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Preface

The Central Thrust of This Book

A large class of theories in continuum physics takes as its starting point the
balance laws for mass, for linear and angular momenta, and for energy, together
with an entropy imbalance that represents the second law of thermodynamics.
Unfortunately, most engineering curricula teach the momentum balance laws for
an array of materials, often without informing students that these laws are actually
independent of those materials. Further, while courses do discuss balance of energy,
they often fail to mention the second law of thermodynamics, even though its place
as a basic law for continua was carefully set forth by Truesdell and Toupin1 almost
half a century ago.

This book presents a unified treatment of continuum mechanics and thermody-
namics that emphasizes the universal status of the basic balances and the entropy im-
balance. These laws and an hypothesis – the principle of frame-indifference, which
asserts that physical theories be independent of the observer (i.e., frame of refer-
ence) – are viewed as fundamental building blocks upon which to frame theories of
material behavior.

The basic laws and the frame-indifference hypothesis – being independent of
material – are common to all bodies that we discuss. On the other hand, particular
materials are defined by additional equations in the form of constitutive relations
(such as Fourier’s law) and constraints (such as incompressibility). Trivially, such
constitutive assumptions reflect the fact that two bodies, one made of steel and the
other of wood, generally behave differently when subject to prescribed forces – even
though the two bodies obey the same basic laws.

Our general discussion of constitutive equations is based on:

(i) the principle of frame-indifference;
(ii) the use of thermodynamics to restrict constitutive equations via a paradigm gen-

erally referred to as the Coleman–Noll procedure.

1 Truesdell & Toupin (1960, p. 644). In the 1960s and early 1970s this form of the second law,
generally referred to as the Clausius–Duhem inequality (cf. footnote 152), was considered to be
controversial because – as the argument went – the notions of entropy and temperature make no
sense outside of equilibrium, an argument that stands in stark contrast to the fact that temperatures
are routinely measured at shock waves. The religious nature of this argument together with the ob-
servation that most conventional theories are consistent with this form of the second law gradually
led to its general acceptance – and its overall power in describing new and more general theories
gave additional credence to its place as a basic law of continuum physics.

xix
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Because frame-indifference and the Coleman–Noll procedure represent powerful
tools for developing physically reasonable constitutive equations, we begin our dis-
cussion by developing such equations for:

(I) the conduction of heat in a rigid medium, as this represents an excellent vehicle
for demonstrating the power of the Coleman–Noll procedure;

(II) the mechanical theories of both compressible and incompressible, linearly vis-
cous fluids, where frame-indifference applied within a very general constitutive
framework demonstrates the veracity of conventional constitutive relations for
fluids.

Based on frame-indifference and using the Coleman–Noll procedure, we discuss
the following topics: elastic solids under isothermal and nonisothermal conditions;
coupled elastic deformation and species transport, where the species in question
may be ionic, atomic, molecular, or chemical; both isotropic and crystalline plastic
solids; and viscoplastic solids. In our treatment of these subjects, we consider general
large-deformation theories as well as corresponding small-deformation theories.

Our discussion of rate-independent and rate-dependent plasticity is not tradi-
tional. Unlike – but compatible with – conventional treatments, we consider flow
rules that give the deviatoric stress as a function of the plastic strain-rate (and an in-
ternal variable that represents hardening).2 We also provide a parallel description of
the conventional theory based on the principle of virtual power. We do this because:
(i) it allows us to account separately for the stretching of the microscopic structure
and the flow of dislocations through that structure as described, respectively, by the
elastic and plastic strain-rates; (ii) it allows for a precise discussion of material stabil-
ity; and (iii) it provides a basic structure within which one can formulate more gen-
eral theories. In this last regard, conventional plasticity cannot characterize recent
experimental results exhibiting size effects. To model size-dependent phenomena
requires a theory of plasticity with one or more material length-scales. A number
of recent theories – referred to as gradient theories – accomplish this by allowing
for constitutive dependencies on gradients of plastic strain and/or its rate. Such de-
pendencies generally lead to nonlocal flow rules in the form of partial differential
equations with concomitant boundary conditions. For that reason, we find it most
useful to develop gradient theories via the principle of virtual power, a paradigm
that automatically delivers the partial-differential equations and boundary condi-
tions from natural assumptions regarding the expenditure of power.

Requirements of space and pedagogy led us to omit several important topics
such as liquid crystals, non-Newtonian fluids, configurational forces, relativistic con-
tinuum mechanics, computational mechanics, classical viscoelasticity, and couple-
stress theory.

For Whom Is This Book Meant?

Our goal is a book suitable for engineers, physicists, and mathematicians. More-
over, with the intention of providing a valuable reference source, we have tried to
present a fairly detailed and complete treatment of continuum mechanics and ther-
modynamics. Such an ambitious scope requires a willingness to bore some when
discussing issues not familiar to others. We have used parts of this book with good

2 We do this for consistency with the remainder of the book, which is based on the requirement that
“the stress in a body is determined by the history of the motion of that body”; cf. Truesdell &
Noll (1965, p. 56). When discussing crystalline bodies, the flow rules express the resolved shear on
the individual slip systems in terms of corresponding slip rates.
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success in teaching graduates and advanced undergraduates in engineering, physics,
and mathematics.

Direct Notation

For the most part, we use direct – as opposed to component (i.e., index) – notation.
While some engineers and physicists might find this difficult, at least at first, we be-
lieve that the gain in clarity and insight more than compensates for the initial effort
required. For those not familiar with direct notation, we have included helpful sec-
tions on vector and tensor algebra and analysis, and we present the most important
results in both direct and component form.

Rigor

We present careful proofs of the basic theorems of the subject. However, when
the proofs are complicated or lengthy they generally appear in petite at the end
of the section in question. We also do not normally state smoothness hypotheses.
Indeed, standard differentiability assumptions sufficient to make an argument rig-
orous are generally obvious to mathematicians and of little interest to engineers and
physicists.

Attributions and Historical Issues

Our emphasis is on basic concepts and central results, not on the history of our
subject. For correct references before 1965, we refer the reader to the great ency-
clopedic handbook articles of Truesdell & Toupin (1960) and Truesdell & Noll
(1965). These articles do not discuss plasticity; for the early history of that subject
we refer the reader to the books of Hill (1950) and Malvern (1969). For more re-
cent work, we attempted to cite the contributions most central to our presentation,
and we apologize in advance if we have not done so faultlessly.

Our Debt

We owe much to the chief cultivators of continuum mechanics and thermodynam-
ics whose great work during the years 1947–1965 led to a rennaisance of the field.
Their names, listed chronologically with respect to their earliest published contri-
butions, are Ronald Rivlin, Clifford Truesdell, Jerald Ericksen, Richard Toupin,
Walter Noll, and Bernard Coleman. With the exception of plasticity theory, much
of this book stems from the work of these scholars – work central to the develop-
ment of a unified treatment of continuum mechanics and thermodynamics based on
(a) a precise statement of the balance laws for mass, linear and angular momentum,
and energy, together with an entropy imbalance (the Clausius–Duhem inequality)
that represents the second law of thermodynamics; (b) the unambiguous distinction
between these basis laws and the notion of constitutive assumptions; and (c) a clear
and compelling statement of material frame-indifference.

We are grateful to Paolo Podio-Guidugli, Guy Genin, and Giuseppe Tomassetti
for their many valuable comments concerning the section on plasticity; to B. Daya
Reddy for his help in developing material on variational inequalities for plastic-
ity; and to Ian Murdoch for extensive discussions that expanded our understanding
of the frame-indifference principle. Others who have contributed to this work are
Paolo Cermelli, Xuemei Chen, Shaun Sellers, and Oleg Shklyaev.





PART I

VECTOR AND TENSOR ALGEBRA

Throughout this book:

(i) Lightface Latin and Greek letters generally denote scalars.
(ii) Boldface lowercase Latin and Greek letters generally denote vectors, but the

letters o, x, y, and z are reserved for points.
(iii) Boldface uppercase Latin and Greek letters generally denote tensors, but the

letters X, Y, and Z are reserved for points.

1





1 Vector Algebra

We assume that the reader has had a basic course in vector algebra and, therefore, in
introducing this subject, we take a relaxed approach that does not begin with formal
definitions of point and vector spaces.

Roughly speaking, a point x is a dot in space and a vector v is an arrow that may
be placed anywhere in space. As an example from everyday life, on a street map of
a city

x def= the corner of 4th Street and 5th Avenue

might describe a point on the map, and to describe a second point y one-quarter of
a mile northeast of x one might let

v def= the vector whose direction is northeast and whose length is one-quarter mile

and write y = x + v. Thus, it would seem that a reasonable definition of a point space
would require two basic notions: that of a point and that of a vector. Of course,
granted a choice o of origin, one can identify all points with their vectors from o; but
such an identification is artificial, since there is no intrinsic way of defining o. (What
point on a street map would you call the origin?)

The space under consideration will always be a three-dimensional Euclidean
point space E . The term point will be reserved for elements of E and the term vector
for elements of the associated vector space V . Then:

(i) The difference v = y − x between the points y and x is a vector.
(ii) The sum y = x + v of a point x and a vector v is a point.

(iii) Unlike the sum of two vectors, the sum of two points has no meaning.

1.1 Inner Product. Cross Product

Our assumption that the point space E be Euclidean automatically endows the asso-
ciated vector space V with an inner product.3 We use the standard notation of vector
analysis. In particular,

• The inner product (a scalar) and cross product (a vector)4 of vectors u and v are
respectively designated by

u · v and u × v.

3 The inner product is often referred to as the dot product.
4 We assume that the reader has some familiarity with these notions. The cross product is ordered in

the sense that the cross product u × v of u and v is not generally equal to the cross product v × u of
v and u.

3
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Figure 1.1. The parallelogram P defined by the vectors u and v and the direction of u × v
determined by the right-hand screw rule.

The inner product determines the magnitude (or length) of a vector u via the
relation

|u| =
√

u · u;

and the angle

θ = ∠(u, v) (1.1)

between nonzero vectors u and v is defined by

cos θ = u · v
|u||v|

(0 ≤ θ ≤ π). (1.2)

Since −|u||v| ≤ u · v ≤ |u||v|, this definition assigns exactly one angle θ to each pair
of nonzero vectors u and v. Trivially,

u · v = |u||v| cos θ ;

this relation is often used to define the inner product.
With regard to the cross product, the magnitude

|u × v| (1.3)

represents the area spanned by the vectors u and v; that is, the area of the
parallelogram P defined by these vectors as indicated in Figure 1.1; this area is
nonzero if and only if u and v are linearly independent.5 Further, and what is most
important, if u and v are linearly independent, then:

(i) the magnitude of u × v is given by

|u × v| = |u||v| sin θ (0 < θ < π);

(ii) the vector u × v is orthogonal to both u and v with direction given by the right-
hand screw rule.6

5 Vectors u, v, and w are linearly dependent if, for some choice of the scalars a, b, and c, not all zero,

au + bv + cw = 0.

A similar definition applies to a pair of vectors u and v. Finally, a set of vectors is linearly independent
if it is not linearly dependent.

6 Asserting formally that a right-hand screw revolved from u to v will advance in its nut toward u × v
(Figure 1.1); cf. Brand (1947, §16) and Jeffrey (2002, §2.3). A simple consequence of this is that
v × u = −u × v and thus, in particular, that the cross product of u and v vanishes whenever u and v
are linearly dependent (Footnotes 4 and 5).
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v

u

w

Figure 1.2. The parallelepiped defined by the vectors u, v, and w.

Since u × v gives the area of P, while u × v is orthogonal to P, u × v is sometimes
referred to as the area vector of P.

Similarly,

|u · (v × w)| (1.4)

represents the volume spanned by the vectors u, v, and w; that is, the volume of the
parallelepiped defined by these vectors as indicated in Figure 1.2. If this volume is
nonzero, then u, v, and w are linearly independent.

If u, v, and w are linearly independent, then the triad {u, v, w} forms a basis for
V in the sense that any vector a may be uniquely represented in terms of that triad,
that is, there are unique scalars α, β, and γ such that

a = αu + βv + γw.

A basis {u, v, w} is positively oriented7 if

u · (v × w) > 0.

Two bases {a, b, c} and {u, v, w} have the same orientation if

a · (b × c) and u · (v × w) have the same sign. (1.5)

A basis {u, v, w} is orthonormal if

u · v = v · w = w · u = 0 and |u| = |v| = |w| = 1, (1.6)

so that u, v, and w are mutually orthogonal and of unit length.
A standard method of showing that two vectors a and b are equal uses the fol-

lowing result:

a · v = b · v for all vectors v if and only if a = b. (1.7)

The verification of this result is not difficult. Assume that a · v = b · v for all v. Then
the choice v = a − b yields |a − b|2 = 0 and, hence, a = b. Similarly,

a × v = b × v for all vectors v if and only if a = b, (1.8)

which is a result whose proof we leave as an exercise.
A subset K of vectors is referred to as a subspace if, given any vectors u and v

belonging to K and any scalars α and β, the linear combination

αu + βv belongs to K. (1.9)

Examples of subspaces of V are the singleton {0}, a line through the origin, a plane
through the origin, and V itself. There are no other examples.

7 We view a positively oriented basis as right-handed, since the definition of the cross product is based
on the right-hand screw rule (Footnote 6).
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EXERCISE

1. Verify (1.8).

1.2 Cartesian Coordinate Frames

Throughout this book, lowercase Latin subscripts range over the subset of integers

{1, 2, 3}.

A Cartesian coordinate frame for E consists of a reference point o called the
origin together with a positively oriented orthonormal basis {e1, e2, e3} for V . Being
positively oriented and orthonormal, the basis vectors obey

ei · e j = δi j and ei · (e j × ek) = εi jk. (1.10)

Here δi j , the Kronecker delta, is defined by

δi j =
{

1, if i = j,

0, if i '= j,
(1.11)

while εi jk, the alternating symbol, is defined by

εi jk =






1, if {i, j, k} = {1, 2, 3}, {2, 3, 1}, or {3, 1, 2},

−1, if {i, j, k} = {2, 1, 3}, {1, 3, 2}, or {3, 2, 1},

0, if an index is repeated,

(1.12)

and, hence, has the value +1, −1, or 0 according to whether {i, j, k} is an even per-
mutation, an odd permutation, or not a permutation of {1, 2, 3}.

For brevity,

{ei}
def= {e1, e2, e3}

denotes a positively oriented orthonormal basis.

1.3 Summation Convention. Components of a Vector and a Point

Throughout this book, we employ the Einstein summation convention according to
which summation over the range 1, 2, 3 is implied for any index that is repeated
twice in any term, so that, for instance,

uivi = u1v1 + u2v2 + u3v3,

Si j u j = Si1u1 + Si2u2 + Si3u3,

SikTkj = Si1T1 j + Si2T2 j + Si3T3 j .

In the expression Si j u j , the subscript i is free, because it is not summed over, while
j is a dummy subscript, since

Si j u j = Sikuk = Simum.

When an expression in which an index is repeated twice but summation is not to
be performed we state so explicitly. For example,

uivi (no sum)

signifies that the subscript i is not to be summed over.

-

yy
r

-
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Next, if Sjk = Skj , then

εi jkSjk = εikj Skj

= −εi jkSkj

= −εi jkSjk

and vice versa; therefore

Si j = Sji if and only if εi jkSjk = 0. (1.13)

Because {ei} is a basis, every vector u admits the unique expansion

u = u j e j ; (1.14)

the scalars ui are called the (Cartesian) components of u (relative to this basis). If
we take the inner product of (1.14) with ei , we find that, since ei · e j = δi j ,

ui = u · ei . (1.15)

Guided by this relation, we define the coordinates of a point x with respect to the
origin o by

xi = (x − o) · ei . (1.16)

In view of (1.14), the inner and cross products of vectors u and v may be
expressed as

u · v = (ui ei ) · (v j e j )

= uiv jδi j

= uivi (1.17)

and

u × v = (u j e j ) × (vkek)

= u jvke j × ek

= εi jku jvkei . (1.18)

In particular, (1.18) implies that the vector u × v has the component form

(u × v)i = εi jku jvk. (1.19)

When working with the cross product, the epsilon-delta identity

εi jkεipq = δ j pδkq − δ jqδkp, (1.20)

and its consequences

εi jkεi jl = 2δkl and εi jkεi jk = 6, (1.21)

are useful. Also useful is the identity

ei = 1
2εi jke j × ek. (1.22)

Sjk-- Sig.

_€Gijk=
-Eikj .
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Let u, v, and w be vectors. Useful relations involving the inner and cross prod-
ucts then include

u · (v × w) = v · (w × u) = w · (u × v),

u · (u × v) = 0,

u × v = −v × u,

u × (v × w) = (u · w)v − (u · v)w.

(1.23)

EXERCISES

1. Verify (1.22) and (1.23).
2. Establish the following identities for any vectors u, v, and w:

(u · v)2 + |u × v|2 = |u|2|v|2,

u × (v × w) + v × (w × u) + w × (u × v) = 0.



2 Tensor Algebra

2.1 What Is a Tensor?

We use the term tensor as a synonym for the phrase “linear transformation from V
into V .” A tensor S is therefore a linear mapping of vectors to vectors; that is, given
a vector u,

v = Su (2.1)

is also a vector. One might think of a tensor S as a machine with an input and an
output: if a vector u is the input, then the vector v = Su is the output (Figure 2.1).
The linearity of a tensor S is embodied by the requirements:

S(u + v) = Su + Sv for all vectors u and v;

S(αu) = αSu for all vectors u and scalars α.

Tensors S and T are equal if their outputs are the same whenever their inputs
are equal; precisely,

S = T if and only if Sv = Tv for all vectors v. (2.2)

One way of showing that tensors S and T are equal is a conseqence of the following
result:

a · Sb = a · Tb for all vectors a and b if and only if S = T. (2.3)

To prove this, we write a · Sb = a · Tb in the form a · (Sb − Tb), which, by (1.7),
holds for all a if and only if Sb = Tb and the validity of this for all b yields, by (2.2),
S = T.

Consistent with (2.2), tensors are generally defined by their actions on arbitrary
vectors. For example, the sum S + T of tensors S and T and the product αS of a
tensor S and a scalar α are defined as follows:

(S + T)v = Sv + Tv,

(αS)v = α(Sv),
(2.4)

for all vectors v. As a consequence of these definitions, the set of all tensors forms a
vector space (of dimension 9).

EXERCISE

1. Show that S + T and αS defined by (2.4) are actually linear and hence tensors.

9
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u

v = Su

Figure 2.1. A vector u and its transformation v = Su by a tensor S.

2.2 Zero and Identity Tensors. Tensor Product of Two Vectors.
Projection Tensor. Spherical Tensor

Two basic tensors are the zero tensor 0 and the identity tensor 1, defined by

0v = 0 and 1v = v

for all vectors v.
Another example of a tensor is the tensor product u ⊗ v, of two vectors u and

v, defined by

(u ⊗ v)w = (v · w)u (2.5)

for all w. By (2.5), the tensor u ⊗ v maps any vector w onto a scalar multiple of u.
Let e be a unit vector. Then, since

(e ⊗ e)u = (u · e)e

for any vector u, the tensor e ⊗ e maps each vector u to the projection (u · e)e of u
onto the vector e. Similarly,

(1 − e ⊗ e)u = u − (u · e)e,

so that, for any vector u, the tensor 1 − e ⊗ e maps each vector u to the projection
u − (u · e)e of u onto the plane perpendicular to e. The tensors

e ⊗ e and 1 − e ⊗ e (2.6)

therefore define projections onto e and onto the plane perpendicular to e
(Figure 2.2).

Next, note that

1v = v

= (v · ei )ei

= (ei ⊗ ei )v

for all v; thus, by (2.2), we have the useful identity

1 = ei ⊗ ei . (2.7)

Finally, a tensor S of the form

S = α1, (2.8)

with α a scalar, is called a spherical tensor.

U ④V
-

term
-

f- exoe)U = U- I u.ge
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(e ⊗ e)u

(1 − e ⊗ e)u

e

u

Figure 2.2. The projections (e ⊗ e)u = (u · e)e and (1 − e ⊗ e)u = u − (u · e)e of vector u
onto a unit vector e and onto the plane perpendicular to that unit vector.

EXERCISE

1. Show that, for a and b nonzero,

a ⊗ b = c ⊗ d if and only if c = αa and d = βb with αβ = 1.

2.3 Components of a Tensor

Given a tensor S, choose an arbitrary vector u and let

v = Su.

Then,

vkek = S(u j e j )

= u j Se j

and, by (1.10), taking the inner product of this relation with ei yields

vi = (ei · Se j )u j ;

thus, defining the components of S by

Si j = (S)i j

= ei · Se j , (2.9)

we see that the component form of the relation v = Su is

vi = Si j u j . (2.10)

Further, this relation implies that

v = vi ei

= (Si j u j )ei

= (Si j e j · u)ei

= (Si j ei ⊗ e j )u,

and since v = Su we must have

Su = (Si j ei ⊗ e j )u.
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Thus, since the vector u was arbitrarily chosen, we may conclude from (2.2) that

S = Si j ei ⊗ e j . (2.11)

The converse assertion, that (2.11) implies (2.9), is left as an exercise, as is the
verification of the identities

(1)i j = δi j , (u ⊗ v)i j = uiv j , (2.12)

and

Se j = Si j ei . (2.13)

EXERCISES

1. Show that (2.11) implies (2.9).
2. Verify (2.12) and (2.13).
3. Let e and f be orthogonal unit vectors. Describe the geometric nature of the

tensor

e ⊗ e + f ⊗ f.

4. Show that (Sei ) ⊗ ei = S.
5. Bearing in mind (1.23)4, show that

u × (v × w) = [(w · u)1 − w ⊗ u]v.

6. Given a unit vector e, show that

(1 − e ⊗ e)u = −e × (e × u).

2.4 Transpose of a Tensor. Symmetric and Skew Tensors

The transpose S) of a tensor S is the unique tensor with the property that

u · Sv = v · S)u (2.14)

for all vectors u and v. To establish the uniqueness of the transpose, assume that S
has a second “transpose” S*. Then,

v · S)u = v · S*u

for all u and v, so that, by (2.3), S* = S). Next, if S has a transpose, then

ei · S)e j = e j · Sei = Sji ,

so that

(S))i j = Sji . (2.15)

This calculation shows that every tensor S has a transpose:

S) = Sji ei ⊗ e j . (2.16)

Consequences of (2.14) are

1) = 1,

(S + T)) = S) + T),

(S))) = S.





(2.17)
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A tensor S is symmetric if

S = S) (2.18)

or skew if

S = −S). (2.19)

We write

sym S = 1
2 (S + S)),

skw S = 1
2 (S − S)),

(2.20)

and refer to sym S as the symmetric part of S and to skw S as the skew part of S. As
a consequence of these definitions,

skw (sym S) = sym (skw S) = 0 (2.21)

for any tensor S. Clearly,

S = 1
2 (S + S)) + 1

2 (S − S));

thus, every tensor S admits the decomposition

S = sym S + skw S (2.22)

into symmetric and skew parts; as a consequence of (2.20), this decomposition is
unique. In components, by (2.11), (2.15), and (2.20),

(sym S)i j = 1
2 (Si j + Sji ),

(skw S)i j = 1
2 (Si j − Sji ).

(2.23)

EXERCISE

1. Using the definition (2.14) of the transpose, establish (2.17).

2.5 Product of Tensors

Given tensors S and T, the product ST is defined by composition; that is, ST is de-
fined by

(ST)v = S(Tv) (2.24)

for all vectors v. By (2.11), Te j = Tlj el and by (2.16), S)ei = Sikek; thus,

ei · STe j = S)ei · Te j

= (Sikek) · (Tlj el)

= SikTlj (ek · el)︸ ︷︷ ︸
δkl

= SikTkj ,

and, hence,

(ST)i j = SikTkj . (2.25)

Generally, ST '= TS. When ST = TS, the tensors S and T are said to commute.
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Consequences of the definition (2.24), for tensors R, S, and T, are that

(RS)T = R(ST) = RST,

(R + S)T = RT + ST.
(2.26)

We write S2 = SS, and so forth; then, for m and n nonnegative integers,

SmSn = Sm+n = SnSm,

(αS)m = αmSm,

(Sm)n = Smn = (Sn)m.





(2.27)

Given vectors u, v, a, and b, it follows that

(u ⊗ v)(a ⊗ b)w = (b · w)(u ⊗ v)a

= (b · w)(v · a)u

= (v · a)(u ⊗ b)w

for any vector w and, thus, that

(u ⊗ v)(a ⊗ b) = (v · a)u ⊗ b. (2.28)

The identity (2.28) may also be established using components: by (2.12) and (2.25),

[(u ⊗ v)(a ⊗ b)]i j = (uivk)(akbj )

= (vkak)(ui bj )

= [(v · a)u ⊗ b]i j . (2.29)

Further, given a tensor S and vectors u and v, we have the useful identities

S(u ⊗ v) = (Su) ⊗ v,

(u ⊗ v)S = u ⊗ (S)v),

(u ⊗ v)) = v ⊗ u,





(2.30)

whose verification we leave as an exercise.
Given tensors S and T, it follows from the definition (2.14) of the transpose and

(2.24)

u · (ST))v = (ST)u · v

= S(Tu) · v

= Tu · S)v

= u · T)S)v

for all vectors u and v. Thus,

(ST)) = T)S). (2.31)

EXERCISE

1. Verify (2.30).
2. For A and S tensors, show that

sym (A)SA) = A)sym (S)A. (2.32)
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2.6 Vector Cross. Axial Vector of a Skew Tensor

The vector cross w× of a vector w is the tensor defined via the (natural) requirement
that

(w×)u = w × u (2.33)

for all vectors u. To determine the component representation of w×, choose a vector
u and let v = (w×)u = w × u, which, in view of (1.19), has the component form

vi = εikjwku j .

Comparing this relation to (2.10), we find that, since u is arbitrary,

(w×)i j = εikjwk. (2.34)

Thus, since εikj = −ε jki ,

(w×)) = −w× . (2.35)

Given any skew tensor !, there is a unique vector ω — called the axial vector of
! — such that

! = ω×, (2.36)

and, hence, such that

!u = ω × u (2.37)

for all vectors u. The uniqueness of ω follows from (1.8). To establish the existence
of such a vector, it suffices to show that ω defined by

ωi = − 1
2εi jk, jk (2.38)

satisfies (2.36). By (2.38) and the epsilon-delta identity (1.20),

εipqωi = − 1
2εipqεi jk, jk

= − 1
2 (δ j pδkq − δ jqδkp), jk

= − 1
2 (,pq −,qp)

= ,qp.

Thus, ,qp = εqipωi , which, by (2.34), is the component form of (2.36).

EXERCISES

1. Given vectors u, v, and w, establish the identities

(u×)(v ⊗ w) = (u × v) ⊗ w,

(u ⊗ v)(w×) = u ⊗ (v × w),

(u × v)× = v ⊗ u − u ⊗ v,

(u×)(v×) = v ⊗ u − (u · v)1,

(u×)(v×)(w×) = v ⊗ (u × w) − (u · v)w×.






(2.39)

2. Show that the axial vector of the skew part 1
2 (u ⊗ v − v ⊗ u) of the tensor u ⊗ v

is

− 1
2 u × v. (2.40)

-

E



16 Tensor Algebra

2.7 Trace of a Tensor. Deviatoric Tensors

The trace is the linear operation that assigns to each tensor S a scalar trS and satisfies
tr(u ⊗ v) = u · v (2.41)

for any vectors u and v. Linearity is the requirement that

tr(αS + βT) = α tr(S) + β tr(T)

for all tensors S and T and all scalars α and β. Thus, by (2.11),

trS = tr(Si j ei ⊗ e j )

= Si j tr (ei ⊗ e j )

= Si j (ei · e j )

= Sii , (2.42)

and the trace is well-defined. Some useful properties of the trace are

tr(Su ⊗ v) = v · Su,

tr(S)) = trS,

tr(ST) = tr(TS),

tr1 = 3.

(2.43)

As a consequence of (2.43)2,

trS = 0 whenever S is skew. (2.44)

A tensor S is deviatoric (or traceless) if

trS = 0, (2.45)

and we refer to

S0 ≡ devS

def= S − 1
3 (trS)1 (2.46)

as the deviatoric part of S,8 since

trS0 = 0,

and to
1
3 (trS)1 (2.47)

as the spherical part of S. Trivially,

S = S − 1
3 (trS)1

︸ ︷︷ ︸
S0

+ 1
3 (trS)1
︸ ︷︷ ︸

s1

.

Every tensor S thus admits the decomposition

S = S0 + s1 (2.48)

into the sum of a deviatoric tensor and a spherical tensor.

8 The operation “dev” is useful for denoting the deviatoric part of the product of many tensors, e.g.,
dev(ST · · · M).
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EXERCISES

1. Establish (2.43) and (2.44).
2. Establish the uniqueness of the decomposition (2.48).

2.8 Inner Product of Tensors. Magnitude of a Tensor

The space of all tensors has a natural inner product9

S : T = tr(S)T) = tr(ST)), (2.49)

which, by (2.11) and (2.41), has the component form

S : T = (S)T) j j

= S)
j i Ti j

= Si j Ti j . (2.50)

By (2.43)2,3 and (2.49),

S : T = T : S,

1 : S = trS.
(2.51)

Another useful identity is given by

R : (ST) = (S)R) : T (2.52)

and should be compared to

r · (St) = (S)r) · t,

which is the defining identity for the transpose. The verification of (2.52), which
relies on (2.17)3 and (2.49), proceeds as follows:

R : (ST) = tr (R(ST)))

= tr [R)(ST)]

= tr [(S)R))T]

= (S)R) : T.

Alternatively, working with components and using (2.25) and (2.50),

R : (ST) = Ri j (ST)i j

= Ri j SikTkj

= (SikRi j )Tkj

= (S)R)kj Tkj

= (S)R) : T.

Similar steps may be used to verify the following counterpart of (2.52):

R : (ST) = (RT)) : S. (2.53)

9 Cf. (2.43)2,3.
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By (2.50),

S : S ≥ 0 with S : S = 0 only when S = 0. (2.54)

By analogy to the notion of the magnitude |u| of a vector u, the magnitude |S| of a
tensor S is defined by

|S| =
√

S : S ≥ 0. (2.55)

The following assertion is a useful consequence of (2.54)10 given a tensor S,

If S : T = 0 for all tensors T, then S = 0. (2.56)

To verify (2.56), we simply take T = S.
Let S and W be symmetric and skew, respectively. Then, by (2.49) and the defi-

nitions (2.18) and (2.19) of skew and symmetric tensors,

S : W = tr(SW))

= −tr(SW)

= −tr(S)W)

= −S : W;

therefore,

S : W = 0 for S symmetric and W skew (2.57)

and the tensors S and W are orthogonal. A conseqence of (2.57) is that, for any
tensor T,

|T|2 = |sym T|2 + |skw T|2. (2.58)

Similarly,

D : S = 0 for D deviatoric and S spherical, (2.59)

and, for any tensor T,

|T|2 = |T0|2 + 1
3 (trT)2. (2.60)

Some other important identities, which hold for arbitrary choices of T, are

S : T = S : T) = S : sym T for S symmetric,

W : T = −W : T) = W : skw T for W skew,

S : T = S : T0 for S deviatoric.





(2.61)

EXERCISES

1. Verify (2.53).
2. Establish (2.58), (2.59), (2.60), and (2.61).
3. Show that for ω the axial vector of a skew tensor !,

|!|2 = 2|ω|2. (2.62)

4. Show that for S and T arbitrary

S : T = (sym S) : (sym T) + (skw S) : (skw T). (2.63)

10 Cf. (1.7).

S --

symstskws.si#ymstSkuSty--syms:ftskwSiT
.
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5. Show that for any two vectors v and w,

(v×) : (w×) = 2v · w, (2.64)

and thus conclude that |v×| =
√

2|v|.
6. Show that the components Si j of a tensor S as defined in (2.9) are given by

Si j = (ei ⊗ e j ) : S. (2.65)

7. Establish the identity

(a ⊗ b) : (c ⊗ d) = (a · c)(b · d). (2.66)

2.9 Invertible Tensors

A tensor S is invertible if there is a tensor S−1, called the inverse of S, such that

SS−1 = S−1S = 1. (2.67)

Conditions equivalent to invertibility are furnished by the next result, whose proof
is given at the end of this subsection.

(‡) Given a tensor S, the following four conditions are equivalent:

(i) S is invertible.
(ii) For any vector u, Su = 0 implies that u = 0.

(iii) For any basis {u, v, w}, the triad {Su, Sv, Sw} is a basis.
(iv) For any two vectors u and v, u × v '= 0 implies that Su × Sv '= 0.

The product ST of two invertible tensors is also invertible with

(ST)−1 = T−1S−1, (2.68)

since

(ST)T−1S−1 = 1,

T−1S−1(ST) = 1.

As a consequence of this result, if S is invertible, then so also is Sm for m a nonneg-
ative integer; in particular,

(S−1)m = (Sm)−1. (2.69)

For S an invertible tensor,

S)(S−1)) = (S−1S)) = 1,

and S) is invertible with

(S))−1 = (S−1));

we therefore write

S−) def= (S−1)) = (S))−1. (2.70)

Further, if S is invertible, then, by (2.43)3,

tr(STS−1) = tr(S−1S︸︷︷︸
1

T),

and we have the important identity

tr(STS−1) = trT. (2.71)
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Finally, we write

S−1
i j = (S−1)i j = ei · S−1e j

for the components of an invertible tensor S, so that

SikS−1
kj = S−1

ik Skj = δi j . (2.72)

2.9.1 Proof of (‡)
It suffices to show that (i) and (ii) are equivalent and that (ii) is equivalent to (iii) and also to (iv).

Step 1. (i) and (ii) are equivalent. Assume that (i) is satisfied. Premultiplying the equation Su = 0 by
S−1 then yields u = 0, and (ii) is satisfied. For a proof that (ii) implies (i), cf., for example, Halmos (1958,
§36).

Step 2. (ii) and (iii) are equivalent. Let u, v, and w be linearly independent. Note that for any choice
of the scalars u, v, and w,

S(au + bv + cw) = aSu + bSv + cSw. (2.73)

Assume that (ii) is satisfied. We show by contradiction that (iii) is satisfied. Assume that (iii) is not
satisfied. Then, Su, Sv, and Sw must be linearly dependent so that for some choice of the scalars a, b, and
c, not all zero, the right side of (2.73) vanishes. Thus, by (2.73),

S(au + bv + cw) = 0,

so that by (ii), au + bv + cw = 0, which contradicts the assumption that u, v, and w are linearly indepen-
dent. Thus, (iii) is valid.

To prove that (iii) implies (ii), assume that (iii) is satisfied but that (ii) is not satisfied. Then, there is
a vector k such that

Sk = 0, k '= 0. (2.74)

Then, by (iii), assuming that u, v, and w are linearly independent (so that Su, Sv, and Sw are linearly
independent), there are scalars u, v, and w, not all zero, such that

k = uu + vv + ww.

Hence, by (2.73) and (2.74),
uSu + vSv + wSw = Sk = 0;

hence, Su, Sv, and Sw are linearly dependent, which contradicts (iii). Thus, (iii) implies (ii).
Step 3. (ii) and (iv) are equivalent. To prove this, we rephrase (iv) in the equivalent form:

(v) For any two vectors u and v, if u and v are linearly independent, then so also are Su and Sv.

The proof that (ii) implies (v) follows exactly the steps showing that (ii) implies (iii). To show that (v)
implies (ii), we again use contradiction. Thus, assume that (v) is satisfied but that (ii) is not satisfied, so
that (2.74) holds for some vector v. Let j be any nonzero vector such that j and k are linearly independent.
Then, by (v), Sj and Sk must be linearly independent; but this is not possible, since, by (2.74), Sk = 0.

This completes the proof of (‡).

EXERCISES

1. Verify that for u · v '= −1, the tensor 1 + u ⊗ v is invertible with inverse

(1 + u ⊗ v)−1 = 1 − (1 + u · v)−1u ⊗ v. (2.75)

2. Verify that for any vector w, the tensor 1 + w× is invertible with inverse

(1 + w×)−1 = 1 − (1 + |w|2)−1(|w|21 − w ⊗ w + w×). (2.76)

3. Let S be invertible and let u and v be vectors chosen so that v · S−1u '= 1. Verify
that T = S + u ⊗ v is invertible with inverse

T−1 = S−1 − (1 + v · S−1u)−1S−1u ⊗ S−)v. (2.77)

Note that (2.75) follows from (2.77) on setting S = 1 (so that T = 1 + u ⊗ v).
4. Show that for S and T tensors, with T invertible,

(TST−1)0 = dev(TST−1) = TS0T−1. (2.78)
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2.10 Determinant of a Tensor

The next result allows us to define the determinant of a tensor in a manner most
suitable to our needs.11

(†) The ratio

Su · (Sv × Sw)
u · (v × w)

is the same for all choices of the basis {u, v, w}.

The determinant is an operation that assigns to each tensor S a scalar detS
defined by

detS = Su · (Sv × Sw)
u · (v × w)

(2.79)

for any basis {u, v, w}. Thus, |detS| is the ratio of the volume of the parallelepiped
defined by the vectors Su, Sv, and Sw to the volume of the parallelepiped defined
by the vectors u, v, and w. An immediate consequence of this definition and (1.5) is
that

(‡) two bases {u, v, w} and {Su, Sv, Sw} have the same orientation if and only if

detS > 0. (2.80)

By (2.79), granted that {u, v, w} is a basis, detS '= 0 if and only if Su · (Sv ×
Sw) '= 0 and, hence, in view of the discussion given in the paragraph containing
(1.4), if and only if {Su, Sv, Sw} is a basis. Thus, appealing to the proposition (‡) on
page 19,

S is invertible if and only if detS '= 0. (2.81)

Some useful properties of the determinant, which we state without proof,12 are

det(S)) = detS,

det(ST) = det(TS) = (detS)(det T),

det(αS) = α3detS,





(2.82)

and, for S invertible,

det(S−1) = (detS)−1. (2.83)

Recalling our agreement that {ei} is a positively oriented orthonormal basis,
we let u = ep, v = eq, and w = er (so that no two of the subscripts p, q, and r may
coincide). Then, by (1.10)2, (1.14), (2.11), and (2.79),

εpqr detS = (Sep × Seq) · Ser .

11 Cf., e.g., Nickerson, Spencer & Steenrod (1959, §5.2).
12 The proofs, which are not particularly illuminating, can be obtained using the fact that the de-

terminant of a tensor S is equal to the determinant of its matrix representation [S]; cf. (2.108).
Alternatively, the properties (2.82) of the determinant may be established by direct recourse to the
definition (2.79).
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Further, this result holds for any choice of the subscripts p, q, and r , since both sides
of this equation vanish when two subscripts coincide. Thus,

εpqr detS = (Sipei × Sjqe j ) · (Skr ek)

= εi jkSipSjqSkr , (2.84)

and (1.21)2 yields

detS = 1
6εi jkεpqr SipSjqSkr . (2.85)

Alternative expressions for detS that arise from (2.85) are

detS = εi jkSi1 Sj2Sk3 = εi jkS1i S2 j S3k. (2.86)

EXERCISES

1. Show that

det(αS) = α3detS

and, provided that S is invertible, that

det(S−1) = (detS)−1.

2. Show that for ! skew,

det(1 + !) = 1 + 1
2 |!|2

and, hence, conclude that any tensor of the form 1 + ! with ! skew is invertible.
3. Show that for S invertible and any pair of vectors u and v,

det(S + u ⊗ v) = (1 + v · S−1u) det S.

2.11 Cofactor of a Tensor

Let S be an invertible tensor. Further, let u and v be linearly independent and con-
sider the area vector13 u × v of the parallelogram defined by u and v. Then, by (iv)
of (‡) on page 19, Su × Sv '= 0; hence,

n def= Su × Sv '= 0 (2.87)

is the area vector of the parallelogram defined by Su and Sv. Thus,

n · Su = 0 and n · Sv = 0

or, equivalently,

S)n · u = 0 and S)n · v = 0.

S)n is therefore perpendicular to u and v, and there is then a scalar γ such that

S)n = γu × v

and, by (2.87),

S)(Su × Sv) = γu × v. (2.88)

Finally, letting w = u × v, so that w, u, and v are linearly independent, we see that

γw · (u × v) = w · S)(Su × Sv)

= Sw · (Su × Sv);

13 Cf. the paragraph containing (1.3).
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and, dividing this equation by w · (u × v), and appealing to the definition (2.79) of
the determinant, we find that

γ = detS.

Thus, (2.88) becomes

Su × Sv = (detS)S−)(u × v). (2.89)

For S invertible, the tensor SC defined by

SC = (detS)S−) (2.90)

is called the cofactor of S; upon using this tensor, (2.89) takes the simple form14

SC(u × v) = Su × Sv (2.91)

for all linearly independent vectors u and v. Thus, SC transforms the area vector
u × v of the parallelogram defined by u and v into the area vector Su × Sv of the
parallelogram defined by Su and Sv.

Given a tensor S, we write

SC
i j = (SC)i j

= ei · SCe j

for the components of its cofactor SC. Thus, using (1.22) to write e j = 1
2ε jmnem × en

and invoking (2.91), we find that

SC
i j = ei · [SC( 1

2ε jmnem × en)]

= 1
2ε jmn[ei · (Sem × Sen)]

= 1
2ε jmn[εikl (ek · Sem)(el · Sen)]

= 1
2εiklε jmnSkmSln, (2.92)

whereby the components of SC depend quadratically on those of S. Also, by (2.90),15

for S invertible, S−1 = (detS)−1(SC)), and it follows from (2.92) that the components
of S−1 are given in terms of those of S by

S−1
i j = 1

2 (detS)−1εiklε jmnSmkSnl . (2.93)

EXERCISES

1. Verify (2.93).
2. Show that for any invertible tensor S

det(SC) = (det S)2,

(αS)C = α2SC,

(S−1)C = (det S)−1S),

(SC)−1 = (det S)−1S),

(SC)C = (detS)S.

14 By (iv) of (‡) on page 19.
15 Which is to be expected on the basis of (2.91).
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3. Show that for any invertible tensor S and any vector u

(Su)× = SC(u×)S−1,

(SCu)× = S(u×)S).

4. Let ! be skew with axial vector ω. Given vectors u and v, show that

!u × !v = (ω ⊗ ω)(u × v)

and, hence, conclude that ! has a unique cofactor given by

!C = ω ⊗ ω.

5. The cofactor SC of a not necessarily invertible tensor S is defined using as a start-
ing point the requirement that (2.91) hold for all vectors u and v. This definition
yields the representation

SC =
[
S2 − (trS)S + 1

2 [tr2(S) − tr(S2)]1
])

. (2.94)

Verify that the component form of (2.94) is consistent with (2.92).
6. Use the representation (2.94) to show that, for any vector u,

(u×)C = u ⊗ u,

(u ⊗ u)C = 0.

7. Using the relation (2.79) defining the determinant of a tensor and the identity
(2.91), show that for any pair of tensors S and T,

det(S + T) = det S + tr(S)TC) + tr(S)TC) + det T. (2.95)

8. Using (2.94), show that for any pair of tensors S and T,

(ST)C = SCTC

and

(S + T)C = SC + TC + T)S) + S)T)

− (trT)S) − (trS)T) + [(trS)(trT) − tr(ST)]1. (2.96)

9. Let S be an invertible tensor and let u and v be vectors. Specialize (2.95) to
derive the identities

det(S + 1) = det S + (det S)trS−1 + trS + 1,

det(S + u×) = (det S)(1 + (u×) : S−1) + u · Su,

det(S + u ⊗ v) = det S + u · SCv.

10. Let S be a tensor and let u and v be vectors. Specialize (2.96) to derive the
identities

(S + 1)C = SC + 1 + (trS)1 − S),

(S + u×)C = SC − [S) − (trS)1]u × −(u×)S) + [S : (u×)]1 + u ⊗ u,

(S + u ⊗ v)C = SC − (u×)S(v×).
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2.12 Orthogonal Tensors

A tensor Q is orthogonal if

Qu · Qv = u · v (2.97)

for all vectors u and v. Choosing v = u in (2.97),

|Qu|2 = Qu · Qu

= u · u

= |u|2

so that

|Qu| = |u|; (2.98)

the action of an orthogonal tensor Q on a vector u therefore leaves the length of u
unchanged. Consider next the angle θ = ∠(u, v) between nonzero vectors u and v
and the angle β = ∠(Qu, Qv) between the transformed vectors Qu and Qv.16 Then,
by (2.97) and (2.98),

cosβ = Qu · Qv
|Qu||Qv|

= u · v
|u||v|

= cos θ ; (2.99)

the angle between u and v is therefore preserved whenever u and v are transformed
by an orthogonal tensor Q.

The results derived above represent the essential geometrical properties of an
orthogonal tensor: the preservation of lengths and angles. The next result gives the
basic algebraic property of an orthogonal tensor.

(‡) A condition both necessary and sufficient for a tensor Q to be orthogonal is that
Q be invertible with transpose equal to its inverse

Q) = Q−1. (2.100)

The result (‡) is central to our treatment of continuum mechanics; its proof is given
at the end of this subsection.

In view of (2.67), an immediate consequence of (‡) is the important relation

Q)Q = QQ) = 1, (2.101)

which is valid for any orthogonal tensor Q. Further, (2.82) implies that det(Q)Q) =
(detQ)2; therefore, by (2.101), if Q is orthogonal, then

detQ = ±1. (2.102)

An orthogonal tensor Q is a rotation if detQ = 1 and a reflection otherwise.
Every reflection can be expressed as the product of a rotation with −1. For example,
on multiplication by −1, the rotation, by π radians, 2e ⊗ e − 1 about an axis with
unit normal e becomes the reflection 1 − 2e ⊗ e about that same axis.

16 Cf. (1.1) and (1.2).
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2.12.1 Proof of (‡)
Necessity. Let Q be orthogonal. Then, by (2.98), Q satisfies condition (ii) of (‡) on page 19; Q is therefore
invertible. Further, by (2.14) and (2.97),

u · u = Qu · Qu

= u · Q)Qu

and hence,
u · (Q)Q − 1)
︸ ︷︷ ︸

T

u = 0 (2.103)

for all u. On the other hand, since T = Q)Q − 1 is symmetric,

2u · Tv = (u + v) · T(u + v) − u · Tu − v · Tv.

But by (2.103), the right side of this equation vanishes. Thus, u · Tv = 0 for all u and v, which, by (2.3),
implies that T = 0; hence,

Q)Q = 1. (2.104)
Finally, since Q is invertible, if we multiply the right side of (2.104) by Q−1 we see that

Q) = Q−1, (2.105)

and consequently, by (2.67), that (2.101) is satisfied.
Sufficiency. Assume that (2.101) is satisfied. Then

Qu · Qv = u · Q)Qv = u · v

for all u and Q is orthogonal.

EXERCISE

1. Show that given a unit vector e, the tensor

Q(θ) = (cos θ)1 + (1 − cos θ)e ⊗ e + (sin θ)e× (2.106)

is a rotation for 0 ≤ θ ≤ 2π . Show further that
a) Q(0) = Q(2π) = 1,
b) Q(θ + φ) = Q(θ)Q(φ),
c) Q(θ)e = e,
d) Q(θ)(1 − e ⊗ e) = (cos θ)(1 − e ⊗ e) + (sin θ)e×,
and, on the basis of these properties, conclude that Q(θ) rotates any vector by
an angle θ about an axis parallel to e.

2. Using (ii) of Appendix 114, show that Q(θ) defined in (2.106) can be repre-
sented alternatively as

Q(θ) = eθe×.

3. Let Q be a rotation and show that for any pair of vectors u and v,

Q(u × v) = Qu × Qv.

(Hint: Note from (2.90) and (2.100) that QC = (det Q)Q for any orthogonal ten-
sor Q and use (2.91) and (2.102).)

2.13 Matrix of a Tensor

We now show that the operations of multiplication, transposition of tensors as well
as the operators defining the trace and determinant of tensors are in one-to-one
correspondence with these same operations and operators applied to matrices.

We write [u] and [S] for the matrix representations of a vector u and a tensor S
with respect to the basis {ei}:

[u] =




u1
u2
u3



 , [S] =




S11 S12 S13
S21 S22 S23
S31 S32 S33



 .
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Then,

[S][u] =




S11 S12 S13
S21 S22 S23
S31 S32 S33








u1
u2
u3





=




S11u1 + S12u2 + S13u3
S21u1 + S22u2 + S23u3
S31u1 + S32u2 + S33u3





=




S1i ui
S2i ui
S3i ui





= [Su],

so that the action of a tensor on a vector is consistent with that of a 3 × 3 matrix on
a 3 × 1 matrix. Further, bearing in mind (2.15), transposition of the matrix [S] yields

[S]) =




S11 S21 S31
S12 S22 S32
S13 S23 S33





= [S)].

In view of (2.42) and (2.86)1, the conventional definitions of the trace and de-
terminant from matrix algebra yield

tr[S] = S11 + S22 + S33 = Sii

= trS (2.107)

and

det[S] =

∣∣∣∣∣∣

S11 S12 S13
S21 S22 S23
S31 S32 S33

∣∣∣∣∣∣

= S11(S22 S33 − S23S32) − S12(S21 S33 − S23 S31) + S13(S21 S32 − S22 S31)

= εi jkSi1Sj2Sk3

= detS. (2.108)

EXERCISE

1. Use the conventional definition of the cofactor [S]C of a matrix [S] to show that

[S]C =




S22S33 − S23S32 S23S31 − S21S33 S21S32 − S22S31

S13S32 − S33S12 S11S33 − S13S31 S12S31 − S11S32

S12S23 − S13S22 S13S21 − S11S23 S11S22 − S12S21





= [SC] (2.109)

and thus to conclude from (2.92) that the definition (2.91) of the cofactor SC of
a tensor is consistent with what arises in matrix algebra.
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2.14 Eigenvalues and Eigenvectors of a Tensor. Spectral Theorem

A scalar ω is an eigenvalue of a tensor S if there is a unit vector e such that

Se = ωe, (2.110)

in which case e is an eigenvector of S corresponding to the eigenvalue ω and ω is an
eigenvalue of S corresponding to the eigenvector e. The characteristic space for S
corresponding to ω is the subspace U of vectors v satisfying the equation17

Sv = ωv. (2.111)

Suppose that S is symmetric and that ω1 '= ω2 are eigenvalues of S with corre-
sponding eigenvectors e1 and e2. Then, since S is symmetric,

ω1e1 · e2 = (Se1) · e2

= (Se2) · e1

= ω2 e2 · e1.

Thus,

(ω1 − ω2)e1 · e2 = 0,

and since ω1 '= ω2, we must have

e1 · e2 = 0.

For a symmetric tensor, eigenvectors corresponding to distinct eigenvalues are
therefore orthogonal.

The next result, whose proof we omit,18 is a central theorem of linear algebra
and one of substantial value in continuum mechanics.

Spectral Theorem Let S be symmetric. Then there is an orthonormal basis {ei} of
eigenvectors of S and, what is most important,

S =
3∑

i=1

ωi ei ⊗ ei , (2.112)

where, for each i, ωi is an eigenvalue of S and ei is a corresponding eigenvector.

The relation (2.112), which is called a spectral decomposition of S, gives S as
a linear combination of projections,19 with each ei ⊗ ei (no sum) a projection onto
the eigenvector ei . Such a decomposition is unique if and only if the eigenvalues of
S are distinct. The geometric nature of the characteristic spaces of S depend on the
number of distinct eigenvalues of S:

(i) If the eigenvalues are distinct, then S has exactly three characteristic spaces: the
three mutually perpendicular lines li , with each li parallel to the corresponding
eigenvector ei .

(ii) If S has but two distinct eigenvalues, say

ω1 '= ω2 = ω3,

then since 1 = ei ⊗ ei ,

ω2e2 ⊗ e2 + ω3e3 ⊗ e3 = ω2(1 − e1 ⊗ e1).

17 Cf. (1.9). U is clearly a subspace, since any linear combination of solutions of (2.111) is itself a
solution.

18 Cf., e.g., Halmos (1958, §79), Stewart (1963, §37), and Bowen & Wang (1976, §27).
19 Projections are discussed in the paragraph containing (2.6).
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The spectral decomposition (2.112) therefore has a form

S = ω1e1 ⊗ e1 + ω2(1 − e1 ⊗ e1) (2.113)

giving S as a linear combination of the projection e1 ⊗ e1 onto e1 and the projec-
tion 1 − e1 ⊗ e1 onto the plane perpendicular to e1. In this case, S has exactly
two characteristic spaces: the line l through o parallel to e1 and the plane #
through 0 perpendicular to e1 and hence to l.

(iii) If ω1 = ω2 = ω3 = s then (and only then)

S = s1 (2.114)

and is, hence, spherical. In this case, every unit vector is an eigenvector and the
sole characteristic space of S is the entire vector space V .

We therefore have the following decompositions of a vector v into a sum of vectors:
one vector for each characteristic space:

case (i): v = (v · ei )ei︸ ︷︷ ︸
a vector in li

,

case (ii): v = (e1 ⊗ e1)v︸ ︷︷ ︸
a vector in l

+ (1 − e1 ⊗ e1)v︸ ︷︷ ︸
a vector in the plane
# perpendicular to l

,

case (iii): v = v.






(2.115)

Thus, if we denote the characteristic spaces of an arbitrary symmetric tensor S by

Uα , α = 1, . . . n ≤ 3, (2.116)

we can then summarize cases (i)–(iii) by decomposing an arbitrary vector into ele-
ments of distinct characteristic subspaces

v =
n∑

α=1

uα, where uα belongs to Uα . (2.117)

Given a set F of vectors, we say that a tensor T leaves F invariant if for every
vector v in F the vector Tv also belongs to F .

Suppose that two (not necessarily symmetric) tensors S and T commute:

ST = TS.

Assume that v belongs to a characteristic space U for S with ω the corresponding
eigenvalue so that

Sv = ωv.

Then,

S(Tv) = TSv = ω(Tv)

and Tv also belongs to U . Thus, T leaves the characteristic space U of S invariant.
This result has a converse for S symmetric (T arbitrary):

(‡) If T leaves each characteristic space Uα of S invariant, then S and T commute.

To prove (‡), assume that T leaves each characteristic space Uα of S invariant. Thus,
if uα belongs to Uα , so that

Suα = ωαuα,
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then, by hypothesis, Tvα belongs to Uα; hence,

S(Tuα) = ωα(Tuα)

= T(ωαuα)

= T(Suα).

Choose a vector v and consider its expansion v =
∑n

α=1 uα as in (2.117). Then

STv =
n∑

α=1

STuα

=
n∑

α=1

TSuα

= TSv.

Since v was arbitrarily chosen, ST = TS. This proves (‡).
Note that by (2.112), the matrix of S relative to the eigenvector basis {ei} is

diagonal:

[S] =




ω1 0 0
0 ω2 0
0 0 ω3



 , (2.118)

so that by (2.107) and (2.108),

trS = ω1 + ω2 + ω3 and detS = ω1ω2ω3. (2.119)

EXERCISES

1. Let f1 and f2 be orthogonal unit vectors, so that |f1| = |f2| = 1 and f1 · f2 = 0.
Determine the eigenvalues and eigenvectors of the tensor S = 1 + f1 ⊗ f2 +
f2 ⊗ f1.

2. Show that for case (ii) in which S has the form (2.113) we may replace the eigen-
vectors e2 and e3 in (2.112) by any two orthogonal unit vectors in the plane
perpendicular to e1.

3. Let S be an invertible tensor with eigenvalue ω and corresponding eigenvec-
tor e. Show that ω−1 is an eigenvalue of S−1 and determine the corresponding
eigenvector.

4. Let S be a symmetric tensor with three distinct eigenvalues ω1, ω2, and ω3. Let
P1, P2, and P3 be defined by

P1 = (ω1 − ω2)−1(ω1 − ω3)−1(S − ω21)(S − ω31),

P2 = (ω2 − ω1)−1(ω2 − ω3)−1(S − ω11)(S − ω31),

P3 = (ω3 − ω1)−1(ω3 − ω2)−1(S − ω11)(S − ω21).

Show that:
a. Pi u = (ei · u)ei for each i = 1, 2, 3 (no sum);
b. Pi Pi = Pi for each i = 1, 2, 3 (no sum);
c. P1 + P2 + P3 = 1;
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d. given a polynomial function ϕ of a scalar and a corresponding polynomial
tensor-valued function # of a tensor,20

#(S) = ϕ(ωi )Pi .

e. As simple consequences of the last result,

1 = P1 + P2 + P3,

S = ωi Pi ,

SC = ω2ω3P1 + ω1ω3P2 + ω1ω2P3,

S−1 = ω−1
i Pi .

2.15 Square Root of a Symmetric, Positive-Definite Tensor. Polar
Decomposition Theorem

A tensor C is positive-definite if

u · Cu > 0 (2.120)

for all vectors u '= 0.
Suppose that C is symmetric, positive-definite, and consider its spectral decom-

position as defined by (2.112) with S = C. Then, by (2.120), for each fixed choice
of i ,

ei · Cei = ωi > 0 (no sum on i). (2.121)

The eigenvalues of a symmetric, positive-definite tensor are therefore strictly positive.
The converse assertion that

(†) a symmetric tensor with strictly positive eigenvalues is positive-definite

is left as an exercise, as are the following properties of a symmetric, positive-definite
tensor C:

detC > 0 (2.122)

and

RCR) is symmetric and positive-definite for every rotation R. (2.123)

We now use (2.121) to show that, given a symmetric, positive-definite tensor C,
there is a unique symmetric, positive-definite tensor U such that

U2 = C; (2.124)

in this case, we write

U =
√

C (2.125)

and refer to
√

C as the square root of C.
Since C is symmetric and positive-definite, the spectral theorem and (2.121) im-

ply that C admits the spectral decomposition

C =
3∑

i=1

ωi ei ⊗ ei , ωi > 0. (2.126)

20 Cf., e.g., Frazer, Duncan & Collar (1938, §3.8) and Bowen & Wang (1976, §27). This result is
known as Sylvester’s theorem.
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Let

U def=
3∑

i=1

√
ωi ei ⊗ ei . (2.127)

Then, by (1.10)1, (2.28), and (2.126),

U2 =
[

3∑

i=1

√
ωi ei ⊗ ei

][
3∑

j=1

√
ω j e j ⊗ e j

]

=
3∑

i, j=1

√
ωi

√
ω j (ei ⊗ ei )(e j ⊗ e j )

=
3∑

i=1

ωi ei ⊗ ei

= C.

Thus, U is a square root of C.
But is U the only square root of C? To show that U is unique,21 suppose that

there is a second symmetric, positive-definite tensor Ú such that

U2 = Ú2 = C.

Let e be an eigenvector of C with ω > 0 the corresponding eigenvalue. Then, letting
λ =

√
ω,

0 = (U2 − ω1)e = (U + λ1)(U − λ1)e.

Thus, for

v = (U − λ1)e,

we find that

Ue = −λe

and v must vanish, for otherwise −λ would be an eigenvalue of U, which is an im-
possibility, since U is, by definition, positive-definite.22 Hence,

Ue = λe.

Similarly,

Úe = λe

for every eigenvector e of C. Since by the spectral theorem we can form a basis of
eigenvectors of C, we find that

U = Ú.

We have therefore shown that the square root of a symmetric, positive-definite ten-
sor C is well-defined; in fact, by (2.127),

√
C has the explicit form

√
C =

3∑

i=1

√
ωi ei ⊗ ei , (2.128)

21 This proof is due to Stephenson (1980).
22 Cf. (2.121).
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where {ei} is a basis of eigenvectors of C and for each i , ωi is the eigenvalue corre-
sponding to ei . Thus, in view of (†) on page 31,

(‡) the square root of a symmetric, positive-definite tensor is itself a symmetric,
positive-definite tensor.

Next, we show that if F is an invertible tensor, then

F)F and FF)are symmetric and positive-definite. (2.129)

To verify this result, note that by (2.17),

(F)F)) = F)F and (FF))) = FF);

hence F)F and FF) are symmetric. Further, by (2.14),

u · F)Fu = |Fu|2 > 0 and u · FF)u = |F)u|2 > 0

for any vector u '= 0, and F)F and FF) are positive-definite.
The next result is central to the modern discussion of strain.

Polar Decomposition Theorem Let F be an invertible tensor with detF > 0. Then
there are symmetric, positive-definite tensors U and V and a rotation R such that

F = RU = VR. (2.130)

Moreover, each of these decompositions is unique in the sense that if

F = R̃Ũ and F = V̄R̄ (2.131)

with Ũ and V̄ symmetric, positive-definite and R̃ and R̄ rotations, then

Ũ = U, V̄ = V, R̃ = R̄ = R.

We refer to F = RU and F = VR, respectively, as the right and left polar decomposi-
tions of F. Finally, granted these decompositions, F determines U and V through the
relations

U =
√

F)F,

V =
√

FF)
,

(2.132)

and

V = RUR). (2.133)

PROOF. Our first step is to show that if F has the right and left polar decompositions
(2.130), then U, V, and R satisfy (2.132) and (2.133). Indeed, by (2.130)1 with U
symmetric and R a rotation,

F)F = UR)RU

= U2;

similarly (2.130)2 with V symmetric yields

FF) = V2.

Further, since by hypothesis and (2.129), F)F and FF) are symmetric and positive-
definite, each of these tensors has a square root; hence, (2.132) is satisfied. Finally,
solving (2.130)2,3 for V yields (2.133).
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We are now in a position to establish the existence of the right and left de-
compositions (2.131). Since (2.132) is necessary for existence, we begin by defining a
symmetric, positive-definite tensor U by (2.132)1 and a tensor R through R = FU−1.
To verify that F = RU is a right polar decomposition, we have only to show that R
is a rotation. By the first of (2.135),

R)R = U−1F)FU−1

= U−1U2U−1

= 1, (2.134)

so that R is orthogonal. Also, since U is positive-definite so that by (2.122), detU >

0, and since detF > 0, we may use (2.82) and (2.134) to show that detR > 0. Thus,
R is a rotation.

We next show that F = VR, with V symmetric and positive-definite. Since U
is symmetric, positive-definite and R a rotation, (2.123) implies that V = RUR) is
symmetric and positive-definite; it follows that

F = RU

= RUR)R

= RUR)R

= VR

and F = VR is a left polar decomposition. Every invertible F with strictly positive
determinant therefore has right and left polar decompositions of the form (2.131).

We next establish the uniqueness of these decompositions. To this end, assume
that F also has the decompositions (2.131) with Ũ and V̄ symmetric, positive-definite
and R̃ and R̄ rotations. Then, arguing as in the first paragraph of the proof, we find
that Ũ =

√
F)F = U and V̄ =

√
FF) = V. Further, by (2.131), given F, U, and V, the

tensors R̃ and R̄ satisfy

R̃ = FU−1 = R and R̄ = V−1F = R. (2.135)

The decompositions (2.131) are therefore unique.
This completes the proof of the polar decomposition theorem.

EXERCISES

1. Show that a tensor C is positive-definite if and only if its symmetric part sym C
is positive-definite.

2. Show that a symmetric tensor with strictly positive eigenvalues is positive-
definite.

3. Consider the polar decomposition (2.131) of an invertible tensor F with
detF > 0.
(a) Show that U admits a spectral decomposition of the form

U =
3∑

i=1

λi ri ⊗ ri , (2.136)
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with {ri} an orthonormal basis of eigenvectors and corresponding eigenval-
ues λi > 0, and that

U−1 =
3∑

i=1

1
λi

ri ⊗ ri . (2.137)

(b) Show that the spectral decomposition of V has the form

V =
3∑

i=1

λi li ⊗ li , (2.138)

with

li = Rri . i = 1, 2, 3. (2.139)

The eigenvalues of U and V are identical while the associated eigenvectors
are therefore related via the rotation R.

(c) Show that

F =
3∑

i=1

λi li ⊗ ri ,

F−1 =
3∑

i=1

λ−1
i ri ⊗ li ,

F−) =
3∑

i=1

λ−1
i li ⊗ ri .






(2.140)
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If ω and e are an eigenvalue and corresponding eigenvector for a tensor S, then
(2.110) implies that

(S − ω1)e = 0;

S − ω1 is therefore not invertible, so that, by (2.81),

det(S − ω1) = 0.

Thus, in view of (2.108), the determinant of the 3 × 3 matrix [S] − ω[1] must vanish,

det([S] − ω[1]) = 0;

each eigenvalue ω of a tensor S must therefore be a real solution of a polynomial
equation of the form ω3 − a1ω

2 + a2ω − a3 = 0, with the coefficients being functions
of S. In fact, a tedious computation shows that this characteristic equation has the
explicit form

ω3 − I1(S)ω2 + I2(S)ω − I3(S) = 0, (2.141)
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where I1(S), I2(S), and I3(S), called the principal invariants23 of S, are given by

I1(S) = trS,

I2(S) = 1
2 [tr2(S) − tr(S2)],

I3(S) = detS.

(2.142)

Moreover, for S symmetric, these relations and the spectral decomposition (2.112)
imply that the invariants (2.142) are easily computed from the eigenvalues ωi of S
via the relations

I1(S) = ω1 + ω2 + ω3,

I2(S) = ω1ω2 + ω2ω3 + ω3ω1,

I3(S) = ω1ω2ω3.





(2.143)

Let S be a symmetric tensor. Further, let e be an eigenvector of S with ω the
corresponding eigenvalue, so that Se = ωe. Then,

S2e = S(Se)

= S(ωe)

= ωSe

= ω2e.

Similarly, S3e = ω3e and, therefore, by (2.141),

[S3 − I1(S)S2 + I2(S)S − I3(S)1]e = [ω3 − I1(S)ω2 + I2(S)ω − I3(S)]e

= 0.

Thus, for every eigenvector e of S,

[S3 − I1(S)S2 + I2(S)S − I3(S)1]e = 0.

But, since S is symmetric, we may conclude from the Spectral Theorem (page 28)
that there is an orthonormal basis of eigenvectors of S. Hence,

S3 − I1(S)S2 + I2(S)S − I3(S)1 = 0, (2.144)

and S satisfies its characteristic equation.24 The relation (2.144), which is generally
referred to as the Cayley–Hamilton equation for S, is a tensorial analogue of the
characterisic equation (2.141).

EXERCISES

1. Show that the principal invariants (2.142) of a tensor S satisfy

Ik(QSQ)) = Ik(S) for all orthogonal tensors Q. (2.145)

23 Ik(S) are called invariants because of the way they transform under the group of orthogonal tensors:
Ik(QSQ)) = Ik(S) for each orthogonal tensor Q.

24 Actually, every tensor satisfies its characteristic equation. This result does not require that S be
symmetric. Cf., e.g., Gantmacher (1959, p. 83) and Bowen & Wang (1976, Theorem 26.1).
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2. Show that, for any tensor S,

tr(S2) = I 2
1 (S) − 2I2(S),

tr(S3) = I 3
1 (S) − 3I1(S)I2(S) + 3I3(S).

(2.146)

3. Suppose that U and C are symmetric, positive-definite tensors with U2 = C. Use
the definitions (2.142) to show that the principal invariants of C are related to
those of U via

I1(C) = I 2
1 (U) − 2I2(U),

I2(C) = I 2
2 (U) − 2I1(U)I3(U),

I3(C) = I 2
3 (U).

4. Use the characteristic equation (2.141) to show that if the principal invariants
of a symmetric tensor S obey I1(S)I2(S) = I3(S), then S cannot be positive-
definite.

5. Given an invertible tensor F with right and left polar decompositions F = RU
and F = VR, use the Cayley–Hamilton equation (2.144) to show that R can be
obtained via

R =
1

I3(U)
[FU2 − I1(U)FU + I2(U)F]

= 1
I3(V)

[V2F − I1(V)VF + I2(V)F].

6. Suppose that U, V, C, and B are symmetric, positive-definite tensors with
U2 = C and V2 = B. Use the Cayley–Hamilton equation (2.144) to establish
the identities

U =
1

I3(U) − I1(U)I3(U)
[
C2 − [I 2

1 (U) − I2(U)]C − I1(U)I3(U)1
]
,

V = 1
I3(V) − I1(V)I2(V)

[
B2 − [I 2

1 (V) − I2(V)]B − I1(V)I3(V)1
]
.

7. Use the Cayley–Hamilton equation (2.144) to show that the third principal in-
variant of a tensor S can be expressed in the form

I3(S) = 1
6 [tr3(S) − 3tr(S)tr (S2) + 2tr(S3)] (2.147)

and, thus, in terms of the traces of S, S2, and S3.
8. Establish the characteristic equation (2.141) directly using the definition (2.79)

of the determinant.
9. Let S be invertible. Use (2.142)3 and (2.144) to show that

(det S)S−) = [S2 − (trS)S + 1
2 (tr2(S) − tr(S2))1])

and thereby verify that the definition (2.90) of the cofactor SC and the represen-
tation (2.94) are equivalent for S invertible.





PART II

VECTOR AND TENSOR ANALYSIS

We do not fuss over smoothness assumptions:

(‡) Functions and the boundaries of regions are presumed to have continuity
and differentiability properties sufficient to make meaningful the underlying
analysis.25

We work within a Euclidean space E so that the phrase “region of space” connotes
a region contained in E .

25 In particular, the regions we consider are presumed to have well-defined unit normal fields over
their bounding surfaces.
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3 Differentiation

3.1 Differentiation of Functions of a Scalar

Given a scalar, vector, point, or tensor function ϕ(t) of a scalar variable t , we write

ϕ̇(t) def= dϕ(t)
dt

= lim
h→0

ϕ(t + h) − ϕ(t)
h

.

Then, for x(t) a point function,

ẋ(t) = lim
h→0

x(t + h) − x(t)
h

,

and since the difference x(t + h) − x(t) is a vector, the derivative ẋ(t) is a vector
function.

Throughout, components of vectors and tensors are with respect to a fixed or-
thonormal basis {ei}, so that, for v(t) a vector function, and T(t) a tensor function,

v̇(t) = v̇i (t)ei ,

Ṫ(t) = Ṫi j (t)ei ⊗ e j .

Recalling our initial agreement (page 1) that lightface letters indicate scalars,
boldface lowercase letters indicate vectors, and boldface uppercase letters indicate
tensors, the standard product rule for scalar functions has the following analogs:

˙u · v = u̇ · v + u · v̇,

ϕ̇v = ϕ̇v + ϕv̇,

Ṫv = Ṫv + Tv̇,

˙u × v = u̇ × v + u × v̇,

˙u ⊗ v = u̇ ⊗ v + u ⊗ v̇,

˙ϕT = ϕ̇T + ϕṪ,

ṪS = ṪS + TṠ.






(3.1)
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Here, a dot over a line indicates the derivative of the quantity under the line. For
example,

˙
ϕ(t)v(t) = d

dt
[ϕ(t)v(t)].

The identities (3.1) may be established using the standard product rule for scalar
functions. Consider, for example, (3.1)5:

( ˙u ⊗ v)i j = ˙uiv j

= u̇iv j + ui v̇ j .

Suppose that A(t) is a nonvanishing tensor function. Define

ϕ(t) = |A(t)|.

Then, since ϕ2 = A : A, it follows, using the chain-rule, that

2ϕϕ̇ = 2A : Ȧ;

hence,

ϕ̇ =
A
|A|

: Ȧ.

We therefore have the important identity

˙|A| = A
|A|

: Ȧ (3.2)

valid for any nonvanishing tensor function A(t).
Two useful identities for an invertible tensor function F(t) with inverse F−1(t)

at each t are26

˙detF = (detF)tr(ḞF−1),

˙F−1 = −F−1ḞF−1.

(3.3)

To verify (3.3)2 we use the product rule (3.1)7 to differentiate the identity27

F−1(t)F(t) = 1. (3.4)

Since the right side of (3.4) is constant,

0 = ˙F−1F

= ˙F−1F + F−1Ḟ,

solving this relation for ˙F−1 yields (3.3)2.
An important identity that is used repeatedly is that, for Q(t) an orthogonal-

tensor function,

Q)(t)Q̇(t) and Q̇(t)Q)(t) are skew tensors at each t . (3.5)

The proof follows upon differentiating the identity28

Q)Q = QQ) = 1.

26 For a proof of (3.3)1, cf., e.g., Gurtin (1981, p. 27).
27 Cf. (2.67).
28 Cf. (2.101).
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If we differentiate Q)Q = 1, we find that

Q)Q̇ + Q̇)Q = 0,

and, hence, that

Q)Q̇ = −Q̇)Q

= −(Q)Q̇)).

Thus, by (2.19) with S = Q)Q̇, Q)Q̇ is skew. To verify that

Q̇Q) is skew, (3.6)

simply differentiate QQ) = 1.

EXERCISES

1. Show that, for T(t) a tensor function,

Ṫ) = Ṫ). (3.7)

2. Verify (3.1)1–4 and (3.1)6,7.
3. Let {ei} denote a positively oriented orthonormal basis. Obtain (3.3)1 directly

by differentiating the identity29

detF = Fe1 · (Fe2 × Fe3).

4. Provide the steps in the verification of (3.6).

3.2 Differentiation of Fields. Gradient

Let 0(h) be a scalar, vector, or tensor function of a vector h. We say that 0(h)
approaches zero faster than h or that 0(h) is of order o(|h|) as h approaches 0, and
we write

0(h) = o(|h|) as h → 0,

or, more simply,

0(h) = o(|h|),

if

lim
h→0

0(h)
|h|

= 0. (3.8)

Then, for example,

|h|2 = o(|h|) as h → 0, but
√

|h| '= o(|h|) as h → 0.

Given a region R, a scalar field ϕ with domain R is a mapping that assigns to
each point x in R a scalar ϕ(x) called the value of ϕ at x. Vector, point, and tensor
fields are defined analogously, that is, for example, a vector field v has the vector
value v(x) at x. A field with domain R is sometimes referred to as a field on R.

We find it most convenient to define the gradient of a field in terms of the Taylor
expansion of the field, assuming such an expansion exists.30 We say that ϕ and v are

29 Cf. (2.79).
30 We therefore define the gradient as a Fréchet derivative; cf. Gurtin (1981). While this notion might

appear overly abstract to a practical reader, it is, in fact, useful in applications, for example, in
scientific computing; cf. Reddy (1997).
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differentiable at a point x in R if there are a vector g and a tensor G such that:31

ϕ(x + h) − ϕ(x) = g · h + o(|h|) as |h| → 0,

v(x + h) − v(x) = Gh + o(|h|) as |h| → 0.
(3.9)

By (3.8), the linear terms in (3.9),

g · h and Gh, (3.10)

represent approximations of

ϕ(x + h) − ϕ(x) and v(x + h) − v(x),

approximations whose error goes to zero faster than h and hence faster than the
linear terms (3.10). If ϕ and v are differentiable at x we write32

gradϕ(x) def= g and gradv(x) def= G, (3.11)

and we refer to gradϕ(x) and gradv(x) as the gradients of ϕ and v at x;33 with this
agreement, the expansions (3.9) become

ϕ(x + h) − ϕ(x) = gradϕ(x) · h + o(|h|) as |h| → 0,

v(x + h) − v(x) = [gradv(x)]h + o(|h|) as |h| → 0
(3.12)

and are referred to as Taylor expansions of ϕ and v at x.
We now show that this definition of the gradient implies the conventional defi-

nition in terms of the partial derivatives

∂ϕ(x)
∂xi

= lim
h→0

ϕ(x + hei ) − ϕ(x)
h

,

∂v(x)
∂xi

= lim
h→0

v(x + hei ) − v(x)
h

.

(3.13)

To accomplish this, we note first that, by (3.8), (3.9) may be written equivalently as

lim
|h|→0

ϕ(x + h) − ϕ(x) − gradϕ(x) · h
|h|

= 0,

lim
|h|→0

v(x + h) − v(x) − [gradv(x)]h
|h|

= 0.

(3.14)

Thus, taking h = hei , so that |h| = |h|, and multiplying both of (3.14) by the sign of
h, we arrive at

lim
h→0

ϕ(x + hei ) − ϕ(x) − hgradϕ(x) · ei

h
= 0,

lim
h→0

v(x + hei ) − v(x) − h[gradv(x)]ei

h
= 0,

31 Recall the convention, set forth at the outset of §1.1, that the sum of a point and a vector is a point.
32 In our discussion of kinematics, a motion takes the form of a time-dependent mapping from ma-

terial points X to spatial points x. There, it will be advantageous to have a notation that allows us
to distinguish between the gradients with respect to X and x. Specifically, we will write ∇ for the
gradient with respect to material points X and grad for the gradient with respect to spatial points x.

33 We do not find it necessary to define the gradient of a tensor field.
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and hence, by (3.13), that

ei · gradϕ(x) =
∂ϕ(x)
∂xi

,

[gradv(x)]e j = ∂v(x)
∂xj

.

The component forms of gradϕ(x) and gradv(x), namely,

[gradϕ(x)]i =
∂ϕ(x)
∂xi

,

[gradv(x)]i j = ∂vi (x)
∂xj

,

(3.15)

therefore represent conventional definitions of the gradient in terms of partial
derivatives.

If ϕ and v are differentiable at each x in R, then gradϕ and gradv represent
fields, and it is clear from the foregoing discussion that

• the gradient of a scalar field is a vector field; the gradient of a vector field is a
tensor field.

To differentiate composite functions such as

ϕ(x(t)) and v(x(t)),

— where x(t) is a point function with values in R, the domain of ϕ and v — we use
the chain-rule:

˙
ϕ(x) = gradϕ(x) · ẋ,

˙
ϕ(x) = ∂ϕ(x)

∂xi
ẋi , (3.16)

and

˙v(x) = [gradv(x)]ẋ,
˙

vi (x) = ∂vi (x)
∂xj

ẋ j . (3.17)

EXERCISES

1. Show that the function ϕ(h) = h is not of order o(|h|) as h approaches 0.
2. Show that

gradv =
∂vi

∂xj
ei ⊗ e j .

3. Given a vector a and a tensor A (each constant), let

ϕ(x) = (x − o) · a, v(x) = A(x − o),

and

x(t) = sin t e1 + cos t e2.

Compute the derivatives, with respect to t , of ϕ(x(t)) and v(x(t)).
4. Working in components, one can derive other forms of the chain-rule. For ex-

ample, derive the chain-rule for a vector function of a tensor that depends on a
scalar variable.
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3.3 Divergence and Curl. Vector and Tensor Identities

The divergence and curl of a vector field v and a tensor field T may be defined as
follows:34

divv =
∂vi

∂xi
,

(curl v)i = εi jk
∂vk

∂xj
,

(divT)i = ∂Ti j

∂xj
,

(curl T)i j = εipq
∂Tjq

∂xp
;

(3.18)

thus, divv is a scalar field, curlv and divT are vector fields, and curl T is a tensor
field. These fields may also be defined without recourse to components

divv = tr(gradv),

a · curlv = (a×) : gradv for every constant vector a,

a · divT = div(T)a) for every constant vector a,

(curl T)a = curl (T)a) for every constant vector a.

(3.19)

We leave it as an exercise to show that the definitions (3.18) and (3.19) are equiva-
lent.

The next set of identities gives counterparts, for fields, of the standard product
rule for scalar functions of a scalar variable.

Product Identities

grad(ϕv) = ϕ gradv + v ⊗ gradϕ,

grad(u · v) = (gradu))v + (gradv))u,

grad(u × v) = (u×)gradv − (v×)gradu,

div(ϕv) = ϕdivv + v · gradϕ,

div(u × v) = v · curl u − u · curl v,

div(u ⊗ v) = (divv)u + (gradu)v,

div(T)v) = T : gradv + v · divT,

div(ϕT) = ϕdivT + Tgradϕ,

curl (ϕv) = ϕcurl v + (gradϕ) × v,

curl (u × v) = div(u ⊗ v − v ⊗ u),
curl (u ⊗ v) = [(grad u)v×]) + (curl v) ⊗ u,

curl (ϕT) = ϕ curl T + [(gradϕ)×]T.

(3.20)

34 Referring to Footnote 32, we will later use Div and Curl to denote the divergence and curl with
respect to material points X and div and curl for the divergence and curl with respect to spatial
points x.
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The identities (3.20)1,7 may be derived as follows:

[grad(ϕv)]i j =
∂(ϕvi )
∂xj

= ϕ
∂vi

∂xj
+ vi

∂ϕ

∂xj
,

div(T)v) = ∂(Tjiv j )
∂xi

= Tji
∂v j

∂xi
+ ∂Tji

∂xi
v j .

The verification of the remaining identities is left as an exercise.
Next, by (3.18)2

div curl v = εi jk
∂2vk

∂xj∂xi︸ ︷︷ ︸
Skj i

,

and, arguing as in the steps leading to (1.13), we find that, since Skji = Ski j ,

εi jkSkji = εi jkSki j

= −ε j ikSki j

= −εi jkSkji ;

thus,

div curl v = 0, (3.21)

which is a standard identity for the curl.
We define the Laplace operator , for scalar fields ϕ and vector fields v as

follows:

,ϕ = div gradϕ, ,ϕ = ∂2ϕ

∂xi∂xi
,

,v = div gradv, ,vi = ∂2vi

∂xj∂xj
;

(3.22)

thus, ,ϕ is a scalar field and ,v is a vector field. Further, for a tensor field T, ,T is
the tensor field defined such that

(,T)a = ,(Ta) for every constant vector a (3.23)

or, equivalently, using components,

,Ti j =
∂Ti j

∂xk∂xk
. (3.24)

The operator , is often called the Laplacian.

EXERCISES

1. Show that (3.18) and (3.19) are equivalent.
2. Verify (3.20)2–6,8–12.
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3. Let r = x − x0, with x0 a fixed point, and let r = |r|. Establish the following iden-
tities:

divr = 3,

div
r
r

= 2
r
,

div(r ⊗ r) = 4r,

div
(

r ⊗ r
r2

)
= 2r

r2 ,

div(r×) = 0,

curl r = 0,

curl
r
r

= 0,

curl (r ⊗ r) = −r×,

curl
(

r ⊗ r
r2

)
= − r×

r2 ,

curl (r×) = 21,

gradr = r
r
,

grad
1
r

= − r
r2 ,

gradr = 1,

grad
r
r

= −
(r×)2

r3 .

4. Defining a vector field v by

v(x) = kr pr, r '= 0,

with r and r as defined in Exercise 3 and p constant, show that

divv(x) = k(3 + p)r p,

curl v(x) = 0,

,v(x) = kp(3 + p)r p−2r.

Provide a physical interpretation of these results for the special case p = −3.
5. Defining scalar and vector fields ϕ and v by

ϕ(x) = c · r
r3 and v(x) = c × r

r3 , r '= 0,

with r and r as defined in Exercise 3 and c a constant vector, show that

gradϕ + curl v = 0,

,ϕ = 0,

divv = 0.
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6. Establish the identities

div(gradϕ × gradϑ) = 0,

div(v×) = −curl v,

div(ϕ1) = gradϕ,

curl (gradϕ) = 0,

curl curl v = grad(divv) − ,v,

curl gradv = 0,

curl [(gradv))] = gradcurl v,

divcurl T = curl div(T)),

div[(curl T))] = 0,

curl curl T = [curl curl (T))]),

curl (ϕ1) = (gradϕ)×,

curl (v×) = (divv)1 − gradv.

(3.25)

7. Verify that

curl curl T = −,T + graddivT + (graddivT)) − gradgrad(trT)

+ (,(trT) − divdivT)1.

8. Provided that T is symmetric, show that

tr(curl T) = 0

and that

curl curl T = −,T + 2graddivT − gradgrad(trT) + (,(trT) − divdivT)1.

3.4 Differentiation of a Scalar Function of a Tensor

For a scalar function 2(T) of a tensor variable T, the derivative ∂2(T)/∂T is the
tensor function defined by

[
∂2(T)
∂T

]

i j
= ∂2(T)

∂Ti j
.

In computing this derivative, care must be taken to respect the tensor space within
which the domain of 2 lies. For example, if this space is the space of symmetric
tensors, then, since 2(T) is defined only for symmetric T, ∂2(T)/∂T is a symmetric
tensor, and so forth.

The chain-rule

˙
2(T) = ∂2(T)

∂Ti j
Ṫi j

=
∂2(T)
∂T

: Ṫ (3.26)

affords a simple and efficient method of computing the derivative ∂2(T)/∂T. To
demonstrate this use of the chain-rule, let 2 be defined on the space of symmetric
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tensors, and consider the function 3(F) defined on the space of all tensors through
the requirement that

3(F) = 2(C), C = F)F;

that is,

3(F) = 2(F)F) for all tensors F.

Choose an arbitrary function F(t) with values in the domain of3, so that C(t) is also
a function of t . Then

˙
3(F) = ˙

2(C),

and hence,

∂3(F)
∂F

: Ḟ = ∂2(C)
∂C

: Ċ

= ∂2(C)
∂C

: (Ḟ)F + F)Ḟ). (3.27)

Since ∂2(C)/∂C is symmetric, it follows from (2.61)1 that

∂2(C)
∂C

: (Ḟ)F) = ∂2(C)
∂C

: (Ḟ)F))

= ∂2(C)
∂C

: (F)Ḟ). (3.28)

Therefore, by (2.52),

∂3(F)
∂F

: Ḟ = 2
∂2(C)
∂C

: (F)Ḟ)

= 2
[

F
∂2(C)
∂C

]
: Ḟ,

and hence,
[
∂3(F)
∂F

− 2F
∂2(C)
∂C

]
: Ḟ = 0 for any choice of the function F(t). (3.29)

We now present an argument used repeatedly throughout this book to show, as
a consequence of (3.29), that

∂3(F)
∂F

= 2F
∂2(C)
∂C

. (3.30)

Choose, arbitrarily, (constant) tensors F0 and A, and let

F(t) = F0 + (t − t0)A,

so that

F(t0) = F0 and Ḟ(t0) = A.

Further, let C0 = F)
0 F0 and define new functions

S(F) =
∂3(F)
∂F

and M(C) =
∂2(C)
∂C

;

(3.29) evaluated at t = t0 then yields

[S(F0) − 2 F0M(C0)] : A = 0. (3.31)
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Since A was arbitrarily chosen, we may use (2.56) to conclude that

S(F0) − 2 F0M(C0) = 0;

(3.30) therefore holds for F = F0 and C = C0. Since F0 is also arbitrary, (3.30) holds
for all tensors F.

As an important example of this procedure, we now derive the identity

∂|A|
∂A

=
A
|A|

, (3.32)

which holds for tensors A '= 0. We begin the proof by considering an arbitrary
nonzero function A(t). The chain-rule then implies that35

˙|A| = ∂|A|
∂A

: Ȧ.

Thus, by (3.2),
(
∂|A|
∂A

− A
|A|

)
: Ȧ = 0. (3.33)

Finally, arguing as in the steps leading to (3.31), we conclude that (3.33) can hold
for all nonzero functions A(t) only if (3.32) is valid.

EXERCISES

1. Let A be invertible. Bearing in mind (3.3), mimic the argument used to establish
(3.32) to arrive at the identity

∂(det A)
∂A

= (det A)A−). (3.34)

2. Use (3.34) to show that, for A invertible,

∂(ln det A)
∂A

= A−),

∂[ln det(A−1)]
∂A

= −A−).

3. Let A and B be constant. Establish the identities
∂[tr(ASB))]

∂S
= A)B,

∂[tr(AS)B))]
∂S

= B)A,

∂(tr[ASB)S))]
∂S

= A)SB + ASB).

4. Let S be symmetric and positive-definite. Establish the identities

∂ I1(S)
∂S

= 1,

∂ I2(S)
∂S

= I1(S)1 − S,

∂ I3(S)
∂S

= I3(S)S−).






(3.35)

35 Cf. (3.26).



4 Integral Theorems

4.1 The Divergence Theorem

The divergence theorem and Stokes’ theorem are deep mathematical results central
to the formulation of the basic laws of balance and imbalance for continua. Here,
we state these theorems without proof and without encumbering the presentation
with smoothness assumptions regarding the underlying functions and regularity as-
sumptions regarding the region in question.36

Divergence Theorem Let R be a bounded region with boundary ∂R. Assume we are
given a scalar field ϕ, a vector field v, and a tensor field T, with R the domain of each
of these fields. Let n denote the outward unit normal field on the boundary ∂R of R.
Then,

∫

∂R

ϕn da =
∫

R

gradϕ dv,

∫

∂R

v · n da =
∫

R

divv dv,

∫

∂R

Tn da =
∫

R

divT dv.






(4.1)

The result (4.1)2 is classical. We now establish (4.1)3 as a consequence of (4.1)2.
Let a be a (constant) vector and define a vector field v by

v = T)a. (4.2)

Then, bearing in mind (3.19)3,

a ·
∫

∂R

Tn da =
∫

∂R

a · Tn da

=
∫

∂R

(T)a) · n da

36 Within a classical framework, precise statements of the divergence theorem and Stokes’ theorem
are given by Kellogg (1953).
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=
∫

∂R

v · n da

=
∫

R

divv dv

=
∫

R

div(T)a) dv

=
∫

R

a · divT dv

= a ·
∫

R

divT dv, (4.3)

which implies (4.1)3, since the vector a is arbitrary. Next, (4.1)1 follows from (4.1)3
on setting T = ϕ1 and using the identity div(ϕ1) = gradϕ.

The identities (4.1) have the component forms:
∫

∂R

ϕni da =
∫

R

∂ϕ

∂xi
dv,

∫

∂R

vi ni da =
∫

R

∂vi

∂xi
dv,

∫

∂R

Ti j n j da =
∫

R

∂Ti j

∂xj
dv.






(4.4)

Note that these identities follow a general rule: The ni in the surface integral results
in the partial derivative ∂/∂xi in the volume integral; thus, for a tensor T of any
order, with components Ti j ···k,

∫

∂R

Ti j ···knr da =
∫

R

∂Ti j ···k

∂xr
dv.

4.2 Line Integrals. Stokes’ Theorem

Let C be a curve described by the parametrization

x = x̂(λ), λ0 ≤ λ ≤ λ1.

Then, C is the curve traced out by the point x = x̂(λ) as the parameter λ increases,
while the vector function

t(λ) def= dx̂(λ)
dλ

(4.5)

is tangent to C and points in the direction of increasing λ (Figure 4.1). The curve C
is said to be closed if

x̂(λ0) = x̂(λ1).



54 Integral Theorems

C

t(λ)

x̂(λ0)

x̂(λ1)

x̂(λ)

Figure 4.1. A curve C between two points x̂(λ0) and x̂(λ1). Also shown are an intermediate
point x̂(λ) and the unit tangent t(λ) at x̂(λ).

For v a vector field with domain a region R, the integral of v along a curve C in
R is the line integral

∫

C

v · dx def=
λ1∫

λ0

v(x̂(λ)) · dx̂(λ)
dλ

dλ

=
λ1∫

λ0

v(x̂(λ)) · t(λ) dλ. (4.6)

For ϕ a scalar field on R, it follows from the chain-rule that

∫

C

gradϕ · dx =
λ1∫

λ0

gradϕ(x̂(λ)) ·
dx̂(λ)

dλ
dλ

=
λ1∫

λ0

∂ϕ(x̂(λ))
∂λ

dλ

= ϕ(x̂(λ1)) − ϕ(x̂(λ0)).

Hence, for C a closed curve and ϕ a scalar field on R,

∫

C

gradϕ · dx = 0. (4.7)

Let S be a surface in R, so that the boundary of S is a closed curve C. A choice
of orientation for S consists in a choice of the unit normal field n for S.37 Granted a
choice of n, S is referred to as a positively oriented surface if n and the tangent t to
C, defined in (4.5), satisfy

n(x) · (t(λ) × t(λ0)) > 0

for some choice of x and λ (Figure 4.2).

37 Except in pathological cases (such as the Möbius strip) there are two possible choices, and one is
the negative of the other.
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t(λ)n(x)

x̂(λ)
t(λ0)

x̂(λ0)

C

S

Figure 4.2. A positively oriented surface S with boundary being a closed curve C. Also shown
are two points x̂(λ0) = x̂(λ1) on C and x̂(λ), the unit tangent vectors t(λ0) and t(λ) at those
points, and the unit normal n(x) at x̂(λ).

Stokes’ Theorem Let ϕ, v, and T be scalar, vector, and tensor fields with common
domain a region R. Then given any positively oriented surface S, with boundary C a
closed curve, in R,

∫

C

ϕdx =
∫

S

n × gradϕ da,

∫

C

v · dx =
∫

S

n · curl v da,

∫

C

Tdx =
∫

S

(curl T))n da.






(4.8)

The result (4.8)2 is classical. To establish (4.8)3 as a consequence of (4.8)2, let a
be a (constant) vector and define v as in (4.2). Then, bearing in mind (3.19)4,

a ·
∫

S

(curl T))n da =
∫

S

n · [(curl T)a] da

=
∫

S

n · curl (T)a) da

=
∫

S

n · curl v da

=
∫

C

v · dx
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=
∫

C

(T)a) · dx

= a ·
∫

C

Tdx, (4.9)

which implies (4.8)2, since the vector a is arbitrary. Next, (4.8)1 follows from (4.8)3
on setting T = ϕ1 and using the identity curl (ϕ1) = (gradϕ)×.

The identities (4.8) have the component forms
∫

C

ϕ dxi =
∫

S

εi jkniϕ,k da,

∫

C

vi dxi =
∫

S

ni εi jk
∂vk

∂xj
da,

∫

C

Ti j dx j =
∫

S

ε j pq
∂Tiq

∂xp
n j da.






(4.10)

EXERCISES

1. Establish the following identities using the divergence theorem (4.1):
∫

∂R

n · curl v da = 0,

∫

∂R

n × v da =
∫

R

curl v dv,

∫

∂R

v ⊗ n da =
∫

R

gradv dv,

∫

∂R

Tn ⊗ v da =
∫

R

[(divT) ⊗ v + T(gradv))] dv,

∫

∂R

v · Tn da =
∫

R

(v · divT + T : gradv) dv,

∫

∂R

u(v · n) da =
∫

R

(udivv + (gradu)v) dv.

(4.11)

2. Given a bounded region R with volume vol(R), use the divergence theorem
(4.1) to show that

∫

∂R

(x − o) ⊗ n da = vol(R)1.

3. Verify the identity (4.7).
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4. Show that Stokes’ theorem (4.8)2 for a vector field v may be written in the form
∫

C

v · dx =
∫

S

(n×) : gradv da.

5. Establish (4.11)1 as a consequence of (4.8)1.
6. Establish the following identities using Stokes’ theorem (4.8):

∫

C

(u ⊗ v)dx =
∫

S

[(gradu)v × n + (n · curl v)u] da,

∫

C

v × dx =
∫

S

[(divv)n − (gradv))n] da.

(4.12)

7. Suppose that v obeys v · n = 0 on S. Use Stokes’ theorem (4.8) to show that
∫

C

(n × v) · dx =
∫

S

(1 − n ⊗ n) : gradv da.





PART III

KINEMATICS

We generally omit smoothness assumptions in sections not dealing specifically with
fields that suffer jump discontinuities, which is the only loss of continuity that we
discuss.38

38 Cf. §32, in which shock waves are discussed.
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5 Motion of a Body

5.1 Reference Body. Material Points

In continuum mechanics the basic property of a body is that it may occupy regions
of Euclidean point space E . We may, if we wish, identify the body with the region39

B of E it occupies in some fixed configuration, called a reference configuration, but

• the choice of a reference configuration is arbitrary.

For specificity, we henceforth consider a body identified with the region B it
occupies in a fixed reference configuration and refer to B as the reference body and
to a point X in B as a material point or particle.

5.2 Basic Quantities Associated with the Motion of a Body

We restrict attention to a given open time-interval; to avoid cumbersome statements
the phrase “all t” signifies “all t in that interval.” A motion of B is a smooth function
χ that assigns to each material point X and time t a point

x = χ(X, t); (5.1)

x is referred to as the spatial point occupied by X at time t .
Consistent with the notational conventions set forth in §3.2, we use grad,

div, and curl to denote the gradient, divergence, and curl with respect to spatial
points x.

For the moment, we restrict attention to a fixed time t . Then χ(X, t) considered
as a function of X is called the deformation at time t ; for convenience, we write this
function in the form

χ t (X) = χ(X, t). (5.2)

A basic hypothesis of continuum mechanics is that χ t (X) be one-to-one in X, so that
no two material points may occupy the same spatial point at a given time, or, more
descriptively, so that the body cannot penetrate itself. In addition, writing ∇χ t (X)
for the gradient of χ t (X) with respect to the material point X, we require that

J (X, t) def= det∇χ t (X) > 0; (5.3)

39 Throughout this book the term region connotes a closed region with sufficiently regular boundary.
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62 Motion of a Body

Bt
B

χt

reference space observed space

Euclidean space

x = χ(X, t)
X

Figure 5.1. The reference body B and the deformed body Bt .

J (X, t) is the volumetric Jacobian of the mapping χ t at the material point X.40

The region of space occupied by the body at time t ,

Bt = χ t (B),

is referred to as the deformed body at time t ; Bt is the set of points x such that x =
χ(X, t) for some X in B. Bt is the region actually observed during the motion: the
reference body B serves only to label material points. For this reason, while we work
within the framework of a single Euclidean point space, it is useful to differentiate —
at least conceptually — between the ambient space for the reference body B and the
ambient space through which Bt evolves (Figure 5.1). In accord with this:

(i) vectors associated with the ambient space through which Bt evolves are referred
to as spatial vectors;

(ii) vectors associated with the ambient space for the reference body B are referred
to as material vectors.

Examples of spatial and material vectors are provided by the differences x1 − x2 and
X1 − X2 of two spatial points x1 and x2 and two material points X1 and X2.

The time-parameterized family of sets Bt represents the body during an actual motion, a mo-
tion that could, in principle, be seen or felt by any one of us. On the other hand, the set B, while
essential to a careful treatment of continuum mechanics, is virtual; the body need never occupy B,
although it might. For many, but not all, applications it is convenient to choose the initial configura-
tion as reference. But, because solids generally possess natural (“virgin”) reference configurations, it is
often convenient to choose such a configuration as reference; in fact, such a choice is essential to a ra-
tional discussion of material symmetry. In summary: allowing the choice of reference configuration to be
arbitrary allows one to choose that configuration most suitable to a given application.

The spatial vectors

χ̇(X, t) = ∂χ(X, t)
∂ t

and χ̈(X, t) = ∂2χ(X, t)
∂ t2 (5.4)

40 We add the adjective volumetric because we also consider areal Jacobians related to the deformation
of surfaces.
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represent the velocity and acceleration of the material point X at time t .41

Since the mapping x = χ(X, t) is one-to-one in X for fixed t , it has an inverse

X = χ−1(x, t); (5.5)

at each t , the fixed-time inverse χ−1(·, t) is a mapping of the deformed body Bt onto
the reference body B with the following property:

x = χ(X, t) if and only if X = χ−1(x, t). (5.6)

We refer to χ−1 as defined by (5.5) as the reference map; this map associates with
every time t and spatial point x in Bt a material point X = χ−1(x, t) in B; X is the
material point that occupies the spatial point x at time t .

Finally, to express material and spatial vectors in component form, we introduce
an orthonormal basis

{ei} = {e1, e2, e3} (5.7)

assumed to be positively oriented in the sense that42

(e1 × e2) · e3 = 1. (5.8)

5.3 Convection of Sets with the Body

Let A denote a set of material points or, more simply, a material set.43 Then,

At = χ t (A) (5.9)

represents the set of spatial points occupied by the material points of A at time t ,
and we say that A deforms to At at time t . Consistent with this definition, we say
that a time-dependent spatial set At convects with the body — or, more simply, is
convecting — if there is a set A of material points such that At = χ t (A) for all t .

Let Pt be a spatial region that convects with the body, so that, by definition,
there is a material region P such that

Pt = χ t (P) (5.10)

for all t . Then,44

∂Pt = χ t (∂P) (5.11)

and, therefore, if χ(X, τ ) is on ∂Pτ at some time τ , then X is on ∂P and, hence,
χ(X, t) is on ∂Pt for all time t : ∂Pt is therefore occupied by the same set of material
points for all time. Thus, in terms more suggestive than precise,

(†) material cannot cross the boundary ∂Pt of a spatial region convecting with the
body.

In particular, choosing P = B in (5.11), we have the following important fact:

(‡) If X is on ∂B then χ(X, t) is on ∂Bt for all time t . Conversely, if χ(X, t) is on ∂Bt
at some time t , then X is on ∂B (and, hence, χ(X, τ ) is on ∂Bτ for all time τ ).

41 The partial time derivatives in (5.4) are with respect to t holding the material point X fixed. In
contrast, often in the fluid dynamics literature ∂/∂t is used to denote a time derivative holding the
spatial point x fixed. The difference between these two time derivatives is discussed at length in §9.2.

42 Cf. Footnote 7.
43 Obvious meanings then apply to the terms material surface, material curve, and so on.
44 This (nontrivial) result is a consequence of our assumption that χ t (X) be one-to-one in X and

smooth; cf. the paragraph containing (5.2).



6 The Deformation Gradient

The tensor field

F = ∇χ , Fi j = ∂χi

∂Xj
, (6.1)

is referred to as the deformation gradient. By (5.3),

J = detF > 0. (6.2)

6.1 Approximation of a Deformation by a Homogeneous Deformation

6.1.1 Homogeneous Deformations

Consider the deformation χ t at a fixed time t . For convenience, supress the time t
and write

χ(X) ≡ χ t (X).

We refer to χ as a homogeneous deformation if the instantaneous deformation gra-
dient F(X) ≡ F(X, t) is independent of X, so that45

χ(X) − χ(Y)︸ ︷︷ ︸
spatial
vector

= F (X − Y)︸ ︷︷ ︸
material
vector

(6.3)

for all material points X and Y; equivalently, in components,

χi (X) − χi (Y) = Fi j (Xj − Yj ).

In (6.3), we have tried to emphasize that, since, the difference X − Y between ma-
terial points is a material vector, while the difference χ(X) − χ(Y) between spatial
points is a spatial vector,

F maps material vectors to spatial vectors.

Further, (6.3) implies that X − Y = F−1[χ(X) − χ(Y)]; hence, F−1 maps spatial vec-
tors to material vectors. Next, consider the inner product of (6.3) with a spatial vector

45 Cf. Gurtin (1981, p. 36).
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s, an operation that makes sense because χ(X) − χ(Y) is a spatial vector; then

s ·
[
χ(X) − χ(Y)

]
= s ·

[
F(X − Y)

]

= (F)s) · (X − Y), (6.4)

so that F) maps spatial vectors to material vectors. Finally, we leave it as an exercise
to show that F−) maps material vectors to spatial vectors. Summarizing, we have the
following mapping properties for the deformation gradient:

(M1) F and F−) map material vectors to spatial vectors;
(M2) F−1 and F) map spatial vectors to material vectors.

6.1.2 General Deformations

Consider now an arbitrary deformation χ t . If we take the Taylor expansion of the
deformation χ t about a material point X,46 we find that

χ t (Y) − χ t (X) = F(X, t)(Y − X) + o(|Y − X|) as |Y − X| → 0. (6.5)

The term F(X, t)(Y − X) therefore represents an approximation of χ t (Y) − χ t (X),
an approximation whose error goes to zero faster than the material vector (Y − X)
and hence faster than the term F(X, t)(Y − X). Further, in the expansion (6.5), the
material point X is fixed, so that F(X, t) is constant; the underlined portion of (6.5)
therefore represents a homogeneous deformation. Thus,

• in a neighborhood of a material point X and to within an error of o(|Y − X|), a
deformation behaves like a homogeneous deformation.

In terms more suggestive than precise, (6.5) with the term o(|Y − X|) “as small
as we wish”:

(i) shows the sense in which F(X, t) may be considered as a mapping of an infinites-
imal neighborhood of X in the reference body to an infinitesimal neighborhood
of x = χ t (X) in the deformed body; and

(ii) gives an asymptotic meaning to the formal relation

dx = F(X, t)dX. (6.6)

A consequence of (6.5) is that the mapping properties (M1) and (M2) on page 65
for a homogeneous deformation hold pointwise for the deformation gradient in an
arbitrary deformation; that is, for example, given any X, the linear transformation
F(X, t) associates with each material vector m a spatial vector

s = F(X, t)m. (6.7)

When discussing a relation of the form (6.7), it is convenient to refer to m as an
input for F(X, t) and to s as the corresponding output. The physical tensor fields
considered in this book always come equipped with pointwise mapping properties
dictated by the physics, just as (M1) and (M2) are each consequences of (6.5). For
that reason, it is not physically meaningful to input a spatial vector to either F or F−)

or a material vector to either F−1 or F).

Sample problem Given a tensor field G that maps spatial vectors to spatial vectors, determine the point-
wise mapping property of

F)GF.

Solution Since F is a mapping of material vectors, we may only input material vectors to the composite
F)GF. Then, given a material vector m, the vector Fm is spatial, and so it makes sense to “input” this

46 Cf. (3.12)2.
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X

εf (X)

x

εf(x, t)

F(X, t)

Figure 6.1. Infinitesimal neighborhoods associated with the undeformed and deformed
fibers fR(X) and f(x, t) = F(X, t)fR(X), x = χ t (X).

vector to G, the resulting “output” GFm is then spatial, and if we input GFm to F), the output F)GFm
is, by (M2), a material vector. Thus, F)GF maps material vectors to material vectors.

EXERCISE

1. Let H be a mapping of material vectors to spatial vectors. Determine the map-
ping properties of HF−1 and F)HF).

6.2 Convection of Geometric Quantities

6.2.1 Infinitesimal Fibers

Let fR denote a temporally constant material vector field and consider the spatial
vector field f defined by

f(x, t) = F(X, t)fR(X), x = χ t (X), (6.8)

for all X and t . Consider the expressions

(i) χ(Y, t) − χ(X, t) = F(X, t)(Y − X) + o(|Y − X|),

(ii) dx = F(X, t)dX,

discussed in the paragraphs containing (6.5) and (6.6). These expressions show that
the mapping (6.8), at a material point X and time t , may be viewed as a linear trans-
formation of an infinitesimal neighborhood of X in the reference body B to an in-
finitesimal neighborhood of x in the deformed body Bt . In this regard, note that,
given any ε > 0, (6.8) is equivalent to the mapping

εf(x, t) = F(X, t)(εfR(X)); (6.9)

thus, for ε > 0 as small as we wish, (6.8) may be considered as describing the local
deformation (6.9) when the neighborhood of X under consideration is magnified by
a factor of ε−1 (Figure 6.1).

Based on the foregoing interpretation of (6.8), we refer to fR(X) as an infinites-
imal undeformed fiber and to f(x, t) = F(X, t)fR(X), x = χ t (X) as the correspond-
ing (infinitesimal) deformed fiber.47 Since the undeformed fiber is material and
independent of time, the deformed fiber f(x, t) may be viewed as embedded in —
and, hence, moving with — the deforming body Bt , and we say that f(x, t) convects
with the body.

47 The notion of a fiber is central to the analysis of deformation in Chapter I of Podio–Guidugli
(2000).
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C

τ (X)

Ct

X = X̂(λ)

x̂t(λ) = χt(X̂(λ))

τ (x̂t(λ), t)

χt

Figure 6.2. A material curve C and its image the spatial curve Ct . Also shown are the tangents
τ R(X) and τ (x̂t (λ), t) at a material point X = X̂(λ) and the spatial image x̂t (λ) = χ t (X̂(λ)) of
that point.

More generally, given an arbitrary spatial vector field f(x, t), the phrases f con-
vects with the body and f is convecting are meant to imply that there is a time-
independent material vector field fR(X) such that (6.8) is satisfied.48

6.2.2 Curves

Let C be a material curve described by the parametrization X̂(λ), so that C is the
curve traced out by the material point X = X̂(λ) as the parameter λ increases over its
domain λ0 ≤ λ ≤ λ1. We restrict attention to curves that do not intersect themselves.
Then, using the terminology of §5.3, the material curve C deforms to the spatial
curve (Figure 6.2)

Ct = χ t (C). (6.10)

As is natural, we assume that Ct is described by the time-dependent parametrization

x̂t (λ) = χ t (X̂(λ)), (6.11)

so that Ct is the curve traced out by the spatial point x = x̂t (λ) as the parameter λ
increases over its domain. In this case, Ct may be viewed as a curve embedded in —
and hence moving with — the deforming body Bt .

6.2.3 Tangent Vectors

Next, given a material point X on C, the vector defined by

τ R(X) = dX̂(λ)
dλ

, X = X̂(λ), (6.12)

is tangent to C at X (Figure 6.2).

48 This definition should be viewed as provisional; in §13.1 we use the more specific phrase convects as
a tangent to describe vector fields that convect via a relation of the form (6.8).
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Since the material curve C deforms to the spatial curve Ct described by (6.11),

τ (x, t) = ∂ x̂t(λ)
∂λ

, x = x̂t (λ), (6.13)

is tangent to Ct at x. By (6.11) and the chain-rule,

dx̂t (λ)
dλ

= F(X̂(λ), t)
dX̂(λ)

dλ
; (6.14)

the material and spatial tangents at X = X̂(λ) on C and at x = x̂t (α) on Ct are there-
fore related by49

τ(x, t) = F(X, t)τ R(X), x = χ t (X), (6.15)

and tangent vectors convect with the body.

Transformation Law for Tangent Vectors At each time, the relation (6.15) asso-
ciates with any vector τ R at X a vector τ at x = χ t (X) with the following property: if
τ R is tangent to a material curve at X, then τ is tangent to the corresponding deformed
curve through x.

6.2.4 Bases

Consider a fixed (not necessarily orthonormal) material basis (field)

{mi (X)} = {m1(X), m2(X), m3(X)}.

Since F is invertible, the vectors si (x, t) = F(X, t)mi (X), i = 1, 2, 3, form a spatial
basis

{si (x, t)} = {F(X, t)mi (X)} (6.16)

at x = χ(X, t). In view of the discussion in the paragraph containing (6.8), we may
consider {si} as a basis that convects with the body or, equivalently, as a basis em-
bedded in the deforming body Bt .50 In fact, at any time, the spatial field si (i fixed)
represents a field of tangent vectors for the spatial coordinate curves that deform
from material coordinate curves defined by the tangent field mi .

49 A transformation of the form (6.15) of a material vector τ R at X to a spatial vector τ at x is often
referred to as a covariant transformation.

50 A detailed discussion of convecting bases is given in the paragraph containing (13.8).



7 Stretch, Strain, and Rotation

7.1 Stretch and Rotation Tensors. Strain

Consider the (pointwise) polar decomposition

F = RU = VR (7.1)

of the deformation gradient F into a rotation R and positive-definite symmetric ten-
sors U and V;51using terminology motivated in §7.3, we refer to U as the right stretch
tensor and to V as the left stretch tensor. The tensors U and V, which have the ex-
plicit representations

U =
√

F)F and V =
√

FF), (7.2)

are useful in theoretical discussions but are often problematic to apply because of
the square root. For that reason, we introduce the right and left Cauchy–Green
(deformation) tensors C and B defined by52

C = U2 = F)F, Ci j = Fki Fkj = ∂χk

∂Xi

∂χk

∂Xj
,

B = V2 = FF), Bi j = FikF jk = ∂χ i

∂Xk

∂χ j

∂Xk
.

(7.3)

Then, by (7.1),

V = RUR) and B = RCR). (7.4)

For future reference, we list the properties of the stretch and Cauchy–Green tensors:

U, V, C, and B are symmetric and positive-definite. (7.5)

51 Cf. page 33.
52 Cf. Truesdell & Toupin (1960, §§31–33a) for a thorough discussion of strain measures.
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A tensor useful in applications is the Green–St. Venant strain tensor

E = 1
2 (F)F − 1), (7.6)

= 1
2 (C − 1), (7.7)

= 1
2 (U2 − 1). (7.8)

Note that E vanishes when F is a rotation, for then F)F = 1. This property of E is
often adopted as one necessary for a tensor to qualify as a meaningful measure of
strain.

Next, by (M1) and (M2) on page 65 and (7.3) and (7.6),

(M3) U, C, and E map material vectors to material vectors;
(M4) V and B map spatial vectors to spatial vectors;
(M5) R maps material vectors to spatial vectors.

To verify (M3), consider F)F: (M1) implies that F maps a material vector fR to a
spatial vector FfR and, by (M2), this spatial vector is mapped back to a material
vector. Thus C = F)F maps material vectors to material vectors and since UU = C,
with U symmetric, U must also map material vectors to material vectors. A strictly
analogous proof applies to (M4). Finally, by (7.1), R = FU−1, and, since U−1, like
U, carries material vectors to material vectors, while F carries material vectors to
spatial vectors, (M5) must hold.

EXERCISE

1. Using the definitions (2.142) of the principal invariants of a tensor, show that

I1(B) = I1(C) = 2I1(E) + 3,

I1(B) = I1(C) = 4I2(E) + 4I1(E) + 3,

I1(B) = I1(C) = 8I3(E) + 4I2(E) + 2I1(E) + 1.

7.2 Fibers. Properties of the Tensors U and C

7.2.1 Infinitesimal Fibers

Consider now infinitesimal undeformed fibers fR and f̄R and corresponding deformed
fibers

f = FfR and f̄ = Ff̄R. (7.9)

Then, since RR) = 1, U = U), and C = U2, it follows that

f · f̄ = (RUfR) · (RUf̄R),

= UfR · Uf̄R, (7.10)

= fR · U2f̄R,

= fR · Cf̄R. (7.11)

A consequence of (7.10) is that

|f| = |UfR|; (7.12)
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the right stretch tensor U therefore characterizes the deformed length of infinitesi-
mal fibers. We now determine the angle

θ = ∠(fR, f̄R)

between infinitesimal deformed fibers f and f̄.53 By (7.10) and (7.12),

f · f̄
|f| |f̄|

= UfR · Uf̄R

|UfR| |Uf̄R|
.

Further, (1.2) represents a one-to-one mapping between θ and the right side of (1.2);
thus,

∠(f, f̄) = ∠(UfR, Uf̄R), (7.13)

and, hence, U characterizes the angle between infinitesimal deformed fibers.

7.2.2 Finite Fibers

Fix the time t and for convenience suppress it in what follows. The results for in-
finitesimal fibers have asymptotic conterparts. To derive these, we introduce mate-
rial and spatial line segments54

6X = Y − X and 6x = χ(Y) − χ(X),

with |6X| > 0, and rewrite (6.5) in the form

6x = F(X)6X + o(|6X|) as |6X| → 0. (7.14)

It is helpful to think of6X as an undeformed fiber of (finite) length L and direction
e at X, so that

6X = Le, |e| = 1. (7.15)

Then, by (7.14), the corresonding deformed fiber is given by

6x = LF(X)e + o(L) as L → 0,

and, dividing by L and using the fact that, by definition, L−1o(L) → 0 as L → 0, we
find that

lim
L→0

6x
L

= F(X)e. (7.16)

We refer to this limit as a stretch vector because it represents the limiting value
of the deformed fiber measured per unit length of the undeformed fiber.55 What is
most important, the scalar λ defined by

λ = lim
L→0

|6x|
L

= |F(X)e| (7.17)

represents the stretch at x = χ(X) relative to the direction e at X, as it measures the
limiting length of the deformed fiber measured per unit length of an undeformed
fiber in the direction e. Bearing this in mind, we refer to fibers at X in the direction

53 Cf. (1.1) and (1.2).
54 The symbol 6, which here denotes a difference, should not be confused with the symbol ,, intro-

duced on page 47, which denotes the Laplacian.
55 Since 6x = χ(X + Le) − χ(X), (7.16) is the directional derivative of χ at X in the direction e.
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e as stretched or unstretched according to λ '= 1 or λ = 1. Thus, appealing to (7.11)
and (7.12) with fR = e,

λ = |U(X)e|,

λ2 = e · C(X)e.
(7.18)

We therefore have the following result:

• The stretch λ at X relative to any given material direction e is determined by the
right stretch tensor U(X) through the relation λ = |U(X)e|.

Consider now fibers (6X)1 and (6X)2 of the same length L but possibly differ-
ent directions e1 and e2,

(6X)α = Leα, α = 1, 2, (7.19)

so that the corresponding stretch vectors are given by

lim
L→0

(6x)1

L
= F(X)e1 and lim

L→0

(6x)2

L
= F(X)e2. (7.20)

Then, appealing to (7.10) and (7.11) with fR = e1 and with fR = e2,

lim
L→0

(
(6x)1

L
· (6x)2

L

)
= lim

L→0

(
(6x)1

L

)
· lim

L→0

(
(6x)2

L

)

= U(X)e1 · U(X)e2 (7.21)

= e1 · C(X)e2. (7.22)

An important consequence of (7.22) is that

• the right Cauchy–Green tensor C(X) characterizes inner products of stretch vec-
tors at x; in fact, in terms of the orthonormal basis {ei}, the component Ci j (X) is
the inner product of the stretch vectors at x relative to the directions ei and e j at
X. (We do not rule out the special case ei = e j .)

Consider again the fibers (6X)1 and (6X)2 defined in (7.19) and let θL denote
the angle between the corresponding deformed fibers (6x)1 and (6x)2, so that, by
(1.2),56

θL = ∠((6x)1, (6x)2)

= cos−1
(

(6x)1 · (6x)2

|(6x)1| |(6x)2|

)
.

Then, by (7.18)1, (7.19), and (7.21),

lim
L→0

θL = lim
L→0

cos−1
(

(6x)1 · (6x)2

L2

L
|(6x)1|

L
|(6x)2|

)

= cos−1
(

U(X)e1 · U(X)e2

|U(X)e1||U(X)e2|

)

= ∠(U(X)e1, U(X)e2). (7.23)

56 Here, consistent with (1.2), the domain of cos−1 is [0, π ].
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e2

e1
1

2

x

X

θL

L

L

(∆x)1

(∆x)2

Figure 7.1. A pair of orthogonal undeformed fibers Le1 and Le2 and the angle between the
corresponding deformed fibers (6x)1 and (6x)2.

We therefore have the following counterpart of (7.13):

• Let (6x)1 and (6x)2 denote deformed fibers corresponding to fibers at X of finite
length L in the directions e1 and e2. Then, as L → 0, the angle between

(6x)1

L
and

(6x)2

L

tends to the angle between U(X)e1 and U(X)e2 (Figure 7.1).

7.3 Principal Stretches and Principal Directions

Being symmetric and positive-definite, U and V admit spectral representations of
the form

U =
3∑

i=1

λi ri ⊗ ri ,

V =
3∑

i=1

λi li ⊗ li ,

(7.24)

where

(i) λ1 > 0, λ2 > 0, and λ3 > 0, the principal stretches, are the eigenvalues of U and,
by (7.4), also of V;

(ii) r1, r2, and r3, the right principal directions, are the eigenvectors of U

Uri = λi ri (no sum on i); (7.25)

(iii) l1, l2, and l3, the left principal directions, are the eigenvectors of V57

Vli = λi li (no sum on i). (7.26)

Since U and V are related by V = RUR), (7.24) yields

3∑

i=1

λi Rri ⊗ Rri =
3∑

i=1

λi li ⊗ li

and therefore implies that the principal directions are related via

li = Rri , i = 1, 2, 3. (7.27)

57 Cf. (2.136) and (2.138).
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The tensors C, B, and E have the following forms when expressed in terms of
principal stretches and directions:

C =
3∑

i=1

λ2
i ri ⊗ ri ,

B =
3∑

i=1

λ2
i li ⊗ li ,

E =
3∑

i=1

1
2 (λ2

i − 1)ri ⊗ ri .






(7.28)

Further, since F = RU,

F =
3∑

i=1

λi li ⊗ ri . (7.29)

Other strain measures found in the literature are the logarithmic strain tensors
of Hencky:

ln U =
3∑

i=1

(ln λi )ri ⊗ ri ,

ln V =
3∑

i=1

(ln λi )li ⊗ li .

(7.30)

EXERCISES

1. Express F−1 and F) in terms of principal stretches.

2. Show that

R(ln U)R) = ln V. (7.31)



8 Deformation of Volume and Area

Fix the time t and suppress it throughout this section.

8.1 Deformation of Normals

Choose a material point X and let x = χ(X). Further, consider a material surface S
with X on S and write S = χ(S) for the deformed surface, so that x lies on S. Let nR,
assumed nonzero, be normal to S at X, so that

nR · tR = 0 for every vector tR tangent to S at X. (8.1)

We seek a vector n normal to S at x; that is, we seek a nonzero vector n such that

n · t = 0 for every vector t tangent to S at x. (8.2)

To find such a vector n (which can be unique only up to a nonzero multiplicative
scalar), choose an arbitrary vector t tangent to S at x. There is then a curve C that lies
on S, passes through x, and has t as its tangent at x. Let x̂(λ) be the parametrization
of C. Consider the reference map X = χ−1(x) defined in (5.5) (bearing in mind that
the time is fixed). In view of (5.6),

X̂(λ) def= χ−1(x̂(λ))

is a parametrization of a curve C on S passing through X, and this curve must be
consistent with (6.11). Hence t and the tangent tR to C at X as defined by (6.12) must
be consistent with (6.15), so that

tR = F−1(X)t. (8.3)

Further, since C lies on S, its tangent tR at X must be tangent to S at X, so that
nR · tR = 0 and, by (8.3),

0 = nR · (F−1(X)t)

= (F−)(X)nR) · t;

thus, since t represents an arbitrary vector tangent to S at x,

n = F−)(X)nR (8.4)

is normal to S at x.58

58 A transformation of the form (8.4) of a material vector nR at X to a spatial vector n at x is often
referred to as a contravariant transformation. In the discussion leading to (#) on page 77, we explain
the sense in which (8.4) preserves orientation.
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Transformation Law for Normal Vectors At each fixed time the relation (8.4)
associates with any vector nR at X a vector n at x with the following property: If nR is
normal to a material surface at X, then n is normal to the corresponding deformed
surface through x.

8.2 Deformation of Volume

Consider the (generally nonorthonormal) basis {F(X)ei} defined in the paragraph
containing (6.16); as noted there, the basis {F(X)ei} may be viewed as one that con-
vects with the body. By (2.79) and (6.2), the volume spanned by the basis vectors is
given by

(Fe1 × Fe2) · Fe3 = detF

= J > 0, (8.5)

where for convenience we have written F for F(X).
To better understand the geometrical meaning of the field J , write

δi (7) = χ(X + 7ei ) − χ(X) (8.6)

for the deformed fiber at x = χ(X) that has deformed from the fiber of length 7 in
the direction ei at X. Then,

6vR(7) def= 73(e1 × e2) · e3 = 73 and 6v(7) def= (δ1(7) × δ2(7)) · δ3(7) (8.7)

represent the respective volumes spanned by the undeformed and deformed fibers
(Figure 8.1). In view of the Taylor expansion (6.5),

δi (7) = 7Fei + o(7), (8.8)

where, by (3.8), o(7) represents a term that goes to zero faster than 7:

7−1o(7) → 0 as 7 → 0.

Thus, by (8.5) and (8.7)2, as 7 → 0,

6v(7) = 73([Fe1 + o(1)] × [Fe2 + o(1)]
)
·
[
Fe3 + o(1)

]

= 73[(Fe1 × Fe2) · Fe3] + o(73)

= J 73 + o(73),

Figure 8.1. The volumes 6vR(7) and 6v(7) formed by the triples {7e1, 7e2, 7e3} and
{δ1(7), δ2(7), δ3(7)}.
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where o(73) represents a term that goes to zero faster than 73. We therefore have
the important estimate

6v = J6vR + o(6vR) as 6vR → 0. (8.9)

Thus

• given an undeformed fiber cube of volume6vR, the corresponding deformed fiber
parallelepiped has volume J6vR to within an error of o(6vR).

8.3 Deformation of Area

Consider next a plane #R at a material point X, let nR, with

|nR| = 1, (8.10)

denote a unit normal to #R, and, without loss in generality, assume that the basis
{ei} is chosen such that

e3 = nR.

Then, trivially, the volume spanned by the vectors Fe1, Fe2, and FnR is

(Fe1 × Fe2) · FnR = J. (8.11)

The vector Fe1 × Fe2 is normal to the deformed plane at x and, by (2.89) and (8.4),

Fe1 × Fe2 = J F−) (e1 × e2)︸ ︷︷ ︸
e3=nR

= J F−)nR︸ ︷︷ ︸
n

= J n. (8.12)

Then, since e1 and e2 are tangent to #R at X, the vectors Fe1 and Fe2 are tangent to
the plane # with normal n at x. Further, {Fe1, Fe2, n} is a basis at x, because

(Fe1 × Fe2) · n = J |n|2 > 0.

Thus, since (e1 × e2) · e3 > 0, this basis and {Fe1, Fe2, n} have the same orientation.
This is the sense in which

(#) the transformation n = F−)(X)nR (as a transformation of normals) preserves
orientation.

Next, by (2.91), the area spanned by the vectors F(X)e1 and F(X)e2 at x is

(X) def= |F(X)e1 × F(X)e2|, (8.13)

the areal Jacobian. But, by (8.12),

|Fe1 × Fe2| = J |n|

= J |F−)nR|,
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Figure 8.2. The areas 6aR(7) and6a(7) spanned, respectively, by undeformed fibers 7e1 and
7e2 and deformed fibers δ1(7) and δ2(7).

and we arrive at an important result,

 = J |F−)nR|, (8.14)

relating the areal and volumetric Jacobians  and J . Note that

 depends on the choice of normal vector nR. (8.15)

Further, since n = F−)nR, (8.14) implies that


n
|n|

= J |F−)nR|
n
|n|

= J F−)nR. (8.16)

Thus we have the important relation59


n
|n|

= FCnR, (8.17)

in which

FC = (det F)F−) (8.18)

is the cofactor of F.60

Finally, mimicking the steps that led from (8.7) to (8.9), we note that

6aR(7) def= 72|e1 × e2| = 72 and 6a(7) def= |δ1(7) × δ2(7)|, (8.19)

respectively, represent areas spanned by undeformed fibers at X of length 7 in the
directions e1 and e2 and the corresponding deformed fibers at x (Figure 8.2). Then,
by (8.13), as 7 → 0,

6a(7) = 72
∣∣[Fe1 + o(1)] × [Fe2 + o(1)]

∣∣

= 72|Fe1 × Fe2| + o(72)

= j72 + o(72),

and we have the estimate

6a = 6aR + o(6aR) as 6aR → 0. (8.20)

59 Bear in mind (8.10).
60 Cf. (2.90).



8.3 Deformation of Area 79

Thus,

• given an undeformed fiber square of area6aR, the corresponding deformed fiber
parallelogram has area 6aR to within an error of o(6aR).

Further, (8.17) and (8.20) yield an important estimate for the corresponding unde-
formed and deformed vector areas

6a
n
|n|

= 6aRFCnR + o(6aR). (8.21)



9 Material and Spatial Descriptions of Fields

Consider a motion χ . Since the mapping x = χ(X, t) is invertible in X for fixed t ,
it has an inverse X = χ−1(x, t), the reference map defined in (5.5) and (5.6). χ−1

associates with each time t and spatial point x in Bt , a material point X = χ−1(x, t)
in B.

Using the reference map, we can describe the velocity χ̇(X, t) as a function
v(x, t) of the spatial point x and t :

v(x, t) = χ̇(χ−1(x, t), t) or equivalently χ̇(X, t) = v(χ(X, t), t). (9.1)

The field v represents the spatial description of the velocity; v(x, t) is the velocity of
the material point that at time t occupies the spatial point x.

More generally, let ϕ denote a scalar, vector, or tensor field defined on the
body for all time. We generally consider ϕ to be a function ϕ(X, t) of the mate-
rial point X and the time t ; this is called the material description of ϕ. But, as with
the velocity, we may also consider ϕ to be a function φ(x, t) of the spatial point x
and t ; this is called the spatial description and is related to the material description
through

φ(x, t) = ϕ(χ−1(x, t), t).

Similarly, a field φ(x, t) described spatially may be considered as a function ϕ(X, t)
of the material point X and t ; this is called the material description and is
given by

ϕ(X, t) = φ(χ(X, t), t).

• When there is no danger of confusion we use the same symbol for both the mate-
rial and spatial descriptions.

9.1 Gradient, Divergence, and Curl

We write

∇, Div , and Curl,

respectively, for the material gradient, the material divergence, and the material
curl; that is, the gradient, divergence, and curl with respect to the material point X
in the reference body; for example, for h a vector field

(∇h)i j = ∂hi

∂Xj
, Divh = ∂hi

∂Xi
, and (Curl h)i = εi jk

∂hk

∂Xj
.
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Analogously,

grad , div, and curl ,

the spatial gradient, spatial divergence, and spatial curl, are the gradient, divergence,
and curl with respect to the spatial point x = χ(X, t) in the deformed body, so that,
for g a vector field,

(gradg)i j = ∂gi

∂xj
, divg = ∂gi

∂xi
, and (curl g)i = εi jk

∂gk

∂xj
.

By the chain-rule, for ϕ a scalar field and g a vector field,

∂ϕ

∂Xi
=
∂ϕ

∂xj

∂χ j

∂Xi
= F ji

∂ϕ

∂xj
and

∂gi

∂Xj
=
∂gi

∂xk

∂χk

∂Xj
=
∂gi

∂xk
Fkj

or, equivalently,

∇ϕ = F)gradϕ and ∇g = (gradg)F. (9.2)

EXERCISE

1. Show that

Divg = F) : gradg and divg = F−) : ∇g.

9.2 Material and Spatial Time Derivatives

Given any field ϕ, we write

ϕ̇(X, t) =
∂ϕ(X, t)
∂ t

(holding X fixed) (9.3)

for its material time-derivative and

ϕ′(x, t) =
∂ϕ(x, t)
∂ t

(holding x fixed) (9.4)

for its spatial time-derivative.
The existence of two time derivatives begs the question as to their relationship.

To answer this question, let ϕ be a spatial scalar field. Since ϕ is described spa-
tially, to compute its material time-derivative we must first convert its description to
material, take its time derivative, and then convert the result back to spatial:61

ϕ̇(x, t) =
[
∂

∂ t

∣∣∣∣
X
ϕ(χ(X, t), t)

]

X=χ−1(x,t)
. (9.5)

Thus, using the chain-rule,

ϕ̇(x, t) = [gradϕ(x, t) · χ̇(X, t)]X=χ−1(x,t) + ϕ′(x, t),

and, by (9.1)1, χ̇(X, t) evaluated at X = χ−1(x, t) is v(x, t), the spatial description of
the velocity; hence,

ϕ̇(x, t) = ϕ′(x, t) + gradϕ(x, t) · v(x, t),

61 When dealing with composite functions of the form ϕ(χ(X, t), t), the notation

∂

∂t

∣∣∣∣
X

is used to denote the partial derivative with respect to t holding X fixed.



82 Material and Spatial Descriptions of Fields

Similarly, for g a spatial vector field,

ġ(x, t) =
[
∂

∂ t

∣∣∣∣
X
g(χ(X, t), t)

]

X=χ−1(x,t)

= [gradg(x, t)]χ̇(X, t)
∣∣
X=χ−1(x,t) + g′(x, t)

= [gradg(x, t)]v(x, t) + g′(x, t).

Note that, by (9.1),

v̇(x, t) =
[
∂

∂ t

∣∣∣∣
X
v(χ(X, t), t)

]

X=χ−1(x,t)

= ∂2χ(X, t)
∂ t2

∣∣∣∣
X=χ−1(x,t)

= χ̈(X, t)
∣∣
X=χ−1(x,t); (9.6)

thus, v̇(x, t) represents the spatial description of the acceleration. We therefore have
the

Time-Derivative Identities The material and spatial time derivatives are related
through

ϕ̇ = ϕ′ + v · gradϕ,

ġ = g′ + (gradg)v.
(9.7)

In particular, the acceleration is given by

v̇ = v′ + (gradv)v. (9.8)

Sample problem Find the material time-derivative of the spatial position vector

r(x) = x − o.

Solution We could simply use (9.7)2: since r′ = 0 and grad r = 1,

ṙ = v. (9.9)

A more instructive procedure would be to note that the material description of r(x) is the field χ(X, t) − o
whose material time-derivative χ̇(X, t) has spatial description v(x, t).

9.3 Velocity Gradient

The spatial tensor field

L = gradv (9.10)

is called the velocity gradient. By (9.2)2,

Ḟ(X, t) =
∂

∂ t
∇χ(X, t)

= ∇χ̇(X, t)

= gradv(x, t)
∣∣
x=χ(X,t) F(X, t),

so that, omitting arguments,

Ḟ = LF; (9.11)
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(9.11) represents a (tensorial) evolution equation for the deformation gradient F,
granted a knowledge of L. Since F is invertible, (9.11) is easily solved for L; the
result, which is basic to much of what follows, is

L = ḞF−1. (9.12)

Thus, by (M1) and (M2) on page 65,

L maps spatial vectors to spatial vectors. (9.13)

Next, as a consequence of (9.10),

trL = tr(gradv)

= divv; (9.14)

on the other hand, by (3.3)1,

J̇ = J trL; (9.15)

therefore,

J̇ = J divv, (9.16)

which is an important identity expressing transport of volume.
Next, by (9.11),

Ḟ) = F)L), (9.17)

which represents an evolution equation for the transpose F) of the deformation
gradient. Further, since FF−1 = 1, it follows that ḞF−1 = −F ˙F−1, and, hence, that

˙F−1 = −F−1ḞF−1. (9.18)

Thus, since ḞF−1 = L,

˙F−1 = −F−1L, (9.19)

which represents an evolution equation for the inverse deformation gradient F−1. If
we take the transpose of (9.19), we arrive at an evolution equation for F−):

˙F−) = −L)F−). (9.20)

Thus, summarizing, we have the following evolution equations associated with
the deformation gradient:

Ḟ = LF,

Ḟ) = F)L),

˙F−1 = −F−1L,

˙F−) = −L)F−).

(9.21)

Sample problem Show that
grad v̇ = F̈F−1. (9.22)

Solution By (9.2)2,

grad v̇(x, t)
∣∣
x=χ(X,t) = ∇χ̈(X, t)F−1(X, t)

= F̈(X, t)F−1(X, t).
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EXERCISE

1. Show that

grad
(n)
v = ∇

(n+1)
χ F−1,

where
(n)
v denotes the n-th material time-derivative of v.

9.4 Commutator Identities

Consider the identity (9.7)1 relating the material and spatial time derivatives of a
spatial scalar field ϕ. Bearing in mind that the spatial time-derivative and the spatial
gradient commute, making use of the identity (3.20)3, and noting that the second
gradient grad 2ϕ = grad gradϕ of a scalar field ϕ is symmetric, computing the gradi-
ent on both sides of (9.7)1 yields

grad ϕ̇ = grad (ϕ′) + grad (v · gradϕ)

= (gradϕ)′ + (grad 2ϕ))v + (gradv))gradϕ

= (gradϕ)′ + (grad 2ϕ)v + L)gradϕ;

further, choosing g = gradϕ in (9.7)2 to yield

˙gradϕ = (gradϕ)′ + (grad 2ϕ)v,

we find that

grad ϕ̇ = ˙gradϕ + L)gradϕ,
∂ϕ̇

∂xi
=

˙∂ϕ
∂xi

+ Lji
∂ϕ

∂xj
. (9.23)

Next, let ϕ = g · c, with g a spatial vector field and c '= 0 an arbitrary constant
vector. Then, by (3.1)4, (3.20)3, and (3.7),

ϕ̇ = ġ · c, grad ϕ̇ = (grad ġ))c, gradϕ = (gradg))c,

and
˙gradϕ = ˙(gradg))c

=
( ˙(gradg))

)
c

=
( ˙gradg

))
c.

It therefore follows from (9.23) that
[
grad ġ − ˙gradg − (gradg)L

])c = 0

for all c '= 0. Thus,

grad ġ = ˙gradg + (gradg)L,
∂ ġ j

∂xi
=

˙∂g j

∂xi
+ ∂g j

∂xk
Lki . (9.24)

The relations (9.23) and (9.24) show that, unlike the spatial time derivative and
the spatial gradient, the material time-derivative and the spatial gradient do not gen-
erally commute. Moreover, (9.23) and (9.24) determine explicitly the discrepancies
that ensue on interchanging the material time derivative and the spatial gradient.
For that reason, (9.23) and (9.24) are referred to as commutator identities.
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EXERCISES

1. Show that

divġ = ˙divg + L) : gradg. (9.25)

2. Show that

grad v̇ = L̇ + L2. (9.26)

9.5 Particle Paths

Given a material point X, the function p(t) defined by

p(t) = χ(X, t) (9.27)

is called the particle path of X; p(t) describes the spatial trajectory of the particle
X during the motion. Differentiating (9.27) with respect to time, bearing in mind
that the material point X is fixed, we find, using (9.1), that p(t) is a solution of the
differential equation

ṗ(t) = v(p(t), t). (9.28)

Suppose that χ(X, τ ) is given at some time τ . Granted sufficient smoothness, given
v, the differential equations (9.28) for the particle paths may then be integrated to
give the motion near t = τ .

9.6 Stretching of Deformed Fibers

The scalar

δ(t) = |χ(X1, t) − χ(X2, t)| (9.29)

represents the distance between the particle paths of the material points X1 and X2.
What is more important, for X1 close to X2,

(‡) δ(t) represents the length at time t of the deformed fiber corresponding to the
undeformed fiber

6X = X2 − X1

and δ̇(t) represents the rate at which the deformed fiber is being stretched.62

Differentiating 1
2δ

2(t) yields

δ(t)δ̇(t) = [χ(X1, t) − χ(X2, t)] · [χ̇(X1, t) − χ̇(X2, t)],

so that, for x1 and x2 the spatial points occupied by X1 and X2 at time t , we have the
useful identity

δ(t)δ̇(t) = (x1 − x2) · [v(x1, t) − v(x2, t)]. (9.30)

62 Cf. §7.2.
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10.1 Rigid Motions

A motion χ is rigid if, at each time t ,

∂

∂ t
|χ(X, t) − χ(Y, t)| = 0

for all material points X and Y, or equivalently, by (9.30),

(x − y) · [v(x, t) − v(y, t)] = 0

for all x and y in Bt . The spatial gradient of this relation yields

v(x, t) = v(y, t) − [gradv(x, t)])(x − y),

and a second differentiation, this time with respect to y, results in

gradv(y, t) = −[gradv(x, t)]).

Setting x = y, we conclude that gradv is skew. The last relation therefore implies
that gradv(y, t) = gradv(x, t) for all x and y; hence, gradv(x, t) is independent of x.
Let W(t), which we call the spin, denote this spatially constant field, so that

v(x, t) = v(y, t) + W(t)(x − y).

We may therefore conclude from (9.12) that the velocity gradient of a rigid motion
is the spin:

L = W. (10.1)

Next, let w(t) denote the axial vector associated with W(t). Then

W = w×

and

v(x, t) = v(y, t) + w(t) × (x − y); (10.2)
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w

L

Figure 10.1. A vector w and its spin axis L.

w(t) represents the angular velocity of the motion. Using (3.20)6,10 to compute the
curl of v as defined by (10.2), we find that

curl v = div(w ⊗ (x − y) − (x − y) ⊗ w)

= wdiv(x − y) + (grad w)(x − y) − (x − y)divw − [grad (x − y)]w

= 3w − w

= 2w, (10.3)

which gives a physical interpretation of curl v, at least for a rigid motion.
Assume that w '= 0. Then, for any vector a, w × a = 0 if and only if Wa = 0. For

that reason we use the term spin axis to denote the subspace L of vectors a such that

Wa = 0. (10.4)

More generally, we use the term rigid velocity field for a spatial field of the form
v(x, t) = v(y, t) + λ(t) × (x − y), or equivalently,

v(x, t) = α(t) + λ(t) × (x − o). (10.5)

10.2 Motions Whose Velocity Gradient is Symmetric and Spatially
Constant

In this case, writing D(= L) for the symmetric, spatially constant velocity gradient
and suppressing the argument t , the velocity field has the form

v(x) = D(x − y)

for some choice of y. Since D is symmetric, it possesses a spectral representation of
the form63

D =
3∑

i=1

αi mi ⊗ mi ,

with the three “axes” being mutually orthogonal. It therefore suffices to limit our
discussion to the velocity field

v(x) = α(e ⊗ e)(x − y). (10.6)

Consider the fixed orthonormal basis {ei} introduced in the paragraph containing
(5.7). Suppose that e = ei . Then, v as defined by (10.6) has only a single nontrivial

63 Cf. (2.112).
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y

e

Figure 10.2. Schematic of the velocity field v defined in (10.6).

component vi = v · e = v · ei with (Figure 10.2)

vi (x) = α(xi − yi ).

Up to an additive constant, every velocity field with gradient symmetric and constant
is therefore the sum of three velocity fields of the form (10.6) with “axes” mutually
orthogonal.

EXERCISE

1. Show that a motion whose velocity field is rigid is itself rigid.



11 Stretching and Spin in an Arbitrary Motion

11.1 Stretching and Spin as Tensor Fields

Consider now a general velocity field v. Since L = gradv, if we take the Taylor
expansion the velocity v about an arbitrarily prescribed spatial point y,64 we find,
suppressing the argument t , that

v(x) − v(y) = L(y)(x − y) + o(|x − y|) (11.1)

as x → y, where, as before, o(|x − y|) represents a term that goes to zero faster than
|x − y| and hence faster than L(y)(x − y). Let D and W, respectively, represent the
symmetric and skew parts of L:

D = 1
2 (L + L)) = 1

2 (gradv + (gradv))),

W = 1
2 (L − L)) = 1

2 (gradv − (gradv))).
(11.2)

Then

L = D + W (11.3)

and (11.1) becomes

v(x) − v(y) = W(y)(x − y) + D(y)(x − y) + o(|x − y|).

In a neighborhood of a given point y and to within an error of o(|x − y|) a general
velocity field is therefore the sum of a rigid velocity field

v(y) + W(y)(x − y)

and a velocity field of the form

D(y)(x − y).

Thus, bearing in mind the discussions in §§10.1–10.2, we refer to the tensor fields W
and D, respectively, as the spin and the stretching, and we use the term spin axis at
(y, t) for the subspace L of vectors a such that

W(y, t)a = 0. (11.4)

(L has dimension one when W(y, t) '= 0.) An immediate consequence of (9.13) and
(11.2) is that

D and W map spatial vectors to spatial vectors. (11.5)

64 Cf. (3.12)2.

89



90 Stretching and Spin in an Arbitrary Motion

Our next step is to relate L to the right and left stretch tensors U and V and the
rotation R appearing in the polar decompositions F = RU = VR.65 Focusing first
on the right polar decomposition, we substitute F = RU into (9.12) to obtain

L = ḞF−1

= (ṘU + RU̇)U−1R)

= ṘR) + RU̇U−1R). (11.6)

Since RR) = 1, ˙RR) = 0, and it follows from (3.1)7 that

ṘR) = −RṘ)

= −(ṘR))). (11.7)

Thus, ṘR) is skew and the symmetric and skew parts of (11.6) yield relations for the
stretching D and the spin W:

D = R[sym (U̇U−1)]R),

W = ṘR) + R[skw (U̇U−1)]R).

(11.8)

Interestingly, the spin W is therefore the sum of a rotational spin Wrot induced by
the rotation R and a stretch-spin Wstr induced by the stretch U:

W = Wrot + Wstr,

Wrot = ṘR), Wstr = R[skw (U̇U−1)]R).
(11.9)

An important identity

F)DF = Ė (11.10)

relating the stretching D and the material time-derivative of the Green–St. Venant
strain E arises on noting that, by (7.6) and (9.12),

2F)DF = F)(L + L))F

= F)(ḞF−1 + F−)Ḟ))F

= F)Ḟ + Ḟ)F

= 2Ė.

11.2 Properties of D

Let e be a spatial unit vector and let δ7(τ ) denote the distance at time τ between the
particle paths that pass through the spatial points x and x + 7e at time t ; hence δ7(τ )
gives the length at time τ of the deformed fiber that at time t emanates from x and
has length 7 and direction e (Figure 11.1).66 Then, by (9.30),

δ̇7(t)
δ7(t)

= e · [v(x + 7e, t) − v(x, t)]
7

.

65 Cf. (7.1).
66 Cf. §7.2.
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Bt

Bτ

x
x + $e

δ"(τ)

Figure 11.1. Schematic showing the length δ7(τ) at time τ of a deformed fiber that at time t
emanates from x and has length 7 and direction e.

But

lim
7→0

v(x + 7e, t) − v(x, t)
7

= gradv(x, t)e = L(x, t)e (11.11)

and, by (11.3) and the fact that W is skew, e · Le = e · De. Thus,

lim
7→0

δ̇7(t)
δ7(t)

= e · D(x, t)e (11.12)

and, in view of (‡) on page 85,

• D characterizes the rate at which deforming fibers are stretched.

Next, we turn to a discussion of the rate at which angles between deformed
fibers are changing. Let X, Y1, and Y2 denote the material points that occupy the
spatial points

x, y1 = x + 7e1, and y2 = x + 7e2

at time t (Figure 11.2).
Further, let θ7(τ ) denote the angle between the deformed fibers

uα(τ ) = χ(Yα, τ ) − χ(X, τ ), α = 1, 2,

so that θ7(τ ) is the angle subtended by the spatial points

χ(Y1, τ ), χ(X, τ ), and χ(Y2, τ ).

Then,

uα(t) = yα − x = 7eα, u̇α(t) = v(yα, t) − v(x, t),

and, hence,

7−1 ˙(u1 · u2)(t) = e1 · [v(y2, t) − v(x, t)] + e2 · [v(y1, t) − v(x, t)].

Further, by (1.2),

cos θ7 = u1 · u2

|u1||u2|
,
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Bt

Bτ

θ"(τ)

x
y1 = x + $e1

y2 = x + $e2u1(τ)

u2(τ)

Figure 11.2. Schematic showing the angle θ7(τ) at time τ between two deformed fibers that
at time t emanate from x and have lengths 7 and directions e1 and e2.

and, because u1 and u2 are orthogonal at time t ,

˙cos θ7(t) =
˙(u1 · u2)(t)

|u1(t)||u2(t)|
− (u1 · u2)(t) ˙|u1(t)||u2(t)|

|u1(t)|2|u2(t)|2

=
˙(u1 · u2)(t)

|u1(t)||u2(t)|
.

On the other hand, since sin θ7(t) = 1,

˙(cos θ7)(t) = −θ̇7(t),

and we may conclude that

−7θ̇7(t) = e1 · [v(x + 7e2, t) − v(x, t)] + e2 · [v(x + 7e1, t) − v(x, t)].

Finally, if we divide by 7 and let 7 → 0, we conclude, with the aid of (11.2)1 and
(11.11), that

lim
7→0

θ̇7(t) = −e1 · L(x, t)e2 − e2 · L(x, t)e1

= −e1 · (L(x, t) + L(x, t)))e2.

We are therefore led to a relation,

lim
7→0

θ̇7(t) = −2e1 · D(x, t)e2,

that makes precise a second basic property of the stretching D:

• D characterizes rates at which angles between deforming fibers change.

11.3 Stretching and Spin Using the Current Configuration as Reference

It is often convenient to use — as reference for the motion of the body — the con-
figuration at a fixed time t . The material point X that occupies the spatial point
x = χ(X, t) may be expressed as a function of (x, t) through the reference map χ−1

(Figure 11.3):

X = χ−1(x, t).
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Figure 11.3. Schematic showing that a material point X can be expressed as a function of
(x, t) through the reference map χ−1.

The motion χ(X, τ ) — expressed in terms of the spatial point x and the time τ — is
therefore given by

ξ = χ (t)(x, τ )

= χ(X, τ )|X=χ−1(x,t)

= χ(χ−1(x, t), τ ); (11.13)

ξ is the spatial point occupied at time τ by the material point that occupies the spatial
point x at time t . The gradient of χ (t)(x, τ ) with respect to x,

F(t)(x, τ ) = ∇χ (t)(x, τ ), (11.14)

is referred to as the relative deformation gradient. In view of (11.13),

χ(X, τ ) = χ (t)(χ(X, t), τ ); (11.15)

thus, by (11.15) and the chain-rule, suppressing nontemporal arguments,

F(τ ) = F(t)(τ )F(t) (11.16)

and, hence,67

F(t)(t) = 1. (11.17)

Using a notation and terminology strictly analogous to that used for F, we may
use the polar decomposition

F(t) = R(t)U(t) = V(t)R(t) (11.18)

to define the relative rotation R(t), the relative stretch tensors, U(t) and V(t), and the
relative Cauchy–Green tensors C(t) and B(t). Then, since the polar decomposition
of the identity tensor 1 is the product (1)(1) of the identity tensor with itself, (11.17)
and the uniqueness of the polar decomposition (11.18) imply that

R(t)(t) = U(t)(t) = V(t)(t) = C(t)(t) = B(t)(t) = 1. (11.19)

67 More precisely, since the configuration at time t is being used as reference, F(t)(τ ) maps material
vectors to spatial vectors; thus, F(t)(t) maps each vector c, considered as a material vector, to c,
considered as a spatial vector.
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Next, differentiating (11.16) with respect to τ and evaluating the result at τ = t ,
we obtain

Ḟ(t) =
∂F(t)(τ )
∂τ

∣∣∣∣
τ=t

F(t),

so that, as a consequence of (9.11), we have an important relation for the velocity
gradient:

L(x, t) =
∂F(t)(x, τ )

∂τ

∣∣∣∣
τ=t

. (11.20)

Thus, by (11.18),

L(x, t) =
∂U(t)(x, τ )

∂τ

∣∣∣∣
τ=t︸ ︷︷ ︸

symmetric

+
∂R(t)(x, τ )

∂τ

∣∣∣∣
τ=t︸ ︷︷ ︸

skew

(11.21)

and, appealing to the uniqueness of the decomposition L = D + W into symmetric
and skew parts,

D(x, t) =
∂U(t)(x, τ )

∂τ

∣∣∣∣
τ=t

and W(x, t) =
∂R(t)(x, τ )

∂τ

∣∣∣∣
τ=t

. (11.22)

EXERCISES

1. Express D and W in terms of the tensor fields comprising the left polar decom-
position F = VR.

2. Using the spectral decomposition (7.24)1 for U, prove that

skw (U̇U−1) = skw
( 3∑

i=1

ṙi ⊗ ri +
3∑

i, j=1

λi

λ j
(ṙi · r j )ri ⊗ r j

)
,

and, hence, that the stretch-spin Wstr defined in (11.9) is caused by the spin of
the principal directions ri .

3. The tensors

An(x, t) =
∂nC(t)(x, τ )

∂τ n

∣∣∣∣
τ=t

, n = 1, 2, . . . , (11.23)

are called the Rivlin–Ericksen tensors. Show that
(a) A1 = 2D.

(b)
(n)
C= F)AnF.

(c) An+1 = Ȧn + AnL + L)An.
(d) An = A)

n.



12 Material and Spatial Tensor Fields. Pullback
and Pushforward Operations

12.1 Material and Spatial Tensor Fields

We define material and spatial tensors in terms of mapping properties. To be more
specific, given a tensor field G, we say that:

• G is a spatial tensor field if, pointwise, G maps spatial vectors to spatial vectors;
• G is a material tensor field if, pointwise, G maps material vectors to material

vectors;
• G is a mixed tensor field if, pointwise, G maps either spatial vectors to material

vectors or material vectors to spatial vectors.

Then, by (9.13) and (M1)–(M5) on pages 65 and 70,

(a) V, B, L, D, and W are spatial tensor fields;
(b) U, C, and E are material tensor fields;
(c) F and R are mixed tensor fields.

12.2 Pullback and Pushforward Operations

These operations are based on the mapping properties of the deformation gradient
and its inverse, transpose, and inverse-transpose as discussed on page 65; to facilitate
the ensuing discussion, we recall these properties here:

(M1) F and F−) map material vectors to spatial vectors;
(M2) F−1 and F) map spatial vectors to material vectors.

The deformation gradient can be used to transform a spatial tensor field G to a
material tensor field. Indeed, consider the tensor field

P[G] def= F)GF. (12.1)

Bearing in mind that

• F maps material vectors to spatial vectors;
• G maps spatial vectors to spatial vectors; and
• F) maps spatial vectors to material vectors.

The combination F)GF maps material vectors to material vectors; thus P represents
a material tensor field. For that reason P is referred to as a pullback of G.68 Another

68 More precisely, P is a tensorial pullback. Pullbacks of vectors are discussed in exercises.
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pullback of G is given by

P[G] def= F−1GF−). (12.2)

The pullbacks P and P preserve the operations “sym” and “skw”:

sym P[G] = P[sym G] and skw P[G] = P[skw G] (12.3)

and analogously for P. There are two other pullbacks of G using F, namely

F−1GF and F)GF−); (12.4)

these pullbacks are trace preserving.
The pullbacks P and P are linear transformations of tensors to tensors and,

hence, may be viewed as fourth-order tensors; for example, since

(P[G])i j = Fpi Gpr Fr j ,

P expressed in components has the form

(P)i j pr = Fpi Fr j .

The deformation gradient can be used to transform a material tensor field M to
a spatial tensor field: Two such operations are defined as follows:

P−1[M] = F−)MF−1 and P−1[M] def= FMF). (12.5)

As the notation suggests, P−1 is the inverse of P, while P−1 is the inverse of P; indeed,

P−1[P[G]
]
= P−1[F)GF

]

= F−)F)GFF−1

= G,

and similarly for P−1. The inverses P−1 and P−1, which are referred to as pushfor-
ward operations, also preserve the operations “sym ” and “skw .”

An example of the pullback in action is the kinematical identity

P[D] = Ė, (12.6)

which follows from (11.10) and (12.1), asserting that the pullback of the stretching
tensor is the material time-derivative of the Green–St. Venant strain tensor.

EXERCISES

1. Establish the component form of P.
2. Verify that P−1 is the inverse of P.
3. Show that

sym
(
P[G]

)
= F)(sym G)F.

4. Verify (12.3) and its analog for P.
5. Prove that the operations defined in (12.4) preserve the trace.
6. The pullback operations for vector fields are defined as follows: Given a spatial

vector field g,69

P[g] def= F)g and P[g] def= F−1g. (12.7)

69 Trivially, P = F) and P = F−1; the added notation and terminology allows for comparisons between
vector and tensor pullbacks.



12.2 Pullback and Pushforward Operations 97

By (M2) on page 95, the linear transformations P and P map spatial vectors
to material vectors. The inverses of these transformations, which correspond to
pushforward operations, are defined on a material vector field m by

P−1[m] def= F−)m and P−1[m] def= Fm. (12.8)

Show that the operations defined by (12.8) are inverses of the operations de-
fined in (12.7). Show, further, that given arbitrary spatial vector fields g and h,

P[g ⊗ h] = P[g] ⊗ P[h] and P[g ⊗ h] = P[g] ⊗ P[h]. (12.9)



13 Modes of Evolution for Vector and Tensor
Fields

In this section we discuss various ways in which vector and tensor fields may evolve
with the body.

13.1 Vector and Tensor Fields That Convect With the Body

Our discussion of fibers and tangent vectors in §6.2 led us to lay down the follow-
ing definition: A spatial vector field f convects with the body if there is a time-
independent material vector field fR such that70

f(x, t) = F(X, t)fR(X). (13.1)

On the other hand, in light of our discussion of normal vectors in §8.1, we might also
apply the phrase “convecting with the body” to a vector field f that satisfies71

f(x, t) = F−)(X, t)fR(X). (13.2)

To differentiate between these two types of “vector convection,” we refer to the
former as “tangential convection” and to the latter as “normal convection.”

13.1.1 Vector Fields That Convect as Tangents

Guided by (13.1), we say that a spatial vector field f convects as a tangent if

˙F−1f = 0. (13.3)

The defining relation (13.3) leads to a simple evolution equation for a vector field
f that convects as a tangent, an evolution equation that we now derive. Since,
by (9.21)3,

˙F−1f = ˙F−1f + F−1 ḟ

= −F−1Lf + F−1 ḟ

= F−1(−Lf + ḟ),

it follows that a spatial vector field f convects as a tangent if and only if it evolves
according to

ḟ = Lf. (13.4)

70 Cf. (6.8) and (6.15).
71 Cf. (8.4).
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13.1.2 Vector Fields That Convect as Normals

Based on (13.2), we say that a spatial vector field f convects as a normal if

˙F)f = 0. (13.5)

Then, arguing as before, by (9.21)3,

˙F)f = Ḟ)f + F)ḟ

= F)L)f + F) ḟ

= F)(L)f + ḟ)

and we arrive at the conclusion that a spatial vector field f convects as a normal if
and only if it evolves according to

ḟ = −L)f. (13.6)

Let f and g be spatial vector fields. Then,

˙f · g = 0 (13.7)

if f convects as a tangent while g convects as a normal. This result, which is useful, is
a consequence of (13.4) and (13.6) and is verified as follows:

˙f · g = ḟ · g + f · ġ

= Lf · g − f · L)g︸ ︷︷ ︸
Lf·g

= 0.

13.1.3 Tangentially Convecting Basis and Its Dual Basis. Covariant and
Contravariant Components of Spatial Fields

Let {fi} be a triad of spatial vector fields that convect tangentially. Then, there is an
associated triad {mi } of material vector fields such that

fi = Fmi and ṁi = 0. (13.8)

Assume that, at some time, {fi} is a basis. Then, since F is invertible, {mi } is a ba-
sis, and since fi = Fmi for all time, {fi} is a basis for all time. Thus, if a triad {fi}
of tangentially convecting vector fields is a basis at some time, then {fi} is a ba-
sis for all time, and we refer to {fi} as a tangentially convecting basis and to {mi}
as its associated material basis. By (13.4), the vector fields of this basis evolve
according to

ḟi = Lfi . (13.9)

In view of the discussion on page 66, we view a tangentially convecting basis as a
basis embedded in — and, hence, moving with — the deforming body Bt .

Given a tangentially convecting basis {fi}, let {f i} denote the corresponding dual
basis, so that {f i} is the triad of spatial vector fields defined uniquely by the relations

fi · f j = δi
j , (13.10)

with δi
j , the Kronecker delta, defined by

δi
j =

{
1, if i = j,

0, if i '= j .
(13.11)
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Figure 13.1. Schematic of a tangentially convecting basis {fi} and its dual basis {f i}.

Thus, f1 is orthogonal to the plane spanned by the vectors f2 and f3, and so forth
(Figure 13.1).

To verify that {f i} is a basis, we have only to show that the vectors f i are linearly
independent, or, equivalently, that an arbitrary linear combination ci f i can vanish
only when each of the scalar coefficients vanishes. Thus, assume that ci f i = 0 and
take the inner product of this relation with an arbitrary basis vector f j ; in view of
(13.11), this gives c j = 0, which is what we set out to prove. Thus, {f i} is a basis.

We now establish the differential equation that characterizes the evolution of
the dual basis. By (13.10),

˙fi · f j = 0.

On the other hand, making use of (13.9),

˙fi · f j = fi · ḟ j + ḟi · f j

= fi · ḟ j + Lfi · f j

= fi · ḟ j + fi · L)f j

= fi · (ḟ j + L)f j ). (13.12)

Thus,

fi · (ḟ j + L)f j ) = 0

and, since {fi} is a basis, we are led to the following evolution equation for the vector
fields of the dual basis:

ḟ i = −L)f i , (13.13)

and, by (13.6), the vector fields f i (i = 1, 2, 3) convect normally. Thus,

(†) if {f i} is the basis dual to a tangentially convecting basis, then the vector fields f i

convect normally.

Further, in view of (†) and (13.5), and the argument given in the paragraph contain-
ing (13.8), there is an associated material basis {mi} such that

f i = F−)mi and ṁi = 0. (13.14)

A consequence of (13.8) and (13.14) is that {mi } is the basis dual to {mi}:

mi · m j = δi
j ; (13.15)

the verification of this assertion is left as an exercise.
We continue to assume that {fi} is a tangentially convecting basis with {f i} the

corresponding dual basis. Then, because there are two bases, there are two sets of



13.1 Vector and Tensor Fields That Convect With the Body 101

components for a vector g and two sets of components for a tensor G, and these are
given by72

gi = fi · g, gi = f i · g,

Gi j = fi · Gf j , Gi j = f i · Gf j ;
(13.16)

gi and Gi j are referred to as covariant components, while gi and Gi j are called con-
travariant components; these components generate g and G through

g = gi f i = gi fi ,

G = Gi j f i ⊗ f j = Gi j fi ⊗ f j .
(13.17)

To verify the expansion g = gi f i note that, since {fi} is a basis there are unique
scalars ci such that g = ci f i and, by (13.10), the inner product of this relation with f j
yields c j = g j , which establishes the desired expansion g = gif i .

Our next step is to show that the tensors f i ⊗ f j form a basis for the nine-
dimensional space of all tensors. As before, we have only to show that these tensors
are linearly independent. Let Ai j denote arbitrary scalars, assume that

Ai j f i ⊗ f j = 0, (13.18)

and take the inner product of (13.18) with fk ⊗ fl ; this yields, by virtue of (2.66),
Akl = 0; the triad f i ⊗ f j is thus linearly independent and hence a basis. Next, to
establish the expansion G = Gi j f i ⊗ f j , we use the fact that, since f i ⊗ f j is linearly
independent, there are scalars Ki j such that G = Ki j f i ⊗ f j and taking the inner
product of this relation with fk ⊗ fl yields, again by (2.66), Kkl = Gkl . The remaining
steps in the verification of (13.17) are left as an exercise.

Consider the material tensor fields

M = P[G] = F)GF and N = P[G] = F−1GF−) (13.19)

obtained by pulling G back to the reference space using the pullbacks P and P.73

Then

Mi j = mi · Mm j and Ni j = mi · Nm j

represent the covariant and contravariant components of M and N with respect to
the material basis {mi}, and (13.8) and (13.14) imply that

Mi j = mi · F)GFm j

= (F−1fi ) · (F)GF)(F−1f j )

= fi · Gf j

and

Ni j = mi · F−1GF−)m j

= (F)f i ) · (F−1GF−))(F)f j )

= f i · Gf j .

72 Heretofore we have, for the most part, restricted attention to orthonormal bases and any such basis
coincides with its dual basis. Here, because we do not have this coincidence, it is customary to label
components, as shown, using both subscripts and superscripts.

73 Cf. (12.1) and (12.2).
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Hence, Mi j = Gi j and Ni j = Gi j , or, equivalently, by (13.19),

(P[G])i j = Gi j and (P[G])i j = Gi j ; (13.20)

thus, the covariant components of the tensor P[G] are equal to the covariant com-
ponents of G, and the contravariant components of the tensor P[G] are equal to
the contravariant components of G. Hence, roughly speaking, P preserves covariant
components, while P preserves contravariant components. For that reason, we refer
to P as the covariant pullback and to P as the contravariant pullback.74

13.1.4 Covariant and Contravariant Convection of Tensor Fields

We continue to assume that {fi} is a tangentially convecting basis with {f i} the corre-
sponding dual basis; hence, there is a material basis {mi } (with dual basis {mi}) such
that75

fi = Fmi , ṁi = 0,

f i = F−)mi , ṁi = 0.
(13.21)

Then, by (13.16)3, for G an arbitrary spatial tensor field,76

Ġi j = ˙fi · Gf j

= ˙(Fmi ) · (GFm j )

= mi · ˙F)GFm j .

Similarly, by (13.9),

Ġi j = ˙fi · Gf j

= fi · Ġf j + ḟi · Gf j + fi · Gḟ j

= fi · Ġf j + (Lfi ) · Gf j + fi · G(Lf j )

= fi · (Ġ + GL + L)G)f j .

Thus,

Ġi j = ˙fi · Gf j (13.22)

= mi · ˙F)GFm j (13.23)

= fi · (Ġ + GL + L)G)f j (13.24)

and, since the triads {fi} and {mi} are each a basis, we may conclude from (13.19)1
and the identities (13.23) and (13.24) that the assertion of “equivalence” in the fol-
lowing definition is valid.

Covariant Convection of a Tensor Field We say that a spatial tensor field G con-
vects covariantly if any one of the following three equivalent conditions is satisfied:

74 These are the unique pullbacks with the properties (13.20); the two other pullbacks defined by (12.4)
preserve mixed components.

75 Cf. (13.8) and (13.14).
76 Bear in mind that, because {fi } is time-dependent, Ġi j = ˙fi · Gf j and Ġi j = fi · Ġf j are not equal:

the former represents the time-derivative of the components of G, the latter the components of Ġ.
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(i) G evolves according to the differential equation

Ġ + GL + L)G = 0. (13.25)

(ii) The covariant pullback of G is materially time-independent,

˙P[G] = ˙F)GF

= 0. (13.26)

(iii) The covariant components of G (with respect to the basis {fi}) are materially
time-independent,77

Ġi j = 0. (13.27)

Our next step is to derive contravariant counterparts of (13.22)–(13.24). By
(13.16)4, for G an arbitrary spatial tensor field,

Ġi j = ˙f i · Gf j

= ˙(F−)mi ) · (GF−)m j )

= mi · ˙F−1GF−) m j .

Similarly, by (13.13),

Ġi j = ˙f i · Gf j

= f i · Ġf j + ḟ i · Gf j + f i · Gḟ j

= f i · Ġf j − (L)f i ) · Gf j − f i · G(L)f j )

= f i · (Ġ − LG − GL))f j .

Thus,

Ġi j = ˙f i · Gf j (13.28)

= mi · ˙F−1GF−) m j (13.29)

= f i · (Ġ − LG − GL))f j , (13.30)

identities that, with (13.19)2, represent the basis for the next definition.

Contravariant Convection of a Tensor Field We say that a spatial tensor field
G convects contravariantly if any one of the following three equivalent conditions is
satisfied:

(i) G evolves according to the differential equation

Ġ − LG − GL) = 0. (13.31)

(ii) The contravariant pullback of G is materially time-independent,

˙P[G] = ˙F−1GF−)

= 0. (13.32)

77 That is, the components of G are materially time-independent when computed relative to a basis
embedded in the deforming body.
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(iii) The contravariant components of G (with respect to the basis {f i}) are materially
time-independent,

Ġi j = 0. (13.33)

EXERCISES

1. Let f1 and f2 be spatial vector fields that convect both as tangents. Show that

˙f1 · f2 = 2f1 · Df2. (13.34)

Show further that if θ is the angle between f1 and f2 as defined by (1.2) and if, at
some time, f1 and f2 are orthogonal, then, at that time,

θ̇ = −2
f1

|f1|
· D

f2

|f2|
.

What happens if, instead of convecting as tangents, f1 and f2 convect as normals?
2. Let f be a spatial vector field that convects as a tangent. Show that

˙ln |f| = f
|f|

· D
f
|f|

. (13.35)

Hint: (13.34) is helpful.
3. Establish (13.15).
4. Derive the component representations

g = gi fi and G = Gi j fi ⊗ f j .

5. Show that
(a) g convects as a tangent if and only if its contravariant components gi are

materially time-independent,

ġi = 0;

(b) g convects as a normal if and only if its covariant components gi are mate-
rially time-independent,

ġi = 0.

6. The pullback operations for vector fields are defined in (12.7). Show that

(P[g])i = gi and (P[g])i = gi , (13.36)

and, hence, that the covariant components of the vector P[g] are equal to the
covariant components of g and the contravariant components of the vector
P[g] are equal to the contravariant components of g. Thus, P preserves covari-
ant components, while P preserves contravariant components. For that reason,
when discussing vector fields, we refer to P as the covariant pullback and to P
as the contravariant pullback.

7. Given a spatial vector field g, show that the three conditions

(i) ġ + L)g = 0, (ii) ˙P[g] = 0, (iii) ġi = 0 (13.37)

are equivalent, as are the three conditions

(i) ġ − Lg = 0, (ii) ˙P[g] = 0, (iii) ġi = 0. (13.38)

When any one (and hence all) of the conditions (13.37) are satisfied, we say that
g convects covariantly; when any one (and hence all) of the conditions (13.38)
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are satisfied, we say that g convects contravariantly.78 A consequence of the
conditions (i) of the foregoing definitions:
• A spatial vector field g convects covariantly if and only if g convects as a nor-

mal, contravariantly if and only if g convects as a tangent.

13.2 Corotational Vector and Tensor Fields

Vector fields may also evolve by spinning with the body; such vector fields are called
corotational. Precisely, a spatial vector field k is termed corotational if k evolves
according to the differential equation

k̇ = Wk. (13.39)

Let k and l be corotational vector fields. Then, since the spin W is skew,

˙k · l = k̇ · l + k · l̇

= (Wk) · l + k · (Wl)

= −k · (Wl) + k · (Wl);

hence,
˙k · l = 0. (13.40)

Thus, if a triad {ki } of corotational vector fields is an orthonormal basis at some time,
then {ki} is an orthonormal basis for all time. Such a basis is called an orthonormal
corotational basis.79

Consider the components

Gi j = ki · Gk j

of a spatial tensor field G with respect to an orthonormal corotational basis {ki}.
Then, by (13.39),

Ġi j = ˙ki · Gk j

= ki · Ġk j + k̇i · Gk j + ki · Gk̇ j

= ki · Ġk j + (Wki ) · Gk j + ki · (GW)k j

and, since W) = −W, we have the identities

Ġi j = ˙ki · Gk j (13.41)

= ki · (Ġ + GW − WG)k j , (13.42)

which we take as the basis for the next definition.

Corotational Convection of a Tensor Field We say that a spatial tensor field
G convects corotationally if any one of the following two equivalent conditions is
satisfied:

(i) G evolves according to the differential equation

Ġ + GW − WG = 0. (13.43)

78 Cf. the analogous defining conditions (13.25)–(13.27) and (13.31)–(13.33) for tensor fields.
79 Here, as opposed to §13.1, the discussion is best restricted to bases that are orthonormal.
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(ii) The components of G relative to an orthonormal corotational basis are materially
time-independent,

Ġi j = 0. (13.44)

EXERCISES

1. Provide a geometrical interpretation of (13.40).
2. Show that if k is corotational, then so also is k ⊗ k.
3. The term corotational may be misleading, as it might also be thought to refer to

a spatial vector field f such that

f = RfR, ḟR = 0, (13.45)

for some a material vector field fR. Show that this generally cannot describe a
corotational vector field by showing that f evolves according to the differential
equation

ḟ = (ṘR))f. (13.46)

Since, by (11.8)2, ṘR) is not generally equal to W, (13.45) does not generally
define a corotational vector field. (For this reason, we say that a corotational
vector spins with the body rather than rotates with the body.)

4. Show that if k and l are corotational vector fields, then
˙k · Gl = k · (Ġ + GW − WG)l,

and, hence, G is corotational if and only if

˙k · Gl = 0

for all such vector fields k and l.



14 Motions with Constant Velocity Gradient

The general theory of such motions is based on a consideration of the function etA,
with A a tensor, as a solution of a tensorial ordinary differential equation, as pre-
sented in §114.

14.1 Motions

We seek motions of the body in which the velocity gradient

L = gradv

satisfies

L = constant.

Granted this, the velocity has the form

v(x, t) = v0(t) + L(x − x0),

with v0(t) an arbitrary function of time.
Next, by (9.12), the deformation gradient is a solution of the ordinary differen-

tial equation

Ḟ(t) = LF(t), (14.1)

which we consider with the initial condition

F(t0) = F0, det F0 > 0. (14.2)

The differential equation (14.1), subject to (14.2), has the unique solution80

F(t) = e(t−t0)LF0, −∞ < t < ∞. (14.3)

To verify this, we note that, by (114.1) and (114.2), F(t) defined by (14.3) satisfies

Ḟ(t) = Ż(t − t0)F0

= LZ(t − t0)F0

= LF(t)

80 See Appendix 114 for an overview of the exponential of a tensor.

107



108 Motions with Constant Velocity Gradient

and

F(t0) = Z(0)F0

= F0.

Hence, F(t) satisfies (14.1) and (14.2). Moreover, by (114.3), F(t) satisfies81

˙det F(t) = (det F0)e(tr L)t . (14.4)

Since the deformation gradient F(t) is independent of the material point, the
equation F = ∇χ may be solved for the motion χ : By (6.1), assuming that the mate-
rial point X0 goes through the spatial point x0 at time t0, this motion has the explicit
form

χ(X, t) = x0 + e(t−t0)LF0(X − X0), −∞ < t < ∞. (14.5)

This solution is well defined for a reference body B occupying all of space, and hence
represents a motion for any reference body, no matter the shape. Some properties
of this motion, useful in what follows, are associated with the choice X = X0 and
t = t0:

F = F0,

Ḟ = LF0,

C = F)
0 F0,

Ċ = 2F)
0 DF0.

(14.6)

81 Cf. (9.15).



15 Material and Spatial Integration

15.1 Line Integrals

Let φ(x, t) and ϕ(X, t) denote the spatial and material descriptions of a vector field.
Further, let C denote a material curve and Ct the corresponding spatial curve at each
time t . Then, using the notation spelled out in the paragraphs containing (6.10) and
(6.14) and making explicit use of (6.14), we have the following derivation of the
transformation law for line integrals:82

∫

Ct

φ(x, t) · dx =
λ1∫

λ0

φ(x̂t (λ), t) ·
∂ x̂t (λ)
∂λ

dλ

=
λ1∫

λ0

ϕ(X̂(λ)) · F(X̂(λ), t)
dX̂(λ)

dλ
dλ

=
∫

C

ϕ(X, t) · F(X, t)dX

=
∫

C

F)(X, t)ϕ(X, t) · dX. (15.1)

15.2 Volume and Surface Integrals

Let P be a material region and let

Pt = χ(P, t), (15.2)

so that, by definition, Pt convects with the body;83 then

(i) we write nR for the outward unit normal to ∂P, and
(ii) n for the outward unit normal to ∂Pt ,

82 Cf. §4.2.
83 Cf. §5.3.
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Figure 15.1. The outward unit normals nR(X) and n(x, t) at points X and x = χ(X, t) on the
boundaries ∂P and ∂Pt of a material region P and the corresponding spatial region Pt .

so that, by (8.17)

 n = FCnR, (15.3)

where  is the areal surface Jacobian related to mapping from ∂P to ∂Pt and

FC = J F−) (15.4)

is the cofactor of F.84

Notation: Throughout this book P denotes a material region and Pt denotes a spatial
region convecting with the body.

We write dvR and dv for the volume elements in the reference and deformed
bodies, and daR and da for the analogous area elements. The estimates (8.9), (8.20),
and (8.21) together with conventional definitions of integrals as limits of suitably
subdivided domains lead to basic relations for transforming volume elements and
scalar and vector area elements. These transformation laws are most easily remem-
bered in terms of the formal relations85

dv = J dvR, da =  daR,

n da = FCnR daR = J F−)nR daR.
(15.5)

15.2.1 Volume Integrals

Let ϕ and ϕR be the spatial and material descriptions of a field. Given any material
region P, the transformation law for the integral of ϕ over Pt to an integral of ϕR

over P is then
∫

Pt

ϕ(x, t) dv(x) =
∫

P

ϕR(X, t) J (X, t) dvR(X). (15.6)

Here and in what follows we write dvR(X) when we wish to emphasize that the
variable of integration is the material point X; dv(x) when we wish to emphasize
that the variable of integration is the spatial point x. More succintly, suppressing

84 Cf. (8.14) and (2.91).
85 These relations are meant only to be suggestive; they are not meant to replace actual proofs of the

results (15.6) and (15.8).
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arguments and dropping the subscript S on ϕ, we write (15.6) in the form
∫

Pt

ϕ dv =
∫

P

ϕ J dvR. (15.7)

15.2.2 Surface Integrals

In this case, the transformation laws are more complicated.

Transformation Laws for Surface Integrals86 Given a material region P, a vector
field u, and a tensor field G,

∫

∂Pt

u · n da =
∫

∂P

u · FCnR daR,

∫

∂Pt

Gn da =
∫

∂P

GFCnR daR,

∫

∂Pt

u · Gn da =
∫

∂P

u · GFCnR daR,






(15.8)

where nR and n, respectively, are the outward unit normals to ∂P and ∂Pt , and FC =
J F−) is the cofactor of F.

Thus, when transforming volume and surface integrals from the deformed body
to the reference body

(i) one replaces the volume element dv by J dvR;
(ii) one replaces the vectorial area element nda by FCnR daR.

EXERCISE

1. Show that
∫

∂P

FCnR daR = 0.

15.3 Localization of Integrals

Often in continuum mechanics basic laws that are written in integral form for ar-
bitrary subregions P of the reference body B — or arbitrary regions Pt convecting
with the body — lead to relations of the form

∫

P

(· · · ) dvR = 0 and
∫

P

(· · · ) dvR ≥ 0

or
∫

Pt

(· · · ) dv = 0 and
∫

Pt

(· · · ) dv ≥ 0.

86 Cf., for example, Truesdell & Toupin (1960, eq. (20.8)).
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The following results, which we use repeatedly, often without comment, allow us to
localize such laws: given a spatial field ϕ,87

∫

P

ϕ dvR = 0 for all material regions P ⊂ B =⇒ ϕ = 0,

∫

P

ϕ dvR ≥ 0 for all material regions P ⊂ B =⇒ ϕ ≥ 0,

(15.9)

and
∫

Pt

ϕ dv = 0 for all convecting regions Pt and all t =⇒ ϕ = 0,

∫

Pt

ϕ dv ≥ 0 for all convecting regions Pt and all t =⇒ ϕ ≥ 0.

(15.10)

Another result and one that we find useful asserts that

(†) given any time t0 and any spatial region P in Bt0 , there is a convecting region Pt
such that

Pt |t=t0 = P . (15.11)

15.3.1 Verification of (15.9), (15.10), and (†)
To verify (15.9), assume first that (15.9)2 is not true; that is, assume that the left side of the implication is
satisfied, but that there is a point X in B with ϕ(X) < 0. Then, granted continuity, there is a neighborhood
P of X in B such that ϕ<0 everywhere in P. This yields

∫
P ϕ dvR < 0, which is a contradiction. Hence,

(15.9)2 is true. Further, replacing ϕ by −ϕ in (15.9)2, we see that the implication (15.9)2 holds with ≥ 0
replaced by ≤ 0. Finally, if the left side of the implication (15.9)1 is satisfied, then the integral

∫
P ϕ dvR

must be both ≥ 0 and ≤ 0; thus, (15.9)2 implies that ϕ is both ≥ 0 and ≤ 0, and, hence, equal to zero.
Thus, (15.9)1 is valid.

In view of (15.9) and the strict positivity of the determinant J , (15.10) follows from (15.7).
Finally, to verify (†), choose an arbitrary time t0 and an arbitrary spatial region P in Bt0 . To find the

convecting region Pt consistent with (15.11), we let P denote the material region that deforms to Pt at
time t088 and then take Pt = χ t (P) for all t . Thus, (†) is valid.

87 More precisely, if the left side of, say, (15.9)1 holds for all time, then the right side holds on B for all
time; and if the left side of, say, (15.10)1 holds for all t , then the right side holds on Bt for all t .

88 I.e. P = χ−1
t0 (P); cf. (5.5).



16 Reynolds’ Transport Relation. Isochoric
Motions

To see the conventions and integral transformations in §15.2 in action, note that, by
(9.16) and (15.7), granted sufficient smoothness,

˙∫

Pt

ϕ dv =
˙∫

P

ϕ J dvR

=
∫

P

( ϕ̇ J + ϕ J̇ ) dvR

=
∫

P

(ϕ̇ + ϕdivv)J dvR

=
∫

Pt

(ϕ̇ + ϕdivv) dv. (16.1)

We therefore have Reynolds’ transport relation

˙∫

Pt

ϕ dv =
∫

Pt

(ϕ̇ + ϕdivv) dv, (16.2)

an integral identity valid whenever the spatial region Pt convects with the body; this
identity is central to much of continuum mechanics.

A motion is isochoric if

˙vol(Pt ) = 0

for all spatial regions Pt convecting with the body, so that the deformed volume of
any part is independent of time. Since

vol(Pt ) =
∫

Pt

dv,
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the choice ϕ ≡ 1 in Reynolds’ transport relation (16.2) yields

˙vol(Pt ) =
˙∫

Pt

dv

=
∫

P

J̇ dvR

=
∫

Pt

divv dv. (16.3)

Thus, since the part P (and hence the spatial region Pt ) may be arbitrarily chosen,
we may conclude that

(‡) the following three statements are equivalent:

(i) The motion is isochoric.
(ii) J̇ = 0.

(iii) divv = 0.

Further, a direct consequence of (16.2) and (iii) is that

˙∫

Pt

ϕ dv =
∫

Pt

ϕ̇ dv in an isochoric motion.

EXERCISES

1. Show that, since L = ḞF−1 and D = sym L,89

F−)ĊF−1 = 2D

and that, therefore, a motion is isochoric if and only if

tr(F−)ĊF−1) = 0,

or, since90

D = R[sym (U̇U−1)]R),

if and only if

tr(U̇U−1) = 0.

2. Show that

A : Ċ = 2(FAF)) : D.

89 Cf. (11.10).
90 Cf. (11.8)1.



17 More Kinematics

The kinematics discussed below, while general and applicable to both solids and
fluids, is particularly important in the study of fluids.

17.1 Vorticity

The vorticity ω is defined by

ω = curl v. (17.1)

Let w denote the axial vector of the spin W so that, by (2.36), W = w×. Then, choos-
ing an arbitrary vector a and bearing in mind that the tensor a× is skew, it follows
from (2.61)2, (2.64), and (3.19)2 that

a · ω = (a×) : L

= (a×) : W

= 2a · w.

Thus, ω = 2w and, since W = w×,91 we find that the spin and vorticity in an arbitrary
motion are related by

W = 1
2ω×. (17.2)

This shows that the vorticity serves as a vectorial counterpart to the spin. Recall
from (11.4) that the spin axis denotes the subspace L of vectors a such that

Wa = 0. (17.3)

EXERCISE

1. Use (17.2) to show that

|ω|2 = 2|W|2.

17.2 Transport Relations for Spin and Vorticity

Kinematical relations central to a discussion of fluids consist of92

(i) the relation

v̇ = v′ + Lv (17.4)

91 Cf. the result (10.3) obtained in our discussion of rigid motions.
92 Cf. (9.8), (11.2), and (11.3).
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between the acceleration v̇, the spatial time derivative v′, and the spatial gradi-
ent L = gradv of the velocity (§9.2);

(ii) the decomposition

L = gradv = D + W,

D = sym L, W = skw L,
(17.5)

of the velocity gradient L into a symmetric stretching tensor D and a skew spin
tensor W;

(iii) the decomposition

D = D0 + 1
3 (trD)1, trD0 = 0, (17.6)

of the stretching D into a deviatoric part D0 and a spherical part 1
3 (trD)1.

We now establish several important relations for the transport of spin and vor-
ticity. Since

L)v = (gradv))v

= 1
2 grad(|v|2),

it follows that

2Wv = Lv − 1
2 grad(|v|2)

and (9.8) yields the first of

v̇ = v′ + 1
2 grad(|v|2) + 2Wv,

v̇ = v′ + 1
2 grad(|v|2) + ω×v,

(17.7)

while the second follows from the first using (17.1) and (17.2).
Consider the vorticity and note that, by (3.25)6 and (17.7)2,

curl v̇ = ω′ + curl (ω × v).

Thus, since, by (3.20)6,10,

curl (ω × v) = (gradω)v + (divv)ω − (divω)v − (gradv)ω

= (gradω)v + (divv)ω − Lω, (17.8)

and since ω̇ = ω′+(gradω)v, we have an important transport relation for the vortic-
ity:

ω̇ − Lω + (divv)ω = curl v̇. (17.9)

Next, since W is the skew part of L, (9.12) yields

2F)WF = F)(ḞF−1 − F−)Ḟ))F,

= F)Ḟ − Ḟ)F,

and hence, using (9.22),

2 ˙F)WF = F)F̈ − F̈)F

= F)(F̈F−1 − F−)F̈))F

= F)(grad v̇ − (grad v̇)))F.
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Thus, if we define

J = 1
2 (grad v̇ − (grad v̇))), (17.10)

steps analogous to that leading to (17.2) yield

J = (curl v̇)×, (17.11)

which implies a material transport relation for the spin

˙F)WF = F)JF. (17.12)

We use the adjective “material” because tensors of the form F)(· · · )F map material
vectors to material vectors.93

Continuing, by (9.11), Ḟ = LF, so that

2 ˙F)WF = F)ẆF + Ḟ)WF + F)WḞ

= F)ẆF + F)L)WF + F)WLF

= F)(Ẇ + L)W + WL)F, (17.13)

and, by (17.12), we have a spatial transport relation for the spin

Ẇ + WL + L)W = J. (17.14)

Further, since L = D + W,

WL + L)W = W(D + W) + (D − W)W

= WD + DW,

and, by (17.14), we may write (17.14) in the form

Ẇ + WD + DW = J. (17.15)

17.3 Irrotational Motions

A motion is irrotational if

W = 0,

or, equivalently, by (17.2), if

curl v = 0.

A spatial vector field g is the gradient of a potential if there is a spatial scalar
field ϕ such that

g = gradϕ. (17.16)

For a large class of fluids, in particular, for inviscid fluids subject to conservative
conventional body forces, the acceleration is the gradient of a potential. When this
is so, then (17.10) and (17.16) imply that

J = 0, (17.17)

and, hence, by virtue of (17.14), that

˙F)WF = 0. (17.18)

93 In fact, the tensor F)WF is the covariant pullback of the spin from the deformed body to the refer-
ence body. Cf. (13.19) and the terminology introduced in the paragraph containing (13.20).
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Granted this — expressing all fields materially — (F)WF)(X, t) is independent of t .
Thus, if the motion is irrotational at some time τ , then W(X, τ ) = 0 for all X in B,
so that (F)WF)(X, τ ) = 0 for all X in B. Thus, by (17.18), (F)WF)(X, t) = 0 for all
X in B and all t , and, since F is invertible, W(X, t) = 0 for all X in B and all t and
the motion is irrotational for all time:

curl v ≡ 0. (17.19)

We therefore have the following important result of Lagrange and Cauchy:

(‡) A motion with acceleration the gradient of a potential is irrotational if it is irrota-
tional at some time.

Consider now a plane motion. The stretching and spin, D and W, then have
matrices of the form

[D] =




a b 0
b c 0
0 0 0



 , [W] =




0 g 0

−g 0 0
0 0 0



 ,

so that

[WD + DW] =




0 g(a + c) 0

−g(a + c) 0 0
0 0 0



 = (a + c)[W].

Thus, since

divv = trL

= trD

= a + c,

it follows that

WD + DW = (divv)W.

Thus, by (17.14) and (17.10), for a plane, isochoric motion with acceleration the
gradient of a potential,

Ẇ ≡ 0.

17.4 Circulation

Consider a motion of the body. Let C be a material curve described by the
parametrization

X̂(λ), λ0 ≤ λ ≤ λ1,

and let

Ct = χ t (C) (17.20)

denote the corresponding spatial curve described by the time-dependent
parametrization

x̂t (λ) = χ t (X̂(λ)), λ0 ≤ λ ≤ λ1, (17.21)

described in the paragraph containing (6.11). Assume that C and, hence, Ct are
closed, so that

x̂t (λ1) = x̂t (λ0). (17.22)
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The line integral94

∫

Ct

v(x, t) · dx (17.23)

then gives the circulation around Ct at time t . An important result, which we now
derive, involves the time derivative

˙∫

Ct

v(x, t) · dx (17.24)

of the circulation. By definition,

∫

Ct

v(x, t) · dx =
λ1∫

λ0

v(x̂t (λ), t) · ∂ x̂t (λ)
∂λ

dλ, (17.25)

and our evaluation of (17.24) involves differentiating the right side of (17.25) under
the integral. We begin with some identities. By (17.21),

∂

∂ t
x̂t (λ) =

∂

∂ t
χ t (X̂(λ), t)

= χ̇(X̂(λ), t)

= v(x̂t (λ), t); (17.26)

further,

∂2

∂ t∂λ
x̂t (λ) = ∂2

∂λ∂ t
x̂t (λ)

=
∂

∂λ
v(x̂t (λ), t) (17.27)

and

∂

∂ t
v(x̂t (λ), t) = χ̈(X̂(λ), t)

= v̇(x̂t (λ), t). (17.28)

The identities (17.26)–(17.28) can be used to transform (17.24) as follows:

˙∫

Ct

v(x, t) · dx =
d
dt

λ1∫

λ0

v(x̂t (λ), t) ·
∂ x̂t (λ)
∂λ

dλ

=
λ1∫

λ0

∂

∂ t

(
v(x̂t(λ), t)

)
· ∂ x̂t(λ)

∂λ
dλ+

λ1∫

λ0

v(x̂t (λ), t) · ∂
∂ t

(
∂ x̂t (λ)
∂λ

)
dλ

94 Cf. §4.2.
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=
λ1∫

λ0

v̇(x̂t (λ), t) · ∂ x̂t (λ)
∂λ

dλ+
λ1∫

λ0

v(x̂t (λ), t) · ∂
∂λ

v(x̂t (λ), t)dλ

=
∫

Ct

v̇(x, t) · dx + 1
2

[
|v(x̂t (λ1), t)|2 − |v(x̂t (λ0), t)|2

]
︸ ︷︷ ︸

=0 since x̂t (λ0)=x̂t (λ1)

.

Thus, we have the circulation-transport relation: For the spatial image Ct of a closed
material curve C,

˙∫

Ct

v(x, t) · dx =
∫

Ct

v̇(x, t) · dx. (17.29)

We say that the motion preserves circulation if

˙∫

Ct

v(x, t) · dx = 0

for every closed material curve and all t .
Assume that the acceleration is the gradient of a potential, then by (4.7), for Ct

a closed curve,
∫

Ct

v̇(x, t) · dx =
∫

Ct

∇ϕ(x, t) · dx = 0.

Appealing to the circulation transport relation (17.29), we therefore have a famous
result of Kelvin:

(‡) If the acceleration is the gradient of a potential, then the motion preserves circu-
lation.

17.5 Vortex Lines

Let C be a material curve with Ct the corresponding spatial curve at each time t .
Further, let τ R(X), defined for every X on C, and τ (x, t), defined for every x on Ct ,
denote respective tangents to C and Ct , so that, by (6.15),

τ (x, t) = F(X, t)τ R(X), x = χ t (X). (17.30)

We say that Ct is a vortex line at time t = s if the tangent to Cs at each spatial point
x on Cs lies on the spin axis of the motion at (x, s). By (17.3), the spin axis at (x, s)
is the subspace L of all vectors a such that W(x, s)a = 0. Thus, Cs is a vortex line if
and only if

W(x, s)τ (x, s) = 0,

or, equivalently,

W(x, s)F(X, s)τ R(X) = 0, x = χ s(X),

so that, trivially,

F)(X, s)W(x, s)F(X, s)τ R(X) = 0, x = χ s(X), (17.31)
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for all x on Cs . Assume that the acceleration is the gradient of a potential, so that,
by (17.18),

˙F)WF = 0

and (17.31) must hold for all t :

F)(X, t)W(x, t)F(X, t)τ R(X) = 0, x = χ t (X),

for all x on Ct . Equivalently, by (17.30),

W(x, t)τ (x, t) = 0

and Ct is a vortex line at all times t . We therefore have the important result:

(‡) Assume that the acceleration is the gradient of a potential. Vortex lines then con-
vect with the body; that is, for any material curve C, if Cs is a vortex line at some
time s, then Ct is a vortex line for all time t.

17.6 Steady Motions

We say that a motion is steady if

(i) the deformed body is independent of time,

Bt = B0 for all time t ; (17.32)

(ii) the velocity v is independent of time,

v′ = 0,

and, hence, a field v(x) with domain B0.

Given a steady motion, consider the differential equation

ds(t)
dt

= v(s(t)). (17.33)

Solutions s of this differential equation are referred to as streamlines of the motion.
Two important properties of a steady motion are that all particles that pass

through a given spatial point x do with velocity v(x); and particle paths and stream-
lines satisfy the same differential equation (17.33), so that every streamline is a par-
ticle path and every particle path is a streamline.

Given a steady motion, we say that ϕ is a steady field if

ϕ′ = 0, (17.34)

so that ϕ is independent of time; by (9.7) and (17.34), ϕ is steady if and only if

ϕ̇ = v · gradϕ. (17.35)

We say that a steady field ϕ is constant on streamlines if, given any streamline s,

d
dt
ϕ(s(t)) = 0 (17.36)

for all t . But, for ϕ steady and s an arbitrary streamline, (17.33) yields

d
dt
ϕ(s(t)) = gradϕ(s(t))ṡ(t)

= gradϕ(s(t))v(s(t))

= ϕ̇(s(t)). (17.37)
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Thus, since every point of B0 has a streamline passing through it,95

• a steady field ϕ is constant on streamlines if and only if ϕ̇ = 0.

Consider now a (not necessarily steady) motion χ and choose a material point
X with χ(X, τ ) in Bτ at some time τ . Then, by (‡) on page 63, χ(X, t) lies on ∂Bt for
all time t . If, in particular, the motion is steady, so that Bt ≡ B0, then χ(X, t), as a
function of t , describes a curve on ∂B0; hence χ̇(X, t) is tangent to ∂B0. Thus,

• in a steady motion the velocity field is tangent to the boundary; specifically, v(x)
is tangent to ∂B0 at each point x on ∂B0.

17.7 A Class of Natural Reference Configurations for Fluids

Standard problems involving fluids are initial-value problems that generally begin
with a prescription of

(i) the spatial region Bt0 occupied by the fluid at a given time t0; and
(ii) the fluid’s specific volume υ0(X) at each X in Bt0 .

Bearing this in mind, and bearing in mind the need for a reference configuration
with respect to which material points are labeled, we stipulate that

(‡) the reference configuration of the fluid is the configuration at a prescribed time t0.

Granted this, motions χ of the fluid are always reckoned with respect to the config-
uration of the fluid at time t0; specifically,

(M1) χ associates with each material point X in Bt0 and each time t a spatial point

x = χ(X, t); (17.38)

(M2) χ satisfies the time-t0 condition

χ(X, t0) = X (17.39)

for all X in Bt0 .

Motions consistent with (M1) and (M2) are referred to as motions relative to time
t0.

17.8 The Motion Problem

17.8.1 Kinematical Boundary Conditions

Consider a motion χ and choose a material point X with χ(X, τ ) in Bτ at some
time τ . Then, by (‡) on page 63, χ(X, t) lies on ∂Bt for all time t . In particular, if
Bt ≡ B0 — which would be the case if the motion were steady — then χ(X, t), as a
function of t , describes a curve on ∂B0; hence χ̇(X, t) is tangent to ∂B0. Thus, letting
n(x, t) denote the outward (say) normal to the boundary, the velocity must obey the
boundary condition

v(x, t) · n(x, t) = 0 (17.40)

for all x on ∂B0 and all t .
More generally, the boundary condition (17.40) would be applicable at all times

t at which a portion (∂Bt )abut of ∂Bt abuts a fixed solid surface. In this case we would

95 Granted v is smooth, given any spatial point x and any time t0, the differential equation (17.36)
always has a (unique) solution curve s passing through x at time t0.
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have the boundary condition

v(x, t) · n(x, t) = 0 for all x on (∂Bt )abut. (17.41)

17.8.2 The Motion Problem in a Fixed Container

When discussing fluids, it is often most convenient to work with the velocity field v
rather than with the motion χ . If the flow region is known a priori — for example, for
problems involving flows in which the fluid fills a fixed container occupying a region
B ≡ Bt , then identifying material points by their positions at some “fixed time”, say
t0, the motion at all other times is the solution of the motion problem

χ̇(X, t) = v(χ(X, t), t),

χ(X, t0) = X,

}
(17.42)

for all X in B and all t . To be guaranteed a solution for all time, the velocity v on the
boundary cannot be arbitrary, as it must be consistent with (17.42). Granted this,
if v is smooth and bounded on B for all t , then the motion problem has a smooth
solution χ with χ t (X) one-to-one in X for all t .96

The motion problem is difficult when a portion of the boundary is a free surface, as the problem
then is not purely kinematical: the conventional free-surface condition has Tn = penn, with pen the envi-
ronmental pressure, and the complete system of field equations would be needed to track the evolution
of the free surface.

17.8.3 The Motion Problem in All of Space. Solution with Constant
Velocity Gradient

Consider now a motion χ relative to time t0, so that (17.38) and (17.39) hold. Then,

F0 = 1, Ḟ = L, C = 1, Ċ = 2D,

and the results of §14 specialize to yield the following solution of the motion prob-
lem

χ(X, t) = x0 + eL(t−t0)(X − x0). (17.43)

96 A proof of this assertion, which may be based on a corollary of a theorem of Peano (cf. Theorem
3.1 of Hartman (1964)), is beyond the scope of this book.





PART IV

BASIC MECHANICAL PRINCIPLES

We initially formulate balance laws globally for regions that convect with the body.
Using the requirement that the underlying regions be arbitrary, we then derive local
balance laws in the form of partial-differential equations (and jump conditions when
the velocity and deformation gradient suffer jump discontinuities). Thereafter, we
derive equivalent global balance laws for material regions and for control volumes.
We therefore utilize three types of regions:

(i) Material regions P.
(ii) Spatial regions Pt that convect with the body. In this case there is a material

region P such that

Pt = χ t (P)

for all t .
(iii) Control volumes R that are fixed spatial regions that lie in the deformed body

Bt for all t in some time interval. In contrast to a region Pt that convects with
the body (for which material cannot cross ∂Pt ),97

(†) material generally flows into and out of a control volume R across its bound-
ary.

Throughout this book the symbols P, Pt , and R, respectively, always have the mean-
ings specified in (i), (ii), and (iii).

We consistently use the notation

˙∫

P

ϕ(X, t) dvR(X) = d
dt

∫

P

ϕ(X, t) dvR(X)

︸ ︷︷ ︸
0(t)

, (17.44)

˙∫

Pt

ϕ(x, t) dv(x) = d
dt

∫

Pt

ϕ(x, t) dv(x)

︸ ︷︷ ︸
:(t)

, (17.45)

97 Cf. (†) on page 63.
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and
˙∫

R

ϕ(x, t) dv(x) = d
dt

∫

R

ϕ(x, t) dv(x)

︸ ︷︷ ︸
3(t)

. (17.46)

Warning: The notation for time derivatives of material and spatial integrals used by
many authors is often ambiguous, confusing, and in conflict with what a student is
taught in calculus. In contrast, the notation defined in (17.44), (17.45), and (17.46)
suffers none of these deficiencies. In (17.44), (17.45), and (17.46), the respective
variables X, x, and x are “integrated out,” leaving functions0(t),:(t), and3(t) that
depend only on t ; the derivatives d0(t)/dt , d:(t)/dt , and d3(t)/dt are therefore
well-defined.

For convenience, we usually omit arguments when writing integrals of the form
(17.44)–(17.46) and write instead

˙∫

P

ϕ dvR,
˙∫

Pt

ϕ dv, and
˙∫

R

ϕ dv. (17.47)

This notation, while somewhat less transparent than (17.44)–(17.46), is consistent:
In (17.44) the volume element dvR is material and so the integration is with respect
to X holding t fixed; in (17.45) and (17.46) the volume element dv is spatial and so
the integration is with respect to x holding t fixed.



18 Balance of Mass

We assume throughout this section that the motion is smooth. Balance of mass in
the presence of a shock wave is discussed in §33.1.

18.1 Global Form of Balance of Mass

Let Pt be a spatial region that convects with the body, so that Pt = χ t (P) for some
material region P. We write ρR(X) > 0 for the mass density at the material point X
in the reference body B, so that

∫

P

ρR(X) dvR(X)

represents the mass of the material region P. We refer to ρR(X) as the reference
density. Analogously, given a motion, we write ρ(x, t) > 0 for the (mass) density at
the spatial point x in the deformed body Bt , so that

∫

Pt

ρ(x, t) dv(x)

represents the mass of the spatial region Pt occupied by P at time t . Balance of mass
is then the requirement that, given any motion,

∫

P

ρR(X) dvR(X) =
∫

Pt

ρ(x, t) dv(x) (18.1)

for every material region P. The left side of (18.1) is independent of t ; differentiating
(18.1) with respect to t , thus, yields an expression for balance of mass appropriate
to a convecting spatial region Pt :

˙∫

Pt

ρ dv = 0. (18.2)

This form of mass balance is independent of the choice of reference configuration
and is often used in discussions of fluids. More importantly, because (18.2) does not
involve derivatives of the integrand, it is valid even in the presence of a shock wave.

127



128 Balance of Mass

Note that (18.1) applied to the body yields
∫

B

ρR(X) dvR(X) =
∫

Bt

ρ(x, t) dv(x)

def= M, (18.3)

with M the (fixed) mass of the body.

18.2 Local Forms of Balance of Mass

In view of Reynolds’ transport relation (16.2), balance of mass (18.2) implies that
∫

Pt

(ρ̇ + ρ divv) dv = 0 (18.4)

for every convecting region Pt , and, in view (15.10)1, yields the local mass balance

ρ̇ + ρdivv = 0, ρ̇ + ρ
∂vi

∂xi
= 0. (18.5)

By (9.7)1, this balance may be written equivalently as

ρ ′ + div(ρv) = 0. (18.6)

The field υ defined by

υ = 1
ρ

(18.7)

is referred to as the specific volume; by (18.5) and (18.6),

υ̇ = υ divv. (18.8)

We now provide a derivation of the local mass balance (18.5) that utilizes the
reference configuration. By (15.7) applied to the right side of (18.1),

∫

Pt

ρ dv =
∫

P

ρ J dvR,

so that, by (18.1),
∫

P

(ρR − ρ J ) dvR = 0.

Thus, since P is arbitrary,

ρ = ρR

J
, (18.9)

which is an alternative relation expressing balance of mass. Note that, unlike mass
balance in the form (18.5), this relation, which is algebraic, is based on a choice of
reference configuration. An immediate consequence of this relation and (15.7) is the
transformation law

∫

Pt

ϕρ dv =
∫

P

ϕρR dvR, (18.10)
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which with arguments has the form

∫

Pt

ϕ(x, t)ρ(x, t) dv(x) =
∫

P

ϕ(χ(X, t), t)ρR(X) dvR(X). (18.11)

Like the “volume elements” dv and dvR, the quantities dm = ρ dv and dmR = ρR dvR represent
well-defined mathematical objects called measures. The relation (18.11) asserts that integrating a spatial
field ϕ over the spatial region Pt with respect to the spatial mass measure dm is equivalent to integrating
the material description of ϕ over the corresponding material region P with respect to the referential
mass measure dmR. In this regard note that, formally,

dm = dmR,

which is a relation comparable to the corresponding relation dv = J dvR for volume.98

EXERCISE

1. Derive the local mass balance (18.5) by taking the material time-derivative of
(18.9) and using (9.16).

18.3 Simple Consequences of Mass Balance

Let ϕ be a spatial scalar field. Then, by (9.7)1 and (18.6),

(ρϕ)′ = ρϕ′ + ρ ′ϕ

= ρϕ′ − ϕdiv(ρv)

= ρϕ′ − div(ρϕv) + ρv · gradϕ

= ρ(ϕ′ + v · gradϕ) − div(ρϕv)

= ρϕ̇ − div(ρϕv)

and, hence,

ρϕ̇ = (ρϕ)′ + div(ρϕv). (18.12)

Similarly, for a spatial vector field g, by (9.7)2 and (18.6),

(ρg)′ = ρg′ + ρ ′g

= ρg′ − g div(ρv)

= ρg′ − div(ρg ⊗ v) + ρ(gradg)v

= ρġ − div(ρg ⊗ v),

and we have

ρġ = (ρg)′ + div(ρg ⊗ v). (18.13)

98 Cf. (15.5)1.
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Also, by Reynolds’ transport relation (16.2) and the mass balance (18.5), given
any spatial field ϕ and any spatial region Pt convecting with the body,

˙∫

Pt

ρϕ dv =
∫

Pt

( ˙ρϕ + ρϕdivv) dv

=
∫

Pt

(ρϕ̇ + (ρ̇ + ρdivv)ϕ) dv

=
∫

Pt

ρϕ̇ dv. (18.14)

In other words,

(‡) to differentiate the integral
∫

Pt

ρϕ dv

with respect to time we simply differentiate under the integral sign using the ma-
terial time-derivative while treating the “mass measure” ρ dv as constant, thus
giving

∫

Pt

ρϕ̇ dv.

This result is valid when the field ϕ is replaced by a spatial vector field or a spatial
tensor field.

EXERCISE

1. Derive (18.14) by differentiating (18.11) with respect to time.
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Linear and Angular Momentum

The current entrenched, facile conception of force in terms of “pushes” and “pulls” has fostered a view
of force as a “real quantity” rather than a mathematical concept. In the words of Pierce (1934, p. 262):
[Force is] “the great conception which, developed in the early part of the seventeenth century from the
rude idea of a cause, and constantly improved upon since, has shown us how to explain all the changes of
motion which bodies experience, and how to think about physical phenomena; which has given birth to
modern science; and which . . . has played a principal part in directing the course of modern thought . . .
It is, therefore, worth some pains to comprehend it.”

Those who believe the notion of force is obvious should read the scientific literature of the period
following Newton. Truesdell (1966) notes that “D’Alembert spoke of Newtonian forces as ‘obscure
and metaphysical beings, capable of nothing but spreading darkness over a science clear by itself,’” while
Jammer (1957, pp. 209, 215) paraphrases a remark of Maupertis, “we speak of forces only to conceal our
ignorance,” and one of Carnot, “an obscure metaphysical notion, that of force.”

Within the framework of continuum mechanics, the basic balance laws for linear
and angular momentum assert that, given any spatial region Pt convecting with the
body,

(i) the net force on Pt is balanced by temporal changes in the linear momentum of
Pt ;

(ii) the net moment on Pt is balanced by temporal changes in the angular momen-
tum of Pt .

We assume throughout this section that the motion is smooth. Momentum bal-
ance in the presence of a shock wave is discussed in §31.4.

19.1 Inertial Frames. Linear and Angular Momentum
According to Thorne (1994, p. 80): “Einstein expressed his principle of relativity not in terms of arbitrary
reference frames, but in terms of rather special ones: frames . . . that move freely under their own inertia,
neither pushed nor pulled by any forces, and that therefore continue always onward in the same state of
uniform motion that they began. Such frames Einstein called inertial because their motion is governed
solely by their own inertia.”

In classical particle mechanics an inertial frame is one within which motion is governed by Newton’s
law

f = ma. (19.1)

Astronomers often choose an inertial frame attached to certain stars (“fixed stars”) that appear at rest
relative to one another, while engineers when discussing earthly applications often use an inertial frame
attached to the earth. What is important is that Newtonian mechanics, however,99 “merely assumes that
there are inertial frames and does not enter into the question of how they should be interpreted in
nature.”

99 Truesdell (1991, p. 68).

131
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We assume throughout this book that

• we are working in an inertial frame.

Given a spatial point x, it is convenient to write r for the position vector

r(x) = x − o. (19.2)

Given a spatial region Pt that convects with the body, the integrals

l(Pt ) =
∫

Pt

ρv dv and a(Pt ) =
∫

Pt

r × (ρv) dv, (19.3)

respectively, represent the linear and angular momentum of Pt . By (1.23)3 and (9.9),

r × v̇ = ˙r × v − v × v

= ˙r × v, (19.4)

Thus, by (19.3) and (‡) on page 130,

˙l(Pt ) =
˙∫

Pt

ρv dv

=
∫

Pt

ρv̇ dv (19.5)

and

˙a(Pt ) =
˙∫

Pt

r × (ρv) dv

=
∫

Pt

r × (ρv̇) dv. (19.6)

19.2 Surface Tractions. Body Forces

Motions are accompanied by forces. Classically, forces in continuum mechanics are
described spatially by

(i) contact forces between adjacent spatial regions; that is, spatial regions that in-
tersect along their boundaries;

(ii) contact forces exerted on the boundary of the body by its environment;
(iii) body forces exerted on the interior points of a body by the environment.

Contact forces and body forces may be measured per unit area and volume in the
reference body or per unit volume and area in the deformed body. Both descriptions
are important, but the latter seems more natural when introducing basic principles.

One of the most important and far-reaching axioms of continuum mechanics is
Cauchy’s hypothesis concerning the form of the contact forces. Cauchy introduced
a surface-traction field t(n, x, t) — defined for each unit vector n, each x in Bt , and
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Figure 19.1. The normal n(x, t) and surface traction t(n, x, t) at a point x on a surface S
dividing a region in Bt into two subregions.

each t (Figure 19.1) — assumed to have the following property:

• Given any oriented spatial surface S in Bt , t(n, x, t) represents the force, per
unit area, exerted across S upon the material on the negative side of S by the
material on the positive side.100

Cauchy’s hypothesis has a strong consequence: If C is an oriented surface tangent to
S at x and having the same positive unit normal there, then the force per unit area
at x is the same on C as on S (Figure 19.2).

To determine the contact force between adjacent spatial regions P and D, one
simply integrates the traction over the surface

S = P ∩ D
of contact; thus, on introducing the shorthand

∫

S

t(n) da =
∫

S

t(n(x, t), x, t) da(x),

granted the orienting unit normal to S coincides with that of P , the integral
∫

S

t(n) da (19.7)

gives the force exerted on S by D (Figure 19.1). Similarly,
∫

∂P

t(n) da (19.8)

represents the net contact force exerted on the spatial region P at time t .101

For points on the boundary of Bt , t(n, x, t) — with n the outward unit normal to
∂Bt at x — gives the surface force, per unit area, exerted on the body at x by contact
with the environment.

The environment can also exert forces on interior point of Bt , with a classical
example of such a force being that due to gravity. Such forces are determined by a
vector field b0(x, t) giving the force, per unit volume, exerted by the environment
on x. For any spatial region P , the integral

∫

P

b0 dv

100 By the positive side of S we mean the portion of Bt into which n points; similarly, the negative side
of S is the portion of Bt out of which n points.

101 When time-differentiation is not involved, the result (†) on page 112 allows us to work with an
arbitrary subregion P of the deformed body at a fixed time, say t0, and know that there is a corre-
sponding convecting spatial region Pt such that Pt0 = P (Figure 19.3).
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t(n,x, t)
n

S

C

x

Figure 19.2. Schematic depicting Cauchy’s hypothesis concerning the form of the constant
forces.

gives that part of the environmental force not due to contact. We thus refer to b0 as
the conventional body force.102

In the same vein, given any spatial region P ,

∫

∂P

r × t(n) da and
∫

P

r × b0 dv (19.9)

represent net moments exerted on that region by contact and body forces.
For Pt a spatial region convecting with the body, the net force f(Pt ) and the net

moment m(Pt ) exerted on Pt are therefore given by

f(Pt ) =
∫

∂Pt

t(n) da +
∫

Pt

b0 dv,

m(Pt ) =
∫

∂Pt

r × t(n) da +
∫

Pt

r × b0 dv.

(19.10)

19.3 Balance Laws for Linear and Angular Momentum

The basic mechanical balance laws, which are assumed to hold at each time for
all spatial regions Pt convecting with the body, are the balance laws for linear and
angular momentum

f(Pt ) = ˙l(Pt ) and m(Pt ) = ˙a(Pt ), (19.11)

which, by (19.3) and (19.10), have the less succinct form

∫

∂Pt

t(n) da +
∫

Pt

b0 dv =
˙∫

Pt

ρv dv (19.12)

102 We use the adjective “conventional” to differentiate this body force from a body force that accounts
also for inertia (i.e., also for the d’Alembert force).
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x

∂Pt

Pt

n(x, t)

t(n ,x, t)

Figure 19.3. Schematic showing the traction t(n, x, t) acting at a spatial point x on the bound-
ary ∂Pt of Pt .

expressing balance of linear momentum and

∫

∂Pt

r × t(n) da +
∫

Pt

r × b0 dv =
˙∫

Pt

r × (ρv) dv (19.13)

expressing balance of angular momentum. Further, by (19.5) and (19.6), these laws
have alternative forms

∫

∂Pt

t(n) da +
∫

Pt

b0 dv =
∫

Pt

ρv̇ dv,

∫

∂Pt

r × t(n) da +
∫

Pt

r × b0 dv =
∫

Pt

r × (ρv̇) dv,

(19.14)

useful in localization arguments.
Recall the expression (18.3) for the mass M of the body. The center of mass

rc(t) at time t , relative to the origin o, is defined by

rc(t) = 1
M

∫

Bt

ρr dv.

By (18.14),

ṙc(t) = 1
M

∫

Bt

ρv dv,

and ṙc represents the average velocity of the body. Further,

l(Bt ) = Mṙc(t);

therefore the linear momentum of a body B is the same as that of a particle of mass
M attached to the center of mass of B. Finally, by (19.11),

f(Bt ) = Mr̈c;

thus, consistent with the classical statement (19.1),

• the total force on a bounded body is equal to its mass times the acceleration of its
center of mass.
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19.4 Balance of Forces and Moments Based on the Generalized
Body Force

The task of finding consequences of the momentum balance laws is simplified some-
what by the introduction of the generalized body force b defined by

b = b0 + ı, ı = −ρv̇, (19.15)

in which ı may be referred to as the inertial body force.103 Like b0, the body forces
b and ı are measured per unit volume in the deformed body. Using (19.15), the
momentum balance laws reduce to balance laws for forces and moments∫

∂P

t(n) da +
∫

P

b dv = 0,

∫

∂P

r × t(n) da +
∫

P

r × b dv = 0.

(19.16)

These balances are to hold for every spatial region P and all time.104

For convenience, we let

f(P) =
∫

∂P

t(n) da +
∫

P

b dv,

m(P) =
∫

∂P

r × t(n) da +
∫

P

r × b dv;

(19.17)

then, trivially, the force and moment balances take the simple forms

f(P) = 0 and m(P) = 0. (19.18)

Given any rigid velocity field105

w(x, t) = α(t) + λ(t) × r (19.19)

and any spatial region P ,

Wrig(P, w) def=
∫

∂P

t(n) · w da +
∫

P

b · w dv (19.20)

represents power expended on P over the rigid velocity field w.106 This notion has an
interesting and important consequence that we now deduce. By (19.19),

b · w = b · (α + λ × r)

= α · b + λ · (r × b),

and a similar identity applies to t(n) · w; hence, (19.17) and (19.20) imply that

Wrig(P, w) = α · f(P) + λ · m(P). (19.21)

A direct consequence of this identity is the equivalency of the following three asser-
tions:

(i) Wrig(P, w) = 0 for all rigid velocity fields w;
(ii) Wrig(P, w) = 0 for all vectors α and λ;

(iii) f(P) = m(P) = 0.

103 Generally called the d’Alembert body force.
104 Cf. Footnote 101.
105 Cf. (10.5).
106 The general notion of expended power is discussed in detail in §19.7.
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e3

e2

e1

an

δ

Figure 19.4. The tetrahedron Tδ used in the proof of Cauchy’s theorem.

Thus,

(‡) the power expended over every rigid velocity field w vanishes if and only if the
force and moment balances are satisfied.

19.5 Cauchy’s Theorem for the Existence of Stress

A deep result central to all of continuum mechanics is

Cauchy’s theorem107 A consequence of balance of forces (19.16)1 is that there exists
a spatial tensor field T, called the Cauchy stress, such that

t(n) = Tn. (19.22)

PROOF. 108 The proof proceeds in a series of steps.
Assertion 1. Given any x in Bt , any orthonormal basis {ei}, and any unit vector a
with

a · ei > 0, i = 1, 2, 3, (19.23)

it follows, on suppressing the argument t , that

t(a, x) = −
3∑

i=1

(a · ei ) t(−ei , x). (19.24)

PROOF. Let x belong to the interior of Bt . Choose δ > 0 and consider the (spatial)
tetrahedron Tδ with the following properties: The faces of Tδ are Sδ , S1δ , S2δ, and S3δ ,
where a and −ei are the outward unit normals on Sδ and Siδ , respectively; the vertex
opposite to Sδ is x; the distance from x to Sδ is δ (Figure 19.4). Then, Tδ is contained
in the interior of Bt for all sufficiently small δ, say δ ≤ δ0.

107 Cf., e.g., Gurtin (1981, §14).
108 For completeness, we present a detailed proof; we suggest that readers more interested in applica-

tions bypass the proof, which, unfortunately, is technical.



138 Forces and Moments. Balance Laws for Linear and Angular Momentum

Next, if we assume that b is continuous, then b is bounded on Tδ . If we apply
the force balance (19.16)1 to the material region P occupying the region Tδ in the
deformed region at time t , we are then led to the estimate

∣∣∣∣∣

∫

∂Tδ

t(n) da

∣∣∣∣∣ =
∣∣∣∣∣

∫

Tδ

b dv

∣∣∣∣∣ ≤ κ vol(Tδ) (19.25)

for all δ ≤ δ0, where κ is independent of δ.
Let A(δ) denote the area of Sδ . Since A(δ) is proportional to δ2, while vol(Tδ) is

proportional to δ3, we may conclude from (19.25) that

1
A(δ)

∫

∂Tδ

t(n) da → 0

as δ → 0. But
∫

∂Tδ

t(n) da =
∫

Sδ

t(a) da +
3∑

i=1

∫

Siδ

t(−e) da

and, assuming that t(n, x) is continuous in x for each n, since the area of Siδ is
A(δ)(a · ei ),

1
A(δ)

∫

∂Sδ

t(a) da → t(a, x)

and

1
A(δ)

∫

∂Siδ

t(−ei ) da → (a · ei )t(−ei, x).

Combining the relations above we conclude that (19.24) is satisfied.

Assertion 2. (Newton’s law of action and reaction).

t(n) = −t(−n). (19.26)

PROOF. In (19.24), let a → ei ; then, t(ei , x) = −t(−ei, x) and, since the basis {ei} is
arbitrary, (19.26) must hold.

Assertion 3. Given any x in Bt and any orthonormal basis {ei},

t(a, x) =
3∑

i=1

(a · ei ) t(ei , x) (19.27)

for all unit vectors a.

PROOF. Choose an orthonormal basis {ei} and a unit vector a that does not lie in a
coordinate plane (that is, in a plane spanned by two elements ei of the basis). Then,
there is no i such that a · ei = 0 and we can define a new orthonormal basis {e=i } such
that109

e=i = [sgn(a · ei )]ei .

109 For any scalar β, sgnβ denotes the sign of β.
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It follows that a · e=i > 0 for all i and Assertion 1, together with (19.26) applied to
the basis {e=i }, yields

t(a, x) = −
3∑

i=1

(a · e=i )t(−e=i , x)

=
3∑

i=1

(a · e=i )t(e=i , x)

=
3∑

i=1

(a · ei )t(ei , x).

Thus, (19.27) holds as long as a does not lie in a coordinate plane and, assuming
continuity of t(n, x) in n, (19.27) must hold for all unit vectors a, and Assertion 3 is
proved.

Next, define the Cauchy stress T by

T(x, t) =
3∑

i=1

t(ei , x, t) ⊗ ei .

Given any unit vector n, we may then use (19.27) to conclude that

Tn =
3∑

i=1

t(ei )(n · ei )

= t(n),

which completes the proof of Cauchy’s Theorem.
It is important to note that, since n(x, t) is a spatial vector, as is the traction

T(x, t)n(x, t),

T maps spatial vectors to spatial vectors. (19.28)

19.6 Local Forms of the Force and Moment Balances

In view of Cauchy’s theorem (19.22), the force and moment balances (19.16) — for
P an arbitrary spatial region — become

∫

∂P

Tn da +
∫

P

b dv = 0,

∫

∂P

r ×Tn da +
∫

P

r × b dv = 0.

(19.29)

Assume that the force and moment balances are satisfied. We can then use the
divergence theorem to rewrite balance of forces as

∫

P

(divT + b) dv = 0

and, since this must hold for all spatial regions P , we are led to the local force bal-
ance

divT + b = 0,
∂Ti j

∂xj
+ bi = 0. (19.30)
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Next, we may use (19.15) to rewrite (19.30) as a local balance of linear momen-
tum:

ρv̇ = divT + b0, ρv̇i = ∂Ti j

∂xj
+ b0i . (19.31)

In view of (18.13),

ρv̇ = (ρv)′ + div(ρv ⊗ v),

and it follows that balance of linear momentum may be written equivalently as

(ρv)′ = div(T − ρv ⊗ v) + b0. (19.32)

To derive the local moment balance, let , denote an arbitrary (constant) skew
tensor and let λ denote its axial vector, so that , = λ× (i.e., 3i j = εipjλp) and con-
sider the (arbitrary) rigid velocity field defined by110

w(x) = λ × r

= ,r,

so that

grad(,r) = , (19.33)

for all rigid velocity fields w and, hence, we may conclude from (‡) on page 137 and
Cauchy’s theorem (19.22) that, for any spatial region P ,111

∫

∂P

Tn · w da +
∫

P

b · w dv = 0.

Since w is rigid, by (19.33) and the divergence theorem in the form (4.11)5,
∫

∂P

Tn · w da =
∫

P

(divT · w + T : ,) dv.

The last two equations and the local balance divT + b = 0 imply that
∫

P

T : , dv = 0;

thus, since P is arbitrary,

T : , = 0.

But since , is an arbitrarily chosen skew tensor, the Cauchy stress T must therefore
be symmetric,

T = T), Ti j = Tji , (19.34)

which is the local moment balance.

EXERCISES

1. Show that the local balances (19.30) and (19.34) imply the global balances
(19.29).

110 Cf. (10.5).
111 Cf. (19.20).
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Figure 19.5. A region P with boundary ∂P consisting of two closed surfaces S0 and S1.

2. Define the mean stress T̄ via

vol(P)T̄ =
∫

P

T dv.

(a) (Signorini’s theorem) Show that T̄ is determined by the traction Tn on ∂P
and the generalized body force b via

vol(P)T̄ =
∫

∂P

Tn ⊗ r da +
∫

P

b ⊗ r dv.

(b) Assume that b = 0 and that ∂P consists of two closed surfaces S0 and S1
with S1 enclosing S0 (Figure 19.5). Assume further that S0 and S1 are acted
on by uniform pressures π0 and π1, so that

Tn =
{

−π0n on S0,

−π1n on S1.

Show that T̄ is spherical with pressure

p̄ = −π1V1 − π0V0

V1 − V0
,

where V0 and V1 are the volumes enclosed by S0 and S1.
3. Provide a physical interpretation of the tensor T − ρv ⊗ v entering (19.32).
4. Show that (19.34) can be derived alternatively by taking the inner product of

(19.29)2 with an arbitrary constant vector c '= 0.

19.7 Kinetic Energy. Conventional and Generalized External
Power Expenditures

In classical mechanics, the power expended by a force f acting on a particle in mo-
tion with velocity v has the form f · v , in which case we say that f is power con-
jugate to v . As we now show, this classical notion has an immediate counterpart in
continuum mechanics.

Throughout this subsection Pt denotes a spatial region convecting with the
body.
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19.7.1 Conventional Form of the External Power

The surface traction t(n) = Tn and the conventional body force b0 are power con-
jugate to the velocity v, so that

∫

∂Pt

Tn · v da

represents power expended on Pt by surface tractions acting over ∂Pt , while
∫

Pt

b0 · v dv

represents power expended on points interior to Pt by the environment. We refer
to

W0(Pt )
def=
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv (19.35)

as the conventional external power112 because it represents the net power expended
on Pt by “agencies” external to Pt .

19.7.2 Kinetic Energy and Inertial Power

The spatial field

1
2ρ|v|2

is the kinetic energy measured per unit volume in the deformed body; hence,

K(Pt )
def=
∫

Pt

1
2ρ|v|2 dv (19.36)

represents the kinetic energy of Pt . The following calculation establishes a basic
relation between the kinetic-energy rate and the power expended by the inertial
body force ı. Since, by (‡) on page 130 and (19.15)2,

˙∫

Pt

1
2ρ|v|2 dv =

∫

Pt

1
2ρ

˙|v|2 dv

=
∫

Pt

ρv̇︸︷︷︸
−ı

·v dv,

it follows that
∫

Pt

ı · v dv = − ˙K(Pt ). (19.37)

The term
∫
Pt

ı · v dv represents the inertial power expended on Pt and (19.37) asserts
that this inertial power expenditure is balanced by the negative kinetic-energy rate of
Pt .113

112 Cf. Footnote 102.
113 Cf. Podio-Guidugli (1997).
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Next, we give a series of useful identities: by (19.15)1 and (19.37),
∫

Pt

b · v dv =
∫

Pt

b0 · v dv − ˙K(Pt ); (19.38)

also, by (4.11)5 and (19.30),
∫

∂Pt

Tn · v da =
∫

Pt

(v · divT + T : gradv) dv

=
∫

Pt

(T : gradv − b · v) dv; (19.39)

by (9.12), (11.2)2, and the symmetry of T,

T : gradv = T : L

= T : D. (19.40)

The far right side of (19.40) establishes the stretching D as the appropriate power-
conjugate variable for the Cauchy stress T, and we say that T is power conjugate to
D.114 The field

T : D (19.41)

represents the power expended within Pt , measured per unit volume, and is referred
to as the stress power; the integral

∫

Pt

T : D dv (19.42)

represents the net power expended within Pt and is referred to as the internal power.
Combining (19.38)–(19.40), we arrive at the conventional power balance

∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv

︸ ︷︷ ︸
conventional external power

=
∫

Pt

T : D dv

︸ ︷︷ ︸
internal power

+
˙∫

Pt

1
2ρ|v|2 dv

︸ ︷︷ ︸
kinetic-energy rate

,
(19.43)

a relation which asserts that

• for a spatial region Pt convecting with the body, the conventional external power
expended on Pt is balanced by the sum of the internal power expended within Pt
and the temporal change in kinetic energy of Pt .

This balance therefore relates the conventional external power to temporal changes
in the kinetic energy.

19.7.3 Generalized Power Balance

If we replace the conventional body force b0 in (19.35) by the generalized body force
b, which is defined in (19.15) and which includes the inertial body force ı — a body

114 Power-conjugate pairings such as (19.41) are common in continuum mechanics. The notion of
power-conjugate fields is useful in discussing applications involving force systems other than the
classical Newtonian system associated with the motion of material points.
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force we view as external in nature — we arrive at a quantity,

W(Pt ) =
∫

∂Pt

Tn · v da +
∫

Pt

b · v dv, (19.44)

which we refer to as the generalized external power. In view of (19.39) and (19.40),
we have the generalized power balance

∫

∂Pt

Tn · v da +
∫

Pt

b · v dv

︸ ︷︷ ︸
W(Pt )

=
∫

Pt

T : D dv

︸ ︷︷ ︸
I(Pt )

, (19.45)

in which

I(Pt ) =
∫

Pt

T : D dv (19.46)

is the internal power. The generalized power balance asserts that

• the power expended on Pt by material and agencies external to Pt and by inertia
is balanced by the power expended within Pt .

Finally, we note for future use that (19.35), (19.38), and (19.45) yield the fol-
lowing relations between the conventional and generalized power expenditures, the
internal power, and the kinetic-energy rate:

W(Pt ) = W0(Pt ) − ˙K(Pt ),

W0(Pt ) = I(Pt ) + ˙K(Pt ).
(19.47)

19.7.4 The Assumption of Negligible Inertial Forces

Following Noll (1995) we view the relation

ı = −ρv̇ (19.48)

as a constitutive law for inertia. As such, we allow ourselves the luxury of considering,
as constitutive, the relation115

ı ≡ 0, (19.49)

introduced to account for — and to connote — situations in which inertial forces
are negligible.116 In view of (19.15), (19.37), and (19.47), consequences of (19.49)

115 (19.49) is meant to replace (19.48); as such it places no restrictions on ρ and v̇.
116 Noll (1995) writes: “When dealing with deformable bodies, inertia plays very often a secondary

role. In some situations it is even appropriate to neglect inertia altogether. For example, when ana-
lyzing the forces and deformations that occur when one squeezes toothpaste out of a tube, inertial
forces are generally negligible.” In practice the constitutive assumption (19.49) is often used, for
example, to characterize the slow flow of plastic and highly viscous materials.
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are that

b ≡ b0,

1
2ρ

˙|v|2 ≡ 0,

˙K(Pt ) ≡ 0,

W(Pt ) ≡ W0(Pt ),

W0(Pt ) ≡ I(Pt ),






(19.50)

where Pt is an arbitrary spatial region convecting with the body.

EXERCISE

1. Assuming that (19.49) holds, verify (19.50)2.



20 Frames of Reference

According to Truesdell & Noll (1965, §41): “The position of an event can be specified only if a frame of
reference, or observer, is given. Physically, a frame of reference is a set of objects whose mutual distances
change comparatively little in time, like the walls of a laboratory [or] the fixed stars. . . Only if such a frame
is given for all times does it make sense to compare the positions of a particle at different times, and only
then can we speak about velocities, accelerations, etc. of a particle. . . ”

20.1 Changes of Frame

As noted in section (5.2), Bt is the region actually observed during the motion: The
reference body B serves only to label material points. For that reason, to discuss
a notion of invariance under observer changes, it is useful to differentiate concep-
tually between the ambient space for B and the space through which Bt evolves
(Figure 20.1). In accord with this:

(i) the ambient space through which Bt evolves is termed the observed space;
(ii) the ambient space for the reference body B is termed the reference space.

Granted this dichotomy, spatial vectors belong to the observed space, while material
vectors belong to the reference space.

Suppose that a frame of reference F for the observed space is prescribed, an as-
sumption tacit in the discussion thus far. Then, roughly speaking, a change of frame
is, at each time, a rotation and translation of the observed space. Precisely, a change
of frame F → F ∗ is, at each fixed time t , defined by a rotation Q(t) and a spatial
point y(t) and transforms spatial points x to spatial points117

x∗ = y(t) + Q(t)(x − o). (20.1)

(No loss in generality is incurred by assuming that the spatial origin o is fixed.)
We refer to Q as the frame-rotation. A consequence of (3.5) is that the tensor

Q̇Q) is skew. We refer to the skew tensor

! = Q̇Q) (20.2)

as the frame-spin; ! represents the rate at which the new frame F ∗ is spinning.

117 Changes of frame are often referred to as changes of observer.

146
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Bt
B

χt

reference space observed space

Euclidean space

x = χ(X, t)
X

Figure 20.1. The reference body B and the deformed body Bt , with the ambient reference
and observed spaces and the underlying Euclidean space depicted.

It is important to emphasize that while a change of frame affects the observed
space through which the deformed body evolves, it does not affect the reference
space; thus

• material points and material vectors are invariant under changes in frame.

Given a field 0, we write 0∗ for 0 as measured in the new frame F ∗. In the
material description, the argument (X, t) of 0 is invariant, so that both 0(X, t) and
0∗(X, t) have (X, t) as their argument. On the other hand, in the spatial description,
0(x, t) transforms to 0∗(x∗, t).

Scalar fields such as the density ρ and, hence, the specific volume υ = 1/ρ are
invariant:

ρ∗ = ρ, υ∗ = υ.

20.2 Frame-Indifferent Fields

Assume that a change of frame is prescribed. We then say that a vector field g is
frame-indifferent if it simply rotates with the frame-rotation:

g∗ = Qg. (20.3)

On the other hand, we say that a tensor field G is frame-indifferent if, given frame-
indifferent vector fields g and h, with g arbitrary, and any change in frame,

h = Gg implies that h∗ = G∗g∗. (20.4)

To determine the transformation law implied by this definition, note that, if h = Gg,

h∗ = Qh

= QGg

= QGQ)g∗. (20.5)
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But h∗ = G∗g∗ must also be satisfied; thus,

G∗g∗ = QGQ)g∗

and, since g∗ may be arbitrarily chosen, because g is abitrary, we are led to the
transformation law for a frame-indifferent tensor field:118

G∗ = QGQ). (20.6)

Under a change of frame, a basis {ei} for the observed space transforms as fol-
lows:

{e∗
1, e∗

2, e∗
3} = {Qe1, Qe2, Qe3}. (20.7)

Let gi and Gi j denote the components of frame-indifferent fields g and G relative
to an orthonormal basis {ei} and let g∗

i and G∗
i j denote the components of g∗ and G∗

relative to the transformed basis {e∗
i } = {e∗

1, e∗
2, e∗

3}. Then,

g∗ = g∗
i e∗

i

= Qg

= Q(gi ei )

= gi Qei

= gi e∗
i , (20.8)

and equality of the underlined terms implies that

g∗
i = gi .

Similarly

G∗ = G∗
i j e

∗
i ⊗ e∗

j

= QGQ)

= Q(Gi j ei ⊗ e j )Q)

= Gi j Qei ⊗ Qe j

= Gi j e∗
i ⊗ e∗

j , (20.9)

so that

G∗
i j = Gi j .

The components of a frame-indifferent field relative to a basis that rotates with the
frame are therefore independent of the frame.

20.3 Transformation Rules for Kinematic Fields

Next, since x = χ(X, t) is a spatial point, but X is a material point (and hence invari-
ant), the motion χ transforms according to

χ∗(X, t) = y(t) + Q(t)(χ(X, t) − o). (20.10)

118 Frame-indifferent fields are also referred to as objective fields.
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Taking the gradient of this relation with respect to X yields a transformation law

F∗(X, t) = Q(t)F(X, t) (20.11)

for the deformation gradient. Further, by (20.10) and (20.11),

χ̇∗(X, t) = ẏ(t) + Q(t)χ̇(X, t) + Q̇(t)(χ(X, t) − o),

Ḟ∗(X, t) = Q(t)Ḟ(X, t) + Q̇(t)F(X, t).
(20.12)

Care must be taken when working with the spatial description ϕ(x, t) of a field,
since the argument x is no longer invariant. Consider the spatial description v(x, t)
of the velocity field. Then v(x, t) transforms to v∗(x∗, t) with x∗ = χ∗(X, t). Thus,
since x∗ and x correspond to the same material point X, and since v(x, t) = χ̇(X, t),
while v∗(x∗, t) = χ̇∗(X, t), (20.12)1 yields

v∗(x∗, t) = Q(t)v(x, t) + ẏ(t) + Q̇(t)(x − o). (20.13)

The velocity gradient L(x, t) = gradv(x, t) transforms to

L∗(x∗, t) = grad∗ v∗(x∗, t),

with grad∗ the gradient with respect to x∗. Using the chain-rule to differentiate
(20.13) with respect to x, while bearing in mind the relation (20.1) between x∗ and x
and the definition (20.2) of the frame spin !, yields

(grad∗ v∗)Q = Q(gradv) + Q̇

= (Q(gradv)Q) + !)Q;

the velocity gradient therefore transforms according to

L∗(x∗, t) = Q(t)L(x, t)Q)(t) + !(t). (20.14)

Since the frame-spin ! is skew, the transformed stretching and spin,

D∗ = sym L∗ and W∗ = skw L∗

are given by

D∗(x∗, t) = Q(t)D(x, t)Q)(t),

W∗(x∗, t) = Q(t)W(x, t)Q)(t) + !(t).
(20.15)

Of the three fields L, D, and W, it is therefore only the stretching D that is frame-
indifferent.

Consider, next, the stretch fields U and C and the strain field E. By (7.3) and
(7.6), E = 1

2 (C − 1) and C = U2 = F)F, and, by (20.11),

C∗ = (QF))QF

= F)F

= C.

The fields C, U, and E are thus invariant. These results are special cases of a more
general result. Let A be a tensor field that maps material vectors to material vectors.
Let a and b be material vector fields. Then, the scalar field a · Ab must be invariant
under a change of frame: a∗ · A∗b∗ = a · Ab. But, a and b must be invariant, as they
are material vector fields, so that a · A∗b = a · Ab for all (material) vector fields a
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and b. Thus, A∗ = A and we have the following result:

• Tensor fields that map material vectors to material vectors are invariant under
changes in frame.

Further, since

Ȧ(X, t) = lim
τ→0

A(X, t + τ ) − A(X, t)
τ

,

Ȧ must also be invariant.
Next, since U is invariant, F∗ = QF, and R = FU−1, it follows that R∗ = QR. In

summary, we have the following transformation laws:

F∗ = QF,

R∗ = QR,

U∗ = U,

C∗ = C,

E∗ = E,

V∗ = QVQ),

B∗ = QBQ),

L∗ = QLQ) + !,

D∗ = QDQ),

W∗ = QWQ) + !.

(20.16)

In (20.16) it is tacit that, when described spatially, the transformed fields should be
evaluated at (x∗, t), while the original fields should be evaluated at (x, t). Summa-
rizing,

• the tensors V, B, and D are frame-indifferent;
• the tensors U, C, and E are invariant;
• the tensors F, R, L, and W are neither frame-indifferent nor invariant.

Consider the relative deformation gradient F(t)(x, τ ) defined in §11.3. By (11.16), suppressing non-
temporal arguments,

F(t)(τ ) = F(τ )F−1(t), (20.17)

and one might be tempted to assume, as a consequence of (20.16)1, that F∗
(t)(τ ) = Q(τ )F(t)(τ )Q)(t).

But that assumption would be incorrect: Because (20.17) was derived using the configuration at time t
as reference, the transformation law for F(t)(τ ) should be the same as that for F(τ ), namely F∗

(t)(τ ) =
Q(τ )F(t)(τ ).

EXERCISES

1. Choose an arbitrary fixed nonzero vector e in the observed space. Under a
change of frame e transforms to a vector

e∗(t) = Q(t)e, (20.18)

which rotates. Show that

ė∗ = !e∗. (20.19)
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2. Show that, under a change of frame with frame rotation Q, the spatial gradient
g = gradϕ of a spatial scalar field ϕ is frame-indifferent:

g∗ = Qg. (20.20)

3. Show that the spatial gradient gradω of the vorticity ω = curl v is frame-
indifferent.

4. Show that the tensors L − !) and W − !) are frame-indifferent.
5. Use induction to show that each Rivlin–Ericksen tensor An, as defined via

(11.23), is frame-indifferent.

20.3.1 Material Time-Derivatives of Frame-Indifferent Tensor Fields are Not
Frame-Indifferent

Let G be a tensor field that — like the stretching D or the left Cauchy–Green tensor
B — is frame-indifferent. Then, in any change of frame,

G∗ = QGQ), (20.21)

so that, by (20.2),

Ġ∗ = QĠQ) + Q̇GQ) + QGQ̇)

= QĠQ) + !QGQ) − QGQ)!

= QĠQ) + !G∗ − G∗!. (20.22)

Thus, in general,

Ġ is not frame-indifferent.

20.3.2 The Corotational, Covariant, and Contravariant Rates of a
Tensor Field

We continue to assume that G is frame-indifferent. The failure of Ġ to be frame-
indifferent is due to the presence of the frame-spin ! in (20.22). Guided by this, we
note that, by (20.16)10,

! = W∗ − QWQ), (20.23)

and using this relation to eliminate ! from (20.22) yields

Ġ∗ − (W∗ − QWQ))G∗ + G∗(W∗ − QWQ)) = QĠQ).

Thus, by (20.21),

Ġ∗ + G∗W∗ − W∗G∗ = QĠQ) + (QGQ))(QWQ)) − (QWQ))(QGQ))

= Q(Ġ + GW − WG)Q),

showing that Ġ + GW − WG is frame-indifferent. We are therefore led to the
frame-indifferent rate

◦
G def= Ġ + GW − WG. (20.24)

Other frame-indifferent rates may be derived from (20.24): Since D and G are
frame-indifferent, so also are GD and DG; adding either

(a) GD + DG, or
(b) GD − DG
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to the right side of (20.24) therefore yields a new frame-indifferent rate. Since L =
D + W with D = D) and W = −W), adding GD + DG yields the rate

,

G def= Ġ + GL + L)G, (20.25)

while adding GD − DG yields the rate119

4
G def= Ġ − LG − GL). (20.26)

Next, the definitions of covariant and contravariant convection as expressed in
(13.25) and (13.31) and the definition of a corotational tensor field in (13.43) im-
ply that

◦
G = 0 if and only if G is corotational,

,

G = 0 if and only if G convects covariantly,

4
G = 0 if and only if G convects contravariantly;






(20.27)

guided by (20.27), we refer to120

◦
G as the corotational rate of G,

,

G as the covariant rate of G,

4
G as the contravariant rate of G.

The corotational, covariant, and contravariant tensorial rates were deduced as-
suming that G is frame-indifferent, but the rates themselves are well defined for any
tensor G (although for G not frame-indifferent the resulting rate is generally not
frame-indifferent).

20.3.3 Other Relations for the Corotational Rate

Let G be a (not necessarily frame-indifferent) spatial tensor field. Then, by (13.41)
and (13.42), for {ki} an orthonormal corotational basis,

Ġi j = ˙ki · Gk j

= ki ·
◦
Gk j ;

hence,

(
◦
G)i j = Ġi j . (20.28)

Relative to an orthonormal basis spinning with the deforming body, the components
of the corotational rate of G are therefore equal to the material time-derivatives of the
components of G. Hence, by (2.11),

◦
G = Ġi j ki ⊗ k j , (20.29)

119 There are two other simple possibilities: Adding GD − DG yields the rate Ġ + GL − LG; adding
DG − GD yields Ġ − GL) + L)G; neither of these rates appears in the literature. For the particular
choice G = D, these rates coincide and yield an expression identical to that determined by (20.24).

120 ◦
G is also referred to as the Jaumann–Zaremba rate;

,
G as the Cotter–Rivlin rate and the lower-

convected rate;
4
G as the Oldroyd rate and the upper-convected rate.
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an expression that with (20.28) lends further credence to our use of the term coro-
tational rate.

An alternative expression for the corotational rate of G may be derived using
notions and results of §11.3. We begin with the material description G(X, t) of G
and define

G(t)(x, τ ) = G(χ−1(x, t), τ ), X = χ−1(x, t), (20.30)

so that

G(t)(x, t) = G(X, t),

∂G(t)(x, τ )
∂τ

∣∣∣∣
τ=t

= Ġ(X, t).
(20.31)

Then, suppressing nontemporal arguments, (11.22)2 and (20.24) imply that

◦
G(t) = Ġ(t) + G(t)

∂R(t)(τ )
∂τ

∣∣∣∣
τ=t

−
∂R(t)(τ )
∂τ

∣∣∣∣
τ=t

G(t)

=
[
∂G(t)(τ )
∂τ

+ G(t)(τ )
∂R(t)(τ )
∂τ

−
∂R(t)(τ )
∂τ

G(t)(τ )
]

τ=t

and, by (11.19)1, we have an alternative relation for
◦
G:

◦
G(t) =

[
∂

∂τ

(
R)

(t)(τ )G(t)(τ )R(t)(τ )
)]

τ=t
. (20.32)

20.3.4 Other Relations for the Covariant Rate

Let G be a (not necessarily frame-indifferent) spatial tensor field and let {fi} be a
tangentially convecting basis with corresponding dual basis {f i}.121 Then, by (13.8)
and the identities (13.22)–(13.24),

Ġi j = ˙fi · Gf j (20.33)

= mi · ˙F)GFm j

= (F−1fi ) · ˙F)GF (F−1f j )

= fi ·
[
F−) ˙F)GFF−1]f j (20.34)

= fi · (Ġ + GL + L)G)f j (20.35)

= fi ·
,

Gf j . (20.36)

The relations (20.33) and (20.36) imply that

fi ·
,

Gf j︸ ︷︷ ︸
(

,
G)i j

= ˙fi · Gf j︸ ︷︷ ︸
Ġi j

(20.37)

and, hence, that, relative to a basis embedded in and deforming with the body, the
components of the covariant rate of G are equal to the material time-derivatives of the

121 Cf. the material following (13.8).
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components of G.122 A consequence of (13.17)4 and (20.37) is the expansion
,

G = Ġi j f i ⊗ f j . (20.38)

Next, (20.34) and (20.35) yield an alternative expression for
,

G:
,

G = F−) ˙F)GFF−1. (20.39)

This result — expressed in terms of the covariant pullback and pushforward opera-
tions P and P−1 introduced in (12.1) and (12.5) — has the form

,

G = P−1[ ˙P[G]]. (20.40)

Thus, to compute the covariant rate of G, one pulls G back from the observed space
to the reference space, takes the material time-derivative, and then pushes the dif-
ferentiated term forward to the observed space.

The result (20.39), applied using the configuration at a fixed time t as reference,
as was done in the derivation of (20.32), yields yet another relation for the covariant
rate. Indeed, by (11.14), (20.31)1, and (20.39),

F−)
(t) (τ )

∂

∂τ

(
F)

(t)(τ )G(t)(τ )F(t)(τ )
)

F−1
(t) (τ )

represents the covariant rate of G(t)(τ ) with respect to τ (holding t fixed), so that

,

G(t) =
[

F−)
(t) (τ )

∂

∂τ

(
F)

(t)(τ )G(t)(τ )F(t)(τ )
)

F−1
(t) (τ )

]

τ=t
(20.41)

and, by (11.17),

,

G(t) =
[
∂

∂τ

(
F)

(t)(τ )G(t)(τ )F(t)(τ )
)]

τ=t
. (20.42)

Summarizing, the covariant rate of a spatial tensor field G may be expressed in
the following forms:

,

G = Ġi j f i ⊗ f j ,

,

G = F−) ˙F)GFF−1,

,

G(t) =
[
∂

∂τ

(
F)

(t)(τ )G(t)(τ )F(t)(τ )
)]

τ=t
.






(20.43)

20.3.5 Other Relations for the Contravariant Rate

The following counterparts of (20.43) hold for the contravariant rate of G:

4
G = Ġi j fi ⊗ f j ,

4
G = F ˙F−1GF−) F),

4
G =

[
∂

∂τ

(
F−1

(t) (τ )G(t)(τ )F−)
(t) (τ )

)]

τ=t
;






(20.44)

the verification of these relations is left as an exercise.

122 Cf. Footnote 77.
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20.3.6 General Tensorial Rate

The results (20.24), (20.25), and (20.26) are of the general form

G* = Ġ + #(G, L) (20.45)

and, granted that G is frame-indifferent, it seems reasonable to ask: What is the most
general frame-indifferent field of this form? If we take an arbitrary change of frame
such that, at some time Q = 1 and Q̇ = ! = −!), then, for G* frame-indifferent, we
may use (20.16)6 to conclude that, at that time,

G* = (G*)∗

= Ġ + !G − G! + #(G, L + !).

Since the skew tensor ! is arbitrary, we may therefore take ! = −W to obtain

G* = Ġ + GW − WG + #(G, D),

or equivalently, by (20.24),

G* =
◦
G + #(G, D). (20.46)

Further, since
◦
G is frame-indifferent, if we choose an arbitrary change of frame with

rotation Q, we find that, in the new frame,

QG*Q) − Q
◦
GQ) = #(QGQ), QDQ)),

so that, by (20.46),

Q#(G, D)Q = #(QDQ), QDQ))

and # must be an isotropic function.123 Conversely, if # is isotropic, and if G is
frame-indifferent, then G* is frame-indifferent, an assertion whose proof we leave
as an exercise. Thus, for G frame-indifferent, the rate (20.45) is frame-indifferent if
and only if it has the specific form (20.46) with # an isotropic function.124 Therefore,

• the corotational rate is generic up to an arbitrary isotropic tensor function of G
and D.

EXERCISES

1. Show that
◦
1 = 0 and

,

1 = −
4
1 = 2D.

2. Show that
,

D =
◦
D + 2D2 and

4
D =

◦
D − 2D2.

3. Show that
◦
G = 1

2 (
,

G +
4
G).

4. Establish (20.44).
5. Give an alternative derivation of (20.43) via a direct computation of the term

F−) ˙F)GFF−1.

123 Cf. §113.2.
124 Cf. Noll (1955, §7).



156 Frames of Reference

6. Express (20.44)2 in terms of the contravariant pullback (12.2) and its inverse
(12.5)2.

7. Verify that (20.46), with # isotropic, is frame-indifferent.
8. Bearing in mind (17.14) and (20.25), show that

,

W = J.

9. Let g be a frame-indifferent spatial vector field. Show that ġ is not frame-
indifferent. Deduce the following frame-indifferent rates:

◦g = ġ − Wg,

,
g = ġ + L)g,

4
g = ġ − Lg.






(20.47)

Further, give an argument in support of referring to
◦g as the corotational rate of g,

,
g as the covariant rate of g,

4
g as the contravariant rate of g.






(20.48)

10. Show that
◦g = 1

2 (
,
g + 4

g).

11. Use the definitions (20.24)–(20.26) and (20.47) of the corotational, covariant,
and contravariant rates of tensor and vector fields to show that

◦
g ⊗ h = ◦g ⊗ h + g ⊗

◦
h,

,

g ⊗ h = ,
g ⊗ h + g ⊗

,

h,

4
g ⊗ h = 4

g ⊗ h + g ⊗
4
h.

12. Assuming that g is a frame-indifferent spatial vector field, show that any frame-
indifferent rate

g* = ġ + ϕ(g, L) (20.49)

necessarily has the specific form

g* = ◦g + ϕ(g, D), (20.50)

with ϕ isotropic.



21 Frame-Indifference Principle

A basic principle underlying most of physics is that

• physical laws be independent of the frame of reference.

We refer to this principle as frame-indifference. Within the rubric of continuum
mechanics this principle is based on the notion of a change in frame — introduced
in §20.1 — as a mapping of spatial points x to spatial points

x∗ = y(t) + Q(t)(x − o), (21.1)

in which Q(t) is a rotation and y(t) a spatial point at each fixed time t .125

There is some disagreement as to whether only rotations or all orthogonal tensors should be em-
ployed in the statement of the frame-indifference principle. For example, Truesdell & Noll (1965,
§19) state the principle with Q(t) an orthogonal tensor, while Chadwick (1976, p.130) and Gurtin (1981,
pp. 139–145) require only that Q(t) be a rotation. This issue has been settled by Murdoch (2003): Us-
ing a rigorous argument, Murdoch concludes that the statement of the principle should involve only
rotations. In addition, Murdoch notes that inclusion of the orthogonal tensor Q = −1 in the frame-
indifference principle would preclude one from characterizing optically-active sugar solutions that ro-
tate plane-polarized light in opposing senses. Further, Murdoch (private communication (2007)) credits
Rivlin with visualizing a material made of identical parallel helical molecules that have a substructure
which makes the ends different; if these all “point” locally in the same direction then inversion would
yield a material with different structure and hence, presumably, different response.

21.1 Transformation Rules for Stress and Body Force

We find it most convenient to work with balance of forces using the generalized
body force b = b0 − ρv̇.126

Consistent with this principle, we assume that balance of forces is frame-
indifferent: Given any change of frame and any spatial region Pt convecting with
the body,

∫

∂P∗
t

T∗n∗ da +
∫

P∗
t

b∗ dv = 0, (21.2)

where P∗
t = χ∗(P, t) is the deformed material region Pt as viewed with respect to

the new frame.

125 Cf. Truesdell & Noll (1965, §19a) for an interesting and illuminating history of the frame-
indifference principle.

126 Cf. (19.15).
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Figure 21.1. Transformations of a material region Pt along with the traction t(n, x, t) and the
outward unit normal n(x, t) at a point x on ∂Pt under a change of frame with rotation Q.

Consider the Cauchy stress T at a particular point and time. As noted in (19.28),
the mapping

t = Tn (21.3)

carries spatial vectors n (unit normals) to spatial vectors t (tractions). Consistent
with Figure 21.1, we assume that t and n transform according to

t∗ = Qt and n∗ = Qn (21.4)

and are, therefore, frame-indifferent. If T∗ denotes the Cauchy stress in the new
frame, then t∗ = T∗n∗; thus, Qt = T∗Qn and, hence,

t = (Q)T∗Q)n. (21.5)

Combining (21.3) and (21.5), we obtain

(T − Q)T∗Q)n = 0,

and, since n is an arbitrary unit vector, we find that

T∗ = QTQ); (21.6)

the Cauchy stress T is therefore frame-indifferent.
Next, bearing in mind that a change of frame is a rigid mapping and that Q

depends only on t , a consequence of (21.4) and (21.6) is that
∫

∂P∗
t

T∗n∗ da =
∫

∂Pt

(QTQ))Qn da

= Q
∫

∂Pt

Tn da.

Thus, appealing to the balances (19.29) and (21.2), we find that
∫

P∗
t

b∗ dv = Q
∫

Pt

b dv,

and changing the variable of integration on the left side from x∗ to x, so that the
region of integration P∗

t changes to Pt , we obtain
∫

Pt

(b∗ − Qb) dv = 0.
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Since the convecting spatial region Pt is arbitrary,

b∗ = Qb (21.7)

and we conclude that the generalized body force b is frame-indifferent.

EXERCISE

1. Assume that T and b are frame-indifferent, so that (21.6) and (21.7) are satisfied.
(a) Show that (21.2) is satisfied, so that balance of forces is frame-indifferent.
(b) Show that balance of moments is frame-indifferent in the sense that

∫

∂P∗
t

r∗× T∗n∗ da +
∫

P∗
t

r∗× b∗ dv = 0, (21.8)

with r∗ = x∗ − o.

21.2 Inertial Body Force in a Frame That Is Not Inertial
One often sees the assertion that “inertial forces are not frame-indifferent,” when, in fact, what is meant
is that inertial forces do not have the form (mass)(acceleration) in all frames. Were inertial forces not
frame-indifferent, then one would not be able to determine the form taken by an inertial force relative to
a particular frame that is not inertial. Indeed, according to Truesdell (1991, p. 70), “When for purposes
of interpretation in a particular application we need to employ some frame that is not inertial, as for
example in problems referred to a rotating earth, we formulate the laws of mechanics first in an inertial
frame and then transform them to the other frame of interest. Such is the traditional approach, which
derives from Clairaut and Euler.”

Consistent with (21.7), we assume that the conventional body force b0 is frame-
indifferent and this, in turn, implies that the inertial force ı is frame-indifferent:

ı∗ = Qı. (21.9)

We now use the transformation law (21.9) to compute the inertial body force in
a noninertial frame F ∗. By (20.13),

Qv = v∗ − ẏ − Q̇(x − o). (21.10)

On the other hand, by (21.1), x − o = Q)(x∗ − y), and, since Q̇Q) is the frame-spin
!,127

Qv = v∗ − ẏ − !(x∗ − y). (21.11)

Thus,

v = Q)v∗ − Q)ẏ − Q)!(x∗ − y). (21.12)

Next, since x∗ = χ∗(X, t), the material time-derivative of x∗ − y is v∗ − ẏ; taking the
material time-derivative of (21.12) and then premultiplying by Q therefore gives

Qv̇ = v̇∗ + QQ̇)(v∗ − ẏ) − ÿ − QQ̇)!(x∗ − y) − !̇(x∗ − y) − !(v∗ − ẏ), (21.13)

and, since ! = −!) = −QQ̇),

Qv̇ = v̇∗ − ÿ + !2(x∗ − y) − !̇(x∗ − y) − 2!(v∗ − ẏ). (21.14)

Finally, by (19.15) and (21.9), ı∗ = −ρQv̇; therefore,

ı∗ = −ρ[v̇∗− ÿ + (!2 − !̇)(x∗ − y) − 2!(v∗ − ẏ)].

127 Cf. (20.2).
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Equivalently, writing ! = ζ×, with ζ the angular velocity of the frame,

ı∗ = −ρ[v̇∗ − ÿ + ζ × [ζ × (x∗ − y)] − ζ̇ × (x∗ − y) − 2ζ × (v∗ − ẏ)], (21.15)

with ÿ the relative translational acceleration, ζ × [ζ × (x∗ − y)] the centripetal ac-
celeration, −ζ̇ × (x∗ − y) the Euler acceleration, and −2ζ × (v∗ − ẏ) the Coriolis
acceleration.128

EXERCISES

1. Show that a frame F ∗ in which the inertial body force ı∗ has the form given in
(21.15) is inertial if and only if the relative translational acceleration ÿ and the
angular velocity ζ vanish and determine the restricted form of the transforma-
tion law (21.9) arising from these restrictions.

2. Given ϕ defined by

ϕ(x∗) = 1
2 (|ζ |2|x∗ − y|2 − (ζ · (x∗ − y))2),

show that

grad∗ϕ(x∗) = ζ × [ζ × (x∗ − y)]

and, thus, that the centripetal acceleration can be expressed as the gradient of a
potential.

128 Truesdell & Toupin (1960, §143); bear in mind that ! = ζ× is the frame-spin.



22 Alternative Formulations of the Force and
Moment Balances

In this section — working with the generalized body force b — we revisit the deriva-
tion of the force and moment balances. Specifically,

• we do not assume a priori that the force and moment balance laws are satisfied,
but instead show that they are derivable starting from other hypotheses.

Consistent with this, we do not assume that Cauchy’s relation t(n) = Tn is satisfied.

22.1 Force and Moment Balances as a Consequence of
Frame-Indifference of the Expended Power

In this section we show that frame-indifference of the expended power has, as inter-
esting and unexpected consequences, the balance laws for forces and moments.129

Throughout the time t is fixed and P is an arbitrary spatial region.130

Consider a force system defined by a surface traction t(n) and a generalized
body force b that enter the theory through the generalized external power131

W(P, v) =
∫

∂P

t(n) · v da +
∫

P

b · v dv, (22.1)

written to make explicit its dependence on the velocity field v. Consider a frame-
change F → F ∗ and assume that both the traction t(n) and the body force b are
frame-indifferent,

t∗(n∗) = Qt(n), b∗ = Qb, (22.2)

and that the expended power in the new frame has the form

W∗(P∗, v∗) =
∫

∂P∗

t∗(n∗)· v∗ da +
∫

P∗

b∗ · v∗ dv. (22.3)

129 In §26 we show that frame-indifference of the expended power is a simple consequence of frame-
indifference of the first law of thermodynamics.

130 Cf. Footnote 101.
131 Cf. (19.44), which account for inertia.
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Suppressing arguments, we may use (20.13), (21.1), and (21.4)2 to conclude
that132

t∗(n∗) · v∗ = [Qt(n)] · [Qv + ẏ + Q̇(x − o)] (22.4)

= t(n) · Q)(Qv + ẏ + Q̇r) (22.5)

= t(n) · (v + Q)ẏ + Q)Q̇r), (22.6)

with r(x) = x − o. Let

w(x, t) = Q)ẏ(t) + Q)(t)Q̇(t)r,

let α = Q)ẏ, and let λ denote the axial vector corresponding to the skew tensor
Q)Q̇;133 then, since

w(x, t) = α(t) + λ(t) × r, (22.7)

w is a rigid velocity field;134 (22.6) therefore takes the form

t∗(n∗) · v∗ = t(n) · (v + w).

Similarly,

b∗ · v∗ = Qb · (Qv + ẏ + Q̇r)

= b · (v + w).

Thus, changing the variable of integration in (22.3) from x∗ to x, we obtain

W∗(P∗, v∗) =
∫

∂P

t(n)· (v + w) da +
∫

P

b· (v + w) dv;

hence, by (22.1),

W∗(P∗, v∗) = W(P, v) + W(P, w), (22.8)

where

W(P, w) =
∫

∂P

t(n) · w da +
∫

P

b · w dv

= Wrig(P, w), (22.9)

with Wrig(P, w) given by (19.20). By (22.8) and (22.9), Wrig(P, w) = 0 if and only if

W∗(P∗, v∗) = W(P, v) for every change of frame; (22.10)

that is, if and only if the expended power is frame-indifferent. A consequence of this
observation and (‡) on page 137 is the following result due to Noll (1963):

• The generalized external power is frame-indifferent if and only if the force and
moment balances (19.16) are satisfied.

132 Note that Q)Q̇ = Q)!Q, where ! as defined in (20.2) is the frame-spin.
133 Cf. (3.5).
134 Cf. (10.5).
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22.2 Principle of Virtual Power

Our starting point is the generalized power balance (19.45) in a more general form
that makes no use of Cauchy’s relation (19.22):

∫

∂P

t(n) · v da +
∫

P

b · v dv

︸ ︷︷ ︸
W(P)

=
∫

P

T : gradv dv

︸ ︷︷ ︸
I(P)

. (22.11)

As before, W(P) and I(P) represent the external and internal power expenditures.
The essential feature of (22.11) is that the Cauchy stress, here neither necessarily
symmetric nor frame-indifferent, enters the theory through its internal expenditure
of power.

Consider the power balance (22.11), but with the velocity considered as virtual
and not related to the actual velocity field v. We make this explicit by replacing v in
(22.11) by its virtual counterpart ṽ. Further, we assume that the time t is fixed and,
hence, treat the virtual fields as arbitrary functions ṽ(x) and the spatial region P as
an arbitrary subregion of the deformed body B = Bt . Using

W(P, ṽ) =
∫

∂P

t(n) · ṽ da +
∫

P

b · ṽ dv,

I(P, ṽ) =
∫

P

T : grad ṽ dv,

(22.12)

to denote the virtual expenditures of external and internal power, we therefore
rewrite (22.11) in the form of a virtual power balance:

∫

∂P

t(n) · ṽ da +
∫

P

b · ṽ dv

︸ ︷︷ ︸
W(P,ṽ)

=
∫

P

T : grad ṽ dv

︸ ︷︷ ︸
I(P,ṽ)

.
(22.13)

The virtual power balance (22.13) and, hence, the principle of virtual power always
uses the generalized external power (22.1).

We now show that the virtual power balance (22.13) encapsulates the local force
balance divT + b = 0 as well as Cauchy’s relation t(n) = Tn. Assume that (22.13) is
satisfied for all choices of P and ṽ. Then, using the divergence theorem in the form
(4.11)4,

∫

P

T : grad ṽ dv =
∫

∂P

Tn · ṽ da −
∫

P

divT · ṽ dv; (22.14)

thus, by (22.13),
∫

P

(divT + b) · ṽ dv +
∫

∂P

(t(n) − Tn) · ṽ da = 0 (22.15)

for every choice of the field ṽ. At this point we appeal to the fundamental lemma of
the calculus of variations.135 This lemma with S = ∂P and φ = ṽ applied to (22.15)
yields the conclusion that t(n) = Tn on ∂P and divT + b = 0 within P . Further, since
the choice of subregion P is arbitrary, these relations must hold throughout the
deformed body.

135 Cf. page 167.
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We next show that the requirement that the virtual internal power I(P, ṽ)
be invariant under changes of frame implies that T is both symmetric and frame-
indifferent. Bearing in mind that the time is fixed and suppressed, we consider an
arbitrary change in frame and write φ for the corresponding function (21.1) mapping
spatial points x to spatial points x∗; viz.

x∗ = φ(x)

def= y + Q(x − o), (22.16)

with Q the frame rotation. In discussing the manner in which the internal power
transforms it is most convenient to not suppress spatial arguments; for that reason,
we rewrite the internal power as follows:

I(P, ṽ) =
∫

P

T(x) : grad ṽ(x) dv(x).

By (20.14), the virtual velocity gradient

L̃(x) = grad ṽ(x)

transforms as follows under the change of frame:

L̃∗(x∗) = QL̃(x)Q) + !, (22.17)

with ! the frame-spin. Thus, for P∗ and I∗(P∗, ṽ∗) the region and internal power in
the new frame, frame-indifference requires that

∫

P

T(x) : L̃(x) dv(x)

︸ ︷︷ ︸
I(P,ṽ)

=
∫

P∗

T∗(x∗) : L̃∗(x∗) dv(x∗)

︸ ︷︷ ︸
I∗(P∗,ṽ∗)

(22.18)

with T∗ the stress T in the new frame. Using (22.16) and (22.17) we can express the
right side of (22.18) in the form

I∗(P∗, ṽ∗) =
∫

P∗

T∗(x∗) : [QL̃(φ−1(x∗))Q) + !] dv(x∗). (22.19)

By (22.16), since the Jacobian of the transformation φ satisfies det(gradφ) =
detQ = 1, if we change the variable of integration in (22.19) from x∗ to x, we find
that

I∗(P∗, ṽ∗) =
∫

P

T∗(φ(x)) : (QL̃(x)Q) + !) dv(x);

hence, (22.18) implies that
∫

P

T(x) : L̃(x) dv(x) =
∫

P

T∗(φ(x)) : (QL̃(x)Q) + !) dv(x)

or, equivalently, since the spatial region P is arbitrary, that

T : L̃ = T∗ : (QL̃Q) + !)

= (Q)T∗Q) : L̃ + T∗ : !, (22.20)

where we have once again suppressed arguments. Without loss of generality, we
may consider a change of frame in which the frame rotation Q is constant. The
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frame-spin ! then vanishes and (22.20) implies that

(T − Q)T∗Q) : L̃ = 0

for all choices of L̃; hence,

T∗ = QTQ) (22.21)

for all rotations Q; the Cauchy stress T is therefore frame-indifferent. Although we
previously reached this conclusion in §21.1, doing so rested on a somewhat stronger
hypothesis — namely that the traction t be frame-indifferent.

Next, making use of (22.21) in (22.20), we find that

T∗ : ! = 0;

on the other hand, by (20.2) we may assume that ! is an arbitrary skew tensor; thus,
T∗ = T∗), so that, by (22.21),

T = T); (22.22)

the Cauchy stress T is therefore symmetric. Previously, we reached this conclusion
on the basis of balance of moments. Requiring the internal power to be frame-
indifferent therefore obviates the need to impose moment balance. As a direct con-
sequence of (22.22), the internal power must furthermore have the form

I(P) =
∫

P

T : D dv. (22.23)

Consequences of the Principle of Virtual Power Assume that for any subregion
P of the deformed body and any choice of the virtual velocity ṽ the virtual power
balance (22.13) is satisfied. Then, at all points of the deformed body:

(i) The traction t(n) and the stress T are related through Cauchy’s relation

t(n) = Tn (22.24)

for every unit vector n.
(ii) T and b satisfy the local force and moment balances

divT + b = 0 and T = T). (22.25)

(iii) T is frame-indifferent, viz.

T∗ = QTQ) (22.26)

under any change of frame with frame rotation Q.

The foregoing results demonstrate the all-encompassing nature of the principle of
virtual power. The value of this principle becomes particularly clear in nonclassical
settings involving additional kinematical degrees of freedom. In particular, we use
the principle of virtual power repeatedly in our treatment of plasticity.

EXERCISE

1. Show that if (i) and (ii) are satisfied, then the virtual power balance (22.13) holds
for all choices of P and ṽ.

22.2.1 Application to Boundary-Value Problems

A minor modification of the virtual-power principle is of great importance in the so-
lution of boundary-value problems as it encapsulates both the balance of forces and
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the standard boundary condition for tractions. We therefore consider the deformed
body B = Bt (at some fixed time t) augmented by the traction condition

Tn = tS on S, (22.27)

in which tS is a prescribed function on a subsurface S of ∂B.136 In this application we
restrict attention to virtual fields, termed admissible, that satisfy

ṽ = 0 on ∂B \ S. (22.28)

Granted (22.27) and (22.28), the virtual power balance (22.13) has the form
∫

S

tS · ṽ da +
∫

B

b · ṽ dv =
∫

B

T : grad ṽ dv. (22.29)

Assume that the virtual power balance (22.29) holds for all admissible ṽ. Then,
by (22.28),

∫

B

T : grad ṽ dv =
∫

∂B

Tn · ṽ da −
∫

B

divT · ṽ dv

=
∫

S

Tn · ṽ da −
∫

B

divT · ṽ dv,

and from (22.29) we obtain
∫

B

(divT + b) · ṽ dv +
∫

S

(tS − Tn) · ṽ da = 0. (22.30)

Since (22.30) must hold for all admissible ṽ, we may conclude from the fundamen-
tal lemma of the calculus of variations (page 167) that the balance divT + b = 0 is
satisfied in B and the traction condition Tn = tS holds on S.

Conversely, if this balance and traction condition are satisfied, then, again ap-
plying the divergence theorem, we obtain

∫

B

T : grad ṽ dv =
∫

∂B

Tn · ṽ da −
∫

B

divT · ṽ dv

=
∫

S

tS · ṽ da +
∫

B

b · ṽ dv,

which is the virtual power balance in the form (22.29). We have therefore estab-
lished the following result:

Weak Form of the Force Balance and Traction Condition The virtual-power
balance

∫

S

tS · ṽ da +
∫

B

b · ṽ dv =
∫

B

T : grad ṽ dv (22.31)

is satisfied for all virtual fields ṽ on B that vanish on ∂B \ S if and only if

divT + b = 0

136 The traction tS represents the contact force, per unit area of S, exerted on the body by its environ-
ment.
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in B and

Tn = tS

on S.

REMARKS

(i) To apply (22.31) one need not assume that T is differentiable.
(ii) The virtual power balance (22.31), being global rather than local, is directly

amenable to numerical schemes such as the finite-element method.
(iii) Extensions of this principle are useful in more general situations in which the

form of the underlying balance(s) is not known.

22.2.2 Fundamental Lemma of the Calculus of Variations

This lemma may be stated as follows: Let f be a continuous vector field on P , let h be
a continuous vector field on a smooth subsurface S of ∂P , and assume that

∫

P

f · φ dv +
∫

S

h · φ da = 0 (22.32)

for all continuous vector fields φ on P that vanish on ∂B \ S. Then,

f ≡ 0 in P, h ≡ 0 on S. (22.33)

To verify this lemma, consider first the special case in which φ vanishes also on S, so that
∫
P f ·

φ dv = 0. Assume that f does not vanish identically. Then, granted continuity, there is an open ball N ⊂ P
such that f never vanishes on N . Choose φ in the form

φ(x) = g(x)f(x),

where g is strictly positive inside of N and vanishes outside of N .137 For this choice of φ,
∫
P f · φ dv =∫

N |f|2g(x) dv > 0, which is a contradiction; hence, f ≡ 0. We are therefore left with showing that if
∫
S h ·

φ da = 0 for all φ that vanish on ∂B \ S, then h ≡ 0; the proof follows as above: We simply work on the
subsurface S rather than in the region P.

137 E.g., in terms of spherical coordinates with r = 0 at the center of N and r = r0 the radius of N , take
g(r) = (r0 − r)2 for r ≤ r0 and g(r) = 0 otherwise.



23 Mechanical Laws for a Spatial Control
Volume

Recall that a control volume is a fixed region R that lies in the deformed body Bt for
all t in some time interval.138 Because our notation (17.45) for the time derivative of
an integral over a control volume is nonstandard, we repeat it here:

˙∫

R

ϕ (x, t) dv(x) = d
dt

∫

R

ϕ (x, t) dv(x). (23.1)

Since R is independent of time,

˙∫

R

ϕ dv =
∫

R

ϕ′ dv, (23.2)

which is an identity basic to the ensuing analysis.
The following identities are used repeatedly here and in subsequent sections:

For ϕ a spatial scalar field and g a spatial vector field,

∫

R

ρϕ̇ dv =
˙∫

R

ρϕ dv +
∫

∂R

ρϕv · n dv,

∫

R

ρġ dv =
˙∫

R

ρg dv +
∫

∂R

ρgv · n dv,

(23.3)

where n is the outward unit normal to the boundary ∂R of R. These identities are
direct consequences of (18.12), (18.13), and (23.2).

138 Cf. (iii) on page 125.
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23.1 Mass Balance for a Control Volume

In view of the local mass balance (18.6), the transport identity (23.2), and the diver-
gence theorem,

˙∫

R

ρ dv =
∫

R

ρ ′ dv

= −
∫

R

div(ρv) dv

= −
∫

∂R

ρv · n da;

we, thus, have balance of mass for a control volume R:

˙∫

R

ρ dv = −
∫

∂R

ρv · n da. (23.4)

The term

−
∫

∂R

ρv · n da

(and others like it) has an important physical interpretation. Since −n is the inward
unit normal to ∂R, −v · n represents the rate at which material is entering R across
∂R; hence, −ρ v · n represents the inflow-rate of mass across ∂R. The balance (23.4)
therefore asserts that the mass of R increases at a rate equal to the inflow-rate of
mass across ∂R.

23.2 Momentum Balances for a Control Volume

Consider the force and moment balances (19.29) for P a spatial region. Since a spa-
tial control volume R is trivially a spatial region, we may rewrite (19.29) as follows:

∫

∂R

Tn da +
∫

R

b dv = 0,

∫

∂R

r ×Tn da +
∫

R

r × b dv = 0.

(23.5)

By (19.15), the generalized body force is related to the inertial force and the con-
ventional body force b0 via the expression

b = b0 − ρv̇. (23.6)

Thus, using (23.3)2 with g = v, we can convert the force balance (23.5)1 to a momen-
tum balance

∫

∂R

Tn da +
∫

R

b0 dv =
˙∫

R

ρv dv +
∫

∂R

(ρv)v · n da. (23.7)
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To establish the corresponding balance for angular momentum we apply (23.3)2
with g = r × v̇ in the last step of the following calculation: Since ṙ = v,

∫

R

r × ρv̇ dv =
∫

R

ρ ˙r × v dv

=
˙∫

R

r × ρv +
∫

∂R

(r × ρv)v · n da.

Therefore, using (23.6), we can convert (23.5)2 to an angular momentum balance
∫

∂R

r × Tn da +
∫

R

r × b0 dv =
˙∫

R

r × ρv dv +
∫

∂R

(r × ρv)v · n da. (23.8)

Rearranging terms in (23.7) and (23.8), we have the linear and angular momentum
balances for a control volume R:

˙∫

R

ρv dv = −
∫

∂R

(ρv)v · n da +
∫

∂R

Tn da +
∫

R

b0 dv,

˙∫

R

r × ρv dv = −
∫

∂R

(r × ρv)v · n da +
∫

∂R

r × Tn da +
∫

R

r × b0 dv.

(23.9)

In (23.9), the terms

−
∫

∂R

(ρv)v · n da and −
∫

∂R

(r × ρv)v · n da

represent respective inflow-rates of linear and angular momentum into R across
∂R; (23.9)1 therefore asserts that the rate at which the linear momentum of R is in-
creasing is equal to the inflow-rate of linear momentum across ∂R plus the net force
exerted on R; analogously, (23.9)2 asserts that the rate at which the angular momen-
tum of R is increasing is equal to the inflow-rate of angular momentum across ∂R
plus the net moment exerted on R.

Sample problem for a control volume Consider the flow of a fluid through a curved pipe (Figure 23.1).
Suppose that the flow is steady in the sense that

ρ′ = 0 and v′ = 0,

and let R be the control volume bounded by the pipe walls and the cross-sections marking the ends of
the pipe. Assume that the stress is a pressure (T = −p1), that the conventional body force vanishes, and
that the density, velocity, and pressure at the entrance and exit have constant values

ρ1, v1e1, p1 and ρ2, v2e2, p2,

v1e1

v2e2

R

Figure 23.1. Fluid flow through a curved pipe R.
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respectively, with e1 a unit vector perpendicular to the entrance cross-section and e2 a unit vector per-
pendicular to the exit cross-section. Using the statements of mass and linear momentum balance for R,
determine the mass flow M through R and the net force f exerted by the fluid on the pipe walls.

Solution Since the flow is steady,
˙∫

R

ρv dv = 0,

and, since v · n must vanish at the pipe walls,
∫

∂R

(ρv)v · e da = (ρ2v
2
2 A2)e2 − (ρ1v

2
1 A1)e1,

where A1 and A2 denote the respective areas of the entrance and exit cross-sections. Next, since f is the
net force exerted by the fluid on the pipe walls, the total force on the control volume R is

−f + p1 A1e1 − p2 A2e2;

hence, the linear momentum balance (23.7) yields

f = (p1 + ρ1v
2
1)A1e1 − (p2 + ρ2v

2
2)A2e2.

A similar analysis based on balance of mass (23.4) yields an expression

ρ1v1 A1 = ρ2v2 A2 = M (23.10)

for the mass flow M through the pipe. Thus,

f = (p1 A1 + Mv1)e1 − (p2 A2 + Mv2)e2,

giving an expression for the force on the pipe walls in terms of conditions at the entrance and exit.
Although the assumptions underlying this example are restrictive, they are, in fact, a good approximation
for a large class of applications.

Consider the generalized power balance (19.45) written in its equivalent form
for an arbitrary control volume R:

∫

∂R

Tn · v da +
∫

R

b · v dv =
∫

R

T : D dv. (23.11)

Since

ρv · v̇ = 1
2ρ

˙|v2|,

(23.3)1 with ϕ = 1
2

˙|v2| and (23.6) may be used to convert (23.11) to a conventional
power balance for a spatial control volume:139

∫

∂R

Tn · v da +
∫

R

b0 · v dv

︸ ︷︷ ︸
conventional external power

=
∫

R

T : D dv

︸ ︷︷ ︸
internal power

+
˙∫

R

1
2ρ|v|2 dv

︸ ︷︷ ︸
kinetic-energy rate

+
∫

∂R

1
2ρ|v|2v · n da.

︸ ︷︷ ︸
kinetic-energy outflow-rate

(23.12)

This power balance therefore asserts that

(‡) the conventional external power expended on R is balanced by the sum of three
terms: the internal power expended within R, the rate at which the kinetic energy
of R is increasing, and the outflow-rate of kinetic energy across ∂R.

EXERCISES

1. Establish the mass flow relation (23.10).
2. Establish the power balance (23.12) for a control volume.

139 Cf. 19.43.
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3. Show that the linear and angular momentum balances for a control volume R
can be expressed as140

˙∫

R

ρv dv =
∫

∂R

(T − ρv ⊗ v)n da +
∫

R

b0 dv,

˙∫

R

r × ρv dv =
∫

∂R

r × (T − ρv ⊗ v)n da +
∫

R

r × b0 dv.

140 Cf. (19.32).



24 Referential Forms for the Mechanical Laws

When working with solids, the use of a purely spatial description can be problematic.
On the other hand, solids typically possess stress-free reference configurations with
respect to which one may measure strain and develop constitutive equations. For
that reason, we now reformulate the basic laws in a referential setting.

24.1 Piola Stress. Force and Moment Balances

If we define

TR = J TF−), (24.1)

then, by (15.8)2, for P a subregion of the reference body B and Pt = χ t (P) the cor-
responding convecting spatial region,

∫

∂Pt

Tn da =
∫

∂P

TRnR daR. (24.2)

Thus, TR represents the stress measured per unit area in the reference body; TR is
referred to as the Piola stress. The tensor TR carries the material vector nR to the
traction TRnR, which is a spatial vector;141 thus, like the deformation gradient F,

TR maps material vectors to spatial vectors. (24.3)

Next, we define

b0R = J b0, (24.4)

so that, by (15.7),
∫

Pt

b0 dv =
∫

P

b0R dvR; (24.5)

b0R represents the conventional body force measured per unit volume in the refer-
ence body.

Since χ̈ represents the referential description of v̇, we conclude using (18.10)
that

˙∫

Pt

ρv dv =
∫

Pt

ρv̇ dv =
∫

P

ρRχ̈ dvR =
˙∫

P

ρR χ̇ dvR. (24.6)

141 By (24.1)1 the “output” of TR, like that of T, consists of spatial vectors.
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Bearing in mind that b = b0 − ρv̇, we define the referential counterpart of the gen-
eralized body force by

bR = b0R − ρRχ̈ , (24.7)

in which case (24.5) and the central equation in (24.6) yield
∫

Pt

b dv =
∫

P

bR dvR (24.8)

(and b = J bR). Using (24.2), (24.5), and (24.6), the spatial linear momentum balance
(19.12) yields balance of linear momentum, expressed referentially:

∫

∂P

TRnR daR +
∫

P

b0R dvR =
˙∫

P

ρR χ̇ dvR. (24.9)

Next, since P is a subregion of the reference body B and Div represents the
referential divergence operator, the divergence theorem yields that

∫

∂P

TRnR daR =
∫

P

DivTR dvR

and (24.9) implies that
∫

P

(DivTR + b0R − ρRχ̈) dvR = 0.

Thus, since the material region P is arbitrary, we arrive at the referential relation
expressing the local form of balance of linear momentum:

ρRχ̈ = Div TR + b0R, ρRχ̈ i = ∂TRi j

∂Xj
+ b0Ri . (24.10)

Further, since the Cauchy stress T is symmetric, the Piola stress TR as defined in
(24.1) must satisfy

TRF) = FT)
R, TRikF jk = FikTRkj ; (24.11)

(24.11) represents the local angular moment balance, expressed referentially.

EXERCISES

1. Show that
∫

∂P

r × TRnR daR +
∫

P

r × b0R dv =
˙∫

P

r × (ρR χ̇) dvR (24.12)

with142

r(X, t) = χ(X, t) − o;

(24.12) represents the referential counterpart of the angular momentum balance
(19.13).

142 Cf. (19.2).
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2. Show that the Piola stress TR and the associated body force bR transform ac-
cording to

T∗
R = QTR and b∗

R = QbR. (24.13)

3. Show, as a consequence of (24.1)1 and (24.11), that the Cauchy stress T is
symmetric.

24.2 Expended Power

Using (15.7) and (15.8)3 we are led to the following identity, which transforms the
spatial relation (19.35) to one that is referential:143

W0(Pt ) =
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv

=
∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR (24.14)

= W0(P). (24.15)

Similarly, we use (18.10) to transform the kinetic energy:

K(Pt ) =
∫

Pt

1
2ρ|v|2 dv

=
∫

P

1
2ρR|χ̇ |2 dvR

= K(P). (24.16)

Transformations of the form (24.15) and (24.16) of set functions like W0 and K are
called spatial to referential transformations; such transformations play a basic role
in converting fundamental laws expressed spatially to equivalent laws expressed ref-
erentially.

Next, since T is symmetric and by (9.12) and (24.1),

T : D = T : L

= T : (ḞF−1)

= (TF−)) : Ḟ

= J −1TR : Ḟ;

hence,

T : D = J −1TR : Ḟ. (24.17)

143 Here, with a minor abuse of notation, we use the same symbol W0 for W0(Pt ), which is a function
of subregions of Bt , and for W0(P), which is a function of subregions of B. Since we always include
the argument there should be no danger of confusion.
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Thus, (15.7) yields
∫

Pt

T : D dv =
∫

P

TR : Ḟ dvR

and the conventional power balance (19.43), when expressed referentially, has the
form

∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR

︸ ︷︷ ︸
W0(P)

=
∫

P

TR : Ḟ dvR +
˙∫

P

1
2ρR |χ̇ |2 dvR

︸ ︷︷ ︸
˙K(P)

.
(24.18)

The field TR : Ḟ represents the stress power measured per unit volume in the refer-
ence body.

EXERCISE

1. Establish the following referential form of the generalized power balance
(19.45):

∫

∂P

TRnR · χ̇ daR +
∫

P

bR · χ̇ dvR

︸ ︷︷ ︸
W(P)

=
∫

P

TR : Ḟ dvR

︸ ︷︷ ︸
I(P)

. (24.19)



25 Further Discussion of Stress

25.1 Power-Conjugate Pairings. Second Piola Stress

As noted in the paragraph containing (19.41), the stress power T : D is an example
of a power-conjugate pairing. The relation (24.17) exhibits the correspondence be-
tween this pairing and another pairing TR : Ḟ, which measures the stress power per
unit volume in the reference configuration.

Whereas D is purely a measure of the rate at which material elements stretch,
Ḟ carries information concerning the rates at which material elements stretch and
rotate. One might therefore ask whether there are alternative referential measures
of stress power in which a measure of stress is paired with a pure strain-rate. A mul-
titude of such pairings exist,144 but for our purposes only one of these is important.
Specifically, we seek a pairing involving a measure TRR of stress that is conjugate to
the time-rate Ċ of the right Cauchy–Green tensor C = F)F. To determine the form
of TRR, note that, by (2.52), (2.53), (9.12), and (24.1),

T : D = 1
2 T : (L + L))

= 1
2 T : (ḞF−1 + F−)Ḟ))

= 1
2 T : F−)(F)Ḟ + Ḟ)F)F−1

= 1
2 (F−1TF−)) : (F)Ḟ + Ḟ)F)

= 1
2 (F−1TF−)) : Ċ

= 1
2 J −1(F−1TR) : Ċ. (25.1)

Thus, since we seek a measure of stress power per unit reference volume, we define

TRR = F−1TR (25.2)

and note that, by (25.1),

T : D = 1
2 J −1TRR : Ċ. (25.3)

144 Cf. Hill (1968).
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As an important consequence of (25.2) we see that

T)
RR = (J F−1TF−)))

= J F−1T)F−)

= J F−1TF−)

= TRR. (25.4)

Consistent with its pairing with Ċ, the stress TRR is thus symmetric.
By (24.3) and (19.28), the Cauchy stress T maps spatial vectors to spatial vectors,

while the Piola stress TR maps material vectors to spatial vectors. On the other hand,
the symmetric tensor TRR maps material vectors to material vectors.145 The tensor
field TRR is usually referred to as the second Piola stress.

Finally, we note that, by (24.17) and (25.3),

TR : Ḟ = 1
2 TRR : Ċ. (25.5)

The pairings established above and in (24.17) are summarized as follows:

Power-conjugate Pairings The power expenditures of the Cauchy stress, the Piola
stress, and the second Piola stress are related as follows:

T : D = J −1TR : Ḟ,

T : D = 1
2 J −1TRR : Ċ,

TR : Ḟ = 1
2 TRR : Ċ.






(25.6)

Finally, using (25.6)3, we can write the conventional power balance (24.18) in
the alternative, and often useful, form:

∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR

︸ ︷︷ ︸
W0(P)

=
∫

P

1
2 TRR : Ċ dvR +

˙∫

P

1
2ρR |χ̇ |2 dvR

︸ ︷︷ ︸
˙K(P)

. (25.7)

25.2 Transformation Laws for the Piola Stresses

From (21.6), we recall that the Cauchy stress T is frame-indifferent. Thus, by (20.16)
and (24.1)

T∗
R = (J TF−))∗

= J ∗T∗(F∗)−)

= J QTQ)(QF)−)

= J QTQ)QF−)

= Q(J TF−))

= QTR, (25.8)

145 The double subscript in TRR is meant to underline this mapping property. Cf. (M1) and (M2) on
page 65; recall, from (12.2), that the term F−1TR = F−1TF−) = P[T] represents the contravariant
pullback of T from the deformed body to the reference body.
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from which we conclude that, like its power-conjugate Ḟ, the Piola stress TR is nei-
ther frame-indifferent nor invariant. Similarly, by (25.2),

T∗
RR = (F−1TR)∗

= (F∗)−1T∗
R

= (QF)−1QTR

= F−1Q)QTR

= TRR, (25.9)

from which we conclude that, like its power-conjugate Ċ, the second Piola stress TRR

is invariant. Summarizing:

• the Cauchy stress tensor T is frame-indifferent;
• the second Piola stress tensors TRR is invariant;
• the Piola stress tensor TR is neither frame-indifferent nor invariant.

We emphasize that each of the three expressions T : D, TR : Ḟ, and 1
2 TRR : ∂Pt C for

the stress power involves a pairing of quantities with shared transformation proper-
ties. Furthermore, as a scalar, each of the resulting pairings is invariant.

EXERCISES

1. Use (24.1) and (25.2) to show that

T = J −1FTRRF). (25.10)

2. Show that

T : D = J −1TRR : Ė,

and, thus, that the second Piola stress can also be viewed as conjugate to the
time-rate Ė of the Green–St. Venant strain tensor.

3. Show that the Biot stress defined via
1
2 (R)TR + T)

RR)

is symmetric. Show also that the Biot stress and the rate U̇ of the right stretch
tensor provide a power-conjugate pairing:

1
2 J −1(R)TR + T)

RR) : U̇ = T : D.

4. Take the material time-derivative of the relation (25.10) and use (20.44)2 to
show that

J
4
T + J̇T = FṪRRF). (25.11)





PART V

BASIC THERMODYNAMICAL PRINCIPLES

In introducing basic versions of the first two laws of thermodynamics appropriate to
continua, we emphasize that

• like force, we view energy, entropy, heat flow, and entropy flow as primitive
objects;146

• a priori notions of “equilibrium” and “state” are not employed.

We find it most convenient to use a spatial formulation — that is, a formulation
in terms of quantities measured per unit volume and area in the observed space.

146 Cf. the discussion of Truesdell (1966, pp. 99–100).
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26 The First Law: Balance of Energy

We assume throughout this section that the motion is smooth. Balance of energy in
the presence of a shock wave is discussed in §33.2.

As before, Pt represents a spatial region convecting with the body, so that Pt =
χ(P, t) for some material region P.

The first law of thermodynamics represents a detailed balance describing the in-
terplay between the internal energy of Pt , the kinetic energy of Pt , the rate at which
power is expended on Pt , and the heat transferred to Pt . Specifically, introducing:

(i) the net internal energy E(Pt ) of Pt ,147 and
(ii) the heat flow Q(Pt ), which is the rate at which energy — in the form of heat —

is transferred to Pt ,

the energy balance has the form

˙E(Pt ) + K(Pt ) = W0(Pt ) + Q(Pt ), (26.1)

where

(iii) K(Pt ), the kinetic energy, is given by148

K(Pt )
def=
∫

Pt

1
2ρ|v|2 dv; (26.2)

(iv) W0(Pt ), the conventional external power, is given by149

W0(Pt ) =
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv

=
∫

Pt

T : D dv + ˙K(Pt ). (26.3)

147 We use the same letter, E , to denote the net internal energy as that used to denote three-dimensional
Euclidean point space. However, because we always explicitly indicate the material region over
which the net internal energy is evaluated there should be no reason for confusion.

148 Cf. (19.36).
149 Cf. (19.35) and (19.43).
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26.1 Global and Local Forms of Energy Balance

We assume there is a scalar field ε, the specific internal-energy, such that

E(Pt ) =
∫

Pt

ρε dv. (26.4)

The term “specific” indicates that ε is measured per unit mass. The hypothesis (26.4) renders the set
function E(P) additive (over the collection of spatial regions) in the sense that, given any pair of disjoint
spatial regions P1 and P2, the net internal-energy of the region P1 ∪ P2 is the net internal energy of P1
plus that of P2:

E(P1 ∪ P2) = E(P1) + E(P2).

The net internal-energy is therefore an “extensive parameter” in the sense used by thermodynamicists.150

Additivity, by itself, does not imply that E(P) has the form (26.4); an additional assumption, such as
E(P) → 0 as vol(P) → 0, asserting that the internal energy be distributed continuously over the volume
of the body, is needed. Questions of this form lie in the realm of measure theory.151

We presume that heat flow is described by a vector heat flux q and a scalar heat
supply q; these fields determine Q(Pt ) as follows:

Q(Pt ) = −
∫

∂Pt

q · n da +
∫

Pt

q dv. (26.5)

The term

−
∫

∂Pt

q · n da

gives the rate at which heat is transferred to Pt across ∂Pt ; because n is the outward
unit normal to ∂Pt , the minus sign renders this term nonnegative when the flux q
points into Pt . Since n is spatial, q is a spatial vector field. The term

∫

Pt

q dv

represents the rate at which heat is transferred to Pt by agencies external to the
deforming body Bt , for example by radiation.

Substituting the explicit forms for E(Pt ), K(Pt ), Q(Pt ), and W0(Pt ) into (26.1)
yields the basic expression for balance of energy:

˙∫

Pt

ρ(ε + 1
2 |v|2) dv = −

∫

∂Pt

q · n da +
∫

Pt

q dv +
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv.

(26.6)

To localize this balance we note first that, in view of the identity (18.14),

˙∫

Pt

ρε dv =
∫

Pt

ρε̇ dv.

150 Cf., e.g., Callen (1960, p. 9).
151 Cf., e.g., Halmos (1950).
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Thus, if we appeal to the power balance in (26.3) and apply the divergence theorem
to the term involving the heat flux, we find that

∫

Pt

(ρε̇ − T : D + divq − q) dv = 0; (26.7)

since (26.7) must hold for all convecting regions Pt , we have the local energy balance

ρε̇ = T : D − divq + q, ρε̇ = Ti j Di j − ∂qi

∂xi
+ q. (26.8)

In view of (18.12),

ρε̇ = (ρε)′ + div(ρεv)

and balance of energy may be written equivalently as

(ρε)′ = T : D − div(q + ρεv) + q. (26.9)

Finally, we may combine (19.38) and (26.6) to obtain the form the energy bal-
ance takes when the conventional body force is replaced by the generalized body
force b:

˙∫

Pt

ρε dv = −
∫

∂Pt

q · n da +
∫

Pt

q dv +
∫

∂Pt

Tn · v da +
∫

Pt

b · v dv. (26.10)

EXERCISE

1. Provide a physical interpretation for the quantity q + ρεv appearing in the en-
ergy balance (26.9).

26.2 Terminology for “Extensive” Quantities

When discussing “thermodynamic” set functions of the form (26.4) describing a
physical quantity (for example, internal energy), we consistently use the adjective
net to denote the set function (for example, E), no adjective to denote the density
per unit volume in the reference body, and the adjective specific to denote the den-
sity per unit mass (e.g., ε).



27 The Second Law: Nonnegative Production
of Entropy

Power expenditures represent a macroscopic transfer of energy as they are reckoned
using the velocity of material points. We view heat as representing an additional
transfer of energy due to the fluctuations of atoms and/or molecules, and entropy as
a measure of the disorder in the system induced by these fluctuations: the higher the
degree of disorder, the higher the entropy.152 As with energy, regions that convect
with the body are allowed to possess entropy, and entropy is allowed to flow from re-
gion to region and into a region from the external world. But unlike energy, regions
convecting with the body are allowed to produce entropy. Specifically, introducing

(i) the net internal-entropy S(Pt ) of Pt , and
(ii) the entropy flow J (Pt ), which is the rate at which entropy is transferred to Pt ,

we let H(Pt ) denote the net entropy production in Pt ; that is, H(Pt ) is the rate at
which the net entropy of Pt is increasing minus the rate at which entropy is trans-
ferred to Pt :

H(Pt )
def= ˙S(Pt ) − J (Pt ). (27.1)

The basic premise that systems tend to increase their degree of disorder manifests
itself in the requirement that

(‡) the net entropy production in each convecting spatial region Pt be nonnegative:

H(Pt ) ≥ 0. (27.2)

A simple rearrangement of terms in (27.1) yields the entropy balance

˙S(Pt ) = J (Pt ) + H(Pt ) (27.3)

asserting that the rate at which the net entropy of Pt is changing is balanced by the
entropy flow into Pt plus the rate at which entropy is produced in Pt .

Next, on combining (27.2) and (27.3), we are led to the entropy imbalance153

H(Pt ) = ˙S(Pt ) − J (Pt )

≥ 0, (27.4)

asserting that the rate of increase of the internal entropy of a convecting region Pt
be at least as great as the rate at which entropy flows into Pt .

152 Cf. Penrose (1989, pp. 304–322) for a penetrating discussion of entropy.
153 Although (27.4) can be viewed as a balance determining H(Pt ), the inequality ˙S(Pt ) − J (Pt ) ≥ 0

is of far greater importance to the theory.
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27.1 Global Form of the Entropy Imbalance

As with energy, we assume there is a scalar field η, the specific entropy, such that

S(Pt ) =
∫

Pt

ρη dv. (27.5)

Further, we suppose that, like the heat flow, the entropy flow is characterized by an
entropy flux  and an entropy supply  as follows

J (Pt ) = −
∫

∂Pt

 · n da +
∫

Pt

 dv. (27.6)

Trivially, using (27.5) and (27.6) in the entropy imbalance (27.4) we obtain

˙∫

Pt

ρη dv ≥ −
∫

∂Pt

 · n da +
∫

Pt

 dv. (27.7)

27.2 Temperature and the Entropy Imbalance

A fundamental hypothesis of the theory relates entropy flow to heat flow and asserts
that there is a scalar field

ϑ > 0,

the (absolute) temperature, such that

 = q
ϑ

and  = q
ϑ

. (27.8)

Thus,

• entropy and heat flow in the same direction, and neither can vanish without the
other.

We can use (27.8) to write the entropy imbalance (27.7) in a form

˙∫

Pt

ρη dv ≥ −
∫

∂Pt

q
ϑ

· n da +
∫

Pt

q
ϑ

dv (27.9)

often referred to as the Clausius–Duhem inequality.154

Next, arguing as we did in the steps leading to (26.7), we find, as a consequence
of (27.4), (27.5), (27.6), and (27.8), that

H(Pt ) =
∫

Pt

(
ρη̇ + div

(
q
ϑ

)
− q
ϑ

)
dv. (27.10)

Tacit in the derivation of (27.10) is

(‡) the assumption that the underlying fields be smooth;

154 Cf. Truesdell & Toupin (1960, p. 644). More general forms of the entropy imbalance were pro-
posed by Müller (1967), who drops (27.8), and Gurtin & Williams (1966, 1967), who allow for
two temperatures in (27.8).
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granted this, the net entropy production H has a density @, measured per unit vol-
ume in the deformed body, such that

H(Pt ) =
∫

Pt

@ dv, @ = ρη̇ + div
(

q
ϑ

)
− q
ϑ

. (27.11)

Further, since (27.11) must hold for all convecting regions Pt , we may conclude from
(27.2) that

@ ≥ 0. (27.12)

Rearranging terms in (27.11)2 and bearing in mind (27.12), we arrive at the local
entropy imbalance in either of two forms:

ρη̇ ≥ −div
(

q
ϑ

)
+

q
ϑ

(27.13)

and

@ = ρη̇ + div
(

q
ϑ

)
− q
ϑ

≥ 0. (27.14)

In view of (18.12),

ρη̇ = (ρη)′ + div(ρηv),

and the entropy imbalance may be written equivalently as

(ρη)′ ≥ −div
(

q + ρηϑv
ϑ

)
+ q. (27.15)

Remark. The entropy production @ is a derived quantity whose derivation is based
on the tacit assumption that the underlying fields be smooth. But, for a shock wave,
the velocity, entropy, and heat flux suffer jump discontinuities and the localization
process that led to (27.10) is invalid. In fact, when a shock wave S(t) is present, the
net entropy production H(Pt ) generally includes an explicit contribution from the
portion of S(t) in Pt .155

27.3 Free-Energy Imbalance. Dissipation

In view of the local energy balance (26.8),

−div
(

q
ϑ

)
+ q
ϑ

= 1
ϑ

(
− divq + q

)
+ 1
ϑ2 q · gradϑ

= 1
ϑ

(
ρε̇ − T : D + 1

ϑ
q · gradϑ

)

and this with (27.14) implies that

ρ(ε̇ − ϑη̇) − T : D + 1
ϑ

q · gradϑ = −ϑ@ ≤ 0. (27.16)

Thus, on defining the specific free-energy through

ψ = ε − ϑη, (27.17)

155 Cf. The remark containing (33.25).
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(27.16) yields the local free-energy imbalance

ρ(ψ̇ + ηϑ̇) − T : D + 1
ϑ

q · gradϑ = −ϑ@ ≤ 0, (27.18)

a result basic to much of what follows. The terms of (27.18) have the dimensions of
(energy)/time and for that reason we view ϑ@ as representing dissipation per unit
volume, a view strengthened by the remark below.

Next, by (18.14),

˙∫

Pt

ρψ dv =
∫

Pt

ρψ̇ dv. (27.19)

Thus, if we integrate (27.18) over Pt , we conclude, with the aid of (26.3), that

∫

Pt

ϑ@ dv

︸ ︷︷ ︸
dissipation

≥0

=
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv

︸ ︷︷ ︸
conventional external

power expenditure

−
˙∫

Pt

ρ(ψ + 1
2 |v|2) dv

︸ ︷︷ ︸
rate of free and
kinetic energies

−
∫

Pt

(
ρηϑ̇ + 1

ϑ
q · gradϑ

)
dv

︸ ︷︷ ︸
thermal production

of energy

. (27.20)

Remark. For situations in which thermal influences are negligible the last integral
vanishes and (27.20) formally reduces to a free-energy imbalance requiring that the
rate of change of the net free- and kinetic-energy be balanced by the conventional
expended power plus the dissipation. As we show in §29, the resulting free-energy
imbalance plays a major role in our discussion of mechanical theories.

EXERCISES

1. Localize (27.7) to obtain

ρη̇ ≥ −div + j

and show that

(ρη)′ ≥ −div( + ρηv) + j.

2. Provide a physical interpretation for the quantity (q + ρϑηv)/ϑ appearing in
the entropy imbalance (27.15).



28 General Results

28.1 Invariant Nature of the First Two Laws

As the next result shows, the laws of thermodynamics afford a degree of flexibility
in the specification of the fields ε, η, and q.

Invariance Properties The energy balance (26.6) and the entropy imbalance (27.9)
are invariant under transformations of the form

ε → ε + ε0,

η → η + η0,

q → q + ω×gradϑ,

ε̇0 = 0,

η̇0 = 0,

gradω = 0.





(28.1)

The internal energy and the entropy of each material point may, at will, thus be ad-
ditively scaled by terms dependent only on the material point. In a sense, a choice of
scalings amounts to a choice of material reference scales for the energy and entropy.

To show that (26.10) and (27.9) are invariant under (28.1) it suffices to show
that, given any region Pt convecting with the body,

˙∫

Pt

ρε dv =
˙∫

Pt

ρ(ε + ε0) dv,

˙∫

Pt

ρη dv =
˙∫

Pt

ρ(η + η0) dv,

∫

∂Pt

q · n da =
∫

∂Pt

(q + ω × gradϑ) · n da,

∫

∂Pt

q · n
ϑ

da =
∫

∂Pt

q + ω × gradϑ
ϑ

· n da.

(28.2)

Clearly,

˙∫

Pt

ρε0 dv =
∫

Pt

ρε̇0 dv

= 0,
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and similarly with ε0 replaced by η0; hence, (28.2)1,2 are satisfied. Further, since

ω × gradϑ = −curl (ϑω),

ω × gradϑ
ϑ

= −curl [(lnϑ)ω],

it follows that

∫

∂Pt

(ω × gradϑ) · n da = −
∫

Pt

div[curl (ϑω)] dv

= 0,

and similarly with ϑ replaced by ln ϑ ; thus, (28.2)3,4 are satisfied.

28.2 Decay Inequalities for the Body Under Passive Boundary
Conditions

We now show that granted simple boundary conditions of a passive nature there are
integrals of the form

∫

Bt

(· · · ) dv,

often called Lyapunov functions, that decrease with time. These results are a direct
consequence of the underlying thermodynamical framework — they do not rely in
any way on constitutive equations.

We assume throughout this section that there are no conventional body forces
and that the heat supply vanishes:

b0 ≡ 0, q ≡ 0. (28.3)

Then, by (28.3), the first two laws in the forms (26.6)1 and (27.9) become

˙∫

Pt

ρ(ε + 1
2 |v|2) dv = −

∫

∂Pt

q · n da +
∫

∂Pt

Tn · v da,

˙∫

Pt

ρη dv ≥ −
∫

∂Pt

q
ϑ

· n da.

(28.4)

28.2.1 Isolated Body

Assume that the body is isolated in the sense that, at each time,

Tn = 0 on a portion of ∂Bt and v = 0 on the remainder of ∂Bt ,

q · n = 0 on ∂Bt .
(28.5)
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Then, by (28.4),

˙∫

Bt

ρ(ε + 1
2 |v|2) dv = 0,

˙∫

Bt

ρη dv ≥ 0,

(28.6)

and the net energy is constant, while the net entropy is nondecreasing.

28.2.2 Boundary Essentially at Constant Pressure and Temperature

These boundary conditions may be stated precisely as follows: There are a constant
pressure p0 and a constant temperature ϑ0 > 0 such that

Tn = −p0n on a portion of ∂Bt and v = 0 on the remainder of ∂Bt ,

ϑ = ϑ0 on a portion of ∂Bt and q · n = 0 on the remainder of ∂Bt .
(28.7)

To determine the consequences of (28.7), note that (28.4)2 and the thermal condi-
tions (28.7)2 imply that

−
∫

∂Bt

q · n da = −ϑ0

∫

∂Bt

q
ϑ

· n da

= ϑ0

˙∫

Bt

ρη dv − ϑ0

∫

Bt

@ dv

︸ ︷︷ ︸
≥0

, (28.8)

while the mechanical conditions (28.7)1, the divergence theorem, and the identities
(18.7), (18.8), and (18.14) yield

∫

∂Bt

Tn · v da = −p0

∫

∂Bt

n · v da

= −p0

∫

Bt

divv dv

= −p0

∫

Bt

ρυ̇ dv

= −
˙∫

Bt

p0υρ dv

= −
˙∫

Bt

p0 dv. (28.9)
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The identities (28.8) and (28.9) reduce the first law (28.4)1 to the decay inequality

˙∫

Bt

ρ(ε − ϑ0η + p0υ + 1
2 |v|2) dv = −ϑ0

∫

Bt

@ dv ≤ 0. (28.10)

The decay inequalities (28.6) and (28.10) involve no constitutive assumptions and are hence valid for
all materials whose behavior is consistent with the first two laws as described here. Such decay inequalities
are important as they furnish a formal justification, within a dynamical setting, of standard variational
principles used to characterize equilibrium. Equally important, such results yield a priori estimates for
solutions of initial/boundary-value problems.



29 A Free-Energy Imbalance for
Mechanical Theories

Much of continuum mechanics involves theories that are purely mechanical. Such
theories neglect all thermal influences: Fields such as temperature, entropy, and
heat flux are not mentioned, the basic balances being those for mass and mo-
mentum. Even so, most mechanical theories of continua are consistent with a
“thermodynamic-like” inequality involving an “energy-like” field and a nonnega-
tive quantity representing the dissipation of energy. We refer to the underlying en-
ergy as free energy, a choice motivated by the remark following (27.20). In fact, that
remark formally justifies our taking the “thermodynamic-like” inequality to be an
imbalance for free energy.

Bearing this in mind, the purely mechanical theories we discuss are based on
a free-energy imbalance that embodies the intuitive notion that, for dissipative
processes,

• not all conventional power expended on a convecting spatial region Pt can be
converted into changes in the net free- and kinetic-energy of Pt , because a portion
of that power must go into dissipation.

We view such a balance as a mechanical manifestation of the first two laws of
thermodynamics.

29.1 Free-Energy Imbalance. Dissipation

Introducing the net free energy F(Pt ) of Pt , we let D(Pt ) denote the net dissipation
in Pt ; that is, the conventional power expenditure W0(Pt ) minus the rate at which
the free- and kinetic-energy of Pt are increasing:

D(Pt )
def= W0(Pt ) − ˙F(Pt ) + K(Pt ). (29.1)

A central hypothesis of the mechanical theory is the requirement that

(‡) the net dissipation in each convecting spatial region Pt be nonnegative:

D(Pt ) ≥ 0. (29.2)

Rearranging the terms in (29.1), we have the free-energy imbalance

˙F(Pt ) + K(Pt ) ≤ W(Pt ). (29.3)

We posit the existence of a scalar field ψ , the specific free-energy, such that

F(Pt ) =
∫

Pt

ρψ dv (29.4)
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for every convecting spatial region Pt . By (26.2), (26.3), and (29.4) applied to (29.1),

D(Pt ) =
∫

Pt

(T : D − ρψ̇) dv.

Granted sufficient smoothness,156 the net dissipation D therefore has a density δ,
measured per unit volume in the deformed body, such that

D(Pt ) =
∫

Pt

δ dv, δ = T : D − ρψ̇, (29.5)

and, hence, since D(Pt ) ≥ 0 and Pt is arbitrary, such that

δ ≥ 0. (29.6)

Thus, (29.5) yields the local free-energy imbalance

ρψ̇ − T : D = −δ ≤ 0, ρψ̇ − Ti j Di j = −δ ≤ 0. (29.7)

On the other hand, (26.2), (26.3), and (29.7) yield the global free-energy
imbalance:

∫

Pt

δ dv =
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv −
˙∫

Pt

ρ(ψ + 1
2 |v|2) dv ≥ 0. (29.8)

The general thermodynamical invariance properties (28.1) have an immediate
counterpart within the purely mechanical framework under consideration: The free-
energy imbalance (29.8) is invariant under transformations of the form

ψ → ψ + ψ0, ψ̇0 = 0. (29.9)

The specific free-energy of each material point may, at will, thus be additively scaled
by a term dependent only on the material point.

29.2 Digression: Role of the Free-Energy Imbalance within the General
Thermodynamic Framework

Consider, for the moment, the general thermodynamic theory discussed in §26 and
§27. Consider an isothermal process; that is a process consistent with the restriction

ϑ = ϑ0 ≡ constant. (29.10)

In this case, the free-energy imbalance (27.20) of the general theory becomes
∫

Pt

ϑ0@ dv =
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv −
˙∫

Pt

ρ(ε − ϑ0η + 1
2 |v|2) dv ≥ 0, (29.11)

which is the free-energy imbalance (29.8) with

ψ = ε − ϑ0η, δ = ϑ0@. (29.12)

Thus, since the free-energy imbalance (27.20) of the general theory arises upon com-
bining the balance for energy and the imbalance for entropy,

156 Cf. (‡) on page 187 and the paragraph in petite type on page 188.
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(‡) in an isothermal process with temperature ϑ0, the energy balance (26.10) and the
entropy imbalance (27.9) of the general theory together reduce to the free-energy
imbalance (29.8) of the mechanical theory with dissipation δ expressed in terms
of the entropy production @ by

δ = ϑ0@. (29.13)

29.3 Decay Inequalities

Assume now that the conventional body force vanishes:

b0 = 0.

Then, by (29.8), if the body is isolated in the sense of (28.5)1,

˙∫

Bt

ρ (ψ + 1
2 |v|2) dv = −

∫

Bt

δ dv ≤ 0 (29.14)

and the total energy cannot increase.
Consider a boundary essentially at constant pressure p0 in the sense of the

boundary condition (28.7)1. Then (28.9) remains valid and the free-energy imbal-
ance (29.8) yields the decay inequality

˙∫

Bt

ρ(ψ + p0υ + 1
2 |v|2) dv = −

∫

Bt

δ dv ≤ 0. (29.15)



30 The First Two Laws for a Spatial
Control Volume

Let R be a spatial control volume. Integrating the local energy balance and entropy
imbalance157

ρε̇ = T : D − divq + q and ρη̇ ≥ −div
(

q
ϑ

)
+

q
ϑ

(30.1)

over R using the power balance (26.3) (and the divergence theorem for divq and
div(q/ϑ)) we find that

∫

R

ρ
˙

(ε + 1
2 |v|2) dv =

∫

∂R

Tn · v da +
∫

R

b0 · v dv −
∫

∂R

q · n da +
∫

R

q dv,

∫

R

ρη̇ dv ≥
∫

∂R

q
ϑ

· n da +
∫

R

q
ϑ

dv.

(30.2)

Thus, (23.3)1 with ϕ = ε + 1
2 |v|2 applied to (30.2)1 yields balance of energy

˙∫

R

ρ (ε + 1
2 |v|2) dv +

∫

∂R

ρ(ε + 1
2 |v|2)v · n da

=
∫

∂R

Tn · v da +
∫

R

b · v dv −
∫

∂R

q · n da +
∫

R

q dv (30.3)

for a control volume R, while (23.3)1 with ϕ = η applied to (30.2)2 yields the entropy
imbalance

˙∫

R

ρη dv +
∫

∂R

ρηv · n da ≥ −
∫

∂R

q
ϑ

· n da +
∫

R

q
ϑ

dv (30.4)

for R. In (30.3) and (30.4) the terms
∫

∂R

ρ(ε + 1
2 |v|2)v · n da and

∫

∂R

ρηv · n da

157 Cf. (26.8) and (27.13).
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represent respective outflow-rates of internal energy and entropy across the bound-
ary ∂R of the control volume R.

EXERCISE

1. Derive a counterpart — for a spatial control volume R — of the free-energy
imbalance (29.8).



31 The First Two Laws Expressed Referentially

In this section we determine referential counterparts of the thermodynamic laws
and associated relations discussed in §§26–29.

Let P denote an arbitrary subregion of the reference body B and let

Pt = χ t (P)

denote the corresponding convecting subregion of the deforming Bt . Important to
the present discussion are

(i) the spatial to referential transformation

W0(Pt ) =
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv

=
∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR

= W0(P) (31.1)

of the conventional external power W0;158

(ii) the spatial to referential transformation

K(Pt ) =
∫

Pt

1
2ρ|v|2 dv =

∫

P

1
2ρR|χ̇ |2 dvR = K(P) (31.2)

of the kinetic energy K;159

(iii) the conventional power balance,160

∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR

︸ ︷︷ ︸
W0(P)

=
∫

P

TR : Ḟ dvR +
˙∫

P

1
2ρR|χ̇ |2 dvR

︸ ︷︷ ︸
˙K(P)

; (31.3)

158 Cf. (24.15), Footnote 143.
159 Cf. (24.16).
160 Cf. (25.7).
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(iv) the transformation laws161

∫

Pt

ϕ dv =
∫

P

ϕ J dvR,

∫

Pt

ρ0 dv =
∫

P

ρR0 dvR,

∫

∂Pt

h · n da =
∫

∂P

(J F−1h) · nR daR.

(31.4)

31.1 Global Forms of the First Two Laws

Our first step is to determine the spatial to referential transformations of the net
internal energy and entropy E(Pt ) and S(Pt ), the heat and entropy flows Q(Pt ) and
J (Pt ), and the net entropy production H(Pt ).162

We define referential energy and entropy densities εR and ηR, heat flux and heat
supply qR and qR, and entropy production (density) by @R by

εR = ρRε, ηR = ρRη,

qR = J F−1q, qR = J q, @R = J@ ≥ 0,
(31.5)

so that, by (31.4),163

E(Pt ) =
∫

Pt

ρε dv =
∫

P

εR dvR = E(P),

S(Pt ) =
∫

Pt

ρη dv =
∫

P

ηR dvR = S(P),

Q(Pt ) = −
∫

∂Pt

q · n da +
∫

Pt

q dv = −
∫

∂P

qR · nR daR

∫

P

qR dvR = Q(P),

J (Pt ) = −
∫

∂Pt

q
ϑ

· n da +
∫

Pt

q
ϑ

dv = −
∫

∂P

qR

ϑ
· nR daR +

∫

P

qR

ϑ
dvR = J (P),

H(Pt ) =
∫

Pt

@ dv =
∫

P

@R dvR = H(P).






(31.6)

The internal energy and entropy densities εR and ηR are therefore measured per vol-
ume in the reference body B, as are the heat supply qR and the entropy production
@R, while the heat flux qR is measured per unit area, also in B. Because the referen-
tial heat flux arises via the inner product qR · nR, qR is a material vector field. Note
that the temperature ϑ , not being a density, is invariant under the spatial to material
transformations (65.2)4,5.

Using the material to spatial transformations (31.1), (31.2), and (31.6) in con-
junction with the basic forms (26.1) and (27.4) of the first two laws, we obtain the

161 Cf. (15.7), (18.10), and (15.8)1.
162 Cf. §26, §27.
163 Cf. §26, §27.
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global form

˙∫

P

(εR + 1
2ρR|χ̇ |2) dvR = −

∫

∂P

qR · nR daR +
∫

P

qR dvR

+
∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR

(31.7)

of balance of energy and the global form

∫

P

@R dvR =
˙∫

P

ηR dvR +
∫

∂P

qR

ϑ
· nR daR −

∫

P

qR

ϑ
dvR ≥ 0 (31.8)

of the entropy imbalance.

EXERCISE

1. Show that the energy balance (31.7) and the entropy balance (31.8) are invariant
under transformations of the form

εR → εR + ε0R,

ηR → ηR + η0R,

qR → qR + ω × ∇ϑ,

ε̇0R = 0,

η̇0R = 0,

∇ω = 0.





(31.9)

31.2 Local Forms of the First Two Laws

Since the material region P is independent of time, as is ρR,

˙∫

P

εR dvR =
∫

P

ε̇R dvR,
˙∫

P

ηR dvR =
∫

P

η̇R dvR,

˙∫

P

1
2ρR|χ̇ |2 dvR =

∫

P

ρRχ̈ · χ̇ dvR.

Thus, using the conventional power balance (31.3) and the divergence theorem, we
find that the energy balance (31.7) and the entropy imbalance (31.8) reduce to

∫

P

(ε̇R + DivqR − qR − TR : Ḟ) dvR = 0,

∫

P

@R dvR =
∫

P

(
η̇R + Div

qR

ϑ
− qR

ϑ

)
dvR ≥ 0.
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Since these relations are to be satisfied for all subregions P of B, we are led to the
local forms of the energy balance and entropy imbalance

ε̇R = TR : Ḟ − DivqR + qR, ε̇R = TRi j Ḟi j −
∂qRi

∂Xi
+ qR,

@R = η̇R + Div
(

qR

ϑ

)
− qR

ϑ
≥ 0, @R = η̇R + ∂

∂Xi

(
qRi

ϑ

)
− qR

ϑ
≥ 0.

(31.10)

Next, the free energy (per unit referential volume) is defined by

ψR = ρRψ, (31.11)

so that, by (81.8),

ψR = εR − ϑηR (31.12)

and, by (31.10),

ψ̇R + ηRϑ̇ = ε̇R − ϑη̇R,

= TR : Ḟ − DivqR + qR − ϑ

(
− Div

(
qR

ϑ

)
+ qR

ϑ
+ @R

)
,

= TR : Ḟ − 1
ϑ

qR · ∇ϑ + ϑ@R,

and we arrive at the local free-energy imbalance

ψ̇R + ηRϑ̇ − TR : Ḟ +
1
ϑ

qR · ∇ϑ = −ϑ@R ≤ 0. (31.13)

31.3 Decay Inequalities for the Body Under Passive Boundary
Conditions

We assume that the conventional body force and the heat supply vanish:

b0R = 0, qR = 0;

then, (31.7) and (31.8) become

˙∫

P

(εR + 1
2ρR|χ̇ |2) dvR = −

∫

∂P

qR · nR daR +
∫

∂P

TRnR · χ̇ daR,

˙∫

P

ηR dvR = −
∫

∂P

qR

ϑ
· nR daR +

∫

P

@R dvR

︸ ︷︷ ︸
≥0

.

(31.14)

Assume, in addition, that the boundary is essentially referentially dead-loaded
and at constant temperature in the sense that there are a constant stress tensor S0
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and a constant temperature ϑ0 > 0 such that

TRnR = S0nR on a portion of ∂B and v = 0 on the remainder of ∂B,

ϑ = ϑ0 on a portion of ∂B and qR · nR = 0 on the remainder of ∂B.
(31.15)

Consequences of the mechanical boundary conditions (31.15)1 and the divergence
theorem are then that

∫

∂B

TRnR · χ̇ daR =
∫

∂B

S0nR · χ̇ daR

=
˙∫

∂B

S0nR · χ daR

=
˙∫

B

S0 : gradχ dvR (31.16)

=
˙∫

B

S0 : F dvR, (31.17)

while the thermal boundary conditions (31.15)2 and the second law (31.14)2 imply
that

−
∫

∂B

qR · nR da = −ϑ0

∫

∂B

qR

ϑ
· nR daR

= ϑ0

˙∫

B

ηR dv − ϑ0

∫

P

@R dvR. (31.18)

By (31.17), (31.18), and the energy balance in the form (31.14)1, we arrive at the
decay relation

˙∫

B

(εR − ϑ0ηR + S0 : F + 1
2ρR|χ̇ |2) dvR = −ϑ0

∫

P

@R dvR ≤ 0, (31.19)

or equivalently, in terms of the free energy ψR = εR − ϑ0ηR,

˙∫

B

(ψR + (ϑ − ϑ0)ηR + S0 : F + 1
2ρR|χ̇ |2) dvR = −ϑ0

∫

P

@R dvR ≤ 0. (31.20)

The stress tensor S0 represents a Piola stress; by (24.1), the corresponding Cauchy
stress is T0 = J −1S0F), and

P def= − 1
3 tr(S0F))

= − 1
3 S0 : F (31.21)

represents the effective pressure (within B). Note that, in general, P = P(X, t).
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31.4 Mechanical Theory: Free-Energy Imbalance

Consider now the purely mechanical theory discussed in §29. The free energy and
dissipation, measured per unit referential volume, are given by

ψR = ρRψ, δR = J δ ≥ 0, (31.22)

so that, by (29.4), (29.5), and (31.4)1,2,

F(Pt ) =
∫

Pt

ρψ dv =
∫

P

ψR dvR = F(P),

D(Pt ) =
∫

Pt

δ dv =
∫

P

δR dvR = D(P).

(31.23)

Using the general free-energy balance (29.1) and the power balance (31.3), we then
find that

˙∫

P

ψR dvR =
∫

P

TR : Ḟ dvR −
∫

P

δR dvR.

Thus, since ˙∫
P ψR dvR =

∫
P ψ̇R dvR,

∫

P

(ψ̇R − 1
2 TR : Ḟ) dvR = −

∫

P

δR dvR ≤ 0

for all subregions P of B, which yields the local free-energy imbalance:

ψ̇R − TR : Ḟ = −δR ≤ 0, ψ̇R − TRi j Ḟi j = −δR ≤ 0. (31.24)

Next, if we use the general free-energy balance (29.1) in conjunction with (31.1),
(31.2), and (31.23), we obtain the global free-energy imbalance:

∫

P

δR dvR =
∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR −
˙∫

P

(ψR + 1
2ρR|χ̇ |2) dvR ≥ 0.

(31.25)

EXERCISES

1. Show that, under a change of frame,

grad∗ϑ∗ = Qgradϑ,

q∗ = Qq.
(31.26)

2. Establish the referential form of the invariance properties (28.2).
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3. Show that ∇ϑ and qR are invariant under a change of frame.
4. Within the purely mechanical framework of §31.4, assume that b0R = 0 and that

the boundary is essentially dead-loaded in the sense of (31.15)1 with S0 a con-
stant stress tensor. Show that

˙∫

B

(ψR + 3P + 1
2ρR|χ̇ |2) dvR = −

∫

B

δR dvR ≤ 0 (31.27)

with P the boundary pressure (31.21).





PART VI

MECHANICAL AND
THERMODYNAMICAL LAWS
AT A SHOCK WAVE

A tacit assumption of the discussion to this point has been that the basic mechanical
and thermodynamical fields be smooth. But there are important examples such as
shock waves and phase transitions in which, although the motion is continuous, the
velocity and deformation gradient as well as the stress, temperature, and entropy
suffer jump discontinuities across a surface moving through the material.
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32 Shock Wave Kinematics

32.1 Notation. Terminology

Throughout this section, χ is a motion of the body. Let S(t) denote an oriented
surface evolving smoothly through the reference body B. Assume that S(t) separates
B into complementary subregions B+(t) and B−(t) in the sense that (Figure 32.1):

(i) B (considered as a closed region) is the union of closed regions B+(t) and B−(t);
(ii) S(t) is the intersection of B+(t) and B−(t).

We write mR(X, t) for the unit normal field on S(t) directed outward from B−(t),
so that mR(X, t) points into B+(t). Further, we write VR(X, t) for the (scalar)
normal velocity of S(t) in the direction mR(X, t) and

PR(X, t) def= 1 − mR(X, t) ⊗ mR(X, t)

for the projection onto the plane tangent to S(t) at X.164 Suppressing arguments, we
say that S is a shock wave if165

(S1) the motion χ is continuous across S;
(S2) the velocity χ̇ and the deformation gradient F suffer jump discontinuities

across S; that is, χ̇ and F are continuous up to S from either side but not across
S.

An immediate consequence of (S2) is that J = detF may suffer a jump discontinuity
across S.

For0 a material field that suffers a jump discontinuity across S, we write0+ for
the limit of0 as S is approached from B+ and0− for the limit of0 as S is approached
from B−; that is, for X on S(t) and h > 0,

0+(X, t) = lim
h→0

0(X + hmR(X, t), t),

0−(X, t) = lim
h→0

0(X − hmR(X, t), t).
(32.1)

Further, [[0]] denotes the jump of 0 across S:

[[0]] = 0+ −0−. (32.2)

164 For any vector a, PR(X, t)a represents the component of a relative to the tangent plane to S(t) at X.
Cf. (2.6)2.

165 Such a surface is also referred to as a singular surface of order one and, in the materials literature,
as a coherent phase interface.
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B (t)

B (t)

mR(X t)

S(t)

Figure 32.1. A smoothly evolving, oriented surface S(t) that at time t divides B into regions
B−(t). The orientation mR(X, t) of S(t) is chosen to point from B−(t) into B+(t).

32.2 Hadamard’s Compatibility Conditions

Basic to a discussion of shock waves are Hadamard’s compatibility conditions:

[[χ̇]] = −VR [[F]]mR and [[F]]PR = 0. (32.3)

As a consequence of (32.3)2, [[F]]t = 0 for any vector field t tangent to S, so that, for
any vector field f

[[F]]f = (mR · f)[[F]]mR. (32.4)

To verify (32.3), choose a point X0 on S(t0) and let t̄0 be an arbitrary vector
tangent to S(t0) at X0:

t̄0 · mR(X0, t0) = 0.

For each t , let CR(t) denote a curve on S(t) traced out by the material point

X = X̂(λ, t) (32.5)

as the scalar parameter λ varies.166 Assume that the curve CR(t) passes through the
point X0 at time t0 and that t̄0 is tangent to CR(t0) at X0. (We can always find such a
curve.) Then

X̂(λ0, t0) = X0,

and if we let

∂X̂
∂λ

∣∣∣∣
0

= ∂X̂(λ, t)
∂λ

∣∣∣∣
(λ,t)=(λ0,t0)

,

then the vector

t0
def= ∂X̂

∂λ

∣∣∣∣
0

(32.6)

is tangent to CR(t0) at X0 and hence parallel to t̄0.

166 Cf. the paragraph containing (6.10).
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At each t , S(t) deforms to a surface

S(t) = χ t (S(t)) (32.7)

in the deformed body Bt ; S(t) represents the spatial description of the shock wave.
Further, CR(t) deforms to a curve C(t) = χ t (CR(t)) on S(t), with C(t) traced out by

x = x̂(λ, t)

= χ t (X̂(λ, t)). (32.8)

In view of (S1) and (S2), the deformation χ is continuously differentiable up to
S from either side. If we restrict attention to the plus side we find — using (32.6),
(32.8), and the chain-rule — that

∂ x̂
∂λ

∣∣∣∣
0

= F+(X0, t0)t0. (32.9)

A second relation, strictly analogous to (32.9), obtains if we restrict attention to the
minus side of S; if we subtract this second relation from the first we find that

[[F]](X0, t0)t0 = 0 and hence that [[F]](X0, t0)t̄0 = 0.

Thus, since the pair (X0, t0) was arbitrarily chosen, as was the vector t̄0 tangent to
S(t0) at X0, the second of (32.3) is satisfied.

Next, by (8.4) the unit vector field m defined on S by

m =
(F−))±mR

|(F−))±mR|
(32.10)

is normal to S. Further, the vectors

∂X̂
∂λ

∣∣∣∣
0

and
∂ x̂
∂λ

∣∣∣∣
0
,

respectively, represent velocities for the surfaces S(t0) and S(t0) at the points X0 and
x0 = χ t0 (X0); hence,

mR(X0, t0) · ∂X̂
∂λ

∣∣∣∣
0

= VR(X0, t0), (32.11)

while

V(x0, t0) def= m(x0, t0) · ∂ x̂
∂λ

∣∣∣∣
0

(32.12)

represents the scalar normal velocity of S(t0) at x0.167

On the other hand, by the chain-rule

∂ x̂
∂λ

∣∣∣∣
=(λ0,t0)

= F±(X0, t0)
∂X̂
∂λ

∣∣∣∣
0
+ χ̇±(X0, t0)

and, hence, (32.4) and (32.11) yield

∂ x̂
∂λ

∣∣∣∣
0

= VR(X0, t0)F±(X0, t0)mR(X0, t0) + χ̇±(X0, t0). (32.13)

167 The tangential component of the velocity ∂X̂/∂t depends on the parametrization X̂, but the normal
component is independent of X̂ and hence intrinsic to the evolution of S; a similar assertion applies
to ∂x̂/∂t ; cf. Gurtin & Struthers (1990, Lemma 2A).
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Thus, since X0 and t0 were chosen arbitrarily,

VR [[F]]mR + [[χ̇]] = 0,

which is (32.3)1. This completes the verification of the Hadamard relations.

32.3 Relation Between the Scalar Normal Velocities VR and V

If we take the inner product of (32.13) with m(x0, t0) and use (32.12) we obtain

V = VR(m · F±mR) + m · χ̇±,

where for convenience we have suppressed arguments. On the other hand, by (8.14)
and (32.10),

m · F±mR = (F−))±mR · F±mR

|(F−))±mR|

= mR · (F−1)±F±mR

|(F−))±mR|

=
1

|(F−))±mR|

= J ±


, (32.14)

where J ±/ represents the ratio of the volumetric Jacobians J ± of the material on
the two sides of the shock wave to the areal Jacobian  of the mapping between the
undeformed and deformed surfaces S and S. Thus writing v± = χ̇± (for the spatial
descriptions of the velocities χ̇±), (32.14) becomes

V − m · v± = J ±


VR. (32.15)

The normal velocity VR at which the shock wave moves through the reference body
(and hence through the material) — scaled by the factor J ±/ — is therefore equal
to the “observed velocity” V of the wave measured relative to the normal velocities
m · v± of those material points instantaneously situated at the two sides of the wave.

32.4 Transport Relations in the Presence of a Shock Wave

Basic to what follows is a well-known transport relation. To state this relation, let
R(t) denote a bounded region evolving smoothly through the reference body B
and let V∂R(X, t) denote the scalar normal outward velocity of the time-dependent
boundary ∂R(t). Then, given a smooth scalar function ϕ(X, t) defined for all X in
R(t) and all t , we have the transport relation:

˙∫

R(t)

ϕ(X, t) dvR(X) =
∫

R(t)

ϕ̇(X, t) dvR(X) +
∫

∂R(t)

ϕ(X, t)V∂R(X, t) dvR(X). (32.16)

Consider a motion χ containing a shock wave S. The derivation of balance laws
requires the calculation of time-derivatives of the form

I (t) =
˙∫

P

0(X, t) dvR(X), (32.17)
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Figure 32.2. Fixed material region p divided by S(t) into time-dependent regions P+(t).

where 0 is a material field with a jump discontinuity across the shock wave and P
is an arbitrary fixed subregion of the reference body B. We assume that (on some
time interval) P contains a (nontrivial) portion

P ∩ S(t) (32.18)

of the shock wave in its interior; P ∩ S(t) then separates P into time-dependent com-
plementary subregions P+(t) and P−(t) such that (Figure 32.2):

(i) the boundary ∂P+(t) of P+(t) is the union of the shock surface S(t) and a subsur-
face of ∂P, and the outward velocity of ∂P+(t) is equal to −VR(t) on the shock
surface, but otherwise vanishes;

(ii) the boundary ∂P−(t) of P−(t) has properties strictly analogous to those of ∂P+(t),
except that the outward velocity of ∂P−(t) is equal to +VR(t) on the shock
surface.

Were 0 smooth, we could simply commute the time derivative and the integral,
but we cannot do this because of the jump discontinuity. However, because P is the
union of P+(t) and P−(t),

I (t) =
˙∫

P+(t)

0(X, t) dvR(X) +
˙∫

P−(t)

0(X, t) dvR(X),

with 0(X, t) smooth on P+(t) and on P−(t). Thus, bearing in mind (i) and (ii) and
using (32.16), we find that

˙∫

P+(t)

0(X, t) dvR(X) =
∫

P+(t)

0̇(X, t) dvR(X) −
∫

P∩S(t)

0(X, t)VR(X, t) daR(X),

˙∫

P−(t)

0(X, t) dvR(X) =
∫

P−(t)

0̇(X, t) dvR(X) +
∫

P∩S(t)

0(X, t)VR(X, t) daR(X).

Thus, suppressing arguments, we have the referential transport relation

˙∫

P

0 dvR =
∫

P

0̇ dvR −
∫

P∩S

[[0]]VR daR. (32.19)
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(The integral
∫

P 0̇dvR is treated as an ordinary integral with a piecewise continuous
integrand; the jump discontinuity in 0 is accounted for by the term involving [[0]].)

The relation (32.19) implies an equivalent spatial transport relation: For ϕ a spa-
tial field, we simply replace 0 in (32.19) by ϕ J and use the identity (32.15) relating
the normal velocities of S(t) and S(t). The precise details of this calculation are as
follows. Let ϕ be a spatial field with a jump discontinuity across the observed shock
wave S(t), and let Pt be a spatial region convecting with the body. There is then a
fixed material region P such that Pt = χ t (P) and, by (15.7),

˙∫

P

ϕ J dvR =
˙∫

Pt

ϕ dv. (32.20)

Assume that (on some time interval) Pt contains a portion of S(t) in its interior.
Then, since P = χ−1

t (Pt ) and S(t) = χ−1
t (S(t)), it follows that

P ∩ S(t) = χ−1
t (Pt ∩ S(t))

and, hence, that P contains a portion of S(t) in its interior. Then, by (9.16),168

∫

P

˙ϕ J dvR =
∫

P

( ϕ̇ J + ϕ J̇ ) dvR

=
∫

P

(ϕ̇ + ϕdivv)J dvR

=
∫

Pt

(ϕ̇ + ϕdivv) dv (32.21)

and, by (15.5)2 and (32.15),
∫

P∩S(t)

[[ϕ J ]]VR daR =
∫

Pt ∩S(t)

[[ϕ J ]]VR
−1 da

=
∫

Pt ∩S(t)

[[
ϕ

J


VR

]]
da

=
∫

Pt ∩S(t)

[[ϕ(V − m · v)]] da. (32.22)

Substituting (32.20)–(32.22) into (32.19) with0 = ϕ J , we are led to the spatial trans-
port relation

˙∫

Pt

ϕ dv =
∫

Pt

(ϕ̇ + ϕdivv) dv −
∫

Pt ∩S(t)

[[ϕ(V − m · v)]] da; (32.23)

(32.23) generalizes Reynolds’ transport relation (16.2) to account for the presence
of a shock wave.

168 Cf. the parenthetical remark following (32.19).
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32.5 The Divergence Theorem in the Presence of a Shock Wave

As a discussion of the divergence theorem does not involve time-differentiation, we
may confine our attention to a fixed time.

Let G be a material tensor field with a jump discontinuity across a shock wave
S, and let P — with outward unit normal n on ∂P — be a subregion of the reference
body B. Then, S separates P into subregions P+ and P− such that

(i) the boundary ∂P+ of P+ is the union of the shock surface S and a subsurface of
∂P, and the outward unit normal n+

R of ∂P+ satisfies

n+
R =






−mR on S,

nR otherwise;
(32.24)

(ii) the boundary ∂P− of P− has properties strictly analogous to those of ∂P+, except
that the outward unit normal of ∂P− is equal to +mR on the shock surface.

Then,
∫

∂P

GnR daR =
∫

∂P+

Gn+
R daR +

∫

∂P−

Gn−
R daR −

∫

P∩S

G+n+
R daR −

∫

P∩S

G−n−
R daR

=
∫

∂P+

Gn+
R daR +

∫

∂P−

Gn−
R daR −

∫

P∩S

G+(−mR) daR −
∫

P∩S

G−mR daR

=
∫

P+

DivG dvR +
∫

P−

DivG dvR +
∫

P∩S

[[G]]mR daR;

therefore, we obtain an identity,
∫

∂P

GnR daR =
∫

P

DivG dvR +
∫

P∩S

[[G]]mR daR, (32.25)

representing the divergence theorem for a material region containing a shock wave.
An (obvious) strictly analogous argument yields the counterpart of (32.25) for

a spatial region P :
∫

∂P

Gn da =
∫

P

divG dv +
∫

P∩S

[[G]]m da. (32.26)

Counterparts of the results (32.25) and (32.26) for a vector field g are
∫

∂P

g · nR daR =
∫

P

Divg dvR +
∫

P∩S

[[g]] · mR daR,

∫

∂P

g · n da =
∫

P

divg dv +
∫

P∩S

[[g]] · m da.

(32.27)

EXERCISE

1. Establish (32.27) as well as corresponding results for a scalar field ϕ.



33 Basic Laws at a Shock Wave: Jump
Conditions

In most discussions of shock waves, the stress, temperature, and entropy suffer jump
discontinuities across the shock surface S(t). Such discussions generally, but not
always, neglect heat flow. Here, for completeness, we allow the heat flux to suffer a
jump discontinuity across S(t).

In the absence of shock waves, the basic laws reduce to partial-differential re-
lations that hold locally. In the presence of a shock wave, these local relations are
satisfied away from the shock surface and — what is most cogent — are supple-
mented by jump conditions that hold at the shock surface.

33.1 Balance of Mass and Momentum

Since the density ρ and velocity v suffer jump discontinuities across a shock wave,169

to determine the forms taken by the mechanical laws at a shock wave, we need to
consider these laws in forms that do not involve pointwise derivatives of ρ and v; for
that reason, we return to the general integrated relations

˙∫

Pt

ρ dv = 0 (33.1)

for balance of mass170 and, using Cauchy’s relation t(n) = Tn,171

˙∫

Pt

ρv dv =
∫

∂Pt

Tn da +
∫

Pt

b0 dv,

˙∫

Pt

r × (ρv) dv =
∫

∂Pt

r × Tn da +
∫

Pt

r × b0 dv

(33.2)

for the balances of linear and angular momentum.172 Away from the shock surface,
these balances have the local forms173

ρ̇ + ρ divv = 0, ρv̇ = divT + b0, and T = T); (33.3)

169 By (18.9), ρ J = ρR with ρR independent of time; thus, since J = detF suffers a jump discontinuity,
ρ should also.

170 Cf. (18.2).
171 Cf. (19.22).
172 Cf. (19.12) and (19.13). The balances (19.16) for forces and moments are no longer valid because v̇

and, hence, the generalized body force b are not defined at the wave; cf. (19.15).
173 Cf. (18.5), (19.31), and (19.34).
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we now turn to a derivation of corresponding jump conditions that hold at the shock
surface.

Since the balances (33.1)–(33.3) are spatial, we work with the spatial description
of the shock wave as represented by the surface S(t) in Bt . Basic identities that we
use in localizing (33.1) and (33.2) to S(t) are the relation (32.23) for a scalar field ϕ
and its (obvious) counterpart for a vector field h:

˙∫

Pt

ϕ dv =
∫

Pt

(ϕ̇ + ϕdivv) dv −
∫

Pt ∩S(t)

[[ϕ(V − m · v)]] da,

˙∫

Pt

h dv =
∫

Pt

(ḣ + hdivv) dv −
∫

Pt ∩S(t)

[[h(V − m · v)]] da.

(33.4)

To localize the mass balance (33.1), we use (33.4)1 with ϕ = ρ and (33.3)1, which
holds away from the shock surface; the result is

∫

Pt ∩S(t)

[[ρ(V − m · v)]] da = 0.

Since this relation must be satisfied for every convecting region Pt , we arrive at a
jump condition expressing mass balance at a shock wave:

[[ρ(V − m · v)]] = 0. (33.5)

The limits ρ+(V − m · v+) and ρ−(V − m · v−) represent the mass flow-rates at the
two sides of the shock surface, measured relative to the material; (33.5) is therefore
the requirement that the relative mass flow be continuous across a shock wave. The
quantity

m def= ρ±(V − m · v±) (33.6)

therefore represents the relative mass flow-rate across the shock wave.
Consider next the balance (33.2)1 of linear momentum. By (33.4)2 with h = ρv,

˙∫

Pt

ρv dv =
∫

Pt

(ρv̇ + ρ̇v + ρvdivv)︸ ︷︷ ︸
=ρv̇ by (33.3)1

dv −
∫

Pt ∩S(t)

[[(V − m · v)ρv]] da. (33.7)

Further, (32.26) implies that
∫

∂Pt

Tn da =
∫

Pt

divT dv +
∫

Pt ∩S(t)

[[T]]m da. (33.8)

Substituting (33.7) and (33.8) into (33.2), we find that
∫

Pt

(divT + b0 − ρv̇)︸ ︷︷ ︸
=0 by (33.3)2

dv = −
∫

Pt ∩S(t)

([[T]]m + [[(V − m · v)ρv]]) da; (33.9)

since (33.9) must hold for all convecting regions Pt , we arrive at a jump condition
expressing balance of linear momentum at a shock wave:

[[(V − m · v)ρv]] = −[[T]]m. (33.10)
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Granted (33.10), the corresponding localization of the global angular momen-
tum relation (33.2)2 yields “0 = 0”; thus,

(‡) angular momentum is balanced across a shock wave provided linear momentum
is so balanced.

The proof of this result is left as an exercise.

Mass and Momentum Balance at a Shock Wave The jump conditions expressing
mass and momentum balance at a shock wave have the respective forms

[[ρ(V − m · v)]] = 0,

[[(V − m · v)ρv]] = −[[T]]m.
(33.11)

In view of (33.6), the momentum balance (33.11)2 has the simple form

m[[v]] = −[[T]]m. (33.12)

33.2 Balance of Energy and the Entropy Imbalance

First of all, away from the shock surface, we must have174

ρε̇ = T : D − divq + q and ρη̇ ≥ −div
( q
ϑ

)
+ q
ϑ

. (33.13)

To derive the corresponding jump conditions that hold at the shock wave, consider
first the balance of energy in the form (26.6); viz.

˙∫

Pt

ρ(ε + 1
2 |v|2) dv = −

∫

∂Pt

q · n da +
∫

Pt

q dv +
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv. (33.14)

By (33.4) with ϕ = ρk, k = ε + 1
2 |v|2,

˙∫

Pt

ρkdv =
∫

Pt

(ρk̇ + ρ̇k + ρkdivv)︸ ︷︷ ︸
=ρk̇ by (33.3)1

dv −
∫

Pt ∩S(t)

[[ρk]] da (33.15)

and, since ρk̇ = ρ(ε̇ + v · v̇), (33.15) becomes

˙∫

Pt

ρ(ε + 1
2 |v|2) dv =

∫

Pt

ρ(ε̇ + v̇ · v) dv −
∫

Pt ∩S(t)

[[ρ(ε + 1
2 |v|2)(V − m · v)]] da.

(33.16)
Further, since the stress T is symmetric,

∫

∂Pt

Tn · v da =
∫

∂Pt

Tv · n da

174 Cf. (26.8) and (27.13).
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and (32.27)2 with g = Tv and (33.3)2 yield
∫

∂Pt

Tv · n da =
∫

Pt

div(Tv) dv +
∫

Pt ∩S(t)

[[Tv]] · m da

=
∫

Pt

(v · divT + T : D) da +
∫

Pt ∩S(t)

[[Tv]] · m da

=
∫

Pt

(v · (ρv̇ − b0) + T : D) da +
∫

Pt ∩S(t)

[[Tv]] · m da

Therefore (33.14) can be written equivalently as

˙∫

Pt

ρ(ε + 1
2 |v|2) dv −

∫

∂Pt

Tn · v da −
∫

Pt

b0 · v dv

=
∫

Pt

ρε̇ dv −
∫

Pt ∩S(t)

[[ρ(ε + 1
2 |v|2)(V − m · v)]] da −

∫

Pt ∩S(t)

[[Tv]] · m da. (33.17)

Further, (32.27)2 with g = q yields
∫

Pt

q dv −
∫

∂Pt

q · n da = −
∫

Pt

(q − divq) dv −
∫

Pt ∩S(t)

[[q]] · m da (33.18)

and adding (33.17) and (33.18) we find using (33.13)1 that
∫

Pt ∩S(t)

[[ρ(ε + 1
2 |v|2)(V − m · v)]] da = −

∫

Pt ∩S(t)

[[Tv]] · m da −
∫

Pt ∩S(t)

[[q]] · m da.

Since the convecting spatial region Pt is arbitrary, we therefore have the jump con-
dition expressing balance of energy at a shock wave:

[[ρ(ε + 1
2 |v|2)(V − m · v)]] = −[[Tv]] · m − [[q]] · m. (33.19)

The jump condition expressing entropy imbalance at a shock wave is given by

[[ρη(V − m · v)]] ≥ −
[[

q
ϑ

]]
· m (33.20)

and its derivation is left as an exercise.

Energy Balance and Entropy Imbalance at a Shock Wave The jump conditions
expressing energy balance and entropy imbalance at a shock wave have the respective
forms

[[ρ(ε + 1
2 |v|2)(V − m · v)]] = −[[Tv]] · m − [[q]] · m,

[[ρη(V − m · v)]] ≥ −
[[

q
ϑ

]]
· m.

(33.21)
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Further, using (33.6) these jump conditions take the simple form

m[[ε + 1
2 |v|2]] = −[[Tv]] · m − [[q]] · m,

m[[η]] ≥ −
[[

q
ϑ

]]
· m.

(33.22)

Discussions of shock waves often restrict attention to nonconductors, which are
bodies for which the heat flux vanishes:

q ≡ 0 (33.23)

In this case, the jump conditions (33.21) reduce to

m[[ε + 1
2 |v|2]] = −[[Tv]] · m,

m[[η]] ≥ 0.
(33.24)

Remark. The quantity m[[η]] ≥ 0 represents the entropy production per unit area
at the shock wave: For Pt a convecting region that contains a portion of the shock
surface S(t) in its interior, the net entropy-production H(Pt ) is given by175

H(Pt ) =
∫

Pt

@ dv +
∫

Pt ∩S(t)

m[[η]] da. (33.25)

EXERCISES

1. Show that, for Pt a region convecting with the body, if Pt contains a portion of
a shock wave S(t) in its interior, then

˙∫

Pt

r × (ρv) dv =
∫

Pt

r × (ρv̇) dv −
∫

Pt ∩S(t)

[[(V − m · v)r × (ρv)]] da.

Use this result to establish (‡) on page 135.
2. Derive the jump condition (33.20) expressing entropy imbalance at a shock

wave.

175 Cf. The remark on page 188.
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34 General Considerations

The balance laws for mass, momentum, and energy and the imbalance law for en-
tropy represent fundamental principles of continuum thermomechanics and as such
are presumed to hold for all bodies, whether they be solid, liquid, or gas. In contrast,
the constitution of a class of bodies composed of a particular material is specified by
constitutive equations. Such equations limit the class of “processes” that bodies com-
prised of a given material may undergo.

In the words of Truesdell & Noll (1965, §1). “The general physical laws in themselves do not
suffice to determine the deformation or motion of a body subject to given loading. Before a determinate
problem can be formulated, it is usually necessary to specify the material of which the body is made. In the
program of continuum mechanics, such specification is stated by constitutive equations, which relate the
stress tensor . . . to the motion. For example, the classical theory of elasticity rests upon the assumption
that the stress tensor at a point depends linearly on the changes in length and mutual angle suffered by
elements at that point . . . , while the classical theory of viscosity is based on the assumption that the stress
tensor depends linearly on the instantaneous rates of change of length and mutual angle. These state-
ments . . . are definitions of ideal materials. The former expresses in words the constitutive equation that
defines a linearly and infinitesimally elastic material; the latter a linearly viscous fluid. Each . . . represents
in ideal form an aspect, and a different one, of the mechanical behavior of nearly all natural materials,
and . . . each does predict with considerable . . . accuracy the observed response of many different natural
materials in certain restricted situations.”
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35 Constitutive Response Functions

Typically, a constitutive equation176 gives the pointwise values of a physical field 0,
say, in terms of the values of another such field (or list of such fields) 3:177

0(X, t) = 0̂(3(X, t), X). (35.1)

The function 0̂ is referred to as a constitutive response function. We distinguish be-
tween constitutive response functions and the fields they deliver using a superposed
symbol such as a “hat,” “tilde,” or “bar.” The explicit dependence on X allows for
a dependence on the material point in question; when this dependence is absent
from all constitutive equations describing a given body, the body is termed homoge-
neous.178 We generally write constitutive equations of the form (35.1) in the succinct
form

0 = 0̂(3). (35.2)

This notation is not meant to imply homogeneity. In the equation (35.2), 3 denotes
the independent constitutive variable and 0 denotes the dependent constitutive
variable.

176 We use the phrases “constitutive equation” and “constitutive relation” interchangeably.
177 As we shall see, for classical viscous fluids, which generally do not possess natural reference config-

urations, (35.1) is replaced by a relation of the form 0(x, t) = 0̂(3(x, t)).
178 More precisely, the body is homogeneous, as is the choice of reference configuration. For a homo-

geneous body, the density ρR is constant.

224



36 Frame-Indifference and Compatibility with
Thermodynamics

As a general principle,

(‡) we require that constitutive equations be invariant under changes of frame and
compatible with thermodynamics.

The first hypothesis is referred to as frame-indifference.179 Specifically, if 0 and 3
are related through a constitutive response function 0̂, then so also are 0∗ and 3∗

for all changes in frame:

if 0 = 0̂(3) then 0∗ = 0̂(3∗). (36.1)

To satisfy the second hypothesis, we utilize a procedure invented by Coleman &
Noll (1964), a procedure under which only constitutive equations that are consis-
tent with the free-energy inequality in all processes are deemed physically viable.

These ideas, while broadly applicable in continuum thermomechanics, are most
easily conveyed in restricted contexts. We begin, in the next chapter, by developing
a theory for the conduction of heat in a rigid medium. The assumed rigidity renders
moot issues of invariance and allows us to focus on the use of thermodynamics to
restrict constitutive equations. In the subsequent chapter, we consider the purely
mechanical theory of viscous fluids. This topic provides a simple and beautiful con-
text for the application of frame-indifference.

179 Often referred to as “material frame-indifference” when used to restrict constitutive relations. The
frame-indifference principle is discussed in §21.
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PART VIII

RIGID HEAT CONDUCTORS

We consider a rigid medium occupying a (fixed) region B, the body. Material regions
P are then subregions of B. We allow for the conduction of heat — in agreement with
the first and second laws of thermodynamics — within B. Our notation differs only
slightly from that introduced in §26 and §27: x denotes a point in B, grad and div
denote the gradient and divergence with respect to x, ε is the internal energy and
η the internal entropy, each measured per unit volume in B;180 ϑ is the (absolute)
temperature; q is the heat flux measured per unit area in B; q and @, with

@ ≥ 0,

are the heat supply and entropy production, measured per unit volume in B.181

180 Everywhere else in this book, ε, η, and ψ = ε − ϑη denote the specific internal energy, entropy, and
free energy. Here, because the density of a rigid medium is fixed, it is advantageous to absorb the
density and work with internal energy, entropy, and free energy measured per unit volume.

181 Cf. the discussions in §26.1 and §27.1.
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37 Basic Laws

The first two laws, the balance of energy and the imbalance of entropy, require that,
for each material region P,182

˙∫

P

ε dv = −
∫

∂P

q · n da +
∫

P

q dv,

˙∫

P

η dv ≥ −
∫

∂P

q
ϑ

· n da +
∫

P

q
ϑ

dv.

(37.1)

The divergence theorem and the arbitrary nature of P together yield the local forms
of these laws:183

ε̇ = −divq + q,

η̇ ≥ −div
(

q
ϑ

)
+ q
ϑ

.
(37.2)

By (37.2),

ε̇ − ϑη̇ ≤ −divq + ϑ div
(

q
ϑ

)

= − 1
ϑ

q · gradϑ ;

thus, introducing the free energy

ψ = ε − ϑη, (37.3)

we are led to the free-energy imbalance

ψ̇ + ηϑ̇ + 1
ϑ

q · gradϑ = −ϑ@ ≤ 0, (37.4)

where @ is the entropy production and ϑ@ represents the dissipation, measured per
unit volume.184 In fact,

(‡) granted balance of energy (37.2)1 and the expression (37.3) for the free energy,
the entropy imbalance (37.2)2 is equivalent to the free-energy imbalance (37.4).

182 Cf. (26.10) and (27.9). We have assumed from the outset that the underlying fields are smooth, an
assumption that ensures the existence of a smooth entropy production @. Were we discussing, e.g.,
solidification, this assumption would be invalid.

183 Here, e.g., ε̇ = ∂ε/∂t .
184 Cf. (27.18).
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38 General Constitutive Equations

The balance of energy and imbalance of entropy represent fundamental principles
of continuum thermodynamics and as such are presumed to hold for all bodies. In
contrast, the constitution of a particular class of bodies composed of a particular
material is specified by constitutive assumptions. Such assumptions limit the class of
“processes” that bodies comprised of a given material may undergo.

Guided by the free-energy imbalance (37.4),185 we consider constitutive equa-
tions giving the free energy, the entropy, and the heat flux when the temperature
and its gradient are known:

ψ = ψ̂(ϑ, gradϑ),

η = η̂(ϑ, gradϑ),

q = q̂(ϑ, gradϑ).





(38.1)

These relations yield an auxiliary constitutive relation

ε = ε̂(ϑ, gradϑ)

= ψ̂(ϑ, gradϑ) + ϑ η̂(ϑ, gradϑ) (38.2)

for the internal energy.

The constitutive equations (38.1) might be motivated as follows: Most theories of heat conduction
are based on constitutive equations for the internal energy and heat flux of the form

ε = ε̂(ϑ), q = −Kgradϑ, (38.3)

with K the symmetric, positive-definite conductivity tensor; classical thermodynamical treatments are
based on equations of state that — within a theory such as ours in which the medium is rigid — have the
form

ψ = ψ̂(ϑ), η = η̂(ϑ) = − dψ̂(ϑ)
dϑ

. (38.4)

While one cannot deny the broad applicability of theories based on (38.3) and (38.4), these relations do
beg the question: Is it possible to have a thermodynamically consistent theory in which the free energy
and entropy depend on the temperature gradient? Indeed, in a general theory of the type desired, one
might expect constitutive interactions between the fields ϑ and gradϑ . Such a starting point is motivated

185 The free-energy imbalance is equivalent to the requirement that the rate of entropy production
within the body be nonnegative and, as is clear from §39, represents the sole restriction placed by
the basic laws on the internal constitution of the body. This imbalance might therefore be viewed as
indicating which of the basic fields should have constitutive descriptions.
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General Constitutive Equations 231

by the belief that the underlying physics should determine which of the constitutive interactions are
inappropriate, at least in a general theory. This, in essence, is Truesdell’s principle of equipresence: “A
quantity present as an independent variable in one constitutive equation should be so present in all,
unless. . . its presence contradicts some law of physics or rule of invariance.” Cf. Truesdell and Noll
(1965, §96), who assert that: “This principle forbids us to eliminate any of the ‘causes’ present from
interacting with any other as regards a particular ‘effect.’ It reflects on the scale of gross phenomena the
fact that all observed effects result from a common structure such as the motions of molecules.” Physics,
not caprice, should rule out interactions.



39 Thermodynamics and Constitutive
Restrictions: The Coleman–Noll Procedure

Consider an arbitrary constitutive process; that is, a temperature field ϑ together
with fields ψ , η, and q determined by ϑ through the constitutive equations (38.1).
The local relation (37.2)1 expressing balance of energy then determines the heat
supply q needed to support the process. We assume that

• q is arbitrarily assignable.

This hypothesis is important: because of it, balance of energy in no way restricts
the class of constitutive equations under consideration. On the other hand, unless
these constitutive equations are suitably restricted, not all constitutive processes will
be compatible with the second law as embodied in the entropy balance (37.2)2 or
equivalently in the free-energy imbalance (37.4).186 Thus, we take as a basic hypoth-
esis the requirement that all constitutive processes be consistent with the free-energy
imbalance (37.4).

As noted by Gurtin,187 The Coleman–Noll procedure188 “. . . is based on the premise that the sec-
ond law be satisfied in all conceivable processes, irrespective of the difficulties involved in producing such
processes in the laboratory. The rational application of this procedure requires [possibly virtual] external
forces and supplies that may be assigned arbitrarily to ensure satisfaction of the underlying balances in
all processes. This may seem artificial, but it is no more artificial than theories based on virtual power, a
paradigm that requires arbitrary variations, [variations] not guaranteed to be consistent with the resulting
evolution equations, granted a constitutive description. The Coleman–Noll procedure makes explicit the
external fields needed to support the ‘virtual processes’ used, and in so doing ensures that these external
fields, whether virtual or not, enter the theory in a thermodynamically consistent manner.”

The free-energy imbalance severely restricts the constitutive equations. To see
this, consider an arbitrary constitutive process and let

g = gradϑ (39.1)

denote the temperature gradient. Then, by (38.1),

ψ̇ = ∂ψ̂(ϑ, g)
∂ϑ

ϑ̇ + ∂ψ̂(ϑ, g)
∂g

· ġ;

186 Cf. (‡) on page 229.
187 (2000, p. 53).
188 Coleman & Noll (1963) introduced this procedure for the study of elastic materials with heat con-

duction and viscosity. Subsequently, the proceedure has been used to restrict constitutive equations
for more general theories of solids and fluids.

232



Thermodynamics and Constitutive Restrictions: The Coleman–Noll Procedure 233

hence, the free-energy imbalance (37.4) is equivalent to the requirement that
(
∂ψ̂(ϑ, g)
∂ϑ

+ η̂(ϑ, g)
)
ϑ̇ + ∂ψ̂(ϑ, g)

∂g
· ġ + 1

ϑ
q̂(ϑ, g) · g ≤ 0 (39.2)

for all temperature fields. Given any point x0 in B and any time t0, it is possible to
find a temperature field such that

ϑ, g, ϑ̇, and ġ (39.3)

have arbitrarily prescribed values at (x0, t0).189 Granted this, the coefficients of ϑ̇
and ġ must vanish, for otherwise these rates may be chosen to violate the inequality
(39.2). We therefore have the following thermodynamic restrictions:

(i) The free energy and the entropy are independent of the temperature gradient.
(ii) The free energy determines the entropy through the entropy relation

η̂(ϑ) = −dψ̂(ϑ)
dϑ

. (39.4)

(iii) The heat flux satisfies the heat-conduction inequality

q̂(ϑ, g) · g ≤ 0 (39.5)

for all (ϑ, g).

We refer to (i) and (ii) as state restrictions. The restriction (iii), which arises on
applying the state restrictions to the constitutively augmented version (39.2) of the
free-energy imbalance (37.4), is referred to as a reduced dissipation inequality.

Proof of the thermodynamic restrictions (i)–(iii) requires finding a temperature field consistent with
the assertion in the sentence containing (39.3). With this in mind, arbitrarily choose: scalar constants
ϑ0 > 0 and α; vector constants g0 and h. We now construct a (strictly positive) temperature field ϑ such
that

ϑ(x0, t0) = ϑ0, ϑ̇(x0, t0) = α,

g(x0, t0) = g0, ġ(x0, t0) = h.
(39.6)

Note first that
ϑ(x, t) = ϑ0 + g0 · (x − x0) + α(t − t0) + (t − t0)h · (x − x0)

satisfies (39.6) but is inadmissible because it does not ensure that the resulting temperature field be strictly
positive. To remedy this, choose, arbitrarily, a scalar constant p such that

0 < p < ϑ0.

Then, we can always find a smooth strictly positive scalar function:0(x) and a scalar function:1(x) such
that

:0(x0) = ϑ0, grad:0(x0) = g0,

grad:1(x0) = h, |:1(x)| <
√

p,

for all x in B. Similarly, we can find a positive scalar function 00(t) and a scalar function 01(t) such that

00(t0) = 0, 0̇0(t0) = α,

01(t0) = 0, 0̇1(t0) = 1, |01(t)| <
√

p

for all t . The field
ϑ(x, t) def= :0(x) +00(t) +:1(x)01(t)

is then strictly positive for all x in B and all t and satisfies (39.6).

189 This assertion, which is intuitively plausible, is proved at the end of this subsection.



40 Consequences of the State Restrictions

A consequence of the state restriction (i), the constitutive relation (38.2) for the
internal energy becomes

ε = ε̂(ϑ)

= ψ̂(ϑ) + ϑ η̂(ϑ)

= ψ̂(ϑ) − ϑ
dψ̂(ϑ)

dϑ
. (40.1)

We now list two important relations typically called Gibbs relations and typ-
ically assumed to hold a priori in conventional discussions of thermodynamics.190

The first Gibbs relation is a direct consequence of the entropy relation; the second
follows from the first and the identity ψ = ε−θη. Stated precisely, the Gibbs rela-
tions assert that in any constitutive process

ψ̇ = −ηϑ̇ and ε̇ = ϑη̇. (40.2)

Note that the second Gibbs relation allows us to rewrite the energy balance (37.2)1
as an entropy balance

ϑη̇ = −divq + q. (40.3)

The temperature-dependent constitutive modulus defined by

c(ϑ) = dε̂(ϑ)
dϑ

(40.4)

is called the specific heat. By (39.4) and (40.1),

c(ϑ) = ϑ
dη̂(ϑ)

dϑ
(40.5)

= −ϑ d2ψ̂(ϑ)
dϑ2 . (40.6)

Thus, if the specific heat satisfies c(ϑ) > 0 for all ϑ , then — as functions of ϑ — the
entropy η̂(ϑ) is strictly increasing and the free energy ψ̂(ϑ) is strictly concave.

190 Cf., e.g., de Groot & Mazur (1962). Here, the Gibbs relations (40.2) arise as a consequence of the
underlying thermodynamic structure.
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Consequences of the State Restrictions 235

Note that, by (37.4) and (40.2)1, the entropy production @ in any constitutive
process has the particular form

@ = −
1
ϑ2 q · gradϑ. (40.7)

We refer to the heat-conduction inequality as strict if

q̂(ϑ, g) · g < 0, if g '= 0, (40.8)

or equivalently, if @ as defined in (40.7) is strictly positive at any point with nonvan-
ishing temperature gradient.



41 Consequences of the Heat-Conduction
Inequality

Let

ϕ(ϑ, g) = q̂(ϑ, g) · g;

then, since ϕ(ϑ, g)≤0 and ϕ(ϑ, 0) = 0,

ϕ(ϑ, g), as a function of g, must have a maximum at g = 0, (41.1)

and, hence,

∂ϕ(ϑ, g)
∂g

∣∣∣∣
g = 0

= 0. (41.2)

Thus, since

∂ϕ(ϑ, g)
∂g

= q̂(ϑ, g) +
(
∂q̂(ϑ, g)
∂g

))

g, (41.3)

that is,

∂ϕ

∂gi
= q̂i + ∂ q̂j

∂gi
g j, (41.4)

it follows that

q̂(ϑ, 0) = 0, (41.5)

and we have an important result: The heat flux vanishes when the temperature gradi-
ent vanishes, independent of the value of the temperature

q = 0 whenever gradϑ = 0. (41.6)
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42 Fourier’s Law

Classical linear theories of heat conduction are based on Fourier’s law

q = −Kg,

with K, the conductivity tensor, symmetric, positive-definite, and constant. We now
establish the sense in which the constitutive equation q = q̂(ϑ, g) is approximated
by Fourier’s law in situations close to a state of uniform temperature ϑ0.

With a view toward expanding q̂(ϑ, g) in a Taylor series about the state (ϑ0, 0),
note that, since, by (41.5), q̂(ϑ, 0) = 0,

∂q̂(ϑ, 0)
∂ϑ

= 0. (42.1)

Further, (41.4) yields

∂2ϕ

∂gi∂gk
= ∂ q̂i

∂gk
+ ∂ q̂j

∂gi
δ jk + ∂2q̂j

∂gi∂gk
g j, (42.2)

and, hence,

∂2ϕ

∂g2

∣∣∣∣
g = 0

= −(K + K)), (42.3)

where K is the constant tensor defined by

K = −∂q̂
∂g

∣∣∣∣
g = 0

. (42.4)

Further, by (41.1) and (42.3), K is positive-semidefinite. Finally, expanding q =
q̂(ϑ, g) in a Taylor series about (ϑ0, 0), we conclude, with the aid of (42.1) and (42.3),
that

q̂(ϑ, g) = −Kg + o(|g|) as g → 0.

Thus, to within terms of o(|g|) as g → 0, the heat flux is given approximately by the
linear constitutive equation

q = −Kg,

with K positive-definite, but not necessarily symmetric. To within this approximation,
the heat flux is therefore independent of temperature.
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238 Fourier’s Law

There is a large literature191 concerning the symmetry of the conductivity tensor K in Fourier’s law
and, in particular, whether there is a sense in which this symmetry follows from basic principles. For
most, but not all, problems of interest and for many, but not all, classes of crystals this question has little
relevance. To begin with, the heat flux enters the local energy balance only through the term

−divq = Kij
∂2ϑ

∂Xi ∂Xj

and hence only through the symmetric part of K.192 Furthermore, in the case of crystals, symmetry ren-
ders K symmetric in the rhombic system, in four classes of the tetragonal system, in the cubic system, and
in seven classes of the hexagonal system.193

Further, the result (28.1)3 for the heat flux — which holds also in the present theory — asserts that
the first two laws (37.1) are invariant under transformations of the form

q → q + ω × gradϑ.

This result has an interesting consequence regarding Fourier’s law

q = −Kgradϑ, (42.5)

a constitutive equation in which K, a constant tensor, represents the thermal conductivity of the material.
Let K+ and K− denote the symmetric and skew parts of K, and let ω denote the axial vector correspond-
ing to K−. Then,

q = −K+ gradϑ − ω×gradϑ ;

thus, dropping the skew part of K would alter neither balance of energy nor the entropy balance, a
fact that renders the basic theory within the body independent of K−. However, boundary conditions
involving the heat flux might still require consideration of K−.

EXERCISES

1. Suppress time as an argument, assume that, at some point x0, the temperature
gradient obeys gradϑ(x0) '= 0, and define

e =
gradϑ(x0)
|gradϑ(x0)|

. (42.6)

(a) Show that, for all sufficiently small h > 0,
ϑ(x0 + he) > ϑ(x0) (42.7)

and, thus, that the point x0 + he is hotter than x0.
(b) Using the heat-conduction inequality (39.5) in the strict form and the defi-

nition (42.6) of e, show that

q(x0) · e ≤ 0. (42.8)

(c) Argue on the basis of (42.7) and (42.8) that heat flows from hot to cold.
2. Establish a counterpart, for a rigid heat conductor, of the decay relation (28.10),

granted the boundary condition (28.7)2.
3. (Project) Determine the consequences of thermocompatibility for a rigid heat

conductor (no deformation or stress) defined by the constitutive equations

ψ = ψ̂(ϑ, gradϑ, gradgradϑ),

η = η̂(ϑ, gradϑ, gradgradϑ),

q = q̂(ϑ, gradϑ, gradgradϑ).

191 Cf. the expositions of Meixner & Reik (1959) and de Groot & Mazur (1962) and the critical
comments of Truesdell (1969).

192 Cf. the second paragraph in petite type on page 238.
193 Cf. the Appendix by Wang in Truesdell (1969).



PART IX

THE MECHANICAL THEORY
OF COMPRESSIBLE AND
INCOMPRESSIBLE FLUIDS

This section discusses the theories of elastic fluids and compressible and incompress-
ible viscous fluids, neglecting thermal effects. These theories are the cornerstone of
classical fluid mechanics and provide a background for a discussion of more modern
theories.
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43 Brief Review

43.1 Basic Kinematical Relations

Kinematical relations central to a discussion of fluids consist of194

(i) the relation

v̇ = v′ + (gradv)v (43.1)

between the acceleration v̇ and the spatial time derivative v′ of the velocity
(§9.2);

(ii) the decomposition

L = gradv = D + W,

D = sym L, W = skw L
(43.2)

of the velocity gradient L = gradv into a symmetric stretching tensor D and a
skew spin tensor W;

(iii) the decomposition

D = D0 + 1
3 (trD)1, trD0 = 0, (43.3)

of the stretching D into a deviatoric part D0 and a spherical part 1
3 (trD)1.

(iv) the relation

W = 1
2 ω× (43.4)

between the spin and the vorticity ω = curl v.

43.2 Basic Laws

Fluids do not possess natural reference configurations, and for that reason it is most
convenient to work with the basic laws — balance of mass, balance of momentum,
and the free-energy imbalance — in spatial form. We now review these laws and
summarize relevant frame-change relations.195

194 Cf. (2.48), (9.8), (11.2), (11.3), and (17.2).
195 Cf. (18.5), (18.7), (19.34), (19.31), (20.16), and (29.7).
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In spatial form, the mechanical laws balance of mass, balance of linear momen-
tum, and balance of moments are196

ρ̇ + ρdivv = 0,

ρv̇ = divT + b0,

T = T).





(43.5)

As the theory under consideration is mechanical,197 we take as our basic ther-
modynamical law the free-energy imbalance

ρψ̇ − T : D = −δ ≤ 0. (43.6)

43.3 Transformation Rules and Objective Rates

The tensor fields most relevant to our discussion — namely L, D, W, and T — trans-
form as follows under a change of frame:

L∗ = QLQ) + Q̇Q),

D∗ = QDQ),

W∗ = QWQ) + Q̇Q),

T∗ = QTQ).

(43.7)

The other relevant fields, ψ , p, and ρ, being scalars, are invariant under a change of
frame.

Given a spatial vector field g, we recall from (20.47) that its corotational, covari-
ant, and contravariant rates are respectively defined by

◦g = ġ − Wg,

,
g = ġ + L)g,

4
g = ġ − Lg.






(43.8)

Referring to (13.4), we note that g convects like a tangent if and only if ġ = Lg.
Similarly, referring to (13.6), we note that g convects like a normal if and only if
ġ = −L)g. Thus, by (43.8)2,3

,
g = 0 if and only if g convects like a normal,

4
g = 0 if and only if g convects like a tangent.

(43.9)

196 Cf. (18.5), (19.34), and (19.31).
197 The role of a free-energy imbalance in a mechanical theory is discussed in §29. The local imbalance

(43.6) is derived in the steps leading to (29.7).
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EXERCISE

1. Show that the corotational, covariant, and contravariant rates of the vorticity
ω = curl v are given by

◦
ω = ω̇,

,
ω = ω̇ + Dω,

4
ω = ω̇ − Dω,






(43.10)

and provide a geometrical interpretation of (43.10)1.



44 Elastic Fluids

A simple but important model for the isothermal behavior of a gas stems from the
observation that a gas exhibits elasticity in its response to compression. On the basis
of this observation, the model starts from a constitutive assumption asserting that
the stress be a pressure that depends upon density.198 In discussing the constitutive
assumptions underlying that model, we find it most convenient to start with the
Cauchy stress T rather than with a pressure.

44.1 Constitutive Theory

An elastic fluid is a homogeneous body governed by constitutive equations giving
the specific free-energy and stress when the density is known:

ψ = ψ̂(ρ),

T = T̂(ρ).
(44.1)

The specific free-energy ψ is measured per unit mass, while the density ρ and the
Cauchy stress T are measured per unit volume and per unit area in the deformed
configuration; thus,199

(‡) the constitutive equations (44.1) of an elastic fluid are independent of the choice
of reference configuration.

Constitutive theories for fluids typically share property (‡). As an illustration of
this property: if you pour water out of a pitcher into a glass, it shows no tendency to
return to the pitcher.

44.2 Consequences of Frame-Indifference

Frame-indifference severely restricts the equation (44.1)2 for the stress, which is the
sole field in the constitutive relations (44.1) not invariant under a change of frame.

198 The simplest model of a fluid is the perfect fluid, which is both incompressible and inviscid. Despite
its rudimentary nature, this model provides a remarkable amount of insight regarding fluid flow.
Within our framework, a perfect fluid is most naturally viewed as the inviscid limit of an incom-
pressible, viscous fluid. We therefore postpone treatment of perfect fluids until §46.

199 This stands in contrast to what occurs for an elastic solid; cf. (48.1)
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In fact, the stress, being frame-indifferent, transforms according to (43.7)3:

T∗ = QTQ).

Thus, since ρ is invariant, the stress in the new frame must satisfy

T∗ = T̂(ρ),

so that, to be frame-indifferent, the constitutive equation for the stress must satisfy

T̂(ρ) = QT̂(ρ)Q)

for all rotations Q and any value of ρ. Thus, for each fixed ρ, T̂(ρ) must be a spherical
tensor,200 and hence the stress reduces to a pressure

T = −p1, p = p̂(ρ). (44.2)

Trivially, by (44.2),

T = T) and T : D = −ptrD. (44.3)

By (44.2), the linear momentum balance (43.5)2 simplifies to

ρv̇ = −grad p + b0. (44.4)

Further, by (44.3)1, the moment balance (43.5)3 is satisfied and, bearing in mind the
mass balance (43.5)1 and that ρ cannot be negative, the free-energy imbalance (43.6)
becomes

ρψ̇ − pρ̇
ρ

= −δ ≤ 0. (44.5)

44.3 Consequences of Thermodynamics

With a view toward applying the Coleman–Noll procedure, consider a constitutive
process for the fluid, which here consists of

(C1) a motion χ relative to some time t0;
(C2) a field ρ(x, t) for the specific volume defined for all x in Bt and all time t and

consistent with balance of mass (43.5)1;
(C3) fields ψ(x, t) and p(x, t) for the specific free energy and pressure defined by

the constitutive relations (44.1)1 and (44.2).

Note that in the definition of a constitutive process we do not require that the density
at t0 be prescribed; such an initial condition, while necessary for the prescription of
a well-posed initial-value problem for the fluid, is not intrinsic to the fluid itself.

Given an arbitrary constitutive process, the local force balance (44.4) gives the
conventional body force

b0 = grad p + ρv̇ (44.6)

needed to support the process. We presume that the body force is arbitrarily
assignable; thus, by (44.3), the momentum balance law in no way restricts the class
of processes the material may undergo. Further, balance of mass is automatically
satisfied by virtue of (C2). On the other hand, unless the constitutive equations are
suitably restricted, not all constitutive processes will be compatible with the laws
of thermodynamics as embodied in the free-energy imbalance in the reduced form
(44.5). We require that all constitutive processes be consistent with the free-energy
imbalance, here in the form (44.5).

200 Cf., e.g., Gurtin (1981) — the Corollary on p. 13.
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Thus, choose an arbitrary constitutive process. Then, by (44.1)1,

ψ̇ = dψ̂(ρ)
dρ

ρ̇;

therefore, appealing to (44.2), we see that satisfaction of (44.5) is equivalent to the
requirement that all constitutive processes be consistent with the inequality

(
− ρ2 dψ̂(ρ)

dρ
+ p̂(ρ)

)
ρ̇ ≤ 0. (44.7)

Given any spatial point and any time, it is possible to find a constitutive process such
that

ρ and ρ̇ have arbitrarily prescribed values at that point and time. (44.8)

Postponing, for the moment, the verification of (44.8), we note that, granted
(44.8), the coefficient of ρ̇ must vanish, for otherwise ρ̇ may be chosen to violate the
inequality (44.7). We therefore have the following thermodynamic restrictions:

(i) The specific free-energy determines the pressure through the pressure relation

p̂(ρ) = ρ2 dψ̂(ρ)
dρ

. (44.9)

(ii) The dissipation (44.5) vanishes in smooth motions201

δ = 0. (44.10)

Granted (i), the result (ii) is a direct consequence of (44.5). The verification of
(i) is not so simple, as it requires establishing (44.8). In this regard, the result (17.43)
represents a motion χ on all space for all time, a motion that has constant velocity
gradient L and that uses the configuration at time t0 as reference. This solution is
valid for any choice of the tensor L. In view of (43.5)1, the density ρ associated with
this motion satisfies

ρ̇ + θρ = 0, θ = trL,

and — restricting attention to spatially constant ρ — must have the specific form

ρ(t) = ρ0e−θ(t−t0).

Since the constant tensor L may be arbitrarily chosen, we may consider θ to be an
arbitrary scalar constant; thus, since the scalar ρ0 may also be arbitrarily chosen, we
have a motion with the property that, at time t0,

ρ(t0) = ρ0, ρ̇(t0) = −ρ0θ ;

hence ρ(t) and ρ̇(t) may be arbitrarily specified at t = t0. This completes the verifi-
cation of the result (i).

Note that, as a consequence of the pressure relation (44.9), the constitutive
equation for the specific free-energy may be determined by quadrature.

44.4 Evolution Equations

Consider the flow of an elastic fluid in an inertial frame. The basic equations consist
of the balances (43.5)1 and (43.5)2 for mass and linear momentum supplemented by

201 Shock waves in elastic fluids generally dissipate energy, a phenomenon that does not contradict (ii),
since such waves render the resulting flow nonsmooth. Shock waves are discussed in §32.



44.4 Evolution Equations 247

the constitutive relation (44.2)2 for the pressure

ρ̇ + ρdivv = 0,

ρv̇ = −grad p + b0, p = p̂(ρ).
(44.11)

Using (43.1), these equations have the alternative form

ρ′ + v · gradρ + ρdivv = 0,

ρv′ + ρ(gradv)v = −grad p + b0, p = p̂(ρ).
(44.12)

The quantity

α(ρ) =

√
d p̂(ρ)

dρ
(44.13)

is called the wave speed.202 If

α(ρ) > 0 (44.14)

for all ρ > 0, then (44.11) (or (44.12)) constitutes a nonlinear hyperbolic system for
ρ and v and is generally difficult to solve, as solutions may not be smooth.203

To derive some basic properties of solutions, note that, by (44.9),

grad p
ρ

= grad
(

p
ρ

)
− pgrad

1
ρ

= grad
(

p
ρ

)
+ dψ̂(ρ)

dρ
gradρ

= grad
(
ψ + p

ρ

)
. (44.15)

Thus, assuming that the body force is conservative with potential β in the sense that

b0 = ρ gradβ (44.16)

with β a spatial scalar field, we may rewrite (44.11)2 in the form

v̇ = −grad
(
ψ + p

ρ
− β

)
. (44.17)

The field ψ + p/ρ is referred to as the specific enthalpy. A consequence of (44.17)
is that

curl v̇ = 0

and we have the important result: In the motion of an elastic fluid under a conser-
vative conventional body force, the acceleration is the gradient of a potential. Thus,
granted this, we may conclude from the results of Lagrange and Cauchy on page 118
and Kelvin on page 120, each labeled by a (‡), that if the acceleration is the gradient
of a potential, then: (a) the motion preserves circulation, and (b) a flow that is once
irrotational is always irrotational.

Consider next a steady flow as defined by the requirement that both the motion
and the density be steady; thus in a steady flow

v′ = 0, ρ ′ = 0,

and Bt is independent of t , so that the flow region, B0 say, is fixed.204

202 Cf., e.g, Gurtin (1981, pp. 131–133).
203 Cf. Footnote 201.
204 Cf. §17.6.
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For a steady flow, (17.7) yields

v̇ = 1
2 grad(|v|2) + ω × v,

and hence, by (44.17),

1
2 grad(|v|2) + ω × v = −grad

(
ψ + p

ρ
− β

)
. (44.18)

Thus, for

ϕ
def= ψ + p

ρ
+ 1

2 |v|2 − β,

it follows that

gradϕ = 0 when ω = 0. (44.19)

Next, bear in mind that the field ρ is steady, so that, since ψ = ψ̂(ρ) and p = p̂(ρ),
p and ψ are also steady. Hence, ϕ is steady. Thus, if we take the inner product of
(44.18) with v and use (17.35), we arrive at the conclusion

ϕ̇ = 0. (44.20)

Therefore, ϕ is constant on streamlines. Further, as a consequence of (44.19) and
(44.20), if the flow is irrotational, then ϕ is identically constant. These results are
generally referred to as Bernoulli’s theorem.

The results of this section may be summarized as follows:

Properties of Elastic Fluids Consider the flow of an elastic fluid under a conser-
vative conventional body force with potential β.

(i) If the flow is once irrotational, then it is always irrotational.
(i) The flow preserves circulation.

(ii) If the flow is steady, then the field

ψ + p
ρ

+ 1
2 |v|2 − β (44.21)

is constant on streamlines. If, in addition, the flow is irrotational, then (44.21) is
constant everywhere and for all time.

EXERCISES

1. Show that, for an elastic fluid, the specific vorticity ζ = ω/ρ is transported ac-
cording to ζ̇ = Lζ = Dζ or, equivalently,

4
ζ = 0

and thus, by (43.9)2, convects like a tangent.
2. Consider an elastic fluid subject to a conservative conventional body force. As-

suming that the flow is irrotational at some time, show that the covariant rate of
W obeys

,

W = Ẇ + WL + L)W = 0.

Further, using (20.37), show the material time-derivative of the covariant com-
ponents of W relative to any basis {fi} convecting with the body vanish:

Ẇi j = ˙fi · Wf j ≡ 0 (44.22)

and thus conclude that the components of W relative to a basis embedded in the
material do not change with time.
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3. Consider a flow of an elastic fluid that is close to a given rest state with density
ρ̄; that is, introducing characteristic length and time scales L and T , assume that

|ρ − ρ̄|
ρ̄

= O(h),
L|gradρ|

ρ̄
= O(h),

T |v|
L

= O(h), and T |gradv| = O(h),

with h 6 1. Assume further that (44.14) is satisfied and define the wave speed
c2 = α(ρ̄). Show that when terms of o(h) are neglected, the system (44.12) re-
duces to the classical wave equation

ρ ′′ = c2,ρ,

with , the spatial Laplacian.



45 Compressible, Viscous Fluids

The elastic fluid just discussed is inviscid. In contrast to such an idealized model,
fluids generally exhibit internal friction that retards the relative motion of fluid par-
ticles. A local measure of this relative motion is the velocity gradient L = gradv,
and we now consider constitutive relations in which the L joins the density ρ as an
independent constitutive variable.

45.1 General Constitutive Equations

By a compressible viscous fluid205 we mean a homogeneous body governed by con-
stitutive equations of the form

ψ = ψ̂(ρ, L),

T = T̂(ρ, L).
(45.1)

The response functions ψ̂ and T̂ are defined on all pairs (ρ, L) with ρ > 0 and L a
tensor, and we require that T̂ = T̂) to ensure that T be symmetric in all constitutive
processes.

Note that, as for an elastic fluid, the constitutive relations (45.1) are independent
of the choice of reference configuration.

While it might seem unnatural to include the variable L (or even the stretching
D) as an independent variable in the constitutive relation for the specific free-energy,
we believe it more reasonable to allow for such a dependence at the outset rather
than to rule it out by fiat. In fact, an energetic dependence on D was shown by
Dunn & Fosdick (1974) to arise in certain types of Rivlin–Ericksen fluids and is
intrinsic to the Navier–Stokes-α model for turbulence developed by Foais, Holm,
& Titi (2001).

The constitutive equations (45.1) are therefore consistent with the principle of
equipresence as discussed by Truesdell & Toupin (1960, §293) and Truesdell
& Noll (1965, §96).206 This principle asserts that “a quantity present as an
independent variable in one constitutive equation should be so present in all, un-
less . . . its presence contradicts some law of physics or rule of invariance.” Accord-
ing to Truesdell and Noll, “This principle forbids us to eliminate any of the ‘causes’
present from interacting with any other as regards a particular ‘effect.’ It reflects on
the scale of gross phenomena the fact that all observed effects result from a common

205 The term “compressible simple fluid without memory” might be more appropriate. The term “com-
pressible fluid” as used here connotes only standard inviscid and viscous fluids.

206 Cf. the paragraph in petite type on page 230.
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structure such as the motions of molecules.” Physics, not caprice, should rule out in-
teractions.

45.2 Consequences of Frame-Indifference

The fields ψ and ρ, being scalars, are invariant under a change of frame, while the
tensor fields T and L transform according to (43.7)1,4; thus, by (36.1) and since ψ∗ =
ψ and ρ∗ = ρ, the constitutive relations (45.1) must transform according to

ψ = ψ̂(ρ, QLQ) + Q̇Q)),

QTQ)

︸ ︷︷ ︸
T∗

= T̂(ρ, QLQ) + Q̇Q)

︸ ︷︷ ︸
L∗

). (45.2)

Frame-indifference than requires that the response functions ψ̂ and T̂ satisfy

ψ̂(ρ, L) = ψ̂(ρ, QLQ) + Q̇Q)),

QT̂(ρ, L)Q) = T̂(ρ, QLQ) + Q̇Q)),
(45.3)

at each time under any change of frame.
Choose an arbitrary skew tensor !0 and let Q(t) be the unique solution of the

initial-value problem

Q̇(t) = !0Q(t),

Q(0) = 1.

Then, as discussed in §114, Q(t) is a rotation at each t , and since (45.3) must hold
for all such Q(t), if we apply this choice of Q(t) at t = 0, we find that

ψ̂(ρ, L) = ψ̂(ρ, L + !0),

T̂(ρ, L) = T̂(ρ, L + !0),

or equivalently, since L = D + W, with D the stretching and W the spin,

ψ̂(ρ, L) = ψ̂(ρ, D + W + !0),

T̂(ρ, L) = T̂(ρ, D + W + !0).
(45.4)

These relations must hold for all skew tensors !0 and all (ρ, L) in the domain of the
response functions. Fix (ρ, L) (and hence D and W); the choice

!0 = −W

in (45.4) then yields

ψ̂(ρ, L) = ψ̂(ρ, D),

T̂(ρ, L) = T̂(ρ, D).
(45.5)

The constitutive relations for a compressible viscous fluid thus cannot include the
spin as an independent constitutive variable.

Finally, taking Q in (45.3) to be constant yields the additional restriction

ψ̂(ρ, D) = ψ̂(ρ, QDQ)),

QT̂(ρ, D)Q) = T̂(ρ, QDQ)).
(45.6)
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Summarizing, we have the following restrictions imposed by material frame-
indifference:

(i) the dependence of the specific free-energy and stress on the velocity gradient must
be through the stretching D

ψ = ψ̂(ρ, D),

T = T̂(ρ, D);
(45.7)

(ii) the response functions ψ̂ and T̂ must be isotropic (that is (45.6) must hold for all
rotations Q).

The function T̂(ρ, 0) represents the stress in the fluid in the absence of flow,
while

T̂vis(ρ, D) = T̂(ρ, D) − T̂(ρ, 0),

which might be termed the viscous stress, represents that part of the stress due to
flow. By (45.6),

QT̂(ρ, 0)Q) = T̂(ρ, 0),

so that, for each ρ, T̂(ρ, 0) is an isotropic tensor. Thus T̂(ρ, 0) must have the specific
form207

T̂(ρ, 0) = − p̂eq(ρ)1

with p̂eq(ρ) a scalar function. We refer to p̂eq(ρ) as the equilibrium pressure. Sum-
marizing, we have the decomposition

T̂(ρ, D) = − p̂eq(ρ)1 + T̂vis(ρ, D), (45.8)

with

T̂vis(ρ, D) an isotropic function. (45.9)

The total pressure p in the fluid is defined by

p = − 1
3 trT

and is given by

p = p̂eq(ρ) − 1
3 tr T̂vis(ρ, D). (45.10)

The total pressure p in a compressible viscous fluid therefore includes both an equi-
librium contribution p̂eq(ρ) and a dynamical contribution − 1

3 tr T̂vis(ρ, D) generated
by internal friction and, therefore, of a dissipative nature.

Not all workers agree with our use of frame-indifference as expressed in the requirement that

(FI) constitutive relations be invariant under all changes in frame.208

207 Cf. Footnote 200.
208 Cf. Müller (1972) and Edelen & McLennan (1973), who noted that equations for the stress and

heat flux, in a moderately rarefied gas, derived as approximations to the kinetic theory are — when
expressed relative to a general frame — frame-dependent starting with the third approximation
(i.e., the Burnett (1932) approximation). In deciding whether or not we should enlarge the struc-
ture upon which our book is based, we agree with Truesdell (1976) that kinetic theory is not a
continuum theory and that conclusions based on kinetic theory, and especially those involving ma-
jor approximations, should not necessitate a complete reworking of the axiomatic foundation of
continuum mechanics.
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Specifically, Murdoch (2006) argued that — granted the underlying frame is inertial — frame-
indifference should require that constitutive relations be invariant, not under all changes in frame (21.1),
but only under Galilean changes in frame as defined by the transformation law

x∗ = x0 + (t − t0)v0 + Q0(x − o)

with v0 a constant translational velocity and Q0 a constant rotation. Under Galilean invariance the con-
stitutive relation (45.1)1, written for convenience in the form

T = T̂(ρ, L) = T̂(ρ, D, W),

need only be isotropic in the sense that

Q0T̂(ρ, D, W)Q)
0 = T̂(ρ, Q0DQ)

0 , Q0WQ)
0)

for all rotations Q0. Thus in contrast to the result (45.7)1, which asserts that T cannot depend on the spin
W,

• Galilean invariance allows for spin-dependent constitutive relations for the stress.

While physically relevant theories that incorporate spin dependence often arise from approximation
and averaging schemes,209 no continuum-based theory of which we are aware allows for spin-dependence
in the constitutive relation for the stress in a fluid.210 And a similar assertion applies to solids.

Were we to replace the hypothesis (FI) by the requirement of Galilean invariance together with
the stipulation that constitutive relations be independent of spin, then the theories we discuss would be
unchanged; but such a replacement would becloud the far reaching implications of (FI), and it would
grant to Galilean invariance an undeserved status.

We believe that the hypothesis (FI) is at the level of our tacit hypothesis that there exist an inertial
frame; it leads, using only mathematics, to theories that allow us to “face, explain, and in varying amount
control, our daily environment.”211 When comparing continuum mechanics to other physical theories
it is essential to realize that all inertial effects in continuum mechanics emanate from the single inertial
body-force term −ρv̇; for that reason constitutive equations, which are independent of inertial effects,
seem more naturely based on the requirement (FI) rather than Galilean invariance.

Our use of (FI) is not limited to obtaining restrictions on constitutive relations. We use it in §22: (i)
to establish an important relation between a fundamental balance law for power and the basic balance
laws for forces and moments, and (ii) to show that this power balance underlies a discussion of the
principle of virtual power, a principle that serves as a precursor to a variational statement of the local
force balance.

45.3 Consequences of Thermodynamics

Consider a constitutive process for the fluid, which here consists of a motion χ rel-
ative to some time t0, a density ρ consistent with balance of mass (43.5)1, and fields
ψ and T for the specific free-energy and stress defined by the constitutive relations
(43.6). (Given the motion χ , F = ∇χ and we may compute the velocity gradient by
L = ḞF−1; the field D is then the symmetric part of L.) Arguing as we did for an elas-
tic fluid in the paragraph containing (44.6), we conclude that, unless the constitutive
equations are suitably restricted, not all constitutive processes will be compatible
with the free-energy imbalance in the form (43.6); we therefore require that all con-
stitutive processes be consistent with (43.6). By the chain-rule and (43.6)1, given any
constitutive process,

ψ̇ = ∂ψ̂(ρ, D)
∂ρ

ρ̇ + ∂ψ̂(ρ, D)
∂D

: Ḋ,

209 Aside from expressions for the stress and heat flux that arise from approximations applied to the
kinetic theory of gases, second-order closure models for stresses and heat fluxes arising in Reynolds-
averaged turbulence models also display spin dependence; cf., e.g., Lumley (1970, 1983), Speziale
(1998), Weiss & Hutter (2003), and Gatski & Wallin (2004).

210 Of course, constitutive relations involving spin via a frame-indifferent rate such as the corotational
rate (20.24) are allowed.

211 The passage in quotes is taken from Truesdell & Noll (1965, p. 3).
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and, hence, this process satisfies the free-energy imbalance (43.6) if and only if

ρ

(
∂ψ̂(ρ, D)

∂ρ
ρ̇ +

∂ψ̂(ρ, D)
∂D

: Ḋ
)

− T̂(ρ, D) : D ≤ 0. (45.11)

Next, by (45.8),

T̂(ρ, D) : D = − p̂eq(ρ)1 : D + T̂vis(ρ, D) : D,

= − p̂eq(ρ)trD + T̂vis(ρ, D) : D, (45.12)

so that, (43.5)1, (45.11) becomes

ρ
∂ψ̂(ρ, D)
∂D

: Ḋ +
(

− ρ2 ∂ψ̂(ρ, D)
∂ρ

+ p̂eq(ρ)
)

trD − T̂vis(ρ, D) : D ≤ 0. (45.13)

This inequality is to hold for all motions and all density fields consistent with the
mass balance (43.5)1.

Given any point of the body and any time, it is possible to find a motion such
that, at that point and time

ρ, D, and Ḋ have arbitrarily prescribed values. (45.14)

Granted assertion (45.14) — whose proof we postpone — it is clear that, since Ḋ
appears linearly in (45.13), we can choose its value to violate the inequality unless
its coefficient vanishes. Thus ∂ψ̂/∂D ≡ 0 and the specific free-energy is independent
of D; the inequality (45.13) therefore takes the form

(
− ρ2 dψ̂(ρ)

dρ
+ p̂eq(ρ)

)
trD − T̂vis(ρ, D) : D ≤ 0. (45.15)

Fix ρ. Since (45.15) must hold for all symmetric tensors D, we may then, without
loss in generality, replace D by aD with a > 0. Dividing by a, we are thus left with
the inequality

(
− ρ2 dψ̂(ρ)

dρ
+ p̂eq(ρ)

)
trD − T̂vis(ρ, aD) : D ≤ 0.

Since T̂vis(ρ, 0) = 0, if we let a → 0, we find that
(

− ρ2 dψ̂(ρ)
dρ

+ p̂eq(ρ)
)

trD ≤ 0,

and since this must hold for all D, we find that p̂eq(ρ) = ρ2dψ̂(ρ)/dρ. Moreover, it
is clear from (29.3)2 that the left side of (45.15) is the negative of the dissipation δ.
We therefore have the following thermodynamic restrictions:

(i) The specific free-energy depends only on the specific volume and determines the
equilibrium pressure through the pressure relation

p̂eq(ρ) = ρ2 dψ̂(ρ)
dρ

. (45.16)

(ii) The viscous stress satisfies the reduced dissipation inequality

T̂vis(ρ, D) : D ≥ 0 (45.17)

for all (ρ, D). In fact, T̂vis(ρ, D) : D represents the dissipation δ in any motion.
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Thus, as is true for an elastic fluid, given the constitutive relation for the pres-
sure, the specific free energy may be determined by quadrature.

We now turn to the verification of (45.14). In this regard, the paragraph con-
taining (17.42) asserts the existence of a motion χ on all space for all time, a motion
that uses the configuration at time t0 (t0 arbitrary) as reference and that has spatially
constant velocity gradient L(t). This solution is valid for any choice of the tensor
function L(t); hence we may specify D and Ḋ as arbitrary symmetric tensors at, say
t0, and, since the only constraint on the density ρ is that it satisfy the mass balance
(43.5)1, we may, without loss in generality, specify its initial value ρ(t0) arbitrarily.
Since the initial time t0 is arbitrary, the verification of (45.14) is complete.

45.4 Compressible, Linearly Viscous Fluids

Many real fluids under a large class of operating conditions are linearly viscous in
the sense that the viscous stress T̂vis is linear in D. Since T̂vis is, by (45.9), an isotropic
function, the Representation Theorem for Isotropic Linear Tensor Functions in Ap-
pendix 113.3 yields212

T̂vis(ρ, D) = 2µ(ρ)D + λ(ρ)(trD)1. (45.18)

In view of (43.3), the deviatoric part D0 of the stretching D = D0 + 1
3 (trD)1 obeys

trD0 = 0 and D : D0 = |D0|2.

Thus, by (45.17), (45.18), and (45.20),

T̂dis(ρ, D) : D = (2µ(ρ)D + λ(ρ)(tr D)1) : (D0 + 1
3 (trD)1)

= 2µ(ρ)|D0|2 + (λ(ρ) + 2
3µ(ρ))(tr D)2

= 2µ(ρ)|D0|2 + κ(ρ)(trD)2

≥ 0, (45.19)

where

κ = λ+ 2
3µ. (45.20)

The inequality (45.19) must hold for all symmetric D. Choosing D = 1 (so that
trD = 3 and D0 = 0) yields 2µ + 3λ ≥ 0; choosing D = e ⊗ f + f ⊗ e with e and f
orthonormal (so that trD = 0 and |D0|2 = 2) yields µ ≥ 0. Thus,

µ ≥ 0 and κ ≥ 0. (45.21)

Next, since

tr T̂vis(ρ, D) = κ(ρ)trD,

the constitutive equation (45.10) for the fluid pressure becomes

p = p̂eq(ρ)1 − κ(ρ)trD. (45.22)

The constitutive equation for the stress in a compressible, linearly viscous fluid
therefore has the form

T = −( p̂eq(ρ) − κ(ρ)trD)1 + 2µ(ρ)D0. (45.23)

212 Cf. (113.9).



256 Compressible, Viscous Fluids

The coefficient µ in (45.23), called the shear viscosity,213 characterizes the re-
sistance of the fluid to shear. The coefficient κ in (45.23), called the dilatational vis-
cosity,214 characterizes the nonequilibrium response of the fluid to volume changes.
For gases that are rarefied enough so that intermolecular forces can be neglected it
is common to invoke the Stokes (1845) relation κ = 0, that is,

λ = − 2
3µ. (45.24)

Tisza (1942) shows that (45.24) holds for monatomic gases but that, for polyatomic
gases and liquids, κ generally exceeds µ (i.e., λ > 1

3µ).215

45.5 Compressible Navier–Stokes Equations

In view of (45.23),

divT = −grad p + 2div(µ(ρ)D0), p = p̂eq(ρ) − κ(ρ)trD,

and the balances (43.5)1 and (43.5)2 for mass and linear momentum yield the system

ρ̇ + ρdivv = 0,

ρv̇ = −grad p + 2div(µ(ρ)D0) + b0, p = p̂eq(ρ) − κ(ρ)trD.
(45.25)

These equations are generally referred to as the compressible Navier–Stokes
equations.

For certain gases and liquids, the shear viscosity µ shows strong dependence on
the density.216 However, it happens often that the differences in density are small
enough to neglect dependence of the viscosities on the density. Then, since

2divD = div(gradv + (gradv)))

= ,v + graddivv, (45.26)

the flow equation (45.25)2 reduces to

ρv̇ = −grad p + µ,v + λgraddivv + b0, p = p̂eq(ρ), (45.27)

where , denotes the spatial Laplacian. Even when the viscosities are constant, the
combined effects of compressibility and viscosity render the analysis of the com-
pressible Navier–Stokes equations extremely challenging.

45.6 Vorticity Transport Equation

Assume now that the shear and bulk viscosities are constant and that the body force
is conservative with potential β. As with an elastic fluid,217

grad p
ρ

= grad
(
ψ + p

ρ

)
.

213 µ is also referred to as the dynamic viscosity.
214 κ is also referred to as the bulk viscosity.
215 See also the review of Karim & Rosenhead (1952) and the incisive appraisal of the status of the

Stokes relation by Truesdell (1954).
216 For gases, see Carr, Kobayashi & Burrows (1954), whose experiments demonstrate the strong

pressure-dependence of the shear viscosity of hydrocarbons; in view of the pressure relation (45.16),
dependence of µ on the equilibrium pressure is tantamount to dependence on the density. For
liquids, see van der Gulik (1997), whose experiments demonstrate the strong density dependence
of the shear viscosity of liquified carbon dioxide.

217 Cf. (44.15).
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Thus, (45.27) can be written as

v̇ = −grad
(
ψ + p

ρ
− β + λgraddivv

)
+ µ,v

ρ
.

Computing the curl of this relation and making use of (3.20)9 now results in a
nonzero source of vorticity,

curl v̇ = µ curl
(

,v
ρ

)

= µ

(,ω

ρ
− 1
ρ2 gradρ × ,v

)
,

and, by (17.9) and (43.10)3, leads to the following equation for the transport of
vorticity:

4
ω + (divv)ω = µ

(,ω

ρ
− 1
ρ2 gradρ × ,v

)
. (45.28)

EXERCISE (PROJECT)

1. Consider a compressible, heat conducting, viscous fluid defined by the constitu-
tive relations

ψ = ψ̂(ρ,ϑ),

η = η̂(ρ,ϑ),

T = T̂(ρ,ϑ, L),

q = q̂(ρ,ϑ, g).

(45.29)

(a) Show as a consequence of frame-indifference that the constitutive relation
for the stress must take the form

T = T̂(ρ,ϑ, D)

and that this relation and the relation for q are isotropic:

QT̂(ρ,ϑ, D)Q) = T̂(ρ,ϑ, QDQ)), Qq̂(ρ,ϑ, g) = q̂(ρ,ϑ, Qg),

for all rotations Q. Show that the constitutive relation for the stress has the
decomposition

T̂(ρ,ϑ, D) = − p̂eq(ρ,ϑ)1 + T̂vis(ρ,ϑ, D), with T̂vis(ρ,ϑ, 0) = 0,

and discuss the physical meaning of the individual terms.
(b) Use the Coleman–Noll procedure in conjunction with the free-energy im-

balance (27.18) to show that

p̂eq(ρ,ϑ) = ρ2 ∂ψ̂(ρ,ϑ)
∂ρ

, η̂(ρ,ϑ) = −∂ψ̂(ρ,ϑ)
∂ϑ

,

T̂vis(ρ,ϑ, D) : D ≥ 0, q̂(ρ,ϑ, g) · g ≤ 0.

(45.30)

Show that the total pressure defined by p = − 1
3 trT is given by

p = p̂eq(ρ,ϑ) − 1
3 tr T̂vis(ρ,ϑ, D)

and discuss the meaning of this relation.
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(c) Define the equilibrium pressure peq by

peq = p̂eq(ρ,ϑ)

and establish the Gibbs relations

ψ̇ =
peq

ρ2 ρ̇ − ηϑ̇, ε̇ =
peq

ρ2 ρ̇ + ϑη̇,

the Maxwell relation
∂ p̂eq(ρ,ϑ)

∂ϑ
= −ρ2 ∂η̂(ρ,ϑ)

∂ρ
,

and the identity

p̂eq(ρ,ϑ) = ϑ
∂ p̂eq(ρ,ϑ)

∂ϑ
+ ρ2 ∂ε̂(ρ,ϑ)

∂ρ
.

Show that the energy balance (26.8) may be written as an entropy balance

ρϑη̇ = −divq + q + Tvis : D.

(d) The constitutive modulus defined by

c = ĉ(ρ,ϑ) = ∂ε̂(ρ,ϑ)
∂ϑ

is called the specific heat at constant volume. Show that

ĉ(ρ,ϑ) = ϑ
∂η̂(ρ,ϑ)
∂ϑ

= −ϑ ∂
2ψ̂(ρ,ϑ)
∂ϑ2 ,

∂ ĉ(ρ,ϑ)
∂ρ

= − ϑ

ρ2

∂2 p̂eq(ρ,ϑ)
∂ϑ2 ,

and that the energy balance equation may be written in the form

ρcϑ̇ = Tvis : D − ϑ
∂peq(ρ,ϑ)

∂ϑ
trD − divq + q.

(e) Assume that the fluid is linearly viscous in the sense that the viscous stress
T̂vis(ρ,ϑ, D) is linear in D. In this case show that

T̂vis(ρ,ϑ, D) = 2µ(ρ,ϑ)D + λ(ρ,ϑ)(tr D)1,

or equivalently

T̂vis(ρ,ϑ, D) = 2µ(ρ,ϑ)D0 + κ(ρ,ϑ)(tr D)1,

with µ ≥ 0, κ = λ+ 2
3µ ≥ 0.

(f) Assume that the heat flux is linear in the temperature gradient

q̂(ρ,ϑ, g) = −k(ρ,ϑ)g,

where k(ρ,ϑ) ≥ 0 is the thermal conductivity of the material. Show that
the balances of mass, linear momentum, and energy yield the partial-
differential equations

ρ̇ + ρdivv = 0,

ρv̇ = −grad peq + div(µgrad v) + div(µ(grad v))) + grad (λdivv) + b0,

ρcϑ̇ = 2µ|D0|2 + κ(trD)2 − ϑ
∂peq

∂ϑ
trD + div(kgradϑ) + q.



46 Incompressible Fluids

Incompressibility is a constraint on the class of motions a body may undergo and
its incorporation into the theory requires a modified framework, chiefly because the
fluid pressure p = − 1

3 trT expends no power.

46.1 Free-Energy Imbalance for an Incompressible Body

An incompressible body is one for which only isochoric motions are possible, a re-
quirement that manifests itself in the constraint218

divv = 0. (46.1)

Balance of mass (18.5) therefore yields

ρ̇ = 0 (46.2)

in all motions and the mass density ρ — when expressed referentially — is inde-
pendent of time.219 Here, we restrict attention to situations for which the density at
some (and hence every) time is independent of the material point in question, so
that

ρ ≡ constant. (46.3)

This last assumption excludes from consideration applications such as oceanic and
mantle convection where spatial variations of the density are important.

The essential change in the theory induced by the constraint (46.1) lies in the
form of the stress power T : D and, hence, in the form of the internal power220

I(P) =
∫

Pt

T : D dv.

Indeed, using (2.48) to decompose T into a deviatoric (i.e., traceless) part and a
pressure p through221

T = −p1 + T0, (46.4)

218 Cf. the results concerning isochoric motions in §16.
219 Alternatively, the mass density is constant on particle paths.
220 Cf. (19.42).
221 For an incompressible, viscous fluid, the deviatoric part of the stress corresponds to what is often

called the extra stress.

259
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we find that

T : D = (T0 − p1) : D

= T0 : D − ptrD.

But for an incompressible body, trD = divv = 0, so that

T : D = T0 : D, (46.5)

and the pressure does not affect the stress power. The internal power therefore
reduces to

I(P) =
∫

Pt

T0 : D dv

and arguing as in the derivation of (29.7) we are led to the free-energy imbalance

ρψ̇ − T0 : D = −δ ≤ 0. (46.6)

46.2 Incompressible, Viscous Fluids

Constitutive relations describe the internal structure of materials. For an incom-
pressible material the pressure does not expend power internally and consequently
does not enter the energy imbalance. The pressure is therefore irrelevant to the in-
ternal thermodynamic structure of the theory and for that reason we consider it as
indeterminate — that is not specified constitutively.222

An incompressible fluid is a homogeneous, incompressible body defined by con-
stitutive equations of the form

ψ = ψ̂(L),

T0 = T̂0(L),
(46.7)

with response functions ψ̂ and T̂0 = T̂)
0 defined on the space of all traceless (i.e.,

deviatoric) tensors.223

The derivation of restrictions placed by material frame-indifference and ther-
modynamics will only be sketched, as it uses arguments that differ little from those
used for compressible fluids. Frame-indifference requires that the constitutive equa-
tions (46.7) take the form

ψ = ψ̂(D),

T0 = T̂0(D),
(46.8)

with both response functions being isotropic.
Further, compatibility with thermodynamics as embodied in the free-energy im-

balance (46.6) requires that

ρ
∂ψ̂(D)
∂D

: Ḋ − T̂0(D) : D ≤ 0

in all motions consistent with the constraint. This yields the following thermody-
namic restrictions:

(i) The specific free-energy is constant.

222 This is consistent with classical particle mechanics, where a force is indeterminate if it performs no
work.

223 Cf. §2.7.
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(ii) The viscous stress satisfies the reduced dissipation inequality

T̂0(D) : D ≥ 0 (46.9)

for all traceless symmetric tensors D; in fact, the dissipation in any motion is given
by δ = T̂0(D) : D.

EXERCISES

1. For an incompressible fluid, use (2.146) to show that

I2(D) = − 1
2 I1(D2),

I3(D) = 1
3 I1(D3),

(46.10)

and, hence, conclude from the Cayley–Hamilton equation (2.144) that

(D3)0 = 1
2 I1(D2)D. (46.11)

2. Verify the result (46.8). (To do this the transformation law for the deviatoric
part of the stress under a change in frame is needed.)

3. Establish the thermodynamic restrictions (i) and (ii).

46.3 Incompressible, Linearly Viscous Fluids

If T̂0 is linear in D, the Representation Theorem for Isotropic Linear Tensor Func-
tions in Appendix 113.3 yields224

T̂0(D) = 2µD,

with µ, a constant, the shear viscosity which, by (46.9), satisfies

µ ≥ 0.

The constitutive equation for the stress in a linearly viscous incompressible fluid
therefore has the form

T = −p1 + 2µD. (46.12)

Thus, for such a fluid,

δ = T : D

= −p1 : D + 2µ|D|2

= 2µ|D|2,

whereby the internal power is given explicitly by

I(P) = 2µ

∫

Pt

|D|2 dv;

further, bearing in mind that the specific free energy ψ is constant, the power bal-
ance (19.45) for a convecting spatial region Pt specializes to

∫

∂Pt

Tn · v da +
∫

Pt

b · v dv = 2µ

∫

Pt

|D|2 dv, (46.13)

224 Cf. (113.10).
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which asserts that the rate of change the net power expended on Pt must equal
the rate at which energy is dissipated within Pt . Similarly, for an inertial frame,
the inertial form (19.43) of the power balance for a convecting spatial region Pt
specializes to the kinetic energy balance

˙∫

Pt

1
2ρ|v|2 dv =

∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv − 2µ

∫

Pt

|D|2 dv, (46.14)

showing that, for a linearly viscous, incompressible fluid in an inertial frame, the rate
of change of the kinetic energy within a convecting spatial region Pt must equal the
net power (excluding inertial contributions) expended on Pt by external agencies
minus the rate at viscous dissipation within Pt .

In particular, for a finite body Bt , if Tn · v vanishes on ∂Bt and b0 ≡ 0, (46.14)
implies that

˙∫

Pt

1
2ρ|v|2 dv ≤ 0,

so that the kinetic energy of the body may not increase with time. This result es-
tablishes a type of stability inherent in viscous fluids. A proof of a stronger result,
showing that the kinetic energy actually decreases exponentially with time, is pro-
vided by Gurtin (1981, §24).

EXERCISE

1. Consider an incompressible, linearly viscous fluid in a fixed, bounded region R
of space and assume that

v = 0 on ∂R

for all time.
a. Show that the rate at which energy is dissipated within R, that is,

2µ

∫

R
|D|2 dv

can be written in the alternative forms

2µ

∫

R
|W|2 dv and µ

∫

R
|ω|2 dv,

indicating that spin (i.e., vorticity) is the only source of energy dissipation.
b. The surface force exerted on ∂R by the fluid is given by the simple expression

−Tn = pn + 2µWn

= pn − µn × ω,

where n is the outward unit normal on ∂R. Establish this relation for a plane
portion of ∂R.

46.4 Incompressible Navier–Stokes Equations

Consider the flow of an incompressible, linearly viscous fluid in an inertial frame
under purely inertial body forces. Then, since divv = 0, (45.26) becomes

2 divD = ,v,
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and the momentum balance yields

ρv̇ = −grad p + µ,v + b0, (46.15)

which with the constraint equation

divv = 0

comprise the basic equations for the theory of incompressible, linearly viscous fluids,
the incompressible Navier–Stokes equations.

Suppose, now, that the body force is conservative with potential β. Then, bear-
ing in mind (46.3),

grad p
ρ

− b0 = grad
(

p
ρ

− β

)

and the flow equation (46.15) becomes

v̇ = −grad
(

p
ρ

− β

)
+ ν,v, (46.16)

where

ν =
µ

ρ
≥ 0

is a constant called the kinematic viscosity. Since the kinematic viscosity ν has di-
mensions of (length)2/(time), (46.16) suggests an interpretation of ν as an effective
diffusivity for the velocity v.

EXERCISE

1. Show that the flow equation (46.16) for an incompressible, linearly viscous fluid
may be written alternatively as

v′ − v × ω = −grad
(

p
ρ

+ 1
2 |v|2 − β

)
+ ν,v.

46.5 Circulation. Vorticity-Transport Equation

Next, substituting (46.16) into the circulation transport relation (17.29), we find that,
since Ct is the image of a closed material curve C,

˙∫

Ct

v(x, t) · dx =
∫

Ct

v̇(x, t) · dx

= ν

∫

Ct

,v(x, t) · dx. (46.17)

Furthermore, (17.9) and (46.16) lead to the vorticity-transport equation

ω̇ − Lω = ν,ω. (46.18)
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Importantly, (46.18) shows that the vorticity evolves independently of the pressure.
Next, by (43.4),

Lω = Dω + Wω

= Dω + 1
2ω × ω

= Dω.

Thus, using the identity (43.10)3 for the contravariant rate of the vorticity, we may
rewrite (46.18) somewhat more succinctly as

4
ω = ν,ω. (46.19)

Recall from (43.9)2 that a spatial vector field convects like a tangent if and only if
its contravariant rate vanishes. The vorticity-transport equation (46.19) therefore
shows that, for a linearly viscous fluid, the vorticity does not generally convect like
a tangent. Indeed, viscosity causes vorticity to diffuse with respect to the body.

EXERCISES

1. Show that, for an incompressible fluid,

curl ω = −,v

and, thus, that the circulation transport relation (46.17) for an incompressible,
linearly viscous fluid has the alternative form

˙∫

Ct

v(x, t) · dx = −ν
∫

Ct

curl ω(x, t) · dx.

2. Show that the vorticity-transport equation (46.18) can be written alternatively
as

ω′ = Dω + ν,ω

and provide a geometrical interpretation of the term Dω.
3. Show that the vorticity-transport equation (46.18) can be written alternatively

as

ω′ + curl (ω × v) = ν,ω.

4. Defining the enstrophy e = 1
2 |ω|2, use the vorticity-transport equation (46.18)

to arrive at the enstrophy-transport equation

ė = −ω · Dω − ν |gradω|2 + ν,e. (46.20)

5. Show that, for a two-dimensional flow, the vorticity-transport equation (46.18)
reduces to

ω̇ = ν,ω.

6. As a consequence of the definition (17.1) of the vorticity and the constraint
divv = 0 there exists a vector potential ξ such that v = curl ξ and

,ξ = −ω. (46.21)

Provided that ω is known on a simply connected domain R, (46.21) yields

ξ(x, t) =
∫

R

K(x − y)ω(y, t) dvy,
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with

K(r) =
1

4π |r|
the fundamental solution of the Laplace equation (in three space dimensions).
Show that

v(x, t) = curl
∫

R

K(x − y)ω(y, t) dvy

= 1
4π

∫

R

ω(y, t) × (x − y)
|x − y|3

dvy (46.22)

and, thus, conclude that, when augmented by (46.22) and the conditions

ω = curl v and divω = 0,

the second of which is an immediate consequence of the first, the vorticity-
transport equation (46.18) and the pressure Poisson equation (46.24) provide
an equivalent alternative to the Navier–Stokes equations. This alternative pro-
vides the basis for the numerically powerful vortex method.

46.6 Pressure Poisson Equation

Since divv = 0, it follows from (9.25) that

divv̇ = ˙divv + (gradv) : (gradv))

= div[div(v ⊗ v)];

further,

div,v = ,divv

= 0.

Thus, since ρ ≡ constant, multiplying the momentum balance (46.16) by ρ and com-
puting the divergence of each term yields

,(p − ρβ) = −div[div(ρv ⊗ v)]. (46.23)

In particular, when external body forces are absent, so that β = 0, (46.23) reduces
to the pressure Poisson equation

,p = −div[div(ρv ⊗ v)]. (46.24)

EXERCISE

1. Show that the pressure Poisson equation (46.24) can be written alternatively as

,p = ρ(|W|2 − |D|2). (46.25)

46.7 Transport Equations for the Velocity Gradient, Stretching, and Spin
in a Linearly Viscous, Incompressible Fluid

On computing the gradient on both sides of the evolution equation (46.16) and using
the identity (9.26), it follows immediately that

L̇ + L2 = −gradgrad
(

p
ρ

− β

)
+ ν,L, (46.26)
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which provides a transport equation for the velocity gradient in a linearly viscous,
incompressible fluid. Bearing in mind that trL = divv = 0 and taking the trace on
both sides of (46.26), we find that

tr (L2) = −,
(

p
ρ

− β

)
, (46.27)

which, since

div[div(v ⊗ v)] = div(Lv + (divv)v)

= L : L) + v · (graddivv)

= tr(L2),

is equivalent to the generalization (46.23) of the pressure Poisson equation (46.24)
to account for the action of conservative external body forces.

Next, by (46.27), the transport equation (46.26) for the velocity gradient simpli-
fies somewhat to

L̇ + (L2)0 = −
[

gradgrad
(

p
ρ

− β

)]

0
+ ν,L. (46.28)

By (43.2),

skw(L̇) = Ẇ, skw(L2) = DW + WD, skw(,L) = ,W;

thus, recalling, from (17.14) and (20.25), that
,

W = Ẇ + DW + WD,

bearing in mind that gradgradϕ is symmetric for any scalar field ϕ, and taking the
skew part of (46.28), we arrive at the spin-transport equation

,

W = ν,W. (46.29)

We leave it as an exercise to show that (46.29) is equivalent to the vorticity-transport
equation (46.18). Next, by (43.2),

sym(L̇) = Ḋ, sym(L2) = D2 + W2, sym(,L) = ,D,

and taking the symmetric part of (46.28), we arrive at stretching-transport equation

Ḋ + (D2 + W2)0 = −
[

gradgrad
(

p
ρ

− β

)]

0
+ ν,D. (46.30)

EXERCISES

1. Derive the enstrophy-transport equation (46.20) directly from the spin-
transport equation (46.29).

2. Use the relation (43.4) between the spin and the vorticity and the relations
(20.47)3 and (20.25) defining the contravariant rate of a vector field and the co-
variant rate of a tensor field to show that the vorticity-transport equation (46.18)
and the spin-transport equation (46.29) are equivalent.

3. Using (46.18), (46.25), and (46.30) show that

Ḋω = −
[

grad grad
(

p
ρ

− β

)]
ω + ν6(Dω) − 2ν(grad D)ω,

where, using components, [(grad D)ω]i = Di j,kω j,k.
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4. Specialize the identities (2.146) to reflect the constraint trD = 0 and use (46.10),
(46.11), and (46.30) to show that for a linearly viscous, incompressible fluid, the
second and third principal invariants of the stretching tensor obey transport
equations of the form

˙I2(D) = 3I3(D) + D : W2 + D : gradgrad
(

p
ρ

− β

)
+ ν1 : N + ν,I2(D),

˙I3(D) = − 2
3 I 2

2 (D) + 4
3 I2(D)I2(W) − D2 : W2

− D2 :
[

gradgrad
(

p
ρ

− β

)]

0
− 2νD : N + ν,I3(D),

where, using components, Ni j = Dip,q Dj p,q.

46.8 Impetus-Gauge Formulation of the Navier–Stokes Equations

Let m be defined by

m = v − gradϕ, (46.31)

where ϕ is an arbitrary scalar field called the gauge. Maddocks & Pego (1995) re-
fer to m as the impetus. Bearing in mind that divv = 0 and curl gradϕ = 0, it then
follows that

m′ = v′ − grad(ϕ′),

divm = −,ϕ,

curl m = curl v,

,m = ,v − grad,ϕ.

Thus, assuming that the body force is conservative with potential β and using (17.7)2
to write the flow equation (46.16) as

v′ + (curl v) × v = −grad
(

p
ρ

+ 1
2 |v|2 − β

)
+ ν,v,

we find that the impetus must obey

m′ + (curl m) × v = −grad
(
ϕ′ − ν,ϕ + p

ρ
+ 1

2 |v|2 − β

)
+ ν,m. (46.32)

Together with

,ϕ = −divm and v = m + gradϕ,

(46.32) constitutes the impetus-gauge formulation of the Navier–Stokes equations.
Unlike the pressure, the gauge has no intrinsic physical meaning. An evolution

equation and boundary conditions for ϕ may therefore be imposed for the sake of
expedience. This allows for the development of novel numerical schemes. In partic-
ular, various choices for ϕ yield special versions of the gauge formulation. Among
these, the simplest choice is the zero gauge

ϕ′ = ν,ϕ − p
ρ

− 1
2 |v|2 + β, (46.33)

for which (46.32) becomes

m′ + (curl m) × v = ν,m. (46.34)
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A more interesting choice of gauge arises on noting, by the definition (43.8)2 of the
covariant rate of a vector field, that

m′ + (curl m) × v = m′ + (gradm)v − (gradm))v

= ṁ − (gradm))v

= ,
m − L)m − (gradm))v

= ,
m − grad(m · v)

= ,
m + grad(v · gradϕ − |v|2)

and stipulating that the gauge evolve according to

ϕ̇ = ν,ϕ − p
ρ

+ 1
2 |v|2 + β, (46.35)

in which case (46.32) reduces
,

m = ν,m. (46.36)

Recall from (43.9)1 that a spatial vector field convects like a normal if and only
if its covariant rate vanishes. Analogous to the statement following the vorticity-
transport equation (46.18), the evolution equation (46.36) shows that under the
gauge (46.35) the impetus m would convect like a normal if not for the presence
of viscosity.225

EXERCISES

1. Assume that ϕ evolves according to (46.35). Show that
˙ω · m = ν,(ω · m) − 2ν(gradω) : (gradm).

2. Based on variational considerations, Maddocks & Pego (1995) introduce the
gauge

ϕ̇ = ν,ϕ − p
ρ

+ β.

Show that, for this choice of ϕ, the impetus evolves according to

ṁ = L)gradϕ + ν,m.

3. E & Liu (2003) work with the gauge

ϕ′ = ν,ϕ −
p
ρ

+ β.

Show that, for this choice of ϕ, the impetus evolves according to

ṁ + Lgradϕ = ν,m.

46.9 Perfect Fluids

A perfect fluid is both incompressible and inviscid. Within our framework, such
fluids arise on assuming that the deviatoric (i.e., traceless) part T0 of the stress in

225 The gauge (46.35) was introduced by Buttke (1993). Cf. Russo & Smereka (1999), who refer to
this choice as the geometric gauge. To our knowledge, it has not previously been noticed that, for
the choice (46.35), the evolution equation (46.32) can be expressed simply in terms of the covariant
rate.
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the general decomposition (46.4) vanishes to leave a pure pressure

T = −p1. (46.37)

The stress power therefore vanishes and, since the specific free energy is con-
stant, the free-energy balance (46.6) reduces to the unconditionally true statement
“0 = 0.” In this sense, the thermodynamic structure of the theory of perfect fluids
is vacuous. Nevertheless, due to the vanishing of the internal (and, hence, external)
power and of the dissipation, the kinetic energy balance (46.14) specializes to

˙∫

Pt

1
2 ρ |v|2 dv = −

∫

∂Pt

pv · n da +
∫

Pt

b0 · v dv. (46.38)

In view of (46.37), momentum balance yields

ρv̇ = −grad p + b0, (46.39)

which with the constraint equation

divv = 0

comprise the basic equations for the theory of perfect fluids, the Euler equations.
Suppose that the body force is conservative with potential β, in which case the

flow equation (46.39) simplifies to

v̇ = −grad
(

p
ρ

− β

)
(46.40)

and it can be shown that, like an elastic fluid, a perfect fluid obeys a simplified ver-
sion of Bernoulli’s theorem.226 Specifically,

Properties of Perfect Fluids Consider the flow of a perfect fluid under a conserva-
tive conventional body force with potential β.

(i) If the flow is once irrotational, then it is always irrotational.
(ii) The flow preserves circulation.

(iii) If the flow is steady, then the field
p
ρ

+ 1
2 |v|2 − β (46.41)

is constant on streamlines. If, in addition, the flow is irrotational, then (46.41) is
constant everywhere and for all time.

For a perfect fluid, the vorticity-transport equation can be obtained simply by
setting the kinematic viscosity ν = 0 in (46.19) to yield

4
ω = 0. (46.42)

The vorticity therefore convects like a tangent in the motion of a perfect fluid.
Similarly, for a perfect fluid, the gauge formulation is obtained by setting ν = 0

in (46.32) to yield

m′ + (curl m) × v = −grad
(
ϕ′ +

p
ρ

+ 1
2 |v|2 − β

)
. (46.43)

In particular, the specialization of (46.43) arising from the choice

ϕ̇ = −
p
ρ

+ 1
2 |v|2 + β (46.44)

226 Cf. page 248.
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of gauge, which is (46.35) with ν = 0, yields
,

m = 0, (46.45)

which is (46.36) with ν = 0. Under the gauge (46.44), the impetus therefore convects
like a normal in a perfect fluid. For this reason it seems reasonable to refer to (46.44)
as the normally convected gauge.

EXERCISES

1. Show that in the flow of a perfect fluid the stress power vanishes.
2. Consider the flow of a perfect fluid in a bounded region R and suppose that

v · n = 0 on ∂R.

Show that
˙∫

R

|v|2 dv = 0,

so that the kinetic energy of R is constant.
3. Consider a flow of a perfect fluid in a region R and suppose that

ω · n = 0 on ∂R.

The integrals
∫

R

ω dv and
∫

R

v · ω dv

represent, respectively, the net vorticity and net helicity of R. Show that

˙∫

R

ω dv = 0 and
˙∫

R

v · ω dv = 0.

4. Show that the vorticity-transport equation (46.42) for a perfect fluid can be writ-
ten alternatively as

ω′ + curl (ω × v) = 0.

5. Show that, for a perfect fluid,

Ḋω = −
[

grad grad
(

P
ρ

− β

)]
ω.

6. Show that, if the normally convected gauge (46.44) is imposed, then the vorticity
and impetus obey

˙ω · m = 0.



PART X

MECHANICAL THEORY OF ELASTIC
SOLIDS

This chapter discusses the classical theory of elastic solids, neglecting thermal ef-
fects. This theory is important not only in its own right but also because it represents
a simple context in which to discuss the central steps in the construction of sound
constitutive equations for solids.
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47 Brief Review

47.1 Kinematical Relations

Basic to our discussion of constitutive equations for elastic solids is the polar de-
composition227

F = RU = VR (47.1)

of the deformation gradient

F = ∇χ

into a rotation R, a right stretch tensor U, and a left stretch tensor V, with

U =
√

F)F and V =
√

FF). (47.2)

The tensor fields

C = U2 = F)F and B = V2 = FF), (47.3)

respectively, are referred to as the right and left Cauchy–Green tensors, while

E = 1
2 (C − 1) (47.4)

is the Green–St. Venant strain tensor. Important consequences of (47.3) and the polar
decomposition are the relations

V = RUR) and B = RCR). (47.5)

47.2 Basic Laws

For solids, it is generally most convenient to use a referential description; we, there-
fore, begin with the local momentum balances228

ρRχ̈ = DivTR + b0R,

TRF) = FT)
R.

(47.6)

227 Cf. §2.15 and §7.1.
228 The local referential form (18.9) of mass balance is simply an algebraic equation, ρ = ρR/J , for the

current density. The problem of determining ρ is therefore decoupled from that of determining the
deformation χ and of limited interest.
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Here, TR is the Piola stress defined by

TR = J TF−), (47.7)

with T being the Cauchy stress; TR and b0R represent the stress and conventional
body force measured per unit area and volume in the reference body.229 We recall
also that the Piola and second Piola stresses are related via230

TR = FTRR. (47.8)

By (47.6)2 and (47.8), FTRRF) = FT)
RRF) and231

TRR = T)
RR. (47.9)

As the theory under consideration is mechanical,232 we take as our basic ther-
modynamical law the free-energy imbalance

ψ̇R − TR : Ḟ = −δR ≤ 0. (47.10)

47.3 Transformation Laws Under a Change in Frame

The basic kinematical fields transform as follows under a change in frame:233

F∗ = QF,

R∗ = QR,

U∗ = U,

C∗ = C,

E∗ = E,

V∗ = QVQ),

B∗ = QBQ).






(47.11)

In addition, the Cauchy, Piola, and second Piola stresses transform according to234

T∗ = QTQ),

T∗
R = QTR,

T∗
RR = TRR.





(47.12)

The transformation law for TR follows from (47.11)1 and the transformation law
(21.6) for T. Further, granted (47.12)2, the transformation law for TRR follows from

229 Cf. (24.1).
230 Cf. (25.2).
231 Cf. (25.4).
232 The role of a free-energy imbalance in a mechanical theory is discussed in §29. The local balance

(47.10) is derived in the steps leading to (31.24).
233 Cf. (20.16).
234 Cf. (21.6), (25.8), and (25.9).
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the definition (25.2) of the second Piola stress and the transformation law for TR.
Notice that

• the Cauchy stress is frame-indifferent;
• the second Piola stress is invariant;
• the Piola stress is neither frame-indifferent nor invariant.

Moreover, these transformation properties are strictly analogous to those of the de-
formation measures D, F, and C underlying the rates entering the respective power-
conjugate pairings T : D, TR : Ḟ, and 1

2 TRR : Ċ.235

235 Cf. (25.6)



48 Constitutive Theory

In classical mechanics, the force and energy within an elastic spring depend only on
the change in length of the spring; moreover, the force is independent of the past
history of the length as well as the rate at which the length is changing in time. In
continuum mechanics, local length changes are characterized by the deformation
gradient F; we, therefore, define an elastic body through constitutive equations giv-
ing the free energy and stress when F is known:

ψR = ψ̂R(F),

TR = T̂R(F).
(48.1)

The response functions ψ̂ and T̂R are defined on the set of all tensors with strictly
positive determinant. In view of (47.7) and (47.8), the relation (48.1)2 for the Piola
stress determines auxiliary constitutive equations

T = T̂(F) = (det F)−1T̂R(F)F),

TRR = T̂RR(F) = F−1T̂R(F),
(48.2)

for the Cauchy and second Piola stresses.
We now explore the consequences of the hypotheses (page 225) stipulating that

the constitutive equations be frame-indifferent and compatible with thermodynam-
ics.

48.1 Consequences of Frame-Indifference

The free energy ψR, being a scalar field, is invariant under a change in frame: ψ∗
R =

ψR; thus, since the deformation gradient transforms according to F∗ = QF,

ψ̂R(F) = ψ̂R(F∗)

= ψ̂R(QF). (48.3)

Further, by (47.12)2, the Piola stress transforms according to T∗
R = QTR, so that

T∗
R = T̂R(F∗)

= T̂R(QF).
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The response functions ψ̂R and T̂R must therefore satisfy

ψ̂R(F) = ψ̂R(QF),

T̂R(F) = Q)T̂R(QF),
(48.4)

for all rotations Q and all F.
Fix F and consider the polar decomposition F = RU. Since Q is arbitrary, we

are at liberty to choose Q = R); hence, QF = U and (48.4) specializes to

ψ̂(F) = ψ̂(U),

T̂R(F) = RT̂R(U).
(48.5)

Replacing U by
√

C in (48.5)1, we may therefore introduce a response function ψ̄R

determining the free energy ψR as a function of C via

ψ̄R(C) = ψ̂R

(√
C
)
.

Similarly, in view of the auxiliary constitutive equation (48.2)2 for the second Piola
stress TRR, we find that

RT̂R(U) = FU−1T̂R(U)

= FT̂RR(F)

= RUT̂RR(F).

Hence, T̂R(U) = UT̂RR(F),

T̂RR(F) = U−1T̂R(U),

and, replacing U by
√

C, we may introduce a response function T̄RR determining the
second Piola stress as a function of C via

TRR = C−1/2T̂R

(√
C
)

= T̄RR(C). (48.6)

If the constitutive equations (48.1) are to be frame-indifferent, the foregoing
results show that they must reduce to constitutive equations of the specific form

ψ = ψ̄(C),

TR = FT̄RR(C).
(48.7)

To prove the converse assertion — that the constitutive equations (48.7) are frame-
indifferent — we note that, by (47.11)4, C = C∗ and, hence that

ψ∗
R = ψ̄R(C∗)

= ψ̄R(C)

= ψ.
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Thus, (48.7)1 is frame-indifferent. Turning to (48.7)2, since F∗ = QF,

T∗
R = F∗T̄R(C∗)

= Q[FT̄R(C)]

= QTR;

by (47.12)2, (48.7)2 is therefore also frame-indifferent.
Recalling from (47.9) that the second Piola stress is symmetric, an important

consequence of the result (48.7)2 is that

TRF) − FT)
R = FTRRF) − FT)

RRF)

= F(TRR − T)
RR)F)

= 0.

Hence, the requirement that the constitutive equations (48.1) be frame-indifferent
implies satisfaction of the moment balance (47.6)2. Granted frame-indifferent con-
stitutive equations, we may therefore neglect the moment balance from further con-
sideration.

Finally, by (47.7), the auxiliary constitutive equations (48.2) for the Cauchy and
second Piola stresses become

T = J −1FT̄RR(C)F),

TRR = T̄RR(C).
(48.8)

In view of (48.7)2 and (48.8), the crucial ingredient for determining the Piola,
Cauchy, and second Piola stresses is the response function T̄RR for the second Piola
stress.

To summarize the results of this section, the hypothesis that the constitutive
equations (48.1) be frame-indifferent reduces the problem of characterizing an elas-
tic solid to one of determining response functions ψ̄ and T̄RR — both depending on
the right Cauchy–Green tensor C — for the free energy ψR and the second Piola
stress TRR. In addition, this hypothesis ensures satisfaction of the moment balance
(47.6)2 and, as an important consequence, obviates the need for further considera-
tion of that balance.

48.2 Thermodynamic Restrictions

48.2.1 The Stress Relation

The Coleman–Noll procedure, introduced in Part D, represents a paradigm for the
derivation of thermodynamically consistent constitutive equations.236 We now apply
this procedure to the frame-indifferent constitutive equations (48.7).

Consider an arbitrary constitutive process; that is, consider a motion χ together
with fields ψ and TR determined by the motion through the constitutive equations
(48.7). The local force balance (47.6)1 then provides an explicit relation,

b0R = ρRχ̈ − Div TR,

236 Cf. the paragraph in petite type just before equation (39.1).
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for the conventional body force b0R needed to support the process under considera-
tion. As a basic hypothesis of the Coleman–Noll procedure,

• we assume that the conventional body force is arbitrarily assignable.

Because of this assumption, the force balance in no way restricts the class of pro-
cesses that the material may undergo. On the other hand, unless the constitutive
equations are suitably restricted, not all constitutive processes will be compati-
ble with the laws of thermodynamics as embodied in the free-energy imbalance
(47.10).237 For that reason, we require that

(‡) all constitutive processes be consistent with the free-energy imbalance (47.10).

This requirement has strong consequences. Consider an arbitrary constitutive
process. By (48.7)1,

ψ̇R = ∂ψ̄R(C)
∂C

: Ċ; (48.9)

further, by (25.6)3 and (48.6),

TR : Ḟ = 1
2 TRR : Ċ

= 1
2 T̄RR(C) : Ċ. (48.10)

In view of (48.9) and (48.10), the free-energy imbalance (47.10) is equivalent to the
requirement that the inequality

(
2
∂ψ̄R(C)
∂C

− T̄RR(C)
)

: Ċ ≤ 0 (48.11)

be satisfied for all motions of the body. Note that, as a consequence of the symme-
try of C, ∂ψ̄R(C)/∂C is symmetric. Recalling from (47.9) that TRR is symmetric, the
difference

2
∂ψ̄R(C)
∂C

− T̄RR(C)

is thus symmetric. Next,

(†) given any point of the body and any time, it is possible to find a motion such
that C and Ċ have arbitrarily prescribed values at that point and time.

Granted this assertion — which we prove on page 281 — the coefficient of Ċ in
(48.11) must vanish, for otherwise Ċ may be chosen to violate (48.11).

We therefore have the following thermodynamic restriction:

(‡) The free energy determines the second Piola stress through the stress relation

TRR = 2
∂ψ̄R(C)
∂C

, (TRR)i j = 2
∂ψ̄R(C)
∂Ci j

. (48.12)

237 Cf. the discussion in the first two paragraphs of §29.
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48.2.2 Consequences of the Stress Relation

By (47.10) and (48.14), the dissipation δR satisfies

δR = TR : Ḟ − ψ̇R

= 0; (48.13)

the dissipation therefore vanishes in smooth constitutive processes.238 This property,
which distinguishes elastic solids from other materials, reinforces the analogy, raised
earlier, between elastic solids in continuum mechanics and elastic springs in classical
mechanics.

Next, (47.8) and (48.12) imply that the Piola stress is given by a constitutive
equation of the form

TR = 2F
∂ψ̄R(C)
∂C

, (TR)i j = 2Fik
∂ψ̄R(C)
∂Ckj

. (48.14)

Similarly, (47.7) and (48.12) imply that the Cauchy stress is given by a constitutive
equation of the form

T = 2J −1F
∂ψ̄R(C)
∂C

F), Ti j = 2J −2Fik
∂ψ̄R(C)
∂Ckj

F jk. (48.15)

Materials consistent with (48.15) — or, equivalently (48.12) or (48.14) — are com-
monly termed hyperelastic.

48.2.3 Natural Reference Configuration

We say that the reference configuration is natural if

ψ̄R(C) has a local minimum at C = 1; (48.16)

that is, the reference configuration is natural if there is a scalar α > 0 such that, for
all symmetric, positive-definite tensors C with |C − 1|<α,

ψ̄R(C) ≥ ψ̄R(1).

An immediate consequence of (48.16) is that

∂ψ̄R(C)
∂C

∣∣∣∣
C=1

= 0; (48.17)

thus, as a consequence of the stress relation (48.14),

(‡) a natural reference configuration is stress-free; that is, the Cauchy, Piola, and
second Piola stresses vanish in a natural reference configuration

T = TR = TRR = 0 when F = 1. (48.18)

A second consequence of (48.16) is that

∂2ψ̄R(C)
∂C2

∣∣∣∣
C=1

is positive-semidefinite; (48.19)

238 Shock waves in elastic materials generally dissipate energy. Cf. the parenthetical remark in petite
type following (29.8).
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that is, given any symmetric tensor A,
(
∂2ψ̄R(C)
∂C2

∣∣∣∣
C=1

A
)

: A ≥ 0, Ai j
∂2ψ̄R(C)
∂Ci j∂Ckl

∣∣∣∣
C=1

Akl ≥ 0.

Remark. As noted in the sentence containing (29.9), the free energy of each mate-
rial point may be additively scaled by a term dependent only on the material point.
Therefore, without loss in generality, we may assume that

ψ̄R(1) = 0. (48.20)

48.2.4 Verification of (†)
Choose an arbitrary material point X0 and time t0. Let F0 be an arbitrary constant tensor with det F0 > 0,
and let D be an arbitrary constant symmetric tensor. Then, as noted in §14.1, the motion defined by (14.5)
with L = D,

χ(X, t) = x0 + e(t−t0)DF0(X − X0), −∞ < t < ∞, (48.21)

is well defined for any reference body B, no matter what the shape of that body may be. Moreover, the
velocity gradient of this motion is the constant D; by virtue of its symmetry, D represents the stretching.
A consequence of (14.6) is then that

C(X0, t0) = F)
0 F0,

Ċ(X0, t0) = 2F)
0 DF0.

Since det F0 with det F0 > 0 and the symmetric tensor D were arbitrarily chosen, the verification of (†) is
complete.



49 Summary of Basic Equations.
Initial/Boundary-Value Problems

49.1 Basic Field Equations

Granted an inertial frame, the basic field equations describing the motion of an elas-
tic body consist of the kinematical relations (6.1) and (7.3)1 defining the deformation
gradient and right Cauchy–Green tensor, the relation (48.14) determining the Piola
stress, and the local balance (24.10) of linear momentum239

F = ∇χ , C = F)F,

TR = 2F
∂ψ̄R(C)
∂C

,

ρRχ̈ = DivTR + b0R.

(49.1)

These equations hold on the reference body B.
Equilibrium solutions of these equations are of great importance; as such so-

lutions are independent of time, the momentum balance (49.1)4 is replaced by the
equilibrium balance

DivTR + b0R = 0. (49.2)

A simple equilibrium solution of the basic equations is constructed as follows. Con-
sider a homogeneous deformation χ .240 Then — bearing in mind our initial assump-
tion that the body be homogeneous — since the deformation gradient F is identi-
cally constant, the constitutive equation (49.1)3 implies that the Piola stress TR is
also identically constant and hence trivially satisfies the equilibrium equation with-
out body forces:

DivTR = 0.

Thus, χ represents a deformation that can be produced in a body by the application
of surface tractions alone; such deformations are referred to as controllable. We
have shown that

(‡) all homogeneous deformations of a homogeneous elastic body are controllable.

239 Cf. §47.1 and §47.2.
240 Cf. §6.1.
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49.2 A Typical Initial/Boundary-Value Problem

Let S1 and S2 be complementary subsurfaces of the boundary ∂B, so that

(i) ∂B is the union of S1 and S2;
(ii) S1 and S2 intersect at most along their boundaries ∂S1 and ∂S2.

Possible boundary conditions might entail specifying the motion on S1 and the sur-
face traction on S2:

χ = χ̂ a prescribed function on S1 for all t ≥ 0;

TRnR = t̂R a prescribed function on S2 for all t ≥ 0.
(49.3)

Standard initial conditions involve a specification of the initial deformation and the
velocity

χ(X, 0) = χ0(X), χ̇(X, 0) = v0(X), (49.4)

with χ0 and v0 prescribed functions on B.
The initial/boundary-value problem corresponding to the prescribed data

{b0R,ρR, χ̂ , t̂R,χ0, v0}

then consists of finding a motion χ(X, t) — defined for X in B and t ≥ 0 — that
satisfies the field equations (49.1) for X in B and t ≥ 0, the boundary conditions
(49.3) on ∂B for t ≥ 0, and the initial conditions (49.4) for X in B.

Also of interest are boundary-value problems involving equilibrium solutions
of the basic field equations and boundary conditions. Since initial conditions are
irrelevant to such problems, the data consists of {b0R, χ̂ , t̂R} and the correspond-
ing boundary-value problem consists of finding a deformation χ satisfying the field
equations (49.1) — with the momentum balance replaced by the equilibrium bal-
ance (49.2) — and the obvious time-independent analogs of the boundary conditions
(49.3).

Remark. Another form of boundary condition arises when one specifies the surface
traction Tn on the deformed surface

S2(t) = χ(S2, t).

A simple example of this type of condition arises when one considers the effects of
a uniform pressure p0:

Tn = −p0n on S2. (49.5)

Using the relation n da = J F−)nR daR = FCnR daR, (49.5) may be expressed as

TRnR = −p0FCnR on S2

and furnishes an example of a configuration-dependent boundary condition.
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Assume, for the moment, that the reference body is an undistorted cubic crystal.
Then, a rotation of the reference body by 90◦ would not affect its response to defor-
mation, nor would any two such rotations (about the same or different axes) applied
one after the other, nor would the inverse of any such rotation. In fact, the set of all
rotations (including the identity 1) that leave a cube unaltered forms a group that
crystallographers refer to as the cubic point group.

In §20.1 we note that — to discuss the notion of invariance under changes in
frame — it is useful to differentiate conceptually between the ambient space for B
and the ambient space through which Bt evolves; in accord with this, we introduce
the terminology:

(i) the ambient space through which Bt evolves is termed the observed space;
(ii) the ambient space for the reference body B is termed the reference space.

In our discussion in §20.2 of frame-indifferent fields, a tensor D, here the stretching
measured with respect to a frame F , transforms to the tensor

QDQ) (50.1)

when measured in a new frame F ∗ = QF . Thus, Q is a rotation of spatial vectors
and, hence, a rotation of objects in the observed space. In contrast,

• discussions of material symmetry involve rotations Q of the body within the
reference space;

but, as we show in §50.2, transformations of the generic form

Q(tensor)Q) (50.2)

arise in that space also.

50.1 The Notion of a Group. Invariance Under a Group

A set G of rotations forms a group if it is closed under multiplication and inversion:

(G1) if Q1 and Q2 belong to G, then so also does their product Q1Q2;
(G2) if Q belongs to G, then so also does its inverse Q).

The set of all rotations forms the proper orthogonal group

Orth+ =
{
all rotations

}
, (50.3)

and the group G defined above is a subgroup of Orth+.
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Each of the functions we consider in this section has as its domain of definition
one of the following sets:

Lin+ =
{
all tensors with positive determinant

}
,

Sym =
{
all symmetric tensors

}
,

Psym =
{
all symmetric, postitive-definite tensors

}
.

Let G be a subgroup of Orth+. It then follows that Lin+, Sym, and Psym are invariant
under G in the sense that — for A any one of these sets — if A belongs to A, then so
also does QAQ) for all Q in G.241 (We leave the proof of this as an exercise.)

The discussion in the paragraph containing (50.2) should help to motivate the
following terminology. Let A be invariant under G. Then:

(i) a scalar function ϕ with domain A is invariant under G if given any A in A,

ϕ(QAQ)) = ϕ(A) for all Q in G; (50.4)

(ii) a tensor-valued function # with domain A is invariant under G if given any A
in A,

#(QAQ)) = Q#(A)Q) for all Q in G. (50.5)

EXERCISE

1. Show that if two tensor functions #1 and #2 are invariant under G, then so also
is the product function #1#2.

50.2 The Symmetry Group G
Within the constitutive framework under discussion, a symmetry transformation is
defined as a rotation of the reference configuration that leaves the response to de-
formation unaltered. Because of the underlying thermodynamic structure, the ener-
getic response to deformation determines the stress response and this result allows
us to define material symmetry in terms of the response function for the free energy.

Choose a point X in B, and let fF denote the homogeneous deformation from X
with deformation gradient F

fF(Y) = X + F(Y − X) (50.6)

for all Y in B. Then, given a rotation Q, consider the following thought experiments:

• Experiment 1. Deform B with the homogeneous deformation fF. In this exper-
iment, the deformation gradient is F, and the free energy is

ψR1 = ψ̂R(F)

= ψ̄R(C). (50.7)

• Experiment 2. First rotate B with the rotation Q via the homogeneous defor-
mation

fQ(Y) = X + Q(Y − X),

and then deform the rotated body with the same homogeneous deformation fF
as in experiment 1 (Figure 50.1). In this experiment, the composite deformation

241 Cf. (50.2).
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B

fF

B

fQ fF

Experiment 1

Experiment 2

Figure 50.1. Experiment 1: a homogeneous deformation with deformation gradient F and
corresponding free energy ψR1 = ψ̂(F). Experiment 2: two successive homogeneous defor-
mations with deformation gradients Q and F resulting in a free energy ψR2 = ψ̂R(FQ).

gradient relative to the original unrotated reference body is

F2 = FQ. (50.8)

Then

C2 = F)
2 F2

= Q)F)FQ

= Q)CQ (50.9)

and the free energy in this second experiment is given by

ψR2 = ψ̂R(FQ)

= ψ̄R(Q)CQ). (50.10)

In general, we would expect thatψR1 '= ψR2; however, if for a given rotation Q,ψR1 =
ψR2 for every F, then Q is referred to as a symmetry transformation.242 Thus, by
(50.7) and (50.10), a symmetry transformation is a rotation Q such that

ψ̂R(F) = ψ̂R(FQ) (50.11)

242 Cf., e.g., Truesdell & Noll (1965, §§31,85) and Gurtin (1981, §25). Here, to avoid complicated
notation, we restrict attention to a homogeneous body, (Cf. the paragraph containing (35.2)) so that
the symmetry group does not vary from point to point. For an inhomogeneous body, the symmetry
group for a given material point X may be defined in a strictly analogous manner; the consequences
for X are then no different than those derived here for B.



50.2 The Symmetry Group G 287

for every deformation gradient F; or equivalently,

ψ̄R(C) = ψ̄R(Q)CQ) (50.12)

for every symmetric, positive-definite tensor C. We write G for the set of all symme-
try transformations and refer to G as the symmetry group for the body. We show —
at the end of this subsection — that G is indeed a group.

Note that, by (48.3) (which follows from frame-indifference) with Q replaced
by Q),

ψ̂R(F) = ψ̂R(Q)F)

for every rotation Q. Thus, (50.11) implies that

ψ̂R(F) = ψ̂R(Q)FQ) (50.13)

for every symmetry transformation Q.
Succinctly, (50.12) and (50.13) therefore imply that the response functions ψ̄R(C)

and ψ̂R(F) for the free energy are each invariant under the symmetry group G.243

Remark. It is important to note that the symmetry group depends on the choice
of reference configuration. For the body a cubic crystal, a reference configuration
in which the lattice is undistorted would have the cubic point group as symmetry
group; but this would not be so if we changed reference configuration via a homoge-
neous deformation fH with H neither a rotation nor a dilatation, for such a deforma-
tion would distort the lattice. Specifically, relative to the distorted configuration, the
body would have an extended symmetry group Gext, but the elements of Gext would
not be rotations, as each such element would be of the form HQH−1 with Q in G.244

Therefore,

• the assumption that G is a nontrivial245 group of rotations carries with it the tacit
assumption that the reference configuration is undistorted.

In view of (48.14) and (48.15), the basic ingredient in the constitutive relations
for the Piola and Cauchy stresses is the relation (48.12) for the second Piola stress.
We now determine the symmetry group for this stress. Choose, arbitrarily, a sym-
metric, positive-definite tensor C0 and an arbitrary symmetric tensor A. Let C(t) be
a symmetric, positive-definite tensor function of a parameter t consistent with246

C(0) = C0, Ċ(0) = A, (50.14)

and let ψR(t) be defined by

ψR(t) = ψ̄R(C(t));

then, by (47.9) and the chain-rule,

2ψ̇R(t) = T̄RR(C(t)) : Ċ(t)

and (50.14) yields

2ψ̇R(0) = T̄RR(C0) : A. (50.15)

Choose an arbitrary symmetry transformation Q. Then, by (50.12)

ψR(t) = ψ̄R(Q)C(t)Q),

243 Because Q belongs to G if and only if Q) belongs to G, (50.12) could equally well have been writ-
ten ψ̄R(C) = ψ̄R(QCQ)), which is the more standard form used on page 285 in the definition of
“invariance under G.”

244 Cf. equation (33.1) of Truesdell & Noll (1965).
245 G contains elements other than 1.
246 It is helpful to view C(t) as the right Cauchy–Green tensor and t as the time.
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and differentiating this relation with respect to t at t = 0 yields, by virtue of (50.14),

2ψ̇R(0) = T̄RR(Q)C(0)Q) : (Q)Ċ(0)Q)

= T̄RR(Q)C0Q) : (Q)AQ)

= (QT̄RR(Q)C0Q)Q)) : A. (50.16)

By (50.15) and (50.16),

(T̄RR(C0) − QT̄RR(Q)C0Q)Q)) : A = 0,

and since this must hold for all symmetric tensors A,

T̄RR(C0) = QT̄RR(Q)C0Q)Q).

Thus, since C0 was arbitrarily chosen, the response function for the second Piola
stress obeys the following transformation law

Q)T̄RR(C)Q = T̄RR(Q)CQ). (50.17)

In summary, the central results of this section are the transformation laws

ψ̄R(C) = ψ̄R(Q)CQ),

Q)T̄RR(C)Q = T̄RR(Q)CQ),
(50.18)

which are required to hold for all symmetric, positive-definite tensors C and all sym-
metry transformations Q. The transformation laws (50.18) are standard for scalar
and tensor functions. They assert that

• the response functions ψ̄R and T̄RR are invariant under the symmetry group G.

The argument resulting in (50.17) yields the following result:

(‡) Let ϕ be a scalar function with domain Sym or Psym and assume that ϕ is in-
variant under G. Let M be the tensor function defined by

M(A) =
∂ϕ(A)
∂A

.

Then M is also invariant under G.

50.2.1 Proof That G Is a Group

We now show that G is a group. To accomplish this, we must show that (G1) and (G2) on page 284 are
satisfied. Assume first that Q1 and Q2 belong to G. Choose F arbitrarily. Then, by (50.11) applied twice,
first with Q = Q2 and then with Q = Q1,

ψ̂R(F) = ψ̂R(FQ1)

= ψ̂R(FQ1Q2);

hence, Q1Q2 belongs to G, which is (G1). Assume, next, that Q belongs to G. Choose F arbitrarily and let
F̃ = FQ). Then, ψ̂R(F̃Q) = ψ̂R(F̃) and, therefore, ψ̂R(F) = ψ̂R(FQ)), whereby Q) belongs to G, which is
(G2). Hence, G is a group.

50.3 Isotropy

In terms more suggestive than precise, an isotropic body is a body whose properties
are the same in all directions. The notion of a symmetry transformation allows us
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to make this notion precise. We say that the body is isotropic if every rotation is a
symmetry transformation; thus, for an isotropic body,

G = Orth+.

On the other hand, the body is anisotropic if G is a proper subgroup of Orth+ (so
that G '= Orth+).

• We assume, for the remainder of this subsection, that the body is isotropic, so
that

ψ̄R(Q)CQ) = ψ̄R(C) (50.19)

for all rotations Q and all symmetric, positive-definite tensors C.247

Then, since (50.19) holds for all rotations Q, we may, without loss in generality,
choose Q = R) where R is the rotation in the polar decomposition F = RU = VR.
Recalling the relation

B = RCR) (50.20)

between the right and left Cauchy–Green tensors

C = F)F and B = FF),

we conclude that

ψ̄R(C) = ψ̄R(B), (50.21)

and, by (48.7), we may express the free energy in terms of B:

ψR = ψ̄R(B).

Choose an arbitrary constitutive process. Then, by (48.13),

ψ̇R = TR : Ḟ,

and arguing as in the steps leading to (48.11), we find that, by (48.1)2,

∂ψ̄R(B)
∂B

: Ḃ = T̂R(F) : Ḟ.

Further,

Ḃ = ˙FF)

= (ḞF) + FḞ))

= 2 sym (ḞF)),

and, since ∂ψ̄R(B)/∂B is symmetric, it follows that

∂ψ̄R(B)
∂B

: Ḃ = 2
∂ψ̄R(B)
∂B

: (ḞF))

= 2
(
∂ψ̄R(B)
∂B

F
)

: Ḟ;

therefore
(

2
∂ψ̄R(B)
∂B

F − T̂R(F)
)

: Ḟ = 0,

247 Note that (50.19) holds trivially when Q is replaced by −Q, and therefore the phrase “for all rota-
tions” may be replaced by “for all orthogonal tensors.” Thus ψ̄ is an isotropic function: A scalar or
tensor function invariant under the full orthogonal group is referred to as an isotropic function.
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and, appealing to (†) on page 279, we are led to the relation

TR = 2
∂ψ̄R(B)
∂B

F. (50.22)

Finally, since T = J −1TRF) and J = det F =
√

det B, we obtain an expression giving
the Cauchy stress as a function

T = 2
√

det B
∂ψ̄R(B)
∂B

B (50.23)

of B only.
An immediate consequence of (50.23) and the symmetry of T, B, and

∂ψ̄R(B)/∂B is that T commutes with B:

BT = TB. (50.24)

Further, by (‡) on page 288, ∂ψ̄R(B)/∂B is an isotropic function of B and we may
therefore conclude from (50.23) that T̄ is an isotropic function, viz.

Q)T̄(B)Q = T̄(Q)BQ) (50.25)

for all B and all rotations Q.
An important consequence of (50.25) is that T commutes with C:

CT = TC. (50.26)

To verify this note first that, since B = RCR),248

TB = T̄(B)B

= T̄(RCR))RCR)

= RT̄(C)R)RCR)

= RT̄(C)CR).

An analogous argument yields BT = RCT̄(C)R). Thus, by (50.24),

RT̄(C)CR) = RCT̄(C)R)

and (50.26) follows.

50.3.1 Free Energy Expressed in Terms of Invariants

A classical representation theorem asserts that an isotropic scalar function of a sym-
metric tensor B may be expressed as a function of the principal invariants I1(B),
I2(B), and I3(B) of B.249 The constitutive relation for the free energy of an isotropic
elastic solid may therefore be written in the form

ψR = ψ̃R(IB), (50.27)

with250

IB
def= (I1(B), I2(B), I3(B)); (50.28)

248 Cf. (47.5)2.
249 Cf. Appendix 112.7.
250 Cf. (2.142).
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Then, by (50.23),

T = 2
√

I3

(
∂ψ̃R(IB)
∂B

)
B, (50.29)

and, therefore, recalling, from (3.35), the identities

∂ I1(B)
∂B

= 1,

∂ I2(B)
∂B

= I1(B)1 − B,

∂ I3(B)
∂B

= I3(B)B−1,






(50.30)

we arrive at the following expression for the Cauchy stress:

T = 2√
I3

[
I3
∂ψ̃(RIB)
∂ I3

1 +
(
∂ψ̃R(IB)
∂ I1

+ I1
∂ψ̃R(IB)
∂ I2

)
B − ∂ψ̃R(IB)

∂ I2
B2
]
. (50.31)

An alternative to (50.31) follows from the Cayley–Hamilton equation251

B3 − I1(B)B2 + I2(B)B − I3(B)1 = 0. (50.32)

Multiplying (50.32) by B−1 yields

B2 = I1B − I21 + I3B−1, (50.33)

and, using this relation to eliminate B2 from (50.31), we find that

T = β0(IB)1 + β1(IB)B + β2(IB)B−1, (50.34)

with

β0(IB) = 2
√

I3

(
I2
∂ψ̃R(IB)
∂ I2

+ I3
∂ψ̃R(IB)
∂ I3

)
,

β1(IB) = 2
√

I3

∂ψ̃R(IB)
∂ I1

,

β2(IB) = −2
√

I3
∂ψ̃R(IB)
∂ I2

.






(50.35)

The stress T when F = 1 represents the stress in the (undistorted) reference
configuration. Since B = 1 when F = 1, IB = I1 = (3, 3, 1) and (50.34) implies that
this stress is given by

T|B = 1 = [β0(3, 3, 1) + β1(3, 3, 1) + β2(3, 3, 1)]1, (50.36)

and is therefore hydrostatic. If, in addition, the reference configuration is stress-free,
(48.18) and (50.36) imply that

β0(3, 3, 1) + β1(3, 3, 1) + β2(3, 3, 1) = 0. (50.37)

251 Cf. (2.144).
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50.3.2 Free Energy Expressed in Terms of Principal stretches

In view of (2.143), we recall that the principal invariants I1(B), I2(B), and I3(B) of
B may be expressed in terms of the principal stretches λ1, λ2, and λ3 as252

I1(B) = λ1 + λ2 + λ3,

I2(B) = λ1λ2 + λ2λ3 + λ3λ1,

I3(B) = λ1λ2λ3.





(50.38)

In writing (50.38) it is tacit that the list (λ1,λ2,λ3) of principal stretches is presumed
to have each stretch repeated a number of times equal to its multiplicity as an eigen-
value of V. Next, we may use (50.38) in (50.27) to express the free energy in terms
of the principal stretches

ψ = ψ̃R(IB)

= ψ̆R(λ1,λ2,λ3). (50.39)

Since the expressions (50.38) for I1(B), I2(B), and I3(B) in terms of λ1, λ2, and λ3 are
invariant under permutations of the integers (1, 2, 3) labeling the principal stretches,
so also is ψ̆R(λ1,λ2,λ3); that is,

ψ̆R(λ1,λ2,λ3) = ψ̆R(λ1,λ3,λ2) and so forth.253

Next, let

ωk = λ2
k, k = 1, 2, 3. (50.40)

Then, by the chain-rule and (50.29), the Cauchy stress is given by

T = 2
λ1λ2λ3

(
∂ψ̆R(λ1,λ2,λ3)

∂B

)
B

= 2
λ1λ2λ3

( 3∑

i=1

∂ψ̆R(λ1,λ2,λ3)
∂λi

∂λi

∂B

)
B

=
1

λ1λ2λ3

( 3∑

i=1

1
λi

∂ψ̆R(λ1,λ2,λ3)
∂λi

∂ωi

∂B

)
B. (50.41)

By (7.28), the spectral representation of the left Cauchy–Green tensor is

B =
3∑

i=1

ωi li ⊗ li , ωi = λ2
i . (50.42)

Assume that the squared principal stretches ωi are distinct, so that the ωi and the
principal directions li may be considered as functions of B. Then, as we show at the
end of this subsection,

∂ωi

∂B
= li ⊗ li , (50.43)

252 Cf. (2.143).
253 Were this not true, (50.39) would not define a functional relationship.
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and, granted this, (50.42) and (50.41) imply that

T = 1
λ1λ2λ3

3∑

i=1

λi
∂ψ̆R(λ1,λ2,λ3)

∂λi
li ⊗ li . (50.44)

Finally, by (2.140)3,

F−) =
3∑

i=1

λ−1
i li ⊗ ri ,

and the Piola stress TR = J TF−) is given by

TR =
3∑

i=1

∂ψ̆R(λ1,λ2,λ3)
∂λi

li ⊗ ri . (50.45)

50.3.3 Verification of (50.43)

Consider the tensorial set

Psym = {all symmetric, positive-definite tensors with distinct principal values},

which is an open set in the space of symmetric tensors. Within this set the principal values ωi and principal
directions li of a tensor B are themselves smooth functions of B with derivatives

∂ωi

∂B
and

∂li
∂B

.

Next, choose an arbitrary smooth curve B(s) in Psym and let ωi (s) and li (s) denote the corresponding
principal values and directions. These functions then satisfy254

ωi (s) = li (s) · B(s)li (s) (no sum).

If we differentiate these relations and use the symmetry of B, we find that

∂ωi

∂B
:

dB
ds

= (li ⊗ li ) ⊗
dB
ds

+ 2
dli
ds

· Bli (no sum).

But
Bli = ωi li (no sum)

and, since the principal directions are unit vectors,

dli
ds

· li = 0 (no sum).

Thus, (
∂ωi

∂B
− li ⊗ li

)
:

dB
ds

= 0 (no sum). (50.46)

Choose an arbitrary symmetric, positive-definite tensor B0 and an arbitrary symmetric tensor A and
consider the curve

B(s) = B0 + sA, −s0 < s < s0,

with s0 > 0 small enough that this curve lies in Psym. Then, by (50.46),

A :
[
∂ωi (B)
∂B

− li (B) ⊗ li (B)
]

B=B0

= 0 (no sum). (50.47)

Since the tensor in parentheses is symmetric and since A is an arbitrary symmetric tensor, we must have
[
∂ωi (B)
∂B

− li (B) ⊗ li (B)
]

B=B0

= 0 (no sum).

Finally, since B0 in Psym was chosen arbitrarily, the desired identity (50.43) follows.

254 Cf. (2.121).



51 Simple Shear of a Homogeneous, Isotropic
Elastic Body

In this section we discuss the equilibrium problem of simple shear of a homoge-
neous, isotropic elastic body, a problem that demonstrates basic differences between
the theory of isotropic elasticity presented here — in which the strain may be arbi-
trarily large — and the classical linear theory in which the strain is infinitesimal.

Let B be a homogeneous, isotropic body in the shape of a cube. Consider a
homogeneous deformation x = χ(X) defined (in Cartesian components) by

x1 = X1 + γ X2, x2 = X2, x3 = X3, (51.1)

where

γ = tan θ (51.2)

is the shear strain (Figure 51.1). As noted in the paragraph containing (49.2), such a
deformation generates a solution of the equilibrium equation

DivTR = 0

(without body forces) and hence represents a deformation that can be produced in
a body by the application of surface tractions alone.

The matrix [F] corresponding to the deformation gradient F corresponding to
(51.1) is

[F] =




1 γ 0
0 1 0
0 0 1



 , (51.3)

and the matrices of the left Cauchy–Green tensor B = FF) and its inverse are

[B] =




1 + γ 2 γ 0
γ 1 0
0 0 1



 and [B]−1 =




1 −γ 0

−γ 1 + γ 2 0
0 0 1



 . (51.4)

Also,

det(B − ω1) = −ω3 + (3 + γ 2)ω2 − (3 + γ 2)ω + 1,

and the list of principal invariants hence has the particular form (3 + γ 2, 3 +
γ 2, 1)255

IB = (3 + γ 2, 3 + γ 2, 1). (51.5)

255 Cf. (2.142) and (50.28).
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e1

e2

e3

θ

Figure 51.1. Schematic of the simple shear of a rectangular block consistent with (51.1) and
(51.2).

The material response functions β0, β1, and β2 are therefore functions of γ 2 alone.
For convenience, we therefore write

β̃0(γ 2) = β0(3 + γ 2, 3 + γ 2, 1),

β̃1(γ 2) = β1(3 + γ 2, 3 + γ 2, 1),

β̃2(γ 2) = β2(3 + γ 2, 3 + γ 2, 1).

We may also conclude from (50.34) that



T11 T12 T13
T21 T22 T23
T31 T32 T33



 = β̃0(γ 2)




1 0 0
0 1 0
0 0 1



+ β̃1(γ 2)




1 + γ 2 γ 0
γ 1 0
0 0 1





+ β̃2(γ 2)




1 −γ 0

−γ 1 + γ 2 0
0 0 1



 , (51.6)

and, hence, that

T11 = β̃0(γ 2) + (1 + γ 2)β̃1(γ 2) + β̃2(γ 2),

T22 = β̃0(γ 2) + β̃1(γ 2) + (1 + γ 2)β̃2(γ 2),

T33 = β̃0(γ 2) + β̃1(γ 2) + β̃2(γ 2),

T12 = µ(γ 2)γ ,

T13 = T23 = 0,






(51.7)

where

µ(γ 2) def= β̃1(γ 2) − β̃2(γ 2) (51.8)

is a shear modulus. As a consequence of (51.7)4 and (51.8), the shear stress T12 is
an odd function of the shear strain γ : If the direction of shear strain is reversed, the
shear stress changes sign.

The value

µ0
def= µ(0)

represents the (infinitesimal) shear modulus of the classical linear theory of isotropic
elasticity, and, as such, is known to satisfy

µ0 > 0;
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granted this inequality, the response to a positive shear strain is a positive shear
stress, at least for γ sufficiently small. On intuitive grounds one might expect that —
in the nonlinear theory under consideration — T12 is positive when γ is positive;
that is, one might expect that

µ(γ 2) > 0, (51.9)

an inequality that follows from (51.8) provided that

β̃1(γ 2) > β̃2(γ 2). (51.10)

In the linear theory of elasticity, the normal stresses T11, T22, and T33 vanish
in simple shear. On the other hand, in the nonlinear theory a shear stress alone
does not suffice to determine simple shear: additional normal stresses, (51.7)1–3, are
required. Further, because the response functions β0, β1, and β2 are even functions
of γ , the normal stresses are unchanged when the sign of shear strain is reversed.
For these normal stresses to vanish, both β1 and β2 would have to vanish, and this,
in turn, would imply that µ = 0. Thus, if

µ(γ 2) '= 0 for γ '= 0, (51.11)

which is a physically reasonable assumption, then

• it is impossible to produce simple shear by applying shear stresses alone.

Next, solving equations (51.7)1–3 for β0, β1, and β2, we obtain

β̃0(γ 2) = (2 + γ 2)T33 − T11 − T22

γ 2 ,

β̃1(γ 2) = T11 − T33

γ 2 ,

β̃2(γ 2) = T22 − T33

γ 2 ,






(51.12)

and therefore conclude the response functions β̃1 and β̃2 are determined by the nor-
mal stress differences T11 − T33 and T11 − T22, while β̃0 is determined in terms of T11,
T22, and T33.

Further, (51.7)1,2,4 imply that

T11 − T22 = γ T12. (51.13)

This relation is independent of the material response function β0, β1, and β2; there-
fore,

• (51.13) is satisfied by every isotropic elastic body in simple shear.

If experimental measurements are inconsistent with this relation, then the material
being studied is not an isotropic elastic material.

Finally, a consequence of (51.8) and (51.13) is that

µ(γ 2) '= 0 implies that T11 '= T22. (51.14)

This property of unequal normal stresses in simple shear is generally referred to as
the Poynting effect.
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Within the present framework, the linear theory of elasticity may be viewed as an
approximation of the general theory appropriate to situations where

SD1: the reference configuration is natural;
SD2: the magnitude of the difference F − 1 between the deformation gradient and

the identity tensor is small.

52.1 Small Deformations

The quantity

u(X, t) = χ(X, t) − X

represents the displacement of the material point X at time t , and the deformation
gradient F and the (Green–St. Venant) strain tensor

E = 1
2 (C − 1)

= 1
2 (F)F − 1), (52.1)

are related to the displacement gradient

H = ∇u, Hi j = ∂ui

∂Xj
(52.2)

through the relations

F = 1 + ∇u = 1 + H, Fi j = δi j +
∂ui

∂Xj
= δi j + Hi j , (52.3)

and

E = 1
2 (∇u + (∇u)) + (∇u))∇u) = 1

2 (H + H) + H)H),

Ei j = 1
2

(
∂ui

∂Xj
+ ∂u j

∂Xi

)
+ ∂uk

∂Xi

∂uk

∂Xj
= 1

2 (Hi j + Hji + Hki Hkj ).
(52.4)

In what follows, we use the term small deformations when discussing theories
in which SD1 and SD2 hold.256 Such theories, although derived formally, are based

256 In applications the precise meaning of “small” would depend on the scalings used to render the basic
fields dimensionless; the asymptotic analysis below is independent of such considerations, since all
estimates are in the limit H→0.
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on precise estimates for the underlying fields in the limit as H→0. In particular,

F = 1 + o(1),

E = 1
2 (∇u + (∇u))) + o(|H|),

(52.5)

as H→0.257 Thus, to within a term of o(|H|) the strain E is approximated by

1
2 (∇u + (∇u))),

generally referred to as the infinitesimal strain. Further, since the deformation gradi-
ent is close to the identity, the deformed and undeformed bodies are approximately
coincident, at least up to a constant displacement. It is important to note that, while
the choice of reference configuration is optional in the general theory,

• in theories of small deformations the reference configuration is that configuration
from which the small deformations take place.

52.2 The Stress-Strain Law for Small Deformations

Our next step is to determine constitutive equations that approximate the stress in
the limit of small deformations. With this in mind, we begin with the constitutive
equation

TRR = T̄RR(C)

= 2
∂ψ̄R(C)
∂C

(52.6)

for the second Piola stress tensor.258 Unlike the relations (48.14) and (48.15) for the
stresses TR and T, which involve not only C, but also F, (52.6) involves only C; and,
as we now show, the derivative ∂T̄RR(C)/∂C at C = 1 is basic to a discussion of small
deformations.

Since the reference configuration is assumed to be natural, it follows from
(47.3)1, (48.8)2, and (48.18) that

T̄RR(1) = 0. (52.7)

52.2.1 The Elasticity Tensor

The derivative

C = 2
∂T̄RR(C)
∂C

∣∣∣∣
C=1

, Ci jkl = 2
∂(T̄RR)i j (C)

∂Ckl

∣∣∣∣
C=1

, (52.8)

which we refer to as the elasticity tensor, is a linear transformation of symmetric
tensors into symmetric tensors, and therefore a fourth-order tensor: Specifically, C
associates with each symmetric tensor A a symmetric tensor

B = CA, Bi j = Ci jkl Akl,

and, hence, its components satisfy

Ci jkl = C jikl = Ci jlk. (52.9)

257 By definition, o(1) represents a term that goes to zero when |H| → 0, while o(|H|) represents a term
that goes to zero when |H| → 0 faster than H and, hence, faster than the term 1

2 (H + H)).
258 Cf. (25.2).
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Next, by (52.6)2,

C = 4
∂2ψ̄R(C)
∂C2

∣∣∣∣
C=1

, (52.10)

so that, in components,

Ci jkl = 4
∂2ψ̄R(C)
∂Ci j∂Ckl

∣∣∣∣
C=1

= 4
∂2ψ̄R(C)
∂Ckl∂Ci j

∣∣∣∣
C=1

= Ckli j . (52.11)

Thus, the elasticity tensor is symmetric in the sense that

Ci jkl = Ckli j . (52.12)

Because of (52.9) and (52.11), the elasticity tensor C has at most 21 independent
components. The following results follow from (48.19) — which is satisfied because
the reference configuration is natural — and (52.10).

Since the reference configuration is assumed to be natural, it follows from
(48.19) and (52.8) that the elasticity tensor C is positive-semidefinite. Thus, C obeys

A : CA ≥ 0 (52.13)

for all symmetric tensors A.
Our next step is to investigate the symmetry properties of the elasticity tensor.

Thus, choose an arbitrary symmetric tensor A. Let C(t) be a symmetric, positive-
definite tensor function of a parameter t consistent with259

C(0) = 1 and Ċ(0) = A, (52.14)

and let TRR(t) be defined by

TRR(t) = T̄RR(C(t)). (52.15)

Then, by the chain-rule,

ṪRR =
∂T̄RR(C)
∂C

Ċ, (ṪRR)i j =
∂(T̄RR)i j

∂Ckl
Ċkl,

and, bearing in mind (52.8) and (52.14),

ṪRR(1) = 1
2 CA. (52.16)

Let Q be a symmetry transformation. Then, by (52.14) and (52.15),

Q)TRRQ = T̄RR(Q)CQ),

while, by (52.8) and (52.14),

Q)ṪRR(1)Q = 1
2 Q)(CA)Q,

so that, by (52.16),

Q)(CA)Q = C(Q)AQ). (52.17)

This relation, which must be satisfied for every symmetric tensor A and every sym-
metry transformation Q, represents the transformation law for the elasticity tensor;

259 The ensuing argument parallels that leading from (50.14) to (50.18)2.
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it asserts that the elasticity tensor is invariant under the symmetry group G of the
material.

Properties of the elasticity tensor

(i) The elasticity tensor is symmetric:

Ci jkl = Ckli j , (52.18)

so that, for all symmetric tensors G and A,

G : CA = A : CG. (52.19)

(ii) The elasticity tensor is positive-semidefinite:

A : CA ≥ 0 (52.20)

for all symmetric tensors A.
(iii) The elasticity tensor obeys

Q)(CA)Q = C(Q)AQ) (52.21)

for all symmetric tensors A.

Remark. The definition (52.8) of C renders CG defined only on tensors G that are
symmetric. But we may trivially extend this definition to all tensors A by

CA def= C(sym A). (52.22)

52.2.2 The Compliance Tensor

Assume that the elasticity tensor C is positive-definite. It then follows that there
exists a unique fourth-order tensor K, the compliance tensor, such that

K(CA) = A and C(KA) = A (52.23)

for every symmetric tensor A. As one might expect, the compliance tensor has the
exact same material-symmetry properties as the elasticity tensor. That is, the elas-
ticity and compliance tensors are invariant under the same symmetry group.

52.2.3 Estimates for the Stress and Free Energy

We begin with the second Piola stress. By (48.12), (48.18), and (52.8),

T̄(C)
∣∣
C=1 = 0,

∂T̄RR(C)
∂C

∣∣∣∣
C=1

= 1
2 C,

(52.24)

and, by (47.4), the Taylor expansion of T̄RR(C) about C = 1 has the form

T̄RR(C) = 1
2 C(C − 1) + o(|C − 1|) as C → 1

= CE + o(|E|) as E → 0. (52.25)
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Further, by (52.5)1, J = detF = 1 + o(1) and hence J −1 = 1 + o(1); in view of (47.7)
and (47.8), we therefore have the following estimate for the Cauchy stress T:

T = J −1FTRRF)

= [1 + o(1)][1 + o(1)]TRR[1 + o(1)]

= TRR + o(|H|) as H → 0, (52.26)

where we have used (52.5)1. Similarly, by (47.7),

TR = J TF−)

= [1 + o(1)]T[1 + o(1)]

= T + o(|H|) as H → 0. (52.27)

Hence,

• to within an error of o(|H|), the Cauchy and Piola stresses coincide:

T = TRR + o(|H|),

T = TR + o(|H|).
(52.28)

Moreover, by (18.9), the spatial and material forms of the density and conven-
tional body force are related through

ρ = [1 + o(1)]ρR and b0 = [1 + o(1)]b0R. (52.29)

Next, the expansion — to quadratic terms — of ψ̄(C) about C = 1 has the form

ψ̄R(C) = ψ̄R(1) + (C − 1) :
∂ψ̄R(C)
∂C

∣∣∣∣
C=1

+ 1
2 (C − 1) :

∂2ψ̃R(C)
∂C2

∣∣∣∣
C=1

[C − 1] + o(|C − 1|2) as C → 1;

since, by (48.20), (50.23), and (52.10),

ψ̄R(C)
∣∣
C=1 = 0,

∂ψ̄R(C)
∂C

∣∣∣∣
C=1

= 0,

∂2ψ̃R(C)
∂C2

∣∣∣∣
C=1

= 1
4 C,






(52.30)

this expansion reduces to

ψ̄R(C) = 1
8 (C − 1) : C(C − 1) + o(|C − 1|2) as C → 1

= 1
2 E : CE + o(|E|2) as E → 0. (52.31)
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52.3 Basic Equations of the Linear Theory of Elasticity

The linear theory of elasticity is based on approximate equations obtained when the
higher-order terms in (52.5), (52.26), (52.27), (52.29), and (52.31) are neglected.260

We therefore take ρ = ρR, T = TR, and b0 = b0R,261 and we base the theory on the
strain-displacement relation

E = 1
2 (H + H)), Ei j = 1

2

(
∂ui

∂Xj
+
∂u j

∂Xi

)
, (52.32)

the stress-strain relation

T = CE, Ti j = Ci jkl Ekl, (52.33)

and the free energy

ψR = 1
2 E : CE, ψR = 1

2 Ci jkl Ei j Ekl . (52.34)

The stress is, of course, related to the free energy via

T = ∂ψR(E)
∂E

. (52.35)

By (52.19) and (52.20), the elasticity tensor C is symmetric and positive-semidefinite;
here we assume, in addition, that C is positive-definite:

A : CA > 0 for all symmetric tensors A '= 0. (52.36)

The basic equations of the linear theory of elasticity consist of (52.32), (52.33),
and the local momentum balance (47.6)1 written in terms of displacement:

ρü = DivT + b0, ρü = ∂Ti j

∂Xj
+ b0i . (52.37)

To avoid repeated assumptions, we assume throughout this subsection that

• the body is homogeneous,

so that the elasticity tensor C and the density ρ are constant.
By (52.22),

CE = C∇u

and (52.32), (52.33), and (52.37) may be combined to form a single partial differ-
ential equation for the displacement field u: the displacement equation of motion

ρü = Div(C∇u) + b0, ρüi = Ci jkl
∂2uk

∂Xj∂Xl
+ b0i . (52.38)

52.4 Special Forms for the Elasticity Tensor

We here give specific forms for the elasticity tensor for two special cases: when the
body is isotropic; when the body is a cubic crystal.262

260 Precisely, the o(|H|) terms in (52.5), (52.26), and (52.27), the o(|E|2) term in (52.31), and the o(1)
terms in (52.29) are neglected.

261 Because ψR = ρψ , we continue to use the symbol ψR for the density measured per unit volume.
262 A discussion of the forms taken by the elasticity tensor for the other crystal classes is beyond the

scope of this book.
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52.4.1 Isotropic Material

Assume now that the body is isotropic. Then CE is a (linear) isotropic function of
E and, by the Representation Theorem for Isotropic Linear Tensor Functions in
Appendix 113.3,263

CE = 2µE + λ(trE)1, (52.39)

with µ and λ scalar constitutive moduli.
To determine the inequalities satisfied by these moduli as a consequence of the

positive-semidefiniteness of the elasticity tensor, choose an arbitrary symmetric ten-
sor E and let E0 denote its deviatoric part:

E0 = E − 1
3 (trE)1.

Then

trE0 = 1 : E0 = 0

and

|E|2 = (E0 + 1
3 (trE)1) : (E0 + 1

3 (trE)1)

= |E0|2 + 1
3 (trE)2.

Thus, by (52.39) and (52.20),

0 ≤ E : CE

= 2µ|E|2 + λ(trE)2

= 2µ|E0|2 + κ(trE)2, (52.40)

with

κ = 2µ + 3λ
3

. (52.41)

Choosing E = 1, so that trE = 3 and E0 = 0, yields 2µ + 3λ ≥ 0; choosing

E = e ⊗ f + f ⊗ e

with e and f orthonormal (so that trE = 0 and |E0|2 = 2) yields µ ≥ 0. Thus,264

µ ≥ 0 and 2µ + 3λ ≥ 0. (52.42)

If C is invertible, then — since an invertible, positive-semidefinite linear trans-
formation is positive-definite — the inequality (52.40) is strict for E '= 0 and the
argument above implies that

µ > 0 and 2µ + 3λ > 0. (52.43)

Conversely, since E vanishes if and only if both E0 and trE vanish, (52.40) and
(81.54) imply that C is positive-definite.

263 Cf. (113.9).
264 Cf. the inequalities (45.21) arising in the theory of compressible, linearly viscous fluids. Whereas

(45.21) stems from the requirement that the free-energy imbalance hold for all constitutive pro-
cesses, the inequalities (52.42) reflect the less basic assumption that C be positive-semidefinite.
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52.4.2 Cubic Crystal

As before we let G — a subgroup of the group of rotations — denote the symmetry
group (point group) of the crystal. Let M denote the space of symmetric tensors
and consider a free energy ψR(E) that is quadratic on M and invariant with respect
to G. Thus, for each symmetric tensor E,

ψR(E) = ψR(QEQ)) for all Q ∈ G. (52.44)

Assume that the crystal has cubic symmetry, so that G is the cubic group, and
assume that the unit cube of the crystal is generated by a rectangular Cartesian
basis {ei}. With respect to this basis the most general invariant free energy ψR(E),
quadratic in E, is a linear combination of three independent invariants and may be
expressed in the form265

ψR(E) = κ0(E2
11 + E2

22 + E2
33) + κ1(E11 E22 + E22 E33 + E11 E33)

+ κ2(E2
12 + E2

13 + E2
23 + E2

21 + E2
31 + E2

32), (52.45)

with κ0, κ1, and κ2 scalar constants. More useful for our purposes is the fact that this
free energy can be rewritten in the alternative form

ψR(E) = µ|E|2 + 1
2λ(trE)2 + 1

2 c0(E), (52.46)

where

0(E) = E2
11 + E2

22 + E2
33. (52.47)

Note that the terms in (52.46) with coefficients µ and λ are isotropic invariants, so
that the cubic nature of ψR is characterized solely by 0(E).

As in the case of an isotropic body, the requirement that the elasticity tensor
be positive-semidefinite yields inequalities involving the moduli µ, λ, and c enter-
ing (52.46). To determine the relevant inequalities, choose an arbitrary symmetric
tensor E and note that, trivially, E admits the decomposition

E = Ẽ + Ê

where, in terms of matrices expressed with respect to the basis {ei},

[Ẽ] =




E11 0 0
0 E22 0
0 0 E33



 and [Ê] =




0 E12 E13

E21 0 E23
E31 E32 0



 .

Immediate consequences of this decomposition are that Ẽ and Ê are orthogonal,

Ẽ : Ê = 0, (52.48)

and that

0(E) = |Ẽ|2. (52.49)

Letting Ẽ0 = Ẽ − 1
3 (trẼ)1 and bearing in mind that

trẼ = Ẽ : 1 = 0, (52.50)

265 Cf. Sirotin & Shaskolskaya (1982, p. 620).
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it therefore follows that

|E|2 = (Ẽ + Ê) : (Ẽ + Ê)

= |Ẽ|2 + |Ê|2

= (Ẽ0 + 1
3 (trẼ)1) : (Ẽ0 + 1

3 (trẼ)1) + |Ê|2

= |Ẽ0|2 + 1
3 (trẼ)2 + |Ê|2. (52.51)

Using (52.49) and (52.51) in the free energy (52.46), we obtain

ψR(E) = µ|Ẽ0|2 + 1
3µ(trẼ)2 + µ|Ê|2 + 1

2λ(tr Ẽ)2 + 1
2 c|Ẽ0|2 + 1

6 c(trẼ)2

= µ|Ê|2 + (µ + 1
2 c)|Ẽ0|2 + 1

3 (µ + 3
2λ+ 1

2 c)(trẼ)2. (52.52)

In view of the orthogonality relations (52.48) and (52.50), Ê, Ẽ0, and trẼ can be
varied independently. To ensure that ψR(E) ≥ 0, it follows from (52.52) that the
coefficients of |Ẽ|2, |Ẽ0|2, and (tr Ẽ)2 must be nonnegative:

µ ≥ 0, µ + 1
2 c ≥ 0, and µ + 3

2λ+ 1
2 c ≥ 0. (52.53)

We leave it as an exercise to show that the strict versions of the inequalities (52.53)
are necessary and sufficient to ensure that the elasticity tensor for a cubic material
be positive-definite.

A direct calculation shows that, for 0 as defined in (52.47),

∂0

∂E
= 2

3∑

i=1

Eii ei ⊗ ei .

On applying (52.35) to (52.46), the constitutive relation for the stress T therefore
has the well-known form

T = 2µE + λ(trE)1︸ ︷︷ ︸
Tiso

+Tcub (52.54)

in which Tiso is the isotropic part of T, while Tcub, the cubic part of T, has the form

Tcub = c
3∑

i=1

Eii ei ⊗ ei , (52.55)

and is, hence, represented by a diagonal matrix with respect to the cubic basis.
To make contact with the crystallography literature, we use the Voigt single

index notation266 for the components of T and E,




T1
T2
T3
T4
T5
T6





def=





T11
T22
T33
T23
T13
T12




,





E1
E2
E3
E4
E5
E6





def=





E11
E22
E33

2E23
2E13
2E12




, (52.56)

266 Cf., e.g., Ting (1996, §2.3).
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and rewrite the constitutive relation T = CE in the form




T1
T2
T3
T4
T5
T6




=





C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66









E1
E2
E3
E4
E5
E6




, (52.57)

with the elastic constants CI J in the matrix relation above satisfying CI J = CJ I . Then,
granted the components of C are expressed with respect to the cubic basis, (52.57)
reduces to





T1
T2
T3
T4
T5
T6




=





C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44









E1
E2
E3
E4
E5
E6




, (52.58)

with C11, C12, and C44 the independent elastic constants. We leave it as an exercise to
relate the moduli µ, λ, and c to these constants.

52.5 Basic Equations of the Linear theory of Elasticity for an
Isotropic Material

By (52.39), when the body is isotropic the stress-strain law takes the simple form

T = 2µE + λ(trE)1 (52.59)

and corresponds to the energy

ψR = µ|E|2 + 1
2λ(trE)2. (52.60)

Because C is positive-definite, the Lamé moduli µ and λ satisfy the strict inequalities
(81.54); as a consequence the stress-strain relation (52.59) may be inverted to give

E = 1
2µ

(
T − λ

2µ + 3λ
(trT)1

)
, (52.61)

an assertion whose proof we leave as an exercise.
Next,

(2DivE)i = ∂

∂Xj

(
∂ui

∂Xj
+ ∂u j

∂Xi

)

= ∂2ui

∂Xj∂Xj
+ ∂2u j

∂Xi∂Xj

= (,u + ∇Div u)i (52.62)

and the displacement equation of motion for an isotropic body takes the form

ρü = µ,u + (λ+ µ)∇Div u + b0, ρüi = µ
∂2ui

∂Xj∂Xj
+ (λ + µ)

∂2u j

∂Xi∂Xj
+ b0i .

(52.63)
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52.5.1 Statical Equations

Statical (i.e., time-independent) solutions of (52.32), (52.33), and the local balance

DivT + b0 = 0 (52.64)

describe situations in which the body is in equilibrium. Such solutions satisfy the
displacement equation of equilibrium

Div(C∇u) + b0 = 0, Ci jkl
∂2uk

∂Xj∂Xl
+ b0i = 0, (52.65)

an equation that for B isotropic has the form

µ,u + (λ+ µ)∇Divu + b0 = 0. (52.66)

EXERCISES

1. Establish the dynamical energy balance

˙∫

P

1
2 (E : CE + ρ|u̇|2) dv =

∫

∂P

Tn · u̇ da +
∫

P

b0 · u̇ dv (52.67)

for any subregion P of the body. Establish the energy-conservation theorem: If
b0 = 0, and if Tn = 0 on a portion of ∂B and u̇ = 0 on the remainder of ∂B, then

∫

P

1
2 (E : CE + ρ|u̇|2) dv is independent of time (52.68)

and energy is conserved; if, in addition, u and u̇ vanish on B at some time, then

u = 0 on B for all time. (52.69)

2. Show, as a consequence of the symmetry of C, that

T =
∂( 1

2 E : CE)
∂E

, (52.70)

and use this relation to establish the local free-energy balance

ψ̇R = T : Ė. (52.71)

3. Show that the statical equations (52.32), (52.33), and (52.64) imply the work and
energy balance

∫

∂P

Tn · u da +
∫

P

b0 · u dv =
∫

P

E : CE dv (52.72)

for any subregion P of the body.267

267 Note that the right side of (52.72) is twice the strain energy.
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4. Assume that the material is isotropic and that b0 = 0. Let

ϑ = Divu, ω = Curl u. (52.73)

Show that

ϑ̈ = V1,ϑ, V1 =

√
2µ + λ

ρ
,

ω̈ = V2,ω, V2 =
√

µ

ρ
.

(52.74)

Discuss the physical meaning of these equations.
5. Show that the statical counterparts of (52.74) are

,ϑ = 0,

,ω = 0,

so that ϑ and ω are harmonic. Show further that the displacement field u is
biharmonic:

,,u = 0,
∂4ui

∂Xj∂Xj∂Xk∂Xk
= 0.

6. Derive the strain-stress relation (52.61).
7. Arguing as in the case of an isotropic body, show that the strict versions of

the inequalities (52.53) are necessary and sufficient for the elasticity tensor of a
cubic material to be positive-definite.

8. Show that the moduli {µ,λ, c} and the cubic constants {C11, C12, C44} are related
via

µ = C44, λ = C12, and c = C11 − C12 − 2C44.

Thus, conclude that the extent to which a linearly elastic solid with cubic sym-
metry deviates from isotropic is determined by the extent to which C44 differs
from 1

2 (C11 − C12).
9. Assume that the material is a cubic crystal. Show that

DivT = DivTiso + DivTcub,

where

DivTiso = µ,u + (λ+ µ)∇Divu, (52.75)

and where the cubic term DivTcub (which does not lend itself to indicial nota-
tion) has the matrix form

[DivTcub] = c




u1,11
u2,22
u3,33



 . (52.76)

Show further that the displacement equation of motion for a cubic crystal takes
the form

ρü = µ,u + (λ+ µ)∇Divu + DivTcub + b0 (52.77)

with DivTcub given by (52.76).
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52.6 Some Simple Statical Solutions

Any statical displacement field u with ∇u constant generates a solution of the
basic equations (52.32), (52.37), and (52.59) with b0 = 0. We now discuss three such
displacement fields.

(i) Pure shear. Let

u(X) = γX2e1

so that, on defining the shear stress

τ = µγ ,

the matrices of E and T are given by

[E] =




0 γ 0
γ 0 0
0 0 0



 , [T] =




0 τ 0
τ 0 0
0 0 0



 ; (52.78)

µ is called the shear modulus.
(ii) Uniform compression or expansion. Let

u(X) = υ(X − 0),

with υ constant. In this case,

E = υ1, T = −p1,

with

p = −3κυ,

where κ , as given by (52.41), is referred to as the bulk modulus (or modulus of
compression).

(iii) Pure tension. Here, the stress has the form

[T] =




σ 0 0
0 0 0
0 0 0



 , (52.79)

so that, by (52.61),268

[E] =




ε 0 0
0 7 0
0 0 7



 , (52.80)

with

ε =
σ

E
, 7 = −νε,

and

E = µ(2µ + 3λ)
µ + λ

, ν = λ

2(µ + λ)
.

Note that the displacement field has the form

u(X) = εX1e1 + 7X2e2 + 7X3e3.

The material parameter E, known as Young’s modulus, is obtained by divid-
ing the tensile stress σ by the longitudinal strain ε produced by it; the material

268 The use of ε for tensile strain is standard. Our use of the same symbol for the specific internal-energy
should not cause confusion: ε is used for tensile strain only here and in a similar paragraph in §52.6.
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parameter ν, known as Poisson’s ratio, is the ratio of the lateral contraction to
the longitudinal strain of a bar under pure tension. For classical materials, it is
expected that an elastic solid should increase its length when pulled, should de-
crease its volume when acted on by a pressure, and should respond to a positive
shearing strain by a positive shearing stress. Consistent with these expectations
being so, it follows that

E > 0, κ > 0, and µ > 0.

These inequalities (actually κ > 0 and µ > 0, or E > 0 and −1 < ν < 1
2 ), are

equivalent to the positive-definiteness of C.

52.7 Boundary-Value Problems

In this section, we establish classical theorems regarding the boundary-value prob-
lem of elastostatics and the initial/boundary-value problem of elastodynamics. In
this regard, recall our assumption that269

• the elasticity tensor C is symmetric and positive-definite.

In the linear theory, the analog of a rigid deformation is an (infinitesimal) rigid
displacement, which is a field w of the form

w(X) = α + λ × (X − o), (52.81)

with α and λ constant vectors.270 It then follows that a vector field w is a rigid dis-
placement field if and only if271

∇w + (∇w)) = 0; (52.82)

that is, an infinitesimal displacement field is rigid if and only if the corresponding
strain field vanishes.

52.7.1 Elastostatics

Let S1 and S2 be complementary subsurfaces of the boundary ∂B of the body B. We
consider boundary conditions in which the displacement is specified on S1 and the
surface traction is specified on S2:

u = û on S1,

Tn = t̂ on S2,
(52.83)

with û and t̂ prescribed functions. The mixed problem of elastostatics may then be
stated as follows: Given boundary data û and t̂, find a displacement field u, a strain
field E, and a stress field T that satisfy the field equations

E = 1
2 (∇u + (∇u))),

T = CE,

DivT + b0 = 0,





on B (52.84)

and the boundary conditions (52.83).272

269 Cf. (52.19) and (52.36).
270 Cf. (10.5).
271 Cf. Gurtin (1981, p. 56).
272 Here, it is assumed that the elasticity tensor C and the conventional body force b0 are known.
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Uniqueness Theorem The mixed problem of elastostatics has at most one solution
up to a rigid displacement of the body; that is, any two solutions must have the same
stress and strain fields and the displacement fields of the two solutions may differ at
most by a rigid displacement.

To establish this theorem, let u1 and u2 (and corresponding strains and stresses)
represent two solutions of the mixed problem of elastostatics. The displacement
difference u = u1 − u2 then represents a solution of a mixed problem in which the
body force vanishes, as do the prescribed surface displacement and surface traction,
so that

∫

B

b0 · u dv = 0

and since, by (52.83), u = u1 − u2 = 0 on S1 and Tn = T1n − T2n = 0 on S2,
∫

∂B

Tn · u da =
∫

S1

Tn · u da +
∫

S2

Tn · u da

= 0.

Hence, by the work and energy balance (52.72) applied to the body B,
∫

B

E : CE dv = 0, (52.85)

and, since the integrand is nonnegative, it must vanish: E : CE = 0. In view of the
assumed positive-definiteness of C, we must therefore have E = T = 0. In particular,
the vanishing of the strain E renders the displacement u rigid.273

Our next step is to state and prove the principle of minimum potential energy
within the context of elastostatics. By a kinematically admissible displacement field,
we mean an arbitrary field ũ on B that satisfies the displacement boundary condition
(52.83):

ũ = û on S1. (52.86)

Let F denote the net free-energy

F(E) = 1
2

∫

B

E : CE dv (52.87)

corresponding to any strain field E, and let 0 — the potential energy functional —
be defined on the set of kinematically admissible displacement fields by

0(ũ) = F(Ẽ) −
∫

∂B

Tn · ũ da −
∫

B

b0 · ũ dv,

Ẽ = 1
2 (∇ũ + (∇ũ))).

(52.88)

Principle of Minimum Potential Energy Let u, E, and T define a solution of the
mixed problem of elastostatics. Then

0(u) ≤ 0(ũ) (52.89)

for every kinematically admissible displacement field ũ, with equality holding only if
u and ũ differ by a rigid displacement field.

273 Cf. the sentence containing (52.82).
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To establish this principle, choose a kinematically admissible displacement field
ũ and let

w = ũ − u,

Ē = Ẽ − E.

Then, since u is a solution and ũ is kinematically admissible,

w = 0 on S1,

Ē = 1
2 (∇w + (∇w))).

(52.90)

Further, since C is symmetric and T = CE,

Ẽ : CẼ = E : CE + Ē : CĒ + E : CĒ + Ē : CE

= E : CE + Ē : CĒ + 2T : Ē; (52.91)

hence, by (52.87),

F(Ẽ) − F(E) = F(Ē) +
∫

B

T : Ē dv. (52.92)

On the other hand, by (52.90)1,2, (52.84)3, the symmetry of T, and the divergence
theorem,

∫

B

T : Ē dv =
∫

B

T : ∇w dv

=
∫

∂B

Tn · w da −
∫

B

DivT · w dv

=
∫

∂B

Tn · w da +
∫

B

b0 · w dv

=
∫

S2

Tn · w da +
∫

B

b0 · w dv. (52.93)

In view of (52.88), (52.92), and (52.93),

0(ũ) −0(u) = F(Ē).

Thus, since C is positive-definite,

0(u) ≤ 0(ũ)

and, by the argument following (52.85),

0(u) = 0(ũ)

only when Ē = 0 and, hence, only when w = ũ − u is a rigid displacement. This com-
pletes the proof of the principle of minimum potential energy.
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52.7.2 Elastodynamics

As before, we consider boundary conditions in which the displacement is specified
on S1 and the surface traction is specified on S2:

u = û on S2 for all time (≥ 0),

Tn = t̂ on S1 for all time (≥ 0),
(52.94)

with û and t̂ prescribed functions. In dynamics, these conditions are supplemented
by initial conditions in which the displacement u and the velocity u̇ are specified
initially:

u(X, 0) = u0(X) and u̇(X, 0) = v0(X) for all X in B, (52.95)

with u0 and v0 prescribed functions. The mixed problem of elastodynamics may
then be stated as follows: Given boundary data û and t̂ and initial data u0 and v0,
find a displacement field u, a strain field E, and a stress field T that satisfy the field
equations

E = 1
2 (∇u + (∇u))),

T = CE,

ρü = DivT + b0,





on B for all time (≥ 0), (52.96)

the boundary conditions (52.94), and the the initial conditions (52.95).274

Uniqueness Theorem The mixed problem of elastodynamics has at most one solu-
tion.

This theorem is a consequence of the energy-conservation theorem on page 307.
Indeed, the difference between two solutions represents a solution of a mixed prob-
lem in which the body force vanishes, as do the prescribed surface displacement,
surface traction, initial displacement, and initial velocity; by (52.69), the two solu-
tions must therefore coincide.

52.8 Sinusoidal Progressive Waves

Sinusoidal progressive waves form an important class of solutions to the equations
of linear elastodynamics. We consider these waves for isotropic media and assume
that the conventional body force b0 vanishes. The underlying field equation is then
the displacement equation of motion

ρü = µ,u + (λ+ µ)∇Divu. (52.97)

A displacement field u of the form

u(X, t) = a sin(r · ν − ct), |ν| = 1, r = X − o, (52.98)

is called a sinusoidal progressive wave with amplitude a, direction ν, and velocity
c. Such a wave is longitudinal if a and ν are parallel or transverse if a and ν are
perpendicular.

We now determine conditions necessary and sufficient for (52.98) to satisfy
(52.97). Applying the chain-rule to (52.98) and writing ϕ(X, t) = r · ν − ct , we

274 Here, it is assumed that, in addition to the elasticity tensor C and the conventional body force b0,
the density ρ is known.
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find that

∇u = a ⊗ ν cosϕ,

,u = −a sinϕ,

∇Divu = −(a · ν)ν sinϕ,

ü = −c2a sinϕ.

(52.99)

By (52.99)1,

Divu = a · ν cos ϕ,

Curl u = −a × ν cosϕ,

and it follows that the wave is longitudinal if and only if Curl u = 0 and transverse if
and only if Divu = 0.

Next, by (52.99)2–4, u as defined in (52.98) satisfies (52.97) if and only if

ρc2a = µa + (λ + µ)(a · ν)ν. (52.100)

Defining the acoustic tensor A(ν) via

ρA(ν) = µ1 + (λ+ µ)ν ⊗ ν

allows us to rewrite (52.100) in the form of a propagation condition

A(ν)a = c2a. (52.101)

A condition necessary and sufficient for u to satisfy (52.97) is therefore that a be an
eigenvector and that c2 be a corresponding eigenvalue of the acoustic tensor A(ν).

A direct calculation shows that

A(ν) =
µ

ρ
(1 − ν ⊗ ν) +

λ+ 2µ

ρ
ν ⊗ ν.

But, this is simply the spectral decomposition of A(ν) and we may conclude from (ii)
of the Spectral Theorem on page 28 that ρ−1µ and ρ−1(λ+ 2µ) are the eigenvalues
of A(ν), while the line spanned by ν and the plane perpendicular to ν (contain-
ing the origin) are the corresponding characteristic spaces. A sinusoidal progressive
wave with amplitude a, direction ν, and velocity c will therefore be a solution of the
displacement equation of motion (52.97) if and only if either

• ρc2 = λ+ 2µ and the wave is longitudinal

or

• ρc2 = µ and the wave is transverse.

This result shows that for an isotropic medium, only two types of sinusoidal pro-
gressive waves are possible: longitudinal and transverse. The corresponding wave
speeds

√
(λ+ 2µ)/ρ and

√
µ/ρ are called, respectively, the longitudinal sound speed

and the transverse sound speed of the medium. Importantly, these speeds are real
when the elasticity tensor is positive-semidefinite. For an anisotropic medium the
situation is far more complicated. A propagation condition of the form (52.101) can
be obtained. However, the waves determined by that condition are generally neither
longitudinal nor transverse and those waves may propagate with different speeds in
different directions.
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EXERCISE

1. For an anisotropic medium subject to no conventional body force, the displace-
ment equation of motion can be written in the form

ρü = Div(C∇u). (52.102)

Show that
a. A sinusoidal progressive wave of the form (52.98) satisfies (52.102) if and

only if the propagation condition (52.101) holds, where now A(ν) is defined
by

ρA(ν)k = [C(k ⊗ ν)]ν

for every vector k.
b. The acoustic tensor A(ν) is positive-semidefinite if and only if the elasticity

tensor C obeys

(e ⊗ f) · C(e ⊗ f) ≥ 0

for all vectors e and f — in which case C is said to be elliptic.
c. The elasticity tensor C for an isotropic medium is elliptic if and only if µ ≥ 0

and λ+ 2µ ≥ 0 (in which case the longitudinal and transverse wave speeds
are real).



53 Digression: Incompressibility

In preparation for the next section, which treats incompressible elastic solids, we
now introduce the notion of incompressibility and discuss several of its most impor-
tant consequences.

53.1 Kinematics of Incompressibility

Constraints are constitutive assumptions that limit the class of constitutive processes
a body may undergo. Here, we consider only the constraint of incompressibility.275

An incompressible body is one for which only isochoric motions are possible, a
requirement manifested in the constraint276

divv = 0. (53.1)

In view of the proposition labeled (‡) on page 114, either of the following equivalent
conditions may also be used to characterize incompressibility:277

˙det F = 0,

trL = 0.

(53.2)

Moreover, since the stretching D is the symmetric part of the velocity gradient L,
the incompressibility condition (53.2)2 is equivalent to the requirement that

trD = 0. (53.3)

By (53.2)1, we may, without loss in generality, assume that

J = det F ≡ 1 (53.4)

in all motions of an incompressible body, so that at any instant t of any such motion,
each part P deforms to a spatial region Pt with the same volume. An immediate
consequence of (47.2) and (47.3) is then that

det C ≡ 1,

det B ≡ 1.
(53.5)

275 Cf. Truesdell and Noll (1965, §30) for a general discussion of constraints.
276 Cf. the results concerning isochoric motions in §16.
277 The second of these conditions follows from the first and the identity trA = tr(RAR)), which is

valid for any tensor A and any orthogonal tensor R.
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53.2 Indeterminacy of the Pressure. Free-Energy Imbalance

Assume throughout this subsection that the body is incompressible. Then, assuming
that the referential density ρR is constant, we may conclude from (53.4) and the
referential form (18.9) of mass balance that

ρ = JρR

= ρR

≡ constant. (53.6)

The essential change induced by the constraint of incompressibility lies with the
stress power T : D. Indeed, defining the extra stress S and the pressure p through

S = T + p1 and p = − 1
3 (trT)1, (53.7)

we see that

trS = 0. (53.8)

Thus, since

1 : D = trD

= divv

= 0,

it follows that

T : D = S : D. (53.9)

We therefore have a central consequence of incompressibility:

(‡) In the motion of an incompressible body, the pressure expends no power and
hence performs no work.

Next, by (24.1) and (53.5), the Piola stress has the form

TR = TF−) (53.10)

and, therefore, (53.7)1 yields

TR = −pF−) + SR, (53.11)

where, bearing in mind (53.4),

SR
def= SF−) (53.12)

is the extra Piola stress. Thus, by (53.9), the stress power takes the form

S : D = S : L

= S : (ḞF−1)

= (SF−)) : Ḟ

= SR : Ḟ. (53.13)

We may use (53.13) to write the referential free-energy imbalance (31.24) in the
form

ψ̇R − SR · Ḟ = −δR ≤ 0. (53.14)
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53.3 Changes in Frame

By (21.6) and (53.7), under a change in frame, since p∗ = p,

−p∗1 + S∗
︸ ︷︷ ︸

T∗

= Q (−p1 + S)︸ ︷︷ ︸
T

Q)

= −p1 + QSQ),

and the extra stress S must be frame-indifferent:

S∗ = QSQ). (53.15)

Similarly, for the extra Piola stress SR, by (53.12), since F∗ = QF implies that
(F−))∗ = (F∗)−) = (QF)−) = (F−1Q−1)) = (F−1Q))) = QF−),

S∗
R = S∗(F−))∗

= QSF−)

= QSR. (53.16)
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54.1 Constitutive Theory

The discussion of compressible elastic solids in §48 is based, in part, on a constitutive
equation

TR = T̂R(F) (54.1)

giving the Piola stress when the motion (and hence F) is known, and one might ask:
Would this be a valid constitutive relation for an incompressible body? To answer
this question, consider the following thought experiment involving a homogeneous,
incompressible elastic body in the shape of a ball of diameter d. Assume that there
are no body forces and that the ball is in equilibrium under a uniform pressure p0.
A second experiment in which the ball is in equilibrium under a pressure different
from p0 would then leave the body unchanged: Since the ball is incompressible it
would remain a ball of diameter d. In view of this thought experiment,

• it would seem unreasonable to allow a constitutive relation for an incompressible
elastic body to involve the pressure.

We should therefore replace the constitutive relation (54.1), which involves the full
Piola stress tensor TR, with one involving only its “pressureless part” SR. We thus
take — as appropriate incompressible counterparts of the constitutive equations
(48.1) — constitutive equations of the form

ψR = ψ̂R(F),

SR = ŜR(F),
(54.2)

with F constrained to satisfy

det F = 1.

Because the constitutive equations (54.2), by themselves, cannot determine the pres-
sure, the pressure is usually referred to as indeterminate.278

54.1.1 Consequences of Frame-Indifference

The relation (53.16) and an argument identical to that surrounding (48.7) here imply
that the constitutive relations (54.2) are frame-indifferent if and only if they reduce

278 By (‡) on page 317, the pressure in an incompressible body performs no work; our use of the term
“indeterminate” is therefore consistent with classical mechanics, where a force is indeterminate if it
performs no work.
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to constitutive relations of the specific form

ψR = ψ̄R(C),

SR = FS̄RR(C),
(54.3)

where

SRR = S̄RR(C)

denotes the pressureless part of the second Piola stress. By (53.10) and (53.11), we
may rewrite the constitutive equation (54.3)2 in either of the equivalent forms279

TR = −pF−) + FS̄RR(C),

T = −p1 + FS̄RR(C)F).
(54.4)

54.1.2 Domain of Definition of the Response Functions

The common domain of the response functions ψ̄(C) and S̄RR(C) is not the set of all
symmetric and positive-definite tensors C but instead

the set of all symmetric, positive-definite tensors C with det C = 1; (54.5)

because of the constraint det C = 1, care must be taken in ascribing a meaning to
the derivative ∂ψ̄(C)/∂C. We can, however, bypass this difficulty by noting that any
function f (C) defined on the constrained set (54.5) may be extended to a function
fext(C) defined on all symmetric, positive-definite tensors C, even those with det C '=
1, as follows:280

fext(C) = f ((det C)−1/3C). (54.6)

We may therefore assume, without loss in generality, that ψ̄R(C) is well-defined on
all symmetric, positive-definite tensors C.281 Then, as in the compressible theory,

∂ψ̄R(C)
∂C

is symmetric, (54.7)

with ∂ψ̄R(C)/∂C a conventional derivative on the space of symmetric tensors. Even
so, when we write ψ̄R(C) or ∂ψ̄R(C)/∂C it should be understood that det C = 1, even
though the derivative represents that of the extended function.

We find it neither necessary nor helpful to extend the domain of S̄RR(C). Since

S = SRRF),

(54.3) yields

S = FS̄RR(C)F);

thus, since S is symmetric and deviatoric,

FS̄RR(C)F) is symmetric and deviatoric. (54.8)

For the purist, a definition of ∂ψ̄R(C)/∂C that does not involve extending the function ψR follows
from the discussion of derivatives in §3.4: ∂ψ̄R(C)/∂C is defined via the requirement that, for any function

279 Cf. (48.14) and (48.15).
280 The right side of (54.6) is well defined, because (det C)−1/3C has unit determinant.
281 We do not require that the particular extension (54.6) be used: For example, one might choose to

use a free energy of the compressible theory, suitably tailored.
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C(t) with values in the incompressibility set (54.5), and for ψR(t) = ψ̄R(C(t)),

ψ̇R =
∂ψ̄R(C)
∂C

: Ċ. (54.9)

Granted this, for any C,

the derivative
∂ψ̄R(C)
∂C

must belong to the same tensorial set as Ċ.

Next, by (3.3)1, ˙det C = (det C)tr(ĊC−1), and we may use (53.5)1 to conclude that

tr(ĊC−1) = 0 or, equivalently, Ċ : C−1 = 0;

hence, in the space of symmetric tensors,

Ċ is orthogonal to C−1.

Thus,
∂ψ̄R(C)
∂C

must be orthogonal to C−1.

54.1.3 Thermodynamic Restrictions

As in the steps leading to (48.11), the Coleman–Noll procedure — here based on
the definition of ∂ψ̄R(C)/∂C using an appropriate extension of ψ̄ together with the
free-energy imbalance (53.14) applied to the constitutive equations (54.3) — yields
the requirement that the inequality

(
2
∂ψ̄R(C)
∂C

− S̄RR(C)
)

︸ ︷︷ ︸
M

: Ċ ≤ 0 (54.10)

be satisfied in all motions of the body. Equivalently, noting that, by (11.10) and the
fact that C = 2E,

2F)DF = Ċ, (54.11)

and hence that, for M as defined in (54.10),

M : Ċ = 2M : (F)DF)

= 2(FMF)) : D,

all motions must be consistent with
[

F
(

2
∂ψ̄R(C)
∂C

− S̄RR(C)
)

F)

]
: D ≤ 0. (54.12)

The following proposition is useful in determining the consequences of (54.12):

(†) Given any point of the body and any time, it is possible to find a motion such
that282

(a) det C ≡ 1 (so that trD ≡ 0);
(b) C and D have arbitrarily prescribed values — consistent with (a) — at that

point and time.

Granted this assertion — which we prove on page 322 — the symmetric-deviatoric
part of the “coefficient” of D in (54.12), namely

F
(

2
∂ψ̄R(C)
∂C

− S̄RR(C)
)

F),

282 Cf. (†) on page 279.
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must vanish, for otherwise it is possible to choose D so that (54.12) is violated. Thus,
bearing in mind that, by (54.7) and (54.8),

(i)
∂ψ̄RR(C)
∂C

is symmetric, but not necessarily deviatoric,

(ii) D and FS̄RR(C)F) are symmetric and deviatoric,

and it follows that283

FS̄RR(C)F) = 2dev
(

F
∂ψ̄R(C)
∂C

F)

)
,

and hence, by (54.4), that

T = −p1 + 2dev
(

F
∂ψ̄R(C)
∂C

F)

)
. (54.13)

The presence of the operation dev in (54.13) is necessary if p is to represent the
pressure, p = −trT. On the other hand, if we replace p in (54.13) by

P = p + 2
3 tr

(
F
∂ψ̄R(C)
∂C

F)

)
, (54.14)

then we may remove the operation dev in (54.13); thus, by (53.10), we have the
following thermodynamic restriction:

(‡) The free energy determines the Piola and Cauchy stresses through the equivalent
stress relations

TR = −PF−) + 2F
∂ψ̄R(C)
∂C

,

T = −P1 + 2F
∂ψ̄R(C)
∂C

F),

(54.15)

in which P is an arbitrary scalar field, a field that is generally distinct from the
pressure.284

We refer to P as the effective pressure. For any initial-boundary-value problem in-
volving applied pressure on any portion of the boundary, it is the actual pressure
p as opposed to the effective pressure P that is of primary physical importance.
However, given χ and P, the relation (54.14) determines p via

p = P − 2
3 tr

(
F
∂ψ̄R(C)
∂C

F)

)
.

54.1.4 Verification of (†)
Choose an arbitrary material point X0 and time t0. Let F0 be an arbitrary constant tensor with

det F0 = 1, (54.16)

and let D be an arbitrary constant symmetric tensor with

trD = 0. (54.17)

The motion (48.21) is then, as before, well defined for any reference body B, no matter the shape. More-
over, the constant D represents the stretching, so that, by (54.17), (48.21) represents the motion of an
incompressible body. A consequence of (14.6) is then that

C(X0, t0) = F)
0 F0.

Since F0 with unit determinant and the symmetric and deviatoric tensor D were arbitrarily chosen, this
completes the verification of (†).

283 Recall that devA = A − 1
3 (trA)1 denotes the deviatoric part of A.

284 The effective P is arbitrary because the pressure p is arbitrary.
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54.2 Incompressible Isotropic Elastic Bodies

Assume that the body is both incompressible and isotropic. Then, bearing in mind
(53.4), we have

ψ̄R(B) = ψ̃R(ĨB), (54.18)

where

ĨB
def= (I1(B), I2(B)) (54.19)

denotes the list of nontrivial principal invariants. Under these circumstances, the
counterpart of the stress relation (50.34) is

T = −P1 + β1(ĨB)B + β2(ĨB)B−1, (54.20)

with

β1(ĨB) = 2
∂ψ̃R(ĨB)
∂ I1

,

β2(ĨB) = −2
∂ψ̃R(ĨB)
∂ I2

.

(54.21)

When the free energy is expressed in terms of principal stretches,

ψR = ψ̆R(λ1,λ2,λ3),

the constraint of incompressibility reads

λ1λ2λ3 = 1,

and, for λi distinct, the counterparts of the expressions (50.44) and (50.45) are

TR =
3∑

i=1

(
∂ψ̆R(λ1,λ2,λ3)

∂λi
− P
λi

)
li ⊗ ri ,

T =
3∑

i=1

(
λi
∂ψ̆R(λ1,λ2,λ3)

∂λi
− P

)
li ⊗ li ,

(54.22)

with li and ri being the left and right principal directions.
A consequence of (54.22)2 is that the principal values of the Cauchy stress are

given by

σi = λi
∂ψ̆R(λ1,λ2,λ3)

∂λi
− P (no sum). (54.23)

Further, granted that R ≡ 1, so that the deformation is a pure homogeneous strain,
the Piola stress TR is symmetric with principal values given by

si = ∂ψ̆R(λ1,λ2,λ3)
∂λi

− P
λi

. (54.24)

The equations (54.23) and (54.24) in terms of principal stresses are widely used in
comparing theory with experiment for isotropic materials with negligible compress-
ibility. Since, for incompressible materials only two stretches may be varied inde-
pendently, biaxial tests alone are sufficient to determine the form of the response
function ψ̆ determining the free energy.
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54.3 Simple Shear of a Homogeneous, Isotropic, Incompressible
Elastic Body

Using (54.20) and (54.21), and the kinematical relations discussed in the case of
simple shear for a homogeneous, isotropic, compressible elastic body,285 we find
that for an isotropic, incompressible elastic body




T11 T12 T13
T21 T22 T23
T31 T32 T33



 = −P




1 0 0
0 1 0
0 0 1



+ β̃1(γ 2)




1 + γ 2 γ 0
γ 1 0
0 0 1



+ β̃2(γ 2)




1 −γ 0

−γ 1 + γ 2 0
0 0 1



 ,

(54.25)

with

β̃1(γ 2) = β1(3 + γ 2, 3 + γ 2) and β̃2(γ 2) = β2(3 + γ 2, 3 + γ 2).

Thus,

T11 = −P + (1 + γ 2)β̃1(γ 2) + β̃2(γ 2),

T22 = −P + β̃1(γ 2) + (1 + γ 2)β̃2(γ 2),

T33 = −P + β̃1(γ 2) + β̃2(γ 2),

T12 = µ(γ 2)γ ,

T13 = T23 = 0,






(54.26)

where the modulus µ(γ 2) entering the shear stress T12 is defined by

µ(γ 2) = β̃1(γ 2) − β̃2(γ 2). (54.27)

In contrast to the compressible case, one can set T33 = 0 by selecting the arbi-
trary effective pressure P as

P = β̃1(γ 2) + β̃2(γ 2). (54.28)

With this choice, we obtain

T11 = β̃1(γ 2)γ 2,

T22 = β̃2(γ 2)γ 2,

T12 = µ(γ 2)γ ,






(54.29)

and

T13 = T23 = T33 = 0. (54.30)

Granted that P is chosen consistent with (54.28), the response functions β1 and
β2 are therefore determined directly in terms of the nonvanishing normal stresses.
Further, if

β1(3 + γ 2, 3 + γ 2) > β2(3 + γ 2, 3 + γ 2), (54.31)

then µ(γ 2) > 0.286

285 Cf. §51.
286 Cf. (51.10).
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EXERCISES

1. (Project) Develop a linear theory for incompressible elastic solids.
2. A simple phenomenological model for the nonlinearly elastic response of a

rubber-like material is provided by the Mooney (1940) free-energy function

ψR = c1(I1 − 3) + c2(I2 − 3),

with c1 ≥ 0 and c2 ≥ 0 constant. We refer to an incompressible, isotropic, hyper-
elastic body with free energy of this form as a “Mooney material.” For c2 = 0,
the Mooney material reduces to the neo-Hookean material arising from the
molecular-statistical Gaussian theory of rubber elasticity (Guth & Mark 1934;
Kuhn 1934; Wall 1942; Treloar 1943; Flory 1944).
a. Using (54.20), show that the Cauchy stress for a Mooney material has the

specific form

T = −P1 + 2c1B − 2c2B−1.

b. Using (54.27), show that the shear modulus for a Mooney material is given
by

µ = 2(c1 + c2).

3. A phenomenological model that incorporates the finite extensibility of the poly-
mer chains comprising a rubber network was provided by Gent (1996) in the
form of the free-energy function

ψR = −c1 I m
1 ln

(
1 − I1 − 3

I m
1

)
+ c2 ln

(
I2

3

)
,

with c1 ≥ 0, c2 ≥ 0, and I m
1 > 3 constant. In particular, I m

1 denotes the maximum
possible value of (I1 − 3). We refer to an incompressible, isotropic, hyperelastic
body with free energy of this form as a “Gent material.”
a. Using (54.20), show that the Cauchy stress for a Gent material has the specific

form

T = −P1 + 2c1

(
1 − I1 − 3

I m
1

)−1

B − 2c2 I−1
2 B−1.

b. Using (54.27), show that the shear modulus for a Gent material is given by

µ = 2

(

c1

(
1 −

γ 2

I m
1

)−1

+
c2

3 + γ 2

)

.



55 Approximately Incompressible Elastic
Materials

A theory for approximately incompressible elastic materials can be developed based
on a multiplicative decomposition

F = FvFi (55.1)

of the deformation gradient F into volumetric and isochoric factors Fv and Fi . The
particular expressions for Fv and Fi are easily determined. To be volumetric, Fv

must have the form

Fv = α1 (55.2)

for some α > 0. Further, to be isochoric, Fi must obey

det Fi = 1. (55.3)

Then, by (2.82)2 and (55.1)–(55.3),

J = det F

= (det Fv)(det Fi )

= α3;

hence,

Fv = J 1/31 and Fi = J −1/3F. (55.4)

The decomposition (55.1) and the representations (55.4) lead to a multiplicative
decomposition of the left Cauchy–Green tensor in the form

C = CvCi ,

Cv = J 2/31,

Ci = J −2/3C.






(55.5)

Additionally, the frame-indifferent constitutive equation (48.7)1 determining the
free energy of an elastic solid can be expressed in the alternative form

ψR = ψ̄R(C)

= ψ̃R(Ci , J ). (55.6)

We may now use the relations (48.14) and (48.15) to determine expressions for
the Piola and Cauchy stresses in an elastic solid with free energy ψ = ψ̃R(Ci , J ). To

326
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achieve this, we first note that, by (3.34), the chain-rule, and the symmetry of C,

∂ J
∂C

= ∂
√

det C
∂C

= 1

2
√

det C
∂(det C)
∂C

= det C
2
√

det C
C−1

= 1
2 J C−1;

similarly, by (55.5)3,

∂Ci

∂C
= ∂(J −2/3C)

∂C

= J −2/3 ∂C
∂C

+ C ⊗ ∂(J −2/3)
∂C

= J −2/3I − 1
3 J −5/3C ⊗ ∂(det C)

∂C

= J −2/3(I − 1
3 C ⊗ C−1)

= J −2/3(I − 1
3 J 2/3Ci ⊗ C−1)

= J −2/3(I − 1
3 Ci ⊗ (J −2/3C)−1)

= J −2/3(I − 1
3 Ci ⊗ Ci−1),

where I denotes the fourth-order identity tensor, and the tensor product A ⊗ G of
two second-order tensors A and G is the fourth-order tensor defined by

(A ⊗ G)K = (G : K)A, (Ai j Gkl)Kkl = (Gkl Kkl)Ai j ,

for any second-order tensor K. Thus, by (47.9) and (55.6), the second Piola stress
has the form

TRR = 2
∂ψ̄R(C)
∂C

= 2J −2/3(I − 1
3 Ci−1 ⊗ Ci )

∂ψ̃R(Ci , J )
∂Ci + J

∂ψ̃R(Ci , J )
∂ J

C−1

= 2
J 2/3

[
∂ψ̃R(Ci , J )

∂Ci − 1
3

(
Ci :

∂ψ̃R(Ci , J )
∂Ci

)
Ci−1

]
+ J

∂ψ̃R(Ci , J )
∂ J

C−1. (55.7)

Next, using (55.7) in the expression (47.8) relating the Piola stresses, we obtain

TR = 2
J 1/3

[
Fi ∂ψ̃R(Ci , J )

∂Ci − 1
3

(
Ci :

∂ψ̃R(Ci , J )
∂Ci

)
Fi−)

]
+ J

∂ψ̃R(Ci , J )
∂ J

F−); (55.8)

further, by (47.7), (55.4), and (55.8),

T =
2
J

[
Fi ∂ψ̃R(Ci , J )

∂Ci Fi) −
1
3

(
Ci :

∂ψ̃R(Ci , J )
∂Ci

)
1
]

+
∂ψ̃R(Ci , J )

∂ J
1. (55.9)
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Computing the trace of T as given by (55.9), we find that

trT = tr
[

Fi ∂ψ̃R(Ci , J )
∂Ci Fi) − 1

3

(
∂ψ̃R(Ci , J )

∂Ci : C
)

1
]

= Fi) :
∂ψ̃R(Ci , J )

∂Ci Fi) − Ci :
∂ψ̃R(Ci , J )

∂Ci

= Fi)Fi :
∂ψ̃R(Ci , J )

∂Ci − Ci :
∂ψ̃R(Ci , J )

∂Ci

= Ci :
∂ψ̃R(Ci , J )

∂Ci − Ci :
∂ψ̃R(Ci , J )

∂Ci

= 0.

Along with the multiplicative decomposition (55.1) of the deformation gradient F
into volumetric and isochoric factors Fv and Fi and the representations (55.4) Fv

and Fi , the alternative constitutive equation (55.6) determining the free energy ψR

as a function ψ̃R of the isochoric component Ci of the right Cauchy–Green tensor C
and the volumetric determinant J leads naturally to a decomposition of the Cauchy
stress tensor T into a sum

T = T0 − p1 (55.10)

of a deviatoric component

T0 = 2
J

[
Fi ∂ψ̃R(Ci , J )

∂Ci Fi) − 1
3

(
∂ψ̃R(Ci , J )

∂Ci : Ci
)

1
]

(55.11)

and a spherical component with pressure

p = −∂ψ̃R(Ci , J )
∂ J

. (55.12)

For an approximately incompressible material, it seems reasonable to expect
that the deviatoric component T0 of the Cauchy stress be inversely proportional to
the volumetric Jacobian J (thereby accounting for the change in volume between
the reference and spatial configurations) and that the pressure p be independent
of the isochoric factor Ci of the right Cauchy–Green tensor C. Necessary and suf-
ficient for the satisfaction of these requirements is the assumption that ψ̃ have the
separable form

ψ̃R(Ci , J ) = ψ i
R(Ci ) + ψv

R (J ). (55.13)

This being the case, (55.8) and (55.9) simplify somewhat to

TR = 2
J 1/3

[
Fi ∂ψ

i
R(Ci )
∂Ci − 1

3

(
Ci :

∂ψ i
R(Ci )
∂Ci

)
Fi−)

]
+ J

∂ψv
R (J )
∂ J

F−) (55.14)

and

T = 2
J

[
Fi ∂ψ

i
R(Ci )
∂Ci Fi) − 1

3

(
Ci :

∂ψ i
R(Ci )
∂Ci

)
1
]

+ ∂ψv
R (J )
∂ J

1. (55.15)

Volume changes accompanying the deformation of elastomeric materials under
ambient pressures are such that J = det F differs from 1 by about 10−4. For con-
ventional applications, the assumption that the material is incompressible is there-
fore usually a good approximation. However, for situations involving high pressures,
and in cases where the material is confined (as in applications involving gaskets and
o-rings), it is important to include the effects of the slight compressibility of such
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materials. Specializing the separable expression (55.13) to the case of an isotropic
material, we obtain

ψR = ψ i
R(I1(Bi ), I2(Bi )) + ψv

R (J ), (55.16)

with

Bi = Fi Fi). (55.17)

Calculations analogous to those performed in the anisotropic case then yield the
identities

∂ J
∂B

= J 2B−1

and

∂Bi

∂B
= J −2/3(I − 1

3 Bi ⊗ Bi−1);

thus, since

∂ I1(Bi )
∂Bi = 1 and

∂ I2(Bi )
∂Bi = I1(Bi )1 − Bi ,

we find that

TR = 2J −1/3dev
(
∂ψ i

R(I1, I2)
∂ I1

Fi + ∂ψ i (I1, I2)
∂ I2

(I11 − Bi )Fi
)

+ J
∂ψv

R (J )
∂ J

F−)

(55.18)
and

T = 2J −1dev
(
∂ψ i

R(I1, I2)
∂ I1

Bi + ∂ψ i
R(I1, I2)
∂ I2

(I11 − Bi )Bi
)

+ ∂ψ̃R(J )
∂ J

1. (55.19)

EXERCISES

1. To model the compressible elastic response of rubber-like materials under high
pressures, consider a variation of the Gent free energy of the form

ψR = − 1
2µ I m

1 ln
(

1 − I1 − 3
I m

1

)
+ ψv

R (J ),

where I1 = I1(Bi ) is the first invariant of Bi = J −2/3B, µ ≥ 0 and I m
1 > 3 are

constants, and ψv
R is the volumetric contribution to the free energy.

(a) Using (55.19), show that the Cauchy stress for such a material has the spe-
cific form

T = J −1µ

(
1 − I1 − 3

I m
1

)−1

Bi
0 + ∂ψv

R (J )
∂ J

1.

(b) Supposing that ψv
R (J ) = 1

2κ(ln J )2, κ > 0, show that the Kirchhoff stress
TK = J T for such a material has the specific form

TK = µ

(
1 −

I1 − 3
I m

1

)−1

Bi
0 + κ(ln J )1.

2. Motivated by the simple form of the expression (52.59) for the strain energy
of an infinitesimally strained isotropic elastic body, one might ask whether an
analogous expression, in which dependence upon the infinitesimal strain mea-
sure is replaced by dependence upon a finite strain, is capable of describing the
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behavior of a moderately strained isotropic, compressible elastic body. A model
of this type, introduced by Hencky (1928, 1933), has the form

ψR = µ|EH
0 |2 + 1

2κ(trEH)2, (55.20)

where µ and κ are the shear and bulk moduli from the linear theory,

EH = ln V (55.21)

is the Hencky strain introduced previously in (7.30)2, and

EH
0 = EH − 1

3 (trEH)1

is the deviatoric part of EH.
(a) Using the definition of EH, show that

trEH = ln J.

(b) Noting that V = (J −1/3V)(J 1/31), show that

EH
0 = ln(J −1/3V).

(c) Show that the Kirchhoff stress TK = J T for a model of this type can be
expressed as

TK = 2µEH
0 + κ(trEH)1, (55.22)

which is formally analogous to the expression (52.59) for the stress of an
infinitesimally strained isotropic elastic body.287

(d) Show that for simple shear (cf. §51) the constitutive equation (55.22) yields
the following nonzero components of the Cauchy stress:

T12 =
µ ln

(
1 + 1

2γ
2 + γ

√
1 + 1

4γ
2

)

√
1 + 1

4γ
2

, T11 = −T22 = 1
2γT12.

287 Anand (1979, 1986) shows that the quadratic free-energy function ψR = µ|EH
0 |2 + 1

2 κ(trEH)2 and
the corresponding stress relation TK = 2µEH

0 + κ(trEH)1 are in good agreement with experiments
on a wide class of materials for principal stretches ranging between 0.7 and 1.3. Importantly, since
the material constants µ and κ are the classical elastic constants, they may be determined from
experimental data at infinitesimal strains. As a consequence of these results, it appears that all
moderate strain nonlinearities are incorporated in the logarithmic strain measure. Indeed, for this
reasonably large range of stretches, all other commonly used strain measures (including those of
Green, Almansi, Swainger, Biot) when used to generalize (55.20) (using the values of µ and κ de-
termined from experimental data at infinitesimal strains), give predictions (for the elastic stress
response of materials) that show only poor agreement with experiments.



PART XI

THERMOELASTICITY

It is well known that heating or cooling an unconfined solid specimen generally leads
to dimensional changes of the specimen. For confined specimens, the deformation
produced by heating may generate complex stress distributions, and the peak mag-
nitudes of such thermally induced stresses are often substantial. Conversely, tem-
perature changes and distributions generated in the mechanical loading of metals
may also be important. We now present a framework for the coupled thermal and
mechanical response of solids, restricting our attention to situations in which the
deformation is elastic. The general framework — known as the theory of thermoe-
lasticity — is broad enough to describe both metals and rubber-like elastomeric
materials, including the anomalous contraction of a stressed rubber-like material on
heating, known as a Gough–Joule effect.288

288 Cf. Gough (1805) and Joule (1859).
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56.1 Kinematical Relations

Our discussion of thermoelastic solids makes use of the following kinematical
results:289

F = RU,

C = U2 = F)F,

E = 1
2 (C − 1).






(56.1)

Here, (56.1)1 is the right polar decomposition of the deformation gradient, so that
R is a rotation and U is the right stretch tensor, and C is the right Cauchy–Green
tensor and E is the Green–St. Venant strain tensor.

56.2 Basic Laws

For solids, it is generally most convenient to use a referential description; we, there-
fore, recall the local forms of the momentum and energy balances and the free-
energy imbalance290

ρRχ̈ = DivTR + b0R,

TRF) = FT)
R,

ε̇R = TR : Ḟ − DivqR + qR,

ψ̇R + ηRϑ̇ − TR : Ḟ +
1
ϑ

qR · ∇ϑ = −ϑ@R ≤ 0.

(56.2)

Here, ρR, b0R, εR, qR,

ψR = εR − ϑηR, (56.3)

ηR, and @R denote the density, conventional body force, internal energy, heat supply,
free energy, entropy, and dissipation; TR and qR denote the Piola stress and the
referential heat flux; and ϑ denotes the absolute temperature.

289 Cf. §7.1.
290 Cf. (24.10), (24.11), (31.10), (31.12), and (31.13).
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The Piola stress TR is related to the Cauchy stress T and the second Piola stress
TRR (which is symmetric) by291

TR = J TF−) (56.4)

= FTRR; (56.5)

also, the stresses powers of the Piola and second Piola stresses are related by

TR : Ḟ = 1
2 TRR : Ċ, (56.6)

which allows us to rewrite the free-energy imbalance (56.2)4 in the form

ψ̇R + ηRϑ̇ − 1
2 TRR : Ċ +

1
ϑ

qR · ∇ϑ = −ϑ@R ≤ 0. (56.7)

Finally, the referential heat flux qR and temperature gradient ∇ϑ are related to
their spatial counterparts by292

qR = J F−1q and ∇ϑ = F)gradϑ. (56.8)

291 Cf. (24.1), (25.2), and (25.6).
292 Cf. (9.2)1 and (31.5).



57 Constitutive Theory

Guided by the free-energy imbalance (56.2)4, we assume that the free energyψR, the
Piola stress TR, the entropy ηR, and the heat flux qR are determined by constitutive
equations of the form

ψR = ψ̂R(F,ϑ,∇ϑ),

TR = T̂R(F,ϑ,∇ϑ),

ηR = η̂R(F,ϑ,∇ϑ),

qR = q̂R(F,ϑ,∇ϑ).

(57.1)

57.1 Consequences of Frame-Indifference

Consider a change in frame with frame-rotation Q. By (20.16)1 and (25.8), the trans-
formation laws for F and TR are

F∗ = QF and T∗
R = QTR,

while qR and ∇ϑ , being material vector fields, are invariant:293

q∗
R = qR and (∇ϑ)∗ = ∇ϑ.

Frame-indifference therefore requires that the response functions ψ̂R, T̂R, η̂R, and q̂R

satisfy

ψ̂R(F,ϑ,∇ϑ) = ψ̂R(QF,ϑ,∇ϑ),

T̂R(F,ϑ,∇ϑ) = Q)T̂R(QF,ϑ,∇ϑ),

η̂R(F,ϑ,∇ϑ) = η̂R(QF,ϑ,∇ϑ),

q̂R(F,ϑ,∇ϑ) = q̂R(QF,ϑ,∇ϑ)

(57.2)

for all rotations Q and all (F,ϑ,∇ϑ).
Arguing as in §48.1, we take Q = R) in (57.2). Then, since, by (56.1)1,2, QF = U

and U =
√

C, if we use (56.5) we see that there are new response functions ψ̄R, T̄RR,

293 Cf. the bullet on page 147.
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η̄R, and q̄R such that294

ψR = ψ̄R(C,ϑ,∇ϑ),

TR = FT̄RR(C,ϑ,∇ϑ),

ηR = η̄R(C,ϑ,∇ϑ),

qR = q̄R(C,ϑ,∇ϑ).

(57.3)

As in the theory of isothermal elasticity, (56.4), (57.3)2, and the symmetry of T com-
bine to yield the symmetry of TRF) as required by the angular momentum balance
(56.2)2.

EXERCISE

1. Show that the constitutive relations (57.3) are frame-indifferent.

57.2 Thermodynamic Restrictions

We now apply the Coleman–Noll procedure to the frame-indifferent constitutive
equations (57.3). In the setting at hand, a constitutive process consists of a motion
χ and a temperature field ϑ together with the fields ψR, TR, ηR, and qR determined
through the constitutive equations (57.3).

Consider an arbitrary constitutive process. The linear momentum balance
(56.2)1 and the energy balance (56.2)3 then provide explicit relations

b0R = ρRχ̈ − DivTR

and

qR = ε̇R − TR : Ḟ + DivqR

for the conventional body force b0R and the external heat supply qR needed to sup-
port the process. As a basic hypothesis of the Coleman–Noll procedure, we assume
that b0R and qR are arbitrarily assignable. Because of this assumption, the linear mo-
mentum and energy balances in no way restrict the class of processes that the ma-
terial may undergo. On the other hand, unless the constitutive equations (57.3) are
suitably restricted, not all constitutive processes will be compatible with the laws
of thermodynamics as embodied in the free-energy imbalance (56.2)4.295 For that
reason we require that all constitutive processes be consistent with the free-energy
imbalance (56.2)4.

As we saw in our treatment of the mechanical theory of elastic solids, this re-
quirement has strong consequences. Consider an arbitrary constitutive process. If
we differentiate the constitutive relation (57.3)1 for the free energy with respect to
time, we find, upon writing

g = ∇ϑ (57.4)

for the temperature gradient, that

ψ̇ = ∂ψ̄R(C,ϑ, g)
∂C

: Ċ + ∂ψ̄R(C,ϑ, g)
∂ϑ

ϑ̇ + ∂ψ̄R(C,ϑ, g)
∂g

· ġ; (57.5)

294 Cf. (48.7).
295 Cf. the discussion in the first two paragraphs of §29.
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further, by (57.3)2,

TRR : Ċ = T̄RR(C,ϑ, g) : Ċ,

while (57.3)4 and (57.4) yield

qR · ∇ϑ = q̄R(C,ϑ, g) · g.

A consequence of the last three relations is that the free-energy imbalance (56.7) is
equivalent to the requirement that the inequality

(
∂ψ̄R(C,ϑ, g)

∂C
− 1

2 T̄RR(C,ϑ, g)
)

: Ċ +
(
∂ψ̄R(C,ϑ, g)

∂ϑ
− η̄R(C,ϑ, g)

)
ϑ̇

+ ∂ψ̄R(C,ϑ, g)
∂g

· ġ + 1
ϑ

q̄R(C,ϑ, g) · g ≤ 0 (57.6)

be satisfied in all constitutive processes.
The essential step in using (57.6) to obtain thermodynamically based constitu-

tive restrictions is the observation that

(†) given any point of the body and any time, it is possible to find a motion and a
temperature field ϑ such that C, ϑ , g = ∇ϑ , and their time derivatives Ċ, ϑ̇ , and
ġ have arbitrarily prescribed values at that point and time.

Granted this assertion, which we prove on page 338, the coefficients of Ċ, ϑ̇ , and ġ
must vanish, for otherwise these rates may be chosen to violate the inequality (57.6).
We therefore have the thermodynamic restrictions:

(i) the free energy, second Piola stress, and entropy are independent of the tempera-
ture gradient;

(ii) the free energy determines the second Piola stress and the entropy through the
stress and entropy relations

TRR = T̄RR(C,ϑ) = 2
∂ψ̄R(C,ϑ)

∂C
(57.7)

and

ηR = η̄R(C,ϑ) = −
∂ψ̄R(C,ϑ)

∂ϑ
; (57.8)

(iii) the heat flux satisfies the heat-conduction inequality

q̄R(C,ϑ,∇ϑ) · ∇ϑ ≤ 0 (57.9)

for all (C,ϑ,∇ϑ).

We refer to (57.7) and (57.8) as state relations.

Remarks.

(a) A consequence of (ii) and the free-energy imbalance (56.2)4 is that the entropy
production in any constitutive process is given by

@R = − 1
ϑ2 qR · ∇ϑ ≥ 0.

(b) By (ii), the state relations can be determined by experiments in which the un-
derlying fields C and ϑ are homogeneous.
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(c) A consequence of (56.5) and (57.7) is that the Piola stress TR satisfies

TR = FT̄RR(C,ϑ)

= 2F
∂ψ̄R(C,ϑ)

∂C
. (57.10)

(d) The thermomechanical response of the material is determined by the response
functions ψ̄R and q̄R for the free energy and heat flux.

(e) In view of (i), the identity (56.3) yields an auxiliary constitutive equation

εR = ε̄R(C,ϑ)

= ψ̄R(C,ϑ) + ϑη̄R(C,ϑ) (57.11)

for the internal energy.

We say that the material is strictly dissipative if

q̄R(C,ϑ, g) · g < 0 whenever g '= 0. (57.12)

57.2.1 Verification of (‡)
Choose an arbitrary material point X0 and time t0. The assertions regarding C and Ċ are verified on
page 281. To establish the assertions regarding ϑ , ϑ̇ , g = ∇ϑ , and ġ = ∇ϑ̇, choose scalars ϑ0 > 0 and β
and vectors a and b and consider the temperature field defined by

ϑ(X, t) = ϑ0eφ(X,t)

with

φ(X, t) = (t − t0)β + a · (X − X0) + (t − t0)b · (X − X0)
ϑ0

.

Then,
ϑ(X0, t0) = ϑ0, ϑ̇(X0, t0) = β, ∇ϑ(X0, t0) = a, ∇ϑ̇(X0, t0) = b + βa.

Since ϑ0 > 0, β, and a are arbitrary, ϑ , ϑ̇ , and ∇ϑ have arbitrary values at (X0, t0), and similarly for ∇ϑ̇,
since b is arbitrary. This completes the verification of (‡).

57.3 Consequences of the Thermodynamic Restrictions

57.3.1 Consequences of the State Relations

By (57.7) and (57.8), we have the Gibbs relation

ψ̇R = 1
2 TRR : Ċ − ηRϑ̇ ; (57.13)

further, since, by (56.3),

ψ̇R + ηRϑ̇ = ε̇R − ϑη̇R,

(57.13) yields a second Gibbs relation

ε̇R = 1
2 TRR : Ċ + ϑη̇R. (57.14)

Next, (56.6), (57.14), and the energy balance (56.2)3 imply that

ϑη̇R = ε̇R − TR : Ḟ

= (TR : Ḟ − DivqR + qR) − TR : Ḟ

= −DivqR + qR.
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Hence, an important consequence of the Gibbs relations is that the energy balance
reduces to an entropy balance

η̇R = − 1
ϑ

DivqR + qR

ϑ
. (57.15)

Next, (57.7) and (57.8) imply that

∂T̄RR(C,ϑ)
∂ϑ

= 2
∂2ψ̄R(C,ϑ)
∂C∂ϑ

= −2
∂η̄R(C,ϑ)

∂C
,

and we have the Maxwell relation

∂T̄RR(C,ϑ)
∂ϑ

= −2
∂η̄R(C,ϑ)

∂C
. (57.16)

57.3.2 Consequences of the Heat-Conduction Inequality

As we now show, the heat-conduction inequality (57.9), while seemingly innocuous,
has deep physical consequences of great importance.

Assume that at some material point X0 and time (which we suppress as an
argument)

∇ϑ(X0) '= 0

and define

e = ∇ϑ(X0)
|∇ϑ(X0)|

. (57.17)

Then, e · ∇ϑ(X0) = |∇ϑ(X0)| so that ϑ(X0 + he) = ϑ(X0) + h|∇ϑ(X0)| + o(h) and,
for all sufficiently small h > 0,

ϑ(X0 + he) > ϑ(X0);

the point X0 + he is therefore hotter than the point X0. Further, for qR(X) the heat
flux corresponding to the fields C(X) and ϑ(X), the heat-conduction inequality and
(57.17) imply that

0 ≥ qR(X0) · ∇ϑ(X0)

= qR(X0) · (|∇ϑ(X0)|e)

= (qR(X0) · e) |∇ϑ(X0)|︸ ︷︷ ︸
>0

,

so that qR(X0) · e ≤ 0.296 Thus, the component of qR(X0) in the direction −e, which
is the unit vector that represents the direction from the hotter point X0 + he to the
colder point X0, must be nonnegative. In this sense, heat flows from the hotter point
to the colder point; we, therefore, have the classical result

• heat flows from hot to cold.

Next, let

ϕ(C,ϑ, g) = q̄R(C,ϑ, g) · g;

296 In fact, if the material is strictly dissipative then, by (57.12), qR(X0) · e < 0.
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then, since ϕ(C,ϑ, g) ≤ 0 and ϕ(C,ϑ, 0) = 0,

ϕ(C,ϑ, g), as a function of g, has a maximum at g = 0 (57.18)

and, hence,

∂ϕ(C,ϑ, g)
∂g

∣∣∣∣
g=0

= 0. (57.19)

If we evaluate the relation297

∂ϕ(C,ϑ, g)
∂g

= q̄R(C,ϑ, g) +
(
∂ q̄R(C,ϑ, g)

∂g

))

g (57.20)

at g = 0 and use (57.19), we therefore find that

q̄R(C,ϑ, 0) = 0 (57.21)

or, equivalently, that

qR = 0 whenever ∇ϑ = 0. (57.22)

In words,

• the heat flux vanishes when the temperature gradient vanishes, independent of the
values of the deformation gradient and temperature.

This result, known as the absence of a piezo-caloric effect, implies that a deforma-
tion, no matter how large, cannot induce a flow of heat in the absence of a thermal
gradient.

The heat-conduction inequality has yet another important physical conse-
quence. Choose a right Cauchy–Green tensor C0 and a temperature ϑ0 and, for any
function 0(C,ϑ, g), write

0
∣∣
0 = 0(C,ϑ, g)

∣∣
(C,ϑ,g)=(C0,ϑ0,0).

Then (57.21) implies that

q̄R

∣∣
0 = 0,

∂q̄R

∂C

∣∣∣∣
0

= 0, and
∂q̄R

∂ϑ

∣∣∣∣
0

= 0. (57.23)

Consistent with standard terminology, we refer to the tensor

K0 = −
∂q̄R

∂g

∣∣∣∣
0

(57.24)

as the conductivity tensor at (C0,ϑ0). Let ε denote the dimensionless norm

ε =
√

|C − C0|2 + |ϑ − ϑ0|2
ϑ2

0

+ L2|g|2
ϑ2

0

,

with L a characteristic length associated with the reference body B. Expanding
q̄R(C,ϑ, g) in a Taylor series about (C0,ϑ0, 0), we then find using (57.23) and (57.24)
that the heat flux qR = q̄R(C,ϑ, g) obeys the estimate

qR = −K0∇ϑ︸ ︷︷ ︸
Fourier’s law

+o(ε) as ε → 0. (57.25)

297 Recall that ∇(v · w) = (∇w))v + (∇v))w; cf. (3.20)2.
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In words, Fourier’s law approximates the general constitutive relation for the heat flux
to within terms of order o(ε). Further, by (57.20) and (57.24),

∂2ϕ

∂g2

∣∣∣∣
0

= −(K0 + K)
0). (57.26)

By (57.18), the left side of (57.26) is positive-semidefinite; thus, the symmetric part
of K0 is positive-semidefinite. But a tensor is positive-semidefinite if and only if its
symmetric part is positive-semidefinite;298 we may hence conclude that

• the conductivity tensor K0 is positive-semidefinite.

57.4 Elasticity Tensor. Stress-Temperature Modulus. Heat Capacity

Let C(t) be a time-dependent right Cauchy–Green tensor, and let ϑ(t) be a time-
dependent temperature field. Then by (57.7) and the chain-rule,

ṪRR = 2
∂T̄RR(C,ϑ)

∂C
Ċ + ∂T̄RR(C,ϑ)

∂ϑ
ϑ̇,

suggesting the introduction of two constitutive moduli: the elasticity tensor

C(C,ϑ) = 2
∂T̄RR(C,ϑ)

∂C
(57.27)

(at fixed temperature) and the stress-temperature modulus

M(C,ϑ) = ∂T̄RR(C,ϑ)
∂ϑ

(57.28)

(at fixed strain).299 In view of the stress relation (57.7),

C(C,ϑ) = 4
∂2ψ̄R(C,ϑ)

∂C2 , (57.29)

while the Maxwell relation (57.16) implies that

M(C,ϑ) = −2
∂η̄R(C,ϑ)

∂C
. (57.30)

For each (C,ϑ), the elasticity tensor C(C,ϑ) — a linear transformation that
maps symmetric tensors to symmetric tensors300 — has symmetry properties strictly
analogous to those spelled out in (52.9), (52.18), and (52.19); in particular, since
C(C,ϑ) is symmetric,

G : C(C,ϑ)A = A : C(C,ϑ)G (57.31)

for all symmetric tensors G and A — so that

Ci jkl = Ckli j . (57.32)

Since the right Cauchy–Green tensor C is symmetric, we may conclude from
(57.30) that the stress-temperature modulus M(C,ϑ) is a symmetric tensor; this ten-
sor measures the marginal change in stress due to a change in temperature holding
the strain fixed.

Another important modulus is the heat capacity

c(C,ϑ) = ∂ε̄R(C,ϑ)
∂ϑ

(57.33)

298 Since a · Aa = a · (sym A)a for every tensor A and every vector a.
299 By (56.1), a derivative holding E fixed is equivalent to a derivative holding C fixed.
300 In the mechanical theory the elasticity tensor is defined by (52.8) only at C.
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(at fixed strain). By (57.8), (57.11), and (57.33),

c(C,ϑ) = ∂ε̄R(C,ϑ)
∂ϑ

= ∂ψ̄R(C,ϑ)
∂ϑ

+ η̄R(C,ϑ) + ϑ
∂η̄R(C,ϑ)

∂ϑ

= ϑ
∂η̄R(C,ϑ)

∂ϑ
(57.34)

= −ϑ ∂
2ψ̄R(C,ϑ)
∂ϑ2 . (57.35)

An important consequence of (57.35) and the positivity of temperature is that the
following three assertions are equivalent:

(i) The heat capacity c(C,ϑ) is strictly positive for all ϑ .
(ii) The entropy η̄R(C,ϑ) is a strictly increasing function of ϑ .

(iii) ∂2ψ̄R(C,ϑ)/∂ϑ2 < 0 for all ϑ , so that ψ̄R(C,ϑ) is strictly concave in ϑ .

Next, differentiating the entropy with respect to time we find, using (57.30) and
(57.34), that

ϑη̇R = ϑ
∂η̄R(C,ϑ)

∂C
: Ċ + ϑ

∂η̄R(C,ϑ)
∂ϑ

ϑ̇

= − 1
2ϑM(C,ϑ) : Ċ + c(C,ϑ)ϑ̇ .

This identity, the constitutive equation (57.3)4 for the heat flux, and the entropy
balance (57.15) yield the evolution equation

c(C,ϑ)ϑ̇ = −Div q̄R(C,ϑ,∇ϑ) + 1
2ϑM(C,ϑ) : Ċ + qR. (57.36)

This equation is generic: Its derivation requires no assumptions other than frame-
indifference and consistency with thermodynamics. Classical simple models of heat
conduction assume that c is constant and that the heat flux is given by Fourier’s law,
which is (57.25) with the term of order o(ε) neglected. Then, since K0 is constant,
(57.36) takes the form

cϑ̇ = K0 : ∇∇ϑ + 1
2ϑM(C,ϑ) : Ċ + qR, (57.37)

which is the classical anisotropic heat equation augmented by a term 1
2ϑM(C,ϑ) : Ċ

representing a local expenditure of stress power.

57.5 The Basic Thermoelastic Field Equations

The basic thermoelastic field equations consist of the kinematical equations

F = ∇χ ,

C = F)F;
(57.38)

the constitutive equations

ψR = ψ̄R(C,ϑ),

TR = 2F
∂ψ̄R(C,ϑ)

∂C
,

ηR = −∂ψ̄R(C,ϑ)
∂ϑ

,

qR = q̄R(C,ϑ,∇ϑ);

(57.39)
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balance of linear momentum

ρRχ̈ = DivTR + b0R; (57.40)

balance of energy (written as an entropy balance)

ϑη̇R = −DivqR + qR. (57.41)

Balance of energy (57.41) is equivalent to the relation

cϑ̇ = −DivqR + 1
2ϑM : Ċ + qR, (57.42)

with

c(C,ϑ) = −ϑ
∂2ψ̄R(C,ϑ)

∂ϑ2 and M(C,ϑ) = 2
∂2ψ̄R(C,ϑ)
∂C∂ϑ

. (57.43)

57.6 Entropy as Independent Variable. Nonconductors

For problems involving heat conduction, the right Cauchy–Green tensor C and the
temperature ϑ are the natural choice of independent constitutive variables. How-
ever, for processes that occur over time scales so short that heat conduction is
negligible, it is often preferable to replace constitutive dependence upon ϑ by con-
stitutive dependence upon the entropy ηR.

Unless specified otherwise, we assume that the specific heat is strictly positive,
so that

c(C,ϑ) > 0

for all (C,ϑ). Since ϑ > 0, it follows from (57.34) that

∂η̄R(C,ϑ)
∂ϑ

= c(C,ϑ)
ϑ

> 0. (57.44)

This allows us to conclude that, for each fixed C, the relation

ηR = η̄R(C,ϑ) (57.45)

is smoothly invertible in ϑ , so that

ϑ = ϑ̆(C, ηR), (57.46)

where, by (57.34),

∂ϑ̆(C, ηR)
∂ηR

=
(
∂η̄R(C,ϑ)

∂ϑ

)−1

=
ϑ

c(C,ϑ)
(57.47)

for ϑ = ϑ̆(C, ηR). Then, by (57.11),

εR = ε̆R(C, ηR)

= ψ̄R(C, ϑ̆(C, ηR)) + ϑ̆(C, ηR)ηR, (57.48)

while (57.7) yields

TRR = T̆RR(C, ηR)

= T̄RR(C, ϑ̆(C, ηR)). (57.49)
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Thus, bearing in mind that a “breve” denotes a function of (C, ηR) while a “bar”
denotes a function of (C,ϑ), we find, using (57.7) and (57.8), that

∂ε̆R

∂C
= ∂ψ̄R

∂C
+
(
∂ψ̄R

∂ϑ
+ ηR

)

︸ ︷︷ ︸
=0

∂ϑ̆

∂C

= 1
2 T̆RR

and

∂ε̆R

∂ηR

=
(
∂ψ̄R

∂ϑ
+ ηR

)

︸ ︷︷ ︸
=0

∂ϑ̆

∂ϑ
+ ϑ̆

= ϑ̆ .

The second Piola stress and the temperature are therefore determined by the re-
sponse function ε̆R for the internal energy via the relations

TRR = 2
∂ε̆R(C, ηR)

∂C
,

ϑ = ∂ε̆R(C, ηR)
∂ηR

;

(57.50)

further, by (56.5) and (57.50)1, the Piola stress is given by

TR = 2F
∂ε̆R(C, ηR)

∂C
. (57.51)

An immediate consequence of (57.50) is the Maxwell relation

∂T̆RR(C, ηR)
∂ηR

= 2
∂ϑ̆(C, ηR)

∂C
. (57.52)

The elasticity and stress-temperature tensors C(C,ϑ) and M(C,ϑ) have natu-
ral counterparts in the theory with entropy as independent variable; they are the
elasticity tensor

Cent(C, ηR) = 2
∂T̆RR(C, ηR)

∂C
(57.53)

(at fixed entropy) and the stress-entropy modulus

Ment(C, ηR) = ∂T̆RR(C, ηR)
∂ηR

(57.54)

(at fixed strain). By (57.50)1,

Cent(C, ηR) = 4
∂2ψ̆(C, ηR)

∂C2 , (57.55)

while the Maxwell relation (57.52) implies that

Ment(C, ηR) = 2
∂ϑ̆(C, ηR)

∂C
. (57.56)

We now determine relations between these various material functions. Toward
this, we note, by (57.46), that we may relate the alternative descriptions of the sec-
ond Piola stress in terms of (C,ϑ) and (C, ηR) via

T̆RR(C, ηR) = T̄RR(C, ϑ̆(C, ηR)).
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Thus, by (57.28) and (57.54),

Ment = ∂T̆RR

∂ηR

= ∂T̄RR

∂ϑ

∂ϑ̆

∂ηR

and, using (57.47), we conclude that the stress-entropy and stress-temperature
moduli are related via

Ment(C, ηR) = ϑ

c(C,ϑ)
M(C,ϑ) (57.57)

for ϑ = ϑ̆(C, ηR).301

The relation between the elasticity tensor Cent at fixed entropy with the elasticity
tensor C at fixed temperature is based on computing the partial derivative

Cent(C, ηR) = 2
∂T̆RR(C, ηR)

∂C

= 2
∂

∂C

(
T̄RR(C, ϑ̆(C, ηR))

)

with respect to C holding ηR fixed. Suppressing arguments and using components,
this Derivative of T̄RR(C, ϑ̆(C, ηR)) is given by

∂(T̄RR)i j

∂Ckl
+ ∂(T̄RR)i j

∂ϑ

∂ϑ̆

∂Ckl
.

Thus, since the term

∂(T̄RR)i j

∂ϑ

∂ϑ̆

∂Ckl
is the component form of

∂T̄RR

∂ϑ
⊗
∂ϑ̆

∂C

we find, with the aid of (57.28), (57.56), and (57.57), that

Cent(C, ηR) = C(C,ϑ) + ϑ

c(C,ϑ)
M(C,ϑ) ⊗ M(C,ϑ) (57.58)

for ϑ = ϑ̆(C, ηR); equivalently, in components, suppressing arguments,

Cent
i jkl = Ci jkl +

ϑ

c
Mi j Mkl . (57.59)

The identity (57.58) has two important consequences. First, given symmetric
tensors A and G,

A : (M ⊗ M)G = (A : M)(M : G) (57.60)

= G : (M ⊗ M)A, (57.61)

301 An alternate measure of thermomechanical coupling related to the stress-entropy modulus is the
Grüneisen tensor defined by

G(C, ηR) def= −
1

ϑ(C, ηR)
Ment(C, ηR).

Using (57.57), the Grüneisen tensor may be expressed in terms of the heat capacity and the stress-
temperature modulus as

G(C, ηR) = − 1
c(C,ϑ)

M(C,ϑ).
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so that the fourth-order tensor M ⊗ M is symmetric. Thus, since C is symmetric, the
tensor Cent is symmetric.302

Further, by (57.58) and (57.60),

A : Cent(C, η)A − A : C(C,ϑ)A = ϑ

c
(A : M)2

for any tensor A, and, since ϑ and c are both positive,

A : Cent(C, η)A ≥ A : C(C,ϑ)A;

Cent is thus positive-definite whenever C is positive-definite.

57.7 Nonconductors

A body is referred to as a nonconductor if the constitutive response function for the
heat flux vanishes identically, so that

qR ≡ 0

in all constitutive processes. For a nonconductor, (57.15) shows that, if the heat sup-
ply qR vanishes, then in any smooth constitutive process the entropy of each material
point is constant in time:303

η̇R = 0.

Processes that satisfy η̇R = 0 are termed isentropic. This result shows why entropy is
the variable of choice for nonconductors.

57.8 Material Symmetry

Because the response — to deformation and temperature — of the free energy
determines the response of the stress and entropy, but not that of the heat flux, a
discussion of material symmetry must account not only for the constitutive behavior
of the free energy but also the constitutive behavior of the heat flux.

In a thermomechanical setting, symmetry transformations represent rigid tra-
nsformations of the reference body that leave the response to deformation and
temperature unaltered. Given a rotation Q, consider the following generalization
of the two experiments discussed in §50:

• Experiment 1. In this experiment the deformation gradient is F and the temper-
ature field is ϑ .

• Experiment 2. In this experiment the deformation gradient is FQ, but the tem-
perature field remains ϑ .

Suppose that Q is a symmetry transformation. Arguing as in the mechanical
theory, we should then have304

ψ̄R(Q)CQ,ϑ) = ψ̄R(C,ϑ). (57.62)

Next, for the experiments 1 and 2, respectively, let q1 and q2 denote the heat-flux
fields measured in the deformed body. Because the deformation gradient F applied
to the rotated body as well as the spatial temperature field in the second experiment
are the same as the deformation gradient and the spatial temperature field in the first

302 This conclusion also follows from (57.59).
303 The adjective “smooth” in this assertion is essential. In the presence of a shock wave the material

away from the shock is isentropic on either side, but the values of the entropy on the two sides of
the shock need not be the same; cf. (33.24)2.

304 Cf. (50.12).
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experiment, and because we have assumed that Q is a symmetry transformation, the
corresponding heat-flux fields q1 and q2 — measured in the deformed body — should
be the same:

q1 = q2 ≡ q. (57.63)

We would not, however, expect the corresponding referential fluxes qR1 and qR2 to
coincide, since the reference body has been rotated; in fact, by (56.8)1, these fluxes
must satisfy

FqR1 = FQqR2 = J q. (57.64)

Since the two experiments are associated with the same spatial temperature
field, gradϑ should coincide in the two experiments. Thus, by (56.8)2, the referential
temperature gradients g1 and g2 measured in the two experiments must satisfy

F−)g1 = F−)Qg2 = gradϑ. (57.65)

By (57.64), (57.65), and (50.9),

g2 = Q)g1, qR2 = Q)qR1, C2 = Q)C1Q.

Thus, since

qR1 = q̄R(C1,ϑ, g1) and qR2 = q̄R(C2,ϑ, g2),

it follows that

Q)q̄R(C,ϑ, g) = q̄R(Q)CQ,ϑ, Q)g). (57.66)

Summarizing: A rotation Q is a symmetry transformation if the symmetry relations
(57.62) and (57.66) are satisfied for all (C,ϑ, g).



58 Natural Reference Configuration for a Given
Temperature

Roughly speaking, the reference configuration is natural for a temperature ϑ0 if —
in the absence of external loads — the configuration at that temperature is stable
relative to minor perturbations in strain and temperature. We now make this notion
precise and establish its local consequences.

58.1 Asymptotic Stability and its Consequences. The Gibbs Function

To be more specific, assume that at time t = 0 the body B is perturbed slightly —
but in a homogeneous manner — from an undeformed state at temperature ϑ0; more
precisely, consider initial conditions for the right Cauchy–Green tensor C∗ and the
temperature ϑ∗ of the form

C(X, 0) = C∗, ϑ(X, 0) = ϑ∗, (58.1)

where C∗ and ϑ∗ are constant fields with

(i) C∗ close to 1, so that the Green–St. Venant strain

E∗ = 1
2 (C∗ − 1)

is small;
(ii) ϑ∗ close to a constant temperature ϑ0.

Assume, in addition, that

χ̇(X, 0) = 0,

and that the boundary ∂B is free and in thermal equilibrium at temperature ϑ0:

TRnR = 0 and ϑ = ϑ0 on ∂B.

Then, by the global decay relation (31.20) (with S0 = 0),

˙∫

B

(ψR + (ϑ − ϑ0)ηR + 1
2ρR|χ̇ |2) dvR ≤ 0,

348
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so that, for t = T > 0,
∫

B

(ψR + (ϑ − ϑ0)ηR) dvR

∣∣∣∣
t=0

≥
∫

B

(ψR + (ϑ − ϑ0)ηR + 1
2ρR|χ̇ |2
︸ ︷︷ ︸

≥0

) dvR

∣∣∣∣
t=T

≥
∫

B

(ψR + (ϑ − ϑ0)ηR) dvR

∣∣∣∣
t=T

;

thus, in view of the constitutive equations and the initial conditions (58.1),

∫

B

[ψ̄R(C∗,ϑ∗) + (ϑ∗ − ϑ0)η̄R(C∗,ϑ∗)] dvR

≥
∫

B

[ψ̄R(C,ϑ) + (ϑ − ϑ0)η̄R(C,ϑ0)] dvR

∣∣∣∣
t=T

. (58.2)

If the reference configuration at the temperature ϑ0 is asymptotically stable against
all such perturbations, then the body should ultimately relax to an undeformed state
at temperature ϑ0; granted this,

C(X, t) → 1 and ϑ(X, t) → ϑ0

as t → ∞, and passing to the limit as T → ∞ in (58.2) gives
∫

B

[ψ̄R(C∗,ϑ∗) + (ϑ∗ − ϑ0)η̄R(C∗,ϑ∗)]︸ ︷︷ ︸
constant

dvR ≥
∫

B

ψ̄R(1,ϑ0)︸ ︷︷ ︸
constant

dvR,

or equivalently, since both integrands are constant,

ψ̄R(C∗,ϑ∗) + (ϑ∗ − ϑ0)η̄R(C∗,ϑ∗) ≥ ψ̄R(1,ϑ0).

Guided by this discussion, we introduce a Gibbs function

ω(C,ϑ,ϑ0) = ψ̄R(C,ϑ) + (ϑ − ϑ0)η̄R(C,ϑ) (58.3)

and refer to the reference configuration as natural for the temperature ϑ0 if

ω(C,ϑ,ϑ0) has a local minimum at (C,ϑ) = (1,ϑ0). (58.4)

58.2 Local Relations at a Reference Configuration that is Natural for a
Temperature ϑ0

Assume that the reference configuration is natural for the temperature ϑ0. Then
(58.4) implies that, at (C,ϑ) = (1,ϑ0), the derivatives of the Gibbs function ω
with respect to C and ϑ vanish, while the matrix of second derivatives is positive-
semidefinite. Thus, introducing the notation

0
∣∣
0 = 0(C,ϑ)

∣∣
(C,ϑ)=(1,ϑ0),

it follows that
∂ω

∂C

∣∣∣∣
0

= 0,
∂ω

∂ϑ

∣∣∣∣
0

= 0, (58.5)

and, for any symmetric tensor A and any scalar α,

A :
∂2ω

∂C2

∣∣∣∣
0
A + 2A :

∂2ω

∂C∂ϑ

∣∣∣∣
0
α + α2 ∂

2ω

∂ϑ2

∣∣∣∣
0

≥ 0, (58.6)
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or, in components,

∂2ω

∂Ci j∂Ckl

∣∣∣∣
0
Ai j Akl + 2

∂2ω

∂Ci j∂ϑ

∣∣∣∣
0
αAi j +

∂2ω

∂ϑ2

∣∣∣∣
0
α2 ≥ 0.

By (58.5) and (58.6) together with the stress and entropy relations (57.7) and (57.8),

∂ω

∂C

∣∣∣∣
0

=
[
∂ψ̄R

∂C
+ (ϑ − ϑ0)

∂η̄R

∂C

]

0
= ∂ψ̄R

∂C

∣∣∣∣
0

= 1
2 T̄RR

∣∣
0 = 0,

∂ω

∂ϑ

∣∣∣∣
0

=
[
∂ψ̄R

∂ϑ
+ η̄R + (ϑ − ϑ0)

∂η̄R

∂ϑ

]

0
=
∂ψ̄R

∂ϑ

∣∣∣∣
0
+ η̄R

∣∣
0 = 0

(58.7)

and using, in addition, (57.27) and (57.34)

∂2ω

∂C2

∣∣∣∣
0

=
[
∂2ψ̄R

∂C2 + (ϑ − ϑ0)
∂2η̄R

∂C2

]

0
= ∂2ψ̄R

∂C2

∣∣∣∣
0

= C
∣∣
0,

∂2ω

∂C∂ϑ

∣∣∣∣
0

=
[
∂ψ̄R

∂C∂ϑ
+ ∂η̄R

∂C
+ (ϑ − ϑ0)

∂2η̄R

∂C∂ϑ

]

0
= 0,

∂2ω

∂ϑ2

∣∣∣∣
0

=
[
∂2ψ̄R

∂ϑ2 + ∂η̄R

∂ϑ
+ (ϑ − ϑ0)

∂2η̄R

∂ϑ2

]

0
= ∂η̄R

∂ϑ

∣∣∣∣
0

= c
ϑ

∣∣∣∣
0
.






(58.8)

Further, (58.6) and (58.8) imply that

A : C
∣∣
0A ≥ 0 (58.9)

for every symmetric tensor A, and, in addition, that

c|0 ≥ 0. (58.10)

Summarizing, we have shown that

(‡) if the reference configuration is natural for the temperature ϑ0, then

(i) the residual stress TRR

∣∣
0 vanishes;

(ii) the elasticity tensor C
∣∣
0 — aside from being symmetric — is positive-

semidefinite;
(iii) the heat capacity c

∣∣
0 is nonnegative.

EXERCISES

1. Consider a general thermoelastic material with internal energy, entropy, and
free energy given by

εR = ε̄R(C,ϑ), ηR = η̄R(C,ϑ), and ψR = ε̄R(C,ϑ) − ϑη̄R(C,ϑ) = ψ̄R(C,ϑ).

For rubber-like elastomeric materials, experiments show that the internal en-
ergy εR is essentially independent of C:

ε̄R(C,ϑ) = ε̄R(ϑ).

In this case, the heat capacity is also independent of C,

c(ϑ) = dε̄R(ϑ)
dϑ

.

Using (57.34), show that the entropy ηR(C,ϑ) must then have the separable
form

η̄R(C,ϑ) = f (ϑ) + g(C).



58.2 Local Relations at a Reference Configuration 351

Further, using (57.39), show that

TR = −2ϑF
dg(C)

dC
.

Therefore, at constant temperature, the stress in a rubber-like material is re-
lated to the change of the mechanical contribution g to the entropy with C.
Response of this kind is called entropic elasticity and approximately satisfied by
many elastomeric materials.

2. Consider the general theory of thermoelastic materials in §57. Show, using the
symmetry considerations in §57.8 and §50.3, that the constitutive equations of
state (57.39) for the free energy, Piola stress, and entropy for an isotropic ther-
moelastic materials reduce to

ψR = ψ̄R(B,ϑ), TR = 2
∂ψ̄R(B,ϑ)

∂B
F, ηR = −∂ψ̄R(B,ϑ)

∂ϑ
,

and since T = J −1TRF) the Cauchy stress is given by

T = 2J −1 ∂ψ̄R(B,ϑ)
∂B

B.

Further, following the arguments of §50.3, show that the free energy for an
isotropic thermoelastic material may be expressed in terms of the principal
stretches λ1, λ2, and λ3 as

ψR = ψ̆R(λ1,λ2,λ3,ϑ),

and in this case the entropy is given by

ηR = −
∂ψ̆R(λ1,λ2,λ3,ϑ)

∂ϑ
,

and, if the principal stretches are distinct, then

TR =
3∑

i=1

∂ψ̆R(λ1,λ2,λ3,ϑ)
∂λi

li ⊗ ri ,

T = 1
λ1λ2λ3

3∑

i=1

λi
∂ψ̆R(λ1,λ2,λ3,ϑ)

∂λi
li ⊗ li ,

(58.11)

where {ri } and {li} are the right and left principal directions, respectively.
3. Following the arguments of §54, show that for an incompressible material, for

which the principal stretches satisfy the constraint

λ1λ2λ3 = 1,

the counterparts of (58.11) are

TR =
3∑

i=1

(
∂ψ̆R(λ1,λ2,λ3,ϑ)

∂λi
− P
λi

)
li ⊗ ri ,

T =
3∑

i=1

(
λi
∂ψ̆R(λ1,λ2,λ3,ϑ)

∂λi
− P

)
li ⊗ li ,

where P is an arbitrary scalar field. Thus, for an isotropic, incompressible, ther-
moelastic material in the absence of temperature gradients, with free energy
expressed in terms of principal stretches and temperature, the principal values
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of the Cauchy stress and the entropy are given by

σi = λi
∂ψ̆R(λ1,λ2,λ3,ϑ)

∂λi
− P (no sum), η = −∂ψ̆R(λ1,λ2,λ3,ϑ)

∂ϑ
,

and granted that R ≡ 1, so that the deformation is a pure homogeneous strain,
the Piola stress TR is symmetric with principal values given by

si = ∂ψ̆R(λ1,λ2,λ3,ϑ)
∂λi

− P λ−1
i .

4. Define a scalar effective stretch by

λ̄
def=
√

1
3 (λ2

1 + λ2
2 + λ2

3) ≡
√

1
3 trB,

and consider the following special free energy for rubber-like materials305

ψR = ψ̄R(λ̄,ϑ).

(a) Show that, for such a free energy, the principal values of the Cauchy
stress and the first Piola stress (in a pure homogeneous strain) for an
incompressible material are given by

σi = µλ2
i − P (no sum), si = µλi − Pλ−1

i ,

where

µ
def= 1

3λ̄
∂ψ̄R(λ̄,ϑ)

∂λ̄
.

(b) Show that the shear stress in simple shear is given by

T12 = µγ ,

where γ is the amount of shear.306 Thus µ represents a generalized shear
modulus; assume that µ > 0.

(c) For rubber-like materials (cf. Exercise 1 above), which satisfy

ε̄R(λ̄,ϑ) = ε̄R(ϑ),

with a corresponding separable entropy

η̄R(λ̄,ϑ) = f (ϑ) + g(λ̄),

show that the generalized shear modulus is given by

µ = −ϑ
(

1
3λ̄

dg(λ̄)
dλ̄

)
> 0.

(d) Consider a cylindrical bar with traction-free lateral surfaces subject to a
simple extension, so that

λ1 = λ, λ2 = λ3 = λ−1/2, λ̄ =
√

1
3 (λ2 + 2λ−1), σ1 = σ, σ2 = σ3 = 0.

Show that the Piola stress s ≡ s1 for rubber-like materials is given by

s = ϑ

(
− 1

3λ̄
dg(λ̄)

dλ̄

)

︸ ︷︷ ︸
µ

(
λ− 1

λ2

)
.

305 Cf. Anand (1996).
306 Cf. §51.
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This demonstrates that, since µ > 0, at a fixed stretch λ the stress s increases
linearly as the temperature increases. Alternatively, if ϑ is increased at con-
stant s, then λmust decrease. This is the first of Gough–Joule thermoelastic
effects — a rubber under a constant uniaxial stress contracts on heating.307

(e) Consider a part P of a homogeneous rubber-like body in the form of a cylin-
drical bar of volume vR at a uniform temperature ϑ . Show that the net in-
ternal energy E(P) of the bar and its time rate of change are

E(P) = vRε̄(ϑ), ˙E(P) = vRc(ϑ)ϑ̇,

where c(ϑ) = d ε̄(ϑ)/dϑ > 0 is the heat capacity.308

(f) Show that, on neglecting body forces and kinetic energy, the power W(P),
as defined in (24.19), exerted on the bar in simple extension is

W(P) = vRϑ

(
− 1

3λ̄
dg(λ̄)

dλ̄

)(
λ− 1

λ2

)
λ̇.

(g) Show that, under isothermal conditions,

Q(P) = −vRϑ

(
− 1

3λ̄
dg(λ̄)
∂λ̄

)(
λ− 1

λ2

)
λ̇ (58.12)

in simple extension, and, hence, show that to maintain isothermal condi-
tions, a rubber-like material must give out heat when stretched; this is the
second of the Gough–Joule thermoelastic effects.

(h) Finally, show that, under adiabatic conditions — that is, when Q(P) = 0 —
in simple extension

ϑ̇ = ϑ

c(ϑ)

(
− 1

3λ̄
dg(λ̄)

dλ̄

)
(λ− λ−2)λ̇, (58.13)

and, hence, show that the temperature increases as the stretch increases.
This represents the third of the classical Gough–Joule thermoelastic
effects — under adiabatic conditions a rubber-like material increases in tem-
perature when stretched.

307 Cf. Gough (1805) and Joule (1859).
308 Cf. §26.



59 Linear Thermoelasticity

Our derivation of the linear theory is based on the following hypotheses in which ϑ0
is a prescribed (constant value) of the temperature and 7 is a characteristic length
associated with the reference body B:

• The reference configuration is natural for the temperature ϑ0.
• The temperature ϑ is everywhere close to ϑ0.
• The magnitudes of the displacement gradient H = ∇u and the scaled tempera-

ture gradient 7g/ϑ0 = 7∇ϑ/ϑ0 are everywhere small.

We derive asymptotic forms of the governing equations appropriate to the limit as

ε =
√

|H|2 + |ϑ − ϑ0|2
ϑ2

0
+ 72|g|2

ϑ2
0

tends to zero.309 In this regard, given a function 0(C,ϑ, g), we write

00 = 0|0 for 0 evaluated at H = 0, g = 0, ϑ = ϑ0. (59.1)

Bearing in mind that C = F = 1 when H = 0, this notation makes sense for func-
tions 0(C,ϑ, g) (00 = 0(1,ϑ0, 0)), for functions 0(F,ϑ, g) (00 = 0(1,ϑ0, 0)), and
trivially for functions 0(F,ϑ) and 0(C,ϑ).

59.1 Approximate Constitutive Equations for the Stress and Entropy

We now determine asymptotic constitutive equations for the stress and entropy ap-
propriate to small departures from a reference configuration that is natural at the
temperature ϑ0.

Expanding T̄RR(C,ϑ) and η̄R(C,ϑ) about C = 1 and ϑ = ϑ0, we obtain

T̄RR(C,ϑ) = T̄RR|0 + ∂T̄RR

∂C

∣∣∣∣
0
(C − 1) + ∂T̄RR

∂ϑ

∣∣∣∣
0
(ϑ − ϑ0) + o(ε),

η̄R(C,ϑ) = η̄R|0 + ∂η̄R

∂C

∣∣∣∣
0

: (C − 1) + ∂η̄R

∂ϑ

∣∣∣∣
0
(ϑ − ϑ0) + o(ε),

309 This makes precise the sense of the term “small” in the second and third bullets above.
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so that, by (57.27), (57.28), (57.30), and (57.34),

∂T̄RR

∂C

∣∣∣∣
0

= 1
2 C0,

∂T̄RR

∂ϑ

∣∣∣∣
0

= −2
∂η̄R

∂C

∣∣∣∣
0

= M0,

∂η̄R

∂ϑ

∣∣∣∣
0

= c0

ϑ0
,

and, by (58.7),

T̄RR|0 = 0.

Assuming, without loss of generality, that310

η̄R|0 = 0,

introducing the shorthand notation

C = C0, M = M0, c = c0,

and using the relation

E = 1
2 (C − 1)

giving the Green–St. Venant strain in terms of the right Cauchy–Green tensor, we
therefore obtain the following estimates for the second Piola stress and the entropy:

TRR = CE + M(ϑ − ϑ0) + o(ε),

ηR = −M : E + c0

ϑ0
(ϑ − ϑ0) + o(ε),

(59.2)

as ε → 0.
Further, arguing as in the derivations of (52.26) and (52.27), we find that, as

ε → 0,

TR = CE + M(ϑ − ϑ0) + o(ε),

T = CE + M(ϑ − ϑ0) + o(ε),
(59.3)

so that, as in the mechanical theory, to within a small error the Cauchy and Pi-
ola stresses are symmetric and coincident. Similarly, arguing as is the derivation of
(52.31), we may show that the free-energy function ψ̄R(C,ϑ) admits the estimate

ψR = 1
2

E : CE + (ϑ − ϑ0)M : E − c
2ϑ0

(ϑ − ϑ0)2 + o(ε2) (59.4)

as ε → 0. Moreover, by (18.9), the spatial and material forms of the density, con-
ventional body force, and external heat supply are related through

ρ = [1 + o(1)]ρR, b0 = [1 + o(1)]b0R, and q = [1 + o(1)]qR. (59.5)

EXERCISE

1. Verify (59.3)–(59.5).

310 Cf. (31.9).
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59.2 Basic Field Equations of Linear Thermoelasticity

The linear theory of thermoelasticity is based on approximate equations obtained
when the higher-order terms in

E = 1
2 (H + H)) + o(|H|2), (59.6)

(57.25), (59.2), (59.3), (59.4), and (59.5) are neglected.311 We therefore take ρ = ρR,
T = TR, b0 = b0R, q = qR, and q = qR and base the theory on the strain-displacement
relation

E = 1
2 (∇u + (∇u))) (59.7)

and the constitutive equations

ψR =
1
2

E : CE + (ϑ − ϑ0)M : E −
c

2ϑ0
(ϑ − ϑ0)2,

T = CE + M(ϑ − ϑ0),

ηR = −M : E + c
ϑ0

(ϑ − ϑ0),

q = −K∇ϑ,

(59.8)

where C, M, c, and K = K0 are, respectively, the elasticity tensor, the stress-
temperature modulus, the heat capacity, and the thermal conductivity tensor at the
reference temperature ϑ0.

By (58.9), C is symmetric and positive-semidefinite; here we assume, in addition,
that C is positive-definite:312

A : CA > 0 for all symmetric tensors A '= 0. (59.9)

Similarly, by (58.10), c is nonnegative and we strengthen this by requiring that c be
positive

c > 0. (59.10)

Finally, by the bullet on page 341, K is positive-semidefinite and we strengthen this
by requiring that K be positive-definite:

a · Ka > 0 for all vectors a '= 0. (59.11)

The basic equations of the linear theory of thermoelasticity consist of (59.7),
(59.8), the local momentum balance

ρü = Div[CE + M(ϑ − ϑ0)] + b0 (59.12)

and the local energy balance

cϑ̇ = Div(K∇ϑ) + ϑ0M : Ė + q. (59.13)

59.3 Isotropic Linear Thermoelasticity

When one uses E instead of C to express the constitutive equations for thermoelas-
ticity, the transformation rules (57.62) and (57.66) under a symmetry transformation

311 Precisely, the o(ε) terms in (59.2) and (59.3), the o(ε2) term in (59.4), and the o(1) terms in (59.5)
are neglected.

312 A condition sufficient to ensure (59.9) is that C be invertible, since an invertible, positive-
semidefinite linear transformation is positive-definite.
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Q, respectively, become

ψ̃R(Q)EQ,ϑ) = ψ̃R(E,ϑ) and Q)q̃R(E,ϑ, g) = q̃R(Q)EQ,ϑ, Q)g). (59.14)

For the free-energy function (59.8)1 and the Fourier law (59.8)3, these rules imme-
diately imply that

Q)(CE)Q = C(Q)EQ), Q)MQ = M, and Q)KQ = K, (59.15)

for a symmetry transformation Q and all symmetric tensors E. If the body is
isotropic, then CE, M, and K have the specific forms

CE = 2µE + λ(trE)1,

M = β1,

K = k1,





(59.16)

with µ and λ elastic moduli, β the stress-temperature modulus, and k the thermal
conductivity.313

Next, we determine the restrictions placed on the moduli µ and λ by the re-
quirement (59.9) that the elasticity tensor C be positive-definite. Choose an arbi-
trary symmetric tensor A and let A0 denote its deviatoric part:

A0 = A − 1
3 (trA)1.

Then trA0 = 0 and

|A|2 = (A0 + 1
3 (trA)1) : (A0 + 1

3 (trA)1)

= |A0|2 + 1
3 (trA)2.

Thus, by (59.9) and (59.16)1,

0 < A : CA

= 2µ|A|2 + λ(trA)2

= 2µ|A0|2 + κ(trA)2, (59.17)

with

κ = λ+ 2
3µ. (59.18)

Choosing A = 1 (so that trA = 3 and A0 = 0) yields κ > 0; choosing A = e ⊗ f +
f ⊗ e with e and f orthonormal (so that trA = 0 and |A0|2 = 2) yields µ > 0. Thus,
the elastic moduli µ and λ satisfy

µ > 0, λ+ 2
3µ > 0. (59.19)

The scalars µ and λ are generally referred to as Lamé moduli. In view of (59.18), the
relation (59.16)1 may alternatively be written in terms of the scalars µ and κ as

CE = 2µE0 + κ(trE)1, (59.20)

where E0 = E − 1
3 (trE)1 denotes the deviatoric part of E. In view of (59.20), the

Lame modulus µ is also known as the isothermal shear modulus, while κ is called
the isothermal bulk modulus.

313 These results follow from standard representation theorems for isotropic functions. Cf. the
Appendix (Part 112.7).
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Further, since, by (59.11), K is positive-definite, the thermal conductivity k must
be positive

k > 0. (59.21)

By (59.16), the defining constitutive equations for an isotropic, linear thermoe-
lastic solid are

ψR = µ|E|2 + λ

2
(trE)2 + β(ϑ − ϑ0)trE − c

2ϑ0
(ϑ − ϑ0)2,

T = 2µE + λ(trE)1 + β(ϑ − ϑ0) 1,

ηR = −βtrE +
c
ϑ0

(ϑ − ϑ0),

q = −k∇ϑ.

(59.22)

Granted (59.9), this stress-strain relation (81.53)2 may be inverted to give

E = 1
2µ

(
T − λ

2µ + 3λ
(trT)1

)
+ α(ϑ − ϑ0)1, (59.23)

where

α
def= − β

2µ + 3λ
(59.24)

is the coefficient of thermal expansion. Thus, using (59.18),

β = −3κα. (59.25)

Recall from (57.58) that the isentropic elasticity tensor Cent is generally related
to the isothermal elastic tensor C by

Cent(C, η) = C(C,ϑ) + ϑ

c(C, η)
M(C,ϑ) ⊗ M(C,ϑ). (59.26)

Thus, using (59.20) and (59.25),

CentE = 2µE0 + κent(trE)1, (59.27)

where

κent = κ + ϑ0β
2

c
(59.28)

= κ

(
1 + 9ϑ0κα

2

c

)
. (59.29)

The isothermal and isentropic shear moduli are therefore identical, while the isen-
tropic bulk modulus κent is related to the isothermal bulk modulus κ through (59.29).

Next, when B is homogeneous and isotropic, then ρ, µ, λ, β, and k are constants.
In this case, since

2DivE = Div(∇u + (∇u)))

= 6u + ∇Divu,

and

Div[(trE)1] = Div[(Divu)1]

= ∇Divu,
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the momentum balance (59.12) yields

ρRü = µ,u + (λ+ µ)∇Divu + β∇ϑ + b0. (59.30)

Further, the balance of energy (59.13), yields

cϑ̇ = k6ϑ + βϑ0Div u̇ + q. (59.31)

In practice, a simplifying approximation that is often imposed to facilitate the solu-
tion of actual problems is to neglect the small coupling term βϑ0Div u̇ in the partial-
differential equation (59.31). Under this approximation, the resulting theory is re-
ferred to as the weakly coupled theory of isotropic linear thermoelasticity.





PART XII

SPECIES DIFFUSION COUPLED
TO ELASTICITY

This chapter presents a purely mechanical theory for coupled species transport and
elastic deformation. The species in question may be ionic, atomic, molecular, or
chemical. Underlying our approach is the notion of a structure through or on which
the various species diffuse. Examples of such structures include the fissures and
voids of a porous medium, the interstices of a polymer network, and the lattice of
crystalline solid. The most unfamiliar and conceptually challenging features of the
theory are associated with the need to account for the energy flow due to species
transport. To convey these, we therefore begin by developing the theory for a single
species. After extending the theory to allow for the presence of N ≥ 1 unconstrained
species, we illustrate the impact of a constraint by developing the theory for a sub-
stitional alloy.
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60 Balance Laws for Forces, Moments,
and the Conventional External Power

We have in mind applications where the time scales associated with species diffusion
are considerably longer than those associated with wave propagation and, for that
reason, we neglect all inertial effects.314 In particular, when the inertial body force ι
is neglected, it follows from (19.15) that the generalized body force b coincides with
the conventional body force b0:

b ≡ b0. (60.1)

In view of (60.1), the balances (19.29)1 and (19.29)2 for forces and moments
reduce to ∫

∂Pt

Tn da +
∫

Pt

b0 dv = 0,

∫

∂Pt

r ×Tn da +
∫

Pt

r × b0 dv = 0.

(60.2)

Proceeding as in the derivations of (19.30) and (19.34), we are thus led to the local
force and moment balances

divT + b0 = 0,

T = T).
(60.3)

Next, by (4.11)5, (19.40), and (60.3)1,
∫

∂Pt

Tn · v da =
∫

Pt

(v · divT + T : gradv) dv

=
∫

Pt

(T : D − b0 · v) dv, (60.4)

and we arrive at a version
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv

︸ ︷︷ ︸
W0(Pt )

=
∫

Pt

T : D dv

︸ ︷︷ ︸
I(Pt )

(60.5)

of the power balance valid in the absence of inertia.315

314 Cf. §19.7.4.
315 Cf. (19.50)5.
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61 Mass Balance for a Single Diffusing Species

We consider a single diffusing species and write n ≥ 0 for its mass fraction,316 so that
ρn represents the species density. For Pt a spatial region convecting with the body,
the integral

∫

Pt

ρn dv (61.1)

represents the net mass of the diffusing species in Pt (at time t). To characterize
species transport to Pt , we mimic our treatment of the heat flow Q(Pt ) encountered
first in (26.5). Introducing a vectorial species flux h and a scalar species supply h, we
write

−
∫

∂Pt

h · n da +
∫

Pt

h dv (61.2)

for the net rate of species transported into Pt . The first term in (61.2) gives the rate
at which the species is transported to Pt by diffusion across ∂Pt ; because n is the
outward unit normal to ∂Pt , the minus sign renders this term nonnegative when the
flux h points into Pt . Since n is spatial, h is a spatial vector field. The second term in
(61.2) represents the rate of transport to Pt by agencies external to the body.

In view of (61.1) and (61.2), species mass balance is the requirement that

˙∫

Pt

ρn dv = −
∫

∂Pt

h · n da +
∫

Pt

h dv (61.3)

for every convecting region Pt . To localize this balance, we note that, by (18.14),

˙∫

Pt

ρn dv =
∫

Pt

ρṅ dv;

thus, applying the divergence theorem to the term involving the species flux h, we
find that

∫

Pt

(ρṅ + divh − h) dv = 0. (61.4)

316 The mass fraction of a species is the species density divided by the net density of all species.
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Mass Balance for a Single Diffusing Species 365

Since (61.4) holds for every convecting region Pt , we have the local species mass-
balance

ρṅ = −divh + h. (61.5)

EXERCISES

1. Using (18.12), show that the local species mass balance can be written equiva-
lently as

(ρn)′ = −div(h + ρnv) + h

and provide a physical interpretation of the quantity h + ρnv.
2. Show that, for a spatial control volume R, the species mass balance has the form

˙∫

R

ρn dv +
∫

∂R

ρnv · n da = −
∫

∂R

h · n da +
∫

R

h dv

or, equivalently,

˙∫

R

ρn dv = −
∫

∂R

(h + ρnv) · n da +
∫

R

h dv.



62 Free-Energy Imbalance Revisited.
Chemical Potential

Let Pt be an arbitrary spatial region convecting with the body. Consistent with our
neglect of inertia, we also neglect kinetic energy.317 As in the mechanical theory
discussed in §29, changes in the net free-energy of Pt are influenced by the conven-
tional power expended on Pt , but we must now account also for energy carried into
Pt by species transport; we, therefore, seek a free-energy imbalance of the form318

˙∫

Pt

ρψ dv ≤ W0(Pt ) + T (Pt ),

where the term T (Pt ) represents energy flow due to species transport. We charac-
terize this flow through the chemical potential µ; specifically, we assume that the
species flux h and species supply h carry with them a flux and supply of energy de-
scribed by µh and µh, so that319

T (Pt ) = −
∫

∂Pt

µh · n da +
∫

Pt

µh dv. (62.1)

Thus, trivially, if there is no species flux at some point, then there is no associated
flux of energy at that point, and similarly for the supply h; our treatment of energy
flow due to species transport therefore bears some resemblance to our discussion
of entropy flow due to heat flow.320 In this regard, the chemical potential µ can be
viewed as a quantity roughly analogous to the reciprocal of the absolute temper-
ature ϑ , the most significant differences being that µ is unsigned and µh and µh
describe energy exchanges induced by species transport rather than heat transport
(as described by the heat flux q and heat supply q).

We are therefore led to the inequality

˙∫

Pt

ρψ dv ≤
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv −
∫

∂Pt

µh · n da +
∫

Pt

µh dv, (62.2)

317 Cf. (19.50)2,3.
318 Cf. (29.8).
319 Eckart (1940), in his discussion of fluid mixtures, notes that chemical potentials should enter the

energy balance through terms of this form. (Jaumann (1911) and Lohr (1917) seem also to have
this view, but we are unable to fully comprehend their work.) While Eckart employs constitutive
equations, their use is unnecessary. Related works are Meixner & Reik (1959), Müller (1968),
Gurtin & Vargas (1971), Davı̀ & Gurtin (1990), Fried & Sellers (2000), Gurtin (1991), and
Podio-Guidugli (2006).

320 Cf. §27.1.
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Free-Energy Imbalance Revisited. Chemical Potential 367

or equivalently, defining the dissipation D(Pt ) to be the left side of this relation
minus the right, to the global free-energy imbalance:321

D(Pt ) = −
∫

∂Pt

µh · n da +
∫

Pt

µh dv +
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv −
˙∫

Pt

ρψ dv ≥ 0.

(62.3)
We view chemical potentials as primitive quantities introduced as a means of

characterizing energy exchanges induced by species transport. This contrasts sharply
with what is done in the materials science literature, where chemical potentials are
defined as derivatives of the free energy with respect to the species densities, or
introduced variationally — via an assumption of equilibrium — as Lagrange mul-
tipliers corresponding to a mass constraint; in either case, the chemical potentials
require a constitutive structure.

• To the contrary, in our framework it is the free-energy imbalance and, hence,
the characterization of energy transport that are basic.

As in the setting without species transport, we may determine an expression for
the density of the net dissipation valid under appropriate smoothness hypotheses.
To do so, we note first that, by (18.14),

˙∫

Pt

ρψ dv =
∫

Pt

ρψ̇ dv. (62.4)

Further, by the divergence theorem and the species mass balance (61.5),

−
∫

∂Pt

µh · n da = −
∫

Pt

(µdivh + h · gradµ) dv

=
∫

Pt

(ρµṅ − h · gradµ − µh) dv

and, therefore,

−
∫

∂Pt

µh · n da +
∫

Pt

µh dv = −
∫

Pt

(h · gradµ − ρµṅ) dv. (62.5)

Using (60.5) and (62.4) in (62.3), we thus find that

D(Pt ) =
∫

Pt

[T : D − h · gradµ − ρ(ψ̇ − µṅ)] dv.

Granted sufficient smoothness,322 the net dissipation therefore has a density δ, mea-
sured per unit volume in the deformed body, such that

D(Pt ) =
∫

Pt

δ dv, δ = T : D − h · gradµ − ρ(ψ̇ − µṅ), (62.6)

and, hence, since D(Pt ) ≥ 0 and since the convecting region Pt is arbitrary, such
that

δ ≥ 0.

321 Cf. §29.1.
322 Cf. (‡) on page 187.
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Thus, (62.6) yields the local free-energy imbalance

ρ(ψ̇ − µṅ) − T : D + h · gradµ = −δ ≤ 0. (62.7)

EXERCISES

1. Show that the species mass balance (61.5) and the free-energy imbalance (62.3)
are invariant under transformations of the form

n → n + n0,

ψ → ψ + ψ0,

h → h + λ × gradµ,

ṅ0 = 0,

ψ̇0 = 0,

gradλ = 0.

2. Show that, for a spatial control volume R, the free-energy imbalance has the
form

˙∫

R

ρψ dv +
∫

∂R

ρψv · n da ≤
∫

∂R

Tn · v da +
∫

R

b · v dv −
∫

∂R

µh · n da +
∫

R

µh dv

or, equivalently,

˙∫

R

ρψ dv ≤
∫

∂R

Tn · v da +
∫

R

b · v dv −
∫

∂R

(µh + ρψv) · n da +
∫

R

µh dv

and provide a physical interpretation of the quantity µh + ρψv.
3. Introducing the specific grand-canonical energy

ω = ψ − nµ, (62.8)

show that the free-energy imbalance (62.7) is equivalent to the grand-canonical
energy imbalance

ρ(ω̇ + nµ̇) − T : D + h · gradµ = −δ ≤ 0. (62.9)



63 Multiple Species

When considering a multiplicity of species, we

• use lowercase Greek superscripts to denote species labels; these range over the
integers 1, 2, . . . , N;

• do not use the summation convention for species labels;
• use the shorthand

∑

α

=
N∑

α=1

,
∑

α,β

=
N∑

α=1

N∑

β=1

, and
∑

α '=β
=

N∑

α=1
α '=β

.

63.1 Species Mass Balances

To generalize the foregoing framework to account for N ≥ 1 diffusing species, we
introduce a mass fraction nα, flux hα , and supply hα for each species α = 1, 2, . . . , N.
The global balance (61.3) is then replaced by the requirement that

˙∫

Pt

ρnα dv = −
∫

∂Pt

hα · n da +
∫

Pt

hα dv (63.1)

for each species α. Similarly, the local balance (61.5) is replaced by N balances of
the form

ρṅα = −divhα + hα. (63.2)

When diffusion occurs through a network within the solid, the species densities ρnα do not generally
sum to the mass density ρ of that solid. However, when the solid is comprised entirely of the diffusing
species, as occurs for a substitutional alloy,323 the species densities must sum to the density of the solid,
and it follows that the mass fractions must obey

∑

α

nα = 1.

In this event, ∑

α

ṅα = 0,

and summing the species mass balances (63.2) over α shows that the net species flux hnet ≡
∑
α hα and

the net species supply hnet ≡
∑
α hα must obey the auxiliary constraint

divhnet = hnet.

323 Cf. §72.

369
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63.2 Free-Energy Imbalance

To properly characterize the energy flow due to the transport of N ≥ 1 species, we
introduce a chemical potential µα for each species α. Then

−
∫

∂Pt

µαhα · n da +
∫

Pt

µαhα dv

represents the energy flow due to the transport of species α, and the net energy-flow
due to species transport has the form

T (Pt ) =
∑

α

(
−
∫

∂Pt

µαhα · n da +
∫

Pt

µαhα dv

)
. (63.3)

As a consequence of (63.3), the global and local statements (62.3) and (62.7) of free-
energy imbalance are replaced by

D(Pt ) =
∑

α

(
−
∫

∂Pt

µαhα · n da +
∫

Pt

µαhα dv

)

+
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv −
˙∫

Pt

ρψ dv ≥ 0 (63.4)

and

ρψ̇ − T : D −
∑

α

(ρµα ṅα − hα · gradµα) = −δ ≤ 0, (63.5)

where the net density δ of the dissipation now has the form

δ = T : D +
∑

α

(ρµα ṅα − hα · gradµα) − ρψ̇ . (63.6)

In classical thermodynamics, the specific free-energy of a multicomponent system is commonly
viewed as a function of the specific volume, the absolute temperature, and the densities of the com-
ponent species. The derivative of the specific free-energy with respect to the species density of a given
component then defines the “chemical potential” of that species. An intuitively appealing interpretation
of the term “chemical potential” is evoked by that definition: Namely, the “chemical potential” of a given
species can be viewed as a measure of how much the free energy of a system changes with the addition
of a unit measure of that species while holding fixed the specific volume, the absolute temperature, and
the densities of all remaining species.

EXERCISES

1. Determine transformation rules that leave the mass balance (63.1) for each
species α and the free-energy imbalance (63.4) invariant.

2. Develop the forms for the mass balance for each species α and the free-energy
imbalance for a spatial control volume R.



64 Digression: The Thermodynamic Laws
in the Presence of Species Transport

We now show how the ideas expressed above fit within a general thermodynamical
structure in which thermal influences are taken into explicit consideration.

Consider a spatial region Pt convecting with the body. The balance law for en-
ergy is then the balance (26.10) of the theory without species transport augmented
by (63.3) but — consistent with our omission of inertial effects — neglecting kinetic
energy:

˙∫

Pt

ρε dv = −
∫

∂Pt

q · n da +
∫

Pt

q dv +
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv

+
∑

α

(
−
∫

∂Pt

µαhα · n da +
∫

Pt

µαhα dv

)
. (64.1)

Using (18.14), (60.5), the straightforward generalization

−
∫

∂Pt

µαhα · n da +
∫

Pt

µαhα dv =
∫

Pt

(ρµαṅα − hα · gradµα) dv

of (62.5), and applying the divergence theorem to the term involving the heat flux,
we find, as a consequence of (64.1), that

∫

Pt

(
ρε̇ − T : D −

∑

α

(ρµα ṅα − hα · gradµα) + divq − q
)

dv = 0; (64.2)

since (64.2) must hold for all convecting regions Pt , we have the local energy
balance324

ρε̇ = T : D +
∑

α

(ρµα ṅα − hα · gradµα) − divq + q. (64.3)

As in our treatment of thermodynamics without species transport, we impose
the second law via the entropy imbalance325

˙∫

Pt

ρη dv = −
∫

∂Pt

q
ϑ

· n da +
∫

Pt

q
ϑ

dv +
∫

Pt

@ dv, @ ≥ 0, (64.4)

324 Cf. (31.10).
325 Cf. (27.11) and (27.12).

371



372 Digression: The Thermodynamic Laws in the Presence of Species Transport

in which case the local entropy imbalance has the form326

@ = ρη̇ + div
(

q
ϑ

)
− q
ϑ

≥ 0. (64.5)

Then, in view of the local energy balance (64.3),

−div
(

q
ϑ

)
+ q
ϑ

= 1
ϑ

(
− divq + q

)
+ 1
ϑ2 q · gradϑ

= 1
ϑ

(
− T : Ḟ −

∑

α

(ρµαṅα − hα · gradµα) + 1
ϑ

q · gradϑ
)

,

and this with the local entropy imbalance (64.5) implies that327

ρ(ε̇ − ϑη̇) − T : D −
∑

α

(ρµαṅα − hα · gradµα) + 1
ϑ

q · gradϑ = −ϑ@ ≤ 0. (64.6)

Finally, using the specific free energy ψ = ε − ϑη introduced in (81.8) we obtain
from (64.6) the local free-energy imbalance328

ρ(ψ̇ + ηϑ̇) − T : D −
∑

α

(ρµα ṅα − hα · gradµα) + 1
ϑ

q · gradϑ = −ϑ@ ≤ 0. (64.7)

EXERCISES

1. Integrate (64.7) over Pt with the aid of (18.14) and (60.5) to show that

∫

Pt

ϑ@ dv

︸ ︷︷ ︸
dissipation

≥ 0

=
∫

∂Pt

Tn · v da +
∫

Pt

b0 · v dv

︸ ︷︷ ︸
conventional external

power expenditure

−
˙∫

Pt

ρψ dv

︸ ︷︷ ︸
rate of

free energy

+
∑

α

∫

Pt

(ρµαṅα − hα · gradµα) dv

︸ ︷︷ ︸
species production

of energy

−
∫

Pt

(
ρηϑ̇ + 1

ϑ
q · gradϑ

)
dv.

︸ ︷︷ ︸
thermal production

of energy

(64.8)

2. Derive the free-energy imbalance (63.4) by specializing the general free-energy
imbalance (64.8) to an isothermal process.

3. Assume that the external body force, heat supply, and species supplies vanish:
b0 ≡ 0, q ≡ 0, hα ≡ 0 (α = 1, 2, . . . , N). Assume further that the body is isolated
in the sense that, at each time
(i) Tn = 0 on a portion of ∂Bt and v = 0 on the remainder of ∂Bt ;

(ii) q · n = 0 on ∂Bt and hα · n = 0 on ∂Bt for each species α.
Show that the net amount of each species α and the net energy are constant,
while the net entropy cannot decrease.

4. Assume that the external body force, heat supply, and species supplies van-
ish: b0 ≡ 0, q ≡ 0, hα ≡ 0 (α = 1, 2, . . . , N). Assume also that there are a con-
stant pressure p0, a constant temperature ϑ0 > 0, and — for each species α — a

326 Cf. (27.14).
327 Cf. (27.16).
328 Cf. (27.18).
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constant chemical potential µα0 such that:
(i) Tn = −p0n on a portion of ∂Bt and v = 0 on the remainder of ∂Bt ;

(ii) ϑ = ϑ0 on a portion of ∂Bt and q · n = 0 on the remainder of ∂Bt ;
(iii) µα = µα0 on a portion of ∂Bt and hα · n = 0 on the remainder of ∂Bt .
Show, in addition, that the first and second laws reduce to the decay inequality

˙∫

Bt

ρ

(
ε − ϑ0η + p0υ −

∑

α

µα0ṅα
)

dv ≤ 0

and provide an interpretation of the contribution −ρµα0 ṅα to the integrand.



65 Referential Laws

65.1 Single Species

In this section, we determine referential counterparts of the species balance, free-
energy imbalance, and associated relations discussed in §61 and §62.

We define the species density nR,329 referential flux hR, and referential supply hR

by

nR = ρRn, hR = J F−1h, and hR = J h, (65.1)

so that — for P a fixed subregion of the undeformed body B and Pt = χ t (P) the
corresponding convecting subregion of the deformed body Bt — (31.4) yields

∫

Pt

ρn dv =
∫

P

nR dvR,

∫

∂Pt

h · n da =
∫

∂P

hR · nR daR,

∫

Pt

h dv =
∫

P

hR dvR,

∫

∂Pt

µh · n da =
∫

∂P

µhR · nR daR,

∫

Pt

µh dv =
∫

P

µhR dvR.






(65.2)

The species density nR and the species supply hR are therefore measured per unit
volume in the reference body B, while the species flux hR is measured per unit area,
also in B. Because hR arises via an inner product hR · nR with the material vector field
nR, hR is itself a material vector field. Note that the chemical potential µ, not being
a density, is invariant under the spatial to material transformations (65.2)4,5.330

329 Note that nR is actually a density rather than a mass fraction.
330 Cf. our treatment of the temperature ϑ in §31.
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Recalling (24.2) and (24.5), we may express the force balance (60.2)1 referen-
tially as

∫

∂P

TRnR daR +
∫

P

b0R dvR = 0 (65.3)

and, since the material region P is arbitrary, we have the referential force balance

divTR + b0R = 0. (65.4)

Moreover, by (24.1) and (60.3)2, the moment balance shows that, as is the case when
inertia is taken into account,

TRF) = FT)
R. (65.5)

Next, using (65.2) we may rewrite the species mass balance (61.3) as

˙∫

P

nR dvR = −
∫

∂P

hR · nR daR +
∫

P

hR dvR (65.6)

and the free-energy imbalance (62.3) as331

˙∫

P

ψR dvR ≤
∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR −
∫

∂P

µhR · nR daR +
∫

P

µhR dvR. (65.7)

Next,

˙∫

P

nR dvR =
∫

P

ṅR dvR and
˙∫

P

ψR dvR =
∫

P

ψ̇R dvR

for all material regions P. Thus, if in (65.6) we apply the divergence theorem to the
term involving the species flux, we obtain the local species mass balance

ṅR = −DivhR + hR; (65.8)

further, the divergence theorem and (65.8) yield

−
∫

∂P

µhR · n daR = −
∫

P

(µDiv hR + hR · ∇µ) dvR

=
∫

P

(µṅR − hR · ∇µ − µhR) dvR,

so that, by (65.7), we have the local free-energy imbalance332

ψ̇R − µṅR − TR : Ḟ + hR · ∇µ = −δR ≤ 0. (65.9)

We recall that, by (9.2), the referential chemical-potential gradient ∇µ appearing in
(65.9) is related to its spatial counterpart gradµ via

∇µ = F)gradµ. (65.10)

331 Cf. (31.7).
332 Cf. (31.24).
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65.2 Multiple Species

For multiple species, definitions analogous to (65.1) are introduced for each species
label α = 1, 2, . . . , N:

nαR = ρRnα, hαR = J F−1hα, and hαR = J hα. (65.11)

Proceeding as in the development of (65.6) and (65.7), we then have the mass
balance

˙∫

P

nαR dvR = −
∫

∂P

hαR · nR daR +
∫

P

hαR dvR (65.12)

for species α along with the free-energy imbalance

˙∫

P

ψR dvR ≤
∫

∂P

TRnR · χ̇ daR +
∫

P

b0R · χ̇ dvR

+
∑

α

(
−
∫

∂P

µαhαR · nR daR +
∫

P

µαhαR dvR

)
, (65.13)

the corresponding local versions of which are

ṅαR = −DivhαR + hαR (65.14)

and

ψ̇R − TR : Ḟ −
∑

α

(µα ṅαR − hαR · ∇µα) = −δR ≤ 0. (65.15)

EXERCISES

1. Using (62.8) along with the definitions of ψR and nR to define the grand-
canonical energy

ωR = ψR − µnR, (65.16)

derive the referential counterpart

ω̇R + nRµ̇ − TR : Ḟ + hR · ∇µ = −δR ≤ 0 (65.17)

of the grand-canonical energy imbalance (62.9).
2. Generalize (65.17) to the case of N species.



66 Constitutive Theory for a Single Species

Guided by (65.15), we assume that the free energy ψR, the Piola stress TR, and the
chemical potential µ are determined by constitutive equations of the form

ψR = ψ̂R(F, nR),

TR = T̂R(F, nR),

µ = µ̂(F, nR).





(66.1)

Further, we assume that the species flux h is given by a constitutive equation of the
form

hR = ĥR(F, nR,∇µ). (66.2)

In view of (66.1)3 the chemical-potential gradient ∇µ depends on the gradients ∇F and ∇nR. Hence,
by (66.2), the species flux hR depends not only on F and nR but also on the gradients ∇F and ∇nR. The
constitutive equations (66.1) and (66.2) therefore violate the principle of equipresence discussed in the
paragraph in petite type on page 231.

The decision to violate equipresence is not capricious. The pairing of hR with ∇µ in the imbalance
(65.9) renders ∇µ the variable of primary importance in a constitutive equation for hR.333

An alternative approach consistent with equipresence involves rewriting the free-energy imbalance
using the grand-canonical energy ωR = ψR − µnR as in (65.17) and choosing as independent variables
the list (F,µ,∇µ), as discussed in the exercise on page 390. However, while most theories of the type
considered here are consistent with a dependence of µ on nR, there are situations of great importance
involving phase transformations for which nR cannot be expressed as a function of µ.334

66.1 Consequences of Frame-Indifference

First of all, recall that the Cauchy and Piola stresses T and TR and the second Piola
stress TRR are related by335

T = J −1FTRRF),

TR = FTRR.
(66.3)

Being scalar fields, the species density nR and chemical potential µ are, like the
free energy ψR, invariant under changes of frame:

ψ∗
R = ψR, n∗

R = nR, µ∗ = µ.

333 Cf. the bullet on page 382.
334 Cf. Fried & Gurtin (1999, 2004).
335 Cf. (47.7) and (56.5).
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Further, as is clear from the bullet on page 147, the species flux hR and chemical-
potential gradient ∇µ, being material vector fields, are also invariant under a change
of frame:

h∗
R = hR, ∇µ∗ = ∇µ.

Thus, since by (47.11)1 and (47.12) the deformation gradient and Piola stress trans-
form according to

F∗ = QF and T∗
R = QTR,

the response functions ψ̂R, T̂R, µ̂, and ĥR must satisfy

ψ̂R(F, nR) = ψ̂R(QF, nR),

T̂R(F, nR) = Q)T̂R(QF, nR),

µ̂(F, nR) = µ̂(QF, nR),

ĥR(QF, nR,∇µ) = ĥR(F, nR,∇µ),

(66.4)

for all rotations Q and all F and nR.
Arguing as in §48.1, we conclude from (66.4) that there are response functions

ψ̄R, T̄RR, µ̄, and h̄R such that336

ψR = ψ̄R(C, nR),

TR = FT̄RR(C, nR),

µ = µ̄α(C, nR),

hR = h̄R(C, nR,∇µ),

(66.5)

so that, by (66.3)2 and (66.5)2,

TRR = T̄RR(C, nR). (66.6)

66.2 Thermodynamic Restrictions

We now apply the Coleman–Noll procedure to the frame-indifferent constitutive
equations (66.5). For the setting at hand, a constitutive process consists of a mo-
tion χ and a species density nR along with the fields ψR, TR, µ, and hR determined
through the constitutive equations (66.5). Arguing as in §46.9 and bearing in mind
that inertia is neglected, we assume that the conventional body force

b0R = −DivTR

and the external species supply

hR = ṅR + DivhR

needed to support the process are arbitrarily assignable; hence, the linear momen-
tum and species mass balances in no way restrict the class of constitutive processes.
Arguing as in §48.2, we assume that the supplies are arbitrary and therefore require
that all constitutive processes be consistent with (65.15).

Consider an arbitrary constitutive process. By (66.5)1,

ψ̇R = ∂ψ̄R(C, nR)
∂C

: Ċ + ∂ψ̄R(C, nR)
∂nR

ṅR; (66.7)

336 Cf. (48.7).
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further, by (25.6)3 and (66.6),

TR : Ḟ = 1
2 TRR : Ċ

= 1
2 T̄RR(C, nR) : Ċ. (66.8)

In view of (66.7) and (66.8), the free-energy imbalance (65.9) is equivalent to the
requirement that the inequality

(
∂ψ̄R(C, nR)

∂C
− 1

2 T̄RR(C, nR)
)

: Ċ +
(
∂ψ̄R(C, nR)

∂nR

− µ̄(C, nR)
)

ṅR

+ h̄R(C, nR,∇µ) · ∇µ ≤ 0 (66.9)

be satisfied for all constitutive processes. If, for the moment, we restrict attention
to processes in which C and nR are spatially uniform, but time-dependent, then the
inequality (66.9) reduces to

(
∂ψ̄R(C, nR)

∂C
− 1

2 T̄RR(C, nR)
)

︸ ︷︷ ︸
(∗)

: Ċ +
(
∂ψ̄R(C, nR)

∂nR

− µ̄(C, nR)
)

︸ ︷︷ ︸
(∗∗)

ṅR ≤ 0 (66.10)

and must hold for all C(t) and nR(t). Proceeding as in the verification of (†) on p. 279,
one can show that337

(‡) given any point of the body and any time, it is possible to find a constitutive
process such that C, Ċ, nR, and ṅR have arbitrarily prescribed values at that point
and time.

Granted this assertion the coefficients (∗) and (∗∗) of Ċ and ṅR in (66.10) must
vanish, for otherwise Ċ and ṅ may be chosen to violate (66.10). Hence, it follows
that TRR = 2∂ψ̄R/∂C and µ = ∂ψ̄R/∂nR. Moreover, these results reduce (66.9) to the
residual inequality

h̄R(C, nR,∇µ) · ∇µ ≤ 0.

We therefore have the following thermodynamic restrictions:

(i) The free energy determines the second Piola stress and the chemical potential
through the stress relation

TRR = T̄RR(C, nR)

= 2
∂ψ̄R(C, nR)

∂C
(66.11)

and the chemical-potential relation

µ = µ̄(C, nR)

= ∂ψ̄R(C, nR)
∂nR

. (66.12)

(ii) The species flux satisfies the species-transport inequality

h̄R(C, nR,∇µ) · ∇µ ≤ 0 (66.13)

for all (C, nR,∇µ).

337 The assertions regarding C and Ċ are verified on page 281; those regarding nR and ṅR are left as an
exercise.
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66.3 Consequences of the Thermodynamic Restrictions

By (66.7), (66.11), and (66.12), we have the Gibbs relation

ψ̇R = 1
2 TRR : Ċ + µṅR, (66.14)

while (66.11) and (66.12) yield the Maxwell relation

∂T̄RR(C, nR)
∂nR

= 2
∂µ̄(C, nR)

∂C
. (66.15)

Let C(t) be a time-dependent right Cauchy–Green tensor, let nR(t) be a time-
dependent species density, and write

TRR(t) = T̄RR(C(t), nR(t))

= 2
∂ψ̄R(G, nR(t))

∂G

∣∣∣∣
G = C(t)

.

The chain-rule then yields a relation,

ṪRR = 2
∂T̄RR(C, nR)

∂C
Ċ + ∂T̄RR(C, nR)

∂nR

ṅR,

suggesting the introduction of two constitutive moduli: the elasticity tensor C(C, nR)
defined by

C(C, nR) = 2
∂T̄RR(C, nR)

∂C

= 4
∂2ψ̄R(C, nR)

∂C2 ; (66.16)

the chemistry-strain tensor S(C, nR) defined by

S(C, nR) = ∂T̄RR(C, nR)
∂nR

= 2
∂µ̄(C, nR)

∂C

= 2
∂2ψ̄R(C, nR)
∂C∂nR

. (66.17)

The elasticity tensor C(C, nR) is a linear transformation of symmetric tensors to sym-
metric tensors and, hence, a fourth-order tensor; that is, C(C, nR) associates with
each symmetric tensor G a symmetric tensor C(C, nR)G. Moreover, the chemistry-
strain tensor S(C, nR) is a symmetric tensor that measures the marginal change in
stress due to an increment of the species density nR with C held fixed.

Proceeding as above, let

µ(t) = µ̄α(C(t), nR(t))

=
∂ψ̄R(G, nR(t))

∂G

∣∣∣∣
G = C(t)

.
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Then, by the chain-rule, (66.15), and (66.17),

µ̇ =
∂µ̄(C, nR)

∂C
: Ċ +

∂µ̄α(C, nR)
∂nR

ṅR

= 1
2 S(C, nR) : Ċ +

∂2ψ̄R(C, nR)
∂n2

R

ṅR.

This suggests the introduction of a chemistry modulus 3(C, nR) defined by

3(C, nR) =
∂2ψ̄R(C, nR)

∂n2
R

. (66.18)

In the theory of thermoelasticity, we found that important consequences the
heat conduction inequality (57.9) are that (i) heat flows from hot to cold and (ii) a
deformation, no matter how large, cannot induce a flow of heat in the absence of
a thermal gradient. We now show that the species-transport inequality (66.13) has
analogous consequences.

First, to arrive at the analog of (i), assume that at some material point X0 and
time (which we suppress as an argument)

∇µ(X0) '= 0

and define

e = ∇µ(X0)
|∇µ(X0)|

. (66.19)

Then e · ∇µ(X0) = |∇µ(X0)| so that µ(X0 + 7e) = µ(X0) + 7|∇µ(X0)| + o(7) and,
for all sufficiently small 7 > 0,

µ(X0 + 7e) > µ(X0);

the point X0 + 7e therefore has higher chemical potential than the point X0. Fur-
ther, for hR(X) the species flux corresponding to the fields C(X) and nR(X), the
species-transport inequality and (66.19) imply that

0 ≥ hR(X0) · ∇µ(X0)

= (hR(X0) · e) (∇µ(X0) · e)︸ ︷︷ ︸
>0

,

so that hR(X0) · e ≤ 0. The component of hR(X0) in the direction −e, which is the
unit vector that represents the direction from the point X0 + 7e of higher chemical
potential to the point X0 of lower chemical potential, must therefore be nonnega-
tive. In this sense, species flow occurs from the point with higher chemical potential
to the point with lower chemical potential; thus, we have the classical result

• for a single-component system, species transport occurs down a chemical-
potential gradient.

Next, to arrive at the analog of (ii), define

ϕ(C, nR, p) = h̄R(C, nR, p) · p;

then, since by (66.13) ϕ(C, nR, p) ≤ 0 and ϕ(C, nR, 0) = 0,

ϕ(C, nR, p) has a maximum at p = 0. (66.20)

Thus,

∂ϕ(C, nR, p)
∂p

= h̄R(C, nR, p) +
(
∂ h̄R(C, nR, p)

∂p

))

p (66.21)
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vanishes at p = 0; hence, the species flux vanishes when the chemical-potential gra-
dient p = ∇µ vanishes, independent of the values of the right Cauchy–Green tensor
C and the species density nR:

hR = 0 whenever ∇µ = 0. (66.22)

We, therefore, conclude that

• for a single-component system, a deformation, no matter how large, cannot in-
duce a flow of species in the absence of a chemical-potential gradient,

a result that might be referred to as the absence of a piezo-diffusive effect.

66.4 Fick’s Law

Within the present context, Fick’s law is the assertion that the species flux hR de-
pends linearly on the chemical-potential gradient ∇µ:

hR = −M(C, nR)∇µ, (66.23)

with M(C, nR) the mobility tensor;338 a consequence of the species-transport in-
equality (66.13) is then that the mobility tensor is positive-semidefinite:

p · M(C, nR)p ≥ 0 (66.24)

for all p.
We assume henceforth that the species flux is determined via Fick’s law.
The dependence of hR on ∇µ renders hR a linear function of the gradients of

C and nR; we now determine the explicit form of these dependencies. By (66.12),
(66.17), and (66.18),

∂µ

∂Xj
= ∂

∂Xj

(
∂ψ̄R(C, nR)

∂nR

)

= ∂2ψ̃R(C, nR)
∂Ckl∂nR

∂Ckl

∂Xj
+ ∂2ψ̄R(C, nR)

∂n2
R

∂nR

∂Xj

= 1
2 Skl(C, nR)

∂Ckl

∂Xj
+ ∂2ψ̄R(C, nR)

∂n2
R

∂nR

∂Xj

= ( 1
2 S(C, nR) : ∇C +3(C, nR)∇nR) j ,

where, for A a second-order tensor with components Ai j and K a third-order tensor
with components Ki jk, A : K is the vector with k-th component

(A : K)k = Ai j Ki jk. (66.25)

Fick’s law (70.14) for the flux of species α therefore becomes

hR = −M(C, nR)(3(C, nR)∇nR + 1
2 S(C, nR) : ∇C) (66.26)

or, using components,

(hR)i = −Mi j (C, nR)
(
3(C, nR)

∂nR

∂Xj
+ 1

2 Sβkl (C, nR)
∂Ckl

∂Xj

)
. (66.27)

338 Actually one can show that the most general relation of the form h = h̄R(C, nR,∇µ) consistent with
the species-transport inequality (66.13) must necessarily have the specific form

h = −M(C, nR,∇µ)∇µ;

cf. the equation before (9-23) of Gurtin (2000a, p. 8).
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Species diffusion may therefore be driven not only by spatial variations of the
species density but also by spatial variations of the right Cauchy–Green tensor C.

EXERCISES

1. Use (66.3) and (66.6) to derive an auxiliary constitutive equation for the Cauchy
stress.

2. Combining (65.11)2 and the invariance of hR under a change of frame, show that
the spatial species flux h is frame-indifferent:

h∗ = Qh

for all rotations Q.
3. Assume that the grand-canonical energy ωR, the stress TRR, the species density

nR, and the species flux hR are given constitutive equations of the form

ωR = ω̌R(C, µ,∇µ),

TRR = ŤRR(C, µ,∇µ),

nR = ňR(C, µ,∇µ),

hR = ȟR(C, µ,∇µ),

(66.28)

and use the grand-canonical energy imbalance (65.17) to show that

ωR = ω̌R(C, µ),

TRR = ŤRR(C, µ) = 2
∂ω̌R(C, µ)

∂C
,

nR = ňR(C, µ) = −∂ω̌R(C, µ)
∂µ

,






(66.29)

and

ȟR(C, µ,∇µ) · ∇µ ≤ 0. (66.30)

4. Verify the assertions regarding nR and ṅR in (‡) on page 379.
5. Derive the gradient Gibbs relation

∇ψR = 1
2 TRR : ∇C + µ∇nR,

where TRR : ∇C is the vector with components (TRR) jk∂C jk/∂Xi .
6. Establish the Maxwell relation (70.10) showing all steps.
7. Show that the Maxwell relations (70.10) can be expressed alternatively as

∂T̃RR(E, nR)
∂nR

= ∂µ̃(E, nR)
∂E

,

where T̃RR(E, nR) and µ̃(E, nR) are determined by ψ̃R(E, nR) = ψ̄R(1 + 2E, nR)
via

T̃RR(E, nR) = ∂ψ̄R(E, nR)
∂E

and µ̃(E, nR) = ∂ψ̃R(E, nR)
∂nR

.

8. Using the relation ψ̃R(E, nR) = ψ̄R(1 + 2E, nR) show that, when expressed alter-
natively as functions of E and nR, the elasticity tensor C and chemistry-strain
tensor S have the forms

C(E, nR) = ∂2ψ̃R(E, nR)
∂E2 and S(E, nR) = ∂2ψ̃R(E, nR)

∂E∂nαR
.
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9. Use the relations (66.29)2,3 to develop counterparts

ω̇R = 1
2 TRR : Ċ − nRµ̇ and

∂ŤRR(C, µ)
∂µ

= −2
∂ ňR(C, µ)

∂C
(66.31)

of the Gibbs and Maxwell relations (66.14) and (66.15).
10. Use the Maxwell relation to motivate the introduction of an elasticity tensor

C(C, µ) = 2
∂ŤRR(C, µ)

∂C

= 4
∂2ω̌R(C, µ)

∂C2 , (66.32)

a chemistry-stress tensor A(C, µ) defined by

A(C, µ) = ∂ŤRR(C, µ)
∂µ

= −2
∂ ňR(C, µ)

∂C

= 2
∂2ω̌R(C, µ)
∂C∂µ

, (66.33)

and a density modulus

K(C, µ) = ∂ ňR(C, µ)
∂µ

= −∂ω̌R(C, µ)
∂µ2 . (66.34)

11. Assuming that hR = h́R(C, µ,∇µ),339 emulate the argument leading to Fourier’s
law (57.25) for the heat flux to arrive at the linearized version

hR = −M0∇µ︸ ︷︷ ︸
linearized Fick’s law

+o(ε) as ε → 0 (66.35)

of Fick’s law, with

M0 = −∂ȟR(C, µ, p)
∂p

∣∣∣∣
(C,µ,p) = (C0,µ0,0)

for given values C0 and µ0 of the right Cauchy–Green tensor and the chemical
potential and

ε =
√

|C − C0|2 +
|µ − µ0|2

µ2
0

+
72|p|2

µ2
0

,

with 7 a characteristic length associated with the reference body B.
12. Show that the linearized mobility M0 entering (66.35) is positive-semidefinite.

339 Cf. (66.28)4.
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Because the response of the free energy to deformation and variations of the species
density determines the response of the stress and chemical potentials but not the re-
sponse of the species flux, a discussion of material symmetry must account not only
for the constitutive behavior free energy but also the constitutive behavior of the
species flux. We therefore begin with the constitutive equations (66.5)1 and (66.23):

ψR = ψ̄R(C, nR),

hR = −M(C, nR)∇µ.
(67.1)

As defined roughly in §50, a symmetry transformation is a rotation of the ref-
erence body B that leaves its response to deformation unaltered. Here — because
the constitutive relations (67.1) involve also the species densities and the chemical-
potential gradients — it is necessary to be more specific.

Consider the following generalization of the two experiments discussed in §50:

• Experiment 1. In this experiment the deformation gradient is F and the species
density and spatial chemical-potential gradient fields are nR and gradµ.

• Experiment 2. In this experiment the deformation gradient is FQ, the species
density and spatial chemical-potential gradient fields remain nR and gradµ.

Suppose that Q is a symmetry transformation. Then, arguing as in the theory of
elasticity,340 we should have

ψ̄(Q)CQ, nR) = ψ̄(C, nR). (67.2)

Next, for the experiments 1 and 2, respectively, let h1 and h2 denote the species-
flux fields measured in the deformed body. Because the deformation gradient F ap-
plied to the rotated body as well as the species density nR in the second experiment
are the same as the deformation gradient and the species density in the first ex-
periment, and because we have assumed that Q is a symmetry transformation, the
corresponding species-flux fields h1 and h2 — measured in the deformed body —
should be the same:

h1 = h2 ≡ h. (67.3)

We would not, however, expect the corresponding referential fluxes hR1 and hR2 to
coincide, since the reference body has been rotated; in fact, by (65.11)2, these fluxes
must satisfy

FhR1 = FQhR2 = J h. (67.4)

340 Cf. §50.

385
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Since the two experiments are associated with the same spatial chemical-
potential gradients, gradµ should coincide in the two experiments. Thus, by (9.2)1,
the referential chemical-potential gradients p1 = (∇µ)1 and p2 = (∇µ)2 measured
in the two experiments must satisfy

F−)p1 = F−)Qp2 = gradµ. (67.5)

By (67.3) and (67.5),

p2 = Q)p1, hR2 = Q)hR1.

Thus, since C2 = Q)C1Q,

hR1 = −M(C1, nR)p1 and hR2 = −QM(C2, nR)p2,

and it follows that

FQM(Q)CQ, nR)Q)∇µ = FM(C, nR)∇µ

for all F, nR, and ∇µ; or, equivalently, since F is invertible, if, for all C and nR,

[QM(Q)CQ, nR)Q) − M(C, nR)]∇µ = 0 (67.6)

for all ∇µ. We show at the end of this section that

(‡) without loss in generality the referential chemical-potential gradient ∇µ may
be arbitrarily chosen.

Granted (‡) we have the following result: A rotation Q is a symmetry transformation
for species transport if, in addition to (67.2),

Q)M(C, nR)Q = M(Q)CQ, nR) (67.7)

for all C and nR.
Thus — based on our individual conclusions regarding symmetry transforma-

tions for free energy and species transport — we say that a rotation Q is a symme-
try transformation for the material if the relations (67.2) and (67.7) hold for all C
and nR.

67.1 Verification of (‡)
A consequence of the constitutive equation (66.12) is that the chemical-potential gradient must obey the
subsidiary constitutive relation

∇µ =
∂µ̄(C, nR)
∂nR

∇nR +
∂µ̄(C, nR)
∂Cij

∇Cij . (67.8)

Fix the argument (C, nR) and suppress it in what follows. Then, rewriting (67.8),

∇µ =
∂µ̄

∂nR
∇nR +

∂µ̄

∂Cij
∇Cij

def= L(∇nR,∇C) (67.9)

with L(∇nR,∇C) a linear function of ∇nR and ∇C. Let rng(L) denote the range of the linear operator L
(the set of vectors ∇µ such that ∇µ = L(∇nR,∇C) for some choice of the argument (∇nR,∇C)). Since
L is linear, if ∇µ belongs to rng(L) then so also does λ∇µ for every scalar λ. Further, for Q an arbitrary
rotation, (67.9) implies that

Q∇µ = ∂µ̄

∂nR
Q∇nR + ∂µ̄

∂Cij
Q∇Cij ;

thus if ∇µ belongs to rng(L) then so also does Q∇µ for every rotation Q. Thus either:

(i) rng(L) is the entire three-dimensional space of material vectors; or
(ii) rng(L) contains only the zero-vector 0.
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In case (i) (67.6) leads to the desired result (67.7). In case (ii) we must have ∇µ = 0 and so the constitutive
equation (67.1)2 is insensitive to the particular value of M. In particular, we may without loss in generality
take M = 0, in which case (67.6) again implies (67.7). This completes the verification of (‡).

EXERCISE

1. Granted that the mobility tensor is independent of C, determine the form for
the constitutive equation (67.1)2 for an isotropic material.



68 Natural Reference Configuration

In the theory of elasticity, a reference configuration is identified with a state in which
the deformation is trivial, in which case F = C = 1. When the transport of a single
species is taken into account, we must extend this notion to include dependence
upon the density of that species.

Emulating our treatment of elasticity, we say that a reference configuration is
natural for a species density n0R if341

ψ̄R(C, nR) has a local minimum at (C, nR) = (1, n0R). (68.1)

Thus, introducing the notation

0
∣∣
0 = 0(C, nR)

∣∣
(C,nR) = (1,n0R),

it follows that

∂ψ̄R

∂C

∣∣∣∣
0

= 0,
∂ψ̄R

∂nR

∣∣∣∣
0

= 0, (68.2)

and, for any symmetric tensor A and any scalar κ ,

A :
∂2ψ̄R

∂C2

∣∣∣∣
0
A + 2κ

∂2ψ̄R

∂C∂nR

∣∣∣∣
0

: A + κ2 ∂
2ψ̄R

∂n2
R

∣∣∣∣
0

≥ 0, (68.3)

or, in components,

∂2ψ̄R

∂Ci j∂Ckl

∣∣∣∣
0
Ai j Akl + 2κ

∂2ψ̄R

∂Ci j∂nR

∣∣∣∣
0
Ai j + κ2 ∂

2ψ̄R

∂n2
R

≥ 0.

By (68.2) and (68.3) together with the stress and chemical-potential relations (66.11)
and (66.12),

∂ψ̄R

∂C

∣∣∣∣
0

= 1
2 T̄RR

∣∣
0 = 0,

∂ψ̄R

∂nR

∣∣∣∣
0

= µ̄|0 = 0,






(68.4)

341 Cf. (48.16).
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and using, in addition, (66.16), (66.17), and (66.18)

∂2ψ̄R

∂C2

∣∣∣∣
0

= C
∣∣
0,

∂2ψ̄R

∂C∂nR

∣∣∣∣
0

= S|0 = 0,

∂2ψ̄R

∂n2
R

∣∣∣∣
0

= 3
∣∣
0.






(68.5)

Further, (68.3) and (68.5) imply that

A · C|0A + 2κS|0 · A + κ23
∣∣
0 ≥ 0, (68.6)

from which we conclude that

A : C
∣∣
0A ≥ 0 (68.7)

for every symmetric tensor A, and, in addition, that

3
∣∣
0 ≥ 0. (68.8)

Summarizing, we have shown that

(‡) if the reference configuration is natural for the species density n0R, then:

(i) the residual stress TRR

∣∣
0 vanishes;

(ii) the residual chemical potential µ
∣∣
0 vanishes;

(iii) the chemistry-strain tensor S|0 vanishes;
(iv) the elasticity tensor C

∣∣
0 — aside from being symmetric — is positive-

semidefinite;
(v) the chemistry modulus 3

∣∣
0 is nonnegative.

As an important consequence of (i), the Piola and Cauchy stresses also vanish
when the reference configuration is natural for the species density n0R.



69 Summary of Basic Equations
for a Single Species

The basic field equations describing the coupling between the transport of a sin-
gle species and elastic deformation consist of the kinematical relations (6.1) and
(7.3)1 defining the deformation gradient and right Cauchy–Green tensor, the rela-
tion (66.11) determining the Piola stress, the relation (66.12) determining the chem-
ical potential, Fick’s law (66.13) for the species flux, the local force balance (65.4),
and the local species mass balance (63.2):

F = ∇χ , C = F)F,

TR = 2F
∂ψ̄R(C, nR)

∂C
, µ =

∂ψ̄R(C, nR)
∂nR

, hR = −M(C, nR)∇µ,

SDivTR + b0R = 0, ṅR = −DivhR + hR.






(69.1)

These equations hold on the reference body B.

EXERCISE

1. Using (66.29), (66.33), and (66.34), and assuming that the species flux is given
via Fick’s law in the form

hR = −M̌(C, µ)∇µ,

develop the basic equations for the alternative theory in which C, µ, and ∇µ are
independent constitutive variables. Note that, for this theory, the final evolution
equations are for χ and µ as opposed to χ and nR.
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70 Constitutive Theory for Multiple Species

The constitutive theory for N independent species is largely identical to that for a sin-
gle species, the major salient differences being related to the treatment of the species
fluxes and the conditions satisfied by the mobilities entering the relevant generaliza-
tion of Fick’s law. For that reason, we provide only an abbreviated exposition.

70.1 Consequences of Frame-Indifference and Thermodynamics

Guided by (65.15) and emulating our approach to the theory for a single indepen-
dent species, we assume that the free energyψR, the Piola stress TR, and the chemical
potential µα of each species α are determined by constitutive equations depending
on F and the list

8nR = (n1
R, n2

R, . . . , nN
R ) (70.1)

of species densities and that the flux hαR of each species α is determined by a consti-
tutive equation depending on F, 8nR, and the list

∇ 8µ = (∇µ1,∇µ2, . . . ,∇µN) (70.2)

of chemical-potential gradients.
Frame-indifference then requires that there be response functions ψ̄R, T̄RR, µ̄α ,

and h̄αR such that342

ψR = ψ̄R(C, 8nR),

TR = FT̄RR(C, 8nR),

µα = µ̄α(C, 8nR),

hαR = h̄αR(C, 8nR,∇ 8µ);

(70.3)

thus, by (66.3)2 and (70.3)2,

TRR = T̄RR(C, 8nR). (70.4)

Next, using the Coleman–Noll procedure in conjunction with the free-energy
imbalance (65.15) leads to the following thermodynamic restrictions:343

342 Cf. (66.5).
343 Cf. (66.11), (66.12), and (66.13).
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392 Constitutive Theory for Multiple Species

(i) The free energy determines the second Piola stress and the chemical potential of
species α through the stress and chemical-potential relations

TRR = T̄RR(C, 8nR) = 2
∂ψ̄R(C, 8nR)

∂C
, (70.5)

and

µα = µ̄α(C, 8nR) = ∂ψ̄R(C, 8nR)
∂nαR

. (70.6)

(ii) The species fluxes satisfy the species-transport inequality

∑

α

h̄αR(C, 8nR,∇ 8µ) · ∇µα ≤ 0 (70.7)

for all (C, 8nR,∇ 8µ).

As in the theory for a single species, we may use (70.5) and (70.6) to establish
the Gibbs relation

ψ̇R = 1
2 TRR : Ċ +

∑

α

µαṅαR, (70.8)

the gradient Gibbs relation

∇ψ = 1
2 TRR : ∇C +

∑

α

µα∇nαR, (70.9)

and, for each species α, the Maxwell relations

∂T̄RR(C, 8nR)
∂nαR

= 2
∂µ̄α(C, 8nR)

∂C
. (70.10)

Further, we may use the chain-rule to motivate the introduction of the elasticity
tensor

C(C, 8nR) = 2
∂T̄RR(C, 8nR)

∂C

= 4
∂2ψ̄R(C, 8nR)

∂C2 , (70.11)

a chemistry-strain tensor

Sα(C, 8nR) = ∂T̄RR(C, 8nR)
∂nαR

= 2
∂µ̄α(C, 8nR)

∂C

= 2
∂2ψ̄R(C, 8nR)
∂C∂nαR

(70.12)
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for each species α, and a chemistry modulus

3αβ(C, 8nR) = ∂µ̄α(C, 8nR)

∂nβR

= ∂µ̄β(C, 8nR)
∂nαR

= ∂2ψ̄R(C, 8nR)

∂nαR∂nβR
(70.13)

for each pair of species α and β.

70.2 Fick’s Law

For N species, Fick’s law is the assertion that the species flux hαR of each species α
depends linearly on the list ∇ 8µ chemical-potential gradients

hαR = −
∑

β

Mαβ(C, 8nR)∇µβ, (70.14)

with Mαβ(C, 8nR) the mobility tensor for species α with respect to species β;344 a con-
sequence of the species-transport inequality (70.7) is then that the N × N matrix





M11(C, 8nR) M12(C, 8nR) · · · M1N(C, 8nR)

M21(C, 8nR) M22(C, 8nR) · · · M2N(C, 8nR)

...
...

. . .
...

MN1(C, 8nR) MN2(C, 8nR) · · · MNN(C, 8nR)





(70.15)

of mobility tensors is positive-semidefinite:
∑

αβ

pα · Mαβ(C, 8nR)pβ ≥ 0 (70.16)

for all 8p. As in the theory for a single species, we assume henceforth that the species
fluxes are determined via Fick’s law.

70.3 Natural Reference Configuration

As in the theory for a single species, we say that a reference configuration is natural
for a density list 8n0R if345

ψ̄R(C, 8nR) has a local minimum at (C, 8nR) = (1, 8n0R). (70.17)

344 Just as in the theory for a single species, one can show that the most general relation of the form
h̄αR(C, 8nR,∇ 8µ) consistent with the species-transport inequality (70.7) must necessarily have the spe-
cific form

hαR = −
∑

β

Mαβ(C, 8nR,∇ 8µ)∇µβ .

345 Cf. (68.1).
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Thus, introducing the notation

0
∣∣
0 = 0(C, 8nR)

∣∣
(C,8nR) = (1,8n0R),

it follows that

∂ψ̄R

∂C

∣∣∣∣
0

= 0,
∂ψ̄R

∂nαR

∣∣∣∣
0

= 0 (α = 1, 2, . . . , N), (70.18)

and, for any symmetric tensor A and any list 8κ = (κ1, κ2, . . . , κN) of N scalars,

A :
∂2ψ̄R

∂C2

∣∣∣∣
0
A + 2

(∑

α

κα
∂2ψ̄R

∂C∂nαR

∣∣∣∣
0

)
: A +

∑

α,β

κακβ
∂2ψ̄R

∂nαR∂nβR

∣∣∣∣
0

≥ 0, (70.19)

or, in components,

∂2ψ̄R

∂Ci j∂Ckl

∣∣∣∣
0
Ai j Akl + 2

∑

α

∂2ψ̄R

∂Ci j∂nαR

∣∣∣∣
0
καAi j +

∑

α,β

∂2g

∂nαR∂nβR

∣∣∣∣
0
κακβ ≥ 0.

By (70.18) and (70.19) together with the stress and chemical-potential relations
(70.5) and (70.6),

∂ψ̄R

∂C

∣∣∣∣
0

= 1
2 T̄RR

∣∣
0 = 0,

∂ψ̄R

∂nαR

∣∣∣∣
0

= µ̄α|0 = 0

(70.20)

and using, in addition, (70.11), (70.12), and (70.13)

∂2ψ̄R

∂C2

∣∣∣∣
0

= C
∣∣
0,

∂2ψ̄R

∂C∂nαR

∣∣∣∣
0

= Sα|0,

∂2ψ̄R

∂nαR∂nβR

∣∣∣∣
0

= 3αβ
∣∣
0.






(70.21)

Further, (70.19) and (70.21) imply that

A · C|0A + 2
(∑

α

καAα|0
)

· A +
∑

α,β

κακβ3αβ
∣∣
0 ≥ 0, (70.22)

from which we conclude that

A : C
∣∣
0A ≥ 0 (70.23)

for every symmetric tensor A, and, in addition, that
∑

α,β

κακβ3αβ
∣∣
0 ≥ 0 (70.24)

for all lists 8κ.
Summarizing, we have shown that

(‡) if the reference configuration is natural for the density list 8n0R, then:

(i) the residual stress TRR

∣∣
0 vanishes;

(ii) the residual chemical potential µα
∣∣
0 for each species α vanishes;
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(iii) the elasticity tensor C
∣∣
0 — aside from being symmetric — is positive–

semidefinite;
(iv) the matrix of chemistry moduli 3αβ

∣∣
0 — aside from being symmetric — is

positive-semidefinite.

An important consequence of (i) is that, analogous to what occurs in the theory
for a single diffusing species, the Piola and Cauchy stresses vanish, along with the
second Piola stress, when the reference configuration is natural for the density list
8n0R.346

346 Cf. the statement concluding §68.



71 Summary of Basic Equations for N
Independent Species

The basic field equations describing the coupling between the transport of N inde-
pendent species and elastic deformation are arrived at essentially as in the theory
for a single species. These equations consist of the kinematical relations (6.1) and
(7.3)1 defining the deformation gradient and right Cauchy–Green tensor, the rela-
tion (70.5) determining the Piola stress, the relation (70.6) determining the chemical
potential of each species α, Fick’s law (70.7) for the flux of each species α, the local
force balance (i.e., the local balance (24.10) of linear momentum but with inertia
neglected), and the local balance (63.2) for each species α:

F = ∇χ , C = F)F,

TR = 2F
∂ψ̄R(C, 8nR)

∂C
, µα = ∂ψ̄R(C, 8nR)

∂nαR
, hαR = −

∑

β

Mαβ(C, 8nR)∇µβ,

DivTR + b0R = 0, ṅαR = −DivhαR + hαR .






(71.1)

EXERCISES

1. Use (70.5) and (70.6) to establish the Gibbs relation (70.8), the gradient Gibbs
relation (70.9), and the Maxwell relations (70.10).

2. Use the species-transport inequality (70.7) to extend the result (66.22) to the
case of N independent species and, thus, to show that a piezo-diffusive effect
remains absent.

3. Show that the dependence of hαR on ∇µβ renders hαR a linear function of the
gradients of C and nβR with the explicit form

hαR = −
∑

β

Mαβ(C, 8nR)
(∑

γ

λβγ (C, 8nR)∇nγR + 1
2 Sβ(C, 8nR) : ∇C

)
, (71.2)

or, using components,347

(hαR)i = −
∑

β

Mαβ
i j (C, 8nR)

(∑

γ

λβγ (C, 8nR)
∂nγR
∂xj

+ 1
2 Sβkl (C, 8nR)

∂Ckl

∂xj

)
, (71.3)

and conclude that species diffusion may be driven not only by spatial variations
of the species densities but also by spatial variations of the right Cauchy–Green
tensor C.

347 Cf. (66.25).
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4. Arguing as in the theory for a single species, show that a rotation Q is a symme-
try transformation for the material defined by ψ̄ and Mαβ (α,β = 1, 2, . . . , N)
if, for all C and 8nR,

ψ̄(Q)CQ, 8nR) = ψ̄(C, 8nR) (71.4)

and, for all species α and β,

Mαβ(Q)CQ, 8nR) = Q)Mαβ(C, 8nR)Q. (71.5)



72 Substitutional Alloys

A crystalline solid can be usefully conceived of as a deformable lattice upon and
through which various atomic species may diffuse. Generally, atoms may be sub-
stitutional or interstitial. Whereas substitutional atoms occupy lattice sites, intersti-
tial atoms are found between lattice sites. When substitutional exchanges prevail, a
constraint must be introduced to account for the fixed number of lattice sites in any
sample and such a constraint requires a modification of the theory developed above.
We now discuss the essential features needed to describe the coupling between dif-
fusion and deformation in an alloy comprised solely by substitutional atoms.

For a crystalline solid, the density nαR of species α measures the number of atoms
of that species per unit volume. We therefore refer to nαR, hαR, and hαR respectively as
the atomic density, atomic flux, and atomic supply for species α. Moreover, we refer
to the balance (65.14) as the balance of atoms for species α.

In the absence of plasticity, the displacement gradients in applications involving atomic diffusion
are typically small. For that reason, a theory for small strains, but possibly large rotations, would seem
most relevant. Within our general setting, such a theory may be achieved by positing that the free energy
ψR be given by a response function of the generic form

ψ̃R(E, 8nR) = 1
2 E : CE +

∑

α

Sα(8nR) : E + ψ0(8nR) (72.1)

and assuming as well that the mobilities Mαβ depend at most on the atomic densities. To maintain the
connection with our previous results, we nevertheless continue to work with general response functions
depending on C. The specialization of our results to the particular free energy (72.1) and mobilities
independent of C is straightforward.

72.1 Lattice Constraint

For a substitutional alloy, atoms are constrained to lie on lattice sites, and a
scalar constant, nsites

R , represents the density of substitutional sites, per unit volume,
available for occupation by atoms. The atomic densities nαR, α = 1, 2, . . . , N, for a
substitional alloy are then required to satisfy the lattice constraint

∑

α

nαR = nsites
R . (72.2)

The constraint (72.2) is inconsistent with the notion of an interstitial defect, which is
a substitutional atom forced into a position between lattice sites. However, if one of
the species is associated with unoccupied lattice sites then the lattice constraint does
allow for vacancies.
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Figure 72.1. Schematic of an atom-vacancy exchange.

A simple but important consequence of the lattice constraint is the conservation
of substitutional atoms,

∑

α

ṅαR = 0, (72.3)

a condition that, by virtue of the local atomic balance (71.1)7, is equivalent to the
flux-supply constraint

Div
(∑

α

hαR

)
=
∑

α

hαR . (72.4)

72.2 Substitutional Flux Constraint

On a basis of the view that atomic transport, as represented by the atomic fluxes,
arises microscopically from exhanges of atoms or exchanges of atoms and vacancies
(Figure 72.1), Ågren (1982) and Cahn & Larché (1983) argue that the atomic fluxes
should obey the substitutional-flux constraint

∑

α

hαR = 0. (72.5)

This restriction is considerably stronger than the flux-supply constraint (72.4). In-
deed, when applied to (72.4), (72.5) implies that the atomic supplies must satisfy the
intuitively appealing condition

∑

α

hαR = 0, (72.6)

which requires that if an external agency adds or deletes atoms of a given species
(vacancies included) to the lattice that same agency must delete or add an equal
amount of atoms of the remaining species. Henceforth, we assume that

(†) the substitutional-flux constraint (72.5) is satisfied.

72.3 Relative Chemical Potentials. Free-Energy Imbalance

We now consider the impact of conservation of substitutional atoms (72.3) and
the substitutional-flux constraint (72.5) on the free-energy imbalance. Of central
importance in this discussion are the relative chemical-potentials348

µασ = µα − µσ . (72.7)

348 Strictly speaking, µαβ is the chemical potential of species α measured relative to the chemical po-
tential of species β.
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Bearing in mind that we do not sum over repeated species labels, the definition
(72.7) implies that

µαα = 0,

µασ = −µσα,

µασ = µαβ − µσβ

(72.8)

for all relevant choices of the various species labels.
Select and fix an atomic species σ . For a substitutional alloy, the conservation

condition (72.3) and the flux constraint (72.5) then give
∑

α

(µασ ṅαR − hαR · ∇µασ ) =
∑

α

(µα ṅαR − hαR · ∇µα) − µσ
∑

α

ṅαR + ∇µσ ·
∑

α

hαR

=
∑

α

(µα ṅαR − hαR · ∇µα),

which, when used in the local free-energy imbalance (65.15), yields

ψ̇R − TR · Ḟ −
∑

α

(µασ ṅαR − hαR · ∇µασ ) ≤ 0. (72.9)

We emphasize that the imbalance (72.9) must hold for any choice of σ .

Remarks.

• Larché & Cahn (1973, 1985) were apparently the first to emphasize the im-
portance of the relative chemical-potentials when discussing substitutional al-
loys: Larché & Cahn (1973) consider a variational problem that, within our
framework, consists of minimizing a body’s free energy under a mass constraint
for each atomic species; Larché & Cahn define the chemical potentials µα,
α = 1, 2, . . . , N, to be the Lagrange multipliers associated with the mass con-
straints and show that only the relative chemical-potentials µα − µβ enter the
corresponding equilibrium conditions.

• Of the basic laws, it is only the free-energy imbalance that involves chemical
potentials. We may, therefore, conclude from the foregoing discussion that the
individual chemical potentials are irrelevant to the theory in bulk. At external
or internal boundaries, however, it is often the individual chemical potentials
that are needed, with specific example, being solid-vapor interfaces and grain
boundaries.349

• The local free-energy imbalance (65.15) may be written instead in the form
(72.9) involving only chemical potentials expressed relative to the chemical po-
tential of any arbitrarily chosen species σ , in which case (72.9) is independent
of nσR and hσR . Thus, like the pressure in an incompressible body, the individual
chemical potentials are indeterminate in bulk.

72.4 Elimination of the Lattice Constraint. Larché–Cahn Differentiation

The lattice constraint (72.2) renders the constitutive theory for a substitutional
alloy more involved than that for an unconstrained material. In many respects,
however, the substitutional theory is identical to that for unconstrained materials;
in particular, the theory is based on constitutive equations in which the list 8nR =
(n1

R, n2
R, . . . , nN

R ) of atomic densities appears as an independent variable. Difficulties

349 Cf. Larché & Cahn (1985).



72.4 Elimination of the Lattice Constraint. Larché–Cahn Differentiation 401

arise because each such list must be admissible in the sense that it must satisfy the
lattice constraint (72.2). Because of the lattice constraint, the set of all admissible
lists is not open in the N-dimensional space RN. Thus, since varying one of the den-
sities while holding the remaining densities fixed violates the lattice constraint, stan-
dard partial differentiation of the constitutive response functions with respect to the
atomic densities is not well-defined. To address this difficulty, we rely on Larché–
Cahn differentiation.

Let f (8nR) be defined on the set of admissible density lists. As noted above, the
standard partial derivative of f with respect to the density nαR of a given species α is
not defined. To free f of the lattice constraint, choose a species σ as reference, use
the lattice constraint in the form

nσR = nsites
R −

∑

α '=σ
nαR (72.10)

to express nσR as a function of the list (n1
R, n2

R, . . . , nσ−1
R , nσ+1

R , . . . , nN
R ) of the remain-

ing atomic densities, and consider f a function f (σ ) of that reduced list by defining

f (σ ) (n1
R, n2

R, . . . , nσ−1
R , nσ+1

R , . . . , nN
R )︸ ︷︷ ︸

nσmissing

= f (8nR)
∣∣
nσR = nsites

R −
∑
α '=σ

nαR
. (72.11)

The domain of f (σ ) is then an open set in RN−1, since its arguments may be varied
without violating the lattice constraint. Most importantly, the partial derivatives

∂ f (σ )

∂nαR
and

∂2 f (σ )

∂nαR∂nβR

are well defined. Note that when α is equal to σ the left side of (72.11) is independent
of nσR , so that, trivially,

∂ f (σ )

∂nσR
= 0. (72.12)

We refer to f (σ ) as the description of f relative to species σ .
An alternative treatment of differentiation that respects the lattice con-

straint may be developed as follows. Choose species α and σ . If the list 8nR =
(n1

R, n2
R, . . . , nN

R ) is consistent with the lattice constraint, then so also is the list

(n1
R, . . . , nαR + ε, . . . , nσR − ε, . . . , nN

R )

obtained by increasing the atomic density of species α by an amount ε and de-
creasing the density of species σ by an equal amount (while holding the remaining
atomic densities fixed). Bearing this in mind, we define the Larché–Cahn derivative
∂ (σ )/∂nαR by

∂ (σ ) f (8nR)
∂nαR

=
[

d
dε

f (n1
R, . . . , nαR + ε, . . . , nσR − ε, . . . , nN

R )
]

ε=0

; (72.13)

∂ (σ ) f (8ρ )/∂ρα represents the change in f (8ρ ) due to a unit increase in the density of
α-atoms and an equal decrease in the density of σ -atoms.350 Second Larché–Cahn

350 Larché & Cahn (1985, eq. 3.7) use notation consistent with replacing ∂(σ )/∂nαR by ∂/∂nασR .
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derivatives are defined similarly:

∂2(σ ) f (8nR)

∂nαR∂nβR

=
[

d2

dε1 dε2
f (n1

R, . . . , nαR + ε1, . . . , nβR + ε2, . . . , nσR − ε1 − ε2, . . . , nN
R )
]

ε1 = ε2 = 0

.

(72.14)

For convenience, we define

∂ (σ ) f
∂nσR

= 0. (72.15)

A direct consequence of (72.13) is then the skew-symmetry relation

∂ (σ ) f
∂nαR

= −
∂ (α) f
∂nσR

, (72.16)

valid for all species α and σ . Thus,

∑

α,σ

∂ (σ ) f
∂nαR

= −
N∑

α,σ

∂ (α) f
∂nσR

= −
N∑

α,σ

∂ (σ ) f
∂nαR

and we have
∑

α,σ

∂ (σ ) f
∂nαR

= 0. (72.17)

Using the description f (σ ) of f relative to σ , the Larché–Cahn derivative may
be given an alternative representation that is convenient in calculations. Increasing
an argument nαR by an amount ε (while holding the other arguments of f (σ ) fixed)
corresponds, via the definition (72.11), to decreasing the argument nσR by ε. There-
fore, as a consequence of (72.13), the Larché–Cahn derivative ∂ f (σ )/∂nαR is simply
the derivative of f with respect to nαR taken with the density nσ eliminated via the
lattice constraint; thus, by (72.12) and (72.15),

∂ (σ ) f
∂nαR

= ∂ f (σ )

∂nα
, (72.18)

and similarly for second derivatives,

∂2(σ ) f

∂nαR∂nβR
=
∂2 f (σ )

∂nαR∂nβR
. (72.19)

Note that (72.18) and (72.19) are meaningful even though their left sides are func-
tions of the complete list 8nR = (n1

R, n2
R, . . . , nσR , . . . , nN

R ), while their right sides are
functions of the list

(n1
R, n2

R, . . . , nσ−1
R , nσ+1

R , . . . , nN
R )︸ ︷︷ ︸

nσR missing

;

indeed, the left sides are defined only for those arguments 8nR consistent with the
lattice constraint, a constraint that renders nσR known when the other densities are
known.351

351 Cf. (72.11).
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It may happen that f (8nR) may be extended smoothly to an open region of RN . In that case, the
Larché–Cahn derivative may be computed as the difference

∂(σ ) f
∂nαR

=
∂ f
∂nαR

−
∂ f
∂nσR

; (72.20)

for instance, for the function f defined on the set of admissible density lists by

f (8nR) =
∑

α

λαnαR

with λ1, λ2, . . . , λN constant,
∂(σ ) f
∂nαR

= λα − λσ . (72.21)

Next, select a reference species σ and bear in mind that ∂ f (σ )/∂nαR is a standard
partial derivative. Then, for 8nR(t) an admissible, time-dependent density list and

ϕ(t) = f (8nR(t)),

usng the chain-rule in conjunction with the definition (72.11) while invoking (72.12)
gives

ϕ̇ =
∑

α

∂ f (σ )

∂nαR
ṅαR

=
∑

α

∂ (σ ) f
∂nαR

ṅαR. (72.22)

72.5 General Constitutive Equations

Using (25.6)3, we rewrite the free-energy imbalance (72.9) as

ψ̇R − 1
2 TRR · Ċ −

∑

α

(µασ ṅαR − hαR · ∇µασ ) ≤ 0. (72.23)

Holding the reference species σ fixed and guided by (72.23), we base the theory on
constitutive equations

ψR = ψ̄R(C, 8nR),

TRR = T̄RR(C, 8nR),

µαβ = µ̄αβ(C, 8nR),





(72.24)

for the free energy, stress, and relative chemical-potentials, and, guided by the the-
ory for N unconstrained species, on Fick’s law

hαR = −
∑

β

Mαβ(C, 8nR)∇µβσ , (72.25)

with σ arbitrary, for the atomic fluxes.
The constitutive equations (72.24)3, which are prescribed for all relative

chemical-potentials, are presumed to be consistent with the identities (72.8); more
pragmatically, we need only assume that the response functions µ̄ασ are prescribed
for all α and some fixed choice of reference species σ , for then the response func-
tions relative to any other species β may be defined by

µ̄αβ = µ̄ασ − µ̃βσ , (72.26)

and, granted this, the skew-symmetry relation

µ̄αβ = −µ̄βα (72.27)
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is satisfied for each pair of species, so that, in particular,

µ̄αα = 0. (72.28)

We require that the mobility tensors be consistent with the substitutional-flux
constraint (72.5) and render Fick’s law (72.25) independent of the choice of refer-
ence species σ . To discuss the implications of these requirements, we suppress the
arguments C and 8nR, which are irrelevant to the following discussion. For Fick’s law
to be independent of the choice of reference species σ , it is sufficient that

∑

β

Mαβ∇µβσ =
∑

β

Mαβ∇µβγ (72.29)

for all choices of σ and γ and all α. By 72.83, the relative chemical-potentials neces-
sarily satisfy µβσ = µβγ − µγσ for all choices of σ and γ and all β; therefore, (72.29)
will be satisfied provided that

∑

β

Mαβ∇µγσ = 0

for all choices of σ and γ and for all α, and, hence, if
∑

β

Mαβ = 0 (72.30)

for all α.
Next, the stipulation that the mobility tensors be consistent with the

substitutional-flux constraint (72.5) requires that
∑

α

hαR = −
∑

α,β

Mαβ∇µβσ

= −
∑

β

(∑

α

Mαβ

)
∇µβσ

= 0,

which is satisfied for each choice of σ provided the term in parenthesis vanishes.
Thus, recalling (72.30), we are led to the mobility constraints352

∑

α

Mαβ = 0 and
∑

β

Mαβ = 0, (72.31)

which must hold for all β and α, respectively.

72.6 Thermodynamic Restrictions

Our next step is to determine restrictions on the constitutive equations (72.24) and
(72.25) that ensure satisfaction of the dissipation inequality (72.9). Because of the
lattice constraint, thermodynamic arguments involving arbitrary variations of the
atomic densities are delicate. In this regard, we show at the end of this section that

(‡) given any admissible density-list 8nR∗, any scalar a, any two atomic species
α '= β, and any time τ , there is a time-dependent, admissible density-list 8nR(t)
such that, at τ ,

8nR(τ ) = 8nR∗, ṅαR(τ ) = −ṅβR(τ ) = a, ṅγR (τ ) = 0 for γ '= α,β.

(72.32)
352 Cf. equations (8.2) and (8.3) of Larché & Cahn (1985).
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Fix a reference species σ . Recall that, by (72.12), (72.15), and the sentence con-
taining (72.27),

∂ (σ )ψ̄R

∂nσR
= ∂ψ̄

(σ )
R

∂nσR
= 0,

where ψ̄(σ )
R is the description of ψ̄R with respect to σ .353 Choose an arbitrary process

consistent with the constitutive equations (72.24) and (72.25). Then, by (72.22),

ψ̇R = ∂ψ̄R(C, 8nR)
∂C

: Ċ +
∑

α

∂ψ̄
(σ )
R (C, 8nR)
∂nαR

ṅαR

= ∂ψ̄R(C, 8nR)
∂C

: Ċ +
∑

α

∂ (σ )ψ̄R(C, 8nR)
∂nαR

ṅαR. (72.33)

The requirement that the dissipation inequality (72.23) hold in all such processes
leads to the inequality

(
∂ψ̄R(C, 8nR)

∂C
− 1

2 T̄RR(C, 8nR)
)

: Ċ +
∑

α

(
∂ (σ )ψ̄R(C, 8nR)

∂nαR
− µ̂ασ (C, 8nR)

)
ṅαR

−
∑

α,β

∇µασ · Mαβ(C, 8nR)∇µβσ ≤ 0, (72.34)

for each choice of the free-index σ . If we momentarily restrict attention to spatially
constant processes, then the inequality (72.34) reduces to

(
∂ψ̄R(C, 8nR)

∂C
− 1

2 T̄RR(C, 8nR)
)

: Ċ +
∑

α

(
∂ (σ )ψ̄R(C, 8nR)

∂nαR
− µ̂ασ (C, 8nR)

)
ṅαR ≤ 0.

This inequality must hold for all C(t) and all admissible density lists 8nR(t). Assuming
that the atomic densities are independent of time leads to the requirement that

T̄RR(C, 8nR) = 2
∂ψ̄R(C, 8nR)

∂C
. (72.35)

Similarly, assuming that the strain is independent of time leads to the requirement
that

µ̄ασ (C, 8nR) = ∂ (σ )ψ̄R(C, 8nR)
∂nαR

. (72.36)

Recalling that, by (72.12) and (72.28),

∂ (σ )ψ̄R(C, 8nR)
∂nσR

= 0 and µ̂σσ (C, 8nR) = 0,

we see that (72.36) holds for each atomic species α and each choice of the free index
σ corresponding to the chosen reference species. Next, (72.35) and (72.36) reduce
(72.34) to the inequality

∑

α,β

∇µασ · Mαβ(C, 8nR)∇µβσ ≥ 0,

for each choice of the reference species σ . Consistent with this inequality we assume
that the matrix of mobilities is positive-definite.

353 Cf. (72.11).
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72.7 Verification of (‡)
Note first that a simple choice 8nR(t) consistent with the lattice constraint and with (72.32) is given by

nαR(t) = nα∗R + (t − τ )a, nβR(t) = nβ∗R − (t − τ )a,

and
nγR(t) = nγR for γ '= α,β. (72.37)

But this choice does not furnish a solution of our problem, since the densities nαR(t) and nβR(t) may be
negative. This is easily remedied: Given any ε > 0, we can always find a scalar function T(t) such that
T(τ ) = 0, Ṫ(τ ) = 1, and |T(t)| < ε. The density list 8nR(t) defined by

nαR(t) = nα∗R + T(t)a and nβR(t) = nβ∗R − T(t)a,

supplemented by (72.37), satisfies (72.32) and will be admissible for all t provided we choose ε small
enough. This completes the proof.

72.8 Normalization Based on the Elimination of the Lattice Constraint

Because of the lattice constraint (72.2), we may omit the atomic balance for one of
the atomic species, say σ , and simply define

nσR = nsites
R −

∑

α '=σ
nαR. (72.38)

Thus, by the substitutional-flux constraint (72.5),

ṅσR = −
∑

α '=σ
ṅαR, hσR = −

∑

α '=σ
hαR, and hσR = −

∑

α '=σ
hαR, (72.39)

so that the atomic balance for species σ is satisfied automatically provided the
atomic balances for each of the remaining species α '= σ are satisfied.

Without loss in generality, one may therefore employ the following normaliza-
tion in which a given species σ is used as reference:

• Take the atomic density nσR , the atomic flux hσR , and atomic supply hσR to be de-
fined by the lattice constraint and the substitutional-flux constraint via (72.39).

• Omit from consideration the atomic balance for species σ .
• Use as chemical potentials for species α the relative chemical-potentials µασ .
• Use the free-energy imbalance (72.23) with species σ as reference (since this

law is independent of nσR and hσR ).

EXERCISES

1. For a binary substitutional alloy with densities n1
R and n2

R, fluxes h1
R and h2

R, sup-
plies h1

R and h2
R, and chemical potentials µ1 and µ2, use the definitions

nR = n1
R = nsites

R − n2
R,

hR = h1
R = −h2

R,

hR = h1
R = −h2

R,

µ = µ12 = µ1 − µ2

to reduce the species mass balances and the free-energy imbalance to the mass
balance (65.8) and free-energy imbalance (65.9) for a single (unconstrained)
species.

2. Use (72.35) and (72.36) to show that the Gibbs relation

ψ̇R = 1
2 TRR : Ċ +

∑

α

µασ ṅαR (72.40)
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and the Maxwell relations

∂ (σ )T̄RR(C, 8n!σ
R )

∂nαR
= 2

∂µ̄ασ (C, 8nR)
∂C

, (72.41)

hold for each choice of the reference species σ .
3. Show that for a substitutional alloy the free-energy imbalance (65.13) is invari-

ant under all transformations of the form

µα(x, t) → µα(x, t) + λ(x, t) for all species α

and, moreover, use the fundamental lemma of the calculus of variations (page
167) to prove that this invariance is equivalent to the substitutional-flux con-
straint (72.5).
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Our derivation of the linear theory is based on the following hypotheses in which
8n0R is a prescribed (constant) list of species densities:

C1 the reference configuration is natural for the density list 8n0R;
C2 the density list 8nR is everywhere close to 8n0R;
C3 the displacement gradient H = ∇u is everywhere small.

We derive asymptotic forms of the governing equations appropriate to the limit as

ε =

√√√√|H|2 +
∑

α

∣∣∣∣
nαR − nα0R

nα0R

∣∣∣∣
2

tends to zero.354 In this regard, given a function 0(C, 8nR), we write

00 = 0|0 for 0 evaluated for (H, 8nR) = (0, 8n0R). (73.1)

Bearing in mind that C = 0 and F = 1 when H = 0, this notation makes sense for
functions 0(C, 8nR) and 0(F, 8nR): in the former case, 00 = 0(0, 8n0R); in the latter
case, 00 = 0(1, 8n0R).

73.1 Approximate Constitutive Equations for the Stress, Chemical
Potentials, and Fluxes

We now determine asymptotic constitutive equations for the stress and chemical
potentials appropriate to small departures from a reference configuration that is
natural at the density list 8n0R.

Expanding T̃RR(C, 8nR) and µ̃α(C, 8nR) about C = 1 and 8nR = 8n0R, we obtain

T̄RR(C, 8nR) = T̄RR|0 +
∂T̄RR

∂C

∣∣∣∣
0
(C − 1) +

∑

α

∂T̄RR

∂nαR

∣∣∣∣
0
(nαR − nα0R) + o(ε),

µ̄α(C, 8nαR) = µ̄α|0 +
∂µ̄α

∂C

∣∣∣∣
0

: (C − 1) +
∑

β

(
∂µ̄α

∂nβR

∣∣∣∣
0

)
(nβR − nβ0R) + o(ε).

354 This makes precise the sense of the term “small” in C2 and C3.

408
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so that, by (70.21),

∂T̃RR

∂E

∣∣∣∣
0

= 1
2 C0,

∂T̃RR

∂nαR

∣∣∣∣
0

= 2
∂µ̃α

∂C

∣∣∣∣
0

= Sα0 ,

∂µ̃α

∂nβR

∣∣∣∣
0

= 3
αβ
0 ,

and, by (70.20),

T̄RR|0 = 0 and µ̄α|0 = 0.

Thus, introducing the shorthand notation

C = C0, Sα = Sα0 , 3αβ = 3
αβ
0 , (73.2)

and using the relation

E = 1
2 (C − 1),

we obtain the following estimates for the second Piola stress and the chemical po-
tentials:

TRR = CE +
∑

α

(nαR − nα0R)Sα + o(ε),

µα = Sα : E +
∑

β

3αβ(nβR − nβ0R
) + o(ε),

(73.3)

as ε → 0. Further, arguing as in the derivations of (52.26) and (52.27),355 we find
that, as ε → 0,

TR = CE +
∑

α

(nαR − nα0R)Sα + o(ε),

T = CE +
∑

α

(nαR − nα0R)Sα + o(ε),
(73.4)

so that, as in elasticity theory, to within a small error the Cauchy and Piola stresses
are all symmetric and coincident. Similarly, arguing as is the derivation of (52.31),
we may show that the free energy function ψ̄R(C, 8nR) admits the estimate356

ψR = 1
2

E : CE +
∑

α

(nαR − nα0R)Sα : E +
∑

α,β

3αβ(nαR − nα0R)(nβR − nβ0R
) + o(ε2) (73.5)

as ε → 0. Moreover, by (18.9), the spatial and material forms of the density and
conventional body force are related through

ρ = [1 + o(1)]ρR and b0 = [1 + o(1)]b0R. (73.6)

Next, expanding Mαβ(C, 8nR), we obtain

Mαβ(C, 8nR) = Mαβ
∣∣
0 + o(1)

= Mαβ
0 + o(1),

355 Cf. (59.3).
356 Cf. (59.4).
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and it follows from (70.21), (71.2), and the relation E = 1
2 (C − 1) that

hαR = −
∑

β

Mαβ
0

(∑

γ

∂2ψ̄

∂nβR∂nγR

∣∣∣∣
0
∇nγR + Sβ0 : ∇E

)
+ o(1).

Thus, introducing the shorthand notation

Mαβ = Mαβ
0

and drawing on (73.2), we have

hαR = −
∑

β

Mαβ

(∑

γ

3βγ∇nγR + Sβ : ∇E
)

+ o(1). (73.7)

By (70.16), the matrix of mobility tensors in positive-semidefinite:
∑

α,β

pα · Mαβpβ ≥ 0. (73.8)

73.2 Basic Equations of the Linear Theory

The linear theory of species diffusion coupled to elasticity is based on approximate
equations obtained when the higher-order terms in

E = 1
2 (H + H)) + o(|H|2), (73.9)

(73.3), (73.4), (73.5), and (73.7) are neglected.357 We therefore take ρ = ρR, T = TR,
b0 = bR0, and hα = hαR and base the theory on the strain-displacement relation

E = 1
2 (H + H)), (73.10)

and the constitutive equations

ψR = 1
2

E : CE +
∑

α

(nαR − nα0R)Sα : E +
∑

α,β

3αβ(nαR − nα0R)(nβR − nβ0R
),

T = CE +
∑

α

(nαR − nα0R)Sα,

µα = Sα : E +
∑

α,β

3αβ(nβR − nβ0R
),

hα = −
∑

β

Mαβ

(∑

γ

3βγ∇nγR + Sβ : ∇E
)

,

(73.11)

where C, Sα , 3αβ , and Mαβ are, respectively, the elasticity tensor, the chemistry-
strain modulus of species α, the chemistry modulus of species α and β, and the mo-
bility of species α with respect to species β.

By (68.7), C is symmetric and positive-semidefinite; here we assume, in addition,
that C is positive-definite:

A : CA > 0 for all symmetric tensors A '= 0. (73.12)

357 Precisely, the o(ε) terms in (73.3) and (73.4) along with the o(1) terms in (73.19) and (73.6) and the
o(ε2) terms in (73.5) are neglected.
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Similarly, we strengthen the condition (70.24) by requiring that the matrix of entries
3αβ is positive-definite:

∑

α,β

κακβ3αβ > 0 (73.13)

for all 8κ . Further, we strengthen (73.8) by requiring that the matrix of mobilities be
positive-definite:

∑

α,β

pα · Mαβpβ > 0 for all 8p '= 0. (73.14)

We recall, also, that Sα is symmetric for each α.
The basic equations of the linear theory consist of (73.10), (73.11), the local

force balance (65.4)

Div(CE) +
∑

α

Sα∇nαR + b0 = 0 (73.15)

and the species balance

ṅαR = Div
[∑

β

Mαβ

(∑

γ

3βγ∇nγR + Sβ : ∇E
)]

+ hαR (73.16)

for each α = 1, 2, . . . , N.
Next, introducing, for each species α, a chemical diffusivity

Dαβ =
∑

γ

Mαγ3γβ , (73.17)

for species α with respect to species β, and an elastic diffusivity

Jα =
∑

β

MαβSβ, (73.18)

we may rewrite (73.7) as

hαR = −
∑

β

Dαβ∇nβR − Jα : ∇E + o(1). (73.19)

In terms of these quantities, the species balance (73.16) becomes

ṅαR =
∑

β

Dαβ : ∇∇nβR + Jα : ,E + hαR . (73.20)

73.3 Isotropic Linear Theory

When one uses E instead of C to express the constitutive equations for the theory,
the transformation rules (71.4) and (71.5) under a symmetry transformation Q, re-
spectively, become

ψ̃R(Q)EQ, 8nR) = ψ̃R(E, 8nR) and Q)M̃αβ(E, 8nR)Q = M̃αβ(Q)EQ, 8nR). (73.21)

For the free-energy function (73.11)1, these rules immediately imply that

Q)(CE)Q = C(Q)EQ) and Q)SαQ = Sα, (73.22)
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for a symmetry transformation Q and all symmetric tensors E. Thus, if the body is
isotropic then CE, Sα , and Mαβ have the specific forms

CE = 2µE + λ(trE)1,

Sα = sα1,

Mαβ = mαβ1,





(73.23)

with µ and λ elastic moduli, sα the (scalar) chemistry-strain modulus for species α,
and mαβ the (scalar) mobility of species α with respect to species β.358

As before,359 the requirement (73.12) that C be positive-definite implies that the
elastic moduli µ and λ satisfy

µ > 0 and κ = λ+ 2
3µ > 0, (73.24)

with κ being the compressibility. Additionally, the requirement (73.14) that the ma-
trix of (tensorial) mobilities be positive-definite implies that the matrix





m11 m12 · · · m1N

m21 m22 · · · m2N

...
...

. . .
...

mN1 mN2 · · · mNN





(73.25)

is positive-definite.
By (73.23), the defining constitutive equations for flow through an isotropic,

linear elastic solid are

ψR = µ|E|2 + λ

2
(trE)2 +

∑

α

sα(nαR − nα0R)trE

+
∑

α,β

3αβ(nαR − nα0R)(nβR − nβ0R
),

T = 2µE + λ(trE)1 +
∑

α

sα(nαR − nα0R)1,

µα = sαtrE +
∑

α,β

3αβ(nβR − nβ0R),

hα = −
∑

β

mαβ

(∑

γ

3βγ∇nγR + sβ∇(trE)
)

.

(73.26)

Granted (59.9), this stress-strain relation (73.26)2 may be inverted to give

E =
1

2µ

(
T −

λ

2µ + 3λ
(trT)1

)
−
∑

α

bα(nαR − nα0R)1, (73.27)

where

bα def= − sα

2µ + 3λ
(73.28)

358 Again, these results follow from standard representation theorems for isotropic functions. Cf.
Gurtin (1981, §37).

359 Cf. §59.3.
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is the coefficient of solute expansion for species α. Thus, in terms of the compress-
ibility κ ,

bα = −3κsα. (73.29)

For an isotropic material, the basic equations (73.15) and (73.16) specialize to

µ,u + (λ+ µ)∇divu +
∑

α

sα∇nαR = 0 (73.30)

and

ṅαR =
∑

β

mαβ

(∑

γ

3βγ,nγR + sβ,divu
)

. (73.31)

EXERCISES

1. Writing ψ̃R(E, 8nR) for the right side of (73.11)1, verify that T and µα as deter-
mined by (73.11)2 and (73.11)3 are consistent with the thermodynamic relations

T = ∂ψ̃R(E, 8nR)
∂E

and µα = ∂ψ̃R(E, 8nR)
∂nαR

.

2. Show that the relations (73.11) are consistent with the local free-energy imbal-
ance

ψ̇R − T : Ė −
∑

α

(µαṅαR − hαR∇̇µα) ≤ 0. (73.32)

3. Drawing on the balances (73.15) and (73.16), show that (73.32) arises as the
local consequence of requiring that the free-energy imbalance

˙∫

P

ψR dv ≤
∫

∂P

Tn · u̇ da +
∫

P

b0 · u̇ dv +
∑

α

(
−
∫

∂P

µαhαR · n da +
∫

P

µαhαR dv

)

(73.33)
hold for any subregion P of the body.

4. Writing K for the compliance tensor (that is, the inverse of the symmetric and
positive-definite elasticity tensor C), show that

E = KT +
∑

α

(nαR − nα0R)Gα,

where

Gα = −KSα (73.34)

denotes the chemistry-stress tensor, and, further, that the free energy can be
expressed as in terms of T and 8nR via

ψ = ψ̌(T, 8nR)

= 1
2 T : KT +

∑

α,β

(nαR − nα0R)(nβR − nβ0R
)Sα : Gβ + 20(8nR).

5. Using (73.34), show that the stress can be expressed in the form

T = C(E − Ecom),

where

Ecom =
∑

α

(nαR − nα0R)Gα
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is the compositional-strain tensor, and derive an analogous relation for T in-
volving a compositional-stress tensor.

6. Show that the free enthalpy defined via ϕR = ψR − T : E, with ψR as given by
(73.26)1, takes the form

ϕR = ϕ̃R(T, 8nR)

= − 1
2 T : KT −

∑

α

(nαR − nα0R)Gα : T +20(8nR)

and that the strain and the chemical potential of species α are determined ther-
modynamically by the relations

E = −∂ϕ̃R(T, 8nR)
∂T

and µα = ∂ϕ̃R(T, 8nR)
∂nαR

.

7. Show that the flux relation can be expressed alternatively in the form

hα = −
∑

β

Mαβ
0 (8nR)

(∑

γ

∂220(8nR)

∂nβR∂nγR
∇nγR − Gα : ∇T

)
,

which demonstrates that spatial variations of the stress may drive species trans-
port.

8. Show that for an isotropic material the flux relations (73.20) specialize to

hαR = −
∑

β

mαβ

(∑

γ

3βγ∇nγR + sβ∇(trE)
)

+ o(1).



PART XIII

THEORY OF ISOTROPIC PLASTIC
SOLIDS UNDERGOING SMALL
DEFORMATIONS

The theory of elasticity furnishes a simple and elegant vehicle for illustrating the
basic ideas of continuum mechanics. Among its many uses, elasticity theory is widely
utilized for modeling the response of rubber-like, elastomeric materials at large
strains. However, elasticity theory can be applied to the description of metals only
for extremely small strains, typically not exceeding 10−3. Larger deformations in
metals lead to flow, permanent set, hysteresis, and other interesting and important
phenomena that fall naturally within the purview of plasticity.
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74 Some Phenomenological Aspects of the
Elastic-Plastic Stress-Strain Response of
Polycrystalline Metals

A stress-strain curve obtained from a simple tension test reveals the major features
of the elastic-plastic response of a polycrystalline metal. In such an experiment, the
length L0 and cross-sectional area A0 of a cylindrical specimen are deformed to L
and A, respectively. If P denotes the axial force required to affect such a deforma-
tion, then the axial engineering stress (i.e., the Piola stress) in the specimen is

s = P
A0

.

In addition, if λ = L/L0 denotes the axial stretch, the corresponding axial engineer-
ing strain is

e = λ− 1.

Figure 74.1 shows a curve representing engineering stress versus engineering strain
for a metallic specimen. The portion OB of the stress-strain curve is essentially lin-
ear, and reversing the direction of strain from any point on OB results in a retracing
of the forward straining portion of the stress-strain curve; in this range of small
strains, the response of the material is typically idealized to be linearly elastic. Be-
yond the point B, the stress-strain curve deviates from linearity; accordingly, the
point B is called the elastic limit, and the stress corresponding to the elastic limit is
called the yield strength of the material. Beyond the elastic limit, the engineering
stress increases with increasing strain; hence, the specimen is able to withstand a
greater axial load despite a reduction of its cross-sectional area. This phenomenon
is known as strain-hardening, and the portion of the curve beyond the elastic limit
may be referred to as the hardening curve. Upon reversing the direction of strain
at any stage C beyond the elastic limit B, the stress and strain values do not re-
trace the forward straining portion of the stress-strain curve; instead, the stress is
reduced along an elastic unloading curve C D. That is, beyond the elastic limit, un-
loading to zero stress reduces the strain by an amount called the elastic strain ee and
leaves a permanent plastic strain e p. Another reversal of the strain direction from D
(reloading) retraces the unloading curve, and the stress-strain curve approaches the
hardening curve at the point C from which the unloading was initiated, and under
further loading the stress-strain curve once again follows the hardening curve.

The stress-strain response of a material may also be expressed in terms of the
true stress (i.e., the Cauchy stress), defined by

σ =
P
A

,

417
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Figure 74.1. Schematic of an engineering stress-strain curve for a metallic material.

and true strain (logarithmic strain), defined by

ε = ln λ.

The true stress at any point in a tension test may be calculated by taking simultane-
ous measurements of the load P and current cross-sectional area A of the specimen.
However, simultaneous measurements of the axial elongation and the diametrical
reduction of a specimen are seldom carried out. Instead, use is made of the ex-
perimental observation that plastic flow of metals is essentially incompressible —
volume change in a tension test is associated only with the elastic response of the
material. Thus, for a metallic specimen undergoing plastic deformation that is large
in comparison to its elastic response, it is reasonable to assume that the volume of
the specimen is conserved, so that A L ≈ A0 L0.360 Hence, for any pair of values
(s, e), the corresponding pair (σ, ε) may be calculated via the relations

σ =
P
A

=
P
A0

L
L0

= s (1 + e), ε = ln(1 + e).

A true stress-strain curve is contrasted with a corresponding engineering stress-
strain curve in Figure 74.2.

When the absolute values of the true stress and true strain obtained from a sim-
ple compression test are plotted and compared with corresponding values obtained
for a tension test, with both tests conducted at ambient pressures, it is found that
for most metallic materials the stress-strain curve obtained from the compression
test is nearly coincident with the corresponding tensile stress-strain curve. A similar
comparison between tensile and compressive engineering stress versus engineering
strain curves does not provide such a nearly coincident response. For this reason, the
true stress-strain curve is believed to represent the intrinsic plastic flow characteristics
of a metallic material.

The stress-strain response of metals under cyclic testing is substantially more
complicated than that under monotonic testing. For example, many metals exhibit
the Bauschinger effect, a phenomenon first observed in metals by Bauschinger
(1886), who reported that a metal specimen, after receiving a certain amount of
axial extension into the plastic range, showed a decrease in the magnitude of the
flow strength upon subsequent compression. A schematic of a reversed-deformation
curve is shown in Figure 74.3. The solid line shows a true stress-strain curve in which
the specimen was first extended in tension, and then the direction of deformation

360 Provided the deformation is homogeneous.
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Figure 74.2. Comparison of a true stress-strain curve with the corresponding engineering
stress-strain curve.

was reversed. The stress level from which reversed deformation was initiated is
denoted by σ f , and the stress level at which the stress-strain curve in compression
begins to deviate from linearity is denoted by σr < 0. The absolute value |σr | of the
elastic limit in compression is smaller than the stress σ f at which the reversed defor-
mation was initiated.

74.1 Isotropic and Kinematic Strain-Hardening

As is clear from our brief discussion of the phenomenology of the stress-strain re-
sponse, the deformation of metals beyond the elastic limit is quite complicated. In
this subsection, we discuss some idealizations of strain-hardening that are frequently
used in theories of plasticity.

A simple idealization of actual material response, referred to as isotropic hard-
ening, accounts for strain-hardening but approximates the hardening by a straight
line, neglects the Bauschinger effect, and assumes that after reversal of deforma-
tion from any level of strain in the plastic regime, the magnitude of the flow stress
upon which reverse yielding begins has the same value as the flow stress from which
the unloading was initiated. The stress-strain response corresponding to isotropic
hardening is shown schematically in Figure 74.4 (a).

Let the stress level from which reversed deformation is initiated be denoted
by σ f , and denote the stress at which the stress-strain curve in compression begins
to deviate from linearity by σr < 0. The closed interval [σr , σ f ] is called the elastic
range, and its end points

{
σr , σ f

}
are called the yield set. Let Y, with initial value Y0,

Figure 74.3. A stress-strain diagram obtained from a tension-compression experiment show-
ing the Bauschinger effect.
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Figure 74.4. Idealized stress-strain response for an elastic-plastic material with (a) linear
isotropic hardening; (b) linear kinematic hardening.

denote the flow resistance (a material property) of the material. The initial elastic
range then has

σr = −Y0, σ f = Y0,

and, during subsequent plastic deformation along the hardening curve, the defor-
mation resistance increases linearly from Y0 to Y due to strain-hardening, and the
new elastic range becomes

σr = −Y, σ f = Y.

For such an idealized response of an elastic-plastic material, the magnitude of the
stress σ in this elastic range is bounded with the restriction

|σ | ≤ Y,

generally referred to as a yield condition,361 with plastic flow possible when |σ | = Y.
Isotropic strain-hardening is an idealization of the actual hardening behavior

of metals; in particular, it does not account for the Bauschinger effect. An alter-
native simple model for strain-hardening that accounts for this phenomenon is re-
ferred to as kinematic hardening. The stress-strain response for a material with lin-
ear kinematic hardening is shown in Figure 74.4 (b): the initial flow resistance is Y0;
upon deformation in tension into the plastic regime, the stress increases linearly to
σ f , and, upon reversal of deformation, the material starts to plastically flow at a
stresslevel σr < 0 and thereafter again continues to harden linearly. The magnitude
|σr | of the stress at which plastic flow recommences upon load reversal is smaller
than that, σ f , at which the reversed loading event was initiated — which embodies
the Bauschinger effect. The asymmetry in the onset of yield upon reversal of load-
ing in such a model arises because of the buildup of an internal stress called the
backstress and denoted by σb, whose magnitude is equal to

σb = 1
2 (σ f + σr ).

The term kinematic hardening reflects the fact that the center of the elastic range
in stress space moves from an initial value of σ = 0 to a value of σ = σb, while the
height of the elastic range remains constant at 2Y0. This is in contrast to isotropic
hardening shown in Figure 74.4 (a), where the elastic range in stress space stays

361 The special case corresponding to no strain-hardening represents an elastic-perfectly plastic mate-
rial, for which the yield condition becomes |σ | ≤ Y0, with Y0 a constant.
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centered at σ = 0, while the height of the elastic range expands from 2Y0 to 2Y
as the material strain-hardens. For the material with kinematic hardening described
above, the stress obeys the yield condition

|σ − σb| ≤ Y0.

For many metals, the actual strain-hardening behavior — including the
Bauschinger effect — may be approximated by a combination of nonlinear isotropic
hardening and nonlinear kinematic hardening.



75 Formulation of the Conventional
Theory. Preliminaries

The description of materials, such as metals, that sometimes deform elastically and
at other times flow like a fluid requires a constitutive framework far more com-
plicated than those discussed thus far. For that reason, we do not seek the most
general theory consistent with the second law in the form of a free-energy imbal-
ance. Instead, bearing in mind the success of the conventional theories of plasticity,
we seek to present those theories within a modern framework based on simple and
physically meaningful hypotheses; but, because plasticity theory is complex when
presented within the context of finite deformations, we begin with the far simpler
theory in which the deformations are presumed to be small.

Most metals exhibit rate-independent or nearly rate-independent response, at
least at sufficiently low temperatures; for that reason we base our initial discussion
of constitutive relations on the notion of rate-independence.

75.1 Basic Equations

We take as our starting point the kinematical assumptions of the linear theory of
elasticity as discussed in §52. Many of the equations derived there are independent
of constitutive relations and hence applicable to a wide class of materials under the
assumption of small deformations. Of particular importance to our discussion of
conventional plasticity are the strain-displacement relation (52.32) (supplemented
by an equation for the rotation), the momentum balance (52.37) (with stress T sym-
metric), and the free-energy imbalance (52.71) modified to account for dissipation:

(i) the strain-displacement relation

E = 1
2 (∇u + (∇u))) (75.1)

and the rotation-displacement relation

W = 1
2 (∇u − (∇u)))

in which E is the strain and W the rotation, so that, trivially, ∇u = E + W;
(ii) the momentum balances

ρü = DivT + b0, T = T), (75.2)

with T the stress, ρ the density, and b0 the conventional body force; the mo-
mentum balance (75.2)1 can be written as a force balance

DivT + b = 0, (75.3)
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with b the total body force

b = b0 − ρü. (75.4)

(iii) the free-energy imbalance

2̇ − T : Ė = −δ ≤ 0, (75.5)

with 2 the free energy and δ the dissipation.

Here and in what follows:

• To avoid cumbersome notation, when discussing small deformations we write2
for the free energy measured per unit volume; 2 should be viewed as ψR, which
for large deformations represents the free energy per unit referential volume.362

Similarly, δ denotes the dissipation measured per unit volume.

75.2 Kinematical Assumptions that Define Plasticity Theory

We begin with some identities associated with deviatoric tensors. Recall that: (i) a
tensor G is deviatoric if trG = 0; (ii) for any tensor B

B0 = B − 1
3 (trB)1

is the deviatoric part of B; (iii) for G deviatoric,363

B : G = B0 : G; (75.6)

(iv) for G arbitrary and H invertible,364

(
HGH−1)

0 = HG0H−1. (75.7)

Underlying most theories of plasticity is a physical picture that associates with a
plastic solid a microscopic structure, such as a crystal lattice, that may be stretched
and rotated, together with a notion of defects, such as dislocations, capable of flow-
ing through that structure. Here, we mathematize this picture with a kinematical
constitutive assumption requiring that the displacement gradient admit a decompo-
sition

∇u = He + Hp, (75.8)

in which:

(i) He, the elastic distortion, represents stretch and rotation of the underlying
microscopic structure, and

(ii) Hp, the plastic distortion, represents the local deformation of material due to
the formation and motion of dislocations through that structure.

We define elastic and plastic strains Ee and Ep through

Ee = sym He and Ep = sym Hp. (75.9)

Similarly, We and Wp are the elastic and plastic rotations

We = skw He and Wp = skw Hp, (75.10)

so that

E = Ee + Ep and W = We + Wp. (75.11)

362 Theories of small deformations do not distinguish between the observed and referential spaces.
363 Cf. (2.46) and (2.61)3.
364 Cf. (2.78).
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Finally, consistent with the general observation that the flow of dislocations
does not induce changes in volume,365 Hp is deviatoric, viz.

trHp = trEp = 0. (75.12)

If, in the free-energy imbalance (75.5), we account explicitly for the elasticity
and plasticity of the material via (75.11)1, we then find that

2̇ − T : Ėe − T : Ėp = −δ ≤ 0. (75.13)

Further, since Ėp is deviatoric, we may conclude that

T : Ėp = T0 : Ėp;

hence, the free-energy imbalance (75.13) becomes

2̇ − T : Ėe − T0 : Ėp = −δ ≤ 0. (75.14)

75.3 Separability Hypothesis

Most theories of plasticity are based on constitutive relations that separate plastic
and elastic response, with free energy strictly elastic and dissipation solely plastic.
Further, most successful theories are not based on a single constitutive relation for
the stress, but instead require that the stress be consistent with two separate consti-
tutive relations:

(i) one elastic, associated with the classical elastic strain energy;
(ii) a second viewed as a constraint on purely elastic response imposed by the plas-

ticity of the material.

This is the approach we shall take.366

In accord with the assumption of a free energy that is strictly elastic and dissi-
pation that is solely plastic, we separate the free-energy imbalance (75.14) into an
elastic balance

2̇ = T : Ėe, (75.15)

and a dissipation inequality

δ = T0 : Ėp ≥ 0 (75.16)

characterizing energy dissipated during plastic flow.
In the next few sections, we introduce constitutive assumptions that characterize

the elasticity and the plasticity of the material. We assume throughout that the body
is homogeneous and isotropic.

75.4 Constitutive Characterization of Elastic Response

We neglect defect energy. Consistent with this, we assume that the free energy and
the stress are independent of Ep; specifically, we take as our starting point the free
energy (52.60) and stress (52.59) appropriate to an isotropic linearly elastic solid,
but we replace the strain E in these relations with the elastic strain Ee:

2 = µ|Ee|2 + 1
2λ(trEe)2,

T = 2µEe + λ(trEe)1.
(75.17)

365 Cf., e.g., Bridgman (1952) and Spitzig, Sober & Richmond (1975).
366 An alternative approach consistent with classical ideas regarding the formulation of constitutive

equations is discussed in §84.
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To ensure positive-definiteness of the free energy, we assume that the Lamé moduli
µ and λ are consistent with the inequalities µ > 0 and 2µ + 3λ > 0.367 By (75.17),
the elastic balance (75.15) is satisfied and we have only to consider the dissipa-
tion inequality (75.16). To ensure satisfaction of this inequality in all “constitutive
processes” requires that additional constitutive restrictions — involving the plastic
strain-rate Ėp — be placed on the deviatoric stress T0. In this regard note that, by
(75.17)2,

T0 = 2µEe
0. (75.18)

367 Cf. (81.54).



76 Formulation of the Mises Theory
of Plastic Flow

We begin with a discussion of the classical constitutive theory of Lévy, Mises, Prandtl, and Reuss. It seems
best to discuss this theory using conventional notation and Cartesian tensors: σ ′

i j is the deviatoric stress,
εi j is the i j-th component of total strain, εp

i j is the i j-th component of the plastic strain. Hill (1950,
pp. 38–39), in discussing the foundations of plasticity theory, writes:368 “Theoretical speculation about
the relation between stress and strain [for plastic materials] began in 1870 with Saint-Venant’s treatment
of plane plastic strain. With great physical insight Saint-Venant proposed that the principal axes of the
strain–increment (and not the total strain) coincided with the principal axes of stress. . . . A general re-
lationship between the ratios of the components of the strain-increment and the stress ratios was first
suggested by Lévy (1871). Lévy’s work remained largely unknown outside his own country, and it was
not until the same equations were suggested independently by von Mises in 1913 that they became widely
used as the basis of plasticity theory. The Lévy–Mises equations, as they are known, may be expressed . . .
compactly . . . as

dεi j = σ ′
i j dλ,

where dλ is [an arbitrary] scalar factor of proportionality [that generally depends on position and time].
Since Lévy and von Mises used the total strain–increment, the equations are strictly applicable only to a
fictitious material in which the elastic strains are zero. . . . The extension of the Lévy–Mises equations to
allow for the elastic component of strain was carried out by Prandtl (1924) for the plane problem, and
in complete generality by Reuss (1930). Reuss assumed that

dεp
i j = σ ′

i j dλ.” (76.1)

In the Lévy–Mises–Reuss theory, the equations (76.1) are supplemented by a yield condition

σ ′
i jσ

′
i j = 2k2, (76.2)

due to von Mises (1913).369

Most modern discussions of plasticity are based on generalizations and struc-
tural variations of the theory of Lévy, Mises, Prandtl, and Reuss, and for that reason
our treatment of plasticity begins with a discussion of that theory; however,

• because the presence of the arbitrary increment dλ in (76.1) is inconsistent with
the modern notion of a constitutive equation, the path we take to this theory is
slightly different from that familiar to most plasticians.

To justify our approach, we begin by writing (76.1) and (76.2) in our notation:

Ėp = λ̇T0 and |T0| =
√

2k for λ̇ '= 0. (76.3)

368 Hill’s footnotes, which give complete citations, are omitted. The relevant references for us are Lévy
(1871), von Mises (1913), and Reuss (1930).

369 As noted by Hill (1950, p. 20): “Von Mises’ criterion was anticipated, to some extent, by Huber
(1904) in a paper in Polish which did not attract general attention until nearly twenty years later.”
According to Hill (1950), this criterion was also “anticipated by Clerk Maxwell in a letter to W.
Thomson dated December 18, 1856.” Huber’s paper has been recently translated into English and
published in the Archives of Mechanics 56 (2004), 171–172.
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Combining these equations and using (75.16), we obtain

λ̇ = |Ėp|
√

2k
, (76.4)

an equation that allows us to rewrite (76.3) as a single equation

T0 =
√

2k
Ėp

|Ėp|
for Ėp '= 0 (76.5)

(in which the arbitrary field λ̇ does not appear). We find (76.5) preferable to (76.3)
for the following reasons:

• The equation (76.5) encapsulates the yield condition (76.3)2; there is no need to
introduce the arbitrary field λ̇. (Defining λ̇ via (76.4) reduces (76.5) to (76.3)1.)

• The underlying structure of (76.5) with deviatoric stress as dependent consti-
tutive variable370 is consistent with modern constitutive theory as presented in
this book.371

Throughout this book we refer to constitutive relations of the general structure
(76.5) as Mises flow rules; in so doing, we do not mean to diminish the contribu-
tions of St. Venant, Lévy, Prandtl, and Reuss.

76.1 General Constitutive Equations for Plastic Flow

As noted previously, theories of plasticity are typically based on constitutive rela-
tions that separate plastic and elastic response: In accord with this, and guided by
the dissipation inequality (75.16) and the equations of Lévy, Mises, Prandtl, and
Reuss in the form (76.5),372 we consider a constitutive relation giving the deviatoric
stress T0 when the material is flowing and provided that the plastic strain–rate Ėp

is known. But such a dependence is not by itself sufficiently robust to model strain-
hardening, a phenomenon characterized by an increase in flow resistance with plas-
tic deformation. For that reason we begin with a constitutive relation of the form373

T0 = T̂0(Ėp, S), (76.6)

with S a scalar internal variable introduced to characterize strain-hardening. We re-
fer to S as the hardening variable.374 Internal variables generally evolve according
to differential equations. We follow this tradition and complete the general constitu-
tive theory with the assumption that S evolve according to a differential equation —
called the hardening equation — of the form

Ṡ = h(Ėp, S). (76.7)

We refer to h(Ėp, S) as the hardening rate.

370 Cf. Gurtin (2000b, 2003).
371 Truesdell & Noll (1965, p. 56) lay down a principle of determinism for stress which asserts that

“the stress in a body is determined by the history of the motion of that body,” a postulate they credit
to Cauchy.

372 Cf. the two bullets following (76.5). Further, taking deviatoric stress as dependent constitutive vari-
able allows us to introduce and discuss the notion of rate-independence and, in addition, provides
a structure that generalizes in a straightforward manner to include constitutive dependencies on
plastic–strain gradients and their rates.

373 We develop our theory based on this constitutive assumption, but we show in §77 that, for a con-
ventional rate-independent theory, Ėp may be expressed as a function of the total strain rate Ė, the
deviatoric stress T0, and a hardening variable S; while, for a conventional rate-dependent theory,
we show in §78.2 that Ėp, under a suitable invertibility assumption, is determined by T0 and S.

374 More generally, internal variables are used to describe phenomena at a microstructural level.
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Granted sufficient smoothness, the hardening equation when augmented by an
initial condition giving S at some initial time, say t = 0, has a unique solution S(t)
on any time interval on which Ėp(t) is known. This observation and (76.6) render
precise the well-known view that the stress T0 depends on the past history of the
plastic strain. While we develop the general theory within a framework based on
the abstract notion of a hardening variable as embraced in the differential equation
(76.7), a concrete example of such a variable is the accumulated plastic strain e p, an
internal variable presumed to evolve according to the differential equation

ė p = |Ėp|, (76.8)

a differential equation that we generally supplement with the initial condition

e p(X, 0) = 0. (76.9)

The notion of accumulated plastic strain is due to Hill (1950, p. 30). We show in
§76.6 that for rate-independent materials the accumulated plastic strain represents the
most general hardening variable, so that the generality afforded by (76.7) is illusory.

Remark. In considering e p as defined by (76.8) and (76.9) it is tacit that

Ep(X, 0) ≡ 0. (76.10)

Because most metals exhibit rate-independent or nearly rate-independent re-
sponse at low temperatures, we begin with a discussion of isotropic, rate-independent
constitutive relations involving the deviatoric stress and the plastic strain–rate. We
later generalize these to account for slightly rate-dependent behavior.

76.2 Rate-Independence

The spatial dependence of fields (described referentially) is irrelevant to our discus-
sion of rate-independence and can safely be suppressed.

A change in time scale is a transformation of the form

t∗ = τ + κ t, (76.11)

with κ > 0 the rate constant of the transformation and τ an arbitrarily chosen time.
In the present discussion we may, without loss in generality, take τ = 0 and write
(76.11) in the form

t∗ = κ t . (76.12)

Let: denote an arbitrary function of time. In what follows :̇ denotes the derivative
of the function :, no matter the argument:

:̇(•) = d:(•)
d•

. (76.13)

Under the time-scale change (76.12) the function : transforms to the function :κ ,
with

:κ(t) = :(κ t), (76.14)
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so that, by the chain-rule,

:̇κ(t) = d
dt
:(κ t)

=
(

d
dt∗:(t∗)

∣∣∣
t∗=κ t

)
κ

= κ:̇(κ t). (76.15)

Assume that the material is rate-independent, or, more precisely, that the con-
stitutive equations (76.6) and (76.7) are rate-independent.375 Consider first the con-
stitutive equation (76.6) for the deviatoric stress. By (76.14) and (76.15), under the
time-scale change (76.12) this equation has the form

T0κ(t) = T̂0
(
Ėp
κ (t), Sκ (t)

)

= T̂0
(
κĖp(κ t), S(κ t)

)
, (76.16)

and, for (76.6) to be rate-independent, (76.6) evaluated at time κ t must be equal to
the right side of (76.16). Thus, omitting the argument κ t , we must have

T̂0(Ėp, S) = T̂0(κĖp, S) (76.17)

and, since the rate constant κ was chosen arbitrarily, (76.17) must hold for all rate
constants κ > 0 and all Ėp and S.

Choose Ėp '= 0 arbitrarily and — bearing in mind that κ is dimensionless —
choose a reference flow-rate d0 > 0 and take κ = d0|Ėp|−1; then, by (76.17), the re-
sponse function T̂0 must have the specific form

T̂0(Ėp, S) = T̂0

(
d0

Ėp

|Ėp|
, S
)

.

Thus, redefining T̂0 to absorb the constant d0, we see that the most general rate-
independent constitutive relation of the form T0 = T̂0(Ėp, S) must have the specific
form

T0 = T̂0

(
Ėp

|Ėp|
, S
)

. (76.18)

Further, since

Ėp

|Ėp|
is defined only when Ėp '= 0, (76.19)

the constitutive relation (76.18) is defined only when Ėp '= 0; that is, (76.18) is de-
fined only when there is plastic flow.

In the space of symmetric, deviatoric tensors,

Np def=
Ėp

|Ėp|
(76.20)

375 The precise meaning of rate-independence should be clear from the ensuing discussion. Cf. Gurtin
(2000b), who uses (a slightly flawed notion of) rate-independence to reduce constitutive relations
for plastic flow in single crystals.
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represents the (plastic) flow direction. Using the flow direction we can express the
general rate-independent constitutive relation (76.18) in the form

T0 = T̂0(Np, S). (76.21)

We refer to the relation (76.21) as a flow rule because it gives the deviatoric stress T0
whenever the flow direction Np is known. To avoid pedantry, let us agree that

• whenever the flow direction Np is mentioned — for example in an equation — it
is tacit that there is flow:

Ėp '= 0.

Consider, next, the evolution equation (76.7). By (76.15), under the time-scale
change (76.12) the differential equation (76.7) takes the form

κ Ṡ = h(κĖp, S)

or, equivalently,

Ṡ = κ−1h(κĖp, S).

Rate-independence requires that this equation hold for all κ > 0; if we consider an
arbitrary time t and choose κ = d0|Ėp(t)|−1, we arrive at the relation376

Ṡ(t) = d−1
0 |Ėp(t)|h

(
d0Np(t), S(t)

)
.

Since t was chosen arbitrarily, this relation must hold for all time. Finally, if we
redefine h(Np, S) to absorb the constant d0 in d−1

0 h(d0Np, S), we arrive at the rate-
independent form of the hardening equation:

Ṡ = h(Np, S)|Ėp|. (76.22)

The constitutive theory developed thus far for rate-independent plastic flow
consists of two relations:

(i) the flow rule (76.21);
(ii) the hardening equation (76.22).

76.3 Strict Dissipativity

Assuming that there is plastic flow (Ėp '= 0) and that the flow rule (76.21) is satisfied,
we can rewrite the dissipation

δ = T0 : Ėp ≥ 0

in the form

δ = δ̂(Ėp, S)

= T̂0(Np, S) : Ėp ≥ 0. (76.23)

A basic hypothesis — and one tacit throughout this book — is that plastic flow incurs
dissipation in the sense that

δ̂(Ėp, S) > 0 whenever Ėp '= 0. (76.24)

376 The scalar d0 is required for dimensional consistency.
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This requirement, which is referred to as strict dissipativity, has an important con-
sequence; namely, granted (76.21),

T0 '= 0 whenever Ėp '= 0. (76.25)

Thus, when there is plastic flow, dividing (76.23) by |Ėp| and using (76.24) yields

Y(Np, S) def= Np : T̂0(Np, S) > 0. (76.26)

The quantity Y(Np, S) represents the dissipation δ̂(Ėp, S) measured per unit |Ėp|.

76.4 Formulation of the Mises Flow Equations

We now introduce specific assumptions regarding the constitutive relations (76.21)
and (76.22); these assumptions are satisfied by a large class of materials discussed in
the literature.

A defining property of a plastic solid is its ability to flow like a fluid. In this re-
gard, note that the constitutive equation for the extra stress T0 as a function of the
stretching D in an incompressible Newtonian fluid377 has the simple form T0 = 2µD
and, hence, trivially satisfies

T0

|T0|
= D

|D|
, (76.27)

granted D '= 0.
The counterpart of (76.27) for a plastic solid is the subject of the following hy-

pothesis requiring that

(CD) (codirectionality) the direction of the deviatoric stress and the direction of the
plastic strain-rate coincide:378

T0

|T0|
= Ėp

|Ėp|
≡ Np whenever Ėp '= 0. (76.28)

Note that this condition is satisfied by the classical Reuss equation (76.3).

The codirectionality hypothesis requires more than the coincidence of the principal directions of
the plastic strain-rate and the principal directions of the deviatoric stress (coaxiality). Codirectionality
requires that the tensors themselves — viewed as vectors in the space of symmetric, deviatoric tensors —
point in the same direction. For real materials the extent to which the codirectionality hypothesis (or
(76.1)) is satisfied is characterized by comparison with a Lode diagram: for Ti and Ė p

i the principal
stresses and principal plastic strain-rates the Lode diagram is a graph of µ = (2 T3 − T1 − T2)/(T1 − T2)
versus ν = (2 Ė p

3 − Ė p
1 − Ė p

2 )/(Ė p
1 − Ė p

2 ).379 The Lode diagram for a material consistent with (76.29)
has µ = ν. Cf. Figure 8 of Hill (1950) for plots of µ versus ν from combined tension-torsion tests of
Taylor & Quinney (1931) for copper, aluminum, and mild steel.

Next, by (76.28),

T0 = |T0|Np; (76.29)

thus, by (76.26),

|T0| = T0 : Np

= Y(Np, S). (76.30)

377 Cf. §46.2.
378 This form of the codirectionality hypothesis is generally inapplicable for theories that involve a

backstress; cf. Exercise 2 on page 441, where it is the dissipative part of the deviatoric stress and the
flow direction that are codirectional.

379 Note that µ and ν, as defined here, are not the same as the elastic shear modulus and Poisson’s ratio.
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An important consequence of (76.29) and (76.30) is that the flow rule T0 =
T̂0(Np, S) must have the specific form

T0 = Y(Np, S)Np for Ėp '= 0. (76.31)

We refer to the scalar constitutive variable Y(Np, S) as the flow resistance. By
(76.26) and (76.30),

• during plastic flow the flow resistance is strictly positive and coincides with the
magnitude of the deviatoric stress.

In view of (76.23), (76.31), and the identity

Np : Ėp = |Ėp|, (76.32)

we can write the dissipation δ = T0 : Ėp ≥ 0 in the simple form

δ = Y(Np, S)|Ėp|. (76.33)

The codirectionality hypothesis, while central to our definition of a plastic ma-
terial, is not sufficient to characterize even the simple Mises-type equation (76.5);
we require, in addition, that380

(SI) (strong isotropy) the flow resistance Y(Np, S) and the function h(Np, S) charac-
terizing the hardening equation be independent of the flow direction Np.

As a consequence of the strict dissipativity requirement (76.24), (CD), and (SI),
the constitutive equations (76.22) and (76.31) take a simple form in which Y = Y(S)
and h = h(S). Thus, summarizing, we have a result that is basic to much of what
follows:

Mises Relation and Hardening Equation Granted rate-independence and strict
dissipativity, as well as the codirectionality and strong isotropy hypotheses (CD) and
(SI), the general constitutive relations (76.6) and (76.7) reduce to the Mises flow equa-
tions

T0 = Y(S)Np for Ėp '= 0,

Ṡ = h(S)|Ėp|.
(76.34)

Conversely,381 the relations (76.34) with Y(S) > 0 are rate-independent, strictly dissi-
pative, and consistent with (CD) and (SI). We refer to (76.34)1 as the Mises flow rule.

Note that, by (76.24) the dissipation (76.33) satisfies

δ = Y(S)|Ėp| ≥ 0,

δ > 0 if Ėp '= 0.
(76.35)

An important consequence of the Mises flow rule (76.34)1 is the yield condi-
tion:382

|T0| = Y(S) for Ėp '= 0. (76.36)

380 The standard assumption of isotropy for Y(Np, S) and h(Np, S) is weaker: It requires that these
functions depend on Np through detNp, which is the only nontrivial invariant of Np; cf. Exercise 3
on page 434.

381 Cf. Exercise 4 on page 434.
382 Cf. Mises (1913). In the plasticity literature, the Mises yield condition is often written in terms of an

equivalent tensile stress σ̄ or an equivalent shear stress τ̄ , where

σ̄ =
√

3
2 |T0|, τ̄ = 1√

2
|T0|.

Here, to avoid cumbersome factors of
√

3/2 or 1/
√

2, we simply use |T0|.
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In contrast, (76.34)1 asserts nothing about the deviatoric stress T0 when Ėp = 0 (and
there is no plastic flow). When Y is constant, the material is said to be perfectly
plastic. We leave it as an exercise to show that

• granted the yield condition (76.36), the Mises flow rule (76.34)1 for a perfectly
plastic material is equivalent to the Reuss equations (76.1).

The constitutive relations (76.34) do not suffice to characterize rate-
independent plastic materials an additional assumption, namely the boundedness
hypothesis383

|T0| ≤ Y(S) (76.37)

— asserting that the norm of the deviatoric stress not exceed the flow resistance —
is needed. Note that when |T0| < Y(S) the yield condition (76.36) is not satisfied, so
that, necessarily, Ėp = 0; therefore

Ėp = 0 for |T0| < Y(S). (76.38)

The central results of this section, summarized as follows, define the Mises the-
ory of rate-independent plastic response:

T0 = Y(S)Np for Ėp '= 0 (Mises flow rule),

Ṡ = h(S)|Ėp| (hardening equation),

|T0| ≤ Y(S) (boundedness hypothesis),

Ėp = 0 for |T0| < Y(S) (no-flow condition).

(76.39)

The basic nonkinematic constitutive assumptions of the theory thus reduce to
(75.17), which characterizes the elastic response of the material, and (76.39), which
characterizes plastic flow. The basic elastic “stress-strain” relation (75.17)2 is as-
sumed to hold in all motions of the body, even during plastic flow, but during plastic
flow the deviatoric stress T0 is constrained, via (76.39)2,3, by restrictions imposed by
the plasticity of the material.

Remark. The relation (76.39)1, which is basic to what follows, is a functional re-
lationship giving T0 when Np and S are known and, hence, rules out the classi-
cal Tresca theory, since on each face of the Tresca-hexagon a single flow direc-
tion corresponds to a range of values of the deviatoric stress T0.384 As Hill (1950,
p. 21) remarks: “For most metals the Mises criterion fits the data more closely than
Tresca’s.”

EXERCISES

1. Establish the assertion made in the bullet on page 433.
2. Show that the constitutive relations (76.39) are isotropic.

383 Cf. §79.2, where the boundedness hypothesis is shown to be a consequence of the notion of maxi-
mum dissipation.

384 Cf. Hill (1950, p. 19) and Malvern (1969, p. 348).
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3. Use the following steps to give an alternative derivation of the constitutive
equations (76.39)1,2 based primarily on isotropy:
(a) Show that, since Np is symmetric and deviatoric and has unit magnitude, its

principal invariants as defined in (2.142) are

I1(Np) = 0, I2(Np) = − 1
2 , I3(Np) = detNp. (76.40)

(b) Show that, consequently, the functions h(Np, S) and T̂0(Np, S) are given by

T̂0(Np, S) = α1(detNp, S)Np + α2(detNp, S)
[
Np2 − 1

3 1
]

h(Np, S) = h(detNp, S).
(76.41)

(Use the representation theorems for isotropic scalar and tensor functions
(113.3) and (113.6), together with the fact that T0 is deviatoric.)

(c) Show that if the moduli α1, α2, and h are independent of detNp and if385

T̂0(Np, S) = −T̂0(−Np, S), (76.42)

then the constitutive equations (76.41) reduce to (76.39)1,2.
4. Show that the Mises flow rule (76.34)1 and the hardening equation (76.34)2 are

rate-independent and consistent with (CD) and (SI).

76.5 Initializing the Mises Flow Equations

Granted that the functions Y(S) and h(S) are smooth, the hardening variable S in
the Mises flow equations

T0 = Y(S)Np for Ėp '= 0,

Ṡ = h(S)|Ėp|
(76.43)

is determined uniquely when and only when it is known at some initial time, say
t = 0. Let S0 denote this initial value,

S(X, 0) = S0, (76.44)

and assume that S0 is constant.386 In discussing the initial condition (76.44), we con-
sider two special cases:

(i) equations with Y(S) not identically equal to S;
(ii) equations with Y(S) ≡ S, so that the flow resistance is taken as the hardening

variable.

76.5.1 Flow Equations With Y (S ) not Identically Equal to S

If we introduce a new hardening variable S∗ defined by

S∗ = S − S0 (76.45)

and new functions Y∗(S∗) and h∗(S∗) defined by

Y∗(S∗) = Y(S∗ + S0) and h∗(S∗) = h(S∗ + S0), (76.46)

385 And hence that (76.41)1 displays no Bauschinger effect; cf. the discussion in §74.
386 The choice of a constant initial condition S0 in (76.43) is equivalent to our initial assumption of ho-

mogeneous constitutive relations; were S0 = S0(X), then the transformated functions (76.46) would
not be homogeneous.
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then the Mises flow equations become

T0 = Y∗(S∗)Np for Ėp '= 0,

Ṡ = h∗(S∗)|Ėp|,
(76.47)

and the appropriate initial condition is given by

S∗(X, 0) = 0. (76.48)

Granted the transformations (76.45) and (76.46), the equations (76.43) and (76.44)
are thus equivalent to the equations (76.47) and (76.48). The difference in the forms
of these two systems is simply a difference in initial conditions. For specificity we
use the system defined by (76.47) and (76.48), so that, with an obvious change in
notation, we henceforth work with the Mises flow equations (76.43) subject to the
null initial conditions

S(X, 0) = 0. (76.49)

We assume that the initial condition (76.49) holds only when the flow resistance
is not the hardening variable. The case when the flow resistance is the hardening
variable is discussed in the next section.

76.5.2 Theory with Flow Resistance as Hardening Variable

This choice of flow resistance is based on the assumption that387

Y(S) ≡ S. (76.50)

In this case, the hardening variable S is the flow resistance, S0 is the initial flow
resistance, and the flow equations and initial condition become

T0 = SNp for Ėp '= 0,

Ṡ = h(S)|Ėp| S(X, 0) = S0.
(76.51)

EXERCISE

1. Consider the special case in which Y(S) = cS, with c constant. Transform the
hardening variable via the transformation S∗ = cS and use transformations of
Y and h analogous to (76.45) and (76.46) to show the transformed Mises flow
equations and initial condition are of the same form as (76.51).

76.6 Solving the Hardening Equation. Accumulated Plastic Strain is the
Most General Hardening Variable

In this section, we work within the framework, discussed on page 434, in which the
flow resistance Y(S) is not the hardening variable S:

Y(S) '≡ S.

We show that388

(†) a theory based on a general hardening variable can be converted, without loss in
generality, to a theory in which the hardening variable is the accumulated plastic
strain e p defined by389

ė p = |Ėp|, e p(X, 0) = 0. (76.52)

387 Cf. Brown, Kim & Anand (1989) and Weber & Anand (1990).
388 Within the present isothermal, rate-independent framework.
389 Cf. (76.8) and the Remark on page 428.
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We accomplish this by showing that the hardening equation equipped with suitable
initial conditions can be solved to give a one-to-one correspondence between the
hardening variable S and e p.

Bearing in mind (76.49), the initial-value problem associated with the hardening
equation (76.39)2 is given by

Ṡ = h(S)|Ėp| for all time ≥ 0,

S(0) = 0.
(76.53)

We refer to (76.53) as the hardening problem because it describes the evolution of
the hardening variable S granted a knowledge of the function |Ėp|. To solve the hard-
ening problem, we note that the initial-value problem (76.52) for the accumulated
plastic strain can be trivially solved to give a function390

ê p(t) =
t∫

0

|Ėp(τ )| dτ ; (76.54)

we then show that the hardening problem (76.53) may be rephrased as a standard
initial-value problem

dS
de p = h(S), e p ≥ 0,

S(0) = 0.

(76.55)

We assume that the function h(S) is smooth and uniformly bounded for
−∞ < S < ∞; then (76.55) has a unique solution391

S = Ŝ(e p), e p ≥ 0. (76.56)

We now show that the composite function

S(t) = Ŝ(ê p(t)) (76.57)

furnishes a solution of (76.53). Since ê p(0) = 0, S(0) = 0, which is (76.53)2. By
(76.54),

Ṡ = dŜ
de p ė p = h(S)|Ėp|,

which is (76.53)1. Thus, (76.57) represents a solution of (76.53).
Points Seq that satisfy

h(Seq) = 0 (76.58)

are referred to as equilibrium points of the differential equation (76.55) because a
solution of (76.55) that reaches Seq must remain there:

if Ŝ(e p
0 ) = Seq, then Ŝ(e p) ≡ Seq for all e p ≥ e p

0 ; (76.59)

indeed, by (76.58), (76.59) represents a solution for e p ≥ e p
0 and a second solution

not consistent with (76.59) would violate uniqueness.
Because of (76.59), we may, without loss in generality, redefine the domain H

of h(S) such that

h(S) '= 0 (76.60)

390 For convenience we have suppressed the argument X.
391 The assumption of boundedness precludes solutions that become infinite at finite values of ep.
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on the interior of H, such that H contains S0 in its interior, and such that H equals
(−∞,∞), or a semi-infinite interval with one endpoint an equilibrium point, or
an interval with both endpoints equilibrium points. Granted this, we may conclude
from (76.55)1 that

(‡) the solution S = Ŝ(e p) of the initial-value problem (76.55) is a strictly monotone
function and hence represents a one-to-one correspondence between accumulated
plastic strains e p and values S of the hardening variable.

As we shall see, the result (‡) allows us to omit mention of the hardening equa-
tion. Specifically, given any function f (S), if we let

f̂ (e p) = f (Ŝ(e p)),

then by (76.26)

Ŷ(e p) = Y(Ŝ(e p)) > 0, (76.61)

and the Mises flow rule (76.39)1 has the form

T0 = Ŷ(e p)
Ėp

|Ėp|
for Ėp '= 0. (76.62)

Further, since

dŜ(e p)
de p = h(Ŝ(e p)) = ĥ(e p), (76.63)

it follows that, by (76.109),

dŶ(e p)
de p = Y′(Ŝ(e p))

dŜ(e p)
de p

= Y′(S)h(S)
∣∣

S=Ŝ(ep)

= Ĥ(e p). (76.64)

Thus, by (76.64), the material hardens or softens according as

Ĥ(e p) > 0 or Ĥ(e p) < 0. (76.65)

The function Ŷ(e p) gives the flow resistance as a function of the accumulated plastic
strain and, by (76.65), the material hardens or softens according as the flow resis-
tance increases or decreases with accumulated plastic strain. We refer to Y(e p) as
the strain-hardening curve; what makes this formulation of the theory important is
that

• the strain isotropic hardening may be specified a priori; it does not involve solv-
ing a differential equation.

A hardening transition is defined by a value e p
T of e p at which

Ĥ(e p) =
dŶ(e p)

de p (76.66)

suffers a change in sign; e p = e p
T therefore corresponds to a transition from hardening

to softening if, near e p
T ,

dŶ(e p)
de p > 0 for e p < e p

T ,

dŶ(e p)
de p < 0 for e p > e p

T ,
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and an analogous result holds for a transition from softening to hardening. Thus:

(i) for a transition at e p
T from hardening to softening

Ŷ(e p) has a strict local maximum at e p = e p
T ; (76.67)

(ii) for a transition at e p
T from softening to hardening

Ŷ(e p) has a strict local minimum at e p = e p
T . (76.68)

We now summarize the central result of this section:

Mises Flow Equations Based on Accumulated Plastic Strain Granted the ini-
tial condition S(0) = 0, the formulation of rate-independent plasticity based on the
general Mises flow equations (76.39) may, without loss in generality, be replaced by a
formulation in which the hardening variable is the accumulated plastic strain392

T0 = Ŷ(e p)
Ėp

|Ėp|
for Ėp '= 0,

ė p = |Ėp|, e p(0) = 0.

(76.69)

Remark. Many different function pairs
(
Y(S), h(S)

)
yield the same isotropic hard-

ening Y(e p) and hence yield theories indistinguishable from one and other. Further,
given a strictly positive function Y(e p), defined for e p ≥ 0, (76.69) represents a spe-
cial case of the general Mises flow equations (76.39) (and initial condition S(0) = 0)
in which S = e p and h(S) = 1. The physics may dictate a hardening equation that
has no simple solution, or one may prefer to work with a hardening variable rather
than the accumulated plastic strain e p, since, by (76.67) and (76.68), the physical
nature of such transitions is embodied in the function Ŷ(e p).

Notational agreement Henceforth, we work almost exclusively with the hardening
variable S = e p. To avoid excessive notation, we therefore write

Y(e p) = Ŷ(e p) and H(e p) = Ĥ(e p),

so that the Mises flow rule has the form

T0 = Y(e p)
Ėp

|Ėp|
.

Combining (76.39) and (76.56), we arrive at the Mises–Hill equations:

T0 = Y(e p)Np for Ėp '= 0 (Mises flow rule),

ė p = |Ėp|, e p(X, 0) = 0 (hardening equation),

|T0| ≤ Y(e p) (boundedness hypothesis),

Ėp = 0 for |T0| < Y(e p) (no-flow condition);

(76.70)

these equations define rate-independent plastic response when the hardening vari-
able is the accumulated plastic strain.

By (76.35), with S replaced by e p,

δ = Y(e p)|Ėp| (76.71)

represents the dissipation associated with the Mises–Hill equations.

392 Cf. Hill (1950), p. 30.
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EXERCISE

1. The scalar field τ defined by

τ = Np : T0 (76.72)

may be termed the resolved shear because it represents the deviatoric stress T0
resolved on the direction of plastic flow. Show that the resolved shear obeys the
constitutive relation

τ = Y(e p). (76.73)

Show, further, that, conversely, granted the codirectionality hypothesis (CD) on
471, the relations (76.72) and (76.73) imply the Mises flow rule (76.70)1.

76.7 Flow Resistance as Hardening Variable, Revisited

In this case, the Mises flow equations and initial condition have the form (76.51),
viz.

T0 = SNp for Ėp '= 0,

Ṡ = h(S)|Ėp|, S(X, 0) = S0,
(76.74)

with S the flow resistance and S0 the initial flow resistance. Here the dissipation
(76.35) becomes

δ = S|Ėp|, (76.75)

while the flow resistance is given by Y(S) = S.393 For these equations Y′(S) ≡ 1 and
we may conclude from (76.64) that the function h that characterizes the hardening
equation obeys

h(S) = H(S). (76.76)

Thus, trivially, the hardening equation becomes

Ṡ = H(S)|Ėp| (76.77)

and the steps leading to (76.56) are valid without change; since Y(S) = S, (76.56)
gives the hardening curve S = Ŝ(e p) and, as in the general theory, Ŝ(e p) must be
strictly monotone in e p. We therefore have a conclusion that seems basic to a dis-
cussion of hardening transitions:

• the theory with flow resistance as hardening variable cannot describe transitions
from hardening to softening or from softening to hardening.394

76.8 Yield Surface. Yield Function. Consistency Condition

Throughout this section, we work within the framework of the Mises–Hill equa-
tions (76.70), so that the accumulated plastic strain e p is the hardening variable. The

393 Cf. (76.50).
394 Softening in metals is often caused by internal damage mechanisms such as the nucleation, growth,

and coalescence of microcavities. Within the framework of (76.74), the single internal variable S is
insufficient to describe macroscopic strain softening; additional internal variables describing dam-
age are needed to account for hardening-softening transitions.
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spherical surface with “radius” Y(e p) in the space of symmetric deviatoric tensors is
called the yield surface;395 a consequence of the yield condition (76.36) is then that

• plastic flow is possible only when the deviatoric stress T0 lies on the yield surface.

The closed ball with radius Y(e p) in the space of symmetric deviatoric tensors is the
elastic range, because by (76.70)4 plastic flow vanishes in the interior of the elastic
range.

The ensuing discussion is simplified somewhat if we introduce a yield function396

f = |T0| − Y(e p), (76.78)

which, by (76.70)3, is constrained by

−Y(e p) ≤ f ≤ 0. (76.79)

The yield condition (76.36) is then equivalent to the requirement that397

f = 0 for Ėp '= 0, (76.80)

and (76.38) takes the form

Ėp = 0 for f < 0. (76.81)

The conditions (76.80) and (76.81) taken together imply that |Ėp| f = 0, a relation
known as the Kuhn–Tucker condition.398

Consider a fixed time t and assume that, at that time, f (t) = 0, so that the yield
condition is satisfied. Then, by (76.79), f (t + τ ) ≤ 0 for all τ and, consequently,
ḟ (t) ≤ 0.

Thus,

if f = 0, then ḟ ≤ 0. (76.82)

Next, if f (t) = 0 and ḟ (t) < 0, then f (t + τ ) < 0 for all sufficiently small τ > 0,
so that, by (76.81), Ėp(t + τ ) = 0 for all such τ . Hence Ėp(t) = 0. Thus

if f = 0 and ḟ < 0, then Ėp = 0. (76.83)

The equations (76.81) and (76.83) combine to form the no-flow condition:

Ėp = 0 if f < 0 or if f = 0 and ḟ < 0. (76.84)

Next, if Ėp '= 0 at a time t , then Ėp '= 0 in some neighborhood N of t , so that, by
(76.80), f = 0 for all times in N; hence, ḟ (t) = 0. We therefore have the consistency
condition:

if Ėp '= 0, then f = 0 and ḟ = 0. (76.85)

EXERCISES

1. Making reference to (76.35), consider the dissipation δ viewed as a function of
(Ėp, e p):

δ(Ėp, e p) = Y(e p)|Ėp|. (76.86)

395 In this case, trivially, the flow direction is normal to the yield surface and the flow rule is referred to
as being associative. Nonassociative flow rules are discussed in §79.3.

396 Considered as a function of (X, t) rather than (T, ep).
397 As is often the case, the plastic strain-rate is discontinuous at the onset of plastic flow; for that

reason — at that time — Ėp and various related fields should be considered as right-derivatives.
398 Cf., e.g., Simo & Hughes (1998).
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Use the identity (3.32) to show that

∂δ(Ėp, e p)
∂Ėp

= Y(e p)Np (76.87)

and, hence, that (i) ∂δ(Ėp)/∂Ėp is normal to the yield surface, and (ii) the con-
stitutive relation (76.39)1 is equivalent to

T0 =
∂δ(Ėp, e p)
∂Ėp

. (76.88)

2. Show that

ė p f = 0 (76.89)

and discuss its consequences.
3. This exercise describes a generalization of the theory that accounts for a free

energy associated with plastic flow resulting in kinematic hardening and an as-
sociated backstress. Specifically, we assume that the free energy has the form

2 = 2e +2 p

with 2e an elastic energy and 2 p an energy associated with plastic flow, and we
replace the separability hypothesis as defined in (75.15) and (75.16) by an elastic
balance

2̇e = T : Ėe (76.90)

and a plastic free-energy imbalance

δ = −2̇ p + T0 : Ėp ≥ 0 (76.91)

characterizing energy dissipated during plastic flow. As before, we assume that
T and 2e are given by the conventional elastic constitutive relations (75.17)
(with 2 replaced by 2e). Then, (76.90) is satisfied and we are left with the
plastic free-energy imbalance (76.91). Within the present framework, the ba-
sic ingredient in the choice of constitutive relations describing plastic flow is
a dimensionless internal variable A that, like Ep, is symmetric and deviatoric.
The field A enters the theory through a constitutive equation for the plastic free
energy,

2 p = 2̂ p(A), (76.92)

with 2̂ p an isotropic function. The remaining constitutive relations consist of a
second relation

T0 = T̂0(Ėp, e p, A) (76.93)

for the deviatoric stress supplemented by an evolution equation for A of the
form

Ȧ = Ėp − G(Ėp, e p, A). (76.94)

The constitutive response functions 2̂ p, T̂0, and G are presumed to be isotropic.
(a) Assuming that the constitutive relations (76.93) and (76.94) are rate-

independent, show that they must have the form

T0 = T̂0(Np, e p, A),

Ȧ = Ėp − G(Np, e p, A)|Ėp|.
(76.95)
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(b) Assume that G(Np, e p, A) is independent of Np and linear in A. Show that,
since G is isotropic, there is a modulus c(e p) such that

G(Np, e p, A) = c(e p)A.

(Recall that A is symmetric and deviatoric.)
(c) Show that the dissipation has the form

δ =
[

T̂0(Np, e p, A) − ∂2̂ p

∂A
+ c(e p)

(
A :

∂2̂ p

∂A

)
Np
]

︸ ︷︷ ︸
J(Np,ep,A)

: Ėp, (76.96)

so that, trivially, the stress admits a decomposition into dissipative and en-
ergetic parts as follows:

T̂0(Np, e p, A) = J(Np, e p, A)︸ ︷︷ ︸
dissipative

+ ∂2̂ p

∂A
− c(e p)

(
A :

∂2̂ p

∂A

)
Np

︸ ︷︷ ︸
energetic

. (76.97)

(d) The presence of the term ∂2̂ p/∂A in (76.97) generally precludes the codi-
rectionality of T0 and Np; in fact, an appropriate codirectionality hypoth-
esis for the present theory is the requirement that the dissipative stress
J(Np, e p, A) and the flow direction Np be codirectional:

J(Np, e p, A) = |J(Np, e p, A)|Np. (76.98)

Show that the flow resistance Y( ·) defined as in (76.26) should here have
the form

Y(Np, e p, A) def= Np : J(Np, e p, A) ≥ 0, (76.99)

and show that, consequently,

J(Np, e p, A) = Y(Np, e p, A)Np.

(e) Assume that Y(Np, e p, A) is independent of Np. Assume further that the
plastic free-energy (76.92) has the form

2 p = 1
2ξ |A|2, (76.100)

with ξ > 0 constant. Show that the constitutive relation T0 = T̂0(Ėp, e p, A)
must take the form

T0 − ξA = (Y(e p, A) − c(e p)ξ |A|2)Np, (76.101)

while the evolution equation for A becomes

Ȧ = Ėp − |Ėp|c(e p)A. (76.102)

(f) Assume that the flow resistance has the specific form

Y(e p, A) = Y(e p) + c(e p)ξ |A|2 > 0, (76.103)

with

Y(e p) > 0

a flow resistance. Show that the constitutive relation (76.101) takes the form
of modified Mises flow rule

T0 − Tback = Y(e p)Np, for Ėp '= 0, (76.104)
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with

Tback
def= ξA (76.105)

usually referred to as a backstress.399 Show that plastic flow is possible only
if the yield condition

Y(e p) = |T0 − Tback| (76.106)

is satisfied. Thus, as in §76.8, the yield surface is a spherical surface with
“radius” Y(e p) in the space of symmetric deviatoric tensors, but here the
surface is centered at the backstress Tback; as in §76.8, plastic flow is possible
only when the deviatoric stress T0 lies on the yield surface. Finally, show
that

Np = T0 − Tback

|T0 − Tback|
.

(g) The counterpart of the boundedness inequality (76.70)3 within the present
framework is

|T0 − Tback| ≤ Y(e p) for all Ėp, (76.107)

an hypothesis asserting that the deviatoric stress minus the backstress can
never exceed the flow resistance in magnitude. Show that Ėp vanishes
whenever |T0 − Tback| < Y(e p), an inequality that defines the elastic range
in deviatoric-stress space.

76.9 Hardening and Softening

Let

Y′(e p) = dY(e p)
de p , (76.108)

so that, by (76.70)2,

˙Y(e p) = Y′(e p)|Ėp|;

if we let

H(e p) def= Y′(e p), (76.109)

then
˙Y(e p) = H(e p)|Ėp|. (76.110)

Thus, if we assume that

Ėp '= 0,

then, by (76.36) with S = e p, |T0| − Y(e p) = 0; hence (76.110) yields

˙|T0| = H(e p)|Ėp|, (76.111)

an important relation giving the rate of change of the magnitude of the devia-
toric stress as a function of the magnitude of the plastic strain-rate. Consistent

399 The backstress leads to kinematic hardening; the term Y(ep) — which, by (76.103), is part dissipative
and part energetic — leads to isotropic hardening. A detailed discussion of conventional theories of
plasticity with combined isotropic and kinematic hardening may be found in Lemaitre & Chaboche
(1990).
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with standard terminology, we say that the material hardens or softens according
to whether400

˙|T0| > 0 or ˙|T0| < 0; (76.112)

since401

sgn ˙|T0| = sgn H(e p), (76.113)

(†) the material hardens or softens according to whether

H(e p) > 0 or H(e p) < 0. (76.114)

We refer to H as the hardening modulus.

400 Cf. (76.67), (76.68).
401 For any scalar y '= 0, sgn y denotes the sign of y defined by sgn y = y/|y|.



77 Inversion of the Mises Flow Rule: Ėp in
Terms of Ė and T

We now show that the no-flow and consistency conditions may be used to invert
the Mises flow rule to get an equation for Ėp in terms of Ė and T. In deriving the
inverted relation the following identity, which follows from (76.29) and (76.20), is
basic:

Np = Ėp

|Ėp|
= T0

|T0|
. (77.1)

Assume, unless otherwise specified, that the yield condition is satisfied:402

f = 0 (so that ḟ ≤ 0). (77.2)

Then, by (76.110), the definition (77.1) of Np, the constitutive relation (75.17)2 for
T0, and the decomposition (75.11)1 of E,

ḟ = ˙|T0| − ˙Y(e p)

= T0

|T0|
: Ṫ0 − H(e p)|Ėp|

= Np : Ṫ0 − H(e p)|Ėp|

= 2µNp : (Ė0 − Ėp) − H(e p)|Ėp|,

or, since Np : Ėp = |Ėp| and Np is deviatoric,

ḟ = 2µ Np : Ė − [2µ + H(e p)]|Ėp|. (77.3)

We henceforth restrict attention to the class of materials for which

2µ + H(e p) > 0. (77.4)

In view of the sentence containing (76.114), the inequality (77.4) always holds
for strain-hardening materials, for which H(e p) > 0 for all e p. In contrast, strain-
softening materials satisfy H(e p) < 0, and (77.4) places a restriction on the maxi-
mum allowable softening, as it requires that H(e p) > − 2µ for all e p. It is convenient
to introduce the stiffness ratio

β(e p) def= 2µ

2µ + H(e p)
. (77.5)

402 Cf. (76.82).

445
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We now deduce conditions that determine whether the material leaves — or
remains on — the yield surface when the material point in question is subjected to
a loading program characterized by the total strain-rate Ė.

(i) Elastic unloading is defined by the condition Np : Ė < 0. In this case, since
|Ėp| ≥ 0, (77.3) implies that ḟ < 0, and the no-flow conditions (76.84) imply
that Ėp = 0.

(ii) Neutral loading is defined by the condition Np : Ė = 0. In this case |Ėp| > 0 can-
not hold, for if it did, then (77.3) would imply that ḟ < 0, which would violate
the no-flow conditions (76.84). Hence, once again, Ėp = 0.

(iii) Plastic loading is defined by the condition Np : Ė > 0. In this case, if |Ėp| = 0,
then ḟ > 0, which violates ḟ ≤ 0. Hence |Ėp| > 0, and, since the consistency
condition (76.85) then requires that ḟ = 0, (77.3) yields

|Ėp| = β(e p)Np : Ė. (77.6)

Thus, since, by (77.1), Ėp = |Ėp|Np,

Ėp = β(e p)(Np : Ė)Np '= 0. (77.7)

At this point, it is important to note that

• in view of (77.1), we may consider Np as defined by T0/|T0| — then (77.7) deter-
mines Ėp in terms of Ė, T, and the current hardening modulus H(e p).

Combining the results of (i)–(iii) with the condition (76.81), we arrive at an
equation for the plastic strain-rate Ėp that holds for all time, no matter whether
f = 0 or f < 0:

Ėp =






0 if f < 0 (behavior within the elastic range),
0 if f = 0 and Np : Ė < 0 (elastic unloading),
0 if f = 0 and Np : Ė = 0 (neutral loading),
β(e p)(Np : Ė)Np if f = 0 and Np : Ė > 0 (plastic loading).






(77.8)
The result (77.8) is embodied in the inverted Mises flow rule

Ėp = χβ(e p)(Np : Ė)Np, with Np =
T0

|T0|
, (77.9)

where

χ =
{

0 if f < 0, or if f = 0 and Np : Ė ≤ 0,

1 if f = 0 and Np : Ė > 0,
(77.10)

is a switching parameter. A central result of the theory may be stated as follows:

Equivalency Theorem Asssume that the boundedness relation

f = |T0| − Y(e p) ≤ 0 (77.11)

is satisfied. The inverted Mises flow rule, as defined by (77.9) and (77.10), is therefore
equivalent to the Mises flow rule (76.70)1.

The proof of this theorem is given following (77.13).
Note that, given Ep and E, we can consider the elastic strain as defined by Ee =

E − Ep and write the elastic stress-strain relation (75.17)2 in the form

T = 2µ(E − Ep) + λtrE. (77.12)
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Differentiating this relation with respect to time and using the inverted Mises flow
rule (77.9), we arrive at an evolution equation for the stress:

Ṫ = 2µĖ + λ(tr Ė)1 − 2µχβ(e p)
(
Np : Ė

)
Np. (77.13)

Proof of the Equivalency Theorem. The derivation of the inverted Mises flow rule establishes (77.9)
and (77.10) as consequences of the Mises flow rule. To prove the converse assertion, assume that (77.9)
and (77.10) are satisfied. We must show that if Ėp '= 0 then the Mises flow rule

T0 = Y(ep)
Ėp

|Ėp|

is satisfied. Thus, assume that Ėp '= 0 and note that by (77.9) we may ignore the conditions in (77.10) that
yield χ = 0. We, therefore, restrict attention to f = 0 so that, by (76.26) and the boundedness relation
(77.11), |T0| = Y(ep) > 0 and Np is well defined. Then, (77.9) and (77.10) imply that

f = 0 and Np : Ė > 0, so that χ = 1.

Then, by (77.9), bearing in mind that β(ep) > 0, there is a scalar c > 0 such that Ėp = cT0; thus trivially

T0 = |T0|
Ėp

|Ėp|

and, since f = 0, (77.11) implies that |T0| = Y(ep), which completes the proof.

The Equivalency Theorem allows us to replace the Mises flow rule by its in-
verse;403 within this format the complete set of constitutive equations consist, of:

(i) the elastic stress-strain relation

T = 2µ(E − Ep) + λ(trE)1; (77.14)

(ii) the plastic boundedness inequality

f = |T0| − Y(e p) ≤ 0, (77.15)

with f the yield function and Y(e p) the flow resistance;
(iii) a system of evolution equations

Ėp = χβ(e p)(Np : Ė)Np, Np =
T0

|T0|
,

ė p = |Ėp|, e p(X, 0) = 0,

(77.16)

for the plastic strain and the accumulated plastic strain, in which

β(e p) =
2µ

2µ + H(e p)

is the stiffness ratio,

H(e p) = Y′(e p) (77.17)

is the hardening modulus, and

χ =
{

0 if f < 0, or if f = 0 and Np : Ė ≤ 0,

1 if f = 0 and Np : Ė > 0,
(77.18)

is a switching parameter.

403 As we show in §90, the issue is not so simple when the theory is generalized to allow for constitutive
dependencies on plastic strain gradients and/or their rates.
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Remark. Constitutive equations of the form (77.16) need to be accompanied by
initial conditions. Typical initial conditions presume that the body is initially (at
time t = 0, say) in a virgin state in the sense that404

E(X, 0) = Ep(X, 0) = 0, (77.19)

so that, by (75.11)1, Ee(X, 0) = 0.

EXERCISE

1. Consider the modified Mises flow equations with backstress as defined by
(76.104), (76.105), and (76.102). Define a yield function f through the relation

f = |T0 − Tback| − Y(e p). (77.20)

Use arguments of §76.9 and §77 to establish an appropriate analog of (77.9).

404 The initial condition for the hardening variable ep is given in (76.70)3.
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78.1 Background

Physical considerations of the mechanisms of plastic deformation in metals and
experimental observations show that plastic flow is both temperature- and rate-
dependent, but a standard rule of thumb is that rate-dependence is sufficiently large
to merit consideration only for absolute temperatures greater than 0.35ϑm, where
ϑm is the melting temperature of the material in degrees absolute. In the temper-
ature range ϑ < 0.35ϑm, plastic stress-strain response is only slightly rate-sensitive,
and in this low homologous temperature regime the plastic stress-strain response of
metallic materials is generally assumed to be rate-independent,405 as considered in
the previous sections.

Values of the melting temperatures ϑm and homologous temperatures 0.35ϑm
for some metals are shown in Table 78.1. At room temperature, the stress-strain
response of Ti may be idealized as rate-independent, whereas that of Pb cannot be
so idealized.

In what follows, to account for rate-dependence, we discuss a simple but widely
used extension of the rate-independent theory discussed previously.

78.2 Materials with Simple Rate-Dependence

We begin with the general constitutive relation (76.6); viz.

T0 = T̂0(Ėp, S). (78.1)

For convenience, we introduce a flow-rate

d p def= |Ėp|, (78.2)

so that the flow direction is given by

Np = Ėp

d p .

405 Materials scientists use the term “homologous temperature” to refer to the temperature of a mate-
rial expressed as some fraction of its melting temperature. The rate sensitivity of the plastic stress-
strain response of two materials is (approximately) the same when compared at the same homolo-
gous temperature. The rate-sensitivity of the plastic stress-strain response of Ti at 679K is therefore
about the same as that of Al at 327K.

449
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Table 78.1. Melting temperatures ϑm and homologous temperatures 0.35ϑm for titanium (Ti),
iron (Fe), copper (Cu), aluminum (Al), and lead (Pb) in Kelvin with corresponding Celcius
values in parentheses.

Material Melting temperature ϑm, K(◦C) Homologous temperature 0.35ϑm, K(◦C)

Ti 1941 (1668) 679 (406)
Fe 1809 (1536) 633 (360)
Cu 1356 (1083) 452 (201)
Al 933 (600) 327 (54)
Pb 600 (327) 210 (−63)

We assume that the deviatoric stress is well-defined when the flow-rate vanishes;
in fact, we assume that

T̂0(0, S) = lim
Ėp→0

T̂0(Ėp, S) = 0, (78.3)

so that — in contrast to the rate-independent theory — the deviatoric stress vanishes
when the flow rate vanishes.

For d p = 0 we consider the dependence of T0 on Ėp as a dependence on the
pair (dp, Np) and, hence, rewrite (78.1) in the form406

T0 = T̂0(d p, Np, S). (78.4)

We restrict attention to constitutive relations (78.1) that are consistent with natural
generalizations of the codirectionality and strong isotropy restrictions (CD) and (SI)
in §76.3. If we write Ȳ(dp, Np, S) for the flow resistance,

Ȳ(d p, Np, S) def= Np : T̂0(d p, Np, S), (78.5)

then, granted the codirectionality requirement in the form (76.29), (78.1) takes the
form

T0 = Ȳ(d p, Np, S)Np. (78.6)

Further, the natural analog of the strong isotropy hypothesis (SI) applied to (78.6)
requires that Ȳ(dp, Np, S) be independent of Np, so that

T0 = Ȳ(d p, S)Np. (78.7)

We now describe a type of moderate rate-dependence common to a large class
of rate-dependent plastic materials described in the literature. Stated precisely,
a material described by (78.1) has simple rate-dependence if the flow resistance
Y(dp, S) has the simple form

Ȳ(d p, S) = g(d p)Y(S), (78.8)

where, consistent with (78.3),

g(0) = 0, and g is a strictly increasing function of dp. (78.9)

406 Cf. (76.21).
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We refer to g(d p) as the rate-sensitivity function. A material with simple rate-
dependence is therefore governed by a constitutive equation of the form407

T0 = g(d p)︸ ︷︷ ︸
rate-

dependent

Y(S)Np
︸ ︷︷ ︸

rate-
independent

.
(78.10)

Note that for g ≡ 1, (78.10) reduces to the rate-independent Mises flow rule (76.34).
A simple form of (78.10) — patterned after the rate-independent relation

(76.51) (which has flow resistance as hardening variable) — has the form408

T0 = g(d p)SNp. (78.11)

An additional property required of g(dp), and one that characterizes the small
rate-dependence of most metals at low temperatures, is that — except for a very
small time interval at the onset of loading — g(d p) ≈ 1 for a range of flow-rates of
interest.

If we take the absolute value of (78.10), we arrive at the useful relation

|T0| = g(d p)Y(S). (78.12)

Note that, by (78.10), the dissipation (75.16) has the simple form

δ = dpg(d p)Y(S) (78.13)

and, by (78.9), the dissipation is strictly positive for dp '= 0 if and only if

Y(S) > 0, (78.14)

as in the rate-independent theory.409

Next, by (78.9) the function g(dp) is invertible, and the inverse function f = g−1

is strictly increasing and hence strictly positive for all nonzero arguments; further
f (0) = 0. Hence the general relation (78.12) may be inverted to give an expression

dp = g−1
( |T0|

Y(S)

)
≡ f

( |T0|
Y(S)

)
(78.15)

for the flow-rate. Thus, in contrast to the rate-independent theory developed in §76,

• the plastic strain-rate is nonzero whenever the stress is nonzero: There is no elastic
range in which the response of the material is purely elastic, and there are no
considerations of a yield condition, a consistency condition, loading/unloading
conditions, and so forth.

As a direct consequence of (78.10)

T0

|T0|
= Np, (78.16)

and by (78.15) the relation (78.10) may be inverted to give a constitutive relation

Ėp = f
(

|T0|
Y(S)

)
T0

|T0|
(78.17)

407 There are classes of constitutive relations for which (78.3), (78.8), and (78.10) are not satisfied. One
such alternative constitutive relation has the form

T0 = [Y1 + g(dp)Y2(S)] Np,

with Y1 a rate-independent frictional resistance.
408 Cf., e.g., Brown et al. (1989).
409 Cf. (76.26).
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for the plastic strain-rate; in contrast to the rate-independent theory, the basic con-
stitutive relation may thus be inverted to give plastic strain-rate as a function of
stress.

To complete the constitutive theory,410 we consider the general hardening equa-
tion (76.7), assuming that — consistent with the strong isotropy hypothesis (SI) on
page 432 — h(Ėp, S) depends on Ėp = d pNp at most through dp:

Ṡ = h(d p, S). (78.18)

Because the material is rate-dependent, the result expressed in the paragraph con-
taining (76.69) no longer applies. Even so, there may be circumstances of interest in
which the choice

S = e p, (78.19)

with e p the accumulated plastic strain, defined by (76.70)2,3, may be applicable.

78.3 Power-Law Rate-Dependence

An example of a commonly used rate-sensitivity function is the power-law func-
tion411

g(d p) =
(

d p

d0

)m

, (78.20)

where m > 0, a constant, is a rate-sensitivity parameter and d0 > 0, also a constant,
is the reference flow-rate. The power-law function satisfies g(d p) ≈ 1 for d p ≈ d0,
and (78.20) is therefore intended to model plastic flows with rates close to d0. In
view of (78.20), the relation (78.10) becomes

T0 =
(

d p

d0

)m

Y(S)Np, (78.21)

and implies that

ln(|T0|) = ln(Y(S)) + m ln
(dp

d0

)
;

thus the rate-sensitivity factor m is the slope of the graph of ln(|T0|) versus
ln(dp/d0).

The power-law function allows one to characterize nearly rate-independent be-
havior, for which m is very small. Such rate-dependent models also serve as a regu-
larization of rate-independent behavior.412 Note that, since

lim
m→0

(
d p

d0

)m

= 1

the limit m → 0 in (78.21) corresponds to rate-independent response as described by
(76.34).

410 The elastic constitutive relations remain as described in §75.4.
411 This function is widely used because of its utility in characterizing experimental data. Another ex-

ample is furnished by
g(dp) = tanh(cdp), c > 0,

which, unlike the relation (78.20), has a limit as dp → ∞, and, hence, might be useful when rate-
sensitivity is introduced as a means of regularizing the rate-independent theory.

412 Cf. Footnote 411.
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Further, granted the power-law function (78.20), the expressions (78.15) and
(78.17) have the specific form

d p = d0

( |T0|
Y(S)

)1
m

(78.22)

and

Ėp = d0

( |T0|
Y(S)

)1
m T0

|T0|
, (78.23)

when expressed in terms of the inverse of the power-law function (78.15).
An important problem in application of the rate-dependent theory concerns

the temporal integration of the rate equations (78.23) and (78.18) for Ep and S.
These equations are typically highly nonlinear, coupled, and mathematically stiff.
With reference to the power-law model (78.23) for Ėp, the stiffness of the equations
depends on the strain-rate sensitivity parameter m, and the stiffness increases to
infinity as m tends to zero, the rate-independent limit.413

413 For small values of m, special care is required to develop stable constitutive time-integration proce-
dures; cf., e.g., Lush, Weber & Anand (1989).
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A standard assumption underlying many theories of plastic flow is that the basic
fields evolve to maximize the dissipation, an assumption that we use to develop a
mathematical framework more general than that of Mises. Specifically, we abandon
the codirectionality hypothesis (CD) on page 471 in favor of an hypothesis based on
maximum dissipation.414

Our starting point is the rate-independent flow rule415

T0 = T̂0(Np, e p) (79.1)

(with accumulated plastic strain e p as hardening variable) and the consequence
(76.26) of strict dissipativity,

Y(Np, e p) def= Np : T̂0(Np, e p) > 0. (79.2)

79.1 Basic Definitions

The physical fields involved in the basic constitutive relations (79.1) and (79.2) are
the deviatoric stress T0, the plastic strain-rate Ėp, and the hardening variable S ≡ e p.
Because both T0 and Ėp are symmetric and deviatoric, the following definition is
useful:

SymDev def= the space of all symmetric and deviatoric tensors. (79.3)

Granted that the shear modulus µ is nonzero, the elastic stress-strain relation (75.18)
places no restriction on the values of the deviatoric stress T0. But we know from
experience with real materials that plastic flow severely limits the set of observed
values of T0 — a set generally referred to as the elastic range.

Successful theories of rate-independent plasticity generally begin with the no-
tion of a yield surface — a closed surface in SymDev — and then define the elastic
range to be the subset of SymDev enclosed by the yield surface.

414 As noted by Simo & Hughes (1998, p. 98) — and as is clear from the book of Han & Reddy
(1999) — the notion of maximum dissipation plays a crucial role in the variational formulation of
plasticity [and] “is central in the mathematical formulation of plasticity; see, e.g., Duvaut & Lions
(1972), Johnson (1976,1978), Moreau (1976), and the recent account of Temam (1985).” There is
a large and growing literature based on maximum dissipation: cf., e.g., Hackl (1997) and Mielke
(2003). In §79.3, we relate the notion of maximum dissipation to a notion of material stability.

415 Cf. (76.21).
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• Here the notion of maximum dissipation416 provides a framework much richer
than that used classically and leads to natural choices for both the elastic range
and the yield surface.

The following definition is basic to what follows: a pair (T0, Ėp) with T0 a devi-
atoric stress and Ėp '= 0 a plastic strain-rate is physically attainable if it is consistent
with the flow rule (79.1); in this case, we also refer to (T0, Np) as physically attain-
able. But — and what is most important —

(‡) we do not limit our discussion to physically attainable pairs, even though these
are the only pairs that one might see in actual experiments.417

Indeed, it is often profitable to allow for “thought experiments” involving fields not
necessarily consistent with the underlying equations. Here, since the relevant equa-
tion is the flow rule (79.1), we work with pairs (T0, Ėp) and (T0, Np) — called flows
and normalized flows, respectively — that may or may not be physically attainable.

We now “flesh-out” the constitutive theory using the assumption that the basic
fields evolve to maximize the dissipation. Roughly speaking, the notion of maximum
dissipation is the requirement that in no flow (T0, Ėp) with T0 in the elastic range
should it be possible to expend power at a rate that is greater than the dissipation
δ̂(Ėp, e p):

T0 : Ėp ≤ δ̂(Ėp, e p). (79.4)

By (76.23), (79.4) may be written as

T0 : Ėp ≤ T̂0(Np, e p) : Ėp,

and a more elemental form this inequality obtains upon division by |Ėp|:

T0 : Np ≤ T̂0(Np, e p) : Np. (79.5)

Using (79.2) we can write (79.4) in the more transparent form

T0 : Np ≤ Y(Np, e p). (79.6)

The next definition, which is based on the foregoing discussion, allows us to
delineate the class of stresses T0 that comprise the elastic range. Precisely,

(i) we say that a deviatoric stress T0 is admissible in the sense of maximum dissipa-
tion if

T0 : Np ≤ Y(Np, e p) for every flow direction Np; (79.7)

(ii) and we define the elastic range to be the closed set418

E(e p) def= the set of all T0 that are admissible

in the sense of maximum dissipation. (79.8)

Some terminology is useful. We use the term flow stress to denote a stress T0
such that

T0 = T̂0(Np, e p) for some flow direction Np, (79.9)

and we refer to

Y(e p) def= the set of all T0 that are flow stresses (79.10)

416 In the plasticity literature this notion is referred to as maximum plastic dissipation. Here the under-
lying dissipation is solely plastic and the adjective “plastic” may safely be omitted.

417 Cf. the paragraph in petite type on page 496.
418 In the literature one often finds the elastic range defined as the interior of E(ep).
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as the yield set — Y(e p) consists of all deviatoric stresses that correspond to phys-
ically attainable normalized flows (T0, Np). We are now in a position to derive the
Mises flow equations.

79.2 Warm-up: Derivation of the Mises Flow Equations Based on
Maximum Dissipation

We here derive the Mises theory within a setting that we view as physically more
satisfying than that of §76.4. Our derivation is based on two hypotheses:

(FS) (flow-stress admissibility) each flow stress is admissible in the sense of maxi-
mum dissipation, so that

Y(e p) ⊂ E(e p); (79.11)

(SI) (strong isotropy) Y(Np, e p) is independent of the flow direction Np; viz.

Y(Np, e p) = Y(e p).

Our first step is to use the hypotheses (FS) and (SI) to simplify the general flow
rule (79.1). By (FS), (SI), and (79.7), we have the important inequality

T0 : Np ≤ Y(e p) for every flow stress T0 and every flow direction Np. (79.12)

Choose an arbitrary flow direction Np and an arbitrary tensor , in SymDev such
that419

, : Np = 0. (79.13)

Let N denote the set of all flow directions:

N def= the set of all symmetric and deviatoric unit tensors Np; (79.14)

N represents the unit sphere in the space SymDev. Then, there is a curve Ñp(λ) on
N such that, for some λ0,420

Ñp(λ0) = Np,
dÑp(λ)

dλ

∣∣∣
λ=λ0

= ,. (79.15)

Further, for T0 = T̂0(Np, e p), (79.2) and (79.12) imply that0(λ) defined by

0(λ) = Y(e p) − T0 : Ñp(λ)

satisfies 0(λ) ≥ 0 and 0(λ0) = 0; hence, 0(λ) has a minimum at λ = λ0. Conse-
quently,

d0(λ)
dλ

∣∣∣∣
λ=λ0

= −T0 :
dÑp(λ)

dλ

∣∣∣∣
λ=λ0

= 0,

so that, by (79.13) and (79.15),

T0 : , = 0 (79.16)

for every , ∈SymDev tangent to N at Np; the stress T0 must therefore be normal
to N at Np; hence, there is a scalar β such that

T0 = βNp,

419 Such a , is constructed as follows: Let A be an arbitrary tensor in SymDev and define , by , =
A − (A : Np)Np.

420 Given a surface S, a point z ∈ S, and a vector t tangent to S at z, there is always a curve on S through
z whose tangent vector at z is t.
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and, by (79.2), β = Y(e p). Finally, bearing in mind that Np is an arbitrary flow direc-
tion and that T0 is given by (79.1), we have the Mises flow rule:

T0 = Y(e p)Np for Ėp '= 0, (79.17)

where, by (79.2), Y(e p) > 0.
Our next step is to determine the forms of the yield set Y(e p) and the elastic

range E(e p) when all flow stresses have the Mises form (79.17). Since Y(e p) is the
set of all flow stresses, T0 ∈ Y(e p) and (79.17) lead to the yield condition

|T0| = Y(e p). (79.18)

Conversely, given a deviatoric stress T0 that satisfies the yield condition (79.18),
there is a flow direction, namely

Np = T0

|T0|
, (79.19)

such that T0 = Y(e p)Np. The yield set is therefore given by

Y(e p) = the set of all T0 such that |T0| = Y(e p)

and is, hence, a spherical surface with radius Y(e p). Moreover, it is clear that the
flow direction Np represents the outward unit normal to Y(e p).

To determine the elastic range E(e p), assume first that T0 ∈ E(e p). Then, by
(79.8), T0 must be admissible in the sense of maximum dissipation, so that, by
(79.12), given any flow direction Np,

T0 : Np ≤ Y(e p). (79.20)

In particular, the choice (79.19) implies that T0 : Np = |T0|; thus, we have the bound-
edness inequality

|T0| ≤ Y(e p). (79.21)

(In contrast to the argument leading to the boundedness hypothesis (76.37), the
inequality (79.21) is therefore not a separate hypothesis but follows instead as a
consequence of our starting assumptions.) We have therefore shown that if T0 ∈
E(e p), then |T0| ≤ Y(e p). To see that the elastic range is the set of all T0 consistent
with (79.21) we must show that, conversely, if T0 obeys (79.21), then T0 is admissible
in the sense of maximum dissipation. Thus, assume that (79.21) is satisfied. Then,
given any flow direction Np, we may use the Schwarz inequality and the requirement
|Np| = 1 to conclude that

T0 : Np ≤ |T0||Np| = |T0|.

Thus, (79.21) implies that T0 : Np ≤ Y(e p), and, hence, that T0 is admissible in the
sense of maximum dissipation. The elastic range is therefore the set

E(e p) = the set of all T0 such that |T0| ≤ Y(e p)

and, hence, is the closed ball in SymDev of radius Y(e p). It follows that

Y(e p) = ∂E(e p).

Finally, when |T0| < Y(e p) the yield condition (76.36) is not satisfied, so that,
necessarily, Ėp = 0; therefore,

Ėp = 0 for |T0| < Y(e p) (79.22)

and there is no plastic flow in the interior of the elastic range.



458 Maximum Dissipation

Summarizing, we have established the complete set421 (76.70) of Mises–Hill
equations as consequences of (FS) and (SI).

EXERCISE

1. Consider the general case in which the flow resistance Y(Np) depends on the
flow direction Np. Retaining the hypothesis (FS), extend the argument leading
to (79.17) to establish the general flow rule422

T0 = Y(Np)Np + ∂Y(Np)
∂Np . (79.23)

Interestingly, for this general rule the constitutive function Y(Np) for the flow
resistance determines the explicit form of the flow rule.

79.3 More General Flow Rules. Drucker’s Theorem

In this section, we establish a major result of Drucker (1950, 1952),423 who gave a
formal argument to show that — for a “stable material” — the yield surface must
be convex with outward unit normal the flow direction. This result is often referred
to as Drucker’s theorem. While our conclusions coincide with those of Drucker, we
base our derivation on the notion of maximum dissipation rather than on stability.

Our starting point is the (rate-independent) flow rule (79.1); viz.

T0 = T̂0(Np). (79.24)

Here, and throughout this section,

• we suppress the accumulated plastic strain e p as an argument.

The corresponding results should therefore be interpreted as being valid at each
fixed value of e p.

79.3.1 Yield-Set Hypotheses

To begin, we note that, by (79.2) and (79.7), a deviatoric stress T0 is admissible in
the sense of maximum dissipation if

(T̂0(Np) − T0) : Np ≥ 0 for every flow direction Np. (79.25)

The yield set Y defined in (79.10) is the range of the mapping T̂0( ·); that is, the set
of stresses T̂0(Np) generated as Np ranges over the set (79.14) of all flow directions
(i.e., the surface of the unit ball in SymDev. Our first step in establishing Drucker’s
theorem is to introduce hypotheses that render the yield set Y a surface. A basic
hypothesis that one might place on the yield set Y is (FS) on page 456, which by
(79.25) is, for our purposes, best expressed as

(T̂0(Np) − T0) : Np ≥ 0 for every flow stress T0 and flow direction Np. (79.26)

But given any flow stress T0 there is a flow direction N̄p such that T0 = T̂0(N̄p); thus
(79.26) is equivalent to the requirement that

[T̂0(Np) − T̂0(N̄p)] : Np ≥ 0 for all flow directions Np, N̄p. (79.27)

421 The condition (76.70)2 is tacit.
422 Gurtin & Anand (2005c, eq. (8.12)).
423 Cf. Drucker (1964) and the references therein. A discussion of Drucker’s ideas is given by Malvern

(1969, pp. 356–363). See also Il’yushin (1954, 1961), Pipkin & Rivlin (1965), and Lucchesi &
Podio-Guidugli (1990).
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Actually, we need a hypothesis stronger than (79.27).

(Y1) (strict flow-stress admissibility)

[T̂0(Np) − T̂0(N̄p)] : Np > 0 for all flow directions Np '= N̄p. (79.28)

This hypothesis has an important consequence. To explore this, we arbitrarily
choose flow directions Np and N̄p obeying

Np '= N̄p. (79.29)

Then (79.27) yields the inequalities

[T̂0(Np) − T̂0(N̄p)] : Np > 0,

[T̂0(N̄p) − T̂0(Np)] : N̄p > 0,

which when added imply that424

[T̂0(Np) − T̂0(N̄p)] : (Np − N̄p) > 0. (79.30)

Thus, Np '= N̄p implies that T̂0(Np) '= T̂0(N̄p), and the function T̂0 is one-to-one.
We therefore have an important result:

• The function T̂0, as a mapping of flow directions Np onto flow stresses

T0 = T̂0(Np),

is a one-to-one mapping of N onto the yield set Y . Writing N̂p for the inverse of
T̂0, we may consider the flow direction Np as a function

Np = N̂p(T0) (79.31)

of the flow stress T0, in which case we say that Np is the flow direction corre-
sponding to T0.

An important consequence of this bullet is that the assertion (79.25) defining a stress
T0 that is admissible in the sense of maximum dissipation may be written equiva-
lently in the form425

(T̄0 − T0) : N̂p(T̄0) ≥ 0 for every flow stress T̄0. (79.32)

To verify (79.32), simply appeal to (79.25) with

Np = N̂p(T̄0), so that T̄0 = T̂p(Np). (79.33)

The second yield-set hypothesis is a smoothness assumption:

(Y2) (smoothness hypothesis) the mapping T̂0 and its inverse N̂p are smooth func-
tions.

We refer to the hypotheses (Y1) and (Y2) as the yield-set hypotheses. These
hypotheses render the mapping T̂0 a diffeomorphism426 of the spherical surface
N onto the yield set Y ; and, since diffeomorphisms carry smooth surfaces that are
closed and bounded onto other such surfaces,

(‡) Y is a smooth surface that is closed and bounded.

424 The inequality (79.30) renders the function T̂0 strictly monotonic.
425 This inequality corresponds to the classical postulate of maximum dissipation, which Lubliner

(1990, pp. 115–120) attributes variously to von Mises, Taylor, and Hill.
426 Roughly speaking, a diffeomorphism is a smooth, invertible mapping whose inverse is also smooth.
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We henceforth refer to Y as the yield surface.427

EXERCISE

1. For the purpose of this exercise, replace (79.28) by (79.7). As is clear from
(79.7), a stress T0 is admissible in the sense of maximum dissipation if and only
if its resolved value T0 : Np with respect to any flow direction Np is not greater
than the flow resistance428

Y(Np) def= Np : T̂0(Np) ≥ 0. (79.34)

Since the flow direction determines the flow stress through the flow rule T0 =
T̂0(Np), one might ask if there is a natural method of determining those flow
directions Np that correspond to a prescribed flow stress T0. In fact, one might
expect that such flow directions Np could be found variationally by the require-
ment that the corresponding resolved values T0 : Np be as close as possible to
Y(Np). Guided by this expectation, consider the flow-direction problem: Given
T0 ∈ Y , find a flow direction Np that minimizes the function

0(Np) def= Y(Np) − T0 : Np ≥ 0 (79.35)

over the set N of all flow direction Np. (The inequality follows from (79.34).)
Show that if the flow direction problem has a unique solution Np for every flow
stress T0, then the bullet on page 459 is satisfied.

79.3.2 Digression: Some Definitions and Results Concerning Convex
Surfaces

Let A be a finite-dimensional vector space with elements a, q, r, s, . . . and inner product a · q. Let , be a
closed region in A with boundary

S = ∂, (79.36)
a smooth connected surface. Given any q ∈ S:

(i) nq denotes the outward unit normal to S at q;
(ii) Hq is the half space with q ∈ ∂Hq and nq the outward unit normal to ∂Hq .

The mapping
q :→ nq (79.37)

that associates with every q ∈ S the outward unit normal nq is called the Gauss map of the surface.
The following definitions are central: S is convex if, given any q ∈ S, the surface S is contained in

Hq ; equivalently, S is convex if
(q − a) · nq ≥ 0 for all q, a ∈ S; (79.38)

S is strictly convex if
(q − a) · nq > 0 for every q, a ∈ S, a '= q. (79.39)

Important consequences of this definition are that:

(C1) if S is strictly convex, then the interior of , is the set of all a ∈ A such that
(q − a) · nq > 0 for all q ∈ S; (79.40)

the exterior of , is the set of all a ∈ A such that
(q − a) · nq < 0 for some q ∈ S; (79.41)

(C2) S is strictly convex if and only if the Gauss map is one-to-one.429

The definitions and results stated above are basic to §79.3.3; there the role of A is played by the
space SymDev of symmetric, deviatoric tensors.

427 For most of this book we have not fussed over smoothness hypotheses, but here some care is re-
quired because the hypothesis (Y2) has a strong consequence: It implies that the yield surface can-
not have corners. Cf. Simo & Hughes (1998) and Han & Reddy (1999) for formulations that allow
for corners on the yield surface.

428 Cf. (79.2).
429 This assertion is generally false if S is not smooth.
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79.3.3 Drucker’s Theorem

First of all we note that, since (79.28) implies (79.26),

Y ⊂ E . (79.42)

The following definition eases the statement of the next result: We refer to a
stress T0 as strictly admissible in the sense of maximum dissipation430 if

(T̂0(Np) − T0) : Np > 0 for every flow direction Np; (79.43)

or equivalently, in view of the substitutions (79.33),

(T̄0 − T0) : N̂p(T̄0) > 0 for every flow stress T̄0. (79.44)

We are now in a position to establish

Drucker’s Theorem431 Assume that the yield-surface hypothesis (Y1) on page 459
and the subsequent hypothesis (Y2) are satisfied. Then:

(D1) given any flow stress T0, the flow direction Np corresponding to T0 is the out-
ward unit normal to Y at T0,

(D2) the yield surface is strictly convex
(D3) The elastic range E is the closed, bounded region whose boundary is Y and for

which the flow direction is directed outward from E ;
(D4) The interior of the elastic range is the set of all stresses T0 that are strictly admis-

sible in the sense of maximum dissipation — and

Ėp = 0 throughout the interior of the elastic range. (79.45)

PROOF. To establish (D1), choose:

(i) an arbitrary flow stress T0 on Y and let N̄p denote the corresponding flow direc-
tion;

(ii) an arbitrary curve T̃0(λ) on Y through T0, so that, for some λ0,

T̃0(λ0) = T0.

Note that an immediate consequence of (79.42) is that every flow stress T0 is admis-
sible in the sense of maximum dissipation . Thus, by (79.25),

0(λ) def= T̂0(N̄p) : N̄p − T̃0(λ) : N̄p

≥ 0 for all λ,

and, since 0(λ0) = 0, 0(λ) must have a minimum at λ = λ0; hence, d0(λ)/dλ must
vanish at λ = λ0:

N̄p :
dT̃0(λ)

dλ

∣∣∣
λ=λ0

= 0. (79.46)

Since the curve T̃0(λ) on Y through T0 was arbitrarily chosen, N̄p must be normal
to every curve on Y through T0. Thus, N̄p is normal to the yield surface at T0. In
addition, by (79.34),

T0 : N̄p ≥ 0

and N̄p is outward from Y at T0. This establishes (D1).

430 Note that flow stresses cannot be strictly admissible in the sense of maximum dissipation because
each such stress T0 satisfies T0 = T̂0(Np) for some flow direction Np.

431 The results (D1) and (D2) were proposed by Drucker (1951) based on an heuristic notion of mate-
rial stability. In contrast to the present treatment, Drucker allowed for corners on the yield surface.
The proof of Drucker’s Theorem given below is due to Gurtin.
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We turn next to the verification of (D2). In view of (79.28) and the definition
(79.37) of the Gauss map,

(‡) the function N̂p represents the Gauss map of the yield surface Y .

The result (C2) on page 460 therefore implies that the yield surface is strictly convex,
which is (D2).

Next, in view of (‡), the result (C1) on page 460 implies that the region interior
to Y is the set of all T0 such that

(T̄0 − T0) : N̂p(T̄0) > 0 for every flow stress T̄0; (79.47)

the region exterior to Y is the set of all T0 such that

(T̄0 − T0) : N̂p(T̄0) < 0 for every flow stress T̄0. (79.48)

Since E is the set of all stresses T̄0 that are admissible in the sense of maximum
dissipation and, hence, all T̄0 such that (79.32) is satisfied, it follows that the exterior
of E (the set of all tensors in SymDev not consistent with (79.32)) must coincide with
the set of stresses T̄0 consistent with (79.48), a set that defines the region exterior to
Y . Thus,

(i) E is closed with Y its boundary,

Y = ∂E ; (79.49)

(ii) the interior of E coincides with the set of stresses T̄0 consistent with (79.47), a
set that defines the region interior to Y .

Since (79.47) is equivalent to (79.43), the interior of E is strictly admissible in the
sense of maximum dissipation. The first part of (D4) is therefore valid. Further, since
the interior of the elastic range is the region interior to the yield surface Y , and since
the flow direction coincides with the outward unit normal to Y , the flow direction is
directed outward from E . This result and the assertion in the phrase ending in (79.49)
comprise the content of (D3). Finally, to establish the second part of (D4) we have
to establish (79.45). Our prooof is by contradiction. Were (79.45) false, there would
be a deviatoric stress T0 in the interior of E and a plastic strain-rate Ėp '= 0 such
that the normalized flow (T0, Np) — with Np = Ėp/|Ėp| — is physically attainable.
But this implies that T0 belongs to the yield surface and hence cannot belong to the
interior of E .

This completes the proof of Drucker’s Theorem.

79.4 The Conventional Theory of Perfectly Plastic Materials Fits
within the Framework Presented Here

Conventional formulations of rate-independent perfectly plastic materials — that is
materials without work-hardening432 — are typically based on

(i) a smooth, strictly convex yield function f (T0) defined for all deviatoric stresses
T0; together with

(ii) a flow rule of the form

Ėp = λ
∂ f (T0)
∂T0

, (79.50)

with λ > 0 an arbitrary field.

432 The inclusion of hardening is left as an exercise.
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The elastic range E and the yield surface Y are then defined by

E def= the set of all T0 ∈ SymDev such that f (T0) ≤ 0 (79.51)

and

Y def= the set of all T0 such that f (T0) = 0, (79.52)

so that Y = ∂E . Further, the null-stress 0 ∈ SymDev is assumed to lie in the interior
of E .

We now show that this formulation fits within the framework discussed in §79.1
and §79.3. First of all, since Y is convex, the tensor function

N̂p(T0) def=

∂ f (T0)
∂T0∣∣∣
∂ f (T0)
∂T0

∣∣∣

represents the outward unit normal to the yield surface at T0. On the other hand, by
(79.50), this outward unit normal is also given by Np = Ėp/|Ėp|; thus

N̂p(T0) = Np. (79.53)

Further, because the yield surface Y is strictly convex, there is a one-to-one corre-
spondence between deviatoric stresses T0 on Y and outward unit normals

Np = Ėp

|Ėp|

to Y at T0;433 hence we can invert the function N̂p(T0) and arrive at the flow rule in
the form

T0 = T̂0(Np), (79.54)

which is the flow rule (79.1) of the general theory discussed in §79.1 and §79.3,434

neglecting hardening. Moreover, in view of the discussion in the paragraph
containing (79.10), Y — as defined in (79.52) — can equally well be defined as the
set of all flow stresses.435

Next, by (79.54), the dissipation during plastic flow is given by

T̂0(Np) : Ėp (79.55)

and we now show that, given Ėp, this dissipation represents the maximum value of
T0 : Ėp over all T0 ∈ E — or, by(79.51),

the minimum value of −T0 : Ėp over all T0 such that f (T0) ≤ 0.

It therefore follows from the theory of constrained minima that this minimum value
occurs at a deviatoric stress T0 consistent with the Kuhn–Tucker optimality condi-
tions:436

∂

∂T0

[
− T0 : Ėp + λ f (T0)

]
= 0, λ ≥ 0, λ f (T0) = 0. (79.56)

Thus, T0 satisfies (79.50) and hence (79.54). We have therefore shown that

T0 : Ėp ≤ T̂0(Np) : Ėp,

433 Cf. (C2) on page 460.
434 The fact that (79.53) and (79.54) are inverses of one and other is simply the bullet on page 459.
435 Cf. (79.10).
436 Cf. Strang (1986, p. 724).
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and hence, dividing this inequality by |Ėp|, that

T0 : Np ≤ Y(Np),

with Y(Np) defined in (79.2). Thus, in view of (i) and (ii) on page 455, the elastic
range E , defined in (79.51), can equally well be defined as the set of all deviatoric
stresses T0 that are admissible in the sense of maximum dissipation, a definition
consistent with (79.8).

We have therefore established the following:

Consistency Theorem The conventional theory of perfectly plastic materials, as de-
scribed in the paragraph containing (79.51), is a special case of a theory based on a
flow rule of the form (79.54), with yield surface the range of the function T̂0 and with
elastic range the set of all T0 that are admissible in the sense of maximum dissipation.

EXERCISES

1. A conventional treatment of hardening, with accumulated plastic strain e p as
hardening variable, starts with a smooth yield function f (T0, e p) = f̄ (T0) −
F (e p) defined for all T0 ∈ SymDev and e p ≥ 0 with f̄ (T0) strictly convex in
T0 and F (e p) > 0. Establish analogs of the results of this section for this more
general starting point. How would you define a hardening-softening transition
within this framework?

2. Show that the flow rule (79.54), derived above, is consistent with (Y1) on
page 459.

3. Show that the conventional theory as described in the paragraph containing
(79.50) is strictly dissipative in the sense that, whenever T0 and Ėp '= 0 are re-
lated through the flow rule (79.50), then

T0 : Ėp > 0.



80 Hardening Characterized by a Defect
Energy

Strain hardening is generally seen as a byproduct of the formation of defects during
plastic flow. In §76 this hardening is viewed as dissipative; in fact, as characterized
by the Mises–Hill equations

T0 = Ŷ(e p)
Ėp

|Ėp|
for Ėp '= 0,

ė p = |Ėp|, e p(0) = 0,

(80.1)

with e p the accumulated plastic strain, and with

δ(Ėp, e p) = Y(e p)|Ėp| (80.2)

the associated dissipation.437 We now show that — surprisingly — this hardening
may equally well be regarded as energetic.438

80.1 Free-Energy Imbalance Revisited

We view the free energy 2 as a sum

2 = 2e +2 p,

where 2 p is a defect energy,439 plastic in nature, associated with the formation of
defects, while 2e, the elastic energy, is assumed related to the elastic stress-power
through the standard balance440

2̇e = T : Ėe.

Granted these assumptions, the free-energy imbal,ance (75.14) reduces to an imbal-
ance

2̇ p − T0 : Ėp = −δ ≤ 0, (80.3)

associated solely with plastic flow.

437 Cf. (76.69) and (76.71).
438 This section is taken from Gurtin & Reddy (2009).
439 More precisely, a defect free-energy.
440 Cf. §75.15.
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80.2 Constitutive Equations. Flow Rule

We view the accumulated plastic strain e p — defined by (80.1)2 — as a measure of
the defectiveness of the microscopic structure and, based on this, take441

2 p = 2̂ p(e p) (80.4)

as the constitutive relation for the defect energy.442 It is convenient to introduce a
thermodynamic hardening stress

ĝ(e p) def= d2̂ p(e p)
de p (80.5)

and to assume that, consistent with (80.1)2,443

ĝ(0) = 0, ĝ(e p) > 0 for e p > 0. (80.6)

Then, since by (76.20) and (76.52)

ė p = |Ėp| = Np : Ėp,

it follows that
·

2̂ p(e p) = g(e p)|Ėp| ≥ 0. (80.7)

The imbalance (80.3) therefore takes the form

(T0 − ĝ(e p)Np) : Ėp = δ ≥ 0. (80.8)

The quantity

Tdis
0

def= T0 − ĝ(e p)Np, (80.9)

which represents the dissipative part of the deviatoric stress T0, must then be consis-
tent with the dissipation inequality

Tdis
0 : Ėp = δ ≥ 0. (80.10)

Further, granted codirectionality, Tdis
0 must be positively proportional to Np. Thus, if

hardening is completely characterized by the hardening stress ĝ(e p), the constitutive
relation for Tdis

0 must the simple form

Tdis
0 = Y0Np (80.11)

in which the flow resistance Y0 — assumed constant and strictly positive — mimics
that of a material without hardening. Combining (80.9) and (80.11) we arrive at the
flow rule

T0 = [Y0 + ĝ(e p)]Np. (80.12)

Further, the dissipation may be easily calculated from (80.10) and (80.11); the result
is

δ(Ėp) = Y0|Ėp|. (80.13)

Consider, once again, the Mises–Hill flow rule (80.1)1, whose derivation restricts
attention to dissipative inelasticity — there is no defect energy. Interestingly, that

441 Cf. Simo & Hughes (1998) and Han & Reddy (1999), and the references therein. These books are
based on the use of free energies to describe hardening.

442 Often referred to as the stored energy of cold work.
443 Granted that ep = 0 corresponds to an absence of defects.
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flow-rule is identical to the energetically based flow rule (80.12) provided444

Y(e p) = Y0 + ĝ(e p). (80.14)

Thus, while the flow rules (80.1)1 and (80.12) rest upon different physical concepts,
the field equations resulting from the two flow rules are identical. In comparing the
view of 2̂ p(e p) as a free energy with the more conventional view in which there is no
perceived need to introduce such an energy, we note that, by (80.7), 2̂ p(e p) cannot
decrease with time, no matter the loading path. This energy therefore corresponds
to loading processes that are irreversible. In that sense:

• the defect energy 2̂ p(e p) mimics dissipative behavior.

We know of no other example from continuum mechanics where an energetic quan-
tity mimics dissipative behavior.

Moreover, in view of the equivalence of the flow rule (80.12) to the Mises–Hill
flow-rule (80.1)1 and of the specific relationship (80.14) between flow resistances,
we can define an effective dissipation via the relation

Deff(Ėp, e p) def= [Y0 + ĝ(e p)]|Ėp|. (80.15)

Further, using (80.7) we can express this effective dissipation as the sum of

(i) a term Y0|Ėp| = δ(Ėp), which represents the actual dissipation, and
(ii) a term

ĝ(e p)|Ėp| =
·

2̂ p(e p),

which represents the rate of change of a nonrecoverable energy.

The central result of this section is summarized as follows:

Theorem The theory without a defect energy is equivalent to the theory with a defect
energy provided the flow resistance Y(e p) and the dissipation δ(Ėp, e p) in the former
are replaced by

Y0 + ĝ(e p) and Deff(Ėp, e p) (80.16)

in the latter. Thus whether or not one chooses to use a theory with a defect energy
could very well be based on which of these choices is more amenable to analysis
and/or computation.445

More generally, suppose we are given a flow rule in the Mises–Hill form (80.1)1
with flow resistance Y(e p). Suppose further, that we are given a defect energy2 p(e p)
consistent with (80.5) and (81.31) and a function Ydis(e p) > 0 such that

Y(e p) = Ydis(e p) + d2̂ p(e p)
de p . (80.17)

Then, defining ĝ(e p) through (80.5) and arguing as in the steps from (80.4)–(80.13),
we find that the dissipative part of the deviatoric stress, the dissipation, and the flow

444 Consistent with this, we assume that the boundedness inequality has the form |T0| ≤ Y0 + ĝ(ep).
445 Existence and uniqueness of solutions to initial/boundary-value problems for the theory with a de-

fect energy were established by Reddy (1992). A trivial corollary of our theorem and Reddy’s result
therefore establishes existence and uniqueness for the theory without a defect energy.
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rule have the respective forms

Tdis
0 = Ydis(e p)Np, δ(Ėp, e p) = Ydis(e p)|Ėp|,

T0 =
[
Ydis(e p) + ĝ(e p)

]
Np.

(80.18)

It therefore makes sense to refer (80.17) as a partition of the flow resistance into
dissipative and energetic parts. Since each such partition leaves the original flow
rule invariant, the field equations are independent of the partition. Thus, interest-
ingly, the mechanical theory provides no information about the partition of the flow
resistance into dissipative and energetic parts.

A theory that differentiates between dissipative and energetic flow rules re-
quires a framework that allows for thermal variations, because within such a frame-
work the energy balance is affected by dissipation, but not by irreversibility induced
by a defect energy. Such a theory is given by Rosakis, Rosakis, Ravichandran &
Hodowany (2000) — with corresponding experimental results given by Hodowany,
Ravichandran, Rosakis & Rosakis (2000).446 These works establish separate and
unique constitutive relations for the defect energy and the dissipative part of the
flow resistance. This issue is discussed in detail in §81.

446 See Hodowany, Ravichandran, Rosakis & Rosakis (2000) and Rosakis, Rosakis, Ravichandran
& Hodowany (2000) for references and a comprehensive overview — dating back to the pioneering
experiments of Faren & Taylor (1925) and Taylor & Quinney (1937) — of the relevant experi-
mental and theoretical literature.



81 The Thermodynamics of Mises–Hill
Plasticity

81.1 Background

In §80.2 — which was limited to isothermal conditions — we showed that all Mises–
Hill flow rules of the form

T0 =
[

Ydis(e p) +
d2̂ p(e p)

de p

]

︸ ︷︷ ︸
Y(ep)

Np, (81.1)

with

Ydis(e p) and
d2̂ p(e p)

de p (81.2)

the dissipative and energetic parts of a prescribed flow resistance Y(e p), result in the
same field equations.

A basic issue concerning theories of the type discussed above involves the deter-
mination of the fraction β of the plastic stress-power converted to heating. Within
such theories the plastic stress-power is given by

T0 : Ėp = Ydis(e p)ė p + d2̂ p(e p)
de p ė p, (81.3)

and the fraction of this stress power converted to heating is the dissipative part
Ydis(e p)ė p. Thus, by (81.3),

β = Ydis(e p)

Ydis(e p) + d2̂ p(ep)
dep

. (81.4)

But, as noted in the paragraph containing (80.18),

• the mechanical theory provides no information about the partition of the flow
resistance into dissipative and energetic parts.

Thus (in this purely mechanical theory) β is indeterminate, as it may take any value
in the interval [0, 1].

To discuss a theory that differentiates between dissipative and energetic flow
rules, we work within a framework that allows for thermal variations, because within
such a framework the energy balance is affected by dissipation, but not by irre-
versibility induced by a defect energy. Specifically, we work within the framework
of continuum thermodynamics based on the first two laws of thermodynamics: bal-
ance of energy and the Clausius–Duhem inequality.

469
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81.2 Thermodynamics

Our discussion of thermodynamics involves five fields:

ε the internal energy,
ϑ the absolute temperature (ϑ > 0),
η the entropy,
q the heat flux,
q the external heat supply.

The first two laws of thermodynamics for a continuum are balance of energy

ε̇ = T : Ė − divq + q (81.5)

and the Clausus–Duhem inequality

η̇ ≥ −div
(

q
ϑ

)
+ q
ϑ

, (81.6)

which describes the growth of entropy.447 These laws, when combined, form a free-
energy imbalance

2̇ + ηϑ̇ − T : Ė + 1
ϑ

q · ∇ϑ = −ϑ@ ≤ 0 (81.7)

in which

2 = ε − ϑη (81.8)

is the free energy. Here @ is the left side of (81.6) minus the right side and hence
represents the rate of entropy production.

Note that, since Ėp = ė pNp, we can write the plastic stress-power in the form

T : Ėp = τ ė p, (81.9)

where

τ
def= Np : T0, (81.10)

the resolved shear, represents the deviatoric stress resolved on the direction of plas-
tic flow. Further, using (75.11) and (81.9), we can decompose the stress power T : Ė
into elastic and plastic power expenditures:

T : Ė = T : Ėe + τ ė p. (81.11)

81.3 Constitutive Equations

We assume that the free energy is the sum

2 = 2e +2 p (81.12)

of a conventional elastic strain energy2e and a defect energy2 p, plastic in nature, as-
sociated with the formation of defects. We assume that these energies are described
by constitutive equations of the form

2e = 2̂e(Ee,ϑ), 2 p = 2̂ p(e p,ϑ); (81.13)

and that the elastic energy generates the stress T through the conventional relation

T = ∂2̂e(Ee,ϑ)
∂Ee . (81.14)

447 Cf. (26.8) and (27.13). Because the discussion here is for small deformations, the stress power in
(81.5) is T : Ė rather than T : D and ε and η are measured per unit volume, rather than per unit mass.
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By (81.12) and (81.13) the (total) free energy 2 is given by the auxilliary relation

2 = 2̂tot(Ee, e p,ϑ) def= 2̂e(Ee,ϑ) + 2̂ p(e p,ϑ); (81.15)

hence (81.14) implies that

2̇ = ∂2̂e(Ee,ϑ)
∂Ee : Ėe + ∂2̂ p(e p,ϑ)

∂e p ė p + ∂2̂tot(Ee, e p,ϑ)
∂ϑ

ϑ̇

= T : Ėe + ∂2̂ p(e p,ϑ)
∂e p ė p + ∂2̂tot(Ee, e p,ϑ)

∂ϑ
ϑ̇ . (81.16)

Our next step is to use the free-energy imbalance (81.7) in conjunction with
the Coleman–Noll procedure to develop thermodynamically consistent constitutive
equations. Using (81.14) and (81.16) we can express this imbalance in a form,
[
∂2̂ p(e p,ϑ)

∂e p − τ

]
ė p +

[
∂2̂tot(Ee, e p,ϑ)

∂ϑ
+ η

]
ϑ̇ + 1

ϑ
q · ∇ϑ = −ϑ@ ≤ 0, (81.17)

that indicates a need for constitutive relations for the fields τ , η, and q. Regarding
these fields, we limit our discussion to constitutive equations that are independent of
ϑ̇ , a limitation that renders (81.17) linear in ϑ̇ and hence requires that the coeficient
of ϑ̇ must vanish (for otherwise ϑ̇ could be chosen to violate (81.17)). The consti-
tutive relation for the entropy must therefore have a classical structure giving the
entropy as the negative of the partial derivative of the free energy with respect to
temperature, viz.

η̂(Ee, e p,ϑ) = −∂2̂tot(Ee, e p,ϑ)
∂ϑ

. (81.18)

This entropy-relation simplifies the inequality (81.17) as follows:
[
∂2̂ p(e p,ϑ)

∂e p − τ

]
ė p + 1

ϑ
q · ∇ϑ = −ϑ@ ≤ 0. (81.19)

Most theories of plasticity are not based on a single constitutive relation for
the stress T, but instead require that the stress be consistent with two separate rela-
tions:448

(C1) The first is the constitutive relation (81.14) describing the elastic response of
the material.

(C2) The second — a relation for the deviatoric stress T0 — represents a constraint
on the elastic response imposed by the inelasticity of the material. Here, be-
cause our goal is a thermodynamics of Mises–Hill materials, we base the rela-
tion for T0 on a codirectionality constraint requiring that the flow direction Np

coincide with the direction of the deviatoric stress:

Np = T0

|T0|
. (81.20)

Trivially, (81.20) implies that T0 = |T0|Np, and hence that, by (81.10),

τ = |T0|;

hence the codirectionality constraint takes the form

T0 = τNp. (81.21)

448 Cf. §75.3 and §76.4.
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Guided by (81.1) and (81.19), we supplement this constraint with a constitutive re-
lation

τ = Ŷ(e p,ϑ) (81.22)

for the resolved shear, thereby arriving at a constitutive relation

T0 = Ŷ(e p,ϑ)Np (81.23)

characterizing plastic flow.
Finally, we consider a constitutive relation for the heat flux in the form

q = q̂(e p,ϑ,∇ϑ). (81.24)

Then, by (81.22), the free-energy imbalance (81.19) takes the form
[
∂2̂ p(e p,ϑ)

∂e p − Ŷ(e p,ϑ)
]

ė p + 1
ϑ

q̂(e p,ϑ,∇ϑ) · ∇ϑ = −ϑ@ ≤ 0; (81.25)

since the mechanical term is independent of ∇ϑ , while the thermal term is indepen-
dent of ė p, the choice ∇ϑ = 0 yields the mechanical dissipation inequality

[
∂2̂ p(e p,ϑ)

∂e p − Ŷ(e p,ϑ)
]

ė p = −ϑ@mec ≤ 0, (81.26)

while the choice ė p = 0 yields the heat-conduction inequality

1
ϑ

q̂(e p,ϑ,∇ϑ) · ∇ϑ = −ϑ@ther ≤ 0. (81.27)

The function Ŷdis(e p,ϑ) defined via the relation

Ŷ(e p,ϑ) = Ŷdis(e p,ϑ) + ∂2̂ p(e p,ϑ)
∂e p (81.28)

represents the dissipative part of the resolved shear, because, by (81.26),

Ŷdis(e p,ϑ)ė p = ϑ@mec ≥ 0. (81.29)

This inequality must hold for all ė p ≥ 0;449 thus

Ŷdis(e p,ϑ) ≥ 0. (81.30)

81.4 Nature of the Defect Energy

The dependence of the defect energy 2 p on the accumulated plastic strain e p has
interesting and somewhat unexpected properties, which we now discuss. Since e p is
an increasing function of time with e p

∣∣
t=0 = 0,450 and since we expect the defect en-

ergy to increase as the number of defects (as described by e p) increases, we assume
that

2̂ p(e p,ϑ)
∣∣
ep=0 = 0,

∂2̂ p(e p,ϑ)
∂e p ≥ 0, (81.31)

so that

∂2̂ p(e p,ϑ)
∂e p ė p ≥ 0. (81.32)

449 Cf. (80.1)2.
450 Cf. (80.1)2,3.
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The defect energy 2 p thus increases with time in any process that has ϑ̇ ≡ 0; hence
2 p is not recoverable during isothermal processes. The defect energy therefore mim-
ics dissipative behavior by describing a class of processes that are irreversible. In fact,
if the defect energy is independent of ϑ , then the defect energy always describes ir-
reversible behavior. On the other hand, since ϑ may increase or decrease at will, the
defect energy during any process in which e p is constant is recoverable, at least in
principle. Thus the individual arguments e p and ϑ of the defect energy characterize
disparate physical behaviors — and for an arbitrary process these two behaviors are
coupled. Further, by (81.22), (81.28), (81.9), (81.29), and (81.32), the plastic stress-
power is nonnegative,

T0 : Ėp = Ŷ(e p,ϑ)ė p ≥ 0 (81.33)

= Ŷdis(e p,ϑ)ė p + ∂2̂ p(e p,ϑ)
∂e p ė p ≥ 0. (81.34)

Summarizing, a defect energy dependent on accumulated plastic strain mimics
dissipative behavior in the sense that:

• During isothermal conditions — or when the defect energy is independent of
temperature — the defect energy describes processes that are irreversible.

• The plastic stress-power T0 : Ėp is nonnegative.

81.5 The Flow Rule and the Boundedness Inequality

This section follows §76.8. By (81.23) and (81.28), the deviatoric stress must satisfy

T0 =
[

Ŷdis(e p,ϑ) + ∂2̂ p(e p,ϑ)
∂e p

]

︸ ︷︷ ︸
Ŷ(ep,ϑ)

Np,
(81.35)

a relation that represents the flow rule; consequently, we refer to the function
Ŷ(e p,ϑ) as the flow resistance. An important consequence of (81.35) is the yield
condition

|T0| = Ŷ(e p,ϑ) for ė p '= 0. (81.36)

As is well understood by plasticians, the flow rule does not suffice to character-
ize the rate-independent behavior of plastic materials. An additional assumption,
namely the boundedness hypothesis

|T0| ≤ Ŷ(e p,ϑ), (81.37)

which asserts that that the norm of the deviatoric stress not exceed the flow resis-
tance, is needed. When |T0| < Ŷ(e p,ϑ), the yield condition (81.35) is not satisfied;
thus, necessarily, ė p = 0. Therefore,

ė p = 0 for |T0| < Ŷ(e p,ϑ). (81.38)

Finally, the set of deviatoric stresses T0 that satisfy (81.37) represents the elastic
range corresponding to e p and ϑ .

81.6 Balance of Energy Revisited

Using (81.8) and (81.11), we can write the energy balance (81.5) in the form

2̇ + ϑη̇ + ηϑ̇ = T : Ėe + τ ė p − divq + q. (81.39)
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Hence, appealing to (81.16), (81.18), and (81.23)1, we see that

∂2̂ p(e p,ϑ)
∂e p ė p + ϑη̇ = Ŷ(e p,ϑ)ė p − divq + q, (81.40)

so that, by (81.28),

ϑη̇ = Ŷdis(e p,ϑ) ė p − divq + q. (81.41)

If we restrict attention to classical Fourier conduction in which

q = −k∇ϑ (81.42)

with conductivity k > 0, and assume that q = 0, we find that

ϑη̇ = Ŷdis(e p,ϑ) ė p + k,ϑ. (81.43)

If we neglect heat conduction, then, by (81.29), (81.43) has the adiabatic form

ϑη̇ = Ŷdis(e p,ϑ) ė p ≥ 0 (81.44)

and is said to describe adiabatic plastic flow. Thus, during adiabatic plastic flow the
entropy increases with time. On the the other hand, conduction of heat in the body
results in a concomitant flow of entropy, and the entropy may increase or decrease.

A result analogous to (81.44) holds when the region of space B occupied by the
body is thermally isolated in the sense that

q · n = 0 on ∂B, (81.45)

with n the outward unit normal on the boundary ∂B. To establish this result we
assume that q ≡ 0 and rewrite (81.41) as an entropy balance:

η̇ = ϑ−1Ŷdis(e p,ϑ) ė p − ϑ−1divq. (81.46)

Using the divergence theorem we find that
∫

B

ϑ−1divqdv =
∫

B

div
q
ϑ

dv −
∫

B

q · ∇ 1
ϑ

dv =
∫

∂B

q
ϑ

· nda +
∫

B

ϑ−2q · ∇ϑ dv

and hence, by (81.45) and (81.46), that
∫

B

η̇dv =
∫

B

ϑ−1Ŷdis(e p,ϑ) ė p dv −
∫

B

ϑ−2q · ∇ϑ dv. (81.47)

Next, appealing to (81.29) and the heat-conduction inequality (81.27), we find that

˙∫

B

ηdv ≥ 0, (81.48)

and hence that the entropy of the body B increases with time.
As our last step, we assume, for simplicity, that the entropy η̂(Ee, e p,ϑ) as given

by (81.18) is independent of the accumulated plastic strain e p, so that

η̇ = ∂η̂(Ee,ϑ)
∂Ee : ėe + ∂η̂(Ee,ϑ)

∂ϑ
ϑ̇,

and, by (81.41), we can rewrite (81.33) in a form,

T0 : Ėp
︸ ︷︷ ︸

plastic
stress power

= ϑ
∂η̂(Ee,ϑ)

∂ϑ
ϑ̇

︸ ︷︷ ︸
heating

+
∂2̂ p(e p,ϑ)

∂e p ė p

︸ ︷︷ ︸
rate of isothermal
storage of defects

+ϑ
∂η̂(Ee,ϑ)
∂Ee : Ėe

︸ ︷︷ ︸
rate of isothermal
changes in entropy

+ divq − q︸ ︷︷ ︸
heat flow

, (81.49)
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displaying the partition of the plastic stress power into heating and various other
physically meaningful quantities. In this regard, a quantity of great interest is the
fraction

β
def=

ϑ
∂η̂(Ee,ϑ)

∂ϑ
ϑ̇

T0 : Ėp

(81.50)

of the plastic stress-power converted to heating.

81.7 Thermally Simple Materials

With a view toward applications, we now discuss a simple theory of Mises–Hill ther-
moplasticity based on the following simplifying assumptions:

(i) The defect energy 2 p is independent of temperature. Then, by (81.13)2, the
constitutive relation for the defect energy has the form

2 p = 2̂ p(e p), (81.51)

and, by (81.15) and (81.18), the entropy-relation has the form

η̂(Ee,ϑ) = −∂2̂
e(Ee,ϑ)
∂ϑ

. (81.52)

(ii) The constitutive relations for 2e, T, η, and q are of the standard form that de-
fines conventional, small deformation, thermoelasticity:

2e = µ|Ee|2 +
λ

2
(trEe)2 + ξ(ϑ − ϑ0)trEe −

c
2ϑ0

(ϑ − ϑ0)2,

T = 2µEe + λ(trEe)1 + ξ(ϑ − ϑ0) 1,

η = −ξ trEe + c
ϑ0

(ϑ − ϑ0),

q = −k∇ϑ.

(81.53)

(iii) The heat supply q vanishes.

Here ϑ0 is a reference temperature, µ is the shear modulus (first Lamé modulus), λ
is the second Lamé modulus, and we assume that

µ > 0, 2µ + 3λ > 0, (81.54)

so that 2e is a positive-definite function of Ee. Further, c > 0 is the specific heat, ξ
is a modulus related to the coefficient of thermal expansion α via the relation

ξ = −(2µ + 3λ)α, (81.55)

which is positive for metals. We assume that the moduli µ, λ, c, ξ , and k are constant.
By (81.35) and (81.51), the flow rule becomes

T0 =
[

Ŷdis(e p,ϑ) + d2̂ p(e p)
de p

]
Np, (81.56)

with Ŷdis(e p,ϑ) > 0. On the other hand, (81.53)3 implies that

ϑη̇ = −ξ tr Ėe + c
ϑ

ϑ0
ϑ̇,
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and, granted the approximation

ϑ

ϑ0
≈ 1, (81.57)

this equation becomes

ϑη̇ = −ξ trĖe + cϑ̇ ; (81.58)

thus (81.43) reduces to a generalized heat equation:

cϑ̇ = ξ trĖe + Ŷdis(e p,ϑ) ė p + k,ϑ. (81.59)

In practice, a simplifying approximation often imposed to facilitate the solution
of actual problems, is to neglect the small coupling term

ξ tr Ėe

in the partial differential equation (81.59). Under this approximation, the general-
ized heat equation is referred to as being weakly elastic. In addition, if we neglect
heat conduction, then we arrive at the weakly elastic, adiabatic heat equation

cϑ̇ = Ŷdis(e p,ϑ) ė p. (81.60)

Finally, using (81.53)3 and the appproximation (81.57), we can rewrite (81.50) in the
form

β =
cϑ̇

T0 : Ėp
. (81.61)

and, in addition, this result with (81.34) and (81.60) yield the alternative relation
(81.4) for β.

81.8 Determination of the Defect Energy by the Rosakis Brothers,
Hodowany, and Ravichandran

As noted in §81.1, the purely mechanical theory says nothing about the partition of
the flow resistance into dissipative and energetic parts — all partitions that yield the
same flow resistance yield the same flow rule and, hence, the same field equations.
To the contrary, in this subsection we follow Rosakis, Rosakis, Ravichandran &
Hodowany (2000) and consider a coupled theory based on the flow rule (81.56) in
conjunction with the weakly elastic, adiabatic heat equation (81.60).451

Specifically, we consider a flow in which ė p > 0 for all time. Then e p is a strictly
increasing (and, hence, invertible) function of time, and, consequently, we may con-
sider ϑ(t) to be a function ϑ̄(e p), so that, by the chain-rule,

ϑ̇(t) = dϑ̄(e p)
de p ė p,

an equation that allows us to write (81.60) in the form

c
dϑ̄(e p)

de p = Ŷdis(e p, ϑ̄(e p)) def= Ȳdis(e p). (81.62)

Here, for any function 3̂(e p,ϑ), we define

3̄(e p) = 3̂(e p, ϑ̄(e p)),

451 See also the allied experimental work of Hodowany, Ravichandran, Rosakis & Rosakis (2000).
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and hence write (81.28) in the form

Ȳ(e p) = Ȳdis(e p) + ∂2̂ p(e p)
∂e p . (81.63)

Integrating (81.62) we find that

c(ϑ̄(e p) − ϑ̄0) =
ep∫

0

Ȳdis(e)de, ϑ̄0 = ϑ̄(e p)
∣∣
ep=0, (81.64)

and, bearing in mind (81.64), we can integrate (81.63) to arrive at

2̂ p(e p) =
ep∫

0

Ȳ(e)de − c(ϑ̄(e p) − ϑ̄0). (81.65)

Granted that the functions Ȳ(e p) and ϑ̄(e p) describing the flow resistance
and temperature can be determined experimentally, then the relations (81.65) and
(81.63) allow for the determination of the functions 2̂(e p) and Ȳdis(e p) describing
the defect energy and the dissipative part of the flow flow resistance Ȳ(e p).

Next, since the fraction β of the plastic stress-power converted to heating is
given by

β = cϑ̇(t)
Ȳ(e p)ė p

,

and we may use (81.62) and (81.63) to conclude that

β(e p) = Ȳdis(e p)

Ȳdis(e p) + d2̂ p(ep)
dep

. (81.66)

Interestingly, (81.66) is basically a repeat of the result (81.4) for the purely mechani-
cal theory, except that now, because our accounting for thermal effects has rendered
the dissipative and energetic parts of the flow resistance unique,

• β is no longer indeterminate.

However, since the flow rule (81.63) has the form (81.1), if one were to use (81.63) in
a purely mechanical theory, then the resulting flow stress would remain independent
of the partition of the flow resistance into dissipative and energetic parts, an obser-
vation that would allow one to use a different partition, were it more amenable to
analysis or computation.

81.9 Summary of the Basic Equations

The basic equations of the theory of thermally simple materials consist of:

(i) The kinematical equations

E = sym ∇u = Ee + Ep, trEp = 0,

Np = Ėp

|Ėp|
, ė p = |Ėp|, e p(x, 0) = 0.

(ii) The codirectionality constraint and the relation for the resolved-shear

Np = T0

|T0|
, τ = Np : T0,

where T0 is the deviatoric stress.
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(iii) The elasticity equations

T = 2µEe + λ(trEe)1 + ξ(ϑ − ϑ0) 1,

divT + b0 = ρü.
(81.67)

(iv) The constitutive relations for the defect stress and for the resolved shear

2 p = 2̂ p(e p), τ = Ŷ(e p,ϑ) = Ŷdis(e p,ϑ)︸ ︷︷ ︸
dissipative

+ ∂2̂ p(e p,ϑ)
∂e p

︸ ︷︷ ︸
energetic

with Ŷdis(e p,ϑ) ≥ 0 and d2̂ p(e p)/de p ≥ 0.
(v) The flow rule

T0 =
[

Ŷdis(e p,ϑ) +
d2̂ p(e p)

de p

]
Np (81.68)

together with the restrictions

|T0| = Ŷ(e p,ϑ) for ė p '= 0, |T0| ≤ Ŷ(e p,ϑ),

ė p = 0 for |T0| < Ŷ(e p,ϑ).
(81.69)

(vi) The generalized heat equation

cϑ̇ = ξ trĖe + Ŷdis(e p,ϑ) ė p + k,ϑ. (81.70)

These equations must be augmented by mechanical and thermal boundary and ini-
tial conditions.



82 Formulation of Initial/Boundary-Value
Problems for the Mises Flow Equations as
Variational Inequalities

Variational inequalities provide a basic tool for formulating, discussing, and solving
the initial/boundary-value problems of rate-independent plasticity.452 They are, in
essence, an analog of the “first variation” in minimization problems, as they relate
to the governing equations in the same way as the virtual-power principle relates to
corresponding force balances. In addition, variational inequalities constitute a weak
formulation of the governing equations — weak in the sense that less smoothness is
demanded of the solution, which is required to satisfy a global condition. Further, it
is such weak formulations that form the basis of finite-element approximations.

Here we first derive an equivalent formulation of the Mises flow equations in
terms of dissipation, and thereafter the full set of governing equations, including the
standard force balance, as a global variational inequality.453

82.1 Reformulation of the Mises Flow Equations in Terms of Dissipation

Our starting point is the Mises flow rule

T0 = Y(e p)
Ėp

|Ėp|
for Ėp '= 0, (82.1)

with Y(e p) > 0 the flow resistance. Associated with this flow rule are the dissipation

δ(Ėp, e p) = Y(e p)|Ėp| (82.2)

and the boundedness inequality

|T0| ≤ Y(e p), (82.3)

an inequality that defines those deviatoric stresses admissible to the theory.454

452 The use of variational inequalities as a basis for a mathematical theory of rate-independent hard-
ening plasticity is discussed in detail by Han & Reddy (1999). Reference should also be made to
the monograph of Simo & Hughes (1997) and to the early works of Moreau (1976, 1977). The
variational-inequality approach discussed in this section is based on ideas of Martin (1981), who
introduced an internal-variable formulation in which the flow rule is expressed in terms of dissipa-
tion; see also Bird & Martin (1986, 1990), who discuss algorithmic approaches based on Martin
(1981). Existence and uniqueness of solutions to the corresponding variational inequality — that is,
the inequality based on dissipation — were established for the problem with hardening by Reddy
(1992); cf. Han & Reddy (1999).

453 This section is taken from Gurtin & Reddy (2009).
454 Cf. (76.71)1,2 and (76.71). Admissibility is in the sense of maximum dissipation; cf. (79.7) and (79.21).
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The central ingredient in our reformulation of the Mises flow equations is the

Equivalency Theorem Choose tensors T0, Ėp ∈ SymDev and a scalar e p ≥ 0. Then
T0, Ėp, and e p satisfy the flow rule (82.1) and the boundedness inequality (82.3) if and
only if T0, Ėp, and e p satisfy the local inequality

δ(Ẽp, e p) ≥ δ(Ėp, e p) + T0 : (Ẽp − Ėp) for all Ẽp ∈ SymDev. (82.4)

PROOF. Throughout this proof the accumulated plastic strain e p is fixed and, for
convenience, suppressed as an argument; that is, we write

Y for Y(e p); δ(Ėp) for δ(Ėp, e p); δ(Ẽp) for δ(Ẽp, e p).

As our first step we show that if

Ėp '= 0, (82.5)
then455

(82.1) ⇐⇒ (82.4). (82.6)

If (82.1) is satisfied, then, by (82.2),

Y−1[δ(Ẽp) − δ(Ėp) − T0 : (Ẽp − Ėp)
]

= |Ẽp| − |Ėp| −
Ėp

|Ėp|
: (Ẽp − Ėp)

= |Ẽp| − Ėp

|Ėp|
: Ẽp

= |Ėp|−1(|Ėp| |Ẽp| − Ėp : Ẽp). (82.7)

Further, the Schwarz inequality implies that Ėp : Ẽp ≤ |Ėp| |Ẽp| and, hence, that the
last line of (82.7) is nonnegative; hence, (82.4) is satisfied. Thus (82.1) implies (82.4).

Next we prove the converse; that is, granted Ėp '= 0, (82.4) implies (82.1). We
begin by using (82.2) and its counterpart for Ẽp to rewrite the local inequality (82.4)
in the form

Y
(
|Ẽp| − |Ėp|

)
≥ T0 : (Ẽp − Ėp) for all Ẽp ∈ SymDev. (82.8)

Choose |Ẽp| = |Ėp|, divide (82.8) by |Ėp|, and let

Np = Ėp

|Ėp|
and Ñp = Ẽp

|Ẽp|
;

the result is

T0 : (Ñp − Np) ≤ 0. (82.9)

Next, choose an arbitrary tensor ,∈SymDev such that456

, : Np = 0. (82.10)

Let N denote the unit sphere in the space SymDev.457 There is then a curve Ñp(λ)
on N such that, for some λ0,458

Ñp(λ0) = Np and
dÑp(λ)

dλ

∣∣∣
λ=λ0

= , (82.11)

455 Since (82.1) implies that |T0| = Y, (82.6) is equivalent to the assertion that (82.1) and (82.3) are
together equivalent to (82.4).

456 Cf. Footnote 419.
457 Cf. (79.14).
458 Cf. Footnote 420.
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— and such that, by (82.9) and (82.11)1, the function

0(λ) def= T0 : (Ñp(λ) − Np) ≤ 0 (82.12)

has a maximum at λ = λ0. Consequently,

d0(λ)
dλ

∣∣∣∣
λ=λ0

= T0 :
dÑp(λ)

dλ

∣∣∣∣
λ=λ0

= 0,

so that, by (82.11),

T0 : , = 0 (82.13)

for every , ∈SymDev tangent to N at Np. The stress T0 must therefore be normal
to N at Np; there is hence a scalar β such that

T0 = βNp. (82.14)

Next, to show that β = Y, we first take Ẽp = 0. Then, by (82.14) and, since

Np : Ėp = |Ėp|,

(82.8) becomes Y|Ėp| ≤ β|Ėp|; consequently,

Y ≤ β. (82.15)

On the other hand, assume that Np = Ñp. Then, Np : Ẽp = |Ẽp| and (82.8) becomes

Y(|Ẽp| − |Ėp|) ≥ β(|Ẽp| − |Ėp|),

so that Y ≥ β. Thus, Y = β and, by (82.14), the flow rule T0 = YNp is satisfied. Thus,
(82.4) implies (82.1). We have therefore shown that, for Ėp '= 0, (82.1) is equivalent
to (82.4).

Assume next that

Ėp = 0, (82.16)

in which case — since (82.4) is equivalent to (82.8) — we must show that

(82.3) ⇐⇒ (82.8). (82.17)

Note, first, that by (82.16), (82.8) becomes

Y|Ẽp| ≥ T0 : Ẽp for all Ẽp ∈ SymDev. (82.18)

Dividing by |Ẽp| and then choosing Ẽp = T0, we find that

Y ≥ T0 :
T0

|T0|

= |T0|,

which is (82.3). Thus, (82.8) implies (82.3). Conversely, assume that (82.3) is sat-
isfied. Choose Ẽp ∈ SymDev arbitrarily. Then, (82.3) and the Schwarz inequality
imply that

Y|Ẽp| ≥ |T0||Ẽp|

≥ T0 : Ẽp,

which is (82.18). This completes the proof of the Equivalency Theorem.
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82.2 The Global Variational Inequality

We now turn to a derivation of the global variational inequality appropriate to prob-
lems involving the Mises flow equations. Without loss in generality we replace T0 in
(82.4) by T. Assume that the displacement u and Ėp, e p, T, and Ẽp are fields on B
(with e p consistent with (82.2) and Ẽp an arbitrary tensor in SymDev). Further, let

J (Ẽp, e p) =
∫

B

δ(Ẽp, e p) dv

=
∫

B

Y(e p) |Ẽp| dv, (82.19)

where we have used (82.2). Then — bearing in mind the (linear) elastic stress-strain
relation459

T = C(sym ∇u − Ep) (82.20)

with elasticity tensor C — we integrate (82.4) over B to give

J (Ẽp, e p) ≥ J (Ėp, e p) +
∫

B

(Ẽp − Ėp) : CEe dv, (82.21)

with

Ee def= sym∇u − Ep (82.22)

the elastic strain.
Consider boundary conditions of the form

Tn = tS on S and u = 0 on ∂B \ S, (82.23)

in which tS is a prescribed function on a subsurface S of ∂B. In the ensuing analysis
we restrict attention to virtual fields, termed kinematically admissible, that satisfy

ṽ = 0 on ∂B \ S. (82.24)

Granted the symmetry of T,460 a consequence of the classical principle of virtual
power §22.2 is then that the virtual power balance

∫

B

T : ∇ṽ dv =
∫

S

tS · ṽ da +
∫

B

b · ṽ dv (82.25)

is satisfied for all kinematically admissible virtual fields ṽ on B if and only if

DivT + b = 0 in B and Tn = tS on S. (82.26)

Without loss in generality we may replace ṽ in (82.25) by ũ − u̇, with ũ kinemat-
ically admissible, so that, by (82.20),
∫

S

tS · (ũ − u̇) da +
∫

B

b · (ũ − u̇) dv +
∫

B

(sym∇u̇ − sym∇ũ) : CEe dv = 0. (82.27)

459 We find it easier to work with the elasticity tensor C than with its isotropic form.
460 Cf. (82.20).
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Finally, if we add the left side of (82.27) to the right side of (82.21) we arrive at a
global variational inequality for Mises materials:

J (Ẽp, e p) ≥ J (Ėp, e p) +
∫

B

(Ėe − Ẽe) : CEe dv

+
∫

S

tS · (ũ − u̇) da +
∫

B

b · (ũ − u̇) dv, (82.28)

with

Ẽe def= sym∇ũ − Ẽp (82.29)

the virtual elastic-strain.
The variational inequality (82.28) poses an initial/boundary-value problem to

be solved for u and Ep, with e p related to Ep through (80.1)2

EXERCISE

1. Use the fundamental lemma of the calculus of variations (page 167) to show that
the virtual power balance (82.25) is satisfied for all kinematically admissible ṽ if
and only if (82.26) are satisfied.

82.3 Alternative Formulation of the Global Variational Inequality When
Hardening is Described by a Defect Energy

Tacit in the derivation of (82.28) is the assumption that the flow rule is purely dis-
sipative. But, as noted in the theorem on page 467, this purely dissipative theory
is equivalent to the theory with defect energy described in §80 provided Y(e p) and
δ(Ėp, e p) in the former are replaced by

Y0 + ĝ(e p) and Deff(Ėp, e p) (82.30)

in the latter, where ĝ(e p), the hardening stress, is defined in terms of the defect
energy via (80.5), while

Deff(Ėp, e p) =
[
Y0 + ĝ(e p)

]
|Ėp|

is the effective dissipation (80.15). Thus, by (82.19), J (Ẽp, e p) for the theory based
on a defect energy has the form

J (Ẽp, e p) =
∫

B

[Y0 + ĝ(e p)]|Ẽp| dv (82.31)

and, granted (82.31), the global variational inequality (82.28) remains valid. Further,
if we let

J0(Ẽp) =
∫

B

Y0|Ẽp| dv, (82.32)

then, by (82.31),

J (e p, Ẽp) = J0(Ẽp) +
∫

B

ĝ(e p) |Ẽp| dv (82.33)
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and (82.28) becomes

J0(Ẽp) ≥ J0(Ėp) +
∫

B

(Ėe − Ẽe) : CEe dv −
∫

B

ĝ(e p)(|Ẽp| − |Ėp|) dv

+
∫

S

tS · (ũ − u̇) da +
∫

B

b · (ũ − u̇) dv. (82.34)

In this form the terms involving the functional J0( ·) are dissipative, while the term
∫

B

ĝ(e p)(|Ẽp| − |Ėp|) dv,

which represents hardening, is energetic.
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83 Introduction

The classical principle of virtual power461 represents, for any subregion P and any
virtual velocity ũ, a balance

∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv =
∫

P

T : ∇ũ dv (83.1)

between

(i) the power expended within P by the stress T and
(ii) the power expended on P by the traction t(n) and the body force b;

and, what is most important, the balance (83.1) is equivalent to the classical balance

DivT + b = 0 (83.2)

and traction condition t(n) = Tn. The chief feature of this classical principle — and
one that may be used as a paradigm for the formulation of more general theories —
is a physical structure involving

• the introduction of stresses, body forces, and surface tractions through the manner
in which they expend power.

This observation is nontrivial — it allows one to use the virtual-power principle as
a basic tool in determining local force balances (and concomitant surface-traction
conditions) when the forms of the balances are not known a priori.462

461 Formulated as in §22.2, but in notation appropriate to the current discussion. The Remarks on
page 167 list important features of the virtual-power principle.
As is clear from §22.2,

the principle of virtual power is independent of constitutive equations; as such this principle is valid
for both solids and fluids and, most importantly, for plastic materials.

One often finds this principle formulated erroneously in terms of an underlying free energy, an error
arising from the observation that — in the absence of dissipation — energy minimization generally
results in partial-differential equations equivalent to those resulting from a corresponding virtual-
power principle.

462 For example, to formulate the classical Cosserat theory of couple stress one would assume that
the power expended within the body is represented, not only by the classical stress power, but, in
addition, by a couple stress M that expends power in concert with the gradient ∇ω of the rotation
ω = Curl u, so that ∫

P

(T : ∇ũ + M : ∇ω̃) dv (=)
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To fix ideas we begin by discussing conventional plasticity within the virtual-
power framework; what is unconventional about our approach is our allowance for
separate internal-power expenditures associated with elastic and plastic response.
Such a formulation, while consistent with conventional theory, provides a conve-
nient framework for a discussion of material stability. Further, an understanding of
the conventional theory within a virtual-power framework provides a foundation
upon which to build theories involving the gradient of plastic strain.463

represents the internal-power expenditure. This expenditure is balanced by an external-power ex-
penditure more general than the left side of (83.1), and a consequence of the corresponding virtual-
power principle is that the classical balance (83.2) and associated traction condition are replaced by
the balance

DivT + Curl DivM + b = 0

and the traction conditions

t∂P = Tn + Div (Mn×) − n · [∇(Mn×)]n + n × (DivM − 2HGn),

m∂P = n × Mn,

with H being the mean curvature of ∂P; cf. Fried & Gurtin (2009, §3.6, eqs. (3.24)–(3.25)), where
the couple stress is denoted by G instead of by M. The complicated nature of these relations con-
trasted with the simplicity and physical relevance of the power expenditure (=) demonstrates the
utility of the principle of virtual power in developing new theories of continuum mechanics.

463 Cf. Part XV.



84 Conventional Theory Based on the Principle
of Virtual Power

The virtual-power formulation is based on the belief that

• the power expended by each independent “rate-like” kinematical descriptor is
expressible in terms of an associated force system consistent with its own balance.

But the basic “rate-like” descriptors — the velocity u̇ and the elastic and plastic
distortions Ḣe and Ḣp — are not independent, since, by (75.8)–(75.12), they are
constrained by

∇u̇ = Ḣe + Ḣp, trḢp = 0, (84.1)

and it is not apparent what forms the associated force balances should take. It is in
such situations that the virtual-power principle displays its strength, because

• this principle automatically determines the underlying force balances.

84.1 General Principle of Virtual Power

Let P denote an arbitrary subregion of the body with n the outward unit normal on
the boundary ∂P of P.

The classical virtual-power principle is discussed in §22.2 and here, as there,
the formulation of this principle is based on a balance between the external power
W(P) expended on P and the internal power I(P) expended within P. But, in con-
trast to the discussion of §22.2, we replace the classical stress power T : ∇u̇ by a de-
tailed reckoning that individually characterizes the disparate kinematical processes
involved, namely,

• the stretching of the underlying microscopic structure as described by the elastic
distortion-rate Ḣe, and

• the flow of dislocations through that structure as described by the plastic strain-
rate Ḣp.

Specifically, we allow for power expended internally by

• an elastic stress Te power conjugate to Ḣe, and
• a plastic stress Tp power conjugate to Ḣp,

and we write the internal power in the form

I(P) =
∫

P

(Te : Ḣe + Tp : Ḣp) dv. (84.2)
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Here, Te and Tp are defined over the body for all time. Since Ḣp is deviatoric, we
may, without loss in generality, assume that Tp is deviatoric; viz.

trTp = 0. (84.3)

The internal power is balanced by power expended externally by tractions on
∂P and body forces acting within P. We assume that this external power is applied in
part by surface tractions t(n) (for each unit vector n) acting over ∂P and by a body
force b, presumed to account for inertia, acting over the interior of P. Thus, granted
an inertial frame,

b = b0 − ρü. (84.4)

As is standard, we assume that t(n) and b are power-conjugate to the velocity u̇, so
that

W(P) =
∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv (84.5)

represents the power expended by standard surface tractions and body forces. Here
t(n) (for each unit vector n) and b are defined over the body for all time.464

The principle of virtual power takes as its starting point the requirement that
the internal and external power expenditures be balanced, an hypothesis that may
be motivated by its classical counterpart (22.11). We, therefore, require that

∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv

︸ ︷︷ ︸
W(P)

=
∫

P

(Te : Ḣe + Tp : Ḣp) dv

︸ ︷︷ ︸
I(P)

, (84.6)

a relation we refer to as the power balance.
Consider the fields u̇, Ḣe, and Ḣp — at some arbitrarily chosen but fixed time —

as “virtual velocities” to be specified in a manner consistent with (84.1); that is, de-
noting the virtual fields by ũ, H̃e, and H̃p to differentiate them from fields associated
with the actual evolution of the body, we require that

∇ũ = H̃e + H̃p and trH̃p = 0. (84.7)

We define a (generalized) virtual velocity to be a list

V = (ũ, H̃e, H̃p) (84.8)

of such fields consistent with the constraint (84.7), and we write

W(P,V) =
∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv,

I(P,V) =
∫

P

(Te : H̃e + Tp : H̃p) dv

(84.9)

for the corresponding external and internal expenditures of virtual power. The
principle of virtual power is then the requirement that, given any subregion P (of
the body),

∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv

︸ ︷︷ ︸
W(P,V)

=
∫

P

(Te : H̃e + Tp : H̃p) dv

︸ ︷︷ ︸
I(P,V)

(84.10)

for all virtual velocities V .

464 Cf. (22.11).
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Our discussion in §22.2 of the classical virtual-power principle is based on a
virtual internal-power expenditure for large deformations of a form

∫

Pt

T : grad ṽ dv. (84.11)

The argument in §22.2 that renders T symmetric and converts the integrand of
(84.11) to the more standard form T : D̃ is based on the requirement that (84.11)
be frame-indifferent. A similar argument may be applied to the theory currently
under consideration, but beginning with a virtual-power framework based on the
internal power I(P,V) specified in (84.9)2.

Specifically, frame-indifference, as applied to small deformations, requires that
the internal power I(P,V) be invariant under transformations of the form465

H̃e∗ = H̃e + !, H̃p∗ = H̃p, (84.12)

with ! an arbitrary spatially constant skew tensor field. A consequence of this re-
quirement is that

∫

P

Te : (H̃e + !) dv =
∫

P

Te : H̃e dv (84.13)

for all P and all skew tensors !, so that, necessarily, Te is symmetric,

Te = Te), (84.14)

and ∫

P

Te : H̃e dv =
∫

P

Te : Ẽe dv. (84.15)

Remark. This argument based on frame-indifference and leading to the symmetry
of the stress T(= Te) and hence to the observation that the internal power expendi-
ture has the form

I(P) =
∫

P

(T : Ėe + · · · ) dv (84.16)

applies without change in many of the later sections and will not be repeated.

Our next step is to determine the local force balances implied by virtual power.
In applying the power balance (84.10), we are at liberty to choose any V consistent
with the constraint (84.7). Consider a virtual velocity V with ũ arbitrary and

H̃e = ∇ũ, (84.17)

so that, by (84.7),

H̃p ≡ 0. (84.18)

For this virtual velocity (84.10) reduces to a balance466

∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv =
∫

P

Te : ∇ũ dv (84.19)

involving a single kinematic variable: the velocity ũ of points of the body; for that
reason we refer to virtual velocities V consistent with (84.17) as macroscopic.

465 These transformation laws are best understood when viewed as small-deformation counterparts of
corresponding laws appropriate to large deformations. Cf. §91.5; in particular, (91.28).

466 The form of this balance is directly analogous to that of the classical virtual-power balance (22.13).
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Next, as a consequence of the divergence theorem
∫

P

Te : ∇ũ dv = −
∫

P

DivTe · ũ dv +
∫

∂P

(Ten) · ũ da

and the balance (84.19) becomes
∫

∂P

(t(n) − Ten) · ũ da +
∫

P

(DivTe + b) · ũ dv = 0.

Thus, since both ũ and P are arbitrary, we conclude from the fundamental lemma of
the calculus of variations (page 167) that the traction condition

t(n) = Ten (84.20)

and local force balance

DivTe + b = 0 (84.21)

are satisfied.
This traction condition and force balance and the symmetry condition (84.14)

are the classical conditions satisfied by the (standard) Cauchy stress T, an observa-
tion that allows us to write

T def= Te (84.22)

and to view (the symmetric tensor) T as the macroscopic stress and (84.21) as the
local macroscopic force balance. This use of the adjective macroscopic would seem
justified by the foregoing analysis, as the derivation of the balance (84.21) involved
only the macroscopic virtual velocity V described via (84.17) and (84.18). In view of
(84.4) and (84.22), (84.21) is equivalent to the momentum balance

DivT + b0 = ρü. (84.23)

We now show that, unlike conventional theories of plasticity,

• there is an additional force balance associated with the plastic stress Tp.

To derive this balance we consider a virtual velocity with H̃p an arbitrary deviatoric
tensor field, with H̃e given by

H̃e = −H̃p, (84.24)

and with

ũ ≡ 0, (84.25)

consistent with (84.7). Virtual velocities V of this type might be termed microscopic
because they involve no macroscopic motion of any part of the body: There are
only microscopic motions in which local changes in shape induced by plastic flow are
balanced by local stretch and rotation of the material structure. For such a V , (84.10)
reduces to

∫

P

(Tp − T) : H̃p dv = 0. (84.26)

Next, by (84.3), Tp is deviatoric and, since H̃p is deviatoric, (75.6) yields T : H̃p =
T0 : H̃p; thus, since P is arbitrary, (84.26) implies that

(Tp − T0) : H̃p = 0. (84.27)
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If we take H̃p = W̃p, an arbitrary skew tensor, then, since T is symmetric,
(84.27) becomes Tp : W̃p = 0 for all skew W̃p, so that Tp is symmetric:

Tp = Tp), (84.28)

and by (84.3) also deviatoric. Finally, since the deviatoric tensor field H̃p in
(84.27) is arbitrary, we are led to the microscopic force balance

T0 = Tp. (84.29)

The appellation microscopic force balance would seem justified by the argu-
ment leading to (84.29), an argument involving only microscopic virtual velocities
as defined by (84.24) and (84.25). Further, (84.29) might be viewed as a balance
between

• forces described by the macroscopic stress T and associated with the material
structure, and

• forces described by the microscopic stress Tp and associated with the system of
dislocations.467

Finally, we note that — as a consequence of the symmetries (84.14) and (84.28)
of the stresses Te and Tp together with the identification Te = T — the power bal-
ance (84.6) becomes

∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv

︸ ︷︷ ︸
W(P)

=
∫

P

(T : Ėe + Tp : Ėp) dv

︸ ︷︷ ︸
I(P)

. (84.30)

84.2 Principle of Virtual Power Based on the Codirectionality Constraint

84.2.1 General Principle Based on Codirectionality

We now develop a more restrictive form of the virtual-power principle by requir-
ing — from the outset — that the codirectionality constraint468

T0

|T0|
= Np and Np ≡ Ėp

|Ėp|
(84.31)

be satisfied. Thus, necessarily, T(≡ Te) is symmetric, consistent with frame-
indifference.469

By (84.31)2 we can rewrite Ėp in the form470

Ėp = ė pNp and ė p = |Ėp| ≥ 0, (84.32)

so that

Ḣp = ė pNp + Ẇp and Ẇp = skw Ḣp,

with Ẇp the plastic spin. The kinematical constraint (84.1) then takes the form

∇u̇ = Ḣe + ė pNp + Ẇp, (84.33)

467 Cf. §75.3, where we required that the stress T be consistent with two separate constitutive relations:
(i) one elastic, associated with the classical elastic strain energy; and (ii) a second viewed as a con-
straint on purely elastic response imposed by the plasticity of the material. The microscopic force
balance (84.29) demonstrates the physical consistency of the present view with that of §75.3.

468 Cf. (81.20).
469 Cf. the Remark on page 491.
470 Cf. (76.8).
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and the definitions

τ p = Np : Tp and Tp
skw = skw Tp (84.34)

applied to (84.6) (with T(≡ Te) symmetric) yield the power balance
∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv

︸ ︷︷ ︸
W(P)

=
∫

P

(T : Ėe + τ pė p + (skw Tp) : Ẇp) dv

︸ ︷︷ ︸
I(P)

. (84.35)

As before we consider the fields u̇, Ḣe, and Ḣp as “virtual velocities” ũ, H̃e, and
H̃p consistent with

∇ũ = H̃e + H̃p, trH̃p = 0. (84.36)

But we now assume that the codirectionality constraint (84.31)1 — viewed as a con-
straint on the flow direction Np — is satisfied. Consistent with this we restrict atten-
tion to virtual plastic strain-rates

Ẽp = ẽ pNp, ẽ p ≥ 0,

in which:

(i) the accumulated plastic strain-rate ẽ p, being virtual, is nonnegative but other-
wise arbitrary;

(ii) the flow direction Np is not arbitrary but instead constrained to satisfy the codi-
rectionality constraint (84.31)1.

Based on this, we define a (generalized) virtual velocity to be a list

V = (ũ, H̃e, ẽ p, W̃p) (84.37)

consistent with the kinematical constraint

∇ũ = H̃e + ẽ pNp + W̃p
︸ ︷︷ ︸

H̃p

, (84.38)

and, since T : Ẽe = T : H̃e, we write

W(P,V) =
∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv,

I(P,V) =
∫

P

(T : H̃e + τ pẽ p + (skw Tp) : W̃p) dv

(84.39)

for the corresponding external and internal expenditures of virtual power. The prin-
ciple of virtual power is then the requirement that, given any subregion P,

∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv =
∫

P

(T : H̃e + τ pẽ p + (skw Tp) : W̃p) dv (84.40)

for all virtual velocities V . Further, the argument leading to the local force balance

DivT + b = 0

remains valid.471

471 Cf. (84.21).
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Our final step is to derive the microscopic force balance. Here, the microscopic
virtual velocity defined by (84.24) and (84.25) has the counterpart

H̃e = −(ẽ pNp + W̃p), ũ ≡ 0,

and (84.40) implies that, since T : W̃p = 0,
∫

P

[(τ p − T : Np)ẽ p + (skw Tp) : W̃p] dv = 0.

But both P and the skew field Wp are arbitrary; thus, necessarily, skw Tp = 0 and

(τ p − T : Np)ẽ p = 0.

Finally, since ẽ p ≥ 0 is arbitrary, and since, by (84.31)1,

Np : T0 = |T0|, (84.41)

we have the microscopic force balance

|T0| = τ p. (84.42)

An interesting consequence of the codirectionality constraint is the scalar nature
of the balance (84.42). A second (and related) consequence is that only the normal
part τ p = Np : Tp of Tp is important; indeed, the skew part of Tp vanishes and the
“tangential part” is indeterminate.

84.2.2 Streamlined Principle Based on Codirectionality

A streamlined version of the virtual-power principle (84.40) may be based on as-
suming from the outset that the basic kinematical descriptors are the velocity u̇,
the elastic strain-rate Ėe, and the rate ė p of the accumulated plastic strain. These
descriptors are subject to the kinematical constraint

sym ∇u̇ = Ėe + ė pNp, (84.43)

where throughout this subsection Np is presumed to be consistent with the codirec-
tionality constraint

T0

|T0|
= Np (84.44)

(so that, necessarily, |Np| = 1). The plastic strain-rate may then be defined by

Ėp = ė pNp.

The streamlined principle is based on the conventional form (84.5) of the external
power, but replaces the internal power (84.39) with the simple relation

I(P) =
∫

P

(
T : Ėe + τ pė p)dv. (84.45)

The streamlined virtual-power principle is then the requirement that the virtual
balance

∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv =
∫

P

(
T : Ẽe + τ pẽ p)dv (84.46)

be satisfied for all subregions P and all virtual velocities ũ, Ẽe, and ẽ p consistent with
the kinematical constraint

sym ∇ũ = Ẽe + ẽ pNp. (84.47)
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Direct consequences of the streamlined virtual-power principle are the macro-
scopic and microscopic force balances

DivT + b = 0 and |T0| = τ p. (84.48)

EXERCISE

1. Establish the balances (84.48) as consequences of the streamlined virtual-power
principle defined in the paragraph containing (84.46).

84.3 Virtual External Forces Associated with Dislocation Flow

We find it convenient to allow also for external microscopic forces associated with
the flow of dislocations through the body. Because such flows are characterized by
the plastic strain-rate Ėp, we introduce an arbitrary symmetric and deviatoric exter-
nal microscopic force B p power-conjugate to Ėp, and, hence, add the term472

∫

P

B p: Ėp dv (84.49)

to the external power (84.5). The external power therefore has the expanded form

W(P) =
∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv +
∫

P

B p : Ėp dv. (84.50)

It would not seem a simple matter to produce the external microscopic force
B p in the laboratory; for that reason B p should be considered as virtual. Thus one
might ask:

(‡) Why introduce the external microscopic force B p?

The answer: The inclusion of B p allows for physically meaningful “thought exper-
iments” that we use to motivate a precise notion of material stability. Specifically,
we consider the external microscopic force B p as a test force applied by an external
agency to evolve the system of dislocations via the power expenditure B p: Ėp, an
expenditure that — when positive — serves as an indication of the stability of the
system with B p = 0. Further, because we account for the power expended by B p,
this force is also useful in determining thermodynamically consistent constitutive
relations for Te and Tp.473

The use of external forces to justify kinematical processes is not new. In fact, the mechanics lit-
erature is replete with arguments in which various kinematical fields are independently varied without
consideration of forces needed to incur such variations. For example, Rice (1971) argues that: “. . . one
may consider the structural rearrangements and the applied stress or strains as independently prescrib-
able quantities . . . .” Other workers assume the existence of an “external agency that performs work,”
but say little about the form of this work or how it enters the theory; for example, Drucker (1950) as-
serts that: “The concept of work-hardening . . . can be expressed in terms of the work done by an external
agency . . . .” In contrast, the theory presented here makes explicit the external forces needed to support the
“virtual processes” used, and, in so doing, ensures that these forces, whether virtual or not, enter the theory
in a consistent manner.

The only change resulting from the use of the external power W(P) in the form
(84.50) rather than in the form (84.5) used in §84.1 is that the microscopic force
balance (84.29) is replaced by the virtual microscopic force balance

Tp − T0 = B p. (84.51)

472 A further discussion of the external microscopic force B p is given in §84.5.
473 Cf. the sentence following (85.1).



84.4 Free-Energy Imbalance 497

Further, for the virtual-power principle based on the codirectionality constraint —
but with W(P) defined by (84.50) — the microscopic force balance has the form

τ p − |T0| = bp, (84.52)

with bp the scalar external force defined by

bp = Np : B p. (84.53)

Remark. Throughout this book, we include the external force B p (or bp) only when:
(a) its use is required to establish a given result; or (b) its use leads to a better
understanding of a physical notion or assumption.

EXERCISES

1. Verify (84.51).
2. Establish (84.52) and (84.53).

84.4 Free-Energy Imbalance

Because our discussion of force is here based on a paradigm far different from that
introduced previously, and because this paradigm is based on nonclassical notions
of stress and, consequently, power, it is necessary to derive anew an appropriate
free-energy imbalance. With this as a goal, we note that the general free-energy
imbalance introduced in §29.1 here leads to the requirement that.

(‡) for any subregion P of the body, the temporal increase in free energy of P must
be balanced by the power expended on P minus the dissipation within P, and the
dissipation is nonnegative.

Thus, letting 2 denote the free energy and

δ ≥ 0

the dissipation, both measured per unit volume, we conclude from (84.5) that (‡)
takes the form of a free-energy imbalance

˙∫

P

2 dv =
∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv

︸ ︷︷ ︸
W(P)

−
∫

P

δ dv. (84.54)

Further, appealing to the power balance (84.30), we find that (84.54) becomes

˙∫

P

2 dv =
∫

P

(
T : Ėe + Tp : Ėp) dv −

∫

P

δ dv. (84.55)

Thus, since ˙∫
P 2 dv =

∫
P 2̇ dv and P is arbitrary, (84.55) has the local form

2̇ − T : Ėe − Tp : Ėp = −δ ≤ 0. (84.56)

This inequality represents the local free-energy imbalance of the general theory.
For the theory of §84.2, which is based on the codirectionality constraint, (84.32)

and (84.34) imply that

Tp : Ėp = τ pė p

and hence that the free-energy imbalance has the form

2̇ − T : Ėe − τ pė p = −δ ≤ 0. (84.57)
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EXERCISE

1. Show that the inclusion of the external force B p (or bp) does not alter the con-
clusions (84.56) and (84.57).

84.5 Discussion of the Virtual-Power Formulation

From a pragmatic point of view the standard and virtual-power formulations of the
theory are equivalent, at least in the absence of the external microscopic force B p;
indeed for B p = 0 the microscopic force balance (84.26) becomes

T0 = Tp,

a result that renders

Tp : Ėp = T0 : Ėp (84.58)

and reduces the free-energy imbalance (84.56) to the conventional imbalance
(75.14). Even so, we believe that the virtual-power formulation is conceptually
deeper than conventional formulations because (84.58) is a “theorem” rather than
an assumption, and because:

(i) The virtual-power formulation reinforces the view that the stretching of the un-
derlying microscopic structure and the flow of dislocations through that struc-
ture are disparate kinematical processes.

(ii) The virtual-power formulation leads to a final free-energy imbalance (84.56)
that involves elastic and plastic stresses T and Tp, each available for constitu-
tive prescription; it does not involve subjecting the stress T to separate elastic
and plastic constitutive prescriptions — a procedure inconsistent with what is
common in continuum mechanics — nor does it involve an a priori separation of
the free-energy imbalance into elastic and plastic parts as in (75.15) and (75.16).

(iii) As we shall see, the virtual-power formulation equipped with the external mi-
croscopic force B p leads naturally to a notion of material stability that, inter-
estingly, is identical to that of maximum dissipation.

(iv) The virtual-power formulation allows for a straightforward generalization (§90)
of the conventional theory to situations in which gradients of the plastic strain
and its rate are independent constitutive variables; it is difficult to see how such
a generalization could emanate from a conventional formulation of the theory.
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We neglect defect energy and assume separability of elastic and plastic constitutive
response; therefore, guided by (84.56), we consider constitutive relations of the form

2 = 2̂(Ee), T = T̂(Ee),

Tp = T̂p(Ėp, e p).
(85.1)

As in §76, the assumption of rate-independence reduces (85.1)3 to a relation of
the form474

Tp = T̂p(Np, e p), Np = Ėp

|Ėp|
, (85.2)

where, as in (76.70), the accumulated plastic strain e p is introduced to character-
ize strain-hardening. Importantly, the constitutive relation (85.2) is undefined when
Ėp = 0; in this case,

• we consider the plastic stress Tp as indeterminate and the microscopic force bal-
ance Tp − T0 = B p as trivially satisfied.

The presence of the external body force B p (as well as the conventional body
force b) allows us to use the Coleman–Noll procedure475 to establish constitutive re-
strictions that are necessary and sufficient that all constitutive processes476 be con-
sistent with the free-energy imbalance (84.56). Here, guided by §48.2, we assume
that the macroscopic and microscopic body forces477

b0 = ρü − DivT and B p = Tp − T0

are arbitrarily assignable, so that the macroscopic and microscopic balance laws in
no way restrict the class of constitutive processes under consideration.

474 Cf. (76.20) and the bullet on page 430. Equation (85.2) is the counterpart of the constitutive relation

T0 = T̂0(Np, ep) (==)

in the conventional formulation; cf. (76.21). In (85.2), the response function is denoted by T̂p since
its values represent plastic stresses; in contrast, the response function in the conventional relation
(==) is T̂0, because its values represent standard deviatoric stresses T0. In view of the microscopic
force balance (84.51), the present theory reduces to the conventional theory if we assume that B p ≡
0, for then we could simply redefine T̂p to be T̂0, the deviatoric elastic stress (75.18).

475 Discussed in §48.2. We sketch this procedure to demonstrate that its (rigorous) use in plasticity
requires the presence of the external microscopic force B p.

476 I.e., “processes” consistent with the constitutive relations (85.1).
477 Cf. (84.23) and (84.51).
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Consider a constitutive process with Ėp ≡ 0. Then the free-energy imbalance
(84.56) reduces to 2̇ ≤ T : Ėe, an inequality satisfied in all such constitutive processes
only if T̂ = ∂2̂/∂Ee, a result that reduces (84.56) to Tp : Ėp ≥ 0. The requirement
that (84.56) hold in all constitutive processes therefore yields the following thermo-
dynamic restrictions:

T̂(Ee) = ∂2̂(Ee)
∂Ee , T̂p(Np, e p) : Ėp ≥ 0. (85.3)

Conversely, processes related through (85.3) are (trivially) consistent with the free-
energy imbalance (84.56).

Finally, assuming that the free energy is quadratic and isotropic we arrive at the
elastic constitutive equations (75.17).



86 Material Stability and Its Relation to
Maximum Dissipation

In this section we develop a notion of stability useful in the derivation of general
flow rules.478 Metaphysical ideas underlying the notion of stability for plastic ma-
terials are due to Drucker (1950, 1952), who gave formal arguments showing that
yield surfaces for stable materials must be convex with outward unit normal the flow
direction. This result is often referred to as Drucker’s Theorem.479

While our conclusions coincide with those of Drucker, our notion of stability,
introduced by Gurtin (2003), is far different from that of Drucker. Like Drucker we
base our discussion on a notion of “work done by an external agency.” For Drucker:

(i) The forces applied by the external agency are introduced by incrementing the
standard macroscopic forces.

(ii) The corresponding work corresponds to work done in closed, quasi-static, ho-
mogeneous cycles involving standard paths in the elastic range and infinitesimal
paths on the yield surface.

But, unlike Drucker, our notion of work done — actually power expended — by
an external agency is made precise. Here — because we base the theory on the
principle of virtual power — we have at our disposal a (virtual) external microscopic
force B p related to the elastic and plastic stresses T and Tp via the microscopic force
balance480

Tp − T0 = B p. (86.1)

To facilitate a comparison of our ideas with those of Drucker, we view B p as a force
exerted by an external agency.

The force balance (86.1) is accompanied by an associated power balance

(Tp − T0) : Ėp = B p: Ėp, (86.2)

in which B p: Ėp represents power expended by the external agency.481 To sim-
plify the ensuing discussion we divide the microscopic power balance (86.2) by |Ėp|

478 Note the following remark of Drucker (1964, p. 239): “Postulating material to be stable in the
mechanical sense [discussed here] does not mean that all materials are stable. . . . Isothermal me-
chanical stability of material is a means of classification, it is not a law of nature.”

479 Cf. Drucker (1964) and the references therein. A discussion of Drucker’s ideas is given by Malvern
(1969, pp. 356–363). A closely related proof of Drucker’s theorem is due to Il’yushin (1954, 1961),
who bases his discussion on the requirement that the work done around a closed cycle be nonnega-
tive; cf. Pipkin & Rivlin (1965) and Lucchesi & Podio-Guidugli (1990).

480 Cf. (84.51).
481 Cf. (84.49).
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(presumed to be strictly positive); the result is a (normalized) virtual microscopic
power-balance

B p : Np = (Tp − T0) : Np (86.3)

that is central to what follows.
Our notion of stability is based on the balance (86.1), and for that reason we

work with the constitutive relation

Tp = T̂p(Np, e p) (86.4)

for the plastic stress Tp.482 In so doing

(i) Tp always denotes the plastic stress; as such it is related to the flow direction Np

through the constitutive relation (86.4);
(ii) T0 always denotes the deviatoric macroscopic stress; as such it is arbitrary.

As before we use the term normalized flow for a pair (T0, Np) with T0 a (macro-
scopic deviatoric) stress and Np a flow direction. For (T0, Np) such a flow and Tp —
given by the constitutive relation (86.4) — the plastic stress corresponding to Np, the
external force B p computed via (86.1)483 represents a force exerted by an external
agency in support of the normalized flow (T0, Np).

In this case, we refer to a normalized flow (T0, Np) as physically attainable if the
external force needed to support it vanishes; viz.

B p = 0. (86.5)

Thus, by (86.1) and (86.4), (T0, Np) is physically attainable484 if and only if T0 and
Np are related through the flow rule485

T0 = T̂p(Np, e p). (86.6)

Hence,

(‡) physically attainable flows — that is, flows that do not require a virtual external
microscopic power-expenditure — are possible when and only when the devia-
toric macroscopic stress T0 and the flow direction Np are related through the flow
rule (86.6).

The only flows that one might see in actual experiments are those that are
physically attainable and hence consistent with the flow rule. More generally, the
presence of an external agency as represented by the external force B p allows us
to at least contemplate “thought experiments” involving normalized flows (T0, Np)
that are not compatible with the flow rule, an observation essential to our discus-
sion of stability. Specifically, given such a flow (T0, Np), we consider B p : Np as a test
expenditure of power applied by the external agency to investigate the stability of
the normalized flow (T0, Np) — and we note that conventional notions of material
stability486 would then imply that

• if

B p : Np > 0 for all Np (86.7)

482 Cf. (85.2).
483 Cf. (84.51).
484 This definition of a physically attainable flow is consistent with that given on page 455.
485 Within this virtual-power-based framework the flow rule is not simply a constitutive assumption (as

in most theories of plasticity), but instead it represents the microscopic force balance augmented by
a constitutive relation for the plastic stress.

486 Cf. Drucker (1964,§2).
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then the external agency expends power for flow in any direction; in this case
there is an energetic barrier for flow and the “system” is stable; as we wish to
include neutral stability in our notion of stability, we replace (86.7) by

B p : Np ≥ 0 for all flow directions Np. (86.8)

The following definition — based on the foregoing bullet and the power balance
(86.3) — is central to what follows:487 A deviatoric stress T0 is materially stable if

(T̂p(Np, e p) − T0) : Np ≥ 0 for every flow direction Np. (86.9)

Thus T0 is materially stable if and only if, given any flow direction Np, plastic flow
in the direction of Np requires a nonnegative expenditure of power by an external
agency.

Within the present framework the expression (76.26) for the flow resistance
takes the form488

Y(Np, e p) = Np : T̂p(Np, e p). (86.10)

A stress T0 is thus materially stable if and only if

T0 : Np ≤ Y(Np, e p) for every flow direction Np. (86.11)

Comparing this result with (79.7) we arrive at the

Equivalency Theorem A deviatoric stress T0 is materially stable if and only if T0
is admissible in the sense of maximum dissipation. In view of this equivalence, each
of the results established in §79 — the section on maximum dissipation — becomes a
result based on material stability.489

Remark. We based our proof of Drucker’s Theorem (page 461) on the notion of
maximum dissipation, chiefly because that notion is used throughout the plasticity
literature, and because the notion of material stability as used here requires the
use of virtual power in conjunction with ideas that would seem unfamiliar to most
plasticians. Having said this, we believe that material stability is the more compelling
notion, because it is not simply presented as an “axiom” but is instead grounded on
a rigorous argument based on the principle of virtual power and classical notions of
stability.

487 Cf. Gurtin (2003, p. 65). Note that, while the external microscopic force B p provides a motivation
for the notion of material stability, B p does not enter the inequality (86.9) upon which this definition
is based.

488 We assume that, as in the conventional theory discussed in §76.3, the dissipation is strict.
489 In particular, using this equivalency one easily converts the proof of Drucker’s Theorem on page 461

to a proof based on material stability.
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87 Introduction

As reviewed by Hutchinson (2000), a number of experimental results includ-
ing those from nano/micro-indentation, torsion of micron-dimensioned wires, and
bending of micron-dimensioned thin films, all show that490

• in the approximate size range between 100 nm and 50 µm, the strength of
metallic components undergoing inhomogeneous plastic flow is inherently size-
dependent, with smaller components being stronger than larger components.

Micromechanical studies of dispersion-strengthening in metals by hard particles
lead to a similar conclusion:491

• For the same volume fraction of particles, the flow strength of the material in-
creases as the average particle size and the average particle spacing decrease.

These experimental observations cannot be captured by conventional theories of
plasticity, because such theories do not contain intrinsic material length-scales.

What is, apparently, the earliest attempt at a plasticity theory with a material
length-scale is contained in the seminal work of Aifantis who — working within the
framework of small deformations — proposed the flow rule492

T0 = (Y(e p) − β,e p)Np, (87.1)

obtained by simply adding the term −β,e p to the conventional flow resistance
Y(e p). Here

, = Div∇

is the Laplace operator, e p is the accumulated plastic strain, and β > 0 is a material
constant. If we let τ denote the resolved shear defined by

τ = T0 : Np, (87.2)

then (87.1) implies that

τ = Y(e p) − β,e p. (87.3)

The presence of a flow rule, such as (87.3), in the form of a partial-differential
equation would seem indicative of the absence of a basic force balance, a possibility

490 Cf., e.g., Stelmashenko, Walls, Brown & Milman (1993), Ma & Clarke (1995), Fleck, Muller,
Ashby & Hutchinson (1994), and Stolken & Evans (1998).

491 Cf., e.g., Ashby (1970) and Lloyd (1994).
492 Cf. Aifantis (1987, eq. (99)). Cf. also Aifantis (1984, eq. (31)) (which pertains to one space-

dimension and contains a typographical error) and Mülhaus & Aifantis (1991).
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reinforced by the bullet on page 492 and the discussion surrounding (84.29). In fact,
the Aifantis flow rule is the precursor to a large class of flow rules for plasticity in
the form of partial-differential equations, many of which are based on the principle
of virtual power,493 a paradigm that automatically delivers the missing force balance
from assumptions concerning the manner in which power is expended by stresses,
surface tractions, and body forces.494 We refer to (87.3) as a microscopic force
balance.495

Within the present context, the term gradient theory connotes a theory involving
constitutive dependencies on the gradient of the plastic strain and/or its rate. In this
chapter, we discuss two gradient theories:

(I) The Aifantis theory. In that theory ∇e p is the relevant gradient field and a basic
assumption is the (conventional) codirectionality hypothesis requiring that the
direction of plastic flow coincide with the direction of the deviatoric stress.496

The Aifantis theory is fairly simple and results in a scalar flow rule amenable to
numerical simulations. But this simplicity results in several deficiencies, specif-
ically, the theory (as presented here) seems incapable of:

(i) accounting for a backstress and hence for the Bauschinger effect;
(ii) accounting directly for a defect energy dependent on the Burgers vec-

tor;497

(iii) characterizing strengthening.498

(II) The Gurtin–Anand theory.499 This theory has ∇Ep as the relevant gradient field
and the resulting flow rule is a tensorial partial-differential equation, rendering
the theory far richer than that of Aifantis. On the other hand, the theory is able
to account for a backstress, an energy dependent on the Burgers vector, and
strengthening.

In discussing these theories we do not find it necessary to introduce the external
virtual microscopic force B p (or bp).500 In the same vein, we shall content ourselves
with constitutive equations that are sufficient — but generally not necessary — for
compatibility with thermodynamics.

493 A general survey of the early work in gradient-plasticity is contained in the review of Fleck &
Hutchinson (1997). More recent theories — substantially different from one another — are due
to Fleck & Hutchinson (2001), Gurtin (2000b, 2002, 2003, 2004), Cermelli & Gurtin (2002),
Gurtin & Needleman (2004), Gudmundson (2004), and Gurtin & Anand (2005a,b). This list omits
theories not based on the principle of virtual power.

494 Cf. the discussion surrounding the bullet on page 487.
495 Cf. (84.29) and the ensuing discussion.
496 Cf. (81.20).
497 As described by the tensor G = Curl Hp defined in (88.5).
498 An increase in the coarse-grain flow resistance with decreasing length-scales.
499 Cf. Gurtin & Anand (2005a).
500 Cf. the Remark on page 497.
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As a precursor to a discussion of these theories, we introduce two basic kinematical
notions: the Burger vector and irrotational plastic flow.

88.1 Characterization of the Burgers Vector

Plasticity in crystals arises in response to the motion of dislocations, and
the dislocation-induced defectiveness of a crystal may be characterized by the
Burgers vector,501 a geometric quantity that measures the closure failure of cir-
cuits in the atomic lattice. Both dislocations and their accompanying Burgers vector
are microscopic quantities: There are no dislocations in a continuum theory. Even
so, the microscopic definition of the Burgers vector may be lifted, almost without
change, to form a macroscopic kinematical concept appropriate to a continuous
body undergoing plastic deformation.

Consider a two-dimensional crystal lattice as displayed schematically in Fig-
ure 88.1; in that figure, (a) shows the undeformed defect-free crystal lattice, while
(b) shows the deformed lattice with a dislocation at the point marked with the sym-
bol ⊥. Consider a counterclockwise closed circuit C, with starting lattice point S and
finishing lattice point F , that lies in the deformed lattice and surrounds the disloca-
tion. Then, because of the presence of the dislocation, CR, which is C as viewed in
the dislocation-free undeformed crystal, is not closed. The vector b closing CR and
directed from the end point F to the starting point S is called the Burgers vector.

To derive the macroscopic counterpart of this notion, consider first the decom-
position (75.8) of the displacement gradient ∇u into elastic and plastic parts He and
Hp, viz.

∇u = He + Hp. (88.1)

Now, consider a closed curve C in the body. Assume that C is the boundary curve of
a smooth oriented surface S in the body, with e the unit normal field for S. Then by
Stokes’ theorem (4.8)3 and, since Curl ∇u = 0,502

∫

C

(∇u)dX =
∫

S

(Curl ∇u))e da

= 0. (88.2)

501 According to Teodosiu (1982, p. 101), whose explanation we follow, the correct definition is due to
Frank (1951), although the basic idea stems from work of Burgers (1939).

502 Cf. (3.25)6.
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Figure 88.1. Schematic of an edge dislocation in a crystal: (a) the undeformed defect-free
crystal lattice; (b) the deformed lattice with an edge dislocation at the point marked ⊥. The
Burgers circuit C in the deformed lattice around the edge dislocation is a closed circuit that
starts and finishes at the lattice point S. The inverse image CR of the circuit C in the unde-
formed defect-free crystal starts at S and ends at F , and is therefore not closed; the closure-
failure of CR, as described by the vector from F to S, is called the Burgers vector and denoted
by b.

Next, because of our assumption that the deformation is small, the deformed and
undeformed lattices are geometrically indistinguishable. However, because Hp rep-
resents the distortion of the lattice due to the formation of dislocations, the corre-
sponding integration around C in the distorted lattice is represented by the integral

b(C) =
∫

C

Hp dX

=
∫

S

(Curl Hp))e da, (88.3)

an equation that has the component form

bj (C) =
∫

C

H p
jk dXk

=
∫

S

εipq
∂H p

jq

∂Xp
ei da.

Because Hp is not generally the gradient of a vector field, the integral (88.3)
does not generally vanish. The vector b(C), which represents the Burgers vector
corresponding to the curve C, is a macroscopic analog of the Burgers vector as de-
fined at the microscopic level.

The local consequence of (88.3) is basic to what follows. We associate the vector
measure

(Curl Hp))e da (88.4)

with the Burgers vector corresponding to the boundary curve of the surface-element
e da. In this sense, the tensor field503

G def= Curl Hp, (88.5)

503 The transpose of −G is often referred to as Nye’s tensor, although Nye’s (1953) result involves
elastic rotations, neglecting elastic strains. The general form (88.5) is apparently due to Kröner
(1960), although the counterpart of (88.6) for finite deformations is due to Kondo (1952).
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which we refer to as the Burgers tensor, provides a local characterization of the
Burgers vector. Specifically,

• G)e represents the Burgers vector, measured per unit area, for infinitesimal closed
circuits on any plane # with unit normal e;

that is, G)e is the local Burgers vector for those dislocation lines piercing #. On
account of (88.1) and because Curl ∇u = 0, it follows that

G = −Curl He, (88.6)

and we have a second relation for the Burgers tensor. That there are two relations
for the Burgers tensor is of great value. The relation G = Curl Hp seems most rele-
vant to theories of plasticity involving plastic-strain gradients.504 On the other hand,
in discussing single crystals, materials scientists typically neglect lattice strains, tak-
ing He = skw He = We, an (infinitesimal) rotation; in this case G = −Curl We may
be determined via measurements of lattice rotations.

88.2 Irrotational Plastic Flow

In the classical theory of isotropic plasticity as discussed in §1 the plastic rotation
Wp = skw Hp is essentially irrelevant, as it may be absorbed by its elastic counter-
part without affecting the resulting field equations. Here, in view of the form (88.5)
of the Burgers tensor, the role of the plastic rotation is not so easily dismissed. In-
deed, with one exception, any constitutive theory involving the Burgers tensor must
necessarily account for the plastic rotation, the exception being when one assumes,
from the outset, that the flow is irrotational:505

Wp ≡ 0. (88.7)

In this chapter, we follow this path,506 so that

Hp ≡ Ep and trEp ≡ 0, (88.8)

and the Burgers tensor is given by

G = Curl Ep. (88.9)

504 Cf. §105.
505 A gradient theory that accounts for plastic rotations is given by Gurtin (2004), but the complicated

nature of the resulting nonlocal flow rule would seem to justify the development of a plastically
irrotational theory, as would the observation that many of the existing gradient-plasticity theories
do not involve plastic rotations; e.g., Fleck & Hutchinson (2001), Gudmundson (2004).

506 We do not assume that Wp ≡ 0 in our discussion of single crystals beginning on page 581.



89 The Gradient Theory of Aifantis

In this section we discuss the Aifantis flow rule

τ = Y(e p) − β,e p, (89.1)

in which τ = T0: Np represents the resolved shear (87.2). As noted in the paragraph
containing (87.2), Aifantis provides no derivation of (89.1). Granted a knowledge of
τ , (89.1) represents a second-order partial-differential equation for the accumulated
plastic strain e p, and one may ask:

• Is (89.1) a constitutive relation, a balance law, or a combination of both?

Because a partial-differential equation such as (89.1) generally requires concomitant
boundary conditions, (89.1) cannot be simply constitutive — in fact, it is our view507

that relations such as (89.1) represent microscopic force balances supplemented by
appropriate constitutive equations.

Interestingly, with the exception of Gudmundson (2004) and Gurtin & Anand
(2008), we have not been able to find in the literature any discussion of whether the
“nonlocal” term

β,e p (89.2)

is energetic or dissipative — or even whether or not the underlying theory is consis-
tent with thermodynamics. Aside from the two exceptions mentioned above, we are
unaware of any discussion of this issue in the literature, although a common belief
seems to be that the nonlocal term (89.2) is dissipative.

In what follows we give a rigorous discussion of the Aifantis theory based on
the work of Gudmundson (2004) and Gurtin & Anand (2009) — these studies are
based on the laws of thermodynamics as embodied in the free-energy imbalance and
show that, contrary to the common belief, the nonlocal term (89.2) is energetic.

Throughout our discussion of the Aifantis theory we restrict attention to irrota-
tional plastic flow:

Wp ≡ 0. (89.3)

89.1 The Virtual-Power Principle of Fleck and Hutchinson

Our discussion of the Aifantis theory is based on a virtual-power principle of Fleck
& Hutchinson (2001),508 a principle that represents a gradient-theory counterpart

507 Based on Gurtin (2000b, 2002) and Fleck & Hutchinson (2001).
508 Interestingly, Fleck and Hutchinson did not use their principle to derive the Aifantis flow rule

(as did Gurtin & Anand (2009)), but instead used it — without the aid of thermodynamics and

512



89.1 The Virtual-Power Principle of Fleck and Hutchinson 513

of the streamlined virtual-power principle discussed in §84.2.2. As in that section,
the basic kinematical descriptors are the velocity u̇, the elastic strain-rate Ėe, and the
rate ė p of the accumulated plastic strain. Bearing in mind (89.3), these descriptors
are subject to the kinematical constraint

sym ∇u̇ = Ėe + ė pNp (89.4)

with flow direction Np consistent with the codirectionality constraint509

T0

|T0|
= Np, (89.5)

so that, necessarily, the conventional stress T is symmetric.
The streamlined principle discussed in §84.2.2 begins with the expression

∫

P

(T : Ėe + τ pė p) dv (89.6)

for the internal power. Here, because our goal is a theory that accounts explicitly
for the gradient of the accumulated plastic strain, we allow also for power expended
internally by

• a microscopic hyperstress ξ p power-conjugate to ∇ ė p

and write the internal power in the form

I(P) =
∫

P

(T : Ėe + τ pė p + ξ p· ∇ ė p) dv. (89.7)

This internal power must be balanced by power expended externally by trac-
tions on ∂P and body forces acting within P. But the conventional traction t(n),
which gives rise to the conventional expenditure of external power

∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv (89.8)

is not sufficiently general to accommodate the internal power (89.7); indeed, an ad-
ditional external power expenditure is needed to balance the internal expenditure
ξ p· ∇ ė p. In the classical discussion of the principle of virtual power in §22.2 and,
in particular, in the argument embodied in (22.14), we see that the internal power
T : gradv gives rise to the boundary term Tn · v and hence to the traction condition
t(n) = Tn. Arguing by analogy, the gradient term ξ p · ∇ ė p should give rise to a trac-
tion term associated with the microscopic hyperstress ξ p. The following identity,
which is based on the divergence theorem, helps us to choose an appropriate form
for this traction:

∫

P

ξ p· ∇ ė p dv = −
∫

P

(Div ξ p)ė p dv +
∫

∂P

(ξ p · n)ė p da. (89.9)

Guided by the term (ξ p· n)ė p, we assume that power is expended externally by a mi-
croscopic hypertraction χ(n) conjugate to ė p; we therefore assume that the external

neglecting inelastic free energy — to develop a flow rule that, in its simplest form, is given by

τ̇ = H(γ p)γ̇ p − 72Div(H(γ p)∇ γ̇ p),

with 7 a length scale. Gurtin & Anand (2009) show that this flow rule is consistent with the free-
energy imbalance only if 7 = 0, thereby obviating the gradient nature of the theory.

509 Cf. (81.20) and (84.31).
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power has the form510

W(P) =
∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv +
∫

∂P

χ(n) ė p da (89.10)

with χ(n) (for each unit vector n) defined over the body for all time. Our discussion
of virtual power is therefore based on the power balance

∫

∂P

(t(n)u̇ + χ(n)ė p) da +
∫

P

b · u̇ dv

︸ ︷︷ ︸
W(P)

=
∫

P

(T : Ėe + τ pė p + ξ p· ∇ ė p) dv

︸ ︷︷ ︸
I(P)

.

(89.11)

Bearing in mind (89.4), we use the term virtual velocity for a list

V = (ũ, Ẽe, ẽ p)

consistent with the kinematical constraint

sym ∇ũ = Ẽe + ẽ pNp, (89.12)

with flow direction Np related to T0 through the codirectionality constraint (89.5).
Thus, based on (89.11), we have the Fleck–Hutchinson principle511 requiring that

∫

∂P

(t(n)ũ + χ(n)ẽ p) da +
∫

P

b · ũ dv

︸ ︷︷ ︸
W(P,V)

=
∫

P

(T : Ẽe + τ pẽ p + ξ p · ∇ ẽ p) dv

︸ ︷︷ ︸
I(P,V)

(89.13)

for any subregion P and any choice of the virtual velocity V .
Guided by the analysis in §84 leading to (84.21), consider a virtual velocity V

with

Ẽe = sym ∇ũ, (89.14)

so that, by (89.12),

ẽ p ≡ 0. (89.15)

Then, since T is symmetric,

T : Ẽe = T : ∇ũ

and (89.13) becomes
∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv =
∫

P

T : ∇ũ dv. (89.16)

This balance, which is required to hold for all ũ and P, coincides with (84.19), and
its consequences512 are the macroscopic traction condition

t(n) = Tn (89.17)

and the macroscopic force balance

divT + b = 0. (89.18)

510 To simplify the presentation we do not include the external microscopic power bpėp; cf. (84.50).
511 Fleck and Hutchinson actually use the principle of virtual work, which is equivalent.
512 Cf. (84.20) and (84.21).
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To discuss the microscopic counterparts of these results, we define the resolved
shear-stress through

τ = T0 : Np, (89.19)

so that, by (89.19) and the codirectionality constraint (89.5),

τ = |T0| and T0 = τNp. (89.20)

Consider a virtual velocity V with ũ ≡ 0, so that (89.13) becomes
∫

∂P

χ(n)ẽ p da =
∫

P

(T : Ẽe + τ pẽ p + ξ p· ∇ ẽ p) dv. (89.21)

Further, choose the virtual field ẽ p arbitrarily and let

Ẽe = −ẽ p Np;

then,

T : Ẽe = −τ ẽ p (89.22)

and the power balance (89.21) yield the microscopic virtual power relation
∫

∂P

χ(n)ẽ p da =
∫

P

[(τ p − τ )ẽ p + ξ p· ∇ ẽ p] dv (89.23)

to be satisfied for all ẽ p and all P. Equivalently, using the divergence theorem, we
find that

∫

∂P

(χ(n) − ξ p · n)ẽ p da +
∫

P

(τ − τ p + Divξ p)ẽ p dv = 0, (89.24)

and a standard argument based on the fundamental lemma of the calculus of varia-
tions (page 167) yields the microscopic traction condition

χ(n) = ξ p · n (89.25)

and the microscopic force balance513

τ = τ p − Divξ p. (89.26)

89.2 Free-Energy Imbalance

Arguing as in §84.4 and appealing to (89.11), we arrive at the free-energy imbalance
·∫

P

2 dv =
∫

∂P

(t(n)u̇ + χ(n)ė p) da +
∫

P

b · u̇ dv

︸ ︷︷ ︸
W(P)

−
∫

P

δ dv

=
∫

P

(T : Ėe + τ pė p + ξ p · ∇ ė p) dv

︸ ︷︷ ︸
I(P)

−
∫

P

δ dv, (89.27)

513 Fleck & Hutchinson (2001). A microscopic force balance of this form was shown by Gurtin
(2000b, eq. (48)) to hold on each slip system of a single crystal; in this case τ represents the re-
solved shear on that slip system.
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with 2 the free energy and δ ≥ 0 the dissipation. Thus, since ˙∫
P 2 dv =

∫
P 2̇ dv and

P is arbitrary, (89.27) yields the local free-energy imbalance514

2̇ − T : Ėe − τ pė p − ξ p· ∇ ė p = −δ ≤ 0. (89.28)

89.3 Constitutive Equations

The constitutive theory we present is based on a physical picture that associates with
an (elastic)-plastic solid a microscopic structure, such as a crystal lattice together
with a notion of defects, such as dislocations, capable of being stored within — and
of flowing through — that structure.515

By (76.8) and (76.9) the accumulated plastic strain satisfies

e p(0) = 0, ė p(t) ≥ 0, (89.29)

and, hence, increases with time in any “process.” We view e p as a macroscopic mea-
sure of dislocations stored in the microscopic structure, and we view its gradient

gp def= ∇e p (89.30)

as a measure of the inhomogeneity of the microscopic structure induced by the pres-
ence of stored dislocations.

We assume throughout that the free energy admits a decomposition

2 = 2e + 2 p, (89.31)

in which 2e represents elastic strain energy, while

2 p = 2̂ p(e p, gp) (89.32)

is a defect energy.
We assume that the elastic energy 2e has the standard isotropic form

2e = µ|Ee|2 + 1
2λ(trEe)2 (89.33)

and generates the stress T through the classical relation

T = 2µEe + λ(trEe)1 (89.34)

with Lamé moduli µ and λ consistent with the inequalities µ > 0 and 2µ + 3λ > 0.516

A consequence of these relations is the standard balance

2̇e = T : Ėe. (89.35)

Turning to the defect energy, we introduce energetic microscopic stresses τ p
en

and ξ p
en through the relations

τ p
en = τ̂ p

en(e p, gp) =
∂2̂ p(e p, gp)

∂e p ,

ξ p
en = ξ̂

p
en(e p, gp) = ∂2̂ p(e p, gp)

∂gp .

(89.36)

Then,

2̇ p = τ p
enė p + ξ p

en · ġp; (89.37)

514 Cf. (84.57).
515 Cf. the paragraph containing (75.8).
516 Cf. (81.54).
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the relation (89.37) asserts that temporal changes in the defect energy are balanced
by power expended by a microscopic stress τ p

en conjugate to ė p and a microscopic
hyperstress ξ p

en conjugate to ġp. Equations (89.31), (89.35), and (89.37) imply that

2̇ = T : Ėe + ξ p
en · ġp + τ p

enė p (89.38)

and, hence, that the dissipation δ defined by (89.28) is given by

δ = (τ p − τ p
en)ė p + (ξ p − ξ p

en) · ġp ≥ 0. (89.39)

Based on this inequality we refer to the microscopic stresses

τ
p

dis = τ p − τ p
en and ξ

p
dis = ξ p − ξ p

en (89.40)

as dissipative and rewrite (89.39) in the form

δ = τ
p

disė
p + ξ

p
dis · ġp ≥ 0. (89.41)

We refer to (89.41) as the plastic-flow inequality.
Consistent with our choice of independent variables for the free energy (89.32),

we consider constitutive equations for the dissipative microstresses of the general
form

τ
p

dis = τ̂
p

dis(e p, gp), ξ
p
dis = ξ̂

p
dis(e p, gp), (89.42)

presumed consistent with the plastic-flow inequality (89.41).

89.4 Flow Rules

Within the present framework the flow rule is the microscopic force balance (89.26)
augmented by constitutive relations for the microscopic stresses τ p and ξ p. Using
(89.40) we can write this balance in a form

τ = τ p
en + τ

p
dis − Div(ξ p

en + ξ
p
dis), (89.43)

so that, by (89.32), (89.36), and (89.42), we have the general flow rule

τ = τ̂
p

dis(e p, gp) + ∂2̂ p(e p, gp)
∂e p − Div

(
ξ̂

p
dis(e p, gp) + ∂2̂ p(e p, gp)

∂gp

)
. (89.44)

The Aifantis theory is based on the following additional assumptions:

(i) the defect energy has the form

2 p = 1
2β |gp|2, (89.45)

with β > 0 constant, so that, by (89.36),

ξ p
en = β gp and τ p

en ≡ 0; (89.46)

(ii) the constitutive relations for the dissipative microscopic stresses have the form

τ
p

dis = Y(e p) and ξ
p
dis ≡ 0, (89.47)

with coarse-grain flow resistance517 Y(e p) > 0.

Since

Divξ p
en = β,e p,

517 I.e., the flow resistance that would obtain in the absence of plastic-strain gradients.
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these constitutive relations reduce the general flow rule (89.44) to the Aifantis flow
rule (87.1); viz.

τ = Y(e p) − β,e p. (89.48)

The coarse-grain flow-resistance Y(e p) is therefore dissipative; the nonlocal term
β,e p is energetic.

EXERCISE

1. Consider a defect energy of the form

2 p = 1
2β(e p)|gp|2,

β(e p) > 0, β ′(e p) ≥ 0.
(89.49)

(a) Show that

τ̂ p
en(e p, gp) = 1

2β
′(e p) |gp|2, (89.50)

and that

τ̂ p
en(e p, gp) ≥ 0 and τ̂ p

en(e p, gp)ė p ≥ 0. (89.51)

(This type of behavior is usually described as dissipative; interestingly, here
the underlying phenomenon is energetic.)

(b) Show that the defect energy2 p(t) increases during any process that has ġp ≡
0. The defect energy during any such process is therefore nonrecoverable.518

(c) Show that

τ pė p + ξ
p
dis · ġp = δ + τ p

enė p (89.52)

and that519

τ pė p + ξ
p
dis · ġp ≥ 0. (89.53)

(d) Assume that τ p
dis is independent of gp and strictly positive, so that

τ̂
p

dis(e p) = Y(e p) (89.54)

with Y(e p) > 0. Establish the flow rule520

τ = Y(e p) − 1
2β

′(e p)|gp|2 − β(e p),e p. (89.55)

(Note that, since both β ′(e p) and |gp|2 are nonnegative, the term 1
2β

′(e p)|gp|2
characterizes softening.)

89.5 Microscopically Simple Boundary Conditions

Unlike conventional plasticity theories,

• the general flow rule (89.44) and the Aifantis flow rule (89.48) are partial-
differential equations and hence require concomitant boundary conditions.

518 On the other hand, since |gp| may increase or decrease at will, the energy in a process during which
ep is constant is recoverable, at least in principle. Thus, the individual arguments ep and gp of the
defect energy characterize disparate physical behaviors.

519 One might view this inequality as a basis for a discussion of constitutive equations, but because
satisfaction of (89.53) does not imply satisfaction of the plastic-flow imbalance (89.41) and hence
does not ensure that the dissipation be nonnegative, such a view would seem to be conceptually
flawed.

520 Cf. Aifantis (1984), where the gradient terms in the flow rule — unlike those in (89.55) — have
moduli that are unrelated.
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To discuss such boundary conditions we focus on the boundary ∂B, with outward
unit normal n. The external power expended on B is given by (89.10), and, in view
of (89.25), the microscopic portion of this power has the form

∫

∂B

(ξ p· n)ė p da, (89.56)

with (ξ p · n)ė p the microscopic power expended, per unit area, on ∂B by the material
in contact with the body.

We limit our discussion to boundary conditions that result in a null expenditure
of microscopic power in the sense that

(ξ p· n)ė p = 0 on ∂B. (89.57)

Specifically, we consider microscopically simple boundary conditions asserting that

ė p = 0 on Shard and ξ p · n = 0 on Sfree, (89.58)

where Shard and Sfree are complementary subsurfaces521 of ∂B. We refer to Shard and
Sfree, respectively, as the microscopically hard and the microscopically free portions
of ∂B. The microscopically hard condition corresponds to a boundary surface that
cannot pass dislocations (e.g., a boundary surface that abuts a hard material); the
microscopically free condition corresponds to a boundary across which dislocations
can flow freely from the body; this condition would seem consistent with the macro-
scopic condition Tn = 0.

89.6 Variational Formulation of the Flow Rule

The macroscopic balance divT + b = 0 and associated traction boundary-conditions
can be formulated variationally using the classical principle of virtual power based
on (89.16), a formulation central to analysis and computation. The flow rule (89.48)
and the microscopically free boundary-condition (89.58) have an analogous vari-
ational formulation based on the microscopic virtual-power relation (89.23), ap-
plied to B. Because the boundary conditions (89.58) render the power expendi-
ture null on ∂B, we consider (89.23) with the boundary term omitted and with
ẽ p = V:

∫

B

[(τ p − τ )V + ξ p· ∇V] dv = 0. (89.59)

We refer to V as a test field and assume that V is kinematically admissible in the
sense that

V = 0 on Shard. (89.60)

In view of (89.9) (with ė p = V) and (89.60),
∫

B

ξ p · ∇V dv = −
∫

B

(Divξ p)V dv +
∫

Sfree

(ξ p· n)V da.

521 I.e, ∂B = Shard ∪ Sfree with Shard ∩ Sfree a smooth curve.
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Thus, (89.59) holds if and only if
∫

Sfree

(ξ p· n)V da +
∫

B

(τ p − τ − Divξ p)V dv = 0; (89.61)

therefore, appealing to (an obvious analog of) the fundamental lemma of the calcu-
lus of variations (page 167), we see that (89.59) holds for all kinematically admissible
test fields V if and only if the microscopic force balance (89.26) and the microscopi-
cally free boundary-condition (89.58)2 are satisfied. Since the microscopic force bal-
ance — when supplemented by the constitutive equations (89.46) and (89.47) — is
equivalent to the flow rule (89.48), we are led to the

Variational Formulation of the Aifantis Flow Rule Assume that the constitutive
equations (89.46) and (89.47) are satisfied. The Aifantis flow rule (89.48) on B and the
microscopically free boundary-condition (89.58)2 are therefore together equivalent to
the requirement that (89.59) be satisfied for all test fields V.522

89.7 Plastic Free-Energy Balance

Assume that the microscopically simple boundary conditions (89.58) are satisfied,
so that

(ξ p· n)ė p = 0 on ∂B. (89.62)

Then, by (89.37) and the microscopic force balance (89.26),

·∫

B

2̂ p(e p, gp) dv =
∫

B

(τ p
enė p + ξ p

en · ∇ ė p) dv

=
∫

B

(τ p
enė p + ξ p

en · ∇ ė p + (τ − τ p + Divξ p)︸ ︷︷ ︸
=0

·ė p) dv

=
∫

B

(τ p
enė p + ξ p

en · ∇ ė p + (τ − τ p) · ė p − ξ p · ∇ ė p) dv (89.63)

and, by (89.9) and (89.40), the right side of (89.63) becomes
∫

B

[(ξ p
en − ξ p) · ∇ ė p + (τ p

en − τ p) : ė p + τ ė p] dv=
∫

B

τ ė p dv −
∫

B

(τ p
disė

p + ξ
p
dis · ∇ ė p) dv;

thus, we have the plastic free-energy balance523

·∫

B

2̂ p(e p, gp) dv =
∫

B

τ ė p dv

︸ ︷︷ ︸
plastic working

−
∫

B

(τ p
disė

p + ξ
p
dis · ∇ ė p)dv

︸ ︷︷ ︸
dissipation≥0

,
(89.64)

• the temporal increase in defect energy can never exceed the plastic working.

522 Cf. Gurtin & Reddy (2009) for a reformulation — in terms of global variational inequalities — of
initial/boundary-value problems associated with the Aifantis theory.

523 Cf. Gurtin (2003, eq. (9.23); 2004, eq. (9.4)).
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89.8 Spatial Oscillations. Shear Bands

Although conventional theories can characterize the onset of localization, they can-
not address issues associated with the attendant instabilities, issues such as the wave
length of ensuing oscillations and the thickness of shear bands. We now show that
the Aifantis flow rule is capable of modeling scale-dependent phenomena such as
these.

89.8.1 Oscillations

In this section, we discuss some simple time-independent solutions of the Aifantis
flow rule (89.48) considered as a partial differential equation for e p, granted a knowl-
edge of τ . Specifically, we consider a one-dimensional theory in which the sole
nonzero fields are the displacement u1, the elastic and plastic strains Ee

12 and E p
12,

and the stress T12, with these fields functions of the coordinate

x = X2.

In this case the flow direction has values ±1 and we restrict attention to the positive
value 1. Then, Ė p

12 > 0 and, in view of the Remark on page 428,

e p ≡ E p
12,

an observation that, because of (76.8) and (76.9), allows us to refer to e p simply as
the plastic shear.

We neglect body forces; the force balance (89.18) then implies that

τ ≡ constant (89.65)

and the Aifantis flow rule (89.48) takes the form

τ = Y(e p) − β
d2e p

dx2 . (89.66)

For the constitutive equation

Y(e p) = Y0 − κe p with κ > 0, (89.67)

which represents the simplest example of strain-softening, the flow rule (89.66) yields
oscillations; specifically, the differential equation (89.66) has oscillatory solutions

e p = Y0 − τ

κ
+ C exp

(±i x
λ

)

with wave length λ =
√
β/κ. Since λ → 0 as β → 0, the oscillations become finer and

finer as β → 0, indicating instability. The Aifantis flow rule (89.66) can also produce
shear bands, but for this both hardening and softening seem needed, at least in one
space dimension.524

89.8.2 Single Shear Bands and Periodic Arrays of Shear Bands

We now consider solutions of the differential equation (89.66) for prescribed values
of τ , assuming that the dissipative-hardening function Y(e p) exhibits a hardening-
softening transition. Specifically, we are interested in solutions of (89.66) on the
interval

−∞ < x < ∞;

524 Cf., e.g., Gurtin (2000b, §13.2).
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such solutions may be determined via their phase portraits — which are curves of

de p

dx
versus e p

representing solutions of (89.66); such curves are referred to as orbits.
Consider a value of τ such that

τ = Y(e p−) = Y(e p+), (89.68)

where e p− lies in the hardening interval, while e p+ lies in the softening interval. The
values e p− and e p+ of plastic shear represent equilibrium points of (89.66), because,
by (89.68),

e p(x) ≡ e p− and e p(x) ≡ e p+

represent solutions of (89.66).
Granted that τ satisfies (89.68), two classes of solutions are interesting and

important:

(i) The first is described by an orbit that begins and ends at the equilibrium e p−.
(Such orbits are termed homoclinic.) It follows from standard results from the
theory of ordinary differential equations that this orbit represents a solution e p

with the following properties:525

e p(±∞) = e p±,

de p(x)
dx

→ 0 as x → ±∞.

Moreover e p is strictly increasing until reaching its maximum value, and then
strictly decreasing. This solution represents a single shear-band, as it begins and
ends at the same value of the plastic shear e p−. Each shear e p− in the harden-
ing interval with Y(e p−) = Y(e p+) for some shear e p+ in the softening interval
corresponds to a single shear-band starting and ending at e p−. To the contrary,
no value of shear in the softening interval is the initial and terminal point of a
single shear-band.

(ii) The second class of solutions is represented by smooth closed curves (closed
orbits) in the phase portrait. Each such orbit has e p(x) ≥ e p− for all x and
encloses the equilibrium e p+. These orbits represent periodic solutions of the
differential equation (89.66). Each orbit that lies close to e p− represents a pe-
riodic array of nearly constant plastic shear separated by shear bands. On the
other hand, the orbits close to e p+ are approximately sinusoidal, more and more
so as their maximum distance from e p+ approaches zero. Finally, the ratio of
the width of the shear bands to the width of the valleys between shear bands
tends to zero as their minimum distance ζ from e p− tends to zero; the ratio of
shear-band width to valley width can thus have any value, depending on the
choice of ζ .

Remark. Letting

Ȳ(e p) =
Y(e p)
Y(0)

, τ̄ =
τ

Y(0)
, x̄ =

x
√
β/Y(0)

525 Cf., e.g., Hirsh & Smale (1972) or Percival & Richards (1982, §3.2).
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we arrive at a dimensionless form of (89.66),

τ̄ = Ȳ(e p) + d2e p

dx̄2 , (89.69)

with
√

Y(0)/β the relevant length-scale. Working with (89.69), Gurtin (2000b,
pp. 1025–1028) gives the phase portrait (his Figure 1) and examples of a single shear-
band and a periodic array of shear bands (his Figure 2) for Ȳ a cubic of the particular
form

Ȳ(e p) = 0.028(e p − 1)(e p − 3)(e p − 6) + 1.5, τ̄ = 1.5.



90 The Gradient Theory of Gurtin and Anand

This gradient theory526 differs in many respects from that of Aifantis discussed in
§89, chiefly because the codirectionality constraint (89.5) is not employed. For that
reason, the basic kinematical field of the Gurtin–Anand description of flow is Ėp

rather than ė p. Further, because a gradient theory is desired, the theory is based
on an extension of the conventional virtual-power formulation of §84 to include
power expended in concert with ∇Ėp. Finally, the gradient theory we develop is
rate-dependent.

90.1 Third-Order Tensors

We begin with a discussion of third-order tensors, which we view as linear transfor-
mations K that associate with each vector v a (second-order) tensor

A = Kv (Ai j = Ki jkvk).

The inner product of third-order tensors K and A is defined in the natural manner;
viz.

K...A = Ki jkAi jk;

the divergence of a third-order tensor K is the second-order tensor

(DivK)i j = ∂Ki jk

∂Xk
; (90.1)

the gradient of a second-order tensor U is the third-order tensor

(∇U)i jk =
∂Ui j

∂Xk
. (90.2)

A third-order tensor K is symmetric and deviatoric in its first two subscripts if

Ki jk = Kjik, Kppk = 0. (90.3)

An example of such a tensor, and one that we consider, is the gradient ∇U of a
symmetric, deviatoric (second-order) tensor U.527

Given a third-order tensor A, it is useful to note that the part of A that is sym-
metric and deviatoric in its first two subscripts is given by

1
2 (Ai jk + Ajik) − 1

3δi j Arrk. (90.4)

526 Gurtin & Anand (2005a).
527 Cf. (90.2).

524
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90.2 Virtual-Power Formulation:
Macroscopic and Microscopic Force Balances

Let P denote an arbitrary subregion of the body with n the outward unit normal on
the boundary ∂P of P.

Bearing in mind the Remark on page 491 and our assumption that the plastic
spin Wp vanishes, we base our discussion on the “rate-like” descriptors u̇, Ėe, and
Ėp — restricted by the constraint

sym ∇u̇ = Ėe + Ėp, trĖp = 0. (90.5)

Consistent with our choice of descriptors, we begin with the conventional internal
power expenditure as expressed on the right side of (84.30):

∫

P

(T : Ėe + Tp : Ėp) dv (90.6)

with

T symmetric and Tp symmetric and deviatoric. (90.7)

But — because our goal is a theory that accounts explicitly for plastic-strain gradi-
ents — we allow also for power expended internally by

• a (third-order) microscopic hyperstress Kp power-conjugate to ∇Ėp

and, therefore, write the internal power in the form

I(P) =
∫

P

(T : Ėe + Tp : Ėp + Kp ...∇Ėp) dv, (90.8)

or, equivalently,

I(P) =
∫

P

(
Te

i j Ėe
i j + T p

i j Ė p
i j + K p

i jk

∂ Ė p
i j

∂Xk

)
dv.

Since Ėp is symmetric and deviatoric, we may, without loss in generality, assume
that

Kp is symmetric and deviatoric in its first two subscripts; (90.9)

that is,

K p
i jk = K p

jik, K p
qqk = 0. (90.10)

Here T, Tp, and Kp are defined over the body for all time.
The internal power (90.8) must be balanced by power expended externally by

tractions on ∂P and body forces acting within P. Arguing as in the paragraph lead-
ing to (89.10), we supplement the conventional external power-expenditure (89.8)
with a higher-order power expenditure involving a hypertraction K(n) associated
with the hyperstress Kp. The following integral identity guides us in choosing an
appropriate form for this hypertraction and concomitant power conjugate:

∫

P

Kp ...∇Ėp dv = −
∫

P

DivKp : Ėp dv +
∫

∂P

Kpn : Ėp da. (90.11)
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The verification of (90.11), which involves the divergence theorem, proceeds as
follows:

∫

P

K p
i jk

∂ Ė p
i j

∂Xk
dv =

∫

P

∂

∂Xk

(
Ė p

i j K
p
i jk

)
dv −

∫

P

Ė p
i j

∂K p
i jk

∂Xk
dv

= −
∫

P

∂K p
i jk

∂Xk
Ė p

i j dv +
∫

∂P

Ė p
i j K

p
i jknk da.

Guided by the term Kpn : Ėp in (90.11), we assume that power is expended ex-
ternally by a microscopic traction K(n) (with components Ki j (n)) conjugate to the
plastic strain-rate Ėp and, therefore, assume that the external power has the form528

W(P) =
∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv +
∫

∂P

K(n) : Ėp da, (90.12)

with K(n) (for each unit vector n) defined over the body for all time. Since Ėp is
symmetric and deviatoric, we assume that K(n) is symmetric and deviatoric.

The principle of virtual power is based on the power balance529

∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv +
∫

∂P

K(n) : Ėp da

︸ ︷︷ ︸
W(P)

=
∫

P

(T : Ėe + Tp : Ėp + Kp ...∇Ėp) dv

︸ ︷︷ ︸
I(P)

.

(90.13)

We now consider the fields u̇, Ėe, and Ėp as virtual fields ũ, Ẽe, and Ẽp consistent
with the constraint530

∇ũ = Ẽe + Ẽp, trẼp = 0. (90.14)

Then, given a generalized virtual velocity V = (ũ, Ẽe, Ẽp) consistent with (90.14), we
write

W(P,V) =
∫

∂P

(t(n) · ũ + K(n) : Ẽp) da +
∫

P

b · ũ dv,

I(P,V) =
∫

P

(T : Ẽe + Tp : Ẽp + Kp ...∇Ẽp) dv

(90.15)

for the corresponding external and internal power expenditures. The principle of
virtual power is then the requirement that, given any subregion P of the body, the

528 Cf. the Remark on page 497.
529 Cf. (84.6).
530 Cf. (90.5).
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expenditures (90.15) are balanced:
∫

∂P

(t(n) · ũ + K(n) : Ẽp) da +
∫

P

b · ũ dv

︸ ︷︷ ︸
W(P,V)

=
∫

P

(T : Ẽe + Tp : Ẽp + Kp ...∇Ẽp) dv

︸ ︷︷ ︸
I(P,V)

(90.16)
for all virtual velocities V .531

Our next step is to determine the macroscopic and microscopic force balances.
Regarding the former, we assume that ũ is arbitrary and that Ẽe = sym ∇ũ so that,
by (90.14), Ẽp ≡ 0. Then, (90.5) is satisfied, (90.16) gives

∫

∂P

t(n) · ũ da +
∫

P

b · ũ =
∫

P

T : ∇ũ dv,

and steps identical to those leading to (84.20) and (84.21) yield identical results: the
classical traction condition

t(n) = Tn (90.17)

and local macroscopic force balance

DivT + b = 0. (90.18)

To derive the microscopic force balance, we consider a virtual velocity with: Ẽp

an arbitrary symmetric, deviatoric tensor field; Ẽe given by

Ẽe = −Ẽp; (90.19)

and

ũ ≡ 0, (90.20)

consistent with (90.14). Then, (90.16) reduces to the microscopic virtual-power rela-
tion

∫

∂P
K(n) : Ẽp da =

∫

P
[(Tp − T) : Ẽp + Kp ...∇Ẽp] dv. (90.21)

Next, using the identity (90.11) in (90.21) we find that
∫

∂P
(K(n) − Kpn) : Ẽp da =

∫

P
(Tp − T − DivKp) : Ẽp dv (90.22)

must hold for all parts P and all symmetric-deviatoric tensor fields Ẽp. Thus, since
the terms in (90.22) multiplying this field are themselves symmetric-deviatoric
tensor fields, an analog of the fundamental lemma of the calculus of variations
(page 167) yields the microscopic force balance

T0 = Tp − DivKp (T0i j = T p
i j − K p

i jk,k), (90.23)

and the microscopic traction condition

K(n) = Kpn (Ki j (n) = K p
i jknk). (90.24)

531 Cf. also Gudmundson (2004, eq. (5)).
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90.3 Free-Energy Imbalance

Our derivation of the free-energy imbalance follows that of §84.4 and consequently
begins with a counterpart of (84.54); viz.

˙∫

P

2 dv = W(P) −
∫

P

δ dv. (90.25)

As before W(P) = I(P), but we now use (90.8) to write (90.25) equivalently as

˙∫

P

2 dv =
∫

P

(T : Ėe + Tp : Ėp + Kp ...∇Ėp) dv −
∫

P

δ dv. (90.26)

Thus, since ˙∫
P 2 dv =

∫
P 2̇ dv, (90.26) yields the local free-energy imbalance

2̇ − T : Ėe − Tp : Ėp − Kp ...∇Ėp = −δ ≤ 0. (90.27)

90.4 Energetic Constitutive Equations

Our goal is a rate-dependent constitutive theory that allows for dependencies on
the gradient ∇Ėp of the plastic strain-rate and on the Burgers tensor G = curlEp

but that does not otherwise depart drastically from the more conventional theory
developed in §75.

We assume that the free energy 2 is the sum of a quadratic, isotropic elastic
energy of standard form532 and a defect energy 2 p(G):

2 = µ|Ee|2 + 1
2λ(trEe)2

︸ ︷︷ ︸
elastic
energy

+2 p(G)︸ ︷︷ ︸
defect
energy

. (90.28)

Consistent with this, we assume that the elastic stress is given by

T = 2µEe + λ(trEe)1, (90.29)

so that
˙

µ|Ee|2 + 1
2λ(trEe)2 = T : Ėe. (90.30)

Next, since G = Curl Ep,

˙
2 p(G) =

∂2 p

∂G
: Ġ

= ∂2 p

∂Gi j
εipq

∂ Ė p
jq

∂XP
, (90.31)

so that, letting A denote the third-order tensor with components

Ajqp = ∂2 p

∂Gi j
εipq, (90.32)

we find that
˙

2 p(G) = A...∇Ėp. (90.33)

532 To ensure positive definiteness of the elastic energy, we assume that the Lamé moduli µ (the shear
modulus) and λ satisfy µ > 0 and 2µ + 3λ > 0; cf. (81.54) and (75.17).
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Thus, since ∇Ėp is symmetric and deviatoric in its first two subscripts, it is only that
part of A — namely

(Kp
en)i jk

def= 1
2 (Ai jk + Ajik) − 1

3δi j Arrk (90.34)

— that contributes to temporal changes in the defect energy 2 p(G).533 Thus,

A...∇Ėp = Kp
en ...∇Ėp

and (90.31) implies that

˙
2 p(G) = Kp

en ...∇Ėp. (90.35)

The tensor field Kp
en is an energetic hyperstress associated with temporal changes in

the defect energy. Finally, by (90.28) and (90.30),

2̇ = T : Ėe + Kp
en ...∇Ėp. (90.36)

We assume that the defect energy 2 p(G) is quadratic and isotropic. Then
2 p(G) must reduce to a function of |skw G|2 and the principal invariants (2.142)
of sym G.534 But by (88.9),

trG = εi jkE p
ik, j = 0

and detG is cubic. Thus, 2 p(G) must be a function of |sym G|2 and |skw G|2 or,
equivalently, since535

|G|2 = |sym G|2 + |skw G|2, (90.37)

a function of |G|2 and |skw G|2; 2 p(G) must therefore have the form

2 p(G) = α1|G|2 + α2|G − G)|2, (90.38)

with α1 and α2 scalar constants. Using (90.37), we can rewrite (90.38) as

2 p(G) = 1
2α1|G + G)|2 + (α2 + 1

2α1)|G − G)|2; (90.39)

thus, since the symmetric and skew parts of G may be specified independently,
2 p(G) is positive-definite if and only if

α1 > 0 and 2α2 + α1 > 0. (90.40)

Granted that 2 p(G) is positive-definite, addition of the two inequalities in (90.40)
yields α2 + α1 > 0; the definitions

λ1 = α1

α
, λ2 = α2

α
, α = α1 + α2

therefore allow us to write (90.38) in the form

2 p(G) = α
(
λ1|G|2 + λ2|G − G)|2

)
, (90.41)

with λ1 and λ2 dimensionless moduli consistent with

λ1 + λ2 = 1. (90.42)

Finally, since Ep is dimensionless and G carries dimensions of (length)−1, it
follows from (90.28) and (90.41) that α/µ carries dimensions of (length)2. We can

533 Cf. (90.4).
534 Cf. Truesdell & Noll (1965); specifically, the paragraph containing (11.24) with u the axial vector

corresponding to skw G.
535 Cf. (2.58).
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therefore define an energetic length-scale L > 0 through

L def=

√
2α
µ

(90.43)

and write (90.41) in the form

2 p(G) = 1
2µL2

(
λ1|G|2 + λ2|G − G)|2

)
. (90.44)

Our next step is to compute the energetic hyperstress Kp
en. By (90.42) and

(90.44),

∂2 p(G)
∂G

= µL2[λ1G + λ2(G − G))
]

= µL2(G − λ2G)
)
, (90.45)

and a condition necessary and sufficient that (90.40) hold is that

λ
def= λ2 satisfy − 1 < λ < 1.

By (90.32), the third-order tensor A in the expression (90.34) for Kp
en is given by

Ajqp = µL2εipq(Gi j − λGji )

= µL2εipq

(
εirs

∂E p
js

∂Xr
− λε jrs

∂E p
is

∂Xr

)

= µL2
[(
∂E p

jq

∂XP
−
∂E p

j p

∂Xq

)
− λεipqε jrs

∂E p
is

∂Xr

]
; (90.46)

(90.4) therefore yields

(Kp
en) jqp = µL2

[
∂E p

jq

∂Xp
− 1

2

(
∂E p

j p

∂Xq
+ ∂E p

qp

∂Xj

)

+ 1
3 (1 + λ) δ jq

∂E p
rp

∂Xr
− 1

2λ (εipqε jrs + εipjεqrs)
∂E p

is

∂Xr

]
. (90.47)

90.5 Dissipative Constitutive Equations

Substituting (90.36) into the local free-energy imbalance (90.27), we obtain

(Kp
en − Kp)...∇Ėp − Tp : Ėp ≤ 0. (90.48)

Thus, if we define a dissipative hyperstress Kp
dis through the decomposition

Kp = Kp
en + Kp

dis, (90.49)

then (90.48) yields the reduced dissipation-inequality

δ
def= Tp : Ėp + Kp

dis ...∇Ėp ≥ 0. (90.50)

Note that, since both K and Kp
en are symmetric and deviatoric in their first two sub-

scripts, so also is Kp
dis.

536 The relation (90.49) represents a decomposition of the mi-
croscopic hyperstress Kp into energetic and dissipative hyperstresses Kp

en and Kp
dis.

536 Cf. (90.10) and (90.34).



90.5 Dissipative Constitutive Equations 531

Our next step is to develop rate-dependent constitutive relations for Tp and Kp
dis

consistent with the reduced dissipation inequality (90.50). We consider first the plas-
tic stress Tp. Guided by the conventional relations (78.10) and (78.19), we introduce

(i) a generalized flow-rate

d p def=
√

|Ėp|2 + 72 |∇Ėp|2 (90.51)

with 7 > 0 a constant dissipative length-scale;
(ii) a generalized accumulated plastic-strain Ė p defined by

Ė p = d p, E p(X, 0) = 0; (90.52)

(iii) a flow resistance Y(E p) > 0;
(iv) a rate-sensitivity function g(d p) consistent with537

g(0) = 0, g(d p) is a strictly increasing function of dp; (90.53)

and we lay down a constitutive relation for Tp of the form538

Tp = g(d p)Y(E p)
Ėp

d p . (90.54)

Deciding on a constitutive relation for the dissipative hyperstress Kp
dis requires

some thought. As noted at the start of §90.4, our goal is a constitutive theory that
does not depart drastically from the conventional Mises theory of §75 and §78. As
formulated there, the Mises theory is based on a codirectionality hypothesis requir-
ing that the direction of plastic flow coincide with the direction of deviatoric stress.
Here, we generalize that formulation. We introduce a generalized plastic strain-rate

Ėp def= (Ėp, 7∇Ėp),

a generalized flow direction

Np def= Ėp

d p ,

and a generalized plastic stress

Tp def= (Tp, 7−1 Kp
dis),

definitions which imply that

Tp• Ėp = Tp : Ėp + Kp
dis ...∇Ėp

and hence convert the reduced dissipation inequality (90.50) to an inequality of the
form

δ = Tp• Ėp ≥ 0, (90.55)

537 Cf. (78.9).
538 For g(dp) = 1 and l = 0 (so that dp = |Ėp|), (90.54) reduces to the conventional flow rule (76.69)1.

Since the theory is rate-dependent, one might replace Y(E p) by a flow resistance in the form of an
internal variable S defined by a hardening equation and concomitant initial condition,

Ṡ = h(dp, S), S(X, 0) = S0,

with S0 > 0, a constant, the (initial) flow strength; cf. (78.18).
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where • denotes a generalized inner product.539 Important here is the observation
that the reduced dissipation inequality (90.55) as expressed in terms of the fields Tp

and Ėp has the conventional structure540

δ = T0 : Ėp ≥ 0.

We base the constitutive relation for Kp
dis on a codirectionality hypothesis requiring

that the stress Tp point in the direction Np; specifically, we assume that

Tp = φNp, (90.56)

with φ a scalar function (to be specified), and then note that (90.56) is consistent
with (90.54) if and only if

φ = g(d p)Y(E p). (90.57)

Thus we are led naturally to a constitutive relation for the dissipative hyperstress;
viz.

Kp
dis = 72g(d p)Y(E p)

∇Ėp

d p . (90.58)

The dissipative constitutive equations of the gradient theory therefore take the
form541

Tp = g(d p)Y(E p)
Ėp

d p ,

Kp
dis = 72g(d p)Y(E p)

∇Ėp

d p .

(90.59)

The relations (90.59) represent the complete set of dissipative constitutive rela-
tions; interestingly, these equations render the dissipation (90.50) of the simple form

δ = g(d p)Y(E p)d p. (90.60)

90.6 Flow Rule

The microscopic force balance augmented by the constitutive equations for Tp, Kp
dis,

and Kp
en forms the flow rule. In view of (90.49), we may rewrite the microscopic force

balance (90.23) in the form

T0 + DivKp
en = Tp − DivKp

dis, (90.61)

where we have placed the term DivKp
en on the left, since, being energetic, its nega-

tive represents a backstress Tback:

Tback = −DivKp
en. (90.62)

539 The underlying vector space consists of pairs (A, B) with A a symmetric, deviatoric tensor and B
a third-order tensor symmetric and deviatoric in its first two subscripts — and, given another such
pair (C, D),

(A, B) • (C, D) def= A : C + D...B.

540 Cf. (75.16).
541 Constitutive relations of this more or less basic structure were proposed by Gurtin (2000b, §14) for

single crystals and Gudmundson (2004) for isotropic materials. Cf. Footnote 642.
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In fact, a consequence of (90.47) is that

(DivKp
en) jq = ∂(Kp

en) jqp

∂Xp

= µL2 ∂

∂Xp

[
∂2 E p

jq

∂Xp
− 1

2

(
∂E p

j p

∂Xq
+ ∂E p

qp

∂Xj

)

+ 1
3 (1 + λ) δ jq

∂E p
rp

∂Xr
− 1

2λ (εipqε jrs + εipjεqrs)
∂E p

is

∂Xr

]
,

(90.63)

so that, for

(,Ep)i j =
∂2 E p

i j

∂Xk∂Xk
,

it follows that the backstress (90.62) is given by

Tback = −µL2(,Ep − sym (∇DivEp) + 1
3 (1 + λ)(Div DivEp)1 − λCurl Curl Ep).

(90.64)

Finally, (90.54), (90.58), (90.62), and (90.64), when substituted into (90.61), yield the
flow rule

T0 − Tback = Y(E p)g(d p)
Ėp

d p − 72Div
(

Y(E p)g(d p)
∇Ėp

d p

)

︸ ︷︷ ︸
dissipative hardening

,
(90.65)

which is the central result of the gradient theory.
Given the deviatoric stress T0, (90.65) represents a second-order partial-

differential equation for the plastic strain Ep. Thus, unlike conventional plasticity
theories,

• the flow rule (90.65) is nonlocal and needs to be augmented by appropriate
boundary conditions.

EXERCISE

1. Establish (90.63) and (90.64).

90.7 Microscopically Simple Boundary Conditions

We focus on the boundary ∂B, with outward unit normal n. The external power
expended on B is given by (90.12), and, in view of (90.24), the microscopic portion
of this power has the form

∫

∂B

Kpn : Ėp da, (90.66)

with Kpn : Ėp the microscopic power expended, per unit area, on ∂B by the material
in contact with the body.

We limit our discussion to boundary conditions that result in a null expenditure
of microscopic power in the sense that Kpn : Ėp = 0 on ∂B. Specifically, we consider
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microscopically simple boundary conditions asserting that

Ėp = 0 on Shard and Kpn = 0 on Sfree, (90.67)

where Shard and Sfree are complementary subsurfaces of ∂B, respectively referred
to as the microscopically hard and the microscopically free portions of ∂B.542 The
interpretation of the conditions (90.67) is completely analogous to that of the simple
conditions (89.58) of the Aifantis theory. Specifically, the microscopically hard con-
dition corresponds to a boundary surface that cannot pass dislocations (for example,
a boundary surface that abuts a hard material); the microscopically free condition
corresponds to a boundary across which dislocations can flow freely from the body
and would seem consistent with the macroscopic condition Tn = 0.

90.8 Variational Formulation of the Flow Rule

Our next step is to establish a variational formulation of the flow rule based on
the microscopically simple boundary conditions (90.67). We begin with the micro-
scopic virtual power relation (90.21) applied to B.543 Because the boundary condi-
tions (90.67) render the power expenditure null on ∂B, we consider (90.21) with the
boundary term omitted and with Ẽp = V:

∫

B

[(Tp − T0) : V + Kp ...∇V] dv = 0. (90.69)

We refer to V as a test field and assume that V is kinematically admissible in the
sense that V is symmetric and deviatoric, and that

V = 0 on Shard. (90.70)

In view of (90.11) (with Ėp = V) and (90.70),
∫

B

Kp ...∇V dv = −
∫

B

V : DivKp dv +
∫

Sfree

(Kpn) : V da.

Thus, (90.69) holds if and only if
∫

Sfree

(Kpn) : V da +
∫

B

(Tp − T0 − DivKp) : V dv = 0; (90.71)

therefore, appealing to (an obvious analog of) the fundamental lemma of the cal-
culus of variations (page 167), we see that (90.69) holds for all kinematically admis-
sible test fields V if and only if the microscopic force balance (90.23) and the mi-
croscopically free boundary-condition (90.67)1 are satisfied. Since the microscopic
force balance, when supplemented by the constitutive equations (90.54) and (90.58),
is equivalent to the flow rule (90.65), we are led to the544

542 For the special case in which we neglect gradient dissipation via the assumption Kp
dis ≡ 0, the bound-

ary conditions (90.67) need to be replaced by the weaker conditions

Ėp(n×) = 0 on Shard and Kp(n×) = 0 on Sfree, (90.68)

with (n×)i j = εikj nk; cf. Gurtin & Needleman (2004).
543 Cf. the first paragraph of §89.6.
544 Cf. Reddy, Ebobisse, & McBride (2008), who establish the well posedness of boundary-value prob-

lems associated with the theory of Gurtin & Anand (2005).
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Variational Formulation of the Flow Rule Assume that the constitutive equa-
tions (90.59) are satisfied. The flow rule (90.65) on B and the microscopically free
boundary-condition (90.67)2 are therefore together equivalent to the requirement that
(90.69) be satisfied for all test fields V.

90.9 Plastic Free-Energy Balance. Flow-Induced Strengthening

Assume that the microscopically simple boundary conditions (90.67) are satisfied,
so that

Kpn : Ėp = 0 on ∂B. (90.72)

Then, by (90.35) and the microscopic force balance (90.23),

˙∫

B

2 p(G) dv =
∫

B

Kp
en ...∇Ėp dv

=
∫

B

(Kp
en ...∇Ėp + (T0 − Tp + DivKp)︸ ︷︷ ︸

=0

: Ėp) dv (90.73)

and, by (90.11) and (90.49), the right side of (90.73) becomes
∫

B

[(Kp
en − Kp)...∇Ėp + (T0 − Tp) : Ėp] dv =

∫

B

[(T0 − Tp) : Ėp − Kp
dis ...∇Ėp] dv;

thus we have the plastic free-energy balance545

˙∫

B

2 p(G) dv =
∫

B

T0 : Ėp dv

︸ ︷︷ ︸
plastic working

−
∫

B

(Tp : Ėp + Kp
dis ...∇Ėp) dv

︸ ︷︷ ︸
dissipation≥0

.
(90.74)

Thus, since the dissipation is nonnegative, the temporal increase in defect energy can
never exceed the plastic working.

The balance (90.74) is independent of the particular (thermodynamically con-
sistent) constitutive relations for Tp and Kp

dis; if, in particular, the constitutive equa-
tions (90.54) and (90.58) are used, then (90.74) takes the form546

˙∫

B

2 p(G) dv =
∫

B

T0 : Ėp dv −
∫

B

g(d p)Y(E p)
√

|Ėp|2 + 72|∇Ėp|2 dv. (90.75)

Since the rate-dependence of most metals at room temperature is very small,
insight may be gained by choosing g to be the power-law function (78.20) and dis-
cussing the rate-independent limit m → 0, so that, in effect, g(dp) ≡ 1. Here, we wish
to focus on the microscopic stresses Tp and Kp

dis and, in particular, on the conse-
quences of their dependence on the strain-rate gradient ∇Ėp. To isolate the effects
of ∇Ėp, we neglect the defect energy as well as hardening due to the generalized accu-
mulated plastic strain with the assumptions:

(A1) L = 0, so that 2 p(G) ≡ 0 and, hence, Kp
en ≡ 0;

(A2) Y(E p) ≡ Y0, a constant.

545 Cf. (90.50) and Gurtin (2003, eq. (9.23); 2004, eq. (9.4)).
546 Cf. (90.51) and (90.60).
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In addition, we assume that:

(A3) the material is rate-independent (g(d p) ≡ 1);
(A4) at no time is the plastic strain-rate spatially constant;
(A5) the boundary conditions are microscopically simple in the sense of (90.67).

Then, by (90.75) with g(d p) ≡ 1, we find, with the aid of (A1)–(A3), that
∫

B
T0 : Ėp dv = Y0

∫

B

√
|Ėp|2 + 72|∇Ėp|2 dv. (90.76)

Further, fixing the time and letting

maxB|T0| = maximum value of |T0| over the body,

we may use (A4) (and the fact that Ėp is deviatoric) to conclude that
∫

B
T0 : Ėp dv ≤ maxB|T0|

∫

B
|Ėp| dv and

√
|Ėp|2 + 72 |∇Ėp|2 > |Ėp|.

Thus (90.76) yields the inequality

maxB|T0| > Y0. (90.77)

A consequence of this inequality is that, given any time, there is a nontrivial sub-
region of the body that is strengthened by flow; that is, a subregion on which the
magnitude |T0| of the flow stress is strictly greater than the flow strength Y0.547

EXERCISE

1. Show that if the boundary is microscopically free, then at each time some non-
trivial part of the body must be weakened by flow.

90.10 Rate-Independent Theory

The theory discussed thus far has a rate-independent counterart that follows upon
taking

g(d p) ≡ 1 (90.78)

in the dissipative constitutive equations (90.59):

Tp = Y(E p)
Ėp

d p ,

Kp
dis = 72Y(E p)

∇Ėp

d p .

(90.79)

For this rate-independent theory there is yield condition, which follows from
(90.56), (90.57), and (90.78):

|Tp| = Y(E p), (90.80)

547 Actually one can prove a stronger result, also based on (A1)–(A5): If the boundary conditions are
microscopically simple, then at each time some nontrivial part of the body must be strengthened by
flow. This result is independent of the shape of the body or of the particular macroscopic boundary
conditions under consideration.

Related discussions of strengthening based on dissipative-hardening of the form discussed here
are given by Fredriksson & Gudmundson (2005), Anand, Gurtin, Lele & Gething (2005),
Gurtin & Anand (2005a). Cf. also Ohno & Okumura (2007), who show that the self-energy
(105.65) leads to strengthening.
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or, equivalently, and plastic flow (defined by dp '= 0) is possible when and only when
the yield condition is satisfied. Finally, by (90.65) and (90.78), the flow rule has the
form

T0 − Tback = Y(E p)
Ėp

d p − 72Div
(

Y(E p)
∇Ėp

d p

)
(90.81)

with backstress Tback given by (90.64).





PART XVI

LARGE-DEFORMATION THEORY OF
ISOTROPIC PLASTIC SOLIDS

While small-deformation plasticity theories are widely used in the analysis and de-
sign of metal structures, such theories fall short in providing an adequate basis
for design against plastic-buckling and other structural instabilities — situations
in which, although the strains may be small, the rotations are often large. Also, a
proper analysis of the stress and strain states associated with tips of cracks in struc-
tural components requires a theory of finite plasticity, especially under conditions
in which the size of the plastic zone at the crack tip is large relative to the remaining
characteristic dimensions of the body. Further, and perhaps most importantly, prod-
ucts made from ductile metals are often subjected to processing operations such as
forging, rolling, extrusion, and drawing, as well as finishing operations such as ma-
chining, and large plastic deformations are ubiquitous to such manufacturing pro-
cesses; for that reason, large-deformation theories of plasticity form the basis for
numerically based computational methods for the design and analysis of processing
operations.

Finally, since even metals can undergo large elastic dilational changes under
high pressures, such as under high-velocity impact, it is important to formulate the
theory within a thermodynamically consistent frame-indifferent description that al-
lows both elastic and plastic deformations to be large. Here we develop such a
theory.

539





91 Kinematics

91.1 The Kröner Decomposition

As in its small-deformation counterpart, the framework of large-deformation plas-
ticity associates with an (elastic)-plastic solid a microscopic structure, such as a crys-
tal lattice, that may be stretched and rotated, together with a notion of defects, such
as dislocations, capable of flowing through that structure. But in contrast to its small-
deformation counterpart, the rich kinematical framework of the finite theory allows
for a deep characterization of that structure.

As we are working within the framework of large deformations, we replace the
additive decomposition (75.8) of the displacement gradient H by a multiplicative
decomposition

F = FeFp, Fi j = F e
ikF p

kj (91.1)

of the deformation gradient F(X), in which:

(i) Fe(X), the elastic distortion, represents the local deformation of material in an
infinitesimal neighborhood of X due to stretch and rotation of the microscopic
structure;

(ii) Fp(X), the plastic distortion, represents the local deformation of material X in
an infinitesimal neighborhood due to the flow of defects through that micro-
scopic structure.

We refer to (91.1) as the Kröner decomposition.548

Consistent with our stipulation that549

J = det F > 0,

we assume that

det Fe > 0 and det Fp > 0, (91.2)

so that both Fe and Fp are invertible.
In discussing the Kröner decomposition, it is important to fully understand

the differences between the tensor fields F, Fe, and Fp. First of all, while F = ∇χ
is the gradient of a point field, in general there is no point field χ p such that

548 Introduced by Kröner (1960) within a purely kinematical context. Cf. Bilby, Bullough, & Smith
(1955) and Bilby (1960) for the special case in which Fe is an infinitesimal rotation. Somewhat later
and apparently independently, Lee & Liu (1967) and Lee (1969) introduced (91.1) in an attempt to
develop a complete dynamical theory.

549 Cf. (6.2).

541
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reference body deformed body

X x

Fp(X)
Fe(X)

F(X)

infinitesimal
neighborhoods

reference space observed space

structural space
material
structure

Figure 91.1. Schematic of the Kröner decomposition. The grey squares denote infinitesimal
neighborhoods of the points X and x = χ(X). The arrows are meant to indicate the mapping
properties of the linear transformations F, Fp, and Fe.

Fp = ∇χ p, nor is there a point field χ e such that Fe = ∇χ e. Thus we can at most
describe the physical nature of the tensor fields Fe and Fp through their pointwise
mapping properties as linear transformations. With this in mind, consider the formal
relation

dx = F(X, t)dX. (91.3)

As discussed in the paragraph containing (6.7), (91.3) represents a mapping of an
infinitesimal neighborhood of X in the undeformed body to an infinitesimal neigh-
borhood of x = χ t (X) in the deformed body, and characterizes the tensor field F, at
each X, as a linear transformation of material vectors to spatial vectors. As is clear
from (91.3) and the Kröner decomposition (91.1), suppressing the argument (X, t),

dx = FeFpdX. (91.4)

For want of a better notation, let dl denote FpdX,550

dl = FpdX,

so that, by (91.4),

dx = Fedl.

The output of the linear transformation Fp must therefore coincide with the input
of the linear transformation Fe; that is,

the range of Fp = the domain of Fe. (91.5)

We refer to this common space as the structural space and to vectors in this space as
structural vectors.551 Thus, Fp and Fe have the following mapping properties (Figure
91.1):

(P1) Fp maps material vectors to structural vectors;
(P2) Fe maps structural vectors to spatial vectors.

Recall our agreement in §12.1 to refer to a tensor field G as a spatial tensor field
if G maps spatial vectors to spatial vectors, a material tensor field if G maps material

550 We do not mean to infer from this that there is a vector l with differential dl.
551 The structural space is commonly referred to as the intermediate or relaxed configuration.
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vectors to material vectors; in the same vein,

(‡) we refer to G as a structural tensor field if G maps structural vectors to structural
vectors.

91.2 Digression: Single Crystals

The physical nature of the structural space is most easily comprehended in the spe-
cial case of a single crystal, for then the structural space houses the undistorted
crystal lattice (Figure 91.1). Some readers may disagree with this: In the literature
one sometimes finds the assertion, either verbally or implicitly via a figure, that the
undistorted lattice resides in the reference space (and is hence material). We believe
this to be a misconception. Physically, because a flow of dislocations involves a flow
of material relative to the undistorted lattice, lattice vectors cannot be material. A
more rigorous argument proceeds as follows. Assume for the moment that, in ac-
cord with an approximative assumption made by materials scientists, the material
is rigid-plastic, so that Fe = Re, a rotation. Most workers would agree with the as-
sertion that, for such a material, a lattice vector as viewed in the deformed body is
simply the undistorted lattice rotated by Re.552 Granted this, then, since as noted
in (P2), Re maps (i.e., rotates) a vector s in the structural space to a vector Res in
the observed space, the lattice must reside in the structural space. Mathematics then
dictates that lattice vectors be pulled back to the reference space via the transfor-
mation Fp−1 and, hence, the image of the lattice as it appears in the reference space
would be distorted and transient. Were a lattice vector s undistorted in the refer-
ence, then it would appear in the deformed body as Fs, rather than as Res, which
contradicts the underlying mathematical structure. On the other hand, if s appears
in the reference space as Fp−1s, then it would appear in the observed space as

FFp−1s = Res,

as expected.
A further justification of the assumption that the undistorted lattice live in the

structural space, as implied by Figure 91.1, is the discussion in Footnote 688.

91.3 Elastic and Plastic Stretching and Spin. Plastic Incompressibility

The velocity gradient

L = grad χ̇

is related to the deformation gradient F through the identity553

L = ḞF−1,

and we may use the Kröner decomposition (91.1) to relate L to Fp and Fe. By (91.1),

Ḟ = ḞeFp + FpḞp, F−1 = Fp−1Fe−1, (91.6)

and, therefore,

L = (ḞeFp + FeḞp)(Fp−1Fe−1)

= ḞeFe−1 + Fe(ḞpFp−1)Fe−1.

552 This is confirmed by experiment. Indeed, a typical method of measuring lattice rotations is to view
the lattice in the deformed body, where it appears essentially undistorted, at least locally. Were
this not true a standard method of measuring lattice rotations via orientation-imaging microscopy
(OIM) measurements would not be possible; cf., e.g., Sun, Adams, Shett, Saigal & King (1998).

553 Cf. (9.12).
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Thus, defining elastic and plastic distortion-rate tensors Le and Lp through the rela-
tions

Le = ḞeFe−1 and Lp = ḞpFp−1, (91.7)

we have the decomposition

L = Le + FeLpFe−1. (91.8)

Guided by (11.2), we define the elastic stretching De and the elastic spin We

through the relations

De = 1
2 (Le + Le)),

We = 1
2 (Le − Le));

(91.9)

similarly, we define the plastic stretching Dp and the plastic spin Wp through

Dp = 1
2 (Lp + Lp)),

Wp = 1
2 (Lp − Lp)).

(91.10)

As in the small-deformation theory, we assume that plastic flow does not induce
changes in volume: Consistent with this we assume that Lp and (hence) Dp are devi-
atoric, viz. trLp = trDp = 0.554 Hence, modulo a change in the choice of reference
space, we may assume that

det Fp ≡ 1. (91.11)

Then, since by (91.1), J = det F = (det Fe)(det Fp), it follows that

J = det F

= det Fe, (91.12)

and, hence, that555

J̇ = J trDe. (91.13)

A consequence of (P1) and (P2) on page 542, (91.7), (91.9), and (91.10) is that

(P3) Le and De are spatial tensor fields;
(P4) Lp, Dp, and Wp are structural tensor fields.

91.4 Elastic and Plastic Polar Decompositions

As in §7.1, our definition of the elastic stretch and rotation tensors is based on the
right and left polar decompositions:556

Fe = ReUe = VeRe. (91.14)

Here Re is the elastic rotation, while Ue and Ve are the right and left elastic stretch
tensors,557 so that, as in (7.2) and (7.3),

Ue =
√

Fe) Fe,

Ve =
√

Fe Fe),

(91.15)

554 Cf. (53.2)2 and (53.3).
555 Cf. (9.15).
556 The corresponding right and left polar decompositions of Fp are defined analogously.
557 The stretch tensors are therefore symmetric and positive-definite.
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and the right and left elastic Cauchy–Green tensors Ce and Be are defined by

Ce = Ue2 = Fe)Fe,

Be = Ve2 = Fe Fe).

(91.16)

A useful quantity is the elastic Green–St. Venant strain

Ee = 1
2 (Ce − 1) (91.17)

= 1
2 (Ue2 − 1) (91.18)

= 1
2 (Fe)Fe − 1), (91.19)

which we henceforth refer to as the elastic strain. Differentiating (91.19) with re-
spect to time results in the following expression for the elastic strain-rate:

Ėe = 1
2 Ċe (91.20)

= 1
2 (Fe)Ḟe + Ḟe)Fe)

= sym
(
Fe)Ḟe). (91.21)

A consequence of (P2) on page 542, (91.14), (91.16), and (91.17) is that:

(P5) Ue, Ce, and Ee are structural tensor fields;
(P6) Re maps structural vectors to spatial vectors.

Next, by (91.8) and (91.16),

Fe)LFe = Fe)LeFe + CeLp. (91.22)

Since D = sym L and De = sym Le, the identity (2.32) implies that

sym (Fe)LFe) = Fe)DFe and sym (Fe)LeFe) = Fe)DeFe;

therefore, taking the symmetric part of (91.22) we conclude that

Fe)DFe = Fe)DeFe + sym (CeLp). (91.23)

Next, the computation (54.11) applied with F, C, L, and D replaced by Fe, Ce,
Le, and De yields the important identity

2Fe)DeFe = Ċe, (91.24)

or, equivalently, by (91.20),

Fe)DeFe = Ėe. (91.25)

EXERCISES

1. Using (P1) and (P2), establish (P3)–(P6).
2. Establish (91.24) and (91.26).
3. Show that

T : D = T : De + T : (FeLpFe−1).

4. Writing Fp = RpUp for the right polar decomposition of Fp, show that

We = ṘeRe) + Re[skw (U̇eUe−1)
]
Re),

Wp = ṘpRp) + Rp[skw (U̇pUp−1)
]
Rp).

(91.26)
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Thus temporal changes in the plastic stretch Up can induce plastic spin. (Hint:
Consider the argument leading to (11.8).)

5. Show that if the principal directions of Up are independent of time when ex-
pressed materially, then

Wp = ṘpRp).

(A similar result is associated with the right elastic stretch tensor.)

91.5 Change in Frame Revisited in View of the Kröner Decomposition

As described in §20.1, a change of frame is, at each time, a rotation and translation
of the observed space (the space through which the body moves); it does not affect
the reference space,558 nor does it affect the structural space; thus,

(‡) material vectors and structural vectors are invariant under changes in frame,

an assertion that should be at least intuitively clear from Figure 91.1.
As noted in the bullet on page 147, because observers view only the deformed

body, tensor fields that map material vectors to material vectors are invariant under
changes in frame.559 In view of (‡), the exact same argument yields the following
result:

(†) tensor fields

(a) that map material vectors to material vectors, or
(b) that map material vectors to structural vectors, or
(c) that map structural vectors to material vectors, or
(d) that map structural vectors to structural vectors,

are invariant under changes in frame.

Moreover, by (‡) on page 543, we see that, arguing as in the bullet on page 147,

(‡) structural tensor fields are invariant under changes in frame.

Next, recall the transformation law (20.16)1:

F∗ = QF. (91.27)

By (91.1) and (91.27),

(FeFp)∗ = Q(FeFp).

On the other hand, by (P2) and (b) of (†), Fp∗ = Fp, so that

(FeFp)∗ = Fe∗Fp∗

= Fe∗Fp;

hence,

QFeFp = Fe∗Fp.

Thus,

Fe∗ = QFe and Fp is invariant. (91.28)

Similarly, appealing to (P4) and (‡),

Lp, Dp, and Wp are invariant. (91.29)

558 Cf. the bullet on page 147
559 Cf. the argument preceding that bullet.
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Next, by (91.14) and (91.28),

Fe∗ = Re∗Ue∗ = QFe = QReUe,

Fe∗ = Ve∗Re∗ = QFe = QVeQ) QRe,
(91.30)

and we may conclude from the uniqueness of the polar decomposition that Re∗ =
QRe and

Ue and (hence) Ee are invariant and Ve∗ = QVeQ), (91.31)

so that, by (91.16),

Ce is invariant and Be∗ = QBeQ). (91.32)

Turning to the tensor field Le = ḞeFe−1, we see that (91.30) yields

Le∗ = ˙Fe∗
(
Fe∗)−1

= (QḞe + Q̇Fe)Fe−1Q)

= QḞeFe−1Q) + Q̇Q)

= QLeQ) + !, (91.33)

with ! the frame-spin (20.2).

EXERCISES

1. Establish the invariance of Ue and Ce using their mapping properties.
2. Show that De is frame-indifferent.



92 Virtual-Power Formulation of the Standard
and Microscopic Force Balances

We here develop a large-deformation counterpart560 of the virtual-power formula-
tion of §84.

92.1 Internal and External Expenditures of Power

We assume that at some arbitrarily chosen but fixed time the fields χ , Fe, and
(hence) Fp are known and

(‡) we denote by Pt an arbitrary subregion of the deformed body, at that time, and
by n the outward unit normal on ∂Pt .

The basic “rate-like” descriptors for a body undergoing large deformations are the
velocity v and the elastic and plastic distortion-rate tensors Le and Lp as constrained
by (91.8), or, equivalently, since L = gradv,

gradv = Le + FeLpFe−1. (92.1)

The formulation of the principle of virtual power is based on a balance between
the external power W(Pt ) expended on Pt and the internal power I(Pt ) expended
within Pt .561 Consider first the internal power. As in §84.1 we replace the classical
stress power T : gradv by a more detailed reckoning that individually characterizes:

(i) the stretching and spinning of the underlying microscopic structure as described
by the elastic distortion-rate Le, and

(ii) the flow of defects through that structure as described by the plastic distortion-
rate Lp.

We therefore allow for power expended internally by:

• an elastic stress Se power conjugate to Le; and
• a plastic stress Tp power conjugate to Lp,

so that Se: Le and Tp: Lp are the relevant stress powers; since Lp is deviatoric, we
assume that

Tp is deviatoric. (92.2)

Because Le is a spatial tensor field, we view Se as a spatial tensor field, and because
Lp is a structural tensor field, we view Tp as a structural tensor field.562 Therefore,

560 Cf. Gurtin & Anand (2005c).
561 Cf. §84.1.
562 Cf. (P3) and (P4) on page 544.
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for consistency, we view the elastic stress power as measured per unit volume in
the deformed body, the plastic stress power as measured per unit volume in the
structural space. Thus, since

Se : Le and J −1Tp : Lp (92.3)

then represent the elastic and plastic stress powers, measured per unit volume in the
deformed body, we assume that the internal power has the form

I(Pt ) =
∫

Pt

(Se : Le + J −1Tp : Lp) dv. (92.4)

Turning to the external power W(Pt ), we note that, by (22.11), the conventional
form of this power is given by

∫

∂Pt

t(n) · v da +
∫

Pt

b · v dv, (92.5)

with body force b presumed to account for inertia; that is, granted the underlying
frame is inertial,

b = b0 − ρv̇, (92.6)

with b0 the conventional body force.563

Guided by the discussion in §84.1, we allow also for an arbitrary external micro-
scopic force B p power-conjugate to Lp with

B p deviatoric (92.7)

and, hence, add the term
∫

Pt

J −1B p: Lp dv

to the conventional external power (92.5).564 We therefore assume that the external
power has the form

W(Pt ) =
∫

∂Pt

t(n) · v da +
∫

Pt

b · v dv +
∫

Pt

J −1B p: Lp dv. (92.8)

92.2 Principle of Virtual Power

Consider the velocity v and the elastic and plastic distortion-rates Le and Lp as
virtual velocities that may be specified independently in a manner consistent with
(92.1); that is, denoting the virtual fields by ṽ, L̃e, and L̃p to differentiate them from
fields associated with the actual evolution of the body, we require that

grad ṽ = L̃e + FeL̃pFe−1 (92.9)

and refer to the list

V = (ṽ, L̃e, L̃p)

563 Cf. (19.15).
564 Cf. (92.3).
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as a (generalized) virtual velocity. Further, writing

I(Pt ,V) =
∫

Pt

(Se : L̃e + J −1Tp : L̃p) dv,

and

W(Pt ,V) =
∫

∂Pt

t(n) · ṽ da +
∫

Pt

(
b · ṽ + J −1B p: L̃p)dv

for the corresponding internal and external expenditures of virtual power, the princi-
ple of virtual power is the requirement that, given any subregion Pt of the deformed
body,

∫

∂Pt

t(n) · ṽ da +
∫

Pt

(
b · ṽ + J −1B p: L̃p)dv

︸ ︷︷ ︸
W(Pt ,V)

=
∫

Pt

(Se : L̃e + J −1Tp : L̃p) dv

︸ ︷︷ ︸
I(Pt ,V)

(92.10)

for all virtual velocities V .

92.2.1 Consequences of Frame-Indifference

We assume that the internal power I(Pt ,V) is invariant under a change in frame
and that the virtual fields transform in a manner identical to their nonvirtual coun-
terparts. Given a change in frame, if P∗

t and I∗(P∗
t ,V∗) represent the region and the

internal power in the new frame, invariance of the internal power then requires that

I(Pt ,V) = I∗(P∗
t ,V∗), (92.11)

where V∗ is the generalized virtual velocity in the new frame. Further, by (91.33),

L̃e∗ = QL̃eQ) + !, (92.12)

where Le∗ is the elastic distortion rate in the new frame, and where Q is the frame-
rotation and ! the frame-spin. Further, since Tp is a structural tensor field and since
by (P4) L̃p is also, (‡) on page 546 implies that

Tp and L̃p are invariant (92.13)

and, hence, that the plastic stress power J −1Tp : L̃p is invariant under a change in
frame. Thus, by (92.11) and the relation represented by the right side of (92.10)

∫

Pt

Se : L̃e dv =
∫

P∗
t

Se∗ : L̃e∗ dv, (92.14)

where Se∗ is the stress Se in the new frame. The relation (92.14) is identical in form to
(22.18) in our discussion of the virtual-power principle within a classical framework:
Se and Le in (92.14) play the roles of the Cauchy stress T and the velocity gradient
L in (22.18). Further, the transformation law (92.12) for Le is identical to the law
(22.17) for L. Thus the argument starting from (22.18) in §22.2 and resulting in the
frame-indifference and symmetry of the Cauchy stress T as expressed in (22.21)
and (22.22) applies without change within the present framework; here, it leads to
the conclusion that the elastic stress Se is frame-indifferent,

Se∗ = QSeQ), (92.15)

and symmetric,

Se = Se). (92.16)
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92.2.2 Macroscopic Force Balance

Consider a macroscopic virtual velocity V for which ṽ is arbitrary and

L̃e = grad ṽ. (92.17)

In this case, (92.9) implies that

L̃p = 0 (92.18)

and (92.10) reduces to
∫

∂Pt

t(n) · ṽ da +
∫

Pt

b · ṽ dv =
∫

Pt

Se : grad ṽ dv. (92.19)

Further, by the divergence theorem
∫

Pt

Se : grad ṽ dv = −
∫

Pt

divSe · ṽ dv +
∫

∂Pt

(Sen) · ṽ da

and (92.19) becomes
∫

∂Pt

(t(n) − Sen) · ṽ da +
∫

Pt

(divSe + b) · ṽ dv = 0. (92.20)

Since (92.20) must hold for all Pt and all ṽ, an argument identical to that given in
the paragraph containing (22.15) yields the traction condition

t(n) = Sen, (92.21)

and the local force balance

divSe + b = 0. (92.22)

This traction condition and force balance and the symmetry and frame-indifference
of Se are classical conditions satisfied by the Cauchy stress T, an observation that
allows us to write

T def= Se (92.23)

and to view

T = T) (92.24)

as the macroscopic stress and (92.22) as the local macroscopic force balance.
Granted that we are working in an inertial frame, so that (92.6) is satisfied, (92.22)
reduces to the local balance law for linear momentum:

ρv̇ = divT + b0, (92.25)

with b0 the conventional body force.

92.2.3 Microscopic Force Balance

Assume that V is microscopic in the sense that

L̃e = −FeL̃pFe−1 (92.26)

and

ṽ ≡ 0, (92.27)
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consistent with (92.9). Then, by (92.10) and (92.23),
∫

Pt

(T : L̃e + J −1Tp : L̃p − J −1B p: L̃p) dv = 0

for all Pt , so that, by (92.26), the requirement that L̃p is deviatoric and (75.6), and
the identity (75.7),

J −1(Tp − B p) : L̃p = −T : L̃e

= T : (FeL̃pFe−1)

= (Fe)TFe−)) : L̃p

= (Fe)TFe−))0 : L̃p

= (Fe)T0Fe−)) : L̃p.

Thus, since L̃p is arbitrary, we have the microscopic force balance

J Fe)T0Fe−) = Tp − B p. (92.28)



93 Free-Energy Imbalance

93.1 Free-Energy Imbalance Expressed in Terms of the Cauchy Stress

The general free-energy imbalance introduced in §29.1 here leads to the require-
ment that

(‡) for any spatial region Pt convecting with the body, the temporal increase in free-
energy of Pt be less than or equal to the power expended on Pt minus the dissi-
pation within Pt .

Let ϕ denote the free-energy and δ ≥ 0 the dissipation, with ϕ and δ measured
per unit volume in the structural space, so that, by (15.6) and since J = detF =
det Fe,

∫

Pt

ϕ J −1 dv and
∫

Pt

δ J −1 dv,

respectively, represent the free energy of — and the dissipation within — Pt . The
free-energy imbalance (‡), stated precisely, is then the assertion that

˙∫

Pt

ϕ J −1 dv − W(Pt ) = −
∫

Pt

δ J −1 dv ≤ 0. (93.1)

Since W(Pt ) = I(Pt ), (92.4) and (92.23) imply that

˙∫

Pt

ϕ J −1 dv −
∫

Pt

(T : De + J −1Tp : Lp) dv ≤ 0. (93.2)

Further, Pt convects with the body and hence, by (5.10), there is a (fixed) material
region P such that Pt = χ t (P) for all t ; therefore, by (15.6),

˙∫

Pt

ϕ J −1 dv =
˙∫

P

ϕ dvR

=
∫

P

ϕ̇ dvR

=
∫

Pt

ϕ̇ J −1 dv, (93.3)
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and it follows that
∫

Pt

(J −1ϕ̇ − T : De − J −1Tp : Lp) dv = −
∫

Pt

δ J −1 dv ≤ 0.

Thus, since Pt was arbitrarily chosen,

J −1ϕ̇ − T : De − J −1Tp : Lp = −J −1δ ≤ 0,

and we have the local free-energy imbalance

ϕ̇ − J T : De − Tp : Lp = −δ ≤ 0. (93.4)



94 Two New Stresses

In this section we introduce two new stresses derived from the Cauchy stress T;
these stresses allow us to express the free-energy imbalance and the microscopic
force balance in forms more amenable to applications.

94.1 The Second Piola Elastic-Stress Te

The term

T : De = T : Le,

which represents the elastic stress-power, is most conveniently expressed in terms of
the elastic-strain-rate Ėe.565 To accomplish this we note that, since T is symmetric,
so also is Fe−1TFe−) and, therefore, by (91.7)1 and (91.21),

T : Le = T : (ḞeFe−1)

= (TFe−)) : Ḟe

= (Fe−1TFe−)) : (Fe)Ḟe)

= J −1 Te : Ėe (94.1)

with

Te def= J Fe−1TFe−). (94.2)

The stress Te is a counterpart of the standard second Piola stress TRR discussed in
§25.1 in the sense that Te is computed using Fe in place of F. We refer to Te as the
second Piola elastic-stress. A consequence of the symmetry of T is that

Te is symmetric. (94.3)

Note that (94.2) may be inverted to give an expression for T as a function of Te:

T = J −1FeTeFe). (94.4)

Finally, the definition (94.2) allows us to rewrite (93.4) in the form

ϕ̇ − Te: Ėe − Tp : Lp = −δ ≤ 0. (94.5)

565 Cf. (91.20).
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This local free-energy imbalance is central to the development of a suitable consti-
tutive theory.

As is clear from (94.2), the input space for Te is the same as that for Fe−), which,
by (P2) on page 542, is the structural space. Similarly, the output space for Te is
the same as that for Fe−1, which is again the structural space. Te therefore maps
structural vectors to structural vectors. Thus, by (92.2),

(P7) Tp and Te are structural tensor fields.

Therefore, by (‡) on page 546,

Te and Tp are invariant under changes in frame. (94.6)

94.2 The Mandel Stress Me

Elasticity and plastic flow interact through the microscopic force balance566

J Fe)T0Fe−) = Tp − B p. (94.7)

Focusing on the underlined term, which represents the elastic contribution to this
balance, we note that, by (75.7), (91.16)1, and (94.2),567

J Fe)T0Fe−) = J
(
Fe)TFe−)

)
0

= J dev
[
(Fe)Fe)Fe−1TFe−)

]

= (CeTe)0.

Important to a discussion of plasticity within the framework of large deformations
is the Mandel stress568

Me def= CeTe; (94.8)

using this stress we can rewrite the microscopic force balance (94.7) in the simple
form

Me
0 = Tp − B p. (94.9)

Next, by (91.16), (94.4), and (94.8), since T is symmetric,

T = J −1FeCe−1MeFe)

= J −1FeFe−1Fe−)MeFe)

= J −1FeMe)Fe−1; (94.10)

the Cauchy and Mandel stresses are therefore related by

T = J −1FeMe)Fe−1, (94.11)

or, equivalently,

Me = J Fe)TFe−). (94.12)

566 Cf. (92.28).
567 Recall that devA = A0 represents the deviatoric part of A; cf. (2.46).
568 Mandel (1973).



95 Constitutive Theory

In this section, we develop a constitutive theory appropriate to rate-independent
Mises plasticity.

95.1 General Separable Constitutive Theory

We neglect defect energy and restrict attention to constitutive relations that sepa-
rate elastic and plastic constitutive response; therefore, guided by (94.5), we con-
sider constitutive relations of the form

ϕ = ϕ̂(Ee),

Te = T̂e(Ee),

Tp = T̂p(Lp, e p),






(95.1)

with e p, the accumulated plastic strain, consistent with the hardening equation569

ė p = |Dp|, (95.2)

and, hence, assumed to range over the interval 0 ≤ e p < ∞. Note that, by (91.29)
and (91.31), Ee and Lp are invariant under changes in frame, and, by (94.6) so also
are Te and Tp. Thus, since e p is a scalar field and, hence, frame-indifferent,

• the constitutive equations (95.1) and (95.2) are frame-indifferent.

The application of the Coleman–Noll procedure in a framework that allows for
both elastic and plastic response is more complicated than its application in §48.2,
where the material is elastic. By a constitutive process we mean a pair (χ , Fp) of
fields χ and Fp — with χ a motion and Fp a plastic-distortion tensor (so that detFp =
1) — together fields Ee, Lp, e p, ϕ, Te, and Tp, where

(i) Lp and Ee are defined by

Lp = ḞpFp−1, Ee = 1
2 (Fe)Fe − 1), Fe = FFp−1, F = ∇χ ;

(ii) e p is any solution of (95.2);
(iii) ϕ, Te, and Tp are determined by the fields Ee, Lp, and e p through the constitu-

tive equations (95.1).

Remark. It is important to note that — because (ii) does not prescribe initial con-
ditions for the hardening equation (95.2) — the fields χ and Fp do not uniquely

569 Cf. (76.8).
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determine a constitutive process. In this regard, we view the prescription of initial
conditions for e p as part of the specification of an initial state for the body and,
hence, not part of the basic constitutive theory.570

Given a constitutive process, (94.4) determines the stress T, and the momentum
balance (92.25) and the microscopic force balance (92.28) provide explicit relations

b0 = ρv̇ − divT,

B p = Tp − J Fe)T0Fe−)
(95.3)

for the body force b and the microscopic body force B p needed to support the pro-
cess. We assume that these body forces are arbitrarily assignable; the force balances
thus in no way restrict the class of constitutive processes the material may undergo.
But unless the constitutive equations are suitably restricted, not all constitutive pro-
cesses will be compatible with the free-energy imbalance (94.5).

To determine such restrictions we first note that, given an arbitrary constitutive
process, (95.1) implies that

ϕ̇ = ∂ϕ̂(Ee)
∂Ee : Ėe, (95.4)

and, hence, that the free-energy imbalance (94.5) reduces to the inequality
(

T̂e(Ee) −
∂ϕ̂(Ee)
∂Ee

)
: Ėe + T̂p(Lp, e p) : Lp ≥ 0. (95.5)

We now determine constitutive restrictions that ensue from the requirement
that (95.5) hold in all constitutive processes. A central step in accomplishing this is
to prove that:

(I) it is possible to find a constitutive process such that

Lp ≡ 0 (95.6)

and such that Ee and Ėe have arbitrarily prescribed values at some point and
time;

(II) it is possible to find a constitutive process such that

Fe ≡ 1 (so that Ėe ≡ 0) (95.7)

and such that Lp and e p have arbitrarily prescribed values — with Lp deviatoric
and e p ≥ 0 — at some point and time.

The verification of (I) and (II) is given at the end of the section.
Assume that (I) and (II) are satisfied with (X0, t0) the point at which the rele-

vant fields have arbitrarily prescribed values. Then by (95.6) the inequality (95.5)
(at (X0, t0)) reduces to

(
∂ϕ̂(Ee)
∂Ee − T̂e(Ee)

)

︸ ︷︷ ︸
#(Ee)

: Ėe ≤ 0, (95.8)

and the coefficient #(Ee) of Ėe in (95.8) must vanish (at (X0, t0)), for otherwise Ėe

may be chosen to violate (95.8). Thus since Ee at (X0, t0) is arbitrary, we must have

T̂e(Ee) = ∂ϕ̂(Ee)
∂Ee . (95.9)

570 Cf. our discussion of fluids in §42 — in particular, the sentence following (C3) on page 245.
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Further, an immediate consequence of (95.9) is that, given any constitutive process,
the inequality (95.5) reduces to

T̂p(Lp, e p) : Lp ≥ 0 (95.10)

and (II) ensures that this inequality need hold for all deviatoric Lp and all e p ≥ 0.
Conversely, if the constitutive restrictions (95.9) and (95.10) are satisfied, then

the free-energy imbalance (95.5) is satisfied in all constitutive processes. We, there-
fore, have the following result:

Thermodynamic Restrictions The following conditions are both necessary and suf-
ficient that every constitutive process satisfy the free-energy imbalance:

(i) the free energy determines the second Piola elastic-stress through the stress rela-
tion

T̂e(Ee) = ∂ϕ̂(Ee)
∂Ee ; (95.11)

(ii) the plastic stress satisfies the reduced dissipation inequality

T̂p(Lp, e p) : Lp ≥ 0. (95.12)

The left side of (95.12) represents the dissipation as a function

δ(Lp, e p) = T̂p(Lp, e p) : Lp ≥ 0. (95.13)

Verification of (I) and (II)

Choose a material point X0 and a time t0. We first discuss the construction of motions corresponding
to the constitutive processes of (I) and (II). To find a motion χ and a plastic distortion Fp that have
the properties specified in (I), we note that, since F = FeFp, if we let Fp ≡ 1 (so that Lp ≡ 0), then the
desired motion would have F ≡ Fe, so that, necessarily, L ≡ Le, E ≡ Ee , and so forth. On the other hand,
regarding (II), the hypothesis Fe ≡ 1 implies that the desired motion must have F ≡ Fp, and, hence, that
detF ≡ 1 and L ≡ Lp.

For both (I) and (II) we use the motion defined on all space by (14.5); viz.

χ(X, t) = x0 + e(t−t0)L F0 (X − X0), −∞ < t < ∞, (95.14)

with L and F0 constant, and with detF0 > 0. In addition, for (II) given any choice of the constant devi-
atoric tensor L (and hence D) and any choice of ep

0 ≥ 0, a constant, we define the accumulated plastic
strain ep(t) (independent of X) by

ep(t) = ep
0 + (t − t0)|D|,

a choice that trivially satisfies the hardening equation (95.2).
To complete the verification of (I) and (II) we must show that

– for some choice of the constant L the motion χ has the properties specified in (I), and for another
choice χ and ep have the properties specified in (II).

Consider (I). We assume that L ≡ D is symmetric. We have to show that the Green–St. Venant
strain E ≡ Ee corresponding to χ and its rate Ė ≡ Ėe may be arbitrarily specified at (X0, t0). But since
both F0 and D are arbitrary, this is a direct consequence of the identity E = 1

2 (C − 1) and the argument
specified in the paragraph containing (48.21).

Regarding (II), we choose a deviatoric L, and we let F0 = 1, so that, by (14.4), detF(t) ≡ detFp(t) ≡
1. Then χ has the desired properties, as does ep, since ep

0 ≥ 0 was arbitrarily chosen.
This completes the verification of (I) and (II).

95.2 Structural Frame-Indifference and the Characterization
of Polycrystalline Materials Without Texture

Based on the great success of conventional frame-indifference, Green & Naghdi
(1971) introduced the notion of a change in frame of the structural space.571

571 Cf. also Casey & Naghdi (1980).
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Consistent with Figure 91.1, this notion leads to transformation laws of the form

∗Fp = QFp and ∗Fe = FeQ), (95.15)

in which Q is an arbitrary time-dependent rotation of the structural space and, for
any field :, ∗: denotes : as seen in the new frame.572 Unfortunately, Green and
Naghdi viewed structural frame-indifference as a general principle; that is, a prin-
ciple that stands at a level equivalent to that of conventional frame-indifference.
This view has been refuted by many workers,573 and as a consequence references
to structural frame-indifference have almost disappeared from the literature. While
we agree with the view that

• structural frame-indifference is not a general principle,

this hypothesis does represent an important facet of the behavior of a large class of
polycrystalline materials based on the Kröner decomposition. Indeed,

• for polycrystalline materials without texture the structural space would seem to be
associated with a collection of randomly oriented lattices, and hence the evolution
of dislocations through that space should be independent of the frame with respect
to which this evolution is measured.574

Consequences of (91.7)2, (91.19), and (95.15) are the transformation laws

∗Ee = QEeQ),

∗Lp = QLpQ) + ,,

∗Dp = QDpQ),





(95.16)

with

,
def= Q̇Q) (95.17)

the corresponding frame-spin, a skew tensor. By (95.16), mimicking the conventional
definition of a frame-indifferent field, we may say that Ee and Dp are structurally
frame-indifferent, while Lp is not.

The requirement that the material defined via the constitutive equations (95.1)
be independent of the structural frame is somewhat delicate, because we do not
yet know how the elastic and plastic stresses Te and Tp transform. On the other
hand, since the free energy ϕ and the dissipation δ are scalars and hence necessarily
invariant under structural frame changes, we may use (95.1)1, (95.13), and (95.16) to
phrase the requirement of invariance under changes in structural frame as follows:

(SFI) the constitutive relations (95.1)1 and (95.13) describing the free energy and the
dissipation must satisfy

ϕ̂(Ee) = ϕ̂(QEeQ)),

δ(Lp, e p) = δ(QLpQ) + ,, e p),
(95.18)

for all rotations Q and all skew tensors ,.

572 In this section we restrict attention to a prescribed point of the body so that, without loss in gen-
erality, the orthogonal transformations involved may be considered as being independent of the
material point X. However, the discussion given here is valid without change if these trasformations
are allowed to depend on X, because nowhere in this section are these transformations differenti-
ated with respect to X.

573 Cf., e.g., Dashner (1986) and the references therein. In fact, invariance under (95.15)2 renders the
elastic response isotropic and hence not generic.

574 Cf. Footnote 3 of Gurtin (2003).
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Consider the free energy. By (95.18), ϕ̂(Ee) must be an isotropic function of Ee

and a standard argument based on the relation (95.11) for the elastic stress yields the
same conclusion for T̂e(Ee). A condition both necessary and sufficient that the elas-
tic relations be invariant under changes in structural frame is thus that the constitu-
tive relations (95.1)1,2 governing elastic response be isotropic. We henceforth assume
that this condition is satisfied.

Next, for ∗Tp = T̂p(∗Lp, e p), (95.13) and (95.18)2 imply that

Tp : Lp = ∗Tp : (QLpQ) + ,) (95.19)

for all rotations Q and all skew tensors ,. Taking , = 0 we find that

Tp : Lp = ∗Tp : (QLpQ))

= (Q)
∗TpQ) : Lp

and, since this relation must hold for all Lp, we must have

∗Tp = QTpQ); (95.20)

Tp is therefore structurally frame-indifferent. On the other hand, for Q = 1, so that
Tp = ∗Tp, we conclude from (95.19) that Tp : , = 0 (for every skew tensor ,); hence
Tp is symmetric. We have therefore shown that

Tp is symmetric and structurally frame-indifferent. (95.21)

An important consequence of this result is that the dissipation (95.13) must have the
more conventional form

Tp : Dp ≥ 0. (95.22)

Next, by (95.16)2 and (95.20) the constitutive response function T̂p(Lp, e p) must
transform according to

QT̂p(Lp, e p)Q) = T̂p(QLpQ) + ,);

if we take Q = 1 we find that

T̂p(Lp, e p) = T̂p(Lp + ,, e p)

for very skew tensor ,. Thus, taking , = −Wp we conclude that, in view of (95.21)
and since, by (95.16)3, Dp is structurally frame-indifferent, the constitutive relation
(95.1)3 must reduce to an isotropic relation

Tp = T̂p(Dp, e p), (95.23)

with Tp symmetric. Thus,

• the plastic stress cannot depend on the plastic spin.

Further, using (95.22) and (95.23), we can rewrite the dissipation (95.13) as a func-
tion

δ(Dp, e p) = T̂p(Dp, e p) : Dp ≥ 0 (95.24)

of Dp and e p.
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The main results of this section may be summarized as follows:
Consequences of Structural Frame-Indifference:

(i) The constitutive relations (95.1)1,2 governing elastic response are isotropic.
(ii) The plastic stress Tp is symmetric and structurally frame-indifferent, and can de-

pend on Lp at most isotropically through Dp — thus, importantly, Tp is indepen-
dent of the plastic spin.

(iii) The dissipation δ is independent of the plastic spin.

EXERCISE

1. Establish the following transformation laws appropriate to a change in structural
frame:

∗Ce = QCeQ),

∗Ee = QEeQ),

∗Dp = QDpQ),





(95.25)

and

∗Rp = QRp,

∗Lp = QLpQ) + ,,

∗Wp = QWpQ) + ,,





(95.26)

with , the corresponding frame-spin (95.17). (The result (95.25) asserts that the
fields Ce, Ee, and Dp are structurally frame-indifferent, which is not surprising:
As is clear from (P4) on page 544 and (P5) on page 545, Ce, Ee, and Dp are
structural tensor fields, and (95.25) are natural transformation laws for tensors
with this mapping property.)

2. Show, as a consequence of (95.11), that ϕ(Ee) an isotropic function of Ee implies
that T̂e(Ee) is an isotropic function of Ee.

95.3 Interaction of Elasticity and Plastic Flow

The response of most metals is typically associated with small elastic strains.575 Thus,
bearing in mind (i) on page 562, we consider elastic constitutive relations of the
form576

ϕ = µ|Ee|2 + 1
2λ|trEe|2,

Te = 2µEe + λ(trEe)1.

(95.27)

Even though the purported application of (95.27) is to small elastic strains, the rela-
tions (95.27) are frame-indifferent and consistent with the free-energy imbalance —
these relations are therefore theoretically valid constitutive equations, independent
of the size of the deformation. But, as is well known, (95.27) characterize observed
behavior only for Ee small.

The identity Ce − 1 = 2Ee allows us to rewrite (95.27)2 in the form

Te = µ(Ce − 1) + 1
2λ(trCe − 3)1, (95.28)

575 Except under conditions involving high-velocity impact, where elastic volume changes can become
large.

576 The stress-strain relation (95.27)2 follows from a standard representation theorem provided in
§112.7; the verification of (95.27)1, granted (95.9) and (95.27)2, is left as an exercise.
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and, since by (94.8) Me = CeTe,

Me = µ(Ce2 − Ce) + 1
2λ(trCe − 3)Ce. (95.29)

Thus, Me is symmetric,

Me = Me). (95.30)

Further, Me is an isotropic function of Ce (an assertion whose proof we leave as
an exercise); hence, the commutation property (ii) of Appendix 113.2 yields the
conclusion that

MeCe = CeMe; (95.31)

thus since Ce and Me are symmetric, so also is CeMe.

EXERCISES

1. Show that Me is an isotropic function of Ee.
2. Show that

UeMe = MeUe. (95.32)

(Hint: show that Me is an isotropic as a function of Ue and use the commutation
property (ii) of Appendix 113.2.)

3. Use the polar decomposition Fe = ReUe and (95.32) to show that

T = J −1ReMeRe). (95.33)

95.4 Consequences of Rate-Independence

Our discussion of rate-independence follows §76.2: We suppress the argument X,
invoke the notational agreements spelled out in (76.13) and (76.14), and use the
identity577

:̇κ(t) = κ:̇(κ t) (95.34)

appropriate to a change in time-scale (76.12) with rate constant κ > 0. Then, Ḟp
κ (t) =

κḞp(κ t) and, since Lp = ḞpFp−1,

Lp
κ (t) = κḞp(κ t)Fp−1(κ t)

= κLp(κ t). (95.35)

The symmetric part of Lp is the plastic stretching Dp; thus,

Dp
κ (t) = κDp(κ t). (95.36)

We now assume that the constitutive relation (95.23) for the plastic stress,

Tp = T̂p(Dp, e p), (95.37)

is rate-independent. Our discussion of the consequences of this assumption is iden-
tical to a corresponding discussion in §76 and leads to a constitutive relation of the
form (76.21), but with the replacements T0 → Tp and Ėp → Dp:

Tp = T̂p(Np, e p), (95.38)

577 Cf. (76.15).



564 Constitutive Theory

with Np, the flow direction, here defined by

Np =
Dp

|Dp|
. (95.39)

EXERCISE

1. Derive (95.38) without referring to §76. Show all steps.

95.5 Derivation of the Mises Flow Equations Based on
Maximum-Dissipation

For the most part, our discussion follows §79, but, because we now have at our
disposal the virtual external body force B p, it begins with the microscopic force-
balance (94.9) supplemented by the constitutive relation (95.38) for the plastic stress
Tp; viz.

Me
0 = T̂p(Np, e p) − B p. (95.40)

We use the term normalized flow for a pair (Me
0, Np) with Me

0 a deviatoric Mandel
stress and Np a flow direction, and we refer to (Me

0, Np) as physically attainable if578

B p ≡ 0. (95.41)

Then, by (95.40), (Me
0, Np) is physically attainable if and only if Me

0 and Np are re-
lated through the flow rule579

Me
0 = T̂p(Np, e p). (95.42)

Consistent with this, we use the term flow stress for a deviatoric Mandel stress Me
0

such that

Me
0 = T̂p(Np, e p) for some flow direction Np, (95.43)

and we refer to

Y(e p) def= the set of all flow stresses Me
0 (95.44)

as the yield set.
Within the present framework, the expression (76.26) for the flow resistance

takes the form

Y(Np, e p) = Np : T̂p(Np, e p) > 0, (95.45)

where here, as in §79, we have assumed that the dissipation is strict.
Consonant with (79.7) and (79.8), we say that a deviatoric Mandel stress Me

0 is
admissible in the sense of maximum dissipation if

Me
0 : Np ≤ Y(Np, e p) for every flow direction Np, (95.46)

and we refer to the set

E(e p) def= the set of all Me
0 that are admissible

in the sense of maximum dissipation (95.47)

as the elastic range.

578 Here, as compared to §79, the presence of the external body force B p allows us to consider flows
that are not physically attainable; cf. our discussion in the paragraph containing (‡) on page 455.

579 Cf. Footnote 485.
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Our derivation of the Mises flow equations is based on the following two hy-
potheses:

(FS) (flow-stress admissibility) each flow stress is admissible in the sense of maxi-
mum dissipation, so that

Y(e p) ⊂ E(e p); (95.48)

(SI) (strong isotropy) Y(Np, e p) is independent of the flow direction Np; viz.

Y(Np, e p) = Y(e p).

By (FS), (SI), and (95.46), we have the important inequality

Me
0 : Np ≤ Y(e p) for every flow stress Me

0 and every flow direction Np. (95.49)

Then, if we adjoin to the hardening equation (95.2) the null initial-condition
e p(X, 0) = 0, recall that580

SymDev = the set of all symmetric and deviatoric tensors,

and argue as in §79, we are led to the following result:

Maximum Dissipation and the Mises Flow Equations for Large Deformations
Assume that the hypotheses (SI) and (FS) are satisfied. The flow rule (95.42) and the
hardening equation (95.2), with e p(0) = 0, then take the form

Me
0 = Y(e p)Np for Dp '= 0,

ė p = |Dp|, e p(X, 0) = 0.
(95.50)

Further, the yield set Y(e p) is a spherical surface in SymDev of radius

Y(e p) > 0 (95.51)

and center at 0, and the elastic range E(e p) is the closed ball in SymDev whose bound-
ary is Y(e p). The requirement that the deviatoric Mandel stress be confined to the
elastic range is thus equivalent to the boundedness inequality581

|Me
0| ≤ Y(e p). (95.52)

We refer to (95.50) as the Mises flow equations and to (95.50)1 as the Mises flow rule.

EXERCISE

1. Verify the Mises flow equations (95.50) directly without referring to §79.

580 Cf. (79.3).
581 In contrast to the conventional theory introduced in §75, this inequality is not a separate hypothesis.



96 Summary of the Basic Equations. Remarks

• For the remainder of this part we assume that

B p ≡ 0

and, consequently, confine our attention to constitutive processes that are physi-
cally attainable.

The basic equations of the theory, as derived thus far, are: the Kröner decompo-
sition and the plastic incompressibility condition,582

F = ∇χ = FeFp, detFp = 1; (96.1)

the kinematical relations583

Ee = 1
2 (Ce − 1), Ce = Fe)Fe,

Lp = ḞpFp−1, Dp = sym Lp, Np = Dp

|Dp|
;

(96.2)

the elastic stress-strain relation584

Te = 2µEe + λ(trEe)1; (96.3)

the Mises–Hill equations585

Me
0 = Y(e p)Np for Dp '= 0, ė p = |Dp| (e p(X, 0) = 0),

|Me
0| ≤ Y(e p), Dp = 0 for |Me

0| < Y(e p),
(96.4)

with

Me = CeTe (96.5)

the Mandel stress;586 the balance law for linear momentum587

divT + b0 = ρv̇, T = J −1FeTeFe). (96.6)

Remark. At this point the plastic flow equations are not in a form most suitable for
the solution of initial/boundary-value problems.588

582 Cf. (91.1) and (91.11).
583 Cf. (91.7)2, (91.16)1, and (91.17).
584 Cf. (95.27)2.
585 Cf. (95.50) and (95.52); (96.4)4 follows from the tacit requirement that the flow be physically attain-

able.
586 Cf. (94.8).
587 Cf. (92.25) and (94.4).
588 Cf. §99.4.
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We now show that — within the present framework for isotropic plasticity and with-
out loss in generality — we may assume that the plastic spin vanishes.589 Specifically,
our goal is to establish the following result:

Irrotationality Theorem If the initial/boundary-value problem consisting of the
basic equations specified in §96 together with concomitant boundary and initial con-
ditions has a solution, then every spatially inhomogeneous frame-change Q(X, t) for
the structural space also yields a solution. Moreover, there is always a (possibly spa-
tially inhomogeneous) frame-change that renders the transformed solution as one
without plastic spin. Thus we may assume, without loss in generality, that Wp = 0.

Based on this result, we restrict attention to irrotational plastic flow; that is, to
flow for which

Wp = 0, (97.1)

so that, by (91.7)2,

Dp = ḞpFp−1. (97.2)

Further, (91.26)2 and (97.1) imply that

Ṙp = −Rp skw (U̇pUp−1);

thus, even though the plastic spin vanishes, the plastic rotation is generally non-
trivial. Note also that, by (97.1), (91.23) takes the form

Fe)DFe = Fe)DeFe + sym (CeDp). (97.3)

Proof of the Irrotationality Theorem
The proof is based on our discussion of structural frame-indifference in §95.2. Consider an arbitrary
rotation field Q(X, t), viewed as a (time-dependent) change in structural frame.590 For any field : let ∗:
denote the field : as seen in the new frame. The elastic and plastic distortions then transform according
to (95.15) under the frame change Q(X, t), viz.

∗Fp = QFp,

∗Fe = FeQ).

(97.4)

Consistent with terminology used in §95.2, we say that a field : is structurally invariant if

∗: = :,

589 Gurtin & Anand (2005c).
590 Cf. Footnote 572.
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and that a tensor field , is structurally frame-indifferent if

∗, = Q,Q) . (97.5)

Further, we say that a constitutive relation 0 = 0̂(3) is structurally frame-indifferent if591

0 = 0̂(3) implies that ∗0 = 0̂(∗3). (97.6)

By (91.1), F is invariant under (97.4):
∗F = F, (97.7)

so that, modulo an inconsequential time-dependent rigid displacement of the body, the motion χ is struc-
turally invariant:

∗χ = χ . (97.8)
Further consequences of (97.4) are the transformation laws (95.25) and (95.26) in which , = Q̇Q) is the
corresponding frame spin (95.17).

Next, by (96.3), (95.25), and (96.5), the elastic and Mandel stresses are structurally frame-
indifferent,

∗Te = QTeQ),

∗Me = QMeQ) ;
(97.9)

conversely, granted the transformation laws (97.4), the elastic stress-strain relation (96.3) and the Mises
flow equations and boundedness inequality expressed in (96.4) are structurally frame-indifferent. Thus,
under the transformation law (97.9),

(‡) the elastic stress-strain relation and the Mises flow equations and boundedness inequality are struc-
turally frame-indifferent, while the Kröner decomposition renders F structurally invariant.

Further, by (94.11), (97.7), and (97.9), the Cauchy stress T is invariant:

∗T = T. (97.10)

Assume that we are given a motion χ of the body consistent with the basic equations (96.1)–(96.6).
Assume that the spin Wp corresponding to this solution is nonzero. Consider a (for now arbitrary) time-
dependent rotation field Q(X, t), viewed as a spatially inhomogeneous frame-change for the structural
space, so that the basic transformation law (97.4) for Fe and Fp is satisfied. Then, by (95.25), Ce , Ee,
Dp, and Np are structurally frame-indifferent, and if we define ∗Te , ∗Me, and ∗Tp through the transfor-
mation laws (97.9), then the transformed fields satisfy (96.1)–(96.6)1 with ∗F = F and ∗T = T (granted
that ∗T is defined in terms of the transformed fields via (94.11)). Thus the transformed fields satisfy all
of the basic equations. Moreover, if the original solution satisfied initial and boundary conditions involv-
ing fields unrelated to the structural space, as is standard, then the transformed fields satisfy the same
initial/boundary-value problem as the original fields.

Consider now the transformed spin ∗Wp, which, by (95.26)3, satisfies

∗Wp = QWpQ) + Q̇Q). (97.11)

Up to this point Q(X, t) has been an arbitrary rotation field. We now seek to find a particular rotation
field Q(X, t) such that

Q̇ = −QWp, (97.12)
for then (97.11) would yield

∗Wp = 0. (97.13)
Since any solution of (97.12) renders ∗Wp = 0, we have only to find a solution Q of (97.12) with Q a
rotation field. We now show that the unique solution Q consistent with the initial condition

Q(X, 0) = 1 (97.14)

is a rotation field. To see this we differentiate Q)Q:
˙Q)Q = Q̇)Q + Q)Q̇

= (Q)Q̇)) + Q)Q̇

= −(Wp)) − Wp

= 0.

On the other hand, by (97.14),
(Q)Q)(X, 0) = 1. (97.15)

Thus Q)Q ≡ 1 and Q is a rotation field. The transformed solution therefore has vanishing plastic spin.

591 Cf. (36.1).



98 Yield Surface. Yield Function. Consistency
Condition

As noted in the paragraph containing (95.52), the yield surface is the spherical sur-
face with radius Y(e p) > 0 in the space SymDev of symmetric, deviatoric tensors
and the elastic range is the closed ball with radius Y(e p), and a consequence of the
yield condition is that plastic flow is possible only when the deviatoric Mandel stress
Me

0 lies on the yield surface.
Immediate consequences of the Mises flow rule (95.50)1 and the boundedness

inequality (95.52) are the yield condition

|Me
0| = Y(e p) for Dp '= 0 (98.1)

and the condition

Dp = 0 for |Me
0| < Y(e p). (98.2)

As in our discussion of small deformations we introduce a yield function592

f = |Me
0| − Y(e p), (98.3)

which by (95.52) is constrained by

−Y(e p) ≤ f ≤ 0. (98.4)

The yield condition (98.1) is then equivalent to the requirement that

f = 0 for Dp '= 0, (98.5)

and (98.2) takes the form

Dp = 0 for f < 0. (98.6)

Further, as argued in the case of the small-deformation rate-independent theory
in § 76.8, the yield function f obeys the following additional restriction:

if f = 0 then ḟ ≤ 0; (98.7)

this leads to the no-flow condition

Dp = 0 if f < 0 or if f = 0 and ḟ < 0 (98.8)

and the consistency condition

if Dp '= 0, then f = 0 and ḟ = 0. (98.9)

592 Considered as a function of (X, t) rather than (Me, ep).
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Next, let

Y′(e p) = dY(e p)
de p , (98.10)

so that, by (96.4)2,

˙Y(e p) = Y′(e p)|Dp|;

then, letting

H(e p) def= Y′(e p), (98.11)

we arrive at
˙Y(e p) = H(e p)|Dp|. (98.12)

Thus, if we assume that Dp '= 0, then, by (98.1), |Me
0| − Y(e p) = 0; hence, (98.12)

yields

˙|Me
0| = H(e p)|Dp|, (98.13)

which is the large-deformation counterpart of (76.111).

EXERCISE

1. Establish the no-flow condition (98.8) and the consistency condition (98.9).



99 |Dp| in Terms of Ė and Me

99.1 Some Important Identities

First of all, a consequence of the flow rule (95.50)1 is that

Np =
Me

0

|Me
0|

, (99.1)

so that the deviatoric Mandel tensor “points” in the direction of plastic flow. Next,
the following commutativity identities are useful:

CeMe = MeCe, CeNp = NpCe, TeNp = NpTe. (99.2)

The first of these identities is (95.31). The second follows from the first and (99.1)
(since a tensor commutes with G if and only if it commutes with G0). The third
follows from the second and (95.28).

By (12.6), the material time-derivative of the Green–St. Venant strain

E = 1
2 (F)F − 1) (99.3)

is related to the stretching D by

Ė = F)DF,

and, in view of the decomposition F = FeFp, yields the relation

Fe)DFe = Fp−)ĖFp−1. (99.4)

99.2 Conditions that Describe Loading and Unloading

Assume unless otherwise specified that593

f = 0 (so that ḟ ≤ 0). (99.5)

Then, by (3.2), (98.3), (98.12), and (99.1),

ḟ = ˙|Me
0| − ˙Y(e p)

=
Me

0

|Me
0|

: Ṁe
0 − H(e p)|Dp|

= Np : Ṁe
0 − H(e p)|Dp|. (99.6)

593 Cf. (98.7).
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Our next step is to compute the term Np : Ṁe
0. Clearly,

Np : Ṁe
0 = Np : Ṁe,

because Np is deviatoric. By (95.29),

Ṁe = µ(CeĊe + ĊeCe − Ċe) + 1
2λ[(trCe − 3)Ċe + (1 : Ċe)Ce]. (99.7)

Since CeĊe + ĊeCe is symmetric, as is Np,

(CeĊe + ĊeCe) : Np = 2(CeĊe) : Np

= 2(Ce
ikĊe

kl)Np
il

= 2(Ce
ki Np

il )Ċe
kl

= 2(CeNp) : Ċe.

Also,

(1 : Ċe)(Ce : Ṅp) =
[
(Ce : Ṅp)1

]
: Ċe.

Thus, by (99.7),

Np : Ṁe
0 = A : Ċe, (99.8)

where

A = µ(2Ce − 1)Np + 1
2λ[(trCe − 3)Np + (Ce : Np)1]. (99.9)

We refer to A as the normal Mandel elasticity tensor, because it relates the normal
Mandel stress rate Np : Ṁe

0 to the rate Ċe of the elastic Cauchy–Green tensor Ce. By
(99.8), (99.6) may be written as

ḟ = A : Ċe − H(e p)|Dp|. (99.10)

Next, since Dp = |Dp|Np, we may use (99.2)2 and (99.4) to rewrite (97.3) in the
form

Fp−)ĖFp−1 = Fe)DeFe + |Dp|CeNp. (99.11)

Further, by (91.24),

A : Ċe = 2A : (Fe)DeFe), (99.12)

and, if we use (99.11) to eliminate the term Fe)DeFe in (99.12) and invoke (2.52), we
find that

A : Ċe = 2A :
(
Fp−)ĖFp−1 − |Dp|CeNp)

= 2A : (Fp−)ĖFp−1) − 2 |Dp|A : (CeNp)

= 2(Fp−1AFp−)) : Ė − 2 |Dp|A : (CeNp). (99.13)

The tensor field

A def= Fp−1AFp−) (99.14)

represents the tensor A pulled back contravariantly from the structural space to the
reference space.594 Using (99.14), we can write (99.13) in the form

A : Ċe = 2A : Ė − 2A : (CeNp)|Dp|

594 Cf. (12.2) with F replaced by Fp.
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and (99.10) becomes

ḟ = 2A : Ė − [2A : (CeNp) + H(e p)]︸ ︷︷ ︸
G

|Dp|. (99.15)

We henceforth restrict attention to materials for which

G def= 2A : (CeNp) + H(e p) > 0. (99.16)

Remark. The restriction (99.16) may seem devoid of physical meaning, but it is not.
The elastic strains are typically small; thus since Ce − 1 = 2Ee and Fe = ReUe,

Ce ≈ 1, trCe ≈ 3, Ce : Np ≈ 0, Fe ≈ Re, (99.17)

and hence, by (99.9),

A ≈ µNp, G ≈ 2µ + H(e p), A ≈ µFp−1NpFp−). (99.18)

The approximation (99.18)2 should justify the restriction (99.16). Further, G is ap-
proximately the modulus (77.4) of the small-deformation theory and, hence, the dis-
cussion following (77.4) is also appropriate here.

We now derive conditions that determine whether the material leaves — or
remains on — the yield surface when the material point in question is subjected to
a loading program characterized by the strain tensor E.

(i) Elastic unloading is defined by the condition A : Ė < 0. In this case, since
|Dp| ≥ 0, (99.15) implies that ḟ < 0, and from the no-flow conditions (98.8)
we conclude that Dp = 0.

(ii) Neutral loading is defined by the condition A : Ė = 0. In this case |Dp| > 0 can-
not hold, for if it did, then (99.15) would imply that ḟ < 0, which would violate
(98.8). Hence |Dp| = 0, so that, once again, Dp = 0.

(iii) Plastic loading is defined by the condition A : Ė > 0. In this case, if |Dp| = 0
then ḟ > 0, which violates ḟ ≤ 0. Hence |Dp| > 0, and, since the consistency
condition (98.9) then requires that ḟ = 0, (99.15) yields

|Dp| = 2 G−1A : Ė '= 0. (99.19)

Thus, since Dp = |Dp|Np,

Dp = 2 G−1(A : Ė)Np '= 0. (99.20)

Hence, by (95.29), (99.9), and (99.14), if Np is considered as Me
0/|Me

0|,595 then
(99.20) is determined by Ė, Ce, and the current hardening modulus H(e p).

EXERCISE

1. Give arguments in support of the approximations (99.17).

595 Cf. (99.1).



574 |Dp| in Terms of Ė and Me

99.3 The Inverted Flow Rule

Combining the results of this discussion with the condition (98.8), we arrive at an
equation for |Dp| that holds for all time, no matter whether f = 0 or f < 0:

Dp =






0 if f < 0 (behavior within the elastic range),
0 if f = 0 and A : Ė < 0 (elastic unloading),
0 if f = 0 and A : Ė = 0 (neutral loading),
2 G−1(A : Ė)Np if f = 0 and A : Ė > 0 (plastic loading).






(99.21)
The result (99.21) is embodied in the inverted flow rule

Dp = 2χG−1(A : Ė)Np, Np =
Me

0

|Me
0|

, (99.22)

where

χ =
{

0 if f < 0, or if f = 0 and A : Ė ≤ 0

1 if f = 0 and A : Ė > 0
(99.23)

is a switching parameter. Then, as in the small deformation theory (page 446), we
have the following result whose proof parallels that given on page 447.

Equivalency Theorem Assume that the boundedness relation

f = |Me
0| − Y(e p) ≤ 0 (99.24)

is satisfied. Then the inverted flow rule, as defined by (99.22) and (99.23), is equivalent
to the flow rule (95.50)1.

99.4 Equivalent Formulation of the Constitutive Equations and Plastic
Mises Flow Equations Based on the Inverted Flow Rule

The Equivalency Theorem allows us to consider a complete set of plastic Mises flow
equations based on the inverted flow rule:

(i) the Kröner decomposition596

F = FeFp, detFp = 1, (99.25)

in which F is the deformation gradient, while Fe and Fp are the elastic and
plastic distortions;

(ii) the elastic stress-strain relation

Me = µ(Ce2 − Ce) + 1
2λ(trCe − 3)Ce, (99.26)

with Me the Mandel stress and

Ce = Fe)Fe (99.27)

the right elastic Cauchy–Green tensor;
(iii) the plastic boundedness inequality

f = |Me
0| − Y(e p) ≤ 0, (99.28)

where f is the yield function with Y(e p) > 0 the flow resistance a function of a
hardening variable e p;

596 Viewed as a kinematic constitutive equation.
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(iv) a system of evolution equations

Ḟp = DpFp, Dp = 2χG−1(A : Ė)Np, Np =
Me

0

|Me
0|

,

ė p = |Dp|, e p(X, 0) = 0

(99.29)

for Fp, Dp, and the hardening variable e p, in which

E = 1
2 (F)F − 1) (99.30)

is the Green–St. Venant strain, G is the modulus

G = 2A : (CeNp) + H(e p) > 0, (99.31)

χ is the switching parameter

χ =
{

0 if f < 0, or if f = 0 and A : Ė ≤ 0

1 if f = 0 and A : Ė > 0,
(99.32)

the tensor field

A def= Fp−1AFp−) (99.33)

is the normal Mandel elasticity tensor

A = µ(2Ce − 1)Np + 1
2λ
[
(trCe − 3)Np + (Ce : Np)1

]
(99.34)

pulled back contravariantly to the reference space, and H(e p) is the hardening
modulus

H(e p) = Y′(e p) = dY(e p)
de p . (99.35)

Remark. Constitutive equations of the form (99.29) need to be accompanied by
initial conditions. Typical initial conditions presume that the body is initially (at
time t = 0, say) in a virgin state in the sense that

F(X, 0) = Fp(X, 0) = 1, (99.36)

so that, by (99.25) and (99.30), Fe(X, 0) = 1 and E(X, 0) = 0.



100 Evolution Equation for the Second
Piola Stress

By (94.4) and (99.25)1, the second Piola stress (25.2) may be expressed in terms of
Te and Fp,

TRR = Fp−1TeFp−), (100.1)

a relation that with (94.8) yields the expression

Me = CeFpTRRFp) (100.2)

for the Mandel stress. By (100.1),

ṪRR = Ḟp−1TeFp−) + Fp−1ṪeFp−) + Fp−1TeḞp−)

= Fp−1[FpḞp−1Te + Ṫe + TeḞp−)Fp)]Fp−)

= Fp−1[−DpTe + Ṫe − TeDp]Fp−), (100.3)

where the last step uses (97.2). Further, from (99.2)3 we obtain DpTe = TeDp and
(100.3) becomes

FpṪRRFp) = Ṫe − 2TeDp, (100.4)

or equivalently, since Dp = |Dp|Np,

FpṪRRFp) = Ṫe − 2|Dp|TeNp. (100.5)

On the other hand, (91.25) and (99.11) yield

Ėe = Fe)DFe − |Dp|CeNp. (100.6)

It is convenient to write C for the fourth-order elasticity tensor defined by

CG = 2µG + λ(trG)1 (100.7)

for every symmetric tensor G, so that, by (95.27)2,

Te = C[Ee] = 2µEe + λ(trEe)1. (100.8)

If we substitute (100.6) into (100.8) and combine the resulting equation with (100.5),
we find that

FpṪRRFp) = C[Fe)DFe] − |Dp|(C[CeNp] + 2TeNp), (100.9)

and we can write (100.9) in the form

ṪRR = Fp−1C[Fp−)ĖFp−1]Fp−)

︸ ︷︷ ︸
Z1

−|Dp|Fp−1(C[CeNp] + 2(TeNp)︸ ︷︷ ︸
Z2

)
Fp−). (100.10)
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By (100.7)

Z1 = 2µFp−1Fp−)ĖFp−1Fp−) + λ tr
(
Fp−)ĖFp−1)Fp−1Fp−)

= 2µCp−1ĖCp−1 + λ tr
(
Fp−1Fp−)Ė

)
Fp−1Fp−)

= 2µCp−1ĖCp−1 + λ tr
(
Cp−1Ė

)
Cp−1

= 2µCp−1ĖCp−1 + λ
(
Ė : Cp−1)Cp−1, (100.11)

where

Cp = Fp)Fp (100.12)

is the right plastic Cauchy–Green tensor. Similarly

Z2 = 2µCeNp + λ(Ce : Np)1 + 2µ(Ce − 1)Np + λ(trCe − 3)Np

= 2µ(2Ce − 1)Np + λ
[
(Ce : Np)1 + (trCe − 3)Np]

= 2A. (100.13)

Thus (100.10) reduces to

ṪRR = 2µCp−1ĖCp−1 + λ
(
Ė : Cp−1)Cp−1 − 2|Dp|A, (100.14)

or, equivalently, by (77.10),

ṪRR = 2µCp−1ĖCp−1 + λ
(
Ė : Cp−1)Cp−1 − 2χG−1(A : Ė)A. (100.15)

EXERCISES

1. Use (25.11) and (100.14) to establish the following evolution equation for the
Cauchy stress:

J
4
T + J̇ T = 2µCeDCe + λ(D : Ce)Be − 2|Dp|Ā. (100.16)

Here,

4
T = Ṫ − LT − TL)

is the contravariant rate of T as defined in (20.26),

Ā = FeAFe) (100.17)

is A pushed forward contravariantly to the observed space, and Be is given by
(91.16)2.

2. Show that, granted the small elastic-strain approximations

Be ≈ Ce ≈ 1, trBe ≈ trCe ≈ 3, Ce : Np ≈ 0, Fe ≈ Re, (100.18)
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the constitutive equations for large-deformation rate-independent isotropic
plasticity may be written as the following evolution equations for T and e p:597

4
T = 2µD + λ(trD)1 − 2µ |Dp| N̄p,

ė p = |Dp|, e p(X, 0) = 0,

(100.19)

with

N̄p = T0

|T0|
, |Dp| = χ β N̄p : D,

and

f = |T0| − Y(e p) ≤ 0,

χ =
{

0 if f < 0, or if f = 0 and N̄p : D ≤ 0,

1 if f = 0 and N̄p : D > 0,

β = 2µ

2µ + H(e p)
> 0, H(e p) = Y′(e p) = dY(e p)

de p .

597 In the plasticity literature, the stress rate
4
T is often replaced by the corotational stress rate

◦
T =

Ṫ − WT + TW, a replacement that seems inconsistent with the approximation (100.18) of small
elastic strains. However, note that the final stress rate appearing in (100.16) and thereby in (100.19)
depends on the initial choice of elastic strain-measure and corresponding stress-measure used in the
elastic constitutive equations (95.1)1,2 and their linear version (95.27).



101 Rate-Dependent Plastic Materials

101.1 Rate-Dependent Flow Rule

The generalization of the theory to allow for rate-dependence follows as in §78; in
fact, the discussion of that section follows verbatim the discussion of §78, provided
we make the replacements

T0 → Me
0 and Ėp → Dp. (101.1)

Thus, in particular, the generalized flow rate is here given by

dp = |Dp| (101.2)

and the rate-dependent flow rule and hardening equation have the form

Me
0 = g(d p)Y(S)Np, Np = Dp

d p ,

Ṡ = h(d p, S),

(101.3)

The rate-sensitivity function g(dp) is assumed to satisfy g(0) = 0 and is assumed fur-
ther to be a strictly monotonically increasing function of dp, and, hence, invertible.

101.2 Inversion of the Rate-Dependent Flow Rule

If we take the absolute value of (101.3), we arrive at a relation,

|Me
0|

Y(S)
= g(dp), (101.4)

which may be inverted to give an expression

d p = g−1
( |Me

0|
Y(S)

)

≡ f
( |Me

0|
Y(S)

)
(101.5)

for the flow rate. Since g is monotonically increasing, f = g−1 is monotonically in-
creasing and, hence, strictly positive for all nonzero values of its argument dp. For
the special case in which the rate-sensitivity function is given in the power-law form
(78.20) — with reference flow rate d0 > 0 and rate-sensitivity parameter m > 0 as
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before, but with dp now equal to |Dp| — the expression (101.5) has the specific form

dp = d0

( |Me
0|

Y(S)

)1
m

. (101.6)

As a direct consequence of the rate-dependent flow rule (101.3)1,

Me
0

|Me
0|

= Np (101.7)

with the direction of the plastic strain-rate. Using this relation and (101.5), the rate-
dependent flow rule (101.3)1 may be inverted to give

Dp = f
( |Me

0|
Y(S)

)
Me

0

|Me
0|

. (101.8)

Thus,

• the plastic stretching is nonzero whenever the stress is nonzero: There is no elastic
range in which the response of the material is purely elastic, and there are no
considerations of a yield condition, a consistency condition, loading/unloading
conditions, and so forth.

Finally, we note that (101.8) takes the form

Dp = d0

( |Me
0|

Y(S)

)1
m Me

0

|Me
0|

(101.9)

when expressed in terms of the inverse of the power-law function (78.20).

101.3 Summary of the Complete Constitutive Theory

The complete set of constitutive equations consists of:

(i) the Kröner decomposition598

F = FeFp, detFp = 1, (101.10)

in which F is the deformation gradient, while Fe and Fp are the elastic and
plastic distortions;

(ii) the elastic stress-strain relation

Me = µ(Ce2 − Ce) + 1
2λ(trCe − 3)Ce, (101.11)

with Me the Mandel stress and

Ce = Fe)Fe (101.12)

the right elastic Cauchy–Green tensor;

598 Viewed as a kinematical constitutive equation.
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(iii) a system of evolution equations

Ḟp = DpFp,

Dp = f
( |Me

0|
Y(S)

)
Me

0

|Me
0|

,

Ṡ = h(|Dp|, S),

(101.13)

for Fp, Dp, and the hardening variable S, where Y(S) > 0 is the flow resistance,
and the function f vanishes when its argument vanishes and is monotonically
increasing for all positive values of its argument.





PART XVII

THEORY OF SINGLE CRYSTALS
UNDERGOING SMALL
DEFORMATIONS

102.1 Introduction

Metals are most often encountered in the form of polycrystalline aggregates, com-
posed of grains separated by grain boundaries, with the grain interiors having a
structure close to that of a single crystal (Figure 102.1). At low (< 0.35) homologous
temperatures599 the macroscopic inelastic response of most polycrystalline metallic
materials with grain sizes larger than about 100 nm is primarily due to the inelastic
response of the interiors of the single crystals, and the boundaries of the crystals
may be assumed to be perfectly bonded.

Figure 102.1. Photomicrograph of a metal. At the microstructural scale most metals are an
aggregate of a large number of single crystals. The single crystals are called grains, and these
are separated by grain boundaries.

In this section, we develop a rate-dependent theory of plasticity for single crys-
tals undergoing small deformations. The deformation of a single crystal is generally
presumed to result from two independent microscopic mechanisms:

(i) a local elastic deformation of the lattice;
(ii) a local plastic deformation that does not disturb the geometry of the lattice.

599 Cf. Footnote 405.
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584 Theory of Single Crystals Undergoing Small Deformations

Plastic deformation in the individual crystals (grains) generally occurs via the
motion of dislocations on crystallographic slip planes in crystallographic slip direc-
tions; this microscopic motion results in macroscopic shearing of the slip planes in
the slip directions; such shears are generally referred to as slips. Figure 102.2 shows
a two-dimensional schematic of the motion of an edge dislocation on a slip plane in
a cubic crystal.

Figure 102.2. Schematic of a motion of an edge dislocation in a crystal under an applied
shear stress. (a) An atomic bond A–B in the core of the dislocation breaks and forms a new
bond A–C, which allows the dislocation to move. (b) Sequence showing the introduction of
a dislocation from the left, its glide through the crystal on the slip plane in the slip direction,
and its expulsion at the right to produce a slip step. This process causes the upper part of the
crystal to slip by a distance b relative to the lower part.

The most common crystal structures in metals are:

(i) face-centered cubic (fcc); for example, Al, Cu, Ni, Ag, γ -Fe;
(ii) body-centered cubic (bcc); for example, Ta, V, Mo, Cr, α-Fe;

(iii) hexagonal close-packed (hcp); for example, Ti, Mg, Zn, Cd.

Schematics of these structures are shown in Figure 102.3.

(a) (b) (c)

Figure 102.3. Schematics of common crystal structures: (a) face-centered cubic (fcc); (b)
body-centered cubic (bcc); (c) hexagonal close-packed (hcp).
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Stated precisely, plastic deformation occurs by slip in preferred slip directions

sα, α = 1, 2, . . . , N,

on preferred slip planes identified by their normals

mα, α = 1, 2, . . . , N,

where sα and mα are constant orthonormal lattice vectors. The pairs (sα, mα), α =
1, 2, . . . , N, are then referred to as slip systems. The slip planes in a crystal are most
often those planes with the highest density of atoms, and the slip directions in these
slip planes are the directions in which the atoms are most closely packed.600

(a) (b)

Figure 102.4. Unit cell of an fcc crystal, depicting the lattice sites and a slip plane (shaded).
(a) The unit cell and atomic sites. (b) A triangular portion of the slip plane. The correspond-
ing slip directions are parallel to the sides of the triangle.

The foundations of single-crystal plasticity may be traced to papers by
Taylor (1938), Mandel (1965, 1972), Hill (1965), Teodosiu (1970), Rice (1971),
Teodosiu & Sidoroff (1976), Asaro (1983), Asaro & Needleman (1985), and
Kalidindi, Bronkhorst & Anand (1992). Our development of the theory follows
Gurtin (2002), whose approach is based on the principle of virtual power.

600 Cf. Figure 102.4.
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The kinematics of single crystals takes as its starting point the kinematics of
small deformation discussed in §75. The basic kinematical relations are the small-
deformation relations (75.1)–(75.12). Of particular importance is the decomposition

∇u = He + Hp (102.1)

in which

(i) He, the elastic distortion, represents stretch and rotation of the underlying mi-
croscopic structure, here a lattice;

(ii) Hp, the plastic distortion, represents the local deformation of material due to
the flow of dislocations through the lattice.

Single-crystal plasticity is based an hypothesis that makes precise an idealized
view of the motion of dislocations in crystalline materials. To better understand
the physical nature of this hypothesis recall that — within the framework of small
deformations — simple shear is a deformation whose displacement gradient has the
form

∇u = γ s ⊗ m (102.2)

with s and m constant orthonormal unit vectors. Here m is normal to the planes
being sheared, s is the direction of the shear, and γ is the scalar shear strain.601

The single-crystal hypothesis is based on the physical assumption that the mo-
tion of dislocations takes place on prescribed slip systems α = 1, 2, . . . , N; the pre-
sumption that plastic flow takes place through slip then manifests itself in the re-
quirement that the plastic distortion Hp be the sum of simple shears

γ α sα⊗ mα

on the individual slip systems α. Thus, explicitly, the single-crystal hypothesis is the
requirement that Hp be governed by slips γ α on the individual slip systems via the
relation

Hp =
∑

α

γ α sα⊗ mα, (102.3)

where, for each slip system α, sα is the slip direction and mα is the associated slip-
plane normal and where sα and mα are constant orthonormal lattice vectors

sα · mα = 0, |sα| = |mα| = 1. (102.4)

601 Cf. §51.
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Here and in what follows:

• Lowercase Greek superscripts α,β, . . . denote slip-system labels and as such
range over the integers 1, 2, . . . , N.

• We do not use summation convention for Greek superscripts.
• We use the shorthand

∑

α

=
N∑

α=1

.

The tensor

Sα = sα⊗ mα (102.5)

is referred to as the Schmid tensor for system α. By (102.3) and (102.4),

trSα = 0 and trHp = 0, (102.6)

consistent with an assumption of plastic incompressibility.602 A consequence of
(102.1), (102.3), and (102.5) is that

∇u̇ = Ḣe +
∑

α

γ̇ α Sα. (102.7)

602 Cf. (75.12).



103 The Burgers Vector and the Flow of Screw
and Edge Dislocations

This section is based on the discussion — beginning on page 509 — of the Burgers
vector and the associated Burgers tensor

G = Curl Hp, (103.1)

where G)e represents the Burgers vector, measured per unit area, for infinitesimal
closed circuits on any plane # with unit normal e.

103.1 Decomposition of the Burgers Tensor G into Distributions of
Edge and Screw Dislocations

Thus far, we have made no use of the single-crystal hypothesis (102.3); the theory is
much richer when we do so. In view of (102.3) and (103.1),

G =
∑

α

Curl (γ α sα ⊗ mα),

and, since

[Curl (γ αsα ⊗ mα)]i j = εirq
∂γ α

∂xr
sαj mα

q

= [(∇γ α × mα) ⊗ sα]i j ,

we have the useful identity

G =
∑

α

(∇γ α × mα) ⊗ sα. (103.2)

Let

#α denote slip plane α. (103.3)

Then, for any α, the vectors sα and

lα def= mα × sα (103.4)
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form an orthonormal basis for #α. Since the vector ∇γ α × mα in (103.2) is orthogo-
nal to mα , it can be expanded in terms of sα and lα,

∇γ α × mα = [lα · (∇γ α × mα)] lα + [sα · (∇γ α × mα)] sα

= [(mα × lα) · ∇γ α] lα + [(mα × sα) · ∇γ α] sα

= (−sα · ∇γ α)lα + (lα · ∇γ α)sα ;

hence we can write (103.2) in the form603

G =
∑

α

[(lα · ∇γ α)sα⊗ sα − (sα · ∇γ α)lα⊗ sα]. (103.5)

Within a continuum theory the geometric features of edge and screw disloca-
tions are characterized by dyads of the form

l ⊗ s . . .






l ⊥ s edge,

l = s screw,
(103.6)

where l and s are unit vectors, with s the Burgers direction and l the line direction.604

A tensor of the form

ρ l ⊗ s (103.7)

is then viewed as a distribution of dislocations with density ρ. Central to the current
discussion is the observation that605 the canonical dislocations for slip on system
α are screw dislocations with both Burgers and line directions equal to sα and edge
dislocations with Burgers direction sα and line direction lα = mα × sα . The canonical
dislocation dyads for slip on α are therefore the edge and screw dyads

lα ⊗ sα (edge) and sα ⊗ sα (screw). (103.8)

Introducing the symbols “=” and “>” for edge and screw dislocations, we can thus
rewrite (103.5) in the form606

G =
∑

α

(ρα= lα ⊗ sα + ρα> sα⊗ sα),

ρα=
def= − sα · ∇γ α, ρα>

def= lα · ∇γ α.
(103.9)

In view of the sentences containing (103.7) and (103.8), the tensor fields

ρα= lα ⊗ sα and ρα> sα ⊗ sα

represent respective distributions of edge and screw dislocations on slip system α;
for that reason, we refer to ρα= and ρα> as edge and screw dislocation densities. Thus,
appealing to (103.9) we see that

• G can be decomposed into distributions of edge and screw dislocations on the
individual slip systems.

Note that the densities ρα= and ρα> carry units of (length)−1 and that they may be
positive or negative.

603 Fleck, Muller, Ashby & Hutchinson (1994).
604 Nye (1953).
605 Cf. Kubin, Canova, Condat, Devincre, Pontikis & Brechet (1992), Sun, Adams, Shet, Saigal &

King (1998), Sun, Adams & King (2000), and Arsenlis & Parks (1999).
606 Arsenlis & Parks (1999).
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The glide directions for dislocations of a given type lie in the slip plane and are
orthogonal to the line direction; thus, by (103.4),

lα = mα× sα is the glide direction for screw dislocations on α;

−sα = mα× lα is the glide direction for edge dislocations on α.




 (103.10)

Each of the densities (103.9)2,3 therefore represents a directional derivative of the
slip in the glide direction. Thus, in accord with experience, a pile-up of, say, screw
dislocations as characterized by a positive value of the directional derivative (103.9)2
for ρα> > 0 (or a negative value for ρα> < 0) results in an increasing absolute den-
sity of screw dislocations, and similarly for edge dislocations. The screw and edge
dislocation-densities ρα> and ρα= thus characterize the pile-up of screw and edge dislo-
cations on slip plane α.

EXERCISE

1. Show that

trG =
∑

α

ρα> (103.11)

and that the axial vector of the skew part of G is607

− 1
2

∑
α ρ

α
= mα. (103.12)

The trace of G is therefore completely determined by the screw densities and
the skew part of G is completely determined by the edge densities.

103.2 Dislocation Balances

Interestingly, the edge and screw dislocation distributions obey more or less stan-
dard balance laws relating the density rates to associated fluxes. To derive these
balance laws, we introduce edge and screw dislocation fluxes by

qα= = γ̇ αsα and qα> = −γ̇ αlα, (103.13)

so that, consistent with experience, the dislocation fluxes are parallel to their asso-
ciated glide directions (103.10). By (103.9)2,3

ρ̇α= = −sα · ∇γ̇ α = −Div (γ̇ αsα) and ρ̇α> = lα · ∇γ̇ α = Div (γ̇ αlα),

equations that when combined with (103.13) yield balance laws for distributions of
edge and screw dislocations:

ρ̇α= = −Div qα= and ρ̇α> = −Div qα>. (103.14)

103.3 The Tangential Gradient ∇α on the Slip Plane 2α

Recall our agreement that#α represents slip plane α. By (2.6)2, the tensor

Pα def= 1 − mα⊗ mα (103.15)

represents the projection onto #α : given any vector v

Pαv = v − (mα · v)v,

so that Pα associates with any vector v its component Pαv tangent to #α .

607 Cf. (2.40).
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Since {mα, sα, lα} represents an orthonormal basis for the space V of all vectors,
(2.7) implies that

sα⊗ sα + lα⊗ lα + mα⊗ mα = 1, (103.16)

and, hence, by (103.15) that

Pα = sα⊗ sα + lα⊗ lα. (103.17)

Further,

PαPα = (1 − mα ⊗ mα)(1 − mα ⊗ mα)

= 1 − mα ⊗ mα,

so that

PαPα = Pα. (103.18)

Given any field ϕ,

∇αϕ
def= Pα∇ϕ (103.19)

is the tangential gradient of ϕ on #α. By (103.17),

∇αϕ = (sα · ∇ϕ)sα + (lα · ∇ϕ)lα, (103.20)

and we may conclude from (103.9)2,3 that

∇αγ α = −ρα= sα + ρα> lα ; (103.21)

the dislocation densities ρα= and ρα> therefore represent components of the tangential
slip gradient ∇αγ α relative to the basis {−sα, lα} for the slip plane #α . The field

ραnet
def=
√

|ρα= |2 + |ρα> |2 (103.22)

represents the net dislocation density on #α . An interesting and important conse-
quence of (103.21) is then that

ραnet = |∇αγ α|. (103.23)

Terminology: Our use of the terms Burgers vector and dislocation density are
continuum mechanical in origin and differ from these terms as used by materials
scientists. As noted in the paragraph containing (103.1), the term Burgers vector
signifies a vector of a given length, measured per unit area, and the notion of a
dislocation density (such as that given by (103.23)) also represents a length mea-
sured per unit area. Thus in continuum mechanics both the Burgers vector and the
dislocation densities carry the dimension length−1. In materials science the Burg-
ers vector — shown schematically in Figure 88.1 — is the vector that represents the
closure failure of a Burgers circuit around a single dislocation in a crystal lattice;
it’s magnitude, denoted by b, is also referred to as the Burgers vector, a definition
that typically renders b an interatomic spacing. To emphasize this difference in no-
tation, we henceforth refer to b as the material Burgers vector. In materials science
dislocation densities are measured in dislocations per unit area and hence carry the
dimension length−2. Each continuum-mechanical density, say ρcm, can be converted
to a materials-science density, say ρms, via the transformation

ρms = b−1ρcm. (103.24)

Throughout, unless stated to the contrary, we use the terminology of continuum me-
chanics, so that each density is a “ρcm”. As a consequence of the transformation
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(103.24), the net dislocation density (103.23) would have the following form as a
materials science density:608

(ραnet)ms = b−1|∇αγ α|. (103.25)

EXERCISE

1. Consider the dislocation concentrations defined by

cα= = ρα=
ραnet

and cα> =
ρα>
ραnet

. (103.26)

Derive the identities
·
ραnet = cα= ρ̇

α
= + cα> ρ̇

α
> (103.27)

and
·
ραnet = −Divqαnet + σαnet, (103.28)

where

qαnet = cα= qα= + cα> q̇α> and σαnet = ∇cα= · qα= + ∇cα> · qα>
represent the net dislocation flux and the net dislocation supply on #α , respec-
tively. What is the physical significance of these identities?

608 This relation bears comparison with a well-known relation due to Ashby (1970); cf. Fleck, Muller,
Ashby & Hutchinson (1994), Ohashi (1997).



104 Conventional Theory of Single-Crystals

104.1 Virtual-Power Formulation of the Standard
and Microscopic Force Balances

For a single crystal, the basic independent kinematical quantities characterizing
plastic flow are the slips

γ 1, γ 2, . . . , γ N; (104.1)

therefore, the basic “rate-like” descriptors for a single-crystal undergoing small
deformations are the velocity u̇, the elastic distortion-rate Ḣe, and the slip rates
γ̇ 1, γ̇ 2, . . . , γ̇ N; these fields are constrained by (102.7).

As in §84, the formulation of the principle of virtual power for a single crystal
is based on a balance between the external power W(P) expended on P and the
internal power I(P) expended within P. As before, to describe the internal power
we replace the classical stress power T : grad u̇ by a more detailed reckoning that
individually characterizes:

• the stretching and spinning of the underlying material structure as described by
the lattice distortion-rate Ḣe and

• dislocation-induced slip as described by the slip rates γ̇ 1, γ̇ 2, . . . , γ̇ N.

Specifically, we allow for power expended internally by:

• an elastic-stress Te power-conjugate to Ḣe, and
• a scalar internal microscopic force πα power-conjugate to γ̇ α (for each slip sys-

tem α)

and, therefore, write the internal power in the form

I(P) =
∫

P

Te : Ḣe dv +
∑

α

∫

P

παγ̇ α dv. (104.2)

We assume that the external power has the standard form (84.5); viz.

W(P) =
∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv. (104.3)

Here, for convenience, we do not include a scalar external virtual microscopic force
bα power conjugate to γ̇ α (for each slip system α). Such an external force bα would

593
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be a counterpart of the external microscopic force B p of the isotropic theory609 and
would result in an external-power expenditure of the form

∑

α

∫

P

bαγ̇ α dv. (104.4)

Slip rates are directly related to dislocation flow; the external force bα therefore
represents an external virtual force associated with the flow of dislocations on slip
plane α.

The principle of virtual power is based on a view of the velocity u̇, the elastic
distortion-rate Ḣe, and the slip rates γ̇ 1, γ̇ 2, . . . , γ̇ N as virtual velocities to be speci-
fied independently in a manner consistent with (102.7); that is, denoting the virtual
velocities by ũ, H̃e, and γ̃ 1, γ̃ 2, . . . γ̃ N, we require that

∇ũ = H̃e +
∑

α

γ̃ αSα. (104.5)

Thus if we define a (generalized) virtual velocity to be a list

V = (ũ, H̃e, γ̃ 1, γ̃ 2, . . . , γ̃ N) (104.6)

and write

W(P,V) =
∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv,

I(P,V) =
∫

P

Te · H̃e dv +
∑

α

∫

P

παγ̃ α dv,

(104.7)

for the corresponding external and internal expenditures of virtual power, then the
principle of virtual power is the requirement that, given any subregion P of the body,

∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv

︸ ︷︷ ︸
W(P,V)

=
∫

P

Te : H̃e dv +
∑

α

∫

P

παγ̃ α dv

︸ ︷︷ ︸
I(P,V)

(104.8)

for all virtual velocities V .
Arguing as in the steps leading to (84.14), we then note that under a change in

frame the transformation laws (84.12) should be replaced by

H̃e∗ = H̃e + W, γ̃ α is invariant (for each α), (104.9)

with W an arbitrary spatially constant skew tensor field. Under this replacement,
frame-indifference once again leads to (84.13) and hence to the conclusion that, as
before,

Te is symmetric. (104.10)

Consider a virtual velocity V with ũ arbitrary,

H̃e = ∇ũ, (104.11)

and

γ̃ α ≡ 0 (104.12)

609 Cf. the paragraph containing (‡) on page 496. Here such external forces would add nothing of
import.
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for all α, so that (104.5) is satisfied and (104.8) reduces to the classical virtual-power
balance (84.19); viz.

∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv =
∫

P

Te : ∇ũ dv. (104.13)

The steps leading from (84.19) to the equations (84.20)–(84.23) are then valid with-
out change; thus, referring to

T def= Te (104.14)

as the macroscopic stress, we are led to the traction condition

t(n) = Tn (104.15)

and the local force balance

DivT + b = 0, (104.16)

a relation that, by (84.4) and (84.22), is equivalent to the momentum balance

DivT + b0 = ρü. (104.17)

Basic to what follows is the resolved shear stress τα defined by

τα
def= Sα: T

= sα · Tmα ; (104.18)

τα represents the macroscopic stress T resolved on slip system α.
Consider a generalized virtual velocity V with

ũ ≡ 0 and H̃e = −
∑

α

γ̃ α Sα, (104.19)

with γ̃ 1, γ̃ 2, . . . , γ̃ N arbitrary. Then the constraint (104.5) is satisfied and (104.8) and
(104.14) imply that

∫

P

T : H̃e dv +
∑

α

∫

P

παγ̃ α dv = 0. (104.20)

Further, by (104.18) and (104.19)2,

T : H̃e = −
∑

α

γ̃ α T : Sα

= −
∑

α

ταγ̃ α (104.21)

and (104.20) becomes
∑

α

∫

P

(πα − τα)γ̃ α dv = 0. (104.22)

Since (104.22) is to be satisfied for all γ̃ α and all P, we must have the microscopic
force balance

τα = πα (104.23)

for each slip system α.
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The microscopic force balance arises as a consequence of the arbitrary nature of
the slip rates and for that reason might be viewed as a force balance for the system
of dislocations on slip system α. Specifically, one might view:610

• πα as representing internal forces on slip system α associated with the creation,
annihilation, motion, and general interaction of dislocations,

• τα as representing the force exerted by the lattice on the system of dislocations
on slip system α.

Note that, by (104.16) and (104.18), the macroscopic stress T plays two roles: as
the standard stress in the macroscopic balance and as the coupling term between the
microscopic and macroscopic force systems via its resolved values on the individual
slip systems.

Finally, because T = Te is symmetric,

T : He = T : Ee,

with

Ee = sym He (104.24)

the elastic strain. Thus, by (104.13) and (104.14), the virtual-power balance (104.8),
when applied to the actual fields within the body, yields the power balance

∫

∂P

Tn · u̇ da +
∫

P

b · u̇ dv

︸ ︷︷ ︸
W(P)

=
∫

P

T : Ėe dv +
∑

α

∫

P

παγ̇ α dv

︸ ︷︷ ︸
I(P)

. (104.25)

104.2 Free-Energy Imbalance

Letting 2 denote the free energy and δ ≥ 0 the dissipation, each measured per unit
volume, the general free-energy imbalance introduced in §84.4 leads to the free-
energy imbalance

˙∫

P

2 dv = W(P) −
∫

P

δ dv, (104.26)

or equivalently, by (104.25),

˙∫

P

2 dv =
∫

P

T : Ėe dv +
∑

α

∫

P

παγ̇ α dv −
∫

P

δ dv. (104.27)

Thus, since P is arbitrary, we have the local free-energy imbalance

2̇ − T : Ėe −
∑

α

παγ̇ α = −δ ≤ 0. (104.28)

104.3 General Separable Constitutive Theory

We neglect defect energy and restrict attention to constitutive assumptions that sep-
arate plastic and elastic response; in particular, guided by (104.28), we characterize

610 Were we to account for scalar external forces bα via the power expenditure (104.4), then the mi-
croscopic force balance (104.23) would have the form πα − τα = bα and bα might be viewed as an
external force on the system of dislocations on α.
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elastic response by the equations

2 = 2̂(Ee),

T = T̂(Ee).
(104.29)

We consider rate-dependent constitutive relations for plastic flow giving the in-
ternal microscopic forces πα as functions of the slip rates γ̇ 1, γ̇ 2, . . . , γ̇ N and hard-
ening variables S1, S2, . . . , SN. Precisely, introducing lists

8ν def= (γ̇ 1, γ̇ 2, . . . , γ̇ N) and 8S def= (S1, S2, . . . , SN), (104.30)

we characterize plastic response by relations that, for each slip system α, consist
of a constitutive equation for the internal microscopic force πα supplemented by a
differential equation for the hardening variable Sα :

πα = π̄α(8ν, 8S),

Ṡα = hα(8ν, 8S ).
(104.31)

The following thermodynamic restrictions render the constitutive equations
(104.29) and (104.31) consistent with the free-energy imbalance (104.28):

• The free energy determines the elastic stress through the elastic-stress relation

T̂(Ee) = ∂2̂(Ee)
∂Ee . (104.32)

• The internal microscopic forces must satisfy the reduced dissipation inequality
∑

α

π̄α(8ν, 8S)γ̇ α ≥ 0. (104.33)

We restrict attention to strict dissipation with the assumption that
∑

α

π̄α(8ν, 8S )γ̇ α > 0 (104.34)

if at least one slip rate γ̇ β is nonzero.

104.4 Linear Elastic Stress-Strain Law

As we are working within the framework of small deformations, we restrict attention
to a quadratic free energy and a linear stress-strain relation and therefore begin with
elastic constitutive equations in the form

2 = 1
2 Ee : CEe, 2 = 1

2 Ci jkl Ee
i j Ee

kl,

T = CEe, Ti j = Ci jkl Ee
kl .

(104.35)

We assume that the elasticity tensor C has the properties listed on page 300. If, in
particular, the material has cubic symmetry, then the free energy and the stress may
be expressed as in §52.4.2.

104.5 Constitutive Equations for Flow with Simple Rate-Dependence

Turning to the constitutive relations (104.31) that govern plastic flow, we assume
that

πα = Sαπ̂(γ̇ α) (104.36)
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for each α, and that

Sα > 0 for each α.

Thus

(i) coupling between the individual slip systems is solely through the hardening
equations (104.31)2;

(ii) the hardening variable Sα represents the flow resistance of slip system α;611

(iii) the response of any two slip systems is the same if their flow resistances as well
as their slip rates coincide.

Choose a slip system α and consider the following choice for the slip rates:

γ̇ β = 0 for β '= α,

a kinematics referred to as single slip. Since Sα > 0, this choice for 8ν and the strict
dissipation assumption (104.34) applied to (104.36) yields the conclusion that, for

ν = γ̇ α,

we must have

π̂(ν)ν > 0

for ν '= 0. Thus

sgn π̂(ν) = sgnν, (104.37)

where, for ν '= 0,

sgnν = ν

|ν|
.

Consequently,

π̂(ν) = −π̂(−ν), (104.38)

so that, granted π̂(ν) is continuous,612

π̂(0) = 0. (104.39)

The result (104.38) has an important consequence:613

π̂(ν) = π̂(|ν|)sgnν. (104.40)

To verify (104.40) we simply note that:

(i) (104.40) is satisfied for ν > 0;
(ii) for ν < 0,

π̂(−ν) = −π̂(−ν)

= −π̂(|ν|)

= π̂(|ν|)sgnν.

Consistent with the notation used for rate-dependent isotropic materials in §78, we
write

g(|ν|) = π̂(|ν|), (104.41)

611 Cf. §76.5.2.
612 And hence well defined at ν = 0, a property that would not hold were the material rate-independent.
613 By (104.39) π̂(ν) is well defined at ν = 0; in fact π̂(0) = 0.
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so that (104.40) becomes

π̂(ν) = g(|ν|)sgnν. (104.42)

We refer to g as the rate-sensitivity function. By (104.38) and (104.39),

g(0) = 0, g(|ν|) > 0 for |ν| > 0. (104.43)

Next, by (104.42) the constitutive relations (104.31)1 for the internal micro-
scopic stresses take the simple form

πα = Sαg(|γ̇ α|)sgn γ̇ α. (104.44)

An immediate consequence of (104.44) is that the dissipation δ =
∑

α π
αγ̇ α takes

the form

δ =
∑

α

Sαg(|γ̇ α|) |γ̇ α|. (104.45)

In view of (104.44) and the microscopic force balances (104.23), the constitutive
relations (104.44) become relations for the resolved shear stresses

τα = Sαg(|γ̇ α|)sgn γ̇ α (104.46)

for each slip system α. This relation represents a flow rule for slip system α.
We consider next the hardening equations (104.31)2; viz.

Ṡα = hα(8ν, 8S ). (104.47)

We begin with two assumptions:

(H1) The hardening equations are rate-independent.
(H2) The hardening equations are independent of the signs of the slip rates.

These assumptions are consistent with what is often — but not always — assumed
in the literature.614

To determine the consequences of (H1) and (H2) we let

να
def= γ̇ α and aα def= |να| (104.48)

for each α and rewrite the hardening equations in the form

Ṡα = hα(ν1, ν2, . . . , νN, 8S ). (104.49)

Then the requirement that the hardening equations be independent of the signs of
the slip rates implies that

hα(ν1, ν2, . . . , νN, 8S ) = hα(a1, a2, . . . , aN, 8S ).

Let

hαβ(a1, a2, . . . , aN, 8S) def= ∂hα(a1, a2, . . . , aN, 8S )
∂aβ

. (104.50)

By (95.34) and (104.48), for each α, the quantities να , aα, and Ṡα transform as

νακ = κνα, aακ = κaα, and Ṡακ = κ Ṡα

under a change in time-scale with rate constant κ > 0. Thus, under such a change,
the hardening equations (104.49) transform according to

κ Ṡα = hα(κa1, κa2, . . . , κaN, 8S ),

614 These assumptions rule out: (a) strain-rate history effects as observed in strain-rate increment
and decrement experiments (cf., e.g., Kocks 1987; Balasubramanian & Anand 2002); and (b)
Bauschinger-type effects under cyclic loading conditions (cf., e.g., Cailletaud 1992).
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and if these equations are to be rate-independent we must have

κhα(a1, a2, . . . , aN, 8S ) = hα(κa1, κa2, . . . , κaN, 8S).

Differentiating this equation with respect to κ using the chain-rule and (104.50) we
therefore find, after evaluating the result at κ = 0, that

hα(a1, a2, . . . , aN, 8S ) =
∑

β

hαβ(0, 0, . . . , 0, 8S )aβ .

Thus, for

hαβ(8S ) def= hαβ(0, 0, . . . , 0, 8S)

the hardening equation takes the simple form615

Ṡα =
∑

β

hαβ(8S )|γ̇ β |. (104.51)

We have therefore shown that (104.51) are the most general hardening equations of
the form (104.47) that are rate-independent and independent of the signs of the slip
rates.

Summarizing, the main results of this section are the flow relations (104.46) and
(104.51); viz.

τα = Sαg(|να|) sgnνα,

Ṡα =
∑

β

hαβ(8S )|γ̇ β |
(104.52)

for each slip system α.
The equations (104.52) relate the macroscopic response as characterized by

the resolved shear stresses τα and the slip rates γ̇ α. Immediate consequences of
(104.52)1 are that:

(i) for each slip system α, the sign of γ̇ α is determined by the sign of τα ,

sgn γ̇ α = sgnτα, (104.53)

(ii) the flow resistance stress τα satisfies

|τα| = Sα g(|γ̇ α|). (104.54)

Assume that

g is a monotonically increasing function of its argument. (104.55)

Then, g is invertible and writing f = g−1 for the corresponding inverse function,
(104.43) yields

f (0) = 0, f (z) > 0 for z > 0, (104.56)

and

f is a monotonically increasing function for all positive values of its argument.
(104.57)

Thus, inverting (104.54) we find that

|να| = f
( |τα|

Sα

)
, (104.58)

615 This derivation of the hardening equations is due to Gurtin (2000b, p. 1006).
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and (104.52)1 may be solved for the slip rates

γ̇ α = f
( |τα|

Sα

)
sgnτα. (104.59)

104.6 Power-Law Rate Dependence

An example of a commonly used rate-sensitivity function is the power-law function

g(|γ̇ α|) =
( |γ̇ α|

d0

)m

, (104.60)

where m > 0, a constant, is a rate-sensitivity parameter and d0 > 0, also a constant, is
a reference flow-rate.616 The power-law function satisfies g(|γ̇ α|) ≈ 1 for |γ̇ α| ≈ d0,
(104.60) is therefore intended to model plastic flows with rates close to d0. The
power-law function allows one to characterize nearly rate-independent behavior for
which m is very small. Such rate-dependent models also serve as an important regu-
larization of rate-independent crystal plasticity response.617 Granted the power-law
function (104.60), the expressions (104.54) and (104.59) have the specific forms

|γ̇ α| = d0

( |τα|
Sα

)1
m

(104.61)

and

γ̇ α = d0

( |τα|
Sα

)1
m

sgnτα. (104.62)

104.7 Self-Hardening, Latent-Hardening

Recall that for any slip system α, #α represents slip plane α.618 We say that two
slip systems α and β are coplanar if #α = #β — that is, if either of the following
(equivalent) conditions is satisfied:

mβ× mα = 0, mα = ±mβ . (104.63)

The moduli hαβ for α and β coplanar are referred to as self-hardening moduli, while
the moduli for α and β noncoplanar are termed latent-hardening moduli. We refer
to the quantities

χαβ
def=






1 for α and β coplanar slip systems

0 otherwise
(104.64)

as coplanarity moduli, as they differentiate between coplanar and noncoplanar slip
systems. Trivially,

1 − χαβ =






0 for α and β coplanar slip systems

1 otherwise.

616 Cf. §78.3.
617 Cf. Footnote 411.
618 Cf. (103.3).
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The hardening moduli are often presumed to have the specific form619

hαβ(8S ) = χαβh(Sβ)︸ ︷︷ ︸
self-hardening

+ q(1 − χαβ)h(Sβ)︸ ︷︷ ︸
latent-hardening

, (104.65)

where h ≥ 0 is a self-hardening function and q > 0 is the interaction constant (the
ratio of the self-hardening rate to the latent-hardening rate), and, granted (104.65),
the hardening equations (104.52)2 become

Ṡα =
∑

β

[χαβ + q(1 − χαβ)]h(Sβ)|νβ |. (104.66)

If we use the term individual slip plane to connote the collection of all slip planes
coplanar to a given slip plane, then

(i) self-hardening characterizes hardening on an individual slip plane due to slip on
that slip plane — that is, slip on all slip systems coplanar to the given slip plane;

(ii) latent-hardening characterizes hardening on an individual slip plane due to slip
on all other individual slip planes.

Bronkhorst, Kalidindi & Anand (1992), in their discussion of fcc crystals, propose
a self-hardening function of the form

h(S) =






h0

(
1 − S

S∗

)a

for S0 ≤ S ≤ S∗,

0 for S ≥ S∗,

(104.67)

where S∗, a, and h0 are constant moduli with S∗ > S0, a ≥ 1, and h0 > 0. The harden-
ing function h defined via (104.67) is strictly decreasing for S0 ≤ S ≤ S∗ and vanishes
for S ≥ S∗.620

Finally, we consider initial conditions for the hardening equations in the form

Sα(X, 0) = S0, (104.68)

with S0 > 0, a constant, the initial slip-resistance.621

104.8 Summary of the Constitutive Theory

The constitutive equations that characterize a single-crystal undergoing small defor-
mations consist of:

(i) the decomposition
∇u = He + Hp, trHp = 0, (104.69)

with He and Hp the elastic and plastic distortions,
(ii) the elastic stress-strain relation

T = CEe (104.70)

in which

Ee = sym ∇u (104.71)

is the elastic strain and T is the macroscopic stress; the elasticity tensor C is
assumed to have the properties listed on page 300,

619 Cf., e.g., Hutchinson (1970), Asaro (1983), and Peirce, Asaro & Needleman (1983).
620 For a detailed discussion of latent-hardening and other self-hardening rules; cf. Bassani & Wu

(1991) and Bassani (1994).
621 Cf. Footnote 386.
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(iii) the relation

Hp =
∑

α

γ α sα⊗ mα, (104.72)

for the plastic distortion, where (sα, mα) denotes slip system α with slip direc-
tion sα and slip plane normal mα constant vectors subject to

sα · mα = 0, |sα| = |mα| = 1, (104.73)

and where γ α represents the slip on #α ,
(iv) the (inverted) constitutive relations622

γ̇ α = f
( |τα|

Sα

)
sgnτα (104.74)

for the individual slip systems α, where

τα = sα · Tmα (104.75)

is the resolved shear stress, Sα > 0 represents a flow resistance, and the inverted
rate-sensitivity function f satisfies (104.56) and (104.57); the special case of
power-law rate-dependency corresponds to

γ̇ α = d0

( |τα|
Sα

)1
m

sgnτα, (104.76)

with d0 > 0 a reference slip rate, and m > 0 a rate-sensitivity parameter.
(v) the hardening equations and initial condition

Ṡα =
∑

β

hαβ(8S )|γ̇ β |, Sα(X, 0) = S0 (a constant> 0), (104.77)

where hαβ are hardening moduli; a widely used special form for the hardening
moduli is

hαβ(8S) = χαβh(Sβ)︸ ︷︷ ︸
self-hardening

+ q(1 − χαβ)h(Sβ)︸ ︷︷ ︸
latent-hardening

, (104.78)

where

χαβ =






1 if mβ× mα = 0

0 otherwise
(104.79)

are coplanarity moduli, h ≥ 0 is a self-hardening function, and q > 0 is an inter-
action constant; a common form for the self-hardening function is

h(S) =






h0

(
1 − S

S∗

)a

for S0 ≤ S ≤ S∗,

0 for S ≥ S∗,

(104.80)

where S∗, a, and h0 are constant moduli with S∗ > S0, a ≥ 1, and h0 > 0.

622 Each such relation is actually a combination of a constitutive relation for πα and the microscopic
force balance πα = τα .



105 Single-Crystal Plasticity at Small
Length-Scales: A Small-Deformation
Gradient Theory

In this section we develop a gradient theory of single-crystals building on the con-
ventional theory developed in §104;623 specifically, we generalize the virtual-power
formulation described in §104.1 by allowing for internal power expenditures associ-
ated with slip-rate gradients ∇γ̇ α.624

105.1 Virtual-Power Formulation of the Standard and Microscopic
Force Balances of the Gradient Theory

As in section §104.1, the basic “rate-like” descriptors are the velocity u̇, the elastic
distortion He, and the slip rates γ̇ 1, γ̇ 2, . . . , γ̇ N, and these fields are constrained by
(102.7); viz.

∇u̇ = Ḣe +
∑

α

γ̇ α Sα, (105.1)

with
Sα = sα⊗ mα (105.2)

the Schmid tensor for slip system α.625

We follow §104.1 in allowing for power expended internally by

• an elastic-stress Te power conjugate to Ḣe, and
• a scalar internal microscopic force πα power conjugate to γ̇ α (for each slip sys-

tem α);

but, in addition, we now allow slip-rate gradients ∇γ̇ α to affect the internal power
via the introduction of

• a vector microscopic stress ξα power-conjugate to the slip-rate gradient ∇γ̇ α
(for each slip system α).

We therefore write the internal power in the form

I(P) =
∫

P

Te : He dv +
∑

α

∫

P

(παγ̇ α + ξα · ∇γ̇ α) dv, (105.3)

with P an arbitrary subregion of the body.
Turning to the external power, we allow for the standard power expenditures

t(n) · u̇ and b · u̇ by surface tractions and (conventional and inertial) body forces.

623 Cf. also the isotropic gradient theories discussed in §89–§90.
624 This section follows Gurtin, Anand & Lele (2007).
625 Cf. (102.5).

604



105.1 Virtual-Power Formulation of the Standard 605

Further, arguing as in the paragraph containing (90.11), we expect that the gradient
terms ξα · ∇γ̇ α should give rise to traction terms associated with the microscopic
stresses ξα. Indeed, guided by the term (ξα · n)γ̇ α in the integral identity

∫

P

ξα · ∇γ̇ α dv =
∫

∂P

(ξα · n)γ̇ α da −
∫

P

γ̇ αDivξα dv, (105.4)

we assume that power is expended externally by

• a scalar microscopic traction Fα(n) power-conjugate to γ̇ α

for each slip system α. We therefore assume that the external power has the form

W(P) =
∫

∂P

t(n) · u̇ da +
∫

P

b · u̇ dv +
∑

α

∫

∂P

Fα(n)γ̇ α da. (105.5)

Here, to simplify the presentation, we do not include external microscopic forces.626

As before, we consider (generalized) virtual velocities

V = (ũ, H̃e, γ̃ 1, γ̃ 2, . . . , γ̃ N)

consistent with the constraint

∇ũ = H̃e +
∑

α

ν̃α Sα, (105.6)

a consideration that leads to the following expressions

W(P,V) =
∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv +
∑

α

∫

∂P

Fα(n) γ̃ α da

I(P,V) =
∫

P

Te : H̃e dv +
∑

α

∫

P

(παγ̃ α + ξα · ∇ γ̃ α) dv,

(105.7)

for the external and internal expenditures of virtual power. The principle of virtual
power is then the requirement that, given any subregion P of the body,

∫

∂P

t(n) · ũ da +
∫

P

b · ũ dv +
∑

α

∫

∂P

Fα(n) γ̃ α da

︸ ︷︷ ︸
W(P,V)

=
∫

P

Te : H̃e dv +
∑

α

∫

P

(παγ̃ α + ξα · ∇γ̃ α) dv

︸ ︷︷ ︸
I(P,V)

(105.8)

for all virtual velocities V .
Next, the argument given in the paragraphs containing (104.10) and (104.16)

leads to the symmetry of Te and to the traction condition

t(n) = Tn (105.9)

and the macroscopic force balance

DivT + b = 0, (105.10)

626 Cf. the paragraph containing (104.3).
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with macroscopic stress

T def= Te. (105.11)

In our discussion of the conventional theory in §104.1, the arbitrary nature of
the virtual slip rates leads to a system of microscopic force balances — but these bal-
ances are here in the form of partial differential equations (that need concomitant
traction conditions). As in §104.1 our derivation of these balances is based on the
use of a virtual velocity V consistent with

ũ ≡ 0 and H̃e = −
∑

α

γ̃ α Sα, (105.12)

with γ̃ 1, γ̃ 2, . . . , γ̃ N arbitrary.627 For this choice of V the constraint (104.5) is satisfied
and, for τα the resolved shear stress defined by (104.18), the relations (104.21) and
(105.12)1 reduce (105.8) to the microscopic virtual-power relation

∑

α

∫

∂P

Fα(n)γ̃ α da =
∑

α

∫

P

[(πα − τα)γ̃ α + ξα · ∇γ̃ α] dv. (105.13)

Appealing to the identity (105.4), but with the slip rates replaced by their virtual
counterparts, we thus find that

∑

α

(∫

∂P

(Fα(n) − ξα · n)γ̃ α da +
∫

P

(Divξα + τα − πα)γ̃ α dv

)
= 0. (105.14)

Since the virtual slip rates are arbitrary, (105.14) must be satisfied for all
γ̃ 1, γ̃ 2, . . . , γ̃ N and all P; a vectorial version of fundamental lemma of the calculus
of variations (page 167) therefore yields the microscopic force balance628

τα = πα − Div ξα (105.15)

and the microscopic traction condition

Fα(n) = ξα · n (105.16)

for each slip system α.
Arguing as on page 596, the microscopic force balance (105.15) arises as a con-

sequence of the arbitrary nature of the virtual slip rates and hence might be viewed
as a force balance for the system of dislocations on slip system α. Specifically, one
might view πα as representing internal forces on the αth slip system associated with
the creation, annihilation, and general interaction of dislocations; τα as represent-
ing the force exerted by the lattice on the system of dislocations on α; and, by virtue
of the traction condition (105.16),

• ξα · n as representing forces on slip system α associated with the flow of disloca-
tions across surfaces with normal n.

Consistent with this, in §105.3 we shall relate the microscopic stresses ξα to classical
Peach–Koehler forces.629

627 Cf. (104.19).
628 Gurtin (2000b, eq. (48); 2002, eq. (5.14)).
629 Cf., e.g., Teodosiu (1982, p. 191) and Maugin (1993, p. 23) for discussions of classical Peach–

Koehler forces.
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105.2 Free-Energy Imbalance

Our derivation of the free-energy imbalance follows §104.2, the sole difference be-
ing the gradient term ξα · ∇γ̇ α in the internal power (105.3); this leads to the free-
energy imbalance

˙∫

P

2 dv −
∫

P

T : Ėe dv −
∑

α

∫

P

(παγ̇ α + ξα · ∇γ̇ α) dv = −
∫

P

δ dv ≤ 0, (105.17)

and hence to the local free-energy imbalance630

2̇ − T : Ėe −
∑

α

(ξα · ∇γ̇ α + παγ̇ α) = −δ ≥ 0. (105.18)

The inequality (105.18) is central to the development of a suitable constitutive
theory.

105.3 Energetic Constitutive Equations. Peach–Koehler Forces

Our general goal is a constitutive theory that allows for dependencies:

(i) on slip-rate gradients; and
(ii) on screw and edge dislocation densities,

but that does not otherwise depart drastically from the conventional theory devel-
oped in §104.3. In the same vein, we content ourselves with constitutive equations
that are sufficient — but generally not neceessary — for compatibility with thermo-
dynamics.631

We seek a theory that allows for a free energy dependent on the dislocation
densities

ρα= = −sα · ∇γ α, ρα> = lα · ∇γ α, (105.19)

α = 1, 2, . . . N.632 Specifically, we write

8ρ =
(
ρ1

= ,ρ2
= , . . . ,ρN

= ,ρ1
> ,ρ2

> , . . . ,ρN
>

)
(105.20)

for the list of dislocation densities and consider a constitutive relation for the free
energy of the form

2 = 1
2 Ee: CEe +2 p(8ρ ), (105.21)

with 2 p a defect energy.633

We therefore begin with an elastic energy (strain energy) in its classical form
with elasticity tensor C symmetric and positive-definite. Consistent with this, we

630 Gurtin (2000b, eq. (53); 2002, eq. (6.6)).
631 Cf. §104.3.
632 Cf. (103.9).
633 Gurtin (2006, p. 1884) writes: “While it is tempting to consider the dislocation densities (105.19) as

appropriate constitutive variables for the characterization of free energy, the description of these
densities in terms of slip gradients should give one pause, as the prevailing view among experts
is that slip and slip gradients are not suitable constitutive variables. One can, of course, rewrite
(103.9)1 and (105.19) as rate equations by simply differentiating with respect to t and then argue
that the densities are internal variables, but such an argument seems far too facile to justify this use
of dislocation densities; for that reason, we turn to the large deformation theory to help settle this
issue. . . . ” In fact, we do just that in §107.
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assume that the macroscopic stress T is given by the standard relation634

T = CEe; (105.22)

then,

1
2

˙Ee: CEe = T : Ėe (105.23)

and the local free-energy imbalance (105.18) becomes
·

2 p(8ρ ) −
∑

α

(ξα · ∇γ̇ α + παγ̇ α) = −δ ≤ 0. (105.24)

Central to the theory are the energetic defect forces defined by635

f α= (8ρ ) = ∂2 p(8ρ )
∂ρα=

and f α> (8ρ ) = ∂2 p(8ρ )
∂ρα>

. (105.25)

By (103.9)2,3

·
2 p(8ρ ) =

∑

α

(
f α= ρ̇

α
= + f α> ρ̇

α
>

)
(105.26)

=
∑

α

(
− f α= sα + f α> lα

)
· ∇γ̇ α ; (105.27)

we refer to

ξαen
def= − f α= (8ρ )sα + f α> (8ρ ) lα (105.28)

as the energetic microscopic stress for slip system α. Note that ξαen is tangent to slip
plane α, because sα and lα lie on this plane.

The classical Peach–Koehler force is the configurational force on a dislocation
loop in a linear elastic body.636 In contrast, the present theory is viscoplastic with
dislocations distributed continuously over the body via the density fields ρα= and ρα> ;
even so, one might expect there to be a counterpart of the Peach–Koehler force
within the present theory.

For each α, we continue to let637

#α denote slip plane α. (105.29)

For a distribution of pure dislocations with line direction l evolving on #α , a dis-
tributed Peach–Koehler force should be parallel to the#α and perpendicular to the
line direction l. Such a force should therefore have the form

ϕ(mα× l), (105.30)

with ϕ a scalar field. We refer to (105.30) as a distributed Peach–Koehler force with
density ϕ.

In view of our agreement that638

lα = mα× sα,

the energetic microscopic stress (105.28) can be written alternatively as

ξαen = f α= (mα× lα) + f α> (mα× sα). (105.31)

634 Cf. §104.4.
635 Cf. Gurtin (2006) and Gurtin, Anand & Lele (2007).
636 Cf. Footnote 629.
637 Cf. (103.3).
638 Cf. (103.4).
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The microscopic forces f α= (mα× lα) and f α> (mα× sα) each have the form (105.30)
and, accordingly, have the following physical interpretations:639

f α= (mα× lα)︸ ︷︷ ︸
distributed Peach–Koehler
force on edge dislocations

and f α> (mα× sα).
︸ ︷︷ ︸

distributed Peach–Koehler
force on screw dislocations

(105.32)

The energetic defect forces f α= and f α> therefore represent densities of distributed
Peach–Koehler forces,

• an observation that allows us to view the energetic microscopic stresses ξαen as
counterparts of Peach–Koehler forces.

105.4 Constitutive Equations that Account for Dissipation

By (105.27) and (105.28)

·
2 p(8ρ ) =

∑

α

ξαen · ∇γ̇ α (105.33)

and (105.24) becomes

δ =
∑

α

[(ξα− ξαen) · ∇γ̇ α + παγ̇ α] ≥ 0. (105.34)

Thus, if we define dissipative microscopic stresses ξαdis through the relations

ξαdis = ξα − ξαen, (105.35)

then (105.34) takes the form of a reduced dissipation inequality

δ =
∑

α

(παγ̇ α + ξαdis · ∇γ̇ α) ≥ 0. (105.36)

Our discussion of dissipative constitutive relations is based on this inequality.
Our choice of constitutive relations for the internal microscopic forces πα and

the dissipative microscopic stresses ξαdis is guided by:

(i) the reduced dissipation inequality (105.36), which suggests a dependence of πα

on γ̇ α and ξαdis on ∇γ̇ α ;
(ii) the tacit assumption that the microscopic stress ξαdis characterizes dissipative mi-

croscopic forces associated with the evolution of dislocations on the slip plane
#α ; because the motion of such dislocations is tangent to #α, we require that
ξαdis also be tangential to#α ;

(iii) our wish to have the dissipation δ and the constitutive relations for the inter-
nal microscopic forces πα of a form similar in structure to their conventional
counterparts (104.44) and (104.45).

Specifically, we introduce two quantities — an effective flow rate

dα def=
√

|γ̇ α|2 + 72|∇αγ̇ α|2 (105.37)

639 A similar result was established by Gurtin (2002, p. 22) for a defect energy dependent on the
Burgers tensor G, rather than on dislocation densities, but the argument used was convoluted. In
contrast, the argument leading to (105.32) is closer to the underlying physics — and simpler.
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with 7 a dissipative length-scale and ∇αγ̇ α = Pα∇γ̇ α the tangential gradient of γ̇ α on
#α ,640 and a (dimensionless) rate-sensitivity function g consistent with641

g(0) = 0, g(dα) > 0 for dα '= 0

— and we consider constitutive equations for πα and ξα in the form642

πα = Sαg(dα)
γ̇ α

dα
,

ξαdis = Sαg(dα)72 ∇αγ̇ α

dα
.

(105.38)

The relations (105.28), (105.35), and (105.38)2 combine to form a constitutive
equation

ξα = − f α= sα + f α> lα + Sαg(dα)72 ∇αγ̇ α

dα
(105.39)

for the microscopic stress ξα.
By (103.18) given any scalar field ϕ

∇ϕ · ∇αϕ = ∇ϕ · (Pα∇ϕ)

= ∇ϕ · (PαPα∇ϕ)

= (Pα∇ϕ) · (Pα∇ϕ)

= |∇αϕ|2, (105.40)

since Pα is symmetric. Thus, ∇γ̇ α · ∇αγ̇ α = |∇αγ̇ α|2 and (105.38) renders the dissi-
pation (105.36) of the simple form

δ =
∑

α

Sαg(dα)dα. (105.41)

The dependence of ξαdis on the tangential gradient ∇αγ̇ α renders the constitutive
relation for ξαdis consistent with (ii). Regarding (iii), the relations (105.38)1 for πα

and (105.41) for δ differ from the conventional relations (104.44)1 and (104.45) only
through the replacement of |γ̇ α| in the conventional relations by the effective flow
rate dα.

Our next step in the prescription of dissipative constitutive equations is the spec-
ification of hardening equations for the evolution of the slip resistances Sα . Based
on the success of the conventional hardening equations (104.52)2, we consider hard-
ening equations of the form

Ṡα =
∑

α

hαβ(8S )dβ (105.42)

with hardening moduli (104.65); viz.

hαβ
(8S
)

= χαβh(Sβ)︸ ︷︷ ︸
self-hardening

+ q(1 − χαβ)h(Sβ)︸ ︷︷ ︸
latent-hardening

. (105.43)

640 Cf. (103.19).
641 Cf. (104.41). For example, one might take g(dα) = (dα/d0)m; cf. the discussion following (78.20).
642 The equations (105.38) were proposed by Gurtin (2000b, §15). The structure of these equations

bears some comparison with equations introduced to characterize strengthening in isotropic plas-
tic materials; cf. Fredriksson & Gudmundson (2005) and Gurtin & Anand (2005a,b); cf. Foot-
note 547.
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Here, χαβ are the coplanarity moduli (104.64), h ≥ 0 is the self-hardening func-
tion, and q > 0 is the interaction constant. We are, therefore, led to the hardening
equations643

Ṡα =
∑

β

[χαβ + q(1 − χαβ)]h(Sβ) dβ . (105.44)

EXERCISES

1. Develop the dissipative constitutive relations (105.38) using the formulation in-
troduced in the paragraph containing (90.55). That is, introduce, for each slip
system α, a generalized slip-rate

@̇α
def= (γ̇ α, 7∇γ̇ α)

a generalized microscopic stress

:α def= (πα, 7−1ξαdis),

and so forth. Further, lay down the codirectionality hypothesis

:α = φ
@̇α

|@̇α |
,

with φ a scalar function, to be specified, etc.
2. It is commonly held that dislocations impinging transversely on a slip plane —

traditionally called forest dislocations — give rise to a form of hardening re-
ferred to as forest-hardening.644 Consistent with this, Cermelli & Gurtin
(2001), who work within the context of large deformations, show that the field
mα · Gmα characterizes the distortion of slip plane #α, and — because this field
accounts for the normal component of the Burgers vector of dislocations im-
pinging transversally on #α — suggest that this field might be useful as a consti-
tutive quantity related to forest-hardening. In light of this discussion, one might
also consider hardening moduli dependent on the forest-hardening measure
ζ α ≥ 0 for each slip system α by645

ζ α = |mα · Gmα|. (105.45)

Derive the following relations, which express ζ α in terms of slip gradients and
in terms of dislocation densities:

ζ α =
∣∣∣∣
∑

β

(sβ · mα)(mβ× mα) · ∇γ β
∣∣∣∣ (105.46)

=
∣∣∣∣
∑

β

(mα · sβ)
[
(mα · lβ)ρβ= + (mα · sβ)ρβ>

]∣∣∣∣. (105.47)

Since mα · sβ = 0 and mα · lβ = 0 when the slip systems α and β are coplanar,646

ζ α is independent of slip gradients (or dislocation densities) associated with slip
systems whose slip planes are coplanar to α.

3. Show that

|sβ · mα| ≤ 1, |(mβ× mα) · ∇γ β | = |(mβ× ∇γ β) · mα| ≤ |∇βγ β |,

643 Cf. (104.66).
644 Cf., e.g., Kuhlmann-Wilsdorf (1989).
645 Acharya, Bassani & Beaudoin (2003), propose |G)mα | as an alternate measure of “forest disloca-

tions.”
646 Cf. (104.63).
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and use these identities to establish the following bound for ζ α:

ζ α ≤
∑

β

(1 − χαβ)|∇βγ β | =
∑

β

(1 − χαβ)
√(
ρ
β
=

)2 +
(
ρ
β
>

)2; (105.48)

ζ α is therefore bounded by the sum of the absolute values of the tangential
gradients over all slip systems not coplanar with #α.

105.5 Viscoplastic Flow Rule

The decomposition ξα = ξαen + ξαdis allows us to write the microscopic force balance
(105.15) in the form

τα + Div ξαen = πα − Div ξαdis, (105.49)

where we have written the term Div ξαen on the left, since, being energetic, its nega-
tive represents a backstress. When augmented by the constitutive equations (105.28)
and (105.38) the balance (105.49) becomes the flow rule for slip system α:647

τα − (−1)Div(− f α= sα + f α> lα)
︸ ︷︷ ︸

energetic backstress

= Sαg(dα)
γ̇ α

dα
− 72 Div

(
Sαg(dα)

∇αγ̇ α

dα

)

︸ ︷︷ ︸
dissipative-hardening

.

(105.50)

By (103.9) and (105.25), the defect forces f α> and f α= depend on slip gradients; the
flow rule (105.50) therefore relates the resolved stresses to first and second gradients
of slip and slip-rate. Moreover, given the resolved stresses τα , (105.50) represents
a system of partial differential equations for the slips. Thus, unlike the flow rules
(104.46) of the conventional theory, the flow rules (105.50) are nonlocal and hence
require concomitant boundary conditions.

To express the flow rules in terms of the slip-gradients, we define energetic-
interaction moduli by

Dαβ
== = Dβα

== =
∂ f α=
∂ρ

β
=

,

Dαβ
>> = Dβα

>> =
∂ f α>
∂ρ

β
>

,

Dαβ
=> = Dβα

>= = ∂ f α=
∂ρ

β
>

=
∂ f β>
∂ρα=

,






(105.51)

so that, for example, Dαβ
=> = Dαβ

=> (8ρ ) represents the energetic interaction between
screw dislocations on β and edge dislocations on slip system α; or, more specifically,
Dαβ

=> represents a change in the Peach–Koehler force density for edge dislocations on

647 Cf. Gurtin (2000b, eq. (164a); 2002, eq. (7.18)); the former has no backstress, the latter has ξαdis ≡ 0
and defect energy a function of G (rather than dislocation densities); the complete relation (105.49)
is due to Gurtin, Anand, & Lele (2007, eq. (8.2)).
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slip system α due to a change in the screw-dislocation density on β.648 By (105.51),

∇ f α= =
∑

β

(Dαβ
== ∇ρβ= + Dαβ

=>∇ρβ> ),

∇ f α> =
∑

β

(Dαβ
>= ∇ρβ= + Dαβ

>>∇ρβ> ),

and (105.28) yields

Divξαen = −sα · ∇ f α= + lα · ∇ f α>

=
∑

β

[−sα · (Dαβ
== ∇ρβ= + Dαβ

=> ∇ρβ> ) + lα · (Dαβ
>= ∇ρβ= + Dαβ

>>∇ρβ> )].

But, in view of (103.9):

∇ρβ= = −(∇∇γ β)sβ , ∇ρβ> =
(
∇∇γ β

)
lβ,

and, therefore,

Divξαen =
∑

β

[sα · (Dαβ
== (∇∇γ β)sβ − Dαβ

=> (∇∇γ β)lβ

+ lα · (−Dαβ
>= (∇∇γ β)sβ + Dαβ

>>(∇∇γ β)lβ)]. (105.52)

Thus, if we define energetic-interaction tensors Aαβ by

Aαβ = Dαβ
== sα ⊗ sβ − Dαβ

=> sα ⊗ lβ − Dαβ
>= lα ⊗ sβ + Dαβ

>> lα ⊗ lβ, (105.53)

then

Divξαen =
∑

β

Aαβ : ∇∇γ β (105.54)

and, since the term Div(· · ·) on the left side of (105.50) is Div ξαen, we can write this
flow rule in the form

τα − (−1)
∑

β

Aαβ : ∇∇γ β

︸ ︷︷ ︸
energetic backstress

= Sαg(dα)
γ̇ α

dα
− 72Div

(
Sαg(dα)

∇αγ̇ α

dα

)

︸ ︷︷ ︸
dissipative-hardening

.

(105.55)

Note that the tensors Aαβ depend on 8ρ and hence slip gradients, since the moduli
Dαβ

== , . . . depend on 8ρ. Note also that (105.55) is valid for any choice of the defect
energy.

A simple defect energy has free energy 2 p(8ρ ) uncoupled and quadratic in the
net dislocation densities649

ραnet =
√

|ρα= |2 + |ρα> |2 (105.56)

and, hence, of the form

2 p(8ρ ) = 1
2 S0 L2

∑

α

|ραnet|2, (105.57)

648 Cf. the paragraph containing (105.32).
649 Cf., e.g., Ohno & Okumara (2007) who considered a free energy of the form 2 p(8ρ ) = const ×∑

α ρ
α
net.
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with L an energetic length-scale and S0 the initial slip resistance. An interesting
consequence of (103.23) is that this energy has the alternative form

2 p(8ρ ) = 1
2 S0 L2

∑

α

|∇αγ α|2. (105.58)

Granted (105.57), the defect forces (105.25) and energetic microscopic stress
(105.28) become

f α= = S0 L2ρα= , f α> = S0 L2ρα> ,

ξαen = S0 L2(−ρα= sα + ρα> lα),
(105.59)

results that lead to the following expression for the (slip system α) backstress:

−S0 L2 Div(−ρα= sα + ρα> lα).

Further, for this simple energy the only nonzero energetic interaction moduli
(105.51) are

Dαα
== = Dαα

>> = S0 L2, α = 1, 2, . . . , N,

and the only nonzero components of the interaction tensor (105.53) are

Aαα = S0 L2(sα ⊗ sα + lα⊗ lα), α = 1, 2, . . . , N. (105.60)

Thus, the flow rule (105.55) for slip system α becomes650

τα − (−1)S0 L2 ,αγ α︸ ︷︷ ︸
energetic backstress

= Sαg(dα)
γ̇ α

dα
− 72Div

(
Sαg(dα)

∇αγ̇ α

dα

)

︸ ︷︷ ︸
dissipative-hardening

,
(105.61)

with ,α the Laplace operator on slip plane α, defined by

,αϕ = Div ∇αϕ

= sα · (∇∇ϕ)sα + lα · (∇∇ϕ)lα. (105.62)

Unlike (105.55), the backstress involves no coupling between slip systems.

EXERCISES

1. A simple quadratic defect energy with coupling has the form

2 p(8ρ ) = 1
2 S0

(∑

α

L2(ραnet)
2 + C2

∑

α,β
α '=β

ραnet ρ
β
net

)
. (105.63)

650 Computations of Gurtin, Anand & Lele (2007) based on this flow rule show that the theory pre-
sented here, with 7 '= 0, leads to strengthening; that is, to an increase in the initial yield stress. Inter-
estingly, Ohno & Okumura (2007) show that the energy (105.65), attributed to the self-energy of
the net dislocation density, also leads to strengthening. As is clear from the studies of Fredriksson
& Gudmundson (2005) and Anand, Gurtin, Lele & Gething (2005), such an increase is also a con-
sequence of dissipative-hardening when slip-rate gradients enter the constitutive relations for the
microscopic stresses ξαdis, as in (105.38). Since the strengthening introduced by Ohno and Okumura
most certainly leads to kinematic-hardening, while dissipative-hardening involves no backstress, it
might be possible to experimentally ascertain whether one or both of the hardening mechanisms is
the root cause of strengthening.
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Show that the energetic defect forces (105.25) are given by

f α= = S0

(
L2ρα= + 1

2 C2cα=
∑

β
β '=α

ρ
β
net

)
,

f α> = S0

(
L2ρα> + 1

2 C2cα>
∑

β
β '=α

ρ
β
net

)
,

(105.64)

where cα= and cα> are the dislocation concentrations defined by

cα= =
ρα=
ραnet

and cα> =
ρα>
ραnet

and C is a length-scale associated with the energetic coupling of slip systems.
2. The defect energy

2 p(8ρ ) = S0 L2(1 + r)−1
∑

α

(ραnet)
1+r (105.65)

with r = 0 was introduced by Ohno & Okumura (2007) to account for the self-
energy of geometrically necessary dislocations.651 Show that this energy is asso-
ciated with the defect forces

f α= = S0 L2(ραnet
)r ρα=
ραnet

and f α> = S0 L2(ραnet
)r ρα>
ραnet

. (105.66)

105.6 Microscopically Simple Boundary Conditions

Each of the flow rules discussed in §105.5 involves second slip-rate gradients and
hence represents a system of partial-differential equations for the slips, given the
resolved shears τα . The flow rules are therefore nonlocal and require associated
boundary conditions.

With this in mind, we focus on the boundary ∂B. The external power expended
on B is given by (105.5), and, in view of (105.16), the microscopic portion of this
power has the form

∑

α

∫

∂B

(ξα · n)γ̇ α da; (105.67)

(105.67) represents power expended by the material in contact with the body and
suggests that the requisite boundary conditions should involve the tractions ξα · n
and the slip rates γ̇ α . We restrict attention to boundary conditions that result in a
null expenditure of microscopic power in the sense that

(ξα · n)γ̇ α = 0 on ∂B (105.68)

for all α.652 Specifically, we consider microscopically simple boundary conditions
asserting that

γ̇ α = 0 on Shard and ξα · n = 0 on Sfree (105.69)

for all α, where Shard and Sfree are complementary subsurfaces of ∂B respectively re-
ferred to as the microscopically hard and the microscopically free portions of ∂B.653

651 The term involving r > 0, r small, represents a regularization introduced to ensure that the defect
forces (105.25) are defined when ραnet = 0; cf. Ohno & Okumura (2007, eq. (52)).

652 Cf. Gurtin (2000b, eq. (137); 2002, eqs. (9.1) and (9.4)).
653 As Gurtin & Needleman (2005) show, the issue of boundary conditions is delicate when: (i)

the defect energy depends on the Burgers tensor G; (ii) the theory does not include constitutive
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The microscopically hard condition corresponds to a boundary surface that cannot
pass dislocations (for example, a boundary surface that abuts a hard material); the
microscopically free condition corresponds to a boundary across which dislocations
can flow freely from the body and would seem consistent with the macroscopic con-
dition Tn = 0.

105.7 Variational Formulation of the Flow Rule

The flow rules and the microscopically free boundary-conditions have a variational
formulation based on the microscopic virtual-power relation (105.13).654 To see this,
assume that, at some arbitrarily chosen fixed time under consideration, the fields u
and Ee are known, and let Shard and Sfree be complementary subsurfaces of ∂B. Then,
given any slip system α, if

(i) ξα · n = 0 on Sfree,
(ii) ϕ ≡ γ̃ α is the only nonzero virtual slip-rate field, and

(iii) ϕ = 0 on Shard,

then, by (i)–(iii) and (105.16),
∫

∂B

Fα(n)ϕ da = 0 (105.70)

and (105.13), with P = B, reduces to655

∫

B

[(πα − τα)ϕ + ξα · ∇ϕ] dv = 0. (105.71)

The foregoing steps were used only to derive the virtual-power relation
(105.71): We no longer require that (i)–(iii) be satisfied. We refer to ϕ in (105.71) as
a test field and assume that ϕ is kinematically admissible in the sense that

ϕ = 0 on Shard. (105.72)

Then the identity (105.4) (with γ̇ α = ϕ) implies that
∫

B

ξα · ∇ϕ dv =
∫

Sfree

(ξα · n)ϕ da −
∫

B

ϕDivξα dv (105.73)

and, hence, that (105.71) is equivalent to
∫

Sfree

(ξα · n)ϕ da +
∫

B

(πα− τα − Divξα)ϕ dv = 0. (105.74)

Moreover, invoking the fundamental lemma of the calculus of variations (page 167),
we see that (105.74) holds for all kinematically admissible test fields ϕ if and only
if ξα · n = 0 on Sfree and the microscopic force balance (105.15) is satisfied in B.
Since this force balance — supplemented by the constitutive relations (105.38)1 and

dependencies on slip-rate gradients. Here, neither (i) or (ii) is applicable. Even so, Gurtin (2008)
conjectured that, granted (ii), the dependence of the defect energy on dislocation densities pre-
cludes the problems encountered by Gurtin and Needleman; and that a similar conjecture applies
to the small deformation theory of Gurtin, Anand & Lele (2007).

654 Cf. the first paragraph of §89.6.
655 Cf. Gurtin (2000b, eq. (159); 2002, eq. (10.1)).
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(105.39) for πα and ξα — is equivalent to the flow rule (105.50) for α, we have the
following result:

Variational formulation of the flow rule Suppose that the constitutive relations

πα = Sαg(dα)
γ̇ α

dα
,

ξα = − f α= sα + f α> lα + Sαg(dα)72 ∇αγ̇ α

dα
,

(105.75)

are satisfied. The flow rule (105.50) in B and the boundary condition

ξα · n = 0 on Sfree (105.76)

are then together equivalent to the requirement that (105.71) hold for all kinematically
admissible test fields ϕ.

This global variational statement of the flow rule should provide a useful basis
for computations; in a numerical scheme such as the finite element method, (105.71)
augmented by (105.75) would, for each α, reduce to a system of nonlinear algebraic
equations for γ̇ α , granted a knowledge of the “current state” of the system.

105.8 Plastic Free-Energy Balance

As a result of the constitutive relations, the global free-energy imbalance (105.17)
has a plastic counterpart, which we now derive.

Assume that the microscopically simple boundary conditions (105.69) are satis-
fied, so that (105.68) holds and (105.4) takes the form

∫

B

ξα · ∇γ̇ α dv = −
∫

B

γ̇ α Divξα dv.

The relation (105.33) for
·

2 p(8ρ ), the relation ξαdis = ξα − ξαen, and the microscopic
force balance (105.15) therefore imply that

·∫

B

2 p(8ρ ) dv =
∑

α

∫

B

ξαen · ∇γ̇ α dv

=
∑

α

∫

B

[ξαen · ∇γ̇ α + (τα − πα + Div ξα)︸ ︷︷ ︸
=0

γ̇ α] dv

=
∑

α

∫

B

[(ξαen − ξα) · ∇γ̇ α + (τα − πα)γ̇ α] dv

=
∑

α

∫

B

[(τα − πα)γ̇ α − ξαdis · ∇γ̇ α] dv.

We, therefore, have the plastic free-energy balance

·∫

B

2 p(8ρ ) dv =
∑

α

∫

B

ταγ̇ α dv

︸ ︷︷ ︸
plastic working

−
∑

α

∫

B

(παγ̇ α + ξαdis · ∇γ̇ α) dv

︸ ︷︷ ︸
dissipation≥0

.
(105.77)



618 Single-Crystal Plasticity at Small Length-Scales

Thus, the temporal increase in defect energy can never exceed the plastic working.
Further, if the defect energy vanishes, then — as in conventional theories of plastic-
ity — the plastic working is balanced by the dissipation.

105.9 Some Remarks

The present theory with the energy (105.58) compares well to the discrete disloca-
tion calculations of Nicola, Van der Giessen & Gurtin (2005). But — as with most
gradient theories — the constitutive length scale L that characterizes the energy
(105.58) is ad hoc, chosen to match the discrete dislocation simulations. Interesingly,
the study of Ohno & Okumura (2007), which we now discuss, provides a notable
exception to this situation!

Ohno and Okumura show that the theory presented here — when endowed
with the Ohno–Okumura self energy given in Footnote 649 — compares well to a
large class of experiments on single crystals of Al, Ni, Cu, Fe, and steel at submicron
to several micron length scales. But what is most important, Ohno and Okumura
do not introduce an ad hoc length scale; their energy — patterned after a stan-
dard formula for the energy per unit length of a single dislocation in an isotropic
crystal656 — has a built-in gradient length-scale657 based on the material Burgers
vector b.658

An alternative to the theory presented here and one based on a defect energy

2 = 2̂ p(G) (105.78)

dependent on the Burgers tensor G was proposed by Gurtin (2002).659 Because G
can be decomposed into distributions of edge and screw dislocation via the decom-
position (103.9), we can consider G as a function

G = Ĝ(8ρ ) (105.79)

of the list 8ρ of disclocation densities and convert the energy (105.78) to an energy
dependent on dislocation densities. But, as noted by Arsenlis & Parks (1999), the
function (105.79) is not one-to-one and hence cannot be inverted to give the dislo-
cation densities as functions of G.660 Thus, the energy (105.78) cannot generally be
converted to an energy dependent on 8ρ. Summarizing,

• an energetic dependence on G is not equivalent to an energetic dependence on 8ρ.

On a more pragmatic note, an advantage of an energy dependent on 8ρ is that
an energetic constitutive equation in the form

2 p = 2̂ p(8ρ ) (105.80)

is — for fcc and bcc crystals — automatically consistent with the symmetry of the
underlying crystal, but an energy of the form (105.78) is not — a separate analysis is
needed to ensure that the function 2̂ p(G) be invariant under the symmetry group
of such crystals.

Gradient theories of the type considered here extend naturally to situations
involving grain boundaries. Indeed, for S a subsurface of ∂B, the presence of

656 Cf. Hirth and Lothe (1982, eq. (3.52)).
657 As noted by Gurtin (2009), the length scale in the Ohno–Okumura theory has the precise form

µb/S, with S the underlying slip resistance.
658 Cf. the paragraph labelled “terminology” on page 591.
659 Cf. also Gurtin & Needleman (2005).
660 In fact, Arsenlis & Parks (1999) show that certain combinations of densities correspond to G = 0

— so that the absence of a Burgers vector does not generally imply the absence of continuous
distributions of dislocations as described by the dislocation densities.
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microscopic stresses ξα results in a power expenditure
∑

α

∫

S

(ξα · n)γ̇ α da (105.81)

by the material in contact with the body — when this material is that of another
grain, then (105.81) and its analog for the other grain leads to an extension of the
principle of virtual power that can be used to develop force balances and a free-
energy imbalance for the grain boundary. For small deformations, such a procedure
was used as a basis for a treatment of grain boundaries by Cermelli & Gurtin
(2002), Gurtin & Needleman (2005), and Gurtin (2008a).





PART XVIII

SINGLE CRYSTALS UNDERGOING
LARGE DEFORMATIONS

This chapter presents a counterpart — for large deformations — of our treatment of
single crystals undergoing small deformations.661 While much of what we discuss is
similar to corresponding material in §101.3, we present almost all arguments in full,
not only for completeness, but also because they require notions intrinsic to large
deformations. Further, as in §101.3, we base the theory on the principle of virtual
power, but here, unlike there, we develop the force balances for the conventional
and gradient theories together.

We also discuss the Taylor model. This model, which is based on single-crystal
equations developed in this section, is often used to characterize the formation of
“texture” in polycrystals.662

661 Cf. §101.3. In this regard, the introductory material on pages 581–585 is applicable here and might
be reviewed by those readers not familiar with the materials-science aspects of single crystals.

662 Cf. §111.
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106 Basic Single-Crystal Kinematics

The kinematics of single crystals undergoing large deformations takes as its starting
point the kinematics discussed in §91 and, consequently, begins with the Kröner
decomposition

F = FeFp, (106.1)

together with the assumption of plastic incompressibility:

detFp = 1. (106.2)

Here, in agreement with standard terminology663 we refer to the structural space as
the lattice space or, more simply, as the lattice,664 and we refer to vectors in that
space as lattice vectors. Thus Fp maps material vectors to lattice vectors; Fe maps
lattice vectors to spatial vectors; a lattice tensor is a tensor that maps lattice vectors
to lattice vectors (Figure 106.1).

reference body deformed body

X x

lattice

Fp(X)
Fe(X)

F(X)

infinitesimal
neighborhoods

Figure 106.1. Schematic of the Kröner decomposition showing the lattice.

The elastic and plastic rotations and right and left stretch tensors and the elastic
and plastic distortion-rate tensors and corresponding spin and stretching tensors
are as defined in §91; here we recall only the relations (91.7) and (91.8) for the

663 Cf. §91.2.
664 For us, the term lattice always connotes the undistorted lattice.
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distortion-rate tensors, as these are needed in the ensuing discussion:

Le = ḞeFe−1, Lp = ḞpFp−1,

L = Le + FeLpFe−1.
(106.3)

Slip systems are as defined in the paragraph containing (102.4); what is impor-
tant within the present context of large deformations is that, for α = 1, 2, . . . , N,665

(‡) the slip direction sα and slip-plane normal mα are constant lattice vectors666

consistent with (102.4); viz.

sα · mα = 0, |sα| = |mα| = 1. (106.4)

Within the framework of large deformations,

• slips (as fields on the individual slip systems) are not well-defined quantities:
What are well defined are slip rates.

For that reason, the single-crystal hypothesis is framed in terms of the plastic
distortion-rate Lp; specifically, this hypothesis requires that Lp be governed by slip
rates667 να on the individual slip systems via the relation668

Lp =
∑

α

να Sα, (106.5)

in which, as before,

Sα = sα⊗ mα (106.6)

is the Schmid tensor for slip system α. By (106.6), Sα is a mapping of lattice vectors
to lattice vectors and, hence, a lattice tensor.

In view of (106.3)3

L = Le +
∑

α

να
(
FeSαFe−1). (106.7)

Since Fe maps lattice vectors to spatial vectors,669 the tensor

S̄α def= FeSαFe−1 (106.8)

maps spatial vectors to spatial vectors. By (106.6)

S̄α = Fe(sα ⊗ mα)Fe−1

= (Fesα) ⊗ (Fe−)mα);

thus, letting

s̄α = Fesα and m̄α = Fe−)mα, (106.9)

we see that

S̄α = s̄α⊗ m̄α. (106.10)

665 We continue to use the notational conventions specified in the bullets on page 587.
666 Cf. §91.2, Figure 106.1.
667 It is more common to denote the slip rates by γ̇ α . We refrain from using this notation because the

“dot” has a precise meaning as a material time-derivative, and in the large-deformation theory να

is not the material time-derivative of a physically meaningful quantity.
668 Cf., e.g., Teodosiu (1970), Rice (1971), Asaro (1983), Havner (1992), Bassani (1994). Cf., also,

Deseri & Owen (2002), who discuss this hypothesis within the context of their theory of invertible
structured deformations.

669 Cf. Figure 106.1.
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The fields s̄α and m̄α represent the slip direction sα and the slip-plane normal mα

pushed forward to the observed space, with sα as a tangent vector and mα as a nor-
mal vector.670 Further, since L = gradv, (106.7) takes the form

gradv = Le +
∑

α

να S̄α. (106.11)

EXERCISE

1. Show that, for each α, Sα and S̄α are deviatoric,

tr Sα = tr S̄α = 0, (106.12)

so that, by (106.5),

trLp = 0,

consistent with (106.2).

670 Cf. (6.15) and (8.4).



107 The Burgers Vector and the Flow of Screw
and Edge Dislocations

The macroscopic notion of a Burgers vector is much richer when discussed within
the framework of large deformations,671 but such a discussion requires mathemati-
cal machinery more sophisticated than that used in §103, where the deformation is
assumed small.672

107.1 Transformation of Vector Area Measures Between the Reference,
Observed, and Lattice Spaces

Let SR denote an arbitrary oriented material surface with S = χ t (SR) the corre-
sponding deformed surface, and let nR and n denote the unit normal fields for SR

and S, so that

n = F−)nR

|F−)nR|
. (107.1)

Then writing nR daR and n da for the (vector) area measures on SR and S, we have
the transformation rules673

∫

SR

AnR daR =
∫

S

J −1AF)n da and
∫

S

An da =
∫

SR

J AF−)nR daR, (107.2)

with the material description of A used in the integrals over SR and the spatial de-
scription used in the integrals over S.674 These rules are expressed succinctly by the
formal relations675

nR daR = J −1F)n da and n da = J F−)nR daR. (107.3)

We now establish counterparts of (107.3) for the transformation of vector mea-
sures between the reference space and the lattice and between the lattice and the
observed space. First of all, note that by (106.1) and (107.1)

Fp−)nR = Fe)F−)nR

= |F−)nR|Fe)n. (107.4)

671 In fact, the approximation of small deformations obscures much of the physics underlying the notion
of a Burgers vector.

672 This section follows Gurtin (2006).
673 Cf. (15.8)2.
674 Cf. §9.
675 Cf. (15.5).
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Since Fp−) maps material vectors to lattice vectors, the quantity Fp−)nR is a lattice
vector and, by (107.4),

Fp−)nR

|Fp−)nR|
= Fe)n

|Fe)n|
.

It is therefore meaningful to let n# denote the unit lattice vector

n# = Fp−)nR

|Fp−)nR|
= Fe)n

|Fe)n|
; (107.5)

n# is the unit normal nR pushed forward (as a unit normal) to the lattice, or, equiva-
lently, the unit normal n pulled back to the lattice.

Integration is meaningless in the lattice, because the lattice is not a point space,
but the vector area measure n# da# in the lattice (with unit normal n# and area mea-
sure da#) defined formally by

n# da# = Fp−)nR daR or, equivalently, by n#da# = J −1Fe)n da (107.6)

has meaning because nR daR and n da are local. Further, (107.6) may be formally
inverted to give

nR daR = Fp)n# da# and n da = J Fe−)n# da#. (107.7)

107.2 Characterization of the Burgers Vector

Let ∂SR denote the boundary curve of a smooth material surface SR in the reference
body; then, by Stokes’ theorem,676

bp(∂SR) def=
∫

∂SR

FpdX

=
∫

SR

(Curl Fp))nR daR. (107.8)

Since FpdX lies in the lattice, so also does (Curl Fp))nR; hence, one might asso-
ciate (Curl Fp))nR with the Burgers vector associated with the boundary curve of
a surface-element with normal nR. But that would be incorrect. The surface element
nR daR lies in the reference space rather than in the lattice, so that (Curl Fp))nR is a
lattice vector measured per unit area in the reference body — a result that contradicts
the conventional notion of a Burgers vector, which asserts that

• the Burgers vector is a vector in the lattice measured per unit area in the lattice.

This defect is easily rectified. By (107.7)1, formally,

(Curl Fp))nR daR = (Curl Fp))Fp)n#da#, (107.9)

with n#da# a surface element in the lattice, so that (FpCurl Fp))n#da# might be viewed
as the local Burgers vector corresponding to the “boundary curve” of the surface
element n# da# in the lattice. Thus, for

Gp def= FpCurl Fp, (107.10)

Gp)n# provides a measure of the (local) Burgers vector in the lattice — per unit
lattice area — for the plane ## with unit normal n#. Moreover, as is clear from the
foregoing derivation: Gp is a lattice tensor as it maps lattice vectors to lattice vectors.

676 Cf. (4.8)3.
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On the other hand, let S be a smooth surface in the deformed body and let

be(∂S) def=
∫

∂S

Fe−1dx

=
∫

S

(curl Fe−1))n da. (107.11)

Arguing as in the steps leading to (107.10), we may use (107.7)2, again formally, to
conclude that

(curl Fe−1))n da = J (curl Fe−1))Fe−)n# da#.

Thus, by (107.11), for

Ge def= J Fe−1curl Fe−1, (107.12)

Ge)n# also provides a measure of the Burgers vector, per unit lattice area, for the
plane ## with unit normal n#, and Ge, like Gp, is a lattice tensor. The fields Gp)n#

and Ge)n# purportedly characterize the same Burgers vector. To reconcile this, note
that

∫

∂SR

FpdX =
∫

∂SR

FpF−1
︸ ︷︷ ︸

Fe−1

FdX

=
∫

∂S

Fe−1dx,

so that

be(∂S) = bp(∂SR).

Therefore, by (107.2)2,
∫

SR

(Curl Fp))nR daR =
∫

S

(curl Fe−1))n da

=
∫

SR

J (curl Fe−1))F−)nR daR,

and, since SR is arbitrary,

(Curl Fp)) = J (curl Fe−1))F−). (107.13)

Finally, a consequence of the decomposition F = FeFp is the identity F−) =
Fe−)Fp−); postmultiplying (107.13) by Fp), we thus arrive at the conclusion that

(Curl Fp))Fp) = J (curl Fe−1))Fe−)

and, hence, that

FpCurl Fp = J Fe−1curl Fe−1.

We may therefore conclude from (107.10) and (107.12) that the tensor fields Gp

and Ge coincide. We refer to the lattice tensor G defined by G = Gp = Ge and,
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hence, by

G = FpCurl Fp

= J Fe−1curl Fe−1
(107.14)

as the Burgers tensor.677

• Given any oriented plane## in the lattice, with n# its unit normal, G)n# represents
the Burgers vector — as a vector in the lattice measured per unit lattice area — for
infinitesimal circuits on##. In terms more suggestive than precise, G)n# represents
the Burgers vector, per unit area, for those dislocation lines piercing ##.

That there are two relations for the Burgers tensor is of great value. The relation
G = Fp Curl Fp seems most relevant to theories of plasticity involving plastic-strain
gradients.678 On the other hand, in discussing single crystals, materials scientists
typically neglect lattice strains, taking Fe = Re, with Re a rotation, in which case
G = Re)curl Re) and G may be determined via measurements of lattice rotations.

107.3 The Plastically Convected Rate of G

Our next step is to establish a time derivative of G following the flow of dislocations
through the lattice. In view of (106.3)2 and (107.14)1,

Ġ = ḞpCurl Fp + FpCurl Ḟp
︸ ︷︷ ︸

G∗

= LpG + G∗ (107.15)

and, by (106.3)2,

∂ Ḟ p
js

∂Xr
= Lp

jq
∂F p

qs

∂Xr
+
∂Lp

jq

∂Xr
F p

qs ;

therefore

G∗
i j = F p

imεmrs
∂ ḟ p

js

∂Xr

= F p
imεmrs

∂F p
qs

∂Xr
Lp

jq + F p
imεmrs F p

qs

∂Lp
jq

∂Xr

= Giq Lp
jq + F p

imεmrs F p
qs

∂Lp
jq

∂Xr

and (107.15) yields

Ġi j − Lp
imGmj − Giq Lp

jq = εmrs F p
imF p

qs

∂Lp
jq

∂Xr
. (107.16)

We refer to the left side of (107.16), namely to

4
G def= Ġ − LpG − GLp), (107.17)

677 Cf. Cermelli & Gurtin (2001).
678 Cf., e.g., Gurtin (2003).
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as the plastically convected rate of G;679 that is,

• as the convected rate of G following the flow of dislocations through the lattice
as characterized by the tensor field Lp.

Then, by (107.16) and (107.17),

4
Gi j = εmrs F p

imF p
qs

∂Lp
jq

∂Xr
(107.18)

(where
4
Gi j denotes the ij-th component of

4
G) and using the identities680

F p
mr F p−1

bm = δbr , εmrs F p
imF p

qs F p
ar = εiaq (107.19)

and, since the body under consideration is a single crystal, by (107.18) and (107.19),
that

4
Gi j = εmrs F p

imF p
qs

∂Lp
jq

∂Xb
δbr

= εmrs F p
imF p

qs

∂Lp
jq

∂Xb
F p−1

ba F p
ar

= εmrs F p
imF p

qs F p
ar︸ ︷︷ ︸

εiaq

∂Lp
jq

∂Xb
F p−1

ba

= εiaq F p−1
ba

∂Lp
jq

∂Xb
;

thus, by (106.5)2,

4
Gi j = εiaq

∑

α

sαj mα
q F p−1

ba
∂να

∂Xb
, (107.20)

where the underlined term represents the component form of Fp−)∇να and, since
∇να = F)gradνα and F = FeFp, this term can equally well be expressed in terms of
Fe:

Fp−)∇να = Fe)gradνα

def= ∇#να. (107.21)

The relation (107.20) together with the definition (107.21) of ∇#να yields the central
result of this subsection:681

4
G =

∑

α

(∇#να× mα) ⊗ sα. (107.22)

The identity (107.21) asserts that Fp−)∇να , the material gradient of να pushed for-
ward from the reference space to the lattice, is equal to Fe)gradνα , the spatial

679 In view of (20.26), the plastically convected rate is the contravariant (i.e., Oldroyd) rate with L
replaced by Lp. Our use of the symbol 4 to denote the plastically convected rate should not cause
confusion because the contravariant rate is not used in the present context.

680 (107.19)2 follows from (2.84), since detFp = 1.
681 Cf. Cermelli & Gurtin (2001, eq. (11.11)) and Gurtin (2006, eq. (4.7)). The relation (107.22)

should be compared to its small-deformation counterpart (103.2).
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gradient of να pulled back from the observed space to the lattice; thus ∇#να might
be viewed as the gradient of να in the lattice.

EXERCISE

1. Establish the following identity for the plastically convected rate of G:

4
G = Fp ˙(Fp−1GFp−))Fp). (107.23)

107.4 Densities of Screw and Edge Dislocations

We emulate the discussion of dislocation densities in §103.1.
Since the vector ∇#να× mα is orthogonal to mα , it may be expanded in terms of

sα and the lattice vector

lα = mα× sα (107.24)

as follows:682

∇#να× mα = sα · (∇#να× mα)︸ ︷︷ ︸
lα ·∇#να

sα + lα · (∇#να× mα)︸ ︷︷ ︸
−sα ·∇#να

lα. (107.25)

Based on this expression we introduce screw and edge dislocation-densities ρα> and
ρα= defined formally as solutions of the differential equations

ρ̇α> = lα · ∇#να,

ρ̇α= = −sα · ∇#να,
(107.26)

subject to initial conditions at, say, t = 0.683 The dislocation densities ρα> and ρα=
therefore represent internal variables with evolution governed by (107.26).

In view of (107.25) and (107.29), the expression (107.22) reduces to an important
decomposition for the plastically convected rate of G:684

4
G =

∑

α

(ρ̇α> sα⊗ sα + ρ̇α= lα⊗ sα),

ρ̇α= = −sα · ∇#να, ρ̇α> = lα · ∇#να.

(107.27)

We view the tensor fields685

ρα> sα⊗ sα and ρα= lα⊗ sα (107.28)

as macroscopic distributions of screw and edge dislocations on slip system α with
densities ρα> and ρα= ; granted this view, (107.27)1 asserts that

• temporal changes in G — as characterized by its plastically convected rate
4
G —

may be decomposed into temporal changes in distributions of screw and edge
dislocations on the individual slip systems.

682 Cf. (107.21).
683 E.g., if the body is initially in a virgin state in the sense that F(X, 0) = Fp(X, 0) = 1, then we might

assume that ρα>(X, 0) = 0 and ρα= (X, 0) = 0.
684 Gurtin (2006, eq. (17.27)). Cf. (103.9).
685 Cf. the paragraph containing (103.8).
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By (107.21), the differential equations (107.26) for the screw and edge disloca-
tion densities can be expressed as

ρ̇α> = lα · Fp−)∇να = lα · Fe)gradνα,

ρ̇α= = −sα · Fp−)∇να = −sα · Fe)gradνα.
(107.29)

Consider the vector pairs defined by

lαR = Fp−1lα, sαR = Fp−1sα and l̄α = Felα, s̄α = Fesα ; (107.30)

the first pair represents the lattice vectors lα and sα pulled back to the reference
space, the second represents lα and sα pushed forward to the observed space; using
these pairs we can rewrite the differential equations (107.29) in the referential form

ρ̇α> = lαR · ∇να, ρ̇α= = −sαR · ∇να (107.31)

or in the equivalent spatial form

ρ̇α> = l̄α · gradνα, ρ̇α= = −s̄α · gradνα. (107.32)

Arguing as in the paragraph containing (103.10), we conclude that:

(i) lα = mα× sα and −sα = mα× lα are the respective glide directions for screw and
edge dislocations on α;

(ii) ρα> and ρα= characterize the pile-up of screw and edge dislocations on slip
plane α.

Since slip results from the flow of dislocations, the vector fields

qα>
def= −ναlα and qα=

def= ναsα (107.33)

represent respective fluxes of screw and edge dislocations. Using (107.30) these
fluxes may be pulled back to the reference space and they may also be pushed for-
ward to the observed space; the results are

qαR> = −ναlαR, qαR = = ναsαR, and q̄α> = −να l̄α, q̄α= = να s̄α. (107.34)

Thus, by (107.31), (107.32), and (107.34),

ρ̇α> = −DivqαR> − ναDiv lαR, ρ̇α= = −DivqαR = + ναDiv lαR,

ρ̇α> = −divq̄α> − ναdiv l̄α, ρ̇α= = −divq̄α= + ναdiv l̄α,

and introducing referential and spatial screw and edge supplies defined by

σαR> = −ναDiv lαR, σαR = = ναDivsαR,

σ̄ α> = −ναdiv l̄α, σ̄ α= = ναdiv s̄α,
(107.35)

we have the referential dislocation balances

ρ̇α> = −DivqαR> + σαR>,

ρ̇α= = −DivqαR = + σαR =,
(107.36)

and the equivalent spatial dislocation balances

ρ̇α> = −divq̄α> + σ̄ α> ,

ρ̇α= = −divq̄α= + σ̄ α= .
(107.37)
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107.5 Comparison of Small- and Large-Deformation Results
Concerning Dislocation Densities

If we compare the small-deformation equations686

Ġ =
∑

α

(
ρ̇α= lα⊗ sα + ρ̇α> sα⊗ sα

)
,

ρ̇α= = −sα · ∇γ̇ α, ρ̇α> = lα · ∇γ̇ α
(107.38)

to their large-deformation counterparts687

4
G =

∑

α

(ρ̇α> sα⊗ sα + ρ̇α= lα⊗ sα),

ρ̇α= = −sα · ∇#να, ρ̇α> = lα · ∇#να,

(107.39)

we note their strong similarity:688 the large-deformation equations (107.39) “map
to” the small-deformation equations (107.38) via the “transformations”

4
G → Ġ, να → γ̇ α, ∇ → ∇#,

or, equivalently — if in place of the density-rate equations (107.39)2,3, we use the
referential forms of these equations expressed in (107.31) — via the “transforma-
tions”

4
G → Ġ, να → γ̇ α, lαR → lα, sαR → sα.

Also interesting is a comparison of the dislocation balances in the small- and
large-deformation theories. The dislocation balances (103.14) under small deforma-
tions have no supply terms. In contrast, the referential and spatial balances (107.36)
and (107.37) exhibit the supply terms (107.35). In particular, the referential screw
and edge supplies σαR> and σαR= arise as a consequence of the distortion of the lattice as
characterized by the fields

Div lαR and DivsαR; (107.40)

thus, by (107.30)1,2, the supplies are functions of ∇Fp and would hence be most im-
portant in regions in which Fp suffers large spatial variations. Analogous assertions
apply to the spatial supplies (107.35)3,4.

Finally, as the slip-rates να approach zero, the equations (107.39) of the
large-deformation theory are asymptotic to the equations (107.38) of the small-
deformation theory.689

686 Cf. (103.9).
687 Cf. (107.27).
688 The extent of this similarity is impressive. In this regard we note that the validity of the large-

deformation relations (107.39) hinges on the requirement that the undistorted lattice be positioned
between the reference and observed spaces as shown in Figure 106.1. Cf. §91.2.

689 Gurtin (2006, §9).



108 Virtual-Power Formulation of the Standard
and Microscopic Force Balances

For a single-crystal, the kinematical quantities characterizing plastic flow are the
slip-rates

ν1, ν2, . . . , νN. (108.1)

The basic “rate-like” descriptors for a single-crystal undergoing large deformations
are therefore the velocity v, the elastic distortion-rate Le, and the slip rates (108.1),
with these fields constrained by (106.11).

As in §92, we assume that, at some arbitrarily chosen but fixed time, the fields
χ and Fe are known and

• we denote by Pt an arbitrary subregion of the deformed body at that time and by
n the outward unit normal on ∂Pt .

108.1 Internal and External Expenditures of Power

The formulation of the principle of virtual power for a single-crystal is based on a
balance between the external power W(Pt ) expended on Pt and the internal power
I(Pt ) expended within Pt . As before,690 to describe the internal power we replace
the classical stress power T : gradv by a more detailed reckoning that individually
characterizes

• the stretching and spinning of the underlying material structure as described by
the lattice distortion-rate Le; and

• dislocation-induced slip as described by the slip rates ν1, ν2, . . . νN

via

• an elastic-stress691 T power-conjugate to Le,

and, for each slip system α,

• a scalar internal microscopic force πα power-conjugate to να ; and
• a vector microscopic stress ξα power-conjugate to gradνα .

690 Cf. the paragraph containing (104.2).
691 In contrast to §92.1, we write the stress power associated with Le in the form T : Le, rather than

Se : Le, a change that is motivated by (92.23) and justified in the first paragraph of §108.3.

634
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We, therefore, write the internal power in the form

I(Pt ) =
∫

Pt

T : Le dv +
∑

α

∫

Pt

(πανα + ξα · gradνα) dv. (108.2)

Turning to the external power, we allow for the standard power expenditures
t(n) · v by surface tractions and b · v by (conventional and inertial) body forces.
Further, we expect that the gradient term ξα · gradνα should give rise to a traction
associated with the microscopic stress ξα — and we use the underlined term in the
identity

∫

Pt

ξα · gradνα dv =
∫

∂Pt

(ξα · n)να da −
∫

Pt

ναdivξα dv. (108.3)

Specifically, we assume that

• power is expended externally by a scalar microscopic traction Fα(n) power-
conjugate to να.

In addition, we allow for

• a (generally virtual) scalar external microscopic force bα power-conjugate to να

and therefore assume that the external power has the form

W(Pt ) =
∫

∂Pt

t(n) · v da +
∫

Pt

b · v dv +
∑

α

∫

∂Pt

Fα(n)να da +
∑

α

∫

Pt

bανα dv. (108.4)

Assume that, at some arbitrarily chosen time, the fields χ , Fe, and S1, S2, . . . , SN

are known, and consider the velocity v, the elastic distortion-rate Le, and the slip
rates ν1, ν2, . . . , νN as virtual velocities to be specified independently in a manner
consistent with (106.7); that is, denoting the virtual fields by ṽ, L̃e, and ν̃1, ν̃2, . . . , ν̃N,
we require that

grad ṽ = L̃e +
∑

α

ν̃α S̄α. (108.5)

If we define a (generalized) virtual velocity to be a list

V = (ṽ, L̃e, ν̃1, ν̃2, . . . , ν̃N) (108.6)

and write I(Pt ,V) and W(Pt ,V) for the corresponding internal and external expen-
ditures of virtual power, then the principle of virtual power is the requirement that
the virtual power balance

∫

∂Pt

t(n) · ṽ da +
∫

Pt

b · ṽ dv +
∑

α

∫

∂Pt

Fα(n) ν̃α da +
∑

α

∫

Pt

bανα dv

︸ ︷︷ ︸
W(Pt ,V)

=
∫

Pt

T : L̃e dv +
∑

α

∫

Pt

(παν̃α + ξα · grad ν̃α) dv

︸ ︷︷ ︸
I(Pt ,V)

(108.7)

be satisfied for any subregion Pt of the deformed body and any virtual velocity V .
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108.2 Consequences of Frame-Indifference

Arguing as in §92.2.1, we assume that under a change in frame the internal power
I(Pt ,V) is invariant, and that the virtual fields transform in a manner identical to
their nonvirtual counterparts. Then, (91.33) implies that the elastic distortion-rate
transforms according to

L̃e∗ = QL̃eQ) + !,

with Q the frame-rotation and ! the frame-spin. Further, for each α,

πα and ν̃α are invariant (108.8)

(as they are scalar fields), but because “grad ′′ represents the gradient in the de-
formed body, the transformation law for grad ν̃α has the form

grad∗ν̃α = Qgrad ν̃α.

Next, by (108.8), writing P∗
t and I∗(P∗

t ) for the region and the internal power in the
new frame, we see that

I∗(P∗
t ) =

∫

P∗
t

T∗ : L̃e∗ +
∑

α

∫

P∗
t

(παν̃α + ξα∗ · grad∗ν̃α) dv, (108.9)

where T∗ and ξα∗ are the stresses T and ξα in the new frame. Since P∗
t is Pt trans-

formed rigidly, we may replace the region of integration P∗
t in (108.9) by Pt . Thus,

the requirement that I∗(P∗
t ) = I(Pt ) implies that

∫

Pt

(
T : L̃e +

∑

α

ξα · grad ν̃α
)

dv =
∫

Pt

(
T∗ : L̃e∗ +

∑

α

ξα∗ · grad∗ν̃α
)

dv

=
∫

Pt

(
T∗ : (QL̃eQ) + !) +

∑

α

ξα∗ · (Qgrad ν̃α)
)

dv,

and, hence, that, since Pt is arbitrary,

T : L̃e +
∑

α

ξα · grad ν̃α = T∗ : (QL̃eQ) + !) +
∑

α

ξα∗ · (Qgrad ν̃α). (108.10)

Since the virtual slip-rates ν̃α are arbitrary, we may set them to zero; thus

T : L̃e = T∗ : (QL̃eQ) + !),

and, since the orthogonal tensor Q, and the skew tensor ! are arbitrary, it follows
that

T∗ : ! = 0 and (T − Q)T∗Q) : L̃e = 0;

but L̃e is also arbitrary; therefore T∗ and, hence, T are symmetric and

T∗ = QTQ).

Thus,

T is symmetric and frame-indifferent (108.11)

and (108.10) becomes
∑

α

ξα · grad ν̃α =
∑

α

ξα∗ · (Qgrad ν̃α)

=
∑

α

(Q)ξα∗)· grad ν̃α. (108.12)
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Assume that ν̃α is the sole nonzero virtual slip-rate, let φ be an arbitrary spatial
vector, and let

ν̃α(x) = φ · (x − o);

then grad ν̃α = φ and (108.12) implies that

(ξα− Q)ξα∗) · φ = 0.

Thus, since both φ and α are arbitrary,

ξα∗ = Qξα,

and

ξα is frame-indifferent for all α. (108.13)

108.3 Macroscopic and Microscopic Force Balances

Consider a virtual velocity V for which ṽ is arbitrary, L̃e = grad ṽ, and ν̃α = 0 for
each α, so that the constraint (108.5) is satisfied. Then, (108.7) reduces to (92.19)
(with Se replaced by T) and we conclude from the ensuing argument (which leads to
(92.21) and (92.22)) that T satisfies the local force-balance

divT + b = 0 (108.14)

and traction condition

t(n) = Tn

and, hence, may be viewed as the Cauchy stress. Further, granted that we are work-
ing in an inertial frame, so that (92.6) is satisfied, (108.14) reduces to the balance law
for linear momentum:

ρv̇ = divT + b0, (108.15)

with b0 the conventional body force.
To derive the microscopic force balances we introduce, for each slip system α,

the resolved shear τα defined by

τα
def= S̄α: T

= s̄α · Tm̄α, (108.16)

so that τα represents the Cauchy stress T resolved on the deformed αth slip system.
Assume that the macroscopic virtual velocity vanishes,

ṽ ≡ 0,

so that, by (108.5),

L̃e = −
∑

α

ν̃α S̄α

with ν̃1, ν̃2, . . . , ν̃N arbitrary. Thus, by (108.16),

T : L̃e = −
∑

α

ν̃α T : Sα

= −
∑

α

ταν̃α,



638 Virtual-Power Formulation of the Standard and Microscopic Force Balances

and (108.7) reduces to the microscopic virtual-power relation
∑

α

∫

∂Pt

Fα(n)ν̃α da +
∑

α

∫

Pt

bανα dv =
∑

α

∫

Pt

[(πα − τα)ν̃α + ξα · grad ν̃α] dv.

(108.17)
Appealing to the virtual counterpart of the identity (108.3), we thus find that
∑

α

( ∫

∂Pt

(Fα(n) − ξα · n)ν̃α da +
∫

Pt

(divξα + τα − πα + bα)ν̃α dv

)
= 0. (108.18)

Since the virtual slip rates ν̃ are arbitrary, (108.18) must be satisfied for all virtual
slip rates and all Pt ; thus a vectorial version of fundamental lemma of the calculus
of variations (page 167) yields the microscopic force balance692

divξα + τα − πα = −bα (108.19)

and the microscopic traction condition

Fα(n) = ξα · n

for each slip system α.

692 Gurtin (2000b, eqt. (48); 2002, eqt. (5.14)).



109 Free-Energy Imbalance

Arguing as in §93, we consider an arbitrary spatial region Pt convecting with the
body, and we let ϕ denote the free energy and δ ≥ 0 the dissipation, with ϕ measured
per unit volume in the lattice, but with δ measured per unit volume in the observed
space.693 Then, by (15.6) and since J = detFe,

∫

Pt

ϕ J −1 dv and
∫

Pt

δ dv,

respectively, represent the free energy of — and the dissipation within — Pt . The
free-energy imbalance for Pt is then the assertion that694

˙∫

Pt

ϕ J −1 dv − W(Pt ) = −
∫

Pt

δ dv ≤ 0. (109.1)

Therefore, since, by (108.7), W(Pt ) = I(Pt ), (108.7) implies that

·∫

Pt

ϕ J −1 dv −
∫

Pt

T · Le dv −
∑

α

∫

Pt

(πανα + ξα · grad να) dv ≤ 0. (109.2)

Further, since Pt convects with the body, (93.3) is satisfied; viz.

˙∫

Pt

ϕ J −1 dv =
∫

Pt

ϕ̇ J −1 dv. (109.3)

Thus,
∫

Pt

(
J −1 ϕ̇ − T : Le dv −

∑

α

(πανα + ξα · gradνα)
)

dv ≤ 0

and, since Pt was arbitrarily chosen,

J −1ϕ̇ − T : Le −
∑

α

(ξα · grad να + πανα) = −δ ≤ 0. (109.4)

693 In contrast to §93, where δ is measured per unit volume in the structural space.
694 Cf. (93.1).
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640 Free-Energy Imbalance

The term T : Le, which represents the elastic stress-power, is most conveniently
expressed in terms of the elastic strain-rate Ėe via (94.1) and (94.2); viz.

T : Le = J −1 Te : Ėe (109.5)

with

Te = J Fe−1TFe−). (109.6)

As noted following (94.2), Te is a second Piola stress computed using Fe in place of
F. The definition (109.6) allows us to rewrite the imbalance (109.4) in the form

J −1 ϕ̇ − J −1 Te: Ėe −
∑

α

(ξα · gradνα + πανα) = −δ ≤ 0. (109.7)



110 Conventional Theory

Within the present framework the conventional theory is based on the assumption
that

ξα ≡ 0 for all α,

so that the microscopic force balance (108.19) and the free-energy imbalance (109.7)
become

τα − πα = −bα (110.1)

(for all α) and

J −1 ϕ̇ − J −1 Te: Ėe −
∑

α

πανα = −δ ≤ 0. (110.2)

110.1 Constitutive Relations

For convenience we introduce lists

8ν def= (ν1, ν2, . . . , νN) and 8S def= (S1, S2, . . . , SN) (110.3)

of slip-rates and hardening variables, with

Sα > 0 for each α.

As in §104.3, we neglect defect energy and restrict attention to constitutive as-
sumptions that separate plastic and elastic response. Hence, guided by (110.2), we
characterize elastic response by the standard equations

ϕ = ϕ̂(Ee),

Te = T̂e(Ee),
(110.4)

and plastic response by relations that, for each slip system α, consist of a constitu-
tive equation for the internal microscopic force πα supplemented by a hardening
equation

πα = π̄α(8ν, 8S),

Ṡα = hα(8ν, 8S ).
(110.5)

Arguing as in the steps leading to (‡) on page 546, we see that Ee and Te are
frame-indifferent and — because they are scalar fields — να , πα , and Sα are invari-
ant. Thus,

• the constitutive equations (110.4) and (110.5) are frame-indifferent.
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642 Conventional Theory

It eases notation if we introduce a list

8π def= (π1,π2, . . . ,πN) (110.6)

of internal microscopic forces. By a constitutive process, we mean a pair (χ , 8ν ) of
fields χ and 8ν — with χ a motion and 8ν a list of slip rates — together with fields
Ee, 8S, ϕ, Te, and 8π , where

(i) Ee is given by

Ee = 1
2 (Fe)Fe − 1), Fe = FFp−1, F = ∇χ ,

and where Fp is any solution of the differential equation695

Ḟp =
(∑

α

να sα⊗ mα

)
Fp, (110.7)

with detFp ≡ 1;
(ii) 8S is any solution of the system (110.5)2 of hardening equations;

(iii) ϕ, Te, and 8π are determined by the fields Ee, 8ν, and 8S through the constitutive
equations (110.4) and (110.5)1.

Given a constitutive process, (109.6) determines the stress T, and the standard and
microscopic force balances (108.15) and (110.1) provide explicit relations

b0 = ρv̇ − divT and bα = πα − τα, (110.8)

α = 1, 2, . . . , N, for the conventional body force b0 and the external microscopic
forces bα needed to support the process. As before696 we assume that these forces
are arbitrarily assignable and refer to a constitutive process as physically attain-
able if

bα = 0 for all α, (110.9)

so that external microscopic power expenditures are not needed to support the pro-
cess.697

To determine restrictions imposed by the free-energy imbalance, we use the
constitutive equations (110.4) and (110.5)1 to write the free-energy imbalance
(109.7) in the form

δ = J −1
(

T̂e(Ee) − ∂ϕ̂(Ee)
∂Ee

)
: Ėe +

∑

α

π̄α(8ν, 8S)να ≥ 0. (110.10)

Our derivation of thermodynamic restrictions that ensue from this inequality is
based on the following two assertions:698

(I) It is possible to find a constitutive process such that

ν1 ≡ ν2 ≡ · · · ≡ νN ≡ 0 (110.11)

and such that Ee and Ėe have arbitrarily prescribed values at some point and
time.

(II) It is possible to find a constitutive process such that

Fe ≡ 1 (110.12)

695 Cf. the remark on page 558.
696 E.g., as in the paragraph containing (44.6).
697 Cf. the sentence containing (86.5).
698 Which are direct counterparts of (I) and (II) on page 558.



110.2 Simplified Constitutive Theory 643

and such that the slip rates and hardening variables have arbitrarily prescribed
values at some point and time.

Then, arguing as in the steps leading to (95.9) and (95.10) — but using (I) and (II)
above — we see that (95.9) remains valid, while (95.10) is replaced by the require-
ment that

δ =
∑

α

π̄α(8ν, 8S )να ≥ 0. (110.13)

Conversely, granted (95.10) and (110.13), the free-energy imbalance (110.10) is
satisfied in all constitutive processes. We therefore have the following result:

Thermodynamic Restrictions Conditions both necessary and sufficient that each
constitutive process satisfies the free-energy imbalance are that

(i) the free energy determines the elastic stress through the stress relation

T̂e(Ee) = ∂ϕ̂(Ee)
∂Ee ; (110.14)

(ii) the internal microscopic stresses must satisfy the reduced dissipation inequality
(110.13).

We assume, henceforth, that the internal microscopic stresses are strictly dissipative
in the sense that

∑

α

π̄α(8ν, 8S )να > 0 (110.15)

whenever not all slip rates vanish.

110.2 Simplified Constitutive Theory

We restrict attention to a quadratic free energy and linear stress-strain relation699

and therefore begin with elastic constitutive equations

ϕ = 1
2 Ee : CEe,

Te = CEe.
(110.16)

We assume that the elasticity tensor C has the properties listed on page 300.
Consider next the constitutive equations (110.5) introduced to describe flow.

These equations and the reduced dissipation inequality (110.13) are of the same
form as the constitutive equations (104.31) and dissipation inequality (104.33) of
the small deformation theory, the sole difference being that 8ν and να in that theory
are given by

8ν = (γ̇ 1, γ̇ 2, . . . , γ̇ N) and να = γ̇ α. (110.17)

Further, by (110.17) the constitutive assumptions and analysis of §104.5 when ap-
plied here starting from (110.5) result in the relations700

πα = Sαg(|να|) sgnνα,

Ṡα =
∑

β

hαβ(8S )|νβ |,
(110.18)

699 Cf. the discussion following (95.27).
700 The specific hardening moduli specified in (104.65) and (104.67) are also used within the present

context of large deformations.
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to be satisfied for each slip system α. Here g is a rate-sensitivity function consistent
with

g(0) = 0, g(ν) > 0 for ν > 0. (110.19)

If, as in §104.7, we consider hardening moduli of the form (104.65), with h ≥ 0 a self-
hardening function and q > 0 an interaction constant, then the hardening equations
(110.18)2 take the form (104.66); viz.

Ṡα =
∑

β

[χαβ + q(1 − χαβ)]h(Sβ)|νβ |. (110.20)

If we restrict attention to constitutive processes that are physically attainable,
then (110.8)2 with bα ≡ 0 implies that τα = πα for all α; (110.18)1, therefore, yields
a relation

τα = Sαg(|να|) (110.21)

for the resolved shear stress. Finally, by (110.17), the discussion from (104.53) to
(104.68) with γ̇ α replaced by να holds equally well here and we are led to the consti-
tutive theory summarized in the next section.

The constitutive equations described above need to be accompanied by con-
comitant initial conditions. Typical initial conditions presume that the body is ini-
tially (at time t = 0, say) in a virgin state in the sense that

F(X, 0) = Fp(X, 0) = 1, Sα(X, 0) = S0, (110.22)

with S0 > 0 the initial slip resistance.

110.3 Summary of Basic Equations

The constitutive equations that characterize a single-crystal undergoing large defor-
mations consist of:

(i) the Kröner decomposition of the deformation gradient F,

F = FeFp, detFp = 1, (110.23)

in which Fe and Fp are the elastic and plastic distortions;
(ii) the elastic stress-strain relation

Te = CEe, (110.24)

in which

Ee = 1
2 (Fe)Fe − 1) (110.25)

is the elastic strain, Te is given by

Te = J Fe−1TFe−), (110.26)

with T the Cauchy stress, and the elasticity tensor C is assumed to have the
properties listed on page 300;

(iii) a differential equation

Ḟp = LpFp with Lp =
N∑

α=1

να sα⊗ mα (110.27)

that describes the evolution of the plastic distortion Fp, where sα and mα , with

sα · mα = 0, |sα| = |mα| = 1, (110.28)
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denote the slip direction and slip plane normal for slip system α, and where να

represents the corresponding slip rate;
(iv) the (inverted) constitutive relation701

να = f
( |τα|

Sα

)
sgnτα, (110.29)

where τα , defined by

τα = s̄α · Tm̄α,

s̄α = Fesα, m̄α = Fe−)mα,
(110.30)

represents the Cauchy stress T resolved on the deformed αth slip system,702

Sα > 0 represents the flow resistance on α, and f is an inverted rate-sensitivity
function consistent with (99.5) and (104.57); the special case of a power-law
rate-dependency corresponds to

να = d0

( |τα|
Sα

)1
m

sgnτα, (110.31)

with d0 > 0 a reference slip rate and m > 0 a rate-sensitivity parameter;
(v) the hardening equations

Ṡα =
∑

β

[χαβ + q(1 − χαβ)]h(Sβ)|νβ | (110.32)

with h( ·) ≥ 0 a self-hardening function and q > 0 an interaction constant.

701 Cf. Footnote 622.
702 s̄α and m̄α represent the slip direction and the slip plane normal pushed forward to the observed

space.



111 Taylor’s Model of Polycrystal

Anisotropy in the plastic response of polycrystalline metals undergoing large defor-
mations is most often a consequence of reorientation of the deformed lattices of the
individual grains, a process generally referred to as crystallographic texturing. In this
section, we discuss a well-known theory of crystallographic texturing.703 This theory,
which is based on ideas of Taylor (1938), has, as central ingredients

(i) a theory for single crystals undergoing large deformations;
(ii) a method of homogenizing the response of the individual material points of a

polycrystal.

111.1 Kinematics of a Taylor Polycrystal

A classical homogenization method for high-symmetry polycrystals704 posits a pre-
scribed set T of reference grains, labelled

g = 1, 2, . . . , G, (111.1)

such that

(T1) the complete set T of grains is assumed to be active at each material point X
of the polycrystal;

(T2) all grains in T share the (macroscopic) deformation gradient F at X;
(T3) for each grain g, Qg , an orthogonal tensor, represents the misorientation of g

relative to, say, grain 1 (so that Q1 = 1).

The central idea underlying these abstract requirements is that, although the specific
granular structure (grain boundaries, junctions, etc.) is not visible at the macroscopic
level, we can account for microscopic elastic and plastic distortions of each grain g
as chacterized by elastic and plastic distortion tensors Fe

g and Fp
g . A consequence of

(T2) is then that Fe
g and Fp

g are related to the deformation gradient F through the
Kröner decompositions

F = Fe
gFp

g for each grain g, (111.2)

703 Cf., e.g., Asaro & Needleman (1985), Anand, Balasubramanian & Kothari (1997), Dawson &
Marin (1998), Miehe, Schroder & Schotte (1999), and the references therein. As is clear from
these and related references, the theory can predict macroscopic anisotropic stress-strain response,
shape changes, and the evolution of crystallographic texture under complex deformations.

704 E.g., fcc and bcc polycrystals.
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111.1 Kinematics of a Taylor Polycrystal 647

or, less succintly,

F = Fe
1Fp

1 = Fe
2Fp

2 = · · · = Fe
GFp

G.

As in (106.2), we assume that

detFp
g = 1 for all grains g. (111.3)

Thus, and what is most important, each grain g is equipped with its peculiar Kröner
decomposition and lattice. In this regard, Figure 106.1 would apply for each grain
g with Fe and Fp replaced by Fe

g and Fp
g , and with “lattice” replaced by “lattice for

grain g.”
Slip systems are as defined in the paragraphs containing (102.4) and (106.4); but

within the present context of Taylor polycrystals each grain g is associated with slip
systems α = 1, 2, . . . , N. Thus, for each grain g and slip system α the slip direction
sαg and slip-plane normal mα

g are constant lattice vectors (in the undistorted lattice
for grain g) with

sαg · mα
g = 0, |sαg | = |mα

g | = 1; (111.4)

and with

Sαg = sαg ⊗ mα
g (111.5)

the Schmid tensor for slip system α in grain g. Then, by (T3), the Schmid tensors of
any grain g are related to those of grain 1 via the relations

Sαg = QgSα1 Q)
g (111.6)

or, equivalently,

sαg = Qgsα1 , mα
g = Qgmα

1 .

Further, fixing attention on a given grain g, we let

S̄αg
def= Fe

gSαg Fe−1
g ; (111.7)

so that

s̄αg = Fe
gsαg and m̄α

g = Fe−)
g mα

g . (111.8)

Thus,

S̄αg = s̄αg ⊗ m̄α
g . (111.9)

The fields s̄αg and m̄α
g represent the slip direction sαg and the slip-plane normal mα

g
pushed forward (from the lattice for g) to the observed space (deformed body), sαg
as a tangent vector, mα

g as a normal.705

Remark. Consider a given polycrystal and assume that the Schmid tensors Sαg (as
they appear in the undistorted lattices of the individual grains) are distributed ran-
domly with respect to the grains g = 1, 2, . . . , G. Assume that the polycrystal is elas-
tically undistorted at time t = 0 in the sense that

Fe
g(X, 0) = 1 for all grains g and all X.

Then, by (111.7),

S̄αg (X, 0) ≡ Sαg for all grains g and all X. (111.10)

705 Cf. the paragraph containing (106.8).
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Thus, initially, the observed (deformed) crystal is essentially isotropic. On the other
hand, as the deformation progresses the deformed Schmid tensors are given by

S̄αg (X, t) = Fe
g(X, t)Sαg Fe−1

g (X, t) for all grains g and all X. (111.11)

Variations — with X — of the (deformed) Schmid tensors

S̄α1 (X, t), S̄α2 (X, t), . . . , S̄αG(X, t)

represent an example of crystallographic texturing at time t .

Given any grain g, the elastic and plastic rotations, the right and left stretch
tensors, and the elastic and plastic distortion-rate tensors and corresponding spin
and stretching tensors are as defined in §91, but now these fields depend on the
grain g in question. Here, we recall only the relations (91.19) and (91.21) for the
elastic strain and its rate, and the relations (91.7) and (91.8) for the distortion-rate
tensors; viz.

Ee
g = 1

2 (Fe)
g Fe

g − 1), Ėe
g = sym (Fe)

g Ḟe
g) (111.12)

and

Le
g = Ḟe

gFe−1
g , Lp

g = Ḟp
g Fp−1

g ,

L = Le
g + Fe

gLp
g Fe−1

g

(111.13)

for each grain g. An analog of the single-crystal hypothesis (106.5) then requires
that Lp

g be governed by slip rates ναg on the individual slip systems of the individual
grains g via the relation

Lp
g =

∑

α

ναg Sαg . (111.14)

Then, by (106.3)3,

L = Le
g +

∑

α

να
(
Fe

gSαFe−1
g

)
for each grain g, (111.15)

and, since L = gradv, we may conclude from (111.9) that

gradv = Le
g +

∑

α

ναg S̄αg for each grain g. (111.16)

111.2 Principle of Virtual Power

As in §108, which we follow, we assume that, at some arbitrarily chosen but fixed
time the fields χ and Fe

1, Fe
2, . . . , Fe

G are known, and we denote by Pt an arbitrary
subregion of the deformed body at that time, and by n the outward unit normal on
∂Pt .

For each grain g, we allow for power expended internally by

• an elastic-stress Se
g power-conjugate to Le

g ; and
• a scalar internal microscopic force παg , for each slip system α, power-conjugate

to ναg .
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Thus, granted the external power is conventional,706 we write the internal and ex-
ternal power-expenditures I(Pt ) and W(Pt ) in the form

I(Pt ) =
∫

Pt

∑

g

Se
g : Le

g dv +
∫

Pt

∑

g,α

παg ν
α
g dv,

W(Pt ) =
∫

∂Pt

t(n) · v da +
∫

Pt

b · v dv.

(111.17)

The virtual counterpart of the constraint (111.16) is

grad ṽ = L̃e
g +

∑

α

ν̃αg S̄αg . (111.18)

Thus, if we define a (generalized) virtual velocity to be a list

V =
(
ṽ, L̃e

g, ν̃
α
g

∣∣ g = 1, 2, . . . , G; α = 1, 2, . . . , N
)
, (111.19)

then the principle of virtual power is the requirement that, given any Pt ,
∫

Pt

t(n) · ṽ da +
∫

Pt

b · ṽ dv

︸ ︷︷ ︸
W(Pt ,V)

=
∫

Pt

∑

g

Se
g · L̃e

g dv +
∫

Pt

∑

g,α

παg ν̃
α
g dv

︸ ︷︷ ︸
I(Pt ,V)

(111.20)

for all virtual velocities V . A direct analog of the argument leading to (108.11) then
yields the conclusion that, for each grain g,

Se
g is symmetric and frame-indifferent. (111.21)

With a view toward deriving the macroscopic force balance, we define a
macroscopic virtual velocity V as follows: ṽ is chosen arbitrarily; L̃e

g for each g is
defined by

L̃e
g = grad ṽ; (111.22)

the slip-rates are assumed to vanish,

ν̃αg = 0 (111.23)

for all g and α. The virtual velocity V defined in this manner is consistent with the
constraint (111.18) and, by (111.22),

∑

g

Se
g : L̃e

g =
(∑

g

Se
g

)
: grad ṽ

and (111.20) reduces to
∫

Pt

t(n) · ṽ da +
∫

Pt

b · ṽ dv =
∫

Pt

(∑

g

Se
g

)
: grad ṽ dv. (111.24)

Thus, if we let

T def=
∑

g

Se
g, (111.25)

then (111.24) reduces to (92.19) (with Se replaced by T) and we conclude from the
ensuing argument (which leads to (92.21) and (92.22)) that T satisfies the (standard)

706 For convenience, we do not allow for a scalar external microscopic forces bαg .
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local force balance

divT + b = 0 (111.26)

and traction condition

t(n) = Tn

and hence should be viewed as the Cauchy stress. The conclusion that

• the Cauchy stress T is the sum of the elastic stresses Se
g in the individual grains g

is a central result of the Taylor model.
We turn next to the derivation of the microscopic force balance. The resolved

shear stress ταg within any grain g is defined by

ταg = S̄αg: Se
g

= s̄α · Se
gm̄α, (111.27)

and hence represents the elastic-stress Se
g resolved on the deformed α-th slip system

of grain g.
Consider a microscopic virtual velocity V ; that is, a V whose corresponding

macroscopic velocity vanishes,

ṽ ≡ 0. (111.28)

For such a V , (111.20) implies that
∫

Pt

∑

g

Se
g : L̃e

g dv +
∫

Pt

∑

g,α

παg ν̃
α
g dv = 0,

and, since Pt is arbitrary,
∑

g

Se
g : L̃e

g +
∑

g,α

παg ν̃
α
g = 0. (111.29)

Next, the constraint (111.18) requires that

L̃e
g = −

∑

α

ν̃αg S̄αg for all grains g,

with ν̃1, ν̃2, . . . ν̃N arbitrary. Thus,
∑

g

Se
g : Le

g = −
∑

g,α

ταg ν̃
α
g

and, by (111.29),
∑

g,α

(παg − ταg )ν̃αg = 0. (111.30)

Since (111.30) is to be satisfied for all virtual slip-rates ν̃αg , we must have the micro-
scopic force balance

παg − ταg = 0 (111.31)

for all grains g and slip systems α.

EXERCISE

1. Give a detailed verification of (111.21).
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111.3 Free-Energy Imbalance

Consider an arbitrary spatial region Pt convecting with the body, and let ϕ denote
the free energy measured per unit volume in the lattice. Then, arguing as in §93, we
are led to the free-energy imbalance707

˙∫

Pt

ϕ J −1 dv − W(Pt ) ≤ 0, (111.32)

and, since W(Pt ) = I(Pt ), (111.17)1 and (111.32) imply that

˙∫

Pt

ϕ J −1 dv −
∫

Pt

∑

g

Se
g : Le

g dv −
∫

Pt

∑

g,α

παg ν
α
g dv ≤ 0, (111.33)

and, hence, that

J −1 ϕ̇ −
∑

g

Se
g : Le

g −
∑

g,α

παg ν
α
g ≤ 0. (111.34)

The term Se
g : Le

g , which represents the elastic stress-power, is most conveniently
expressed in terms of the elastic strain-rate Ėe

g via (94.1) and (94.2); viz.

Se
g : Le

g = J −1 Te
g : Ėe

g (111.35)

with

Te
g = J Fe−1

g Se
gFe−)

g ; (111.36)

Te
g represents a second Piola stress computed using Fe

g in place of F. The definition
(111.36) allows us to rewrite the imbalance (111.34) in the form

J −1ϕ̇ − J −1
∑

g

Te
g: Ėe

g −
∑

g,α

παg ν
α
g ≤ 0. (111.37)

111.4 Constitutive Relations

As constitutive relations we take counterparts of the relations summarized in §110.3.
The free energy is given by

ϕ = 1
2

∑

g

Ee
g : CgEe

g, (111.38)

and the corresponding elastic stress-strain relations for each grain g are

Se
g = CgEe

g. (111.39)

Here, Cg is the elastic tensor for grain g.
We consider dissipative constitutive equations that when expressed with slip-

rates as dependent variables have the power-law form

ναg = d0

( |ταg |
Sα

)1
m

sgnταg (111.40)

for each grain g and slip system α. Here d0 > 0 is a reference slip rate, m > 0 is a
rate-sensitivity parameter, and the slip resistances Sαg are presumed to satisfy the

707 Bear in mind (111.3). Here J = detF.
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hardening equations

Ṡαg =
∑

β

[
χαβ + q(1 − χαβg )

]
h(Sβg )|νβg |, (111.41)

with h ≥ 0 a self-hardening function and q > 0 an interaction constant.

EXERCISE

1. Show that, granted the microscopic force balance (111.31), the constitutive rela-
tions (111.38)–(111.41) are consistent with the free-energy imbalance (111.37).



112 Single-Crystal Plasticity at Small Length
Scales: A Large-Deformation Gradient
Theory

The microscopic force balance and the free-energy imbalance appropriate to a gra-
dient theory are (108.19) and (109.7); to complete the gradient theory we have only
to develop appropriate constitutive equations, a project simplified by the presence
of an analogous discussion, appropriate to small deformations, in §§105.2–105.4.
Here, we refrain from continually referring back to these sections, instead — be-
cause some portions of the analysis specifically related to large deformations are
delicate — we present a complete discussion.708

112.1 Energetic Constitutive Equations. Peach–Koehler Forces

Writing

8ρ =
(
ρ1

= ,ρ2
= , . . . ,ρN

= ,ρ1
> ,ρ2

> , . . . ,ρN
>

)
(112.1)

for the list of dislocation densities and restricting attention to situations in which the
elastic strains are small, we assume that the free energy is given by a standard elastic
strain-energy augmented by a defect energy 2 p(8ρ ):

ϕ = 1
2 Ee: CEe + 2 p(8ρ ), (112.2)

with elasticity tensor C symmetric and positive-definite. We assume further that the
stress Te is given by the standard stress-strain relation

Te = CEe; (112.3)

then

1
2

˙Ee: CEe = Te : Ėe (112.4)

and the local free-energy imbalance (109.7) becomes

J −1
·

2 p(8ρ ) −
∑

α

(ξα · gradνα + πανα) ≤ 0. (112.5)

Central to the theory are the energetic defect forces defined by

f α= (8ρ ) = J −1 ∂2
p(8ρ )
∂ρα=

and f α> (8ρ ) = J −1 ∂2
p(8ρ )
∂ρα>

. (112.6)

708 This section follows Gurtin (2008b).
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By (107.32),

J −1
·

2 p(8ρ ) =
∑

α

(
f α= ρ̇

α
= + f α> ρ̇

α
>

)
(112.7)

=
∑

α

(
− f α= s̄α + f α> l̄α

)
· gradνα (112.8)

with s̄α and l̄α , defined in (107.30), the lattice vectors sα and lα pushed forward to the
observed space. We refer to

ξαen
def= − f α= (8ρ ) s̄α + f α> (8ρ ) l̄α (112.9)

as the energetic microscopic stress for slip system α. Note that ξαen is tangent to slip
plane #α — because sα and lα lie on that plane.

Recall the relation709

lα = mα× sα.

With a view toward showing that the energetic microscopic stress ξαen may be viewed
as a combination of distributed Peach–Koehler forces, we use (107.30) to pull ξαen
from the deformed body back to the lattice:

ξα#
en

def= Fe−1ξαen

= − f α= sα + f α> lα (112.10)

= f α= (mα× lα) + f α> (mα× sα). (112.11)

Arguing as in the paragraph containing (105.32) we therefore see that the micro-
scopic forces f α= (mα× lα) and f α> (mα× sα) have the form (105.30), an observation
that would seem to justify the following physical interpretations:710

f α= (mα× lα)︸ ︷︷ ︸
distributed Peach–Koehler
force on edge dislocations

and f α> (mα× sα).
︸ ︷︷ ︸

distributed Peach–Koehler
force on screw dislocations

(112.12)

The defect forces f α= and f α> therefore represent densities of distributed Peach–
Koehler forces and based on this we view the energetic microscopic stresses ξα#

en as
counterparts of Peach–Koehler forces.

112.2 Dissipative Constitutive Equations that Account for Slip-Rate
Gradients

By (112.8) and (112.9),

J −1
·

2 p(8ρ ) =
∑

α

ξαen · gradνα (112.13)

and (112.5) becomes
∑

α

[(ξα− ξαen) · gradνα + πανα] ≥ 0. (112.14)

Thus if we define dissipative microscopic stresses ξαdis through the relations

ξαdis = ξα − ξαen, (112.15)

then (112.14) takes the form
∑

α

(πανα + ξαdis · gradνα) ≥ 0. (112.16)

709 Cf. (103.4).
710 Cf. Footnote 639.
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Next, let ∇α denote the tangential gradient of ϕ on the deformed αth slip plane,
so that, given any scalar field ϕ,

∇αϕ = gradϕ − (m̄α · gradϕ)m̄α. (112.17)

Underlying the present theory is the tacit assumption that

• the microscopic stresses ξαdis characterize dissipative microscopic forces associ-
ated
with the motion of dislocations on #α .

Because such dislocations migrate tangentially on #α , we require that ξαdis be tan-
gential to the deformed α-th slip plane.711 Granted this, we may, without loss in
generality, replace the slip rate gradients gradνα in (112.16) by the corresponding
tangential gradients ∇ανα ; the result is a reduced dissipation inequality

∑

α

(πανα + ξαdis · ∇ανα) ≥ 0 (112.18)

basic to our discussion of dissipative constitutive relations.
Our next step is to lay down dissipative constitutive relations for πα and ξαdis. In

deciding on a constitutive relation for πα we are guided by the relation (110.18) and
by the success of the conventional theory. Specifically, we consider a constitutive
relation for πα that differs from (110.18) only through the replacement of |να| by an
effective flow rate

dα def=
√

|να|2 + 72|∇ανα|2, (112.19)

with 7 a dissipative length-scale. This replacement leads us to introduce a (dimen-
sionless) rate-sensitivity function712 g such that

g(0) = 0, g(dα) > 0 for dα '= 0,

together with a constitutive equation for πα of a form

πα = Sαg(dα)
να

dα
(112.20)

that bears comparison with the conventional relation (110.18).
We next lay down constitutive relations for the dissipative microscopic stresses

ξαdis. Here, the reduced dissipation inequality (112.18) and a desire for mathematical
simplicity suggest a constitutive equation of the form (112.20), but with να replaced
by 72∇ανα ; viz.713

ξαdis = Sαg(dα)72 ∇ανα

dα
. (112.21)

This relation, (112.9), and (112.15) combine to form a constitutive equation for the
microscopic stress ξα:

ξα = − f α= s̄α + f α> l̄α + Sαg(dα)72 ∇ανα

dα
. (112.22)

Since

gradνα · ∇ανα = |∇ανα|2, (112.23)

711 Some (unrelated) remarks: (i) by (108.2) and (112.21), ξα and ξαdis are vectors in the observed space
(deformed configuration); (ii) note that (112.9) renders the energetic microstress ξαen tangential to
the deformed α-th slip plane.

712 For example, one might take g(dα) = (dα/d0)m.
713 Cf. Footnote 642.
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the dissipation (112.18) has a simple form

δ =
∑

α

Sαg(dα)dα (112.24)

that is strictly analogous to the conventional dissipation
∑

α

πανα =
∑

α

Sαg(|να|)|να|

associated with (110.18).
Finally, we assume that the slip resistances Sα> 0, α = 1, 2, . . . , N, are consis-

tent with hardening equations714

Ṡα =
∑

α

hαβ
(8S
)
dβ,

hαβ
(8S
)

= χαβ h(Sβ) + (1 − χαβ) qh(Sβ).
(112.25)

112.3 Viscoplastic Flow Rule

The decomposition ξα = ξαen + ξαdis allows us to write the microscopic force-
balance715 (108.19) in the form

τα + div ξαen = πα − div ξαdis, (112.26)

where we have written the term divξαen on the left, since, being energetic, its negative
represents a backstress. When augmented by the constitutive equations (112.9) and
(112.21) the balance (112.26) becomes the flow rule for slip system α.716

In §105.5 — which was appropriate to small deformations — the counterpart,
(105.55), of this flow rule is expressed in terms of second slip gradients. This is not
possible within the framework of large deformations717

τα − div( f α= (8ρ ) s̄α − f α> (8ρ ) l̄α)
︸ ︷︷ ︸

energetic backstress

= Sαg(dα)
να

dα
− 72 div

(
Sαg(dα)

∇ανα

dα
)

︸ ︷︷ ︸
dissipative-hardening

.

(112.27)

By (107.32) the fields Sα , ρα= , and ρα> should be viewed as internal-state variables
with evolution governed by the differential equations

ρ̇α> = l̄α · gradνα, ρ̇α= = −s̄α · gradνα,

Ṡα =
∑

β

hαβ
(8S
)
dβ . (112.28)

As such, these equations should be supplemented by initial conditions for Sα , ρα= ,
and ρα> . If we assume that the body is initially in a virgin state, then appropriate
initial conditions would be

Sα(x, 0) = S0 and ρα= (x, 0) = ρα> (x, 0) = 0 (112.29)

for each slip system α, with S0 > 0, a constant, the initial slip resistance.718

714 Cf. (104.65).
715 For physically attainable processes bα = 0.
716 Cf. Gurtin (2000b, eq. (164a)), which has no backstress, and Gurtin (2002, eq. (7.18)) in which

2 = 2 p(G) and ξαdis ≡ 0.
717 Cf. the bullet on page 624.
718 Cf. Footnote 683.



112.4 Microscopically Simple Boundary Conditions 657

Consider the simple defect energy (105.57), which is uncoupled and quadratic
in the net dislocation densities (105.56); viz.

2 p(8ρ ) = 1
2 S0 L2

∑

α

|ραnet|2, ραnet =
√

|ρα= |2 + |ρα> |2, (112.30)

with L an energetic length-scale and S0 the initial slip resistance. In this case, if we
write

ρ̄α= = J −1ρα= and ρ̄α> = J −1ρα> (112.31)

for the dislocation densities measured per unit volume in the deformed body, then
the defect forces (112.6) and energetic microscopic stress (112.9) are given by

f α= = S0 L2ρ̄α= , f α> = S0 L2ρ̄α> ,

ξαen = S0 L2( ρ̄α> l̄α − ρ̄α= s̄α),
(112.32)

and the flow rule for slip system α becomes719

τα − S0 L2 div( ρ̄α= s̄α − ρ̄α> l̄α) = Sαg(dα)
να

dα
− 72 div

(
Sαg(dα)

∇ανα

dα

)
. (112.33)

112.4 Microscopically Simple Boundary Conditions

Let B denote the deformed body at an arbitrarily chosen time.720 The presence of
microscopic stresses results in an expenditure of power

∫

∂B

(ξα · n)να da (112.34)

by the material in contact with the body, and this necessitates a consideration
of boundary conditions on ∂B involving the microscopic tractions ξα · n and the
slip rates να . We restrict attention to boundary conditions that result in a null
expenditure of microscopic power in the sense that

(ξα · n)να = 0 on ∂B (112.35)

for all α.721 Specifically, we consider microscopically simple boundary-conditions as-
serting that

να = 0 on Shard and ξα · n = 0 on Sfree (112.36)

for all α, where Shard and Sfree are complementary subsurfaces of ∂B respectively
referred to as the microscopically hard and the microscopically free portions of ∂B.

The microscopically hard condition corresponds to a boundary surface that can-
not pass dislocations (e.g., a boundary surface that abuts a hard material); the mi-
croscopically free condition corresponds to a boundary across which dislocations
can flow freely from the body.

719 Cf. (105.61).
720 This subsection follows §105.6.
721 Cf. Gurtin (2000b, eq. (137); 2002, eqs. (9.1) and (9.4)).
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112.5 Variational Formulation

Assume that,722 at some arbitrarily chosen fixed time under consideration, the fields
χ and Fe are known, and let Shard and Sfree be complementary subsurfaces of the
boundary ∂B of the deformed body. Then, given any slip system α, if

(i) ξα · n = 0 on Sfree,
(ii) φ ≡ ν̃α is the only nonzero virtual slip-rate field, and

(iii) φ = 0 on ∂Shard,

then (108.17) with Pt = B reduces to723

∫

B

[(πα − τα)φ + ξα · gradφ] dv = 0. (112.37)

We refer to φ as a test field and assume that φ is kinematically admissible in the sense
that

φ = 0 on Shard. (112.38)

Then, using (108.3) with γ̃ α = φ and (112.38), we conclude that (112.37) is equiva-
lent to

∫

Sfree

(ξα · n)φ da +
∫

B

(πα − τα − div ξα)φ dv = 0. (112.39)

Moreover, invoking the fundamental lemma of the calculus of variations,724 we see
that (112.39) holds for all kinematically admissible test fields φ if and only if ξα · n =
0 on Sfree and the microscopic force balance (108.19) is satisfied in B. Since this force
balance — supplemented by the constitutive relations (112.21)1 and (112.22) for πα

and ξα — is equivalent to the flow rule (112.33) for system α, we have the following
result:

Variational formulation of the flow rule Suppose that the constitutive relations

πα = Sαg(dα)
να

dα
,

ξα = − f α= s̄α + f α> l̄α + Sαg(dα)72 ∇ανα

dα
,

(112.40)

are satisfied. The flow rule (112.33) in B and the boundary condition

ξα · n = 0 on Sfree (112.41)

are then together equivalent to the requirement that (112.39) hold for all kinematically
admissible test fields φ.

As noted in the last paragraph of §105.7, this weak statement of the flow rule
should provide a useful basis for computations: In a numerical scheme such as the
finite-element method, (112.37) would, for each α, reduce to a system of nonlinear
algebraic equations for the slip rate να , granted a knowledge of the “current state”
of the system.

722 This subsection follows §105.7.
723 Cf. Gurtin (2000b, eq. (159); 2002, eq. (10.1)).
724 Cf. page 167.
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112.6 Plastic Free-Energy Balance

By (112.13),
·∫

Pt

J −12 p(8ρ ) dv =
∑

α

∫

Pt

ξαen · gradνα dv; (112.42)

also, using (108.3), (108.19), and (112.15) we can rewrite the right side of (112.43)
(for each α) as follows
∫

Pt

ξαen · gradνα dv =
∫

Pt

[ξαen · gradνα + (τα − πα + divξα)︸ ︷︷ ︸
=0

να] dv

=
∫

Pt

[(τα − πα)να − ξαdis · gradνα] dv +
∫

∂Pt

(ξα · n)να da. (112.43)

The identities (112.42) and (112.43) yield the plastic free-energy balance

·∫

Pt

J −12 p(8ρ ) dv

=
∑

α

∫

Pt

τανα dv

︸ ︷︷ ︸
plastic working

+
∑

α

∫

∂Pt

(ξα · n)να da

︸ ︷︷ ︸
microscopic power

−
∑

α

∫

Pt

(πανα + ξαdis · gradνα) dv

︸ ︷︷ ︸
dissipation≥0

. (112.44)

The term in (112.44) labeled “microscopic power” represents the power ex-
pended on Pt by the microscopic tractions ξα · n acting over ∂Pt . By (112.15) the
microscopic stress admits a decomposition ξα = ξαen + ξαdis into energetic and dissi-
pative parts, and, using (112.9), we can write the energetic part of the microscopic
power in the form

∫

∂Pt

(ξαen · n)να da =
∫

∂Pt

[− f α= ν
α(s̄α · n) + f α> ν

α(l̄α · n)] da. (112.45)

The right side of (112.45) represents power expended across ∂Pt by the normal
components of the Peach–Koehler forces − f α= sα and f α> lα associated with edge and
screw dislocations:725

Remark. An interesting interpretation of the relation (112.45) pertains to the trans-
port of dislocations as described by their fluxes q̄α= = να s̄α and q̄α> = −να l̄α .726 Bear-
ing in mind that the defect forces f α= and f α> defined in (112.6) would — when inter-
preted within the framework of dislocation transport — be considered as chemical
potentials727

µα= = J −1 ∂2
p

∂ρα=

(
= f α=

)
and µα> = J −1 ∂2

p

∂ρα>

(
= f α>

)

corresponding to energetic changes resulting from changes in edge and screw den-
sities. With this interpretation, µα= q̄α= and µα>q̄α> represent fluxes of energy associated

725 Cf. the paragraph containing (105.32).
726 Cf. (107.34).
727 Cf. §62 or Fried & Gurtin (1999, §2.3.1; 2004, §4A).
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with flows of edge and screw dislocations as described by the fluxes q̄α= and q̄α> ; thus
using (107.34) we may rewrite (112.45) as follows:

∫

∂Pt

(ξαen · n)να da = −
∫

∂Pt

[µα= (q̄α= · n) + µα>(q̄α> · n)] da; (112.46)

the right side of this relation represents energy carried into Pt across ∂Pt by the flow
of dislocations.

112.7 Some Remarks

Not all facets of the large-deformation theory of this section mirror facets of the
small-deformation theory of §105. In particular,

• the slips γ α in the small-deformation theory are well-defined, but in the large-
deformation theory, slips — as fields on the individual slip systems — are not
well-defined quantities: What are well-defined are the slip-rates να .728

This difference leads to an important difference in the relations satisfied by the dislo-
cation densities of the two theories. In the small-deformation theory, these densities
are given by729

ρα= = −sα · gradγ α and ρα> = lα · gradγ α. (112.47)

But, within the large-deformation theory, the dislocation densities are internal-state
variables that evolve according to the differential equations730

ρ̇α= = −s̄α · gradνα and ρ̇α> = l̄α · gradνα. (112.48)

Further, the flow rule (112.33) has an energetic backstress of the form

div
(

f α= (8ρ )s̄α − f α> (8ρ ) l̄α
)

and is hence dependent on gradients of dislocation densities. Because the disloca-
tion densities are internal-state variables with evolution governed by (112.48) (and
suitable initial conditions), the backstress depends on histories of second slip-rate
gradients; this — an essential feature of the theory731 — should be compared with
the flow rule (105.61) of the corresponding small-deformation theory in which the
backstress depends on current values of second slip-gradients (not slip-rate gradi-
ents!).

An essential feature of the theory is the manner in which it qualitatively mimics
certain characteristics of dislocations:732

• The plastically convected rate (107.27)1 of the Burgers tensor G is found to be
the sum of rates of continuous distributions of screw and edge dislocations on
the individual slip systems, distributions that have the canonical forms for slip in
a single-crystal. These distributions are automatically consistent with balances
in a form

{density rate} = −{divergence of a flux} + {supply}

728 Cf. the bullet on page 624.
729 Cf. (103.9)2,3.
730 Cf. (107.32).
731 We are unaware of other single-crystal theories with this property.
732 The results of the first two bullets, taken from Gurtin (2006), are essential to the complete picture

given below.



112.7 Some Remarks 661

standard in theories of transport.733 Moreover the fluxes are in glide directions;
each of the density-rates is given, modulo sign, as a directional derivative of the
corresponding slip-rate in the glide direction.

• A free energy dependent on dislocation densities leads to thermodynamically
conjugate microscopic forces (stresses) parallel to glide directions of the cor-
responding edge and screw distributions, which is a central feature of Peach–
Koehler forces.734

733 Cf. (107.37).
734 Cf. the bullet on page 609.
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113 Isotropic Functions

In this section we state several important representation theorems for isotropic func-
tions; that is, functions invariant under the proper orthogonal group

Orth+ = the group of all rotations. (113.1)

Let A be a subset of the set of all tensors. We say that A is invariant under Orth+ if,
given any A in A, the tensor QAQ) belongs to A for all rotations Q. Sets with this
property are:

Lin+ = the set of all tensors with strictly positive determinant,

Sym = the set of all symmetric tensors,

Psym = the set of all symmetric and positive-definite tensors,

Dsym = the set of all symmetric and deviatoric tensors.

To help fix notation, we begin by listing some constitutive equations of the gen-
eral type under consideration.

(i) The elastic constitutive relations735

ψ = ψ̄(C),

TRR = T̄RR(C).

Here, the free energy ψ is a scalar, the right Cauchy–Green tensor C is sym-
metric and positive-definite, and the second Piola stress TRR is symmetric: the
constitutive response functions ψ̄ and T̄RR are therefore mappings736

ψ̄ : Psym → R (R = the set of real numbers),

T̄RR : Psym → Sym.

(ii) The constitutive equation

T = T̂(υ, D)

of a compressible, viscous fluid.737 Here, because the Cauchy stress T and the
stretching D are symmetric tensors, while υ is a scalar and hence irrelevant to

735 Cf. (50.18).
736 The notation

f : A → H

is shorthand for the statement: f is a function (or mapping) that associates with each element a in a
set A an element h = f (a) in the set H.

737 Cf. (45.7)2.
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a discussion of material symmetry, we may consider the constitutive response
function T̂ as a mapping

T̂ : Sym → Sym.

Note that the domain of T̄RR is Psym, while the domain of T is Sym. To avoid
treating such functions individually, we work with a generic subset A of the set of
all tensors assuming only that

• A is invariant under Orth+.

113.1 Isotropic Scalar Functions

A scalar function

ĝ : A → R,

is isotropic if, for each A in A,

ĝ(A) = ĝ(QAQ))

for all rotations Q. Examples of isotropic scalar functions are:

(i) tr and det considered as scalar functions on A;
(ii) the principal invariants I1(A), I2(A), and I3(A), defined in (2.142), considered

as functions of A in A.

For convenience we write IA for the list of principal invariants:

IA
def= (I1(A), I2(A), I3(A)). (113.2)

Representation Theorem for Isotropic Scalar Functions A scalar function

ĝ : A → R (A ⊂ Sym)

is isotropic if and only if there is a scalar function g̃ such that

ĝ(A) = g̃(IA) (113.3)

for every A in A.738

113.2 Isotropic Tensor Functions

A tensor function

Ĝ : A → Sym

is isotropic if, for each A in A,

QĜ(A)Q) = Ĝ(QAQ))

for all rotations Q.

Properties of Isotropic Tensor Functions Let

Ĝ : A → Sym (A ⊂ Sym)

be an isotropic tensor function. Then Ĝ has the following properties:

(i) (Transfer Property) Given any A in A, every eigenvector of A is an eigenvector
of Ĝ(A).

738 Cf., e.g., Truesdell & Noll (1965, p. 28); Gurtin (1981, p. 230). The domain of g̃ is the set of all
triplets IA with A in A.
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(ii) (Commutation Property) For every A in A,

Ĝ(A)A = AĜ(A). (113.4)

We shall only prove (ii).739 Choose A in A and let

G = Ĝ(A).

By hypothesis, both A and G are symmetric. Thus, in particular, A has a spectral
decomposition

A =
3∑

i=1

ai ei ⊗ ei ,

where, for each i, ai is an eigenvalue of A and ei is a corresponding eigenvector;
further, {ei} is an orthonormal basis, so that740

ei · e j = δi j . (113.5)

Next, in view of the transfer property (i), each of the eigenvectors ei of A must be
an eigenvector of G; hence G must have a spectral decomposition of the form

B =
3∑

i=1

bi ei ⊗ ei .

Thus, by (2.28) and (113.5),

BA =
(

3∑

i=1

bi ei ⊗ ei

)(
3∑

j=1

a j e j ⊗ e j

)

=
3∑

i, j=1

bi a j (ei ⊗ ei )(e j ⊗ e j )︸ ︷︷ ︸
=δi j (ei ⊗e j )

=
3∑

i=1

bi ai ei ⊗ ei

=
3∑

i=1

ai bi ei ⊗ ei

= AB,

which is the desired result.

Representation Theorem for Isotropic Tensor Functions A tensor function

Ĝ : A → Sym (A ⊂ Sym)

is isotropic if and only if there are scalar functions β1, β2, and β3 such that

Ĝ(A) = β1(IA)1 + β2(IA)A + β3(IA)A2 (113.6)

for every A in A.741

739 For a proof of (i), cf., e.g., Truesdell & Noll (1965, p. 32); Gurtin (1981, p. 231).
740 Cf. (2.112).
741 Cf., e.g., Truesdell & Noll (1965, p. 32); Gurtin (1981, p. 233).
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Assume now that the domain A of Ĝ is Psym. Then, for any A in Psym, A is
invertible, so that, by the Cayley–Hamilton equation (2.144) with S = A,

A2 = I1(A)A − I2(A) + I3(A)A−1,

and we may rewrite the representation (113.6) in the form

Ĝ(A) = α1(IA)1 + α2(IA)A + α3(IA)A−1. (113.7)

We have therefore established the “only if” assertion in the following result: A ten-
sor function

Ĝ : A → Sym (A ⊂ Psym)

is isotropic if and only if there are scalar functions α1, α2, and α3 such that

Ĝ(A) = β1(IA)1 + β2(IA)A + β3(IA)A−1 (113.8)

for every A in A.742

113.3 Isotropic Linear Tensor Functions

When an isotropic tensor function is linear its representation is quite simple:

Representation Theorems for Isotropic Linear Tensor Functions743

(i) A tensor function

Ĝ : Sym → Sym

is isotropic if and only if there are scalars µ and λ such that

Ĝ(A) = 2µA + λ(trA)1 (113.9)

for every A in Sym.
(ii) A tensor function

Ĝ : Dsym → Sym

is isotropic if and only if there is a scalar µ such that

Ĝ(A) = 2µA (113.10)

for every A in Dsym.

EXERCISES

1. Show that the sets Lin+, Sym, Psym, and Dsym are invariant under Orth+.

2. Prove that the trA, detA, I1(A), I2(A), and I3(A) considered as scalar functions
of A on A are isotropic.

3. Show that the mapping Ĝ : Lin+ → Lin+ defined by

Ĝ(A) = A−1

is isotropic.
4. Show that the mapping Ĝ : Sym → Sym defined by

Ĝ(A) = An (n ≥ 1, an integer)

is isotropic.

742 Cf., e.g., Truesdell & Noll (1965, p. 33) and Gurtin (1981, p. 235).
743 Cf., e.g., Gurtin (1981, pp. 235–236).



114 The Exponential of a Tensor

Let A be a tensor and consider the initial-value problem

Ż(t) = AZ(t),

Z(0) = 1,

}
(114.1)

for a tensor function Z(t). The existence theorem for ordinary differential equations
tells us that this problem has exactly one solution Z(t), −∞ < t < ∞, which we
write in the form

Z(t) = etA. (114.2)

Two important properties of the function etA defined in this manner are:

(i) given any tensor A, the tensor etA is invertible for −∞ < t < ∞. In fact, det(etA)
is strictly positive and satisfies

det(etA) = et(trA); (114.3)

(ii) let ! be a skew tensor. Then et! is a rotation for −∞ < t < ∞.

The verification of (i), which is technical, may be found in Gurtin (1981, §36). To
prove (ii), let ! be a skew tensor and let

Z(t) = et!, Y(t) = Z(t)Z)(t). (114.4)

Then, by (114.1)1, since ! = −!),

Ẏ = ŻZ) + ZŻ)

= !ZZ) − ZZ)!

= !Y − Y!.

Thus Y satisfies

Ẏ(t) = !Y(t) − Y(t)!,

Y(0) = 1.

}

(114.5)

This initial-value problem has a unique solution; by substitution, we see that Y(t) ≡
1 is that solution. Thus

Z(t)Z)(t) ≡ 1

and Z(t) is a rotation. We have therefore established (ii).
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Remarks.

(a) The definition of the exponential of a tensor via a solution of an ordinary dif-
ferential equation is consistent with the series representation744

eA =
∞∑

n=0

1
n!

An.

(b) An immediate consequence of (ii) and (114.1)2 is that the rotation

Q(t) = et!

satisfies

Q(0) = 1 and Q̇(0) = !. (114.6)

Thus, given an arbitrary skew tensor !, it is always possible to find a rotation
Q(t) such that, at some time t0, Q(t0) = 1, Q̇(t0) = !.

744 Cf., e.g., Hirsh & Smale (1974, Chapter 5, §3).
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tures No. 97. Springer-Verlag, Berlin.

Mandel, J., 1973. Thermodynamics and plasticity. In: Delgado Domingas, J. J.,
Nina, M. N.R., & Whitelaw, J.H. (Eds.), Proceedings of The International Sym-
posium on Foundations of Continuum Thermodynamics, Halsted Press, New
York, 283–304.

Martin, J.B., 1981. An internal variable approach to the formulation of finite el-
ement problems in plasticity. In: Hult, J., & Lemaitre, J. (Eds.), Physical Non-
lineariaties in Structural Analysis, Springer-Verlag, Berlin, 165–176.

Maugin, G., 1993. Material Inhomogeneities in Elasticity. Chapman Hall, London.
Meixner, J., & Reik, H.G., 1959. Die Thermodynamik der irreversiblen Prozesse.
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A
acceleration, 63
accumulated plastic strain, 428

defect energy, 472, 535
gradient theory, 512–513
hardening equation, 435–439
Mises flow equations, 480
rate-dependent plastic materials, 452

acoustic tensor, 314
addition of tensor, 9
addition of vector, 3
Aifantis theory, 508
alternating symbol, 6
angular momentum, 131–132, 134–135
angular momentum balance, 170, 174
angular velocity, 87, 160
approximately incompressible elastic materials,

326–329
arbitrary motion, 89–94
area, deformation of, 77–79
area vector, 5
areal Jacobian, 62, 77, 212
associated material basis, 100
atomic density, 398
atomic diffusion, 398
atomic flux, 398
atomic supply, 398
axial vectors, 15

B
backstress, 420

codirectionality, 431
flow rule, 532–533, 537, 660
free energy, 441
Gurtin-Anand theory, 508
viscoplastic flow rule, 612, 614, 656
yield condition, 443

balance laws, 363
balance of angular momentum, 134–135
balance of atoms, 398
balance of energy, 183, 229

entropy balance, 343
global form, 184–185, 201
local form, 184–185, 201–202
shock wave, 218–220

spatial control volume, 197
thermodynamics, 470

balance of forces, 136–137
balance of linear momentum, 134–135, 343

local form, 140
spatial form, 242

balance of mass, 127–128
control volume, 169
local forms, 128
simple consequences, 129–130
spatial form, 242

balance of moments, 136–137, 242
bases, 68
Bauschinger effect, 418, 420, 599
Bernoulli’s theorem, 248
body, 61
body centered cubic crystal, 584
body forces, 132–134

conventional, 134
generalized, 134
inertial, 134
transformation rules, 157–159

boundary condition, 122–123, 518–519
boundary-value problems, 165–167, 283, 310
boundedness hypothesis, 433
boundedness inequality, 457, 473, 479, 565
bulk modulus, 309, 357
bulk viscosity, 256
Burgers direction, 589
Burgers tensor, 509–511. See also tensor(s)

characterization of, 627–629
decomposition, 588–590
defect energy, 609, 615, 618
energetic constitutive equations, 528
materials, 591
plastically convected rate, 660

Burgers vector, 509–511, 627–629

C
calculus of variations, 167
Cartesian coordinate frame, 6
Cauchy stress, 137–139

frame-indifferent, 165
free-energy imbalance, 553–554

Cauchy-Green tensors, 69–70, 273, 545
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Cauchy’s hypothesis, 132
Cayley-Hamilton equation, 35–36
center of mass, 135
centripetal acceleration, 160
change in observer, 146
change in time scale, 428, 563, 599
changes of frame, 146–147
chemical diffusivity, 411
chemical potential, 366
chemical-potential relation, 379, 392
chemistry modulus, 381, 393
chemistry-strain modulus, 412
chemistry-strain tensor, 392
circulation, 118–120
circulation-transport relation, 120, 263–264
Clausus-Duhem inequality, 187, 470
closed curve, 54
coarse-grain flow resistance, 517–518
codirectionality constraint, 454, 471, 477, 493–495,

497, 508, 513–515, 524, 531
codirectionality hypothesis, 431–432, 439, 442,

450, 466, 532, 611
coefficient of thermal expansion, 358
cofactor of tensors, 22–23
Coleman-Noll procedure, 232–233, 278–279, 336
commutator identities, 82–83
compliance tensor, 300
components of a tensor, 11–12
components of a vector, 6–8
compressibility tensor, 412
compressible Navier-Stokes equation, 255–256
compressible viscous fluids, 250. See also

incompressible fluids
compressible Navier-Stokes equation, 255–256
constitutive equations, 250–251
equilibrium pressure, 252
frame-indifference, 251–253
Galilean invariance, 253
linearly viscous, 255–256
pressure relation, 254
reduced dissipation inequality, 254
thermodynamic restrictions, 254
thermodynamics, 253–255
vorticity transport equation, 256–257

conductivity tensor, 237, 340
conservation of substitutional atoms, 399
consistency condition, 439–440, 451, 569, 573, 580
constraint, 259, 316
contact force, 132–133
contravariant components, 101
contravariant convection, 103–104
contravariant pullback, 102
contravariant rate, 151–152, 154
controllable deformations, 282
convection of geometric quantities, 66–68

bases, 68
curves, 67
infinitesimal fibers, 66–67
tangent vectors, 67–68

convection of sets, 63
convection of tensor fields. See also

tensor fields
contravariant, 103–104

corotational, 105–106
covariant, 102–103

convection with the body, 63
conventional body force, 134
conventional external power, 142, 183, 363
conventional power balance, 143, 171, 199
convex surfaces, 460
coplanarity moduli, 601–602
Coriolis acceleration, 160
corotational convection, 105–106
corotational rate, 151–153
corotational tensor field, 105–106
corotational vector field, 105
Cosserat theory, 487
Cotter-Rivlin rate, 152
covariant components, 101
covariant convection, 102–103
covariant pullback, 102
covariant rate, 151–152, 153–154
cross product of vectors, 3–6
crystal lattice, 423, 509, 510, 516, 543
crystallographic texturing, 646
cubic crystal, 304–306
curl, 81–82
curl of tensor field, 46–47
curl of vector field, 46–47
current configuration as reference, 92–93
curve, 53
curves, 67

D
decay inequalities, 191, 196, 202–203
defect energy, 465, 472–473, 476–477, 483–484,

528, 607
deformation gradient, 64
deformation of area, 77–79
deformation of normals, 75–76
deformation of volume, 76–77
deformations, 61

controllable, 282
general, 65–66
homogenous, 64–65
single crystals, 583–585

deformed body, 62
deformed fibers

properties, 92–94
stretching, 85

determinant of tensors, 21–22
deviatoric tensors, 16
differentiation, 41–51

of fields, 43–45
of functions of a scalar variable, 41–43
of scalar function of tensor, 49–51

dilatational viscosity, 256
dislocation balances, 590
displacement, 297
displacement equation of equilibrium, 307
displacement equation of motion, 302
displacement gradient, 297
dissipation

constitutive equations, 609–611
free-energy imbalance, 188–189, 194–195
inequality, 424
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Mises flow equations, 477–478
principle of virtual power, 497

dissipative constitutive equations, 528, 654–656
dissipative length scale, 531, 610, 655
dissipative microscopic stresses, 609
divergence, 81–82
divergence of tensor field, 46–47
divergence of vector field, 46–47
divergence theorem, 49–51, 52–53, 214
domain of response functions, 320–321
Drucker’s theorem, 458, 461–462
dual basis, 99
dynamic viscosity, 256

E
edge and screw dislocations, 588–590, 659–660
edge dislocation, 510, 584, 588–590, 612, 631–632
edge-dislocation density, 589, 631–632
effective dissipation, 467
effective pressure, 203
eigenvalues of tensors, 28–30
eigenvectors of tensors, 28–30
elastic balance, 424
elastic body, 276

simple shear, 294–296
elastic Cauchy-Green tensors, 545
elastic diffusivity, 411
elastic distortion, 423, 541, 586, 604
elastic distortion-rate, 489, 548, 550, 593–594,

634–636
elastic fluids, 244. See also compressible viscous

fluids
Bernoulli’s theorem, 248
constitutive process, 245–246
evolution equations, 246–247
frame-indifference, 244–245
pressure relation, 246
specific enthalpy, 247
steady flow, 247–248
thermodynamic restrictions, 246
wave speed, 247

elastic limit, 417
elastic loading, 446, 573
elastic materials, incompressible, 319–324

approximately, 326–329
constitutive theory, 319
domain of response functions, 320–321
frame-indifference, 319–320
isotropic material, 323
simple shear, 324
thermodynamic restrictions, 321–322

elastic moduli, 357, 412
elastic range, 419, 420, 454–455, 457
elastic response, 424–425
elastic rotation, 544
elastic spin, 544
elastic strain, 417, 423, 545
elastic stress, 593, 604, 634
elastic stretch tensors, 544
elastic stretching, 544
elastic tensors, 544
elasticity, 562–563
elasticity, linear theory of, 297–314

basic equations, 302, 306
boundary-value problems, 310
compliance tensor, 300
elasticity tensor, 298–300
elastodynamics, 313
elastostatics, 310–312
free energy, 300–301
isotropic material, 306
sinusoidal progressive waves, 313–314
small deformations, 297–298
statical equations, 307
statical solutions, 309–310
stress, 300–301

elasticity tensor, 298–300. See also tensor(s)
chain rule, 392
cubic crystal, 304–306
entropy as independent variable, 341–342, 344
isotropic material, 303
thermodynamic restrictions, 380

elastodynamics, 313
elastostatics, 310–312
energetic constitutive equations, 528–529

single crystal plasticity, 607–609, 653–654
energetic defect forces, 608
energetic length-scale, 530, 614, 657
energetic microscopic stress, 608
energy, 181
energy balance, 183, 229, 343. See also free-energy

imbalance
global form, 184–185, 201
local form, 184–185, 201–202, 372–373
Mises-Hill plasticity, 473–475
shock wave, 218–220
spatial control volume, 197

engineering strain, 417
engineering stress, 417
entropic elasticity, 351
entropy, 343–345, 354–355
entropy balance, 234, 338
entropy density, 200
entropy flow, 181
entropy flux, 187
entropy imbalance, 186, 197, 229

global form, 187, 201
local form, 201–202, 372
shock wave, 218–220
temperature, 187–188

entropy relation, 233, 337
entropy supply, 187
epsilon-delta identity, 7
equilibrium pressure, 252
equipresence, 250
Euclidean point space, 3, 39, 61
Euclidean vector space, 3
Euler acceleration, 160
Euler equations, 269
evolution equation, 576–578
evolution equations, 246–247
expended power, 141, 161–162, 175–176
exponential of tensor, 669–670
external expenditure of power, 548–549
external microscopic force, 496–497, 549, 645
external power, 142, 593, 605, 645
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extra Piola stress, 317
extra stress, 259, 317–318, 431

F
face centered cubic crystal, 584
Fick’s law, 382–383
fields, differentiation of, 43–45
finite fibers, 71–72
first law of thermodynamics, 183–185. See also

second law of thermodynamics
expressed referentially, 199–200
global form, 200–201
local form, 201–202
for spatial control volume, 197–198

Fleck-Hutchinson principle, 514
flow direction, 430, 442, 455–462

codirectionality constraint, 471, 494,
513

dissipative constitutive equations, 531
maximum dissipation, 501–503, 564–565

flow rate, 420, 449
flow resistance, 432–435

coarse-grain flow, 517–518
constitutive equations, 600
constitutive relations, 645
dissipative constitutive equations, 531
flow rule, 507–508
hardening variable, 439, 581, 598
material stability, 503
maximum dissipation, 564
Mises flow rules, 442–443, 479

flow rule, 517–518
boundedness inequality, 473
constitutive equations, 466–468
gradient theory, 532–533
inverted, 574
Mises flow equations, 564
plastic free-energy balance, 535–536
rate-dependent, 579
rate-independent, 454
slip system, 599
variational formulation, 519–520, 534–535,

616–617
viscoplastic, 612–615, 656–657

flow stress, 419, 455, 458–462, 536, 564–565
flow-induced strengthening, 535–536
flow-stress admissibility, 456, 565
fluids, incompressible, 260–261
fluids, compressible viscous, 250–258

circulation-transport relation, 263–264
elastic, 244–249
impetus-gauge formulation, 267–268
incompressible, 259–270
incompressible Navier-Stokes equation,

262–263
kinematic viscosity, 263
kinetic energy balance, 262
linearly, 261–262
Navier-Stokes equation, 267–268
perfect fluids, 268–270
pressure Poisson equation, 265
reduced dissipation inequality, 261
thermodynamic restrictions, 260–261

transport equations, 266–267
vorticity-transport equation, 263–264

fluids, natural reference configuration of, 122
flux-supply constraint, 399
force balance, 139–140, 161–162
forest dislocations, 611
forest-hardening, 611
Fourier’s law, 236–238, 340–341, 342, 357, 384
frame-indifference, 157, 225

compressible viscous fluids, 251–253
consequences, 276–278, 550, 636–637
constitutive theory, 335–336
elastic fluids, 244–245
expended power, 161–162
incompressible elastic materials, 319–320
multiple species, 391–393
polycrystalline materials, 560–562
single species, 377–378
structural, 560–562

frame-indifferent fields, 147–148, 151
frame-rotation, 146
frame-spin, 146
free energy, 302

invariants, 290–291
linear theory of elasticity, 300–301
principal stretches, 292–293
principle of virtual power, 497
thermodynamics, 470

free-energy imbalance, 229, 274, 465, 515–516,
639–640

Cauchy stress, 553–554
chemical potential, 367–368
dissipation, 188–189, 194–195
general thermodynamic theory, 195–196
global, 195
gradient theory, 528
incompressible body, 259–260
indeterminate pressure, 317
local, 195, 202, 373, 516
mechanical theory, 202–204
multiple species, 370
principle of virtual power, 497
relative chemical potentials, 399–400
single crystal plasticity, 607
single crystals, 596
single species, 375
Taylor polycrystal, 651
thermodynamics, 470
thermoelasticity, 334

G
Galilean invariance, 253
gauge, 267
Gauss map, 460
general deformations, 65–66
general tensorial rate, 155
generalized body force, 136–137
generalized external power, 144
generalized power balance, 143–144
generalized power expenditure, 144
Gent material, 325
Gibbs function, 348–349
Gibbs relation, 234, 338, 380, 392
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glide direction, 590
global free-energy imbalance, 195
global variational inequality, 480, 483–484
Gough-Joule effect, 331, 353
gradient, 43–45, 81–82
gradient Gibbs relation, 392
gradient theory, 508

dissipative constitutive equations, 530–532
energetic constitutive equations, 528–529
flow rule, 532–533
flow-induced strengthening, 535–536
free-energy imbalance, 528
macroscopic force balance, 525–527
microscopic force balance, 525–527
microscopically simple boundary conditions,

533–534
rate-independent theory, 536–537
variational formulation of flow rule, 534–535
virtual-power formulations, 525–527

grain boundaries, 583
grains, 583–585, 646–648, 650
grand-canonical energy, 368
grand-canonical energy imbalance, 368
Green-St. Venant strain tensor, 70, 273, 333, 559,

571, 575
Grüneisen tensor, 353
Gurtin-Anand theory, 508

H
Hadamard’s compatibility conditions, 210–212
hardening, 417, 427, 443–444
hardening curve, 417, 437, 439
hardening equation, 427, 435–439, 557

equilibrium points, 436
hardening transition, 437
Mises-Hill equation, 438
notational agreement, 435–439
rate-dependent plastic materials, 579
rate-independent plastic response, 438

hardening modulus, 444
hardening rate, 427
hardening stress, 466
hardening transition, 437
hardening variable, 427–428, 434–439

constitutive relations, 454, 597
flow resistance, 451, 574–575, 581, 598
slip rates and, 641

heat capacity, 341–342, 355
heat flow, 181, 183
heat flux, 184, 200
heat supply, 184, 200
heat-conduction inequality, 233, 236, 337, 338, 472
Hencky’s strain tensor, 74
hexagonal closed packed crystal, 584
homogenous deformations, 64–65, 285
hydrostatic stress, 291
hyperelastic materials, 280

I
identities of tensors, 46–47
identities of vectors, 46–47
identity tensors, 10
impetus-gauge formulation, 267–268

incompressibility, 316–318
changes in frame, 318
indeterminacy of pressure, 317
kinematics, 316

incompressible body, 259–260, 316
incompressible elastic materials, 319–324

approximately, 326–329
constitutive theory, 319
domain of response functions, 320–321
frame-indifference, 319–320
isotropic material, 323
simple shear, 324
thermodynamic restrictions, 321–322

incompressible fluids, 260–261
circulation-transport relation, 263–264
incompressible Navier-Stokes equation,

262–263
kinematic viscosity, 263
kinetic energy balance, 262
linearly, 261–262
Navier-Stokes equation, 267–268
perfect fluids, 268–270
pressure Poisson equation, 265
reduced dissipation inequality, 261
thermodynamic restrictions, 260–261
transport equations, 266–267
vorticity-transport equation, 263–264

incompressible Navier-Stokes equation, 262–263
indeterminacy of pressure, 317
indeterminate pressure, 319
inertial body force, 136–137, 159–160
inertial forces, 144–145
inertial frames, 131–132
inertial power, 142
infinitesimal fibers, 66–67, 70–71
infinitesimal strain, 298
initial flow resistance, 435
initial/boundary-value problem, 283
inner product of tensors, 17–18
inner product of vectors, 3–6
integral theorems, 52–56

divergence theorem, 52–53
Stokes’ theorem, 53–56

internal energy, 184
internal expenditure of power, 548–549
internal microscopic force, 593, 604, 634
internal power, 143, 144, 593, 604
invariance properties, 190–191
invertible tensors, 19–20
inviscid fluid, 117, 244, 250, 268
irrotational motions, 117–118
irrotational plastic flow, 511, 512, 567
irrotationality theorem, 567–568
isochoric motion, 113–114
isothermal bulk modulus, 357
isothermal process, 195
isothermal shear modulus, 357
isotropic functions, 665–666
isotropic hardening, 419, 437, 438, 443
isotropic linear tensor functions, 668
isotropic material, 303. See also elasticity tensor

incompressible elastic bodies, 323
linear theory of elasticity, 306
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isotropic scalar functions, 666
isotropic tensor functions, 155, 666–668
isotropy, 288–290

J
Jacobian

areal, 62, 77, 212
volumetric, 62, 78, 212, 328

Jaumann-Zaremba rate, 152
jump conditions, 217
jump discontinuities, 209

K
Kelvin’s circulation theorem, 120
kinematic hardening, 420, 421, 441, 443, 614
kinematic relations, 241
kinematic viscosity, 263
kinematical boundary conditions, 122–123
kinematically admissible displacement field,

311–312
kinetic energy, 142, 183
kinetic energy balance, 262
Kirchoff stress, 330
Kronecker delta, 6
Kröner decomposition, 541–543, 546–547, 560,

566, 574, 580, 623, 644, 646, 647
Kuhn-Tucker condition, 440
Kuhn-Tucker optimality conditions, 463

L
Lamé moduli, 306, 357, 475
Laplace operator, 47, 507
Larché-Cahn derivative, 401
Larché-Cahn differentiation, 401
latent-hardening, 601–602
lattice constraint, 398–399, 406
lattice space, 623, 626–627
lattice tensor, 623
lattice vectors, 623
left Caucy-Green tensors, 69, 273
left polar decomposition, 69
left principal directions, 73
left stretch tensor, 69
lemma, 167
Lévy-Mises-Reuss theory, 426
line direction, 589
line integrals, 53–56, 109
linear combination, 5
linear elastic stress-strain law, 597
linear momentum, 131–132
linear momentum balance, 134–135, 170, 174, 343
linear theory of elasticity, 297–314

basic equations, 302, 306
boundary-value problems, 310
compliance tensor, 300
elasticity tensor, 298–300
elastodynamics, 313
elastostatics, 310–312
free energy, 300–301
isotropic material, 306
sinusoidal progressive waves, 313–314
small deformations, 297–298
statical equations, 307

statical solutions, 309–310
stress, 300–301

linear thermoelasticity, 354
basic field equations, 356
constitutive equations, 356
isotropic, 356–359
strain-displacement relation, 356

linearly viscous compressible fluids, 255–256
linearly viscous incompressible fluids, 261–262,

265–266
spin, 265–266
spin-transport equation, 266
stretching, 265–266
stretching-transport equation, 266
transport equations, 265–266
velocity gradient, 265–266

local Burgers vector, 627
local free-energy imbalance, 195
local inequality, 480
local species mass-balance, 365
localization of integrals, 111–112
Lode diagram, 431
longitudinal sound speed, 314
lower-convected rate, 152
Lyapunov functions, 191

M
macroscopic force balance, 492, 551, 605, 637–638,

649
macroscopic stress, 492, 595
magnitude of tensors, 17–18
magnitude of vector, 4
Mandel stress, 556, 564–566, 568, 569, 571, 572,

574, 576, 580
mass balance, 127–128

control volume, 169
local forms, 128
simple consequences, 129–130
spatial form, 242
species, 364

mass fraction, 364
mass of the body, 128
material and spatial integration, 109–111

line integrals, 109
localization of integrals, 111–112
spatial integrals, 111
volume integrals, 110–111

material basis, 99, 100
material Burgers vector, 591
material curl, 80
material curve, 118
material description, 80
material divergence, 80
material frame-indifference, 111–112
material gradient, 80
material points, 61
material stability, 454, 496, 498, 501–503
material surface, 63
material symmetry, 284–293, 385–387

invariance under group, 284–285
isotropy, 288–290
symmetry group, 285–288
transformations, 346–347
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material tensor field, 95
material time-derivative, 81–82, 151
material vectors, 62
materials Burgers vector, 591
matrix of tensors, 26–27
maximum dissipation, 454

Drucker’s theorem, 458
Mises flow equations, 456–458, 564–565
yield-set hypotheses, 458–459

Maxwell relation, 338, 344, 380, 392
mechanical balance laws, 344. See also energy

balance
for angular momentum, 135
for control volume, 169, 171
for forces, 136
for linear momentum, 135, 140, 242
for mass, 127, 242
for moments, 136, 140, 242
referential forms, 173, 273

mechanical dissipation inequality, 472
mechanical theory, 202–204
microscopic force balance, 493, 508, 551–552,

637–638
constitutive theory, 499, 558
conventional theory, 641
Drucker’s theorem, 501
external, 496–497
Fleck-Hutchinson principle, 515
flow rule, 532, 534
large-deformation gradient theory, 653
local, 527
Mandel stress, 556
microscopic traction condition and, 606
principle of virtual power, 650
single crystal plasticity, 604–606
single crystals, 593–596
variational formulation of flow rule, 616–617,

658
viscoplastic flow rule, 612

microscopic hyperstress, 513, 517, 525, 530–532
microscopic stress, 634
microscopic traction, 605
microscopic traction condition, 515, 606, 638
microscopic virtual-power relation, 606
microscopically simple boundary conditions,

518–519, 533–534, 615–616
Mises flow equations, 431–433. See also flow rule

defect energy, 483–484
dissipation, 479–481
equivalent formulation, 574–575
global variational inequality, 482–484
maximum dissipation, 456–458, 564–565

Mises flow rules, 427, 432, 445–448, 565
Mises theory of rate-independent plastic

response, 433
Mises-Hill equation, 438, 458, 465, 566
Mises-Hill flow rule, 466
Mises-Hill plasticity, 469–478

basic equations, 477–478
boundedness inequality, 473
constitutive equations, 470–472
defect energy, 476–477
energy balance, 473–475

flow rule, 473
thermally simple materials, 475–476
thermodynamics, 470

mixed tensor field, 95–96
mobility tensor, 382, 412
modulus of compression, 309
moment balance, 139–140, 161–162, 242
moments, 363
momentum balance, 169–171, 216–218, 273–274,

422–423, 492
Mooney material, 325
motion of a body, 61–63

acceleration, 63
basic quantities, 61
convection of sets, 63
deformation, 61
deformed body, 62
material points, 61
material vector, 62
reference body, 61–63
reference map, 63
spatial point, 61
spatial vector, 62
velocity, 63

motion problem, 122–123
all of space, 123
fixed container, 122
kinematical boundary conditions, 122–123

motions, 107–108
displacement equation, 302
irrotational, 117–118
isochoric, 113–114
steady, 121–122
streamlines, 121

multiple species, 369, 376
chemical-potential relation, 392
constitutive theory, 391–395
Fick’s law, 393
frame-indifference, 391–393
free-energy imbalance, 370
natural reference configuration, 393–395
species mass balance, 369
species-transport inequality, 392
stress relation, 392
thermodynamic restrictions, 391–393

N
N independent species, 396–397
natural reference configuration, 388–389

for fluids, 122
multiple species, 393–395
stress-free, 280–281
for temperature, 349–350

Navier-Stokes equation
compressible, 255–256
impetus-gauge formulation, 267–268
incompressible, 262–263

negligible inertial forces, 144–145
net dislocation density, 591, 614
net entropy production, 186
net force, 134
net internal energy, 183
net moment, 134
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net species flux, 369
net species supply, 369
neutral loading, 446, 573
Newton’s law, 131
no-flow condition, 46, 433, 440, 569, 573, 606
nonconductors, 343–345, 346
normal convection, 99
normal Mandel elasticity tensor, 572
normal stress, 296
normalized flows, 455, 564
normally convected gauge, 268–270
normals, deformation of, 75–76
notational agreement, 435–439

O
objective field, 148
objective rates, 242
observed space, 146, 284, 626–627
observer, 146
Oldroyd rate, 152
origin, 6
orthogonal tensors, 25–26
orthogonality of vectors, 4
orthonormal corotational basis, 105
oscillations, 521

P
particle, 61
particle paths, 85
passive boundary conditions, 191–192, 202–203
Peach-Koehler forces, 607–609, 653–654, 659, 661
perfect fluids, 244, 268–270
perfectly plastic materials, 462–464
piezo-caloric effect, 340
piezo-diffusive effect, 382
Piola stress, 173, 274

extra, 317
second, 178, 274, 298, 334, 576–578
thermoelasticity, 334
transformation laws, 178–179

plastic distortion, 423, 489, 541, 559, 574, 580, 586,
603, 644, 646

plastic distortion-rate tensors, 544, 548, 623, 648
plastic flow, 426–444

boundedness hypothesis, 433
constitutive equations, 427–428
elasticity, 562–563
flow direction, 430
flow resistance, 432, 435, 439
flow rule, 430
hardening, 443–444
hardening equation, 435–439
initial flow resistance, 435, 439
irrotational, 567
Lévy-Mises-Reuss theory, 426
Mises flow equations, 431–433, 434
Mises flow rules, 427, 432
Mises theory of rate-independent plastic

response, 433
rate-independence, 428–430
softening, 443–444
strict dissipativity, 430–431
strong isotropy, 432

yield condition, 432–433
yield function, 440
yield surface, 440

plastic free-energy balance, 520, 535–536,
617–618, 659–660

plastic incompressibility, 424, 543–544, 566, 587,
623

plastic loading, 446, 573
plastic materials, rate-dependent, 448

flow-rate, 449
power-law rate-dependence, 452–453
rate-dependent flow rule, 579
simple rate-dependence, 449–452

plastic shear, 521
plastic spin, 544
plastic strain, 417, 423, 426, 428
plastic strain-rate, 431, 443, 451–455, 462, 495, 496,

526, 531, 536, 580
plastic stress-power, 470
plastic stretching, 544
plastically convected rate of G, 629–631
plastic-flow inequality, 517
point, 3, 6–8
Poisson’s ratio, 310
polar decomposition theorem, 31–34
polycrystalline materials, 560–562
positive-definite tensors, 31–34
positively oriented basis, 6
positively oriented surface, 54–55
power conjugate, 141, 143
power-conjugate pairings, 143, 177–178
power-law function, 452, 454, 535, 580, 601
power-law rate dependence, 452–453, 601
Poynting effect, 296
pressure Poisson equation, 265
pressure relation, 254
primitive quantities, 367
principal directions, 73–74
principal invariants, 35–36
principal stretches, 73–74, 292–293
principle of equipresence, 250
principle of virtual power, 163–165, 549–550,

648–650
classical, 487
codirectionality constraint, 493–495
external microscopic force, 496–497
Fleck-Hutchinson principle, 512–515
free-energy imbalance, 497
general principle, 487–493
global variational inequality, 482
macroscopic force balance, 492, 514, 527, 551,

595, 605, 637
macroscopic traction condition, 637
microscopic force balance, 493, 495, 515, 527,

552, 595, 606, 638
microscopic traction condition, 515, 527, 606,

638
single crystals, 593
streamlined principle, 495–496

product of tensors, 13–14
product rule, 41
projection tensors, 10, 11, 28
proper orthogonal group, 284–285
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pullback operation, 95–96
pure shear, 309
pure tension, 309
pushforward operation, 96

R
rate-dependent flow rule, 579–580
rate-dependent plastic materials, 448

flow-rate, 449
power-law rate-dependence, 452–453
rate-dependent flow rule, 579
simple rate-dependence, 449–452

rate-dependent theory, 429, 449, 453, 583
rate-independence, 428–430, 563–564
rate-independent plastic response, 438
rate-independent theory, 536–537
rate-sensitivity function, 451, 599
rate-sensitivity parameter, 452, 601
reduced dissipation inequality, 233, 254, 261, 559,

643
reference body, 61–63
reference configuration, 61, 280
reference fiber, 66
reference map, 63, 80
reference space, 146, 284, 626–627
referential dislocation balance, 632
referential energy, 200
referential laws, 374–376

multiple species, 376
single species, 374–375

reflection tensor, 25
relative chemical potentials, 399–400
relative deformation gradient, 93
relative mass flow-rate, 217
representation theorem, 290
resolved shear, 515. See also resolved shear stress

Aifantis flow rule, 512
codirectionality constraint, 477
constitutive relations, 439, 599
deviatoric stress, 470
dissipation, 472
microscopic force balance, 637

resolved shear stress, 595, 600, 603, 606, 644, 650
Reynold’s transport relation, 113–114
right Caucy-Green tensors, 69, 273, 333, 340
right polar decomposition, 69
right principal directions, 69
right stretch tensor, 69
rigid displacement, 69
rigid mapping, 69
rigid medium, 69
rigid motions, 86–87
rigid transformation, 346
rigid velocity field, 87
Rivlin-Erickson tensors, 87
rotation tensor, 69–70
rubber-like material, 325

S
scalar fields, 43–45
scalar function, 49–51
scalar normal velocities, 212
scalar variable, 41–43

Schmid tensor, 587, 604, 624, 647–648
screw dislocation density, 589, 613, 631–632,

647–648
second law of thermodynamics, 186–189. See also

first law of thermodynamics
expressed referentially, 199–200
global form, 200–201
local form, 201–202
for spatial control volume, 197–198

second Piola elastic-stress, 555–556, 559
second Piola stress, 178, 274, 298

evolution equation, 576–578
thermoelasticity, 334

self-hardening, 601–602
separability hypothesis, 424
shear bands, 521–523
shear modulus, 309, 357, 475
shear strain, 294
shear viscosity, 256, 261
shock wave, 209

divergence theorem, 214
energy balance, 218–220
entropy imbalance, 218–220
Hadamard’s compatibility conditions, 210–212
jump conditions, 216–220
jump discontinuities, 209
kinematics, 209–214
mass balance, 216–218
momentum balance, 216–218
relative mass flow-rate, 217
scalar normal velocities, 212
spatial description, 211
transport relations, 212–214

simple rate-dependence, 449–452, 597–601
simple shear, 294, 324

normal stresses, 296
Poynting effect, 296

single crystal plasticity, 602–603
dissipative constitutive equations, 654–656
energetic constitutive equations, 607–609,

653–654
free-energy imbalance, 607
large-deformation gradient theory, 653–661
microscopically simple boundary conditions,

615–616, 657
Peach-Koehler forces, 607–609, 653–654
plastic free-energy balance, 617–618, 659–660
slip directions, 584, 585
slip planes, 585
slip systems, 585
slip-rate gradients, 654–656
variational formulation, 658
variational formulation of flow rule, 616–617
virtual-power formulations, 604–606
viscoplastic flow rule, 612–615, 656–657

single crystals, 543
body centered cubic, 584
constitutive theory, 602–603
deformations, 583–585
dislocation densities, 633
elastic distortion, 586
external expenditure of power, 634–665
face centered cubic, 584
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single crystals (Continued )
frame-indifference, 636–637
free-energy imbalance, 596
hexagonal closed packed, 584
internal expenditure of power, 634–665
kinematics, 586–587, 623–625
linear elastic stress-strain law, 597
macroscopic force balance, 637–638
microscopic force balance, 593–596, 637–638
plastic distortion, 586
power-law rate dependence, 601
self-hardening, 601–602
simple rate-dependence, 597–601
slip direction, 586
slip-plane normal, 586
slips, 586
small vs. large deformations, 633
virtual-power formulations, 593–596, 634–638

single shear bands, 521–523
single slip, 598
single species, 374–375

basic equations, 390
constitutive theory, 377–383
frame-indifference, 377–378
thermodynamic restrictions, 378–379, 380–382

single-crystal hypothesis, 624
sinusoidal progressive waves, 313–314
skew tensors, 12–13, 15, 146
slip direction, 586
slip plane, 588, 590–591, 608
slip rates, 624
slip systems, 585
slip-rate gradients, 654–656
small deformations, 297–298
smoothness hypothesis, 459
softening, 443–444
sound speed, 314
spatial control volume, 168, 197–198
spatial curl, 81
spatial curve, 67
spatial description, 80

shock wave, 211
velocity, 80

spatial dislocation balance, 632
spatial divergence, 81
spatial gradient, 81
spatial oscillations, 521
spatial point, 61
spatial tensor field, 95
spatial time-derivative, 81–82
spatial to referential transformations, 175, 199
spatial transport relation, 214
spatial vectors, 62
spatially constant velocity gradient, 87–88
special flux, 364
species density, 364, 369
species mass balance, 364, 369, 375
species supply, 364
species transport, 364, 372–373
species-transport inequality, 379
specific enthalpy, 247
specific free-energy, 194
specific heat, 234, 258, 343

specific volume, 128
spectral decomposition, 28–30
spectral theorem, 28–30
spherical tensors, 10, 16
spin, 86

current configuration as reference, 92–94
linearly viscous incompressible fluids, 265–266
tensor fields, 89–90
transport relations, 115–117

spin axis, 89
spin tensor, 86, 89, 115, 241
spin-transport equation, 266
square root of tensors, 31–34
state relations, 337–339
state restrictions, 233, 234–235
statical equations, 307
steady field, 121
steady flow, 247–248
steady motions, 121–122
stiffness ratio, 445
Stokes’ theorem, 53–56
strain, 33
strain gradient plasticity, 505

backstress, 533
dissipative length scale, 531, 655
energetic length-scale, 530, 657
flow rule, 518, 533
microscopic hyperstress, 513, 525
shear bands, 521
theory of Aifantis, 508, 512
theory of Gurtin and Anand, 524
variational formulation of flow rule, 520, 535

strain tensor, 69–70
Green-St. Venant, 70, 273
Hencky’s, 273
infinitesimal, 273

strain-displacement relation, 302, 356, 410, 422
strain-hardening, 417, 427
strain-softening, 521
streamlined virtual-power principle, 495–496
streamlines, 121
stress, 379

constitutive equations, 354–355
transformation rules, 157–159

stress power, 143
stress relation, 278–279

consequences, 280
second Piola stress, 392, 559
thermodynamic restrictions, 337

stress-entropy modulus, 344
stress-strain curve, 417–419
stress-temperature modulus, 341–342, 357
stretch tensor, 69–70
stretch vector, 71
stretching, 92–94

linearly viscous incompressible fluids, 265–266
tensor fields, 89–90

stretching of deformed fibers, 85
stretching-transport equation, 266
strict dissipativity, 430–431
strict flow-stress admissibility, 459
strictly dissipative material, 338
strong isotropy, 432, 452, 456, 565
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structural frame-indifference, 560–562
structural space, 542

frame-change for, 559–560, 567–568
free-energy imbalance, 553, 556
single crystals, 543, 623
tensor fields, 572

structural tensors, 543, 550, 556
structural vectors, 542, 543, 545, 556
subspaces, 5
substitutional alloys, 398–406

general constitutive equations, 403–404
Larché-Cahn differentiation, 401–403
lattice constraint, 398–399, 406
relative chemical potentials, 399–400
substitutional flux constraint, 399
thermodynamic restrictions, 404–405

substitutional flux constraint, 399
summation convention, 6–8
surface integrals, 109–110, 111
surface tractions, 132–134
switching parameter, 446, 574
symmetric tensors, 12–13, 31–34
symmetric velocity gradient, 87–88
symmetry group, 285–288
symmetry transformation, 286, 347, 386

T
tangent vectors, 67–68
tangential convection, 98
tangential gradient, 590–591
tangentially convecting basis, 99–102
Taylor expansions, 44
Taylor polycrystal, 646–652

constitutive relations, 651–652
free-energy imbalance, 651
kinematics, 646–648
principle of virtual power, 648–650

temperature, 187–188
gradient, 232
natural reference configuration, 349–350

tensile strain, 309
tensile stress, 309
tensor fields, 89–90

contravariant convection, 103–104
contravariant rate, 151–152
corotational convection, 105–106
corotational rate, 151–152
covariant convection, 102–103
covariant rate, 151–152

tensor product of two vectors, 10
tensor(s), 9. See also vector(s)

Burgers, 511
cofactor, 22–23
compliance, 300
components, 11–12
conductivity, 340
determinant, 21–22
deviatoric, 16
eigenvalues, 28–30
eigenvectors, 28–30
elasticity, 298–300
exponential, 669–670
identities, 46–47

identity, 10
inner product, 17–18
invertible, 19–20
linearity of, 9
magnitude, 17–18
matrix, 26–27
orthogonal, 25–26
polar decomposition, 31–34
positive-definite, 31–34
principal invariants, 35–36
product, 13–14
projection, 10
rotation, 69–70
scalar function, 49–51
Schmid tensor, 587
skew, 12–13
spectral decomposition, 28–30
spectral theorem, 28–30
spherical, 10, 16
square root, 31–34
strain, 69–70
stretch, 69–70
symmetric, 12–13, 31–34
third-order, 524
trace, 16
transpose, 12–13
zero, 10

thermal conductivity, 357
thermally simple materials, 475–476
thermodynamic restrictions, 233, 246

compressible viscous fluids, 254
consequences, 338–339
constitutive theory, 335–336
incompressible elastic materials, 321–322
incompressible fluids, 260–261
single species, 378–379, 380–382
stress relation, 278–279
substitutional alloys, 404–405

thermoelasticity
basic field equations, 342–343
basic laws, 333–334

third-order tensors, 524
time-derivative identities, 81–82
trace of tensors, 16
traction condition, 605
transformation laws, 200, 274–275
transformation rules, 242

body forces, 157–159
stress, 157–159

transformation rules for kinematic fields,
148–150

transport relations, 212–214
transpose tensors, 12–13
transverse sound speed, 314
true strain, 418
true stress, 18, 417
Truesdell’s principle of equipresence, 231

V
vector area measures, 626–627
vector cross, 15
vector field

corotational, 105
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vector field (Continued )
normal convection, 99
tangential convection, 98

vector(s), 3. See also tensor(s)
area, 5
axial, 15
Burgers, 509–511, 627–629
components, 6–8
cross product, 3–6
identities, 46–47
inner product, 3–6
material, 62
orthogonality of, 4
spatial, 62
stretch, 71
subspace, 5
tensor product of, 10

velocity, 63
spatial description, 80
spatially constant, 87–88

velocity gradient, 82–83
decomposition, 241
linearly viscous incompressible fluids, 265–266
motion problem, 123
motions, 107–108
symmetric, 87–88

virtual external power, 163
virtual internal power, 163
virtual microscopic force balance, 496–497
virtual power balance, 163
virtual power principle, 163–165, 549–550,

648–650
classical, 487
codirectionality constraint, 493–495
external microscopic force, 496–497
Fleck-Hutchinson principle, 512–515
formulations, 498
free-energy imbalance, 497
general principle, 487–493
global variational inequality, 482
macroscopic force balance, 492, 514, 527, 551,

595, 605, 637
macroscopic traction condition, 637
microscopic force balance, 493, 495, 515, 527,

552, 595, 606, 638

microscopic traction condition, 515, 527, 606,
638

single crystals, 593
streamlined principle, 495–496

virtual velocity field, 163
virtual-power formulations, 525–527

single crystal plasticity, 604–606
single crystals, 593–596

viscoplastic flow rule, 612–615, 656–657
viscosity, 256

bulk, 256
dilatational, 256
dynamic, 256
kinematic, 263
shear, 256, 261

volume, deformation of, 76–77
volume integrals, 109–111
volumetric Jacobian, 62, 78, 212, 328
vortex lines, 120–121
vorticity, 115

transport relations, 115–117
vorticity transport equation, 115, 256–257,

263–264

W
waves, 313–314

acoustic tensor, 314
longitudinal, 313
speed, 247
transverse, 314

Y
yield condition, 420, 421, 426, 432–433, 440, 445,

451, 457, 569, 580
yield function, 440, 569
yield set, 419, 456–459, 564, 565
yield strength, 417
yield surface, 440, 441, 443, 446, 454, 458, 460–464,

501, 569, 573
yield-set hypotheses, 458–459
Young’s modulus, 309

Z
zero tensor, 10


