C,,TU = CpT + —2—

Hence,

Cp Tm =0 Tnz

and thus T, =1, (3.61)

From Eq. (3.61), we see that the rotal temperature is constant across a stationary
normal shock wave. [Note that Eq. (3.61), which holds for a calorically perfect gas,
is a special case of the more general result that the total enthalpy is constant across
the shock, as demonstrated by Eq. (3.40). For a stationary normal shock, the total
enthalpy is always constant across the shock wave, which for calorically or ther-
mally perfect gases translates into a constant total temperature across the shock.
However, for a chemically reacting gas, the total temperature is rnot constant across
the shock, as described in Chap. 17. Also, if the shock wave is not stationary—if
it is moving through space—neither the total enthalpy nor total temperature are
constant across the wave. This becomes a matter of reference systems, as discussed
in Chap. 7.]

Considering Fig. 3.9 again, write Eq. (1.36) between the imaginary states la
and 2a:

TZa P2a
S0 —S1a =CpIn=———RlIn

la Pta

(3.62)

However, $24 = 82, Sla = 51, T2u =T, = Ta, P2a = Poas and Pla = Po,- Hence,
Eq. (3.62) becomes

5 — s =—RIn P2 (3.63)
Por
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CHAPTER 3 One-Dimensional Flow

10.0
9.0
8.0
7.0
&
&
6.0 E
50 %
[SW
=
40 &
(N
3.0
2.0
1.0
1 i
01 2 3 4
Ml
Figure 3.10 | Properties behind a normal shock wave as a function of upstream Mach
number.
or Por _ gt/ (3.64)

Po,

From Egs. (3.64) and (3.60) we see that the ratio of total pressures across the normal
shock depends on M; only. Also, because s, > 51, Eqs. (3.63) and (3.64) show that
Do, < Po,- The total pressure decreases across a shock wave.

The variations of pa2/p1, pa/p1, To/Tis Po,/Po,» and M, with My as obtained
from the above equations are tabulated in Table A.2 (in the Appendix A at the back of
this book) for y = 1.4. In addition, to provide more physical feel, these variations
are also plotted in Fig. 3.10. Note that (as stated earlier) these curves show how, as
M/ becomes very large, T,/ T} and p,/ p; also become very large, whereas p, /01 and
M, approach finite limits.

A normal shock wave is standing in the test section of a supersonic wind tunnel. Upstream of
the wave, M; = 3, p; = 0.5 atm, and T} = 200 K. Find M,, p,, T, and u, downstream of the
wave.
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H Solution
From Table A.2, for M, = 3: po/p; = 10.33, T»/Ty = 2.679, and M, =|0.4752 |. Hence

pr= 2 p =1033(0.5) = | 5.165 am
P

T
T, = FQT] =2.679(200) = | 535.8 K
t

ay = JyRT, = /(1.4)(287)(535.8) = 464 m/s

u, = Mya, = (0.4752)(464) = | 220 m/s

EXAMPLE 3.6

A blunt-nosed missile is flying at Mach 2 at standard sea level. Calculate the temperature and
pressure at the nose of the missile.

N Solution
The nose of the missile is a stagnation point, and the streamline through the stagnation point
has also passed through the normal portion of the bow shock wave. Hence, the temperature
and pressure at the nose are equal to the total temperature and pressure behind a normal shock.
Also, at standard sea level, T) = 519°R and p; = 2116 Ib/ft%.

From Table A.1, for M, = 2: T, /T) = 1.8 and p,,/p, = 7.824. Also, for adiabatic flow
through a normal shock, 7,,, = 7, . Hence

T, N
T, =T, = =27, = 1.8(519) = | 934.2°R
2 T

From Table A.2, for M, = 2: p,,,/p,, = 0.7209. Hence

oy = 22 P00~ (0.7209)(7.824)(2116) = | 11,935 Ib/EC

0 Pl

EXAMPLE 3.7

Consider a point in a supersonic flow where the static pressure is 0.4 atm. When a Pitot tube is
inserted in the flow at this point, the pressure measured by the Pitot tube is 3 atm. Calculate the
Mach number at this point.

# Solution

(We assume that the reader is familiar with the concept of a Pitot tube; see Sec. 8.7 of Ref. 104
for a discussion of the Pitot tube.) The pressure measured by a Pitot tube is the total pressure,
However, when the tube is inserted into a supersonic flow, a normal shock is formed a short
distance ahead of the mouth of the tube. In this case, the Pitot tube is sensing the total pressure
behind the normal shock. Hence

Por = 2 95
P 0.4

3

From Table A.2, for p,,/pi = 7.5: M| =[2.35].
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Note: As usual, in using the tables in Appendix A, we use the nearest entry for simplicity
and efficiency; for improved accuracy, interpolation between the nearest entries should be
used.

EXAMPLE 3.8

For the normal shock that occurs in front of the Pitot tube in Example 3.7, calculate the entropy
change across the shock.

@ Solution
From Table A.2, for M, = 2.35: p,,/p,, = 0.5615. From Eq. (3.63)

RN P2 o _1n0.5615) = 0.577
R Po,

5 — 81 = 0.577R = 0.577(1716) =| 990.4 ft - Ib/slug - °R

EXAMPLE 3.9

Transonic flow is a mixed subsonic-supersonic flow where the local Mach number is near one.
Such flows are discussed at length in Chap. 14, and are briefly described in Sec. 1.3. A typical
example is the flow over the wing of a high-speed subsonic transport, such as the Boeing 777
shown in Fig. 1.4. When the airplane is flying at a free-stream Mach number on the order of
0.85, there will be a pocket of locally supersonic flow over the wing, as sketched in Fig. 1.105.
This pocket is terminated by a weak shock wave, also shown in Fig. 1.10b. Early numerical
calculations of such transonic flows over an airfoil assumed the flow to be isentropic, hence ig-
noring the entropy increase and total pressure loss across the shock wave. Making the as-
sumption that the shock wave in Fig. 1.10b is locally a normal shock, calculate the total pres-
sure ratio and entropy increase across the shock for M, = 1.04,1.08,1.12,1.16, and 1.2.
Comment on the appropriateness of the isentropic flow assumption for the solution of tran-
sonic flows involving shocks of this nature.

H Solution
From Table A.2, for M, = 1.04

Por _ 0.9999

Do,

From Eq. (3.63),

. ioul
5 —s1 = —RIn 22 = _(287)1n(0.9999) = | 0.0287 lizu;

o1

Forming a table for the remaining calculations, we have

M, 1.04 1.08 1.12 1.16 1.2
Ipﬂ 0.9999 0.9994 0.9982 0.9961 0.9928
01

joule
55— 84 §g—K 0.0287 0.172 0.517 1.12 2.07
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From this table, the entropy increase across a normal shock with M, = 1.04 is very small; the
shock is extremely weak. By comparison, the entropy increase for M, = 1.12 is 72 times
larger than the case for M| = 1.04. The shock strength increases rapidly as M, increases
above one. From these numbers, we might feel comfortable with the approximation of isen-
tropic flow for transonic flows where the local Mach number in front of the shock is on the
order of 1.08 or less. On the other hand, if the local Mach number is on the order of 1.2, the
isentropic assumption is clearly suspect.

EXAMPLE 3.10

Consider two flows, one of helium and one of air, at the same Mach number of 5. Denoting the
strength of a normal shock by the pressure ratio across the shock, p,/p;. which gas will result
in the stronger shock? For a monatomic gas such as helium, y = 1.67, and for a diatomic gas
such as air, y = 1.4.

W Solution

For air, from Table A.2, for M; =5

P2
P

= 29 (air)

For helium, we cannot use Table A.2, which is for y = 1.4 only. Returning to Eq. (3.57) for
the pressure ratio across a normal shock,

P2 2y R 201.67)
Tl (M- =1 57 —1
P +y+1(‘ ) +167+l[() ]
Hence,
22 _ 31 (helium)
P

From this, we conclude that for equal upstream Mach numbers, the shock strength is greater in
helium as compared to air.

EXAMPLE 3.11

Repeat Example 3.10, except assuming equal velocities of 1700 m/s and temperatures of 288 K
for both gas flows.

A Solution
For air, with y = 1.4 and R = 287 joule/kg - K, the speed of sound at 7 = 288 K is, from
Eq. (3.20),

a; =y RT, = /(1.4)(287)(288) = 340 m/s

Hence,

V1700

M = — =
"T e, T 340
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From Table A.2, we have

P2 _ 29 (air)
4!

For helium, the molecular weight is 4. As given in Sec. 1.4,

R 8314 joule
Vil 2078.5 kg K

Hence,

= JyRT; = /(1.67)(2078.5)(288) = 999.8 m/s

Vi 1700
M = a 39998
From Egq. (3.57)
D2 2y 2 2(1.67) 2
= [ S— —1)=1
12 y+1(M1 ) +167 [(17) 1

Hence

22 — 336 (helium)

P
From this, we conclude that, for equal upstream velocities and temperatures, the shock
strength in helium is much weaker than in air. This is because the speed of sound in helium is
much larger than air at the same temperature, due to the smaller molecular weight for helium.
Since shock strength is dictated by Mach number, not velocity, the shock is much weaker in
helium because of the much lower upstream Mach number.

3.7 | HUGONIOT EQUATION

The results obtained in Sec. 3.6 for the normal shock wave were couched in terms of
velocities and Mach numbers—quantities which quite properly emphasize the fluid
dynamic nature of shock waves. However, because the static pressure always in-
creases across a shock wave, the wave itself can also be visualized as a thermody-
namic device which compresses the gas. Indeed, the changes across a normal shock
wave can be expressed in terms of purely thermodynamic variables without explicit
reference to a velocity or Mach number, as follows.
From the continuity equation (3.38),

"y = Uy (ﬂ) (3.65)
P2

Substitute Eq. (3.65) into the momentum equation (3.39):

2
n+ ,01141 P2+ (%m) (3.66)
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Solve Eq. (3.66) for u%:

u%:ﬂiil(@) (3.67)
P2 — P1 \ P1

Alternatively, writing Eq. (3.38) as

(%)
uy = uy | —
P

and again substituting into Eq. (3.39), this time solving for u,, we obtain

R ] (&) (3.68)
P2 — P1 \ P2
From the energy equation (3.40),
2 2
u u
} il R A 22
nt g =Rty

and recalling that by definition 2 = e + p/p. we have

2 2
U u

PR T A (3.69)
o 2 o 2

Substituting Eqs. (3.67) and (3.68) into (3.69), the velocities are eliminated, yielding

1 - 1 T ps—
ot 2Lp—pr \pi P 2Lp—p1 \m

This simplifies to

1
62_61:M<i__> (3.71)
2 P P2
or ey —e| = #(vl ) (3.72)

Equation (3.72) is called the Hugoniot equation. It has certain advantages because it
relates only thermodynamic quantities across the shock. Also, we have made no as-
sumption about the type of gas—FEq. (3.72) is a general relation that holds for a per-
fect gas, chemically reacting gas, real gas, etc. In addition, note that Eq. (3.72) has
the form of Ae = — p,. Av, i.e., the change in internal energy equals the mean pres-
sure across the shock times the change in specific volume. This strongly reminds us
of the first law of thermodynamics in the form of Eq. (1.25), with §g = 0 for the adi-
abatic process across the shock.

In general, in equilibrium thermodynamics any state variable can be expressed
as a function of any other two state variables, for example e = e(p, v). This relation
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Isentropic curve (pyY = constant)
Hugoniot curve (shock wave compression)
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Figure 3.11 | Hugoniot curve; comparison with
isentropic compression.

could be substituted into Eq. (3.72), resulting in a functional relation

P2 = f(p1, v1, v2) (3.73)

For given conditions of p; and v, upstream of the normal shock, Eq. (3.73)
represents p; as a function of v,. A plot of this relation on a pv graph is called
the Hugoniot curve, which is sketched in Fig. 3.11. This curve is the locus of all pos-
sible pressure-volume conditions behind normal shocks of various strengths for one
specific set of upstream values for p; and v; (point 1 in Fig. 3.11). Each point on the
Hugoniot curve in Fig. 3.11 therefore represents a different shock with a different
upstream velocity u;.

Now consider a specific shock with a specific value of upstream velocity u;.
How can we locate the specific point on the Hugoniot curve, point 2, which corre-
sponds to this particular shock? To answer this question, return to Eq. (3.67), substi-
tuting v = 1/p:

2 P2— D1 U
=t — 74
“ 1/vy — 1/v; (vz) (3.74)
Rearranging Eq. (3.74), we obtain
2
LA A —(ﬂ> (3.75)
vy — (]

Examining Eq. (3.75), the left-hand side is geometrically the slope of the straight line
through points 1 and 2 in Fig. 3.11. The right-hand side is a known value, fixed by the
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upstream velocity and specific volume. Hence, by calculating — (i, /v;)> from the
known upstream conditions, and by drawing a straight line through point 1 with this
slope, the line will intersect the Hugoniot curve at point 2, as sketched in Fig. 3.11.
Consequently, point 2 represents conditions behind the particular normal shock
which has velocity u; with upstream pressure and specific volume p; and vy,
respectively.

Shock wave compression is a very effective (not necessarily efficient, but effec-
tive) process. For example, compare the isentropic and Hugoniot curves drawn
through the same initial point (p;. vy) as sketched in Fig. 3.11. At this point, both
curves have the same slope (prove this yourself, recalling that point 1 on the
Hugoniot curve corresponds to an infinitely weak shock, i.e., a Mach wave). How-
ever, as v decreases, the Hugoniot curve climbs above the isentropic curve. There-
fore, for a given decrease in specific volume, a shock wave creates a higher pressure
increase than an isentropic compression. However, the shock wave costs more be-
cause of the entropy increase and consequent total pressure loss, i.e., the shock com-
pression is less efficient than the isentropic compression.

Finally, noting that for a calorically perfect gas ¢ = ¢, T and 7 = pv/R,

Eq. (3.72) takes the form
(ﬁl) v
pr_\y—1/uw

pi (v w
y —1 v

Prove this to yourself.

Consider the normal shock wave properties calculated in Example 3.5. Show that these prop-
erties satisfy the Hugoniot equation for a calorically perfect gas.

m Solution

The Hugoniot equation for a calorically perfect gas is given by the last equation in this section,

namely,
(V_“>ﬂ_1
P _\y—-1/wv
P y+1 _u
y—1 V2

Let us calculate v; /v, from the information given in Example 3.5, substitute the value of v| /v,
into the last equation, and see if the resulting value of p,/p, agrees with that obtained in
Example 3.5.

From Example 3.5, p; =0.5atm, T, = 200K, p, = 5.165 atm, and 7, = 535.8 K. From
the equation of state

pi 0.5(1.01 x 10%)
RT, ~  (287)(200)
123 5.165(1.01 x 10°)
RT,  (287)(535.8)

= 0.8798 kg/m’

>
|

I

02 = 3.392kg/m*

EXAMPLE 3.1
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Hence,

P2 _ v N 3.392

== = =3.855
~ %] 0.8798

From the Hugoniot equation,

1 24
(”—+1) LI (W) (3.855) — 1
P2 _ NV 2o AT =10.32

o (y+1 Uy 24
—_) = — ] —3.855
()’ - 1) v (0'4

From Example 3.5, the calculated pressure ratio was p,/p; = 10.33, which agrees within
round-off error with the result computed above from the Hugoniot equation. (Please note: All
of the worked examples in this book were computed by the author using a hand calculator,
hence the answers are subject to round-off errors that accumulate during the calculation.)

3.8 | ONE-DIMENSIONAL FLOW WITH
HEAT ADDITION

Consider again Fig. 3.6, which illustrates a control volume for one-dimensional flow.
Inside this control volume some action is occurring which causes the flow properties
in region 2 to be different than in region 1. In the previous sections, this action has
been due to a normal shock wave, where the large gradients inside the shock struc-
ture ultimately result in an increase in entropy via the effects of viscosity and thermal
conduction. However, these effects are taking place inside the control volume in
Fig. 3.6 and therefore the governing normal shock equations relating conditions in
regions 1 and 2 did not require explicit terms accounting for friction and thermal
conduction.

The action occurring inside the control volume in Fig. 3.6 can be caused by
effects other than a shock wave. For example, if the flow is through a duct, friction
between the moving fluid and the stationary walls of the duct causes changes
between regions 1 and 2. This can be particularly important in long pipelines trans-
ferring gases over miles of land, for example. Another source of change in a one-
dimensional flow is heat addition. If heat is added to or taken away from the gas
inside the control volume in Fig. 3.6, the properties in region 2 will be different than
those in region 1. This is a governing phenomenon in turbojet and ramjet engine
burners, where heat is added in the form of fuel-air combustion. It also has an im-
portant effect on the supersonic flow in the cavities of modern gasdynamic and
chemical lasers, where heat is effectively added by chemical reactions and molecu-
lar vibrational energy deactivation. Another example would be the heat added to an
absorbing gas by an intense beam of radiation; such an idea has been suggested for
laser-heated wind tunnels. In general, therefore, changes in a one-dimensional flow
can be created by both friction and heat addition without the presence of a shock
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wave. One-dimensional flow with heat addition will be discussed in this section.
Flow with friction, a somewhat analogous phenomenon, is the subject of Sec. 3.9.

Consider the one-dimensional flow in Fig. 3.6, with heat addition (or extraction)
taking place between regions 1 and 2. The governing equations are Eqgs. (3.2), (3.5),
and (3.9), repeated here for convenience:

P = palta (3.2)
pi+ Pt = py + paus (3.5)
2 ol
uy U5
i+ = +g=hy+ =2 3.9
1t ra=ht (3.9)

If conditions in region 1 are known, then for a specified amount of heat added per unit
mass, ¢, these equations along with the appropriate equations of state can be solved
for conditions in region 2. In general, a numerical solution is required. However. for
the specific case of a calorically perfect gas, closed-form analytical expressions can
be obtained—just as in the normal shock problem. Therefore, the remainder of this
section will deal with a calorically perfect gas.

Solving Eq. (3.9) for g, with h = ¢, T,

u ui
q = CpTz + _2—' — C,,T] + 7 (376)

From the definition of total temperature, Eq. (3.27), the terms on the right-hand side
of Eq. (3.76) simply result in

q = CIITOZ - CFY;)I = Cp(Tm - 7})1) (377)

Equation (3.77) clearly indicates that the effect of heat addition is to directly change
the total temperature of the flow. If heat is added, T, increases; if heat is extracted, T,
decreases.

Let us proceed to find the ratios of properties between regions | and 2 in terms
of the Mach numbers M, and M,. From Eq. (3.5), and noting that

pu? = pd’M? = pZI_’Mz = ypM?
P
we obtain
P2~ pi = o} — poul = ypi M — yp2 M3
Hence,
14+ yM3:
P2 _ ﬂ._zl (3.78)
pP1 1+ )’Mz
Also, from the perfect gas equation of state and Eq. (3.2),
T
L_pnpa_Ppn (3.79)

Tr pip  piu

103



104

CHAPTER 3 One-Dimensional Flow

From Eq. (3.20) and the definition of Mach number,

T, (1 +yM%)2 (Mz)z
T, \1+yMj} M,

1

1+V;
y—1
2

L+

2
M2

2
Ml

M M, (T\'?
2=__2a_2=_2 2 (3.80)
U1 M a; My \T
Substituting Eqgs. (3.78) and (3.80) into (3.79),
T. 1+ yM2\? [ My)\°
L_ (L;) (_3> (3.81)
T] 1 + )/Mz Ml
Since pp/p1 = (p2/ p1)(T1/ 1), Egs. (3.78) and (3.81) yield
1 2\ M\
P2 _ ( +VM§) <_1) (3.82)
P L+yM;) \M;
The ratio of total pressures is obtained directly from Egs. (3.30) and (3.78),
y—1_,\"oD
P _ Ltymi 1T 5 (3.83)
Do, 1+VM% 1+V_1M21

The ratio of total temperatures is obtained directly from Eqs. (3.28) and (3.81),

(3.84)

Finally, the entropy change can be found from Eq. (1.36) with 7;/T] and p;/p;
given by Egs. (3.81) and (3.78), respectively.

A scheme for the solution of one-dimensional flow with heat addition can now
be outlined as follows. All conditions in region 1 are given. Therefore, for a given ¢,
T,, can be obtained from Eq. (3.77). With this value of T,,, Eq. (3.84) can be solved
for M;. Once M; is known, then p,/p;, T»/ T}, and p,/ p; are directly obtained from
Egs. (3.78), (3.81), and (3.82), respectively. This is a straightforward procedure;
however, the solution of Eq. (3.84) for M, must be found by trial and error. There-
fore, a more direct method of solving the problem of one-dimensional flow with heat
addition is given below.

For convenience of calculation, we use sonic flow as a reference condition. Let
M, = 1; the corresponding flow properties are denoted by p, = p*, Ty =T"7,
p1 = p*, po, = p;, and T, = T%. The flow properties at any other value of M are
then obtained by inserting M; = 1 and M, = M into Eq. (3.78) and Eqgs. (3.81) to
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(3.84), yielding

1+
% = y% (3.85)
T S T4y Y
LY <_1—+ yM2> (3.86)
I [14+yM?

s (1)
po _ 4y 24 -DMP (3.88)
pr 1+ yM? y+1 ‘
T, + M’

_+D 2+ (y — DM (3.89)

Ty~ (1 +yM?)?
Equations (3.85) through (3.89) are tabulated as a function of M for y = 1.4 in
Table A.3. Note that, for a given flow, no matter what the local flow properties are, the
reference sonic conditions (the starred quantities) are constant values. These starred
values, although defined as conditions that exist at Mach 1, are fundamentally differ-
ent than T, p*, and p* defined in Sec. 3.4. There, 7* was defined as the temperature
that would exist at a point in the flow if the flow at that point were imagined to be
locally slowed down (for a supersonic case) or speeded up (for a subsonic case) to
Mach | adiabatically. In the present section we are dealing with a one-dimensional
flow with heat addition—definitely a nonadiabatic process. Here, T*, p*, and p* are
those conditions in a one-dimensional flow that would exist if enough heat is added
to achieve Mach 1. To see this more clearly, consider two different locations in a one-
dimensional flow with heat addition, denoted by stations 1 and 2 as sketched in
Fig. 3.12a. The flow at station ! is given by M\, py, and 7;. For the sake of discus-
sion, let M| = 3. Now, let an amount of heat ¢, be added to this flow between sta-
tions 1 and 2. As a result, the flow properties at location 2 are M5, p,, and T» as
shown in Fig. 3.12a. Assume that ¢; was a sufficient amount to result in M, = 1.5.
(We will soon demonstrate that adding heat to a supersonic flow reduces the Mach
number of the flow.) Now, return to station 1, where the local Mach number is
M, = 3. Imagine that we add enough heat downstream of this station to cause the
flow to slow down to Mach 1 as shown in Fig. 3.12b; denote this amount of heat by
7. Clearly, g{ > gi. The conditions in the duct where M = 1 after ¢} is added are
denoted by T*, p*, p*, p}, and T". Now, return to station 2, where M; = 1.5, Imag-
ine that we add enough heat downstream of this station to cause the flow to slow
down to Mach 1 as sketched in Fig. 3.12¢; denote this amount of heat by g5. The
conditions in the duct where M = 1 after ¢} is added are denoted by T*, p*, p*, pZ,
and T*. These are precisely the same values that were obtained by adding ¢; down-
stream of station 1. In other words, for a given one-dimensional flow, the values of
T*, p*, p*, etc., achieved when enough heat is added to bring the flow to Mach | are
the same values, no matter whether the heat is added as ¢} downstream of station 1
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Figure 3.12 | Illustration of the meaning of the starred quantities at Mach 1 for
one-dimensional flow with heat addition.

or as g5 downstream of station 2. This is why, in Eqgs. (3.85) through (3.89), the
starred quantities are simply reference quantities that are fixed values for a given
flow entering a one-dimensional duct with heat addition. With this concept,
Eqgs. (3.85) through (3.89), or rather the tabulated values in Table A.3 obtained from
these equations, simplify the calculation of problems involving one-dimensional
flow with heat addition.

EXAMPLE 3.13

Air enters a constant-area duct at M; = 0.2, p; = 1 atm, and 7; = 273 K. Inside the duct, the
heat added per unit mass is g = 1.0 x 10° J/kg. Calculate the flow properties M, p,, Ts, p2,
T,,, and p,, at the exit of the duct.

H Solution
From Table A.1, for M, =0.2: T, /T, = 1.008 and p,,/p: = 1.028. Hence
T,, = 1.008T7; = 1.008(273) = 275.2K
Poy = 1.028p; = 1.028(1 atm) = 1.028 atm
YR (14)(287)

&= o 1005 J/kg - K
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From Eq. (3.77)

q 1.0 x 10°
T,=—" 4T, = ———r— 52=| 1270K
", o os T

From Table A3, for M| = 0.2: T;/T* = 0.2066, pi/pt=2273, p,, /p; = 1235, and
T, /T: =0.1736. Hence

T, 1270

Tr 2752

7—;)1
= = = (0.1736) = 0.8013
T,

From Table A.3. this corresponds to| M> = (.58

Also from Table A3, for M, = 0.58: T,/ T* = 0.8955, p,/p* = 1.632, Por/ P = 1.083.
Hence

T 1
Th=——T = (08955 ——— ] (273) = | 1183K
2= h ( )(0.2066)( )
PP e 0.718:
P2 = FEP] = 1.06: m atm = . atm
Por P, 1
= —= = p,, = 1.083———1.028 = | 0.902 at
Po: PE Do, i 1.235 am

Since [ atm = 1.01 x 10° N/m?,

o ©IR01 x 10Y)
R T T oAy

0.214 kg/m?

EXAMPLE 3.14

Air enters a constant-area duct at M, = 3, p, = | atm, and 7, = 300 K. Inside the duct. the
heat added per unit mass is ¢ = 3 x 10° J/kg. Calculate the flow properties Ms, p2.To, 00, T,
and p,, at the exit of the duct.

B Solution
From Table A.1. for M, = 3. T, /T, = 2.8. Hence

T,, = 2.8(300) = 840K
YR (1.4)(287)

= = = 1004.51/kg - K

= 0.4 8
From Eq. (3.77)

q = (bp(Tng - Tn])
Thus
q 3 x 10°
T, =—+T,, =———+840=1| 1139K
T t o 1004.5 +
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From Table A.3, for M, =3: p;/p* =0.1765, T;/T* = 0.2803, and T,,/T; = 0.6540.
Hence
T, 1,, T,, 1139

“o ;o 270 6540) = 0.8868
Tr T, Ty 840 ¢ )

o

From Table A.3, for T,,,/ T} = 0.8868: M, = . Also from Table A.3, p,/p* = 0.5339
and T,/ T* = 0.7117. Thus

p2p 1
=22 p =05339( ——— ) (latm) = | 3.025at
P2 o 4 <0.1765)( atm) atm

T, T
T, =——1T =07117

— =| 761.7K
T T <O.2803) (300)

p2 _ (3.025)(1.01 x 10%) _

= 1.398 kg/m?
RT, (287)(761.7)

P =

From Table A.3, for M, = 3: p, /p: = 3.424. For M, = 1.58: p,,/p} = 1.164. Thus

¢ 1164
Po _ PoalPs 110V 5y

Por  Poi/P; 3424

From Table A.1, For M; = 3: p,,/p1 = 36.73. Hence

oy = L2 5’;—' p1 = (0.340)(36.73)(1atm) = | 12.49atm
Doy 1

Certain physical trends reflected by the numbers obtained from such solutions
are important, and are summarized here:

1. For supersonic flow in region 1, i.e., M; > 1, when heat is added
a. Mach number decreases, M, < M,
b. Pressure increases, p» > p;
¢. Temperature increases, 1> > Tj
d. Total temperature increases, T,, > Ty,
e. Total pressure decreases, p,, < Po,
|, Velocity decreases, uy < u)
2. For subsonic flow in region 1, i.e., M; < 1, when heat is added
a. Mach number increases, M, > M,
b. Pressure decreases, py < pi
¢. Temperature increases for M, < y~'/* and decreases for M| > y~
d. Total temperature increases, T, > T,
e. Total pressure decreases, p,, < Po,
[ Velocity increases, u; > u

1/2

For heat extraction (cooling of the flow), all of the above trends are opposite.
From the development here, it is important to note that heat addition always
drives the Mach numbers toward 1, decelerating a supersonic flow and accelerating
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h

(Sonic flow)

Figure 3.13 | The Rayleigh curve.

a subsonic flow. This is emphasized in Fig. 3.13, which is a Mollier diagram (en-
thalpy versus entropy) of the one-dimensional heat-addition process. The curve in
Fig. 3.13 is called the Rayleigh curve, and is drawn for a set of given initial condi-
tions. If the conditions in region 1 are given by point 1 in Fig. 3.13, then the particu-
lar Rayleigh curve through point 1 is the locus of all possible states in region 2. Each
point on the curve corresponds to a different value of g added or taken away. Point a
corresponds to maximum entropy; also at point a the flow is sonic. The lower branch
of the Rayleigh curve below point a corresponds to supersonic flow; the upper
branch above point a corresponds to subsonic flow. If the flow in region 1 of Fig. 3.6
is supersonic and corresponds to point 1 in Fig. 3.13, then heat addition will cause
conditions in region 2 to move closer to point a, with a consequent decrease of Mach
number towards unity. As ¢ is made larger, conditions in region 2 get closer and
closer to point a. Finally, for a certain value of g, the flow will become sonic in re-
gion 2. For this condition, the flow is said to be choked, because any further increase
in g is not possible without a drastic revision of the upstream conditions in region 1.
For example, if the initial supersonic conditions in region 1 were obtained by expan-
sion through a supersonic nozzle, and if a value of g is added to the flow above that
allowed for attaining Mach 1 in region 2, then a normal shock will form inside the
nozzle and conditions in region 1 will suddenly become subsonic.
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Now consider an alternative case where the initial flow in region 1 in Fig. 3.6 is
subsonic, say given by point 1’ in Fig. 3.13. If heat is added to the flow, conditions in
the downstream region 2 will move closer to point a. If g is increased to a sufficiently
high value, then point a will be reached and the flow in region 2 will be sonic. The
flow is again choked, and any further increase in g is impossible without an adjust-
ment of the initial conditions in region 1. If ¢ is increased above this value, then a se-
ries of pressure waves will propagate upstream, and nature will adjust the conditions
in region 1 to a lower subsonic Mach number, to the left of point 1" in Fig. 3.13.

Note from the Rayleigh curve in Fig. 3.13 that it is theoretically possible to de-
celerate a supersonic flow to a subsonic value by first heating it until sonic flow
(point a) is reached, and then cooling it thereafter. Similarly, an initially subsonic
flow can be made supersonic by first heating it until sonic flow (point a) is reached,
and then cooling it thereafter.

Finally, just as in the case of a normal shock wave, heat addition to a flow—
subsonic or supersonic—always decreases the total pressure. This effect is of prime
importance in the design of jet engines and in the pressure recovery attainable in gas-
dynamic and chemical lasers.

EXAMPLE 3.15

In Example 3.14, how much heat per unit mass must be added to choke the flow?

H Solution
From Example 3.14, T,, = 840K. Also from Table A.3, for M, = 3: T,,, /T,} = 0.6540. Thus

, T, 840

T = = =1
° 0.6540  0.6540 284K

When the flow is choked, the Mach number at the end of the duct is M, = 1. Thus

T, =T = 1284K

g =c, (T, — T,,) = (1004.5)(1284 — 840) = | 4.46 x 10° J/kg

EXAMPLE 3.10

¢ Herthe supersonic inflow conditions given in Example 3.14. If an amount of heat equal

to P J/kg is added to this flow, what will happen to it qualitatively and quantitatively?
| S 'vqn

From Ai\) "It given in Example 3.15, we see that g = 6 x 10° J/kg is more than that required
to choke, ow. In this case, the flow mechanism that is producing the incoming flow at
M; =3+, “completely changed by strong pressure waves propagating upstream so that
new inflowy  “‘ons will prevail that will accommodate this increased amount of heat addi-

tion, still chok. &< flow at the exit of the duct. Nature will change the originally supersonic
inflow to a sub. = “nflow with just the right value of M, < 1 such that the heat added will
just choke the sui ~ flow.
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To calculate the new inflow Mach number, we assume that whatever mechanism that
nature uses to change the supersonic inflow to a subsonic inflow will not change the total tem-
perature of the inflow. For exarple, if the mechanism is that of a normal shock wave, the total
temperature is not changed across the shock. Hence, T,, remains the same; 7, = 840K. To
calculate 7,, = Tf, we have

qg=c,(T,, - T,,)

or

q 6 x 10°
T'=71,=—+T, = ——— +840=1437K
o =l =T H lor = Y0045
T, 840
= —0.584
T = 1437 - 0846

0

From Table A.3, we find for T,,, /T = 0.5846, M, = 0.43.

Hence, when g = 6 x 10° J/kg is added to the flow, the initial supersonic inflow at
My = 3 will be modified through a complex transient process to become a subsonic inflow
with M, = 0.43.

114

3.9 | ONE-DIMENSIONAL FLOW WITH FRICTION

With this section we arrive at the last box at the bottom of our roadmap in Fig. 3.1.
Consider the one-dimensional flow of a compressible inviscid fluid in a constant-area
duct. If the flow is steady, adiabatic, and shockless, Eqgs. (3.2), (3.5), and (3.9) yield
the trivial solution of constant property flow everywhere along the duct. However, in
reality, all fluids are viscous, and the friction between the moving fluid and the
stationary walls of the duct causes the flow properties to change along the duct.
Although viscous flows are not the subject of this book, if the frictional effect is mod-
eled as a shear stress at the wall acting on a fluid with uniform properties over any
cross section, as illustrated in Fig. 3.14, then the equations developed in Sec. 3.2,
with one modification, describe the mean properties of frictional flow in constant-area

Figure 3.14 | Model of one-dimensional flow
with friction.
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ducts. The analysis and results are analogous to one-dimensional flow with heat addi-
tion, treated in Sec. 3.8.

The aforementioned modification applies to the momentum equation. As seen in
Fig. 3.14, the frictional shear stress t,, acts on the surface of the cylindrical control
volume, thus contributing an additional surface force in the integral formulation of
the momentum equation. Equation (3.4) is the x component of the momentum equa-
tion for an inviscid gas; with the shear stress included, this equation becomes

#(pV  dS)u = — #(p ds), — #rw ds (3.90)
S N S

Applied to the cylindrical control volume of diameter D and length L sketched in
Fig. 3.14, Eq. (3.90) becomes

L
—piudA 4 pusA = piA — prA —/ n D1, dx (391
0
Since A = 7 D?/4, Eq. (3.91) becomes
4 L
(72— p0) + (o2 = pud) = = f tu dx (3.92)
0

The shear stress 1, varies with distance x along the duct, thus complicating the inte-
gration on the right-hand side of Eq. (3.92). This can be circumvented by taking the
limit of Eq. (3.92) as L shrinks to dx, as shown in Fig. 3.14, resulting in the differ-
ential relation

4
dp + d(pu®) = — 5w dx (3.93)

From Eq. (3.2), pu = const. Hence, d(pu®) = pu du + ud(ou) = pudu + u(0) =
pu du. Thus Eq. (3.93) becomes

4
dp + pudu = —Brw dx (3.94)

The shear stress can be expressed in terms of a friction coefficient f, defined as

1, = 3pu’ f. Hence, Eq. (3.94) becomes

,4fdx
D

dp + pudu = —3pu (3.95)

Returning to Fig. 3.14, the driving force causing the mean cross-sectional flow
properties to vary as a function of x is friction at the wall of the duct, and this varia-
tion is governed by Eq. (3.95). For practical calculations dealing with a calorically
perfect gas, Eq. (3.95) is recast completely in terms of the Mach number M. This can
be accomplished by recalling that, a> = yp/o, M* = u*/a®, p = pRT, pu = const,
and ¢, T + u? /2 = const. The derivation is left as an exercise for the reader; the
result is

Afdx 2 L1 dM
> =W(I—M2)[l+%(y—1)M2] e (3.96)
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Integrating Eq. (3.96) between x = x; (where M = M) and x = x-» (where
M = M),

/‘“ 41 dx | v+ 1 | M-

— : — - - n|f —-——+—

. D yM3 2y y - |
5

v,

Equation (3.97) relates the Mach numbers at two different sections to the integrated
effect of friction between the sections.

The ratios of static temperature, pressure, density, and total pressure between the
two sections are readily obtained. The flow is adiabatic, hence 7, = const. Thus.
from Eq. (3.28), we have

B T/T 2+ (- DM
T T,)T, 24+ (y— DM

{3.98)

Also. since pjity = prus. and ¢ = ypjp. then

Y ypauo

5 2
ay (li

12} /W[ a> M| Tg
or Tl = - — (3.99)
P Myay  MLVT

Substituting Eq. (3.98) into (3.99), we have

1.2
P _ M Fﬂﬂ} (3.100)

o M 24y — DM

From the equation of state, p>/py = (p2/p (T /T>). Substituting Egs. (3.98) and
(3.100) into this result, we obtain

p M [i%(y%)Mf]!x“ (3.101)

Pl B 7\/[3 2;(_]/ - 1)/\/122

Finally. from Eqgs. (3.30) and (3.100). the ratio of total pressures is

24y — OM;

Po: _ Do/ P2 D2 [2+ (y - 1)M§]”"" M, [2+ (v — 1)1»15}' “
Por P/ Py D2

I EES Y E M,

. M o + (}/ 1 M; 7+ 20— 1)
Por '[ ) } (3.102)

Do Mw 32+()77 M

2
|

Analogous to our previous discussion of one-dimensional How with heat addi-
tion. calculations of flow with friction are expedited by using sonic flow reference
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conditions, where the flow properties are denoted by p*, p*, T*, and p¥. From
Egs. (3.98) and (3.100) through (3.102),

T y+1
r__ v+l 1
" 2+ (y — DM? (3.103)
p_LT v+l v (3.104)
p* M |24 (y - DM?] ‘
1 24 (y = HM2]?
;)p: - L—_(Ji/‘*‘ 1) (3.105)
12 -1 M21(1/+1)/[2(V—U]
P_Z=M __+(;,+1) (3.106)

Also, if we define x = L* as the station where M = 1, then Eq. (3.97) becomes
1

/’«* 4fdx 1 v+1, M?
—_— = — — n

2 —

0 D yM 2y 147 le
2 M
AfL* 1-M*> y4+1 (y + HM?
= 1 3.

or D Ve + 2y n I (= DM (3.107)

where f is an average friction coefficient defined as

-1 (v

f=gof fax
Equations (3.103) through (3.107) are tabulated versus Mach number in Table A .4
fory = 1.4.

The local friction coefficient f depends on whether the flow is laminar or turbu-
lent, and is a function of Mach number, Reynolds number, and surface roughness,
among other variables. In almost all practical cases, the flow is turbulent, and the
variation of f must be obtained empirically. Extensive friction coefficient data can be
obtained from Schlicting’s classical book (Ref. 20) among others; hence, no further
elaboration will be given here. For our purposes, it is reasonable to assume an ap-
proximate constant value of f = 0.005, which holds for R, > 10° and a surface
roughness of 0.001D.

EXAMPLE 3.17

Consider the flow of air through a pipe of inside diameter = 0.15 m and length = 30 m. The
inlet flow conditions are M; = 0.3, p; = latm, and 7} = 273 K. Assuming f = const =
0.005, calculate the flow conditions at the exit, M,, p2, T, and p,,.

m Solution
From Table A.1, for M; = 0.3: p,,/p1 = 1.064. Thus

Do, = 1.064(1 atm) = 1.064 atm
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From Table A4, for M, =0.3:4fL}/D =5.299, p,/p* =3.619, T,/T* = 1.179. and

Doy /p* = 2.035. Since L =30m =L} — L}, then L} = L} — L and
AfL: FL* F .
IL3 4L AT gy (DONGO)
b b D 0.15

From Table A 4, for 4 fL*/D = 1.2993: M, =0475|, 1,/T* = 1.148, p,/p* = 2.258, and

Por /P, = 1.392. Hence

= 1.2993

p2p* 1
=222 p =27258 latm) = | 0.713 atm

pz P* p P 3.169( )

T, T* 1
To= 2T =1.148— 273 = | 2658K

T T, 1.179

Pos Dl 1
=2 Po 1390 _1064= 0.728atm
Pev =5 P 5055 a

Consider the flow of air through a pipe of inside diameter = 0.4 ft and length = 5 ft. The inlet
flow conditions are M; = 3, p; = 1 atm, and 7; = 300K. Assuming f = const = 0.005, cal-
culate the flow conditions at the exit. My, py, T».and p,,.

E Solution
Ly — L3 = L. Hence
4fL:  4fL;  AfL
D - b D
From Table A4, for M, = 3: 4fL*/D = 0.5222, T, /T* = 0.4286, and p,/p* = 0.2182.
Thus
4(0.005)(5)

=0.5222 —
0.4

4fL3
2 =0.2722
D

From Table A4, for 4L3/D = 0.2722:| M, = 1.9], Also from Table A.4: T/T* = 0.6969
and p,/p* = 0.4394. Thus

T

Ty=—
T T,

N

0.4286

T, = (0.6969) (;> (300) = | 487.8K

P2 p* 1
= - = (0.4394) | ——— I at =| 2.014at
P2 o P =0 ) ((),2182) (1 atm) atm

From Table A 4, for M\ = 3: p,, /p; = 4.235. Also for M, = 1.9: p,, /p* = 1.555. Thus

o2 _ Doy/Pl 1555
Py _ Peally _ 1955 _ ¢ 3¢5

Por Po/p; 4235
From Table A.1, for My = 3: p,,/p) = 36.73. Thus

= Por Poy
pm 14!

p1 = (0.367)(36.73)(1 atm) = | 13.49atm

Poy
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Certain physical trends reflected by the numbers obtained from such solutions
are summarized here:

1. For supersonic inlet flow, i.e., M; > 1, the effect of friction on the downstream
flow is such that

Mach number decreases, M, < M,

Pressure increases, p; > pi

Temperature increases, 7> > T

Total pressure decreases, po, < Po,

Velocity decreases, uz < uj

2. For subsonic inlet flow, i.e., M| < 1, the effect of friction on the downstream
flow is such that

Mach number increases, M, > M,

Pressure decreases, p2 < pi

Temperature decreases, T» < T

Total pressure decreases, po, < Po,

Velocity increases, us > U

f AN TR

SRS &R

From this, note that friction always drives the Mach number toward 1, deceler-
ating a supersonic flow and accelerating a subsonic flow. This is emphasized in
Fig. 3.15, which is a Mollier diagram of one-dimensional flow with friction. The
curve in Fig. 3.15 is called the Fanno curve, and is drawn for a set of given initial
conditions. Point a corresponds to maximum entropy, where the flow is sonic. This
point splits the Fanno curve into subsonic (upper) and supersonic (lower) portions. If

aM=1)

Figure 3.15 | The Fanno curve.
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the inlet flow is supersonic and corresponds to point 1 in Fig. 3.15, then friction
causes the downstream flow to move closer to point a, with a consequent decrease of
Mach number toward unity. Each point on the curve between points 1 and a corre-
sponds to a certain duct length L. As L is made larger, the conditions at the exit move
closer to point a. Finally, for a certain value of L, the flow becomes sonic. For this
condition, the flow is choked, because any further increase in L is not possible with-
out a drastic revision of the inlet conditions. For example, if the inlet conditions at
point | were obtained by expansion through a supersonic nozzle, and if L were larger
than that allowed for attaining Mach 1 at the exit, then a normal shock would form
inside the nozzle, and the duct inlet conditions would suddenly become subsonic.

Consider the alternative case where the inlet flow is subsonic, say given by point 1’
in Fig. 3.15. As L increases, the exit conditions move closer to point a. If L is increased
to a sufficiently large value, then point a is reached and the flow at the exit becomes
sonic. The flow is again choked, and any further increase in L is impossible without an
adjustment of the inlet conditions to a lower inlet Mach number, i.e., without moving
the inlet conditions to the left of point 1’ in Fig. 3.15.

Finally, note that friction always causes the total pressure to decrease whether
the inlet flow is subsonic or supersonic. Also, unlike the Rayleigh curve for flow with
heating and cooling, the upper and lower portions of the Fanno curve cannot be tra-
versed by the same one-dimensional flow. That is, within the framework of one-
dimensional theory, it is not possible to first slow a supersonic flow to sonic condi-
tions by friction, and then further slow it to subsonic speeds also by friction. Such a
subsonic deceleration would violate the second law of thermodynamics.

In Example 3.18, what is the length of the duct required to choke the flow?

m Solution
From Table A 4, for M| = 3: 4]A'L’I‘/D = 0.5222. The length of the duct required to achieve
Mach [ at the exit of the duct is, by definition, L}. Thus

— = | 10441t
(4)(0.005)

D
L} =0.5222— = (0.5222)
4f
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EXAMPLE 3.19

3.10 | HISTORICAL NOTE: SOUND WAVES
AND SHOCK WAVES

Picking up the thread of history from Sec. 1.1, the following questions are posed:
When was the speed of sound first calculated and properly understood? What is the
origin of normal shock theory? Who developed the principal equations discussed in
this chapter? Let us examine these questions further.

By the seventeenth century, it was clearly appreciated that sound propagates
through the air at some finite velocity. Indeed, by the time Isaac Newton published
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the first edition of his Principia in 1687, artillery tests had already indicated that the
speed of sound was approximately 1140 ft/s. These tests were performed by standing
a known large distance away from a cannon, and noting the time delay between the
light flash from the muzzle and the sound of the discharge. In Proposition 50, Book I,
of his Principia, Newton correctly theorized that the speed of sound was related to
the “elasticity” of the air (the reciprocal of the compressibility defined in Sec. 1.2).
However, he made the erroneous assumption that a sound wave is an isothermal
process, and consequently proposed the following incorrect expression for the speed
of sound:

1

a= |—
pTT

where 77 is the isothermal compressibility defined in Sec. 1.1. Much to his dismay,
Newton calculated a value of 979 ft/s from this expression—15 percent lower than
the existing gunshot data. Undaunted, however, he followed a now familiar ploy of
theoreticians; he proceeded to explain away the difference by the existence of solid
dust particles and water vapor in the atmosphere. This misconception was corrected
a century later by the famous French mathematician, Pierre Simon Marquis de
Laplace, who in a paper entitled “Sur la vitesse du son dans I’aire et dan I’eau” from
the Annales de Chimie et de Physique (1816) properly assumed that a sound wave
was adiabatic, not isothermal. Laplace went on to derive the proper expression

1
oty
where 7, is the isentropic compressibility defined in Sec. 1.1. This equation is the
same as Eq. (3.18) derived in Sec. 3.3. Therefore, by the time of the demise of
Napoleon, the process and relationship for the propagation of sound in a gas was
fully understood.

The existence of shock waves was also recognized by this time, and following
the successful approach of Laplace to the calculation of the speed of sound, it
was natural for the German mathematician G. F. Bernhard Riemann in 1858 to first
attempt to calculate shock properties by also assuming isentropic conditions. Of
course, this was doomed to failure. However, 12 years later, the first major break-
through in shock wave theory was made by the Scottish engineer, William John
Macquorn Rankine (1820-1872). (See Fig. 3.16.) Born in Edinburgh, Scotland, on
July 5, 1820, Rankine was one of the founders of the science of thermodynamics. At
the age of 25, he was offered the Queen Victoria Chair of Civil Engineering and
Mechanics at the University of Glasgow, a post he occupied until his death on
December 24, 1872. During this period, Rankine worked in the true sense as an
engineer, applying scientific principles to the fatigue in metals of railroad-car axles,
to new methods of mechanical construction, and to soil mechanics dealing with earth
pressures and the stability of retaining walls. Perhaps his best-known contributions
were in the field of steam engines and the development of a particular thermody-
namic cycle bearing his name. Also, an engineering unit of absolute temperature was
named in his honor.

a =
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Figure 3.16 | W. J. M. Rankine
(1820-1872).

Rankine’s contribution to shock wave theory came late in life—2 years before
his death. In a paper published in 1870 in the Philosophical Transactions of the Roval
Society entitled “On the Thermodynamic Theory of Waves of Finite Longitudinal
Disturbance,” Rankine clearly presented the proper normal shock equations for con-
tinuity, momentum, and energy in much the same form as our Eqs. (3.38) through
(3.40). (It is interesting that in these equations Rankine defined a quantity he called
“bulkiness,” which is identical to what we now define as “specific volume.” Appar-
ently the usage of the term “bulkiness” later died out of its own cumbersomeness.)
Moreover, Rankine properly assumed that the internal structure of the shock wave
was not isentropic, but rather that it was a region of dissipation. He was thinking
about thermal conduction, not the companion effect of viscosity within the shock.
However, Rankine was able to successtully derive relationships for the thermody-
namic changes across a shock wave analogous to the equations we have derived in
Sec. 3.7. (It is also interesting to note that Rankine’s paper coined the symbol y for
the ratio of specific heats, ¢, /c¢,; we are still following this notation a century later.
He also recognized that the value of y was “nearly 1.41 for air, oxygen. nitrogen, and
hydrogen, and for steam-gas nearly 1.3.”)

The equations obtained by Rankine were subsequently rediscovered by the
French ballistician Pierre Henry Hugoniot. Not cognizant of Rankine’s work,
Hugoniot in 1887 published a paper in the Journal de I'Ecole Polytechnique entitled
“Mémoire sur la propagation du Mouvement dans les Corps et Spécialement dans les
Gases Parfaits” in which the equations for normal shock thermodynamic properties
were presented, essentially the equations we have derived in Sec. 3.7. As a result of
this pioneering work by Hugoniot and by Rankine before him, a rather modern
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Figure 3.17 | Lord Rayleigh (1842-1919).

generic term has come into use for all equations dealing with changes across shock
waves, namely, the Rankine-Hugoniot relations. This label appears frequently in
modern gasdynamic literature.

However, the work of both Rankine and Hugoniot did not establish the direction
of changes across a shock wave. Noted in both works is the mathematical possibility
of either compression (pressure increases) or rarefaction (pressure decreases) shocks.
This same possibility is discussed in Sec. 3.6. It was not until 1910 that this ambigu-
ity was resolved. In two almost simultancous and independent papers, first Lord
Rayleigh (see Fig. 3.17) and then G. L. Taylor invoked the second law of thermody-
namics to show that only compression shocks are physically possible—i.e., the
Rankine-Hugoniot relations apply physically only to the case where the pressure be-
hind the shock is greater than the pressure in front of the shock, Rayleigh’s paper was
published in Volume 84 of the Proceedings of the Royal Society, September 15, 1910,
and was entitled “Aerial Plane Waves of Finite Amplitude.” Here, Loord Rayleigh
summarizes his results as follows:

But here a question arises which Rankine does not seem to have considered. In order to
secure the necessary transfers of heat by means of conduction it is an indispensable con-
dition that the heat should pass from the hotter to the colder body. If maintenance of type
be possible in a particular wave as a result of conduction, a reversal of the motion will
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give a wave whose type cannot be so maintained. We have seen reason already for the
conclusion that a dissipative agency can serve to maintain the type only when the gas
passes from a less to a more condensed state.

In addition to applying the second law of thermodynamics, Rayleigh also showed
that viscosity played as essential a role in the structure of a shock as conduction.
(Recall that Rankine considered conduction, only: also. Hugoniot obtained his
results without reference to any dissipative mechanism.)

One month later, in the same journal, a young G. 1. Taylor (who was to become
one of the leading fluid dynamicists of the twentieth century) published a short paper
entitled “The Conditions Necessary for Discontinuous Motion in Gases,”” which sup-
ported Rayleigh’s conclusions. Finally, over a course of 40 years, culminating in the
second decade of this century, the theory of shock waves as presented in this chapter
was fully established.

It should be noted that the shock wave studies by Rankine, Hugoniot, Rayleigh,
and Taylor were viewed at the time as interesting basic mechanics research on a rel-
atively academic problem. The on-rush of the application of this theory did not begin
until 30 years later with blooming of interest in supersonic vehicles during World
War II. However, this is a classic example of the benefits of basic research. even
when such work appears obscure at the moment. Rapid advances in supersonic flight
during the 1940s were clearly expedited because shock wave theory was sitting
there, fully developed and ready for application.

3.11 | SUMMARY

This chapter has dealt with one-dimensional flow, i.e., where all flow properties are
functions of one space dimension, say x. only. This implies flow with constant cross-
sectional area. Three physical mechanisms that cause the flow properties to change
with .x even though the area is constant are: (1) a normal shock wave, (2) heat addi-
tion, and (3) friction. Return to the roadmap in Fig. 3.1, and review the flow of ideas
that highlight this chapter.

The basic normal shock equations are:

Continuity: Py = paits (3.38)

Momentum: P+ p]uf =pr+ pgug (3.39)
3 u3

Energy: hy + 5 = hy+ = (3.40)

A combination of these equations, along with the equation of state leads to the
Prandtl relation

(3.47)
which in turn leads to an expression for the Mach number behind a normal shock:

_ ULy - D/21mg 350

M bl
yMi—(y = 1)/2
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Further combinations of the basic normal shock equations give

P2 2y 9
= =14+ ———(M{~1 (3.57)
n y+”' )

and

2
P DM (3.53)
pr uz 24 (y — DM}
Important: Note that the changes across a normal shock wave in a calorically perfect
gas are functions of just M; and y. For normal shock waves, the upstream Mach
number is a pivotal quantity. Also, across a normal shock wave, 7, is constant, s in-
creases, and p, decreases. (However, if the gas is not calorically or thermally perfect,
T, is not constant across the shock.) A purely thermodynamic relation across a nor-
mal shock wave is the Hugoniot equation,

o= = Py ) 372

a graph of which, on the p — v plane, is called the Hugoniot curve.
The governing equations for one-dimensional flow with heat addition are:

Continuity: Pl = pPaUn 3.2)

Momentum: p1+ ,oluf = pr+ pzu% 3.5
02 02

Energy: h + 71 +qg=hy+ > 3.9

The heat addition causes an increase in total temperature, given by
g=cp(To, - T,) 3.77)

for a calorically perfect gas. Also for this case, the governing equations lead to rela-
tionships for the flow properties before and after heat addition in terms of the Mach
numbers M, and M, before and after heat addition, respectively. Note that heat
added to an initially supersonic flow slows the flow. If enough heat is added, the flow
after heat addition can be slowed to Mach I; this is the case of thermal choking. Heat
added to an initially subsonic flow increases the flow speed. If enough heat is added,
the flow after heat addition can reach Mach 1, again becoming thermally choked. In
both cases of choked flow, if additional heat is added, nature adjusts the upstream
quantities to allow for the extra heat. An initially supersonic flow that becomes
thermally choked will become totally subsonic when additional heat is added,
i.e., the inlet Mach number is changed to a subsonic value. An initially subsonic flow
that becomes thermally choked will have its inlet Mach number reduced when addi-
tional heat is added. A plot of the thermodynamic properties for one-dimensional
flow with heat addition on a Mollier diagram is called a Rayleigh curve; hence, such
flow with heat addition is called Rayleigh-line flow.
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The governing equations for one-dimensional flow with friction are:

Continuity: Pl = Pritn (3.2)
5 1 L
Momentum: p1+puy — " / D1, dx
0
= p2+ pau3 (3.91)
2 bl
N uy u;
Energy: hy + > =hy+ 3 (3.40)

This flow is adiabatic, hence T, is constant. The entropy is increased due to the pres-
ence of friction. The governing equations lead to relationships for the flow properties
at the inlet and exit in terms of M, and M> at the inlet and exit, respectively. M, is
related to M, through Eq. (3.97). The same type of choking phenomena occurs here
as the case of flow with heat addition. An initially supersonic flow slows due to the
influence of friction; if the constant-area duct is long enough, the exit Mach number
becomes unity, and the flow is said to be choked. If the duct is made longer after the
flow is choked, nature readjusts the flow in the duct so as to become subsonic at the
inlet. An initially subsonic flow experiences an increase in velocity due to friction—
a seemingly incongruous result because intuition tells us that friction would always
reduce the flow velocity. However, the pressure gradient along the duct in this case
is one of decreasing pressure in the x direction; this is in order to obey the governing
equations. This favorable pressure gradient tends to increase the flow velocity. In-
deed, the effect of decreasing pressure in the flow direction dominates over the re-
tarding effect of friction at the walls of the duct, and hence one-dimensional subsonic
flow with friction results in an increase in velocity through the duct. Another way to
look at this situation is to recognize that, in order to set up subsonic one-dimensional
flow with friction, a high pressure must be exerted at the inlet and a lower pressure at
the exit. A plot of the thermodynamic properties of flow with friction on a Mollier di-
agram is called a Fanno curve, and such flow is called Fanno-line flow.

In this chapter, a number of conveniently defined flow quantities are introduced:
(1) total temperature, which is the temperature that would exist if the flow were re-
duced to zero velocity adiabatically; (2) total pressure, which is the pressure that
would exist if the flow were reduced to zero velocity isentropically; (3) T* (and
hence a* = /Y RT*), which is the temperature that would exist if the flow were
slowed down or speeded up (as the case may be) to Mach 1; (4) characteristic Mach
number, M* = V/a*. Section 3.5 gives many alternative forms of the energy equa-
tion in terms of these quantities. Study this section carefully. Of particular impor-
tance are the following relations which hold for a calorically perfect gas:

T, 1
1+ ZZ—MZ (3.28)

, - y/y=hH
Po _ (1 + VTM2> (3.30)
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Z1 VoD
% (1 + 21 M2) (3.31)

PROBLEMS

(Note: Use the tables at the end of this book as extensively as you wish to solve the
following problems. Also, when the words “pressure” and “temperature” are used
without additional modification, they refer to the szatic pressure and temperature.)

3.1 Atagiven point in the high-speed flow over an airplane wing, the local Mach
number, pressure and temperature are 0.7, 0.9 atm, and 250 K, respectively.
Calculate the values of p,, T,, p*, T*, and a* at this point.

3.2 Atagiven point in a supersonic wind tunnel, the pressure and temperature are
5 x 10* N/m? and 200 K, respectively. The total pressure at this point is
1.5 x 10% N/m?. Calculate the local Mach number and total temperature.

3.3 Ata point in the flow over a high-speed missile, the local velocity and
temperature are 3000 ft/s and S00°R, respectively. Calculate the Mach
number M and the characteristic Mach number M™* at this point.

3.4 Consider a normal shock wave in air. The upstream conditions are given by
M, =3, py = 1latm, and p; = 1.23 kg/m3. Calculate the downstream values
of py, Ta, p2, M, uz, p,,,and T,,.

3.5 Consider a Pitot static tube mounted on the nose of an experimental airplane.
A Pitot tube measures the total pressure at the tip of the probe (hence
sometimes called the Pitot pressure), and a Pitot static tube combines this
with a simultaneous measurement of the free-stream static pressure. The Pitot
and free-stream static measurements are given below for three different flight
conditions. Calculate the free-stream Mach number at which the airplane is
flying for each of the three different conditions:

a. Pitot pressure = 1.22 x 10° N/m?, static pressure = 1.01 x 10° N/m?
b. Pitot pressure = 7222 Ib/ft?, static pressure = 2116 Ib/ft>
c. Pitot pressure = 13107 Ib/ft?, static pressure = 1020 Ib/ft>

3.6 Consider the compression of air by means of (@) shock compression and
(b) isentropic compression. Starting from the same initial conditions of p; and
v1, plot to scale the pv diagrams for both compression processes on the same
graph. From the comparison, what can you say about the effectiveness of
shock versus isentropic compression?

3.7 During the entry of the Apollo space vehicle into the Earth’s atmosphere,
the Mach number at a given point on the trajectory was M = 38 and the
atmosphere temperature was 270 K. Calculate the temperature at the
stagnation point of the vehicle, assuming a calorically perfect gas with
y = 1.4. Do you think this is an accurate calculation? If not, why? If not, is
your answer an overestimate or underestimate?



38

3.9

3.10

3.11

3.12

3.13

3.14

3.15
3.16

Problems

Consider air entering a heated duct at p; = 1 atm and 7}, = 288 K. Ignore the
effect of friction. Calculate the amount of heat per unit mass (in joules per
kilogram) necessary to choke the flow at the exit of the duct, as well as the
pressure and temperature at the duct exit, for an inlet Mach number of

(@M =20Mb)M, =0.2.

Air enters the combustor of a jet engine at p; = 10 atm, 77 = 1000°R, and
M, = 0.2. Fuel is injected and burned, with a fuel-air ratio (by mass) of 0.06.
The heat released during the combustion is 4.5 x 108 ft-1b per slug of fuel.
Assuming one-dimensional frictionless flow with y = 1.4 for the fuel-air
mixture, calculate M;, p;, and T; at the exit of the combustor.

For the inlet conditions of Prob. 3.9, calculate the maximum fuel-air ratio
beyond which the flow will be choked at the exit.

At the inlet to the combustor of a supersonic combustion ramjet (SCRAMjet),
the flow Mach number is supersonic. For a fuel-air ratio (by mass) of 0.03 and
a combustor exit temperature of 4800°R, calculate the inlet Mach number
above which the flow will be unchoked. Assume one-dimensional frictionless
flow with y = 1.4, with the heat release per slug of fuel equal to 4.5x

108 ft - Ib.

Air is flowing through a pipe of 0.02-m inside diameter and 40-m length. The
conditions at the exit of the pipe are M, = 0.5, p» = latm, and > = 270 K.
Assuming adiabatic, one-dimensional flow, with a local friction coefficient of
0.005, calculate My, p;, and T; at the entrance to the pipe.

Consider the adiabatic flow of air through a pipe of 0.2-ft inside diameter and
3-ft length. The inlet flow conditions are M| = 2.5, p; = 0.5 atm, and

T, = 520°R. Assuming the local friction coefficient equals a constant of
0.005, calculate the following flow conditions at the exit: Ma, p2. Ta,

and p,,,.

The stagnation chamber of a wind tunnel is connected to a high-pressure air
bottle farm which is outside the laboratory building. The two are connected
by a long pipe of 4-in inside diameter. If the static pressure ratio between the
bottle farm and the stagnation chamber is 10, and the bottle-farm static
pressure is 100 atm, how long can the pipe be without choking? Assume
adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005.

Starting with Eq. (3.95), derive in detail Eq. (3.96).

Consider a Mach 2.5 flow of air entering a constant-area duct. Heat is added
to this flow in the duct; the amount of heat added is equal to 30 percent of the
total enthalpy at the entrance to the duct. Calculate the Mach number at the
exit of the duct. Comment on the fluid dynamic significance of this problem,
where the exit Mach number does not depend on a number for the actual heat
added, but rather only on the dimensionless ratio of heat added to the total
enthalpy of the inflowing gas.
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CHAPTER

Oblique Shock and
Expansion Waves

[ believe we have now arrived at the stage where knowledge of supersonic
aerodynamics should be considered by the aeronautical engineer as a necessary
pre-requisite to his art.

Theodore von Karman, 1947
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CHAPTER 4 Oblique Shock and Expansion Waves

Figure 4.1 shows the computed shock wave and expan-
sion wave pattern in the flow field over a hypersonic test
vehicle at the mioment of its separation from a booster
rocket at Mach 7. This is NASA’s Hyper-X supersonic-
combustion ramjet (scramjet) powered -unrnanned. test
aircraft also designated the X-43, which should make its
first flight in 2003. The flow field is a complex mixture of
obligue shock and expansion waves. Figure 4.2 shows the
computed detailed shock wave and expansion wave pat-
ternin the internal flow through a scramjet engine. Again,
the supersonlic flowis dominated by a complex pattern of
interacting oblique shock and expansion waves.

Oblique shock and expansion waves, and their vari-
ous-interactions, are the subject of this chapter, For the
study of supersonic and hypersonic flow, this is a “bread-
and-butter” chapter—it contains what is perhaps some

RV-to-booster
adapter “jaw”

of the most important physical aspects of compressible
flow. So get ready for .a whirlwind and hopefully enjoy-
able ride through the ins and outs of the basic physics and
mathematics of oblique shock and expansion waves.
The roadmap for this chapter is given in Fig: 4.3.
After a discussion of the physical source of oblique
waves, we.will next discuss oblique shock waves and
related:items, as shown down the left side of Fig. 4.3.
Then we move to the right side of the roadmap to study
obligue expansion waves, concentrating on the special
type labeled Prandtl-Meyer expansions. Finally, as
shown at the bottom of Fig. 4.3, we combine these two
types of oblique waves into a method of analysis called
shock-expansion theory, which allows the direct and
exact ‘calculation of ‘the lift and drag on a number of
two-dimensional supersonic body shapes.

P
el

Figure 4.1 | Computational fluid dynamic solution for the shock wave pattern on
NASA’s Hyper-X hypersonic research vehicle at the instant of its separation from
the boost vehicle at Mach 7. (Griffin Anderson, Charles McClinton, and John
Weidner, “Scramjet Performance,” in Scramjet Propulsion, edited by E. T. Curran
and-S. N. B. Murthy, ATAA Progress in Astronautics and Aeronautics, Vol. 189,

Reston, Virginia, p. 431.)
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Figure 4.2 | Computational fluid dynamic solution for the wave pattern for a
simulated scramjet engine. (James Hunt and John Martin, “Rudiments and
Methodology for Design and Analysis of Hypersonic Air-Breathing
Vehicles,” in Scramjet Propulsion, p. 960.)

OBLIQUE SUPERSONIC WAVES

|

i . Oblique expansion waves
Ob!
lique shock waves (Prandtl-Meyer expansion)

Wedge and cone flows

Sheock polar

Shock reflection from a solid boundary
Shock intersections

Detached shocks

Three-dimensional shocks

Shock-expansion theory ‘————

Figure 4.3 | Roadmap for Chapter 4.

4.1 | INTRODUCTION

The normal shock wave, as considered in Chap. 3, is a special case of a more general
tamily of oblique waves that occur in supersonic flow. Oblique shock waves are illus-
trated in Figs. 3.2 and 3.3. Such oblique shocks usually occur when supersonic flow
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My, > M,
Py <p;
T, <T,
2 <py

(a) Concave corner (b) Convex corner

Figure 4.4 | Supersonic flow over a corner.

is “turned into itself,” as shown in Fig. 4.4a. Here, an originally uniform supersonic
flow is bounded on one side by a surface. At point A, the surface is deflected upward
through an angle 6. Consequently, the flow streamlines are deflected upward, toward
the main bulk of the flow above the surface. This change in flow direction takes place
across a shock wave which is oblique to the free-stream direction. All the flow stream-
lines experience the same deflection angle @ at the shock. Hence the flow downstream
of the shock is also uniform and parallel, and follows the direction of the wall down-
stream of point A. Across the shock wave, the Mach number decreases, and the pres-
sure, temperature, and density increase.

In contrast, when supersonic flow is “turned away from itself” as illustrated in
Fig. 4.4b, an expansion wave is formed. Here, the surface is deflected downward
through an angle 6. Consequently the flow streamlines are deflected downward,
away from the main bulk of flow above the surface. This change in flow direction
takes place across an expansion wave, centered at point A. Away from the surface,
this oblique expansion wave fans out, as shown in Fig. 4.4b. The flow streamlines are
smoothly curved through the expansion fan until they are all parallel to the wall be-
hind point A. Hence, the flow behind the expansion wave is also uniform and paral-
lel, in the direction of 8 shown in Fig. 4.4b. In contrast to the discontinuities across a
shock wave, all flow properties through an expansion wave change smoothly and
continuously, with the exception of the wall streamline which changes discontinu-
ously at point A. Across the expansion wave, the Mach number increases and the
pressure, temperature, and density decrease.

Oblique shock and expansion waves are prevalent in two- and three-dimensional
supersonic flows. These waves are inherently two-dimensional in nature, in contrast
to the one-dimensional normal shock waves in Chap. 3. That is, the flowfield proper-
ties are functions of x and y in Fig. 4.4. The main thrust of this chapter is to present
the properties of these two-dimensional waves.



4.2 Source of Oblique Waves

4.2 | SOURCE OF OBLIQUE WAVES

Oblique waves are created by the same physical mechanism discussed at the begin-
ning of Sec. 3.6—disturbances which propagate by molecular collisions at the speed
of sound, some of which eventually coalesce into shocks and others of which spread
out in the form of expansion waves. To more clearly see this process for an oblique
wave, consider a moving point source of sound disturbances in a gas, as illustrated in
Fig. 4.5. For lack of a better term, let us call this source a “beeper.” The beeper is con-
tinually emitting sound waves as it moves through the stationary gas. Consider first
the case when the beeper is moving at a velocity V, which is less than the speed of
sound, as shown in Fig. 4.5a. When the beeper is at point A, it emits a sound distur-
bance which propagates in all directions at the speed of sound, a. After an interval of
time ¢, this sound wave is represented by the circle of radius (ar) in Fig. 4.5¢. How-
ever, during this same time interval, the beeper has moved a distance V1 to point B.
Moreover, during its transit from A to B, the beeper has emitted several other sound
waves, which at time ¢ are represented by the smaller circles in Fig. 4.5a. Note from
this figure, which is a picture of the situation at time ¢, that the beeper always stays
inside the family of circular sound waves, and that the waves continuously move
ahead of the beeper. This is because the beeper is traveling at a subsonic speed,
V < a. Now consider the case when the beeper is moving at supersonic speeds,
V > a.This is illustrated in Fig. 4.5b. Again, when the beeper is at point A, it emits
a sound wave. After an interval of time ¢, this wave is the circle with radius (at). Dur-
ing the same interval of time, the beeper has moved a distance V' to point B. More-
over, during its transit from A to B, the beeper has emitted several other sound
waves, which at time ¢ are represented by the smaller circles in Fig. 4.56. However,
in contrast to the subsonic case, the beeper is now constantly outside the family of
circular sound waves, i.e., it is moving ahead of the wave fronts because V > a.
Moreover, something new is happening; these wave fronts form a disturbance enve-
lope given by the straight line BC, which is tangent to the family of circles. This line
of disturbances is defined as a Mach wave. In addition, the angle ABC which the
Mach wave makes with respect to the direction of motion of the beeper is defined
as the Mach angle, ;1. The Mach angle is easily calculated from the geometry of
Fig. 4.5b:

. at a 1
M=V TV M

Therefore, the Mach angle is simply determined by the local Mach number as

1
=sin~! — 4.1
U I 4.1)

The propagation of weak disturbances and their coalescence into a Mach wave are
clearly seen in Fig. 4.5¢.
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Subsonic Supersonic
V<a V>a

(@) @)

Figure 4.5 | The propagation of disturbances in (&) subsonic and (b) supersonic flow.

(©)

Figure 4.5 | Wave system established by a supersonic .22 caliber bullet passing under a
perforated plate. The bow shock wave on the bullet, in passing over the holes in the plate,
sends out weak disturbances above the plate which coalesce into a Mach wave above the
plate. This is a photographic illustration of the schematic in Fig. 4.5b. (Photo is courtesy of
Daniel Bershader, Stanford University.)
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Figure 4.6 | Comparison between the wave angle
and the Mach angle.

If the disturbance is stronger than a small beeper emitting sound waves, such as
a wedge blasting its way through a gas at supersonic speeds as shown in Fig. 4.6, the
wave front becomes stronger than a Mach wave. The strong disturbances coalesce
into an oblique shock wave at an angle § to the free stream, where 8 > p. However,
the physical mechanism creating the oblique shock is essentially the same as that de-
scribed above for the Mach wave. Indeed, a Mach wave is a limiting case for oblique
shocks, i.e., it is an infinitely weak oblique shock.

4.3 1 OBLIQUE SHOCK RELATIONS

The geometry of flow through an oblique shock is given in Fig. 4.7. The velocity up-
stream of the shock is V|, and is horizontal. The corresponding Mach number is M.
The oblique shock makes a wave angle 8 with respect to V. Behind the shock, the
flow is deflected toward the shock by the flow-deflection angle 6. The velocity and
Mach number behind the shock are V,> and M,, respectively. The components of V,
perpendicular and parallel, respectively, to the shock are u; and w,; the analogous
components of V> are u, and w-, as shown in Fig. 4.7. Therefore, we can consider the
normal and tangential Mach numbers ahead of the shock to be M, and M,,, respec-
tively; similarly, we have M,, and M,, behind the shock.

The integral forms of the conservation equations from Chap. 2 were applied in
Sec. 3.2 to a specific control volume in one-dimensional flow, ultimately resulting
in the normal shock equations given in Sec. 3.6. Let us take a similar tack here. Con-
sider the control volume drawn between two streamlines through an oblique shock, as
illustrated by the dashed lines at the top of Fig. 4.7. Faces a and d are parallel to the
shock wave. Apply the integral continuity equation (2.2) to this control volume for a
steady flow. The time derivative in Eq. (2.2) is zero. The surface integral evaluated over
faces @ and d of the control volume in Fig. 4.7 yields —pju; Ay + paur A, where
A, = A, = area of faces @ and d. The faces b, ¢, e, and f of the control volume are
parallel to the velocity, and hence contribute nothing to the surface integral (i.e.,
V + dS = 0 for these faces). Thus, the continuity equation for an oblique shock wave is

Py = paun (4.2)

The integral form of the momentum equation (2.11) is a vector equation. Con-
sider this equation resolved into two components, parallel and perpendicular to the
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Figure 4.7 | Oblique shock wave geometry.

shock wave in Fig. 4.7. Again, considering steady flow with no body forces, the
tangential component of Eq. (2.11) applied to the control surface in Fig. 4.7 yields
(noting that the tangential component of p dS is zero on faces a and d, and that the
components on b cancel those on f; similarly with faces ¢ and ¢)

(—p1u)wy + (p2u2)wr =0 4.3)
Dividing Eq. (4.3) by (4.2), we find that
w) = wy

This is a striking result—the tangential component of the flow velocity is preserved
across an oblique shock wave.
Returning to Fig. 4.7, and applying the normal component of Eq. (2.11), we find

(=pruu; + (pau)us = —(—p; + pa2)
or pi+ p1ut = py + poul (4.3a)

The integral form of the energy equation is Eq. (2.20). Applied to the control
volume in Fig. 4.7 for a steady adiabatic flow with no body forces, it yields

V12 V22
—(=pui + pauz) = —p <€1 + 7) ur+ p (ez + 7) Uy

V2 v}
or (hl + —21—) o1y = (hz + %) pau2 4.4)
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Dividing Eq. (4.4) by (4.2),

V|2 V72
h + 5 :hg'i‘?' 4.5)
However, recall from the geometry of Fig. 4.7 that V2 = v 4+ w” and that w, = w»>.

Hence,

V]2 — VZJ = (u,2 + u;f) — (Ll% + uvg) = u']z — 11%

Therefore, Eq. (4.5) becomes

Ri 2
no+ =+ 2 (4.6)

2 -2
Look carcfully at Eqgs. (4.2), (4.3a), and (4.6). They are identical in form to the
normal shock continuity, momentum, and energy equations (3.38) through (3.40).
Moreover, in both sets of equations. the velocities are normal to the wave. Therefore,
the changes across an oblique shock wave are governed by the normal component of
the free-stream velocity. Furthermore. precisely the same algebra as applied to the
normal shock equations in Sec. 3.6, when applied to Egs. (4.2), (4.3¢), and (4.6). will
lead to identical expressions for changes across an oblique shock in terms of the nor-
mal component of the upstream Mach number M, . That is, for an oblique shock

wave with

M, = M, sin B (4.7)
we have, for a calorically perfect gas,

p_ y+ M

pr (y—=DM; 42
, 2 ,
&:]4_ 4 ( ;I—l) (4.9)
pi y +1
S M2 L 02/(y — 1
M, = — 2/ . ) (4.10)
o Ry/(y = DIM; =
T7 7
and L_mh .10
i prom

Note that the Mach number behind the oblique shock, M-, can be found from M,,
and the geometry of Fig. 4.7 as
M!h
My = ——r (4.12)
sin(f — @)
In Sec. 3.6, we emphasized that changes across a normal shock were a function of
one quantity only—the upstream Mach number. Now, from Egs. (4.7) through (4.11),
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we see that changes across an oblique shock are a function of two quantities—both M,
and B. We also see, in reality, normal shocks are just a special case of oblique shocks
where 8 = 7 /2.

Equation (4.12) demonstrates that M, cannot be found until the flow deflection
angle @ is obtained. However, @ is also a unique function of M, and §, as follows.
From the geometry of Fig. 4.7,

Uy
tang = — 4.13)
wi
Uy
and tan(B — 6) = — 4.14)
wa

Combining Egs. (4.13) and (4.14), noting that w; = w;, we have

tan(B —6) us
=k /= 4.1

tan 8 u (4.15)
Combining Eq. (4.15) with Egs. (4.2), (4.7), and (4.8), we obtain

an(f —0) 2+ (y — HM]sin® B
tanf  (y + )M?sin’ B

(4.16)

With some trigonometric manipulation, this equation can be expressed as

@.17)

M?sin® B — 1
tand = 2cot B

M2(y +cos28) +2

Equation (4.17) is called the 8-8-M relation, and specifies 8 as a unique function of
M; and 8.

This relation is vital to an analysis of oblique shocks, and results obtained from
it are plotted in Fig. 4.8 for y = 1.4. Examine this figure closely. It is a plot of wave
angle versus deflection angle, with the Mach number as a parameter. In particular,
note that:

1. For any given M|, there is a maximum deflection angle Omay. If the physical
geometry is such that 8 > 6,y, then no solution exists for a straight oblique
shock wave. Instead, the shock will be curved and detached, as sketched in
Fig. 4.9, which compares wedge and corner flow for situations where 6 is less
than or greater than 6.

2. Forany given 8 < 6., there are two values of 8 predicted by the 6-5-M
relation for a given Mach number, as sketched in Fig. 4.10. Because changes
across the shock are more severe as 8 increases [see Eqs. (4.8) and (4.9), for
example], the large value of B is called the strong shock solution; in turn, the
small value of 8 is called the weak shock solution. In nature, the weak shock
solution is favored, and usually occurs. For typical situations such as those
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Figure 4.10 | Weak and strong shocks.

sketched in Fig. 4.10, the weak shock is the one we would normally see.
However, whether the weak or strong shock solution occurs is determined by
the backpressure; in Fig. 4.10, if the downstream pressure were increased by
some independent mechanism, then the strong shock shown as the dashed line
could be forced to occur. In the strong shock solution, M> is subsonic. In the
weak shock solution, M is supersonic except for a small region near Oy«
(see Fig. 4.8).

3. If9 =0, then B = 7 /2 (corresponding to a normal shock) or 8 = u
(corresponding to a Mach wave).

4. For a fixed deflection angle 9, as the free-stream Mach number decreases from
high to low supersonic values, the wave angle increases (for the weak shock
solution). Finally, there is a Mach number below which no solutions are
possible; at this Mach number, 8 = 8,,,,. For lower Mach numbers the shock
becomes detached, as sketched in Fig. 4.9.

These variations are important, and should be studied carefully. It is important to
obtain a feeling for the physical behavior of oblique shocks. Considering Fig. 4.8 to-
gether with the oblique shock relations given by Eqs. (4.7) through (4.12), we can
see, for example, that for a fixed Mach number, as 8 is increased, 8, pa, T2, and p; in-
crease while M, decreases. However, if 8 increases beyond 6.« the shock wave be-
comes detached. Alternatively, for a fixed 8, as M; increases from unity, the shock
wave is first detached, then becomes attached when M, equals that value for which
0 = Opax. (See again Fig. 3.2 for the Bell XS-1 aircraft shock patterns.) As the Mach
number is increased further, the shock remains attached, 8 decreases, and p,, T», o2,
and M; increase. The above comments apply to the weak shock solutions; the reader
can trace through the analogous trends for the strong shock case.

A uniform supersonic stream with M, = 3.0, p; = l atm, and 7} = 288 K encounters a com-
pression corner (see Fig. 4.4a) which deflects the stream by an angle 8 = 20°. Calculate the
shock wave angle, and p,, T», M5, p,,, and T,, behind the shock wave.
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B Solution
For the geometrical picture, refer to Fig. 4.7. Also, from Fig. 4.8, for M, = 3 and # = 20-,

M, = M,sinf = 3sin37.8° = 1 839

From Table A2, for M, = 1.839: p,/p, =3.783, T»/T), = 1.562, M,, =0.6078, and
Por/ Po, = 0.7948. Hence,

=2 p = (3.783)(1) = | 3.783 atm
P

T
Ty = -TiTl = (1.562)(288) = | 449.9K
1

M,, 0.6078
M- = — = = — = 1.988
sin(f — 8) sin 17.8°

From Table A.1, for M, = 3: p,,/p1 =36.73 and T, / T\ = 2.8. Hence,

pug [7111

Doy = pr = (0.7948)(36.73)(1) = | 29.19 atm
/71)1 Pi
’T()| '
T, =T, = 7T, = 2.8)(288) = | 8064K
1

Note: In this example, we used the fact that the total pressure ratio across the oblique shock is
dictated by the component of the upstream Mach number perpendicular to the shock, M, .
This is consistent with the fact that all thermodynamic properties across the shock are deter-
mined by M, , including the entropy change s, — s,. From Eq. (3.63), this determines the total
pressure ratio, p.,/p,,. We can check the value of p,,/p,, obtained from Table A.2 by mak-
ing an alternative calculation as

Por _ Per P2 P1

Poy P2 P Doy

From Table A.1, for M, = 1.988, p,,/p> = 7.681 (obtained by interpolating between entries
in the table). We have already obtained from the earlier calculations that p,/p; = 3.783 and
Po,/p1 = 36.73. Hence,

Poy _ Peyp2PL

1
= (7.681)(3.783) <—‘> =0.7911
Po, P2 P1 Po 36.73

This result compares within 0.46 percent with the value of 0.7948 read directly from
Table A.2. The small inaccuracy is due to inaccuracy in reading B from the 6-8-M diagram,
and in taking the nearest entries in Tables A.1 and A.2.
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Comment on accuracy. All the worked examples in this book that require the use of graphs
and tabulated data will therefore have only graphical and tabulated accuracy. In many of our
calculations using the tables, we will use the nearest entry in the table so as not to have to
spend the time to interpolate between entries. Using the nearest entry is usually sufficient for
our purposes.

In Example 4.1, the deflection angle is increased to 6 = 30°. Calculate the pressure and Mach
number behind the wave, and compare these results with those of Example 4.1.

@ Solution
From the 8-8-M chart (see end pages), for M; = 3 and 6 = 30°: 8 = 52°. Hence

M,, = M;sin =3sin52° =2.364

From Table A.2, for M,, = 2.364: p,/p; = 6.276 (nearest entry) and M,, = 0.5286. Thus

p=P2p = (6276)(1) = | 6276 am
14

oo M 05286 [
sin(8 —0)  sin22°

Note: Compare the above results with those from Example 4.1. When 6 is increased, the shock
wave becomes stronger, as evidenced by the increased pressure behind the shock (6.276 atm
compared to 3.783 atm). The Mach number behind the shock is reduced (1.41 compared to
1.988). Also, as @ is increased, B also increases (52° compared to 37.8°).

In Example 4.1, the free-stream Mach number is increased to 5. Calculate the pressure and
Mach number behind the wave, and compare these results with those of Example 4.1.

m Solution
From the 6-8-M chart, for M|, = 5 and 8 = 20°: 8 = 30°. Hence,

M,, = M,sinf = 5sin30° = 2.5

From Table A .2, for M,, = 2.5: p,/p; = 7.125 and M,,, = 0.513. Thus,

P2 = &Pl = (7.125)(1) = | 7.125atm
14!

M, 0.513
M, = — 2 = — =1 2.95
sin(8 — 0) sin 10°
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Note: Compare the above results with those from Example 4.1. When M| is increased, the shock
wave becomes stronger, as evidenced by the increased pressure behind the shock (7.125 atm
compared to 3.783 atm). The Mach number behind the shock is increased (2.95 compared to
1.988). Also, as M, is increased, B is decreased (30 compared to 37.8 ).

The net results of Examples 4.1 through 4.3 are these basic variations.

1. Anything that increases the normal component of the Mach number ahead of
the shock M, increases the strength of the shock. In Example 4.2, M, was
increased by increasing the wave angle §; in turn, the increased 8 was brought
about by increasing 6. In Example 4.3, M,,, was increased by increasing M, :
although the wave angle g decreases in this case (which works to reduce M, ).
the increased value of My (which works to increase M, ) more than
compensates, and the net result is a larger M,,,.

2. Itis a general rule that, as 6 increases (holding M, constant), the shock wave
becomes stronger, and S increases.

3. ltis a general rule that, as M, increases (holding 6 constant), the shock wave
becomes stronger, and § decreases.

EXAMPLE 4.4

Consider a Mach 2.8 supersonic flow over a compression corner with a deflection angle of 15 .

If the deflection angle is doubled to 30, what is the increase in shock strength? Is it also
doubled?

8 Solution
From the 6-8-M chart, for# = 15", § = 33.8 and for8 =30 . 8 = 54.7

For 0 =15: M, =M, sinf8 =28sin33.8 = 1.558. From Table A.2, for M,, =1.56
(nearest entry),

P2 _ {2673
I U

For@ =30°: M, =2.8sin54.7 = 2.285. From Table A2, for M,,, = 2.3 (ncarest entry)

]_73
M
Clearly, if the angle of the compression corner is doubled, the strength of the shock wave

is more than doubled; in this case, the shock strength is increased by a factor of 2.3.

=| 6.005

EXAMPLE 4.5

Consider a compression corner with a deflection angle of 28 . Calculate the shock strengths
when M| = 3 and when M, is doubled to 6. Is the shock strength also doubled?

| Solution
From the 8-8-M diagram for M|, = 3, 8 = 48.5". Hence,

M, = M, sinf = 3sind85 =2.247
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From Table A.2, for M, = 2.25 (nearest entry)

=| 5.74

From the 6-8-M diagram for M; = 6, 8 = 38.0°. Hence,
M,, = M, sin8 = 6sin38° = 3.69

From Table A.2, for M, = 3.7 (nearest entry),

P2
14

= 15.8

Clearly, if the Mach number is doubled, the strength of the shock is more than doubled;
in this case, the shock strength is increased by a factor of 2.75.

The physical results in Examples 4.4 and 4.5 are reflective of the nonlinear be-
havior of shock waves. The nonlinearity of shock wave phenomena is mathemati-
cally reflected in the equations obtained in this section, such as Eqgs. (4.7)-(4.12),
where the Mach number appears as squared, and sometimes in an intricate fashion in
the equations. This is especially true of the 6-8-M relation, Eq. (4.17). In Chap. 9 we
will discuss an approximate theory for analyzing supersonic flows over bodies,
where the theory involves linear equations. However, we will also see that such lin-
earized theory deals with slender bodies at small angles of attack, where in reality the
shock waves are weak. Indeed, linearized supersonic theory does not deal with shock
waves explicitly—the theory pretends that they are not here. This will all make more
sense when we discuss the material in Chap. 9. At present, we are just introducing a
small precursor to the intellectual model contained in Chap. 9.

4.3.1 The B-6-M Relation: An Alternative Form for the 6-8-M Relation

The 8-8-M relation expressed by Eq. (4.17) gives 6 as an explicit function of 8 and M.
In classical treatments of compressible flow, this is the equation used to relate de-
flection angle, wave angle, and Mach number. However, for many practical applica-
tions, we are given the deflection angie and upstream Mach number, because these
are the parameters we can easily see and measure, and we want to find the corre-
sponding wave angle, 8. Equation (4.17) does not allow us to calculate 8 explicitly.
Rather, we can plot the 8-8-M curves from Eq. (4.17) as shown in Fig. 4.8, and then
find B from the graph as demonstrated in Examples 4.1-4.5. Alternatively, we can set
up a short computer program to calculate 8 by iterating Eq. (4.17).

It is not commonly known that an alternative equation can be derived that relates
B explicitly in terms of 6 and M. There are at least four different derivations in the
literature, found in Refs. 130-133. The key is to write Eq. (4.17) as a cubic equation,
and then find the roots of this cubic equation. The earliest work along these lines
appears to be that of Thompson (Ref. 130) who recognized that Eq. (4.17) can be
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expressed as a cubic in sin” 8:

M?+2
in6 102 4
sin® B ( e + ¥ sin 9) sin” 8

IM? 4+ 1 y+1\ vy—1] ., ] ., cos?o
+[ e +[< 2 )—l— IYE sin“ B ¢ sin“ 8 — 7 =0

However, Emanuel found it more convenient analytically to express Eq. (4.17) as a
cubic in tan 8:

—1
(l + VTMz) tanftan’ p — (M* — 1) tan® B

1
+(1+1/-§—M2)tan9tanﬁ+1=o (4.18)

Emanuel observed that Eq. (4.18) has three real, unequal roots for an attached shock
wave with a given 6 and M. One root is negative, hence nonphysical. The other two
positive roots correspond to the weak and strong shock solutions. These roots can be
expressed as

M? — 1+ 2 cos[(4m6 + cos™" x)/3]
-1
3 (1 + y—z——M2> tan o

tan B = (4.19)

where § = 0 yields the strong shock solution, § = 1 yields the weak shock solution,
and

/2

—1 1 12
a= [(M2 -Dr-3 <1 + Z—i——M2> (1 + f—;—W) tan29:| (4.20)

—1 1 1
(M2—1)3—9<1+”—2—M2) (1+y2 M2+VI M4)tan29

(4.21)

Equation (4.19) represents an alternative form of the relation between 8, 6, and M; in
analogy with Eq. (4.17), which is called the -8-M relation, we will label Eq. (4.19)
as the B-6-M relation. Eq. (4.19), along with Eqs. (4.20) and (4.21), allows an exact
explicit calculation for § when 6 and M are known, albeit a more lengthy calculation
than that associated with Eq. (4.17). We emphasize that no simplifying mathematical
assumptions go into the derivation of Eq. (4.19); it is an exact relationship.

Consider a Mach 4 flow over a compression corner with a deflection angle of 32°. Calculate
the oblique shock wave angle for the weak shock case using (a) Fig. 4.8, and (b) the g-6-M
equation, Eq. (4.19). Compare the results from the two sets of calculations.
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m Solution

a. From Fig. 4.8, we have for M =4 and 6§ =32° | § = 48.2°|.

b. To use Eq. (4.19), we first calculate A and x from Egs. (4.20) and (4.21), respectively.
In these equations, we have
(M? = 1)? =[(4)* —1]* = (15)* = 225
(M* — 1)’ = (15)* = 3375
y—1 1.4 —

|
M? = 4 =32
2 7 W
v+l o, L4+l
M2 = 4)? = 19.2
> 3 (C))]
I 1441
vy 22 Ly 2 s3
4 4

From Eq. (4.20),
o 1 1 1/2
a = [(M2 —1)2 =3 (1 i VTW) (1 n %Aﬁ) tan20]
= [225 — 3(4.2)(20.2) tan® 32°1'/2 = 11.208

From Eq. (4.21),

-1 -1 1
(M2 - 1)) —9 (1 + 3’—2—M2> (1 n %—Mz n iM“) tan? 6
_ (15)* — 9(4.2)(1 + 3.2 + 153.6) tan® 32°
a (11.208)?
=0.7429
For Eq. (4.19), using § = 1 for the weak shock solution, we need

cos~! x = cos™'(0.7439) = 0.7334 rad

[Note: the factor in Eq. (4.19) involving cos™! x is in radians]:

4ns !
w — 4.433 rad
3
48 5~ 1
cos (Li;_of_)() = cos4.433 = —0.2752

From Egq. (4.19),
M? — 1 4 2xcos[4n8 +cos™! x1/3

—1
3 <1 + VTM2> tan @

16 — 1+ 2(11.208)(—0.2752)
3(4.2) tan 32°

tan 8 =

1.1216
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Hence,

B =tan"'(1.1216) = | 48.28

This result agrees very well with the graphical solution obtained in part (a).
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4.4 | SUPERSONIC FLOW OVER WEDGES
AND CONES

The oblique shock properties discussed above represent the exact solution for the
flow over a wedge or a two-dimensional compression corner, as sketched on the left-
hand side of Fig. 4.9. The flow streamlines behind the shock are straight and parallel
to the wedge surface. The pressure on the surface of the wedge is constant and equal
to po, as further illustrated in Fig. 4.11a.

Straight oblique shocks are also attached to the tip of a sharp cone in supersonic
flow, as sketched in Fig. 4.114. The properties immediately behind this conical shock
are given by the oblique shock relations. However, because the flow over a cone is
inherently three-dimensional, the flowfield between the shock and cone surface is no
longer uniform, as in the case of the wedge. As shown in Fig. 4.115, the streamlines
are curved, and the pressure at the cone surface p, is not the same as p» immediately
behind the shock. Moreover, the addition of a third dimension provides the flow with
extra space to move through, hence relieving some of the obstructions set up by the
presence of the body. This is called the “three-dimensional relieving effect.” which is
characteristic of all three-dimensional flows. For the flow over a cone, the three-
dimensional relieving effect results in a weaker shock wave than for a wedge of the
same angle. For example, Fig. 4.11 shows that a 20° half-angle wedge creates a 53~
oblique shock for M| = 2; by comparison, the shock on a 20° half-angle cone is at a
wave angle of 37°, with an attendant lower p,, 0, and T, immediately behind the
shock. Because of these differences, the study in this book of supersonic flow over
cones will be delayed until Chap. 10.

(a)

(b)

Figure 4.11 | Comparison between wedge and cone flow; illustration of the
three-dimensional relieving effect.
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A 10° half-angle wedge is placed in a “mystery flow” of unknown Mach number. Using a
Schlieren system, the shock wave angle is measured as 44°. What is the free-stream Mach
number?

B Solution
From the 6-8-M chart, for 8 = 10° and 8 = 44°, we have

M[ = 18

Note: This technique has actually been used in some experiments for the measurement of
Mach number. However, it is usually more accurate and efficient to use a Pitot tube to measure
Mach number, as described in Example 3.7.

Consider a 15° half-angle wedge at zero angle of attack. Calculate the pressure coefficient on
the wedge surface in a Mach 3 flow of air.

u Solution
The pressure coefficient is defined as

P~ Po

C, =
? doo

where p is the free-stream pressure and g is the free-stream dynamic pressure, defined by
goo = %poo V2. For a calorically perfect gas, ., can also be expressed in terms of ps, and
M, as

Typoo o _¥Po Ve _ 7

LR ) o M2
2 YPo 2p o

Goo %Poovoi = 0 Yoo T 2 a2
oo

Thus, the pressure coefficient can be written as
— 2
6=yt o 2 (L)
Epoo Mgo VM \Poo

In terms of the nomenclature being used in this chapter, where the free-stream properties in

front of the shock are denoted by a subscript 1, then C, is written as

2
C,=—— (&—1)
VM] P

For M, = 3 and # = 15°, we have from the 6-8-M diagram § = 32.2°. Hence

M,, = M,sinp =3sin322 = 1.6
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From Table A.2, for M, = 1.6: p;/p, = 2.82. Thus,

2
C,=————(282—1)=| 0289
! (LMGV( )

Note: For this example, we can deduce that C,, is strictly a function of y and M, .

Consider a 15° half-angle wedge at zero angle of attack in a Mach 3 flow of air. Calculate the
drag coefficient. Assume that the pressure exerted over the base of the wedge, the base pres-
sure, is equal to the free-stream pressure.

H Solution

The physical picture is sketched in Fig. 4.12. The drag is the net force in the x direction; p, is
exerted perpendicular to the top and bottom faces, and p, is exerted over the base. The chord
length of the wedge is c. Consider a unit span of the wedge, i.e.. a length of unity perpendicu-
lar to the xy plane. The drag per unit span, denoted by D', is

I
p=22D  lants — e anisp
cos 15

By definition, the drag coefficient is

where § is the planform area (the projected area seen by viewing the wedge from the top).
Thus, S = (¢)(1). Hence

D

t_t 1 1t 1

Figure 4.12 | Geometry for Example 4.9.
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From Example 4.8, we saw that

Y 2 Y 2
o — 7 ooM =7
q 5 PooMeo = = P1 M;
Thus,
2D
Cd = ——— 7 1\
ypiM; (c)(1)
2 2)(e) (1) .
= 15° — (2¢ tan 15°
or “ yp,Mlzc[ cos 150 P23 (2 )P

4 )an15° = — (’” l)t 15°
= p2— p)tanl5° = = —1])tan
ypM? yM: \ g

From Example 4.8, which deals with the same wedge at the same flow conditions, we have
p2/p1 = 2.82. Thus

(2.82 — Dtan15° = | 0.155

Ca

T 0HeY

An alternative solution to this problem can be developed using the pressure coefficient
given in Example 4.8. The drag coefficient for an aerodynamic body is given by the integral of
the pressure coefficient over the surface, as shown in Sec. 1.5 of Ref. 104. To be specific, from
Ref. 104 we have

1 TE
o= [ (C-Cr)ay
¢ JLE

Here, the integral is taken over the surface from the leading edge (LE) to the trailing edge
(TE), and C,, and Cp, are the pressure coefficients over the upper and lower surfaces, respec-
tively. In this problem, due to the symmetry, clearly C,, = C,,. On the upper surface,

d
dy =2 dx = (tan15°) dx
dx

On the lower surface (because y decreases as x increases),
d
dy = — (_y) dx = —tan 15° dx
dx

Thus,
1 c &
Cqg = — |:/ C,, (tan15°) dx —/ C,, (—tan 15°) dx]
4 0 (4

Since tan 15° = 0.2679, then
0.268 [°
= (Cp, +Cp)dx

o

From Example 4.8, C,,, = C,, = 0.289. Thus,

0.268 0.155

c
ca = 2288 2)0.289) f dx = =2 = | 0.155
C 0

This is the same answer as obtained from the first method described above.
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Note: The only information given in this problem was the body shape, free-stream Mach
number, and the fact that we are dealing with air (hence we know that y = 1.4). To calculate
the drag coefficient for a given body shape, we only need M; and y. This is consistent with the
results of dimensional analysis (see Chap. 1 of Ref. 104) that the drag coefficient for a com-
pressible inviscid flow is a function of Mach number and y only; ¢, does not depend on the
size of the body (denoted by c¢), the free-stream density, pressure, or velocity. It depends only
on the Mach number and y. Thus

cg = f(My,y)

This relation is verified by the results of this example. Also, the drag in this problem is due to
the pressure distribution only; since we are dealing with an inviscid flow, shear stress due to
friction is not included. The drag in this problem is therefore a type of “pressure drag”; it is fre-
quently identified as wave drag, and hence ¢, calculated here is the wave drag coefficient.
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4.5 | SHOCK POLAR

Graphical explanations go a long way towards the understanding of supersonic flow
with shock waves. One such graphical representation of oblique shock properties is
given by the shock polar, described next.

Consider an oblique shock with a given upstream velocity V; and deflection
angle 6g, as sketched in Fig. 4.13. Also, consider an xy cartesian coordinate system
with the x axis in the direction of V. Figure 4.13 is called the physical plane. Define
Vi, Vi, Vi, and V,, as the x and y components of velocity ahead of and behind the
shock, respectively. Now plot these velocities on a graph that uses V, and V, as axes,
as shown in Fig. 4.14. This graph of velocity components is called the hodograph
plane. The line OA represents V| ahead of the shock; the line OB represents V> be-
hind the shock. In turn, point A in the hodograph plane of Fig. 4.14 represents the en-
tire flowfield of region 1 in the physical plane of Fig. 4.13. Similarly, point B in the
hodograph plane represents the entire flowfield of region 2 in the physical plane. If

Figure 4.13 | The physical (xy) plane.
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V}’
N B
41 }
! A
0 L »
Ve, | v,
Ve,

Figure 4.14 | The hodograph plane.

'R

8¢ B
Va

Op 7y A

Figure 4.15 | Shock polar for a given V.

now the deflection angle in Fig. 4.13 is increased to a larger value, say 6¢, then the
velocity V, is inclined further to angle 6¢, and its magnitude is decreased because the
shock wave becomes stronger. This condition is shown as point C in the hodograph
diagram of Fig. 4.15. Indeed, if the deflection angle 6 in Fig. 4.12 is carried through
all possible values for which there is an oblique shock solution (8 < Omax), then the
locus of all possible velocities behind the shock is given in Fig. 4.15. This locus is
defined as a shock polar. Points A, B, and C in Figs. 4.14 and 4.15 are just three
points on the shock polar for a given V.

For convenience, let us now nondimensionalize the velocities in Fig. 4.15 by a*,
defined in Sec. 3.4. Recall that the flow across a shock is adiabatic, hence a* is the
same ahead of and behind the shock. Consequently, we obtain a shock polar which is
the locus of all possible M values for a given M}, as sketched in Fig. 4.16. The con-
venience of using M* instead of M or V to plot the shock polar is that, as
M — oo, M* — 2.45 (see Sec. 3.5). Hence, the shock polars for a wide range of
Mach numbers fit compactly on the same page when plotted in terms of M*. Also
note that a circle with radius M* =1 defines the sonic circle shown in Fig. 4.16.
Inside this circle, all velocities are subsonic; outside it, all velocities are supersonic.
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sl=

Figure 4.16 | Geometric constructions using the
shock polar.

Several important properties of the shock polar are illustrated in Fig. 4.16:

1. For a given deflection angle 8, the shock polar is cut at two points B and D.
Points B and D represent the weak and strong shock solutions, respectively.
Note that D is inside the sonic circle, as would be expected.

2. The line OC drawn tangent to the shock polar represents the maximum
deflection angle 0., for the given M} (hence also for the given M). For
6 > Byax, there is no oblique shock solution.

3. Points E and A represent flow with no deflection. Point £ is the normal shock
solution; point A corresponds to a Mach line.

4. If aline is drawn through A and B, and line OH is drawn perpendicular to AB,
then the angle HOA is the wave angle B corresponding to the shock solution at
point B. This can be proved by simple geometric argument, recalling that the
tangential component of velocity is preserved across the shock wave. Try it
yourself.

5. The shock polars for different Mach numbers form a family of curves, as
drawn in Fig. 4.17. Note that the shock polar for M| = 2.45(M| — o0) is
a circle.

The analytic equation for the shock polar (V, /a* versus V,/a*) can be obtained
from the oblique shock equations given in Sec. 4.3. The derivation is given in such
classic texts as those by Ferri (Ref. 5) or Shapiro (Ref. 16). The result is given here
for reference:

2 x *32 * *
(V\> _ (M =V /a*)[(V /a*)M{ — 1] (4.22)

a* 2 5 Vi
— (M - = )M+ 1
)/+1( v (a*) I
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e
a*

yIVII9974

Streamline

Figure 4.18 | Regular reflection from a solid boundary.

4.6 | REGULAR REFLECTION FROM
A SOLID BOUNDARY

Consider an oblique shock wave incident on a solid wall, as sketched in Fig. 4.18.
Question: Does the shock wave disappear at the wall, or is it reflected downstream?
If it is reflected, at what angle and what strength? The answer lies in the physical
boundary condition at the wall, where the flow immediately adjacent to the wall must
be parallel to the wall. In Fig. 4.18, the flow in region 1 with Mach number M, is de-
flected through an angle 6 at point A. This creates an oblique shock wave that im-
pinges on the upper wall at point B. In region 2 behind this incident shock, the
streamlines are inclined at an angle 6 to the upper wall. All flow conditions in re-
gion 2 are uniquely defined by M; and 6 through the oblique shock relations dis-
cussed in Sec. 4.5. At point B, in order for the flow to remain tangent to the upper
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wall, the streamlines in region 2 must be deflected downward through the angle 6.
This can only be done by a second shock wave, originating at B, with sufficient
strength to turn the flow through an angle 6, with an upstream Mach number of M-.
This second shock is called a reflected shock; its strength is uniquely defined by M»
and 0, yielding the consequent properties in region 3. Because M> < M, the re-
flected shock wave is weaker than the incident shock, and the angle ® it makes with
the upper wall is not equal to By (i.e., the reflected shock wave is not specularly
reflected).

Consider a horizontal supersonic flow at Mach 2.8 with a static pressure and temperature of
I atm and 519°R, respectively. This flow passes over a compression corner with a deflection
angle of 16°. The oblique shock generated at the corner propagates into the flow, and is inci-
dent on a horizontal wall, as shown in Fig. 4.18. Calculate the angle ® made by the reflected
shock wave with respect to the wall, and the Mach number, pressure, and temperature behind
the reflected shock.

H Solution
The flowfield is as shown in Fig. 4.18. From the 6-8-M diagram, 8, = 35",

M, = M, sinp, =2.8sin35 = 1.606
From Table A .2, for M,,, = 1.606: p,/p) = 2.82, T»/T, = 1.388, and M,,, = 0.6684. Hence

M, 0.6684

= = = 2.053
sin(8, — 6) sin(35 — 16)

From the 8-B-M diagram, for M = 2.053 and 6 = 16™ 8, = 45.5 . The component of the
Mach number ahead of the reflected shock normal to the shock is M,,,. given by

Mn)_ =M, sin ﬂz = 2.053sin45.5" = 1.46

From Table A.2, for M,,, = 1.46: p3/p, =232, T3/T, = 1.294, and M,;, = 0.7157. where
M, is the component of the Mach number behind the reflected shock normal to the shock. The
Mach number in region 3 behind the reflected shock is given by

B M,, B 0.7157 1 145
T sin(B, —0)  sin(d5.5—16) L
Also
P3 P2
Py = —==p =(2.32)(2.82)(1 atm) = | 6.54aim
P2 D
T, T,
;= FFTI = (1.294)(1.388)(519) = | 932 R
2 I

d=4-6=455-16=| 29.5
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Note: The incident shock makes the angle 35° with respect to the upper wall; the reflected
shock wave lies closer to the wall, at an angle of 29.5°. Clearly, the shock wave is not specu-
larly reflected.

Consider the geometry shown in Fig. 4.19. Here a supersonic flow with Mach number, pres-
sure, and temperature M;, p,, and T;, respectively, is deflected through an angle 6, by a com-
pression corner at point A on the lower wall, creating an oblique shock wave emanating from
point A. This shock impinges on the upper wall at point B. Also precisely at point B the upper
wall is bent downward through the angle 8,. The incident shock is reflected at point B, creat-
ing a reflected shock which propagates downward and to the right in Fig. 4.19. Consider a flow
where M, = 3, p; = 1 atm, and 7; = 300 K. Consider the geometry as sketched in Fig. 4.19
where 6, = 14° and 6, = 10°. Calculate the Mach number, pressure, and temperature in
region 3 behind the reflected shock wave.

W Solution
From the 6-8-M diagram, 8, = 31.2°,

M,, = M, sin 8, =3sin31.2° = 1.554

From Table A.2, for M,,, = 1.56 (nearest entry),

T
P2 2673, 2 =1361, M,, =0.6809
D1 T;
M., 0.6809

sin(B; — ) _ sin(31.2 — 14)

M, = =2.30

The flow in region 2, at M, = 2.3, is deflected downward through the combined angle
6, + 6, = 14° + 10° = 24°. From the 6-8-M diagram for M = 2.3 and 6 = 24°, 8, = 52.5°,

M,, = M,sin B, =2.35in52.5° = 1.82

Figure 4.19 | Reflected shock geometry for Example 4.11.
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From Table A.2, for M = 1.82,

T
D3 3698, -2 =1547, M, =0.612I
1] 2
M, 6121
M; = — 3 = — 0.6 =1 1.28
sin(By — 6; — 6,) sin(52.5 — 24)
Py P2
Py = ——p; = (3.698)(2.673)(1) = | 9.88atm
P2 P
T; T:
T, = %%Tl = (1.547)(1.361)(300) = | 631.6K
24

EXAMPLE 4,12

a.  Consider the supersonic flow described in Example 4.10, where M, = 2.8, p; = | atm,
and M; = 1.45. This flow is shown in Fig. 4.20a. Calculate the total pressure in region 3
where M; = 1.45.

b. Consider the supersonic flow shown in Fig. 4.20b, where the upstream Mach number
and pressure are the same as in part (@), i.e., M| = 2.8 and p, = l atm. This flow is
deflected through the angle 6 such that the Mach number behind the single oblique
shock in Fig. 4.20b is the same as that behind the reflected shock in Fig. 4.20aq,

i.e., My = 1.45 in Fig. 4.20b. For the flow in Fig. 4.20b, calculate 8 and the total
pressure in region 2, p,,,.

Comment on the relative values of the total pressure obtained in parts (a) and (b).

m Solution
a.  From Example 4.10, M,,, = 1.606, and M,, = 1.46. From Table A.2, for M,,, = 1.606,
Lo .8952
pm
From Table A2, for M,, = 1.46,
Por _ 0.9420
pog

(a) (b)

Figure 4.20 | Shock waves for Example 4.12.
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From Table A.1, for M; = 2.8,

Por _ 2714

P1

Hence,

Doy = (”_”3.) (i’ﬁ> <ﬂ> p1 = (0.9420)(0.8952)(27.14)(1) = | 22.9atm
Doy Doy D1

b. For the single shock wave shown in Fig. 4.20, to find # such that M, = 1.45 when
M, = 2.8, we have to carry out an iterative (trial-and-error) solution where we assume
various values of 8, calculate M, for each value, and finally obtain the specific value
of 6, which will yield M, = 1.45. To begin, we arbitrarily assume 6 = 20°. Using the
6-B-M diagram and Table A.2, we find

For9 = 20°: B =394, M, =1777, M,, =0.621, M, =1.87

Here, M, is too high. We need to assume a larger 8 so that the shock is stronger. Assume
= 30°.

For 6 = 30°: B=547°, M, =227, M, =0541, M, =129

Here, M, is too low. We need to assume a slightly smaller 8 so that the shock is slightly
weaker. Assume 6 = 28°,

For9 = 28: B =508, M, =217, M, =0554, M,=143

Here, M is slightly too low. Assume 6 = 27° so that the shock wave is marginally
weaker.

For 0 = 27°: B =49 M, =211, M,, =05613, M, =150

Here, M, is slightly too high. The correct value of 8 is somewhere between 27° and 28°.
Since this example is subject to graphical accuracy only, as well as the level of accuracy
obtained by taking the nearest entry in Table A.2, let us simply interpolate between

6 = 27° where M, = 1.50, and 6 = 28° where M, = 1.43, to obtain 8 where

M, = 1.45:

1.5-145

— o IO
§ =27 +( )(1.5—1.43

) =27"4+07"=| 27.7°

The total pressure in region 2 in Fig. 4.20b is obtained from Table A.2, using the nearest
entry for M,, = 2.15, where p,,/p,, = 0.6511. Also, from Table A.1 for M, = 2.8,
Do,/ P1 = 27.14. Hence,

Poy = (%) (%) (p1) = (0.6511)(27.14)(1) = | 17.67atm
0] 1

Comparing the two values for total pressure obtained in parts (a) and (b), we see that
Doy = 22.9 atm (from part (a))
Do, = 17.67 atm (from part (b))
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Clearly, the case of the flow through the single shock wave shown in Fig. 4.20b results in a
lower total pressure than the case of the flow through the double shock system shown in

Fig. 4.20a.
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4.7 | COMMENT ON FLOW THROUGH MULTIPLE
SHOCK SYSTEMS

The results of Example 4.12 illustrate an important physical phenomena associated
with flow through shock waves. Here we have a flow with an initial Mach number of
2.8, which in both cases shown in Fig. 4.20 is siowed to a lower Mach number of
1.45. In Fig. 4.20a, this is accomplished by passing the flow through two weaker
shocks, and in Fig. 4.20b this is accomplished by passing the flow through a single
stronger shock. The process of slowing the flow to the same Mach number by means
of two shocks compared to that of a single shock results in a higher total pressure.
That is, the system shown in Fig. 4.20 results in a smaller loss of total pressure, hence
it is an aerodynamically more efficient system. This phenomena has a major practi-
cal impact on engine inlet design for supersonic airplanes, and for the diffuser design
in supersonic wind tunnels, where it is always preferable to slow the incoming su-
personic flow by passing it through a multiple system of weaker shocks than through
a single stronger shock. Problem 4.8 at the end of this chapter reinforces this fact.
Also, the geometry for a simulated scramjet engine shown in Fig. 4.2 is designed
specifically to initiate the multiple shock pattern in the flow seen in Fig. 4.2 in order
to decrease the total pressure losses in the engine and therefore achieve better propul-
sion efficiency.

It is interesting to compare the sum of the two turning angles of the flow in
Fig. 4.20a with the single turning angle in Fig. 4.20b. In Fig. 4.20a, the flow is first
turned into itself through a deflection of 16° across the incident shock, and then
turned again into itself through a deflection of 16° across the reflected shock, the sum
of the turning angles being 32°. In contrast, the turning angle for the single shock in
Fig. 4.20b is calculated (in Example 4.12) to be a smaller value, namely, 27.7".
Hence, the flow through the multiple shock system experiences a net turning angle
that is actually larger than that for the single shock system. In spite of this, the multi-
ple shock system is more efficient, resulting in a smaller loss of total pressure (hence
a smaller increase in entropy). The reason for this is the highly nonlinear increase in
entropy and decrease in total pressure as the Mach number ahead of a shock wave in-
creases. Examine again Fig. 3.10, where the changes in physical properties across a
normal shock are plotted versus upstrearmn Mach number. Note the rapid and highly
nonlinear decrease in the total pressure ratio, p,, /p,,, as M, increases. For example,
doubling the upstream Mach number results in a much larger than proportional de-
crease in total pressure. Returning to the double shock system in Fig. 4.20a, the key
to its better efficiency is that the Mach number ahead of the second shock has been
reduced by first flowing across the first shock. Even though the flow is going through
twice as many shocks with a net turning angle larger than the single shock case, the
smaller local Mach number ahead of the second shock more than compensates by
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causing a sufficiently smaller increase in entropy across the second shock. Hence, the
net total pressure loss across the multiple shock system is less than that across the sin-
gle shock. The progressive slowing down of the flow through a multiple system of
progressively weaker shocks is always more efficient than achieving the same de-
crease in Mach number across a single shock.

4.8 | PRESSURE-DEFLECTION DIAGRAMS

The shock wave reflection discussed in Sec. 4.6 is just one example of a wave inter-
action process—in the above case it was an interaction between the wave and a solid
boundary. There are other types of interaction processes involving shock and expan-
sion waves, and solid and free boundaries. To understand some of these interactions,
it is convenient to introduce the pressure-deflection diagram, which is nothing more
than the locus of all possible static pressures behind an oblique shock wave as a func-
tion of deflection angle for given upstream conditions. Consider Fig. 4.21, which at
the top shows oblique shock waves of two different orientations. The top left shows
a left-running wave—so called because, when standing at a point on the wave and
looking downstream, you see the wave running off toward your left. The flow de-
flection angle 6, is upward, and is considered positive. In contrast, the top right
shows a right-running wave; since an oblique shock wave always deflects the flow
toward the wave, the deflection angle 8; is downward and is considered negative.
The static pressure ahead of the wave, where 8 = 0, is p;; the static pressure behind
the left-running wave, where 0 = 65, is p,. These two conditions are illustrated by
points 1 and 2, respectively, on a plot of pressure versus deflection at the bottom of

Left-running wave Right-running wave

D ————

0 0

2 max

Figure 4.21 | Pressure-deflection diagram for a given M.
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For M,

For M,

Figure 4.22 | The reflected shock process on a
pressure-deflection diagram.

Fig. 4.21. For the right-running wave, if 8, and 6, are equal in absolute magnitude
(but different in sign), the pressure in region 2" will also be p,. This condition is given
by point 2" on Fig. 4.21. When & ranges over all possible values || < 0,y for an
oblique shock solution, the locus of all possible pressures (for the given My and py)
is given by the pressure-deflection diagram, sketched in Fig. 4.21. The right-hand
lobe of this figure corresponds to positive 6, the left-hand lobe to negative 6.

The shock reflection process of Sec. 4.6 is sketched in terms of pressure-
deflection (p8) diagrams in Fig. 4.22. A p6# diagram is first drawn for M, where
point | corresponds to the pressure in region 1 of Fig. 4.18. Conditions in region 2
are given by point 2 on the pf diagram. At this point, a new pressure-deflection dia-
gram is drawn for a free-stream Mach number equal to M;. The vertex of this p8
diagram is at point 2 because the “free stream” of region 2 is already bent upward by
the angle 6. Since the flow in region 3 must have 6 = 0, then we move along the left-
hand lobe of this second p6 diagram until & = 0. This defines point 3 in Fig. 4.22,
which yields the conditions behind the reflected shock. Hence, in Fig. 4.22, we move
from point 1 to point 2 across the incident shock, and then from point 2 to point 3
across the reflected shock.

4.9 | INTERSECTION OF SHOCKS
OF OPPOSITE FAMILIES

Consider the intersection of left- and right-running shocks as sketched in Fig. 4.23.
The left- and right-running shocks are labeled A and B, respectively. Both are inci-
dent shocks, and correspond to deflections 6, and 83, respectively. These shocks con-
tinue as the refracted shocks C and D downstream of the intersection at point E.
Assume 6, > 8. Then shock A is stronger than B, and a streamline going through the
shock system A and C experiences a different entropy change than the streamline
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———————————— 1%

Horizontal

Figure 4.23 | Intersection of shocks of opposite families.

going through the shock system B and D. Therefore, the entropy in regions 4 and 4’
is different. Consequently, the dividing streamline EF between these two regions is a
line across which the entropy changes discontinuously. Such a line is defined as a slip
line. However, on a physical basis, these conditions must hold across the slip line in
Fig. 4.23:

1. The pressure must be the same, p, = p4 . Otherwise, the slip line would be
curved, inconsistent with the geometry of Fig. 4.23.

2. The velocities in regions 4 and 4’ must be in the same direction, although they
in general differ in magnitude. If the velocities were in different directions,
there would be the chance of a complete void in the flowfield in the vicinity of
the slip line—an untenable physical situation.

These two conditions, along with the known properties in region 1 as well as the
known 6; and 83, completely determine the shock interaction in Fig. 4.23. Also, note
that the temperature and density, as well as the entropy and velocity magnitude, are
different in regions 4 and 4'.

Pressure-deflection diagrams are particularly useful in visualizing the solution of
this shock interaction process. The pé diagram corresponding to M is drawn as the
solid curve in Fig. 4.24. Point 1 denotes conditions in region 1, ahead of the shocks.
In region 2 of Fig. 4.23, the flow is deflected through the angle 6,. Therefore, point 2
on the pé diagram is located by moving along the curve until 8 = 6,. At point 2, a
new pf diagram corresponding to M, is drawn, as shown by the dashed curve to the
right in Fig. 4.24. Note that the pressure in region 4’ must lie on this curve. Similarly,
point 3 is located by moving along the solid curve until 83 is reached; remember that
this deflection is downward, hence we must move in the negative 8 direction. Point 3
corresponds to region 3 in Fig. 4.23. At point 3, a new p6 diagram corresponding to
M3 is drawn, as shown by the dashed curve to the left in Fig. 4.24. The pressure in
region 4 must lie on this curve. Because ps = p., the point corresponding to regions 4
and 4’ in Fig. 4.24 is the intersection of the two dashed p8 diagrams. This point defines
the flow direction (hence slip line direction) in regions 4 and 4, namely the angle & in
Figs. 4.23 and 4.24. In turn, the flow deflections across the refracted shocks D and C
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Figure 4.24 | Pressure-deflection diagrams for the shock intersection picture
given in Fig. 4.23.

are determined: 6, = ® — 63 and 64 = 6, — O. With these deflections, and with the
Mach numbers in regions 3 and 2, respectively, the strengths of the refracted shocks
D and C are now determined.

Note from Fig. 4.23 that, if 6, = 6, the intersecting shocks would be of equal
strength, the flow pattern would be completely symmetrical, and there would be no
slip line.

4.10 | INTERSECTION OF SHOCKS
OF THE SAME FAMILY

Consider the compression corner sketched in Fig. 4.25, where the supersonic flow in
region 1 is deflected through an angle 0, with the consequent oblique shock wave
emanating from point B. Now consider a Mach wave generated at point A ahead of
the shock. Will this Mach wave intersect the shock, or will it simply diverge, i.e., is
1, greater than or less than B? To find out, consider Eq. (4.7), which written in terms
of velocities is

uy = Vysinf
. Ui
Hence, sinf8 = — (4.23)
Vi
In addition, from Eq. (4.1),
a

sin Hy = V (424)
1
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Figure 4.25 | Mach waves ahead of and behind
a shock wave.

We have already proven that, for a shock to exist, the normal component of the flow
velocity ahead of the shock wave must be supersonic. Thus, u; > a;; consequently,
from Eqs. (4.23) and (4.24), B > u;. Therefore, referring to Fig. 4.25, the Mach
wave at A must intersect the shock wave, as shown.

Now consider a Mach wave generated at point C behind the shock. From
Eq. (4.12)

up, = Vo sin(B — 9)

Hence, sin(8 — §) = 22 (4.25)
Vs

In addition, from Eq. (4.1),

. a
sin ) = V) (4.26)
We have already proven that the normal component of the flow velocity behind a
shock wave is subsonic. Thus, u» < a;; consequently, from Egs. (4.25) and (4.26),
B — 6 < u. Therefore, referring to Fig. 4.25, the Mach wave at C must intersect the
shock wave, as shown.

It is now not difficult to extrapolate to the case of two left-running oblique shock
waves generated at corners A and B in Fig. 4.26. Because shock wave BC must be in-
clined at a steeper angle than a Mach wave in region 2, and we have already shown
that a left-running Mach wave will intersect a left-running shock, then it is obvious
that shock waves AC and BC will intersect as shown in Fig. 4.26. Above the point of
intersection C, a single shock CD will propagate.

Now consider a streamline passing through regions 1, 2, and 3 as sketched in
Fig. 4.26. The pressure and flow direction in region 3 are p3 and 85, respectively, and
are determined by the upstream conditions in region 1, as well as the deflection an-
gles 6, and 6. Properties in region 3 are processed by the dual shocks AC and BC.
On the other hand, consider a streamline passing through regions 1 and 5. The pres-
sure and flow direction in region 5 are ps and 6s, respectively. Properties in region 5
are processed by the single shock CD. Therefore, the entropy change across this
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¢z

Figure 4.26 | Intersection of shocks of the same family.

single shock will be different than across the two shocks, and hence a slip line must
exist downstream, originating at the intersection point C. As discussed in Sec. 4.9,
the pressures and flow directions across the slip line must be the same. If no other
wave existed in the system, this would require ps = p; and 65 = 8 simultaneously.
However, it is generally not possible to find a single shock CD that will give simul-
taneously the same pressure and flow deflection as two intermediate shocks AC and
BC, with both systems starting from the same upstream conditions in region 1.
Therefore, nature removes this problem by creating a weak reflected wave from the
intersection point C. Depending on the upstream conditions and 8, and 65, this re-
flected wave CE may be a weak shock or expansion wave. Its purpose is to process the
flow in region 4 such that ps = ps and 64 = 65 simultaneously, thus satisfying the nec-
essary physical conditions across a slip line. The flowfield can be solved numerically
by iteratively adjusting waves CD and CE such that the above conditions between
regions 4 and 5 are obtained.

4.11 | MACH REFLECTION

Return again to the shock wave reflection from a solid wall as discussed in Sec. 4.6
and as skeiched in Fig. 4.18. The governing condition is that the flow must be de-
flected through the angle 8 from regions 2 to 3 by the reflected shock so that the
streamlines are parallel to the upper wall. In the discussion of Sec. 4.6, this value of
6 was assumed to be less than 6,,,, for M,, and hence a solution was allowed for a
straight, attached reflected shock. Consider the 6-8-M curves for both M, and M, as
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M, > M,
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Figure 4.27 | Maximum deflection angle for two
different Mach numbers.
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Figure 4.28 | Mach reflection.

sketched in Fig. 4.27. In Sec. 4.6, it was assumed that & was to the left of 6y, for M»
in Fig. 4.27. However, what happens when (Onax for M») < 6 < (6max for M1)? This
situation is illustrated in Fig. 4.27. For the incident shock with an upstream Mach
number of M|, 8 < 6max, and hence the incident shock is an allowable straight
oblique shock solution. This straight incident shock is sketched in Fig. 4.28. On the
other hand, when the flow in region 2 at Mach number M, wants to again deflect
through the angle 6 via the reflected shock, it finds that 8 > 6., for M5, and a regu-
lar reflection is not possible. Instead, a normal shock is formed at the upper wall to
allow the streamlines to continue parallel to the wall. Away from the wall, this nor-
mal shock transits into a curved shock which intersects the incident shock, with a
curved reflected shock propagating downstream. This shock pattern is sketched in
Fig. 4.28 and is labeled a Mach reflection in contrast to the regular reflection dis-
cussed in Sec. 4.6. The Mach reflection is characterized by large regions of subsonic
flow behind the normal or near normal shocks, and its analysis must be carried out by
the more sophisticated numerical techniques to be discussed in Chaps. 11 and 12.
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4.12 | DETACHED SHOCK WAVE IN FRONT
OF A BLUNT BODY

Consider the supersonic flow over a blunt-nosed body as illustrated in Fig. 4.29. A
strong curved bow shock wave is created in front of this body, with the shock de-
tached from the nose by a distance §. At point g, the upstream flow is normal to the
wave; hence point a corresponds to a normal shock wave. Away from the centerline,
the shock wave becomes curved and weaker, eventually evolving into a Mach wave
at large distances from the body (illustrated by point e in Fig. 4.29).

Moreover, between points a and e, the curved shock goes through all possible
conditions allowed for oblique shocks for an upstream Mach number of M,. To see
this more clearly, consider the 6-8-M, curve sketched in Fig. 4.30. At point a, a nor-
mal shock exists. Slightly above the centerline at point b in Fig. 4.29, the shock is
oblique but pertains to the strong-shock solution in Fig. 4.30. Further along the
shock, point c is the dividing point between strong and weak solutions; the streamline
through point ¢ experiences the maximum deflection, 6,x. Slightly above point ¢ in
Fig. 4.29, at point ¢/, the flow becomes sonic behind the shock. From points a to ¢/,
the flow behind the shock is subsonic. Above point ¢’ the flow is supersonic behind
the shock. Hence, the flowfield between the blunt body and its curved bow shock is

Uniform free stream

———T—--
vV, =V
Moo

Figure 4.29 | Flow over a supersonic blunt body.
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q Strong shock

ed

0

Figure 4.30 | 6-8-M diagram for the sketch in Fig. 4.23.

a mixed subsonic—supersonic flow, and the imaginary dividing curve between these
two regions (where M = 1) is denoted as the sonic line, as shown in Fig. 4.29.

The shape of the detached shock wave, its detachment distance 8§, and the com-
plete flowfield (with curved streamlines) between the shock and the body depend on
M, and the size and shape of the body. The solution of this flowfield is not trivial.
Indeed, the supersonic blunt body problem was a major focus for supersonic aerody-
namicists during the 1950s and 1960s spurred by the need to understand the high-
speed flow over blunt-nosed missiles and reentry bodies. The situation in 1957 was
precisely described in the classic text by Liepmann and Roshko (Ref. 9), where, in
their discussion of blunt body flows, they categorically state that “the shock shape
and detachment distance cannot, at present, be theoretically predicted.” Indeed, it
was not until a decade later that truly sufficient numerical techniques became avail-
able for satisfactory engineering solutions of supersonic blunt body flows. These
modern techniques are discussed at length in Chap. 12.

4.13 | THREE-DIMENSIONAL SHOCK WAVES

In treating oblique shock waves in this chapter, two-dimensional (plane) flow has been
assumed. However, many practical supersonic flow problems are three-dimensional,
with correspondingly curved shock waves extending in three-dimensional space. The
shock wave around a supersonic axisymmetric blunt body at angle of attack is one
such example, as sketched in Fig. 4.31. For such three-dimensional shock waves, the
two-dimensional theory of the present chapter is still appropriate for calculating prop-
erties immediately behind the shock surface at some local point. For example, con-
sider an elemental area dS around point A on the curved shock surface shown in
Fig. 4.31. Let n be the unit normal vector at A. The component of the upstream Mach
number normal to the shock is then

M,, = (Mji)+n (4.27)

With the Mach number component normal to the three-dimensional shock wave
obtained from Eq. (4.27), values of pi, o2, Tr, hp, and M,, can be calculated
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Figure 4.31 | Three-dimensional shock surface.

immediately behind the shock at point A from the shock wave relations given in
Egs. (4.8) through (4.11). We again emphasize that these results hold just immediately
behind the shock surface at the local point A. Further downstream, the flowfield expe-
riences a complex nonuniform variation which must be analyzed by appropriate three-
dimensional techniques beyond the scope of this chapter. Such matters are discussed
in Chap. 13.

4.14 | PRANDTL-MEYER EXPANSION WAVES

We have now finished our discussion of oblique shock waves as itemized in the left
column of the roadmap in Fig. 4.3. We now move to the right side of the roadmap,
which deals with expansion waves. When a supersonic flow is turned away from it-
self as discussed in Sec. 4.1, an expansion wave is formed as sketched in Fig. 4.4b.
This is directly opposite to the situation when the flow is turned into itself, with the
consequent shock wave as sketched in Fig. 4.4a. Expansion waves are the antithesis
of shock waves. To appreciate this more fully, some qualitative aspects of flow
through an expansion wave are itemized as follows (referring to Fig. 4.4b):

1. M, > M. An expansion corner is a means to increase the flow Mach number.

2. pa/pr < 1, p/o0 < 1, T,/T) < 1. The pressure, density, and temperature
decrease through an expansion wave.
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Hy
oS T

Figure 4.32 | Prandtl-Meyer expansion.

3. The expansion fan itself is a continuous expansion region, composed of an
infinite number of Mach waves, bounded upstream by p; and downstream by
U (see Fig. 4.32), where p = arcsin(1/M,) and p, = arcsin(1/M).

4. Streamlines through an expansion wave are smooth curved lines.

5. Since the expansion takes place through a continuous succession of Mach
waves, and ds = 0 for each Mach wave, the expansion is isentropic.

An expansion wave emanating from a sharp convex corner such as sketched in
Figs. 4.4b and 4.32 is called a centered expansion fan. Moreover, because Prandtl in
1907, followed by Meyer in 1908, first worked out the theory for such a supersonic
flow, it is denoted as a Prandti-Meyer expansion wave.

The quantitative problem of a Prandtl-Meyer expansion wave can be stated as
follows (referring to Fig. 4.32): For a given M\, p;, T1, and 6;, calculate M, p>, and
T>. The analysis can be started by considering the infinitesimal changes across a very
weak wave (essentially a Mach wave) produced by an infinitesimally small flow de-
flection, d#, as illustrated in Fig. 4.33. From the law of sines,

V+dV  sin(r/2 4+ p)
V " sin(n/2 — u — do)

(4.28)
However, from trigonometric identities,
. 4 . n
sin| —+u)=sin{ -—pu)=cosp 4.29)
2 2
sin (% - - dB) = cos(u + df) = cos . cos df — sin i sind6 4.30)
Substitute Eqs. (4.29) and (4.30) into (4.28):
av COoS [L

1+ —= - -
Vv cos pcos dB — sin u sind@

4.31)
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Figure 4.33 | Geometric construction for the infinitesimal
changes across a Mach wave; for use in the derivation of the
Prandtl-Meyer function. Note that the change in velocity
across the wave is normal to the wave.

For small d6, we can make the small-angle assumptions sindf = d@ and cos df ~ 1.
Then, Eq. (4.31) becomes

dv. CcoS [ I

1 + = . = (4.32)
1% cospu —dfsing 1 —dftanpu
Recalling the series expansion (for x < 1),
o 2,3
=l+x+x"+x+--
I —x
Eq. (4.32) can be expanded as (ignoring terms of second and higher order)
dv
I+ =1 +dotanu+- (4.32a)
Thus, from Eq. (4.324),
dv/v
do = (4.33)
tan u
However, from Eq. (4.1),
= sin”! 1
o= W

which can be written as

tan g = —————= 434
u = (4.34)
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Substitute Eq. (4.34) into (4.33)

d9 =vM2—1 v (4.35)

Equation (4.35) is the governing differential equation for Prandtl-Meyer flow. Note
these aspects of it:

1. Itis an approximate equation for a finite 46, but becomes a true equality as
df — 0.

2, It was derived strictly on the basis of geometry, where the only real physics is
that associated with the definition of a Mach wave. Hence, it is a general
relation which holds for perfect gases, chemically reacting gases, and real
gases.

3. It treats an infinitesimally small expansion angle, d6. To analyze the entire
Prandtl-Meyer expansion in Fig. 4.32, Eq. (4.35) must be integrated over the
complete angle 6,. Integrating Eq. (4.35) from regions 1 to 2,

% = dv
/ g = / VM -1 (4.36)

& M

The integral on the right-hand side can be evaluated after dV/V is obtained in terms
of M, as follows. From the definition of Mach number,

V =Ma
Hence, InV=mnM+Ina 4.37)
Differentiating Eq. (4.37),
dv  dM da
DA Il 4.38
\% M + a ( )

Specializing to a calorically perfect gas, the adiabatic energy equation can be written
from Eq. (3.28) as
2
a, T, y—1_ ,
— ) ===14+—M
(5) =F=14"13
or, solving for a,
1 -1/2
a=a, (1 + ”——Mz) (4.39)

Differentiating Eq. (4.39),

~1
da _ _ (”__1) M (1 + "—_IM2> dM (4.40)

a
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Substituting Eq. (4.40) into (4.38), we obtain

av 1 dM
Ty (4.41)
1+J/TM2

Equation (4.41) is the desired relation for dV/V in terms of M; substitute it into
Eq. (4.36):

e Mo UMZT—1 dM
f dod =6, —-0= / —T (4.42)
oy M, 1_+_ y - MZ M
2
In Eq. (4.42), the integral
VM = M
v(M) =/—M———1—L (4.43)
Yy — 1M2 M

A
+2

is called the Prandtl-Mever function, and is given the symbol v. Performing the in-
tegration, Eq. (4.43) becomes

ly +1 —1
V(M) = Z—li—l tan™! h(/\ﬁ — ) —tan 'y M2 -1 (4.44)

The constant of integration that would ordinarily appear in Eq. (4.44) is not impor-
tant, because it drops out when Eq. (4.44) is substituted into (4.42). For convenience,
it is chosen as zero such that v(M) = 0 when M = 1. Finally, we can now write
Eq. (4.42), combined with (4.43), as

6, = v(My) — v(My) (4.45)

where v(M) is given by Eq. (4.44) for a calorically perfect gas. The Prandtl-Meyer
function [Eq. (4.44)] is tabulated as a function of M in Table A.5 for y = 1.4, along
with values of the Mach angle u, for convenience.

Returning again to Fig. 4.32, Egs. (4.45) and (4.44) allow the calculation of a
Prandtl-Meyer expansion wave, as follows:

1. Obtain v(M;) from Table A.5 for the given M.

2. Calculate v(M>) from Eq. (4.45) using the given ¢, and v(M) obtained in
step 1.

3. Obtain M, from Table A.5 corresponding to the value of v(M,) from step 2.

4. Recognizing that the expansion is isentropic, and hence that T, and p, are
constant through the wave, Eqgs. (3.28) and (3.30) yield

vy —1 2
E_.l+—2 M;
T,

Ty ST,
I+TM,2
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-1 y/{y=1
3 1+ L m2

and L A
P2 1+ L2 m2

EXAMPLE 4.13

A uniform supersonic stream with M, = 1.5, p; = 17001b/ft?, and T, = 460°R encounters
an expansion corner (see Fig. 4.32) which deflects the stream by an angle 6, = 20°. Calculate
M,, p2, Tz, Doy, Ty, and the angles the forward and rearward Mach lines make with respect to
the upstream flow direction.

m Solution
From Table A.5, for M; = 1.5: v; = 11.91° and u, = 41.81°. So

Vy = V; +91 =1191420= 31.91°

From Table A.5, for v, = 31.91°:

M; =2.207 | and ) = 26.95°

From Table A.1, for M; = 1.5:

T
Por _ 3671 and <L = 145

P 1

From Table A.1, for M, = 2.207:

O To
Por _ 1081 and =2 =1974
p2 1

The flow through an expansion wave is isentropic; hence p,, = p,, and T,, = T,,,. Thus,

pr = L2 P Poy  (10.81)71(1)(3.671)(1700) = | 577.3 b/t
poz po; 14

i} Toz Tm -1
,=———T =(.975 1)(1.45)(460) = | 337.9°R
=TT T ( )~ (1)(1.45)(460)

=P = (3.671)(1700) = | 6241 1b/f
P

Doy = Po

T
T,=T, = Tll Ti = (1.45)(460) = | 667°R

Returning to Fig. 4.32:

Angle of forward Mach line = u; =| 41.81°

Angle of rearward Mach line = y, — 6, = 26.95 — 20 = | 6.95°
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Consider the arrangement shown in Fig. 4.34. A 15° half-angle diamond wedge airfoil is in a
supersonic flow at zero angle of attack. A Pitot tube is inserted into the flow at the location
shown in Fig. 4.34. The pressure measured by the Pitot tube is 2.596 atm. At point a on the
backface, the pressure is 0.1 atm. Calculate the free-stream Mach number M, .

B Solution

There will be a normal shock wave in front of the face of the Pitot tube immersed in region 3
in Fig. 4.34, Let the region immediately behind this normal shock be denoted as region 4. The
Pitot tube senses the total pressure in region 4, i.e., p,,. The pressure at point a is the static
pressure in region 3. Thus

e 2.596
Pos 2270 9596
r3 0.1

From Table A.2, for p,, /p3 = 25.96: M; = 4.45. From Table A5, for M; = 4.45, we have
vy = 71.27°. From Eq. (4.45)

v, =v3 — 0 =71.27 —30=41.27"
From Table A.5, for v, = 41.27°: M, = 2.6. In region 2, we have
M,, = M, sin(B —8) = 2.6sin(f — 157) (E.1)

In this equation, both M,,, and B are unknown. We must solve by trial and error, as follows.
Assume M, =4. Then B8 =27°, M,, = M, sinp = 4sin27° = 1.816. Hence, from
Table A.2, M,,, = 0.612. Putting these results into Eq. (E.1) above,

0.612 = 2.6sin 12° = 0.54

This does not check.
Assume M| = 4.5.Then 8 = 25.5°, M,, = 4.55in25.5° = 1.937. Hence, from Table A2,
M,, = 0.588. Putting these results into Eq. (E.1),

0.588 = 2.65in 10.5° = 0.47

Pitot tube

Figure 4.34 | Geometry for Example 4.14.
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This does not check. We are going in the wrong direction.
Assume M| = 3.5.Then B = 29.2°, M,, = 3.5s5in29.2° = 1.71. Hence, from Table A.2,
M,, = 0.638. Putting these results into Eq. (E.1),

0.638 = 2.6sin 14.2° = 0.638

This checks. Thus

M, =35

I

4.15 1 SHOCK-EXPANSION THEORY

In this section we move to the bottom of our roadmap in Fig. 4.3 and discuss shock-
expansion theory, which is a logical and natural combination of the items in both the
left and right columns of the roadmap. The shock and expansion waves discussed in
this chapter allow the exact calculation of the aerodynamic force on many types of
two-dimensional supersonic airfoils made up of straight-line segments. For exam-
ple, consider the symmetrical diamond-shaped airfoil at zero angle of attack in
Fig. 4.35. The supersonic flow is first compressed and deflected through the angle ¢
by an oblique shock wave at the leading edge. At midchord, the flow is expanded
through an angle 2¢ by the expansion wave. At the trailing edge, the flow is again
deflected through the angle ¢ by another oblique shock; this deflection is necessary
to make the flow downstream of the airfoil parallel to the free-stream direction due
to symmetry conditions. Hence, the surface pressure on segments a and ¢ are found
from oblique shock theory, and on segments & and d from Prandtl-Meyer expansion
theory.

At zero angle of attack, the only aerodynamic force on the diamond airfoil will
be drag; the lift is zero because the pressure distributions on the top and bottom

Figure 4.35 | Symmetrical diamond-wedge airfoil.
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surfaces are the same. From Eq. (1.47), the pressure drag is

D = x component of [— #p dS]

In terms of scalar quantities, and referring to Fig. 4.35, the surface integral yields for
the drag per unit span

t
D =2(pylsine — pslsing) = 2(p; — p3)§

Hence,
D = (py— pa)t (4.46)

It is a well-known aerodynamic result that two-dimensional inviscid flow over a
wing of infinite span at subsonic velocity gives zero drag—a theoretical result given
the name d’Alembert’s paradox. (The paradox is removed by accounting for the ef-
fects of friction). In contrast, for supersonic inviscid flow over an infinite wing,
Eq. (4.46) clearly demonstrates that the drag per unit span is firite. This new source
of drag encountered when the flow is supersonic is called wave drag, and is inher-
ently related to the loss of total pressure and increase of entropy across the oblique
shock waves created by the airfoil.

Consider an infinitely thin flat plate at a 5° angle of attack in a Mach 2.6 free stream. Calcu-
late the lift and drag coefficients.

B Solution
From Table A.5, for M, = 2.6: v = 41.41°. Thus, from Eq. (4.45)

v =v+a=41.414+5=4641
From Table A5, for v, =46.41°: M, = 2.85. From Table A.1, for M, =2.6: p, /p) =

19.95. From Table A.1, for M, = 2.85: p,, /p, = 29.29. Hence

2 0 0 1
Pr_ P2 PaPo 1 (1)(19.95) = 0.681
P Pos Poy Pi 29.29

From the 6-8-M diagram, for M; = 2.6 andf = o« = 5°: 8 = 26.5°. Thus
M, = M,sinf =2.65in26.5" = 1.16
From Table A.2, for M, = 1.16: p3/p, = 1.403. From Fig. 4.36, the lift per unit span L’ is
L' = (p3 — pr)ccosa
The drag per unit span D’ is

D' = (p3 ~ pp)csina
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Figure 4.36 | Geometry for Example 4.15.

Recalling that ¢, = (y/2) p1 M?, we have

L 2 (P} Pz)
= — = s\ Cos &
qic  yMi\pi p
=~ (1.403 —0.681)cos5° = | 0.152
D267 ) cos
D 2 <P3 Pz) .
€g=—=——|"—~——]sine
qic  yMy\p1 P
=~ (1.403 —0.681)sin5° = | 0.0133
5262 )sin

Figure 4.36 shows only part of the wave system associated with the supersonic
flow over a flat plate at angle of attack. After the flow passes over the flat plate, it will
move downstream of the trailing edge in approximately, but not exactly, the free-
stream direction. As shown in Fig. 4.37, the supersonic flow over the top surface is
turned into itself at the trailing edge, hence generating a left-running shock wave em-
anating from the trailing edge. The supersonic flow over the bottom surface is turned
away from itself at the trailing edge, hence generating a right-running expansion
wave. The streamline ab trailing downstream from the trailing edge makes the angle
& with respect to the free-stream direction. The flow in region 4, above ab, has
passed through both the leading edge expansion wave and the trailing edge shock
wave, and similarly the flow in region 5, below ab, has passed through both the lead-
ing edge shock wave and the trailing edge expansion wave. Because the strengths
of both shock waves are different, the entropy in region 4 is different than that in
region 5, s4 # s5. Therefore, ab is a slip line dividing the two regions of different
entropy. As discussed in Section 4.9, the pressure is the same across the slip line,
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Figure 4.37 | lllustration of the tailing edge streamline for a flat plate
at an angle of attack in a supersonic flow.

Pa = ps, and the flow velocities in regions 4 and 5 are in the same direction, but have
different magnitudes. These two conditions dictate the properties of the flow down-
stream of the leading edge, including the flow direction angle ®. Indeed, the ultimate
physical reason why the flow downstream of the trailing edge does not return to ex-
actly the free-stream conditions and direction is because the entropy of the down-
stream flow is increased by the shock waves, and hence the conditions downstream
of the trailing edge can never be exactly the same as those in the free stream.

However, interestingly enough the downstream flow angle & is usually quite
small, on the order of a degree or less. The precise value of ® is a function of M, and
angle of attack, as will be illustrated in Example 4.16. For values of M, above
about 1.3, the downstream flow is canted upward, above the free-stream direction.
This is the case shown in Fig. 4.37. This result may at first appear to be against our
intuition, because the production of lift on an aerodynamic body creates a downward
canting of the downstream flow (downwash). Indeed, Newton’s third law diclates
that if lift is generated on the body by the flow, the equal and opposite reaction pushes
the airflow in the general downward direction downstream of the body. This is a gen-
eral result for any flow. subsonic or supersonic. However, the flow sketched in
Fig. 4.37 appears to violate physics. This paradox is resolved when the wave pattern
over a much larger extent of the flow is examined, such as the wave interaction pat-
tern in the far wake of the flat plate shown in Fig. 4.38. The overall effect of the flow
through this much larger region results in an overall downwash when viewed over
the whole domain. For example, the upwash (upward deflection of &) shown in
Fig. 4.37 is compensated by a net downwash over other parts of the flowfield.

We note that the downstream flow shown in Figs. 4.37 and 4.38 does not affect
the lift and drag on the plate. For an inviscid flow, the aerodynamic force on the plate
is due only to the integrated pressure distribution on the surface of the plate. as
sketched in Fig. 4.36. In steady supersonic flow, disturbances do not propagate up-
stream, and hence the flow downstream of the trailing edge does not aftect the pres-
sure distribution over the plate. This is a basic physical property of steady supersonic

177



178

EXAMPLLE 4.16

CHAPTER 4 Oblique Shock and Expansion Waves

Figure 4.38 | Schematic of the far-field
wave pattern downstream of a flat plate at
an angle of attack in a supersonic flow.

flow—disturbances can not feed upstream. In contrast, for a completely subsonic
flow, a disturbance initiated somewhere in the flow will eventually propagate
throughout the entire flowfield. These different physical phenomena for subsonic and
supersonic flow are ingrained in the sketches shown in Figs. 4.5a and b, respectively.

Consider an infinitely thin flat plate at an angle of attack of 20° in a Mach 3 free stream. Cal-
culate the magnitude of the flow direction angle ® downstream of the trailing edge, as
sketched in Fig. 4.37.

u Solution
Figure 4.37 illustrates the nature of the flow over the flat plate. The flow properties in each
region shown in Fig. 4.37 are calculated as shown next.

Region 2: This flow has passed through the leading edge expansion wave, where the
deflection angle 8 = a = 20° and M, = 3. From Table A.5, v; = 49.76°. Hence,

vy =v +6 =49.76 + 20 = 69.76°

From Table A.5, for v, = 69.76°, M, = 4.319.

Note: Because @ is generally a very small angle in this example, rather than using the nearest
entry, we will interpolate between entries in the table in order to obtain more accuracy.
From Table A.1, for M| = 3, p,,/p1 = 36.73. For M, = 4.319, p,, /p, = 230.4. Hence,

P (ﬂ) (-’3—2) (p"'> = (L) (1)(36.73) = 0.1594
P1 Do, Do, 14 230'4
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Region 3: This flow has passed through the leading edge shock wave. where M, = 3 and
6 = 20 . From the 6-8-M diagram, 8 = 37.8".

M, = M,sinf =3sin37.8" = 1.839

From Table A2 for M,,, = 1.839,
P 381, P 0795, M, =0.6079
14l Po, X
M,, 0.6079

= 1.989

T Sin(B—6)  sin(37.8 — 20)

Regions 4 and 5: Here we have to set up an iterative solution in order to simultaneously
match the pressures in regions 4 and 5. The steps are:

1. Assume a value for .

2. Calculate the strength of the trailing edge shock for the local compression angle, o + &.
From this, we can obtain py, or alternatively, ps/p;.

3. Calculate the strength of the trailing edge expansion wave for a local expansion angle,
« + &. From this, we can obtain ps, or alternatively, ps/p, .

4. Compare py/py, and ps/p, from the steps 3 and 4. If they are different, assume a new
value of &.

5. Repeat steps 2—4 until ps/p; = ps/pi. When this condition is satisfied, the iteration has
converged, and the flow downstream of the trailing edge is now determined.

Assume ® = (. We know that this is not the answer, but the calculated wave strengths
for this assumption provide a convenient base to start the iterations. For region 4, the oblique

shock angle for M> =4.319and 8 = 20° is = 31.5°.

M,, = Mysin B = 4.319sin31.5" = 2.257

!34—

=5.777

P2

Py P2 (5977)(0.1594) = 0.921
14! P2 P

For region 5, the expansion angle is & = 20°. Since M; = 1.989, v; = 26.08". Then 15 =
26.08 + 20 = 46.08°. Hence, Ms = 2.815. From Table A.1, for M5 = 2.815, p,./ps =21.79.

Ps _ Ps Pos Pos Por _ (

|
— —~—) (15(0.795)(36.73) = 1.05
14 Pos Pos Poy Pl

27.79
Comparing the values of py/p, = 0.921 and ps/p; = 1.05, we need 1o assume & such as to
strengthen both the trailing edge shock and expansion waves. This is done by choosing ¢ such
that line ab in Fig. 4.37 is canted upward slightly. Already we can see that the result will be an
upwash, as discussed earlier.

Assume ® = I": The deflection angle for both waves will be o + ® = 20° + 1° = 21~.
Hence, 8 = 33.6, M,, = 2.39, and p4/p, = 6.498.

Pa _ P2
P P2 P

= (6.498)(0.1594) = 1.036
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For region 5, 6 =21°,vs =v3 +0 =26.08 + 21 +47.08°. Hence, M5 = 2.865. Thus
Pos/Ps =29.98.

Ps _ Ps Pos Pos Poy

1
= (—————> (1)(0.795)(36.73) = 0.974
Pi Dos Pos Poy P1

29.98

Comparing p./p) = 1.036 and ps/p, = 0.974, we see that = 1° is slightly too large.
Since the two iterations carried out here clearly illustrate the technique, rather than carry

out any more iterations, we can interpolate between the cases for & = 0° and ® = 1°. For the

first iteration with & = 0°, the difference between the two pressure ratios is 1.050 — 0.921 =

0.129. For the second iteration with & = 1°, the difference is 0.974 — 1.036 = —0.062. Inter-

polating between these differences, where the correct value of ® would give a zero pressure

difference, we have

0.129

=0+ ———=0.675
+ 0.129 — (—0.062)

Rounding off, we can state that, approximately,

o~ 0.7°

It is important to note that an expansion wave is a strong mechanism for turn-
ing a supersonic flow through large deflection angles. For example, return to the
Prandtl-Meyer function given by Eq. (4.44). In the limit of M — oo, the terms in
Eq. (4.44) involving the inverse tangent become 9¢° because the tan90° — oo.
Hence, from Eq. (4.44)

1
V(c0) = [ Zi—l — 1] 90° = 130.45°
Y=

This means that an initially sonic flow over a flat surface theoretically can be ex-
panded through a maximum deflection angle of 130.45°, as sketched in Fig. 4.39.
The corresponding pressure and temperature downstream of this expansion are both
zero—a physically impossible situation. For upstream Mach numbers larger than
one, the maximum deflection angle is correspondingly smaller. However, the case
shown in Fig. 4.39 clearly demonstrates that large deflection angles can occur
through expansion waves.

In this light, return to Example 4.9 and Fig. 4.12. There, we did not account for
the expansion waves that trail downstream from the upper and lower corners of the
base, and in Example 4.9 we simply assumed that a constant pressure was exerted
over the base of the wedge, equal to freestream pressure. In reality, the fliow down-
stream of the base, and the variation of pressure over the base, is much more com-
plicated than the picture shown in Fig. 4.12. Base flow and the corresponding base
pressure distribution are influenced by flow separation in the base region, which in
turn is governed in part by viscous flow effects that are beyond the scope of this
book. However, in Example 4.17 we make some arbitrary assumptions about the
effect of the corner expansion waves on the base pressure, and recalculate the drag
coefficient for the wedge. In this fashion, we wish to demonstrate the effect that base
pressure can have on the overall drag coefficient.
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My— >

Figure 4.39 | Maximum expansion angle for a
Prandtl-Meyer centered expansion wave.

Consider the 15” half-angle wedge shown in Fig. 4.40. This is the same flow problem sketched
in Fig. 4.12, with the added feature of the expansion waves at the corners of the base. We make
the assumptions that (1) the flow separates at the corners. with the streamlines trailing
downstream of the corners deflected toward the base at an angle of 15° from the horizontal,
as shown in Fig. 4.40, and (2) the base pressure pp is the arithmetic average between the
pressure downstream of the expansion waves, ps, and the freestream pressure, p,. i.e.,
ps = 1/2(ps + p1). We emphasize that both of these assumptions are purely arbitrary;
they represent a qualitative model of the flow with arbitrary numbers, and do not necessarily
reflect the actual quantitative flowfield values that actually exist in the base flow region. On the
basis of the model flow sketched in Fig. 4.40, calculate the drag coefficient of the wedge, and
compare with the result obtained in Example 4.9 where the base pressure was assumed to
equal p;.

E Solution

From Example 4.8, we have these results for the leading edge shock wave and properties in
region 2 behind the shock: 6 = 157,  =32.2°, M,, = 1.6, py/p, = 2.82. From Table A.2,
we obtain M,, = 0.6684. Hence,

M, 0.6684

= — = — = 2.26
sin(f — 8) sin(32.2 — 15)

From Table A.1, for M> = 2.26, p,,/p> = 11.75. From Table A.5, for M, = 2.26, v, =
33.27°. Examining Fig. 4.40, the flow expands from region 2 to region 3 through a total
deflection angle of 15° 4+ 15 = 30°. Hence,

vy = 33.27 4+ 30 = 63.27°
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Figure 4.40 | Sketch for Example 4.17.

From Table A.5, for v; = 63.27° we obtain M3 = 3.82. From Table A.1, for My = 3.82,
Pos/ Py = 119.1. Hence,

Ps _ P3 Pos Py P2

1
= = (——) (1H(11.75)(2.82) = 0.278
13 Doy Poy P2 Pr

119.1

Assume pg = 1/2(p; + p3). Hence

1 1
b _~ (1 + ﬁ) = —(1+0.278) = 0.639
P 2 P 2

From Example 4.9, the drag coefficient for the wedge, with the base pressure now denoted by
P&, is given by

4
ci = (p2 — pp)tan 15°
)’PlM]Z ?
4
= 3 (E—Bﬁ)tanISO
yM;\p D»

(2.82 —0.639) tan 15° = | 0.186

BINEE

The value of ¢, obtained from Example 4.9 was the lower value of 0.155. The present exam-
ple indicates that a 36 percent reduction in base pressure resuits in a 20 percent increase in drag
coefficient.

The result of Example 4.17 illustrates the important effect that base pressure has
on the drag coefficient on the wedge shown in Fig. 4.40. The accurate calculation of
base pressure for real flow situations involving any aerodynamic body shape with a
blunt base is difficult to achieve, even with modern techniques in computational fluid



416 Prandtl's Research on Supersonic Flows and the Origin of the Prandti-Meyer Theory 183

dynamics. The accurate determination of base pressure remains today a state-of-the-
art research problem.

4.16 | HISTORICAL NOTE: PRANDTL’S
EARLY RESEARCH ON SUPERSONIC
FLOWS AND THE ORIGIN OF THE
PRANDTL-MEYER THEORY

The small German city of Gottingen nestles on the Leine River, which winds its
way through lush countryside once part of the great Saxon empire. Géttingen was
chartered in 1211, and quickly became a powerful member of the mercantilistic
Hanseatic League in the fourteenth century. The wall around the town, many narrow
cobblestone streets, and numerous medieval half-timbered houses survive to this day
as reminders of Gottingen’s early origin. However, this quaint appearance belies the
fact that Gottingen is the home of one of the most famous universities in Europe—
the Georgia Augusta University founded in 1737 by King George Il of England
(the Hanover family that ruled England during the eighteenth century was of German
origin). The university, simply known as “Géttingen” throughout the world, has been
the home of many giants of science and mathematics—Gauss, Weber, Riemann,
Planck, Hilbert, Born, Lorentz, Runge, Nernst, and Heisenberg, among others.

One such man, equal in stature to those above, was Ludwig Prandtl. Born in
Friesing, Germany, on February 4, 1875, Prandt]l became a professor of applied me-
chanics at Gottingen in 1904. In that same year, at the Congress of Mathematicians in
Heidelberg, Prandtl introduced his concept of the boundary layer—an approach that
was to revolutionize theoretical fluid mechanics in the twentieth century. Later, dur-
ing the period from 1912 to 1919, he evolved a theoretical approach for calculating lift
and induced drag on finite wings—Prandtl’s lifting line and lifting surface theories.
This work established Prandtl as the leading fluid dynamicist of modern times; he has
clearly been accepted as the father of aerodynamics. Although no Nobel Prize has
ever been awarded to a fluid dynamicist, Prandtl probably came closest to deserving
such an accolade. (See Sec. 9.10 for a more complete biographical sketch of Prandtl.)

It is not recognized by many students that Prandtl also made major contributions
to the theory and understanding of compressible flow. However, in 1905, he built a
small Mach 1.5 supersonic nozzle for the purpose of studying steam turbine flows and
(of all things) the movement of sawdust in sawmills. For the next 3 years, he was cu-
rious about the flow patterns associated with such supersonic nozzles; Fig. 4.41 shows
some stunning photographs made in Prandtl’s laboratory during this period which
clearly illustrate a progression of expansion and oblique shock waves emanating from
the exit of a supersonic nozzle. (Using nomenclature to be introduced in Chap. 5, the
flow progresses from an “underexpanded” nozzle at the top of Fig. 4.41 to an ““over-
expanded” nozzle at the bottom of the figure. At the top of the figure, we see expan-
sion waves; at the bottom are shock waves followed by expansion waves.) The
dramatic aspect of these photographs is that Prandtl was learning about supersonic
Sflow at the same time that the Wright brothers were just introducing practical powered
airplane flight to the world, with maximum velocities no larger than 40 mi/h!
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Figure 4.41 | Schlieren photographs of wave patterns
downstream of the exit of a supersonic nozzle. The
photographs were obtained by Prandtl and Meyer during
1907-1908.
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The observation of such shock and expansion waves naturally prompted Prandtl
to explore their theoretical properties. Consequently, Theodor Meyer, one of
Prandtl’s students at Gottingen, presented his doctoral dissertation in 1908 entitled
“Ueber Zweidimensionale Bewegungsvorgédnge in einem Gas, das mit Ueber-
schallgeschwindigkeit Stromt” (*On the Two-Dimensional Flow Processes in a Gas
Flowing at Supersonic Velocities™). In this dissertation, Meyer presents the first prac-
tical theoretical development of the relations for both expansion waves and oblique
shock waves—essentially the same theory as developed in this chapter. He begins by
first defining a Mach wave and Mach angle as given by Eq. (4.1). Then, starting with
geometry similar to that shown in Fig. 4.32, he derives the Prandtl-Meyer tunction
[see Eq. (4.44) in Sec. 4.14] and tabulates it, not versus Mach number. but rather as
a function of p/p,. (It is interesting to note that the term *“Mach number™ had not yet
been coined:; it was introduced by Jakob Ackeret 20 years later in honor of Ernst
Mach, an Austrian scientist and philosopher who studied high-speed flow for a brief
period in the 1870s. So Mach number is of fairly recent use.) In the same dissertation,
Meyer follows these fundamental results with a companion study of oblique shock
waves. deriving relations similar to those discussed in this chapter, and presenting
limited shock wave tables of wave angle, deflection angle, and pressure ratio. Almost
without fanfare, Meyer ends his paper with a spectacular photograph of internal flow
within a supersonic nozzle, reproduced here as Fig. 4.42. The walls of the nczzle have
been intentionally roughened so that weak waves—essentially Mach waves—will be
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Figure 4.42 | Mach waves in a supersonic nozzle. The waves are generated by roughening the nozzle wall. An
original photograph from Meyer’s Ph.D. dissertation, 1908.
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visible in the schlieren photograph. The reader should marvel over such a picture
being taken in 1908; it has the appearance of coming from a modern supersonic lab-
oratory in the 2000s.

We emphasize that Prandtl’s and Meyer’s work on expansion and oblique shock
waves was contemporary with the normal shock studies of Rayleigh and Taylor in
1910 (see Sec. 3.10). So once again we are reminded of the value of basic research on
problems that appear purely academic at the time. The true practical value of Meyer’s
dissertation did not come to fruition until the advent of supersonic flight in the 1940s.

Throughout subsequent decades, Prandtl maintained his interest in high-speed
compressible flow; for example, his work on compressibility corrections for sub-
sonic flow in the 1920s will be discussed in Sec. 9.9. Moreover, many of his students
went on to distinguish themselves in high-speed flow research, most notably
Theodore von Karman and Adolf Busemann. But this is the essence of other stories,
to be told in later sections.

4.17 | SUMMARY

Whenever a supersonic flow is turned into itself, shock waves can occur; when the
flow is turned away from itself, expansion waves can occur. In either case, if the
wave is infinitely weak, it becomes a Mach wave, which makes an angle p with
respect to the upstream flow direction; y is called the Mach angle, defined as

1

-
= — 4.1
p=sinTl o 4.1

Across an oblique shock wave, the tangential components of velocity in front of
and behind the wave are equal. (However, the tangential components of Mach num-
ber are not the same.) The thermodynamic properties across the oblique shock are
dictated by the normal component of the upstream Mach number M,,,. The values of
p2/p1, P2/01, T2 /Th, 52 — 51, and p,, /p,, across the oblique shock are the same as for
a normal shock wave with an upstream Mach number of M,,. In this fashion, the
normal shock tables in Appendix A.2 can be used for oblique shocks. The value of
M,,, depends on both M, and the wave angle, B, via

M,, = M;sinp 4.7)

In turn, B is related to M| and the flow deflection angle 6 through the #-8-M relation

M?sin’ B — 1 ] @1n

tanf = 2cot 8 |: 5
M{(y +cos2B)+2

In light of this, we can make the following comparison: (1) In Chap. 3, we noted that
the changes across a normal shock depended only on one flow parameter, namely the
upstream Mach number M;. (2) In the present chapter, we note that rwo flow
parameters are needed to uniquely define the changes across an oblique shock. Any
combination of two parameters will do. For example, an oblique shock is uniquely



Problems

defined by any one of the following pairs of parameters: M; and 8. M; and 6, 6 and
B, My and p,/p,, B and p2/p) etc.

For the solution of shock wave problems, especially cases involving shock in-
tersections and reflections, the graphical constructions associated with the shock
polar and the pressure-deflection diagrams are instructional.

For the curved, detached bow shock wave in front of a supersonic blunt body,
the properties at any point immediately behind the shock are given by the oblique
shock relations studied in this chapter, for the values of M| and the local 8. Indeed,
the oblique shock relations studied here apply in general to points immediately be-
hind any curved, three-dimensional shock wave, so long as the component of the up-
stream Mach number normal to the shock at a given point is used to obtain the shock
properties.

The properties through and behind a Prandtl-Meyer expansion fan are dictated
by the differential relation

dg =vM?—1 d—&{ (4.35)

When integrated across the wave, this equation becomes
0 = v(My) — v(M)) (4.45)

where 6, is assumed to be zero and v is the Prandtl-Meyer function given by

~1
(M) = V+ V——(M “h—tan ' VMIZ1 (444
y —
The flow through an expansion wave is isentropic; from the local Mach numbers ob-
tained from the above relations, all other flow properties are given by the isentropic
flow relations discussed in Section 3.5.

PROBLEMS

4.1 Consider an oblique shock wave with a wave angle equal to 35°, Upstream
of the wave, p; = 2000 Ib/ft?, Ty = 520°R, and V| = 3355 ft/s. Calculate
p2, T», V,, and the flow deflection angle.

4.2 Consider a wedge with a half-angle of 10° flying at Mach 2. Calculate the
ratio of total pressures across the shock wave emanating from the leading
edge of the wedge.

4.3 Calculate the maximum surface pressure (in newtons per square meter) that
can be achieved on the forward face of a wedge flying at Mach 3 at standard
sea level conditions (p; = 1.01 x 10° N/m?) with an attached shock wave.

4.4 In the flow past a compression corner, the upstream Mach number and
pressure are 3.5 and 1 atm, respectively. Downstream of the corner, the
pressure is 5.48 atm. Calculate the deflection angle of the corner.

4.5 Consider a 20° half-angle wedge in a supersonic flow at Mach 3 at standard
sea level conditions (p; = 21 16 1b/ft> and T; = 519°R). Calculate the wave
angle, and the surface pressure, temperature, and Mach number.
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4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

A supersonic stream at M; = 3.6 flows past a compression corner with a
deflection angle of 20°. The incident shock wave is reflected from an
opposite wall which is parallel to the upstream supersonic flow, as sketched
in Fig. 4.18. Calculate the angle of the reflected shock relative to the
straight wall.

An incident shock wave with wave angle = 30° impinges on a straight wall.
If the upstream fiow properties are M; = 2.8, p; = latm, and T} = 300K,
calculate the pressure, temperature, Mach number, and total pressure
downstream of the reflected wave.

Consider a streamline with the properties M; = 4.0 and p; = 1 atm. Consider
also the following two different shock structures encountered by such a
streamline: (a) a single normal shock wave, and (b) an oblique shock with

B = 40°, followed by a normal shock. Calculate and compare the total
pressure behind the shock structure of each (a) and (b) above. From this
comparison, can you deduce a general principle concerning the efficiency of
a single normal shock in relation to an oblique shock plus normal shock in
decelerating a supersonic flow to subsonic speeds (which, for example, is the
purpose of an inlet of a conventional jet engine)?

Consider the intersection of two shocks of opposite families, as sketched in
Fig. 4.23. For M| = 3, p; = latm, 6, = 20°, and 63 = 15°, calculate the
pressure in regions 4 and 4’, and the flow direction &, behind the refracted
shocks.

Consider the flow past a 30° expansion corner, as sketched in Fig. 4.32. The
upstream conditions are M, = 2, p; = 3atm, and 7; = 400K. Calculate the
following downstream conditions: M, p2, T, T,,, and p,,.

For a given Prandtl-Meyer expansion, the upstream Mach number is 3 and
the pressure ratio across the wave is p,/p; = 0.4. Calculate the angles of
the forward and rearward Mach lines of the expansion fan relative to the
free-stream direction.

Consider a supersonic flow with an upstream Mach number of 4 and pressure
of 1 atm. This flow is first expanded around an expansion corner with

# = 15°, and then compressed through a compression corner with equal angle
# = 15° so that it is returned to its original upstream direction. Calculate the
Mach number and pressure downstream of the compression corner.

Consider the incident and reflected shock waves as sketched in Fig. 4.17.
Show by means of sketches how you would use shock polars to solve for

the reflected wave properties.

Consider a supersonic flow past a compression corner with § = 20°. The
upstream properties are M| = 3 and p; = 21161b/ft>. A Pitot tube is inserted
in the flow downstream of the corner. Calculate the value of pressure
measured by the Pitot tube.

Can shock polars be used to solve the intersection of shocks of opposite
families, as sketched in Fig. 4.23? Explain.



4.16

4.17

4.18

4.19

4.20

4.21

Problems

Using shock-expansion theory, calculate the lift and drag (in pounds) on a
symmetrical diamond airfoil of semiangle ¢ = 15" (see Fig. 4.35) at an angle
of attack to the free stream of 5° when the upstream Mach number and
pressure are 2.0 and 2116 Ib/ft?, respectively. The maximum thickness of the
airfoil is + = 0.5 ft. Assume a unit length of 1 ft in the span direction
(perpendicular to the page in Fig. 4.35).

Consider a flat plate with a chord length (from leading to trailing edge) of

1 m. The free-stream flow properties are M| = 3, p; = latm, and 7} =

270 K. Using shock-expansion theory, tabulate and plot on graph paper these
properties as functions of angle of attack from 0 to 30° (use increments of 5%):

Pressure on the top surface
Pressure on the bottom surface
Temperature on the top surface
Temperature on the bottom surface
Lift per unit span

Drag per unit span

Lift/drag ratio

@ e e 6o R

(Note: The results from this problem will be used for comparison with linear
supersonic theory in Chap. 9.)

A flat plate is immersed in a Mach 2 flow at standard sea level conditions at
an angle of attack of 2°. Assuming the same shear stress distribution given in
Example 1.8, calculate, per unit span: (a) lift, (b) wave drag, and (c¢) skin
friction drag. What percentage of the total drag is skin-friction drag? Compare
this percentage with the 10° angle of attack case discussed in Example 1.8.
Calculate the drag coefficient for a wedge with a 20° half-angle at Mach 4.
Assume the base pressure is free-stream pressure.

The flow of a chemically reacting gas is sometimes approximated by the use
of relations obtained assuming a calorically perfect gas, such as in this
chapter, but using an “effective gamma”, a ratio of specific heats less than 1.4.
Consider the Mach 3 flow of chemically reacting air, where the flow is
approximated by a ratio of specific heats equal to 1.2. If this gas flows over a
compression corner with a deflection angle of 20 degrees, calculate the wave
angle of the oblique shock. Compare this result with that for ordinary air with
a ratio of specific heats equal to 1.4. What conclusion can you make about the
general effect of a chemically reacting gas on wave angle?

For the two cases treated in Problem 4.20, calculate and compare the pressure
ratio (shock strength) across the oblique shock wave. What can you conclude
about the effect of a chemically reacting gas on shock strength?
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CHAPTER

Quasi-One-Dimensional Flow

The whole problem of aerodynamics, both subsonic and supersonic, may be
summed up in one sentence: Aerodvnamics is the science of slowing-down the air
without loss, after it has once been accelerated by any device, such as a wing or a
wind tunnel. It is thus good aerodvhamic practice to avoid accelerating the air

more than is necessary.
W. F. Hilton, 1951
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PREVIEW BOX
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two- or three-dimensional shape; such as sketched in~ very special and important relation for quasi-one-
seems contradictory. We will discuss and re-  dimensional flow called the area-velocity relation,

tco traxhcuo ,m the present chapter which will tell us a lot about the physics of such flows.

: With these equations and relations, we go to the main
features of this chapter, the study of flows through noz-
zles and diffusers. The material of this chapter is pivotal
to many applications in compressible flow—please pay
close attention to it.

ure 5.2 | An’ air raft modcl mmmted in the test section of the Ames 6 x 6-foot supersonic wind tunnel. The test
section s labeled as item 2 in Fig. 5.1.

(continued on next page)
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(continued from page 193)

Figure 5.4 | Quasi-one-dimensional flow.
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QUASI-ONE-DIMENSIONAL FLOW

Fundamental governing Area-velocity
equations relation
Continuity
Momentum
Energy
Nozzles
Diffusers

Figure 5.5 | Roadmap for Chapter 5.

5.1 INTRODUCTION

The distinction between one-dimensional flow and quasi-one-dimensional flow was
discussed in Sec. 3.1, which should be reviewed by the reader before proceeding fur-
ther. In Sec. 3.1, as throughout all of Chap. 3, one-dimensional flow was treated as
strictly constant-area flow. In the present chapter, this restriction will be relaxed by
allowing the streamtube area A to vary with distance x, as shown in Figs. 3.5h and
5.4. At the same time, we will continue to assume that all flow properties are uniform
across any given cross section of the flow, and hence are functions of x only (and time
t if the flow is unsteady). Such a flow, where A = A(x). p = p(x). p = p(x). and
V =u = u(x) for steady flow, is defined as quasi-one-dimmensional flow. For this
flow, it is the area change that causes the flow properties to vary as a function of x; in
contrast, for the purely one-dimensional constant area flow treated in Chap. 3. it is a
normal shock, heat addition and/or friction that causes the flow properties to vary as
a function of x. In Sec. 5.2, the governing equations for steady quasi-one-dimensional
flow will be derived by applying our conservation principles to a control volume of
variable area. In the process, the reader is cautioned that quasi-one-dimensional flow
is an approximation—the flow in the variable-area streamtube shown in Figs. 3.5b
and 5.4 is (strictly speaking) three-dimensional, and its exact solution must be carried
out by methods such as those discussed in Chaps. 11 and 12. However, for a wide
variety of engineering problems, such as the study of fiow through wind tunnels and
rocket engines, quasi-one-dimensional results are frequently sufficient. Indeed, the
material developed in this chapter is used virtually daily by practicing gas dynami-
cists and aerodynamicists, and is indispensable toward a full understanding of com-
pressible flow.
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5.2 1 GOVERNING EQUATIONS

Let us first examine the physical implications of the assumption of quasi-one-
dimensional flow. Return to Fig. 3.5/ for a moment, where the actual physical flow
through the variable-area duct is three-dimensional, and the flow properties vary as
a function of x, y, and z. Now examine Fig. 5.4, which illustrates the quasi-one-
dimensional assumption that the flow through the variable-area duct varies only as a
function of x, i.e., u = u(x), p(x), etc. This is tantamount to assuming that the flow
properties are uniform across any given cross section of area A, and that they repre-
sent values that are some kind of mean of the actual flow properties distributed over
the cross section. It is clear that quasi-one-dimensional flow is an approximation to
the actual physics of the flow.

On the other hand, we obtain in this section the governing equations for quasi-one-
dimensional flow which exactly enforce mass conservation, Newton’s second law,
and the first law of thermodynamics for such a flow. Hence, the equations are not
approximate—they are exact representations of our conservation equations applied to
a physical model that is approximate. Please keep in mind that the equations derived in
this section exactly enforce our basic flow conservation principles; there are no com-
promises here in regard to the overall physical integrity of the flow. We preserve this
physical integrity by utilizing the integral forms of the conservation equations ob-
tained in Chap. 2, applied in a mathematically exact manner to the model of the flow
shown in Fig. 5.4, which is physically approximate. Let us see how this is done.

Algebraic equations for steady quasi-one-dimensional flow can be obtained
by applying the integral form of the conservation equations to the variable-area con-
trol volume sketched in Fig. 5.6. For example, the continuity equation, Eq. (2.2),
repeated here for convenience,

Control surface S

i

|
Uy | uy

!
D
-—L—>: Control volume V' ———Iiz-y
T, T,
Ay A,

|
®©

{

©)

Figure 5.6 | Finite control volume for
quasi-one-dimensional flow.



5.2 Governing Equations

when integrated over the control volume in Fig. 5.6 leads, for steady flow, directly to

piutAy = prus Ay (5.1

This is the continuity equation for steady quasi-one-dimensional flow. Note that in
Eq. (5.1) the term p u; A is the surface integral over the cross section at location 1,
and pyusAj is the surface integral over the cross section at location 2. The surface
integral taken over the side of the control surface between locations 1 and 2 is zero,
because the control surface is a streamtube; hence V is assumed oriented along the
surface, and hence V+ dS = 0 along the side.

The integral form of the momentum equation, repeated from Eq. (2.11), is

3oV
#(pv-dS)V+ﬁf%—)d7'=ﬁpfd‘/;#pds
N A 7 s

Applied to Fig. 5.6, assuming steady flow and no body forces, it directly becomes

Ay
PA+ pui AL+ f pdA = prAy + prusAs (5.2)

Ay

This is the momentum equation for steady quasi-one-dimensional flow. Note that it
is not strictly an algebraic equation because of the integral term which represents the
pressure force on the sides of the control surface between locations 1 and 2.

The integral form of the energy equation, repeated from Eq. (2.20), is

ﬁqu‘/'—#pv-dwrﬁp(fw)d%

/ N 7
9 v? y?2
= — — d7l’ — |V dS
ﬁar["(ﬁzﬂ +#‘)(”2>
A S

Applied to Fig. 5.6, and assuming steady adiabatic flow with no body forces, it di-
rectly yields

2

2
U us
—(=pru1 Ay + pausAz) = p (61 + 7‘) (—u 1 Ay) + p2 (62 + f) us Az

Rearranging,

2 2
u u
P1u1AL + prul A <€1 + 7‘) = P2 Ay + prir A <€2 + —;) (5.3)

Divide Eq. (5.3) by (5.1):

2 2
1 P2 Us .
d QP -2 5.4
py > s +e + 3 (5.4)
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Noting that & = e + p/o, Eq. (5.4) becomes

u2 u2
B4+ =L = py 4 22 5.5
1-!-2 2+2 (5.5)

This is the energy equation for steady adiabatic quasi-one-dimensional flow—it
states that the total enthalpy is constant along the flow:

h, = const (5.6)

Note that Egs. (5.5) and (5.6) are identical to the adiabatic one-dimensional en-
ergy equation derived in Chap. 3 [see Eq. (3.40)]. Indeed, this is a general result; in
any adiabatic steady flow, the total enthalpy is constant along a streamline—a result
that will be proven in Chap. 6. Also note that Egs. (5.1) and (5.2), when applied to the
special case where A; = A;, reduce to the corresponding one-dimensional results
expressed in Eqgs. (3.2) and (3.5).

In Chap. 6, the general conservation laws will be expressed in differential rather
than integral or algebraic forms, as done so far. As a precursor to this, differential
expressions for the steady quasi-one-dimensional continuity, momentum, and energy
equations will be of use to us now. For example, from Eq. (5.1),

puA = const

Hence,

d(puA) =0 (5.7

To obtain a differential form of the momentum equation, apply Eq. (5.2) to the
infinitesimal control volume sketched in Fig. 5.7, where the length in the x direction
is dx:

pA+ pulA+ pdA = (p+dp)(A+dA) + (p +dp)(u + du)*(A + dA)
Dropping all second-order terms involving products of differentials, this becomes
Adp+ Au*dp + pu? dA +2puAdu =0 (5.8)
Expanding Eq. (5.7), and multiplying by u,
puldA + puAdu+ Au’dp =0

Subtracting this equation from Eq. (5.8), we obtain

dp = —pudu (5.9)

Equation (5.9) is called Euler’s equation, to be discussed in Sec. 6.4. Finally, a dif-
ferential form of the energy equation is obtained from Eq. (5.5), which states that

2
u

h + — = const
+ 2
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Hence,

dh+udu=0 (5.10)

To reinforce the comments made at the beginning of this section, we emphasize
that Eqs. (5.1), (5.2), (5.5), (5.7), (5.9), and (5.10) are exact representations of
physics as applied to the approximate model of quasi-one-dimensional flow. So the
basic fundamental physical principles stated in Chap. 2 are not compromised here.
The only compromise with the true nature of the flow is the use of the simplified
model of quasi-one-dimensional flow.

Return to the roadmap in Fig. 5.5. We have completed the left column, and we are
now ready to use the fundamental governing equations for quasi-one-dimensional
flow to study the properties of nozzle and diffuser flows. However, before going to
these applications, we move to the right side of the roadmap and obtain the area-
velocity relation. This relation is vital to understanding the physics of the flow, and we
need this understanding before we go to the applications.

5.3 AREA-VELOCITY RELATION

A wealth of physical information regarding quasi-one-dimensional flow can be ob-
tained from a particular combination of the differential forms of the conservation
equations presented at the end of Sec. 5.2 as shown next. From Eq. (5.7),

dp ~du dA

p ; a 0 (5.11)

To eliminate dp/p from Eq. (5.11), consider Eq. (5.9):
d
_[Z:@d_p:—udu (5.12)

pdpp

Recall that we are considering adiabatic, inviscid flow, i.e., there are no dissipative
mechanisms such as friction, thermal conduction, or diffusion acting on the flow.
Thus, the flow is isentropic. Hence, any change in pressure, dp, in the flow is ac-
companied by a corresponding isentropic change in density, dp. Therefore, we can

write

d ) .

(Y Z @ (5.13)
dp ap/,

Combining Eqgs. (5.12) and (5.13),

d
az—p = —udu
or dp _ _udu _ _“zzd” Ve (5.14)
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% u decreasing
r————————

u decreasing
—————————- —————

u increasing M>1
Figure 5.8 | Flow in converging and diverging ducts.

Substituting Eq. (5.14) into Eq. (5.11),

— =M

dA 2 1)d—” (5.15)
A u

Equation (5.15) is an important result. It is called the area-velocity relation, and it
tells us this information:

1. For M — 0, which in the limit corresponds to incompressible flow, Eq. (5.15)
shows that Au = const. This is the familiar continuity equation for
incompressible flow.

2. For0 < M < 1 (subsonic flow), an increase in velocity (positive du) is
associated with a decrease in area (negative d A), and vice versa. Therefore,
the familiar result from incompressible flow that the velocity increases in a
converging duct and decreases in a diverging duct still holds true for subsonic
compressible flow (see top of Fig. 5.8).

3. For M > 1 (supersonic flow), an increase in velocity is associated with an
increase in area, and vice versa. Hence, we have a striking difference in
comparison to subsonic flow. For supersonic flow, the velocity increases in a
diverging duct and decreases in a converging duct (see bottom of Fig. 5.8).

4. For M =1 (sonic flow), Eq. (5.15) yields dA/A = 0, which mathematically
corresponds to a minimum or maximum in the area distribution. The minimum
in area is the only physically realistic solution, as described next.

These results clearly show that for a gas to expand isentropically from subsonic
to supersonic speeds, it must flow through a convergent-divergent duct (or stream-
tube), as sketched at the top of Fig. 5.9. Moreover, at the minimum area that divides
the convergent and divergent sections of the duct, we know from item 4 above that the
flow must be sonic. This minimum area is called a throat. Conversely, for a gas
to compress isentropically from supersonic to subsonic speeds, it must also flow
through a convergent-divergent duct, with a throat where sonic flow occurs, as
sketched at the bottom of Fig. 5.9.

From this discussion, we recognize why rocket engines have large, bell-like
nozzle shapes as sketched in Fig. 5.10—to expand the exhaust gases to high-velocity,
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Figure 5.9 | Flow in a convergent-
divergent duct.
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Figure 5.10 | Schematic of a rocket engine.
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supersonic speeds. This bell-like shape is clearly evident in the photograph of the
space shuttle main engine shown in Fig 5.3. Moreover, we can infer the configuration
of a supersonic wind tunnel, which is designed to first expand a stagnant gas to su-
personic speeds for acrodynamic testing, and then compress the supersonic stream
back to a low-speed subsonic flow before exhausting it to the atmosphere. This gen-
eral configuration is illustrated in Fig. 5.11. Stagnant gas is taken from a reservoir
and expanded to high subsonic velocities in the convergent portion of the nozzle. At
the minimum area (the first throat), sonic flow is achieved. Downstream of the throat,
the flow goes supersonic in the divergent portion of the nozzle. At the end of the noz-
zle, designed to achieve a specified Mach number. the supersonic flow enters the test
section. where a test mode! or other experimental device is usually situated. Down-
stream of the test section, the supersonic flow enters a diffuser, where it is slowed
down in a convergent duct to sonic flow at the second throat, and then further slowed
to low subsonic speeds in a divergent duct. finally being exhausted to the atmosphere.
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Figure 5.11 | Schematic of a supersonic wind tunnel.

This discussion, along with Fig. 5.11, is a simplistic view of real supersonic wind
tunnels, but it serves to illustrate the basic phenomena as revealed by the area-
velocity relation, Eq. (5.15). Also note that a convergent-divergent nozzle is some-
times called a de Laval (or Laval) nozzle, after Carl G. P. de Laval, who first used
such a configuration in his steam turbines in the late nineteenth century, as described
in Secs. 1.1 and 5.8.

The derivation of Eq. (5.15) utilized only the basic conservation equations—no
assumption as to the type of gas was made. Hence, Eq. (5.15) is a general relation
which holds for real gases and chemically reacting gases, as well as for a perfect
gas—as long as the flow is isentropic. We will visit this matter again in Chap. 17.

The area-velocity relation is a differential relation, and in order to make quanti-
tative use of it, we need to integrate Eq. (5.15). However, there is a more direct way
of obtaining quantitative relations for quasi-one-dimensional flow, which we will see
in the next section. The primary importance of the area-velocity relation is the in-
valuable physical information it provides, as we have already discussed.

We now move to the bottom of our roadmap in Fig. 5.5. Using the fundamental
governing equations as well as the physical information provided by the area-velocity
relation, we examine the first of the two central applications in this chapter—flows
through nozzles.

5.4 1 NOZZLES

The analysis of flows through variable-area ducts in a general sense requires numer-
ical solutions such as those to be discussed in Chap. 17. However, based on our ex-
perience obtained in Chaps. 3 and 4, we suspect (correctly) that we can obtain
closed-form results for the case of a calorically perfect gas. We will divide our dis-
cussion into two parts: (1) purely isentropic subsonic-supersonic flow through noz-
zles and (2) the effect of different pressure ratios across nozzles.

5.4.1 Isentropic Subsonic-Supersonic Flow of a Perfect
Gas through Nozzles

Consider the duct shown in Fig. 5.12. At the throat, the flow is sonic. Hence, denot-
ing conditions at sonic speed by an asterisk, we have, at the throat, M* =1 and
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A*
M* =1
u* =g*

g ——

Figure 5.12 | Geometry for
derivation of the area Mach
number relation.

u™ = a*. The area of the throat is A*. At any other section of the duct, the local area,
Mach number, and velocity are A, M, and u, respectively. Apply Eq. (5.1) between
these two locations:

put AT = puA (5.16)

Since u* = a*, Eq. (5.16) becomes

= ——— 5.17
A (5.17)

A _prat _ ptp,at
u P pou

where p, is the stagnation density defined in Sec. 3.4, and is constant throughout the
isentropic flow. Repeating Eq. (3.31),

, —1 I/{y=1
&Z(H_—-Mv
Yol 2

and apply this to sonic conditions, we have

Po + ] 1ty=b
F:GT» (5.18)
Also, by definition, and from Eq. (3.37),
1
u\2 2 —2}_ M’
(——*) =M*" = — =T (5.19)
a 1+
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Squaring Eq. (5.17), and substituting Eqgs. (3.31), (5.18), and (5.19), we have
A2__ o \2 [\ [ a*\?
A*) T\ po P u
y—1

2 2/(y=1) _ 2= [ 1+ F—M?
(#)-GH) ()
A* y+1 2 y + lM2

2

A 2 1 2 y—1 ) (y+1)/(yr-1
(%) =l (#5500 (520

Equation (5.20) is called the area—Mach number relation, and it contains a striking
result. Turned inside out, Eq. (5.20) tells us that M = f(A/A*), i.e., the Mach num-
ber at any location in the duct is a function of the ratio of the local duct area to the
sonic throat area. As seen from Eq. (5.15), A must be greater than or at least equal to
A*; the case where A < A* is physically not possible in an isentropic flow. Also,
from Eq. (5.20) there are two values of M that correspond to a given A/A* > 1, a
subsonic and a supersonic value. The solution of Eq. (5.20) is plotted in Fig. 5.13,

40F
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20F
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Mach number M
T
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03}

8.0 10.0
Area ratio, A/4*

Figure 5.13 | Area-Mach number relation.
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Figure 5.14 | Isentropic supersonic nozzle flow.

which clearly delineates the subsonic and supersonic branches. Values of A/A* as a
function of M are tabulated in Table A.1 for both subsonic and supersonic flow.
Consider a given convergent-divergent nozzle, as sketched in Fig. 5.14a. Assume
that the area ratio at the inlet A;/A* is very large, A;/A* — 00, and that the inlet is fed
with gas from a large reservoir at pressure and temperature p, and 7, respectively.
Because of the large inlet area ratio, M = 0; hence p, and T, are essentially stagna-
tion (or total) values. (The Mach number cannot be precisely zero in the reservoir,
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or else there would be no mass flow through the nozzle. It is a finite value, but small
enough to assume that it is essentially zero.) Furthermore, assume that the given
convergent-divergent nozzle expands the flow isentropically to supersonic speeds at
the exit. For the given nozzle, there is only one possible isentropic solution for super-
sonic flow, and Eq. (5.20) is the key to this solution. In the convergent portion of the
nozzle, the subsonic flow is accelerated, with the subsonic value of M dictated by the
local value of A/A* as given by the lower branch of Fig. 5.13. The consequent vari-
ation of Mach number with distance x along the nozzle is sketched in Fig. 5.14b. At
the throat, where the throat area A, = A*, M = 1. In the divergent portion of the
nozzle, the flow expands supersonically, with the supersonic value of M dictated by
the local value of A/A* as given by the upper branch of Fig. 5.13. This variation of
M with x in the divergent nozzle is also sketched in Fig. 5.14b. Once the variation of
Mach number through the nozzle is known, the variations of static temperature, pres-
sure, and density follow from Egs. (3.28), (3.30), and (3.31), respectively. The result-
ing variations of p and T are shown in Figs. 5.14¢ and d, respectively. Note that the
pressure, density, and temperature decrease continuously throughout the nozzle. Also
note that the exit pressure, density, and temperature ratios, p./p,, pe./p,, and T,/ T,
depend only on the exit area ratio, A,/A* via Eq. (5.20). If the nozzle is part of a
supersonic wind tunnel, then the test section conditions are completely determined
by A./A* (a geometrical design condition) and p, and T, (gas properties in the
reservoir).

5.4.2 The Effect of Different Pressure Ratios Across a Given Nozzle

If a convergent-divergent nozzle is simply placed on a table, and nothing else is done,
obviously nothing is going to happen; the air is not going to start rushing through the
nozzle of its own accord. To accelerate a gas, a pressure difference must be exerted,
as clearly stated by Euler’s equation, Eq. (5.9). Therefore, in order to establish a flow
through any duct, the exit pressure must be lower than the inlet pressure, i.e.,
Pe/Po < 1. Indeed, for completely shockfree isentropic supersonic flow to exist in
the nozzle of Fig. 5.14a, the exit pressure ratio must be precisely the value of p, /p,
shown in Fig. 5.14c.

What happens when p, /p, is not the precise value as dictated by Fig. 5.14¢? In
other words, what happens when the backpressure downstream of the nozzle exit is
independently governed (say by exhausting into an infinite reservoir with control-
lable pressure)? Consider a convergent-divergent nozzle as sketched in Fig. 5.15a.
Assume that no flow exists ir the nozzle, hence p, = p,. Now assume that p, is
minutely reduced below p,. This small pressure difference will cause a small wind
to blow through the duct at low subsonic speeds. The local Mach number will in-
crease slightly through the convergent portion of the nozzle, reaching a maximum at
the throat, as shown by curve 1 of Fig. 5.15b. This maximum will not be sonic; in-
deed it will be a low subsonic value. Keep in mind that the value A* defined earlier
is the sonic throat area, i.e., that area where M = 1. In the case we are now consid-
ering, where M < 1 at the minimum-area section of the duct, the real throat area
of the duct, A, is larger than A*, which for completely subsonic flow takes on the
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Figure 5.15 | Subsonic flow in a convergent-divergent nozzle.

character of a reference quantity different from the actual geometric throat arca.
Downstream of the throat, the subsonic flow encounters a diverging duct. and hence
M decreases as shown in Fig. 5.15b. The corresponding variation of static pressure is
given by curve | in Fig. 5.15¢. Now assume p, is further reduced. This stronger pres-
sure ratio between the inlet and exit will now accelerate the flow more, and the vari-
ations of subsonic Mach number and static pressure through the duct will be larger,
as indicated by curve 2 in Figs. 5.15b and ¢. If p, is further reduced, there will be
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some value of p, at which the flow will just barely go sonic at the throat, as given by
the curve 3 in Figs. 5.15b and c. In this case, A, = A*. Note that all the cases
sketched in Figs 5.15b6 and ¢ are subsonic flows. Hence, for subsonic flow through
the convergent-divergent nozzle shown in Fig. 5.15a4, there are an infinite number of
isentropic solutions, where both p,/p, and A/A, are the controlling factors for the
local flow properties at any given section. This is a direct contrast with the supersonic
case discussed in Sec. 5.4.1, where only one isentropic solution exists for a given
duct, and where A/A* becomes the only controlling factor for the local flow proper-
ties (relative to reservoir properties).

For the cases shown in Figs. 5.15a, b, and ¢, the mass flow through the duct in-
creases as p, decreases. This mass flow can be calculated by evaluating Eq. (5.1)
at the throat, m = p; A,u,. When p, is reduced to p,.,, where sonic flow is attained
at the throat, then m = p*A*a*. If p, is now reduced further, p, < p.,, the Mach
number at the throat cannot increase beyond M = 1; this is dictated by Eq. (5.15).
Hence, the flow properties at the throat, and indeed throughout the entire subsonic
section of the duct, become “frozen” when p, < p,,, i.e., the subsonic flow be-
comes unaffected and the mass flow remains constant for p, < p,,. This condition,
after sonic flow is attained at the throat, is called choked flow. No matter how low p,
is made, after the flow becomes choked, the mass flow remains constant. This phe-
nomenon is illustrated in Fig. 5.16. Note from Eq. (3.35) that sonic flow at the throat
corresponds to a pressure ratio p*/p, = 0.528 for y = 1.4; however, because of the
divergent duct downstream of the throat, the value of p,, /p, required to attain sonic
flow at the throat is larger than 0.528, as shown in Figs. 5.15¢ and 5.16.

What happens in the duct when p, is reduced below p,.,? In the convergent
portion, as we stated, nothing happens. The flow properties remain as given by the
subsonic portion of curve 3 in Fig. 5.15b and ¢. However, a lot happens in the di-
vergent portion of the duct. No isentropic solution is allowed in the divergent duct
until p, is adequately reduced to the specified low value dictated by Fig. 5.14c. For
values of exit pressure above this, but below p,,, a normal shock wave exists inside
the divergent duct. This situation is sketched in Fig. 5.17. Let the exit pressure be
given by p,,. There is a region of supersonic flow ahead of the shock. Behind the

1

Mass flow
Choked flow

|
|
|
{
|
[
|
|
|
]

|
0 0528p, P, 2,

Exit pressure

Figure 5.16 | Variation of mass flow with exit
pressure; illustration of choked flow.
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Figure 5.17 | Flow with a shock wave inside a convergent-divergent nozzle.

shock, the flow is subsonic, hence the Mach number decreases towards the exit and
the static pressure increases to p,, at the exit. The location of the normal shock
wave in the duct is determined by the requirement that the increase of static pres-
sure across the wave plus that in the divergent portion of the subsonic flow behind
the shock be just right to achieve p,, at the exit. As the exit pressure is reduced fur-
ther, the normal shock wave will move downstream, closer to the nozzle exit. It
will stand precisely at the exit when p, = p,,, where p,. is the static pressure
behind a normal shock at the design Mach number of the nozzle. This is illustrated
in Figs. 5.18a, b, and c. In Fig. 5.18c, p,, represents the proper isentropic value for
the design exit Mach number, which exists immediately upstream of the normal
shock wave standing at the exit. When the downstream backpressure pyg is further
decreased such that p,, < pp < p.,, the flow inside the nozzle is fully supersonic
and isentropic, with the behavior the same as given earlier in Figs. 5.14 a, b, c,
and d. The increase to the backpressure takes place across an oblique shock at-
tached to the nozzle exit, but outside the duct itself. This is sketched in Fig. 5.184.
If the backpressure is further reduced below p., equilibration of the flow takes
place across expansion waves outside the duct, as shown in Fig. 5.18e.

When the situation in Fig. 5.184d exists, the nozzle is said to be overexpanded,
because the pressure at the exit has expanded below the back pressure, p,, < ps.
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Figure 5.18 | Flow with shock and expansion waves at the exit
of a convergent-divergent nozzle.

Conversely, when the situation in Fig. 5.18e exists, the nozzle is said to be underex-
panded, because the exit pressure is higher than the back pressure, p,, > pg, and
hence the flow is capable of additional expansion after leaving the nozzle.

The results of this section are particularly important and useful. The reader
should make certain to reread this section until he or she feels comfortable with
the concepts and results before proceeding further. Also, keep in mind that these



5.4 Nozzles

quasi-one-dimensional considerations allow the analysis of cross-sectional averaged
properties inside a nozzle of given shape. They do not tell us much about how to de-
sign the contour of a nozzle—especially that for a supersonic nozzle in order to en-
sure shockfree, isentropic flow. If the shape of the walls of a supersonic nozzle is not
just right, oblique shock waves can occur inside the nozzle. The proper contour for a
supersonic nozzle can be determined from the method of characteristics, to be dis-
cussed in Chap. 1.

Consider the isentropic subsonic-supersonic flow through a convergent-divergent nozzle. The
reservoir pressure and temperature are 10 atm and 300 K, respectively. There are two locations
in the nozzle where A/A™ = 6: one in the convergent section and the other in the divergent
section. At each location, calculate M, p, T, and u.

m Solution
In the convergent section, the flow is subsonic. From the front of Table A.1, for subsonic flow

with A/A* = 6:| M = 0.097|, p,/p = 1.006, and T,/T = 1.002. Hence

p="Lp, = 1.006)"(10) = | 9.94 atm

o

T

T
7 To = (1.002) 1(300) = | 299.4 K

o

a=\yRT = /(1.4)(287)(299.4) = 346.8 m/s

u = Ma = (0.097)(346.8) = | 33.6m/s

In the divergent section, the flow is supersonic. From the supersonic section of Table A. 1, for

A/A*=6:|M =3.368|, p,/p = 63.13,and T,/ T = 3.269. Hence

p="Lp, = (63.13) "(10) = | 0.1584atm

o

T
T = ?T{) =(3.269)"'(300) = | 91.77 K

o0

a= \/)/RT =/ (1.4)(287)(91.77) = 192.0m/s

u = Ma = (3.368)(192.0) = | 646.7m/s

A supersonic wind tunnel is designed to produce Mach 2.5 flow in the test section with stan-
dard sea level conditions. Calculate the exit area ratio and reservoir conditions necessary to
achieve these design conditions.

H Solution
From Table A.1, for M, = 2.5:

AJA =263T | po/p.=17.09 T,/T, =225

211

EXAMPLE 5.1

EXAMPLE 5.2



212

EXAMPLE 5.3

CHAPTER 5 Quasi-One-Dimensional Flow

Also, at standard sea level conditions, p, = | atm and 7, = 288 K. Hence,

po =22 p, = (17.09)(1) = | 17.09atm
De

T,
T, = TTe = (2.25)(288) = | 648K

e

Consider a rocket engine burning hydrogen and oxygen; the combustion chamber temperature
and pressure are 3517 K and 25 atm, respectively. The molecular weight of the chemically
reacting gas in the combustion chamber is 16, and y = 1.22. The pressure at the exit of the
convergent-divergent rocket nozzle is 1.174 x 1072 atm. The area of the throat is 0.4 m?.
Assuming a calorically perfect gas and isentropic flow, calculate: (a) the exit Mach number,
(b) the exit velocity, (c) the mass flow through the nozzle, and (d) the area of the exit.

N Solution

Note that for this problem, where y = 1.22, the compressible flow tables in the appendix
cannot be used since the tables are calculated for y = 1.4, Thus, to solve this problem, we
have to use the governing equations directly.

a. To obtain the exit Mach number, use the isentropic relation given by Eq. (3.30):

Y — 1 yir—n
Lo _ (1 + V—Mj)
Pe 2

w2 (2T s 2 N e
=31\ 022 |\ 1174 x 10-2

M, =521

To obtain the exit velocity:

r=0/y -2\ 0-180
L _(pre _ (1174 %1077 = 0.2517
T) po 25
T,

=0.2517T, = 0.2517(3517) = 885.3K

From Sec. 1.4, we know that
= %—8314—51961/1( K
T

a, = /Yy RT, = /(1.22)(519.6)(885.3) = 749.1 m/s

Ve = M.a, = (5.21)(749.1) = | 3903 m/s

c. Since we are given A* = 0.4 m?, let us calculate the mass flow at the throat. First, obtain

p, from the equation of state:

Po _ (25)(1.01 x 10°)
RT, ~ (519.6)(3517)

Do = = 1.382kg/m’
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From Eq. (3.36)

* 2 1y =1 2 4.545
LA L == =0.622
Po y+1 2.22

p* =0.622p, = (0.622)(1.382) = 0.860kg/m*
From Eq. (3.34)
T* 2 2

T, y+1 222

=09

T" =097, = (0.9)(3517) = 3168 K

*

a* = JyRT* = /(1.22)(519.6)(3168) = 1417 m/s

m=pAV = p*A*a* = (0.860)(0.4)(1417) = | 487.4 kg/s
d. At the exit, since m = const,

m=p,A.V, = 487.4kg/s

p. (1174 x 1072)(1.01 x 10%)

e = = 0.00258 kg/m*
RT, (519.6)(885.3)

L . s S P
o.Ve  (0.00258)(3903)

EXAMPLE 5.4

Consider the flow through a convergent-divergent duct with an exit-to-throat area ratio of 2.
The reservoir pressure is 1 atm, and the exit pressure is 0.95 atm. Calculate the Mach numbers
at the throat and at the exit.

N Solution

First, let us analyze this problem. If the flow were supersonic in the divergent portion. then
from Table A.1, for an area ratio of A,/A* =2, p,/p. = 10.69; thus p, would have to be
Pe = po/10.69 = (1 atm)/10.69 = 0.0935 atm. This is considerably less than the given p, =
0.95 atm. Therefore, we do not have a subsonic-supersonic isentropic flow as was the case in
Examples 5.1 through 5.3. Question: Is the flow completely subsonic? If this were the case, the
throat area A, is norequal to A*, and A, > A*. Let us examine A, and A*. From Table A.1, for
Po/pe = 1/0.95 =1.053, A,/A* = 2.17 (nearest entry). However, for the given problem,
A./A; =2. Thus, A, > A*, and the flow is completely subsonic. From Table A.l, since
Po/pe = 1.053, we have

M, =0.28
At the throat,
A, A, A, .
— = ——=3(2.17) = 1.085
A* Ae A* Z

From Table A.1, for A;/A* = 1.085, we have

M, = 0.72
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EXAMPLE 5.5

EXAMPLE 5.6

CHAPTER 5 Quasi-One-Dimensional Flow

Consider a convergent-divergent duct with an exit-to-throat area ratio of 1.6. Calculate the
exit-to-reservoir pressure ratio required to achieve sonic flow at the throat, but subsonic flow
everywhere else.

N Solution
Since M =1 at the throat, A, = A*. Thus

Ao A,
A, A*

From Table A.1, the subsonic entry that corresponds to A./A* = 1.6 is p,/p. = 1.1117.
Hence

1
Pe _ =109
P L1117

For this area ratio of A,/A, = 1.6, if the exit-to-reservoir pressure ratio is greater than 0.9,
the flow through the duct is completely subsonic. If this pressure ratio is less than 0.9,
then the flow will expand to supersonic speed downstream of the throat. However, unless
Pe/Po = 1/7.128 = 0.1403, which corresponds to an isentropic expansion to the exit, there
will be shock waves either at the lip of the nozzle (overexpanded case) or a normal shock
somewhere inside the duct. Which of these cases hold depends upon the prescribed value

of pe/po.

Consider a convergent-divergent nozzle with an exit-to-throat area ratio of 3. A normal shock
wave is inside the divergent portion at a location where the local area ratio is A/A, = 2. Cal-
culate the exit-to-reservoir pressure ratio.

m Solution

For this case, we have an isentropic subsonic-supersonic expansion through the part of the
nozzle upstream of the normal shock. Let the subscripts 1 and 2 denote conditions immediately
upstream and downstream of the shock, respectively. The local Mach number M, just ahead
of the shock is obtained from Table A.1 for A;/A} = 2, namely M; = 2.2. From Table A.2,
for My = 2.2, M, = 0.5471 and p,,/p,, = 0.6281. From Table A.1, for M, = 0.5471, we
have A,/A} = 1.27. Note an important fact at this stage of our calculation. The normal shock
is assumed to be infinitely thin, hence A; = A,. However, we have previously shown that
A1/A] =2 and A3/ A} = 1.27. Clearly, the value of A* changes across the shock wave.
This is due to the entropy increase across the shock. A7 is the flow area necessary to achieve
Mach 1 isentropically in the flow upstream of the shock, and A} is the flow area necessary
to achieve Mach 1 isentropically in the flow downstream of the shock. Since the entropy is
different for these two flows, then A* is different for the two flows. Proceeding with the
calculation,

A”—A"’A2—AeA’AZ—(3)(1)(127)—1905
Ay T A AL T A A AT TN T
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The flow is subsonic behind the normal shock wave, and hence is subsonic throughout the
remainder ot the divergent portion downstream of the shock. Thus, from the subsonic entries
in Table A.1, we have for A, /A = 1.905, M, = 0.32 and p,, /p. = 1.074. Thus, since p, =
P, and p,, = p,,, we have

Pe _ Pe Po Por Por :(

1
» o P p 1)_ —*) (1)(0.6281)(1) = | 0.585
0 o, For oy 0

1.074
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Example 5.6 treated the case of a normal shock standing inside a nozzle. In this
example, the location of the normal shock inside the nozzle was given, and the exit-to-
reservoir pressure ratio. p./p,, was calculated. This is a straightforward calculation,
as demonstrated in Example 5.6. However, in most applications we are not given the
location of the shock, but rather we know the pressure ratio p,/p, across the nozzle,
and we want to find the location of the shock (i.e., the value of A/A,, where the shock
is standing). In this situation, we can take either of two approaches.

The first approach is an iterative solution. Assume the location of the shock in
the nozzle, i.e., assume the value of A /A, for the shock. Then calculate the pressure
ratio p,/p,, that would correspond to the shock in this assumed location, using the ap-
proach taken in Example 5.6. Check to see if p,/p, from this calculation agrees with
the specified value of p, /p,. If not, assume another location of the shock, and calcu-
late the new value of p,/p, corresponding to this new shock location. Repeat this
iterative process until the proper shock location is found that will yield a calculated
Do /Do that agrees with the specified value.

The second approach is direct, but more elaborate. Consider a normal shock
standing inside a nozzle, as sketched in Fig. 5.19. The reservoir pressure is p,, and the
static pressure at the exit is p,; the pressure ratio across the nozzle is therefore p, /p,.
Immediately upstream of the shock (condition 1), the total pressure is p,, . Because
the flow is isentropic between the reservoir and location 1, p,, = p,. Recall that A* is
a constant value everywhere upstream of the shock, and is equal to the throat area, A,.
Denote this value of A* by A}. Immediately downstream of the shock (condition 2),
the total pressure is p,,. Also, recall that the value of A* changes across the shock.
Denote the value of A* downstream of the shock by A3, which is a constant value

Figure 5.19 | Conditions associated with a normal
shock standing inside a nozzle.
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everywhere downstream of the shock. The mass flow at any location in the nozzle is
m = puA. In Problem 5.6 at the end of this chapter, you are asked to derive this
equation for the mass flow through a choked nozzle:

paA* V 2 (y+D/(y—-D
- VT, (y + 1)

where A* is equal to the throat area, and p, and T, are the reservoir pressure and tem-
perature, respectively. Since Eq. (5.21) is of the form

(5.21)

we see that mass flow is directly proportional to p,A*/(T,)"/2. Since both the mass
flow and T, are constant across the shock wave in Fig. 5.19, we have from Eq. (5.21):
poA* = constant across a shock wave

or
Poi AT = Po, A5 (5.22)

Referring to Fig. 5.19, since the flow is isentropic from location 2 to the exit,
Do, = Do, and A} = A3. Thus, Eq. (5.22) becomes

polAT = poeA*

e

(5.23)

Hence, from Eq. (5.23) we can write

PeAe _ PeAe _ (&) (ﬁ) (5.24)
Po. A7 PoAT \Po /) \Aj
In Eq. (5.24), p./p,, is the specified pressure ratio across the given nozzle. Also,
A, /A7 is the known exit-to-throat area ratio for the given nozzle. Hence the right-
hand side of Eq. (5.24) is a known number, and therefore the ratio (p.A.)/(p,, A}) is
a known number. This ratio can be expressed in terms of the exit Mach number as

shown next.
From Eq. (3.30), we can write

-1 —y/y=1
;’e <1+ : Mz) (5.25)
O¢

and from Eq. (5.20) we can write

A 1 2 1 +D/12(y-1)]
Ze o (=Y [(1+ X2 5.26
Al M, [(V + 1) ( + 2 ):I ( )

The product of Eqgs. (5.25) and (5.26) is

De Ac 1 2 (r+1)/[2(y-1] y—1 s -1/2
Ll 1 —M .
Po, A7 M. (V + 1) ) 6:27)
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Solving Eq. (5.27) for M?, we have

R 1 1 ) ) (y+1/(y-1)  A* 2
= ) ) ()
y —1 (y —D? y=1/\y+1 PeA,

(5.28)

Since p,, A¥/p.A. is a known number from Eq. (5.24), Eq. (5.28) allows the direct
calculation of the exit Mach number. Keep in mind that for the flow shown in
Fig. 5.19, M, will be a subsonic value.

The remaining steps required to solve for the location of the normal shock are

1. For the value of M, obtained from Eq. (5.28), obtain p,, /p. from Table A.1.
Calculate the ratio of the total pressure across the shock from

Por _ Po. _ Poc Pe

(5.29)
p()l pU] Pe pOl .

where p, /p,, is the specified pressure ratio across the nozzle.

3. For the value of p,, /p,, calculated from Eq. (5.29), obtain M, from Table A.2.
4. For the value of M, obtain A, /A} from Table A.1.

Since A1 /AT = A /A,, the value of A, /A} obtained from step 4 is the location of the
normal shock wave inside the nozzle.

EXAMPLE 5.7

Consider a convergent-divergent nozzle with an exit-to-throat area ratio of 3. The inlet reser-
voir pressure is | atm and the exit static pressure is 0.5 atm. For this pressure ratio, a normal
shock will stand somewhere inside the divergent portion of the nozzle. Calculate the location
of the shock wave using (a) a trial-and-error solution and (b) the direct solution. Compare the
results.

H Solution

a. Assume A/A; = A/A]7 = 2.3. From Table A.1, M, = 2.35. From Table A.2, M, = 0.5286
and p,,/p, = 0.5615. From Table A.1, for M, = 0.5286, A/Aj = 1.303. (Recall that
we are using nearest entries in the table.) Hence,

A,,_AeATA_G) 1 (1303) = 1.7
AT AT A AT 23/ T

For A./A5 = 1.7, from Table A.1, M, = 0.36, and p,_ /p. = 1.094. Hence,

Pl ]
Pe = o o P = Tooa

(0.5615)(1) = 0.513 atm

Since p, should be 0.5 atm, assume a new A/A} (closer to the exit), and start over
again. Assume A/A} = 2.4, For this, M, = 2.4, M, = 0.5231, p,,/p,, = 0.5401, and
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A/A3 =1.303. (Again, recall that we are using nearest entries.) Hence, A./A} =
(3)(1/2.4) (1.303) = 1.629. With this, M, = 0.39 and p,, /p. = 1.111. Hence,

po=Lelap o1
T Po Poy Ot LI

(0.5401)(1) = 0.486 atm

Since p, should be 0.5 atm, the value of 0.486 atm is too low by about the same amount
as the first iteration is too high. Splitting the difference, the correct location of the normal

shock wave is approximately | A/A, = 2.35|.

b. Using the direct method, from the specified conditions
A 0.5
() G) = (75) o =1
Do, A; 1.0

PeAc
Po Al

e’ e

From Eq. (5.24),

=15

From Eq. (5.28)

M?=— ! + 1 +< 2 )( 2 )(H”/(y”(PoyAZ)z
¢ y=-1 (y = 1)? y=1)\y+1 PeAc

2
=-25+ \/(2.5)2 + (5)(0.8333)6 (%)

= —2.5+/6.994 = 0.1447
Hence,
M, =038
From Table A.1 for M, = 0.38, p,, /p. = 1.094. From Eq. (5.29),
Poy _ Po. Pe
Po, Pe Po,
From Table A.2, for p,,/p,, =0.547, M; =2.38. From Table A.1, for M, = 2.38,

AJAT = A/A, = . This direct answer compares to that obtained with the iteration in
part (a) to within 0.4 percent.

= (1.094) (0—15) =0.547

5.5 | DIFFUSERS

Let us go through a small thought experiment. Assume that we want to design a
supersonic wind tunnel with a test section Mach number of 3 (see Fig. 5.11). Some
immediate information about the nozzle is obtained from Table A.l1; at M = 3,
A, /A* = 4.23 and p,/p. = 36.7. Assume the wind tunnel exhausts to the atmos-
phere. What value of total pressure p, must be provided by the reservoir to drive the
tunnel? There are several possible alternatives. The first is to simply exhaust the
nozzle directly to the atmosphere, as sketched in Fig. 5.20. In order to avoid shock
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A+ ‘,Ae Do = | atm
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Figure 5.20 | Nozzle exhausting directly
to the atmosphere.

Poo = 1 atm
M,=3
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Figure 5.21 | Nozzle with a normal shock at the exit,
exhausting to the atmosphere.

or expansion waves in the test region downstream of the exit, the exit pressure p,
must be equal to the surrounding atmospheric pressure, i.e., p, = 1 atm. Since
Po/Pe = 36.7, the driving reservoir pressure for this case must be 36.7 atm. How-
ever, a second alternative is to exhaust the nozzle into a constant-area duct which
serves as the test section, and to exhaust this duct into the atmosphere, as sketched in
Fig. 5.21. In this case, because the testing area is inside the duct, shock waves from
the duct exit will not affect the test section. Therefore, assume a normal shock stands
at the duct exit. The static pressure behind the normal shock is p>, and because the
flow is subsonic behind the shock, p» = p., = 1 atm. In this case, the reservoir pres-
sure p, is obtained from

where p,/p, is the static pressure ratio across a normal shock at Mach 3, obtained
from Table A.2. Note that, by the simple addition of a constant-area duct with a nor-
mal shock at the end, the reservoir pressure required to drive the wind tunnel has
markedly dropped from 36.7 to 3.55 atm. Now, as a third alternative, add a divergent
duct behind the normal shock in Fig. 5.21 in order to slow the already subsonic flow
to a lower velocity before exhausting to the atmosphere. This is sketched in Fig. 5.22.
At the duct exit, the Mach number is a very low subsonic value, and for all practical
purposes the local total and static pressure are the same. Moreover, assuming an
isentropic flow in the divergent duct behind the shock, the total pressure at the
duct exit is equal to the total pressure behind the normal shock. Consequently,

219
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ey / = (0. M<I
%E {/ M =3 M, =0.475
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Figure 5.22 | Nozzle with a normal-shock diffuser. The normal shock is
slightly upstream of the divergent duct.

Do, ™ Poo = 1 atm. From Table A.2, the Mach number immediately behind the shock
is M, = 0.475, and the ratio of total to static pressure at this Mach number (from
Table A.1) is p,,/p2 = 1.17. Hence

11
po=Lele P2 367 —1=304am

" De P2 Po, 10.331.17
This is even better yet—the total pressure required to drive the wind tunnel has been
further reduced to 3.04 atm.

Take a look at what has happened! From Table A.2, note the ratio of total pres-
sures across a normal shock wave at Mach 3 is p,,/p,, = 0.328. Hence p,, /p,, =
1/0.328 = 3.04; this is precisely the pressure ratio required to drive the wind tunnel
in Fig. 5.22! Thus, from this thought experiment, we infer that the reservoir pressure
required to drive a supersonic wind tunnel (and hence the power required from the
compressors) is considerably reduced by the creation of a normal shock and subse-
quent isentropic diffusion to M & O at the tunnel exit, and that this pressure is sim-
ply determined by the total pressure loss across a normal shock wave at the test sec-
tion Mach number.

The normal shock and divergent exhaust duct in Fig. 5.22 are acting as a specific
mechanism to slow the air to low subsonic speeds before exhausting to the atmos-
phere. Such mechanisms are called diffusers, and their function is to slow the flow
with as small a loss of total pressure as possible. Of course, the ideal diffuser would
compress the flow isentropically, hence with no loss of total pressure. For example,
consider the wind tunnel sketched in Fig. 5.11. After isentropically expanding
through the supersonic nozzle and passing through the test section, conceptually the
supersonic flow could be isentropically compressed by the convergent part of the dif-
fuser to sonic velocity at the second throat, and then further isentropically com-
pressed to low velocity in the divergent section downstream of the throat. This would
take place with no loss in total pressure, and hence the pressure ratio required to drive
the tunnel would be unity—a perpetual motion machine! Obviously, something
is wrong. The problem can be seen by reflecting on the results of Chap. 4. When
the convergent part of the diffuser changes the direction of the supersonic flow at
the wall, it is extremely difficult to prevent oblique shock waves from occurring
inside the duct. Moreover, even without shocks, the real-life effects of friction
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between the flow and the diffuser surfaces cause a loss of total pressure. Therefore,
the design of a perfect isentropic diffuser is physically impossible.

Accepting the fact that a perfect diffuser cannot be built, can we still hope to do
better than the normal shock diffuser sketched in Fig. 5.22? The answer is yes, be-
cause it can easily be shown that the total pressure loss across a series of oblique
shocks and a terminating weak normal shock is less than that across a single strong
normal shock at the same upstream Mach number. (See Example 4.12 and Sec. 4.7.)
Therefore, it would appear wise to replace the normal shock diffuser in Fig. 5.22 with
an oblique shock diffuser as sketched in Fig. 5.23. Here, the test section flow at Mach
number M, and static pressure p, is slowed down through a series of oblique shock
waves initiated by a compression corner at the inlet of the diffuser, further slowed by
a weak normal shock wave at the end of the constant-area section, and then subsoni-
cally compressed by a divergent section which exhausts to the atmosphere. At the
diffuser exit, the static pressure is p,, which for subsonic flow at the exit is equal to
P~ In concept, this oblique shock diffuser should provide greater pressure recovery
(smaller loss in total pressure) than a normal shock diffuser. However, in practice, the
interaction of the shock waves in Fig. 5.23 with the viscous boundary layer on the
diffuser walls creates an additional total pressure loss which tends to partially miti-
gate the advantages of an oblique shock diffuser. The real flow through an oblique
shock diffuser is shown in the photograph of Fig. 5.24. The shock waves and bound-
ary layers are made visible by a schlieren system—an optical technique sensitive to
density gradients in the flow. Note the decay of the diamond-shaped oblique shock

| Subsonic flow

Supersonic flow

A,] = A* (nozzle throat) Arz (diffuser throat)

Figure 5.23 | NozzIe with a conventional supersonic diffuser.

Figure 5.24 | Oblique shock pattern in a two-dimensional supersonic diffuser. The flow is
from left to right, and the inlet Mach number is 5. (Photo was taken by the author at the
Aerospace Research Laboratory, Wright-Patterson Air Force Base. OH.)
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pattern due to viscous interaction downstream. The net result is that the full potential
of an oblique shock diffuser is never fully achieved.

In the literature, there are several figures of merit used to denote the efficiency
of diffusers. For wind tunnel work, the most common definition of diffuser efficiency
is to compare the actual total pressure ratio across the diffuser, pgy, /p,, with the total
pressure ratio across a hypothetical normal shock wave at the test section Mach
number, p,,/po, (using the nomenclature of Fig. 3.9). Let np denote diffuser effi-
ciency. Then

np = (pdo/po)actual (530)
(Pos/Por)

normal shock at M,

If, np = 1, then the actual diffuser is performing as if it were a normal shock diffuser.
For low supersonic test section Mach numbers, diffusers in practice usually perform
slightly better than normal shock (np > 1); however, for hypersonic conditions, nor-
mal shock recovery is about the best to be expected, and usually np < 1.7

Note from Figs. 5.11 and 5.23 that oblique shock diffusers have a minimum-area
section, i.e., a throat. In wind tunnel nomenclature, the nozzle throat is called the first
throat, with cross-sectional area A, = A*; the diffuser throat is called the second
throat, with area A,,. Due to the entropy increase in the diffuser, A,, > A,,. To prove
this, assume that sonic flow exists at both the first and second throats. From Eq. (5.1)
evaluated between the two throats,

PrALal = piALG; (5.31)
A * %k

or Lo JALA (5.32)
Ay P4

From Secs. 3.4 and 3.5, a* and hence T* are constant throughout a given adiabatic
flow. Thus, aj/a; = 1, and Eq. (5.32) becomes

e 0 (5.33)

However, from the equation of state,

P _ PI/RTY _ pi

x = (5.34)
p;  py/RTy  p3
Substituting Eq. (5.34) into (5.33),
Atz pik
e (5.35)
Atl Pz

¥ For a more extensive discussion of supersonic diffusers, as well as their application in a modern
situation, see Chap. 12 of Ref. 21.
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Since M, = M> = 1, and from Eq. (3.30) evaluated at locations | and 2,

Por _ I + y_iAle i = yr: +1 o
e 2 : 2

Do - y — le y/ty=1 _ v+ 1 >;//(y—l)
P 2 2

Eq. (5.35) can be written as

A/Z _ Po,

(5.36)

Afl p”z

Since the total pressure always decreases across shock waves and within boundary
layers, p,, will always be less than p,,, . Thus, from Eq. (5.36), the second throat must
always be larger than the first throat. Indeed, if we know the values of total pressure
at the two throats, then Eq. (5.36) tells us precisely how large to make the second
throat. If A,, is made smaller than demanded by Eq. (5.36), the mass flow through the
tunnel cannot be handled by the diffuser; the diffuser “chokes,” and supersonic flow
in the nozzle and test section is not possible. Note from Eq. (5.36) that only for a hy-
pothetical perfect diffuser (with isentropic flow throughout) would the area of the
second throat be equal to that of the first throat.

For typical supersonic diffusers, the efficiency 7 is very sensitive to A,,. as
sketched in Fig. 5.25. Note that as A,, is decreased from a large value. np first in-
creases, reaches a peak value, then rapidly decreases. The peak efficiency is obtained
by a value of A,, slightly larger than given by Eq. (5.36). Keep in mind that the value
of A, obtained from Eq. (5.36) is the minimum allowed value that will pass the in-
coming mass flow from the nozzle. Below this value, the flow will be choked, and the
diffuser efficiency plummets. The value of A,, from Eq. (5.36) is represented by the
dashed vertical line in Fig. 5.25. At much higher values of A,,, there are no problems
with passing the incoming mass flow; however, the diffuser efficiency is compro-
mised because the supersonic flow from the inlet is not sufficiently compressed and
hence remains supersonic in the second throat. In the downstream divergent portion,
this supersonic flow first accelerates, and then passes through a normal shock near
the diffuser exit. Since the Mach number is fairly high in front of the shock, the total
pressure loss across the normal shock is large. This defeats the purpose of an oblique
shock diffuser (namely. to have a weak normal shock occur at the second throat in a
near sonic flow). As a result, for large A,,, the diffuser efficiency is low, as sketched
in Fig. 5.25.

Up to this stage in our discussion, the most serious problem with diffusers has
not yet been mentioned—the starting problem. Consider again the wind tunnel
sketched in Fig. 5.11. When the flow through this tunnel is first started (say by
rapidly opening a pressure valve from the reservoir), a complicated transient flow
pattern is established, which after a certain time interval settles to the familiar steady
flow which we have been discussing in this chapter. The starting process is complex
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Flow

Fora
given Me
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Starting

" —— Flow

A,

2

Figure 5.25 | Schematic of the variation of diffuser efficiency with second
throat area.

and is still not perfectly understood. However, it is usually accompanied by a normal
shock wave that sweeps through the complete duct from the nozzle to the diffuser.
When this starting normal shock wave is momentarily at the inlet to the diffuser, the
second throat area must be large enough to pass the mass flow behind a normal shock.
This value of A, is given by Eq. (5.36) where now p,, /p,, is the total pressure ratio
across a normal shock at the test section Mach number. This starting value of A,, is
represented by the solid vertical line in Fig. 5.25, and is always larger than the throat
area for peak efficiency. If A,, is less than the starting value, the normal shock will re-
main upstream of the diffuser, and the tunnel flow will not start properly. If A, is
equal to or greater than the starting value, the normal shock will proceed through (be
“swallowed” by) the diffuser, and the tunnel flow will start properly. Therefore,
examining Fig. 5.25, we see that a fixed-geometry diffuser designed with a second
throat area large enough to allow the flow to start will operate at an efficiency
less than maximum. Herein lies the advantage of variable-geometry diffusers, where
the throat area can be changed by some mechanical or fluid dynamic means. In such
a diffuser, the throat area is made large enough to start the flow, and then later is de-
creased to obtain higher efficiency during running of the tunnel. However, the design
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and fabrication of variable-geometry dittusers is usually complex and expensive. and
for this reason most operational wind tunnels use fixed-geometry diffusers.

Our discussion on diffusers has focused on a wind tunnel application for illus-
tration of the general phenomena. However, the analysis of the flow through inlets
and diftusers for air-breathing jet engines follows similar arguments. The reader is
encouraged to read Shapiro (Ref. 16) or Zucrow and Hoffman (Ref. 17) for extensive
discussions on such supersonic inlets.

The reader is cautioned not to take this discussion on diffusers too literally. The
actual flow through diffusers is a complicated three-dimensional interaction of shock
waves and boundary layers which is not well understood—even after a half-century
of serious work on diffusers. Therefore, diffuser design is more of an art than a
science. Diffuser efficiency is influenced by a myriad of parameters such as A,. /A,
M, entrance angle, second throat length, etc. Therefore. the design of a diffuser for
a given application must be based on empirical data and inspiration. Rarely is the first
version of the new diffuser ever completely successful. In this context, the discussion
of diffusers in this section is intended for general guidance only.

Consider the wind tunnel described in Example 5.2. Estimate the ratio of diffuser throat area
to nozzle throat area required to allow the tunnel to start. Also, assuming that the diffuser effi-
ciency is 1.2 after the tunnel has started, calculate the pressure ratio across the tunnel neces-
sary for running, i.e., calculate the ratio of total pressure at the diffuser exit to the reservoir
pressure.

m Solution
From Table A2, for M = 2.5: p,. /p,, = 0.499. From Eq. (5.36)

Ap _po _ ] 2.00
A, pen T 0499

From Eq. (5.30)

Pd, Pos
- = Nn = (1.2)(0.499) = | 0.599
Po/ setual Poy

nornxd shock

Note: In Example 5.2, standard sea level conditions were stipulated in the test section, For this
case, the pressure at the diffuser exit is far above atmospheric pressure. Specifically. from
Example 5.2, p, = 17.09 atm; hence p,;, = (0.599)(17.09) = 10.23 atm. If the diffuser ex-
hausted directly to the atmosphere, the flow would rapidly expand to supersonic velocity in the
free jet downstream of the tunnel exit, with accompanying tremendous losses. Theretore, for
this particular wind tunnel, a closed circuir design is by far the best. That is, the low subsonic
flow ai the exit of the diffuser is ducted right back to the entrance of the nozzle. The tunnel
forms a closed loop, and the pressure loss in passing through the tunnel and the return loop is
made up by a fan with a motor drive. Since the gas is also heated by the addition of power from
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this motor drive, a cooler must also be inserted in the return loop. See Chap. 5 of Ref. 9
for a more detailed discussion of the design of a closed-loop (or closed-return) supersonic
wind tunnel.

5.6 | WAVE REFLECTION FROM
A FREE BOUNDARY

Although they are not inherently quasi-one-dimensional flows, the wave patterns
shown emanating from the nozzle exit in Figs. 5.184 and e are frequently encoun-
tered in the study of nozzle flows. Therefore, it is appropriate to discuss them at
this stage.

The gas jet from a nozzle which exhausts into the atmosphere has a boundary
surface which interfaces with the surrounding quiescent gas. As in the case of the slip
lines discussed in Chap. 4, the pressure across this boundary must be preserved;
hence the jet boundary pressure must equal p., along its complete length. Therefore,
the oblique shock waves shown in Fig. 5.184 and the expansion waves sketched in
Fig. 5.18¢ must reflect from the jet boundary in such a fashion as to preserve the
pressure at the boundary downstream of the nozzle exit. This jet boundary is not a
solid surface as treated in Chap. 4; rather, it is a free boundary which can change in
size and direction. For example, consider the incident shock wave impinging on a
constant-pressure free boundary as shown in Fig. 5.26. In region 1, the pressure is
Doo> €qual to the surrounding atmosphere. In region 2 behind the incident shock,
P2 > Poo.- However, at the edge of the jet boundary (the dashed line in Fig. 5.26), the
pressure must always be p... Therefore, when the incident shock hits the boundary,
it must be reflected in such a fashion as to obtain p, in region 3 behind the reflected
wave. Since p3; = po < p2, this reflected wave must be an expansion wave, as
sketched in Fig. 5.26. In turn, the flow is deflected upward by both the incident shock
and reflected expansion, causing the free boundary to deflect upward also. The
strength of the reflected expansion wave is readily obtained from the theory pre-
sented in Chap. 4.

Constant poe

Reflected
expansion

Figure 5.26 | Shock wave incident on a constant-pressure boundary.
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Figure 5.27 | Reflection of an expansion wave incident
on a constant-pressure boundary.

Figure 5.28 | Schematic of the diamond wave pattern in the
exhaust from a supersonic nozzle.

Analogously, the incident expansion wave shown in Fig. 5.27 is reflected from a
free boundary as a compression wave. This finite compression wave quickly coa-
lesces into a shock wave, as shown. The wave interaction shown in Fig. 5.27 must be
analyzed by the method of characteristics, io be discussed in Chap. 11.

From this discussion combined with our results of Chap. 4, we conclude that

1. Waves incident on a solid boundary reflect in like manner, i.e., a compression
wave reflects as a compression and an expansion wave reflects as an
expansion.

2. Waves incident on a free boundary reflect in opposite manner, i.¢., 2
compression wave reflects as an expansion and an expansion wave reflects
as a compression.

Considering the overexpanded nozzle flow in Fig. 5.184, the flow pattern down-
stream of the nozzle exit will appear as sketched in Fig. 5.28. The various reflected
waves form a diamond-like pattern throughout the exhaust jet. Such a diamond wave
pattern is visible in the exhaust from the free jet shown in Fig. 5.29. The reader is

left to sketch the analogous wave pattern for the underexpanded nozzle flow in
Fig. 5.18e.
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Figure 5.29 | Diamond wave patterns from an axisymmetric free jet (similar to the
exhaust from a rocket engine). Taken from E. S. Love, C. E. Grigsby, L. P. Lee, and
M. J. Woodling, “Experimental and Theoretical Studies of Axisymmetric Free Jets,”
NASA Tech. Report No. TR R-6, 1959. M is the wavelength of the first diamond.

5.7 1 SUMMARY

This brings to an end the technical discussion of the present chapter. The quasi-one-
dimensional duct flows discussed herein, in concert with the shock and expansion
waves discussed in Chaps. 3 and 4, constitute a first tier in the overall structure of
compressible flow. You should take this material very seriously, and should make
certain that you feel comfortable with the major concepts and results. This will pro-
mote a smoother excursion into the remaining chapters.

5.8 | HISTORICAL NOTE: DE LAVAL—
A BIOGRAPHICAL SKETCH
The first practical use of a convergent-divergent supersonic nozzle was made before

the twentieth century. As related in Sec. 1.1, the Swedish engineer, Carl G. P. de
Laval, designed a steam turbine in the late 1800s which incorporated supersonic
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expansion nozzles upstream of the turbine blades (see Fig. 1.8). For this reason, such
convergent-divergent nozzles are frequently referred to as “Laval nozzles™ in the lit-
erature. Who was de Laval? What prompted him to design a supersonic nozzle for
steam turbines? What kind of man was he? Let us take a closer look.

Carl Gustaf Patrick de Laval was born at Blasenborg, Sweden, on May 9, 1845.
The son of a Swedish army captain, de Laval showed an early interest in mechanical
mechanisms, disassembling and then reassembling such devices as watches and gun
locks. His parents encouraged his development along these lines, and at the age of 18
de Laval entered the University of Upsala, graduating in 1866 with high honors in
engineering. He was then employed by a Swedish mining company. the Stora
Kopparberg, where he quickly realized that he needed more education. (This is a
phenomenon which has affected young engineers through the ages.) Therefore, he re-
turned to Upsala, where he studied chemistry, physics, and mathematics, and gradu-
ated with a Ph.D. in 1872. From there, he returned to the Stora Company for 3 years,
and then joined the Kloster Iron Works in Germany in 1875. By this time, his inven-
tive genius was beginning to surface: he developed a sieve for improving the distrib-
ution of air in bessemer converters, and a new apparatus for galvanizing processes.
Also, during his time with Kloster, de Laval was experimenting with centrifugal ma-
chines for the separation of cream in milk. Unable to convince Kloster to manufac-
ture his cream separator, de Laval resigned in 1877, moved to Stockholm, and started
his own company. Within 30 years, he had sold more than a million de Laval cream
separators, and to the present day he is better known in Europe for cream separators
then for steam turbines.

However, it was with his steam turbine designs that de Laval made a lasting con-
tribution to the advancement of compressible flow. In 1882, he constructed his first
steam turbine using rather conventional nozzles. Such nozzles were convergent
shapes, indeed nothing more than orifices in some designs of that day. In turn, the
kinetic energy of the steam entering the rotor blades was low, resulting in low
rotational turbine speeds. The cause of this deficiency was recognized—the pressure
ratio across such nozzies was never less than one-half. Today, as described in
Secs. 5.3 and 5.4, we know that such nozzles were choked, and that the flow ex-
hausted from the nozzle exit at a velocity that was not greater than sonic. However,
in 1882, engineers did not fully understand such phenomena. Finally, in 1888, de
Laval hit upon the system of further expanding the gas by adding a divergent section
to the original convergent shape. Suddenly, his steam turbines began to operate at in-
credible rotational speeds—over 30,000 r/min. Overcoming the many mechanical
problems introduced by such an improvement in rotational speed, de Laval devel-
oped his turbine business into a large corporation in Stockholm, and quickly obtained
a number of international affiliates, in France, Germany, England, the Netherlands,
Austria-Hungary, Russia, and the United States. Subsequently, his design was
demonstrated at the World Columbian Exposition in Chicago in 1893, as related in
Sec. 1.1.

In addition to his successes as an engineer and businessman, de Laval was also
adroit in his social relations. He was respected and liked by his social peers and em-
ployees. He held national office—being elected to the Swedish Parliament during
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1888 to 1890, and later becoming a member of the Senate. He was awarded numer-
ous honors and decorations, and was a member of the Swedish Royal Academy of
Science.

After a full and productive life, Carl G. P. de Laval died in Stockholm in 1912 at
the age of 67. However, his influence and his company have lasted to the present day.

It is interesting to note that, on a technical basis, de Laval and other contempo-
rary engineers in 1888 were not quite certain that supersonic flow actually existed in
the “Laval nozzle.” This was a point of contention that was not properly resolved
until the experiments of Stodola in 1903. But Stodola’s story is told in the next
section.

5.9 | HISTORICAL NOTE: STODOLA, AND
THE FIRST DEFINITIVE SUPERSONIC
NOZZLE EXPERIMENTS

The innovative steam turbine nozzle design by de Laval (see Secs. 1.1 and 5.8)
sparked interest in the fluid mechanics of flow through convergent-divergent nozzles
at the turn of the century. Leading this interest was an Hungarian-born engineer by
the name of Aurel Boleslav Stodola, who was to eventually become the leading ex-
pert in Europe on steam turbines. However, whereas de Laval was an idea and design
man, Stodola was a scholarly professor who tied up the loose scientific and technical
strings associated with Laval nozzles. Stodola is a major figure in the advancement
of compressible flow, thermodynamics, and steam turbines. Let us see why, and at
the same time take a look at the man himself.

Stodola was born on May 10, 1859, in Liptovsky Mikulas, Hungary, a small
Slovakian town at the foot of the High Tatra mountains. The second son of a leather
manufacturer, he attended the Budapest Technical University for 1 year in 1876. He
was an exceptional student, and in 1877 he shifted to the University of Zurich in
Switzerland, and then to the Eidgenossische Technische Hochschule in 1878, also in
Zurich. Here, he graduated in 1880 with a mechanical engineering degree. Subse-
quently, he served a brief time with Ruston and Company in Prague, where he was
responsible for the design of several different types of steam engines. However, his
superb performance as a student soon earned him a “Chair for Thermal Machinery”
back at the Eidgenossische Technische Hochschule in Zurich, a position he held until
his retirement in 1929.

There, Stodola established a glowing academic career which included teaching,
industrial consultation, and engineering design. However, his main contributions
were in applied research. Stodola had a synergistic combination of high mathemati-
cal competence with an intense devotion to practical applications. Moreover, he un-
derstood the importance of engineering research at a time when it was virtually
nonexistent throughout the world. In 1903 (the same year as the Wright brothers’ first
powered airplane flight), Stodola wrote:

We engineers of course know that machine building, through widely extended practical
experimenting, has solved problems, with the utmost ease, which baffled scientific inves-
tigation for years. But this “cut and try method,” as engineers ironically term it, is often
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extremely costly; and one of the most important questions of all technical activity, that of
efficiency, should lead us not to underestimate the results of scientific technical work.

This commentary on the role of basic scientific research was aimed primarily at the
design of steam turbines. But it was prophetic of the massive and varied research pro-
grams to come during the latter half of the twentieth century.

The importance of Stodola to our consideration in the present book lies in his
pioneering work on the flow of steam through Laval nozzles. As mentioned in
Sec. 5.8, the possibility of supersonic flow in such nozzles, although theoretically es-
tablished, had not been experimentally verified, and therefore was a matter of con-
troversy. To study this problem, Stodola constructed a convergent-divergent nozzle
with the shape illustrated at the top of Fig. 5.30. He could vary the backpressure over
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Figure 5.30 | Stodola’s original supersonic nozzle data, 1903. The
curves are pressure distributions for different backpressures.
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any desired range by closing a valve downstream of the nozzle exit. With pressure
taps in a long, thin tube extended through the nozzle along its centerline (also shown
in Fig. 5.30), Stodola measured the axial pressure distributions associated with dif-
ferent backpressures. These data are shown below the nozzle configuration in
Fig. 5.30. This figure is taken directly from Stodola’s original publication, a book en-
titled Steam Turbines, first published in 1903. Here, for the first time in history, the
characteristics of the flow through a supersonic nozzle were experimentally con-
firmed. In Fig. 5.30, the lowest curve corresponds to a complete isentropic expansion
(as illustrated in Fig. 5.14¢). The curves D through L in Fig. 5.30 correspond to a
shock wave inside the nozzle, induced by higher backpressures (as illustrated in
Fig. 5.17¢). The curves A, B, and C in Fig. 5.30 correspond to completely subsonic
flow induced by high backpressures (as illustrated in Fig. 5.15¢). With regard to the
large jumps in pressure shown by some of the data in Fig. 5.30, Stodola comments:

I see in these extraordinary heavy increases of pressure a realization of the “compression
shock” theoretically derived by von Riemann; because steam particles possessed of great
velocity strike against a slower moving steam mass and are therefore compressed to a
higher degree.

(In this quote, Stodola is referring to G. F. Bernhard Riemann mentioned in Sec. 3.10;
however, he would be historically more correct to refer instead to Rankine and
Hugoniot, as described in Sec. 3.10.) Stodola’s nozzle experiments, as described, and
his original data shown in Fig. 5.30, represented a quantum-jump in the understand-
ing of supersonic nozzle flows. Taken in conjunction with de Laval’s contributions,
Stodola’s work represents the original historical underpinning for the material given
in this chapter. Furthermore, this work was quickly picked up by Ludwig Prandtl at
Gottingen, who went on to make dramatic schlerien photographs of waves in super-
sonic nozzle flows, as described in Sec. 4.16.

Stodola died in Zurich on December 25, 1942, at the age of 83. During his life-
time, he became the leading world expert on steam turbines, and his students perme-
ated the Swiss steam turbine manufacturing companies, making those companies
into international leaders in this field. Moreover, he had exceptional personal charm.
The loyalty of his friends was extraordinary, and he acquired an almost disciplelike
group during his long life in Zurich. Even upon his death, the number and persua-
siveness of his eulogies were exceptional. Clearly, Stodola has left a permanent mark
in the history of compressible flow.

5.10 | SUMMARY

Quasi-one-dimensional flow is defined as flow wherein all the flow properties are
functions of one space dimension only, say x, whereas the flow cross-sectional area
is avariable,ie.,u = u(x), p = p(x), T = T(x),and A = A(x). This is in contrast
to the purely one-dimensional flows discussed in Chap. 3, where the flow cross-
sectional area is constant. The governing flow equations for quasi-one-dimensional
flow, obtained from a control volume model, are

Continuity: P1U1 Al = prusrAj G
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Az
Momentum: P+ plu%Al +/ pdA = prArs + pzu%Az (5.2)
Ay
u? 2
Energy: h+—=h+-—= (5.3)
2 2
The differential forms of these equations are:
Continuity: d(puA) =0 (5.7
Momentum: dp = —pudu (5.9)
Energy: dh+udu=20 (5.10)

These equations hold for inviscid, adiabatic flow—hence isentropic flow. They can
be combined to yield the area-velocity relation

dA 5 du

S |

— = (M

5.15)
A u (

which states, among other aspects, that

1. If the flow is subsonic, an increase in velocity corresponds to a decrease
in area.

2. If the flow is supersonic, an increase in velocity corresponds to an increase
in area.

3. If the flow is sonic, the area is at a local minimum.

These results clearly state that, in order to expand an isentropic flow from subsonic
to supersonic speeds, a convergent-divergent duct must be used, where Mach 1 will
occur at the minimum area (the throat) of the duct.

Quasi-one-dimensional isentropic flow is dictated by the area—Mach number

relation,
A 2 i ) -1 (y-+1)/(y—1}
(z;) =‘Af[ +1<‘+y2 M)] (520
LY

where A* is the flow area at a local value of Mach 1. From Eq. (5.20) we note the
pivotal result that local Mach number is a function of only A/A* (and, of course. y).

To understand the various flowfields possible in a quasi-one-dimensional.
convergent-divergent duct, imagine that the reservoir pressure 1s held fixed and the
backpressure downstream of the exit is progressively reduced. These cases are pos-
sible, as we progressively reduce the backpressure:

1. First, the flow is completely subsonic, including both the convergent and the
divergent sections. The maximum value of the Mach number (still subsonic)
occurs at the throat. The mass flow continually increases as the backpressure is
reduced.
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2. At some specific value of the backpressure, the flow at the throat becomes
sonic. The Mach numbers both upstream and downstream of the throat are still
subsonic. The mass flow reaches a maximum value; when the backpressure
is further reduced, the mass flow remains constant. The flow is choked.

3. As the backpressure is further reduced, a region of supersonic flow occurs
downstream of the throat, terminated by a normal shock wave standing inside
the divergent region.

4. At some specific value of the backpressure, the normal shock will be located
exactly at the exit. The fully isentropic, subsonic-supersonic flow pattern now
exists throughout the entire duct, except right at the exit.

5. As the backpressure is further reduced, the normal shock is replaced by
oblique shocks emanating from the edge of the nozzle exit. This is called an
overexpanded nozzle flow.

6. At some specific value of the backpressure, corresponding to the isentropic
flow value, no waves of any kind will exist in the flow; we will have the purely
isentropic subsonic-supersonic expansion through the nozzle, with no waves
at the exit.

7. Finally, for a lower backpressure, expansion waves will emanate from the edge
of the nozzle exit. This is called an underexpanded nozzle flow.

The function of a diffuser is to slow a flow with the smallest possible loss of total
pressure. For a supersonic or hypersonic wind tunnel, the diffuser must slow the flow
to a low subsonic speed at the end of the tunnel. For a measure of how efficient the
diffuser is, the normal shock diffuser efficiency is defined as

(Pda /170)
poz/pm)

actual (530)

Np =

( normal shock at M,
where py,/p, is the actual ratio of total pressure between the exit of the diffuser and
the nozzle reservoir, and p,,/p,, is the usual total pressure ratio across a normal
shock wave at the design Mach number at the nozzle exit. A supersonic diffuser has
a local minimum of cross-sectional area called the second throat; the ratio of the sec-
ond throat area (diffuser) to the first throat area (nozzle) is given by

An _ Poy (5.36)

Atl Po,

PROBLEMS

5.1 A supersonic wind tunnel is designed to produce flow in the test section at
Mach 2.4 at standard atmospheric conditions. Calculate:

a. The exit-to-throat area ratio of the nozzle
b. Reservoir pressure and temperature



5.2
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5.5

5.6

5.7

5.8

5.9

5.10

Problems

The reservoir pressure of a supersonic wind tunnel is 10 atm. A Pitot tube
inserted in the test section measures a pressure of 0.627 atm. Calculate the
test section Mach number and area ratio.

The reservoir pressure of a supersonic wind tunnel is 5 atm. A static pressure
probe is moved along the center-line of the nozzle, taking measurements at
various stations. For these probe measurements, calculate the local Mach
number and area ratio:

a. 4 atm
b. 2.64 atm
¢. 0.5atm

Consider the purely subsonic flow in a convergent-divergent duct. The inlet,
throat, and exit area are 1 m?, 0.7 m?, and 0.85 m?, respectively. If the inlet
Mach number and pressure are 0.3 and 0.8 x 10° N/m?. respectively,
calculate:

a. M and p at the throat
b. M and p at the exit
Consider the subsonic flow through a divergent duct with area ratio A;/A| =

1.7. If the inlet conditions are 77 = 300K and u; = 250 m/s, and the pressure
at the exit is p» = | atm, calculate:

a. Inlet pressure p,
b. Exit velocity u».

The mass flow of a calorically perfect gas through a choked nozzle is
given by

VI, ¥ R

PoA* |y 2 (y+/(y=h

(V +1 )
Derive this relation.
When the reservoir pressure and temperature of a supersonic wind tunnel are
15 atm and 750 K, respectively, the mass flow is 1.5 kg/s. If the reservoir
conditions are changed to p, = 20 atm and 7, = 600K, calculate the
mass flow.

A blunt-nosed aerodynamic model is mounted in the test section of a
supersonic wind tunnel. If the tunnel reservoir pressure and temperature are
10 atm and 800°R, respectively, and the exit-to-throat area ratio is 25,
calculate the pressure and temperature at the nose of the model.

Consider a flat plate mounted in the test section of a supersonic wind tunnel.
The plate is at an angle of attack of 10° and the static pressure on the top
surface of the plate is 1.0 atm. The nozzle throat area is 0.05 m” and the exit
area is 0.0844 m?. Calculate the reservoir pressure of the tunnel.

Consider a supersonic nozzle with a Pitot tube mounted at the exit. The
reservoir pressure and temperature are 10 atm and 500 K, respectively. The
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5.1

5.12

5.13

5.14

5.15

5.16

517

5.18

pressure measured by the Pitot tube is 0.6172 atm. The throat area is 0.3 m?,
Calculate:

a. Exit Mach number M,

b. Exitarea A,

c. Exit pressure and temperature p, and T,

d. mass flow through the nozzle

Consider a convergent-divergent duct with exit and throat areas of 0.5 m? and
0.25 m?, respectively. The inlet reservoir pressure is 1 atm and the exit static
pressure is 0.6 atm. For this pressure ratio, the flow will be supersonic in a
portion of the nozzle, terminating with a normal shock inside the nozzle.
Calculate the local area ratio (A/A*) at which the shock is located inside the
nozzle.

Consider a supersonic wind tunnel where the nozzle area ratio is A, /A, =
104.1. The throat area of the nozzle is A, = 1.0cm?. Calculate the minimum
area of the diffuser throat, A,,, which will allow the tunnel to start.

At the exit of the diffuser of a supersonic wind tunnel which exhausts directly
to the atmosphere, the Mach number is very low (=0.1). The reservoir
pressure is 1.8 atm, and the test section Mach number is 2.6. Calculate the
diffuser efficiency np.

In a supersonic nozzle flow, the exit-to-throat area ratio is 10, p, = 10 atm,
and the backpressure pg = 0.04 atm. Calculate the angle 6 through which the
flow is deflected immediately after leaving the edge (or lip) of the nozzle exit.
Consider an oblique shock wave with M| = 4.0 and 8 = 50°. This shock
wave is incident on a constant-pressure boundary, as sketched in Fig. 5.26.
For the flow downstream of the reflected expansion wave, calculate the Mach
number M3 and the flow direction relative to the flow upstream of the shock.
Consider a rocket engine burning hydrogen and oxygen. The combustion
chamber temperature and pressure are 4000 K and 15 atm, respectively. The
exit pressure is 1.174 x 1072 atm. Calculate the Mach number at the exit.
Assume that y = constant = 1.22 and that R = 519.6 J/kg K.

We wish to design a Mach 3 supersonic wind tunnel, with a static pressure
and temperature in the test section of 0.1 atm and 400°R, respectively.
Calculate:

a. The exit-to-throat area ratio of the nozzle

b. The ratio of diffuser throat area to nozzle throat area

c. Reservoir pressure

d. Reservoir temperature

Consider two hypersonic wind tunnels with the same reservoir temperature of
3000 K in air. (a) One tunnel has a test-section Mach number of 10. Calculate
the flow velocity in the test section. (b) The other tunnel has a test-section
Mach number of 20. Calculate the flow velocity in the test section.

(c) Compare the answers from (a) and (b), and discuss the physical
significance of this comparison.



5.19

5.20

5.21

Problems

Consider a hypersonic wind tunnel with a reservoir temperature of 3000 K in
air. Calculate the theoretical maximum velocity obtainable in the test section.
Compare this result with the results of Problem 5.18 (a) and (b).

As Problems 5.18 and 5.19 reflect. the air temperature in the test section of
conventional hypersonic wind tunnels is low. In reality. air liquefies at a
temperature of about 50 K {depending in part on the local pressure as well).
In the practical operation of a hypersonic wind tunnel. liquefaction of the test
stream gas should be avoided; when liquetaction occurs. the test stream is a
two-phase flow, and the test data is compromised. For a Mach 20 tunnel
using air, calculate the minimum reservoir temperature required to avoid
liquetaction in the test section.

The reservoir temperature calculated in Problem 5.20 is beyond the
capabilities of heaters in the reservoir of continuous-flow wind tunnels using
air. This is why you do not see a Mach 20 continuous-flow tunnel using air.
On the other hand, consider the flow of helium, which has a liquefaction
temperature of 2.2 K at the low pressures in the test section. This temperature
is much lower than that of air. For a Mach 20 wind tunnel using helium.
calculate the minimum reservoir temperature required to avoid fiquefaction in
the test section. For helium, the ratio of specific heats is 1.67.

The result from Problem 5.21 shows that the reservoir temperature for a
Mach 20 helium tunnel can be very reasonable. This is why several very high
Mach number helium hypersonic wind tunnels exist. For the helium wind
tunnel in Problem 5.21, calculate the nozzle exit-to-throat area ratio. Compare
this with the exit-to-throat area ratio required for an air Mach 20 tunnel.
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CHAPTER

Differential Conservation
Equations for Inviscid Flows

The information needed by design engineers of either aircraft or flow machinery is
the pressure, the shearing stress, the temperature, and the heat flux vector imposed
by the moving fluid over the surface of a specified solid body or bodies in a fluid
stream of specified conditions. To supply this information is the main purpose of the
discipline of gasdynamics.

H. S. Tsien, 1953
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PREVIEW BOX

In 1913 Gertrude Stein wrote the familiar phrase: *Rose

_is 2 rose is a rose is g rose.” We borrow from this
phrase for the present chapter and say: “A conservation

equation is a conservation equation is a conservation
lequatic n‘ is a 'canservatlen equation.” However, like
. itude of varieties, the conserva-

e in a variety of forms. We have

de:nved and umlzied one form of the conservation equa-
tions in the previous chapters; namely, the integral form.
In the present chapter,. we. expand -our-horizons, -and

obtain the governing conservation equations inthe-form .

of partial differential equations, which-will be necessary
for the study of the multidimensional and/or unsteady
flows highlighted in the remainder of this book.

The panoply of the various forms of the conserva-
tion equations are frequently confusing to new students
of fluid dynamics because they look so different and
yet they speak the same physics. For example; there are
at least a dozen-different forms of the energy equation,
yet in the final analysis they are essentially the same
and they all are a statement of the first law: of thermody-
namics: In the simplest sense, the origin of the different
forms stem from the particular model of the flow used to

CHAPTER 6 Differential Conservation Equations for Inviscid Flows

obtain them. For example, four different models of the
flow are illustrated in Figs: 2.2 and 2.3. When we apply
the fundamental principle of mass conservation to each
of these four models, four different forms of the conti-

‘nuity equauon are directly obtained. Although these ;

four equauons look completely differ
reworked into each other’s form Y. -ma
manipulation, and all four forms represent the same.
physical principle, namely, that mass is conserved. A
purpese of the present chapter is to somewhat demystify
the different forms of the-equations for you, and o ém-
phasize those forms that will be useful for the remainder
of this book; For a complete discussion of the funda-
mental governing equations, their different forms, and
where they.come from, see Chap. 2 of the author’s book
Computational Fluid Dynamics: The Basics With Appli-
cations. (Ref. '18), where ‘a major effort is made to
demystify the equations: in their many different forms.
By:now you:get the point. This chapteris all about
equations; it is essentially ‘a continuation of Chap. 2,
which also was all about equations: The comments made
in‘our preview of Chap. 2 also apply here. The present
chapter-is very important because it adds many useful

DIFFERENTIAL FORMS OF THE
CONSERVATION EQUATIONS

Cornservation form

Continuity equation
Moméntum equation
Energy equation

Nonconservation form

Substantial derivative

Contihuity ¢quation
Momentum équation

Energy equation

The entropy equation

Crocco’s equation

Figure 6.1 | Roadmap for Chapter 6.




tools to our toolbox. These tools will make it possible
for us to examine a number of exciting applications later
in the book.

The roadmap for this chapter is given in Fig. 6.1.
We derive two forms of the differential conservation
equations: the conservation form and the nonconserva-
tion form, (Do not be put off by the term “nonconserva-
tion form”—it is strictly nomenclature and does not

6.1 Introduction 241

imply any violation of the physics. The classification
of the equations under the conservation and nonconser-
vation forms is a fairly recent artifact that has come from
the rise of computational fluid dynamics, and because
this nomenclature is becoming more widespread, we use
it here.) The chapter ends with two additional equations,
the entropy equation and Crocco’s theorem, which have
certain special applications to our further studies.

6.1 | INTRODUCTION
The analysis of problems in fluid dynamics requires three primary steps:

1. Determine a model of the fluid.

2. Apply the basic principles of physics to this model in order to obtain
appropriate mathematical equations embodying these principles.

3. Use the resulting equations to solve the specific problem of interest.

In Chap. 2, the modei of the fluid chosen was a control volume. The basic principles
of mass conservation, Newton’s second law, and energy conservation were applied to
a finite control volume to obtain integral forms of the conservation equations. In turn,
these equations were applied to specific problems in Chaps. 3, 4, and 5. These appli-
cations were such that the integral conservation equations nicely reduced to algebraic
equations describing properties at different cross sections of the flow. However, we
are now climbing to a higher tier in our study of compressible flow, where most of
the previous algebraic equations no longer hold. We will soon be dealing with prob-
lems of unsteady flow, as well as flows with two or three spatial dimensions. For such
cases. the integral forms of the conservation equations from Chap. 2 must be applied
to a small neighborhood surrounding a point in the flow, resulting in differential
equations, which describe flow properties at that point. To expedite our analysis, we
will make use of these vector identities:

#A-dSzﬁ(V-A)d‘/’
s v
#@dS:ﬂ%‘(V@)d‘/‘ 6.2)
s

P

(6.1)

where A and @ are vector and scalar functions, respectively, of time and space. and
7 is a control volume surrounded by a closed control surface S, as sketched in
Fig. 2.4.
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6.2 | DIFFERENTIAL EQUATIONS
IN CONSERVATION FORM

6.2.1 Continuity Equation

Repeating for convenience the continuity equation, Eq. (2.2),

3
—#pV- ds =ﬁ(—” dv
Py
N I

and using Eq. (6.1) in the form

#(pV) + dS =‘%V < (VY AV
s v

we combine Egs. (2.2) and (6.3) to obtain

0p .
ﬁ[gjtv- (pV)]d/ =0

7

(6.3)

6.4)

It might be argued that a control volume could be chosen such that, in some special
case, integration of Eq. (6.4) over one part of the volume would exactly cancel the in-
tegration over the remaining part, giving zero for the right-hand side. However, the
control volume is an arbitrary shape and size, and in general the only way Eq. (6.4)
can be satisfied is for the integrand to be zero at each point within the volume.

Hence,

dp
iy, =
=+ (pV) =0

Equation (6.4) is the differential form of the continuity equation.

6.2.2 Momentum Equation

Repeating for convenience the momentum equation, Eq. (2.11),

ﬁpfd%’—#pdS: @d/ +#(,0V dS)v
A s ¥

and using Eq. (6.2) in the form

#pds =ﬁ(Vp)d7/

5 7

(6.5)

(6.6)
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we combine Eqgs. (2.11) and (6.6) to obtain

ﬁpfd/ —}%{vpd/ -ﬁd(pv)d/ +#(pV-dS)V (6.7)

s
Equation (6.7) is a vector equation; for convenience, let us consider cartesian scalar

components in the x, v, and z directions, respectively (see Fig. 2.4). The x compo-
nent of Eq. (6.7) is

%pﬂd/ —ﬂf”" ‘:]ﬁd(gu)dy'+#(pv-z15)tl (6.8)
7 S

However, from Eq. (6.1),

#(pV- dS)u = #(WV) . dS :ﬁ(v- (puV)yd /- (6.9)
N Y 7

Substituting Eq. (6.9) into (6.8),

ad d .
]%([pﬁ VD (,ouV):| d7 =0 (6.10)
dx ot
y
By the same reasoning used to obtain Eq. (6.5) from Eq. (6.4), Eq. (6.10) yields
a a
8 v vy = =22 4 o, ©.11)
at 0x

Equation (6.11) is the differential form of the x component of the momenium equa-
tion. The analogous y and z components are

5 9

SOV L9 ooy = - 4 o (6.12)
at dy

oW L g owvy = -2 4 o (6.13)
ot 0z

6.2.3 Energy Equation

Repeating for convenience the energy equation, Eq. (2.20),

ﬁpqd‘/‘— #pv-dSJr%p(f-V)d%

7 S v

e 5o oo
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and using Eq. (6.1) in the forms

V2 v?
#p(e-l-?)V-dS:ﬂfV. |:p<6+‘i—>Vi|d7/ (6.14)
N A
and #pv' ds =%V s (pV)d7 (6.15)

N 7

we combine Egs. (2.20), (6.14), and (6.15) to obtain

. d v?
ﬁ({pq—v-(pV)+p(f-V)—5;[p(e+7)}

) .
~V. [,0 (e+7>V“d’7/=0 (6.16)

Setting the integrand equal to zero, we obtain

2 2
%[p(e%—%)}—i-v- [,o(e+v7)Vi|=—V-(pV)+,0q'+,o(f-V)

(6.17)
Equation (6.17) is the differential form of the energy equation.

6.2.4 Summary

Equations (6.5), (6.11) through (6.13), and (6.17) are general equations that apply
at any point in an unsteady, three-dimensional flow of a compressible inviscid
fluid. They are nonlinear partial differential equations, and they contain all of the
physical information and importance of the integral equations from which they were
extracted. For virtually the remainder of this book, such differential forms of the
basic conservation equations will be employed. Also, note that these equations con-
tain divergence terms of the quantities pV, puV, pvV, pwV, and p(e + V2/2)V.
For this reason, these equations are said to be in divergence form. This form of the
equations is also called the conservation form since they stem directly from the inte-
gral conservation equations applied to a fixed control volume. However, other forms
of these equations are frequently used, as will be derived in Secs. 6.3 and 6.4. We
have now finished the left-hand column of our roadmap in Fig. 6.1, and we move on
to the right-hand column.

6.3 | THE SUBSTANTIAL DERIVATIVE

Consider a small fluid element moving through cartesian space as illustrated in
Figs. 6.2a and b. The x, v, and z axes in these figures are fixed in space. Figure 6.2a
shows the fluid element at point 1 at time ¢ = #;. Figure 6.2b shows the same fluid
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(@) ®)

Figure 6.2 | Illustration of the substantial derivative (the xyz coordinate system above
is fixed in space, and the fluid element is moving from point 1 to point 2).

element at point 2 in the flowfield at some later time, ;. Throughout the (x, v, z)
space, the velocity field is given by

V=ui+vj+uwk
where u=u(x,y,z,t)

v=uv(x,y,7,1)
w=w(x,y, z,t)

and i, j, and k are unit vectors in the x, y, and z directions, respectively. In addition,
the density field is given by

p=px,y,2z,10

At time ¢, the density of the fluid element is p; = p(x1, y1, 21, #1). At time 1>, the
density of the same fluid element is p; = p(x2, ¥2, 22, ). Since p = p(x, v, 2. 1),
we can expand this function in a Taylor’s series about point I as follows:

0 d
P2 =p + <_,o> (x2 —x1) + <_p> 2=y
ax /, ay/,

) )
+ ('£> (za—z) + (—'0) (t» — ;) + higher-order term
aZ 1 ()[ |

Dividing by (> — 1), and ignoring higher-order terms,

02— Pi =(3_,0> (xz—x1)+<3_p) (YZ—)’1)+<3_,0) (22—21)+<3_/>>

Iy — ox /), (tr—1) ay /), (a—1) 9z /), (b — 1) at /,
(6.18)

Keep in mind the physical meaning of the left-hand side of Eq. (6.18). The quantity
(p2 — p1) is the change of density of the particular fluid element as it moves from
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point 1 to point 2. The quantity (t, — #;) is the time it takes for this particular fluid
element to move from point 1 to point 2. If we now let time #, approach ¢, in a limit-

ing sense, the quantity
i (/02 - m) _Dp
m{—— )= ——
L=t \ I — 1 Dt

becomes the instantaneous time rate of change of density of the particular fluid ele-
ment as it moves through point 1. This quantity is denoted by the symbol Dp/Dt.
Note that Dp/Dt is the rate of change of density of a given fluid element as it moves
through space. Here, our eyes are fixed on the fluid element as it is moving. This is
physically different than (3p/9¢);, which is the time rate of change of density at the
fixed point 1. For (3p/dt), we fix our eyes on the stationary point 1 and watch the
density change due to transient fluctuations in the flowfield. Thus, Dp/Dt and
(8p/at), are physically and numerically different quantities.

Continuing with our limiting procedures, and again remembering that we are
following a given fluid element,

(02 —x1) _
im ——=u
n—n (tp — 1)
(2 — 1) —
b=n (tr — 1) -
(za—21) _
X2 U _w
n->n (ty — 1)

Hence, returning to Eq. (6.18) and taking the limit as #, — #;, we obtain

Dp ap ap dp adp
— =u—F+v—+w—+ -
Dt ax ay dz ot

3 9
tuz— v two— =+ (V- V) (6.19)
4

as the substantial derivative. The time rate of change of any quantity associated with
a particular moving fluid element is given by the substantial derivative. For example,
De 8e+ 8€+ 8e+ de 3e+(v )
— =—4u—+tv—+w—=— .
D o Max " Vay TV T ur ¢
where De/Dt is the time rate of change of internal energy per unit mass of the fluid
element as it moves through a point in the flowfield, de/d¢ is the local time deriva-
tive at the point, and

de n de " de
vV— +w—
dx ay 0z
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is the convective derivative. Again, physically, the properties of the fluid element are
changing as it moves past a point in a flow because the flowfield itself may be fluc-
tuating with time (the local derivative) and because the fluid element is simply on its
way to another point in the flowfield where the properties are different (the convec-
tive derivative).

This example will help to reinforce the physical meaning of the substantial
derivative. Consider the substantial derivative of the temperature, which from
Eq. (6.19) is written as

br _or V.-T 6.19

Dt—ar—i-(-) (6.19a)
Imagine t