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Preface

The history of Automatic Control is both ancient and modern. If we adopt
the broad view that an automatic control system is any mechanism by which
an input action and output action are dynamically coupled, then the origins
of this encyclopedia’s subject matter may be traced back more than 2,000
years to the era of primitive time-keeping and the clepsydra water clock
perfected by Ctesibius of Alexandria. In more recent history, frequently cited
examples of feedback control include the automatically refilling reservoirs of
flush toilets (perfected in the late nineteenth century) and the celebrated fly-
ball steam-flow governor described in J.C. Maxwell’s 1868 Royal Society of
London paper—“On Governors.”

Although it is useful to keep the technologies of antiquity in mind, the
history of systems and control as covered in the pages of this encyclopedia
begins in the twentieth century. The history was profoundly influenced by
work of Nyqvist, Black, Bode, and others who were developing amplifier
theory in response to the need to transmit wireline signals over long distances.
This research provided major conceptual advances in feedback and stability
that proved to be of interest in the theory of servomechanisms that was being
developed at the same time. Driven by the need for fast and accurate control of
weapons systems during World War II, automatic control developed quickly
as a recognizable discipline.

While the developments of the first half of the twentieth century are an
important backdrop for the Encyclopedia of Systems and Control, most of the
topics directly treat developments from 1948 to the present. The year 1948
was auspicious for systems and control—and indeed for all the information
sciences. Norbert Wiener’s book Cybernetics was published by Wiley, the
transistor was invented (and given its name), and Shannon’s seminal paper
“A Mathematical Theory of Communication” was published in the Bell
System Technical Journal. In the years that followed, important ideas of
Shannon, Wiener, Von Neumann, Turing, and many others changed the way
people thought about the basic concepts of control systems. The theoretical
advances have propelled industrial and societal impact as well (and vice
versa). Today, advanced control is a crucial enabling technology in domains
as numerous and diverse as aerospace, automotive, and marine vehicles; the
process industries and manufacturing; electric power systems; homes and
buildings; robotics; communication networks; economics and finance; and
biology and biomedical devices.
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vi Preface

It is this incredible broadening of the scope of the field that has motivated
the editors to assemble the entries that follow. This encyclopedia aims to help
students, researchers, and practitioners learn the basic elements of a vast array
of topics that are now considered part of systems and control. The goal is to
provide entry-level access to subject matter together with cross-references to
related topics and pointers to original research and source material.

Entries in the encyclopedia are organized alphabetically by title, and
extensive links to related entries are included to facilitate topical reading—
these links are listed in “Cross-References” sections within entries. All cross-
referenced entries are indicated by a preceding symbol:�. In the electronic
version of the encyclopedia these entries are hyperlinked for ease of access.

The creation of the Encyclopedia of Systems and Control has been a major
undertaking that has unfolded over a 3-year period. We owe an enormous debt
to major intellectual leaders in the field who agreed to serve as topical section
editors. They have ensured the value of the opus by recruiting leading experts
in each of the covered topics and carefully reviewing drafts. It has been a
pleasure also to work with Oliver Jackson and Andrew Spencer of Springer,
who have been unfailingly accommodating and responsive over this time.

As we reflect back over the course of this project, we are reminded of
how it began. Gary Balas, one of the world’s experts in robust control and
aerospace applications, came to one of us after a meeting with Oliver at the
Springer booth at a conference and suggested this encyclopedia—but was
adamant that he wasn’t the right person to lead it. The two of us took the
initiative (ultimately getting Gary to agree to be the section editor for the
aerospace control entries). Gary died last year after a courageous fight with
cancer. Our sense of accomplishment is infused with sadness at the loss of a
close friend and colleague.

We hope readers find this encyclopedia a useful and valuable compendium
and we welcome your feedback.

Boston, USA John Baillieul
Minneapolis, USA Tariq Samad
May 2015
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Active Power Control of Wind Power
Plants for Grid Integration

Lucy Y. Pao
University of Colorado, Boulder, CO, USA

Abstract

Increasing penetrations of intermittent renewable
energy sources, such as wind, on the utility grid
have led to concerns over the reliability of the
grid. One approach for improving grid reliability
with increasing wind penetrations is to actively
control the real power output of wind turbines
and wind power plants. Providing a full range
of responses requires derating wind power plants
so that there is headroom to both increase and
decrease power to provide grid balancing services
and stabilizing responses. Initial results indicate
that wind turbines may be able to provide pri-
mary frequency control and frequency regulation
services more rapidly than conventional power
plants.

Keywords

Active power control; Automatic generation
control; Frequency regulation; Grid balancing;
Grid integration; Primary frequency control;
Wind energy

Balancing Electrical Generation
and Load on the Grid

Wind penetration levels across the world have
increased dramatically, with installed capacity
growing at a mean annual rate of 25 % over
the last decade (Gsanger and Pitteloud 2013).
Some nations in Western Europe, particularly
Denmark, Portugal, Spain, and Germany, have
seen wind provide more than 16 % of their an-
nual electrical energy needs (Wiser and Bolinger
2013). To maintain grid frequency at its nominal
value, the electrical generation must equal the
electrical load on the grid. This balancing has
historically been left up to conventional utilities
with synchronous generators, which can vary
their active power output by simply varying their
fuel input. Grid frequency control is performed
across a number of regimes and time scales, with
both manual and automatic control commands.
Further details can be found in Rebours et al.
(2007) and Ela et al. (2011).

Wind turbines and wind power plants are
now being recognized as having the potential to
meet demanding grid stabilizing requirements
set by transmission system operators (Aho et al.
2013a,b; Buckspan et al. 2012; Ela et al. 2011;
Miller et al. 2011). Recent grid code requirements
have spurred the development of wind turbine
active power control (APC) systems, which allow
wind turbines to participate in grid frequency
regulation and provide stabilizing responses to

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015



2 Active Power Control of Wind Power Plants for Grid Integration

sudden changes in grid frequency. The ability
of wind turbines to provide APC services also
allows them to follow forecast-based power
production schedules.

For a wind turbine to fully participate in grid
frequency control, it must be derated (to Pderated)
with respect to the maximum power (Pmax) that
can be generated given the available wind, allow-
ing for both increases and decreases in power, if
necessary. Wind turbines can derate their power
output by pitching their blades to shed aerody-
namic power or reducing their generator torque
in order to operate at higher-than-optimal rotor
speeds. Wind turbines can then respond at dif-
ferent time scales to provide more or less power
through pitch control (which can provide a power
response within seconds) and generator torque
control (which can provide a power response
within milliseconds).

Wind Turbine Inertial and Primary
Frequency Control

Inertial and primary frequency control is gen-
erally considered to be the first 5–10 s after a
frequency event occurs. In this regime, the gov-
ernors of capable utilities actuate, allowing for
a temporary increase or decrease in the utilities’
power outputs. The primary frequency control
(PFC) response provided by conventional syn-
chronous generators can be characterized by a
droop curve, which relates fluctuations in grid
frequency to a change in power from the utility.
For example, a 3 % droop curve means that a 3 %
change in grid frequency yields a 100 % change
in commanded power.

Although modern wind turbines do not in-
herently provide inertial or primary frequency
control responses because their power electronics
impart a buffer between their generators and the
grid, such responses can be produced through
careful design of the wind turbine control sys-
tems. While the physical properties of a con-
ventional synchronous generator yield a static
droop characteristic, a wind turbine can be con-
trolled to provide a primary frequency response
via either a static or time-varying droop curve.

Active Power Control of Wind Power Plants for Grid
Integration, Fig. 1 Simulation results showing the ca-
pability of wind power plants to provide APC services
on a small-scale grid model. The total grid size is 3 GW,
and a frequency event is induced due to the sudden
active power imbalance when 5 % of generation is taken
offline at time = 200 s. Each wind power plant is derated
to 90 % of its rated capacity. The system response with
all conventional generation (no wind) is compared to the
cases when there are wind power plants on the grid at
10 % penetration (i) with a baseline control system (wind
baseline) where wind does not provide APC services and
(ii) with an APC system (wind APC) that uses a 3 % droop
curve where either 50 % or 100 % of the wind power plants
provide PFC

A time-varying droop curve can be designed to be
more aggressive when the magnitude of the rate
of change of frequency of the grid is larger.

Figure 1 shows a simulation of a grid re-
sponse under different scenarios when 5 % of
the generating capacity suddenly goes offline.
When the wind power plant (10 % of the gen-
eration on the grid) is operating with its normal
baseline control system that does not provide
APC services, the frequency response is worse
than the no-wind scenario, due to the reduced
amount of conventional generation in the wind-
baseline scenario that can provide power control
services. However, compared to both the no-wind
and wind-baseline cases, using PFC with a droop
curve results in the frequency decline being ar-
rested at a minimum (nadir) frequency fnadir that
is closer to the nominal fnom D 60Hz frequency
level; further, the steady-state frequency fss after
the PFC response is also closer to fnom. It is
important to prevent the difference fnom �fnadir
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from exceeding a threshold that can lead to un-
derfrequency load shedding (UFLS) or rolling
blackouts. The particular threshold varies across
utility grids, but the largest such threshold in
North America is 1.5 Hz.

Stability issues arising from the altered control
algorithms must be analyzed (Buckspan et al.
2013). The trade-offs between aggressive pri-
mary frequency control and resulting structural
loads also need to be evaluated carefully. Ini-
tial research shows that potential grid support
can be achieved while not causing any increases
in structural loading and hence fatigue damage
and operations and maintenance costs (Buckspan
et al. 2012).

Wind Turbine Automatic Generation
Control

Secondary frequency control, also known as au-
tomatic generation control (AGC), occurs on a
slower time scale than PFC. AGC commands can
be generated from highly damped proportional
integral (PI) controllers or logic controllers to
regulate grid frequency and are used to control
the power output of participating power plants. In
many geographical regions, frequency regulation
services are compensated through a competitive
market, where power plants that provide faster
and more accurate AGC command tracking are
paid more.

An active power control system that combines
both primary and secondary/AGC frequency con-
trol capabilities has recently been detailed in Aho
et al. (2013a). Figure 2 presents initial exper-
imental field test results of this active power
controller, in response to prerecorded frequency
events, showing how responsive wind turbines
can be to both manual derating commands as well
as rapidly changing automatic primary frequency
control commands generated via a droop curve.
Overall, results indicate that wind turbines can
respond more rapidly than conventional power
plants. However, increasing the power control
and regulation performance of a wind turbine
should be carefully considered due to a number
of complicating factors, including coupling with

existing control loops, a desire to limit actuator
usage and structural loading, and wind variability.

Active Power Control of Wind Power
Plants

A wind power plant, often referred to as a wind
farm, consists of many wind turbines. In wind
power plants, wake effects can reduce generation
in downstream turbines to less than 60 % of the
lead turbine (Barthelmie et al. 2009; Porté-Agel
et al. 2013). There are many emerging areas
of active research, including the modeling of
wakes and wake effects and how these models
can then be used to coordinate the control of
individual turbines so that the overall wind power
plant can reliably track the desired power ref-
erence command. A wind farm controller can
be interconnected with the utility grid, trans-
mission system operator (TSO), and individual
turbines as shown in Fig. 3. By properly account-
ing for the wakes, wind farm controllers can
allocate appropriate power reference commands
to the individual wind turbines. Individual tur-
bine generator torque and blade pitch controllers,
as discussed earlier, can be designed so that
each turbine follows the power reference com-
mand issued by the wind farm controller. Meth-
ods for intelligent, distributed control of entire
wind farms to rapidly respond to grid frequency
disturbances could significantly reduce frequency
deviations and improve recovery speed to such
disturbances.

Combining Techniques with Other
Approaches for Balancing the Grid

Ultimately, active power control of wind turbines
and wind power plants should be combined
with both demand-side management and storage
to provide a more comprehensive solution
that enables balancing electrical generation
and electrical load with large penetrations
of wind energy on the grid. Demand-side
management (Callaway and Hiskens 2011; Kowli
and Meyn 2011; Palensky and Dietrich 2011)
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Active Power Control of Wind Power Plants for Grid
Integration, Fig. 2 The frequency data input and power
that is commanded and generated during a field test
with a 550 kW research wind turbine at the US National
Renewable Energy Laboratory (NREL). The frequency
data was recorded on the Electric Reliability Council of
Texas (ERCOT) interconnection (data courtesy of Vahan

Gevorgian, NREL). The upper plot shows the grid fre-
quency, which is passed through a 5 % droop curve with
a deadband to generate a power command. The high-
frequency fluctuations in the generated power would be
smoothed when aggregating the power output of an entire
wind power plant

Active Power Control of Wind Power Plants for Grid
Integration, Fig. 3 Schematic showing the communica-
tion and coupling between the wind farm control system,
individual wind turbines, utility grid, and the grid operator.

The wind farm controller uses measurements of the utility
grid frequency and automatic generation control power
command signals from the grid operator to determine a
power reference for each turbine in the wind farm
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aims to alter the demand in order to mitigate peak
electrical loads and hence to maintain sufficient
control authority among generating units. As
more effective and economical energy storage
solutions (Pickard and Abbott 2012) at the power
plant scale are developed, wind (and solar) energy
can then be stored when wind (and solar) energy
availability is not well matched with electrical
demand. Advances in wind forecasting (Giebel
et al. 2011) will also improve wind power
forecasts to facilitate more accurate scheduling
of larger amounts of wind power on the grid.

Cross-References

�Control of Fluids and Fluid-Structure Interac-
tions

�Control Structure Selection
�Coordination of Distributed Energy Resources

for Provision of Ancillary Services: Architec-
tures and Algorithms

�Electric Energy Transfer and Control via Power
Electronics

�Networked Control Systems: Architecture and
Stability Issues

� Power System Voltage Stability
� Small Signal Stability in Electric Power Sys-

tems

Recommended Reading

A recent comprehensive report on active power
control that covers topics ranging from control
design to power system engineering to economics
can be found in Ela et al. (2014) and the refer-
ences therein.
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Adaptive Control of Linear
Time-Invariant Systems

Petros A. Ioannou
University of Southern California, Los Angeles,
CA, USA

Abstract

Adaptive control of linear time-invariant (LTI)
systems deals with the control of LTI systems
whose parameters are constant but otherwise
completely unknown. In some cases, large norm
bounds as to where the unknown parameters
are located in the parameter space are also
assumed to be known. In general, adaptive
control deals with LTI plants which cannot
be controlled with fixed gain controllers,
i.e., nonadaptive control methods, and their
parameters even though assumed constant for
design and analysis purposes may change
over time in an unpredictable manner. Most
of the adaptive control approaches for LTI
systems use the so-called certainty equivalence
principle where a control law motivated from
the known parameter case is combined with
an adaptive law for estimating on line the
unknown parameters. The control law could
be associated with different control objectives
and the adaptive law with different parameter
estimation techniques. These combinations give
rise to a wide class of adaptive control schemes.
The two popular control objectives that led to a
wide range of adaptive control schemes include
model reference adaptive control (MRAC) and
adaptive pole placement control (APPC). In
MRAC, the control objective is for the plant
output to track the output of a reference model,
designed to represent the desired properties
of the plant, for any reference input signal.
APPC is more general and is based on control
laws whose objective is to set the poles of
the closed loop at desired locations chosen
based on performance requirements. Another
class of adaptive controllers for LTI systems
that involves ideas from MRAC and APPC

is based on multiple models, search methods,
and switching logic. In this class of schemes,
the unknown parameter space is partitioned to
smaller subsets. For each subset, a parameter
estimator or a stabilizing controller is designed
or a combination of the two. The problem then
is to identify which subset in the parameter
space the unknown plant model belongs to and/or
which controller is a stabilizing one and meets the
control objective. A switching logic is designed
based on different considerations to identify
the most appropriate plant model or controller
from the list of candidate plant models and/or
controllers. In this entry, we briefly describe the
above approaches to adaptive control for LTI
systems.

Keywords

Adaptive pole placement control; Direct MRAC;
Indirect MRAC; LTI systems; Model reference
adaptive control; Robust adaptive control

Model Reference Adaptive Control

In model reference control (MRC), the desired
plant behavior is described by a reference model
which is simply an LTI system with a transfer
function Wm.s/ and is driven by a reference
input. The controller transfer function C.s; ��/,
where �� is a vector with the coefficients of
C.s/, is then developed so that the closed-loop
plant has a transfer function equal toWm.s/. This
transfer function matching guarantees that the
plant will match the reference model response for
any reference input signal. In this case the plant
transfer function Gp.s; ��

p /, where ��
p is a vector

with all the coefficients of Gp.s/, together with
the controller transfer function C.s; ��/ should
lead to a closed-loop transfer function from the
reference input r to the plant output yp that is
equal to Wm.s/, i.e.,

yp.s/

r.s/
D Wm.s/ D ym.s/

r.s/
; (1)
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where ym is the output of the reference model.
For this transfer matching to be possible, Gp.s/
and Wm.s/ have to satisfy certain assumptions.
These assumptions enable the calculation of the
controller parameter vector �� as

�� D F.��
p /; (2)

where F is a function of the plant parameters
��
p , to satisfy the matching equation (1). The

function in (2) has a special form in the case
of MRC that allows the design of both direct
and indirect MRAC. For more general classes
of controller structures, this is not possible in
general as the function F is nonlinear. This trans-
fer function matching guarantees that the track-
ing error e1 D yp � ym converges to zero for
any given reference input signal r . If the plant
parameter vector ��

p is known, then the controller
parameters �� can be calculated using (2), and
the controller C.s; ��/ can be implemented. We
are considering the case where ��

p is unknown.
In this case, the use of the certainty equivalence
(CE) approach, (Astrom and Wittenmark 1995;
Egardt 1979; Ioannou and Fidan 2006; Ioannou
and Kokotovic 1983; Ioannou and Sun 1996;
Landau 1979; Landau et al. 1998; Morse 1996;
Narendra and Annaswamy 1989; Narendra and
Balakrishnan 1997; Sastry and Bodson 1989;
Stefanovic and Safonov 2011; Tao 2003) where
the unknown parameters are replaced with their
estimates, leads to the adaptive control scheme
referred to as indirect MRAC, shown in Fig. 1a.

The unknown plant parameter vector ��
p is es-

timated at each time t denoted by �p.t/, using an
online parameter estimator referred to as adaptive
law. The plant parameter estimate �p.t/ at each

time t is then used to calculate the controller
parameter vector �.t/ D F.�p.t// used in the
controller C.s; �/. This class of MRAC is called
indirect MRAC, because the controller parame-
ters are not updated directly, but calculated at
each time t using the estimated plant parameters.
Another way of designing MRAC schemes is to
parameterize the plant transfer function in terms
of the desired controller parameter vector ��.
This is possible in the MRC case, because the
structure of the MRC law is such that we can use
(2) to write

��
p D F�1.��/; (3)

where F �1 is the inverse of the map-
ping F.�/, and then express Gp.s; �

�
p / D

Gp.s; F
�1.��// D NGp.s; ��/. The adaptive law

for estimating �� online can now be developed by
using yp D NGp.s; ��/up to obtain a parametric
model that is appropriate for estimating the
controller vector �� as the unknown parameter
vector. The MRAC can then be developed using
the CE approach as shown in Fig. 1b. In this case,
the controller parameter �.t/ is updated directly
without any intermediate calculations, and for
this reason, the scheme is called direct MRAC.

The division of MRAC to indirect and direct
is, in general, unique to MRC structures, and it is
possible due to the fact that the inverse maps in
(2) and (3) exist which is a direct consequence
of the control objective and the assumptions the
plant and reference model are required to satisfy
for the control law to exist. These assumptions
are summarized below:
Plant Assumptions: Gp.s/ is minimum phase,

i.e., has stable zeros, its relative degree, n� D

Adaptive Control of Linear Time-Invariant Systems, Fig. 1 Structure of (a) indirect MRAC, (b) direct MRAC
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number of poles�number of zeros, is known
and an upper bound n on its order is also
known. In addition, the sign of its high-
frequency gain is known even though it can be
relaxed with additional complexity.

Reference Model Assumptions: Wm.s/ has stable
poles and zeros, its relative degree is equal to
n� that of the plant, and its order is equal or
less to the one assumed for the plant, i.e., of n.
The above assumptions are also used to meet

the control objective in the case of known pa-
rameters, and therefore the minimum phase and
relative degree assumptions are characteristics of
the control objective and do not arise because
of adaptive control considerations. The relative
degree matching is used to avoid the need to
differentiate signals in the control law. The mini-
mum phase assumption comes from the fact that
the only way for the control law to force the
closed-loop plant transfer function to be equal
to that of the reference model is to cancel the
zeros of the plant using feedback and replace
them with those of the reference model using a
feedforward term. Such zero pole cancelations
are possible if the zeros are stable, i.e., the plant
is minimum phase; otherwise stability cannot be
guaranteed for nonzero initial conditions and/or
inexact cancelations.

The design of MRAC in Fig. 1 has additional
variations depending on how the adaptive law
is designed. If the reference model is chosen to
be strictly positive real (SPR) which limits its
transfer function and that of the plant to have
relative degree 1, the derivation of adaptive law
and stability analysis is fairly straightforward,
and for this reason, this class of MRAC schemes
attracted a lot of interest. As the relative degree
changes to 2, the design becomes more complex
as in order to use the SPR property, the CE
control law has to be modified by adding an extra
nonlinear term. The stability analysis remains to
be simple as a single Lyapunov function can be
used to establish stability. As the relative degree
increases further, the design complexity increases
by requiring the addition of more nonlinear terms
in the CE control law (Ioannou and Fidan 2006;
Ioannou and Sun 1996). The simplicity of using
a single Lyapunov function analysis for stability

remains however. This approach covers both di-
rect and indirect MRAC and lead to adaptive laws
which contain no normalization signals (Ioannou
and Fidan 2006; Ioannou and Sun 1996). A more
straightforward design approach is based on the
CE principle which separates the control design
from the parameter estimation part and leads to a
much wider class of MRAC which can be direct
or indirect. In this case, the adaptive laws need
to be normalized for stability, and the analysis is
far more complicated than the approach based on
SPR with no normalization. An example of such a
direct MRAC scheme for the case of known sign
of the high-frequency gain which is assumed to
be positive for both plant and reference model is
listed below:
Control law:

up D �T1 .t/
˛.s/

�.s/
up C �T2

˛.s/

�.s/
yp C �3.t/yp

Cc0.t/r D �T .t/!; (4)

where ˛ , ˛n�2.s/ D Œsn�2; sn�3; : : : ; s; 1�T
for n � 2, and ˛.s/ , 0 for n D 1, and �.s/
is a monic polynomial with stable roots and
degree n � 1 having numerator of Wm.s/ as a
factor.

Adaptive law:
P� D � "�; (5)

where � is a positive definite matrix referred
to as the adaptive gain and P� D �"	, " D
e1��	
m2s

, m2
s D 1 C �T � C u2f , 	 D �T � C uf ,

� D �Wm.s/!, and uf D Wm.s/up.
The stability properties of the above direct

MRAC scheme which are typical for all classes
of MRAC are the following (Ioannou and Fidan
2006; Ioannou and Sun 1996): (i) All signals
in the closed-loop plant are bounded, and the
tracking error e1 converges to zero asymptotically
and (ii) if the plant transfer function contains no
zero pole cancelations and r is sufficiently rich
of order 2n, i.e., it contains at least n distinct
frequencies, then the parameter error j Q� j D
j� � ��j and the tracking error e1 converge to
zero exponentially fast.
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Adaptive Pole Placement Control

Let us consider the SISO LTI plant:

yp D Gp.s/up; Gp.s/ D Zp.s/

Rp.s/
; (6)

where Gp.s/ is proper and Rp.s/ is a monic
polynomial. The control objective is to choose
the plant input up so that the closed-loop poles
are assigned to those of a given monic Hurwitz
polynomial A�.s/, and yp is required to follow
a certain class of reference signals ym assumed
to satisfy Qm.s/ym D 0 where Qm.s/ is known
as the internal model of ym and is designed to
have all roots in Refsg � 0 with no repeated
roots on the j!-axis. The polynomial A�.s/, re-
ferred to as the desired closed-loop characteristic
polynomial, is chosen based on the closed-loop
performance requirements. To meet the control
objective, we make the following assumptions
about the plant:

P1. Gp.s/ is strictly proper with known de-
gree, and Rp.s/ is a monic polynomial whose
degree n is known and Qm.s/Zp.s/ and Rp.s/
are coprime.

Assumption P1 allows Zp and Rp to be non-
Hurwitz in contrast to the MRAC case where Zp
is required to be Hurwitz.

The design of the APPC scheme is based
on the CE principle. The plant parameters are
estimated at each time t and used to calculate the
controller parameters that meet the control ob-
jective for the estimated plant as follows: Using
(6) the plant equation can be expressed in a
form convenient for parameter estimation via the
model (Goodwin and Sin 1984; Ioannou and
Fidan 2006; Ioannou and Sun 1996):

z D ��
p �;

where z D sn

�p.s/
yp , ��

p D Œ��
b
T ; ��

a
T �T ,

� D Œ
˛Tn�1.s/

�p.s/
up;�˛Tn�1.s/

�p.s/
yp�

T , ˛n�1 D Œsn�1;
: : : ; s; 1�T , ��

a D Œan�1; : : : ; a0�T , ��
b D

Œbn�1; : : : ; b0�T , and �p.s/ is a Hurwitz monic
design polynomial. As an example of a parameter
estimation algorithm, we consider the gradient
algorithm

P�p D � "�; " D z � �Tp �

m2
s

; m2
s D 1C �T �;

(7)

where � D � T > 0 is the adaptive gain
and �p D Œ Obn�1; : : : ; Ob0; Oan�1; : : : ; Oa0�T are the
estimated plant parameters which can be used to
form the estimated plant polynomials ORp.s; t/ D
sn C Oan�1.t/sn�1 C : : : C Oa1.t/s C Oa0.t/ and
OZp.s; t/ D Obn�1.t/sn�1 C : : : C Ob1.t/s C Ob0.t/

of Rp.s/ and Zp.s/, respectively, at each time t .
The adaptive control law is given as

up D
�
�.s/� OL.s; t/Qm.s/

� 1

�.s/
up

� OP .s; t/ 1

�.s/
.yp � ym/; (8)

where OL.s; t/ and OP .s; t/ are obtained by solv-
ing the polynomial equation OL.s; t/ � Qm.s/ �
ORp.s; t/ C OP.s; t/ � OZp.s; t/ D A�.s/ at each

time t . The operation X.s; t/ � Y.s; t/ denotes a
multiplication of polynomials where s is simply
treated as a variable. The existence and unique-
ness of OL.s; t/ and OP.s; t/ is guaranteed pro-
vided ORp.s; t/ � Qm.s/ and OZp.s; t/ are coprime
at each frozen time t . The adaptive laws that
generate the coefficients of ORp.s; t/ and OZp.s; t/
cannot guarantee this property, which means that
at certain points in time, the solution OL.s; t/,
OP.s; t/ may not exist. This problem is known

as the stabilizability problem in indirect APPC
and further modifications are needed in order to
handle it (Goodwin and Sin 1984; Ioannou and
Fidan 2006; Ioannou and Sun 1996). Assuming
that the stabilizability condition holds at each
time t , it can be shown (Goodwin and Sin 1984;
Ioannou and Fidan 2006; Ioannou and Sun 1996)
that all signals are bounded and the tracking
error converges to zero with time. Other indi-
rect adaptive pole placement control schemes
include adaptive linear quadratic (Ioannou and
Fidan 2006; Ioannou and Sun 1996). In principle
any nonadaptive control scheme can be made
adaptive by replacing the unknown parameters
with their estimates in the calculation of the
controller parameters. The design of direct APPC
schemes is not possible in general as the map
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between the plant and controller parameters is
nonlinear, and the plant parameters cannot be
expressed as a convenient function of the con-
troller parameters. This prevents parametrization
of the plant transfer function with respect to the
controller parameters as done in the case of MRC.
In special cases where such parametrization is
possible such as in MRAC which can be viewed
as a special case of APPC, the design of direct
APPC is possible. Chapters on �Adaptive Con-
trol, Overview, �Robust Adaptive Control, and
�History of Adaptive Control provide additional
information regarding MRAC and APPC.

Search Methods, Multiple Models,
and Switching Schemes

One of the drawbacks of APPC is the stabilizabil-
ity condition which requires the estimated plant
at each time t to satisfy the detectability and
stabilizability condition that is necessary for the
controller parameters to exist. Since the adaptive
law cannot guarantee such a property, an ap-
proach emerged that involves the pre-calculation
of a set of controllers based on the partition-
ing of the plant parameter space. The problem
then becomes one of identifying which one of
the controllers is the most appropriate one. The
switching to the “best” possible controller could
be based on some logic that is driven by some
cost index, multiple estimation models, and other
techniques (Fekri et al. 2007; Hespanha et al.
2003; Kuipers and Ioannou 2010; Morse 1996;
Narendra and Balakrishnan 1997; Stefanovic and
Safonov 2011). One of the drawbacks of this ap-
proach is that it is difficult if at all possible to find
a finite set of stabilizing controllers that cover
the whole unknown parameter space especially
for high-order plants. If found its dimension may
be so large that makes it impractical. Another
drawback that is present in all adaptive schemes
is that in the absence of persistently exciting
signals which guarantee that the input/output data
have sufficient information about the unknown
plant parameters, there is no guarantee that the
controller the scheme converged to is indeed a
stabilizing one. In other words, if switching is

disengaged or the adaptive law is switched off,
there is no guarantee that a small disturbance
will not drive the corresponding LTI scheme
unstable. Nevertheless these techniques allow the
incorporation of well-established robust control
techniques in designing a priori the set of con-
troller candidates. The problem is that if the
plant parameters change in a way not accounted
for a priori, no controller from the set may be
stabilizing leading to an unstable system.

Robust Adaptive Control

The MRAC and APPC schemes presented above
are designed for LTI systems. Due to the adaptive
law, the closed-loop system is no longer LTI but
nonlinear and time varying. It has been shown
using simple examples that the pure integral ac-
tion of the adaptive law could cause parameter
drift in the presence of small disturbances and/or
unmodeled dynamics (Ioannou and Fidan 2006;
Ioannou and Kokotovic 1983; Ioannou and Sun
1996) which could then excite the unmodeled
dynamics and lead to instability. Modifications
to counteract these possible instabilities led to
the field of robust adaptive control whose focus
was to modify the adaptive law in order to guar-
antee robustness with respect to disturbances,
unmodeled dynamics, time-varying parameters,
classes of nonlinearities, etc., by using techniques
such as normalizing signals, projection, fixed and
switching sigma modification, etc.
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�Robust Adaptive Control
�Switching Adaptive Control
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Abstract

Adaptive control describes a range of techniques
for altering control behavior using measured sig-
nals to achieve high control performance under
uncertainty. The theory and practice of adaptive

control has matured in many areas. This entry
gives an overview of adaptive control with point-
ers to more detailed specific topics.

Keywords

Adaptive control; Estimation

Introduction

What Is Adaptive Control
Feedback control has a long history of using sens-
ing, decision, and actuation elements to achieve
an overall goal. The general structure of a control
system may be illustrated in Fig. 1. It has long
been known that high fidelity control relies on
knowledge of the system to be controlled. For
example, in most cases, knowledge of the plant
gain and/or time constants (represented by �p in
Fig. 1) is important in feedback control design.
In addition, disturbance characteristics (e.g., fre-
quency of a sinusoidal disturbance), �d in Fig. 1,
are important in feedback compensator design.

Many control design and synthesis techniques
are model based, using prior knowledge of both
model structure and parameters. In other cases,
a fixed controller structure is used, and the con-
troller parameters, �C in Fig. 1, are tuned em-
pirically during control system commissioning.

Noise

MeasurementsActuation

Reference Signals

Disturbances
D (qd)

Plant
G (qp)

Control
K(qc)

u (t)

r (t)

n(t) d (t)
y (t)

Adaptive Control, Overview, Fig. 1 General control
and adaptive control diagram
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However, if the plant parameters vary widely with
time or have large uncertainties, these approaches
may be inadequate for high-performance control.

There are two main ways of approaching high-
performance control with unknown plant and
disturbance characteristics:
1. Robust control (�Optimization Based Robust

Control), wherein a controller is designed to
perform adequately despite the uncertainties.
Variable structure control may have very high
levels of robustness in some cases and there-
fore is a special class of robust nonlinear
control.

2. Adaptive control, where the controller learns
and adjusts its strategy based on measured
data. This frequently takes the form where the
controller parameters, �C , are time-varying
functions that depend on the available data
(y.t/, u.t/, and r.t/). Adaptive control has
close links to intelligent control (including
neural control (�Neural Control and Approx-
imate Dynamic Programming), where specific
types of learning are considered) and also
to stochastic adaptive control (� Stochastic
Adaptive Control).
Robust control is most useful when there are

large unmodeled dynamics (i.e., structural un-
certainties), relatively high levels of noise, or
rapid and unpredictable parameter changes. Con-
versely, for slow or largely predictable parame-
ter variations, with relatively well-known model
structure and limited noise levels, adaptive con-
trol may provide a very useful tool for high-
performance control (Åström and Wittenmark
2008).

Varieties of Adaptive Control

One practical variant of adaptive control is con-
troller auto-tuning (�Autotuning). Auto-tuning
is particularly useful for PID and similar con-
trollers and involves a specific phase of signal
injection, followed by analysis, PID gain compu-
tation, and implementation. These techniques are
an important aid to commissioning and mainte-
nance of distributed control systems.

There are also large classes of adaptive
controllers that are continuously monitoring the
plant input-output signals to adjust the strategy.
These adjustments are often parametrized by a
relatively small number of coefficients, �C . These
include schemes where the controller parameters
are directly adjusted using measureable data
(also referred to as “implicit,” since there
is no explicit plant model generated). Early
examples of this often included model reference
adaptive control (�Model Reference Adaptive
Control). Other schemes (Middleton et al. 1988)
explicitly estimate a plant model �P ; thereafter,
performing online control design and, therefore,
the adaptation of controller parameters �C
are indirect. This then led on to a range of
other adaptive control techniques applicable to
linear systems (�Adaptive Control of Linear
Time-Invariant Systems).

There have been significant questions con-
cerning the sensitivity of some adaptive control
algorithms to unmodeled dynamics, time-varying
systems, and noise (Ioannou and Kokotovic
1984; Rohrs et al. 1985). This prompted a very
active period of research to analyze and redesign
adaptive control to provide suitable robustness
(�Robust Adaptive Control) (e.g., Anderson
et al. 1986; Ioannou and Sun 2012) and parameter
tracking for time-varying systems (e.g., Kreis-
selmeier 1986; Middleton and Goodwin 1988).

Work in this area further spread to nonpara-
metric methods, such as switching, or super-
visory adaptive control (� Switching Adaptive
Control) (e.g., Fu and Barmish 1986; Morse et al.
1992). In addition, there has been a great deal of
work on the more difficult problem of adaptive
control for nonlinear systems (�Nonlinear Adap-
tive Control).

A further adaptive control technique is ex-
tremum seeking control (�Extremum Seeking
Control). In extremum seeking (or self optimiz-
ing) control, the desired reference for the system
is unknown, instead we wish to maximize (or
minimize) some variable in the system (Ariyur
and Krstic 2003). These techniques have quite
distinct modes of operation that have proven
important in a range of applications.
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A final control algorithm that has nonpara-
metric features is iterative learning control
(� Iterative Learning Control) (Amann et al.
1996; Moore 1993). This control scheme
considers a system with a highly structured,
namely, repetitive finite run, control problem.
In this case, by taking a nonparametric approach
of utilizing information from previous run(s), in
many cases, near-perfect asymptotic tracking can
be achieved.

Adaptive control has a rich history (�History
of Adaptive Control) and has been established
as an important tool for some classes of control
problems.
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Abstract

This chapter discusses advanced cruise control
automotive technologies, including adaptive
cruise control (ACC) in which spacing control,
speed control, and a number of transitional
maneuvers must be performed. The ACC system
must satisfy difficult performance requirements
of vehicle stability and string stability. The
technical challenges involved and the control
design techniques utilized in ACC system design
are presented.
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Introduction

Adaptive cruise control (ACC) is an extension of
cruise control. An ACC vehicle includes a radar,
a lidar, or other sensor that measures the distance
to any preceding vehicle in the same lane on the
highway. In the absence of preceding vehicles,
the speed of the car is controlled to a driver-
desired value. In the presence of a preceding
vehicle, the controller determines whether the ve-
hicle should switch from speed control to spacing
control. In spacing control, the distance to the
preceding car is controlled to a desired value.

A different form of advanced cruise control is
a forward collision avoidance (FCA) system. An
FCA system uses a distance sensor to determine
if the vehicle is approaching a car ahead too
quickly and will automatically apply brakes to
minimize the chances of a forward collision.
For the 2013 model year, 29 % vehicles have
forward collision warning as an available option
and 12 % include autonomous braking for a full
FCA system. Examples of models in which an
FCA system is standard are the Mercedes Benz
G-class and the Volvo S-60, S-80, XC-60, and
XC-70.

It should be noted that an FCA system does
not involve steady-state vehicle following. An
ACC system on the other hand involves control of
speed and spacing to desired steady-state values.

ACC systems have been in the market in Japan
since 1995, in Europe since 1998, and in the US
since 2000. An ACC system provides enhanced
driver comfort and convenience by allowing ex-
tended operation of the cruise control option even
in the presence of other traffic.

Controller Architecture

The ACC system has two modes of steady state
operation: speed control and vehicle following
(i.e., spacing control). Speed control is traditional
cruise control and is a well-established tech-
nology. A proportional-integral controller based
on feedback of vehicle speed (calculated from
rotational wheel speeds) is used in cruise control
(Rajamani 2012).

desired
acceleration

Upper
Controller

Lower
Controller

actuator inputs

fault
messages

Adaptive Cruise Control, Fig. 1 Structure of longitudi-
nal control system

Controller design for vehicle following is the
primary topic of discussion in the sections titled
“Vehicle Following Requirements” and “String
Stability Analysis” in this chapter.

Transitional maneuvers and transitional con-
trol algorithms are discussed in the section titled
“Transitional Maneuvers” in this chapter.

The longitudinal control system architecture
for an ACC vehicle is typically designed to be
hierarchical, with an upper-level controller and a
lower-level controller, as shown in Fig. 1.

The upper-level controller determines the de-
sired acceleration for the vehicle. The lower level
controller determines the throttle and/or brake
commands required to track the desired accelera-
tion. Vehicle dynamic models, engine maps, and
nonlinear control synthesis techniques are used
in the design of the lower controller (Rajamani
2012). This chapter will focus only on the design
of the upper controller, also known as the ACC
controller.

As far as the upper-level controller is con-
cerned, the plant model for control design is

Rxi D u (1)

where the subscript idenotes the i th car in a string
of consecutive ACC cars. The acceleration of
the car is thus assumed to be the control input.
However, due to the finite bandwidth associated
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xi
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Adaptive Cruise Control,
Fig. 2 String of adaptive
cruise control vehicles

with the lower level controller, each car is ac-
tually expected to track its desired acceleration
imperfectly. The objective of the upper level con-
troller design is therefore stated as that of meeting
required performance specifications robustly in
the presence of a first order lag in the lower-level
controller performance:

Rxi D 1


s C 1
Rxi_des D 1


s C 1
ui : (2)

Equation (1) is thus assumed to be the nominal
plant model while the performance specifications
have to be met even if the actual plant model were
given by Eq. (2). The lag 
 typically has a value
between 0.2 and 0.5 s (Rajamani 2012).

Vehicle Following Requirements

In the vehicle following mode of operation, the
ACC vehicle maintains a desired spacing from
the preceding vehicle. The two important perfor-
mance specifications that the vehicle following
control system must satisfy are: individual vehi-
cle stability and string stability.
(a) Individual vehicle stability
Consider a string of vehicles on the highway
using a longitudinal control system for vehicle
following, as shown in Fig. 2. Let xi be the
location of the i th vehicle measured from an
inertial reference. The spacing error for the i th
vehicle (the ACC vehicle under consideration) is
then defined as

ıi D xi � xi�1 C Ldes: (3)

Here, Ldes is the desired spacing and includes
the preceding vehicle length `i�1. Ldes could be
chosen as a function of variables such as the

vehicle speed Pxi . The ACC control law is said to
provide individual vehicle stability if the spacing
error of the ACC vehicle converges to zero when
the preceding vehicle is operating at constant
speed:

Rxi�1 ! 0 ) ıi ! 0: (4)

(b) String stability
The spacing error is expected to be non-zero
during acceleration or deceleration of the preced-
ing vehicle. It is important then to describe how
the spacing error would propagate from vehicle
to vehicle in a string of ACC vehicles during
acceleration. The string stability of a string of
ACC vehicles refers to a property in which spac-
ing errors are guaranteed not to amplify as they
propagate towards the tail of the string (Swaroop
and Hedrick 1996).

String Stability Analysis

In this section, mathematical conditions that en-
sure string stability are provided.

Let ıi and ıi�1 be the spacing errors of con-
secutive ACC vehicles in a string. Let OH.s/ be
the transfer function relating these errors:

OH.s/ D
Oıi

Oıi�1
.s/: (5)

The following two conditions can be used to
determine if the system is string stable:
(a) The transfer function OH.s/ should satisfy

��� OH.s/
���1 � 1: (6)
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(b) The impulse response function h.t/ corre-
sponding to OH.s/ should not change sign
(Swaroop and Hedrick 1996), i.e.,

h.t/ > 0 8t � 0: (7)

The reasons for these two requirements to be
satisfied are described in Rajamani (2012).
Roughly speaking, Eq. (6) ensures that jjıi jj2 �
jjıi�1jj2, which means that the energy in the
spacing error signal decreases as the spacing
error propagates towards the tail of the string.
Equation (7) ensures that the steady state spacing
errors of the vehicles in the string have the same
sign. This is important because a positive spacing
error implies that a vehicle is closer than desired
while a negative spacing error implies that it is
further apart than desired. If the steady state value
of ıi is positive while that of ıi�1 is negative, then
this might be dangerous due to the vehicle being
closer, even though in terms of magnitude ıi
might be smaller than ıi�1.

If conditions (6) and (7) are both satisfied, then
jjıi jj1 � jjıi�1jj1 (Rajamani 2012).

Constant Inter-vehicle Spacing

The ACC system only utilizes on board sensors
like radar and does not depend on inter-vehicle
communication from other vehicles. Hence the
only variables available as feedback for the up-
per controller are inter-vehicle spacing, relative
velocity and the ACC vehicle’s own velocity.

Under the constant spacing policy, the spacing
error of the i th vehicle was defined in Eq. (3).

If the acceleration of the vehicle can be instan-
taneously controlled, then it can be shown that a
linear control system of the type

Rxi D �kpıi � kv Pıi (8)

results in the following closed-loop transfer func-
tion between consecutive spacing errors

OH.s/ D
Oıi

Oıi�1
.s/ D kp C kvs

s2 C kvs C kp
: (9)

Equation (9) describes the propagation of spacing
errors along the vehicle string.

All positive values of kp and kv guarantee
individual vehicle stability. However, it can be
shown that there are no positive values of kp
and kv for which the magnitude of G.s/ can be
guaranteed to be less than unity at all frequencies.
The details of this proof are available in Rajamani
(2012).

Thus, the constant spacing policy will always
be string unstable.

Constant Time-Gap Spacing

Since the constant spacing policy is unsuitable
for autonomous control, a better spacing policy
that can ensure both individual vehicle stability
and string stability must be used. The constant
time-gap (CTG) spacing policy is such a spacing
policy. In the CTG spacing policy, the desired
inter-vehicle spacing is not constant but varies
with velocity. The spacing error is defined as

ıi D xi � xi�1 C Ldes C h Pxi : (10)

The parameter h is referred to as the time-gap.
The following controller based on the CTG

spacing policy can be used to regulate the spacing
error at zero (Swaroop et al. 1994):

Rxi_des D �1
h
. Pxi � Pxi�1 C �ıi/ (11)

With this control law, it can be shown that the
spacing errors of successive vehicles ıi and ıi�1
are independent of each other:

Pıi D ��ıi (12)

Thus, ıi is independent of ıi�1 and is expected to
converge to zero as long as � > 0. However, this
result is only true if any desired acceleration can
be instantaneously obtained by the vehicle i.e., if

 D 0.

In the presence of the lower controller and
actuator dynamics given by Eq. (2), it can be
shown that the dynamic relation between ıi and
ıi�1 in the transfer function domain is
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OH.s/ D s C �

h
s3 C hs2 C .1C �h/s C �
(13)

The string stability of this system can be ana-
lyzed by checking if the magnitude of the above
transfer function is always less than or equal to
1. It can be shown that this is the case at all
frequencies if and only if (Rajamani 2012)

h � 2
: (14)

Further, if Eq. (14) is satisfied, then it is also
guaranteed that one can find a value of � such
that Eq. (7) is satisfied. Thus the condition (14) is
necessary (Swaroop and Hedrick 1996) for string
stability.

Since the typical value of 
 is of the order
of 0.5 s, Eq. (14) implies that ACC vehicles must
maintain at least a 1-s time gap between vehicles
for string stability.

Transitional Maneuvers

While under speed control, an ACC vehicle might
suddenly encounter a new vehicle in its lane
(either due to a lane change or due to a slower
moving preceding vehicle). The ACC vehicle
must then decide whether to continue to operate
under the speed control mode or transition to the
vehicle following mode or initiate hard braking.
If a transition to vehicle following is required, a

transitional trajectory that will bring the ACC ve-
hicle to its steady state following distance needs
to be designed. Similarly, a decision on the mode
of operation and design of a transitional trajectory
are required when an ACC vehicle loses its target.

The regular CTG control law cannot directly
be used to follow a newly encountered vehicle,
see Rajamani (2012) for illustrative examples.

When a new target vehicle is encountered by
the ACC vehicle, a “range – range rate” diagram
can be used (Fancher and Bareket 1994) to decide
if
(a) The vehicle should use speed control.
(b) The vehicle should use spacing control (with

a defined transition trajectory in which de-
sired spacing varies slowly with time)

(c) The vehicle should brake as hard as possible
in order to avoid a crash.

The maximum allowable values for acceleration
and deceleration need to be taken into account in
making these decisions.

For the range – range rate (R � PR/ diagram,
define range R and range rate PR as

R D xi�1 � xi (15)

PR D Pxi�1 � Pxi D V i�1 � Vi (16)

where xi�1, xi , Vi�1, and Vi are inertial positions
and velocities of the preceding vehicle and the
ACC vehicle respectively.

A typical R � PR diagram is shown in Fig. 3
(Fancher and Bareket 1994). Depending on the

R

Switching line for starting headway
control

Region 1

Region 2

Region 3

Crash dR / dt
0

Desired spacing RH

Velocity
Control

Headway
Control

Too
Close

Adaptive Cruise Control,
Fig. 3 Range vs.
range-rate diagram
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Adaptive Cruise Control, Fig. 4 Switching line for
spacing control

measured real-time values of R and PR; and
the R � PR diagram in Fig. 3, the ACC system
determines the mode of longitudinal control.
For instance, in region 1, the vehicle continues
to operate under speed control. In region 2,
the vehicle operates under spacing control. In
region 3, the vehicle decelerates at the maximum
allowed deceleration so as to try and avoid a
crash.

The switching line from speed to spacing con-
trol is given by

R D �T PRCRfinal (17)

where T is the slope of the switching line. When a
slower vehicle is encountered at a distance larger
than the desired final distanceRfinal, the switching
line shown in Fig. 4 can be used to determine
when and whether the vehicle should switch to
spacing control. If the distance R is greater than
that given by the line, speed control should be
used.

The overall strategy (shown by trajectory
ABC) is to first reduce gap at constant PR and
then follow the desired spacing given by the
switching line of Eq. (17).

The control law during spacing control on this
transitional trajectory is as follows. Depending on
the value of PR, determine R from Eq. (17). Then
use R as the desired inter-vehicle spacing in the
PD control law

Rxdes D �kp .xi � R/ � kd
� Pxi � PR� (18)

The trajectory of the ACC vehicle during constant
deceleration is a parabola on the R � PR diagram
(Rajamani 2012).

The switching line should be such that travel
along the line is comfortable and does not con-
stitute high deceleration. The deceleration during
coasting (zero throttle and zero braking) can be
used to determine the slope of the switching line
(Rajamani 2012).

Note that string stability is not a concern
during transitional maneuvers (Rajamani 2012).

Traffic Stability

In addition to individual vehicle stability and
string stability, another type of stability analysis
that has received significant interest in ACC liter-
ature is traffic flow stability. Traffic flow stability
refers to the stable evolution of traffic velocity
and traffic density on a highway section, for given
inflow and outflow conditions. One well-known
result in this regard in literature is that traffic flow
is defined to be stable if @q

@�
is positive, i.e., as

the density � of traffic increases, traffic flow rate
q must increase (Swaroop and Rajagopal 1999).
If this condition is not satisfied, the highway
section would be unable to accommodate any
constant inflow of vehicles from an oncoming
ramp. The steady state traffic flow on the highway
section would come to a stop, if the ramp inflow
did not stop (Swaroop and Rajagopal 1999).

It has been shown that the constant time-
gap spacing policy used in ACC systems has
a negative q � � slope and thus does not lead
to traffic flow stability (Swaroop and Rajagopal
1999). It has also been shown that it is possible
to design other spacing policies (in which the
desired spacing between vehicles is a nonlinear
function of speed, instead of being proportional
to speed) that can provide stable traffic flow
(Santhanakrishnan and Rajamani 2003).

The importance of traffic flow stability has
not been fully understood by the research com-
munity. Traffic flow stability is likely to become
important when the number of ACC vehicles
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on the highway increase and their penetration
percentage into vehicles on the road becomes
significant.

Recent AutomotiveMarket
Developments

The latest versions of ACC systems on the market
have been enhanced with collision warning, inte-
grated brake support, and stop-and-go operation
functionality.

The collision warning feature uses the same
radar as the ACC system to detect moving
vehicles ahead and determine whether driver
intervention is required. In this case, visual
and audio warnings are provided to alert the
driver and brakes are pre-charged to allow
quick deceleration. On Ford’s ACC-equipped
vehicles, brakes are also automatically applied
when the driver lifts the foot off from the
accelerator pedal in a detected collision warning
scenario.

When enabled with stop-and-go functional-
ity, the ACC system can also operate at low
vehicle speeds in heavy traffic. The vehicle can
be automatically brought to a complete stop when
needed and restarted automatically. Stop-and-go
is an expensive option and requires the use of
multiple radar sensors on each car. For instance,
the BMW ACC system uses two short range
and one long range radar sensor for stop-and-go
operation.

The 2013 versions of ACC on the Cadillac
ATS and on the Mercedes Distronic systems are
also being integrated with camera based lateral
lane position measurement systems. On the Mer-
cedes Distronic systems, a camera steering assist
system provides automatic steering, while on the
Cadillac ATS, a camera based system provides
lane departure warnings.

Future Directions

Current ACC systems use only on-board sensors
and do not use wireless communication with

other vehicles. There is a likelihood of evolution
of current systems into co-operative adaptive
cruise control (CACC) systems which utilize
wireless communication with other vehicles
and highway infrastructure. This evolution
could be facilitated by the dedicated short-
range communications (DSRC) capability being
developed by government agencies in the US,
Europe and Japan. In the US, DSRC is being
developed with a primary goal of enabling
communication between vehicles and with
infrastructure to reduce collisions and support
other safety applications. In CACC, wireless
communication could provide acceleration
signals from several preceding downstream
vehicles. These signals could be used in better
spacing policies and control algorithms to
improve safety, ensure string stability, and
improve traffic flow.
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Abstract

This entry deals with the kinematic self-
coordination aspects to be managed by parts
of underwater floating manipulators, whenever
employed for sample collections at the seafloor.

Kinematic self-coordination is here intended
as the autonomous ability exhibited by the system
in closed loop specifying the most appropriate
reference velocities for its main constitutive parts
(i.e., the supporting vehicle and the arm) in order
to execute the sample collection with respect to
both safety and best operability conditions for
the system while also guaranteeing the needed
“execution agility” in performing the task, par-
ticularly useful in case of underwater repeated
collections. To this end, the devising and em-
ployment of a unifying control framework capa-
ble of guaranteeing the above properties will be
outlined.

Such a framework is however intended to only
represent the so-called Kinematic Control Layer
(KCL) overlaying a Dynamic Control Layer
(DCL), where the overall system dynamic and
hydrodynamic effects are suitably accounted
for, to the benefit of closed loop tracking
of the reference system velocities. Since the
DCL design is carried out in a way which
is substantially independent from the system
mission(s), it will not constitute a specific topic
of this entry, even if some orienting references
about it will be provided.

At this entry’s end, as a follow-up of the
resulting structural invariance of the devised KCL
framework, future challenges addressing much
wider and complex underwater applications will
be foreseen, beyond the here-considered sample
collection one.

Keywords

Kinematic control law (KCL); Manipulator;
Motion priorities

Introduction

An automated system for underwater sampling
is here intended to be an autonomous underwa-
ter floating manipulator (see Fig. 1) capable of
collecting samples corresponding to an a priori
assigned template. The snapshots of Fig. 1 outline
the most recent realization of a system of this
kind (completed in 2012 within the EU-funded
project TRIDENT; Sanz et al. 2012) when in
operation, which is characterized by a vehicle
and an endowed 7-dof arm exhibiting comparable
masses and inertia, thus resulting in potentially
faster and more agile designs than the very few
similar previous realizations.

Its general the operational mode consists in
exploring an assigned area of the seafloor, while
executing a collection each time a feature corre-
sponding to the assigned template is recognized
(by the vehicle endowed with a stereovision sys-
tem) as a sample to be collected.

Thus the autonomous functionalities to be ex-
hibited are the following (to be sequenced as they
are listed on an event-driven basis): (1) explore an
assigned seabed area while visually performing
model-based sample recognitions, (2) suspend
the exploration and grasping a recognized sam-
ple, (3) deposit the sample inside an endowed
container, and (4) then restart exploring till the
next recognized sample.

Functionalities (1) and (4), since they do not
require the arm usage, naturally reenter within the
topics of navigation, patrolling, visual mapping,
etc., which are typical of traditional AUVs and
consequently will not be discussed here. Only
functionality (2) will be discussed, since it is
most distinctive of the considered system (often
termed as I-AUV, with “I” for “Intervention”) and
because functionality (3) can be established along
the same lines of (2) as a particular simpler case.
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AdvancedManipulation for Underwater Sampling, Fig. 1 Snapshots showing the underwater floating manipulator
TRIDENT when autonomously picking an identified object

By then focusing on functionality (2), we
must note how the sample grasping ultimate
objective, which translates into a specific
position/attitude to be reached by the end-
effector, must however be achieved within the
preliminary fulfillment of also other objectives,
each one reflecting the need of guaranteeing
the system operating within both its safety
and best operability conditions. For instance,
the arm’s joint limits must be respected and
the arm singular postures avoided. Moreover,
since the sample position is estimated via the
vehicle with a stereo camera, the sample must
stay grossly centered inside its visual cone,
since otherwise the visual feedback would be
lost and the sample search would need to start
again. Also, the sample must stay within suitable
horizontal and vertical distance limits from the
camera frame, in order for the vision algorithm
to be well performing. And furthermore, in these
conditions the vehicle should be maintained with
an approximately horizontal attitude, for energy
savings.

With the exception of the objective of making
the end-effector position/attitude reaching the
grasping position, which is clearly an equality
condition, its related safety/enabling objectives
are instead represented by a set of inequality

conditions (involving various system variables)
whose achievement (accordingly with their
safety/enabling role) must therefore deserve the
highest priority.

System motions guaranteeing such prioritized
objective achievements should moreover allow
for a concurrent management of them (i.e., avoid-
ing a sequential motion management whenever
possible), which means requiring each objective
progressing toward its achievement, by at each
time instant only exploiting the residual system
mobility allowed by the current progresses of its
higher priority objectives. Since the available
system mobility will progressively increase
during time, accordingly with the progressive
achievement of all inequality objectives, this
will guarantee the grasping objective to be also
completed by eventually progressing within
adequate system safety and best operability
conditions. In this way the system will also
exhibit the necessary “agility” in executing its
maneuvers, in a way faster than in case they were
executed on a sequential motion basis.

The devising of an effective way to incor-
porate all the inequality and equality objectives
within a uniform and computationally efficient
task-priority-based algorithmic framework for
underwater floating manipulators has been the
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result of the developments outlined in the next
section.

The developed framework however solely
represents the so-called Kinematic Control Layer
(KCL) of the overall control architecture, that
is, the one in charge of closed-loop real-time
control generating the system velocity vector y
as a reference signal, to be in turn concurrently
tracked, via the action of the arm joint torques
and vehicle thrusters, by an adequate underlying
Dynamic Control Layer (DCL), where the overall
dynamic and hydrodynamic effects are kept into
account to the benefit of such velocity tracking.
Since the DCL can actually be designed in a
way substantially independent from the system
mission(s), it will not constitute a specific topic
of this entry. Its detailed dynamic-hydrodynamic
model-based structuring, also including a stabil-
ity analysis, can be found in Casalino (2011),
together with a more detailed description of the
upper-lying KCL, while more general references
on underwater dynamic control aspects can be
found, for instance, in Antonelli (2006).

Task-Priority-Based Control of
FloatingManipulators

The above-outlined typical set of objectives (of
inequality and/or equality types) to be achieved
within a sampling mission are here formalized.
Then some helpful generalizing definitions are
given, prior to presenting the related unifying
task-priority-based algorithmic framework to
be used.

Inequality and Equality Objectives
One of the objectives, of inequality type, related
to both arm safety and its operability is that
of maintaining each joint within corresponding
minimum and maximum limits, that is,

q1m < qi < qiM I i D 1; 2; : : : ; 7

Moreover, in order to have the arm operating
with dexterity, its manipulability measure (Naka-
mura 1991; Yoshikawa 1985) must ultimately
stay above a minimum threshold value, thus also

requiring the achievement of the inequality type
objective

� > �m

While the above objectives arise from inherently
scalar variables, other objectives instead arise as
conditions to be achieved within the Cartesian
space, where each one of them can be conve-
niently expressed in terms of the modulus associ-
ated to a corresponding Cartesian vector variable.

To be more specific, let us, for instance, refer
to the need of avoiding the occlusions between
the sample and the stereo camera, which might
occasionally occur due to the arm link motions.
Then such need can be, for instance, translated
into the ultimate achievement of the following set
of inequalities, for suitable chosen values of the
boundaries

klk > lmI k
k > 
mI kk < M

where l is the vector lying on the vehicle x-y
plane, joining the arm elbow with the line parallel
to the vehicle z-axis and passing through camera
frame origin, as sketched in Fig. 2a. Moreover 
is the misalignment vector formed by vector 

also lying on the vehicle x-y plane, joining the
lines parallel to the vehicle z-axis and, respec-
tively, passing through the elbow and the end-
effector origin.

As for the vehicle, it must keep the object of
interest grossly centered in the camera frame (see
Fig. 2b), thus meaning that the modulus of the
orientation error 	, formed by the unit vector np
of vector p from the sample to the camera frame
and the unit vector kc of the z-axis of the camera
frame itself, must ultimately satisfy the inequality

k	k < 	M

Furthermore, the camera must also be closer than
a given horizontal distance dM to the vertical
line passing through the sample, and it must
lie between a maximum and minimum height
with respect to the sample itself, thus implying
the achievement of the following inequalities
(Fig. 2c, d):



Advanced Manipulation for Underwater Sampling 23

A

kv
kv

kv

p

g

ξ

jv

iv

v
gT

jv

ivv

v

l

g

τ h

kv kv

hm

h p

g

jv

iv

v
gT

v
gT

jv

iv

v
v

p

d
g

a

c d

b

Advanced Manipulation for Underwater Sampling, Fig. 2 Vectors allowing for the defintion of some inequality
objectives in the Cartesian space: (a) camera occlusion, (b) camera centering, (c) camera distance, (d) camera height

kdk < dM I hm < khk < hM

Also since the vehicle should exhibit an
almost horizontal attitude, this further requires
the achievement of the following additional
inequality:

k�k < �M
with � the misalignment vector formed by the
absolute vertical unit vector ko with the vehicle
z-axis one kv .

And finally the end-effector must eventually
reach the sample, for then picking it. Thus the fol-
lowing, now of equality type, objectives must also
be ultimately achieved, where r is the position

error and � the orientation one of the end-effector
frame with respect to the sample frame

krk D 0I k#k D 0

As already repeatedly remarked, the achievement
of the above inequality objectives (since related
to the system safety and/or its best operability)
must globally deserve a priority higher than the
last equality.

Basic Definitions
The following definitions only regard a generic
vector s 2 R3 characterizing a corresponding
generic objective defined in the Cartesian space
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(for instance, with the exclusion of the joint and
manipulability limits, all the other above-reported
objectives). In this case the vector is termed to be
the error vector of the objective, and it is assumed
measured with components on the vehicle frame.
Then its modulus

� PD ksk

is termed to be the error, while its unit vector

n PDs=� I � ¤ 0

is accordingly denoted as the unit error vector.
Then the following differential Jacobian relation-
ship can always be evaluated for each of them:

Ps D Hy

where y 2 RN (N D .7 C 6/ for the system
of Fig. 1) is the stacked vector composed of the
joint velocity vector Pq 2 R7, plus the stacked
vector v 2 R6 of the absolute vehicle velocities
(linear and angular) with components on the
vehicle frame and with Ps clearly representing the
time derivative of vector s itself, as seen from
the vehicle frame and with components on it
(see Casalino (2011) for details on the real-time
evaluation of Jacobian matrices H/.

Obviously, for the time derivative P� of
the error, also the following differential
relationship holds

P� D nTHy

Further, to each error variable � , a so-called error
reference rate is real time assigned of the form

PN� D ��.� � �o/˛.�/

where for equality objectives �o is the target
value and ˛.�/ � 1, while for inequality ones,
�o is the threshold value and ˛.�/ is a left-
cutting or right-cutting (in correspondence of �o/
smooth sigmoidal activation function, depending
on whether the objective is to force � to be below
or above �o, respectively.

In case PN� could be exactly assigned to its
corresponding error rate P� , it would consequently
smoothly drive � toward the achievement of its
associated objective. Note however that for in-
equality objectives, it would necessarily impose
P� D 0 in correspondence of a point located
inside the interval of validity of the inequality
objective itself, while instead such an error rate
zeroing effect should be relaxed, for allowing
the helpful subsequent system mobility increase,
which allows for further progress toward other
lower priority control objectives. Such a relax-
ation aspect will be dealt with soon.

Furthermore, in correspondence of a reference
error rate PN� , the so-called reference error vector
rate can also be defined as

PNs PDn P�

that for equality objectives requiring the zeroing
of their error � simply becomes

PNs PD � �s

whose evaluation, since not requiring its unit
vector n, will be useful for managing equality
objectives.

Finally note that for each objective not de-
fined in the Cartesian space (like, for instance,
the above joint limits and manipulability), the
corresponding scalar error variable, its rate, and
its reference error rate can instead be managed
directly, since obviously they do not require any
preliminary scalar reduction process.

Managing the Higher Priority Inequality
Objectives
A prioritized list of the various scalar inequal-
ity objectives, to be concurrently progressively
achieved, is suitably established in a descending
priority order.

Then, by starting to consider the highest pri-
ority one, we have that the linear manifold of
the system velocity vector y (i.e., the arm joints
velocity vector Pq stacked with vector v of the
vehicle linear and angular velocities), capable of
driving toward its achievement, results at each
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time instant as the set of solution of the following
minimization problem with scalar argument, with
row vector G1 PD˛1 nT1 H1 and scalar ˛1 the same
activation function embedded within the refer-
ence error rate PN�1

S1 PD
(

argmin
y

�� PN�1 �G1y
��2
)

,

y D G#
1

PN�1 C .I �G#
1G1/z1 PD�1 CQ1z1I 8z1

(1)

The above minimization, whose solution man-
ifold appears at the right (also expressed in a
concise notation with an obvious correspondence
of terms) parameterized by the arbitrary vector
z1, has to be assumed executed without extracting
the common factor ˛1, that is, by evaluating
the pseudo-inverse matrix G#

1 via the regularized
form

G#
1 D �

˛21n
T
1 H1H

T
1 n1 C p1

��1
˛1H

T
1 n1

with p1, a suitably chosen bell-shaped, finite sup-
port and centered on zero, regularizing function
of the norm of row vector G1.

In the above solution manifold, when ˛1 D
1 (i.e., when the first inequality is still far to
be achieved), the second arbitrary term Q1z1 is
orthogonal to the first, thus having no influence
on the generated P�1 D PN�1 and consequently
suitable to be used for also progressing toward
the achievement of other lower priority objec-
tives, without perturbing the current progressive
achievement of the first one. Note however that,
since in this condition the span of the second
term results one dimension less than the whole
system velocity space y 2 RN , this implies that
the lower priority objectives can be progressed
by only acting within a one-dimension reduced
system velocity subspace.

When ˛1 D 0 (i.e., when the first inequality is
achieved) since G#

1 D 0 (as granted by the reg-
ularization) and consequently y D z1, the lower
priority objectives can instead be progressed by
now exploiting the whole system velocity space.

When instead ˛1 is within its transition zone
0 < ˛1 < 1 (i.e., when the first inequality is near
to be achieved), since the two terms of the so-
lution manifold now become only approximately
orthogonal, this can make the usage of the second
term for managing lower priority tasks, possibly
counteracting the first, currently acting in favor
of the highest priority one, but in any case with-
out any possibility of making the primary error
variable �1 getting out of its enlarged boundaries
(i.e., the ones inclusive of the transition zone),
thus meaning that once the primary variable �1
has entered within such larger boundaries, it will
definitely never get out of them.

With the above considerations in mind,
managing the remaining priority-descending
sequence of inequality objectives can then be
done by applying the same philosophy to each
of them and within the mobility space left free
by its preceding ones, that is, as the result of
the following sequence of nested minimization
problems:

Si PD
(

argmin
y2Si�1

�� PN�i �Giy
��2
)

I i D 1; 2; : : : ; k

with Gi PD˛inTi Hi and with k indexing the low-
est priority inequality objective and where the
highest priority objective has been also included
for the sake of completeness (upon letting So D
RN/. In this way the procedure guarantees the
concurrent prioritized convergence (actually oc-
curring as a sort of “domino effect” scattering
along the prioritized objective list) toward the
ultimate fulfillment of all inequality objectives,
each one within its enlarged bounds at worse and
with no possibility of getting out of them, once
reached.

Further, a simple algebra allows translating the
above sequence of k nested minimizations into
the following algorithmic structure, with initial-
ization �0 D 0; Q0 D I (see Casalino et al.
2012a,b for more details):

OG1 PDGiQi

Ti D �
I �Qi�1G#

i Gi
�
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�i D Ti�i�1 CQi�1G#
i

PN�i
Qi D Qi�1

�
I �G#

i Gi
�

ending with the last k-th iteration with the solu-
tion manifold

y D �k CQkzk I 8zk

where the residual arbitrariness spaceQkzz has to
be then used for managing the remaining equality
objectives, as hereafter indicated.

Managing the Lower Priority Equality
Objectives and SubsystemMotion
Priorities
For managing the lower priority equality
objectives when these require the zeroing of
their associated error �i (as, for instance, for the
end-effector sample reaching task), the following
sequence of nested minimization problems has
to be instead considered (with initialization �k ;
Qk/:

Si PD
(

argmin
y2Si�1

��PNsi �Hiy
��2
)

I i D .kC1/; : : : ; m

with m indexing the last priority equality objec-
tive and where the whole reference error vector
rates PNsi and associated whole error vectors Psi
have now to be used, since for ˛i � 1 (as it is
for any equality objective) the otherwise needed
evaluation of unit vectors ni (which become ill
defined for the relevant error �i approaching
zero) would most probably provoke unwanted
chattering phenomena around �i D 0, while
instead the above avoids such risk (since PNsi and Psi
can be evaluated without requiring ni ), even if at
the cost of requiring, for each equality objective,
three degrees of mobility instead of a sole one,
as it instead is for each inequality objectives.
However, note how the algorithmic translation
of the above procedure remains structurally the
same as the one for the inequality objectives
(obviously with the substitutions PNsi ! PN�i , Hi !
Gi , and with initialization �k ,Qk/, thus ending in
correspondence of them-th last equality objective
with the solution manifold

y D �m CQmzmI 8zm

where the still possibly existing residual arbitrari-
ness space Qmzm can be further used for assign-
ing motion priorities between the arm and the
vehicle, for instance, via the following additional
least-priority ending task

y D argmin
y2Sm

k�k2 D �mC1

whose solution �mC1 (with no more arbitrariness
required) finally assures (while respecting all pre-
vious priorities) a motion minimality of the vehi-
cle, thus implicitly assigning to the arm a greater
mobility, which in turn allows the exploitation of
its generally higher motion precision, especially
during the ultimate convergence toward the final
grasping.

Implementations

The recently realized TRIDENT system of Fig. 1,
embedding the above introduced task-priority-
based control architecture, has been operating
at sea in 2012 (Port Soller Harbor, Mallorca,
Spain). A detailed presentation of the preliminary
performed simulations, then followed by pool
experiments, and finally followed by field trials
executed within a true underwater sea environ-
ment can be found in Simetti et al. (2013). The
related EU-funded TRIDENT project (Sanz et al.
2012) is the first one where agile manipulation
could be effectively achieved by part of an un-
derwater floating manipulator, not only as the
consequence of the comparable masses and iner-
tia exhibited by the vehicle and arm, but mainly
due to the adopted unified task-priority-based
control framework. Capabilities for autonomous
underwater floating manipulation were however
already achieved for the first time in 2009 at
the University of Hawaii, within the SAUVIM
project (Marani et al. 2009, 2014; Yuh et al.
1998) even if without effective agility (the related
system was in fact a 6-t vehicle endowed with a
less than 35 kg arm).
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Future Directions

The presented task-priority-based KCL structure
is invariant with the addition, deletion, and substi-
tution (even on-the-fly) of the various objectives,
as well as invariant to changes in their priority
ordering, thus constituting an invariant core po-
tentially capable of supporting intervention tasks
beyond the sole sample collection ones. On this
basis, more complex systems and operational
cases, such as, for instance, multi-arm systems
and/or even cooperating ones, can be foreseen
to be developed along the lines established by
the roadmap of Fig. 3 (with case 0 the current
development state).

The future availability of agile floating
single-arm or multi-arm manipulators, also
implementing cooperative interventions in
force of a unified control and coordination
structure (to this aim purposely extended),
might in fact pave the way toward the
realization of underwater hard-work robotized
places, where different intervention agents
might individually or cooperatively perform
different object manipulation and transportation
activities, also including assembly ones,
thus far beyond the here considered case of
sample collection. Such scenarios deserve the
attention not only of the science community
when needing to execute underwater works
(excavation, coring, instrument handling, etc.,

Advanced Manipulation for Underwater Sampling,
Fig. 3 A sketch of the foreseen roadmap for future de-
velopment of marine intervention robotics

other than sample collection) at increasing
depths but obviously also those of the offshore
industry.

Moreover, by exploiting the current and future
developments on underwater exploration and
survey mission performed by normal AUVs
(i.e., nonmanipulative), a possible work scenario
might also include the presence of these lasts,
for accomplishing different service activities
supporting the intervention ones, for instance,
relays with the surface, then informative activities
(for instance, the delivery of the area model built
during a previous survey phase or the delivery of
the intervention mission, both downloaded when
in surface and then transferred to the intervention
agents upon docking), or even when hovering
on the work area (for instance, close to a well-
recognized feature) behaving as a local reference
system for the self-localization of the operative
agents via twin USBL devices.
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Abstract

This entry provides a broad overview of how
air traffic for commercial air travel is scheduled
and managed throughout the world. The major
causes of delays and congestion are described,
which include tight scheduling, safety restric-
tions, infrastructure limitations, and major distur-
bances. The technical and financial challenges to
air traffic management are outlined, along with
some of the promising developments for future
modernization.
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Introduction: How Does Air Traffic
Management Work?

This entry focuses on air traffic management for
commercial air travel, the passenger- and cargo-
carrying operations with which most of us are
familiar. This is the air travel with a pressing
need for modernization to address current and
future congestion. Passenger and cargo traffic
is projected to double over the next 20 years,
with growth rates of 3–4 % annually in developed
markets such as the USA and Europe and growth
rates of 6 % and more in developing markets such
as Asia Pacific and the Middle East.

In most of the world, air travel is a distributed,
market-driven system. Airlines schedule flights
based on when people want to fly and when it is
optimal to transport cargo. Most passenger flights
are scheduled during the day; most package car-
rier flights are overnight. Some airports limit
how many flights can be scheduled by having
a slot system, others do not. This decentralized
schedule of flights to and from airports around the
world is controlled by a network of air navigation
service providers (ANSPs) staffed with air traffic
controllers, who ensure that aircraft are separated
safely.

http://dx.doi.org/10.1007/978-1-4471-5058-9_100001
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The International Civil Aviation Organization
(ICAO) has divided the world’s airspace into
flight information regions. Each region has a
country that controls the airspace, and the ANSP
for each country can be a government depart-
ment, state-owned company, or private organiza-
tion. For example, in the United States, the ANSP
is the Federal Aviation Administration (FAA),
which is a government department. The Canadian
ANSP is NAV CANADA, which is a private
company.

Each country is different in terms of the ser-
vices provided by the ANSP, how the ANSP
operates, and the tools available to the controllers.
In the USA and Europe, the airspace is divided
into sectors and areas around airports. An air
traffic control center is responsible for traffic flow
within its sector and rules and procedures are in
place to cover transfer of control between sectors.
The areas around busy airports are usually han-
dled by a terminal radar approach control. The air
traffic control tower personnel handle departing
aircraft, landing aircraft, and the movement of
aircraft on the airport surface.

Air traffic controllers in developed air travel
markets like the USA and Europe have tools that
help them with the business of controlling and
separating aircraft. Tower controllers operating at
airports can see aircraft directly through windows
or on computer screens through surveillance
technology such as radar and Automatic
Dependent Surveillance-Broadcast (ADS-B).
Tower controllers may have additional tools
to help detect and prevent potential collisions
on the airport surface. En route controllers can
see aircraft on computer screens and may have
additional tools to help detect potential losses
of separation between aircraft. Controllers can
communicate with aircraft via radio and some
have datalink communication available such
as Controller-Pilot Datalink Communications
(CPDLC).

Flight crews have tools to help with navigating
and flying the airplane. Autopilots and autothrot-
tles off-load the pilot from having to continuously
control the aircraft; instead the pilot can specify
the speed, altitude, and heading and the autopilot
and autothrottle will maintain those commands.

Flight management systems (FMS) assist in flight
planning in addition to providing lateral and ver-
tical control of the airplane. Many aircraft have
special safety systems such as the Traffic Alert
and Collision Avoidance System, which alerts the
flight crew to potential collisions with other air-
borne aircraft, and the Terrain Avoidance Warn-
ing Systems (TAWS), which alert the flight crew
to potential flight into terrain.

Causes of Congestion and Delays

Congestion and delays are caused by multiple
reasons. These include tight scheduling, safety
limitations on how quickly aircraft can take off
and land and how closely they can fly, infras-
tructure limitations such as the number of run-
ways at an airport and the airway structure, and
disturbances such as weather and unscheduled
maintenance.

Tight Scheduling
Tight scheduling is a major contributor to con-
gestion and delays. The hub and spoke system
that many major airlines operate with to minimize
connection times means that aircraft arrive and
depart in multiple banks during the day. During
the arrival and departure banks, airports are very
busy. As mentioned previously, passengers have
preferred times to travel, which also increase de-
mand at certain times. At airports that do not limit
flight schedules by using slot scheduling, the
number of flights scheduled can actually exceed
the departure and arrival capacity of the airport
even in best-case conditions. One of the reasons
that airlines are asked to report on-time statistics
is to make the published airline schedules more
reflective of the average time from departure to
arrival, not the best-case time.

Aircraft themselves are also tightly scheduled.
Aircraft are an expensive capital asset. Since cus-
tomers are very sensitive to ticket prices, airlines
need to have their aircraft flying as many hours as
possible per day. Airlines also limit the number of
spare aircraft and flight crews available to fill in
when operations are disrupted to control costs.
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Safety Restrictions
Safety restrictions contribute to congestion.
There is a limit to how quickly aircraft can
take off from and land on a runway. Sometimes
runways are used for both departing and arriving
aircraft; at other times a runway may be used
for departures only or arrivals only. Either way,
the rule that controllers follow for safety is that
only one aircraft can occupy the runway at one
time. Thus, a landing aircraft must turn off of
the runway before another aircraft can take off
or land. This limitation and other limitations like
the ability of controllers to manage the arrival
and departure aircraft propagate backwards from
the airport. Aircraft need to be spaced in an
orderly flow and separated no closer than what
can be supported by airport arrival rates. The
backward propagation can go all the way to the
departure airports and cause aircraft to be held on
the ground as a means to regulate the traffic flow
into a congested airport or through a congested
air traffic sector.

There is a limit on how close aircraft can fly.
Aircraft produce a wake that can be dangerous
for other aircraft that are following too closely
behind. Pilots are aware of this limitation and
space safely when doing visual separation. Rules
that controllers apply for separation take into
account wake turbulence limitations, surveillance
limitations, and limitations on how well aircraft
can navigate and conform to the required speed,
altitude, and heading.

The human is a safety limitation. Controllers
and pilots are human. Being human, they have
excellent reasoning capability. However, they are
limited as to the number of tasks they can perform
and are subject to fatigue. The rules and proce-
dures in place to manage and fly aircraft take into
account human limitations.

Infrastructure Limitations
Infrastructure limitations contribute to congestion
and delays. Airport capacity is one infrastructure
limitation. The number of runways combined
with the available aircraft gates and capacity to
process passengers through the terminal limit the
airport capacity.

The airspace itself is a limitation. The airspace
where controllers provide separation services is
divided into an orderly structure of airways.
The airways are like one-way, one-lane roads in
the sky. They are stacked at different altitudes,
which are usually separated by either 1,000 ft.
or 2,000 ft. The width of the airways depends
on how well aircraft can navigate. In the US
domestic airspace where there are regular
navigation aids and direct surveillance of aircraft,
the airways have a plus or minus 4 NM width.
Over the ocean, airways may need to be separated
laterally by as much as 120 NM since there are
fewer navigation aids and aircraft are not under
direct control but separated procedurally. The
limited number of airways that the airspace can
support limits available capacity.

The airways themselves have capacity lim-
itations just as traditional roads do. There are
special challenges for airways since aircraft need
a minimum separation distance, aircraft cannot
slow down to a stop, and airways do not allow
passing. So, although it may look like there is a
lot of space in which aircraft can fly, there are
actually a limited number of routes between a city
pair or over oceanic airspace.

The radio that is used for pilots and controllers
to communicate is another infrastructure limita-
tion. At busy airports, there is significant radio
congestion and pilots may need to wait to get an
instruction or response from a controller.

Disturbances
Weather is a significant disturbance in air traffic
management. Weather acts negatively in many
ways. Wet or icy pavement affects the braking
ability of aircraft so they cannot vacate a runway
as quickly as in dry conditions. Low cloud ceil-
ings mean that all approaches must be instrument
approaches rather than visual approaches, which
also reduces runway arrival rates. Snow must be
cleared from runways, closing them for some
period of time. High winds can mean that certain
approaches cannot be used because they are not
safe. In extreme weather, an airport may need to
close. Weather can block certain airways from
use, requiring rerouting of aircraft. Rerouting
increases demand on nearby airways, which may



Air Traffic Management Modernization: Promise and Challenges 31

A

or may not have the required additional capacity,
so the rerouting cascades on both sides of the
weather.

Why Is Air Traffic Management
Modernization So Hard?

Air traffic management modernization is difficult
for financial and technical reasons. The air traffic
management system operates around the clock. It
cannot be taken down for a significant period of
time without a major effect on commerce and the
economy.

Financing is a significant challenge for air
traffic management modernization. Governments
worldwide are facing budgetary challenges and
improvements to air travel are one of many com-
peting financial interests. Local airport authori-
ties have similar challenges in raising money for
airport improvements. Airlines have competitive
limitations on how much ticket prices can rise
and therefore need to see a payback on invest-
ment in aircraft upgrades that can be as short as
2 years.

Another financial challenge is that the entity
that needs to pay for the majority of an improve-
ment may not be the entity that gets the majority
of the benefit, at least near term. One example of
this is the installation of ADS-B transmitters on
aircraft. Buying and installing an ADS-B trans-
mitter costs the aircraft owner money. It benefits
the ANSPs, who can receive the transmissions
and have them augment or replace expensive
radar surveillance, but only if a large number of
aircraft are equipped. Eventually the ANSP ben-
efit will be seen by the aircraft operator through
lower operating costs but it takes time. This is
one reason that ADS-B transmitter equipage was
mandated in the USA, Europe, and other parts of
the world rather than letting market forces drive
equipage.

All entities, whether governmental or private,
need some sort of business case to justify invest-
ment, where it can be shown that the benefit of the
improvement outweighs the cost. The same sys-
tem complexity that makes congestion and delays
in one region propagate throughout the system

makes it a challenge to accurately estimate bene-
fits. It is complicated to understand if an improve-
ment in one part of the system will really help
or just shift where the congestion points are. De-
cisions need to be made on what improvements
are the best to invest in. For government entities,
societal benefits can be as important as financial
payback, and someone needs to decide whose
interests are more important. For example, the
people living around an airport might want longer
arrival paths at night to minimize noise while air
travelers and the airline want the airline to fly the
most direct route into an airport. A combination
of subject matter expertise and simulation can
provide a starting point to estimate benefit, but
often only operational deployment will provide
realistic estimates.

It is a long process to develop new technolo-
gies and operational procedures even when the
benefit is clear and financing is available. The
typical development steps include describing the
operational concept; developing new controllers
procedures, pilot procedures, or phraseology if
needed; performing a safety and performance
analysis to determine high level requirements;
performing simulations that at some point may
include controllers or pilots; designing and build-
ing equipment that can include software, hard-
ware, or both; and field testing or flight testing the
new equipment. Typically, new ground tools are
field tested in a shadow mode, where controllers
can use the tool in a mock situation driven by
real data before the tool is made fully opera-
tional. Flight testing is performed on aircraft that
are flying with experimental certificates so that
equipment can be tested and demonstrated prior
to formal certification.

Avionics need to be certified before opera-
tional use to meet the rules established to ensure
that a high safety standard is applied to air travel.
To support certification, standards are developed.
Frequently the standards are developed through
international cooperation and through consen-
sus decision-making that includes many different
organizations such as ANSPs, airlines, aircraft
manufacturers, avionics suppliers, pilot associa-
tions, controller associations, and more. This is
a slow process but an important one, since it
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reduces development risk for avionics suppliers
and helps ensure that equipment can be used
worldwide.

Once new avionics or ground tools are avail-
able, it takes time for them to be deployed.
For example, aircraft fleets are upgraded as air-
craft come in for major maintenance rather than
pulling them out of scheduled service. Flight
crews need to be trained on new equipment before
it can be used, and training takes time. Ground
tools are typically deployed site by site, and the
controllers also require training on new equip-
ment and new procedures.

Promise for the Future

Despite the challenges and complexity of air
traffic management, there is a path forward for
significant improvement in both developed and
developing air travel markets. Developing air
travel markets in countries like China and India
can improve air traffic management using pro-
cedures, tools, and technology that is already
used in developed markets such as the USA and
Europe. Emerging markets like China are will-
ing to make significant investments in improving
air traffic management by building new airports,
expanding existing airports, changing controller
procedures, and investing in controller tools. In
developed markets, new procedures, tools, and
technologies will need to be implemented. In
some regions, mandates and financial incentives
may play a part in enabling infrastructure and
equipment changes that are not driven by the
marketplace.

The USA and Europe are both supporting
significant research, development, and im-
plementation programs to support air traffic
management modernization. In the USA, the
FAA has a program known as NextGen, the
Next Generation Air Transportation System. In
Europe, the European Commission oversees
a program known as SESAR, the Single
European Sky Air Traffic Management Research,
which is a joint effort between the European
Union, EUROCONTROL, and industry partners.
Both programs have substantial support and

financing. Each program has organized its efforts
differently but there are many similarities in the
operational objectives and improvements being
developed.

Airport capacity problems are being addressed
in multiple ways. Controllers are being provided
with advanced surface movement guidance and
control systems that combine radar surveillance,
ADS-B surveillance, and sensors installed at the
airport with valued-added tools to assist with traf-
fic control and alert controllers to potential col-
lisions. Datalink communications between con-
trollers and pilots will reduce radio-frequency
congestion, reduce communication errors, and
enable more complex communication. The USA
and Europe have plans to develop a modernized
datalink communication infrastructure between
controllers and pilots that would include infor-
mation like departure clearances and the taxiway
route clearance. Aircraft on arrival to an airport
will be controlled more precisely by equipping
aircraft with capabilities such as the ability to fly
to a required time of arrival and the ability to
space with respect to another aircraft.

Domestic airspace congestion is being ad-
dressed in Europe by moving towards a single
European sky where the ANSPs for the individ-
ual nations coordinate activities and airspace is
structured not as 27 national regions but operated
as larger blocks. Similar efforts are undergoing
in the USA to improve the cooperation and coor-
dination between the individual airspace sectors.
In some countries, large blocks of airspace are
reserved for special use by the military. In those
countries, efforts are in place to have dynamic
special use airspace that is reserved on an as-
needed basis but otherwise available for civil
use.

Oceanic airspace congestion is being
addressed by leveraging the improved navigation
performance of aircraft. Some route structures
are available only to aircraft that can flight to
a required navigation performance. These route
structures have less required lateral separation,
and thus more routes can be flown in the same
airspace. Pilot tools that leverage ADS-B are
allowing aircraft to make flight level changes
with reduced separation and in the future
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are expected to allow pilots to do additional
maneuvering that is restricted today, such as
passing slower aircraft.

Weather cannot be controlled but efforts are
underway to do better prediction and provide
more accurate and timely information to pilots,
controllers, and aircraft dispatchers at airlines.
On-board radars that pilots use to divert around
weather are adding more sophisticated process-
ing algorithms to better differentiate hazardous
weather. Future flight management systems will
have the capability to include additional weather
information. Datalinks between the air and the
ground or between aircraft may be updated to
include information from the on-board radar sys-
tems, allowing aircraft to act as local weather
sensors. Improved weather information for pilots,
controllers, and dispatchers improves flight plan-
ning and minimizes the necessary size of devia-
tions around hazardous weather while retaining
safety.

Weather is also addressed by providing air-
craft and airports with equipment to improve
airport access in reduced visibility. Ground-based
augmentation systems installed at airports pro-
vide aircraft with the capability to do precision-
based navigation for approaches to airports with
low weather ceilings. Other technologies like
enhanced vision and synthetic vision, which can
be part of a combined vision system, provide the
capability to land in poor visibility.

Summary

Air traffic management is a complex and interest-
ing problem. The expected increase in air travel
worldwide is driving a need for improvements
to the existing system so that more passengers
can be handled while at the same time reducing
congestion and delays. Significant research and
development efforts are underway worldwide to
develop safe and effective solutions that include
controller tools, pilot tools, aircraft avionics, in-
frastructure improvements, and new procedures.
Despite the technical and financial challenges,
many promising technologies and new proce-
dures will be implemented in the near, mid-,

and far term to support air traffic management
modernization worldwide.
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Abstract

Aircraft flight control is concerned with using
the control surfaces to change aerodynamic mo-
ments, to change attitude angles of the aircraft
relative to the air flow, and ultimately change
the aerodynamic forces to allow the aircraft to
achieve the desired maneuver or steady condi-
tion. Control laws create the commanded con-
trol surface positions based on pilot and sensor
inputs. Traditional control laws employ propor-
tional and integral compensation with scheduled
gains, limiting elements, and cross feeds between
coupled feedback loops. Dynamic inversion is an
approach to develop control laws that systemati-
cally addresses the equivalent of gain schedules
and the multivariable cross feeds, can incorpo-
rate constrained optimization for the limiting ele-
ments, and maintains the use of proportional and
integral compensation to achieve the benefits of
feedback.
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Introduction

Flying is made possible by flight control and this
applies to birds and the Wright Flyer, as well as
modern flight vehicles. In addition to balancing
lift and weight forces, successful flight also re-
quires a balance of moments or torques about the
mass center. Control is a means to adjust these
moments to stay in equilibrium and to perform
maneuvers. While birds use their feathers and
the Wright Flyer warped its wings, modern flight
vehicles utilize hinged control surfaces to adjust
the moments. The control action can be open
or closed loop, where closed loop refers to a
feedback loop consisting of sensors, computer,
and actuation. A direct connection between the
cockpit pilot controls and the control surfaces
without a feedback loop is open loop control. The
computer in the feedback loop implements a con-
trol law (computer program). The development of
the control law is discussed in this entry.

Although the following discussion is applica-
ble to a wide range of flight vehicles including
gliders, unmanned aerial vehicles, lifting bodies,
missiles, rockets, helicopters, and satellites, the
focus of this entry will be on fixed wing commer-
cial and military aircraft with human pilots.

Flight

Aircraft are maneuvered by changing the forces
acting on the mass center, e.g., a steady level
turn requires a steady force towards the direction
of turn. The force is the aerodynamic lift force
.L/ and it is banked or rotated into the direction
of the turn. The direction can be adjusted with
the bank angle .�/ and for a given airspeed .V /
and air density .�/, the magnitude of the force
can be adjusted with the angle-of-attack .˛/. This
is called bank-to-turn. Aircraft, e.g., missiles,
can also skid-to-turn where the aerodynamic side
force .Y / is adjusted with the sideslip angle .ˇ/
but this entry will focus on bank-to-turn.

Equations of motion (Enns et al. 1996; Stevens
and Lewis 1992) can be used to relate the time
rates of change of �, ˛, and ˇ to roll .p/, pitch
.q/, and yaw .r/ rate. See Fig. 1. Approximate
relations (for near steady level flight with no
wind) are

Aircraft Flight Control,
Fig. 1 Flight control
variables
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P� D p

P̨ D q C L �mg
mV

P̌ D �r C Y

mV

where m is the aircraft mass, and g is the grav-
itational acceleration. In straight and level flight
conditions LDmg and Y D 0 so we think of
these equations as kinematic equations where the
rates of change of the angles �, ˛, and ˇ are the
angular velocities p; q; and r .

Three moments called roll, pitch, and yaw for
angular motion to move the right wing up or
down, nose up or down, and nose right or left,
respectively create the angular accelerations to
change p, q, and r , respectively. The equations
are Newton’s 2nd law for rotational motion. The
moments (about the mass center) are dominated
by aerodynamic contributions and depend on �,
V , ˛, ˇ, p; q; r , and the control surfaces. The
control surfaces are aileron .ıa/, elevator .ıe/,
and rudder .ır/ and are arranged to contribute pri-
marily roll, pitch, and yaw moments respectively.

The control surfaces .ıa, ıe, ır / contribute
to angular accelerations which are integrated to
obtain the angular rates .p; q; r/. The integral of
angular rates contributes to the attitude angles
.�; ˛; ˇ/. The direction and magnitude of aero-
dynamic forces can be adjusted with the attitude
angles. The forces create the maneuvers or steady
conditions for operation of the aircraft.

Pure Roll Axis Example
Consider just the roll motion. The differential
equation (Newton’s 2nd law for the roll degree-
of-freedom) for this dynamical system is

Pp D Lpp C Lıaıa

where Lp is the stability derivative and Lıa is the
control derivative both of which can be regarded
as constants for a given airspeed and air density.

Pitch Axis or Short Period Example
Consider just the pitch and heave motion. The
differential equations (Newton’s 2nd law for the

pitch and heave degrees-of-freedom) for this dy-
namical system are

Pq D M˛˛ CMqq CMıeıe

P̨ D Z˛˛ C q CZıe ıe

where M˛, Mq , Z˛ are stability derivatives, and
Mıe is the control derivative, all of which can be
regarded as constants for a given airspeed and air
density.

Although Z˛ < 0 and Mq < 0 are stabilizing,
M˛ > 0makes the short period motion inherently
unstable. In fact, the short period motion of the
Wright Flyer was unstable. Some modern aircraft
are also unstable.

Lateral-Directional Axes Example
Consider just the roll, yaw, and side motion with
four state variables .�, p; r , ˇ/ and two inputs
.ıa, ır /. We will use the standard state space
equations with matricesA;B;C for this example.

The short period equations apply for yaw and
side motion (or dutch roll motion) with appro-
priate replacements, e.g., q with r , ˛ with �ˇ,
M with N . We add the term V�1g� to the P̌
equation. We include the kinematic equation P� D
p and add the term Lˇˇ to the Pp equation. The
dutch roll, like the short period, can be unstable
if Nˇ < 0, e.g., airplanes without a vertical tail.

There is coupling between the motions asso-
ciated with stability derivatives Lr , Lˇ , Np and
control derivatives Lır and Nıa. This is a fourth
order multivariable coupled system where ıa, ır
are the inputs and we can consider .p; r/ or
.�; ˇ/ as the outputs.

Control

The control objectives are to provide stability,
disturbance rejection, desensitization, and
satisfactory steady state and transient response
to commands. Specifications and guidelines for
these objectives are assessed quantitatively with
frequency, time, and covariance analyses and
simulations.
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Integrator with P+ I Control
The system to be controlled is the integrator for
y in Fig. 2 and the output of the integrator .y/
is the controlled variable. The proportional gain
.Kb > 0/ is a frequency and sets the bandwidth
or crossover frequency of the feedback loop. The
value of Kb will be between 1 and 10 rad/s in
most aircraft applications. Integral action can be
included with the gain, fi > 0 with a value
between 0 and 1.5 in most applications. The value
of the command gain, fc > 0, is set to achieve a
desired closed loop response from the command
yc to the output y. Values of fi D 0:25 and fc D
0:5 are typical. In realistic applications, there is a
limit that applies at the input to the integrator. In
these cases, we are obligated to include an anti-
integral windup gain, fa > 0 (typical value of 2)
to prevent continued integration beyond the limit.
The input to the limiter ( Pydes) is called the desired
rate of change of the controlled variable (Enns
et al. 1996).

The closed loop transfer function is

y

yc
D Kb.fcs C fiKb/

s2 CKbs C fiK
2
b

and the pilot produces the commands, .yc/ with
cockpit inceptors, e.g., sticks, pedals.

The control system robustness can be adjusted
with the choices made for y, Kb , fi , and fc .

These desired dynamics are utilized in all of
the examples to follow. In the following, we use
dynamic inversion (Enns et al. 1996; Wacker
et al. 2001) to algebraically manipulate the equa-
tions of motion into the equivalent of the integra-
tor for y in Fig. 2.

Pure Roll Motion Example
With algebraic manipulations called dynamic in-
version we can use the pure integrator results
in the previous section for the pure roll motion
example. For the controlled variable y D p,
given a measurement of the state x D p and
values for Lp and Lıa, we simply solve for the
input .u D ıa/ that gives the desired rate of
change of the output Pydes D Ppdes. The solution
is

ıa D L�1
ıa
. Ppdes �Lpp/

Since Lıa and Lp vary with air density and
airspeed, we are motivated to schedule these
portions of the control law accordingly.

Short Period Example
Similar algebraic manipulations use the general
state space notation

Px D Ax C Bu

y D Cx

We want to solve for u to achieve a desired rate
of change of y, so we start with

Py D CAx C CBu

If we can invert CB, i.e., it is not zero, for the
short period case, we solve for u with

u D .CB/�1. Pydes � CAx/

Implementation requires a measurement of the
state, x and models for the matrices CA and CB.
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The closed loop poles include the open loop
zeros of the transfer function y.s/

u.s/ (zero dynamics)
in addition to the roots of the desired dynamics
characteristic equation. Closed loop stability re-
quires stable zero dynamics. The zero dynamics
have an impact on control system robustness and
can influence the precise choice of y.

When y D q, the control law includes the
following dynamic inversion equation

ıe D M�1
ıe
. Pqdes �Mqq �M˛˛/

and the open loop zero is Z˛ � ZıeM
�1
ıe
M˛,

which in almost every case of interest is a neg-
ative number.

Note that there are no restrictions on the open
loop poles. This control law is effective and
practical in stabilization of an aircraft with an
open loop unstable short period mode.

Since Mıe, Mq and M˛ vary with air density
and airspeed we are motivated to schedule these
portions of the control law accordingly.

When y D ˛, the zero dynamics are not
suitable as closed loop poles. In this case, the
pitch rate controller described above is the inner
loop and we apply dynamic inversion a second
time as an outer loop (Enns and Keviczky 2006)
where we approximate the angle-of-attack dy-
namics with the simplification that pitch rate has
reached steady state, i.e., Pq D 0 and regard pitch
rate as the input .u D q/ and angle-of-attack as
the controlled variable .y D ˛/. The approximate
equation of motion is

P̨ D Z˛˛ C q �ZıeM
�1
ıe

�
M˛˛ CMqq

�

D �
Z˛ �ZıeM

�1
ıe
M˛

�
˛

C �
1 �ZıeM

�1
ıe
Mq

�
q

This equation is inverted to give

qc D �
1 �ZıeM�1

ıe
Mq

��1
� P̨des � �

Z˛ �ZıeM
�1
ıe
M˛

�
˛
�

qc obtained from this equation is passed to the
inner loop as a command, i.e., yc of the inner
loop.

Lateral-Directional Example
If we choose the two angular rates as the con-
trolled variables (p; r), then the zero dynamics
are favorable. We use the same proportional plus
integral desired dynamics in Fig. 2 but there are
two signals represented by each wire (one associ-
ated with p and the other r).

The same state space equations are used for
the dynamic inversion step but now CA and CB
are 2 � 4 and 2 � 2 matrices, respectively instead
of scalars. The superscript in u D .CB/�1 . Pydes �
CAx/ now means matrix inverse instead of recip-
rocal. The zero dynamics are assessed with the
transmission zeros of the matrix transfer function
.p; r/=.ıa; ır /.

In the practical case where the aileron and
rudder are limited, it is possible to place a higher
priority on solving one equation vs. another if the
equations are coupled, by proper allocation of the
commands to the control surfaces which is called
control allocation (Enns 1998). In these cases, we
use a constrained optimization approach

min
umin�u�umax

jjCBu � . Pydes � CAx/jj

instead of the matrix inverse followed by a lim-
iter. In cases where there are redundant controls,
i.e., the matrix CB has more columns than rows,
we introduce a preferred solution, up and solve a
different constrained optimization problem

min
CBuCCAxD Pydes

jju � upjj

to find the solution that solves the equations that
is closest to the preferred solution. We utilize
weighted norms to accomplish the desired prior-
ity.

An outer loop to control the attitude angles
.�; ˇ/ can be obtained with an approach analo-
gous to the one used in the previous section.

Nonlinear Example
Dynamic inversion can be used directly with the
nonlinear equations of motion (Enns et al. 1996;
Wacker et al. 2001). General equations of mo-
tion, e.g., 6 degree-of-freedom rigid body can be
expressed with Px D f .x; u/ and the controlled
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variable is given by y D h.x/. With the chain
rule of calculus we obtain

Py D @h

@x
.x/ f .x; u/

and for a given Py D Pydes and (measured) x we
can solve this equation for u either directly or
approximately. In practice, the first order Taylor
Series approximation is effective

Py Š a .x; u0/C b .x; u0/ .u � u0/

where u0 is typically the past value of u, in
a discrete implementation. As in the previous
example, Fig. 2 can be used to obtain Pydes. The
terms a .x; u0/ � b .x; u0/ u0 and b .x; u0/ are
analogous to the terms CAx and the matrix CB,
respectively. Control allocation can be utilized
in the same way as discussed above. The zero
dynamics are evaluated with transmission zeros
at the intended operating points. Outer loops can
be employed in the same manner as discussed in
the previous section.

The control law with this approach utilizes
the equations of motion which can include table
lookup for aerodynamics, propulsion, mass prop-
erties, and reference geometry as appropriate.
The raw aircraft data or an approximation to the
data takes the place of gain schedules with this
approach.

Summary and Future Directions

Flight control is concerned with tracking com-
mands for angular rates. The commands may
come directly from the pilot or indirectly from
the pilot through an outer loop, where the pilot
directly commands the outer loop. Feedback con-
trol enables stabilization of aircraft that are inher-
ently unstable and provides disturbance rejection
and insensitive closed-loop response in the face
of uncertain or varying vehicle dynamics. Propor-
tional and integral control provide these benefits
of feedback. The aircraft dynamics are signifi-
cantly different for low altitude and high speed
compared to high altitude and low speed and so

portions of the control law are scheduled. Aircraft
do exhibit coupling between axes and so multi-
variable feedback loop approaches are effective.
Nonlinearities in the form of limits (noninvert-
ible) and nonlinear expressions, e.g., trigonomet-
ric, polynomial, and table look-up (invertible)
are present in flight control development. The
dynamic inversion approach has been shown to
include the traditional feedback control princi-
ples, systematically develops the equivalent of the
gain schedules, applies to multivariable systems,
applies to invertible nonlinearities, and can be
used to avoid issues with noninvertible nonlinear-
ities to the extent it is physically possible.

Future developments will include adaptation,
reconfiguration, estimation, and nonlinear
analyses. Adaptive control concepts will continue
to mature and become integrated with approaches
such as dynamic inversion to deal with
unstructured or nonparameterized uncertainty or
variations in the aircraft dynamics. Parameterized
uncertainty will be incorporated with near real
time reconfiguration of the aircraft model used
as part of the control law, e.g., reallocation of
control surfaces after an actuation failure. State
variables used as measurements in the control law
will be estimated as well as directly measured
in nominal and sensor failure cases. Advances
in nonlinear dynamical systems analyses will
create improved intuition, understanding, and
guidelines for control law development.

Cross-References

�PID Control
�Satellite Control
�Tactical Missile Autopilots
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Abstract

This entry provides an overview of the prob-
lems addressed by discrete-event systems (DES)
theory, with an emphasis on their connection to
various application contexts. The primary inten-
tions are to reveal the caliber and the strengths
of this theory and to direct the interested reader,
through the listed citations, to the corresponding
literature. The concluding part of the entry also
identifies some remaining challenges and further
opportunities for the area.
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Introduction

Discrete-event systems (DES) theory (�Models
for Discrete Event Systems: An Overview)
(Cassandras and Lafortune 2008) emerged in
the late 1970s/early 1980s from the effort

of the controls community to address the
control needs of applications concerning some
complex production and service operations,
like those taking place in manufacturing and
other workflow systems, telecommunication
and data-processing systems, and transportation
systems. These operations were seeking the
ability to support higher levels of efficiency
and productivity and more demanding notions
of quality of product and service. At the same
time, the thriving computing technologies of
the era, and in particular the emergence of
the microprocessor, were cultivating, and to a
significant extent supporting, visions of ever-
increasing automation and autonomy for the
aforementioned operations. The DES community
set out to provide a systematic and rigorous
understanding of the dynamics that drive the
aforementioned operations and their complexity,
and to develop a control paradigm that would
define and enforce the target behaviors for those
environments in an effective and robust manner.

In order to address the aforementioned objec-
tives, the controls community had to extend its
methodological base, borrowing concepts, mod-
els, and tools from other disciplines. Among
these disciplines, the following two played a
particularly central role in the development of
the DES theory: (i) the Theoretical Computer
Science (TCS) and (ii) the Operations Research
(OR). As a new research area, DES thrived on
the analytical strength and the synergies that
resulted from the rigorous integration of the mod-
eling frameworks that were borrowed from TCS
and OR. Furthermore, the DES community sub-
stantially extended those borrowed frameworks,
bringing in them many of its control-theoretic
perspectives and concepts.

In general, DES-based approaches are charac-
terized by (i) their emphasis on a rigorous and
formal representation of the investigated systems
and the underlying dynamics; (ii) a double focus
on time-related aspects and metrics that define
traditional/standard notions of performance for
the considered systems, but also on a more be-
haviorally oriented analysis that is necessary for
ensuring fundamental notions of “correctness,”
“stability,” and “safety” of the system operation,

http://dx.doi.org/10.1007/978-1-4471-5058-9_52
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especially in the context of the aspired levels
of autonomy; (iii) the interplay between the two
lines of analysis mentioned in item (ii) above
and the further connection of this analysis to
structural attributes of the underlying system;
and (iv) an effort to complement the analytical
characterizations and developments with design
procedures and tools that will provide solutions
provably consistent with the posed specifications
and effectively implementable within the time
and other resource constraints imposed by the
“real-time” nature of the target applications.

The rest of this entry overviews the current
achievements of DES theory with respect to
(w.r.t.) the different classes of problems that
have been addressed by it and highlights the
potential that is defined by these achievements
for a range of motivating applications. On the
other hand, the constricted nature of this entry
does not allow an expansive treatment of the
aforementioned themes. Hence, the provided
coverage is further supported and supplemented
by an extensive list of references that will
connect the interested reader to the relevant
literature.

A Tour of DES Problems
and Applications

DES-Based Behavioral Modeling, Analysis,
and Control
The basic characterization of behavior in the
DES-theoretic framework is through the various
event sequences that can be generated by the
underlying system. Collectively, these sequences
are known as the (formal) language generated by
the plant system, and the primary intention is to
restrict the plant behavior within a subset of the
generated event strings. The investigation of this
problem is further facilitated by the introduction
of certain mechanisms that act as formal repre-
sentations of the studied systems, in the sense that
they generate the same strings of events (i.e., the
same formal language). Since these models are
concerned with the representation of the event
sequences that are generated by DES, and not
by the exact timing of these events, they are

frequently characterized as untimed DES models.
In the practical applications of DES theory, the
most popular such models are the Finite State Au-
tomaton (FSA) (Cassandras and Lafortune 2008;
Hopcroft and Ullman 1979; � Supervisory Con-
trol of Discrete-Event Systems; �Diagnosis of
Discrete Event Systems), and the Petri net (PN)
(Cassandras and Lafortune 2008; Murata 1989;
�Modeling, Analysis, and Control with Petri
Nets).

In the context of DES applications, these
modeling frameworks have been used to provide
succinct characterizations of the underlying
event-driven dynamics and to design controllers,
in the form of supervisors, that will restrict these
dynamics so that they abide to safety, consistency,
fairness, and other similar considerations
(�Supervisory Control of Discrete-Event
Systems). As a more concrete example, in the
context of contemporary manufacturing, DES-
based behavioral control – frequently referred to
as supervisory control (SC) – has been promoted
as a systematic methodology for the synthesis and
verification of the control logic that is necessary
for the support of the, so-called, SCADA
(Supervisory Control and Data Acquisition)
function. This control function is typically
implemented through the Programmable Logic
Controllers (PLCs) that have been employed in
contemporary manufacturing shop-floors, and
DES SC theory can support it (i) by providing
more rigor and specificity to the models that are
employed for the underlying plant behavior and
the imposed specifications and (ii) by offering
the ability to synthesize control policies that are
provably correct by construction. Some example
works that have pursued the application of DES
SC along these lines can be found in Balemi
et al. (1993), Brandin (1996), Park et al. (1999),
Chandra et al. (2003), Endsley et al. (2006), and
Andersson et al. (2010).

On the other hand, the aforementioned activity
has also defined a further need for pertinent
interfaces that will translate (a) the plant structure
and the target behavior to the necessary DES-
theoretic models and (b) the obtained policies to
PLC executables. This need has led to a line of
research, in terms of representational models and

http://dx.doi.org/10.1007/978-1-4471-5058-9_54
http://dx.doi.org/10.1007/978-1-4471-5058-9_56
http://dx.doi.org/10.1007/978-1-4471-5058-9_53
http://dx.doi.org/10.1007/978-1-4471-5058-9_54
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computational tools, that is complementary to the
core DES developments described in the previous
paragraphs. Indicatively we mention the develop-
ment of GRAFCET (David and Alla 1992) and
of the sequential function charts (SFCs) (Lewis
1998) from the earlier times, while some more
recent endeavor along these lines is reported in
Wightkin et al. (2011) and Alenljung et al. (2012)
and the references cited therein.

Besides its employment in the manufacturing
domain, DES SC theory has also been considered
for the coordination of the communicating pro-
cesses that take place in various embedded sys-
tems (Feng et al. 2007); the systematic validation
of the embedded software that is employed in
various control applications, ranging from power
systems and nuclear plants to aircraft and au-
tomotive electronics (Li and Kumar 2012); the
synthesis of the control logic in the electronic
switches that are utilized in telecom and data
networks; and the modeling, analysis, and control
of the operations that take place in health-care
systems (Sampath et al. 2008). Wassyng et al.
(2011) gives a very interesting account of the
gains, but also the extensive challenges, experi-
enced by a team of researchers who have tried to
apply formal methods, similar to those that have
been promoted by the behavioral DES theory, to
the development and certification of the software
that manages some safety-critical operations for
Canadian nuclear plants.

Apart from control, untimed DES models
have also been employed for the diagnosis of
critical events, like certain failures, that cannot
be observed explicitly, but their occurrence
can be inferred from some resultant behavioral
patterns (Sampath et al. 1996; �Diagnosis of
Discrete Event Systems). More recently, the
relevant methodology has been extended with
prognostic capability (Kumar and Takai 2010),
while an interesting variation of it addresses
the “dual” problem that concerns the design
of systems where certain events or behavioral
patterns must remain undetectable by an external
observer who has only partial observation of the
system behavior; this last requirement has been
formally characterized by the notion of “opacity”
in the relevant literature, and it finds application

in the design and operation of secure systems
(Dubreil et al. 2010; Saboori and Hadjicostis
2012, 2014).

Dealing with the Underlying
Computational Complexity
As revealed from the discussion of the previous
paragraphs, many of the applications of DES SC
theory concern the integration and coordination
of behavior that is generated by a number of in-
teracting components. In these cases, the formal
models that are necessary for the description of
the underlying plant behavior may grow their size
very fast, and the algorithms that are involved in
the behavioral analysis and control synthesis may
become practically intractable. Nevertheless, the
rigorous methodological base that underlies DES
theory provides also a framework for addressing
these computational challenges in an effective
and structured manner.

More specifically, DES SC theory provides
conditions under which the control specifica-
tions can be decomposable to the constituent
plant components while maintaining the integrity
and correctness of the overall plant behavior
(�Supervisory Control of Discrete-Event Sys-
tems; Wonham 2006). The aforementioned works
of Brandin (1996) and Endsley et al. (2006) pro-
vide some concrete examples for the application
of modular control synthesis. On the other hand,
there are fundamental problems addressed by SC
theory and practice that require a holistic view
of the underlying plant and its operation, and
thus, they are not amenable to modular solutions.
For such cases, DES SC theory can still provide
effective solutions through (i) the identification of
special plant structure, of practical relevance, for
which the target supervisors are implementable
in a computationally efficient manner and (ii)
the development of structured approaches that
can systematically trade-off the original specifi-
cations for computational tractability.

A particular application that has benefited
from, and, at the same time, has significantly
promoted this last capability of DES SC theory,
is that concerning the deadlock-free operation
of many systems where a set of processes that
execute concurrently and in a staged manner are

http://dx.doi.org/10.1007/978-1-4471-5058-9_56
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competing, at each of their processing stages,
for the allocation of a finite set of reusable
resources. In DES theory, this problem is
known as the liveness-enforcing supervision of
sequential resource allocation systems (RAS)
(Reveliotis 2005), and it underlies the operation
of many contemporary applications: from the
resource allocation taking place in contemporary
manufacturing shop floors, Ezpeleta et al.
(1995), Reveliotis and Ferreira (1996), and
Jeng et al. (2002), to the traveling and/or work-
space negotiation in robotic systems (Reveliotis
and Roszkowska 2011), automated railway
(Giua et al. 2006), and other guidepath-based
traffic systems (Reveliotis 2000); to Internet-
based workflow management systems like those
envisioned for e-commerce and certain banking
and insurance claim processing applications
(Van der Aalst 1997); and to the allocation of
the semaphores that control the accessibility
of shared resources by concurrently executing
threads in parallel computer programs (Liao
et al. 2013). A systematic introduction to the
DES-based modeling of RAS and their liveness-
enforcing supervision is provided in Reveliotis
(2005) and Zhou and Fanti (2004), while some
more recent developments in the area are
epitomized in Reveliotis (2007), Li et al. (2008)
and Reveliotis and Nazeem (2013).

Closing the above discussion on the ability of
DES theory to address effectively the complexity
that underlies the DES SC problem, we should
point out that the same merits of the theory
have also enabled the effective management of
the complexity that underlies problems related
to the performance modeling and control of the
various DES applications. We shall return to this
capability in the next section that discusses the
achievements of DES theory in this domain.

DES Performance Control
and the Interplay Among Structure,
Behavior, and Performance
DES theory is also interested in the performance
modeling, analysis, and control of its target
applications w.r.t. time-related aspects like
throughput, resource utilization, experienced
latencies, and congestion patterns. To support

this type of analysis, the untimed DES behavioral
models are extended to their timed versions. This
extension takes place by endowing the original
untimed models with additional attributes that
characterize the experienced delays between
the activation of an event and its execution
(provided that it is not preempted by some other
conflicting event). Timed models are further
classified by the extent and the nature of the
randomness that is captured by them. A basic
such categorization is between deterministic
models, where the aforementioned delays take
fixed values for every event and stochastic
models which admit more general distributions.
From an application standpoint, timed DES
models connect DES theory to the multitude
of applications that have been addressed by
Dynamic Programming, Stochastic Control,
and scheduling theory (Bertsekas 1995; Meyn
2008; Pinedo 2002). Also, in their most general
definition, stochastic DES models provide
the theoretical foundation of discrete-event
simulation (Banks et al. 2009).

Similar to the case of behavioral DES theory, a
practical concern that challenges the application
of timed DES models for performance model-
ing, analysis, and control is the very large size
of these models, even for fairly small systems.
DES theory has tried to circumvent these com-
putational challenges through the development of
methodology that enables the assessment of the
system performance, over a set of possible con-
figurations, from the observation of its behavior
and the resultant performance at a single configu-
ration. The required observations can be obtained
through simulation, and in many cases, they can
be collected from a single realization – or sample
path – of the observed behavior; but then, the
considered methods can also be applied on the
actual system, and thus, they become a tool for
real-time optimization, adaptation, and learning.
Collectively, the aforementioned methods define
a “sensitivity”-based approach to DES perfor-
mance modeling, analysis, and control (Cassan-
dras and Lafortune 2008; � Perturbation Anal-
ysis of Discrete Event Systems). Historically,
DES sensitivity analysis originated in the early
1980s in an effort to address the performance
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analysis and optimization of queueing systems
w.r.t. certain structural parameters like the ar-
rival and processing rates (Ho and Cao 1991).
But the current theory addresses more general
stochastic DES models that bring it closer to
broader endeavors to support incremental op-
timization, approximation, and learning in the
context of stochastic optimal control (Cao 2007).
Some particular applications of DES sensitiv-
ity analysis for the performance optimization of
production, telecom, and computing systems can
be found in Cassandras and Strickland (1988),
Cassandras (1994), Panayiotou and Cassandras
(1999), Homem-de Mello et al. (1999), Fu and
Xie (2002), and Santoso et al. (2005).

Another interesting development in time-
based DES theory is the theory of (max,+)
algebra (Baccelli et al. 1992). In its practical
applications, this theory addresses the timed
dynamics of systems that involve the synchro-
nization of a number of concurrently executing
processes with no conflicts among them, and
it provides important structural results on the
factors that determine the behavior of these
systems in terms of the occurrence rates of
various critical events and the experienced
latencies among them. Motivational applications
of (max,+) algebra can be traced in the design and
control of telecommunication and data networks,
manufacturing, and railway systems, and more
recently the theory has found considerable
practical application in the computation of
repetitive/cyclical schedules that seek to optimize
the throughput rate of automated robotic cells and
of the cluster tools that are used in semiconductor
manufacturing (Kim and Lee 2012; Lee 2008;
Park et al. 1999).

Both sensitivity-based methods and the theory
of (max,+) algebra that were discussed in the
previous paragraphs are enabled by the explicit,
formal modeling of the DES structure and behav-
ior in the pursued performance analysis and con-
trol. This integrative modeling capability that is
supported by DES theory also enables a profound
analysis of the impact of the imposed behavioral-
control policies upon the system performance
and, thus, the pursuance of a more integrative
approach to the synthesis of the behavioral and

the performance-oriented control policies that are
necessary for any particular DES instantiation.
This is a rather novel topic in the relevant DES
literature, and some recent works in this direction
can be found in Cao (2005), Li and Reveliotis
(2013), Markovski and Su (2013), and David-
Henriet et al. (2013).

The Roles of Abstraction and Fluidification
The notions of “abstraction” and “fluidification”
play a significant role in mastering the complex-
ity that arises in many DES applications. Further-
more, both of these concepts have an important
role in defining the essence and the boundaries of
DES-based modeling.

In general systems theory, abstraction can be
broadly defined as the effort to develop sim-
plified models for the considered dynamics that
retain, however, adequate information to resolve
the posed questions in an effective manner. In
DES theory, abstraction has been pursued w.r.t.
the modeling of both the timed and untimed
behaviors, giving rise to hierarchical structures
and models. A theory for hierarchical SC is
presented in Wonham (2006), while some appli-
cations of hierarchical SC in the manufacturing
domain are presented in Hill et al. (2010) and
Schmidt (2012). In general, hierarchical SC relies
on a “spatial” decomposition that tries to local-
ize/encapsulate the plant behavior into a number
of modules that interact through the communi-
cation structure that is defined by the hierarchy.
On the other hand, when it comes to timed DES
behavior and models, a popular approach seeks
to define a hierarchical structure for the underly-
ing decision-making process by taking advantage
of the different time scales that correspond to
the occurrence of the various event types. Some
particular works that formalize and systematize
this idea in the application context of production
systems can be found in Gershwin (1994) and
Sethi and Zhang (1994) and the references cited
therein.

In fact, the DES models that have been em-
ployed in many application areas can be per-
ceived themselves as abstractions of dynamics of
a more continuous, time-driven nature, where the
underlying plant undergoes some fundamental
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(possibly structural) transition upon the occur-
rence of certain events that are defined either en-
dogenously or exogenously w.r.t. these dynamics.
The combined consideration of the discrete-event
dynamics that are generated in the manner de-
scribed above, with the continuous, time-driven
dynamics that characterize the modalities of the
underlying plant, has led to the extension of
the original DES theory to the, so-called, hybrid
systems theory. Hybrid systems theory is itself
very rich, and it is covered in another section
of this encyclopedia (see also �Discrete Event
Systems and Hybrid Systems, Connections Be-
tween). From an application standpoint, it in-
creases substantially the relevance of the DES
modeling framework and brings this framework
to some new and exciting applications. Some
of the most prominent applications concern the
coordination of autonomous vehicles and robotic
systems, and a nice anthology of works concern-
ing the application of hybrid systems theory in
this particular application area can be found in
the IEEE Robotics and Automation magazine of
September 2011. These works also reveal the
strong affinity that exists between hybrid systems
theory and the DES modeling paradigm. Along
similar lines, hybrid systems theory underlies
also the endeavors for the development of the
Automated Highway Systems that have been ex-
plored for the support of the future urban traf-
fic needs (Horowitz and Varaiya 2000). Finally,
hybrid systems theory and its DES component
have been explored more recently as potential
tools for the formal modeling and analysis of the
molecular dynamics that are studied by systems
biology (Curry 2012).

Fluidification, on the other hand, is the effort
to represent as continuous flows, dynamics that
are essentially of discrete-event type, in order
to alleviate the computational challenges that
typically result from discreteness and its com-
binatorial nature. The resulting models serve as
approximations of the original dynamics, fre-
quently they have the formal structure of hybrid
systems, and they define a basis for develop-
ing “relaxations” for the originally addressed
problems. Usually, their justification is of an ad
hoc nature, and the quality of the established

approximations is empirically assessed on the
basis of the delivered results (by comparing these
results to some “baseline” performance). There
are, however, a number of cases where the relaxed
fluid model has been shown to retain impor-
tant behavioral attributes of its original coun-
terpart (Dai 1995). Furthermore, some recent
works have investigated more analytically the
impact of the approximation that is introduced
by these models on the quality of the delivered
results (Wardi and Cassandras 2013). Some more
works regarding the application of fluidification
in the DES-theoretic modeling frameworks, and
of the potential advantages that it brings in vari-
ous application contexts, can be found in Srikant
(2004), Meyn (2008), David and Alla (2005), and
Cassandras and Yao (2013).

Summary and Future Directions

The discussion of the previous section has
revealed the extensive application range and
potential of DES theory and its ability to provide
structured and rigorous solutions to complex
and sometimes ill-defined problems. On the
other hand, the same discussion has revealed
the challenges that underlie many of the DES
applications. The complexity that arises from
the intricate and integrating nature of most DES
models is perhaps the most prominent of these
challenges. This complexity manifests itself in
the involved computations, but also in the need
for further infrastructure, in terms of modeling in-
terfaces and computational tools, that will render
DES theory more accessible to the practitioner.

The DES community is aware of this need,
and the last few years have seen the development
of a number of computational platforms that seek
to implement and leverage the existing theory
by connecting it to various application settings;
indicatively, we mention DESUMA (Ricker et al.
2006), SUPREMICA (Akesson et al. 2006), and
TCT (Feng and Wonham 2006) that support DES
behavioral modeling, analysis, and control along
the lines of DES SC theory, while the website
entitled “The Petri Nets World” has an extensive
database of tools that support modeling and
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analysis through untimed and timed variations
of the Petri net model. Model checking tools, like
SMV and NuSpin, that are used for verification
purposes are also important enablers for the prac-
tical application of DES theory, and, of course,
there are a number of programming languages
and platforms, like Arena, AutoMod, and Simio,
that support discrete-event simulation. However,
with the exception of the discrete-event-
simulation software, which is a pretty mature
industry, the rest of the aforementioned endeavors
currently evolve primarily within the academic
and the broader research community. Hence, a
remaining challenge for the DES community is
the strengthening and expansion of the afore-
mentioned computational platforms to robust
and user-friendly computational tools. The avail-
ability of such industrial-strength computational
tools, combined with the development of a body
of control engineers well-trained in DES theory,
will be catalytic for bringing all the developments
that were described in the earlier parts of this
document even closer to the industrial practice.
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Abstract

Auctions are procedures for selling one or
more items to one or more bidders. Auctions
induce games among the bidders, so notions of

equilibrium from game theory can be applied to
auctions. Auction theory aims to characterize
and compare the equilibrium outcomes for
different types of auctions. Combinatorial
auctions arise when multiple-related items are
sold simultaneously.

Keywords
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Introduction

Three commonly used types of auctions for the
sale of a single item are the following:
• First price auction: Each bidder submits a bid

one of the bidders submitting the maximum
bid wins, and the payment for the item is
the maximum bid. (In this context “wins”
means receives the item, no matter what the
payment.)

• Second price auction or Vickrey auction: Each
bidder submits a bid, one of the bidders sub-
mitting the maximum bid wins, and the pay-
ment for the item is the second highest bid.

• English auction: The price for the item in-
creases continuously or in some small incre-
ments, and bidders drop out at some points
in time. Once all but one of the bidders has
dropped out, the remaining bidder wins and
the payment is the price at which the last of
the other bidders dropped out.
A key goal of the theory of auctions is to

predict how the bidders will bid, and predict
the resulting outcomes of the auction: which
bidder is the winner and what is the payment.
For example, a seller may be interested in the
expected payment (seller revenue). A seller may
have the option to choose one auction format over
another and be interested in revenue comparisons.
Another item of interest is efficiency or social
welfare. For sale of a single item, the outcome is
efficient if the item is sold to the bidder with the
highest value for the item. The book of V. Krishna
(2002) provides an excellent introduction to the
theory of auctions.

http://dx.doi.org/10.1007/978-1-4471-5058-9_23
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Auctions Versus Seller Mechanisms

An important class of mechanisms within the the-
ory of mechanism design are seller mechanisms,
which implement the sale of one or more items
to one or more bidders. Some authors would
consider all such mechanisms to be auctions, but
the definition of auctions is often more narrowly
interpreted, with auctions being the subclass of
seller mechanisms which do not depend on the
fine details of the set of bidders. The rules of the
three types of auction mentioned above do not
depend on fine details of the bidders, such as the
number of bidders or statistical information about
how valuable the item is to particular bidders. In
contrast, designing a procedure to sell an item to
a known set of bidders under specific statistical
assumptions about the bidders’ preferences in
order to maximize the expected revenue (as in
Myerson (1981)) would be considered a problem
of mechanism design, which is outside the more
narrowly defined scope of auctions. The narrower
definition of auctions was championed by R. Wil-
son (1987). An article on �Mechanism Design
appears in this encyclopedia.

Equilibrium Strategies in Auctions

An auction induces a noncooperative game
among the bidders, and a commonly used
predictor of the outcome of the auction is an
equilibrium of the game, such as a Nash or
Bayes-Nash equilibrium. For a risk neutral bidder
i with value xi for the item, if the bidder wins
and the payment is Mi; the payoff of the bidder
is xi �Mi: If the bidder does not win, the payoff
of the bidder is zero. If, instead, the bidder is
risk averse with risk aversion measured by an
increasing utility function ui ; the payoff of the
bidder would be ui .xi � Mi/ if the bidder wins
and ui .0/ if the bidder does not win.

The second price auction format is character-
ized by simplicity of the bidding strategies. If
bidder i knows the value xi of the item to himself,
then for the second price auction format, a weakly
dominant strategy for the bidder is to truthfully
report xi as his bid for the item. Indeed, if yi is

the highest bid of the other bidders, the payoff
of bidder i is ui .xi � yi / if he wins and ui .0/ if
he does not win. Thus, bidder i would prefer to
win whenever ui .xi � yi / > ui .0/ and not win
whenever ui .xi � yi / < ui .0/: That is precisely
what happens if bidder i bids xi ; no matter what
the bids of the other bidders are. That is, bidding
xi is a weakly dominant strategy for bidder i:

Nash equilibrium can be found for the other
types of auctions under a model with incomplete
information, in which the type of each bidder i is
equal to the value of the object to the bidder and is
modeled as a random variable Xi with a density
function fi supported by some interval Œai ; bi �:
A simple case is that the bidders are all risk
neutral, the densities are all equal to some fixed
density f; and theXi ’s are mutually independent.
The English auction in this context is equiva-
lent to the second price auction: in an English
auction, dropping out when the price reaches
his true value is a weakly dominant strategy for
a bidder, and for the weakly dominant strategy
equilibrium, the outcome of the auction is the
same as for the second price auction. For the first
price auction in this symmetric case, there exists a
symmetric Bayesian equilibrium. It corresponds
to all bidders using the bidding function ˇ (so the
bid of bidder i is ˇ.Xi/), where ˇ is given by
ˇ.x/ D EŒY1jY1 � x�: The expected revenue to
the seller in this case is EŒY1jY1 < X1�; which is
the same as the expected revenue for the second
price auction and English auction.

Equilibrium for Auctions
with Interdependent Valuations

Seminal work of Milgrom and Weber (1982)
addresses the performance of the above three
auction formats in case the bidders do not
know the value of the item, but each bidder i
has a private signal Xi about the value Vi of
the item to bidder i: The values and signals
.X1; : : : Xn; V1; : : : ; Vn/ can be interdependent.
Under the assumption of invariance of the
joint distribution of .X1; : : : Xn; V1; : : : ; Vn/

under permutation of the bidders and a strong
form of positive correlation of the random

http://dx.doi.org/10.1007/978-1-4471-5058-9_38
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variables .X1; : : : Xn; V1; : : : ; Vn/ (see Milgrom
and Weber 1982 or Krishna 2002 for details), a
symmetric Bayes-Nash equilibrium is identified
for each of the three auction formats mentioned
above, and the expected revenues for the
three auction formats are shown to satisfy the
ordering R.first price/ � R.second price/ � R.English/:

A significant extension of the theory of Milgrom
and Weber due to DeMarzo et al. (2005) is the
theory of security-bid auctions in which bidders
compete to buy an asset and the final payment is
determined by a contract involving the value of
the asset as revealed after the auction.

Combinatorial Auctions

Combinatorial auctions implement the simultane-
ous sale of multiple items. A simple version is the
simultaneous ascending price auction with activ-
ity constraints (Cramton 2006; Milgrom 2004).
Such an auction procedure was originally pro-
posed by Preston, McAfee, Paul Milgrom, and
Robert Wilson for the US FCC wireless spectrum
auction in 1994 and was used for the vast majority
of spectrum auctions worldwide since then Cram-
ton (2013). The auction proceeds in rounds. In
each round a minimum price is set for each item,
with the minimum prices for the initial round
being reserve prices set by the seller. A given
bidder may place a bid on an item in a given
round such that the bid is greater than or equal
to the minimum price for the item. If one or more
bidders bid on an item in a round, a provisional
winner of the item is selected from among the
bidders with the highest bid for the item in the
round, with the new provisional price being the
highest bid. The minimum price for the item is
increased 10 % (or some other small percentage)
above the new provisional price. Once there is a
round with no bids, the set of provisional winners
is identified. Often constraints are placed on the
bidders in the form of activity rules. An activity
rule requires a bidder to maintain a history of
bidding in order to continue bidding, so as to
prevent bidders from not bidding in early rounds
and bidding aggressively in later rounds. The
motivation for activity rules is to promote price

discovery to help bidders select the packages (or
bundles) of items most suitable for them to buy.
A key is that complementarities may exist among
the items for a given bidder. Complementarity
means that a bidder may place a significantly
higher value on a bundle of items than the sum of
values the bidder would place on the items indi-
vidually. Complementarities lead to the exposure
problem, which occurs when a bidder wins only
a subset of items of a desired bundle at a price
which is significantly higher than the price paid.
For example, a customer might place a high value
on a particular pair of shoes, but little value on a
single shoe alone.

A variation of simultaneous ascending price
auctions for combinatorial auctions is auctions
with package bidding (see, e.g., Ausubel and
Milgrom 2002; Cramton 2013). A bidder will
either win a package of items he bid for or no
items, thereby eliminating the exposure problem.
For example, in simultaneous clock auctions with
package bidding, the price for each item increases
according to a fixed schedule (the clock), and bid-
ders report the packages of items they would pre-
fer to purchase for the given prices. The price for
a given item stops increasing when the number of
bidders for that item drops to zero or one, and the
clock phase of the auction is complete when the
number of bidders for every item is zero or one.
Following the clock phase, bidders can submit
additional bids for packages of items. With the
inputs from bidders acquired during the clock
phase and supplemental bid phase, the auctioneer
then runs a winner determination algorithm to
select a set of bids for non-overlapping packages
that maximizes the sum of the bids. This winner
determination problem is NP hard, but is com-
putationally feasible using integer programming
or dynamic programming methods for moderate
numbers of items (perhaps up to 30). In addition,
the vector of payments charged to the winners
is determined by a two-step process. First, the
(generalized) Vickrey price for each bidder is
determined, which is defined to be the minimum
the bidder would have had to bid in order to
be a winner. Secondly, the vector of Vickrey
prices is projected onto the core of the reported
prices. The second step insures that no coalition
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consisting of a set of bidders and the seller can
achieve a higher sum of payoffs (calculated using
the bids received) for some different selection
of winners than the coalition received under the
outcome of the auction. While this is a promising
family of auctions, the projection to the core
introduces some incentive for bidders to deviate
from truthful reporting, and much remains to be
understood about such auctions.

Summary and Future Directions

Auction theory provides a good understanding
of the outcomes of the standard auctions for the
sale of a single item. Recently emerging auc-
tions, such as for the generation and consumption
of electrical power, and for selection of online
advertisements, are challenging to analyze and
comprise a direction for future research. Much
remains to be understood in the theory of combi-
natorial auctions, such as the degree of incentive
compatibility offered by core projecting auctions.
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Abstract

Autotuning, or automatic tuning, means that the
controller is tuned automatically. Autotuning is
normally applied to PID controllers, but the tech-
nique can also be used to initialize more advanced
controllers. The main approaches to autotuning
are based on step response analysis or frequency
response analysis obtained using relay feedback.
Autotuning has been well received in industry,
and today most distributed control systems have
some kind of autotuning technique.

Keywords

Automatic tuning; Gain scheduling; PID control;
Process control; Proportional-integral-derivative
control; Relay feedback

Background

In the late 1970s and early 1980s, there was a
quite rapid change of controller implementation
in process control. The analog controllers were
replaced by computer-based controllers and dis-
tributed control systems. The functionality of the
new controllers was often more or less a copy
of the old analog equipment, but new functions
that utilized the computer implementation were
gradually introduced. One of the first functions of
this type was autotuning. Autotuning is a method
to tune the controllers, normally PID controllers,
automatically.

What Is Autotuning?

A PID controller in its basic form has the struc-
ture

http://dx.doi.org/10.1007/978-1-4471-5058-9_26
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where u is the controller output and e D ysp�y is
the control error, where ysp is the setpoint and y
is the process output. There are three parameters
in the controller, gain K , integral time Ti , and
derivative time Td . These parameters have to be
set by the user. Their values are dependent of the
process dynamics and the specifications of the
control loop.

A process control plant may have thousands
of control loops, which means that maintaining
high-performance controller tuning can be very
time consuming. This was the main reason why
procedures for automatic tuning were installed so
rapidly in the computer-based controllers.

When a controller is to be tuned, the following
steps are normally performed by the user:
1. To determine the process dynamics, a minor

disturbance is injected by changing the control
signal.

2. By studying the response in the process out-
put, the process dynamics can be determined,
i.e., a process model is derived.

3. The controller parameters are finally deter-
mined based on the process model and the
specifications.
Autotuning means simply that these three

steps are performed automatically. Instead of
having a human to perform these tasks, they
are performed automatically on demand from
the user. Ideally, the autotuning should be fully
automatic, which means that no information
about the process dynamics is required from
the user.

Automatic tuning can be performed in many
ways. The process disturbance can take differ-
ent forms, e.g., in the form of step changes or
some kind of oscillatory excitation. The model
obtained can be more or less accurate. There are
also many ways to tune the controller based on
the process model.

Here, we will discuss two main approaches
for autotuning, namely, those that are based on
step response analysis and those that are based
on frequency response analysis.

Methods Based on Step Response
Analysis

Most methods for automatic tuning of PID
controllers are based on step response analysis.
When the operator wishes to tune the controller,
an open-loop step response experiment is
performed. A process model is then obtained
from the step response, and controller parameters
are determined. This is usually done using simple
formulas or look-up tables.

The most common process model used for
PID controller tuning based on step response ex-
periments is the first-order plus dead-time model

G.s/ D Kp

1C sT
e�sL

where Kp is the static gain, T is the apparent
time constant, and L is the apparent dead time.
These three parameters can be obtained from a
step response experiment according to Fig. 1.

Static gain Kp is given by the ratio between
the steady-state change in process output and
the magnitude of the control signal step, Kp D
�y=�u. Dead-time L is determined from the
time elapsed from the step change to the inter-
section of the largest slope of the process output
with the level of the process output before the step
change. Finally, time constant T is the time when
the process output has reached 63 % of its final
value, subtracted by L.

Δy

Δu

Process output

Control signal

63%

L T

Autotuning, Fig. 1 Determination ofKp ,L, and T from
a step response experiment
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The greatest difficulty in carrying out tuning
automatically is in selecting the amplitude of the
step. The user naturally wants the disturbance to
be as small as possible so that the process is not
disturbed more than necessary. On the other hand,
it is easier to determine the process model if the
disturbance is large. The result of this dilemma
is usually that the user has to decide how large
the step in the control signal should be. Another
problem is to determine when the step response
has reached its final value.

Methods Based on Frequency
Response Analysis

Frequency-domain characteristics of the process
can be obtained by adding sinusoidals to the
control signal, but without knowing the frequency
response of the process, the interesting frequency
range and acceptable amplitudes are not known.
A method that automatically provides a rele-
vant frequency response can be determined from
experiments with relay feedback according to
Fig. 2. Notice that there is a switch that selects
either relay feedback or ordinary PID feedback.
When it is desired to tune the system, the PID
function is disconnected and the system is con-
nected to relay feedback control. Relay feedback
control is the same as on/off control, but where
the on and off levels are carefully chosen and not
0 and 100 %. The relay feedback makes the con-
trol loop oscillate. The period and the amplitude
of the oscillation is determined when steady-state
oscillation is obtained. This gives the ultimate
period and the ultimate gain. The parameters of a
PID controller can then be determined from these
values. The PID controller is then automatically
switched in again, and the control is executed
with the new PID parameters.

For large classes of processes, relay feedback
gives an oscillation with period close to the ulti-
mate frequency !u, as shown in Fig. 3, where the
control signal is a square wave and the process
output is close to a sinusoid. The gain of the
transfer function at this frequency is also easy to
obtain from amplitude measurements.

ProcessΣ

−1

PID

yuysp

Autotuning, Fig. 2 The relay autotuner. In the tuning
mode the process is connected to relay feedback

Describing function analysis can be used to
determine the process characteristics. The de-
scribing function of a relay with hysteresis is

N.a/ D 4d

�a

 r
1 �

� �
a

�2 � i �
a

!

where d is the relay amplitude, � the relay hys-
teresis, and a the amplitude of the input signal.
The negative inverse of this describing function is
a straight line parallel to the real axis; see Fig. 4.
The oscillation corresponds to the point where the
negative inverse describing function crosses the
Nyquist curve of the process, i.e., where

G.i!/ D � 1

N.a/

Since N.a/ is known, G.i!/ can be determined
from the amplitude a and the frequency ! of the
oscillation.

Notice that the relay experiment is easily au-
tomated. There is often an initialization phase
where the noise level in the process output is de-
termined during a short period of time. The noise
level is used to determine the relay hysteresis
and a desired oscillation amplitude in the process
output. After this initialization phase, the relay
function is introduced. Since the amplitude of the
oscillation is proportional to the relay output, it is
easy to control it by adjusting the relay output.

Different Adaptive Techniques

In the late 1970s, at the same time as autotuning
procedures were developed and implemented in
industrial controllers, there was a large academic
interest in adaptive control. These two concepts
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Autotuning, Fig. 3 Process output y and control signal u during relay feedback
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Autotuning, Fig. 4 The negative inverse describing
function of a relay with hysteresis �1=N.a/ and a Nyquist
curve G.i!/

are often mixed up with each other. Autotun-
ing is sometimes called tuning on demand. An
identification experiment is performed, controller
parameters are determined, and the controller
is then run with fixed parameters. An adaptive
controller is, however, a controller where the con-
troller parameters are adjusted online based on
information from routine data. Automatic tuning
and adaptive control have, however, one thing in
common, namely, that they are methods to adapt
the controller parameters to the actual process

dynamics. Therefore, they are both called adap-
tive techniques.

There is a third adaptive technique, namely,
gain scheduling. Gain scheduling is a system
where controller parameters are changed
depending on measured operating conditions.
The scheduling variable can, for instance, be
the measurement signal, controller output, or an
external signal. For historical reasons the word
gain scheduling is used even if other parameters
like integral time or derivative time are changed.
Gain scheduling is a very effective way of
controlling systems whose dynamics change
with the operating conditions. Automatic tuning
has made it possible to generate gain schedules
automatically.

Although research on adaptive techniques has
almost exclusively focused on adaptation, ex-
perience has shown that autotuning and gain
scheduling have much wider industrial applica-
bility. Figure 5 illustrates the appropriate use of
the different techniques.

Controller performance is the first issue to
consider. If requirements are modest, a controller
with constant parameters and conservative tuning
can be used. Other solutions should be considered
when higher performance is required.
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Gain scheduling

Auto-tuning

Adaptation

Constant but
unknown dynamics

Predictable 
changes in dynamics

Unpredictable
changes in dynamics

Constant controller
parameters

Predictable
parameter changes

Unpredictable
parameter changes

Auto-tuningAuto-tuning

Autotuning, Fig. 5 When
to use different adaptive
techniques

If the process dynamics are constant, a con-
troller with constant parameters should be used.
The parameters of the controller can be obtained
by autotuning.

If the process dynamics or the charac-
ter of the disturbances are changing, it is
useful to compensate for these changes by
changing the controller. If the variations
can be predicted from measured signals,
gain scheduling should be used since it is
simpler and gives superior and more robust
performance than continuous adaptation.
Typical examples are variations caused by
nonlinearities in the control loop. Autotuning
can be used to build up the gain schedules
automatically.

There are also cases where the variations in
process dynamics are not predictable. Typical
examples are changes due to unmeasurable vari-
ations in raw material, wear, fouling, etc. These
variations cannot be handled by gain scheduling
but must be dealt with by adaptation. An auto-
tuning procedure is often used to initialize the
adaptive controller. It is then sometimes called
pre-tuning or initial tuning.

To summarize, autotuning is a key component
in all adaptive techniques and a prerequisite for
their use in practice.

Industrial Products

Commercial PID controllers with adaptive tech-
niques have been available since the beginning of
the late 1970s, both in single-station controllers
and in distributed control systems.

Two important, but distinct, applications of
PID autotuners are temperature controllers and
process controllers. Temperature controllers are
primarily designed for temperature control,
whereas process controllers are supposed to
work for a wide range of control loops in the
process industry such as flow, pressure, level,
temperature, and concentration control loops.
Automatic tuning is easier to implement in
temperature controllers, since most temperature
control loops have several common features.
This is the main reason why automatic tuning
was introduced more rapidly in these controllers.

Since the processes that are controlled with
process controllers may have large differences
in their dynamics, tuning becomes more difficult
compared to the pure temperature control loops.

Automatic tuning can also be performed by
external devices which are connected to the con-
trol loop during the tuning phase. Since these
devices are supposed to work together with con-
trollers from different manufacturers, they must



Averaging Algorithms and Consensus 55

A

be provided with quite a lot of information about
the controller structure and parameterization in
order to provide appropriate controller param-
eters. Such information includes signal ranges,
controller structure (series or parallel form), sam-
pling rate, filter time constants, and units of
the different controller parameters (gain or pro-
portional band, minutes or seconds, time or re-
peats/time).

Summary and Future Directions

Most of the autotuning methods that are avail-
able in industrial products today were devel-
oped about 30 years ago, when computer-based
controllers started to appear. These autotuners
are often based on simple models and simple
tuning rules. With the computer power available
today, and the increased knowledge about PID
controller design, there is a potential for improv-
ing the autotuners, and more efficient autotuners
will probably appear in industrial products quite
soon.
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Abstract

In this article, we overview averaging algorithms
and consensus in the context of distributed coor-
dination and control of networked systems. The
two subjects are closely related but not iden-
tical. Distributed consensus means that a team
of agents reaches an agreement on certain vari-
ables of interest by interacting with their neigh-
bors. Distributed averaging aims at computing
the average of certain variables of interest among
multiple agents by local communication. Hence
averaging can be treated as a special case of
consensus – average consensus. For distributed
consensus, we introduce distributed algorithms
for agents with single-integrator, general linear,
and nonlinear dynamics. For distributed averag-
ing, we introduce static and dynamic averaging
algorithms. The former is useful for computing
the average of initial conditions (or constant sig-
nals), while the latter is useful for computing the
average of time-varying signals. Future research
directions are also discussed.

Keywords

Cooperative control; Coordination; Distributed
control; Multi-agent systems; Networked systems

Introduction

In the area of control of networked systems, low
cost, high adaptivity and scalability, great robust-
ness, and easy maintenance are critical factors.
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To achieve these factors, distributed coordination
and control algorithms that rely on only local in-
teraction between neighboring agents to achieve
collective group behavior are more favorable than
centralized ones. In this article, we overview
averaging algorithms and consensus in the con-
text of distributed coordination and control of
networked systems.

Distributed consensus means that a team of
agents reaches an agreement on certain variables
of interest by interacting with their neighbors.
A consensus algorithm is an update law that
drives the variables of interest of all agents in
the network to converge to a common value
(Jadbabaie et al. 2003; Olfati-Saber et al. 2007;
Ren and Beard 2008). Examples of the variables
of interest include a local representation of the
center and shape of a formation, the rendezvous
time, the length of a perimeter being monitored,
the direction of motion for a multi-vehicle swarm,
and the probability that a target has been identi-
fied. Consensus algorithms have applications in
rendezvous, formation control, flocking, attitude
alignment, and sensor networks (Bai et al. 2011a;
Bullo et al. 2009; Mesbahi and Egerstedt 2010;
Qu 2009; Ren and Cao 2011). Distributed aver-
aging algorithms aim at computing the average
of certain variables of interest among multiple
agents by local communication. Distributed av-
eraging finds applications in distributed comput-
ing, distributed signal processing, and distributed
optimization (Tsitsiklis et al. 1986). Hence the
variables of interest are dependent on the appli-
cations (e.g., a sensor measurement or a network
quantity). Consensus and averaging algorithms
are closely connected and yet nonidentical. When
all agents are able to compute the average, they
essentially reach a consensus, the so-called av-
erage consensus. On the other hand, when the
agents reach a consensus, the consensus value
might or might not be the average value.

Graph Theory Notations. Suppose that there
are n agents in a network. A network topology
(equivalently, graph) G consisting of a node set
V D f1; : : : ; ng and an edge set E � V � V will
be used to model interaction (communication or
sensing) between the n agents. An edge .i; j / in

a directed graph denotes that agent j can obtain
information from agent i , but not necessarily vice
versa. In contrast, an edge .i; j / in an undirected
graph denotes that agents i and j can obtain
information from each other. Agent j is a (in-)
neighbor of agent i if .j; i/ 2 E . Let Ni denote
the neighbor set of agent i . We assume that i 2
Ni . A directed path is a sequence of edges in
a directed graph of the form .i1; i2/; .i2; i3/; : : :,
where ij 2 V . An undirected path in an undi-
rected graph is defined analogously. A directed
graph is strongly connected if there is a directed
path from every agent to every other agent. An
undirected graph is connected if there is an undi-
rected path between every pair of distinct agents.
A directed graph has a directed spanning tree if
there exists at least one agent that has directed
paths to all other agents. For example, Fig. 1
shows a directed graph that has a directed span-
ning but is not strongly connected. The adjacency
matrix A D Œaij � 2 R

n�n associated with G is
defined such that aij (the weight of edge .j; i/)
is positive if agent j is a neighbor of agent i
while aij D 0 otherwise. The (nonsymmetric)
Laplacian matrix (Agaev and Chebotarev 2005)
L D Œ`ij � 2 R

n�n associated with A and hence G
is defined as `i i D P

j¤i aij and `ij D �aij for
all i ¤ j . For an undirected graph, we assume
that aij D aj i . A graph is balanced if for every
agent the total edge weights of its incoming links
is equal to the total edge weights of its outgoing
links (

Pn
jD1 aij D Pn

jD1 aj i for all i ).

A1 A2

A3 A4 A5

Averaging Algorithms and Consensus, Fig. 1 A di-
rected graph that characterizes the interaction among five
agents, where Ai , i D 1; : : : ; 5, denotes agent i . An
arrow from agent j to agent i indicates that agent i
receives information from agent j . The directed graph
has a directed spanning tree but is not strongly connected.
Here both agents 1 and 2 have directed paths to all other
agents



Averaging Algorithms and Consensus 57

A

Consensus

Consensus has a long history in management
science, statistical physics, and distributed com-
puting and finds recent interests in distributed
control. While in the area of distributed control
of networked systems the term consensus was
initially more or less dominantly referred to the
case of a continuous-time version of a distributed
linear averaging algorithm, such a term has been
broadened to a great extent later on. Related
problems to consensus include synchronization,
agreement, and rendezvous. The study of con-
sensus can be categorized in various manners.
For example, in terms of the final consensus
value, the agents could reach a consensus on
the average, a weighted average, the maximum
value, the minimum value, or a general function
of their initial conditions, or even a (changing)
state that serves as a reference. A consensus
algorithm could be linear or nonlinear. Consensus
algorithms can be designed for agents with linear
or nonlinear dynamics. As the agent dynamics
become more complicated, so do the algorithm
design and analysis. Numerous issues are also
involved in consensus such as network topologies
(fixed vs. switching, deterministic vs. random,
directed vs. undirected, asynchronous vs. syn-
chronous), time delay, quantization, optimality,
sampling effects, and convergence speed. For
example, in real applications, due to nonuniform
communication/sensing ranges or limited field of
view of sensors, the network topology could be
directed rather than undirected. Also due to unre-
liable communication/sensing and limited com-
munication/sensing ranges, the network topology
could be switching rather than fixed.

Consensus for Agents
with Single-Integrator Dynamics
We start with a fundamental consensus algo-
rithm for agents with single-integrator dynamics.
The results in this section follow from Jadbabaie
et al. (2003), Olfati-Saber et al. (2007), Ren and
Beard (2008), Moreau (2005), and Agaev and
Chebotarev (2000). Consider agents with single-
integrator dynamics

Pxi .t/ D ui .t/; i D 1; : : : ; n; (1)

where xi is the state and ui is the control input.
A common consensus algorithm for (1) is

ui .t/ D
X

j2Ni .t /

aij .t/Œxj .t/ � xi .t/�; (2)

where Ni .t/ is the neighbor set of agent i at time
t and aij .t/ is the .i; j / entry of the adjacency
matrix A of the graph G at time t . A consequence
of (2) is that the state xi .t/ of agent i is driven
toward the states of its neighbors or equivalently
toward the weighted average of its neighbors’
states. The closed-loop system of (1) using (2)
can be written in matrix form as

Px.t/ D �L.t/x.t/; (3)

where x is a column stack vector of all xi and
L is the Laplacian matrix. Consensus is reached
if for all initial states, the agents’ states even-
tually become identical. That is, for all xi .0/,��xi .t/ � xj .t/

�� approaches zero eventually.
The properties of the Laplacian matrix L play

an important role in the analysis of the closed-
loop system (3). When the graph G (and hence
the associated Laplacian matrix L) is fixed, (3)
can be analyzed by studying the eigenvalues and
eigenvectors of L. Due to its special structure,
for any graph G, the associated Laplacian ma-
trix L has at least one zero eigenvalue with an
associated right eigenvector 1 (column vector of
all ones) and all other eigenvalues have positive
real parts. To ensure consensus, it is equivalent
to ensure that L has a simple zero eigenvalue. It
can be shown that the following three statements
are equivalent: (i) the agents reach a consensus
exponentially for arbitrary initial states; (ii) the
graph G has a directed spanning tree; and (iii) the
Laplacian matrix L has a simple zero eigenvalue
with an associated right eigenvector 1 and all
other eigenvalues have positive real parts. When
consensus is reached, the final consensus value is
a weighted average of the initial states of those
agents that have directed paths to all other agents
(see Fig. 2 for an illustration).
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Averaging Algorithms
and Consensus, Fig. 2
Consensus for five agents
using the algorithm (2) for
(1). Here the graph G is
given by Fig. 1. The initial
states are chosen as
xi .0/ D 2i , where
i D 1; : : : ; 5. Consensus is
reached as G has a directed
spanning tree. The final
consensus value is a
weighted average of the
initial states of agents 1
and 2

When the graph G.t/ is switching at time
instants t0; t1; : : :, the solution to the closed-loop
system (3) is given by x.t/ D ˚.t; 0/x.0/, where
˚.t; 0/ is the transition matrix corresponding to
�L.t/. Consensus is reached if˚.t; 0/ eventually
converges to a matrix with identical rows. Here
˚.t; 0/ D ˚.t; tk/˚.tk; tk�1/ � � �˚.t1; 0/, where
˚.tk; tk�1/ is the transition matrix corresponding
to L.t/ at time interval Œtk�1; tk�. It turns out that
each transition matrix is a row-stochastic matrix
with positive diagonal entries. A square matrix is
row stochastic if all its entries are nonnegative
and all of its row sums are one. The consen-
sus convergence can be analyzed by studying
the product of row-stochastic matrices. Another
analysis technique is a Lyapunov approach (e.g.,
maxxi �minxi ). It can be shown that the agents’
states reach a consensus if there exists an infinite
sequence of contiguous, uniformly bounded time
intervals, with the property that across each such
interval, the union of the graphs G.t/ has a
directed spanning tree. That is, across each such
interval, there exists at least one agent that can
directly or indirectly influence all other agents. It
is also possible to achieve certain nice features by
designing nonlinear consensus algorithms of the
form ui .t/ D P

j2Ni .t /
aij .t/ Œxj .t/ � xi .t/�,

where  .�/ is a nonlinear function satisfying
certain properties. One example is a continu-
ous nondecreasing odd function. For example, a
saturation type function could be introduced to

account for actuator saturation and a signum type
function could be introduced to achieve finite-
time convergence.

As shown above, for single-integrator dynam-
ics, the consensus convergence is determined
entirely by the network topologies. The primary
reason is that the single-integrator dynamics are
internally stable. However, when more compli-
cated agent dynamics are involved, the consen-
sus algorithm design and analysis become more
complicated. On one hand, whether the graph is
undirected (respectively, switching) or not has
significant influence on the complexity of the
consensus analysis. On the other hand, not only
the network topology but also the agent dynamics
themselves and the parameters in the consensus
algorithm play important roles. Next we intro-
duce consensus for agents with general linear and
nonlinear dynamics.

Consensus for Agents with General Linear
Dynamics
In some circumstances, it is relevant to deal with
agents with general linear dynamics, which can
also be regarded as linearized models of certain
nonlinear dynamics. The results in this section
follow from Li et al. (2010). Consider agents with
general linear dynamics

Pxi D Axi C Bui ; yi D Cxi ; (4)
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A

where xi 2 R
m, ui 2 R

p , and yi 2 R
q

are, respectively, the state, the control input, and
the output of agent i and A, B , C are constant
matrices with compatible dimensions.

When each agent has access to the relative
states between itself and its neighbors, a dis-
tributed static consensus algorithm is designed
for (4) as

ui D cK
X
j2Ni

aij .xi � xj /; (5)

where c > 0 is a coupling gain, K 2 R
p�m

is the feedback gain matrix, and Ni and aij are
defined as in (2). It can be shown that if the
graph G has a directed spanning tree, consensus
is reached using (5) for (4) if and only if all the
matrices A C c�i .L/BK , where �i.L/ ¤ 0 are
Hurwitz. Here �i.L/ denotes the i th eigenvalue
of the Laplacian matrix L. A necessary condition
for reaching a consensus is that the pair .A;B/ is
stabilizable. The consensus algorithm (5) can be
designed via two steps:
(a) Solve the linear matrix inequality ATP C

PA � 2BBT < 0 to get a positive-definite
solution P . Then let the feedback gain matrix
K D �BTP�1.

(b) Select the coupling strength c larger than the
threshold value 1= min

�i .L/¤0
ReŒ�i .L/�, where

Re.�/ denotes the real part.
Note that here the threshold value depends on
the eigenvalues of the Laplacian matrix, which
is in some sense global information. To over-
come such a limitation, it is possible to introduce
adaptive gains in the algorithm design. The gains
could be updated dynamically using local infor-
mation.

When the relative states between each agent
and its neighbors are not available, one is mo-
tivated to make use of the output information
and employ observer-based design to estimate
the relative states. An observer-type consensus
algorithm is designed for (4) as

Pvi D .AC BF /vi C cL
X
j2Ni

aij ŒC.vi � vj /

� .yi � yj /�;

ui D Fvi ; i D 1; � � � ; n; (6)

where vi 2 R
m are the observer states, F 2

R
p�n and L 2 R

m�q are the feedback gain
matrices, and c > 0 is a coupling gain. Here the
algorithm (6) uses not only the relative outputs
between each agent and its neighbors but also
its own and neighbors’ observer states. While
relative outputs could be obtained through local
measurements, the neighbors’ observer states can
only be obtained via communication. It can be
shown that if the graph G has a directed span-
ning tree, consensus is reached using (6) for (4)
if the matrices A C BF and A C c�i .L/LC ,
where �i .L/ ¤ 0, are Hurwitz. The observer-
type consensus algorithm (6) can be seen as an
extension of the single-system observer design to
multi-agent systems. Here the separation princi-
ple of the traditional observer design still holds
in the multi-agent setting in the sense that the
feedback gain matrices F and L can be designed
separately.

Consensus for Agents with Nonlinear
Dynamics
In multi-agent applications, agents usually rep-
resent physical vehicles with special dynamics,
especially nonlinear dynamics for the most part.
Examples include Lagrangian systems for robotic
manipulators and autonomous robots, nonholo-
nomic systems for unicycles, attitude dynamics
for rigid bodies, and general nonlinear systems.
Similar to the consensus algorithms for linear
multi-agent systems, the consensus algorithms
used for these nonlinear agents are often designed
based on state differences between each agent and
its neighbors. But due to the inherent nonlinear-
ity, the problem is more complicated and addi-
tional terms might be required in the algorithm
design. The main techniques used in the con-
sensus analysis for nonlinear multi-agent systems
are often Lyapunov-based techniques (Lyapunov
functions, passivity theory, nonlinear contraction
analysis, and potential functions).

Early results on consensus for agents
with nonlinear dynamics primarily focus on
undirected graphs to exploit the symmetry to
facilitate the construction of Lyapunov function
candidates. Unfortunately, the extension from an
undirected graph to a directed one is nontrivial.
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For example, the directed graph does not preserve
the passivity properties in general. Moreover, the
directed graph could cause difficulties in the
design of (positive-definite) Lyapunov functions.
One approach is to integrate the nonnegative left
eigenvector of the Laplacian matrix associated
with the zero eigenvalue into the Lyapunov
function, which is valid for strongly connected
graphs and has been applied in some problems.
Another approach is based on sliding mode
control. The idea is to design a sliding surface
for reaching a consensus. Taking multiple
Lagrangian systems as an example, the agent
dynamics are represented by

Mi.qi / Rqi C Ci.qi ; Pqi / Pqi C gi .qi / D 
i ;

i D 1; � � � ; n; (7)

where qi 2 R
p is the vector of generalized

coordinates, Mi.qi / 2 R
p�p is the symmetric

positive-definite inertia matrix,Ci.qi ; Pqi / Pqi 2 R
p

is the vector of Coriolis and centrifugal torques,
gi .qi / 2 R

p is the vector of gravitational torque,
and 
i 2 R

p is the vector of control torque on the
i th agent. The sliding surface can be designed as

si D Pqi � Pqri D Pqi C ˛
X
j2Ni

aij .qi � qj / (8)

where ˛ is a positive scalar. Note that when
si D 0, (8) is actually the closed-loop system of a
consensus algorithm for single integrators. Then
if the control torque 
i can be designed using
only local information from neighbors to drive si
to zero, consensus will be reached as si can be
treated as a vanishing disturbance to a system that
reaches consensus exponentially.

It is generally very challenging to deal with
general directed or switching graphs for agents
with more complicated dynamics other than
single-integrator dynamics. In some cases, the
challenge could be overcome by introducing and
updating additional auxiliary variables (often
observer-based algorithms) and exchanging
these variables between neighbors (see, e.g.,
(6)). In the algorithm design, the agents might
use not only relative physical states between

neighbors but also local auxiliary variables from
neighbors. While relative physical states could
be obtained through sensing, the exchange of
auxiliary variables can only be achieved by
communication. Hence such generalization is
obtained at the price of increased communication
between the neighboring agents. Unlike some
other algorithms, it is generally impossible
to implement the algorithm relying on purely
relative sensing between neighbors without the
need for communication.

Averaging Algorithms

Existing distributed averaging algorithms are pri-
marily static averaging algorithms based on linear
local average iterations or gossip iterations. These
algorithms are capable of computing the average
of the initial conditions of all agents (or con-
stant signals) in a network. In particular, the lin-
ear local-average-iteration algorithms are usually
synchronous, where at each iteration each agent
repeatedly updates its state to be the average of
those of its neighbors. The gossip algorithms are
asynchronous, where at each iteration a random
pair of agents are selected to exchange their
states and update them to be the average of the
two. Dynamic averaging algorithms are of signif-
icance when there exist time-varying signals. The
objective is to compute the average of these time-
varying signals in a distributed manner.

Static Averaging
Take a linear local-average-iteration algorithm as
an example. The results in this section follow
from Tsitsiklis et al. (1986), Jadbabaie et al.
(2003), and Olfati-Saber et al. (2007). Let xi be
the information state of agent i . A linear local-
average-iteration-type algorithm has the form

xi Œk C 1� D
X

j2Ni Œk�

aij Œk�xj Œk�; i D 1; : : : ; n;

(9)
where k denotes a communication event, Ni Œk�

denotes the neighbor set of agent i , and aij Œk�
is the .i; j / entry of the adjacency matrix A of
the graph G that represents the communication
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Averaging Algorithms and Consensus, Fig. 3 Illustra-
tion of distributed averaging of multiple (time-varying)
signals. Here Ai denotes agent i and ri .t / denotes a (time-

varying) signal associated with agent i . Each agent needs
to compute the average of all agents’ signals but can
communicate with only its neighbors

topology at time k, with the additional assump-
tion that A is row stochastic and aii Œk� > 0 for
all i D 1; : : : ; n. Intuitively, the information state
of each agent is updated as the weighted average
of its current state and the current states of its
neighbors at each iteration. Note that an agent
maintains its current state if it does not exchange
information with other agents at that event in-
stant. In fact, a discretized version of the closed-
loop system of (1) using (2) (with a sufficiently
small sampling period) takes in the form of (9).
The objective here is for all agents to compute the
average of their initial states by communicating
with only their neighbors. That is, each xi Œk�

approaches 1
n

Pn
jD1 xj Œ0� eventually. To compute

the average of multiple constant signals ci , we
could simply set xi Œ0� D ci . The algorithm (9)
can be written in matrix form as xŒk C 1� D
AŒk�xŒk�, where x is a column stack vector of all
xi and AŒk� D Œaij Œk�� is a row-stochastic matrix.

When the graph G (and hence the matrix A)
is fixed, the convergence of the algorithm (9)

can be analyzed by studying the eigenvalues
and eigenvectors of the row-stochastic matrix A.
Because all diagonal entries of A are positive,
Gershgorin’s disc theorem implies that all eigen-
values of A are either within the open unit disk or
at one. When the graph G is strongly connected,
the Perron-Frobenius theorem implies that A has
a simple eigenvalue at one with an associated
right eigenvector 1 and an associated positive left
eigenvector. Hence when G is strongly connected,
it turns out that limk!1 Ak D 1�T , where �T is a
positive left eigenvector of A associated with the
eigenvalue one and satisfies �T 1 D 1. Note that
xŒk� D AkxŒ0�. Hence, each agent’s state xi Œk�
approaches �T xŒ0� eventually. If it can be further
ensured that � D 1

n
1, then averaging is achieved.

It can be shown that the agents’ states converge to
the average of their initial values if and only if the
directed graph G is both strongly connected and
balanced or the undirected graph G is connected.
When the graph is switching, the convergence of
the algorithm (9) can be analyzed by studying the
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product of row-stochastic matrices. Such analysis
is closely related to Markov chains. It can be
shown that the agents’ states converge to the
average of their initial values if the directed
graph G is balanced at each communication event
and strongly connected in a joint manner or the
undirected graph G is jointly connected.

Dynamic Averaging
In a more general setting, there exist n time-
varying signals, ri .t/, i D 1; : : : ; n, which could
be an external signal or an output from a dy-
namical system. Here ri .t/ is available to only
agent i and each agent can exchange information
with only its neighbors. Each agent maintains a
local estimate, denoted by xi .t/, of the average

of all the signals Nr.t/ 4D 1
n

Pn
kD1 rk.t/. The

objective is to design a distributed algorithm for
agent i based on ri .t/ and xj .t/, j 2 Ni .t/,
such that all agents will finally track the average
that changes over time. That is, kxi .t/ � Nr.t/k,
i D 1; : : : ; n, approaches zero eventually. Such
a dynamic averaging idea finds applications in
distributed sensor fusion with time-varying mea-
surements (Bai et al. 2011b; Spanos and Murray
2005) and distributed estimation and tracking
(Yang et al. 2008).

Figure 3 illustrates the dynamic averaging
idea. If there exists a central station that can
always access the signals of all agents, then it is
trivial to compute the average. Unfortunately, in
a distributed context, where there does not exist a
central station and each agent can only communi-
cate with its local neighbors, it is challenging for
each agent to compute the average that changes
over time. While each agent could compute the
average of its own and local neighbors’ signals,
this will not be the average of all signals.

When the signal ri .t/ can be arbitrary but its
derivative exists and is bounded almost every-
where, a distributed nonlinear nonsmooth algo-
rithm is designed in Chen et al. (2012) as

P�i .t/ D ˛
X
j2Ni

sgnŒxj .t/ � xi .t/�

xi .t/ D �i .t/C ri .t/; i D 1; : : : ; n; (10)

where ˛ is a positive scalar, Ni denotes the
neighbor set of agent i , sgn.�/ is the signum func-
tion defined componentwise, �i is the internal
state of the estimator with �i .0/ D 0, and xi
is the estimate of the average Nr.t/. Due to the
existence of the discontinuous signum function,
the solution of (10) is understood in the Filippov
sense (Cortes 2008).

The idea behind the algorithm (10) is as
follows. First, (10) is designed to ensure thatPn

iD1 xi .t/ D Pn
iD1 ri .t/ holds for all time. Note

that
Pn

iD1 xi .t/ D Pn
iD1 �i .t/ C Pn

iD1 ri .t/.
When the graph G is undirected and �i .0/ D 0,
it follows that

Pn
iD1 �i .t/ D Pn

iD1 �i .0/ C
˛
Pn

iD1
P

j2Ni

R t
0

sgnŒxj .
/ � xi .
/�d
 D 0.
As a result,

Pn
iD1 xi .t/ D Pn

iD1 ri .t/ holds for
all time. Second, when G is connected, if the
algorithm (10) guarantees that all estimates xi
approach the same value in finite time, then it can
be guaranteed that each estimate approaches the
average of all signals in finite time.

Summary and Future Research
Directions

Averaging algorithms and consensus play an
important role in distributed control of networked
systems. While there is significant progress
in this direction, there are still numerous
open problems. For example, it is challenging
to achieve averaging when the graph is not
balanced. It is generally not clear how to deal
with a general directed or switching graph for
nonlinear agents or nonlinear algorithms when
the algorithms are based on only interagent
physical state coupling without the need for
communicating additional auxiliary variables
between neighbors. The study of consensus
for multiple underactuated agents remains
a challenge. Furthermore, when the agents’
dynamics are heterogeneous, it is challenging
to design consensus algorithms. In addition, in
the existing study, it is often assumed that the
agents are cooperative. When there exist faulty
or malicious agents, the problem becomes more
involved.



Averaging Algorithms and Consensus 63

A

Cross-References

�Distributed Optimization
�Dynamic Graphs, Connectivity of
� Flocking in Networked Systems
�Graphs for Modeling Networked Interactions
�Networked Systems
�Oscillator Synchronization
�Vehicular Chains

Bibliography

Agaev R, Chebotarev P (2000) The matrix of maximum
out forests of a digraph and its applications. Autom
Remote Control 61(9):1424–1450

Agaev R, Chebotarev P (2005) On the spectra of non-
symmetric Laplacian matrices. Linear Algebra Appl
399:157–178

Bai H, Arcak M, Wen J (2011a) Cooperative control de-
sign: a systematic, passivity-based approach. Springer,
New York

Bai H, Freeman RA, Lynch KM (2011b) Distributed
Kalman filtering using the internal model average
consensus estimator. In: Proceedings of the
American control conference, San Francisco,
pp 1500–1505

Bullo F, Cortes J, Martinez S (2009) Distributed con-
trol of robotic networks. Princeton University Press,
Princeton

Chen F, Cao Y, Ren W (2012) Distributed average
tracking of multiple time-varying reference signals
with bounded derivatives. IEEE Trans Autom Control
57(12):3169–3174

Cortes J (2008) Discontinuous dynamical systems. IEEE
Control Syst Mag 28(3):36–73

Jadbabaie A, Lin J, Morse AS (2003) Coordination of
groups of mobile autonomous agents using nearest
neighbor rules. IEEE Trans Autom Control 48(6):988–
1001

Li Z, Duan Z, Chen G, Huang L (2010) Consensus of
multiagent systems and synchronization of complex
networks: a unified viewpoint. IEEE Trans Circuits
Syst I Regul Pap 57(1):213–224

Mesbahi M, Egerstedt M (2010) Graph theoretic methods
for multiagent networks. Princeton University Press,
Princeton

Moreau L (2005) Stability of multi-agent systems with
time-dependent communication links. IEEE Trans Au-
tom Control 50(2):169–182

Olfati-Saber R, Fax JA, Murray RM (2007) Consensus
and cooperation in networked multi-agent systems.
Proc IEEE 95(1):215–233

Qu Z (2009) Cooperative control of dynamical sys-
tems: applications to autonomous vehicles. Springer,
London

Ren W, Beard RW (2008) Distributed consensus in multi-
vehicle cooperative control. Springer, London

Ren W, Cao Y (2011) Distributed coordination of multi-
agent networks. Springer, London

Spanos DP, Murray RM (2005) Distributed sensor fusion
using dynamic consensus. In: Proceedings of the IFAC
world congress, Prague

Tsitsiklis JN, Bertsekas DP, Athans M (1986) Distributed
asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE Trans Autom Control
31(9):803–812

Yang P, Freeman RA, Lynch KM (2008) Multi-agent
coordination by decentralized estimation and control.
IEEE Trans Autom Control 53(11):2480–2496

http://dx.doi.org/10.1007/978-1-4471-5058-9_219
http://dx.doi.org/10.1007/978-1-4471-5058-9_213
http://dx.doi.org/10.1007/978-1-4471-5058-9_215
http://dx.doi.org/10.1007/978-1-4471-5058-9_212
http://dx.doi.org/10.1007/978-1-4471-5058-9_211
http://dx.doi.org/10.1007/978-1-4471-5058-9_216
http://dx.doi.org/10.1007/978-1-4471-5058-9_221


B

Backward Stochastic Differential
Equations and Related Control
Problems

Shige Peng
Shandong University, Jinan, Shandong Province,
China

Synonyms

BSDE

Abstract

A conditional expectation of the form Yt D
EŒ� C R T

t
fsdsjFt � is regarded as a simple and

typical example of backward stochastic differen-
tial equation (abbreviated by BSDE). BSDEs are
widely applied to formulate and solve problems
related to stochastic optimal control, stochastic
games, and stochastic valuation.

Keywords

Brownian motion; Feynman-Kac formula; Lips-
chitz condition; Optimal stopping

Definition

A typical real valued backward stochastic differ-
ential equation defined on a time interval Œ0; T �

and driven by a d -dim. Brownian motion B

is
�
dYt D �f .t; Yt ; Zt /dt CZtdBt ;

YT D �;

or its integral form

Yt D � C
Z T

t

f .s; !; Ys; Zs/ds �
Z T

t

ZsdBs;

(1)

where � is a given random variable depending on
the (canonical) Brownian path Bt.!/ D !.t/ on
Œ0; T �, f .t; !; y; z/ is a given function of the time
t , the Brownian path ! on Œ0; t �, and the pair of
variables .y; z/ 2 R

m � R
m�d. A solution of this

BSDE is a pair of stochastic processes .Yt ; Zt /,
the solution of the above equation, on Œ0; T �

satisfying the following constraint: for each t ,
the value of Yt .!/, Zt.!/ depends only on the
Brownian path ! on Œ0; t �. Notice that, because
of this constraint, the extra freedomZt is needed.
For simplicity we set d D m D 1.

Often square-integrable conditions for � and
f and Lipschitz condition for f with respect
to .y; z/ are assumed under which there exists a
unique square-integrable solution .Yt ; Zt / on
Œ0; T � (existence and uniqueness theorem of
BSDE). We can also consider a multidimensional
process Y and/or a multidimensional Brownian
motion B , Lp-integrable conditions (p � 1) for
� and f , as well as local Lipschitz conditions of
f with respect to .y; z/. If Yt is real valued, we
often call the equation a real valued BSDE.

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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We compare this BSDE with the classical
stochastic differential equation (SDE):

dXs D �.Xs/dBs C b.Xs/ds

with given initial conditionXsjsD0 D x 2 R
n. Its

integral form is

Xt.!/ D x C
Z t

0

�.Xs.!//dBs.!/

C
Z t

0

b.Xs.!//ds: (2)

Linear backward stochastic differential
equation was firstly introduced (Bismut 1973)
in stochastic optimal control problems to solve
the adjoint equation in the stochastic maximum
principle of Pontryagin’s type. The above
existence and uniqueness theorem was obtained
by Pardoux and Peng (1990). In the research
domain of economics, this type of 1-dimensional
BSDE was also independently derived by Duffie
and Epstein (1992). Comparison theorem of
BSDE was obtained in Peng (1992) and improved
in El Karoui et al. (1997a). Nonlinear Feynman-
Kac formula was obtained in Peng (1991, 1992)
and improved in Pardoux and Peng (1992). BSDE
is applied as a nonlinear Black-Scholes option
pricing formula in finance. This formulation was
given in El Karoui et al. (1997b). We refer to a
recent survey in Peng (2010) for more details.

Hedging and Risk Measuring
in Finance

Let us consider the following hedging problem
in a financial market with a typical model of
continuous time asset price: the basic securities
consist of two assets, a riskless one called bond,
and a risky security called stock. Their prices are
governed by dP 0

t D P0
t rdt , for the bond, and

dPt D Pt Œbdt C �dBt �; for the stock:

Here we only consider the situation where
the volatility rate � > 0. The case of

multidimensional stocks with degenerate
volatility matrix � can be treated by constrained
BSDE. Assume that a small investor whose
investment behavior cannot affect market prices
and who invests at time t 2 Œ0; T � the amount
�t of his or her wealth Yt in the security and
�0t in the bond, thus Yt D �0t C �t . If his
investment strategy is self-financing, then we
have dYt D �0t dP

0
t =P

0
t C �tdPt=Pt , thus

dYt D .rYt C �t��/dt C �t�dBt ;

where � D ��1.b � r/. A strategy .Yt ; �t /t2Œ0;T �
is said to be feasible if Yt � 0, t 2 Œ0; T �.
A European path-dependent contingent claim set-
tled at time T is a given nonnegative function of
path � D �..Pt /t2Œ0;T �/. A feasible strategy .Y; �/
is called a hedging strategy against a contingent
claim � at the maturity T if it satisfies

dYt D .rYt C �t��/dt C �t�dBt ; YT D �:

This problem can be regarded as finding a
stochastic control � and an initial condition Y0
such that the final state replicates the contingent
claim �, i.e., YT D �. This type of replications
is also called “exact controllability” in terms
of stochastic control (see Peng 2005 for more
general results).

Observe that .Y; ��/ is the solution of the
above BSDE. It is called a superhedging strat-
egy if there exists an increasing process Kt , of-
ten called an accumulated consumption process,
such that

dYt D .rYt C �t��/dt C �t�dBt � dKt ; YT D �:

This type of strategies is often applied in a
constrained market in which certain constraint
.Yt ; �t / 2 � is imposed. In fact a real market has
many frictions and constraints. An example is the
common case where interest rateR for borrowing
money is higher than the bond rate r . The above
equation for the hedging strategy becomes

dYt DŒrYt C �t�� � .R � r/.�t � Yt /C�
dt C �t�dBt ; YT D �;
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B

where Œ˛�C D maxf˛; 0g. A short selling con-
straint �t � 0 is also a typical requirement in
markets. The method of constrained BSDE can
be applied to this type of problems. BSDE theory
provides powerful tools to the robust pricing
and risk measures for contingent claims (see El
Karoui et al. 1997a). For the dynamic risk mea-
sure under Brownian filtration, see Rosazza Gi-
anin (2006), Peng (2004), Barrieu and El Karoui
(2005), Hu et al. (2005), and Delbaen et al.
(2010).

Comparison Theorem
The comparison theorem, for a real valued
BSDE, tells us that, if .Yt ; Zt / and . NYt ; NZt/
are two solutions of BSDE (1) with terminal
condition YT D �, NYT D N� such that �.!/ �
N�.!/, ! 2 �, then one has Yt � NYt . This theorem
holds if f and �, N� satisfy the abovementioned
L2-integrability condition and f is a Lipschitz
function in .y; z/. This theorem plays the same
important role as the maximum principle in
PDE theory. The theorem also has several very
interesting generalizations (see Buckdahn et al.
2000).

Stochastic Optimization and Two-Person
Zero-Sum Stochastic Games
An important point of view is to regard an ex-
pectation value as a solution of a special type of
BSDE. Consider an optimal control problem

min
u
J.u/ W J.u/ D E

"Z T

0

l.Xs; us/ds C h.XT /

#

:

Here the state process X is controlled by the
control process ut which is valued in a control
(compact) domain U through the following d -
dimensional SDE

dXs D b.Xs; us/ds C �.Xs/dBs

defined in a Wiener probability space .�;F ; P /
with the Brownian motion Bt.!/ D !.t/ which
is the canonical process. Here we only discuss the
case � � Id for simplicity. Observe that in fact
the expected value J.u/ is Y u

0 D EŒY u
0 �, where

Y u
t solves the BSDE

Y u
t D h.XT /C

Z T

t

l.Xs; us/ds �
Z T

t

Zu
s dBs:

From Girsanov transformation, under the proba-
bility measure QP defined by

d QP
dP

jT D exp

�Z T

0

b.Xs; us/dBs

�1
2

Z T

0

jb.Xs; us; vs/j2ds
�

Xt is a Brownian motion, and the above BSDE is
changed to

Y u
t D h.XT /C

Z T

t
Œl.Xs; us/C hZu

s ; b.Xs; us/i�ds

�
Z T

t
Zu
s dXs;

where h�; �i is the Euclidean scalar product in R
d .

Notice that P and QP are absolutely continuous
with each other. Compare this BSDE with the
following one:

OYt D h.XT /C
Z T

t

H.Xs; OZs/ds �
Z T

t

OZsdXs;
(3)

where H.x; z/ WD infu2U fl.x; u/Chz; b.x; u/ig.
It is a direct consequence of the comparison
theorem of BSDE that OY0 � Y u

0 D J.u/, for any
admissible control ut . Moreover, one can find a
feedback control Ou such that OY0 D J.Ou/.

The above BSDE method has been introduced
to solve the following two-person zero-sum game
(Hamadèene and Lepeltier 1995):

max
v

min
u
J.u; v/; J.u; v/

D E

�Z T

0

l.Xs; us; vs/ds C h.XT /

�

with

dXs D b.Xs; us; vs/ds C dBs;
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where .us; vs/ is formulated as above with com-
pact control domains us 2 U and vs 2 V . In
this case the equilibrium of the game exists if the
following Isaac condition is satisfied:

H.x; z/ WDmax
v2V inf

u2U fl.x; u; v/Chz; b.x; u; v/ig

D inf
u2U max

v2V fl.x; u; v/Chz; b.x; u; v/ig ;

and the equilibrium is also obtained through a
BSDE (3) defined above.

Nonlinear Feynman-Kac Formula
A very interesting situation is when fDg.Xt ;y;z/
and YT D'.XT / in BSDE (1). In this case we
have the following relation, called “nonlinear
Feynman-Kac formula,”

Yt D u.t; Xt/; Zt D �T .Xt/ru.t; Xt/

where u D u.t; x/ is the solution of the following
quasilinear parabolic PDE:

@tu C Lu C g.x; u; �Tru/ D 0; (4)

u.x; T / D '.x/; (5)

where L is the following, possibly degenerate,
elliptic operator:

L'.x/ D1

2

dX

i;jD1
aij .x/@

2
xi xj

'.x/

C
dX

iD1
bi .x/@xi '.x/; a.x/ D �.x/�T .x/:

Nonlinear Feynman-Kac formula can be used to
solve a nonlinear PDE of form (4) to (5) by a
BSDE (1) coupled with an SDE (2).

A general principle is, once we solve a BSDE
driven by a Markov process X for which the ter-
minal condition YT at time T depends only onXT
and the generator f .t; !; y; z/ also depends on
the stateXt at each time t , then the corresponding
solution of the BSDE is also state dependent,
namely, Yt D u.t; Xt/, where u is the solution

of the corresponding quasilinear PDE. Once YT
and g are path functions of X , then the solution
of the BSDE becomes also path dependent. In
this sense, we can say that the PDE is in fact
a “state-dependent BSDE,”and BSDE gives us a
new generalization of “path-dependent PDE” of
parabolic and/or elliptic types. This principle was
illustrated in Peng (2010) for both quasilinear and
fully nonlinear situations.

Observe that BSDE (1) and forward SDE
(2) are only partially coupled. A fully coupled
system of SDE and BSDE is called a forward-
backward stochastic differential equation
(FBSDE). It has the following form:

dXt D b.t; Xt ; Yt ;Zt /dt C �.t; Xt ; Yt ; Zt /dBt ;

X0 D x 2 R
n;

�dYt D f .t;Xt ; Yt ; Zt /dt �ZtdBt ; YT D '.XT /:

In general the Lipschitz assumptions for b, � , f ,
and ' w. r. t. .x; y; z/ are not enough. Then Ma
et al. (1994) have proposed a four-step scheme
method of FBSDE for the nondegenerate Marko-
vian case with � independent of Z. For the case
dim.x/ D dim.y/ D n, Hu and Peng (1995) pro-
posed a new type of monotonicity condition. This
method does not need to assume the coefficients
to be deterministic. Peng and Wu (1999) have
weakened the monotonicity condition. Observe
that in the case where b D ryH.x; y; z/, � D
rzH.x; y; z/, and f D rxH.x; y; z/, for a given
real valued function H convex in x concave in
.y; z/, the above FBSDE is called the stochastic
Hamilton equation associated to a stochastic op-
timal control problem. We also refer to the book
of Ma and Yong (1999) for a systematic exposi-
tion on this subject. For time-symmetric forward-
backward stochastic differential equations and its
relation with stochastic optimality, see Peng and
Shi (2003) and Han et al. (2010).

Reflected BSDE and Optimal Stopping
If .Y;Z/ solves the BSDE

dYs D �g.s; Ys; Zs/dsCZsdBs�dKs; YT D�;
(6)
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where K is a càdlàg and increasing process
with K0 D 0 and Kt 2 L2P .Ft /, then Y or
.Y;Z;K/ is called a supersolution of the BSDE,
or g-supersolution. This notion is often used
for constrained BSDEs. A typical situation is as
follows: for a given continuous adapted process
.Lt /t2Œ0;T �, find a smallest g-supersolution
.Y;Z;K/ such that Yt � Lt . This problem
was initialed in El Karoui et al. (1997b). It is
proved that this problem is equivalent to finding
a triple .Y;Z;K/ satisfying (4) and the following
reflecting condition of Skorohod type:

Ys � Ls;

Z T

0

.Ys �Ls/dKs D 0: (7)

In fact 	� WD infft 2 Œ0; T � W Kt > 0g is the
optimal stopping time associated to this BSDE.
A well-known example is the pricing of Ameri-
can option.

Moreover, a new type of nonlinear Feynman-
Kac formula was introduced: if all coefficients are
given as in the formulation of the above nonlinear
Feynman-Kac formula and Ls D ˆ.Xs/ where
ˆ satisfies the same condition as ', then we have
Ys D u.s; Xs/, where u D u.t; x/ is the solution
of the following variational inequality:

minf@tu C Lu C g.x; u; ��Du/; u �ˆg
D 0; .t; x/ 2 Œ0; T � � R

n; (8)

with terminal condition ujtDT D '. They also
demonstrated that this reflected BSDE is a pow-
erful tool to deal with contingent claims of Amer-
ican types in a financial market with constraints.

BSDE reflected within two barriers, a lower
one L and an upper one U , was first investigated
by Cvitanic and Karatzas (1996) where a type
of nonlinear Dynkin games was formulated for a
two-player model with zero-sum utility and each
player chooses his own optimal exit time.

Stochastic optimal switching problems can be
also solved by new types of oblique-reflected
BSDEs.

A more general case of constrained BSDE is to
find the smallest g-supersolution .Y;Z;K/ with
constraint .Yt ; Zt / 2 �t where, for each t 2

Œ0; T �, �t (El Karoui and Quenez 1995; Cvitanic
and Karatzas 1993; El Karoui et al. 1997a) for the
problem of superhedging in a market with con-
vex constrained portfolios (Cvitanic et al. 1998).
The case with an arbitrary closed constraint was
proved in Peng (1999).

Backward Stochastic Semigroup
and g-Expectations
Let Egt;T Œ�� D Yt where Y is the solution of
BSDE (1). .Egt;T Œ��/0�t�T<1 has the (backward)
semigroup property (Peng 1997)

Egs;t ŒEgt;T Œ��� D Egs;T Œ��; EgT;T Œ��

D �; 0 � s � t � T:

For a real valued BSDE, by the comparison
theorem, the semigroup is monotone: Egt;T Œ�� �
Egt;T Œ N��, if � � N� . If moreover gjzD0 D 0, then the
semigroup is constant preserving: Egt;T Œc� � c.
Thus the semigroup forms in fact a nonlinear
expectation called g-expectation (since this non-
linear expectation is totally determined by the
generator g).

This notion allows us to establish a nonlinear
g-martingale theory, e.g., g-supermartingale
decomposition theorem. Peng (1999) claims
that, if Y is a square-integrable càdlàg
g-supermartingale, then it has the unique
decomposition: there exists a unique predictable,
increasing, and càdlàg process A such that Y
solves

�dYt D g.t; Yt ; Zt /dt C dAt �ZtdBt :

A theoretically challenging and practically im-
portant problem is as follows: given an abstract
family of expectations .Es;t Œ��/s�t satisfying the
same backward semigroup properties as these of
g-expectation, can we find a function g such that
Es;t � Egs;t? Coquet, Hu et al. (2005) proved that
if E is dominated by g
-expectation with g
.z/ D

jzj for a large enough constant
 > 0, then there
exists a unique function g D g.t; !; z/ satisfying

-Lipschitz condition such that .Es;t Œ��/s�t is in
fact a g-expectation. For a concave dynamic ex-
pectation with an assumption much weaker than
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the above domination condition, we can still find
a function g D g.t; z/ with possibly singular
values (Delbaen et al. 2010). For the case without
the assumption of constant preservation, see Peng
(2005). In practice, the above criterion is very
useful to test whether a dynamic pricing mech-
anism of contingent contracts can be represented
through a concrete function g.

A serious challenging problem in the
stochastic control theory is as follows: it is based
on a given probability space .�;F ; P /. But in
most practical situations, it is far from being
true. In many risky situations, it is necessary
to consider the uncertainty of the probability
measures themselves, e.g., fP�g�2‚, namely,
the well-known Knightian uncertainty (Knight
1921). A new framework of G-expectation space
.�;H; OE/ and the corresponding random and
stochastic analysis (Itô’s analysis) is introduced
(see Peng 2007, 2010 and Soner et al. 2012) to
replace the probability framework .�;F ; P /.
g-expectation is a special and typical case in this
new theory.

Cross-References

�Numerical Methods for Continuous-Time
Stochastic Control Problems

�Risk-Sensitive Stochastic Control
� Stochastic Dynamic Programming
� Stochastic Linear-Quadratic Control
� Stochastic Maximum Principle

Recommended Reading

BSDE theory applied in maximization of stochas-
tic control can be found in the book of Yong
and Zhou (1999); stochastic control problem in
finance in El Karoui et al. (1997a); optimal stop-
ping and reflected BSDE in El Karoui et al.
(1997b); Maximization under Knightian uncer-
tainty using nonlinear expectation can be found
in Chen and Epstein (2002) and a survey paper in
Peng (2010).
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Abstract

Basic principles for the development of computa-
tional methods for the analysis and design of lin-
ear time-invariant systems are discussed. These
have been used in the design of the subroutine
library SLICOT. The principles are illustrated on
the basis of a method to check the controllability
of a linear system.

Keywords

Accuracy; Basic numerical methods; Bench-
marking; Controllability; Documentation and
implementation standards; Efficiency; Software
design

Introduction

Basic numerical methods for the analysis and
design of dynamical systems are at the heart of
most techniques in systems and control theory
that are used to describe, control, or optimize
industrial and economical processes. There are
many methods available for all the different tasks
in systems and control, but even though most
of these methods are based on sound theoretical
principles, many of them still fail when applied
to real-life problems. The reasons for this may
be quite diverse, such as the fact that the system
dimensions are very large, that the underlying
problem is very sensitive to small changes in
the data, or that the method lacks numerical
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robustness when implemented in a finite preci-
sion environment.

To overcome such failures, major efforts have
been made in the last few decades to develop
robust, well-implemented, and standardized
software packages for computer-aided control
systems design (Grübel 1983; Nag Slicot 1990;
Wieslander 1977). Following the standards of
modern software design, such packages should
consist of numerically robust routines with
known performance in terms of reliability and
efficiency that can be used to form the basis
of more complex control methods. Also to
avoid duplication and to achieve efficiency
and portability to different computational
environments, it is essential to make maximal
use of the established standard packages that
are available for numerical computations, e.g.,
the Basic Linear Algebra Subroutines (BLAS)
(Dongarra et al. 1990) or the Linear Algebra
Packages (LAPACK) (Anderson et al. 1992).
On the basis of such standard packages, the next
layer of more complex control methods can then
be built in a robust way.

In the late 1980s, a working group was cre-
ated in Europe to coordinate efforts and integrate
and extend the earlier software developments
in systems and control. Thanks to the support
of the European Union, this eventually led to
the development of the Subroutine Library in
Control Theory (SLICOT) (Benner et al. 1999;
SLICOT 2012). This library contains most of the
basic computational methods for control systems
design of linear time-invariant control systems.

An important feature of this and similar kind
of subroutine libraries is that the development
of further higher level methods is not restricted
by specific requirements of the languages or data
structures used and that the routines can be eas-
ily incorporated within other more user-friendly
software systems (Gomez et al. 1997; MATLAB
2013). Usually, this low-level reusability can only
be achieved by using a general-purpose program-
ming language like C or Fortran.

We cannot present all the features of the SLI-
COT library here. Instead, we discuss its general
philosophy in section “The Control Subroutine
Library SLICOT” and illustrate these concepts in

section “An Illustration” using one specific task,
namely, checking the controllability of a system.
We refer to SLICOT (2012) for more details
on SLICOT and to Varga (2004) for a general
discussion on numerical software for systems and
control.

The Control Subroutine Library
SLICOT

When designing a subroutine library of basic
algorithms, one should make sure that it satisfies
certain basic requirements and that it follows
a strict standardization in implementation and
documentation. It should also contain standard-
ized test sets that can be used for benchmarking,
and it should provide means for maintenance
and portability to new computing environments.
The subroutine library SLICOT was designed to
satisfy the following basic recommendations that
are typically expected in this context (Benner
et al. 1999).
Robustness: A subroutine must either return

reliable results or it must return an error or
warning indicator, if the problem has not been
well posed or if the problem does not fall in
the class to which the algorithm is applicable
or if the problem is too ill-conditioned
to be solved in a particular computing
environment.

Numerical stability and accuracy: Subroutines
are supposed to return results that are as good
as can be expected when working at a given
precision. They also should provide an option
to return a parameter estimating the accuracy
actually achieved.

Efficiency: An algorithm should never be cho-
sen for its speed if it fails to meet the usual
standards of robustness, numerical stability,
and accuracy, as described above. Efficiency
must be evaluated, e.g., in terms of the num-
ber of floating-point operations, the memory
requirements, or the number and cost of itera-
tions to be performed.

Modern computer architectures: The require-
ments of modern computer architectures
must be taken into account, such as shared



Basic Numerical Methods and Software for Computer Aided Control Systems Design 73

B

or distributed memory parallel processors,
which are the standard environments of
today. The differences in the various
architectures may imply different choices of
algorithms.

Comprehensive functional coverage: The
routines of the library should solve control
systems relevant computational problems and
try to cover a comprehensive set of routines
to make it functional for a wide range of
users. The SLICOT library covers most of the
numerical linear algebra methods needed in
systems analysis and synthesis problems for
standard and generalized state space models,
such as Lyapunov, Sylvester, and Riccati equa-
tion solvers, transfer matrix factorizations,
similarity and equivalence transformations,
structure exploiting algorithms, and condition
number estimators.
The implementation of subroutines for a li-

brary should be highly standardized, and it should
be accompanied by a well-written online docu-
mentation as well as a user manual (see, e.g.,
standard Denham and Benson 1981; Working
Group Software 1996) which is compatible with
that of the LAPACK library (Anderson et al.
1992). Although such highly restricted standards
often put a heavy burden on the programmer, it
has been observed that it has a high importance
for the reusability of software and it also has
turned out to be a very valuable tool in teaching
students how to implement algorithms in the
context of their studies.

Benchmarking
In the validation of numerical software, it is
extremely important to be able to test the cor-
rectness of the implementation as well as the
performance of the method, which is one of the
major steps in the construction of a software
library. To achieve this, one needs a standard-
ized set of benchmark examples that allows an
evaluation of a method with respect to correct-
ness, accuracy, and efficiency and to analyze
the behavior of the method in extreme situa-
tions, i.e., on problems where the limit of the
possible accuracy is reached. In the context of
basic systems and control methods, several such

benchmark collections have been developed (see,
e.g., Benner et al. 1997; Frederick 1998, or http://
www.slicot.org/index.php?site=benchmarks).

Maintenance, Open Access, and Archives
It is a major challenge to maintain a well-
developed library accessible and usable over
time when computer architectures and operating
systems are changing rapidly, while keeping the
library open for access to the user community.
This usually requires financial resources that
either have to be provided by public funding or
by licensing the commercial use.

In the SLICOT library, this challenge has been
addressed by the formation of the Niconet As-
sociation (http://www.niconet-ev.info/en/) which
provides the current versions of the codes and
all the documentations. Those of Release 4.5 are
available under the GNU General Public License
or from the archives of http://www.slicot.org/.

An Illustration

To give an illustration for the development of a
basic control system routine, we consider the
specific problem of checking controllability
of a linear time-invariant control system. A
linear time-invariant control problem has the
form

dx

dt
D Ax C Bu; t 2 Œt0;1/ (1)

Here x denotes the state and u the input function,
and the system matrices are typically of the form
A 2 Rn;n, B 2 Rn;m.

One of the most important topics in control
is the question whether by an appropriate choice
of input function u.t/ we can control the system
from an arbitrary state to the null state. This prop-
erty, called controllability, can be characterized
by one of the following equivalent conditions (see
Paige 1981).

http://www.slicot.org/index.php?site=bench marks
http://www.slicot.org/index.php?site=bench marks
http://www.niconet-ev.info/en/
http://www.slicot.org/
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Theorem 1 The following are equivalent:
(i) System (1) is controllable.

(ii) Rank ŒB;AB;A2B; � � � ; An�1B� D n.
(iii) Rank ŒB;A � �I � D n 8� 2 C.
(iv) 9F such that A and A C BF have no

common eigenvalues.

The conditions of Theorem 1 are nice for
theoretical purposes, but none of them is really
adequate for the implementation of an algorithm
that satisfies the requirements described in
the previous section. Condition (ii) creates
difficulties because the controllability matrix
K D ŒB;AB;A2B; � � � ; An�1B� will be highly
corrupted by roundoff errors. Condition (iii) can
simply not be checked in finite time. However, it
is sufficient to check this condition only for the
eigenvalues of A, but this is extremely expensive.
And finally, condition (iv) will almost always
give disjoint spectra between A and A C BF

since the computation of eigenvalues is sensitive
to roundoff.

To devise numerical procedures, one often
resorts to the computation of canonical or con-
densed forms of the underlying system. To obtain
such a form one employs controllability preserv-
ing linear transformations x 7! Px, u 7! Qu
with nonsingular matrices P 2 Rn;n, Q 2 Rm;m.
The canonical form under these transformations
is the Luenberger form (see Luenberger 1967).
This form allows to check the controllability us-
ing the above criterion (iii) by simple inspection
of the condensed matrices. This is ideal from
a theoretical point of view but is very sensitive
to small perturbations in the data, in particular
because the transformation matrices may have
arbitrary large norm, which may lead to large
errors.

For the implementation as robust numerical
software one uses instead transformations with
real orthogonal matrices P;Q that can be im-
plemented in a backward stable manner, i.e.,
the resulting backward error is bounded by a
small constant times the unit roundoff u of the
finite precision arithmetic, and employs for reli-
able rank determinations the well-known singular
value decomposition (SVD) (see, e.g., Golub and
Van Loan 1996).

Theorem 2 (Singular value decomposition)
Given A 2 Rn;m, then there exist orthogonal
matrices U; V with U 2 Rn;n; V 2 Rm;m, such
that A D U†V T and † 2 Rn;m is quasi-
diagonal, i.e.,

† D
�
†r 0

0 0

�

where †r D

2

6
4

�1
: : :

�r

3

7
5 ;

and the nonzero singular values �i are ordered
as �1 � �2 � � � � � �r > 0.

The SVD presents the best way to determine
(numerical) ranks of matrices in finite precision
arithmetic by counting the number of singular
values satisfying �j � u�1 and by putting those
for which �j < u�1 equal to zero. The compu-
tational method for the SVD is well established
and analyzed, and it has been implemented in
the LAPACK routine SGESVD (see http://www.
netlib.org/lapack/). A faster but less reliable alter-
native to compute the numerical rank of a matrix
A is its QR factorization with pivoting (see, e.g.,
Golub and Van Loan 1996).

Theorem 3 (QRE decomposition) Given A 2
Rn;m, then there exists an orthogonal matrixQ 2
Rn;n and a permutation E 2 Rm;m, such that
A D QRET and R 2 Rn;m is trapezoidal, i.e.,

R D

2

6
6
6
4

r11 : : : r1l : : : r1m
: : :

:::

rl l : : : rlm
0 0

3

7
7
7
5
:

and the nonzero diagonal entries ri i are ordered
as r11 � � � � � rl l > 0.

The (numerical) rank in this case is again ob-
tained by counting the diagonal elements ri i �
ur11.

One can use such orthogonal transformations
to construct the controllability staircase form (see
Van Dooren 1981).

Theorem 4 (Staircase form) Given matrices
A 2 Rn;n, B 2 Rn;m, then there exist orthogonal
matrices P;Q with P 2 Rn;n,Q 2 Rm;m, so that

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
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PAPT D

2

6
6
6
6
6
6
6
4

A11 � � � � � � A1;r�1 A1;r

A21
: : :

:
:
:

:
:
:

: : :
: : :

:
:
:

:
:
:

Ar�1;r�2 Ar�1;r�1 Ar�1;r
0 � � � 0 0 Arr

3

7
7
7
7
7
7
7
5

n1
n2
:
:
:

nr�1
nr

n1 : : : nr�2 nr�1 nr

PBQ D

2

6
6
6
6
6
6
6
4

B1 0

0 0

:
:
:
:
:
:

:
:
:
:
:
:

0 0

3

7
7
7
7
7
7
7
5

n1
n2
:
:
:

:
:
:

nr
n1 m� n1

(2)

where n1 � n2 � � � � � nr�1 � nr � 0; nr�1 >
0, Ai;i�1 D �

†i;i�1 0
�
, with nonsingular blocks

†i;i�1 2 R
ni ;ni and B1 2 R

n1;n1 .

Notice that when using the reduced pair in
condition (iii) of Theorem 1, the controllability
condition is just nr D 0, which is simply checked
by inspection. A numerically stable algorithm
to compute the staircase form of Theorem 4 is
given below. It is based on the use of the singular
value decomposition, but one could also have
used instead the QR decomposition with column
pivoting.

Staircase Algorithm
Input: A 2 Rn;n; B 2 Rn;m

Output: PAPT ; PBQ in the form (2), P;Q
orthogonal

Step 0: Perform an SVD B D UB

�
†B 0

0 0

�

V T
B

with nonsingular and diagonal †B 2 R
n1;n1 . Set

P WD UT
B , Q WD VB , so that

A WD UT
B AUB D

�
A11 A12
A21 A22

�

;

B WD UT
B BVB D

�
†B 0

0 0

�

with A11 of size n1 � n1.
Step 1: Perform an SVD A21 D U21

�
†21 0

0 0

�

V T
21

with nonsingular and diagonal†21 2 R
n2;n2 . Set

P2 WD
�
V T
21 0

0 U T
21

�

; P WD P2P

so that

A WD P2AP
T
2 DW

2

4
A11 A12 A13
A21 A22 A23
0 A32 A33

3

5 ;

B WD P2B DW
2

4
B1 0

0 0

0 0

3

5 ;

where A21 D Œ†21 0�, and B1 WD V T
21†B .

Step 2:
i = 3
DO WHILE .ni�1 > 0 AND Ai;i�1 ¤ 0/.

Perform an SVD of Ai;i�1 D Ui;i�1�
†i;i�1 0
0 0

�

V T
i;i�1 with

†i;i�1 2 R
ni ;ni nonsingular and diagonal.

Set

Pi WD

2

6
6
6
6
6
6
4

In1
: : :

Ini�2
V Ti;i�1

U Ti;i�1

3

7
7
7
7
7
7
5

; P WDPiP;

so that

A WD PiAP
T
i DW

2

6
6
6
6
6
6
6
6
6
4

A11 � � � A1;iC1

A21
: : : A2;iC1

: : :
: : :

:
:
:

Ai;i�1 Ai;i

:
:
:

0 AiC1;i AiC1;iC1

3

7
7
7
7
7
7
7
7
7
5

where Ai;i�1 D Œ†i;i�1 0�.
i WD i C 1

END
r WD i

It is clear that this algorithm will stop with
ni D 0 or Ai;i�1 D 0. In every step, the
remaining block shrinks at least by 1 row/column,
as long as Rank Ai;i�1 > 1, so that the algorithm
stops after maximally n � 1 steps. It has been
shown in Van Dooren (1981) that system (1) is
controllable if and only if in the staircase form of
.A;B/ one has nr D 0.
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It should be noted that the updating
transformations Pi of this algorithm will affect
previously created “stairs” so that the blocks
denoted as †i;i�1 will not be diagonal anymore,
but their singular values are unchanged. This is
critical in the decision about the controllability of
the pair .A;B/ since it depends on the numerical
rank of the submatrices Ai;i�1 and B (see
Demmel and Kågström 1993). Based on this
and a detailed error and perturbation analysis,
the Staircase Algorithm has been implemented
in the SLICOT routine AB01OD, and it uses
in the worst-case O.n4/ flops (a “flop” is an
elementary floating-point operation C;�;�,
or =). For efficiency reasons, the SLICOT
routine AB01OD does not use SVDs for rank
decisions, but QR decompositions with column
pivoting. When applying the corresponding
orthogonal transformations to the system without
accumulating them, the complexity can be
reduced to O.n3/ flops. It has been provided with
error bounds, condition estimates, and warning
strategies.

Summary and Future Directions

We have presented the SLICOT library and the
basic principles for the design of such basic
subroutine libraries. To illustrate these princi-
ples, we have presented the development of a
method for checking controllability for a linear
time-invariant control system. But the SLICOT
library contains much more than that. It essen-
tially covers most of the problems listed in the
selected reprint volume (Patel et al. 1994). This
volume contained in 1994 the state of the art
in numerical methods for systems and control,
but the field has strongly evolved since then.
Examples of areas that were not in this vol-
ume but that are included in SLICOT are pe-
riodic systems, differential algebraic equations,
and model reduction. Areas which still need new
results and software are the control of large-
scale systems, obtained either from discretiza-
tions of partial differential equations or from the
interconnection of a large number of interact-
ing systems. But it is unclear for the moment

which will be the methods of choice for such
problems. We still need to understand the nu-
merical challenges in such areas, before we can
propose numerically reliable software for these
problems: the area is still quite open for new
developments.

Cross-References

�Computer-Aided Control Systems Design:
Introduction and Historical Overview

� Interactive Environments and Software Tools
for CACSD
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Abstract

This entry is an introduction to modern issues
about controllability of Schrödinger PDEs with
bilinear controls. This model is pertinent for a
quantum particle, controlled by an electric field.
We review recent developments in the field, with
discrimination between exact and approximate
controllabilities, in finite or infinite time. We also
underline the variety of mathematical tools used

by various teams in the last decade. The results
are illustrated on several classical examples.

Keywords

Approximate controllability; Global exact con-
trollability; Local exact controllability; Quantum
particles; Schrödinger equation; Small-time con-
trollability

Introduction

A quantum particle, in a space with dimensionN
(N D 1; 2; 3), in a potential V D V.x/, and in an
electric field u D u.t/, is represented by a wave
function  W .t; x/ 2 R � � ! C on the
L2 .� ; C/ sphere S

Z

�

j .t; x/j2 dx D 1; 8t 2 R;

where � 	 R
N is a possibly unbounded open

domain. In first approximation, the time evolution
of the wave function is given by the Schrödinger
equation,
8
<

:

i@t .t; x/ D .��C V / .t; x/

�u.t/
 .x/  .t; x/ ; t 2 .0;C1/; x 2 �;
 .t; x/ D 0; x 2 @�

(1)

where 
 is the dipolar moment of the particle
and „ D 1 here. Sometimes, this equation is
considered in the more abstract framework

i
d

dt
 D .H0 C u.t/H1/ (2)

where  lives on the unit sphere of a separable
Hilbert space H and the Hamiltonians H0, H1

are Hermitian operators on H. A natural question,
with many practical applications, is the existence
of a control u that steers the wave function  
from a given initial state 0, to a prescribed target
 f .

The goal of this survey is to present
well-established results concerning exact and
approximate controllabilities for the bilinear
control system (1), with applications to relevant
examples. The main difficulties are the infinite

http://www.niconet-ev.info/en/
http://www.niconet-ev.info/en/
http://www.icm.tu-bs.de/NICONET/reports.html
http://www.icm.tu-bs.de/NICONET/reports.html
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dimension of H and the nonlinearity of the
control system.

Preliminary Results

When the Hilbert space H has finite dimension n,
then controllability of Eq. (2) is well understood
(D’Alessandro 2008). If, for example, the Lie
algebra spanned by H0 and H1 coincides with
u.n/, the set of skew-Hermitian matrices, then
system (2) is globally controllable: for any initial
and final states  0, f 2 H of length one, there
exist T > 0 and a bounded open-loop control
Œ0; T � 3 t 7! u.t/ steering  from  (0) = 0 to
 (T /= f .

In infinite dimension, this idea served to intuit
a negative controllability result in Mirrahimi and
Rouchon (2004), but the above characterization
cannot be generalized because iterated Lie brack-
ets of unbounded operators are not necessarily
well defined. For example, the quantum harmonic
oscillator

i@t .t; x/ D � @2x .t; x/C x2 .t; x/

� u .t/ x .t; x/ ; x 2 R; (3)

is not controllable (in any reasonable sense) (Mir-
rahimi and Rouchon 2004) even if all its Galerkin
approximations are controllable (Fu et al. 2001).
Thus, much care is required in the use of Galerkin
approximations to prove controllability in infinite
dimension. This motivates the search of different
methods to study exact controllability of bilinear
PDEs of form (1).

In infinite dimension, the norms need to be
specified. In this article, we use Sobolev norms.
For s 2 N, the Sobolev space Hs.�/ is the
space of functions  : ˝ ! C with square inte-
grable derivatives dk for k D 0; : : : ; s (deriva-
tives are well defined in the distribution sense).
Hs.�/ is endowed with the norm k kHs W D
�Ps

kD0
	
	dk 

	
	2
L2.�/


1=2
. We also use the space

H1
0 .�/ which contains functions  2 H1.�/

that vanish on the boundary @� (in the trace
sense) (Brézis 1999).

The first control result of the literature
states the noncontrollability of system (1) in�
H2 \H1

0

�
.�/ \ S with controls u 2 L2((0,

T), R/ (Ball et al. 1982; Turinici 2000). More
precisely, by applying L2(0, T / controls u, the
reachable wave functions  (T / form a subset of�
H2 \H1

0

�
.�/ \ S with empty interior. This

statement does not give obstructions for system
(1) to be controllable in different functional
spaces as we will see below, but it indicates
that controllability issues are much more subtle
in infinite dimension than in finite dimension.

Local Exact Controllability

In 1D and with Discrete Spectrum
This section is devoted to the 1D PDE:

8
<

:

i@t .t; x/ D �@2x .t; x/
�u.t/
 .x/  .t; x/ ; x 2 .0; 1/ ; t 2 .0; T / ;
 .t; 0/ D  .t; 1/ D 0:

(4)

We call “ground state” the solution of the
free system (u D 0) built with the first eigen-
value and eigenvector of �@2x W  1.t; x/ Dp
2 sin.�x/ e�i�2t . Under appropriate assump-

tions on the dipolar moment 
, then system (4)
is controllable around the ground state, locally in
H3
.0/ .0; 1/ \S, with controls in L2((0,T), R/, as

stated below.

Theorem 1 Assume 
 2 H3..0; 1/;R/ and

ˇ
ˇ
ˇ
ˇ

Z 1

0


 .x/ sin .�x/ sin .k�x/ dx

ˇ
ˇ
ˇ
ˇ � c

k3
; 8k2N

�

(5)

for some constant c > 0. Then, for every
T > 0, there exists ı > 0 such that for
every  0;  f 2 S \ H3

.0/ ..0; 1/;C/ with

k 0 �  1.0/kH3 C 	
	 f �  1.T /

	
	
H3 < ı,

there exists u 2 L2..0; T /;R/ such that the
solution of (4) with initial condition  .0; x/ D
 0.x/ satisfies  .T / D  f .

Here, H3
.0/ .0; 1/ W D ˚

 2 H3..0; 1/; C/ ;
 D  00 D 0 atx D 0; 1g. We refer to Beauchard
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and Laurent (2010) and Beauchard et al. (2013)
for proof and generalizations to nonlinear PDEs.
The proof relies on the linearization principle, by
applying the classical inverse mapping theorem
to the endpoint map. Controllability of the lin-
earized system around the ground state is a con-
sequence of assumption (5) and classical results
about trigonometric moment problems. A subtle
smoothing effect allows to prove C1regularity of
the endpoint map.

The assumption (5) holds for generic 
 2
H3..0; 1/;R/ and plays a key role for local ex-
act controllability to hold in small time T . In
Beauchard and Morancey (2014), local exact con-
trollability is proved under the weaker assump-
tion, namely,
0.0/˙
0.1/ ¤ 0, but only in large
time T .

Moreover, under appropriate assumptions on

, references Coron (2006) and Beauchard and
Morancey (2014) propose explicit motions that
are impossible in small time T;with small con-
trols in L2. Thus, a positive minimal time is
required for local exact controllability, even if
information propagates at infinite speed. This
minimal time is due to nonlinearities; its charac-
terization is an open problem.

Actually, assumption
0.0/˙
0.1/ ¤ 0 is not
necessary for local exact controllability in large
time. For instance, the quantum box, i.e.,

8
<

:

i@t .t; x/ D �@2x .t; x/
�u.t/x .t; x/ ; x 2 .0; 1/ ;
 .t; 0/ D  .t; 1/ D 0;

(6)

is treated in Beauchard (2005). Of course, these
results are proved with additional techniques:
power series expansions and Coron’s return
method (Coron 2007).

There is no contradiction between the nega-
tive result of section “Preliminary Results” and
the positive result of Theorem 1. Indeed, the
wave function cannot be steered between any
two points  0,  f of H2 \ H1

0 , but it can
be steered between any two points  0, f of
H3
.0/, which is smaller than H2 \ H1

0 . In par-

ticular, H3
.0/ ..0; 1/;C/ has an empty interior in

H2
.0/ ..0; 1/;C/. Thus, there is no incompatibility

between the reachable set to have empty interior

in H2 \ H1
0 and the reachable set to coincide

with H3
.0/.

Open Problems in Multi-D or
with Continuous Spectrum
The linearization principle used to prove Theo-
rem 1 does not work in multi-D: the trigonometric
moment problem, associated to the controllabil-
ity of the linearized system, cannot be solved.
Indeed, its frequencies, which are the eigenvalues
of the Dirichlet Laplacian operator, do not satisfy
a required gap condition (Loreti and Komornik
2005).

The study of a toy model (Beauchard 2011)
suggests that if local controllability holds in 2D
(with a priori bounded L2-controls) then a posi-
tive minimal time is required, whatever 
 is. The
appropriate functional frame for such a result is
an open problem.

In 3D or in the presence of continuous
spectrum, we conjecture that local exact con-
trollability does not hold (with a priori bounded
L2-controls) because the gap condition in the
spectrum of the Dirichlet Laplacian operator is
violated (see Beauchard et al. (2010) for a toy
model from nuclear magnetic resonance and
ensemble controllability as originally stated in Li
and Khaneja (2009)). Thus, exact controllability
should be investigated with controls that are
not a priori bounded in L2; this requires new
techniques. We refer to Nersesyan and Nersisyan
(2012a) for precise negative results.

Finally, we emphasize that exact controlla-
bility in multi-D but in infinite time has been
proved in Nersesyan and Nersisyan (2012a,b),
with techniques similar to one used in the proof
of Theorem 1.

Approximate Controllability

Different approaches have been developed to
prove approximate controllability.

Lyapunov Techniques
Due to measurement effect and back action,
closed-loop controls in the Schrödinger frame are
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not appropriate. However, closed-loop controls
may be computed via numerical simulations
and then applied to real quantum systems
in open loop, without measurement. Then,
the strategy consists in designing damping
feedback laws, thanks to a controlled Lyapunov
function, which encodes the distance to the
target. In finite dimension, the convergence
proof relies on LaSalle invariance principle. In
infinite dimension, this principle works when
the trajectories of the closed-loop system are
compact (in the appropriate space), which is
often difficult to prove. Thus, two adaptations
have been proposed: approximate convergence
(Beauchard and Mirrahimi 2009; Mirrahimi
2009) and weak convergence (Beauchard and
Nersesyan 2010) to the target.

Variational Methods and Global Exact
Controllability
The global approximate controllability of (1),
in any Sobolev space, is proved in Nersesvan
(2010), under generic assumptions on (V,

), with Lyapunov techniques and variational
arguments.

Theorem 2 Let V, 
 2 C1 .�; R/ and
.�j /j2N�; .j /j2N� be the eigenvalues and
normalized eigenvectors of .�� C V /. Assume˝

j ; 1

˛ ¤ 0; for all j � 2 and �1 � �j ¤
�p � �q for all j; p; q 2 N* such that
f1; j g ¤ fp; qgI j ¤ 1. Then, for every
s > 0, the system (1) is globally approximately
controllable in Hs

.V / W D
�
.��C V /s=2

�
, the

domain of .�� C V /s=2 W for every –; ı > 0

and  0 2 S \ Hs
.V /, there exist a time T > 0

and a control u 2 C1
0 ..0; T /;R/ such that the

solution of (1) with initial condition  .0/ D  0
satisfies k .T / � 1kHs�ı

.V /
< –.

This theorem is of particular importance. In-
deed, in 1D and for appropriate choices of (V ,

), global exact controllability of (1) inH3C can
be proved by combining the following:
• Global approximate controllability in H3

given by Theorem 2,
• Local exact controllability in H3 given by

Theorem 1,

• Time reversibility of the Schrödinger equation
(i.e., if ( (t , x/, u.t// is a trajectory, then so
is . �.T � t; x/; u.T � t// where  * is the
complex conjugate of  ).

Let us expose this strategy on the quantum box
(6). First, one can check the assumptions of Theo-
rem 2 with V.x/ = �x and 
(x/ D .1�� )x when
� > 0 is small enough. This means that, in (6),
we consider controls u.t/ of the form � + u.t/.
Thus, an initial condition  0 2 H3C

.0/ can be
steered arbitrarily close to the first eigenvector
'1;� of

��@2x C �x
�
, in H3 norm. Moreover, by

a variant of Theorem 1, the local exact control-
lability of (6) holds in H3

.0/ around 1;� . There-

fore, the initial condition  0 2 H3C
.0/ can be

steered exactly to 1;� in finite time. By the time
reversibility of the Schrödinger equation, we can
also steer exactly the solution from 1;� to any
target f 2 H3C. Therefore, the solution can be
steered exactly from any initial condition  0 2
H3C
.0/ to any target  f 2 H3C

.0/ in finite time.

Geometric Techniques Applied to Galerkin
Approximations
In Boscain et al. (2012, 2013) and Chambrion
et al. (2009) the authors study the control of
Schrödinger PDEs, in the abstract form (2) and
under technical assumptions on the (unbounded)
operatorsH0 and H1 that ensure the existence of
solutions with piecewise constant controls u:
1. H0 is skew-adjoint on its domainD.H0/.
2. There exists a Hilbert basis .'k/k2N ofH made

of eigenvectors of H0 : H0k = i�kk and
k 2 D.H1/;8k 2 N.

3. H0 + uH1 is essentially skew-adjoint (not
necessarily with domainD.H0// for every u 2
[0,ı] for some ı > 0.

4.
˝
H1 'j ; 'k

˛ D 0 for every j , k 2 N such that
�j = �k and j ¤ k.

Theorem 3 Assume that, for every j; k 2
N, there exists a finite number of integers
p1; : : : ; pr 2 N such that

p1 D j; pr D k;
˝
H1'pl ; 'plC1

˛

¤ 0;8l D 1; : : : ; r � 1
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j�L � �M j ¤ ˇ
ˇ�pl � �plC1

ˇ
ˇ ;81 � l � r � 1;

LM 2 N with fL;M g ¤ fpl ; plC1g.
Then for every – > 0 and  0; f in the unit

sphere of H , there exists a piecewise constant
function u W Œ0; T–� ! Œ0; ı� such that the solution
of (2) with initial condition  .0/ D  0 satisfies	
	 .T–/ �  f

	
	
H < –:

We refer to Boscain et al. (2012, 2013) and
Chambrion et al. (2009) for proof and additional
results such as estimates on the L1 norm of
the control. Note that H0 is not necessarily of
the form (�� C V /, H1 can be unbounded, ı
may be arbitrary small, and the two assumptions
are generic with respect to (H0;H1). The con-
nectivity and transition frequency conditions in
Theorem 3 mean physically that each pair of
H0 eigenstates is connected via a finite number
of first-order (one-photon) transitions and that
the transition frequencies between pairs of eigen-
states are all different.

Note that, contrary to Theorems 2, Theorem 3
cannot be combined with Theorem 1 to prove
global exact controllability. Indeed, functional
spaces are different: H D L2.�/ in Theorem 3,
whereasH3-regularitv is required for Theorem 1.

This kind of results applies to several relevant
examples such as the control of a particule in
a quantum box by an electric field (6) and the
control of the planar rotation of a linear molecule
by means of two electric fields:

i@t .t; �/ D ��@20 C u1 .t/ cos .�/

Cu2 .t/ sin .�//  .t; �/ ; � 2 T

where T is the lD-torus. However, several other
systems of physical interest are not covered by
these results such as trapped ions modeled by two
coupled quantum harmonic oscillators. In Erve-
doza and Puel (2009), specific methods have been
used to prove their approximate controllability.

Concluding Remarks

The variety of methods developed by different
authors to characterize controllability of
Schrödinger PDEs with bilinear control is the

sign of a rich structure and subtle nature of
control issues. New methods will probably be
necessary to answer the remaining open problems
in the field.

This survey is far from being complete.
In particular, we do not consider numerical
methods to derive the steering control such as
those used in NMR (Nielsen et al. 2010) to
achieve robustness versus parameter uncertainties
or such as monotone algorithms (Baudouin and
Salomon 2008; Liao et al. 2011) for optimal
control (Cancès et al. 2000). We do not consider
also open quantum systems where the state
is then the density operator �, a nonnegative
Hermitian operator with unit trace on H. The
Schrödinger equation is then replaced by the
Lindblad equation:

d

dt
� D �� ŒH0 C uH1; ��C

X

�

L��L
�
�

�1
2

�
L��L��C �L��L�

�

with operator L� related to the decoherence
channel �. Even in the case of finite dimensional
Hilbert space H, controllability of such system
is not yet well understood and characterized
(see Altafini (2003) and Kurniawan et al. (2012)).
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Abstract

One-dimensional hyperbolic systems are com-
monly used to describe the evolution of various
physical systems. For many of these systems,
controls are available on the boundary. There
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are then two natural questions: controllability
(steer the system from a given state to a desired
target) and stabilization (construct feedback laws
leading to a good behavior of the closed loop
system around a given set point).

Keywords

Chromatography; Controllability; Electrical
lines; Hyperbolic systems; Open channels; Road
traffic; Stabilization

One-Dimensional Hyperbolic Systems

The operation of many physical systems may be
represented by hyperbolic systems in one space
dimension. These systems are described by the
following partial differential equation:

Yt CA.Y /Yx D 0; t 2 Œ0; T �; x 2 Œ0; L�; (1)

where:
• t and x are two independent variables: a time

variable t 2 Œ0; T � and a space variable x 2
Œ0; L� over a finite interval.

• Y W Œ0; T � � Œ0; L� ! R
n is the vector of state

variables.
• A W Rn ! Mn;n.R/ with Mn;n.R/ is the set

of n � n real matrices.
• Yt and Yx denote the partial derivatives of Y

with respect to t and x, respectively.
The system (1) is hyperbolic which means that
A.Y / has n distinct real eigenvalues (called char-
acteristic velocities) for all Y in a domain of
R
n. Here are some typical examples of physical

models having the form of a hyperbolic system.

Electrical Lines
First proposed by Heaviside in (1885, 1886 and
1887), the equations of (lossless) electrical lines
(also called telegrapher equations) describe the
propagation of current and voltage along electri-
cal transmission lines (see Fig. 1). It is a hyper-
bolic system of the following form:


It
Vt

�

C
 
0 L�1

s

C�1
s 0

!
Ix
Vx

�

D 0; (2)

where I.t; x/ is the current intensity, V.t; x/ is
the voltage, Ls is the self-inductance per unit
length, and Cs is the self-capacitance per unit
length. The system has two characteristic ve-
locities (which are the eigenvalues of the ma-
trix A):

�1 D 1p
LsCs

> 0 > �2 D � 1p
LsCs

: (3)

Saint-Venant Equation for Open Channels
First proposed by Barré de Saint-Venant
in (1871), the Saint-Venant equations (also
called shallow water equations) describe the
propagation of water in open channels (see
Fig. 2). In the case of a horizontal channel
with rectangular cross section, unit width, and
negligible friction, the Saint-Venant model is a
hyperbolic system of the form


Ht

Vt

�

C

V H

g V

�
Hx

Vx

�

D 0; (4)

where H.t; x/ is the water depth, V.t; x/ is the
water horizontal velocity, and g is the gravity ac-
celeration. Under subcritical flow conditions, the
system is hyperbolic with characteristic velocities

�1 D V Cp
gH > 0 > �2 D V �p

gH: (5)

Aw-Rascle Equations for Fluid Models
of Road Traffic
In the fluid paradigm for road traffic modeling,
the traffic is described in terms of two basic
macroscopic state variables: the density %.t; x/
and the speed V.t; x/ of the vehicles at position x
along the road at time t . The following dynamical
model for road traffic was proposed by Aw and
Rascle in (2000):


%t
Vt

�

C F.Y /


V %

0 V �Q.%/

�
%t
Vt

�

D 0: (6)
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Boundary Control of 1-D Hyperbolic Systems, Fig. 1 Transmission line connecting a power supply to a resistive
load R`; the power supply is represented by a Thevenin equivalent with efm U.t/ and internal resistance Rg

Boundary Control of 1-D
Hyperbolic Systems,
Fig. 2 Lateral view of a
pool of a horizontal open
channel

The system is hyperbolic with characteristic ve-
locities

�1 D V > �2 D V �Q.%/: (7)

In this model the first equation of (6) is a conti-
nuity equation that represents the conservation of
the number of vehicles on the road. The second
equation of (6) is a phenomenological model
describing the speed variations induced by the
driver’s behavior.

Chromatography
In chromatography, a mixture of species with
different affinities is injected in the carrying fluid
at the entrance of the process as illustrated in
Fig. 3. The various substances travel at different
propagation speeds and are ultimately separated
in different bands. The dynamics of the mixture
are described by a system of partial differential
equations:

.Pi C Li.P //t C V.Pi /x D 0 i D 1; : : : ; n;

Li .P / D kiPi

1CP
j kjPj =Pmax

; (8)

Boundary Control of 1-D Hyperbolic Systems, Fig. 3
Principle of chromatography

where Pi (i D 1; : : : ; n) denote the densities
of the n carried species. The function Li.P /
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(called the “Langmuir isotherm”) was proposed
by Langmuir in (1916).

Boundary Control

Boundary control of 1-D hyperbolic systems
refers to situations where manipulated control
inputs are physically located at the boundaries.
Formally, this means that the system (1) is
considered under n boundary conditions having
the general form

B
�
Y.t; 0/; Y.t; L/; U.t/

� D 0; (9)

with B W R
n � R

n � R
q ! R

n. The depen-
dence of the map B on (Y.t; 0/; Y.t; L/) refers
to natural physical constraints on the system. The
function U.t/ 2 R

q represents a set of q ex-
ogenous control inputs. The following examples
illustrate how the control boundary conditions (9)
may be defined for some commonly used control
devices:
1. Electrical lines. For the circuit represented in

Fig. 1, the line model (2) is to be considered
under the following boundary conditions:

V.t; 0/CRgI.t; 0/ D U.t/;

V .t; L/ � R`I.t; L/ D 0:

The telegrapher equations (2) coupled with
these boundary conditions constitute therefore
a boundary control system with the voltage
U.t/ as control input.

2. Open channels. A standard situation is when
the boundary conditions are assigned by tun-
able hydraulic gates as in irrigation canals and
navigable rivers; see Fig. 4.

The hydraulic model of mobile spillways
gives the boundary conditions

H.t; 0/V .t; 0/ D kG

q�
Z0.t/ � U0.t/

�3
;

H.t; L/V.t; L/ D kG

q�
H.t; L/ � UL.t/

�3
;

where H.t; 0/ and H.t; L/ denote the water
depth at the boundaries inside the pool, Z0.t/
and ZL.t/ are the water levels on the other
side of the gate, kG is a constant gate shape
parameter, and U0 and UL represent the weir
elevations. The Saint-Venant equations cou-
pled to these boundary conditions constitute a
boundary control system withU0.t/ andUL.t/
as command signals.

3. Ramp metering. Ramp metering is a strategy
that uses traffic lights to regulate the flow of
traffic entering freeways according to mea-
sured traffic conditions as illustrated in Fig. 5.
For the stretch of motorway represented in this
figure, the boundary conditions are

%.t; 0/V .t; 0/ D Qin.t/C U.t/;

%.t; L/V .t; L/ D Qout.t/;

where U.t/ is the inflow rate controlled by
the traffic lights. The Aw-Rascle equations (6)
coupled to these boundary conditions consti-
tute a boundary control system with U.t/ as

Boundary Control of 1-D Hyperbolic Systems, Fig. 4 Hydraulic gates at the input and the output of a pool
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Boundary Control of 1-D Hyperbolic Systems, Fig. 5 Ramp metering on a stretch of a motorway

the command signal. In a feedback implemen-
tation of the ramp metering strategy,U.t/may
be a function of the measured disturbances
Qint.t/ or Qout.t/ that are imposed by the
traffic conditions.

4. Simulated moving bed chromatography is
a technology where several interconnected
chromatographic columns are switched
periodically against the fluid flow. This
allows for a continuous separation with a
better performance than the discontinuous
single-column chromatography. An efficient
operation of SMB chromatography requires a
tight control of the process by manipulating
the inflow rates in the columns. This process
is therefore a typical example of a periodic
boundary control hyperbolic system.

Controllability

In this section and in the following one, Y � 2 R
n

is such that none of the eigenvalues of A.Y �/
are 0. After an appropriate linear state transfor-
mation, the matrix A.Y �/ can be assumed to be
diagonal, with distinct and nonzero entries:

A.Y �/ D diag .�1; �2; : : : ; �n/; (10)

�1 > �2 > � � � > �m > 0 > �mC1 > � � � > �n:

Let Y C 2 R
m and Y � 2 R

n�m be such that Y T D
.Y CT Y �T/T.

For the boundary control system (1), (9), the
local controllability issue is to investigate if,
starting from a given initial state Y0 W x 2

Œ0; L� 7! Y0.x/ 2 R
n, it is possible to reach in

time T a desired target state Y1 W x 2 Œ0; L� 7!
Y1.x/ 2 R

n, with Y0.x/ and Y1.x/ close to Y �.

Theorem 4 (See Li and Rao 2003) If there exist
control inputs UC.t/ and U�.t/ such that the
boundary conditions (9) are equivalent to

Y C.t; 0/ D UC.t/; Y �.t; L/ D U�.t/;
(11)

then the boundary control system (1), (11) is
locally controllable for the C1-norm if and only
if T > Tc with

Tc D max

�
L

j�1j ; : : : ;
L

j�nj
�

:

Feedback Stabilization

For the boundary control system (1), (9), the
problem of local boundary feedback stabilization
is the problem of finding boundary feedback
control actions

U.t/ D F.Y.t; 0/; Y.t; L/; Y �/;

F W Rn � R
n � R

n ! R
p; (12)

such that the system trajectory exponentially con-
verges to a desired steady-state Y � (called set
point) from any initial condition Y0.x/ close to
Y �. In such case, the set point is said to be
exponentially stable.

Theorem 5 (See Coron et al. 2008) If
there exists a boundary feedback U.t/ D
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F.Y.t; 0/; Y.t; L/; Y �/ such that the boundary
conditions (9) are written in the form


Y C.t; 0/
Y �.t; L/

�

D G


Y C.t; L/
Y �.t; 0/

�

; G.Y �/ D Y �;

(13)

then, for the boundary control system (1), (13),
the set point Y � is locally exponentially stable for
the H2-norm if

Inf fk�G0.Y �/��1kI � 2 Dg < 1;

where k k denotes the usual 2-norm of n�n real
matrices, G0.Y �/ denotes the Jacobian matrix
of the map G at Y �, and D denotes the set of
n�n diagonal real matrices with strictly positive
diagonal entries.

For the stabilization in the C1-norm, another
sufficient condition is given in Li (1994).

Summary and Future Directions

With suitable boundary controls, hyperbolic sys-
tems can be controlled and stabilized around a
desired set point. However, in many situations
the hyperbolic model is not sufficient: one needs
to add a zero-order term and (1) has to be re-
placed by

YtCA.Y /YxCC.Y / D 0; t 2 Œ0; T �; x 2 Œ0; L�;
(14)

where C W R
n ! R

n. This is, for example,
the case for the open channels when slope and
friction cannot be neglected. Note that the set
point Y � may now depend on x. For the con-
trollability issue, the new term C.Y / turns out
to be not essential; see in particular Li (2010).
The situation is not the same for the stabilization
and only partial results are known. In particular,
Coron et al. (2013) uses Krstic’s backstepping
approach (Krstic and Smyshlyaev 2008) to treat
the case n D 2 and m D 1.

Another important issue for the system (1) is
the observability problem: assume that the state
is measured on the boundary during the interval
of time Œ0; T �, can one recover the initial data?

As shown in Li (2010), this problem has strong
connections with the controllability problem and
the system (1) is observable if the time T is large
enough.

The above results are on smooth solutions of
(1). However, the system (1) is known to be
well posed in class of BV -solutions (Bounded
Variations), with extra conditions (e.g., entropy
type); see in particular Bressan (2000). There are
partial results on the controllability in this class.
See, in particular, Ancona and Marson (1998) and
Horsin (1998) for n D 1. For n D 2, it is shown
in Bressan and Coclite (2002) that Theorem 4 no
longer holds in general in theBV class. However,
there are positive results for important physical
systems; see, for example, Glass (2007) for the
1-D isentropic Euler equation.
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Abstract

The Korteweg-de Vries (KdV) and the Kuramoto-
Sivashinsky (KS) partial differential equations
are used to model nonlinear propagation of one-
dimensional phenomena. The KdV equation
is used in fluid mechanics to describe waves
propagation in shallow water surfaces, while
the KS equation models front propagation in
reaction-diffusion systems. In this article, the
boundary control of these equations is considered

when they are posed on a bounded interval.
Different choices of controls are studied for each
equation.

Keywords

Controllability; Dispersive equations; Higher-
order partial differential equations; Parabolic
equations; Stabilizability

Introduction

The Korteweg-de Vries (KdV) and the Kuramoto-
Sivashinsky (KS) equations have very different
properties because they do not belong to the same
class of partial differential equations (PDEs).
The first one is a third-order nonlinear dispersive
equation

yt C yx C yxxx C yyx D 0; (1)

and the second one is a fourth-order nonlinear
parabolic equation

ut C uxxxx C �uxx C uux D 0; (2)

where � > 0 is called the anti-diffusion param-
eter. However, they have one important charac-
teristic in common. They are both used to model
nonlinear propagation phenomena in the space
x-direction when the variable t stands for time.
The KdV equation serves as a model for waves
propagation in shallow water surfaces (Korteweg
and de Vries 1895), and the KS equation models
front propagation in reaction-diffusion phenom-
ena including some instability effects (Kuramoto
and Tsuzuki 1975; Sivashinsky 1977).

From a control point of view, a new com-
mon characteristic arises. Because of the order
of the spatial derivatives involved, when studying
these equations on a bounded interval Œ0; L�, two
boundary conditions have to be imposed at the
same point, for instance, at x D L. Thus, we
can consider control systems where we control
one boundary condition but not all the bound-
ary data at one endpoint of the interval. This
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configuration is not possible for the classical
wave and heat equations where at each extreme,
only one boundary condition exists and therefore
controlling one or all the boundary data at one
point is the same.

The KdV equation being of third order in
space, three boundary conditions have to be im-
posed: one at the left endpoint x D 0 and two at
the right endpoint x D L. For the KS equation,
four boundary conditions are needed to get a
well-posed system, two at each extreme. We will
focus on the cases where Dirichlet and Neumann
boundary conditions are considered because lack
of controllability phenomena appears. This holds
for some special values of the length of the
interval for the KdV equation and depends on the
anti-diffusion coefficient � for the KS equation.

The particular cases where the lack of
controllability occurs can be seen as isolated
anomalies. However, those phenomena give
us important information on the systems. In
particular, any method independent of the value
of those constants cannot control or stabilize
the system when acting from the corresponding
control input where trouble appears. In all of
these cases, for both the KdV and the KS
equations, the space of uncontrollable states is
finite dimensional, and therefore, some methods
coming from the control of ordinary differential
equations can be applied.

General Definitions

Infinite-dimensional control systems described
by PDEs have attracted a lot of attention since the
1970s. In this framework, the state of the control
system is given by the solution of an evolution
PDE. This solution can be seen as a trajectory
in an infinite-dimensional Hilbert space H , for
instance, the space of square integrable functions
or some Sobolev space. Thus, for any time t , the
state belongs toH . Concerning the control input,
this is either an internal force distributed in the
domain, or a punctual force localized within the
domain, or some boundary data as considered in
this article. For any time t , the control belongs
to a control space U , which can be, for instance,

the space of bounded functions. The main control
properties to be mentioned in this article are con-
trollability, stability, and stabilization. A control
system is said to be exactly controllable if the
system can be driven from any initial state to
another one in finite time. This kind of properties
holds, for instance, for hyperbolic system as the
wave equation. The notion of null-controllability
means that the system can be driven to the origin
from any initial state. The main example for
this property is the heat equation, which presents
regularizing effects. Even if the initial data is
discontinuous, right after t D 0, the solution
of the heat equation becomes very smooth, and
therefore, it is not possible to impose a discontin-
uous final state. A system is said to be asymptoti-
cally stable if the solutions of the system without
any control converge as the time goes to infinity
to a stationary solution of the PDE. When this
convergence holds with a control depending at
each time on the state of the system (feedback
control), the system is said to be stabilizable by
means of a feedback control law.

All these properties have local versions when a
smallness condition for the initial and/or the final
state is added. This local character is normally
due to the nonlinearity of the system.

The KdV Equation

The classical approach to deal with nonlinearities
is first to linearize the system around a given
state or trajectory, then to study the linear system
and finally to go back to the nonlinear one by
means of an inversion argument or a fixed-point
theorem. Linearizing (1) around the origin, we
get the equation

yt C yx C yxxx D 0; (3)

which can be studied on a finite interval Œ0; L�
under the following three boundary conditions:

y.t; 0/ D h1.t/; y.t; L/ D h2.t/; and

yx.t; L/ D h3.t/: (4)
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Thus, viewing h1.t/; h2.t/; h3.t/ 2 R as controls
and the solution y.t; �/ W Œ0; L� ! R as the state,
we can consider the linear control system (3)–(4)
and the nonlinear one (1)–(4).

We will report on the role of each input control
when the other two are off. The tools used are
mainly the duality controllability-observability,
Carleman estimates, the multiplier method, the
compactness-uniqueness argument, the backstep-
ping method, and fixed-point theorems. Surpris-
ingly, the control properties of the system depend
strongly on the location of the controls.

Theorem 1 The linear KdV system (3)–(4) is:
1. Null-controllable when controlled from h1

(i.e., h2 D h3 D 0) (Glass and Guerrero
2008).

2. Exactly controllable when controlled from h2
(i.e., h1 D h3 D 0) if and only if L does not
belong to a set O of critical lengths defined in
Glass and Guerrero (2010).

3. Exactly controllable when controlled from h3
(i.e., h1 D h2 D 0) if and only if L does not
belong to a set of critical lengthsN defined in
Rosier (1997).

4. Asymptotically stable to the origin if L … N

and no control is applied (Perla Menzala et al.
2002).

5. Stabilizable by means of a feedback law using
h1 only (i.e., h2 D h3 D 0) Cerpa and Coron
(2013).

If L 2 N or L 2 O , one says that L is
a critical length since the linear control system
(3)–(4) loses controllability properties when only
one control input is applied. In those cases, there
exists a finite-dimensional subspace of L2.0;L/
which is unreachable from 0 for the linear system.
The sets N andO contain infinitely many critical
lengths, but they are countable sets.

When one is allowed to use more than one
boundary control input, there is no critical spatial
domain, and the exact controllability holds for
any L > 0. This is proved in Zhang (1999) when
three boundary controls are used. The case of two
control inputs is solved in Rosier (1997), Glass
and Guerrero (2010), and Cerpa et al. (2013).

Previous results concern the linearized control
system. Considering the nonlinearity yyx , we

obtain the original KdV control system and the
following results.

Theorem 2 The nonlinear KdV system (1)–
(4) is:
1. Locally null-controllable when controlled

from h1 (i.e., h2 D h3 D 0) (Glass and
Guerrero 2008).

2. Locally exactly controllable when controlled
from h2 (i.e., h1 D h3 D 0) if L does not
belong to the set O of critical lengths (Glass
and Guerrero 2010).

3. Locally exactly controllable when controlled
from h3 (i.e., h1 D h2 D 0). IfL belongs to the
set of critical lengths N , then a minimal time
of control may be required (see Cerpa 2014).

4. Asymptotically stable to the origin if L … N

and no control is applied (Perla Menzala et al.
2002).

5. Locally stabilizable by means of a feedback
law using h1 only (i.e., h2 D h3 D 0) (Cerpa
and Coron 2013).

Item 3 in Theorem 2 is a truly nonlinear re-
sult obtained by applying a power series method
introduced in Coron and Crépeau (2004). All
other items are implied by perturbation argu-
ments based on the linear control system. The re-
lated control system formed by (1) with boundary
controls

y.t; 0/ D h1.t/; yx.t; L/ D h2.t/; and

yxx.t; L/ D h3.t/; (5)

is studied in Cerpa et al. (2013), and the same
phenomenon of critical lengths appears.

The KS Equation

Applying the same strategy than for KdV, we
linearize (2) around the origin to get the equation

ut C uxxxx C �uxx D 0; (6)

which can be studied on the finite interval Œ0; 1�
under the following four boundary conditions:
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u.t; 0/ D v1.t/; ux.t; 0/ D v2.t/;

u.t; 1/ D v3.t/; and ux.t; 1/ D v4.t/:

(7)

Thus, viewing v1.t/; v2.t/; v3.t/; v4.t/ 2 R as
controls and the solution u.t; �/ W Œ0; 1� ! R

as the state, we can consider the linear control
system (6)–(7) and the nonlinear one (2)–(7). The
role of the parameter � is crucial. The KS equa-
tion is parabolic and the eigenvalues of system
(6)–(7) with no control (v1 D v2 D v3 D v4 D 0)
go to �1. If � increases, then the eigenvalues
move to the right. When � > 4�2, the sys-
tem becomes unstable because there are a finite
number of positive eigenvalues. In this unstable
regime, the system loses control properties for
some values of �.

Theorem 3 The linear KS control system (6)–(7)
is:
1. Null-controllable when controlled from v1 and
v2 (i.e., v3 D v4 D 0). The same is true when
controlling v3 and v4 (i.e., v1 D v2 D 0)
(Cerpa and Mercado 2011; Lin Guo 2002).

2. Null-controllable when controlled from v2
(i.e., v1 D v2 D v3 D 0) if and only if � does
not belong to a countable set M defined in
Cerpa (2010).

3. Asymptotically stable to the origin if � <

4�2 and no control is applied (Liu and Krstic
2001).

4. Stabilizable by means of a feedback law using
v2 only (i.e., v2 D v3 D v4 D 0) if and only if
� … M (Cerpa 2010).

In the critical case � 2 M , the linear system
is not null-controllable anymore if we control
v2 only (item 2 in Theorem 3). The space of
noncontrollable states is finite dimensional. To
obtain the null-controllability of the linear system
in these cases, we have to add another control.
Controlling with v2 and v4 does not improve the
situation in the critical cases. Unlike that, the
system becomes null-controllable if we can act
on v1 and v2. This result with two input controls
has been proved in Lin Guo (2002) for the case
� D 0 and in Cerpa and Mercado (2011) in the
general case (item 1 in Theorem 3).

It is known from Liu and Krstic (2001) that
if � < 4�2, then the system is exponentially
stable in L2.0; 1/. On the other hand, if � D 4�2,
then zero becomes an eigenvalue of the system,
and therefore the asymptotic stability fails. When
� > 4�2, the system has positive eigenvalues
and becomes unstable. In order to stabilize this
system, a finite-dimensional-based feedback law
can be designed by using the pole placement
method (item 4 in Theorem 3).

Previous results concern the linearized control
system. If we add the nonlinearity uux, we obtain
the original KS control system and the following
results.

Theorem 4 The KS control system (2)–(7) is:
1. Locally null-controllable when controlled

from v1 and v2 (i.e., v3 D v4 D 0). The
same is true when controlling v3 and v4 (i.e.,
v1 D v2 D 0) (Cerpa and Mercado 2011).

2. Asymptotically stable to the origin if � <

4�2 and no control is applied (Liu and Krstic
2001).

There are less results for the nonlinear systems
than for the linear one. This is due to the fact that
the spectral techniques used to study the linear
system with only one control input are not robust
enough to deal with perturbations in order to
address the nonlinear control system.

Summary and Future Directions

The KdV and the KS equations possess both
noncontrol results when one boundary control
input is applied. This is due to the fact that
both are higher-order equations, and therefore,
when posed on a bounded interval, more than
one boundary condition should be imposed at
the same point. The KdV equation is exactly
controllable when acting from the right and null-
controllable when acting from the left. On the
other hand, the KS equation, being parabolic as
the heat equation, is not exactly controllable but
null-controllable. Most of the results are implied
by the behaviors of the corresponding linear sys-
tem, which are very well understood.
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For the KdV equation, the main directions to
investigate at this moment are the controllability
and the stability for the nonlinear equation in
critical domains. Among others, some questions
concerning controllability, minimal time of con-
trol, and decay rates for the stability are open.
Regarding the KS equation, there are few results
for the nonlinear system with one control input
even if we are not in a critical value of the
anti-diffusion parameter. In the critical cases, the
controllability and stability issues are wide open.

In general, for PDEs, there are few results
about delay phenomena, output feedback laws,
adaptive control, and other classical questions
in control theory. The existing results on these
topics mainly concern the more popular heat and
wave equations. As KdV and KS equations are
one dimensional in space, many mathematical
tools are available to tackle those problems. For
all that, to our opinion, the KdV and KS equations
are excellent candidates to continue investigating
these control properties in a PDE framework.

Cross-References

�Boundary Control of 1-D Hyperbolic Systems
�Controllability and Observability
�Control of Fluids and Fluid-Structure Interac-

tions
� Feedback Stabilization of Nonlinear Systems
� Stability: Lyapunov, Linear Systems

Recommended Reading

The book Coron (2007) is a very good refer-
ence to study the control of PDEs. In Cerpa
(2014), a tutorial presentation of the KdV con-
trol system is given. Control system for PDEs
with boundary conditions and internal controls is
considered in Rosier and Zhang (2009) and the
references therein for the KdV equation and in
Armaou and Christofides (2000) and Christofides
and Armaou (2000) for the KS equation. Control
topics as delay and adaptive control are studied
in the framework of PDEs in Krstic (2009) and
Smyshlyaev and Krstic (2010), respectively.
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Abstract

We review several universal lower bounds on
statistical estimation, including deterministic
bounds on unbiased estimators such as Cramér-
Rao bound and Barankin-type bound, as well as
Bayesian bounds such as Ziv-Zakai bound. We
present explicit forms of these bounds, illustrate
their usage for parameter estimation in Gaussian
additive noise, and compare their tightness.

Keywords

Barankin-type bound; Cramér-Rao bound;
Mean-squared error; Statistical estimation;
Ziv-Zakai bound

Introduction

Statistical estimation involves inferring the values
of parameters specifying a statistical model from
data. The performance of a particular statistical
algorithm is measured by the error between the

true parameter values and those estimated by the
algorithm. However, explicit forms of estimation
error are usually difficult to obtain except for
the simplest statistical models. Therefore, per-
formance bounds are derived as a way of quan-
tifying estimation accuracy while maintaining
tractability.

In many cases, it is beneficial to quantify
performance using universal bounds that are in-
dependent of the estimation algorithms and rely
only upon the model. In this regard, universal
lower bounds are particularly useful as it provides
means to assess the difficulty of performing es-
timation for a particular model and can act as
benchmarks to evaluate the quality of any algo-
rithm: the closer the estimation error of the algo-
rithm to the lower bound, the better the algorithm.
In the following, we review three widely used
universal lower bounds on estimation: Cramér-
Rao bound (CRB), Barankin-type bound (BTB),
and Ziv-Zakai bound (ZZB). These bounds find
numerous applications in determining the per-
formance of sensor arrays, radar, and nonlinear
filtering; in benchmarking various algorithms;
and in optimal design of systems.

Statistical Model and Related
Concepts

To formalize matters, we define a statistical
model for estimation as a family of parameterized
probability density functions in R

N : fp.xI �/ W
� 2 ‚ 	 R

d g. We observe a realization of
x 2 R

N generated from a distribution p.xI �/,
where � 2 ‚ is the true parameter to be
estimated from data x. Though we assume a
single observation x, the model is general enough
to encompass multiple independent, identically
distributed samples (i.i.d.) by considering the
joint probability distribution.

An estimator of � is a measurable function of
the observation O�.x/ W R

N ! ‚. An unbiased
estimator is one such that

E�

n O�.x/
o

D �;8� 2 ‚: (1)
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Here we used the subscript � to emphasize
that the expectation is taken with respect to
p.xI �/. We focus on the performance of
unbiased estimators in this entry. There are
various ways to measure the error of the estimator
O�.x/. Two typical ones are the error covariance
matrix:

E�

n
. O� � �/. O� � �/T

o
D Cov. O�/; (2)

where the equation holds only for unbiased esti-
mators, and the mean-squared error (MSE):

E�

n
k O�.x/ � �k22

o
D trace

�
E�

n
. O� � �/

. O� � �/T
o

: (3)

Example 1 (Signal in additive Gaussian noise
(SAGN)) To illustrate the usage of different
estimation bounds, we use the following
statistical model as a running example:

xn D sn.�/C wn; n D 0; : : : ; N � 1: (4)

Here � 2 ‚ 	 R is a scalar parameter to be
estimated and the noise wn follows i.i.d. Gaussian
distribution with mean 0 and known variance �2.
Therefore, the density function for x is

p.xI �/

D
N�1Y

nD0

1p
2��

exp

�

� .xn � sn.�//
2

2�2

�

D 1

.
p
2��/N

exp

(

�
N�1X

nD0

.xn � sn.�//
2

2�2

)

:

In particular, we consider the frequency estima-
tion problem where sn.�/ D cos.2�n�/ with
‚ D Œ0; 1

4
/.

Cramér-Rao Bound

The Cramér-Rao bound (CRB) (Kay 2001a; Sto-
ica and Nehorai 1989; Van Trees 2001) is ar-
guably the most well-known lower bounds on

estimation. Define the Fisher information matrix
I.�/ via

Ii;j .�/ D E�

�
@

@�i
logp.xI �/ @

@�j
logp.xI �/

�

D �E�

�
@2

@�i@�j
logp.xI �/

�

:

Then for any unbiased estimator O� , the error
covariance matrix is bounded by

E�

n
. O� � �/. O� � �/T

o

 ŒI.�/��1; (5)

where A 
 B for two symmetric matrices means
A�B is positive semidefinite. The inverse of the
Fisher information matrix CRB.�/ D ŒI.�/��1 is
called the Cramér-Rao bound.

When � is scalar, I.�/ measures the expected
sensitivity of the density function with respect to
changes in the parameter. A density family that
is more sensitive to parameter changes (larger
I.�/) will generate observations that look more
different when the true parameter varies, making
it easier to estimate (smaller error).

Example 2 For the SAGN model (4), the CRB is

CRB.�/ D I.�/�1 D �2

PN�1
nD0

h
@sn.�/

@�

i2 : (6)

The inverse dependence on the `2 norm of signal
derivative suggests that signals more sensitive to
parameter change are easier to estimate.

For the frequency estimation problem with
sn.�/ D cos.2�n�/, the CRB as a function of
� is plotted in Fig. 1.

There are many modifications of the basic
CRB such as the posterior CRB (Tichavsky et al.
1998; Van Trees 2001), the hybrid CRB (Rockah
and Schultheiss 1987), the modified CRB
(D’Andrea et al. 1994), the concentrated CRB
(Hochwald and Nehorai 1994), and constrained
CRB (Gorman and Hero 1990; Marzetta 1993;
Stoica and Ng 1998). The posterior CRB
takes into account the prior information of the
parameters when they are modeled as random
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Bounds on Estimation, Fig. 1 Cramér-Rao bound on
frequency estimation: N D 5 vs. N D 10

variables, while the hybrid CRB considers the
case that the parameters contain both random and
deterministic parts. The modified CRB and the
concentrated CRB focus on handling nuisance
parameters in a tractable manner. The application
of the these CRBs requires a regular parameter
space (e.g., an open set in R

d ). However, in many
case, the parameter space‚ is a low-dimensional
manifolds in R

d specified by equalities and
inequalities. In this case, the constrained CRB
provides tighter lower bounds by incorporating
knowledge of the constraints.

Barankin Bound

CRB is a local bound in the sense that it involves
only local properties (the first or second order
derivatives) of the log-likelihood function. So if
two families of log-likelihood functions coincide
at a region near �0, the CRB at �0 would be the
same, even if they are drastically different in other
regions of the parameter space.

However, the entire parametric space should
play a role in determining the difficulty of param-
eter estimation. To see this, imagine that there are
two statistical models. In the first model there is
another point �1 2 ‚ such that the likelihood

family p.xI �/ behaves similarly around �0 and
�1, but these two points are not in neighbor-
hoods of each other. Then it would be difficult
to distinguish these two points for any estimation
algorithm, and the estimation performance for the
first statistical model would be bad (an extreme
case is p.xI �0/ � p.xI �1/ in which case the
model is non-identifiable; more discussions on
identifiability and Fisher information matrix can
be found in Hochwald and Nehorai (1997)). In
the second model, we remove the point �1 and its
near neighborhood from‚, then the performance
should get better. However, CRB for both models
would remain the same whether we exclude �1

from‚ or not. As a matter of fact, CRB.�0/ uses
only the fact that the estimator is unbiased in a
neighborhood of the true parameter �0.

Barankin bound addresses CRB’s shortcoming
of not respecting the global structure of the sta-
tistical model by introducing finitely many test
points f�i ; i D 1; : : : ;M g and ensures that the
estimator is unbiased at the neighborhood of �0

as well as these test points (Forster and Larzabal
2002). The original Barankin bound (Barankin
1949) is derived for scalar parameter � 2 ‚ 	 R

and any unbiased estimator bg.�/ for a function
g.�/:

E� .bg.�/ � g.�//2 � sup
M;�i ;ai

hPM
mD1 ai .g.�i /� g.�//

i2

E�

hPM
mD1 ai

p.xI�i /
p.xI�/

i2 (7)

Using (7), we can derive a Barankin-type bound
on the error covariance matrix of any unbiased
estimator O�.x/ for a vector parameter � 2 ‚ 	
R
d (Forster and Larzabal 2002):

E�

n
. O� � �/. O� � �/T

o
� ˆ.B � 11T /�1ˆT ; (8)

where the matrices are defined via

Bi;j D E�

�
p.xI �i /
p.xI �/

p.xI �j /
p.xI �/

�

; 1 � i; j � M;

ˆ D �
�1 � � � � � �M � �

�
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Bounds on Estimation, Fig. 2 Cramér-Rao bound vs.
Barankin-type bound on frequency estimation when �0 D
0:1. The BTB is obtained using M D 10 uniform random
points

and 1 is the vector in R
M with all ones. Note

that we have used �i with a superscript to denote
different points in ‚, while �i with a subscript to
denote the i th component of a point � .

Since the bound (8) is valid for any M and
any choice of test points f�ig, we obtain the
tightest bound by taking the supremum over all
finite families of test points. Note that when we
have d test points that approach � in d linearly
independent directions, the Barankin-type bound
(8) converges to the CRB. If we have more than
d test points, however, the Barankin-type bound
is always not worse than the CRB. Particularly,
the Barankin-type bound is much tighter in the
regime of low signal-to-noise ratio (SNR) and
small number of measurements, which allows
one to investigate the “threshold” phenomena as
shown in the next example.

Example 3 For the SAGN model, if we have M
test points, the elements of matrix B are of the
following form:

Bi;j D exp

(
1

�2

N�1X

nD0
Œsn.�

i /� sn.�/�

Œsn.�
j /� sn.�/�

)

In most cases, it is extremely difficult to derive
an analytical form of the Barankin bound by
optimizing with respect to M and the test points
f�j g. In Fig. 2, we plot the Barankin-type bounds
for sn.�/ D cos.2�n�/ for M D 10 randomly
selected test points. We observe that Barankin-
type bound is tighter than the CRB when SNR
is small. There is a SNR region around 0 dB that
the Brankin-type bound drops drastically. This is
usually called the “threshold” phenomenon. Prac-
tical systems operate much better in the region
above the threshold.

The basic CRB and BTB belong to the family
of deterministic “covariance inequality” bounds
in the sense that the unknown parameter is as-
sumed to be a deterministic quantity (as opposed
to a random quantity). Additionally, both bounds
work only for unbiased estimators, making them
inappropriate performance indicators for biased
estimators such as many regularization-based es-
timators.

Ziv-Zakai Bound

In this section, we introduce the Ziv-Zakai bound
(ZZB) (Bell et al. 1997) that is applicable to any
estimator (not necessarily unbiased). Unlike the
CRB and BTB, the ZZB is a Bayesian bound and
the errors are averaged by the prior distribution
p�./ of the parameter. For any a 2 R

d , the ZZB
states that

aTE
n
. O�.x/ � �/. O�.x/ � �/T

o
a �

1
2

R1
0

V ˚maxıWaT ıDh
�R

Rd
.p� ./C p�. C ı//

timesPmin.;  C ı/d
��
hdh;

where the expectation is taken with respect to
the joint disunity p.xI �/p� ./, Vfq.h/g D
maxr�0 q.h C r/ is the valley-filling function,
and Pmin.;  C ı/ is the minimal probability of
error for the following binary hypothesis testing
problem:

H0 W � D I x � p.xI/
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H1 W � D  C ıI x � p.xI C ı/

with

Pr.H0/ D p�./

p� ./C p�. C ı/

Pr.H1/ D p�. C ı/

p� ./C p�. C ı/
:

Example 4 For the ASGN model, we assume a
uniform prior probability, i.e., p�./ D 4;  2
Œ0; 1=4/. The ZZB simplifies to

E

n
k O�.x/ � �k22

o
�

1

2

Z 1
4

0

V
("Z 1

4�h

0

8Pmin.;  C h/d

#)

hdh:

The binary hypothesis testing problem is to de-
cide which one of two signals is buried in addi-
tive Gaussian noise. The optimal detector with
minimal probability of error is the minimum
distance receiver (Kay 2001b), and the associated
probability of error is
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2 dt . For the
frequency estimation problem, we numerically
estimate the integral and plot the resulting
ZZB in Fig. 3 together with the mean-squared
error for the maximum likelihood estimator
(MLE).

Summary and Future Directions

We have reviewed several important performance
bounds on statistical estimation problems,
particularly, the Cramér-Rao bound, the
Barankin-type bound, and the Ziv-Zakai bound.
These bounds provide a universal way to quantify

Bounds on Estimation, Fig. 3 Ziv-Zakai bound vs.
maximum likelihood estimator for frequency estimation

the performance of statistically modeled physical
systems that is independent of any specific
algorithm.

Future directions of performance bounds on
estimation include deriving tighter bounds, de-
veloping computational schemes to approximate
existing bounds in a tractable way, and applying
them to practical problems.
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Abstract

This entry provides an overview of systems and
issues related to providing optimized controls for
commercial buildings. It includes a description of
the evolution of the control systems over time,
typical equipment and control variables, typical
two-level hierarchal structure for feedback and
supervisory control, definition of the optimal su-
pervisory control problem, references to typical
heuristic control approaches, and a description of
current and future developments.

Keywords

Building automation systems (BAS); Cooling
plant optimization; Energy management and
controls systems (EMCS); Intelligent building
controls

Introduction

Computerized control systems were developed
in the 1980s for commercial buildings and are
typically termed energy management and control
systems (EMCS) or building automation systems
(BAS). They have been most successfully ap-
plied to large commercial buildings that have
hundreds of building zones and thousands of con-
trol points. Less than about 15 % of commercial
buildings have EMCS, but they serve about 40 %
of the floor area. Small commercial buildings
tend not to have an EMCS, although there is
a recent trend towards the use of wireless ther-
mostats with cloud-based energy management
solutions.

EMCS architectures for buildings have
evolved from centralized to highly distributed
systems as depicted in Fig. 1 in order to reduce

http://dx.doi.org/10.1007/978-1-4471-5058-9_234
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Building Control Systems, Fig. 1 Evolution from centralized to distributed network architectures

wiring costs and provide more modular solutions.
The development of open communications
protocols, such as BACNet, has enabled the
use of distributed control devices from different
vendors and improved the cost-effectiveness
of ECMS. There has also been a recent trend
towards the use of existing enterprise networks
to reduce system installed costs and to more
easily allow remote access and control from any
Internet accessible device.

An EMCS for a large commercial building can
automate the control of many of the building and
system functions, including scheduling of lights
and zone thermostat settings according to occu-
pancy patterns. Security and fire safety systems
tend to be managed using separate systems. In
addition to scheduling, an EMCS manages the
control of individual equipment and subsystems
that provide heating, ventilation, and air condi-
tioning of the building (HVAC). This control is
achieved using a two-level hierarchical structure
of local-loop and supervisory control. Local-loop
control of individual set points is typically im-
plemented using individual proportional-integral
(PI) feedback algorithms that manipulate individ-
ual actuators in response to deviations from the
set points. For example, supply air temperature
from a cooling coil is controlled by adjusting
a valve opening that provides chilled water to
the coil. The second level of supervisory con-
trol specifies the set points and other modes

of operation that depend on time and external
conditions.

Each local-loop feedback controller acts
independently, but their performance can be
coupled to other local-loop controllers if not
tuned appropriately. Adaptive tuning algorithms
have been developed in recent years to enable
controllers to automatically adjust to changing
weather and load conditions. There are typically
a number of degrees of freedom in adjusting
supervisory control set points over a wide
range while still achieving adequate comfort
conditions. Optimal control of supervisory set
points involves minimizing a cost function
with respect to the free variables and subject
to constraints. Although model-based, control
optimization approaches are not typically
employed in buildings, they have been used to
inform the development and assessment of some
heuristic control strategies. Most commonly,
strategies for adjusting supervisory control
variables are established at the control design
phase based on some limited analysis of the
HVAC system and specified as a sequence of
operations that is programmed into the EMCS.

Systems, Equipment, and Controls

The greatest challenges and opportunities for
optimizing supervisory control variables exist for
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Building Control Systems, Fig. 2 Schematic of a chilled water cooling system

centralized cooling systems that are employed
in large commercial buildings because of the
large number of control variables and degrees
of freedom along with utility rate incentives.
A simplified schematic of a typical centralized
cooling plant is shown in Fig. 2 with components
grouped under air distribution, chilled water loop,
chiller plant, and condenser water loop.

Typical air distribution systems include VAV
(variable-air volume) boxes within the zones,
air-handling units, ducts, and controls. An air-
handling unit (AHU) provides the primary condi-
tioning, ventilation, and flow of air and includes
cooling and heating coils, dampers, fans, and con-
trols. A single air handler typically serves many
zones and several air handlers are utilized in a
large commercial building. For each AHU, out-
door ventilation air is mixed with return air from
the zones and fed to the cooling coil. Outdoor and
return air dampers are typically controlled using
an economizer control that selects between min-
imum and maximum ventilation air depending
upon the condition of the outside air. The cooling
coil provides both cooling and dehumidification
of the process air. The air outlet temperature from

the coil is controlled with a local feedback con-
troller that adjusts the flow of water using a valve.
A supply fan and return fan (not shown in Fig. 2)
provide the necessary airflow to and from the
zones. With a VAV system, zone temperature set
points are regulated using a feedback controller
applied to dampers within the VAV boxes. The
overall air flow provided by the AHU is typically
controlled to maintain a duct static pressure set
point within the supply duct.

The chilled water loop communicates
between the cooling coils within the AHUs
and chillers that provide the primary source
for cooling. It consists of pumps, pipes,
valves, and controls. Primary/secondary chilled
water systems are commonly employed to
accommodate variable-speed pumping. In the
primary loop, fixed-speed pumps are used to
provide relatively constant chiller flow rates to
ensure good performance and reduce the risk of
evaporator tube freezing. Individual pumps are
typically cycled on and off with a chiller that
it serves. The secondary loop incorporates one
or more variable-speed pumps that are typically
controlled to maintain a set point for chilled water
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loop differential pressure between the building
supplies and returns.

The primary source of cooling for the system
is typically provided by one or more chillers
that are arranged in parallel and have dedicated
pumps. Each chiller has an on-board local-loop
feedback controller that adjusts its cooling capac-
ity to maintain a specified set point for chilled wa-
ter supply temperature. Additional chiller control
variables include the number of chillers operating
and the relative loading for each chiller. The
relative loading can be controlled for a given total
cooling requirement by utilizing different chilled
water supply set points for constant individual
flow or by adjusting individual flows for iden-
tical set points. Chillers can be augmented with
thermal storage to reduce the amount of chiller
power required during occupied periods in order
to reduce on-peak energy and power demand
costs. The thermal storage medium is cooled
during the unoccupied, nighttime period using the
chillers when electricity is less expensive. During
occupied times, a combination of the chillers and
storage are used to meet cooling requirements.
Control of thermal storage is defined by the
manner in which the storage medium is charged
and discharged over time.

The condenser water loop includes cooling
towers, pumps, piping, and controls. Cooling
towers reject energy to the ambient air through
heat transfer and possibly evaporation (for wet
towers). Larger systems tend to have multiple
cooling towers with each tower having multiple
cells that share a common sump with individual
fans having two or more speed settings. The
number of operating cells and tower fan speeds
are often controlled using a local-loop feedback
controller that maintains a set point for the
water temperature leaving the cooling tower.
Typically, condenser water pumps are dedicated
to individual chillers (i.e., each pump is cycled
on and off with a chiller that it serves).

In order to better understand building control
variables, interactions, and opportunities, con-
sider how controls change in response to in-
creasing building cooling requirements for the
system of Fig. 2. As energy gains to the zones
increase, zone temperatures rise in the absence

of any control changes. However, zone feedback
controllers respond to higher temperatures by
increasing VAV box airflow through increased
damper openings. This leads to reduced static
pressure in the primary supply duct, which causes
the AHU supply fan controller to create ad-
ditional airflow. The greater airflow causes an
increase in supply air temperatures leaving the
cooling coils in the absence of any additional
control changes. However, the supply air tem-
perature feedback controllers respond by opening
the cooling coil valves to increase water flow and
the heat transfer to the chilled water (the cooling
load). For variable-speed pumping, a feedback
controller would respond to decreasing pressure
differential by increasing the pump speed. The
chillers would then experience increased loads
due to higher return water temperature and/or
flow rate that would lead to increases in chilled
water supply temperatures. However, the chiller
controllers would respond by increasing chiller
cooling capacities in order to maintain the chilled
water supply set points (and match the cooling
coil loads). In turn, the heat rejection to the con-
denser water loop would increase to balance the
increased energy removed by the chiller, which
would increase the temperature of water leaving
the condenser. The temperature of water leav-
ing the cooling tower would then increase due
to an increase in its energy water temperature.
However, a feedback controller would respond to
the higher condenser water supply temperature
and increase the tower airflow. At some load,
the current set of operating chillers would not
be sufficient to meet the load (i.e., maintain the
chilled water supply set points) and an additional
chiller would need to be brought online.

This example illustrated how different local-
loop controllers might respond to load changes
in order to maintain individual set points. Super-
visory control might change these set points and
modes of operation. At any given time, it is pos-
sible to meet the cooling needs with any number
of different modes of operation and set points
leading to the potential for control optimization
to minimize an objective function.

The system depicted in Fig. 2 and described
in the preceding paragraphs represents one of
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many different types of systems employed in
commercial buildings. Medium-sized commer-
cial buildings often employ multiple direct ex-
pansion (DX) cooling systems where refrigerant
flows between each AHU and an outdoor con-
densing unit that employs variable capacity com-
pressors. The compressor capacity is typically
controlled to maintain a supply air temperature
set point, which is still available as a supervisory
control variable. However, the other condensing
unit controls (e.g., condensing fans, expansion
valve) are typically prepackaged with the unit
and not available to the EMCS. For smaller com-
mercial buildings, rooftop units (RTUs) are typi-
cally employed that contain a prepackaged AHU,
refrigeration cycle, and controls. Each RTU di-
rectly cools the air in a portion of the build-
ing in response to an individual thermostat. The
capacity control is typically on/off staging of
the compressor and constant volume air flow is
mostly commonly employed. In this case, the
only free supervisory control variables are the
thermostat set points. In general, the degrees
of freedom for supervisory control decrease in
going from chilled water cooling plants to DX
system to RTUs. In addition, the utility rate in-
centives for taking advantage of thermal storage
and advanced controls are greater for large com-
mercial building applications.

Optimal Supervisory Control

In commercial buildings, it is common to have
electric utility rates that have energy and de-
mand charges that vary with time of use. The
different rate periods can often include on-peak,
off-peak, and mid-peak periods. For this type of
rate structure, the time horizon necessary to truly
minimize operating costs extends over the entire
month. In order to better understand the con-
trol issues, consider the general optimal control
problem for minimizing monthly electrical utility
charges associated with operating an all-electric
cooling system in the presence of time-of-use
and demand charges. The dynamic optimization
involves minimizing

J D
rate periodsX

pD1
Jp CRd;a max ŒPk�kD1 to Nmonth
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where J is the monthly electrical cost ($), the
subscript p denotes that a quantity is limited
to a particular type of rate period p (e.g., on-
peak, off-peak, mid-peak), Rd;a is an anytime
demand charge ($/kW) that is applied to the
maximum power consumption occurring over the
month Pk is average building power (kW) for
stage k within the month, Nmonth is the number
of stages in the month, Re;p is the unit cost of
electrical energy ($/kWh) for rate period type
p, �t is the length of the stage (h), Np is the
number of stages within rate period type p in
the month, Rd;p is a rate period specific demand
charge ($/kW) that is applied to the maximum
power consumption occurring during the month
within rate periodp, fk is a vector of uncontrolled
inputs that affect building power consumption
(e.g., weather, internal gains), *

uk is a vector of
continuous supervisory control variables (e.g.,
supply air temperature set point), Mk is a vector
of discrete supervisory control variables (chiller
on/off controls), xk is a vector of state variables,
yk is a vector of outputs, and subscripts min and
max denote minimum and maximum allowable
values.

The state variables could characterize the state
of a storage device such as a chilled water or
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ice storage tank. In this case, the states would
be constrained between limits associated with
the device’s practical storage potential. When
variations in zone temperature set points are con-
sidered within an optimization, then state vari-
ables associated with the distributed nature of
energy storage within the building structure are
important to consider. The outputs are additional
quantities of interest, such as equipment cooling
capacities, occupant comfort conditions, etc., that
often need to be constrained. In order to imple-
ment a model-based predictive control scheme, it
would be necessary to have models for the build-
ing power, state variables, and outputs in terms
of the control and uncontrolled variables. The
uncontrolled variables would generally include
weather (temperature, humidity, solar radiation)
and internal gains due to lights and occupants,
etc., that would need to be forecasted over a
prediction horizon.

It is not feasible to solve this type of monthly
optimization problem for buildings for a variety
of reasons, including that forecasting of uncon-
trolled inputs beyond a day is unreliable. Also,
it is very costly to develop the models necessary
to implement a model-based control approach of
this scale for a particular building. However, it
is instructive to consider some special cases that
have led to some practical control approaches.
First of all, consider the problem of optimiz-
ing only the cooling plant supervisory control
variables when energy storage effects are not
important. This is typically the case for typical
systems that do not include ice or chilled water
storage. For this scenario, the future does not
matter and the problem can be reformulated as
a static optimization problem, such that for each
stage k the goal is to minimize the building power
consumption, J D Pk , with respect to the current
supervisory control variables, *

ukand Mk , and
subject to constraints. ASHRAE (2011) presents
a number of heuristic approaches for adjusting
supervisory control variables that have been de-
veloped through consideration of this type of
optimization problem. This includes algorithms
for adjusting cooling tower fan settings, chilled
water supply air set points, and chiller sequencing
and loading.

Other heuristic approaches have been devel-
oped (e.g., ASHRAE 2011; Braun 2007) for
controlling the charging and discharging of ice
or chilled water storage that were derived from
a daily optimization formulation. For the case
of real-time pricing of energy, heuristic charg-
ing and discharging strategies were derived from
minimizing a daily cost function

Jday D
NdayX

kD1
Re;kPk�t

with respect to a trajectory of charging and dis-
charging rates, subject to a constraint of equal
beginning and ending storage states along with
other constraints previously described. For the
case of typical time-of-use (e.g., on-peak, off-
peak) or real-time pricing energy charges with
demand charges, heuristic strategies have been
developed based on the same form of the daily
cost function above with an added demand cost
constraint Rd;kPk � TDC where TDC is a
target demand cost that is set heuristically at the
beginning of each billing period and updated at
each stage as TDCkC1 D max.TDCk;Rd;kPk/.
The heuristic storage control strategies can be
readily combined with heuristic strategies for the
cooling plant components.

There has been a lot of interest in develop-
ing practical methods for dynamic control of
zone temperature set points within the bounds of
comfort in order to minimize the utility costs.
However, this is a very difficult problem and so
this remains in the research realm for the time
being with limited commercial success.

Summary and Future Directions

Although there is great opportunity for reduc-
ing energy use and operating costs in buildings
through optimal supervisory control, it is rarely
implemented in practice because of high costs as-
sociated with engineering site-specific solutions.
Current efforts are underway to develop scal-
able approaches that utilize general methods for
configuring and learning models needed to im-
plement model-based predictive control (MPC).
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The current thinking is that solutions for optimal
supervisory control will be implemented in the
cloud and overlay on existing building automa-
tion systems (BMS) through the use of universal
middleware. This will reduce the cost of im-
plementation compared to programming within
existing BMS. There is also a need to reduce
the cost of the additional sensors needed to im-
plement MPC. One approach involves the use of
virtual sensors that employ models with low-cost
sensor inputs to provide higher value information
that would normally require expensive sensors to
obtain.
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Abstract

Cascading failure consists of complicated se-
quences of dependent failures and can cause large
blackouts. The emerging risk analysis, simula-
tion, and modeling of cascading blackouts are
briefly surveyed, and key references are sug-
gested.

Keywords

Branching process; Dependent failures; Outage;
Power law; Risk; Simulation

Introduction

The main mechanism for the rare and costly
widespread blackouts of bulk power transmission
systems is cascading failure. Cascading failure

can be defined as a sequence of dependent events
that successively weaken the power system (IEEE
PES CAMS Task Force on Cascading Failure
2008). The events and their dependencies are
very varied and include outages or failures of
many different parts of the power system and
a whole range of possible physical, cyber, and
human interactions. The events and dependen-
cies tend to be rare or complicated, since the
common and straightforward failures tend to be
already mitigated by engineering design or oper-
ating practice.

Examples of a small initial outage cascad-
ing into a complicated sequence of dependent
outages are the August 10, 1996, blackout of
the Northwest United States that disconnected
power to about 7.5 million customers (Kosterev
et al. 1999) and the August 14, 2003 blackout
of about 50 million customers in Northeastern
United States and Canada (US-Canada Power
System Outage Task Force 2004). Although such
extreme events are rare, the direct costs run to
billions of dollars and the disruption to society
is substantial. Large blackouts also have a strong
effect on shaping the way power systems are
regulated and the reputation of the power in-
dustry. Moreover, some blackouts involve social
disruptions that can multiply the economic dam-
age. The hardship to people and possible deaths
underscore the engineer’s responsibility to work
to avoid blackouts.

It is useful when analyzing cascading failure to
consider cascading events of all sizes, including
the short cascades that do not lead to interruption
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of power to customers and cascades that in-
volve events in other infrastructures, especially
since loss of electricity can significantly impair
other essential or economically important infras-
tructures. Note that in the context of interact-
ing infrastructures, the term “cascading failure”
sometimes has the more restrictive definition of
events cascading between infrastructures (Rinaldi
et al. 2001).

Blackout Risk

Cascading failure is a sequence of dependent
events that successively weaken the power sys-
tem. At a given stage in the cascade, the previous
events have weakened the power system so that
further events are more likely. It is this depen-
dence that makes the long series of cascading
events that cause large blackouts likely enough
to pose a substantial risk. (If the events were
independent, then the probability of a large num-
ber of events would be the product of the small
probabilities of individual events and would be
vanishingly small.) The statistics for the distribu-
tion of sizes of blackouts have correspondingly
“heavy tails” indicating that blackouts of all sizes,
including large blackouts, can occur. Large black-
outs are rare, but they are expected to happen
occasionally, and they are not “perfect storms.”

In particular, it has been observed in several
developed countries that the probability distribu-
tion of blackout size has an approximate power
law dependence (Carreras et al. 2004b; Dobson
et al. 2007; Hines et al. 2009). (The power law
is of course limited in extent because every grid
has a largest possible blackout in which the en-
tire grid blacks out.) The power law region can
be explained using ideas from complex systems
theory. The main idea is that over the long term,
the power grid reliability is shaped by the engi-
neering responses to blackouts and the slow load
growth and tends to evolve towards the power law
distribution of blackout size (Dobson et al. 2007;
Ren et al. 2008).

Blackout risk can be defined as the prod-
uct of blackout probability and blackout cost.
One simple assumption is that blackout cost is

roughly proportional to blackout size, although
larger blackouts may well have costs (especially
indirect costs) that increase faster than linearly. In
the case of the power law dependence, the larger
blackouts can become rarer at a similar rate as
costs increase, and then the risk of large black-
outs is comparable to or even exceeding the risk
of small blackouts. Mitigation of blackout risk
should consider both small and large blackouts,
because mitigating the small blackouts that are
easiest to analyze may inadvertently increase the
risk of large blackouts (Newman et al. 2011).

Approaches to quantify blackout risk are chal-
lenging and emerging, but there are also valuable
approaches to mitigating blackout risk that do
not quantify the blackout risk. The n-1 criterion
that requires the power system to survive any sin-
gle component failure has the effect of reducing
cascading failures. The individual mechanisms
of dependence in cascades (overloads, protection
failures, voltage collapse, transient stability, lack
of situational awareness, human error, etc.) can
be addressed individually by specialized analyses
or simulations or by training and procedures.
Credible initiating outages can be sampled and
simulated, and those resulting in cascading can
be mitigated (Hardiman et al. 2004). This can be
thought of as a “defense in depth” approach in
which mitigating a subset of credible contingen-
cies is likely to mitigate other possible contin-
gencies not studied. Moreover, when blackouts
occur, a postmortem analysis of that particular se-
quence of events leads to lessons learned that can
be implemented to mitigate the risk of some sim-
ilar blackouts (US-Canada Power System Outage
Task Force 2004).

Simulation andModels

There are many simulations of cascading
blackouts using Monte Carlo and other methods,
for example, Hardiman et al. (2004), Carreras
et al. (2004a), Chen et al. (2005), Kirschen et al.
(2004), Anghel et al. (2007), and Bienstock
and Mattia (2007). All these simulations
select and approximate a modest subset of the
many physical and engineering mechanisms of
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cascading failure, such as line overloads, voltage
collapse, and protection failures. In addition,
operator actions or the effects of engineering the
network may also be crudely represented. Some
of the simulations give a set of credible cascades,
and others approximately estimate blackout risk.

Except for describing the initial outages,
where there is a wealth of useful knowledge,
much of standard risk analysis and modeling does
not easily apply to cascading failure in power
systems because of the variety of dependencies
and mechanisms, the combinatorial explosion of
rare possibilities, and the heavy-tailed probability
distributions. However, progress has been made
in probabilistic models of cascading (Chen et al.
2006; Dobson 2012; Rahnamay-Naeini et al.
2012).

The goal of high-level probabilistic models is
to capture salient features of the cascade without
detailed models of the interactions and dependen-
cies. They provide insight into cascading failure
data and simulations, and parameters of the high-
level models can serve as metrics of cascading.

Branching process models are transient
Markov probabilistic models in which, after
some initial outages, the outages are produced
in successive generations. Each outage in each
generation (a “parent” outage) produces a
probabilistic number of outages (“children”
outages) in the next generation according to an
offspring probability distribution. The children
failures then become parents to produce the next
generation and so on, until there is a generation
with zero children and the cascade stops. As
might be expected, a key parameter describing
the cascading is its average propagation, which
is the average number of children outages
per parent outage. Branching processes have
traditionally been applied to many cascading
processes outside of risk analysis (Harris), but
they have recently been validated and applied to
estimate the distribution of the total number of
outages from utility outage data (Dobson 2012).
A probabilistic model that tracks the cascade as
it progresses in time through lumped grid states
is presented in Rahnamay-Naeini et al. (2012).

There is an extensive complex networks liter-
ature on cascading in abstract networks that is

largely motivated by idealized models of propa-
gation of failures in the Internet. The way that
failures propagate only along the network links
is not realistic for power systems, which satisfy
Kirchhoff’s laws so that many types of failures
propagate differently. For example, line over-
loads tend to propagate along cutsets of the net-
work. However, the high-level qualitative results
of phase transitions in the complex networks
have provided inspiration for similar effects to
be discovered in power system models (Dobson
et al. 2007). There is also a possible research
opportunity to elaborate the complex network
models to incorporate some of the realities of
power system and then validate them.

Summary and Future Directions

One challenge for simulation is what selection
of phenomena to model and in how much detail
in order to get useful engineering results. Faster
simulations would help to ease the requirements
of sampling appropriately from all the sources
of uncertainty. Better metrics of cascading in
addition to average propagation need to be de-
veloped and extracted from real and simulated
data in order to better quantify and understand
blackout risk. There are many new ideas emerg-
ing to analyze and simulate cascading failure,
and the next step is to validate and improve
these new approaches by comparing them with
observed blackout data. Overall, there is an excit-
ing challenge to build on the more deterministic
approaches to mitigate cascading failure and find
ways to more directly quantify and mitigate cas-
cading blackout risk by coordinated analysis of
real data, simulation, and probabilistic models.
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Abstract

Cash on hand (or cash held in highly liquid form
in a bank account) is needed for routine busi-
ness and personal transactions. The problem of
determining the right amount of cash to hold in-
volves balancing liquidity against investment op-
portunity costs. This entry traces solutions using
both discrete-time and continuous-time stochas-
tic models.

Keywords

Brownian motion; Inventory theory; Stochastic
impulse control

Definition

A firm needs to keep cash, either in the form
of cash on hand or as a bank deposit, to meet
its daily transaction requirements. Daily inflows
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and outflows of cash are random. There is a finite
target for the cash balance, which could be zero in
some cases. The firm wants to select a policy that
minimizes the expected total discounted cost for
being far away from the target during some time
horizon. This time horizon is usually infinity.
The firm has an incentive to keep the cash level
low, because each unit of positive cash leads to
a holding cost since cash has alternative uses
like dividends or investments in earning assets.
The firm has an incentive to keep the cash level
high, because penalty costs are generated as a
result of delays in meeting demands for cash.
The firm can increase its cash balance by raising
new capital or by selling some earnings assets,
and it can reduce its cash balance by paying
dividends or investing in earning assets. This
control of the cash balance generates fixed and
proportional transaction costs. Thus, there is a
cost when the cash balance is different from its
target, and there is also a cost for increasing
or reducing the cash reserve. The objective of
the manager is to minimize the expected total
discounted cost.

Hasbrouck (2007), Madhavan and Smidt
(1993), and Manaster and Mann (1996) study
inventories of stocks that are similar to the cash
management problem.

The Solution

The qualitative form of optimal policies of the
cash management problem in discrete time was
studied by Eppen and Fama (1968, 1969), Girgis
(1968), and Neave (1970). However, their solu-
tions were incomplete.

Many of the difficulties that they and other
researchers encountered in a discrete-time frame-
work disappeared when it was assumed that de-
cisions were made continuously in time and that
demand is generated by a Brownian motion with
drift. Vial (1972) formulated the cash manage-
ment problem in continuous time with fixed and
proportional transaction costs, linear holding and
penalty costs, and demand for cash generated
by a Brownian motion with drift. Under very

strong assumptions, Vial (1972) proved that if an
optimal policy exists, then it is of a simple form
.a; ˛; ˇ; b/.

This means that the cash balance should
be increased to level ˛ when it reaches
level a and should be reduced to level ˇ

when it reaches level b. Constantinides (1976)
assumed that an optimal policy exists and
it is of a simple form, and determined the
above levels and discussed the properties
of the optimal solution. Constantinides and
Richard (1978) proved the main assumptions of
Vial (1972) and therefore obtained rigorously
a solution for the cash management prob-
lem.

Constantinides and Richard (1978) applied
the theory of stochastic impulse control devel-
oped by Bensoussan and Lions (1973, 1975,
1982). He used a Brownian motion W to model
the uncertainty in the inventory. Formally, he
considered a probability space .�; F ; P / to-
gether with a filtration .Ft / generated by a one-
dimensional Brownian motionW . He considered
Xt W D inventory level at time t , and assumed
that X is an adapted stochastic process given
by

Xt D x �
Z t

0

�ds �
Z t

0

�dWs C
1X
iD1

If�i<tg�i :

Here,� > 0 is the drift of the demand and � >
0 is the volatility of the demand. Furthermore, �i
is the time of the i -th intervention and �i is the
intensity of the i -th intervention.

A stochastic impulse control is a pair

..�n/I .�n//
D .�0; �1; �2; : : : ; �n; : : : I �0; �1; �2; : : : ; �n; : : :/;

where

�0 D 0 < �1 < �2 < � � � < �n < � � �

is an increasing sequence of stopping times and
.�n/ is a sequence of random variables such that
each �n W � 7! R is measurable with respect
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to F�n . We assume �0 D 0. The management (the
controller) decides to act at time

X
�

C
i

D X�i C �i :

We note that �i and X can also take negative
values. The management wants to select the pair

..�n/I .�n//

that minimizes the functional J defined by

J.xI ..�n/I .�n/// W D E

�Z 1

0

e��tf .Xt /dt

C
1X
nD1

e���ng.�n/If�n<1g

#
;

where
f .x/ D max .hx; �px/

and

g.�/ D
8<
:
C C c� if � > 0
min .C;D/ if � D 0

D � d� if � < 0

Furthermore, � > 0;C; c;D; d 2 .0;1/,
and h; p 2 .0;1/. Here, f represents the run-
ning cost incurred by deviating from the aimed
cash level 0, C represents the fixed cost per
intervention when the management pushes the
cash level upwards, D represents the fixed cost
per intervention when the management pushes
the cash level downwards, c represents the pro-
portional cost per intervention when the manage-
ment pushes the cash level upwards, d represents
the proportional cost per intervention when the
management pushes the cash level downwards,
and � is the discount rate.

The results of Constantinides were comple-
mented, extended, or improved by Cadenillas
et al. (2010), Cadenillas and Zapatero (1999),
Feng and Muthuraman (2010), Harrison et al.
(1983), and Ormeci et al. (2008).
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Classical Frequency-Domain Design
Methods
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Abstract

The design of feedback control systems in indus-
try is probably accomplished using frequency-
response (FR) methods more often than any other.
Frequency-response design is popular primarily
because it provides good designs in the face of
uncertainty in the plant model (G.s/ in Fig. 1).
For example, for systems with poorly known
or changing high-frequency resonances, we can
temper the feedback design to alleviate the effects
of those uncertainties. Currently, this tempering is
carried out more easily using FR design than with
any other method. The method is most effective
for systems that are stable in open loop; however,
it can also be applied to systems with instabilities.
This section will introduce the reader to methods
of design (i.e., finding D.s/ in Fig. 1) using lead
and lag compensation. It will also cover the use
of FR design to reduce steady-state errors and
to improve robustness to uncertainties in high-
frequency dynamics.

Keywords

Amplitude stabilization; Bandwidth; Bode plot;
Crossover frequency; Frequency response; Gain;
Gain stabilization; Gain margin; Notch filter;
Phase; Phase margin; Stability

Introduction

Finding an appropriate compensation (D.s/ in
Fig. 1) using frequency response is probably the
easiest of all feedback control design methods.
Designs are achievable starting with the FR
plots of both magnitude and phase of G.s/ then
selecting D.s/ to achieve certain values of the

gain and/or phase margins and system bandwidth
or error characteristics. This section will cover
the design process for finding an appropriate
D.s/.

Design Specifications

As discussed in Section X, the gain margin
(GM) is the factor by which the gain can be
raised before instability results. The phase
margin (PM) is the amount by which the
phase of D. j!/G. j!/ exceeds �180ı when
jD.j!/G. j!/j D 1; the crossover frequency.
Performance requirements for control systems
are often partially specified in terms of PM and/or
GM. For example, a typical specification might
include the requirement that PM > 50ı and GM
> 5. It can be shown that the PM tends to
correlate well with the damping ratio, �; of the
closed-loop roots. In fact, it is shown in Franklin
et al. (2010), that

� Š PM

100

for many systems; however, the actual resulting
damping and/or response overshoot of the final
closed-loop system will need to be verified if they
are specified as well as the PM. A PM of 50ı
would tend to yield a � of 0.5 for the closed-loop
roots, which is a modestly damped system. The
GM does not generally correlate directly with the
damping ratio, but is a measure of the degree of
stability and is a useful secondary specification to
ensure stability.

Another design specification is the band-
width, which was defined in Section X. The
bandwidth is a direct measure of the frequency
at which the closed-loop system starts to fail in
following the input command. It is also a measure
of the speed of response of a closed-loop system.
Generally speaking, it correlates well with the
step response rise time of the system.

In some cases, the steady-state error must
be less than a certain amount. As discussed in
Franklin et al. (2010), the steady-state error is
a direct function of the low-frequency gain of
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Classical Frequency-Domain Design Methods, Fig. 1 Feedback system showing compensation, D.s/ (Source:
Franklin et al. (2010, p-249), Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ)

the FR magnitude plot. However, increasing the
low-frequency gain typically will raise the en-
tire magnitude plot upward, thus increasing the
magnitude 1 crossover frequency and, therefore,
increasing the speed of response and bandwidth
of the system.

Compensation Design

In some cases, the design of a feedback com-
pensation can be accomplished by using pro-
portional control only, i.e., setting D.s/ D K

(see Fig. 1) and selecting a suitable value for K .
This can be accomplished by plotting the mag-
nitude and phase of G.s/, looking at jG. j!/j
at the frequency where †G. j!/ D �180ı, and
then selecting K so that jKG. j!/j yields the
desired GM. Similarly, if a particular value of
PM is desired, one can find the frequency where
†G. j!/ D �180ı C the desired PM. The value
of jKG. j!/j at that frequency must equal 1;
therefore, the value of jG. j!/j must equal 1=K .
Note that the jKG. j!/j curve moves vertically
based on the value ofK; however the †KG. j!/
curve is not affected by the value of K . This
characteristic simplifies the design process.

In more typical cases, proportional feedback
alone is not sufficient. There is a need for a
certain damping (i.e., PM) and/or speed of re-
sponse (i.e., bandwidth) and there is no value of
K that will meet the specifications. Therefore,
some increased damping from the compensation
is required. Likewise, a certain steady-state error
requirement and its resulting low-frequency gain
will cause the jD. j!/G. j!/j to be greater than
desired for an acceptable PM, so more phase
lead is required from the compensation. This is

typically accomplished by lead compensation.
A phase increase (or lead) is accomplished by
placing a zero in D.s/. However, that alone
would cause an undesirable high-frequency gain
which would amplify noise; therefore, a first-
order pole is added in the denominator at frequen-
cies substantially higher than the zero break point
of the compensator. Thus, the phase lead still
occurs, but the amplification at high frequencies
is limited. The resulting lead compensation has a
transfer function of

D.s/ D K
T s C 1

˛T s C 1
; ˛ < 1; (1)

where 1=˛ is the ratio between the pole/zero
break-point frequencies. Figure 2 shows the fre-
quency response of this lead compensation. The
maximum amount of phase lead supplied is de-
pendent on the ratio of the pole to zero and is
shown in Fig. 3 as a function of that ratio.

For example, a lead compensator with a
zero at s D �2 .T D 0:5/ and a pole at
s D �10 .˛T D 0:1/ (and thus ˛ D 1

5
) would

yield the maximum phase lead of 	max D 40ı.
Note from the figure that we could increase the
phase lead almost up to 90ı using higher values
of the lead ratio, 1=˛; however, Fig. 2 shows that
increasing values of 1=˛ also produces higher
amplifications at higher frequencies. Thus, our
task is to select a value of 1=˛ that is a good
compromise between an acceptable PM and
acceptable noise sensitivity at high frequencies.
Usually the compromise suggests that a lead
compensation should contribute a maximum
of 70ı to the phase. If a greater phase lead is
needed, then a double-lead compensation would
be suggested, where
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Classical
Frequency-Domain
Design Methods, Fig. 2
Lead-compensation
frequency response with
1=˛ D 10; K D 1

(Source: Franklin et al.
(2010, p-349), Reprinted
by permission of Pearson
Education, Inc.)

D.s/ D K

�
T s C 1

˛T s C 1

�2
:

Even if a system had negligible amounts of
noise present, the pole must exist at some point
because of the impossibility of building a pure
differentiator. No physical system – mechanical
or electrical or digital – responds with infinite
amplitude at infinite frequencies, so there will be
a limit in the frequency range (or bandwidth) for
which derivative information (or phase lead) can
be provided.

As an example of designing a lead compen-
sator, let us design compensation for a DC motor
with the transfer function

G.s/ D 1

s.s C 1/
:

We wish to obtain a steady-state error of less than
0.1 for a unit-ramp input and we desire a system
bandwidth greater than 3 rad/sec. Furthermore,
we desire a PM of 45ı. To accomplish the error
requirement, Franklin et al. shows that

ess D lim
s!0

s

�
1

1CD.s/G.s/

�
R.s/; (2)

and if R.s/ D 1=s2 for a unit ramp, Eq. (2)
reduces to

ess D lim
s!0

�
1

s CD.s/Œ1=.s C 1/


�
D 1

D.0/
:

Therefore, we find that D.0/, the steady-state
gain of the compensation, cannot be less than 10
if it is to meet the error criterion, so we pick
K D 10. The frequency response of KG.s/ in
Fig. 4 shows that the PM D 20ı if no phase
lead is added by compensation. If it were pos-
sible to simply add phase without affecting the
magnitude, we would need an additional phase
of only 25ı at the KG.s/ crossover frequency
of ! D 3 rad/sec. However, maintaining the
same low-frequency gain and adding a compen-
sator zero will increase the crossover frequency;
hence, more than a 25ı phase contribution will
be required from the lead compensation. To be
safe, we will design the lead compensator so
that it supplies a maximum phase lead of 40ı.
Figure 3 shows that 1=˛ D 5 will accomplish
that goal. We will derive the greatest benefit from
the compensation if the maximum phase lead
from the compensator occurs at the crossover fre-
quency. With some trial and error, we determine
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Classical
Frequency-Domain
Design Methods, Fig. 3
Maximum phase increase
for lead compensation
(Source: Franklin et al.
(2010, p-350), Reprinted
by permission of Pearson
Education, Inc.)

Classical Frequency-Domain Design Methods, Fig. 4 Frequency response for lead-compensation design (Source:
Franklin et al. (2010, p-352), Reprinted by permission of Pearson Education, Inc.)
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that placing the zero at ! D 2 rad/sec and the
pole at ! D 10 rad/sec causes the maximum
phase lead to be at the crossover frequency. The
compensation, therefore, is

D.s/ D 10
s=2C 1

s=10C 1
:

The frequency-response characteristics of
L.s/ D D.s/G.s/ in Fig. 4 can be seen to yield
a PM of 53ı, which satisfies the PM and steady-
state error design goals. In addition, the crossover
frequency of 5 rad/sec will also yield a bandwidth
greater than 3 rad/sec, as desired.

Lag compensation is the same form as the
lead compensation in Eq. (1) except that ˛ > 1.
Therefore, the pole is at a lower frequency than
the zero and it produces higher gain at lower
frequencies. The compensation is used primar-
ily to reduce steady-state errors by raising the
low-frequency gain but without increasing the
crossover frequency and speed of response. This
can be accomplished by placing the pole and zero
of the lag compensation well below the crossover
frequency. Alternatively, lag compensation can
also be used to improve the PM by keeping the
low frequency gain the same, but reducing the
gain near crossover, thus reducing the crossover
frequency. That will usually improve the PM
since the phase of the uncompensated system
typically is higher at lower frequencies.

Systems being controlled often have high-
frequency dynamic phenomena, such as
mechanical resonances, that could have an
impact on the stability of a system. In very-
high-performance designs, these high-frequency
dynamics are included in the plant model,
and a compensator is designed with a specific
knowledge of those dynamics. However, a more
robust approach for designing with uncertain
high-frequency dynamics is to keep the high-
frequency gain low, just as we did for sensor-
noise reduction. The reason for this can be
seen from the gain–frequency relationship of
a typical system, shown in Fig. 5. The only
way instability can result from high-frequency
dynamics is if an unknown high-frequency
resonance causes the magnitude to rise above 1.

Classical Frequency-Domain Design Methods, Fig. 5
Effect of high-frequency plant uncertainty (Source:
Franklin et al. (2010, p-372), Reprinted by permission of
Pearson Education, Inc.)

Conversely, if all unknown high-frequency
phenomena are guaranteed to remain below a
magnitude of 1, stability can be guaranteed.
The likelihood of an unknown resonance in
the plant G rising above 1 can be reduced if
the nominal high-frequency loop gain .L/ is
lowered by the addition of extra poles in D.s/.
When the stability of a system with resonances
is assured by tailoring the high-frequency
magnitude never to exceed 1, we refer to this
process as amplitude or gain stabilization.
Of course, if the resonance characteristics are
known exactly and remain the same under all
conditions, a specially tailored compensation,
such as a notch filter at the resonant frequency,
can be used to tailor the phase for stability even
though the amplitude does exceed magnitude 1
as explained in Franklin et al. (2010). Design
of a notch filter is more easily carried out using
root locus or state-space design methods, all of
which are discussed in Franklin et al. (2010). This
method of stabilization is referred to as phase
stabilization. A drawback to phase stabilization
is that the resonance information is often not
available with adequate precision or varies with
time; therefore, the method is more susceptible
to errors in the plant model used in the design.
Thus, we see that sensitivity to plant uncertainty
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and sensor noise are both reduced by sufficiently
low gain at high-frequency.

Summary and Future Directions

Before the common use of computers in design,
frequency-response design was the only widely
used method. While it is still the most widely
used method for routine designs, complex sys-
tems and their design are being carried out using
a multitude of methods. This section introduces
just one of many possible methods.

Cross-References
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Abstract

Robust control theory has introduced several
new and challenging problems for researchers.
Some of these problems have been solved by

innovative approaches and led to the development
of new and efficient algorithms. However,
some of the other problems in robust control
theory had attracted significant amount of
research, but none of the proposed algorithms
were efficient, namely, had execution time
bounded by a polynomial of the “problem
size.” Several important problems in robust
control theory are either of decision type or
of computation/approximation type, and one
would like to have an algorithm which can be
used to answer all or most of the possible cases
and can be executed on a classical computer in
reasonable amount of time. There is a branch
of theoretical computer science, called theory
of computation, which can be used to study the
difficulty of problems in robust control theory.
In the following, classical computer system,
algorithm, efficient algorithm, unsolvability,
tractability, NP-hardness, and NP-completeness
will be introduced in a more rigorous fashion,
with applications to problems from robust control
theory.

Keywords

Approximation complexity; Computational com-
plexity; NP-complete; NP-hard; Unsolvability

Introduction

The term algorithm is used to refer to differ-
ent notions which are all somewhat consistent
with our intuitive understanding. This ambiguity
may sometimes generate significant confusion,
and therefore, a rigorous definition is of extreme
importance. One commonly accepted “intuitive”
definition is a set of rules that a person can per-
form with paper and pencil. However, there are
“algorithms” which involve random number gen-
eration, for example, finding a primitive root in
Zp (Knuth 1997). Based on this observation, one
may ask whether a random number generation-
based set of rules should be also considered
as an algorithm, provided that it will terminate
after finitely many steps for all instances of the

http://dx.doi.org/10.1007/978-1-4471-5058-9_236
http://dx.doi.org/10.1007/978-1-4471-5058-9_239
http://dx.doi.org/10.1007/978-1-4471-5058-9_238
http://dx.doi.org/10.1007/978-1-4471-5058-9_240
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problem or for a significant majority of the cases.
In a similar fashion, one may ask whether any
real number, including irrational ones which can-
not be represented on a digital computer with-
out an approximation error, should be allowed
as an input to an algorithm and, furthermore,
should all calculations be limited to algebraic
functions only or should exact calculation of non-
algebraic functions, e.g., trigonometric functions,
the gamma function, etc., be acceptable in an
algorithm. Although all of these seem acceptable
with respect to our intuitive understanding of the
algorithm, from a rigorous point of view, they
are different notions. In the context of robust
control theory, as well as many other engineer-
ing disciplines, there is a separate and widely
accepted definition of algorithm, which is based
on today’s digital computers, more precisely the
Turing machine (Turing 1936). Alan M. Turing
defined a “hypothetical computation machine”
to formally define the notions of algorithm and
computability. A Turing machine is, in principle,
quite similar to today’s digital computers widely
used in many engineering applications. The engi-
neering community seems to widely accept the
use of current digital computers and Turing’s
definitions of algorithm and computability.

However, depending on new scientific, engi-
neering, and technological developments, supe-
rior computation machines may be constructed.
For example, there is no guarantee that quantum
computing research will not lead to superior com-
putation machines (Chen et al. 2006; Kaye et al.
2007). In the future, the engineering community
may feel the need to revise formal definitions
of algorithm, computability, tractability, etc., if
such superior computation machines can be con-
structed and used for scientific/engineering appli-
cations.

Turing Machines and Unsolvability
Turing machine is basically a mathematical
model of a simplified computation device. The
original definition involves a tape-like device
for memory. For an easy-to-read introduction
to the Turing machine model, see Garey and
Johnson (1979) and Papadimitriou (1995), and
for more details, see Hopcroft et al. (2001),

Lewis and Papadimitriou (1998), and Sipser
(2006). Despite this being a quite simple
and low-performance “hardware” compared to
today’s engineering standards, the following
two observations justify their use in the study
of computational complexity of engineering
problems. Anything which can be solved on
today’s current digital computers can be solved
on a Turing machine. Furthermore, a polynomial-
time algorithm on today’s digital computers will
correspond to again a polynomial-time algorithm
on the original Turing machine, and vice versa.
A widely accepted definition for an algorithm
is a Turing machine with a program, which is
guaranteed to terminate after finitely many steps.

For some mathematical and engineering prob-
lems, it can be shown that there can be no algo-
rithm which can handle all possible cases. Such
problems are called unsolvable. The condition
“all cases” may be considered too tough, and
one may argue that such negative results have
only theoretical importance and have no practi-
cal implications. But such results do imply that
we should concentrate our efforts on alterna-
tive research directions, like the development of
algorithms only for cases which appear more
frequently in real scientific/engineering applica-
tions, without asking the algorithm to work for
the remaining cases as well.

Here is a famous unsolvable mathematical
problem: Hilbert’s tenth problem is basically
the development of an algorithm for testing
whether a Diophantine equation has an integer
solution. However, in 1970, Matijasevich
showed that there can be no such algorithm
(Matiyasevich 1993). Therefore, we say that
the problem of checking whether a Diophantine
equation has an integer solution is unsolvable.

Several unsolvability results for dynamical
systems can be proved by using the Post
correspondence problem (Davis 1985) and the
embedding of free semigroups into matrices.
For example, the problem of checking the
stability of saturated linear dynamical systems
is proved to be undecidable (Blondel et al. 2001),
meaning that no general stability test algorithm
can be developed for such systems. A similar
unsolvability result is reported in Blondel and
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Tsitsiklis (2000a) for boundedness of switching
systems of the type

x.k C 1/ D Af.k/x.k/;

where f is assumed to be an arbitrary and un-
known function from N into f0; 1g. A closely
related asymptotic stability problem is equivalent
to testing whether the joint spectral radius (JSR)
(Rota and Strang 1960) of a set of matrices is less
than one. For a quite long period of time, there
was a conjecture called the finiteness conjecture
(FC) (Lagarias and Wang 1995), which was gen-
erally believed or hoped to be true, at least for
a group of researchers. FC may be interpreted
as “For asymptotic stability of x.k C 1/ D
Af.k/x.k/ type switching systems, it is enough
to consider periodic switchings only.” There was
no known counterexample, and the truth of this
conjecture would imply existence of an algorithm
for the abovementioned JSR problem. However,
it was shown in Bousch and Mairesse (2002)
that FC is not true (see Blondel et al. (2003) for
a simplified proof). There are numerous known
computationally very valuable procedures related
to JSR approximation, for example, see Blon-
del and Nesterov (2005) and references therein.
However, the development of an algorithm to test
whether JSR is less than one remains as an open
problem.

For further results on unsolvability and un-
solved problems in robust control, see Blondel
et al. (1999), Blondel and Megretski (2004), and
references therein.

Tractability, NP-Hardness, and
NP-Completeness
The engineering community is interested in not
only solution algorithms but algorithms which
are fast even in the worst case and if not on the
average. Sometimes, this speed requirement may
be relaxed to being fast for most of the cases
and sometimes to only a significant percentage
of the cases. Currently, the theory of computa-
tion is developed around the idea of algorithms
which are polynomial time even in the worst case,
namely, execution time bounded by a polynomial
of the problem size (Garey and Johnson 1979;

Papadimitriou 1995). Such algorithms are also
called efficient, and associated problems are clas-
sified as tractable. The term problem size means
number of bits used in a suitable encoding of
the problem (Garey and Johnson 1979; Papadim-
itriou 1995).

One may argue that this worst-case approach
of being always polynomial time is a quite con-
servative requirement. In reality, a practicing en-
gineer may consider being polynomial time on
the average quite satisfactory for many appli-
cations. The same may be true for algorithms
which are polynomial time for most of the cases.
However, the existing computational complex-
ity theory is developed around this idea of be-
ing polynomial time even in the worst case.
Therefore, many of the computational complex-
ity results proved in the literature do not imply
the impossibility of algorithms which are nei-
ther polynomial time on the average nor poly-
nomial time for most of the cases. Note that
despite not being efficient, such algorithms may
be considered quite valuable by a practicing en-
gineer. Tractability and efficiency can be defined
in several different ways, but the abovementioned
polynomial-time solvability even in the worst-
case approach is widely adopted by the engineer-
ing community.

NP-hardness and NP-completeness are origi-
nally defined to express the inherent difficulty of
decision-type problems, not for approximation-
type problems. Although approximation com-
plexity is an important and active research area in
the theory of computation (Papadimitriou 1995),
most of the classical results are on decision-type
problems. Many robust control-related problems
can be formulated as “Check whether � < 1,”
which is a decision-type problem. Approximate
value of � may not be always good enough to
“solve” the problem, i.e., to decide about robust
stability. For certain other engineering applica-
tions for which approximate values of optimiza-
tion problems are good enough to “solve” the
problem, the complexity of a decision problem
may not be very relevant. For example, in a
minimum effort control problem, usually there
may be no point in computing the exact value of
the minimum, because good approximations will
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be just fine for most cases. However, for a robust
control problem, a result like � D 0:99 ˙ 0:02

may be not enough to decide about robust sta-
bility, although the approximation error is about
2 % only. Basically, both the conservativeness of
the current tractability definition and the differ-
ences between decision- and approximation-type
problems should be always kept in mind when
interpreting computational complexity results re-
ported here as well as in the literature.

In this subsection, and in the next one, we
will consider decision problems only. The class
P corresponds to decision problems which can
be solved by a Turing machine with a suitable
program in polynomial time (Garey and Johnson
1979). This is interpreted as decision problems
which have polynomial-time solution algorithms.
The definition of the class NP is more technical
and involves nondeterministic Turing machines
(Garey and Johnson 1979). It may be interpreted
as the class of decision problems for which the
truth of the problem can be verified in polynomial
time. It is currently unknown whether P and NP
are equal or not. This is a major open problem,
and the importance of it in the theory of computa-
tion is comparable to the importance of Riemann
hypothesis in number theory.

A problem is NP-complete if it is NP and
every NP problem polynomially reduces to it
(Garey and Johnson 1979). For an NP-complete
problem, being in P is equivalent to P D NP.
There are literally hundreds of such problems,
and it is generally argued that since after sev-
eral years of research nobody was able to de-
velop a polynomial-time algorithm for these NP-
complete problems, there is probably no such
algorithm, and most likely P ¤ NP. Although
current evidence is more toward P ¤ NP, this
does not constitute a formal proof, and the history
of mathematics and science is full of surprising
discoveries.

A problem (not necessarily NP) is called NP-
hard if and only if there is an NP-complete
problem which is polynomial time reducible to
it (Garey and Johnson 1979). Being NP-hard is
sometimes called being intractable and means
that unless P D NP, which is considered to
be very unlikely by a group of researchers, no

polynomial-time solution algorithm can be de-
veloped. All NP-complete problems are also NP-
hard, but they are only as “hard” as any other
problem in the set of NP-complete problems.

The first known NP-complete problem is
SATISFIABILITY (Cook 1971). In this problem,
there is a single Boolean equation with several
variables, and we would like to test whether
there is an assignment to these variables which
make the Boolean expression true. This important
discovery enabled proofs of NP-completeness
or NP-hardness of several other problems by
using simple polynomial reduction techniques
only (Garey and Johnson 1979). Among these,
quadratic programming is an important one and
led to the discovery of several other complexity
results in robust control theory. The quadratic
programming (QP) can be defined as

q D min
Ax�b x

TQx C cT x;

more precisely testing whether q < 1 or not
(decision version). When the matrixQ is positive
definite, convex optimization techniques can be
used; however, the general version of the problem
is NP-hard.

A related problem is linear programming (LP)

q D min
Ax�b c

T x;

which is used in certain robust control problems
(Dahleh and Diaz-Bobillo 1994) and has a quite
interesting status. Simplex method (Dantzig
1963) is a very popular computational technique
for LP and is known to have polynomial-time
complexity on the “average” (Smale 1983).
However, there are examples where the simplex
method requires exponentially growing number
of steps with the problem size (Klee and
Minty 1972). In 1979, Khachiyan proposed
the ellipsoid algorithm for LP, which was the
first known polynomial-time approximation
algorithm (Schrijver 1998). Because of the nature
of the problem, one can answer the decision
version of LP in polynomial time by using
the ellipsoid algorithm for approximation and
stopping when the error is below a certain level.
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But all of these results are for standard Turing
machines with input parameters restricted to
rational numbers. An interesting open problem is
whether LP admits a polynomial algorithm in the
real number model of computation.

Complexity of Certain Robust Control
Problems
There are several computational complexity re-
sults for robust control problems (see Blondel and
Tsitsiklis (2000b) for a more detailed survey).
Here we summarize some of the key results on
interval matrices and structured singular values.

Kharitonov theorem is about robust Hurwitz
stability of polynomials with coefficients
restricted to intervals (Kharitonov 1978). The
problem is known to have a surprisingly simple
solution; however, the matrix version of the
problem has a quite different nature. If we have a
matrix family

A D ˚
A 2 R

n�n W ˛i;j � Ai;j � ˇi;j ;

i; j D 1; : : : ; n
�
; (1)

where ˛i;j ; ˇi;j are given constants for i; j D
1; : : : ; n, then it is called an interval matrix. Such
matrices do occur in descriptions of uncertain
dynamical systems. The following two stability
problems about interval matrices are known to be
NP-hard:
Interval Matrix Problem 1 (IMP1): Decide

whether a given interval matrix, A, is robust
Hur- witz stable or not. Namely, check
whether all members of A are Hurwitz-stable
matrices, i.e., all eigenvalues are in open left
half plane.

Interval Matrix Problem 2 (IMP2): Decide
whether a given interval matrix, A, has a
Hurwitz-stable matrix or not. Namely, check
whether there exists at least one matrix in A
which is Hurwitz stable.
For a proof of NP-hardness of IMP1, see Pol-
jak and Rohn (1993) and Nemirovskii (1993),
and for a proof of IMP2, see Blondel and
Tsitsiklis (1997).
Another important problem is related to
structured singular values (SSV) and linear

fractional transformations (LFT), which
are mainly used to study systems which
have component-level uncertainties (Packard
and Doyle 1993). Basically, bounds on the
component-level uncertainties are given, and
we would like to check whether the system
is robustly stable or not. This is known to be
NP-hard.

Structured Singular Value Problem (SSVP):
Given a matrix M and uncertainty structure
�, check whether the structured singular value
��.M/ < 1:

This is proved to be NP-hard for real, and mixed,
uncertainty structures (Braatz et al. 1994), as well
as for complex uncertainties with no repetitions
(Toker and Ozbay 1996, 1998).

Approximation Complexity
Decision version of QP is NP-hard, but approx-
imation of QP is quite “difficult” as well. An
approximation is called a �-approximation if
the absolute value of the error is bounded by
� times the absolute value of max–min of the
function. The following is a classical result on
QP (Bellare and Rogaway 1995): Unless P D
NP, QP does not admit a polynomial-time �-
approximation algorithm even for � < 1=3.
This is sometimes informally stated as “QP is
NP-hard to approximate.” Much work is needed
toward similar results on robustness margin and
related optimization problems of the classical
robust control theory.

An interesting case is the complex structured
singular value computation with no repeated un-
certainties. There is a convex relaxation of the
problem, the standard upper bound �, which is
known to result in quite tight approximations for
most cases of the original problem (Packard and
Doyle 1993). However, despite strong numerical
evidence, a formal proof of “good approximation
for most cases” result is not available. We also do
not have much theoretical information about how
hard it is to approximate the complex structured
singular value. For example, it is not known
whether it admits a polynomial-time approxima-
tion algorithm with error bounded by, say, 5 %.
In summary, much work needs to be done in these
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directions for many other robust control problems
whose decision versions are NP-hard.

Summary and Future Directions

The study of the “Is P ¤ NP?” question turned
out to be a quite difficult one. Researchers agree
that really new and innovative tools are needed
to study this problem. On one other extreme, one
can question whether we can really say some-
thing about this problem within the Zermelo-
Fraenkel (ZF) set theory or will it have a status
similar to axiom of choice (AC) and the contin-
uum hypothesis (CH) where we can neither refute
nor provide a proof (Aaronson 1995). Therefore,
the question may be indeed much deeper than we
thought, and standard axioms of today’s mathe-
matics may not be enough to provide an answer.
As for any such problem, we can still hope that
in the future, new “self-evident” axioms may be
discovered, and with the help of them, we may
provide an answer.

All of the complexity results mentioned here
are with respect to the standard Turing machine
which is a simplified model of today’s digital
computers. Depending on the progress in science,
engineering, and technology, if superior compu-
tation machines can be constructed, then some
of the abovementioned problems can be solved
much faster on these devices, and current re-
sults/problems of the theory of computation may
no longer be of great importance or relevance for
engineering and scientific applications. In such a
case, one may also need to revise definitions of
the terms algorithm, tractable, etc., according to
these new devices.

Currently, there are several NP-hardness
results about robust control problems, mostly
NP-hardness of decision problems about
robustness. However, much work is needed on
the approximation complexity and conservatism
of various convex relaxations of these problems.
Even if a robust stability problem is NP-hard, a
polynomial-time algorithm to estimate robustness
margin with, say, 5 % error is not ruled out
with the NP-hardness of the decision version
of the problem. Indeed, a polynomial-time

and 5 % error-bounded result will be of great
importance for practicing engineers. Therefore,
such directions should also be studied, and
various meaningful alternatives, like being
polynomial time on the average or for most
of cases or anything which makes sense for a
practicing engineer, should be considered as an
alternative direction.

In summary, computational complexity the-
ory guides research on the development of algo-
rithms, indicating which directions are dead ends
and which directions are worth to investigate.

Cross-References

�Optimization Based Robust Control
�Robust Control in Gap Metric
�Robust Fault Diagnosis and Control
�Robustness Issues in Quantum Control
�Structured Singular Value and Applications:

Analyzing the Effect of Linear Time-Invariant
Uncertainty in Linear Systems

Bibliography

Aaronson S (1995) Is P versus NP formally independent?
Technical report 81, EATCS

Bellare M, Rogaway P (1995) The complexity of approx-
imating a nonlinear program. Math Program 69:429–
441

Blondel VD, Megretski A (2004) Unsolved problems in
mathematical systems and control theory. Princeton
University Press, Princeton

Blondel VD, Nesterov Y (2005) Computationally efficient
approximations of the joint spectral radius. SIAM J
Matrix Anal 27:256–272

Blondel VD, Tsitsiklis JN (1997) NP-hardness of some
linear control design problems. SIAM J Control Optim
35:2118–2127

Blondel VD, Tsitsiklis JN (2000a) The boundedness of
all products of a pair of matrices is undecidable. Syst
Control Lett 41:135–140

Blondel VD, Tsitsiklis JN (2000b) A survey of com-
putational complexity results in systems and control.
Automatica 36:1249–1274

Blondel VD, Sontag ED, Vidyasagar M, Willems JC
(1999) Open problems in mathematical systems and
control theory. Springer, London

Blondel VD, Bournez O, Koiran P, Tsitsiklis JN (2001)
The stability of saturated linear dynamical systems is
undecidable. J Comput Syst Sci 62:442–462

http://dx.doi.org/10.1007/978-1-4471-5058-9_159
http://dx.doi.org/10.1007/978-1-4471-5058-9_165
http://dx.doi.org/10.1007/978-1-4471-5058-9_158
http://dx.doi.org/10.1007/978-1-4471-5058-9_132
http://dx.doi.org/10.1007/978-1-4471-5058-9_163


122 Computer-Aided Control Systems Design: Introduction and Historical Overview

Blondel VD, Theys J, Vladimirov AA (2003) An ele-
mentary counterexample to the finiteness conjecture.
SIAM J Matrix Anal 24:963–970

Bousch T, Mairesse J (2002) Asymptotic height optimiza-
tion for topical IFS, Tetris heaps and the finiteness
conjecture. J Am Math Soc 15:77–111

Braatz R, Young P, Doyle J, Morari M (1994) Computa-
tional complexity of � calculation. IEEE Trans Autom
Control 39:1000–1002

Chen G, Church DA, Englert BG, Henkel C, Rohwedder
B, Scully MO, Zubairy MS (2006) Quantum comput-
ing devices. Chapman and Hall/CRC, Boca Raton

Cook S (1971) The complexity of theorem proving pro-
cedures. In: Proceedings of the third annual ACM
symposium on theory of computing, Shaker Heights,
pp 151–158

Dahleh MA, Diaz-Bobillo I (1994) Control of uncertain
systems. Prentice Hall, Englewood Cliffs

Dantzig G (1963) Linear programming and extensions.
Princeton University Press, Princeton

Davis M (1985) Computability and unsolvability. Dover
Garey MR, Johnson DS (1979) Computers and intractabil-

ity, a guide to the theory of NP-completeness. W. H.
Freeman, San Francisco

Hopcroft JE, Motwani R, Ullman JD (2001) Introduc-
tion to automata theory, languages, and computation.
Addison Wesley, Boston

Kaye P, Laflamme R, Mosca M (2007) An introduc-
tion to quantum computing. Oxford University Press,
Oxford

Kharitonov VL (1978) Asymptotic stability of an equi-
librium position of a family of systems of linear dif-
ferential equations. Differentsial’nye Uravneniya 14:
2086–2088

Klee V, Minty GJ (1972) How good is the simplex al-
gorithm? In: Inequalities III (proceedings of the third
symposium on inequalities), Los Angeles. Academic,
New York/London, pp 159–175

Knuth DE (1997) Art of computer programming, vol-
ume 2: seminumerical algorithms, 3rd edn. Addison-
Wesley, Reading

Lagarias JC, Wang Y (1995) The finiteness conjecture for
the generalized spectral radius of a set of matrices.
Linear Algebra Appl 214:17–42

Lewis HR, Papadimitriou CH (1998) Elements of the
theory of computation. Prentice Hall, Upper Saddle
River

Matiyasevich YV (1993) Quantum computing devices.
MIT

Nemirovskii A (1993) Several NP-hard problems arising
in robust stability analysis. Math Control Signals Syst
6:99–105

Packard A, Doyle J (1993) The complex structured singu-
lar value. Automatica 29:71–109

Papadimitriou CH (1995) Computational complexity.
Addison-Wesley/Longman, Reading

Poljak S, Rohn J (1993) Checking robust nonsingularity is
NP-hard. Math Control Signals Syst 6:1–9

Rota GC, Strang G (1960) A note on the joint spectral
radius. Proc Neth Acad 22:379–381

Schrijver A (1998) Theory of linear and integer program-
ming. Wiley, Chichester

Sipser M (2006) Introduction to the theory of computa-
tion. Thomson Course Technology, Boston

Smale S (1983) On the average number of steps in the
simplex method of linear programming. Math Program
27:241–262

Toker O, Ozbay H (1996) Complexity issues in robust
stability of linear delay differential systems. Math
Control Signals Syst 9:386–400

Toker O, Ozbay H (1998) On the NP-hardness of the
purely complex mu computation, analysis/synthesis,
and some related problems in multidimensional sys-
tems. IEEE Trans Autom Control 43:409–414

Turing AM (1936) On computable numbers, with an
application to the Entscheidungsproblem. Proc Lond
Math Soc 42:230–265

Computer-Aided Control Systems
Design: Introduction and Historical
Overview

Andreas Varga
Institute of System Dynamics and Control,
German Aerospace Center, DLR
Oberpfaffenhofen, Wessling, Germany

Synonyms

CACSD

Abstract

Computer-aided control system design (CACSD)
encompasses a broad range of Methods and
tools and technologies for system modelling,
control system synthesis and tuning, dynamic
system analysis and simulation, as well as
validation and verification. The domain of
CACSD enlarged progressively over decades
from simple collections of algorithms and
programs for control system analysis and
synthesis to comprehensive tool sets and user-
friendly environments supporting all aspects
of developing and deploying advanced control
systems in various application fields. This entry
gives a brief introduction to CACSD and reviews
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the evolution of key concepts and technologies
underlying the CACSD domain. Several
cornerstone achievements in developing reliable
numerical algorithms; implementing robust
numerical software; and developing sophisticated
integrated modelling, simulation, and design
environments are highlighted.

Keywords

CACSD; Modelling; Numerical analysis; Simu-
lation; Software tools

Introduction

To design a control system for a plant, a typical
computer-aided control system design (CACSD)
work flow comprises several interlaced activities.

Model building is often a necessary first step
consisting in developing suitable mathematical
models to accurately describe the plant dynami-
cal behavior. High-fidelity physical plant models
obtained, for example, by using the first prin-
ciples of modelling, primarily serve for anal-
ysis and validation purposes using appropriate
simulation techniques. These dynamic models
are usually defined by a set of ordinary differ-
ential equations (ODEs), differential algebraic
equation (DAEs), or partial differential equations
(PDEs). However, for control system synthesis
purposes simpler models are required, which are
derived by simplifying high-fidelity models (e.g.,
by linearization, discretization, or model reduc-
tion) or directly determined in a specific form
from input-output measurement data using sys-
tem identification techniques. Frequently used
synthesis models are continuous or discrete-time
linear time-invariant (LTI) models describing the
nominal behavior of the plant in a specific oper-
ating point. The more accurate linear parameter
varying (LPV) models may serve to account for
uncertainties due to various performed approxi-
mations, nonlinearities, or varying model param-
eters.

Simulation of dynamical systems is a closely
related activity to modelling and is concerned

with performing virtual experiments on a given
plant model to analyze and predict the dynamic
behavior of a physical plant. Often, modelling
and simulation are closely connected parts of
dedicated environments, where specific classes of
models can be built and appropriate simulation
methods can be employed. Simulation is also a
powerful tool for the validation of mathematical
models and their approximations. In the context
of CACSD, simulation is frequently used as a
control system tuning-aid, as, for example, in an
optimization-based tuning approach using time-
domain performance criteria.

System analysis and synthesis are concerned
with the investigation of properties of the un-
derlying synthesis model and in the determi-
nation of a control system which fulfills basic
requirements for the closed-loop controlled plant,
such as stability or various time or frequency re-
sponse requirements. The analysis also serves to
check existence conditions for the solvability of
synthesis problems, according to established de-
sign methodologies. An important synthesis goal
is the guarantee of the performance robustness.
To achieve this goal, robust control synthesis
methodologies often employ optimization-based
parameter tuning in conjunction with worst-case
analysis techniques. A rich collection of reliable
numerical algorithms are available to perform
such analysis and synthesis tasks. These algo-
rithms form the core of CACSD and their devel-
opment represented one of the main motivations
for CACSD-related research.

Performance robustness assessment of the
resulting closed-loop control system is a key
aspect of the verification and validation activ-
ity. For a reliable assessment, simulation-based
worst-case analysis represents, often, the only
way to prove the performance robustness of the
synthesized control system in the presence of
parametric uncertainties and variabilities.

Development of CACSD Tools

The development of CACSD tools for system
analysis and synthesis started around 1960,
immediately after general-purpose digital
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computers, and new programming languages
became available for research and development
purposes. In what follows, we give a historical
survey of these developments in the main
CACSD areas.

Modelling and Simulation Tools
Among the first developments were modelling
and simulation tools for continuous-time systems
described by differential equations based on ded-
icated simulation languages. Over 40 continuous-
system simulation languages had been developed
as of 1974 (Nilsen and Karplus 1974), which
evolved out of attempts at digitally emulating the
behavior of widely used analog computers before
1960. A notable development in this period was
the CSSL standard (Augustin et al. 1967), which
defined a system as an interconnection of blocks
corresponding to operators which emulated the
main analog simulation blocks and implied the
integration of the underlying ODEs using suitable
numerical methods. For many years, the ACSL
preprocessor to Fortran (Mitchel and Gauthier
1976) was one of the most successful implemen-
tations of the CSSL standard.

A turning point was the development of
graphical user interfaces allowing graphical
block diagram-based modelling. The most
important developments were SystemBuild (Shah
et al. 1985) and SIMULAB (later marketed as
Simulink) (Grace 1991). Both products used
a customizable set of block libraries and were
seamlessly integrated in, respectively, MATRIXx
and MATLAB, two powerful interactive
matrix computation environments (see below).
SystemBuild provided several advanced features
such as event management, code generation, and
DAE-based modelling and simulation. Simulink
excelled from the beginning with its intuitive,
easy-to-use user interface. Recent extensions of
Simulink allow the modelling and simulation of
hybrid systems, code generation for real-time
applications, and various enhancements of the
model building process (e.g., object-oriented
modelling).

The object-oriented paradigm for system mod-
elling was introduced with Dymola (Elmqvist
1978) to support physical system modelling

based on interconnections of subsystems. The
underlying modelling language served as the
basis of the first version of Modelica (Elmquist
et al. 1997), a modern equation-based modelling
language which was the result of a coordinated
effort for the unification and standardization of
expertise gained over many years with object-
oriented physical modelling. The latest devel-
opments in this area are comprehensive model
libraries for different application domains such
as mechanical, electrical, electronic, hydraulic,
thermal, control, and electric power systems.
Notable commercial front-ends for Modelica
are Dymola, MapleSim, and SystemModeler,
where the last two are tightly integrated in the
symbolic computation environments Maple and
Mathematica, respectively.

Numerical Software Tools
The computational tools for CACSD rely on
many numerical algorithms whose development
and implementation in computer codes was
the primary motivation of this research area
since its beginnings. The Automatic Synthesis
Program (ASP) developed in 1966 (Kalman and
Englar 1966) was implemented in FAP (Fortran
Assembly Program) and ran only on an IBM
7090–7094 machine. The Fortran II version of
ASP (known as FASP) can be considered to be
the first collection of computational CACSD
tools ported to several mainframe computers.
Interestingly, the linear algebra computations
were covered by only three routines (diagonal
decomposition, inversion, and pseudoinverse),
and no routines were used for eigenvalue or
polynomial roots computation. The main analysis
and synthesis functions covered the sampled-data
discretization (via matrix exponential), minimal
realization, time-varying Riccati equation solu-
tion for quadratic control, filtering, and stability
analysis. The FASP itself performed the required
computational sequences by interpreting simple
commands with parameters. The extensive docu-
mentation containing a detailed description of
algorithmic approaches and many examples
marked the starting point of an intensive
research on algorithms and numerical software,
which culminated in the development of the
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high-performance control and systems library
SLICOT (Benner et al. 1999; Huffel et al.
2004). In what follows, we highlight the main
achievements along this development process.

The direct successor of FASP is the Variable
Dimension Automatic Synthesis Program
(VASP) (implemented in Fortran IV on IBM
360) (White and Lee 1971), while a further
development was ORACLS (Armstrong 1978),
which included several routines from the
newly developed eigenvalue package EISPACK
(Garbow et al. 1977; Smith et al. 1976) as
well as solvers for linear (Lyapunov, Sylvester)
and quadratic (Riccati) matrix equations.
From this point, the mainstream development
of numerical algorithms for linear system
analysis and synthesis closely followed the
development of algorithms and software for
numerical linear algebra. A common feature of all
subsequent developments was the extensive use
of robust linear algebra software with the Basic
Linear Algebra Subprograms (BLAS) (Lawson
et al. 1979) and the Linear Algebra Package
(LINPACK) for solving linear systems (Dongarra
et al. 1979). Several control libraries have been
developed almost simultaneously, relying on the
robust numerical linear algebra core software
formed of BLAS, LINPACK, and EISPACK.
Notable examples are RASP (based partly on
VASP and ORACLS) (Grübel 1983) – developed
originally by the University of Bochum and later
by the German Aerospace Center (DLR); BIMAS
(Varga and Sima 1985) and BIMASC (Varga and
Davidoviciu 1986) – two Romanian initiatives;
and SLICOT (Boom et al. 1991) – a Benelux
initiative of several universities jointly with the
Numerical Algorithm Group (NAG).

The last development phase was marked
by the availability of the Linear Algebra
Package (LAPACK) (Anderson et al. 1992),
whose declared goal was to make the widely
used EISPACK and LINPACK libraries run
efficiently on shared memory vector and parallel
processors. To minimize the development efforts,
several active research teams from Europe
started, in the framework of the NICONET
project, a concentrated effort to develop a
high-performance numerical software library

for CACSD as a new significantly extended
version of the original SLICOT. The goals
of the new library were to cover the main
computational needs of CACSD, by relying
exclusively on LAPACK and BLAS, and to
guarantee similar numerical performance as
that of the LAPACK routines. The software
development used rigorous standards for
implementation in Fortran 77, modularization,
testing, and documentation (similar to that used
in LAPACK). The development of the latest
versions of RASP and SLICOT eliminated
practically any duplication of efforts and led to
a library which contained the best software from
RASP, SLICOT, BIMAS, and BIMASC. The
current version of SLICOT is fully maintained by
the NICONET association (http://www.niconet-
ev.info/en/) and serves as basis for implementing
advanced computational functions for CACSD in
interactive environments as MATLAB (http://
www.mathworks.com), Maple (http://www.
maplesoft.com/products/maple/), Scilab (http://
www.scilab.org/) and Octave (http://www.gnu.
org/software/octave/).

Interactive Tools
Early experiments during 1970–1985 included
the development of several interactive CACSD
tools employing menu-driven interaction,
question-answer dialogues, or command
languages. The April 1982 special issue of IEEE
Control Systems Magazine was dedicated to
CACSD environments and presented software
summaries of 20 interactive CACSD packages.
This development period was marked by the
establishment of new standards for programming
languages (Fortran 77, C), availability of high-
quality numerical software libraries (BLAS,
EISPACK, LINPACK, ODEPACK), transition
from mainframe computers to minicomputers,
and finally to the nowadays-ubiquitous personal
computers as computing platforms, spectacular
developments in graphical display technolo-
gies, and application of sound programming
paradigms (e.g., strong data typing).

A remarkable event in this period was the
development of MATLAB, a command language-
based interactive matrix laboratory (Moler 1980).

http://www.niconet-ev.info/en/
http://www.niconet-ev.info/en/
http://www.mathworks.com
http://www.mathworks.com
http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.scilab.org/
http://www.scilab.org/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
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The original version of MATLAB was written
in Fortran 77. It was primarily intended as a
student teaching tool and provided interactive
access to selected subroutines from LINPACK
and EISPACK. The tool circulated for a while
in the public domain, and its high flexibility
was soon recognized. Several CACSD-oriented
commercial clones have been implemented in
the C language, the most important among them
being MATRIXx (Walker et al. 1982) and PC-
MATLAB (Moler et al. 1985).

The period after 1985 until around 2000 can
be seen as a consolidation and expansion period
for many commercial and noncommercial tools.
In an inventory of CACSD-related software
issued by the Benelux Working Group on
Software (WGS) under the auspices of the
IEEE Control Systems Society, there were in
1992 in active development 70 stand-alone
CACSD packages, 21 tools based on or similar
to MATLAB, and 27 modelling/simulation
environments. It is interesting to look more
closely at the evolutions of the two main
players MATRIXx and MATLAB, which
took place under harshly competitive condi-
tions.

MATRIXx with its main components Xmath,
SystemBuild, and AutoCode had over many
years a leading role (especially among industrial
customers), excelling with a rich functionality
in domains such as system identification,
control system synthesis, model reduction,
modelling, simulation, and code generation.
After 2003, MATRIXx (http://www.ni.com/
matrixx/) became a product of the National
Instruments Corporation and complements
its main product family LabView, a visual
programming language-based system design
platform and development environment (http://
www.ni.com/labview).

MATLAB gained broad academic acceptance
by integrating many new methodological devel-
opments in the control field into several control-
related toolboxes. MATLAB also evolved as a
powerful programming language, which allows
easy object-oriented manipulation of different
system descriptions via operator overloading.
At present, the CACSD tools of MATLAB and

Simulink represent the industrial and academic
standard for CACSD. The existing CACSD
tools are constantly extended and enriched
with new model classes, new computational
algorithms (e.g., structure-exploiting eigenvalue
computations based on SLICOT), dedicated
graphical user interfaces (e.g., tuning of PID
controllers or control-related visualizations),
advanced robust control system synthesis, etc.
Also, many third-party toolboxes contribute to
the wide usage of this tool.

Basic CACSD functionality incorporating
symbolic processing techniques and higher
precision computations is available in the Maple
product MapleSim Control Design Toolbox as
well as in the Mathematica Control Systems
product. Free alternatives to MATLAB are the
MATLAB-like environments Scilab, a French
initiative pioneered by INRIA, and Octave, which
has recently added some CACSD functionality.

Summary and Future Directions

The development and maintenance of integrated
CACSD environments, which provide support
for all aspects of the CACSD cycle such as mod-
elling, design, and simulation, involve sustained,
strongly interdisciplinary efforts. Therefore, the
CACSD tool development activities must rely
on the expertise of many professionals covering
such diverse fields as control system engineering,
programming languages and techniques, man-
machine interaction, numerical methods in linear
algebra and control, optimization, computer
visualization, and model building techniques.
This may explain why currently only a few of
the commercial developments of prior years are
still in use and actively maintained/developed.
Unfortunately, the number of actively developed
noncommercial alternative products is even
lower. The dominance of MATLAB, as a
de facto standard for both industrial and
academic usage of integrated tools covering
all aspects of the broader area of computer-
aided control engineering (CACE), cannot be
overseen.

http://www.ni.com/matrixx/
http://www.ni.com/matrixx/
http://www.ni.com/labview
http://www.ni.com/labview
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The new trends in CACSD are partly
related to handling more complex applications,
involving time-varying (e.g., periodic, multi-
rate sampled-data, and differential algebraic)
linear dynamic systems, nonlinear systems with
many parametric uncertainties, and large-scale
models (e.g., originating from the discretization
of PDEs). To address many computational
aspects of model building (e.g., model reduction
of large order systems), optimization-based
robust controller tuning using multiple-model
approaches, or optimization-based robustness
assessment using global-optimization techniques,
parallel computation techniques allow substantial
savings in computational times and facilitate
addressing computational problems for large-
scale systems. A topic which needs further
research is the exploitation of the benefits of
combining numerical and symbolic computations
(e.g., in model building and manipulation).

Cross-References

� Interactive Environments and Software Tools
for CACSD

�Model Building for Control System Synthesis
�Model Order Reduction: Techniques and Tools
�Multi-domain Modeling and Simulation
�Optimization-Based Control Design Tech-

niques and Tools
�Robust Synthesis and Robustness Analysis

Techniques and Tools
�Validation and Verification Techniques and

Tools

Recommended Reading

The historical development of CACSD concepts
and techniques was the subject of several ar-
ticles in reference works Rimvall and Jobling
(1995) and Schmid (2002). A selection of papers
on numerical algorithms underlying the develop-
ment of CACSD appeared in Patel et al. (1994).
The special issue No. 2/2004 of the IEEE Con-
trol Systems Magazine on Numerical Awareness
in Control presents several surveys on different

aspects of developing numerical algorithms and
software for CACSD.

The main trends over the last three decades
in CACSD-related research can be followed in
the programs/proceedings of the biannual IEEE
Symposia on CACSD from 1981 to 2013 (partly
available at http://ieeexplore.ieee.org) as well as
of the triennial IFAC Symposia on CACSD from
1979 to 2000. Additional information can be
found in several CACSD-focused survey articles
and special issues (e.g., No. 4/1982; No. 2/2000)
of the IEEE Control Systems Magazine.
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Consensus of Complex Multi-agent
Systems
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Abstract

This entry provides a broad overview of the basic
elements of consensus dynamics. It describes the
classical Perron-Frobenius theorem that provides
the main theoretical tool to study the convergence
properties of such systems. Classes of consensus
models that are treated include simple random
walks on grid-like graphs and in graphs with a
bottleneck, consensus on graphs with intermit-
tently randomly appearing edges between nodes
(gossip models), and models with nodes that
do not modify their state over time (stubborn
agent models). Application to cooperative con-
trol, sensor networks, and socioeconomic models
are mentioned.

Keywords
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Spectral gap; Stubborn agents

Multi-agent Systems and Consensus

Multi-agent systems constitute one of the fun-
damental paradigms of science and technology
of the present century (Castellano et al. 2009;
Strogatz 2003). The main idea is that of creating
complex dynamical evolutions from the interac-
tions of many simple units. Indeed such collective
behaviors are quite evident in biological and
social systems and were indeed considered in
earlier times. More recently, the digital revolu-
tion and the miniaturization in electronics have
made possible the creation of man-made com-
plex architectures of interconnected simple de-
vices (computers, sensors, cameras). Moreover,
the creation of the Internet has opened a totally
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new form of social and economic aggregation.
This has strongly pushed towards a systematic
and deep study of multi-agent dynamical sys-
tems. Mathematically they typically consist of a
graph where each node possesses a state vari-
able; states are coupled at the dynamical level
through dependences determined by the edges
in the graph. One of the challenging problems
in the field of multi-agent systems is to analyze
the emergence of complex collective phenom-
ena from the interactions of the units which are
typically quite simple. Complexity is typically
the outcome of the topology and the nature of
interconnections.

Consensus dynamics (also known as average
dynamics) (Carli et al. 2008; Jadbabaie et al.
2003) is one of the most popular and simplest
multi-agent dynamics. One convenient way
to introduce it is with the language of social
sciences. Imagine that a number of independent
units possess an information represented by a real
number, for instance, such number can represent
an opinion on a given fact. Units interact and
change their opinion by averaging with the opin-
ions of other units. Under certain assumptions,
this will lead the all community to converge to a
consensus opinion which takes into consideration
all the initial opinion of the agents. In social
sciences, empiric evidences (Galton 1907) have
shown how such aggregate opinion may give a
very good estimation of unknown quantities: such
phenomenon has been proposed in the literature
as wisdom of crowds (Surowiecki 2004).

Consensus Dynamics, Graphs, and
Stochastic Matrices
Mathematically, consensus dynamics are special
linear dynamical systems of type

x.t C 1/ D Px.t/ (1)

where x.t/ 2 R
V and P 2 R

V�V is a stochastic
matrix (e.g., a matrix with nonnegative elements
such that every row sums to 1). V represents the
finite set of units (agents) in the network and
x.t/v is to be interpreted has the state (opin-
ion) of agent v at time t . Equation (1) implies
that states of agents at time t C 1 are convex

combinations of the components of x.t/: this mo-
tivates the term averaging dynamics. Stochastic
matrices owe their name to their use in prob-
ability: the term Pvw can be interpreted as the
probability of making a jump in the graph from
state v to state w. In this way you construct what
is called a random walk on the graph G.

The network structure is hidden in the nonzero
pattern of P . Indeed we can associate to P a
graph: GP D .V ; EP / where the set of edges is
given by EP WD f.u; v/ 2 V � V j Puv > 0g.
Elements in EP represent the communication
edges among the units: if .u; v/ 2 EP , it means
that unit u has access to the state of unit v. Denote
by 1 2 R

V the all 1’s vector. Notice thatP1 D 1:
this shows that once the states of units are at
consensus, they will no longer evolve. Will the
dynamics always converge to a consensus point?

Remarkably, some of the key properties of
P responsible for the transient and asymptotic
behavior of the linear system (1) are determined
by the connectivity properties of the underlying
graph GP . We recall that, given two vertices
u; v 2 V , a path (of length l) from u to v in GP is
any sequence of vertices u D u1; u2; : : : ; ulC1 D
v such that .ui ; uiC1/ 2 EP for every i D
1; : : : ; s. GP is said to be strongly connected if
for any pair of vertices u ¤ v in V there is a
path in GP connecting u to v. The period of a
node u is defined as the greatest common divisor
of the lengths of all closed paths from u to u. In
the strongly connected graph, all nodes have the
same period, and the graph is called aperiodic if
such a period is 1. If x is a vector, we will use
the notation x� to denote its transpose. If A is
a finite set, jAj denotes the number of elements
in A. The following classical result holds true
(Gantmacher 1959):

Theorem 1 (Perron-Frobenius) Assume that
P 2 R

V�V is such that GP is strongly connected
and aperiodic. Then,
1. 1 is an algebraically simple eigenvalue of P .
2. There exists a (unique) probability vector � 2

R
V (�v > 0 for all v and

P
v �v D 1) which is

a left eigenvector for P , namely, ��P D ��.
3. All the remaining eigenvalues of P are of

modulus strictly less than 1.
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A straightforward linear algebra consequence
of this result is that P t ! 1�� for t ! C1.
This yields

lim
t!C1 x.t/ D lim

t!C1P tx.0/ D 1.��x.0//
(2)

All agents’ state are thus converging to the
common value ��x.0/, called consensus point
which is a convex combination of the initial states
with weights given by the invariant probability
components.

If � is the uniform vector (i.e., �v D jV j�1
for all units v), the common asymptotic value is
simply the arithmetic mean of the initial states:
all agents equally contribute to the final com-
mon state. A special case when this happens
is when P is symmetric. The distributed com-
putation of the arithmetic mean is an impor-
tant step to solve estimation problems for sensor
networks. As a specific example, consider the
situation where there are N sensors deployed
in a certain area and each of them makes a
noisy measurement of a physical quantity x. Let
yv D x C !v be the measure obtained by
sensor v, where !v is a zero mean Gaussian
noise. It is well known that if noises are inde-
pendent and identically distributed, the optimal
mean square estimator of the quantity x given the
entire set of measurements fyvg is exactly given
by Ox D N�1P

v yv . Other fields of application
is in the control of cooperative autonomous ve-
hicles (Fax and Murray 2004; Jadbabaie et al.
2003).

Basic linear algebra allows to study the
rate of convergence to consensus. Indeed,
if GP is strongly connected and aperiodic,
the matrix P has all its eigenvalues in the
unit ball: 1 is the only eigenvalue with
modulo equal to 1, while all the others have
modulo strictly less than one. If we denote
by 2 < 1 the largest modulo of such
eigenvalues (different from 1), we can show
that x.t/ � 1.��x.0// converges exponentially
to 0 as t2. In the following, we will briefly
refer to 2 as to the second eigenvalue
of P .

Examples and Large-Scale Analysis

In this section, we present some classical exam-
ples. Consider a strongly connected graph G D
.V ; E/. The adjacency matrix of G is a square
matrix AG 2 f0; 1gV�V such that .AG/uv D 1

iff .u; v/ 2 E . G is said to be symmetric if AG is
symmetric. Given a symmetric graph G D .V ; E/,
we can consider the stochastic matrix P given
by Puv D d�1

u .AG/uv where du D P
v.AG/uv

is the degree of node u. P is called the simple
random walk (SRW) on G: each agent gives the
same weight to the state of its neighbors. Clearly,
GP D G. A simple check shows that �v D dv=jE j
is the invariant probability for P . The consensus
point is given by

��x.0/ D jE j�1
X
v

dvx.0/v

Each node contributes with its initial state to this
consensus with a weight which is proportional to
the degree of the node. Notice that the SRW P

is symmetric iff the graph is regular, namely, all
units have the same degree.

We now present a number of classical ex-
amples based on families of graphs with larger
and larger number of nodes N . In this setting,
particularly relevant is to understand the behavior
of the second eigenvalue 2 as a function of
N . Typically, one considers � > 0 fixed and
solves the equation t2 D �. The solution � D
.ln �1

2 /
�1 ln ��1 will be called the convergence

time: it essentially represents the time needed to
shrink of a factor � the distance to consensus.
Dependence of 2 on N will also yield that �
will be a function of N . In the sequel, we will
investigate such dependence for SRW’s on certain
classical families of graphs.

Example 1 (SRW on a complete graph) Consider
the complete graph on the set V : KV WD
.V ;V� V / (also self loops are present). The SRW
on KV is simply given by P D N�111� where
N D jV j. Clearly, � D N�11. Eigenvalues of P
are 1 with multiplicity 1 and 0 with multiplicity
N � 1. Therefore, 2 D 0. Consensus in this case
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is achieved in just one step: x.t/ D N�111�x.0/
for all t � 1.

Example 2 (SRW on a cycle graph) Consider the
symmetric cycle graph CN D .V ; E/ where V D
f0; : : : ; N � 1g and E D f.v; v C 1/; .v C 1; v/g
where sum is modN . The graph CN is clearly
strongly connected and is also aperiodic if N is
odd. The corresponding SRW P has eigenvalues

�k D cos
2�k

N

Therefore, if N is odd, the second eigenvalue is
given by

2 D cos
2�

N
D 1 � 2�2

1

N 2
C o.N�2/

for N ! C1
(3)

while the corresponding convergence time is
given by

� D .ln �1
2 /

�1 ln ��1 � N2 for N ! C1

Example 3 (SRW on toroidal grids) The toroidal
d -grids Cd

n is formally obtained as a product
of cycle graphs. The number of nodes is N D
nd . It can be shown that the convergence time
behaves as

� � N2=d for N ! C1

Convergence time exhibits a slower growth in N
as the dimension d of the grid increases: this is
intuitive since the increase in d determines a bet-
ter connectivity of the graph and a consequently
faster diffusion of information.

For a general stochastic matrix (even for SRW
on general graphs), the computation of the second
eigenvalue is not possible in closed form and can
actually be also difficult from a numerical point
of view. It is therefore important to develop tools
for efficient estimation. One of these is based
on the concept of bottleneck: if a graph can be
splitted into two loosely connected parts, then

consensus dynamics will necessarily exhibit a
slow convergence.

Formally, given a symmetric graph G D
.V ; E/ and a subset of nodes S � V , define
eS as the number of edges with at least one node
in S and eSS as the number of edges with both
nodes in S . The bottleneck of S in G is defined
as ˆ.S/ D eSS=eS . Finally, the bottleneck ratio
of G is defined as

ˆ� WD min
S WeS=e�1=2

ˆ.S/

where e D jE j is the number of edges in the
graph.

LetP be the SRW on G and let 2 be its second
eigenvalue. Then,

Proposition 1 (Cheeger bound Levin et al.
2008)

1 � 2 � 2ˆ�: (4)

Example 4 (Graphs with a bottleneck) Consider
two complete graphs with n nodes connected by
just one edge. If S is the set of nodes of one of
the two complete graphs, we obtain

ˆ.S/ D 1

n2 C 1

Bound (4) implies that the convergence time is at
least of the order of n2 in spite of the fact that
in each complete graph convergence would be in
finite time!

Other Models

The systems studied so far are based on the
assumptions that units all behave the same, and
they share a common clock and update their state
in a synchronous fashion. In this section, we
discuss more general models.

Random Consensus Models
Regarding the assumption of synchronicity, it
turns out to be unfeasible in many contexts. For
instance, in the opinion dynamics modeling, it
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is not realistic to assume that all interactions
happen at the same time: agents are embedded in
a physical continuous time, and interactions can
be imagined to take place at random, for instance,
in a pairwise fashion.

One of the most famous random consensus
model is the gossip model. Fix a real number
q 2 .0; 1/ and a symmetric graph G D .V ; E/.
At every time instant t , an edge .u; v/ 2 E
is activated with uniform probability jE j�1, and
nodes u and v exchange their states and produce
a new state according to the equations

xu.t C 1/ D .1 � q/xu.t/C qxv.t/

xv.t C 1/ D qxu.t/C .1 � q/xv.t/

The states of the other units remain unchanged.
Will this dynamics lead to a consensus? If

the same edge is activated at every time instant,
clearly consensus will not be achieved. However,
it can be shown that, with probability one, con-
sensus will be reached (Boyd et al. 2006).

Consensus Dynamics with Stubborn
Agents
In this entry, we investigate consensus dynamics
models where some of the agents do not modify
their own state (stubborn agents). These systems
are of interest in socioeconomic models (Ace-
moglu et al. 2013).

Consider a symmetric connected graph G D
.V ; E/. We assume a splitting V D S [ R with
the understanding that agents in S are stubborn
agents not changing their state, while those in
R are regular agents whose state modifies in
time according to a SRW consensus dynamics,
namely,

xu.t C 1/ D 1

du

X
v2V

.AG/uvxv.t/ ; 8u 2 R

By assembling the state of the regular and of the
stubborn agents in vectors denoted, respectively,
as xR.t/ and xS.t/, dynamics can be recasted in
matrix form as

xR.t C 1/ D Q11xR.t/CQ12xS.t/
xS.t C 1/ D xS.t/

(5)

It can be proven that Q11 is asymptotically stable
(.Q11/t ! 0). Henceforth, xR.t/ ! xR.1/ for
t ! C1 with the limit opinions satisfying the
relation

xR.1/ D Q11xR.1/CQ12xS.0/ (6)

If we define„ WD .I �Q11/�1Q12, we can write
xR.1/ D „xS.0/. It is easy to see that „ has
nonnegative elements and that

P
s „us D 1 for

all u 2 R: asymptotic opinions of regular agents
are thus convex combinations of the opinions
of stubborn agents. If all stubborn agents are
in the same state x, then, consensus is reached
by all agents in the point x. However, typically,
consensus is not reached in such a system: we
will discuss an example below.

There is a useful alternative interpretation
of the asymptotic opinions. Interpreting the
graph G as an electrical circuit where edges
are unit resistors, relation (6) can be seen as
a Laplace-type equation on the graph G with
boundary conditions given by assigning the
voltage xS.0/ to the stubborn agents. In this
way, xR.1/ can be interpreted as the vector of
voltages of the regular agents when stubborn
agents have fixed voltage xS.0/. Thanks to
the electrical analogy, we can compute the
asymptotic opinion of the agents by computing
the voltages in the various nodes in the graph. We
propose a concrete application in the following
example.

Example 5 (Stubborn agents in a line graph)
Consider the line graph LN D .V ; E/ where
V D f1; 2; : : : ; N g and where E D f.u; u C
1/; .u C 1; u/ j u D 1; : : : ; N � 1g. Assume that
S D f1;N g and R D V n S. Consider the graph
as an electrical circuit. Replacing the line with a
single edge connecting 1 andN having resistance
N � 1 and applying Ohm’s law, we obtain that
the current flowing from 1 to N is equal to
ˆ D .N � 1/�1ŒxSN .0/ � xS1 .0/
. If we now fix
an arbitrary node v 2 V and applying again the
same arguments in the part of graph from 1 to v,
we obtain that the voltage at v, xRv .1/ satisfies
the relation xRv .1/ � xS1 .0/ D ˆ.v � 1/. We
thus obtain
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xRv .1/ D xS1 .0/C v � 1

N � 1 Œx
S
N .0/� xS1 .0/
 :

In Acemoglu et al. (2013), further examples
are discussed showing how, because of the
topology of the graph, different asymptotic
configurations may show up. While in graphs
presenting bottlenecks polarization phenomena
can be recorded, in graphs where the con-
vergence rate is low, there will be a typical
asymptotic opinion shared by most of the regular
agents.
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Control and Optimization of Batch
Processes
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Abstract

A batch process is characterized by the
repetition of time-varying operations of finite
duration. Due to the repetition, there are two
independent “time” variables, namely, the run
time during a batch and the batch counter.
Accordingly, the control and optimization
objectives can be defined for a given batch
or over several batches. This entry describes
the various control and optimization strategies
available for the operation of batch processes.
These include conventional feedback control,
predictive control, iterative learning control, and
run-to-run control on the one hand and model-
based repeated optimization and model-free self-
optimizing schemes on the other.

Keywords

Batch control; Batch process optimization; Dy-
namic optimization; Iterative learning control;
Run-to-run control; Run-to-run optimization

Introduction

Batch processing is widely used in the manu-
facturing of goods and commodity products, in
particular in the chemical, pharmaceutical, and
food industries. These industries account for sev-
eral billion US dollars in annual sales. Batch
operation differs significantly from continuous
operation. While in continuous operation the pro-
cess is maintained at an economically desirable
operating point, the process evolves continuously
from an initial to a final time in batch processing.
In the chemical industry, for example, since the
design of a continuous plant requires substantial
engineering effort, continuous operation is rarely

http://dx.doi.org/10.1007/978-1-4471-5058-9_214
http://dx.doi.org/10.1007/978-1-4471-5058-9_153


134 Control and Optimization of Batch Processes

Run-end references
zref

Run-time references
yref(t) or yref[0,tf]

Control objectives

Feedback control1

uk(t) → yk(t) → yk[0,tf ]

Iterative learning control3

uk [0,tf ]  →  yk[0,tf ]

Predictive control2

Run-to-run control4

Online
(within-run)

Iterative
(run-to-run)

Implementation
aspect

uk(t) → zpred,k(t)

FBC MPC

R2R with run delayILC with run delay

(πk) = uk [0,tf ] → zk

Control and Optimization of Batch Processes, Fig. 1
Control strategies for batch processes. The strategies are
classified according to the control objectives (horizontal
division) and the implementation aspect (vertical divi-
sion). Each objective can be met either online or iteratively
over several batches depending on the type of measure-
ments available. uk represents the input vector for the

kth batch, ukŒ0; tf 
 the corresponding input trajectories,
yk.t/ the run-time outputs measured online, and zk the
run-end outputs available at the final time. FBC stands for
“feedback control,” MPC for “model predictive control,”
ILC for “iterative learning control,” and R2R for “run-to-
run control”

used for low-volume production. Discontinuous
operations can be of the batch or semi-batch type.
In batch operations, the products to be processed
are loaded in a vessel and processed without ma-
terial addition or removal. This operation permits
more flexibility than continuous operation by
allowing adjustment of the operating conditions
and the final time. Additional flexibility is avail-
able in semi-batch operations, where products are
continuously added by adjusting the feed rate
profile. We use the term batch process to include
semi-batch processes.

Batch processes dealing with reaction
and separation operations include reaction,
distillation, absorption, extraction, adsorption,
chromatography, crystallization, drying, fil-
tration, and centrifugation. The operation of
batch processes involves recipes developed in
the laboratory. A sequence of operations is
performed in a prespecified order in specialized
process equipment, yielding a fixed amount
of product. The sequence of tasks to be
carried out on each piece of equipment,
such as heating, cooling, reaction, distillation,
crystallization, and drying, is predefined. The
desired production volume is then achieved by

repeating the processing steps on a predetermined
schedule.

The main characteristics of batch process op-
erations include the absence of steady state, the
presence of constraints, and the repetitive nature.
These characteristics bring both challenges and
opportunities to the operation of batch processes
(Bonvin 1998). The challenges are related to the
fact that the available models are often poor and
incomplete, especially since they need to repre-
sent a wider range of operating conditions than
in the case of continuous processes. Furthermore,
although product quality must be controlled, this
variable is usually not available online but only
at run end. On the other hand, opportunities
stem from the fact that industrial chemical pro-
cesses are often slow, which facilitates larger
sampling periods and extensive online computa-
tions. In addition, the repetitive nature of batch
processes opens the way to run-to-run process
improvement (Bonvin et al. 2006). More infor-
mation on batch processes and their operation
can be found in Seborg et al. (2004) and Nagy
and Braatz (2003). Next, we will successively
address the control and the optimization of batch
processes.
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Control of Batch Processes

Control of batch processes differs from control
of continuous processes in two main ways. First,
since batch processes have no steady-state oper-
ating point, at least some of the set points are
time-varying profiles. Second, batch processes
are repeated over time and are characterized by
two independent variables, the run time t and
the run counter k. The independent variable k
provides additional degrees of freedom for meet-
ing the control objectives when these objectives
do not necessarily have to be completed in a
single batch but can be distributed over several
successive batches. This situation brings into fo-
cus the concept of run-end outputs, which need
to be controlled but are only available at the
completion of the batch. The most common run-
end output is product quality. Consequently, the
control of batch processes encompasses four dif-
ferent strategies (Fig. 1):
1. Online control of run-time outputs. This con-

trol approach is similar to that used in con-
tinuous processing. However, although some
controlled variables, such as temperature in
isothermal operation, remain constant, the key
process characteristics, such as process gain
and time constants, can vary considerably be-
cause operation occurs along state trajectories
rather than at a steady-state operating point.
Hence, adaptation in run time t is needed to
handle the expected variations. Feedback con-
trol is implemented using PID techniques or
more sophisticated alternatives (Seborg et al.
2004).

2. Online control of run-end outputs. In this case
it is necessary to predict the run-end out-
puts z based on measurements of the run-time
outputs y. Model predictive control (MPC)
is well suited to this task (Nagy and Braatz
2003). However, the process models available
for prediction are often simplified and thus of
limited accuracy.

3. Iterative control of run-time outputs. The
manipulated variable profiles can be generated
using iterative learning control (ILC), which
exploits information from previous runs

(Moore 1993). This strategy exhibits the
limitations of open-loop control with respect
to the current run, in particular the fact
that there is no feedback correction for
run-time disturbances. Nevertheless, this
scheme is useful for generating a time-varying
feedforward input term.

4. Iterative control of run-end outputs. In this
case the input profiles are parameterized as
ukŒ0; tf 
 D U.�k/ using the input parameters
�k . The batch process is thus seen as a static
map between the input parameters �k and the
run-end outputs zk (Francois et al. 2005).
It is also possible to combine online and run-

to-run control for both y and z. However, in such
a combined scheme, care must be taken so that
the online and run-to-run corrective actions do
not oppose each other. Stability during run time
and convergence in run index must be guaranteed
(Srinivasan and Bonvin 2007a).

Optimization of Batch Processes

The process variables undergo significant
changes during batch operation. Hence, the
major objective in batch operations is not to
keep the system at optimal constant set points but
rather to determine input profiles that optimize
an objective function expressing the system
performance.

Problem Formulation
A typical optimization problem in the context of
batch processes is

min
uk Œ0;tf 


Jk D 	
	
xk.tf /




C
Z tf

0

L
	
xk.t/; uk.t/; t



dt (1)

subject to

Pxk.t/ D F
	
xk.t/; uk.t/



; xk.0/ D xk;0 (2)

S
	
xk.t/; uk.t/


 � 0; T
	
xk.tf /


 � 0; (3)
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where x represents the state vector, J the scalar
cost to be minimized, S the run-time constraints,
T the run-end constraints, and tf the final time.

In constrained optimal control problems, the
solution often lies on the boundary of the fea-
sible region. Batch processes involve run-time
constraints on inputs and states as well as run-end
constraints.

Optimization Strategies
As can be seen from the cost objective (1), op-
timization requires information about the com-
plete run and thus cannot be implemented in
real time using only online measurements. Some
information regarding the future of the run is
needed in the form of either a process model
capable of prediction or measurements from pre-
vious runs. Accordingly, measurement-based op-
timization methods can be classified depending
on whether or not a process model is used ex-
plicitly for implementation, as illustrated in Fig. 2
and discussed next:
1. Online explicit optimization. This approach

is similar to model predictive control (Nagy
and Braatz 2003). Optimization uses a process
model explicitly and is repeated whenever
a new set of measurements becomes avail-
able. This scheme involves two steps, namely,

updating the initial conditions for the sub-
sequent optimization (and optionally the pa-
rameters of the process model) and numerical
optimization based on the updated process
model (Abel et al. 2000). Since both steps
are repeated as measurements become avail-
able, the procedure is also referred to as re-
peated online optimization. The weakness of
this method is its reliance on the model; if
the model is not updated, its accuracy plays
a crucial role. However, when the model is
updated, there is a conflict between parameter
identification and optimization since parame-
ter identification requires persistency of exci-
tation, that is, the inputs must be sufficiently
varied to uncover the unknown parameters, a
condition that is usually not satisfied when
near-optimal inputs are applied. Note that,
instead of computing the input u�

k Œt; tf 
, it is
also possible to use a receding horizon and
compute only u�

k Œt; t C T 
, with T the control
horizon (Abel et al. 2000).

2. Online implicit optimization. In this scenario,
measurements are used to update the inputs
directly, that is, without the intermediary of
a process model. Two classes of techniques
can be identified. In the first class, an update
law that approximates the optimal solution

 Implicit optimization
(without process model)

Explicit optimization
(with process model)

Use of process model

Repeated online optimization Online input update using
measurements

Online
(within-run)

Iterative
(run-to-run)

Implementation
aspect

repeat online

repeat with run delay

yk[0,tf ]  →  θk →  uk+1[0,tf]
OPTIDENT ∗

‹

yk[0,t] NCO prediction

yk(t) uk(t)
∗

uk(t)
∗

Approx. of opt. solution

NCO

uk+1[0,tf]
∗NCO evaluation

NCO

1

4

repeat with run delay

2

3 Repeated run-to-run optimization Run-to-run input update using
measurements

yk[0,t] → xk(t) → uk[t,tf]
OPTEST ∗‹

yk[0,tf ]

Control and Optimization of Batch Processes, Fig. 2
Optimization strategies for batch processes. The strate-
gies are classified according to whether or not a process
model is used for implementation (horizontal division).
Furthermore, each class can be implemented either online

or iteratively over several runs (vertical division). EST
stands for “estimation,” IDENT for “identification,” OPT
for “optimization,” and NCO for “necessary conditions of
optimality”
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is sought. For example, a neural network is
trained with data corresponding to optimal be-
havior for various uncertainty realizations and
used to update the inputs (Rahman and Palanki
1996). The second class of techniques relies
on transforming the optimization problem into
a control problem that enforces the neces-
sary conditions of optimality (NCO) (Srini-
vasan and Bonvin 2007b). The NCO involve
constraints that need to be made active and
sensitivities that need to be pushed to zero.
Since some of these NCO are evaluated at
run time and others at run end, the control
problem involves both run-time and run-end
outputs. The main issue is the measurement or
estimation of the controlled variables, that is,
the constraints and sensitivities that constitute
the NCO.

3. Iterative explicit optimization. The steps
followed in run-to-run explicit optimization
are the same as in online explicit optimization.
However, there is substantially more data
available at the end of the run as well as
sufficient computational time to refine the
model by updating its parameters and, if
needed, its structure. Furthermore, data from
previous runs can be collected for model
update (Rastogi et al. 1992). As with online
explicit optimization, this approach suffers
from the conflict between estimation and
optimization.

4. Iterative implicit optimization. In this sce-
nario, the optimization problem is transformed
into a control problem, for which the control
approaches in the second row of Fig. 1 are
used to meet the run-time and run-end ob-
jectives (Francois et al. 2005). The approach,
which is conceptually simple, might be ex-
perimentally expensive since it relies more on
data.
These complementary measurement-based

optimization strategies can be combined by
implementing some aspects of the optimization
online and others on a run-to-run basis. For
instance, in explicit schemes, the states can be
estimated online, while the model parameters
can be estimated on a run-to-run basis. Similarly,
in implicit optimization, approximate update

laws can be implemented online, leaving the
responsibility for satisfying terminal constraints
and sensitivities to run-to-run controllers.

Summary and Future Directions

Batch processing presents several challenges.
Since there is little time for developing
appropriate dynamic models, there is a need for
improved data-driven control and optimization
approaches. These approaches require the
availability of online concentration-specific
measurements such as chromatographic and
spectroscopic sensors, which are not yet readily
available in production.

Technically, the main operational difficulty in
batch process improvement lies in the presence
of run-end outputs such as final quality, which
cannot be measured during the run. Although
model-based solutions are available, process
models in the batch area tend to be poor. On
the other hand, measurement-based optimization
for a given batch faces the challenge of having
to know about the future to act during the batch.
Consequently, the main research push is in the
area of measurement-based optimization and the
use of data from both the current and previous
batches for control and optimization purposes.
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Abstract

This entry gives a brief overview of the recent
developments in audio sound reproduction via
modern sampled-data control theory. We first re-
view basics in the current sound processing tech-
nology and then proceed to the new idea derived
from sampled-data control theory, which is dif-
ferent from the conventional Shannon paradigm
based on the perfect band-limiting hypothesis.
The hybrid nature of sampled-data systems pro-
vides an optimal platform for dealing with signal

processing where the ultimate objective is to
reconstruct the original analog signal one started
with. After discussing some fundamental prob-
lems in the Shannon paradigm, we give our basic
problem formulation that can be solved using
modern sampled-data control theory. Examples
are given to illustrate the results.

Keywords

Digital signal processing; Multirate signal pro-
cessing; Sampled-data control; Sampling theo-
rem; Sound reconstruction

Introduction: Status Quo

Consider the problem of reproducing sounds
from recorded media such as compact discs. The
current CD format is recorded at the sampling
frequency 44.1 kHz. It is commonly claimed that
the highest frequency for human audibility is
20 kHz, whereas the upper bound of reproduction
in this format is believed to be the half of
44.1 kHz, i.e., 22.1 kHz, and hence, this format
should have about 10 % margin against the
alleged audible limit of 20 kHz.

CD players of early days used to process such
digital signals with the simple zero-order hold
at this frequency, followed by an analog low-
pass filter. This process requires a sharp low-
pass characteristic to cut out unnecessary high
frequency beyond 20 kHz. However, a sharp cut-
off low-pass characteristic inevitably requires a
high-order filter which in turn introduces a large
amount of phase shift distortion around the cutoff
frequency.

To circumvent this defect, there was intro-
duced the idea of oversampling DA converter that
is realized by the combination of a digital filter
and a low-order analog filter (Zelniker and Taylor
1994). This is based on the following principle:

Let ff .nh/g1
nD�1 be a discrete-time signal

obtained from a continuous-time signal f .�/ by
sampling it with sampling period h. The upsam-
pler appends the value 0, M � 1 times, between
two adjacent sampling points:
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Control Applications in
Audio Reproduction,
Fig. 1 Upsampler for
M D 2

." Mw/Œk
 WD
�

w.`/; k D M`

0; elsewhere:
(1)

See Fig. 1 for the case M D 2. This has the
effect of making the unit operational time M
times faster.

The bandwidth will also be expanded by M
times and the Nyquist frequency (i.e., half the
sampling frequency) becomes M�=h [rad/sec].
As we see in the next section, the Nyquist fre-
quency is often regarded as the true bandwidth
of the discrete-time signal ff .nh/g1

nD�1. But
this upsampling process just insert zeros between
sampling points, and the real information con-
tents (the true bandwidth) is not really expanded.
As a result, the copy of the frequency content
for Œ0; �=h/ appears as a mirror image repeatedly
over the frequency range above �=h. This dis-
tortion is called imaging. In order to avoid the
effect of such mirrored frequency components,
one often truncates the frequency components
beyond the (original) Nyquist frequency via a
digital low-pass filter that has a sharp roll-off
characteristic. One can then complete the digital
to analog (DA) conversion process by postposing
a slowly decaying analog filter. This is the idea of
an oversampling DA converter (Zelniker and Tay-
lor 1994). The advantage here is that by allowing
a much wider frequency range, the final analog
filter can be a low-order filter and hence yields a
relatively small amount of phase distortion sup-
ported in part by the linear-phase characteristic
endowed on the digital filter preceding it.

Signal Reconstruction Problem

As before, consider the sampled discrete-
time signal ff .nh/g1

nD�1 obtained from a
continuous-time signal f . The main question is
how we can recover the original continuous-time

signal f .�/ from sampled data. This is clearly
an ill-posed problem without any assumption on
f because there are infinitely many functions
that can match the sampled data ff .nh/g1

nD�1.
Hence, one has to impose a reasonable a
priori assumption on f to sensibly discuss this
problem.

The following sampling theorem gives one
answer to this question:

Theorem 1 Suppose that the signal f 2 L2

is perfectly band-limited, in the sense that there
exists !0 � �=h such that the Fourier transform
Of of f satisfies

Of .!/ D 0; j!j � !0; : (2)

Then

f .t/ D
1X

nD�1
f .nh/

sin �.t=h � n/
�.t=h� n/

: (3)

This theorem states that if the signal f does
not contain any high-frequency components be-
yond the Nyquist frequency �=h, then the origi-
nal signal f can be uniquely reconstructed from
its sampled-data ff .nh/g1

nD�1. On the other
hand, if this assumption does not hold, then the
result does not necessarily hold. This is easy to
see via a schematic representation in Fig. 2.

If we sample the sinusoid in the upper fig-
ure in Fig. 2, these sampled values would turn
out to be compatible with another sinusoid with
much lower frequency as the lower figure shows.
In other words, this sampling period does not
have enough resolution to distinguish these two
sinusoids. The maximum frequency below where
there does not occur such a phenomenon is the
Nyquist frequency. The sampling theorem above
asserts that it is half of the sampling frequency
2�=h, that is, �=h [rad/sec]. In other words, if
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we can assume that the original signal contains
no frequency components beyond the Nyquist
frequency, then one can uniquely reconstruct the
original analog signal f from its sampled-data
ff .nh/g1

nD�1. On the other hand, if this as-
sumption does not hold, the distortion depicted
in Fig. 2 occurs; this is called aliasing.

This is the content of the sampling theorem.
It has been widely accepted as the basis for
digital signal processing that bridges analog to
digital. Concrete applications such as CD, MP3,
or images are based on this principle in one way
or another.

Difficulties

However, this paradigm (hereafter the Shannon
paradigm) of the perfect band-limiting hypoth-
esis and the resulting sampling theorem renders
several difficulties as follows:
• The reconstruction formula (3) is not causal,

i.e., one needs future sampled values to recon-
struct the present value f .t/. One can remedy
this defect by allowing a certain amount of
delay in reconstruction, but this delay can
depend on how fast the formula converges.

• This formula is known to decay slowly; that
is, we need many terms to approximate if we
use this formula as it is.

• The perfect band-limiting hypothesis is hardly
satisfied in reality. For example, for CDs, the

Nyquist frequency is 22.05 kHz, and the en-
ergy distribution of real sounds often extends
way over 20 kHz.

• To remedy this, one often introduces a band-
limiting low-pass filter, but it can introduce
distortions due to the Gibbs phenomenon, due
to a required sharp decay in the frequency
domain. See Fig. 3.
This is the Gibbs phenomenon well known

in Fourier analysis. A sharp truncation in the
frequency domain yields such a ringing effect.

In view of such drawbacks, there has been
revived interest in the extension of the sampling
theorem in various forms since the 1990s. There
is by now a stream of papers that aim at studying
signal reconstruction under the assumption of
nonideal signal acquisition devices; an excellent
survey is given in Unser (2000). In this research
framework, the incoming signal is supposed to be
acquired through a nonideal analog filter (acqui-
sition device) and sampled, and then the recon-
struction process attempts to recover the original
signal. The idea is to place the problem into
the framework of the (orthogonal or oblique)
projection theorem in a Hilbert space (usually
L2) and then project the signal space to the
subspace generated by the shifted reconstruction
functions. It is often required that the process
give a consistent result, i.e., if we subject the
reconstructed signal to the whole process again, it
should yield the same sampled values from which
it was reconstructed (Unser and Aldroubi 1994).

In what follows, we take a similar viewpoint,
that is, the incoming signals are acquired through
a nonideal filter, but develop a methodology dif-
ferent from the projection method, relying on
sampled-data control theory.

The Signal Class

We have seen that the perfect band-limiting hy-
pothesis is restrictive. Even if we adopt it, it is a
fairly crude model for analog signals to allow for
a more elaborate study.

Let us now pose the question: What class of
functions should we process in such systems?
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Consider the situation where one plays a mu-
sical instrument, say, a guitar. A guitar naturally
has a frequency characteristic. When one picks a
string, it produces a certain tone along with its
harmonics, as well as a characteristic transient
response. All these are governed by a certain
frequency decay curve, demanded by the physical
characteristics of the guitar. Let us suppose that
such a frequency decay is governed by a rational
transfer function F.s/, and it is driven by varied
exogenous inputs.

Consider Fig. 4. The exogenous analog signal
wc 2 L2 is applied to the analog filter F.s/.
This F.s/ is not an ideal filter and hence its
bandwidth is not limited below the Nyquist fre-
quency. The signal wc drives F.s/ to produce
the target analog signal yc , which should be the
signal to be reconstructed. It is then sampled
by sampler Sh and becomes the recorded or
transmitted digital signal yd . The objective here
is to reconstruct the target analog signal yc out
of this sampled signal yd . In order to recover

the frequency components beyond the Nyquist
frequency, one needs a faster sampling period,
so we insert the upsampler " L to make the
sampling period h=L. This upsampled signal is
processed by digital filterK.z/ and then becomes
a continuous-time signal again by going through
the hold device Hh=L. It will then be processed
by analog filter P.s/ to be smoothed out. The
obtained signal is then compared with delayed
analog signal yc.t � mh/ to form the delayed
error signal ec . The objective is then to make
this error ec as small as possible. The reason for
allowing delay e�mhs is to accommodate certain
processing delays. This is the idea of the block
diagram Fig. 4.

The performance index we minimize is the
induced norm of the transfer operator Tew from
wc to ec :

kTewk1 WD sup
wc¤0

keck2
kwck2 : (4)
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In other words, the H1-norm of the sampled-
data control system Fig. 4. Our objective is then
to solve the following problem:

Filter Design Problem
Given the system specified by Fig. 4. For a given
performance level � > 0, find a filter K.z/ such
that

kTewk1 < �:

This is a sampled-data H1 (sub-)optimal
control problem. This can be solved by using
the standard solution method for sampled-data
control systems (Chen and Francis 1995a;
Yamamoto 1999; Yamamoto et al. 2012).
The only anomaly here is that the system in
Fig. 4 contains a delay element e�mhs which
is infinite dimensional. However, by suitably
approximating this delay by successive series of
shift registers, one can convert the problem to
an appropriate finite-dimensional discrete-time
problem (Yamamoto et al. 1999, 2002, 2012).

This problem setting has the following fea-
tures:
1. One can optimize the continuous-time perfor-

mance under the constraint of discrete-time
filters.

2. By setting the class of input functions as L2

functions band-limited by F.s/, one can cap-
ture the continuous-time error signal ec and its
worst-case norm in the sense of (4).
The first feature is due to the advantage of

sampled-data control theory. It is a great ad-
vantage of sampled-data control theory that al-
lows the mixture of continuous- and discrete-
time components. This is in marked contrast to
the Shannon paradigm where continuous-time
performance is really demanded by the artificial
perfect band-limiting hypothesis.

The second feature is an advantage due to
H1 control theory. Naturally, we cannot have an
access to each individual error signal ec , but
we can still control the overall performance
from wc to ec in terms of the H1 norm that
guarantees the worst-case performance. This is in
clear contrast with the classical case where only
a representative response, e.g., impulse response

in the case of H2, is targeted. Furthermore, since
we can control the continuous-time performance
of the worst-case error signal, the present
method can indeed minimize (continuous-time)
phase errors. This is an advantage usually not
possible with conventional methods since they
mainly discuss the gain characteristics of the
designed filters only. By the very property of
minimizing the H1 norm of the continuous-
time error signal ec , the present method can
even control the phase errors and yield much
less phase distortion even around the cutoff
frequency.

Figure 5 shows the response of the proposed
sampled-data filter against a rectangular wave,
with a suitable first- or second-order analog fil-
ter F.s/; see Yamamoto et al. (2012) for more
details. Unlike Fig. 3, the overshoot is controlled
to be minimum.

The present method has been patented
(Fujiyama et al. 2008; Yamamoto 2006;
Yamamoto and Nagahara 2006) and implemented
into sound processing LSI chips as a core
technology by Sanyo Semiconductors and
successfully used in mobile phones, digital voice
recorders, and MP3 players; their cumulative
production has exceeded 40 million units as of
the end of 2012.

Summary and Future Directions

We have presented basic ideas of new signal pro-
cessing theory derived from sampled-data control
theory. The theory has the advantage that is not
possible with the conventional projection meth-
ods, whether based on the perfect band-limiting
hypothesis or not.

The application of sampled-data control
theory to digital signal processing was first made
by Chen and Francis (1995b) with performance
measure in the discrete-time domain; see also
Hassibi et al. (2006). The present author and his
group have pursued the idea presented in this
entry since 1996 (Khargonekar and Yamamoto
1996). See Yamamoto et al. (2012) and references
therein. For the background of sampled-data
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control theory, consult, e.g., Chen and Francis
(1995a) and Yamamoto (1999).

The same philosophy of emphasizing
the importance of analog performance was
proposed and pursued recently by Unser and
co-workers (1994), Unser (2005), and Eldar
and Dvorkind (2006). The crucial difference
is that they rely on L2=H2 type optimization
and orthogonal or oblique projections, which
are very different from our method here. In
particular, such projection methods can behave
poorly for signals outside the projected space.
The response shown in Fig. 3 is a typical such
example.

Applications to image processing is discussed
in Yamamoto et al. (2012). An application
to Delta-Sigma DA converters is studied in
Nagahara and Yamamoto (2012). Again, the
crux of the idea is to assume a signal generator
model and then design an optimal filter in
the sense of Fig. 4 or a similar diagram with
the same idea. This idea should be applicable
to a much wider class of problems in signal
processing and should prove to have more
impact.

Some processed examples of still and moving
images are downloadable from the site: http://
www-ics.acs.i.kyoto-u.ac.jp/~yy/

For sampling theorem, see Shannon (1949),
Unser (2000), and Zayed (1996), for example.
Note, however, that Shannon himself (1949) did
not claim originality on this theorem; hence, it
is misleading to attribute this theorem solely to
Shannon. See Unser (2000) and Zayed (1996)
for some historical accounts. For a general back-
ground in signal processing, Vetterli et al. (2013)
is useful.

Cross-References

�H-Infinity Control
�Optimal Sampled-Data Control
�Sampled-Data Systems

Acknowledgments The author would like to thank
Masaaki Nagahara and Masashi Wakaiki for their help
with the numerical examples. Part of this entry is based
on the exposition (Yamamoto 2007) written in Japanese.

Bibliography

Chen T, Francis BA (1995a) Optimal sampled-data control
systems. Springer, New York

Chen T, Francis BA (1995b) Design of multirate filter
banks by H1 optimization. IEEE Trans Signal Pro-
cess 43:2822–2830

http://dx.doi.org/10.1007/978-1-4471-5058-9_166
http://dx.doi.org/10.1007/978-1-4471-5058-9_205
http://dx.doi.org/10.1007/978-1-4471-5058-9_195
http://www-ics.acs.i.kyoto-u.ac.jp/~yy/
http://www-ics.acs.i.kyoto-u.ac.jp/~yy/


144 Control for High-Speed Nanopositioning

Eldar YC, Dvorkind TG (2006) A minimum squared-
error framework for generalized sampling. IEEE Trans
Signal Process 54(6):2155–2167

Fujiyama K, Iwasaki N, Hirasawa Y, Yamamoto Y (2008)
High frequency compensator and reproducing device.
US patent 7,324,024 B2, 2008

Hassibi B, Erdogan AT, Kailath T (2006) MIMO linear
equalization with anH1 criterion. IEEE Trans Signal
Process 54(2):499–511

Khargonekar PP, Yamamoto Y (1996) Delayed signal
reconstruction using sampled-data control. In: Pro-
ceedings of 35th IEEE CDC, Kobe, Japan, pp 1259–
1263

Nagahara M, Yamamoto Y (2012) Frequency domain
min-max optimization of noise-shaping delta-sigma
modulators. IEEE Trans Signal Process 60(6):2828–
2839

Shannon CE (1949) Communication in the presence of
noise. Proc IRE 37(1):10–21

Unser M (2000) Sampling – 50 years after Shannon. Proc
IEEE 88(4):569–587

Unser M (2005) Cardinal exponential splines: part II –
think analog, act digital. IEEE Trans Signal Process
53(4):1439–1449

Unser M, Aldroubi A (1994) A general sampling theory
for nonideal acquisition devices. IEEE Trans Signal
Process 42(11):2915–2925
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Abstract

Over the last two and a half decades we have
observed astonishing progress in the field of
nanotechnology. This progress is largely due to
the invention of Scanning Tunneling Microscope
(STM) and Atomic Force Microscope (AFM)
in the 1980s. Central to the operation of AFM
and STM is a nanopositioning system that
moves a sample or a probe, with extremely
high precision, up to a fraction of an Angstrom,
in certain applications. This note concentrates
on the fundamental role of feedback, and the
need for model-based control design methods in
improving accuracy and speed of operation of
nanopositioning systems.

Keywords

Atomic force microscopy; High-precision
mechatronic systems; Nanopositioining; Scan-
ning probe microscopy

Introduction

Controlling motion of an actuator to within a
single atom, known as nanopositioning, may
seem as an impossible task. Yet, it has become
a key requirement in many systems to emerge
in recent years. In scanning probe microscopy
nanopositioning is needed to scan a probe over
a sample surface for imaging and to control the
interaction between the probe and the surface
during interrogation and manipulation (Meyer
et al. 2004). Nanopositioning is the enabling tech-
nology for mask-less lithography tools under de-
velopment to replace optical lithography systems
(Vettiger et al. 2002). Novel nanopositioning
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tools are required for positioning of wafers
and for mask alignment in the semiconductor
industry (Verma et al. 2005). Nanopositioning
systems are vital in molecular biology for
imaging, alignment, and nanomanipulation in
applications such as DNA analysis (Meldrum
et al. 2001) and nanoassembly (Whitesides and
Christopher Love 2001). Nanopositioning is
an important technology in optical alignment
systems (Krogmann 1999). In data storage
systems, nanometer-scale precision is needed
for emerging probe-storage devices, for dual-
stage hard-disk drives, and for next generation
tape drives (Cherubini et al. 2012).

The Need for High-Speed
Nanopositioning

In all applications of nanopositioning, there is a
significant and growing demand for high speeds.
The ability to operate a nanopositioner at a band-
width of tens of kHz, as opposed to today’s
hundreds of Hz, is the key to unlocking countless
technological possibilities in the future (Gao et al.
2000; Pantazi et al. 2008; Salapaka 2003; Sebas-
tian et al. 2008b; Yong et al. 2012). The atomic
force microscope (AFM) is an example of such
technologies. A typical commercial atomic force
microscope is a slow device, taking up to a minute
or longer to generate an image. Such imaging
speeds are too slow to investigate phenomena
with fast dynamics. For example, rapid biological
processes that occur in seconds, such as rapid
movement of cells or fast dehydration and denat-
uration of collagen, are too fast to be observed
by a typical commercial AFM (Zou et al. 2004).
A key obstacle in realizing high-speed and video-
rate atomic force microscopy is the limited speed
of nanopositioners.

The Vital Role of Feedback Control in
High-Speed Nanopositioning

The systems described above depend on a
precision mechatronic device, known as a
nanopositioner, or a scanner for their operation.

Control for High-Speed Nanopositioning, Fig. 1 A
3DoF flexure-guided high-speed nanopositioner (Yong
et al. 2013). The three axes are actuated independently
using piezoelectric stack actuators. Movement of lateral
axes is measured using capacitive sensors

A high-speed scanner is shown in Fig. 1.
In all applications where nanopositioning is
a necessity, the key objective is to make the
scanner follow, or track, a given reference
trajectory (Devasia et al. 2007). A large number
of control design methods have been proposed
for this purpose, including feedforward control
(Clayton et al. 2009), feedback control (Salapaka
2003), and combinations of those (Yong et al.
2009). These control techniques are required
in order to compensate for the mechanical
resonances of the scanner as well as for various
nonlinearities and uncertainties in the dynamics
of the nanopositioner. At low speeds, feedforward
techniques are usually sufficient to address
many of the arising challenges. However, over
a wide bandwidth, model uncertainties, sensor
noise, and mechanical cross-couplings become
significant, and hence feedback control becomes
essential to achieve the requisite nanoscale
accuracy and precision at high speeds (Devasia
et al. 2007; Salapaka 2003).

Control Design Challenges

A feedback loop typically encountered in
nanopositioning is illustrated in Fig. 2. The
purpose of the feedback controller is to control
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Control for High-Speed Nanopositioning, Fig. 2 A
feedback loop typically encountered in nanopositioning.
Purpose of the controller is to control the position of

the scanner such that it follows the intended reference
trajectory based on the position measurement obtained
from a position sensor

the position of the scanner such that it follows
a given reference trajectory based on the
measurement provided by a displacement
sensor. The resulting tracking error contains
both deterministic and stochastic components.
Deterministic errors are typically due to
insufficient closed-loop bandwidth. They may
also arise from excitation of mechanical resonant
modes of the scanner or actuator nonlinearities
such as piezoelectric hysteresis and creep (Croft
et al. 2001). The factors that limit the achievable
closed-loop bandwidth include phase delays and
non-minimum phase zeros associated with the
actuator and scanner dynamics (Devasia et al.
2007). The dynamics of the nanopositioner, the
controller, and the reference trajectory selected
for scanning play a key role in minimizing the
deterministic component of the tracking error.

Tracking errors of a stochastic nature mostly
arise from external noise and vibrations and from
position measurement noise. External noise and
vibrations can be significantly reduced by oper-
ating the nanopositioner in a controlled environ-
ment. However, dealing with the measurement
noise is a significant challenge (Sebastian et al.
2008a). The feedback loop allows the sensing
noise to generate a random positioning error that
deteriorates the positioning precision. Increasing
the closed-loop bandwidth (to decrease the deter-
ministic errors) tends to worsen this effect. Low
sensitivity to measurement noise is, therefore,
a key requirement in feedback control design
for high-speed nanopositioning and a very hard
problem to address.

Summary and Future Directions

While high-precision nanoscale positioning
systems have been demonstrated at low speeds,
despite an intensive international race spanning
several years, the longstanding challenge remains
to achieve high-speed motion and positioning
with Ångstrom-level accuracy. Overcoming this
barrier is believed to be the necessary catalyst for
emergence of ground breaking innovations across
a wide range of scientific and technological fields.
Control is a critical technology to facilitate the
emergence of such systems.
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Abstract

This entry provides an overview of the so-called
control pyramid, which organizes the different
types of control tasks in a processing plant in a
set of interconnected layers, from basic control
and instrumentation to plant-wide economic op-
timization. These layers have different functions,
all of them necessary for the optimal functioning
of large processing plants.

Keywords

Control hierarchy; Control pyramid; Model-
predictive control; Optimization; Plant-wide
control; Real-time optimization

Introduction

Operating a process plant is a complex task in-
volving many different aspects ranging from the
control of individual pieces of equipment and of
process units to the management of the plant or
factory as a whole, including relations with other
plants or suppliers.

From the control point of view, the corre-
sponding tasks are traditionally organized in sev-
eral layers, placing in the bottom the ones closer
to the physical processes and in the top those
closer to plant-wide management, forming the so-
called control pyramid represented in Fig. 1.

The process industry currently faces many
challenges, originated from factors such as
increased competition among companies and bet-
ter global market information, new environmental
regulations and safety standards, improved
quality, or energy efficiency requirements. Many
years ago, the main tasks were associated to the
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Control Hierarchy of Large Processing Plants: An
Overview, Fig. 1 The control pyramid

correct and safe functioning of the individual
process units and to the global management
of the factory from the point of view of
organization and economy. Therefore, only the
lower and top layers of the control pyramid were
realized by computer-based systems, whereas
the intermediate tasks were largely performed
by human operators and managers, but more
and more the intermediate layers are gaining
importance in order to face the abovementioned
challenges.

Above the physical plant represented in Fig. 1,
there is a layer related to instrumentation and
basic control, devoted to obtaining direct pro-
cess information and maintaining selected pro-
cess variables close to their desired targets by
means of local controllers. Motivated by the need
for more efficient operation and better-quality
assurance, an improvement of this basic control
can be obtained using control structures such
as cascades, feed forwards, ratios, and selectors.
This is called advanced control in industry, but
not in academia, where the word is reserved for
more sophisticated controls.

A big step forward took place in the control
field with the introduction of model-based
predictive control (MBPC/MPC) in the late 1970s

and 1980s, (� Industrial MPC of Continuous
Processes; Camacho and Bordóns (2004)).
MPC aims at regulating a process unit as
a whole considering all manipulated and
controlled variables simultaneously. It handles
all interactions, disturbances, and process
constraints using a process model in order to
compute the control actions that optimize a
control performance index. MPC is built on top
of the basic control loops and partly replaces
the complex control structures of the advanced
control layer adding new functionalities and
better control performance. The improvements
in control quality and the management of
constraints and interactions of the model-
predictive controllers open the door for the
implementation of local economic optimization.
Linked to the MPC controller and taking
advantage of its model, an optimizer may look
for the best operating point of the unit by
computing the controller set points that optimize
an economic cost function of the process unit
considering the operational constraints of the
unit. This task is usually formulated and solved
as a linear programming (LP) problem, i.e., based
on linear or linearized economic models and cost
function (see Fig. 2).

A natural extension of these ideas was to
consider the interrelations among the different
parts of the processing plants and to look for
the steady-state operating point that provides the
best economic return and minimum energy ex-
pense or optimizes any other economic criterion
while satisfying the global production aims and
constraints. These optimization tasks are known
as real-time optimization (RTO) (�Real-Time
Optimization of Industrial Processes) and form
another layer of the control pyramid.

Finally, when we consider the whole plant
operation, obvious links between the RTO and
the planning and economic management of the
company appear. In particular, the organization
and optimization of the flows of raw materials,
purchases, etc., involved in the supply chains
present important challenges that are placed in
the top layer of Fig. 1.

This entry provides an overview of the dif-
ferent layers and associated tasks so that the

http://dx.doi.org/10.1007/978-1-4471-5058-9_242
http://dx.doi.org/10.1007/978-1-4471-5058-9_243
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Control Hierarchy of Large Processing Plants: An
Overview, Fig. 2 MPC implementation with a local op-
timizer

reader can place in context the different con-
trollers and related functionalities and tools, as
well as appreciate the trends in process control
focusing the attention toward the higher levels of
the hierarchy and the optimal operation of large-
scale processes.

An Alternative View

The implementation in a process factory of the
tasks and layers previously mentioned is possible
nowadays due to important advances in many
fields, such as modeling and identification, con-
trol and estimation, optimization methods, and, in
particular, software tools, communications, and
computing power. Today it is rather common
to find in many process plants an information
network that follows also a pyramidal structure
represented in Fig. 3.

At the bottom, there is the instrumentation
layer that includes, besides sensors and
actuators connected by the classical analog
4–20 mA signals, possibly enhanced by the
transmission of information to and from the
sensors by the HART protocol, digital field
buses and smart transmitters and actuators
that incorporate improved information and
intelligence. New functionalities, such as
remote calibration, filtering, self-test, and
disturbance compensation, provide more accurate
measurements that contribute to improving
the functioning of local controllers, in the
same way as that of new methods and tools
available nowadays for instrument monitoring
and fault detection and diagnosis. The increased

installation of wireless transmitters and the
advances in analytical instrumentation will lead,
without doubt, to the development of a stronger
information base to support better decisions and
operations in the plants.

Information from transmitters is collected in
the control rooms that are the core of the second
layer. Many of them are equipped with distributed
control systems (DCS) that implement monitor-
ing and control tasks. Field signals are received
in the control cabinets where a large number
of microprocessors execute the data acquisition
and regulatory control tasks, sending signals back
to the field actuators. Internal buses connect the
controllers with the computers that support the
displays of the human-machine interface (HMI)
for the plant operators of the control room. In
the past, DCS were mostly in charge of the
regulatory control tasks, including basic control,
alarm management, and historians, while inter-
locking systems related to safety and sequences
related to batch operations were implemented
either in the DCS or in programmable logic
controllers (PLCs): � Programmable Logic Con-
trollers. Today, the bounds are not so clear, due to
the increase of the computing power of the PLCs
and the added functionalities of the DCS. Safety
instrumented systems (SIS) for the maintenance
of plant safety are usually implemented in dedi-
cated PLCs, if not hard-wired, but for the rest of
the functions, a combination of PLC-like proces-
sors with I/O cards and SCADAs (Supervision,
Control, And Data Acquisition Systems) is the
prevailing architecture. SCADAs act as HMI and
information systems collecting large amounts of
data that can be used at other levels with different
purposes.

Above the basic and advanced control layer,
using the information stored in the SCADA
as well as other sources, there is an increased
number of applications covering diverse fields.
Figure 3 depicts the perspective of the computing
and information flow architecture and includes
a level called supervisory control, placed in
direct connection with the control room and
the production tasks. It includes, for instance,
MPC with local optimizers, statistical process
control (SPC) for quality and production

http://dx.doi.org/10.1007/978-1-4471-5058-9_257
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supervision (�Multiscale Multivariate Statistical
Process Control), data reconciliation, inferences
and estimation of unmeasured quantities,
fault detection and diagnosis, or performance
controller monitoring (�Controller Performance
Monitoring) (CPM).

The information flow becomes more complex
when we move up the basic control layer, looking
more like a web than a pyramid when we enter
the world of what can be called generally as
asset (plant and equipment) management: a col-
lection of different activities oriented to sustain
performance and economic return, considering
their entire cycle of life and, in particular, aspects
such as maintenance, efficiency, or production
organization. Above the supervisory layer, one
can usually distinguish at least two levels denoted
generically as manufacturing execution systems
(MES) and enterprise resource planning (ERP)
(Scholten 2009) as can be seen in Fig. 4.

MES are information systems that support the
functions that a production department must
perform in order to prepare and to manage
work instructions, schedule production activities,
monitor the correct execution of the production
process, gather and analyze information about
the production process, and optimize procedures.
Notice that regarding the control of process units,
up to this level no fundamental differences appear
between continuous and batch processes. But at
the MES level, which corresponds to RTO of
Fig. 1, many process units may be involved, and
the tools and problems are different, the main task
in batch production being the optimal scheduling
of those process units (�Scheduling of Batch
Plants; Mendez et al. 2006).

MES are part of a larger class of systems
called manufacturing operation management
(MOM) that cover not only the management of
production operations but also other functions

http://dx.doi.org/10.1007/978-1-4471-5058-9_250
http://dx.doi.org/10.1007/978-1-4471-5058-9_246
http://dx.doi.org/10.1007/978-1-4471-5058-9_254
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An Overview, Fig. 4
Software/hardware view

such as maintenance, quality, laboratory
information systems, or warehouse management.
One of their main tasks is to generate elaborate
information, quite often in the form of key
performance indicators (KPIs), with the purpose
of facilitating the implementation of corrective
actions.

ERP systems represent the top of the pyramid,
corresponding to the enterprise business planning
activities that allows assigning global targets to
production scheduling. For many years, it has
been considered to be out of the scope of the field
of control, but nowadays, more and more, supply
chain management is viewed and addressed as a
control and optimization problem in research.

Future Control and Optimization at
Plant Scale

Going back to Fig. 1, the variety of control and
optimization problems increases as we move up
in the control hierarchy, entering the field of
dynamic process operations and considering not
only individual process units but also larger sets
of equipment or whole plants. Examples at the
RTO (or MES) level are optimal management of
shared resources or utilities, production bottle-
neck avoidance, optimal energy use or maximum
efficiency, smooth transitions against production
changes, etc.

Above, we have mentioned RTO as the most
common approach for plant-wide optimization.
Normally, RTO systems perform the optimization
of an economic cost function using a nonlinear

Control Hierarchy of Large Processing Plants: An
Overview, Fig. 5 Two possible implementations of RTO

process model in steady state and the correspond-
ing operational constraints to generate targets for
the control systems on the lower layers. The
implementation of RTO provides consistent ben-
efits by looking at the optimal operation problem
from a plant-wide perspective. Nevertheless, in
practice, when MPCs with local optimizers are
operating the process units, many coordination
problems appear between these layers, due to dif-
ferences in models and targets, so that driving the
operation of these process units in a coherent way
with the global economic targets is an additional
challenge.

A different perspective is taken by the
so-called self-optimizing control (Fig. 5 right,
Skogestad 2000) that, instead of implementing
the RTO solution online, uses it to design a
control structure that assures a near optimum
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Control Hierarchy of Large Processing Plants: An
Overview, Fig. 6 Direct dynamic optimization

operation if some specially chosen variables are
maintained closed to their targets.

As in any model-based approach, the problem
of how to implement or modify the theoretical
optimum computed by RTO so that the optimum
computed with the model and the real optimum
of the process coincide in spite of model errors,
disturbances, etc., emerges. A common choice to
deal with this problem is to update periodically
the model using parameter estimation methods
or data reconciliation with plant data in steady
state. Also, uncertainty can be explicitly taken
into account by considering different scenarios
and optimizing the worst case, but this is con-
servative and does not take advantage of the
plant measurements. Along this line, there are
proposals of other solutions such as modifier-
adaptation methods that use a fixed model and
process measurements to modify the optimization
problem so that the final result corresponds to the
process optimum (Marchetti et al. 2009) or the
use of stochastic optimization where several sce-
narios are taken into account and future decisions
are used as recourse variables (Lucia et al. 2013).

RTO is formulated in steady state, but in prac-
tice, most of the time the plants are in transients,
and there are many problems, such as start-up
optimization, that require a dynamic formulation.
A natural evolution in this direction is to combine
nonlinear MPC with economic optimization so
that the target of the NMPC is not set point
following but direct economic optimization as in
the right-hand side of Fig. 6: �Economic Model

Control Hierarchy of Large Processing Plants: An
Overview, Fig. 7 Hierarchical, price coordination, and
distributed approaches

Predictive Control and �Model-Based Perfor-
mance Optimizing Control (Engell 2007).

The type of problems that can be formulated
within this framework is very wide, as are the
possible fields of application. Processes with dis-
tributed parameter structure or mixtures of real
and on/off variables, batch and continuous units,
statistical distribution of particle sizes or proper-
ties, etc., give rise to special type of NMPC prob-
lems (see, e.g., Lunze and Lamnabhi-Lagarrigue
2009), but a common characteristic of all of them
is the fact that they are computational intensive
and should be solved taking into account the
different forms of uncertainty always present.

Control and optimization are nowadays
inseparable essential parts of any advanced
approach to dynamic process operation.
Progress in the field and spreading of the

http://dx.doi.org/10.1007/978-1-4471-5058-9_244
http://dx.doi.org/10.1007/978-1-4471-5058-9_6
http://dx.doi.org/10.1007/978-1-4471-5058-9_6
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industrial applications are possible thanks to
the advances in optimization methods and tools
and computing power available on the plant
level, but implementation is still a challenge
from many points of view, not only technical.
Few suppliers offer commercial products,
and finding optimal operation policies for a
whole factory is a complex task that requires
taking into consideration many aspects and
elaborate information not available directly
as process measurements. Solving large
NMPC problems in real time may require
breaking the associated optimization problem
in subproblems that can be solved in parallel.
This leads to several local controllers/optimizers,
each one solving one subproblem involving
variables of a part of the process and linked
by some type of coordination. This offers a
new point of view of the control hierarchy.
Typically, three types of architectures are
mentioned for dealing with this problem,
represented in Fig. 7: In the hierarchical
approach, coordination between local controllers
is made by an upper layer that deals with
the interactions, assigning targets to them. In
price coordination, the coordination task is
performed by a market-like mechanism that
assigns different prices to the cost functions of
every local controller/optimizer. Finally, in
the distributed approach, the local controllers
coordinate their actions by interchanging
information about its decisions or states with
neighbors (Scattolini 2009).

Summary and Future Research

Process control is a key element in the operation
of process plants. At the lowest layer, it can
be considered a mature, well-proven technology,
even if many problems such as control structure
selection and controller tuning in reality are often
not solved well. The range of problems under
consideration is continuously expanding to the
upper layers of the hierarchy, merging control
with process operation and optimization, creating
new challenges that range from modeling and
estimation to efficient large-scale optimization

and robustness against uncertainty, and leading
to new challenges and problems for research
and possibly large improvements of plant oper-
ations.
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Abstract

Closed-loop control can significantly improve the
performance of bioprocesses, e.g., by an increase
of the production rate of a target molecule or
by guaranteeing reproducibility of the production
with low variability. In contrast to the control
of chemical reaction systems, the biological re-
actions take place inside cells which constitute
highly regulated, i.e., internally controlled sys-
tems by themselves. As a result, through evolu-
tion, the same cell can and will mimic a system
of first order in some situations and a high-
dimensional, highly nonlinear system in others.
A complete mathematical description of the pos-
sible behaviors of the cell is still beyond reach
and would be far too complicated as a basis for
model-based process control. This makes super-
vision, control, and optimization of biosystems
very demanding.

Keywords

Bioprocess control; Control of uncertain sys-
tems; Optimal control; Parameter identification;
State estimation; Structure identification; Struc-
tured models

Introduction

Biotechnology offers solutions to a broad
spectrum of challenges faced today, e.g., for
health care, remediation of environmental
pollution, new sources for energy supplies,
sustainable food production, and the supply of

bulk chemicals. To explain the needs for control
of bioprocesses, especially for the production of
high-value and/or large-volume compounds, it
is instructive to have a look on the development
of a new process. If a potential strain is found
or genetically engineered, the biologist will
determine favorable environmental factors for the
growth of and the production of the target product
by the cells. These factors typically comprise the
levels of temperature, pH, dissolved oxygen, etc.
Moreover, concentration regions for the nutrients,
precursors, and so-called trace elements are
specified. Whereas for the former variables
often “optimal” setpoints are provided which,
at least in smaller scale reactors, can be easily
maintained by independent classically designed
controllers, information about the best nutrient
supply is incomplete from a control engineering
point of view. It is this dynamic nutrient supply
which is most often not revealed in the biological
laboratory and which, however, offers substantial
room for production improvements by control.

Irrespective whether bacteria, yeasts, fungi, or
animal cells are used for production, these cells
will consist of thousands of different compounds
which react with each other in hundreds or more
reactions. All reactions are tightly regulated on a
molecular and genetic basis; see �Deterministic
Description of Biochemical Networks. For so-
called unlimited growth conditions, all cellular
compartments will be built up with the same
specific growth rate, meaning that the cellular
composition will not change over time. In a
mathematical model describing growth and pro-
duction, only one state variable will be needed
to describe the biotic phase. This will give rise
to unstructured models; see below. Whenever a
cell enters a limitation, which is often needed
for production, the cell will start to reorganize
its internal reaction pathways. Model-based ap-
proaches of supervision and control based on
unstructured models are now bound to fail. More
biotic state variables are needed. However, it is
not clear which and how many. As a result, mod-
eling of limiting behaviors is challenging and cru-
cial for the control of biotechnological processes.
It requires a large amount of process-specific
information. Moreover, model-based estimates of

http://dx.doi.org/10.1007/978-1-4471-5058-9_87
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the state of the cell and of the environment are a
key factor as online measurements of the internal
processes in the cell and of the nutrient concen-
trations are usually impossible. Finally, as models
used for process control have to be limited in size
and thus only give an approximative description,
robustness of the methods has to be addressed.

Mathematical Models

For the production of biotechnical goods, many
up- and downstream unit operations are involved
besides the biological reactions. As these pose
no typical bio-related challenges, we will concen-
trate here on the cultivation of the organisms only.
This is mostly performed in aqueous solutions in
special bioreactors through which air is sparged
for a supply with oxygen. In some cases, other
gases are supplied as well; see Fig. 1. Disregard-
ing wastewater treatment plants, most cultiva-
tions are still performed in a fed-batch mode,
meaning that a small amount of cells and part
of the nutrients are put into the reactor initially.
Then more nutrients and correcting fluids, e.g.,

for pH or antifoam control, are added with vari-
able rates leading to an unsteady behavior. The
system to be modeled consists of the gaseous, the
liquid, and the biotic phase inside the reactor. For
the former ones, balance equations can be formu-
lated readily. The biotic phase can be modeled
in a structured or unstructured way. Moreover, as
not all cells behave similarly, this may give rise to
a segregated model formulation which is omitted
here for brevity.

UnstructuredModels
If the biotic phase is represented by just one
state variable, mX , a typical example of a simple
unstructured model of the liquid phase would be

PmX D �XmX

PmP D �PmX

PmS D �a1�XmX � a2�PmX C cS;feed u

PmO D a3.a4 � cO/� a5�XmX � a6�PmX

PV D u

Control of Biotechnological Processes, Fig. 1 Modern laboratory reactor platform for control-oriented process
development
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Control of Biotechnological Processes, Table 1 Multiplicative rates depending on several concentrations c1, . . . , ck
with possible kinetic terms

�i D aimax�i1.c1/ � �i2.c2/ � : : : � �ik.ck/
�ij cj

cj C aij

aij
cj C aij

cj

c2j C aij

cj
cj C aij

e�cj =aijC1
cj

aij c
2
j C cj C aijC1

. . .

with the masses mi with i D X;P; S;O for
cells, product, substrate or nutrient, and dissolved
oxygen, respectively. The volume is given by V ,
and the specific growth and production rates �X
and �P depend on concentrations ci D mi=V ,
e.g., of the substrate S or oxygenO according to
formal kinetics, e.g.,

�X D a7cScO

.cS C a8/.cO C a9/

�P D a10cS

a11c
2
S C cS C a12

The nutrient supply can be changed by the feed
rate u.t/ as a control input, with inflow concen-
tration cS;feed . Very often, just one feed stream
is considered in unstructured models. As all pa-
rameters ai have to be identified from noisy and
infrequently sampled data, a low-dimensional
nonlinear uncertain model results. All steps prior
to the cultivation in which, e.g., from frozen
cells, enough cells are produced to start the
fermentation add to the uncertainty. Whereas the
balance equations follow from first principles-
based modeling, the structure of the kinetics �X
and �P is unknown, i.e., empirical relations are
exploited. Many different kinetic expressions can
be used here; see Bastin and Dochain (1990) or a
small selection shown in Table 1.

It has to be pointed out that, most often,
neither cX , cP , nor cS are measured online. As
the measurement of cO might be unreliable, the
exhaust gas concentration of the gaseous phase
is the main online measurement which can be
used by employing an additional balance equa-
tion for the gaseous phase. Infrequent at-line
measurements, though, are sometimes available
for X;P; S , especially at the lab-scale during
process development.

StructuredModels
In structured models, the changing composition
and reaction pathways of the cell is accounted for.
As detailed information about the cell’s complete
metabolism including all regulations is missing
for the majority if not all cells exploited in bio-
processes, an approximative description is used.
Examples are models in which a part of the real
metabolism is described on a mechanistic level,
whereas the rest is lumped together into one or
very few states (Goudar et al. 2006), cybernetic
models (Varner and Ramkrishna 1998), or com-
partment models (King 1997). As an example,
all compartment models can be written down as

Pm D A�.c/C f
in
.u/C f

out
.u/

PV D
X
i

ui

with vectors of streams into and out of the re-
action mixture, f

in
and f

out
, which depend

on control inputs u; a matrix of (stoichiomet-
ric) parameters, A; a vector of reaction rates
� D �.c/; and, finally, a vector m comprising
substrates, products, and more than one biotic
state. These biotic states can be motivated, for
example, by physiological arguments, describing
the total amounts of macromolecules in the cell,
such as the main building blocks DNA, RNA, and
proteins. In very simple compartment models, the
cell is only divided up into what is called ac-
tive and inactive biomass. Again, all coefficients
in A and the structure and the coefficients of
all entries in �.c/ (see Table 1) are unknown
and have to be identified based on experimental
data. Issues of structural and practical identifia-
bility are of major concern. For models of sys-
tem biology (see �Deterministic Description of
Biochemical Networks), algebraic equations are

http://dx.doi.org/10.1007/978-1-4471-5058-9_87
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added that describe the dependencies between in-
dividual fluxes. Then at least part of A is known.

Describing the biotic phase with a higher de-
gree of granularity does not change the mea-
surement situation in the laboratory or in the
production scale, i.e., still only very few online
measurements will be available for control.

Identification

Even if the growth medium initially “only” con-
sists of some 10–20 different, chemically well-
defined substances, from which only few are
described in the model, this situation will change
over the cultivation time as the organisms release
further compounds from which only few may be
known. If, for economic reasons, complex raw
materials are used, even the initial composition
is unknown. Hence, measuring the concentrations
of some of the compounds of the large set of
substances as a basis for modeling is not trivial.
For structured models, intracellular substances
have to be determined additionally. These are
embedded in an even larger matrix of compounds
making chemical analysis more difficult. There-
fore, the basis for parameter and structure identi-
fication is uncertain.

As the expensive experiments and chemical
analysis tasks are very time consuming, some-
times lasting up to several weeks, methods of
optimal experimental design should always be
considered in biotechnology; see �Experiment
Design and Identification for Control.

The models to be built up should possess
some predictive capability for a limited range
of environmental conditions. This rules out un-
structured models for many practical situations.
However, for process control, the models should
still be of manageable complexity. Medium-sized
structured models seem to be well suited for
such a situation. The choice of biotic states in
m and possible structures for the reaction rates
�i , however, is hardly supported by biological
or chemical evidence. As a result, a combined
structure and parameter identification problem
has to be solved. The choices of possible terms
�ij in all �i give rise to a problem that exhibits

a combinatorial explosion. Although approaches
exist to support this modeling step (see Herold
and King 2013 or Mangold et al. 2005) finally,
the modeler will have to settle with a compromise
with respect to the accuracy of the model found
versus the number of fully identified model can-
didates. As a result, all control methods applied
should be robust in some sense.

Soft Sensors

Despite many advantages in the development
of online measurements (see Mandenius and
Titchener-Hooker 2013) systems for supervision
and control of biotechnical processes often
include model-based estimations schemes, such
as extended Kalman filters (EKF); see �Kalman
Filters. Concentration estimates are needed for
unmeasured substances and for quantities which
depend on these concentrations like the growth
rate of the cells. In real applications, formulations
have to be used which account for delays in
laboratory analysis of up to several hours and for
situations in which results from the laboratory
will not be available in the same sequence as
the samples were taken. An example from a
real cultivation is shown in Fig. 2. Here, the at-
line measurement of the biomass concentration,
cX D mX=V , is the only measurement available.
The result of a single measurement is obtained
about 30 min after sampling. For reference,
unaccessible state variables, which were analyzed
later, are shown as well along with the online
estimates. The scatter of the data, especially of
DNA and RNA, gives a qualitative impression of
the measurement accuracy in biotechnology.

Control

Beside the relatively simple control of physical
parameters, such as temperature, pH, dissolved
oxygen, or carbon dioxide concentration, only
few biotic variables are typically controlled
with respect to a setpoint. The most prominent
example is the growth rate of the biomass with
the goal to reach a high cell concentration

http://dx.doi.org/10.1007/978-1-4471-5058-9_103
http://dx.doi.org/10.1007/978-1-4471-5058-9_61
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Control of Biotechnological Processes, Fig. 2 Estima-
tion of states of a structured model with an EKF with an
unexpected growth delay initially. At-line measurement
mX (red filled circles), initially predicted evolution of

states (black), online estimated evolution (blue), off-line
data analyzed after the experiment (open red circles) (Data
obtained by T. Heine)

in the reactor as fast as possible. This is the
predominant goal when the cells are the primary
target as in baker’s yeast cultivations or when
the expression of the desired product is growth
associated. For other non-growth-associated
products, a high cell mass is desirable as well,
as production is proportional to the amount of
cells. If the nutrient supply is maintained above a
certain level, unlimited growth behavior results,
allowing the use of unstructured models for
model-based control. An excess of nutrients
has to be avoided, though, as some organisms,
like baker’s yeast, will initiate an overflow
metabolism, with products which may be
inhibitory in later stages of the cultivation. For
some products, such as the antibiotic penicillin,
the organism has to grow slowly to obtain
a high production rate. For these so-called
secondary metabolites, low but not vanishing
concentrations for some limiting substrates
are needed. If setpoints are given for these

concentrations instead, this can pose a rather
challenging control problem. As the organisms
try to grow exponentially, the controller must
be able to increase the feed exponentially as
well. The difficulty mainly arises from the
inaccurate and infrequent measurements that
the soft sensors/controller has to work with
and from the danger that an intermediate
shortage or oversupply with nutrients may switch
the metabolism to an undesired state of low
productivity.

For control of biotechnical processes,
many methods explained in this encyclopedia
including feedforward, feedback, model-based,
optimal, adaptive, fuzzy, neural nets, etc., can
be and have been used (cf. Dochain 2008;
Gnoth et al. 2008; Rani and Rao 1999).
As in other areas of application, (robust)
model-predictive control schemes (MPC) (see
� Industrial MPC of Continuous Processes) are
applied with great success in biotechnology.

http://dx.doi.org/10.1007/978-1-4471-5058-9_242
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Control of Biotechnological Processes, Fig. 3 MPC
control and state estimation of a cultivation with S. ten-
dae. At-line measurement mX (red filled circles), initially
predicted evolution of states (black), online estimated evo-

lution (blue), off-line data analyzed after the experiment
(open red circles). Off-line optimal feeding profiles ui
(blue broken line), MPC-calculated feeds (black, solid)
(Data obtained by T. Heine)

For the antibiotic production shown in Fig. 3,
optimal feeding profiles ui for ammonia (AM),
phosphate (PH), and glucose (C) were calculated
before the experiment was performed in a
trajectory optimization such that the final
mass of the desired antibiotic nikkomycin
(Ni) was maximized. This resulted in the blue
broken lines for the feeds ui . However, due to
disturbances and model inaccuracies, an MPC
scheme had to significantly change the feeding
profiles, to actually obtain this high amount
of nikkomycin; see the feeding profiles given
in black solid lines. This example shows that,
especially in biotechnology, off-line trajectory
planning has to be complemented by closed-loop
concepts.

On the other hand, the experimental data given
in Fig. 2 shows that significant disturbances, such
as an unexpected initial growth delay, may occur
in real systems as well. For this reason, the
classical receding horizon MPC with an off-line

determined optimal reference trajectory will not
always be the best solution, and an online op-
timization over the whole horizon has a larger
potential (cf. Kawohl et al. 2007).

Summary and Future Directions

Advanced process control including soft sen-
sors can significantly improve biotechnical pro-
cesses. Using these techniques promotes qual-
ity and reproducibility of processes (Junker and
Wang 2006). These methods should, however,
not only be exploited in the production scale.
For new pharmaceutical products, the time to
market is the decisive factor. Methods of (model-
based) monitoring and control can help here to
speed up process development. Since a few years,
a clear trend can be seen in biotechnology to
miniaturize and parallelize process development
using multi-fermenter systems and robotic tech-
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nologies. This trend gives rise to new challenges
for modeling on the basis of huge data sets and
for control in very small scales. At the same
time, it is expected that a continued increase
of information from bioinformatic tools will be
available which has to be utilized for process
control as well. Going to large-scale cultivations
adds further spatial dimensions to the problem.
Now, the assumption of a well-stirred, ideally
mixed reactor does not longer hold. Substrate
concentrations will be space dependent. Cells
will experience changing good and bad nutrient
environments frequently. Thus, mass transfer has
to be accounted for, leading to partial differential
equations as models for the process.
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Abstract

We introduce control and stabilization issues for
fluid flows along with known results in the field.
Some models coupling fluid flow equations and
equations for rigid or elastic bodies are presented,
together with a few controllability and stabiliza-
tion results.
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Control; Fluid flows; Fluid-structure systems;
Stabilization

Some Fluid Models

We consider a fluid flow occupying a bounded
domain �F 	 R

N , with N D 2 or N D 3,
at the initial time t D 0, and a domain �F (t)
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C

at time t > 0. Let us denote by .x; t/ 2 R
C

the density of the fluid at time t at the point
x 2 �F .t/ and by u.x; t/ 2 R

N its velocity.
The fluid flow equations are derived by writing
the mass conservation

@

@t
Cdiv.u/ D 0 in �F .t/; for t > 0; (1)

and the balance of momentum



�
@u

@t
C .u � r/u

�
D div � +  f

in �F .t/; for t > 0
(2)

where � is the so-called constraint tensor and
f represents a volumic force. For an isothermal
fluid, there is no need to complete the system
by the balance of energy. The physical nature
of the fluid flow is taken into account in the
choice of the constraint tensor � . When the vol-
ume is preserved by the fluid flow transport, the
fluid is called incompressible. The incompress-
ibility condition reads as div u D 0 in �F .t/.
The incompressible Navier-Stokes equations are
the classical model to describe the evolution of
isothermal incompressible and Newtonian fluid
flows. When in addition the density of the fluid
is assumed to be constant, (x, t) = 0, the
equations reduce to

div u D 0;

0

�
@u

@t
C .u � r/u

�
D ��u � rp C 0 f

in �F .t/; t > 0; (3)

which are obtained by setting

�D�
�
ru C .ru/T

�
C
�
� � 2�

3

�
div u I�pI;

(4)
in Eq. (2). When div u = 0, the expression of �
simplifies. The coefficients � > 0 and � > 0 are
the viscosity coefficients of the fluid, and p.x; t/
its pressure at the point x 2 �F .t/ and at time
t > 0.

This model has to be completed with boundary
conditions on @�F .t/ and an initial condition at
time t D 0.

The incompressible Euler equations with con-
stant density are obtained by setting � = 0 in the
above system.

The compressible Navier-Stokes system is ob-
tained by coupling the equation of conservation
of mass Eq. (1) with the balance of momentum
Eq. (2), where the tensor � is defined by Eq. (4),
and by completing the system with a constitutive
law for the pressure.

Control Issues

There are unstable steady states of the Navier-
Stokes equations which give rise to interesting
control problems (e.g., to maximize the ratio
“lift over drag”), but which cannot be observed
in real life because of their unstable nature. In
such situations, we would like to maintain the
physical model close to an unstable steady state
by the action of a control expressed in feedback
form, that is, as a function either depending on
an estimation of the velocity or depending on the
velocity itself. The estimation of the velocity of
the fluid may be recovered by using some real-
time measurements. In that case, we speak of a
feedback stabilization problem with partial infor-
mation. Otherwise, when the control is expressed
in terms of the velocity itself, we speak of a feed-
back stabilization problem with full information.

Another interesting issue is to maintain a fluid
flow (described by the Navier-Stokes equations)
in the neighborhood of a nominal trajectory (not
necessarily a steady state) in the presence of
perturbations. This is a much more complicated
issue which is not yet solved.

In the case of a perturbation in the initial
condition of the system (the initial condition at
time t D 0 is different from the nominal velocity
held at time t D 0), the exact controllability
to the nominal trajectory consists in looking for
controls driving the system in finite time to the
desired trajectory.

Thus, control issues for fluid flows are those
encountered in other fields. However there are
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specific difficulties which make the correspond-
ing problems challenging. When we deal with the
incompressible Navier-Stokes system, the pres-
sure plays the role of a Lagrange multiplier asso-
ciated with the incompressibility condition. Thus,
we have to deal with an infinite-dimensional non-
linear differential algebraic system. In the case
of a Dirichlet boundary control, the elimination
of the pressure, by using the so-called Leray or
Helmholtz projector, leads to an unusual form of
the corresponding control operator; see Raymond
(2006). In the case of an internal control, the
estimation of the pressure to prove observability
inequalities is also quite tricky; see Fernandez-
Cara et al. (2004). From the numerical viewpoint,
the approximation of feedback control laws leads
to very large-size problems, and new strategies
have to be found for tackling these issues.

Moreover, the issues that we have described
for the incompressible Navier-Stokes equations
may be studied for other models like the
compressible Navier-Stokes equations, the
Euler equations (describing nonviscous fluid
flows) both for compressible and incom-
pressible models, or even more complicated
models.

Feedback Stabilization of Fluid Flows

Let us now describe what are the known results
for the incompressible Navier-Stokes equations
in 2D or 3D bounded domains, with a control act-
ing locally in a Dirichlet boundary condition. Let
us consider a given steady state (us; ps/ satisfying
the equation

���us C .us � r/us C rps D fs;

and div us D 0 in �F ;

with some boundary conditions which may be
of Dirichlet type or of mixed type (Dirichlet-
Neumann-Navier type). For simplicity, we only
deal with the case of Dirichlet boundary condi-
tions

us D gs on @�F ;

where gs andfs are time-independent functions.
In the case �F .t/ D �F , not depending on t , the
corresponding instationary model is

@u
@t

� ��u C .u � r/u C rp D fs

and div u = 0 in �F � .0; 1/;

u D gs CPNc
iD1 fi .t/gi ; @�F � .0; 1/

u.0/ D u0 on �F .

(5)

In this model, we assume that u0 ¤ us , gi are
given functions with localized supports in @�F

and f .t/ D .f1.t/; : : : ; fNc .t// is a finite-
dimensional control. Due to the incompressibility
condition, the functions gi have to satisfy

Z
@�F

gi � n D 0;

where n is the unit normal to @�F , outward�F .
The stabilization problem, with a prescribed

decay rate �˛ < 0, consists in looking for a
control f in feedback form, that is, of the form

f .t/ D K.u.t/ � us/; (6)

such that the solution to the Navier-Stokes system
Eq. (5), with f defined by Eq. (6), obeys

e˛t .u.t/ � us/


z
� '

	ku0 � uskz



;

for some norm Z, provided ku0 � uskz is small
enough and where ' is a nondecreasing function.
The mapping K , called the feedback gain, may
be chosen linear.

The usual procedure to solve this stabilization
problem consists in writing the system satisfied
by u � us , in linearizing this system, and in
looking for a feedback control stabilizing this
linearized model. The issue is first to study the
stabilizability of the linearized model and, when
it is stabilizable, to find a stabilizing feedback
gain. Among the feedback gains that stabilize
the linearized model, we have to find one able
to stabilize, at least locally, the nonlinear system
too.

The linearized controlled system associated
with Eq. (5) is
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C

@v
@t

� ��v C .us � r/v C .v � r/us C rq D 0

and div v = 0 in �F � .0; 1/;

v D PNc
iD1 fi .t/gi on @�F � .0; 1/;

v.0/ D v0 on �F :
(7)

The easiest way for proving the stabilizability of
the controlled system Eq. (7) is to verify the Hau-
tus criterion. It consists in proving the following
unique continuation result. If .	j ;  j ; �j / is the
solution to the eigenvalue problem

�j	j � ��	j � .us � r/	j C .rus/
T 	j

Cr j D 0 and div	j D 0 in �F ;

	j D 0 on @�F ; Re �j � �˛; (8)

and if in addition .	j ;  j / satisfies

Z
@�F

gi � �.	j ;  j /n D 0 for all 1 � i � Nc;

then (	j ;  j / D 0. By using a unique continu-
ation theorem due to Fabre and Lebeau (1996),
we can explicitly determine the functions gi so
that this condition is satisfied; see Raymond and
Thevenet (2010). For feedback stabilization re-
sults of the Navier-Stokes equations in two or
three dimensions, we refer to Fursikov (2004),
Raymond (2006), Barbu et al. (2006), Raymond
(2007), Badra (2009), and Vazquez and Krstic
(2008).

Controllability to Trajectories of Fluid
Flows

If .Qu .t/; Qp .t//0�t<1 is a solution to the Navier-
Stokes system, the controllability problem to the
trajectory .Qu .t/; Qp .t//0�t<1, in time T > 0,
may be rewritten as a null controllability problem
satisfied by .v; q/ D .u � Qu;p � Qp/. The local
null controllability in time T > 0 follows from
the null controllability of the linearized system
and from a fixed point argument. The linearized
controlled system is

@v
@t

���v C .Qu .t/ � r/ vC.v � r/Qu .t/C rqD0
and div v = 0 in �F � .0; T /;
v D mc f on @�F � .0; T /;
v.0/ D v0 2 L2.�F IRN /; div v0= 0.

(9)
The nonnegative function mc is used to lo-

calize the boundary control f . The control f is
assumed to satisfy

Z
@�F

mc f � n D 0: (10)

As for general linear dynamical systems, the null
controllability of the linearized system follows
from an observability inequality for the solutions
to the following adjoint system

�@	
@t

���	�.Qu .t/ � r/ 	C.r Qu .t//T	Cr D0
and div 	 = 0 in �F � .0; T /;
	 D 0 on @�F � .0; T /;
	.T / 2 L2.�F IRN /; div 	(T ) = 0.

(11)

Contrary to the stabilization problem, the null
controllability by a control of finite dimension
seems to be out of reach and it will be
impossible in general. We look for a control
f 2 L2.@�F ; RN /, satisfying Eq. (10), driving
the solution to system Eq. (9) in time T to
zero, that is, such that the solution vv0; f
obeys vv0; f .T / D 0. The linearized system
Eq. (9) is null controllable in time T > 0 by a
boundary control f 2 L2.@�F ; R

N / obeying
Eq. (10), if and only if there exists C > 0 such
that

Z
�F

j	.0/j2 dx � C

Z
@�F

mc j�.	;  /nj2 dx;
(12)

for all solution (	; ) of Eq. (11). The
observability inequality Eq. (12) may be proved
by establishing weighted energy estimates called
“Carleman-type estimates”; see Fernandez-Cara
et al. (2004) and Fursikov and Imanuvilov
(1996).
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Additional Controllability Results for
Other Fluid FlowModels

The null controllability of the 2D incompressible
Euler equation has been obtained by J.-M. Coron
with the so-called Return Method (Coron 1996).
See also Coron (2007) for additional references
(in particular, the 3D case has been treated by O.
Glass).

Some null controllability results for the
one-dimensional compressible Navier-Stokes
equations have been obtained in Ervedoza et al.
(2012).

Fluid-Structure Models

Fluid-structure models are obtained by coupling
an equation describing the evolution of the fluid
flow with an equation describing the evolution
of the structure. The coupling comes from the
balance of momentum and by writing that at
the fluid-structure interface, the fluid velocity is
equal to the displacement velocity of the struc-
ture.

The most important difficulty in studying
those models comes from the fact that the domain
occupied by the fluid at time t evolves and
depends on the displacement of the structure.
In addition, when the structure is deformable,
its evolution is usually written in Lagrangian
coordinates while fluid flows are usually
described in Eulerian coordinates.

The structure may be a rigid or a deformable
body immersed into the fluid. It may also be a
deformable structure located at the boundary of
the domain occupied by the fluid.

A Rigid Body Immersed in a
Three-Dimensional Incompressible
Viscous Fluid
In the case of a 3D rigid body �S.t/ immersed
in a fluid flow occupying the domain �F .t/, the
motion of the rigid body may be described by
the position h.t/ 2 R

3 of its center of mass
and by a matrix of rotation Q.t/ 2 R

3 � 3.

The domain �S.t/ and the flow XS associated
with the motion of the structure obey

XS.y; t/ D h.t/CQ.t/Q�1
0 .y � h.0//;

for y 2 �S.0/ D �S;

�S.t/ D XS.�S.0/; t/;

(13)

and the matrix Q.t/ is related to the angular
velocity ! W .0; T / 7! R

3, by the differential
equation

Q0.t/ D !.t/ �Q.t/; Q.0/ D Q0: (14)

We consider the case when the fluid flow satisfies
the incompressible Navier-Stokes system Eq. (3)
in the domain �F .t/ corresponding to Fig. 1.
Denoting by J.t/ 2 R

3�3 the tensor of inertia
at time t , and bym the mass of the rigid body, the
equations of the structure are obtained by writing
the balance of linear and angular momenta

mh00 D
Z
@�S.t/

�.u; p/ndx;

J!0 D J! � ! C
Z
@�S .t/

.x � h/ � �.u; p/ndx;
h.0/ D h0; h

0.0/ D h1; !.0/ D !0;
(15)

where n is the normal to @�S.t/ outward�F .t/.
The system Eqs. (3) and (13)–(15) has to be com-
pleted with boundary conditions. At the fluid-
structure interface, the fluid velocity is equal to
the displacement velocity of the rigid solid:

u.x; t/ D h0.t/C !.t/ � .x � h.t//; (16)

for all x 2 @�S.t/, t > 0. The exterior bound-
ary of the fluid domain is assumed to be fixed

Control of Fluids and Fluid-Structure Interactions,
Fig. 1
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C

�e D @�F .t/n@�S.t/. The boundary condition
on �e � .0; T / may be of the form

u D mc f on �e � .0; 1/; (17)

with
R
�e
mc f � n D 0, f is a control, and mc a

localization function.

An Elastic Beam Located at the
Boundary of a Two-Dimensional
Domain Filled by an Incompressible
Viscous Fluid

When the structure is described by an infinite-
dimensional model (a partial differential equation
or a system of p.d.e.), there are a few existence
results for such systems and mainly existence of
weak solutions (Chambolle et al. 2005). But for
stabilization and control problems of nonlinear
systems, we are usually interested in strong so-
lutions. Let us describe a two-dimensional model
in which a one-dimensional structure is located
on a flat part �S D .0; L/� {y0} of the boundary
of the reference configuration of the fluid domain
�F . We assume that the structure is a Euler-
Bernoulli beam with or without damping. The
displacement � of the structure in the direction
normal to the boundary �S is described by the
partial differential equation

�t t�b�xx�c�txxCa�xxxxD F; in�S � .0; 1/;

� D 0 and �x D 0 on @�S � .0; 1/;

�.0/ D �01 and �t .0/ D �02 in �S ;
(18)

where �x , �xx , and �xxxx stand for the first,
the second, and the fourth derivative of � with
respect to x 2 �S . The other derivatives are
defined in a similar way. The coefficients b

and c are nonnegative, and a > 0. The term
c�txx is a structural damping term. At time
t , the structure occupies the position �S.t/ D
f.x; y/ jx 2 .0; L/; y D y0 C �.x; t/ g. When
�F is a two-dimensional model, �S is of
dimension one, and @�S is reduced to the two
extremities of �S . The momentum balance is

obtained by writing that F in Eq. (18) is given
by F D �p1C �2x �.u; p/ Qn � n, where Qn.x; y/
is the unit normal at .x; y/ 2 �S.t/ to �S.t/
outward �F .t/, and n is the unit normal to
�S outward �F .0/ D �F . If in addition, a
control f acts as a distributed control in the
beam equation, we shall have

F D �
q
1C �2x �.u; p/ Qn � nC f (19)

The equality of velocities on �S.t/ reads as

u.x; y0 C �.x; t// D .0; �t .x; t//;

x 2 .0; L/; t > 0: (20)

Control of Fluid-Structure Models

To control or to stabilize fluid-structure models,
the control may act either in the fluid equation or
in the structure equation or in both equations.
There are a very few controllability and
stabilization results for systems coupling the
incompressible Navier-Stokes system with a
structure equation. We state below two of those
results. Some other results are obtained for
simplified one-dimensional models coupling
the viscous Burgers equation coupled with the
motion of a mass; see Badra and Takahashi
(2013) and the references therein.

We also have to mention here recent papers on
control problems for systems coupling quasi-
stationary Stokes equations with the motion
of deformable bodies, modeling microorganism
swimmers at low Reynolds number; see Alouges
et al. (2008).

Null Controllability of the
Navier-Stokes System Coupled with
theMotion of a Rigid Body

The system coupling the incompressible Navier-
Stokes system Eq. (3) in the domain drawn
in Fig. 1, with the motion of a rigid body
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described by Eqs. (13)–(16), with the boundary
control Eq. (17) is null controllable locally in a
neighborhood of 0. Before linearizing the system
in a neighborhood of 0, the fluid equations have
to be rewritten in Lagrangian coordinates, that
is, in the cylindrical domain �F � .0;1/. The
linearized system is the Stokes system coupled
with a system of ordinary differential equations.
The proof of this null controllability result relies
on a Carleman estimate for the adjoint system;
see, e.g., Boulakia and Guerrero (2013).

Feedback Stabilization of the
Navier-Stokes SystemCoupled with a
Beam Equation

The system coupling the incompressible Navier-
Stokes system Eq. (3) in the domain drawn in
Fig. 2, with beam Eqs. (18)–(20), can be locally
stabilized with any prescribed exponential decay
rate �˛ < 0, by a feedback control f acting in
Eq. (18) via Eq. (19); see Raymond (2010). The
proof consists in showing that the infinitesimal
generator of the linearized model is an analytic
semigroup (when c > 0), that its resolvent is
compact, and that the Hautus criterion is satisfied.

When the control acts in the fluid equation,
the system coupling Eq. (3) in the domain drawn
in Fig. 2, with the beam Eqs. (18)–(20), can be
stabilized when c > 0. To the best of our
knowledge, there is no null controllability result
for such systems, even with controls acting both
in the structure and fluid equations. The case
where the beam equation is approximated by a
finite-dimensional model is studied in Lequeurre
(2013).

Control of Fluids and Fluid-Structure Interactions,
Fig. 2
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Control of Linear Systemswith
Delays

Wim Michiels
KU Leuven, Leuven (Heverlee), Belgium

Abstract

The presence of time delays in dynamical sys-
tems may induce complex behavior, and this be-
havior is not always intuitive. Even if a system’s
equation is scalar, oscillations may occur. Time
delays in control loops are usually associated
with degradation of performance and robustness,
but, at the same time, there are situations where
time delays are used as controller parameters.

Keywords

Delay differential equations; Delays as controller
parameters; Functional differential equation

Introduction

Time-delays are important components of many
systems from engineering, economics, and the
life sciences, due to the fact that the transfer
of material, energy, and information is mostly
not instantaneous. They appear, for instance, as
computation and communication lags, they

model transport phenomena and heredity, and
they arise as feedback delays in control loops.
An overview of applications, ranging from traffic
flow control and lasers with phase-conjugate
feedback, over (bio)chemical reactors and cancer
modeling, to control of communication networks
and control via networks, is included in Sipahi
et al. (2011).

The aim of this contribution is to describe
some fundamental properties of linear control
systems subjected to time-delays and to outline
principles behind analysis and synthesis methods.
Throughout the text, the results will be illustrated
by means of the scalar system

Px.t/ D u.t � �/; (1)

which, controlled with instantaneous state feed-
back, u.t/ D �kx.t/, leads to the closed-loop
system

Px.t/ D �kx.t � �/: (2)

Although this didactic example is extremely sim-
ple, we shall see that its dynamics are already
very rich and shed a light on delay effects in
control loops.

In some works, the analysis of (2) is called the
hot shower problem, as it can be interpreted as
a (over)simplified model for a human adjusting
the temperature in a shower: x.t/ then denotes
the difference between the water temperature and
the desired temperature as felt by the person, the
term – kx.t/ models the reaction of the person
by further opening or closing taps, and the delay
is due to the propagation with finite speed of the
water in the ducts.

Basis Properties of Time-Delay
Systems

Functional Differential Equation
We focus on a model for a time-delay system
described by

Px.t/ D A0x.t/CA1x.t � �/; x.t/ 2 R
n: (3)
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This is an example of a functional differential
equation (FDE) of retarded type. The term FDE
stems from the property that the right-hand side
can be interpreted as a functional evaluated at a
piece of trajectory. The term retarded expresses
that the right-hand side does not explicitly depend
on Px.

As a first difference with an ordinary differ-
ential equation, the initial condition of (3) at
t D 0 is a function 	 from Œ��; 0
 to R

n. For
all 	 2 C .Œ��; 0
 ;Rn/, where C .Œ��; 0
 ;Rn/ is
the space of continuous functions mapping the
interval Œ��; 0
 into R

n, a forward solution x.	/
exists and is uniquely defined. In Fig. 1, a solution
of the scalar system (2) is shown.

The discontinuity in the derivative at t = 0
stems from A0	.0/ C A1	.��/ ¤ lim�!0

P	.
Due to the smoothing property of an integrator,
however, at t D n 2 N, the discontinuity will
only be present in the .n C 1/th derivative.
This illustrates a second property offunctional

differential equations of retarded type: solutions
become smoother as time evolves. As a
third major difference with ODEs, backward
continuation of solutions is not always possible
(Michiels and Niculescu 2007).

Reformulation in a First-Order Form
The state of system (3) at time t is the minimal in-
formation needed to continue the solution, which,
once again, boils down to a function segment
xt .	/where xt .	/.�/ D x.t C�/; � 2 Œ��; 0
 (in
Fig. 1, the function xt is shown in red for t D 5).
This suggests that (3) can be reformulated as a
standard ordinary differential equation over the
infinite-dimensional space C.Œ��; 0
;Rn/. This
equation takes the form

d

dt
z.t/ D Az.t/; z.t/ 2 C .Œ��; 0
 ;Rn/ (4)

where operator A is given by

D .A/ D
�
	 2 C .Œ��m; 0
 ; Rn/ W P	 2 C .Œ��m; 0
 ; Rn/

P	 .0/ D A0	 .0/C A1	 .��/
�
;

A	 D d	

d�
: (5)

The relation between solutions of (3) and (4)
is given by z.t/.�/ D x.t C �/; � 2 Œ��; 0
.
Note that all system information is concentrated
in the nonlocal boundary condition describing the
domain of A. The representation (4) is closely
related to a description by an advection PDE with
a nonlocal boundary condition (Krstic 2009).

Asymptotic Growth Rate of Solutions
and Stability
The reformulation of (3) into the standard
form (4) allows us to define stability notions
and to generalize the stability theory for ordinary
differential equations in a straightforward way,
with the main change that the state space is
C.Œ��; 0
;Rn/. For example, the null solution
of (3) is exponentially stable if and only if there
exist constants C > 0 and � > 0 such that

8	 2 C .Œ��m; 0
 ; Rn/ kxt .	/ks � Ce�� t k	ks ;

where jj � jjs is the supremum norm and jj	jjs D
sup�2Œ��;0
jj	.�/jj2. As the system is linear,
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Solution of (2) for � D 1; k D 1, and initial condition
	 � 1
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asymptotic stability and exponential stability are
equivalent. A direct generalization of Lyapunov’s
second method yields:

Theorem 1 The null solution of linear system
(3) is asymptotically stable if there exist a
continuous functional V W C.Œ��; 0
;Rn/ ! R (a
so-called Lyapunov-Krasovskii functional) and
continuous nondecreasing functions u; v;w W
R

C ! R
C with

u.0/ D v.0/ D w.0/ D 0 and u.s/ > 0;

v.s/ > 0;w.s/ > for s > 0;

such that for all 	 2 C.Œ��; 0
;Rn/
u .k	ks/ � V.	/ � v .k	./k2/ ;

PV .	/ � �w .k	./k2/ ;

where

PV .	/ D lim sup
h!0C

1

h
ŒV .xh.	//� V.	/
:

Converse Lyapunov theorems and the con-
struction of the so-called complete-type
Lyapunov-Krasovskii functionals are discussed
in Kharitonov (2013). Imposing a particular
structure on the functional, e.g., a form depending
only on a finite number of free parameters,
often leads to easy-to-check stability criteria
(for instance, in the form of LMIs), yet as price
to pay, the obtained results may be conservative
in the sense that the sufficient stability conditions
might not be close to necessary conditions.
As an alternative to Lyapunov functionals,
Lyapunov functions can be used as well, provided
that the condition PV < 0 is relaxed (the so-
called Lyapunov-Razumikhin approach); see, for
example, Gu et al. (2003).

Delay Differential Equations as
Perturbation of ODEs
Many results on stability, robust stability, and
control of time-delay systems are explicitly or
implicitly based on a perturbation point of view,
where delay differential equations are seen as
perturbations of ordinary differential equations.
For instance, in the literature, a classification
of stability criteria is often presented in terms

of delay-independent criteria (conditions holding
for all values of the delays) and delay-dependent
criteria (usually holding for all delays smaller
than a bound). This classification has its origin at
two different ways of seeing (3) as a perturbation
of an ODE, with as nominal system Px.t/ D
A0x.t/ and Px.t/ D .A0 C A1/x.t/ (system
for zero delay), respectively. This observation is
illustrated in Fig. 2 for results based on input-
output- and Lyapunov-based approaches.

The Spectrum of Linear Time-Delay
Systems

Two Eigenvalue Problems
The substitution of an exponential solution in (3)
leads us to the nonlinear eigenvalue problem

.�I �A0�A1e��� /v D 0; � 2 C; v 2 C
n; v ¤ 0:

(6)
The solutions of the equation det.�I � A0 �
A1e

��� / D 0 are called characteristic roots.
Similarly, formulation (4) leads to the equivalent
infinite-dimensional linear eigenvalue problem

.�I �A/u D 0; � 2 C; u 2 C.Œ��; 0
;Cn/; u 6
0:
(7)

The combination of these two viewpoints lays
at the basis of most methods for computing
characteristic roots; see Michiels (2012). On the
one hand, discretizing (7), i.e., approximating
A with a matrix, and solving the resulting
standard eigenvalue problems allow to obtain
global information, for example, estimates of
all characteristic roots in a given compact set
or in a given right half plane. On the other
hand, the (finitely many) nonlinear equations (6)
allow to make local corrections on characteristic
root approximations up to the desired accuracy,
e.g., using Newton’s method or inverse residual
iteration. Linear time-delay systems satisfy
spectrum-determined growth properties of
solutions. For instance, the zero solution of (3)
is asymptotically stable if and only if all
characteristic roots are in the open left half plane.
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input-output setting:

(λI−A0)
−1A1

e−λτI

(λI− (A0 + A1))
−1A1λ

e−λτ−1
λ

I

e−jωτ = 1 e−jωτ−1
jω

≤ τ

Lyapunov setting:

V = xT Px +   ...
where
A0

T P + PA0 < 0

Delay-independent results

ẋ(t) = A0x(t)+A1x(t− τ)

Delay-dependent results

ẋ(t) = (A0 + A1)x(t)+A1(x(t− τ)−x(t))

V = xT Px +   ...
where
(A0 + A1)

T P + P (A0 + A1) < 0

Control of Linear SystemswithDelays, Fig. 2 The classification of stability criteria in delay-independent results and
delay-dependent results stems from two different perturbation viewpoints. Here, perturbation terms are printed in red
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Control of Linear Systems with Delays, Fig. 3 (Left) Rightmost characteristic roots of (2) for k� D 1. (Right) Real
parts of rightmost characteristic roots as a function of k�

In Fig. 3 (left), the rightmost characteristic
roots of (2) are depicted for k� D 1. Note that
since the characteristic equation can be written
as �� C k�e��� D 0; k and � can be combined
into one parameter. In Fig. 3 (right), we show the
real parts of the characteristic roots as a func-
tion of k� . The plots illustrate some important
spectral properties of retarded-type FDEs. First,
even though there are in general infinitely many
characteristic roots, the number of them in any
right half plane is always finite. Second, the indi-
vidual characteristic roots, as well as the spectral

abscissa, i.e., the supremum of the real parts of
all characteristic roots, continuously depend on
parameters. Related to this, a loss or gain of
stability is always associated with characteristic
roots crossing the imaginary axis. Figure 3 (right)
also illustrates the transition to a delay-free sys-
tem as k� ! 0C.

Critical Delays: A Finite-Dimensional
Characterization
Assume that for a given value of k, we are
looking for values of the delay �c for which (2)
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has a characteristic root j!c on the imaginary
axis. From j! D �ke�j!� , we get

!c D k; �c D
�
2

C l2�

!c
; l

D 0; 1; : : : ;<
�
d�

d�
j.�c ;j!c/

��1
D 1

!2c
: (8)

Critical delay values �c are indicated with green
circles on Fig. 3 (right). The above formulas first
illustrate an invariance property of imaginary
axis roots and their crossing direction with re-
spect to delay shifts of 2�=!c . Second, the num-
ber of possible values of !c is one and thus finite.
More generally, substituting � D j! in (6) and
treating � as a free parameter lead to a two-
parameter eigenvalue problem

.j!I � A0 � A1z/v D 0; (9)

with ! on the real axis and z WD exp.�j!�/
on the unit circle. Most methods to solve such a
problem boil down to an elimination of one of the
independent variables! or z. As an example of an
elimination technique, we directly get from (9)

j! 2 �.A0 C A1z/; �j! 2 �.A�
0 C A�

1 z�1/

) det
	
.A0 C A1z/˚ .A�

0 C A�
1 z�1/


 D 0;

where �.�/ denotes the spectrum and ˚ the
Kronecker sum. Clearly, the resulting eigenvalue
problem in z is finite dimensional.

Control of Linear Time-Delay System

Limitations Induced by Delays
It is well known that delays in control loop
may lead to a significant degradation of per-
formance and robustness and even to instability
(Niculescu 2001; Richard 2003). Let us return
to example (2). As illustrated with Fig. 3 and
expressions (8), the system loses stability if �
reaches the value �=2k, while stability cannot
be recovered for larger delays. The maximum
achievable exponential decay rate of the solu-
tions, which corresponds to the minimum of the

spectral abscissa, is given by �1=� ; hence, large
delays can only be tolerated at the price of a
degradation of the rate of convergence. It should
be noted that the limitations induced by delays are
even more stringent if the uncontrolled systems
are exponentially unstable, which is not the case
for (2).

The analysis in the previous sections gives
a hint why control is difficult in the presence
of delays: the system is inherently infinite
dimensional. As a consequence, most control
design problems which involve determining a
finite number of parameters can be interpreted
as reduced-order control design problems or
as control design problems for under-actuated
systems, which both are known to be hard
problems.

Fixed-Order Control
Most standard control design techniques lead to
controllers whose dimension is larger or equal
to the dimension of the system. For infinite-
dimensional time-delay system, such controllers
might have a disadvantage of being complicated
and hard to implement. To see this, for a system
with delay in the state, the generalization of
static state feedback, u.t/ D k.x/, is given by
u.t/ D R 0

�� x.t C �/d�.�/, where� is a function
of bounded variation. However, in the context
of large-scale systems, it is known that reduced-
order controllers often perform relatively well
compared to full-order controllers, while they are
much easier to implement.

Recently, new methods for the design of con-
trollers with a prescribed order (dimension) or
structure have been proposed (Michiels 2012).
These methods rely on a direct optimization of
appropriately defined cost functions (spectral ab-
scissa, H2=H1 criteria). While H2 criteria can be
addressed within a derivative-based optimization
framework, H1 criteria and the spectral abscissa
require targeted methods for non-smooth opti-
mization problems. To illustrate the need for such
methods, consider again Fig. 3 (right): minimiz-
ing the spectral abscissa for a given value of �
as a function of the controller gain k leads to an
optimum where the objective function is not dif-
ferentiable, even not locally Lipschitz, as shown
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by the red circle. In case of multiple controller
parameters, the path of steepest descent in the pa-
rameter space typically has phases along a man-
ifold characterized by the non-differentiability of
the objective function.

Using Delays as Controller Parameters
In contrast to the detrimental effects of delays,
there are situations where delays have a beneficial
effect and are even used as controller parameters;
see Sipahi et al. (2011). For instance, delayed
feedback can be used to stabilize oscillatory sys-
tems where the delay serves to adjust the phase in
the control loop. Delayed terms in control laws
can also be used to approximate derivatives in
the control action. Control laws which depend
on the difference x.t/ � x.t � �/, the so-called
Pyragas-type feedback, have the property that the
position of equilibria and the shape of periodic
orbits with period � are not affected, in contrary
to their stability properties. Last but not least,
delays can be used in control schemes to generate
predictions or to stabilize predictors, which allow
to compensate delays and improve performance
(Krstic 2009; Zhong 2006). Let us illustrate the
main idea once more with system (1).

System (1) has a special structure, in the sense
that the delay is only in the input, and it is advan-
tageous to exploit this structure in the context of
control. Coming back to the didactic example, the
person who is taking a shower is – possibly after
some bad experiences – aware about the delay
and will take into account his/her prediction of
the system’s reaction when adjusting the cold and
hot water supply. Let us, to conclude, formalize
this. The uncontrolled system can be rewritten as
Px.t/ D v.t/, where v.t/ D u.t � �/. We know
u up to the current time t ; thus, we know v up
to time t C � , and if x.t/ is also known, we can
predict the value of x at time t C � ,

xp.t C �/ D x.t/C
Z tC�

t

v.s/ds

D x.t/C
Z t

t��
u.s/ds;

and use the predicted state for feedback. With the
control law u.t/ D �kxp.t C �/, there is only

one closed-loop characteristic root at � D �k,
i.e., as long as the model used in the predictor
is exact, the delay in the loop is compensated by
the prediction. For further reading on prediction-
based controllers, see, e.g., Krstic (2009) and the
references therein.

Conclusions

Time-delay systems, which appear in a large
number of applications, are a class of infinite-
dimensional systems, resulting in rich dynamics
and challenges from a control point of view. The
different representations and interpretations and,
in particular, the combination of viewpoints lead
to a wide variety of analysis and synthesis tools.
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Abstract

Control of machining processes encompasses
a broad range of technologies and innovations,
ranging from optimized motion planning and
servo drive loop design to on-the-fly regulation
of cutting forces and power consumption to
applying control strategies for damping out
chatter vibrations caused by the interaction of
the chip generation mechanism with the machine
tool structural dynamics. This article provides a
brief introduction to some of the concepts and
technologies associated with machining process
control.

Keywords

Adaptive control; Chatter vibrations; Feed drive
control; Machining; Trajectory planning

Introduction

Machining is used extensively in the manufac-
turing industry as a shaping process, where high
product accuracy, quality, and strength are re-
quired. From automotive and aerospace compo-
nents, to dies and molds, to biomedical implants,
and even mobile device chassis, many manufac-
tured products rely on the use of machining.

Machining is carried out on machine tools,
which are multi-axis mechatronic systems de-
signed to provide the relative motion between

the tool and workpiece, in order to facilitate the
desired cutting operation. Figure 1 illustrates a
single axis of a ball screw-driven machine tool,
performing a milling operation. Here, the cutting
process is influenced by the motion of the servo
drive. The faster the part is fed in towards the ro-
tating cutter, the larger the cutting forces become,
following a typically proportional relationship
that holds for a large class of milling operations
(Altintas 2012). The generated cutting forces, in
turn, are absorbed by the machine tool and feed
drive structure. They cause mechanical deforma-
tion and may also excite the vibration modes,
if their harmonic content is near the structural
natural frequencies. This may, depending on the
cutting speed and tool and workpiece engagement
conditions, lead to forced vibrations or chatter
(Altintas 2012).

The disturbance effect of cutting forces is
also felt by the servo control loop, consisting of
mechanical, electrical, and digital components.
This disturbance may result in the degradation
of tool positioning accuracy, thereby leading to
part errors. Another input that influences the
quality achieved in a machining operation is the
commanded trajectory. Discontinuous or poorly
designed motion commands, with acceleration
discontinuity, lead typically to jerky motion, vi-
brations, and poor surface finish. Beyond motion
controller design and trajectory planning, emerg-
ing trends in machining process control include
regulating, by feedback, various outcomes of the
machining process, such as peak resultant cutting
force, spindle power consumption, and amplitude
of vibrations caused by the machining process.
In addition to using actuators and instrumentation
already available on a machine tool, such as feed
and spindle drives and current sensors, additional
devices, such as dynamometers, accelerometers,
as well as inertial or piezoelectric actuators, may
need to be used in order to achieve the required
level of feedback and control injection capability.

Servo Drive Control

Stringent requirements for part quality, typically
specified in microns, coupled with disturbance
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Control of Machining Processes, Fig. 1 Single axis of a ball screw-driven machine tool performing milling

force inputs coming from the machining process,
which can be in the order of tens to thousands
of Newtons, require that the disturbance rejec-
tion of feed drives, which act as dynamic (i.e.,
frequency dependent) “stiffness” elements, be
kept as strong as possible. In traditional machine
design, this is achieved by optimizing the me-
chanical structure for maximum rigidity. After-
wards, the motion control loop is tuned to yield
the highest possible bandwidth (i.e., responsive
frequency range), without interfering with the
vibratory modes of the machine tool in a way that
can cause instability. The P-PI position velocity
cascade control structure, shown in Fig. 2, is
the most widely used technique in machine tool
drives. Its tuning guidelines have been well estab-
lished in the literature (Ellis 2004). To augment
the command following accuracy, velocity and
acceleration feedforward, and friction compensa-
tion terms are added. Increasing the closed-loop
bandwidth yields better disturbance rejection and
more accurate tracking of the commanded tra-
jectory (Pritschow 1996), which is especially
important in high-speed machining applications
where elevated cutting speeds necessitate faster
feed motion.

It can be seen in Fig. 3 that increased axis
tracking errors (ex and ey) may result in increased
contour error ."/. A practical solution to mitigate
this problem, in machine tool engineering, is
to also match the dynamics of different motion
axes, so that the tracking errors always assume
an instantaneous proportion that brings the actual
tool position as close as possible to the desired
toolpath (Koren 1983). Sometimes, the control
action can be designed to directly reduce the
contour error as well, which leads to the structure
known as “cross-coupling control” (Koren 1980).

Trajectory Planning

Smooth trajectory planning with at least accel-
eration level continuity is required in machine
tool control, in order to avoid inducing unwanted
vibration or excessive tracking error during the
machining process. For this purpose, computer
numerical control (CNC) systems are equipped
with various spline toolpath interpolation func-
tions, such as B-splines, and NURBS. The fee-
drate (i.e., progression speed along the toolpath)
is planned in the “look-ahead” function of the
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Control of Machining
Processes, Fig. 2 P-PI
position velocity cascade
control used in machine
tool drives

Control of Machining
Processes, Fig. 3
Formation of contour error
."/, as a result of servo
errors (ex and ey) in the
individual axes

CNC so that the total machining cycle time is
reduced as much as possible. This has to be
done without violating the position-dependent
feedrate limits already programmed into the nu-
merical control (NC) code, which are specified
by considering various constraints coming from
the machining process.

In feedrate optimization, axis level trajecto-
ries have to stay within the velocity and torque
limits of the drives, in order to avoid damaging
the machine tool or causing actuator saturation.
Moreover, as an indirect way of containing track-
ing errors, the practice of limiting axis level jerk
(i.e., rate of change of acceleration) is applied
(Gordon and Erkorkmaz 2013). This results in

reduced machining cycle time, while avoiding
excessive vibration or positioning error due to
“jerky” motion.

An example of trajectory planning using quin-
tic (5th degree) polynomials for toolpath param-
eterization is shown in Fig. 4. Here, comparison
is provided between unoptimized and optimized
feedrate profiles subject to the same axis velocity,
torque (i.e., control signal), and jerk limits. As
can be seen, significant machining time reduc-
tion can be achieved through trajectory optimiza-
tion, while retaining the dynamic tool position
accuracy. While Fig. 4 shows the result of an
elaborate nonlinear optimization approach (Alt-
intas and Erkorkmaz 2003), practical look-ahead
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Control of Machining Processes, Fig. 4 Example of quintic spline trajectory planning without and with feedrate
optimization

algorithms have also been proposed which lead to
more conservative cycle times but are much better
suited for real-time implementation inside a CNC
(Weck et al. 1999).

Adaptive Control of Machining

There are established mathematical methods for
predicting cutting forces, torque, power, and even
surface finish for a variety of machining oper-
ations like turning, boring, drilling, and milling
(Altintas 2012). However, when machining com-
plex components, such as gas turbine impellers,
or dies and molds, the tool and workpiece en-
gagement and workpiece geometry undergo con-
tinuous change. Hence, it may be difficult to
apply such prediction models efficiently, unless

they are fully integrated inside a computer-aided
process planning environment, as reported for
3-axis machining by Altintas and Merdol (2007).

An alternative approach, which allows the ma-
chining process to take place within safe and ef-
ficient operating bounds, is to use feedback from
the machine tool during the cutting process. This
measurement can be of the cutting forces using a
dynamometer or the spindle power consumption.
This measurement is then used inside a feedback
control loop to override the commanded feedrate
value, which has direct impact on the cutting
forces and power consumption. This scheme can
be used to ensure that the cutting forces do not
exceed a certain limit for process safety or to
increase the feed when the machining capacity
is underutilized, thus boosting productivity. Since
the geometry and tool engagement are generally
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Control of Machining Processes, Fig. 5 Example of 5-axis impeller machining with adaptive force control (Source:
Budak and Kops (2000), courtesy of Elsevier)

Control of Machining
Processes, Fig. 6
Schematic of the chatter
vibration mechanism for
one degree of freedom
(From: Altintas (2012),
courtesy of Cambridge
University Press)

continuously varying, the coefficients of a model
that relates the cutting force (or power) to the feed
command are also time-varying. Furthermore,
in CNC controllers, depending on the trajectory
generation architecture, the execution latency of
a feed override command may not always be
deterministic. Due to these sources of variabil-
ity, rather than using classical fixed gain feed-
back, machining control research has evolved
around adaptive control techniques (Masory and
Koren 1980; Spence and Altintas 1991), where
changes in the cutting process dynamics are con-
tinuously tracked and the control law, which com-
putes the proceeding feedrate override, is updated

accordingly. This approach has produced signifi-
cant cycle time reduction in 5-axis machining of
gas turbine impellers, as reported in Budak and
Kops (2000) and shown in Fig. 5.

Control of Chatter Vibrations

Chatter vibrations are caused by the interaction
of the chip generation mechanism with the
structural dynamics of the machine, tool, and
workpiece assembly (see Fig. 6). The relative
vibration between the tool and workpiece gener-
ates a wavy surface finish. In the consecutive tool
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pass, a new wave pattern, caused by the current
instantaneous vibration, is generated on top of
the earlier one. If the formed chip, which has an
undulated geometry, displays a steady average
thickness, then the resulting cutting forces and
vibrations also remain bounded. This leads to
a stable steady-state cutting regime, known as
“forced vibration.” On the other hand, if the
chip thickness keeps increasing at every tool
pass, resulting in increased cutting forces and
vibrations, then chatter vibration is encountered.
Chatter can be extremely detrimental to the
machined part quality, tool life, and the machine
tool.

Chatter has been reported in literature to be
caused by two main phenomena: self-excitation
through regeneration and mode coupling. For
further information on chatter theory, the reader is
referred to Altintas (2012) as an excellent starting
point.

Various mitigation measures have been inves-
tigated and proposed in order to avoid and control
chatter. One widespread approach is to select
chatter-free cutting conditions through detailed
modal testing and stability analyses. Recently,
to achieve higher material removal rates, the
application of active damping has started to re-
ceive interest. This has been realized through spe-
cially designed tools and actuators (Munoa et al.
2013; Pratt and Nayfeh 2001) and demonstrated
productivity improvement in boring and milling
operations. As another method for chatter sup-
pression, modulation of the cutting (i.e., spindle)
speed has been successfully applied as a means
of interrupting the regeneration mechanism (Soli-
man and Ismail 1997; Zatarain et al. 2008).

Summary and Future Directions

This article has presented an overview of various
concepts and emerging technologies in the area of
machining process control. The new generation
of machine tools, designed to meet the ever-
growing productivity and efficiency demands,
will likely utilize advanced forms of these ideas
and technologies in an integrated manner. As
more computational power and better sensors

become available at lower cost, one can expect
to see new features, such as more elaborate
trajectory planning algorithms, active vibration
damping techniques, and real-time process
and machine simulation and control capability,
beginning to appear in CNC units. No doubt that
the dynamic analysis and controller design for
such complicated systems will require higher
levels of rigor, so that these new technologies can
be utilized reliably and at their full potential.

Cross-References
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�Robot Motion Control

Bibliography

Altintas Y (2012) Manufacturing automation: metal cut-
ting mechanics, machine tool vibrations, and CNC de-
sign, 2nd edn. Cambridge University Press, Cambridge

Altintas Y, Erkorkmaz K (2003) Feedrate optimization for
spline interpolation in high speed machine tools. Ann
CIRP 52(1):297–302

Altintas Y, Merdol DS (2007) Virtual High performance
milling. Ann CIRP 55(1):81–84

Budak E, Kops L (2000) Improving productivity and
part quality in milling of titanium based impellers
by chatter suppression and force control. Ann CIRP
49(1):31–36

Ellis GH (2004) Control system design guide, 3rd edn.
Elsevier Academic, New York

Gordon DJ, Erkorkmaz K (2013) Accurate control of
ball screw drives using pole-placement vibration
damping and a novel trajectory prefilter. Precis Eng
37(2):308–322

Koren Y (1980) Cross-coupled biaxial computer control
for manufacturing systems. ASME J Dyn Syst Meas
Control 102:265–272

Koren Y (1983) Computer control of manufacturing sys-
tems. McGraw-Hill, New York

Masory O, Koren Y (1980) Adaptive control system for
turning. Ann CIRP 29(1):281–284

Munoa J, Mancisidor I, Loix N, Uriarte LG, Barcena R,
Zatarain M (2013) Chatter suppression in ram type
travelling column milling machines using a biaxial
inertial actuator. Ann CIRP 62(1):407–410

Pratt JR, Nayfeh AH (2001) Chatter control and stability
analysis of a cantilever boring bar under regenerative
cutting conditions. Philos Trans R Soc 359:759–792

Pritschow G (1996) On the influence of the velocity gain
factor on the path deviation. Ann CIRP 45/1:367–371

http://dx.doi.org/10.1007/978-1-4471-5058-9_110
http://dx.doi.org/10.1007/978-1-4471-5058-9_245
http://dx.doi.org/10.1007/978-1-4471-5058-9_168


Control of Networks of Underwater Vehicles 179

C

Soliman E, Ismail F (1997) Chatter suppression by
adaptive speed modulation. Int J Mach Tools Manuf
37(3):355–369

Spence A, Altintas Y (1991) CAD assisted adaptive
control for milling. ASME J Dyn Syst Meas Control
113(3):444–450

Weck M, Meylahn A, Hardebusch C (1999) Innovative
algorithms for spline-based CNC controller. Ann Ger
Acad Soc Prod Eng VI(1):83–86

Zatarain M, Bediaga I, Munoa J, Lizarralde R (2008)
Stability of milling processes with continuous spindle
speed variation: analysis in the frequency and time
domains, and experimental correlation. Ann CIRP
57(1):379–384

Control of Networks of Underwater
Vehicles

Naomi Ehrich Leonard
Department of Mechanical and Aerospace
Engineering, Princeton University, Princeton,
NJ, USA

Abstract

Control of networks of underwater vehicles is
critical to underwater exploration, mapping,
search, and surveillance in the multiscale,
spatiotemporal dynamics of oceans, lakes,
and rivers. Control methodologies have been
derived for tasks including feature tracking and
adaptive sampling and have been successfully
demonstrated in the field despite the severe
challenges of underwater operations.
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Introduction

The development of theory and methodology
for control of networks of underwater vehicles
is motivated by a multitude of underwater

applications and by the unique challenges
associated with operating in the oceans,
lakes, and rivers. Tasks include underwater
exploration, mapping, search, and surveillance,
associated with problems that include pollution
monitoring, human safety, resource seeking,
ocean science, and marine archeology. Vehicle
networks collect data on underwater physics,
biology, chemistry, and geology for improving
the understanding and predictive modeling
of natural dynamics and human-influenced
changes in marine environments. Because the
underwater environment is opaque, inhospitable,
uncertain, and dynamic, control is critical to the
performance of vehicle networks.

Underwater vehicles typically carry sensors
to measure external environmental signals and
fields, and thus a vehicle network can be regarded
as a mobile sensor array. The underlying principle
of control of networks of underwater vehicles
leverages their mobility and uses an interacting
dynamic among the vehicles to yield a high-
performing collective behavior. If the vehicles
can communicate their state or measure the rel-
ative state of others, then they can cooperate and
coordinate their motion.

One of the major drivers of control of under-
water mobile sensor networks is the multiscale,
spatiotemporal dynamics of the environmental
fields and signals. In Curtin et al. (1993), the
concept of the autonomous oceanographic sam-
pling network (AOSN), featuring a network of
underwater vehicles, was introduced for dynamic
measurement of the ocean environment and res-
olution of spatial and temporal gradients in the
sampled fields. For example, to understand the
coupled biological and physical dynamics of the
ocean, data are required both on the small-scale
dynamics of phytoplankton, which are major ac-
tors in the marine ecosystem and the global cli-
mate, and on the large-scale dynamics of the flow
field, temperature, and salinity.

Accordingly, control laws are needed to co-
ordinate the motion of networks of underwater
vehicles to match the many relevant spatial and
temporal scales. And for a network of underwater
vehicles to perform complex missions reliably
and efficiently, the control must address the many
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uncertainties and real-world constraints including
the influence of currents on the motion of the
vehicles and the limitations on underwater com-
munication.

Vehicles

Control of networks of underwater vehicles is
made possible with the availability of small
(e.g., 1.5–2 m long), relatively inexpensive
autonomous underwater vehicles (AUVs).
Propelled AUVs such as the REMUS provide
maneuverability and speed. These kinds of AUVs
respond quickly and agilely to the needs of
the network, and because of their speed, they
can often power through strong ocean flows.
However, propelled AUVs are limited by their
batteries; for extended missions, they need
docking stations or other means to recharge their
batteries.

Buoyancy-driven autonomous underwater
gliders, including the Slocum, the Spray, and
the Seaglider, are a class of endurance AUVs
designed explicitly for collecting data over large
three-dimensional volumes continuously over
periods of weeks or even months (Rudnick et al.
2004). They move slowly and steadily, and, as a
result, they are particularly well suited to network
missions of long duration.

Gliders propel themselves by alternately in-
creasing and decreasing their buoyancy using
either a hydraulic or a mechanical buoyancy en-
gine. Lift generated by flow over fixed wings
converts the vertical ascent/descent induced by
the change in buoyancy into forward motion, re-
sulting in a sawtooth-like trajectory in the vertical
plane. Gliders can actively redistribute internal
mass to control attitude, for example, they pitch
by sliding their battery pack forward and aft. For
heading control, they shift mass to roll, bank,
and turn or deflect a rudder. Some gliders are
designed for deep water, e.g., to 1,500 m, while
others for shallower water, e.g., to 200 m.

Gliders are typically operated at their maxi-
mum speed and thus they move at approximately
constant speed relative to the flow. Because this is
relatively slow, on the order of 0.3–0.5 m/s in the
horizontal direction and 0.2 m/s in the vertical,

ocean currents can sometimes reach or even ex-
ceed the speed of the gliders. Unlike a propelled
AUV, which typically has sufficient thrust to
maintain course despite currents, a glider trying
to move in the direction of a strong current will
make no forward progress. This makes coordi-
nated control of gliders challenging; for instance,
two sensors that should stay sufficiently far apart
may be pushed toward each other leading to less
than ideal sampling conditions.

Communication and Sensing

Underwater communication is one of the biggest
challenges to the control of networks of un-
derwater vehicles and one that distinguishes it
from control of vehicles on land or in the air.
Radio-frequency communication is not typically
available underwater, and acoustic data telemetry
has limitations including sensitivity to ambient
noise, unpredictable propagation, limited band-
width, and latency.

When acoustic communication is too limiting,
vehicles can surface periodically and communi-
cate via satellite. This method may be bandwidth
limited and will require time and energy. How-
ever, in the case of profiling propelled AUVs
or underwater gliders, they already move in the
vertical plane in a sawtooth pattern and thus
regularly come closer to the surface. When on the
surface, vehicles can also get a GPS fix whereas
there is no access to GPS underwater. The GPS
fix is used for correcting onboard dead reckoning
of the vehicle’s absolute position and for updating
onboard estimation of the underwater currents,
both helpful for control.

Vehicles are typically equipped with
conductivity-temperature-density (CTD) sensors
to measure temperature, salinity, and density.
From this pressure can be computed and thus
depth and vertical speed. Attitude sensors
provide measurements of pitch, roll, and
heading. Position and velocity in the plane is
estimated using dead reckoning. Many sensors
for measuring the environment have been
developed for use on underwater vehicles; these
include chlorophyll fluorometers to estimate
phytoplankton abundance, acoustic Doppler
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profilers (ADPs) to measure variations in water
velocity, and sensors to measure pH, dissolved
oxygen, and carbon dioxide.

Control

Described here are a selection of control method-
ologies designed to serve a variety of under-
water applications and to address many of the
challenges described above for both propelled
AUVs and underwater gliders. Some of these
methodologies have been successfully field tested
in the ocean.

Formations for Tracking Gradients,
Boundaries, and Level Sets in Sampled
Fields
While a small underwater vehicle can take only
single-point measurements of a field, a network
of N vehicles employing cooperative control
laws can move as a formation and estimate or
track a gradient in the field. This can be done in a
straightforward way in 2D with three vehicles and
can be extended to 3D with additional vehicles.
Consider N D 3 vehicles moving together in an
equilateral triangular formation and sampling a
2D field T W R2 ! R. The formation serves as a
sensor array and the triangle side length defines
the resolution of the array.

Let the position of the i th vehicle be xi 2 R
2.

Consider double integrator dynamics Rxi D ui ,
where ui 2 R

2 is the control force on the i th
vehicle. Suppose that each vehicle can measure
the relative position of each of its neighbors,
xij D xi � xj . Decentralized control that derives
from an artificial potential is a popular method for
each of the three vehicles to stay in the triangular
formation of prescribed resolution d0. Consider
the nonlinear interaction potential VI W R2 ! R

defined as

VI .xij / D ks

�
ln kxij k C d0

kxij k2
�

where ks > 0 is a scalar gain. The control law
for the i th vehicle derives as the gradient of this
potential with respect to xi as follows:

Rxi D ui D �
NX

jD1;j¤i
rVI .xij / � kd Pxi

where a damping term is added with scalar gain
kd > 0. Stability of the triangle of resolution d0
is proved with the Lyapunov function

V D 1

2

NX
iD1

kPxik2 C
N�1X
iD1

NX
jDiC1

VI .xij /:

Now let each vehicle use the sequence of
single-point measurements it takes along its path
to compute the projection of the spatial gradient
onto its normalized velocity, ePx D Pxi =kPxik,
i.e., rTP .x; Pxi / D .rT .x/ � ePx/ePx. Following
Bachmayer and Leonard (2002), let

Rxi D ui D �rTP .x; Pxi /�
NX

jD1;j¤i
rVI .xij /�kd Pxi ;

where � is a scalar gain. For � > 0, each vehicle
will accelerate along its path when it measures an
increasing T and decelerates for a decreasing T .
Each vehicle will also turn to keep up with the
others so that the formation will climb the spatial
gradient of T to find a local maximum.

Alternative control strategies have been devel-
oped that add versatility in feature tracking. The
virtual body and artificial potential (VBAP) mul-
tivehicle control methodology (Ögren et al. 2004)
was demonstrated with a network of Slocum
autonomous underwater gliders in the AOSN II
field experiment in Monterey Bay, California,
in August 2003 (Fiorelli et al. 2006). VBAP is
well suited to the operational scenario described
above in which vehicles surface asynchronously
to establish communication with a base.

VBAP is a control methodology for coordi-
nating the translation, rotation, and dilation of a
group of vehicles. A virtual body is defined by
a set of reference points that move according to
dynamics that are computed centrally and made
available to the vehicles in the group. Artificial
potentials are used to couple the dynamics of
vehicles and a virtual body so that control laws
can be derived that stabilize desired formations
of vehicles and a virtual body. When sampled
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measurements of a scalar field can be commu-
nicated, the local gradients can be estimated.
Gradient climbing algorithms prescribe virtual
body direction, so that, for example, the vehicle
network can be directed to head for the coldest
water or the highest concentration of phytoplank-
ton. Further, the formation can be dilated so that
the resolution can be adapted to minimize error in
estimates. Control of the speed of the virtual body
ensures stability and convergence of the vehicle
formation.

These ideas have been extended further to
design provable control laws for cooperative level
set tracking, whereby small vehicle groups coop-
erate to generate contour plots of noisy, unknown
fields, adjusting their formation shape to provide
optimal filtering of their noisy measurements
(Zhang and Leonard 2010).

Motion Patterns for Adaptive Sampling
A central objective in many underwater applica-
tions is to design provable and reliable mobile
sensor networks for collecting the richest data
set in an uncertain environment given limited re-
sources. Consider the sampling of a single time-
and space-varying scalar field, like temperature
T , using a network of vehicles, where the control
problem is to coordinate the motion of the net-
work to maximize information on this field over
a given area or volume.

The definition of the information metric will
depend on the application. If the data are to
be assimilated into a high-resolution dynamical
ocean model, then the metric would be defined
by uncertainty as computed by the model. A
general-purpose metric, based on objective anal-
ysis (linear statistical estimation from given field
statistics), specifies the statistical uncertainty of
the field model as a function of where and when
the data were taken (Bennett 2002). The pos-
teriori error A.r; t/ is the variance of T about
its estimate at location r and time t . Entropic
information over a spatial domain of area A is

I.t/ D � log

�
1

�0A
Z
drA.r; t/

�
;

where �0 is a scaling factor (Grocholsky 2002).

Computing coordinated trajectories to maxi-
mize I.t/ can in principle be addressed using
optimal coverage control methods. However, this
coverage problem is especially challenging since
the uncertainty field is spatially nonuniform and
it changes with time and with the motion of
the sampling vehicles. Furthermore, the optimal
trajectories may become quite complex so that
controlling vehicles to them in the presence of
dynamic disturbances and uncertainty may lead
to suboptimal performance.

An alternative approach decouples the design
of motion patterns to optimize the entropic in-
formation metric from the decentralized control
laws that stabilize the network onto the motion
patterns (see Leonard et al. 2007). This approach
was demonstrated with a network of 6 Slocum
autonomous underwater gliders in a 24-day-long
field experiment in Monterey Bay, California, in
August 2006 (see Leonard et al. 2010). The coor-
dinating feedback laws for the individual vehicles
derive systematically from a control methodol-
ogy that provides provable stabilization of a pa-
rameterized family of collective motion patterns
(Sepulchre et al. 2008). These patterns consist of
vehicles moving on a finite set of closed curves
with spacing between vehicles defined by a small
number of “synchrony” parameters. The feed-
back laws that stabilize a given motion pattern use
the same synchrony parameters that distinguish
the desired pattern.

Each vehicle moves in response to the relative
position and direction of its neighbors so that it
keeps moving, it maintains the desired spacing,
and it stays close to its assigned curve. It has been
observed in the ocean, for vehicles carrying out
this coordinated control law, that “when a vehicle
on a curve is slowed down by a strong opposing
flow field, it will cut inside a curve to make up
distance and its neighbor on the same curve will
cut outside the curve so that it does not overtake
the slower vehicle and compromise the desired
spacing” (Leonard et al. 2010). The approach is
robust to vehicle failure since there are no leaders
in the network, and it is scalable since the control
law for each vehicle can be defined in terms of
the state of a few other vehicles, independent of
the total number of vehicles.
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The control methodology prescribes steering
laws for vehicles operated at a constant speed.
Assume that the i th vehicle moves at unit speed in
the plane in the direction �i .t/ at time t . Then, the
velocity of the i th vehicle is Pxi D .cos �i ; sin �i /.
The steering control ui is the component of the
force in the direction normal to velocity, such that
P�i D ui for i D 1; : : : ; N . Define

U.�1; : : : ; �N / D N

2
kp�k2; p� D 1

N

NX
jD1

Pxj :

U is a potential function that is maximal at 1
when all vehicle directions are synchronized and
minimal at 0 when all vehicle directions are
perfectly anti-synchronized. Let Qxi D . Qxi ; Qyi / D
.1=N /

PN
jD1 xij and let Qx?

i D .� Qyi ; Qxi /. Define

S.x1; : : : ; xN ; �1; : : : ; �N / D 1

2

NX
iD1

kPxi�!0 Qx?
i k2;

where !0 ¤ 0. S is a potential function that is
minimal at 0 for circular motion of the vehicles
around their center of mass with radius 0 D
j!0j�1.

Define the steering control as

P�i D !0.1CKchQxi ; Pxii/�K�

NX
jD1

sin.�j � �i /;

whereKc > 0 andK� are scalar gains. Then, cir-
cular motion of the network is a steady solution,
with the phase-locked heading arrangement a
minimum ofK�U , i.e., synchronized or perfectly
anti-synchronized depending on the sign of K� .
Stability can be proved with the Lyapunov func-
tion Vc� D KcS C K�U . This steering control
law depends only on relative position and relative
heading measurements of the other vehicles.

The general form of the methodology extends
the above control law to network interconnec-
tions defined by possibly time-varying graphs
with limited sensing or communication links,
and it provides systematic control laws to stabi-
lize symmetric patterns of heading distributions
about noncircular closed curves. It also allows

for multiple graphs to handle multiple scales.
For example, in the 2006 field experiment, the
default motion pattern was one in which six
gliders moved in coordinated pairs around three
closed curves; one graph defined the smaller-
scale coordination of each pair of gliders about
its curve, while a second graph defined the larger-
scale coordination of gliders across the three
curves.

Implementation

Implementation of control of networks of
underwater vehicles requires coping with the
remote, hostile underwater environment. The
control methodology for motion patterns
and adaptive sampling, described above, was
implemented in the field using a customized
software infrastructure called the Glider
Coordinated Control System (GCCS) (Paley et al.
2008). The GCCS combines a simple model for
control planning with a detailed model of glider
dynamics to accommodate the constant speed of
gliders, relatively large ocean currents, waypoint
tracking routines, communication only when
gliders surface (asynchronously), other latencies,
and more. Other approaches consider control
design in the presence of a flow field, formal
methods to integrate high-resolution models of
the flow field, and design tailored to propelled
AUVs.

Summary and Future Directions

The multiscale, spatiotemporal dynamics of the
underwater environment drive the need for well-
coordinated control of networks of underwater
vehicles that can manage the significant opera-
tional challenges of the opaque, uncertain, inhos-
pitable, and dynamic oceans, lakes, and rivers.
Control theory and algorithms have been de-
veloped to enable networks of vehicles to suc-
cessfully operate as adaptable sensor arrays in
missions that include feature tracking and adap-
tive sampling. Future work will improve control
in the presence of strong and unpredictable flow
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fields and will leverage the latest in battery and
underwater communication technologies. Hybrid
vehicles and heterogeneous networks of vehicles
will also promote advances in control. Future
work will draw inspiration from the rapidly grow-
ing literature in decentralized cooperative con-
trol strategies and complex dynamic networks.
Dynamics of decision-making teams of robotic
vehicles and humans is yet another important
direction of research that will impact the success
of control of networks of underwater vehicles.

Cross-References

�Motion Planning for Marine Control Systems
�Underactuated Marine Control Systems

Recommended Reading

In Bellingham and Rajan (2007), it is argued that
cooperative control of robotic vehicles is espe-
cially useful for exploration in remote and hostile
environments such as the deep ocean. A recent
survey of robotics for environmental monitoring,
including a discussion of cooperative systems,
is provided in Dunbabin and Marques (2012).
A survey of work on cooperative underwater
vehicles is provided in Redfield (2013).
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Abstract

The reader is introduced to the predictor feedback
method for the control of general nonlinear sys-
tems with input delays of arbitrary length. The
delays need not necessarily be constant but can
be time-varying or state-dependent. The predictor
feedback methodology employs a model-based
construction of the (unmeasurable) future state of
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the system. The analysis methodology is based on
the concept of infinite-dimensional backstepping
transformation – a transformation that converts
the overall feedback system to a new, cascade
“target system” whose stability can be studied
with the construction of a Lyapunov function.

Keywords

Distributed parameter systems; Delay systems;
Backstepping; Lyapunov function

Nonlinear Systems with Input Delay

Nonlinear systems of the form

PX.t/ D f .X.t/; U .t �D .t;X.t//// ; (1)

where t 2 RC is time, f W R
n � R ! R

n

is a vector field, X 2 R
n is the state, D W

RC � R
n ! RC is a nonnegative function of

the state of the system, and U 2 R is the scalar
input, are ubiquitous in applications. The starting
point for designing a control law for (1), as well
as for analyzing the dynamics of (1) is to con-
sider the delay-free counterpart of (1), i.e., when
D D 0, for which a plethora of results exists
dealing with its stabilization and Lyapunov-based
analysis (Krstic et al 1995).

Systems of the form (1) constitute more
realistic models for physical systems than
delay-free systems. The reason is that often
in engineering applications the control that is
applied to the system does not immediately affect
the system. This dead time until the controller can
affect the system might be due to, among other
things, the long distance of the controller from
the system, such as, for example, in networked
control systems, or due to finite-speed transport
or flow phenomena, such as, for example, in
additive manufacturing and cooling systems, or
due to various after-effects, such as, for example,
in population dynamics.

The first step toward control design and anal-
ysis for system (1) is to consider the special
case in which D D const. The next step is to
consider the special case of system (1), in which
D D D.t/, i.e., the delay is an a priori given
function of time. Systems with time-varying de-
lays model numerous real-world systems, such
as, networked control systems, traffic systems,
or irrigation channels. Assuming that the input
delay is an a priori defined function of time is
a plausible assumption for some applications.
Yet, the time-variation of the delay might be
the result of the variation of a physical quantity
that has its own dynamics, such as, for example,
in milling processes (due to speed variations),
3D printers (due to distance variations), cooling
systems (due to flow rate variations), and popu-
lation dynamics (due to population’s size varia-
tions). Processes in this category can be modeled
by systems with a delay that is a function of
the state of the system, i.e., by (1) with D D
D.X/.

In this article control designs are presented
for the stabilization of nonlinear systems with
input delays, with delays that are constant (Krstic
2009), time-varying (Bekiaris-Liberis and Krstic
2012) or state-dependent (Bekiaris-Liberis and
Krstic 2013b), employing predictor feedback,
i.e., employing a feedback law that uses the future
rather than the current state of the system. Since
one employs in the feedback law the future values
of the state, the predictor feedback completely
cancels (compensates) the input delay, i.e., after
the control signal reaches the system, the state
evolves as if there were no delay at all. Since the
future values of the state are not a priori known,
the main control challenge is the implementation
of the predictor feedback law. Having determined
the predictor, the control law is then obtained
by replacing the current state in a nominal state-
feedback law (which stabilizes the delay-free
system) by the predictor.

A methodology is presented in the article
for the stability analysis of the closed-loop
system under predictor feedback by constructing
Lyapunov functionals. The Lyapunov functionals
are constructed for a transformed (rather than
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the original) system. The transformed system
is, in turn, constructed by transforming the
original actuator state U.�/, � 2 Œt � D; t


to a transformed actuator state with the
aid of an infinite-dimensional backstepping
transformation. The overall transformed system
is easier to analyze than the original system
because it is a cascade, rather than a feedback
system, consisting of a delay line with zero
input, whose effect fades away in finite time,
namely, after D time units, cascaded with an
asymptotically stable system.

Predictor Feedback

The predictor feedback designs are based on a
feedback law U.t/ D �.X.t// that renders the
closed-loop system PX D f .X; �.X// glob-
ally asymptotically stable. For stabilizing sys-
tem (1), the following control law is employed
instead

U.t/ D �.P.t//; (2)

where

P.�/ D X.t/C
Z �

t�D.t;X.t//
f .P.s/; U.s//

1 �Dt .�.s/; P.s// � rD .�.s/; P.s// f .P.s/; U.s//
ds (3)

�.�/ D t C
Z �

t�D.t;X.t//
1

1 �Dt .�.s/; P.s// � rD .�.s/; P.s// f .P.s/; U.s//
ds; (4)

for all t � D .t;X.t// � � � t . The sig-
nal P is the predictor of X at the appropri-
ate prediction time � , i.e., P.t/ D X.�.t//.
This fact is explained in more detail in the next
paragraphs of this section. The predictor em-
ploys the future values of the state X which
are not a priori available. Therefore, for actually
implementing the feedback law (2) one has to
employ (3). Relation (3) is a formula for the
future values of the state that depends on the
available measured quantities, i.e., the current
state X.t/ and the history of the actuator state
U.�/, � 2 Œt �D .t;X.t// ; t 
. To make clear the
definitions of the predictor P and the prediction
time � , as well as their implementation through
formulas (3) and (4), the constant delay case is
discussed first.

The idea of predictor feedback is to employ in
the control law the future values of the state at
the appropriate future time, such that the effect
of the input delay is completely canceled (com-
pensated). Define the quantity 	.t/ D t � D,
which from now on is referred to as the de-
layed time. This is the time instant at which the
control signal that currently affects the system

was actually applied. To cancel the effect of this
delay, the control law (2) is designed such that
U.	.t// D U.t � D/ D �.X.t//, i.e., such
that U.t/ D �

	
X
	
	�1.t/



 D � .X.t CD//.
Define the prediction time � through the relation
	�1.t/ D �.t/ D t C D. This is the time
instant at which an input signal that is currently
applied actually affects the system. In the case of
a constant delay, the prediction time is simply D
time-units in the future. Next an implementable
formula for X.�.t// D X.t C D/ is derived.
Performing a change of variables t D � CD, for
all t�D � � � t in PX.t/ D f .X.t/; U.t �D//
and integrating in � starting at � D t � D, one
can conclude that P defined by (3) with Dt D
rDf D 0 and D D const is the D time-units
ahead predictor of X , i.e., P.t/ D X.�.t// D
X.t CD/.

To better understand definition (3) the
case of a linear system with a constant input
delay D, i.e., a system of the form PX.t/ D
AX.t/ C BU.t � D/, is considered next (see
also �Control of Linear Systems with Delays
and Hale and Verduyn Lunel (1993)). In this
case, the predictor P.t/ is given explicitly

http://dx.doi.org/10.1007/978-1-4471-5058-9_16
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using the variation of constants formula, with
the initial condition P.t � D/ D X.t/, as
P.t/ D eADX.t/ C R t

t�D e
A.t��/BU.�/d� .

For systems that are nonlinear, P.t/ cannot be
written explicitly, for the same reason that a
nonlinear ODE cannot be solved explicitly. So
P.t/ is represented implicitly using the nonlinear
integral equation (3). The computation of P.t/
from (3) is straightforward with a discretized
implementation in which P.t/ is assigned values
based on the right-hand side of (3), which
involves earlier values of P and the values of
the input U .

The case D D D.t/ is considered next. As
in the case of constant delays the main goal is
to implement the predictor P . One needs first to
define the appropriate time interval over which
the predictor of the state is needed, which, in
the constant delay case is simply D time-units
in the future. The control law has to satisfy
U .	.t// D �.X.t//, or, U.t/ D � .X .�.t///.
Hence, one needs to find an implementable for-
mula for P.t/ D X .�.t//. In the constant
delay case the prediction horizon over which one
needs to compute the predictor can be determined
based on the knowledge of the delay time since
the prediction horizon and the delay time are
both equal to D. This is not anymore true in
the time-varying case in which the delayed time
is defined as 	.t/ D t � D.t/, whereas the
prediction time as 	�1.t/ D �.t/ D tCD .�.t//.
Employing a change of variables in PX.t/ D
f .X.t/; U .t �D.t/// as t D �.�/, for all
	.t/ � � � t and integrating in � starting at
� D 	.t/ one obtains the formula for P given
by (3) with Dt D D0 .�.t//, rDf D 0 and
D D D.t/.

Next the case D D D.X.t// is considered.
First one has to determine the predictor, i.e.,
the signal P such that P.t/ D X .�.t//, where
�.t/ D 	�1.t/ and 	.t/ D t � D .X.t//. In
the case of state-dependent delay, the prediction
time �.t/ depends on the predictor itself, i.e.,
the time when the current control reaches
the system depends on the value of the state
at that time, namely, the following implicit
relationship holds P.t/ D X.t C D.P.t///

(and X.t/ D P.t � D.X.t///). This implicit
relation can be solved by proceeding as in the
time-varying case, i.e., by performing the change
of variables t D �.�/, for all t � D .X.t// �
� � t in PX.t/ D f .X.t/; U .t �D.X.t//// and
integrating in � starting at � D t � D .X.t//,
to obtain the formula (3) for P with Dt D 0,
rDf D rD .P.s// f .P.s/; U.s// and D D
D.X.t//.

Analogously, one can derive the predictor for
the case D D D .t;X.t// with the difference
that now the prediction time is not given explic-
itly in terms of P , but it is defined through an
implicit relation, namely, it holds that �.t/ D
t C D .�.t/; P.t//. Therefore, for actually com-
puting � one has to proceed as in the deriva-
tion of P , i.e., to differentiate relation �.�/ D
� C D .�.�/; P.�// and then integrate starting
at the known value � .t �D .t;X.t/// D t . It
is important to note that the integral equation (4)
is needed in the computation of P only when D
depends on both X and t .

Backstepping Transformation and
Stability Analysis

The predictor feedback designs are based on a
feedback law �.X/ that renders the closed-loop
system PX D f .X; �.X// globally asymptoti-
cally stable. However, in the rest of the section
it is assumed that the feedback law �.X/ renders
the closed-loop system PX D f .X; �.X/C v/

input-to-state stable (ISS) with respect to v, i.e.,
there exists a smooth function S W Rn ! RC and
class K1 functions ˛1, ˛2, ˛3, ˛4 such that

˛3 .jX.t/j/ � S .X.t//

� ˛4 .jX.t/j/ (5)

@S.X.t//

@X
f .X.t/; �.X.t//

Cv.t// � �˛1.jX.t/j/C ˛2.jv.t/j/: (6)

Imposing this stronger assumption enables one
to construct a Lyapunov functional for the
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closed-loop systems (1)–(4) with the aid of the
Lyapunov characterization of ISS defined in (5)
and (6).

The stability analysis of the closed-loop
systems (1)–(4) is explained next. Denote the
infinite-dimensional backstepping transformation
of the actuator state as

W.�/ D U.�/� �.P.�//;

for all t �D .t;X.t// � � � t ; (7)

where P.�/ is given in terms of U.�/ from (3).
Using the fact that P .t �D .t;X.t/// D
X.t/, for all t � 0, one gets from (7) that
U .t �D .t;X.t/// D W .t �D .t;X.t/// C
�.X.t//. With the fact that for all � � 0,
U.�/ D �.P.�// one obtains from (7) that
W.�/ D 0, for all � � 0. Yet, for all
t � D .t;X.t//, i.e., for all � � 0, W.�/ might
be nonzero due to the effect of the arbitrary initial
condition U.�/, � 2 Œ�D .0;X.0// ; 0
. With the
above observations, one can transform system (1)
with the aid of transformation (7) to the following
target system

PX.t/ D f .X.t/; �.X.t//

CW .t �D.t;X.t//// (8)

W .t �D .t;X.t/// D 0;

for t �D .t;X.t// � 0: (9)

Using relations (5), (6), and (8), (9) one can
construct the following Lyapunov functional
for showing asymptotic stability of the target
system (8), (9), i.e., for the overall system
consisting of the vectorX.t/ and the transformed
infinite-dimensional actuator state W.�/,
t �D .t;X.t// � � � t ,

V.t/ D S .X.t//C 2

c

Z L.t/

0

˛2.r/

r
dr; (10)

where c > 0 is arbitrary and

L.t/ D sup
t�D.t;X.t//���t

ˇ̌
ˇec.�.�/�t /W.�/

ˇ̌
ˇ : (11)

With the invertibility of the backstepping trans-
formation one can then show global asymptotic
stability of the closed-loop system in the original
variables .X;U /. In particular, there exists a class
KL function ˇ such that

jX.t/j C sup
t�D.t;X.t//���t

jU.�/j

� ˇ

 
jX.0/j C sup

�D.0;X.0//���0
jU.�/j; t

!
;

for all t � 0: (12)

One of the main obstacles in designing glob-
ally stabilizing control laws for nonlinear sys-
tems with long input delays is the finite escape
phenomenon. The input delay may be so large
that the control signal cannot reach the system
before its state grows unbounded. Therefore, one
has to assume that the system PX D f .X; !/ is
forward complete, i.e., for every initial condition
and every bounded input signal the corresponding
solution is defined for all t � 0.

With the forward completeness requirement,
estimate (12) holds globally for constant but
arbitrary large delays. For the case of time-
varying delays, estimate (12) holds globally as
well but under the following four conditions on
the delay:
C1. D.t/ � 0. This condition guarantees the

causality of the system.
C2. D.t/ < 1. This condition guarantees that

all inputs applied to the system eventually
reach the system.

C3. PD.t/ < 1. This condition guarantees that the
system never feels input values that are older
than the ones it has already felt, i.e., the input
signal’s direction never gets reversed. (This
condition guarantees the existence of � D
	�1.)

C4. PD.t/ > �1 This condition guarantees that
the delay cannot disappear instantaneously,
but only gradually.

In the case of state-dependent delays, the delay
depends on time as a result of its dependency on
the state. Therefore, predictor feedback guaran-
tees stabilization of the system when the delay
satisfies the four conditions C1–C4. Yet, since
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the delay is a nonnegative function of the state,
conditions C2–C4 are satisfied by restricting the
initial stateX and the initial actuator state. There-
fore estimate (12) holds locally.

Cross-References

�Control of Linear Systems with Delays

Recommended Reading

The main control design tool for general systems
with input delays of arbitrary length is predictor
feedback. The reader is referred to Artstein
(1982) for the first systematic treatment of
general linear systems with constant input delays.
The applicability of predictor feedback was
extended in Krstic (2009) to several classes of
systems, such as nonlinear systems with constant
input delays and linear systems with unknown
input delays. Subsequently, predictor feedback
was extended to general nonlinear systems with
nonconstant input and state delays (Bekiaris-
Liberis and Krstic 2013a). The main stability
analysis tool for systems employing predictor
feedback is backstepping. Backstepping was
initially introduced for adaptive control of finite-
dimensional nonlinear systems (Krstic et al
1995). The continuum version of backstepping
was originally developed for the boundary
control of several classes of PDEs in Krstic and
Smyshlyaev (2008).
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Abstract

Quantum control theory is concerned with the
control of systems whose dynamics are governed
by the laws of quantum mechanics. Quantum
control may take the form of open loop quan-
tum control or quantum feedback control. Also,
quantum feedback control may consist of mea-
surement based feedback control, in which the
controller is a classical system governed by the
laws of classical physics. Alternatively, quantum
feedback control may take the form of coherent
feedback control in which the controller is a
quantum system governed by the laws of quan-
tum mechanics. In the area of open loop quantum
control, questions of controllability along with
optimal control and Lyapunov control methods
are discussed. In the case of quantum feedback
control, LQG and H1 control methods are dis-
cussed.
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Introduction

Quantum control is the control of systems whose
dynamics are described by the laws of quantum
physics rather than classical physics. The
dynamics of quantum systems must be described
using quantum mechanics which allows for
uniquely quantum behavior such as entanglement
and coherence. There are two main approaches
to quantum mechanics which are referred to
as the Schrödinger picture and the Heisenberg
picture. In the Schrödinger picture, quantum
systems are modeled using the Schrödinger
equation or a master equation which describe the
evolution of the system state or density operator.
In the Heisenberg picture, quantum systems are
modeled using quantum stochastic differential
equations which describe the evolution of system
observables. These different approaches to
quantum mechanics lead to different approaches
to quantum control. Important areas in which
quantum control problems arise include physical
chemistry, atomic and molecular physics, and
optics. Detailed overviews of the field o quantum
control can be found in the survey papers Dong
and Petersen (2010) and Brif et al. (2010) and the
monographs Wiseman and Milburn (2010) and
D’Alessandro (2007).

A fundamental problem in a number of ap-
proaches to quantum control is the controllability
problem. Quantum controllability problems are
concerned with finite dimensional quantum sys-
tems modeled using the Schrödinger picture of
quantum mechanics and involves the structure of
corresponding Lie groups or Lie algebras; e.g.,
see D’Alessandro (2007). These problems are
typically concerned with closed quantum sys-
tems which are quantum systems isolated from
their environment. For a controllable quantum
system, an open loop control strategy can be
constructed in order to manipulate the quantum
state of the system in a general way. Such open
loop control strategies are referred to as coherent
control strategies. Time optimal control is one
method of constructing these control strategies
which has been applied in applications including
physical chemistry and in nuclear magnetic res-
onance systems; e.g., see Khaneja et al. (2001).

An alternative approach to open loop quantum
control is the Lyapunov approach; e.g., see Wang
and Schirmer (2010). This approach extends the
classical Lyapunov control approach in which a
control Lyapunov function is used to construct a
stabilizing state feedback control law. However
in quantum control, state feedback control is not
allowed since classical measurements change the
quantum state of a system and the Heisenberg un-
certainty principle forbids the simultaneous exact
classical measurement of noncommuting quan-
tum variables. Also, in many quantum control
applications, the timescales are such that real time
classical measurements are not technically feasi-
ble. Thus, in order to obtain an open loop control
strategy, the deterministic closed loop system is
simulated as if the state feedback control were
available and this enables an open loop control
strategy to be constructed. As an alternative to
coherent open loop control strategies, some clas-
sical measurements may be introduced leading to
incoherent control strategies; e.g., see Dong et al.
(2009).

In addition to open loop quantum control
approaches, a number of approaches to quantum
control involve the use of feedback; e.g., see
Wiseman and Milburn (2010). This quantum
feedback may either involve the use of classical
measurements, in which case the controller is a
classical (nonquantum) system or it may involve
the case where no classical measurements are
used since the controller itself is a quantum
system. The case in which the controller itself
is a quantum system is referred to as coherent
quantum feedback control; e.g., see Lloyd
(2000) and James et al. (2008). Quantum
feedback control may be considered using the
Schrödinger picture, in which case the quantum
systems under consideration are modeled using
stochastic master equations. Alternatively using
the Heisenberg picture, the quantum systems
under consideration are modeled using quantum
stochastic differential equations. Applications in
which quantum feedback control can be applied
include quantum optics and atomic physics. In
addition, quantum control can potentially be
applied to problems in quantum information (e.g.,
see Nielsen and Chuang 2000) such as quantum
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error correction (e.g., see Kerckhoff et al. 2010)
or the preparation of quantum states. Quantum
information and quantum computing in turn have
great potential in solving intractable computing
problems such as factoring large integers using
Shor’s algorithm; see Shor (1994).

Schrödinger Picture Models of
Quantum Systems

The state of a closed quantum system can be rep-
resented by a unit vector j i in a complex Hilbert
space H. Such a quantum state is also referred
to as a wavefunction. In the Schrödinger picture,
the time evolution of the quantum state is defined
by the Schrödinger equation which is in general a
partial differential equation. An important class
of quantum systems are finite-level systems in
which the Hilbert space is finite dimensional. In
this case, the Schrödinger equation is a linear
ordinary differential equation of the form

i„ @
@t

j .t/i D H0j .t/i

where H0 is the free Hamiltonian of the sys-
tem, which is a self-adjoint operator on H; e.g.,
see Merzbacher (1970). Also, „ is the reduced
Planck’s constant, which can be assumed to be
one with a suitable choice of units. In the case of
a controlled closed quantum system, this differ-
ential equation is extended to a bilinear ordinary
differential equation of the form

i
@

@t
j .t/i D

"
H0 C

mX
kD1

uk.t/Hk

#
j .t/i (1)

where the functions uk.t/ are the control
variables and the Hk are corresponding control
Hamiltonians, which are also assumed to be self-
adjoint operators on the underlying Hilbert space.
These models are used in the open loop control
of closed quantum systems.

To represent open quantum systems, it is nec-
essary to extend the notion of quantum state to
density operators  which are positive operators
with trace one on the underlying Hilbert space

H. In this case, the Schrödinger picture model of
a quantum system is given in terms of a master
equation which describes the time evolution of
the density operator. In the case of an open quan-
tum system with Markovian dynamics defined on
a finite dimensional Hilbert space of dimension
N, the master equation is a matrix differential
equation of the form

P.t/ D �i
" 
H0 C

mX
kD1

uk.t/Hk

!
; .t/

#

C1

2

N2�1X
j;kD0

˛j;k

�h
Fj .t/; F

�

k

i

C
h
Fj ; .t/F

�

k

i�
I

(2)

e.g., see Breuer and Petruccione (2002). Here
the notation ŒX; 
 D X � X refers to the
commutation operator and the notation � denotes

the adjoint of an operator. Also,
˚
Fj
�N2�1
jD0 is a

basis set for the space of bounded linear operators
on H with F0 D I . Also, the matrix A D 	

˛j;k



is assumed to be positive definite. These models,
which include the Lindblad master equation for
dissipative quantum systems as a special case
(e.g., see Wiseman and Milburn 2010), are used
in the open loop control of finite-level Markovian
open quantum systems.

In quantum mechanics, classical measure-
ments are described in terms of self-adjoint
operators on the underlying Hilbert space
referred to as observables; e.g., see Breuer
and Petruccione (2002). An important case
of measurements are projective measurements
in which an observable M is decomposed as
M D Pm

kD1 kPk where the Pk are orthogonal
projection operators on H; e.g., see Nielsen and
Chuang (2000). Then, for a closed quantum
system with quantum state j i, the probability
of an outcome k from the measurement is given
by h jPkj i which denotes the inner product
between the vector j i and the vector Pk j i.
This notation is referred to as Dirac notation and
is commonly used in quantum mechanics. If the
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outcome of the quantum measurement is k, the
state of the quantum system collapses to the new
value of Pk j iph jPk j i . This change in the quantum

state as a result of a measurement is an important
characteristic of quantum mechanics. For an open
quantum system which is in a quantum state
defined by a density operator , the probability of
a measurement outcome k is given by tr.Pk/. In
this case, the quantum state collapses to PkPk

tr.Pk/
:

In the case of an open quantum system with
continuous measurements of an observable X ,
we can consider a stochastic master equation as
follows:

d.t/ D �i
" 
H0 C

mX
kD1

uk.t/Hk

!
; .t/

#
dt

�� ŒX; ŒX; .t/

 dt
Cp

2� .X.t/C .t/X

�2tr .X.t// .t// dW

(3)

where � is a constant parameter related to the
measurement strength and dW is a standard
Wiener increment which is related to the
continuous measurement outcome y.t/ by

dW D dy � 2p�tr .X.t// dt I (4)

e.g., see Wiseman and Milburn (2010). These
models are used in the measurement feedback
control of Markovian open quantum systems.
Also, the Eqs. (3) and (4) can be regarded as a
quantum filter in which .t/ is the conditional
density of the quantum system obtained by filter-
ing the measurement signal y.t/; e.g., see Bouten
et al. (2007) and Gough et al. (2012).

Heisenberg Picture Models of
Quantum Systems

In the Heisenberg picture of quantum mechanics,
the observables of a system evolve with time and
the quantum state remains fixed. This picture may
also be extended slightly by considering the time

evolution of general operators on the underlying
Hilbert space rather than just observables which
are required to be self-adjoint operators. An im-
portant class of open quantum systems which are
considered in the Heisenberg picture arise when
the underlying Hilbert space is infinite dimen-
sional and the system represents a collection of
independent quantum harmonic oscillators inter-
acting with a number of external quantum fields.
Such linear quantum systems are described in the
Heisenberg picture by linear quantum stochastic
differential equations (QSDEs) of the form

dx.t/ D Ax.t/dt C Bdw.t/I
dy.t/ D Cx.t/dt CDdw.t/ (5)

where A, B , C , D are real or complex matrices,
x.t/ is a vector of possibly noncommuting oper-
ators on the underlying Hilbert space H; e.g., see
James et al. (2008). Also, the quantity dw.t/ is
decomposed as

dw.t/ D ˇw.t/dt C d Qw.t/

where ˇw.t/ is an adapted process and Qw.t/ is a
quantum Wiener process with Itô table:

d Qw.t/d Qw.t/� D FQwdt:

Here, FQw � 0 is a real or complex matrix. The
quantity w.t/ represents the components of the
input quantum fields acting on the system. Also,
the quantity y.t/ represents the components of
interest of the corresponding output fields that
result from the interaction of the harmonic oscil-
lators with the incoming fields.

In order to represent physical quantum sys-
tems, the components of vector x.t/ are required
to satisfy certain commutation relations of the
form

�
xj .t/; xk.t/

� D 2i‚jk; j; k D 1; 2; : : : ; n; 8t

where the matrix ‚ D 	
‚jk



is skew symmetric.

The requirement to represent a physical quan-
tum system places restrictions on the matrices
A, B , C , D, which are referred to as physical
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realizability conditions; e.g., see James et al.
(2008) and Shaiju and Petersen (2012). QSDE
models of the form (5) arise frequently in the area
of quantum optics. They can also be generalized
to allow for nonlinear quantum systems such as
arise in the areas of nonlinear quantum optics
and superconducting quantum circuits; e.g., see
Bertet et al. (2012). These models are used in
the feedback control of quantum systems in both
the case of classical measurement feedback and
in the case of coherent feedback in which the
quantum controller is also a quantum system and
is represented by such a QSDE model.

.S; L; H / Quantum SystemModels
An alternative method of modeling an open
quantum system as opposed to the stochastic
master equation (SME) approach or the
quantum stochastic differential equation (QSDE)
approach, which were considered above, is to
simply model the quantum system in terms of
the physical quantities which underlie the SME
and QSDE models. For a general open quantum
system, these quantities are the scattering
matrix S which is a matrix of operators on
the underlying Hilbert space, the coupling
operator L which is a vector of operators on
the underlying Hilbert space, and the system
Hamiltonian which is a self-adjoint operator on
the underlying Hilbert space; e.g., see Gough
and James (2009). For a given .S;L;H/ model,
the corresponding SME model or QSDE model
can be calculated using standard formulas; e.g.,
see Bouten et al. (2007) and James et al. (2008).
Also, in certain circumstances, an .S;L;H/

model can be calculated from an SME model
or a QSDE model. For example, if the linear
QSDE model (5) is physically realizable, then a
corresponding .S;L;H/ model can be found. In
fact, this amounts to the definition of physical
realizability.

Open Loop Control of Quantum
Systems

A fundamental question in the open loop
control of quantum systems is the question of

controllability. For the case of a closed quantum
system of the form (1), the question of
controllability can be defined as follows (e.g.,
see Albertini and D’Alessandro 2003):

Definition 1 (Pure State Controllability) The
quantum system (1) is said to be pure state
controllable if for every pair of initial and final
states j 0i and j f i, there exist control functions
fuk.t/g and a time T > 0 such that the cor-
responding solution of (1) with initial condition
j 0i satisfies j .T /i D j f i.

Alternative definitions have also been con-
sidered for the controllability of the quantum
system (1); e.g., see Albertini and D’Alessandro
(2003) and Grigoriu et al. (2013) in the case
of open quantum systems. The following the-
orem provides a necessary and sufficient con-
dition for pure state controllability in terms of
the Lie algebra L0 generated by the matrices
f�iH0;�iH1; : : : ;�iHmg, u.N / the Lie algebra
corresponding to the unitary group of dimension
N , su.N / the Lie algebra corresponding to the
special unitary group of dimension N , sp.N

2
/ the

N
2

dimensional symplectic group, and QL the Lie
algebra conjugate to sp.N

2
/.

Theorem 1 (See D’Alessandro 2007) The
quantum system (1) is pure state controllable
if and only if the Lie algebra L0 satisfies one of
the following conditions:
(1) L0 D su.N /;
(2) L0 is conjugate to sp.N

2
/;

(3) L0 D u.N /;
(4) L0 D span fiIN�N g ˚ QL.

Similar conditions have been obtained when
alternative definitions of controllability are used.

Once it has been determined that a quantum
system is controllable, the next task in open
loop quantum control is to determine the control
functions fuk.t/g which drive a given initial state
to a given final state. An important approach to
this problem is the optimal control approach
in which a time optimal control problem is
solved using Pontryagin’s maximum principle
to construct the control functions fuk.t/g which
drives the given initial state to the given final state
in minimum time; e.g., see Khaneja et al. (2001).
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This approach works well for low dimensional
quantum systems but is computationally
intractable for high dimensional quantum
systems.

An alternative approach for high dimensional
quantum systems is the Lyapunov control ap-
proach. In this approach, a Lyapunov function is
selected which provides a measure of the distance
between the current quantum state and the desired
terminal quantum state. An example of such a
Lyapunov function is

V D h .t/ �  f j .t/ �  f i � 0I

e.g., see Mirrahimi et al. (2005). A state feedback
control law is then chosen to ensure that the time
derivative of this Lyapunov function is negative.
This state feedback control law is then simulated
with the quantum system dynamics (1) to give the
required open loop control functions fuk.t/g.

Classical Measurement Based
Quantum Feedback Control

A Schrödinger Picture Approach to
Classical Measurement Based Quantum
Feedback Control
In the Schrödinger picture approach to classical
measurement based quantum feedback control
with weak continuous measurements, we begin
the stochastic master equations (3) and (4) which
are considered as both a model for the system
being controlled and as a filter which will form
part of the final controller. These filter equations
are then combined with a control law of the form

u.t/ D f ..t//

where the function f .�/ is designed to achieve
a particular objective such as stabilization of the
quantum system. Here u.t/ represents the vector
of control inputs uk.t/. An example of such a
quantum control scheme is given in the paper
Mirrahimi and van Handel (2007) in which a
Lyapunov method is used to design the con-
trol law f .�/ so that a quantum system consist-
ing of an atomic ensemble interacting with an

electromagnetic field is stabilized about a spec-
ified state f D j mih mj.

A Heisenberg Picture Approach to
Classical Measurement Based Quantum
Feedback Control
In this Heisenberg picture approach to classical
measurement based quantum feedback control,
we begin with a quantum system which is de-
scribed by linear quantum stochastic equations of
the form (5). In these equations, it is assumed
that the components of the output vector all
commute with each other and so can be regarded
as classical quantities. This can be achieved if
each of the components are obtained via a process
of homodyne detection from the corresponding
electromagnetic field; e.g., see Bachor and Ralph
(2004). Also, it is assumed that the input electro-
magnetic field w.t/ can be decomposed as

dw.t/ D
�
ˇu.t/dt C d Qw1.t/

dw2.t/

�
(6)

where ˇu.t/ represents the classical control input
signal and Qw1.t/; w2.t/ are quantum Wiener pro-
cesses. The control signal displaces components
of the incoming electromagnetic field acting on
the system via the use of an electro-optic modu-
lator; e.g., see Bachor and Ralph (2004).

The classical measurement feedback based
controllers to be considered are classical systems
described by stochastic differential equations of
the form

dxK.t/ D AKxk.t/dt C BKdy.t/

ˇu.t/dt D CKxk.t/dt: (7)

For a given quantum system model (5), the ma-
trices in the controller (7) can be designed using
standard classical control theory techniques such
as LQG control (see Doherty and Jacobs 1999) or
H1 control (see James et al. 2008).
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Coherent Quantum Feedback Control

Coherent feedback control of a quantum system
corresponds to the case in which the controller
itself is a quantum system which is coupled in a
feedback interconnection to the quantum system
being controlled; e.g., see Lloyd (2000). This
type of control by interconnection is closely re-
lated to the behavioral interpretation of feedback
control; e.g., see Polderman and Willems (1998).

An important approach to coherent quantum
feedback control occurs in the case when the
quantum system to be controlled is a linear quan-
tum system described by the QSDEs (5). Also, it
is assumed that the input field is decomposed as
in (6). However in this case, the quantity ˇu.t/

represents a vector of noncommuting operators
on the Hilbert space underlying the controller
system. These operators are described by the fol-
lowing linear QSDEs, which represent the quan-
tum controller:

dxK.t/ D AKxk.t/dt C BKdy.t/C NBKd NwK.t/
dyK.t/ D CKxk.t/dt C NDKd NwK.t/: (8)

Then, the input ˇu.t/ is identified as

ˇu.t/ D CKxk.t/:

Here the quantity

dwK.t/ D
�

dy.t/
d NwK.t/

�
(9)

represents the quantum fields acting on the con-
troller quantum system and where wK.t/ cor-
responds to a quantum Wiener process with a
given Itô table. Also, y.t/ represents the output
quantum fields from the quantum system being
controlled. Note that in the case of coherent quan-
tum feedback control, there is no requirement that
the components of y.t/ commute with each other
and this in fact represents one of the main advan-
tages of coherent quantum feedback control as
opposed to classical measurement based quantum
feedback control.

An important requirement in coherent feed-
back control is that the QSDEs (8) should satisfy
the conditions for physical realizability; e.g., see
James et al. (2008). Subject to these constraints,
the controller (8) can then be designed according
to an H1 or LQG criterion; e.g., see James
et al. (2008) and Nurdin et al. (2009). In the case
of coherent quantum H1 control, it is shown
in James et al. (2008) that for any controller
matrices .AK;BK; CK/, the matrices . NBK; NDK/

can be chosen so that the controller QSDEs (8)
are physically realizable. Furthermore, the choice
of the matrices . NBK; NDK/ does not affect theH1
performance criterion considered in James et al.
(2008). This means that the coherent controller
can be designed using the same approach as
designing a classical H1 controller.

In the case of coherent LQG control such as
considered in Nurdin et al. (2009), the choice of
the matrices . NBK; NDK/ significantly affects the
closed loop LQG performance of the quantum
control system. This means that the approach
used in solving the coherent quantum H1 prob-
lem given in James et al. (2008) cannot be applied
to the coherent quantum LQG problem. To date
there exist only some nonconvex optimization
methods which have been applied to the coherent
quantum LQG problem (e.g., see Nurdin et al.
2009), and the general solution to the coherent
quantum LQG control problem remains an open
question.

Cross-References

�Bilinear Control of Schrödinger PDEs
�Robustness Issues in Quantum Control
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Abstract

The undesirable effects of roll motion of ships
(rocking about the longitudinal axis) became no-
ticeable in the mid-nineteenth century when sig-
nificant changes were introduced to the design of
ships as a result of sails being replaced by steam
engines and the arrangement being changed from
broad to narrow hulls. The combination of these
changes led to lower transverse stability (lower
restoring moment for a given angle of roll) with
the consequence of larger roll motion. The in-
crease in roll motion and its effect on cargo
and human performance lead to the development
several control devices that aimed at reducing and
controlling roll motion. The control devices most
commonly used today are fin stabilizers, rudder,
anti-roll tanks, and gyrostabilizers. The use of
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different types of actuators for control of ship
roll motion has been amply demonstrated for over
100 years. Performance, however, can still fall
short of expectations because of difficulties as-
sociated with control system design, which have
proven to be far from trivial due to fundamental
performance limitations and large variations of
the spectral characteristics of wave-induced roll
motion. This short article provides an overview
of the fundamentals of control design for ship
roll motion reduction. The overview is limited to
the most common control devices. Most of the
material is based on Perez (Ship motion control.
Advances in industrial control. Springer, London,
2005) and Perez and Blanke (Ann Rev Control
36(1):1367–5788, 2012).

Keywords

Roll damping; Ship motion control

Ship Roll Motion Control Techniques

One of the most commonly used devices to at-
tenuate ship motion are the fin stabilisers. These
are small controllable fins located on the bilge of
the hull usually amid ships. These devices attain
a performance in the range of 60–90 % of roll
reduction (root mean square) (Sellars and Martin
1992). They require control systems that sense
the vessel’s roll motion and act by changing the
angle of the fins. These devices are expensive
and introduce underwater noise that can affect
sonar performance, they add to propulsion losses,
and they can be damaged. Despite this, they
are among the most commonly used ship roll
motion control device. From a control perspec-
tive, highly nonlinear effects (dynamic stall) may
appear when operating in severe sea states and
heavy rolling conditions (Gaillarde 2002).

During studies of ship damage stability con-
ducted in the late 1800s, it was observed that
under certain conditions the water inside the
vessel moved out of phase with respect to the
wave profile, and thus, the weight of the water on
the vessel counteracted the increase of pressure

on the hull, hence reducing the net roll excitation
moment. This led to the development of fluid
anti-roll tank stabilizers. The most common type
of anti-roll tank is the U-tank, which comprises
two reservoirs, located one on port and one on
starboard, connected at the bottom by a duct.
Anti-roll tanks can be either passive or active. In
passive tanks, the fluid flows freely from side to
side. According to the density and viscosity of
the fluid used, the tank is dimensioned so that
the time required for most of the fluid to flow
from side to side equals the natural roll period
of the ship. Active tanks operate in a similar
manner, but they incorporate a control system
that modifies the natural period of the tank to
match the actual ship roll period. This is normally
achieved by controlling the flow of air from the
top of one reservoir to the other. Anti-roll tanks
attain a medium to high performance in the range
of 20–70 % of roll angle reduction (RMS) (Mar-
zouk and Nayfeh 2009). Anti-roll tanks increase
the ship displacement. They can also be used to
correct list (steady-state roll angle), and they are
the preferred stabilizer for icebreakers.

Rudder-roll stabilization (RRS) is a technique
based on the fact that the rudder is located not
only aft, but also below the center of gravity of
the vessel, and thus the rudder imparts not only
yaw but also roll moment. The idea of using the
rudder for simultaneous course keeping and roll
reduction was conceived in the late 1960s by
observations of anomalous behavior of autopilots
that did not have appropriate wave filtering – a
feature of the autopilot that prevents the rudder
from reacting to every single wave; see, for ex-
ample, Fossen and Perez (2009) for a discus-
sion on wave filtering. Rudder-roll stabilization
has been demonstrated to attain medium to high
performance in the range of 50–75 % of roll
reduction (RMS) (Baitis et al. 1983; Blanke et al.
1989; Källström et al. 1988; Oda et al. 1992;
van Amerongen et al. 1990). The upgrade of the
rudder machinery is required to be able to attain
slew rates in the range 10–20 deg/s for RRS to
have sufficient control authority.

A gyrostabilizer uses the gyroscopic effects of
large rotating wheels to generate a roll reducing
torque. The use of gyroscopic effects was
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proposed in the early 1900s as a method to elim-
inate roll, rather than to reduce it. Although the
performance of these systems was remarkable,
up to 95 % roll reduction, their high cost, the in-
crease in weight, and the large stress produced on
the hull masked their benefits and prevented fur-
ther developments. However, a recent increase in
development of gyrostabilizers has been seen in
the yacht industry (Perez and Steinmann 2009).

Fins and rudder give rise to lift forces in
proportion to the square of flow velocity past the
fin. Hence, roll stabilization by fin or rudder is
not possible at low or zero speed. Only U-tanks
and gyro devices are able to provide stabilization
in these conditions. For further details about the
performance of different devices, see Sellars and
Martin (1992), and for a comprehensive descrip-
tion of the early development of devices, see
Chalmers (1931).

Modeling of Ship Roll Motion for
Control Design

The study of roll motion dynamics for control
system design is normally done in terms of either
one- or four-degrees-of-freedom (DOF) models.
The choice between models of different complex-
ity depends on the type of motion control system
considered.

For a one-degree-of-freedom (1DOF) case, the
following model is used:

P	 D p; (1)

Ixx Pp D Kh CKw CKc; (2)

where 	 is roll angle, p is roll rate, and Ixx is
rigid-body moment of inertia about the x-axis of
a body-fixed coordinate system, where Kh is hy-
drostatic and hydrodynamic torques, Kw torque
generated by wave forces acting on the hull, and
Kc the control torques. The hydrodynamic torque
can be approximated by the following parametric
model:Kh � K Pp PpCKppCKpjpj pjpjCK.	/.
The first term represents a hydrodynamic torque
in roll due to pressure change that is proportional
to the roll accelerations, and the coefficient K Pp

is called roll added mass (inertia). The second
term is a damping term, which captures forces
due to wave making and linear skin friction, and
the coefficientKp is a linear damping coefficient.
The third term is a nonlinear damping term,
which captures forces due to viscous effects. The
last term is the restoring torque due to gravity and
buoyancy.

For a 4DOF model (surge, sway, roll, and
yaw), motion variables considered are � D
Œ	  
T, � D Œu v p r
T, � i D ŒX Y K N 
T, where
 is the yaw angle, the body-fixed velocities are
u-surge and v-sway, and r is the yaw rate. The
forces and torques are X -surge, Y -sway, K-roll,
and N -yaw. With these variables, the following
mathematical model is usually considered:

P� D J.�/ �; (3)

MRB P� C CRB.�/� D �h C �c C �d ; (4)

where J.�/ is a kinematic transformation, MRB

is the rigid-body inertia matrix that corresponds
to expressing the inertia tensor in body-fixed co-
ordinates, CRB.�/ is the rigid-body Coriolis and
centripetal matrix, and �h, �c , and �d represent
the hydrodynamic, control, and disturbance vec-
tor of force components and torques, respectively.

The hydrostatic and hydrodynamic forces are
�h � �MA P� � CA.�/� � D.�/� � K.	/. The
first two terms have origin in the motion of a
vessel in an irrotational flow in a nonviscous
fluid. The third term corresponds to damping
forces due to potential (wave making), skin fric-
tion, vortex shedding, and circulation (lift and
drag). The hydrodynamic effects involved are
quite complex, and different approaches based
on superposition of either odd-term Taylor ex-
pansions or square modulus (xjxj) series expan-
sions are usually considered Abkowitz (1964)
and Fedyaevsky and Sobolev (1964). The K.	/
term represents the restoring forces in roll due to
buoyancy and gravity. The 4DOF model captures
parameter dependency on ship speed as well as
the couplings between steering and roll, and it is
useful for controller design. For additional details
about mathematical model of marine vehicles,
see Fossen (2011).
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Wave-Disturbance Models
The action of the waves creates changes in pres-
sure on the hull of the ship, which translate into
forces and moments. It is common to model the
ship motion response due to waves within a linear
framework and to obtain two frequency-response
functions (FRF), wave to excitation Fi .j!;U; �/
and wave to motionHi.j!;U; �/ response func-
tions, where i indicates the degree of freedom.
These FRF depend on the wave frequency, the
ship speed, and the angle � at which the waves
encounter the ship – this is called the encounter
angle.

The wave elevation in deep water is approx-
imately a stochastic process that is zero mean,
stationary for short periods of time, and Gaussian
(Haverre and Moan 1985). Under these assump-
tions, the wave elevation � is fully described by
a power spectral density ˆ��.!/. With a linear
response assumption, the power spectral density
of wave to excitation force and wave to motion
can be expressed as

ˆFF;i .j!/ D jFi .j!;U; �/j2ˆ��.j!/;
ˆ��;i .j!/ D jHi.j!;U; �/j2ˆ��.j!/:

These spectra are models of the wave-induced
forces and motions, respectively, from which it
its common to generate either time series of
wave excitation forces in terms of the encounter
frequency to be used as input disturbances in
simulation models or time series of wave-induced
motion to be used as output disturbance; see, for
example, Perez (2005) and references herein.

Roll Motion Control and Performance
Limitations

The analysis of performance of ship roll mo-
tion control by means of force actuators is usu-
ally conducted within a linear framework by
linearizing the models. For a SISO loop where
the wave-induced roll motion is considered an
output disturbance, the Bode integral constraint
applies. This imposes restrictions on one’s free-
dom to shape the closed-loop transfer function

to attenuate the motion due to the wave-induced
forces in different frequency ranges. These re-
sults have important consequences on the de-
sign of a roll motion control system since the
frequency of the waves seen from the vessel
changes significantly with the sea state, the speed
of the vessel, and the wave encounter angle.
The changing characteristics on open-loop roll
motion in conjunction with the Bode integral
constraint make the control design challenging
since roll amplification may occur if the control
design is not done properly. For some roll motion
control problems, like using the rudder for simul-
taneous roll attenuation and heading control, the
system presents non-minimum phase dynamics.
In this case, the trade-off of reduced sensitivity
vs. amplification of roll motion is dominating
at frequencies close to the non-minimum phase
zero – a constraint with origin in the Poisson
integral (Hearns and Blanke 1998); see also Perez
(2005).

It should be noted that non-minimum phase
dynamics also occurs with fin stabilizers, when
the stabilizers are located aft of the center of
gravity. With the fins at this location, they behave
like a rudder and introduce non-minimum phase
dynamics and heading interference at low wave-
excitation frequencies. These aspects of fin loca-
tion were discussed by Lloyd (1989).

The above discussion highlights general de-
sign constraints that apply to roll motion control
systems in terms of the dynamics of the vessel
and actuator. In addition to these constraints, one
needs also to account for limitations in actuator
slew rate and angle.

Controls Techniques Used in Different
Roll Control Systems

Fin Stabilizers
In regard to fin stabilizers, the control design is
commonly address using the 1DOF model (1)
and (2). The main issues associated with control
design are the parametric uncertainty in model
and the Bode integral constraint. This integral
constraint can lead to roll amplification due to
changes in the spectrum of the wave-induced
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roll moment with sea state and sailing conditions
(speed and encounter angle). Fin machinery is
designed so that the rate of the fin motion is
fast enough, and actuator rate saturation is not an
issue in moderate sea states. The fins could be
used to correct heeling angles (steady-state roll)
when the ship makes speed, but this is avoided
due to added resistance. If it is used, integral
action needs to include anti-windup. In terms
of control strategies, PID, H1, and LQR tech-
niques have been successfully applied in prac-
tice. Highly nonlinear effects (dynamic stall) may
appear when operating in severe sea states and
heavy rolling conditions, and proposals for appli-
cations of model predictive control have been put
forward to constraint the effective angle of attack
of the fins. In addition, if the fins are located
too far aft along the ship, the dynamic response
from fin angle to roll can exhibit non-minimum
phase dynamics, which can limit the performance
at low encounter frequencies. A thorough review
of the control literature can be found in Perez and
Blanke (2012).

Rudder-Roll Stabilization
The problem of rudder-roll stabilization requires
the 4DOF model (3) and (4), which captures the
interaction between roll, sway, and yaw together
with the changes in the hydrodynamic forces
due to the forward speed. The response from
rudder to roll is non-minimum phase (NMP),
and the system is characterized by further con-
straints due to the single-input-two-output nature
of the control problem – attenuate roll without
too much interference with the heading. Studies
of fundamental limitations due to NMP dynamics
have been approached using standard frequency-
domain tools by Hearns and Blanke (1998) and
Perez (2005). A characterization of the trade-off
between roll reduction vs. increase of interfer-
ence was part of the controller design in Stoustrup
et al. (1994). Perez (2005) determined the limits
obtainable using optimal control with full distur-
bance information. The latter also incorporated
constraints due to the limiting authority of the
control action in rate and magnitude of rudder
machinery and stall conditions of the rudder.
The control design for rudder-roll stabilization

has been addressed in practice using PID, LQG,
and H1 and standard frequency-domain linear
control designs. The characteristics of limited
control authority were solved by van Ameron-
gen et al. (1990) using automatic gain control.
In the literature, there have been proposals put
forward for the use of model predictive control,
QFT, sliding-mode nonlinear control, and auto-
regressive stochastic control. Combined use of
fin and rudder has also be investigated. Grimble
et al. (1993) and later Roberts et al. (1997)
used H1 control techniques. Thorough com-
parison of controller performances for warships
was published in Crossland (2003). A thorough
review of the control literature can be found in
Perez and Blanke (2012).

Gyrostabilizers
Using a single gimbal suspension gyrostabilizer
for roll damping control, the coupled vessel-roll-
gyro model can be modeled as follows:

P	 D p; (5)

K Pp Pp CKp p CK	 	 D Kw �Kg P̨ cos˛ (6)

Ip R̨ C Bp P̨ C Cp sin ˛ D Kg p cos˛ C Tp;

(7)

where (6) represents the 1DOF roll dynamics
and (7) represents the dynamics of the gyrosta-
bilizer about the axis of the gimbal suspension,
where ˛ is the gimbal angle, equivalent to the
precession angle for a single gimbal suspension,
Ip is gimbal and wheel inertia about the gimbal
axis, Bp is the damping, and Cp is a restoring
term of the gyro about the precession axis due to
location of the gyro center of mass relative to the
precession axis (Arnold and Maunder 1961). Tp
is the control torque applied to the gimbal. The
use of twin counter-spinning wheels prevents gy-
roscopic coupling with other degrees of freedom.
Hence, the control design for gyrostabilizers can
be based on a linear single-degree-of-freedom
model for roll.

The wave-induced roll momentKw excites the
roll motion. As the roll motion develops, the roll
rate p induces a torque along the precession axis
of the gyrostabilizer. As the precession angle ˛
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develops, there is reaction torque done on the
vessel that opposes the wave-induced moment.
The later is the roll stabilizing torque, Xg ,
�Kg P̨ cos˛ � �Kg P̨ . This roll torque can only
be controlled indirectly through the precession
dynamics in (7) via Tp. In the model above, the
spin angular velocity !spin is controlled to be
constant; hence the wheels’ angular momentum
Kg D Ispin !spin is constant.

The precession control torque Tp is used
to control the gyro. As observed by Sperry
(Chalmers 1931), the intrinsic behavior of the
gyrostabilizer is to use roll rate to generate a roll
torque. Hence, one could design a precession
torque controller such that from the point of
view of the vessel, the gyro behaves as damper.
Depending on how precession torque is delivered,
it may be necessary to constraint precession
angle and rate. This problem has been recently
considered in Donaire and Perez (2013) using
passivity-based control.

U-tanks
U-tanks can be passive or active. Roll reduction
is achieved by attempting to transfer energy from
the roll motion to motion of liquid within the tank
and using the weight of the liquid to counteract
the wave excitation moment. A key aspect of the
design is the dimension and geometry of the tank
to ensure that there is enough weight due to the
displaced liquid in the tank and that the oscilla-
tion of the fluid in the tank matches the vessel
natural frequency in roll; see Holden and Fossen
(2012) and references herein. The design of the
U-tank can ensure a single-frequency matching,
at which the performance is optimized, and for
this frequency the roll natural frequency is used.
As the frequency of roll motion departs from this,
a degradation of roll reduction occurs. Active U-
tanks use valves to control the flow of air from
the top of the reservoirs to extend the frequency
matching in sailing conditions in which the roll
dominant frequency is lower than the roll natural
frequency – the flow of air is used to delay
the motion of the liquid from one reservoir to
the other. This control is achieved by detecting
the dominant roll frequency and using this infor-
mation to control the air flow from one reservoir

to the other. If the roll dominant frequency is
higher than the roll natural frequency, the U-tank
is used in passive mode, and the standard roll
reduction degradation occurs.

Summary and Future Directions

This article provides a brief summary of control
aspects for the most common ship roll motion
control devices. These aspects include the type of
mathematical models used to design and analyze
the control problem, the inherent fundamental
limitations and the constraints that some of the
designs are subjected to, and the performance
that can be expected from the different devices.
As an outlook, one of the key issues in roll
motion control is the model uncertainty and the
adaptation to the changes in the environmen-
tal conditions. As the vessel changes speed and
heading, or as the seas build up or abate, the dom-
inant frequency range of the wave-induced forces
changes significantly. Due to the fundamental
limitations discussed, a nonadaptive controller
may produce roll amplification rather than roll
reduction. This topic has received some attention
in the literature via multi-mode control switching,
but further work in this area could be beneficial.
In the recent years, new devices have appeared
for stabilization at zero speed, like flapping fins
and rotating cylinders. Also the industry’s interest
in roll gyrostabilizers has been re-ignited. The
investigation of control designs for these devices
has not yet received much attention within the
control community. Hence, it is expected that this
will create a potential for research activity in the
future.
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Abstract

Control structure selection deals with selecting
what to control (outputs), what to measure and
what to manipulate (inputs), and also how to split
the controller in a hierarchical and decentralized
manner. The most important issue is probably
the selection of the controlled variables (outputs),
CV D Hy, where y are the available mea-
surements and H is a degree of freedom that is
seldom treated in a systematic manner by control
engineers. This entry discusses how to find H
for both for the upper (slower) economic layer
and the lower (faster) regulatory layer in the
control hierarchy. Each layer may be split in a
decentralized fashion. Systematic approaches for
input/output (IO) selection are presented.
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Control configuration; Control hierarchy;
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Introduction

Consider the generalized controller design prob-
lem in Fig. 1 where P denotes the generalized
plant model. Here, the objective is to design the
controller K, which, based on the sensed outputs
v, computes the inputs (MVs) u such that the
variables z are kept small, in spite of variations in
the variables w, which include disturbances (d),
varying setpoints/references (CVs) and measure-
ment noise (n),

w D Œd;CVs; n


The variables z, which should be kept small,
typically include the control error for the selected
controlled variables (CV) plus the plant inputs
(u),

z D ŒCV � CVsI u


The variables v, which are the inputs to the
controller, include all known variables, including
measured outputs (ym), measured disturbances
(dm) and setpoints,

v D ŒymI dmI CVs
 :

The cost function for designing the optimal con-
troller K is usually the weighted control error,

Control Structure Selection, Fig. 1 General formu-
lation for designing the controller K. The plant P is
controlled by manipulating u, and is disturbed by the
signals w. The controller uses the measurements v, and the
control objective is to keep the outputs (weighted control
error) z as small as possible

J0 D jjW0zjj. The reason for using a prime on J
(J0), is to distinguish it from the economic cost
J which we later use for selecting the controlled
variables (CV).

Notice that it is assumed in Fig. 1 that we know
what to measure (v), manipulate (u), and, most
importantly, which variables in z we would like to
keep at setpoints (CV), that is, we have assumed a
given control structure. The term “control struc-
ture selection” (CSS) and its synonym “control
structure design” (CSD) is associated with the
overall control philosophy for the system with
emphasis on the structural decisions which are
a prerequisite for the controller design problem
in Fig. 1:
1. Selection of controlled variables (CVs,

“outputs,” included in z in Fig. 1)
2. Selection of manipulated variables (MVs,

“inputs,” u in Fig. 1)
3. Selection of measurements y (included in v in

Fig. 1)
4. Selection of control configuration (structure

of overall controller K that interconnects the
controlled, manipulated and measured vari-
ables; structure of K in Fig. 1)

5. Selection of type of controller K (PID, MPC,
LQG, H-infinity, etc.) and objective function
(norm) used to design and analyze it.
Decisions 2 and 3 (selection of u and y) are

sometimes referred to as the input/output (IO)
selection problem. In practice, the controller (K)
is usually divided into several layers, operating on
different time scales (see Fig. 2), which implies
that we in addition to selecting the (primary)
controlled variables (CV1 
 CV) must also
select the (secondary) variables that interconnect
the layers (CV2).

Control structure selection includes all the
structural decisions that the engineer needs to
make when designing a control system, but
it does not involve the actual design of each
individual controller block. Thus, it involves the
decisions necessary to make a block diagram
(Fig. 1; used by control engineers) or process
& instrumentation diagram (used by process
engineers) for the entire plant, and provides
the starting point for a detailed controller
design.
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Control Structure Selection, Fig. 2 Typical control hi-
erarchy, as illustrated for a process plant

The term “plantwide control,” which is a syn-
onym for “control structure selection,” is used
in the field of process control. Control structure
selection is particularly important for process
control because of the complexity of large pro-
cessing plants, but it applies to all control applica-
tions, including vehicle control, aircraft control,
robotics, power systems, biological systems, so-
cial systems, and so on.

It may be argued that control structure selec-
tion is more important than the controller design
itself. Yet, control structure selection is hardly
covered in most control courses. This is probably
related to the complexity of the problem, which
requires the knowledge from several engineering
fields. In the mathematical sense, the control
structure selection problem is a formidable com-
binatorial problem which involves a large number
of discrete decision variables.

Overall Objectives for Control and
Structure of the Control Layer

The starting point for control system design
is to define clearly the operational objectives.
There are usually two main objectives for
control:
1. Longer-term economic operation (minimize

economic cost J subject to satisfying opera-
tional constraints)

2. Stability and short-term regulatory control
The first objective is related to “making the sys-
tem operate as intended,” where economics are
an important issue. Traditionally, control engi-
neers have not been much involved in this step.
The second objective is related to “making sure
the system stays operational,” where stability
and robustness are important issues, and this
has traditionally been the main domain of con-
trol engineers. In terms of designing the con-
trol system, the second objective (stabilization)
is usually considered first. An example is bicy-
cle riding; we first need to learn how to sta-
bilize the bicycle (regulation), before trying to
use it for something useful (optimal operation),
like riding to work and selecting the shortest
path.

We use the term “economic cost,” because
usually the cost function J can be given a mon-
etary value, but more generally, the cost J could
be any scalar cost. For example, the cost J could
be the “environmental impact” and the economics
could then be given as constraints.

In theory, the optimal strategy is to combine
the control tasks of optimal economic operation
and stabilization/regulation in a single centralized
controller K, which at each time step collects all
the information and computes the optimal input
changes. In practice, simpler controllers are used.
The main reason for this is that in most cases one
can obtain acceptable control performance with
simple structures, where each controller block in-
volves only a few variables. Such control systems
can be designed and tuned with much less effort,
especially when it comes to the modeling and
tuning effort.

So how are large-scale systems controlled in
practise? Usually, the controller K is decomposed
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into several subcontrollers, using two main prin-
ciples
– Decentralized (local) control. This “horizon-

tal decomposition” of the control layer is usu-
ally based on separation in space, for example,
by using local control of individual units.

– Hierarchical (cascade) control. This “vertical
decomposition” is usually based on time scale
separation, as illustrated for a process plant in
Fig. 2. The upper three layers in Fig. 2 deal
explicitly with economic optimization and are
not considered here. We are concerned with
the two lower control layers, where the main
objective is to track the setpoints specified by
the layer above.
In accordance with the two main objectives for

control, the control layer is in most cases divided
hierarchically in two layers (Fig. 2):
1. A “slow” supervisory (economic) layer
2. A “fast” regulatory (stabilization) layer

Another reason for the separation in two con-
trol layers, is that the tasks of economic opera-
tion and regulation are fundamentally different.
Combining the two objectives in a single cost
function, which is required for designing a single
centralized controller K, is like trying to compare
apples and oranges. For example, how much is
an increased stability margin worth in monitory
units [$]? Only if there is a reasonable benefit in
combining the two layers, for example, because
there is limited time scale separation between
the tasks of regulation and optimal economics,
should one consider combining them into a single
controller.

Notation andMatrices H1 and H2 for
Controlled Variable Selection

The most important notation is summarized in
Table 1 and Fig. 3. To distinguish between the
two control layers, we use “1” for the upper
supervisory (economic) layer and “2” for the
regulatory layer, which is “secondary” in terms
of its place in the control hierarchy.

There is often limited possibility to select the
input set (u) as it is usually constrained by the

Control Structure Selection, Fig. 3 Block diagram of
a typical control hierarchy, emphasizing the selection of
controlled variables for supervisory (economic) control
(CV1 D H1y) and regulatory control .CV2 D H2y/

Control Structure Selection, Table 1 Important notation

u D Œu1I u2
 D set of all available physical plant inputs

u1 D inputs used directly by supervisory control layer

u2 D inputs used by regulatory layer

ym D set of all measured outputs

y D ŒymI u
 D combined set of measurements and inputs

y2 D controlled outputs in regulatory layer (subset or combination of y); dim.y2/ D dim.u2/

CV1 D H1 y D controlled variables in supervisory layer; dim.CV1/ D dim.u/

CV2 D Œy2I u1
 D H2y D controlled variables in regulatory layer; dim.CV2/ D dim.u/

MV1 D CV2s D Œy2sI u1
 D manipulated variables in supervisory layer; dim.MV1/ D dim.u/

MV2 D u2 D manipulated variables in regulatory layer; dim.MV2/ D dim.u2/ � dim.u/
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plant design. However, there may be a possibility
to add inputs or to move some to another location,
for example, to avoid saturation or to reduce the
time delay and thus improve the input-output
controllability.

There is much more flexibility in terms of out-
put selection, and the most important structural
decision is related to the selection of controlled
variables in the two control layers, as given by
the decision matrices H1 and H2 (see Fig. 3).

CV1 D H1y

CV2 D H2y

Note from the definition in Table 1 that y D
ŒymI u
. Thus, y includes, in addition to the can-
didate measured outputs (ym), also the physical
inputs u. This allows for the possibility of select-
ing an input u as a “controlled” variable, which
means that this input is kept constant (or, more
precisely, the input is left “unused” for control in
this layer).

In general, H1 and H2 are “full” matrices,
allowing for measurement combinations as con-
trolled variables. However, for simplicity, espe-
cially in the regulatory layer, we often pefer to
control individual measurements, that is, H2 is
usually a “selection matrix,” where each row
in H2 contains one 1-element (to identify the
selected variable) with the remaining elements set
to 0. In this case, we can write CV2 D H2y D
Œy2I u1
, where y2 denotes the actual controlled
variables in the regulatory layer, whereas u1 de-
notes the “unused” inputs (u1), which are left
as degrees of freedom for the supervisory layer.
Note that this indirectly determines the inputs u2
used in the regulatory layer to control y2, because
u2 is what remains in the set u after selecting u1.
To have a simple control structure, with as few
regulatory loops as possible, it is desirable that
H2 is selected such that there are many inputs (u1)
left “unused” in the regulatory layer.
Example. Assume there are three candidate out-
put measurements (temperatures T) and two in-
puts (flowrates q),

ym D ŒTaTbTc
 ; u D Œqa qb


and we have by definition y D ŒymI u
. Then the
choice

H2 D Œ0 1 0 0 0I 0 0 0 0 1


means that we have selected CV2 D H2y D
ŒTbI qb
. Thus, u1 D qb is an unused input for
regulatory control, and in the regulatory layer we
close one loop, using u2 D qa to control y2 D Tb.
If we instead select

H2 D Œ1 0 0 0 0I 0 0 1 0 0


then we have CV2 D ŒTaI Tc
. None of these are
inputs, so u1 is an empty set in this case. This
means that we need to close two regulatory loops,
using u2 D ŒqaI qb
 to control y2 D ŒTaI Tc
 :

Supervisory Control Layer and
Selection of Economic Controlled
Variables (CV1)

Some objectives for the supervisory control layer
are given in Table 2. The main structural issue
for the supervisory control layer, and probably
the most important decision in the design of any
control system, is the selection of the primary
(economic) controlled variable CV1. In many
cases, a good engineer can make a reasonable
choice based on process insight and experience.
However, the control engineer must realize that
this is a critical decision. The main rules and
issues for selecting CV1 are
CV1Rule 1. Control active constraints (almost

always)
• Active constraints may often be identified

by engineering insight, but more generally
requires optimization based on a detailed
model.
For example, consider the problem of min-
imizing the driving time between two cities
(cost J D T ). There is a single input (u D
fuel flow f Œl=s
) and the optimal solution
is often constrained. When driving a fast
car, the active constraint may be the speed
limit (CV1 D v Œkm=h
 with setpoint vmax ,
e.g., vmax D 100 km=h). When driving
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Control Structure Selection, Table 2 Objectives of supervisory control layer

O1. Control primary “economic” variables CV1 at setpoint using as degrees of freedom MV1, which includes the
setpoints to the regulatory layer .y2s D CV2s/ as well as any “unused” degrees of freedom (u1)

O2. Switch controlled variables (CV1) depending on operating region, for example, because of change in active
constraints

O3. Supervise the regulatory layer, for example, to avoid input saturation (u2), which may destabilize the system

O4. Coordinate control loops (multivariable control) and reduce effect of interactions (decoupling)

O5. Provide feedforward action from measured disturbances

O6. Make use of additional inputs, for example, to improve the dynamic performance (usually combined with input
midranging control) or to extend the steady-state operating range (split range control)

O7. Make use of extra measurements, for example, to estimate the primary variables CV1

an old car, the active constraint maybe the
maximum fuel flow (CV1 D f Œl=s
 with
setpoint fmax). The latter corresponds to
an input constraint .umax D fmax/ which
is trivial to implement (“full gas”); the
former corresponds to an output constraint
.ymax D vmax/ which requires a controller
(“cruise control”).

• For“hard” output constraints, which can-
not be violated at any time, we need to
introduce a backoff (safety margin) to guar-
antee feasibility. The backoff is defined as
the difference between the optimal value
and the actual setpoint, for example, we
need to back off from the speed limit be-
cause of the possibility for measurement
error and imperfect control

CV1;s D CV1;max � backoff

For example, to avoid exceeding the
speed limit of 100 km/h, we may set
backoff D 5 km/h, and use a setpoint
vs D 95 km/h rather than 100 km/h.

CV1Rule 2. For the remaining unconstrained
degrees of freedom, look for “self-optimizing”
variables which when held constant, indirectly
lead to close-to-optimal operation, in spite of
disturbances.
• Self-optimizing variables (CV1 D H1y) are

variables which when kept constant, indi-
rectly (through the action of the feedback
control system) lead to close-to optimal
adjustment of the inputs (u) when there are
disturbances (d).

• An ideal self-optimizing variable is the gra-
dient of the cost function with respect to the
unconstrained input. CV1 D dJ=du D Ju

• More generally, since we rarely can mea-
sure the gradient Ju, we select CV1 D H1y.
The selection of a good H1 is a nontrivial
task, but some quantitative approaches are
given below.

For example, consider again the problem of
driving between two cities, but assume that the
objective is to minimize the total fuel, J = V
[liters]., Here, driving at maximum speed will
consume too much fuel, and driving too slow
is also nonoptimal. This is an unconstrained
optimization problem, and identifying a good
CV1 is not obvious. One option is to maintain
a constant speed (CV1 D v), but the optimal
value of v may vary depending on the slope
of the road. A more “self-optimizing” option,
could be to keep a constant fuel rate (CV1 D
f Œl=s
), which will imply that we drive slower
uphill and faster downhill. More generally,
one can control combinations, CV1 D H1y

where H1 is a “full” matrix.
CV1Rule 3. For the unconstrained degrees of

freedom, one should never control a variable
that reaches its maximum or minimum value at
the optimum, for example, never try to control
directly the cost J. Violation of this rule gives
either infeasibility (if attempting to control J
at a lower value than Jmin) or nonuniqueness
(if attempting to control J at higher value than
Jmin).
Assume again that we want to minimize the

total fuel needed to drive between two cities,
J D V Œl 
. Then one should avoid fixing the
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total fuel, CV1 D V Œl 
, or, alternatively, avoid
fixing the fuel consumption(“gas mileage”) in
liters pr. km .CV1 D f Œl=km
/. Attempting to
control the fuel consumption[l/km] below the
car’s minimum value is obviously not possible
(infeasible). Alternatively, attempting to control
the fuel consumption above its minimum value
has two possible solutions; driving slower or
faster than the optimum. Note that the policy of
controlling the fuel rate f [l/s] at a fixed value
will never become infeasible.

For CV1-Rule 2, it is always possible to find
good variable combinations (i.e., H1 is a “full”
matrix), at least locally, but whether or not it is
possible to find good individual variables (H1

is a selection matrix), is not obvious. To help
identify potential “self-optimizing” variables
.CV1 D c/ ;the following requirements may be
used:
Requirement 1. The optimal value of c is insen-

sitive to disturbances, that is, dcopt=dd D H1F
is small. Here F = dyopt=dd is the optimal
sensitivity matrix (see below).

Requirement 2. The variable c is easy to measure
and control accurately

Requirement 3. The value of c is sensitive to
changes in the manipulated variable, u; that
is, the gain, G D HGy, from u to c is
large (so that even a large error in controlled
variable, c, results in only a small variation in
u.) Equivalently, the optimum should be “flat”
with respect to the variable, c. Here Gy D
dy=du is the measurement gain matrix (see
below).

Requirement 4. For cases with two or more
controlled variables c, the selected variables
should not be closely correlated.
All four requirements should be satisfied.

For example, for the operation of a marathon
runner, the heart rate may be a good “self-
optimizing” controlled variable c (to keep at
constant setpoint). Let us check this against
the four requirements. The optimal heart
rate is weakly dependent on the disturbances
(requirement 1) and the heart rate is easy to
measure (requirement 2). The heart rate is quite
sensitive to changes in power input (requirement
3). Requirement 4 does not apply since this is

a problem with only one unconstrained input
(the power). In summary, the heart rate is a good
candidate.

Regions and switching. If the optimal active
constraints vary depending on the disturbances,
new controlled variables (CV1) must be identified
(offline) for each active constraint region, and on-
line switching is required to maintain optimality.
In practise, it is easy to identify when to switch
when one reaches a constraint. It is less obvious
when to switch out of a constraint, but actually
one simply has to monitor the value of the un-
constrained CVs from the neighbouring regions
and switch out of the constraint region when the
unconstrained CV reaches its setpoint.

In general, one would like to simplify the
control structure and reduce need for switching.
This may require using a suboptimal CV1 in
some regions of active constraints. In this case,
the setpoint for CV1 may not be its nominally
optimal value (which is the normal choice), but
rather a “robust setpoint” (with backoff) which
reduces the loss when we are outside the nominal
constraint region.

Structure of supervisory layer. The supervi-
sory layer may either be centralized, e.g., using
model predictive control (MPC), or decomposed
into simpler subcontrollers using standard ele-
ments, like decentralized control (PID), cascade
control, selectors, decouplers, feedforward ele-
ments, ratio control, split range control, and input
midrange control (also known as input resetting,
valve position control or habituating control). In
theory, the performance is better with the central-
ized approach (e.g., MPC), but the difference can
be small when designed by a good engineer. The
main reasons for using simpler elements is that
(1) the system can be implemented in the existing
“basic” control system, (2) it can be implemented
with little model information, and (3) it can be
build up gradually. However, such systems can
quickly become complicated and difficult to un-
derstand for other than the engineer who designed
it. Therefore, model-based centralized solutions
(MPC) are often preferred because the design is
more systematic and easier to modify.
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Quantitative Approach for Selecting
Economic Controlled Variables, CV1

A quantitative approach for selecting economic
controlled variables is to consider the effect of the
choice CV1 D H1y on the economic cost J when
disturbances d occur. One should also include
noise/errors (ny) related to the measurements and
inputs.
Step S1. Define operational objectives (eco-

nomic cost function J and constraints)
We first quantify the operational objectives

in terms of a scalar cost function J [$/s] that
should be minimized (or equivalently, a scalar
profit function, P D �J, that should be max-
imized). For process control applications, this
is usually easy, and typically we have

J D cost feed C cost utilities .energy/

� value products Œ$=s


Note that the economic cost function J is used
to select the controlled variables (CV1), and
another cost function (J0), typically involving
the deviation in CV1 from their optimal set-
points CV1s, is used for the actual controller
design (e.g., using MPC).

Step S2. Find optimal operation for expected
disturbances
Mathematically, the optimization problem can
be formulated as

minu J .u; x; d/

subject to:

Model equations: dx=dt D f .u; x; d/
Operational constraints: g .u; x; d/ � 0

In many cases, the economics are determined
by the steady-state behavior, so we can set
dx=dt D 0. The optimization problem should
be resolved for the expected disturbances (d)
to find the truly optimal operation policy,
uopt(d). The nominal solution (dnom) may
be used to obtain the setpoints (CV1s)
for the selected controlled variables. In

practise, the optimum input uopt (d) cannot
be realized, because of model error and
unknown disturbances d, so we use a feeback
implementation where u is adjusted to keep
the selected variables CV1 at their nominally
optimal setpoints.

Together with obtaining the model, the opti-
mization step S2 is often the most time con-
suming step in the entire plantwide control
procedure.

Step S3. Select supervisory (economic) con-
trolled variables, CV 1

CV1-Rule 1: Control Active Constraints
A primary goal for solving the optimization prob-
lem is to find the expected regions of active
constraints, and a constraint is said to be “active”
if g D 0 at the optimum. The optimally active
constraints will vary depending on disturbances
(d) and market conditions (prices).

CV1-Rule 2: Control Self-Optimizing
Variables
After having identified (and controlled) the ac-
tive constraints, one should consider the remain-
ing lower-dimension unconstrained optimization
problem, and for the remaining unconstrained
degrees of freedom one should search for control
“self-optimizing” variables c.
1. “Brute force” approach. Given a set of con-

trolled variables CV1 D c D H1y; one
computes the cost J(c,d) when we keep c
constant .c D cs C H1ny/ for various dis-
turbances (d) and measurement errors (ny).
In practise, this is done by running a large
number of steady-state simulations to try to
cover the expected future operation.

2. “Local” approaches based on a quadratic
approximation of the cost J. Linear models are
used for the effect of u and d on y.

y D Gyu C Gy
dd

This is discussed in more detail in Alstad et al.
(2009) and references therein. The main local
approaches are:

2A. Maximum gain rule: maximize the min-
imum singular value of G D H1Gy.
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In other words, the maximum gain rule,
which essentially is a quantitative version
of Requirements 1, 3 and 4 given above,
says that one should control “sensitive”
variables, with a large scaled gain G from
the inputs (u) to c D H1y. This rule is
good for pre-screening and also yields good
insight.

2B. Nullspace method. This method yields op-
timal measurement combinations for the
case with no noise, ny D 0. One must first
obtain the optimal measurement sensitivity
matrix F, defined as

F D dyopt=dd:

Each column in F expresses the optimal
change in the y’s when the independent
variable (u) is adjusted so that the sys-
tem remains optimal with respect to the
disturbance d. Usually, it is simplest to
obtain F numerically by optimizing the
model. Alternatively, we can obtain F from
a quadratic approximation of the cost func-
tion

F D Gy
d � GyJ�1

uu Jud

Then, assuming that we have at least as
many (independent) measurements y as the
sum of the number of (independent) inputs
(u) and disturbances (d), the optimal is to
select c D H1y such that

H1F D 0

Note that H1 is a nonsquare matrix, so
H1F D 0 does not require that H1 D 0

(which is a trivial uninteresting solution),
but rather that H1 is in the nullspace of FT.

2C. Exact local method (loss method). This
extends the nullspace method to include
noise (ny) and allows for any number of
measurements. The noise and disturbances
are normalized by introducing weighting
matrices Wny and Wd (which have the ex-
pected magnitudes along the diagonal) and
then the expected loss, L D J � Jopt.d/,
is minimized by selecting H1 to solve the
following problem

min_H1jjM.H1/jj2

where 2 denotes the Frobenius norm and

M.H1/ D J1=2uu .H1Gy/�1H1Y;Y

D �
FWd Wny

�
:

Note here that the optimal choice with
Wny D 0 (no noise) is to choose H1 such
that H1F D 0, which is the nullspace
method. For the general case, when H1 is a
“full” matrix, this is a convex problem and
the optimal solution is HT

1 D .YY0/�1GyQ
where Q is any nonsingular matrix.

Regulatory Control Layer

The main purpose of the regulatory layer is
to “stabilize” the plant, preferably using a
simple control structure (e.g., single-loop PID
controllers) which does not require changes
during operation. “Stabilize” is here used in a
more extended sense to mean that the process
does not “drift” too far away from acceptable
operation when there are disturbances. The
regulatory layer should make it possible to use
a “slow” supervisory control layer that does not
require a detailed model of the high-frequency
dynamics. Therefore, in addition to track the
setpoints given by the supervisory layer (e.g.,
MPC), the regulatory layer may directly control
primary variables (CV1) that require fast and
tight control, like economically important active
constraints.

In general, the design of the regulatory layer
involves the following structural decisions:
1. Selection of controlled outputs y2 (among all

candidate measurements ym).
2. Selection of inputs MV2 D u2 (a subset of all

available inputs u) to control the outputs y2.
3. Pairing of inputs u2 and outputs y2 (since

decentralized control is normally used).
Decisions 1 and 2 combined (IO selection) is
equivalent to selecting H2 (Fig. 3). Note that
we do not “use up” any degrees of freedom in
the regulatory layer because the set points (y2s)
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become manipulated variables (MV1) for the
supervisory layer (see Fig. 3). Furthermore, since
the set points are set by the supervisory layer
in a cascade manner, the system eventually
approaches the same steady-state (as defined by
the choice of economic variables CV1) regardless
of the choice of controlled variables in the
regulatory layer.

The inputs for the regulatory layer (u2) are
selected as a subset of all the available inputs
(u). For stability reasons, one should avoid input
saturation in the regulatory layer. In particular,
one should avoid using inputs (in the set u2) that
are optimally constrained in some disturbance
region. Otherwise, in order to avoid input satura-
tion, one needs to include a backoff for the input
when entering this operational region, and doing
so will have an economic penalty.

In the regulatory layer, the outputs (y2) are
usually selected as individual measurements and
they are often not important variables in them-
selves. Rather, they are “extra outputs” that are
controlled in order to “stabilize” the system, and
their setpoints (y2s) are changed by the layer
above, to obtain economical optimal operation.
For example, in a distillation column one may
control a temperature somewhere in the middle
of the column (y2 D T) in order to “stabilize”
the column profile. Its setpoint (y2s D Ts) is
adjusted by the supervisory layer to obtain the
desired product composition (y1 D c).

Input-Output (IO) Selection for
Regulatory Control (u2; y2)

Finding the truly optimal control structure, in-
cluding selecting inputs and outputs for regu-
latory control, requires finding also the optimal
controller parameters. This is an extremely dif-
ficult mathematical problem, at least if the con-
troller K is decomposed into smaller controllers.
In this section, we consider some approaches
which does not require that the controller param-
eters be found. This is done by making assump-
tions related to achievable control performance
(controllability) or perfect control.

Before we look at the approaches, note again
that the IO-selection for regulatory control may
be combined into a single decision, by consider-
ing the selection of

CV2 D Œy2I u1
 D H2y

Here u1 denotes the inputs that are not used by the
regulatory control layer. This follows because we
want to use all inputs u for control, so assuming
that the set u is given, “selection of inputs u2”
(decision 2) is by elimination equivalent to “se-
lection of inputs u1.” Note that CV2 include all
variables that we keep at desired (constant) values
within the fast time horizon of the regulatory
control layer, including the “unused” inputs u1

Survey by Van deWal and Jager
Van de Wal and Jager provide an overview of
methods for input-output selection, some of
which include:
1. “Accessibility” based on guaranteeing a

cause–effect relationship between the selected
inputs (u2) and outputs (y2). Use of such
measures may eliminate unworkable control
structures.

2. “State controllability and state observability”
to ensure that any unstable modes can be sta-
bilized using the selected inputs and outputs.

3. “Input-output controllability” analysis to en-
sure that y2 can be acceptably controlled us-
ing u2. This is based on scaling the system,
and then analysing the transfer matrices G2.s/
(from u2 to y2) and Gd2 (from expected dis-
turbances d to y2). Some important control-
lability measures are right half plane zeros
(unstable dynamics of the inverse), condition
number, singular values, relative gain array,
etc. One problem here is that there are many
different measures, and it is not clear which
should be given most emphasis.

4. “Achievable robust performance.” This may
be viewed as a more detailed version of input-
output controllability, where several relevant
issues are combined into a single measure.
However, this requires that the control prob-
lem can actually be formulated clearly, which
may be very difficult, as already mentioned.
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In addition, it requires finding the optimal
robust controller for the given problem, which
may be very difficult.

Most of these methods are useful for analyzing a
given structure (u2, y2) but less suitable for selec-
tion. Also, the list of methods is also incomplete,
as disturbance rejection, which is probably the
most important issue for the regulatory layer, is
hardly considered.

A Systematic Approach for IO-Selection
Based on Minimizing State Drift Caused by
Disturbances
The objectives of the regulatory control layer
are many, and Yelchuru and Skogestad (2013)
list 13 partly conflicting objectives. To have a
truly systematic approach to regulatory control
design, including IO-selection, we would need to
quantify all these partially conflicting objectives
in terms of a scalar cost function J2. We here
consider a fairly general cost function,

J2 D jjWxjj

which may be interpreted as the weighted state
drift. One justification for considering the state
drift, is that the regulatory layer should ensure
that the system, as measured by the weighted
states Wx, does not drift too far away from the
desired state, and thus stays in the “linear region”
when there are disturbances. Note that the cost J2
is used to select controlled variables (CV2) and
not to design the controller (for which the cost
may be the control error, J2

0 D jjCV2 � CV2sjj).
Within this framework, the IO-selection prob-

lem for the regulatory layer is then to select the
nonsquare matrix H2,

CV2 D H2y

where y D ŒymI u
, such that the cost J2 is
minimized. The cause for changes in J2 are dis-
turbances d, and we consider the linear model (in
deviation variables)

y D Gyu C Gy
dd

x D Gxu C Gx
dd

where the G-matrices are transfer matrices. Here,
Gx

d gives the effect of the disturbances on the
states with no control, and the idea is to reduce
the disturbance effect by closing the regulatory
control loops. Within the “slow” time scale of
the supervisory layer, we can assume that CV2 is
perfectly controlled and thus constant, or CV2 D
0 in terms of deviation variables. This gives

CV2 D H2Gyu C H2G
y
dd D 0

and solving with respect to u gives

u D � .H2G
y/

�1 	H2G
y
d



d

and we have
x D Px

d .H2/ d

where

Px
d .H2/ D Gx

d � Gx .H2G
y/

�1 H2G
y
d

is the disturbance effect for the “partially” con-
trolled system with only the regulatory loops
closed. Note that it is not generally possible to
make Px

d D 0 because we have more states than
we have available inputs. To have a small “state
drift,” we want J2 D jjW Pd djj to be small, and
to have a simple regulatory control system we
want to close as few regulatory loops as possible.
Assume that we have normalized the disturbances
so that the norm of d is 1, then we can solve the
following problem

For 0; 1; 2: : : etc. loops closed solve:
min_H2jjM2 .H2/ jj

where M2 D WPx
d and dim .u2/ D

dim .y2/ D no: of loops closed:
By comparing the value of jjM2 .H2/ jj with

different number of loops closed (i.e., with differ-
ent H2), we can then decide on an appropriate reg-
ulatory layer structure. For example, assume that
we find that the value of J2 is 110 (0 loops closed),
0.2 (1 loop), and 0.02 (2 loops), and assume we
have scaled the disturbances and states such that
a J2-value less than about 1 is acceptable, then
closing 1 regulatory loop is probably the best
choice.
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In principle, this is straightforward, but there
are three remaining issues: (1) We need to choose
an appropriate norm, (2) we should include
measurement noise to avoid selecting insensitive
measurements and (3) the problem must be
solvable numerically.

Issue 1. The norm of M2 should be evalu-
ated in the frequency range between the “slow”
bandwidth of the supervisory control layer (¨B1)
and the “fast” bandwidth of the regulatory control
layer (¨B2). However, since it is likely that the
system sometimes operates without the supervi-
sory layer, it is reasonable to evaluate the norm
of Px

d in the frequency range from 0 (steady state)
to ¨B2. Since we want H2 to be a constant (not
frequency-dependent) matrix, it is reasonable to
choose H2 to minimize the norm of M2 at the
frequency where jjM2jj is expected to have its
peak. For some mechanical systems, this may
be at some resonance frequency, but for process
control applications it is usually at steady state
(¨ D 0), that is, we can use the steady-state
gain matrices when computing Px

d. In terms of
the norm, we use the 2-norm (Frobenius norm),
mainly because it has good numerical proper-
ties, and also because it has the interpretation of
giving the expected variance in x for normally
distributed disturbances.

Issues 2 and 3. If we include also measurement
noise ny, which we should, then the expected
value of J2 is minimized by solving the problem
min_H2 jjM2.H2/jj2 where (Yelchuru and Sko-
gestad 2013)

M2.H2/ D J1=22uu.H2Gy/�1H2Y2

Y2 D ŒF2Wd Wn
I F2 D @yopt

@d

D GyJ �1
2uuJ 2ud � Gdy

where J2uu
�D @2J2

@u2
D 2GxT WTWGx; J2ud

�D
@2J2
@u@d D 2GxT WTWGdx ,

Note that this is the same mathematical prob-
lem as the “exact local method” presented for se-
lecting CV1 D H1y for minimizing the economic
cost J, but because of the specific simple form

for the cost J2, it is possible to obtain analytical
formulas for the optimal sensitivity, F2. Again,
Wd and Wny are diagonal matrices, expressing
the expected magnitude of the disturbances (d)
and noise (for y).

For the case when H2 is a “full” matrix, this
can be reformulated as a convex optimization
problem and an explicit solution is

HT
2 D .Y2YT

2 /
�1Gy.GyT .Y2YT

2 /
�1Gy/�1J1=22uu

and from this we can find the optimal value of
J2. It may seem restrictive to assume that H2 is a
“full” matrix, because we usually want to control
individual measurements, and then H2should be
a selection matrix, with 1’s and 0’s. Fortunately,
since we in this case want to control as many
measurements (y2) as inputs (u2), we have that
H2 is square in the selected set, and the opti-
mal value of J2 when H2 is a selection matrix
is the same as when H2 is a full matrix. The
reason for this is that specifying (controlling) any
linear combination of y2, uniquely determines
the individual y2’s, since dim.u2/ D dim.y2/.
Thus, we can find the optimal selection matrix
H2, by searching through all the candidate square
sets of y. This can be effectively solved using
the branch and bound approach of Kariwala and
Cao, or alternatively it can be solved as a mixed-
integer problem with a quadratic program (QP) at
each node (Yelchuru and Skogestad 2012). The
approach of Yelchuru and Skogestad can also be
applied to the case where we allow for disjunct
sets of measurement combinations, which may
give a lower J2 in some cases.

Comments on the state drift approach.
1. We have assumed that we perfectly control y2

using u2, at least within the bandwidth of the
regulatory control system. Once one has found
a candidate control structure (H2), one should
check that it is possible to achieve acceptable
control. This may be done by analyzing the
input-output controllability of the system y2 D
G2u2 C G2d d, based on the transfer matrices
G2 D H2Gy and G2d D H2G

y
d. If the control-

lability of this system is not acceptable, then
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one should consider the second-best matrix H2

(with the second-best value of the state drift
J2) and so on.

2. The state drift cost drift J2 D jjWxjj is in
principle independent of the economic cost
(J). This is an advantage because we know
that the economically optimal operation (e.g.,
active constraints) may change, whereas we
would like the regulatory layer to remain un-
changed. However, it is also a disadvantage,
because the regulatory layer determines the
initial response to disturbances, and we would
like this initial response to be in the right
direction economically, so that the required
correction from the slower supervisory layer
is as small as possible. Actually, this issue
can be included by extending the state vector
x to include also the economic controlled
variables, CV1, which is selected based on the
economic cost J. The weight matrix W may
then be used to adjust the relative weights
of avoiding drift in the internal states x and
economic controlled variables CV1.

3. The above steady-state approach does not con-
sider input-output pairing, for which dynamics
are usually the main issue. The main pairing
rule is to “pair close” in order to minimize the
effective time delay between the selected input
and output. For a more detailed approach, de-
centralized input-output controllability must
be considered.

Summary and Future Directions

Control structure design involves the structural
decisions that must be made before designing
the actual controller, and it is in most cases a
much more important step than the controller
design. In spite of this, the theoretical tools for
making the structural decisions are much less
developed than for controller design. This chapter
summarizes some approaches, and it is expected,
or at least hoped, that this important area will
further develop in the years to come.

The most important structural decision is
usually related to selecting the economic con-
trolled variables, CV1 D H1y, and the stabilizing

controlled variables, CV2 D H2y. However,
control engineers have traditionally not used
the degrees of freedom in the matrices H1 and
H2, and this chapter has summarized some
approaches.

There has been a belief that the use of “ad-
vanced control,” e.g., MPC, makes control struc-
ture design less important. However, this is not
correct because also for MPC must one choose
inputs (MV1 D CV2s) and outputs (CV1). The
selection of CV1 may to some extent be avoided
by use of “Dynamic Real-Time Optimization
(DRTO)” or “Economic MPC,” but these opti-
mizing controllers usually operate on a slower
time scale by sending setpoints to the basic con-
trol layer (MV1 D CV2s), which means that se-
lecting the variables CV2 is critical for achieving
(close to) optimality on the fast time scale.
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Abstract

State controllability and observability are key
properties in linear input–output systems in state-
space form. In the state-space approach, the re-
lation between inputs and outputs is represented
using the state variables of the system. A natural
question is then to what extent it is possible
to manipulate the values of the state vector by
means of an appropriate choice of the input func-
tion. The concepts of controllability, reachability,
and null controllability address this issue. An-
other important question is whether it is possible
to uniquely determine the values of the state
vector from knowledge of the input and output

signals over a given time interval. This question
is dealt with using the concept of observability.
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Introduction

In the state-space approach to input–output
systems, the relation between input signals
and output signals is represented by means of
two equations. In the continuous-time case, the
first of these equations is a first-order vector
differential equation driven by the input signal
and is often called the state equation. The second
equation is an algebraic equation, often called the
output equation. The unknown in the differential
equation is called the state vector of the system.
Given a particular input signal and initial value
of the state vector, the state equation generates
a unique solution, called the state trajectory of
the system. The output equation determines the
corresponding output signal as a function of this
state trajectory and the input signal. Thus, in the
state space approach, the input–output behavior
of the system is obtained using the state vector as
an intermediate variable.

In the context of input–output systems in state-
space form, the properties of controllability and
observability characterize the interaction between
the input, the state, and the output. In particular,
controllability describes the ability to manipulate
the state vector of the system by applying ap-
propriate input signals. Observability describes
the ability to determine the values of the state
vector from knowledge of the input and output
over a certain time interval. The properties of
controllability and observability are fundamental
properties that play a major role in the analysis
and control of linear input–output systems in
state-space form.
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Systems with Inputs and Outputs

Consider a continuous-time, linear, time-
invariant, input–output system in state-space
form represented by the equations

Px .t/ D Ax .t/C Bu .t/ ;
y .t/ D Cx .t/CDu .t/ :

(1)

This system is referred to as †. In Eq. (1), A,
B , C , and D are maps (or matrices), and the
functions x, u, and y are considered to be defined
on the real axis R or on any subinterval of it.
In particular, one often assumes the domain of
definition to be the nonnegative part of R, which
is without loss of generality since the system is
time-invariant. The function u is called the input,
and its values are assumed to be given. The class
of admissible input functions is denoted by U. Of-
ten, U is the class of piecewise continuous or lo-
cally integrable functions, but for most purposes,
the exact class from which the input functions are
chosen is not important. We assume that input
functions take values in an m-dimensional space
U , which we often identify with R

m. The first
equation of † is an ordinary differential equation
for the variable x. For a given initial value of x
and input function u, the function x is completely
determined by this equation. The variable x is
called the state variable and it is assumed to
take values in an n-dimensional space X : The
space X is called the state space. It is usually
identified with R

n. Finally, y is called the output
of the system and takes values in a p-dimensional
space Y , which we identify with R

p . Since the
system † is completely determined by the maps
(or matrices) A, B;C , andD, we identify† with
the quadruple .A;B; C;D/.

The solution of the differential equation of †
with initial value x(0) =x0 is denoted as xu.t; x0/.
It can be given explicitly using the variation-of-
constants formula, namely,

xu .t; x0/ D eAtx0 C
Z t

0

eA.t��/Bu .�/ d�: (2)

The corresponding value of y is denoted by
yu.t; x0/. As a consequence of (2), we have

yu .t; x0/ D CeAtx0 C
Z t

0

K .t � �/ u .�/ d�

CDu .t/ ; (3)

where K.t/W D CeAtB . In the case D D 0, it is
customary to call K.t/ the impulse response. In
the general case, one would call the distribution
K.t/CDı.t/ the impulse response.

Controllability

Controllability is concerned with the ability to
manipulate the state by choosing an appropriate
input signal, thus steering the current state to a
desired future state in a given finite time. Thus, in
particular, in the differential equation in (1), we
study the relation between u and x. We investi-
gate to what extent one can influence the state x
by a suitable choice of the input u.

For this purpose, we introduce the (at time
T ) reachable space WT , defined as the space of
points x1 for which there exists an input u such
that xu.T; 0/ D x1, i.e., the set of points that can
be reached from the origin at time T . It follows
from the linearity of the differential equation that
WT is a linear subspace of X . In fact, (2) implies

WT D
� Z T

0

eA.T��/Bu.�/d�

ˇ̌
ˇ̌ u 2 U

�
: (4)

We call system † reachable at time T if
every point can be reached from the origin,
i.e., if WT D X . It follows from (2)
that if the system is reachable at time T ,
every point can be reached from every point
at time T , because the condition for the
point x1 to be reachable from x0 at time T

is
x1 � eAT x0 2 WT :

The property that every point is reachable
from any point in a given time interval [0,
T ] is called controllability (at T). Finally, we
have the concept of null controllability, i.e.,
the possibility to reach the origin from an
arbitrary initial point. According to (2), for a
point x0 to be null controllable at T , we must
have
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eAT x0 C
Z T

0

eA.T��/Bu .�/ d� D 0

for some u 2 U. We observe that x0 is null
controllable at T (by the control u) if and only
if –eAT x0 is reachable at T (by the control u).
Since eAT is invertible, we see that † is null
controllable at T if and only if † is reachable
at T . Henceforth, we refer to the equivalent
properties reachability, controllability, null con-
trollability simply as controllability (at T ). It
should be remarked that the equivalence of these
concepts does not hold in other situations, e.g.,
for discrete-time systems. We intend to obtain
an explicit expression for the space WT and,
based on this, an explicit condition for control-
lability. This is provided by the following re-
sult.

Theorem 1 Let � be an n-dimensional row vec-
tor and T> 0. Then the following statements are
equivalent:
1. � ?WT (i.e., �x D 0 for all x 2 WT ).
2. �etAB D 0 for 0 � t � T .
3. �AkB D 0 for k D 0,1, 2,: : :.
4. � (B AB � � � An�1B) D 0.

Proof (i) , (ii) If � ?WT , then by Eq. (4):

Z T

0

�eA.T��/Bu .�/ d� D 0 (5)

for every u 2 U. Choosing u.t/ D
BTeA

T.T�t /�T for 0 � t � T yields

Z T

0

�eA.T��/B
2d� D 0;

from which (ii) follows. Conversely, assume
that (ii) holds. Then (5) holds and hence (i)
follows.

(ii) , (iii) This is obtained by power series

expansion of eAt
�
D P1

kD0 t
k

kŠ
Ak
�
:

(iii) , (iv) This follows immediately from the
evaluation of the vector-matrix product.

(iv) , (iii) This implication is based on the
Cayley-Hamilton Theorem. According to
this theorem, An is a linear combination
of I; A; : : : ; An�1. By induction, it follows

that Ak (k > n) is a linear combination
of I; A; : : : ; An�1 as well. Therefore,
�AkB D 0 for k D 0; 1; : : : ; n � 1 implies
that �AkBD 0 for all k 2 N. �

As an immediate consequence of the previous
theorem, we find that at time T reachable sub-
space WT can be expressed in terms of the maps
A and B as follows.

Corollary 1

WT D im .B AB � � � An�1B/:

This implies that, in fact, WT is independent of
T , for T > 0. Because of this, we often use W in-
stead of WT and call this subspace the reachable
subspace of †. This subspace of the state space
has the following geometric characterization in
terms of the maps A and B .

Corollary 2 W is the smallest A-invariant sub-
space containing B:D imB . Explicitly, W is A-
invariant, B 	 W , and any A-invariant sub-
space L satisfying B 	 L also satisfies W 	
L. We denote the smallest A-invariant subspace
containing B by hAjBi, so that we can write
W D hAjBi. For the space hAjBi, we have the
following explicit formula

hAjBi D B CAB C � � � C An�1B.

Corollary 3 The following statements are equiv-
alent.
1. There exists T > 0 such that system † is

controllable at T .
2. hAjBi D X .
3. Rank (B AB � � �An�1B/ D n.
4. The system† is controllable at T for all T> 0.

We say that the matrix pair (A, B) is controllable
if one of these equivalent conditions is satisfied.

Example 1 Let A and B be defined by

AWD
��2 �6

2 5

�
; BWD

��3
2

�
:

Then .B AB/ D
��3 �6

2 4

�
; rank(B AB) D 1,

and consequently, (A, B) is not controllable. The
reachable subspace is the span of (B AB), i.e., the
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line given by the equation 2x1 C 3x2 D 0. This
can also be seen as follows. Let z WD 2x1 C 3x2,
then Pz D z. Hence, if z(0) D 0, which is the case
if x(0) D 0, we must have z.t/D 0 for all t � 0.

Observability

In this section, we include the second of equa-
tions (1), yD Cx + Du, in our considerations.
Specifically, we investigate to what extent it is
possible to reconstruct the state x if the input
u and the output y are known. The motivation
is that we often can measure the output and
prescribe (and hence know) the input, whereas
the state variable is hidden.

Definition 2 Two states x0 and x1 in X are
called indistinguishable on the interval [0, T ] if
for any input u we have yu.t , x0/ D yu.t , x1/,
for all 0 � t � T .

Hence, x0 and x1 are indistinguishable if they
give rise to the same output values for every
input u. According to (3), for x0 and x1 to be
indistinguishable on [0, T ], we must have that

CeAtx0 C
Z t

0

K .t � �/ u .�/ d� CDu .t/

D CeAtx1 C
Z t

0

K .t � �/ u .�/ d� CDu .t/

for 0 � t � T and for any input signal u. We
note that the input signal does not affect distin-
guishability, i.e., if one u is able to distinguish
between two states, then any input is. In fact,
x0 and x1 are indistinguishable if and only if
CeAtx0 D CeAtx1 (0 � t � T ). Obviously, x0
and x1 are indistinguishable if and only if v WD
x0 � x1 and 0 are indistinguishable. By applying
Theorem 1 with �= vT nonzero and transposing
the equations, it follows that CeAtx0 D CeAtx1
(0 � t � T / if and only if CeAtv D 0 (0
� t � T / and hence if and only if CAkv D 0
(k D 0; 1; 2; : : :). The Cayley-Hamilton Theorem
implies that we need to consider the first n terms
only, i.e.,

0
BBBBB@

C

CA

CA2

:::

CAn�1

1
CCCCCA
v D 0: (6)

As a consequence, the distinguishability of two
vectors does not depend on T . The space of
vectors v for which (6) holds is denoted hker
C jAi and called the unobservable subspace. It is
equivalently characterized as the intersection of
the spaces ker CAk for k D 0; : : : ; n � 1, i.e.,

hker C jAi D
n�1\
kD0

ker CAk:

Equivalently, hker C jAi is the largest A-invariant
subspace contained in ker C . Finally, another
characterization is “v 2 hker C jAi if and only if
y0.t , v/ is identically zero,” where the subscript
“0” refers to the zero input.

Definition 3 System † is called observable if
any two distinct states are not indistinguishable.

The previous considerations immediately lead to
the result.

Theorem 2 The following statements are equiv-
alent.
1. The system † is observable.
2. Every nonzero state is not indistinguishable

from the origin.
3. hker C jAi D 0.
4. CeAtv D 0 (0 � t � T / ) v D 0.

5. Rank

0
BBBBB@

C

CA

CA2

:::

CAn�1

1
CCCCCA

D n:

Since observability is completely determined
by the matrix pair (C , A), we will say “(C , A) is
observable” instead of “system † is observable.”

There is a remarkable relation between the
controllability and observability properties,
which is referred to as duality. This property
is most conspicuous from the conditions (3) in
Corollary 3 and (5) in Theorem 2, respectively.
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Specifically, (C , A) is observable if and only if
(AT, C T) is controllable. As a consequence of
duality, many theorems on controllability can
be translated into theorems on observability and
vice versa by mere transposition of matrices.

Example 2 Let

A W D
��11 3

�3 �5
�
; B WD

�
1

1

�
;

C W D .1 � 1/ ;

Then

rank

�
C

CA

�
D rank

�
1 �1

�8 8

�
D 1;

hence, (C ,A) is not observable. Notice that if v 2
hker C j Ai and u D 0, identically, then y D 0,
identically. In this example, hker C jAi is the span
of (l, 1)T.

Summary and Future Directions

The property of controllability can be tested by
means of a rank test on a matrix involving the
maps A and B appearing in the state equation of
the system. Alternatively, controllability is equiv-
alent to the property that the reachable subspace
of the system is equal to the state space. The prop-
erty of observability allows a rank test on a matrix
involving the maps A and C appearing in the
system equations. An alternative characterization
of this property is that the unobservable subspace
of the system is equal to the zero subspace. Con-
cepts of controllability and observability have
also been defined for discrete-time systems and,
more generally, for time-varying systems and
for continuous-time and discrete-time nonlinear
systems.

Cross-References
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Recommended Reading

The description of linear systems in terms of
a state space representation was particularly
stressed by R. E. Kalman in the early 1960s (see
Kalman 1960a,b, 1963), Kalman et al. (1963).
See also Zadeh and Desoer (1963) and Gilbert
(1963). In particular, Kalman introduced the
concepts of controllability and observability and
gave the conditions expressed in Corollary 3,
time (3), and Theorem 5, item (5). Alternative
conditions for controllability and observability
have been introduced in Hautus (1969) and
independently by a number of authors; see Popov
(1966) and Popov (1973). Other references are
Belevitch (1968) and Rosenbrock (1970).
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Abstract

Process control performance is a cornerstone of
operational excellence in a broad spectrum of
industries such as refining, petrochemicals, pulp
and paper, mineral processing, power and waste
water treatment. Control performance assessment
and monitoring applications have become main-
stream in these industries and are changing the
maintenance methodology surrounding control
assets from predictive to condition based. The
large numbers of these assets on most sites com-
pared to the number of maintenance and control
personnel have made monitoring and diagnosing
control problems challenging. For this reason, au-
tomated controller performance monitoring tech-
nologies have been readily embraced by these
industries.

This entry discusses the theory as well as
practical application of controller performance
monitoring tools as a requisite for monitoring and
maintaining basic as well as advanced process
control (APC) assets in the process industry. The
section begins with the introduction to the theory
of performance assessment as a technique for
assessing the performance of the basic control
loops in a plant. Performance assessment al-
lows detection of performance degradation in the

basic control loops in a plant by monitoring the
variance in the process variable and compar-
ing it to that of a minimum variance controller.
Other metrics of controller performance are also
reviewed. The resulting indices of performance
give an indication of the level of performance
of the controller and an indication of the ac-
tion required to improve its performance; the
diagnosis of poor performance may lead one to
look at remediation alternatives such as: retuning
controller parameters or process reengineering to
reduce delays or implementation of feed-forward
control or attribute poor performance to faulty
actuators or other process nonlinearities.

Keywords

Time series analysis; Minimum variance control;
Control loop performance assessment; Perfor-
mance monitoring; Fault detection and diagnosis

Introduction

A typical industrial process, as in a petroleum
refinery or a petrochemical complex, includes
thousands of control loops. Instrumentation tech-
nicians and engineers maintain and service these
loops, but rather infrequently. However, industrial
studies have shown that as many as 60 % of
control loops may have poor tuning or config-
uration or actuator problems and may therefore
be responsible for suboptimal process perfor-
mance. As a result, monitoring of such control
strategies to detect and diagnose cause(s) of un-
satisfactory performance has received increasing
attention from industrial engineers. Specifically
the methodology of data-based controller per-
formance monitoring (CPM) is able to answer
questions such as the following: Is the controller
doing its job satisfactorily and if not, what is the
cause of poor performance?

The performance of process control assets is
monitored on a daily basis and compared with in-
dustry benchmarks. The monitoring system also
provides diagnostic guidance for poorly perform-
ing control assets. Many industrial sites have
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established reporting and remediation workflows
to ensure that improvement activities are carried
out in an expedient manner. Plant-wide perfor-
mance metrics can provide insight into company-
wide process control performance. Closed-loop
tuning and modeling tools can also be deployed
to aid with the improvement activities. Survey ar-
ticles by Thornhill and Horch (2007) and Shardt
et al. (2012) provide a good overview of the over-
all state of CPM and the related diagnosis issues.
CPM software is now readily available from most
DCS vendors and has already been implemented
successfully at many large-scale industrial sites
throughout the world.

Univariate Control Loop Performance
Assessment withMinimumVariance
Control as Benchmark

It has been shown by Harris (1989) that for a
system with time delay d , a portion of the output
variance is feedback control invariant and can be
estimated from routine operating data. This is the
so-called minimum variance output. Consider the
closed-loop system shown in Fig. 1, where Q is
the controller transfer function, QT is the process
transfer function, d is the process delay (in terms
of sample periods), and N is the disturbance
transfer function driven by random white-noise
sequence, at .

In the regulatory mode (when the set point
is constant), the closed-loop transfer function
relating the process output and the disturbance is
given by

Closed-loop response: yt D
�

N

1C q�d QTQ
�
at

Controller Performance Monitoring, Fig. 1 Block di-
agram of a regulatory control loop

Note that all transfer functions are expressed for
the discrete time case in terms of the backshift op-
erator, q�1: N represents the disturbance trans-
fer function with numerator and denominator
polynomials in q�1. The division of the numera-
tor by the denominator can be rewritten as: N D
F C q�dR, where the quotient term, F D F0 C
F1q

�1 C � � � C Fd�1q�.d�1/ is a polynomial of
order .d � 1/ and the remainder, R is a transfer
function. The closed-loop transfer function can
be reexpressed, after algebraic manipulation as

yt D
�

N

1C q�d QTQ
�
at

D
�
F C q�dR
1C q�d QTQ

�
at

D
 
F
	
1C q�d QTQ
C q�d 	R � F QTQ


1C q�d QTQ

!
at

D
 
F C q�d R � F QTQ

1C q�d QTQ

!
at

D F0at C F1at�1 C � � � C Fd�1at�dC1„ ƒ‚ …
et

C L0at�d C L1at�d�1 C � � �„ ƒ‚ …
wt�d

The closed-loop output can then be expressed as

yt D et C wt�d

where et D Fat corresponds to the first d � 1

lags of the closed-loop expression for the output,
yt , and more importantly is independent of the
controller, Q, or it is controller invariant, while
wt�d is dependent on the controller. The variance
of the output is then given by

Var.yt / D Var.et /C Var.wt�d / � Var.et /

Since et is controller invariant, it provides the
lower bound on the output variance. This is nat-
urally achieved if wt�d D 0, that is, when
R D F QTQ or when the controller is a minimum
variance controller with Q D R

F QT . If the total

output variance is denoted as Var .yt / D �2, then
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the lowest achievable variance is Var .et / D �2mv.
To obtain an estimate of the lowest achievable
variance from the time series of the process
output, one needs to model the closed-loop output
data yt by a moving average process such as

yt D f0at C f1at�1 C � � � C fd�1at�.d�1/„ ƒ‚ …
et

C fdat�d C fdC1at�.dC1/ C � � � (1)

The controller-invariant term et can then be esti-
mated by time series analysis of routine closed-
loop operating data and subsequently used as
a benchmark measure of theoretically achiev-
able absolute lower bound of output variance to
assess control loop performance.Harris (1989),

Desborough and Harris (1992), and Huang and
Shah (1999) have derived algorithms for the cal-
culation of this minimum variance term.

Multiplying Eq. (1) by at ; at�1; : : : ; at�dC1,
respectively, and then taking the expectation of
both sides of the equation yield the sample co-
variance terms:

rya .0/ D E Œytat 
 D f0�
2
a

rya .1/ D E Œytat�1
 D f1�
2
a

rya .2/ D E Œytat�2
 D f2�
2
a

:::

rya .d � 1/ D E Œytat�dC1
 D fd�1�2a

9>>>>>>>>>=
>>>>>>>>>;

(2)

The minimum variance or the invariant portion of
output variance is

�2mv D 	
f 2
0 C f 2

1 C f 2
2 C � � � C f 2

d�1


�2a

D
"�

rya .0/

�2a

�2
C
�
rya .1/

�2a

�2
C
�
rya .2/

�2a

�2
C
�
rya .d � 1/

�2a

�2#
�2a

D
h
r2ya.0/C r2ya.1/C r2ya.2/C � � � C r2ya.d � 1/

i
=�2a

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(3)

A measure of controller performance index can
then be defined as

� .d/ D �2mv=�
2
y (4)

Substituting Eq. (3) into Eq. (4) yields

� .d/ D
h
r2ya .0/C r2ya .1/C r2ya .2/C � � � C r2ya .d � 1/

i
=�2y�

2
a

D 2ya .0/C 2ya .1/C 2ya .2/C � � � C 2ya .d � 1/

D ZZT

where Z is the vector of cross correlation coeffi-
cients between yt and at for lags 0 to d � 1 and
is denoted as

Z D �
ya .0/ ya .1/ ya .2/ : : : ya .d � 1/

�

Although at is unknown, it can be replaced by
the estimated innovation sequence Oat . The es-
timate Oat is obtained by whitening the process
output variable yt via time series analysis. This
algorithm is denoted as the FCOR algorithm
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for Filtering and CORrelation analysis (Huang
and Shah 1999). This derivation assumes that
the delay, d , be known a priori. In practice,
however, a priori knowledge of time delays may
not always be available. It is therefore useful to
assume a range of time delays and then calculate
performance indices over this range of the time
delays. The indices over a range of time delays
are also known as extended horizon performance
indices (Thornhill et al. 1999). Through pattern
recognition, one can tell the performance of the
loop by visualizing the patterns of the perfor-
mance indices versus time delays. There is a clear
relation between performance indices curve and
the impulse response curve of the control loop.

Consider a simple case where the process is
subject to random disturbances. Figure 2 is one
example of performance evaluation for a control
loop in the presence of disturbances. This fig-
ure shows time-series of process variable data
for both loops in the left column, closed-loop
impulse responses (middle column) and corre-
sponding performance indices (labeled as PI on
the right column). From the impulse responses,
one can see that the loop under the first set
of tuning constants (denoted as TAG1.PV) has
better performance; the loop under the second
set of tuning constants (denoted as TAG5.PV)
has oscillatory behavior, indicating a relatively
poor control performance. With performance in-
dex “1” indicating the best possible performance
and index “0” indicating the worst performance,
performance indices for the first controller tuning
(shown on the upper-right plot) approach “1”
within 4 time lags, while performance indices
for the second controller tuning (shown on the
bottom-right plot) take 10 time lags to approach
“0.7.” In addition, performance indices for the
second tuning show ripples as they approach an
asymptotic limit, indicating a possible oscillation
in the loop.

Notice that one cannot rank performance of
these two controller settings from the noisy time-
series data. Instead, we can calculate performance
indices over a range of time delays (from 1 to 10).
The result is shown on the right column plots of
Fig. 2. These simulations correspond to the same
process with different controller tuning constants.

It is clear from these plots that performance
indices trajectory depends on dynamics of the
disturbance and controller tuning.

It is important to note that the minimum vari-
ance is just one of several benchmarks for obtain-
ing a controller performance metric. It is seldom
practical to implement minimum variance control
as it typically will require aggressive actuator ac-
tion. However, the minimum variance benchmark
serves to provide an indication of the opportunity
in improving control performance; that is, should
the performance index �.d/ be near or just above
zero, then it gives the user an idea of the benefits
possible in improving the control performance of
that loop.

Performance Assessment and
Diagnosis of Univariate Control Loop
Using Alternative Performance
Indicators

In addition to the performance index for perfor-
mance assessment, there are several alternative
indicators of control loop performance. These are
discussed next.

Autocorrelation function: The autocorrelation
function (ACF) of the output error, shown in
Fig. 3, is an approximate measure of how close
the existing controller is to minimum variance
condition or how predictable the error is over the
time horizon of interest. If the controller is under
minimum variance condition then the autocorre-
lation function should decay to zero after “d �1”
lags where “d” is the delay of the process. In
other words, there should be no predictable infor-
mation beyond time lag d � 1. The rate at which
the autocorrelation decays to zero after “d � 1”
lags indicates how close the existing controller
is to the minimum variance condition. Since it is
straightforward to calculate autocorrelation using
process data, the autocorrelation function is often
used as a first-pass test before carrying out further
performance analysis.

Impulse response: An impulse response func-
tion curve represents the closed-loop impulse
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Controller Performance
Monitoring, Fig. 3
Autocorrelation function of
the controller error

Controller Performance
Monitoring, Fig. 4
Impulse responses
estimated from routine
operating data

response between the whitened disturbance se-
quence and the process output. This function is
a direct measure of how well the controller is
performing in rejecting disturbances or tracking
set-point changes. Under stochastic framework,
this impulse response function may be calculated
using time series model such as an Autoregres-
sive Moving Average (ARMA) or Autoregres-
sive with Integrated Moving Average (ARIMA)
model. Once an ARMA type of time series model
is estimated, the infinite-order moving average
representation of the model shown in Eq. (1) can
be obtained through a long division of the ARMA
model. As shown in Huang and Shah (1999), the
coefficients of the moving average model, Eq. (1),
are the closed-loop impulse response coefficients
of the process between whitened disturbances
and the process output. Figure 4 shows closed-
loop impulse responses of a control loop with two
different control tunings. Clearly they denote two
different closed-loop dynamic responses: one is
slow and smooth, and the other one is relatively
fast and slightly oscillatory. The sum of square of
the impulse response coefficients is the variance
of the data.

Spectral analysis: The closed-loop frequency
response of the process is an alternative way to
assess control loop performance. Spectral analy-
sis of output data easily allows one to detect oscil-
lations, offsets, and measurement noise present in
the process. The closed-loop frequency response
is often plotted together with the closed-loop fre-
quency response under minimum variance con-
trol. This is to check the possibility of perfor-
mance improvement through controller tunings.
The comparison gives a measure of how close
the existing controller is to the minimum vari-
ance condition. In addition, it also provides the
frequency range in which the controller signif-
icantly deviates from minimum variance condi-
tion. Large deviation in the low-frequency range
typically indicates lack of integral action or weak
proportional gain. Large peaks in the medium-
frequency range typically indicate an overtuned
controller or presence of oscillatory disturbances.
Large deviation in the high-frequency range typ-
ically indicates significant measurement noise.
As an illustrative example, frequency responses
of two control loops are shown in Fig. 5. The
left graph of the figure shows that closed-loop
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frequency response of the existing controller is
almost the same as the frequency response under
minimum variance control. A peak at the mid-
frequency indicates possible overtuned control.
The right graph of Fig. 5 shows that the frequency
response of the existing controller is oscillatory,
indicating a possible overtuned controller or the
presence of an oscillatory disturbance at the peak
frequency; otherwise the controller is close to
minimum variance condition.

Segmentation of performance indices: Most
process data exhibit time- varying dynamics; i.e.,
the process transfer function or the disturbance
transfer function is time variant. Performance
assessment with a non-overlapping sliding data
window that can track time-varying dynamics

is therefore often desirable. For example, seg-
mentation of data may lead to some insight into
any cyclical behavior of the process variation in
controller performance during, e.g., day/night or
due to shift change. Figure 6 is an example of
performance segmentation over a 200 data point
window.

Performance Assessment of
Univariate Control Loops Using
User-Specified Benchmarks

The increasing level of global competitive-
ness has pushed chemical plants into high-
performance operating regions that require
advanced process control technology. See the
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articles �Control Hierarchy of Large Processing
Plants: An Overview and �Control Structure
Selection. Consequently, the industry has an
increasing need to upgrade the conventional
PID controllers to advanced control systems.
The most natural questions to ask for such an
upgrading are as follows. Has the advanced
controller improved performance as expected?
If yes, where is the improvement and can it
be justified? Has the advanced controller been
tuned to its full capacity? Can this improvement
also be achieved by simply retuning the existing
traditional (e.g., PID) controllers? (see � PID
Control). In other words, what is the cost
versus benefit of implementing an advanced
controller? Unlike performance assessment using
minimum variance control as benchmark, the
solution to this problem does not require a
priori knowledge of time delays. Two possible
relative benchmarks may be chosen: one is the
historical data benchmark or reference data set
benchmark, and the other is a user-specified
benchmark.

The purpose of reference data set benchmark-
ing is to compare performance of the existing
controller with the previous controller during the
“normal” operation of the process. This reference
data set may represent the process when the
controller performance is considered satisfactory
with respect to meeting the performance objec-
tives. The reference data set should be represen-
tative of the normal conditions that the process is
expected to operate at; i.e., the disturbances and
set-point changes entering into the process should
not be unusually different. This analysis provides
the user with a relative performance index (RPI)
which compares the existing control loop perfor-
mance with a reference control loop benchmark
chosen by the user. The RPI is bounded by
0 � RPI � 1, with “<1” indicating dete-
riorated performance, “1” indicating no change
of performance, and “>1” indicating improved
performance. Figure 6 shows a result of reference
data set benchmarking. The impulse response
of the benchmark or reference data smoothly
decays to zero, indicating good performance of
the controller. After one increases the propor-
tional gain of the controller, the impulse response

shows oscillatory behavior, with an RPI D 0:4,
indicating deteriorated performance due to the
oscillation.

In some cases one may wish to specify cer-
tain desired closed-loop dynamics and carry out
performance analysis with respect to such desired
dynamics. One such desired dynamic benchmark
is the closed-loop settling time. As an illustrative
example, Fig. 8 shows a system where a settling
time of ten sampling units is desired for a process
with a delay of five sampling units. The impulse
responses show that the existing loop is close to
the desired performance, and the value of RPI D
0:9918 confirms this. Thus no further tuning of
the loop is necessary.

Diagnosis of Poorly Performing
Loops

Whereas detection of poorly performing loops
is now relatively simple, the task of diagnos-
ing reason(s) for poor performance and how to
“mend” the loop is generally not straightforward.
The reasons for poor performance could be any
one of interactions between various control loops,
overtuned or undertuned controller settings, pro-
cess nonlinearity, poor controller configuration
(meaning the choice of pairing a process (or
controlled) variable with a manipulative variable
loop), or actuator problems such as stiction, large
delays, and severe disturbances. Several studies
have focused on the diagnosis issues related to
actuator problems (Håagglund 2002; Choudhury
et al. 2008; Srinivasan and Rengaswamy 2008;
Xiang and Lakshminarayanan 2009; de Souza
et al. 2012). Shardt et al. (2012) has given an
overview of the overall state of CPM and the
related diagnosis issues.

Industrial Applications of CPM
Technology

As remarked earlier, CPM software is now read-
ily available from most DCS vendors and has
already been implemented successfully at several
large-scale industrial sites. A summary of just

http://dx.doi.org/10.1007/978-1-4471-5058-9_241
http://dx.doi.org/10.1007/978-1-4471-5058-9_247
http://dx.doi.org/10.1007/978-1-4471-5058-9_245
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two of many large-scale industrial implementa-
tions of CPM technology appears below. It gives
a clear evidence of the impact of this control
technology and how readily it has been embraced
by industry (Shah et al. 2014).

BASF Controller Performance Monitoring
Application
As part of its excellence initiative OPAL 21
(Optimization of Production Antwerp and Lud-
wigshafen), BASF has implemented the CPM
strategy on more than 30,000 control loops at
its Ludwigshafen site in Germany and on over
10,000 loops at its Antwerp production facility
in Belgium. The key factor in using this technol-
ogy effectively is to combine process knowledge,
basic chemical engineering, and control expertise
to develop solutions for the indicated control
problems that are diagnosed in the CPM software
(Wolff et al. 2012).

Saudi Aramco Controller Performance
Monitoring Practice
As part of its process control improvement ini-
tiative, Saudi Aramco has deployed CPM on
approximately 15,000 PID loops, 50 MPC appli-
cations, and 500 smart positioners across multiple
operating facilities.

The operational philosophy of the CPM en-
gine is incorporated in the continuous improve-
ment process at BASF and Aramco, whereby all
loops are monitored in real-time and a holistic
performance picture is obtained for the entire
plant. Unit-wide performance metrics are dis-
played in effective color-coded graphic forms to
effectively convey the analytics information of
the process.

Concluding Remarks

In summary, industrial control systems are de-
signed and implemented or upgraded with a par-
ticular objective in mind. The controller perfor-
mance monitoring methodology discussed here
will permit automated and repeated reviews of
the design, tuning, and upgrading of the control
loops. Poor design, tuning, or upgrading of the

control loops can be detected, and repeated per-
formance monitoring will indicate which loops
should be retuned or which loops have not been
effectively upgraded when changes in the dis-
turbances, in the process, or in the controller
itself occur. Obviously better design, tuning, and
upgrading will mean that the process will operate
at a point close to the economic optimum, leading
to energy savings, improved safety, efficient uti-
lization of raw materials, higher product yields,
and more consistent product qualities. This entry
has summarized the major features available in
recent commercial software packages for control
loop performance assessment. The illustrative ex-
amples have demonstrated the applicability of
this new technique when applied to process data.

This entry has also illustrated how controllers,
whether in hardware or software form, should
be treated like “capital assets” and how there
should be routine monitoring to ensure that they
perform close to the economic optimum and that
the benefits of good regulatory control will be
achieved.

Cross-References

�Control Hierarchy of Large Processing Plants:
An Overview

�Control Structure Selection
�Fault Detection and Diagnosis
�PID Control
�Statistical Process Control in Manufacturing
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Abstract

This chapter presents an overview of the main
issues related to modeling and control of coop-
erative robotic manipulators. A historical path
is followed to present the main research results

on cooperative manipulation. Kinematics and dy-
namics of robotic arms cooperatively manipu-
lating a tightly grasped rigid object are briefly
discussed. Then, this entry presents the main
strategies for force/motion control of the cooper-
ative system.

Keywords

Cooperative task space; Coordinated motion;
Force/motion control; Grasping; Manipulation;
Multi-arm systems

Introduction

Since the early 1970s, it has been recognized that
many tasks, which are difficult or even impossi-
ble to execute by a single robotic manipulator,
become feasible when two or more manipulators
work in a cooperative way. Examples of typical
cooperative tasks are the manipulation of heavy
and/or large payloads, assembly of multiple parts,
and handling of flexible and articulated objects
(Fig. 1).

In the 1980s, research achieved several the-
oretical results related to modeling and control
of to single-arm robots; this further fostered re-
search on multi-arm robotic systems. Dynamics

Cooperative Manipulators, Fig. 1 An example of a
cooperative robotic work cell composed by two industrial
robot arms

www.ieeecss.org
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and control as well as force control issues have
been widely explored along the decade.

In the 1990s, parameterization of the
constraint forces/moments acting on the object
has been recognized as a key to solving control
problems and has been studied in several
papers (e.g., Sang et al. 1995; Uchiyama and
Dauchez 1993; Walker et al. 1991; Williams
and Khatib 1993). Several control schemes for
cooperative manipulators based on the sought
parameterizations have been designed, including
force/motion control (Wen and Kreutz-Delgado
1992) and impedance control (Bonitz and Hsia
1996; Schneider and Cannon 1992). Other
approaches are adaptive control (Hu et al. 1995),
kinematic control (Chiacchio et al. 1996), task-
space regulation (Caccavale et al. 2000), and
model-based coordinated control (Hsu 1993).
Other important topics investigated in the 1990s
were the definition of user-oriented task-space
variables for coordinated control (Caccavale et al.
2000; Chiacchio et al. 1996), the development of
meaningful performance measures (Chiacchio
et al. 1991a,b) for multi-arm systems, and the
problem of load sharing (Walker et al. 1989).

Most of the abovementioned works assume
that the cooperatively manipulated object is
rigid and tightly grasped. However, since
the 1990s, several research efforts have
been focused on the control of cooperative
flexible manipulators (Yamano et al. 2004),
since flexible-arm robot merits (lightweight
structure, intrinsic compliance, and hence safety)
can be conveniently exploited in cooperative
manipulation. Other research efforts have been
focused on the control of cooperative systems
for the manipulation of flexible objects (Yukawa
et al. 1996) as well.

Modeling, Load Sharing,
and Performance Evaluation

The first modeling goal is the definition of
suitable variables describing the kinetostatics of
a cooperative system. Hereafter, the main results
available are summarized for a dual-arm system

composed by two cooperative manipulators
grasping a common object.

The kinetostatic formulation proposed by
Uchiyama and Dauchez (1993), i.e., the so-called
symmetric formulation, is based on kinematic
and static relationships between generalized
forces/velocities acting at the object and their
counterparts acting at the manipulators end
effectors. To this aim, the concept of virtual
stick is defined as the vector which determines
the position of an object-fixed coordinate frame
with respect to the frame attached to each robot
end effector (Fig. 2). When the object grasped
by the two manipulators can be considered rigid
and tightly attached to each end effector, then the
virtual stick behaves as a rigid stick fixed to each
end effector.

According to the symmetric formulation, the
vector, h, collecting the generalized forces (i.e.,
forces and moments) acting at each end effector
is given by

h D W�hE C VhI ; (1)

where W is the so-called grasp matrix, the
columns of V span the null space of the

C

C

Cooperative Manipulators, Fig. 2 Grasp geometry
for a two-manipulator cooperative system manipulating
a common object. The vectors r1 and r2 are the virtual
sticks, Tc is the coordinate frame attached to the object,
and T1 and T2 are the coordinate frames attached to each
end effector
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grasp matrix, and hI is the generalized force
vector which does not contribute to the object’s
motion, i.e., it represents internal loading of the
object (mechanical stresses) and is termed as
internal forces, while hE represents the vector of
external forces, i.e., forces and moments causing
the object’s motion. Later, a task-oriented
formulation has been proposed (Chiacchio et al.
1996), aimed at defining a cooperative task space
in terms of absolute and relative motion of
the cooperative system, which can be directly
computed from the position and orientation of
the end-effector coordinate frames.

The dynamics of a cooperative multi-arm sys-
tem can be written as the dynamics of the single
manipulators together with the closed-chain con-
straints imposed by the grasped object. By elimi-
nating the constraints, a reduced-order model can
be obtained (Koivo and Unseren 1991).

Strongly related to kinetostatics and dynamics
of cooperative manipulators is the load sharing
problem, i.e., distributing the load among the
arms composing the system, which has been
solved, e.g., in Walker et al. (1989). A very rele-
vant problem related to the load sharing is that of
robust holding, i.e., the problem of determining
forces/moments applied to object by the arms, in
order to keep the grasp even in the presence of
disturbing forces/moments.

A major issue in robotic manipulation is the
performance evaluation via suitably defined
indexes (e.g., manipulability ellipsoids). These
concepts have been extended to multi-arm robotic
systems in Chiacchio et al. (1991a,b). Namely, by
exploiting the kinetostatic formulations described
above, velocity and force manipulability
ellipsoids can be defined, by regarding the whole
cooperative system as a mechanical transformer
from the joint space to the cooperative task space.
The manipulability ellipsoids can be seen as
performance measures aimed at determining the
attitude of the system to cooperate in a given
configuration.

Finally, it is worth mentioning the strict re-
lationship between problems related to grasping
of objects by fingers/hands and those related
to cooperative manipulation. In fact, in both
cases, multiple manipulation structures grasp

a commonly manipulated object. In multifingered
hands, only some motion components are
transmitted through the contact point to the
manipulated object (unilateral constraints), while
cooperative manipulation via robotic arms is
achieved by rigid (or near-rigid) grasp points and
interaction takes place by transmitting all the
motion components through the grasping points
(bilateral constraints). While many common
problems between the two fields can be tackled
in a conceptually similar way (e.g., kinetostatic
modeling, force control), many others are specific
of each of the two application fields (e.g., form
and force closure for multifingered hands).

Control

When a cooperative multi-arm system is em-
ployed for the manipulation of a common object,
it is important to control both the absolute motion
of the object and the internal stresses applied
to it. Hence, most of the control approaches to
cooperative robotic systems can be classified as
force/motion control schemes.

Early approaches to the control of cooperative
systems were based on the master/slave concept.
Namely, the cooperative system is decomposed
in a position-controlled master arm, in charge
of imposing the absolute motion of the object,
and the force-controlled slave arms, which are
to follow (as smoothly as possible) the motion
imposed by the master. A natural evolution of the
above-described concept has been the so-called
leader/follower approach, where the follower
arm reference motion is computed via closed-
chain constraints. However, such approaches
suffered from implementation issues, mainly due
to the fact that the compliance of the slave arms
has to be very large, so as to smoothly follow the
motion imposed by the master arm. Moreover,
the roles of the master and slave (leader and
follower) may need to be changed during the task
execution.

Due to the abovementioned limitations, more
natural nonmaster/slave approaches have been
pursued later, where the cooperative system is
seen as a whole. Namely, the reference motion



Cooperative Manipulators 233

C

of the object is used to determine the motion of
all the arms in the system and the interaction
forces are measured and fed back so as to be
directly controlled. To this aim, the mappings
between forces and velocities at the end effector
of each manipulator and their counterparts at the
manipulated object are considered in the design
of the control laws.

An approach, based on the classical hybrid
force/position control scheme, has been proposed
in Uchiyama and Dauchez (1993), by exploiting
the symmetric formulation described in the pre-
vious section.

In Wen and Kreutz-Delgado (1992) a
Lyapunov-based approach is pursued to devise
force/position PD-type control laws. This
approach has been extended in Caccavale et al.
(2000), where kinetostatic filtering of the control
action is performed, so as to eliminate all the
components of the control input which contribute
to internal stresses at the object.

A further improvement of the PD plus
gravity compensation control approach has
been achieved by introducing a full model
compensation, so as to achieve feedback
linearization of the closed-loop system. The
feedback linearization approach formulated at
the operational space level is the base of the so-
called augmented object approach (Sang et al.
1995). In this approach, the system is modeled
in the operational space as a whole, by suitably
expressing its inertial properties via a single
augmented inertia matrix MO , i.e.,

MO.xE/RxE C cO.xE; PxE/C gO.xE/ D hE; (2)

where MO , cO , and gO are the operational space
terms modeling, respectively, the inertial proper-
ties of the whole system (manipulators and ob-
ject), the Coriolis/centrifugal/friction terms, and
the gravity terms, while xE is the operational
space vector describing the position and orien-
tation of the coordinate frame attached to the
grasped object. In the framework of feedback lin-
earization (formulated in the operational space),
the problem of controlling the internal forces can
be solved, e.g., by resorting to the virtual linkage

model (Williams and Khatib 1993) or according
to the scheme proposed in Hsu (1993).

An alternative control approach is based on
the well-known impedance concept (Bonitz and
Hsia 1996; Schneider and Cannon 1992). In fact,
when a manipulation system interacts with an
external environment and/or other manipulators,
large values of the contact forces and moments
can be avoided by enforcing a compliant behavior
with suitable dynamic features. In detail, the fol-
lowing mechanical impedance behavior between
the object displacements and the forces due to the
object-environment interaction can be enforced
(external impedance):

ME QaE C DE QvE C KeeE D henv; (3)

where eE represents the vector of displacements
between object’s desired and actual pose, QvE is
the difference between the object’s desired and
actual generalized velocities, QaE is the difference
between the object’s desired and actual gener-
alized accelerations, and henv is the generalized
force acting on the object, due to the interaction
with the environment. The impedance dynamics
is characterized in terms of given positive definite
mass, damping, and stiffness matrices (ME , DE ,
KE). A mechanical impedance behavior between
the i th end-effector displacements and the in-
ternal forces can be imposed as well (internal
impedance):

MI;i Qai C DI;i Qvi C KI;i ei D hI;i ; (4)

where ei is the vector expressing the displace-
ment between the commanded and the actual
pose of the i th end effector, Qvi is the vector
expressing the difference between commanded
and actual generalized velocities of the i th end
effector, Qai is the vector expressing the difference
between commanded and actual generalized ac-
celerations of the i th end effector, and hI;i is the
contribution of the i th end effector to the internal
force. Again, the impedance dynamics is charac-
terized in terms of given positive definite mass,
damping, and stiffness matrices (MI;i;DI;i;KI;i ).
More recently, an impedance scheme for control
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of both external forces and internal forces has
been proposed (Caccavale et al. 2008).

Summary and Future Directions

This entry has provided a brief survey of the
main issues related to cooperative robots, with
special emphasis on modeling and control prob-
lems. Among several open research topics in
cooperative manipulation, it is worth mentioning
the problem of cooperative transportation and
manipulation of objects via multiple mobile ma-
nipulators. In fact, although notable results have
been already devised in Khatib et al. (1996),
the foreseen use of robotic teams in industrial
settings (hyperflexible robotic work cells) and/or
in collaboration with humans (robotic coworker
concept) raises new challenges related to auton-
omy and safety of multiple mobile manipulators.
Also, an emerging application field is given by
cooperative systems composed by multiple aerial
vehicle-manipulator systems (see, e.g., Fink et al.
2011).

Cross-References
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�Robot Grasp Control
�Robot Motion Control

Recommended Reading

An overview of the field of cooperative ma-
nipulation can be found also in Caccavale and
Uchiyama (2008), where a more extended lit-
erature review and further technical details are
provided. Seminal contributions to control of co-
operative manipulators can be found in Chiacchio
et al. (1991a), Koivo and Unseren (1991), Sang
et al. (1995), Uchiyama and Dauchez (1993),
Walker et al. (1989), Wen and Kreutz-Delgado
(1992), and Williams and Khatib (1993).
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Cooperative Solutions to Dynamic
Games
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Abstract

This article presents the fundamental elements of
the theory of cooperative games in the context
of dynamic systems. The concepts of Pareto op-
timality, Nash bargaining solution, characteristic
function, cores, and C-optimality are discussed,
and some fundamental results are recalled.

Keywords

Cores; Nash equilibrium; Pareto optimality

Introduction

Solution concepts in game theory are regrouped
in two main categories called noncooperative
and cooperation solutions, respectively. In the
seminal book of von Neumann and Morgen-

stern (1944) this categorization is already made.
These authors discuss zero-sum (matrix) games
in normal form, where the noncooperative so-
lution concept of saddle-point was defined and
characterized, and games in characteristic func-
tion form, where solution concepts for games
of coalitions were introduced. In this article we
present the fundamental solution concepts of the
theory of cooperative games in the context of
dynamical systems. The article is organized as
follows: we first recall the papers, which mark
the origin of development of a theory of dy-
namic games; then we recall the basic concept of
Pareto optimality proposed as a cooperative so-
lution concept; we present the scalarization tech-
nique and the necessary or sufficient optimality
conditions for Pareto optimality in mathematical
programming and optimal control settings; we
then explore the difficulties encountered when
one tried to extend the Nash bargaining solution,
characteristic function and cores concept to dy-
namic games; we show the links that exist with
the theory of reachability for perturbed dynamic
systems.

The Origins

One may consider that the first introduction of
a cooperative game solution concept in systems
and control science is due to L.A. Zadeh (1963).
Two-player zero-sum dynamic games have been
studied by R. Isaacs (1954) in a deterministic
continuous time setting and by L. Shapley (1953)
in a discrete time stochastic setting. Nonzero-sum
and m player differential games were introduced
by Y.C. Ho and A.W. Starr (1969) and J.H. Case
(1969). For these games cooperative solutions
can be looked for to complement the noncoop-
erative Nash equilibrium concept.

Cooperation Solution Concept

In cooperative games one is interested in non-
dominated solution. This solution type is re-
lated to a concept introduced by the well-known
economist V. Pareto (1869) in the context of
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welfare economics. Consider a system with de-
cision variables x 2 X 	 IRn andm performance
criteria x !  j .x/ 2 IR, j D 1; : : : ; m that one
tries to maximize.

Definition 1 The decision x� 2 X is nondomi-
nated or Pareto optimal if the following condition
holds:

 j .x/ �  j .x
�/ 8j D 1; : : : m

H)  j .x/ D  j .x
�/ 8j D 1; : : :m:

In other words it is impossible to give one cri-
terion j a value greater than  j .x

�/ without
decreasing the value of another criterion, say `,
which then takes a value lower than  `.x�/.

This vector-valued optimization framework cor-
responds to a situation where m players are en-
gaged in a game, described in its normal form,
where the strategies of the m players constitute
the decision vector x and their respective payoffs
are given by the m performance criteria  j .x/,
j D 1; : : : ; m. One assumes that these players
jointly take a decision that is cooperatively op-
timal, in the sense that no player can improve
his/her payoff without deteriorating the payoff of
at least one other player.

The Scalarization Technique
Let r D .r1; r2; : : : ; rm/ be a givenm-vector com-
posed of normalized weights that satisfy rj > 0,
j D 1 : : : ;m and

P
jD1;:::;m rj D 1.

Lemma 1 Let x� 2 X be a maximum in
X for the scalarized criterion ‰.xI r/ DPm

jD1 rj j .x/. Then x� is a nondominated
solution for the multi-objective problem.

The proof is very simple. Suppose x� is
dominated, then there exists xı 2 X such
that  j .xı/ �  j .x

�/, 8j D 1; : : : ; m, and
 i .x

ı/ >  i .x
�/ for one i 2 f1; : : : ; mg. Since

all the rj are > 0, this yields
Pm

jD1 rj j .xı/ >Pm
jD1 rj j .x�/, which contradicts the maxi-

mizing property of x�. This result shows that it
will be very easy to find many Pareto optimal
solutions by varying a strictly positive weighting

of the criteria. But this procedure will not find all
of the nondominated solutions.

Conditions for Pareto Optimality
in Mathematical Programming
N.O. Da Cunha and E. Polak (1967b) have ob-
tained the first necessary conditions for multi-
objective optimization. The problem they con-
sider is

Pareto Opt:  j .x/ j D 1; : : :m

s:t:

'k.x/ � 0 k D 1; : : : p

where the functions x 2 IRn 7!  j .x/ 2 IR,
j D 1; : : : ; m, and x 7! 'k.x/ 2 IR, k D
1; : : : ; p are continuously differentiable (C1) and
where we assume that the constraint qualification
conditions of mathematical programming hold
for this problem too. They proved the following
theorem.

Theorem 1 Let x� be a Pareto optimal solution
of the problem defined above. Then there exists a
vector � of p multipliers �k , k D 1; : : : ; p, and a
vector r ¤ 0 of m weights rj � 0, such that the
following conditions hold

@

@x
L 	x�I rI�
 D 0

'k.x
�/ � 0

�k 'k.x
�/ D 0

�k � 0;

where L .x�I rI�/ is the weighted Lagrangian
defined by

L .xI rI�/ D
mX
jD1

rj  j .x/C
pX
kD1

�k 'k.x/:

So there is a local scalarization principle for
Pareto optimality.

Maximum Principle
The extension of Pareto optimality concept to
control systems was done by several authors
(Basile and Vincent 1970; Bellassali and Jourani
2004; Binmore et al. 1986; Blaquière et al. 1972;
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Leitmann et al. 1972; Salukvadze 1971; Vincent
and Leitmann 1970; Zadeh 1963), the main result
being an extension of the maximum principle of
Pontryagin. Let a system be governed by state
equations:

Px.t/ D f .x.t/; u.t// (1)

u.t/ 2 U (2)

x.0/ D xo (3)

t 2 Œ0; T 
 (4)

where x 2 IRn is the state variable of the system,
u 2 U 	 IRp with U compact is the control
variable, and Œ0; T 
 is the control horizon. The
system is evaluated by m performance criteria of
the form

 j .x.�/; u.�//D
Z T

0

gj .x.t/; u.t//dtCGj .x.T //;
(5)

for j D 1; : : : ; m. Under the usual assumptions
of control theory, i.e., f .�; �/ and gj .�; �/, j D
1; : : : ; m, being C1 in x and continuous in u,
Gj .�/ beingC1 in x, one can prove the following.

Theorem 2 Let fx�.t/ W t 2 Œ0; T 
g be a Pareto
optimal trajectory, generated at initial state xı by
the Pareto optimal control fu�.t/ W t 2 Œ0; T 
g.
Then there exist costate vectors f��.t/ W t 2
Œ0; T 
g and a vector of positive weights r ¤ 0 2
IRm, with components rj � 0,

Pm
jD1 rj D 1,

such that the following relations hold:

Px�.t/ D @

@�
H.x�.t/; u�.t/I�.t/I r/ (6)

P�.t/ D � @

@x
H.x�.t/; u�.t/I�.t/I r/ (7)

x�.0/ D xo (8)

�.T / D
mX
jD1

rj
@

@x
Gj .x.T // (9)

with

H.x�.t/; u�.t/I�.t/I r/

D max
u2U H.x

�.t/; uI�.t/I r/

where the weighted Hamiltonian is defined by

H.x; uI�I r/ D
mX
jD1

rj gj .x; u/C �T f .x; u/:

The proof of this result necessitates some addi-
tional regularity assumptions. Some of these con-
ditions imply that there exist differentiable Bell-
man value functions (see, e.g., Blaquière et al.
1972); some others use the formalism of nons-
mooth analysis (see, e.g., Bellassali and Jourani
2004).

The Nash Bargaining Solution

Since Pareto optimal solutions are numerous (ac-
tually since a subset of Pareto outcomes are in-
dexed over the weightings r, rj > 0,

Pm
jD1 rj D

1), one can expect, in the payoff m-dimensional
space, to have a manifold of Pareto outcomes.
Therefore, the problem that we must solve now
is how to select the “best” Pareto outcome?
“Best” is a misnomer here, because, by their
very definition, two Pareto outcomes cannot be
compared or gauged. The choice of a Pareto
outcome that satisfies each player must be the
result of some bargaining. J. Nash addressed this
problem very early, in 1951, using a two-player
game setting. He developed an axiomatic ap-
proach where he proposed four behavior axioms
which, if accepted, would determine a unique
choice for the bargaining solution. These ax-
ioms are called respectively, (i) invariance to
affine transformations of utility representations,
(ii) Pareto optimality, (iii) independence of irrel-
evant alternatives, and (iv) symmetry. Then the
bargaining point is the Pareto optimal solution
that maximizes the product

x� D argmaxx. 1.x/� 1.xı//. 2.x/� 2.xı//

where xı is the status quo decision, in case
bargaining fails, and . j .x

ı//, j D 1; 2 are
the payoffs associated with this no-accord deci-
sion (this defines the so-called threat point). It
has been proved (Binmore et al. 1986) that this
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solution could be obtained also as the solution of
an auxiliary dynamic game in which a sequence
of claims and counterclaims is made by the two
players when they bargain.

When extended directly to the context of
differential or multistage games, the Nash
bargaining solution concept proved to lack
the important property of time consistency.
This was first noticed in Haurie (1976). Let a
dynamic game be defined by Eqs. (1)–(5), with
j D 1; 2. Suppose the status quo decision,
if no agreement is reached at initial state
.t D 0; x.0/ D xo/, consists in playing an
open-loop Nash equilibrium, defined by the
controls uNj .�/ W Œ0; T 
 ! Uj , j D 1; 2 and
generating the trajectory xN .�/ W Œ0; T 
 ! IRn,
with xN .0/ D xo. Now applying the Nash
bargaining solution scheme to the data of this
differential game played at time t D 0 and state
x.0/ D xo, one identifies a particular Pareto
optimal solution, associated with the controls
u�.�/ W Œ0; T 
 ! Uj , j D 1; 2 and generating the
trajectory x�.�/ W Œ0; T 
 ! IRn, with x�.0/ D xo.
Now assume the two players renegotiate the
agreement to play u�

j .�/ at an intermediate point
of the Pareto optimal trajectory .�; x�.�//,
� 2 .0; T /. When computed from that point,
the status quo strategies are in general not the
same as they were at .0; xo/; furthermore, the
shape of the Pareto frontier, when the game is
played from .�; x�.�//, is different from what it
is when the game is played at .0; xo/. For these
two reasons the bargaining solution at .�; x�.�//
will not coincide in general with the restriction to
the interval Œ�; T 
 of the bargaining solution from
.0; xo/. This implies that the solution concept is
not time consistent. Using feedback strategies,
instead of open-loop ones, does not help, as
the same phenomena (change of status quo and
change of Pareto frontier) occur in a feedback
strategy context.

This shows that the cooperative game solu-
tions proposed in the classical theory of games
cannot be applied without precaution in a dy-
namic setting when players have the possibil-
ity to renegotiate agreements at any interme-
diary point .t; x?.t// of the bargained solution
trajectory.

Cores and C-Optimality in Dynamic
Games

Characteristic functions and the associated so-
lution concept of core are important elements
in the classical theory of cooperative games. In
two papers (Haurie 1975; Haurie and Delfour
1974) the basic definitions and properties of the
concept of core in dynamic cooperative games
were presented. Consider the multistage system,
controlled by a set M of m players and defined
by

x.k C 1/ D f k.x.k/; uM.k//;

k D 0; 1; : : : ; K � 1
x.i/ D xi ; i 2 f0; 1; : : : ; K � 1g

uM.k/, .uj .k//j2M 2 UM.k/,
Y
j2M

Uj .k/:

From the initial point .i; xi / a control sequence
.uM.i/; : : : ; uM.K � 1// generates for each
player j a payoff defined as follows:

Jj .i; x
i I uM.i/; : : : ; uM.K � 1// ,

K�1X
kDi

ˆj .x.k/; uM .k//C ‡j .x.K//:

A subset S of M is called a coalition. Let �kS W
x.k/ 7! uS.k/ 2 Q

j2S Uj .k/ be a feedback
control for the coalition defined at each stage k.
A player j 2 S considers then, from any initial
point .i; xi /, his guaranteed payoff:

‰j .i; x
i I�iS ; : : : ; �K�1

S / ,

infuM�s .i /2UM�s.i /;:::;uM�s .K�1/2UM�s .K�1/PK�1
kDi ˆj .x.k/;

�
�kS.x.k//; uM�S .k/

�
/

C‡j .x.K//:

Definition 2 The characteristic function at stage
i for coalition S 	 M is the mapping vi W
.S; xi / 7! vi .S; xi / 	 IRS defined by

!S , .!j /j2S 2 vi .S; xi / ,
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9�iS ; : : : ; �K�1
S W 8j 2 S

‰j .i; x
i I�iS ; : : : ; �K�1

S / � !j :

In other words, there is a feedback law for the
coalition S which guarantees at least !j to each
player j in the coalition.

Suppose that in a cooperative agreement, at point
.i; xi /, the coalition S is proposed a gain vector
!s which is interior to vi .S; xi /. Then coalition
S will block this agreement, because using an ap-
propriate feedback, the coalition can guarantee a
better payoff to each of its members. We can now
extend the definition of the core of a cooperative
game to the context of dynamic games, as the set
of agreement gains that cannot be blocked by any
coalition.

Definition 3 The core �.i; xi / at point .i; xi /
is the set of gain vectors !M , .!j /j2M such
that:
1. There exists a Pareto optimal control

u?M .i/; : : : ; u
?
M .K � 1/ for which !j D

Jj .i; x
i I u?M .i/; : : : ; u?M .K � 1//,

2. 8S 	 M the projection of !M in IRS is not
interior to vi .S; xi /

Playing a cooperative game, one would be inter-
ested in finding a solution where the gain-to-go
remains in the core at each point of the trajectory.
This leads us to define the following.

Definition 4 A control Quo , .uoM .0/; : : : ; uM
.K � 1// is C -optimal at .0; x0/ if Quo is Pareto
optimal generating a state trajectory

fxo.0/ D x0; xo.1/; : : : ; xo.K/g

and a sequence of gain-to-go values

!oj .i/ D Jj .i; x
o.i/I uoM .i/; : : : ; u

o
M .K � 1//;

i D 0; : : : ; K � 1

such that 8i D 0; 1; : : : ; K � 1, the m-vector
!oM .i/ is element of the core �.i; xo.i//.

A C -optimal control generates an agreement
which cannot be blocked by any coalition along
the Pareto optimal trajectory. It can be shown on

examples that a Pareto optimal trajectory which
has the gain-to-go vector in the core at initial
point .0; x0/ is not C -optimal.

Links with Reachability Theory for
Perturbed Systems

The computation of characteristic functions can
be made using the techniques developed to study
reachability of dynamic systems with set con-
strained disturbances (see Bertsekas and Rhodes
1971). Consider the particular case of a linear
system

x.k C 1/ D Akx.k/C
X
j2M

Bk
j uj .k/ (10)

where x 2 IRn, uj 2 U k
j 	 IRpj , where U k

j is

a convex-bound set and Ak , Bk
j are matrices of

appropriate dimensions. Let the payoff to player
j be defined by:

Jj .i; x
i I uM.i/; : : : ; uM.K � 1// ,

K�1X
kDi

	kj .x.k//C �kj .uj .k//C ‡j .x.K//:

Algorithm Here we use the notations 	kS ,
.	kj /j2S and Bk

SuS ,
P

j2S Bk
j uj . Also we

denote fu C V g, where u is a vector in IRm and
V 	 IRm, the set of vectors u C v, 8v 2 V .
Then
1. 8xK vK.S; xK/, ˚

!S 2 IRS W ‡S.xK/ � !S
�

2. 8x EkC1.S; x/ , \v 2 UM�S vkC1
.S; x CBk

MS
v/

3. 8xk Hk.S; xk/ , [
u 2 US

˚
�kS .u/C EkC1

.S; Akxk C Bk
Su/

�
4. 8xk vk.S; xk/ D ˚

	kS .x
k/C Hk.S; xk/

�
:

In an open-loop control setting, the calculation
of characteristic function can be done using the
concept of Pareto optimal solution for a sys-
tem with set constrained disturbances, as shown
in Goffin and Haurie (1973, 1976) and Haurie
(1973).
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Conclusion

Since the foundations of a theory of cooperative
solutions to dynamic games, recalled in this ar-
ticle, the research has evolved toward the search
for cooperative solutions that could be also equi-
librium solution, using for that purpose a class of
memory strategies Haurie and Towinski (1985),
and has found a very important domain of appli-
cation in the assessment of environmental agree-
ments, in particular those related to the climate
change issue. For example, the sustainability of
solutions in the core of a dynamic game mod-
eling international environmental negotiations is
studied in Germain et al. (2003). A more encom-
passing model of dynamic formation of coalitions
and stabilization of solutions through the use of
threats is proposed in Breton et al. (2010). These
references are indicative of the trend of research
in this field.
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Abstract

We discuss the utilization of distributed energy
resources (DERs) to provide active and reactive
power support for ancillary services. Though the
amount of active and/or reactive power provided
individually by each of these resources can be
very small, their presence in large numbers in
power distribution networks implies that, under
proper coordination mechanisms, they can col-
lectively provide substantial active and reactive
power regulation capacity. In this entry, we pro-
vide a simple formulation of the DER coordina-
tion problem for enabling their utilization to pro-
vide ancillary services. We also provide specific
architectures and algorithmic solutions to solve
the DER coordination problem, with focus on
decentralized solutions.

Keywords
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Introduction

On the distribution side of a power system,
there are many distributed energy resources
(DERs), e.g., photovoltaic (PV) installations,
plug-in hybrid electric vehicles (PHEVs), and
thermostatically controlled loads (TCLs), that
can be potentially used to provide ancillary
services, e.g., reactive power support for voltage
control (see, e.g., Turitsyn et al. (2011) and
the references therein) and active power up and

down regulation for frequency control (see, e.g.,
Callaway and Hiskens (2011) and the references
therein). To enable DERs to provide ancillary
services, it is necessary to develop appropriate
control and coordination mechanisms. One
potential solution relies on a centralized control
architecture in which each DER is directly
coordinated by (and communicates with) a
central decision maker. An alternative approach
is to distribute the decision making, which
obviates the need for a central decision maker
to coordinate the DERs. In both cases, the
decision making involves solving a resource
allocation problem for coordinating the DERs
to collectively provide a certain amount of a
resource (e.g., active or reactive power).

In a practical setting, whether a centralized or
a distributed architecture is adopted, the control
of DERs for ancillary services provision will
involve some aggregating entity that will gather
together and coordinate a set of DERs, which
will provide certain amount of active or reac-
tive power in exchange for monetary benefits. In
general, these aggregating entities are the ones
that interact with the ancillary services market,
and through some market-clearing mechanism,
they enter a contract to provide some amount of
resource, e.g., active and/or reactive power over a
period of time. The goal of the aggregating entity
is to provide this amount of resource by properly
coordinating and controlling the DERs, while
ensuring that the total monetary compensation
to the DERs for providing the resource is below
the monetary benefit that the aggregating entity
obtains by selling the resource in the ancillary
services market.

In the context above, a household with a so-
lar PV rooftop installation and a PHEV might
choose to offer the PV installation to a renew-
able aggregator so it is utilized to provide re-
active power support (this can be achieved as
long as the PV installation power electronics-
based grid interface has the correct topology
Domínguez-García et al. 2011). Additionally, the
household could offer its PHEV to a battery ve-
hicle aggregator to be used as a controllable load
for energy peak shaving during peak hours and
load leveling at night (Guille and Gross 2009).
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Finally, the household might choose to enroll in
a demand response program in which it allows a
demand response provider to control its TCLs to
provide frequency regulation services (Callaway
and Hiskens 2011). In general, the renewable
aggregator, the battery vehicle aggregator, and the
demand response provider can be either separate
entities or they can be the same entity. In this
entry, we will refer to these aggregating entities
as aggregators.

The Problem of DER Coordination

Without loss of generality, denote by xj the
amount of resource provided by DER i without
specifying whether it is active or reactive power.
[However, it is understood that each DER pro-
vides (or consumes) the same type of resource,
i.e., all the xi ’s are either active or reactive
power.] Let 0 < xi < xi , for i D 1; 2; : : : ; n,
denote the minimum (xi ) and maximum (xi )
capacity limits on the amount of resource xi
that node i can provide. Denote by X the total
amount of resource that the DERs must collec-
tively provide to satisfy the aggregator request.
Let �i .xi / denote the price that the aggregator
pays DER i per unit of resource xi that it pro-
vides. Then, the objective of the aggregator in
the DER coordination problem is to minimize the
total monetary amount to be paid to the DERs for
providing the total amount of resource X while
satisfying the individual capacity constraints of
the DERs. Thus, the DER coordination problem
can be formulated as follows:

minimize
nX
iD1

xi�i .xi /

subject to
nX
iD1

xi D X

0 < xi � xi � xi ; 8j:

(1)

By allowing heterogeneity in the price per
unit of resource that the aggregator offers to
each DER, we can take into account the fact
that the aggregator might value classes of DERs

differently. For example, the downregulation ca-
pacity provided by a residential PV installation
(which is achieved by curtailing its power) might
be valued differently from the downregulation
capacity provided by a TCL or a PHEV (both
would need to absorb additional power in order
to provide downregulation).

It is not difficult to see that if the price func-
tions �i .�/; i D 1; 2 : : : ; n, are convex and non-
decreasing, then the cost function

Pn
iD1 xi�i .xi /

is convex; thus, if the problem in (1) is feasi-
ble, then there exists a globally optimal solu-
tion. Additionally, if the price per unit of re-
source is linear with the amount of resource, i.e.,
�i .xi / D cixi ; i D 1; 2; : : : ; n, then xi�i .xi / D
cix

2
i ; i D 1; 2; : : : ; n, and the problem in (1)

reduces to a quadratic program. Also, if the price
per unit of resource is constant, i.e., �i .xi / D
ci ; i D 1; 2; : : : ; n, then xi�i .xi / D cixi ; i D
1; 2; : : : ; n, and the problem in (1) reduces to a
linear program. Finally, if �i .xi / D �.xi / D
c; i D 1; 2; : : : ; n, for some constant c > 0,
i.e., the price offered by the aggregator is constant
and the same for all DERs, then the optimization
problem in (1) becomes a feasibility problem of
the form

find x1; x2; : : : ; xn

subject to
nX
iD1

xi D X

0 < xi � xi � xi ; 8j:

(2)

If the problem in (2) is indeed feasible (i.e.,Pn
lD1 xl � X � Pn

lD1 xl ), then there is an
infinite number of solutions. One such solution,
which we refer to as fair splitting, is given by

xi D xi C X �Pn
lD1 xlPn

lD1.xl � xl /
.xi � xi/; 8i: (3)

The formulation to the DER coordination
problem provided in (2) is not the only possible
one. In this regard, and in the context of PHEVs,
several recent works have proposed game-
theoretic formulations to the problem (Ghare-
sifard et al. 2013; Ma et al. 2013; Tushar et al.
2012). For example, in Gharesifard et al. (2013),
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the authors assume that each PHEV is a decision
maker and can freely choose to participate after
receiving a request from the aggregator. The
decision that each PHEV is faced with depends
on its own utility function, along with some
pricing strategy designed by the aggregator. The
PHEVs are assumed to be price anticipating in
the sense that they are aware of the fact that
the pricing is designed by the aggregator with
respect to the average energy available. Another
alternative is to formulate the DER coordination
problem as a scheduling problem (Chen et al.
2012; Subramanian et al. 2012), where the DERs
are treated as tasks. Then, the problem is to
develop real-time scheduling policies to service
these tasks.

Architectures

Next, we describe two possible architectures that
can be utilized to implement the proper algo-
rithms for solving the DER coordination problem

as formulated in (1). Specifically, we describe a
centralized architecture that requires the aggre-
gator to communicate bidirectionally with each
DER and a distributed architecture that requires
the aggregator to only unidirectionally communi-
cate with a limited number of DERs but requires
some additional exchange of information (not
necessarily through bidirectional communication
links) among the DERs.

Centralized Architecture
A solution can be achieved through the
completely centralized architecture of Fig. 1a,
where the aggregator can exchange information
with each available DER. In this scenario,
each DER can inform the aggregator about
its active and/or reactive capacity limits and
other operational constraints, e.g., maintenance
schedule. After gathering all this information,
the aggregator solves the optimization program
in (1), the solution of which will determine
how to allocate among the resources the total
amount of active power P r

s and/or reactive



244 Coordination of Distributed Energy Resources for Provision of Ancillary Services. . .

power Qr
s that it needs to provide. Then, the

aggregator sends individual commands to each
DER so they modify their active and or reactive
power generation according to the solution
of (1) computed by the aggregator. In this
centralized solution, however, it is necessary
to overlay a communication network connecting
the aggregator with each resource and to maintain
knowledge of the resources that are available at
any given time.

Decentralized Architecture
An alternative is to use the decentralized control
architecture of Fig. 1b, where the aggregator re-
lays information to a limited number of DERs
that it can directly communicate with and each
DER is able to exchange information with a
number of other close-by DERs. For example,
the aggregator might broadcast the prices to be
paid to each type of DER. Then, through some
distributed protocol that adheres to the commu-
nication network interconnecting the DERs, the
information relayed by the aggregator to this
limited number of DERs is disseminated to all
other available DERs. This dissemination pro-
cess may rely on flooding algorithms, message-
passing protocols, or linear-iterative algorithms
as proposed in Domínguez-García and Hadji-
costis (2010, 2011). After the dissemination pro-
cess is complete and through a distributed com-
putation over the communication network, the
DERs can solve the optimization program in (1)
and determine its active and/or reactive power
contribution.

A decentralized architecture like the one in
Fig. 1b may offer several advantages over the cen-
tralized one in Fig. 1b, including the following.
First, a decentralized architecture may be more
economical because it does not require commu-
nication between the aggregator and the various
DERs. Also, a decentralized architecture does
not require the aggregator to have a complete
knowledge of the DERs available. Additionally, a
decentralized architecture can be more resilient to
faults and/or unpredictable behavioral patterns by
the DERs. Finally, the practical implementation
of such decentralized architecture can rely on
inexpensive and simple hardware. For example,

the testbed described in Domínguez-García et al.
(2012a), which is used to solve a particular in-
stance of the problem in (1), uses Arduino mi-
crocontrollers (see Arduino for a description)
outfitted with wireless transceivers implementing
a ZigBee protocol (see ZigBee for a description).

Algorithms

Ultimately, whether a centralized or a decentral-
ized architecture is adopted, it is necessary to
solve the optimization problem in (1). If a cen-
tralized architecture is adopted, then solving (1)
is relatively straightforward using, e.g., standard
gradient-descent algorithms (see, e.g., Bertsekas
and Tsitsiklis 1997). Beyond the DER coordina-
tion problem and the specific formulation in (1),
solving an optimization problem is challenging if
a decentralized architecture is adopted (especially
if the communication links between DERs are
not bidirectional); this has spurred significant
research in the last few years (see, e.g., Bertsekas
and Tsitsiklis 1997, Xiao et al. 2006, Nedic et al.
2010, Zanella et al. 2011, Gharesifard and Cortes
2012, and the references therein).

In the specific context of the DER coordi-
nation problem as formulated in (1), when the
cost functions are assumed to be quadratic and
the communication between DERs is not bidirec-
tional, an algorithm amenable for implementation
in a decentralized architecture like the one in
Fig. 1b has been proposed in Domínguez-García
et al. (2012a). Also, in the context of Fig. 1b,
when the communication between DERs are bidi-
rectional, the DER coordination problem, as for-
mulated in (1), can be solved using an algorithm
proposed in Kar and Hug (2012).

As mentioned earlier, when the price offered
by the aggregator is constant and identical for
all DERs, the problem in (1) reduces to the
feasibility problem in (2). One possible solution
to this feasibility problem is the fair-splitting so-
lution in (3). Next, we describe a linear-iterative
algorithm – originally proposed in Domínguez-
García and Hadjicostis (2010, 2011) and referred
to as ratio consensus – that allows the DERs to
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individually determine its contribution so that the
fair-splitting solution is achieved.

Ratio Consensus: A Distributed Algorithm
for Fair Splitting
We assume that each DER is equipped with a
processor that can perform simple computations
and can exchange information with neighboring
DERs. In particular, the information exchange
between DERs can be described by a directed
graph G D fV ; Eg, whereV D f1; 2; : : : ; ng is the
vertex set (each vertex – or node – corresponds to
a DER) and E � V � V is the set of edges, where
.i; j / 2 E if node i can receive information from
node j . We require G to be strongly connected,
i.e., for any pair of vertices l and l 0, there exists
a path that starts in l and ends in l 0. Let LC �
V , LC ¤ ; denote the set of nodes that the
aggregator is able to directly communicate with.

The processor of each DER i maintains two
values yi and zi , which we refer to as internal
states, and updates them (independently of each
other) to be, respectively, a linear combination of
DER i ’s own previous internal states and the pre-
vious internal states of all nodes that can possibly
transmit information to node i (including itself).
In particular, for all k � 0, each node i updates
its two internal states as follows:

yi Œk C 1
 D
X
j2N�

i

1

DC
j

yj Œk
; (4)

zi Œk C 1
 D
X
j2N�

i

1

DC
j

zj Œk
; (5)

where N�
i D fj 2 V W .i; j / 2 Eg, i.e.,

all nodes that can possibly transmit information
to node i (including itself); and DC

i is the out-
degree of node i , i.e., the number of nodes to
which node i can possibly transmit information
(including itself). The initial conditions in (4)
are set to yi Œ0
 D X=m � xi if i 2 LC, and
yi Œ0
 D �xi otherwise and the initial conditions
in (5) are set to zi Œ0
 D xi � xi . Then, as shown
in Domínguez-García and Hadjicostis (2011), as
long as

Pn
lD1 xl � X � Pn

lD1 xl , each DER i

can asymptotically calculate its contribution as

xi D xi C �.xi � xi / (6)

where for all i

lim
k!1

yi Œk


zi Œk

D X �Pn

lD1 xlPn
lD1.xl � xl /

WD �: (7)

It is important to note that the algorithm in
(4)–(7) also serves as a primitive for the algorithm
proposed in Domínguez-García et al. (2012a),
which solves the problem in (1) when the cost
function is quadratic. Also, the algorithm in
(4)–(7) is not resilient to packet-dropping com-
munication links or imperfect synchronization
among the DERs, which makes it difficult
to implement in practice; however, there are
robustified variants of this algorithm that address
these issues Domínguez-García et al. (2012b)
and have been demonstrated to work in practice
(Domínguez-García et al. 2012a).
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Abstract

Modeling of credit risk is concerned with con-
structing and studying formal models of time
evolution of credit ratings (credit migrations) in
a pool of credit names, and with studying various
properties of such models. In particular, this in-
volves modeling and studying default times and
their functionals.

Keywords

Credit risk; Credit migrations; Default time;
Markov copulae

Introduction

Modeling of credit risk is concerned with con-
structing and studying formal models of time
evolution of credit ratings (credit migrations) in
a pool of N credit names (obligors), and with
studying various properties of such models. In
particular, this involves modeling and studying
default times and their functionals. In many ways,
modeling techniques used in credit risk are sim-
ilar to modeling techniques used in reliability
theory. Here, we focus on modeling in continuous
time.

Models of credit risk are used for the purpose
of valuation and hedging of credit derivatives, for
valuation and hedging of counter-party risk, for
assessment of systemic risk in an economy, or
for constructing optimal trading strategies involv-
ing credit-sensitive financial instruments, among
other uses.

Evolution of credit ratings for a single obligor,
labeled as i , where i 2 f1; : : : ; N g; can be

http://www.zigbee.org
http://www.zigbee.org
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modeled in many possible ways. One popular
possibility is to model credit migrations in terms
of a jump process, say C i D .C i

t /t�0, taking
values in a finite set, say Ki WD f0; 1; 2; : : : ; Ki �
1;Kig, representing credit ratings assigned to
obligor i . Typically, the rating stateKi represents
the state of default of the i -th obligor, and typi-
cally it is assumed that process C i is absorbed at
state Ki .

Frequently, the case when Ki D 1, that is
Ki WD f0; 1g; is considered. In this case, one
is only concerned with jump from the pre-
default state 0 to the default state 1, which
is usually assumed to be absorbing – the
assumption made here as well. It is assumed that
process C i starts from state 0. The (random)
time of jump of process C i from state 0

to state 1 is called the default time, and is
denoted as �i : Process C i is now the same as
the indicator process of �i , which is denoted
as Hi and defined as Hi

t D 1f�i�tg; for
t � 0: Consequently, modeling of the process
C i is equivalent to modeling of the default
time �i .

The ultimate goal of credit risk modeling is
to provide a feasible mathematical and compu-
tational methodology for modeling the evolution
of the multivariate credit migration process C WD
.C 1; : : : ; CN /; so that relevant functionals of
such processes can be computed efficiently. The
simplest example of such functional is P.Ctj 2
Aj ; j D 1; 2; : : : ; J jGs/, representing the con-
ditional probability, given the information Gs at
time s � 0, that process C takes values in
the set Aj at time tj � 0, j D 1; 2; : : : ; J .
In particular, in case of modeling of the de-
fault times �i , i D 1; 2; : : : ; N , one is con-
cerned with computing conditional survival prob-
abilities P.�1 > t1; : : : ; �

N > tN jGs/, which
are the same as probabilities P.Hi

ti
D 0; i D

1; 2; : : : ; N jGs/.
Based on that, one can compute more com-

plicated functionals, that naturally occur in the
context of valuation and hedging of credit risk–
sensitive financial instruments, such as corporate
(defaultable) bonds, credit default swaps, credit
spread options, collateralized bond obligations,
and asset-based securities, for example.

Modeling of Single Default Time
Using Conditional Density

Traditionally, there were two main approaches to
modeling default times: the structural approach
and the reduced approach, also known as the
hazard process approach. The main features of
both these approaches are presented in Bielecki
and Rutkowski (2004).

We focus here on modeling a single default
time, denoted as � , using the so-called condi-
tional density approach of El Karoui et al. (2010).
This approach allows for extension of results that
can be derived using reduced approach.

The default time � is a strictly positive random
variable defined on the underlying probability
space .˝;F ; P /, which is endowed with a ref-
erence filtration, say F D .Ft /t�0, representing
flow of all (relevant) market information available
in the model, not including information about
occurrence of �: The information about occur-
rence of � is carried by the (right continuous)
filtration H generated by the indicator process
H WD .Ht D 1��t /t�0. The full information in
the model is represented by filtration G WD F_H:

It is postulated that

P.� 2 d� jFt / D ˛t .�/d�;

for some random field ˛�.�/; such that ˛t .�/ is
Ft ˝ B.RC/ measurable for each t: The family
˛t .�/ is called Ft -conditional density of �: In
particular, P.� > �/ D R1

�
˛0.u/ du: The

following survival processes are associated with
� ,
• St .�/ WD P.� > � jFt / D R1

�
˛t .u/ du,

which is an F-martingale,
• St WD St .t/ D P.� > t jFt /, which is an F-

supermartingale (Azéma supermartingale).
In particular, S0.�/ D P.� > �/ DR1
� ˛0.u/ du; and St.0/ D S0 D 1:

As an example of computations that can be
done using the conditional density approach
we give the following result, in which notation
“bd” and “ad” stand for before default and
at-or-after default, respectively.
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Theorem 1 Let YT .�/ be a FT _ �.�/ measur-
able and bounded random variable. Then

E.YT .�/jFt / D Y bd
t 1t<� C Y ad

t .T; �/1t�� ;

where

Y bd
t D

R1
t YT .�/˛t .�/d�

St
1St>0;

and

Y ad
t .T; �/ D E.YT .�/˛T .�/jFt /

˛t .�/
1˛t .�/>0:

There is an interesting connection between
the conditional density process and the so-called
default intensity processes, which are ones of the
main objects used in the reduced approach. This
connection starts with the following result,

Theorem 2 (i) The Doob-Meyer (additive)
decomposition of the survival process S is
given as

St D 1CM F

t �
Z t

0

˛u.u/du;

where M F

t D � R t
0
.˛t .u/ � ˛u.u//du D

E.
R1
0
˛u.u/dujFt / � 1:

(ii) Let � WD infft � 0 W St� D 0g: Define
�Ft D ˛t .t/

St
for t < � and �Ft D �F� for t � �:

Then, the multiplicative decomposition of S
is given as

St D LF

t e
� R t

0 �
F
udu;

where

dLF

t D e
R t
0 �

F
ududM F

t ; LF

0 D 1:

The process �F is called the F intensity of �:

The G-compensator of � is the G-predictable
increasing process �G such that the process

MG

t D Ht ��G

t

is a G-martingale. If�G is absolutely continuous,
the G-adapted process �G such that

�G

t D
Z t

0

�Gu du

is called the G-intensity of �: The G-compensator
is stopped at � , i.e., �G

t D �G

t^� . Hence, �Gt D 0

when t > �: In particular, we have

�Gt D 1t<��
F

t D .1 �Ht/�
F

t :

The conditional density process and the G-
intensity of � are related as follows: For any t < �
and � � t we have

˛t .�/ D E.�G� jFt /:

Example 1 This is a structural-model-like
example
• Suppose F D F

X is a filtration of a default
driver process, sayX , and� is the default bar-
rier assumed to be independent of X . Denote
G.t/ D P.� > t/.

• Define

� WD infft � 0 W �t � �g;

with �t WD sups�t Xs: We then have St.�/ D
G.��/ if � � t and St.�/ D E.G.��/jFX

t / if
� > t

• Assume that F D 1 � G and � are ab-
solutely continuous w.r.t. Lebesgue measure,
with respective densities f and � . We then
have

˛t .�/ D f .��/�� D ˛� ; t � �;

and F
X intensity of � is

�t D ˛t .t/

G.�t/
D ˛t .t/

St
:

• In particular, if� is a unit exponential r.v., that
is, if G.t/ D e�t for t � 0, then we have that
�t D �t D ˛t .t/

St
:

Example 2 This is a reduced-form-like example.
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C

• Suppose S is a strictly positive process. Then,
the F-hazard process of � is denoted by � F

and is given as

� F

t D � lnSt ; t � 0:

In other words,

St D e�� F
t ; t � 0:

• In particular, if � F is absolutely continuous,
that is, � F

t D R t
0
�Fu du then

St D e� R t
0 �

F
u du; t � 0 and

˛t .�/ D �F� S� ; t � �:

Modeling Evolution of Credit Ratings
UsingMarkov Copulae

The key goal in modeling of the joint migration
process C is that the distributional laws of
the individual migration components C i ; i 2
f1; : : : ; N g; agree with given (predetermined)
laws. The reason for this is that the marginal laws
of C, that is, the laws of C i ; i 2 f1; : : : ; N g;
can be calibrated from market quotes for prices
of individual (as opposed to basket) credit
derivatives, such as the credit default swaps,
and thus, the marginals of C should have laws
agreeing with the market data.

One way of achieving this goal is to model
C as a Markov chain satisfying the so-called
Markov copula property. For brevity we present
here the simplest such model, in which the refer-
ence filtration F is trivial, assuming additionally,
but without loss of generality, that N D 2 and
that K1 D K2 D K WD f0; 1; : : : ; Kg:

Here we focus on the case of the so-called
strong Markov copula property, which is reflected
in Theorem 3.

Let us consider two Markov chainsZ1 andZ2

on .˝;F ; P /, taking values in a finite state space
K, and with the infinitesimal generators A1 WD
Œa1ij 
 and A2 WD Œa2hk 
, respectively.

Consider the system of linear algebraic equa-
tions in unknowns aC

ih;jk ,

X
k2K

aC
ih;jk D a1ij ; 8i; j; h 2 K; i ¤ j; (1)

X
j2K

aC
ih;jk D a2hk ; 8i; h; k 2 K; h ¤ k; (2)

It can be shown that this system admits at least
one positive solution.

Theorem 3 Consider an arbitrary positive so-
lution of the system (1)–(2). Then the matrix
AC D ŒaXih;jk 
i;h;j;k2K (where diagonal elements
are defined appropriately) satisfies the condi-
tions for a generator matrix of a bivariate time-
homogeneous Markov chain, say C D .C 1; C 2/,
whose components are Markov chains in the
filtration of C and with the same laws as Z1 and
Z2.

Consequently, the system (1)–(2) serves as a
Markov copula between the Markovian margins
C1, C2 and the bivariate Markov chain C.

Note that the system (1)–(2) can contain more
unknowns than the number of equations, there-
fore being underdetermined, which is a crucial
feature for ability of calibration of the joint mi-
gration process C to marginal market data.

Example 3 This example illustrates modeling
joint defaults using strong Markov copula theory.

Let us consider two processes, Z1 and Z2,
that are time-homogeneous Markov chains, each
taking values in the state space f0; 1g; with re-
spective generators

A1 D
� 0 1

0 �.a C c/ a C c

1 0 0

�
(3)

and

A2 D
� 0 1

0 �.b C c/ b C c

1 0 0

�
; (4)

for a; b; c � 0:

The off-diagonal elements of the matrix AC

below satisfy the system (1)–(2),
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AC D

0
BBBBBB@

.0; 0/ .0; 1/ .1; 0/ .1; 1/

.0; 0/ �.aC b C c/ b a c

.0; 1/ 0 �.a C c/ 0 a C c

.1; 0/ 0 0 �.b C c/ b C c

.1; 1/ 0 0 0 0

1
CCCCCCA
: (5)

Thus, matrix AC generates a Markovian joint
migration process C D .C 1; C 2/, whose com-
ponentsC1 and C2 model individual default with
prescribed default intensities a C c and b C c,
respectively.

For more information about Markov copulae
and about their applications in credit risk we,
refer to Bielecki et al. (2013).

Summary and Future Directions

The future directions in development and applica-
tions of credit risk models are comprehensively
laid out in the recent volume Bielecki et al.
(2011). One additional future direction is mod-
eling of systemic risk.
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Data Association
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Abstract

In tracking applications, following the signal
detection process that yields measurements, there
is a procedure that selects the measurement(s)
to be incorporated into the state estimator
– this is called data association (DA) . In
multitarget-multisensor tracking systems, there
are generally three classes of data association:
specifically, measurement-to-track association
(M2TA) , track-to-track association (T2TA) ,
and measurement-to-measurement association
(M2MA) . M2TA is the process of associating
each measurement from a list (originating from
one or more sensors) to a new or existing track.
T2TA is the process of associating multiple
existing tracks (from multiple sensors or from
different periods in time), generally with the
intent of fusing them afterward. M2MA is
the process of associating measurements from
different sensors in order to form “composite
measurements” and/or do track initialization. The
processes of M2TA and T2TA will be discussed
in more detail here, while details on M2MA can
be found in Bar-Shalom et al. (2011).

Keywords

Clutter; Measurement origin uncertainty;
Measurement validation; Persistent interference;
Tracking

Introduction

In a radar the “return” from the target of interest
is sought within a time interval determined by the
anticipated range of the target when it reflects the
energy transmitted by the radar: a “range gate” is
set up and the detection(s) within this gate can be
associated with the target of interest.

In general the measurements have a higher
dimension:
• Range, azimuth (bearing), elevation, or direc-

tion sines for radar, possibly also range rate
• Bearing and frequency (when the signal is

narrow band) or time difference of arrival and
frequency difference in passive sonar

• Two line-of-sight angles or direction sines for
optical or passive electromagnetic sensors
Then a multidimensional gate is set up for

detecting the signal from the target. This is done
to avoid searching for the signal from the target of
interest in the entire measurement space. A mea-
surement in the gate, while not guaranteed to have
originated from the target the gate pertains to, is
a valid association candidate – thus, the name
validation region or association region . If there

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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is more than one detection (measurement) in
the gate, this leads to an association uncertainty .

In the discussion to follow, it will be assumed
that one has point measurements rather than
distributed over several resolution cells of the
sensor as in the case of an extended target .

Similar validation has to be carried out in
T2TA.

Validation Region

In view of the variety of variables that can be
measured, a generic gating (or validation or as-
sociation) procedure for continuous-valued mea-
surements is discussed.

Consider a target that is in track, i.e., its
filter has been initialized. Then, according to
Sect. 5.2.3 of Bar-Shalom et al. (2001), one has
the predicted value (mean) of the measurement
Oz.kC1jk/ and the associated covarianceS.kC1/.

Assumption. The true measurement con-
ditioned on the past is normally (Gaussian)
distributed (The notation N .xI�; S/ stands for
the normal (Gaussian) pdf with the argument
(vector) random variable x, mean �, and
covariance matrix S . The reason for the use
of the designation “normal” is to distinguish this
omnipresent pdf from all the others (abnormal).)
with its probability density function (pdf)
given by

pŒz.k C 1/jZk� D N Œz.k C 1/I Oz.k C 1jk/;
S.k C 1/� (1)

where S.k C 1/ is the innovation (residual)
covariance matrix and z is the true measurement.

Then the true measurement will be in the
following region:

V.k C 1; �/ D fz W d2 � �g (2)

with probability determined by the gate thresh-
old � and

d2
�D Œz � Oz.kC1jk/�0S.kC1/�1Œz � Oz.kC1jk/�

(3)

This distance metric, d2, is referred to in
the literature as the normalized innovation
squared (NIS) , statistical distance squared ,
Mahalanobis distance , or chi-square distance .

The region defined by (2) is called the gate
or validation region (hence, the notation V) or
association region . It is also known as the ellipse
(or ellipsoid) of probability concentration – the
region of minimum volume that contains a given
probability mass under the Gaussian assumption.
The semiaxes of the ellipsoid (2) are the square
roots of the eigenvalues of �S . The threshold �
is obtained from tables of the chi-square distribu-
tion since the quadratic form (3) that defines the
validation region in (2) is chi-square distributed
with number of degrees of freedom equal to the
dimension nz of the measurement.

Table 1 gives the gate probability (The no-
tation P f�g is used to denote the probability of
event f�g.)

PG
�D P fz.k C 1/ 2 V.k C 1; �/g (4)

or the “probability that the (true) measurement
will fall in the gate” for various values � and
dimensions nz of the measurement. The square
root g D p

� is sometimes referred to as the
“number of sigmas” (standard deviations) of the
gate. This, however, does not fully define the
probability mass in the gate as can be seen from
Table 1.

Remark 1 It should be pointed out that thresh-
olding in a detector is also a form of gating –
only a signal above a certain intensity level (at the
end of the signal processing chain) is accepted as
a detection and then one has a measurement. In
this case the “gate” is the interval Œ�; 1� in the
signal intensity space, where � is the detection
threshold.

A Single Target in Clutter
The validation procedure limits the region in
the measurement space where the information
processor will “look” to find the measurement
from the target of interest. In spite of this, it can
happen that more than one detection, i.e., several
measurements, will be found in the validation
region.



Data Association 253

D

Data Association, Table 1 Gate thresholds and the probability mass PG in the gate

� 1 4 6.6 9 9.2 11.4 16 25
g 1 2 2.57 3 3.03 3.38 4 5

nz

1 0.683 0.954 0.99 0.997 0.99994 1

2 0.393 0.865 0.989 0.99 0.9997 1

3 0.199 0.739 0.971 0.99 0.9989 0.99998

Measurements outside the validation region
can be ignored: they are “too far” and thus very
unlikely to have originated from the target of
interest. This holds if the gate probability is close
to unity and the model used to obtain the gate is
correct.

The problem of tracking a single target in
clutter considers the situation where there are
possibly several measurements in the validation
region (gate) of a target. The set of validated
measurements consists of:
• The correct measurement (if detected and it

fell in the gate)
• The undesirable measurements: clutter or false

alarm originated
In practice detections are obtained by thresh-

olding the signal received by the sensor after
processing it. This is the simplest (binary) way
of using a target feature – its intensity. More
sophisticated ways of using such feature informa-
tion can be found in Bar-Shalom et al. (2011).

It is assumed that the measurement contains
all the information that could be used to discard
the undesirable measurements. Therefore, any
measurement that has been validated could have
originated from the target of interest.

A situation with a single-target track and sev-
eral validated measurements is depicted in Fig. 1.
The (two-dimensional) validation region is an
ellipse centered at the predicted measurement Oz1.
The parameters of the ellipse are determined by
the covariance matrix S of the innovation, which
is assumed to be Gaussian.

All the measurements in the validation region
can be said to be not too unlikely to have origi-
nated from the target of interest, even though only
one is assumed to be the true one.

The implication of the assumption that
there is a single target is that the undesirable
measurements constitute a random interference.

• z1̂

´z2

´z1

´z3

Data Association, Fig. 1 Several measurements in the
validation region of a single track

The common mathematical model for such false
measurements is that they are:
• Uniformly spatially distributed
• Independent across time
This corresponds to what is known as residual
clutter – the constant clutter, if any, is assumed
to have been removed.

Multiple Targets in Clutter
The situation where there are several target tracks
in the same neighborhood as well as clutter (or
false alarms) is more complicated. Figure 2 il-
lustrates such a case for a given time, with the
predicted measurements for the two targets con-
sidered denoted as Oz1 and Oz2. In this figure the
following measurement origins are possible:
• z1 from target 1 or clutter
• z2 from either target 1 or target 2 or clutter
• z3 and z4 from target 2 or clutter

However, if z2 originated from target 2, then
it is quite likely that z1 originated from target
1. This illustrates the interdependence of the
associations in a situation where a persistent
interference (neighboring target) is present in
addition to random interference (clutter).
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• z1̂

• z2̂

´z2

´z1

´z3

´z4

Data Association, Fig. 2 Two tracks with a measure-
ment in the intersection of their validation regions

Up to this point, it was assumed that a mea-
surement could have originated from one of the
targets or from clutter. However, in view of the
fact that any signal processing system has an in-
herent finite resolution capability, an additional
possibility has to be considered:

z2 could be the result of the merging of the
detections from the two targets – it is an
unresolved measurement .

This constitutes a fourth origin hypothesis for
a measurement that lies in the intersection of
two validation regions. Most tracking algorithms
ignore the possibility that a measurement is an
unresolved one.

This illustrates only the difficulty of associ-
ation of measurements to tracks at one point in
time. The full problem, as will be discussed later,
consists of associating measurements across
time.

Approaches to Tracking and Data
Association

The problem of tracking and data association
is a hybrid problem because it is character-
ized by:

(1) Continuous uncertainties – state estimation in
the presence of continuous noises

(2) Discrete uncertainties – which measure-
ment(s) should be used in the estimation
process

Assuming the goal is to obtain the MMSE
estimate of the target state – its conditional mean
– one can distinguish the following approaches.

Pure MMSE Approach
The Pure MMSE Approach to tracking and
data association is obtained using the smoothing
property of expectations (see, e.g., Bar-Shalom
et al. 2001, Sect. 1.4.12), as follows:

OxMMSE D EŒxjZ� D EfEŒxjA;Z�jZg
D

X

Ai2A
EŒxjAi ;Z�P fAi jZg (5)

where A is an association event (assuming a
Bayesian model, with prior probabilities from
which one can calculate posterior probabilities),
and the summation is over all events Ai in the set
A of mutually exclusive and exhaustive associa-
tion events.

The above, which requires the evaluation
of all the conditional (posterior) probabilities
P fAi jZg, is a direct consequence of the total
probability theorem (see, e.g., Bar-Shalom et al.
2001, Sect. 1.4.10), which yields the conditional
pdf of the state as the following mixture

p.xjZ/ D
X

Ai2A
p.xjAi ;Z/P fAi jZg (6)

In the linear-Gaussian case the above becomes a
Gaussian mixture . Algorithms that fall in this
category are PDAF and JPDAF, see Bar-Shalom
et al. (2011).

MMSE-MAP Approach
The MMSE-MAP Approach , instead of enu-
merating and summing over all the association
events, selects the one with highest posterior
probability, namely,

AMAP D arg max
i
P fAi jZg (7)
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and then

OxMMSE-MAP D EŒxjAMAP; Z� (8)

The HOMHT as proposed by Reid (1979) falls in
this category, see Bar-Shalom et al. (2011).

MMSE-ML Approach
The MMSE-ML Approach does not assume
priors for the association events and relies on the
maximum likelihood approach to select the event,
that is,

AML D arg max
i
pfZjAi jg (9)

and then

OxMMSE-ML D EŒxjAML; Z� (10)

The TOMHT falls into this category and S-D
assignment (or MDA) is an implementation of
this, see Bar-Shalom et al. (2011).

Heuristic Approaches
There are numerous simpler/heuristic ap-
proaches. The most common one relies on the
distance metric (3) and makes the selection of
which measurement is associated with which
track based on the “nearest neighbor” rule. The
same criterion can be used in a global cost
function.

Remarks
It should be noted that the MMSE-MAP esti-
mate (8) and the MMSE-ML estimate (10) are
obtained assuming that the selected association
is correct – a hard decision . This hard decision
is sometimes correct, sometimes wrong. On the
other hand, the pure MMSE estimate (5) yields
a soft decision – it averages over all the possi-
bilities. This soft decision is never totally correct,
never totally wrong.

The uncertainties (covariances) associated
with the MMSE-MAP and MMSE-ML estimates
might be optimistic in view of the above
observation. The uncertainty associated with
the pure MMSE estimate will be increased

(realistically) in view of the fact that it includes
the data association uncertainty.

Estimation and Data Association
in Nonlinear Stochastic Systems

The Model
Consider the discrete time stochastic system

x.k C 1/ D f Œk; x.k/;u.k/; v.k/� (11)

where x 2 Rn is the stacked state vector of
the targets under consideration, u.k/ is a known
input (included here for the sake of generality),
and v.k/ is the process noise with a known pdf.
The measurements at time kC1 are described by
the stacked vector

z.kC1/ D hŒkC1; x.kC1/; A.kC1/;w.kC1/�
(12)

where A.k C 1/ is the data association event
at k C 1 that specifies (i) which measurement
component originated from which components of
x.k C 1/, namely, from which target, and (ii)
which measurements are false, that is, originated
from the clutter process. The vector w.k/ is the
observation noise, consisting of the error in the
true measurement and the false measurements.
The pdf of the false measurements and the prob-
ability mass function (pmf) of their number are
also assumed to be known.

The noise sequences and false measurements
are assumed to be white with known pdf and mu-
tually independent. The initial state is assumed to
have a known pdf and to be independent of the
noises. Additional assumptions are given below
for the optimal estimator, which evaluates the pdf
of the state conditioned on the observations.

The optimal state estimator in the presence
of data association uncertainty consists of the
computation of the conditional pdf of the state
x.k/ given all the information available at time
k, namely, the prior information about the initial
state, the intervening inputs, and the sets of mea-
surements through time k. The conditions under
which the optimal state estimator consists of the
computation of this pdf are presented in detail.
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The Optimal Estimator for the Pure MMSE
Approach
The information set available at k is

I k D fZk;U k�1g (13)

where
Zk �D fz.j /gkjD1 (14)

is the cumulative set of observations through time
k, which subsumes the initial information Z0,
and U k�1 is the set of known inputs prior to time
k.

For a stochastic system, an information state
(Striebel 1965) is a function of the available
information set that summarizes the past of the
system in a probabilistic sense.

It can be shown that the conditional pdf of the
state

pk
�D pŒx.k/jI k� (15)

is an information state if (i) the two noise se-
quences (process and measurement) are white
and mutually independent and (ii) the target de-
tection and clutter/false measurement processes
are white. Once the conditional pdf (15) is avail-
able, the pure MMSE estimator , i.e., the condi-
tional mean, as well as the conditional variance,
or covariance matrix, can be obtained.

The optimal estimator, which consists of the
recursive functional relationship between the in-
formation states pkC1 and pk , is given by

pkC1 D  Œk C 1; pk; z.k C 1/;u.k/� (16)

where

 Œk C 1; pk; z.k C 1/;u.k/�

D 1

c

M.kC1/X

iD1
pŒz.k C 1/jx.k C 1/; Ai.k C 1/�

�
Z
pŒx.k C 1/jx.k/;u.k/�pk dx.k/

P fAi.k C 1/g (17)

is the transformation that maps pk into pkC1; the
integration in (17) is over the range of x.k/ and c
is the normalization constant.

The recursion (17) shows that the optimal
MMSE estimator in the presence of data associa-
tion uncertainty has the following properties:
P1. The pdf pkC1 is a weighted sum of pdfs,

conditioned on the current time association
events Ai.k C 1/, i D 1; : : : ;M.k C 1/,
where M.k C 1/ is the number of mutually
exclusive and exhaustive association events
at time k C 1.

P2. If the exact previous pdf, which is the suf-
ficient statistic, is available, then only the
most recent association event probabilities
are needed at each time.

However, the number of terms of the mixture in
the right-hand side of (17) is, by time kC1, given
by the product

MkC1 D
kC1Y

iD1
M.i/ (18)

which amounts to an exponential increase in time.
This increase is similar to the increase in the
number of the branches of the MHT hypothesis
tree.

A detailed derivation of the recursion for the
optimal estimator can be found in Bar-Shalom
et al. (2011).

Track-to-Track Association

In addition to measurement-to-track associa-
tion (M2TA) , an additional class of data asso-
ciation is track-to-track association (T2TA) .
Following T2TA, track-to-track fusion (T2TF)
may be performed to (hopefully) improve the
overall tracking accuracy. For more details on
track fusion, see Bar-Shalom et al. (2011).

It is desired first to test the hypothesis that
two tracks pertain to the same target. The optimal
test would require using the entire data base (the
sequences of measurements that form the tracks)
through the present time k and is not practical.
In view of this, the test to be presented is based
only on the most recent estimates from the tracks.
The test based on the state estimates within a time
window is discussed in Tian and Bar-Shalom
(2009).
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Association of Tracks with Independent
Errors
Let Oxi .k/ be the estimated state of a target by
sensor i with its own information processor. As-
sume that one has an estimate Oxj .k/ from sensor
j , corresponding to the same time. Both can be
current estimates or one can be a prediction as
long as they pertain to the same time (the second
time argument has been omitted for simplicity).

The corresponding covariances are denoted as
Pm.k/;m D i; j . The state estimation errors at
different sensors (local trackers),

Qxi .k/ D xi .k/� Oxi .k/ (19)

Qxj .k/ D xj .k/ � Oxj .k/ (20)

where xi and xj are the corresponding true states,
are assumed to be independent. This is the state
estimation error independence assumption .

Remark 2 As shown in the sequel, for indepen-
dent sensors, the state estimation errors for the
same target are dependent in the presence of
process noise.

Denote the difference of the two estimates as

O�ij .k/ D Oxi .k/ � Oxj .k/ (21)

This is the estimate of the difference of the true
states

�ij .k/ D xi .k/ � xj .k/ (22)

The same target hypothesis is that the true
states are equal,

H0 W �ij .k/ D 0 (23)

while the different target alternative is

H1 W �ij .k/ ¤ 0 (24)

While (21) is the appropriate statistic to test
whether (22) is zero or not, the rigorous proof of
this fact is presented in Bar-Shalom et al. (2011).

The error in the difference between the state
estimates

Q�ij .k/ D �ij .k/� O�ij .k/ (25)

is zero mean and has covariance

T ij .k/
�D Ef Q�ij .k/ Q�ij .k/0g
D EfŒ Qxi .k/ � Qxj .k/�Œ Qxi .k/ � Qxj .k/�0g

(26)

given, under the error independence assump-
tion , by

T ij .k/ D P i.k/C P j .k/ (27)

Assuming the estimation errors to be Gaus-
sian, the test of H0 vs. H1 – the T2TA test – is

Accept H0 if

D
�D O�ij .k/0ŒT ij .k/��1 O�ij .k/ � D˛ (28)

The thresholdD˛ is such that

P fD > D˛jH0g D ˛ (29)

where, e.g., ˛ D 0:01. From the Gaussian as-
sumption, the threshold is the 1 � ˛ point of
the chi-square distribution with nz degrees of
freedom (Bar-Shalom et al. 2001)

D˛ D �2nz
.1 � ˛/ (30)

Association of Tracks with Dependent
Errors
In the previous section, the association testing
was done under the assumption that the esti-
mation errors in these tracks are independent.
However, as shown in Bar-Shalom et al. (2011),
whenever there is process noise (or, in general,
motion uncertainty), the track errors based on
data from independent sensors are dependent.

The dependence between the estimation er-
rors Qxi .kjk/ and Qxj .kjk/ from the two tracks
arises from the common process noise which
contributes to both errors. This is due to the fact
that there is a common motion equation for both
trackers.

The testing of the hypothesis that the two
tracks under consideration originated from the
same target is done in the same manner as before,
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except for the following modification to account
for the dependence of their state estimation
errors.

The covariance associated with the difference
of the estimates

O�ij .k/ D Oxi .kjk/ � Oxj .kjk/ (31)

is, accounting for the dependence,

T ij .k/
�DEf Q�ij .k/ Q�ij .k/0g
DEfŒ Qxi .kjk/� Qxj .kjk/�Œ Qxi .kjk/

� Qxj .kjk/�0g (32)

and, with the known cross-covariance P ij , is
given by the expression

T ij .k/ D P i .kjk/C P j .kjk/
�P ij .kjk/ � P ji .kjk/ (33)

Note the difference between the above and (27).

Effect of the Dependence
The effect of the dependence between the esti-
mation errors is to reduce the covariance of the
difference (31) of the estimates. This is due to
the fact that the cross-covariance term reflects a
positive correlation between the estimation errors
(this is always the case for linear systems).

The Test
The hypothesis testing for the track-to-track
association with the dependence accounted for
is done in the same manner as before in (28),
except that the “smaller” covariance from (33)
is used in the test statistic, which is, as before,
the normalized distance squared between the
estimates

D D O�ij .k/0ŒT ij .k/��1 O�ij .k/ (34)

The Cross-Covariance of the Estimation
Errors
The cross-covariance recursion for synchro-
nized sensors can be shown to be (see Bar-
Shalom et al. 2011)

P ij .kjk/ �DEŒ Qxi .kjk/ Qxj .kjk/0�
D ŒI �W i.k/H i .k/�

� �
F.k�1/P ij .k�1jk�1/F.k�1/0

CQ.k � 1/
�
ŒI �W j .k/Hj .k/�0

(35)

This is a linear recursion – a Lyapunov-type
equation – and its initial condition is, assuming
the initial errors to be uncorrelated,

P ij .0j0/ D 0 (36)

This is a reasonable assumption in view of the
fact that the initial estimates are usually based on
the initial measurements, which were assumed to
have independent errors.

The cross-covariance for the case of asyn-
chronous sensors can be found in Bar-Shalom
et al. (2011).

Summary and Future Directions

This entry surveyed the issues involved in data
association (specifically M2TA and T2TA) with
regard to multitarget-multisensor tracking sys-
tems.

The future developments in this topic will be
in regard to the use of new feature variables and
classification in data association (some prelimi-
nary results are in Bar-Shalom et al. (2011)).
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Abstract

Topological feedback entropy is a measure for the
smallest information rate in a digital communica-
tion channel between the coder and the controller
of a control system, above which the control task
of rendering a subset of the state space invariant
can be solved. It is defined purely in terms of
the open-loop system without making reference
to a particular coding and control scheme and can
also be regarded as a measure for the inherent
rate at which the system generates “invariance
information.”

Keywords

Communication constraints; Controlled invari-
ance; Invariance entropy; Minimal data rates;
Stabilization

Introduction

In the theory of networked control systems, the
assumption of classical control theory that infor-
mation can be transmitted within control loops

instantaneously, lossless, and with arbitrary pre-
cision is no longer satisfied. Realistic mathe-
matical models of many important real-world
communication and control networks have to
take into account general data rate constraints in
the communication channels, time delays, partial
loss of information, and variable network topolo-
gies. This raises the question about the smallest
possible information rate above which a given
control task can be solved. Though networked
control systems can have a complicated topology,
consisting of multiple sensors, controllers, and
actuators, a first step towards understanding the
problem of minimal data rates is to analyze the
simplest possible network topology, consisting of
one controller and one dynamical system con-
nected by a digital channel with a certain rate
in bits per unit time. There is a wealth of liter-
ature concerned with the problem of stabilizing
a system under different assumptions about the
specific coding and control scheme, in this con-
text. However, with few exceptions, mainly linear
systems (both deterministic and stochastic) have
been considered. A comprehensive and detailed
overview of this literature until 2007 can be
found in the survey Nair et al. (2007). The first
systematic approach to the problem of minimal
data rates for set invariance and stabilization of
(deterministic, nonlinear) control systems was
presented in Nair et al. (2004), where the notion
of topological feedback entropy was introduced.
This quantity, defined in terms of the open-loop
control system, is a measure for the smallest
data rate a communication channel may have if
the system is supposed to solve the control task
of rendering a subset of the state space invari-
ant. Other challenges that digital communication
channels come along with are not yet taken into
account here.

Feedback entropy was first introduced in Nair
et al. (2004), using a similar approach via open
covers as in the definition of topological entropy
of for classical dynamical systems in Adler et al.
(1965). In Colonius and Kawan (2009), a quantity
named invariance entropy was defined which
later turned out to be equivalent to the feedback
entropy of Nair et al. (cf. Colonius et al. 2013).
The notion of invariance entropy has been further
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studied in the papers Kawan (2011a), Kawan
(2011b), and Kawan (2011c). Several variations
and generalizations have been introduced in
Colonius (2010), Colonius (2012), Colonius and
Kawan (2011), Da Silva (2013), and Hagihara
and Nair (2013). The research monograph Kawan
(2013) provides a comprehensive presentation of
the results obtained so far in the deterministic
case.

Definition

Topological feedback entropy is a nonnegative
real-valued quantity which serves as a measure
for the smallest possible data rate in a digital
channel, connecting a coder to a controller, above
which the controller is able to generate inputs
which guarantee invariance of a given subset of
the state space. In the literature, one finds several
slightly differing versions. The original definition
given in Nair et al. (2004) is (with minor mod-
ifications) as follows. Consider a discrete-time
control system

xkC1 D F.xk; uk/ D Fuk .xk/; k � 0;

with F W X � U ! X , where X is a topological
space and U a nonempty set such that Fu W X !
X is continuous for every u 2 U . The transition
map associated to this system is

' W N0 �X � U N0 ! X;

'.k; x; .un// WD Fuk�1
ı � � � ı Fu1 ı Fu0 .x/:

A compact subsetK � X with nonempty interior
is (strongly) controlled invariant if for every x 2
K there is an input u 2 U such that Fu.x/ 2
intK . A triple .A; �; G/ is called an invariant
open cover of K if A is an open cover of K ,
� is a positive integer, and G W A ! U � is
a map with componentsG0;G1; : : : ; G��1 which
assign control values to all sets in A such that for
everyA 2 A the finite sequence of controlsG.A/
yields '.k;A;G.A// � intK for k D 1; 2; : : : ; � .
The entropy of .A; �; G/ is defined as follows.
For every sequence ˛ D .Ai /i�0 of sets in A one
defines an associated sequence of controls by

u.˛/ D .u0; u1; u2; : : :/ with .ul /i��1lD.i�1/�
D G.Ai�1/ for all i � 0;

and for every j � 1 a set

Bj .˛/ WD fx 2 X W '.i�; x; u.˛// 2 Ai
for i D 0; 1; : : : ; j � 1g :

The family Bj WD fBj .˛/ W ˛ 2 AN0g is an open
cover ofK . LettingN.Bj jK/ denote the minimal
cardinality of a finite subcover, the entropy of
.A; �; G/ is

h.A; �; G/ W D lim
j!1

1

j�
log2 N.Bj jK/

D inf
j�1

1

j�
log2 N.Bj jK/:

Finally, the topological feedback entropy (TFE)
of K is given by

hfb.K/ WD inf
.A;�;G/

h.A; �; G/;

where the infimum is taken over all invariant open
covers ofK .

A conceptually simpler but equivalent defini-
tion, introduced in Colonius and Kawan (2009),
is the following. A subset S � U � is called
.�;K/-spanning if for every x 2 K there is u 2 S
with '.k; x; u/ 2 intK for k D 1; : : : ; � . Writing
rinv.�;K/ for the minimal cardinality of such a
set, it can be shown that

hfb.K/ D lim
�!1

1

�
log2 rinv.�;K/

D inf
��1

1

�
log2 rinv.�;K/:

This definition and several variations of it are
mostly referred to by the name invariance
entropy instead of feedback entropy. The intuition
behind this definition is that a controller which
receives a certain amount of information about
the state, say n bits, can generate at most
2n different control sequences to steer the
system on a finite time interval and hence,
the number of control sequences needed to
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accomplish the control task on this interval
is a measure for the necessary amount of
information.

The different variations of feedback or invari-
ance entropy which can be found in the literature
are briefly summarized as follows. For simplicity,
in this entry we refer to several of these variations
by the name (topological) feedback entropy:
(i) Instead of requiring that trajectories enter the

interior of K after one step of time, one can
allow for a waiting time �0 before entering
intK .

(ii) One can require that trajectories stay inK in-
stead of intK or that they stay in an arbitrar-
ily small neighborhood of K , respectively.

(iii) One can restrict the set of initial states to
a subset of K 0 � K . In this case, a set S
of control sequences is .�;K 0; K/-spanning
if for every x 2 K 0 there is u 2 S with
'.k; x; u/ 2 intK for k D 1; : : : ; � .

(iv) Feedback entropy can be defined for other
classes of systems, e.g., continuous-time de-
terministic systems, random control systems,
or systems with piecewise continuous right-
hand sides.

There is also a local version of topological
feedback entropy (LTFE) which measures the
smallest data rate for local uniform asymptotic
stabilization at an equilibrium. Also for other
control tasks there have been attempts to define
corresponding versions of feedback or invariance
entropy.

Comparison to Topological Entropy

Though there are similarities in the definitions
of TFE and topological entropy of dynamical
systems, which also reflect in similar properties,
there is no direct relation between these two
quantities. Topological entropy detects exponen-
tial complexity in the orbit structure of a dy-
namical system. In contrast, TFE measures the
complexity of the control task to keep a system in
a subset of the state space by applying appropriate
inputs. If no escape from this subset is possible,
the TFE is zero, no matter how complicated the
orbit structure is. Hence, topological entropy is
sensitive to the local behavior of the system,

while TFE in general is not. Interpreted in terms
of information rates, topological entropy is a
measure for the largest average rate of informa-
tion about the initial state a dynamical system can
generate. TFE measures the smallest rate of infor-
mation about the state of the system above which
a controller is able to render the set invariant. It
should also be mentioned that topological entropy
was first introduced as a topological counterpart
of the measure-theoretic entropy defined by Kol-
mogorov and Sinai, and that the two notions are
related by the variational principle, which asserts
that the topological entropy is the supremum of
the measure-theoretic entropies with respect to
all invariant probability measures of the given
system. For TFE, so far no convincing measure-
theoretic approach exists. An excellent survey on
the entropy theory of dynamical systems can be
found in Katok (2007).

The Data Rate Theorem

The data rate theorem for the TFE confirms that
the infimal data rate in a coding and control loop
which guarantees strong controlled invariance of
a set K is equal to hfb.K/. More precisely, sup-
pose that a sensor which measures the state of the
system at discrete times �k D k� , k D 0; 1; 2; : : :,
is connected to a coder which at time �k has a
finite alphabet Sk of symbols available. The mea-
sured state is coded by use of this alphabet and
the corresponding symbol is sent via a noiseless
digital channel to a controller which generates
an input sequence of length � . This sequence is
used to steer the system until the next symbol
arrives at time �kC1. The associated asymptotic
average bit rate, which depends on the sequence
S D .Sk/k�0 of coding alphabets, is given by

R.S/ D lim
k!1

1

k�

k�1X

iD0
log2 jSi j:

If the limit does not exist, one may replace it
with lim inf or lim sup. The data rate theorem
establishes the equality

hfb.K/ D inf
S
R.S/;
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where the infimum is taken over all coding and
control loops which guarantee strong controlled
invariance of K , i.e., for initial states in K they
generate trajectories .xk/k�0 with xk 2 intK for
k D 1; 2; : : :. Similar data rate theorems can be
proved for other variants of feedback entropy. In
particular, the data rate theorem for the LTFE
asserts that the infimal bit rate for local uniform
asymptotic stabilization at an equilibrium is given
by the LTFE. Proofs of different data rate theo-
rems can be found in Nair et al. (2004), Hagihara
and Nair (2013), and Kawan (2013).

Estimates and Formulas

Linear Systems
For linear systems, under reasonable assump-
tions, the feedback entropy is given by the sum of
the unstable eigenvalues of the dynamical matrix,
i.e., if the system is given by xkC1 D Axk CBuk,
then

hfb.K/ D
X

�2Sp.A/

max f0; n� log2 j�jg ; (1)

where Sp.A/ denotes the spectrum of A and n�
is the algebraic multiplicity of the eigenvalue �
(cf. Colonius and Kawan 2009). It is worth to
mention that the TFE therefore coincides with
the topological entropy of the uncontrolled sys-
tem xkC1 D Axk , as defined by Bowen for
maps on non-compact metric spaces (cf. Bowen
1971). However, this is a special property of
linear systems and is related to the facts that (i)
there is no difference between the local and the
global dynamical behavior of uncontrolled linear
systems and that (ii) the control sequence does
not affect the exponential complexity of the dy-
namics, since it only appears as an additive term
in the transition map of the system. Formula (1)
is in correspondence with several former results
on minimal data rates for stabilization of linear
systems. Thinking of the definition of feedback
entropy via spanning sets of control sequences,
its interpretation is that in order to guarantee
invariance of a bounded set, the only reason for
exponential growth of the number of necessary

inputs as time increases is the volume expansion
of the open-loop system in the unstable subspace.

Upper Bounds Under Controllability
Assumptions
If the state space of the control system is a
differentiable manifold and the right-hand side
is continuously differentiable, under certain
controllability assumptions upper bounds for the
feedback entropy can be formulated in terms of
the Lyapunov exponents of periodic trajectories
(for the concept of Lyapunov exponents, see,
e.g., Barreira and Valls 2008) (cf. Kawan 2011b,
2013; Nair et al. 2004). More precisely, if there
is a periodic trajectory in the interior of the
given set K such that the linearization along
this trajectory is controllable, and if complete
approximate controllability holds on the interior
of K (cf. Colonius and Kliemann 2000), then

hfb.K/ �
X

�

maxf0; n��g; (2)

where the sum is taken over all Lyapunov expo-
nents � of the periodic trajectory and n� denotes
the multiplicity of �. Using the definition of
feedback entropy in terms of .�;K/-spanning
sets, one can prove this by constructing spanning
sets of control functions which first steer all initial
states in K into a small neighborhood of a point
on the given periodic orbit and then, by use
of local controllability, keep the corresponding
trajectories in a neighborhood of the periodic
trajectory for arbitrary future times. Similar ideas
first have been used in Nair et al. (2004) to prove
that the LTFE at an equilibrium is given by the
sum of the unstable eigenvalues of the lineariza-
tion about this equilibrium. For systems given by
differential equations the upper estimate (2) can
be improved under additional regularity assump-
tions. Assuming that the system is smooth and
satisfies the strong jet accessibility rank condition
(cf. Coron 1994), one can show that both as-
sumptions, controllability of the linearization and
periodicity, can be omitted. The only restriction
that remains is that the trajectory must not leave
a compact subset of the interior of K . However,
in the case of nonperiodic trajectories, the sum
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of the positive Lyapunov exponents has to be
replaced by the maximal Lyapunov exponent of
the induced linear flow on the exterior bundle of
the manifold. For control-affine systems, strong
jet accessibility can be weakened to local acces-
sibility. In general, it is unlikely that such upper
bounds are tight, since they are related to very
specific control strategies for making the given
set invariant.

Lower Bounds, Volume Growth Rates,
and Escape Rates
A general approach to obtain lower bounds of
feedback entropy is via a volume growth ar-
gument, which in its simplest form works as
follows. Every .�;K/-spanning set S defines a
cover of K , consisting of the sets (cf. Kawan
2011a,c)

K�;u D fx 2 K W '.k; x; u/ 2 intK;

1 � k � �g; u 2 S:

It follows that '�;u.K�;u/ � K and hence, sinceK
is bounded, the volume expansion under '�;u D
'.�; �; u/ gives upper bounds for the volumes of
the sets K�;u, which result in a lower bound for
the number of these sets. For instance, the lower
estimate in (1) can be established by applying
this argument to the system which arises by
projection of the given linear system to the un-
stable subspace of the uncontrolled part xkC1 D
Axk . A refinement of this idea also leads to
lower estimates of feedback entropy for inho-
mogeneous bilinear systems in terms of volume
growth rates or Lyapunov exponents on unstable
bundles, respectively. For nonlinear systems, in
general only very rough estimates can be ob-
tained by this method. However, a variation of the
volume growth argument leads to a lower bound
of the form

hfb.K/ � � lim inf
�!1

1

�
log sup

u
�.K�;u/;

where � denotes a reference measure on the state
space. The right-hand side of this inequality can
be considered as a uniform escape rate from the

set K , which under sufficiently strong hyperbol-
icity assumptions can be estimated in terms of
other quantities such as Lyapunov exponents and
dynamical entropies. Key references for escape
rates in the classical theory of dynamical sys-
tems are (Young (1990) and Demers and Young
(2006)).

Summary and Future Directions

The theory of feedback entropy for finite-
dimensional deterministic systems is very far
from being complete. The currently available
results only give valuable information in very
regular situations, and even those are not fully
understood. For the further development of
this theory, it will be necessary to combine
control-theoretic methods with techniques from
different fields such as classical, random, and
nonautonomous dynamical systems. Some of the
main focuses of future research will probably be
the following:
• The generalization of feedback entropy to

more complex network topologies
• The formulation of a feedback entropy theory

for stochastic systems
• The development of a probabilistic (resp.

measure-theoretic) version of feedback
entropy for both deterministic and stochastic
systems, which is related to the topological
version via a variational principle

• The numerical computation of feedback en-
tropy
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Abstract

Mathematical models of living systems are often
based on formal representations of the under-
lying reaction networks. Here, we present the
basic concepts for the deterministic nonspatial
treatment of such networks. We describe the
most prominent approaches for steady-state and
dynamic analysis using systems of ordinary dif-
ferential equations.

Keywords

Michaelis-Menten kinetics; Reaction networks;
Stoichiometry

Introduction

A biochemical network describes the intercon-
version of biochemical species such as proteins
or metabolites by chemical reactions. Such net-
works are ubiquitous in living cells, where they
are involved in a variety of cellular functions
such as conversion of metabolites into energy
or building material of the cell, detection and
processing of external and internal signals of
nutrient availability or environmental stress, and
regulation of genetic programs for development.

Reaction Networks
A biochemical network can be modeled as a dy-
namic system with the chemical concentration of
each species taken as the states and dynamics de-
scribed by the changes in species concentrations
as they are converted by reactions. Assuming that
species are homogeneously distributed in the re-
action volume and that copy numbers are suffi-
ciently high, we may ignore spatial and stochastic

http://dx.doi.org/10.1007/978-1-4471-5058-9_52
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effects and derive a system of ordinary differen-
tial equations (ODEs) to model the dynamics.

Formally, a biochemical network is given by r
reactions R1; : : : ; Rr acting on n different chem-
ical species S1; : : : ; Sn. Reaction Rj is given by

Rj W ˛1;j S1 C � � � C ˛n;j Sn �! ˇ1;j S1

C � � � C ˇn;j Sn ;

where ˛i;j ; ˇi;j 2 N are called the molecularities
of the species in the reaction. Their differences
form the stoichiometric matrix N D .ˇi;j �
˛i;j /iD1:::n;jD1:::r , with Ni;j describing the net
effect of one turnover of Rj on the copy number
of species Si . The j th column is also called
the stoichiometry of reaction Rj . The system
can be opened to an un-modeled environment by
introducing inflow reactions ; ! Si and outflow
reactions Si ! ;.

For example, consider the following reaction
network:

R1 W E C S ! E � S
R2 W E � S ! E C S

R3 W E � S ! E C P

Here, an enzyme E (a protein that acts as a
catalyst for biochemical reactions) binds to a sub-
strate species S , forming an intermediate com-
plex E � S and subsequently converting S into
a product P . Note that the enzyme-substrate
binding is reversible, while the conversion to
a product is irreversible. This network contains
r D 3 reactions interconverting n D 4 chemical
species S1 D S , S2 D P , S3 D E , and S4 D
E � S . The stoichiometric matrix is

N D

0

BB@

�1 C1 0

0 0 C1
�1 C1 C1
C1 �1 �1

1

CCA :

Dynamics
Let x.t/ D .x1.t/; : : : ; xn.t//

T be the vector of
concentrations, that is, xi .t/ is the concentration
of Si at time t . Abbreviating this state vector as x

by dropping the explicit dependence on time, its
dynamics is governed by a system of n ordinary
differential equations:

d

dt
x D N � v.x;p/ : (1)

Here, the reaction rate vector v.x;p/ D
.v1.x;p1/; : : : ; vr .x;pr //T gives the rate of
conversion of each reaction per unit-time as a
function of the current system state and of a set
of parameters p.

A typical reaction rate is given by the mass-
action rate law

vj .x;pj / D kj �
nY

iD1
x
˛i;j
i ;

where the rate constant kj > 0 is the only
parameter and the rate is proportional to the
concentration of each species participating as an
educt (consumed component) in the respective
reaction.

Equation (1) decomposes the system into a
time-independent and linear part described solely
by the topology and stoichiometry of the reac-
tion network via N and a dynamic and typically
nonlinear part given by the reaction rate laws
v.�; �/. One can define a directed graph of the
network with one vertex per state and take N as
the (weighted) incidence matrix. Reaction rates
are then properties of the resulting edges. In
essence, the equation describes the change of
each species’ concentration as the sum of the cur-
rent reaction rates. Each rate is weighted by the
molecularity of the species in the corresponding
reaction; it is negative if the species is consumed
by the reaction and positive if it is produced.

Using mass-action kinetics throughout, and
using the species name instead of the numeric
subscript, the reaction rates and parameters of the
example network are given by

v1.x;p1/ D k1 � xE.t/ � xS.t/
v2.x;p2/ D k2 � xE�S .t/
v3.x;p3/ D k3 � xE�S .t/

p D .k1; k2; k3/
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The system equations are then

d

dt
xS D �k1 � xS � xE C k2 � xE�S

d

dt
xP D k3 � xE�S

d

dt
xE D �k1 � xS � xECk2 � xE�S C k3 � xE�S

d

dt
xE�S D k1 � xS � xE � k2 � xE�S � k3 � xE�S :

Steady-State Analysis
A reaction network is in steady state if the pro-
duction and consumption of each species are bal-
anced. Steady-state concentrations x� then satisfy
the equation

0 D N � v.x�;p/ :

Computing steady-state concentrations requires
explicit knowledge of reaction rates and their
parameter values. For biochemical reaction net-
works, these are often very difficult to obtain.
An alternative is the computation of steady-state
fluxes v�, which only requires solving the system
of homogeneous linear equations

0 D N � v : (2)

Lower and upper bounds vli ; v
u
i for each flux vi

can be given such that vli � vi � vu
i ; an exam-

ple is an irreversible reaction Ri which implies
vli D 0. The set of all feasible solutions then
forms a pointed, convex, polyhedral flux cone in
R
r . The rays spanning the flux cone correspond

to elementary flux modes (EFMs) or extreme
pathways (EPs), minimal subnetworks that are
already balanced. Each feasible steady-state flux
can be written as a nonnegative combination

v� D
X

i

�i � ei ; �i � 0

of EFMs e1; e2; : : : , where the �i are the corre-
sponding weights.

Even if in steady state, living cells grow and
divide. Growth of a cell is often described by

a combination of fluxes bT � v, the total pro-
duction rate of relevant metabolites to form new
biomass. The biomass function given by b 2 R

r

is determined experimentally. The technique of
flux balance analysis (FBA) then solves the linear
program

max
v

bT � v

subject to

0 D N � v

vli � vi � vu
i

to yield a feasible flux vector that balances the
network while maximizing growth. Alternative
objective functions have been proposed, for in-
stance, for higher organisms that do not necessar-
ily maximize the growth of each cell.

Quasi-Steady-State Analysis
In many reaction mechanisms, a quasi-steady-
state assumption (QSSA) can be made, postulat-
ing that the concentration of some of the involved
species does not change. This assumption is often
justified if reaction rates differ hugely, leading to
a time scale separation, or if some concentrations
are very high, such that their change is negligible
for the mechanism. A typical example is the
derivation of Michaelis-Menten kinetics, which
corresponds to our example network. There, we
may assume that the concentration of the interme-
diate species E � S stays approximately constant
on the time scale of the overall conversion of
substrate into product and that the substrate, at
least initially, is in much larger abundance than
the enzyme. On the slower time scale, this leads
to the Michaelis-Menten rate law:

vP D d

dt
xP .t/ D vmax � xS.t/

Km C xS.t/
;

with a maximal rate vmax D k3 �xtot
E , where xtot

E is
the total amount of enzyme and the Michaelis-
Menten constant Km D .k2 C k3/=k1 as a
direct relation between substrate concentration
and production rate. This approximation reduces
the number of states by two. Both parameters
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of the Michaelis-Menten rate law are also better
suited for experimental determination: vmax is the
highest rate achievable and Km corresponds to
the substrate concentration that yields a rate of
vmax=2.

Cooperativity and Ultra-sensitivity
In the Michaelis-Menten mechanism, the produc-
tion rate gradually increases with increasing sub-
strate concentration, until saturation (Fig. 1; h D
1). A different behavior is achieved if the enzyme
has several binding sites for the substrate and
these sites interact such that occupation of one
site alters the affinity of the other sites positively
or negatively, phenomena known as positive and
negative cooperativity, respectively. With QSSA
arguments as before, the fraction of enzymes
completely occupied by substrate molecules at
time t is given by

v D vmax � xS.t/
Kh C xhS .t/

where K > 0 is a constant and h > 0 is
the Hill coefficient. The Hill coefficient deter-
mines the shape of the response with increasing
substrate concentration: a coefficient of h > 1

(h < 1) indicates positive (negative) coopera-
tivity; h D 1 reduces to the Michaelis-Menten
mechanism. With increasing coefficient h, the
response changes from gradual to switch-like,
such that the transition from low to high response
becomes more rapid as indicated in Fig. 1. This
phenomenon is also known as ultra-sensitivity.

Constrained Dynamics
Due to the particular structure of the system
equation (1), the trajectories x.t/ of the network
with x0 D x.0/ are confined to the stoichiometric
subspace, the intersection of x0 C ImgN with
the positive orthant. Conservation relations that
describe conservation of mass are thus found as
solutions to

cT � N D 0 ;

and two initial conditions x0; x00 lead to the same
stoichiometric subspace if cT � x0 D cT � x00. This
allows for the analysis of, for example, bistability
using only the reaction network structure.

Summary and Future Directions

Reactions networks, even in simple cells,
typically encompass thousands of components
and reactions, resulting in potentially high-
dimensional nonlinear dynamic systems. In
contrast to engineered systems, biology is char-
acterized by a high degree of uncertainty of both
model structure and parameter values. Therefore,
system identification is a central problem in
this domain. Specifically, advanced methods for
model topology and parameter identification as
well as for uncertainty quantification need to
be developed that take into account the very
limited observability of biological systems. In
addition, biological systems operate on multiple
time, length, and concentration scales. For
example, genetic regulation usually operates on
the time scale of minutes and involves very few
molecules, whereas metabolism is significantly
faster and states are well approximated by species
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Description
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concentrations. Corresponding systematic
frameworks for multiscale modeling, however,
are currently lacking.
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Abstract

We discuss the problem of event diagnosis in
partially observed discrete event systems. The
objective is to infer the past occurrence, if any, of

an unobservable event of interest based on the ob-
served system behavior and the complete model
of the system. Event diagnosis is performed by
diagnosers that are synthesized from the system
model and that observe the system behavior at
run-time. Diagnosability analysis is the off-line
task of determining which events of interest can
be diagnosed at run-time by diagnosers.

Keywords

Diagnosability; Diagnoser; Fault diagnosis; Veri-
fier

Introduction

In this entry, we consider discrete event systems
that are partially observable and discuss the two
related problems of event diagnosis and diagnos-
ability analysis. Let the DES of interest be de-
noted byM with event setE . SinceM is partially
observable, its set of events E is the disjoint
union of a set of observable events, denoted by
Eo, with a set of unobservable events, denoted by
Euo:E D Eo[Euo. At this point, we do not spec-
ify howM is represented; it could be an automa-
ton or a Petri net. Let LM be the set of all strings
of events in E that the DES M can execute, i.e.,
the (untimed) language model of the system; cf.
the related entries, �Models for Discrete Event
Systems: An Overview, � Supervisory Control of
Discrete-Event Systems, and �Modeling, Anal-
ysis, and Control with Petri Nets. The set Euo

captures the fact that the set of sensors attached
to the DES M is limited and may not cover all
the events of the system. Unobservable events
can be internal system events that are not directly
“seen” by the monitoring agent that observes
the behavior of M for diagnosis purposes. They
can also be fault events that are included in the
system model but are not directly observable by
a dedicated sensor. For the purpose of diagnosis,
let us designate a specific unobservable event of
interest and denote it by d 2 Euo. Event d could
be a fault event or some other significant event
that is unobservable.

http://dx.doi.org/10.1007/978-1-4471-5058-9_213
http://dx.doi.org/10.1007/978-1-4471-5058-9_102
http://dx.doi.org/10.1007/978-1-4471-5058-9_90
http://dx.doi.org/10.1007/978-1-4471-5058-9_93
http://dx.doi.org/10.1007/978-1-4471-5058-9_89
http://dx.doi.org/10.1007/978-1-4471-5058-9_88
http://dx.doi.org/10.1007/978-1-4471-5058-9_91
http://dx.doi.org/10.1007/978-1-4471-5058-9_52
http://dx.doi.org/10.1007/978-1-4471-5058-9_54
http://dx.doi.org/10.1007/978-1-4471-5058-9_53
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Before we can state the problem of event
diagnosis, we need to introduce some notation.
E� is the set of all strings of any length n 2 N

that can be formed by concatenating elements
of E . The unique string of length n D 0 is
denoted by " and is the identity element of con-
catenation. As in article � Supervisory Control
of Discrete-Event Systems, section “Supervisory
Control Under Partial Observations,” we define
the projection function P W E� ! E�o that
“erases” the unobservable events in a string and
replaces them by ". The function P is naturally
extended to a set of strings by applying it to each
string in the set, resulting in a set of projected
strings. The observed behavior of M is the lan-
guage P.LM / over event set Eo.

The problem of event diagnosis, or simply di-
agnosis, is stated as follows: how to infer the past
occurrence of event d when observing strings in
P.LM / at run-time, i.e., during the operation of
the system? This is model-based inferencing, i.e.,
the monitoring agent knowsLM and the partition
E D Eo[Euo, and it observes strings in P.LM /.
When there are multiple events of interest, d1 to
dn, and these events are fault events, we have
a problem of fault diagnosis. In this case, the
objective is not only to determine that a fault
has occurred (commonly referred to as “fault
detection”) but also to identify which fault has
occurred, namely, which event di (commonly
referred to as “fault isolation and identification”).
Fault diagnosis requires that LM contains not
only the nominal or fault-free behavior of the
system but also its behavior after the occurrence
of each fault event di of interest, i.e., its faulty
behavior. Event di is typically a fault of a com-
ponent that leads to degraded behavior on the
part of the system. It is not a catastrophic failure
that would cause the system to completely stop
operating, as such a failure would be immediately
observable. The decision on which fault events
di , along with their associated faulty behaviors, to
include in the complete modelLM is a design one
that is based on practical considerations related to
the diagnosis objectives.

A complementary problem to event diagnosis
is that of diagnosability analysis. Diagnosability
analysis is the off-line task of determining, on the

basis of LM and of Eo and Euo, if any and all
occurrences of the given event of interest d will
eventually be diagnosed by the monitoring agent
that observes the system behavior.

Event diagnosis and diagnosability analysis
arise in numerous applications of systems
that are modeled as DES. We mention a few
application areas where DES diagnosis theory
has been employed. In heating, ventilation,
and air-conditioning systems, components such
as valves, pumps, and controllers can fail in
degraded modes of operation, such as a valve
gets stuck open or stuck closed or a pump or
controller gets stuck on or stuck off. The available
sensors may not directly observe these faults, as
the sensing abilities are limited. Fault diagnosis
techniques are essential, since the components
of the system are often not easily accessible. In
monitoring communication networks, faults of
certain transmitters or receivers are not directly
observable and must be inferred from the set of
successful communications and the topology of
the network. In document processing systems,
faults of internal components can lead to jams in
the paper path or a decrease in image quality, and
while the paper jam or the image quality is itself
observable, the underlying fault may not be as
the number of internal sensors is limited.

Without loss of generality, we consider a sin-
gle event of interest to diagnose, d . When there
are multiple events to diagnose, the methodolo-
gies that we describe in the remaining of this
entry can be applied to each event of interest di ,
i D 1; : : : n, individually; in this case, the other
events of interest dj , j ¤ i are treated the same
as the other unobservable events in the set Euo in
the process of model-based inferencing.

Problem Formulation

Event Diagnosis
We start with a general language-based formu-
lation of the event diagnosis problem. The in-
formation available to the agent that monitors
the system behavior and performs the task of
event diagnosis is the language LM and the set
of observable events Eo, along with the specific

http://dx.doi.org/10.1007/978-1-4471-5058-9_54
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string t 2 P.LM / that it observes at run-time.
The actual string generated by the system is
s 2 LM where P.s/ D t . However, as far
as the monitoring agent is concerned, the actual
string that has occurred could be any string in
P�1.t/\LM , whereP�1 is the inverse projection
operation, i.e., P�1.t/ is the set of all strings
st 2 E� such that P.st / D t . Let us denote this
estimate set by E.t/ D P�1.t/ \LM , where “E”
stands for “estimate.” If a string s 2 LM contains
event d , we write that d 2 LM ; otherwise, we
write that d … LM .

The event diagnosis problem is to synthesize a
diagnostic engine that will automatically provide
the following answers from the observed t and
from the knowledge of LM and Eo:
1. Yes, if and only if d 2 s for all s 2 E.t/.
2. No, if and only if d … s for all s 2 E.t/.
3. Maybe, if and only if there exists sY ; sN 2

E.t/ such that d 2 sY and d … sN .
As defined, E.t/ is a string-based estimate. In

section “Diagnosis of Automata,” we discuss how
to build a finite-state structure that will encode the
desired answers for the above three cases when
the DES M is modeled by a deterministic finite-
state automaton. The resulting structure is called
a diagnoser automaton.

Diagnosability Analysis
Diagnosability analysis consists in determining, a
priori, if any and all occurrences of event d inLM
will eventually be diagnosed, in the sense that
if event d occurs, then the diagnostic engine is
guaranteed to eventually issue the decision “Yes.”
For the sake of technical simplicity, we assume
hereafter that LM is a live language, i.e., any
trace in LM can always be extended by one more
event. In this context, we would not want the
diagnostic engine to issue the decision “Maybe”
for an arbitrarily long number of event occur-
rences after event d occurs. When this outcome is
possible, we say that event d is not diagnosable
in languageLM .

The property of diagnosability of DES is de-
fined as follows. In view of the liveness assump-
tion on language LM , any string s0Y that contains
event d can always be extended to a longer string,
meaning that it can be made “arbitrarily long”

after the occurrence of d . That is, for any s0Y in
LM and for any n 2 N, there exists sY D s0Y t 2
LM where the length of t is equal to n. Event d
is not diagnosable in language LM if there exists
such a string sY together with a second string
sN that does not contain event d , and such that
P.sY / D P.sN /. This means that the monitoring
agent is unable to distinguish between sY and sN ,
yet, the number of events after an occurrence of
d can be made arbitrarily large in sY , thereby
preventing diagnosis of event d within a finite
number of events after its occurrence. On the
other hand, if no such pair of strings .sY ; sN /
exists in LM , then event d is diagnosable in
LM . (The mathematically precise definition of
diagnosability is available in the literature cited
at the end of this entry.)

Diagnosis of Automata

We recall the definition of a deterministic finite-
state automaton, or simply automaton, from
article �Models for Discrete Event Systems:
An Overview, with the addition of a set of
unobservable events as in section “Supervisory
Control Under Partial Observations” in article
�Supervisory Control of Discrete-Event
Systems. The automaton, denoted by G, is a
four-tuple G D .X;E; f; x0/ where X is the
finite set of states, E is the finite set of events
partitioned into E D Eo [ Euo, x0 is the initial
state, and f is the deterministic partial transition
function f W X � E ! X that is immediately
extended to strings f W X � E� ! X . For a
DES M represented by an automaton G, LM is
the language generated by automatonG, denoted
by L.G/ and formally defined as the set of all
strings for which the extended f is defined. It
is an infinite set if the transition graph of G
has one or more cycles. In view of the liveness
assumption made onLM in the preceding section,
G has no reachable deadlocked state, i.e., for all
s 2 E� such that f .x; s/ is defined, then there
exists 	 2 E such that f .x; s	/ is also defined.

To synthesize a diagnoser automaton that cor-
rectly performs the diagnostic task formulated
in the preceding section, we proceed as follows.

http://dx.doi.org/10.1007/978-1-4471-5058-9_52
http://dx.doi.org/10.1007/978-1-4471-5058-9_54
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First, we perform the parallel composition (de-
noted by jj) of G with the two-state label au-
tomaton Alabel that is defined as follows. Alabel D
.fN; Y g; fd g; flabel; N /, where flabel has two tran-
sitions defined: (i) flabel.N; d/ D Y and (ii)
flabel.Y; d/ D Y . The purpose of Alabel is to
record the occurrence of event d , which causes
a transition to state Y . By forming Glabeled D
GjjAlabel, we record in the states ofGlabeled, which
are of the form .xG; xA/, if the first element of
the pair, state xG 2 X , was reached or not
by executing event d at some point in the past:
if d was executed, then xA D Y , otherwise
xA D N . (We refer the reader to Chap. 2 in
Cassandras and Lafortune (2008) for the formal
definition of parallel composition of automata.)
By construction, L.Glabeled/ D L.G/.

The second step of the construction of the
diagnoser automaton is to build the observer of
Glabeled, denoted by Obs.Glabeled/, with respect
to the set of observable events Eo. (We refer
the reader to Chap. 2 in Cassandras and Lafor-
tune (2008) for the definition of the observer
automaton and for its construction.) The con-
struction of the observer involves the standard
subset construction algorithm for nondeterminis-
tic automata in automata theory; here, the unob-
servable events are the source of nondeterminism,
since they effectively correspond to "-transitions.
The diagnoser automaton ofG with respect to Eo
is defined as Diag.G/ D Obs.GjjAlabel/. Its event
set is Eo.

The states of Diag.G/ are sets of state pairs
of the form .xG; xA/ where xA is either N or Y .
Examination of the state of Diag.G/ reached by
string t 2 P ŒL.G/� provides the answers to the
event diagnosis problem. Let us denote that state
by xtDiag. Then:
1. The diagnostic decision is Yes if all state pairs

in xtDiag have their second component equal
to Y ; we call such a state a “Yes-state” of
Diag.G/.

2. The diagnostic decision is No if all state pairs
in xtDiag have their second component equal
to N ; we call such a state a “No-state” of
Diag.G/.

3. The diagnostic decision is Maybe if there is
at least one state pair in xtDiag whose second

component is equal to Y and at least one state
pair in xtDiag whose second component is equal
to N ; we call such a state a “Maybe-state” of
Diag.G/.

To perform run-time diagnosis, it therefore suf-
fices to examine the current state of Diag.G/.
Note that Diag.G/ can be computed off-line
from G and stored in memory, so that run-time
diagnosis requires only updating the new state of
Diag.G/ on the basis of the most recent observed
event (which is necessarily in Eo). If storing
the entire structure of Diag.G/ is impractical, its
current state can be computed on-the-fly on the
basis of the most recent observed event and of the
transition structure of Glabeled; this involves one
step of the subset construction algorithm.

As a simple example, consider the automaton
G1 shown in Fig. 1, where Euo D fd g. The
occurrence of event d changes the behavior of the
system such that event c does not cause a return to
the initial state 1 (identified by incoming arrow);
instead, the system gets stuck in state 3 after d
occurs.

Its diagnoser is depicted in Fig. 2. It contains
one Yes-state, state f.3; Y /g (abbreviated as “3Y”
in the figure), one No-state, and two Maybe-states
(similarly abbreviated). Two consecutive occur-
rences of event c, or an occurrence of b right after
c, both indicate that the system must be in state 3,

Diagnosis of Discrete Event Systems, Fig. 1
Automaton G1
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Diagnosis of Discrete Event Systems, Fig. 2
Diagnoser automaton of G1

Diagnosis of Discrete Event Systems, Fig. 3
Automaton G2

i.e., that event d must have occurred; this is
captured by the two transitions from Maybe-state
f.1;N /; .3; Y /g to the Yes-state in Diag.G1/. As
a second example, consider the automaton G2
shown in Fig. 3, where the self-loop b at state 3
in G1 has been removed. Its diagnoser is shown
in Fig. 4.

Diagnoser automata provide as much informa-
tion as can be inferred, from the available obser-
vations and the automaton model of the system,
regarding the past occurrence of unobservable
event d . However, we may want to answer the

Diagnosis of Discrete Event Systems, Fig. 4
Diagnoser automaton of G2

question: Can the occurrence of event d always
be diagnosed? This is the realm of diagnosability
analysis discussed in the next section.

Diagnosability Analysis of Automata

As mentioned earlier, diagnosability analysis
consists in determining, a priori, if any and all
occurrences of event d in LM will eventually be
diagnosed. In the case of diagnoser automata, we
do not want Diag.G/ to loop forever in a cycle of
Maybe-states and never enter a Yes-state if event
d has occurred, as happens in the diagnoser in
Fig. 2 for the string adbn when n gets arbitrarily
large. In this case, Diag.G1/ loops in Maybe-
state f.2;N /; .3; Y /g, and the occurrence of d
goes undetected. This shows that event d is
not diagnosable in G1; the counterexample is
provided by strings sY D adbn and sN D abn.

For systems modeled as automata, diagnos-
ability can be tested with quadratic time com-
plexity in the size of the state space of G by
forming a so-called twin-automaton (also called
“verifier”) where G is parallel composed with
itself, but synchronization is only enforced on ob-
servable events, allowing arbitrary interleavings
of unobservable events. The test for diagnosabil-
ity reduces to detection of cycles that occur after



Diagnosis of Discrete Event Systems 273

D

event d in the twin-automaton. It can be verified
that for automaton G2 in our example, event d is
diagnosable. Indeed, it is clear from the structure
of G2 that Diag.G2/ in Fig. 4 will never loop in
Maybe-state f.2;N /; .3; Y /g if event d occurs;
rather, after d occurs, G2 can only execute c
events, and after two such events, Diag.G2/ en-
ters Yes-state f.3; Y /g.

Note that diagnosability will not hold in an
automaton that contains a cycle of unobservable
events after the occurrence of event d , although
this is not the only instance where the property is
violated, as we saw in our simple example.

Diagnosis and Diagnosability
Analysis of Petri Nets

There are several approaches for diagnosis and
diagnosability analysis of DES modeled by Petri
nets, depending on the boundedness properties
of the net and on what is observable about its
behavior. Let N be the Petri net model of the
system, which consists of a Petri net structure
along with an initial marking of all places. If the
transitions of N are labeled by events in a set E ,
some by observable events in Eo and some by
unobservable events in Euo, and if the contents
of the Petri net places are not observed except
for the initial marking of N , then we have a
language-based diagnosis problem as considered
so far in this entry, for language L.N / and for
E D Eo [ Euo, with event of interest d 2 Euo.
In this case, if the set of reachable states of the
net is bounded, then we can use the reachability
graph as an equivalent automaton model of the
same system and build a diagnoser automaton
as described earlier. It is also possible to en-
code diagnoser states into the original structure
of net N by keeping track of all possible net
markings following the observation of an event
in Eo, appending the appropriate label (“N” or
“Y”) to each marking in the state estimate. This
is reminiscent of the on-the-fly construction of
the current state of the diagnoser automaton dis-
cussed earlier, except that the possible system
states are directly listed as Petri net markings
on the structure of N . Regarding diagnosability

analysis, it can be performed using the twin-
automaton technique of the preceding section,
from the reachability graph of N .

Another approach that is actively being pur-
sued in current literature is to exploit the struc-
ture of the net model N for diagnosis and for
diagnosability analysis, instead of working with
the automaton model obtained from its reachabil-
ity graph. In addition to potential computational
gains from avoiding the explicit generation of the
entire set of reachable states, this approach is mo-
tivated by the need to handle Petri nets whose sets
of reachable states are infinite and in particular
Petri nets that generate languages that are not
regular and hence cannot be represented by finite-
state automata. Moreover, in this approach, one
can incorporate potential observability of token
contents in the places of the Petri nets. We refer
the interested reader to the relevant chapters in
Campos et al. (2013) and Seatzu et al. (2013) for
coverage of these topics.

Current and Future Directions

The basic methodologies described so far for
diagnosis and diagnosability analysis have been
extended in many different directions. We briefly
discuss a few of these directions, which are active
research areas. Detailed coverage of these topics
is beyond the scope of this entry and is available
in the references listed at the end.

Diagnosis of timed models of DES has been
considered, for classes of timed automata and
timed Petri nets, where the objective is to ensure
that each occurrence of event d is detected within
a bounded time delay. Diagnosis of stochastic
models of DES has been considered, in particu-
lar stochastic automata, where the hard diagnos-
ability constraints are relaxed and detection of
each occurrence of event d must be guaranteed
with some probability 1 � 
, for some small

 > 0. Stochastic models also allow handling of
unreliable sensors or noisy environments where
event observations may be corrupted with some
probability, such as when an occurrence of event
a is observed as event a 80 % of the time and as
some other event a0 20 % of the time.
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Decentralized diagnosis is concerned with
DES that are observed by several monitoring
agents i D 1; : : : ; n, each with its own set of
observable events Eo;i and each having access
to the entire set of system behaviors, LM . The
task is to design a set of individual diagnosers,
one for each set Eo;i , such that the n diagnosers
together diagnose all the occurrences of event d .
In other words, for each occurrence of event
d in any string of LM , there exists at least
one diagnoser that will detect it (i.e., answer
“Yes”). The individual diagnosers may or may
not communicate with each other at run-time
or they may communicate with a coordinating
diagnoser that will fuse their information; several
decentralized diagnosis architectures have been
studied and their properties characterized. The
focus in these works is the decentralized nature
of the information available about the strings in
LM , as captured by the individual observable
event sets Eo;i , i D 1; : : : ; n.

Distributed diagnosis is closely related to
decentralized diagnosis, except that it normally
refers to situations where each individual
diagnoser uses only part of the entire system
model. Let M be an automaton G obtained
by parallel composition of subsystem models:
G D jjiD1;nGi . In distributed diagnosis, one
would want to design each individual diagnoser
Diagi on the basis of Gi alone or on the basis
of Gi and of an abstraction of the rest of the
system, jjjD1;nIj¤iGj . Here, the emphasis is on
the distributed nature of the system, as captured
by the parallel composition operation. In the case
where M is a Petri net N , the distributed nature
of the system may be captured by individual net
models Ni , i D 1; : : : ; n, that are coupled by
common places, i.e., place-bordered Petri nets.

Robust diagnosis generally refers to decentral-
ized or distributed diagnosis, but where one or
more of the individual diagnosers may fail. Thus,
there must be built-in redundancy in the set of
individual diagnosers so that they together may
still detect every occurrence of event d even if
one or more of them ceases to operate.

So far we have considered a fixed and static
set of observable events, Eo � E , where ev-
ery occurrence of each event in Eo is always

observed by the monitoring agent. However, there
are many instances where one would want the
monitoring agent to dynamically activate or de-
activate the observability properties of a subset of
the events in Eo; this arises in situations where
event monitoring is “costly” in terms of energy,
bandwidth, or security reasons. This is referred to
as the case of dynamic observations, and the goal
is to synthesize sensor activation policies that
minimize a given cost function while preserving
the diagnosability properties of the system.

Cross-References

�Models for Discrete Event Systems: An
Overview

�Modeling, Analysis, and Control with Petri
Nets

�Supervisory Control of Discrete-Event Systems
�Modeling, Analysis, and Control with Petri

Nets

Recommended Reading

There is a very large amount of literature on
diagnosis and diagnosability analysis of DES
that has been published in control engineering,
computer science, and artificial intelligence jour-
nals and conference proceedings. We mention
a few recent books or survey articles that are
a good starting point for readers interested in
learning more about this active area of research.
In the DES literature, the study of fault diagnosis
and the formalization of diagnosability proper-
ties started in Lin (1994) and Sampath et al.
(1995). Chapter 2 of the textbook Cassandras
and Lafortune (2008) contains basic results about
diagnoser automata and diagnosability analysis
of DES, following the approach introduced in
Sampath et al. (1995). The research monograph
Lamperti and Zanella (2003) presents DES diag-
nostic methodologies developed in the artificial
intelligence literature. The survey paper Zay-
toon and Lafortune (2013) presents a detailed
overview of fault diagnosis research in the con-
trol engineering literature. The two edited books

http://dx.doi.org/10.1007/978-1-4471-5058-9_52
http://dx.doi.org/10.1007/978-1-4471-5058-9_53
http://dx.doi.org/10.1007/978-1-4471-5058-9_54
http://dx.doi.org/10.1007/978-1-4471-5058-9_53
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Campos et al. (2013) and Seatzu et al. (2013)
contain chapters specifically devoted to diagnosis
of automata and Petri nets, with an emphasis
on automated manufacturing applications for the
latter. Specifically, Chaps. 5, 14, 15, 17, and 19 in
Campos et al. (2013) and Chaps. 22–25 in Seatzu
et al. (2013) are recommended for further reading
on several aspects of DES diagnosis. Zaytoon
and Lafortune (2013) and the cited chapters in
Campos et al. (2013) and Seatzu et al. (2013)
contain extensive bibliographies.
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Abstract

In the early 1970s, concepts from differential
geometry were introduced to study nonlinear
control systems. The leading researchers in this
effort were Roger Brockett, Robert Hermann,

Henry Hermes, Alberto Isidori, Velimir Jurdjevic,
Arthur Krener, Claude Lobry, and Hector
Sussmann. These concepts revolutionized our
knowledge of the analytic properties of control
systems, e.g., controllability, observability,
minimality, and decoupling. With these concepts,
a theory of nonlinear control systems emerged
that generalized the linear theory. This theory of
nonlinear systems is largely parallel to the linear
theory, but of course it is considerably more
complicated.

Keywords

Codistribution; Distribution; Frobenius theorem;
Involutive distribution; Lie jet

Introduction

This is a brief survey of the influence of differ-
ential geometric concepts on the development of
nonlinear systems theory. Section “A Primer on
Differential Geometry” reviews some concepts
and theorems of differential geometry. Nonlin-
ear controllability and nonlinear observability are
discussed in sections “Controllability of Nonlin-
ear Systems” and “Observability for Nonlinear
Systems”. Section “Minimal Realizations” dis-
cusses minimal realizations of nonlinear systems,
and section “Disturbance Decoupling” discusses
the disturbance decoupling problem.

A Primer on Differential Geometry

Perhaps a better title might be “A Primer on
Differential Topology” since we will not treat
Riemannian or other metrics. A n-dimensional
manifold M is a topological space that is locally
homeomorphic to a subset of IRn. For simplicity,
we shall restrict our attention to smooth (C1)
manifolds and smooth objects on them. Around
each pointp 2 M, there is at least one coordinate
chart that is a neighborhood Np � M and a
homeomorphism x W Np ! U where U is
an open subset of IRn. When two coordinate
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charts overlap, the change of coordinates should
be smooth. For simplicity, we restrict our atten-
tion to differential geometric objects described in
local coordinates.

In local coordinates, a vector field is just an
ODE of the form

Px D f .x/ (1)

where f .x/ is a smooth IRn�1 valued function of
x. In a different coordinate chart with local coor-
dinates z, this vector field would be represented
by a different formula:

Pz D g.z/

If the charts overlap, then on the overlap they are
related:

f .x.z// D @x

@z
.z/g.z/; g.z.x// D @z

@x
.z/f .x/

Since f .x/ is smooth, it generates a smooth
flow �.t; x0/ where for each t , the mapping
x 7! �.t; x0/ is a local diffeomorphism and for
each x0 the mapping t 7! �.t; x0/ is a solution
of the ODE (1) satisfying the initial condition
�.0; x0/ D x0. We assume that all the flows
are complete, i.e., defined for all t 2 IR; x 2
M. The flows are one parameter groups, i.e.,
�.t; �.s; x0// D �.t C s; x0/ D �.s; �.t; x0//.

If f .x0/ D b, a constant vector, then locally
the flow looks like translation, �.t; x1/ D x1 C
tb. If f .x0/ ¤ 0, then we can always choose
local coordinates z so that in these coordinates
the vector field is constant. Without loss of gen-
erality, we can assume that x0 D 0 and that the
first component of f is f1.0/ ¤ 0. Define the
local change of coordinates: x.z/ D �.z1; x1.z//
where x1.z/ D .0; z2; : : : ; zn/0. It is not hard to
that this is a local diffeomorphism and that, in z
coordinates, the vector field is the first unit vector.

If f .x0/ D 0 let F D @f

@x
.x0/, then if all the

eigenvalues of F are off the imaginary axis, then
the integral curves of f .x/ and

Pz D F z (2)

are locally topologically equivalent (Arnol’d
1983). This is the Grobman-Hartman theorem.
There exists a local homeomorphism z D h.x/

that carries x.t/ trajectories into z.s/ trajectories
in some neighborhood of x0 D 0. This
homeomorphism need not preserve time t ¤ s,
but it does preserve the direction of time. Whether
these flows are locally diffeomorphic is a more
difficult question that was explored by Poincaré.
See the section on feedback linearization (Krener
2013).

If all the eigenvalues of F are in the open
left half plane, then the linear dynamics (2) is
globally asymptotically stable around z0 D 0, i.e.,
if the flow of (2) is  .t; z/, then  .t; z1/ ! 0

as t ! 1. Then it can be shown that the non-
linear dynamics is locally asymptotically stable,
�.t; x1/ ! x0 as t ! 1 for all x1 in some
neighborhood of x0.

One forms, !.x/, are dual to vector fields.
The simplest example of a one form (also called
a covector field) is the differential dh.x/ of a
scalar-valued smooth function h.x/. This is the
IR1�n covector field

!.x/ D
h
@h
@x1
.x/ : : : @h

@xn
.x/

i

Sometimes this is written as

!.x/ D
nX

1

@h

@xi
.x/ dxi

The most general smooth one form is of the form

!.x/ D �
!1.x/ : : : !n.x/

�

D
nX

iD1
!i .x/ dxi

where the !i .x/ are smooth functions. The du-
ality between one forms and vector fields is the
bilinear pairing

< !.x/; f .x/ > D !.f /.x/ D !.x/f .x/

D
nX

iD1
!i .x/fi .x/
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Just as a vector field can be thought of as a
first-order ODE, a one form can be thought of
as a first-order PDE. Given !.x/, find h.x/ such
that dh.x/ D !.x/. A one form !.x/ is said to
be exact if there exists such an h.x/. Of course
if there is one solution, then there are many all
differing by a constant of integration which we
can take as the value of h at some point x0.

Unlike smooth first-order ODEs, smooth first-
order PDEs do not always have a solution. There
are integrability conditions and topological con-
ditions that must be satisfied. Suppose dh.x/ D
!.x/, then @h

@xi
.x/ D !i .x/ so

@!i

@xj
.x/ D @2h

@xj @xi
.x/ D @2h

@xi @xj
.x/ D @!j

@xi
.x/

Therefore, for the PDE to have a solution, the
integrability conditions

@!i

@xj
.x/ � @!j

@xi
.x/ D 0

must be satisfied. The exterior derivative of a one
form is a skew-symmetric matrix field

d!.x/ D
X

i<j

�
@!i

@xj
.x/ � @!j

@xi
.x/

�
dxi ^ dxj

A one form !.x/ is said to be closed if d!.x/ D
0. This is locally sufficient for there to exist an
h.x/ such that dh.x/ D !.x/.

Every exact form is closed but not every closed
form is exact. A counter example on IR2 is

!.x/ D � �x2 x1
�

This is closed but not exact. The line integral of
this convector field around any circle centered at
the origin is 2� . If it were exact, the line integral
would have been zero because the curve ends
where it begins.

The Lie derivative of a scalar-valued function
h.x/ by a vector field f .x/ is denied to be the
scalar-valued function

Lf .h/.x/ D @h

@x
.x/f .x/ D< dh.x/; f .x/ >

This can be iterated

Lkf .h/.x/ D @Lk�1f h

@x
.x/f .x/

If h.x/ 2 IRp�1, then Lf .h/.x/ 2 IRp�1.
The Lie bracket of two vector fields f 1.x/ and

f 2.x/ is another vector field

�
f 1; f 2

�
.x/ D @f 2

@x
.x/f 1.x/ � @f 1

@x
.x/f 2.x/

Clearly, the Lie bracket is skew symmetric,�
f 1; f 2

�
.x/ D � �

f 2; f 1
�
.x/.x/. It also

satisfies the Jacobi identity

�
f 1;

�
f 2; f 3

��
.x/C �

f 2;
�
f 3; f 1

��
.x/

C �
f 3;

�
f 1; f 2

��
.x/ D 0

Repeated Lie brackets are often expressed induc-
tively as

ad0f .g/.x/ D g.x/

adkf .g/.x/ D
h
f; adk�1f .g/

i
.x/

The geometric interpretation of the Lie bracket
Œf; g� .x/ is the infinitesimal commutator of their
flows �.t; x/ and  .t; x/, i.e.,

 .t; �.t; x// � �.t;  .t; x// D Œf; g� .x/t2

CO.t/3

Another interpretation of the Lie bracket is given
by the Lie series expansion

g.�.t; x// D
1X

kD0
.�1/kadkf .g/.x/

tk

kŠ

This is a Taylor series expansion which is conver-
gent for small jt j if f; g are real analytic vector
fields. Another Lie series is

h.�.t; x// D
1X

kD0
Lkf .h/.x/

tk

kŠ
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Given a smooth mapping z D .x/ from an
open subset of IRn to an open subset of IRm and
vector fields f .x/ and g.z/ on these open subsets,
we sat f .x/ is -related to g.z/ if

g..x// D @

@x
.x/f .x/

It is not hard to see that if f 1.x/; f 2.x/ are -
related to g1.z/; g2.z/, then

�
f 1; f 2

�
.x/ is -

related to
�
g1; g2

�
.z/. For this reason, we say

that the Lie bracket is an intrinsic differentiation.
The other intrinsic differentiation is the exterior
derivative operation d .

The Lie derivative of a one form !.x/ by a
vector field f .x/ is given by

Lf .!/.x/ D
X

i;j

�
@!i

@xj
.x/fj .x/

C!j .x/@fj
@xi

.x/

�
dxi

It is not hard to see that

Lf .< !; g >/.x/ D < Lf .!/; g > .x/

C < !; Œf; g� > .x/

and

Lf .dh/.x/ D d.Lf .h//.x/ (3)

Control systems involve multiple vector fields.
A distributionD is a set of vector fields onM that
is closed under addition of vector fields and under
multiplication by scalar functions. A distribution
defines at each x 2 M a subspace of the tangent
space

D.x/ D ff .x/ W f 2 Dg

These subspaces form a subbundle D of the
tangent bundle. If the subspaces are all of the
same dimension, then the distribution is said to
be nonsingular. We will restrict our attention to
nonsingular distributions.

A codistribution (or Pfaffian system) E is a
set of one forms on M that is closed under
addition and multiplication by scalar functions.

A codistribution defines at each x 2 M a
subspace of the cotangent space

f!.x/ W ! 2 Eg

These subspaces form a subbundle E of the
cotangent bundle. If the subspaces are all of the
same dimension, then the codistribution is said
to be nonsingular. Again, we will restrict our
attention to nonsingular codistributions.

Every distribution D defines a dual codistribu-
tion

D� D f!.x/ W !.x/f .x/ D 0; for all f .x/ 2 Dg

and vice versa

E� D ff .x/ W !.x/f .x/ D 0; for all !.x/ 2 Eg

A k dimensional distribution D (or its dual
codistribution D�) can be thought of as a system
of PDEs on M. Find n�k independent functions
h1.x/; : : : ; hn�k.x/ such that

dhi.x/f .x/ D 0 for all f .x/ 2 D

The functions h1.x/; : : : ; hn�k.x/ are said to be
independent if dh1.x/; : : : ; dhn�k.x/ are linearly
independent at every x 2 M. In other words,
dh1.x/; : : : ; dhn�k.x/ span D� over the space of
smooth functions.

The Frobenius theorem gives the integrability
conditions for these functions to exist locally.
The distribution D must be involutive, i.e., closed
under the Lie bracket,

ŒD;D� D fŒf; g� W f; g 2 Dg � D

When the functions exist, their joint level sets
fx W hi .x/ D ci ; i D 1; : : : ; n � kg are the
leaves of a local foliation. Through each x0 in
a convex local coordinate chart N , there exists
locally a a k-dimensional submanifold fx 2 N W
hi .x/ D hi .x

0/g. At each x1 in this subman-
ifold, its tangent space is D.x/. Whether these
hi .x/ exist globally to define a global foliation,
a partition of M into smooth submanifolds, is a
delicate question. Consider a distribution on IR2

generated by a constant vector field f .x/ D b
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of irrational slope, b2=b1 is irrational. Construct
the torus T 2 as the quotient of IR2 by the integer
lattice Z2. The distribution passes to the quotient
and since it is one dimensional, it is clearly
involutive. The leaves of the quotient distribution
are curves that wind around the torus indefinitely,
and each curve is dense in T 2. Therefore, any
smooth function h.x/ that is constant on such a
leaf is constant on all of T 2. Hence, the local
foliation does not extend to a global foliation.

Another delicate question is whether the quo-
tient space of M by a foliation induced by an in-
volutive distribution is a smooth manifold (Suss-
mann 1975). This is always true locally, but it
may not hold globally. Think of the foliation of
T 2 discussed above.

Given k � n vector fields f 1.x/; : : : ; f k.x/

that are linearly independent at each x and that
commute,

�
f i ; f j

�
.x/ D 0, there exists a local

change of coordinates z D z.x/ so that in the new
coordinates the vector fields are the first k unit
vectors.

The involutive closure ND of D is the smallest
involutive distribution containing D. As with all
distributions, we always assume implicitly that
is nonsingular. A point x1 is D-accessible from
x0 if there exists a continuous and piecewise
smooth curve joining x0 to x1 whose left and
right tangent vectors are always in D. Obvi-
ously D-accessibility is an equivalence relation.
Chow’s theorem (1939) asserts that its equiva-
lence classes are the leaves of the foliation in-
duced by ND. Chow’s theorem goes a step further.
Suppose f 1.x/; : : : ; f k.x/ span D.x/ at each
x 2 M then given any two points x0; x1 in a
leaf of ND, there is a continuous and piecewise
smooth curve joining x0 to x1 whose left and
right tangent vectors are always one of the f i .x/.

Controllability of Nonlinear Systems

An initialized nonlinear system that is affine in
the control is of the form

Px D f .x/C g.x/u
D f .x/C Pm

jD1 gj .x/uj
y D h.x/

x.0/ D x0 (4)

where the state x are local coordinates on an
n-dimensional manifold M, the control u is re-
stricted to lie in some set U � IRm, and the output
y takes values IRp . We shall only consider such
systems.

A particular case is a linear system of the form

Px D Fx CGu
y D Hx

x.0/ D x0
(5)

where M D IRn and U D IRm.
The set At .x

0/ of points accessible at time
t � 0 from x0 is the set of all x1 2 M such
that there exists a bounded, measurable control
trajectory u.s/ 2 U ; 0 � s � t , so that the
solution of (4) satisfies x.t/ D x1. We define
A.x0/ as the union of At .x

0/ for all t � 0. The
system (4) is said to be controllable at time t > 0
if At .x

0/ D M and controllable in forward time
if A.x0/ D M.

For linear systems, controllability is a rather
straightforward matter, but for nonlinear systems
it is more subtle with numerous variations. The
variation of constants formula gives the solution
of the linear system (5) as

x.t/ D eF tx0 C
Z t

0

eF.t�s/Gu.s/ ds

so At .x
0/ is an affine subspace of IRn for any

t > 0. It is not hard to see that the columns of

�
G : : : F n�1G

�
(6)

are tangent to this affine subspace, so if this
matrix is of rank n, then At .x

0/ D IRn for any
t > 0. This is the so-called controllability rank
condition for linear systems.

Turning to the nonlinear system (4), let D
be the distribution spanned by the vector fields
f .x/; g1.x/; : : : ; gm.x/, and let ND be its involu-
tive closure. It is clear that A.x0/ is contained in
the leaf of ND through x0. Krener (1971) showed
that A.x0/ has nonempty interior in this leaf.
More precisely, A.x0/ is between an open set and
its closure in the relative topology of the leaf.
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Let D0 be the smallest distribution containing
the vector fields g1.x/; : : : ; gm.x/ and invariant
under bracketing by f .x/, i.e.,

Œf;D0� � D0

and let ND0 be its involutive closure. Sussmann and
Jurdjevic (1972) showed that At .x

0/ is in the leaf
of ND0 through x0, and it is between an open set
and its closure in the topology of this leaf.

For linear systems (5) where f .x/ D Fx and
gj .x/ D Gj , the j th column of G, it is not hard
to see that

adkf .g
j /.x/ D .�1/kF kGj

so the nonlinear generalization of the controlla-
bility rank condition is that at each x the dimen-
sion of ND0.x/ is n. This guarantees that At .x

0/

is between an open set and its closure in the
topology of M.

The condition that

dimension ND.x/ D n (7)

is referred to as the nonlinear controllability rank
condition. This guarantees that A.x0/ is between
an open set and its closure in the topology of M.

There are stronger interpretations of control-
lability for nonlinear systems. One is short time
local controllability (STLC). The definition of
this is that the set of accessible points from x0 in
any small t > 0 with state trajectories restricted
to an arbitrarily small neighborhood of x0 should
contain x0 in its interior. Hermes (1994) and
others have done work on this.

Observability for Nonlinear Systems

Two possible initial states x0; x1 for the non-
linear system are distinguishable if there exists
a control u.�/ such that the corresponding out-
puts y0.t/; y1.t/ are not equal. They are short
time distinguishable if there is an u.�/ such that
y0.t/ ¤ y1.t/ for all small t > 0. They are lo-
cally short time distinguishable if in addition the
corresponding state trajectories do not leave an

arbitrarily small open set containing x0; x1. The
open set need not be connected. A nonlinear sys-
tem is (short time, locally short time) observable
if every pair of initial states is (short time, locally
short time) distinguishable. Finally, a nonlinear
system is (short time, locally short time) locally
observable if every x0 has a neighborhood such
that every other point x1 in the neighborhood
is (short time, locally short time) distinguishable
from x0.

For a linear system (5), all these definitions
coalesce into a single concept of observability
which can be checked by the observability rank
condition which is that the rank of

2
6664

H

HF
:::

HF n�1

3
7775 (8)

equals n.
The corresponding concept for nonlinear sys-

tems involves E , the smallest codistribution con-
taining dh1.x/; : : : ; dhp.x/ that is invariant un-
der repeated Lie differentiation by the vector
fields f .x/; g1.x/; : : : ; gm.x/. Let

E.x/ D f!.x/ W ! 2 Eg

The nonlinear observability rank condition is

dimensionE.x/ D n (9)

for all x 2 M. This condition guarantees that
the nonlinear system is locally short time, locally
observable. It follows from (3) that E is spanned
by a set of exact one form, so its dual distribution
E� is involutive.

For a linear system (5), the input–output map-
ping from x.0/ D xi , i D 0; 1 is

yi .t/ D HeF txi C
Z t

0

HeF.t�s/Gu.s/ ds

The difference is

y1.t/ � y0.t/ D HeF t .x1 � x0/
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So if one input u.�/ distinguishes x0 from x1, then
so does every input.

For nonlinear systems, this is not necessarily
true. That prompted Gauthier et al. (1992) to
introduce a stronger concept of observability for
nonlinear systems. For simplicity, we describe
it for scalar input and scalar output systems. A
nonlinear system is uniformly observable for any
input if there exist local coordinates so that it is
of the form

y D x1 C h.u/

Px1 D x2 C f1.x1; u/

:::

Pxn�1 D xn C fn�1.x1; : : : ; xn�2; u/

Pxn D fn.x; u/

Cleary if we know u.�/; y.�/, then by repeated
differentiation of y.�/, we can reconstruct x.�/.
It has been shown that for nonlinear systems
that are uniformly observable for any input, the
extended Kalman filter is a locally convergent ob-
server (Krener 2002a), and the minimum energy
estimator is globally convergent (Krener 2002b).

Minimal Realizations

The initialized nonlinear system (4) can be
viewed as defining a input–output mapping from
input trajectories u.�/ to output trajectories y.�/.
Is it a minimal realization of this mapping, does
there exists an initialized nonlinear system on a
smaller dimensional state space that realizes the
same input–output mapping?

Kalman showed that (5) initialized at x0 D 0

is minimal iff the controllability rank condition
and the observability rank condition hold. He
also showed how to reduce a linear system to a
minimal one.

If the controllability rank condition does not
hold, then the span of (6) dimension is k < n.
This subspace contains the columns of G and
is invariant under multiplication by F . In fact,
it is the maximal subspace with these proper-
ties. So the linear system can be restricted to

this k-dimensional subspace, and it realizes the
same input–output mapping from x0 D 0. The
restricted system satisfies the controllability rank
condition.

If the observability rank condition does not
hold, then the kernel of (8) is a subspace of IRn�1
of dimension n � l > 0. This subspace is in the
kernel of H and is invariant under multiplication
by F . In fact, it is the maximal subspace with
these properties. Therefore, there is a quotient
linear system on the IRn�1 mod, the kernel of (8)
which has the same input–output mapping. The
quotient is of dimension l < n, and it realizes the
same input–output mapping. The quotient system
satisfies the observability rank condition.

By employing these two steps in either order,
we pass to a minimal realization of the input–
output map of (5) from x0 D 0. Kalman also
showed that two linear minimal realizations differ
by a linear change of state coordinates.

An initialized nonlinear system is a realiza-
tion of minimal dimension of its input–output
mapping if the nonlinear controllability rank con-
dition (7) and the nonlinear observability rank
condition (9) hold.

If the nonlinear controllability rank condition
(7) fails to hold because the dimension of D.x/
is k < n, then by replacing the state space M
with the k dimensional leaf through x0 of the
foliation induced by D, we obtain a smaller state
space on which the nonlinear controllability rank
condition (7) holds. The input–output mapping is
unchanged by this restriction.

Suppose the nonlinear observability rank con-
dition (9) fails to hold because the dimension of
E.x/ is l < n. Then consider a convex neigh-
borhood N of x0. The distribution E� induces
a local foliation of N into leaves of dimension
n � l > 0. The nonlinear system leaves this
local foliation invariant in the following sense.
Suppose x0 and x1 are on the same leaf then if
xi .t/ is the trajectory starting at xi , then x0.t/
and x1.t/ are on the same leaf as long as the
trajectories remain in N . Furthermore, h.x/ is
constant on leaves so y0.t/ D y1.t/. Hence, there
exists locally a nonlinear system whose state
space is the leaf space. On this leaf space, the
nonlinear observability rank condition holds (9),
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and the projected system has the same input–
output map as the original locally around x0.
If the leaf space of the foliation induced by
E� admits the structure of a manifold, then the
reduced system can be defined globally on it.
Sussmann (1973) and Sussmann (1977) stud-
ied minimal realizations of analytic nonlinear
systems.

The state space of two minimal nonlinear
systems need not be diffeomorphic. Consider the
system

Px D u; y D sin x

where x; u are scalars. We can take the state
space to be either M D IR or M D S1,
and we will realize the same input–output map-
ping. These two state spaces are certainly not
diffeomorphic but one is a covering space of
the other.

Lie Jet and Approximations

Consider two initialized nonlinear controlled dy-
namics

Px D f 0.x/C Pm
jD1 f j .x/uj

x.0/ D x0
(10)

Pz D g0.z/C Pm
jD1 gj .z/uj

z.0/ D z0
(11)

Suppose that (10) satisfies the nonlinear
controllability rank condition (7). Further,
suppose that there is a smooth mappingˆ.x/ D z
and constants M > 0; 
 > 0 such that for any
ku.t/k < 1, the corresponding trajectories x.t/
and z.t/ satisfy

kˆ.x.t// � z.t/k < MtkC1 (12)

for 0 � t < 
.
Then it is not hard to show that the linear

map L D @ˆ
@x
.x0/ takes brackets up to order k

of the vector fields f j evaluated at x0 into the
corresponding brackets of the vector fields gj

evaluated at z0,

LŒf jl Œ: : : Œf j2; f j1� : : :��.x0/

D Œgjl Œ: : : Œgj2 ; gj1 � : : :��.z0/ (13)

for 1 � l � k.
On the other hand, if there is a linear map

L such that (13) holds for 1 � l � k, then
there exists a smooth mapping ˆ.x/ D z and
constants M > 0; 
 > 0 such that for any
ku.t/k < 1, the corresponding trajectories x.t/
and z.t/ satisfy (12).

The k-Lie jet of (10) at x0 is the tree of
brackets Œf jl Œ: : : Œf j2; f j1� : : :��.x0/ for 1 � l �
k. In some sense these are the coordinate-free
Taylor series coefficients of (10) at x0.

The dynamics (10) is free-nilpotent of degree
k if all these brackets are as linearly independent
as possible consistent with skew symmetry and
the Jacobi identity and all higher degree brackets
are zero. If it is free to degree k, the controlled
dynamics (10) can be used to approximate any
other controlled dynamics (11) to degree k. Be-
cause it is nilpotent, integrating (10) reduces to
repeated quadratures. If all brackets with two or
more f i ; 1 � i � m are zero at x0, then (10) is
linear in appropriate coordinates. If all brackets
with three or more f i ; 1 � i � m are zero at x0,
then (10) is quadratic in appropriate coordinates.
The references Krener and Schaettler (1988) and
Krener (2010a,b) discuss the structure of the
reachable sets for such systems.

Disturbance Decoupling

Consider a control system affected by a distur-
bance input w.t/

Px D f .x/C g.x/u C b.x/w
y D h.x/

(14)

The disturbance decoupling problem is to find
a feedback u D �.x/, so that in the closed-
loop system, the output y.t/ is not affected by
the disturbance w.t/. Wonham and Morse (1970)
solved this problem for a linear system

Px D Fx CGu C Bw
y D Hx

(15)
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To do so, they introduced the concept of an
F;G invariant subspace. A subspace V � IRn is
F;G invariant if

FV � V C G (16)

where G is the span of the columns of G. It is
easy to see that V is F;G invariant iff there exists
a K 2 IRm�n such that

.F CGK/V � V (17)

The feedback gain K is called a friend of V .
It is easy from (16) that if V i is F;G invariant

for i D 1; 2, then V1 C V2 is also. So there exists
a maximal F;G invariant subspace Vmax in the
kernel ofH . Wonham and Morse showed that the
linear disturbance decoupling problem is solvable
iff B � Vmax where B is the span of the columns
of B .

Isidori et al. (1981a) and independently
Hirschorn (1981) solved the nonlinear distur-
bance decoupling problem. A distribution D is
locally f; g invariant if

Œf;D� � D C ��
gj ;D� � D C �

(18)

for j D 1; : : : ; m where � is the distribution
spanned by the columns of g. In Isidori et al.
(1981b) it is shown that if D is locally f; g

invariant, then so is its involutive closure.
A distribution D is f; g invariant if there exists

˛.x/ 2 IRm�1 and invertible ˇ.x/ 2 IRm�m such
that

Œf C g˛;D� � DhP
j g

j ˇkj ;D
i

� D (19)

for k D 1; : : : ; m. It is not hard to see that a f; g
invariant is locally f; g invariant. It is shown in
Isidori et al. (1981b) that if D is a locally f; g
invariant distribution, then locally there exists
˛.x/ and ˇ.x/ so that (19) holds. Furthermore,
if the state space is simply connected, then ˛.x/
and ˇ.x/ exist globally, but the matrix field ˇ.x/
may fail to be invertible at some x.

From (18), it is clear that if Di is locally f; g
invariant for i D 1; 2, then so is D1 CD2. Hence,
there exists a maximal locally f; g invariant

distribution Dmax in the kernel of dh. Moreover,
this distribution is involutive. The disturbance
decoupling problem is locally solvable iff
columns of b.x/ are contained in Dmax. If
M is simply connected, then the disturbance
decoupling problem is globally solvable iff
columns of b.x/ are contained in Dmax.

Conclusion

We have briefly described the role that differential
geometric concepts played in the development
of controllability, observability, minimality,
approximation, and decoupling of nonlinear
systems.
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Disaster Response Robot

Satoshi Tadokoro
Tohoku University, Sendai, Japan

Abstract

Disaster response robots are robotic systems used
for preventing the worsening of disaster dam-
age under emergent situations. Robots for nat-
ural disasters (water disaster, volcano eruption,
earthquakes, landslides, and fire) and man-made
disasters (explosive ordnance disposal, CBRNE
disasters, Fukushima Daiichi nuclear power plant
accident) are introduced. Technical challenges
are described on the basis of generalized data
flow.

Keywords

Rescue robot; Response robot

Introduction

Disaster response robots are robotic systems used
for preventing the worsening of disaster damage
under emergent situations, such as for search and
rescue, recovery construction, etc.

A disaster changes its state as time passes.
The state starts as an unforeseen occurrence
and proceeds to prevention phase, emergency
response phase, recovery phase, and revival
phase. Although a disaster response robot
usually means a system for disaster response
and recovery in a narrow sense a system used in
every phase of disaster can be called a disaster
response robot in a broad sense.

When parties of firefighters and military per-
sonnel respond to disasters, robots are among
the technical equipments used. The purposes of
robots are (1) to perform tasks that are impos-
sible/difficult to perform by humans and con-
ventional equipment, (2) to reduce responders’
risk of inflicting secondary damage, and (3) to
improve rapidity/efficiency of tasks, by using
remote/automatic robot equipment.
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Response Robots for Natural
Disasters

Water Disaster
Underwater robots (ROV, remotely operated ve-
hicle) are deployed to responder organizations
in preparation for water damage such as caused
by tsunami, flood, cataract, and accidents in the
sea and rivers. They are equipped with cameras
and sonars and remotely controlled by crews
via tether from land or shipboard within several
tens of meters area for victim search and dam-
age investigation. After the Great Eastern Japan
Earthquake in 2011, Self Defense Force and vol-
unteers of International Rescue System Institute
(IRS) and Center for Robot-Assisted Search and
Rescue (CRASAR) used various types of ROVs
such as SARbot shown in Fig. 1 for victim search
and debris investigation in the port.

Volcano Eruption
In order to reduce risk in monitoring and re-
covery construction at volcano eruptions, appli-
cation of robotics and remote systems is highly
desired. Various types of UAVs (unmanned aerial
vehicles) such as small-sized robot helicopters
and airplanes have been used for this purpose.

An unmanned construction system consists of
teleoperated robot backhoes, trucks, and bulldoz-
ers with wireless relaying cars and camera vehi-
cles as shown in Fig. 2 and is remotely controlled
from an operator vehicle. It has been used since
the 1990s for remote civil engineering works
from a distance of a few kilometers.

Structural Collapse by Earthquakes,
Landslides, etc.
Small-sized UGVs (unmanned ground vehicles)
were developed for victim search and monitoring
in confined spaces of collapsed buildings and
underground structures. VGTV X-treme shown
in Fig. 3 is a tracked vehicle remotely operated
via a tether. It was used for victim search at
mine accidents and the 9/11 terror attack. Active
scope camera shown in Fig. 4 is a serpentine robot
like a fiberscope and has been used for forensic
investigation of structural collapse accidents.

Fire
Large-scale fires in chemical plants and forests
sometimes have a high risk, and firefighters
cannot approach near them. Remote-controlled
robots with firefighting nozzles for water and
chemical extinguishing agents are deployed.

Disaster Response Robot, Fig. 1 SARbot (Courtesy of SeaBotix Inc.) http://www.seabotix.com/products/sarbot.htm

http://www.seabotix.com/products/sarbot.htm


286 Disaster Response Robot

Disaster Response Robot, Fig. 2 Unmanned construction system (Courtesy of Society for Unmanned Construction
Systems) http://www.kenmukyou.gr.jp/f_souti.htm

Disaster Response Robot, Fig. 3 VGTV X-treme (Courtesy of Recce Robotics) http://www.recce-robotics.com/vgtv.
html

Disaster Response
Robot, Fig. 4 Active
scope camera (Courtesy of
International Rescue
System Institute)

http://www.kenmukyou.gr.jp/f_souti.htm
http://www.recce-robotics.com/vgtv.html
http://www.recce-robotics.com/vgtv.html
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Large-sized robots can discharge large volumes
of the fluid with water cannons, whereas small-
sized robots have better mobility.

Response Robots for Man-Made
Disasters

Explosive Ordnance Disposal (EOD)
Detection and disposal of explosive ordnance
is one of the most dangerous tasks. TALON,
PackBot, and Telemax are widely used in military
and explosive ordnance disposal teams world-
wide. Telemax has an arm with seven degrees
of freedom on a tracked vehicle with four sub-
tracks as shown in Fig. 5. It can observe narrow
spaces like overhead lockers of airplanes and
bottom of automobiles by cameras, manipulate
objects by the arm, and deactivate explosives by a
disrupter.

CBRNE Disasters
CBRNE (chemical, biological, radiological,
nuclear, and explosive) disasters have a high risk
and can cause large-scale damage because human
cannot detect contamination by the Hazmat (haz-
ardous materials). Application of robotic systems
is highly expected for this disaster. PackBot has
sensors for toxic industrial chemicals (TIC),
blood agents, blister agents, volatile organic

compounds (VOCs), radiation, etc., as options
and can measure the Hazmat in dangerous
confined spaces (Fig. 6). Quince was developed
for research into technical issues of UGVs at
CBRNE disasters and has high mobility on rough
terrain (Fig. 7).

Fukushima Daiichi Nuclear Power Plant
Accident
At the Fukushima Daiichi nuclear power plant
accident caused by tsunami in 2011, various
disaster response robots were applied. They
contributed to the cool shutdown and decom-
missioning of the plant. For example, PackBot
and Quince gave essential data for task planning
by shooting images and radiation measurement
in nuclear reactor buildings there. Unmanned
construction system removed debris outdoors
that were contaminated by radiological materials
and reduced the radiation rate there significantly.

Group INTRA in France and KHG in Ger-
many are organizations for responding to nu-
clear plant accidents. They are equipped with
robots and remote-controlled construction ma-
chines for radiation measurement, decontamina-
tion, and constructions in emergency. In Japan,
the Assist Center for Nuclear Emergencies was
established after the Fukushima Accident.

Disaster Response Robot, Fig. 5 Telemax (Courtesy
of Cobham Mission Equipment) http://www.cobham.
com/about-cobham/mission-systems/about-us/mission-

equipment/unmanned-systems/products-and-services/
remote-controlled-robotic-solutions/telemax-explosive-
ordnance-(eod)-robot.aspx

http://www.cobham.com/about-cobham/mission-systems/about-us/mission-equipment/unmanned-systems/products-and-services/remote-controlled-robotic-solutions/telemax-explosive-ordnance-(eod)-robot.aspx
http://www.cobham.com/about-cobham/mission-systems/about-us/mission-equipment/unmanned-systems/products-and-services/remote-controlled-robotic-solutions/telemax-explosive-ordnance-(eod)-robot.aspx
http://www.cobham.com/about-cobham/mission-systems/about-us/mission-equipment/unmanned-systems/products-and-services/remote-controlled-robotic-solutions/telemax-explosive-ordnance-(eod)-robot.aspx
http://www.cobham.com/about-cobham/mission-systems/about-us/mission-equipment/unmanned-systems/products-and-services/remote-controlled-robotic-solutions/telemax-explosive-ordnance-(eod)-robot.aspx
http://www.cobham.com/about-cobham/mission-systems/about-us/mission-equipment/unmanned-systems/products-and-services/remote-controlled-robotic-solutions/telemax-explosive-ordnance-(eod)-robot.aspx
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Disaster Response Robot, Fig. 6 PackBot (Courtesy of iRobot) http://www.irobot.com/us/learn/defense/packbot/
Specifications.aspx

Disaster Response Robot, Fig. 7 Quince (Courtesy of International Rescue System Institute)

Summary and Future Directions

Data flow of disaster response robots is generally
described by a feedback system as shown in
Fig. 8. Robots change the states of objects and
environment by movement and task execution.
Sensors measure and recognize them, and their

feedback enables the robots’ autonomous motion
and work. The sensed data are shown to oper-
ators via communication, data processing, and
human interface. The operators give commands
of motion and work to the system via the human
interface. The system recognizes and transmits
them to the robot.

http://www.irobot.com/us/learn/defense/packbot/Specifications.aspx
http://www.irobot.com/us/learn/defense/packbot/Specifications.aspx
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Disaster Response Robot, Fig. 8 Data flow of remotely controlled disaster response robots

Each functional block has its own technical
challenges to be fulfilled under extreme
environments of disaster space in response to
the objectives and the conditions. They should be
solved technically in order to improve the robot
performance. They include insufficient mobility
in disaster spaces (steps, gaps, slippage, narrow
space, obstacles, etc.), deficient workability
(dexterity, accuracy, speed, force, work space,
etc.), poor sensors and sensor data processing
(image, recognition, etc.), lack of reliability and
performance of autonomy (robot intelligence,
multiagent collaboration, etc.), issues of wireless
and wired communication (instability, delay,
capacity, tether handling, etc.), operators’
limitations (situation awareness, decision ability,
fatigue, mistake, etc.), basic performances
(explosion proof, weight, durability, portability,
etc.), and system integration that combines the
components into the solution. Mission critical
planning and execution including human factors,
training, role sharing, logistics, etc. have to be
considered at the same time.

Research into systems and control is expected
to solve the abovementioned challenges of com-
ponents and systems. For example, intelligent
control is essential for mobility and workability
under extreme conditions; control of feedback
systems including long delay and dynamic in-
stability, control of human-in-loop systems, and
system integration of heterogeneous systems are
important research topics of systems and control.

In the research field of disaster robotics,
various competitions of practical robots have

been held, e.g., RoboCupRescue targeting
CBRNE disasters, ELROB and euRathlon
for field activities, MAGIC for multi-robot
autonomy, and DARPA Robotics Challenge for
humanoid robots in nuclear disasters. These
competitions seek to stimulate solutions of the
above-mentioned technical issues in different
environments by providing practical test beds for
advanced technology developments.

Cross-References

�Robot Teleoperation
�Walking Robots
�Wheeled Robots

Bibliography

ELROB (2013) www.elrob.org
Group INTRA (2013) www.groupe-intra.com
KHG (2013) www.khgmbh.de
Murphy, R. (2014) Disaster robotics. MIT, Cambridge
RoboCup (2013) www.robocup.org
Siciliano B, Khatib O (eds) (2008) Springer handbook of

robotics, 1st edn. Springer, Berlin
Siciliano B, Khatib O (eds) (2014) Springer handbook of

robotics, 2nd edn. Springer, Berlin
Tadokoro S (ed) (2010) Rescue robotics: DDT project

on robots and systems for urban search and rescue.
Springer, London

Tadokoro S, Seki S, Asama H (2013) Priority issues
of disaster robotics in Japan. In: Proceedings of the
IEEE region 10 humanitarian technology conference,
Sendai, 27–29 Aug 2013

http://dx.doi.org/10.1007/978-1-4471-5058-9_172
http://dx.doi.org/10.1007/978-1-4471-5058-9_179
http://dx.doi.org/10.1007/978-1-4471-5058-9_178
www.elrob.org
www.khgmbh.de
www.robocup.org
http://www.groupe-intra.com


290 Discrete Event Systems and Hybrid Systems, Connections Between

Discrete Event Systems and Hybrid
Systems, Connections Between

Alessandro Giua
DIEE, University of Cagliari, Cagliari, Italy
LSIS, Aix-en-Provence, France

Abstract

The causes of the complex behavior typical of hy-
brid systems are multifarious and are commonly
explained in the literature using paradigms that
are mainly focused on the connections between
time-driven and hybrid systems. In this entry,
we recall some of these paradigms and further
explore the connections between discrete event
and hybrid systems from other perspectives. In
particular, the role of abstraction in passing from
a hybrid model to a discrete event one and vice
versa is discussed.

Keywords

Hybrid system; Logical discrete event system;
Timed discrete event system

Introduction

Hybrid systems combine the dynamics of both
time-driven systems and discrete event systems.

The evolution of a time-driven system can be
described by a differential equation (in continu-
ous time) or by a difference equation (in discrete
time). An example of such a system is the tank
shown in Fig. 1 whose behavior, assuming the
tank is not full, is ruled in continuous time t by
the differential equation

d

dt
V .t/ D q1.t/ � q2.t/

where V is the volume of liquid and q1 and q2
are, respectively, the input and output flow.

A discrete event system (Lafortune and Cas-
sandras 2007; Seatzu et al. 2012) evolves in ac-
cordance with the abrupt occurrence, at possibly
unknown irregular intervals, of physical events.
Its states may have logical or symbolic, rather
than numerical, values that change in response
to events which may also be described in non-
numerical terms. An example of such a system
is a robot that loads parts on a conveyor, whose
behavior is described by the automaton in Fig. 2.
The robot can be “idle,” “loading” a part, or in an
“error” state when a part is incorrectly positioned.
The events that drive its evolution are a (grasp a
part), b (part correctly loaded), c (part incorrectly
positioned), and d (part repositioned). In a logi-
cal discrete event system (�Supervisory Control
of Discrete-Event Systems), the timing of event
occurrences are ignored, while in a timed discrete
event system (�Models for Discrete Event Sys-
tems: An Overview), they are described by means
of a suitable timing structure.

In a hybrid system (�Hybrid Dynamical
Systems, Feedback Control of), time-driven
and event-driven evolutions are simultaneously
present and mutually dependent. As an example,
consider a room where a thermostat maintains
the temperature x.t/ between xa D 20 ıC
and xb D 22 ıC by turning a heat pump on
and off. Due to the exchange with the external
environment at temperature xe � x.t/, when the
pump is off, the room temperature derivative is

d

dt
x.t/ D �kŒx.t/ � xe�

where k is a suitable coefficient, while when the
pump is on, the room temperature derivative is

d

dt
x.t/ D h.t/ � kŒx.t/ � xe�

where the positive term h.t/ is due to the heat
pump. The hybrid automaton that describes this
system is shown in Fig. 3.

The causes of the complex behavior typical
of hybrid systems are multifarious, and among
the paradigms commonly used in the literature to
describe them, we mention three.

http://dx.doi.org/10.1007/978-1-4471-5058-9_54
http://dx.doi.org/10.1007/978-1-4471-5058-9_52
http://dx.doi.org/10.1007/978-1-4471-5058-9_271
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Discrete Event Systems
and Hybrid Systems,
Connections Between,
Fig. 1 A tank

Discrete Event Systems
and Hybrid Systems,
Connections Between,
Fig. 2 A machine with
failures

Discrete Event Systems
and Hybrid Systems,
Connections Between,
Fig. 3 Hybrid automaton
of the thermostat

• Logically controlled systems. Often, a phys-
ical system with a time-driven evolution is
controlled in a feedback loop by means
of a controller that implements discrete
computations and event-based logic. This is
the case of the thermostat mentioned above.
Classes of systems that can be described
by this paradigm are embedded systems or,
when the feedback loop is closed through
a communication network, cyber-physical
systems.

• State-dependent mode of operation. A time-
driven system can have different modes of
evolution depending on its current state. As
an example, consider a bouncing ball. While
the ball is above the ground (vertical position
h > 0) its behavior is that of a falling body
subject to a constant gravitational force. How-
ever, when the ball collides with the ground

(vertical position h D 0), its behavior is that
of a (partially) elastic body that bounces up.
Classes of systems that can be described by
this paradigm are piecewise affine systems and
linear complementarity system.

• Variable structure systems. Some systems
may change their structure assuming different
configuration, each characterized by a
different behavior. As an example, consider
a multicell voltage converter composed by a
cascade of elementary commutation cells:
controlling some switches, it is possible
to insert or remove cells so as to produce
a desired output voltage signal. Classes
of systems that can be described by this
paradigm are switched systems.
While these are certainly appropriate and

meaningful paradigms, they are mainly focused
on the connections between time-driven and
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hybrid systems. In the rest of this entry, we
will discuss the connections between discrete
event and hybrid systems from other different
perspectives. The focus is strictly on modeling,
thus approaches for analysis or control will not
be discussed.

From Hybrid Systems to Discrete
Event System byModeling
Abstraction

A system is a physical object, while a model is a
(more or less accurate) mathematical description
of its behavior that captures those features that are
deemed mostly significant. In the previous pages,
we have introduced different classes of systems,
such as “time-driven systems,” “discrete event
systems,” and “hybrid systems,” but properly
speaking, this taxonomy pertains to the models
because the terms “time driven,” “discrete event,”
or “hybrid” should be used to classify the mathe-
matical description and not the physical object.

According to this view, a discrete event model
is often perceived as a high-level description of a
physical system where the time-driven dynamics
are ignored or, at best, approximated by a timing
structure. This procedure to derive a simpler
model in a way that preserves the properties being
analyzed while hiding the details that are of no
interest is called abstraction (Alur et al. 2000).

Consider, as an example, the thermostat in
Fig. 3. In such a system, the time-driven evolution
determines a change in the temperature, which in
turn – reaching a threshold – triggers the occur-
rence of an event that changes the discrete state.
Assume one does not care about the exact form
this triggering mechanism takes and is only inter-
ested in determining if the heat pump is turned on
or off. In such a case, we can completely abstract
the time-driven evolution obtaining a logical dis-
crete event model such as the automaton in Fig. 4,
where label a denotes the event the temperature
drops below 20 ıC and label b denotes the event
the temperature raises over 22 ıC.

For some purposes, e.g., to determine the
utilization rate of the heat pump and thus its
operating cost, the model in Fig. 4 is inadequate.
In such a case, one can consider a less coarse

Discrete Event Systems
and Hybrid Systems,
Connections Between,

Fig. 4 Logical discrete
event model of the
thermostat

abstraction of the hybrid model in Fig. 3
obtaining a timed discrete event model such
as the automaton in Fig. 4. Here, to each event
is associated a firing delay: as an example, ıa
represents the time it takes – when the pump is
off – to cool down until the lower temperature
threshold is reached and event a occurs. The
delay may be a deterministic value or even a ran-
dom one to take into account the uncertainty due
to non-modeled time-varying parameters such
as the temperature of the external environment.
Note that a new state (START) and a new event b0
have now been introduced to capture the transient
phase in which the room temperature, from the
initial value x.0/ D 15 ıC, reaches the higher
temperature threshold: in fact, event b0 has a
delay greater than the delay of event b.

Timed Discrete Event Systems
Are Hybrid Systems

Properly speaking, all timed discrete event
systems may also be seen as hybrid systems if one
considers the dynamics of the timers – that spec-
ify the event occurrence – as elementary time-
driven evolutions. In fact, the simplest model of
hybrid systems is the timed automaton introduced
by Alur and Dill (1994) whose main feature is
the fact that each continuous variable x.t/ has a
constant derivative Px.t/ D 1 and thus can only
describe the passage of time. Incidentally, we
note that the term “timed automaton” is also used
in the area of discrete event systems (Lafortune
and Cassandras 2007) to denote an automaton
in which a timing structure is associated to the
events: such an example was shown in Fig. 5. To
avoid any confusion, in the following, we denote
the former model Alur-Dill automaton and the
latter model timed DES automaton.
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In Fig. 6 is shown an Alur-Dill automaton
that describes the thermostat, where the time-
driven dynamics have been abstracted and only
the timing of event occurrence is modeled as in
the timed DES automaton in Fig. 5. The only
continuous variable is the value of a timer ı:
when it goes beyond a certain threshold (e.g.,
ı > ıa), an event occurs (e.g., event a) changing
the discrete state (e.g., from OFF to ON) and
resetting the timer to zero.

It is rather obvious that the behavior of the
Alur-Dill automaton in Fig. 6 is equivalent to
the behavior of timed DES automaton in Fig. 5.
In the former model, the notion of time is en-
coded by means of an explicit continuous vari-
able ı. In the latter model, the notion of time
is implicitly encoded by the timer that during
an evolution will be associated to each event.
In both cases, however, the overall state of the
systems is described by a pair .`.t/; x.t// where
the first element ` takes value in a discrete set
fSTART;ON;OFF g and the second element is
a vector (in this particular case with a single
component) of timer valuations.

It should be pointed out that an Alur-Dill
automaton may have a more complex structure
than that shown in Fig. 6: as an example, the
guard associated to a transition, i.e., the values of
the timer that enable it, can be an arbitrary rect-
angular set. However, the same is also true for a
timed discrete event system: several policies can
be used to define the time intervals enabling an

Discrete Event SystemsandHybrid Systems, Connec-
tions Between, Fig. 5 Timed discrete event model of the
thermostat

event (enabling policy) or to specify when a timer
is reset (memory policy) (Ajmone Marsan et al.
1995). Furthermore, timed discrete event system
can have arbitrary stochastic timing structures
(e.g., semi-Markovian processes, Markov chains,
and queuing networks (Lafortune and Cassandras
2007)), not to mention the possibility of having
an infinite discrete state space (e.g., timed Petri
nets (Ajmone Marsan et al. 1995; David and
Alla 2004)). As a result, we can say that timed
DES automata are far more general than Alur-Dill
automata and represent a meaningful subclass of
hybrid systems.

FromDiscrete Event System to Hybrid
Systems by Fluidization

The computational complexity involved in the
analysis and optimization of real-scale problems
often becomes intractable with discrete event
models due to the very large number of reachable
states, and a technique that has shown to be
effective in reducing this complexity is called
fluidization (�Applications of Discrete-Event
Systems). It should be noted that the derivation
of a fluid (i.e., hybrid) model from a discrete
event one is yet an example of abstraction albeit
going in opposite direction with respect to the
examples discussed in the section “From Hybrid
Systems to Discrete Event System by Modeling
Abstraction” above.

The main drive that motivated the fluidization
approach derives from the observation that some
discrete event systems are “heavily populated”
in the sense that there are many identical items
in some component (e.g., clients in a queue).
Fluidization consists in replacing the integer
counter of the number of items by a real number
and in approximating the “fast” discrete event

OFF ON START 

δ = 1 
{ δ ≤ δb’ } 

. 
δ > δb’ ? δ = 1 

{ δ ≤ δa } 

. δ > δa ? 
δ = 1 

{ δ ≤ δb } 

.

δ > δb ? δ := 0 
δ := 0 

δ := 0 
δ := 0 

Discrete Event SystemsandHybrid Systems, Connections Between, Fig. 6 Alur-Dill automaton of the thermostat

http://dx.doi.org/10.1007/978-1-4471-5058-9_59
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dynamics that describe how the counter changes
by a continuous dynamics. This approach has
been successfully used to study the performance
optimization of fluid-queuing networks (Cas-
sandras and Lygeros 2006) or Petri net models
(Balduzzi et al. 2000; David and Alla 2004;
Silva and Recalde 2004) with applications in
domains such as manufacturing systems and
communication networks. We also remark that
in general, different fluid approximations are
necessary to describe the same system, depending
on its discrete state, e.g., in the manufacturing
domain, machines working or down, buffers full
or empty, and so on. Thus, the resulting model
can be better described as a hybrid model, where
different time-driven dynamics are associated to
different discrete states.

There are many advantages in using fluid ap-
proximations. First, there is the possibility of
considerable increase in computational efficiency
because the simulation of a fluid model can often
be performed much faster than that of its discrete
event counterpart. Second, fluid approximations
provide an aggregate formulation to deal with
complex systems, thus reducing the dimension
of the state space. Third, the resulting simple
structures often allow explicit computation of
performance measures. Finally, some design pa-
rameters in fluid models are continuous; hence, it
is possible to use gradient information to speed up
optimization and to perform sensitivity analysis
(Balduzzi et al. 2000): in many cases, it has also
been shown that fluid approximations do not in-
troduce significant errors when carrying out per-
formance analysis via simulation (� Perturbation
Analysis of Discrete Event Systems).

Cross-References

�Applications of Discrete-Event Systems
�Hybrid Dynamical Systems, Feedback Control
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�Models for Discrete Event Systems: An
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Abstract

Discrete optimal control is a branch of mathe-
matics which studies optimization procedures for
controlled discrete-time models – that is, the opti-
mization of a performance index associated with
a discrete-time control system. This entry gives
an introduction to the topic. The formulation of
a general discrete optimal control problem is de-
scribed, and applications to mechanical systems
are discussed.
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Definition

Discrete optimal control is a branch of math-
ematics which studies optimization procedures
for controlled discrete-time models, that is, the
optimization of a performance index associated
to a discrete-time control system.

Motivation

Optimal control theory is a mathematical disci-
pline with innumerable applications in both sci-
ence and engineering. Discrete optimal control is
concerned with control optimization for discrete-
time models. Recently, in discrete optimal control
theory, a great interest has appeared in develop-
ing numerical methods to optimally control real
mechanical systems, as for instance, autonomous
robotic vehicles in natural environments such as
robotic arms, spacecrafts, or underwater vehicles.

During the last years, a huge effort has been
made for the comprehension of the fundamen-
tal geometric structures appearing in dynamical
systems, including control systems and optimal
control systems. This new geometric understand-
ing of those systems has made possible the con-
struction of suitable numerical techniques for
integration. A collection of ad hoc numerical
methods are available for both dynamical and
control systems. These methods have grown up
accordingly with the needs in research coming
from different fields such as physics and en-
gineering. However, a new breed of ideas in
numerical analysis has started recently. They in-
corporate the geometry of the systems into the
analysis and that allows faster and more accurate
algorithms and with less spurious effects than the
traditional ones. All this gives birth to a new field
called Geometric Integration (Hairer et al. 2002).
For instance, numerical integrators for Hamil-
tonian systems should preserve the symplectic

structure underlying the geometry of the system.
If so, they are called symplectic integrators.

Another approach used by more and more au-
thors is based on the theory of discrete mechanics
and variational integrators to obtain geometric
integrators preserving some of the geometry of
the original system (Hussein et al. 2006; Marsden
and West 2001; Wendlandt and Marsden 1997a,b)
(see also the section “Discrete Mechanics”).
These geometric integrators are easily adapted
and applied to a wide range of mechani-
cal systems: forced or dissipative systems,
holonomically constrained systems, explicitly
time-dependent systems, reduced systems with
frictional contact, nonholonomic dynamics, and
multisymplectic field theories, among others.

As before, in optimal control theory, it is
necessary to distinguish two kinds of numerical
methods: the so-called direct and indirect meth-
ods. If we use direct methods, we first discretize
the state and control variables, control equations,
and cost functional, and then we solve a nonlinear
optimization problem with constraints given by
the discrete control equations, additional con-
straints, and boundary conditions (Bock and Plitt
1984; Bonnans and Laurent-Varin 2006; Hager
2001; Pytlak 1999). In this case, we typically
need to solve a system of the type (see the sec-
tion “Formulation of a General Discrete Optimal
Control Problem”)

8
<

:

minimize F.X/ X D .q0; : : : ; qN ; u1; : : : uN /
with ‰.X/ D 0

ˆ.X/ � 0

On the other hand, indirect methods consist of
solving numerically the boundary value problem
obtained from the equations after applying Pon-
tryagin’s Maximum Principle.

The combination of direct methods and
discrete mechanics allows to obtain numerical
control algorithms which are geometric structure
preserving and exhibit a good long-time behavior
(Bloch et al. 2013; Jiménez et al. 2013; Junge
and Ober-Blöbaum 2005; Junge et al. 2006;
Kobilarov 2008; Leyendecker et al. 2007; Ober-
Blöbaum 2008; Ober-Blöbaum et al. 2011).
Furthermore, it is possible to adapt many of
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the techniques used for continuous control
mechanical systems to the design of quantitative
and qualitative accurate numerical methods
for optimal control methods (reduction by
symmetries, preservation of geometric structures,
Lie group methods, etc.).

Formulation of a General Discrete
Optimal Control Problem

Let M be an n-dimensional manifold, x denote
the state variables in M for an agent’s environ-
ment, and u 2 U � R

m be the control or action
that the agent chooses to accomplish a task or
objective. Let fd .x; u/ 2 M be the resulting state
after applying the control u to the state x. For
instance, x may be the configuration of a vehicle
at time t and u its fuel consumption, and then
fd .x; u/ is the new configuration of the vehicle
at time t C h, with t; h > 0. Of course, we
want to minimize the fuel consumption. Hence,
the optimal control problem consists of finding
the cheapest way to move the system from a
given initial position to a final state. The problem
can be mathematically described as follows: find
a sequence of controls .u0; u1; : : : ; uN�1/ and a
sequence of states .x0; x1; : : : ; xN / such that

xkC1 D fd .k; xk; uk/; (1)

where xk 2 M , uk 2 U , and the total cost

Cd D
N�1X

kD0
Cd .k; xk; uk/C �d .N; xN / (2)

is minimized where �d is a function of the final
time and state at the final time (the terminal
payoff) and Cd is a function depending on the
discrete time, the state, and the control at each
intermediate discrete time k (the running payoff).

To solve the discrete optimal control prob-
lem determined by Eqs. (1) and (2), it is pos-
sible to use the classical Lagrangian multiplier
approach. In this case, we consider the control
equations (1) as constraint equations associating
a Lagrange multiplier to each constraint. Assume
for simplicity that M D R

n. Then, we construct
the augmented cost function

QCd D
N�1X

kD0

h
pkC1 .xkC1 � fd .k; xk; uk//

�Cd.k; xk; uk/
i

�ˆd .N; xN / (3)

where pk 2 R
n, k D 1; : : : ; N , are considered as

the Lagrange multipliers. The notation xy is used
for the scalar (inner) product x � y of two vectors
in R

n.
From the pseudo-Hamiltonian function

Hd.k; xk; pkC1; uk/ D pkC1fd .k; xk; uk/

�Cd.k; xk; uk/;

we deduce the necessary conditions for a con-
strained minimum:

xkC1 D @Hd

@p
.k; xk ; pkC1; uk/

D fd .k; xk; uk/ (4)

pk D @Hd

@q
.k; xk ; pkC1; uk/

D pkC1
@fd

@q
.k; xk; uk/

�@Cd
@q

.k; xk; uk/ (5)

0 D @Hd

@u
.k; xk ; pkC1; uk/

D pkC1
@fd

@u
.k; xk; uk/

�@Cd
@u

.k; xk; uk/ (6)

where 0 � k � N � 1. Moreover, we have some
boundary conditions

x0 is given and pN D �@ˆd
@q

.N; xN / (7)

The variable pk is called the costate of the system
and Eq. (5) is called the adjoint equation. Observe
that the recursion of xk given by Eq. (4) develops
forward in the discrete time, but the recursion of
the costate variable is backward in the discrete
time.
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In the sequel, it is assumed the following
regularity condition:

det

�
@2Hd

@ua@ub

�
6D 0

where 1 � a; b � m, and .ua/ 2 U 	 R
m. Ap-

plying the implicit function theorem, we obtain
from Eq. (1) that locally uk D g.k; xk ; pkC1/.
Defining the function

QHd W Z � R
2n �! R

.k; qk; pkC1/ 7�! Hd.k; qk; pkC1; uk/

Equations (4) and (5) are rewritten as the follow-
ing discrete Hamiltonian system:

xkC1 D @ QHd

@p
.k; xk; pkC1/ (8)

pk D @ QHd

@q
.k; xk; pkC1/ (9)

The expression of the solutions of the optimal
control problem as a discrete Hamiltonian system
(under some regularity properties) is important
since it indicates that the discrete evolution is
preserving symplecticity. A simple proof of this
fact is the following (de León et al. (2007)).
Construct the following function

Gk.xk; xkC1; pkC1/ D QHd.k; xk; pkC1/

�pkC1xkC1;

with 0 � k � N � 1. For each fixed k:

dGk D @ QHd

@q
.k; xk; pkC1/ dxk

C@ QHd

@p
.k; xk; pkC1/ dpkC1

�pkC1dxkC1 � xkC1dpkC1 :

Thus, along solutions of Eqs. (8) and (9), we have
that dGk jsolutions D pkdxk�pkC1dxkC1 which
implies dxk ^ dpk D dxkC1 ^ dpkC1.

In the next section, we will study the case of
discrete optimal control of mechanical systems.

First, we will need an introduction to discrete
mechanics and variational integrators.

Discrete Mechanics

Let Q be an n-dimensional differentiable man-
ifold with local coordinates .qi /, 1 � i �
n. We denote by TQ its tangent bundle with
induced coordinates .qi ; Pqi /. Let LWTQ ! R

be a Lagrangian function; the associated Euler–
Lagrange equations are given by

d

dt

�
@L

@ Pqi
�

� @L

@qi
D 0; 1 � i � n: (10)

These equations are a system of implicit second-
order differential equations. Assume that the La-

grangian is regular, that is, the matrix
�

@2L
@ Pqi @ Pqj

�

is non-singular. It is well known that the origin
of these equations is variational (see Marsden
and West 2001). Variational integrators retain this
variational character and also some of the key
geometric properties of the continuous system,
such as symplecticity and momentum conser-
vation (see Hairer et al. 2002 and references
therein). In the following, we summarize the
main features of this type of numerical inte-
grators (Marsden and West 2001). A discrete
Lagrangian is a map Ld WQ � Q ! R, which
may be considered as an approximation of the in-
tegral action defined by a continuous Lagrangian
LWTQ ! R: Ld .q0; q1/ 
 R h

0 L.q.t/; Pq.t// dt
where q.t/ is a solution of the Euler–Lagrange
equations for L with q.0/ D q0, q.h/ D q1, and
h > 0 being enough small.

Remark 1 The Cartesian product Q � Q

is equipped with an interesting differential
structure, called Lie groupoid, which allows the
extension of variational calculus to more general
settings (see Marrero et al. 2006, 2010 for more
details).

Define the action sum Sd WQNC1 ! R,
corresponding to the Lagrangian Ld by Sd DPN

kD1 Ld .qk�1; qk/; where qk 2 Q for 0 � k �
N and N is the number of steps. The discrete
variational principle states that the solutions of
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the discrete system determined by Ld must ex-
tremize the action sum given fixed endpoints q0
and qN . By extremizingSd over qk , 1 � k � N�
1, we obtain the system of difference equations

D1Ld.qk; qkC1/CD2Ld.qk�1; qk/ D 0; (11)

or, in coordinates,

@Ld

@xi
.qk; qkC1/C @Ld

@yi
.qk�1; qk/ D 0;

where 1 � i � n; 1 � k � N � 1, and x; y
denote the n-first and n-second variables of the
function Ld , respectively.

These equations are usually called the discrete
Euler–Lagrange equations. Under some regu-
larity hypotheses (the matrix D12Ld .qk; qkC1/ is
regular), it is possible to define a (local) discrete
flow‡Ld WQ�Q ! Q�Q, by‡Ld .qk�1; qk/ D
.qk; qkC1/ from (11). Define the discrete Legen-
dre transformations associated to Ld as

F
�Ld WQ �Q ! T �Q

.q0; q1/ 7�! .q0;�D1Ld.q0; q1//;

F
CLd WQ �Q ! T �Q

.q0; q1/ 7�! .q1;D2Ld .q0; q1// ;

and the discrete Poincaré–Cartan 2-form !d D
.FCLd/�!Q D .F�Ld /�!Q, where !Q is the
canonical symplectic form on T �Q. The discrete
algorithm determined by ‡Ld preserves the sym-
plectic form !d , i.e., ‡�Ld !d D !d . Moreover, if
the discrete Lagrangian is invariant under the di-
agonal action of a Lie group G, then the discrete
momentum map Jd WQ �Q ! g� defined by

hJd .qk; qkC1/; �i D hD2Ld.qk; qkC1/;

�Q.qkC1/i

is preserved by the discrete flow. Therefore, these
integrators are symplectic-momentum preserv-
ing. Here, �Q denotes the fundamental vector
field determined by � 2 g, where g is the Lie
algebra of G. As stated in Marsden and West
(2001), discrete mechanics is inspired by discrete

formulations of optimal control problems (see
Cadzow 1970; Hwang and Fan 1967; Jordan and
Polak 1964).

Discrete Optimal Control
of Mechanical Systems

Consider a mechanical system whose configu-
ration space is an n-dimensional differentiable
manifold Q and whose dynamics is determined
by a LagrangianL W TQ ! R. The control forces
are modeled as a mapping f W TQ�U ! T �Q,
where f .vq; u/ 2 T �q Q, vq 2 TqQ and u 2 U ,
being U the control space. Observe that this last
definition also covers configuration and velocity-
dependent forces such as dissipation or friction
(see Ober-Blöbaum et al. 2011).

The motion of the mechanical system is de-
scribed by applying the principle of Lagrange–
D’Alembert, which requires that the solutions
q.t/ 2 Q must satisfy

ı

Z T

0

L.q.t/; Pq.t// dt

C
Z T

0

f .q.t/; Pq.t/; u.t// ıq.t/ dt D 0;

(12)

where .q ; Pq/ are the local coordinates of TQ and
where we consider arbitrary variations ıq.t/ 2
Tq.t/Q with ıq.0/ D 0 and ıq.T / D 0 (since we
are prescribing fixed initial and final conditions
.q.0/; Pq.0// and .q.T /; Pq.T //).

As we consider an optimal control problem,
the forces f must be chosen, if they exist, as the
ones that extremize the cost functional:

Z T

0

C.q.t/; Pq.t/; u.t// dt

Cˆ.q.T /; Pq.T /; u.T //; (13)

where C W TQ � U ! R.
The optimal equations of motion can now be

derived using Pontryagin’s Maximum Principle.
In general, it is not possible to explicitly inte-
grate these equations. Then, it is necessary to
apply a numerical method. In this work, using
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discrete variational techniques, we first discretize
the Lagrange–d’Alembert principle and then the
cost functional. We obtain a numerical method
that preserves some geometric features of the
original continuous system as described in the
sequel.

Discretization of the Lagrangian
and Control Forces
To discretize this problem, we replace the tangent
space TQ by the Cartesian product Q � Q and
the continuous curves by sequences q0; q1; : : : qN
(we are using N steps, with time step h fixed, in
such a way tk D kh and Nh D T ). The discrete
Lagrangian Ld W Q � Q ! R is constructed as
an approximation of the action integral in a single
time step (see Marsden and West 2001), that is,

Ld.qk; qkC1/ 

Z .kC1/h

kh

L.q.t/; Pq.t// dt:

We choose the following discretization for the
external forces: fḋ W Q�Q�U ! T �Q, where
U � R

m; m � n, such that

f �d .qk; qkC1; uk/ 2 T �qkQ;
f Cd .qk; qkC1; uk/ 2 T �qkC1

Q:

f Cd and f �d are right and left discrete forces (see
Ober-Blöbaum et al. 2011).

Discrete Lagrange–d’Alembert Principle
Given such forces, we define the discrete
Lagrange–d’Alembert principle, which seeks
sequences fqkgNkD0 that satisfy

ı

N�1X

kD0
Ld .qk; qkC1/

C
N�1X

kD0

�
f �d .qk; qkC1; uk/ ıqk

Cf Cd .qk; qkC1; uk/ ıqkC1
�

D 0;

for arbitrary variations fıqkgNkD0 with ıq0 D
ıqN D 0. After some straightforward

manipulations, we arrive to the forced discrete
Euler–Lagrange equations

D2Ld.qk�1; qk/ C D1Ld .qk; qkC1/

C f Cd .qk�1; qk; uk�1/

C f �d .qk; qkC1; uk/ D 0;

(14)

with k D 1; : : : ; N � 1.

Boundary Conditions
For simplicity, we assume that the boundary con-
ditions of the continuous optimal control problem
are given by q.0/ D x0, Pq.0/ D v0, q.T / D
xT , Pq.T / D vT . To incorporate these conditions
to the discrete setting, we use both the continu-
ous and discrete Legendre transformations. From
Marsden and West (2001), given a forced system,
we can define the discrete momenta

�k D �D1Ld .qk; qkC1/� f �d .qk; qkC1;uk/;

�kC1 D D2Ld .qk; qkC1/C f Cd .qk; qkC1; uk/:

From the continuous Lagrangian, we have the
momenta

p0 D FL.x0; v0/ D .x0;
@L

@v
.x0; v0//

pT D FL.xT ; vT / D
�
xT ;

@L

@v
.xT ; vT /

�

Therefore, the natural choice of boundary condi-
tions is

x0 D q0; xT D qN

FL.x0; v0/ D �D1Ld .q0; q1/ � f �d .q0;q1; u0/
FL.xT ; vT / D D2Ld .qN�1; qN /

Cf Cd .qN�1; qN ; uN�1/

that we add to the discrete optimal control
problem.
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Discrete Cost Function
We can also approximate the cost functional (13)
in a single time step h by

Cd.qk; qkC1; uk/



Z .kC1/h

kh

C.q.t/; Pq.t/; u.t// dt;

yielding the discrete cost functional:

N�1X

kD0
Cd.qk; qkC1; uk/Cˆd.qN�1; qN ; uN�1/:

Discrete Optimal Control Problem
With all these elements, we have the following
discrete optimal control problem:

min
N�1X

kD0
Cd .qk; qkC1; uk/

Cˆd .qN�1; qN ; uN�1/
subject to

D2Ld.qk�1; qk/CD1Ld .qk; qkC1/
Cf Cd .qk�1; qk; uk�1/C f �d .qk; qkC1;uk/ D 0;

x0 D q0; xT D qN
@L

@v
.x0; v0/ D �D1Ld .q0; q1/ � f �d .q0; q1;u0/

@L

@v
.xT ; vT / D D2Ld .qN�1; qN /

Cf Cd .qN�1; qN ; uN�1/

with k D 1; : : : ; N � 1 (see Jiménez and Martín
de Diego 2010; Jiménez et al. 2013 for a mod-
ification of these equations admitting piecewise
controls).

The system now is a constrained nonlinear
optimization problem, that is, it corresponds
to the minimization of a function subject to
algebraic constraints. The necessary conditions
for optimality are derived applying nonlinear
programming optimization. For the concrete
implementation, it is possible to use sequential
quadratic programming (SQP) methods to
numerically solve the nonlinear optimization
problem (Ober-Blöbaum et al. 2011).

Optimal Control Systems
with Symmetries

In many interesting cases, the continuous optimal
control of a mechanical system is defined on a Lie
group and the Lagrangian, cost function, control
forces are invariant under the group action. The
goal is again the same as in the previous section,
that is, to move the system from its current state
to a desired state in an optimal way. In this
particular case, it is possible to adapt the contents
of the section “Discrete Mechanics” in a similar
way to the continuous case (from the standard
Euler–Lagrange equations to the Euler–Poincaré
equations) and to produce the so-called Lie group
variational integrators. These methods preserve
the Lie group structure avoiding the use of local
charts, projections, or constraints. Based on these
methods, for the case of controlled mechanical
systems, we produce the discrete Euler–Poincaré
equations with controls and the discrete cost
function. Consequently, it is possible to deduce
necessary optimality conditions for this class of
invariant systems (see Bloch et al. 2009; Bou-
Rabee and Marsden 2009; Hussein et al. 2006;
Kobilarov and Marsden 2011).
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Abstract

Distributed model predictive control refers to a
class of predictive control architectures in which
a number of local controllers manipulate a subset
of inputs to control a subset of outputs (states)
composing the overall system. Different levels
of communication and (non)cooperation exist, al-
though in general the most compelling properties
can be established only for cooperative schemes,
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those in which all local controllers optimize local
inputs to minimize the same plantwide objective
function. Starting from state-feedback algorithms
for constrained linear systems, extensions are dis-
cussed to cover output feedback, reference target
tracking, and nonlinear systems. An outlook of
future directions is finally presented.

Keywords

Constrained large-scale systems; Cooperative
control systems; Interacting dynamical systems

Introduction andMotivations

Large-scale systems (e.g., industrial processing
plants, power generation networks, etc.)
usually comprise several interconnected units
which may exchange material, energy, and
information streams. The overall effectiveness
and profitability of such large-scale systems
depend strongly on the level of local effectiveness
and profitability of each unit but also on the level
of interactions among the different units. An
overall optimization goal can be achieved by
adopting a single centralized model predictive
control (MPC) system (Rawlings and Mayne
2009) in which all control input trajectories are
optimized simultaneously to minimize a common
objective.

This choice is often avoided for several rea-
sons. When the overall number of inputs and
states is very large, a single optimization problem
may require computational resources (CPU time,
memory, etc.) that are not available and/or com-
patible with the system’s dynamics. Even if these
limitations do no hold, it is often the case that
organizational reasons require the use of smaller,
local controllers, which are easier to coordinate
and maintain.

Thus, industrial control systems are often de-
centralized, i.e., the overall system is divided into
(possibly mildly coupled) subsystems and a local
controller is designed for each unit disregard-
ing the interactions from/to other subsystems.
Depending on the extent of dynamic coupling,
it is well known that the performance of such
decentralized systems may be poor, and stability

properties may be even lost. Distributed predic-
tive control architectures arise to meet perfor-
mance specifications (stability at minimum) sim-
ilar to centralized predictive control systems, still
retaining the modularity and local character of the
optimization problems solved by each controller.

Definitions and Architectures
for Constrained Linear Systems

SubsystemDynamics, Constraints,
and Objectives
We start the description of distributed MPC al-
gorithms by considering an overall discrete-time
linear time-invariant system in the form:

xC D Ax C Bu; y D Cx (1)

in which x 2 R
n and xC 2 R

n are, respectively,
the system state at a given time and at a successor
time: u 2 R

m is the input: and y 2 R
p is the

output.
We consider that the overall system (1) is

divided into M subsystems, Si , defined by (dis-
joint) sets of inputs and outputs (states), and each
Si is regulated by a local MPC. For each Si , we
denote by yi 2 R

pi its output, by xi 2 R
ni

its state, and by ui 2 R
mi the control input

computed by the i th MPC. Due to interactions
among subsystems, the local output yi (and state
xi ) is affected by control inputs computed by
(some) other MPCs. Hence, the dynamics of Si
can be written as

xCi D Aixi C Biui C
X

j2Ni

Bij uj ; yi D Cixi

(2)
in which Ni denotes the indices of neighbors
of Si , i.e., the subsystems whose inputs have
an influence on the states of Si . To clarify the
notation, we depict in Fig. 1 the case of three
subsystems, with neighbors N1 D f2; 3g, N2 D
f1g, and N3 D f2g.

Without loss of generality, we assume that
each pair (Ai , Bi ) is stabilizable. Moreover, the
state of each subsystem xi is assumed known (to
the i th MPC) at each decision time. For each
subsystem Si , inputs are required to fulfill (hard)
constraints:
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Interconnected systems and neighbors definition

ui 2 Ui ; i D 1; : : : ;M (3)

in which Ui are polyhedrons containing the
origin in their interior. Moreover, we consider

a quadratic stage cost function `i .x; u/
�D

1
2
.x0Qix C u0Riu/ and a terminal cost function

Vf i .x/
�D 1

2
x0Pix, with Qi 2 R

ni�ni , Ri 2
R
mi�mi , and Pi 2 R

ni�ni positive definite.
Without loss of generality, let xi (0) be the state
of Si at the current decision time. Consequently,
the finite-horizon cost function associated with
Si is given by:

Vi .xi .0/;ui ; fuj gj2Ni /
�D
N�1X

iD0
`i .xi .k/;ui .k//

CVf i .xi .N // (4)

in which ui D .ui .0/; ui .1/; : : :; ui .N � 1// is
a finite-horizon sequence of control inputs of
Si , and uj is similarly defined as a sequence
of control inputs of each neighbor j 2 Ni .
Notice that Vi.�/ is a function of neighbors’ input
sequences, fuj gj2Ni , due to the dynamics (2).

Decentralized, Noncooperative, and
Cooperative Predictive Control
Architectures
Several levels of communications and (non) co-
operation can exist among the controllers, as
depicted in Fig. 2 for the case of two subsystems.

In decentralized MPC architectures, interac-
tions among subsystems are neglected by forcing
Ni D ¿ for all i even if this is not true.
That is, the subsystem model used in each local
controller, instead of (2), is simply

xCi D Aixi C Biui ; yi D Cixi (5)

Therefore, an inherent mismatch exists between
the model used by the local controllers (5) and
the actual subsystem dynamics (2). Each local
MPC solves the following finite-horizon optimal
control problem (FHOCP):

P
De
i W min

ui
Vi .�/ s.t. ui 2 U

N
i ;Ni D ¿ (6)

We observe that in this case, Vi.�/ depends only
on local inputs, ui , because it is assumed that Ni

= ¿. Hence, each P
De
i is solved independently

of the neighbors computations, and no iterations
are performed. Clearly, depending on the actual
level of interactions among subsystems, decen-
tralized MPC architectures can perform poorly,
namely, being non-stabilizing. Performance cer-
tifications are still possible resorting to robust
stability theory, i.e., by treating the neglected dy-
namics

P
j2Ni

Bij uj as (bounded) disturbances
(Riverso et al. 2013).

In noncooperative MPC architectures, the
existing interactions among the subsystems are
fully taken into account through (2). Given a
known value of the neighbors’ control input
sequences, fuj gj2Ni , each local MPC solves the
following FHOCP:

P
NCDi
i W min

ui
Vi .�/ s.t. ui 2 U

N
i (7)

The obtained solution can be exchanged with
the other local controllers to update the assumed
neighbors’ control input sequences, and iterations
can be performed. We observe that this approach
is noncooperative because local controllers try
to optimize different, possibly competing, objec-
tives. In general, no convergence is guaranteed in
noncooperative iterations, and when this scheme
converges, it leads to a so-called Nash equilib-
rium. However, the achieved local control inputs
do not have proven stability properties (Rawlings
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DistributedModel Predictive Control, Fig. 2 Three distributed control architectures: decentralized MPC, noncoop-
erative MPC, and cooperative MPC

and Mayne 2009, §6.2.3). To ensure closed-loop
stability, variants can be formulated by including
a sequential solution of local MPC problems,
exploiting the notion (if any) of an auxiliary
stabilizing decentralized control law non-iterative
noncooperative schemes are also proposed, in
which stability guarantees are provided by ensur-
ing a decrease of a centralized Lyapunov function
at each decision time.

Finally, in cooperative MPC architectures,
each local controller optimizes a common
(plantwide) objective:

V.x.0/;u/
�D

MX

iD1
�iVi .xi .0/;ui ; fuj gj2Ni /

(8)
in which �i > 0, for all i , are given scalar weights

and u
�D .u1; : : : ;uM/ is the overall control

sequence. In particular, given a known value
of other subsystems’ control input sequences,
fuj gj¤i , each local MPC solves the following
FHOCP:

P
CDi
i W min

ui
V .�/ s.t. ui 2 U

N
i (9)

As in noncooperative schemes, the obtained so-
lution can be exchanged with the other local con-
trollers, and further iterations can be performed.
Notice that in P

CDi
i , the (possible) implications

of the local control sequence ui to all other
subsystems’ objectives, Vj .�/ with j ¤ i are
taken into account, as well as the effect of the
neighbors’ sequences fuj gj2Ni on the local state
evolution through (2). Clearly, this approach is
termed cooperative because all controllers com-
pute local inputs to minimize a global objective.
Convergence of cooperative iterations is guaran-
teed, and under suitable assumptions the con-
verged solution is the centralized Pareto-optimal
solution (Rawlings and Mayne 2009, §6.2.4).
Furthermore, the achieved local control inputs
have proven stabilizing properties (Stewart et al.
2010). Variants are also proposed in which each
controller still optimizes a local objective, but
cooperative iterations are performed to ensure a
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decrease of the global objective at each decision
time (Maestre et al. 2011).

Cooperative DistributedMPC

Cooperative schemes are preferable over nonco-
operative schemes from many points of view,
namely, in terms of superior theoretical guaran-
tees and no larger computational requirements. In
this section we focus on a prototype cooperative
distributed MPC algorithm adapted from Stewart
et al. (2010), highlighting the required compu-
tations and discussing the associated theoretical
properties and guarantees.

Basic Algorithm
We present in Algorithm 1 a streamlined descrip-
tion of a cooperative distributed MPC algorithm,
in which each local controller solves PCDi

i , given
a previously computed value of all other subsys-
tems’ input sequences. For each local controller,
the new iterate is defined as a convex combination
of the newly computed solution with the previous
iteration. A relative tolerance is defined, so that
cooperative iterations stop when all local con-
trollers have computed a new iterate sufficiently
close to the previous one. A maximum number
of cooperative iterations can also be defined, so
that a finite bound on the execution time can be
established.

Algorithm 1 (Cooperative MPC). Require:

Overall warm start u0
�D .u01; : : : ;u

0
M /, convex

step weights wi > 0, s.t.
PM

iD1 wi D 1, relative
tolerance parameter " > 0, maximum cooperative
iterations cmax

1:Initialize: c 0 and ei  2
 for i = 1, . . . ,M .
2:while .c < cmax/ and (9i jei > 
) do
3: c c C 1.
4: for i D 1 to M do
5: Solve P

CDi
i in (9) obtaining u�

i .
6: end for
7: for i D 1 to M do
8: Define new iterate: uci

�D wiu�

i C .1� wi /uc�1
i .

9: Compute convergence error: ei
�D kuci �uc�1

i kkuc�1
i k .

10: end for
11:end while
12:return Overall solution: uc

�D .uc1; : : : ; u
c
M /.

We observe that Step 8 implicitly defines the
new overall iterate as a convex combination of the
overall solutions achieved by each controller, that
is,

uc D
MX

iD1
wi .uc�11 ; : : : ;u�i ; : : : ;uc�1M / (10)

It is also important to observe that Steps 5, 8, and
9 are performed separately by each controller.

Properties
The basic cooperative MPC described in Algo-
rithm 1 enjoys several nice theoretical and practi-
cal properties, as detailed (Rawlings and Mayne
2009, §6.3.1):
1. Feasibility of each iterate: uc�1i 2 U

N
i implies

uci 2 U
N
i , for all i D 1, . . . , M and c 2 I>0.

2. Cost decrease at each iteration: V.x.0/;uc/ �
V.x.0/;uc�1/ for all c 2 I>0.

3. Cost convergence to the centralized optimum:
limc!1 V.x.0/;uc/ D minu2UN V .x.0/; u/,
in which U

�D U1 � � � � � UM .
Resorting to suboptimal MPC theory, the

above properties (1) and (2) can be exploited
to show that the origin of closed-loop system

xC D Ax C B�c.x/;with �c.x/
�D uc.0/ (11)

is exponentially stable for any finite c 2 I>0. This
result is of paramount (practical and theoretical)
importance because it ensures closed-loop
stability using cooperative distributed MPC
with any finite number of cooperative itera-
tions. As in centralized MPC based on the
solution of a FHOCP (Rawlings and Mayne
2009, §2.4.3), particular care of the terminal
cost function Vf i .�/ is necessary, possibly
in conjunction with a terminal constraint
xi .N / 2 Xf i . Several options can be adopted
as discussed, e.g., in Stewart et al. (2010,
2011).

Moreover, the results in Pannocchia et al.
(2011) can be used to show inherent robust
stability to system’s disturbances and mea-
surement errors. Therefore, we can confidently
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state that well-designed distributed cooperative
MPC and centralized MPC algorithms share
the same guarantees in terms of stability and
robustness.

Complementary Aspects

We discuss in this section a number of comple-
mentary aspects of distributed MPC algorithms,
omitting technical details for the sake of space.

Coupled Input Constraints and State
Constraints
Convergence of the solution of cooperative
distributed MPC towards the centralized (global)
optimum holds when input constraints are in the
form of (3), i.e., when no constraints involve
inputs of different subsystems. Sometimes this
assumption fails to hold, e.g., when several
units share a common utility resource, that is, in
addition to (3) some constraints involve inputs of
more than one unit. In this situation, it is possible
that Algorithm 1 remains stuck at a fixed point,
without improving the cost, even if it is still away
from the centralized optimum (Rawlings and
Mayne 2009, §6.3.2). It is important to point out
that this situation is harmless from a closed-
loop stability and robustness point of view.
However, the degree of suboptimality in
comparison with centralized MPC could be
undesired from a performance point of view.
To overcome this situation, a slightly different
partitioning of the overall inputs into non-disjoint
sets can be adopted (Stewart et al. 2010).

Similarly the presence of state constraints,
even in decentralized form xi 2 Xi (with i D
1; : : :;M ), can prevent convergence of a cooper-
ative algorithm towards the centralized optimum.
It is also important to point out that the local MPC
controlling Si needs to consider in the optimal
control problem, besides local state constraints
xi 2 Xi , also state constraints of all other
subsystems Sj such that i 2 Nj . This ensures
feasibility of each iterate and cost reduction,
hence closed-loop stability (and robustness) can
be established.

Output Feedback and Offset-Free Tracking
When the subsystem state cannot be directly mea-
sured, each local controller can use a local state
estimator, namely, a Kalman filter (or Luenberger
observer). Assuming that the pair (Ai , Ci ) is
detectable, the subsystem state estimate evolves
as follows:

OxCi D Ai OxiCBiuiC
X

j2Ni

Bij uj CLi.yi � Ci Oxi /
(12)

in which Li 2 R
ni�pi is the local Kalman predic-

tor gain, chosen such that the matrix .Ai �LiCi /
is Schur. Stability of the closed-loop origin can be
still established using minor variations (Rawlings
and Mayne 2009, §6.3.3).

When offset-free control is sought, each lo-
cal MPC can be equipped with an integrating
disturbance model similarly to centralized offset-
free MPC algorithms (Pannocchia and Rawlings
2003). Given the current estimate of the subsys-
tem state and disturbance, a target calculation
problem is solved to compute the state and input
equilibrium pair such that (a subset of) output
variables correspond to given set points. Such a
target calculation problem can be performed in
a centralized fashion or in a distributed manner,
although in the latter case several issues arise
and associated precautions should be taken into
account (Rawlings and Mayne 2009, §6.3.4).

Distributed Control for Nonlinear Systems
Several nonlinear distributed MPC algorithms
have been recently proposed (Liu et al. 2009;
Stewart et al. 2011). Some schemes require the
presence of a coordinator, thus introducing a
hierarchical structure (Scattolini 2009). In Stew-
art et al. (2011), instead, a cooperative distributed
MPC architecture similar to the one discussed in
the previous section has been proposed for non-
linear systems. Each local controller considers
the following subsystem model:

xCi D fi .xi ; ui ; uj /; with j 2 Ni

yi D hi.xi /
(13)
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A problem (formally) identical to P
CDi
i in (9)

is solved by each controller and cooperative
iterations are performed. However, non-
convexity of P

CDi
i can make a convex combi-

nation step similar to Step 8 in Algorithm 1 not
necessarily a cost improvement. As a workaround
in such cases, Stewart et al. (2011) propose
deleting the least effective control sequence
computed by a local controller (repeating this
deletion if necessary). In this way it is possible to
show a monotonic decrease of the cost function
at each cooperative iteration.

Summary and Future Directions

We presented the basics and foundations of
distributed model predictive control (DMPC)
schemes, which prove useful and effective in the
control of large-scale systems for which a single
centralized predictive controller is not regarded
as a possible or desirable solution, e.g., due to or-
ganizational requirements and/or computational
limitations. In DMPCs, the overall controlled
system is organized into a number of subsystems,
in general featuring some dynamic couplings, and
for each subsystem a local MPC is implemented.

Different flavors of communication and coop-
eration among the local controllers can be chosen
by the designer, ranging from decentralized to
cooperative schemes. In cooperative DMPC
algorithms, the dynamic interactions among
the subsystems are fully taken into account,
with limited communication overheads, and the
same overall objective can be optimized by each
local controller. When cooperative iterations
are performed upon convergence, such DMPC
algorithms achieve the same global minimum
control sequence as that of the centralized MPC.
Termination prior to convergence does not hinder
stability and robustness guarantees.

In this contribution, after discussing an
overview on possible communication and
cooperation schemes, we addressed the design of
a state-feedback and distributed MPC algorithm
for linear systems subject to input constraints,
with convergence and stability guarantees. Then,

we discussed various extensions to coupled
input constraints and state constraints, output
feedback, reference target tracking, and nonlinear
systems.

The research on DMPC algorithms has been
extensive during the last decade, and some excel-
lent review papers have been recently made avail-
able (Christofides et al. 2013; Scattolini 2009).
Still, we expect DMPC to attract research efforts
in various directions, as briefly discussed:
• Nonlinear DMPC algorithms (Liu et al. 2009;

Stewart et al. 2011) will require improvements
in terms of global optimum goals.

• Economic DMPC and tracking DMPC (Fer-
ramosca et al. 2013) will replace current for-
mulations designed for regulation around the
origin, especially for nonlinear systems.

• Reconfigurability, e.g., addition/deletion of
new local controllers, is an ongoing topic, and
preliminary results available for decentralized
architectures (Riverso et al. 2013) may be
extended to cooperative and noncooperative
schemes. It is also desirable to improve
the resilience of DMPC to communication
disruptions (Alessio et al. 2011).

• Preliminary results on constrained distributed
estimation (Farina et al. 2012) will draw at-
tention and require further insights to bridge
the gap between constrained estimation and
control algorithms.

• Specific optimization algorithms tailored to
DMPC local problems (Doan et al. 2011)
will increase the effectiveness of DMPC al-
gorithms, as well as distributed optimization
approaches will be exploited even for dynam-
ically uncoupled systems.

Cross-References

�Cooperative Solutions to Dynamic Games
�Nominal Model-Predictive Control
�Optimization Algorithms for Model Predictive

Control
�Tracking Model Predictive Control

http://dx.doi.org/10.1007/978-1-4471-5058-9_31
http://dx.doi.org/10.1007/978-1-4471-5058-9_1
http://dx.doi.org/10.1007/978-1-4471-5058-9_9
http://dx.doi.org/10.1007/978-1-4471-5058-9_3
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Recommended Reading

General overviews on DMPC can be found in
Christofides et al. (2013), Rawlings and Mayne
(2009), and Scattolini (2009). DMPC algorithms
for linear systems are discussed in Alessio et al.
(2011), Ferramosca et al. (2013), Riverso et al.
(2013), Stewart et al. (2010), and Maestre et al.
(2011), and for nonlinear systems in Farina et al.
(2012), Liu et al. (2009), and Stewart et al.
(2011). Supporting results for implementation
and robustness theory can be found in Doan et al.
(2011), Pannocchia and Rawlings (2003), and
Pannocchia et al. (2011).
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Abstract

The paper provides an overview of the distributed
first-order optimization methods for solving a
constrained convex minimization problem, where
the objective function is the sum of local objec-
tive functions of the agents in a network. This
problem has gained a lot of interest due to its
emergence in many applications in distributed
control and coordination of autonomous agents
and distributed estimation and signal processing
in wireless networks.

Keywords

Collaborative multi-agent systems; Consensus
protocol; Gradient-projection method; Net-
worked systems

Introduction

There has been much recent interest in distributed
optimization pertinent to optimization aspects
arising in control and coordination of networks
consisting of multiple (possibly mobile) agents
and in estimation and signal processing in sensor
networks (Bullo et al. 2009; Hendrickx 2008;
Kar and Moura 2011; Martinoli et al. 2013;
Mesbahi and Egerstedt 2010; Olshevsky 2010).
In many of these applications, the network
system goal is to optimize a global objective
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through local agent-based computations and
local information exchange with immediate
neighbors in the underlying communication
network. This is motivated mainly by the
emergence of large-scale data and/or large-
scale networks and new networking applications
such as mobile ad hoc networks and wireless
sensor networks, characterized by the lack of
centralized access to information and time-
varying connectivity. Control and optimization
algorithms deployed in such networks should
be completely distributed (relying only on local
observations and information), robust against
unexpected changes in topology (i.e., link or node
failures) and against unreliable communication
(noisy links or quantized data) (see �Networked
Systems). Furthermore, it is desired that the
algorithms are scalable in the size of the
network.

Generally speaking, the problem of distributed
optimization consists of three main components:
1. The optimization problem that the network of

agents wants to solve collectively (specifying
an objective function and constraints)

2. The local information structure, which de-
scribes what information is locally known or
observable by each agent in the system (who
knows what and when)

3. The communication structure, which specifies
the connectivity topology of the under-
lying communication network and other
features of the communication environ-
ment
The algorithms for solving such global

network problems need to comply with the
distributed knowledge about the problem among
the agents and obey the local connectivity
structure of the communication network
(�Networked Systems; �Graphs for Modeling
Networked Interactions).

Networked SystemProblem

Given a set N D f1; 2; : : :; ng of agents (also
referred to as nodes), the global system problem
has the following form:

minimize
subject to

Pn
iD1 fi .x/
x 2 X: (1)

Each fi : Rd ! R is a convex function which
represents the local objective of agent i , while
X 	 Rd is a closed convex set. The function
fi is a private function known only to agent i ,
while the set X is commonly known by all agents
i 2 N . The vector x 2 X represents a global
decision vector which the agents want to optimize
using local information. The problem is a simple
constrained convex optimization problem, where
the global objective function is given by the sum
of the individual objective functions fi .x/ of the
agents in the system. As such, the objective func-
tion is the sum of non-separable convex functions
corresponding to multiple agents connected over
a network.

As an example, consider the problem arising
in support vector machines (SVMs), which are
a popular tool for classification problems. Each

agent i has a set Si D
n�
a
.i/
j ; b

.i/
j

�omi
jD1 of mi

sample-label pairs, where a.i/j 2 Rd is a data

point and b.i/j 2 fC1;�1g is its corresponding
(correct) label. The number mi of data points for
every agent i is typically very large (hundreds
of thousands). Without sharing the data points,
the agents want to collectively find a hyperplane
that separates all the data, i.e., a hyperplane that
separates (with a maximal separation distance)
the data with label 1 from the data with label �1
in the global data set

Sn
iD1 Si . Thus, the agents

need to solve an unconstrained version of the
problem (1), where the decision variable x 2 Rd

is a hyperplane normal and the objective function
fi of agent i is given by

fi .x/D �

2
kxk2C

miX

jD1
max

n
0; 1 � b.i/j

�
x0a.i/j

�o
;

where � is a regularization parameter (common
to all agents).

The network communication structure is rep-
resented by a directed (or undirected) graphG D
.N;E/, with the vertex set N and the edge set
E . The network is used as a medium to diffuse

http://dx.doi.org/10.1007/978-1-4471-5058-9_211
http://dx.doi.org/10.1007/978-1-4471-5058-9_211
http://dx.doi.org/10.1007/978-1-4471-5058-9_212
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the information from an agent to every other
agent through local agent interactions over time
(�Graphs for Modeling Networked Interactions).
To accommodate the information spread through
the entire network, it is typically assumed that the
network communication graph G D .N;E/ is
strongly connected (�Dynamic Graphs, Connec-
tivity of). In the graph, a link (i , j ) means that
agent i 2 N receives the relevant information
from agent j 2 N .

Distributed Algorithms

The algorithms for solving problem (1) are con-
structed by using standard optimization tech-
niques in combination with a mechanism for
information diffusion through local agent inter-
actions. A control point of view for the design
of distributed algorithms has a nice exposition in
Wang and Elia (2011).

One of the existing optimization techniques
is the so-called incremental method, where the
information is processed along a directed cycle
in the graph. In this approach the estimate is
passed from an agent to its neighbor (along the
cycle), and only one agent updates at a time
(Bertsekas 1997; Blatt et al. 2007; Johansson
2008; Johansson et al. 2009; Nedić and Bertsekas
2000, 2001; Nedić et al. 2001; Rabbat and Nowak
2004; Ram et al. 2009; Tseng 1998); for a de-
tailed literature on incremental methods, see the
textbooks Bertsekas (1999) and Bertsekas et al.
(2003).

More recently, one of the techniques that
gained popularity as a mechanism for information
diffusion is a consensus protocol, in which
the agent diffuses the information through the
network through locally weighted averaging of
their incoming data (�Averaging Algorithms
and Consensus). The problem of reaching
a consensus on a particular scalar value, or
computing exact averages of the initial values of
the agents, has gained an unprecedented interest
as a central problem inherent to cooperative
behavior in networked systems (Blondel et al.
2005; Boyd et al. 2005; Cao et al. 2005, 2008a,b;
Jadbabaie et al. 2003; Olfati-Saber and Murray

2004; Olshevsky 2010; Olshevsky and Tsitsiklis
2006, 2009; Touri 2011; Vicsek et al. 1995; Wan
and Lemmon 2009).

Using the consensus technique, a class
of distributed algorithms has emerged, as a
combination of the consensus protocols and the
gradient-type methods. The gradient-based
approaches are particularly suitable, as they
have a small overhead per iteration and are, in
general, robust to various sources of errors and
uncertainties.

The technique of using the network as a
medium to propagate the relevant information
for optimization purpose has its origins in the
work by Tsitsiklis (1984), Tsitsiklis et al. (1986),
and Bertsekas and Tsitsiklis (1997), where the
network has been used to decompose the vector x
components across different agents, while all
agents share the same objective function.

Algorithms Using Weighted Averaging
The technique has recently been employed in
Nedić and Ozdaglar (2009) (see also Nedić and
Ozdaglar 2007, 2010) to deal with problems
of the form (1) when the agents have different
objective functions fi , but their decisions are
fully coupled through the common vector vari-
able x. In a series of recent work (to be detailed
later), the following distributed algorithm has
emerged. Letting xi .k/ 2 X be an estimate
(of the optimal decision) at agent i and time
k, the next iterate is constructed through two
updates. The first update is a consensus-like it-
eration, whereby, upon receiving the estimates
xj .k/ from its (in)neighbors j , the agent i aligns
its estimate with its neighbors through averaging,
formally given by

vi .k/ D
X

j2Ni
wij xj .k/; (2)

where Ni is the neighbor set

Ni D fj 2 N j.j; i/ 2 Eg [ fig:

The neighbor set Ni includes agent i itself, since
the agent always has access to its own informa-
tion. The scalar wij is a nonnegative weight that

http://dx.doi.org/10.1007/978-1-4471-5058-9_212
http://dx.doi.org/10.1007/978-1-4471-5058-9_213
http://dx.doi.org/10.1007/978-1-4471-5058-9_214
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agent i places on the incoming information from
neighbor j 2 Ni . These weights sum to 1, i.e.,P

j2Ni wij D 1, thus yielding vi .k/ as a (local)
convex combination of xj .k/, j 2 Ni , obtained
by agent i .

After computing vi .k/, agent i computes a
new iterate xi .k C 1/ by performing a gradient-
projection step, aimed at minimizing its own
objective fi , of the following form:

xi .k C 1/ D
Y

X

�
vi .k/ � ˛.k/rfi .vi .k//

�
;

(3)
where…X [x] is the projection of a point x on the
set X (in the Euclidean norm), ˛.k/ > 0 is the
stepsize at time k, and rfi .z/ is the gradient of
fi at a point z.

When all functions are zero andX is the entire
space Pd , the distributed algorithm (2) and (3)
reduces to the linear-iteration method:

xi .k C 1/ D
X

j2Ni
wij xj .k/; (4)

which is known as consensus or agreement pro-
tocol. This protocol is employed when the agents
in the network wish to align their decision vectors
xi .k/ to a common vector Ox. The alignment is
attained asymptotically (as k ! 1).

In the presence of objective function and con-
straints, the distributed algorithm in (2) and (3)
corresponds to “forced alignment” guided by the
gradient forces

Pn
iD1 rfi .x/. Under appropriate

conditions, the alignment is forced to a common
vector x� that minimizes the network objectivePn

iD1 fi .x/ over the set X . This corresponds to
the convergence of the iterates xi .k/ to a common
solution x� 2 X as k ! 1 for all agents i 2 N .

The conditions under which the convergence
of {xi .k/} to a common solution x� 2 X occurs
are a combination of the conditions needed for
the consensus protocol to converge and the con-
ditions imposed on the functions fi and the step-
size ˛.k/ to ensure the convergence of standard
gradient-projection methods. For the consensus
part, the conditions should guarantee that the
pure consensus protocol in (4) converges to the
average 1

n

Pn
iD1 xi .0/ of the initial agent values.

This requirement transfers to the condition that

the weights wij give rise to a doubly stochastic
weight matrix W , whose entries are wij defined
by the weights in (4) and augmented by wij D 0

for j … Ni .
Intuitively, the requirement that the weight

matrix W is doubly stochastic ensures that each
agent has the same influence on the system be-
havior, in a long run. More specifically, the dou-
bly stochastic weights ensure that the system as
whole minimizes

Pn
iD1 1nfi .x/, where the fac-

tor 1/n is seen as portion of the influence of
agent i . When the weight matrix W is only row
stochastic, the consensus protocol converges to
a weighted average

Pn
iD1 �ixi .0/ of the agent

initial values, where � is the left eigenvector of
W associated with the eigenvalue 1. In general,
the values �i can be different for different indices
i , and the distributed algorithm in (2) and (3)
results in minimizing the function

Pn
iD1 �ifi .x/

overX , and thus not solving problem (1).
The distributed algorithm (2) and (3) has

been proposed and analyzed in Ram et al.
(2010a, 2012), where the convergence had
been established for diminishing stepsize rule
(i.e.,

P
k ˛.k/ D 1 and

P
k ˛

2.k/ < 1). As
seen from the convergence analysis (see, e.g.,
Nedić and Ozdaglar 2009; Ram et al. 2012),
for the convergence of the method, it is critical
that the iterate disagreements k xi .k/ � xj .k/ k
converge linearly in time, for all i ¤ j . This fast
disagreement decay seems to be indispensable
for ensuring the stability of the iterative process
(2) and (3).

According to the distributed algorithm (2) and
(3), at first, each agent aligns its estimate xi .k/
with the estimates xj .k/ that are received from
its neighbors and, then, updates based on its local
objective fi which is to be minimized over x 2
X . Alternatively, the distributed method can be
constructed by interchanging the alignment step
and the gradient-projection step. Such a method,
while having the same asymptotic performance
as the method in (2) and (3), exhibits a somewhat
slower (transient) convergence behavior due to
a larger misalignment resulting from taking the
gradient-based updates at first. This alternative
has been initially proposed independently in
Lopes and Sayed (2006) (where simulation
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results have been reported), in Nedić and
Ozdaglar (2007, 2009) (where the convergence
analysis for a time-varying networks and a
constant stepsize is given), and in Nedić et al.
(2008) (with the quantization effects) and further
investigated in Lopes and Sayed (2008), Nedić
et al. (2010), and Cattivelli and Sayed (2010).
More recently, it has been considered in Lobel
et al. (2011) for state-dependent weights and in
Tu and Sayed (2012) where the performance is
compared with that of an algorithm of the form
(2) and (3) for estimation problems.

Algorithm Extensions: Over the past years,
many extensions of the distributed algorithm in
(2) and (3) have been developed, including the
following:
(a) Time-varying communication graphs: The

algorithm naturally extends to the case of
time-varying connectivity graphs {G.k/},
with G.k/ = (N , E.k/) defined over
the node set N and time-varying links
E.k/. In this case, the weights wij in (2)
are replaced with wij .k/ and, similarly,
the neighbor set Ni is replaced with the
corresponding time-dependent neighbor set
Ni.k/ specified by the graph G.k/. The
convergence of the algorithm (2) and (3)
with these modifications typically requires
some additional assumptions of the network
connectivity over time and the assumptions
on the entries in the corresponding weight
matrix sequence {W.k/}, where wij .k/ = 0
for j … Ni.k/. These conditions are the same
as those that guarantee the convergence of
the (row stochastic) matrix sequence {W.k/}
to a rank-one row-stochastic matrix, such
as a connectivity over some fixed period
(of a sliding-time window), the nonzero
diagonal entries inW.k/, and the existence of
a uniform lower bound on positive entries in
W.k/; see, for example, Cao et al. (2008b),
Touri (2011), Tsitsiklis (1984), Nedić and
Ozdaglar (2010), Moreau (2005), and Ren
and Beard (2005).

(b) Noisy gradients: The algorithm in (2) and (3)
works also when the gradient computations
rfi .x/ in update (3) are erroneous
with random errors. This corresponds to
using a stochastic gradient Qrfi .x/ instead of

rfi .x/, resulting in the following stochastic
gradient-projection step:

xi .kC1/ D
Y

X

h
vi .k/ � ˛.k/ Qrfi .vi .k//

i

instead of (3). The convergence of these
methods is established for the cases when the
stochastic gradients are consistent estimates
of the actual gradient, i.e.,

E
h Qrfi .vi .k//jvi .k/

i
D rfi .vi .k//:

The convergence of these methods typically
requires the use of non-summable but square-
summable stepsize sequence {˛.k/} (i.e.,P

k ˛.k/ D 1 and
P

k ˛
2.k/ < 1/, e.g.,

Ram et al. (2010a).
(c) Noisy or unreliable communication links:

Communication medium is not always
perfect and, often, the communication links
are characterized by some random noise
process. In this case, while agent j 2 Ni
sends its estimate xj .k/ to agent i , the
agent does not receive the intended message.
Rather, it receives xj .k/ with some random
link-dependent noise �ij .k/, i.e., it receives
xj .k/ + �ij .k/ instead of xj .k/ (see Kar and
Moura 2011; Patterson et al. 2009; Touri and
Nedić 2009 for the influence of noise and
link failure on consensus). In such cases, the
distributed optimization algorithm needs to
be modified to include a stepsize for noise
attenuation and the standard stepsize for
the gradient scaling. These stepsizes are
coupled through an appropriate relative-
growth conditions which ensure that the
gradient information is maintained at the
right level and, at the same time, link-noise
is attenuated appropriately (Srivastava and
Nedić 2011; Srivastava et al. 2010). Other
imperfections of the communication links
can also be modeled and incorporated into
the optimization method, such as link failures
and quantization effects, which can be built
using the existing results for consensus
protocol (e.g., Carli et al. 2007; Kar and
Moura 2010, 2011; Nedić et al. 2008).

(d) Asynchronous implementations: The method
in (2) and (3) has simultaneous updates,
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evident in all agents exchanging and updating
information in synchronous time steps
indexed by k. In some communication
settings, the synchronization of agents is
impractical, and the agents are using their
own clocks which are not synchronized
but do tick according to a common time
interval. Such communications result in
random weights wij .k/ and random neighbor
set Ni.k/ 	 E in (2), which are typically
independent and identically distributed (over
time). Most common models are random
gossip and random broadcast. In the gossip
model, at any time, two randomly selected
agents i and j communicate and update,
while the other agents sleep (Boyd et al.
2005; Kashyap et al. 2007; Ram et al.
2010b; Srivastava 2011; Srivastava and Nedić
2011). In the broadcast model, a random
agent i wakes up and broadcasts its estimate
xi .k/. Its neighbors that receive the estimate
update their iterates, while the other agents
(including the agent who broadcasted) do not
update (Aysal et al. 2008; Nedić 2011).

(e) Distributed constraints: One of the more
challenging aspects is the extension of the
algorithm to the case when the constraint
set X in (1) is given as an intersection of
closed convex sets Xi , one set per agent.
Specifically, the set X in (1) is defined by

X D
n\

iD1
Xi ;

where the set Xi is known to agent i only. In
this case, the algorithm has a slight modifica-
tion at the update of xi .k C 1/ in (3), where
the projection is on the local set Xi instead of
X , i.e., the update in (3) is replaced with the
following update:

xi .k C 1/ D
Y

Xi

�
vi .k/ � ˛.k/rfi .vi .k//

�
:

(5)
The resulting method (2), (5) converges under
some additional assumptions on the sets Xi ,
such as the nonempty interior assumption
(i.e., the set

Tn
iD1 Xi has a nonempty inte-

rior), a linear-intersection assumption (each

Xi is an intersection of finitely many linear
equality and/or inequality constraints), or the
Slater condition (Lee and Nedić 2012; Nedić
et al. 2010; Srivastava 2011; Srivastava and
Nedić 2011; Zhu and Martínez 2012).

In principle, most of the simple first-order
methods that solve a centralized problem of
the form (1) can also be distributed among the
agents (through the use of consensus protocols)
to solve distributed problem (1). For example,
the Nesterov dual-averaging subgradient method
(Nesterov 2005) can be distributed as proposed
in Duchi et al. (2012), a distributed Newton-
Raphson method has been proposed and studied
in Zanella et al. (2011), while a distributed
simplex algorithm has been constructed and
analyzed in Bürger et al. (2012). An interesting
method based on finding a zero of the gradient
rf D Pn

iD1 rfi , distributedly, has been
proposed and analyzed in Lu and Tang (2012).
Some other distributed algorithms and their
implementations can be found in Johansson et al.
(2007), Tsianos et al. (2012a,b), Dominguez-
Garcia and Hadjicostis (2011), Tsianos (2013),
Gharesifard and Cortés (2012a), Jakovetic et al.
(2011a,b), and Zargham et al. (2012).

Summary and Future Directions

The distributed optimization algorithms have
been developed mainly using consensus protocols
that are based on weighted averaging, also known
as linear-iterative methods. The convergence
behavior and convergence rate analysis of these
methods combines the tools from optimization
theory, graph theory, and matrix analysis. The
main drawback of these algorithms is that they
require (at least theoretically) the use of doubly
stochastic weight matrix W (or W.k/ in time-
varying case) in order to solve problem (1). This
requirement can be accommodated by allowing
agents to exchange locally some additional
information on the weights that they intend to
use or their degree knowledge. However, in
general, constructing such doubly stochastic
weights distributedly on directed graphs is rather
a complex problem (Gharesifard and Cortés
2012b).
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As an alternative, which seems a promising di-
rection for future research, is the use of so-called
push-sum protocol (or sum-ratio algorithm) for
consensus problem (Benezit et al. 2010; Kempe
et al. 2003). This direction is pioneered in Tsianos
et al. (2012b), Tsianos (2013), and Tsianos and
Rabbat (2011) for static graphs and recently ex-
tended to directed graphs Nedić and Olshevsky
(2013) for an unconstrained version of prob-
lem (1).

Another promising direction lies in the use
of alternating direction method of multipliers
(ADMM) in combination with the graph-
Laplacian formulation of consensus constraints
Nixi D P

j2Ni xj . A nice exposure to ADMM
method is given in Boyd et al. (2010). The first
work to address the development of distributed
ADMM over a network is Wei and Ozdaglar
(2012), where a static network is considered.
Its distributed implementation over time-varying
graphs will be an important and challenging task.

Cross-References

�Averaging Algorithms and Consensus
�Dynamic Graphs, Connectivity of
�Graphs for Modeling Networked Interactions
�Networked Systems
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Abstract

Dynamic networks have recently emerged as
an efficient way to model various forms of
interaction within teams of mobile agents, such as

sensing and communication. This article focuses
on the use of graphs as models of wireless
communications. In this context, graphs have
been used widely in the study of robotic and
sensor networks and have provided an invaluable
modeling framework to address a number of
coordinated tasks ranging from exploration,
surveillance, and reconnaissance to cooperative
construction and manipulation. In fact, the
success of these stories has almost always
relied on efficient information exchange and
coordination between the members of the team,
as seen, e.g., in the case of distributed state
agreement where multi-hop communication
has been proven necessary for convergence and
performance guarantees.

Keywords

Algebraic graph theory; Convex optimization;
Distributed and hybrid control; Graph connectiv-
ity

Introduction

Communication in networked dynamical systems
has typically relied on constructs from graph
theory, with disc-based and weighted-proximity
graphs gaining the most popularity; see Fig. 1a, b.
Besides their simplicity, these models owe their
popularity to their resemblance to radio signal
strength models, where the signals attenuate with
the distance (Neskovic et al. 2000; Pahlavan and
Levesque 1995; Parsons 2000). In this context,
multi-hop communication becomes equivalent to
network connectivity, defined as the property of
a graph to transmit information between any pair
of its nodes; see Fig. 1c.

Specifically, let G.t/ D fV ; E.t/;W.t/g de-
note a graph on n nodes that can be robots or
mobile sensors, so that V D f1; : : : ; ng is the set
of vertices, E.t/ 	 V � V is the set of edges at
time t , and W.t/ D fwij .t/ j .i; j /2V �Vg is a
set of weights so that wij .t/D 0 if .i; j / 62 E.t/
and wij .t/ > 0 otherwise. If wij .t/ D wj i .t/ for
all pairs of nodes i; j , then the graph is called

http://arxiv.org/abs/1205.3993
http://dx.doi.org/10.1007/978-1-4471-5058-9_47
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Dynamic Graphs, Connectivity of, Fig. 1 (a) Disc-based model of communication; (b) Weighted, proximity-based
model of communication; (c) Connected network of mobile robots

undirected; otherwise it is called directed. The
weights in W.t/ typically model signal strength
or channel reliability, as per the disc-based and
weighted-proximity models in Fig. 1a, b. In these
models communication between nodes is related
to their pairwise distance, giving rise to the dy-
namic or time-varying nature of the graph G.t/
due to node mobility. Given an undirected dy-
namic graph G.t/, we say that this graph is
connected at time t if there exists a path, i.e., a se-
quence of distinct vertices such that consecutive
vertices are adjacent, between any two vertices
in G.t/. In the case of directed graphs, two
notions of connectivity are defined. A directed
graph G.t/ is called strongly connected if there
exists a directed path between any two of its
vertices or equivalently, if every vertex is reach-
able from any other vertex. On the other hand,
a directed graph is called weakly connected if
replacing all directed edges by undirected edges
produces a connected undirected graph. Finally,
a collection of graphs fG.t/ j t D t0; : : : ; tkg
is called jointly connected over time if the union
graph [tk

tDt0G.t/ D fV ;[tk
tDt0E.t/g is connected.

Clearly checking for the existence of paths be-
tween all pairs of nodes in a graph is difficult,
especially so as the number of nodes in the graph
increases. For this reason, equivalent, algebraic
representations of graphs are employed that allow
for efficient algebraic ways to check for connec-
tivity, as we discuss in the following section.

While connectivity is necessary for informa-
tion propagation in a network, it is also relevant
to the performance of many networked dynamical
processes, such as synchronization and gossiping,

via its relation to the network eigenvalue spectra
(Preciado 2008). For example, the spectrum of
the Laplacian matrix of a network plays a key role
in the analysis of synchronization in networks of
nonlinear oscillators (Pecora and Carrollg 1998;
Preciado and Verghese 2005), distributed algo-
rithms (Lynch 1997), and decentralized control
problems (Fax and Murray 2004; Olfati Saber
and Murray 2004). Similarly, the spectrum of
the adjacency matrix determines the speed of
viral information spreading in a network (Van
Mieghem et al. 2009). Additionally, more robust
versions of connectivity, such as k-node or k-edge
connectivity, can be used to introduce robustness
of a network to node or link failures, respectively
(Zavlanos and Pappas 2005, 2008).

Graph-Theoretic Connectivity Control

Connectivity Using the Graph Laplacian
Matrix
A metric that is typically employed to capture
connectivity of dynamic networks is the second
smallest eigenvalue �2.L/ of the Laplacian
matrix L 2 R

n�n of the graph, also known as
the algebraic connectivity or Fiedler value of the
graph. For a weighted graph G D fV ; E ;Wg,
the entries of the Laplacian matrix are typically
related to the weights in W so that the i; j

entry of L is given by ŒL�ij D Pn
jD1 wij if

i D j and ŒL�ij D �wij if i ¤ j . The
Laplacian matrix of an undirected graph is always
a symmetric, positive semidefinite matrix whose
smallest eigenvalue �1.L/ is identically zero
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with corresponding eigenvector the vector of all
entries equal to one. Additionally, the algebraic
connectivity �2.L/ is a concave function of the
Laplacian matrix that is positive if and only if
the graph is connected (Fiedler 1973; Godsil and
Royle 2001; Merris 1994; Mohar 1991).

As the algebraic connectivity �2.L/ plays
a critical role in determining whether a graph is
connected or not, a number of methods have been
proposed for its decentralized estimation and
control. These range from methods that employ
market-based control to underestimate the
algebraic connectivity and accordingly control
the network structure (Zavlanos and Pappas
2008) to methods that enforce the states of the
nodes to oscillate at frequencies that correspond
to the Laplacian eigenvalues and then use fast
Fourier transform to estimate these eigenvalues
(Franceschelli et al. 2013), to methods that
iteratively update the interval where the algebraic
connectivity is supposed to lie (Montijano et al.
2011), and to methods that rely on the power
iteration method and its variants (DeGennaro
and Jadbabaie 2006; Kempe and McSherry 2008;
Knorn et al. 2009; Oreshkin et al. 2010; Sabattini
et al. 2011; Yang et al. 2010). All the above
techniques are often integrated with appropriate
controllers to regulate mobility of the nodes while
ensuring connectivity of the network. Another
way that �2.L/ can be used to ensure connectivity
of dynamic graphs is via optimization-based
methods that maximize it away from its zero
value. Such approaches were initially centralized
as connectivity is a global property of a graph
(Kim and Mesbahi 2006), although recently
distributed subgradient algorithms (DeGennaro
and Jadbabaie 2006) as well as non-iterative
decomposition techniques (Simonetto et al.
2013) have also been proposed. As the algebraic
connectivity is a non-differentiable function
of the Laplacian matrix, designing continuous
feedback controllers to maintain it positive
definite is a challenging task. This problem
was overcome in Zavlanos and Pappas (2007)
via the use of gradient flows that maintain
positive definiteness of the determinant of the
projected Laplacian matrix to the space that is
perpendicular to eigenvector of ones.

Connectivity Using the Graph Adjacency
Matrix
Alternatively, connectivity can be captured by the
sum of powers

PK
kD0 Ak of the adjacency matrix

A 2 R
n�n of the network forK � n� 1. The en-

tries of the adjacency matrix are typically related
to the weights in W as ŒA�ij D wij . For disc-
based graphs as in Fig. 1a, the i; j entry of the
kth power of the adjacency matrix ŒAk�ij captures
the number of paths of length k between nodes
i and j ; for weighted graphs, ŒAk�ij captures
a weighted sum of those paths. Therefore, the
entries of

PK
kD0 Ak represent the number of paths

up to length K between every pair of nodes in
the graph (Godsil and Royle 2001). By definition
of graph connectivity, if all entries of

PK
kD0 Ak

are positive for K D n � 1, then the network
is connected. Clearly, for K < n � 1, not all
entries of

PK
kD0 Ak are necessarily positive, even

if the graph is connected. Maintaining positive
definiteness of the positive entries of

PK
kD0 Ak

of an initially connected graph maintains paths
of length K between the corresponding nodes
and, as shown in Zavlanos and Pappas (2005),
is sufficient to maintain connectivity of the graph
throughout.

The ability to capture graph connectivity
using the adjacency matrix has given rise
to optimization-based connectivity controllers
(Srivastava and Spong 2008; Zavlanos and
Pappas 2005) that are often centralized due to the
multi-hop dependencies between nodes due to the
powers of the adjacency matrix. Since smaller
powers correspond to shorter dependencies
(paths), decentralization is possible as K

decreases. If K D 1, connectivity maintenance
reduces to preserving the pairwise links between
the nodes in an initially connected network. Since
the adjacency matrix of weighted graphs is often
a differentiable function, this approach can result
in continuous feedback solution techniques.
Discrete-time approaches are discussed in Ando
et al. (1999), Notarstefano et al. (2006), and
Bullo et al. (2009), while Spanos and Murray
(2004), Dimarogonas and Kyriakopoulos (2008),
Cornejo and Lynch (2008), Yao and Gupta
(2009), Zavlanos et al. (2007), and Ji and
Egerstedt (2007) rely on local gradients that
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may also incorporate switching in the case
of link additions. Switching between arbitrary
spanning topologies has also been studied in the
literature, with the spanning subgraphs being
updated by local auctions (Zavlanos and Pappas
2008), distributed spanning tree algorithms
(Wagenpfeil et al. 2009), combination of
information dissemination algorithms and graph
picking games (Schuresko and Cortes 2009b), or
intermediate rendezvous (Schuresko and Cortes
2009a; Spanos and Murray 2005). This class
of approaches is typically hybrid, combining
continuous link maintenance and discrete
topology control. The algebraic connectivity
�2.L/ and number of paths

PK
kD0 Ak metrics

can also be combined to give controllers that
maintain connectivity, while enforcing desired
multi-hop neighborhoods for all agents (Stump
et al. 2008).

A recent, comprehensive survey on graph-
theoretic approaches for connectivity control of
dynamic graphs can be found in Zavlanos et al.
(2011).

Applications in Mobile Robot
Network Control

Methods to control connectivity of dynamic
graphs have been successfully applied to multiple
scenarios that require network connectivity to
achieve a global coordinated objective. Indicative
of the impact of this work is recent literature
on connectivity preserving rendezvous (Ando
et al. 1999; Cortes et al. 2006; Dimarogonas and
Kyriakopoulos 2008; Ganguli et al. 2009; Ji and
Egerstedt 2007), flocking (Zavlanos et al. 2007,
2009), and formation control (Ji and Egerstedt
2007; Schuresko and Cortes 2009a), where
so far connectivity had been an assumption.
Further extensions and contributions involve
connectivity control for double integrator agents
(Notarstefano et al. 2006), agents with bounded
inputs (Ajorlou and Aghdam 2010; Ajorlou et al.
2010; Dimarogonas and Johansson 2008), and
indoor navigation (Stump et al. 2008), as well
as for communication based on radio signal
strength (Hsieh et al. 2008; Mostofi 2009;

Powers and Balch 2004; Wagner and Arkin
2004) and visibility constraints (Anderson et al.
2003; Ando et al. 1999; Arkin and Diaz 2002;
Flocchini et al. 2005; Ganguli et al. 2009).
Periodic connectivity for robot teams that need to
occasionally split in order to achieve individual
objectives (Hollinger and Singh 2010; Zavlanos
2010) and sufficient conditions for connectivity
in leader-follower networks (Gustavi et al. 2010)
also adds to the list. Early experimental results
have demonstrated efficiency of these algorithms
also in practice (Hollinger and Singh 2010;
Michael et al. 2009; Tardioli et al. 2010).

Summary and Future Directions

Although graphs provide a simple abstraction of
inter-robot communications, it has long been rec-
ognized that since links in a wireless network do
not entail tangible connections, associating links
with arcs on a graph can be somewhat arbitrary.
Indeed, topological definitions of connectivity
start by setting target signal strengths to draw
the corresponding graph. Even small differences
in target strengths might result in dramatic dif-
ferences in network topology (Lundgren et al.
2002). As a result, graph connectivity is neces-
sary but not nearly sufficient to guarantee com-
munication integrity, interpreted as the ability
of a network to support desired communication
rates.

To address these challenges, a new body of
work is recently appearing that departs from tra-
ditional graph-based models of communication.
Specifically, Zavlanos et al. (2013) employs a
simple, yet effective, modification that relies on
weighted graph models with weights that capture
the packet error probability of each link (De-
Couto et al. 2006). When using reliabilities as
link metrics, it is possible to model routing and
scheduling problems as optimization problems
that accept link reliabilities as inputs (Ribeiro
et al. 2007, 2008). The key idea proposed in
Zavlanos et al. (2013) is to define connectivity
in terms of communication rates and to use op-
timization formulations to describe optimal op-
erating points of wireless networks. Then, the
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communication variables are updated in discrete
time via a distributed gradient descent algorithm
on the dual function, while robot motion is reg-
ulated in continuous time by means of appro-
priate distributed barrier potentials that maintain
desired communication rates. Related approaches
consider optimal communications based on T-slot
time averages of the primal variables for general
mobility schemes Neely (2010), as well as opti-
mization of mobility and communications based
on the end-to-end bit error rate between nodes
(Ghaffarkhah and Mostofi 2011; Yan and Mostofi
2012).

Cross-References

� Flocking in Networked Systems
�Graphs for Modeling Networked Interactions

Bibliography

Ajorlou A, Aghdam AG (2010) A class of bounded
distributed controllers for connectivity preservation of
unicycles. In: Proceedings of the 49th IEEE confer-
ence on decision and control, Atlanta, pp 3072–3077

Ajorlou A, Momeni A, Aghdam AG (2010) A class of
bounded distributed control strategies for connectivity
preservation in multi-agent systems. IEEE Trans Au-
tom Control 55(12):2828–2833

Anderson SO, Simmons R, Goldberg D (2003) Main-
taining line-of-sight communications networks be-
tween planetray rovers. In: Proceedings of the 2003
IEEE/RSJ international conference on intelligent
robots and systems, Las Vegas, pp 2266–2272

Ando H, Oasa Y, Suzuki I, Yamashita M (1999) Dis-
tributed memoryless point convergence algorithm for
mobile robots with limited visibility. IEEE Trans
Robot Autom 15(5):818–828

Arkin RC, Diaz J (2002) Line-of-sight constrained ex-
ploration for reactive multiagent robotic teams. In:
Proceedings of the 7th international workshop on ad-
vanced motion control, Maribor, pp 455–461

Bullo F, Cortes J, Martinez S (2009) Distributed control of
robotic networks. Applied Mathematics Series. Prince-
ton University Press, Princeton

Cornejo A, Lynch N (2008) Connectivity service for
mobile ad-hoc networks. In: Proceedings of the 2nd
IEEE international conference on self-adaptive and
self-organizing systems workshops, pp 292–297

Cortes J, Martinez S, Bullo F (2006) Robust rendezvous
for mobile autonomous agents via proximity graphs

in arbitrary dimensions. IEEE Trans Autom Control
51(8):1289–1298

DeCouto D, Aguayo D, Bicket J, Morris R (2006) A high-
throughput path metric for multihop wireless routing.
In: Proceedings of the international ACM conference
on mobile computing and networking, San Diego,
pp 134–146

DeGennaro MC, Jadbabaie A (2006) Decentralized con-
trol of connectivity for multi-agent systems. In: Pro-
ceedings of the 45th IEEE conference on decision and
control, San Diego, pp 3628–3633

Dimarogonas DV, Johansson KH (2008) Decentralized
connectivity maintenance in mobile networks with
bounded inputs. In Proceedings of the IEEE in-
ternational conference on robotics and automation,
Pasadena, pp 1507–1512

Dimarogonas DV, Kyriakopoulos KJ (2008) Connect-
edness preserving distributed swarm aggregation
for multiple kinematic robots. IEEE Trans Robot
24(5):1213–1223

Fax A, Murray RM (2004) Information flow and coopera-
tive control of vehicle formations. IEEE Trans Autom
Control 49:1465–1476

Fiedler M (1973) Algebraic connectivity of graphs.
Czechoslovak Math J 23(98):298–305

Flocchini P, Prencipe G, Santoro N, Widmayer P
(2005) Gathering of asynchronous oblivious robots
with limited visibility. Theor Comput Sci 337(1–3):
147–168

Franceschelli M, Gasparri A, Giua A, Seatzu C (2013)
Decentralized estimation of laplacian eigenvalues in
multi-agent systems. Automatica 49(4):1031–1036

Ganguli A, Cortes J, Bullo F (2009) Multirobot ren-
dezvous with visibility sensors in nonconvex environ-
ments. IEEE Trans Robot 25(2):340–352

Ghaffarkhah A, Mostofi Y (2011) Communication-aware
motion planning in mobile networks. IEEE Trans Au-
tom Control Spec Issue Wirel Sens Actuator Netw
56(10):2478–248

Godsil C, Royle G (2001) Algebraic graph theory, Gradu-
ate Texts in Mathematics, vol 207. Springer, Berlin

Gustavi T, Dimarogonas DV, Egerstedt M, Hu X (2010)
Sufficient conditions for connectivity maintenance and
rendezvous in leader-follower networks. Automatica
46(1):133–139

Hollinger G, Singh S (2010) Multi-robot coordination
with periodic connectivity. In: Proceedings of the
IEEE international conference on robotics and au-
tomation, Anchorage, Alaska, pp 4457–4462

Hsieh MA, Cowley A, Kumar V, Taylor C (2008) Main-
taining network connectivity and performance in robot
teams. J Field Robot 25(1–2):111–131

Ji M, Egerstedt M (2007) Coordination control of multi-
agent systems while preserving connectedness. IEEE
Trans Robot 23(4):693–703

Kempe D, McSherry F (2008) A decentralized algorithm
for spectral analysis. J Comput Syst Sci 74(1):70–83

Kim Y, Mesbahi M (2006) On maximizing the second
smallest eigenvalue of a state-dependent graph lapla-
cian. IEEE Trans Autom Control 51(1):116–120

http://dx.doi.org/10.1007/978-1-4471-5058-9_215
http://dx.doi.org/10.1007/978-1-4471-5058-9_212


322 Dynamic Graphs, Connectivity of

Knorn F, Stanojevic R, Corless M, Shorten R (2009)
A framework for decentralized feedback connectivity
control with application to sensor networks. Int J
Control 82(11):2095–2114

Lundgren H, Nordstrom E, Tschudin C (2002) The gray
zone problem in ieee 802.11b based ad hoc networks.
ACM SIGMOBILE Mobile Comput Commun Rev
6(3):104–105

Lynch N (1997) Distributed algorithms. Morgan Kauf-
mann, San Francisco

Merris R (1994) Laplacian matrices of a graph: a survey.
Linear Algebra Appl 197:143–176

Michael N, Zavlanos MM, Kumar V, Pappas GJ (2009)
Maintaining connectivity in mobile robot networks.
In: Experimental robotics. Tracts in advanced robotics.
Springer, Berlin/Heidelberg, pp 117–126

Mohar B (1991) The laplacian spectrum of graphs. In:
Alavi Y, Chartrand G, Ollermann O, Schwenk A (Eds)
Graph theory, combinatorics, and applications. Wiley,
New York, pp 871–898

Montijano E, Montijano JI, Sagues C (2011) Adaptive
consensus and algebraic connectivity estimation in
sensor networks with chebyshev polynomials. In: Pro-
ceedings of the 50th IEEE conference on decision and
control, Orlando, pp 4296–4301

Mostofi Y (2009) Decentralized communication-aware
motion planning in mobile networks: an information-
gain approach. J Intell Robot Syst 56(1–2):
233–256

Neely MJ (2010) Universal scheduling for networks with
arbitrary traffic, channels, and mobility. In: Proceed-
ings of the 49th IEEE conference on decision and
control, Altanta, pp 1822–1829

Neskovic A, Neskovic N, Paunovic G (2000) Modern
approaches in modeling of mobile radio systems prop-
agation environment. IEEE Commun Surv 3(3):1–12

Notarstefano G, Savla K, Bullo F, Jadbabaie A
(2006) Maintaining limited-range connectivity among
second-order agents. In: Proceedings of the 2006
American control conference, Minneapolis, pp 2124–
2129

Olfati-Saber R, Murray RM (2004) Consensus prob-
lems in networks of agents with switching topol-
ogy and time-delays. IEEE Trans Autom Control 49:
1520–1533

Oreshkin BN, Coates MJ, Rabbat MG (2010) Opti-
mization and analysis of distributed averaging with
short node memory. IEEE Trans Signal Process
58(5):2850–2865

Pahlavan K, Levesque AH (1995) Wireless information
networks. Willey, New York

Parsons JD (2000) The mobile radio propagation channel.
Willey, Chichester

Pecora L, Carrollg T (1998) Master stability functions
for synchronized coupled systems. Phys Rev Lett
80:2109–2112

Powers M, Balch T (2004) Value-based communication
preservation for mobile robots. In: Proceedings of
the 7th international symposium on distributed au-
tonomous robotic systems, Toulouse

Preciado V (2008) Spectral analysis for stochastic models
of large-scale complex dynamical networks. Ph.D.
dissertation, Department of Electrical Engineering and
Computer Science, MIT

Preciado V, Verghese G (2005) Synchronization in gen-
eralized erdös-rényi networks of nonlinear oscillators.
In: 44th IEEE conference on decision and control,
Seville, Spain, pp 4628–463

Ribeiro A, Luo Z-Q, Sidiropoulos ND, Giannakis GB
(2007) Modelling and optimization of stochastic rout-
ing for wireless multihop networks. In: Proceedings of
the 26th annual joint conference of the IEEE Computer
and Communications Societies (INFOCOM), Anchor-
age, pp 1748–1756

Ribeiro A, Sidiropoulos ND, Giannakis GB (2008) Opti-
mal distributed stochastic routing algorithms for wire-
less multihop networks. IEEE Trans Wirel Commun
7(11):4261–4272

Sabattini L, Chopra N, Secchi C (2011) On decentralized
connectivity maintenance for mobile robotic systems.
In: Proceedings of the 50th IEEE conference on deci-
sion and control, Orlando, pp 988–993

Schuresko M, Cortes J (2009a) Distributed tree rearrange-
ments for reachability and robust connectivity. In: Hy-
brid systems: computetation and control. Lecture notes
in computer science, vol 5469. Springer, Berlin/New
York, pp 470–474

Schuresko M, Cortes J (2009b) Distributed motion con-
straints for algebraic connectivity of robotic networks.
J Intell Robot Syst 56(1–2):99–126

Simonetto A, Kaviczky T, Babuska R (2013) Constrained
distributed algebraic connectivity maximization in
robotic networks. Automatica 49(5):1348–1357

Spanos DP, Murray RM (2004) Robust connectivity
of networked vehicles. In: Proceedings of the 43rd
IEEE conference on decision and control, Bahamas,
pp 2893–2898

Spanos DP, Murray RM (2005) Motion planning with
wireless network constraints. In: Proceedings of
the 2005 American control conference, Portland,
pp 87–92

Srivastava K, Spong MW (2008) Multi-agent coordina-
tion under connectivity constraints. In: Proceedings
of the 2008 American control conference, Seattle,
pp 2648–2653

Stump E, Jadbabaie A, Kumar V (2008) Connectivity
management in mobile robot teams. In: Proceedings
of the IEEE international conference on robotics and
automation, Pasadena, pp 1525–1530

Tardioli D, Mosteo AR, Riazuelo L, Villarroel JL, Mon-
tano L (2010) Enforcing network connectivity in robot
team missions. Int J Robot Res 29(4):460–480

Van Mieghem P, Omic J, Kooij R (2009) Virus spread in
networks. IEEE/ACM Trans Networking 17(1):1–14

Wagenpfeil J, Trachte A, Hatanaka T, Fujita M, Sawodny
O (2009) A distributed minimum restrictive connectiv-
ity maintenance algorithm. In: Proceedings of the 9th
international symposium on robot control, Gifu

Wagner AR, Arkin RC (2004) Communication-sensitive
multi-robot reconnaissance. In: Proceedings of the



Dynamic Noncooperative Games 323

D

IEEE international conference on robotics and au-
tomation, New Orleans, pp 2480–2487

Yan Y, Mostofi Y (2012) Robotic router formation in
realistic communication environments. IEEE Trans
Robot 28(4):810–827

Yang P, Freeman RA, Gordon GJ, Lynch KM, Srinivasa
SS, Sukthankar R (2010) Decentralized estimation
and control of graph connectivity for mobile sensor
networks. Automatica 46(2): 390–396

Yao Z, Gupta K (2009) Backbone-based connectivity
control for mobile networks. In: Proceedings IEEE
international conference on robotics and automation,
Kobe, pp 1133–1139

Zavlanos MM (2010) Synchronous rendezvous of very-
low-range wireless agents. In: Proceedings of the 49th
IEEE conference on decision and control, Atlanta,
pp 4740–4745

Zavlanos MM, Pappas GJ (2005) Controlling connectivity
of dynamic graphs. In: Proceedings of the 44th IEEE
conference on decision and control and European
control conference, Seville, pp 6388–6393

Zavlanos MM, Pappas GJ (2007) Potential fields for
maintaining connectivity of mobile networks. IEEE
Trans Robot 23(4):812–816

Zavlanos MM, Pappas GJ (2008) Distributed connectiv-
ity control of mobile networks. IEEE Trans Robot
24(6):1416–1428

Zavlanos MM, Jadbabaie A, Pappas GJ (2007) Flocking
while preserving network connectivity. In: Proceed-
ings of the 46th IEEE conference on decision and
control, New Orleans, pp 2919–2924

Zavlanos MM, Tanner HG, Jadbabaie A, Pappas
GJ (2009) Hybrid control for connectivity
preserving flocking. IEEE Trans Autom Control
54(12):2869–2875

Zavlanos MM, Egerstedt MB, Pappas GJ (2011) Graph
theoretic connectivity control of mobile robot net-
works. Proc IEEE Spec Issue Swarming Nat Eng Syst
99(9):1525–154

Zavlanos MM, Ribeiro A, Pappas GJ (2013) Network in-
tegrity in mobile robotic networks. IEEE Trans Autom
Control 58(1):3–18

Dynamic Noncooperative Games
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Abstract

In this entry, we present models of dynamic
noncooperative games, solution concepts and al-
gorithms for finding game solutions. For the sake
of exposition, we focus mostly on finite games,
where the number of actions available to each

player is finite, and discuss briefly extensions to
infinite games.

Keywords

Extensive form games; Finite games; Nash equi-
librium

Introduction

Dynamic noncooperative games allow multiple
actions by individual players, and include explicit
representations of the information available to
each player for selecting its decision. Such games
have a complex temporal order of play and an
information structure that reflects uncertainty as
to what individual players know when they have
to make decisions. This temporal order and in-
formation structure is not evident when the game
is represented as a static game between play-
ers that select strategies. Dynamic games often
incorporate explicit uncertainty in outcomes, by
representing such outcomes as actions taken by a
random player (called chance or “Nature”) with
known probability distributions for selecting its
actions.

We focus our exposition on models of finite
games and discuss briefly extensions to infinite
games at the end of the entry.

Finite Games in Extensive Form

The extensive form of a game was introduced
by von Neumann (1928) and later refined by
Kuhn (1953) to represent explicitly the order of
play, the information and actions available to
each player for making decisions at each of their
turns, and the payoffs that players receive after
a complete set of actions. Let I D f0; 1; : : : ; ng
denote the set of players in a game, where player
0 corresponds to Nature. The extensive form is
represented in terms of a game tree, consisting
of a rooted tree with nodes N and edges E . The
root node represents the initial state of the game.
Nodes x in this tree correspond to positions or
“states” of the game. Any non-root node with
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more than one incident edge is an internal node
of the tree and is a decision node associated
with a player in the game; the root node is also
a decision node. Each decision node x has a
player o.x/ 2 I assigned to select a decision
from a finite set of admissible decisions A.x/.
Using distance from the root node to indicate
direction of play, each edge that follows node x
corresponds to an action in A.x/ taken by player
p.x/, which evolves the state of the game into a
subsequent node x0.

Non-root nodes with only one incident edge
are terminal nodes, which indicate the end of
the game; such nodes represent outcomes of the
game. The unique path from the root node to a
terminal node is a called a play of the game. For
each outcome node x, there are payoff functions
Ji .x/ associated with each player i 2 f1; : : : ; ng.

The above form represents the different play-
ers, the order in which players select actions and
their possible actions, and the resulting payoffs
to each player from a complete set of plays of
the game. The last component of interest is to
represent the information available for players to
select decisions at each decision node. Due to the
tree structure of the extensive form of a game,
each decision node x contains exact information
on all of the previous actions taken that led to
state x. In games of perfect information, each
player knows exactly the decision node x at
which he/she is selecting an action. To represent
imperfect information, the extensive form uses
the notion of an information set, which represents
a group of decision nodes, associated with the
same player, where the information available to
that player is that the game is in one of the states
in that information set. Formally, let Ni � N be
the set of decision nodes associated with player
i , for i 2 I . Let Hi denote a partition of Ni so
that, for each set hki 2 Hi , we have the following
properties:
• If x; x0 2 hki , then they have the same admis-

sible actions: A.x/ D A.x0/.
• If x; x0 2 hki , then they cannot both belong

to a play of the game; that is, both x and x0
cannot be on a path from the root node to an
outcome.

Elements hki for some player i are the information
sets. Each decision node x belongs to one and

Dynamic Noncooperative Games, Fig. 1 Illustration
of game in extensive form

only one information set associated with player
p.x/. The constraints above ensure that, for each
information set, there is a unique player identified
to select actions, and the set of admissible actions
is unambiguously defined. Denote by A.hki / the
set of admissible actions at information set hki .
The last condition is a causality condition that
ensures that a player who has selected a previous
decision remembers that he/she has already made
that previous decision.

Figure 1 illustrates an extensive form for a
two-person game. Player 1 has two actions in any
play of the game, whereas player 2 has only 1
action. Player 1 starts the game at the root node
a; the information set h12 shows that player 2 is
unaware of this action, as both nodes that descend
from node a are in this information set. After
player 2’s action, player 1 gets to select a sec-
ond action. However, the information sets h21; h

3
1

indicate that player 1 recalls what earlier action
he/she selected, but he/she has not observed the
action of player 2. The terminal nodes indicate
the payoffs to player 1 and player 2 as an ordered
pair.

Strategies and Equilibrium Solutions

A pure strategy �i for player i 2 f1; : : : ; ng is a
function that maps each information set of player
i into an admissible decision. That is,
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�i W Hi ! A

such that �i.hki / 2 A.hki /. The set of pure
strategies for player i is denoted as �i .

Note that pure strategies do not include actions
selected by Nature. Nature’s actions are selected
using probability distributions over the choices
available for the information sets corresponding
to Nature, where the choice at each information
set is made independently of other choices. For
finite games, the number of pure strategies for
each player is also finite. Given a tuple of pure
strategies � D .�1; : : : ; �n/, we can define the
probability of the play of the game resulting in
outcome node x as �.x/, computed as follows:
Each outcome node has a unique path (the play)
prx from root node r . We initialize �.r/ D 1

and node n D r . If the player at node n is
Nature and the next node in prx is n0, then
�.n0/ D �.n/ � p.n; n0/, where p.n; n0/ is the
probability that Nature chooses the action that
leads to n0. Otherwise, let i D p.n/ be the player
at node n and let hki .n/ denote the information
set containing node n. Then, if �i .hki .n// D
a.n; n0/; let �.n0/ D �.n/, where a.n; n0/ is
the action in A.n/ that leads to n0; otherwise, set
�.n0/ D 0. The above process is repeated letting
n0 D n, until n0 equals the terminal node x. Using
these probabilities, the resulting expected payoff
to player i is

Ji .�/ D
X

x terminal; x2N
�.x/Ji .x/

This representation of payoffs in terms of
strategies transforms the game from an extensive
form representation to a strategic or normal form
representation, where the concept of dynamics
and information has been abstracted away. The
resulting strategic form looks like a static game
as discussed in the encyclopedia entry � Strategic
Form Games and Nash Equilibrium, where each
player selects his/her strategy from a finite set,
resulting in a vector of payoffs for the players.
Using these payoffs, one can now define so-
lution concepts for the game. Let the notation
��i D .�1; : : : ; �i�1; �iC1; �n/ denote the set of
strategies in a tuple excluding the i th strategy.

A Nash equilibrium solution is a tuple of feasible
strategies �� D .��1 ; : : : ; ��n / such that

Ji .��/ � Ji .���i ; �i / for all �i 2 �i ;
for all i 2 f1; : : : ; ng (1)

The special case of two-person games where
J1.�/ D �J2.�/ are known as zero-sum games.

As discussed in the encyclopedia entry on
static games (�Strategic Form Games and Nash
Equilibrium), the existence of Nash equilibria
or even saddle point strategies in terms of pure
strategies is not guaranteed for finite games.
Thus, one must consider the use of mixed
strategies. A mixed strategy �i for player
i 2 f1; : : : ; ng is a probability distribution over
the set of pure strategies �i . The definition of
payoffs can be extended to mixed strategies by
averaging the payoffs associated with the pure
strategies, as

Ji .�
i
/ D

X

�12�1
: : :

X

�n2�n
�1.�1/ � � ��n.�n/

Ji .�1; : : : ; �n/

Denote the set of probability distributions over
�i as �.�i /. An n-tuple �� D .�1; : : : ; �n/ of
mixed strategies is said to be a Nash equilibrium
if

Ji .��/ � Ji .���i ; �i / for all �i

2 �.�i /; for all i 2 f1; : : : ; ng

Theorem 1 (Nash 1950, 1951) Every finite
n-person game has at least one Nash equilibrium
point in mixed strategies.

Mixed strategies suggest that each player’s
randomization occurs before the game is played,
by choosing a strategy at random from its choices
of pure strategies. For games in extensive form,
one can introduce a different class of strategies
where a player makes a random choice of action
at each information set, according to a proba-
bility distribution that depends on the specific
information set. The choice of action is selected
independently at each information set according

http://dx.doi.org/10.1007/978-1-4471-5058-9_27
http://dx.doi.org/10.1007/978-1-4471-5058-9_27
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to a selected probability distribution, in a man-
ner similar to how Nature’s actions are selected.
These random choice strategies are known as
behavior strategies. Let �.A.hki // denote the
set of probability distributions over the deci-
sions A.hki / for player i at information set hki .
A behavior strategy for player i is an element
xi 2 Q

hki 2Hi
�.A.hki //, where xi .hki / denotes

the probability distribution of the behavior strat-
egy xi over the available decisions at information
set hki .

Note that the space of admissible behavior
strategies is much smaller than the space of ad-
missible mixed strategies. To illustrate this, con-
sider a player with K information sets and two
possible decisions for each information set. The
number of possible pure strategies would be 2K ,
and thus the space of mixed strategies would be
a probability simplex of dimension 2K � 1. In
contrast, behavior strategies would require spec-
ifying probability distributions over two choices
for each of K information sets, so the space
of behavior strategies would be a product space
of K probability simplices of dimension 1, to-
taling dimension K . One way of understanding
this difference is that mixed strategies introduce
correlated randomization across choices at differ-
ent information sets, whereas behavior strategies
introduce independent randomization across such
choices.

For every behavior strategy, one can find an
equivalent mixed strategy by computing the prob-
abilities of every set of actions that result from
the behavior strategy. The converse is not true
for general games in extensive form. However,
there is a special class of games for which the
converse is true. In this class of games, players
recall what actions they have selected previously
and what information they knew previously. A
formal definition of perfect recall is beyond the
scope of this exposition but can be found in
Hart (1991) and Kuhn (1953). The implication of
perfect recall is summarized below:

Theorem 2 (Kuhn 1953) Given a finite n-
person game in which player i has perfect recall,
for each mixed strategy �i for player i , there
exists a corresponding behavior strategy xi that

is equivalent, where every player receives the
same payoffs under both strategies �i and xi .

This equivalence was extended by Aumann
to infinite games (Aumann 1964). In dynamic
games, it is common to assume that each player
has perfect recall and thus solutions can be found
in the smaller space of behavior strategies.

Computation of Equilibria
Algorithms for the computation of mixed-
strategy Nash equilibria of static games can
be extended to compute mixed-strategy Nash
equilibria for games in extensive form when
the pure strategies are enumerated as above.
However, the number of pure strategies grows
exponentially with the size of the extensive form
tree, making these methods hard to apply. For
two-person games in extensive form with perfect
recall by both players, one can search for Nash
equilibria in the much smaller space of behavior
strategies. This was exploited in Koller et al.
(1996) to obtain efficient linear complementarity
problems for nonzero-sum games and linear
programs for zero-sum games where the number
of variables involved is linear in the number of
internal decision nodes of the extensive form
of the game. A more detailed overview of
computation algorithms for Nash equilibria can
be found in McKelvey and McLennan (1996).
The Gambit Web site (McKelvey et al. 2010)
provides software implementations of several
techniques for computation of Nash equilibria in
two- and n-person games.

An alternative approach to computing Nash
equilibria for games in extensive forms is based
on subgame decomposition, discussed next.

Subgames
Consider a game G in extensive form. A node
c is a successor of a node n if there is a path
in the game tree from n to c. Let h be a node
in G that is not terminal and is the only node in
its information set. Assume that if a node c is a
successor of h, then every node in the information
set containing c is also a successor of h. In this
situation, one can define a subgame H of G
with root node h, which consists of node h and
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Dynamic Noncooperative Games, Fig. 2 Simple game
with multiple Nash equilibria

its successors, connected by the same actions as
in the original game G, with the payoffs and
terminal vertices equal to those in G. This is
the subgame that would be encountered by the
players had the previous play of the game reached
the state at node h. Since the information set
containing node h contains no other node and all
the information sets in the subgame contain only
nodes in the subgame, then every player in the
subgame knows that they are playing only in the
subgame once h has been reached.

Figure 2 illustrates a game where every non-
terminal node is contained in its own information
set. This game contains a subgame rooted at
node c. Note that the full game has two Nash
equilibria in pure strategies: strategies .L;L/ and
.R;R/. However, strategy .L;L/ is inconsistent
with how player 2 would choose its decision if it
were to find itself at node c. This inconsistency
arises because the Nash equilibria are defined in
terms of strategies announced before the game
is played and may not be a reasonable way
to select decisions if unanticipated plays occur.
When player 1 chooses L, node c should not be
reached in the play of the game, and thus player
2 can choose L because it does not affect the
expected payoff. One can define the concept of
Nash equilibria that are sequentially consistent as
follows.

Let xi be behavior strategies for player i in
game G. Denote the restriction of these strate-
gies to the subgame H as xHi . This restriction
describes the probabilities for choices of actions

for the information sets in H . Suppose the game
G has a Nash equilibrium achieved by strategies
.x1; : : : ; xn/. This Nash equilibrium is called sub-
game perfect (Selten 1975) if, for every subgame
H of G, the strategies .xH1 ; : : : ; x

H
n / are a Nash

equilibrium for the subgame H . In the game in
Fig. 2, there is only one subgame perfect equi-
librium, which is .R;R/. There are several other
refinements of the Nash equilibrium concept to
enforce sequential consistency, such as sequential
equilibria (Kreps and Wilson 1982).

An important application of subgames is to
compute subgame perfect equilibria by backward
induction. The idea is to start with a subgame
root node as close as possible to an outcome node
(e.g., node c in Fig. 2). This small subgame can
be solved for its Nash equilibria, to compute the
equilibrium payoffs for each player. Then, in the
original game G, the root node of the subgame
can be replaced by an outcome node, with payoffs
equal to the equilibrium payoffs in the subgame.
This results in a smaller game, and the process
can be applied inductively until the full game is
solved. The subgame perfect equilibrium strate-
gies can then be computed as the solution of
the different subgames solved in this backward
induction process. For Fig. 2, the subgame at c is
solved by player 2 selectingR, with payoffs (4,1).
The reduced new game has two choices for player
1, with best decision R. This leads to the overall
subgame perfect equilibrium .R;R/.

This backward induction procedure is similar
to the dynamic programming approach to solving
control problems. Backward induction was first
used by Zermelo (1912) to analyze zero-sum
games of perfect information such as chess. An
extension of Zermelo’s work by Kuhn (1953)
establishes the following result:

Theorem 3 Every finite game of perfect informa-
tion has a subgame perfect Nash equilibrium in
pure strategies.

This result follows because, at each step in the
backward induction process, the resulting sub-
game consists of a choice among finite actions for
a single player, and thus a pure strategy achieves
the maximal payoff possible.
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Infinite Noncooperative Games

When the number of options available to players
is infinite, game trees are no longer appropriate
representations for the evolution of the game.
Instead, one uses state space models with ex-
plicit models of actions and observations. A typ-
ical multistage model for the dynamics of such
games is

x.t C 1/ D f .x.t/; u1.t/; : : : ; un.t/;w.t/; t/;

t D 0; : : : ; T � 1 (2)

with initial condition x.0/ D w.0/, where
x.t/ is the state of the game at stage t , and
u1.t/; : : : ; un.t/ are actions selected by players
1; : : : ; n at stage t , and w.t/ is an action selected
by Nature at stage t . The space of actions for each
player are restricted at each time to infinite sets
Ai.t/ with an appropriate topological structure,
and the admissible state x.t/ at each time belongs
to an infinite setX with a topological structure. In
terms of Nature’s actions, for each stage t , there is
a probability distribution that specifies the choice
of Nature’s action w.t/, selected independently
of other actions.

Equation (2) describes a play of the game,
in terms of how different actions by players
at the various stages evolve the state of the
game. A play of the game is thus a history
h D .x.0/; u1.0/; : : : ; un.0/; x.1/; u1.1/; : : : ;
un.1/; : : : ; x.T //. Associated with each play of
the game is a set of real-valued functions Ji .h/
that indicates the payoff to player i in this play.
This function is often assumed to be separable
across the variables in each stage.

To complete the description of the extensive
form, one must now introduce the available in-
formation to each player at each stage. Define
observation functions

yi .t/ D gi .x.t/; v.t/; t/; i D 1; : : : ; n

where yi .t/ takes values in observations
spaces which may be finite or infinite, and
v.t/ are selected by Nature given their
probability distributions, independent of other

selections. Define the information available
for player i at stage t to be Ii .t/, a subset
of fy1.0/;: : : ;yn.0/;: : : ; y1.t/;: : : ; yn.t/I u1.0/;
: : : ; un.0/; : : : ; u1.t � 1/; : : : ; un.t � 1/g. With
this notation, strategies �i.t/ for player i are
functions that map, at each stage, the available
information Ii .t/ into admissible decisions
ui .t/ 2 Ai.t/. With appropriate measurability
conditions, specifying a full set of strategies
� D .�1; : : : �n/ for each of the players induces a
probability distribution on the plays of the game,
which leads to the expected payoff Ji .�/. Nash
equilibria are defined in identical fashion to (1).

Obtaining solutions of multistage games is a
difficult task that depends on the ability to use
the subgame decomposition techniques discussed
previously. Such subgame decompositions are
possible when games do not include actions by
Nature and the payoff functions have a stagewise
additive property. Under such cases, backward
induction allows the construction of Nash equi-
librium strategies through the recursive solutions
of static infinite games, such as those discussed
in the encyclopedia entry on static games.

Generalizations of multistage games to con-
tinuous time result in differential games, covered
in two articles in the encyclopedia, but for the
zero-sum case. Additional details on infinite dy-
namic noncooperative games, exploiting different
models and information structures and studying
the existence, uniqueness, or nonuniqueness of
equilibria, can be found in Basar and Olsder
(1982).

Conclusions

In this entry, we reviewed models for dynamic
noncooperative games that incorporate temporal
order of play and uncertainty as to what indi-
vidual players know when they have to make
decisions. Using these models, we defined so-
lution concepts for the games and discussed al-
gorithms for determining solution strategies for
the players. Active directions of research include
development of new solution concepts for dy-
namic games, new approaches to computation of
game solutions, the study of games with a large
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number of players, evolutionary games where
players’ greedy behavior evolves toward equilib-
rium strategies, and special classes of dynamic
games such as Markov games and differential
games. Several of these topics are discussed in
other entries in the encyclopedia.
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Abstract

In 2012 the fleet of dynamically positioned (DP)
ships and rigs was probably larger than 3,000
units, predominately operating in the offshore oil
and gas industry. The complexity and function-
ality vary subject to the targeted marine opera-
tion, vessel concept, and risk level. DP systems
with advanced control functions and redundant
sensor, power, and thruster/propulsion configu-
rations are designed in order to provide high-
precision fault-tolerant control in safety-critical
marine operations. The DP system is customized
for the particular application with integration to
other control systems, e.g., power management,
propulsion, drilling, oil and gas production, off-
loading, crane operation, and pipe and cable lay-
ing. For underwater vehicles such as remotely
operated vehicles (ROVs) and autonomous un-
derwater vehicles (AUVs), DP functionality also
denoted as hovering is implemented on several
vehicles.

Keywords

Autonomous underwater vehicles (AUVs); Fault-
tolerant control; Remotely operated vehicles
(ROVs)

Introduction

The offshore oil and gas industry is the
dominating market for DP vessels. The various
offshore applications include offshore service
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vessels, drilling rigs (semisubmersibles) and
ships, shuttle tankers, cable and pipe layers,
floating production, storage, and off-loading
units (FPSOs), crane and heavy lift vessels,
geological survey vessels, rescue vessels, and
multipurpose construction vessels. DP systems
are also installed on cruise ships, yachts, fishing
boats, navy ships, tankers, and others.

A DP vessel is by the International Maritime
Organization (IMO) and the maritime class so-
cieties (DNV GL, ABS, LR, etc.) defined as a
vessel that maintains its position and heading
(fixed location denoted as stationkeeping or pre-
determined track) exclusively by means of active
thrusters. The DP system as defined by class
societies is not only limited to the DP control
system including computers and cabling. Position
reference systems of various types measuring
North-East coordinates (satellites, hydroacoustic,
optics, taut wire, etc.), sensors (heading, roll,
pitch, wind speed and direction, etc.), the power
system, thruster and propulsion system, and in-
dependent joystick system are also essential parts
of the DP system. In addition, the DP operator is
an important element securing safe and efficient
DP operations. Further development of human-
machine interfaces, alarm systems, and operator
decision support systems is regarded as top pri-
ority bridging advanced and complex technology
to safe and efficient marine operations. Sufficient
DP operator training is a part of this.

The thruster and propulsion system controlled
by the DP control system is regarded as one of
the main power consumers on the DP vessel. An
important control system for successful integra-
tion with the power plant and the other power
consumers such as drilling system, process sys-
tem, heating, and ventilation system is the power
and energy management system (PMS/EMS) bal-
ancing safety requirements and energy efficiency.
The PMS/EMS controls the power generation
and distribution and the load control of heavy
power consumers. In this context both transient
and steady-state behaviors are of relevance. A
thorough understanding of the hydrodynamics,
dynamics between coupled systems, load char-
acteristics of the various power consumers, con-
trol system architecture, control layers, power

system, propulsion system, and sensors is impor-
tant for successful design and operation of DP
systems and DP vessels.

Thruster-assisted position mooring is another
important stationkeeping application often used
for FPSOs, drilling rigs, and shuttle tanker oper-
ations where the DP system has to be redesigned
accounting for the effect of the mooring system
dynamics. In thruster-assisted position mooring,
the DP system is renamed to position mooring
(PM) system. PM systems have been commer-
cially available since the 1980s. While for DP-
operated ships the thrusters are the sole source
of the stationkeeping, the assistance of thrusters
is only complementary to the mooring system.
Here, most of the stationkeeping is provided by
a deployed anchor system. In severe environmen-
tal conditions, the thrust assistance is used to
minimize the vessel excursions and line tension
by mainly increasing the damping in terms of
velocity feedback control and adding a bias force
minimizing the mean tensions of the most loaded
mooring lines. Modeling and control of turret-
anchored ships are treated in Strand et al. (1998)
and Nguyen and Sørensen (2009).

Overview of DP systems including references
can be found in Fay (1989), Fossen (2011), and
Sørensen (2011). The scientific and industrial
contributions since the 1960s are vast, and many
research groups worldwide have provided impor-
tant results. In Sørensen et al. (2012), the devel-
opment of DP system for ROVs is presented.

Mathematical Modeling of DP Vessels

Depending on the operational conditions, the
vessel models may briefly be classified into
stationkeeping, low-velocity, and high-velocity
models. As shown in Sørensen (2011) and
Fossen (2011) and the references therein,
different model reduction techniques are
used for the various speed regimes. Vessel
motions in waves are defined as seakeeping
and will here apply both for stationkeeping
(zero speed) and forward speed. DP vessels
or PM vessels can in general be regarded as
stationkeeping and low-velocity or low Froude
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number applications. This assumption will
particularly be used in the formulation of math-
ematical models used in conjunction with the
controller design. It is common to use a two-time
scale formulation by separating the total model
into a low-frequency (LF) model and a wave-
frequency (WF) model (seakeeping) by superpo-
sition. Hence, the total motion is a sum of the
corresponding LF and the WF components. The
WF motions are assumed to be caused by first-
order wave loads. Assuming small amplitudes,
these motions will be well represented by a linear
model. The LF motions are assumed to be caused
by second-order mean and slowly varying wave
loads, current loads, wind loads, mooring (if
any), and thrust and rudder forces and moments.

For underwater vehicles operating below the
wave zone, estimated to be deeper than half the
wavelength, the wave loads can be disregarded
and of course the effect of the wind loads as well.

Modeling Issues
The mathematical models may be formulated in
two complexity levels:
• Control plant model is a simplified mathe-

matical description containing only the main
physical properties of the process or plant.
This model may constitute a part of the con-
troller. The control plant model is also used
in analytical stability analysis based on, e.g.,
Lyapunov stability.

• Process plant model or simulation model is a
comprehensive description of the actual pro-
cess and should be as detailed as needed. The
main purpose of this model is to simulate
the real plant dynamics. The process plant
model is used in numerical performance and
robustness analysis and testing of the control
systems. As shown above, the process plant
models may be implemented for off-line or
real-time simulation (e.g., HIL testing; see Jo-
hansen et al. 2007) purposes defining different
requirements for model fidelity.

Kinematics
The relationship between the Earth-fixed position
and orientation of a floating structure and its
body-fixed velocities is

P̃ D
� P̃ 1
P̃ 2

	
D

�
J1 .˜2/ 03�3

03�3 J2 .˜2/

	 �
�1
�2

	
(1)

The vectors defining the Earth-fixed vessel posi-
tion (˜1) and orientation (˜2) using Euler angles
and the body-fixed translation (�1) and rotation
.�2/ velocities are given by

˜1 D �
x y z

�T
;˜2 D �

�   
�T
;

�1 D �
u v w

�T
;�2 D �

p q r
�T
: (2)

The rotation matrix J1.˜2/ 2 SO(3) and the
velocity transformation matrix J2.˜2/ 2 R

3�3
are defined in Fossen (2011). For ships, if only
surge, sway and yaw (3DOF) are considered, the
kinematics and the state vectors are reduced to

P̃ D R. /�; or
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Process Plant Model: Low-Frequency
Motion
The 6-DOF LF model formulation is based on
Fossen (2011) and Sørensen (2011). The equa-
tions of motion for the nonlinear LF model of a
floating vessel are given by

M P� C CRB.�/� C CA.�r /�r C D.�r /CG.˜/

D £wave2 C £wind C £thr C £moor; (4)

where M 2 R
6�6 is the system inertia matrix

including added mass; CRB.�/ 2 R
6�6 and

CA.�r / 2 R
6�6 are the skew-symmetric Coriolis

and centripetal matrices of the rigid body and
the added mass; G(˜) 2 R

6 is the generalized
restoring vector caused by the mooring lines
(if any), buoyancy, and gravitation; £thr 2 R

6

is the control vector consisting of forces and
moments produced by the thruster system; £wind

and £wave2 2 R
6 are the wind and second-order

wave load vectors, respectively.
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The damping vector may be divided into linear
and nonlinear terms according to

D.�r / D dL.�r ; �/�r C dNL.�r ; �r/�r ; (5)

where �r 2 R
6 is the relative velocity vector

between the current and the vessel. The nonlin-
ear damping, dNL, is assumed to be caused by
turbulent skin friction and viscous eddy-making,
also denoted as vortex shedding (Faltinsen 1990).
The strictly positive linear damping matrix dL 2
R
6�6 is caused by linear laminar skin friction

and is assumed to vanish for increasing speed
according to

dL.�r ; �/ D
2

4
Xur e

��jur j :: Xre
��jr j

:: :: ::

Nur e
��jur j :: Nre

��jr j

3

5 ; (6)

where � is a positive scaling constant such that
� 2 RC.

Process Plant Model: Wave-Frequency
Motion
The coupled equations of the WF motions in
surge, sway, heave, roll, pitch, and yaw are as-
sumed to be linear and can be formulated as

M.!/ P̃Rw C Dp.!/ P̃Rw C G˜Rw D £wave1;

P̃w D J. Ñ 2/ P̃Rw;
(7)

where ˜Rw 2 R
6 is the WF motion vector in the

hydrodynamics frame. ˜w 2 R
6 is the WF motion

vector in the Earth-fixed frame. £wave1 2 R
6 is

the first-order wave excitation vector, which will
be modified for varying vessel headings relative
to the incident wave direction. M(!) 2 R

6�6 is
the system inertia matrix containing frequency
dependent added mass coefficients in addition to
the vessel’s mass and moment of inertia. Dp(!)
2 R

6�6 is the wave radiation (potential) damping
matrix. The linearized restoring coefficient ma-
trix G 2 R

6�6 is due to gravity and buoyancy
affecting heave, roll, and pitch only. For anchored
vessels, it is assumed that the mooring system
will not influence the WF motions.

Remark 1 Generally, a time domain equation
cannot be expressed with frequency domain

coefficient – !. However, this is a common
used formulation denoted as a pseudo-differential
equation. An important feature of the added mass
terms and the wave radiation damping terms
is the memory effects, which in particular are
important to consider for nonstationary cases,
e.g., rapid changes of heading angle. Memory
effects can be taken into account by introducing
a convolution integral or a so-called retardation
function (Newman 1977) or state space models
as suggested by Fossen (2011).

Control Plant Model
For the purpose of controller design and analysis,
it is convenient to apply model reduction and
derive a LF and WF control plant model in
surge, sway, and yaw about zero vessel velocity
according to

Ppw D Apwpw C Epwwpw; (8)

P̃ D R. /�; (9)

Pb D �Tbb C Ebwb; (10)

M P� D �DL� C RT . /b C £; (11)

P!p D 0; (12)

y D
h


˜ C Cpwpw
�T

!p

iT
; (13)

where !p 2 R is the peak frequency of the waves
(PFW). The estimated PFW can be calculated
by spectral analysis of the pitch and roll mea-
surements assumed to dominantly oscillate at the
peak wave frequency. In the spectral analysis,
the discrete Fourier transforms of the measured
roll and pitch, which are collected through a
period of time, are done by taking the n-point
fast Fourier transform (FFT). The PFW may be
found to be the frequency at which the power
spectrum is maximal. The assumption P!p D 0

is valid for slowly varying sea state. You can
also find the wave frequency using nonlinear
observers/EKF and signal processing techniques.
It is assumed that the second-order linear model is
sufficient to describe the first-order wave-induced
motions, and then pw 2 R

6 is the state of the WF
model. Apw 2 R

6�6 is assumed Hurwitz and de-
scribes the first-order wave-induced motion as a
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mass-damper-spring system. wpw 2 R
3 is a zero-

mean Gaussian white noise vector. y is the mea-
surement vector. The WF measurement matrix
Cpw 2 R

3�6 and the disturbance matrix Epw 2
R
6�3 are formulated as

Cpw D �
03�3 I3�3

�
;ETpw D �

03�3 KT
w

�T
:

(14)
Here, a 3-DOF model is assumed adopting the
notation in (3) such that ˜ 2 R

3 and � 2 R
3 are

the LF position vector in the Earth-fixed frame
and the LF velocity vector in the body-fixed
frame, respectively. M 2 R

3�3 and DL 2 R
3�3 are

the mass matrix including hydrodynamic added
mass and linear damping matrix, respectively.
The bias term accounting for unmodeled affects
and slowly varying disturbances b 2 R

3 is mod-
eled as Markov processes with positive definite
diagonal matrix Tb 2 R

3�3 of time constants. If
Tb is removed, a Wiener process is used. wb 2
R
3 is a bounded disturbance vector, and Eb 2

R
3�3 is a disturbance scaling matrix. £ 2R

3 is the
control force. As mentioned later in the paper, the
proposed model reduction considering only hor-
izontal motions may create problems conducting
DP operations of structures with low waterplane
area such as semisubmersibles. More details can
be found in Sørensen (2011) and Fossen (2011)
and the references therein.

For underwater vehicles, 6-DOF model should
be used. For underwater vehicles with self-
stabilizing roll and pitch, a 4-DOF model with
surge, sway, yaw, and heave may be used; see
Sørensen et al. (2012).

Control Levels and Integration
Aspects

The real-time control hierarchy of a marine con-
trol system (Sørensen 2005) may be divided into
three levels: the guidance system and local op-
timization, the high-level plant control (e.g., DP
controller including thrust allocation), and the
low-level thruster control. The DP control system
consists of several modules as indicated in Fig. 1:
• Signal processing for analysis and testing of

the individual signals including voting and
weighting when redundant measurements are

available. Ensuring robust and fault-tolerant
control proper diagnostics and change detec-
tion algorithms is regarded as maybe one of
the most important research areas. For an
overview of the field, see Basseville and Niki-
forov (1993) and Blanke et al. (2003).

• Vessel observer for state estimation and
wave filtering. In case of lost sensor
signals, the predictor is used to provide
dead reckoning, which is required by class
societies. Prediction error which is the
deviation between the measurements and the
estimated measurements is also one important
barrier in the failure detection.

• Feedback control law is often of multivari-
able PID type, where feedback is produced
from the estimated low-frequency (LF) posi-
tion and heading deviations and estimated LF
velocities.

• Feedforward control law is normally the
wind force and moment. For the different
applications (pipe laying, ice operations,
position mooring), tailor-made feedforward
control functions are also used.

• Guidance system with reference models is
needed in achieving a smooth transition
between setpoints. In the most basic case,
the operator specifies a new desired position
and heading, and a reference model generates
smooth reference trajectories/paths for
the vessel to follow. A more advanced
guidance system involves way-point tracking
functionality with optimal path planning.

• Thrust allocation computes the force and
direction commands to each thruster device
based on input from the resulting feedback
and feedforward controllers. The low-level
thruster controllers will then control the
propeller pitch, speed, torque, and power.

• Model adaptation provides the necessary cor-
rections of the vessel model and the controller
settings subject to changes in the vessel draft,
wind area, and variations in the sea state.

• Power management system performs diesel
engine control, power generation management
with frequency and voltage monitoring, active
and passive load sharing, and load dependent
start and stop of generator sets.
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DP Controller
In the 1960s the first DP system was introduced
for horizontal modes of motion (surge, sway, and
yaw) using single-input single-output PID control
algorithms in combination with low-pass and/or
notch filters. In the 1970s more advanced output
control methods based on multivariable optimal
control and Kalman filter theory were proposed
by Balchen et al. (1976) and later refined in
Sælid et al. (1983); Grimble and Johnson (1988);
and others as referred to in Sørensen (2011).
In the 1990s nonlinear DP controller designs
were proposed by several research groups; for
an overview see Strand et al. (1998), Fossen and
Strand (1999), Pettersen and Fossen (2000), and
Sørensen (2011). Nguyen et al. (2007) proposed
the design of hybrid controller for DP from calm
to extreme sea conditions.

Plant Control
By copying the control plant model (8)–(13) and
adding an injection term, a passive observer may

be designed. A nonlinear output horizontal-plane
positioning feedback controller of PID type may
be formulated as

£PID D �RT
e Kpe � RT

e Kp3f.e/� Kd Q��RTKiz;
(15)

where e2R
3 is the position and heading deviation

vector, Q� 2 R
3 is the velocity deviation vector, z2

R
3 is the integrator states, and f(e) is a third-order

stiffness term defined as

e D Œe1; e2; e3�
T D RT .¥d/.

_
˜ � ˜d /;

Q� D O� � RT .¥d/˜d ;

Pz D _
˜ � ˜d ;

Re D R.¥ � ¥d / D RT .¥d /R.¥/;
f.e/ D Œe31; e

3
2; e

3
3�
T :

Experience from implementation and operations
of real DP control systems has shown that ¥d
in the calculation of the error vector e generally
gives a better performance with less noisy sig-
nals than using ¥. However, this is only valid
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under the assumption that the vessel maintains
its desired heading with small deviations. As
the DP capability for ships is sensitive to the
heading angle, i.e., minimizing the environmental
loads, heading control is prioritized in case of
limitations in the thrust capacity. This feature is
handled in the thrust allocation.

An advantage of this is the possibility to re-
duce the first-order proportional gain matrix, re-
sulting in reduced dynamic thruster action for
smaller position and heading deviations. More-
over, the third-order restoring term will make
the thrusters to work more aggressive for larger
deviations. Kp, Kp3, Kd, and Ki 2 R

3�3 are
the nonnegative controller gain matrices for pro-
portional, third-order restoring, derivative, and
integrator controller terms, respectively, found by
appropriate controller synthesis methods.

For small-waterplane-area marine vessels such
as semisubmersibles, often used as drilling rigs,
Sørensen and Strand (2000) proposed a DP con-
trol law with the inclusion of roll and pitch
damping according to

£rpd D �
2

4
0 gxq
gyp 0

g¥p 0

3

5
"

_
p
_
q

#
; (16)

where
_
p and Oq are the estimated pitch and roll an-

gular velocities. The resulting positioning control
law is written as

£ D £wFF C £PID C £rpd; (17)

where £wFF 2 R
3 is the wind feedforward control

law.
Thrust allocation or control allocation (Fig. 2)

is the mapping between plant and actuator con-
trol. It is assumed to be a part of the plant control.
The DP controller calculated the desired force
in surge and sway and moment in yaw. Depen-
dent on the particular thrust configuration with
installed and enabled propellers, tunnel thrusters,
azimuthing thrusters, and rudders, the allocation
is a nontrivial optimization problem calculating
the desired thrust and direction for each enabled
thruster subject to various constraints such as
thruster ratings, forbidden sectors, and thrust effi-
ciency. References on thrust allocation are found
in Johansen and Fossen (2013).

In Sørensen and Smogeli (2009), torque and
power control of electrically driven marine pro-
pellers are shown. Ruth et al. (2009) proposed
anti-spin thrust allocation, and Smogeli et al.



336 Dynamic Positioning Control Systems for Ships and Underwater Vehicles

(2008) and Smogeli and Sørensen (2009) pre-
sented the concept of anti-spin thruster control.
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Abstract

Economic model predictive control (EMPC) is
a variant of model predictive control aimed at
maximization of system’s profitability. It allows
one to explicitly deal with hard and average
constraints on system’s input and output variables
as well as with nonlinearity of dynamics. We
provide basic definitions and concepts of the
approach and highlight some promising research
directions.

Keywords
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Introduction

Most control tasks involve some kind of eco-
nomic optimization. In classical linear quadratic

(LQ) control, for example, this is cast as a trade-
off between control effort and tracking perfor-
mance. The designer is allowed to settle such a
trade-off by suitably tuning weighting parameters
of an otherwise automatic design procedure.

When the primary goal of a control system
is profitability rather than tracking performance,
a suboptimal approach has often been devised,
namely, a hierarchical separation is enforced be-
tween the economic optimization layer and the
dynamic real-time control layer.

In practice, while set points are computed by
optimizing economic revenue among all equilib-
ria fulfilling the prescribed constraints, the task
of the real-time control layer is simply to drive
(basically as fast as possible) the system’s state
to the desired set-point value.

Optimal control or LQ control may be used
to achieve the latter task, possibly in conjunc-
tion with model predictive control (MPC), but
the actual economics of the plant are normally
neglected at this stage.

The main benefits of this approach are
twofold:
1. Reduced computational complexity with re-

spect to infinite-horizon dynamical program-
ming

2. Stability robustness in the face of uncertainty,
normally achieved by using some form of
robust control in the real-time control layer
The hierarchical approach, however, is subop-

timal in two respects:
1. First of all, given nonlinearity of the

plant’s dynamics and/or nonconvexity of the

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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functions characterizing the economic
revenue, there is no reason why the most
profitable regime should be an equilibrium.

2. Even when systems are most profitably oper-
ated at equilibrium, transient costs are totally
disregarded by the hierarchical approach and
this may be undesirable if the time constants
of the plant are close enough to the time scales
at which set point’s variations occur.
Economic model predictive control seeks to

remove these limitations by directly using the
economic revenue in the stage cost and by the for-
mulation of an associated dynamic optimization
problem to be solved online in a receding horizon
manner. It was originally developed by Rawlings
and co-workers, in the context of linear control
systems subject to convex constraints as an effec-
tive technique to deal with infeasible set points
(Rawlings et al. 2008) (in contrast to the classical
approach of redesigning a suitable quadratic cost
that achieves its minimum at the closest feasible
equilibrium). Preserving the original cost has
the advantage of slowing down convergence to
such an equilibrium when the transient evolution
occurs in a region where the stage cost is better
than at steady state. Stability and convergence
issues are at first analyzed, thanks to convexity
and for the special case of linear systems only.
Subsequently Diehl introduced the notion of ro-
tated cost (see Diehl et al. 2011) that allowed a
Lyapunov interpretation of stability criteria and
paved the way for the extension to general dissi-
pative nonlinear systems (Angeli et al. 2012).

Economic MPC Formulation

In order to describe the most common versions
of economic MPC, assume that a discrete-time
finite-dimensional model of state evolution is
available for the system to be controlled:

xC D f .x; u/ (1)

where x 2 X � R
n is the state variable, u 2

U � R
m is the control input, and f W X � U !

X is a continuous map which computes the next
state value, given the current one and the value of

the input. We also assume that Z � X � U is a
compact set which defines the (possibly coupled)
state/input constraints that need to hold pointwise
in time:

.x.t/; u.t// 2 Z 8t 2 N: (2)

In order to introduce a measure of economic
performance, to each feasible state/input pair
.x; u/ 2 Z, we associate the instantaneous net
cost of operating the plant at that state when
feeding the specified control input:

`.x; u/ W Z ! R: (3)

The function ` (which we assume to be contin-
uous) is normally referred to as stage cost and
together with actuation and/or inflow costs should
also take into account the profits associated to
possible output/outflows of the system. Let .x�,
u�/ denote the best equilibrium/control input pair
associated to (3) and (2), namely,

`.x�; u�/ D minx;u `.x; u/

subject to
.x; u/ 2 Z

x D f .x; u/

(4)

Notice that, unlike in tracking MPC, it is not
assumed here that

`.x�; u�/ � `.x; u/ 8.x; u/ 2 Z: (5)

This is, technically speaking, the main point of
departure between economic MPC and tracking
MPC.

As there is no natural termination time to
operation of a system, our goal would be to
optimize the infinite-horizon cost functional:

X

t2N
`.x.t/; u.t// (6)

possibly in an average sense (or by introducing
some discounting factor to avoid infinite
costs) and subject to the dynamic/operational
constraints (1) and (2).
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To make the problem computationally more
tractable and yet retain some of the desirable
economic benefits of dynamic programming, (6)
is truncated to the following cost functional:

J.z; v/ D
N �1X

kD0

`.z.k/; v.k// C Vf .z.N // (7)

where z D Œz.0/; z.1/; : : :; z.N /� 2 XN C1; v D
Œv.0/; v.1/; : : :; v.N �1/� 2 U N and Vf W X ! R

is a terminal weighting function whose properties
will be specified later.

The virtual state/control pair .z�; v�/ at time t

is the solution (which for the sake of simplicity
we assume to be unique) of the following opti-
mization problem:

V.x.t// D minz;v J.z; v/

subject to
z.k C 1/ D f .z.k/; v.k//

.z.k/; v.k// 2 Z

for k 2 f0; 1; : : : ; N � 1g
z.0/ D x.t/; z.N / 2 Xf :

(8)

Notice that z(0) is initialized at the value of the
current state x.t/. Thanks to this fact, z� and v�
may be seen as functions of the current state x.t/.
At the same time, z.N / is constrained to belong
to the compact set Xf � X whose properties will
be detailed in the next paragraph.

As customary in model predictive control, a
state-feedback law is defined by applying the first
virtual control to the plant, that is, by letting
u.t/ = v�.0/ and restating, at the subsequent
time instant, the same optimization problem from
initial state x.t C 1/ which, in the case of exact
match between plant and model, can be computed
as f .x.t/; u.t//.

In the next paragraph, we provide details on
how to design the “terminal ingredients” (namely,
Vf and Xf ) in order to endow the basic algo-
rithm (8) with important features such as recur-
sive feasibility and a certain degree of average
performance and/or stability).

Hereby it is worth pointing out how, in
the context of economic MPC, it makes
sense to treat, together with pointwise-in-time

constraints, asymptotic average constraints on
specified input/output variables. In tracking
applications, where the control algorithm
guarantees asymptotic convergence of the state to
a feasible set point, the average asymptotic value
of all input/output variables necessarily matches
that of the corresponding equilibrium/control
input pair. In economic MPC, the asymptotic
regime resulting in closed loop may, in general,
fail to be an equilibrium; therefore, it might
be of interest to impose average constraints on
system’s inflows and outflows which are more
stringent than those indirectly implied by the
fulfillment of (2). To this end, let the system’s
output be defined as

y.t/ D h.x.t/; u.t// (9)

with h.x; u/ W Z ! R
p , a continuous map, and

consider the convex compact set Y. We may de-
fine the set of asymptotic averages of a bounded
signal y as follows:

AvŒy� D
�
� 2 R

p W9ftng1
nD1 W tn ! 1 as n!1

and � D lim
n!1

�
tn�1P
kD0

y.k/

�
=tn

�

Notice that for converging signals, or even
for periodic ones, Av[y] always is a singleton
but may fail to be such for certain oscillatory
regimes. An asymptotic average constraint can be
expressed as follows:

AvŒy� � Y (10)

where y is the output signal as defined in (9).

Basic Theory

The main theoretical results in support of the
approach discussed in the previous paragraph are
discussed below. Three fundamental aspects are
treated:
• Recursive feasibility and constraint satisfac-

tion
• Asymptotic performance
• Stability and convergence



340 EconomicModel Predictive Control

Feasibility and Constraints
The departing point of most model predictive
control techniques is to ensure recursive
feasibility, namely, the fact that feasibility of
the problem (8) at time 0 implies feasibility at all
subsequent times, provided there is no mismatch
between the true plant and its model (1). This is
normally achieved by making use of a suitable
notion of control invariant set which is used as
a terminal constraint in (8). Economic model
predictive control is not different in this respect,
and either one of the following set of assumptions
is sufficient to ensure recursive feasibility:
1. Assumption 1: Terminal constraint

Xf D fx�g Vf D 0

2. Assumption 2: Terminal penalty function
There exists a continuous map � W Xf !

U such that

.x;K.x// 2 Z 8x 2 Xf

f .x;K.x// 2 Xf 8x 2 Xf

The following holds:

Theorem 1 Let x(0) be a feasible state for (8)
and assume that either Assumption 1 or 2 hold.
Then, the closed-loop trajectory x.t/ resulting
from receding horizon implementation of the
feedback u.t/ D v�.0/ is well defined for all
t 2 N (i.e., x.t/ is a feasible initial state of (8)
for all t 2 N) and the resulting closed-loop
variables .x.t/, u.t// fulfill the constraints in (2).

The proof of this Theorem can be found in
Angeli et al. (2012) and Amrit et al. (2011), for
instance. When constraints on asymptotic aver-
ages are of interest, the optimization problem (8)
can be augmented by the following constraints:

N �1X

kD0

h.z.k/; v.k// 2 Yt (11)

provided Yt is recursively defined as

YtC1 D Yt ˚ Y ˚ f�h.x.t/; u.t//g (12)

where ˚ denotes Pontryagin’s set sum. (A˚B WD
fc W 9a 2 A, 9b 2 B W c D a C bg) The sequence
is initialized as Y0 D NY ˚ Y00 where Y00 is
an arbitrary compact set in R

p containing 0 in its
interior. The following result can be proved.

Theorem 2 Consider the optimization prob-
lem (8) with additional constraints (11), and
assume that x(0) is a feasible initial state.
Then, provided a terminal equality constraint
is adopted, the closed-loop solution x.t/ is
well defined and feasible for all t 2 N and
the resulting closed-loop variable y.t/ D
h.x.t/; u.t// fulfills the constraint (10).

Extending average constraints to the case of eco-
nomic MPC with terminal penalty function is
possible but outside the scope of this brief tuto-
rial. It is worth mentioning that the set Y00 plays
the role of an initial allowance that is shrunk or
expanded as a result of how close are closed-
loop output signals to the prescribed region. In
particular, Y00 can be selected a posteriori (after
computation of the optimal trajectory) just for
t D 0, so that the feasibility region of the
algorithm is not affected by the introduction of
average asymptotic constraints.

Asymptotic Average Performance
Since economic MPC does not necessarily lead
to converging solutions, it is important to have
bounds which estimate the asymptotic average
performance of the closed-loop plant. To this end,
the following dissipation inequality is needed for
the approach with terminal penalty function:

Vf .f .x;K.x///� Vf .x/�`.x;K.x//C`.x�; u�/
(13)

which shall hold for all x 2 Xf . We are now
ready to state the main bound on the asymptotic
performance:

Theorem 3 Let x(0) be a feasible state for (8)
and assume that either Assumption 1 or Assump-
tion 2 together with (13) hold. Then, the closed-
loop trajectory x.t/ resulting from receding hori-
zon implementation of the feedback u.t/ D v�.0/

is well defined for all t 2 N and fulfills
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lim sup
T !C1

PT �1
tD0 `.x.t/; u.t//

T
� `.x�; u�/: (14)

The proof of this fact can be found in Angeli et al.
(2012) and Amrit et al. (2011). When periodic
solutions are known to outperform, in an average
sense, the best equilibrium/control pair, one may
replace terminal equality constraints by periodic
terminal constraints (see Angeli et al. 2012). This
leads to an asymptotic performance at least as
good as that of the solution adopted as a terminal
constraint.

Stability and Convergence
It is well known that the cost-to-go V.x/ as
defined in (8) is a natural candidate Lyapunov
function for the case of tracking MPC. In fact,
the following estimate holds along solutions of
the closed-loop system:

V.x.t C1//�V.x.t//�`.x.t/; u.t//C`.x�; u�/:

(15)

This shows, thanks to inequality (5), that V.x.t//

is nonincreasing. Owing to this, stability and con-
vergence can be easily achieved under mild addi-
tional technical assumptions. While property (15)
holds for economic MPC, both in the case of
terminal equality constraint and terminal penalty
function, it is no longer true that (5) holds. As
a matter of fact, x� might even fail to be an
equilibrium of the closed-loop system, and hence,
convergence and stability cannot be expected in
general.

Intuitively, however, when the most profitable
operating regime is an equilibrium, the aver-
age performance bound provided by Theorem 3
seems to indicate that some form of stability or
convergence to x� could be expected. This is
true under an additional dissipativity assumption
which is closely related to the property of optimal
operation at steady state.

Definition 1 A system is strictly dissipative with
respect to the supply function s.x; u/ if there
exists a continuous function � W X ! R and
� W X ! R positive definite with respect to x�
such that for all x and u in X � U , it holds:

�.f .x; u// � �.x/ C s.x; u/ � �.x/: (16)

The next result highlights the connection between
dissipativity of the open-loop system and stability
of closed-loop economic MPC.

Theorem 4 Assume that either Assumption 1 or
Assumption 2 together with (13) hold. Let the
system (1) be strictly dissipative with respect to
the supply function s.x; u/ D `.x; u/ � `.x�; u�/

as from Definition 1 and assume there exists a
neighborhood of feasible initial states containing
x� in its interior. Then provided V is continuous
at x�; x� is an asymptotically stable equilibrium
with basin of attraction equal to the set of feasible
initial states.

See Angeli et al. (2012) and Amrit et al. (2011)
for proofs and discussions. Convergence results
are also possible for the case of economic MPC
subject to average constraints. Details can be
found in Müller et al. (2013a).

Hereby it is worth mentioning that finding
a function satisfying (16) (should one exist) is
in general a hard task (especially for nonlinear
systems and/or nonconvex stage costs); it is akin
to the problem of finding a Lyapunov function
and therefore general construction methods do
not exist. Let us emphasize, however, that while
existence of a storage function � is a sufficient
condition to ensure convergence of closed-loop
economic MPC, formulation and resolution of
the optimization problem (8) can be performed
irrespectively of any explicit knowledge of such
function. Also, we point out that existence of �

as in Definition 1 and Theorem 4 is only possible
if the optimal infinite-horizon regime of operation
for the system is an equilibrium.

Summary and Future Directions

Economic model predictive control is a fairly
recent and active area of research with great
potential in those engineering applications where
economic profitability is crucial rather than track-
ing performance.

The technical literature is rapidly growing in
application areas such as chemical engineering
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(see Heidarinejad 2012) or power systems engi-
neering (see Hovgaard et al. 2010; Müller et al.
2013a) where system’s output is in fact physical
outflows which can be stored with relative ease.

We only dealt with the basic theoretical de-
velopments and would like to provide pointers to
interesting recent and forthcoming developments
in this field:
• Generalized terminal constraints: possibility

of enlarging the set of feasible initial states
by using arbitrary equilibria as terminal
constraints, possibly to be updated on line in
order to improve asymptotic performance (see
Fagiano and Teel 2012; Müller et al. 2013b).

• Economic MPC without terminal constraints:
removing the need for terminal constraints
by taking a sufficiently long control horizon
is an interesting possibility offered by
standard tracking MPC. This is also possible
for economic MPC at least under suitable
technical assumptions as investigated in
Grüne (2012, 2013).

• The basic developments presented in the
previous paragraph only deal with systems
unaffected by uncertainty. This is a severe
limitation of current approaches and it is to be
expected that, as for the case of tracking MPC,
a great deal of research in this area could be
developed in the future. In particular, both
deterministic and stochastic uncertainties are
of interest.

Cross-References

�Model-Predictive Control in Practice
�Optimization Algorithms for Model Predictive

Control

Recommended Reading

Papers Amrit et al. (2011), Angeli et al. (2011,
2012), Diehl et al. (2011), Müller et al. (2013a),
and Rawlings et al. (2008) set out the basic
technical tools for performance and stability anal-
ysis of EMPC. To readers interested in the gen-
eral theme of optimization of system’s economic
performance and its relationship with classical

turnpike theory in economics, please refer to
Rawlings and Amrit (2009). Potential applica-
tions of EMPC are described in Hovgaard et al.
(2010), Heidarinejad (2012), and Ma et al. (2011)
while Rawlings et al. (2012) is an up-to-date
survey on the topic. Fagiano and Teel (2012) and
Grüne (2012, 2013) deal with the issue of relax-
ation or elimination of terminal constraints, while
Müller et al. (2013b) explore the possibility of
adaptive terminal costs and generalized equality
constraints.
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Abstract

Power electronics and their applications for elec-
tric energy transfer and control are introduced.
The fundamentals of the power electronics are
presented, including the commonly used semi-
conductor devices and power converter circuits.
Different types of power electronic controllers
for electric power generation, transmission and
distribution, and consumption are described. The
advantages of power electronics over traditional
electromechanical or electromagnetic controllers
are explained. The future directions for power
electronic application in electric power systems
are discussed.
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Introduction

Modern society runs on electricity or electric
energy. The electric energy generally must be
transferred before consumption since the energy
sources, such as thermal power plants, hydro
dams, and wind farms, are often some distances
away from the loads. In addition, electric energy
needs to be controlled as well since the energy
transfer and use often require electricity in a
form different from the raw form generated at
the source. Examples are the voltage magnitude
and frequency for long distance transmission; the
voltage needs to be stepped up at the sending end
to reduce the energy loss along the lines and then
stepped down at the receiving end for users; for
many modern consumer devices, DC voltage is
needed and obtained through transforming the 50
or 60 Hz utility power. Note that electric energy
transfer and control is often used interchangeably
with the electric power transfer and control. This
is because the modern electric power systems
have very limited energy storage and the energy
generated must be consumed at the same time.

Since the beginning of the electricity era,
electric energy transfer and control technologies
have been an essential part of electric power
systems. Many types of equipment were invented
and applied for these purposes. The commonly
used equipment includes electric transmission
and distribution lines, generators, transformers,
switchgears, inductors or reactors, and capacitor
banks. The traditional equipment has limited
control capability. Many cannot be controlled
at all or can only be connected or disconnected
with mechanical switches, others with limited
range, such as transformers with tap changers.
Even with fully controllable equipment such as
generators, the control dynamics is relatively
slow due to the electromechanical or magnetic
nature of the controller.

Power electronics are based on semiconductor
devices. These devices are derivatives from tran-
sistors and diodes used in microelectronic circuits
with the additional large power handling capa-
bility. Due to their electronic nature, power elec-
tronic devices are much more flexible and faster
than their electromechanical or electromagnetic

http://dx.doi.org/10.1007/978-1-4471-5058-9_62
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counterparts for electric energy transfer and con-
trol. Since the advent of power electronics in the
1950s, they have steadily gained ground in power
system applications. Today, power electronic
controllers are an important part of equipment
for electric energy transfer and control. Their
roles are growing rapidly with the continuous im-
provement of the power electronic technologies.

Fundamentals of Power Electronics

Different from semiconductor devices in micro-
electronics, the power electronic devices only act
as switches for desired control functions, such
that they incur minimum losses when they are
either on (closed) or off (open). As a result,
the power electronic controllers are basically the
switching circuits. The semiconductor switches
are therefore the most important elements of the
power electronic controllers. Since the 1950s,
many different types of power semiconductor
switches have been developed and can be selected
based on the applications.

The performance of the power semiconductor
devices is mainly characterized by their voltage
and current ratings, conduction or on-state loss,
as well as the switching speed (or switching
frequency capability) and associated switching
loss. Main types of power semiconductor devices
are listed with their symbols and state-of-the-art
rating and frequency range shown in Table 1:
• Power diode – a two terminal device with

similar characteristics to diodes used in micro-
electronics but with higher-voltage and power
ratings.

• Thyristor – also called SCR (silicon-
controlled rectifier). Unlike diode, thyristor
is a three-terminal device with an additional
gate terminal. It can be turned on by a current
pulse through gate but can only be turned
off when the main current goes to zero with
external means. Thyristor has low conduction
loss but slow switching speed.

• GTO – stands for gate-turn-off thyristor. GTO
can be turned on similarly as a regular thyris-
tor and can also be turned off with a large
negative gate current pulse. GTO has been
largely replaced by IGBT and IGCT due to its
complex gate driving needs and slow switch-
ing speed.

• Power BJT – similar to bipolar transistor
for microelectronics and requires a sustained
gate current to turn on and off. It has been
replaced by IGBT and power MOSFET with
simpler gate signals and faster switching
speed.

• Power MOSFET – similar to metal-oxide
semiconductor field effect transistor for
microelectronics and can be turned on and
off with a gate voltage signal. It is the
fastest device available but has relatively
high conduction loss and relatively low-
voltage/power ratings.

• IGBT – stands for insulated-gate bipolar tran-
sistor. Unlike regular BJT, it can be turned
on and off with a gate voltage like MOS-
FET. It has relatively low conduction loss and
fast switching speed. IGBT is becoming the
workhorse of the power electronics for high
power applications.

Electric Energy Transfer and Control via Power Electronics, Table 1 Commonly use Si-based power semiconduc-
tor devices and their ratings

Types Symbol Voltage Current Switching frequency

Power diodes Max 80 kV, typical < 10 kV 10 kA Various

Thyristor Max 8 kV 4.5 kA AC line frequency

GTO Max 10 kV 6.5 kA <500 Hz

Power MOSFET Max 4.5 kV, typical < 600 V 1.6 kA 10 s of kHz to MHz

IGBT Max 6.5 kV, typical > 600 V 2.4 kA 1 kHz to 10 s of kHz

IGCT Max 10 kV, typical > 4.5 kV 6.5 kA <2 kHz
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• IGCT – stands for integrated-gate-commutated
thyristor. It is basically a GTO with an
integrated gate drive circuit allowing a hard
driven turnoff. It therefore has faster switching
speed than regular GTO but slower than IGBT.

Except for diodes, all other devices above can
be turned on and/or off through a gate signal, so
they are active switches, while diodes are called
passive switch.

With different types of power semiconduc-
tors, many power electronics circuits have been
developed. Based on their functions, they can be
classified as:
• Rectifier – rectifiers convert AC to DC. De-

pending on AC sources, rectifiers can be three
phase or single phase; depending on device
types, they can be passive (diode based), phase
controlled (thyristor controlled), or actively
switched.

• Inverter – inverters convert DC to AC. They
again can be three phase or single phase.
Inverters generally require active switching
devices.

• DC-DC converter – also called choppers, DC-
DC converters convert one DC voltage level
to another. Sometimes they also contains a
magnetic isolation. DC-DC converters can
have unidirectional or bidirectional power
flow and generally requires active switching
devices.

• AC-AC converter – directly converts one AC
to another, either only the voltage magnitude
or both magnitude and frequency. The former
can also be called AC switch, and the latter can

be called frequency changer. Active devices
are needed for these types of converters.
There are a variety of converter topologies

for each type of the converters listed above.
The most commonly used basic topologies for
power system applications are shown in Fig. 1.
These basic topologies can be expanded through
paralleling or series of devices and/or converters
to achieve higher current and voltage ratings.
Other variations such as multilevel converters are
also popular for high-voltage applications using
lower-voltage rating devices.

It should be noted that passive components,
i.e., inductors and capacitors, are essential parts
of power electronic converters. In fact, power
electronic converters transfer or control the elec-
tric energy by storing it temporarily in induc-
tors or capacitors while reformatting the original
voltage or current waveform through switching
actions. The other key function of the passives is
filtering the harmonics caused by switching.

Power Electronic Controller Types for
Energy Transfer and Control
For almost all traditional non-power-electronic
equipment for electric energy transfer and
control, there can be corresponding power
electronic-based counterpart, often with better
controllability. However, power electronic
equipment can be more expensive and therefore
only used when it provides better overall
performance and cost benefits. In other cases,
only power electronic equipment can achieve the
required control functions.

Thyristor based rectifier Voltage source inverter (VSI) Bi-directional AC switch 

a b

c

Electric Energy Transfer and Control via Power Electronics, Fig. 1 Commonly used basic power electronics
converter topologies (only one phase shown for the AC switch)
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The power electronic controllers can be
categorized as for energy generation, delivery,
and consumption. For generation, the thermal or
hydro generators both use synchronous machines
with excitation windings on the rotor, which
require DC current. A thyristor-based rectifier,
called exciter, is generally used for this purpose.
Wind turbine generators usually use a back-to-
back VSI to interface to the AC grid, and PV
solar sources use a DC-DC converter cascaded
with a VSI.

Power electronic controllers for transmission
and distribution controllers include so-called
flexible AC transmission systems (FACTS) and
high-voltage DC transmission (HVDC). Some of
the more commonly used controllers and their
functions and circuit topologies are listed in
Table 2.

The main power electronic controllers for
loads include variable speed motor drives;
electronic ballast for fluorescent lights and power
supplies for LED; various power supplies for
computer, IT, and other electronic loads; and
chargers for electric vehicles. The percentage
of power electronics controlled loads in power
systems have been steadily increasing. Power
electronics can generally result in improved
performance and efficiency.

Future Directions

Power electronics have progressed steadily
since the invention of thyristors in the 1950s.
The progress is in all aspects, semiconductor
devices, passives, circuits, control, and system
integration, leading to converter systems with
better performance, higher efficiency, higher
power density, higher reliability, and lower
cost. Because of these progresses, the power
electronics applications in power systems have
become more and more widespread. However,
in general, power electronic controllers are
still not sufficiently cost-effective, reliable,
or efficient. Many improvements are needed
and expected, especially in the following
areas:

• Semiconductor devices – Devices used today
are almost exclusively based on silicon. The
emerging devices based on wide-bandgap
materials such as SiC and GaN are expected
to revolutionize power electronics with their
capabilities of higher voltage, lower loss,
faster switching speed, higher temperature,
and smaller size.

• Power electronic converters – More cost-
effective and reliable converters will be
developed as a result of better devices,
passive components, and circuit structures.
Modular, distributed, and hybrid with non-
power-electronics approaches are expected to
result in overall better benefits.

• Enhanced functions – Power electronic con-
trollers can be designed to have multiple func-
tions in the system. For example, wind and PV
solar inverters can provide reactive power to
the grid in addition to transferring real energy.
Today, power electronic controllers are mostly
locally controlled. With better measurement
and communication technologies, they may be
controlled over a wide area for supporting the
system level functions.

• New applications – The new applications for
future power system include DC grid based
on multiterminal HVDC and energy storage.
Critical technologies include cost-effective
and efficient DC transformers and DC circuit
breakers. Power electronics will play key roles
in these technologies.
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Abstract

Engine control is the enabling technology for
efficiency, performance, reliability, and cleanli-
ness of modern vehicles for a wide variety of
uses and users. It has also a paramount impor-
tance for many other engine applications like
power plants. Engines are essentially chemical
reactors, and the core task of engine control
consists in preparing and starting the reaction
(mixing the reactants and igniting the mixture)
while the reaction itself is not controlled. The
technical challenge derives from the combination
of high complexity, wide range of conditions of
use, performance requirements, significant time
delays, and use of the constraints on the choice
of components. In practice, engine control is to a
large extent feed-forward control, feedback loops
being used either for low-level control or for up-
dating the feed-forward. Industrial engine control
is based on very complex structures calibrated
experimentally, but there is a growing interest
for model-based control with stronger feedback
action, supported by the breakthrough of new
computational and communication possibilities,
as well as the introduction of new sensors.

Keywords

Compression ignition; Emissions; Exhaust af-
tertreatment; Internal combustion engines; Spark
ignition

Introduction

Most vehicles are moved by internal combus-
tion engines (ICE), whose key function is the
conversion of chemical into mechanical energy,
basically by oxidation, e.g., in the case of propane

C3H8C5O2 D 3CO2C4H2OC46:3 MJ=kg (1)

The chemical energy is first transformed into
heat and then converted by the ICE into me-
chanical energy (Heywood 1988). The key task
of engine control (Guzzella and Onder 2010;
Kiencke and Nielssen 2005) is to make sure that
the reactants (fuel and oxygen) meet in the right
proportion (“mixture formation”) and that the
combustion is started (or “ignited”) to deliver the
required torque at the engine crankshaft. Several
combustion processes are known, the most com-
mon ones being Otto and Diesel. For the first
kind (also called SI for spark ignited), the mix-
ture is prepared outside the combustion chamber
and combustion is ignited by spark, while in
the second one fuel is injected directly into the
combustion chamber and combustion is ignited
by compression (CI, compression ignited). GDI
(gasoline direct injection) is a variant of SI en-
gines with direct fuel injection as CI but spark
ignition as SI.

Unfortunately, the chemical equation (1) is not
the whole truth. Indeed, the way the mixture is
prepared and ignited affects the efficiency of the
conversion from thermal into mechanical energy,
but also secondary reactions, like pollutant for-
mation, and other aspects, like noise, vibrations
and harshness (NVH), and mechanical fatigue
and thus life expectancy. Furthermore, driveabil-
ity requirements are primarily determined by the
ability of an ICE to change fast its operating
point, and this sets additional requirements to
the engine control. These requirements have to
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be met for all vehicles ín spite of production
variability and under all relevant operating con-
ditions, including all drivers, road, traffic, and
weather conditions.

As first principle models are often not avail-
able or very time-consuming to tune and sel-
dom precise enough, engine control is based on
very complex heuristic descriptions which can
be tuned experimentally and even automatically
(Schoggl et al. 2002) – a modern engine control
unit (ECU) can include up to 40.000 labels (pa-
rameters or maps). This structure is mainly feed-
forward, with feedback loops typically used for
control of actuators, primarily calibrated under
laboratory conditions but with adaptation loops
designed to correct parameters to take in account
production and wear effects. Figure 1 shows an
engine test bench setup with the engine control
unit (ECU) and a calibration system.

The Target System

Figure 2 shows the basic setup of an ICE as CI
and SI. In both cases, the main components of an
ICE are fuel path, air path, combustion chamber,
and exhaust aftertreatment system.

Roughly speaking, ICEs exhibit three time
scales. Changes in the setting of the fuel path –
responsible to deliver the fuel to the combus-
tion chamber – act very fast for CI and GDI
engines (e.g., 50 Hz) and rather fast for SI engines
(10 Hz or more). The same is not true for the
air path which brings the gas mixture (fresh air
and possibly recirculated exhaust gas) into the
combustion chamber and is the slowest system
(typically in the range of 0.5–2 Hz). In SI and
GDI engines, spark timing can be changed for
each combustion too. A still faster dynamics is
associated with the combustion process itself,
pressure sensors with the required dynamics to
monitor it are being introduced in a growing
number of applications, but until now no suitable
actuators are available for its closed loop control.
The torque demand changes typically with the
vehicle dynamics, which are usually still slower
than the air path.

The Control Tasks

The high-level control task can be defined as the
minimization of the average fuel consumption
while providing the required torque and respect-
ing the constraints on emissions (i.e., nitrogen
oxides and dioxides .NOx/ and particulate matter
(PM)), noise, temperature, etc. The legislators in
different countries have defined test procedure,
including a specified road profile and correspond-
ing emission limits. Figure 3 shows the progres-
sive reduction of the limits and the speed profile
used to assess this value.

Even if fuel consumption is not yet limited by
law, the control problem associated can be stated
as an optimal constrained control problem:

min
u.t/

1120Z

0

Pqf dt (2)

so that
v.t/ D vdem.t/ ˙ �v (3)

and
1120Z

0

Pqi dt � Qi (4)

where u.t/ are all available control inputs, 1120
is the duration of the European cycle, vdem.t/
the corresponding speed, �v the speed tolerance,
Pqf is the instantaneous fuel consumption, Pqieach
limited quantity (e.g., NOx), and Qi the corre-
sponding limit for the whole test. In practice,
other criteria must be considered as well, like
NVH, but even this problem is never solved
using the standard tools of optimal control es-
sentially for the nonlinearity (and following non-
convexity) of the problem, but even more for the
lack of explicit models of sufficient quality relat-
ing the inputs to the target quantities, especially
combustion depending quantities like emissions.

In practice, different simpler subproblems are
solved separately and tuned to achieve sufficient
results also in terms of the general problem to
achieve the required performance. In the follow-
ing, we concentrate on the main high-level tasks,
omitting many others, e.g., all the control loops
required for the correct operation of the single
actuators.
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Engine Control, Fig. 1 Light duty engine test bench with ECU and calibration system
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Engine Control, Fig. 2 Basic system scheme of CI (left)
and SI (right) engines: 1a Control of the injector opening,
1b Injection premixing with air; 2 Measurement of the
engine temperature; 3 Measurement of the engine rational
speed; 4 Measurement of oxygen concentration in the

exhaust gases; 5a EGR valve, 5b throttle valve, 6a low-
pressure EGR valve, 7a Diesel exhaust after treatment
(DOC, SCR, DPF), 7b SI engine after treatment (3 way
catalyst), 8 SCR dosing control



Engine Control 351

E

NOx emissions g/km

PM
 e

m
is

si
on

s g
 /k

m

Euro1

Euro2

Euro3

Euro4

0.15

0.09

0.03

0.12

0.06

0.2 0.4 0.6 0.8 10

Euro6 Euro5

Euro4

0.30.20.1

0.03

0.02

0.01

0
0

0 200 400 600 800 1000 1200
−20

0

20

40

60

80

100

120

140

ve
hi

cl
e 

sp
ee

d 
km

/h

time s

New European Driving Cycle (NEDC)

0
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introduced in 1991 and Euro 6 from 2014). Right: New European Driving Cycle (NEDC)

Air Path Control
The main source of oxygen for the reaction of
Eq. (1) is ambient air which contains about 21 %
oxygen. The engine – essentially a volumetric air
pump – aspires air flow roughly proportional to
the cylinder volume and the revolution speed of
the engine. The amount of oxygen entering the
combustion chamber, however, will depend also
on temperature, pressure, and moisture. This flow
can be reduced (as in the standard SI engines)
by throttling, e.g., by adding an additional flow
resistance between the air intake and the com-
bustion chamber, or increased by compressing
the fresh air, most commonly by turbocharging
(especially in CI engines). A turbocharger con-
sists essentially of a turbine, which transforms
part of the enthalpy of the exhaust gas into me-
chanical power, and a compressor, driven by this
power to compress the fresh air on its way to
the combustion chamber, thus increasing both
its density and temperature. Turbocharger oper-
ation is typically controlled either directly (for
instance, with variable vane angles) or indirectly,
by bypass valves which deviate the gas flows in
parallel to the turbine.

If only ambient air is fed to the combus-
tion chamber, a proportional amount of the other
gases present in the atmosphere will enter the

combustion chamber and be available for com-
bustion side reactions as well. In the case of
nitrogen, these reactions lead to the undesired for-
mation of nitrogen oxides (NOx). Therefore, in
some engines, especially in CI engines, part of the
combusted gases are recirculated to the combus-
tion chamber (“exhaust gas recirculation”, EGR),
providing advantages in terms of NOx reduction.
While EGR is typically realized at high pressures
(path HP in Fig. 1), it is realized also at low
pressure (path LP), even though less frequently.
Typically, the air path includes some coolers
designed to increase gas densities.

Air path control is designed to track dynamical
references, for instance, the total fresh air mass
(MAF) entering the cylinder and the correspond-
ing pressure (MAP), but also other quantities are
possible. The references are typically generated
by the calibration engineers on the basis of tests.
The control inputs of the air path are mostly the
turbine (and possibly compressor) steering angle,
the EGR, and – if available – throttle(s) setpoints.
Most commonly used sensors include a mass
flow meter (hot film sensor), rather slow and dy-
namically not reliable, pressure, and temperature
sensors, and sometimes the actual position of the
valves is measured as well and the turbocharger
speed.
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Engine Control, Fig. 4
Pressure trace in a fired
cylinder of a CI engine
triggered by a pilot and a
main injection

Fuel Path Control
The fuel path delivers the correct amount of fuel
for the reaction (1). In almost every ICE, a rail
is filled with fuel at a given pressure (from few
bars for SI to about 2000 bars for CI), from
which the required amount of fuel is injected into
the cylinder. The injection can occur inside the
combustion chamber (as for CI and GDI engines)
or near to the intake valve (“port injection”) for
standard SI engines.

The injection amount is always set taking in
account the available oxygen mass. In SI engines
with three-way catalyst, the fuel injection is given
by the stoichiometric condition. œ control uses
an oxygen sensor in the exhaust to determine the
actual fuel/oxygen ratio and if appropriate correct
the injection tables. In CI and GDI the maximum
fuel injection is limited to prevent smoke forma-
tion, typically by tables, even though œ control
can be and is partly used (Amstutz and del Re
1995).

In SI engines with port injection, the liquid
fuel is injected near to the inlet valve and is
expected to vaporize due to the local temperature
and pressure conditions. During load changes,
however, it can happen that part of the fuel
is not vaporized, remains on the duct wall
(“wall wetting”), and vaporizes at a later
time, leading in both cases to a deviation
from the expected values (Turin et al. 1995),

which must be compensated by the injection
control.

Injection in CI engines is typically splitted in
a main injection for torque and a pilot injection
for NVH control and sometimes also a post-
injection for emission control or regeneration of
aftertreatment devices. Figure 4 shows the typical
effect of a pilot injection on the pressure trace of
a CI engine.

Differences between injectors of different
cylinders are compensated by cylinder balancing
control (typically using irregularities in the
engine acceleration). Rail pressure is also an
important control variable for the direct injection.

Ignition
Once the combustion chamber is filled, the
combustion can be started. In SI and GDI
combustion is started by a spark) leading to
a flame front which propagates through the
whole combustion chamber. Very few SI engines
have a second spark plug to better control the
combustion. Under some circumstances, e.g.,
high temperature, an undesired auto-ignition
(“knock”) can occur with potentially catastrophic
consequences for the engine durability but also
unconventional NVH. To cope with this, SI
engines have vibration sensors whose output is
used to modify the engine operation, in particular
the spark timing, to prevent it.
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In CI engines, the injection leads almost im-
mediately to the combustion which has more the
character of an explosion and starts typically at
several undefined locations.

Additional control during the combustion is up
to now only theoretically feasible, as the combus-
tion takes place in an extremely short time, but
also because adequate actuators are not available.

Aftertreatment
As the combustion mixture will always contain
more potential reactants than oxygen and fuel,
side reactions will always take place, yielding
toxic products, in particular NOx, incompletely
burnt fuel (HC), carbon monoxide (CO), and par-
ticulate matter (PM). Even if much effort is spent
on reducing their formation, this is almost never
sufficient, so additional aftertreatment equipment
is used. Table 1 gives an overview over the most
common aftertreatment systems as well as over
their control aspects.

Thermal Management
All main properties of engines are strongly af-
fected by its temperature, which depends on the
varying load conditions. Engine operation is typ-
ically optimal for a relatively narrow temperature
range, the same is even more critical for the
exhaust aftertreatment system. Engine heat is also
required for other purposes (like defrosting of
windshields in cold climates).

Thus the engine control system has two main
tasks: bringing the engine and the exhaust af-
tertreatment system as fast as possible into the
target temperature range and taking in account

deviation from this target. The first task is per-
formed both by control of the cooling circuit
and by specific combustion-related measures, the
second one by taking the measured or estimated
temperature as input for the controllers.

Fast heating is especially important for SI
engines, because almost all toxic emissions are
produced when the three-way catalyst is cold. To
achieve faster heating, SI engines tend to operate
in a less fuel efficient, but “hotter” operation
mode during this warm-up phase, one of the
causes of increased consumption of cold engines
and short trips.

Cranking Idle Speed and Gear Shifting
Control
Initially, the engine is cranked by the starter until
a relatively low speed and then injection starts
bringing the engine to the minimum operational
speed. If the injected fuel is not immediately
burnt, very high emissions will arise. At cranking,
the cylinder walls are typically very cold and
combustion of a stoichiometric mixture is hardly
possible. So engine control has the task to inject
as little as possible but as much as needed only in
the cylinder which is going to fire.

Normally an ICE is expected to provide a
torque to the driveline, speed being the result
of the balance between it and the load. In idle
control, no torque is transmitted to the driveline,
but the engine speed is expected to remain stable
in spite of possible changes of local loads (like
cabin climate control). This boils down to a
robust control problem (Hrovat and Sun 1997).

Engine Control, Table 1 Main exhaust aftertreatment systems

System Purpose Control targets

Three-way catalyst Reduction of HC, CO, and NOx by more
than 98 %

Achieve fast and maintain operating
temperature and keep œ D 1

Oxydation catalyst Reduction of HC and CO, partly of PM Achieve fast and maintain operating
temperature and keep œ > 1

Particulate filter Traps PM Check trap state and regenerate by
increasing exhaust temperature for short
time if needed

NOx lean trap Traps NOx Estimate trap state and shift combustion to
CO rich when required

Selective catalyst reaction Reduces NOx Estimate required quantity of additional
reactant (urea) and dose it
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Gear shifting requires several steps. Smooth-
ness and speed of the shifting depend on the
coordination of engine operating point change.
Actual hardware developments (double clutches,
automated gear boxes) make a better operation,
but require precise control.

New Trends

The utilization environment of engine control is
changing. On one side, customer and legisla-
tor expectations continue producing pressure, but
there is a shift in priority from emissions to fuel
efficiency and safety. Driver support systems, for
instance, automated parking, are becoming the
longer the more pervasive, and many functions
must be included or affect immediately the ECU,
even though they are frequently hosted on own
control hardware. Hybrid vehicles are gaining
popularity, and this implies a different operation
mode for the engine, for instance, thermal man-
agement becomes much more complex for range
extender vehicles with long “cold” phases.

Maybe even more important is the diffusion
of new devices and communication possibilities,
so that, for instance, fuel saving preview-based
gear shifting can be easily implemented using
infrastructure-to-vehicle information, or even just
navigation data. Further extensions, like cooper-
ative adaptive cruise control (CACC), plan to use
vehicle-to-vehicle information to increase both
safety and efficiency.

Against this background, there is a growing
consciousness that the actual industrial approach
based on huge calibration work is becoming the
longer the less viable and bears a steadily increas-
ing risk of wasting potential performance. Some
model-based controls have already found their
way into the ECU, and the academy has shown
in several occasions that model-based control is
able to achieve better performance, but it has not
yet been shown how this could comply with other
industrialization requirements.

Actually, new faster sensors (e.g., pressure
sensors in the combustion chambers) are being
introduced; the interest in model-based control
(Alberer et al. 2012) and in system identification

techniques (del Re et al. 2010) are increasing, but
they are not yet widespread.
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important research topic. While much progress
has been made in the area over the last few
years, many open problems still remain. This
entry summarizes some results available for such
systems and points out a few open research
directions. Two popular channel models are
considered – the analog erasure channel model
and the digital noiseless model. Results are pre-
sented for both the multichannel and multisensor
settings.

Keywords

Analog erasure channel; Digital noiseless chan-
nel; Networked control systems; Sensor fusion

Introduction

Networked control systems refer to systems in
which estimation and control is done across
communication channels. In other words, these
systems feature data transmission among the
various components – sensors, estimators, con-
trollers, and actuators – across communication
channels that may delay, erase, or otherwise
corrupt the data. It has been known for a long time
that the presence of communication channels
has deep and subtle effects. As an instance, an
asymptotically stable linear system may display
chaotic behavior if the data transmitted from
the sensor to the controller and the controller
to the actuator is quantized. Accordingly, the
impact of communication channels on the
estimation/control performance and design of
estimation/control algorithms to counter any
performance loss due to such channels have both
become areas of active research.

Preliminaries

It is not possible to provide a detailed overview
of all the work in the area. This entry attempts to
summarize the flavor of the results that are avail-
able today. We focus on two specific communi-
cation channel models – analog erasure channel
and the digital noiseless channel. Although other

channel models, e.g., channels that introduce de-
lays or additive noise, have been considered in
the literature, these models are among the ones
that have been studied the most. Moreover, the
richness of the field can be illustrated by concen-
trating on these models.

An analog erasure channel model is defined
as follows. At every time step k, the channel
supports as its input a real vector i.k/ 2 Rt

with a bounded dimension t . The output o.k/

of the channel is determined stochastically. The
simplest model of the channel is when the output
is determined by a Bernoulli process with proba-
bility p. In this case, the output is given by

o.k/ D
(

i.k � 1/ with probability 1 � p

� otherwise,

where the symbol � denotes the fact that the
receiver does not obtain any data at that time
step and, importantly, recognizes that the channel
has not transmitted any data. The probability p

is termed the erasure probability of the channel.
More intricate models in which the erasure pro-
cess is governed by a Markov chain, or by a
deterministic process, have also been proposed
and analyzed. In our subsequent development, we
will assume that the erasure process is governed
by a Bernoulli process.

A digital noiseless channel model is defined
as follows. At every time step k, the channel
supports at its input one out of 2m symbols.
The output of the channel is equal to the input.
The symbol that is transmitted may be generated
arbitrarily; however, it is natural to consider the
channel as supporting m bits at every time step
and the specific symbol transmitted as being
generated according to an appropriately design
quantizer. Once again, additional complications
such as delays introduced by the channel have
been considered in the literature.

A general networked control problem consists
of a process whose states are being measured
by multiple sensors that transmit data to multi-
ple controllers. The controllers generate control
inputs that are applied by different actuators.
All the data is transmitted across communication
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channels. Design of control inputs when multiple
controllers are present, even without the pres-
ence of communication channels, is known to be
hard since the control inputs in this case have
dual effect. It is, thus, not surprising that not
many results are available for networked control
systems with multiple controllers. We will thus
concentrate on the case when only one controller
and actuator is present. However, we will review
the known results for the analog erasure channel
and the digital noiseless channel models when
(i) multiple sensors observe the same process
and transmit information to the controller and (ii)
the sensor transmits information to the controller
over a network of communication channels with
an arbitrary topology.

An important distinction in the networked
control system literature is that of one-block
versus two-block designs. Intuitively, the
one-block design arises from viewing the
communication channel as a perturbation to
a control system designed without a channel.
In this paradigm, the only block that needs
to be designed is the receiver. Thus, for
instance, if an analog erasure channel is present
between the sensor and the estimator, the sensor
continues to transmit the measurements as if
no channel is present. However, the estimator
present at the output of the channel is now
designed to compensate for any imperfections
introduced by the communication channel.
On the other hand, in the two-block design
paradigm, both the transmitter and the receiver
are designed to optimize the estimation or control
performance. Thus, if an analog erasure channel
is present between the sensor and the estimator,
the sensor can now transmit an appropriate
function of the information it has access to.
The transmitted quantity needs to satisfy the
constraints introduced by the channel in terms of
the dimensions, bit rate, power constraints, and
so on. It is worth remembering that while the
two-block design paradigm follows in spirit from
communication theory where both the transmitter
and the receiver are design blocks, the specific
design of these blocks is usually much more
involved than in communication theory. It is
not surprising that in general performance with

two-block designs is better than the one-block
designs.

Analog Erasure Channel Model

Consider the usual LQG formulation. A linear
process of the form

x.k C 1/ D Ax.k/ C Bu.k/ C w.k/;

with state x.k/ 2 Rd and process noise w.k/

is controlled using a control input u.k/ 2 Rm.
The process noise is assumed to be white, Gaus-
sian, zero mean, with covariance †w. The initial
condition x.0/ is also assumed to be Gaussian
and zero mean with covariance …0. The process
is observed by n sensors, with the i -th sensor
generating measurements of the form

yi .k/ D Cix.k/ C vi .k/;

with the measurement noise vi.k/ assumed to be
white, Gaussian, zero mean, with covariance †i

v:

All the random variables in the system are as-
sumed to be mutually independent. We consider
two cases:
• If n D 1, the sensor communicates with

the controller across a network consisting of
multiple communication channels connected
according to an arbitrary topology. Every
communication channel is modeled as an
analog erasure channel with possibly a
different erasure probability. The erasure
events on the channels are assumed to be
independent of each other, for simplicity. The
sensor and the controller then form two nodes
of a network each edge of which represents a
communication channel.

• If n > 1, then every sensor communicates
with the controller across an individual com-
munication channel that is modeled as an ana-
log erasure channel with possibly a different
erasure probability. The erasure events on the
channels are assumed to be independent of
each other, for simplicity.

The controller calculates the control input to
optimize a quadratic cost function of the form
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kD0

�
xT .k/Qx.k/ C uT .k/Ru.k/

�

C xT .K/PKx.K/

#
:

All the covariance matrices and the cost matri-
ces Q, R, and PK are assumed to be positive
definite. The pair .A; B/ is controllable and the
pair .A; C / is observable, where C is formed
by stacking the matrices Ci ’s. The system is
said to be stabilizable if there exists a design
(within the specified one-block or two-block de-
sign framework) such that the cost limK!1 1

K
JK

is bounded.

A Network of Communication Channels
We begin with the case when N D 1 as men-
tioned above. The one-block design problem in
the presence of a network of communication
channels is identical to the one-block design as
if only one channel were present. This is be-
cause the network can be replaced by an “equiv-
alent” communication channel with the erasure
probability as some function of the reliability
of the network. This can lead to poor perfor-
mance, since the reliability may decrease quickly
as the network size increases. For this reason,
we will concentrate on the two-block design
paradigm.

The two-block design paradigm permits the
nodes of the network to process the data prior
to transmission and hence achieve much better
performance. The only constraint imposed on the
transmitter is that the quantity that is transmitted
is a causal function of the information that the
node has access to, with a bounded dimension.
The design problem can be solved using the
following steps. The first step is to prove that a
separation principle holds if the controller knows
the control input applied by the actuator at ev-
ery time step. This can be the case if the con-
troller transmits the control input to the actuator
across a perfect channel or if the control input is
transmitted across an analog erasure channel but
the actuator can transmit an acknowledgment to
the controller. For simplicity, we assume that the

controller transmits the control input to the ac-
tuator across a perfect channel. The separation
principle states that the optimal performance is
achieved if the control input is calculated using
the usual LQR control law, but the process state
is replaced by the minimum mean squared error
(MMSE) estimate of the state. Thus, the two-
block design problem needs to be solved now for
an optimal estimation problem.

The next step is to realize that for any allowed
two-block design, an upper bound on estima-
tion performance is provided by the strategy of
every node transmitting every measurement it
has access to at each time step. Notice that this
strategy is not in the set of allowed two-block
designs since the dimension of the transmitted
quantity is not bounded with time. However, the
same estimate is calculated at the decoder if the
sensor transmits an estimate of the state at every
time step and every other node (including the
decoder) transmits the latest estimate it has access
to from either its neighbors or its memory. This
algorithm is recursive and involves every node
transmitting a quantity with bounded dimension,
however, since it leads to calculation of the same
estimate at the decoder, and is, thus, optimal. It
is worth remarking that the intermediate nodes
do not require access to the control inputs. This
is because the estimate at the decoder is a linear
function of the control inputs and the measure-
ments: thus, the effect of control inputs in the
estimate can be separated from the effect of
the measurements and included at the controller.
Moreover, as long as the closed loop system is
stable, the quantities transmitted by various nodes
are also bounded. Thus, the two-block design
problem can be solved.

The stability and performance analysis with
the optimal design can also be performed. As an
example, a necessary and sufficient stabilizability
condition is that the inequality

pmaxcut�.A/2 < 1;

holds, where �.A/ is the spectral radius of A

and pmaxcut is the max-cut probability evaluated
as follows. Generate cut-sets from the network
by dividing the nodes into two sets – a source
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set containing the sensor and a sink set con-
taining the controller. For each cut-set, obtain
the cut-set probability by multiplying the erasure
probabilities of the channels from the source set
to the sink set. The max-cut probability is the
maximum such cut-set probability. The necessity
of the condition follows by recognizing that the
channels from the source set to the sink set need
to transmit data at a high enough rate even if
the channels within each set are assumed not to
erase any data. The sufficiency of the condition
follows by using the Ford-Fulkerson algorithm to
reduce the network into a collection of parallel
paths from the sensor to the controller such that
each path has links with equal erasure probability
and the product of these probabilities for all paths
is the max-cut probability. More details can be
found in Gupta et al. (2009a).

Multiple Sensors
Let us now consider the case when the process
is observed using multiple sensors that transmit
data to a controller across an individual analog
erasure channel. A separation principle to reduce
the control design problem into the combination
of an LQR control law and an estimation prob-
lem can once again be proven. Thus, the two-
block design for the estimation problem asks
the following question: what quantity should the
sensors transmit such that the decoder is able
to generate the optimal MMSE estimate of the
state at every time step, given all the information
the decoder has received till that time step. This
problem is similar to the track-to-track fusion
problem that has been studied since the 1980s
and is still open for general cases (Chang et al.
1997). Suppose that at time k, the last successful
transmission from sensor i happened at time
ki � k. The optimal estimate that the decoder
can ever hope to achieve is the estimate of the
state x.k/ based on all measurements from the
sensor 1 till time k1, from sensor 2 till time k2,
and so on. However, it is not known whether
this estimate is achievable if the sensors are con-
strained to transmit real vectors with a bounded
dimension. A fairly intuitive encoding scheme is
if the sensors transmit the local estimates of the
state based on their own measurements. However,

it is known that the global estimate cannot, in
general, be obtained from local estimates because
of the correlation introduced by the process noise.
If erasure probabilities are zero, or if the process
noise is not present, then the optimal encoding
schemes are known. Another case for which the
optimal encoding schemes are known is when
the estimator sends back acknowledgments to the
encoders.

Transmitting local estimates does, however,
achieve optimal stability conditions as compared
to the conditions obtained from the optimal (un-
known) two-block design (Gupta et al. 2009b).
As an example, the necessary and sufficient sta-
bility conditions for the two sensor cases are
given by

p1�.A1/
2 < 1

p2�.A2/
2 < 1

p1p2�.A3/
2 < 1;

where p1 and p2 are erasure probabilities from
sensors 1 and 2, respectively, �.A1/ is the spectral
radius of the unobservable part of the matrix A

from the second sensor, �.A2/ is the spectral
radius of the unobservable part of the matrix A

from the first sensor, and �.A3/ is the spectral
radius of the observable part of the matrix A

from both the sensors. The conditions are fairly
intuitive. For instance, the first condition provides
a bound on the rate of increase of modes for
which only sensor 1 can provide information
to the controller, in terms of how reliable the
communication channel from the sensor 1 is.

Digital Noiseless Channels

Similar results as above can be derived for the
digital noiseless channel model. For the digital
noiseless channel model, it is easier to consider
the system without either measurement or pro-
cess noises (although results with such noises are
available). Moreover, since quantization is inher-
ently highly nonlinear, results such as separation
between estimation and control are not available.
Thus, encoders and controllers that optimize a
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cost function such as a quadratic performance
metric are not available even for the single sen-
sor or channel case. Most available results thus
discuss stabilizability conditions for a given data
rate that the channels can support.

While early works used the one-block design
framework to model the digital noiseless channel
as introducing an additive white quantization
noise, that framework obscures several crucial
features of the channel. For instance, such an
additive noise model suggests that at any bit
rate, the process can be stabilized by a suitable
controller. However, a simple argument can show
that is not true. Consider a scalar process in which
at time k, the controller knows that the state is
within a set of length l.k/. Then, stabilization is
possible only if l.k/ remains bounded as k ! 1.
Now, the evolution of l.k/ is governed by two
processes: at every time step, this uncertainty
can be (i) decreased by a factor of at most 2m

due to the data transmission across the channel
and (ii) increased by a factor of a (where a is
the process matrix governing the evolution of the
state) due to the process evolution. This implies
that for stabilization to be possible, the inequality
m � log2.a/ must hold. Thus, the additive
noise model is inherently wrong. Most results
in the literature formalize this basic intuition
above (Nair et al. 2007).

A Network of Communication Channels
For the case when there is only one sensor that
transmits information to the controller across a
network of communication channels connected
in arbitrary topology, an analysis similar to that
done for analog erasure channels can be per-
formed (Tatikonda 2003). A max-flow min-cut
like theorem again holds. The stability condition
now becomes that for any cut-set

X
Rj >

X

all unstable eigenvalues

log2.�i /;

where
P

Rj is the sum of data rates supported
by the channels joining the source set to sink
set for any cut-set and �i are the eigenvalues of
the process matrix A. Note that the summation
on the right hand side is only over the unstable

eigenvalues, since no information needs to be
transmitted about the modes that are stable in
open loop.

Multiple Sensors
The case when multiple sensors transmit
information across an individual digital noiseless
channel to a controller can also be considered.
For every sensor i , define a rate vector
fRi1; Ri2 ; � � � ; Rid g corresponding to the d modes
of the system. If a mode j cannot be observed
from the sensor i , set Rij D 0. For stability, the
condition

X

i

Rij � max.0; �j /;

for every mode j must be satisfied. All such rate
vectors stabilize the system.

Summary and Future Directions

This entry provided a brief overview of some
results available in the field of networked
control systems. Although the area is seeing
intense research activity, many problems
remain open. For control across analog erasure
channels, most existing results break down
if a separation principle cannot be proved.
Thus, for example, if control packets are also
transmitted to the actuator across an analog
erasure channel, the LQG optimal two-block
design is unknown. There is some recent
work on analyzing the stabilizability under
such conditions (Gupta and Martins 2010),
but the problem remains open in general.
For digital noiseless channels, controllers that
optimize some performance metric are largely
unknown. Considering more general channel
models is also an important research direction
(Martins and Dahleh 2008; Sahai and Mitter
2006).
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Abstract

The random set (RS) concept generalizes that
of a random vector. It permits the mathematical
modeling of random systems that can be inter-
preted as random patterns. Algorithms based on
RSs have been extensively employed in image
processing. More recently, they have found appli-
cation in multitarget detection and tracking and in
the modeling and processing of human-mediated
information sources. The purpose of this entry
is to briefly summarize the concepts, theory, and
practical application of RSs.

Keywords

Image processing; Multitarget processing; Ran-
dom finite sets; Stochastic geometry

Introduction

In ordinary signal processing, one models
physical phenomena as “sources,” which generate
“signals” obscured by random “noise.” The
sources are to be extracted from the noise
using optimal-estimation algorithms. Random
set (RS) theory was devised about 40 years
ago by mathematicians who also wanted to
construct optimal-estimation algorithms. The
“signals” and “noise” that they had in mind,
however, were geometric patterns in images.
The resulting theory, stochastic geometry, is
the basis of the “morphological operators”
commonly employed today in image-processing
applications. It is also the basis for the theory of
RSs. An important special case of RS theory, the
theory of random finite sets (RFSs), addresses
problems in which the patterns of interest consist
of a finite number of points. It is the theoretical
basis of many modern medical and other image-
processing algorithms. In recent years, RFS
theory has found application to the problem
of detecting, localizing, and tracking unknown
numbers of unknown, evasive point targets.
Most recently and perhaps most surprisingly,
RS theory provides a theoretically rigorous
way of addressing “signals” that are human-
mediated, such as natural-language statements
and inference rules. The breadth of RS theory
is suggested in the various chapters of Goutsias
et al. (1997).

The purpose of this entry is to summarize the
RS and RFS theories and their applications. It is
divided in to the following sections: A Simple
Example, Mathematics of Random Sets, Ran-
dom Sets and Image Processing, Random Sets
and Multitarget Processing, Random Sets and
Human-Mediated Data, Summary and Future Di-
rections, Cross-References, and Recommended
Reading.
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A Simple Example

To illustrate the concept of a RS, let us begin by
examining a simple example: locating stars in the
nighttime sky. We will proceed in successively
more illustrative steps:

Locating a single non-dim star (estimating
a random point). When we try to locate a star,
we are trying to estimate its actual position – its
“state” x D .˛0; 	0/ – in terms of its azimuth
angle ˛0 and elevation angle 	0. When the star
is dim but not too dim, its apparent position will
vary slightly. We can estimate its position by
averaging many measurements – i.e., by applying
a point estimator.

Locating a very dim star (estimating an RS
with at most one element). Assume that the star is
so dim that, when we see it, it might be just a mo-
mentary visual illusion. Before we can estimate
its position, we must first estimate whether or not
it exists. We must record not only its apparent
position z D .˛; 	/ (if we see it) but its apparent
existence ", with " D 1 (we saw it) or " D 0 (we
did not). Averaging " over many observations, we
get a number q between 0 and 1. If q > 1

4
(say),

we could declare that the star probably actually
is a star; and then we could average the non-null
observations to estimate its position.

Locating multiple stars (estimating an RFS).
Suppose that we are trying to locate all of the
stars in some patch of sky. In some cases, two
dim stars may be so close that they are difficult
to distinguish. We will then collect three kinds
of measurements from them: Z D ; (did not
see either star), Z D f.˛; 	/g (we saw one or
the other), or Z D f.˛1; 	1/; .˛2; 	2/g (saw both).
The total collected measurement in the patch of
sky is a finite set Z D fz1; : : : ; zmg of point
measurements with zj D .	j ; ˛j /, where each zi

is random, where m is random, and where m D 0

corresponds to the null measurement Z D ;.
Locating multiple stars in a quantized sky

(estimation using imprecise measurements). Sup-
pose that, for computational reasons, the patch
of sky must be quantized into a finite number
of hexagonal-shaped cells, c1; : : : ; cM . Then, the
measurement from any star is not a specific point
z, but instead the cell c that contains z. The

measurement c is imprecise – a randomly varying
hexagonal cell c. There are two ways of thinking
about the total measurement collection. First, it is
a finite set Z D fc0

1; : : : ; c0
mg � fc1; : : : ; cM g of

cells. Second, it is the union Z D c0
1 [ : : :[c0

m of
all of the observed cells – i.e., it is a geometrical
pattern.

Locating multiple stars over an extended
period of time (estimating multiple moving tar-
gets). As the night progresses, we must contin-
ually redetermine the existence and positions of
each star – a process called multitarget tracking.
We must also account for appearances and disap-
pearances of the stars in the patch – i.e., for target
death and birth.

Mathematics of Random Sets

The purpose of this section is to sketch the ele-
ments of the theory of random sets. It is organized
as follows: General Theory of Random Sets, Ran-
dom Finite Sets (Random Point Processes), and
Stochastic Geometry. Of necessity, the material
is less elementary than in later sections.

General Theory of Random Sets
Let Y be a topological space – for example, an
N -dimensional Euclidean space R

N . The power
set 2Y of Y is the class of all possible sub-
sets S � Y. Any subclass of 2Y is called
a “hyperspace.” The “elements” or “points” of
a hyperspace are thus actually subsets of some
other space. For a hyperspace to be of interest,
one must extend the topology on Y to it. There
are many possible topologies for hyperspaces
(Michael 1950). The most well studied is the
Fell-Matheron topology, also called the “hit-and-
miss” topology (Matheron 1975). It is applicable
when Y is Hausdorff, locally compact, and com-
pletely separable. It topologizes only the hyper-
space c.2Y/ of all closed subsets C of Y. In this
case, a random (closed) set ‚ is a measurable
mapping from some probability space into c.2Y/.

The Fell-Matheron topology’s major strength
is its relative simplicity. Let “Pr.E/” denote the
probability of a probabilistic event E . Then,
normally, the probability law of ‚ would be
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described by a very abstract probability measure
p‚.O/ D Pr.‚ 2 O/. This measure must
be defined on the Borel-measurable subsets
O � c.2Y/, with respect to the Fell-Matheron
topology, where O is itself a class of subsets
of Y. However, define the Choquet capacity
functional by c‚.G/ D Pr.‚ \ G ¤ ;/ for
all open subsets G � Y. Then, the Choquet-
Matheron theorem states that the probability law
of ‚ is completely described by the simpler,
albeit nonadditive, measure c‚.G/.

The theory of random sets has evolved
into a substantial subgenre of statistical theory
(Molchanov 2005). For estimation theory, the
concept of the expected value E[‚] of a random
set ‚ is of particular interest. Most definitions
of E[‚] are very abstract (Molchanov 2005,
Chap. 2). In certain circumstances, however,
more conventional-looking definitions are
possible. Suppose that Y is a Euclidean space
and that c.2Y/ is restricted to K.2Y/, the
bounded, convex, closed subsets of Y. If C; C 0
are two such subsets, their Minkowski sum is
C C C 0 D fc C c0j c 2 C; c0 2 C 0g. Endowed
with this definition of addition, K.2Y/ can
be homeomorphically and homomorphically
embedded into a certain space of functions
(Molchanov 2005, pp. 199–200). Denote this
embedding by C 7�! �C . Then, the expected
value E[‚] of ‚, defined in terms of Minkowski
addition, corresponds to the conventional
expected valueE[�‚] of the random function �‚.

Random Finite Sets (Random Point
Processes)
Suppose that the c.2Y/ is restricted to f.2Y/,
the class of finite subsets of Y. (In many for-
mulations, f.2Y/ is taken to be the class of
locally finite subsets of Y – i.e., those whose
intersection with compact subsets is finite.) A
random finite set (RFS) is a measurable mapping
from a probability space into f.2Y/. An example:
the field of twinkling stars in some patch of a
night sky. RFS theory is a particular mathematical
formulation of point process theory (Daley and
Vere-Jones 1998; Snyder and Miller 1991; Stoyan
et al. 1995).

A Poisson RFS ‰ is perhaps the simplest
nontrivial example of a random point pattern. It
is specified by a spatial distribution s.y/ and an
intensity 
. At any given instant, the probability
that there will be n points in the pattern is p.n/ D
e�

n=nŠ (the value of the Poisson distribution).
The probability that one of these n points will be
y is s.y/. The function D‰.y/ D 
 � s.y/ is called
the intensity function of ‰.

At any moment, the point pattern produced
by ‰ is a finite set Y D fy1; : : : ; yng of points
y1; : : : ; yn in Y, where n D 0; 1; : : : and where
Y D ; if n D 0. If n D 0 then Y represents
the hypothesis that no objects at all are present. If
n D 1 then Y D fy1g represents the hypothesis
that a single object y1 is present. If n D 2 then
Y D fy1; y2g represents the hypothesis that there
are two distinct objects y1 ¤ y2. And so on.

The probability distribution of ‰ – i.e., the
probability that ‰ will have Y D fy1; : : : ; yng
as an instantiation – is entirely determined by its
intensity function D‰.y/:

f‰.Y / D f‰.fy1; : : : ; yng/
D e�mu � D‰.y1/ � � � D‰.yn/

Every suitably well-behaved RFS ‰ has a
probability distribution f‰.Y / and an intensity
function D‰.y/ (a.k.a. first-moment density). A
Poisson RFS is unique in that f‰.Y / is com-
pletely determined by D‰.y/.

Conventional signal processing is often con-
cerned with single-object random systems that
have the form

Z D �.x/ C V

where x is the state of the system; �.x/ is the
“signal” generated by the system; the zero-mean
random vector V is the random “noise” associ-
ated the sensor; and Z is the random measurement
that is observed. The purpose of signal processing
is to construct an estimate Ox.z1; : : : :; zk/ of x,
using the information contained in one or more
draws z1; : : : :; zk from the random variable Z.

RFS theory is analogously concerned with
random systems that have the form
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† D ‡.X/ [ �

where a random finite point pattern ‡.X/ is the
“signal” generated by the point pattern X (which
is an instantiation of a random point pattern „);
� is a random finite point “noise” pattern; † is
the total random finite point pattern that has been
observed; and “[” denotes set-theoretic union.
One goal of RFS theory is to devise algorithms
that can construct an estimate OX.Z1; : : : :; Zk/ of
X , using multiple point patterns Z1; : : : :; Zk �
Y drawn from †. One approximate approach is
that of estimating only the first-moment density
D„.x/ of „.

Stochastic Geometry
Stochastic geometry addresses more complicated
random patterns. An example: the field of twin-
kling stars in a quantized patch of the night
sky, in which case the measurement is the union
c1 [ : : : [ cm of a finite number of hexagonally
shaped cells.

This is one instance of a germ-grain process
(Stoyan et al. 1995, pp. 59–64). Such a process is
specified by two items: an RFS ‰ and a function
cy that associates with each y in Y a closed subset
cy � Z. For example, if Y D R

2 is the real-
valued plane, then cy could be the disk of radius
r centered at y D .x; y/. Let Y D fy1; : : : ; yng
be a particular random draw from ‰. The points
y1; : : : ; yn are the “germs,” and cy1 ; : : : ; cyn are
the “grains” of this random draw from the germ-
grain process ‚. The total pattern in Y is the
union cy1 [ : : : [ cyn of the grains – a random
draw from ‚. Germ-grain processes can be used
to model many kinds of natural processes. One
example is the distribution of graphite particles
in a two-dimensional section of a piece of iron,
in which case the cy could be chosen to be line
segments rather than disks.

Stochastic geometry is concerned with ran-
dom binary images that have observation struc-
tures such as

‚ D .S \ �/ [ �

where S is a “signal” pattern; � is a random
pattern that models obscurations; � is a random

pattern that models clutter; and ‚ is the total
pattern that has been observed. A common sim-
plifying assumption is that � and �c are germ-
grain processes. One goal of stochastic geometry
is to devise algorithms that can construct an opti-
mal estimate OS.T1; : : : :; Tk/ of S , using multiple
patterns T1; : : : :; Tk � Y drawn from ‚.

Random Sets and Image Processing

Both point process theory and stochastic
geometry have found extensive application
to image-processing applications. These are
considered briefly in turn.

Stochastic Geometry and Image Processing.
Stochastic geometry methods are based on the
use of a “structuring element” B (a geometrical
shape, such as a disk, sphere, or more complex
structure) to modify an image.

The dilation of a set S by B is S ˚ B where
“˚” is Minkowski addition (Stoyan et al. 1995).
Dilation tends to fill in cavities and fissures in
images. The erosion of S is S 	B D .Sc ˚Bc/c

where “c” indicates set-theoretic complement.
Erosion tends to create and increase the size of
cavities and fissures. Morphological filters are
constructed from various combinations of dila-
tion and erosion operators.

Suppose that a binary image † D S has been
degraded by some measurement process – for
example, the process ‚ D .S \ �/ [ �. Then,
image restoration refers to the construction of an
estimate OS.T / of the original image S from a
single degraded image ‚ D T . The restoration
operator OS.T / is optimal if it can be shown to
be optimally close to S , given some concept of
closeness. The symmetric difference

T1 t T2 D .T1 [ T2/ � .T1 \ T2/

is a commonly used method for measuring the
dissimilarity of binary images. It can be used to
construct measures of distance between random
images. One such distance is

d.‚1; ‚2/ D E Œj‚1 t ‚2j�
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where jS j denotes the size of the set S and E[A]
is the expected value of the random number A.
Other distances require some definition of the
expected value E[‚] of a random set ‚. It has
been shown that, under certain circumstances,
certain morphological operators can be viewed as
consistent maximum a posteriori (MAP) estima-
tors of S (Goutsias et al. 1997, p. 97).

RFS Theory and Image Processing. Positron-
emission tomography (PET) is one example of
the application of RFS theory. In PET, tissues
of interest are suffused with a positron-emitting
radioactive isotope. When a positron annihilates
an electron in a suitable fashion, two photons
are emitted in opposite directions. These photons
are detected by sensors in a ring surrounding the
radiating tissue. The location of the annihilation
on the line can be estimated by calculating time
difference of arrival.

Because of the physics of radioactive decay,
the annihilations can be accurately modeled
as a Poisson RFS ‰. Since a Poisson RFS is
completely determined by its intensity function
D‰.x/, it is natural to try to estimate D‰.x/.
This yields the spatial distribution s‰.y/ of
annihilations – which, in turn, is the basis of the
PET image (Snyder and Miller 1991, pp. 115–
119).

Random Sets andMultitarget
Processing

The purpose of this section is to summarize
the application of RFS theory to multitarget de-
tection, tracking, and localization. An example:
tracking the positions of stars in the night sky
over an extended period of time.

Suppose that at time tk there are an unknown
number n of targets with unknown states
x1; : : : ; xn. The state of the entire multitarget
system is a finite set X D fx1; : : : ; xng with
n � 0. When interrogating a scene, many
sensors (such as radars) produce a measurement
of the form Z D fz1; : : : ; zmg – i.e., a
finite set of measurements. Some of these
measurements are generated by background

clutter �k . Others are generated by the targets,
with some targets possibly not having generated
any. Mathematically speaking, Z is a random
draw from an RFS †k that can be decomposed
as †k D ‡.Xk/ [ �k , where ‡.Xk/ is the set of
target-generated measurements.

Conventional Multitarget Detection and
Tracking. This is based on a “divide and
conquer” strategy with three basic steps: time
update, data association, and measurement
update. At time tk we have n “tracks” �1; : : : ; �n

(hypothesized targets). In the time update, an
extended Kalman filter (EKF) is used to time-
predict the tracks �i to predicted tracks �C

i

at the time tkC1 of the next measurement set
ZkC1 D fz1; : : : ; zmg.

Given ZkC1, we can construct the following
data-association hypothesis H : for each i D
1; : : : ; n, the predicted track �C

i generated the
detection zji , for some index ji , or, alternatively,
this track was not detected at all. If we remove
from ZkC1 all of the zj1; : : : ; zjn , the remaining
measurements are interpreted either as being clut-
ter or as having been generated by new targets.
Enumerating all possible association hypotheses
(which is a combinatorily complex procedure),
we end up with a “hypothesis table” H1; : : : ; H .

Given Hi , let zji be the measurement that is
hypothesized to have been generated by predicted
track �C

i . Then, the measurement-update step of
an EKF is used to construct a measurement-
updated track �i;ji from �C

i and zji . Attached
to each Hi is a hypothesis probability pi – the
probability that the particular hypothesis Hi is the
correct one. The hypothesis with largest pi yields
the multitarget estimate OX D fOx1; : : : ; Ox Ong.

RFS Multitarget Detection and Tracking. In
the place of tracks and hypothesis tables, this uses
multitarget state sets and multitarget probability
distributions. In place of the conventional time
update, data association, and measurement
update, it uses a recursive Bayes filter. A random
multitarget state set is an RFS „kjk whose
points are target states. A multitarget probability
distribution is the probability distribution
f .XkjZ1Wk/ D f„kjk

.X/ of the RFS „kjk ,
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where Z1Wk W Z1; : : : ; Zk is the time sequence
of measurement sets at time tk .

RFS Time Update. The Bayes filter time-
update step f .XkjZ1Wk/ ! f .XkC1jZ1Wk/

requires a multitarget Markov transition function
f .XkC1jXk/. It is the probability that the
multitarget system will have multitarget state set
XkC1 at time tkC1, if it had multitarget state set
Xk at time tk . It takes into account all pertinent
characteristics of the targets: individual target
motion, target appearance, target disappearance,
environmental constraints, etc. It is explicitly
constructed from an RFS multitarget motion
model using a multitarget integrodifferential
calculus.

RFS Measurement Update. The Bayes filter
measurement-update step f .XkC1jZ1Wk/ !
f .XkC1jZ1WkC1/ is just Bayes rule. It requires
a multitarget likelihood function fkC1.ZjX/ –
the likelihood that a measurement set Z will be
generated, if a system of targets with state set
X is present. It takes into account all pertinent
characteristics of the sensor(s): sensor noise,
fields of view and obscurations, probabilities
of detection, false alarms, and/or clutter. It is
explicitly constructed from an RFS measurement
model using multitarget calculus.

RFS State Estimation. Determination of the
number n and states x1; : : : ; xn of the targets is
accomplished using a Bayes-optimal multitarget
state estimator. The idea is to determine the XkC1

that maximizes f .XkC1jZ1WkC1/ in some sense.

Approximate Multitarget RFS Filters.
The multitarget Bayes filter is, in general,
computationally intractable. Central to the RFS
approach is a toolbox of techniques – including
the multitarget calculus – designed to produce
statistically principled approximate multitarget
filters. The two most well studied are the
probability hypothesis density (PHD) filter and
its generalization the cardinalized PHD (CPHD)
filter. In such filters, f .XkjZ1Wk/ is replaced by
the first-moment density D.xkjZ1Wk/ of „kjk .
These filters have been shown to be faster and

perform better than conventional approaches in
some applications.

Random Sets and Human-Mediated Data

Random Sets and Human-Mediated
Data

Natural-language statements and inference rules
have already been mentioned as examples of
human-mediated information. Expert-systems
theory was introduced in part to address
situations – such as this – that involve
uncertainties other than randomness. Expert-
system methodologies include fuzzy set theory,
the Dempster-Shafer (D-S) theory of uncertain
evidence, and rule-based inference. RS theory
provides solid Bayesian foundations for them
and allows human-mediated data to be processed
using standard Bayesian estimation techniques.
The purpose of this section is to briefly
summarize this aspect of the RS approach.

The relationships between expert-systems
theory and random set theory were first
established by researchers such as Orlov (1978),
Höhle (1982), Nguyen (1978), and Goodman and
Nguyen (1985). At a relatively early stage, it
was recognized that random set theory provided
a potential means of unifying much of expert-
systems theory (Goodman and Nguyen 1985;
Kruse et al. 1991).

A conventional sensor measurement at time tk
is typically represented as Zk D �.xk/ C Vk –
equivalently formulated as a likelihood function
f .zkjxk/. It is conventional to think of zk as
the actual “measurement” and of f .zk jxk/ as the
full description of the uncertainty associated with
it. In actuality, zk is just a mathematical model
z�k

of some real-world measurement �k. Thus,
the likelihood actually has the form f .�kjxk/ D
f .z�k

jxk/.
This observation assumes crucial importance

when one considers human-mediated data. Con-
sider the simple natural-language statement

� D “The target is near the tower”
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where the tower is a landmark, located at a known
position .x0; y0/, and where the term “near” is
assumed to have the following specific meaning:
.x; y/ is near .x0; y0/ means that .x; y/ 2 T5

where T5 is a disk of radius 5 m, centered at
.x0; y0/. If z D .x; y/ is the actual measurement
of the target’s position, then � is equivalent to the
formula z 2 T5. Since z is just one possible draw
from Zk , we can say that � – or, equivalently,
T5 – is actually a constraint on the underlying
measurement process: Zk 2 T5.

Because the word “near” is rather vague, we
could just as well say that z 2 T5 is the best
choice, with confidence w5 D 0:7; that z 2 T4 is
the next best choice, with confidence w4 D 0:2;
and that z 2 T6 is the least best, with confidence
w6 D 0:1. Let ‚ be the random subset of Z

defined by Pr.‚ D Ti / D wi for i D 4; 5; 6. In
this case, � is equivalent to the random constraint

Zk 2 ‚:

The probability

�k.‚jxk/ D Pr.�.xk/ C Vk 2 ‚/

D Pr.Zk 2 ‚jXk D xk/

is called a generalized likelihood function (GLF).
GLFs can be constructed for more complex
natural-language statements, for inference rules,
and more. Using their GLF representations,
such “nontraditional measurements” can be
processed using single- and multi-object
recursive Bayes filters and their approximations.
As a consequence, it can be shown that fuzzy
logic, the D-S theory, and rule-based inference
can be subsumed within a single Bayesian-
probabilistic paradigm.

Summary and Future Directions

In the engineering world, the theory of random
sets has been associated primarily with certain
specialized image-processing applications, such
as morphological filters and tomographic imag-
ing. It has more recently found application in

fields such as multitarget tracking and in expert-
systems theory. All of these fields of application
remain areas of active research.

Cross-References

�Estimation, Survey on
�Extended Kalman Filters
�Nonlinear Filters

Recommended Reading

Molchanov (2005) provides a definitive exposi-
tion of the general theory of random sets. Two
excellent references for stochastic geometry are
Stoyan et al. (1995) and Barndorff-Nielsen and
van Lieshout (1999). The books by Kingman
(1993) and Daley and Vere-Jones (1998) are
good introductions to point process theory. The
application of point process theory and stochas-
tic geometry to image processing is addressed
in, respectively, Snyder and Miller (1991) and
Stoyan et al. (1995). The application of RFSs to
multitarget estimation is addressed in the tutorials
Mahler (2004, 2013) and the book Mahler (2007).
Introductions to the application of random sets to
expert systems can be found in Kruse et al. (1991)
and Mahler (2007), Chaps. 3–6.

Bibliography

Barndorff-Nielsen O, van Lieshout M (1999) Stochas-
tic geometry: likelihood and computation. Chap-
man/CRC, Boca Raton

Daley D, Vere-Jones D (1998) An introduction to the
theory of point processes, 1st edn. Springer, New York

Goodman I, Nguyen H (1985) Uncertainty models for
knowledge based systems. North-Holland, Amsterdam

Goutsias J, Mahler R, Nguyen H (eds) (1997) Random
sets: theory and applications. Springer, New York

Höhle U (1982) A mathematical theory of uncertainty:
fuzzy experiments and their realizations. In: Yager R
(ed) Recent developments in fuzzy set and possibility
theory. Pergamon, New York, pp 344–355

Kingman J (1993) Poisson processes. Oxford University
Press, London

Kruse R, Schwencke E, Heinsohn J (1991) Uncertainty
and vagueness in knowledge-based systems. Springer,
New York

http://dx.doi.org/10.1007/978-1-4471-5058-9_60
http://dx.doi.org/10.1007/978-1-4471-5058-9_62
http://dx.doi.org/10.1007/978-1-4471-5058-9_63


Estimation, Survey on 367

E

Mahler R (2004) ‘Statistics 101’ for multisensor, multitar-
get data fusion. IEEE Trans Aerosp Electron Sys Mag
Part 2: Tutorials 19(1):53–64

Mahler R (2007) Statistical multisource-multitarget infor-
mation fusion. Artech House, Norwood

Mahler R (2013) ‘Statistics 102’ for multisensor-
multitarget tracking. IEEE J Spec Top Sign Proc
7(3):376–389

Matheron G (1975) Random sets and integral geometry.
Wiley, New York

Michael E (1950) Topologies on spaces of subsets. Trans
Am Math Soc 71:152–182

Molchanov I (2005) Theory of random sets. Springer,
London

Nguyen H (1978) On random sets and belief functions. J
Math Anal Appl 65:531–542

Orlov A (1978) Fuzzy and random sets. Prikladnoi Mno-
gomerni Statisticheskii Analys, Moscow

Snyder D, Miller M (1991) Random point processes in
time and space, 2nd edn. Springer, New York

Stoyan D, Kendall W, Meche J (1995) Stochastic geome-
try and its applications, 2nd edn. Wiley, New York

Estimation, Survey on

Luigi Chisci1 and Alfonso Farina2

1Dipartimento di Ingegneria dell’Informazione,
Università di Firenze, Firenze, Italy
2Selex ES, Roma, Italy

Abstract

This entry discusses the history and describes
the multitude of methods and applications of this
important branch of stochastic process theory.

Keywords

Linear stochastic filtering; Markov step pro-
cesses; Maximum likelihood estimation; Riccati
equation; Stratonovich-Kushner equation

Estimation is the process of inferring the value of
an unknown given quantity of interest from noisy,
direct or indirect, observations of such a quantity.
Due to its great practical relevance, estimation
has a long history and an enormous variety
of applications in all fields of engineering and

science. A certainly incomplete list of possible
application domains of estimation includes the
following: statistics (Bard 1974; Ghosh et al.
1997; Koch 1999; Lehmann and Casella 1998;
Tsybakov 2009; Wertz 1978), telecommunication
systems (Sage and Melsa 1971; Schonhoff
and Giordano 2006; Snyder 1968; Van Trees
1971), signal and image processing (Barkat
2005; Biemond et al. 1983; Elliott et al. 2008;
Itakura 1971; Kay 1993; Kim and Woods 1998;
Levy 2008; Najim 2008; Poor 1994; Tuncer
and Friedlander 2009; Wakita 1973; Woods and
Radewan 1977), aerospace engineering (McGee
and Schmidt 1985), tracking (Bar-Shalom and
Fortmann 1988; Bar-Shalom et al. 2001, 2013;
Blackman and Popoli 1999; Farina and Studer
1985, 1986), navigation (Dissanayake et al.
2001; Durrant-Whyte and Bailey 2006a,b; Farrell
and Barth 1999; Grewal et al. 2001; Mullane
et al. 2011; Schmidt 1966; Smith et al. 1986;
Thrun et al. 2006), control systems (Anderson
and Moore 1979; Athans 1971; Goodwin et al.
2005; Joseph and Tou 1961; Kalman 1960a;
Maybeck 1979, 1982; Söderström 1994; Stengel
1994), econometrics (Aoki 1987; Pindyck
and Roberts 1974; Zellner 1971), geophysics
(e.g., seismic deconvolution) (Bayless and
Brigham 1970; Flinn et al. 1967; Mendel
1977, 1983, 1990), oceanography (Evensen
1994a; Ghil and Malanotte-Rizzoli 1991),
weather forecasting (Evensen 1994b, 2007;
McGarty 1971), environmental engineering
(Dochain and Vanrolleghem 2001; Heemink
and Segers 2002; Nachazel 1993), demographic
systems (Leibungudt et al. 1983), automotive
systems (Barbarisi et al. 2006; Stephant et al.
2004), failure detection (Chen and Patton
1999; Mangoubi 1998; Willsky 1976), power
systems (Abur and Gómez Espósito 2004;
Debs and Larson 1970; Miller and Lewis
1971; Monticelli 1999; Toyoda et al. 1970),
nuclear engineering (Robinson 1963; Roman
et al. 1971; Sage and Masters 1967; Venerus
and Bullock 1970), biomedical engineering
(Bekey 1973; Snyder 1970; Stark 1968), pattern
recognition (Andrews 1972; Ho and Agrawala
1968; Lainiotis 1972), social networks (Snijders
et al. 2012), etc.
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Chapter Organization

The rest of the chapter is organized as follows.
Section “Historical Overview on Estimation”
will provide a historical overview on estimation.
The next section will discuss applications of
estimation. Connections between estimation and
information theories will be explored in the sub-
sequent section. Finally, the section “Conclusions
and Future Trends” will conclude the chapter
by discussing future trends in estimation. An
extensive list of references is also provided.

Historical Overview on Estimation

A possibly incomplete, list of the major achieve-
ments on estimation theory and applications is
reported in Table 1. The entries of the table,
sorted in chronological order, provide for each
contribution the name of the inventor (or inven-
tors), the date, and a short description with main
bibliographical references.

Probably the first important application of
estimation dates back to the beginning of
the nineteenth century whenever least-squares
estimation (LSE), invented by Gauss in 1795
(Gauss 1995; Legendre 1810), was successfully
exploited in astronomy for predicting planet
orbits (Gauss 1806). Least-squares estimation
follows a deterministic approach by minimizing
the sum of squares of residuals defined as
differences between observed data and model-
predicted estimates. A subsequently introduced
statistical approach is maximum likelihood
estimation (MLE), popularized by R. A. Fisher
between 1912 and 1922 (Fisher 1912, 1922,
1925). MLE consists of finding the estimate of
the unknown quantity of interest as the value
that maximizes the so-called likelihood function,
defined as the conditional probability density
function of the observed data given the quantity to
be estimated. In intuitive terms, MLE maximizes
the agreement of the estimate with the observed
data. Whenever the observation noise is assumed
Gaussian (Kim and Shevlyakov 2008; Park et al.
2013), MLE coincides with LSE.

While estimation problems had been
addressed for several centuries, it was not
until the 1940s that a systematic theory of
estimation started to be established, mainly
relying on the foundations of the modern theory
of probability (Kolmogorov 1933). Actually, the
roots of probability theory can be traced back to
the calculus of combinatorics (the Stomachion
puzzle invented by Archimedes (Netz and Noel
2011)) in the third century B.C. and to the
gambling theory (work of Cardano, Pascal, de
Fermat, Huygens) in the sixteenth–seventeenth
centuries.

Differently from the previous work devoted to
the estimation of constant parameters, in the
period 1940–1960 the attention was mainly
shifted toward the estimation of signals. In
particular, Wiener in 1940 (Wiener 1949)
and Kolmogorov in 1941 (Kolmogorov 1941)
formulated and solved the problem of linear
minimum mean-square error (MMSE) estimation
of continuous-time and, respectively, discrete-
time stationary random signals. In the late 1940s
and in the 1950s, Wiener-Kolmogorov’s theory
was extended and generalized in many directions
exploiting both time-domain and frequency-
domain approaches. At the beginning of the
1960s Rudolf E. Kálmán made pioneering
contributions to estimation by providing the
mathematical foundations of the modern theory
based on state-variable representations. In
particular, Kálmán solved the linear MMSE
filtering and prediction problems both in discrete-
time (Kalman 1960b) and in continuous-time
(Kalman and Bucy 1961); the resulting optimal
estimator was named after him, Kalman filter
(KF). As a further contribution, Kalman also
singled out the key technical conditions, i.e.,
observability and controllability, for which the
resulting optimal estimator turns out to be
stable. Kalman’s work went well beyond earlier
contributions of A. Kolmogorov, N. Wiener, and
their followers (“frequency-domain” approach)
by means of a general state-space approach. From
the theoretical viewpoint, the KF is an optimal
estimator, in a wide sense, of the state of a linear
dynamical system from noisy measurements;
specifically it is the optimal MMSE estimator in
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Estimation, Survey on, Table 1 Major developments on estimation

Archimedes Third century B.C.
Combinatorics (Netz and Noel 2011) as the basis of
probability

G. Cardano, B. Pascal, P. de
Fermat, C. Huygens

Sixteenth–seventeenth cen-
turies

Roots of the theory of probability (Devlin 2008)

J. F. Riccati 1722–1723 Differential Riccati equation (Riccati 1722, 1723), sub-
sequently exploited in the theory of linear stochastic
filtering

T. Bayes 1763 Bayes’ formula on conditional probability (Bayes
1763; McGrayne 2011)

C. F. Gauss, A. M. Legendre 1795–1810 Least-squares estimation and its applications to the pre-
diction of planet orbits (Gauss 1806, 1995; Legendre
1810)

P. S. Laplace 1814 Theory of probability (Laplace 1814)

R. A. Fisher 1912–1922 Maximum likelihood estimation (Fisher 1912, 1922,
1925)

A. N. Kolmogorov 1933 Modern theory of probability (Kolmogorov 1933)

N. Wiener 1940 Minimum mean-square error estimation of continuous-
time stationary random signals (Wiener 1949)

A. N. Kolmogorov 1941 Minimum mean-square error estimation of discrete-
time stationary random signals (Kolmogorov 1941)

H. Cramér, C. R. Rao 1945 Theoretical lower bound on the covariance of estima-
tors (Cramér 1946; Rao 1945)

S. Ulam, J. von Neumann,
N. Metropolis, E. Fermi

1946–1949 Monte Carlo method (Los Alamos Scientific Labora-
tory 1966; Metropolis and Ulam 1949; Ulam 1952;
Ulam et al. 1947)

J. Sklansky, T. R. Benedict,
G. W. Bordner, H. R. Simp-
son, S. R. Neal

1957–1967 ˛ � ˇ and ˛ � ˇ � � filters (Benedict and Bordner
1962; Neal 1967; Painter et al. 1990; Simpson 1963;
Sklansky 1957)

R. L. Stratonovich,
H. J. Kushner

1959–1964 Bayesian approach to stochastic nonlinear filtering of
continuous-time systems, i.e., Stratonovich-Kushner
equation for the evolution of the state conditional
probability density (Jazwinski 1970; Kushner 1962,
1967; Stratonovich 1959, 1960)

R. E. Kalman 1960 Linear filtering and prediction for discrete-time sys-
tems (Kalman 1960b)

R. E. Kalman 1961 Observability of linear dynamical systems (Kalman
1960a)

R. E. Kalman, R. S. Bucy 1961 Linear filtering and prediction for continuous-time sys-
tems (Kalman and Bucy 1961)

A. E. Bryson, M. Frazier,
H. E. Rauch, F. Tung, C. T.
Striebel, D. Q. Mayne, J. S.
Meditch, D. C. Fraser, L. E.
Zachrisson, B. D. O. Ander-
son, etc.

Since 1963 Smoothing of linear and nonlinear systems (Anderson
and Chirarattananon 1972; Bryson and Frazier 1963;
Mayne 1966; Meditch 1967; Rauch 1963; Rauch et al.
1965; Zachrisson 1969)

D. G. Luenberger 1964 State observer for a linear system (Luenberger 1964)

Y. C. Ho, R. C. K. Lee 1964 Bayesian approach to recursive nonlinear estimation
for discrete-time systems (Ho and Lee 1964)

W. M. Wonham 1965 Optimal filtering for Markov step processes (Wonham
1965)

A. H. Jazwinski 1966 Bayesian approach to stochastic nonlinear filtering for
continuous-time stochastic systems with discrete-time
observations (Jazwinski 1966)

(continued)
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Archimedes Third century B.C.
Combinatorics (Netz and Noel 2011) as the basis of
probability

S. F. Schmidt 1966 Extended Kalman filter and its application for the
manned lunar missions (Schmidt 1966)

P. L. Falb, A. V. Balakr-
ishnan, J. L. Lions, S. G.
Tzafestas, J. M. Nightin-
gale, H. J. Kushner, J. S.
Meditch, etc.

Since 1967 State estimation for infinite-dimensional (e.g., dis-
tributed parameter, partial differential equation (PDE),
delay) systems (Balakrishnan and Lions 1967; Falb
1967; Kushner 1970; Kwakernaak 1967; Meditch
1971; Tzafestas and Nightingale 1968)

T. Kailath 1968 Principle of orthogonality and innovation approach
to estimation (Frost and Kailath 1971; Kailath 1968,
1970; Kailath and Frost 1968; Kailath et al. 2000)

A. H. Jazwinski, B. Rawl-
ings, etc.

Since 1968 Limited memory (receding-horizon, moving-horizon)
state estimation with constraints (Alessandri et al.
2005, 2008; Jazwinski 1968; Rao et al. 2001, 2003)

F. C. Schweppe, D. P. Bert-
sekas, I. B. Rhodes, M. Mi-
lanese, etc.

Since 1968 Set-membership recursive state estimation with sys-
tems with unknown but bounded noises (Alamo et al.
2005; Bertsekas and Rhodes 1971; Chisci et al. 1996;
Combettes 1993; Milanese and Belforte 1982; Mi-
lanese and Vicino 1993; Schweppe 1968; Vicino and
Zappa 1996)

J. E. Potter, G. Golub, S.
F. Schmidt, P. G. Kaminski,
A. E. Bryson, A. Andrews,
G. J. Bierman, M. Morf, T.
Kailath, etc.

1968–1975 Square-root filtering (Andrews 1968; Bierman 1974,
1977; Golub 1965; Kaminski and Bryson 1972; Morf
and Kailath 1975; Potter and Stern 1963; Schmidt
1970)

C. W. Helstrom 1969 Quantum estimation (Helstrom 1969, 1976)

D. L. Alspach, H. W. Soren-
son

1970–1972 Gaussian-sum filters for nonlinear and/or non-
Gaussian systems (Alspach and Sorenson 1972;
Sorenson and Alspach 1970, 1971)

T. Kailath, M. Morf, G. S.
Sidhu

1973–1974 Fast Chandrasekhar-type algorithms for recursive state
estimation of stationary linear systems (Kailath 1973;
Morf et al. 1974)

A. Segall 1976 Recursive estimation from point processes (Segall
1976)

J. W. Woods and C. Rade-
wan

1977 Kalman filter in two dimensions (Woods and Radewan
1977) for image processing

J. H. Taylor 1979 Cramér-Rao lower bound (CRLB) for recursive state
estimation with no process noise (Taylor 1979)

D. Reid 1979 Multiple Hypothesis Tracking (MHT) filter for multi-
target tracking (Reid 1979)

L. Servi, Y. Ho 1981 Optimal filtering for linear systems with uniformly
distributed measurement noise (Servi and Ho 1981)

V. E. Benes 1981 Exact finite-dimensional optimal MMSE filter for a
class of nonlinear systems (Benes 1981)

H. V. Poor, D. Looze, J. Dar-
ragh, S. Verdú, M. J. Grim-
ble, etc.

1981–1988 Robust (e.g., H1) filtering (Darragh and Looze 1984;
Grimble 1988; Hassibi et al. 1999; Poor and Looze
1981; Simon 2006; Verdú and Poor 1984)

V. J. Aidala, S. E. Hammel 1983 Bearings-only tracking (Aidala and Hammel 1983;
Farina 1999)

F. E. Daum 1986 Extension of the Benes filter to a more general class of
nonlinear systems (Daum 1986)

(continued)
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Archimedes Third century B.C.
Combinatorics (Netz and Noel 2011) as the basis of
probability

L. Dai and others Since 1987 State estimation for linear descriptor (singular, im-
plicit) stochastic systems (Chisci and Zappa 1992; Dai
1987, 1989; Nikoukhah et al. 1992)

N. J. Gordon, D. J. Salmond,
A. M. F. Smith

1993 Particle (sequential Monte Carlo) filter (Doucet et al.
2001; Gordon et al. 1993; Ristic et al. 2004)

K. C. Chou, A. S. Willsky,
A. Benveniste

1994 Multiscale Kalman filter (Chou et al. 1994)

G. Evensen 1994 Ensemble Kalman filter for data assimilation in meteo-
rology and oceanography (Evensen 1994b, 2007)

R. P. S. Mahler 1994 Random set filtering (Mahler 1994, 2007a; Ristic et al.
2013)

S. J. Julier, J. K. Uhlmann,
H. Durrant-Whyte

1995 Unscented Kalman filter (Julier and Uhlmann 2004;
Julier et al. 1995)

A. Germani et al. Since 1996 Polynomial extended Kalman filter for nonlinear
and/or non-Gaussian systems (Carravetta et al. 1996;
Germani et al. 2005)

P. Tichavsky, C. H. Mu-
ravchik, A. Nehorai

1998 Posterior Cramér-Rao lower bound (PCRLB) for recur-
sive state estimation (Tichavsky et al. 1998; van Trees
and Bell 2007)

R. Mahler 2003, 2007 Probability hypothesis density (PHD) and cardinalized
PHD (CPHD) filters (Mahler 2003, 2007b; Ristic 2013;
Vo and Ma 1996; Vo et al. 2007)

A.G. Ramm 2005 Estimation of random fields (Ramm 2005)

M. Hernandez, A. Farina, B.
Ristic

2006 PCRLB for tracking in the case of detection probability
less than one and false alarm probability greater than
zero (Hernandez et al. 2006)

Olfati-Saber and others Since 2007 Consensus filters (Olfati-Saber et al. 2007; Calafiore
and Abrate 2009; Xiao et al. 2005; Alriksson and
Rantzer 2006; Olfati-Saber 2007; Kamgarpour and
Tomlin 2007; Stankovic et al. 2009; Battistelli et al.
2011, 2012, 2013; Battistelli and Chisci 2014) for
networked estimation

the Gaussian case (e.g., for normally distributed
noises and initial state) and the best linear
unbiased estimator irrespective of the noise
and initial state distributions. From the practical
viewpoint, the KF enjoys the desirable properties
of being linear and acting recursively, step-by-
step, on a noise-contaminated data stream. This
allows for cheap real-time implementation on
digital computers. Further, the universality of
“state-variable representations” allows almost
any estimation problem to be included in the
KF framework. For these reasons, the KF is,
and continues to be, an extremely effective and
easy-to-implement tool for a great variety of
practical tasks, e.g., to detect signals in noise
or to estimate unmeasurable quantities from

accessible observables. Due to the generality
of the state estimation problem, which actually
encompasses parameter and signal estimation as
special cases, the literature on estimation since
1960 till today has been mostly concentrated
on extensions and generalizations of Kalman’s
work in several directions. Considerable efforts,
motivated by the ubiquitous presence of
nonlinearities in practical estimation problems,
have been devoted to nonlinear and/or non-
Gaussian filtering, starting from the seminal
papers of Stratonovich (1959, 1960) and Kushner
(1962, 1967) for continuous-time systems,
Ho and Lee (1964) for discrete-time systems,
and Jazwinski (1966) for continuous-time
systems with discrete-time observations. In these
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papers, state estimation is cast in a probabilistic
(Bayesian) framework as the problem of evolving
in time the state conditional probability density
given observations (Jazwinski 1970). Work on
nonlinear filtering has produced over the years
several nonlinear state estimation algorithms,
e.g., the extended Kalman filter (EKF) (Schmidt
1966), the unscented Kalman filter (UKF) (Julier
and Uhlmann 2004; Julier et al. 1995), the
Gaussian-sum filter (Alspach and Sorenson
1972; Sorenson and Alspach 1970, 1971), the
sequential Monte Carlo (also called particle) filter
(SMCF) (Doucet et al. 2001; Gordon et al. 1993;
Ristic et al. 2004), and the ensemble Kalman filter
(EnKF) (Evensen 1994a,b, 2007) which have
been, and are still now, successfully employed
in various application domains. In particular,
the SMCF and EnKF are stochastic simulation
algorithms taking inspiration from the work in the
1940s on the Monte Carlo method (Metropolis
and Ulam 1949) which has recently got renewed
interest thanks to the tremendous advances in
computing technology. A thorough review on
nonlinear filtering can be found, e.g., in Daum
(2005) and Crisan and Rozovskii (2011).

Other interesting areas of investigation have
concerned smoothing (Bryson and Frazier 1963),
robust filtering for systems subject to model-
ing uncertainties (Poor and Looze 1981), and
state estimation for infinite-dimensional (i.e., dis-
tributed parameter and/or delay) systems (Bal-
akrishnan and Lions 1967). Further, a lot of
attention has been devoted to the implementa-
tion of the KF, specifically square-root filtering
(Potter and Stern 1963) for improved numerical
robustness and fast KF algorithms (Kailath 1973;
Morf et al. 1974) for enhancing computational
efficiency. Worth of mention is the work over
the years on theoretical bounds on the estimation
performance originated from the seminal papers
of Rao (1945) and Cramér (1946) on the lower
bound of the MSE for parameter estimation and
subsequently extended in Tichavsky et al. (1998)
to nonlinear filtering and in Hernandez et al.
(2006) to more realistic estimation problems with
possible missed and/or false measurements. An
extensive review of this work on Bayesian bounds
for estimation, nonlinear filtering, and tracking

can be found in van Trees and Bell (2007). A brief
review of the earlier (until 1974) state of art in
estimation can be found in Lainiotis (1974).

Applications

Astronomy
The problem of making estimates and predictions
on the basis of noisy observations originally at-
tracted the attention many centuries ago in the
field of astronomy. In particular, the first attempt
to provide an optimal estimate, i.e., such that a
certain measure of the estimation error be min-
imized, was due to Galileo Galilei that, in his
Dialogue on the Two World Chief Systems (1632)
(Galilei 1632), suggested, as a possible criterion
for estimating the position of Tycho Brahe’s su-
pernova, the estimate that required the “mini-
mum amendments and smallest corrections” to
the data. Later, C. F. Gauss mathematically speci-
fied this criterion by introducing in 1795 the least-
squares method (Gauss 1806, 1995; Legendre
1810) which was successfully applied in 1801
to predict the location of the asteroid Ceres.
This asteroid, originally discovered by the Italian
astronomer Giuseppe Piazzi on January 1, 1801,
and then lost in the glare of the sun, was in
fact recovered 1 year later by the Hungarian
astronomer F. X. von Zach exploiting the least-
squares predictions of Ceres’ position provided
by Gauss.

Statistics
Starting from the work of Fisher in the 1920s
(Fisher 1912, 1922, 1925), maximum likelihood
estimation has been extensively employed
in statistics for estimating the parameters of
statistical models (Bard 1974; Ghosh et al.
1997; Koch 1999; Lehmann and Casella 1998;
Tsybakov 2009; Wertz 1978).

Telecommunications and Signal/Image
Processing
Wiener-Kolmogorov’s theory on signal esti-
mation, developed in the period 1940–1960
and originally conceived by Wiener during
the Second World War for predicting aircraft
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trajectories in order to direct the antiaircraft fire,
subsequently originated many applications in
telecommunications and signal/image processing
(Barkat 2005; Biemond et al. 1983; Elliott
et al. 2008; Itakura 1971; Kay 1993; Kim
and Woods 1998; Levy 2008; Najim 2008;
Poor 1994; Tuncer and Friedlander 2009;
Van Trees 1971; Wakita 1973; Woods and
Radewan 1977). For instance, Wiener filters have
been successfully applied to linear prediction,
acoustic echo cancellation, signal restoration, and
image/video de-noising. But it was the discovery
of the Kalman filter in 1960 that revolutionized
estimation by providing an effective and powerful
tool for the solution of any, static or dynamic,
stationary or adaptive, linear estimation problem.
A recently conducted, and probably non-
exhaustive, search has detected the presence
of over 16,000 patents related to the “Kalman
filter,” spreading over all areas of engineering
and over a period of more than 50 years. What
is astonishing is that even nowadays, more than
50 years after its discovery, one can see the
continuous appearance of lots of new patents and
scientific papers presenting novel applications
and/or novel extensions in many directions (e.g.,
to nonlinear filtering) of the KF. Since 1992
the number of patents registered every year and
related to the KF follows an exponential law.

Space Navigation and Aerospace
Applications
The first important application of the Kalman
filter was in the NASA (National Aeronautic
and Space Administration) space program. As
reported in a NASA technical report (McGee and
Schmidt 1985), Kalman presented his new ideas
while visiting Stanley F. Schmidt at the NASA
Ames Research Center in 1960, and this meeting
stimulated the use of the KF during the Apollo
program (in particular, in the guidance system of
Saturn V during Apollo 11 flight to the Moon),
and, furthermore, in the NASA Space Shuttle
and in Navy submarines and unmanned aerospace
vehicles and weapons, such as cruise missiles.
Further, to cope with the nonlinearity of the space
navigation problem and the small word length
of the onboard computer, the extended Kalman

filter for nonlinear systems and square-root filter
implementations for enhanced numerical robust-
ness have been developed as part of the NASA’s
Apollo program. The aerospace field was only
the first of a long and continuously expanding
list of application domains where the Kalman
filter and its nonlinear generalizations have found
widespread and beneficial use.

Control Systems and System Identification
The work on Kalman filtering (Kalman 1960b;
Kalman and Bucy 1961) had also a significant
impact on control system design and implemen-
tation. In Kalman (1960a) duality between esti-
mation and control was pointed out, in that for a
certain class of control and estimation problems
one can solve the control (estimation) problem
for a given dynamical system by resorting to a
corresponding estimation (control) problem for
a suitably defined dual system. In particular, the
Kalman filter has been shown to be dual of
the linear-quadratic (LQ) regulator, and the two
dual techniques constitute the linear-quadratic-
Gaussian (LQG) (Joseph and Tou 1961) regula-
tor. The latter consists of an LQ regulator feeding
back in a linear way the state estimate provided
by a Kalman filter, which can be independently
designed in view of the separation principle.
The KF as well as LSE and MLE techniques
are also widely used in system identification
(Ljung 1999; Söderström and Stoica 1989) for
both parameter estimation and output prediction
purposes.

Tracking
One of the major application areas for estimation
is tracking (Bar-Shalom and Fortmann 1988; Bar-
Shalom et al. 2001, 2013; Blackman and Popoli
1999; Farina and Studer 1985, 1986), i.e., the
task of following the motion of moving objects
(e.g., aircrafts, ships, ground vehicles, persons,
animals) given noisy measurements of kinematic
variables from remote sensors (e.g., radar, sonar,
video cameras, wireless sensors, etc.). The de-
velopment of the Wiener filter in the 1940s was
actually motivated by radar tracking of aircraft
for automatic control of antiaircraft guns. Such
filters began to be used in the 1950s whenever
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computers were integrated with radar systems,
and then in the 1960s more advanced and better
performing Kalman filters came into use. Still
today it can be said that the Kalman filter and
its nonlinear generalizations (e.g., EKF (Schmidt
1966), UKF (Julier and Uhlmann 2004), and
particle filter (Gordon et al. 1993)) represent
the workhorses of tracking and sensor fusion.
Tracking, however, is usually much more compli-
cated than a simple state estimation problem due
to the presence of false measurements (clutter)
and multiple objects in the surveillance region
of interest, as well as for the uncertainty about
the origin of measurements. This requires to use,
besides filtering algorithms, smart techniques for
object detection as well as for association be-
tween detected objects and measurements. The
problem of joint target tracking and classifica-
tion has also been formulated as a hybrid state
estimation problem and addressed in a number of
papers (see, e.g., Smeth and Ristic (2004) and the
references therein).

Econometrics
State and parameter estimation have been widely
used in econometrics (Aoki 1987) for analyz-
ing and/or predicting financial time series (e.g.,
stock prices, interest rates, unemployment rates,
volatility etc.).

Geophysics
Wiener and Kalman filtering techniques are em-
ployed in reflection seismology for estimating the
unknown earth reflectivity function given noisy
measurements of the seismic wavelet’s echoes
recorded by a geophone. This estimation prob-
lem, known as seismic deconvolution (Mendel
1977, 1983, 1990), has been successfully ex-
ploited, e.g., for oil exploration.

Data Assimilation for Weather Forecasting
and Oceanography
Another interesting application of estimation
theory is data assimilation (Ghil and Malanotte-
Rizzoli 1991) which consists of incorporating
noisy observations into a computer simulation
model of a real system. Data assimilation has
widespread use especially in weather forecasting

and oceanography. A large-scale state-space
model is typically obtained from the physical
system model, expressed in terms of partial
differential equations (PDEs), by means of
a suitable spatial discretization technique so
that data assimilation is cast into a state
estimation problem. To deal with the huge
dimensionality of the resulting state vector,
appropriate filtering techniques with reduced
computational load have been suitably developed
(Evensen 2007).

Global Navigation Satellite Systems
Global Navigation Satellite Systems (GNSSs),
such as GPS put into service in 1993 by the
US Department of Defense, provide nowadays a
commercially diffused technology exploited by
millions of users all over the world for navigation
purposes, wherein the Kalman filter plays a key
role (Bar-Shalom et al. 2001). In fact, the Kalman
filter not only is employed in the core of the
GNSS to estimate the trajectories of all the satel-
lites, the drifts and rates of all system clocks, and
hundreds of parameters related to atmospheric
propagation delay, but also any GNSS receiver
uses a nonlinear Kalman filter, e.g., EKF, in order
to estimate its own position and velocity along
with the bias and drift of its own clock with
respect to the GNSS time.

Robotic Navigation (SLAM)
Recursive state estimation is commonly em-
ployed in mobile robotics (Thrun et al. 2006) in
order to on-line estimate the robot pose, location
and velocity, and, sometimes, also the location
and features of the surrounding objects in the
environment exploiting measurements provided
by onboard sensors; the overall joint estimation
problem is referred to as SLAM (simultaneous
localization and mapping) (Dissanayake et al.
2001; Durrant-Whyte and Bailey 2006a,b;
Mullane et al. 2011; Smith et al. 1986; Thrun
et al. 2006).

Automotive Systems
Several automotive applications of the Kalman
filter, or of its nonlinear variants, are reported
in the literature for the estimation of various
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quantities of interest that cannot be directly mea-
sured, e.g., roll angle, sideslip angle, road-tire
forces, heading direction, vehicle mass, state of
charge of the battery (Barbarisi et al. 2006),
etc. In general, one of the major applications of
state estimation is the development of virtual sen-
sors, i.e., estimation algorithms for physical vari-
ables of interest, that cannot be directly measured
for technical and/or economic reasons (Stephant
et al. 2004).

Miscellaneous Applications
Other areas where estimation has found
numerous applications include electric power
systems (Abur and Gómez Espósito 2004; Debs
and Larson 1970; Miller and Lewis 1971;
Monticelli 1999; Toyoda et al. 1970), nuclear
reactors (Robinson 1963; Roman et al. 1971;
Sage and Masters 1967; Venerus and Bullock
1970), biomedical engineering (Bekey 1973;
Snyder 1970; Stark 1968), pattern recognition
(Andrews 1972; Ho and Agrawala 1968;
Lainiotis 1972), and many others.

Connection Between Information and
Estimation Theories

In this section, the link between two fundamental
quantities in information theory and estimation
theory, i.e., the mutual information (MI) and
respectively the minimum mean-square error
(MMSE), is investigated. In particular, a
strikingly simple but very general relationship
can be established between the MI of the input
and the output of an additive Gaussian channel
and the MMSE in estimating the input given the
output, regardless of the input distribution (Guo
et al. 2005). Although this functional relation
holds for general settings of the Gaussian channel
(e.g., both discrete-time and continuous-time,
possibly vector, channels), in order to avoid the
heavy mathematical preliminaries needed to treat
rigorously the general problem, two simple scalar
cases, a static and a (continuous-time) dynamic
one, will be discussed just to highlight the main
concept.

Static Scalar Case
Consider two scalar real-valued random vari-
ables, x and y, related by

y D p
�x C v (1)

where v, the measurement noise, is a standard
Gaussian random variable independent of x and
� can be regarded as the gain in the output
signal-to-noise ratio (SNR) due to the channel.
By considering the MI between x and y as a
function of � , i.e., I.�/ D I

�
x;

p
�x C v

�
, it

can be shown that the following relation holds
(Guo et al. 2005):
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is the minimum

mean-square error estimate of x given y. Figure 1
displays the behavior of both MI, in natural log-
arithmic units of information (nats), and MMSE
versus SNR.

As mentioned in Guo et al. (2005), the above
information-estimation relationship (2) has found
a number of applications, e.g., in nonlinear filter-
ing, in multiuser detection, in power allocation
over parallel Gaussian channels, in the proof
of Shannon’s entropy power inequality and its
generalizations, as well as in the treatment of the
capacity region of several multiuser channels.

Linear Dynamic Continuous-Time Case
While in the static case the MI is assumed to be
a function of the SNR, in the dynamic case it
is of great interest to investigate the relationship
between the MI and the MMSE as a function of
time.

Consider the following first-order (scalar) lin-
ear Gaussian continuous-time stochastic dynami-
cal system:

dxt D axt dt C dwt

dyt D p
�xt dt C dvt

(3)

where a is a real-valued constant while wt

and vt are independent standard Brownian
motion processes that represent the process and,
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respectively, measurement noises. Defining

by xt
0

4D fxs; 0 � s � tg the collection
of all states up to time t and analogously

yt
0

4D fys; 0 � s � tg for the channel outputs
(i.e., measurements) and considering the MI
between xt

0 and yt
0 as a function of time t , i.e.,

I.t/ D I
�
xt

0; yt
0

�
, it can be shown that (Duncan

1970; Mayer-Wolf and Zakai 1983)

d

dt
I.t/ D �

2
E

h
.xt � Oxt /

2
i

(4)

where Oxt D E
�
xt jyt

0

	
is the minimum mean-

square error estimate of the state xt given all the
channel outputs up to time t , i.e., yt

0. Figure 2
depicts the time behavior of both MI and MMSE
for several values of � and a D 1.

Conclusions and Future Trends

Despite the long history of estimation and the
huge amount of work on several theoretical and
practical aspects of estimation, there is still a lot
of research investigation to be done in several

directions. Among the many new future trends,
networked estimation and quantum estimation
(briefly overviewed in the subsequent parts of this
section) certainly deserve special attention due to
the growing interest on wireless sensor networks
and, respectively, quantum computing.

Networked Information Fusion and
Estimation
Information or data fusion is about combining,
or fusing, information or data from multiple
sources to provide knowledge that is not
evident from a single source (Bar-Shalom
et al. 2013; Farina and Studer 1986). In
1986, an effort to standardize the terminol-
ogy related to data fusion began and the
JDL (Joint Directors of Laboratories) data
fusion working group was established. The
result of that effort was the conception of
a process model for data fusion and a data
fusion lexicon (Blasch et al. 2012; Hall and
Llinas 1997). Information and data fusion are
mainly supported by sensor networks which
present the following advantages over a single
sensor:
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• Can be deployed over wide regions
• Provide diverse characteristics/viewing angles

of the observed phenomenon
• Are more robust to failures
• Gather more data that, once fused, provide a

more complete picture of the observed phe-
nomenon

• Allow better geographical coverage, i.e.,
wider area and less terrain obstructions.

Sensor network architectures can be centralized,
hierarchical (with or without feedback), and
distributed (peer-to-peer). Today’s trend for
many monitoring and decision-making tasks is
to exploit large-scale networks of low-cost and
low-energy consumption devices with sensing,
communication, and processing capabilities.
For scalability issues, such networks should
operate in a fully distributed (peer-to-peer)
fashion, i.e., with no centralized coordination,
so as to achieve in each node a global
estimation/decision objective through localized
processing only.

The attainment of this goal actually requires
several issues to be addressed like:

• Spatial and temporal sensor alignment
• Scalable fusion
• Robustness with respect to data incest (or dou-

ble counting), i.e., repeated use of the same
information

• Handling data latency (e.g., out-of-sequence
measurements/estimates)

• Communication bandwidth limitations
In particular, to counteract data incest the
so-called covariance intersection (Julier and
Uhlmann 1997) robust fusion approach has
been proposed to guarantee, at the price of
some conservatism, consistency of the fused
estimate when combining estimates from
different nodes with unknown correlations. For
scalable fusion, a consensus approach (Olfati-
Saber et al. 2007) can be undertaken. This
allows to carry out a global (i.e., over the
whole network) processing task by iterating
local processing steps among neighboring
nodes.

Several consensus algorithms have been
proposed for distributed parameter (Calafiore
and Abrate 2009) or state (Alriksson and
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Rantzer 2006; Kamgarpour and Tomlin 2007;
Olfati-Saber 2007; Stankovic et al. 2009; Xiao
et al. 2005) estimation. Recently, Battistelli and
Chisci (2014) introduced a generalized consensus
on probability densities which opens up the
possibility to perform in a fully distributed
and scalable way any Bayesian estimation
task over a sensor network. As by-products,
this approach allowed to derive consensus
Kalman filters with guaranteed stability under
minimal requirements of system observability
and network connectivity (Battistelli et al. 2011,
2012; Battistelli and Chisci 2014), consensus
nonlinear filters (Battistelli et al. 2012), and a
consensus CPHD filter for distributed multitarget
tracking (Battistelli et al. 2013). Despite these
interesting preliminary results, networked
estimation is still a very active research area with
many open problems related to energy efficiency,
estimation performance optimality, robustness
with respect to delays and/or data losses, etc.

Quantum Estimation
Quantum estimation theory consists of a general-
ization of the classical estimation theory in terms
of quantum mechanics. As a matter of fact, the
statistical theory can be seen as a particular case
of the more general quantum theory (Helstrom
1969, 1976). Quantum mechanics presents prac-
tical applications in several fields of technology
(Personick 1971) such as, the use of quantum
number generators in place of the classical ran-
dom number generators. Moreover, manipulating
the energy states of the cesium atoms, it is
possible to suppress the quantum noise levels
and consequently improve the accuracy of
atomic clocks. Quantum mechanics can also be
exploited to solve optimization problems, giving
sometimes optimization algorithms that are faster
than conventional ones. For instance, McGeoch
and Wang (2013) provided an experimental
study of algorithms based on quantum annealing.
Interestingly, the results of McGeoch and Wang
(2013) have shown that this approach allows to
obtain better solutions with respect to those found
with conventional software solvers. In quantum
mechanics, also the Kalman filter has found
its proper form, as the quantum Kalman filter.

In Iida et al. (2010) the quantum Kalman filter is
applied to an optical cavity composed of mirrors
and crystals inside, which interacts with a probe
laser. In particular, a form of a quantum stochastic
differential equation can be written for such a
system so as to design the algorithm that updates
the estimates of the system variables on the basis
of the measurement outcome of the system.
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Abstract

Recent developments in computer and commu-
nication technologies have led to a new type
of large-scale resource-constrained wireless
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embedded control systems. It is desirable in
these systems to limit the sensor and control
computation and/or communication to instances
when the system needs attention. However,
classical sampled-data control is based on
performing sensing and actuation periodically
rather than when the system needs attention.
This article discusses event- and self-triggered
control systems where sensing and actuation is
performed when needed. Event-triggered control
is reactive and generates sensor sampling and
control actuation when, for instance, the plant
state deviates more than a certain threshold from
a desired value. Self-triggered control, on the
other hand, is proactive and computes the next
sampling or actuation instance ahead of time. The
basics of these control strategies are introduced
together with references for further reading.

Keywords

Event-triggered control; Hybrid systems; Real-
time control; Resource-constrained embedded
control; Sampled-data systems; Self-triggered
control

Introduction

In standard control textbooks, e.g., Aström and
Wittenmark (1997) and Franklin et al. (2010), pe-
riodic control is presented as the only choice for
implementing feedback control laws on digital
platforms. Although this time-triggered control
paradigm has proven to be extremely success-
ful in many digital control applications, recent
developments in computer and communication
technologies have led to a new type of large-scale
resource-constrained (wireless) control systems
that call for a reconsideration of this traditional
paradigm. In particular, the increasing popularity
of (shared) wired and wireless networked con-
trol systems raises the importance of explicitly
addressing energy, computation, and communi-
cation constraints when designing feedback con-
trol loops. Aperiodic control strategies that allow
the inter-execution times of control tasks to be
varying in time offer potential advantages with

respect to periodic control when handling these
constraints, but they also introduce many new
interesting theoretical and practical challenges.

Although the discussions regarding periodic
vs. aperiodic implementation of feedback control
loops date back to the beginning of computer-
controlled systems, e.g., Gupta (1963), in the
late 1990s two influential papers (Årzén 1999;
Åström and Bernhardsson 1999) highlighted the
advantages of event-based feedback control.
These two papers spurred the development
of the first systematic designs of event-based
implementations of stabilizing feedback control
laws, e.g., Yook et al. (2002), Tabuada (2007),
Heemels et al. (2008), and Henningsson et al.
(2008). Since then, several researchers have
improved and generalized these results and
alternative approaches have appeared. In the
meantime, also so-called self-triggered control
(Velasco et al. 2003) emerged. Event-triggered
and self-triggered control systems consist of
two elements, namely, a feedback controller
that computes the control input and a triggering
mechanism that determines when the control
input has to be updated again. The difference
between event-triggered control and self-
triggered control is that the former is reactive,
while the latter is proactive. Indeed, in event-
triggered control, a triggering condition based on
current measurements is continuously monitored
and when the condition holds, an event is
triggered. In self-triggered control the next
update time is precomputed at a control update
time based on predictions using previously
received data and knowledge of the plant
dynamics. In some cases, it is advantageous
to combine event-triggered and self-triggered
control resulting in a control system reactive
to unpredictable disturbances and proactive by
predicting future use of resources.

Time-Triggered, Event-Triggered and
Self-Triggered Control

To indicate the differences between various dig-
ital implementations of feedback control laws,
consider the control of the nonlinear plant
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Px D f .x; u/ (1)

with x 2 R
nx the state variable and u 2 R

nu

the input variable. The system is controlled by a
nonlinear state feedback law

u D h.x/ (2)

where h W Rnx ! R
nu is an appropriate mapping

that has to be implemented on a digital platform.
Recomputing the control value and updating the
actuator signals will occur at times denoted by
t0; t1; t2; : : : with t0 D 0. If we assume the inputs
to be held constant in between the successive re-
computations of the control law (referred to as
sample-and-hold or zero-order-hold), we have

u.t/Du.tk/Dh.x.tk// 8t 2 Œtk ; tkC1/; k 2 N:

(3)

We refer to the instants ftkgk2N as the triggering
times or execution times. Based on these times
we can easily explain the difference between
time-triggered control, event-triggered control,
and self-triggered control.

In time-triggered control we have the equality
tk D kTs with Ts > 0 being the sampling period.
Hence, the updates take place equidistantly in
time irrespective of how the system behaves.
There is no “feedback mechanism” in determin-
ing the execution times; they are determined a
priori and in “open loop.” Another way of writing
the triggering mechanism in time-triggered con-
trol is

tkC1 D tk C Ts; k 2 N (4)

with t0 D 0.
In event-triggered control the next execution

time of the controller is determined by an event-
triggering mechanism that continuously verifies
if a certain condition based on the actual state
variable becomes true. This condition includes
often also information on the state variable x.tk/

at the previous execution time tk and can be
written, for instance, as C.x.t/; x.tk// > 0. For-
mally, the execution times are then determined by

tkC1 D infft > tk j C.x.t/; x.tk// > 0g (5)

with t0 D 0. Hence, it is clear from (5) that
there is a feedback mechanism present in the
determination of the next execution time as it is
based on the measured state variable. In this sense
event-triggered control is reactive.

Finally, in self-triggered control the next ex-
ecution time is determined proactively based on
the measured state x.tk/ at the previous execution
time. In particular, there is a function M W Rnx !
R�0 that specifies the next execution time as

tkC1 D tk C M.x.tk// (6)

with t0 D 0. As a consequence, in self-triggered
control both the control value u.tk/ and the next
execution time tkC1 are computed at execution
time tk . In between tk and tkC1, no further actions
are required from the controller. Note that the
time-triggered implementation can be seen as a
special case of the self-triggered implementation
by taking M.x/ D Ts for all x 2 R

nx .
Clearly, in all the three implementation

schemes Ts , C and M are chosen together with
the feedback law given through h to provide
stability and performance guarantees and to
realize a certain utilization of computer and
communication resources.

Lyapunov-Based Analysis

Much work on event-triggered control used one
of the following two modeling and analysis
frameworks: The perturbation approach and the
hybrid system approach.

Perturbation Approach
In the perturbation approach one adopts
perturbed models that describe how the event-
triggered implementation of the control law per-
turbs the ideal continuous-time implementation
u.t/ D h.x.t//, t 2 R�0. In order to do so,
consider the error e given by

e.t/ D x.tk/ � x.t/ for t 2 Œtk; tkC1/; k 2 N:

(7)
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Using this error variable we can write the closed-
loop system based on (1) and (3) as

Px D f .x; h.x C e//: (8)

Essentially, the three implementations discussed
above have their own way of indicating when
an execution takes place and the error e is reset
to zero. The equation (8) clearly shows how the
ideal closed-loop system is perturbed by using a
time-triggered, event-triggered, or self-triggered
implementation of the feedback law in (2). In-
deed, when e D 0 we obtain the ideal closed loop

Px D f .x; h.x//: (9)

The control law in (2) is typically chosen so
as to guarantee that the system in (9) has certain
global asymptotic stability (GAS) properties. In
particular, it is often assumed that there exists a
Lyapunov function V W Rnx ! R�0 in the sense
that V is positive definite and for all x 2 R

nx we
have

@V

@x
f .x; h.x// � �kxk2: (10)

Note that this inequality is stronger than strictly
needed (at least for nonlinear systems), but for
pedagogical reasons we choose this simpler for-
mulation. For the perturbed model, the inequality
in (10) can in certain cases (including linear
systems) be modified to

@V

@x
f .x; h.x// � �kxk2 C ˇkek2 (11)

in which ˇ > 0 is a constant used to indicate
how the presence of the implementation error e

affects the decrease of the Lyapunov function.
Based on (10) one can now choose the function
C in (5) to preserve GAS of the event-triggered
implementation. For instance, C.x.t/; x.tk// D
kx.tk/ � x.t/k � �kx.tk, i.e.,

tkC1 D infft > tk j ke.t/k > �kx.t/kg; (12)

assures that

kek � �kxk (13)

holds. When � < 1=ˇ, we obtain from (11) and
(13) that GAS properties are preserved for the
event-triggered implementation. Besides, under
certain conditions provided in Tabuada (2007), a
global positive lower bound exists on the inter-
execution times, i.e., there exists a �min > 0 such
that tkC1 � tk > �min for all k 2 N and all initial
states x0.

Also self-triggered controllers can be derived
using the perturbation approach. In this case, sta-
bility properties can be guaranteed by choosing
M in (6) ensuring that C.x.t/; x.tk// � 0 holds
for all times t 2 Œtk ; tkC1/ and all k 2 N.

Hybrid SystemApproach
By taking as a state variable � D .x; e/, one
can write the closed-loop event-triggered control
system given by (1), (3), and (5) as the hybrid
impulsive system (Goebel et al. 2009)

P� D
�

f .x; h.x C e//

�f .x; h.x C e//

�
when C.x; x C e/ � 0

(14a)

�C D
�

x

0

�
when C.x; x C e/ � 0: (14b)

This observation was made in Donkers and
Heemels (2010, 2012) and Postoyan et al. (2011).
Tools from hybrid system theory can be used to
analyze this model, which is more accurate as it
includes the error dynamics of the event-triggered
closed-loop system. In fact, the stability bounds
obtained via the hybrid system approach can be
proven to be never worse than ones obtained
using the perturbation approach in many cases,
see, e.g., Donkers and Heemels (2012), and
typically the hybrid system approach provides
(strictly) better results in practice. However,
in general an analysis via the hybrid system
approach is more complicated than using a
perturbation approach.

Note that by including a time variable � ,
one can also write the closed-loop system corre-
sponding to self-triggered control (1), (3), and (6)
as a hybrid system using the state variable � D
.x; e; �/. This leads to the model
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P� D
0

@
f .x; h.x C e//

�f .x; h.x C e//

1

1

Awhen0��� M.x C e/

(15a)

�C D
0

@
x

0

0

1

A when � D M.x C e/; (15b)

which can be used for analysis based on hybrid
tools as well.

Alternative Event-Triggering
Mechanisms

There are various alternative event-triggering
mechanisms. A few of them are described in this
section.

Relative, Absolute, and Mixed Triggering
Conditions
Above we discussed a very basic event-triggering
condition in the form given in (12), which is
sometimes called relative triggering as the next
control task is executed at the instant when the
ratio of the norms of the error kek and the
measured state kxk is larger than or equal to � .
Also absolute triggering of the form

tkC1 D infft > tk j ke.t/k � ıg (16)

can be considered. Here ı > 0 is an abso-
lute threshold, which has given this scheme the
name send-on-delta (Miskowicz 2006). Recently,
a mixed triggering mechanism of the form

tkC1 D infft > tk j ke.t/k � �kx.t/k C ıg;
(17)

combining an absolute and a relative threshold,
was proposed (Donkers and Heemels 2012). It
is particularly effective in the context of output-
based control.

Model-Based Triggering
In the triggering conditions discussed so far, es-
sentially the current control value u.t/ is based

on a held value x.tk/ of the state variable, as
specified in (3). However, if good model-based
information regarding the plant is available, one
can use better model-based predictions of the
actuator signal. For instance, in the linear context,
(Lunze and Lehmann 2010) proposed to use a
control input generator instead of a plain zero-
order hold function. In fact, the plant model was
described by

Px D Ax C Bu C Ew (18)

with x 2 R
nx the state variable, u 2 R

nu the input
variable, and w 2 R

nw a bounded disturbance
input. It was assumed that a well functioning state
feedback controller u D Kx was available. The
control input generator was then based on the
model-based predictions given for Œtk; tkC1/ by

Pxs.t/ D .A C BK/xs.t/ C E Ow.tk/

with xs.tk/ D x.tk/ (19)

and Ow.tk/ is an estimate for the (average) dis-
turbance value, which is determined at execution
time tk , k 2 N. The applied input to the actuator
is then given by u.t/ D Kxs.t/ for t 2 Œtk ; tkC1/,
k 2 N. Note that (19) provides a prediction of
the closed-loop state evolution using the latest
received value of the state x.tk/ and the esti-
mate Ow.tk/ of the disturbances. Also the event-
triggering condition is based on this model-based
prediction of the state as it is given by

tkC1 D infft > tk j kxs.t/ � x.t/k � ıg: (20)

Hence, when the prediction xs.t/ diverts to far
from the measured state x.t/, the next event is
triggered so that updates of the state are sent
to the actuator. These model-based triggering
schemes can enhance the communication savings
as they reduce the number of events by using
model-based knowledge.

Other model-based event-triggered control
schemes are proposed, for instance, in Yook
et al. (2002), Garcia and Antsaklis (2013), and
Heemels and Donkers (2013).
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Triggering with Time-Regularization
Time-regularization was proposed for output-
based triggering to avoid the occurrence of
accumulations in the execution times (Zeno
behavior) that would obstruct the existence of
a positive lower bound on the inter-execution
times tkC1 � tk , k 2 N. In Tallapragada and
Chopra (2012a,b), the triggering update

tkC1 D infft > tk C T j ke.t/k � �kx.t/kg
(21)

was proposed, where T > 0 is a built-in lower
bound on the minimal inter-execution times. The
authors discussed how T and � can be designed
to guarantee closed-loop stability. In Heemels
et al. (2008) a similar triggering was proposed
using an absolute-type of triggering.

An alternative to exploiting a built-in lower
bound T is combining ideas from time-triggered
control and event-triggering control. Essentially,
the idea is to only verify a specific event-
triggering condition at certain equidistant time
instants kTs , k 2 N, where Ts > 0 is the
sampling period. Such proposals were mentioned
in, for instance, Årzén (1999), Yook et al. (2002),
Henningsson et al. (2008), and Heemels et al.
(2008, 2013). In this case the execution times are
given by

tkC1 D infft > tk j t D kTs; k 2 N;

and ke.t/k � �kx.t/kg (22)

in case a relative triggering is used. In Heemels
et al. (2013) the term periodic event-triggered
control was coined for this type of control.

Decentralized Triggering Conditions
Another important extension of the mentioned
event-triggered controllers, especially in large-
scale networked systems, is the decentralization
of the event-triggered control. Indeed, if one
focuses on any of the abovementioned event-
triggering conditions (take, e.g., (5)), it is ob-
vious that the full state variable x.t/ has to be
continuously available in a central coordinator
to determine if an event is triggered or not. If
the sensors that measure the state are physically

distributed over a wide area, this assumption is
prohibitive for its implementation. In such cases,
it is of high practical importance that the event-
triggering mechanism can be decentralized and
the execution of control tasks can be executed
based on local information. One first idea could
be to use local event-triggering mechanisms for
the i -th sensor that measures xi . One could “de-
centralize” the condition (5), into

t i
ki C1

D infft > t i
ki j kei .t/k � �kxi .t/kg;

(23)

in which ei .t/ D xi .t
i
ki / � xi .t/ for t 2

Œt i
ki ; t i

ki C1
/, ki 2 N. Note that each sensor

now has its own execution times t i
ki , ki 2 N at

which the information xi .t/ is transmitted. More
importantly, the triggering condition (23) is based
on local data only and does not need a central
coordinator having access to the complete state
information. Besides since (23) still guarantees
that (13) holds, stability properties can still be
guaranteed; see Mazo and Tabuada (2011).

Several other proposals for decentralized
event-triggered control schemes were made,
e.g., Persis et al. (2013), Wang and Lemmon
(2011), Garcia and Antsaklis (2013), Yook et al.
(2002), and Donkers and Heemels (2012).

Triggering for Multi-agent Systems
Event-triggered control strategies are suitable
for cooperative control of multi-agent systems.
In multi-agent systems, local control actions of
individual agents should lead to a desirable global
behavior of the overall system. A prototype
problem for control of multi-agent systems is the
agreement problem (also called the consensus
or rendezvous problem), where the states of
all agents should converge to a common value
(sometimes the average of the agents’ initial
conditions). The agreement problem has been
shown to be solvable for certain low-order
dynamical agents in both continuous and discrete
time, e.g., Olfati-Saber et al. (2007). It was
recently shown in Dimarogonas et al. (2012), Shi
and Johansson (2011), and Seyboth et al. (2013)
that the agreement problem can be solved using
event-triggered control. In Seyboth et al. (2013)
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the triggering times for agent i are determined
by

t i
ki C1

D infft > t i
ki j Ci.xi .t/; xi .t

i
ki // > 0g;

(24)
which should be compared to the triggering
times as specified through (5). The triggering
condition compares the current state value with
the one previously communicated, similarly to
the previously discussed decentralized event-
triggered control (see (23)), but now the
communication is only to the agent’s neighbors.
Using such event-triggered communication,
the convergence rate to agreement (i.e.,
kxi .t/ � xj .t/k ! 0 as t ! 1 for all
i; j ) can be maintained with a much lower
communication rate than for time-triggered
communication.

Outlook

Many simulation and experimental results show
that event-triggered and self-triggered control
strategies are capable of reducing the number
of control task executions, while retaining a
satisfactory closed-loop performance. In spite
of these results, the actual deployment of these
novel control paradigms in relevant applications
is still rather marginal. Some exceptions include
recent event-triggered control applications in
underwater vehicles (Teixeira et al. 2010),
process control (Lehmann et al. 2012), and
control over wireless networks (Araujo et al.
2014). To foster the further development of
event-triggered and self-triggered controllers in
the future, it is therefore important to validate
these strategies in practice, next to building up
a complete system theory for them. Regarding
the latter, it is fair to say that, even though
many interesting results are currently available,
the system theory for event-triggered and self-
triggered control is far from being mature,
certainly compared to the vast literature on time-
triggered (periodic) sampled-data control. As
such, many theoretical and practical challenges
are ahead of us in this appealing research field.
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Abstract

Evolutionary games constitute the most recent
major mathematical tool for understanding,
modelling and predicting evolution in biology
and other fields. They complement other well
establlished tools such as branching processes
and the Lotka-Volterra (1910) equations (e.g.
for the predator - prey dynamics or for epidemics
evolution). Evolutionary Games also brings novel
features to game theory. First, it focuses on the
dynamics of competition rather than restricting
attention to the equilibrium. In particular, it
tries to explain how an equilibrium emerges.
Second, it brings new definitions of stability,
that are more adapted to the context of large
populations. Finally, in contrast to standard
game theory, players are not assumed to be
“rational” or “knowledgeable” as to anticipate
the other players’ choices. The objective of this
article, is to present foundations as well as recent
advances in evolutionary games, highlight the
novel concepts that they introduce with respect
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to game theory as formulated by John Nash, and
describe through several examples their huge
potential as tools for modeling interactions in
complex systems.

Keywords

Evolutionary stable strategies; Fitness; Replicator
dynamics

Introduction

Evolutionary game theory is the youngest of
several mathematical tools used in describing and
modeling evolution. It was preceded by the the-
ory of branching processes (Watson and Francis
Galton 1875) and its extensions (Altman 2008)
which have been introduced in order to explain
the evolution of family names in the English
population of the second half of the nineteenth
century. This theory makes use of the probabilis-
tic distribution of the number of offspring of an
individual in order to predict the probability at
which the whole population would become even-
tually extinct. It describes the evolution of the
number of offsprings of a given individual. The
Lotka-Volterra equations (Lotka-Volterra 1910)
and their extensions are differential equations that
describe the population size of each of several
species that have a predator-prey type relation.
One of the foundations in evolutionary games
(and its extension to population games) which is
often used as the starting point in their definition
is the replicator dynamics which, similarly to the
Lotka-Volterra equations, describe the evolution
of the size of various species that interact with
each other (or of various behaviors within a given
population). In both the Lotka-Volterra equations
and in replicator dynamics, the evolution of the
size of one type of population may depend on
the sizes of all other populations. Yet, unlike
the Lotka-Volterra equations, the object of the
modeling is the normalized sizes of populations
rather than the size itself. By normalized size
of some type, we mean the fraction of that type
within the whole population. A basic feature in

evolutionary games is, thus, that the evolution
of the fraction of a given type in the population
depends on the sizes of other types only through
the normalized size rather than through their
actual one.

The relative rate of the decrease or increase
of the normalized population size of some type
in the replicator dynamics is what we call fitness
and is to be understood in the Darwinian sense.
If some type or some behavior increases more
than another one, then it has a larger fitness.
the evolution of the fitness as described by the
replicator dynamics is a central object of study in
evolutionary games.

So far we did not actually consider any
game and just discussed ways of modeling
evolution. The relation to game theory is due
to the fact that under some conditions, the fitness
converges to some fixed limit, which can be
identified as an equilibrium of a matrix game
in which the utilities of the players are the
fitnesses. This limit is then called an ESS –
evolutionary stable strategy – as defined by
Meynard Smith and Price in Maynard Smith
and Price (1973). It can be computed using
elementary tools in matrix games and then used
for predicting the (long term) distribution of
behaviors within a population. Note that an
equilibrium in a matrix game can be obtained
only when the players of the matrix game are
rational (each one maximizing its expected
utility, being aware of the utilities of other players
and of the fact that these players maximize
their utilities, etc.). A central contribution of
evolutionary games is thus to show that evolution
of possibly nonrational populations converges
under some conditions to the equilibrium of a
game played by rational players. This surprising
relationship between the equilibrium of a
noncooperative matrix game and the limit points
of the fitness dynamics has been supported by a
rich body of experimental results; see Friedman
(1996).

On the importance of the ESS for understand-
ing the evolution of species, Dawkins writes in
his book “The Selfish Gene” (Dawkins 1976):
“we may come to look back on the invention of
the ESS concept as one of the most important
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advances in evolutionary theory since Darwin.”
He further specifies: “Maynard Smith’s concept
of the ESS will enable us, for the first time, to see
clearly how a collection of independent selfish
entities can come to resemble a single organized
whole.”

Here we shall follow the nontraditional ap-
proach describing evolutionary games: we shall
first introduce the replicator dynamics and then
introduce the game theoretic interpretation re-
lated to it.

Replicator Dynamics

In the biological context, the replicator dynamics
is a differential equation that describes the way
in which the usage of strategies changes in time.
They are based on the idea that the average
growth rate per individual that uses a given strat-
egy is proportional to the excess of fitness of that
strategy with respect to the average fitness.

In engineering, the replicator dynamics could
be viewed as a rule for updating mixed strategies
by individuals. It is a decentralized rule since
it only requires knowing the average utility of
the population rather than the strategy of each
individual.

Replicator dynamics is one of the most studied
dynamics in evolutionary game theory. It has
been introduced by Taylor and Jonker (1978).
The replicator dynamics has been used for de-
scribing the evolution of road traffic congestion in
which the fitness is determined by the strategies
chosen by all drivers (Sandholm 2009). It has
also been studied in the context of the association
problem in wireless communications (Shakkottai
et al. 2007).

Consider a set of N strategies and let pj .t/

be the fraction of the whole population that uses
strategy j at time t . Let p.t/ be the correspond-
ing N -dimensional vector. A function fj is asso-
ciated with the growth rate of strategy j , and it is
assumed to depend on the fraction of each of the
N strategies in the population. There are various
forms of replicator dynamics (Sandholm 2009)
and we describe here the one most commonly
used. It is given by

Ppj .t/D 
pj .t/

"
fj .p.t// �

NX

kD1

pk.t/fk.p.t//

#
;

(1)

where 
 is some positive constant and the payoff
function fk is called the fitness of strategy k.

In evolutionary games, evolution is assumed to
be due to pairwise interactions between players,
as will be described in the next section. There-
fore, fk has the form fk.p/ D PN

iD1 J.k; i/p.i/

where J.k; i/ is the fitness of an individual play-
ing k if it interacts with an individual that plays
strategy i .

Within quite general settings (Weibull 1995),
the above replicator dynamics is known to con-
verge to an ESS (which we introduce in the next
section).

Evolutionary Games: Fitnesses

Consider an infinite population of players. Each
individual i plays at times t i

n, n D 1; 2; 3; : : :

(assumed to constitute an independent Poisson
process with some rate �) a matrix game against
some player j.n/ randomly selected within the
population. The choice j.n/ of the other players
at different times is independent. All players have
the same finite space of pure strategies (also
called actions) K . Each time it plays, a player
may use a mixed strategy p, i.e., a probability
measure over the set of pure strategies. We con-
sider J.k; i/ (defined in the previous section) to
be the payoff for a tagged individual if it uses
a strategy k, and it interacts with an individual
using strategy i . With some abuse of notation,
one denotes by J.p; q/ the expected payoff for a
player who uses a mixed strategy p when meeting
another individual who adopts the mixed strategy
q. If we define a payoff matrix A and consider
p and q to be column vectors, then J.p; q/ D
p0Aq. The payoff function J is indeed linear in
p and q. A strategy q is called a Nash equilibrium
if

8p 2 �.K/; J.q; q/ � J.p; q/ (2)

where �.K/ is the set of probabilities over the set
K .
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Suppose that the whole population uses a
strategy q and that a small fraction � (called “mu-
tations”) adopts another strategy p. Evolutionary
forces are expected to select against p if

J.q; �p C .1 � �/q/ > J.p; �p C .1 � �/q/: (3)

Evolutionary Stable Strategies: ESS
Definition 1 q is said to be an evolutionary sta-
ble strategy (ESS) if for every p 6D q there
exists some �p > 0 such that (3) holds for all
� 2 .0; �p/.

The definition of ESS is thus related to a
robustness property against deviations by a whole
(possibly small) fraction of the population. This
is an important difference that distinguishes the
equilibrium in populations as seen by biologists
and the standard Nash equilibrium often used in
economics context, in which robustness is defined
against the possible deviation of a single user.
Why do we need the stronger type of robust-
ness? Since we deal with large populations, it
is likely to be expected that from time to time,
some group of individuals may deviate. Thus
robustness against deviations by a single user is
not sufficient to ensure that deviations will not
develop and end up being used by a growing
portion of the population.

Often ESS is defined through the following
equivalent definition.

Theorem 1 (Weibull 1995, Proposition 2.1 or
Hofbauer and Sigmund 1998, Theorem 6.4.1,
p 63) A strategy q is said to be an evolutionary
stable strategy if and only if 8p ¤ q one of the
following conditions holds:

J.q; q/ > J.p; q/; (4)

or

J.q; q/ D J.p; q/ and J.q; p/ > J.p; p/: (5)

In fact, if condition (4) is satisfied, then the
fraction of mutations in the population will tend
to decrease (as it has a lower fitness, meaning a
lower growth rate). Thus, the strategy q is then
immune to mutations. If it does not but if still

the condition (5) holds, then a population using
q is “weakly” immune against a mutation using
p. Indeed, if the mutant’s population grows, then
we shall frequently have individuals with strategy
q competing with mutants. In such cases, the
condition J.q; p/ > J.p; p/ ensures that the
growth rate of the original population exceeds
that of the mutants.

A mixed strategy q that satisfies (4) for all p 6D
q is called strict Nash equilibrium. Recall that a
mixed strategy q that satisfies (2) for all p 6D q is
a Nash equilibrium. We conclude from the above
theorem that being a strict Nash equilibrium im-
plies being an ESS, and being an ESS implies
being a Nash equilibrium. Note that whereas a
mixed Nash equilibrium is known to exist in a
matrix game, an ESS may not exist. However,
an ESS is known to exist in evolutionary games
where the number of strategies available to each
player is 2 (Weibull 1995).

Proposition 1 In a symmetric game with two
strategies for each player and no pure Nash
equilibrium, there exists a unique mixed Nash
equilibrium which is an ESS.

Example: The Hawk and Dove Game
We briefly describe the hawk and dove game
(Maynard Smith and Price 1973). A bird
that searches food finds itself competing with
another bird over food and has to decide
whether to adopt a peaceful behavior (dove)
or an aggressive one (hawk). The advantage of
behaving aggressively is that in an interaction
with a peaceful bird, the aggressive one gets
access to all the food. This advantage comes
at a cost: a hawk which meets another hawk
ends up fighting with it and thus takes a risk
of getting wounded. In contrast, two doves that
meet in a contest over food share it without
fighting. The fitnesses for player 1 (who chooses
a row) are summarized in Table 1, in which the
cost for fighting is taken to be some parameter
ı > 1=2.

This game has a unique mixed Nash equi-
librium (and thus a unique ESS) in which the
fraction p of aggressive birds is given by
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Evolutionary Games, Table 1 The hawk-dove game
H D

H 1=2 � ı 1

D 0 1/2

p D 2

1:5 C ı

Extension: Evolutionary Stable Sets

Assume that there are two mixed strategies pi and
pj that have the same performance against each
other, i.e., J.pi ; pj / D J.pj ; pj /. Then neither
one of them can be an ESS, even if they are
quite robust against other strategies. Now assume
that when excluding one of them from the set
of mixed strategies, the other one is an ESS.
This could imply that different combinations of
these two ESS’s could coexist and would together
be robust to any other mutations. This motivates
the following definition of an ESSet (Cressman
2003):

Definition 2 A set E of symmetric Nash equilib-
ria is an evolutionarily stable set (ESSet) if, for all
q 2 E , we have J.q; p/ > J.p; p/ for all p 62 E

and such that J.p; q/ D J.q; q/.

Properties of ESSet:

(i) For all p and p0 in an ESSet E , we have
J.p0; p/ D J.p; p/.

(ii) If a mixed strategy is an ESS, then the
singleton containing that mixed strategy is
an ESSet.

(iii) If the ESSet is not a singleton, then there is
no ESS.

(iv) If a mixed strategy is in an ESSet, then it is
a Nash equilibrium (see Weibull 1995, p. 48,
Example 2.7).

(v) Every ESSet is a disjoint union of Nash
equilibria.

(vi) A perturbation of a mixed strategy which is
in the ESSet can move the system to another
mixed strategy in the ESSet. In particular,
every ESSet is asymptotically stable for the
replicator dynamics (Cressman 2003).

Summary and Future Directions

The entry has provided an overview of the foun-
dations of evolutionary games which include the
ESS (evolutionary stable strategy) equilibrium
concept that is stronger than the standard Nash
equilibrium and the modeling of the dynamics of
the competition through the replicator dynamics.
Evolutionary game framework is a first step in
linking game theory to evolutionary processes.
The payoff of a player is identified as its fitness,
i.e., the rate of reproduction. Further develop-
ment of this mathematical tool is needed for
handling hierarchical fitness, i.e., the cases where
the individual that interacts cannot be directly
identified with the reproduction as it is part of a
larger body. For example, the behavior of a blood
cell in the human body when interacting with a
virus cannot be modeled as directly related to
the fitness of the blood cell but rather to that of
the human body. A further development of the
theory of evolutionary games is needed to define
meaningful equilibrium notions and relate them
to replication in such contexts.

Cross-References

�Dynamic Noncooperative Games
�Game Theory: Historical Overview

Recommended Reading

Several books cover evolutionary game theory
well. These include Cressman (2003), Hofbauer
and Sigmund (1998), Sandholm (2009), Vincent
and Brown (2005), and Weibull (1995). In ad-
dition, the book The Selfish Gene by Dawkins
presents an excellent background on evolution in
biology.
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Abstract

Understanding the effect of experiment on
estimation result is a crucial part of system
identification – if the experiment is constrained
or otherwise fixed, then the implied limitations
need to be understood – but if the experiment
can be designed, then given its fundamental
importance that design parameter should be fully
exploited, this entry will give an understanding of
how it can be exploited. We also briefly discuss
the particulars of identification for model-based

control, one of the main applications of system
identification.
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Introduction

The accuracy of an identified model is governed
by:
(i) Information content in the data used for esti-

mation
(ii) The complexity of the model structure
The former is related to the noise properties and
the “energy” of the external excitation of the
system and how it is distributed. In regard to (ii),
a model structure which is not flexible enough to
capture the true system dynamics will give rise to
a systematic error, while an overly flexible model
will be overly sensitive to noise (so-called overfit-
ting). The model complexity is closely associated
with the number of parameters used. For a linear
model structure with n parameters modeling the
dynamics, it follows from the invariance result
in Rojas et al. (2009) that to obtain a model
for which the variance of the frequency function
estimate is less than 1=� over all frequencies, the
signal-to-noise ratio, as measured by input energy
over noise variance, must be at least n � . With
energy being power � time and as input power
is limited in physical systems, this indicates that
the experiment time grows at least linearly with
the number of model parameters. When the input
energy budget is limited, the only way around
this problem is to sacrifice accuracy over certain
frequency intervals. The methodology to achieve
this in a systematic way is known as experiment
design.
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Model Quality Measures

The Cramér-Rao bound provides a lower bound
on the covariance matrix of the estimation error
for an unbiased estimator. With O	N 2 R

n denot-
ing the parameter estimate (based on N input–
output samples) and 	o the true parameters,

N E


� O	N � 	o

� � O	N � 	o

�T


� N I �1
F .	o; N /

(1)

where IF .	o; N / 2 R
n�n appearing in the lower

bound is the so-called Fisher information ma-
trix (Ljung 1999). For consistent estimators, i.e.,
when O	N ! 	o as N ! 1, the inequal-
ity (1) typically holds asymptotically as the sam-
ple size N grows to infinity. The right-hand
side in (1) is then replaced by the inverse of
the per sample Fisher information IF .	o/ WD
limN !1 IF .	o; N /=N . An estimator is said to
be asymptotically efficient if equality is reached
in (1) as N ! 1.

Even though it is possible to reduce the mean-
square error by constraining the model flexibility
appropriately, it is customary to use consistent
estimators since the theory for biased estimators
is still not well understood. For such estimators,
using some function of the Fisher information as
performance measure is natural.

General-Purpose Quality Measures
Over the years a number of “general-purpose”
quality measures have been proposed. Perhaps
the most frequently used is the determinant of the
inverse Fisher information. This represents the
volume of confidence ellipsoids for the parameter
estimates and minimizing this measure is known
as D-optimal design. Two other criteria relating
to confidence ellipsoids are E-optimal design,
which uses the length of the longest principal
axis (the minimum eigenvalue of IF ) as quality
measure, and A-optimal design, which uses the
sum of the squared lengths of the principal axes
(the trace of I �1

F ).

Application-Oriented Quality Measures
When demands are high and/or experimentation
resources are limited, it is necessary to tailor the
experiment carefully according to the intended
use of the model. Below we will discuss a couple
of closely related application-oriented measures.

Average Performance Degradation
Let Vapp.	/ � 0 be a measure of how well the
model corresponding to parameter 	 performs
when used in the application. In finance, Vapp

can, e.g., represent the ability to predict the stock
market. In process industry, Vapp can represent the
profit gained using a feedback controller based
on the model corresponding to 	 . Let us assume
that Vapp is normalized such that min	 Vapp.	/ D
Vapp.	o/ D 0. That Vapp has minimum corre-
sponding to the parameters of the true system is
quite natural. We will call Vapp the application
cost. Assuming that the estimator is asymptoti-
cally efficient, using a second-order Taylor ap-
proximation gives that the average application
cost can be expressed as (the first-order term
vanishes since 	o is the minimizer of Vapp)

E
h
Vapp. O	N /

i

1

2
E


� O	N � 	o

�T

V 00
app.	o/

� O	N � 	o

�

D 1

2N
Tr

n
V 00

app.	o/I �1
F .	o/

o
(2)

This is a generalization of the A-optimal de-
sign measure and its minimization is known as
L-optimal design.

Acceptable Performance
Alternatively, one may define a set of acceptable
models, i.e., a set of models which will give
acceptable performance when used in the appli-
cation. With a performance degradation measure
defined of the type Vapp above, this would be a
level set

Eapp D
�

	 W Vapp.	/ � 1

�

�
(3)

for some constant � > 0. The objective of
the experiment design is then to ensure that the
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resulting estimate ends up in Eapp with high prob-
ability.

Design Variables

In an identification experiment there are a number
of design variables at the user’s disposal. Below
we discuss three of the most important ones.

Sampling Interval
For the sampling interval, the general advice from
an information theoretic point of view is to sam-
ple as fast as possible (Ljung 1999). However,
sampling much faster than the time constants of
the system may lead to numerical issues when
estimating discrete time models as there will be
poles close to the unit circle. Downsampling may
thus be required.

Feedback
Generally speaking, feedback has three effects
from an identification and experiment design
point of view:

(i) Not all the power in the input can be used to
estimate the system dynamics when a noise
model is estimated as a part of the input
signal has to be used for the latter task; see
Section 8.1 in Forssell and Ljung (1999).
When a very flexible noise model is used,
the estimate of the system dynamics then has
to rely almost entirely on external excitation.

(ii) Feedback can reduce the effect of distur-
bances and noise at the output. When there
are constraints on the outputs, this allows for
larger (input) excitation and therefore more
informative experiments.

(iii) The cross-correlation between input and
noise/disturbances requires good noise
models to avoid biased estimates (Ljung
1999).

Strictly speaking, (i) is only valid when the sys-
tem and noise models are parametrized sepa-
rately. Items (i) and (ii) imply that when there
are constraints on the input only, then the opti-
mal design is always in open loop, whereas for
output constrained only problems, the experiment

should be conducted in closed loop (Agüero and
Goodwin 2007).

External Excitation Signals
The most important design variable is the ex-
ternal excitation, including the length of the ex-
periment. Even for moderate experiment lengths,
solving optimal experiment design problems with
respect to the entire excitation sequence can be a
formidable task. Fortunately, for experiments of
reasonable length, the design can be split up in
two steps:
(i) First, optimization of the probability density

function of the excitation
(ii) Generation of the actual sequence from the

obtained density function through a stochas-
tic simulation procedure

More details are provided in section “Computa-
tional Issues.”

Experimental Constraints

An experiment is always subject to constraints,
physical as well as economical. Such constraints
are typically translated into constraints on the
following signal properties:
(i) Variability. For example, too high level of

excitation may cause the end product to
go off-spec, resulting in product waste and
associated high costs.

(ii) Frequency content. Often, too harsh move-
ments of the inputs may damage equipment.

(iii) Amplitudes. For example, actuators have
limited range, restricting input amplitudes.

(iv) Waveforms. In process industry, it is not
uncommon that control equipment limit the
type of signals that can be applied. In other
applications, it may be physically possible to
realize only certain types of excitation. See
section “Waveform Generation” for further
discussion.

It is also often desired to limit the experiment
time so that the process may go back to normal
operation, reducing, e.g., cost of personnel. The
latter is especially important in the process in-
dustry where dynamics are slow. The above type
of constraints can be formulated as constraints on
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the design variables in section “Design Variables”
and associated variables.

Experiment Design Criteria

There are two principal ways to define an optimal
experiment design problem:
(i) Best effort. Here the best quality as, e.g.,

given by one of the quality measures in
section “Model Quality Measures” is sought
under constraints on the experimental effort
and cost. This is the classical problem for-
mulation.

(ii) Least-costly. The cheapest experiment is
sought that results in a predefined model
quality. Thus, as compared to best effort
design, the optimization criterion and
constraint are interchanged. This type of
design was introduced by Bombois and
coworkers; see Bombois et al. (2006).

As shown in Rojas et al. (2008), the two ap-
proaches typically lead to designs only differing
by a scaling factor.

Computational Issues

The optimal experiment design problem based on
the Fisher information is typically non-convex.
For example, consider a finite-impulse response
model subject to an experiment of length N with
the measured outputs collected in the vector

Y D ˆ	 CE; ˆ D

2

64
u.0/ : : : u.�.n � 1//

:::
:::

:::

u.N � 1/ : : : u.N � n/

3

75

where E 2 R
N is zero-mean Gaussian noise with

covariance matrix �2IN �N . Then it holds that

IF .	o; N / D 1

�2
ˆT ˆ (4)

From an experiment design point of view, the

input vector u D �
u.�.n � 1// : : : u.N /

	T
is

the design Variable, but with the elements of
IF .	o; N / being a quadratic function of the input

sequence, all typical quality measures become
non-convex.

While various methods for non-convex nu-
merical optimization can be used to solve such
problems, they often encounter problems with,
e.g., local minima. To address this a number
of techniques have been developed where either
the problem is reparametrized so that it becomes
convex or where a convex approximation is used.
The latter technique is called convex relaxation
and is often based on a reparametrization as well.
We use the example above to provide a flavor of
the different techniques.

Reparametrization
If the input is constrained to be periodic so that
u.t/ D u.t C N /, t D �n; : : : ; �1, it follows
that the Fisher information is linear in the sample
correlations of the input. Using these as design
variables instead of u results in that all quality
measures referred to above become convex func-
tions.

This reparametrization thus results in the two-
step procedure discussed in section “External
Excitation Signals”: First, the sample correlations
are obtained from an optimal experiment design
problem, and then an input sequence is generated
that has this sample correlation. In the second
step there is a considerable freedom. Notice,
however, that since correlations do not directly
relate to the actual amplitudes of the resulting
signals, it is difficult to incorporate waveform
constraints in this approach. On the contrary,
variance constraints are easy to incorporate.

Convex Relaxations
There are several approaches to obtain convex
relaxations.

Using the per Sample Fisher Information
If the input is a realization of a stationary random
process and the sample size N is large enough,
IF .	o; N /=N is approximately equal to the per
sample Fisher matrix which only depends on
the correlation sequence of the input. Using this
approximation, one can now follow the same
procedure as in the reparametrization approach
and first optimize the input correlation sequence.
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The generation of a stationary signal with a cer-
tain correlation is a stochastic realization problem
which can be solved using spectral factorization
followed by filtering white noise sequence, i.e.,
a sequence of independent identically distributed
random variables, through the (stable) spectral
factor (Jansson and Hjalmarsson 2005).

More generally, it turns out that the per sample
Fisher information for linear models/systems
only depends on the joint input/noise spectrum
(or the corresponding correlation sequence).
A linear parametrization of this quantity thus
typically leads to a convex problem (Jansson and
Hjalmarsson 2005).

The set of all spectra is infinite dimensional
and this precludes a search over all possible spec-
tra. However, since there is a finite-dimensional
parametrization of the per sample Fisher informa-
tion (it is a symmetric n�n matrix), it is also pos-
sible to find finite-dimensional sets of spectra that
parametrize all possible per sample Fisher infor-
mation matrices. Multisines with appropriately
chosen frequencies is one possibility. However,
even though all per sample Fisher information
matrices can be generated, the solution may be
suboptimal depending on which constraints the
problem contains.

The situation for nonlinear problems is con-
ceptually the same, but here the entire proba-
bility density function of the stationary process
generating the input plays the same role as the
spectrum in the linear case. This is a much more
complicated object to parametrize.

Lifting
An approach that can deal with amplitude con-
straints is based on a so-called lifting technique:
Introduce the matrix U D uuT , representing
all possible products of the elements of u. This
constraint is equivalent to



U u
uT 1


� 0; rank



U u
uT 1


D 1 (5)

The idea of lifting is now to observe that the
Fisher information matrix is linear in the ele-
ments of U and by dropping the rank constraint
in (5) a convex relaxation is obtained, where both

U and u (subject to the matrix inequality in (5))
are decision variables.

Frequency-by-Frequency Design
An approximation for linear systems that allows
frequency-by-frequency design of the input spec-
trum and feedback is obtained by assuming that
the model is of high order. Then the variance of an
nth-order estimate, G.ei!; O	N /, of the frequency
function can approximately be expressed as

Var G.ei!; O	N / 
 n

N

ˆv.!/

ˆu.!/
(6)

(�System Identification: An Overview) in the
open loop case (there is a closed-loop extension
as well), where ˆu and ˆv are the input and noise
spectra, respectively. Performance measures of
the type (2) can then be written as

Z �

��

W.ei!/
ˆv.!/

ˆu.!/
d!

where the weighting W.ei!/ � 0 depends on the
application. When only variance constraints are
present, such problems can be solved frequency
by frequency, providing both simple calculations
and insight into the design.

Implementation

We have used the notation IF .	o; N / to indicate
that the Fisher information typically (but not al-
ways) depends on the parameter corresponding to
the true system. That the optimal design depends
on the to-be identified system is a fundamental
problem in optimal experiment design. There are
two basic approaches to address this problem
which are covered below. Another important as-
pect is the choice of waveform for the external
excitation signal. This is covered last in this
section.

Robust Experiment Design
In robust experiment design, it is assumed that
it is known beforehand that the true parameter
belongs to some set, i.e., 	o 2 ‚. A minimax

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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approach is then typically taken, finding the ex-
periment that minimizes the worst performance
over the set ‚. Such optimization problems are
computationally very difficult.

Adaptive Experiment Design
The alternative to robust experiment design is
to perform the design adaptively or sequentially,
meaning that first a design is performed based
on some initial “guess” of the true parameter,
and then as samples are collected, the design is
revised taking advantage of the data information.
Interestingly, the convergence rate of the parame-
ter estimate is typically sufficiently fast that for
this approach the asymptotic distribution is the
same as for the design based on the true model
parameter (Hjalmarsson 2009).

Waveform Generation
We have argued above that it is the spectrum of
the excitation (together with the feedback) that
determines the achieved model accuracy in the
linear time-invariant case. In section “Using the
per Sample Fisher Information” we argued that a
signal with a particular spectrum can be obtained
by filtering a white noise sequence through a
stable spectral factor of the desired spectrum.
However, we have also in section “Experimental
Constraints” argued that particular applications
may require particular waveforms. We will here
elaborate further on how to generate a waveform
with desired characteristics.

From an accuracy point of view, there are two
general issues that should be taken into account
when the waveform is selected:
• Persistence of excitation. A signal with a spec-

trum having n nonzero frequencies (on the
interval .��; ��) can be used to estimate at
most n parameters. Thus, as is typically the
case, if there is uncertainty regarding which
model structure to use before the experiment,
one has to ensure that a sufficient number of
frequencies is excited.

• The crest factor. For all systems, the maximum
input amplitude, say A, is constrained. To deal
with this from an experiment design point of
view, it is convenient to introduce what is
called the crest factor of a signal:

C 2
r D maxt u2.t/

limN !1 1
N

PN
tD1 u2.t/

The crest factor is thus the ratio between
the squared maximum amplitude and the
power of the signal. Now, for a class of signal
waveforms with a given crest factor, the input
power that can be used is upper-bounded
by

lim
N !1

1

N

NX

tD1

u2.t/ � A2

C 2
r

(7)

However, the power is the integral of the
signal spectrum, and since increasing the
amplitude of the input signal spectrum will
increase a model’s accuracy, cf. (6), it is
desirable to use as much signal power as
possible. By (7) we see that this means that
waveforms with low crest factor should be
used.

A lower bound for the crest factor is readily seen
to be 1. This bound is achieved for binary sym-
metric signals. Unfortunately, there exists no sys-
tematic way to design a binary sequence that has
a prescribed spectrum. However, the so-called
arcsin law may be used. It states that the sign
of a zero-mean Gaussian process with correlation
sequence r� gives a binary signal having corre-
lation sequence Qr� D 2=� arcsin.r�/. With Qr�

given, one can try to solve this relation for the
corresponding r� .

A crude, but often sufficient, method to gen-
erate binary sequences with desired spectral con-
tent is based on the use of pseudorandom binary
signals (PRBS). Such signals (which are gener-
ated by a shift register) are periodic signals which
have correlation sequences similar to random
white noise, i.e., a flat spectrum. By resampling
such sequences, the spectrum can be modified.
It should be noted that binary sequences are less
attractive when it comes to identifying nonlinear-
ities. This is easy to understand by considering a
static system. If only one amplitude of the input is
used, it will be impossible to determine whether
the system is nonlinear or not.
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A PRBS is a periodic signal and can therefore
be split into its Fourier terms. With a period of
M , each such term corresponds to one frequency
on the grid 2�k=M , k D 0; : : : ; M � 1. Such a
signal can thus be used to estimate at most M pa-
rameters. Another way to generate a signal with
period M is to add sinusoids corresponding to
the above frequencies, with desired amplitudes.
A periodic signal generated in this way is com-
monly referred to as a MultiSine. The crest factor
of a multisine depends heavily on the relation
between the phases of the sinusoids. times the
number of sinusoids. It is possible to optimize the
crest factor with respect to the choice of phases
(Rivera et al. 2009). There exist also simple
deterministic methods for choosing phases that
give a good crest factor, e.g., Schroeder phasing.
Alternatively, phases can be drawn randomly and
independently, giving what is known as random-
phase multisines (Pintelon and Schoukens 2012),
a family of random signals with properties similar
to Gaussian signals. Periodic signals have some
useful features:
• Estimation of nonlinearities. A linear time-

invariant system responds to a periodic input
signal with a signal consisting of the same
frequencies, but with different amplitudes
and phases. Thus, it can be concluded
that the system is nonlinear if the output
contains other frequencies than the input.
This can be explored in a systematic way
to estimate also the nonlinear part of a
system.

• Estimation of noise variance. For a linear
time-invariant system, the difference in the
output between different periods is due en-
tirely to the noise if the system is in steady
state. This can be used to devise simple meth-
ods to estimate the noise level.

• Data compression. By averaging measure-
ments over different periods, the noise level
can be reduced at the same time as the number
of measurements is reduced.

Further details on waveform generation and
general-purpose signals useful in system
identification can be found in Pintelon and
Schoukens (2012) and Ljung (1999).

Implications for the Identification
Problem Per Se

In order to get some understanding of how
optimal experimental conditions influence the
identification problem, let us return to the
finite-impulse response model example in
section “Computational Issues.” Consider a least-
costly setting with an acceptable performance
constraint. More specifically, we would like
to use the minimum input energy that ensures
that the parameter estimate ends up in a set
of the type (3). An approximate solution to
this is that a 99 % confidence ellipsoid for the
resulting estimate is contained in Eapp. Now,
it can be shown that a confidence ellipsoid is
a level set for the average least-squares cost
EŒVN .	/� D EŒkY �ˆ	k2� D k	 �	ok2

ˆT ˆ
C�2.

Assuming the application cost Vapp also is
quadratic in 	 , it follows after a little bit of
algebra (see Hjalmarsson 2009) that it must hold
that

EŒVN .	/� � �2
�
1 C �cVapp.	/

�
; 8	 (8)

for a constant c that is not important for our
discussion. The value of EŒVN .	/� D k	 �
	ok2

ˆT ˆ
C �2 is determined by how large the

weighting ˆT ˆ is, which in turn depends on how
large the input u is. In a least-costly setting with
the energy kuk2 as criterion, the best solution
would be that we have equality in (8). Thus we
see that optimal experiment design tries to shape
the identification criterion after the application
cost. We have the following implications of this
result:

(i) Perform identification under appropriate
scaling of the desired operating conditions.
Suppose that Vapp.	/ is a function of
how the system outputs deviate from a
desired trajectory (determined by 	o).
Performing an experiment which performs
the desired trajectory then gives that the
sum of the squared prediction errors are
an approximation of Vapp.	/, at least for
parameters close to 	o. Obtaining equality
in (8) typically requires an additional scaling
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of the input excitation or the length of
the experiment. The result is intuitively
appealing: The desired operating conditions
should reveal the system properties that are
important in the application.

(ii) Identification cost for application perfor-
mance. We see that the required energy
grows (almost) linearly with � , which
is a measure of how close to the ideal
performance (using the true parameter 	o)
we want to come. Furthermore, it is typical
that as the performance requirements in the
application increase, the sensitivity to model
errors increases. This means that Vapp.	/

increases, which thus in turn means that the
identification cost increases. In summary,
the identification cost will be higher, the
higher performance that is required in the
application. The inequality (8) can be used
to quantify this relationship.

(iii) Model structure sensitivity. As Vapp will be
sensitive to system properties important for
the application, while insensitive to system
properties of little significance, with the
identification criterion VN matched to Vapp,
it is only necessary that the model structure
is able to model the important properties of
the system.

In any case, whatever model structure
that is used, the identified model will be
the best possible in that structure for the
intended application. This is very different
from an arbitrary experiment where it is
impossible to control the model fit when a
model of restricted complexity is used.

We conclude that optimal experiment de-
sign simplifies the overall system identifica-
tion problem.

Identification for Control

Model-based control is one of the most impor-
tant applications of system identification. Robust
control ensures performance and stability in the
presence of model uncertainty. However, the ma-
jority of such design methods do not employ the

parametric ellipsoidal uncertainty sets resulting
from standard system identification. In fact only
in the last decade analysis and design tools for
such type of model uncertainty have started to
emerge, e.g., Raynaud et al. (2000) and Gevers
et al. (2003).

The advantages of matching the identification
criterion to the application have been recognized
since long in this line of research. For control
applications this typically implies that the iden-
tification experiment should be performed under
the same closed-loop operation conditions as the
controller to be designed. This was perhaps first
recognized in the context of minimum variance
control (see Gevers and Ljung 1986) where vari-
ance errors were the concern. Later on this was
recognized to be the case also for the bias error,
although here pre-filtering can be used to achieve
the same objective.

To account for that the controller to be
designed is not available, techniques where
control and identification are iterated have been
developed, cf. adaptive experiment design in
section “Adaptive Experiment Design.” Conver-
gence of such schemes has been established when
the true system is in the model set but has proved
out of reach for models of restricted complexity.

In recent years, techniques integrating exper-
iment design and model predictive control have
started to appear. A general-purpose design cri-
terion is used in Rathouský and Havlena (2013),
while Larsson et al. (2013) uses an application-
oriented criterion.

Summary and Future Directions

When there is the “luxury” to design the exper-
iment, then this opportunity should be seized by
the user. Without informative data there is little
that can be done. In this exposé we have outlined
the techniques that exist but also emphasized
that a well-conceived experiment, reflecting the
intended application, significantly can simplify
the overall system identification problem.

Further developments of computational tech-
niques are high on the agenda, e.g., how to handle
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time-domain constraints and nonlinear models.
To this end, developments in optimization
methods are rapidly being incorporated. While,
as reported in Hjalmarsson (2009), there are some
results on how the identification cost depends on
the performance requirements in the application,
further understanding of this issue is highly
desirable. Theory and further development of
the emerging model predictive control schemes
equipped with experiment design may very well
be the direction that will have most impact in
practice.

Cross-References

� System Identification: An Overview

Recommended Reading

A classical text on optimal experiment design
is Fedorov (1972). The textbooks Goodwin
and Payne (1977) and Zarrop (1979) cover this
theory adapted to a dynamical system framework.
A general overview is provided in Pronzato
(2008). A semi-definite programming framework
based on the per sample Fisher information is
provided in Jansson and Hjalmarsson (2005).
The least-costly framework is covered in
Bombois et al. (2006). The lifting technique
was introduced for input design in Manchester
(2010). Details of the frequency-by-frequency
design approach can be found in Ljung (1999).
References to robust and adaptive experiment
design can be found in Pronzato (2008) and
Hjalmarsson (2009). For an account of the
implications of optimal experiment design for
the system identification problem as a whole,
see Hjalmarsson (2009). Thorough accounts of
the developments in identification for control
are provided in Hjalmarsson (2005) and Gevers
(2005).
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Explicit Model Predictive Control

Alberto Bemporad
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Lucca, Italy

Abstract

Model predictive control (MPC) has been used
in the process industries for more than 30 years
because of its ability to control multivariable
systems in an optimized way under constraints
on input and output variables. Traditionally, MPC
requires the solution of a quadratic program
(QP) online to compute the control action, often
restricting its applicability to slow processes.
Explicit MPC completely removes the need for
on-line solvers by precomputing the control law
off-line, so that online operations reduce to a
simple function evaluation. Such a function is
piecewise affine in most cases, so that the MPC
controller is equivalently expressed as a lookup
table of linear gains, a form that is extremely easy
to code, requires only basic arithmetic operations,
and requires a maximum number of iterations that
can be exactly computed a priori.

Keywords

Constrained control; Embedded optimization;
Model predictive control; Multiparametric
programming; Quadratic programming

Introduction

Model predictive control (MPC) is a well-known
methodology for synthesizing feedback control
laws that optimize closed-loop performance
subject to prespecified operating constraints
on inputs, states, and outputs (Borrelli et al.
2011; Mayne and Rawlings 2009). In MPC, the
control action is obtained by solving a finite
horizon open-loop optimal control problem at
each sampling instant. Each optimization yields
a sequence of optimal control moves, but only
the first move is applied to the process: At the
next time step, the computation is repeated over a
shifted time horizon by taking the most recently
available state information as the new initial
condition of the new optimal control problem.
For this reason, MPC is also called “receding
horizon control.” In most practical applications,
MPC is based on a linear discrete-time time-
invariant model of the controlled system and
quadratic penalties on tracking errors and actu-
ation efforts; in such a formulation, the optimal
control problem can be recast as a quadratic
programming (QP) problem, whose linear term
of the cost function and right-hand side of the
constraints depend on a vector of parameters that
may change from one step to another (such as
the current state and reference signals). To enable
the implementation of MPC in real industrial
products, a QP solution method must be embed-
ded in the control hardware. The method must
be fast enough to provide a solution within short
sampling intervals and require simple hardware,
limited memory to store the data defining the
optimization problem and the code implementing
the algorithm itself, a simple program code, and
good worst-case estimates of the execution time
to meet real-time system requirements.

Several online solution algorithms have been
studied for embedding quadratic optimization
in control hardware, such as active-set meth-
ods (Ricker 1985), interior-point methods (Wang
and Boyd 2010), and fast gradient projection
methods (Patrinos and Bemporad 2014). Explicit
MPC takes a different approach to meet the above
requirements, where multiparametric quadratic
programming is proposed to pre-solve the QP
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off-line, therefore converting the MPC law into a
continuous and piecewise-affine function of the
parameter vector (Bemporad et al. 2002b). We
review the main ideas of explicit MPC in the
next section, referring the reader to Alessio and
Bemporad (2009) for a more complete survey
paper on explicit MPC.

Model Predictive Control Problem

Consider the following finite-time optimal con-
trol problem formulation for MPC:

V �.p/ D min
z

`N .xN / C
N �1X

kD0

`.xk; uk/ (1a)

s:t: xkC1 D Axk C Buk (1b)

Cxxk C Cuuk � c (1c)

k D 0; : : : ; N � 1

CN xN � cN (1d)

x0 D x (1e)

where N is the prediction horizon; x 2 R
m is

the current state vector of the controlled system;
uk 2 R

nu is the vector of manipulated variables
at prediction time k, k D 0; : : : ; N � 1; z ,
Œ u0

0 ::: u0
N �1 �0 2 R

n, n , nuN , is the vector of
decision variables to be optimized;

`.x; u/ D 1

2
x0Qx C u0Ru (2a)

`N .x/ D 1

2
x0P x (2b)

are the stage cost and terminal cost, respectively;
Q, P are symmetric and positive semidefinite
matrices; and R is a symmetric and positive
definite matrix.

Let nc 2 N be the number of constraints
imposed at prediction time k D 0; : : : ; N � 1,
namely, Cx 2 R

nc�m, Cu 2 R
nc�nu , c 2 R

nc ,
and let nN be the number of terminal constraints,
namely, CN 2 R

nN �m, cN 2 R
nN . The total

number q of linear inequality constraints imposed

in the MPC problem formulation (1) is q D
Nnc C nN .

By eliminating the states xk D Akx CPk�1
j D0 Aj Buk�1�j from problem (1), the optimal

control problem (1) can be expressed as the
convex quadratic program (QP):

V ?.x/ , min
z

1

2
z0H z C x0F 0z C 1

2
x0Y x

(3a)

s:t: Gz � W C Sx (3b)

where H D H 0 2 R
n is the Hessian matrix; F 2

R
n�m defines the linear term of the cost function;

Y 2 R
m�m has no influence on the optimizer, as

it only affects the optimal value of (3a); and the
matrices G 2 R

q�n, S 2 R
q�m, W 2 R

q define
in a compact form the constraints imposed in (1).
Because of the assumptions made on the weight
matrices Q, R, P , matrix H is positive definite
and matrix

�
H F 0

F Y

	
is positive semidefinite.

The MPC control law is defined by setting

u.x/ D ŒI 0 : : : 0�z.x/ (4)

where z.x/ is the optimizer of the QP problem (3)
for the current value of x and I is the identity
matrix of dimension nu � nu.

Multiparametric Solution

Rather than using a numerical QP solver online to
compute the optimizer z.x/ of (3) for each given
current state vector x, the basic idea of explicit
MPC is to pre-solve the QP off-line for the entire
set of states x (or for a convex polyhedral subset
X � R

m of interest) to get the optimizer function
z, and therefore the MPC control law u, explicitly
as a function of x.

The main tool to get such an explicit solu-
tion is multiparametric quadratic programming
(mpQP). For mpQP problems of the form (3),
Bemporad et al. (2002b) proved that the opti-
mizer function z� W Xf 7! R

n is piecewise affine
and continuous over the set Xf of parameters
x for which the problem is feasible (Xf is a
polyhedral set, possibly Xf D X ) and that
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Explicit Model Predictive Control, Fig. 1 Explicit MPC solution for the double integrator example

the value function V � W Xf 7! R associating
with every x 2 Xf the corresponding optimal
value of (3) is continuous, convex, and piecewise
quadratic.

An immediate corollary is that the explicit
version of the MPC control law u in (4), being
the first nu components of vector z.x/, is also
a continuous and piecewise-affine state-feedback
law defined over a partition of the set Xf of states
into M polyhedral cells;

u.x/ D

8
<̂

:̂

F1x C g1 if H1x � K1

:::
:::

FM x C gM if HM x � KM

(5)

An example of such a partition is depicted in
Fig. 1. The explicit representation (5) has mapped
the MPC law (4) into a lookup table of linear
gains, meaning that for each given x, the values
computed by solving the QP (3) online and those
obtained by evaluating (5) are exactly the same.

Multiparametric QP Algorithms
A few algorithms have been proposed in the liter-
ature to solve the mpQP problem (3). All of them

construct the solution by exploiting the Karush-
Kuhn-Tucker (KKT) conditions for optimality:

H z C F x C G0� D 0 (6a)

�i .G
i z � W i � Si x/ D 0; 8i D 1; : : : ; q (6b)

Gz � W C Sx (6c)

� � 0 (6d)

where � 2 R
q is the vector of Lagrange multipli-

ers. For the strictly convex QP (3), conditions (6)
are necessary and sufficient to characterize opti-
mality.

An mpQP algorithm starts by fixing an arbi-
trary starting parameter vector x0 2 R

m (e.g.,
the origin x0 D 0), solving the QP (3) to get the
optimal solution z.x0/, and identifying the subset

QGz.x/ D QSx C QW (7a)

of all constraints (6c) that are active at z.x0/ and
the remaining inactive constraints:

OGz.x/ � OSx C OW (7b)
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Correspondingly, in view of the complementarity
condition (6b), the vector of Lagrange multipliers
is split into two subvectors:

Q�.x/ � 0 (8a)

O�.x/ D 0 (8b)

We assume for simplicity that the rows of QG
are linearly independent. From (6a), we have the
relation

z.x/ D �H �1.F x C QG0 Q�.x// (9)

that, when substituted into (7a), provides

Q�.x/ D � QM. QW C . QS C QGH �1F /x/ (10)

where QM D QG0. QGH �1 QG0/�1 and, by substitu-
tion in (9),

z.x/ D H �1. QM QW C QM. QS C QGH �1F /x � F x/

(11)

The solution z.x/ provided by (11) is the correct
one for all vectors x such that the chosen com-
bination of active constraints remains optimal.
Such all vectors x are identified by imposing con-
straints (7b) and (8a) on z.x/ and Q�.x/, respec-
tively, that leads to constructing the polyhedral
set (“critical region”):

CR0 D fx 2 R
n W Q�.x/ � 0; OGz.x/ � OW C OSxg

(12)

Different mpQP solvers were proposed to
cover the rest X n CR0 of the parameter set
with other critical regions corresponding to
new combinations of active constraints. The
most efficient methods exploit the so-called
“facet-to-facet” property of the multiparametric
solution (Spjøtvold et al. 2006) to identify
neighboring regions as in Tøndel et al. (2003a)
and Baotić (2002). Alternative methods were
proposed in Jones and Morari (2006), based
on looking at (6) as a multiparametric linear
complementarity problem, and in Patrinos and
Sarimveis (2010), which provides algorithms for
determining all neighboring regions even in the
case the facet-to-facet property does not hold.

All methods handle the case of degeneracy,
which may happen for some combinations of
active constraints that are linearly dependent, that
is, the associated matrix QG has no full row rank
(in this case, Q�.x/ may not be uniquely defined).

Extensions

The explicit approach described earlier can be
extended to the following MPC setting:

min
z

N �1X

kD0

1

2
.yk � rk/0Qy.yk � rk/C1

2
�u0

kR��uk

C .uk � ur
k/0R.uk � ur

k/0 C ���
2 (13a)

s:t: xkC1 D Axk C Buk C Bvvk (13b)

yk D Cxk C Duuk C Dvvk (13c)

uk D uk�1 C �uk; k D 0; : : : ; N � 1

(13d)

�uk D 0; k D Nu; : : : ; N � 1 (13e)

uk
min � uk � uk

max; k D 0; : : : ; Nu � 1 (13f)

�uk
min � �uk � �uk

max; k D 0; : : : ; Nu � 1

(13g)

yk
min � �Vmin � yk � yk

max C �Vmax (13h)

k D 0; : : : ; Nc � 1

where R� is a symmetric and positive definite
matrix; matrices Qy and R are symmetric and
positive semidefinite; vk is a vector of measured
disturbances; yk is the output vector; rk its corre-
sponding reference to be tracked; �uk is the vec-
tor of input increments; ur

k is the input reference;
uk

min, uk
max, �uk

min, �uk
max, yk

min, yk
max are bounds;

and N , Nu, Nc are, respectively, the prediction,
control, and constraint horizons. The extra vari-
able � is introduced to soften output constraints,
penalized by the (usually large) weight �� in the
cost function (13a).

Everything marked in bold-face in (13), to-
gether with the command input u�1 applied at
the previous sampling step and the current state
x, can be treated as a parameter with respect to
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which to solve the mpQP problem and obtain the
explicit form of the MPC controller. For example,
for a tracking problem with no anticipative action
(rk � r0, 8k D 0; : : : ; N � 1), no measured dis-
turbance, and fixed upper and lower bounds, the
explicit solution is a continuous piecewise affine

function of the parameter vector
h

x
r0

u�1

i
. Note that

prediction models and/or weight matrices in (13)
cannot be treated as parameters to maintain the
mpQP formulation (3).

Linear MPC Based on Convex
Piecewise-Affine Costs
A similar setting can be repeated for MPC
problems based on linear prediction models
and convex piecewise-affine costs, such as
1- and 1-norms. In this case, the MPC
problem is mapped into a multiparametric linear
programming (mpLP) problem, whose solution
is again continuous and piecewise-affine with
respect to the vector of parameters. For details,
see Bemporad et al. (2002a).

Robust MPC
Explicit solutions to min-max MPC problems
that provide robustness with respect to additive
and/or multiplicative unknown-but-bounded
uncertainty were proposed in Bemporad et al.
(2003), based on a combination of mpLP and
dynamic programming. Again the solution is
piecewise affine with respect to the state vector.

HybridMPC
An MPC formulation based on 1- or 1-norms
and hybrid dynamics expressed in mixed-logical
dynamical (MLD) form can be solved explic-
itly by treating the optimization problem asso-
ciated with MPC as a multiparametric mixed
integer linear programming (mpMILP) problem.
The solution is still piecewise affine but may be
discontinuous, due to the presence of binary vari-
ables (Bemporad et al. 2000). A better approach
based on dynamic programming combined with
mpLP (or mpQP) was proposed in Borrelli et al.
(2005) for hybrid systems in piecewise-affine
(PWA) dynamical form and linear (or quadratic)
costs.

Applicability of Explicit MPC

Complexity of the Solution
The complexity of the solution is given by the
number M of regions that form the explicit so-
lution (5), dictating the amount of memory to
store the parametric solution (Fi , Gi , Hi , Ki ,
i D 1; : : : ; M ), and the worst-case execution
time required to compute Fi x C Gi once the
problem of identifying the index i of the region
fx W Hi x � Kig containing the current state x

is solved (which usually takes most of the time).
The latter is called the “point location problem,”
and a few methods have been proposed to solve
the problem more efficiently than searching lin-
early through the list of regions (see, e.g., the
tree-based approach of Tøndel et al. 2003b).

An upper bound to M is 2q , which is the
number of all possible combinations of active
constraints. In practice, M is much smaller than
2q, as most combinations are never active at
optimality for any of the vectors x (e.g., lower
and upper limits on an actuation signal cannot
be active at the same time, unless they coin-
cide). Moreover, regions in which the first nu

component of the multiparametric solution z.x/

is the same can be joined together, provided that
their union is a convex set (an optimal merging
algorithm was proposed by Geyer et al. (2008) to
get a minimal number M of partitions). Nonethe-
less, the complexity of the explicit MPC law
typically grows exponentially with the number
q of constraints. The number m of parameters
is less critical and mainly affects the number of
elements to be stored in memory (i.e., the number
of columns of matrices Fi , Hi ). The number n

of free variables also affects the number M of
regions, mainly because they are usually upper
and lower bounded.

Computer-Aided Tools
The Model Predictive Control Toolbox (Bempo-
rad et al. 2014) offers functions for designing ex-
plicit MPC controllers in MATLAB since 2014.
Other tools exist such as the Hybrid Toolbox
(Bemporad 2003) and the Multi-Parametric Tool-
box (Kvasnica et al. 2006).
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Summary and Future Directions

Explicit MPC is a powerful tool to convert an
MPC design into an equivalent control law that
can be implemented as a lookup table of linear
gains. Whether the explicit form is preferable
to solving the QP problem online depends on
available CPU time, data memory, and program
memory and other practical considerations. Al-
though suboptimal methods have been proposed
to reduce the complexity of the control law, still
the explicit MPC approach remains convenient
for relatively small problems (such as one or
two command inputs, short control and constraint
horizons, up to ten states). For larger problems,
and/or problems that are linear time varying, on
line QP solution methods tailored to embedded
MPC may be preferable.

Cross-References

�Model-Predictive Control in Practice
�Nominal Model-Predictive Control
�Optimization Algorithms for Model Predictive

Control

Recommended Reading

For getting started in explicit MPC, we
recommend reading the paper by Bemporad et al.
(2002b) and the survey paper Alessio and
Bemporad (2009). Hands-on experience using
one of the MATLAB tools listed above is also
useful for fully appreciating the potentials and
limitations of explicit MPC. For understanding
how to program a good multiparametric QP
solver, the reader is recommended to take the
approach of Tøndel et al. (2003a) and Spjøtvold
et al. (2006) or, in alternative, of Patrinos and
Sarimveis (2010) or Jones and Morari (2006).
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Synonyms

EKF

Abstract

The extended Kalman filter (EKF) is the most
popular estimation algorithm in practical appli-
cations. It is based on a linear approximation to
the Kalman filter theory. There are thousands of
variations of the basic EKF design, which are
intended to mitigate the effects of nonlinearities,
non-Gaussian errors, ill-conditioning of the co-
variance matrix and uncertainty in the parameters
of the problem.

Keywords

Estimation; Nonlinear filters

The extended Kalman filter (EKF) is by far
the most popular nonlinear filter in practical
engineering applications. It uses a linear
approximation to the nonlinear dynamics and
measurements and exploits the Kalman filter
theory, which is optimal for linear and Gaussian
problems; Gelb (1974) is the most accessible
but thorough book on the EKF. The real-time
computational complexity of the EKF is rather
modest; for example, one can run an EKF

with high-dimensional state vectors (d D several
hundreds) in real time on a single microprocessor
chip. The computational complexity of the EKF
scales as the cube of the dimension of the state
vector (d) being estimated. The EKF often gives
good estimation accuracy for practical nonlinear
problems, although the EKF accuracy can be
very poor for difficult nonlinear non-Gaussian
problems. There are many different variations
of EKF algorithms, most of which are intended
to improve estimation accuracy. In particular,
the following types of EKFs are common in
engineering practice: (1) second-order Taylor
series expansion of the nonlinear functions, (2)
iterated measurement updates that recompute the
point at which the first order Taylor series is
evaluated for a given measurement, (3) second-
order iterated (i.e., combination of items 1
and 2), (4) special coordinate systems (e.g.,
Cartesian, polar or spherical, modified polar
or spherical, principal axes of the covariance
matrix ellipse, hybrid coordinates, quaternions
rather than Euler angles, etc.), (5) preferred order
of processing sequential scalar measurement
updates, (6) decoupled or partially decoupled or
quasi-decoupled covariance matrices, and many
more variations. In fact, there is no such thing
as “the” EKF, but rather there are thousands of
different versions of the EKF. There are also
many different versions of the Kalman filter
itself, and all of these can be used to design EKFs
as well. For example, there are many different
equations to update the Kalman filter error
covariance matrices with the intent of mitigating
ill-conditioning and improving robustness,
including (1) square-root factorization of the
covariance matrix, (2) information matrix update,
(3) square-root information update, (4) Joseph’s
robust version of the covariance matrix update,
(5) at least three distinct algebraic versions of the
covariance matrix update, as well as hybrids of
the above.

Many of the good features of the Kalman filter
are also enjoyed by the EKF, but unfortunately
not all. For example, we have a very good theory
of stability for the Kalman filter, but there is
no theory that guarantees that an EKF will be
stable in practical applications. The only method

http://dx.doi.org/10.1007/978-1-4471-5058-9_100006
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to check whether the EKF is stable is to run
Monte Carlo simulations that cover the relevant
regions in state space with the relevant measure-
ment parameters (e.g., data rate and measurement
accuracy). Secondly, the Kalman filter computes
the theoretical error covariance matrix, but there
is no guarantee that the error covariance matrix
computed by the EKF approximates the actual
filter errors, but rather the EKF covariance ma-
trix could be optimistic by orders of magnitude
in real applications. Third, the numerical val-
ues of the process noise covariance matrix can
be computed theoretically for the Kalman filter,
but there is no guarantee that these will work
well for the EKF, but rather engineers typically
tune the process noise covariance matrix using
Monte Carlo simulations or else use a heuris-
tic adaptive process (e.g., IMM). All of these
short-comings of the EKF compared with the
Kalman filter theory are due to a myriad of
practical issues, including (1) nonlinearities in
the dynamics or measurements, (2) non-Gaussian
measurement errors, (3) unmodeled measurement
error sources (e.g., residual sensor bias), (4) un-
modeled errors in the dynamics, (5) data associa-
tion errors, (6) unresolved measurement data, (7)
ill-conditioning of the covariance matrix, etc. The
actual estimation accuracy of an EKF can only
be gauged by Monte Carlo simulations over the
relevant parameter space.

The actual performance of an EKF can depend
crucially on the specific coordinate system that
is used to represent the state vector. This is
extremely well known in practical engineering
applications (e.g., see Mehra 1971; Stallard
1991; Miller 1982; Markley 2007; Daum 1983;
Schuster 1993). Intuitively, this is because the
dynamics and measurement equations can be
exactly linear in one coordinate system but not
another; this is very easy to see; start with dy-
namics and measurements that are exactly linear
in Cartesian coordinates and transform to polar
coordinates and we will get highly nonlinear
equations. Likewise, we can have approximately
linear dynamics and measurements in a specific
coordinate system but highly nonlinear equations
in another coordinate system. But in theory, the
optimal estimation accuracy does not depend on

the coordinate system. Moreover, in math and
physics, coordinate-free methods are preferred,
owing to their greater generality and simplicity
and power. The physics does not depend on the
specific coordinate system; this is essentially a
definition of what “physics” means, and it has
resulted in great progress in physics over the
last few hundred years (e.g., general relativity,
gauge invariance in quantum field theory, Lorentz
invariance in special relativity, as well as a host
of conservation laws in classical mechanics that
are explained by Noether’s theorem which relates
invariance to conserved quantities). Similarly
in math, coordinate-free methods have been the
royal road to progress over the last 100 years
but not so for practical engineering of EKFs,
because EKFs are approximations rather than
being exact, and the accuracy of the EKF
approximation depends crucially on the specific
coordinate system used. Moreover, the effect
of ill-conditioning of the covariance matrices
in EKFs depends crucially on the specific
coordinate system used in the computer; for
example, if we could compute the EKF in
principal coordinates, then the covariance
matrices would be diagonal, and there would
be no effect of ill-conditioning, despite enormous
condition numbers of the covariance matrices.
Surprisingly, these two simple points about
coordinate systems are still not well understood
by many researchers in nonlinear filtering.
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Abstract

Extremum seeking (ES) is a method for real-time
non-model-based optimization. Though ES was
invented in 1922, the “turn of the twenty-first cen-
tury” has been its golden age, both in terms of the
development of theory and in terms of its adop-
tion in industry and in fields outside of control
engineering. This entry overviews basic gradient-
and Newton-based versions of extremum seeking
with periodic and stochastic perturbation signals.

Keywords

Gradient climbing; Newton’s method

The Basic Idea of Extremum Seeking

Many versions of extremum seeking exist, with
various approaches to their stability study (Krstic
and Wang 2000; Liu and Krstic 2012; Tan et al.
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q

f (q )

a sin (ωt)
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Extremum Seeking Control, Fig. 1 The simplest
perturbation-based extremum seeking scheme for a

quadratic single-input map f .	/ D f � C f 00

2
.	 � 	�/

2,

where f �; f 00; 	� are all unknown. The user has to only
know the sign of f 00, namely, whether the quadratic map
has a maximum or a minimum, and has to choose the
adaptation gain k such that sgnk D �sgnf 00. The user
has to also choose the frequency ! as relatively large
compared to a, k, and f 00

2006). The most common version employs per-
turbation signals for the purpose of estimating the
gradient of the unknown map that is being opti-
mized. To understand the basic idea of extremum
seeking, it is best to first consider the case of a
static single-input map of the quadratic form, as
shown in Fig. 1.

Three different thetas appear in Fig. 1: 	� is
the unknown optimizer of the map, O	.t/ is the
real-time estimate of 	�, and 	.t/ is the actual
input into the map. The actual input 	.t/ is based
on the estimate O	.t/ but is perturbed by the
signal a sin.!t/ for the purpose of estimating the
unknown gradient f 00 � .	 � 	�/ of the map f .	/.
The sinusoid is only one choice for a perturbation
signal – many other perturbations, from square
waves to stochastic noise, can be used in lieu of
sinusoids, provided they are of zero mean. The
estimate O	.t/ is generated with the integrator k=s

with the adaptation gain k controlling the speed
of estimation.

The ES algorithm is successful if the error
between the estimate O	.t/ and the unknown 	�,
namely, the signal

Q	.t/ D O	.t/ � 	� (1)
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converges towards zero. Based on Fig. 1, the esti-

mate is governed by the differential equation PO	 D
k sin.!t/f .	/, which means that the estimation
error is governed by

d Q	
dt

D ka sin.!t/



f � C f 00

2

� Q	 C a sin.!t/
�2



(2)

Expanding the right-hand side, one obtains

d Q	.t/

dt
D kaf � sin.!t/„ ƒ‚ …

mean=0

C ka3 f 00

2
sin3.!t/„ ƒ‚ …
mean=0

C ka
f 00

2
sin.!t/„ ƒ‚ …

fast, mean=0

Q	.t/2

„ƒ‚…
slow

C ka2f 00 sin2.!t/„ ƒ‚ …
fast, mean=1/2

Q	.t/„ƒ‚…
slow

(3)

A theoretically rigorous time-averaging pro-
cedure allows to replace the above sinusoidal
signals by their means, yielding the “average
system”

d Q	ave

dt
D

<0‚…„ƒ
kf 00 a2

2
Q	ave ; (4)

which is exponentially stable. The averaging the-
ory guarantees that there exists sufficiently large
! such that, if the initial estimate O	.0/ is suffi-
ciently close to the unknown 	�,

j	.t/ � 	�j � j	.0/ � 	�j e
kf 00a2

2 t C O

�
1

!

�

Ca ; 8t � 0 : (5)

For the user, the inequality (5) guarantees that,
if a is chosen small and ! is chosen large, the
input 	.t/ exponentially converges to a small in-
terval around the unknown 	� and, consequently,
the output f .	.t// converges to the vicinity of the
optimal output f �.

×

θ

+ K
sS(t) M(t)

y

Ĝθ̂

Q(·)

Extremum Seeking Control, Fig. 2 Extremum seeking
algorithm for a multivariable map y D Q.	/, where 	

is the input vector 	 D Œ	1; 	2; � � � ; 	n�T . The algorithm
employs the additive perturbation vector signal S.t/ given
in (6) and the multiplicative demodulation vector signal
M.t/ given in (7)

ES for Multivariable Static Maps

For static maps, ES extends in a straightforward
manner from the single-input case shown in Fig. 1
to the multi-input case shown in Fig. 2.

The algorithm measures the scalar signal
y.t/ D Q.	.t//, where Q.�/ is an unknown map
whose input is the vector 	 D Œ	1; 	2; � � � ; 	n�T .
The gradient is estimated with the help of the
signals

S.t/ D �
a1 sin.!1t/ � � � an sin.!nt/

	T

(6)

M.t/ D



2

a1

sin.!1t/ � � � 2

an

sin.!nt/

T

(7)

with nonzero perturbation amplitudes ai and with
a gain matrix K that is diagonal. To guarantee
convergence, the user should choose !i ¤ !j .
This is a key condition that differentiates the
multi-input case from the single-input case. In
addition, for simplicity in the convergence analy-
sis, the user should choose !i =!j as rational and
!i C !j ¤ !k for distinct i; j; and k.

If the unknown map is quadratic, namely,
Q.	/ D Q�C 1

2
.	�	�/T H.	�	�/, the averaged

system is

PQ	ave D KH Q	ave ; H D Hessian. (8)
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Extremum Seeking Control, Fig. 3 The ES algorithm
in the presence of dynamics with an equilibrium map 	 7!
y that satisfies the same conditions as in the static case. If
the dynamics are stable and the user employs parameters
in the ES algorithm that make the algorithm dynamics

slower than the dynamics of the plant, convergence is
guaranteed (at least locally). The two filters are useful
in the implementation to reduce the adverse effect of the
perturbation signals on asymptotic performance but are
not needed in the stability analysis

If, for example, the map Q.�/ has a maximum
that is locally quadratic (which implies H D
H T < 0) and if the user chooses the elements
of the diagonal gain matrix K as positive, the
ES algorithm is guaranteed to be locally conver-
gent. However, the convergence rate depends on
the unknown Hessian H . This weakness of the
gradient-based ES algorithm is removed with the
Newton-based ES algorithm.

A stochastic version of the algorithm in Fig. 2
also exists, in which S.t/ and M.t/ are re-
placed by

S.�.t// D Œa1 sin.�1.t//; : : : ; an sin.�n.t//�T ;

(9)

M.�.t// D
"

2

a1.1 � e�q2
1 /

sin.�1.t//; : : : ;

2

an.1 � e�q2
n/

sin.�n.t//

T

(10)

where �i D qi
p

"i

"i s C 1
Œ PWi � and PWi are independent

unity-intensity white noise processes.

ES for Dynamic Systems

ES extends in a relatively straightforward man-
ner from static maps to dynamic systems, pro-
vided the dynamics are stable and the algorithm’s

parameters are chosen so that the algorithm’s
dynamics are slower than those of the plant. The
algorithm is shown in Fig. 3.

The technical conditions for convergence in
the presence of dynamics are that the equilibria
x D l.	/ of the system Px D f .x; ˛.x; 	//,
where ˛.x; 	/ is the control law of an internal
feedback loop, are locally exponentially stable
uniformly in 	 and that, given the output map
y D h.x/, there exists at least one 	� 2 R

n

such that
@

@	
.hıl/.	�/ D 0 and

@2

@	2
.hıl/.	�/ D

H < 0; H D H T .
The stability analysis in the presence of

dynamics employs both averaging and singular
perturbations, in a specific order. The design
guidelines for the selection of the algorithm’s pa-
rameters follow the analysis. Though the guide-
lines are too lengthy to state here, they ensure
that the plant’s dynamics are on a fast time scale,
the perturbations are on a medium time scale, and
the ES algorithm is on a slow time scale.

Newton ES Algorithm for Static Map

A Newton version of the ES algorithm, shown in
Fig. 4, ensures that the convergence rate be user
assignable, rather than being dependent on the
unknown Hessian of the map.

The elements of the demodulating matrix N.t/

for generating the estimate of the Hessian are
given by
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θ

×

×+ K
s

y

M(t)

Ĥ N(t)

−ΓĜ
θ̂ Ĝ

S(t)

Γ̇ = ωrΓ − ωrΓHΓˆ

Q(·)

Extremum Seeking Control, Fig. 4 A Newton-based
ES algorithm for a static map. The multiplicative excita-

tion N.t/ helps generate the estimate of Hessian
@2Q.	/

@	2

as OH.t/ D N.t/y.t/. The Riccati matrix differential
equation �.t/ generates an estimate of the Hessian’s
inverse matrix, avoiding matrix inversions of Hessian
estimates that may be singular during the transient

Nii .t/ D 16

a2
i

�
sin2.!i t/ � 1

2

�
;

Nij .t/ D 4

ai aj

sin.!i t/ sin.!j t/ (11)

For a quadratic map, the averaged system in
error variables Q	 D O	 � 	�, Q� D � � H �1 is

d Q	 ave

dt
D �K Q	 ave � K Q�aveH Q	 ave

„ ƒ‚ …
quadratic

;

d Q�ave

dt
D �!r

Q�ave � !r
Q�aveH Q�ave
„ ƒ‚ …
quadratic

: (12)

Since the eigenvalues are determined by K

and !r and are therefore independent of the
unknown H , the (local) convergence rate is user
assignable.

Further Reading on Extremum
Seeking

Since the publication of the first proof of sta-
bility of extremum seeking (Krstic and Wang
2000), thousands of papers have been published

on this topic, presenting further theoretical de-
velopments and applications of ES. A proof that
expands the validity of extremum seeking from
local to global stability was published in Tan et al.
(2006). The book Liu and Krstic (2012) presents
stochastic versions of the algorithms in this entry,
where the sinusoids are replaced by filtered white
noise perturbation signals.
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Abstract

The fundamental concepts and methods of
fault detection and diagnosis are reviewed.
Faults are defined and classified as additive or
multiplicative. The model-free approach of alarm
systems is described and critiqued. Residual
generation, using the mathematical model
of the plant, is introduced. The propagation
of additive and multiplicative faults to the
residuals is discussed, followed by a review
of the effect of disturbances, noise, and model
errors. Enhanced residuals (structured and
directional) are introduced. The main residual
generation techniques are briefly described,
including direct consistency relations, parity
space, and diagnostic observers. Principal
component analysis and its application to
fault detection and diagnosis are outlined. The
article closes with some thoughts about future
directions.

Keywords

Consistency relations; Diagnostic observers;
Fault detection; Fault diagnosis; Parity space;
Principal component analysis; Residual genera-
tion

Introduction

Faults are malfunctions of various elements of
technical systems. Extreme cases of faults, called
failures, are catastrophic breakdowns of the
same. The technical systems (the plant) we are
concerned with range from complex production
systems (chemical plants, oil refineries, power
stations) through major transportation equipment
(airplanes, ships) to consumer machines (auto-
mobiles, home-heating systems, etc.). The faults
may affect various parts of the main technical
system (motors, pumps, storage tanks, pipelines)
or devices interfacing the main technical system
with computers providing for control, monitor-
ing, and operator information. These latter in-
clude sensors (measuring devices) and actuators
(devices acting on the process, such as valves).

The objective of fault detection is to determine
and signal if there is a fault anywhere in the
system. Fault diagnosis is aimed at providing
more specific information about the fault; fault
isolation is to pinpoint at the component(s) (sen-
sors, actuators, or plant components) where the
fault is located, while fault identification is to
determine (estimate) the size of the fault and, in

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015

http://dx.doi.org/10.1007/978-1-4471-5058-9_100007
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some cases, the time of its arrival. With the ubiq-
uitous presence of the computer, fault detection
and diagnosis (FDD) is, in general, a function of
the computer interfaced to the plant.

The simplest approaches to FDD consist of
comparing individual plant measurements to pre-
set limits, without utilizing any knowledge of the
plant model (limit checking or alarm systems).
More sophisticated techniques rely on an explicit
mathematical model of the plant. They compare
plant measurements to estimates obtained, from
other measurements, by the model; any discrep-
ancy may be an indication of faults. Another class
of techniques (generally but incorrectly called
“data driven”), most notably principal compo-
nent analysis (PCA), include the estimation of
an implicit model, from empirical plant data, and
then use this in ways similar to the model-based
methods. These approaches will be described in
more detail in the sequel.

Alarm Systems

Alarm systems rely on the comparison of
individual plant measurements to their respective
limits. The limits may be two or one sided
(upper and lower limit or upper limit only) and
may have one or two levels (preliminary and
full alarm). Momentary comparisons may be
extended to include trend checks. Alarm systems
are relatively simple but suffer from two major
shortcomings:
– They have very limited fault specificity.

A variable exceeding its limit is not a fault
but a symptom of faults. A single-component
fault may cause alarm on many variables
and a particular alarm may be due to various
component faults.

– They have limited fault sensitivity. What is
“normal” for a plant output variable depends
on the value of the plant inputs. Such relation-
ship, however, cannot be considered without
a plant model; therefore, the alarm thresholds
need to be set conservatively high.

Because of their simplicity, and in spite of the
above shortcomings, alarm systems are widely
used in industrial applications.

Model-Based FDD Concepts

Model-based methods utilize an explicit
mathematical model of the plant. Such model
is obtained usually from empirical plant data by
systems identification methods or, exceptionally,
from the “first principles” understanding of the
plant. Model building, though critical to the
success of model-based FDD, is usually not
considered part of the FDD effort. The models
may be linear or nonlinear, static or dynamic,
and continuous or discrete time. In FDD, most
frequently linear discrete-time dynamic models
are used.

The fundamental idea of model-based FDD is
the comparison of measured plant outputs to their
estimates, obtained, via the mathematical model,
from measured or actuated plant inputs (Fig. 1).
Any discrepancy is (at least ideally) an indication
that a fault (or faults) is (are) present in the
system. Mathematically, the difference between
the measured output yi .t/ and its estimate yi^.t/
is a (primary) residual (Willsky 1976):

ei .t/ D yi .t/ � yi^.t/

In general, residuals are quantities that are
zero in the absence of faults and nonzero in their
presence.

Unfortunately, it is not only the faults that can
make the residuals nonzero. Usually, the plant
is subject to disturbances (unmeasured determin-

faults

noise disturbances

inputs outputs

+ primary

− residuals

PLANT

MODEL

Fault Detection and Diagnosis, Fig. 1 Analytical re-
dundancy
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istic inputs) and noise (unmeasured random in-
puts) (Fig. 1). In addition, and most importantly,
model-based FDD is subject to model errors (due
either to initial inaccuracies in model building or
to changes in the physical plan). The FDD algo-
rithm should be designed, as much as possible,
to be insensitive to noise and “robust” in face of
disturbances and model errors.

Additive and multiplicative faults. Depending
on the way they appear in the system equations,
faults may be additive or multiplicative. Additive
faults are sensor and actuator biases, leaks in the
plant, etc. Multiplicative faults are changes in the
plant parameters. In the following input-output
relationship, u.t/ is the vector of observed (mea-
sured or commanded) plant inputs, y.t/ is the
vector of measured plant outputs, and p.t/ is the
vector of additive faults and t is the discrete time.
M.q/ and S.q/ are transfer function matrices in
the shift operator q, and ™ is the vector of plant
parameters. Then,

y.t/ D M.q; ™/u.t/C S.q; ™/p.t/

The (“primary”) residual vector e.t/, in response
to additive faults, is

e.t/ D y.t/ � M.q; ™/u.t/ D S.q; ™/p.t/

If there are multiplicative faults, then ™ D ™ı C
�™, where ™ı is the nominal parameter vector
and �™ is its change (the parametric fault); now
and the residual vector e.t/ is (Gertler 1998)

e.t/ D y.t/ � M.q; ™ı/u.t/

D †j.@M.q; ™/=@™j/u.t/ �™j

Enhanced residuals. To facilitate the isolation
of faults, the primary residuals e.t/ are subject
to some enhancement manipulation. The three
widely used enhancement techniques are:
– Structured residuals, whereas each residual

is selectively sensitive to a subset of faults,
resulting in a fault-specific set of zero/nonzero
residuals upon a particular fault (fault codes)

faults

noise disturbances

inputs outputs

residuals 

PLANT

RESIDUAL
GENERATOR

MODEL

Fault Detection and Diagnosis, Fig. 2 Generating
model-based residuals

– Directional residuals, whereas the residual
vector maintains a fault-specific direction in
response to each particular fault

– Diagonal residuals, whereas each residual re-
sponds only to a particular fault

Residual generators take the input and output ob-
servations from the plant and generate enhanced
residuals by one of the above schemes, utilizing
the mathematical model of the plant (Fig. 2).

Dealing with noise. Noise is practically
unavoidable in physical systems. In FDD,
basically two steps may be taken to reduce the
effect of noise:
– Residual filtering. This can be achieved by

basing decisions on moving averages of the
residuals or by applying explicit low-pass fil-
ters to the residuals or by designing the resid-
ual generators in such a way that they have
built-in low-pass behavior.

– Statistical testing of the residuals. Structured
residuals are tested individually; each scalar
residual is then represented by a Boolean
1 or 0, depending on the outcome of the



420 Fault Detection and Diagnosis

test. Directional residuals are tested as vectors
against multivariable distributions. The test
thresholds are determined either theoretically,
using assumptions for the source noise, or em-
pirically based on measurements from fault-
free operating conditions.

Dealing with disturbances. Additive dis-
turbances are unmeasurable inputs. If the
disturbance-to-output transfer function (or
equivalent state-space representation) is known,
then it is possible to design residuals that are
completely decoupled from (insensitive to) those
disturbances. However, the FDD algorithm is
subject to a certain degree of “design freedom,”
defined by the number of outputs in the physical
system; disturbance decoupling is competing for
this freedom with fault isolation enhancement.
If there are too many disturbances, or if their
path to the outputs is unknown, then only
approximate decoupling is possible, making FDD
also approximate, usually designed to optimize
some (H-infinity) performance index.

Dealing with model errors. Model errors are
also unavoidable in most practical situations. This
is the most serious obstacle in the application
of model-based FDD techniques. In some very
special cases, uncertainty of a particular plant
parameter may be handled as a “multiplicative
disturbance,” and residuals designed to be ex-
plicitly decoupled from it. In general, however,
only approximate solutions are possible, reducing
the residuals’ sensitivity to modeling errors, at
the expense of also reducing their sensitivity to
faults. Design methods utilizing some optimiza-
tion techniques, mostly based on H-infinity or
similar performance indices, are available in the
literature (Edelmayer et al. 1994).

Residual GenerationMethods

For linear dynamic systems, provided exact (non-
approximate) solution is possible, there are three
major techniques to design residual generators:
(i) direct consistency (parity) relations, (ii) parity
space, and (iii) diagnostic observers. We will

briefly introduce the three methods, for discrete-
time plant models and additive faults. Note that
though they look formally different, if designed
for the same plant under the same design condi-
tions, the three methods yield identical residuals
(Gertler 1991).

Direct consistency (parity) relations (Gertler
1998). The input-output model of the plant is
utilized directly in the design. The enhanced
residuals are obtained from the primary residuals
by a transformation W.q/:

r.t/ D W.q/e.t/ D W.q/Œy.t/ � M.q/u.t/�

D W.q/S.q/p.t/

The desired behavior of the residuals is specified
as r.t/ D Z.q/p.t/, where the specification Z.q/
contains the basic residual properties (structure
or directions) plus the residual dynamics. The
resulting design condition is W.q/S.q/ D Z.q/.
If the S.q/ matrix is square, what is usually the
case (Gertler 1998), then this can be solved for
W.q/ by direct inversion. The residual generator
has to be causal and stable; this can always be
achieved by the appropriate modification of the
dynamics in Z.q/.

Parity space (Chow and Willsky 1984). This
method, also known as the “Chow-Willsky
scheme,” relies on the state-space description
of the system:

x.t C 1/ D A x.t/C B u.t/C E p.t/

y.t/ D C x.t/C D u.t/C F p.t/

Stacking n consecutive output vectors y.t/
(where n is the order of the model), and chain-
substituting the state x.t/, yields the equation

Y.t/ D J x.t � n/C K U.t/C L P.t/

where Y.t/;U.t/, and P.t/ are stacked vectors
and J;K, and L are hyper-matrices composed of
the A;B;C;D;E;F matrices. Now

E�.t/ D Y.t/ � K U.t/ D L P.t/C J x.t � n/
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would be a stacked vector of primary residuals,
was it not for the presence of the inaccessible ini-
tial state x.t�n/. To obtain true residuals, a trans-
formation ri .t/ D wiE�.t/ is necessary, so that
wiJ D 0. Any vector wi satisfying this orthogo-
nality condition is a parity vector, together span-
ning the parity space. Any parity vector yields a
true residual ri .t/; they can be so chosen that a
set of residuals possesses structured behavior.

Diagnostic observers. Various observer
schemes have been extensively investigated
as possible residual generator algorithms. The
basic full-order Luenberger observer (assuming
D D 0) is

x.tC1/ D A x.t/ C B u.t/C K e.t/

where K is the observer gain matrix and

e.t/ D y.t/ � C x.t/

is the innovation vector. If the observer is stable
then, apart from the start-up transient of the
observer, the innovation qualifies as the primary
residual. The gain matrix K is the major design
parameter; it is chosen to place the observer
poles, thus achieving stability and desired dy-
namic behavior (e.g., noise suppression). The
remaining design freedom can be utilized to in-
fluence residual properties. The latter are further
affected by the transformation r.t/ D H e.t/,
where the H matrix is an additional design pa-
rameter. Diagnostic observers can be designed for
both structured and directional residuals (Chen
and Patton 1999; White and Speyer 1987). Other
observer schemes, most notably the unknown in-
put observer, have also been proposed (Frank and
Wunnenberg 1989). Because of their complexity,
the detailed design procedures of diagnostic ob-
servers go beyond the scope of this entry.

Principal Component Analysis

Principal component analysis is extensively
used in the monitoring of complex plants with
hundreds of variables because, by revealing linear

relations among the variables, it significantly
reduces the dimensionality of the plant model
(Kresta et al. 1991). The application of PCA for
FDD implies two phases. In the training phase,
an implicit plant model is created from empirical
plant data. In the monitoring phase, this model is
used for FDD.

Training data (measured inputs and outputs)
are collected from the plant during fault-free
operation. The covariance matrix of the data is
formed and its eigenstructure obtained. Due to
linear relations among the data, some of the
eigenvalues will be zero (or near zero, in the
presence of noise). The eigenvectors belonging
to the nonzero eigenvalues form the data space,
where the fault-free data exist, while those be-
longing to the zero eigenvalues form the residual
space.

It is the residual space that is utilized for FDD.
The projection of a measurement vector onto the
residual space is the (primary) residual. A statis-
tical test on its size leads to a detection decision
(the absence or presence of faults). A thresh-
old test is necessary because noise also causes
nonzero residuals. An analysis of the eigenvec-
tors spanning the residual space shows how the
various faults propagate to the primary residual.
This allows for the design of residual manipula-
tions yielding structured or directional residuals,
just like in the FDD methods based on exact
models (Gertler et al. 1999).

The procedure as described above applies to
sensor and actuator faults; inclusion of plant
faults requires extra effort (and experiments).
Also, PCA is primarily meant for static models.
Its extension to discrete-time dynamic models is
straightforward, but it increases the size of the
model, proportionally to the dynamic order of the
model.

Summary and Future Directions

Fault detection and diagnosis is today a mature
field of systems and control engineering. There
is a very significant level of activity, as measured
in published papers and conference contributions,
but much of this (in the opinion of this author)
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is just minor refinements of earlier results. This
applies particularly to the long ongoing quest to
create “robust” FDD algorithms, especially in the
face of model errors.

There are still open challenges in a couple of
areas, most notably extensions to various non-
linear or parameter varying problems. Another
open and active area, of great practical impor-
tance, is FDD in networked control systems.
What is really of the greatest interest, though,
is the application of the wealth of available the-
oretical results and design methods to real-life
problems; there has recently been some visible
progress here, a most welcome development.
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Abstract

A closed-loop control system for an engineer-
ing process may have unsatisfactory performance
or even instability when faults occur in actua-
tors, sensors, or other process components. Fault-
tolerant control (FTC) involves the development
and design of special controllers that are capable
of tolerating the actuator, sensor, and process
faults while still maintaining desirable and ro-
bust performance and stability properties. FTC
designs involve knowledge of the nature and/or
occurrence of faults in the closed-loop system
either implicitly or explicitly using methods of
fault detection and isolation (FDI), fault detection
and diagnosis (FDD), or fault estimation (FE).
FTC controllers are reconfigured or restructured
using FDI/FDD information so that the effects of
the faults are reduced or eliminated within each
feedback loop in active or passive approaches or
compensated in each control-loop using FE meth-
ods. A non-mathematical outline of the essential
features of FTC systems is given with important
definitions and a classification of FTC systems
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into either active/passive approaches with exam-
ples of some well-known strategies.

Keywords

Active FTC; Fault accommodation; Fault
detection and diagnosis (FDD); Fault detection
and isolation (FDI); Fault estimation (FE); Fault-
tolerant control; Passive FTC; Reconfigurable
control

Introduction

The complexity of modern engineering systems
has led to strong demands for enhanced control
system reliability, safety, and green operation in
the presence of even minor anomalies. There
is a growing need not only to determine the
onset and development of process faults before
they become serious but also to adaptively com-
pensate for their effects in the closed-loop sys-
tem or using hardware redundancy to replace
faulty components by duplicate and fault-free
alternatives. The title “failure tolerant control”
was given by Eterno et al. (1985) working on a
reconfigurable flight control study defining the
meaning of control system tolerance to failures
or faults. The word “failure” is used when a fault
is so serious that the system function concerned
fails to operate (Isermann 2006). The title failure
detection has now been superseded by fault de-
tection, e.g., in fault detection and isolation (FDI)
or fault detection and diagnosis (FDD) (Chen and

Patton 1999; Gertler 1998; Patton et al. 2000)
motivated by studies in the 1980s on this topic
(Patton et al. 1989). Fault-tolerant control (FTC)
began to develop in the early 1990s (Patton 1993)
and is now a standard in the literature (Patton
1997; Blanke et al. 2006; Zhang and Jiang 2008),
based on the aerospace subject of reconfigurable
flight control making use of redundant actua-
tors and sensors (Steinberg 2005; Edwards et al.
2010).

Definitions Relating to Fault-Tolerant
Control

FTC is a strategy in control systems architecture
and design to ensure that a closed-loop system
can continue acceptable operation in the face
of bounded actuator, sensor, or process faults.
The goal of FTC design must ensure that the
closed-loop system maintains satisfactory stabil-
ity and acceptable performance during either one
or more fault actions. When prescribed stability
and closed-loop performance indices are main-
tained despite the action of faults, the system
is said to be “fault tolerant,” and the control
scheme that ensures the fault tolerance is the
fault-tolerant controller (Blanke et al. 2006; Pat-
ton 1997).

Fault modelling is concerned with the rep-
resentation of the real physical faults and their
effects on the system mathematical model. Fault
modelling is important to establish how a fault
should be detected, isolated, or compensated.

Sensor fault

System

O
utputs

Reference

Control signal

Actuator fault Process fault

Actuator

fa(t) fp(t)

u(t)

fs(t)

yref

Plant

Controller

Sensor

y(t)

Fault-Tolerant Control,
Fig. 1 Closed-loop system
with actuator, process, and
sensor faults
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The faults illustrated in Fig. 1 act at system loca-
tions defined as follows (Chen and Patton 1999):

An actuator fault .fa.t// corresponds to vari-
ations of the control input u.t/ applied to the
controlled system either completely or partially.
The complete failure of an actuator means that
it produces no actuation regardless of the input
applied to it, e.g., as a result of breakage and
burnout of wiring. For partial actuator faults, the
actuator becomes less effective and provides the
plant with only a part of the normal actuation
signal.

A sensor is an item of equipment that
takes a measurement or observation from the
system, e.g., potentiometers, accelerometers,
tachometers, pressure gauges, strain gauges, etc.;
a sensor fault .fs.t// implies that incorrect
measurements are taken from the real system.
This fault can also be subdivided into either a
complete or partial sensor fault. When a sensor
fails, the measurements no longer correspond
to the required physical parameters. For a
partial sensor fault the measurements give
an inaccurate indication of required physical
parameters.

A process fault .fp.t// directly affects the
physical system parameters and in turn the in-
put/output properties of the system. Process faults
are often termed component faults, arising as
variations from the structure or parameters used
during system modelling, and as such cover a
wide class of possible faults, e.g., dirty water hav-
ing a different heat transfer coefficient compared
to when it is clean, or changes in the viscosity of a
liquid or components slowly degrading over time
through wear and tear, aging, or environmental
effects.

Architectures and Classification
of FTC Schemes

FTC methods are classified according to whether
they are “passive” or “active,” using fixed or
reconfigurable control strategies (Eterno et al.
1985). Various architectures have been proposed
for the implementation of FTC schemes, for
example, the structure of reconfigurable control

based on generalized internal model control
(GIMC) has been proposed by Zhou and Ren
(2001) and other studies by Niemann and
Stoustrup (2005). Figure 2 shows a suitable
architecture to encompass active and passive
FTC methods in which a distinction is made
between “execution” and “supervision” levels.
The essential differences and requirements
between the passive FTC (PFTC) and active
FTC (AFTC).

PFTC is based solely on the use of robust
control in which potential faults are considered
as if they are uncertain signals acting in the
closed-loop system. This can be related to the
concept of reliable control (Veillette et al. 1992).
PFTC requires no online information from the
fault diagnosis (FDI/FDD/FE) function about the
occurrence or presence of faults and hence it is
not by itself and adaptive system and does not
involve controller reconfiguration (Patton 1993,
1997; Šiljak 1980). PFTC approach can be used
if the time window during which the system
remains stabilizable in the presence of a fault is
short; see, for example, the problem of the double
inverted pendulum (Weng et al. 2007) which is
unstable during a loop failure.

AFTC has two conceptual steps to provide
the system with fault-tolerant capability (Blanke
et al. 2006; Patton 1997; Zhang and Jiang 2008;
Edwards et al. 2009):
• Equip the system with a mechanism to make it

able to detect and isolate (or even estimate) the
fault promptly, identify a faulty component,
and select the required remedial action in to
maintain acceptable operation performance.
With no fault a baseline controller attenu-
ates disturbances and ensures good stability
and closed-loop tracking performance (Pat-
ton 1997), and the diagnostic (FDI/FDD/FE)
block recognizes that the closed-loop system
is fault-free with no control law change re-
quired (supervision level).

• Make use of supervision level information and
adapt or reconfigure/restructure the controller
parameters so that the required remedial activ-
ity can be achieved (execution level).

Figure 3 gives a classification of PFTC and AFTC
methods (Patton 1997).
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Fault-Tolerant Control,
Fig. 2 Scheme of FTC
(Adapted from Blanke
et al. (2006))

Fault-Tolerant Control,
Fig. 3 General
classification of FTC
methods

Figure 3 shows that AFTC approaches
are divided into two main types of methods:
projection-based methods and online automatic
controller redesign methods. The latter involves
the calculation of new controller parameters
following control impairment, i.e., using
reconfigurable control. In projection-based
methods, a new precomputed control law is
selected according to the required controller
structure (i.e., depending on the type of isolated
fault).

AFTC methods use online-fault accommoda-
tion based on unanticipated faults, classified as
(Patton 1997):
(a) Based on offline (pre-computed) control laws
(b) Online-fault accommodating

(c) Tolerant to unanticipated faults using
FDI/FDD/FE

(d) Dependent upon use of a baseline controller

AFTC Examples
One example of AFTC is model-based predictive
control (MPC) which uses online computed con-
trol redesign. MPC is online-fault accommodat-
ing; it does not use an FDI/FDD unit and is not
dependent on a baseline controller. MPC has a
certain degree of fault tolerance against actuator
faults under some conditions even if the faults are
not detected. The representation of actuator faults
in MPC is relatively natural and straightforward
since actuator faults such as jams and slew-rate
reductions can be represented by changing the
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MPC optimization problem constraints. Other
faults can be represented by modifying the inter-
nal model used by MPC (Maciejowski 1998). The
fact that online-fault information is not required
means that MPC is an interesting method for
flight control reconfiguration as demonstrated by
Maciejowski and Jones in the GARTEUR AG 16
project on “fault-tolerant flight control” (Edwards
et al. 2010).

Another interesting AFTC example that makes
use of the concept of model-matching in explicit
model following is the so-called pseudo-inverse
method (PIM) (Gao and Antsaklis 1992) which
requires the nominal or reference closed-loop
system matrix to compute the new controller gain
after a fault has occurred. The challenges are:
1. Guarantee of stability of the reconfigured

closed-loop system
2. Minimization of the time consumed to ap-

proach the acceptable matching
3. Achieving perfect matching through use of

different control methodologies
Exact model-matching may be too demanding,

and some extensions to this approach make
use of alternative, approximate (norm-based)
model-matching through the computation of
the required model-following gain. To relax
the matching condition further, Staroswiecki
(2005) proposed an admissible model-matching
approach which was later extended by Tornil
et al. (2010) using D-region pole assignment.
The PIM approach requires an FDI/FDD/FE
mechanism and is online-fault accommodating
only in terms of a priori anticipated faults.
This limits the practical value of this ap-
proach.

As a third example, feedback linearization
can be used to compensate for nonlinear dy-
namic effects while also implementing control
law reconfiguration or restructure. In flight con-
trol an aileron actuator fault will cause a strong
coupling between the lateral and longitudinal
aircraft dynamics. Feedback linearization is an
established technique in flight control (Ochi and
Kanai 1991). The faults are identified indirectly
by estimating aircraft flight parameters online,
e.g., using a recursive least-squares algorithm to
update the FTC.

Hence, a AFTC system provides fault
tolerance either by selecting a precomputed
control law (projection-based) (Boskovic and
Mehra 1999; Maybeck and Stevens 1991;
Rauch 1995) or by synthesizing a new control
strategy online (online controller redesign)
(Ahmed-Zaid et al. 1991; Richter et al.
2007; Efimov et al. 2012; Zou and Kumar
2011).

Another widely studied AFTC method is the
estimation and compensation approach, where
a fault compensation input is superimposed
on the nominal control input (Noura et al.
2000; Boskovic and Mehra 2002; Sami and
Patton 2013; Zhang et al. 2004). There is a
growing interest in robust FE methods based on
sliding mode estimation (Edwards et al. 2000)
and augmented observer methods (Gao and
Ding 2007; Jiang et al. 2006; Sami and Patton
2013).

An important development of this approach is
the so-called fault hiding strategy which is cen-
tered on achieving FTC loop goals such that the
nominal control loop remains unchanged through
the use of virtual actuators or virtual sensors
(Blanke et al. 2006; Sami and Patton 2013). Fault
hiding makes use of the difference between the
nominal and faulty system state to changes in the
system dynamics such that the required control
objectives are continuously achieved even if a
fault occurs. In the sensor fault case, the effect
of the fault is hidden from the input of the con-
troller. However, actuator faults are compensated
by the effect of the fault (Lunze and Steffen
2006; Richter et al. 2007; Ponsart et al. 2010;
Sami and Patton 2013) in which it is assumed
that the FDI/FDD or FE scheme is available.
The virtual actuator/sensor FTC can be good
practical value if FDI/FDD/FE robustness can be
demonstrated.

Traditional adaptive control methods that
automatically adapt controller parameters to
system changes can be used in a special
application of AFTC, potentially removing the
need for FDI/FDD and controller redesign steps
(Tang et al. 2004; Zou and Kumar 2011) but
possibly using the FE function. Adaptive control
is suitable for FTC on plants that have slowly



Fault-Tolerant Control 427

F

varying parameters and can tolerate actuator and
process faults. Sensor faults are not tolerated well
as the controller parameters must adapt according
to the faulty measurements, causing incorrect
closed-loop system operation; the FDI/FDD/FE
unit is required for such cases.

Summary and Future Directions

FTC is now a significant subject in control
systems science with many quite significant
application studies, particularly since the new
millennium. Most of the applications are within
the flight control field with studies such as
the GARTEUR AG16 project “Fault-Tolerant
Flight Control” (Edwards et al. 2010). As a very
complex engineering-led and mathematically
focused subject, it is important that FTC remains
application-driven to keep the theoretical con-
cepts moving in the right directions and satisfying
end-user needs. The original requirement for FTC
in safety-critical systems has now widened to en-
compass a good range of fault-tolerance require-
ments involving energy and economy, e.g., for
greener aircraft and for FTC in renewable energy.

Faults and modelling uncertainties as well as
endogenous disturbances have potentially com-
peting effects on the control system performance
and stability. This is the robustness problem in
FTC which is beyond the scope of this article.
The FTC system provides a degree of tolerance
to closed-loop systems faults and it is also subject
to the effects of modelling uncertainty arising
from the reality that all engineering systems are
nonlinear and can even have complex dynamics.
For example, consider the PFTC approach rely-
ing on robustness principles – as a more complex
extension to robust control. PFTC design requires
the closed-loop system to be insensitive to faults
as well as modelling uncertainties. This requires
the use of multi-objective optimization methods
e.g., using linear matrix inequalities (LMI), as
well as methods of accounting for dynamical sys-
tem parametric variations, e.g., linear parameter
varying (LPV) system structures, Takagi-Sugeno,
or sliding mode methods.
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Abstract

Effective methods exist for the control of linear
systems but this is less true for nonlinear systems.
Therefore, it is very useful if a nonlinear system
can be transformed into or approximated by a
linear system. Linearity is not invariant under
nonlinear changes of state coordinates and non-
linear state feedback. Therefore, it may be possi-
ble to convert a nonlinear system into a linear one
via these transformations. This is called feedback
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linearization. This entry surveys feedback lin-
earization and related topics.

Keywords

Distribution; Frobenius theorem; Involutive dis-
tribution; Lie derivative

Introduction

A controlled linear dynamics is of the form

Px D Fx CGu (1)

where the state x 2 IRn and the control u 2 IRm.
A controlled nonlinear dynamics is of the form

Px D f .x; u/ (2)

where x; u have the same dimensions but may
be local coordinates on some manifolds X ; U .
Frequently, the dynamics is affine in the control,
i.e.,

Px D f .x/C g.x/u (3)

where f .x/ 2 IRn�1 is a vector field and g.x/ D
Œg1.x/; : : : ; gm.x/� 2 IRn�m is a matrix field.

Linear dynamics are much easier to analyze
and control than nonlinear dynamics. For exam-
ple, to globally stabilize the linear dynamics (1),
all we need to do is to find a linear feedback law
u D Kx such that all the eigenvalues of F CGK

are in the open left half plane. Finding a feedback
law u D �.x/ to globally stabilize the nonlinear
dynamics is very difficult and frequently impos-
sible. Therefore, finding techniques to linearize
nonlinear dynamics has been a goal for several
centuries.

The simplest example of a linearization tech-
nique is to approximate a nonlinear dynamics
around a critical point by its first-order terms.
Suppose x0; u0 is an operating point for the
nonlinear dynamics (2), that is, f .x0; u0/ D 0.
Define displacement variables z D x � x0 and
v D u � u0, and assuming f .x; u/ is smooth

around this operating point, expand (2) to first
order

Pz D @f

@x
.x0; u0/z C @f

@u
.x0; u0/v

CO.z; v/2 (4)

Ignoring the higher order terms, we get a linear
dynamics (1) where

F D @f

@x
.x0; u0/; G D @f

@u
.x0; u0/

This simple technique works very well in
many cases and is the basis for many engineer-
ing designs. For example, if the linear feedback
v D Kz puts all the eigenvalues of F C GK

in the left half plane, then the affine feedback
u D u0 C K.x � x0/ makes the closed-loop
dynamics locally asymptotically stable around
x0. So, one way to linearize a nonlinear dynamics
is to approximate it by a linear dynamics.

The other way to linearize is by a nonlinear
change of state coordinates and a nonlinear state
feedback because linearity is not invariant under
these transformations. To see this, suppose we
have a controlled linear dynamics (1) and we
make the nonlinear change of state coordinates
z D �.x/ and nonlinear feedback u D �.z; v/.
We assume that these transformations are invert-
ible from some neighborhood of x0 D 0; u0 D 0

to some neighborhood of z0; v0, and the inverse
maps are

 .�.x// D x; �. .z/ D z

�. .z/; �.z; v// D v; �.�.x/; �.x; u// D u

then (1) becomes

Pz D @�

@x
.x/ .F x CGu/

D @�

@x
. .z// .F .z/CG�.z; v//

which is a controlled nonlinear dynamics (2).
This raises the question asked by Brockett (1978),
when is a controlled nonlinear dynamics a change
of coordinate and feedback away from a con-
trolled linear dynamics?
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Linearization of a Smooth Vector
Field

Let us start by addressing an apparently simpler
question that was first considered by Poincaré.
Given an uncontrolled nonlinear dynamics
around a critical point, say x0 D 0,

Px D f .x/; f .0/ D 0;

find a smooth local change of coordinates

z D �.x/; �.0/ D 0

which transforms it into an uncontrolled linear
dynamics.

Pz D F z:

This question is apparently simpler, but as we
shall see in the next section, the corresponding
question for a controlled nonlinear dynamics that
is affine in the control is actually easier to answer.

Without loss of generality, we can restrict our
attention to changes of coordinates which carry
x0 D 0 to z0 D 0 and whose Jacobian at this
point is the identity, i.e.,

z D x CO.x2/

then

F D @f

@x
.0/:

Poincaré’s formal solution to this problem was to
expand the vector field and the desired change of
coordinates in a power series,

Px D Fx C f Œ2�.x/CO.x3/

z D x � �Œ2�.x/

where f Œ2�; �Œ2� are n-dimensional vector fields,
whose entries are homogeneous polynomials
of degree 2 in x. A straightforward calculation
yields

Pz D F z C f Œ2�.x/ � �
Fx; �Œ2�.x/

�CO.x/3

where the Lie bracket of two vector fields
f .x/; g.x/ is the new vector field defined by

Œf .x/; g.x/� D @g

@x
.x/f .x/ � @f

@x
.x/g.x/:

Hence, �Œ2�.x/ must satisfy the so-called ho-
mological equation (Arnol’d 1983)

�
Fx; �Œ2�.x/

� D f Œ2�.x/:

This is a linear equation from the space of
quadratic vector fields to the space of quadratic
vector fields. The quadratic n-dimensional vector
fields form a vector space of dimension n times
nC 1 choose 2.

Poincaré showed that the eigenvalues of the
linear map

�Œ2�.x/ 7! �
Fx; �Œ2�.x/

�
(5)

are �i C�j ��k where �i ; �j ; �k are eigenvalues
of F . If none of these expressions are zero,
then the operator (5) is invertible. A degree two
resonance occurs when �i C �j � �k D 0 and
then the homological equation is not solvable for
all f Œ2�.x/.

Suppose a change of coordinates exists that
linearizes the vector field up to degree r . In the
new coordinates, the vector field is of the form

Px D Fx C f Œr�.x/CO.x/rC1:

We seek a change of coordinates of the form

z D x � �Œr�.x/

to cancel the degree r terms, i.e., we seek a
solution of the r th degree homological equation,

�
Fx; �Œr�.x/

� D f Œr�.x/:

A degree r resonance occurs if

�i1 C : : :C �ir � �k D 0:
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If there is no resonance of degree r , then the de-
gree r homological equation is uniquely solvable
for every f Œr�.x/.

When there are no resonances of any degree,
then the convergence of the formal power series
solution is delicate. We refer the reader to Arnol’d
(1983) for the details.

Linearization of a Controlled
Dynamics by Change of State
Coordinates

Given a controlled affine dynamics (3) when does
there exist a smooth local change of coordinates

z D �.x/; 0 D �.0/

transforming it to

Pz D F z CGu

where

F D @f

@x
.0/; G D g.0/

This is an easier question to answer than that of
Poincaré.

The controlled affine dynamics (3) is
said to have well-defined controllability
(Kronecker) indices if there exists a reordering of
g1.x/; : : : ; gm.x/ and integers r1 � r2 � � � � �
rm � 0 such that r1 C � � � C rm D n, and the
vector fields

˚
adk.f /gj W j D 1; : : : ; m; k D 0; : : : ; rj � 1

�

are linearly independent at each x where gi

denotes the i th column of g and

ad0.f /gi D gi ; adk.f /gi D �
f; adk�1.f /gi

�
:

If there are several sets of indices that satisfy this
definition, then the controllability indices are the
smallest in the lexicographic ordering.

A necessary and sufficient condition is that

�
adk.f /gi ; adl .f /gj

� D 0

for k D 0; : : : ; n � 1; l D 0; : : : ; n

The proof of this theorem is straightforward.
Under a change of state coordinates, the vector
fields and their Lie brackets are transformed by
the Jacobian of the coordinate change. Trivially
for linear systems,

adk.F x/Gi D .�1/kF kG
�
adk.F x/Gi ; adl .F x/Gj

� D 0:

Feedback Linearization

We turn to a question posed and partially an-
swered by Brockett (1978). Given a system affine
in the m-dimensional control

Px D f .x/C g.x/u;

find a smooth local change of coordinates and
smooth feedback

z D �.x/; u D ˛.x/C ˇ.x/v

transforming it to

Pz D F z CGv

Brockett solved this problem under the assump-
tions that ˇ is a constant and the control is a
scalar, m D 1. The more general question for
ˇ.x/ and arbitrarymwas solved in different ways
by Korobov (1979), Jakubczyk and Respondek
(1980), Sommer (1980), Hunt and Su (1981), Su
(1982), and Hunt et al. (1983).

We describe the solution when m D 1. If the
pair F; G is controllable, then there exist an H
such that

HF k�1G D 0 k D 1; : : : ; n � 1
HF n�1G D 1
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If the nonlinear system is feedback lineariz-
able, then there exists a function h.x/ D H�.x/

such that

Ladk�1.f /gh D 0 k D 1; : : : ; n � 1
Ladn�1.f /gh ¤ 0

where the Lie derivative of a function h by a
vector field g is given by

Lgh D @h

@x
g

This is a system of first-order PDEs, and the
solvability conditions are given by the classical
Frobenius theorem, namely, that

fg; : : : ; adn�2.f /gg

is involutive, i.e., its span is closed under Lie
bracket.

For controllable systems, this is a necessary
and sufficient condition. The controllability con-
dition is that fg; : : : ; adn�1.f /gg spans x space.

Suppose m D 2 and the system has controlla-
bility (Kronecker) indices r1 � r2. Such a system
is feedback linearizable iff

fg1; ; g2; : : : ; ad ri�2.f /g1; ad ri�2.f /g2g

is involutive for i D 1; 2. Another way of
putting is that the distribution spanned by the first
through r th rows of the following matrix must
be involutive for r D ri � 1; i D 1; 2. This is
equivalent to the distribution spanned by the first
through r th rows of the following matrix being
involutive for all r D 1; : : : ; r1.

2

6
6
6
6
66
6
6
6
6
66
4

g1 g2

ad.f /g ad.f /g2

:::
:::

ad r2�2.f /g1 ad r2�2.f /g2
ad r2�1.f /g1 ad r2�1.f /g2

:::

ad r1�2.f /g1
ad r1�1.f /g1

3

7
7
7
7
77
7
7
7
7
77
5

One might ask if it is possible to use dynamic
feedback to linearize a system that is not lineariz-
able by static feedback. Suppose we treat one of
the controls uj as a state and let its derivative be
a new control,

Puj D Nuj
can the resulting system be linearized by state
feedback and change of state coordinates?
Loosely speaking, the effect of adding such
an integrator to the j th control is to shift the
j th column of the above matrix down by one
row. This changes the distribution spanned by
the first through r th rows of the above matrix
and might make it involutive. A scalar input
system m D 1 that is linearizable by dynamic
state feedback is also linearizable by static state
feedback. There are multi-input systems m > 1

that are dynamically linearizable but not statically
linearizable (Charlet et al. 1989, 1991).

The generic system is not feedback lineariz-
able, but mechanical systems with one actuator
for each degree of freedom typically are feedback
linearizable. This fact had been used in many
applications, e.g., robotics, before the concept of
feedback linearization.

One should not lose sight of the fact that sta-
bilization, model-matching, or some other perfor-
mance criterion is typically the goal of controller
design. Linearization is a means to the goal.
We linearize because we know how to meet the
performance goal for linear systems.

Even when the system is linearizable, finding
the linearizing coordinates and feedback can be
a nontrivial task. Mechanical systems are the ex-
ception as the linearizing coordinates are usually
the generalized positions. Since the adk�1.f /g
for k D 1; : : : ; n � 1 are characteristic directions
of the PDE for h, the general solutions of the
ODE’s

Px D adk�1.f /g.x/

can be used to construct the solution (Blanken-
ship and Quadrat 1984). The Gardner-Shadwick
(GS) algorithm (1992) is the most efficient
method that is known.

Linearization of discrete time systems was
treated by Lee et al. (1986). Linearization of
discrete time systems around an equilibrium
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manifold was treated by Barbot et al. (1995) and
Jakubczyk (1987). Banaszuk and Hauser have
also considered the feedback linearization of
the transverse dynamics along a periodic orbit,
(Banaszuk and Hauser 1995a,b).

Input–Output Linearization

Feedback linearization as presented above ig-
nores the output of the system but typically one
uses the input to control the output. Therefore,
one wants to linearize the input–output response
of the system rather than the dynamics. This was
first treated in Isidori and Krener (1982) and
Isidori and Ruberti (1984).

Consider a scalar input, scalar output system
of the form

Px D f .x/C g.x/u; y D h.x/

The relative degree of the system is the number of
integrators between the input and the output. To
be more precise, the system is of relative degree
r � 1 if for all x of interest,

Ladj .f /gh.x/ D 0 j D 0; : : : ; r � 2
Ladr�1.f /gh.x/ ¤ 0

In other words, the control appears first in the r th
time derivative of the output. Of course, a system
might not have a well-defined relative degree as
the r might vary with x.

Rephrasing the result of the previous section,
a scalar input nonlinear system is feedback lin-
earizable if there exist an pseudo-output map
h.x/ such the resulting scalar input, scalar output
system has a relative degree equal to the state
dimension n.

Assume we have a scalar input, scalar out-
put system with a well-defined relative degree
1 � r � n. We can define r partial coordinate
functions

�i .x/ D .Lf /
i�1h.x/ i D 1; : : : ; r

and choose n � r functions 	i .x/; i D 1; : : : ;

n� r so that .�; 	/ are a full set of coordinates on
the state space. Furthermore, it is always possible
(Isidori 1995) to choose 	i .x/ so that

Lg	i .x/ D 0 i D 1; : : : ; n � r
In these coordinates, the system is in the nor-

mal form

y D �1

P�1 D �2

:::

P�r�1 D �r

P�r D fr.�; 	/C gr .�; 	/u

P	 D �.�; 	/

The feedback u D u.�; 	; v/ defined by

u D .v � fr.�; 	//
gr .�; 	/

transforms the system to

y D H�

P� D F � CGv

P	 D �.�; 	/

whereF; G; H are the r�r; r�1; 1�r matrices

F D

2

6
6
6
6
6
4

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

0 0 0 : : : 0

3

7
7
7
7
7
5

G D

2

6
6
6
6
6
4

0

0
:::

0

1

3

7
7
7
7
7
5

H D �
1 0 0 : : : 0

�
:

The system has been transformed into a string
of integrators plus additional dynamics that is
unobservable from the output.

By suitable choice of additional feedback v D
K�, one can insure that the poles of F C GK

are stable. The stability of the overall system then
depends on the stability of the zero dynamics
(Byrnes and Isidori 1984, 1988),
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P	 D �.0; 	/

If this is stable, then the overall system will be
stable. The zero dynamics is so-called because
it is the dynamics that results from imposing the
constraint y.t/ D 0 on the system. For this to be
satisfied, the initial value must satisfy �.0/ D 0

and the control must satisfy

u.t/ D �fr.0; 	.t//
gr .0; 	.t//

Similar results hold in the multiple input, multi-
ple output case, see Isidori (1995) for the details.

Approximate Feedback Linearization

Since so few controlled dynamics are exactly
feedback linearizable, Krener (1984) introduced
the concept of approximate feedback lineariza-
tion. The goal is to find a smooth local change
of coordinates and a smooth feedback

z D �.x/; u D ˛.x/C ˇ.x/v

transforming the affinity controlled dynamics
(3) to

Pz D F z CGv CN.x; u/

where the nonlinearity N.x; u/ is small in some
sense. In the design process, the nonlinearity is
ignored, and the controller design is done on the
linear model and then transformed back into a
controller for the original system.

The power series approach of Poincaré was
taken by Krener et al. (1987, 1988, 1991), Krener
(1990), and Krener and Maag (1991). See also
Kang (1994). It is applicable to dynamics which
may not be affine in the control. The controlled
nonlinear dynamics (2), the change of coordi-
nates, and the feedback are expanded in a power
series

Px D Fx CGu C f Œ2�.x; u/CO.x; u/3

z D x � �Œ2�.x/

v D u � ˛Œ2�.x; u/

The transformed system is

Pz D F z CGv C f Œ2�.x; u/

� �Fx CGu; �Œ2�.x/
�CG˛Œ2�.x; u/

CO.x; u/3

To eliminate the quadratic terms, one seeks a
solution of the degree two homological equations
for �Œ2�; ˛Œ2�

�
Fx CGu; �Œ2�.x/

� �G˛Œ2�.x; u/ D f Œ2�.x; u/

Unlike before, the degree two homological
equations are not square. Almost always, the
number of unknowns is less than the number of
equations. Furthermore, the the mapping

�
�Œ2�.x/; ˛Œ2�.x; u/

� 7! �
Fx CGu; �Œ2�.x/

�

�G˛Œ2�.x; u/

is less than full rank. Hence, only an approximate,
e.g., a least squares solution, is possible.
Krener has written a MATLAB toolbox
(http://www.math.ucdavis.edu/ krener 1995)
to compute term by term solutions to the
homological equations. The routine fh2f_h_.m
sequentially computes the least square solutions
of the homological equations to arbitrary
degree.

Observers with Linearizable Error
Dynamics

The dual of linear state feedback is linear input–
output injection. Linear input–output injection is
the transformation carrying

Px D Fx CGu

y D Hx

http://www.math.ucdavis.edu/
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into

Px D Fx C Bu C Ly CM u

y D Hx

Linear input–output injection and linear change
of state coordinates

Px D Fx C Bu C Ly CM u

y D Hx

z D T x

Pz D TF T �1x C TLy C TM u

define a group action on the class of linear sys-
tems. Of course, output injection is not physically
realizable on the original system, but it is realiz-
able on the observer error dynamics.

Nonlinear input–output injection is not well
defined independent of the coordinates; input–
output injection in one coordinate system does
not look like input–output injection in another
coordinate system.

If a system

Px D f .x; u/; y D h.x/

can be transformed by nonlinear changes of state
and output coordinates

z D �.x/; w D �.y/

to a linear system with nonlinear input–output
injection

Pz D F z CGu C ˛.y; u/

w D H z

then the observer

POz D .F C LH/Oz CGu C ˛.y; u/ � Lw

has linear error dynamics

Qz D z � Oz
PQz D .F C LH/Qz

IfH;F is detectable, then F CLH can be made
Hurwitz, i.e., all its eigenvalues are in the open
left half plane.

The case when � D identity, there are no
inputsm D 0 and one output p D 1,

Px D f .x/

y D h.x/

was solved by Krener and Isidori (1983) and
Bestle and Zeitz (1983) when the pair H;F
defined by

F D @f

@x
.0/

H D @h

@x
.0/

is observable.
One seeks a change of coordinates z D �.x/

so that the system is linear up to output injection

Pz D F z C ˛.y/

y D H z

If they exist, the z coordinates satisfy the PDE’s

Ladn�k.f /g.zj / D ık;j

where the vector field g.x/ is defined by

LgL
k�1
f h D

8
<

:

0 1 � k < n

1 k D n

The solvability conditions for these PDE’s are
that for 1 � k < l � n � 1

�
adk�1.f /g; ad l�1.f /g

� D 0:

The general case with �;m; p arbitrary was
solved by Krener and Respondek (1985). The
solution is a three-step process. First, one must
set up and solve a linear PDE for �.y/. The
integrability conditions for this PDE involve the
vanishing of a pseudo-curvature (Krener 1986).
The next two steps are similar to the above.
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One defines a vector field gj ; 1 � j � p for
each output, these define a PDE for the change
of coordinates, for which certain integrability
conditions must be satisfied. The process is more
complicated than feedback linearization and even
less likely to be successful so approximate solu-
tions must be sought which we will discuss later
in this section. We refer the reader Krener and
Respondek (1985) and related work Zeitz (1987)
and Xia and Gao (1988a,b, 1989).

Very few systems can be linearized by change
of state coordinates and input–output injection, so
Krener et al. (1987, 1988, 1991), Krener (1990),
and Krener and Maag (1991) sought approximate
solutions by the power series approach. Again,
the system, the changes of coordinates, and the
output injection are expanded in a power series.
See the above references for details.

Conclusion

We have surveyed the various ways a nonlinear
system can be approximated by a linear system.

Cross-References

�Differential Geometric Methods in Nonlinear
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�Nonlinear Zero Dynamics
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Abstract

We consider the simplest design problem for non-
linear systems: the problem of rendering asymp-
totically stable a given equilibrium by means of
state feedback. For such a problem, we provide
a necessary condition, known as Brockett condi-
tion, and a sufficient condition, which relies upon
the definition of a class of functions, known as
control Lyapunov functions. The theory is illus-
trated by means of a few examples. In addition,
we discuss a nonlinear enhancement of the so-
called separation principle for stabilization by
means of partial state information.

Keywords

Brockett theorem; Control Lyapunov function;
Output feedback; State feedback

Introduction

The problem of feedback stabilization, namely,
the problem of designing a feedback control law
locally, or globally, asymptotically stabilizing a
given equilibrium point, is the simplest design

http://www.math.ucdavis.edu/~krener/1995
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problem for nonlinear systems. If the state of
the system is available for feedback, then the
problem is referred to as the state feedback stabi-
lization problem, whereas if only part of the state,
for example, an output signal, is available for
feedback, the problem is referred to as the partial
state feedback (or output feedback) stabilization
problem. We initially focus on the state feedback
stabilization problem, which can be formulated as
follows.

Consider a nonlinear system described by the
equation

Px D F.x; u/; (1)

where x.t/ 2 IRn denotes the state of the system,
u.t/ 2 IRm denotes the input of the system, and
F W IRn � IRm ! IRn is a smooth mapping.

Let x0 2 IRn be an achievable equilibrium,
i.e., x0 is such that there exists a constant u0 2
IRm such that F.x0; u0/ D 0: The state feedback
stabilization problem consists in finding, if possi-
ble, a state feedback control law, described by the
equation

u D ˛.x/; (2)

with ˛ W IRn ! IRm, such that the equilibrium
x0 is a locally asymptotically stable equilibrium
for the closed-loop system

Px D F.x; ˛.x//: (3)

Alternatively, one could require that the equilib-
rium be globally asymptotically stable. Note that
it is not always possible to extend local properties
to global properties. For example, for the system
described by the equations Px1 D x2.1 � x21/,
Px2 D u, with x1.t/ 2 IR, x2.t/ 2 IR, and
u.t/ 2 IR, it is not possible to design a feedback
law which renders the zero equilibrium globally
asymptotically stable.

If only partial information on the state is
available, then one has to resort to a dynamic
output feedback controller, namely, a controller
described by equations of the form

P	 D ˇ.	; y/; u D ˛.	/; (4)

where 	.t/ 2 IR
 describes the state of the
controller, y.t/ 2 IRp is given by y D h.x/,
for some mapping h W IRn ! IRp, and describes
the available information on the state x, and ˇ W
IR
�IRp ! IR
 and ˛ W IR
 ! IRm are smooth
mappings. Within this scenario, the stabilization
problem boils down to selecting the (nonnega-
tive) integer 
 (i.e., the order of the controller),
a constant 	0 2 IR
 , and the mappings ˛ and ˇ
such that the closed-loop system

Px D F.x; ˛.	//; P	 D ˇ.	; h.x//; (5)

has a locally (or globally) asymptotically stable
equilibrium at .x0; 	0/. Alternatively, one may
require that the equilibrium .x0; 	0/ of the closed-
loop system (5) be locally asymptotically stable
with a region of attraction that contains a given,
user-specified, set.

The rest of the entry is organized as follows.
We begin discussing two key results. The first
is a necessary condition, due to R.W. Brockett,
for continuous stabilizability. This provides an
obstruction to the solvability of the problem and
can be used to show that, for nonlinear systems,
controllability does not imply stabilizability by
continuous feedback. The second one is the ex-
tension of the Lyapunov direct method to systems
with control. The main idea is the introduction
of a control version of Lyapunov functions, the
control Lyapunov functions, which can be used
to design stabilizing control laws by means of a
universal formula. We then describe two classes
of systems for which it is possible to construct,
with systematic procedures, smooth control laws
yielding global asymptotic stability of a given
equilibrium: systems in feedback and in feedfor-
ward form. There are several other constructive
and systematic stabilization methods which have
been developed in the last few decades. Worth
mentioning are passivity-based methods and cen-
ter manifold-based methods.

We conclude the entry describing a nonlin-
ear version of the separation principle for the
asymptotic stabilization, by output feedback, of
a general class of nonlinear systems.
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Preliminary Results

To highlight the difficulties and peculiarities of
the nonlinear stabilization problem, we recall
some basic facts from linear systems theory and
exploit such facts to derive a sufficient condition
and a necessary condition. In the case of linear
systems, i.e., systems described by the equation
Px D Ax C Bu, with A 2 IRn�n and B 2 IRn�m,
and linear state feedback, i.e., feedback described
by the equation u D Kx, with K 2 IRm�n, the
stabilization problem boils down to the problem
of placing, in the complex plane, the eigenvalues
of the matrix ACBK to the left of the imaginary
axis. This problem is solvable if and only if the
uncontrollable modes of the system are located,
in the complex plane, to the left of the imaginary
axis.

The linear theory may be used to provide
a simple obstruction to feedback stabilizability
and a simple sufficient condition. Let x0 be an
achievable equilibrium with u0 D 0 and note
that the linear approximation of the system (1)
around x0 is described by an equation of the form
Px D Ax C Bu.

If for anyK 2 IRm�n the condition

�.AC BK/\ CC ¤ ; (6)

holds, then the equilibrium of the nonlinear sys-
tem cannot be stabilized by any continuously
differentiable feedback such that ˛.x0/ D 0.
The notation �.A/ denotes the spectrum of the
matrixA, i.e., the eigenvalues ofA. Note however
that, if the condition ˛.x0/ D 0 is dropped, the
obstruction does not hold: the zero equilibrium of
Px D xC xu is not stabilizable by any continuous
feedback such that ˛.0/ D 0, yet the feedback
u D �2 is a (global) stabilizer.

On the contrary, if there exists a K such that

�.AC BK/ � C�

then the feedback ˛.x/ D Kx locally asymptot-
ically stabilizes the equilibrium x0 of the closed-
loop system. This fact is often referred to as the
linearization approach.

The above linear arguments are often inade-
quate to design feedback stabilizers: a theory for
nonlinear feedback has to be developed. How-
ever, this theory is much more involved. In partic-
ular, it is important to observe that the solvability
of the stabilization problem may depend upon
the regularity properties of the feedback, i.e.,
of the mapping ˛. In fact, a given equilibrium
of a nonlinear system may be rendered locally
asymptotically stable by a continuous feedback,
whereas there may be no continuously differen-
tiable feedback achieving the same goal. If the
feedback is required to be continuously differen-
tiable, then the problem is often referred to as the
smooth stabilization problem.

Example 1 To illustrate the role of the regularity
properties of the feedback, consider the system
described by the equations

Px1 D x1 � x32 ; Px2 D u;

with x1.t/ 2 IR, x2.t/ 2 IR, and u.t/ 2 IR, and
the equilibrium x0 D .0; 0/. The equilibrium is
globally asymptotically stabilized by the contin-
uous feedback

˛.x/ D �x2 C x1 C 4

3
x
1
3

1 � x32 ;

but it is not stabilizable by any continuously dif-
ferentiable feedback. Note, in fact, that condition
(6) holds.

Brockett Theorem

Brockett’s necessary condition, which is far from
being sufficient, provides a simple test to rule out
the existence of a continuous stabilizer.

Theorem 1 Consider the system (1) and assume
x0 D 0 is an achievable equilibrium with u0 D 0.

Assume there exists a continuous stabilizing
feedback u D ˛.x/. Then, for each – > 0 there
exists ı > 0 such that, for all y with jjyjj < ı, the
equation y D F.x; u/ has at least one solution in
the set jjxjj < –; jjujj < –:
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Theorem 1 can be reformulated as follows.
The existence of a continuous stabilizer implies
that the image of the mapping F W IRn � IRm !
IRn covers a neighborhood of the origin. Note, in
addition, that the obstruction expressed by Theo-
rem 1 is of topological nature. Hence, it requires
continuity of F and ˛, and time invariance: it
does not hold if u D ˛.x; t/, i.e., a time-varying
feedback is designed.

In the linear case, Brockett condition reduces
to the condition

rankŒA � �I; B� D n

for � D 0. This is a necessary, but clearly not
sufficient, condition for the stabilizability of Px D
Ax C Bu:

Example 2 Consider the kinematic model of a
mobile robot given by the equations

Px D cos � v;
Py D sin � v;
P� D !;

where .x.t/; y.t// 2 IR2 denotes the Cartesian
position of the robot, �.t/ 2 .�; � denotes
the robot orientation (with respect to the x-axis),
v.t/ 2 IR is the forward velocity of the robot,
and !.t/ 2 IR is its angular velocity. Simple
intuitive considerations suggest that the system
is controllable, i.e., it is possible to select the
forward and angular velocities to drive the robot
from any initial position/orientation to any final
position/orientation in any given positive time.
Nevertheless, the zero equilibrium (and any other
equilibrium of the system) is not continuously
stabilizable. In fact, the equations

y1 D cos � v; y2 D sin � v; y3 D !;

with jj.y1; y2; y3/jj < ı and jj.x; y; �/jj < –,
jj.v; !/jj < –, are in general not solvable. For
example, if – < =2 and y1 D 0; y2 ¤ 0; y3 D
0, then the unique solution of the first and third
equations is v D 0 and ! D 0, implying
sin � v D 0; hence, the second equation does not
have a solution.

Control Lyapunov Functions

The Lyapunov theory states that the equilibrium
x0 of the system

Px D f .x/;

with f W IRn ! IRn, is locally asymptotically
stable if there exists a continuously differentiable
function V W IRn ! IR, called Lyapunov
function, and a neighborhood U of x0 such that
V.x0/ D 0, V.x/ > 0, for all x 2 U and x ¤ x0,
and @V

@x
f .x/ < 0, for all x 2 U and x ¤ x0.

To apply this idea to the stabilization problem,
consider the system (1). If the equilibrium x0 of
Px D F.x; u/ is continuously stabilizable, then
there must exist a continuously differentiable
function V and a neighborhoodU of x0 such that

inf
u

@V

@x
F.x; u/ < 0;

for all x 2 U and x ¤ x0. This motivates the
following definition.

Definition 1 A continuously differentiable func-
tion V such that
• V.x0/ D 0 and V.x/ > 0, for all x 2 U and
x ¤ x0,

• inf
u

@V

@x
F.x; u/ < 0, for all x 2 U and x ¤

x0,
is called a control Lyapunov function.

By Lyapunov theory, the existence of a contin-
uous stabilizer implies the existence of a control
Lyapunov function. On the other hand, the ex-
istence of a control Lyapunov function does not
guarantee the existence of a stabilizer. However,
in the case of systems affine in the control, i.e.,
systems described by the equation

Px D f .x/C g.x/u; (7)

with f W IRn ! IRn and g W IRn ! IRn�m
smooth mappings, very general results can be
proven. These have been proven by Z. Artstein,
who gave a nonconstructive statement, and have
been given a constructive form by E.D. Sontag.
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In particular, for single-input nonlinear systems,
the following statement holds.

Theorem 2 Consider the system (7), with m D
1, and assume f .0/ D 0.

There exists an almost smooth feedback, i.e.,
the feedback ˛.x/ is continuously differentiable
for all x 2 IRn and x ¤ 0, and continuous at
x D 0 which globally asymptotically stabilizes
the equilibrium x D 0 if and only if there
exists a positive definite, radially unbounded, i.e.,

lim
kxk!1

V.x/ D 1 and smooth function V.x/

such that

1.
@V

@x
g.x/ D 0 ) @V

@x
f .x/ < 0, for all

x ¤ 0;
2. For each – > 0 there is a ı > 0 such that

jjxjj < ı implies that there is a juj < – such
that

@V

@x
f .x/C @V

@x
g.x/u < 0:

Condition 2 is known as the small control
property, and it is necessary to guarantee continu-
ity of the feedback at x D 0. If Conditions 1 and 2
hold, then an almost smooth feedback is given by
the so-called Sontag’s universal formula:

˛.x/ D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

0; if
@V

@x
g.x/ D 0;

�
@V
@x
f .x/C

q�
@V
@x
f .x/

�2 C �
@V
@x
g.x/

�4

@V
@x
g.x/

; elsewhere:

Constructive Stabilization

We now introduce two classes of nonlinear sys-
tems for which systematic design methods to
solve the state feedback stabilization problem are
available.

Feedback Systems
Consider a nonlinear system described by equa-
tions of the form

Px1 D f1.x1; x2/; Px2 D u; (8)

with x1.t/ 2 IRn, x2.t/ 2 IR, u.t/ 2 IRn

and f1.0; 0/ D 0. This system belongs to
the so-called class of feedback systems for
which a sort of reduction principle holds: the
zero equilibrium of the system is smoothly
stabilizable if the same holds for the reduced
system Px1 D f .x1; v/, which is obtained from
the first of Eq. (8) replacing the state variable
x2 with a virtual control input v. To show this
property, suppose there exist a continuously
differentiable function ˛1 W IRn ! IR and

a continuously differentiable and radially
unbounded function V1 W IRn ! IR such that
V1.0/ D 0, V1.x1/ > 0, for all x1 ¤ 0, and

@V1

@x1
f .x1; ˛1.x1// < 0;

for all x1 ¤ 0, i.e., the zero equilibrium of the
system Px1 D f .x1; v/ is globally asymptotically
stabilizable.

Consider now the function

V.x1; x2/ D V1.x1/C 1

2
.x2 � ˛1.x1//

2 ;

which is radially unbounded and such that
V.0; 0/ D 0 and V.x1; x2/ > 0 for all nonzero
.x1; x2/, and note that

PV D @V1

@x1
f .x1; x2/C .x2 � ˛1.x1//

�.u C�1.x1; x2//

D @V1

@x1
f .x1; ˛1.x1//C .x2 � ˛1.x1//

�.u C�2.x1; x2//;



442 Feedback Stabilization of Nonlinear Systems

for some continuously differentiable mappings
�1 and �2. As a result, the feedback

˛.x1; x2/ D ��2.x1; x2/� k.x2 � ˛1.x1//;

with k > 0, yields PV < 0 for all nonzero .x1; x2/;
hence, the feedback is a continuously differen-
tiable stabilizer for the zero equilibrium of the
system (8). Note, finally, that the function V is
a control Lyapunov for the system (8); hence,
Sontag’s formula can be also used to construct a
stabilizer.

The result discussed above is at the basis of the
so-called backstepping technique for recursive
stabilization of systems described, for example,
by equations of the form

Px1 D x2 C '1.x1/;

Px2 D x3 C '2.x1; x2/;

Px3 D x4 C '3.x1; x2; x3/;
:::

Pxn D u C 'n.x1; : : : ; xn/;

with xi .t/ 2 IR for all i 2 Œ1; n�, and 'i smooth
mappings such that 'i .0/ D 0, for all i 2 Œ1; n�.

Feedforward Systems
Consider a nonlinear system described by equa-
tions of the form

Px1 D f1.x2/; Px2 D f2.x2/C g2.x2/u; (9)

with x1.t/ 2 IR, x2.t/ 2 IRn, u.t/ 2 IR,
f1.0/ D 0 and f2.0/ D 0. This system belongs
to the so-called class of feedforward systems for
which, similarly to feedback systems, a sort of
reduction principle holds: the zero equilibrium
of the system is smoothly stabilizable if the zero
equilibrium of the reduced system Px2 D f .x2/

is globally asymptotically stable and some ad-
ditional structural assumption holds. To show
this property, suppose there exists a continuously
differentiable and radially unbounded function
V2 W IRn ! IR such that V2.0/ D 0, V2.x2/ > 0,
for all x2 ¤ 0, and

@V2

@x2
f2.x2/ < 0;

for all x2 ¤ 0. Suppose, in addition, that there ex-
ists a continuously differentiable mappingM.x2/
such that

f1.x2/� @M

@x2
f2.x2/ D 0;

M.0/ D 0 and
@M

@x2

ˇ
ˇ
ˇ̌
x2D0

¤ 0: Existence of such

a mapping is guaranteed, for example, by asymp-
totic stability of the linearization of the system
Px2 D f2.x2/ around the origin and controllability
of the linearization of the system (9) around the
origin.

Consider now the function

V.x1; x2/ D 1

2
.x1 �M.x2//2 C V2.x2/;

which is radially unbounded and such that
V.0; 0/ D 0 and V.x1; x2/ > 0 for all nonzero
.x1; x2/, and note that

PV D �.x1 �M.x2//
@M

@x2
g2.x2/u C @V2

@x2
f2.x2/

C@V2

@x2
g2.x2/u

D @V2

@x2
f2.x2/C

�
@V2

@x2
� .x1 �M.x2//@M

@x2

�

�g2.x2/u:

As a result, the feedback

˛.x1; x2/ D �k
�
@V2

@x2
� .x1 �M.x2//

@M

@x2

�

�g2.x2/;

with k > 0, yields PV < 0 for all nonzero .x1; x2/;
hence, the feedback is a continuously differen-
tiable stabilizer for the zero equilibrium of the
system (9). Note, finally, that the function V is
a control Lyapunov for the system (9); hence,
Sontag’s formula can be also used to construct a
stabilizer.

The result discussed above is at the basis of
the so-called forwarding technique for recursive
stabilization of systems described, for example,
by equations of the form
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Px1 D '1.x2; : : : ; xn/;

Px2 D '2.x3; : : : ; xn/;
:::

Pxn�1 D 'n�1.xn/;
Pxn D u;

with xi .t/ 2 IR for all i 2 Œ1; n�, and 'i smooth
mappings such that 'i .0/ D 0, for all i 2 Œ1; n�.

Stabilization via Output Feedback

In the previous sections, we have studied the
stabilization problem for nonlinear systems
under the assumption that the whole state
is available for feedback. This requires
the online measurement of the state vector
x, which may pose a severe constrain in
applications. This observation motivates the
study of the much more challenging, but
more realistic, problem of stabilization with
partial state information. This problem requires
the introduction of a notion of observabil-
ity. Note that for nonlinear systems, it is
possible to define several, nonequivalent, ob-
servability notions. Similarly to section “Control
Lyapunov Functions”, we focus on the class of
systems affine in the control, i.e., systems
described by equations of the form

Px D f .x/C g.x/u;
y D h.x/;

(10)

with f W IRn ! IRn, g W IRn ! IRn�m and
h W IRn ! IRp smooth mappings. This is
precisely the class of systems in Eq. (7) with
the addition of the output map h, i.e., a map
which describes the information that is available
for feedback. In addition, we assume, to simplify
the notation, that m D 1 and p D 1: the system
is single input, single output. Finally assume,
without loss of generality, that the equilibrium
to be stabilized is x0 D 0, that any stabilizing
state feedback control law u D ˛.x/ is such that
˛.0/ D 0, and that h.0/ D 0.

To define the observability notion of interest,
consider the sequence of mappings

�0.x/ D h.x/;

�1.x; v0/ D @�0

@x

Œf .x/C g.x/v0� ;

�2.x; v0; v1/D @�1

@x
Œf .x/C g.x/v0�

C@�1

@v0
v1;

� � �
�k.x; v0; v1; � � � ; vk�1/ D @�k�1

@x

� Œf .x/C g.x/v0�

C
k�2X

iD0

@�k�1
@vi

viC1;

(11)

with k � n. Note that if u.t/ is of class Ck�1,
then

y.k/.t/ D �k.x.t/; u.t/; � � � ; u.k�1/.t//;

where the notation y.k/.t/, with k positive inte-
ger, is used to denote the k-th order derivative of
the function y.t/, provided it exists. The map-
pings �0 to �n�1 can be collected into a unique
mappingˆ W IRn � IRn�1 ! IRn defined as

ˆ.x; v0; v1; � � � ; vn�2/

D

2

6
6
6
4

�0.x/

�1.x; v0/
:::

�n�1.x; v0; v1; � � � ; vn�2/

3

7
7
7
5
:

The mapping ˆ is, by construction, such that

ˆ.x.t/; u.t/; Pu.t/; � � � ; u.n�2/.t//

D �
y.t/ Py.t/ � � � y.n�1/.t/

�0
;

for any t in which the indicated signals exist. As
a consequence, if the mapping ˆ is such that, as
some point . Nx; Nv/, where Nv D � Nv0 Nv1 � � � Nvn�2

�0
,
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rank
@ˆ

@x
. Nx; Nv/ D n; (12)

then, by the Implicit Function Theorem, there
exists locally around . Nx; Nv/ a smooth mapping
‰ W IRn � IRn�1 ! IRn such that

! D ˆ.‰.!; v/; v/;

i.e., the mapping ‰ is the inverse of ˆ, parame-
terized by v. We conclude the discussion noting
that if, at a certain time Nt , Nx D x.Nt / and Nv D�

u.Nt/ Pu.Nt/ � � � u.n�2/.Nt/ �0 are such that the rank
condition (12) holds, then the mapping ‰ can be
used to reconstruct the state of the system from
measurements of the input, and its derivatives,
and the output and its derivatives, for all t in a
neighborhood of Nt : x.t/ D ‰.!.t/; v.t//; for all
t in a neighborhood of Nt , where

v.t/ D �
u.t/ Pu.t/ � � � u.n�2/.t/

�0
;

!.t/ D �
y.t/ Py.t/ � � � y.n�1/.t/

�0
: (13)

This property is a local property: to derive a
property which allows a global reconstruction of
the state, we need to impose additional condi-
tions.

Definition 2 Consider the system (10) withm D
p D 1. The system is said to be uniformly
observable if:
(i) The mappingH W IRn ! IRn defined as

H.x/ D

2

6
6
6
4

h.x/

Lf h.x/
:::

Ln�1
f h.x/

3

7
7
7
5

is a global diffeomorphism. The functions
Lif h, with i nonnegative integer, are defined

as Lf h.x/ D L1f h.x/ D @h
@x
f .x/ and,

recursively, as LiC1f h.x/ D Lf .L
i
f h.x//.

(ii) The rank condition (12) holds for all .x; v/ 2
IRn � IRn�1.

The notion of uniform observability allows to
perform a global reconstruction of the state, i.e.,
it makes sure that the identities

! D ˆ.‰.!; v/; v/ x D ‰.ˆ.x; v/; v/

hold for all x, v and !. In principle, this property
may be used in an output feedback control archi-
tecture obtained implementing a stabilizing state
feedback u D ˛.x/ as u D ˛.‰.!; v//, with v
and ! as given in (13). This implementation is
however not possible, since it gives an implicit
definition of u and requires the exact differentia-
tion of the input and output signals.

To circumvent these difficulties, one needs
to follow a somewhat longer path, as described
hereafter. In addition, the global asymptotic sta-
bility requirement should be replaced by a less
ambitious, yet practically meaningful, require-
ment: semi-global asymptotic stability. This re-
quirement can be formalized as follows.

Definition 3 The equilibrium x0 of the system
(1), or (7), is said to be semi-globally asymptot-
ically stabilizable if, for each compact set K �
IRn such that x0 2 int.K/, i.e. the set of all
interior points of K, there exists a feedback con-
trol law, possibly depending on K, such that the
equilibrium x0 is a locally asymptotically stable
equilibrium of the closed-loop system and for any
x.0/ 2 K one has lim

t!1x.t/ D x0.

To bypass the need for the derivatives of the
input signal, consider the extended system

Px D f .x/C g.x/v0; Pv0 D v1;

Pv1 D v2; � � � Pvn�1 D Qu: (14)

Note that, as described in section “Feedback
Systems”, if the equilibrium x0 D 0 of the system
Px D f .x/ C g.x/u is globally asymptotically
stabilizable by a (smooth) feedback u D ˛.x/,
then there exists a smooth state feedback
Qu D Q̨ .x; v0; v1; � � � ; vn�1/ which globally
asymptotically stabilizes the zero equilibrium
of the system (14). In the feedback Q̨ , one can
replace x with  .!; v/, thus yielding a feedback
of the measurable part of the state of the system
(14) and of the output y and its derivatives. Note
that if !.t/ D �

y.t/ Py.t/ � � � y.n�1/.t/
�0

, then
the feedback Qu D Q̨ . .!; v/; v0; v1; � � � ; vn�1/
globally asymptotically stabilizes the zero
equilibrium of the system (14).
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To avoid the computation of the derivatives
of y, we exploit the uniform observability
property, which implies that the auxiliary
system

P�0 D �1;

P�1 D �2;
:::

P�n�1 D �n. .�; v/; v0; v1; � � � ; vn�1/;

(15)

with � D �
�0; �1; � � � ; �n�1

�0
, has the property

of reproducing y.t/ and its derivatives up to
y.n�1/.t/ if properly initialized. This initializa-
tion is not feasible, since it requires the knowl-
edge of the derivative of the output at t D 0.
Nevertheless, the auxiliary system (15) can be
modified to provide an estimate of y and its
derivatives. The modification is obtained adding
a linear correction term yielding the system

P�0 D �1 C L cn�1.y � �0/;

P�1 D �2 C L2 cn�2.y � �0/;
:::

P�n�1 D �n. .�; v/; v0; v1; � � � ; vn�1/ C Ln c0.y � �0/;
(16)

with L > 0 and the coefficients c0, � � � , cn�1 such
that all roots of the polynomial �n C cn�1�n�1 C
c1� C c0 are in C�. The system (16) has the
ability to provide asymptotic estimates of y and
its derivatives up to y.n�1/ provided these are
bounded and the gain L is selected sufficiently
large, i.e., the system (16) is a semi-global ob-
server of y and its derivatives up to y.n�1/.

The closed-loop system obtained using the
feedback law Qu D Q̨ . .�; v/; v0; v1; � � � ; vn�1/
has a locally asymptotically stable equilibrium at
the origin. To achieve semi-global stability, one
has to select L sufficient large and replace  
with

Q .�; v/D

8
<̂

:̂

 .�; v/; if k .�; v/k < M;

M
 .�; v/

k .�; v/k ; if k .�; v/k � M;

with M > 0 to be selected, as detailed in the
following statement.

Theorem 3 Consider the system (10) with m D
p D 1. Let x0 D 0 be an achievable equilibrium.
Assume h.0/ D 0. Suppose the system is uni-
formly observable and there exists a smooth state
feedback control law u D ˛.x/ which globally
asymptotically stabilizes the zero equilibrium and
it is such that ˛.0/ D 0.

Then for each R > 0, there exist QR > 0 and
M? > 0, and for each M > M?, there exists L?

such that for each M > M? and L > L?, the
dynamic output feedback control law

Pv0 D v1;

Pv1 D v2;

:::

Pvn�1 D Q̨ . Q .�; v/; v0; v1; � � � ; vn�1/
P�0 D �1 C L cn�1.y � �0/;
P�1 D �2 C L2 cn�2.y � �0/;

:::

P�n�1 D �n. .�; v/; v0; v1; � � � ; vn�1/
C Ln c0.y � �0/;

u D v0;

yields a closed-loop system with the following
properties:
• The zero equilibrium of the system is locally

asymptotically stable.
• For any x.0/, v.0/ and �.0/ such that

kx.0/k < R and k.v.0/; �.0/k < QR, the
trajectories of the closed-loop system are such
that

lim
t!1 x.t/ D 0; lim

t!1 v.t/ D 0;

lim
t!1 �.t/ D 0:
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The foregoing result can be informally for-
mulated as follows: global state feedback stabi-
lizability and uniform observability imply semi-
global stabilizability by output feedback. This
can be regarded as a nonlinear enhancement of
the so-called separation principle for the stabi-
lization, by output feedback, of linear systems.
Note, finally, that a global version of the separa-
tion principle can be derived under one additional
assumption: the existence of an estimator of the
norm of the state x.

Summary and Future Directions

A necessary condition and a sufficient condition
for stabilizability of an equilibrium of a nonlinear
system have been given, together with two sys-
tematic design methods. The necessary condition
allows to rule out, using a simple algebraic test,
existence of continuous stabilizers, whereas the
sufficient condition provides a link with classical
Lyapunov theory. In addition, the problem of
semi-global stability by dynamic output feedback
has been discussed in detail. Several issues have
not been discussed, including the use of discon-
tinuous, hybrid and time-varying feedbacks; sta-
bilization by static output feedback and dynamic
state feedback; robust stabilization. Note finally
that similar considerations can be carried out for
nonlinear discrete-time systems.
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Classical references on stabilization for nonlinear
systems and on recent research directions are
given below.
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Abstract

Mathematical finance is an important part of
applied mathematics since the 1980s. At the
beginning, the main goal was to price derivative
products and to provide hedging strategies.
Nowadays, the goal is to provide models
for prices and interest rates, such that better
calibration of parameters can be done. In these
pages, we present some basic models. Details can
be found in Musiela and Rutkowski (2005).

Keywords

Affine process; Brownian process; Default times;
Levy process; Wishart distribution

Models for Prices of Stocks

The first model of prices was elaborated by Louis
Bachelier, in his thesis (1900). The idea was
that the dynamic of prices has a trend, perturbed
by a noise. For this noise, Bachelier set the
fundamental properties of the Brownian motion.
Bachelier’s prices were of the form

SBt D SB0 C 
t C �Wt

where W is a Brownian motion.

This model, where prices can take negative
values, was changed by taking the exponential
as in the celebrated Black-Scholes-Merton model
(BSM) where

St D eS
B
t D S0 exp.
t C �Wt/:

Only two constant parameters were needed; the
coefficient � is called the volatility. From Itô’s
formula, the dynamics of the BSM’s price are

dSt D St.�dt C �dWt/

where � D 
C 1
2
�2. The interest rate is assumed

to be a constant r .
The price of a derivative product of payoff

H 2 FT D �.Ss; s � T / is obtained using a
hedging procedure. One proves that there exists a
(self-financing) portfolio with value V , investing
in the savings account and in the stock S , with
terminal value H , i.e., VT D H . The price of
H at time t is Vt . Using that methodology, the
price of a European call with strike K (i.e., for
H D .ST �K/C) is

Vt D BS.�;K/t WD StN .d1/�Ke�r.T�t /N .d2/

where N is the cumulative distribution function
of a standard Gaussian law and

d1 D 1

�
p
T � t

�
ln

�
St

Ke�r.T�t /

��

C1

2
�

p
T � t ; d2 D d1 � �p

T � t

Note that the coefficient � plays no role in this
pricing methodology. This formula opened the
door to the notion of risk neutral probability mea-
sure: the price of the option (or of any derivative
product) is the expectation under the unique prob-
ability measure Q, equivalent to P such that the
discounted price Ste�rt ; t � 0 is a Q martingale.

During one decade, the financial market was
quite smooth and this simple model was efficient
to price derivative products and to calibrate the
coefficients from the data. After the Black Mon-
day of October 1987, the model was recognized
to suffer some weakness and the door was fully
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open to more sophisticated models, with more
parameters. In particular, the smile effect was
seen on the data: the BSM formula being true,
the price of the option would be a determin-
istic function of the fixed parameter � and of
K (the other parameter as maturity, underlying
price, interest rate being fixed), and one would
obtain, using .�; K/, the inverse of BS.�; K/, the
constant � D  .C o.K/;K/, where Co.K/ is the
observed prices associated with the strikeK . This
is not the case, the curve K !  .C o.K/;K/

having a smile shape (or a smirk shape). The
BSM model is still used as a benchmark in the
concept of implied volatility: for a given observed
option price Co.K; T / (with strike K and ma-
turity T ), one can find the value of �� such
that BS.��; K; T / D Co.K; T /. The surface
��.K; T / is called the implied volatility surface
and plays an important role in calibration issues.

Due to the need of more accurate formula,
many models were presented, the only (mathe-
matical) restriction being that prices have to be
semi-martingales (to avoid arbitrage opportuni-
ties).

A first class is the stochastic volatility models.
Assuming that the diffusion coefficient (called
the local volatility) is a deterministic function of
time and underlying, i.e.,

dSt D St.�dt C �.t; St /dWt /

Dupire proved, using Kolmogorov backward
equation that the function � is determined by the
observed prices of call options by

1

2
K2�2.T;K/D @T C

o.K; T /C rK@KC
o.K; T /

@2KKC
o.K; T /

where @T (resp. @K ) is the partial derivative oper-
ator with respect to the maturity (resp., the strike).
However, this important model (which allows
hedging for derivative products) does not allow
a full calibration of the volatility surface.

A second class consists of assuming that the
volatility is a stochastic process. The first exam-
ple is the Heston model which assumes that

dSt D St.�dt C p
vtdWt/

dvt D ��.vt � Nv/dt C �
p
vtdBt

where B and W are two Brownian motions with
correlation factor �. This model is generalized
by Gourieroux and Sufana (2003) as Wishart
model where the risky asset S is a d dimensional
process, with matrix of quadratic variation †

satisfy

dSt D Diag.St /.�dt C
p
˙tdWt/

d˙t D .ƒƒT CM˙t C˙tM
T /dt

C
p
˙t dBt Q CQT .dBt /

T
p
˙t

where W is a d dimensional Brownian motion
and B a .d � d/ matrix Brownian, ƒ;M;Q are
.d � d/ matrices, M is semidefinite negative,
and ƒƒT D ˇQQT with ˇ � d � 1 to
ensure strict positivity. The efficiency of these
models was checked using calibration method-
ology; however, the main idea of hedging for
pricing issues is forgotten: there is, in general,
no hedging strategy, even for common deriva-
tive products, and the validation of the model
(the form of the volatility, since the drift term
plays no role in pricing) is done by calibra-
tion. The risk neutral probability is no more
unique.

Interest Rate Models

In the beginning of the 1970s, a specific attention
was paid for the interest rate modeling, a constant
interest rate being far from the real world.

A first class consists of a dynamic for the
instantaneous interest rate r .

Vasisek suggested an Ornstein Uhlenbeck dif-
fusion, i.e., drt D a.b � rt /dt C �dWt , the
solution being a Gaussian process of the form

rt D .r0 � b/e�at C b C �

Z t

0

e�a.t�u/dWu:

This model is fully tractable, one of its weakness
is that the interest rate can take negative values.

Cox, Ingersoll, and Rubinstein (CIR) studied
the square root process
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drt D a.b � rt /dt C �
p
rtdBt ;

where ab > 0 (so that r is nonnegative). No
closed form for r is known; however, closed form
for the price of the associated zero coupons is
known (see below in Affine Processes).

A second class is the celebrated Heath-Jarrow-
Morton model (HJM): the starting point being to
model the price of a zero coupon with maturity
T (i.e., an asset which pays one monetary unit at
time T , these prices being observable) in terms of
the instantaneous forward rate f .t; T /, as

B.t; T / D exp

�
�
Z T

t

f .t; u/du

�
:

Assuming that

df .t; T / D ˛.t; T /dt C �.t; T /dWt

one finds

dB.t; T / D B.t; T /.a.t; T /dt C b.t; T /dWt /

where the relationship between a; b and ˛; ˇ is
known. The instantaneous interest rate is rt D
f .t; t/. This model is quite efficient; however,
no conditions are known in order that the interest
rate is positive.

Models with Jumps

Lévy Processes
Following the idea to produce tractable models
to fit the data, many models are now based on
Lévy’s processes. These models are used for
modeling prices as St D eXt where X is a
Lévy process. They present a nice feature: even
if closed forms for pricing are not known, nu-
merical methods are efficient. One of the most
popular is the Carr-Geman-Madan-Yor (CGMY)
model which is a Lévy process without Gaussian
component and with Lévy density

C

xYC1 e
�Mx11fx>0g C C

jxjYC1 e
Gx11fx<0g

with C > 0;M � 0;G � 0, and Y < 2.
These models are often presented as a special

case of a change of time: roughly speaking,
any semi-martingale is a time-changed Brownian
motion, and many examples are constructed as
St D BAt , where B is a Brownian motion and
A an increasing process (the change of time),
chosen independent of B (for simplicity) and A
a Lévy process (for computational issues).

Affine Processes
Affine models were introduced by Duffie et al.
(2003) and are now a standard tool for modeling
stock prices, or interest rates. An affine process
enjoys the property that, for any affine function g,

E.exp.uXT C
Z T

t

g.Xs/ds/jFt /

D exp.˛.t; T /Xt C ˇ.t; T //

where ˛ and ˇ are deterministic solutions of
PDEs.

A class of affine processes X (Rn-valued) is
the one where

dXt D b.Xt/dt C �.Xt /dWt C dZt

where the drift vector b is an affine function of
x, the covariance matrix �.x/�T .x/ is an affine
function of x, W is an n-dimensional Brownian
motion, and Z is a pure jump process whose
jumps have a given law 
 on Rn and arrive with
intensity f .Xt / where f is an affine function. An
example is the CIR model (without jumps), where
one can find the price of a zero coupon as

E.exp �
Z T

t

rsdsjFt /

D ˆ.T � t/ expŒ�rt‰.T � t/�

where

‰.s/ D 2.e�s � 1/

.� C a/.e�s � 1/C 2�
;

ˆ.s/ D
 

2�e.�Ca/ s2
.� C a/.e�s � 1/C 2�

! 2ab

�2

;
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�2 D a2 C 2�2:

Models for Defaults

At the end of 1990s, new kinds of financial prod-
ucts appear on the market: defaultable options,
defaultable zero coupons, and credit derivatives,
as the CDOs. Then, particular attention was paid
to the modeling of default times; see Bielecki and
Rutkowski (2001). The most popular model for
a single default is the reduced form approach,
which is based on the knowledge of the intensity
rate process. Given a nonnegative process �,
adapted with respect to a reference filtration F,
a random time � is defined so that

P.� > t jF1/ D exp.�
Z t

0

�sds/

This implies that 11��t�
R t^�
0 �udu is a martingale

(in the smallest filtration G which contains F and
makes � a random time). This intensity rate �
plays the role of the interest spread due to the
equality, for any Y 2 FT and F adapted interest
rate r

E.Y 11T<� exp.�
Z T

t

rsds/jGt /11t<�

D 11t<�E.Y exp.�
Z T

t

.rs C �s/ds/jFt /

The real challenge is to model multi-defaults.
Defaults are assumed to occur at times �i , and
one has to describe the (conditional) joint law of
the vector � D .�1; �2; : : : ; �n/, the number n of
defaults being quite large (100). A first step is to
study the law of the defaults, i.e.,

P.�1 > t1; : : : ; �n > tn/

which is performed using the classical copula ap-
proach, based on the knowledge of the marginal
laws of the �i , i.e., on the knowledge of P.�i �
s/ DW Fi .s/ where the cumulative distribution
functions Fi are assumed invertible. The simplest
and most popular copula being the Gaussian one

P.F�1
i .�i / � ui ; i D 1; : : : ; n/

D N n
˙

�
N�1.u1/; : : : ;N�1.un/

�
;

where N n
˙ is the c.d.f. for the n-variate central

normal distribution with the linear correlation
matrix ˙ and N�1 is the inverse of the c.d.f.
for the univariate standard normal distribution.
However, a dynamical model was needed, mainly
to study the contagion effect, i.e., how the oc-
currence of a default affect the probability of
occurrence of the next defaults.

A first class of models is based on the inten-
sity: starting from a given family of intensities
.�it ; i D 1; : : : ; n/ which satisfies

d�it D f .t; �it /dt C g.t; �it /dWt C dL
.�i /
t

where L.�i /t D P
k¤i ˇk11�k�t , one constructs

random times having the given intensities.
Another class of models, which allows for

common jumps, is based on Markov Chains with
absorbing state, the default time of the i -th entity
being the time where the i -th component of
the Markov Chain enters in the absorbing state.
These models are efficient due to the introduction
of common factors.

Many studies are done to find a form of
a dynamic copula, i.e., a family of processes
Gt.�/; t � 0 such that

Gt.�/ D P.�1 > �1; : : : ; �n > �njFt /

Some examples where, for any fixed t , the
quantity Gt .�/ is a (stochastic) Gaussian law are
known; however, there are few concrete examples
for other cases.
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Abstract

Mechanical flexibility in robot manipulators is
due to compliance at the joints and/or distributed
deflection of the links. Dynamic models of the
two classes of robots with flexible joints or flex-
ible links are presented, together with control
laws addressing the motion tasks of regulation
to constant equilibrium states and of asymptotic
tracking of output trajectories. Control design for
robots with flexible joints takes advantage of the
passivity and feedback linearization properties. In
robots with flexible links, basic differences arise
when controlling the motion at the joint level or
at the tip level.

Keywords

Feedback linearization; Gravity compensation;
Joint elasticity; Link flexibility; Noncausal and
stable inversion; Regulation by motor feedback;
Singular perturbation; Vibration damping

Introduction

Robot manipulators are usually considered as
rigid multi-body mechanical systems. This ideal
assumption simplifies dynamic analysis and

control design but may lead to performance
degradation and even unstable behavior, due to
the excitation of vibrational phenomena.

Flexibility is mainly due to the limited
stiffness of transmissions at the joints (Sweet
and Good 1985) and to the deflection of
slender and lightweight links (Cannon and
Schmitz 1984). Joint flexibility is common when
motion transmission/reduction elements such
as belts, long shafts, cables, harmonic drives,
or cycloidal gears are used. Link flexibility is
present in large articulated structures, such as
very long arms needed for accessing hostile
environments (deep sea or space) or automated
crane devices for building construction. In
both situations, static displacements and
dynamic oscillations are introduced between
the driving actuators and the actual position
of the robot end effector. Undesired vibrations
are typically confined beyond the closed-
loop control bandwidth, but flexibility cannot
be neglected when large speed/acceleration
and high accuracy are requested by the
task.

In the dynamic modeling, flexibility is as-
sumed concentrated at the robot joints or dis-
tributed along the robot links (most of the times
with some finite-dimensional approximation). In
both cases, additional generalized coordinates are
introduced beside those used to describe the rigid
motion of the arm in a Lagrangian formulation.
As a result, the number of available control inputs
is strictly less than the number of degrees of
freedom of the mechanical system. This type of
under-actuation, though counterbalanced by the
presence of additional potential energy helping
to achieve system controllability, suggests that
the design of satisfactory motion control laws is
harder than in the rigid case.

From a control point of view, different de-
sign approaches are needed because of struc-
tural differences arising between flexible-joint
and flexible-link robots. These differences hold
for single- or multiple-link robots, in the linear
or nonlinear domain, and depend on the physical
co-location or not of mechanical flexibility versus
control actuation, as well as on the choice of
controlled outputs.
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In order to measure the state of flexible
robots for trajectory tracking control or feedback
stabilization purposes, a large variety of sensing
devices can be used, including encoders, joint
torque sensors, strain gauges, accelerometers,
and high-speed cameras. In particular, measuring
the full state of the system would require twice
the number of sensors than in the rigid case for
robots with flexible joints and possibly more
for robots with flexible links. The design of
controllers that work provably good with a
reduced set of measurements is thus particularly
attractive.

Robots with Flexible Joints

Dynamic Modeling
A robot with flexible joints is modeled as an
open kinematic chain of n C 1 rigid bodies,
interconnected by n joints undergoing deflection
and actuated by n electrical motors. Let � be
the n-vector of motor (i.e., rotor) positions, as
reflected through the reduction gears, and q the
n-vector of link positions. The joint deflection is
ı D � �q 6� 0. The standard assumptions are:
A1 Joint deflections ı are small, limited to

the domain of linear elasticity. The elastic
torques due to joint deformations are
�J D K .� � q/, where K is the positive
definite, diagonal joint stiffness matrix.

A2 The rotors of the electrical motors are mod-
eled as uniform bodies having their center of
mass on the rotation axis.

A3 The angular velocity of the rotors is due only
to their own spinning.

The last assumption, introduced by Spong
(1987), is very reasonable for large reduction
ratios and also crucial for simplifying the
dynamic model.

From the gravity and elastic potential energy,
U D Ug C Uı , and the kinetic energy T of the
robot, applying the Euler-Lagrange equations to
the Lagrangian L D T � U and neglecting all
dissipative effects leads to the dynamic model

M .q/ Rq C n.q; Pq/C K .q � �/ D 0 (1)

B R� C K .� � q/ D �; (2)

where M .q/ is the positive definite, symmetric
inertia matrix of the robot links (including the
motor masses); n.q; Pq/ is the sum of Coriolis
and centrifugal terms c.q; Pq/ (quadratic in Pq)
and gravitational terms g.q/ D .@Ug=@q/T ;
B is the positive definite, diagonal matrix of
motor inertias (reflected through the gear ratios);
and � are the motor torques (performing work
on �). The inertia matrix of the complete sys-
tem is then M.q/ D block diagfM .q/;Bg:
The two n-dimensional second-order differential
equations (1) and (2) are referred to as the link
and the motor equations, respectively. When the
joint stiffness K ! 1, it is � ! q and
�J ! �, so that the two equations collapse in
the limit into the standard dynamic model of rigid
robots with total inertia M.q/ D M .q/ C B.
On the other hand, when the joint stiffness K is
relatively large but still finite, robots with elastic
joints show a two-time-scale dynamic behavior.
A common large scalar factor 1=�2 	 1 can be
extracted from the diagonal stiffness matrix as
K D OK=�2. The slow subsystem is associated
to the link dynamics

M .q/ Rq C n.q; Pq/ D �J ; (3)

while the fast subsystem takes the form

�2 R�J D OK �
B�1 .� � �J /

CM �1.q/ .n.q; Pq/� �J /
�

(4)

For small �, Eqs. (3) and (4) represent a singularly
perturbed system. The two separate time scales
governing the slow and fast dynamics are t and
� D t=�.

Regulation
The basic robotic task of moving between two
arbitrary equilibrium configurations is realized
by a feedback control law that asymptotically
stabilizes the desired robot state.

In the absence of gravity (g � 0), the equi-
librium states are parameterized by the desired
reference position qd of the links and take the
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form q D qd , � D �d D qd (with no joint
deflection at steady state) and Pq D P� D 0. As
a result of passivity of the mapping from � to P� ,
global regulation is achieved by a decentralized
PD law using only feedback from the motor
variables,

� D KP .�d � �/ � KD
P�; (5)

with diagonal KP > 0 and KD > 0.
In the presence of gravity, the (unique)

equilibrium position of the motor associated
with a desired link position qd becomes �d D
qd C K �1g.qd /. Global regulation is obtained
by adding an extra gravity-dependent term �g to
the PD control law (5),

� D KP .�d � �/ � KD
P� C �g; (6)

with diagonal matrices KP > 0 (at least) and
KD > 0. The term �g needs to match the gravity
load g.qd / at steady state. The following choices
are of slight increasing control complexity, with
progressively better transient performance.
• Constant gravity compensation: �g D g.qd /.

Global regulation is achieved when the small-
est positive gain in the diagonal matrix KP

is large enough (Tomei 1991). This sufficient
condition can be enforced only if the joint
stiffness K dominates the gradient of gravity
terms.

• Online compensation: �g D g. Q�/, Q� D
� � K �1g.qd /. Gravity effects on the links
are approximately compensated during robot
motion. Global regulation is proven under the
same conditions above (De Luca et al. 2005).

• Quasi-static compensation: �g D g . Qq.�//.
At any measured motor position � , the link
position Qq.�/ is computed by solving numer-
ically g.q/ C K .q � �/ D 0. This removes
the need of a strictly positive lower bound on
KP (Kugi et al. 2008), but the joint stiffness
should still dominate the gradient of gravity
terms.
Additional feedback from the full robot

state .q; Pq;�; P�/, measured or reconstructed
through dynamic observers, can provide faster
and damped transient responses. This solution

is particularly convenient when a joint torque
sensor measuring �J is available (torque-
controlled robots). Using

� D KP .�d � �/ � KD
P� C KT .g.qd / � �J /

�KS P�J C g.qd /; (7)

the four diagonal gain matrices can be given
a special structure so that asymptotic stability
is automatically guaranteed (Albu-Schäffer and
Hirzinger 2001).

Trajectory Tracking
Let a desired sufficiently smooth trajectory qd .t/

be specified for the robot links over a finite or
infinite time interval. The control objective is
to asymptotically stabilize the trajectory tracking
error e D qd .t/ � q.t/ to zero, starting from a
generic initial robot state. Assuming that qd .t/

is four times continuously differentiable, a torque
input profile �d .t/ D �d .qd ; Pqd ; Rqd ;«qd ;¬qd / can
be derived from the dynamic model (1) and (2)
so as to reproduce exactly the desired trajectory,
when starting from matched initial conditions. A
local solution to the trajectory tracking problem is
provided by the combination of such feedforward
term �d .t/ with a stabilizing linear feedback
from the partial or full robot state; see Eqs. (6)
or (7).

When the joint stiffness is large enough, one
can take advantage of the system being singularly
perturbed. A control law �s designed for the rigid
robot will deal with the slow dynamics, while a
relatively simple action �f is used to stabilize the
fast vibratory dynamics around an invariant man-
ifold associated to the rigid robot control (Spong
et al. 1987). This class of composite control laws
has the general form

� D �s.q; Pq; t/C ��f .q; Pq;�J ; P�J /: (8)

When setting � D 0 in Eqs. (3), (4), and (8),
the control setup of the equivalent rigid robot is
recovered as

.M .q/C B/ Rq C n.q; Pq/ D �s: (9)
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Though more complex, the best performing
trajectory tracking controller for the general case
is based on feedback linearization. Spong (1987)
has shown that the nonlinear state feedback

� D ˛.q; Pq; Rq;«q/C ˇ.q/v; (10)

with

˛ D M .q/ Rq C n.q; Pq/
CBK �1 		 RM .q/C K



Rq C 2 PM .q/«q

CRn.q; Pq//
ˇ D BK�1M .q/;

leads globally to the closed-loop linear system

q Œ4� D v; (11)

i.e., to decoupled chains of four input–output
integrators from each auxiliary input vi to
each link position output qi , for i D 1; : : : ; n.
The control design is then completed on the
linear SISO side, by forcing the trajectory
tracking error to be exponentially stable with an
arbitrary decaying rate. The control law (10) is
expressed as a function of the linearizing
coordinates .q; Pq; Rq;«q/ (up to the link jerk),
which can be however rewritten in terms
of the original state .q; Pq;� ; P�/ using the
dynamic model equations. This fundamental
result is the direct extension of the so-
called “computed torque” method for rigid
robots.

Robots with Flexible Links

Dynamic Modeling
For the dynamic modeling of a single flexible
link, the distributed nature of structural flexibility
can be captured, under suitable assumptions, by
partial differential equations (PDE) with associ-
ated boundary conditions. A common model is
the Euler-Bernoulli beam. The link is assumed
to be a slender beam, with uniform geometric
characteristics and homogeneous mass distribu-
tion, clamped at the base to the rigid hub of an

actuator producing a torque � and rotating on
a horizontal plane. The beam is flexible in the
lateral direction only, being stiff with respect to
axial forces, torsion, and bending due to gravity.
Deformations are small and are in the elastic do-
main. The physical parameters of interest are the
linear density � of the beam, its flexural rigidity
EI , the beam length `, and the hub inertia Ih
(with It D Ih C �`3=3). The equations of motion
combine lumped and distributed parameter parts,
with the hub rotation �.t/ and the link deforma-
tion w.x; t/, being x 2 Œ0; `� the position along
the link. From Hamilton principle, we obtain

It R�.t/C �

Z `

0

x Rw.x; t/ dx D �.t/ (12)

EI w0000.x; t/C � Rw.x; t/C � x R�.t/ D 0 (13)

w.0; t/ D w0.0; t/ D 0;

w00.`; t/ D w000.`; t/ D 0; (14)

where a prime denotes partial derivative w.r.t. to
space. Equation (14) are the clamped-free bound-
ary conditions at the two ends of the beam (no
payload is present at the tip).

For the analysis of this self-adjoint PDE prob-
lem, one proceeds by separation of variables in
space and time, defining

w.x; t/ D �.x/ı.t/ �.t/ D ˛.t/C kı.t/;

(15)

where �.x/ is the link spatial deformation, ı.t/
is its time behavior, ˛.t/ describes the angular
motion of the instantaneous center of mass of the
beam, and k is chosen so as to satisfy (12) for � D
0. Being system (12)–(14) linear, nonrational
transfer functions can be derived in the Laplace
transform domain between the input torque and
some relevant system output, e.g., the angular po-
sition of the hub or of the tip of the beam (Kanoh
1990). The PDE formalism provides also a con-
venient basis for analyzing distributed sensing,
feedback from strain sensors (Luo 1993), or even
distributed actuation with piezo-electric devices
placed along the link.
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The transcendental characteristic equation as-
sociated to the spatial part of the solution to
Eqs. (12)–(14) is

Ih�
3
�
1C cos.�`/ cosh.�`/

�

C��sin.�`/ cosh.�`/� cos.�`/ sinh.�`/
� D 0:

(16)

When the hub inertia Ih ! 1, the second
term can be neglected and the characteristic
equation collapses into the so-called clamped
condition. Equation (16) has an infinite but
countable number of positive real roots �i , with
associated eigenvalues of resonant frequencies
!i D �2i

p
EI=� and orthonormal eigenvectors

�i .x/, which are the natural deformation
shapes of the beam (Barbieri and Özgüner
1988). A finite-dimensional dynamic model is
obtained by truncation to a finite number me of
eigenvalues/shapes. From

w.x; t/ D
meX

iD1
�i .x/ıi .t/ (17)

we get

It R̨ .t/D �.t/
Rıi .t/C !2i ıi .t/D �0

i .0/�.t/;

i D 1; : : : ; me;

(18)

where the rigid body motion (top equation) ap-
pears as decoupled from the flexible dynamics,
thanks to the choice of variable ˛ rather than
� . Modal damping can be added on the left-
hand sides of the lower equations through terms
2�i!i Pıi with �i 2 Œ0; 1�. The angular position of
the motor hub at the joint is given by

�.t/ D ˛.t/C
meX

iD1
�0
i .0/ıi .t/; (19)

while the tip angular position is

y.t/ D ˛.t/C
meX

iD1

�i .`/

`
ıi .t/: (20)

The joint-level transfer function pjoint.s/ D
�.s/=�.s/ will always have relative degree two
and only minimum phase zeros. On the other
hand, the tip-level transfer function ptip.s/ D
y.s/=�.s/ will contain non-minimum phase
zeros. This basic difference in the pattern of the
transmission zeros is crucial for motion control
design.

In a simpler modeling technique, a spec-
ified class of spatial functions �i .x/ is
assumed for describing link deformation.
The functions need to satisfy only a re-
duced set of geometric boundary conditions
(e.g., clamped modes at the link base), but
otherwise no dynamic equations of motion
such as (13). The use of finite-dimensional
expansions like (17) limits the validity of the
resulting model to a maximum frequency. This
truncation must be accompanied by suitable
filtering of measurements and of control
commands, so as to avoid or limit spillover effects
(Balas 1978).

In the dynamic modeling of robots with n

flexible links, the resort to assumed modes of
link deformation becomes unavoidable. In prac-
tice, some form of approximation and a finite-
dimensional treatment is necessary. Let � be the
n-vector of joint variables describing the rigid
motion, and ı be the m-vector collecting the
deformation variables of all flexible links. Fol-
lowing a Lagrangian formulation, the dynamic
model with clamped modes takes the general
form (Book 1984)

 
M �� .�; ı/ M �ı.�; ı/

MT
�ı.�; ı/ M ıı.�; ı/

! R�
Rı

!

C
 

n� .�; ı; P�; Pı/
nı.�; ı; P�; Pı/

!

C
 

0

D Pı C Kı

!

D
 

�

0

!

;

(21)

where the positive definite, symmetric inertia
matrix M of the complete robot and the Cori-
olis, centrifugal, and gravitational terms n have
been partitioned in blocks of suitable dimensions,
K > 0 and D � 0 are the robot link stiffness
and damping matrices, and � is the n-vector of
actuating torques.
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The dynamic model (21) shows the general
couplings existing between nonlinear rigid body
motion and linear flexible dynamics. In this re-
spect, the linear model (18) of a single flexible
link is a remarkable exception.

The choice of specific assumed modes may
simplify the blocks of the robot inertia matrix,
e.g., orthonormal modes used for each link induce
a decoupled structure of the diagonal inertia
subblocks of M ıı . Quite often the total kinetic
energy of the flexible robot is evaluated only
in the undeformed configuration ı D 0. With
this approximation, the inertia matrix becomes
independent of ı, and so the velocity terms in
the model. Furthermore, due to the hypothesis of
small deformation of each link, the dependence
of the gravity term in the lower component nı is
only a function of � .

The validation of (21) goes through the ex-
perimental identification of the relevant dynamic
parameters. Besides those inherited from the rigid
case (mass, inertia, etc.), also the set of structural
resonant frequencies and associated deformation
profiles should be identified.

Control of Joint-Level Motion
When the target variables to be controlled are
defined at the joint level, the control problem
for robots with flexible links is similar to that of
robots with flexible joints. As a matter of fact,
the models (1), (2), and (21) are both passive
systems with respect to the output �; see (19)
in the scalar case. For instance, regulation is
achieved by a PD action with constant grav-
ity compensation, using a control law of the
form (6) without the need of feeding back link
deformation variables (De Luca and Siciliano
1993a). Similarly, stable tracking of a joint trajec-
tory �d .t/ is obtained by a singular perturbation
control approach, with flexible modes dynamics
acting at multiple time scales with respect to
rigid body motion (Siciliano and Book 1988),
or by an inversion-based control (De Luca and
Siciliano 1993b), where input–output (rather than
full state) exact linearization is realized and the
effects of link flexibility are canceled on the
motion of the robot joints. While vibrational
behavior will still affect the robot at the level of

end-effector motion, the closed-loop dynamics of
the ı variables is stable and link deformations
converge to a steady-state constant value (zero
in the absence of gravity) thanks to the intrinsic
damping of the mechanical structure. Improved
transients are indeed obtained by active modal
damping control (Cannon and Schmitz 1984).

A control approach specifically developed
for the rest-to-rest motion of flexible mechanical
systems is command shaping (Singer and Seering
1990). The original command designed to
achieve a desired motion for a rigid robot is
convolved with suitable signals delayed in time,
so as to cancel (or reduce to a minimum) the
effects of the excited vibration modes at the time
of motion completion. For a single slewing link
with linear dynamics, as in (18), the rest-to-rest
input command is computed in closed form by
using impulsive signals and can be made robust
via an over-parameterization.

Control of Tip-Level Motion
The design of a control law that allows asymp-
totic tracking of a desired trajectory for the end
effector of a robot with flexible links needs to
face the unstable zero dynamics associated to the
problem. In the linear case of a single flexible
link, this is equivalent to the presence of non-
minimum phase zeros in the transfer function to
the tip output (20). Direct inversion of the input–
output map leads to instability, due to cancel-
lation of non-minimum phase zeros by unstable
poles, with link deformation growing unbounded
and control saturations.

The solution requires instead to determine the
unique reference state trajectory of the flexible
structure that is associated to the desired tip
trajectory and has bounded deformation. Based
on regulation theory, the control law will be the
superposition of a nominal feedforward action,
which keeps the system along the reference state
trajectory (and thus the output on the desired
trajectory), and of a stabilizing feedback that
reduces the error with respect to this state tra-
jectory to zero without resorting to dangerous
cancellations.

In general, computing such a control law
requires the solution of a set of nonlinear partial
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differential equations. However, in the case of
a single flexible link with linear dynamics, the
feedforward profile is simply derived by an
inversion defined in the frequency domain (Bayo
1987). The desired tip acceleration Ryd .t/,
t 2 Œ0; T �, is considered as part of a rest-to-rest
periodic signal, with zero mean value and zero
integral. The procedure, implemented efficiently
using Fast Fourier Transform on discrete-time
samples, will automatically generate bounded
time signals only. The resulting unique torque
profile �d .t/ will be a noncausal command,
anticipating the actual start of the output
trajectory at t D 0 (so as to precharge the link to
the correct initial deformation) and ending after
t D T (to discharge the residual link deformation
and recover the final rest configuration).

The same result was recovered by Kwon and
Book (1994) in the time domain, by forward
integrating in time the stable part of the inverse
system dynamics and backward integrating the
unstable part. An extension to the multi-link non-
linear case uses an iterative approach on repeated
linear approximations of the system along the
nominal trajectory (Bayo et al. 1989).

Summary and Future Directions

The presence of mechanical flexibility in the
joints and the links of multi-dof robots poses
challenging control problems. Control designs
take advantage or are limited by some system-
level properties. Robots with flexible joints are
passive systems at the level of motor outputs,
have no zero dynamics associated to the link
position outputs, and are always feedback lin-
earizable systems. Robots with flexible links are
still passive for joint-level outputs, but cannot be
feedback linearized in general, and have unstable
zero dynamics (non-minimum phase zeros in the
linear case) when considering the end-effector
position as controlled output.

State-of-the-art control laws address regula-
tion and trajectory tracking tasks in a satisfactory
way, at least in nominal conditions and under
full-state feedback. Current research directions
are aimed at achieving robustness to model

uncertainties and external disturbances (with
adaptive, learning, or iterative schemes), and
further exploit the design of control laws
under limited measurements and noisy sensing.
Beyond free motion tasks, an accurate treatment
of interaction tasks with the environment,
requiring force or impedance controllers, is
still missing for flexible robots. In this respect,
passivity-based control approaches that do not
necessarily operate dynamic cancellations may
take advantage of the existing compliance,
trading off between improved energy efficiency
and some reduction in nominal performance.

Often seen as a limiting factor for per-
formance, the presence of joint elasticity
is now becoming an explicit advantage for
safe physical human-robot interaction and for
locomotion. Next generation lightweight robots
and humanoids will use flexible joints and also
compact actuation with online controlled variable
joint stiffness, an area of active research.

Cross-References

�Feedback Linearization of Nonlinear Systems
�Modeling of Dynamic Systems from First Prin-

ciples
�Nonlinear Zero Dynamics
�PID Control
�Regulation and Tracking of Nonlinear Systems

Recommended Reading

In addition to the works cited in the body of this
article, a detailed treatment of dynamic modeling
and control issues for flexible robots can be found
in De Luca and Book (2008). This includes also
the use of dynamic feedback linearization for a
more general model of robots with elastic joints.
For the same class of robots, Brogliato et al.
(1995) provided a comparison of passivity-based
and inversion-based tracking controllers.
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Flocking in Networked Systems
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Abstract

Flocking is a collective behavior exhibited by
many animal species such as birds, insects, and
fish. Such behavior is generated by distributed
motion coordination through nearest-neighbor in-
teractions. Empirical study of such behavior has
been an active research in ecology and evolu-
tionary biology. Mathematical study of such be-
haviors has become an active research area in a
diverse set of disciplines, ranging from statistical
physics and computer graphics to control theory,
robotics, opinion dynamics in social networks,
and general theory of multiagent systems. While
models vary in detail, they are all based on
local diffusive dynamics that results in emergence
of consensus in direction of motion. Flocking
is closely related to the notion of consensus
and synchronization in multiagent systems, as
examples of collective phenomena that emerge
in multiagent systems as result of local nearest-
neighbor interactions.

Keywords

Consensus; Dynamics; Flocking; Graph theory;
Markov chains; Switched dynamical systems;
Synchronization
Flocking or social aggregation is a group be-
havior observed in many animal species, ranging
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from various types of birds to insects and fish.
The phenomena can be loosely defined as any
aggregate collective behavior in parallel rectilin-
ear formation or (in case of fish) in collective
circular motion. The mechanisms leading to such
behavior have been (and continues to be) an
active area of research among ecologists and
evolutionary biologists, dating back to the 1950s
if not earlier. The engineering interest in the topic
is much more recent.

In 1986, Craig Reynolds (1987), a computer
graphics researcher, developed a computer model
of collective behavior for animated artificial ob-
jects called boids. The flocking model for boids
was used to realistically duplicate aggregation
phenomena in fish flocks and bird schools for
computer animation. Reynolds developed a sim-
ple, intuitive physics-based model: each boid was
a point mass subject to three simple steering
forces: alignment (to steer each boid towards
the average heading of its local flockmates), co-
hesion (steering to move towards the average
position of local flockmates), and separation (to
avoid crowding local flockmates). The term local
should be understood as those flockmates who
are within each other’s influence zone, which
could be a disk (or a wide-angle sector of a
disk) centered at each boid with a prespecified
radius. This simple zone-based model created
very realistic flocking behaviors and was used in
many animations (Fig. 1). Reynolds’ 3 rules of
flocking.

Nine years later, in 1995, Vicsek et al. (1995)
and coauthors independently developed a model
for velocity alignment of self-propelled particles
(SPPs) in a square with periodic boundary

conditions. SPPs are essentially kinematic
particles moving with constant speed and
the steering law determines the angle of
(what control theorists call a kinematic,
nonholonomic vehicle model). Vicsek et al.’s
steering law was very intuitive and simple
and was essentially Reynolds’ zone-based
alignment rule (Vicsek was not aware of
Reynolds’ result): each particle averages the
angle of its velocity vector with that of its
neighbors (those within a disk of a prespecified
distance), plus a noise term used to model
inaccuracies in averaging. Once the velocity
vector is determined at each time, each particle
takes a unit step along that direction, then
determining its neighbors again and repeating
the protocol.

The simulations were done in a square of
unit length with periodic boundary conditions,
to simulate infinite space. Vicsek and coauthors
simulated this behavior and found that as the
density of the particles increased, a preferred
direction spontaneously emerged, resulting in
a global group behavior with nearly aligned
velocity vectors for all particles, despite
the fact that the update protocol is entirely
local.

With the interest in control theory shifting
towards multiagent systems and networked co-
ordination and control, it became clear that the
mathematics of how birds flock and fish school
and how individuals in a social network reach
agreement (even though they are often only influ-
enced by other like-minded individuals) are quite
related to the question of how can one engineer a
swarm of robots to behave like bird flocks.

Flocking in Networked Systems, Fig. 1 Photo from http://red3d.com/cwr/boids/

http://red3d.com/cwr/boids/
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These questions have occupied the minds
of many researchers in diverse areas ranging
from control theory to robotics, mathematics, and
computer science. As discussed above, most of
the early research, which happened in computer
graphics and statistical physics, was on modeling
and simulation of collective behavior. Over the
past 13 years, however, the focus has shifted to
rigorous systems theoretic foundations, leading
to what one might call a theory of collective
phenomena in multiagent systems. This theory
blends dynamical systems, graph theory, Markov
chains, and algorithms.

This type of collective phenomena are often
modeled as many-degrees-of-freedom (discrete-
time or continuous-time) dynamical systems
with an additional twist that the interconnection
structure between individual dynamical systems
changes, since the motion of each node in a flock
(or opinion of an individual) is affected primarily
by those in each node’s local neighborhood.
The twist here is that the local neighborhood
is not fixed: neighbors are defined based on
the actual state of the system, for example, in
case of Vicsek’s alignment rule, as each particle
averages its velocity direction with that of its
neighbors and then takes a step, the set of its
nearest neighbors can change.

Interestingly, very similar models were de-
veloped in statistics and mathematical sociology
literature to describe how individuals in a social
network update their opinions as a function of
the opinion of their friends. The first such model
goes back to the seminal work of DeGroot (1974)
in 1974. DeGroot’s model simply described the
evolution of a group’s scalar opinion as a function
of the opinion of their neighbors by an iterative
averaging scheme that can be conveniently mod-
eled as a Markov chain. Individuals are repre-
sented by nodes of a graph, start from an opinion
at time zero, and then are influenced by the
people in their social clique. In DeGroot’s model
though, the network is given exogenously and
does not change as a function of the opinions.
The model therefore can be analyzed using the
celebrated Perron-Frobenius theorem. The evo-
lution of opinions is a discrete dynamic system
that corresponds to an averaging map. When the

network is fixed and connected (i.e., there is a
path from every node to every other node) and
agents also include their own opinions in the
averaging, the update results in computation of
a global weighted average of initial opinions,
where the weight of each initial opinion in the fi-
nal aggregate is proportional to the “importance”
of each node in the network.

The flocking models of Reynolds (1987) and
Vicsek et al. (1995), however, have an extra
twist: the network changes as opinions are up-
dated. Similarly, more refined sociological mod-
els developed over the past decade also capture
this endogeneity (Hegselmann and Krause 2002):
each individual agent is influenced by others
only when their opinion is close to her own. In
other words, as opinions evolve, neighborhood
structures change as the function of the evolving
opinion, resulting in a switched dynamical sys-
tem in which switching is state dependent.

In a paper in 2003, Jadbabaie and coau-
thors (2003) studied the Reynolds’ alignment
rule in the context of Vicsek’s model when there
is no exogenous noise. To model the endogeneity
of the change in neighborhood structure, they
developed a model based on repeated local
averaging in which the neighborhood structure
changes over time and therefore instead of a
simple discrete-time linear dynamical system,
the model is a discrete linear inclusion or a
switched linear system. The question of interest
was to determine what regimes of network
changes could result in flocking. Clearly, as
also DeGroot’s model suggests, when the local
neighbor structures do not change, connectivity
is the key factor for flocking. This is a direct
consequence of Perron-Frobenius theory. The
result can also be described in terms of directed
graphs. What is the equivalent condition in
changing networks? Jadbabaie and coauthors
show in their paper that indeed connectivity is
important, but it need not hold every time: rather,
there needs to be time periods over which the
graphs are connected in time. More formally, the
process of neighborhood changes due to motion
in Vicsek’s model can be simply abstracted as
a graph in which the links “blink” on and off.
For flocking, one needs to ensure that there are
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time periods over which the union of edges (that
occur as a result of proximity of particles) needs
to correspond to a connected graph and such
intervals need to occur infinitely often. It turns
out that many of these ideas were developed
much earlier in a thesis and following paper
by Tsitsiklis (1984) and Tsitsiklis et al. (1986),
in the context of distributed and asynchronous
computation of global averages in changing
graphs, and in a paper by Chatterjee and Seneta
(1977), in the context of nonhomogeneous
Markov chains. The machinery for proving
such a results, however, is classical and has a
long history in the theory of inhomogeneous
Markov chains, a subject studied since the time
of Markov himself, followed by Birkhoff and
other mathematicians such as Hajnal, Dobrushin,
Seneta, Hatfield, Daubachies, and Lagarias, to
name a few.

The interesting twist in analysis of Vicsek’s
model is that the Euclidean norm of the distance
to the globally converged “consensus angle” (or
consensus opinion in the case of opinion models)
can actually grow in a single step of the process;
therefore, standard quadratic Lyapunov function
arguments which serve as the main tool for anal-
ysis of switched linear systems are not suitable
for the analysis of such models. However, it
is fairly easy to see that under the process of
local averaging, the largest value cannot increase
and the smallest value cannot decrease. In fact,
one can show that if enough connected graphs
occur as the result of the switching process, the
maximum value will be strictly decreasing and
the minimum value will be strictly increasing
The paper by Jadbabaie and coauthors (2003)
has lead to a flurry of results in this area over
the past decade. One important generalization to
the results of Jadbabaie et al. (2003), Tsitsiklis
(1984), and Tsitsiklis et al. (1986) came 2 years
later in a paper by Moreau (2005), who showed
that these results can be generalized to nonlinear
updates and directed graphs. Moreau showed
that any dynamic process that assigns a point in
the interior of the convex hull of the value of
each node and its neighbors will eventually result
in agreement and consensus, if and only if the
union of graphs from every time step till infinity

contains a directed spanning tree (a node who has
direct links to every other node).

Some of these results were also extended to
the analysis of the Reynolds’ model of flocking
including the other two behaviors. First, Tanner
and coauthors (2003, 2007) showed in a series
of papers in 2003 and 2007 that a zone-based
model similar to Reynolds can result in flocking
for dynamic agents, provided that the graph
representing interagent communications stays
connected. Olfati-Saber and coauthors (2007)
developed similar results with a slightly different
model.

Many generalizations and extension for these
results exist in a diverse set of disciplines, re-
sulting in a rich theory which has had appli-
cations from robotics (such as rendezvous in
mobile robots) (Cortés et al. 2006) to mathemati-
cal sociology (Hegselmann and Krause 2002) and
from economics (Golub and Jackson 2010) to dis-
tributed optimization theory (Nedic and Ozdaglar
2009). However, some of the fundamental math-
ematical questions related to flocking still remain
open.

First, most results focus on endogenous mod-
els of network change. A notable extension is
a paper by Cucker and Smale (2007), in which
the authors develop and analyze an endogenous
model of flocking that cleverly smoothens out
the discontinuous change in network structure by
allowing each node’s influence to decay smoothly
as a function of distance.

Recently, in a series of papers, Chazelle has
made progress in this arena by using tools from
computational geometry and algorithms for anal-
ysis of endogenous models of flocking (Chazelle
2012). Chazelle has introduced the notion of the
s-energy of a flock, which can be thought of as a
parameterized family of Lyapunov functions that
represent the evolution of global misalignment
between flockmates. Via tools from dynamical
systems, computational geometry, combinatorics,
complexity theory, and algorithms, Chazelle cre-
ates an “algorithmic calculus,” for diffusive in-
fluence systems: surprisingly, he shows that the
orbit or flow of such systems is attracted to a
fixed point in the case of undirected graphs and a
limit cycle for almost all arbitrarily small random
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perturbations. Furthermore, the convergence time
can also be bounded in both cases and the bounds
are essentially optimal. The setup of the diffusive
influence system developed by Chazelle creates a
near-universal setup for analyzing various prob-
lems involving collective behavior in networked
multiagent systems, from flocking, opinion dy-
namics, and information aggregation to synchro-
nization problems.

To make further progress on analysis of what
one might call networked dynamical systems
(which Chazelle calls influences systems), one
needs to combine mathematics of algorithms,
complexity, combinatorics, and graphs with
systems theory and dynamical systems.

Summary and Future Directions

This article presented a brief summary of the
literature on flocking and distributed motion co-
ordination. Flocking is the process by which
various species exhibit synchronous collective
motion from simple local interaction rules. Mo-
tivated by social aggregation in various species,
various algorithms have been developed in the
literature to design distributed control laws for
group behavior in collective robotics and analysis
of opinion dynamics in social networks. The
models describe each agent as a kinematic or
point mass particle that aligns each agent’s direc-
tion with that of its neighbors using repeated local
averaging of directions. Since the neighborhood
structures change due to motion, this results in a
distributed switched dynamical system. If a weak
notion of connectivity among agents is preserved
over time, then agents reach consensus in their
direction of motion. Despite the flurry of results
in this area, the analysis of this phenomenon that
accounts for endogenous change in dynamics is
for the most part open.
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Abstract

Force control is used to handle the physical inter-
action between a robot and the environment and
also to ensure safe and dependable operation in
the presence of humans. The control goal may be
that to keep the interaction forces limited or that
to guarantee a desired force along the directions
where interaction occurs while a desired motion
is ensured in the other directions. This entry
presents the basic control schemes, focusing on
robot manipulators.
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Introduction

Control of the physical interaction between
a robot manipulator and the environment is
crucial for the successful execution of a number
of practical tasks where the robot end effector
has to manipulate an object or perform some
operation on a surface. Typical examples in
industrial settings include polishing, deburring,
machining, or assembly.

During contact, the environment may set con-
straints on the geometric paths that can be fol-
lowed by the robot’s end effector (kinematic
constraints) as in the case of sliding on a rigid
surface. In other situations, the interaction occurs
with a dynamic environment as in the case of

collaboration with a human. In all cases, a pure
motion control strategy is not recommended, es-
pecially if the environment is stiff.

The higher the environment stiffness and po-
sition control accuracy are, the more easily the
contact forces may rise and reach unsafe values.
This drawback can be overcome by introducing
compliance, either in a passive or in an active
fashion, to accommodate the robot motion in
response to interaction forces.

Passive compliance may be due to the struc-
tural compliance of the links, joints, and end ef-
fector or to the compliance of the position servo.
Soft robot arms with elastic joints or links are
purposely designed for intrinsically safe interac-
tion with humans. In contrast, active compliance
is entrusted to the control system, denoted inter-
action control or force control. In same cases, the
measurement of the contact force and moment
is required, which is fed back to the controller
and used to modify or even generate online the
desired motion of the robot (Whitney 1977).

The passive solution is faster than active re-
action commanded by a computer control algo-
rithm. However, the use of passive compliance
alone lacks of flexibility and cannot guarantee
that high contact forces will never occur. Hence,
the most effective solution is that of using ac-
tive force control (with or without force feed-
back) in combination with some degree of passive
compliance.

In general, six force components are required
to provide complete contact force information:
three translational force components and three
torques. Often, a force/torque sensor is mounted
at the robot wrist (see an example in Fig. 1),
but other possibilities exist, for example, force
sensors can be placed on the fingertips of robotic
hands; also, external forces and moments can be
estimated via shaft torque measurements of joint
torque sensors.

The force control strategies can be grouped
into two categories (Siciliano and Villani 1999):
those performing indirect force control and those
performing direct force control. The main dif-
ference between the two categories is that the
former achieve force control via motion control,
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Force Control in Robotics, Fig. 1 Industrial robot with
wrist force/torque sensor and deburring tool

without explicit closure of a force feedback loop;
the latter instead offer the possibility of control-
ling the contact force and moment to a desired
value, thanks to the closure of a force feedback
loop.

Modeling

The case of interaction of the end effector of a
robot manipulator with the environment is con-
sidered, which is the most common situation in
industrial applications.

The end-effector pose can be represented by
the position vector pe and the rotation matrix Re,
corresponding to the position and orientation of a
frame attached to the end effector with respect to
a fixed-base frame.

The end-effector velocity is denoted by the
6 � 1 twist vector ve D �PpTe !T

e

�
T where Ppe is

the translational velocity and !e is the angular
velocity and can be computed from the joint
velocity vector Pq using the linear mapping

ve D J.q/Pq :

The matrix J is the end-effector Jacobian. For
simplicity, the case of nonredundant nonsingular
manipulators is considered; therefore, the Jaco-
bian is a square nonsingular matrix.

The force f e and moment me applied by the
end effector to the environment are the compo-
nents of the wrench he D �

fTe mT
e

�
T . The joint

torques � corresponding to he can be computed
as

� D JT.q/he :

It is useful to consider the operational space
formulation of the dynamic model of a rigid
robot manipulator in contact with the environ-
ment (Khatib 1987):

ƒ.q/Pve C � .q; Pq/ve C �.q/ D hc � he ; (1)

where ƒ.q/ is the 6 � 6 operational space inertia
matrix, � .q; Pq/ is the wrench including centrifu-
gal and Coriolis effects, and �.q/ is the wrench of
the gravitational effects. The vector hc D J�T � is
the equivalent end-effector wrench corresponding
to the input joint torques �c.

Equation (1) can be seen as a representation
of the Newton’s Second Law of Motion where all
the generalized forces acting on the joints of the
robot are reported at the end effector.

The full specification of the system dynamics
would require also the analytic description of the
interaction force and moment he. This is a very
demanding task from a modeling viewpoint.

The design of the interaction control and the
performance analysis are usually carried out un-
der simplifying assumptions. The following two
cases are considered:
1. The robot is perfectly rigid, all the compliance

in the system is localized in the environment,
and the contact wrench is approximated by
a linear elastic model.

2. The robot and the environment are perfectly
rigid and purely kinematics constraints are
imposed by the environment.

It is obvious that these situations are only ideal.
However, the robustness of the control should be
able to cope with situations where some of the
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ideal assumptions are relaxed. In that case the
control laws may be adapted to deal with nonideal
characteristics.

Indirect Force Control

The aim of indirect force control is that of achiev-
ing a desired compliant dynamic behavior of the
robot’s end effector in the presence of interaction
with the environment.

Stiffness Control
The simpler approach is that of imposing a suit-
able static relationship between the deviation of
the end-effector position and orientation from a
desired pose and the force exerted on the envi-
ronment, by using the control law

hc D KP�xde � KDve C �.q/ ; (2)

where KP and KD are suitable matrix gains and
�xde is a suitable error between a desired and the
actual end-effector position and orientation. The
position error component of �xde can be simply
chosen as pd � pe. Concerning the orientation
error component, different choices are possible
(Caccavale et al. 1999), which are not all equiv-
alent, but this issue is outside the scope of this
entry.

The control input (2) corresponds to a wrench
(force and moment) applied to the end effector,
which includes a gravity compensation term �.q/,
a viscous damping term KDve, and an elastic
wrench provided by a virtual spring with stiffness
matrix KP (or, equivalently, compliance matrix
K�1

P ) connecting the end-effector frame with a
frame of desired position and orientation. This
control law is known as stiffness control or com-
pliance control (Salisbury 1980).

Using the Lyapunov method, it is possible to
prove the asymptotic stability of the equilibrium
solution of equation

KP�xde D he ;

meaning that, at steady state, the robot’s end
effector has a desired elastic behavior under the

action of the external wrench he. It is clear that,
if he ¤ 0, then the end effector deviates from the
desired pose, which is usually denoted as virtual
pose.

Physically, the closed-loop system (1) with
(2) can be seen as a 6-DOF nonlinear and
configuration-dependent mass-spring-damper
system with inertia (mass) matrix ƒ.q/ and
adjustable damping KD and stiffness KP, under
the action of the external wrench he.

Impedance Control
A configuration-independent dynamic behavior
can be achieved if the measure of the end-effector
force and moment he is available, by using the
control law, known as impedance control (Hogan
1985):

hc D ƒ.q/˛ C � .q; Pq/Pq C �.q/C he ;

where ˛ is chosen as:

˛ D Pvd C K�1
M .KD�vde C KP�xde � he/ :

The following expression can be found for the
closed-loop system

KM�Pvde C KD�vde C KP�xde D he ; (3)

representing the equation of a 6-DOF
configuration-independent mass-spring-damper
system with adjustable inertia (mass) matrix
KM, damping KD, and stiffness KP, known as
mechanical impedance.

A block diagram of the resulting impedance
control is sketched in Fig. 2.

The selection of good impedance parameters
ensuring a satisfactory behavior is not an easy
task and can be simplified under the hypothesis
that all the matrices are diagonal, resulting in
a decoupled behavior for the end-effector coor-
dinates.

Moreover, the dynamics of the controlled sys-
tem during the interaction depends on the dynam-
ics of the environment that, for simplicity, can
be approximated as a simple elastic law for each
coordinate, of the form
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Force Control in Robotics, Fig. 2 Impedance control

he D k�xeo ;

where �xeo D xe � xo, while xo and k are the
undeformed position and the stiffness coefficient
of the spring, respectively.

In the above hypotheses, the transient behavior
of each component of Eq. (3) can be set by as-
signing the natural frequency and damping ratio
with the relations

!n D
s
kP C k

kM
; � D 1

2

kDp
kM.kP C k/

:

Hence, if the gains are chosen so that a given
natural frequency and damping ratio are ensured
during the interaction (i.e., for k ¤ 0), a smaller
natural frequency with a higher damping ratio
will be obtained when the end effector moves in
free space (i.e., for k D 0). As for the steady-
state performance, the end-effector error and the
interaction force for the generic component are

�xde D k

.kP C k/
�xdo ; h D kPk

kP C k
�xdo ;

showing that, during interaction, the contact
force can be made small at the expense of
a large position error in steady state, as long
as the robot stiffness kP is set low with respect

to the stiffness of the environment k and vice
versa.

Direct Force Control

Indirect force control does not require explicit
knowledge of the environment, although to
achieve a satisfactory dynamic behavior, the
control parameters have to be tuned for
a particular task. On the other hand, a model
of the interaction task is usually required for the
synthesis of direct force control algorithms.

In the following, it is assumed that the en-
vironment is rigid and frictionless and imposes
kinematic constraints to the robot’s end-effector
motion (Mason 1981). These constraints reduce
the dimension of the space of the feasible end-
effector velocities and of the contact forces and
moments. In detail, in the presence of m inde-
pendent constraints (m < 6), the end-effector
velocity belongs to a subspace of dimension 6 �
m, while the end-effector wrench belongs to a
subspace of dimension m and can be expressed
in the form

ve D Sv.q/� ; he D Sf.q/�

where � is a suitable .6 �m/ � 1 vector and � is
a suitable m � 1 vector. Moreover, the subspaces
of forces and velocity are reciprocal, i.e.:
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hTe ve D 0 ; STf .q/Sv.q/ D 0 :

The concept of reciprocity expresses the physical
fact that, in the hypothesis of rigid and friction-
less contact, the wrench does not cause any work
against the twist.

An interaction task can be assigned in terms of
a desired end-effector twist vd and wrench hd that
are computed as:

vd D Sv�d; hd D Sf�d ;

by specifying vectors �d and �d.
In many robotic tasks it is possible to set an or-

thogonal reference frame, usually referred as task
frame (De Schutter and Van Brussel 1988), in
which the matrices Sv and Sf are constant. More-
over, the interaction task is specified by assigning
a desired force/torque or a desired linear/angular
velocity along/about each of the frame axes.

An example of task frame definition and task
specification is given below.

Peg-in-Hole: The goal of this task is to push
the peg into the hole while avoiding wedging and
jamming. The peg has two degrees of motion
freedom; hence, the dimension of the velocity-
controlled subspace is 6 � m D 2, while the
dimension of the force-controlled subspace is
m D 4. The task frame can be chosen as shown
in Fig. 3, and the task can be achieved by assign-
ing the following desired forces and torques:
• Zero forces along the xt and yt axes
• Zero torques about the xt and yt axes and the

desired velocities
• A nonzero linear velocity along the zt-axis
• An arbitrary angular velocity about the zt-axis
The task continues until a large reaction force in
the zt direction is measured, indicating that the
peg has hit the bottom of the hole, not represented
in the figure. Hence, the matrices Sf and Sv can be
chosen as

Sf D

0

B
B
B
B
BB
@

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1

C
C
C
C
CC
A

; Sv D

0

B
B
B
B
BB
@

0 0

0 0

1 0

0 0

0 0

0 1

1

C
C
C
C
CC
A

:

xt

yt

zt

Force Control in Robotics, Fig. 3 Insertion of a cylin-
drical peg into a hole

The task frame can be chosen attached either to
the end effector or to the environment.

Hybrid Force/Motion Control
The reciprocity of the velocity and force sub-
spaces naturally leads to a control approach,
known as hybrid force/motion control (Raibert
and Craig 1981; Yoshikawa 1987), aimed at con-
trolling simultaneously both the contact force
and the end-effector motion in two reciprocal
subspaces.

The reduced order dynamics of the robot with
kinematic constraints is described by 6 � m

second-order equations

ƒv.q/ P� D STv
�
hc � 	.q; Pq/� ;

where ƒv D STv ƒSv and 	.q; Pq/ D � .q; Pq/ve C
�.q/, assuming constant matrices Sv and Sf.
Moreover, the vector � can be computed as

� D S�f .q/
�
hc � 	.q; Pq/� ;

revealing that the contact force is a constraint
force which instantaneously depends on the ap-
plied input wrench hc.

An inverse-dynamics inner control loop can be
designed by choosing the control wrench hc as

hc D ƒ.q/Sv˛v C Sff� C 	.q; Pq/ ;
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where ˛v and f� are properly designed control
inputs, which leads to the equations

P� D ˛
; � D f� ;

showing a complete decoupling between motion
control and force control.

Then, the desired force �d.t/ can be achieved
by setting

f� D �d.t/ ;

but this choice is very sensitive to disturbance
forces, since it contains no force feedback. Al-
ternative choices are

f� D �d.t/C KP�
�
�d.t/ � �.t/

�
;

or

f� D �d.t/C KI�

Z t

0

�
�d.�/ � �.�/

�
d� ;

where KP� and KI� are suitable positive-definite
matrix gains. The proportional feedback is able to
reduce the force error due to disturbance forces,
while the integral action is able to compensate for
constant bias disturbances.

Velocity control is achieved by setting

˛� D P�d.t/C KP

�
�d.t/ � �.t/

�

C KI


Z t

0

�
�d.�/� �.�/

�
d� ;

where KP
 and KI
 are suitable matrix gains. It is
straightforward to show that asymptotic tracking
of �d.t/ and P�d.t/ is ensured with exponential
convergence for any choice of positive-definite
matrices KP
 and KI
 .

Notice that the implementation of force feed-
back requires the computation of vector � from
the measurement of the end-effector wrench he as
S�f ve, being S�f a suitable pseudoinverse of matrix
Sf. Analogously, vector � can be computed from
ve as S�vve.

The hypothesis of rigid contact can be re-
moved, and this implies that along some direc-
tions both motion and force are allowed, although
they are not independent. Hybrid force/motion

control schemes can be defined also in this case
Villani and De Schutter (2008).

Summary and Future Directions

This entry has sketched the main approaches to
force control in a unifying perspective. However,
there are many aspects that have not been consid-
ered here. The two major paradigms of force con-
trol (impedance and hybrid force/motion control)
are based on several simplifying assumptions that
are only partially satisfied in practical implemen-
tations and that have been partially removed in
more advanced control methods.

Notice that the performance of a force-
controlled robotic system depends on the
interaction with a changing environment which
is very difficult to model and identify correctly.
Hence, the standard performance indices used
to evaluate a control system, i.e., stability,
bandwidth, accuracy, and robustness, cannot
be defined by considering the robotic system
alone, as for the case of robot motion control, but
must be always referred to the particular contact
situation at hand.

Force control in industrial applications can
be considered as a mature technology, although,
for the reason explained above, standard design
methodologies are not yet available. Force
control techniques are employed also in medical
robotics, haptic systems, telerobotics, humanoid
robotics, micro-robotics, and nano robotics.
An interesting field of application is related to
human-centered robotics, where control plays
a key role to achieve adaptability, reaction
capability, and safety. Robots and biomechatronic
systems based on the novel variable impedance
actuators, with physically adjustable compliance
and damping, capable to react softly when
touching the environment, necessitate the design
of specific control laws. The combined use of
exteroceptive sensing (visual, depth, proximity,
force, tactile sensing) for reactive control in
the presence of uncertainty represents another
challenging research direction.
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Cross-References

�Robot Grasp Control
�Robot Motion Control

Recommended Reading

This entry has presented a brief overview of the
basic force control techniques, and the cited refer-
ences represent a selection of the main pioneering
contributions. A more extensive treatment of this
topic with related bibliography can be found
in Villani and De Schutter (2008). Besides
impedance control and hybrid force/position
control, an approach designed to cope with
uncertainties in the environment geometry is
the parallel force/position control (Chiaverini
and Sciavicco 1993; Chiaverini et al. 1994). In
the paper Ott et al. (2008) the passive compliance
of lightweight robots is combined with the active
compliance ensured by impedance control. A
systematic constraint-based methodology to
specify complex tasks has been presented by
De Schutter et al. (2007).
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Abstract

In this chapter we give an introduction to fre-
quency domain system identification. We start
from the identification work loop in � System
Identification: An Overview, Fig. 4, and we dis-
cuss the impact of selecting the time or frequency
domain approach on each of the choices that are
in this loop. Although there is a full theoreti-
cal equivalence between the time and frequency
domain identification approach, it turns out that,
from practical point of view, there can be a
natural preference for one of both domains.
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ment setup; Frequency and time domain identi-
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Introduction

System identification provides methods to build
a mathematical model for a dynamical system
starting from measured input and output signals
(� System Identification: An Overview; see the
section “Models and System Identification”).
Initially, the field was completely dominated by
the time domain approach, and the frequency
domain was used to interpret the results (Ljung
and Glover 1981). This picture changed in the
nineteenth of the last century by the development
of advanced frequency domain methods (Ljung
2006; Pintelon and Schoukens 2012), and
nowadays it is widely accepted that there is
a full theoretical equivalence between time
and frequency domain system identification
under some weak conditions (Agüero et al.
2009; Pintelon and Schoukens 2012). Dedicated
toolboxes are available for both domains (Kollar
1994; Ljung 1988). This raises the question how
to choose between time and frequency domain
identification. Many times the choice between
both approaches can be made based on the user’s
familiarity with one of two methods. However,
for some problems it turns out that there is a
natural preference for the time or the frequency
domain. This contribution discusses the main
issues that need to be considered when making
this choice, and it provides additional insights to
guide the reader to the best solutions for her/his
problem.

In the identification work loop � System
Identification: An Overview, Fig. 4, we need
to address three important questions (Ljung
1999, Sect. 1.4; Söderström and Stoica 1989,
Chap. 1; Pintelon and Schoukens 2012, Sect. 1.4)
that directly interact with the choice between
time and frequency domain system identifica-
tion:
• What data are available? What data are

needed? This discussion will influence the
selection of the measurement setup, the model
choice, and the design of the experiment.

• What kind of models will be used? We will
mainly focus on the identification of discrete
time and continuous time models, using ex-
actly the same frequency domain tools.

• How will the model be matched to the data?
This question boils down to the choice of a
cost function that measures the distance be-
tween the data and the model. We will discuss
the use of nonparametric weighting functions
in the frequency domain.

In the next sections, we will address these
and similar questions in more detail. First,
we discuss the measurement of the raw
data. The choices that are made in this
step will have a strong impact on many
user aspects of the identification process.
The frequency domain formulation will turn
out to be a natural choice to propose a
unified formulation of the system identification
problem, including discrete and continuous
time modeling. Next, a generalized frequency
domain description of the system relation will
be proposed. This model will be matched to
the data, using a weighted least squares cost
function, formulated in the frequency domain
identification. This will allow for the use of
nonparametric weighting functions, based on
a nonparametric preprocessing of the data.
Eventually, some remaining user aspects are
discussed.

Data Collection

In this section, we discuss the measurement as-
sumptions that are made when the raw data are
collected. It will turn out that these will directly
influence the natural choice of the models that
are used to describe the continuous time physical
systems.

Time Domain and Frequency Domain
Measurements
The data can be collected either in the time or
in the frequency domain, and we discuss briefly
both options.

Time Domain Measurements
Most measurements are nowadays made in the
time domain because very fast high-quality
analog-to-digital convertors (ADC) became
available at a low price. These allow us to sample

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Fig. 1 Comparison of the
ZOH and BL signal
reconstruction of a discrete
time sequence: (a) time
domain: � � � BL, – ZOH;
(b) spectrum ZOH signal;
(c) spectrum BL signal

and discretize the continuous time input and
output signals and process these on a digital
computer. Also the excitation signals are mostly
generated from a discrete time sequence with a
digital-to-analog convertor (DAC).

The continuous time input and output sig-
nals uc.t/; yc.t/ of the system to be modeled
are measured at the sampling moments tk D
kTs , with Ts D 1=fs the sampling period and
fs the sampling frequency: u.k/ D uc.kTs/,
and y.k/ D yc.kTs/. The discrete time signals
u.k/; y.k/, k D 1; � � � ; N are transformed to
the frequency domain using the discrete Fourier
transform (DFT) (�Nonparametric Techniques
in System Identification, Eq. 1), resulting in the
DFT spectra U.l/; Y.l/, at the frequencies fl D
l
fs
N

. Making some abuse of notation, we will
reuse the same symbols later in this text, to de-
note the Z-transform of the signals, for example,
Y.z/ will also be used for the Z-transform of
y.k/.

Frequency Domain Measurements
A major exception to this general trend toward
time domain measurements are the (high-
frequency) network analyzers that measure
the transfer function of a system frequency
by frequency, starting from the steady-
state response to a sine excitation. The
frequency is stepped over the frequency

band of interest, resulting directly in a
measured frequency response function at a
user selected set of frequencies !k; k D
1; � � � ; F :

G.!k/:

From the identification point of view, we
can easily fit the latter situation in the
frequency domain identification framework, by
putting

U.k/ D 1; Y.k/ D G.!k/:

For that reason we will focus completely on
the time domain measurement approach in the
remaining part of this contribution.

Zero-Order-Hold and Band-Limited Setup:
Impact on the Model Choice
No information is available on how the continu-
ous time signals uc.t/; yc.t/ vary in between the
measured samples u.k/; y.k/. For that reason
we need to make an assumption and make sure
that the measurement setup is selected such that
the intersample assumption is met. Two inter-
sample assumptions are very popular (Pintelon
and Schoukens 2012; Schoukens et al. 1994,
pp. 498–512): the zero-order-hold (ZOH) and the
band-limited assumption (BL). Both options are
shown in Fig. 1 and discussed below. The choice

http://dx.doi.org/10.1007/978-1-4471-5058-9_109
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of these assumptions does not only affect the
measurement setup; it has also a strong impact on
the selection between a continuous or a discrete
time model choice.

Zero-Order Hold
The ZOH setup assumes that the excitation
remains constant in between the samples. In
practice, the model is identified between the
discrete time reference signal in the memory
of the generator and the sampled output. The
intersample behavior is an intrinsic part of the
model: if the intersample behavior changes, also
the corresponding model will change. The ZOH
assumption is very popular in digital control. In
that case the sampling frequency fs is commonly
chosen 10 times larger than the frequency band
of interest.

A discrete time model gives, in case of noise-
free data, an exact description between the sam-
pled input u.k/ and output y.k/ of the continuous
time system:

y.k/ D G.q; �/u.k/

in the time domain (�System Identification: An
Overview, Eq. 6). In this expression, q denotes
the shift operator (time domain), and it is replaced
by z in the z-domain description (transfer func-
tion description):

Y.z/ D G.z; �/U.z/:

Evaluating the transfer function at the unit circle
by replacing z D ei! results in the frequency
domain description of the system:

Y.ei!/ D G.ei!; �/U.ei!/

(� System Identification: An Overview, Eq. 34).

Band-Limited Setup
The BL setup assumes that above a given
frequency fmax < fs=2, there is no power in
the signals. The continuous time signals are
filtered by well-tuned anti-alias filters (cutoff
frequency fmax < fs=2), before they are
sampled. Outside the digital control world, the

BL setup is the standard choice for discrete
time measurements. Without using anti-alias
filters, large errors can be created due to aliasing
effects: the high frequency (f > fs=2/ content
of the measured signals is folded down in the
frequency band of interest and act there as a
disturbance. For that reason it is strongly advised
to use always anti-alias filters in the measurement
setup.

The exact relation between BL signals is de-
scribed by a continuous time model, for example,
in the frequency domain:

Y.!/ D G.!; �/U.!/

(Schoukens et al. 1994).

Combining Discrete Time Models and BL Data
It is also possible to identify a discrete time
model between the BL data, at a cost of creat-
ing (very) small model errors (Schoukens et al.
1994). This is the standard setup that is used in
digital signal procession applications like digital
audio processing. The level of the model errors
can be reduced by lowering the ratio fmax=fs
or by increasing the model order. In a properly
designed setup, the discrete time model errors can
be made very small, e.g., relative errors below
10�5. In Table 1 an overview of the models
corresponding to the experimental conditions is
given.

Extracting Continuous Time Models from
ZOH Data
Although the most robust and practical choice
to identify a continuous time model is to start
from BL data, it is also possible to extract a
continuous time model under the ZOH setup.
A first possibility is to assume that the ZOH
assumption is perfectly met, which is a very
hard assumption to realize in practice. In that
case the continuous time model can be retrieved
by a linear step invariant transformation of the
discrete time model. A second possibility is to
select a very high sample frequency with respect
to the bandwidth of the system. In that case it is
advantageous to describe the discrete time model
using the delta operator (Goodwin 2010), and

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Frequency Domain System Identification, Table 1 Relations between the continuous time system G.s/ and the
identified models as a function of the signal and model choices

DT-model (Assuming ZOH-setup) CT-model (Assuming BL-setup)

ZOH setup Exact DT-model

G.z/ D �
1� z�1

�
Z
n
G.s/

S

o
Not studied

‘standard conditions DT modelling’
BL setup Approximate DT model Exact CT-model G.s/

QG.z/ QG �z D ej!Ts
�
Ð G.s D

j!/; j!j < !s
2

‘digital signal processing field’ ‘standard conditions CT modelling’

we have that the coefficients of the discrete time
model converge to those of the continuous time
model.

Models of Cascaded Systems
In some problems we want to build models for a
cascade of two systems G1;G2. It is well known
that the overall transfer function G is given by
the product G.!/ D G1.!/G2.!/. This result
holds also for models that are identified under the
BL signal assumption: the model for the cascade
will be the product of the models of the individual
systems. However, the result does not hold under
the ZOH assumption, because the intermediate
signal between G1;G2 does not meet the ZOH
assumption. For that reason, the ZOH model of
a cascaded system is not obtained by cascading
the ZOH models of the individual systems.

Experiment Design: Periodic or Random
Excitations?
In general, arbitrary data can be used to identify
a system as long as some basic requirements
are respected (� System Identification: An
Overview, section on Experiment Design).
Imposing periodic excitations can be an
important restriction of the user’s freedom to
design the experiment, but we will show in the
next sections that it offers also major advantages
at many steps in the identification work
loop (� System Identification: An Overview,
Fig. 4).

With the availability of arbitrary wave form
generators, it became possible to generate arbi-
trary periodic signals. The user should make two
major choices during the design of the periodic

excitation: the selection of the amplitude spec-
trum (How is the available power distributed over
the frequency?) and the choice of the frequency
resolution (What is the frequency step between
two successive points of the measured FRF?)
(Pintelon and Schoukens 2012, Sect. 5.3).

The amplitude spectrum is mainly set by the
requirement that the excited frequency band
should cover the frequency band of interest.
A white noise excitation covers the full frequency
band, including those bands that are of no interest
for the user. This is a waste of power and it should
be avoided. Designing a good power spectrum for
identification and control purposes is discussed
in �Experiment Design and Identification for
Control.

The frequency resolution f0 D 1=T is set by
the inverse of the period of the signal. It should be
small enough so that no important dynamics are
missed, e.g., a very sharp mechanical resonance.

The reader should be aware that exactly the
same choices have to be made during the design
of nonperiodic excitations. If, for example, a
random noise excitation is used, the frequency
resolution is also restricted by the length of the
experiment Tm and the corresponding frequency
resolution is again f0 D 1=Tm. The power
spectrum of the noise excitation should be well
shaped using a digital filter.

Nonparametric Preprocessing of the Data
in the Frequency Domain
Before a parametric model is identified from the
raw data, a lot of information can be gained,
almost for free, by making a nonparametric ana-
lysis of the data. This can be done with very

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_103
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little user interaction. Some of these methods
are explicitly linked to the periodic nature of
the data, other methods apply also to random
excitations.

Nonparametric Frequency Analysis
of Periodic Data
By using simple DFT techniques, the follow-
ing frequency domain information is extracted
from sampled time domain data u.t/; y.t/; t D
1; : : : ; N (Pintelon and Schoukens 2012):
• The signal information: U.l/; Y.l/, the DFT

spectra of the input and output, evaluated at
the frequencies lf0, with k D 1; 2; � � � ; F .

• Disturbing noise variance information: The
full data record is split, so that each sub-
record contains a single period. For each of
these, the DFT spectrum is calculated. Since
the signals are periodic, they do not vary
from one period to the other, so that the
observed variations can be attributed to the
noise. By calculating the sample mean and
variance over the periods at each frequency, a
nonparametric noise analysis is available. The
estimated variances O�2U .k/; O�2Y .k/measure the
disturbing noise power spectrum at frequency
fk on the input and the output respectively.
The covariance O�2Y U .k/ characterizes the lin-
ear relations between the noise on the input
and the output.

This is very valuable information because, even
before starting the parametric identification step,
we get already full access to the quality of the
raw data. As a consequence, there is also no
interference between the plant model estimation
and the noise analysis: plant model errors do not
affect the estimated noise model. It is also im-
portant to realize that there is no user interaction
requested to make this analysis and it follows
directly from a simple DFT analysis of the raw
data. These are two major advantages of using
periodic excitations.

Nonlinear Analysis
Using well-designed periodic excitations, it is
possible to detect the presence of nonlinear dis-
tortions during the nonparametric frequency step.
The level of the nonlinear distortions at the output

of the system is measured as a function of the
frequency, and it is even possible to differenti-
ate between even (e.g., x2) and odd (e.g., x3)
distortions. While the first only act as disturb-
ing noise in a linear modeling framework, the
latter will also affect the linearized dynamics
and can change, for example, the pole posi-
tions of a system (Pintelon and Schoukens 2012,
Sect. 4.3).

Noise and Data Reduction
By averaging the periodic signals over the suc-
cessive periods, we get a first reduction of the
noise. An additional noise reduction is possible
when not all frequencies are excited. If a very
wide frequency band has to be covered, a fine
frequency resolution is needed at the low frequen-
cies, whereas in the higher frequency bands, the
resolution can be reduced. Signals with a loga-
rithmic frequency distribution are used for that
purpose. Eliminating the unexcited frequencies
does not only reduce the noise, it also reduces sig-
nificantly the amount of raw data to be processed.
By combining different experiments that cover
each a specific frequency band, it is possible to
measure a system over multiple decades, e.g.,
electrical machines are measured from a few mHz
to a few kHz.

In a similar way, it is also possible to focus the
fit on the frequency band of interest by including
only those frequencies in the parametric model-
ing step.

High-Quality Frequency Response Function
Measurements
For periodic excitations, it is very simple to ob-
tain high-quality measurements of the nonpara-
metric frequency response function of the system.
These results can be extended to random excita-
tions at a cost of using more advanced algorithms
that require more computation time (Pintelon and
Schoukens, Chap. 7). This approach is discussed
in detail in �Nonparametric Techniques in Sys-
tem Identification (Eq. 1).

http://dx.doi.org/10.1007/978-1-4471-5058-9_109
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Generalized Frequency Domain
Models

A very important step in the identification work
loop is the choice of the model class (� System
Identification: An Overview, Fig. 4). Although
most physical systems are continuous time, the
models that we need might be either discrete time
(e.g., digital control, computer simulations, dig-
ital signal processing) or continuous time (e.g.,
physical interpretation of the model, analog con-
trol) (Ljung 1999, Sects. 2.1 and 4.3). A major
advantage of the frequency domain is that both
model classes are described by the same transfer
function model. The only difference is the choice
of the frequency variable. For continuous time
models we operate in the Laplace domain, and the
frequency variable is retrieved on the imaginary
axis by putting s D j!. For discrete time systems
we work on the unit circle that is described by the
frequency variable z D ej 2f=fs . The application
class can be even extended to include diffusion
phenomena by putting ˝ D p

j! (Pintelon et
al. 2005). From now on we will use the gen-
eralized frequency variable ˝ , and depending
on the selected domain, the proper substitution
j!; ej 2f=fs ;

p
j! should be made. The unified

discrete and continuous time description

Y.k/ D G.˝k; �/U.k/:

illustrates also very nicely that in the frequency
domain there is a strong similarity between dis-
crete and continuous time system identification.

To apply this model to finite length measure-
ments, it should be generalized to include the
effect of the initial conditions (time domain) or

the begin and end effects (called leakage in the
frequency domain). See �Nonparametric Tech-
niques in System Identification, “The Leakage
Problem” section. The amazing result is that in
the frequency domain, both effects are described
by exactly the same mathematical expression.
This leads eventually to the following model in
the frequency domain that is valid for periodic
and arbitrary (nonperiodic) BL or ZOH exci-
tations (Pintelon et al. 1997; McKelvey 2002;
Pintelon and Schoukens 2012, Chap. 6):

Y.k/ D G.˝; �/U.k/C TG.˝; �/

which becomes for SISO (single-input-single-
output) systems:

G.˝; �/ D B.˝; �/

A.˝; �/
; and TG.˝; �/D I.˝; �/

A.˝; �/
:

A;B; I are all polynomials in˝ . The transient
term TG.˝; �/ models transient and leakage ef-
fects. It is most important for the reader to realize
that this is an exact description for noise free data.
Observe that it is very similar to the description in
the time domain: y.t/ D G.q; �/u.t/C tG.t; �/.
In that case the transient term tG.t; �/ models the
initial transient that is due to the initial condi-
tions.

Parametric Identification

Once we have the data and the model available
in the frequency domain, we define the following
weighted least squares cost function to match the
model to the data (Schoukens et al. 1997):

V .�/ D 1

F

FX

kD1

ˇ
ˇ̌ OY .k/ �G .˝k; �/ OU .k/ � TG.˝k; �/

ˇ
ˇ̌2

O�2Y .k/C O�2U .k/ jG .˝k; �/j2 � 2Re. O�2Y U .k/G .˝k; �//
:

The properties of this estimator are fully stud-
ied in Schoukens et al. (1999) and Pintelon and
Schoukens (2012, Sect. 10.3), and it is shown that
it is a consistent and almost efficient estimator
under very mild conditions.

The formal link with the time domain cost
function, as presented in � System Identification:
An Overview, can be made by assuming
that the input is exactly known ( O�2U .k/ D
0; O�2Y U .k/ D 0/, and replacing the nonparametric

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_109
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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noise model on the output by a parametric
model:

O�2Y .k/ D � jH .˝k; �/j2 :

These changes reduce the cost function, within
a parameter independent constant � to

VF .�/ D 1

F

FX

kD1

ˇ
ˇ
ˇ OY .k/ �G .˝k; �/ U0 .k/� TG.˝k; �/

ˇ
ˇ
ˇ
2

jH .˝k; �/j2
;

which is exactly the same expression as Eq. 37 in
� System Identification: An Overview, provided
that the frequencies ˝k cover the full unit circle
and the transient term TG is omitted. The latter
models the initial condition effects in the time do-
main. The expression shows the full equivalence
with the classical discrete time domain formula-
tion. If only a subsection of the full unit circle
is used for the fit, the additional term N log det�
in � System Identification: An Overview, Eq. 21
should be added to the cost function VF .�/.

Additional User Aspects in Parametric
Frequency Domain System
Identification

In this section we highlight some additional user
aspects that are affected by the choice for a time
or frequency approach to system identification.

Nonparametric Noise Models
The use of a nonparametric noise model is a
natural choice in the frequency domain. It is of
course also possible to use the parametric noise
model in the frequency domain formulation, but
then we would lose two major advantages of the
frequency domain formulation: (i) For periodic
excitations, there is no interaction between the
identification of the plant model and the nonpara-
metric noise model. Plant model errors do not
show up in the noise model. (ii) The availability
of the nonparametric noise models eliminates the
need for tuning the parametric noise model order,
resulting in algorithms that are easier to use.

A disadvantage of using a nonparametric noise
model is that we can no longer express that the

noise model can share some dynamics with the
plant model, for example, when the disturbance
is an unobserved plant input.

It is also possible to use a nonparametric
noise model in the time domain. This leads to a
Toeplitz weighting matrix, and the fast numerical
algorithms that are used to deal with these make
use internally of FFT (fast Fourier transform)
algorithms which brings us back to the frequency
domain representation of the data.

Stable and Unstable Plant Models
In the frequency domain formulation, there is no
special precaution needed to deal with unstable
models, so that we can tolerate these models
without any problem. There are multiple reasons
why this can be advantageous. The most obvious
one is the identification of an unstable system,
operating in a stabilizing closed loop. It can
also happen that the intermediate models that
are obtained during the optimization process are
unstable. Imposing stability at each iteration can
be too restrictive, resulting in estimates that are
trapped in a local minimum. A last significant ad-
vantage is the possibility to split the identification
problem (extract a model from the noisy data)
and the approximation problem (approximate the
unstable model by a stable one). This allows us to
use in each step a cost function that is optimal for
that step: maximum noise reduction in the first
step, followed by a user-defined approximation
criterion in the second step.

Model Selection and Validation
An important step in the system identification
procedure is the tuning of the model complexity,
followed by the evaluation of the model qual-
ity on a fresh data set. The availability of a

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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nonparametric noise model and a high-quality
frequency response function measurement sim-
plifies these steps significantly:

Absolute Interpretation of the Cost Function:
Impact on Model Selection and Validation
The weighted least squares cost function,
using the nonparametric noise weighting, is a
normalized function. Its expected value equals
EfV. O�/g D .F � n�=2/=F , with n� the number
of free parameters in the model and F the
number of frequency points. A cost function
that is far too large points to remaining model
errors. Unmodeled dynamics result in correlated
residuals (difference between the measured and
the modeled FRF): the user should increase the
model order to capture these dynamics in the
linear model. A cost function that is far too
large, while the residuals are white, points to the
presence of nonlinear distortions: the best linear
approximation is identified, but the user should be
aware that this approximation is conditioned on
the actual excitation signal. A cost function that is
far too low points to an error in the preprocessing
of the data, resulting in a bad noise model.

Missing Resonances
Some systems are lightly damped, resulting in a
resonant behavior, for example, a vibrating me-
chanical structure. By comparing the parametric
transfer function model with the nonparametric
FRF measurements, it becomes clearly visible if
a resonance is missed in the model. This can be
either due to a too simple model structure (the
model order should be increased), or it can appear
because the model is trapped in a local minimum.
In the latter case, better numerical optimization
and initialization procedures should be looked
for.

Identification in the Presence of Noise on
the Input and Output Measurements
Within the band-limited measurement setup, both
the input and the output have to be measured.
This leads in general to an identification
framework where both the input and the
output are disturbed by noise. Such problems
are studied in the errors-in-variables (EIV)

framework (Soderstrom 2012). A special case
is the identification of a system that is captured
in a feedback loop. In that case we have that the
noisy output measurements are fed back to the
input of the system which creates a dependency
between the input and output disturbance. We
discuss both situations briefly below.

Errors-in-Variables Framework
The major difficulty of the EIV framework
is the simultaneous identification of the plant
model describing the input-output relations,
the noise models that describe the input and
the output noise disturbances, and the signal
model describing the coloring of the excitation
(Soderstrom 2012). Advanced identification
methods are developed, but today it is still
necessary to impose strong restrictions on the
noise models, e.g., correlations between input
and output noise disturbances are not allowed.
The periodic frequency domain approach
encapsulates the general EIV, including mutually
correlated colored input–output noise. Again, a
full nonparametric noise model is obtained in the
preprocessing step. This reduces the complexity
of the EIV problem to that of a classical
weighted least squares identification problem
which makes a huge difference in practice
(Pintelon and Schoukens 2012; Söderström et
al. 2010).

Identification in a Feedback Loop
Identification under feedback conditions can
be solved in the time domain prediction error
method (Ljung 1999, Sect. 13.4; Söderström
and Stoica 1989, Chap. 10). This leads to
consistent estimates, provided that the exact
plant and noise model structure and order is
retrieved. In the periodic frequency domain
approach, a nonparametric noise model is
extracted (variances input and output noise, and
covariance between input and output noise) in the
preprocessing step, without any user interaction.
Next, these are used as a weighting in the
weighted least squares cost function which leads
to consistent estimates provided that the plant
model is flexible enough to capture the true plant
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transfer function (Pintelon and Schoukens 2012,
Sect. 9.18).

Summary and Future Directions

Theoretically, there is a full equivalence between
the time and frequency domain formulation
of the system identification problem. In many
practical situations the user can make a free
choice between both approaches, based on
nontechnical arguments like familiarity with one
of both domains. However, some problems can
be easier formulated in the frequency domain.
Identification of continuous time models is not
more involved than retrieving a discrete time
model. The frequency domain formulation is
also the natural choice to use nonparametric
noise models. This eliminates the request to
select a specific noise model structure and
order, although this might be a drawback for
experienced users who can take advantage of a
clever choice of this structure. The advantages
that are directly linked to periodic excitation
signals can be explored most naturally in the
frequency domain: the noise model is available
for free, EIV identification is not more involved
than the output error identification problem,
and identification under feedback conditions
does not differ from open-loop identification.
Nonstationary effects are an example of a
problem that will be easier detected in the time
domain. In general, we advise the reader to take
the best of both approaches and to swap from
one domain to the other whenever it gives some
advantage to do so. In the future, it will be
necessary to extend the framework to include
a characterization of nonlinear and time-varying
effects.

Cross-References

� System Identification: An Overview
�Nonparametric Techniques in System Identifi-

cation
�Experiment Design and Identification for

Control

Recommended Reading

We recommend the reader the books of Ljung
(1999) and Söderström and Stoica (1989) for a
systematic study of time domain system iden-
tification. The book of Pintelon and Schoukens
(2012) gives a comprehensive introduction to fre-
quency domain identification. An extended dis-
cussion of the basic choices (intersample behav-
ior, measurement setup) is given in Chap. 13 of
Pintelon and Schoukens (2012) or in Schoukens
et al. (1994). The other references in this list
highlight some of the technical aspects that were
discussed in this text.
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Frequency-Response and
Frequency-Domain Models

Abbas Emami-Naeini and J. David Powell
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Abstract

A major advantage of using frequency response
is the ease with which experimental information
can be used for design purposes. Raw measure-
ments of the output amplitude and phase of a
plant undergoing a sinusoidal input excitation are
sufficient to design a suitable feedback control.
No intermediate processing of the data (such
as finding poles and zeros or determining sys-
tem matrices) is required to arrive at the system
model. The wide availability of computers has
rendered this advantage less important now than
it was years ago; however, for relatively simple
systems, frequency response is often still the
most cost-effective design method. The method
is most effective for systems that are stable in
open-loop. Yet another advantage is that it is

the easiest method to use for designing dynamic
compensation.

Keywords

Bandwidth; Bode plot; Frequency response; Gain
margin (GM); Magnitude; Phase; Phase margin
(PM); Resonant peak; Stability

Introduction: Frequency Response

A very common way to use the exponential re-
sponse of linear time-invariant systems (LTIs) is
in finding the frequency response, or response to
a sinusoid. First we express the sinusoid as a sum
of two exponential expressions (Euler’s relation):

A cos.!t/ D A

2
.e j!t C e�j!t /: (1)

Suppose we have an LTI system with input u
and output y. If we let s D j! in the transfer
function G.s/, then the response to u.t/ D ej!t

is y.t/ D G.j!/ej!t ; similarly, the response to
u.t/ D e�j!t isG.�j!/e�j!t . By superposition,
the response to the sum of these two exponentials,
which make up the cosine signal, is the sum of the
responses:

y.t/ D A

2
ŒG.j!/e j!t CG.�j!/e�j!t �: (2)

The transfer function G.j!/ is a complex
number that can be represented in polar form
or in magnitude-and-phase form as G. j!/ D
M.!/e j¥.!/, or simply G D Me j¥. With this
substitution, Eq. (2) becomes for a specific input
frequency ! D !o

y.t/ D A

2
M
�
e j.!tC'/ C e�j.!tC'/� ;

D AM cos.!t C '/; (3)

M D jG. j!/j D jG.s/jsDj!o

D
p

fReŒG. j!o/�g2 C fImŒG. j!o/�g2;
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' D †G. j!/ D tan�1
�

ImŒG. j!o/�

ReŒG. j!o/�

�
: (4)

This means that if an LTI system represented
by the transfer function G.s/ has a sinusoidal
input with magnitude A, the output will be sinu-
soidal at the same frequency with magnitudeAM
and will be shifted in phase by the angle '. M
is usually referred to as the amplitude ratio or
magnitude and ' is referred to as the phase and
they are both functions of the input frequency,!.
The frequency response can be measured experi-
mentally quite easily in the laboratory by driving
the system with a known sinusoidal input, letting
the transient response die, and measuring the
steady-state amplitude and phase of the system’s
output as shown in Fig. 1. The input frequency
is set to sufficiently many values so that curves
such as the one in Fig. 2 are obtained. Bode sug-
gested that we plot log jM j vs. log! and '.!/

vs. log! to best show the essential features of
G.j!/. Hence, such plots are referred to as Bode
plots. Bode plotting techniques are discussed in
Franklin et al. (2015).

We are interested in analyzing the frequency
response not only because it will help us un-
derstand how a system responds to a sinusoidal
input, but also because evaluating G.s/ with s
taking on values along the j! axis will prove
to be very useful in determining the stability of
a closed-loop system. Since the j! axis is the

boundary between stability and instability; evalu-
ating G. j!/ provides information that allows us
to determine closed-loop stability from the open-
loop G.s/.

For the second-order system

G.s/ D 1

.s=!n/2 C 2�.s=!n/C 1
; (5)

the Bode plot is shown in Fig. 3 for various values
of �.

A natural specification for system per-
formance in terms of frequency response is
the bandwidth, defined to be the maximum
frequency at which the output of a system will
track an input sinusoid in a satisfactory manner.
By convention, for the system shown in Fig. 4
with a sinusoidal input r , the bandwidth is the
frequency of r at which the output y is attenuated
to a factor of 0:707 times the input (If the output
is a voltage across a 1-� resistor, the power is
v2 and when jvj D 0:707, the power is reduced
by a factor of 2. By convention, this is called
the half-power point.). Figure 5 depicts the idea
graphically for the frequency response of the
closed-loop transfer function

Y.s/

R.s/

�D T .s/ D KG.s/

1CKG.s/
: (6)

Frequency-Response
and Frequency-Domain
Models, Fig. 1 Response
of G.s/ D 1

.sC1/
to the

input u D sin 10t (Source:
Franklin et al. (2010),
p. 298, reprinted by
permission of Pearson
Education, Inc., Upper
Saddle River, NJ)
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Frequency-Response
and Frequency-Domain
Models, Fig. 2 Frequency
response for G.s/ D 1

sC1

(Source: Franklin et al.
(2010), p. 83, reprinted by
permission of Pearson
Education, Inc., Upper
Saddle River, NJ)

The plot is typical of most closed-loop systems
in that (1) the output follows the input .jT j Š 1/

at the lower excitation frequencies and (2) the
output ceases to follow the input .jT j < 1/
at the higher excitation frequencies. The
maximum value of the frequency-response
magnitude is referred to as the resonant
peak Mr .

Bandwidth is a measure of speed of response
and is therefore similar to time-domain measures
such as rise time and peak time or the s-plane
measure of dominant-root(s) natural frequency.
In fact, if the KG.s/ in Fig. 4 is such that the
closed-loop response is given by Fig. 3a, we can
see that the bandwidth will equal the natural
frequency of the closed-loop root (that is, !BW D
!n for a closed-loop damping ratio of � D
0:7). For other damping ratios, the bandwidth is
approximately equal to the natural frequency of
the closed-loop roots, with an error typically less
than a factor of 2.

For a second-order system, the time responses
are functions of the pole-location parameters �
and !n. If we consider the curve for � D 0:5 to

be an average, the rise time (Rise time tr .) from
y D 0:1 to y D 0:9 is approximately !ntr D 1:8.
Thus, we can say that

tr Š 1:8

!n
: (7)

Although this relationship could be embellished
by including the effect of the damping ratio,
it is important to keep in mind how Eq. (7) is
typically used. It is accurate only for a second-
order system with no zeros; for all other systems
it is a rough approximation to the relationship
between tr and !n. Most systems being analyzed
for control systems design are more complicated
than the pure second-order system, so design-
ers use Eq. (7) with the knowledge that it is a
rough approximation only. Hence, for a second-
order system the bandwidth is inversely propor-
tional to the rise time, tr . Hence we are able to
link the time and frequency domain quantities in
this way.

The definition of the bandwidth stated here is
meaningful for systems that have a low-pass filter
behavior, as is the case for any physical control
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Frequency-Response
and Frequency-Domain
Models, Fig. 3 Frequency
responses of standard
second-order systems (a)
magnitude (b) phase
(Source: Franklin et al.
(2010), p. 303, reprinted by
permission of Pearson
Education, Inc., Upper
Saddle River, NJ)

system. In other applications the bandwidth may
be defined differently. Also, if the ideal model of
the system does not have a high-frequency roll-
off (e.g., if it has an equal number of poles and
zeros), the bandwidth is infinite; however, this
does not occur in nature as nothing responds well
at infinite frequencies.

In many cases, the designer’s primary concern
is the error in the system due to disturbances
rather than the ability to track an input. For error

analysis, we are more interested in the sensitivity
function S.s/ D 1 � T .s/, rather than T .s/. For
most open-loop systems with high gain at low
frequencies, S.s/ for a disturbance input has very
low values at low frequencies and grows as the
frequency of the input or disturbance approaches
the bandwidth. For analysis of either T .s/ or
S.s/, it is typical to plot their response versus the
frequency of the input. Either frequency response
for control systems design can be evaluated using
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the computer or can be quickly sketched for
simple systems using the efficient methods de-
scribed in Franklin et al. (2015). The methods
described next are also useful to expedite the

Frequency-Response and Frequency-Domain
Models, Fig. 4 Unity feedback system (Source: Franklin
et al. (2010), p. 304, reprinted by permission of Pearson
Education, Inc., Upper Saddle River, NJ)

design process as well as to perform sanity checks
on the computer output.

Neutral Stability: Gain and Phase
Margins

In the early days of electronic communications,
most instruments were judged in terms of their
frequency response. It is therefore natural that
when the feedback amplifier was introduced,
techniques to determine stability in the presence
of feedback were based on this response.

Suppose the closed-loop transfer function
of a system is known. We can determine the
stability of a system by simply inspecting the

Frequency-Response
and Frequency-Domain
Models, Fig. 5
Definitions of bandwidth
and resonant peak (Source:
Franklin et al. (2010),
p. 304, reprinted by
permission of Pearson
Education, Inc., Upper
Saddle River, NJ)

Frequency-Response and Frequency-Domain
Models, Fig. 6 Stability example: (a) system definition;
(b) root locus (Source: Franklin et al. (2010), p. 318,

reprinted by permission of Pearson Education, Inc., Upper
Saddle River, NJ)
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denominator in factored form (because the
factors give the system roots directly) to observe
whether the real parts are positive or negative.
However, the closed-loop transfer function is
usually not known. In fact, the whole purpose
behind understanding the root-locus technique is
to be able to find the factors of the denominator
in the closed-loop transfer function, given only
the open-loop transfer function. Another way
to determine closed-loop stability is to evaluate
the frequency response of the open-loop transfer
function KG. j!/ and then perform a test on
that response. Note that this method also does
not require factoring the denominator of the
closed-loop transfer function. In this section we
will explain the principles of this method. Note
that this method also does not require factoring
the denominator of the closed-loop transfer
function. Here we will explain the principles
of this method.

Suppose we have a system defined by Fig. 6a
and whose root locus behaves as shown in
Fig. 6b; that is, instability results if K is larger
than 2. The neutrally stable points lie on the
imaginary axis – that is, where K D 2 and
s D j 1:0. Furthermore, all points on the root
locus have the property that

jKG.s/j D 1 and †G.s/ D �180ı:

At the point of neutral stability we see that these
root-locus conditions hold for s D j!, so

jKG. j!/j D 1 and †G. j!/ D �180ı:
(8)

Thus, a Bode plot of a system that is neutrally
stable (that is, with K defined such that a closed-
loop root falls on the imaginary axis) will satisfy
the conditions of Eq. (8). Figure 7 shows the
frequency response for the system whose root
locus is plotted in Fig. 6 for various values of K .
The magnitude response corresponding toK D 2

passes through 1 at the same frequency (! D
1 rad/s) at which the phase passes through �180ı,
as predicted by Eq. (8).

Having determined the point of neutral stabil-
ity, we turn to a key question: Does increasing the
gain increase or decrease the system’s stability?

We can see from the root locus in Fig. 6b that
any value ofK less than the value at the neutrally
stable point will result in a stable system. At the
frequency ! where the phase †G. j!/ D �180ı
(! D 1 rad/s), the magnitude jKG. j!/j < 1:0

for stable values of K and >1 for unstable values
of K . Therefore, we have the following trial
stability condition, based on the character of the
open-loop frequency response:

jKG. j!/j < 1 at †G. j!/ D �180ı: (9)

This stability criterion holds for all systems for
which increasing gain leads to instability and
jKG. j!/j crosses the magnitude .D1/ once, the
most common situation. However, there are sys-
tems for which an increasing gain can lead from
instability to stability; in this case, the stability
condition is

jKG. j!/j > 1 at †G. j!/ D �180ı: (10)

Based on the above ideas, we can now define the
robustness metrics gain and phase margins:
Phase Margin: Suppose at !1, jG.j!1/j D 1

K
.

How much more phase could the system toler-
ate (as a time delay, perhaps) before reaching
the stability boundary? The answer to this
question follows from Eq. (8), i.e., the phase
margin (PM) is defined as

PM D †G.j!1/ � .�180ı/: (11)

Gain Margin: Suppose at !2, †G.j!2/ D
�180ı. How much more gain could the
system tolerate (as an amplifier, perhaps)
before reaching the stability boundary? The
answer to this question follows from Eq. (9),
i.e., the gain margin (GM) is defined as

GM D 1

KjG.j!2/j : (12)

There are also rare cases when jKG. j!/j crosses
magnitude .D1/ more than once, or where an in-
creasing gain leads to instability. A rigorous way
to resolve these situations is to use the Nyquist
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Frequency-Response
and Frequency-Domain
Models, Fig. 7 Stability
example: (a) system
definition; (b) root locus
(Source: Franklin et al.
(2010), p. 319, reprinted by
permission of Pearson
Education, Inc., Upper
Saddle River, NJ)

stability criterion as discussed in Franklin et al.
(2015).

Closed-Loop Frequency Response

The closed-loop bandwidth was defined earlier
in this section. The natural frequency is always
within a factor of 2 of the bandwidth for a second-
order system. We can help establish a more exact
correspondence by making a few observations.
Consider a system in which jKG. j!/j shows the
typical behavior

jKG. j!/j 	 1 for ! 
 !c;

jKG. j!/j 
 1 for ! 	 !c;

where !c is the crossover frequency. The closed-
loop frequency-response magnitude is approxi-
mated by

jT . j!/jD
ˇ
ˇ
ˇ
ˇ
KG. j!/

1CKG. j!/

ˇ
ˇ
ˇ
ˇŠ


1; ! 
 !c;

jKGj; ! 	 !c:
(13)

In the vicinity of crossover, where
jKG. j!/j D 1, jT . j!/j depends heavily on the
PM. A PM of 90ı means that †G. j!c/ D �90ı,
and therefore jT . j!c/j D 0:707. On the other
hand, PM D 45ı yields jT . j!c/j D 1:31.

The exact evaluation of Eq. (13) was used
to generate the curves of jT . j!/j in Fig. 8. It
shows that the bandwidth for smaller values of
PM is typically somewhat greater than !c , though
usually it is less than 2!c ; thus,
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Frequency-Response and Frequency-Domain Models, Fig. 8 Closed-loop bandwidth with respect to PM (Source:
Franklin et al. (2010), p. 347, reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ)

!c � !
BW

� 2!c: (14)

Another specification related to the closed-
loop frequency response is the resonant-peak
magnitude Mr , defined in Fig. 5. For linear
systems, Mr is generally related to the damping
of the system. In practice,Mr is rarely used; most
designers prefer to use the PM to specify the
damping of a system, because the imperfections
that make systems nonlinear or cause delays
usually erode the phase more significantly than
the magnitude.

It is also important in the design to achieve
certain error characteristics and these are often
evaluated as a function of the input or disturbance
frequency. In some cases, the primary function
of the control system is to regulate the output
to a certain constant input in the presence of
disturbances. For these situations, the key item of
interest for the design would be the closed-loop
frequency response of the error with respect to
disturbance inputs.

Summary and Future Directions
The frequency response methods are the
most popular because they can deal with
model uncertainty and can be measured in
the laboratory. A wide range of information
about the system can be displayed in a Bode

plot. The dynamic compensation can be carried
out directly from the Bode plot. Extension of
the ideas to multivariable systems has been
done via singular value plots. Extension to
nonlinear systems is still the subject of current
research.

Cross-References

�Classical Frequency-Domain Design
Methods

�Frequency Domain System Identification
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Abstract

Feedback systems are designed to meet many
different objectives. Yet, not all design objec-
tives are achievable as desired due to the fact
that they are often mutually conflicting and that
the system properties themselves may impose
design constraints and thus limitations on the
performance attainable. An important step in the
control design process is then to analyze what
and how system characteristics may impose con-
straints, and accordingly, how to make tradeoffs
between different objectives by judiciously navi-
gating between the constraints. Fundamental lim-
itation of feedback control is an area of research
that addresses these constraints, limitations, and
tradeoffs.

Keywords

Bode integrals; Design tradeoff; Performance
limitation; Tracking and regulation limits

Introduction

Fundamental control limitations are referred
to those intrinsic of feedback that can neither
be overcome nor circumvent regardless how it
may be designed. By this nature, the study of
fundamental limitations dwells on a Hamletian
question: Can or can’t it be done? What can
and cannot be done? To be more specific, yet
still general enough, at heart here are issues
concerning the benefit and cost of feedback.
We ask such questions as (1) What system
characteristics may impose inherent limitations
regardless of controller design? (2) What inherent

constraints may exist in design, what kind of
tradeoffs are to be made? (3) What are the best
achievable performance limits? (4) How can the
constraints, limitations, and limits be quantified,
in ways meaningful for control analysis and
design? Needless to say, issues of this kind
are very general and in fact are commonplace
in science and engineering. Analogies can be
made, for example, to Shannon’s theorems
in communications theory, the Cramer-Rao
bound in statistics, and Heisenberg’s uncertainty
principle in quantum mechanics; they all address
the fundamental limits and limitations, though for
different problems and in different contexts. The
search for fundamental limitations of feedback
control, as such, may be considered a quest for
an “ultimate truth” or the “law of feedback.”

For their fundamentality and importance,
inquiries into control performance limitations
have persisted over time and continue to be of
vital interest. It is worth emphasizing, however,
that performance limitation studies are not
merely driven by intellectual curiosity, but are
tantamount to better and more realistic feedback
systems design and hence of tangible practical
value. An analysis of performance limitations
can aid control design in several aspects. First,
it may provide a fundamental limit on the best
performance attainable irrespective of controller
design, thus furnishing a guiding benchmark in
the design process. Secondly, it helps a designer
assess what and how system properties may be
inherently conflicting and thus pose inherent
difficulties to performance objectives, which
in turn helps the designer specify reasonable
goals, and make judicious modifications and
revisions on the design. In this process, the theory
of fundamental control limitations promises
to provide valuable insights and analytical
justifications to long-held design heuristics and,
indeed, to extend such heuristics further beyond.
This has become increasingly more relevant, as
modern control design theory and practice relies
heavily on optimization-based numerical routines
and tools.

Systematic investigation and understanding
of fundamental control limitations began with
the classical work of Bode in the 1940s on
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logarithmic sensitivity integrals, known as the
Bode integrals. Bode’s work has had a lasting
impact on the theory and practice of control
and has inspired continued research effort dated
most recently, leading to a variety of extensions
and new results which seek to quantify design
constraints and performance limitations by
logarithmic integrals of Bode and Poisson type.
On the other hand, the search for the best
achievable performance is a natural goal in
optimal control problems, which has lend bounds
on optimal performance indices defined under
various criteria. Likewise, the latter developments
have also been substantial and are continuing to
branch to different problems and different system
categories.

In this entry we attempt to provide a summary
overview of the key developments in the study
of fundamental limitations of feedback control.
While the understanding on this subject has been
compelling and the results are rather prolific, we
focus on Bode-type integral relations and the
best achievable performance limits, two branches
of the study that are believed to be most well-
developed. Roughly speaking, the Bode-type
integrals are most useful for quantifying the
inherent design constraints and tradeoffs in the
frequency domain, while the performance results
provide fundamental limits of canonical control
objectives defined using frequency- and time-
domain criteria. Invariably, the two sets of results
are intimately related and reinforce each other.
The essential message then is that despite its
many benefits, feedback has its own limitations
and is subject to various constraints. Feedback
design, for that sake, requires often times a hard
tradeoff.

Control Design Specifications

We begin by introducing the basic notation to be
used in the sequel. Let CC WD fz W Re.z/ > 0g
denote the open right half plane (RHP) and CC
the closed RHP (CRHP). For a complex number
z, we denote its conjugate by z. For a complex
vector x, we denote its conjugate transpose by
xH , and its Euclidean norm by kxk2. The largest

singular value of a matrix A will be written as
�.A/. If A is a Hermitian matrix, we denote
by �.A/ its largest eigenvalue. For any unitary
vectors u; v 2 Cn, we denote by †.u; v/ the
principal angle between the two one-dimensional
subspaces, called the directions, spanned by u and
v:

cos †.u; v/ WD juHvj:
For a stable continuous-time system with transfer
function matrix G.s/, we define its H1 norm by

kGk1 WD sup
Re.s/>0

�.G.s//:

We consider the standard configuration of
finite-dimensional linear time-invariant (LTI)
feedback control systems given in Fig. 1. In this
setup, P and K represent the transfer functions
of the plant model and controller, respectively,
r is a command signal, d a disturbance, n a
noise signal, and y the output response. Define
the open-loop transfer function, the sensitivity
function, and the complementary sensitivity
function by

L D PK; S D .I CL/�1; T D L.I CL/�1;

respectively. Then the output can be expressed as

y D Sd � T nC SP r:

The goal of feedback control design is to design a
controllerK so that the closed-loop system is sta-
ble and that it achieves certain performance spec-
ifications. Typical design objectives include:
• Disturbance attenuation. The effect of the

disturbance signal on the output should be
kept small, which translates into the require-

Fundamental Limitation of Feedback Control, Fig. 1
Feedback configuration
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ment that the sensitivity function be small in
magnitude at the frequencies of interest. For a
single-input single-output (SISO) system, this
mandates that

jS.j!/j < 1; 8 ! 2 Œ0; !1/:

The sensitivity magnitude jS.j!/j is to be
kept as small as possible in the low frequency
range.

• Noise reduction. The noise response should be
reduced at the output. This requires that the
complementary sensitivity function be small
in magnitude at frequencies of interest. For a
SISO system, the objective is to achieve

jT .j!/j < 1; 8 ! 2 Œ!2; 1/:

Similarly, the magnitude jT .j!/j is desired to
be the smallest at high frequencies.

Moreover, feedback can be introduced to achieve
many other objectives including regulation, com-
mand tracking, improved sensitivity to parameter
variations, and, more generally, system robust-
ness, all by manipulating the three key transfer
functions: the open-loop transfer function, the
sensitivity function, and the complementary sen-
sitivity function.

The design and implementation of feedback
systems, on the other hand, are also subject to
many constraints, which include
1. Causality: A system must be causal for it to be

implementable. This constraint requires that
no ideal filter can be used for compensation
and that the system’s relative degree and delay
be preserved.

2. Stability: The closed-loop system must be sta-
ble. This implies that every closed-loop trans-
fer function must be bounded and analytic in
CRHP.

3. Interpolation: There should be no unstable
pole-zero cancelation between the plant and
controller, in order to rid of hidden instability.
Thus, at each RHP pole pi and zero zi , it is
necessary that

S.pi/ D 0; T .pi / D 1;

S.zi / D 1; T .zi / D 0:

4. Structural constraints: Constraints in this cate-
gory arise from the feedback structure itself;
for example, S.s/ C T .s/ D 1. The im-
plication then is that the closed-loop transfer
functions cannot be independently designed,
thus resulting in conflicting design objectives.

For a given plant, each of these constraints is
unalterable and hence is fundamental, and each
will constrain the performance attainable in one
way or another. The question we face then is how
the constraints may be captured in a form that is
directly pertinent and useful to feedback design.

Bode Integral Relations

In the classical feedback control theory, Bode’s
gain-phase formula (Bode 1945) is used to ex-
press the aforementioned design constraints for
SISO systems.

Bode Gain-Phase Integral Suppose that L.s/
has no pole and zero in CC. Then at any fre-
quency !0,

†L.j!0/ D 1



Z 1

�1
d log jLj
d


log coth
j
j
2
d
:

A special form of the Hilbert transform, this
gain-phase formula relates the gain and phase of
the open-loop transfer function evaluated along
the imaginary axis, whose implication may be
explained as follows. In order to make the sensi-
tivity response small in the low frequency range,
the open-loop transfer function is required to
have a high gain; the higher, the better. On the
other hand, for noise reduction and robustness
purposes, we need to keep the loop gain low at
high frequencies, the lower the better. Evidently,
to maximize these objectives, we want the two
frequency bands as wide as possible. This then
requires a steep decrease of the loop gain and
hence a rather negative slope in the crossover
region, say, the intermediate frequency range near
!0. But the gain-phase relationship tells that a
very negative derivative in the gain will lead to
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a very negative phase, driving the phase closer
to the negative 180 degree, namely, the critical
point of stability. It consequently reduces the
phase margin and may even cause instability. As
a result, the gain-phase relationship demonstrates
a conflict between the two design objectives. It is
safe to claim that much of the classical feedback
design theory came as a consequence of this
simple relationship, aiming to shape the open-
loop frequency response in the crossover region
by trial and error, using lead or lag filters.

While in using the gain-phase formula, the de-
sign specifications imposed on closed-loop trans-
fer functions are translated approximately into
the requirements on the open-loop transfer func-
tion, and the tradeoff between different design
goals is achieved by shaping the open-loop gain
and phase; a more direct vehicle to accomplish
this same goal is Bode’s sensitivity integral (Bode
1945).

Bode Sensitivity Integrals Let pi 2 CC be the
unstable poles and zi 2 CC the nonminimum
phase zeros ofL.s/. Suppose that the closed-loop
system in Fig. 1 is stable.
(i) If L.s/ has relative degree greater than one,

then

Z 1

0

log jS.j!/jd! D 
X

i

pi :

(ii) If L.s/ contains no less than two integrators,
then

Z 1

0

log jT .j!/j
!2

d! D 
X

i

1

zi
:

Bode’s original work concerns the sensitivity
integral for open-loop stable systems only. The
integral relations shown herein, which are at-
tributed to Freudenberg and Looze (1985) and
Middleton (1991), respectively, provide general-
izations to open-loop unstable and nonminimum
phase systems.

Why are Bode sensitivity integrals important?
What is the hidden message behind the math-
ematical formulas? Simply put, Bode integral
exhibits that a feedback system’s sensitivity must

abide some kind of conservation law, or invari-
ance property: the integral of the logarithmic
sensitivity magnitude over the entire frequency
range must be a nonnegative constant, determined
by the open-loop unstable poles. This property
mandates a tradeoff between sensitivity reduc-
tion and sensitivity amplification in different fre-
quency bands. Indeed, to achieve disturbance
attenuation, the logarithmic sensitivity magnitude
must stay below zero db, the lower the better.
For noise reduction and robustness, however, its
tail has to roll off sufficiently fast to zero db
at high frequencies. Since, in light of the inte-
gral relation, the total area under the logarithmic
magnitude curve is nonnegative, the logarithmic
magnitude must rise above zero db, so that under
its curve, the positive and negative areas may
cancel each other to yield a nonnegative value.
As such, an undesirable sensitivity amplifica-
tion occurs, resulting in a fundamental tradeoff
between the desirable sensitivity reduction and
the undesirable sensitivity amplification, known
colloquially as the waterbed effect.

MIMO Integral Relations

For a multi-input multi-output (MIMO) system
depicted in Fig. 1, the sensitivity and complemen-
tary sensitivity functions, which now are transfer
function matrices, satisfy similar interpolation
constraints: at each RHP pole pi and zero zi of
L.s/, the equations

S.pi/�i D 0; T .pi /�i D �i ;

wHi S.zi / D wHi ; wHi T .zi / D 0

hold with some unitary vectors �i and wi , where
�i is referred to as a right pole direction vector
associated with pi , and wi a left zero direction
vector associated with zi .

While it seems both natural and tempting, the
extension of Bode integrals to MIMO systems has
been highly nontrivial a task. Deep at the root is
the complication resulted from the directionality
properties of MIMO systems. Unlike in a SISO
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system, the measure of frequency response
magnitude is now the largest singular value
of a transfer function matrix, which represents
the worst-case amplification of energy-bounded
signals, a direct counterpart to the gain of a
scalar transfer function. This fact alone proves
to cast a fundamental difference and poses a
formidable obstacle. From a technical standpoint,
the logarithmic function of the largest singular
value is no longer a harmonic function as
in the SISO case, but only a subharmonic
function. Much to our regret then, familiar
tools found from analytic function theory, such
as Cauchy and Poisson theorems, the very
backbone in developing Bode integrals, cease to
be applicable. Nevertheless, it remains possible
to extend Bode integrals in their essential spirit.
Advances are made by Chen (1995, 1998,
2000).

MIMO Bode Sensitivity Integrals Let pi 2
CC be the unstable poles of L.s/ and zi 2
CC the nonminimum phase zeros of L.s/. Sup-
pose that the closed-loop system in Fig. 1 is
stable.
(i) If L.s/ has relative degree greater than one,

then

Z 1

0

log �.S.j!//d! � �

 
X

i

pi�i�
H
i

!

:

(ii) If L.s/ contains no less than two integrators,
then

Z 1

0

log �.T .j!//

!2
d! � �

 
X

i

1

zi
wiw

H
i

!

where �i and wi are some unitary vectors related
to the right pole direction vectors associated with
pi and the left zero direction vectors associated
with zi , respectively.

From these extensions, it is evident that same
limitations and tradeoffs on the sensitivity and
complementary sensitivity functions carry over
to MIMO systems; in fact, both integrals re-
duce to the Bode integrals when specialized to

SISO systems. Yet there is something additional
and unique of MIMO systems: the integrals now
depend on not only the locations but also the
directions of the zeros and poles. In particular, it
can be shown that they depend on the mutual ori-
entation of these directions, and the dependence
can be explicitly characterized geometrically by
the principal angles between the directions. This
new phenomenon, which finds no analog in SISO
systems, thus highlights the important role of
directionality in sensitivity tradeoff and more
generally, in the design of MIMO systems.

A more sophisticated and accordingly, more
informative variant of Bode integrals is the Pois-
son integral for sensitivity and complementary
sensitivity functions (Freudenberg and Looze
1985), which can be used to provide quantitative
estimates of the waterbed effect. MIMO versions
of Poisson integrals are also available (Chen
1995, 2000).

Frequency-Domain Performance
Bounds

Performance bounds complement the integral
relations and provide fundamental thresholds to
the best possible performance ever attainable.
Such bounds are useful in providing benchmarks
for evaluating a system’s performance prior to
and after controller design. In the frequency
domain, fundamental limits can be specified as
the minimal peak magnitude of the sensitivity and
complementary sensitivity functions achievable
by feedback, or formally, the minimal achievable
H1 norms:
�Smin W D inf fkS.s/k1 W K.s/ stabilizes P.s/g ;
�Tmin W D inf fkT .s/k1 W K.s/ stabilizes P.s/g :

Drawing upon Nevanlinna-Pick interpolation
theory for analytic functions, one can obtain
exact performance limits under rather general
circumstances (Chen 2000).

H1 Performance Limits Let zi 2 CC be the
nonminimum phaze zeros of P.s/ with left direc-
tion vectors wi , and pi 2 CC the unstable poles
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of P.s/ with right direction vectors �i , where zi
and pi are all distinct. Then,

�Smin D �Tmin D
r

1C �2
	
Q

�1=2
p QzpQ

�1=2
z



;

where Qz, Qp , and Qzp are the matrices given
by

Qz WD
�

wHi wj
zi C zj

�
; Qp WD

�
�Hi �j

pi C pj

�
;

Qzp WD
�

wHi �j
zi � pj

�
:

More explicit bounds showing how zeros and
poles may interact to have an effect on these
limits can be obtained, e.g., as

�Smin D �Tmin �
s

sin2 †.wi ; �j /C
ˇ
ˇ
ˇ
ˇ
pj C zi
pj � zi

ˇ
ˇ
ˇ
ˇ

2

cos2 †.wi ; �j /;

which demonstrates once again that the pole
and zero directions play an important role in
MIMO systems. Note that for RHP poles and
zeros located in the close vicinity, this bound
can become excessively large, which serves as
another vindication why unstable pole-zero can-
celation must be prohibited. Note also that for
MIMO systems however, whether near pole-zero
cancelation is problematic depends additionally
on the mutual orientation of the pole and zero
directions.

Tracking and Regulation Limits

Tracking and regulation are two canonical
objectives of servo mechanisms and constitute
chief criteria in assessing the performance of
feedback control systems. Understandings gained
from these problems will shed light into more
general issues indicative of feedback design.
In its full generality, a tracking system can be
depicted as in Fig. 2, in which a 2-DOF (degree
of freedom) controller K is to be designed for

the output z to track a given reference input r ,
based on the feedforward of the reference signal
r and the feedback of the measured output y.
The tracking performance is defined in the time
domain by the integral square error

J D
Z 1

0

kz.t/ � r.t/k22dt;

Typically, we take r to be a step signal, which
in the MIMO setting corresponds to a unitary
constant vector, i.e., r.t/ D v; t > 0 and r.t/ D
0; t < 0, where kvk2 D 1. We assume P to be
LTI. But K can be arbitrarily general, as long as
it is causal and stabilizing. We want z to not only
track r asymptotically but also minimize J . But
how small can it be?

For the regulation problem, a general setup is
given in Fig. 3. Likewise, K may be taken as a
2-DOF controller. The control output energy is
measured by the quadratic cost

E D
Z 1

0

ku.t/k22dt:

We consider a disturbance signal d , typically
taken as an impulse signal, d.t/ D vı.t/, where
v is a unitary vector. In this case, the disturbance
can be interpreted as a nonzero initial condition,
and the controller K is to regulate the system’s
zero-input response. Similarly, we assume that P

Fundamental Limitation of Feedback Control, Fig. 2
2-DOF tracking control structure

Fundamental Limitation of Feedback Control, Fig. 3
2-DOF regulator
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is LTI, but allow K to be any causal, stabilizing
controller. Evidently, for a stable P , the problem
is trivial; the response will restore itself to the
origin and thus no energy is required. But what
if the system is unstable? How much energy
does the controller must generate to combat the
disturbance? What is the smallest amount of
energy required? These questions are answered
by the best achievable limits of the tracking
and regulation performance (Chen et al. 2000,
2003).

Tracking and Regulation Performance Limits
Let pi 2 CC and zi 2 CC be the RHP poles and
zeros of P.s/, respectively. Then,

inffE W K stabilizes P.s/g D
X

i

pi cos2.�i ; v/;

inffJ W K stabilizes P.s/g D
X

i

1

zi
cos2.	i ; v/;

where �i and 	i are some unitary vectors related
to the right pole direction vectors associated with
pi and the left zero direction vectors associated
with zi , respectively.

It becomes instantly clear that the optimal
performance depends on both the pole/zero loca-
tions and their directions. In particular, it depends
on the mutual orientation between the input and
pole/zero directions. This sheds some interesting
light. Take the tracking performance for an ex-
ample. For a SISO system, the minimal tracking
error can never be made zero for a nonmini-
mum phase plant; in other words, perfect tracking
can never be achieved. Yet this is possible for
MIMO systems, when the input and zero direc-
tions are appropriately aligned, specifically when
they are orthogonal. Interestingly, the optimal
performance in both cases can be achieved by LTI
controllers, though allowed to be more general.
As a result, the results herein provide the true fun-
damental limits that cannot be further improved,
in spite of using any other more general forms
such as nonlinear, time-varying feedforward and
feedback. It is simply the best one can ever hope
for, and the LTI controllers turn out to be optimal.

Summary and Future Directions

Whether in time or frequency domain, while
the results presented herein may differ in forms
and contexts, they unequivocally point to the
fact that inherent constraints exist in feedback
design, and fundamental limitations will neces-
sarily arise, limiting the performance achievable
regardless of controller design. Such constraints
and limitations are especially exacerbated by the
nonminimum phase zeros and unstable poles in
the system. Understanding of these constraints
and limitations proves essential to the success of
control design.

For both its intrinsic appeal and fundamental
implications, the study of fundamental control
limitations will continue to be a topic of en-
during vitality and indeed will prove timeless.
Challenges are especially daunting and endeavor
is called for, e.g., to incorporate information and
communication constraints into control limitation
studies, of which networked control and multi-
agent systems serve as notable testimonies.
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Abstract

Game theory provides a mature mathematical
foundation for making security decisions in a
principled manner. Security games help formaliz-
ing security problems and decisions using quan-
titative models. The resulting analytical frame-
works lead to better allocation of limited re-
sources and result in more informed responses to
security problems in complex systems and orga-
nizations. The game-theoretic approach to secu-
rity is applicable to a wide variety of systems and
critical infrastructures such as electricity, water,
financial services, and communication networks.

Keywords

Complex systems; Cyberphysical system security;
Game theory; Security games

Introduction

Securing a system involves making numerous
decisions whether the system is a computer

network, part of a business process in an
organization, or belongs to a critical infras-
tructure. One has to decide on, for example,
how to configure sensors for surveillance, collect
further information on system properties, allocate
resources to secure a critical segment, or who
should be able to access a specific function in the
system. The decision-maker can be, depending
on the setting, a regular employee, a system
administrator, or the chief technical officer of an
organization. In many cases, the decisions are
made automatically by a computer program such
as allowing a packet pass the firewall or filtering
it out. The time frame of these decisions exhibits
a high degree of variability from milliseconds,
if made by software, to days and weeks, e.g.,
when they are part of a strategic plan. Each
security decision has a cost and any decision-
maker is always constrained by limited amount
of available resources. More importantly, each
decision carries a security risk that needs to be
taken into account when balancing the costs and
the benefits.

Security games facilitate building analytical
models which capture the interaction between
malicious attackers, who aim to compromise net-
works, and owners or administrators defending
them. Attacks exploiting vulnerabilities of the
underlying systems and defensive countermea-
sures constitute the moves of the game. Thus, the
strategic struggle between attackers and defend-
ers is formalized quantitatively based on the solid
mathematical foundation provided by the field of
game theory.

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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An important aspect of security games is the
allocation of limited available resources from the
perspectives of both attackers and defenders. If
the players had access to unlimited resources
(e.g., time, computing power, bandwidth), then
the resulting security games would be trivial. In
real-world security settings, however, both at-
tackers and defenders have to act strategically and
make numerous decisions when allocating their
respective resources. Unlike in an optimization
approach, security games take into account the
decisions and resource limitations of both the
attackers and the defenders.

Security Games

A security game is defined with four components:
the players, the set of possible actions or strate-
gies for each player, the outcome of the game for
each player as a result of their action-reaction,
and information structures in the game. The play-
ers have their own (selfish or malicious) motiva-
tions and inherent resource constraints. Based on
these motivations and information available, they
choose the most beneficial strategies for them-
selves and act accordingly. Hence, game theory
helps analyzing decision-makers interacting on a
system in a quantitative manner.

An Example Formulation
A simple security game can be formulated as a
two-player and strategic (noncooperative) one,
where one player is the attacker and the other
one is the defender protecting a system. Let
the discrete actions available to the attacker and
the defender be fa; bg and fc; d g, respectively.
Each attack-defense pair leads to one of the
outcome pairs for the attacker and the defender
f.x1; y1/; .x2; y2/; .x3; y3/; .x4; y4/g, which
represent the respective player’s gains (or losses).
This security game is depicted graphically in
Fig. 1. It can also be represented as a matrix
game as follows, where the attacker is the row
player and the defender is the column player:

.c/ .d/�
.x1; y1/ .x2; y2/

.x3; y3/ .x4; y4/

�
.a/

.b/

Game Theory for Security, Fig. 1 A simple, two-player
security game

If the decision variables of the players are
continuous, for example, x 2 Œ0; a� and y 2 Œ0; c�

denote attack and defense intensity, respectively,
then the resulting continuous-kernel game is de-
scribed using functions instead of a matrix. Then,
J attacker.x; y/ and J defender.x; y/ quantify the cost
of the attacker and defender as a function of their
actions, respectively.

Security Game Types
In its simplest formulation, the conflict between
those defending a system and malicious attackers
targeting it can be modeled as a two-person zero-
sum security game, where the loss of a player
is the gain of the other. Alternatively, two- and
multi-person nonzero-sum security games gener-
alize this for capturing a broader range of interac-
tions. Static game formulations and their repeated
versions are helpful for modeling myopic behav-
ior of players in fast changing situations where
planning future actions is of little use. In the
case where the underlying system dynamics are
predictable and available to the players, dynamic
security game formulations can be utilized. If
there is an order of actions in the game, for ex-
ample, a purely reactionary defender, then leader-
follower games can be used to formulate such
cases where the attacker takes the lead and the
defender follows.

Within the framework of security games, the
concept of Nash equilibrium, where no player
gains from deviating from its own Nash equilib-
rium strategy if others stick with theirs, provides
a solid foundation. However, there are refine-
ments and additional solution concepts when the
game is dynamic or when there is more than one
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Nash equilibrium or information limitations in
the game. These constitute an open and ongoing
research topic. A related research question is the
design of security games to ensure a favorable
outcome from a global perspective while taking
into account the independence of individual play-
ers in their decisions.

In certain cases, it is useful to analyze the
player interactions in multiple layers. For exam-
ple, in some security games there may be defend-
ers and malicious attackers trying to influence a
population of other players by indirect means.
In order to circumvent modeling complexity of
the problem, evolutionary games have been sug-
gested. While evolutionary games forsake mod-
eling individual player actions, they provide valu-
able insights to collective behavior of populations
of players and ensure tractability. Such models
are useful, for example, in the analysis of various
security policies affecting many users or security
of large-scale critical systems.

Another important aspect of security decisions
is the availability and acquisition of informa-
tion on the properties of the system at hand,
the actions of other players, and the incentives
behind them. Clearly, the amount of information
available has a direct influence on the decisions,
yet acquiring information is often costly or even
infeasible in some cases. Then, the decisions
have to be made with partial information, and
information collection becomes part of the deci-
sion process itself, creating a complex feedback
loop.

Statistical or machine learning techniques and
system identification are other useful methods
in the analysis of security games where players
use the acquired information iteratively to update
their own model of the environment and other
players. The players then decide on their best
courses of action. Existing work on fictitious
play and reinforcement learning methods such as
Q-learning are applicable and useful. A unique
feature of security games is the fact that players
try to hide their actions from others. These ob-
servability issues and distortions in observations
can be captured by modeling the interaction be-
tween players who observe each other’s actions
as a noisy communication channel.

Applications

An early application of the decision and game-
theoretic approach has been to the well-defined
jamming problem, where malicious attackers aim
to disrupt wireless communication between legit-
imate parties (Kashyap et al. 2004; Zander 1990).
Detection of security intrusion and anomalies due
to attacks is another problem, where the interac-
tion between attackers and defenders has been
modeled successfully using game theory (Alp-
can and Başar 2011; Kodialam and Lakshman
2003). Decision and game-theoretic approaches
have been applied to a broad variety of networked
system security problems such as security invest-
ments in organizations (Miura-Ko et al. 2008),
(location) privacy (Buttyan and Hubaux 2008;
Kantarcioglu et al. 2011), distributed attack de-
tection, attack trees and graphs, adversarial con-
trol (Altman et al. 2010), network path selection
(Zhang et al. 2010) and topology planning in
presence of adversaries (Gueye et al. 2010), as
well as to other types of security games and
decisions. More recently, security games have
been used to investigate cyberphysical security
of (smart) power grid (Law et al. 2012). The
proceedings of the last three Conferences on De-
cision and Game Theory for Security published
as edited volumes in 2010 (Alpcan et al. 2010),
2011 (Baras et al. 2011), and 2012 (Grossklags
and Walrand 2012) as well as the recent survey
paper (Manshaei et al. 2013) present an extensive
segment of the literature on the subject.

Analytical risk management is a related
emerging research subject. Analytical methods
and game theory have been applied to
the field only recently but with increasing
success (Guikema 2009; Mounzer et al. 2010).
Another emerging topic is the adversarial
mechanism design (Chorppath and Alpcan
2011; Roth 2008), where the goal is to design
mechanisms resistant to malicious behavior.

Summary and Future Directions

Game theory provides quantitative methods for
studying the players in security problems such
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as attackers, defenders, and users as well as their
interaction and incentives. Hence, it facilitates
making decisions on the best courses of action
in addressing security problems while taking
into account resource limitations, underlying
incentive mechanisms, and security risks. Thus,
security games and associated quantitative
models have started to replace the prevalent
ad hoc decision processes in a wide variety of
security problems from safeguarding critical
infrastructure to risk management, trust, and
privacy in networked systems.
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Game Theory: Historical Overview
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Abstract

This article provides an overview of the aspects
of game theory that are covered in this Encyclo-
pedia, which includes a broad spectrum of topics
on static and dynamic game theory. It starts with
a brief overview of game theory, identifying its
basic ingredients, and continues with a brief his-
torical account of the development and evolution
of the field. It concludes by providing pointers to
other articles in the Encyclopedia on game theory,
and a list of references.

Keywords

Cooperation; Dynamic games; Evolutionary
games; Game theory; Historical evolution of

game theory; Nash equilibrium; Stackelberg
equilibrium

What Is Game Theory?

Game theory deals with strategic interactions
among multiple decision makers, called players
(and in some context agents), with each player’s
preference ordering among multiple alternatives
captured in an objective function for that player,
which she either tries to maximize (in which case
the objective function is a utility function or a
benefit function) or minimize (in which case we
refer to the objective function as a cost function or
a loss function). For a nontrivial game, the objec-
tive function of a player depends on the choices
(actions or equivalently decision variables) of
at least one other player, and generally of all
the players, and hence a player cannot simply
optimize her own objective function independent
of the choices of the other players. This thus
brings in a coupling among the actions of the
players and binds them together in decision mak-
ing even in a noncooperative environment. If the
players are able to enter into a cooperative agree-
ment so that the selection of actions or decisions
is done collectively and with full trust, so that
all players would benefit to the extent possible,
then we would be in the realm of cooperative
game theory, where issues such as bargaining
and characterization of fair outcomes, coalition
formation, and excess utility distribution are of
relevance; an article in this Encyclopedia (by
Haurie) discusses cooperation and cooperative
outcomes in the context of dynamic games. Other
aspects of cooperative game theory can be found
in several standard texts on game theory, such as
Owen (1995), Vorob’ev (1977), or Fudenberg and
Tirole (1991). See also the 2009 survey article
Saad et al. (2009), which emphasizes applications
of cooperative game theory to communication
networks.

If no cooperation is allowed among the play-
ers, then we are in the realm of noncooperative
game theory, where first one has to introduce a
satisfactory solution concept. Leaving aside for
the moment the issue of how the players can



500 Game Theory: Historical Overview

reach such a solution point, let us address the
issue of what would be the minimum features one
would expect to see there. To first order, such
a solution point should have the property that
if all players but one stay put, then the player
who has the option of moving away from the
solution point should not have any incentive to
do so because she cannot improve her payoff.
Note that we cannot allow two or more players
to move collectively from the solution point,
because such a collective move requires cooper-
ation, which is not allowed in a noncooperative
game. Such a solution point where none of the
players can improve her payoff by a unilateral
move is known as a noncooperative equilibrium
or Nash equilibrium, named after John Nash, who
introduced it and proved that it exists in finite
games (i.e., games where each player has only
a finite number of alternatives), over 60 years
ago; see Nash (1950, 1951). This result and
its various extensions for different frameworks
as well as its computation (both off-line and
online) are discussed in several articles in this
Encyclopedia. Another noncooperative equilib-
rium solution concept is the Stackelberg equi-
librium, introduced in von Stackelberg (1934),
and predating the Nash equilibrium, where there
is a hierarchy in decision making among the
players, with some of the players, designated
as leaders, having the ability to first announce
their actions (and make a commitment to play
them) and the remaining players, designated as
followers, taking these actions as given in the
process of computation of their noncooperative
(Nash) equilibria (among themselves). Before
announcing their actions, the leaders would of
course anticipate these responses and determine
their actions in a way that the final outcome
will be most favorable to them (in terms of
their objective functions). For a comprehensive
treatment of Nash and Stackelberg equilibria for
different classes of games, see Başar and Olsder
(1999).

We say that a noncooperative game is nonzero-
sum if the sum of the players’ objective functions
cannot be made zero after appropriate positive
scaling and/or translation that do not depend on
the players’ decision variables. We say that a

two-player game is zero-sum if the sum of the
objective functions of the two players is zero
or can be made zero by appropriate positive
scaling and/or translation that do not depend on
the decision variables of the players; hence, two-
player zero-sum games can be viewed as a spe-
cial subclass of two-player nonzero-sum games,
and in this case the Nash equilibrium becomes
the saddle-point equilibrium. A game is a finite
game if each player has only a finite number of
alternatives, that is, the players pick their actions
out of finite sets (action sets); otherwise, the game
is an infinite game. Finite games are also known
as matrix games. An infinite game is said to be a
continuous-kernel game if the action sets of the
players are continua and the players’ objective
functions are continuous with respect to action
variables of all players. A game is said to be
deterministic if the players’ actions uniquely de-
termine the outcome, as captured in the objective
functions, whereas if the objective function of at
least one player depends on an additional variable
(state of nature) with a probability distribution
known to all players (or can be learned on line),
then we have a stochastic game. A game is a com-
plete information game if the description of the
game (i.e., the players, the objective functions,
and the underlying probability distributions (if
stochastic)) is common information to all players;
otherwise, we have an incomplete information
game. We say that a game is static if players have
access to only the a priori information (shared
by all) and none of the players has access to
information on the actions of any of the other
players; otherwise, what we have is a dynamic
game. A game is a single-act game if every player
acts only once; otherwise, the game is multi-act.
Note that it is possible for a single-act game to be
dynamic and for a multi-act game to be static. A
dynamic game is said to be a differential game if
the evolution of the decision process (controlled
by the players over time) takes place in contin-
uous time and generally involves a differential
equation; if it takes place over a discrete-time
horizon, the dynamic game is sometimes called
a discrete-time game.

In dynamic games, as the game progresses
players acquire information (complete or partial)
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on past actions of other players and use this
information in selecting their own actions (also
dictated by the equilibrium solution concept at
hand). In finite dynamic games, for example, the
progression of a game involves a tree structure
(also called extensive form) where each node
is identified with a player along with the time
when she acts, and branches emanating from a
node show the possible moves of that particular
player. A player, at any point in time, could
generally be at more than one node, which is a
situation that arises when the player does not have
complete information on the past moves of other
players and hence may not know with certainty
which particular node she is at at any particular
time. This uncertainty leads to a clustering of
nodes into what is called information sets for
that player. What players decide on within the
framework of the extensive form is not their
actions, but their strategies, that is, what action
they would take at each information set (in other
words, correspondences between their informa-
tion sets and their allowable actions). They then
take specific actions (or actions are executed on
their behalf), dictated by the strategies chosen
as well as the progression of the game (deci-
sion) process along the tree. The equilibrium is
then defined in terms of not actions but strate-
gies.

The notion of a strategy, as a mapping from
the collection of information sets to action sets,
extends readily to infinite dynamic games, and
hence, in both differential games and difference
games, Nash equilibria are defined in terms of
strategies. Several articles in this Encyclopedia
discuss such equilibria, for both zero-sum and
nonzero-sum dynamic games, with and without
the presence of probabilistic uncertainty.

In the broad scheme of things, game theory
and particularly noncooperative game theory
can be viewed as an extension of two fields,
both covered in this Encyclopedia: Mathematical
Programming and Optimal Control Theory. Any
problem in game theory collapses to a problem
in one of these disciplines if there is only one
player. One-player static games are essentially
mathematical programming problems (linear
programming or nonlinear programming), and

one-player difference or differential games can
be viewed as optimal control problems.

Highlights on the History and
Evolution of Game Theory

Game theory has enjoyed over 70 years of
scientific development, with the publication of
the Theory of Games and Economic Behavior by
von Neumann and Morgenstern (1947) generally
acknowledged to kick-start the field. It has
experienced incessant growth in both the number
of theoretical results and the scope and variety
of applications. As a recognition of the vitality
of the field, through 2012 a total of 10 Nobel
Prizes were given in Economic Sciences for
work primarily in game theory, with the first such
recognition bestowed in 1994 on John Harsanyi,
John Nash, and Reinhard Selten “for their
pioneering analysis of equilibria in the theory
of noncooperative games.” The second round
of Nobel Prizes in game theory went to Robert
Aumann and Thomas Schelling in 2005, “for
having enhanced our understanding of conflict
and cooperation through game-theory analysis.”
The third round recognized Leonid Hurwicz,
Eric Maskin, and Roger Myerson in 2007, “for
having laid the foundations of mechanism design
theory.” And the most recent one was in 2012,
recognizing Alvin Roth and Lloyd Shapley,
“for the theory of stable allocations and the
practice of market design.” To this list of highest-
level awards related to contributions to game
theory, one should also add the 1999 Crafoord
Prize (which is the highest prize in Biological
Sciences), which went to John Maynard Smith
(along with Ernst Mayr and G. Williams)
“for developing the concept of evolutionary
biology,” where Smith’s recognized contributions
had a strong game-theoretic underpinning,
through his work on evolutionary games and
evolutionary stable equilibrium (Smith 1974,
1982; Smith and Price 1973); this is the topic
of one of the articles in this Encyclopedia
(by Altman). Several other “game theory”
articles in the Encyclopedia also relate to the
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contributions of the Nobel Laureates mentioned
above.

Even though von Neumann and Morgenstern’s
1944 book is taken as the starting point of
the scientific approach to game theory, game-
theoretic notions and some isolated key results
date back to earlier years and even centuries.
Sixteen years earlier, in 1928, von Neumann
himself had resolved completely an open
fundamental problem in zero-sum games, that
every finite two-player zero-sum game admits a
saddle point in mixed strategies, which is known
as the Minimax Theorem (von Neumann 1928)
– a result which Emile Borel had conjectured
to be false eight years before. Some early
traces of game-theoretic thinking can be seen
in the 1802 work (Considérations sur la théorie
mathématique du jeu) of André-Marie Ampère
(1775–1836), who was influenced by the 1777
writings (Essai d’Arithmétique Morale) of
Georges Louis Buffon (1707–1788).

Which event or writing has really started
game-theoretic thinking or approach to decision
making (in law, politics, economics, operations
research, engineering, etc.) may be a topic of
debate, but what is indisputable is that in (zero-
sum) differential games (which is most relevant
to control theory) the starting point was the work
of Rufus Isaacs in the RAND Corporation in
the early 1950s, which remained classified for
at least a decade, before being made accessible
to a broad readership in 1965 (Isaacs 1965); see
also the review (Ho 1965) which first introduced
the book to the control community. One of the
articles in this Encyclopedia (by Bernhard) talks
about this history and the theory developed by
Isaacs, within the context of pursuit-evasion
games, and another article (again by Bernhard)
discusses the impact the zero-sum differential
game framework has made on robust control
design (Başar and Bernhard 1995). Extension
of the game-theoretic framework to nonzero-
sum differential games with Nash equilibrium as
the solution concept was initiated in Starr and
Ho (1969) and with Stackelberg equilibrium
as the solution concept in Simaan and Cruz
(1973). Systematic study of the role information
structures play in the existence of such equilibria

and their uniqueness or nonuniqueness (termed
informational nonuniqueness) was carried out in
Başar (1974, 1976, 1977).

Related Articles on Game Theory in
the Encyclopedia

Several articles in the Encyclopedia introduce
various subareas of game theory and discuss im-
portant developments (past and present) in each
corresponding area.

The article � Strategic Form Games and
Nash Equilibrium introduces the static game
framework along with the Nash equilibrium
concept, for both finite and infinite games,
and discusses the issues of existence and
uniqueness as well efficiency. The article
�Dynamic Noncooperative Games focuses on
dynamic games, again for both finite and infinite
games, and discusses extensive form descriptions
of the underlying dynamic decision process,
either as trees (in finite games) or difference
equations (in discrete-time infinite games).
Bernhard, in two articles, discusses continuous-
time dynamic games, described by differential
equations (so-called differential games), but
in the two-person zero-sum case. One of these
articles � Pursuit-Evasion Games and Zero-Sum
Two-Person Differential Games describes the
framework initiated by Isaacs, and several of
its extensions for pursuit-evasion games, and
the other one �Linear Quadratic Zero-Sum
Two-Person Differential Games presents results
on the special case of linear quadratic differential
games, with an important application of that
framework to robust control and more precisely
H1-optimal control.

When the number of players in a nonzero-
sum game is countably infinite, or even just
sufficiently large, some simplifications arise in
the computation and characterization of Nash
equilibria. The mathematical framework appli-
cable to this context is provided by mean field
theory, which is the topic of the article �Mean
Field Games, which discusses this relatively new
theory within the context of stochastic differential
games.

http://dx.doi.org/10.1007/978-1-4471-5058-9_27
http://dx.doi.org/10.1007/978-1-4471-5058-9_28
http://dx.doi.org/10.1007/978-1-4471-5058-9_270
http://dx.doi.org/10.1007/978-1-4471-5058-9_29
http://dx.doi.org/10.1007/978-1-4471-5058-9_30
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Cooperative solution concepts for dynamic
games are discussed in the article �Cooperative
Solutions to Dynamic Games, which introduces
Pareto optimality, the bargaining solution concept
by Nash, characteristic functions, core, and C-
optimality, and presents some selected results us-
ing these concepts. In the article �Evolutionary
Games, the foundations of, as well as the recent
advances in, evolutionary games are presented,
along with examples showing their potential as
a tool for capturing and modeling interactions in
complex systems.

The article �Learning in Games addresses the
online computation of Nash equilibrium through
an iterative process which takes into account each
player’s response to choices made by the remain-
ing players, with built-in learning and adaptation
rules; one such scheme that is discussed in the
article is the well-known fictitious play. Learning
is also the topic of the article � Stochastic Games
and Learning, which presents a framework and a
set of results using the stochastic games formula-
tion introduced by Shapley in the early 1950s.

The article �Network Games shows how
game theory plays an important role in modeling
interactions between entities on a network, partic-
ularly communication networks, and presents a
simple mathematical model to study one such
instance, namely, resource allocation in the
Internet. How to design a game so as to obtain a
desired outcome (as captured by say a Nash equi-
librium) is a question central to mechanism de-
sign, which is covered in the article �Mechanism
Design, which discusses as a specific example the
Vickrey-Clarke-Groves (VCG) mechanism.

Two other applications of game theory are
to design of auctions and security. The article
�Auctions addresses the former, discussing
general auction theory along with equilibrium
strategies and more specifically combinatorial
auctions. The latter is addressed in the article
�Game Theory for Security, which discusses
how the game-theoretic approach leads to more
effective responses to security in complex
systems and organizations, with applications
to a wide variety of systems and critical
infrastructures such as electricity, water, financial
services, and communication networks.

Future of Game Theory

The second half of the twentieth century was a
golden era for game theory, and all evidence so
far in the twenty-first century indicates that the
next half century is destined to be a platinum era.
In all respects game theory is on an upward slope
in terms of its vitality, the wealth of topics that fall
within its scope, the richness of the conceptual
framework it offers, the range of applications, and
the challenges it presents to an inquisitive mind.
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Abstract

The linear-quadratic (LQ) problem is the
prototype of a large number of optimal control

problems, including the fixed endpoint, the point-
to-point, and several H2/H1 control problems,
as well as the dual counterparts. In the past
50 years, these problems have been addressed
using different techniques, each tailored to
their specific structure. It is only in the last
10 years that it was recognized that a unifying
framework is available. This framework hinges
on formulae that parameterize the solutions of
the Hamiltonian differential equation in the
continuous-time case and the solutions of the
extended symplectic system in the discrete-time
case. Whereas traditional techniques involve the
solutions of Riccati differential or difference
equations, the formulae used here to solve the
finite-horizon LQ control problem only rely on
solutions of the algebraic Riccati equations.
In this article, aspects of the framework are
described within a discrete-time context.

Keywords

Cyclic boundary conditions; Discrete-time linear
systems; Fixed end-point; Initial value; Point-
to-point boundary conditions; Quadratic cost;
Riccati equations

Introduction

Ever since the linear-quadratic (LQ) optimal
control problem was introduced in the 1960s by
Kalman in his pioneering paper (1960), it has
found countless applications in areas such as
chemical process control, aeronautics, robotics,
servomechanisms, and motor control, to name but
a few.

For details on the raisons d’être of LQ prob-
lems, readers are referred to the classical text-
books on this topic (Anderson and Moore 1971;
Kwakernaak and Sivan 1972) and to the Spe-
cial Issue on LQ optimal control problems in
IEEE Trans. Aut. Contr., vol. AC-16, no. 6, 1971.
The LQ regulator is not only important per se. It
is also the prototype of a variety of fundamental
optimization problems. Indeed, several optimal
control problems that are extremely relevant in
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practice can be recast into composite LQ, dual
LQ, or generalized LQ problems. Examples in-
clude LQG, H2 and H1 problems, and Kalman
filtering problems. Moreover, LQ optimal control
is intimately related, via matrix Riccati equations,
to absolute stability, dissipative networks, and
optimal filtering. The importance of LQ problems
is not restricted to linear systems. For example,
LQ control techniques can be used to modify an
optimal control law in response to perturbations
in the dynamics of a nonlinear plant. For these
reasons, the LQ problem is universally regarded
as a cornerstone of modern control theory.

In its simplest and most classical version, the
finite-horizon discrete LQ optimal control can be
stated as follows:

Problem 1 Let A 2 R
n�n and B 2 R

n�m, and
consider the linear system

xtC1 D A xt C B ut ; yt D Cxt C Dut ; (1)

where the initial state x0 2 R
n is given. Let

W D W > 2 R
n�n be positive semidefinite. Find

a sequence of inputs ut , with t D 0; 1; : : : ; N �1,
minimizing the cost function

JN;x0 .u/
defD

N �1X
tD0

kyt k2 C x>
N W xN : (2)

Historically, LQ problems were first intro-
duced and solved by Kalman in (1960). In this
paper, Kalman showed that the LQ problem can
be solved for any initial state x0, and the optimal
control can be written as a state feedback u.t/ D
K.t/ x.t/, where K.t/ can be found by solving
a famous quadratic matrix difference equation
known as the Riccati equation. When W is no
longer assumed to be positive semidefinite, the
optimal solution may or may not exist. A com-
plete analysis of this case has been worked out
in Bilardi and Ferrante (2007). In the infinite-
horizon case (i.e., when N is infinite), the optimal
control (when it exists) is stationary and may be
computed by solving an algebraic Riccati equa-
tion (Anderson and Moore 1971; Kwakernaak
and Sivan 1972).

Since its introduction, the original formulation
of the classic LQ optimal control problem has
been generalized in several different directions,
to accommodate for the need of considering
more general scenarios than the one represented
by Problem 1. Examples include the so-called
fixed endpoint LQ, in which the extreme states
are sharply assigned, and the point-to-point
case, in which the initial and terminal values
of an output of the system are constrained to be
equal to specified values. This led to a number
of contributions in the area where different
adaptations of the Riccati theory were tailored to
these diversified contexts of LQ optimal control.
These variations of the classic LQ problem are
becoming increasingly important due to their
use in several applications of interest. Indeed,
many applications including spacecraft, aircraft,
and chemical processes involve maneuvering
between two states during some phases of a
typical mission. Another interesting example is
the H2-optimization of transients in switching
plants, where the problem can be divided
into a set of finite-horizon LQ problems with
welding conditions on the optimal arcs for
each switch instant. This problem has been
the object of a large number of contributions
in the recent literature, under different names:
Parameter varying systems, jump linear systems,
switching systems, and bumpless systems are
definitions extensively used to denote different
classes of systems affected by sensible changes
in their parameters or structures (Balas and
Bokor 2004). In recent years, a new unified
approach emerged in Ferrante et al. (2005),
Ferrante and Ntogramatzidis (2005), Ferrante
and Ntogramatzidis (2007a), and Ferrante
and Ntogramatzidis (2007b) that solves the
finite-horizon LQ optimal control problem
via a formula which parameterizes the set of
trajectories generated by the corresponding
Hamiltonian differential equation in the
continuous time and the extended symplectic
difference equation in the discrete case. Loosely,
we can say that the expressions parameterizing
the trajectories of the Hamiltonian differential
equation and the extended symplectic difference
equation using this approach hinge on a pair of
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“opposite” solutions of the associated algebraic
Riccati equations. This active stream of research
considerably enlarged the range of optimal
control problems that can be successfully
addressed. This point of view always requires
some controllability-type assumption and the
extended symplectic pencil (Ferrante and
Ntogramatzidis 2005, 2007b) to be regular
and devoid of generalized eigenvalues on the
unit circle. More recently, a new point of
view has emerged which yields a more direct
solution to this problem, without requiring
system-theoretic assumptions (Ferrante and
Ntogramatzidis 2013a,b; Ntogramatzidis and
Ferrante 2013).

The discussion here is restricted to the
discrete-time case; for the corresponding
continuous-time counterpart, we will only make
some comments and refer to the literature.

Notation. For the reader’s convenience, we
briefly review some, mostly standard, matrix
notation used throughout the paper. Given a
matrix B 2 R

n�m, we denote by B> its
transpose and by B� its Moore-Penrose pseudo-
inverse, the unique matrix B� that satisfies
BB�B D B , B�BB� D B�, .BB�/> D BB�,
and .B�B/> D B�B . The kernel of B is
the subspace fx 2 R

n j Bx D 0g and is
denoted ker B . The image of B is the subspace
fy 2 R

m j 9x 2 R
n W y D A xg and is denoted

by im B . Given a square matrix A, we denote by
�.A/ its spectrum, i.e., the set of its eigenvalues.
We write A1 > A2 (resp. A1 � A2) when A1 �A2

is positive definite (resp. positive semidefinite).

Classical Finite-Horizon
Linear-Quadratic Optimal Control

The simplest classical version of the finite-
horizon LQ optimal control is Problem 1. By
employing some standard linear algebra, this
problem may be solved by the classical technique
known as “completion of squares”: First of all,
the cost can be rewritten as

JN;x0 .u/ D
N �1X
tD0

Œ x>
t u>

t �…

�
xt

ut

�

Cx>
N W xN ; …

defD
�

Q S

S> R

�

defD
�

C >
D>

�
ŒC D � D …> � 0: (3)

Now, let X0; X1; : : : ; XN be an arbitrary
sequence of n � n symmetric matrices. We have
the identity

PN �1
tD0

�
x>

tC1 XtC1 xtC1 � x>
t Xt xt

�
Cx>

0 X0 x0 � x>
N XN xN D 0: (4)

Adding (4)–(3) and using the expression (1) for
xtC1, we get

JN;x0 .u/ D
N �1X
tD0

Œ x>
t u>

t �

�
Q C A>XtC1A � Xt S C A>XtC1B

S> C B>XtC1A R C B>XtC1B

�

�
xt

ut

�
C x>

N .W � XN / xN C x>
0 X0 x0; (5)

which holds for any sequence of matrices Xt .
With XN

defD W fixed, for t D N �1; N �2; : : : ; 0,
let

Xt
defD Q C A>XtC1A � .S C A>XtC1B/

.R C B>XtC1B/�.S> C B>XtC1A/: (6)

It is now easy to see that all the matrices of the
sequence Xt defined above are positive semidefi-
nite. Indeed, XN D W � 0. Assume by induction
that XtC1 � 0. Then,

MtC1
defD

�
Q C A>XtC1A S C A>XtC1B

S> C B>XtC1A R C B>XtC1B

�

D … C
�

A>
B>

�
XtC1Œ A B � � 0:

Since Xt is the generalized Schur complement of
the right upper block of MtC1 in MtC1, it follows
that Xt � 0, which in turns implies
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R C B>XtB � 0:

Moreover, by employing Eq. (6) and recalling
that, given a positive semidefinite matrix …0 Dh

Q0 S0

S>

0 R0

i
D …>

0 � 0, we have

�
S0 R

�
0S>

0 S0

S>

0 R0

�
Dh

S0

R0

i
R

�
0Œ S>

0 R0 � � 0, we easily see that

MtC1 �
�

Xt 0

0 0

�

D
�

S C A>XtC1B

R C B>XtC1B

�
.R C B>XtB/�

�
S>C A>XtC1B R C B>XtC1B

� � 0:

Hence, (5) takes the form

JN;x0 .u/ D
N �1X
tD0

k Œ.R C B>XtC1B/1=2��

.S> C B>XtC1A/xt C .R C B>XtC1B/1=2

ut k2
2 Cx>

0 X0x0: (7)

Now it is clear that ut is optimal if and only if

.R C B>XtC1B/1=2��.S> C B>XtC1A/xt

C.R C B>XtC1B/1=2ut D 0;

whose solutions are parameterized by the feed-
back control

ut D �Ktxt C Gt vt ; (8)

where Kt
defD .RCB>XtC1B/�.S>CB>XtC1A/

and Gt
defD ŒI � .R C B>XtC1B/�.R C

B>XtC1B/� is the orthogonal projector onto
the linear space of vectors that can be added
to the optimal control ut without affecting
optimality and vt is a free parameter. The optimal
state trajectory is now given by the closed-loop
dynamics

xtC1 D .A � BKt/xt C BGt vt : (9)

The optimal cost is clearly

J � D x>
0 X0x0: (10)

The corresponding results in continuous
time can be obtained along the same lines
as the discrete-time case; see Ferrante and
Ntogramatzidis (2013b) and references therein.

More General Linear-Quadratic
Problems

The problem discussed in the previous section
presents some limitations that prevent its appli-
cability in several important situations. In partic-
ular, three relevant generalizations of the classical
problem are:
1. The fixed endpoint case, where the states at the

endpoints x0 and xN are both assigned.
2. The point-to-point case, where the initial and

terminal values z0 and zN of linear combina-
tion zt D Vxt of the state of the dynamical
system described by (1) are constrained to be
equal to two assigned vectors.

3. The cyclic case, where the states at the end-
points x0 and xN are not sharply assigned, but
they are constrained to be equal (clearly, we
can have combinations of (2) and (3)).
All these problems are special cases of a

general LQ problem that can be stated as follows:

Problem 2 Consider the dynamical setting (1) of
Problem 1. Find a sequence of inputs ut , with t D
0; 1; : : : ; N � 1 and an initial state x0 minimizing
the cost function

JN;x0 .u/
defD

N �1X
tD0

kyt k2 C Œ x>
0 � x>

0 x>
N � x>

N �

�
W11 W12

W >
12 W22

� �
x0 � x0

xN � xN

�
(11)

under the dynamic constraints (1) and the end-
points constraints

V

�
x0

xN

�
D v: (12)
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Here W
defD

h
W11 W12

W >

12 W22

i
is a positive semidefinite

matrix (partitioned in four blocks) that quadrati-
cally penalizes the differences between the initial
state x0 and a desired initial state x0 and between
the final state xN and a desired final state xN

(This general problem formulation can also en-
compass problems where the difference x0 � xN

is not fixed but has to be quadratically penalized
with a matrix � D �> � 0 in the performance
index J 0

N;x0
.u/ D PN �1

tD0 Œ x>
t u>

t �…
� xt

ut

� C .x0 �
xN />�.x0 � xN /. It is simple to see that this
performance index can be brought back to (11)

by setting W D
h

� ��

�� �

i
and x0 D xN D

0.). Equation (12) permits to impose also a hard
constraint on an arbitrary linear combination of
initial and final states.

The solution of Problem 2 can be obtained
by parameterizing the solutions of the so-called
extended symplectic system (see Ferrante and
Levy (1998) and references therein for a discus-
sion on symplectic matrices and pencils). This
solution can be convenient also for the classi-
cal case of Problem 1. In fact it does not re-
quire to iterate the difference Riccati equation
(which can be undesirable if the time horizon
is large) but only to solve an algebraic Ric-
cati equation and a related discrete Lyapunov
equation.

This solution requires some definitions, pre-
liminary results, and standing assumptions (see
Ntogramatzidis and Ferrante (2013) and Ferrante
and Ntogramatzidis (2013a) for a more general
approach which does not require such assump-
tions). A detailed proof of the main result can
be found in Ferrante and Ntogramatzidis (2007b);
see also Zattoni (2008) and Ferrante and Ntogra-
matzidis (2012). The extended symplectic pencil
is defined by

zF � G; F
defD

2
4 In 0 0

0 �A> 0

0 �B> 0

3
5 ;

G
defD

2
4 A 0 B

Q �In S

S> 0 R

3
5 : (13)

where Q; S; R are defined as in (3). We make the
following assumptions:
(A1) The pair .A; B/ is modulus controllable,

i.e., 8� 2 Cnf0g at least one of the two
matrices Œ�I � A j B� and Œ��1I � A j B�

has full row rank.
(A2) The pencil zF � G is regular (i.e.,

det.zF � G/ is not the zero polynomial)
and has no generalized eigenvalues on the
unit circle.

Consider the discrete algebraic Riccati
equation

X D A>X A � .A>X B C S/ .R C B>X B/�1

.S> C B>X A/ C Q: (14)

Under assumptions (A1)–(A2), (14) admits
a strongly unmixed solution X D X>, i.e., a
solution X for which the corresponding closed-
loop matrix

AX
defD A � B KX; KX

defD .R C B> X B/�1

.S> C B> X A/ (15)

has spectrum that does not contain reciprocal
values, i.e., � 2 �.AX / implies ��1 … �.AX /. It
can now be proven that the following closed-
loop Lyapunov equation admits a unique solution
Y D Y > 2R

n � n:

AX Y A>
X � Y C B .R C B> X B/�1B> D 0:

(16)

The following theorem provides an explicit for-
mula parameterizing all the optimal state and
control trajectories for Problem 2. Notice that this
formula can be readily implemented starting from
the problem data.

Theorem 1 With reference to Problem 2, assume
that (A1) and (A2) are satisfied. Let X D X>
be any strongly unmixed solution of (14) and
Y D Y > be the corresponding solution of (16).
Let NV be a basis matrix (In the case when
ker V D f0g, we consider NV to be void.) of the
null space of V . Moreover, let
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F
defD AN

X ;

K?
defD KX Y A>

X � .R C B> X B/�1B>;

OX defD diag .�X; X/; x
defD

�
x0

xN

�
;

w
defD

�
v

�N >
V W x

�
; L

defD
�

In Y F >
F Y

�
;

U
defD

�
0 �F >
0 In

�
;

M
defD

�
V L

N >
V Œ . OX � W / L � U �

�
:

Problem 2 admits solutions if and only if
w 2 im M . In this case, let NM be a basis matrix
of the null space of M , and define

P defD f� D M � w C NM � j � arbitrary g: (17)

Then, the set of optimal state and control trajec-
tories of Problem 2 is parameterized in terms of
� 2 P , by

�
x.t/

u.t /

�
D

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

"
At

X Y .A>

X /N �t

�KX At
X �K? .A>

X /N �t�1

#
�;

0 � t � N � 1;

"
AN

X Y

0 0

#
�; t D N:

(18)

The interpretation of the above result is the
following. As � varies, (18) describes the trajec-
tories of the extended symplectic system. The set
P defined in (17) is the set of � for which these
trajectories satisfy the boundary conditions. All
the details of this construction can be found in
Ferrante and Ntogramatzidis (2007b). If the pair
.A; B/ is stabilizable, we can choose X D X>
to be the stabilizing solution of (14). In such
case, the matrices At

X , .A>
X /N �t and .A>

X /N �t�1

appearing in (18) are asymptotically stable for all
t D 0; : : : ; N . Thus, in this case, the optimal state
trajectory and control are expressed in terms of
powers of strictly stable matrices in the overall
time interval, thus ensuring the robustness of
the obtained solution even for very large time
horizons. Indeed, the stabilizing solution of an

algebraic Riccati equation and the solution of a
Lyapunov equation may be computed by standard
and robust algorithms available in any control
package (see the MATLAB R� routines dare.m
and dlyap.m). We refer to Ferrante et al. (2005)
and Ferrante and Ntogramatzidis (2013b) for the
continuous-time counterpart of the above results.

Summary

With the technique discussed in this paper, a
large number of LQ problems can be tackled
in a unified framework. Moreover, several finite-
horizon LQ problems that can be interesting and
useful in practice can be recovered as particular
cases of the control problem considered here. The
generality of the optimal control problem herein
considered is crucial in the solution of several
H2 � H1 optimization problems whose optimal
trajectory is composed of a set of arches, each one
solving a parametric LQ subproblem in a specific
time horizon and all joined together at the end-
points of each subinterval. In these cases, in fact,
a very general form of constraint on the extreme
states is essential in order to express the condition
of conjunction of each pair of subsequent arches
at the endpoints.
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Abstract

Graphs constitute natural models for networks of
interacting agents. This chapter introduces graph
theoretic formalisms that facilitate analysis and
synthesis of coordinated control algorithms over
networks.
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Introduction

Distributed and networked systems are character-
ized by a set of dynamical units (agents, actors,
nodes) that share information with each other
in order to achieve a global performance objec-
tive using locally available information. Informa-
tion can typically be shared if agents are within
communication or sensing range of each other.
It is useful to abstract away the particulars of
the underlying information-exchange mechanism
and simply say that an information link exists
between two nodes if they can share information.
Such an abstraction is naturally represented in
terms of a graph.

A graph is a combinatorial object defined by
two constructs: vertices (or nodes) and edges (or
links) connecting pairs of distinct vertices. The
set of N vertices specified by V D {v1; : : :; vN }
corresponds to the agents, and an edge between
vertices vi and vj is represented by .vi , vj /;
the set of all edges constitutes the edge set E .
The graph G is thus the pair G D .V; E/ and
the interpretation is that an edge .vi ; vj / 2 E
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Graphs for Modeling
Networked Interactions,
Fig. 1 A network of
agents equipped with
omnidirectional range
sensors can be viewed as a
graph (undirected in this
case), with nodes
corresponding to the agents
and edges to their pairwise
interactions, which are
enabled whenever the
agents are within a certain
distance from each other

if information can flow from vertex i to vertex
j: If the information exchange is sensor based,
and if there is a state xi associated with vertex i ,
e.g., its position, then this information is typically
relative, i.e., the states are measured relative to
each other and the information obtained along
the edge is xj � xi . If on the other hand the
information is communicated, then the full state
information xi can be transmitted along the edge
.vi , vj /. The graph abstraction for a network of
agents with sensor-based information exchange is
illustrated in Fig. 1.

It is often useful to differentiate between sce-
narios where the Information exchange is bidi-
rectional – if agent i can get information from
agent j , then agent j can get information from
agent i – and when it is not. In the language of
graph theory, an undirected graph is one where
.vi ; vj / 2 E implies that .vj ; vi / 2 E , while a
directed graph is one where such an implication
may not hold.

Graph-Based CoordinationModels

Graphs provide structural insights into how dif-
ferent coordination algorithms behave over a net-
work. A coordination algorithm, or protocol, is
an update rule that describes how the node states
should evolve over time. To understand such
protocols, one needs to connect the interaction
dynamics to the underlying graph structure. This
connection is facilitated through the common
intersection of linear system theory and graph

theory, namely, the broad discipline of algebraic
graph theory, by first associating matrices with
graphs. For undirected graphs, the following ma-
trices play a key role:

Degree matrix W�DDiag .deg .v1/ ; : : : ; deg .vN//;

Adjacency matrix W A D �
aij

�
;

where Diag denotes a diagonal matrix whose
diagonal consists of its argument and deg.vi /

is the degree of vertex i in the graph, i.e., the
cardinality of the set of edges incident on vertex
i . Moreover,

aij D
�

1 if (vj ; vi / 2 E

0 otherwise.

As an example of how these matrices come into
play, the so-called consensus protocol over scalar
states can be compactly written on ensemble form
as

Px D �Lx;

where x = [x1,. . . , xN ]T and L is the graph
Laplacian:

L D � � A:

A useful matrix for directed networks is the
incidence matrix, obtained by associating an in-
dex to each edge in E . We say that vi = tail.ej / if
edge ej starts at node vi and vi = head.ej / if ej

ends up at vi , leading to the

Incidence matrix W D D �
	ij

�
;
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where

	ij D
8<
:

1 if vi D head.ej /

�1 if vi D tail.ej /

0 otherwise.

It now follows that for undirected networks, the
Laplacian has an equivalent representation as

L D DDT ;

where D is the incidence matrix associated with
an arbitrary orientation (assignment of directions
to the edges) of the undirected graph. This in
turn implies that for undirected networks, L is
a positive semi-definite matrix and that all of its
eigenvalues are nonnegative.

If the network is directed, one has to pay
attention to the direction in which information
is flowing, using the in-degree and out-degree
of the vertices. The out-degree of vertex i is
the number of directed edges that originate at
i , and similarly the in-degree of node i is the
number of directed edges that terminate at node i .
A directed graph is balanced if the out-degree is
equal to the in-degree at every vertex in the graph.
And, the graph Laplacian for directed graphs is
obtained by only counting information flowing in
the correct direction, i.e., if L D �

`ij

�
, then li i is

the in-degree of vertex i and lij D �1 if i ¤ j

and .vj ; vi / 2 E .
As a final note, for both directed and

undirected networks, it is possible to associate
weights to the edges, w W E ! 
 where 
 is set
of nonnegative reals or more generally a field, in
which case the Laplacian’s diagonal elements are
the sum of the weights of edges incident to node
i and the off-diagonal elements are �w.vj ; vi /

when .vj ; vi / 2 E .

Applications

Graph-based coordination has been used in a
number of application domains, such as multi-
agent robotics, mobile sensor and communication
networks, formation control, and biological sys-
tems. One way in which the consensus protocol

can be generalized is by defining an edge-tension
energy Eij

���xi � xj

��	
along each edge in the

graph, which gives the total energy in the network
as

E.x/ D
NX

iD1

X
j 2Ni

Eij

���xi � xj

��	
:

If the agents update their states in such a way as
to reduce the total energy in the system according
to a gradient descent scheme, the update law
becomes

Px D �@E.x/

@xi

) PE.x/ D �
����@E.x/

@x

����
2

2

;

which is nonpositive, i.e., the total energy is
reduced in the network. For undirected networks,
the ensemble version of this protocol assumes the
form

Px D �Lw.x/x;

where the weighted graph Laplacian is

Lw.x/ D DW.x/DT ;

with the weight matrix W.x/ = Diag.w1.x/; : : :;

wM .x//. Here M is the total number of edges
in the network, and wk.x/ is the weight that
corresponds to the kth edge, given an arbitrary
ordering of the edges consistent with the incident
matrix D.

This energy interpretation allows for the
synthesis of coordination laws for multi-agent
networks with desirable properties, such as
Eij

���xi � xj

��	 D ���xi � xj

�� � dij

	2
for

making the agents reach the desired interagent
distances dij , as shown in Fig. 2. Other
applications where these types of constructions
have been used include collision avoidance and
connectivity maintenance.

Summary and Future Directions

A number of issues pertaining to graph-based dis-
tributed control remain to be resolved. These in-
clude how heterogeneous networks, i.e., networks
comprising of agents with different capabilities,
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G

Graphs forModeling Networked Interactions, Fig. 2 Fifteen mobile robots are forming the letter “G” by executing
a weighted version of the consensus protocol. (a) Formation control .t D 0/. (b) Formation control .t D 5/

can be designed and understood. A variation to
this theme is networks of networks, i.e., net-
works that are loosely coupled together and that
must coordinate at a higher level of abstrac-
tion. Another key issue concerns how human
operators should interact with networked control
systems.
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Recommended Reading

There are a number of research manuscripts
and textbooks that explore the role of network
structure on the system theoretic aspects of
networked dynamic systems and its many
ramifications. Some of these references are listed
below.
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Abstract

An optimization-based approach to linear
feedback control system design uses the H2

norm, or energy of the impulse response,
to quantify closed-loop performance. In this
entry, an overview of state-space methods for
solving H2 optimal control problems via Riccati
equations and matrix inequalities is presented
in a continuous-time setting. Both regular and
singular problems are considered. Connections
to so-called LQR and LQG control problems are
also described.

Keywords

Feedback control; H2 control; Linear matrix
inequalities; Linear systems; Riccati equations;
State-space methods

Introduction

Modern multivariable control theory based
on state-space models is able to handle

multi-feedback-loop designs, with the added
benefit that design methods derived from it
are amenable to computer implementation.
Indeed, over the last five decades, a number of
multivariable analysis and design methods have
been developed using the state-space description
of systems. Of these design tools, H2 optimal
control problems involve minimizing the H2

norm of the closed-loop transfer function from
exogenous disturbance signals to a pertinent
controlled output signals of a given plant
by appropriate use of a internally stabilizing
feedback controller. It was not until the 1990s
that a complete solution to the general H2 optimal
control problem began to emerge. To elaborate
on this, let us concentrate our discussion on H2

optimal control for a continuous-time system †

expressed in the following state-space form:

Px D Ax C Bu C Ew (1)

y D C1x C D11u C D1w (2)

z D C2x C D2u C D22w (3)

where x is the state variable, u is the control
input, w is the exogenous disturbance input, y is
the measurement output, and z is the controlled
output. The system † is typically an augmented
or generalized plant model including weighting
functions that reflect design requirements. The
H2 optimal control problem is to find an ap-
propriate control law, relating the control input
u to the measured output y, such that when it
is applied to the given plant in Eqs. (1)–(3), the

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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resulting closed-loop system is internally stable,
and the H2 norm of the resulting closed-loop
transfer matrix from the disturbance input w to
the controlled output z, denoted by Tzw.s/, is
minimized. For a stable transfer matrix Tzw.s/,
the H2 norm is defined as

kTzwk2D
�

1

2�
trace

�Z 1
�1

Tzw.j!/T H
zw.j!/d!

��
1
2

(4)

where T H
zw is the conjugate transpose of Tzw. Note

that the H2 norm is equal to the energy of the
impulse response associated with Tzw.s/ and this
is finite only if the direct feedthrough term of the
transfer matrix is zero.

It is standard to make the following assump-
tions on the problem data: D11 D 0; D22 D
0; .A; B/ is stabilizable; .A; C1/ is detectable.
The last two assumptions are necessary for the
existence of an internally stabilizing control law.
The first assumption can be made without loss
of generality via a constant loop transformation.
Finally, either the assumption D22 D 0 can be
achieved by a pre-static feedback law, or the
problem does not yield a solution that has finite
H2 closed-loop norm.

There are two main groups into which all H2

optimal control problems can be divided. The
first group, referred to as regular H2 optimal
control problems, consists of those problems for
which the given plant satisfies two additional
assumptions:
1. The subsystem from the control input to the

controlled output, i.e., .A; B; C2; D2/, has no
invariant zeros on the imaginary axis, and
its direct feedthrough matrix, D2, is injective
(i.e., it is tall and of full rank).

2. The subsystem from the exogenous dis-
turbance to the measurement output, i.e.,
.A; E; C1; D1/, has no invariant zeros on
the imaginary axis and its direct feedthrough
matrix, D1, is surjective (i.e., it is fat and of
full rank).

Assumption 1 implies that .A; B; C2; D2/ is left
invertible with no infinite zero, and Assump-
tion 2 implies that .A; E; C1; D1/ is right invert-
ible with no infinite zero. The second, referred to

as singular H2 optimal control problems, consists
of those which are not regular.

Most of the research in the literature was
expended on regular problems. Also, most of the
available textbooks and review articles, see, for
example, Anderson and Moore (1989), Bryson
and Ho (1975), Fleming and Rishel (1975),
Kailath (1974), Kwakernaak and Sivan (1972),
Lewis (1986), and Zhou et al. (1996), to name a
few, cover predominantly only a subset of regular
problems. The singular H2 control problem with
state feedback was studied in Geerts (1989) and
Willems et al. (1986). Using different classes of
state- and measurement-feedback control laws,
Stoorvogel et al. (1993) studied the general H2

optimal control problems for the first time. In
particular, necessary and sufficient conditions are
provided therein for the existence of a solution in
the case of state-feedback control, and in the case
of measurement-feedback control. Following
this, Trentelman and Stoorvogel (1995) explored
necessary and sufficient conditions for the
existence of an H2 optimal controller within
the context of discrete-time and sampled-data
systems. At the same time Chen et al. (1993,
1994a) provided a thorough treatment of the
H2 optimal control problem with state-feedback
controllers. This includes a parameterization
and construction of the set of all H2 optimal
controllers and the associated sets of H2 optimal
fixed modes and H2 optimal fixed decoupling
zeros. Also, they provided a computationally
feasible design algorithm for selecting an H2

optimal state-feedback controller that places the
closed-loop poles at desired locations whenever
possible. Furthermore, Chen and Saberi (1993)
and Chen et al. (1996) developed the necessary
and sufficient conditions for the uniqueness of
an H2 optimal controller. Interested readers are
referred to the textbook Saberi et al. (1995)
for a detailed treatment of H2 optimal control
problems in their full generality.

Regular Case

Solving regular H2 optimal control problems is
relatively straightforward. In the case that all of
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the state variables of the given plant are available
for feedback, i.e., y D x, and Assumption 1
holds, the corresponding H2 optimal control
problem can be solved in terms of the unique
positive semi-definite stabilizing solution P � 0

of the following algebraic Riccati equation:

ATP C PA C C T
2 C2 � .PB C C T

2 D2/.D
T
2D2/

�1

.DT
2C2 C BTP / D 0 (5)

The H2 optimal state-feedback law is given by

u D F x D �.DT
2D2/

�1.DT
2C2 C BTP / x (6)

and the resulting closed-loop transfer matrix from
w to z, Tzw.s/, has the following property:

kTzwk2 D
q

trace.E
T
PE/ (7)

Note that the H2 optimal state-feedback control
law is generally nonunique. A trivial example
is the case when E D 0, whereby every sta-
bilizing control law is an optimal solution. It
is also interesting to note that the closed-loop
system comprising the given plant with y D x

and the state-feedback control law of Eq. (6) has
poles at all the stable invariant zeros and all the
mirror images of the unstable invariant zeros of
.A; B; C2; D2/ together with some other fixed
locations in the left half complex plane. More de-
tailed results about the optimal fixed modes and
fixed decoupling zeros for general H2 optimal
control can be found in Chen et al. (1993).

It can be shown that the well-known linear
quadratic regulation (LQR) problem can be refor-
mulated as a regular H2 optimal control problem.
For a given plant

Px D Ax C Bu; x.0/ D X0 (8)

with .A; B/ being stabilizable, the LQR problem
is to find a control law u D F x such that the
following performance index is minimized:

J D
Z 1

0

.xTQ?x C uTR?u/dt; (9)

where R? > 0 and Q? � 0 with .A; Q
1
2
? / being

detectable. The LQR problem is equivalent to
finding a static state-feedback H2 optimal control
law for the following auxiliary plant †LQR:

Px D Ax C Bu C X0w (10)

y D x (11)

z D
 

0

Q
1
2
?

!
x C

 
R

1
2
?

0

!
u (12)

For the measurement-feedback case with both
Assumptions 1 and 2 being satisfied, the cor-
responding H2 optimal control problem can be
solved by finding a positive semi-definite stabi-
lizing solution P � 0 for the Riccati equation
given in Eq. (5) and a positive semi-definite sta-
bilizing solution Q � 0 for the following Riccati
equation:

QATCAQ C EET�.QC T
1 C EDT

1/.D1DT
1/
�1

.D1ET C C1Q/ D 0 (13)

The H2 optimal measurement-feedback law is
given by

Pv D .A C BF C KC1/v � Ky; u D F x (14)

where F is as given in Eq. (6) and

K D �.QC T
1 C EDT

1/.D1D
T
1/�1 (15)

In fact, such an optimal control law is unique and
the resulting closed-loop transfer matrix from w
to z, Tzw.s/, has the following property:

kTzwk2 D ˚
trace.ETPE/

Ctrace
��

ATP C PA C C T
2 C2

�
Q
	
 1

2

(16)

Similarly, consider the standard LQG problem
for the following system:

Px D Ax C Bu C G?d (17)
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y D Cx C N?n; N? > 0 (18)

z D
�

H?x

R?u

�
; R? > 0; w D

�
d

n

�
(19)

where x is the state, u is the control, d and n

white noises with identity covariance, and y the
measurement output. It is assumed that .A; B/ is
stabilizable and .A; C / is detectable. The control
objective is to design an appropriate control law
that minimizes the expectation of jzj2. Such an
LQG problem can be solved via the H2 optimal
control problem for the following auxiliary sys-
tem †LQG (see Doyle 1983):

Px D Ax C Bu C Œ G? 0 �w (20)

y D Cx C Œ 0 N?�w (21)

z D
�

H?

0

�
x C

�
0

R?

�
u (22)

H2 optimal control problem for discrete-
time systems can be solved in a similar way
via the corresponding discrete-time algebraic
Riccati equations. It is worth noting that many
works can be found in the literature that deal
with solutions to discrete-time algebraic Riccati
equations related to optimal control problems;
see, for example, Kucera (1972), Pappas et al.
(1980), and Silverman (1976), to name a few. It
is proven in Chen et al. (1994b) that solutions
to the discrete- and continuous-time algebraic
Riccati equations for optimal control problems
can be unified. More specifically, the solution
to a discrete-time Riccati equation can be done
through solving an equivalent continuous-time
one and vice versa.

Singular Case

As in the previous section, only the key procedure
in solving the singular H2-optimization problem
for continuous-time systems is addressed. For
the singular problem, it is generally not possible
to obtain an optimal solution, except for some
situations when the given plant satisfies certain
geometric constraints; see, e.g., Chen et al. (1993)
and Stoorvogel et al. (1993). It is more feasible

to find a suboptimal control law for the singular
problem, i.e., to find an appropriate control law
such that the H2 norm of the resulting closed-
loop transfer matrix from w to z can be made
arbitrarily close to the best possible performance.
The procedure given below is to transform the
original problem into an H2 almost disturbance
decoupling problem; see Stoorvogel (1992) and
Stoorvogel et al. (1993).

Consider the given plant in Eqs. (1)–(3) with
Assumption 1 and/or Assumption 2 not satisfied.
First, find the largest solution P � 0 for the
following linear matrix inequality

F.P /D
�

ATP C PA C C T
2 C2 PB C C T

2 D2

BTP C DT
2C2 DT

2D2

�
� 0

(23)
and find the largest solution Q � 0 for

G.Q/D
�

AQ C QAT C EET QC T
1 C EDT

1

C1Q C D1E
T D1DT

1

�
� 0

(24)

Note that by decomposing the quadruples
.A; B; C2; D2/ and .A; E; C1; D1/ into various
subsystems in accordance with their structural
properties, solutions to the above linear matrix
inequalities can be obtained by solving a Riccati
equation similar to those in Eq. (5) or Eq. (5) for
the regular case. In fact, for the regular problem,
the largest solution P � 0 for Eq. (23) and
the stabilizing solution P � 0 for Eq. (5) are
identical. Similarly, the largest solution Q � 0

for Eq. (24) and the stabilizing solution Q � 0

for Eq. (13) are also the same. Interested readers
are referred to Stoorvogel et al. (1993) for more
details or to Chen et al. (2004) for a more system-
atic treatment on the structural decomposition of
linear systems and its connection to the solutions
of the linear matrix inequalities.

It can be shown that the best achievable H2

norm of the closed-loop transfer matrix from w
to z, i.e., the best possible performance over all
internally stabilizing control laws, is given by

�?
2 D ˚

trace.ETPE/

C trace
��

ATP C PA C C T
2 C2

�
Q
	
 1

2 (25)
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Next, partition

F.P /D
�

C T
P

DT
P

� �
CP DP

�

and G.Q/D
�

EQ

DQ

� �
ET

Q DT
Q

�
(26)

where ŒCP DP� and ŒET
Q DT

Q� are of maximal
rank, and then define an auxiliary system †PQ:

PxPQ D AxPQ C Bu C EQwPQ (27)

y D C1xPQ C DQwPQ (28)

zPQ D CPxPQ C DPu (29)

It can be shown that the quadruple.A;B;CP;DP/

is right invertible and has no invariant zeros in the
open right-half complex plane, and the quadruple
.A; EQ; C1; DQ/ is left invertible and has no
invariant zeros in the open right-half complex
plane. It can also be shown that there exists
an appropriate control law such that when it is
applied to †PQ, the resulting closed-loop system
is internally stable and the H2 norm of the closed-
loop transfer matrix from wPQ to zPQ can be made
arbitrarily small. Equivalently, H2 almost distur-
bance decoupling problem for †PQ is solvable.

More importantly, it can further be shown
that if an appropriate control law solves the H2

almost disturbance decoupling problem for †PQ,
then it solves the H2 suboptimal problem for †.
As such, the solution to the singular H2 control
problem for † can be done by finding a solution
to the H2 almost disturbance decoupling problem
for †PQ. There are vast results available in the
literature dealing with disturbance decoupling
problems. More detailed treatments can be found
in Saberi et al. (1995).

Conclusion

This entry considers the basic solutions to
H2 optimal control problems for continuous-
time systems. Both the regular problem and
the general singular problem are presented.
Readers interested in more details are referred

to Saberi et al. (1995) and the references therein,
for the complete treatment of H2 optimal control
problems, and to Chap. 10 of Chen et al. (2004)
for the unification and differentiation of H2

control, H1 control, and disturbance decoupling
control problems. H2 optimal control is a mature
area and has a long history. Possible future
research includes issues on how to effectively
utilize the theory in solving real-life problems.
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Abstract

The area of robust control, where the perfor-
mance of a feedback system is designed to be
robust to uncertainty in the plant being controlled,
has received much attention since the 1980s.
System analysis and controller synthesis based on
the H-infinity norm has been central to progress
in this area. This article outlines how the control
law that minimizes the H-infinity norm of the

closed-loop system can be derived. Connections
to other problems, such as game theory and risk-
sensitive control, are discussed and finally appro-
priate problem formulations to produce “good”
controllers using this methodology are outlined.

Keywords

Loop-shaping; Robust control; Robust stability

Introduction

The H1-norm probably first entered the study
of robust control with the observations made
by Zames (1981) in the considering optimal
sensitivity. The so-called H1 methods were
subsequently developed and are now routinely
available to control engineers. In this entry
we consider the H1 methods for control, and
for simplicity of exposition, we will restrict
our attention to linear, time-invariant, finite
dimensional, continuous-time systems. Such
systems can be represented by their transfer
function matrix, G.s/, which will then be a
rational function of s. Although the Hardy
Space, H1, also includes nonrational functions,
a rational G.s/ is in H1 if and only if it is proper
and all its poles are in the open left half plane, in
which case the H1-norm is defined as:

kG.s/k
1
D sup

Res>0

�max.G.s//D sup
�1<!<1

�max..j!//

(where �max denotes the largest singular value).
Hence for a single input/single output system
with transfer function, g.s/, its H1-norm,
kg.s/k1 gives the maximum value of jg.j!/j
and hence the maximum amplification of
sinusoidal signals by a system with this transfer
function. In the multi-input/multi-output case
a similar result holds regarding the system
amplification of a vector of sinusoids. There
is now a good collection of graduate level
textbooks that cover the area in some detail from
a variety of approaches, and these are listed



H-Infinity Control 521

H

in the Recommended Reading section and the
references in this article are generally to these
texts rather than to the original journal papers.

Consider a system with transfer function,
G.s/, input vector, u.t/ 2 L2.0; 1/ and an
output vector, y.t/, whose Laplace transforms
are given by Nu.s/ and Ny.s/. Such a system will
have a state space realization,

Px.t/ D Ax.t/ CBu.t/; y.t/ D Cx.t/ CDu.t/

giving G.s/ D D C C.sI � A/�1B , which we
also denote

G.s/ D
�

A B

C D

�
;

and hence Ny.s/ D G.s/Nu.s/ if x.0/ D 0.
There are two main reasons for using the H1-

norm. Firstly in representing the system gain for
input signals u.t/ 2 L2.0; 1/ or equivalently
Nu.j!/ 2 L2.�1; 1/, with corresponding norm
kuk2

2 D R1
0

u.t/�u.t/ dt (where x� denotes the
conjugate transpose of the vector x (or a matrix)).
With these input and output spaces the induced
norm of the system is easily shown to be the H1-
norm of G.s/, and in particular,

kyk2 � kG.s/k1kuk2

Hence in a control context the H1-norm can
give a measure of the gain, for example, from
disturbances to the resulting errors. In the
interconnection of systems, the property that
kP.s/Q.s/k1 � kP.s//k1kQ.s/k1 is often
useful.

The second reason for using the H1-norm
is in representing uncertainty in the plant being
controlled, e.g., the nominal plant is Po.s/ but
the actual plant is P.s/ D Po.s/ C �.s/ where
k�.s/k1 � ı.

A typical control design problem is given in
Fig. 1, i.e.,

� Nz
Ny
�

D P

� Nw
Nu
�

D
�
P11 Nw C P12 Nu
P21 Nw C P22 Nu

�

Nu D K Ny

u

w

y

z

K

P =
P11    P12
P21    P22

H-Infinity Control, Fig. 1 Lower linear fractional trans-
formation: feedback system

) Ny D .I � P22K/�1P21 Nw;

Nu D K.I � P22K/�1P21 Nw
Nz D �

P11 C P12K.I � P22K/�1P21

� Nw
DW Fl .P; K/ Nw DW Tz w Nw

where Fl .P; K/ denotes the lower Linear
Fractional Transformation (LFT) with connection
around the lower terminals of P as in Fig. 1.

The standardH1-control synthesis problem is
to find a controller with transfer function, K , that

stabilizes the closed-loop system in Fig. 1
and minimizes kFl .P; K/k1.

That is, the controller is designed to minimize
the worst-case effect of the disturbance w on
the output/error signal z as measured by the L2

norm of the signals. This article will describe the
solution to this problem.

Robust Stability

Before we describe the solution to the synthe-
sis problem, consider the problem of the robust
stability of an uncertain plant with a feedback
controller. Suppose the plant is given by the upper
LFT, Fu.P; �/ with k�k1 � 1=� as illustrated
in Fig. 2,

Ny D Fu.P; �/Nu; (1)
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P =
P11    P12
P21    P22

H-Infinity Control, Fig. 2 Upper linear fractional trans-
formation

u

w

y

z

K

Δ

P =
P11    P12
P21    P22

H-Infinity Control, Fig. 3 Feedback system with plant
uncertainty

where Fu.P;K/ WDP22CP21�.I�P11�/�1P12

(2)

The small gain theorem then states that the
feedback system of Fig. 3 will be stable for all
such � if the feedback connection of P22 and
K is stable and kFl .P; K/k1 < � . This robust
stability result is valid if P and � are both stable;
more care is required when either or both are
unstable but with such care a similar result is true.

Let us consider a couple of examples. First
suppose that the uncertainty is represented as
output multiplicative uncertainty,

P� D.I C W1�W2/Po DFu

��
0 W2Po

W1 Po

�
; �

�

with robust stability test given by

kFl

��
0 W2Po

W1 Po

�
; K

�
k1

D kW2PoK.I � PoK/�1W1k1 < �

As a second example consider the plants
P� D . QM C �M /�1. QN C �N /, with � D�
�N �M

	
and k�k1 � 1=� . Here Po D

QM�1 QN is a left coprime factorization of the
nominal plant and the plants P� are represented
by perturbations to these coprime factors. In this
case P� D Fu.P; �/, where

P D
2
4
�

0

� QM�1

� �
I

� QM�1 QN
�

QM�1 QM�1 QN

3
5

and the robust stability test will be

kFl .P;K/k1D
����
�

K

�I

�
.I �PoK/�1 QM�1

����1<�

This is related to plant perturbations in the gap
metric (see Vinnicombe 2001). It is therefore
observed that the robust stability test for these
useful representations of uncertain plants is given
by an H1-norm test just as in the controller
synthesis problem.

Derivation of theH1-Control Law

In this section we present a solution to the H1-
control problem and give some interpretations of
the solution. The approach presented is as in by
Doyle et al. (1989); see also Zhou et al. (1996).
We will make some simplifying structural as-
sumptions to make the formulae less complex and
will not state the required assumptions on rank,
stabilizability, and detectability. Let the system in
Fig. 1 be described by the equations:

Px.t/ D Ax.t/ C B1w.t/ C B2u.t/ (3)



H-Infinity Control 523

H

z.t/ D C1x.t/ C D12u.t/ (4)

y.t/ D C2x.t/ C D21w.t/ (5)

i.e., in Fig. 1

P D
2
4 A B1 B2

C1 0 D12

C2 D21 0

3
5

where we also assume, with little loss of general-
ity, that D�12D12 D I , D21D

�
21 D I , D�12C1 D

0 and B1D�21 D 0. Since we wish to have
kTz wk1 < � , we need to find u such that

kzk2
2 � �2kwk2

2 < 0 for all w ¤ 0 2 L2.0; 1/:

We could consider w to be an adversary trying to
make this expression positive, while u has to en-
sure that it always remains negative in spite of the
malicious intentions of w, as in a noncooperative
game. Suppose that there exists a solution, X1,
to the Algebraic Riccati Equation (ARE),

A�X1 C X1A C C �1 C1

CX1.��2B1B�1 � B2B
�
2 /X1 D 0 (6)

with X1 � 0 and A C .��2B1B�1 � B2B
�
2 /X1

a stable “A-matrix.” A simple substitution then
gives that

d

dt
.x.t/�X1x.t// D �z�z C �2w�w

Cv�v � �2r�r

where

v WD u C B�2 X1x; r WD w � ��2B�1 X1x:

Now let x.0/ D 0 and assuming stability so that
x.1/ D 0, then integrating from 0 to 1 gives

kzk2
2 � �2kwk2

2 D kvk2
2 � �2krk2

2 (7)

If the state is available to u, then the control
law u D �B�2 X1x gives v D 0 and kzk2

2 �
�2kwk2

2 < 0 for all w ¤ 0. It can be shown
that (6) has a solution if there exists a controller

such that kFl .P; K/k1 < � . In addition since
transposing a system does not change its H1-
norm, the following dual ARE will also have a
solution, Y1 � 0,

AY1 C Y1A� C B1B
�
1

CY1.��2C �1 C1 � C �2 C2/Y1 D 0 (8)

To obtain a solution to the output feedback
case, note that (7) implies that kzk2

2 < �2kwk2
2

if and only if kvk2
2 < �2krk2

2 and Nv D
Fl .Ptmp; K/Nr where

� Nv
Ny
�

D Ptmp

� Nr
Nu
�

;

and

Ptmp D
2
4A C ��2B1B

�
1 X1 B1 B2

B�2 X1 0 I

C2 D21 0

3
5

The special structure of this problem enables a
solution to be derived in much the same way
as the dual of the state feedback problem. The
corresponding ARE will have a solution Ytmp D
.I � ��2Y1X1/�1Y1 � 0 if and only if the
spectral radius �.Y1X1/ < �2.

The above outline, supported by significant
technical detail and assumptions, will therefore
demonstrate that there exists a stabilizing con-
troller, K.s/, such that the system described by
(3–1) satisfies kTz wk1 < � if and only if there
exist stabilizing solutions to the AREs in (6) and
(8) such that

X1 � 0; Y1 � 0; �.Y1X1/ < �2 (9)

The state equations for the resulting controller
can be written as

POx D A OxCB1 Owworst CB2uCZ1L1.C2 Ox�y/

u D F1 Ox; Owworst D ��2B�1 X1 Ox
F1 WD �B�2 X1; L1 WD �Y1C �2 ;

Z1 WD .I � ��2Y1X1/�1
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giving feedback from a state estimator in the pres-
ence of an estimate of the worst-case disturbance.

As � ! 1 the standard LQG controller
is obtained with state feedback of a state esti-
mate obtained from a Kalman filter. In contrast
to the LQG problem, the controller depends on
the value of � , and if this is chosen to be too
small, then one of the conditions in (9) will
be violated. In order to determine the minimum
achievable value of � , a bisection search over �

can be performed checking (9) for each candidate
value of � .

In the limit as � ! �opt (its minimum value),
a variety of situations can arise and the formulae
given here may become ill-conditioned. Typically
achieving �opt is more of an interesting and some-
times challenging mathematical exercise rather
than a control system requirement.

This control problem does not have a unique
solution, and all solutions can be characterized
by an LFT form such as K D Fl .M; Q/ where
Q 2 H1 with kQk1 < 1, the present solution
is sometimes referred to as the “central solution”
obtained with Q D 0.

Relations for Other Solution Methods
and Problem Formulations

The H1-control problem has been shown to
be related to an extraordinarily wide variety of
mathematical techniques and to other problem
areas, and investigations of these connections
have been most fruitful. Earlier approaches (see
Francis 1988) firstly used the characterization
of all stabilizing controllers of Youla et al. (see
Vidyasagar 1985) which shows that all stable
closed-loop systems can be written as

Fl .P; K/ D T1 C T2QT3; where Q 2 H1

and then solved the model matching problem
infQ2H1

kT1 C T2QT3k1. This model matching
problem is related to interpolation theory and
resulted in a productive interaction with the
operator theory. One solution method reduces
this problem to J-spectral factorisation problems

�
where J D

�
I 0

0 �I

��
and generates state-

space solutions to these problems (Kimura 1997).
The derivation above clearly demonstrates re-

lations to noncooperative differential games, and
this is fully developed in Başar and Bernhard
(1995) and Green and Limebeer (1995).

The model matching problem is clearly a con-
vex optimization problem. The solution of linear
matrix inequalities can give effective methods
for solving certain convex optimization problems
(e.g., calculating theH1 norm using the bounded
real lemma) and can be exploited in the H1-
control problem. See Boyd and Barratt (1991) for
a variety of results on convex optimization and
control and Dullerud and Paganini (2000) for this
approach in robust control.

As noted above there is a family of solutions
to the H1-control problem. The central solution
in fact minimizes the entropy integral given by

I.Tz wI �/ WD � �2

2�

Z 1
�1

ln

ˇ̌
det.I ���2Tz w.j!/�Tz w.j!//

ˇ̌
d!

(10)

It can be seen that this criterion will penalize the
singular values of Tz w.j!/ from being close to
� for a large range of frequencies.

One of the more surprising connections is
with the risk-sensitive stochastic control problem
(Whittle 1990) where w is assumed to be Gaus-
sian white noise and it is desired to minimize

JT .�/ WD �2

T
ln E

n
e

1
2 ��2VT

o
(11)

where VT WD
Z T

�T

z.t/�z.t/ dt (12)

The situation with �2 > 0 corresponds to the
risk averse controller since large values of VT

are heavily penalized by the exponential function.
It can be shown that if kTz wk1 < � , then

lim
T!1JT .�/ D I.Tz wI �/

and hence the central controller minimizes both
the entropy integral and the risk-sensitive cost
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function. When � is chosen to be too small,
Whittle refers to the controller having a “neurotic
breakdown” because the cost will be infinite
for all possible control laws! If in (11) we set
�2 D ���1, then the entropy minimizing con-
troller will have � < 0 and will be risk-averse.
The risk neutral controller is when � ! 0, � !
1 and gives the standard LQG case. If � > 0,
then the controller will be risk-seeking, believing
that large variance will be in its favor.

Controller Design withH1
Optimization

The above solutions to the H1 mathematical
problem do not give guidance on how to set up a
problem to give a “good” control system design.
The problem formulation typically involves iden-
tifying frequency-dependent weighting matrices
to characterize the disturbances, w, and the rel-
ative importance of the errors, z (see Skogestad
and Postlethwaite 1996). The choice of weights
should also incorporate system uncertainty to
obtain a robust controller.

One approach that combines both closed-loop
system gain and system uncertainty is called
H1 loop-shaping where the desired closed-loop
behavior is determined by the design of the loop-
shape using pre- and post-compensators and the
system uncertainty is represented in the gap met-
ric (see Vinnicombe 2001). This makes classical
criteria such as low frequency tracking error,
bandwidth, and high-frequency roll-off all eas-
ily incorporated. In this framework the perfor-
mance and robustness measures are very well
matched to each other. Such an approach has been
successfully exploited in a number of practical
examples (e.g., Hyde (1995) for flight control
taken through to successful flight tests). Standard
control design software packages now routinely
have H1-control design modules.

Summary and Future Directions

We have outlined the derivation of H1
controllers with straightforward assumptions that

nevertheless exhibit most of the features of linear
time-invariant systems without such assumptions
and for which routine design software is now
available. Connections to a surprisingly large
range of other problems are also discussed.

Generalizations to more general cases such
as time-varying and nonlinear systems, where
the norm is interpreted as the induced norm of
the system in L2, can be derived although the
computational aspects are no longer routine. For
the problems of robust control, there are necessar-
ily continuing efforts to match the mathematical
representation of system uncertainty and system
performance to the physical system requirements
and to have such representations amenable to
analysis and computation.
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Abstract

This entry gives an overview of the development
of adaptive control, starting with the early ef-
forts in flight and process control. Two popular
schemes, the model reference adaptive controller
and the self-tuning regulator, are described with
a thumbnail overview of theory and applications.
There is currently a resurgence in adaptive flight
control as well as in other applications. Some
reflections on future development are also given.

Keywords

Adaptive control; Auto-tuning; Flight control;
History; Model reference adaptive control; Pro-
cess control; Robustness; Self-tuning regulators;
Stability

Introduction

In everyday language, to adapt means to change
a behavior to conform to new circumstances,
for example, when the pupil area changes to

accommodate variations in ambient light. The
distinction between adaptation and conventional
feedback is subtle because feedback also attempts
to reduce the effects of disturbances and plant
uncertainty. Typical examples are adaptive optics
and adaptive machine tool control which are
conventional feedback systems, with controllers
having constant parameters. In this entry we take
the pragmatic attitude that an adaptive controller
is a controller that can modify its behavior in re-
sponse to changes in the dynamics of the process
and the character of the disturbances, by adjusting
the controller parameters.

Adaptive control has had a colorful history
with many ups and downs and intense debates
in the research community. It emerged in the
1950s stimulated by attempts to design autopi-
lots for supersonic aircrafts. Autopilots based on
constant-gain, linear feedback worked well in one
operating condition but not over the whole flight
envelope. In process control there was also a need
for automatic tuning of simple controllers.

Much research in the 1950s and early 1960s
contributed to conceptual understanding of
adaptive control. Bellman showed that dynamic
programming could capture many aspects of
adaptation (Bellman 1961). Feldbaum introduced
the notion of dual control, meaning that control
should be probing as well as directing; the
controller should thus inject test signals to obtain
better information. Tsypkin showed that schemes
for learning and adaptation could be captured in
a common framework (Tsypkin 1971).

Gabor’s work on adaptive filtering (Gabor
et al. 1959) inspired Widrow to develop an
analogue neural network (Adaline) for adaptive
control (Widrow 1962). Widrow’s adaptation
mechanism was inspired by Hebbian learning in
biological systems (Hebb 1949).

There are adaptive control problems in eco-
nomics and operations research. In these fields
the problems are often called decision making
under uncertainty. A simple idea, called the cer-
tainty equivalence principle proposed by Simon
(1956), is to neglect uncertainty and treat esti-
mates as if they are true. Certainty equivalence
was commonly used in early work on adaptive
control.
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A period of intense research and ample fund-
ing ended dramatically in 1967 with a crash of the
rocket powered X15-3 using Honeywell’s MH-
96 self-oscillating adaptive controller. The self-
oscillating adaptive control system has, however,
been successfully used in several missiles.

Research in adaptive control resurged in the
1970s, when the two schemes the model ref-
erence adaptive control (MRAC) and the self-
tuning regulator (STR) emerged together with
successful applications. The research was influ-
enced by stability theory and advances in the field
of system identification. There was an intensive
period of research from the late 1970s through the
1990s. The insight and understanding of stability,
convergence, and robustness increased. Recently
there has been renewed interest because of flight
control (Hovakimyan and Cao 2010; Lavretsky
and Wise 2013) and other applications; there is,
for example a need for adaptation in autonomous
systems.

The Brave Era

Supersonic flight posed new challenges for flight
control. Eager to obtain results, there was a very
short path from idea to flight test with very little
theoretical analysis in between. A number of
research projects were sponsored by the US air
force. Adaptive flight control systems were devel-
oped by General Electric, Honeywell, MIT, and
other groups. The systems are documented in the
Self-Adaptive Flight Control Systems Sympo-
sium held at the Wright Air Development Center
in 1959 (Gregory 1959) and the book (Mishkin
and Braun 1961).

Whitaker of the MIT team proposed the model
reference adaptive controller system which is
based on the idea of specifying the performance
of a servo system by a reference. Honeywell pro-
posed a self-oscillating adaptive system (SOAS)
which attempted to keep a given gain margin
by bringing the system to self-oscillation. The
system was flight-tested on several aircrafts. It
experienced a disaster in a test on the X-15.
Combined with the success of gain scheduling

based on air data sensors, the interest in adaptive
flight control diminished significantly.

There was also interest of adaptation for
process control. Foxboro patented an adaptive
process controller with a pneumatic adaptation
mechanism in 1950 (Foxboro 1950). DuPont had
joint studies with IBM aimed at computerized
process control. Kalman worked for a short
time at the Engineering Research Laboratory
at DuPont, where he started work that led to a
paper (Kalman 1958), which is the inspiration
of the self-tuning regulator. The abstract of this
entry has the statement, This paper examines the
problem of building a machine which adjusts
itself automatically to control an arbitrary
dynamic process, which clearly captures the
dream of early adaptive control.

Draper and Li investigated the problem of op-
erating aircraft engines optimally, and they devel-
oped a self-optimizing controller that would drive
the system towards optimal working conditions.
The system was successfully flight-tested (Draper
and Li 1966) and initiated the field of extremal
control.

Many of the ideas that emerged in the brave
era inspired future research in adaptive control.
The MRAC, the STR, and extremal control are
typical examples.

Model Reference Adaptive Control
(MRAC)

The MRAC was one idea from the early work
on flight control that had a significant impact on
adaptive control. A block diagram of a system
with model reference adaptive control is shown
in Fig. 1. The system has an ordinary feedback
loop with a controller, having adjustable param-
eters, and the process. There is also a reference
model which gives the ideal response ym to the
command signal ym and a mechanism for adjust-
ing the controller parameters � . The parameter
adjustment is based on the process output y, the
control signal u, and the output ym of the ref-
erence model. Whitaker proposed the following
rule for adjusting the parameters:
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d�

dt
D ��e

@e

@�
; (1)

where e D y � ym and @e=@� is the sensitivity
derivative. Efficient ways to compute the sensitiv-
ity derivative were already available in sensitivity
theory. The adaptation law (1) became known as
the MIT rule.

Experiments and simulations of the model
reference adaptive systems indicated that there
could be problems with instability, in particular
if the adaptation gain � in Eq. (1) is large.
This observation inspired much theoretical
research. The goal was to replace the MIT
rule by other parameter adjustment rules with
guaranteed stability; the models used were non
linear continuous time differential equations. The
papers Butchart and Shackcloth (1965) and Parks
(1966) demonstrated that control laws could
be obtained using Lyapunov theory. When all
state variables are measured, the adaptation laws
obtained were similar to the MIT rule (1), but
the sensitivity function was replaced by linear
combinations of states and control variables.
The problem was more difficult for systems
that only permitted output feedback. Lyapunov
theory could still be used if the process transfer
function was strictly positive real, establishing a
connection with Popov’s hyper-stability theory
(Landau 1979). The assumption of a positive
real process is a severe restriction because such
systems can be successfully controlled by high-
gain feedback. The difficulty was finally resolved
by using a scheme called error augmentation
(Monopoli 1974; Morse 1980).

There was much research, and by the late
1980s, there was a relatively complete theory for
MRAC and a large body of literature (Ander-
son et al. 1986; Åström and Wittenmark 1989;
Egardt 1979; Goodwin and Sin 1984; Kumar
and Varaiya 1986; Narendra and Annaswamy
1989; Sastry and Bodson 1989).The problem of
flight control was, however, solved by using gain
scheduling based on air data sensors and not by
adaptive control (Stein 1980). The MRAC was
also extended to nonlinear systems using back-
stepping (Krstić et al. 1993); Lyapunov stability
and passivity were essential ingredients in devel-
oping the algorithm and analyzing its stability.

The Self-Tuning Regulator

The self-tuning regulator was inspired by
steady-state regulation in process control. The
mathematical setting was discrete time stochastic
systems. A block diagram of a system with a self-
tuning regulator is shown in Fig. 2. The system
has an ordinary feedback loop with a controller
and the process. There is an external loop for
adjusting the controller parameters based on real-
time parameter estimation and control design.
There are many ways to estimate the process
parameters and many ways to do the control
design. Simple schemes do not take parameter
uncertainty into account when computing the
controller parameters invoking the certainty
equivalence principle.

Single-input, single-output stochastic systems
can be modeled by
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y.t/Ca1y.t � h/ C � � � any.t � nh/ D
b1u.t � h/ C � � � C bnu.t � nh/C
c1w.t � h/ C � � � cnw.t � nh/ C e.t/;

(2)

where u is the control signal, y the process out-
put, w a measured disturbance, and e a stochas-
tic disturbance. Furthermore, h is the sampling
period and ak , bk and ck , are the parameters.
Parameter estimation is typically done using least
squares, and a control design that minimized the
variance of the variations was well suited for
regulation. A surprising result was that if the
estimates converge, the limiting controller is a
minimum variance controller even if the distur-
bance e is colored noise (Åström and Wittenmark
1973). Convergence conditions for the self-tuning
regulator were given in Goodwin et al. (1980),
and a very detailed analysis was presented in Guo
and Chen (1991).

The problem of output feedback does not
appear for the model (2) because the sequence
of past inputs and outputs y.t � h/; : : : ; y.t �
nh/; u.t � h/; : : : ; u.t � nh/ is indeed a state,
albeit not a minimal state representation. The
continuous analogue would be to use derivatives
of states and inputs which is not feasible because
of measurement noise. The selection of the sam-
pling period is however important.

Early industrial experience indicated that the
ability of the STR to adapt feedforward gains was
particularly useful, because feedforward control
requires good models.

Insight from system identification showed that
excitation is required to obtain good estimates. In
the absence of excitation, a phenomenon of burst-
ing could be observed. There could be epochs
with small control actions due to insufficient
excitation. The estimated parameters then drifted
towards values close to or beyond the stability
boundary generating large control axions. Good
parameter estimates were then obtained and the
system quickly recovered stability. The behavior
then repeated in an irregular fashion. There are
two ways to deal with the problem. One possibil-
ity is to detect when there is poor excitation and
stop adaptation (Hägglund and Åström 2000).
The other is to inject perturbations when there is
poor excitation in the spirit of dual control.

Robustness and Unification

The model reference adaptive control and the
self-tuning regulator originate from different ap-
plication domains, flight control and process con-
trol. The differences are amplified because they
are typically presented in different frameworks,
continuous time for MRAC and discrete time
for the STR. The schemes are, however, not too
different. For a given process model and given
design criterion the process model can often be
re-parameterized in terms of controller parame-
ters, and the STR is then equivalent to an MRAC.
Similarly there are indirect MRAC where the
process parameters are estimated (Egardt 1979).
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A fundamental assumption made in the early
analyses of model reference adaptive controllers
was that the process model used for analysis had
the same structure as the real process. Rohrs at
MIT, which showed that systems with guaranteed
convergence could be very sensitive to unmod-
eled dynamics, generated a good deal of research
to explore robustness to unmodeled dynamics.
Averaging theory, which is based on the obser-
vation that there are two loops in an adaptive
system, a fast ordinary feedback and a slow
parameter adjustment loop, turned out to be a key
tool for understanding the behavior of adaptive
systems. A large body of theory was generated
and many books were written (Ioannou and Sun
1995; Sastry and Bodson 1989).

The theory resulted in several improvements
of the adaptive algorithms. In the MIT rule (1)
and similar adaptation laws derived from Lya-
punov theory, the rate of change of the adapta-
tion rate is a multiplication of the error e with
other signals in the system. The adaptation rate
may then become very large when signals are
large. The analysis of robustness showed that
there were advantages in avoiding large adapta-
tion rates by normalizing the signals. The stabil-
ity analysis also required that parameter estimates
had to be bounded. To achieve this, parame-
ters were projected on regions given by prior
parameter bounds. The projection did, however,
require prior process knowledge. The improved
insight obtained from the robustness analysis is
well described in the books Goodwin and Sin
(1984), Egardt (1979), Åström and Wittenmark
(1989), Narendra and Annaswamy (1989), Sastry
and Bodson (1989), Anderson et al. (1986), and
Ioannou and Sun (1995).

Applications

There were severe practical difficulties in
implementing the early adaptive controllers
using the analogue technology available in the
brave era. Kalman used a hybrid computer when
he attempted to implement his controller. There
were dramatic improvements when mini- and
microcomputers appeared in the 1970s. Since

computers were still slow at the time, it was
natural that most experimentats were executed in
process control or ship steering which are slow
processes. Advances in computing eliminated the
technological barriers rapidly.

Self-oscillating adaptive controllers are used
in several missiles. In piloted aircrafts there were
complaints about the perturbation signals that
were always exciting the system.

Self-tuning regulators have been used indus-
trially since the early 1970s. Adaptive autopilots
for ship steering were developed at the same
time. They outperformed conventional autopi-
lots based on PID control, because disturbances
generated by waves were estimated and com-
pensated for. These autopilots are still on the
market (Northrop Grumman 2005). Asea (now
ABB) developed a small distributed control sys-
tem, Novatune, which had blocks for self-tuning
regulators based on least-squares estimation, and
minimum variance control. The company First
Control, formed by members of the Novatune
team, has delivered SCADA systems with adap-
tive control since 1985. The controllers are used
for high-performance process control systems for
pulp mills, paper machines, rolling mills, and
pilot plants for chemical process control. The
adaptive controllers are based on recursive esti-
mation of a transfer function model and a control
law based on pole placement. The controller also
admits feedforward. The algorithm is provided
with extensive safety logic, parameters are pro-
jected, and adaptation is interrupted when varia-
tions in measured signals and control signals are
too small.

The most common industrial uses of adaptive
techniques are automatic tuning of PID con-
trollers. The techniques are used both in single
loop controllers and in DCS systems. Many dif-
ferent techniques are used, pattern recognition
as well as parameter estimation. The relay auto-
tuning has proven very useful and has been shown
to be very robust because it provides proper
excitation of the process automatically. Some of
the systems use automatic tuning to automatically
generate gain schedules, and they also have adap-
tation of feedback and feedforward gains (Åström
and Hägglund 2005).
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Summary and Future Directions

Adaptive control has had turbulent history with
alternating periods of optimism and pessimism.
This history is reflected in the conferences. When
the IEEE Conference on Decision and Control
started in 1962, it included a Symposium on
Adaptive Processes, which was discontinued af-
ter the 20th CDC in 1981. There were two IFAC
symposia on the Theory of Self-Adaptive Control
Systems, the first in Rome in 1962 and the second
in Teddington in 1965 (Hammond 1966). The
symposia were discontinued but reappeared when
the Theory Committee of IFAC created a working
group on adaptive control chaired by Prof. Lan-
dau in 1981. The group brought the communities
of control and signal processing together, and a
workshop on Adaptation and Learning in Signal
Processing and Control (ALCOSP) was created.
The first symposium was held in San Francisco in
1983 and the 11th in Caen in 2013.

Adaptive control can give significant benefits,
it can deliver good performance over wide op-
erating ranges, and commissioning of controllers
can be simplified. Automatic tuning of PID con-
trollers is now widely used in the process in-
dustry. Auto-tuning of more general controller is
clearly of interest. Regulation performance is of-
ten characterized by the Harris index which com-
pares actual performance with minimum variance
control. Evaluation can be dispensed with by
applying a self-tuning regulator.

There are adaptive controllers that have been
in operation for more than 30 years, for example,
in ship steering and rolling mills. There is a
variety of products that use scheduling, MRAC,
and STR in different ways. Automatic tuning
is widely used; virtually all new single loop
controllers have some form of automatic tuning.
Automatic tuning is also used to build gain sched-
ules semiautomatically. The techniques appear
in tuning devices, in single loop controllers, in
distributed systems for process control, and in
controllers for special applications. There are
strong similarities between adaptive filtering and
adaptive control. Noise cancellation and adaptive
equalization are widely spread uses of adapta-
tion. The signal processing applications are a

little easier to analyze because the systems do
not have a feedback controller. New adaptive
schemes are appearing. The L1 adaptive con-
troller is one example. It inherits features of
both the STR and the MRAC. The model-free
controller by Fliess and Join (2013) is another
example. It is similar to a continuous time version
of the self-tuning regulator.

There is renewed interest in adaptive control
in the aerospace industry, both for aircrafts and
missiles (Lavretsky and Wise 2013). Good results
in flight tests have been reported both using
MRAC and the recently developed L1 adaptive
controller (Hovakimyan and Cao 2010).

Adaptive control is a rich field, and to under-
stand it well, it is necessary to know a wide range
of techniques: nonlinear, stochastic, and sampled
data systems, stability, robust control, and system
identification.

In the early development of adaptive con-
trol, there was a dream of the universal adaptive
controller that could be applied to any process
with very little prior process knowledge. The
insight gained by the robustness analysis shows
that knowledge of bounds on the parameters is
essential to ensure robustness. With the knowl-
edge available today, adaptive controllers can be
designed for particular applications. Design of
proper safety nets is an important practical issue.
One useful approach is to start with a basic
constant-gain controller and provide adaptation
as an add-on. This approach also simplifies de-
sign of supervision and safety networks.

There are still many unsolved research
problems. Methods to determine the achievable
adaptation rates are not known. Finding ways
to provide proper excitation is another problem.
The dual control formulation is very attractive
because it automatically generates proper
excitation when it is needed. The computations
required to solve the Bellman equations are
prohibitive, except in very simple cases. The
self-oscillating adaptive system, which has been
successfully applied to missiles, does provide
excitation. The success of the relay auto-tuner
for simple controllers indicates that it may
be called in to provide excitation of adaptive
controllers. Adaptive control can be an important
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component of the emerging autonomous system.
One may expect that the current upswing in
systems biology may provide more inspiration
because many biological clearly have adaptive
capabilities.

Cross-References
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Abstract

The control of systems with hybrid dynamics
requires algorithms capable of dealing with
the intricate combination of continuous and
discrete behavior, which typically emerges from
the presence of continuous processes, switching
devices, and logic for control. Several analysis
and design techniques have been proposed for
the control of nonlinear continuous-time plants,
but little is known about controlling plants that
feature truly hybrid behavior. This short entry
focuses on recent advances in the design of
feedback control algorithms for hybrid dynamical
systems. The focus is on hybrid feedback
controllers that are systematically designed em-
ploying Lyapunov-based methods. The control
design techniques summarized in this entry
include control Lyapunov function-based control,
passivity-based control, and trajectory tracking
control.

Keywords

Feedback control; Hybrid control; Hybrid sys-
tems; Asymptotic stability

Definition

A hybrid control system is a feedback system
whose variables may flow and, at times, jump.
Such a hybrid behavior can be present in one or
more of the subsystems of the feedback system:
in the system to control, i.e., the plant; in the
algorithm used for control, i.e., the controller;
or in the subsystems needed to interconnect the

plant and the controller, i.e., the interfaces/signal
conditioners. Figure 1 depicts a feedback system
in closed-loop configuration with such subsys-
tems under the presence of environmental dis-
turbances. Due to its hybrid dynamics, a hybrid
control system is a particular type of hybrid
dynamical system.

Motivation

Hybrid dynamical systems are ubiquitous in sci-
ence and engineering as they permit capturing
the complex and intertwined continuous/discrete
behavior of a myriad of systems with variables
that flow and jump. The recent popularity of feed-
back systems combining physical and software
components demands tools for stability analysis
and control design that can systematically handle
such a complex combination. To avoid the issues
due to approximating the dynamics of a system,
in numerous settings, it is mandatory to keep
the system dynamics as pure as possible and
to be able to design feedback controllers that
can cope with flow and jump behavior in the
system.

Modeling Hybrid Dynamical Control
Systems

In this entry, hybrid control systems are
represented in the framework of hybrid
equations/inclusions for the study of hybrid
dynamical systems. Within this framework, the
continuous dynamics of the system are modeled
using a differential equation/inclusion, while the
discrete dynamics are captured by a difference
equation/inclusion. A solution to such a system
can flow over nontrivial intervals of time and
jump at certain time instants. The conditions
determining whether a solution to a hybrid
system should flow or jump are captured by
subsets of the state space and input space of the
hybrid control system. In this way, a plant with
hybrid dynamics can be modeled by the hybrid
inclusion.
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Fig. 1 A hybrid control system: a feedback system
with a plant, controller, and interfaces/signal conditioners

(along with environmental disturbances) as subsystems
featuring variables that flow and, at times, jump

HP W
8<
:

Pz 2 FP .z; u/ .z; u/ 2 CP

zC 2 GP .z; u/ .z; u/ 2 DP

y D hP .z; u/

(1)

where z is the state of the plant and takes values
from the Euclidean space R

nP , u is the input
and takes values from R

mP , y is the output
and takes values from the output space R

rP ,
and .CP ; FP ; DP ; GP ; hP / is the data of the
hybrid system. The set CP is the flow set, the
set-valued map FP is the flow map, the set
DP is the jump set, the set-valued map GP is
the jump map, and the single-valued map hP is
the output map. (This hybrid inclusion captures
the dynamics of (constrained or unconstrained)
continuous-time systems when DP D ; and GP

is arbitrary. Similarly, it captures the dynamics
of (constrained or unconstrained) discrete-time
systems when CP D ; and FP is arbitrary. Note
that while the output inclusion does not explicitly
include a constraint on .z; u/, the output map is
only evaluated along solutions.)

Given an input u, a solution to a hybrid in-
clusion is defined by a state trajectory 
 that
satisfies the inclusions. Both the input and the
state trajectory are functions of .t; j / 2 R�0 �
N WD Œ0; 1/ � f0; 1; 2; : : :g, where t keeps track
of the amount of flow, while j counts the number
of jumps of the solution. These functions are
given by hybrid arcs and hybrid inputs, which are
defined on hybrid time domains. More precisely,
hybrid time domains are subsets E of R�0 � N

that, for each .T; J / 2 E ,

E \ .Œ0; T � � f0; 1; : : : J g/
can be written in the form

J�1[
jD0

�
Œtj ; tjC1�; j

�

for some finite sequence of times 0 D t0 �
t1 � t2 � : : : � tJ . A hybrid arc 
 is a
function on a hybrid time domain. The set E \
.Œ0; T � � f0; 1; : : : ; J g/ defines a compact hybrid
time domain since it is bounded and closed. The
hybrid time domain of 
 is denoted by dom 
.
A hybrid arc is such that, for each j 2 N, t 7!

.t; j / is absolutely continuous on intervals of
flow I j WD ft W .t; j / 2 dom 
 g with nonzero
Lebesgue measure. A hybrid input u is a function
on a hybrid time domain that, for each j 2 N,
t 7! u.t; j / is Lebesgue measurable and locally
essentially bounded on the interval I j .

In this way, a solution to the plant HP is
given by a pair .
; u/ with dom 
 D dom u .D
dom.
; u// satisfying
(S0) .
.0; 0/; u.0; 0// 2 C P or .
.0; 0/; u.0; 0//

2 DP , and dom 
 D dom u;
(S1) For each j 2 N such that I j has nonempty

interior int.I j /, we have

.
.t; j /; u.t; j // 2 CP for all t 2 int.I j /

and

d

dt

.t; j / 2 FP .
.t; j /; u.t; j //

for almost all t 2 I j
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(S2) For each .t; j / 2 dom.
; u/ such that
.t; j C 1/ 2 dom.
; u/, we have

.
.t; j /; u.t; j // 2 DP

and


.t; j C 1/ 2 GP .
.t; j /; u.t; j //

A solution pair .
; u/ to H is said to be
complete if dom.
; u/ is unbounded and maximal
if there does not exist another pair .
; u/0 such
that .
; u/ is a truncation of .
; u/0 to some proper
subset of dom.
; u/0. A solution pair .
; u/ to
H is said to be Zeno if it is complete and the
projection of dom.
; u/ onto R�0 is bounded.
Input and output modeling remark: At times, it
is convenient to define inputs uc 2 R

mP;c and
ud 2 R

mP;d collecting every component of the
input u that affect flows and that affect jumps,
respectively (Some of the components of u can
be used to define both uc and ud , that is, there
could be inputs that affect both flows and jumps.).
Similarly, one can define yc and yd as the com-
ponents of y that are measured during flows and
jumps, respectively.

To control the hybrid plant HP in (1),
control algorithms that can cope with the
nonlinearities introduced by the flow and
jump equations/inclusions are required. In
general, feedback controllers designed using
classical techniques from the continuous-time
and discrete-time domain fall short. Due to this
limitation, hybrid feedback controllers would
be more suitable for the control of plants with
hybrid dynamics. Then, following the hybrid
plant model above, hybrid controllers for the
plant HP in (1) will be given by the hybrid
inclusion

HK W
8<
:

P� 2 FK.�; v/ .�; v/ 2 CK

�C 2 GK.�; v/ .�; v/ 2 DK

� D .�; v/

(2)

where � is the state of the controller and takes
values from the Euclidean space R

nK , v is the
input and takes values from R

rP , � is the output
and takes values from the output space R

mP , and

.CK; FK; DK; GK; / is the data of the hybrid
inclusion defining the hybrid controller.

The control of HP via HK defines an intercon-
nection through the input/output assignment u D
� and v D y; the system in Fig. 1 without inter-
faces represents this interconnection. The result-
ing closed-loop system is a hybrid dynamical sys-
tem given in terms of a hybrid inclusion/equation
with state x D .z; �/. We will denote such a
closed-loop system by H. Its data can be con-
structed from the data .CP ; FP ; DP ; GP ; hP / and
.CK; FK; DK; GK; / of each of the subsystems.
Solutions to both HK and H are understood
following the notion introduced above.

Definitions and Notions

For convenience, we use the equivalent notation
Œx> y>�> and .x; y/ for vectors x and y. Also,
we denote by K1 the class of functions from R�0

to R�0 that are continuous, zero at zero, strictly
increasing, and unbounded.

The dynamics of hybrid inclusions have
right-hand sides given by set-valued maps.
Unlike functions or single-valued maps, set-
valued maps may return a set when evaluated
at a point. For instance, at points in CP ,
the set-valued flow map FP of the hybrid
plant HP might return more than one value,
allowing for different values of the derivative
of z. A particular continuity property of set-
valued maps that will be needed later is lower
semicontinuity. A set-valued map S from R

n to
R

m is lower semicontinuous if for each x 2 R
n

one has that lim infxi!x S.xi / � S.x/, where
lim infxi!x S.xi / D fz W 8xi ! x; 9zi ! z
s.t. zi 2 S.xi / g is the so-called inner limit of S .

A vast majority of control problems consist of
designing a feedback algorithm that assures that
a function of the solutions to the plant approach
a desired set-point condition (attractivity) and,
when close to it, the solutions remain nearby
(stability). In some scenarios, the desired set-
point condition is not necessarily an isolated
point, but rather a set. The problem of designing
a hybrid controller HK for a hybrid plant HP

typically pertains to the stabilization of sets, in
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particular, due to the hybrid controller’s state
including timers that persistently evolve within
a bounded time interval and logic variables that
take values from discrete sets. Denoting by A
the set of points to stabilize for the closed-loop
system H and j � jA as the distance to such set, the
following property captures the typically desired
properties outlined above. A closed set A is said
to be:
(S) Stable: for each " > 0 there exists ı > 0

such that each maximal solution 
 to H with

.0; 0/ D xı, jxıjA � ı satisfies j
.t; j /jA �
" for all .t; j / 2 dom 
.

(A) Attractive: there exists � > 0 such that every
maximal solution 
 to H with 
.0; 0/ D xı,
jxıjA � � is bounded and if it is complete
satisfies lim.t;j /2dom 
; tCj!1 j
.t; j /jA D 0.

(AS) Asymptotically stable: it is stable and at-
tractive.

The basin of attraction of an asymptotically stable
set A is the set of points from where the attractiv-
ity property holds. The set A is said to be globally
asymptotically stable when the basin of attraction
is equal to the entire state space.

A dynamical system with assigned inputs is
said to be detectable when its output being held to
zero implies that its state converges to the origin.
A similar property can be defined for hybrid
dynamical systems. For the closed-loop system
H, given sets A and K , the distance to A is
0-input detectable relative to K for H if every
complete solution 
 to H


.t; j / 2 K 8.t; j / 2 dom 
 )
lim.t;j /2dom 
; tCj!1 j
.t; j /jA D 0

where “
.t; j / 2 K” captures the “output being
held to zero” property in the usual detectability
notion.

Feedback Control Design for Hybrid
Dynamical Systems

Several methods for the design of a hybrid con-
troller HK rendering a given set asymptotically
stable are given below. At the core of these

methods are sufficient conditions in terms of Lya-
punov functions guaranteeing that the asymptotic
stability property defined in section “Definitions
and Notions” holds. Some of the methods pre-
sented below exploit such sufficient conditions
when applied to the closed-loop system H, while
others exploit the properties of the hybrid plant
to design controllers with a particular structure.
The design methods are presented in order of
complexity of the controller, namely, from it be-
ing a static state-feedback law to being a generic
algorithm with true hybrid dynamics.

CLF-Based Control Design
In simple terms, a control Lyapunov function
(CLF) is a regular enough scalar function that
decreases along solutions to the system for some
values of the unassigned input. When such a
function exists, it is very tempting to exploit
its properties to construct an asymptotically
stabilizing control law. Following the ideas from
the literature of continuous-time and discrete-
time nonlinear systems, we define control
Lyapunov functions for hybrid plants HP and
present results on CLF-based control design.
For simplicity, as mentioned in the input and
output modeling remark in section “Definitions
and Notions,” we use inputs uc and ud instead u.
Also, we restrict the discussion to sets A that are
compact as well as hybrid plants with FP ; GP

single valued and such that hP .z; u/ D z. For
notational convenience, we use … to denote
the “projection” of CP and DP onto R

nP ,
i.e., ….CP / D fz W 9uc s.t. .z; uc/ 2 CP g and
….DP / D fz W 9ud s.t. .z; ud / 2 DP g, and the
set-valued maps ‰c.z/ D fuc W .z; uc/ 2 CP g
and ‰d .z/ D fud W .z; ud / 2 DP g.

Given a compact set A, a continuously dif-
ferentiable function V W R

nP ! R is a control
Lyapunov function for HP with respect to A
if there exist ˛1; ˛2 2 K1 and a continuous,
positive definite function � such that

˛1 .jzjA/ � V.z/ � ˛2.jzjA/

8z 2 R
nP

inf
uc2‰c.z/

hrV.z/; FP .z; uc/i � ��.jzjA/
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8z 2 ….CP / (3)

inf
ud2‰d .z/

V .GP .z; ud //�V.z/���.jzjA/

8z 2 ….DP / (4)

With the availability of a CLF, the set A
can be asymptotically stabilized if it is possible
to synthesize a controller HK from inequali-
ties (3) and (4). Such a synthesis is feasible,
in particular, forthe special case of HK being a

static state-feedback law z 7! .z/. Sufficient
conditions guaranteeing the existence of such a
controller as well as a particular state-feedback
law with point-wise minimum norm are given
next.

Given a compact set A and a control Lyapunov
function V (with respect to A), define, for each
r � 0, the set I.r/ WD fz 2 R

nP W V.z/ � r g.
Moreover, for each .z; uc/ and r � 0, define the
function

�c.z; uc; r/ WD
8<
: hrV.z/; FP .z; uc/i C 1

2
�.jzjA/ if .z; uc/ 2 CP \ .I.r/ � R

mP;c /;

�1 otherwise

and, for each .z; ud / and r � 0, the function

�d .z; ud ; r/ WD
8<
:V.GP .z; ud // � V.z/ C 1

2
�.jzjA/ if .z; ud / 2 DP \ .I.r/ � R

mP;d /;

�1 otherwise

The following result states conditions on the
data of HP guaranteeing that, for each r > 0,
there exists a continuous state-feedback law z 7!
.z/ D .c.z/; d .z// rendering the compact set

Ar WD fz 2 R
nP W V.z/ � r g

asymptotically stable. This property corresponds
to a practical version of asymptotic stabilizability.

Theorem 1 Given a hybrid plant HP D
.CP ; FP ; DP ; GP ; hP /, a compact set A, and a
control Lyapunov function V for HP with respect
to A, if
(C1) CP and DP are closed sets, and FP and

GP are continuous;
(C2) The set-valued maps ‰c.z/D fuc W .z; uc/

2 CP g and ‰d .z/ D fud W .z; ud / 2 DP g
are lower semicontinuous with convex values;

(C3) For every r > 0, we have that, for every z 2
….CP / \ I.r/, the function uc 7! �c.z; uc; r/

is convex on ‰c.z/ and that, for every z 2
….DP /\I.r/, the function ud 7! �c.z; ud ; r/

is convex on ‰d .z/;
then, for every r > 0, the compact set Ar is
asymptotically stabilizable for HP by a state-

feedback law z 7! .z/ D .c.z/; d .z// with c

continuous on ….CP / \ I.r/ and d continuous
on ….DP / \ I.r/.

Theorem 1 assures the existence of a continu-
ous state-feedback law practically asymptotically
stabilizing A. However, Theorem 1 does not
provide an expression of an asymptotically stabi-
lizing control law. The following result provides
an explicit construction of such a control law.

Theorem 2 Given a hybrid plant HP D
.CP ; FP ; DP ; GP ; hP /, a compact set A, and a
control Lyapunov function V for HP with respect
to A, if (C1)–(C3) in Theorem 1 hold then, for
every r > 0, the state-feedback law pair

c W ….CP / ! R
mP;c ; d W ….DP / ! R

mP;d

defined on ….CP / and ….DP / as

c.z/ WD arg min fjucj W uc 2 Tc.z/ g
8z 2 ….CP / \ I.r/

d .z/ WD arg min fjud j W ud 2 Td .z/ g
8z 2 ….DP / \ I.r/
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respectively, renders the compact set Ar asymp-
totically stable for HP , where Tc.z/ D ‰c.z/ \
fuc W �c.z; uc ; V .z// � 0g and Td .z/ D ‰d .z/ \
fud W �d .z; ud ; V .z// � 0g. Furthermore, if the
set-valued maps ‰c and ‰d have a closed graph,
then c and d are continuous on ….CP / \ I.r/

and ….DP / \ I.r/, respectively.

The stability properties guaranteed by
Theorems 1 and 2 are practical. Under further
properties, similar results hold when the input
u is not partitioned into uc and ud . To achieve
asymptotic stability (or stabilizability) of A with
a continuous state-feedback law, extra conditions
are required to hold nearby the compact set,
which for the case of stabilization of continuous-
time systems are the so-called small control
properties. Furthermore, the continuity of the
feedback law assures that the closed-loop system
has closed flow and jump sets as well as contin-
uous flow and jump maps, which, in turn, due to
the compactness of A, implies that the asymptotic
stability property is robust. Robustness follows
from results for hybrid systems without inputs.

Passivity-Based Control Design
Dissipativity and its special case, passivity, pro-
vide a useful physical interpretation of a feedback
control system as they characterize the exchange
of energy between the plant and its controller.
For an open system, passivity (in its very pure
form) is the property that the energy stored in
the system is no larger than the energy it has
absorbed over a period of time. The energy stored
in a system is given by the difference between
the initial and final energy over a period of time,
where the energy function is typically called the
storage function. Hence, conveniently, passivity
can be expressed in terms of the derivative of a
storage function (i.e., the rate of change of the
internal energy) and the product between inputs
and outputs (i.e., the system’s power flow). Un-
der further observability conditions, this power
inequality can be employed as a design tool
by selecting a control law that makes the rate
of change of the internal energy negative. This
method is called passivity-based control design.

The passivity-based control design method
can be employed in the design of a controller for

a “passive” hybrid plant HP , in which energy
might be dissipated during flows, jumps, or both.
Passivity notions and a passivity-based control
design method for hybrid plants are given next.
Since the form of the plant’s output plays a key
role in asserting a passivity property, and this
property may not necessarily hold both during
flows and jumps, as mentioned in the input and
output modeling remark in section “Definitions
and Notions,” we define outputs yc and yd ,
which, for simplicity, are assumed to be single
valued: yc D hc.x/ and yd D hd .x/. Moreover,
we consider the case when the dimension of the
space of the inputs uc and ud coincides with
that of the outputs yc and yd , respectively, i.e., a
“duality” of the output and input space.

Given a compact set A and functions hc , hd

such that hc.A/ D hd .A/ D 0, a hybrid plant
HP for which there exists a continuously differ-
entiable function V W R

nP ! R�0 satisfying
for some functions !c W RmP;c � R

nP ! R and
!d W RmP;c � R

nP ! R

hrV.z/; FP .z; uc/i � !c.uc; z/

8.z; uc/ 2 C (5)

V.GP .z; ud // � V.z/ � !d .ud ; z/

8.z; ud / 2 D (6)

is said to be passive with respect to a compact set
A if

.uc; z/ 7! !c.uc; z/ D u>c yc (7)

.ud ; z/ 7! !d .ud ; z/ D u>d yd (8)

The function V is the so-called storage function.
If (5) holds with !c as in (7), and (6) holds with
!d � 0, then the system is called flow-passive,
i.e., the power inequality holds only during flows.
If (5) holds with !c � 0, and (6) holds with !d as
in (8), then the system is called jump-passive, i.e.,
the energy of the system decreases only during
jumps.

Under additional detectability properties,
these passivity notions can be used to design
static output feedback controllers. The following
result gives two design methods for hybrid plants.
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Theorem 3 Given a hybrid plant HP D
.CP ; FP ; DP ; GP ; hP / satisfying
(C10) CP and DP are closed sets; FP and GP

are continuous; and hc and hd are continuous;
and a compact set A, we have:

(1) If HP is flow-passive with respect to A with
a storage function V that is positive definite
with respect to A and has compact sublevel
sets, and if there exists a continuous function
c W R

mP;c ! R
mP;c , y>c c.yc/ > 0 for all

yc ¤ 0, such that the resulting closed-loop
system with uc D �c.yc/ and ud � 0 has
the following properties:

(1.1) The distance to A is detectable relative to

˚
z 2 ….CP / [ ….DP / [ GP .DP / W

hc.z/>c.hc.z// D 0; .z; �c.hc.z/// 2 CP


 I

(1.2) Every complete solution 
 is such that, for
some ı > 0 and some J 2 N, we have
tjC1 � tj � ı for all j � J ;

then the control law uc D �c.yc/, ud � 0

renders A globally asymptotically stable.
(2) If HP is jump-passive with respect to A with

a storage function V that is positive definite
with respect to A and has compact sublevel
sets, and if there exists a continuous function
d W R

mP;d ! R
mP;d , y>d d .yd / > 0 for all

yd ¤ 0, such that the resulting closed-loop
system with uc � 0 and ud D �d .yd / has
the following properties:

(2.1) The distance to A is detectable relative to

n
z 2 ….CP / [ ….DP / [ GP .DP / W

hd .z/>d .hd .z// D 0; .z; �d .hd .z/// 2 DP

o
I

(2.2) Every complete solution 
 is Zeno;
then the control law ud D �d .yd /, uc � 0

renders A globally asymptotically stable.

Strict passivity notions can also be formulated
for hybrid plants, including the special cases
where the power inequalities hold only during
flows or jumps. In particular, strict passivity and
output strict passivity can be employed to assert
asymptotic stability with zero inputs.

Tracking Control Design
While numerous control problems pertain to the
stabilization of a set-point condition, at times,
it is desired to stabilize the solutions to the
plant to a time-upying trajectory. In this section,
we consider the problem of designing a hybrid
controller HK for a hybrid plant HP to track
a given reference trajectory r (a hybrid arc).
The notion of tracking is introduced below. We
propose sufficient conditions that general hybrid
plants and controllers should satisfy to solve such
a problem. For simplicity, we consider tracking
of state trajectories and that the hybrid controller
can measure both the state of the plant z and the
reference trajectory r ; hence, v D .z; r/.

The particular approach used here consists of
recasting the tracking control problem as a set
stabilization problem for the closed-loop system
H. To do this, we embed the reference trajectory
r into an augmented hybrid model for which it
is possible to define a set capturing the condition
that the plant tracks the given reference trajectory.
This set is referred to as the tracking set. More
precisely, given a reference r W dom r ! R

np ,
we define the set Tr collecting all of the points
.t; j / in the domain of r at which r jumps,
that is, every point .t r

j ; j / 2 dom r such that
.t r

j ; j C 1/ 2 dom r . Then, the state of the closed
loop H is augmented by the addition of states
� 2 R�0 and k 2 N. The dynamics of the
states � and k are such that � counts elapsed
flow time, while k counts the number of jumps
of H; hence, during flows P� D 1 and Pk D 0,
while at jumps �C D � and kC D k C 1. These
new states are used to parameterize the given
reference trajectory r , which is employed in the
definition of the tracking set

A D f.z; �; �; k/ 2 R
nP � R

nK � R�0 � N W
z D r.�; k/; � 2 ˆK g (9)

This set is the target set to be stabilized for H.
The set ˆK 	 R

nK in the definition of A is some
closed set capturing the set of points asymptoti-
cally approached by the controller’s state �.

The following result establishes a sufficient
condition for stabilization of the tracking set
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A. For notational convenience, we define x D
.z; �; �; k/,

C D ˚
x W .z; c.�; z; r.�; k/// 2 CP ;

� 2 Œt r
k ; t r

kC1�; .�; z; r.�; k//2CK



F.z; �; �; k/ D .FP .z; c.�; z; r.�; k///;

FK.�; z; r.�; k//; 1; 0/

D D fx W .z; c.�; z; r.�; k/// 2 DP ;

.�; k/ 2 Tr g [ fx W � 2
Œt r

k ; t r
kC1/; .�; z; r.�; k// 2 DK



G1.z; �; �; k/ D .GP .z; c.�; z; r.�; k///;

�; �; k C 1/;

G2.z; �; �; k/ D .z; GK.�; z; r.�; k//; �; k/

Theorem 4 Given a complete reference trajec-
tory r W dom r ! R

nP and associated tracking
set A in (9), if there exists a hybrid controller HK

guaranteeing that
(1) The jumps of r andHP occur simultaneously;
(2) There exist a function V W RnP �R

nK �R�0 �
N ! R that is continuously differentiable;
functions ˛1; ˛2 2 K1; and continuous, pos-
itive definite functions �1; �2; �3 such that
(a) For all .z; �; �; k/ 2 C [ D [ G1.D/ [

G2.D/

˛1.j.z; �; �; k/jA/ � V.z; �; �; k/

� ˛2.j.z; �; �; k/jA/

(b) For all .z; �; �; k/ 2 C and all � 2
F.z; �; �; k/,

hrV.z; �; �; k/; �i � ��1 .j.z; �; �; k/jA/

(c) For all .z; �; �; k/ 2 D1 and all � 2
G1.z; �; �; k/

V .�/ � V.z; �; �; k/ � ��2 .j.z; �; �; k/jA/

(d) For all .z; �; �; k/ 2 D2 and all � 2
G2.z; �; �; k/

V .�/ � V.z; �; �; k/ � ��3 .j.z; �; �; k/jA/

then A is globally asymptotically stable.

Theorem 4 imposes that the jumps of the
plant and of the reference trajectory occur
simultaneously. Though restrictive, at times, this
property can be enforced by proper design of the
controller.

Summary and Future Directions

Advances over the last decade on modeling and
robust stability of hybrid dynamical systems
(without control inputs) have paved the road
for the development of systematic methods
for the design of control algorithms for hybrid
plants. The results selected for this short
expository entry, along with recent efforts on
multimode/logic-based control, event-based
control, and backstepping, which were not
covered here, contribute to that long-term
goal. The future research direction includes the
development of more powerful tracking control
design methods, state observers, and optimal
controllers for hybrid plants.
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Abstract

In the first part of the paper, two consolidated
hybrid observer designs for non-hybrid systems
are presented. In the second part, recently results

available in the literature related to the observ-
ability and observer design for different classes
of hybrid systems are introduced.

Keywords

Hybrid systems; Observer design; Observability;
Switching systems

Introduction

Observers design, which are used to estimate the
unmeasured plant state, has received a lot of at-
tention since the late ’60s. One of the first leading
contribution to clearly formalize the estimation
problem and propose a solution in the linear case
has been proposed by Luenberger (1966). The
recipe to implement a Luenberger-type observer
for a continuous-time linear system described by

Px D Ax C Bu; y D Cx C Du; (1)

with x 2 R
n; u 2 R

p; y 2 R
m; A 2 R

n�n; B 2
R

n�p; C 2 R
m�n, and D 2 R

m�p, has three main
ingredients: system data, the correction term
commonly referred to as output injection, and
the observability/detectability/determinability
conditions. A Luenberger-type observer for
(1), which consists in a copy of the (system
data) dynamics (1) with a linear correction term
L.y � Oy/, is given by

POx D A OxCBuCL.y� Oy/; Oy D C OxCDu; (2)

with L 2 R
n�m and where Ox is the estimated

value of x. The estimation error e D x � Ox
satisfies the differential equation Pe D .A � LC /e

with initial condition e.0/ D x.0/ � Ox.0/. Since
the observer has a copy of the plant dynamics
and the correction term is L.y � Oy/ D LCe, the
zero estimation error manifold x D Ox is invariant
(if x.0/ D Ox.0/, then e.t/ � 0 for all t �
0), whereas its attractivity (yielding global expo-
nential stability of the estimation error system)
requires A – LC be Hurwitz. Such an L, if A
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is not already Hurwitz, exists if the pair (A, C /

is detectable or (sufficient condition) observable.
The observer in (2) exploits only the injection
term in the for continuous time dynamics (flow
map), and one may ask how profitable could be
resets of the observer state (jump map) designing
a hybrid observer.

The observer design for hybrid systems is a
relatively new area of research and results are
consolidated only for few classes of linear hybrid
systems.

In section “Continuous-Time Plants,” a hy-
brid redesign of the observer (2) is discussed
first and then a more general design for non-
linear systems is introduced, whereas in sec-
tion “Systems with Flows and Jumps” the recent
results related to observability and observer de-
signs for hybrid systems is discussed. Conclu-
sions are given in section “Summary and Future
Directions.”

Hybrid Observers: Different
Strategies

The community of researchers working on hybrid
observer, which is a quite recent area and is the
subject of growing interest, is wide and a unique
formal definition/notation has not been reached
yet. This fact is strictly related to the large num-
ber of different hybrid system models that are
currently adopted by researchers. To render as
simple as possible this short presentation, we let
the state x.t/ of a hybrid system be driven by
the flow map (differential equation) when t ¤
tj and by the jump map (difference equation)
when t D tj , with x.t/ right continuous, i.e.,
lim

t!t
C

j
x.t/ D x.tj /.

Continuous-Time Plants

Linear Case
A simple strategy to improve convergence to
zero of the estimation error for (1) has been
proposed in Raff and Allgower (2008) and con-
sists in resetting the observer state x, at prede-
termined fixed time intervals tj , by means of

the linear correction term K .t/ .y .t/ � COx .t// at
jump times, yielding

POx .t/ D A Ox .t/ C Bu .t/ C L .y .t/ � COx .t// ;

(3a)

Ox �tj � D x
�
t�j


C K
�
t�j
� �

y
�
t�j
� � COx �t�j �� ;

(3b)

where t0 D 0; tjC1 � tj D T > 0; j 2 N�1 and
T is a parameter that defines the interval times
between resets and has to be chosen such that

Im
�
�p � �r

�
T ¤ 2r�; r 2 Znf0g; (4)

for each pair (�p , �r/ of complex eigenvalues
of the matrix A � LC . This preserves the (con-
tinuous time or flow) observability of the sys-
tem (1) when sampled at time instants tj and
allows to select a matrix K0 such that .I �
K0C / exp ..A � LC / T / has all its eigenvalues
at zero. Then, the estimation error e.t/ converges
to zero in finite time (nT) if (1) is observable
and the matrix K .t/ W R�0 ! R

n�q is selected
such as K .t/ D K0 if t � tn and K.t/ = 0
otherwise. It is important to note that the state
reset (3b) yields a hybrid estimation error system
given by

Pe .t/ D .A � LC / e .t/ ; (5a)

e
�
tj
� D

�
I � K

�
t�j


C


e
�
t�j


: (5b)

The stability property of the origin can be easily
deduced by noting that

e
�
tj
� D

jY
kD1

�
I � K

�
t�j


C


exp ..A � LC / T / e .0/;

and given that .I � K0C / exp ..A � LC / T / is
nilpotent, then e.tn/ D e(nT) = 0.

The potentiality benefits of hybrid observers
to improve the performances of classic
continuous-time observer is a relatively new area
of research. Along this line, the recent work
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proposed in Prieur et al. (2012) allows to limit
the peaking phenomena for a class of high-gain
observers opportunely resetting its (augmented)
state. Moreover, when the output of (1) is a
nonlinear function of the state, y D h.x/, with
h.�/ not invertible (e.g. the saturation function),
it would be possible to rewrite (1) as a hybrid
system with linear flow map and augmented state
designing a hybrid observer as in Carnevale and
Astolfi (2009).

Nonlinear Case
When the input of a continuous-time plant is
piecewise-constant the hybrid observer proposed
in Moraal and Grizzle (1995), exploiting sampled
measurements, can be successfully applied for a
class of nonlinear continuous (or discrete-time)
systems

Px D f .x .t/ ; u .t// ; y .t/ D h .x .t/ ; u .t// ;

(6)

with sufficiently smooth maps f .�,�/ and h.�,�/
and where

x
�
tj
� D F

�
x
�
tj�1

�
; u
�
tj�1

��
; (7)

is the sample-data (discrete-time) version of (6)
with sampling time T D tj�1 � tj . Then, it
is possible to define a hybrid observer of the
following type:

POx .t/ D f . Ox .t/ ; u .t// ; (8a)

Ox �tj � D �
�
y
�
t�j


; Ox
�
t�j


; �
�
t�j


; (8b)

where the reset map � and the dynamics of the
new variable �.t/ have to be properly defined.
The main idea in Moraal and Grizzle (1995)
is that the Newton method, in continuous and
discrete time, can be used to estimate the value
of � that renders zero the function

W N
j .�/ D Y N

j � H
�
�; U N

j


; (9)

where U N
j D �

u0
�
tj�NC1

�
; : : : ; u0

�
tj
�	0

and

Y N
j D �

y0
�
tj�NC1

�
; : : : ; y0

�
tj
�	0

are the sam-
pled input and output vectors, respectively, and
H W Rn � R

m�N ! R
N maps the state x.tj / and

the N-tuple of control inputs U N
j into the output

vector Y N
j , i.e., H

�
x
�
tj
�

; U N
j


D Y N

j , and is

defined as

H
�
x; U N

j


�D

2
6664

h
�
F�1

�
F�1 .: : :/ ; u

�
tj�NC1

��
; u
�
tj�NC1

��
:::

h
�
F �1

�
x; u

�
tj�1

��
; u
�
tj�1

��
h
�
x; u

�
tj
��

3
7775 ; (10)

where F �1 shortly represents the inverse of the
map F such that x

�
tj�1

�DF �1
�
x
�
tj
�
;u
�
tj�1

��
.

The system (6)–(7) is said to be N-osbervable,
for some N � 1 (the generic selection is
N D 2n C 1), when W N

j .�/ D 0 hold only
if � D x

�
tj
�
, uniformly in U N

j . Then, under
certain technical assumptions (see Moraal and
Grizzle 1995) related to the derivatives of f

and h and the invertibility of the Jacobian
matrix J .x/ D @H .x/=@x, it is possible to
select

P� .t/ D kJ .� .t//�1
�
Y N

j

�H
�
� .t/ ; U N

j


; (11a)

�
�
tj
� D F

�
�
�
t�j


; u
�
tj�1

�
; (11b)

with a sufficiently high-gain k > 0 and the reset

map � .�/ D F
�
�
�
t�j


; u
�
tj�1

�
. Note that

(11a) is commonly referred to as Newton flow.
This approach could be easily extended to other
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continuous-time minimization algorithms (nor-
malized gradient, line-search, etc.) changing the
rhs of (11a) or even with discrete-time methods
iterated at higher frequency within the sample
time T, yielding faster convergence to zero of the
estimation error.

The same approach can be used when a
continuous-time observer for (6) is considered in
place of (8a) and the Newton-based resets can be
used to possibly improve the performances. The
continuous and discrete-time Newton algorithm
require the knowledge of the jump map F to
define (7), i.e. the exact discrete time model of
(6), and the Jacobian matrix J .x/ D @H .x/=@x.
An approach that do not require such knowledge
is proposed in Biyik and Arcak (2006), where
continuous time filters and secant method allow
to estimate (numerically) the map F and the
Jacobian matrix, or in Sassano et al. (2011)
where an extremum-seeking-based technique is
considered.

A different approach to estimate the state of
a continuous-time plant, pursued for example
in Ahrens and Khalil (2009) and Liu (1997),
exploits switching output injections, letting the
correction term l� .�/ to switch among opportune
values selected by a suitable definition (often de-
rived by a Lyapunov-based proof) of the switch-
ing signal �(t/. These switching gains allow to
improve observer performances and robustness
against measurement noise and model uncertain-
ties.

Systems with Flows and Jumps
The classical notion of observability does not
hold for hybrid systems. As an example, consider
the autonomous linear hybrid system described

by
�
x .t/ D Ax .t/ and x

�
tj
� D J x

�
t�j


with

A D
2
40 0 0

0 0 1

0 0 0

3
5 ; J D

2
40 0 1

0 1 0

1 0 0

3
5 ; (12)

and C = [0, 1, 0]. Evidently the flow is
not observable in the classic sense given
that Oflow D �

C 0; .C A/0; .CA2/0
	0

is not
full rank and the flow-unobservable subspace

is ker.Oflow/
�D ˚

x 2 R
3 W x2 D x3 D 0g.

Nevertheless, in the first flow time interval
� D t1 � t0, it is possible to estimate (e.g. in finite
time using the observability Gramian matrix)
the initial conditions (x2.t0/, x3.t0//. Then when
the first jump take place at time t1, thanks to the
structure of the jump map J that resets the value
of x3.t1/ with the flow-unobservable x1

�
t�1
�
, it is

possible to estimate in the next flow time interval
the value of x1

�
t�1
�

so that the initial condition
x.t0/ can be completely determined. The hybrid
observability matrix in this case has the following
expression

Ohybrid D
h
O0f low; .Of lowJeAT1 /0;

.Of low.JeAT2 /2/0
	0

and is full rank for all Tj D tj � tj�1

that satisfies (4). Note that from a practical
point of view, in this case the time interval
that allows to reconstruct the complete state
is [t0, t1 C –) since the observer needs at
least an – time of the new measurements
(after the first jump) to evaluate the full stateh
O0f low; .Of lowJeAT1 /0; .Of low.JeAT2/2/0

i0
. This

simple example suggests that (impulsive)
hybrid systems might have a reacher notion
of observability than the classical ones. These
properties have been studied also for mechanical
systems subject to non-smooth impacts in
Martinelli et al. (2004), where a high-gain-like
observer design has been proposed assuming
the knowledge of the impact times ti , no Zeno
phenomena (no finite accumulation point for
tj ’s), and a minimum dwell-time, tjC1 � tj �
ı > 0. With the aforementioned assumptions
and considering the more general class of hybrid
system described by

Px .t/ D f .x; u/ ;

x
�
tj
� D g

�
x
�
t�j


; u
�
t�j


; (13)

with y D h.x,u/, a frequent choice is to consider
the hybrid observer of the form

POx .t/ D f . Ox; u/ C l .y; x; u/ ; (14a)
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H

Ox �tj � D g
�

Ox
�
t�j


; u
�
t�j


Cm
�Ox �t�j � ; u

�
t�j
��

; (14b)

with l.�/ and m.�/ that are zero when Ox D x ren-
dering flow and jump-invariant the manifold Ox D
x relying only on the correction term l(�) (m � 0)
in a high-gain-like design during the flow. The
correction during the flow has to recover, within
the minimum dwell-time ı, the worst deteriora-
tion of the estimation error induced by the jumps
(if any) and the transients such that

��e
�
tjC1

��� <���e
�
t�j
��� or V

�
e
�
tjC1

��
< V

�
e
�
t�j


if a

Lyapunov analysis is considered. This type of
observer design, with m D 0 and the linear
choice l.y; Ox; u/ D L.y � M Ox/; have been
proposed in Heemels et al. (2011) for linear com-
plementarity systems (LCS) in the presence of
state jumps induced by impulsive input. Therein,
solutions of LCS are characterized by means of
piecewise Bohl distributions and the specially
defined well-posedness and low-index properties,
which combined with passivity-based arguments,
allow to design a global hybrid observer with
exponential convergence. A separation principle
to design an output feedback controller is also
proposed.

An interesting approach is pursued in Forni
et al. (2003) where global output tracking results
on a class of linear hybrid systems subject to
impacts is introduced. Therein, the key ingre-
dient is the definition of a “mirrored” tracking
reference (a change of coordinate) that depends
on the sequence of different jumps between the
desired trajectory (a virtual bouncing ball) and
the plant (the controlled ball). Exploiting this
(time-varying) change of coordinates and assum-
ing that the impact times are known, it is pos-
sible to define an estimation error that is not
discontinuous even when the tracked ball has
a bounce (state jump) and the plant does not.
A time regularization is included in the model
embedding a minimum dwell-time among jumps.
In this way, it is possible to design a linear
hybrid observer represented by (14) with a linear
(mirrored) term l.�/ and m.�/ � 0, proving (by
standard quadratic Lyapunov functions) that the

origin of the estimation error system is GES. In
this case, the standard observability condition for
the couple (A; C / is required.

Switching Systems and Hybrid Automata
Switching systems and hybrid automata have
been the subject of intense study of many re-
searchers in the last two decades. For these class
of systems, there is a neat separation x D Œz; q�0
among purely discrete-time state q (switching
signal or system mode) and rest of the state z
that generically can both flow and jump. The
observability of the entire system is often divided
into the problem of determining the switching
signal q first and then z. The switching signal
can be divided into two categories: arbitrary (uni-
versal problem) or specific (existential problems)
switchings.

In Vidal et al. (2003) the observability of
autonomous linear switched systems with no
state jump, minimum dwell time, and unknown
switching signal is analyzed. Necessary and
sufficient observability conditions based on
rank tests and output discontinuities detection
strategies are given. Along the same line, the
results are extended in Babaali and Pappas (2005)
to non-autonomous switched systems with non-
Zeno solutions and without the minimum dwell-
time requirement, providing state z and mode q

observability characterized by linear-algebraic
conditions.

Luenberger-type observers with two distinct
gain matrices L1 and L2 are proposed in the case
of bimodal piecewise linear systems in Juloski
et al. (2007) (where state jumps are considered),
whereas recently in Tanwani et al. (2013),
algebraic observability conditions and observer
design are proposed for switched linear systems
admitting state jumps with known switching
signal (although some asynchronism between
the observer and the plant switches is allowed).
Results related to the observability of hybrid
automata, which include switching systems,
can be found in Balluchi et al. (2002) and the
related references. Therein the location observer
estimates first the system current location q,
processing system input and output assuming that
it is current-location observable, a property that
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is related to the system current-location observa-
tion tree. This graph is iteratively explored at each
new input to determine the node associated to the
current value of q.t/. Then, a linear (switched)
Luenberger-type observer for the estimation of
the state z, assuming minimum dwell-time and
observability of each pair (Aq;Cq/, is proposed.

Summary and Future Directions

Observer design and observability properties
of general hybrid systems is an active field of
research and a number of different results have
been proposed although not consolidated as for
classical linear systems. The results are based
on different notations and definitions for hybrid
systems. Efforts to provide a unified approach, in
many case considering the general framework for
hybrid systems proposed in Goebel et al. (2009),
is pursued by the scientific community to im-
prove consistency and cohesion of the general re-
sults. Observer designs, observability properties,
and separation principle even with linear flow and
jump maps are not yet completely characterized
and, in the nonlinear case, only few works have
been proposed (see Teel (2010)), providing open
challenges for the scientific community.

Cross-References
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Abstract

We explore the problem of identification and con-
trol of living cell populations. We describe how
de novo control systems can be interfaced with
living cells and used to control their behavior. Us-
ing computer controlled light pulses in combina-
tion with a genetically encoded light-responsive
module and a flow cytometer, we demonstrate
how in silico feedback control can be configured
to achieve precise and robust set point regulation
of gene expression. We also outline how external
control inputs can be used in experimental design
to improve our understanding of the underlying
biochemical processes.

Keywords

Extrinsic variability; Heterogeneous populations;
Identification; Intrinsic variability; Population
control; Stochastic biochemical reactions

Introduction

Control systems, particularly those that employ
feedback strategies, have been used successfully
in engineered systems for centuries. But natural
feedback circuits evolved in living organisms
much earlier, as they were needed for regulating
the internal milieu of the early cells. Owing
to modern genetic methods, engineered feed-
back control systems can now be used to control
in real-time biological systems, much like they
control any other process. The challenges of con-
trolling living organisms are unique. To be suc-
cessful, suitable sensors must be used to measure
the output of a single cell (or a sample of cells in a
population), actuators are needed to affect control
action at the cellular level, and a controller that
connects the two should be suitably designed. As
a model-based approach is needed for effective
control, methods for identification of models of
cellular dynamics are also needed. In this entry,
we give a brief overview of the problem of identi-
fication and control of living cells. We discuss the
dynamic model that can be used, as well as the
practical aspects of selecting sensor and actua-
tors. The control systems can either be realized on
a computer (in silico feedback) or through genetic
manipulations (in vivo feedback). As an example,
we describe how de novo control systems can be
interfaced with living cells and used to control
their behavior. Using computer controlled light
pulses in combination with a genetically encoded
light-responsive module and a flow cytometer, we
demonstrate how in silico feedback control can

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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be configured to achieve precise and robust set
point regulation of gene expression.

Dynamical Models of Cell Populations

In this entry, we focus on a model of an essential
biological process: gene expression. The goal
is to come up with a mathematical model for
gene expression that can be used for model-based
control. Due to cell variability, we will work with
a model that describes the average concentration
of the product of gene expression (the regulated
variable). This allows us to use population mea-
surements and treat them as measurements of
the regulated variable. We refer the reader to the
entry � Stochastic Description of Biochemical
Networks in this encyclopedia for more informa-
tion on stochastic models of biochemical reaction
networks. In this framework, the model consist
of an N-vector stochastic process X.t/ describ-
ing the number of molecules of each chemical
species of interest in a cell. Given the chemical
reactions in which these species are involve, the
mean, EŒX.t/�, of X.t/ evolves according to
deterministic equations described by

PEŒX.t/� D SEŒw.X.t//�;

where S is an N � M matrix that describes
the stoichiometry of the M reactions described
in the model, while w.�/ is an M -vector of
propensity functions. The propensity functions
reflect the rate of the reactions being modeled.
When one considers elementary reactions
(see � Stochastic Description of Biochemical
Networks), the propensity function of the i th
reaction, wi .�/, is a quadratic function of the
form wi .x/ D ai C bTi x C cix

TQix. Typically,
wi is either a constant: wi .x/ D a, a linear
function of the form wi .x/ D bxj or a simple
quadratic of the form wi .x/ D cx2j . Following
the same procedure, similar dynamical models
can be derived that describe the evolution of
higher-order moments (variances, covariances,
third-order moments, etc.) of the stochastic
process X.t/.

Identification of Cell Population
Models

The model structure outlined above captures the
fundamental information about the chemical re-
actions of interest. The model parameters that
enter the functions wi .x/ reflect the reaction
rates, which are typically unknown. Moreover,
these reaction rates often vary between different
cells, because, for example, they depend on the
local cell environment, or on unmodeled chem-
ical species whose numbers differ from cell to
cell (Swain et al. 2002). The combination of this
extrinsic parameter variability with the intrinsic
uncertainty of the stochastic process X.t/ makes
the identification of the values of these parame-
ters especially challenging.

To address this combination of intrinsic
and extrinsic variabilities, one can compute
the moments of the stochastic process X.t/

together with the cross moments of X.t/ and the
extrinsic variability. In the process, the moments
of the parametric uncertainty themselves become
parameters of the extended system of ordinary
differential equations and can, in principle,
be identified from data. Even though doing
so requires solving a challenging optimization
problem, effective results can often be obtained
by randomized optimization methods. For
example, Zechner et al. (2012) presents the
successful application of this approach to a
complex model of the system regulating osmotic
stress response in yeast.

When external signals are available, or when
one would like to determine what species to mea-
sure when, such moment-based methods can also
be used in experiment design. The aim here is to
determine a priori which perturbation signals and
which measurements will maximize the informa-
tion on the underlying chemical process that can
be extracted from experimental data, reducing the
risk of conducting expensive but uninformative
experiments. One can show that, given a tentative
model for the biochemical process, the moments
of the stochastic process X.t/ (and cross X.t/-
parameter moments in the presence of extrinsic
variability) can be used to approximate the Fis-
cher information matrix and hence characterize

http://dx.doi.org/10.1007/978-1-4471-5058-9_88
http://dx.doi.org/10.1007/978-1-4471-5058-9_88
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the information that particular experiments con-
tain about the model parameters; an approxima-
tion of the Fischer information based on the first
two moments was derived in Komorowski et al.
(2011) and an improved estimate using correction
terms based on moments up to order 4 was
derived in Ruess et al. (2013). Once an estimate
of the Fischer information matrix is available,
one can design experiments to maximize the
information gained about the parameters of the
model. The resulting optimization problem (over
an appropriate parametrization of the space of
possible experiments) is again challenging but
can be approached by randomized optimization
methods.

Control of Cell Populations

There are two control strategies that one can
implement. The control systems can be realized
on a computer, using real-time measurements
from the cell population to be controlled. These
cells must be equipped with actuators that
respond to the computer signals that close the
feedback loop. We will refer to this as in silico
feedback. Alternatively, one can implement the
sensors, actuators, and control system in the
entirety within the machinery of the living cells.
At least in principle, this can be achieved through
genetic manipulation techniques that are common
in synthetic biology. We shall refer to this type of
control as in vivo feedback. Of course some com-
bination of the two strategies can be envisioned.
In vivo feedback is generally more difficult to
implement, as it involves working within the
noisy uncertain environment of the cell and
requires implementations that are biochemical in
nature. Such controllers will work autonomously
and are heritable, which could prove advanta-
geous in some applications. Moreover, coupled
with intercellular signaling mechanisms such
as quorum sensing, in vivo feedback may lead
to tighter regulation (e.g., reduced variance) of
the cell population. On the other hand, in silico
controllers are much easier to program, debug,
and implement and can have much more complex
dynamics that would be possible with in vivo

controllers. However, in silico controllers require
a setup that maintains contact with all the cells to
be controlled and cannot independently control
large numbers of such cells. In this entry we
focus exclusively on in silico controllers.

The Actuator
There could be several ways to send actuating
signals into living cells. One consists of chemical
inducers that the cells respond to either through
receptors outside the cell or through translocation
of the inducer molecules across the cellular mem-
brane. The chemical signal captured by these
inducers is then transduced to affect gene expres-
sion. Another approach we will describe here is
induction through light. There are several light
systems that can be used. One of these includes
a light-sensitive protein called phytochrome B
(PhyB). When red light of wavelength 650 nm
is shined on PhyB in the presence of phyco-
cyanobilin (PCB) chromophore, it is activated. In
this active state it binds to another protein Pif3
with high affinity forming PhyB-Pif3 complex.
If then a far-red light (730 nm) is shined, PhyB
is deactivated and it dissociates from Pif3. This
can be exploited for controlling gene expression
as follows: PhyB is fused to a GAL4 binding do-
main (GAL4BD), which then binds to DNA in a
specific site just upstream of the gene of interest.
Pif3 in turn is fused to a GAL4 activating do-
main (GAL4AD). Upon red light induction, Pif3-
Gal4AD complex is recruited to PhyB, where
Gal4AD acts as a transcription factor to initiate
gene expression. After far-red light is shined,
the dissociation of GAL4BD-PhyB complex with
Pif3-Gal4AD means that Gal4AD no longer acti-
vates gene expression, and the gene is off. This
way, one can control gene expression – at least in
open loop.

The Sensor
To measure the output protein concentration
in cell populations, a florescent protein tag is
needed. This tag can be fused to the protein of
interest, and the fluorescence intensity emanating
from each cell is a direct measure of the protein
concentration in that cell. There are several
technologies for measuring fluorescence of cell
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Identification and Control of Cell Populations, Fig. 1
Top figure: shows a yeast cell whose gene expression can
be induced by light: red light turns on gene expression
while far-red turns it off. Bottom figure: Each input light
sequences can be applied to a culture of light responsive

yeast cells resulting in a corresponding gene expression
pattern that is measured by flow cytometry. By applying
multiple carefully chosen light input test sequences and
looking at their corresponding gene expression patterns a
dynamic model of gene expression can be identified

populations. While fluorimeters measure the
overall intensity of a population, flow cytometry
and microscopy can measure the fluorescence
of each individual cell in a population sample
at a given time. This provides a snapshot
measurement of the probability density function
of the protein across the population. Repeated
measurements over time can be used as a basis
for model identification (Fig. 1).

The Control System
Equipped with sensors, actuators, and a model
identified with the methods outlined above
one can proceed to design control algorithms
to regulate the behavior of living cells. Even
though moment equations lead to models that
look like conventional ordinary differential
equations, from a control theory point of view,
cell population systems offer a number of
challenges. Biochemical processes, especially

genetic regulation, are often very slow with time
constants of the order of tens of minutes. This
suggests that pure feedback control without some
form of preview may be insufficient. Moreover,
due to our incomplete understanding of the
underlying biology, the available models are
typically inaccurate, or even structurally wrong.
Finally, the control signals are often unconven-
tional; for example, for the light control system
outlined above, experimental limitations imply
that the system must be controlled using discrete
light pulses, rather than continuous signals.

Fortunately advances in control theory allow
one to effectively tackle most of these challenges.
The availability of a model, for example, enables
the use of model predictive control methods that
introduce the necessary preview into the feedback
process. The presence of unconventional inputs
may make the resulting optimization problems
difficult, but the slow dynamics work in our favor,
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Identification and Control of Cell Populations, Fig. 2
Architecture of the closed-loop light control system. Cells
are kept darkness until they are exposed to light pulse se-
quences from the in silico feedback controller. Cell culture
samples are passed to the flow cytometer whose output

is fed back to the computer which implements a Kalman
filter plus a Model Predictive Controller. The objective
of the control is to have the mean gene expression level
follow a desired set value
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providing time to search the space of possible
input trajectories. Finally, the fundamental
principle of feedback is often enough to deal
with inaccurate models. Unlike systems biology
applications where the goal is to develop a model
that faithfully captures the biology, in population
control applications even an inaccurate model
is often enough to provide adequate closed-loop
performance. Exploring these issues, Milias-
Argeitis et al. (2011) developed a feedback
mechanism for genetic regulation using the
light control system, based on an extended
Kalman filter and a model predictive controller
(Figs. 2 and 3). A related approach was taken
in Uhlendorf et al. (2012) to regulate the osmotic
stress response in yeast, while Toettcher et al.
(2011) develop what is affectively a PI controller
for a faster cell signaling system.

Summary and Future Directions

The control of cell populations offers novel chal-
lenges and novel vistas for control engineering
as well as for systems and synthetic biology.
Using external input signals and experiment
design methods, one can more effectively probe
biological systems to force them to reveal
their secrets. Regulating cell populations in a
feedback manner opens new possibilities for
biotechnology applications, among them the
reliable and efficient production of antibiotics
and biofuels using bacteria. Beyond biology, the
control of populations is bound to find further
applications in the control of large-scale, multi-
agent systems, including those in transportation,
demand response schemes in energy systems,
crowd control in emergencies, and education.
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Industrial MPC of Continuous
Processes
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Abstract

Model predictive control (MPC) has become
the standard for implementing constrained,
multivariable control of industrial continuous
processes. These are processes which are
designed to operate around nominal steady-state
values, which include many of the important
processes found in the refining and chemical
industries. The following provides an overview
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of MPC, including its history, major technical
developments, and how MPC is applied today
in practice. Possible future developments are
provided.

Keywords

Constraints; Modeling; Model predictive con-
trol; Multivariable systems; Process identifica-
tion; Process testing

Introduction

Model predictive control (MPC) refer to a class
of control algorithms that explicitly incorporate a
process model for predicting the future response
of a plant and relies on optimization as the means
of determining control action. At each sample
interval, MPC computes a sequence of future
plant input signals that optimize future plant be-
havior. Only the first of the future input sequence
is applied to the plant, and the optimization is
repeated at subsequent sample intervals.

MPC provides an integrated solution for
controlling non-square systems with complex
dynamics, interacting variables, and constraints.
MPC has become a standard in the continuous
process industries, particularly in refining and
chemicals, where it has been widely applied
for over 25 years. In most commercial MPC
products, an embedded steady-state optimizer
is cascaded to the MPC controller. The MPC
steady-state optimizer determines feasible,
optimal settling values of the manipulated and
controlled variables. The MPC controller then
optimizes the dynamic path to optimal steady-
state values.

The scope of an MPC application may include
a unit operation such as a distillation column or
reactor, or a larger scope such as multiple distil-
lation columns, or a scope that combines reaction
and separation sections of a plant in one con-
troller. MPC is positioned in the control and de-
cision hierarchy of a processing facility as shown
in Fig. 1. The variables associated with MPC con-
sist of: manipulated variables (MVs), controlled
variables (CVs), and disturbance variables (DVs).

Industrial MPC of Continuous Processes, Fig. 1
Industrial control and decision hierarchy

CVs include variables normally controlled at a
fixed value such as a product impurity and as
well as those considered constraints, for example
limits related to capacity or safety that may only
be sometimes active. DVs are measurements that
are treated as feedforward variables in MPC. The
manipulated variables are typically setpoints of
underlying PID controllers, but may also include
valve position signals. Most of the targets and
limits are local to the MPC, but others come
directly from real-time optimization (if present),
or indirectly from planning/scheduling, which are
normally translated to the MPC in an open-loop
manner by the operations personnel.

Linear and nonlinear model forms are found in
industrial MPC applications; however, the major-
ity of the applications continue to rely on a linear
model, identified from data generated from a
dedicated plant test. Nonlinearities that primarily
affect system gains are often adequately con-
trolled with linear MPC through gain scheduling
or by applying linearizing static transformations.
Nonlinear MPC applications tend to be reserved
for those applications where nonlinearities are
present in both system gains and dynamic re-
sponses and the controller must operate at signif-
icantly different targets.
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Origins and History

MPC has its origins in the process industries
in the 1970s. The year 1978 marked the first
published description of predictive control under
the name IDCOM, an acronym for Identification
and Command (Richalet et al. 1978). A short time
later, Cutler and Ramaker (1979) published a
predictive control algorithm under the name Dy-
namic Matrix Control (DMC). Both approaches
had been applied industrially for several years
before the first publications appeared. These pre-
dictive control approaches targeted the more dif-
ficult industrial control problems that could not
be adequately handled with other methods, ei-
ther with conventional PID control or with ad-
vanced regulatory control (ARC) techniques that
rely on single-loop controllers augmented with
overrides, feedforwards/decouplers, and custom
logic.

The basic idea behind the predictive control
approach is shown in Fig. 2 for the case of a
single input single output, stable system. Future
predictions of inputs out outputs are denoted with
the hat symbol and shown as dashes; double
indexes, t jk, indicate future values at time t

based on information up to and including time
k. The optimization problem is to bring future
predicted outputs . OykjkC1; : : : ; OykjkCP / close to
a desired trajectory over a prediction horizon,

P , by means of a future sequence of inputs
.Oukjk; : : : ; OukjkCM�1/ calculated over a control
horizon M . The trajectory may be a constant
setpoint. In the general case, the optimization
is performed subject to constraints that may be
imposed on future inputs and outputs. Only the
first of the future moves is implemented and the
optimization is repeated at the next time instant.
Feedback, which accounts for unmeasured dis-
turbances and model error, is incorporated by
shifting all future output predictions, prior to the
optimization, based on the difference between the
output measurement yk and the previous predic-
tion Oykjk�1, denoted by dkjk (i.e., the prediction
error at time instant k). Future predicted values
of the outputs depend on both past and future
values inputs. If no future input changes are made
(at time k or after), the model can be used to
calculate the future “free” output response, y0t Wk ,
which will ultimately settle at a new steady-state
value based on the settling time (or time to steady
state of the model, Tss). For the unconstrained
case, it is straightforward to show that the optimal
result is a linear control law that depends only on
the error between the desired trajectory and the
free output response.

The predictive approach seemed to contrast
with the state-space optimal control method of
the time, the linear quadratic regulator (LQR).
Later research exposed the similarities to LQR

k−1 k k+1 k+Tssk+M −1 k+P

futurepast

ut

yt

ût|k

ŷt|k

refyt|k

0ŷt|k

dk|k
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time

Industrial MPC of
Continuous Processes,
Fig. 2 Predictive control
approach
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and also Internal Model Control (IMC) (Gar-
cia and Morari 1982), although these techniques
did not solve an online optimization problem.
Optimization-based control approaches became
feasible for industrial applications due to (1) the
slower sampling requirements of most industrial
control problems (on the order of minutes) and
the hierarchical implementations in which MPC
provides setpoints to lower level PID controllers
which execute on a much faster sample time (on
the order of seconds or faster).

Although the basic ideas behind MPC
remain, industrial MPC technology has changed
considerably since the first formulations in the
late 1970s. Qin and Badgwell (2003) describe
the enhancements to MPC technology that
occurred over the next 20 plus years until the
late 1990s. Enhancements since that time are
highlighted in Darby and Nikolaou (2012).
These improvements to MPC reflect increases
in computer processing capability and additional
requirements of industry, which have led to
increased functionality and tools/techniques
to simplify implementation. A summary
of the significant enhancements that have
been made to industrial MPC is highlighted
below.
Constraints: Posing input and output constraints

as linear inequalities, expressed as a function
of the future input sequence (Garcia and
Morshedi 1986), and solved by a standard
quadratic program or an iterative scheme
which approximates one.

Two-Stage Formulations: Limitations of a
single objective function led to two-stage for-
mulations to handle MV degrees of freedom
(constraint pushing) and steady-state opti-
mization via a linear program (LP).

Integrators. In their native form, impulse and
step response models can be applied only to
stable systems (in which the impulse response
model coefficients approach zero). Extension
to handle integrating variables included em-
bedding a model of the difference of the in-
tegrating signal or integrating a fraction of the
current prediction error into the future (imply-
ing an increasing

ˇ
ˇdkCj jk

ˇ
ˇ for j � 1 in Fig. 2).

The desired value of an integrator at steady

state (e.g., zero slope) has been incorporated
into two-stage formulations (see, e.g., Lee and
Xiao 2000).

State Space Models. The first state space for-
mulation of MPC, which was introduced in
the late 1980s (Marquis and Broustail 1988)
allowed MPC to be extended to integrating
and unstable processes. It also made use of
the Kalman filter which provided additional
capability to estimate plant states and un-
measured disturbances. Later, a state space
MPC offering was developed based on an in-
finite horizon (for both control and prediction)
(Froisy 2006). These state space approaches
provided a connection back to unconstrained
LQR theory.

Nonlinear MPC. The first applications of non-
linear MPC, which appeared in the 1990s,
were based on neural net models. In these
approaches, a linear dynamic model was com-
bined with a neural net model that accounted
for static nonlinearity (Demoro et al. 1997;
Zhao et al. 2001).
The late 1990s saw the introduction of an
industrial nonlinear MPC based on first prin-
ciple models derived from differential mass
and energy balances and reaction kinetic ex-
pressions, expressed in differential algebraic
equation (DAE) form (Young et al. 2002).
A process where nonlinear MPC is routinely
applied is polymer manufacturing.

Identification Techniques. Multivariable
prediction error techniques are now routinely
used. More recently, industrial application of
subspace identification methods has appeared,
following the development of these algorithms
in the 1990s. Subspace methods incorporate
the correlation of output measurements in the
identification of a multivariable state space
model, which can be used directly in a state
space MPC or converted to an impulse or step
response model based MPC.

Testing Methods. The 1990s saw increased
use of automatic testing methods to gen-
erate data for (linear) dynamic model
identification using uncorrelated binary
signals. Since the 2000, closed-loop testing
methods have received considerable attention.
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The motivation for closed-loop testing is to
reduce implementation time and/or effort
of the initial implementation as well as
the ongoing need to re-identify the model
of an industrial application in light of
processes changes. These closed-loop testing
methods, which require a preliminary or
existing model, utilize uncorrelated dither
signals either introduced as biases to the
controller MVs or injected through the
steady-state LP or QP, where additional
logic or optimization of the test protocol
may be performed (Kalafatis et al. 2006;
MacArthur and Zhan 2007; Zhu et al.
2012).

Mathematical Formulation

While there are differences in how the MPC
problem is formulated and solved, the following
general form captures most of the MPC products
(Qin and Badgwell 2003), although not all terms
may be present in a given product:

min
�U
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subject to:

OxkCj jk D f.OxkCj�1jk; OukCj�1jk/; j D 1; : : : P

OykCj jk D g.OxkCj jk; OukCj jk/; j D 1; : : : P

9

=

;
Model equations

ymin � sj � OykCj jk � ymax C sj ; j D 1; : : : ; P

sj � 0; j D 1; : : : P

9

=

;
Output constraints/slacks

umin � OukCj jk � umax; j D 0; : : :M � 1

��umin � �ukCj jk � �umax; j D 0; : : :M � 1

9

=

;
Input constraints

where the minimization is performed over the

future sequence of inputs U D̂ Oukjk; OukC1jk; : : : ;
OukCM�1jk . The four terms in the objective
function represent conflicting quadratic penalties

.kxk2A D̂ xTAx/; the penalty matrices are most
always diagonal. The first term penalizes the
error relative to a desired reference trajectory
(cf. Fig. 2) originating at Oykjk and terminating
at a desired steady-state, yss; the second term
penalizes output constraint violations over the
prediction horizon (constraint softening); the
third term penalizes inputs deviations from a
desired steady-state, either manually specified
or calculated. The fourth term penalizes input
changes as a means of trading off output tracking
and input movement (move suppression).

The above formulation applies to both linear
and nonlinear MPC. For linear MPCs, except
for state space formulations, there are no state

equations and the outputs in the dynamic model
are a function of only past inputs, such as with the
finite step response model.

When a steady-state optimizer is present in the
MPC, it provides the steady-state targets for uss

(in the third quadratic term) and yss (in the output
reference trajectory). Consider the case of linear
MPC with LP as the steady-state optimizer. The
LP is typically formulated as

min
�uss

cTu �uss C cTy �yss C qTCsC C qT�s�

subject to:

�yss D Gss�uss

uss D uk�1 C�uss

yss D y0
kCTss jk C�yss

9

>>=

>>;

Model equations
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ymin�s� � yss � ymaxCsC�Output constraints

umin � uss � umax

�M�umax � uss � M�umax

9

=

;
Input constraints

Gss is formed from the gains of the linear dy-
namic model. Deviations outside minimum and
maximum output limits (s� and sC, respectively)
are penalized, which provide constraint softening
in the event all outputs cannot be simultaneously
controlled within limits. The weighting in q� and
qC determine the relative priorities of the out-
put constraints. The input constraints, expressed
in terms of �umax, prevent targets from being
passed to the dynamic optimization that cannot
be achieved. The resulting solution – uss and
yss – provides a consistent, achievable steady-
state for the dynamic MPC controller. Notice that
for inputs, the steady-state delta is applied to the
current value and, for outputs, the steady-state
delta is applied to the steady-state prediction of
the output without future moves, after correcting
for the current model error (cf. Fig. 2). If a real-
time optimizer is present, its outputs, which may
be targets for CVs and/or MVs, are passed to the
MPC steady-state optimizer and considered with
other objectives but at lower weights or priorities.

Some additional differences or features found
in industrial MPCs include:

1-Norm formulations where absolute deviations,
instead of quadratic deviations, are penalized.

Use of zone trajectories or “funnels” with small
or no penalty applied if predictions remain
within the specified zone boundaries.

Use of a minimum movement criterion in ei-
ther the dynamic or steady-state optimizations,
which only lead to MV movement when CV
predictions go outside specified limits. This
can provide controller robustness to modeling
errors.

Multiobjective formulations which solve a series
of QP or LP problems instead of a single one,
and can be applied to the dynamic or steady-
state optimizations. In these formulations,
higher priority objectives are solved first,
followed by lesser priority objectives with
the solution of the higher priority objectives

becoming equality constraints in subsequent
optimizations (Maciejowski 2002).

MPCDesign

Key design decision for a given application are
the number of MPC controllers and the selection
of the MVs, DVs, and CVs for each controller;
however, design decisions are not limited to just
the MPC layer. The design problem is one of
deciding on the best overall structure for the
MPC(s) and the regulatory controls, given the
control objectives, expected constraints, qualita-
tive knowledge of the expected disturbances, and
robustness considerations. It may be that exist-
ing measurements are insufficient and additional
sensors may be required. In addition, a measure-
ment many not be updated on a time interval
consistent with acceptable dynamic control, for
example, laboratory measurements and process
composition analyzers. In this case, a soft sensor,
or inferential estimator, may need to be developed
from temperature and pressure measurements.

MPC is frequently applied to a major plant
unit, with the MVs selected based on their sen-
sitivity to key unit CVs and plant economics.
Decisions regarding the number and size of the
MPCs for a given application depend on plant ob-
jectives, (expected) constraints, and also designer
preferences. When the objective is to minimize
energy consumption based on fixed or specified
feed rate, multiple smaller controllers can be
used. In this situation, controllers are normally
designed based on the grouping of MVs with
the largest effect on the identified CVs, often
leading to MPCs designed for individual sections
of equipment, such as reactors and distillation
columns. When the objective is to maximize feed
(or certain products), larger controllers are nor-
mally designed, especially if there are multiple
constraints that can limit plant throughput. The
MPC steady-state LP or QP is ideally suited to
solving the throughput maximization problem by
utilizing all available MVs. The location of the
most limiting constraints can impact the number
of MPCs. If the major constraints are near the
front-end of the plant, one MPC can be designed
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which connects these constraints with key MVs
such as feed rates, and other MPCs designed for
the rest of the plant. If the major constraints are
located near the back of the plant, then a single
MPC is normally considered; alternatively, an
MPC cascade could be considered, although this
is not a common practice across the industry (and
often requires customization).

The feed maximization objective is a ma-
jor reason why MPCs have become larger with
the advances in computer processing capability.
However, there is generally a higher requirement
on model consistency for larger controllers due
do the increased number of possible constraint
sets against which the MPC can operate. A larger
controller can also be harder to implement and
understand. This is a reason why some practi-
tioners prefer implementing smaller MPCs at the
potential loss of benefits.

MPC Practice

An MPC project is typically implemented in the
following sequence:
Pretest and preliminary MPC design
Plant testing
Model and controller development
Commissioning

These tasks apply whether the MPC is linear
or nonlinear, but with some differences, primar-
ily model development and in plant testing. In
nonlinear MPC, key decisions are related to the
model form and level of rigor. Note that with a
fundamental model, lower level PID loops must
be included in the model, if the dynamics are
significant; this is in contrast to empirical mod-
eling, where the dynamics of the PID loops are
embedded in the plant responses. A fundamental
model will typically require less plant testing
and make use of historical operating data to
fit certain model parameters such as heat trans-
fer coefficients and reaction constants. Historical
data and/or data from a validated nonlinear static
model can also be used to develop nonlinear
static models (e.g., neural net) to combine with
empirical dynamic models. As mentioned earlier,
most industrial applications continue to rely on

empirical linear dynamic models, fit to data from
a dedicated plant test. This will be the basis in the
following discussion.

In the pretest phase of work, the key activity
is one of determining the base level regulatory
controls for MPC, tuning of these controls, and
determining if the current plant instrumentation
is adequate. It is common to retune a significant
number of PID loops, with significant benefits
often resulting from this step alone.

A range of testing approaches are used in plant
testing for linear MPC, including both manual
and automatic (computer-generated) test signal
designs, most often in open loop but, increas-
ingly, in closed loop. Most input testing continues
to be based on uncorrelated signals, implemented
either manually or from computer-generated ran-
dom sequences. Model accuracy requirements
dictate accuracy across a range of frequencies
which is achieved by varying the duration of the
steps. Model identification runs are made through
out the course of a test to determine when model
accuracy is sufficient and a test can be stopped.

In the next phase of work, modeling of the
plant is performed. This includes constructing the
overall MPC model from individual identifica-
tion runs; for example, deciding which models
are significant and judging the models charac-
teristics (dead times, inverse response settling
time, gains) based on engineering/process and
a priori knowledge. An important step is an-
alyzing, and adjusting if necessary, the gains
of the constructed model to insure the models
gains satisfy mass balances and gain ratios do
not result in fictitious degrees of freedom (due
to model errors) that the steady-state optimizer
could exploit. Also included is the development
of any required inferentials or soft sensors, typi-
cally based on multivariate regression techniques
such as principal component regression (PCR),
principal component analysis (PCA) and partial
least squares (PLS), or sometimes based on a
fundamental model.

During controller development, initial con-
troller tuning is performed. This relates to estab-
lishing criteria for utilizing available degrees of
freedom and setting control variable priorities. In
addition, initial tuning values are established for
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the dynamic control. Steady state responses cor-
responding to expected constraint scenarios are
analyzed to determine if the controller behaves as
expected, especially with respect to the steady-
state changes in the manipulated variables.

Commissioning involves testing and tuning
the controller against different constraint sets. It
is not unusual to modify or revisit model de-
cisions made earlier. In the worst case, control
performance may be deemed unacceptable and
the control engineer is forced to revisit earlier
decisions such as the base level regulatory strat-
egy or plant model quality, which would require
re-testing and re-identification of portions of the
plant model. The main commissioning effort typ-
ically takes place over a two to three week period,
but can vary based on the size and model density
of the controller. In reality, commissioning, or
more accurately, controller maintenance, is an
ongoing activity. It is important that the operating
company have in-house expertise that can be used
to answer questions (“why is the controller doing
that?”), troubleshoot, and modify the controller to
reflect new operating modes and constraint sets.

Future Directions

Likely future developments are expected to fol-
low extensions of current approaches. Due to
the success in automatic, closed-loop testing, one
possibility is extending it to “dual” or “joint” con-
trol, where control and identification objectives
are combined and allow the user to select how
much the control (e.g., output variance) can be
affected by test perturbation signals. Another is
in formulating the plant test as a DOE 8 (design
of experiments) optimization problem that could,
for example, target specific models or model
parameters. In the identification area, extensions
have started to appear which allow constraints
to be imposed, for example, on dead-times or
gains, thus allowing a priori knowledge to be
used. Another important area that has seen recent
emphasis, and which more development can be
expected, is in monitoring and diagnosis, for ex-
ample, detecting which submodels of MPC have
become inaccurate and require re-identification.

As mentioned earlier, one of the advantages
of state-space modeling is the inherent flexibility
to model unmeasured disturbances (i.e., dkCj jj ,
cf. Fig. 2); however, these have not found wide-
spread use in industry. A useful enhancement
would be a framework for developing and imple-
menting improved estimators in a convenient and
transparent manner, that would be applicable to
traditional FIR- and FSR- based MPCs.

In the area of nonlinear control, the use of
hybrid modeling approaches has increased, for
example, integrating known fundamental model
relationships with neural net or linear time-
varying dynamic models. The motivation is in
reducing complexity and controller execution
times. The use of hybrid techniques can be
expected to further increase, especially if
nonlinear control is to be applied more broadly to
larger control problems. Even in situations where
control with linear MPC is adequate, there may
be benefits from the use of hybrid or fundamental
models, even if the models are not directly used
in the control calculation. The resulting model
could be used offline in model development or
online to update the linear MPC model. Benefits
would come from reduced plant testing and in
ensuring model consistency. In the longer term,
one can foresee a more general modeling and
control environment where the user would not
have to be concerned with the distinction between
linear and nonlinear models and would be able
to easily incorporate known relationships into the
controller model.

An area that has not received significant atten-
tion, but is suggested as an area worth pursuing
concerns MPC cascades. Most of the applica-
tions and research are based on a single MPC
or multiply distributed MPCs. An MPC cascade
would permit the lower MPC to run at a faster
time period and allow the user to decide which
degrees of freedom are to be used for higher level
objectives, such as feed maximization.
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Information and Communication
Complexity of Networked Control
Systems

Serdar Yüksel
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Abstract

Information and communication complexity of
a networked control system identifies the min-
imum amount of information exchange needed
between the decision makers (such as encoders,
controllers, and actuators) to achieve a certain
objective, which may be in terms of reaching a
target state or achieving a given cost threshold.
This formulation does not impose any constraints
on the computational requirements to perform the
communication or control. Both stochastic and
deterministic formulations are considered.

Keywords

Communication complexity; Information theory;
Networked control

Introduction

Consider a dynamic team problem with L control
stations (these will be referred to as decision
makers and denoted by DMs) under the following
dynamics and measurement equations:

xtC1 D ft .xt ; u
1
t ; : : : ; u

L
t ;wt / ; t D 0; 1; � � �

(1)
yit D git .xt ; u

1
t�1; : : : ; uLt�1I vit /; (2)
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Information and
Communication
Complexity of
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Systems, Fig. 1 A
decentralized networked
control system with
information exchange
between decision makers

where i 2 f1; 2; : : : ; Lg DW L and x0;wŒ0;T�1�;
viŒ0;T�1� are mutually independent random
variables with specified probability distributions.
Here, we use the notation wŒ0;t � WD fws; 0�s�tg.

The DMs are allowed to exchange limited in-
formation: see Fig. 1. The information exchange
is facilitated by an encoding protocol E which is
a collection of admissible encoding functions de-
scribed as follows. Let the information available
to DM i at time t be

I it D fyiŒ1;t �; uiŒ1;t�1�; zi;jŒ0;t �; zj;iŒ0;t �; j 2 Lg;

where zi;jt takes values in Z i;j
t and is the informa-

tion variable transmitted from DM i to DM j at
time t generated with

zit D fzi;jt ; j 2 Lg D E it .I it�1; uit�1; yit /; (3)

and for t D 0, zi0 D fzi;j0 ; j 2 Lg D E i0.yi0/. The
control actions are generated with

uit D �it .I it /;

for all DMs. Define log2.jZ i;j
t j/ to be the com-

munication rate from DM i to DM j at time t
and R.zŒ0;T�1�/ D PT�1

tD0
P

i;j2L log2.jZ i;j
t j/ to

be the (total) communication rate. The minimum
(total) communication rate over all coding and
control policies subject to a design objective

is called the communication complexity for this
objective.

The above is a fixed-rate formulation for com-
munication complexity, since for any two coder
outputs, a fixed number of bits is used at any
given time. One could also use variable-rate for-
mulations. The variable-rate formulation exploits
the probabilistic distribution of the system vari-
ables: see Cover and Thomas (1991).

Communication Complexity for
Decentralized Dynamic Optimization

Let E i D fE it ; t � 0g and �i D f�it ; t �
0g. Under a team-encoding policy E D
fE1; E2; : : : ; ELg, and a team-control policy
� D f�1; �2; : : : ; �Lg, let the induced cost be

E�;E Œ
T�1X

tD0
c.xt ; u

1
t ; u

2
t ; � � � ; uLt /�: (4)

In networked control, the goal is to mini-
mize (4) over all coding and control policies sub-
ject to information constraints in the system. Let
ut D fu1t ; u

2
t ; � � � ; uLt g. The following definition

and example are from Yüksel and Başar (2013).

Definition 1 Given a decentralized control prob-
lem as above, team cost-rate functionC W R ! R

is
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C.R/ W D inf
�;E

�

E�;E Œ
T�1X

tD0
c.xt ;ut /� W

1

T
R.zŒ0;T�1�/ � R

�

:

We can define a dual function.

Definition 2 Given a decentralized control prob-
lem as above, team rate-cost functionR W R ! R

is

R.C/ W D inf
�;E

�
1

T
R.zŒ0;T�1�/ W

E�;E Œ
T�1X

tD0
c.xt ;ut /� � C

�

:

The formulation here can be adjusted to in-
clude sequential (iterative) information exchange
given a fixed ordering of actions, as opposed to a
simultaneous (parallel) information exchange at
any given time t . That is, instead of (3), we may
have

zit D fzi;jt ; j 2 f1; 2; : : : ; Lgg
D E it .I it�1; uit�1; yit ; fzk;it ; k < ig/: (5)

Both to make the discussion more explicit and to
show that a sequential (iterative) communication
protocol may perform strictly better than an opti-
mal parallel communication protocol given a total
rate constraint, we state the following example:
Consider the following setup with two DMs. Let
x1; x2; p be uniformly distributed binary random
variables, DM i have access to yi , i D 1; 2, and

xD.p; x1; x2/; y1 D p; y2 D .x1; x2/;

and the cost function be

c.x; u1; u2/ D 1fpD0gc.x1; u1; u2/

C1fpD1gc.x2; u1; u2/;

with

c.s; u1; u2/ D .s � u1/2 C .s � u2/2:

Suppose that we wish to compute the minimum
expected cost subject to a total rate of 2 bits that
can be exchanged. Under a sequential scheme, if
we allow DM 1 to encode y1 to DM 2 with 1 bit,
then a cost of 0 is achieved since DM 2 knows the
relevant information that needs to be transmitted
to DM 1, again with 1 bit: If p D 0, x1 is the
relevant random variable with an optimal policy
u1 D u2 D x1, and if p D 1, x2 is relevant with
an optimal policy u1 D u2 D x2, and a cost of 0 is
achieved. However, if the information exchange
is parallel, then DM 2 does not know which state
is the relevant one, and it can be shown that a cost
of 0 cannot be achieved under any policy.

The formulation in Definition 1 can also be
adjusted to allow for multiple rounds of commu-
nication per time stage. Having multiple rounds
can enhance the performance for a class of team
problems while keeping the total rate constant.

Communication Complexity
in Decentralized Computation

Yao (1979) initiated the research on communica-
tion complexity in distributed computation. This
may be viewed as a special case of the setting
considered earlier but with finite spaces and in a
deterministic and an error-free context: Consider
two decision makers (DMs) who have access to
local variables x 2 f0; 1gn; y 2 f0; 1gn. Given a
function f of variables .x; y/, what is the max-
imum (over all input variables x; y) of the min-
imum amount of information exchange needed
for at least one agent to compute the value of
the function? Let s.x; y/ D fm1;m2; � � � ; mtg be
the communication symbols exchanged on input
.x; y/ during the execution of a communication
protocol. Let mi denote the i th binary message
symbol with jmi j bits. The communication com-
plexity for such a setup is defined as

R.f / D min
�;E

max
.x;y/2f0;1gn�f0;1gn

js.x; y/j; (6)

where js.x; y/j D Pt
iD1 jmi j and E is a protocol

which dictates the iterative encoding functions as
in (5) and � is a decision policy.
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For such problems, obtaining good lower
bounds is in general challenging. One lower
bound for such problems is obtained through
the following reasoning: A subset of the form
A � B , where A and B are subsets of f0; 1gn,
is called an f -monochromatic rectangle if
for every x 2 A; y 2 B , f .x; y/ is the
same. It can be shown that given any finite
message sequence fm1;m2; � � � ; mt g, the set
f.x; y/ W s.x; y/ D fm1;m2; � � � ; mtgg is an
f -monochromatic rectangle. Hence, to minimize
the number of messages, one needs to minimize
the number of f -monochromatic rectangles
which has led to research in this direction.
Upper bounds are typically obtained by explicit
constructions. For a comprehensive review, see
Kushilevitz and Nisan (2006).

For control systems, the discussion takes fur-
ther aspects into account including a design ob-
jective, system dynamics, and the uncertainty in
the system variables.

Communication Complexity in Reach
Control

Wong (2009) defines the communication com-
plexity in networked control as follows: Consider
a design specification where two DMs wish to
steer the state of a dynamical system in finite
time. This can be viewed as a setting in (1)–(2)
with 4 DMs, where there is iterative communi-
cation between a sensor and a DM, and there is
no stochastic noise in the system. Given a set of
initial states x0 2 X0, and finite sets of objective
choices for each DM .A for DM 1, B for DM 2),
the goal is to ensure that (i) there exists a finite
time where both DMs know the final state of the
system, (ii) the final state satisfies the choices
of the DMs, and (iii) the finite time (when the
objective is satisfied) is known by the DMs.

The communication complexity for such a
system is defined as the infimum over all pro-
tocols of the supremum over the triple of initial
states, and choices of the DMs, such that the
above is satisfied. That is,

R.X0;A;B/ D inf
�;E

sup
˛;ˇ;x0

R.�; E ; ˛; ˇ; x0/;

where R.�; E ; ˛; ˇ; x0/ denotes the communica-
tion rate under the control and coding functions
�; E , which satisfies the objectives given by the
choices ˛; ˇ and initial condition x0.

Wong obtains a cut-set type lower bound:
Given a fixed initial state, a lower bound is given
by 2D.f /, where f is a function of the objec-
tive choices and D.f / is a variation of R.f /
introduced in (6) with the additional property that
both DMs know f at the end of the protocol. An
upper bound is established by the exchange of the
initial states and objective functions also taking
into account signaling, that is, the communication
through control actions, which is discussed fur-
ther below in the context of stabilization. Wong
and Baillieul (2012) consider a detailed analysis
for a real-valued bilinear controlled decentralized
system.

Connections with Information Theory

Information theory literature has made significant
contributions to such problems. An information
theoretic setup typically entails settings where an
unboundedly large sequence of messages are en-
coded and functions of which are to be computed.
Such a setting is not applicable in a real-time set-
ting but is very useful for obtaining performance
bounds (i.e., good lower bounds on complexity)
which can at certain instances be achievable even
in a real-time setting. That is, instead of a single
realization of random variables in the setup of
(1)–(2), the average performance for a large num-
ber of independent realizations/copies for such
problems is typically considered.

In such a context, Definitions 1 and 2 can
be adjusted so that the communication complex-
ity is computed by mutual information (Cover
and Thomas 1991). Replacing the fixed-rate or
variable-rate (entropy) constraint in Definition 1
with a mutual information constraint leads to
convexity properties for C.R/ and R.C/. Such
an information theoretic formulation can pro-
vide useful lower bounds and desirable analytical
properties.

We note here the interesting discus-
sion between decentralized computation and
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communication provided by Orlitsky and Roche
(2001) as well as by Witsenhausen (1976) where
a probability-free construction is considered and
a zero-error (non-asymptotic and error-free)
computation is considered in the same spirit
as in Yao (1979).

Such decentralized computation problems can
be viewed as multiterminal source coding prob-
lems with a cost function aligned with the com-
putation objective. Ma and Ishwar (2011) and
Gamal and Kim (2012) provide a comprehensive
treatment and review of information exchange
requirements for computing. Essential in such
constructions is the method of binning, which is
a key tool in distributed source coding problems.
Binning efficiently designates the enumeration of
symbols (which can be confused in the absence
of coding) given the relevant information at a
receiver DM.

Such problems involve interactive communi-
cations as well as multiterminal coding problems.
As mentioned earlier, it is also important to point
out that multi-round protocols typically reduce
the average rate requirements.

Communication Complexity
in Decentralized Stabilization

An important relevant setting of reach control is
where the target final state is the zero vector: The
system is to be stabilized. Consider the following
special case of (1)–(2) for an LTI system:

xtC1 D Axt C
LX

jD1
Bjujt ;

yit D C ixt t D 0; 1; : : : (7)

where i 2 L, and it is assumed that the joint
system is stabilizable and detectable, but the
individual pairs .A;Bi / may not be stabilizable
or .A; C i/ may not be detectable. Here, xt 2 R

n

is the state, uit 2 R
mi is the control applied

by station i , and yit 2 R
pi is the observation

available at station i , all at time t . The initial
state x0 is generated according to a probability

Plant

y1 y2 y3

q1 q2 q3

Plant

Station 1

Actuator 1 Actuator 2 Actuator 3

Station 2 Station 3

u1 u2 u3

Information and Communication Complexity of Net-
worked Control Systems, Fig. 2 Decentralized stabi-
lization with multiple controllers

distribution supported on a compact set X0 �
R
n. We denote controllable and unobservable

subspaces at station i by Ki and N i and refer to
the subspace orthogonal to N i as the observable
subspace at the i th station, denoted by Oi . The
information available to station i at time t is I it D
fyiŒ0;t �; uiŒ0;t�1�g. For such a system (see Fig. 2),
it is possible for the controllers to communicate
through the plant with the process known as
signaling which can be used for communication
of mode information among the decision makers.
Denote by i ! j the property that DM i

can signal to DM j . This holds if and only if
Cj .A/lBi ¤ 0, for at least one l , 1 � l � n.
A directed graph G among the L stations can
be constructed through such a communication
relationship.

Suppose that A is such that in its Jordan
form, where each Jordan block admits distinct
real eigenvalues. Then, a lower bound on the
communication complexity (per time stage) for
stabilizability is given by

P

j�i j>1 �Mi log2.j�i j/,
where

�Mi D min
l;m2f1;2;:::;Lg

fd.l;m/C 1 W l ! m;

Œxi � � Oi [Om; Œxi � � Kmg;
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with d.l;m/ denoting the graph distance (num-
ber of edges in a shortest path) between DM
l and DM m in G and Œxi � denoting the sub-
space spanned by xi . Furthermore, there exist
stabilizing coding and control policies whose
sum rate is arbitrarily close to this bound. When
different Jordan blocks may admit repeated and
possibly complex eigenvalues, variations of the
result above are applicable. In the special case
where there is a centralized controller which re-
ceives information from multiple sensors (under
stabilizability and joint detectability), even in the
presence of noise, to achieve asymptotic stability,
it suffices to have the average total rate be greater
than

P

j�i j>1 log2.j�i j/. The results above follow
from Matveev and Savkin (2008) and Yüksel and
Başar (2013). For the case with a single sensor,
this result has been studied extensively in net-
worked control (see the chapter on �Quantized
Control and Data Rate Constraints in the Ency-
clopedia).

Summary and Future Directions

In this text, we discussed the problem of
communication complexity in networked control
systems. Our analysis considered both cost
minimization and controllability/reachability
problems subject to information constraints. We
also discussed the communication complexity
in distributed computing as has been studied in
the computer science community and provided
a brief discussion on the information theoretic
approaches for such problems together with
structural results. There are many relevant
open problems on structural results for optimal
policies, explicit solutions, as well as nontrivial
upper and lower bounds on the optimal
performance.

Cross-References

�Data Rate of Nonlinear Control Systems and
Feedback Entropy

� Flocking in Networked Systems
� Information-Based Multi-Agent Systems

�Networked Control Systems: Estimation and
Control over Lossy Networks

�Quantized Control and Data Rate Constraints

Recommended Reading

The information exchange requirements for
decentralized optimization depend also on the
structural properties of the cost functional to
be minimized. For a class of team problems,
one might simply need to exchange a sufficient
statistic needed for optimal solutions. For some
problems, there may be no need for an exchange
at all, if the sufficient statistics are already
available, as in the case of mean field equilibrium
problems when the number of decision makers
is unbounded or very large for almost optimal
solutions; see Huang et al. (2006) and Lasry
and Lions (2007). In case there is no common
probabilistic information, the problem considered
becomes further involved. The consensus
literature, under both Bayesian and non-Bayesian
contexts, aims to achieve agreement on a class of
system variables under information constraints:
see, e.g., Tsitsiklis et al. (1986). Optimization
under local interaction and sparsity constraints
and various criteria have been investigated in
a number of publications including Rotkowitz
and Lall (2006). A review for the literature
on norm-optimal control as well as optimal
stochastic dynamic teams is provided in Mahajan
et al. (2012). Tsitsiklis and Athans (1985) have
observed that from a computational complexity
viewpoint, obtaining optimal solutions for a class
of such communication protocol design problems
is non-tractable (NP-hard).

Even though obtaining explicit solutions for
optimal coding and control results may be dif-
ficult, it is useful to obtain structural results on
optimal coding and control policies since one
can reduce the search space to a smaller class of
functions. For dynamic team problems, these typ-
ically follow from the construction of a controlled
Markov chain (see Walrand and Varaiya 1983)
and applying tools from stochastic control theory
which obtain structural results on optimal coding
and control policies (see Nayyar et al. 2013).

http://dx.doi.org/10.1007/978-1-4471-5058-9_149
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http://dx.doi.org/10.1007/978-1-4471-5058-9_215
http://dx.doi.org/10.1007/978-1-4471-5058-9_153
http://dx.doi.org/10.1007/978-1-4471-5058-9_152
http://dx.doi.org/10.1007/978-1-4471-5058-9_149
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Along these lines, for system (1)–(2), if the DMs
can agree on a joint belief P.xt 2 �jI it ; i 2 L/
at every time stage, then the optimal cost that
would be achieved under a centralized system
could be attained (see Yüksel and Başar 2013).
As a further important illustrative case, if the
problem described in Definition 1 is for a real-
time estimation problem for a Markov source,
then the optimal causal fixed-rate coder minimiz-
ing any cost function uses only the last source
symbol and the information at the controller’s
memory: see Witsenhausen (1979). We also note
that the optimal design of information channels
for optimization under information constraints
is a non-convex problem; see Yüksel and Lin-
der (2012) and Yüksel and Başar (2013) for a
review of the literature and certain topological
properties of the problem. We refer the reader
to Nemirovsky and Yudin (1983) for a com-
prehensive resource on information complexity
for optimization problems. A sequential setting
with an information theoretic approach to the
formulation of communication complexity has
been considered in Raginsky and Rakhlin (2011).
A formulation relevant to the one in Definition 1
has been considered in Teneketzis (1979) with
mutual information constraints. Giridhar and Ku-
mar (2006) discuss distributed computation for a
class of symmetric functions under information
constraints and present a comprehensive review.

Bibliography

Cover TM, Thomas JA (1991) Elements of information
theory. Wiley, New York

Gamal AE, Kim YH (2012) Network information theory.
Cambridge University Press, UK

Giridhar A, Kumar P (2006) Toward a theory of in-
network computation in wireless sensor networks.
IEEE Commun Mag 44:98–107

Huang M, Caines PE, Malhamé RP (2006) Large
population stochastic dynamic games: closed-loop
McKean-vlasov systems and the nash certainty
equivalence principle. Commun Inf Syst 6:
221–251

Kushilevitz E, Nisan N (2006) Communication complex-
ity, 2nd edn. Cambridge University Press, New York

Lasry JM, Lions PL (2007) Mean field games. Jpn J Math
2:229–260

Ma N, Ishwar P (2011) Some results on distributed source
coding for interactive function computation. IEEE
Trans Inf Theory 57:6180–6195

Mahajan A, Martins N, Rotkowitz M, Yüksel S (2012)
Information structures in optimal decentralized con-
trol. In: IEEE conference on decision and control,
Hawaii

Matveev AS, Savkin AV (2008) Estimation and
control over communication networks. Birkhäuser,
Boston

Nayyar A, Mahajan A, Teneketzis D (2013) The common-
information approach to decentralized stochastic con-
trol. In: Como G, Bernhardsson B, Rantzer A (eds)
Information and control in networks. Springer Inter-
national Publishing, Switzerland

Nemirovsky A, Yudin D (1983) Problem complexity and
method efficiency in optimization. Wiley-Interscience,
New York

Orlitsky A, Roche JR (2001) Coding for computing. IEEE
Trans Inf Theory 47:903–917

Raginsky M, Rakhlin A (2011) Information-based
complexity, feedback and dynamics in convex
programming. IEEE Trans Inf Theory 57:
7036–7056

Rotkowitz M, Lall S (2006) A characterization of convex
problems in decentralized control. IEEE Trans Autom
Control 51:274–286

Teneketzis D (1979) Communication in decentralized
control. PhD dissertation, MIT

Tsitsiklis J, Athans M (1985) On the complexity of de-
centralized decision making and detection problems.
IEEE Trans Autom Control 30:440–446

Tsitsiklis J, Bertsekas D, Athans M (1986) Distributed
asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE Trans Autom Control
31:803–812

Walrand JC, Varaiya P (1983) Optimal causal coding-
decoding problems. IEEE Trans Inf Theory 19:814–
820

Witsenhausen HS (1976) The zero-error side information
problem and chromatic numbers. IEEE Trans Inf The-
ory 22:592–593

Witsenhausen HS (1979) On the structure of real-time
source coders. Bell Syst Tech J 58:1437–1451

Wong WS (2009) Control communication complexity of
distributed control systems. SIAM J Control Optim
48:1722–1742

Wong WS, Baillieul J (2012) Control communication
complexity of distributed actions. IEEE Trans Autom
Control 57:2731–2345

Yao ACC (1979) Some complexity questions related to
distributive computing. In: Proceedings of the 11th
annual ACM symposium on theory of computing,
Atlanta
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Abstract

The concept of “information structures” in
decentralized control is a formalization of the
notion of “who knows what and when do they
know it.” Even seemingly simple problems with
simply stated information structures can be
extremely hard to solve. Perhaps the simplest
of such unsolved problem is the celebrated
Witsenhausen counterexample, formulated
by Hans Witsenhausen in 1968. This entry
discusses how the information structure of the
Witsenhausen counterexample makes it hard
and how an information-theoretic approach,
which explores the knowledge gradient due to
a nonclassical information pattern, has helped
obtain insights into the problem.

Keywords

Decentralized control; Information theory; Im-
plicit communication; Team decision theory

Introduction

Modern control systems often comprise of multi-
ple decentralized control agents that interact over
communication channels (Fig. 1). What charac-
teristic distinguishes a centralized control prob-
lem from a decentralized one? One fundamental
difference is a “knowledge gradient”: agents in
a decentralized team often observe, and hence
know, different things. This observation leads to
the idea of information patterns (Witsenhausen
1971), a formalization of the notion of “who

knows what and when do they know it” (Ho et al.
1978; Mitter and Sahai 1999).

The information pattern is said to be classi-
cal if all agents in the team receive the same
information and have perfect recall (so they do
not forget it). What is so special about classi-
cal information patterns? For these patterns, the
presence of external communication links has no
effect on the optimal costs! After all, what could
the agents use the communication links for, when
there is no knowledge gradient? More interesting,
therefore, are the problems for which the infor-
mation pattern is nonclassical. These problems sit
at the intersection of communication and control:
communication between agents can help reduce
the knowledge differential that exists between
them, helping them perform the control task.
Intellectually and practically, the concept of non-
classical information patterns motivates a lot of
formulations at the control-communication inter-
section. Many of these formulations – including
some discussed in this Encyclopedia (e.g., �Data
Rate of Nonlinear Control Systems and Feed-
back Entropy; � Information and Communica-
tion Complexity of Networked Control Systems
�Quantized Control and Data Rate Constraints;
�Networked Control Systems: Architecture and
Stability Issues; and �Networked Control Sys-
tems: Estimation and Control Over Lossy Net-
works) – intellectually ask the question: for a
realistic channel that is constrained by noise,
bandwidth, and speed, what is the optimal com-
munication and control strategy?

One could ask the question of optimal control
strategy even for decentralized control problems
where no external channel is available to bridge
this knowledge gradient. Why could these
problems be of interest? First, these problems
are limiting cases of control with communi-
cation constraints. Second, and perhaps more
importantly, they bring out an interesting
possibility that can allow the agents to
“communicate,” i.e., exchange information, even
when the external channel is absent. It is possible
to use control actions to communicate through
changing the system state! We now introduce
this form of communication using a simple toy
example.

http://dx.doi.org/10.1007/978-1-4471-5058-9_150
http://dx.doi.org/10.1007/978-1-4471-5058-9_154
http://dx.doi.org/10.1007/978-1-4471-5058-9_149
http://dx.doi.org/10.1007/978-1-4471-5058-9_151
http://dx.doi.org/10.1007/978-1-4471-5058-9_152
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Fig. 1 The evolution of control systems. Modern “net-

worked control systems” (also called “cyber-physical sys-
tems”) are decentralized and networked using communi-
cation channels

Communicating Using Actions:
An Example

To gain intuition into when communication using
actions could be useful, consider the inverted
pendulum example shown in Fig. 2. The goal of
the two agents is to bring the pendulum as close to
the origin as possible. Both controllers have their
strengths and weaknesses. The “weak” controller
Cw has little energy, but has perfect state observa-
tions. On the other hand, the “blurry” controller
Cb has infinite energy, but noisy observations.
They act one after the other, and their goal is
to move the pendulum close to the center from
any initial state. The information structure of
the problem is nonclassical: the Cw, but not Cb,
knows the initial state of the pendulum, and Cw

does not know the precise (noisy) observation of
Cb using which Cb takes actions.

A possible strategy: A little thought reveals an
interesting strategy – the weak controller, having
perfect observations, can move the state to the
closest of some predecided points in space, effec-
tively quantizing the state. If these quantization
points are sufficiently far from each other, they
can be estimated accurately (through the noise)
by the blurry controller, which can then use its
energy to push the pendulum all the way to zero.
In this way, the weak controller expends little
energy, but is able to “communicate” the state
through the noise to the blurry controller, by

Step 1

Step 2

x

Cw

Cb

Weak
controller

Blurry
Controller

Information Structures, the Witsenhausen Coun-
terexample, and Communicating Using Actions,
Fig. 2 Two controllers, with their respective strengths
and weaknesses, attempting to bring an inverted pendulum
close to the center. Also shown (using green “+” signs) are
possible quantization points chosen by the controllers for
a quantization-based control strategy

making it take values on a finite set. Once the
blurry controller has received the state through
the noise, it can use its infinite energy to push the
state to zero.

TheWitsenhausen Counterexample

The above two-controller inverted-pendulum ex-
ample is, in fact, motivated by what is now
known as “the Witsenhausen counterexample,”
formulated by Witsenhausen in 1968 (see Fig. 3).
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Fig. 3 The Witsenhausen counterexample is a decep-
tively simple two-time-step two-controller decentralized
control problem. The weak and the blurry controllers, Cw

and Cb act in a sequential manner

In the counterexample, two controllers (denoted
here by Cw for “weak” and Cb for “blurry”) act
one after the other in two time-steps to minimize
a quadratic cost function. The system state is
denoted by xt , where t is the time index. uw and
ub denote the inputs generated by the two con-
trollers. The cost function is k2E

�

u2w
�CE

�

x22
�

for
some constant k. The initial state x0 and the noise
z at the input of the blurry controller are assumed
to be Gaussian distributed and independent, with
variances �20 and 1 respectively. The problem
is a “linear-quadratic-Gaussian” (LQG) problem,
i.e., the state evolution is linear, the costs are
quadratic, and the primitive random variables are
Gaussian.

Why is the problem called a “counterexam-
ple”? The traditional “certainty-equivalence”
principle (Bertsekas 1995) shows that for all
centralized LQG problems, linear control laws
are optimal. Witsenhausen (1968) provided
a nonlinear strategy for the Witsenhausen
problem which outperforms all linear strategies.
Thus, the counterexample showed that the
certainty-equivalence doctrine does not extend
to decentralized control.

What is this strategy of Witsenhausen that
outperforms all linear strategies? It is, in fact, a
quantization-based strategy, as suggested in our
inverted-pendulum story above. Further, it was
shown by Mitter and Sahai (1999) that multipoint
quantization strategies can outperform linear
strategies by an arbitrarily large factor! This
observation, combined with the simplicity of
the counterexample, makes the problem very
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Fig. 4 The optimization solution of Baglietto et al. (1997)
for k2 D 0:5, �20 D 5. The information-theoretic strategy
of “dirty-paper coding” Costa (1983) also yields the same
curve (Grover and Sahai 2010)

important in decentralized control. This simple
two-time-step two-controller LQG problem
needs to be understood to have any hope of un-
derstanding larger and more complex problems.

While the optimal costs for the problem are
still unknown (even though it is known that an
optimal strategy exists (Witsenhausen 1968;
Wu and Verdú 2011)), there exists a wealth of
understanding of the counterexample that has
helped address more complicated problems. A
body of work, starting with that of Baglietto
et al. (1997), numerically obtained solutions that
could be close to optimal (although there is no
mathematical proof thereof). All these solutions
have a consistent form (illustrated in Fig. 4),
with slight improvements in the optimal cost.
Because the discrete version of the problem,
appropriately relaxed, is known to be NP-
complete (Papadimitriou and Tsitsiklis 1986),
this approach cannot be used to understand the
entire parameter space and hence has focused on
one point: k2 D 0:5; �20 D 5. Nevertheless, the
approach has proven to be insightful: a recent
information-theoretic body of work shows that
the strategies of Fig. 4 can be thought of as
information-theoretic strategies of “dirty-paper
coding” Costa (1983) that is related to the idea of
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embedding information in the state. The question
here is: how do we embed the information about
the state in the state itself ?

An information-theoretic view of the coun-
terexample: This information-theoretic approach
that culminated in Grover et al. (2013) also
obtained the first approximately optimal
solutions to the Witsenhausen counterexample
as well as its vector extensions. The result is
established by analyzing information flows in the
counterexample that work toward minimizing the
knowledge gradient, effectively an information
pattern in which Cw can predict the observation
of Cb more precisely. The analysis provides
an information-theoretic lower bound on cost
that holds irrespective of what strategy is used.
For the original problem, this characterizes the
optimal costs (with associated strategies) within
a factor of 8 for all problem parameters (i.e., k
and �20 ). For any finite-length extension, uniform
finite-ratio approximations also exist (Grover
et al. 2013). The asymptotically infinite-
length extension has been solved exactly
(Choudhuri and Mitra 2012).

The problem has also driven delineation of de-
centralized LQG control problems with optimal
linear solutions and those with nonlinear optimal
solutions. This led to the development and under-
standing of many variations of the counterexam-
ple (Bansal and Başar 1987; Başar 2008; Ho et al.
1978; Rotkowitz 2006) and understanding that
can extend to larger decentralized control prob-
lems. More recent work shows that the promise
of the Witsenhausen counterexample was not
a misplaced one: the information-theoretic ap-
proach that provides approximately optimal solu-
tions to the counterexample (Grover et al. 2013)
yields solutions to other more complex (e.g.,
multi-controller, more time-steps) problems as
well (Grover 2010; Park and Sahai 2012).

Summary and Future Directions

Even simple problems with nonclassical
information structures can be hard to solve
using classical techniques, as is demonstrated

by the Witsenhausen counterexample. However,
nonclassical information pattern for some simple
problems – starting with the counterexample –
has recently been explored via an information-
theoretic lens, yielding the first optimal or
approximately optimal solutions to these
problems. This approach is promising for larger
decentralized control problems as well. It is
now important to explore what is the simplest
decentralized control problem that cannot be
solved (exactly or approximately) using ideas
developed for the counterexample. In this
manner, the Witsenhausen counterexample can
provide a platform to unify the more modern
(i.e., external-channel centric approaches, see
�Quantized Control and Data Rate Constraints;
�Data Rate of Nonlinear Control Systems
and Feedback Entropy; �Networked Control
Systems: Architecture and Stability Issues;
�Networked Control Systems: Estimation and
Control Over Lossy Networks; � Information
and Communication Complexity of Networked
Control Systems; in the encyclopedia) with the
more classical decentralized LQG problems,
leading to enriching and useful formula-
tions.

Cross-References

�Data Rate of Nonlinear Control Systems and
Feedback Entropy

� Information and Communication Complexity
of Networked Control Systems

�Networked Control Systems: Architecture and
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�Quantized Control and Data Rate Constraints
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Abstract

Multi-agent systems are encountered in nature
(animal groups), in various domains of technol-
ogy (multi-robot networks, mixed robot-human
teams) and in various human activities (such as
dance and team athletics). Information exchange
among agents ranges from being incidentally
important to crucial in such systems. Several sys-
tems in which information exchange among the
agents is either a primary goal or a primary en-
abler are discussed briefly. Specific topics include
power management in wireless communication
networks, data-rate constraints, the complexity
of distributed control, robotics networks and for-
mation control, action-mediated communication,
and multi-objective distributed systems.

Keywords

Distributed control; Information constraints;
Multi-agent systems

Introduction

The role of information patterns in the
decentralized control of multi-agent systems has
been studied in different theoretical contexts for
more than five decades. The paper Ho (1972)
provides references to early work in this area.
While research on distributed decision making
has continued, a large body of recent research on
robotic networks has brought new dimensions of
geometric aspects of information patterns to the
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forefront (Bullo et al. 2009). At the same time,
machine intelligence, machine learning, machine
autonomy, and theories of operation of mixed
teams of humans and robots have considerably
extended the intellectual frontiers of information-
based multi-agent systems (Baillieul et al. 2012).
A further important development has been the
study of action-mediated communication and the
recently articulated theory of control communica-
tion complexity (Wong and Baillieul 2012). These
developments may shed light on nonverbal forms
of communication among biological organisms
(including humans) and on the intrinsic energy
requirements of information processing.

In conventional decentralized control, the con-
trol objective is usually well-defined and known
to all agents. Multi-agent information-based con-
trol encompasses a broader scenario, where the
objective can be agent dependent and is not
necessarily explicitly announced to all. For il-
lustration, consider the power control problem
in wireless communication – one of the ear-
liest engineering systems that can be regarded
as multi-agent information based. It is common
that multiple transmitter-receiver communication
pairs share the same radio frequency band and
the transmission signals interfere with each other.
The power control problem searches for feedback
control for each transmitter to set its power level.
The goal is for each transmitter to achieve tar-
geted signal-to-interference ratio (SIR) level by
using information of the observed levels at the
intended receiver only.

A popular version of the power control
problem (Foschini and Miljanic 1993) defines
each individual objective target level by means
of a requirement threshold, known only to the
intended transmitter. As SIR measurements
naturally reside on a receiver, the observed
SIR needs to be communicated back to the
transmitter. For obvious reasons, the bandwidth
for such communication is limited. The resulting
model fits the bill of multi-agent information-
based control. In Sung and Wong (1999), a
tristate power control strategy is proposed
so that the power control outputs are either
increased or decreased by a fixed dB or no
change at all. Convergence of the feedback

algorithm was shown using a Lyapunov-like
function.

This entry surveys key topics related to multi-
agent information-based control systems, includ-
ing control complexity, control with data-rate
constraints, robotic networks and formation con-
trol, action-mediated communication, and multi-
objective distributed systems.

Control Complexity

In information-based distributed control systems,
how to efficiently share computational and com-
munication resources is a fundamental issue. One
of the earliest investigations on how to schedule
communication resources to support a network
of sensors and actuators is discussed in Brockett
(1995). The concept of communication sequenc-
ing was introduced to describe how the commu-
nication channel is utilized to convey feedback
control information in a network consisting of
interacting subsystems. In Brockett (1997), the
concept of control attention was introduced to
provide a measure of the complexity of a con-
trol law against its performance. As attention is
a shared, limited resource, the goal is to find
minimum attention control. Another approach to
gauge control complexity in a distributed system
is by means of the minimum amount of communi-
cated data required to accomplish a given control
task.

Control with Data-Rate Constraints

A fundamental challenge in any control imple-
mentation in which system components com-
municate with each other over communication
links is ensuring that the channel capacity is
large enough to deal with the fastest time con-
stants among the system components. In a single
agent system, the so-called Data-Rate Theorem
has been formulated in various ways to under-
stand the constraints imposed between the sensor
and the controller and between the controller
and the actuator. Extensions to this fundamental
result have been focused on addressing similar
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problems in the network control system context.
Information on such extensions in the distributed
control setting can be found in Nair and Evans
(2004) and Yüksel and Basar (2007).

Robotic Networks and Formation
Control

The defining characteristic of robotic networks
within the larger class of multi-agent systems
is the centrality of spatial relationships among
network nodes. Graph theory has been shown
to provide a generally convenient mathematical
language in which to describe spatial concepts
and it is the key to understanding spatial rigid-
ity related to the control of formations of au-
tonomous vehicles (Anderson et al. 2008), or
in flocking systems (Leonard et al. 2012), or in
consensus problems (Su and Huang 2012), or in
rendezvous problems (Cortés et al. 2006). For
these distributed control research topics, readers
can consult other sections in this Encyclopedia
for a comprehensive reference list.

Much of the recent work on formation
control has included information limitation
considerations. For consensus problems, for
example, Olfati-Saber and Murray (2004)
introduced a sensing cost constraint, and in
Ren and Beard (2005) information exchange
constraints are considered, and in Yu and Wang
(2010) communication delays are explicitly
modeled.

Action-Mediated Communication

Biological organisms communicate through mo-
tion. Examples of this include prides of lions or
packs of wolves whose pursuit of prey is a coop-
erative effort and competitive team athletics in the
case of humans. Recent research has been aimed
at developing a theoretical foundation of action-
mediated communication. Communication proto-
cols for motion-based signaling between mobile
robots have been developed (Raghunathan and
Baillieul 2009) and preliminary steps towards a
theory of artistic expression through controlled

movements in dance have been reported in Bail-
lieul and Özcimder (2012). Motion-based com-
munication of this type involves specially tailored
motion description languages in which sequences
of motion primitives are assembled with the ob-
jective of conveying artistic intent, while min-
imizing the use of limited energy resources in
carrying out the movement. These motion primi-
tives constitute the alphabet that enables commu-
nication, and physical constraints on the motions
define the grammatical rules that govern the ways
in which motion sequences may be constructed.

Research on action-mediated communication
helps illustrate the close connection between con-
trol and information theory. Further discussion
of the deep connection between the two can be
found, for example, in Park and Sahai (2011),
which argues for the equivalence between the
stabilization of a distributed linear system and
the capacity characterization in linear network
coding.

Multi-objective Distributive Systems

In a multi-agent system, agents may aim to carry
out individual objectives. These objectives can
either be cooperatively aligned (such as in a
cooperative control setting) or may contend an-
tagonistically (such as in a zero-sum game set-
ting). In either case, a common assumption is that
the objective functions are a priori known to all
agents. However, in many practical applications,
agents do not know the objectives of other agents,
at least not precisely. For example, in the power
control problem alluded to earlier, the signal-to-
interference requirement of a user may be un-
known to other users. Yet this does not prevent the
possibility of deriving convergence algorithms to
allow the joint goals to be achieved.

The issue of unknown objectives in a multi-
agent system is formally analyzed in Wong
(2009) via the introduction of choice-based
actions. In an open access network, objectives of
an individual agent may be known only partially,
via the form of a random distribution in some
cases. In order to achieve a joint control objective
in general, some communication via the system
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is required if there is no side communications
channel. A basic issue is how to measure the
minimum amount of information exchange
that is required to perform a specific control
task. Motivated by the idea of communication
complexity in computer science, the idea
of control communication complexity was
introduced in Wong (2009), which can provide
such a measure. In Wong and Baillieul (2009),
the idea was extended to a rich class of nonlinear
systems that arise as models of physical processes
ranging from rigid body mechancs to quantum
spin systems.

In some special cases, control objectives
can be achieved without any communication
among the agents. For systems with bilinear
input–output mapping, including the Brockett
Integrator, it is possible to derive conditions
that guarantee this property (Wong and Baillieul
2012). Moreover, for quadratic type of control
cost, it is possible to compute the optimal
control cost. Similar results can be extended
to linear systems as discussed in Liu et al.
(2013). This circle of ideas is connected to the so-
called standard parts problem as investigated in
Baillieul and Wong (2009). Another connection
is to correlated equilibrium problems that have
been recently studied by game theorists Shoham
and Leyton-Brown (2009).

Cross-References

�Motion Description Languages and Symbolic
Control

�Multi-vehicle Routing
�Networked Systems
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Input-to-State Stability
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Synonyms

ISS

Abstract

The notion of input to state stability (ISS)
qualitatively describes stability of the mapping
from initial states and inputs to internal states
(and more generally outputs). This entry focuses
on the definition of ISS and a discussion of
equivalent characterizations.

Keywords

Asymptotic stability; Dissipation; Lyapunov
functions

Introduction

We consider here systems with inputs in the usual
sense of control theory:

Px.t/ D f .x.t/; u.t//

(the arguments “t” are often omitted). There
are n state variables and m input channels.
States x.t/ take values in Euclidean space
R
n, and the inputs (also called “controls”

or “disturbances” depending on the context)
are measurable in locally essentially bounded
maps u.�/ W Œ0;1/ ! R

m. The map f W
R
n � R

m ! R
n is assumed to be locally

Lipschitz with f .0; 0/ D 0. The solution, defined
on some maximal interval Œ0; tmax.x

0; u//, for
each initial state x0 and input u, is denoted as
x.t; x0; u/ and, in particular, for systems with
no inputs Px.t/ D f .x.t//; just as x.t; x0/. The
zero system associated to Px D f .x; u/ is by
definition the system with no inputs Px D f .x; 0/.
Euclidean norm is written as jxj. For a function
of time, typically an input or a state trajectory,
kuk, or kuk1 for emphasis, is the (essential)
supremum or “sup” norm (possibly C1, if u is
not bounded). The norm of the restriction of a
signal to an interval I is denoted by kuIk1 (or
justkuIk).

Input-to-State Stability

It is convenient to introduce “comparison func-
tions” to quantify stability. A class K1 function
is a function ˛ W R�0 ! R�0 which is con-
tinuous, strictly increasing, and unbounded and
satisfies ˛.0/ D 0, and a class KL function is
a function ˇ W R�0 � R�0 ! R�0 such that
ˇ.�; t/ 2 K1 for each t and ˇ.r; t/ decreases to
zero as t ! 1, for each fixed r .

http://dx.doi.org/10.1007/978-1-4471-5058-9_100010
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For a system with no inputs Px D f .x/, there
is a well-known notion of global asymptotic
stability (for short from now on, GAS, or
“0-GAS” when referring to the zero system
Px D f .x; 0/ associated to a given system with
inputs Px D f .x; u/) due to Lyapunov and usually
defined in “–-ı” terms. It is an easy exercise
to show that this standard definition is in fact
equivalent to the following statement:

.9ˇ 2 KL/jx.t; x0/j �ˇ �jx0j; t	8 x0; 8 t � 0:

The notion of input to state stability (ISS) was
introduced in Sontag (1989), and it provides theo-
retical concepts used to describe stability features
of a mapping .u.�/; x.0// ’x.�/ that sends initial
states and input functions into states (or, more
generally, outputs). Prominent among these fea-
tures are that inputs that are bounded, “eventually
small,” “integrally small,” or convergent should
lead to outputs with the respective property. In
addition, ISS and related notions quantify in what
manner initial states affect transient behavior. The
formal definition is as follows.

A system is said to be input to state stable
(ISS) if there exist some ˇ 2 KL and � 2 K1
such that

jx.t/j � ˇ.
ˇ
ˇx0
ˇ
ˇ ; t/ C � .kuk1/ (ISS)

holds for all solutions (meaning that the estimate
is valid for all inputs u.�/, all initial conditions
x0, and all t � 0). Note that the supremum
sups2Œ0;t � �.ju.s/j/ over the interval Œ0; t � is the
same as �.kuŒ0;t �k1/ D �.sups2Œ0;t �.ju.s/j//,
because the function � is increasing, so one may
replace this term by �.kuk1/, where kuk1 D
sups2Œ0;1/ �.ju.s/j/ is the sup norm of the input,
because the solution x.t/ depends only on values
u.s/; s � t (so, one could equally well consider
the input that has values � 0 for all s > t).

Since, in general, maxfa; bg � a C b �
maxf2a; 2bg, one can restate the ISS condition
in a slightly different manner, namely, asking for
the existence of some ˇ 2 KL and � 2 K1
(in general, different from the ones in the ISS
definition) such that

≈ x0

≈ |u|∞

x

t

Input-to-State Stability, Fig. 1 ISS combines over-
shoot and asymptotic behavior

jx.t/j � max
˚

ˇ.jx0j; t/ ; � .kuk1/
�

holds for all solutions. Such redefinitions, using
“max” instead of sum, are also possible for each
of the other concepts to be introduced later.

Intuitively, the definition of ISS requires that,
for t large, the size of the state must be bounded
by some function of the sup norm – that is to say,
the amplitude – of inputs (becauseˇ.jx0j ; t/ ! 0

as t ! 1). On the other hand, the ˇ.jx0j ; 0/
term may dominate for small t , and this serves
to quantify the magnitude of the transient (over-
shoot) behavior as a function of the size of the
initial state x0 (Fig. 1). The ISS superposition the-
orem, discussed later, shows that ISS is, in a pre-
cise mathematical sense, the conjunction of two
properties, one of them dealing with asymptotic
bounds on jx0j as a function of the magnitude of
the input and the other one providing a transient
term obtained when one ignores inputs.

For internally stable linear systems Px D AxC
Bu, the variation of parameters formula gives
immediately the following inequality:

jx.t/j � ˇ.t/
ˇ
ˇx0
ˇ
ˇ C � kuk1 ;

where

ˇ.t/ D �
�etA

�
� ! 0 and

� D kBk
Z 1

0

�
�esA

�
� ds < 1:
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This is a particular case of the ISS estimate,
jx.t/j � ˇ.jx0j; t/ C � .kuk1/, with linear
comparison functions.

Feedback Redesign

The notion of ISS arose originally as a way to
precisely formulate, and then answer, the follow-
ing question. Suppose that, as in many problems
in control theory, a system Px D f .x; u/ has been
stabilized by means of a feedback law u D k.x/

(Fig. 2), that is to say, k was chosen such that the
origin of the closed-loop system Px D f .x; k.x//

is globally asymptotically stable. (See, e.g., Son-
tag 1999 for a discussion of mathematical aspects
of state feedback stabilization.) Typically, the de-
sign of k was performed by ignoring the effect of
possible input disturbances d.�/ (also called ac-
tuator disturbances). These “disturbances” might
represent true noise or perhaps errors in the calcu-
lation of the value k.x/ by a physical controller
or modeling uncertainty in the controller or the
system itself. What is the effect of considering
disturbances? In order to analyze the problem, d
is incorporated into the model, and one studies
the new system Px D f .x; k.x/ C d/, where d is
seen as an input (Fig. 3). One may then ask what
is the effect of d on the behavior of the system.
Disturbances d may well destabilize the system,
and the problem may arise even when using a rou-
tine technique for control design, feedback lin-
earization. To appreciate this issue, take the fol-
lowing very simple example. Given is the system

Px D f .x; u/ D x C .x2 C 1/u:

In order to stabilize it, substitute u D Qu
x2C1 (a pre-

liminary feedback transformation), rendering the
system linear with respect to the new input Qu: Px D
xCQu, and then use Qu D �2x in order to obtain the
closed-loop system Px D �x. In other words, in
terms of the original input u, the feedback law is

k.x/ D �2x
x2 C 1

x = f (x,u)

u = k(x)

u x

Input-to-State Stability, Fig. 2 Feedback stabilization,
closed-loop system Px D f .x; k.x//

x = f (x, u)

u = k(x)

u

ud

x

Input-to-State Stability, Fig. 3 Actuator disturbances,
closed-loop system Px D f .x; k.x/C d/

so that f .x; k.x// D �x. This is a GAS system.
The effect of the disturbance input d is analyzed
as follows. The system Px D f .x; k.x/ C d/ is

Px D �x C .x2 C 1/ d :

This system has solutions which diverge to
infinity even for inputs d that converge to zero;
moreover, the constant input d � 1 results in
solutions that explode in finite time. Thus k.x/ D
�2x
x2C1 was not a good feedback law, in the sense
that its performance degraded drastically once
actuator disturbances were taken into account.

The key observation for what follows is that
if one adds a correction term “�x” to the above
formula for k.x/, so that now,

Qk.x/ D �2x
x2 C 1

�x;

then the system Px D f .x; Qk.x/ C d/ with
disturbance d as input becomes instead

Px D � 2x � x3 C .x2 C 1/ d

and this system is much better behaved: it is still
GAS when there are no disturbances (it reduces
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to Px D �2x�x3), but, in addition, it is ISS (easy
to verify directly, or appealing to some of the
characterizations mentioned later). Intuitively, for
large x, the term �x3 serves to dominate the term
.x2 C 1/d , for all bounded disturbances d.�/, and
this prevents the state from getting too large.

This example is an instance of a general result,
which says that, whenever there is some feedback
law that stabilizes a system, there is also a (pos-
sibly different) feedback so that the system with
external input d is ISS.

Theorem 1 (Sontag 1989). Consider a system
affine in controls

Px D f .x; u/ D g0.x/C
mX

iD1
uigi .x/ .g0.0/ D 0/

and suppose that there is some differentiable
feedback law u D k.x/ so that

Px D f .x; k.x//

has x D 0 as a GAS equilibrium. Then, there is a
feedback law u Dek.x/ such that

Px D f .x;ek.x/C d/

is ISS with input d.�/.
The reader is referred to the book Krstić et al.

(1995), and the references given later, for many
further developments on the subjects of recursive
feedback design, the “backstepping” approach,
and other far-reaching extensions.

Equivalences for ISS

This section reviews results that show that ISS
is equivalent to several other notions, including
asymptotic gain, existence of robustness mar-
gins, dissipativity, and an energy-like stability
estimate.

Nonlinear Superposition Principle
Clearly, if a system is ISS, then the system with
no inputs Px D f .x; 0/ is GAS: the term kuk1

vanishes, leaving precisely the GAS property.
In particular, then, the system Px D f .x; u/ is
0-stable, meaning that the origin of the system
without inputs Px D f .x; 0/ is stable in the sense
of Lyapunov: for each – > 0, there is some ı > 0
such that jx0j < ı implies jx.t; x0/j < –. (In
comparison-function language, one can restate 0-
stability as follows: there is some � 2 K such that
jx.t; x0/j � �.jx0j/ holds for all small x0.)

On the other hand, since ˇ.jx0j; t/ ! 0 as t !
1, for t large one has that the first term in the
ISS estimate jx.t/j � max fˇ.jx0j; t/; � .kuk1/g
vanishes. Thus an ISS system satisfies the fol-
lowing asymptotic gain property (“AG”): there
is some � 2 K1 so that:

lim
t!C1

ˇ
ˇx.t; x0; u/

ˇ
ˇ � � .kuk1/ 8 x0; u.�/

(AG)

(see Fig. 4). In words, for all large enough t ,
the trajectory exists, and it gets arbitrarily close
to a sphere whose radius is proportional, in a
possibly nonlinear way quantified by the function
� , to the amplitude of the input. In the language
of robust control, the estimate (AG) would be
called an “ultimate boundedness” condition; it
is a generalization of attractivity (all trajectories
converge to zero, for a system Px D f .x/ with
no inputs) to the case of systems with inputs; the
“lim sup” is required since the limit of x.t/ as
t ! 1 may well not exist. From now on (and
analogously when defining other properties), we

x(0)

γ (⏐⏐u⏐⏐)
x(t)

Input-to-State Stability, Fig. 4 Asymptotic gain prop-
erty
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will just say “the system is AG” instead of the
more cumbersome “satisfies the AG property.”

Observe that, since only large values of t mat-
ter in the limsup, one can equally well consider
merely tails of the input u when computing its sup
norm. In other words, one may replace �.kuk1/
by �.limt!C1 ju.t/j/, or (since � is increasing)
limt!C1�.ju.t/j/.

The surprising fact is that these two necessary
conditions are also sufficient. This is summarized
by the ISS superposition theorem:

Theorem 2 (Sontag and Wang 1996). A sys-
tem is ISS if and only if it is 0-stable and AG.

A minor variation of the above superposition
theorem is as follows. Let us consider the limit
property (LIM):

inf
t�0 jx.t; x0; u/j � �.kuk1/ 8 x0; u.�/ (LIM)

(for some � 2 K1).

Theorem 3 (Sontag and Wang 1996). A sys-
tem is ISS if and only if it is 0-stable and LIM.

Robust Stability
In this entry, a system is said to be robustly stable
if it admits a margin of stability �, that is, a
smooth function � 2 K1 so the system

Px D g.x; d/ WD f .x; d�.jxj//

is GAS uniformly in this sense: for some ˇ 2
KL,

ˇ
ˇx.t; x0; d /

ˇ
ˇ � ˇ.

ˇ
ˇx0
ˇ
ˇ; t/

for all possible d.�/ W Œ0;1/ ! Œ�1; 1�m. An al-
ternative way to interpret this concept (cf. Sontag
and Wang 1995) is as uniform global asymptotic
stability of the origin with respect to all possible
time-varying feedback laws � bounded by �:
j�.t; x/j � �.jxj/. In other words, the system

Px D f .x;�.t; x//

(Fig. 5) is stable uniformly over all such pertur-
bations�. In contrast to the ISS definition, which
deals with all possible “open-loop” inputs, the

x = f (x, u)

Δ

u x

Input-to-State Stability, Fig. 5 Margin of robustness

present notion of robust stability asks about all
possible closed-loop interconnections. One may
think of � as representing uncertainty in the
dynamics of the original system, for example.

Theorem 4 (Sontag and Wang 1995). A sys-
tem is ISS if and only if it is robustly stable.

Intuitively, the ISS estimate jx.t/j � max
fˇ.jx0j; t/; � .kuk1/g says that the ˇ term
dominates as long as ju.t/j 	 jx.t/j for all t , but
ju.t/j 	 jx.t/j amounts to u.t/ D d.t/:�.jx.t/j/
with an appropriate function �. This is an instance
of a “small gain” argument, see below. One
analog for linear systems is as follows: if A is
a Hurwitz matrix, then A C Q is also Hurwitz,
for all small enough perturbations Q; note that
when Q is a nonsingular matrix, jQxj is a K1
function of jxj.

Dissipation
Another characterization of ISS is as a dissipation
notion stated in terms of a Lyapunov-like func-
tion. A continuous function V W Rn ! R is said
to be a storage function if it is positive definite,
that is, V.0/ D 0 and V.x/ > 0 for x 6D 0, and
proper, that is, V.x/ ! 1 as jxj ! 1. This
last property is equivalent to the requirement that
the sets V �1.Œ0; A�/ should be compact subsets
of R

n, for each A > 0, and in the engineering
literature, it is usual to call such functions radi-
ally unbounded. It is an easy exercise to show that
V W Rn ! R is a storage function if and only if
there exist ˛; ˛ 2 K1 such that

˛.jxj/ � V.x/ � ˛.jxj/ 8 x 2 R
n



580 Input-to-State Stability

(the lower bound amounts to properness and
V.x/ > 0 for x 6D 0, while the upper
bound guarantees V.0/ D 0). For convenience,
PV W Rn � R

m ! R is the function:

PV .x; u/ WD rV.x/:f .x; u/

which provides, when evaluated at .x.t/; u.t//,
the derivative dV.x.t//=dt along solutions of
Px D f .x; u/.

An ISS-Lyapunov function for Px D f .x; u/
is by definition a smooth storage function V for
which there exist functions �; ˛ 2 K1 so that

PV .x; u/ � �˛.jxj/ C �.juj/ 8 x; u :
(L-ISS)

Integrating, an equivalent statement is that, along
all trajectories of the system, there holds the
following dissipation inequality:

V.x.t2//� V.x.t1// �
Z t2

t1

w.u.s/; x.s// ds

where, using the terminology of Willems
(1976), the “supply” function is w.u; x/ D
�.juj/ � ˛.jxj/. For systems with no inputs,
an ISS-Lyapunov function is precisely the same
object as a Lyapunov function in the usual sense.

Theorem 5 (Sontag and Wang 1995). A sys-
tem is ISS if and only if it admits a smooth ISS-
Lyapunov function.

Since �˛.jxj/ � �˛.˛�1.V .x///, the ISS-
Lyapunov condition can be restated as

PV .x; u/ � � Q̨ .V .x// C �.juj/ 8 x; u

for some Q̨ 2 K1. In fact, one may strengthen
this a bit (Praly and Wang 1996): for any ISS
system, there is a always a smooth ISS-Lyapunov
function satisfying the “exponential” estimate
PV .x; u/ � �V.x/C �.juj/.

The sufficiency of the ISS-Lyapunov condi-
tion is easy to show and was already in the orig-
inal paper Sontag (1989). A sketch of proof is as
follows, assuming for simplicity a dissipation es-
timate in the form PV .x; u/ � �˛.V.x//C�.juj/.
Given any x and u, either ˛.V.x// � 2�.juj/

or PV � �˛.V /=2. From here, one deduces by
a comparison theorem that, along all solutions,

V.x.t//� max
˚

ˇ.V.x0/; t/; ˛�1.2�.kuk1//
�

;

where the KL function ˇ.s; t/ is the solution y.t/
of the initial value problem

Py D �1
2
˛.y/C �.u/; y.0/ D s:

Finally, an ISS estimate is obtained from
V.x0/ � ˛.x0/.

The proof of the converse part of the theorem
is based upon first showing that ISS implies
robust stability in the sense already discussed
and then obtaining a converse Lyapunov
theorem for robust stability for the system
Px D f .x; d�.jxj// D g.x; d/, which is
asymptotically stable uniformly on all Lebesgue-
measurable functions d.�/ W R�0 ! B.0; 1/. This
last theorem was given in Lin et al. (1996) and
is basically a theorem on Lyapunov functions
for differential inclusions. The classical result of
Massera (1956) for differential equations (with
no inputs) becomes a special case.

Using “Energy” Estimates Instead of
Amplitudes
In linear control theory,H1 theory studiesL2 !
L2 induced norms, which under coordinate
changes leads to the following type of estimate:

Z t

0

˛ .jx.s/j// ds � ˛0.
ˇ
ˇx0
ˇ
ˇ/C

Z t

0

�.ju.s/j/ ds

along all solutions and for some ˛; ˛0; � 2 K1.
Just for the statement of the next result, a system
is said to satisfy an integral-integral estimate if
for every initial state x0 and input u, the solution
x.t; x0; u/ is defined for all t > 0 and an estimate
as above holds. (In contrast to ISS, this definition
explicitly demands that tmax D 1.)

Theorem 6 (Sontag 1998). A system is ISS if
and only if it satisfies an integral-integral esti-
mate.
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This theorem is quite easy to prove, in
view of previous results. A sketch of proof
is as follows. If the system is ISS, then
there is an ISS-Lyapunov function satisfying
PV.x; u/ � �V.x/ C �.juj/, so, integrating along

any solution:

Z t

0

V .x.s// ds �
Z t

0

V .x.s// ds C V.x.t//

� V.x.0// C
Z t

0

�.ju.s/j/ ds

and thus an integral-integral estimate holds. Con-
versely, if such an estimate holds, one can prove
that Px D f .x; 0/ is stable and that an asymptotic
gain exists.

Integral Input to State Stability

A concept of nonlinear stability that is truly
distinct from ISS arises when considering a
mixed notion which combines the “energy” of the
input with the amplitude of the state. A system
is said to be integral-input to state stable (iISS)
provided that there exist ˛; � 2 K1 and ˇ 2 KL
such that the estimate

˛ .jx.t/j/ � ˇ.
ˇ
ˇx0
ˇ
ˇ; t/ C

Z t

0

�.ju.s/j/ ds
(iISS)

holds along all solutions. Just as with ISS, one
could state this property merely for all times
t 2 tmax.x

0; u/. Since the right-hand side is
bounded on each interval Œ0; t � (because, recall,
inputs are by definition assumed to be bounded
on each finite interval), it is automatically true
that tmax.x

0; u/ D C1 if such an estimate
holds along maximal solutions. So forward-
completeness (solution exists for all t > 0) can
be assumed with no loss of generality.

One might also consider the following type of
“weak integral to integral” mixed estimate:

Z t

0

˛.jx.s/j/ ds � 	.jx0j/

C ˛


Z t

0

�.ju.s/j/ ds
�

for appropriateK1 functions (note the additional
“˛”).

Theorem 7 (Angeli et al. 2000b). A system
satisfies a weak integral to integral estimate if
and only if it is iISS.

Another interesting variant is found when consid-
ering mixed integral/supremum estimates:

˛.jx.t/j � ˇ.jx0j; t/ C
Z t

0

�1.ju.s/j/ ds

C �2.kuk1/

for suitable ˇ 2 KL and ˛; �i 2 K1. One then
has

Theorem 8 (Angeli et al. 2000b). A system
satisfies a mixed estimate if and only if it is iISS.

Dissipation Characterization of iISS
A smooth storage function V is an iISS-Lyapunov
function for the system Px D f .x; u/ if there are
a � 2 K1 and an ˛ W Œ0;C1/ ! Œ0;C1/

which is merely positive definite (i.e., ˛.0/ D 0

and ˛.r/ > 0 for r > 0) such that the inequality

PV .x; u/ � �˛.jxj/ C �.juj/ (L-iISS)

holds for all .x; u/ 2 R
n � R

m. To compare,
recall that an ISS-Lyapunov function is required
to satisfy an estimate of the same form but where
˛ is required to be of class K1; since every K1
function is positive definite, an ISS-Lyapunov
function is also an iISS-Lyapunov function.

Theorem 9 (Angeli et al. 2000a). A system is
iISS if and only if it admits a smooth iISS-
Lyapunov function.

Since an ISS-Lyapunov function is also an iISS
one, ISS implies iISS. However, iISS is a strictly
weaker property than ISS, because ˛ may be
bounded in the iISS-Lyapunov estimate, which
means that V may increase, and the state become
unbounded, even under bounded inputs, so long
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as �.ju.t/j/ is larger than the range of ˛. This
is also clear from the iISS definition, since a
constant input with ju.t/j D r results in a term
in the right-hand side that grows like rt .

An interesting general class of examples is
given by bilinear systems

Px D
 

AC
mX

iD1
uiAi

!

x C Bu

for which the matrix A is Hurwitz. Such systems
are always iISS (see Sontag 1998), but they are
not in general ISS. For instance, in the case when
B D 0, boundedness of trajectories for all con-
stant inputs already implies that A C Pm

iD1 uiAi
must have all eigenvalues with nonpositive real
part, for all u 2 R

m, which is a condition
involving the matrices Ai (e.g., Px D �x C ux
is iISS but it is not ISS).

The notion of iISS is useful in situations where
an appropriate notion of detectability can be
verified using LaSalle-type arguments. There
follow two examples of theorems along these
lines.

Theorem 10 (Angeli et al. 2000a). A system is
iISS if and only if it is 0-GAS and there is a
smooth storage function V such that, for some
� 2 K1:

PV .x; u/ � �.juj/
for all .x; u/.

The sufficiency part of this result follows from
the observation that the 0-GAS property by itself
already implies the existence of a smooth and
positive definite, but not necessarily proper, func-
tion V0 such that PV0 � �0.juj/ � ˛0.jxj/ for all
.x; u/, for some �0 2 K1 and positive definite
˛0 (if V0 were proper, then it would be an iISS-
Lyapunov function). Now, one uses V0 C V as an
iISS-Lyapunov function (V provides properness).

Theorem 11 (Angeli et al. 2000a). A system is
iISS if and only if there exists an output function
y D h.x/ (continuous and with h.0/ D 0)
which provides zero detectability (u � 0 and
y � 0 ) x.t/ ! 0) and dissipativity in the

following sense: there exists a storage function V
and � 2 K1, ˛ positive definite, so that

PV .x; u/ � �.juj/� ˛.h.x//

holds for all .x; u/.

Angeli et al. (2000b) contains several additional
characterizations of iISS.

Superposition Principles for iISS
There are also asymptotic gain characterizations
for iISS. A system is bounded energy weakly
converging state (BEWCS) if there exists some
� 2 K1 so that the following implication holds:

Z C1

0

�.ju.s/j/ ds < C1 )

lim inf
t!C1

ˇ
ˇx.t; x0; u/

ˇ
ˇ D 0 BEWCS

(more precisely: if the integral is finite,
then tmax.x

0; u/ D C1 and the liminf
is zero). It is bounded energy frequently
bounded state (BEFBS) if there exists some
� 2 K1 so that the following implication
holds:

Z C1

0

�.ju.s/j/ ds < C1 )

lim inf
t!C1

ˇ
ˇx.t; x0; u/

ˇ
ˇ < C1 BEFBS

(again, meaning that tmax.x
0; u/ D C1 and the

lim inf is finite).

Theorem 12 (Angeli et al. 2004). The follow-
ing three properties are equivalent for any given
system Px D f .x; u/:
• The system is iISS.
• The system is BEWCS and 0-stable.
• The system is BEFBS and 0-GAS.

Summary and Future Directions

This entry focuses on stability notions relative to
steady states, but a more general theory is also
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possible that allows consideration of more
arbitrary attractors, as well as robust and/or
adaptive concepts. Much else has been omitted
from this entry. Most importantly, one of the key
results is the ISS small-gain theorem due to Jiang
et al. (1994), which provides a powerful sufficient
condition for the interconnection of ISS systems
being itself ISS.

Other topics not treated include, among many
others, all notions involving outputs; ISS proper-
ties of time-varying (and in particular periodic)
systems; ISS for discrete-time systems; questions
of sampling, relating ISS properties of continuous
and discrete-time systems; ISS with respect to
a closed subset K; stochastic ISS; applications
to tracking, vehicle formations (“leader to fol-
lowers” stability); and averaging of ISS systems.
Sontag (2006) may also be consulted for further
references, a detailed development of some of
these ideas, and citations to the literature for
others. In addition, the textbooks Isidori (1999),
Krstić et al. (1995), Khalil (1996), Sepulchre
et al. (1997), Krstić and Deng (1998), Freeman
and Kokotović (1996), and Isidori et al. (2003)
contain many extensions of the theory as well as
applications.

Cross-References

� Feedback Stabilization of Nonlinear Systems
� Fundamental Limitation of Feedback Control
�Linear State Feedback
�Lyapunov’s Stability Theory
� Stability and Performance of Complex Systems

Affected by Parametric Uncertainty
� Stability: Lyapunov, Linear Systems
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Abstract

The main functional and support facilities of-
fered by interactive environments and tools for
computer-aided control system design (CACSD)
and reference examples of such software systems
are presented, from both a user and a developer
perspective. The essential functions these envi-
ronments should possess and requirements which
should be satisfied are discussed. The importance
of reliability and efficiency is highlighted, be-
sides the desired friendliness and flexibility of
the user interface. Widely used environments and
software tools for CACSD, including MATLAB,
Mathematica, Maple, and the SLICOT Library,
serve as illustrative examples.

Keywords

Automatic control; Controller design; Numerical
algorithms; Simulation; User interface

Introduction

The complexity of many processes or systems
to be controlled, and the strong performance
requirements to be fulfilled nowadays, makes
it very difficult or even impossible to design
suitable control laws and algorithms without
resorting to computers and dedicated software
tools. computer-aided control system design
(CACSD) is the use of computer programs to
support the creation, analysis, evaluation, or
optimization of a control system design. CACSD
is a specialization of computer-aided design
(CAD) for control systems. CAD is used in many

domains, to enhance designer’s productivity and
the design quality and to manage the design
versions and documentation. CACSD is not a
new paradigm, since the first such software
systems have been developed about 50 years
ago. See the historical overview in a companion
paper.

The interactive environments and tools for
CACSD have evolved significantly during the last
decades, in parallel with the developments of
numerical linear algebra, scientific computations,
and computer hardware and software, includ-
ing programming and networking capabilities.
Starting from simple collections of specialized
tools for solving well-defined system analysis
and design problems, the CACSD became in-
creasingly more sophisticated and powerful, al-
lowing complicated tasks to be orchestrated for
fully covering the stages of control engineering
design, prototyping, and testing, including even
the transfer to practical systems and applications.
Modeling, system analysis and synthesis, and
control system assessment are activities which
are assisted by the nowadays advanced CACSD
environments and software tools. The main aim is
to help the designer to concentrate on the design
problem itself, not on theoretical approaches,
numerical algorithms, and computational details.
Moreover, CACSD environments allow the de-
velopers and users to do conceptual thinking,
but also programming and debugging at a higher
level of abstraction, in comparison with standard
programming languages, like Fortran, C/C++, or
JavaTM.

There are both commercial or free and open-
source CACSD environments and tools. State-
of-the-art CACSD systems exist for several
platforms (Windows, Linux/UNIX, and Mac
OS X). Multiple high-speed CPUs, graphics
cards, and large amounts of RAM are well suited
to perform graphically and computationally
intensive tasks. A common feature is the presence
of a “friendly” graphical user interface, but often
a dedicated command language is also available.
The user interacts with the CACSD environment,
e.g., by specifying the model or control structure,
the design requirements, and the values of es-
sential parameters or by selecting and combining
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Interactive CACSD environment (e.g., MATLAB, Mathematica, Maple)
(for modeling, simulation, analysis, synthesis, etc.)

Toolboxes or packages with executables or functions written in the environment language
(Graphical) User interface, Interactive language, Graphical functions, API

CACSD subroutine libraries (e.g., SLICOT)
Mathematical subroutine libraries (e.g., LAPACK, ARPACK, IMSL, NAG)

Computer-optimized mathematical libraries or their generators (e.g., BLAS, MKL, ATLAS)
Libraries of intrinsic functions (e.g., in Fortran or C/C++)

Interactive Environments and Software Tools for CACSD, Fig. 1 Hierarchy of the software components incorpo-
rated in an interactive CACSD environment

the tools to be used. The process can be repeated
until a satisfactory behavior is obtained.

Usually, the underlying computational tools
on which the interactive environments are based
are hidden to the user. Moreover, software for
extensive testing is not normally provided, but
demonstrators running few examples are offered.
Unfortunately, even mathematically simple
problems of small dimension can conduct to
wrong results when using unsuitable algorithms.
Illustrative control-related examples are given,
e.g., in Van Huffel et al. (2004). Since system
analysis and design tasks usually involve sequen-
tial or iterative solution of large and complex
subproblems, it follows that the quality of the
intermediate results is of utmost importance.
Consequently, the interactive environments for
CACSD should be based on reliable, efficient,
and thoroughly tested computational building
blocks, which are called at the lower layers of
calculations. These blocks constitute the compu-
tational engine of an interactive environment.

Figure 1 gives a typical hierarchy of the soft-
ware components incorporated in an interactive
CACSD environment.

Interactive Environments for CACSD

Main Functionality
A comprehensive set of functions of and require-
ments for interactive environments for control
engineering are described in MacFarlane et al.
(1989), but such a set has probably not yet been
covered by any single environment. State-of-the-
art interactive environments for CACSD include
many attractive functional features:

• Define or find (via first principles or system
identification) various system models (e.g.,
state-space models or transfer-function matri-
ces) and convert between different representa-
tions

• Find reduced order (or simplified) models,
which can more economically be used for
simulation, control, prediction, etc.

• Analyze basic system properties, like stabil-
ity, controllability, observability, stabilizabil-
ity, detectability, minimality, properness, etc.

• Analyze interactively the behavior of a control
system for various scenarios

• Provide alternative tools for different cate-
gories of users, from novice to expert, and
from classical to “modern” or advanced anal-
ysis and synthesis techniques, in time domain
or frequency domain

• Provide a wide range of tools, covering mod-
eling, system identification, filtering, control
system design, simulation, real-time behav-
ior, hardware-in-the-loop simulation, and code
generation for easy deployment and ensure
their interoperability

• Allow the user to add extensions at vari-
ous levels, new functions, interfaces, or even
toolboxes or packages, which can be made
available to a general community and allow
customization

In addition to the functional and computational
tools, essential components of an interactive en-
vironment are the user interface, the application
program interface (API), and the support tools
which enable to easily specify, document, and
store a design solution, to visualize and interpret
the results, to export them to other applications
for further processing, to generate reports, etc.
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A good paradigm for the data environment is
object orientation.

It is a common feature of an interactive envi-
ronment for CACSD to address the requirements
of a large diversity of users, in various stages
of familiarity with the environment. This feature
is expressed, e.g., by the option to use either
a graphical user interface or a command lan-
guage to call and sequence various computational
procedures. In addition, tools for easy building
new computational or graphical procedures, or
for managing the codes and results, are often
included. The command language should oper-
ate both on low-level data constructs, such as
a matrix, and on high-level ones (e.g., system
objects), and it should allow operator overloading
(e.g., taking G1 
 G2 as the result of a series
interconnection of the systems represented by the
system objects G1 and G2).

An environment for CACSD should integrate
advanced user interfaces and API, a collection
of problem solvers based on reliable and ef-
ficient numerical and possibly symbolic algo-
rithms, and tools for visualizing and interpreting
the results. Widely used such environments are,
for instance, MATLAB from The MathWorks,
Inc., Mathematica from Wolfram Research, or
Maple from Waterloo Maple Inc. (Maplesoft).
Earlier developments of CACSD packages are
surveyed in Frederick et al. (1991). There are
also environments dedicated to modeling and
simulation, which cover a broad range of tech-
nical and engineering computations, including
those for mechanical, electrical, thermodynamic,
hydraulic, pneumatic, or thermal systems. An
example is Dymola, presented in a subsequent
subsection.

Reference interactive environments and tools
for CACSD are presented in the following
(sub)sections.

Reference Interactive Environments
MATLAB (MATrix LABoratory) is an
integrated, interactive environment for tech-
nical computing, visualization, and program-
ming (MathWorks 2013). Based on a powerful
high-level interpreter language and development
tools, an easy-to-use, flexible, and customizable

graphical user interface, complemented with
attractive visualization capabilities, and open
for extensions with new toolkits, MATLAB
can be used for solving intricate scientific
and engineering problems, as well as for the
development and deployment of applications.

MATLAB R� and Simulink R� are registered
trademarks of The MathWorks, Inc. MATLAB,
Simulink, and several toolboxes, including Sys-
tem Identification Toolbox, Control System Tool-
box, and Robust Control Toolbox, are suitable
for solving various control engineering problems;
other toolboxes, such as Signal Processing Tool-
box, Optimization Toolbox, and Symbolic Math
Toolbox, offer additional useful facilities. See
http://www.mathworks.com/products/.

Simulink is a high-level implementation of the
engineering approach, based on block diagrams,
to analyze and design control systems. It is also a
powerful modeling and multi-domain simulation
and model-based design tool for dynamic sys-
tems, which supports hierarchical system-level
design, simulation, automatic code generation,
and continuous test and verification of embed-
ded systems. Simulink offers a graphical edi-
tor, customizable block libraries, and solvers for
modeling and simulating dynamic systems. The
models may include MATLAB algorithms, and
the simulation results may be further processed
to MATLAB. Managing projects (files, compo-
nents, data), connecting to hardware for real-time
testing, and deploying the designed system are
additional, useful Simulink features. Real-Time
Workshop code generation allows to speed up
the design and implementation, by generating
syntactically and semantically correct code which
can be uploaded to the target machine.

MATLAB environment is very suitable for
rapid prototyping, seen in a broad sense. This
may include not only fully designing and imple-
menting a new control law, testing it on a host
computer, and deploying on a target computer
but also support for developing and testing new
mathematical or control theories and algorithms.

Born around 1980, MATLAB has evolved and
improved impressively. Since 2004, two releases
have been issued each year. There was a major
change of the interface in Release 2012b, visible

http://www.mathworks.com/products/
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both in the core MATLAB “Desktop” and in
Simulink. The so-called Toolstrip interface re-
places former menus and toolbars and includes
tabs which group functionality for common tasks.
A gallery of applications from the MATLAB
family of products is additionally available and
can be extended by the user.

MATLAB supports developing applications
with graphical user interface (GUI) features;
this itself can be done graphically using GUIDE
(GUI development environment). MATLAB has
support for object-oriented programming and
interfacing with other languages or connecting to
similar environments as Maple or Mathematica.
When using the command-line interface,
MATLAB helps the user, e.g., by showing the
arguments of the typed MATLAB functions; also,
MATLAB allows execution profiling, for increas-
ing the computational efficiency, and its editor
can suggest changes in the user functions (the so-
called M-files) for improving the performance.

MATLAB users may upload their own contri-
butions to the MATLAB Central website or may
download tools developed by other people. User
feedback is used by the MATLAB developers
to improve the functionality, reliability, and effi-
ciency of the computations.

Commercial competitors to MATLAB include
Mathematica, Maple, and IDL; free open-source
alternatives are, e.g., GNU Octave, FreeMat,
and Scilab, intended to be mostly compatible
with the MATLAB language. For instance,
a set of free CACSD tools for GNU Octave
version 3.6.0 or beyond has been very recently
developed (see http://octave.sourceforge.net/
control/). The Octave extension package called
control is based on the SLICOT Library and
includes functionalities for system identification,
system analysis, control system design (including
H1 synthesis), and model reduction, which are
the basic steps of the control engineer design
workflow.

Mathematica is an interactive environment
which supports complete computational work-
flows, making it suitable for a convenient
endeavor from ideas to deployed solutions
(see http://www.wolfram.com/mathematica/).

Mathematica offers, e.g., tools for 2D and 3D
data and function visualization and animation,
numeric and symbolic tools for discrete and
continuous calculus, a toolkit for adding user
interfaces to applications, control systems
libraries, tools for parallel programming,
etc. High-performance computing capabilities
include the use of packed and sparse arrays,
multiple precision arithmetic, automatic multi-
threading on multi-core computers (based on
processor-specific optimized libraries), hardware
accelerators, support for grid technology,
and CUDA and OpenCL GPU hardware.
Mathematica and SystemModeler (based on
Modelica c� language) offer numerous built-in
functions which allow to design, analyze, and
simulate continuous- and discrete-time control
systems; simplify models; interactively test
controllers; and document the design. Both
classical and modern techniques are provided. A
powerful symbolic-numeric computation engine
and highly efficient numerical algorithms are
used. Mathematica allows to define the system
models in a more natural form than MATLAB.
It can analyze not only numeric systems but
also symbolic ones, represented by state-space
or transfer-function models. The computational
precision and algorithms can be automatically
controlled and selected, respectively, and using
arbitrary precision arithmetic is possible.

Maple is a computer algebra system, which
combines a powerful engine for mathematical
calculations with an intuitive user interface
(see http://www.maplesoft.com/). Classical
mathematical notation can be used, and the
interface is customizable. Arbitrary precision
numerical computations, as well as symbolic
computations, can be performed. The Maple
language is provided by a small kernel. NAG
Numerical Libraries, ATLAS libraries, and other
libraries written in this language are used for
numerical calculations. Symbolic expressions
are stored as directed acyclic graphs. The
latest release, Maple 17, added hundreds of
new problem-solving commands and interface
enhancements. Many calculations recorded an
impressive improvement in efficiency, compared

http://octave.sourceforge.net/control/
http://octave.sourceforge.net/control/
http://www.wolfram.com/mathematica/
http://www.maplesoft.com/
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to the previous release. Examples include cal-
culations with complex floating-point numbers
and linear algebra operations. It is possible
to use multiple cores and CPUs. The parallel
memory management has been improved. Maple
includes some CACSD tools for linear and
nonlinear dynamic systems. For instance, the
built-in package DynamicSystems (available
since Maple 12 release) covers the analysis of
linear time-invariant systems. Numerical solvers
for Sylvester and Lyapunov equations have been
added to the LinearAlgebra packages in Maple
13, and solvers for algebraic Riccati equations –
based on SLICOT Library routines – have been
included in Maple 14 (available in multiple
precision arithmetic since Maple 15). Moreover,
the MapleSim environment, based on Modelica,
is dedicated to physical modeling and simulation.
Symbolic simplification, numerical solution
of the differential-algebraic equations (DAEs),
and model post-processing (sensitivity analysis,
linearization, parameter optimization, code
generation, etc.) can be performed in MapleSim.
Its Control Design Toolbox provides solutions
for optimal control, Kalman filtering, pole
assignment, etc. Bidirectional communication
with MATLAB is possible.

MuPAD is another computer algebra system,
initially developed by a group at the University
of Paderborn, Germany, and then in cooperation
with SciFace Software GmbH & Co. KG, com-
pany purchased in 2008 by The MathWorks, Inc.
MuPAD has been used with Scilab, and now it is
available in the Symbolic Math Toolbox. MuPAD
is able to operate on formulas symbolically or
numerically (with specified accuracy). It offers a
programming language allowing object-oriented
and functional programming, several packages
for linear algebra, differential equations, number
theory, and statistics, an interactive graphical sys-
tem supporting animations and transparent areas
in tridimensional images, etc.

LabVIEW (Laboratory Virtual Instrumentation
Engineering Workbench), from National
Instruments, is an interactive development
environment, based on MATRIXx, for a visual
programming language mainly used for data

acquisition, instrument control, and industrial
automation. Its Control Design and Simulation
Module (see http://sine.ni.com/psp/app/doc/p/id/
psp-648/lang/en) can be used to build process and
controller models using transfer-function, state-
space, or zero-pole-gain representations, analyze
the open- and closed-loop system behavior,
deploy the designed controllers to real-time
hardware using built-in functions and LabVIEW
Real-Time Module, etc.

Software Tools for CACSD

The software tools for CACSD are formally
divided below into computational and support
tools. SLICOT Library and Dymola serve as
illustrative examples. The support tools can also
include computational components.

Computational Tools
The computational tools for CACSD implement
the main numerical algorithms of the systems and
control theory and should satisfy several strong
requirements:
• Reliability or guaranteed accuracy, which im-

plies the use of numerically stable algorithms
as much as possible and the estimation of the
problem sensitivity (conditioning) and of the
results accuracy; backward numerical stability
ensures that the computed results are exact for
slightly perturbed original data.

• Computational efficiency, which is important
for large-scale engineering design problems or
for real-time control.

• Robustness, which is mainly ensured by
avoiding overflows, harmful underflows,
and unacceptable accumulation of rounding-
errors; scaling the data may be essential.

• Ease-of-use, achieved by simplified user inter-
face (hiding the details), and default values for
algorithmic parameters, such as tolerances.

• Wide scope and rich functionality, which ad-
dress the range of problems and system repre-
sentations that can be handled.

• Portability to various platforms, in the sense
of functional correctness.

• Reusability, in building several dedicated en-
gineering software systems or environments.

http://sine.ni.com/psp/app/doc/p/id/psp-648/lang/en
http://sine.ni.com/psp/app/doc/p/id/psp-648/lang/en
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More details are given, e.g., in Van Huffel et al.
(2004). An example addressing all these aspects
is discussed in what follows.

SLICOT Library Benner et al. (1999) and
Van Huffel et al. (2004) is one of the most com-
prehensive libraries for control theory numerical
computations, containing over 500 subroutines
which cover system analysis, benchmark and
test problems, data analysis, filtering, identifica-
tion, mathematical routines, some capabilities for
nonlinear systems, synthesis, system transforma-
tion, and utility routines (see http://www.slicot.
org/). The requirements above have been taken
into account in the SLICOT Library develop-
ment. Some of the SLICOT components are used
in several interactive environments for CACSD,
including MATLAB, Maple, Scilab, and Octave
control package. The library is still under devel-
opment. It is worth mentioning the new focus
on structure-preserving algorithms, which offer
increased accuracy, reliability, and efficiency, in
comparison with standard solvers. Many proce-
dures for optimal control and filtering, model
reduction, etc., can benefit from using the “struc-
tured” solvers. There are also separate SLICOT-
based toolboxes for MATLAB (Benner et al.
2010). SLICOT components follow predefined
implementation and documentation standards.

SLICOT Library routines, and functions from
many interactive environments for CACSD call
components from the Basic Linear Algebra
Subprograms (BLAS, see Dongarra et al. 1990
and the references therein) and Linear Algebra
PACKage (LAPACK, Anderson et al. 1999). This
approach enhances portability and efficiency,
since optimized BLAS and LAPACK Libraries
are provided for major computer platforms.

Support Tools
The support software tools for CACSD offer
additional capabilities compared to compu-
tational tools. They may include alternative
algorithms, symbolic computations (usually,
for low-dimensional problems), and extended
functionality, e.g., for modeling/simulation of
nonlinear systems, code generation, etc. The
support tools can be used by software developers
of CACSD environments or computational tools

or directly by other users. For instance, symbolic
calculations are useful for checking the accuracy
of numerical algorithms. The code generation
facility offers a safe and convenient support
for deploying a design solution to the control
hardware. A reference support software tool is
briefly presented below.

Dymola (Dynamic modeling laboratory), from
Dassault Systemes (see http://www.3ds.com/
products/catia/portfolio/dymola), deals with
high-fidelity modeling and simulation of complex
systems from various domains, like aerospace,
automotive, robotics, process control, and other
applications. Compatible and comprehensive
model libraries, developed by leading experts,
exist for many engineering branches. The
users may create their own libraries or adapt
existing libraries. This flexibility and openness is
provided by the use of the open, object-oriented
modeling language Modelica c�, currently further
developed by the Modelica Association.

Equation-oriented models, based on DAEs,
and symbolic manipulation are used, stimulating
the reuse of components and enhancing the re-
liability and efficiency of the calculations. This
approach enables to simplify generating the equa-
tions, which result from interconnecting various
subsystems, and to deal with algebraic loops
and structurally singular models. Algebraic loops
are encountered when some auxiliary variables
depend algebraically upon each other in a mu-
tual way (Cellier and Elmqvist 1992). Structural
singularities are related to DAE of index higher
than 1.

Dymola allows performing hardware-in-the-
loop simulation and real-time 3D animation. A
model can be built by graphical composition,
connecting components from various libraries
using simple dragged-and-dropped operations.
The parameters a model depends on can be tuned
either by parameter estimation (also called model
calibration), which minimizes the error between
the physical measurements and simulation
results, or by optimization, which minimizes
certain performance criteria. Sometimes, e.g.,
when designing certain controllers, the criteria
values are obtained by simulation. Dymola offers
also facilities for model management, including

http://www.slicot.org/
http://www.slicot.org/
http://www.3ds.com/products/catia/portfolio/dymola
http://www.3ds.com/products/catia/portfolio/dymola
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checking, testing, encrypting, or comparing
models, and version control.

Summary and Future Directions

The main functional and support facilities of-
fered by interactive environments and software
tools for CACSD and reference examples have
been presented. Their remarkable evolution dur-
ing the past decades, combined with the im-
portance of the design solutions they offer, is
the strong argument that the CACSD software
arsenal will continue to evolve and more reli-
able, efficient, and powerful systems will come
into place. Progress is expected at all levels,
including basic algorithms and numerical and
symbolic libraries but also command languages,
user interfaces, human-machine communication,
and associated hardware. Tools for adaptive, non-
linear, and distributed control systems design
should be developed and integrated. Artificial
intelligence support might be required to add
expert capabilities to the forthcoming interactive
environments.

Cross-References

�Computer-Aided Control Systems Design: In-
troduction and Historical Overview

�Model Order Reduction: Techniques and Tools
�Multi-domain Modeling and Simulation
�Optimization-Based Control Design Tech-

niques and Tools
�Robust Synthesis and Robustness Analysis

Techniques and Tools
� System Identification: An Overview
�Validation and Verification Techniques and

Tools

Recommended Reading

CACSD is well presented in many textbooks.
A very recent one is Chin (2012), which covers
modeling, control system design, implemen-
tation, and testing, and describes practical

applications using MATLAB and Simulink.
Many IFAC (International Federation of
Automatic Control) and IEEE (Institute for Elec-
trical and Electronics Engineers) international
conferences and symposia have been dedicated
to CACSD, going back more than two decades.
A wealth of material is available, e.g., on IEEE
Xplore (ieeexplore.ieee.org), containing the
proceedings of many of the IEEE CACSD events.
A recent event is the 2011 IEEE International
Symposium on CACSD. Similar IEEE events
were hold on 2010, 2008, 2006, 2004, 2002,
2000, 1999, 1996, 1994, 1992, and 1989. A new
IEEE CACSD Conference, for Systems under
Uncertainty, took place in July 2013.
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Abstract

This entry is a brief survey of classical inventory
models and their extensions in several direc-
tions such as world-driven demands, presence
of forecast updates, multi-delivery modes and
advanced demand information, incomplete in-
ventory information, and decentralized inventory
control in the context of supply chain manage-
ment. Important references are provided. We con-
clude with suggestions for future research.

Keywords

Base stock policy; EOQ model; Incomplete infor-
mation; Newsvendor model; (s; S ) policy

Introduction

Optimal inventory theory deals with managing
stock levels of goods to effectively meet the
demand of those goods. Because of the huge
amount of capital that is tied up in inventory,
its management is critical to the profitability of
firms. A systematic analysis of inventory prob-
lems began with the development of the classi-
cal economic order quantity (EOQ) formula of
Ford W. Harris in 1913. A substantial amount
of research was reported in 1958 by Kenneth J.
Arrow, Samuel Karlin, and Herbert Scarf, and
much more has accumulated since then. Books on
the topic include Zipkin (2000), Porteus (2002),
Axsäter (2006), and Bensoussan (2011).

In this entry, we review single- and multi-
period models with deterministic, stochastic, par-
tially observed demand for a single product. In
these models, our aim is to decide on the time
of the orders and the order quantities. The time

between issuing an order and its receipt is called
the lead time. For most of this review, we will
assume the lead time to be zero, and the reader
can consult the referenced books for nonzero lead
time extensions and other topics not covered here.

Deterministic Demand

We will describe two classical models: the EOQ
model and the dynamic lot size model.

The EOQModel
This basic and most important deterministic
model is concerned with a product that has a
constant demand rate D in continuous time over
an infinite horizon. No shortages are allowed.
The costs consist of a fixed setup/ordering costK
and a holding cost h per unit of average on-hand
stock per unit time. The production/purchase cost
per unit time is a sunk cost since there is no
choice of a total amount to produce, and hence
it can be ignored. Although dynamic, the model
can be reduced to a static model by a simple
argument of periodicity. Moreover, it is obvious
that one should never produce or order except for
when the inventory level is zero, and one should
order the same lot size Q each time the inventory
level reaches zero. Since the average inventory
level over time is Q=2 and the number of setups
is D=Q per unit time, the long-run average cost
to be minimized is KD/Q+hQ/2. The optimal
policy that minimizes this cost, obtained using
the first-order condition, is to order the lot size

Q D
r

2KD

h
(1)

every time the inventory level reaches zero.
Harris (1913) introduced the model. Erlenkotter
(1990) provides a historical account of the
formula, and Beyer and Sethi (1998) provide
a mathematically rigorous proof involving
quasi-variational inequalities (QVI) that arise
in the course of dealing with continuous-time
optimization problems involving fixed costs.
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The Dynamic Lot Size Model
This is an analogue of the EOQ model when
the demand varies over time. Wagner and Whitin
(1958) developed it in the discrete-time finite
horizon framework. With D.t/ denoting the de-
mand in period t and other costs similar to those
in the EOQ model, they showed that there exists
an optimal policy in which an order will be
issued just as the inventory level reaches zero,
except for the first order. This policy is called
the zero-inventory policy. With this in hand, the
problem reduces to selecting only the order times.
This is accomplished by applying a shortest path
algorithm. Moreover, there are forward (recur-
sion) procedures for solving the problem.

An important feature of this model is that in
most cases, one can detect a forecast horizon
which essentially separates earlier periods from
later ones. More specifically, T is a forecast
horizon if the first order in a T horizon problem
remains optimal in any finite horizon problem
with horizon longer than T , regardless of the
demands beyond the period T . For an extensive
bibliography of this literature, see Chand et al.
(2002).

Stochastic Demand

We shall discuss three classical models and some
of their extensions.

The Single-Period Problem: The
Newsvendor Model
The problem of a newsvendor is to decide on an
order quantity of newspapers to meet a stochas-
tic demand at a minimum cost. If the realized
demand is larger than the ordered quantity, it is
lost and there is an opportunity loss of cu (selling
price minus purchase cost) for each paper short.
On the other hand, for each paper ordered but not
sold, there is an opportunity loss of co (purchase
cost plus holding cost). The newsvendor concep-
tualizes the decision by each additional paper as a
separate marginal contribution. The first is almost
certain to be sold. Each additional paper is less
likely to be sold than the previous one. Thus,
each additional paper will be worth somewhat

less, and the marginal paper at the optimum
should be worth exactly zero. Thus, cu times the
probability of selling the marginal paper minus
co times the probability of not selling it should
equal zero. Now, if F denotes the cumulative
probability distribution function of the demand
D, then clearly the optimal order quantity Q

satisfies co �F .Q/� cu � .1� F.Q// D 0, which
gives us the famous newsvendor formula for the
optimal order quantity

Q D F �1



cu

cu C co

�

; (2)

where cu=.cu C co/ is known as the critical frac-
tile.

If p denotes the unit sale price, c the unit
cost, and h the holding cost per unit per unit
time, then cu D p � c and co D c C h, and
therefore, the critical fractile can be expressed as
.p � c/ = .p C h/. An extension of the newsven-
dor formula to allow for a unit cost g of lost
goodwill and a unit salvage value s received at
the end of the period for each unit not sold is
immediate. If we let ˛ > 0 denote the periodic
discount factor, then cu D p C g � c and co D
c C h � ˛s and the critical fractile becomes
.p C g � c/ = .p C g C h � ˛s/ ; and therefore,

Q D F �1



p C g � c
p C g C h � ˛s

�

: (3)

The newsvendor model has been used exten-
sively in the context of supply chain management
with multiple agents maximizing their individual
objectives. In this case, inefficiencies arise due
to double marginalization. Then, a question of
appropriate contracts that can lead to the first-best
solution, or coordinate the supply chain, becomes
important. Cachon (2003) surveys this literature.

Multi-period Inventory Models: No
Fixed Cost
The newsvendor model is a single-period model,
and its multi-period generalization requires that
the inventory not sold in a period is carried over
to the next period. This results in the multi-period
inventory model with lost sales. It is assumed
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that demand in each period is independent and
identically distributed (i.i.d.) with F denoting its
cumulative probability distribution function. A
rigorous analysis requires the method of dynamic
programming, and it shows that there is a stock
level St called base stock in period t , that we
would ideally like to have at the beginning of
period t . Thus, the optimal policy in period t ,
called the base stock policy, is to order

Qt.x/ D
n
St�x if x<St ;
0 if x�St : (4)

In the special case when the terminal salvage
value of an item is exactly equal to its cost c, it is
possible to come up with the optimal policy using
intuition. Since we do not need to salvage unused
items in the multi-period setting, one can argue
that an item carried over to the next period is
worth its purchase cost c. Therefore, its presence
means that the next period will need to order one
less and thus save an amount c. In the last period,
when there is no next period, our terminal sal-
vage value assumption also guarantees a leftover
item’s worth to be also c. Thus, we can modify
(3) and obtain a stationary base stock level

S D F �1



p C g � c

.p C g � c/C .c C h� ˛c/

�

D F �1



p C g � c

p C g C h � ˛c
�

(5)

for each period t .
Thus, the elimination of the endgame effect

delivers us a myopic policy, a policy optimal in
the single-period case to be also optimal in the
dynamic multi-period setting. A more general
concept than the optimality of a myopic policy
is that of the forecast horizon mentioned earlier
in the context of the dynamic lot size model.

Sometimes, when the demand exceeds the
on-hand inventory in the period, the demand is
not lost but backlogged. In this case, each unit
of backlogged demand is satisfied in the next
period, and unit revenue p is recovered, but a unit
backlogging cost b is incurred, due to expediting,
special handling, delayed receipt of revenue, and
loss of goodwill. Thus, cu D b � .1 � ˛/c,

where the second term represents the savings due
to postponing the purchase of the backlogged
demand unit by one period, and co D c C h� ˛c
as in (4). This gives us the base stock level

S D F �1


b � .1 � ˛/c

b C h

�

; (6)

which can be used in (5) to give the optimal
policy.

Sometimes it is possible to have multiple de-
livery modes such as fast, regular, and slow as
well as demand forecast updates. Then, at the be-
ginning of each period, on-hand inventory and de-
mand information are updated. At the same time,
decisions on how much to order using each of the
modes are made. Fast, regular, and slow orders
are delivered at the ends of the current, the next,
and one beyond the next periods, respectively.
In such models, a modified base stock policy is
optimal only for the two fastest modes. For details
and further generalization, see Sethi et al. (2005).

An important extension includes serial inven-
tory systems where stage 1 receives supplies from
an outside source and each downstream stage
receives supplies from its immediate upstream
stage. Clark and Scarf (1960) introduced the
notion of the echelon inventory position at a stage
to consist of the stock at that stage plus stock
in transit to that stage plus all downstream stock
minus the amount backlogged at the final stage.
Then, the optimal ordering policy at each stage
is given by an echelon base stock policy with
respect to the echelon inventory position at that
stage. It is known that assembly systems can be
reduced to a serial system. Details can be found
in Zipkin (2000).

Multi-period Inventory Models: Fixed Cost
When there is a fixed cost of ordering, it is clear
that it would not be reasonable to follow the base
stock policy when the inventory level is not much
below the base stock level. Indeed, Scarf (1960)
proved that there are numbers st and St , st < St ,
for period t such that the optimal policy in period
t is to order

Qt.x/ D
n
St�x if x�st
0 if x>st :

(7)
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Such a policy is famously known as an (s; S )
policy.

When the demands are not i.i.d., the model
has been extended to Markovian demands. In this
case, there is an exogenous Markov process, and
the distribution of the demand in each period
depends on the state of the Markov process,
called the demand state, in that period. It can
be shown that the optimal policy in period t

is (sit ; S
i
t ), where i denotes the demand state

in the period. Such a policy is also called a
state-dependent (s; S ) policy. Further details are
available in Beyer et al. (2010). Recent advances
in information technology have allowed man-
agers to obtain advance demand information in
addition to forecast updates. In such cases, a
state-dependent (s; S ) policy can be shown to be
optimal. For details, refer to Ozer (2011).

The Continuous-Time Model: Fixed Cost
The marriage of the two classical results (1)
and (7) is accomplished by Presman and Sethi
(2006) in a continuous-time stochastic inventory
model involving a demand that is the sum of a
constant demand rate and a compound Poisson
process. The optimal policies that minimize a
discounted cost or the long-run average cost are
both of (s; S ) type. The (s; S ) policy minimizing
the long-run average cost reduces to the EOQ for-
mula when the intensity of the compound Poisson
process is set to zero. And when the constant de-
mand component vanishes, the model reduces to
the continuous-review stochastic inventory model
with fixed cost and compound Poisson demand.

Incomplete Inventory Information
Models (i3)
A critical assumption in the vast inventory theory
literature has been that the level of inventory at
any given time is fully observed. The celebrated
results (1) and (7) have been obtained under the
assumption of full observation. Yet the inventory
level is often not fully observed in practice, for a
variety of reasons such as replenishment errors,
employee theft, customer shoplifting, improper
handling and damaging of merchandise,
misplaced inventories, uncertain yield, imperfect
inventory audits, and incorrect recording of

sales. In such an environment of incomplete
information, inventories are known to be partially
observed and most of the well-known inventory
policies including (1) and (7) are not even
admissible, let alone optimal. In such cases,
Bensoussan et al. (2010) show that the dynamic
programming equation can be written in terms of
the unnormalized conditional probability of the
current inventory level given past observations,
referred to as signals, instead of just the inventory
level in the full observation case. Furthermore,
one can write the evolution of the conditional
probability in terms of its current value, the
current order, and the current observation. How-
ever, there are no longer simple optimal policies
except in cases of information delay reported in
Bensoussan et al. (2009) where modified base
stock and (s; S ) policies are shown to be optimal.

Summary and Future Directions

We briefly describe some classical results in in-
ventory theory. These are based on full obser-
vation. Some recent work on inventory models
under incomplete information is reported. This
work leads to a number of new research direc-
tions, both theoretical and empirical as reported
in Sethi (2010). It would be of much interest
to know the industries where the i3 problem is
serious enough to warrant the difficult mathemat-
ical analysis required. Furthermore, how are the
observed signals related to the inventory level? It
is also clear from the reviewed literature that there
are no simple optimal policies for most i3 prob-
lems, so it would be important to develop effi-
cient computational procedures to obtain optimal
solutions or to specify a class of simple imple-
mentable policies and optimize within this class.
An important benefit of solving i3 problems op-
timally is the provision of an economic justifi-
cation for technologies such as RFID that may
reduce inaccuracies in inventory observations.

Another area of research would be to study
multi-period multi-agent supply chains with a
stochastic inventory dynamics. While these can
be formulated as dynamic games, there are a
number of equilibrium concepts to deal with,
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depending on the information the agents have.
Some of them are time consistent or subgame
perfect and some are not. Regardless, there are
inefficiencies that arise from these decentralized
game settings, and developing contracts for coor-
dinating dynamic supply chains remains a wide
open topic of research.
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Abstract

The simplest investment-consumption problem is
the celebrated example of Robert Merton (J Econ
Theory 3(4):373-413, 1971). This survey shows
three different ways of solving the problem, each
of which is a valuable solution method for more
complicated versions of the question.

Keywords

Budget constraint; Hamilton-Jacobi-Bellman
(HJB) equation; Merton problem; Value function

Introduction

Consider an investor in a market with a riskless
bank account accruing continuously compounded
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interest at rate rt , and with a single risky asset
whose price St at time t evolves as

dSt D St.�tdWt C 
tdt/; (1)

where W is a standard Brownian motion, and �
and 
 are processes previsible with respect to the
filtration of W . The investor starts with initial
wealth w0 and chooses the rate ct of consuming,
and the wealth �t to invest in the risky asset, so
that his overall wealth evolves as

dwt D�t .�tdWt C 
tdt/Crt .wt � �t /dt � ctdt

(2)

D rtwt dt C �t f�tdWt C .
t � rt /dtg � ct dt:

(3)

For convenience, we assume that � , ��1, and 

are bounded. See Rogers and Williams (2000a,b)
for background information on stochastic pro-
cesses. The three terms in (2) have natural in-
terpretations: The first expresses the evolution of
the wealth invested in the stock, the second the
interest accruing on the wealth .w��/ invested in
the bank account, and the third is the cash being
withdrawn for consumption.

To avoid so-called doubling strategies, we in-
sist that the wealth process so generated by the
controls .c; �/ must remain bounded below in
some suitable way, which here is just the condi-
tion wt � 0 for all t � 0; any .c; �/ satisfying
this condition will be called admissible. The set
of admissible .c; �/ will be denoted A.w0/, a
notation which makes explicit the dependence on
the investor’s initial wealth.

The investor’s objective is taken to be to obtain

V.w0/ � sup
.c;�/2A.w0/

E

�Z 1

0

e��tU.ct / dt


(4)

for some constant � > 0. The problem cannot
be solved explicitly at this level of generality,
but if we take some special cases, we are able
to illustrate the main methods used to attack
it. Many other objectives with various different
constraints can be handled by similar techniques:
see Rogers (2013) for a wide range of examples.

TheMain Techniques

We present here three important techniques for
solving such problems: the value function ap-
proach; the use of dual variables; and the use of
martingale representation. The first two methods
only work if the problem is Markovian; the third
only works if the market is complete. There is
a further method, the Pontryagin-Lagrange ap-
proach; see Sect. 1.5 in Rogers (2013). While
this is a quite general approach, we can only
expect explicit solutions when further structure is
available.

The Value Function Approach
To illustrate this, we focus on the original Merton
problem (Merton 1971), where � and 
 are both
constant, and the utility U is constant relative risk
aversion (CRRA):

U 0.x/ D x�R .x > 0/ (5)

for some R > 0 different from 1. The case
R D 1 corresponds to logarithmic utility, and
can be solved by similar methods. Perhaps the
best starting point is the Davis-Varaiya Martin-
gale Principle of Optimal Control (MPOC): The
process Yt D e��t V .wt / C R t

0
e��s U.cs/ ds

is a supermartingale under any control, and a
martingale under optimal control. If we use Itô’s
formula, we find that

e�tdYt D ��V.wt /dt C V 0.wt /dwt

C 1
2
�2�2t V

00.wt /dt C U.ct /dt

:D Œ��V C f�t .
 � r/ � ct C rgV 0

C 1
2
�2�2t V

00 C U.ct /� dt; (6)

where the symbol
:D denotes that the two sides

differ by a (local) martingale. If the MPOC is to
hold, then we expect that the drift in dY should
be non-positive under any control, and equal to
zero under optimal control. We simply assume
for now that local martingales are martingales;
this is of course not true in general, and is a point
that needs to be handled carefully in a rigorous
proof. Directly from (6), we then deduce the
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Hamilton-Jacobi-Bellman (HJB) equations for
this problem:

0 D sup
c;�

Œ��V C f�.
� r/ � c C rgV 0

C 1
2
�2�2V 00 C U.c/�: (7)

Write QU .y/ � sup {U.x/ � xy} for the convex
dual of U;which in this case has the explicit form

QU.y/ D � y1�R0

1 � R0 (8)

with R0 � 1=R. We are then able to perform the
optimizations in (7) quite explicitly to obtain

0 D ��V C rV 0 C QU .V 0/ � 1
2
	2

.V 0/2

V 00
(9)

where
	 � 
 � r

�
: (10)

Nonlinear PDEs arising from stochastic optimal
control problems are not in general easy to solve,
but (9) is tractable in this special setting, because
the assumed CRRA form of U allows us to
deduce by a scaling argument that V.w/ /
w1�R / U.w/, and we find that

V.w/ D ��R
M U.w/; (11)

where

R�M D �C .R � 1/.r C 1
2
	2=R/: (12)

The optimal investment and consumption
behavior is easily deduced from the optimal
choices which took us from (7) to (9). After some
calculations, we discover that

��
t D �Mwt � 
 � r

�2R
wt ; c�

t D �M wt
(13)

specifies the optimal investment/consumption
behavior in this example. (The positivity of �M
is necessary and sufficient for the problem to
be well posed; see Sect. 1.6 in Rogers (2013)).
Unsurprisingly, the optimal solution scales
linearly with wealth.

Dual Variables
We illustrate the use of dual variables in the
constant-coefficient case of the previous section,
except that we no longer suppose the special form
(5) for U . The analysis runs as before all the way
to (9), but now the convex dual QU is not simply
given by (8). Although it is not now possible to
guess and verify, there is a simple transformation
which reduces the nonlinear ODE (9) to some-
thing we can easily handle. We introduce the new
variable z > 0 related to w by z D V 0.w/, and
define a function J by

J.z/ D V.w/ � wz: (14)

Simple calculus gives us J 0 D �w, J 00 D
�1=V 00, so that the HJB equation (9) transforms
into

0 D QU .z/��J.z/C .�� r/zJ 0.z/C 1
2
	2z2J 00.z/;

(15)
which is now a second-order linear ODE,
which can be solved by traditional methods;
see Sect. 1.3 of Rogers (2013) for more details.

Use of Martingale Representation
This time, we shall suppose that the coefficients

t , rt , and �t in the wealth evolution (3) are
general previsible processes; to keep things sim-
pler, we shall suppose that 
, r , and ��1 are
all bounded previsible processes. The Markovian
nature of the problem which allowed us to find
the HJB equation in the first two cases is now
destroyed, and a completely different method
is needed. The way in is to define a positive
semimartingale  by

dt D t .�rtdt � 	tdWt /; 0 D 1 (16)

where 	t D .
t � rt /=�t is a previsible process,
bounded by hypothesis. This process, called the
state-price density process, or the pricing kernel,
has the property that if w evolves as (3), then
Mt � twt C R t

0
scs ds is a positive local

martingale.
Since positive local martingales are super-

martingales, we deduce from this that
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M0 D w0 � E

�Z 1

0

scs ds



: (17)

Thus, for any .c; �/ 2 A.w0/, the budget con-
straint (17) must hold. So the solution method
here is to maximize the objective (4) subject
to the constraint (17). Absorbing the constraint
with a Lagrange multiplier �, we find the uncon-
strained optimization problem

supE

�Z 1

0

fe��sU.cs/ � �scsg ds


C �w0

(18)
whose optimal solution is given by

e��sU 0.cs/ D �s; (19)

and this determines the optimal c, up to knowl-
edge of the Lagrange multiplier �, whose value is
fixed by matching the budget constraint (17) with
equality.

Of course, the missing logical piece of this
argument is that if we are given some c � 0

satisfying the budget constraint, is there necessar-
ily some � such that the pair .c; �/ is admissible
for initial wealth w0? In this setting, this can be
shown to follow from the Brownian integral rep-
resentation theorem, since we are in a complete
market; however, in a multidimensional setting,
this can fail, and then the problem is effectively
insoluble.

Summary and Future Directions

This brief survey states some of the main ideas
of consumption-investment optimization, and
sketches some of the methods in common use.
Explicit solutions are rare, and much of the inter-
est of the subject focuses on efficient numerical
schemes, particularly when the dimension of
the problem is large. A further area of interest
is in continuous-time principal-agent problems;
Cvitanic and Zhang (2012) is a recent account
of some of the methods of this subject, but it has
to be said that the theory of such problems is
much less complete than the simple single-agent
optimization problems discussed here.
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Iterative learning control addresses tracking con-
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for task to task learning, the need for acceptable
task-to-task performance and the implications of
modeling errors for task-to-task robustness.

Keywords

Adaptation; Optimization; Repetition; Robust-
ness

Introduction

Iterative learning control (ILC) is relevant to
trajectory tracking control problems on a finite in-
terval Œ0; T � (Ahn et al. 2007b; Bien and Xu 1998;
Chen and Wen 1999). It has close links to multi-
pass process theory (Edwards and Owens 1982)
and repetitive control (Rogers et al. 2007) plus
conceptual links to adaptive control. It focuses
on problems where the repetition of a specified
task creates the possibility of improving tracking
accuracy from task to task and, in principle,
reducing the tracking error to exactly zero. The
iterative nature of the control schemes proposed,
the use of past executions of the control to up-
date/improve control action, and the asymptotic
learning of the required control signals put the
topic in the area of adaptive control, although
other areas of study are reflected in its method-
ologies.

Application areas include robotic assembly
(Arimoto et al. 1984), electromechanical test sys-
tems (Daley et al. 2007), and medical rehabili-
tation robotics (Rogers et al. 2010). For example,
consider a manufacturing robot required to under-
take an indefinite number of identical tasks (such
as “pick and place” of components) specified by
a spatial trajectory on a defined time interval.
The problem is two-dimensional. More precisely,
the controlled system evolves with two variables,
namely, time t 2 Œ0; T � (elapsed in each iteration)
and iteration index k � 0. Data consists of signals
fk.t/ denoting the value of the signal f at time t
on iteration k. The conceptual algorithm used is:
Step one: (Preconditioning) Implement loop

controllers to condition plant dynamics.

Step two: (Initialization) Given a demand sig-
nal r.t/; t 2 Œ0; T �, choose an initial input
u0.t/; t 2 Œ0; T � and set k D 0.

Step three: (Response measurement) Return
the plant to a defined initial state. Find the
output response yk to the input uk . Construct
the tracking error ek D r � yk . Store data.

Step four: (Input signal update) Use past
records of inputs used and tracking er-
rors generated to construct a new input
ukC1.t/; t 2 Œ0; T � to be used to improve
tracking accuracy on the next trial.

Step five: (Termination/task repetition)
Either terminate the sequence or increase k
by unity and return to step 3.
It is the updating of the input signal based

on observation that provides the conceptual link
to adaptive control. ILC causality defines “past
data” at time t on iteration k as data on the
interval Œ0; t � on that iteration plus all data on
Œ0; T � on all previous iterations. Feedback plus
feedforward control normally contains feedfor-
ward transfer of information from past iterations
to the current iteration.

Modeling Issues

Design approaches have been model-based. Most
nonlinear problems assume nonlinear state space
models relating the ` � 1 input vector u.t/ to the
m� 1 output vector y.t/ via an n� 1 state vector
x.t/ as follows:

Px.t/ D f .x.t/; u.t//; y.t/ D h.x.t/; u.t//;

where t 2 Œ0; T �, x.0/ D x0 and f and h

are vector-valued functions. The discrete time
(sample data) version replaces derivatives by a
forward shift, where t is now a sample counter,
0 � t � N (the index of the last sample). The
continuous time linear model is

Px.t/ D Ax.t/CBu.t/; y.t/ D Cx.t/CDu.t/

with an analogous model for discrete systems. In
both cases, the matrices A;B;C;D are constant
or time varying of appropriate dimension.
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Nonlinear systems present the greatest
technical challenge. Linear system’s challenges
are greater for the time-varying, continuous time
case. The simplest linear case of discrete time,
time-invariant systems can be described by a
matrix relationship

y D Gu C d (1)

where y denotes the m.N C 1/ � 1 “su-
pervector” generated by the time series
y.0/; y.1/; : : : ; y.N / and the construction y D
�

yT .0/; yT .1/; : : : ; yT .N /
�T

, the supervector
u is generated, similarly, by the time series
u.0/; u.1/; : : : ; u.N /, and d is generated by the
times series Cx0; CAx0; : : : ; CANx0. The matrix
G has the lower block triangular structure

G D

2

6
6
6
6
6
4

D 0 0 � � � 0
CB D 0 � � � 0
CAB CB D � � � 0
:::

CAN�1B CAN�2B � � � D

3

7
7
7
7
7
5

defined in terms of the Markov parameter matri-
ces D;CB;CAB; : : : of the plant. This structure
has led to a focus on the discrete time, time-
invariant case, and exploitation of matrix algebra
techniques.

More generally,G W U ! Y can be a bounded
linear operator between suitable signal spaces U
and Y . Taking G as a convolution operator, the
representation (1) also applies to time-varying
continuous time and discrete time systems. The
representation also applies to differential-delay
systems, coupled algebraic and differential sys-
tems, multi-rate systems, and other situations of
interest.

Formal Design Objectives

Problem Statement: Given a reference signal
r 2 Y and an initial input signal u0 2 U ,
construct a causal control update rule/algorithm

ukC1 D  k.ekC1; ek; : : : ; e0; uk; uk�1; : : : ; u0/

that ensures that limk!1 ek D 0 (convergence)
in the norm topology of Y .

The update rule  k.�/ represents the simple
idea of expressing ukC1 in terms of past data. A
general linear “high-order” rule is

ukC1 D
kX

jD0
Wj uk�j C

kC1X

jD0
Kj ekC1�j (2)

with bounded linear operators Wj W U ! U and
Kj W Y ! U , regarded as compensation elements
and/or filters to condition the signals. Typically
Kj D 0 (resp. Wj D 0) for j > Me (resp. j >
Mu). A simple structure is

ukC1 D W0uk CK0ekC1 CK1ek (3)

Assuming that G and W0 commute (i.e., GW0 D
W0G), the resultant error evolution takes the form

ekC1 D .I CGK0/
�1.W0 �GK1/ek

C.I CGK0/
�1.I �W0/.r � d/

ROBUST ILC: An ILC algorithm is said to be
robust if convergence is retained in the presence
of a defined class of modeling errors.

Results from multipass systems theory (Ed-
wards and Owens 1982) indicate robust conver-
gence of the sequence fekgk�o to a limit e1 2 Y
(in the presence of small modeling errors) if the
spectral radius condition

rŒ.I CGK0/
�1.W0 �GK1/� < 1 (4)

is satisfied where rŒ�� denotes the spectral radius
of its argument. However, the desired condition
e1 D 0 is true only if W0 D I . For a given
r , it may be possible to retain the benefits of
choosing W0 ¤ I and still ensure that e1 is
sufficiently small for the application in mind,
e.g., by limiting limit errors to a high-frequency
band. This and other spectral radius conditions
form the underlying convergence condition when
choosing controller elements but are rarely com-
puted. The simplest algorithm using eigenvalue
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computation for a linear discrete time system
defines the relative degree to be k� D 0 ifD ¤ 0

and the smallest integer k such that CAk�1B ¤
0 otherwise. Replacing Y by the range of G;
choosing W0 D I;K0 D 0, and K1 D I ;
and supposing that k� � 1, the Arimoto input
update rule ukC1.t/ D uk.t/C ek.t Ck�/; 0 �
t � N C 1 � k� provides robust convergence if,
and only if, rŒI � CAk

��1B� < 1. It does not
imply that the error signal necessarily improves
each iteration. Errors can reach very high values
before finally converging to zero. However, if (4)
is replaced by the operator norm condition

k.I CGK0/
�1.W0 �GK1/k < 1 ; then (5)

fkek � e1kQgk�0 monotonically decreases to
zero.

The spectral radius condition throws light on
the nature of ILC robustness. Choosing, for sim-
plicity, K0 D 0 and W0 D I , the requirement
that rŒI � GK1� < 1 will be satisfied by a
wide range of processes G, namely those for
which the eigenvalues of I �GK1 lie in the open
unit circle of the complex plane. Translating this
requirement into useful robustness tests may not
be easy in general. The discussion does however
show that the behavior of GK1 must be “sign-
definite” to some extent as, if rŒI � GK1� < 1,
then rŒI � .�G/K1� > 1, i.e., replacing the plant
by �G (no matter how small) will inevitably pro-
duce non-convergent behavior. A more detailed
characterization of this property is possible for
inverse model ILC.

Inverse Model-Based Iteration

If a linear system G has a well-defined inverse
model G�1, then the required input signal is
u1 D G�1.r � d/. The simple update rule

ukC1 D uk C ˇG�1ek ; (6)

where ˇ is a learning gain, produces the dynam-
ics

ekC1 D .1 � ˇ/ek or ekC1 D .1 � ˇ/ke0 ;

proving that zero error is attainable with added
flexibility in convergence rate control by choos-
ing ˇ 2 .0; 2/. Errors in the system model used
in (6) are an issue. Insight into this problem
has been obtained for single-input, single-output
discrete time systems with multiplicative plant
uncertainty U as retention of monotonic conver-
gence is ensured (Owens and Chu 2012) by a
frequency domain condition

j 1
ˇ

� U.ei� /j < 1

ˇ
; for all � 2 Œ0; 2�� (7)

that illustrates a number of general empirical
rules for ILC robust design. The first is that
a small learning gain (and hence small input
update changes and slow convergence) will
tend to increase robustness and, hence, that it is
necessary that multiplicative uncertainties satisfy
some form of strict positive real condition which,
for (6), is

Re
�

U.ei� /
�

> 0; for all � 2 Œ0; 2�� ; (8)

a condition that limits high-frequency roll-off
error and constrains phase errors to the range
.��

2
; �
2
/. The second observation is that if G is

non-minimum phase, the inverseG�1 is unstable,
a situation that cannot be tolerated in practice.

Optimization-Based Iteration

Design criteria can be strengthened by a mono-
tonicity requirement. Measuring error magnitude
by a norm kekQ on Y , such as the weighted mean
square error (withQ symmetric, positive definite)

kekQ D
s
Z T

0

eT .t/Qe.t/dt ;

then the condition kekC1kQ < kekkQ for all
k � 0 provides a performance improvement from
iteration to iteration. This idea leads to a number
of design approaches, Owens and Daley (2008)
and Ahn et al. (2007b) (which also examines
aspects of robustness).
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Function/Time Series Optimization
Norm optimal ILC (NOILC) (Owens and Daley
2008) guarantees monotonicity and convergence
to e1 D 0 by computing ukC1 to minimize an
objective function

J.u/ D kek2Q C ku � ukk2R;

subject to plant dynamics. For linear models (1),

ukC1 D uk CG�ekC1

where G� W Y ! U is the adjoint operator of
G. For continuous or discrete time linear state
space models, the problem is a classical optimal
tracking problem with a solution with online state
feedback and a feedforward term generated off-
line by simulation of an “adjoint” model. Re-
ducing R in J leads to faster convergence rates,
but the presence of non-minimum-phase zeros
has a negative effect on convergence (Owens
and Chu 2010). Monotonicity and convergence to
zero is retained, but, after an initial fall, the error
norm then reduces infinitesimally each iteration
producing the practical effect of limited error
reductions over finite iteration horizons. Rules
exist (Owens and Chu 2010) to minimize the
effect by choice of u0 and r .

Related Linear NOILC Problems
If Y and U are real Hilbert spaces, geometrical
arguments can be used to generate algorithms ex-
tending the NOILC algorithm to include (Owens
and Daley 2008) acceleration mechanisms, pre-
dictive control, and the inclusion of input signal
constraints. They also allow more flexibility in
the form and specification of the task. In the
intermediate point NOILC problem (denoted IP-
NOILC), the task requirement is that the output
signal y.t/; 0 � t � T takes specified values
r.t1/; r.t2/; : : : ; r.tM / as it passes through theM
intermediate points 0 < t1 < t2 < � � � < tM . The
precise nature of the trajectory between points
is of secondary importance. Again, the solution,
for linear state space systems, can be constructed
from Riccati equation-based feedback rules com-
bined with “jump” conditions and feedforward
control signals computed off-line.

The IPNOILC solution is nonunique, and the
remaining degrees of freedom can be used to
satisfy other design objectives. Switching algo-
rithms (Owens et al. 2013) converge to a solution
of the problem while simultaneously minimizing
an auxiliary criterion

Jaux.u/ D kz � z0k2QQ C ku � u0k2R:

Auxiliary optimization is a tool for shaping the
solution of the IPNOILC problem. The auxiliary
variable z could be internal states whose behavior
is important to plant operation or simply defined
by the output, e.g., z D Ry which, if small, might
reduce input “forces” and hence actuator activity.

Parameter Optimization
NOILC can be simplified by reducing the degrees
of freedom defining control action to a small
number of control law parameters. For a discrete
system (1), a general update rule is

ukC1 D uk C �.ˇkC1/ek; k � 0 :

Here the matrix �.ˇ/ is linear in the p � 1

parameter vector ˇ with �.0/ D 0. Under these
conditions �.ˇ/e D F.e/ˇ where the matrix
F.e/ is linear in e with F.0/ D 0. Examples
of useful parameterizations include inverse model
control (Owens et al. 2012).

Monotonicity of the error norm is ensured by
choosing the parameter vector ˇkC1 to minimize

J.ˇ/ D kek2Q C ˇTWkC1ˇ

subject to the dynamic constraint (1). Each p�p
weighting matrix WkC1 is symmetric, positive
definite, and may be iteration dependent. The
algorithm creates a nonlinear ILC law providing
a link between parameter evolution, past errors,
and the choice of weightWkC1.

Summary and Future Directions

The basic structure of ILC is now well understood
with a number of algorithms available with
known convergence properties and empirical
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links between parameter choice and convergence
rates (Ahn et al. 2007a; Bristow et al. 2006;
Owens and Daley 2008; Wang et al. 2009;
Xu 2011). Optimization-based algorithms
provide a structured approach to convergence
and have a familiar quadratic optimal control
structure. Despite the practical benefits of
monotonic error norms, this approach underlines
the difficulties induced by non-minimum-
phase (NMP) properties of the plant. Operator
representations extend this theory to include more
general problems such as the intermediate point
tracking problem and, where solutions are non-
unique, can be converted into iterative algorithms
that inherit the properties of NOILC but converge
to a solution that also minimizes an auxiliary
optimization criterion.

Many of the challenges addressed by NOILC
are inherited by other algorithms, many of which
mimic established control design paradigms. For
example, the commonly used PD update law

ukC1.t/ D uk.t/CK1ek.t/CK2 Pek.t/

can produce convergence by suitable choice of
K1 and K2. Proofs of convergence are typi-
cally based on spectral radius conditions similar
to (4) for linear systems or on techniques such as
contraction mapping (fixed point) theorems (Xu
2011) for nonlinear systems. The nonlinear case
generally suggests local convergence conditions
dependent on growth conditions on the nonlinear-
ity. They typically cannot be checked in practice
but do link convergence to simple, empirical, gain
selection rules.

ILC, as a topic, is a very large area of study.
Survey papers indicate that progress has been
made in a number of other areas including adap-
tive ILC, the use of intelligent control ideas of
fuzzy logic and neural networks-based control
structures, 2D systems theory, and mathematical
studies of fractional order control laws (Chen
et al. 2013). The further development of ILC
from its current strong base will draw extensively
from classical control knowledge but relies on the
three aspects of plant modeling, control design,
and coping with uncertainty. Issues central to
medium-term success include:

1. Extending current ILC knowledge to other
classes of model needed for applications.

2. Integration of online data-based modeling into
ILC schemes to enhance adaptive control op-
tions.

3. Ensuring the property of error monotonicity
or characterizing any non-monotonicity to be
expected.

4. The construction of robustness tests and using
the ideas in new robust design methodologies.

5. Providing a better understanding of the effect
of noise and disturbances on algorithm perfor-
mance.

6. Extending the range of tasks to include, for
example, different challenges for different out-
puts on different subintervals of Œ0; T �.

7. Creating design tools for nonlinear plant that
ensure convergence and a degree of robustness
but, in particular, provide some control of
internal plant states that may be subject to
dynamical constraints.
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Abstract

The Kalman filter is a very useful algorithm
for linear Gaussian estimation problems. It is
extremely popular and robust in practical appli-
cations. The algorithm is easy to code and test.
There are many reasons for the popularity of the
Kalman filter in the real world, including stability
and generality and simplicity. Moreover, the real-
time computational complexity is very reason-
able for high-dimensional problems. In particular,
the computational complexity scales as the cube
of the dimension of the state vector.

Keywords

Controllability; Discrete time measurements;
Estimation algorithm; Extended Kalman filter;
Filtering; Gaussian errors; Linear dynamical
system; Linear system; Observability; Recursive;
Smoothing; Stability

Description of Kalman Filter

The Kalman filter is an algorithm that computes
the best estimate of the state vector of a linear

dynamical system given discrete time measure-
ments of a linear function of the state vector
corrupted by additive white Gaussian noise. The
Kalman filter also quantifies the uncertainty in
its estimate of the state vector, using the covari-
ance matrix of estimation errors. The detailed
equations of the Kalman filter algorithm and the
problem that it solves are given in Gelb et al.
(1974), which is the most accessible but thorough
book on Kalman filters. The linear dynamical
system can be time varying, but its parameters
must be known exactly. The measurements can
be made at arbitrary (nonuniform) discrete times,
but these times must be known exactly. Likewise,
the covariance matrices of the measurement er-
rors and the process noise can be arbitrary and
time varying, but the numerical values of these
covariance matrices must be known exactly. Also,
the initial uncertainty in the state vector must be
Gaussian and the mean and covariance matrix can
be arbitrary, but these must be known exactly.
There is a very powerful theory of Kalman filter
stability due to Kalman (1963), which guaran-
tees that the Kalman filter is stable under very
mild technical assumptions which can always be
satisfied in practice. In particular, the Kalman
filter is stable for estimating the state vector
of linear dynamical systems that are stable or
unstable, for arbitrarily slow measurement rates,
provided that the mild technical assumptions are
fulfilled. These assumptions require that the di-
mension of the state vector is minimal and that
the measurement error covariance matrix and the
process noise covariance matrices are positive

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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definite, although weaker conditions are also suf-
ficient for stability in some cases; see Kailath
et al. (2000) for such details on the stability
of the Kalman filter. Kalman filter stability is
connected with observability and controllability
of the input-output model of the relevant dynam-
ical system in Kalman (1963) The corresponding
algorithm for continuous time linear measure-
ments (with Gaussian additive white noise) and
continuous time linear dynamical systems (with
Gaussian additive white process noise) is called
the Kalman-Bucy filter; see Kalman (1961).

Design Issues

In engineering practice, almost all real-world
applications are nonlinear or non-Gaussian, and
therefore, they do not fit the Kalman filter theory.
Nevertheless, by approximating the nonlinear dy-
namics and measurements with linear equations,
one can apply the Kalman filter theory; this is
called the “extended Kalman filter” (EKF); see
Gelb et al. (1974). The linearization of the non-
linear dynamics and measurements is made by
computing the first-order Taylor series expansion
and evaluating it at the estimated state vector; this
is a very simple and fast approximation that is
widely used in real- world applications, and it
often gives good estimation accuracy, although
there is no guarantee of that. Moreover, there is
no guarantee that the EKF will be stable, even if
the linearized system satisfies all the theoretical
requirements for stability of the Kalman filter.

Even if the dynamics and measurements
are exactly linear and if the measurement
noise and process noise and initial uncertainty
are all exactly Gaussian with exactly known
means and covariance matrices, there can still
be significant practical problems with Kalman
filter accuracy, owing to ill-conditioning. In
particular, the Kalman filter can be extremely
sensitive to quantization errors in the computer
arithmetic and storage. On the other hand, there
are many different methods to try to mitigate ill-
conditioning including (1) double or quadruple
or octuple precision arithmetic, (2) making the
covariance matrices symmetric before and after

every operation, (3) Tychonov regularization,
(4) tuning the process noise covariance matrix,
(5) coding the Kalman filter in principal coor-
dinates or approximately principal coordinates
(i.e., aligned with the eigenvectors of the state
vector error covariance matrix), (6) sequential
scalar measurement updates in a preferred order,
and (7) various factorizations of the covariance
matrices (e.g., square root, information matrix,
information square root, upper triangular and
lower triangular factorization, UDL, etc.). The
classic book on error covariance matrix factor-
izations is by Bierman (2006). Unfortunately,
there is no guarantee that the Kalman filter will
work well even if all of these mitigation methods
are used. Moreover, there is no useful theoretical
analysis of this phenomenon, with the exception
of a few not very tight upper bounds on the
condition number. Plotting the numerical values
of the condition number of the covariance matrix
vs. time is often a helpful diagnostic. In certain
real-world applications, the condition number of
the Kalman filter error covariance matrix can be
ten billion or larger.

Why Is the Kalman Filter So Useful
and Popular?

The Kalman filter has been enormously success-
ful in real-world applications, and it is inter-
esting to reflect on why it has been so useful
and so popular. In particular, Kalman himself
believes that his filter was successful because it
was based on probability rather than statistics;
see Kalman (1978). For example, the error co-
variance matrix for the Kalman filter is computed
from the assumed dynamics and measurement
model and the assumed values of the initial state
uncertainty and process noise and measurement
noise covariance matrices, rather than by com-
puting sample covariance matrices. Likewise, the
Kalman filter computes the estimated state vector
from assumed Gaussian and linear probability
models, rather than computing the sample mean,
as would be done in statistics. There is substantial
wisdom in Kalman’s assertion, owing to the dif-
ficulty of estimating sample covariance matrices
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and sample vectors that are sufficiently accu-
rate, given a limited number of samples and ill-
conditioning and high-dimensional state vectors.
A second reason that Kalman filters are so popu-
lar is that the real-time computational complexity
is very reasonable for modern digital comput-
ers, even for problems with a high-dimensional
state vector. In particular, the computational com-
plexity of the Kalman filter scales as the cube
of the dimension of the state vector; for ex-
ample, the modern GPS system uses a Kalman
filter with a state vector of dimension of about
1,000 to jointly estimate the orbits of the satel-
lites in the GPS constellation. In 1960, when
Kalman’s paper was first published, digital com-
puters were starting to become fast enough at
reasonable cost to multiply large matrices in real
time, which is the most challenging computation
in a Kalman filter. Today computers are roughly
ten orders of magnitude faster per unit cost than
in 1960, and hence, we can run Kalman filters
for high-dimensional problems on very inexpen-
sive computers that fit into your wristwatch. A
third reason that Kalman filters are popular is
that the algorithms are easy to understand and
code and test. A fourth reason is the guaran-
teed stability of the Kalman filter under very
mild conditions which can always be satisfied in
practical applications. A fifth reason is that the
Kalman filter is optimal for time-varying unstable
linear dynamics with time-varying measurement
noise covariance and process noise covariance.
A sixth reason is that one can use Kalman fil-
ters for nonlinear problems by approximating the
nonlinear dynamics and measurement equations
with a first-order Taylor series; this is called the
extended Kalman filter (EKF), which is without
a doubt the most widely used algorithm in real-
world estimation applications. A seventh reason
is that the Kalman filter automatically provides
a convenient quantification of uncertainty of the
estimated state vector using the error covariance
matrix. The final reason is that it is easy to test
the accuracy of the Kalman filter by comparing
the theoretical error covariance matrix to errors
computed by Monte Carlo simulations of the
filter; the two errors should agree approximately,
and statistically significant discrepancies suggest

bugs in the code or ill-conditioning of the error
covariance matrices or nonlinearities or errors in
modeling the dynamics or measurements.

Kalman’s 1960 paper represented a big
paradigm shift in two ways: (1) it exploited fast
low-cost modern digital computers, whereas the
literature up to that time did not, and (2) it used
time domain methods rather than the ubiquitous
Fourier transform methods, which limited the
dynamics to steady state asymptotic in time,
which in turn limited the theory to cover stable
dynamics. Of course today we take both of
these big points as normal engineering rather
than revolutionary and surprising. The state of
the art prior to Kalman’s 1960 paper was the
Wiener filter, which was based firmly on the
Fourier transform. The Wiener filter required
very lengthy and cumbersome algebraic spectral
factorization with complex variables, resulting in
erroneous formulas published in certain books,
owing to algebraic errors which were not obvious
and which could not be checked by computers,
owing to the nonexistence of computer algebra
software (e.g., MATHEMATICA) in 1960.
Kalman explains many other problems with the
Wiener filter in Kalman (2003).

Summary and Future Directions

To a large extent the Kalman filter theory is
complete. There is a simple and useful theory
of stability of the Kalman filter, which is com-
pletely lacking for nonlinear filters including the
extended Kalman filter (EKF) and particle fil-
ters. Moreover, there are many robust versions
of the Kalman filter that have been invented to
mitigate ill-conditioning of the covariance matrix
as well as uncertainty in system models and
system parameters. However, there remain many
important design issues that need to be addressed
for practical applications; see Daum (2005) for
details. The most obvious issues include nonlin-
ear measurements, nonlinear plant models, ro-
bustness to uncertainty in measurement models
and plant models, non-Gaussian measurement
noise and plant noise, non-Gaussian initial un-
certainty in the state vector, and ill-conditioning
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of the error covariance matrix. That is, any de-
viation from the exact mathematical assumptions
in the Kalman filter theory can cause problems
in practice. It is the job of engineers to miti-
gate such problems and design filters that are
robust to such perturbations. Kalman’s recent
papers on how the Kalman filter was invented
and why it is so popular contain interesting and
useful ideas; see Kalman (1978) and Kalman
(2003).
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Abstract

Various properties of dynamical systems
can be characterized in terms of inequality
conditions on their frequency responses. The
Kalman-Yakubovich-Popov (KYP) lemma shows
equivalence of such frequency domain inequality
(FDI) and a linear matrix inequality (LMI). The
fundamental result has been a basis for robust
and optimal control theories in the past several
decades. The KYP lemma has recently been
generalized to the case where an FDI on a
possibly improper transfer function is required
to hold in a (semi)finite frequency range. The
generalized KYP lemma allows us to directly
deal with practical situations where design
parameters are sought to satisfy FDIs in multiple
(semi)finite frequency ranges. Various design
problems, including FIR filter and PID controller,
reduce to LMI problems which can be solved via
semidefinite programming.

Keywords

Bounded real; Frequency domain inequality;
Linear matrix inequality; Multi-objective design;
Optimal control; Positive real; Robust control

Introduction

In linear systems analysis and control design,
dynamical properties are often characterized
by frequency responses. The shape of a
frequency response, as visualized by the
Bode or Nyquist plot, is closely related to
various performance measures including the
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steady state error, fast and smooth transient,
and robustness against unmodeled dynamics.
Hence, desired system properties can be
formalized in terms of a set of frequency
domain inequalities (FDIs) on selected transfer
functions. The analysis and design problems
then reduce to verification and satisfaction of
the FDIs.

The Kalman-Yakubovich-Popov (KYP)
lemma (Anderson 1967; Kalman 1963; Rantzer
1996; Willems 1971) establishes the equivalence
between an FDI and a linear matrix inequality
(LMI). The LMI is defined by state space
matrices of the transfer function in the FDI so
that the FDI holds true if and only if the LMI
admits a solution. The LMI characterization of
an FDI is useful since it replaces the process of
checking the FDI at infinitely many frequency
points by the search for a symmetric matrix
satisfying a finite dimensional convex constraint
defined by the LMI. In addition to exact and
tractable computations, benefits of the LMI
conditions include analytical understanding of
robust and optimal controls through spectral
factorizations and storage/Lyapunov functions.
The KYP lemma is a fundamental result in the
systems and control field that has provided, in
the past half century, a theoretical basis for
developments of various tools for system analysis
and design.

A drawback of the KYP lemma is its in-
ability to characterize an FDI in a finite fre-
quency range. Feedback control designs typically
involve a set of specifications given in terms
of multiple FDIs in various frequency ranges.
However, the KYP lemma is not capable of treat-
ing such FDIs directly since it has to consider
the entire frequency range. To address this defi-
ciency, the KYP lemma has recently been gener-
alized to characterize an FDI in a finite frequency
range exactly (Iwasaki et al. 2000). Further gen-
eralizations (Iwasaki and Hara 2005) are avail-
able for FDIs within various frequency ranges
for both continuous- and discrete-time, possi-
bly improper, rational transfer functions. The
generalized KYP lemma allows for direct multi-
objective design of filters, controllers, and dy-
namical systems.

KYP Lemma

The KYP lemma may be motivated from various
aspects, but let us explain it as an extension of a
gain condition. Consider a stable linear system

Px D Ax C Bu; G.s/ WD .sI � A/�1B;

where x.t/ 2 R
n is the state, u.t/ 2 R

m is
the input, and G.s/ is the transfer function from
u to x. If u is a disturbance to the system and
x represents the error from a desired operating
point, we may be interested in how large the
state variables can become for a given magnitude
of the disturbance. The gain kG.j!/k captures
this property for the case of a sinusoidal distur-
bance at frequency !, where k � k denotes the
spectral norm (D absolute value for a scalar). If
kG.j!/k < � holds for all frequency ! with a
small � , then the system has a good disturbance
attenuation property.

A version of the KYP lemma states that the
FDI kG.j!/k < � with � D 1 holds for
all frequency ! if and only if there exists a
symmetric matrix P satisfying the LMI:

�
PA C ATP C I PB

BTP �I

�
< 0:

Thus, existence of one particular P satisfying the
LMI is enough to conclude that the gain is less
than one for all, infinitely many, frequencies. This
result is known as the bounded real lemma and
has played a fundamental role in the robust and
H1 control theories.

The KYP lemma can be introduced as a gen-
eralization of the bounded real lemma. First, note
that the gain bound condition kG.j!/k < 1 and
the LMI condition can equivalently be written as

�
G.j!/

I

��
‚

�
G.j!/

I

�
< 0; (1)

�
PA C ATP PB

BTP 0

�
C ‚ < 0; (2)

where

‚ WD
�
I 0

0 �I

�
:
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In these equations, the particular matrix ‚ is
chosen to describe the gain bound condition as
a special case of the quadratic form (1), and we
observe that ‚ appears in the LMI as in (2).
It turns out that the equivalence of (1) and (2)
holds not only for this particular ‚ but also for
an arbitrary symmetric matrix ‚. This result is
called the KYP lemma, which states that, given
arbitrary matrices A, B , and ‚ D ‚T, the FDI
(1) holds for all frequency ! if and only if there
exists a matrix P D P T satisfying the LMI (2),
provided A has no eigenvalues on the imaginary
axis.

The FDI in (1) can be specialized to an FDI

�
L.j!/

I

��
…

�
L.j!/

I

�
< 0: (3)

on transfer function

L.s/ WD C.sI � A/�1B C D

by choosing

‚ WD
�
C D

0 I

�T

…

�
C D

0 I

�
: (4)

The choice of matrix … allows for characteri-
zations of important system properties involving
gain and phase of L.s/. For instance, the FDI (3)
with

… WD
�

0 �I

�I 0

�

gives L.j!/ C L.j!/� > 0. This is called the
positive real property, with which the phase angle
remains between ˙90ı when L.j!/ is a scalar.

Generalization

The standard KYP lemma deals with FDIs that
are required to hold for all frequencies. To allow
for more flexibility in practical system designs,
the KYP lemma has been generalized to deal with
FDIs in (semi)finite frequency ranges.

For instance, a version of the generalized KYP
lemma states that the FDI (1) holds in the low
frequency range j!j � $` if and only if there
exist matrices P D P T and Q D QT > 0

satisfying

�
A B

I 0

�T ��Q P

P $2
` Q

� �
A B

I 0

�
C ‚ < 0; (5)

provided A has no imaginary eigenvalues in the
frequency range. In the limiting case where $`

approaches infinity and the FDI is required to
hold for the entire frequency range, the solution
Q to (5) approaches zero, and we recover (2).

The role of the additional parameter Q is to
enforce the FDI only in the low frequency range.
To see this, consider the case where the system is
stable and a sinusoidal input u D <ŒOuej!t �, with
(complex) phasor vector Ou, is applied. The state
converges to the sinusoid x D <Œ Oxej!t � in the
steady state where Ox WD G.j!/Ou. Multiplying (5)
by the column vector obtained by stacking Ox and
Ou in a column from the right, and by its complex
conjugate transpose from the left, we obtain

.$2
` � !2/ Ox�Q Ox C

� Ox
Ou

��
‚

� Ox
Ou

�
< 0:

In the low frequency range j!j � $`, the first
term is nonnegative, enforcing the second term to
be negative, which is exactly the FDI in (1). If !

is outside of the range, however, the first term is
negative, and the FDI is not required to hold.

Similar results hold for various frequency
ranges. The term involving Q in (5) can be
expressed as the Kronecker product ‰ ˝ Q with
‰ being a diagonal matrix with entries .�1; $2

` /.
The matrix ‰ arises from characterization of the
low frequency range:

�
j!

1

��
‰

�
j!

1

�
D $2

` � !2 � 0:

By different choices of ‰, middle and high fre-
quency ranges can also be characterized:
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Low Middle High

� j!j � $` $1 � ! � $2 j!j �
$h

‰

��1 0

0 $2
`

� � �1 j$c

�j$c �$1$2

� �
1 0

0 �$2
h

�

where $c WD .$1 C $2/=2 and � is the
frequency range. For each pair .�; ‰/, the FDI
(1) holds in the frequency range ! 2 � if and
only if there exist real symmetric matrices P and
Q > 0 satisfying

F T.ˆ ˝ P C ‰ ˝ Q/F C ‚ < 0; (6)

provided A has no eigenvalues in �, where

ˆ WD
�
0 1

1 0

�
; F WD

�
A B

I 0

�
:

Further generalizations are available Iwasaki
and Hara (2005). The discrete-time case (fre-
quency variable on the unit circle) can be simi-
larly treated by a different choice of ˆ. FDIs for
descriptor systems and polynomial (rather than
rational) functions can also be characterized in a
form similar to (6) by modifying the matrix F .
More specifically, the choices

ˆ WD
��1 0

0 1

�
; F WD

�
A B

E O

�

give the result for the discrete-time transfer func-
tion L.z/ D .zE � A/�1.B � zO/.

Applications

The generalized KYP lemma is useful for a va-
riety of dynamical system designs. As an exam-
ple, let us consider a classical feedback control
design via shaping of a scalar open-loop transfer
function in the frequency domain. The objective
is to design a controller K.s/ for a given plant
P.s/ such that the closed-loop system is stable
and possesses a good performance dictated by
reference tracking, disturbance attenuation, noise
sensitivity, and robustness against uncertainties.

KYP Lemma and Generalizations/Applications, Fig. 1
Loop shaping design specifications

Typical design specifications are given in
terms of bounds on the gain and phase of the
open-loop transfer function L.s/ WD P.s/K.s/

in various frequency ranges as shown in Fig. 1.
The controller K.s/ should be designed so that
the frequency response L.j!/ avoids the shaded
regions. For instance, the gain should satisfy
jL.j!/j � 1 for j!j < !2 and jL.j!/j � 1 for
j!j > !3 to ensure the gain crossover occurs
in the range !2 � ! � !3, and the phase
bound †L.j!/ � � in this range ensures robust
stability by the phase margin.

The design specifications can be expressed as
FDIs of the form (3), where a particular gain or
phase condition can be specified by setting … as

˙
�
1 0

0 ��2

�
or

�
0 j � tan �

�j � tan � 0

�

with � D �1, �4, or 1, and the C=� signs
for upper/lower gain bounds. These FDIs in the
corresponding frequency ranges can be converted
to inequalities of the form (6) with ‚ given by (4).

The control problem is now reduced to the
search for design parameters satisfying the set of
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inequality conditions (6). In general, both coeffi-
cient matrices F and ‚ may depend on the design
parameters, but if the poles of the controller are
fixed (as in the PID control), then the design
parameters will appear only in ‚. If in addition
an FDI specifies a convex region for L.j!/ on the
complex plane, then the corresponding inequality
(6) gives a convex constraint on P , Q, and the
design parameters. This is the case for specifica-
tions of gain upper bound (disk: jLj < � ) and
phase bound (half plane: � � †L � � C �). A
gain lower bound jLj > � is not convex but can
often be approximated by a half plane. The design
parameters satisfying the specifications can then
be computed via convex programming.

Various design problems other than the open-
loop shaping can also be solved in a similar
manner, including finite impulse response (FIR)
digital filter design with gain and phase con-
straints in a passband and stop-band and sensor
or actuator placement for mechanical control sys-
tems (Hara et al. 2006; Iwasaki et al. 2003). Con-
trol design with the Youla parametrization also
falls within the framework if a basis expansion
is used for the Youla parameter and the coeffi-
cients are sought to satisfy convex constraints on
closed-loop transfer functions.

Summary and Further Directions

The KYP lemma has played a fundamental role
in systems and control theories, equivalently con-
verting an FDI to an LMI. Dynamical systems
properties characterized in the frequency domain
are expressed in terms of state space matrices
without involving the frequency variable. The
resulting LMI condition has been found useful for
developing robust and optimal control theories.

A recent generalization of the KYP lemma
characterizes an FDI for a possibly improper ra-
tional function in a (semi)finite frequency range.
The result allows for direct solutions of practical
design problems to satisfy multiple specifications
in various frequency ranges. A design problem is
essentially solvable when transfer functions are
affine in the design parameters and are required

to satisfy convex FDI constraints. An important
problem, which falls outside of this framework
and remains open, is the design of feedback con-
trollers to satisfy multiple FDIs on closed-loop
transfer functions in various frequency ranges.
There have been some attempts to address this
problem, but none of them has so far succeeded
to give an exact solution.

The KYP lemma has been extended in
other directions as well, including FDIs
with frequency-dependent weights (Graham
and de Oliveira 2010), internally positive
systems (Tanaka and Langbort 2011), full
rank polynomials (Ebihara et al. 2008), real
multipliers (Pipeleers and Vandenberghe 2011),
a more general class of FDIs (Gusev 2009),
multidimensional systems (Bachelier et al. 2008),
negative imaginary systems (Xiong et al. 2012),
symmetric formulations for robust stability
analysis (Tanaka and Langbort 2013), and
multiple frequency intervals (Pipeleers et al.
2013). Extensions of the KYP lemma and related
S-procedures are thoroughly reviewed in Gusev
and Likhtarnikov (2006). A comprehensive
tutorial of robust LMI relaxations is provided
in Scherer (2006) where variations of the KYP
lemma, including the generalized KYP lemma as
a special case, are discussed in detail.
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Abstract

This chapter provides an overview of lane keep-
ing systems. First, a general architecture is in-
troduced and existing solutions for the necessary
sensors and actuators are then overviewed. The
threat assessment and the lane position control
problems are discussed, highlighting challenges
and solutions implemented in lane keeping sys-
tems available on the market.

Keywords

Active safety; Decision-making and control; In-
telligent transportation systems; Threat assess-
ment

Introduction

Lane keeping systems are vehicle guidance
systems that aim at preventing lane departure
maneuvers, which may lead to accidents, i.e.,
collision with surrounding obstacles and vehicles.

By resorting to radar and/or lasers and cameras, a
lane keeping system monitors the adjacent lanes.
Crossing the lane markings in the absence of
vehicles and/or obstacles in the adjacent lanes
should not cause any reaction of the lane keeping
systems and let the driver freely perform the lane
change maneuver. In the presence of vehicles or
obstacles in the adjacent lanes, the system should
assess the threat and, in case a risk of collision is
detected, either warn the driver or automatically
issue either a steering or a single-wheel braking
command, in order to prevent the crossing of
the lane markings. As discussed next, despite
the simplicity of the threat assessment and the
decision-making and control problem, challenges
arise in real traffic scenarios which may lead
to nuisance due to unnecessary warnings and/or
assisting interventions.

In this entry, we overview the most important
aspects in the design of a lane keeping sys-
tem. This entry is structured as follows. Section
“Lane Keeping Systems Architecture” illustrates
a generic architecture. Section “Sensing and Ac-
tuation” reviews the most used sensors suitable
for lane keeping applications. Section “Decision
Making and Control” introduces the threat as-
sessment and the lane position control problems,
highlighting the most relevant challenges.

Lane Keeping Systems Architecture

The main components of a lane keeping system
and their interconnections are shown in Fig. 1.

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015



616 Lane Keeping

Low level
controllers

Steering, Decision
making and

control
Obstacle

data

Vision

Radar

Lane data

Lane data

Obstacle data

Obstacle data

Sensor
Fusionbraking

Lane Keeping, Fig. 1 The lane keeping architecture

Relative positions and velocities of the host ve-
hicle w.r.t. the surrounding environment are mea-
sured by one radar, typically installed on the
front of the vehicle, and possibly by the camera,
typically installed on the windshield. Position
of the host vehicle within the lane and further
information, e.g., road geometry, are measured by
the camera. These measurements are then fused
by the sensor fusion module to provide accurate
measurements of the position and velocity of
the vehicle w.r.t. the surrounding environment
and the lane in the widest range of operating
conditions and scenarios.

The task of the decision-making and control
module is to assess the risk that the vehicle
crosses the lane in a dangerous way and, possibly,
to take an action that can range from warning
the driver or issuing an assisting intervention,
e.g., braking and/or steering. Such steering and
braking commands are actually implemented by
low-level controllers.

The different modules will be overviewed in
the following sections.

Sensing and Actuation

Radar
Radars for automotive applications are placed in
the front of the car, typically behind the grille.
The radar emits radio waves and distance from
the vehicle ahead is calculated by measuring the
arrival time and direction of the reflected radio
waves. The relative velocity is determined by

relying on the Doppler effect, i.e., by measuring
the frequency change of the reflected waves.
Relative distance and velocity measurements are
typically updated with a frequency of 10 Hz.

Radars for automotive applications emit waves
with a frequency of 77 GHz and detect objects
within an approximate range of 150 m and a
view angle of about ˙10ı, with a deviation of
20–30 cm from the correct value for 95 % of
the measurements (Eidehall 2004). New radar
systems increase the range up to about 200 m
with a view angle of about˙10ı (News Releases
DENSO Corporation 2013a).

Typically, radar units are equipped with com-
puter systems running signal processing algo-
rithms that detect and track objects and, for each
of them, calculate relative position and speed,
azimuth angle, also providing additional informa-
tion, e.g., the time an object has been tracked and
a flag indicating that a target has been locked.
Such additional information are typically used in
logics implementing the decision-making algo-
rithms of, among others, the lane keeping system.

There are several issues arising from the use of
a radar in automotive applications, e.g., wave re-
flections due to road bumps and barriers that may
induce the signal processing algorithms to false
object detections (Eidehall 2004). Moreover, in-
terference and the vehicle dynamics (News Re-
leases DENSO Corporation 2013a), e.g., pitching
due to braking, may limit the capability of the sig-
nal processing algorithms of correctly detecting
and tracking the surrounding objects. The latter
may be solved by, e.g., using electric motors that
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adjust the radar antenna axes in order to com-
pensate for the vehicle dynamics (News Releases
DENSO Corporation 2013a).

Vision Systems
Vision systems in lane keeping applications
are typically based on a single, CCD camera
mounted next to the rear-view mirror placed at the
center of the windshield. The image is typically
captured by 640 � 480 pixels and then processed
by an image processing unit. The sampling time
of the vision system is about 0.1 s, but it can
change depending on, e.g., the complexity of the
scene, for example, in city traffic (Eidehall 2004).

Lane markings are detected by using differ-
ences in the image contrast (Technology Daim-
ler and Safety Innovation 2013). The camera
can be either monochrome or full colored. The
latter is used to enhance the detection of lane
markings, which have different colors around
the world (News Releases DENSO Corporation
2013b). Distances to the lane markings and road
geometry parameters, like heading angle and cur-
vature, are determined by the image processing
algorithms, which must be robust to poor image
due to bad weather conditions or worn lane mark-
ings. Estimation of road geometry parameters,
like curvature measurement, can be a challenging
problem (Lundquist and Schön 2011), especially
during rain or fog (Eidehall 2004).

Depending on the image processing al-
gorithms the cameras are equipped with,
surrounding objects can also be detected
and tracked. In particular, pattern recognition
algorithm can be used to find objects in the
images and classify them into cars, trucks,
motorcycles, and pedestrians. Vehicles (or other
objects) can be typically detected in a range
of about 60–70 m, with lower accuracy than a
radar (Eidehall 2004).

Actuators
In order to keep the vehicle within its lane, the
most convenient actuator is the steering. Hence,
a lane keeping system can be quite easily built
in those vehicles equipped with electric power-
assisted steering (EPAS) systems. In particular,
an additional steering torque can be added by the

EPAS to the driver’s steering torque, in order to
generate the desired yaw moment calculated by
the decision-making and control module.

Clearly, the steering command is not the only
available to affect the vehicle yaw motion, thus
changing its orientation and lateral position
within the lane. Individual wheel braking may
also be used (Technology Daimler and Safety
Innovation 2013). In particular, in vehicles
equipped with yaw motion control system via
individual braking, a braking torque request
for each wheel can be sent to the yaw motion
control system in order to generate the desired
yaw motion.

Decision Making and Control

The decision making and control in a lane keep-
ing problem can be conceptually divided into two
tasks: the threat assessment and the lane position
control. The threat assessment problem can be
stated as the problem of detecting the risk of
accident due to an unintended lane departure, for
a given situation of the surrounding environment
(i.e., surrounding vehicles and obstacles). The
lane position control problem is the problem of
controlling the vehicle yaw and lateral motion in
order to stay within the lane. The lane position
control is activated once the threat assessment
detects the risk of accident.

We point out that the border between the corre-
sponding modules executing these two tasks may
be blurred for different existing commercial lane
keeping systems. That is, the two problems may
not be solved by two separate modules, but rather
seen and solved as a single problem. Moreover,
the following presentation of the threat assess-
ment and the lane position control problems and
approaches abstracts from the implementation of
a particular lane keeping system available on the
market, rather focusing on fundamental concepts.

Threat Assessment
The core information in a threat assessment algo-
rithm for lane keeping applications is given by a
measure called time to lane crossing (TLC). This
is the predicted time when a front tire intersects a
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lane boundary. As explained in van Winsum et al.
(2000), the TLC can be calculated in different
ways. Next, its simplest expression is reported as
(Eidehall 2004)

TLC D W=2�Wveh=2� yoff

Pyoff
; (1)

where W is the lane width, yoff is the vehicle
lateral position within the lane, and Wveh is the
vehicle width. Equation (1) can be easily modi-
fied to calculate the TLC w.r.t. any lane boundary
relative to the adjacent lanes.

The simplest way of using the TLC is just
monitoring it and triggering an action as the
TLC passes a threshold. Nevertheless, depending
on the vehicle manufacturer, more sophisticated
logics can be developed in order to correctly
interpret the driver’s intention and minimize the
unnecessary assisting interventions. Next, few
scenarios follow that must be taken into account
while developing such logics in order to not
interfere with the driver. In particular, the threat
assessment module should stop or not trigger
any assisting intervention while the vehicle is
approaching or crossing a lane boundary if
• The indicators are active,
• A risk of collision with the vehicle ahead

is detected, such that the vehicle is crossing
the lane markings as results of an evasive
maneuver,

• The radar detects a slower vehicle ahead and
the driver accelerates, since this may be an
overtaking (Technology Daimler and Safety
Innovation 2013),

• The driver’s steering wheel torque indicates
that the driver is acting against the system,

• The driver manually initiates a maneuver,
driving the vehicle back to its lane (i.e., the
driver executes “the right” maneuver)

• The vehicle enters a motor highway or
a bend (Technology Daimler and Safety
Innovation 2013).
Part of the threat assessment task is predicting

the trajectories of the surrounding vehicles. For
instance, if a threat vehicle is traveling in the
adjacent lane (in the same or opposite direction),
its position has to be predicted at the TLC in

order to decide whether to trigger an intervention,
if a collision is predicted, or not (Eidehall
2004). This step is repeated for all the detected
threat vehicles, provided that the onboard
radar and the camera support multiple-target
tracking.

In order to minimize the interference of the
lane keeping system with the driver and/or to
not let the system perform dangerous maneuvers,
assisting interventions should not be triggered if
the quality of the measurements is such that the
information about the surrounding environment
is poor. For instance, in case of low visibility
that limits the detection of the lane markings
and the estimation of the road geometry, the sys-
tem should be temporarily deactivated or down-
graded.

In summary, the threat assessment module has
to be designed with the objective of detecting
the risk of accident due to lane departure while
not interfering with the driver with unnecessary
interventions (i.e., nuisance minimization).

Lane Position Control
As observed in section “Actuators,” the vehicle
motion within the lane can be affected in two
ways, i.e., through steering and individual wheel
braking. Clearly, a steering command can be
issued by both the driver and the lane keeping
system.

Before issuing a steering command, in order to
minimize the system nuisance, the lane keeping
system may issue other types of low-intrusiveness
interventions. For instance, if a “low”-level threat
is detected by the threat assessment module (i.e.,
a threat where the risk of accidents is not im-
minent), warnings or other stimuli to the driver
may be issued in order to induce the driver to
execute the right maneuver. For instance, based
on, e.g., spectrum analysis of the driver’s steering
command, driver’s inattention or drowsiness may
be detected and a warning issued. As observed
in Technology Daimler and Safety Innovation
(2013), different types of warning can be used for
different vehicle types. In passenger cars, in such
cases, a vibration motor in the steering wheel may
warn the driver. In trucks, audible, directional
warning signals can be used to let the driver know
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that the vehicle trajectory needs to be adjusted. In
buses, in order to avoid bothering the passengers,
driver warning is issued through vibration motors
placed in the driver’s seat.

Other types of “soft intervention” aim at in-
creasing the steering impedance in the direction
leading to lane crossing that might cause a col-
lision with surrounding vehicles. Generating the
desired steering impedance can be easily formu-
lated as a steering torque control problem. Never-
theless, tuning the control algorithm to obtain the
desired steering feeling can be an involving and
time-consuming procedure based on extensive in-
vehicle testing.

Besides warnings and “soft interventions”
aiming at inducing the driver to perform correct
maneuvers, as part of the lane position control

task in a lane keeping system, a lateral control
algorithm w.r.t. the lane boundaries is needed.
Consider the vehicle sketched in Fig. 2. The
equations describing the vehicle motion within
the lane can be compactly written in a state-space
form as

Px D Ax C Bı CD P des; (2)

where x D �
ey Pey e Pe 

�
, P d is the desired yaw

rate, e.g., calculated based on the road curvature,
and A; B; D are speed-dependent matrices that
can be found in Rajamani (2003). The (unstable)
system can be stabilized by a state-feedback con-
trol law

ı D �Kx C ıff ; (3)
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where K is a stabilizing static gain and ıff is a
feedforward term that can be used to compensate
for the road curvature. In Rajamani (2003), it is
shown that, while ey.t/ ! 0 as t ! 0, e ap-
proaches a nonzero steady-state value, no matter
how ıff is chosen, for non-straight road.

Despite a simple problem formulation and
solution, controlling the vehicle position within
the lane is not a trivial task. Indeed, having
the control law (3) active all the time may
increase the nuisance, leading to unacceptable
driving experience. For this reason, the steering
command calculated through the (3) may be
active only when the vehicle significantly
deviates from the road centerline, i.e., approaches
the lane markings. Clearly, adding such logics
complicates the analysis of the closed-loop
behavior, thus making necessary extensive in-
vehicle tuning and verification.

Summary and Future Directions

In this chapter, we have overviewed the general
issues and requirements that must be considered
in the design of a lane-keeping system.

The variety of environmental conditions the
sensing system should operate in, together with
the range of diverse scenarios the decision-
making module should cope with, render the
design and verification problems challenging,
costly, and time consuming for a lane-keeping
system. It is, therefore, necessary to approach
the design of such systems by also providing
safety guarantees to the largest extent, yet
minimizing conservatism and intrusiveness of
the overall system. Model-based approaches to
threat assessment and decision-making problems,
as proposed in Falcone et al. (2011) for a
lane departure application, provide neat design
and verification frameworks, which can clearly
describe the safe operation of the overall
system. Adopting such design methodologies can
potentially contribute to a consistent reduction of
the development time by consistently reducing
the a posteriori safety verification phase. On the
other hand, the computational complexity of
formal model-based verification methods can
dramatically increase in those scenarios where
system nonlinearity and nonconvex state spaces

become relevant. Hence, future research efforts
aiming at developing low-complexity verification
methods might greatly impact the future
development of automated driving systems.

Cross-References

�Adaptive Cruise Control
�Vehicle Dynamics Control
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Nash equilibrium. The topic of learning in games
seeks to address this issue in that it explores how
simplistic learning/adaptation rules can lead to
Nash equilibrium. This entry presents a selec-
tive sampling of learning rules and their long-
run convergence properties, i.e., conditions under
which player strategies converge or not to Nash
equilibrium.

Keywords

Cournot best response; Fictitious play; Log-linear
learning; Mixed strategies; Nash equilibrium

Introduction

In a Nash equilibrium, each player’s strategy is
optimal with respect to the strategies of other
players. Accordingly, Nash equilibrium offers a
predictive model of the outcome of a game. That
is, given the basic elements of a game – (i) a set
of players; (ii) for each player, a set of strategies;
and (iii) for each player, a utility function that
captures preferences over strategies – one can
model/assert that the strategies selected by the
players constitute a Nash equilibrium.

In making this assertion, there is no suggestion
of how players may come to reach a Nash equi-
librium. Two motivating quotations in this regard
are:

The attainment of equilibrium requires a disequi-
librium process (Arrow 1986).

and

The explanatory significance of the equilibrium
concept depends on the underlying dynamics
(Skyrms 1992).

These quotations reflect that a foundation for
Nash equilibrium as a predictive model is dynam-
ics that lead to equilibrium. Motivated by these
considerations, the topic of “learning in games”
shifts the attention away from equilibrium and
towards underlying dynamic processes and their
long-run behavior. The intent is to understand
how players may reach an equilibrium as well

as understand possible barriers to reaching Nash
equilibrium.

In the setup of learning in games, players
repetitively play a game over a sequence
of stages. At each stage, players use past
experiences/observations to select a strategy
for the current stage. Once player strategies
are selected, the game is played, information
is updated, and the process is repeated. The
question is then to understand the long-run
behavior, e.g., whether or not player strategies
converge to Nash equilibrium.

Traditionally the dynamic processes consid-
ered under learning in games have players se-
lecting strategies based on a myopic desire to
optimize for the current stage. That is, play-
ers do not consider long-run effects in updating
their strategies. Accordingly, while players are
engaged in repetitive play, the dynamic processes
generally are not optimal in the long run (as in the
setting of “repeated games”). Indeed, the survey
article of Hart (2005) refers to the dynamic pro-
cesses of learning in games as “adaptive heuris-
tics.” This distinction is important in that an
implicit concern in learning in games is to un-
derstand how “low rationality” (i.e., suboptimal
and heuristic) processes can lead to the “high ra-
tionality” (i.e., mutually optimal) notion of Nash
equilibrium.

This entry presents a sampling of results from
the learning in games literature through a selec-
tion of illustrative dynamic processes, a review
of their long-run behaviors relevant to Nash equi-
librium, and pointers to further work.

Illustration: Commuting Game

We begin with a description of learning in games
in the specific setting of the commuting game,
which is a special case of so-called congestion
games (cf., Roughgarden 2005). The setup is as
follows. Each player seeks to plan a path from
an origin to a destination. The origins and desti-
nations can differ from player to player. Players
seek to minimize their own travel times. These
travel times depend both on the chosen path
(distance traveled) and the paths of other players
(road congestion). Every day, a player uses past
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information and observations to select that day’s
path according to some selection rule, and this
process is repeated day after day.

In game-theoretic terms, player “strategies”
are paths linking their origins to destinations, and
player “utility functions” reflect travel times. At
a Nash equilibrium, players have selected paths
such that no individual player can find a shorter
travel time given the chosen paths of others. The
learning in games question is then whether player
paths indeed converge to Nash equilibrium in the
long run. Not surprisingly, the answer depends
on the specific process that players use to select
paths and possible additional structure of the
commuting game.

Suppose that one of the players, say “Alice,”
is choosing among a collection of paths. For
the sake of illustration, let us give Alice the
following capabilities: (i) Alice can observe the
paths chosen by all other players and (ii) Alice
can compute off-line her travel time as a function
of her path and the paths of others.

With these capabilities, Alice can compute
running averages of the travel times along all
available paths. Note that the assumed capabili-
ties allow Alice to compute the travel time of a
path and hence its running average, whether or
not she took the path on that day. With average
travel time values in hand, two possible learning
rules are:
– Exploitation: Choose the path with the lowest

average travel time.
– Exploitation with Exploration: With high

probability, choose the path with the lowest
average travel time, and with low probability,
choose a path at random.

Assuming that all players implement the same
learning rule, each case induces a dynamic pro-
cess that governs the daily selection of paths
and determines the resulting long-run behavior.
We will revisit these processes in a more formal
setting in the next section.

A noteworthy feature of these learning rules is
that they do not explicitly depend on the utility
functions of other players. For example, suppose
one of the other players is willing to trade off
travel time for more scenic routes. Similarly,
suppose one of the other players prefers to travel

on high congestion paths, e.g., a rolling billboard
seeking to maximize exposure. The aforemen-
tioned learning rules for Alice remain unchanged.
Of course, Alice’s actions implicitly depend on
the utility functions of other players, but only
indirectly through their selected paths. This char-
acteristic of no explicit dependence on the utility
functions of others is known as “uncoupled”
learning, and it can have major implications on
the achievable long-run behavior (Hart and Mas-
Colell 2003a).

In assuming the ability to observe the paths of
other players and to compute off-line travel times
as a function of these paths, these learning rules
impose severe requirements on the information
available to each player. Less restrictive are learn-
ing rules that are “payoff based” (Young 2005).
A simple modification that leads to payoff-based
learning is as follows. Alice maintains an empiri-
cal average of the travel times of a path using only
the days that she took that path. Note the distinc-
tion – on any given day, Alice remains unaware
of travel times for the routes not selected. Using
these empirical average travel times, Alice can
then mimic any of the aforementioned learning
rules. As intended, she does not directly observe
the paths of others, nor does she have a closed-
form expression for travel times as a function of
player paths. Rather, she only can select a path
and measure the consequences. As before, all
players implementing such a learning rule induce
a dynamic process, but the ensuing analysis in
payoff-based learning can be more subtle.

Learning Dynamics

We now give a more formal presentation of se-
lected learning rules and results concerning their
long-run behavior.

Preliminaries
We begin with the basic setup of games with a
finite set of players, f1; 2; : : : ; N g, and for each
player i , a finite set of strategies, Ai . Let

A D A1 � : : : �AN
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denote the set of strategy profiles. Each player, i ,
is endowed with a utility function

ui W A! R:

Utility functions capture player preferences over
strategy profiles. Accordingly, for any a; a0 2 A,
the condition

ui .a/ > ui .a
0/

indicates that player i prefers the strategy profile
a over a0.

The notation �i indicates the set of players
other than player i . Accordingly, we sometimes
write a 2 A as .ai ; a�i / to isolate ai , the strategy
of player i , versus a�i , the strategies of other
players. The notation �i is used in other settings
as well.

Utility functions induce best-response sets.
For a�i 2 A�i , define

Bi .a�i / D
˚
ai W ui .ai ; a�i / � ui .a

0
i ; a�i /

for all a0
i 2 Ai

�
:

In words, Bi .a�i / denotes the set of strategies
that are optimal for player i in response to the
strategies of other players, a�i .

A strategy profile a� 2 A is a Nash equilib-
rium if for any player i and any a0

i 2 Ai ,

ui .a
�
i ; a

��i / � ui .a
0
i ; a

��i /:

In words, at a Nash equilibrium, no player can
achieve greater utility by unilaterally changing
strategies. Stated in terms of best-response sets,
a strategy profile, a�, is a Nash equilibrium if for
every player i ,

a�
i 2 Bi .a��i /:

We also will need the notions of mixed strate-
gies and mixed strategy Nash equilibrium. Let
�.Ai / denote probability distributions (i.e., non-
negative vectors that sum to one) over the set
Ai . A mixed strategy profile is a collection of
probability distributions, ˛ D .˛1; : : : ; ˛N /, with

˛i 2 �.Ai / for each i . Let us assume that players
choose a strategy randomly and independently
according to these mixed strategies. Accordingly,
define PrŒaI˛� to be the probability of strategy a
under the mixed strategy profile ˛, and define the
expected utility of player i as

Ui.˛/ D
X

a2A
ui .a/ � PrŒaI˛�:

A mixed strategy Nash equilibrium is a mixed
strategy profile, ˛�, such that for any player i and
any ˛0

i 2 �.A/,

Ui.˛
�
i ; ˛

��i / � Ui.˛0
i ; ˛

��i /:

Special Classes of Games
We will reference three special classes of games:
(i) zero-sum games, (ii) potential games, and (iii)
weakly acyclic games.
Zero-sum games: There are only two players (i.e.,
N D 2), and u1.a/ D �u2.a/.
Potential games: There exists a (potential) func-
tion,

� W A! R

such that for any pair of strategies, a D .ai ; a�i /
and a0 D .a0

i ; a�i /, that differ only in the strategy
of player i ,

ui .ai ; a�i /�ui .a
0
i ; a�i /D�.ai ; a�i /��.a0

i ; a�i /:

Weakly acyclic games: There exists a function

� W A! R

with the following property: if a 2 A is not a
Nash equilibrium, then at least one player, say
player i , has an alternative strategy, say a0

i 2 Ai ,
such that

ui .a
0
i ; a�i / > ui .ai ; a�i /

and
�.a0

i ; a�i / > �.ai ; a�i /:

Potential games are a special class of games
for which various learning dynamics converge to
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a Nash equilibrium. The aforementioned com-
muting game constitutes a potential game under
certain special assumptions. These are as follows:
(i) the delay on a road only depends on the
number of users (and not their identities) and (ii)
all players measure delay in the same manner
(Monderer and Shapley 1996).

Weakly acyclic games are a generalization of
potential games. In potential games, there ex-
ists a potential function that captures differences
in utility under unilateral (i.e., single player)
changes in strategy. In weakly acyclic games
(see Young 1998), if a strategy profile is not a
Nash equilibrium, then there exists a player who
can simultaneously achieve an increase in utility
while increasing the potential function. The char-
acterization of weakly acyclic games through a
potential function herein is not traditional and is
borrowed from Marden et al. (2009a).

Forecasted Best-Response Dynamics
One family of learning dynamics involves players
formulating a forecast of the strategies of other
players based on past observations and then play-
ing a best response to this forecast.

Cournot Best-Response Dynamics
The simplest illustration is Cournot best-response
dynamics. Players repetitively play the same
game over stages t D 0; 1; 2; : : :. At stage t ,
a player forecasts that the strategies of other
players are the strategies played at the previous
stage t � 1. The following rules specify Cournot
best response with inertia. For each stage t and
for each player i :
• With probability p 2 .0; 1/, ai .t/ D ai .t � 1/

(inertia).
• With probability 1�p, ai .t/ 2 Bi .a�i .t �1//

(best response).
• If ai .t � 1/ 2 Bi .a�i .t � 1//, then ai .t/ D
ai .t � 1/ (continuation).

Proposition 1 For weakly acyclic (and hence
potential) games, player strategies under
Cournot best-response dynamics with inertia
converge to a Nash equilibrium.

Cournot best-response dynamics need not al-
ways converge in games with a Nash equilibrium,
hence the restriction to weakly acyclic games.

Fictitious Play
In fictitious play, introduced in Brown (1951),
players also use past observations to construct a
forecast of the strategies of other players. Unlike
Cournot best-response dynamics, this forecast is
probabilistic.

As a simple example, consider the commuting
game with two players, Alice and Bob, who both
must choose between two paths, A and B . Now
suppose that on stage t D 10, Alice has observed
Bob used path A for 6 out of the previous 10
days and path B for the remaining days. Then
Alice’s forecast of Bob is that he will chose path
A with 60 % probability and path B with 40 %
probability. Alice then chooses between path A
and B in order to optimize her expected utility.
Likewise, Bob uses Alice’s empirical averages to
form a probabilistic forecast of her next choice
and selects a path to optimize his expected utility.

More generally, let �j .t/ 2 �.Aj / denote the
empirical frequency for player j at stage t . This
vector is a probability distribution that indicates
the relative frequency of times player j played
each strategy in Aj over stages 0; 1; : : : ; t � 1. In
fictitious play, player i assumes (incorrectly) that
at stage t , other players will select their strategies
independently and randomly according to their
empirical frequency vectors. Let …�i .t/ denote
the induced probability distribution over A�i at
stage t . Under fictitious play, player i selects an
action according to

ai .t/ 2 arg max
ai2Ai

X

a
�i2A�i

ui .ai ; a�i /

�PrŒa�i I…�i .t/�:

In words, player i selects the action that
maximizes expected utility assuming that other
players select their strategies randomly and
independently according to their empirical
frequencies.

Proposition 2 For (i) zero-sum games, (ii)
potential games, and (iii) two-player games
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in which one player has only two actions,
player empirical frequencies under fictitious play
converge to a mixed strategy Nash equilibrium.

These results are reported in Fudenberg and
Levine (1998), Hofbauer and Sandholm (2002),
and Berger (2005). Fictitious play need not
converge to Nash equilibria in all games. An
early counterexample is reported in Shapley
(1964), which constructs a two-player game
with a unique mixed strategy Nash equilibrium.
A weakly acyclic game with multiple pure
(i.e., non-mixed) Nash equilibria under which
fictitious play does not converge is reported in
Foster and Young (1998).

A variant of fictitious play is “joint strategy”
fictitious play (Marden et al. 2009b). In this
framework, players construct as forecasts empir-
ical frequencies of the joint play of other players.
This formulation is in contrast to constructing
and combining empirical frequencies for each
player. In the commuting game, it turns out that
joint strategy fictitious play is equivalent to the
aforementioned “exploitation” rule of selecting
the path with lowest average travel time. Marden
et al. (2009b) show that action profiles under joint
strategy fictitious play (with inertia) converge to
a Nash equilibrium in potential games.

Log-Linear Learning
Under forecasted best-response dynamics,
players chose a best response to the forecasted
strategies of other players. Log-linear learning,
introduced in Blume (1993), allows the
possibility of “exploration,” in which players can
select nonoptimal strategies but with relatively
low probabilities.

Log-linear learning proceeds as follows. First,
introduce a “temperature” parameter, T > 0.
– At stage t , a single player, say player i , is

selected at random.
– For player i ,

PrŒai .t/ D a0
i � D

1

Z
eui .a

0

i ;a�i .t�1//=T :

– For all other players, j 6D i ,

aj .t/ D aj .t � 1/:

In words, under log-linear learning, only a single
player performs a strategy update at each stage.
The probability of selecting a strategy is expo-
nentially proportional to the utility garnered from
that strategy (with other players repeating their
previous strategies). In the above description, the
dummy parameter Z is a normalizing variable
used to define a probability distribution. In fact,
the specific probability distribution for strategy
selection is a Gibbs distribution with tempera-
ture parameter, T . For very large T , strategies
are chosen approximately uniformly at random.
However, for small T , the selected strategy is
a best response (i.e., ai .t/ 2 Bi .a�i .t � 1//)
with high probability, and an alternative strategy
is selected with low probability.

Because of the inherent randomness, strategy
profiles under log-linear learning never converge.
Nonetheless, the long-run behavior can be char-
acterized probabilistically as follows.

Proposition 3 For potential games with poten-
tial function �.�/ under log-linear learning, for
any a 2 A,

lim
t!1 PrŒa.t/ D a� D 1

Z
e�.a/=T :

In words, the long-run probabilities of strategy
profiles conform to a Gibbs distribution con-
structed from the underlying potential function.
This characterization has the important implica-
tion of (probabilistic) equilibrium selection. Prior
convergence results stated convergence to Nash
equilibria, but did not specify which Nash equi-
librium in the case of multiple equilibria. Under
log-linear learning, there is a probabilistic prefer-
ence for the Nash equilibrium that maximizes the
underlying potential function.

Extensions and Variations

Payoff-based learning. The discussion herein
presumed that players can observe the actions of
other players and can compute utility functions
off-line. Payoff-based algorithms, i.e., algorithms
in which players only measure the utility
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garnered in each stage, impose less restrictive
informational requirements. See Young (2005)
for a general discussion, as well as Marden et al.
(2009c), Marden and Shamma (2012), and Arslan
and Shamma (2004) for various payoff-based
extensions.

No-regret learning. The broad class of so-called
“no-regret” learning rules has the desirable prop-
erty of converging to broader solution concepts
(namely, Hannan consistency sets and correlated
equilibria) in general games. See Hart and Mas-
Colell (2000, 2001, 2003b) for an extensive dis-
cussion.

Calibrated forecasts. Calibrated forecasts are
more sophisticated than empirical frequencies
in that they satisfy certain long-run consistency
properties. Accordingly, forecasted best-response
learning using calibrated forecasts has stronger
guaranteed convergence properties, such as
convergence to correlated equilibria. See Foster
and Vohra (1997), Kakade and Foster (2008), and
Mannor et al. (2007).

Impossibility results. This entry focused on con-
vergence results in various special cases. There
are broad impossibility results that imply the
impossibility of families of learning rules to con-
verge to Nash equilibria in all games. The focus
is on uncoupled learning, i.e., the learning dy-
namics for player i does not depend explicitly
on the utility functions of other players (which
is satisfied by all of the learning dynamics pre-
sented herein). See Hart and Mas-Colell (2003a,
2006), Hart and Mansour (2007), and Shamma
and Arslan (2005). Another type of impossibility
result concerns lower bounds on the required rate
of convergence to equilibrium (e.g., Hart and
Mansour 2010).

Welfare maximization. Of special interest is
learning dynamics that select welfare (i.e.,
sum of utilities) maximizing strategy profiles,
whether or not they are Nash equilibria.
Recent contributions include Pradelski and
Young (2012), Marden et al. (2011), and
Arieli and Babichenko (2012).

Summary and Future Directions

We have presented a selection of learning dynam-
ics and their long-run characteristics, specifically
in terms of convergence to Nash equilibria. As
stated early on, the original motivation of learn-
ing in games research has been to add credence
to solution concepts such as Nash equilibrium as
a model of the outcome of a game. An emerging
line of research stems from engineering consid-
erations, in which the objective is to use the
framework of learning in games as a design tool
for distributed decision architecture settings such
as autonomous vehicle teams, communication
networks, or smart grid energy systems. A related
emerging direction is social influence, in which
the objective is to steer the collective behaviors
of human decision makers towards a socially
desirable situation through the dispersement of
incentives. Accordingly, learning in games can
offer baseline models on how individuals update
their behaviors to guide and inform social influ-
ence policies.
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Introduction

How does a machine learn an abstract concept
from examples? How can a machine generalize
to previously unseen situations? Learning theory
is the study of (formalized versions of) such
questions. There are many possible ways to for-
mulate such questions. Therefore, the focus of
this entry is on one particular formalism, known
as PAC (probably approximately correct) learn-
ing. It turns out that PAC learning theory is rich
enough to capture intuitive notions of what learn-
ing should mean in the context of applications
and, at the same time, is amenable to formal
mathematical analysis. There are several precise
and complete studies of PAC learning theory,
many of which are cited in the bibliography.
Therefore, this article is devoted to sketching
some high-level ideas.

Keywords

Machine learning; Probably approximately cor-
rect (PAC) learning; Support vector machine;
Vapnik-Chervonenkis (V-C) dimension

Problem Formulation

In the PAC formalism, the starting point is the
premise that there is an unknown set, say an
unknown convex polygon, or an unknown half-
plane. The unknown set cannot be completely
unknown; rather, something should be specified
about its nature, in order for the problem to be
both meaningful and tractable. For instance, in
the first example above, the learner knows that
the unknown set is a convex polygon, though
it is not known which polygon it might be.

Similarly, in the second example, the learner
knows that the unknown set is a half-plane,
though it is not known which half-plane. The
collection of all possible unknown sets is known
as the concept class, and the particular unknown
set is referred to as the “target concept.” In the
first example, this would be the set of all convex
polygons and in the second case it would be
the set of half-planes. The unknown set cannot
be directly observed of course; otherwise, there
would be nothing to learn. Rather, one is given
clues about the target concept by an “oracle,”
which informs the learner whether or not a
particular element belongs to the target concept.
Therefore, the information available to the learner
is a collection of “labelled samples,” in the form
f.xi ; IT .xi /; i D 1; : : : ; mg, where m is the
total number of labelled samples and It .�/ is
the indicator function of the target concept T .
Based on this information, the learner is expected
to generate a “hypothesis” Hm that is a good
approximation to the unknown target concept T .

One of the main features of PAC learning
theory that distinguishes it from its forerunners is
the observation that, no matter how many training
samples are available to the learner, the hypoth-
esis Hm can never exactly equal the unknown
target concept T . Rather, all that one can expect
is that Hm converges to T in some appropriate
metric. Since the purpose of machine learning
is to generate a hypothesis Hm that can be used
to approximate the unknown target concept T
for prediction purposes, a natural candidate for
the metric that measures the disparity between
Hm and T is the so-called generalization error,
defined as follows: Suppose that, afterm training
samples that have led to the hypothesis Hm, a
testing sample x is generated at random. One
can now ask: what is the probability that the
hypothesis Hm misclassifies x? In other words,
what is the value of PrfIHm.x/ ¤ IT .x/g? This
quantity is known as the generalization error, and
the objective is to ensure that it approaches zero
as m!1.

The manner in which the samples are gener-
ated leads to different models of learning. For
instance, if the learner is able to choose the
next sample xmC1 on the basis of the previous
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m labelled samples, which is then passed on to
the oracle for labeling, this is known as “active
learning.” More common is “passive learning,” in
which the sequence of training samples fxi gi�1
is generated at random, in an independent and
identically distributed (i.i.d.) fashion, according
to some probability distribution P . In this case,
even the hypothesis Hm and the generalization
error are random, because they depend on the
randomly generated training samples. This is the
rationale behind the nomenclature “probably ap-
proximately correct.” The hypothesis Hm is not
expected to equal to unknown target concept T
exactly, only approximately. Even that is only
probably true, because in principle it is possible
that the randomly generated training samples
could be totally unrepresentative and thus lead to
a poor hypothesis. If we toss a coin many times,
there is a small but always positive probability
that it could turn up heads every time. As the coin
is tossed more and more times, this probability
becomes smaller, but will never equal zero.

Examples

Example 1 Consider the situation where the con-
cept class consists of all half-planes in R

2, as
indicated in the left side of Fig. 1. Here the
unknown target concept T is some fixed but
unknown half-plane. The symbol T is next to
the boundary of the half-plane, and all points to
the right of the line constitute the target half-
plane. The training samples, generated at random
according some unknown probability distribution
P , are also shown in the figure. The samples that

belong to T are shown as blue rectangles, while
those that do not belong to T are shown as red
dots. Knowing only these labelled samples, the
learner is expected to guess what T might be.

A reasonable approach is to choose some
half-plane that agrees with the data and correctly
classifies the labelled data. For instance, the well-
known support vector machine (SVM) algorithm
chooses the unique half-plane such that the
closest sample to the dividing line is as far as
possible from it; see the paper by Cortes and
Vapnik (1997).

The symbol H denotes the boundary of a hy-
pothesis, which is another half-plane. The shaded
region is the symmetric difference between the
two half-planes. The set T�H is the set of points
that are misclassified by the hypothesis H . Of
course, we do not know what this set is, because
we do not know T . It can be shown that, when-
ever the hypothesisH is chosen to be consistent
in the sense of correctly classifying all labelled
samples, the generalization error goes to zero as
the number of samples approaches infinity.

Example 2 Now suppose the concept class con-
sists of all convex polygons in the unit square,
and let T denote the (unknown) target convex
polygon. This situation is depicted in the right
side of Fig. 1. This time let us assume that the
probability distribution that generates the sam-
ples is the uniform distribution on X . Given a
set of positively and negatively labelled samples
(the same convention as in Example 1), let us
choose the hypothesis H to be the convex hull
of all positively labelled samples, as shown in
the figure. Since every positively labelled sample

T

H

X = [0, 1]2

T
H

a

bLearning Theory, Fig. 1
Examples of learning
problems. (a) Learning
half-planes. (b) Learning
convex polygons
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Learning Theory, Fig. 2
VC dimension illustrations.
(a) Shattering a set of three
elements. (b) Infinite VC
dimension

belongs to T , and T is a convex set, it follows
that H is a subset of T . Moreover, P.T n H/
is the generalization error. It can be shown that
this algorithm also “works” in the sense that the
generalization error goes to zero as the number of
samples approaches infinity.

Vapnik-Chervonenkis Dimension

Given any concept class C, there is a single
integer that offers a measure of the richness of
the class, known as the Vapnik-Chervonenkis (or
VC) dimension, after its originators.

Definition 1 A set S�X is said to be shattered
by a concept class C if, for every subset B�S ,
there is a set A 2 C such that S \ A D B . The
VC dimension of C is the largest integer d such
that there is a finite set of cardinality d that is
shattered by C.

Example 3 It can be shown that the set of half-
planes in R

2 has VC dimension two. Choose a
set S D fx; y; zg consisting of three points that
are not collinear, as in Fig. 2. Then there are
23 D 8 subsets of S . The point is to show that
for each of these eight subsets, there is a half-
plane that contains precisely that subset, nothing
more and nothing less. That this is possible is
shown in Fig. 2. Four out of the eight situations
are depicted in this figure, and the remaining four
situations can be covered by taking the comple-
ment of the half-plane shown. It is also necessary
to show that no set with four or more elements
can be shattered, but that step is omitted; instead

the reader is referred to any standard text such
as Vidyasagar (1997). More generally, it can be
shown that the set of half-planes in R

k has VC
dimension k C 1.

Example 4 The set of convex polygons has infi-
nite VC dimension. To see this, let S be a strictly
convex set, as shown in Fig. 2b. (Recall that a
set is “strictly convex” if none of its boundary
points is a convex combination of other points in
the set.) Choose any finite collection of boundary
points, call it S D fx1; : : : ; xng. If B is a
subset of S , then the convex hull of B does not
contain any other point of S , due to the strict
convexity property. Since this argument holds for
every integer n, the class of convex polygons has
infinite VC dimension.

Two Important Theorems

Out of the many important results in learning
theory, two are noteworthy.

Theorem 1 (Blumer et al. (1989)) A concept
class is distribution-free PAC learnable if and
only if it has finite VC dimension.

Theorem 2 (Benedek and Itai (1991)) Suppose
P is a fixed probability distribution. Then the
concept class C is PAC learnable if and only if,
for every positive number �, it is possible to cover
C by a finite number of balls of radius �, with
respect to the pseudometric dP .

Now let us return to the two examples stud-
ied previously. Since the set of half-planes has
finite VC dimension, it is distribution-free PAC
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learnable. The set of convex polygons can be
shown to satisfy the conditions of Theorem 2
if P is the uniform distribution and is therefore
PAC learnable. However, since it has infinite VC
dimension, it follows from Theorem 1 that it is
not distribution-free PAC learnable.

Summary and Future Directions

This brief entry presents only the most basic
aspects of PAC learning theory. Many more re-
sults are known about PAC learning theory, and
of course many interesting problems remain un-
solved. Some of the known extensions are:
• Learning under an “intermediate” family of

probability distributions P that is not neces-
sarily equal to P�, the set of all distributions
(Kulkarni and Vidyasagar 1997)

• Relaxing the requirement that the algorithm
should work uniformly well for all target
concepts and requiring instead only that it
should work with high probability (Campi
and Vidyasagar 2001)

• Relaxing the requirement that the training
samples are independent of each other
and permitting them to have Markovian
dependence (Gamarnik 2003; Meir 2000) or
ˇ-mixing dependence (Vidyasagar 2003)
There is considerable research in finding al-

ternate sets of necessary and sufficient conditions
for learnability. Unfortunately, many of these
conditions are unverifiable and amount to tauto-
logical restatements of the problem under study.
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rank conditions determine controllability, observ-
ability, and optimality. Lie algebraic methods are
also employed for state-space realization, control
design, and path planning.

Keywords

Baker-Campbell-Hausdorff formula; Chen-Fliess
series; Lie bracket

Definition

This article considers generally nonlinear control
systems (affine in the control) of the form

Px D f0.x/C u1f1.x/C : : : umfm.x/
y D '.x/

(1)

where the state x takes values in R
n, or more

generally in an n-dimensional manifold Mn, the
fi are smooth vector fields, 'WRn 7! R

p is a
smooth output function, and the controls u D
.u1; : : : ; um/W Œ0; T � 7! U are piecewise contin-
uous, or, more generally, measurable functions
taking values in a closed convex subset U � Rm
that contains 0 in its interior.

Lie algebraic techniques refers to analyzing
the system (1) and designing controls and sta-
bilizing feedback laws by employing relations
satisfied by iterated Lie brackets of the system
vector fields fi .

Introduction

Systems of the form (1) contain as a special case
time-invariant linear systems Px D AxCBu; y D
Cx (with constant matrices A 2 R

n�n, B 2
R
n�m, and C 2 R

p�n) that are well-studied and
are a mainstay of classical control engineering.
Properties such as controllability, stabilizability,
observability, and optimal control and various
others are determined by relationships satisfied
by higher-order matrix products of A, B , and C .

Since the early 1970s, it has been well un-
derstood that the appropriate generalization of

this matrix algebra, and, e.g., invariant linear
subspaces, to nonlinear systems is in terms of
the Lie algebra generated by the vector fields fi ,
integral submanifolds of this Lie algebra, and the
algebra of iterated Lie derivatives of the output
function.

The Lie bracket of two smooth vector fields
f; gWM 7! TM is defined as the vector field
Œf; g�WM 7! TM that maps any smooth function
' 2 C1.M/ to the function Œf; g�' D fg' �
gf '.

In local coordinates, if

f .x/ D
nX

iD1
f i .x/

@

@xi
and

g.x/ D
nX

iD1
gi .x/

@

@xi
;

then

Œf; g�.x/ D
nX

i;jD1

�
f j .x/

@gi

@xj
.x/

�gj .x/ @f
i

@xj
.x/

�
@

@xi
:

With some abuse of notation, one may abbreviate
this to Œf; g� D .Dg/f � .Df /g, where f and
g are considered as column vector fields and Df
and Dg denote their Jacobian matrices of partial
derivatives.

Note that with this convention the Lie bracket
corresponds to the negative of the commutator
of matrices: If P; Q 2 R

n�n define, in matrix
notation, the linear vector fields f .x/ D Px and
g.x/ D Qx, then Œf; g�.x/ D .QP � PQ/x D
�ŒP;Q�x.

Noncommuting Flows

Geometrically the Lie bracket of two smooth
vector fields f1 and f2 is an infinitesimal measure
of the lack of commutativity of their flows. For a
smooth vector field f and an initial point x.0/ D
p 2 M , denote by etf p the solution of the
differential equation Px D f .x/ at time t . Then



Lie Algebraic Methods in Nonlinear Control 633

L

Œf1; f2�'.p/ D lim
t!0

1

2t2

�
'

�
e�tf2e�tf1etf2etf1p

�

� '.p// :

As a most simple example, consider parallel
parking a unicycle, moving it sideways without
slipping. Introduce coordinates .x; y; �/ for the
location in the plane and the steering angle. The
dynamics are governed by Px D u1 cos � , Py D
u1 sin � , and P� D u2 where the control u1 is
interpreted as the signed rolling speed and u2 as
the angular velocity of the steering angle. Written
in the form (1), one has f1 D .cos �; sin �; 0/T

and f2 D .0; 0; 1/T . (In this case the drift vector
field f0 � 0 vanishes.) If the system starts at
.0; 0; 0/T , then via the sequence of control actions
of the form turn left, roll forward, turn back, and
roll backwards, one may steer the system to a
point .0;�y; 0/T with �y > 0. This sideways
motion corresponds to the value .0; 1; 0/T of the
Lie bracket Œf1; f2� D .� sin �; cos �; 0/T at the
origin. It encapsulates that steering and rolling do
not commute. This example is easily expanded
to model, e.g., the sideways motion of a car, or
a truck with multiple trailers; see, e.g., Bloch
(2003), Bressan and Piccoli (2007), and Bullo
and Lewis (2005). In such cases longer iterated
Lie brackets correspond to the required more
intricate control actions needed to obtain, e.g., a
pure sideways motion.

In the case of linear systems, if the Kalman
rank condition rankŒB; AB; A2B; : : : An�1B� D
n is not satisfied, then all solutions curves of the
system starting from the same point x.0/ D p are
at all times T > 0 constrained to lie in a proper
affine subspace. In the nonlinear setting the role
of the compound matrix of that condition is taken
by the Lie algebra L D L.f0; f1; : : : fm/ of all
finite linear combinations of iterated Lie brackets
of the vector fields fi . As an immediate conse-
quence of the Frobenius integrability theorem, if
at a point x.0/ D p the vector fields in L span
the whole tangent space, then it is possible to
reach an open neighborhood of the initial point by
concatenating flows of the system (1) that corre-
spond to piecewise constant controls. Conversely,
in the case of analytic vector fields and a compact

set U of admissible control values, the Hermann-
Nagano theorem guarantees that if the dimension
of the subspace L.p/ D ff .p/Wf 2 Lg <
n is not maximal, then all such trajectories are
confined to stay in a lower-dimensional proper
integral submanifold of L through the point p.
For a comprehensive introduction, see, e.g., the
textbooks Bressan and Piccoli (2007), Isidori
(1995), and Sontag (1998).

Controllability

Define the reachable set RT .p/ as the set of all
terminal points x.T I u; p/ at time T of trajecto-
ries of (1) that start at the initial point x.0/ D
p and correspond to admissible controls. Com-
monly known as the Lie algebra rank condi-
tion (LARC), the above condition determines
whether the system is accessible from the point
p, which means that for arbitrarily small time
T > 0, the reachable set RT .p/ has nonempty
n-dimensional interior. For most applications one
desires stronger controllability properties. Most
amenable to Lie algebraic methods, and practi-
cally relevant, is small-time local controllability
(STLC): The system is STLC from p if p lies in
the interior of RT .p/ for every T > 0. In the case
that there is no drift vector field f0, accessibility
is equivalent to STLC. However, in general, the
situation is much more intricate, and a rich liter-
ature is devoted to various necessary or sufficient
conditions for STLC. A popular such condition
is the Hermes condition. For this define the sub-
spaces S1 D spanf.adj f0; fi /W 1 � j � m; j 2
Z

Cg, and recursively SkC1 D spanfŒg1; gk�Wg1 2
S1; gk 2 Skg. Here .ad0f; g/ D g, and
recursively .adkC1f; g/ D Œf; .adkf; g/�. The
Hermes condition guarantees in the case of an-
alytic vector fields and, e.g., U D Œ�1; 1�m
that if the system satisfies the (LARC) and for
every k � 1, S2k.p/ � S2k�1.p/, then the
system is (STLC). For more general conditions,
see Sussmann (1987) and also Kawski (1990) for
a broader discussion.

The importance and value of Lie algebraic
conditions may in large part be ascribed to their
geometric character, their being invariant under
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coordinate changes and feedback. In particular, in
the analytic case, the Lie relations completely de-
termine the local properties of the system, in the
sense that Lie algebra homomorphism between
two systems gives rise to a local diffeomorphism
that maps trajectories to trajectories (Sussmann
1974).

Exponential Lie Series

A central analytic tool in Lie algebraic methods
that takes the role of Taylor expansions in clas-
sical analysis of dynamical system is the Chen-
Fliess series which associates to every admissible
control uW Œ0; T � 7! U a formal power series

CF.u; T / D
X

I

Z T

0

duI �Xi1 : : : Xis (2)

over a set fX0;X1; : : : Xmg of noncommuting
indeterminates (or letters). For every multi-index
I D .i1; i2; : : : ıs/ 2 f0; 1; : : : mgs, s � 0, the
coefficient of XI is the iterated integral defined
recursively

Z T

0

du.I;j / D
Z T

0

�Z t

0

uI
�
duj .t/: (3)

Upon evaluating this series via the substitutions
Xi  � fj , it becomes an asymptotic series for
the propagation of solutions of (1): For fj ; '
analytic, U compact, p in a compact set, and
T � 0 sufficiently small, one has

'.x.t I u; p// D
X

I

Z T

0

duI � .fi1 : : : fis'/ .p/:
(4)

One application of particular interest is to
construct approximating systems of a given
system (1) that preserve critical geometric
properties, but which have an simpler structure.
One such class is that of nilpotent systems,
that is, systems whose Lie algebra L D
L.f0; f1; : : : fm/ is nilpotent, and for which
solutions can be found by simple quadratures.
While truncations of the Chen-Fliess series

never correspond to control systems of the
same form, much work has been done in recent
years to rewrite this series in more useful
formats. For example, the infinite directed
exponential product expansion in Sussmann
(1986) that uses Hall trees immediately may be
interpreted in terms of free nilpotent systems
and consequently helps in the construction
of nilpotent approximating systems. More
recent work, much of it of a combinatorial
algebra nature and utilizing the underlying
Hopf algebras, further simplifies similar
expansions and in particular yields explicit
formulas for a continuous Baker-Campbell-
Hausdorff formula or for the logarithm of
the Chen-Fliess series (Gehrig and Kawski
2008).

Observability and Realization

In the setting of linear systems a well-
defined algebraic sense dual to the concept of
controllability is that of observability. Roughly
speaking the system (1) is observable if
knowledge of the output y.t/ D '.x.t I u; p//
over an arbitrarily small interval suffices to
construct the current state x.t I u; p/ and indeed
the past trajectory x. � I u; p/. In the linear
setting observability is equivalent to the rank
condition rankŒC T ; .CA/T ; : : : ; .CAn�/T � D n

being satisfied. In the nonlinear setting, the place
of the rows of this compound matrix is taken
by the functions in the observation algebra,
which consists of all finite linear combinations of
iterated Lie derivatives fis � � �fi1' of the output
function.

Similar to the Hankel matrices introduced in
the latter setting, in the case of a finite Lie rank,
one again can use the output algebra to construct
realizations in the form of (1) for systems which
are initially only given in terms of input-output
descriptions, or in terms of formal Fliess oper-
ators; see, e.g., Fliess (1980), Gray and Wang
(2002), and Jakubczyk (1986) for further reading.
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Optimal Control

In a well-defined geometric way, conditions for
optimal control are dual to conditions for con-
trollability and thus are directly amenable to
Lie algebraic methods. Instead of considering a
separate functional

J.u/D .x.T I u; p//C
Z T

0

L.t; x.t I u; p/; u.t// dt
(5)

to be minimized, it is convenient for our purposes
to augment the state by, e.g., defining Px0 D 1

and PxnC1 D L.x0; x; u/. For example, in the
case of time-optimal control, one again obtains
an enlarged system of the same form (1); else one
utilizes more general Lie algebraic methods that
also apply to systems not necessarily affine in the
control.

The basic picture for systems with a compact
set U of admissible values of the controls in-
volves the attainable funnel R�T .p/ consisting
of all trajectories of the system (1) starting at
x.0/ D p that correspond to admissible controls.
The trajectory corresponding to an optimal con-
trol u� must at time T lie on the boundary of
the funnel R�T .p/ and hence also at all prior
times (using the invariance of domain property
implied by the continuity of the flow). Hence one
may associate a covector field along such optimal
trajectory that at every time points in the direction
of an outward normal. The Pontryagin Maximum
Principle is a first-order characterization of such
trajectory covector field pairs. Its pointwise max-
imization condition essentially says that if at any
time t0 2 Œ0; T � one replaces the optimal control
u�.�/ by any admissible control variation on an
interval Œt0; t0 C "�, then such variation may be
transported along the flow to yield, in the limit
as " & 0, an inward pointing tangent vector to
the reachable set RT .p/ at x.T I u�; p/. To obtain
stronger higher-order conditions for maximality,
one may combine several such families of control
variations. The effects of such combinations are
again calculated in terms of iterated Lie brackets
of the vector fields fi . Indeed, necessary con-
ditions for optimality, for a trajectory to lie on
the boundary of the funnel R�T .p/, immediately

translate into sufficient conditions for STLC, for
the initial point to lie in the interior of RT .p/,
and vice versa. For recent work employing Lie
algebraic methods in optimality conditions, see,
e.g., Agrachev et al. (2002).

Summary and Future Research

Lie algebraic techniques may be seen as a direct
generalization of matrix linear algebra tools that
have proved so successful in the analysis and de-
sign of linear systems. However, in the nonlinear
case, the known algebraic rank conditions still ex-
hibit gaps between necessary and sufficient con-
ditions for controllability and optimality. Also,
new, not yet fully understood, topological and
resonance obstructions stand in the way of con-
trollability implying stabilizability. Systems that
exhibit special structure, such as living on Lie
groups, or being second order such as typical
mechanical systems, are amenable to further re-
finements of the theory; compare, e.g., the use of
affine connections and the symmetric product in
Bullo et al. (2000). Other directions of ongoing
and future research involve the extension of Lie
algebraic methods to infinite dimensional sys-
tems and to generalize formulas to systems with
less regularity; see, e.g., the work by Rampazzo
and Sussmann (2007) on Lipschitz vector fields,
thereby establishing closer connections with non-
smooth analysis (Clarke 1983) in control.
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LinearMatrix Inequality Techniques
in Optimal Control

Robert E. Skelton
University of California, San Diego, CA, USA

Abstract

LMI (linear matrix inequality) techniques offer
more flexibility in the design of dynamic linear
systems than techniques that minimize a scalar
functional for optimization. For linear state space
models, multiple goals (performance bounds) can
be characterized in terms of LMIs, and these can
serve as the basis for controller optimization via
finite-dimensional convex feasibility problems.
LMI formulations of various standard control
problems are described in this article, including
dynamic feedback stabilization, covariance con-
trol, LQR, H1 control, L1 control, and infor-
mation architecture design.

Keywords

Control system design; Covariance control; H1
control;L1 control; LQR/LQG; Matrix inequal-
ities; Sensor/actuator design

Early Optimization History

Hamilton invented state space models of
nonlinear dynamic systems with his generalized
momenta work in the 1800s (Hamilton 1834,
1835), but at that time the lack of computational
tools prevented broad acceptance of the first-
order form of dynamic equations. With the rapid
development of computers in the 1960s, state
space models evoked a formal control theory
for minimizing a scalar function of control and
state, propelled by the calculus of variations
and Pontryagin’s maximum principle. Optimal
control has been a pillar of control theory for
the last 50 years. In fact, all of the problems
discussed in this article can perhaps be solved
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by minimizing a scalar functional, but a search
is required to find the right functional. Globally
convergent algorithms are available to do just
that for quadratic functionals, but more direct
methods are now available.

Since the early 1990s, the focus for linear
system design has been to pose control problems
as feasibility problems, to satisfy multiple con-
straints. Since then, feasibility approaches have
dominated design decisions, and such feasibility
problems may be convex or not. If the problem
can be reduced to a set of linear matrix inequal-
ities (LMIs) to solve, then convexity is proven.
However, failure to find such LMI formulations
of the problem does not mean it is not convex, and
computer-assisted methods for convex problems
are available to avoid the search for LMIs (see
Camino et al. 2003).

In the case of linear dynamic models of
stochastic processes, optimization methods led
to the popularization of linear quadratic Gaussian
(LQG) optimal control, which had globally
optimal solutions (see Skelton 1988). The first
two moments of the stochastic process (the
mean and the covariance) can be controlled
with these methods, even if the distribution of
the random variables involved is not Gaussian.
Hence, LQG became just an acronym for the
solution of quadratic functionals of control
and state variables, even when the stochastic
processes were not Gaussian. The label LQG
was often used even for deterministic problems,
where a time integral, rather than an expectation
operator, was minimized, with given initial
conditions or impulse excitations. These were
formally called LQR (linear quadratic regulator)
problems. Later the book (Skelton 1988) gave
the formal conditions under which the LQG and
the LQR answers were numerically identical, and
this particular version of LQR was called the
deterministic LQG.

It was always recognized that the quadratic
form of the state and control in the LQG problem
was an artificial goal. The real control goals usu-
ally involved prespecified performance bounds
on each of the outputs and bounds on each chan-
nel of control. This leads to matrix inequalities
(MIs) rather than scalar minimizations. While

it was known early that any stabilizing linear
controller could be obtained by some choice of
weights in an LQG optimization problem (see
Chap. 6 and references in Skelton 1988), it was
not known until the 1980s what particular choice
of weights in LQG would yield a solution to
the matrix inequality (MI) problem. See early
attempts in Skelton (1988), and see Zhu and Skel-
ton (1992) and Zhu et al. (1997) for a globally
convergent algorithm to find such LQG weights
when the MI problem has a solution. Since then,
rather than stating a minimization problem for
a meaningless sum of outputs and inputs, linear
control problems can now be stated simply in
terms of norm bounds on each input vector and/or
each output vector of the system (L2 bounds,
L1 bounds, or variance bounds and covariance
bounds). These feasibility problems are convex
for state feedback or full-order output feedback
controllers (the focus of this elementary intro-
duction), and these can be solved using linear
matrix inequalities (LMIs), as illustrated in this
article. However, the earliest approach to these
MI problems was iterative LQG solutions (to
find the correct weights to use in the quadratic
penalty of the state), as in Skelton (1988), Zhu
and Skelton (1992), and Zhu et al. (1997).

Matrix Inequalities

Let Q be any square matrix. The linear matrix
inequality (LMI) “Q > 0” is just a short-hand
notation to represent a certain scalar inequality.
That is, the matrix notation “Q > 0” means “the
scalar xTQx is positive for all values of x, except
x D 0.” Obviously this is a property of Q, not
x, hence the abbreviated matrix notation Q > 0.
This is called a linear matrix inequality (LMI),
since the matrix unknown Q appears linearly
in the inequality Q > 0. Note also that any
square matrix Q can be written as the sum of
a symmetric matrix Qs D 1

2 .Q C QT/, and a
skew-symmetric matrix Qk D 1

2 .Q � QT/, but
xTQkx D 0, so only the symmetric part of the
matrix Q affects the scalar xTQx. We assume
hereafter without loss of generality that Q is



638 Linear Matrix Inequality Techniques in Optimal Control

symmetric. The notation “Q � 0” means “the
scalar xTQx cannot be negative for any x.”

Lyapunov proved that x.t/ converges to zero
if there exists a matrix Q such that, along the
nonzero trajectory of a dynamic system (e.g., the
system Px D Ax), two scalars have the property,
x.t/TQx.t/ > 0 and d=dt.xT.t/Qx.t// < 0.
This proves that the following statements are all
equivalent:
1. For any initial condition x.0/ of the system
Px D Ax, the state x.t/ converges to zero.

2. All eigenvalues of A lie in the open left half
plane.

3. There exists a matrix Q with the two proper-
ties Q > 0 and QAC ATQ < 0.

4. The set of all quadratic Lyapunov functions
that can be used to prove the stability or
instability of the null solution of Px D Ax
is given by xTQ�1x, where Q is any square
matrix with the two properties of item 3
above.
LMIs are prevalent throughout the fundamen-

tal concepts of control theory, such as control-
lability and observability. For the linear system
example Px D Ax C Bu, y D Cx, the “Ob-
servability Gramian” is the infinite integral Q DR

eATtCTCeAtdt. Furthermore Q > 0 if and only
if .A;C/ is an observable pair, and Q is bounded
only if the observable modes are asymptotically
stable. When it exists, the solution of QA C
ATQ C CTC D 0 satisfies Q > 0 if and only
if the matrix pair .A;C/ is observable.

Likewise the “Controllability Gramian” X DR
eAtBBTeATtdt > 0 if and only if the pair .A;B/

is controllable. If X exists, it satisfies XAT C
AXC BBT D 0, and X > 0 if and only if .A;B/
is a controllable pair. Note also that the matrix
pair .A;B/ is controllable for any A if BBT > 0,
and the matrix pair .A;C/ is observable for any
A if CTC > 0. Hence, the existence of Q > 0
or X > 0 satisfying either .QA C ATQ < 0/ or
.AX C XAT < 0/ is equivalent to the statement
that “all eigenvalues of A lie in the open left half
plane.”

It should now be clear that the set of all
stabilizing state feedback controllers, u D Gx, is
parametrized by the inequalities Q > 0, Q.A C
BG/ C .A C BG/TQ < 0. The difficulty in this

MI is the appearance of the product of the two
unknowns Q and G, so more work is required to
show how to use LMIs to solve this problem.

In the sequel some techniques are borrowed
from linear algebra, where a linear matrix equal-
ity (LME) �Gƒ D ‚ may or may not have
a solution G. For LMEs there are two separate
questions to answer. The first question is “Does
there exist a solution?” and the answer is “if and
only if � �C‚ƒCƒ D ‚.” The second question
is “What is the set of all solutions?” and the
answer is “G D �C‚ƒC C Z � �C�ZƒƒC,
where Z is arbitrary, and the C symbol denotes
Pseudo Inverse.” LMI approaches employ the
same two questions by formulating the necessary
and sufficient conditions for the existence of an
LMI solution and then to parametrize all solu-
tions.

Perhaps the earliest book on LMI control
methods was Boyd et al. (1994), but the results
and notations used herein are taken from Skelton
et al. (1998). Other important LMI papers and
books can give the reader a broader background,
including Iwasaki and Skelton (1994), Gahinet
and Apkarian (1994), de Oliveira et al. (2002),
Li et al. (2008), de Oliveira and Skelton
(2001), Camino et al. (2001, 2003), Boyd and
Vandenberghe (2004), Iwasaki et al. (2000),
Khargonekar and Rotea (1991), Vandenberghe
and Boyd (1996), Scherer (1995), Scherer et al.
(1997), Balakrishnan et al. (1994), Gahinet et al.
(1995), and Dullerud and Paganini (2000).

Control Design Using LMIs

Consider the feedback control system

2
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; (1)

where z is the measurement vector, y is the output
to be controlled, u is the control vector, xp is the
plant state vector, xc is the state of the controller,
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and w is the external disturbance (in some cases
below we treat w as a zero-mean white noise).
We seek to choose the control matrix G to satisfy
the given upper bounds on the output covariance
EŒyyT� � NY, where E represents the steady-state
expectation operator in the stochastic case (i.e.,
when w is white noise), and in the deterministic
case E represents the infinite integral of the ma-
trix ŒyyT�. The math is the same in each case, with
appropriate interpretations of certain matrices.
For a rigorous equivalence of the deterministic
and stochastic interpretations, see Skelton (1988).
By defining the matrices,

x D
	

xp

xc



;

	
Acl Bcl

Ccl Dcl



D

	
A D
C F
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�
M E

�
(2)
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0 I
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C D �
Cp 0

�
; H D �

By 0
�
; F D Dy; (4)

one can write the closed-loop system dynamics in
the form

	Px
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Acl Bcl

Ccl Dcl


 	
x
w



: (5)

Often it is of interest to characterize the set
of all controllers that can satisfy performance
bounds on both the outputs and inputs, EŒyyT� �
NY and EŒuuT� � NU, and we call these covari-
ance control problems. But without prespecified
performance bounds NY; NU, one can require stabil-
ity only. Such examples are given below.

Many Control Problems Reduce to the
Same LMI

Let the left (right) null spaces of any matrix B
be defined by matrices UB (VB), where UT

BB D
0, UT

BUB > 0, (BVB D 0, VT
BVB > 0). For

any given matrices � ;ƒ;‚, Chap. 9 of the book
(Skelton et al. 1998) provides all G which solve

�GƒC .�Gƒ/T C‚ < 0; (6)

and proves that there exists such a matrix G if and
only if the following two conditions hold:

UT
�‚U � < 0; or � �T > 0; (7)

VT
ƒ‚V ƒ < 0; or ƒTƒ > 0: (8)

If G exists, then one set of such G is given by

GD�	�TˆƒT.ƒˆƒT/�1;ˆD.	� �T�‚/�1;
(9)

where 	 > 0 is an arbitrary scalar such that

ˆ D .	� �T �‚/�1 > 0: (10)

All G which solve the problem are given by
Theorem 2.3.12 in Skelton et al. (1998). As
elaborated in Chap. 9 of Skelton et al. (1998),
17 different control problems (using either state
feedback or full-order dynamic controllers) all re-
duce to this same mathematical problem. That is,
by defining the appropriate ‚;ƒ;� , a very large
number of different control problems, including
the characterization of all stabilizing controllers,
covariance control,H -infinity control, L-infinity
control, LQG control, and H2 control, can be re-
duced to the same matrix inequality (13). Several
examples from Skelton et al. (1998) follow.

Stabilizing Control
There exists a controller G that stabilizes the
system (1) if and only if (7) and (8) hold, where
the matrices are defined by

�
� ƒT ‚

� D �
B XMT AXC XAT�

:

(11)

One can also write such results in another way,
as in Corollary 6.2.1 of Skelton et al. (1998,
p. 135): There exists a control of the form u D
Gx that can stabilize the system Px D Ax C Bu
if and only if there exists a matrix X > 0
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satisfying B?.AX C XAT/.B?/T < 0, where
B? denotes the left null space of B. In this case
all stabilizing controllers may be parametrized by
G D �BTP C LQ1=2, for any Q > 0 and a
P > 0 satisfying PAC ATP � PBBTPCQ D 0.
The matrix L is any matrix that satisfies the norm
bound kLk < 1. Youla et al. (1976) provided
a parametrization of the set of all stabilizing
controllers, but the parametrization was infinite
dimensional (as it did not impose any restriction
on the order or form of the controller). So for
finite calculations one had to truncate the set to a
finite number before optimization or stabilization
started. As noted above, on the other hand, all
stabilizing state feedback controllers G can be
parametrized in terms of an arbitrary but finite-
dimensional norm-bounded matrix L. Similar re-
sults apply for the dynamic controllers of any
fixed order (see Chap. 6 in Skelton et al. 1998).

Covariance Upper Bound Control
In the system (1), suppose that Dy D 0, By D 0
and that w is zero-mean white noise with intensity
I. Let a required upper bound Y > 0 on the
steady-state output covariance Y D EŒyyT� be
given. The following statements are equivalent:
(i) There exists a controller G that solves the

covariance upper bound control problem
Y < Y.

(ii) There exists a matrix X > 0 such that Y D
CXCT < Y and (7) and (8) hold, where the
matrices are defined by

�
� ƒT ‚

�

D
	

B XMT AXC XAT D
0 ET DT �I




(12)

(‚ occupies the last two columns).
Proof is provided by Theorem 9.1.2 in Skelton
et al. (1998).

Linear Quadratic Regulator
Consider the linear time-invariant system (1).
Suppose that Dy D 0, Dz D 0 and that w is
the impulsive disturbance w.t/ D w0ı.t/. Let
a performance bound 
 > 0 be given, where

the required performance is to keep the integral
squared output (kyk2

L2) less than the prespecified
value kykL2 < 
 for any vector w0 such that
wT

0 w0 � 1, and x0 D 0. This problem is labeled
linear quadratic regulator (LQR). The following
statements are equivalent:
(i) There exists a controller G that solves the

LQR problem.
(ii) There exists a matrix Y > 0 such that
kDTYDk < 
2 and (7) and (8) hold, where
the matrices are defined by

�
� ƒT ‚

�

D
	

YB MT YAC ATY MT

H 0 M �I



: (13)

Proof is provided by Theorem 9.1.3 in Skelton
et al. (1998).

H1 Control
LMI techniques provided the first papers to solve
the generalH1 problem, without any restrictions
on the plant. See Iwasaki and Skelton (1994) and
Gahinet and Apkarian (1994).

Let the closed-loop transfer matrix from w to
y with the controller in (1) be denoted by T.s/:

T.s/ D Ccl.sI � Acl/
�1Bcl C Dcl: (14)

The H1 control problem can be defined as fol-
lows:

Let a performance bound 
 > 0 be given. Deter-
mine whether or not there exists a controller G in
(1) which asymptotically stabilizes the system and
yields the closed-loop transfer matrix (14) such that
the peak value of the frequency response is less
than 
 . That is, kTkH

1

D sup kT.j!/k < 
 .

For theH1 control problem, we have the follow-
ing result. Let a requiredH1 performance bound

 > 0 be given. The following statements are
equivalent:
(i) A controller G solves the H1 control prob-

lem.
(ii) There exists a matrix X > 0 such that (7)

and (8) holds, where
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�
� ƒT ‚

�

D
2

4
B XMT AXC XAT XCT D
H 0 CX �
I F
0 ET DT FT �
I

3

5

(15)

(‚ occupies the last three columns).
Proof is provided by Theorem 9.1.5 in Skelton
et al. (1998).

L1 Control
The peak value of the frequency response is
controlled by the aboveH1 controller. A similar
theorem can be written to control the peak in the
time domain.

Define sup y.t/Ty.t/ D kyk2
L1, and let the

statement kykL1 < 
 mean that the peak value
of y.t/Ty.t/ is less than 
2. Suppose that Dy D 0
and By D 0. There exists a controller G which
maintains kykL1 < 
 in the presence of any
energy-bounded input w.t/ (i.e.,

R 1
0

wTwdt � 1)
if and only if there exists a matrix X > 0 such that
CXCT < 
2I and (7) and (8) hold, where

�
� ƒT ‚

�

D
	

B XMT AXC XAT D
0 ET DT �
I



:

(16)

Proof is provided by Theorem 9.1.4 in Skelton
et al. (1998).

Information Architecture in
Estimation and Control Problems

In the typical “control problem” that occupies
most research literature, the sensors and actuators
have already been selected. Yet the selection of
sensors and actuators and their locations greatly
affect the ability of the control system to do its
job efficiently. Perhaps in one location a high-
precision sensor is needed, and in another loca-
tion high precision is not needed, and paying for
high precision in that location would therefore
be a waste of resources. These decisions must be
influenced by the control dynamics which are yet

to be designed. How does one know where to ef-
fectively spend money to improve the system? To
answer this question, we must optimize the infor-
mation architecture jointly with the control law.

Let us consider the problem of selecting the
control law jointly with the selection of the
precision (defined here as the inverse of the
noise intensity) of each actuator/sensor, subject
to the constraint of specified upper bounds on the
covariance of output error and control signals,
and specified upper bounds on the sensor/actuator
cost. We assume the cost of these devices is
proportional to their precision (i.e., the cost is
equal to the price per unit of precision, times
the precision). Traditionally, with full-order
controllers, and prespecified sensor/actuator
instruments (with specified precisions); this is a
well-known solved convex problem (which
means it can be converted to an LMI problem
if desired), see Chap. 6 of Skelton et al. (1998). If
we enlarge the domain of the freedom to include
sensor/actuator precisions, it is not obvious
whether the feasibility problem is convex or
not. The following shows that this problem of
including the sensor/actuator precisions within
the control design problem is indeed convex
and therefore completely solved. The proof is
provided in Li et al. (2008).

Consider the linear control system (1)–(5).
Assume that the cost of sensors and actuators is
proportional to their precision, which we herein
define to be the inverse of the noise intensity (or
variance, in the discrete-time case). So if the price
per unit of precision of the i -th sensor/actuator
is Pii, and if the variance (or intensity) of the
noise associated with the i -th sensor/actuator
is Wii , then the total cost of all sensors and
actuators is

P
PiiW

�1
i i , or simply tr.PW�1/,

where P D diag.Pii / and W�1 D diag.W �1
i i /.

Consider the control system (1). Suppose that

Dy D 0, By D 0, w D �
wT

s wT
a

�T
is the zero-

mean sensor/actuator noise, Dp D Œ0 Da� and
Dz D ŒDs 0�. If the N$ represents the allowed upper
bound on sensor/actuator costs, there exists a
dynamic controller G that satisfies the constraints

EŒuuT� < NU; EŒyyT� < NY; tr.PW�1/ < N$
(17)



642 Linear Matrix Inequality Techniques in Optimal Control

in the presence of sensor/actuator noise with
intensity diag.Wii / D W (which like G should
be considered a design variable not fixed
a priori) if and only if there exist matrices
L;F;Q;X;Z;W�1 such that

tr.PW�1/ < N$ (18)

2

4
NY CpX Cp

.CpX/T X I
Cp

T I Z

3

5>0;

2

4
NU L 0

LT X I
0 I Z

3

5 >0;

	
ˆ11 ˆT

21

ˆ21 �W�1



< 0; (19)

ˆ21 D
	

Da 0
ZDa FDs



;

� D
	

ApXC BpL Ap

Q ZAp C FMp



;

ˆ11 D�C �T: (20)

Note that the matrix inequalities (18)–(20)
are LMIs in the collection of variables
.L;F;Q;X;Z;W�1/, whereby joint con-
trol/sensor/actuator design is a convex problem.

Assume a solution .L;F;Q;X;Z;W/ is found
for the LMIs (18)–(20). Then the problem (17) is
solved by the controller

G D
	

0 I
V�1

l �V�1
l ZBp


 	
Q � ZApX F

L 0




	
0 V�1

r

I �MpXV�1
r



; (21)

where Vl and Vr are left and right factors of the
matrix I � YX (which can be found from the
singular value decomposition I�YX D U†VT D
.U†1=2/.†1=2VT/ D .Vl/.Vr)).

To emphasize the theme of this article, to
relate optimization to LMIs, we note that three
optimization problems present themselves in the
above problem with three constraints: control
effort NU, output performance NY, and instrument
costs N$. To solve optimization problems, one can

fix any two of these prespecified upper bounds
and iteratively reduce the level set value of the
third “constraint” until feasibility is lost. This
process minimizes the resource expressed by the
third constraint, while enforcing the other two
constraints.

As an example, if cost is not a concern, one
can always set large limits for N$ and discover the
best assignment of sensor/actuator precisions for
the specified performance requirements. These
precisions produced by the algorithm are the val-
ues W �1

i i , produced from the solution (18)–(20),
where the observed rankings W �1

i i > W �1
jj >

W �1
kk > : : : indicate which sensors or actuators

are most critical to the required performance
goals . NU; NY; N$/. If any precision W �1

nn is essen-
tially zero, compared to other required precisions,
then the math is asserting that the information
from this sensor (n) is not important for the
control objectives specified, or the control signals
through this actuator channel (n) are ineffective
in controlling the system to these specifications.
This information leads us to a technique for
choosing the best sensor actuators and their lo-
cation.

The previous discussion provides the preci-
sions (W �1

i i ) required of each sensor and each
actuator in the system. Our final application of
this theory locates sensors and actuators in a
large-scale system, by discarding the least effec-
tive ones. Suppose we solve any of the above
feasibility problems, by starting with the entire
admissible set of sensors and actuators (without
regard to cost). For example, in a flexible struc-
ture control problem we might not know whether
to place a rate sensor or displacement sensors at
a given location, so we add both. We might not
know whether to use torque or force actuators, so
we add both. We fill up the system with all the
possibilities we might want to consider, and let
the above precision rankings (available after the
above LMI problem is solved) reveal how much
precision is needed at each location and at each
sensor/actuator. If there is a large gap in the pre-
cisions required (say W �1

11 > W �1
22 > W �1

33 >>

: : : W �1
nn ), then delete the sensor/actuator n and

repeat the LMI problem with one less sensor or
actuator. Continue deleting sensors/actuators in
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this manner until feasibility of the problem is
lost. Then this algorithm, stopping at the previous
iteration, has selected the best distribution of
sensors/actuators for solving the specific prob-
lem specified by the allowable bounds (N$; NU; NY).
The most important contribution of the above
algorithm has been to extend control theory to
solve system design problems that involve more
than just deigning control gains. This enlarges the
set of solved linear control problems, from solu-
tions of linear controllers with sensors/actuators
prespecified to solutions which specify the sen-
sor/actuator requirements jointly with the control
solution.

Summary

LMI techniques provide more powerful tools
for designing dynamic linear systems than
techniques that minimize a scalar functional for
optimization, since multiple goals (bounds) can
be achieved for each of the outputs and inputs.
Optimal control has been a pillar of control theory
for the last 50 years. In fact, all of the problems
discussed in this article can perhaps be solved
by minimizing a scalar functional, but a search
is required to find the right functional. Globally
convergent algorithms are available to do just
that for quadratic functionals. But more direct
methods are now available (since the early 1990s)
for satisfying multiple constraints. Since then,
feasibility approaches have dominated design
decisions (at least for linear systems), and such
feasibility problems may be convex or not. If
the problem can be reduced to a set of LMIs
to solve, then convexity is proven. However,
failure to find such LMI formulations of the
problem does not mean it is not convex, and
computer-assisted methods for convex problems
are available to avoid the search for LMIs (see
Camino et al. 2003). Optimization can also be
achieved with LMI methods by reducing the
level set for one of the bounds, while maintaining
all the other bounds. This level set is reduced
iteratively, between convex (LMI) solutions,
until feasibility is lost. A most amazing fact is
that most of the common linear control design

problems all reduce to exactly the same matrix
inequality problem (6). The set of such equivalent
problems includes LQR, the set of all stabilizing
controllers, the set of all H1 controllers, and the
set of all L1 controllers. The discrete and robust
versions of these problems are also included in
this equivalent set; 17 control problems have
been found to be equivalent to LMI problems.

LMI techniques extend the range of
solvable system design problems beyond just
control design. By integrating information
architecture and control design, one can
simultaneously choose the control gains and
the precision required of all sensor/actuators to
satisfy the closed-loop performance constraints.
These techniques can be used to select the
information (with precision requirements)
required to solve a control or estimation problem,
using the best economic solution (minimal
precision). For a more complete discussion of
LMI problems in control, read Dullerud and
Paganini (2000), de Oliveira et al. (2002), Li
et al. (2008), de Oliveira and Skelton (2001),
Gahinet and Apkarian (1994), Iwasaki and
Skelton (1994), Camino et al. (2001, 2003),
Skelton et al. (1998), Boyd and Vandenberghe
(2004), Boyd et al. (1994), Iwasaki et al. (2000),
Khargonekar and Rotea (1991), Vandenberghe
and Boyd (1996), Scherer (1995), Scherer et al.
(1997), Balakrishnan et al. (1994), and Gahinet
et al. (1995).
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Linear Quadratic Optimal Control
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Abstract

Linear quadratic optimal control is a collective
term for a class of optimal control problems
involving a linear input-state-output system
and a cost functional that is a quadratic form
of the state and the input. The aim is to
minimize this cost functional over a given
class of input functions. The optimal input
depends on the initial condition, but can be
implemented by means of a state feedback
control law independent of the initial condition.
Both the feedback gain and the optimal cost can
be computed in terms of solutions of Riccati
equations.

Keywords

Algebraic Riccati equation; Finite horizon;
Infinite horizon; Linear systems; Optimal control;
Quadratic cost functional; Riccati differential
equation
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Introduction

Linear quadratic optimal control is a generic
term that collects a number of optimal control
problems for linear input-state-output systems in
which a quadratic cost functional is minimized
over a given class of input functions. This func-
tional is formed by integrating a quadratic form
of the state and the input over a finite or an infi-
nite time interval. Minimizing the energy of the
output over a finite or infinite time interval can be
formulated in this framework and in fact provides
a major motivation for this class of optimal con-
trol problems. A common feature of the solutions
to the several versions of the problem is that the
optimal input functions can be given in the form
of a linear state feedback control law. This makes
it possible to implement the optimal controllers
as a feedback loop around the system. Another
common feature is that the optimal value of the
cost functional is a quadratic form of the initial
condition on the system. This quadratic form is
obtained by taking the appropriate solution of a
Riccati differential equation or algebraic Riccati
equation associated with the system.

Systems with Inputs and Outputs

Consider the continuous-time, linear time-
invariant input-output system in state space form
represented by

Px.t/ D Ax.t/CBu.t/; z.t/ D Cx.t/CDu.t/:
(1)

This system will be referred to as †. In (1),
A; B; C , and D are maps between suitable
spaces (or matrices of suitable dimensions) and
the functions x, u, and z are considered to be
defined on the real axis R or on any subinterval
of it. In particular, one often assumes the domain
of definition to be the nonnegative part of R. The
function u is called the input, and its values are
assumed to be given from outside the system.
The class of admissible input functions will be
denoted U. Often, U will be the class of piecewise

continuous or locally integrable functions, but for
most purposes, the exact class from which the
input functions are chosen is not important. We
will assume that input functions take values in an
m-dimensional space U , which we often identify
with R

m. The variable x is called the state
variable and it is assumed to take values in an n-
dimensional space X . The space X will be called
the state space. It will usually be identified with
R
n. Finally, z is called the to be controlled output

of the system and takes values in a p-dimensional
space Z , which we identify with R

p . The solution
of the differential equation of† with initial value
x.0/ D x0 will be denoted as xu.t; x0/. It can be
given explicitly using the variation-of-constants
formula (see Trentelman et al. 2001, p. 38). The
set of eigenvalues of a given matrix M is called
the spectrum of M and is denoted by �.M/. The
system (1) is called stabilizable if there exists a
map (matrix of suitable dimensions) F such that
�.ACBF / 	 C

�. Here,C� denotes the open left
half complex plane, i.e., f� 2 C j Re.�/ < 0g.
We often express this property by saying that the
pair .A;B/ is stabilizable.

The Linear Quadratic Optimal Control
Problem

Assume that our aim is to keep all components
of the output z.t/ as small as possible, for all
t � 0. In the ideal situation, with initial state
x.0/ D 0, the uncontrolled system (with control
input u D 0) evolves along the stationary solution
x.t/ D 0. Of course, the output z.t/ will then
also be equal to zero for all t . If, however, at
time t D 0 the state of the system is perturbed
to, say, x.0/ D x0, with x0 ¤ 0, then the
uncontrolled system will evolve along a state
trajectory unequal to the stationary zero solution,
and we will get z.t/ D CeAtx0. To remedy this,
from time t D 0 on, we can apply an input
function u, so that for t � 0 the corresponding
output becomes equal to z.t/ D Cxu.t; x0/ C
Du.t/. Keeping in mind that we want the output
z.t/ to be as small as possible for all t � 0,
we can measure its size by the quadratic cost
functional
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J.x0; u/ D
Z 1

0

kz.t/k2 dt; (2)

where k � k denotes the Euclidean norm. Our
aim to keep the values of the output as small as
possible can then be expressed as requiring this
integral to be as small as possible by suitable
choice of input function u. In this way we arrive
at the linear quadratic optimal control problem:

Problem 1 Consider the system † W Px.t/ D
Ax.t/ C Bu.t/, z.t/ D Cx.t/ C Du.t/. Deter-
mine for every initial state x0 an input u 2 U (a
space of functions Œ0;1/! U) such that

J.x0; u/ WD
Z 1

0

kz.t/k2 dt (3)

is minimal. Here z.t/ denotes the output trajec-
tory zu.t; x0/ of † corresponding to the initial
state x0 and input function u.

Since the system is linear and the integrand in
the cost functional is a quadratic function of z,
the problem is called linear quadratic. Of course,
kzk2 D x>C>Cx C 2u>D>Cx C u>D>Du,
so the integrand can also be considered as a
quadratic function of .x; u/. The convergence of
the integral in (3) is of course a point of concern.
Therefore, one often considers the corresponding
finite-horizon problem in a preliminary investiga-
tion. In this problem, a final time T is given and
one wants to minimize the integral

J.x0; u; T / WD
Z T

0

kz.t/k2 dt: (4)

In contrast to this, the first problem above is
sometimes called the infinite horizon problem.
An important issue is also the convergence of
the state. Obviously, convergence of the integral
does not always imply the convergence to zero of
the state. Therefore, distinction is made between
the problem with zero and with free endpoint.
Problem 1 as stated is referred to as the problem
with free endpoint. If one restricts the inputs u
in the problem to those for which the resulting
state trajectory tends to zero, one speaks about
the problem with zero endpoint. Specifically:

Problem 2 In the situation of Problem 1, deter-
mine for every initial state x0 an input u 2 U such
that xu.t; x0/ ! 0 .t ! 1/ and such that under
this condition, J.x0; u/ is minimized.

In the literature various special cases of these
problems have been considered, and names have
been associated to these special cases. In partic-
ular, Problems 1 and 2 are called regular if the
matrixD is injective, equivalently,D>D > 0. If,
in addition, C>D D 0 and D>D D I , then the
problems are said to be in standard form. In the
standard case, the integrand in the cost functional
reduces to kzk2 D x>C>Cx C u>u. We often
write Q D C>C . The standard case is a special
case, which is not essentially simpler than the
general regular problem, but which gives rise to
simpler formulas. The general regular problem
can be reduced to the standard case by means of
a suitable feedback transformation.

The Finite-Horizon Problem

The finite-horizon problem in standard from is
formulated as follows:

Problem 3 Given the system Px.t/ D Ax.t/ C
Bu.t/, a final time T > 0, and symmetric
matrices N and Q such that N � 0 and Q � 0,
determine for every initial state x0 a piecewise
continuous input function u W Œ0; T � ! U such
that the integral

J.x0; u; T / WD
R T
0
x.t/>Qx.t/C u.t/>u.t/ dt

Cx.T />Nx.T / (5)

is minimized.

In this problem, we have introduced a weight
on the final state, using the matrix N . This
generalization of the problem does not give rise
to additional complications.

A key ingredient in solving this finite-horizon
problem is the Riccati differential equation asso-
ciated with the problem:

PP.t/ D A>P.t/C P.t/A�P.t/BB>P.t/CQ;
P.0/ D N: (6)
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This is a quadratic differential equation on the
interval Œ0;1� in terms of the matrices A, B ,
and Q, and with initial condition given by the
weight matrix N on the final state. The unknown
in the differential equation is the matrix valued
function P.t/. The following theorem solves the
finite-horizon problem. It states that the Riccati
differential equation with initial condition (6) has
a unique solution on Œ0;1/, that the optimal
value of the cost functional is determined by the
value of this solution at time T , and that there
exists a unique optimal input that is generated by
a time-varying state feedback control law:

Theorem 1 Consider Problem 3. The following
properties hold:
1. The Riccati differential equation with initial

value (6) has a unique solution P.t/ on
Œ0;1/. This solution is symmetric and positive
semidefinite for all t � 0.

2. For each x0 there is exactly one optimal input
function, i.e., a piecewise continuous func-
tion u� on Œ0; T � such that J.x0; u�; T / D
J �.x0; T / WD inffJ.x0; u; T / j u 2 Ug. This
optimal input function u� is generated by the
time-varying feedback control law

u.t/ D �B>P.T � t/x.t/ .0 � t � T /:
(7)

3. For each x0, the minimal value of the cost
functional equals

J �.x0; T / D x0>P.T /x0:

4. If N D 0, then the function t 7! P.t/ is an
increasing function in the sense that P.t/ �
P.s/ is positive semidefinite for t � s.

The Infinite-Horizon Problemwith
Free Endpoint

We consider the situation as described in Theo-
rem 1 with N D 0. An obvious conjecture is
that x0>P.T /x0 converges to the minimal cost
of the infinite-horizon problem as T ! 1. The
convergence of x0>P.T /x0 for all x0 is equiva-
lent to the convergence of the matrix P.T / for

T !1 to some matrix P�. Such a convergence
does not always take place. In order to achieve
convergence, we make the following assumption:
for every x0, there exists an input u for which the
integral

J.x0; u/ WD
Z 1

0

x.t/>Qx.t/C u.t/>u.t/ dt

(8)

converges, i.e., for which the cost J.x0; u/ is fi-
nite. Obviously, for the problem to make sense for
all x0, this condition is necessary. It is easily seen
that the stabilizability of .A;B/ is a sufficient
condition for the above assumption to hold (not
necessary, take, e.g., Q D 0). Take an arbitrary
initial state x0 and assume that Nu is a function
such that the integral (8) is finite. We have for
every T > 0 that

x0
>P.T /x0 � J.x0; Nu; T / � J.x0; Nu/;

which implies that for every x0, the expression
x0

>P.T /x0 is bounded. This implies that P.T /
is bounded. SinceP.T / is increasing with respect
to T , it follows that P� WD limT!1 P.T /

exists. Since P satisfies the differential equa-
tion (6), it follows that also PP .t/ has a limit as
t !1. It is easily seen that this latter limit must
be zero. Hence, P D P� satisfies the following
equation:

A>P C PA � PBB>P CQ D 0: (9)

This is called the algebraic Riccati equation
(ARE). The solutions of this equation are exactly
the constant solutions of the Riccati differential
equation. The previous consideration shows that
the ARE has a positive semidefinite solution
P�. The solution is not necessarily unique, not
even with the extra condition that P � 0.
However, P� turns out to be the smallest real
symmetric positive semidefinite solution of the
ARE.

The following theorem now establishes a com-
plete solution to the regular standard form version
of Problem 1:
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Theorem 2 Consider the system Px.t/ D
Ax.t/C Bu.t/ together with the cost functional

J.x0; u/ WD
Z 1

0

x.t/>Qx.t/C u.t/>u.t/ dt;

with Q � 0. Factorize Q D C>C . Then, the
following statements are equivalent:
1. For every x0 2 X , there exists u 2 U such that
J.x0; u/ <1.

2. The ARE (9) has a real symmetric positive
semidefinite solution P .

Assume that one of the above conditions holds.
Then, there exists a smallest real symmetric pos-
itive semidefinite solution of the ARE, i.e., there
exists a real symmetric solution P� � 0 such
that for every real symmetric solution P � 0, we
have P� � P . For every x0, we have

J �.x0/ WD inffJ.x0; u/ j u 2 Ug D x0>P�x0:

Furthermore, for every x0, there is exactly one
optimal input function, i.e., a function u� 2 U
such that J.x0; u�/ D J �.x0/. This optimal input
is generated by the time-invariant feedback law

u.t/ D �B>P�x.t/:

The Infinite-Horizon Problemwith
Zero Endpoint

In addition to the free endpoint problem, we con-
sider the version of the linear quadratic problem
with zero endpoint. In this case the aim is to
minimize for every x0 the cost functional over all
inputs u such that xu.t; x0/ ! 0 (t ! 1). For
each x0 such u exists if and only if the pair .A;B/
is stabilizable. A solution to the regular standard
form version of Problem 2 is stated next:

Theorem 3 Consider the system Px.t/ D
Ax.t/C Bu.t/ together with the cost functional

J.x0; u/ WD
Z 1

0

x.t/>Qx.t/C u.t/>u.t/ dt;

with Q � 0. Assume that .A;B/ is stabilizable.
Then:
1. There exists a largest real symmetric solution

of the ARE, i.e., there exists a real symmetric
solution PC such that for every real symmet-
ric solution P , we have P � PC. PC is
positive semidefinite.

2. For every initial state x0, we have

J �
0 .x0/ D x0>PCx0:

3. For every initial state x0, there exists an op-
timal input function, i.e., a function u� 2
U with x.1/ D 0 such that J.x0; u�/ D
J �
0 .x0/ if and only if every eigenvalue of A on

the imaginary axis is .Q;A/ observable, i.e.,

rank

�
A � �I
Q

�
D n for all � 2 �.A/ with

Re.�/ D 0.
Under this assumption we have:

4. For every initial state x0, there is exactly one
optimal input function u�. This optimal input
function is generated by the time-invariant
feedback law

u.t/ D �B>PCx.t/:

5. The optimal closed-loop system Px.t/ D .A �
BB>PC/x.t/ is stable. In fact, PC is the
unique real symmetric solution of the ARE for
which �.A � BB>PC/ 	 C

�.

Summary and Future Directions

Linear quadratic optimal control deals with find-
ing an input function that minimizes a quadratic
cost functional for a given linear system. The
cost functional is the integral of a quadratic form
in the input and state variable of the system. If
the integral is taken over, a finite time interval
the problem is called a finite-horizon problem,
and the optimal cost and optimal state feedback
gain can be expressed in terms of the solution of
an associated Riccati differential equation. If we
integrate over an infinite time interval, the prob-
lem is called an infinite-horizon problem. The
optimal cost and optimal feedback gain for the
free endpoint problem can be found in terms of
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the smallest nonnegative real symmetric solution
of the associated algebraic Riccati equation. For
the zero endpoint problem, these are given in
terms of the largest real symmetric solution of the
algebraic Riccati equation.
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Recommended Reading

The linear quadratic regulator problem and the
Riccati equation were introduced by R.E. Kalman
in the early 1960s (see Kalman 1960). Extensive
treatments of the problem can be found in the
textbooks Brockett (1969), Kwakernaak and
Sivan (1972), and Anderson and Moore (1971).
For a detailed study of the Riccati differential
equation and the algebraic Riccati equation, we
refer to Wonham (1968). Extensions of the linear
quadratic regulator problem to linear quadratic
optimization problems, where the integrand
of the cost functional is a possibly indefinite
quadratic function of the state and input variable,
were studied in the classical paper of Willems
(1971). A further reference for the geometric
classification of all real symmetric solutions
of the algebraic Riccati equation is Coppel
(1974). For the question what level of system
performance can be obtained if, in the cost
functional, the weighting matrix of the control
input is singular or nearly singular leading to
singular and nearly singular linear quadratic
optimal control problems and “cheap control”
problems, we refer to Kwakernaak and Sivan
(1972). An early reference for a discussion on
the singular problem is the work of Clements and
Anderson (1978). More details can be found
in Willems (1971) and Schumacher (1983).
In singular problems, in general one allows
for distributions as inputs. This approach was

worked out in detail in Hautus and Silverman
(1983) and Willems et al. (1986). For a more
recent reference, including an extensive list
of references, we refer to the textbook of
Trentelman et al. (2001).

Bibliography

Anderson BDO, Moore JB (1971) Linear optimal control.
Prentice Hall, Englewood Cliffs

Brockett RW (1969) Finite dimensional linear systems.
Wiley, New York

Clements DJ, Anderson BDO (1978) Singular optimal
control: the linear quadratic problem. Volume 5 of
lecture notes in control and information sciences.
Springer, New York

Coppel WA (1974) Matrix quadratic equations. Bull Aust
Math Soc 10:377–401

Hautus MLJ, Silverman LM (1983) System structure and
singular control. Linear Algebra Appl 50:369–402

Kalman RE (1960) Contributions to the theory of optimal
control. Bol Soc Mat Mex 5:102–119

Kwakernaak H, Sivan R (1972) Linear optimal control
theory. Wiley, New York

Schumacher JM (1983) The role of the dissipation ma-
trix in singular optimal control. Syst Control Lett
2:262–266

Trentelman HL, Hautus MLJ, Stoorvogel AA (2001) Con-
trol theory for linear systems. Springer, London

Willems JC (1971) Least squares stationary optimal con-
trol and the algebraic Riccati equation. IEEE Trans
Autom Control 16:621–634

Willems JC, Kitapçi A, Silverman LM (1986) Singular op-
timal control: a geometric approach. SIAM J Control
Optim 24:323–337

Wonham WM (1968) On a matrix Riccati equation
of stochastic control. SIAM J Control Optim 6(4):
681–697

Linear Quadratic Zero-Sum
Two-Person Differential Games

Pierre Bernhard
INRIA-Sophia Antipolis-Méditerranée, Sophia
Antipolis, France

Abstract

As in optimal control theory, linear quadratic
(LQ) differential games (DG) can be solved,
even in high dimension, via a Riccati equation.

http://dx.doi.org/10.1007/978-1-4471-5058-9_202
http://dx.doi.org/10.1007/978-1-4471-5058-9_166
http://dx.doi.org/10.1007/978-1-4471-5058-9_204
http://dx.doi.org/10.1007/978-1-4471-5058-9_196


650 Linear Quadratic Zero-Sum Two-Person Differential Games

However, contrary to the control case, existence
of the solution of the Riccati equation is not
necessary for the existence of a closed-loop
saddle point. One may “survive” a particular,
nongeneric, type of conjugate point. An
important application of LQDGs is the so-called
H1-optimal control, appearing in the theory of
robust control.

Keywords

Differential games; Finite horizon; H-infinity
control; Infinite horizon

Perfect StateMeasurement

Linear quadratic differential games are a spe-
cial case of differential games (DG). See the
article � Pursuit-Evasion Games and Zero-Sum
Two-Person Differential Games. They were first
investigated by Ho et al. (1965), in the context
of a linearized pursuit-evasion game. This sub-
section is based upon Bernhard (1979, 1980). A
linear quadratic DG is defined as

Px D Ax C BuCDv ; x.t0/ D x0 ;

with x 2 R
n, u 2 R

m, v 2 R
`, u.�/ 2

L2.Œ0; T �;Rm/, v.�/ 2 L2.Œ0; T �;R`/. Final time
T is given, there is no terminal constraint, and
using the notation xtKx D kxk2K ,

J.t0; x0I u.�/; v.�// D kx.T /k2K C
Z T

t0

.xt ut vt /

0

B
@

Q S1 S2

St1 R 0

St2 0 �

1

C
A

0

@
x

u
v

1

A dt :

The matrices of appropriate dimensions,A,B ,D,
Q, Si ,R, and  , may all be measurable functions
of time. R and  must be positive definite with
inverses bounded away from zero. To get the most
complete results available, we assume also thatK
and Q are nonnegative definite, although this is

only necessary for some of the following results.
Detailed results without that assumption were
obtained by Zhang (2005) and Delfour (2005).
We chose to set the cross term in uv in the
criterion null; this is to simplify the results and
is not necessary. This problem satisfies Isaacs’
condition (see article DG) even with nonzero
such cross terms.

Using the change of control variables

u D Qu � R�1S t1x ; v D Qv C �1S t2x ;

yields a DG with the same structure, with mod-
ified matrices A and Q, but without the cross
terms in xu and xv. (This extends to the case with
nonzero cross terms in uv.) Thus, without loss of
generality, we will proceed with .S1 S2/ D .0 0/.

The existence of open-loop and closed-loop
solutions to that game is ruled by two Riccati
equations for symmetric matrices P and P?,
respectively, and by a pair of canonical equations
that we shall see later:

PP C PAC AtP � PBR�1BtP C PD�1DtP

CQ D 0 ; P.T / D K ; (1)

PP? C P?AC AtP ? C P?D�1DtP ?CQD0 ;
P ?.T / D K : (2)

When both Riccati equations have a solution over
Œt; T �, it holds that in the partial ordering of
definiteness,

0 � P.t/ � P?.t/ :

When the saddle point exists, it is represented by
the state feedback strategies

u D '?.t; x/ D �R�1BtP.t/x ;

v D  ?.t; x/ D �1DtP.t/x : (3)

The control functions generated by this pair of
feedbacks will be noted Ou.�/ and Ov.�/.
Theorem 1
• A sufficient condition for the existence of

a closed-loop saddle point, then given by

http://dx.doi.org/10.1007/978-1-4471-5058-9_270
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.'?;  ?/ in (3), is that Eq. (1) has a solution
P.t/ defined over Œt0; T �.

• A necessary and sufficient condition for the
existence of an open-loop saddle point is that
Eq. (2) has a solution over Œt0; T � (and then so
does (1)). In that case, the pairs .Ou.�/; Ov.�//,
.Ou.�/;  ?/, and .'?;  ?/ are saddle points.

• A necessary and sufficient condition for
.'?; Ov.�// to be a saddle point is that Eq. (1)
has a solution over Œt0; T �.

• In all cases where a saddle point exists, the
Value function is V.t; x/ D kxk2P.t/.

However, Eq. (1) may fail to have a solution and
a closed-loop saddle point still exists. The precise
necessary condition is as follows: let X.�/ and
Y.�/ be two square matrix function solutions of
the canonical equations

� PX
PY
�
D

�
A �BR�1Bt CD�1Dt

�Q �At
� �

X

Y

�
;

�
X.T /

Y.T /

�
D

�
I

K

�
:

The matrix P.t/ exists for t 2 Œt0; T � if and
only if X.t/ is invertible over that range, and
then, P.t/ D Y.t/X�1.t/. Assume that the rank
of X.t/ is piecewise constant, and let X�.t/

denote the pseudo-inverse of X.t/ and R.X.t//
its range.

Theorem 2 A necessary and sufficient condition
for a closed-loop saddle point to exist, which is
then given by (3) with P.t/ D Y.t/X�.t/, is
that
1. x0 2 R.X.t0//.
2. For almost all t 2 Œt0; T �, R.D.t// 	

R.X.t//.
3. 8t 2 Œt0; T �, Y.t/X�.t/ � 0.

In a case where X.t/ is only singular at an
isolated instant t? (then conditions 1 and 2 above
are automatically satisfied), called a conjugate
point but where YX�1 remains positive defi-
nite on both sides of it, the conjugate point is
called even. The feedback gain F D �R�1BtP

diverges upon reaching t?, but on a trajectory
generated by this feedback, the control u.t/ D

F.t/x.t/ remains finite. (See an example in Bern-
hard 1979.)

If T D1, with all system and payoff matrices
constant andQ > 0, Mageirou (1976) has shown
that if the algebraic Riccati equation obtained by
setting PP D 0 in (1) admits a positive definite
solution P , the game has a Value kxk2P , but (3)
may not be a saddle point. ( ? may not be an
equilibrium strategy.)

H1-Optimal Control

This subsection is entirely based upon Başar and
Bernhard (1995). It deals with imperfect state
measurement, using Bernhard’s nonlinear min-
imax certainty equivalence principle (Bernhard
and Rapaport 1996).

Several problems of robust control may be
brought to the following one: a linear, time-
invariant system with two inputs (control input
u 2 R

m and disturbance input w 2 R
`) and two

outputs (measured output y 2 R
p and controlled

output z 2 R
q) is given. One wishes to con-

trol the system with a nonanticipative controller
u.�/ D �.y.�// in order to minimize the induced
linear operator norm between spaces of square-
integrable functions, of the resulting operator
w.�/ 7! z.�/.

It turns out that the problem which has a
tractable solution is a kind of dual one: given
a positive number 
 , is it possible to make this
norm no larger than 
? The answer to this ques-
tion is yes if and only if

inf
�2˚ sup

w.�/2L2

Z 1

�1
.kz.t/k2 � 
2kw.t/k2/ dt � 0 :

We shall extend somewhat this classical prob-
lem by allowing either a time variable system,
with a finite horizon T , or a time-invariant system
with an infinite horizon.

The dynamical system is

Px D Ax C BuCDw ; (4)

y D Cx C Ew ; (5)

z D Hx CGu : (6)
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We let

�
D

E

�
.Dt Et / D

�
M L

Lt N

�
;

�
Ht

Gt

�
.H G / D

�
Q S

St R

�
;

and we assume that E is onto,, N > 0, and G
is one-to-one, R > 0.

Finite Horizon
In this part, we consider a time-varying system,
with all matrix functions measurable. Since the
state is not known exactly, we assume that the
initial state is not known either. The issue is
therefore to decide whether the criterion

J
 D kx.T /k2K C
Z T

t0

.kz.t/k2 � 
2kw.t/k2/

dt � 
2kx0k2˙0 (7)

may be kept finite and with which strategy. Let


? D inff
 j inf
�2˚ sup

x02Rn;w.�/2L2
J
 <1g :

Theorem 3 
 � 
? if and only if the following
three conditions are satisfied:
1. The following Riccati equation has a solution

over Œt0; T �:

� PP DPACAtP�.PBCS/R�1.BtPCSt /
C
�2PMPCQ ; P.T /DK : (8)

2. The following Riccati equation has a solution
over Œt0; T �:

Ṗ DA˙C˙At � .˙C tCL/N�1.C˙CLt/
C
�2˙Q˙ CM ; ˙.t0/ D ˙0 : (9)

3. The following spectral radius condition is sat-
isfied:

8t 2 Œt0; T � ; 	.˙.t/P.t// < 
2 : (10)

In that case, the optimal controller ensuring
inf� supx0;w J
 is given by a “worst case state”
Ox.�/ satisfying Ox.0/ D 0 and

POxDŒA � BR�1.BtPCSt/C
�2D.DtPCLt/�
OxC.I�
�2˙P /�1.˙C tCL/.y�C Ox/ ; (11)

and the certainty equivalent controller

�?.y.�//.t/ D �R�1.BtP C St/ Ox.t/ : (12)

Infinite Horizon
The infinite horizon case is the traditional H1-
optimal control problem reformulated in a state
space setting. We let all matrices defining the
system be constant. We take the integral in (7)
from�1 toC1, with no initial or terminal term
of course. We add the hypothesis that the pairs
.A;B/ and .A;D/ are stabilizable and the pairs
.C;A/ and .H;A/ detectable. Then, the theorem
is as follows:

Theorem 4 
 � 
? if and only if the fol-
lowing conditions are satisfied: The algebraic
Riccati equations obtained by placing PP D 0

and Ṗ D 0 in (8) and (9) have positive defi-
nite solutions, which satisfy the spectral radius
condition (10). The optimal controller is given
by Eqs. (11) and (12), where P and ˙ are the
minimal positive definite solutions of the alge-
braic Riccati equations, which can be obtained
as the limit of the solutions of the differential
equations as t ! �1 for P and t ! 1
for˙ .

Conclusion

The similarity of the H1-optimal control theory
with the LQG, stochastic, theory is in many
respects striking, as is the duality observation
control. Yet, the “observer” of H1-optimal con-
trol does not arise from some estimation the-
ory but from the analysis of a “worst case.”
The best explanation might be in the duality of
the ordinary, or .C;�/, algebra with the idem-
potent .max;C/ algebra (see Bernhard 1996).
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The complete theory of H1-optimal control in
that perspective has yet to be written.
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Abstract

Feedback is a fundamental mechanism in nature
and central in the control of systems. The state
contains important system information, and ap-
plying a control law that uses state information is
a very powerful control policy. To illustrate the
effect of feedback in linear systems, continuous-
time and discrete-time state variable descriptions
are used: these allow one to write explicitly the
resulting closed-loop descriptions and to study
the effect of feedback on the eigenvalues of the
closed-loop system. The eigenvalue assignment
problem is also discussed.

Keywords

Feedback; Linear systems; State feedback; State
variables

Introduction

Feedback is a fundamental mechanism arising in
nature. Feedback is also common in engineered
systems and is essential in the automatic control
of dynamic processes with uncertainties in their
model descriptions and in their interactions with
the environment. When feedback is used, the
actual values of the system variables are sensed,
fed back, and used to control the system. That is,
a control law decision process is based not only
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on predictions on the system behavior derived
from a process model (as in open-loop control)
but also on information about the actual behavior
(closed-loop feedback control).

Linear Continuous-Time Systems

Consider, to begin with, time-invariant systems
described by the state variable description

Px D Ax C Bu; y D Cx CDu; (1)

in which x.t/ 2 R
n is the state, u.t/ 2 R

m is the
input, y.t/ 2 R

p is the output, and A 2 R
n�n,

B 2 R
n�m, C 2 R

p�n, D 2 R
p�m are constant

matrices. In this case, the linear state feedback
(lsf) control law is selected as

u.t/ D Fx.t/C r.t/; (2)

where F 2 R
m�n is the constant gain matrix and

r.t/ 2 R
m is a new external input.

Substituting (2) into (1) yields the closed-loop
state variable description, namely,

Px D .AC BF /x C Br;
y D .C CDF /x CDr:

(3)

Appropriately selecting F , primarily to modify
A C BF , one affects and improves the behavior
of the system.

A number of comments are in order:
– Feeding back the information from the state x

of the system is expected to be, and it is, an ef-
fective way to alter the system behavior. This
is because knowledge of the (initial) state and
the input uniquely determines the system’s
future behavior and intuitively using the state
information should be a good way to control
the system, i.e., modifying its behavior.

– In a state feedback control law, the input u
can be any function of the state u D f .x; r/,
not necessarily linear with constant gain F as
in (2). Typically given (1) and (2) is selected
as the linear state feedback primarily because
the resulting closed-loop description (3) is

also a linear time-invariant system. However,
depending on the application needs, the state
feedback control law (2) can be more com-
plex.

– Although the Eqs. (3) that describe the closed-
loop behavior are different from Eq. (1), this
does not imply that the system parameters
have changed. The way feedback control acts
is not by actually changing the system pa-
rameters A, B , C , D but by changing u
so that closed-loop system behaves as if the
parameters were changed. When one applies,
say, a step via r.t/ in the closed-loop system,
then u.t/ in (2) is modified appropriately so
the system behaves in a desired way.

– It is possible to implement u in (2) as an open-
loop control law, namely,

Ou.s/ D F ŒsI � .ACBF /��1x.0/
CŒI � F .sI � A/�1B��1 Or.s/ (4)

where Laplace transforms have been used for
notational convenience. Equation (4) produces
exactly the same input as Eq. (2), but it has
the serious disadvantage that it is based ex-
clusively on prior knowledge on the system
(notably x.0/ and parameters A, B). As a
result, when there are uncertainties (and there
always are), the open-loop control law (4)
may fail, while the closed-loop control law (2)
succeeds.

– Analogous definitions exist for continuous-
time, time-varying systems described by the
equations

Px D A.t/x C B.t/u; y D C.t/x CD.t/u
(5)

In this framework, the control law is described
by

u D F.t/x C r; (6)

and the resulting closed-loop system is

Px D ŒA.t/CB.t/F.t/�x CB.t/r;
y D ŒC.t/CD.t/F.t/�x CD.t/r:

(7)
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Linear Discrete-Time Systems

For the discrete-time, time-invariant case, the
system description is

x.kC1/DAx.k/CBu.k/; yDCx.k/CDu.k/;
(8)

the linear state feedback control law is defined as

u.k/ D Fx.k/C r.k/; (9)

and the closed-loop system is described by

x.k C 1/ D .AC BF /x.k/C Br.k/;
y.k/ D .C CDF/x.k/CDr.k/:

(10)

Similarly, for the discrete-time, time-varying case

x.k C 1/ D A.k/x.k/C B.k/u.k/;
y.k/ D C.k/x.k/CD.k/u.k/;

(11)

the control law is defined as

u.k/ D F.k/x.k/C r.k/; (12)

and the resulting closed-loop system is

x.k C 1/D ŒA.k/CB.k/F.k/�x.k/CB.k/r.k/;
y.k/D ŒC.k/CD.k/F.k/�x.k/CD.k/r.k/:

(13)

Selecting the Gain F

F (or F.t/) is selected so that the closed-loop
system has certain desirable properties. Stability
is of course of major importance. Many control
problems are addressed using linear state feed-
back including tracking and regulation, diagonal
decoupling, and disturbance rejection. Here we
shall focus on stability. Stability can be achieved
under appropriate controllability assumptions. In
the time-varying case, one way to determine
such stabilizing F.t/ (or F.k/) is to use results
from the optimal linear quadratic regulator (LQR)

theory which yields the “best” F.t/ (or F.k/) in
some sense.

In the time-invariant case, one can also use a
LQR formulation, but here stabilization is equiva-
lent to the problem of assigning the n eigenvalues
of .AC BF / in the stable region of the complex
plane. If �i ; i D 1; : : : ; n, are the eigenvalues of
ACBF , then F should be chosen so that, for all
i D 1; : : : ; n, the real part of �i , Re.�i/ < 0 in
the continuous-time case, and the magnitude of
�i , j�i j < 1 in the discrete-time case. Eigenvalue
assignment is therefore an important problem,
which is discussed hereafter.

Eigenvalue Assignment Problem

For continuous-time and discrete-time, time-
invariant systems, the eigenvalue assignment
problem can be posed as follows. Given matrices
A 2 R

n�n and B 2 R
n�m, find F 2 R

m�n such
that the eigenvalues of A C BF are assigned to
arbitrary, complex conjugate, locations. Note that
the characteristic polynomial ofACBF , namely,
det .sI � .AC BF //, has real coefficients,
which implies that any complex eigenvalue is
part of a pair of complex conjugate eigenvalues.

Theorem 1 The eigenvalue assignment problem
has a solution if and only if the pair .A;B/ is
reachable.

For single-input systems, that is, for systems with
m D 1, the eigenvalue assignment problem has
a simple solution, as illustrated in the following
statement:

Proposition 1 Consider system (1) or (8). Let
m D 1. Assume that

rank R D n;
where

R D ŒB;AB; : : : :An�1B�;

that is, the system is reachable. Let p.s/ be a
desired monic polynomial of degree n. Then there
is a (unique) linear state feedback gain matrix F
such that the characteristic polynomial ofACBF
is equal to p.s/. Such linear state feedback gain
matrix F is given by
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F D � �
0 � � � 0 1 �

R�1p.A/: (14)

Proposition 1 provides a constructive way to
assign the characteristic polynomial, hence the
eigenvalues, of the matrix ACBF . Note that, for
low order systems, i.e., if n D 2 or n D 3, it may
be convenient to compute directly the character-
istic polynomial of A C BF and then compute
F using the principle of identity of polynomials,
i.e., F should be such that the coefficients of
the polynomials det.sI � .A C BF // and p.s/
coincide. Equation (14) is known as Ackermann’s
formula.

The result summarized in Proposition 1 can be
extended to multi-input systems.

Proposition 2 Consider system (1) or (8). Sup-
pose

rank R D n;
that is, the system is reachable. Let p.s/ be a
monic polynomial of degree n. Then there is a
linear state feedback gain matrix F such that the
characteristic polynomial of A C BF is equal
to p.s/.

Note that in the case m > 1 the linear state
feedback gain matrix F assigning the character-
istic polynomial of the matrix A C BF is not
unique. To compute such a gain matrix, one may
exploit the following fact:

Lemma 1 Consider system (1). Suppose

rank R D n;

that is, the system is reachable. Let bi be a
nonzero column of the matrix B . Then there is a
matrix G such that the single-input system

Px D .AC BG/x C biv (15)

is reachable. Similar results are true for discrete-
time systems (8).

Exploiting Lemma 1, it is possible to design a
matrix F such that the characteristic polynomial
of AC BF equals some monic polynomial p.s/
of degree n in two steps. First, we compute a ma-
trix G such that the system (15) is reachable, and

then we use Ackermann’s formula to compute a
linear state feedback gain matrix F such that the
characteristic polynomial of

ACBG C biF

is p.s/. Note also that if .A;B/ is reachable,
under mild conditions on A, there exists vector
g so that .A;Bg/ is reachable.

There are many other methods to assign the
eigenvalues which may be found in the references
below.

Transfer Functions

If HF .s/ is the transfer function matrix of the
closed-loop system (3), it is of interest to find its
relation to the open-loop transfer function H.s/
of (1). It can be shown that

HF .s/ D H.s/ŒI � F .sI �A/�1B��1

D H.s/ŒF .sI � .AC BF //�1B C I �

In the single-input, single-output case, it can
be readily shown that the linear state feedback
control law (2) only changes the coefficients
of the denominator polynomial in the transfer
function (this result is also true in the multi-
input, multi-output case). Therefore, if any of
the (stable) zeros of H.s/ need to be changed,
the only way to accomplish this via linear state
feedback is by pole-zero cancelation (assigning
closed-loop poles at the open-loop zero locations;
in the MIMO case, closed-loop eigenvalue direc-
tions also need to be assigned for cancelations to
take place). Note that it is impossible to change
the unstable zeros of H.s/ under stability, since
they would have to be canceled with unstable
poles.

Observer-Based Dynamic Controllers

When the state x is not available for feedback, an
asymptotic estimator (a Luenberger observer) is
typically used to estimate the state. The estimate
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Qx of the state, instead of the actual x, is then used
in (2) to control the system, in what is known as
the certainty equivalence architecture.

Summary

The notion of state feedback for linear systems
has been discussed. It has been shown that state
feedback modifies the closed-loop behavior. The
related problem of eigenvalue assignment has
been discussed, and its connection with the reach-
ability (controllability) properties of the system
has been highlighted. The class of feedback laws
considered is the simplest possible one. If addi-
tional constraints on the input signal, or on the
closed-loop performance, are imposed, then one
perhaps has to resort to nonlinear state feedback,
for example, if the input signal is bounded in
amplitude or rate. If constraints such as decou-
pling of the systems into m noninteracting sub-
systems or tracking under asymptotic stability are
imposed, then dynamic state feedback may be
necessary.
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Linear Systems: Continuous-Time
Impulse Response Descriptions

Panos J. Antsaklis
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Abstract

An important input–output description of a linear
continuous-time system is its impulse response,
which is the response h.t; �/ to an impulse ap-
plied at time � . In time-invariant systems that are
also causal and at rest at time zero, the impulse
response is h.t; 0/ and its Laplace transform is
the transfer function of the system. Expressions
for h.t; �/ when the system is described by state-
variable equations are also derived.

Keywords

Continuous-time; Impulse response descriptions;
Linear systems; Time-invariant; Time-varying;
Transfer function descriptions

Introduction

Consider linear continuous-time dynamical sys-
tems, the input–output behavior of which can
be described by an integral representation of the
form

y.t/ D
Z C1

�1
H.t; �/u.�/d� (1)

where t; � 2 R, the output is y.t/ 2 R
p , the input

is u.t/ 2 R
m, andH W R�R! R

p�m is assumed
to be integrable. For instance, any system in state-
variable form

http://dx.doi.org/10.1007/978-1-4471-5058-9_190
http://dx.doi.org/10.1007/978-1-4471-5058-9_187
http://dx.doi.org/10.1007/978-1-4471-5058-9_199
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Px D A.t/x C B.t/u
y D C.t/x CD.t/u

(2)

or
Px D Ax C Bu

y D Cx CDu
(3)

also has a representation of the form (1) as we
shall see below.

Note that it is assumed that at � D �1, the
system is at rest. H.t; �/ is the impulse response
matrix of the system (1). To explain, consider first
a single-input single-output system:

y.t/ D
Z C1

�1
h.t; �/u.�/d�; (4)

and recall that if ı.Ot��/ denotes an impulse (delta
or Dirac) function applied at time � D Ot , then for
a function f .t/,

f .Ot / D
Z C1

�1
f .�/ı.Ot � �/d�: (5)

If now in (4) u.�/ D ı.Ot � �/, that is, an impulse
input is applied at � D Ot , then the output yI .t/ is

yI .t/ D h.t; Ot /;

i.e., h.t; Ot / is the output at time t when an impulse
is applied at the input at time Ot . So in (4), h.t; �/
is the response at time t to an impulse applied
at time � . Clearly if the impulse response h.t; �/
is known, the response to any input u.t/ can be
derived via (4), and so h.t; �/ is an input/output
description of the system.

Equation (1) is a generalization of (4) for the
multi-input, multi-output case. If we let all the
components of u.�/ in (1) be zero except the j th
component, then

yi .t/ D
Z C1

�1
hij .t; �/uj .�/d�; (6)

hij .t; �/ denotes the response of the i th compo-
nent of the output of system (1) at time t due to
an impulse applied to the j th component of the

input at time � with all remaining components
of the input being zero. H.t; �/ D Œhij .t; �/� is
called the impulse response matrix of the system.

If it is known that system (1) is causal, then
the output will be zero before an input is applied.
Therefore,

H.t; �/ D 0; for t < �; (7)

and (1) becomes

y.t/ D
Z t

�1
H.t; �/u.�/d�: (8)

Rewrite (8) as

y.t/ D
Z t0

�1
H.t; �/u.�/d� C

Z t

t0

H.t; �/u.�/d�

D y.t0/C
Z t

t0

H.t; �/u.�/d�: (9)

If (1) is at rest at t D t0 (i.e., if u.t/ D 0 for
t � t0, then y.t/ D 0 for t � t0), y.t0/ D 0 and
(9) becomes

y.t/ D
Z t

t0

H.t; �/u.�/d�: (10)

If in addition system (1) is time-invariant, then
H.t; �/ D H.t � �; 0/ (also written as H.t �
�/) since only the elapsed time (t � �) from the
application of the impulse is important. Then (10)
becomes

y.t/ D
Z t

0

H.t � �/u.�/d�; t � 0; (11)

where we chose t0 D 0without loss of generality.
Equation (11) is the description for causal, time-
invariant systems, at rest at t D 0.

Equation (11) is a convolution integral and
if we take the (one-sided or unilateral) Laplace
transform of both sides,

Oy.s/ D OH.s/Ou.s/; (12)

where Oy.s/; Ou.s/ are the Laplace transforms of
y.t/; u.t/ and OH.s/ is the Laplace transform of
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the impulse response H.t/. OH.s/ is the transfer
function matrix of the system. Note that the trans-
fer function of a linear, time-invariant system is
typically defined as the rational matrix OH.s/ that
satisfies (12) for any input and its corresponding
output assuming zero initial conditions, which is
of course consistent with the above analysis.

Connection to State-Variable
Descriptions

When a system is described by the state-variable
description (2), then

y.t/ D
Z t

t0

ŒC.t/ˆ.t; �/B.�/

CD.t/ı.t � �/�u.�/d�; (13)

where it was assumed that x.t0/ D 0, i.e., the
system is at rest at t0. Here ˆ.t; �/ is the state
transition matrix of the system defined by the
Peano-Baker series:

ˆ.t; t0/ D I C
tZ

t0

A.�1/d�1

C
tZ

t0

A.�1/

2

4
�1Z

t0

A.�2/d�2

3

5d�1 C � � � I

see �Linear Systems: Continuous-Time, Time–
Varying State Variable Descriptions.

Comparing (13) with (10), the impulse re-
sponse

H.t; �/D
(
C.t/ˆ.t; �/B.t/CD.t/ı.t��/ t��;
0 t<�:

(14)

Similarly, when the system is time-invariant
and is described by (3),

y.t/ D
Z t

t0

ŒCeA.t��/B CDı.t � �/�u.�/d�;
(15)

where x.t0/ D 0.
Comparing (15) with (11), the impulse re-

sponse

H.t � �/ D
(
CeA.t��/B CDı.t � �/ t � �;
0 t < �;

(16)

or as it is commonly written (taking the time
when the impulse is applied to be zero, � D 0)

H.t/ D
(
CeAtB CDı.t/ t � 0;
0 t < 0:

(17)

Take now the (one-sided or unilateral) Laplace
transform of both sides in (17) to obtain

OH.s/ D C.sI �A/�1B CD; (18)

which is the transfer function matrix in terms
of the coefficient matrices in the state-variable
description (3). Note that (18) can also be derived
directly from (3) by assuming zero initial condi-
tions .x.0/ D 0/ and taking Laplace transform of
both sides.

Finally, it is easy to show that equivalent
state-variable descriptions give rise to the same
impulse responses.

Summary

The continuous-time impulse response is an
external, input–output description of linear,
continuous-time systems. When the system is
time-invariant, the Laplace transform of the
impulse response h.t; 0/ (which is the output
response at time t due to an impulse applied at
time zero with initial conditions taken to be zero)
is the transfer function of the system – another
very common input–output description. The
relationships with the state-variable descriptions
are shown.

http://dx.doi.org/10.1007/978-1-4471-5058-9_190


660 Linear Systems: Continuous-Time, Time-Invariant State Variable Descriptions

Cross-References

�Linear Systems: Continuous-Time, Time-In-
variant State Variable Descriptions

�Linear Systems: Continuous-Time, Time-Vary-
ing State Variable Descriptions

Recommended Reading

External or input–output descriptions such as the
impulse response and the transfer function (in
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Time-Invariant State Variable
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Synonyms

LTI Systems

Abstract

Continuous-time processes that can be modeled
by linear differential equations with constant

coefficients can also be described in a systematic
way in terms of state variable descriptions of
the form Px.t/ D Ax.t/ C Bu.t/; y.t/ D
Cx.t/CDu.t/. The response of such systems due
to a given input and a set of initial conditions is
derived and expressed in terms of the variation of
constants formula. Equivalence of state variable
descriptions is also discussed.

Keywords

Continuous-time; Linear systems; State variable
descriptions; Time-invariant

Introduction

Linear, continuous-time systems are of great in-
terest because they model, exactly or approxi-
mately, the behavior over time of many practical
physical systems of interest. We are particularly
interested in systems, the behavior of which is de-
scribed by linear, ordinary differential equations
with constant coefficients.

Such descriptions can always be rewritten as a
set of first-order differential equations, typically
in the following convenient state variable form:

Px D Ax.t/C Bu.t/; y.t/ D Cx.t/CDu.t/I
x.0/ D x0; (1)

where x.t/, the state vector, is a column vector of
dimension n (x.t/ 2 R

n) and Px.t/ D dx
dt

with
the derivative being taken element by element.
A 2 R

n�n, B 2 R
n�m, C 2 R

p�n,D 2 R
p�m are

matrices with real entries (these are the constant
coefficients that make the system time invariant);
and u.t/ 2 R

m, y.t/ 2 R
p are the inputs and

outputs of the system. The vector differential
equation is the state equation and the algebraic
equation is the output equation.

The advantage of the above state variable
description is that for given input u.t/ and initial
condition x.0/, its solution (state and output mo-
tions or trajectories) can be conveniently and sys-
tematically characterized. This is shown below.

http://dx.doi.org/10.1007/978-1-4471-5058-9_186
http://dx.doi.org/10.1007/978-1-4471-5058-9_190
http://dx.doi.org/10.1007/978-1-4471-5058-9_100012
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Deriving State Variable Descriptions

Description (1) may be derived directly, by mod-
eling the behavior of a linear, continuous-time,
time-invariant system, but more often it is de-
rived either from the linearization of a nonlinear
equation around an operating point or a trajectory
or from higher-order differential equations that
model the system’s behavior. The example below
illustrates the latter case.

k
m

b

u(t)

y(t)

Consider a spring-mass example, where a
mass m slides horizontally on a surface with
damping coefficient b due to friction and it is
attached to a wall by a linear spring of spring
constant k. If y.t/ denotes the distance of the
center of the mass from a position of rest of the
spring, by applying Newton’s law the following
second-order linear ordinary differential equation
with constant coefficients is obtained:

m Ry.t/C b Py.t/C ky.t/ D u.t/: (2)

Here Py.t/ D dy.t/

dt
. The motion of the mass

y.t/; t > 0 is uniquely determined if the applied
force u.t/; t � 0 is known and at t D 0 the initial
position y.0/ D y0 and initial velocity Py.0/ D y1
are given. To obtain a state variable description,
introduce the state variables x1 and x2 as

x1.t/ D y.t/; x2.t/ D Py.t/

to obtain the set of first-order differential equa-
tions m Px2.t/ C b Px2.t/ C kx1.t/ D u.t/ and
Px.t/ D x2.t/ which can be rewritten in the form
of (1)

	 Px1.t/
Px2.t/



D

	
0 1

� k
m
� b
m


 	
x1.t/

x2.t/



C

	
0
1
m



u.t/

(3)

and

y.t/ D �
1 0

�
	
x1.t/

x2.t/




with

	
x1.0/

x2.0/



D

	
y0
y1



as initial conditions. This

is of the form (1) where x.t/ is a 2-dimensional
column vector; A is a 2 � 2 matrix; B and
C are 2-dimensional column and row vectors,
respectively; and x.0/ D x0.

Notes:
1. It is always possible to obtain a state variable

description which is equivalent to a given set
of higher-order differential equations

2. The choice of the state variables, here x1 and
x2, is not unique. Different choices will lead
to different A, B , and C .

3. The number of the state variables is typically
equal to the order of the set of the higher-
order differential equations and equals the
number of initial conditions needed to derive
the unique solution; in the above example this
number is 2.

4. In time-invariant systems, it can be assumed
without loss of generality that the starting time
is t D 0 and so the initial conditions are taken
to be x.0/ D x0.

Solving Px D A.t/xI x.0/ D x0

Consider the homogeneous equation

Px D A.t/xI x.0/ D x0 (4)

where x.t/ D Œx1.t/; : : : ; xn.t/�
T is the state

vector of dimension n and A is an n � n matrix
with entries real numbers (i.e., A 2 R

n�n).
Equation (4) is a special case of (1) where

there are no inputs and outputs, u and y. The
homogeneous vector differential equation (4) will
be solved first, and its solution will be used to find
the solution of (1).
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Solving (4) is an initial value problem. It
can be shown that there always exists a unique
solution '.t/ such that

P'.t/ D A'.t/I '.0/ D x0:

To find the unique solution, consider first the
one-dimensional case, namely,

Py.t/ D ay.t/I y.0/ D y0

the unique solution of which is

y.t/ D eaty0; t � 0:

The scalar exponential eat can be expressed in a
series form

eatD
1X

kD0

tk

kŠ
ak.D1C1

1
taC1

2
t2a2C1

6
t3a3C: : : /

The generalization to the n�nmatrix exponential
(A is n � n) is given by

eAt D
1X

kD0

tk

kŠ
Ak .D In C At C 1

2
A2t2 C : : : /

(5)
By analogy, let the solution to (4) be

.x.t/ D/'.t/ D eAtx0 (6)

It is a solution since if it is substituted into (4),

P'.t/ D ŒAC At C 1

2
A2t2 C : : : �x0

D AeAtx0 D A'.t/

and '.0/ D eA�0x0 D x0, that is, it satisfies
the equation and the initial condition. Since the
solution of (4) is unique, (6) is the unique solution
of (4).

The solution (6) can be derived more formally
using the Peano-Baker series (see �Linear
Systems: Continuous-Time, Time-Varying State
Variable Descriptions), which in the present

time-invariant case becomes the defining series
for the matrix exponential (5).

SystemResponse

Based on the solution of the homogeneous equa-
tion (4), shown in (6), the solution of the state
equation in (1) can be shown to be

x.t/ D eAtx0 C
Z t

0

eA.t��/Bu.�/d�: (7)

The following properties for the matrix exponen-
tial eAt can be shown directly from the defining
series:
1. AeAt D eAtA.
2. .eAt /�1 D e�At .

Equation (7) which is known as the variation
of constants formula can be derived as follows:

Consider Px D Ax C Bu and let z.t/ D
e�Atx.t/. Then x.t/ D eAt z.t/ and substituting

AeAt z.t/C eAt Pz.t/ D AeAt z.t/C Bu.t/

or Pz.t/ D e�AtBu.t/ from which

z.t/ � z.0/ D
Z t

0

e�A�Bu.�/d�

or

e�Atx.t/ � x.0/ D
Z t

0

e�A�Bu.�/d�

or

x.t/ D eAtx0 C
Z t

0

eA.t��/Bu.�/d�

which is the variation of constants formula (7).
Equation (7) is the sum of two parts, the state

response (when u.t/ D 0 and the system is driven
only by the initial state conditions) and the input
response (when x0 D 0 and the system is driven
only by the input u.t/); this illustrates the linear
system principle of superposition.

If the output equation y.t/ D Cx.t/CDu.t/
is considered, then in view of (7),

http://dx.doi.org/10.1007/978-1-4471-5058-9_190
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y.t/ D CeAtx0C
Z t

0

CeA.t��/Bu.�/d� CDu.t/

(8)

D CeAtx0 C
Z t

0

ŒCeA.t��/B

CDı.t � �/�u.�/d�

The second expression involves the Dirac (or
impulse or delta) function ı.t/, and it is derived
based on the basic property for ı.t/, namely,

f .t/ D
Z 1

�1
ı.t � �/f .�/d�

It is clear that the matrix exponential eAt plays
a central role in determining the response of
a linear continuous-time, time-invariant system
described by (1).

Given A, eAt may be determined using several
methods including its defining series, diagonal-
ization of A using a similarity transformation
(PAP�1), the Cayley-Hamilton theorem, using
expressions involving the modes of the system
(eAt DPn

iD1 Aie�i t whenA has n distinct eigen-
values �i ; Ai D vi Qvi with vi , Qvi the right and left
eigenvectors of A that correspond to �i ( Qvivj D
1, i D j and Qvivj D 0, i ¤ j )), or using
Laplace transform (eAt D L�1Œ.sI �A/�1�). See
references below for detailed algorithms.

Equivalent State Variable
Descriptions

Given

Px D Ax C Bu; y D Cx CDu (9)

consider the new state vector Qx where

Qx D Px

with P a real nonsingular matrix. Substituting
x D P�1 Qx in (9), we obtain

PQx D QA Qx C QBu; y D QC Qx C QDu; (10)

where

QA D PAP�1; QB D PB; QC D CP�1; QD D D

The state variable descriptions (9) and (10)
are called equivalent and P is the equivalence
transformation. This transformation corresponds
to a change in the basis of the state space, which
is a vector space. Appropriately selecting P , one
can simplify the structure of QA.D PAP�1/; the
matrices QA and A are called similar. When the
eigenvectors of A are all linearly independent
(this is the case, e.g., when all eigenvalues �i of
A are distinct), then P may be found so that QA
is diagonal. When eAt is to be determined, and
QA D PAP�1 D diagŒ�i � ( QA and A have the same

eigenvalues), then

eAt D eP�1 QAP t D P�1e QAtP D P�1diagŒe�i t �P:

Note that it can be easily shown that equiva-
lent state space representations give rise to the
same impulse response and transfer function (see
�Linear Systems: Continuous-Time Impulse Re-
sponse Descriptions).

Summary

State variable descriptions for continuous-time
time-invariant systems are introduced and the
state and output responses to inputs and initial
conditions are derived. Equivalence of state vari-
able representations is also discussed.

Cross-References

�Linear Systems: Continuous-Time Impulse Re-
sponse Descriptions

�Linear Systems: Continuous-Time, Time-Vary-
ing State Variable Descriptions

�Linear Systems: Discrete-Time, Time-Invariant
State Variable Descriptions

http://dx.doi.org/10.1007/978-1-4471-5058-9_188
http://dx.doi.org/10.1007/978-1-4471-5058-9_188
http://dx.doi.org/10.1007/978-1-4471-5058-9_190
http://dx.doi.org/10.1007/978-1-4471-5058-9_187
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Recommended Reading

The state variable description of systems received
wide acceptance in systems theory beginning in
the late 1950s. This was primarily due to the
work of R.E. Kalman and others in filtering
theory and quadratic control theory and to the
work of applied mathematicians concerned with
the stability theory of dynamical systems. For
comments and extensive references on some of
the early contributions in these areas, see Kailath
(1980) and Sontag (1990). The use of state vari-
able descriptions in systems and control opened
the way for the systematic study of systems with
multi-inputs and multi-outputs.
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Linear Systems: Continuous-Time,
Time-Varying State Variable
Descriptions
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Abstract

Continuous-time processes that can be modeled
by linear differential equations with time-varying
coefficients can be written in terms of state

variable descriptions of the form Px.t/ D
A.t/x.t/ C B.t/u.t/; y.t/ D C.t/x.t/ C
D.t/u.t/. The response of such systems due
to a given input and initial conditions is derived
using the Peano-Baker series. Equivalence of
state variable descriptions is also discussed.

Keywords

Continuous-time; Linear systems; State variable
descriptions; Time-varying

Introduction

Dynamical processes that can be described or
approximated by linear high-order ordinary dif-
ferential equations with time-varying coefficients
can also be described, via a change of variables,
by state variable descriptions of the form

Px.t/ D A.t/x.t/C B.t/u.t/I x.t0/ D x0
y.t/ D C.t/x.t/CD.t/u.t/;

(1)
where x.t/ (t 2 R, the set of reals) is a col-
umn vector of dimension n (x.t/ 2 R

n) and
A.t/, B.t/, C.t/, D.t/ are matrices with entries
functions of time t . A.t/ D Œaij .t/�; aij .t/ W
R ! R. A.t/ 2 R

n�n; B.t/ 2 R
n�m; C.t/ 2

R
p�n;D.t/ 2 R

p�m. The input vector is u.t/ 2
R
m and the output vector is y.t/ 2 R

p . The
vector differential equation in (1) is the state
equation, while the algebraic equation is the out-
put equation.

The advantage of the state variable description
(1) is that given an input u.t/; t > 0 and an
initial condition x.t0/ D x0, the state trajec-
tory or motion for t > t0 can be conveniently
characterized. To derive the expressions, we first
consider the homogenous state equation and the
corresponding initial value problem.

Solving Px.t/ D A.t/x.t/I x.t0/ D x0

Consider the homogenous equation with the ini-
tial condition
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x.t/ D A.t/x.t/I x.t0/ D x0 (2)

where x.t/ D Œx1.t/; : : : ; xn.t/�
T is the state

(column) vector of dimension n and A.t/ is
an n � n matrix with entries functions of time
that take on values from the field of reals
(A 2 R

n�n).
Under certain assumptions on the entries

of A.t/, a solution of (2) exists and it is
unique. These assumptions are satisfied, and a
solution exists and is unique in the case, for
example, when the entries of A.t/ are continuous
functions of time. In the following we make this
assumption.

To find the unique solution of (2), we use
the method of successive approximations which
when applied to

Px.t/ D f .t; x.t//; x.t0/ D x0 (3)

is described by

�0.t/ D x0

�m.t/ D x0C
tZ

t0

f .� ; �m�1.�//d�; m D 1; 2; : : :

(4)

As m!1, �m converges to the unique solution
of (3), assuming the f satisfies certain condi-
tions.

Applying the method of successive approxi-
mations to (2) yields

�0.t/ D x0

�1.t/ D x0 C
tZ

t0

A.�/x0d�

�2.t/ D x0 C
tZ

t0

A.�/�1.�/x0d�

:::

�m.t/ D x0 C
tZ

t0

A.�/�m�1.�/x0d�

from which

�m.t/ D
2

4I C
tZ

t0

A.�1/d�1

C
tZ

t0

A.�1/

�1Z

t0

A.�2/d�2d�1 C : : :

C
tZ

t0

A.�1/

�1Z

t0

A.�2/ : : :

�m�1Z

t0

A.�m/

d�m : : : d�1

3

5 x0

When m ! 1, and under the above continuity
assumptions on A.t/, �m.t/ converges to the
unique solution of (2), i.e.,

�.t/ D ˆ.t; t0/x0 (5)

where

ˆ.t; t0/ D I C
tZ

t0

A.�1/d�1

C
tZ

t0

A.�1/

2

4
�1Z

t0

A.�2/d�2

3

5d�1 C : : :

(6)

Note that ˆ.t0; t0/ D I and by differentiation it
can be seen that

P�.t; t0/ D A.t/�.t; t0/; (7)

as expected, since (5) is the solution of (2). The
n � n matrix ˆ.t; t0/ is called the state transition
matrix of (2). The defining series (6) is called the
Peano-Baker series.

Note that when A.t/ D A, a constant matrix,
then (6) becomes

ˆ.t; t0/ D I C
1X

kD1

Ak.t � t0/k
kŠ

(8)
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which is the defining series for the matrix expo-
nential eA.t�t0/ (see �Linear Systems: Continu-
ous-Time, Time-Invariant State Variable Descrip-
tions).

System Response

Based on the solution (5) of Px D A.t/x.t/, the
solution of the non-homogenous equation

Px.t/ D A.t/x.t/C B.t/u.t/I x.t0/ D x0 (9)

can be shown to be

�.t/ D ˆ.t; t0/x0 C
Z t

t0

ˆ.t; �/B.�/u.�/d� :

(10)

Equation (10) is the variation of constants
formula. This result can be shown via direct
substitution of (10) into (9); note that �.t/ D
ˆ.t0; t0/x0 D x0. That (10) is a solution can
also be shown using a change of variables in (9),
namely,

z.t/ D ˆ.t0; t/x.t/:
Equation (10) is the sum of two parts, the state
response (when u.t/ D 0 and the system is driven
only by the initial state conditions) and the input
response (when x0 D 0 and the system is driven
only by the input u.t/); this illustrates the linear
system principle of superposition.

In view of (10), the output y.t/ .D C.t/x.t/C
D.t/u.t// is

y.t/ D C.t/ˆ.t; t0/x0

C
tZ

t0

C.t/ˆ.t; �/B.�/u.�/d� CD.t/u.t/

D C.t/ˆ.t; t0/x0 C
tZ

t0

ŒC.t/ˆ.t; �/B.�/

CD.t/ı.t � �/�u.�/d�

The second expression involves the Dirac (or
impulse or delta) function ı.t/ and is derived
based on the basic property for ı.t/, namely,

f .t/ D
C1Z

�1
ı.t � �/f .�/d�;

where ı.t��/ denotes an impulse applied at time
� D t .

Properties of the State Transition
Matrix ˆ.t; t0/

In general it is difficult to determine ˆ.t; t0/

explicitly; however, ˆ.t; t0/ may be readily
determined in a number of special cases including
the cases in which A.t/ D A, A.t/ is diagonal,
A.t/A.�/ D A.�/A.t/.

Consider Px D A.t/x. We can derive
a number of important properties which
are described below. It can be shown that
given n linearly independent initial con-
ditions x0i , the corresponding n solutions
�i.t/ are also linearly independent. Let a
fundamental matrix ‰.t/ of Px D A.t/x

be an n � n matrix, the columns of which
are a set of linearly independent solutions
�1.t/; : : : ; �n.t/. The state transition matrix
ˆ is the fundamental matrix determined from
solutions that correspond to the initial conditions
Œ1; 0; 0; : : :�T ; Œ0; 1; 0; : : : ; 0�T ; : : : Œ0; 0; : : : ; 1�T

(recall that ˆ.t0; t0/ D I ). The following are
properties of ˆ.t; t0/:

(i) ˆ.t; t0/ D ‰.t/‰�1.t0/ with ‰.t/ any fun-
damental matrix.

(ii) ˆ.t; t0/ is nonsingular for all t and t0.

(iii) ˆ.t; �/ D ˆ.t; �/ˆ.�; �/ (semigroup prop-
erty).

(iv) Œˆ.t; t0/��1 D ˆ.t0; t/.
In the special case of time-invariant systems

and Px D Ax, the above properties can be written
in terms of the matrix exponential since

ˆ.t; t0/ D eA.t�t0/:

http://dx.doi.org/10.1007/978-1-4471-5058-9_186
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Equivalence of State Variable
Descriptions

Given the system

Px D A.t/x C B.t/u

y D C.t/x CD.t/u
(11)

consider the new state vector Qx

Qx.t/ D P.t/x.t/

where P�1.t/ exists and P and P�1 are continu-
ous. Then the system

PQx D QA.t/ Qx C QB.t/u

y D QC.t/ Qx C QD.t/u

where

QA.t/ D ŒP.t/A.t/C PP .t/�P�1.t/

QB.t/ D P.t/B.t/
QC.t/ D C.t/P�1.t/

QD.t/ D D.t/

is equivalent to (1). It can be easily shown that
equivalent descriptions give rise to the same im-
pulse responses.

Summary

State variable descriptions for continuous-time
time-varying systems were introduced and the
state and output responses to inputs and initial
conditions were derived. The equivalence of state
variable representations was also discussed.

Cross-References

�Linear Systems: Continuous-Time, Time-In-
variant State Variable Descriptions

�Linear Systems: Continuous-Time Impulse Re-
sponse Descriptions

�Linear Systems: Discrete-Time, Time-Varying,
State Variable Descriptions

Recommended Reading

Additional information regarding the time-
varying case may be found in Brockett (1970),
Rugh (1996), and Antsaklis and Michel (2006).
For historical comments and extensive references
on some of the early contributions, see Sontag
(1990) and Kailath (1980).

Bibliography

Antsaklis PJ, Michel AN (2006) Linear systems.
Birkhauser, Boston

Brockett RW (1970) Finite dimensional linear systems.
Wiley, New York

Kailath T (1980) Linear systems. Prentice-Hall, Engle-
wood Cliffs

Miller RK, Michel AN (1982) Ordinary differential equa-
tions. Academic, New York

Rugh WJ (1996) Linear system theory, 2nd edn. Prentice-
Hall, Englewood Cliffs

Sontag ED (1990) Mathematical control theory: deter-
ministic finite dimensional systems. Texts in applied
mathematics, vol 6. Springer, New York

Linear Systems: Discrete-Time
Impulse Response Descriptions

Panos J. Antsaklis
Department of Electrical Engineering, University
of Notre Dame, Notre Dame, IN, USA

Abstract

An important input-output description of a
linear discrete-time system is its (discrete-time)
impulse response (or pulse response), which
is the response h.k; k0/ to a discrete impulse
applied at time k0. In time-invariant systems
that are also causal and at rest at time zero, the
impulse response is h.k; 0/, and its z-transform is
the transfer function of the system. Expressions
for h.k; k0/ when the system is described by state
variable equations are derived.
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Introduction

Consider linear, discrete-time dynamical systems
that can be described by

y.k/ D
C1X

lD�1
H.k; l/u.l/ (1)

where k; l 2 Z is the set of integers, the output is
y.k/ 2 R

p , the input is u.k/ 2 R
m, andH.k; l/ W

Z�Z! R
p�m. For instance, any system that can

be written in state variable form

x.k C 1/ D A.k/x.k/C B.k/u.k/
y.k/ D C.k/x.k/CD.k/u.k/

(2)

or
x.k C 1/ D Ax.k/C Bu.k/

y.k/ D Cx.k/CDu.k/
(3)

can be represented by (1). Note that it is assumed
that at l D �1, the system is at rest, i.e., no
energy is stored in the system at time �1.

Define the discrete-time impulse (or unit
pulse) as

ı.k/ D
�
1 k D 0
0 k ¤ 0 ; k 2 Z

and consider a single-input, single-output system:

y.k/ D
C1X

lD�1
h.k; l/u.l/ (4)

If u.l/ D ı. Ol � l/, that is, the input is a unit pulse
applied at l D Ol , then the output is

yI .k/ D h.k; Ol/;

i.e., h.k; Ol/ is the output at time k when a unit
pulse is applied at time Ol .

So in (4) h.k; l/ is the response at time k to a
discrete-time impulse (unit pulse) applied at time
l . h.k; l/ is the discrete-time impulse response
of the system. Clearly if h.k; l/ is known, the
response of the system to any input can be de-
termined via (4). So h.k; l/ is an input/output
description of the system.

Equation (1) is a generalization of (4) for the
multi-input, multi-output case. If we let all the
components of u.l/ in (1) be zero except for
the j th component, then

yi .k/ D
C1X

lD�1
hij .k; l/uj .l/ (5)

hij .k; l/ denotes the response of the i th compo-
nent of the output of system (1) at time k due to a
discrete impulse applied to the j th component of
the input at time l with all remaining components
of the input being zero. H.k; l/ D Œhij .k; l/� is
called the impulse response matrix of the system.

If it is known that system (1) is causal, then
the output will be zero before an input is applied.
Therefore,

H.k; l/ D 0; for k < l; (6)

and so when causality is present, (1) becomes

y.k/ D
kX

lD�1
H.k; l/u.l/: (7)

A system described by (1) is at rest at k D k0
if u.k/ D 0 for k > k0 implies y.k/ D 0 for k >
k0. For a system at rest at k D k0, (7) becomes

y.k/ D
kX

lDk0
H.k; l/u.l/: (8)

If system (1) is time-invariant, then H.k; l/ D
H.k � l; 0/ (also written asH.k � l/) since only
the time elapsed .k � l/ from the application of
the discrete-time impulse is important. Then (8)
becomes
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y.k/ D
kX

lD0
H.k � l/u.l/; k � 0; (9)

where we chose k0 D 0 without loss of gener-
ality. Equation (9) is the description for casual,
time-invariant systems, at rest at k D 0.

Equation (9) is a convolution sum and if we
take the (one-sided or unilateral) z-transform of
both sides,

Oy.z/ D OH.z/Ou.z/; (10)

where Oy.z/, Ou.z/ are the z-transforms of y.k/,
u.k/ and OH.z/ is the z-transform of the discrete-
time impulse responseH.k/. OH.z/ is the transfer
function matrix of the system. Note that the trans-
fer function of a linear, time-invariant system is
defined as the rational matrix OH.z/ that satisfies
(10) for any input and its corresponding output
assuming zero initial conditions.

Connections to State Variable
Descriptions

When a system is described by (2), then

y.k/ D
k�1X

lDk0
C.k/ˆ.k; l C 1/B.l/u.l/

CD.k/u.k/; k > k0 (11)

where it was assumed that x.k0/ D 0, i.e., the
system is at rest at k0. Here ˆ.k; l/ (D A.k �
1/ � � �A.l/) is the state transition matrix of the
system.

Comparing (11) with (8), the discrete-time
impulse response of the system is

H.k; l/ D
8
<

:

C.k/ˆ.k; l C 1/B.l/ k > l

D.k/ k D l
0 k < l

(12)

Similarly, when the system is time-invariant and
is described by (3),

y.k/ D
k�1X

lDk0
CAk�.lC1/Bu.l/CDu.k/; k > k0

(13)
where x.k0/ D 0 and

H.k; l/ D H.k � l/ D
8
<

:

CAk�.lC1/B k > l

D k D l
0 k < l

(14)

When l D 0 (taking the time when the discrete
impulse is applied to be zero, l D 0), the discrete-
time impulse response is

H.k/ D
8
<

:

CAk�1B k > 0

D k D 0
0 k < 0

(15)

Taking (one-sided or unilateral) z-transforms of
both sides in (15),

OH.z/ D C.zI �A/�1B CD (16)

which is the transfer function matrix in terms
of the coefficient matrices in the state variable
description (3). Note that (16) can also be derived
directly from (3) by assuming zero initial condi-
tions .x.0/ D 0/ and taking z-transforms of both
sides.

Finally, it is easy to show that equivalent
state variable descriptions give rise to the same
discrete-impulse response.

Summary

The discrete-time impulse response is an exter-
nal, input-output description of linear, discrete-
time systems. When the system is time-invariant,
the z-transform of the impulse response h.k; 0/
(which is the output response at time k due
to a discrete impulse applied at time zero with
initial conditions taken to be zero) is the transfer
function – another very common input-output
description. The relationships to the state variable
descriptions were shown.
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Abstract

Discrete-time processes that can be modeled by
linear difference equations with constant coeffi-
cients can also be described in a systematic way
in terms of state variable descriptions of the form
x.k C 1/ D Ax.k/C Bu.k/; y.k/ D Cx.k/C
Du.k/. The response of such systems due to a
given input and subject to initial conditions is de-
rived. Equivalence of state variable descriptions
is also discussed.

Keywords

Discrete-time; Linear systems; State variable de-
scriptions; Time-invariant

Introduction

Discrete-time systems arise in a variety of ways
in the modeling process. There are systems that
are inherently defined only at discrete points in
time; examples include digital devices, inven-
tory systems, economic systems such as banking
where interest is calculated and added to savings
accounts at discrete time interval, etc. There are
also systems that describe continuous-time sys-
tems at discrete points in time; examples include
simulations of continuous processes using digital
computers and feedback control systems that em-
ploy digital controllers and give rise to sampled-
data systems.

Linear, discrete-time, time-invariant systems
can be modeled via state variable equations,
namely,

x.k C 1/ D Ax.k/CBu.k/I x.0/ D x0
y.k/ D Cx.k/CDu.k/

(1)
where k 2 Z, the set of integers, the state vector
x 2 R

n, i.e., an n dimensional column vector;
A 2 R

n�n, B 2 R
n�m, C 2 R

p�n, D 2 R
p�m

are matrices with entries of real numbers; and
y.k/ 2 R

p , u.k/ 2 R
m the output and the input,

respectively. The vector difference equation in (1)
is the state equation and the algebraic equation is
the output equation.

Note that (1) could have been equivalently
written as x.l/ D Ax.l � 1/C Bu.l � 1/ where
l D k C 1 and x.l � 1/ is an easily visualized
delayed version of x.l/; this is a form more
common in signal processing (where a two-sided
or bilateral z-transform is used). In control where
we assume a known initial condition at time equal
to zero (and one-sided or unilateral z-transform is
taken), the form in (1) is common.

Similar to the continuous-time case, (1) can
be derived from a set of high-order difference
equations by introducing the state variables

http://dx.doi.org/10.1007/978-1-4471-5058-9_187
http://dx.doi.org/10.1007/978-1-4471-5058-9_191
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x.k/ D Œx1.k/; : : : ; xn.k/�
T . Description (1)

can also be derived from continuous-time system
descriptions by sampling (see � Sampled-Data
Systems).

The advantage of the above state variable
description is that given any input u.k/ and initial
conditions x.0/, its solution (state trajectory or
motion) can be conveniently and systematically
characterized. This is done below. We first con-
sider the solutions of the homogenous equation
x.k C 1/ D Ax.k/.

Solving x.k C 1/ D Ax.k/I x.0/ D x0

Consider the homogenous equation

x.k C 1/ D Ax.k/I x.0/ D x0 (2)

where k 2 Z
C is a nonnegative integer, x.k/ D

Œx1.k/; : : : ; xn.k/�
T is the state column vectors of

dimension n, andA is an n�nmatrix with entries
real numbers (i.e., A 2 R

n�n).
Write (2) for k D 0; 1; 2; : : : , namely, x.1/ D

Ax.0/, x.2/ D Ax.1/ D A2x.0/; : : : to derive
the solution

x.k/ D Akx.0/; k > 0 (3)

This result can be shown formally by induction.
Note that A0 D I by convention and so (3) also
satisfies the initial condition.

If the initial time were some (integer) k0 in-
stead of zero, then the solution would be

x.k/ D Ak�k0x.k0/; k > k0 (4)

The solution can be written as

x.k/ D ˚.k; k0/x.k0/
D ˚.k � k0; 0/x.k0/; k > k0 (5)

where ˚.k; k0/ is the state transition matrix and
it equals ˚.k; k0/ D Ak�k0 . Note that for time-
invariant systems, the initial time k0 can always
be taken to be zero without loss of generality;
this is because the behavior depends only on the

time elapsed (k � k0) and not on the actual initial
time k0.

In view of (3), it is clear that Ak plays an
important role in the solutions of the difference
state equations that describe linear, discrete-
time, time-invariant systems; it is actually
analogous to the role eAt plays in the solutions
of the linear differential state equations that
describe linear, continuous-time, time-invariant
systems.

Notice that in (3), k > 0. This is so because
Ak for k < 0 may not exist; this is the case,
for example, when A is a singular matrix – it has
at least one eigenvalue at the origin. In contrast,
eAt exists for any t positive or negative. The
implication is that in discrete-time systems we
may not be able to determine uniquely the initial
past state x.0/ from a current state value x.k/; in
contrast, in continuous-time systems, it is always
possible to go backwards in time.

There are several methods to calculate Ak that
mirror the methods to calculate eAt . One could,
for example, use similarity transformations, or
the z-transform. When all eigenvectors of A are
linearly independent (this is the case, e.g., when
all eigenvalues �i of A are distinct), then a simi-
larity transformation exists so that

PAP�1 D QA D diagŒ�i �:

Then

Ak D P�1 QAkP D P�1

2

6
4

�k1
: : :

�kn

3

7
5P:

Alternatively, using the z-transforms, Ak D
Z�1fz.zI �A/�1g. Also when the eigenvalues�i
of A are distinct, then

Ak D
nX

iD0
Ai�

k
i ;

where Ai D vi Qvi with vi , Qvi the right and left
eigenvectors ofA that correspond to �i . Note that

http://dx.doi.org/10.1007/978-1-4471-5058-9_195
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2

6
4

Qv1
:::

Qvn

3

7
5 D �

v1 � � � vn
��1
;

Ai�
k
i are the modes of the system. One could

also use the Cayley-Hamilton theorem to deter-
mine Ak .

System Response

Consider the description (1). The response can
be easily derived by writing the equation for
k D 0; 1; 2; : : : and substituting or formally by
induction. It is

x.k/ D Akx.0/C
k�1X

jD0
Ak�.jC1/Bu.j /; k > 0

(6)
and

y.k/ D CAkx.0/C
k�1X

jD0
CAk�.jC1/Bu.j /

CDu.k/; k > 0

y.0/ D Cx.0/CDu.0/: (7)

Note that (6) can also be written as

x.k/DAkx.0/CŒB;AB; � � � ; Ak�1B�

2

6
4

u.k � 1/
:::

u.0/

3

7
5:

(8)

Clearly the response is the sum of two compo-
nents, one due to the initial condition (state re-
sponse) and one due to the input (input response).
This illustrates the linear system principle of
superposition.

If the initial time is k0 and (4) is used, then

y.k/ D CAk�k0x.k0/C
k�1X

jDk0
CAk�.jC1/Bu.j /

CDu.k/; k > k0

y.k0/ D Cx.k0/CDu.k0/: (9)

Equivalence of State Variable
Descriptions

Given description (1), consider the new state
vector Qx where

Qx.k/ D Px.k/

with P 2 R
n�n a real nonsingular matrix.

Substituting x D P�1 Qx in (1), we obtain

Qx.k C 1/ D QA Qx.k/C QBu.k/

y.k/ D QC Qx.k/C QDu.k/
(10)

where

QA D PAP�1; QB D PB; QC D CP�1; QD D D

The state variable descriptions (1) and (9)
are called equivalent and P is the equivalence
transformation matrix. This transformation cor-
responds to a change in the basis of the state
space, which is a vector space. Appropriately se-
lecting P one can simplify the structure of QA .D
PAP�1/. It can be easily shown that equivalent
description gives rise to the same discrete impulse
response and transfer function.

Summary

State variable descriptions for discrete-time,
time-invariant systems were introduced and the
state and output responses to inputs and initial
conditions were derived. The equivalence of state
variable representations was also discussed.

Cross-References

�Linear Systems: Continuous-Time, Time-In-
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�Linear Systems: Discrete-Time Impulse Re-
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Linear Systems: Discrete-Time,
Time-Varying, State Variable
Descriptions

Panos J. Antsaklis
Department of Electrical Engineering, University
of Notre Dame, Notre Dame, IN, USA

Abstract

Discrete-time processes that can be modeled by
linear difference equations with time-varying co-
efficients can be written in terms of state variable
descriptions of the form x.kC1/ D A.k/x.k/C
B.k/u.k/; y.k/ D C.k/x.k/ C D.k/u.k/. The
response of such systems due to a given input and
initial conditions is derived. Equivalence of state
variable descriptions is also discussed.

Keywords

Discrete-time; Linear systems; State variable de-
scriptions; Time-varying

Introduction

Discrete-time systems arise in a variety of ways
in the modeling process. There are systems that
are inherently defined only at discrete points in
time; examples include digital devices, inventory
systems, and economic systems such as banking
where interest is calculated and added to savings
accounts at discrete time interval. There are also
systems that describe continuous-time systems at
discrete points in time; examples include simula-
tions of continuous processes using digital com-
puters and feedback control systems that employ
digital controllers and give rise to sampled-data
systems.

Dynamical processes that can be described or
approximated by linear difference equations with
time-varying coefficients can also be described,
via a change of variables, by state variable
descriptions of the form

x.k C 1/ D A.k/x.k/C B.k/u.k/I x.k0/ D x0
y.k/ D C.k/x.k/CD.k/u.k/:

(1)

Above, the state vector x.k/ (k 2 Z, the set of in-
tegers) is a column vector of dimension n (x.k/ 2
R
n); the output is y.k/ 2 R

m and the input is
u.k/ 2 R

m. A.k/, B.k/, C.k/, and D.k/ are
matrices with entries functions of time k, A.k/ D
Œaij .k/�, aij .k/ W Z ! R (A.k/ 2 R

n�n, B.k/ 2
R
n�m, C.k/ 2 R

p�n, D.k/ 2 R
p�m). The vector

difference equation in (1) is the state equation,
while the algebraic equation is the output equa-
tion. Note that in the time-invariant case, A.k/ D
A, B.k/ D B , C.k/ D C , and D.k/ D D.

The advantage of the state variable description
(1) is that given an input u.k/, k � k0 and an
initial condition x.k0/ D x0, the state trajectories
or motions for k � k0 can be conveniently
characterized. To determine the expressions, we
first consider the homogeneous state equation
and the corresponding initial value problem.

Solving x.k C 1/ D A.k/x.k/I
x.k0/ D x0

Consider the homogenous equation
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x.k C 1/ D A.k/x.k/I x.k0/ D x0 (2)

Note that

x.k0 C 1/ D A.k0/x.k0/
x.k0 C 2/ D A.k0 C 1/A.k0/x.k0/

:::

x.k/ D A.k � 1/A.k � 2/ � � �A.k0/x.k0/

D
k�1Y

jDk0
A.j /x.k0/; k > k0

This result can be shown formally by induction.
The solution of (2) is then

x.k/ D ˆ.k; k0/x.k0/; (3)

where ˆ.k; k0/ is the state transition matrix of
(2) given by

ˆ.k; k0/D
k�1Y

jDk0
A.j /; k > k0I ˆ.k0; k0/ D I:

(4)

Note that in the time-invariant case, ˆ.k; k0/ D
Ak�k0 .

System Response

Consider now the state equation in (1). It can be
easily shown that the solution is

x.k/ D ˆ.k; k0/x.k0/

C
k�1X

jDk0
ˆ.k; j C 1/B.j /u.j /; k > k0;

(5)

and the response y.k/ of (1) is

y.k/ D C.k/ˆ.k; k0/x.k0/

C C.k/
k�1X

jDk0
ˆ.k; j C 1/B.j /u.j /

CD.k/u.k/; k > k0; (6)

and

y.k0/ D C.k0/x.k0/CD.k0/u.k0/:

Equation (5) is the sum of two parts, the state
response (when u.k/ D 0 and the system is
driven only by the initial state conditions) and the
input response (when x.k0/ D 0 and the system
is driven only by the input u.k/); this illustrates
the linear systems principle of superposition.

Equivalence of State Variable
Descriptions

Given (1), consider the new state vector Qx where

Qx.k/ D P.k/x.k/

where P�1.k/ exists. Then

Qx.k C 1/ D QA.k/ Qx.k/C QB.k/u.k/
y.k/ D QC.k/ Qx.k/C QD.k/u.k/

(7)

where

QA.k/ D P.k C 1/A.k/P�1.k/;

QB.k/ D P.k C 1/B.k/;
QC.k/ D C.k/P�1.k/;

QD.k/ D D.k/

is equivalent to (1). It can be easily shown that
equivalent descriptions give rise to the same dis-
crete impulse responses.

Summary

State variable descriptions for linear discrete-
time time-varying systems were introduced and
the state and output responses to inputs and initial
conditions were derived. The equivalence of state
variable representations was also discussed.
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LMI Approach to Robust Control

Kang-Zhi Liu
Department of Electrical and Electronic
Engineering, Chiba University, Chiba, Japan

Abstract

In the analysis and design of robust control sys-
tems, LMI method plays a fundamental role. This
article gives a brief introduction to this topic.

After the introduction of LMI, it is illustrated how
a control design problem is related with matrix
inequality. Then, two methods are explained on
how to transform a control problem characterized
by matrix inequalities to LMIs, which is the core
of the LMI approach. Based on this knowledge,
the LMI solutions to various kinds of robust
control problems are illustrated. Included are H1
and H2 control, regional pole placement, and
gain-scheduled control.

Keywords

Gain-scheduled control; H1 and H2 control;
LMI; Multi-objective control; Regional pole
placement; Robust control

Introduction of LMI

A matrix inequality in a form of

F.x/ D F0 C
mX

iD1
xiFi > 0 (1)

is called an LMI (linear matrix inequality). Here,
x D Œx1 � � �xm� is the unknown vector andFi .i D
1; : : :; m/ is a symmetric matrix. F.x/ is an affine
function of x. The inequality means that F.x/ is
positive definite.

LMI can be solved effectively by numeri-
cal algorithms such as the famous interior point
method (Nesterov and Nemirovskii 1994). MAT-
LAB has an LMI toolbox (Gahinet et al. 1995)
tailored for solving the related control problems.
Boyd et al. (1994) provide detailed theoretic
fundamentals of LMI. A comprehensive and up-
to-date treatment on the applications of LMI
in robust control is covered in Liu and Yao
(2014).

The notation He.A/ D A C AT is used to
simplify the presentation of large matrices; A?
is a matrix whose columns form the basis of
the kernel space of A, i.e., AA? D 0. Further,
A˝B denotes the Kronecker product of matrices
(A, B).

http://dx.doi.org/10.1007/978-1-4471-5058-9_189
http://dx.doi.org/10.1007/978-1-4471-5058-9_190
http://dx.doi.org/10.1007/978-1-4471-5058-9_195
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Control Problems and LMI

In control problems, it is often the case that
the variables are matrices. For example, the nec-
essary and sufficient condition for the stability
of a linear system Px.t/ D Ax.t/ is that there
exists a positive-definite matrix P satisfying the
inequality AP C PAT < 0. Although this is
different from the LMI of Eq. (1) in form, it can
be converted to Eq. (1) equivalently by using a
basis of symmetric matrices.

Next, consider the stabilization of system Px D
AxCBu by a state feedback u D Fx. The closed-
loop system is Px D .AC BF /x. Therefore, the
stability condition is that there exist a positive-
definite matrix P and a feedback gain matrix F
satisfying the inequality

.AC BF /P C P.AC BF /T < 0: (2)

In this inequality, FP, the product of unknown
variables F and P , appears. Such matrix in-
equality is called a bilinear matrix inequality, or
BMI for short. BMI problem is non-convex and
difficult to solve. There are mainly two methods
for transforming a BMI into an LMI: variable
elimination and variable change.

From BMI to LMI: Variable Elimination

The method of variable elimination is good at op-
timizing single-objective problems. This method
is based on the theorem below (Gahinet and
Apkarian 1994).

Lemma 1 Given real matrices E, F , G with G
being symmetric, the inequality

ETXF C F TXTE CG < 0 (3)

has a solution X if and only if the following two
inequalities hold simultaneously

ET?GE? < 0; F T?GF? < 0: (4)

Application of this theorem to the previous
stabilization problem (2) yields .BT /T?.AP C
PAT /.BT /? < 0, which is an LMI about P .
Once P is obtained, it may be substituted back
into the inequality (2) and solve for F .

For output feedback problems, it is often
needed to construct a new matrix from two given
matrices in solving a control problem with LMI
approach. The method is given by the following
lemma.

Lemma 2 Given two n-dimensional positive-
definite matrices X and Y, a 2n-dimensional
positive-definite matrix P satisfying the condi-
tions

P D
	
Y 


 




; P

�1 D
	
X 


 





can be constructed if and only if

	
X I

I Y



> 0: (5)

Factorizing Y � X�1 as FFT , a solution is given
by

P D
	
Y F

F T I



:

As an example of output feedback control design,
let us consider the stabilization of the plant

PxP D AxP C Bu; y D CxP (6)

with a full-order dynamic controller

PxK D AKxK C BKy; u D CKxK CDKy: (7)

The closed-loop system is

	 PxP
PxK



D Ac

	
xP
xK



; AcD

	
AC BDKC BCK

BKC AK



:

(8)

The stability condition is that the matrix inequal-
ity

ATc PC PAc < 0 (9)
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has a solution P > 0. To apply the variable
elimination method, we need to put all coefficient
matrices of the controller into in a single matrix.
This is done as follows:

Ac D AC BKC ; K D
	
DK CK
BK AK



(10)

in which A D diag.A; 0/, B D diag.B; I /,
and C D diag.C; I /, all being block diagonal.
Then, based on Lemma 1, the stability condition
reduces to the existence of symmetric matrices
X , Y satisfying LMIs

.BT /T?.AX CXAT /.BT /? < 0 (11)

.C?/T .YACAT Y /C? < 0: (12)

Meanwhile, the positive definiteness of matrix P

is guaranteed by Eq. (5) in Lemma 2.

From BMI to LMI: Variable Change

We may also use the method of variable change
to transform a BMI into an LMI. This method is
good at multi-objective optimization.

The detail is as follows (Gahinet 1996). A
positive-definite matrix can always be factorized
as the quotient of two triangular matrices, i.e.,

P…1 D …2;…1D
	
X I

MT 0



;…2D

	
I Y

0 NT



:

(13)
P > 0 is guaranteed by Eq. (5) for a full-
order controller. Further, the matrices M , N are
computed from MNT D I � XY. Consequently,
they are nonsingular.

An equivalent inequality …T
1 A

T
c …2 C

…T
2 Ac…1 < 0 is obtained by multiplying Eq. (9)

with …T
1 and …1. After a change of variables,

this inequality reduces to an LMI

He

	
AX CBC AC BDC CA

T

0 YAC BC



< 0: (14)

The new variables A, B, C, D are set as

LMI Approach to Robust
Control, Fig. 1
Generalized feedback
system

A D NAKMT CNBKCX C YBCKMT

CY.AC BDKC/X

B D NBK C YBDK; C D CKMT

CDKCX; D D DK:
(15)

The coefficient matrices of the controller become

DK D D; CK D .C �DKCX/M
�T ;

BK D N�1.B � YBDK/

AK D N�1.A �NBKCX � YBCKMT

�Y.AC BDKC/X/M
�T :

(16)

H2 andH1 Control

In system optimization, H2 and H1 norms
are the most popular and effective performance
indices. H2 norm of a transfer function is closely
related with the squared area of its impulse
response. So, a smaller H2 norm implies a
faster response. Meanwhile, H1 norm of a
transfer function is the largest magnitude of
its frequency response. Hence, for a transfer
function from the disturbance to the controlled
output, a smaller H1 norm guarantees a better
disturbance attenuation.

Usually H2 and H1 optimization problems
are treated in the generalized feedback system of
Fig. 1. Here, the generalized plant G.s/ includes
the nominal plant, the performance index, and the
weighting functions.

Let the generalized plant G.s/ be

G.s/D
	
C1
C2



.sI�A/�1 �

B1 B2
�C

"
D11 D12

D21 0

#

:

(17)

Further, the stabilizability of (A, B2) and the
detectability of (C2, A/ are assumed. The
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closed-loop transfer matrix from the disturbance
w to the performance output z is denoted by

Hzw.s/ D Cc.sI � Ac/�1Bc CDc: (18)

The condition for Hzw.s/ to have an H2 norm
less than 
 , i.e., kHzwk2 < 
 , is that there are
symmetric matrices P and W satisfying

	
PAc C ATc P CT

c

Cc �I


< 0;

	
W BT

c P

PBc P



> 0

(19)
as well as Tr(W / < 
2. Here, Tr(W / denotes the
trace of matrix W , i.e., the sum of its diagonal
entries.

The LMI solution is derived via the appli-
cation of the variable change method, as given
below.

Theorem 1 Suppose that D11 D 0. The H2

control problem is solvable if and only if there
exist symmetric matrices X, Y, W and matrices A,
B, C satisfying the following LMIs:

He

2

4
AX C B2C 0 0

AT CA YAC BC2 0

C1X CD12C C1 � 1
2
I

3

5 < 0

(20)2

4
W BT

1 BT
1 Y

B1 X I

YB1 I Y

3

5 > 0; Tr .W / < 
2: (21)

When the LMI Eqs. (20) and (21) have solutions,
an H2 controller is given by Eq. (16) by setting
D D 0.

The H1 control problem is to design a con-
troller so that kHzwk1 < 
 . The starting point of
H1 control is the famous bounded real lemma,
which states that Hzw.s/ has an H1 norm less
than 
 if and only if there is a positive-definite
matrix P satisfying

2

4
ATc PC PAc PBc CT

c

BT
c P �
I DT

c

Cc Dc �
I

3

5 < 0: (22)

There are two kinds of LMI solutions to this con-
trol problem: one based on variable elimination
and one based on variable change.

To state the first solution, define the following
matrices first:

NY D ŒC2 D21�?; NX D ŒBT
2 DT

12�?: (23)

Theorem 2 The H1 control problem has a solu-
tion if and only if Eq. (5) and the following LMIs
have positive-definite solutions X, Y:

	
NT
X 0

0 I



2

4
AX CXAT XCT

1 B1
C1X �
I D11

BT
1 DT

11 �
I

3

5

�
	
NX 0

0 I



< 0 (24)

	
NT
Y 0

0 I



2

4
YAC AT Y YB1 C T

1

BT
1 Y �
I DT

11

C1 D11 �
I

3

5

�
	
NY 0

0 I



< 0: (25)

Once a matrix P is computed according to
Lemma 2, Eq. (22) becomes an LMI and its
solution yields the controller.

The second solution is given below.

Theorem 3 The H1 control problem has a solu-
tion if and only if Eq. (5) and the following LMI
have solutions X, Y and A, B, C, D W

He

2

66
6
4

AX C B2C AC B2DC2 B1 C B2DD21 0

A YAC BC2 YB1 C BD21 0

0 0 � 

2
I 0

C1X CD12C C1 CD12DC2 D11 CD12DD21 � 
2 I

3

77
7
5
< 0: (26)
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The controller is given by Eq. (16).

Regional Pole Placement

The location of system poles determines the re-
sponse quality. However, for uncertain systems
it is impossible to place the closed-loop poles at
fixed points because they move with the variation
of the plant. Nevertheless, it is still possible to
place the closed-loop poles inside a region. For
convex regions characterized by LMI, the design
method is mature and proven effective in practice.

Let us see how to characterize a convex region.
It is easy to know that a complex number z is
inside the disk of Fig. 2a if and only if it satisfies

	 �r zC c
NzC c �r



< 0:

Similarly, z is inside the sector of Fig. 2b if and
only if

	
.zC Nz/ sin � .z � Nz/ cos �
�.z � Nz/ cos � .zC Nz/ sin �



< 0:

Generally, the set of complex number z character-
ized by

D D fz 2 CjLC zM C NzMT < 0g (27)

is called an LMI region, in which L is a symmet-
ric matrix. For the dynamic system

Px D Ax; (28)

LMIApproach toRobust Control, Fig.2 Typical exam-
ples of LMI region

all of its poles are in the LMI regionD if and only
if there is a positive-definite matrix P satisfying
the LMI

L˝ PCM ˝ .AP/CMT ˝ .AP/T < 0: (29)

This forms the basis for the regional pole
placement design.

For the disk region in Fig. 2a, the condition
becomes

	 �rP cPC AP
cPC .AP/T �rP



< 0: (30)

Meanwhile, for the sector region in Fig. 2b, the
corresponding LMI is

	
.APC PAT / sin � .AP � PAT / cos �
�.AP � PAT / cos � .APC PAT / sin �



< 0:

(31)

Moreover, for a composite LMI region, such as
the intersection of the disk and the sector, the pole
placement is guaranteed by enforcing a common
solution P to all the corresponding LMIs.

In the pole placement design, only the variable
change method is applicable. For example, in
the nominal closed-loop system Eq. (8), the pole
placement condition is that the LMI

L˝
	
X I

I Y




CHe

�
M˝

	
AXCBC ACBDC

A YACBC

�
<0

(32)

and Eq. (5) are solvable (Chilali and Gahinet
1996).

For systems with norm-bounded parameter
uncertainty, a robust pole placement method is
provided in Chilali et al. (1999).

Multi-objective Control

It is noted that all of the preceding control designs
involve a positive-definite matrix P. Therefore, a
multi-objective control design is easily realized
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by enforcing a common solution P to the corre-
sponding matrix inequality conditions.

Gain-Scheduled Control

In practice, many nonlinear systems can be ex-
pressed as linear systems with state-dependent
coefficients in form, which is known as the LPV
(linear parameter-varying) form. For example, in
the model of a robot arm J R� C mgl sin � D u,
if we define a parameter as p.t/ D sin �=� ,
then it can be written as an LPV model J R�.t/ C
mglp.t/�.t/ D u.t/. In this class of systems,
when the parameter p.t/ is available online and
its range is finite, one may tune the controller
parameters based on the information of p.t/,
so as to achieve a higher performance. This is
referred to as gain-scheduled control.

Consider the following affine model:

Px D A.p.t//x CB1.p.t//d C B2.p.t//u (33)

z D C1.p.t//x CD11d CD12u (34)

y D C2.p.t//x CD21d (35)

where A.p/ � C2.p/ are affine functions of
the time-varying parameter vector p.t/, such as
A.p/ D A0CPq

iD1 pi .t/Ai . The gain-scheduled
control is to impose, on the coefficient matrices
of the controller, the same affine structure about
p.t/ such as AK.p/ D AK0 CPq

iD1 pi .t/AKi .
To simplify the design, it is desirable that the

coefficient matrices of the closed-loop system
become affine functions of the parameter vector
p.t/. This may be satisfied by restraining some
of the matrices of the controller to constant ones.
The easy-to-design structure of a gain-scheduled
controller is summarized as follows:
• Both B2.p/ and C2.p/ depend on p.t/: (BK ,
CK/ must be constant matrices besidesDK D
0.

• Constant (B2, C2/: All coefficient matrices of
the controller can be affine functions of the
parameter vector p.t/.

• Constant B2: (BK , DK/ must be constant
matrices.

• Constant C2: (CK , DK/ must be constant ma-
trices.

When the structure of the gain-scheduled con-
troller is chosen as summarized above, the solv-
ability conditions reduce to those at all vertices
�i of the scheduling parameter vector p.t/. Fur-
ther, a multi-objective is achieved by imposing a
common solution P to all LMI conditions. Some
concrete examples are illustrated below:
H1 Norm Spec: The conditions of Theorem 3

are satisfied at all vertices �j of the parameter
vector p.t/.

H2 Norm Spec: The conditions of Theorem 1 are
satisfied at all vertices �j of the parameter
vector p.t/.

Regional Pole Placement: Eq. (32) is satisfied at
all vertices �j of the parameter vectorp.t/ and
Eq. (5) holds.
Moreover, a different gain-scheduled method

is proposed in Packard (1994) for parametric
systems with norm-bounded uncertainty.

Summary and Future Direction

LMI approach is a very powerful method that can
be applied to solve most of the robust control
problems smartly and effectively. In particular, its
capability of handling the multi-objective control
problems is very attractive and proven useful in
industrial applications.

Further study is needed in the following direc-
tions.
• New method of variable change is desired

in order to deal with the robust performance
design of parametric systems.

• Almost all robust performance designs are
carried out based on sufficient conditions. It
is very important to discover less conservative
design methods.
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Abstract

Energy functions, an extension of Lyapunov
functions, have been used in electric power
systems for several applications. An overview
of energy function theory for general nonlinear
autonomous dynamical systems along with
its applications to electric power systems is
presented. The issue of how to optimally
determine the critical level value of an energy

function for estimating stability regions of
nonlinear dynamical systems is also addressed.

Keywords

Energy function; Lyapunov function theory; Op-
timal estimation; Power system stability; Stabil-
ity region

Introduction

Energy functions, an extension of the Lyapunov
functions, have been practically used in electric
power systems for several applications. A com-
prehensive energy function theory for general
nonlinear autonomous dynamical systems along
with its applications to electric power systems
will be summarized in this article.

We consider a general nonlinear autonomous
dynamical system described by the following
equation:

Px.t/ D f .x.t// (1)

We say a function V W Rn ! R is an energy
function for the system (1) if the following three
conditions are satisfied (Chiang et al. 1987):
(E1): The derivative of the energy functionV.x/

along any system trajectory x.t/ is non-
positive, i.e., PV .x.t// � 0.

(E2): If x.t/ is a nontrivial trajectory (i.e., x.t/
is not an equilibrium point), then along the
nontrivial trajectory x.t/ the set ft 2 R W
PV .x.t// D 0g has measure zero in R.

(E3): That a trajectory x.t/ has a bounded value
of V.x.t// for t 2 RCimplies that the
trajectory x.t/ is also bounded.

Condition (E1) indicates that the value of an
energy function is nonincreasing along its trajec-
tory, but does not imply that the energy function
is strictly decreasing along any trajectory. Condi-
tions (E1) and (E2) imply that the energy function
is strictly decreasing along any system trajectory.
Property (E3) states that the energy function is
a proper map along any system trajectory but
need not be a proper map for the entire state
space. Obviously, an energy function may not be
a Lyapunov function.

http://dx.doi.org/10.1007/978-1-4471-5058-9_186
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As an illustration of the energy function, we
consider the following classical transient stability
model and derive an energy function for the
model. Consider a power system consisting of
n generators. Let the loads be modeled as con-
stant impedances. Under the assumption that the
transfer conductance of the reduced network after
eliminating all load buses is zero, the dynamics
of the i th generator can be represented by the
equations

Pıi D !i
Mi P!i D Pi�Di!i�

X

jD1
ViVjBij sin.ıi�ıj /

(2)

where the voltage at node i+1 is served as the
reference, i.e., ıiC1 WD 0. This is a version of the
so-called classical model of the power system. It
can be shown that the following function is an en-
ergy function V.ı; !/ which satisfies conditions
(E1)–(E3) for the classical model (2).

V.ı; !/ D 1

2

Xn

iD1
Mi!

2
i �

Xn

iD1
Pi

�
ıi � ısj



�
Xn

iD1

XnC1

jDiC1
ViVjBij cos.ıi � ıj /

� cos.ısi � ısj / (3)

where xs D .ıs; 0/ is the stable equilibrium point
under consideration.

Energy Function Theory

In general, the dynamical behaviors of trajecto-
ries of general nonlinear systems can be very
complicated. The asymptotical behaviors (i.e.,
the !-limit set) of trajectories can be quasiperi-
odic trajectories or chaotic trajectories. However,
as shown below, every trajectory of system (1)
having an energy function has only two modes
of behaviors: its trajectory either converges to an
equilibrium point or goes to infinity (becomes
unbounded) as time increases. This result is ex-
plained in the following theorem:

Theorem 1 (Global Behavior of Trajectories)
If there exists a function satisfying condition
(E1) and condition (E2) of the energy function
for system (1), then every bounded trajectory of
system (1) converges to one of the equilibrium
points.

Theorem 1 asserts that there does not exist
any limit cycle (oscillatory behavior) or bounded
complicated behavior such as almost periodic
trajectory, chaotic motion, etc. in the system. We
next show a sharper result, asserting that every
trajectory on the stability boundary must con-
verge to one of the unstable equilibrium points
(UEPs) on the stability boundary. Recall that for
a hyperbolic equilibrium point, it is an (asymptot-
ically) stable equilibrium point if all the eigenval-
ues of its corresponding Jacobian have negative
real parts; otherwise it is an unstable equilib-
rium point. Let Ox be a hyperbolic equilibrium
point. Its stable and unstable manifolds, W s. Ox/
and W u. Ox/, are well defined. There are many
physical systems such as electric power systems
containing multiple stable equilibrium points. A
useful concept for these kinds of systems is that
of the stability region (also called the region
of attraction). The stability region of a stable
equilibrium point xs is defined as

A.xs/ WD
n
x 2 Rn W lim

t!1 ˆt .x/ D xs
o

The boundary of stability region A.xs/ is called
the stability boundary of .xs/ and will be denoted
by @A.xs/.

Theorem 2 (Trajectories on the Stability
Boundary (Chiang et al. 1987)) If there exists
an energy function for system (1), then every
trajectory on the stability boundary @A.xs/

converges to one of the equilibrium points on
the stability boundary @A.xs/.

The significance of this theorem is that it
offers an effective way to characterize the sta-
bility boundary. In fact, Theorem 2 asserts that
the stability boundary @A.xs/ is contained in the
union of stable manifolds of the UEPs on the
stability boundary, i.e.,
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@A.xs/ �
[

xi2fE\@A.xs/g
W s.xi /

The following two theorems give interesting
results on the structure of the equilibrium points
on the stability boundary. Moreover, it presents
a necessary condition for the existence of certain
types of equilibrium points on a bounded stability
boundary.

Theorem 3 (Structure of Equilibrium Points
on the Stability Boundary (Chiang and Thorp
1989)) If there exists an energy function for sys-
tem (1) which has an asymptotically stable equi-
librium point xs (but not globally asymptotically
stable), then the stability boundary .xs/ must
contain at least one type one equilibrium point.
If, furthermore, the stability region is bounded,
then the stability boundary @A.xs/ must contain
at least one type one equilibrium point and one
source.

Theorem 4 (Sufficient Condition for Un-
bounded Stability Region (Chiang et al. 1987))
If there exists an energy function for system (1)
which has an asymptotically stable equilibrium
point xs (but not globally asymptotically stable)
and if @A(xs) contains no source, then the
stability region A(xs) is unbounded.

A direct application of this is that the stability
boundary @A(xs) of an (asymptotically) stable
equilibrium point of the classical power system
stability model (2) is unbounded.

Optimally Estimating Stability Region
Using Energy Functions

In this section, we focus on how to optimally
determine the critical level value of an energy
function for estimating the stability boundary
@A(xs). We consider the following set:

Sv.k/ D fx 2 Rn W V (x) < kg (4)

where V.:/ W Rn ! R is an energy function.
We shall call the boundary of set (2) @S.k/ WD
fx 2 Rn W V.x/ D kg the level set (or constant

energy surface) and k the level value. Generally
speaking, this set S.k/ can be very complicated
with several connected components even for the
2-dimensional case. We use the notation Sk.xs/
to denote the only component of the several dis-
joint connected components of Sk that contains
the stable equilibrium point xs .

Theorem 5 (Optimal Estimation) Consider
the nonlinear system (1) which has an energy
function V.x/. Let xs be an asymptotically
stable equilibrium point whose stability region
A.xs/ is not dense in Rn. Let E1 be the
set of type one equilibrium points and Oc D
minxi2@A.xs/\E

1
V (xi ), and then

1. S Oc.xs/ 	 A(xs).
2. The set fSb.xs/\ NAc.xs/g is nonempty for any

number b > c.

This theorem leads to an optimal estimation of
the stability region A(xs) via an energy function
V (.) (Chiang and Thorp 1989). For the purpose
of illustration, we consider the following simple
example:

Px1D� sin xi � 0:5 sin.x1 � x2/C 0:01
Px2D�0:5 sin x2 � 0:5 sin.x2 � x1/C 0:05 (5)

It is easy to show that the following function is an
energy function for system (5):

V.x1; x2/ D �2 cosx1 � cosx2 � cos.x1 � x2/
�0:02x1 � 0:1x2 (6)

The point xs
�
xs1; x

s
2

� D .0:02801; 0:06403/

is the stable equilibrium point whose stability
region is to be estimated. Applying the optimal
scheme to system (5), we have the critical level
value of �0.31329. The Curve A in Fig. 1 is
the exact stability boundary @A.xs/ while Curve
B is the stability boundary estimated by the
connected component (containing the s.e.p. xs)
of the constant energy surface. It can be seen that
the critical level value, �0.31329, is indeed the
optimal value.



684 Lyapunov Methods in Power System Stability

4 43 322 11 0
−5
−4
−3
−2
−1
0
1
2

5
4
3

X1

X 2

A

B

Lyapunov Methods in Power System Stability, Fig. 1
Curve A is the exact stability boundary @A.xs/ of system
(5), while Curve B is the stability boundary estimated by
the constant energy surface (with level value of �0.31329)
of the energy function

Constructing Analytical Energy
Functions for Transient Stability
Models

The task of constructing an energy function for
a (post-fault) transient stability model is essential
to direct stability analysis of power systems. The
role of the energy function is to make feasible
a direct determination of whether a given point
(such as the initial point of a post-fault power sys-
tem) lies inside the stability region of post-fault
SEP without performing numerical integration. It
has been shown that a general (analytical) energy
function for power systems with losses does not
exist (Chiang 1989). One key implication is that
any general procedure attempting to construct
an energy function for a lossy power system
transient stability model must include a step that
checks for the existence of an energy function.
This step essentially plays the same role as the
Lyapunov equation in determining the stability of
an equilibrium point.

Several schemes are available for constructing
numerical energy functions for power system
transient stability models expressed as a set of
general differential-algebraic equations (DAEs)
(Chu and Chiang 1999, 2005).

Applications

After decades of research and development in
the energy-function-based direct methods and the
time-domain simulation approach, it has become
clear that the capabilities of direct methods and
that of the time-domain approach complement
each other. The current direction of development
is to include appropriate direct methods and time-
domain simulation programs within the body of
overall power system stability simulation pro-
grams (Chiang 1999, 2011; Chiang et al. 1995;
Fouad and Vittal 1991; Sauer and Pai 1998).
For example, the direct method provides the ad-
vantages of fast computational speed and energy
margins which make it a good complement to
the traditional time-domain approach. The en-
ergy margin and its functional relations to cer-
tain power system parameters are an effective
complement to develop tools such as preventive
control schemes for credible contingencies which
are unstable and to develop fast calculators for
available transfer capability limited by transient
stability.

An effective, theory-based methodology for
online screening and ranking of a large set
of contingencies at operating points obtained
from state estimators has been developed in
Chiang et al. (2013). A set of improved BCU
classifiers, along with their analytical basis,
has been developed. Extensive evaluation of the
improved BCU classifiers on a large test system
and on the actual PJM interconnection system
for a fast screening has been performed. This
evaluation study is the largest in terms of system
size, 14,500 buses and 3,000 generators, for a
practical online transient stability assessment
application. The evaluation results, performed
on a total number of 5.3 million contingencies,
were very promising in terms of speed, accuracy,
reliability, and robustness (Chiang et al. 2013).
This study also confirms the practicality of
theory-based methodology for online transient
stability assessment of large-scale power
systems; in particular, theory-based methods are
suitable for power system online applications
which demand speed, accuracy, reliability, and
robustness.
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Abstract

Lyapunov’s theory for characterizing and study-
ing the stability of equilibrium points is presented
for time-invariant and time-varying systems mod-
eled by ordinary differential equations.

Keywords

Asymptotic stability; Equilibrium point;
Exponential stability; Global asymptotic
stability; Hurwitz matrix; Invariance principle;
Linearization; Lipschitz condition; Lyapunov
function; Lyapunov surface; Negative (semi-)
definite function; Perturbed system; Positive
(semi-) definite function; Region of attraction;
Stability; Time-invariant system; Time-varying
system

Introduction

Stability theory plays a central role in systems
theory and engineering. For systems represented
by state models, stability is characterized by
studying the asymptotic behavior of the state
variables near steady-state solutions, like equi-
librium points or periodic orbits. In this article,
Lyapunov’s method for determining the stabil-
ity of equilibrium points is introduced. The at-
tractive features of the method include a solid
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theoretical foundation, the ability to conclude
stability without knowledge of the solution (no
extensive simulation effort), and an analytical
framework that makes it possible to study the ef-
fect of model perturbations and design feedback
control. Its main drawback is the need to search
for an auxiliary function that satisfies certain
conditions.

Stability of Equilibrium Points

We consider a nonlinear system represented by
the state model

Px D f .x/ (1)

where the n-dimensional locally Lipschitz func-
tion f .x/ is defined for all x in a domain D 	
Rn. A function f .x/ is locally Lipschitz at a
point x0 if it satisfies the Lipschitz condition
kf .x/ � f .y/k � Lkx � yk for all x; y in
some neighborhood of x0, where L is a positive

constant and kxk D
q
x21 C x22 C � � � C x2n. The

Lipschitz condition guarantees that Eq. (1) has
a unique solution for given initial state x.0/.
Suppose Nx 2 D is an equilibrium point of
Eq. (1); that is, f . Nx/ D 0. Whenever the state
of the system starts at Nx, it will remain at Nx for
all future time. Our goal is to characterize and
study the stability of Nx. For convenience, we take
Nx D 0. There is no loss of generality in doing so
because any equilibrium point Nx can be shifted to
the origin via the change of variables y D x � Nx.
Therefore, we shall always assume that f .0/ D 0
and study stability of the origin x D 0.

The equilibrium point x D 0 of Eq. (1) is
stable if for each " > 0, there is ı D ı."/ > 0

such that kx.0/k < ı implies that kx.t/k < ",
for all t � 0. It is asymptotically stable if it is
stable and ı can be chosen such that kx.0/k < ı

implies that x.t/ converges to the origin as t tends
to infinity. When the origin is asymptotically sta-
ble, the region of attraction (also called region
of asymptotic stability, domain of attraction, or
basin) is defined as the set of all points x such
that the solution of Eq. (1) that starts from x at

time t D 0 approaches the origin as t tends to1.
When the region of attraction is the whole space,
we say that the origin is globally asymptotically
stable. A stronger form of asymptotic stability
arises when there exist positive constants c, k,
and � such that the solutions of Eq. (1) satisfy the
inequality

kx.t/k � kkx.0/ke��t ; 8 t � 0 (2)

for all kx.0/k < c. In this case, the equilibrium
point x D 0 is said to be exponentially stable.
It is said to be globally exponentially stable if the
inequality is satisfied for any initial state x.0/.

Linear Systems
For the linear time-invariant system

Px D Ax (3)

the stability properties of the origin can be de-
termined by the location of the eigenvalues of
A. The origin is stable if and only if all the
eigenvalues of A satisfy ReŒ�i � � 0 and for
every eigenvalue with ReŒ�i � D 0 and algebraic
multiplicity qi � 2, rank.A � �iI / D n � qi ,
where n is the dimension of x and qi is the
multiplicity of �i as a zero of det.�I � A/. The
origin is globally exponentially stable if and only
if all eigenvalues of A have negative real parts;
that is, A is a Hurwitz matrix. For linear sys-
tems, the notions of asymptotic and exponential
stability are equivalent because the solution is
formed of exponential modes. Moreover, due to
linearity, if the origin is exponentially stable, then
the inequality of Eq. (2) will hold for all initial
states.

Linearization
Suppose the function f .x/ of Eq. (1) is continu-
ously differentiable in a domainD containing the
origin. The Jacobian matrix Œ@f=@x� is an n � n
matrix whose .i; j / element is @fi =@xj . Let A be
the Jacobian matrix evaluated at the origin x D 0.
It can be shown that

f .x/ D ŒACG.x/�x; where lim
x!0

G.x/ D 0
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This suggests that in a small neighborhood of the
origin we can approximate the nonlinear system
Px D f .x/ by its linearization about the origin
Px D Ax. Indeed, we can draw conclusions about
the stability of the origin as an equilibrium point
for the nonlinear system by examining the eigen-
values ofA. The origin of Eq. (1) is exponentially
stable if and only if A is Hurwitz. It is unstable if
ReŒ�i � > 0 for one or more of the eigenvalues of
A. If ReŒ�i � � 0 for all i , with ReŒ�i � D 0 for
some i , we cannot draw a conclusion about the
stability of the origin of Eq. (1).

Lyapunov’s Method

Let V.x/ be a continuously differentiable scalar
function defined in a domain D 	 Rn that
contains the origin. The function V.x/ is said to
be positive definite if V.0/ D 0 and V.x/ > 0

for x ¤ 0. It is said to be positive semidefinite
if V.x/ � 0 for all x. A function V.x/ is said
to be negative definite or negative semidefinite
if �V.x/ is positive definite or positive semidef-
inite, respectively. The derivative of V along the
trajectories of Eq. (1) is given by

PV .x/ D
nX

iD1

@V

@xi
Pxi D @V

@x
f .x/

where Œ@V=@x� is a row vector whose i th compo-
nent is @V=@xi .

Lyapunov’s stability theorem states that the
origin is stable if there is a continuously differ-
entiable positive definite function V.x/ so that
PV.x/ is negative semidefinite, and it is asymp-

totically stable if PV.x/ is negative definite. A
function V.x/ satisfying the conditions for sta-
bility is called a Lyapunov function. The surface
V.x/ D c, for some c > 0, is called a Lyapunov
surface or a level surface.

When PV.x/ is only negative semidefinite, we
may still conclude asymptotic stability of the ori-
gin if we can show that no solution can stay iden-
tically in the set f PV.x/ D 0g, other than the zero
solution x.t/ � 0. Under this condition, V.x.t//
must decrease toward 0, and consequently x.t/

converges to zero as t tends to infinity. This
extension of the basic theorem is known as the
invariance principle.

Lyapunov functions can be used to estimate
the region of attraction of an asymptotically sta-
ble origin, that is, to find sets contained in the
region of attraction. Let V.x/ be a Lyapunov
function that satisfies the conditions of asymp-
totic stability over a domain D. For a positive
constant c, let �c be the component of fV.x/ �
cg that contains the origin in its interior. The
properties of V guarantee that, by choosing c
small enough,�c will be bounded and contained
in D. Then, every trajectory starting in �c re-
mains in�c and approaches the origin as t !1.
Thus,�c is an estimate of the region of attraction.
If D D Rn and V.x/ is radially unbounded, that
is, kxk ! 1 implies that V.x/ ! 1, then any
point x 2 Rn can be included in a bounded set
�c by choosing c large enough. Therefore, the
origin is globally asymptotically stable if there is
a continuously differentiable, radially unbounded
function V(x) such that for all x 2 Rn, V.x/
is positive definite and PV .x/ is either negative
definite or negative semidefinite but no solution
can stay identically in the set f PV.x/ D 0g other
than the zero solution x.t/ � 0.

Time-Varying Systems
Equation (1) is time-invariant because f does
not depend on t . The more general time-varying
system is represented by

Px D f.t; x/ (4)

In this case, we may allow the Lyapunov function
candidate V to depend on t . Let V.t; x/ be a
continuously differentiable function defined for
all t � 0 and x 2 D. The derivative of V along
the trajectories of Eq. (4) is given by

PV .t; x/ D @V

@t
C @V

@x
f .t; x/

If there are positive definite functions W1.x/,
W2.x/, andW3.x/ such that

W1.x/ � V.t; x/ � W2.x/ (5)

PV .t; x/ � �W3.x/ (6)
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for all t � 0 and all x 2 D, then the
origin is uniformly asymptotically stable, where
“uniformly” indicates that the "–ı definition
of stability and the convergence of x.t/ to
zero are independent of the initial time t0.
Such uniformity annotation is not needed with
time-invariant systems since the solution of a
time-invariant state equation starting at time t0
depends only on the difference t � t0, which
is not the case for time-varying systems. If the
inequalities of Eqs. (5) and (6) hold globally and
W1.x/ is radially unbounded, then the origin
is globally uniformly asymptotically stable.
If W1.x/ D k1kxka , W2.x/ D k2kxka, and
W3.x/ D k3kxka for some positive constants k1,
k2, k3, and a, then the origin is exponentially
stable.

Perturbed Systems
Consider the system

Px D f .t; x/C g.t; x/ (7)

where f and g are continuous in t and locally
Lipschitz in x, for all t � 0 and x 2 D,
in which D 	 Rn is a domain that contains
the origin x D 0. Suppose f .t; 0/ D 0 and
g.t; 0/ D 0 so that the origin is an equilibrium
point of Eq. (7). We think of the system (7)
as a perturbation of the nominal system (4).
The perturbation term g.t; x/ could result from
modeling errors, uncertainties, or disturbances.
In a typical situation, we do not know g.t; x/,
but we know some information about it, like
knowing an upper bound on kg.t; x/k. Suppose
the nominal system has an exponentially stable
equilibrium point at the origin, what can we say
about the stability of the origin as an equilib-
rium point of the perturbed system? A natural
approach to address this question is to use a
Lyapunov function for the nominal system as a
Lyapunov function candidate for the perturbed
system.

Let V.t; x/ be a Lyapunov function that satis-
fies

c1kxk2 � V.t; x/ � c2kxk2 (8)

@V

@t
C @V

@x
f .t; x/ � �c3kxk2 (9)

��
�
�
@V

@x

��
�
� � c4kxk (10)

for all x 2 D for some positive constants c1, c2,
c3, and c4. Suppose the perturbation term g.t; x/

satisfies the linear growth bound

kg.t; x/k � 
kxk; 8 t � 0; 8 x 2 D (11)

where 
 is a nonnegative constant. We use V as
a Lyapunov function candidate to investigate the
stability of the origin as an equilibrium point for
the perturbed system. The derivative of V along
the trajectories of Eq. (7) is given by

PV .t; x/ D @V

@t
C @V

@x
f .t; x/C @V

@x
g.t; x/

The first two terms on the right-hand side are the
derivative of V.t; x/ along the trajectories of the
nominal system, which is negative definite and
satisfies the inequality of Eq. (9). The third term,
Œ@V=@x�g, is the effect of the perturbation. Using
Eqs. (9) through (11), we obtain

PV .t; x/ � �c3kxk2 C
�
�
�
�
@V

@x

�
�
�
� kg.t; x/k

� �c3kxk2 C c4
kxk2

If 
 < c3=c4, then

� �.c3 � 
c4/kxk2; .c3 � 
c4/ > 0

which shows that the origin is an exponentially
stable equilibrium point of the perturbed sys-
tem (7).

Summary

Lyapunov’s method is a powerful tool for study-
ing the stability of equilibrium points. However,
there are two drawbacks of the method. First,
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there is no systematic procedure for finding Lya-
punov functions. Second, the conditions of the
theory are only sufficient; they are not neces-
sary. Failure of a Lyapunov function candidate to
satisfy the conditions for stability or asymptotic
stability does not mean that the origin is not stable
or asymptotically stable. These drawbacks have
been mitigated by a long history of using the
method in the analysis and design of engineering
systems, where various techniques for finding
Lyapunov functions for specific systems have
been determined.

Cross-References

� Feedback Stabilization of Nonlinear Systems
� Input-to-State Stability
�Regulation and Tracking of Nonlinear Systems

Recommended Reading

For an introduction to Lyapunov’s stability
theory at the level of first-year graduate students,
the textbooks Khalil (2002), Sastry (1999),
Slotine and Li (1991), and (Vidyasagar 2002)
are recommended. The books by Bacciotti and
Rosier (2005) and Haddad and Chellaboina
(2008) cover a wider set of topics at the
same introductory level. A deeper look into
the theory is provided in the monographs
Hahn (1967), Krasovskii (1963), Rouche et al.

(1977), Yoshizawa (1966), and (Zubov 1964).
Lyapunov’s theory for discrete-time systems is
presented in Haddad and Chellaboina (2008) and
Qu (1998). The monograph Michel and Wang
(1995) presents Lyapunov’s stability theory for
general dynamical systems, including functional
and partial differential equations.
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Abstract

Markov chains refer to stochastic processes
whose states change according to transition
probabilities determined only by the states of
the previous time step. They have been crucial
for modeling large-scale systems with random
behavior in various fields such. as control,
communications, biology, optimization, and
economics. In this entry, we focus on their
recent application to the area of search engines,
namely, the PageRank algorithm employed at
Google, which provides a measure of importance
for each page in the web. We present several
researches carried out with control theoretic tools
such as aggregation, distributed randomized
algorithms, and PageRank optimization. Due
to the large size of the web, computational
issues are the underlying motivation of these
studies.

Keywords

Aggregation; Distributed randomized algorithms;
Markov chains; Optimization; PageRank; Search
engines; World wide web

Introduction

For various real-world large-scale dynamical sys-
tems, reasonable models describing highly com-
plex behaviors can be expressed as stochastic
systems, and one of the most well-studied classes
of such systems is that of Markov chains. A char-
acteristic feature of Markov chains is that their
behavior does not carry any memory. That is, the
current state of a chain is completely determined
by the state of the previous time step and not at all
on the states prior to that step (Kumar and Varaiya
1986; Norris 1997).

Recently, Markov chains have gained
renewed interest due to the extremely successful
applications in the area of web search. The
search engine of Google has been employing
an algorithm known as PageRank to assist
the ranking of search results. This algorithm
models the network of web pages as a Markov
chain whose states represent the pages that
web surfers with various interests visit in a
random fashion. The objective is to find an
order among the pages according to their
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popularity and importance, and this is done by
focusing on the structure of hyperlinks among
pages.

In this entry, we first provide a brief overview
on the basics of Markov chains and then in-
troduce the problem of PageRank computation.
We proceed to provide further discussions on
control theoretic approaches dealing with PageR-
ank problems. The topics covered include ag-
gregated Markov chains, distributed randomized
algorithms, and Markov decision problems for
link optimization.

Markov Chains

In the simplest form, a Markov chain takes its
states in a finite state space with transitions in
the discrete-time domain. The transition from one
state to another is characterized completely by the
underlying probability distribution.

Let X be a finite set given by X WD
f1; 2; : : : ; ng, which is called the state space.
Consider a stochastic process fXkg1

kD0 taking
values on this set X . Such a process is called a
Markov chain if it exhibits the following Markov
property:

Prob
˚
XkC1 D j jXk D ik; Xk�1 D ik�1; : : : ;

X0 D i0
� D Prob

˚
XkC1 D j jXk D ik

�
;

where Probf�j�g denotes the conditional probabil-
ity and k 2 ZC. That is, the state at the next
time step depends only on the current state and
not those of previous times.

Here, we consider the homogeneous case
where the transition probability is constant over
time. Thus, we have for each pair i; j 2 X , the
probability that the chain goes from state j to
state i at time k expressed as

pij WD Prob
˚
Xk D i jXk�1 D j

�
; k 2 ZC:

In the matrix form, P WD .pij / is called the
transition probability matrix of the chain. It is
obvious that all entries of P are nonnegative, and
for each j, the entries of the jth column of P

sum up to 1, i.e.,
Pn

iD1 pij D 1 for j 2 X . In
this respect, the matrix P is (column) stochastic
(Horn and Johnson 1985).

In this entry, we assume that the Markov chain
is ergodic, meaning that for any pair of states,
the chain can make a transition from one to the
other over time. In this case, the chain and the
matrix P are called irreducible. This property is
known to imply that P has a simple eigenvalue
of 1. Thus, there exists a unique steady state
probability distribution � 2 R

n given by

� D P�; 1T � D 1; �i > 0; 8i 2 X ;

where 1 2 R
n denotes a vector with entries one.

Note that in this distribution � , all entries are
positive.

Ranking in Search Engines: PageRank
Algorithm

At Google, PageRank is used to quantify the
importance of each web page based on the hy-
perlink structure of the web (Brin and Page 1998;
Langville and Meyer 2006). A page is considered
important if (i) many pages have links pointing
to the page, (ii) such pages having links are
important ones, and (iii) the numbers of links
that such pages have are limited. Intuitively, these
requirements are reasonable. For a web page, its
incoming links can be viewed as votes supporting
the page, and moreover the quality of the votes
count through their importance as well as the
number of votes that they make. Even if a minor
page (with low PageRank) has many outgoing
links, its contribution to the linked pages will not
be substantial.

An interesting way to explain the PageRank
is through the random surfer model: The random
surfer starts from a randomly chosen page. Each
time visiting a page, he/she follows a hyperlink in
that page chosen at random with uniform proba-
bility. Hence, if the current page i has ni outgoing
links, then one of them is picked with probability
1=ni . If it happens that the current page has
no outgoing link (e.g., at PDF documents), the
surfer will use the back button. This process
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will be repeated. The PageRank value for a page
represents the probability of the surfer visiting the
page. It is thus higher for pages visited more often
by the surfer.

It is now clear that PageRank is obtained by
describing the random surfer model as a Markov
chain and then finding its stationary distribution.
First, we express the network of web pages as
the directed graph G D .V ; E/, where V D
f1; 2; : : : ; ng is the set of nodes corresponding to
web page indices while E � V � V is the set of
edges for links among pages. Node i is connected
to node j by an edge, i.e., .i; j / 2 E , if page i has
an outgoing link to page j.

Let xi .k/ be the distribution of the random
surfer visiting page i at time k, and let x.k/ be
the vector containing all xi .k/. Given the initial
distribution x.0/, which is a probability vector,
i.e.,

Pn
iD1 xi.0/ D 1, the evolution of x.k/ can

be expressed as

x.k C 1/ D Ax.k/: (1)

The link matrix A D .aij / 2 R
n�n is given by

aij D 1=nj if .j; i/ 2 E and 0 otherwise, where
nj is the number of outgoing links of page j .
Note that this matrix A is the transition proba-
bility matrix of the random surfer. Clearly, it is
stochastic, and thus x.k/ remains a probability
vector so that

Pn
iD1 xi .k/ D 1 for all k.

As mentioned above, PageRank is the
stationary distribution of the process (1) under
the assumption that the limit exists. Hence,
the PageRank vector is given by x� WD
limk!1 x.k/. In other words, it is the solution of
the linear equation

x� D Ax�; x� 2 Œ0; 1�n; 1T x� D 1: (2)

Notice that the PageRank vector x� is a non-
negative unit eigenvector for the eigenvalue 1 of
A. Such a vector exists since the matrix A is
stochastic, but may not be unique; the reason is
that A is a reducible matrix since in the web, not
every pair of pages can be connected by simply
following links. To resolve this issue, a slight
modification is necessary in the random surfer
model.

The idea of the teleportation model is that
the random surfer, after a while, becomes bored
and stops following the hyperlinks. At such an
instant, the surfer “jumps” to another page not
directly connected to the one currently visiting.
This page can be in fact completely unrelated
in the domains and/or the contents. All n pages
in the web have the same probability 1=n to be
reached by a jump.

The probability to make such a jump is de-
noted by m 2 .0; 1/. The original transition
probability matrix A is now replaced with the
modified oneM 2 R

n�n defined by

M WD .1 �m/AC m

n
11T : (3)

For the value ofm, we takem D 0:15 as reported
in the original algorithm in Brin and Page (1998).
Notice that M is a positive stochastic matrix. By
Perron’s theorem (Horn and Johnson 1985), the
eigenvalue 1 is of multiplicity 1 and is the unique
eigenvalue with the maximum modulus. Further,
the corresponding eigenvector is positive. Hence,
we redefine the vector x� in (2) by using M

instead of A as follows:

x� D Mx�; x� 2 Œ0; 1�n; 1T x�
i D 1:

Due to the large dimension of the link matrix
M , the computation of x� is difficult. The solu-
tion employed in practice is based on the power
method given by

x.k C 1/ D Mx.k/ D .1 �m/Ax.k/C m

n
1;

(4)

where the initial vector x.0/ 2 R
n is a probability

vector. The second equality above follows from
the fact 1T x.k/ D 1 for k 2 ZC. For imple-
mentation, the form on the far right-hand side is
important, using only the sparse matrixA and not
the dense matrix M . This method asymptotically
finds the value vector as x.k/ ! x�,k ! 1.
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AggregationMethods for Large-Scale
Markov Chains

In dealing with large-scale Markov chains,
it is often desirable to predict their dynamic
behaviors from reduced-order models that are
more computationally tractable. This enables us,
for example, to analyze the system performance
at a macroscale with some approximation under
different operating conditions. Aggregation
refers to partitioning or grouping the states so
that the states in each group can be treated
as a whole. The technique of aggregation is
especially effective for Markov chains possessing
sparse structures with strong interactions among
states in the same group and weak interactions
among states in different groups. Such methods
have been extensively studied, motivated by
applications in queueing networks, power
systems, etc. (Meyer 1989).

In the context of the PageRank problem, such
sparse interconnection can be expressed in the
link matrix A with a block-diagonal structure
(after some coordinate change, if necessary). The
entries of the matrix A are dense along its diag-
onal in blocks, and those outside the blocks take
small values. More concretely, we write

A D I C B C �C; (5)

where B is a block-diagonal matrix given as
B D diag.B11; B22; : : : ; BNN /; Bii is the Qni � Qni
matrix corresponding to the ith group with Qni
member pages for i D 1; 2; : : : ; N ; and � is a
small positive parameter. Here, the non-diagonal
entries of Bii are the same as those in the same
diagonal block of A, but the diagonal entries are
chosen such that I C Bii becomes stochastic and
thus take nonpositive values. Thus, both B and
C have column sums equal to zero. The small �
suggests us that states can be aggregated into N
groups with strong interactions within the groups,
but connections among different groups are weak.
This class of Markov chains is known as nearly
completely decomposable. In general, however, it
is difficult to uniquely determine the form (5) for
a given chain.

To exploit the sparse structure in the
computation of stationary probability distribu-
tions, one approach is to carry out decomposition
or aggregation of the chains. The basic approach
here is (i) to compute the local stationary
distributions for I C Bii, (ii) to find the global
stationary distribution for a chain representing
the group interactions, and (iii) to finally use the
obtained vectors to compute exact/approximate
distribution for the entire chain; for details, see
Meyer (1989). By interpreting such methods
from the control theoretic viewpoints, in Phillips
and Kokotovic (1981) and Aldhaheri and Khalil
(1991), singular perturbation approaches have
been developed. These methods lead us to the
two-time scale decomposition of (controlled)
Markov chain recursions.

In the case of PageRank computation, sparsity
is a relevant property since it is well known
that many links in the web are intra-host ones,
connecting pages within the same domains or
directories. However, in the real web, it is easy
to find pages that have only a few outlinks, but
some of them are external ones. Such pages
will prevent the link matrix from having small
� when decomposed in the form (5). Hence, the
general aggregation methods outlined above are
not directly applicable.

An aggregation-based method suitable for
PageRank computation is proposed in Ishii et al.
(2012). There, the sparsity in the web is expressed
by the limited number of external links pointing
towards pages in other groups. For each page i ,
the node parameter ıi 2 Œ0; 1� is given by

ıi WD # external outgoing links

# total outgoing links
:

Note that smaller ıi implies sparser networks. In
this approach, for a given bound ı, the condition
ıi � ı is imposed only in the case page i belongs
to a group consisting of multiple members. Thus,
a page forming a group by itself is not required
to satisfy the condition. This means that we can
regroup the pages by first identifying pages that
violate this condition in the initial groups and
then making them separately as single groups.
By repeating these steps, it is always possible to
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obtain groups for a given web. Once the grouping
is settled, an aggregation-based algorithm can
be applied, which computes an approximated
PageRank vector. A characteristic feature is the
tradeoff between the accuracy in PageRank com-
putation and the node parameter ı. More accurate
computation requires a larger number of groups
and thus a smaller ı.

Distributed Randomized
Computation

For large-scale computation, distributed algo-
rithms can be effective by employing multiple
processors to compute in parallel. There are
several methods of constructing algorithms to
find stationary distributions of large Markov
chains. In this section, motivated by the current
literature on multi-agent systems, sequential
distributed randomized approaches of gossip
type are described for the PageRank problem.

In gossip-type distributed algorithms, nodes
make decisions and transmit information to
their neighbors in a random fashion. That is,
at any time instant, each node decides whether
to communicate or not depending on a random
variable. The random property is important to
make the communication asynchronous so that
simultaneous transmissions resulting in collisions
can be avoided. Moreover, there is no need of any
centralized decision maker or fixed order among
pages.

More precisely, each page i 2 V is equipped
with a random process �i .k/ 2 f0; 1g for k 2
ZC. If at time k, �i .k/ is equal to 1, then page
i broadcasts its information to its neighboring
pages connected by outgoing links. All pages in-
volved at this time renew their values based on the
latest available data. Here, �i .k/ is assumed to be
an independent and identically distributed (i.i.d.)
random process, and its probability distribution
is given by Probf�i .k/ D 1g D ˛, k 2 ZC.
Hence, all pages are given the same probability
˛ to initiate an update.

One of the proposed randomized approaches
is based on the so-called asynchronous iteration
algorithms for distributed computation of fixed

points in the field of numerical analysis (Bert-
sekas and Tsitsiklis 1989). The distributed update
recursion is given as

Lx.k C 1/ D LM�1.k/;:::;�n.k/ Lx.k/; (6)

where the initial state Lx.0/ is a probability vector
and the distributed link matrices LMp1;:::;pn are
given as follows: Its .i; j /th entry is equal to
.1 � m/aij C m=n if pi D 1; 1 if pi D 0 and
i D j ; and 0 otherwise. Clearly, these matrices
keep the rows of the original link matrixM in (3)
for pages initiating updates. Other pages just
keep their previous values. Thus, these matrices
are not stochastic. From this update recursion,
the PageRank x� is probabilistically obtained (in
the mean square sense and in probability one),
where the convergence speed is exponential in
time k. Note that in this scheme (6), due to the
way the distributed link matrices are constructed,
each page needs to know which pages have links
pointing towards it. This implies that popular
pages linked by a number of pages must have
extra memory to keep the data of such links.

Another recently developed approach Ishii and
Tempo (2010) and Zhao et al. (2013) has several
notable differences from the asynchronous
iteration approach above. First, the pages need
to transmit their states only over their outgoing
links; the information of such links are by
default available locally, and thus, pages are
not required to have the extra memory regarding
incoming links. Second, it employs stochastic
matrices in the update as in the centralized
scheme; this aspect is utilized in the convergence
analysis. As a consequence, it is established
that the PageRank vector x� is computed in
a probabilistic sense through the time average
of the states x.0/; : : : ; x.k/ given by y.k/ WD
1=.k C 1/

Pk
`D0 x.`/. The convergence speed in

this case is of order 1=k.

PageRank Optimization
via Hyperlink Designs

For owners of websites, it is of particular interest
to raise the PageRank values of their web pages.
Especially in the area of e-business, this can
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be critical for increasing the number of visitors
to their sites. The values of PageRank can be
affected by changing the structure of hyperlinks
in the owned pages. Based on the random surfer
model, intuitively, it makes sense to arrange the
links so that surfers will stay within the domain
of the owners as long as possible.

PageRank optimization problems have rigor-
ously been considered in, for example, de Ker-
chove et al. (2008) and Fercoq et al. (2013).
In general, these are combinatorial optimization
problems since they deal with the issues on where
to place hyperlinks, and thus the computation for
solving them can be prohibitive especially when
the web data is large. However, the work Fercoq
et al. (2013) has shown that the problem can
be solved in polynomial time. In what follows,
we discuss a simplified discrete version of the
problem setup of this work.

Consider a subset V0 � V of web pages over
which a webmaster has control. The objective is
to maximize the total PageRank of the pages in
this set V0 by finding the outgoing links from
these pages. Each page i 2 V0 may have con-
straints such as links that must be placed within
the page and those that cannot be allowed. All
other links, i.e., those that one can decide to have
or not, are the design parameters. Hence, the
PageRank optimization problem can be stated as

max
˚
U.x�;M / W x� D Mx�; x� 2 Œ0; 1�n;

1T x� D 1; M 2 M�
;

where U is the utility function U.x�;M / WDP
i2V0 x

�
i and M represents the set of admissible

link matrices in accordance with the constraints
introduced above.

In Fercoq et al. (2013), an extended continu-
ous problem is also studied where the set M of
link matrices is a polytope of stochastic matrices
and a more general utility function is employed.
The motivation for such a problem comes from
having weighted links so that webmasters can
determine which links should be placed in a more
visible location inside their pages to increase
clickings on those hyperlinks. Both discrete and
continuous problems are shown to be solvable

in polynomial time by modeling them as con-
strained Markov decision processes with ergodic
rewards (see, e.g., Puterman 1994).

Summary and Future Directions

Markov chains form one of the simplest classes
of stochastic processes but have been found pow-
erful in their capability to model large-scale com-
plex systems. In this entry, we introduced them
mainly from the viewpoint of PageRank algo-
rithms in the area of search engines and with a
particular emphasis on recent works carried out
based on control theoretic tools. Computational
issues will remain in this area as major chal-
lenges, and further studies will be needed. As we
have observed in PageRank-related problems, it
is important to pay careful attention to structures
of the particular problems.

Cross-References

�Randomized Methods for Control of Uncertain
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Vehicle-Manipulator Systems

Gianluca Antonelli
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Abstract

Marine intervention requires the use of manip-
ulators mounted on support vehicles. Such sys-
tems, defined as vehicle-manipulator systems,
exhibit specific mathematical properties and re-
quire proper control design methodologies. This
article briefly discusses the mathematical model
within a control perspective as well as sensing
and actuation peculiarities.

Keywords

Floating-base manipulators; Marine robotics;
Underwater intervention; Underwater robotics

Introduction

In case of marine operations that require
interaction with the environment, an underwater

vehicle is usually equipped with one or more
manipulators; such systems are defined under-
water vehicle-manipulator systems (UVMSs). A
UVMS holding six degree-of-freedom (DOF)
manipulators is illustrated in Fig. 1. The vehicle
carrying the manipulator may or may not be
connected to the surface; in the first case we face
a so-called remotely operated vehicle (ROV),
while in the latter an autonomous underwater
vehicle (AUV). ROVs, being physically linked,
via the tether, to an operator that can be on a
submarine or on a surface ship, receives power as
well as control commands. AUVs, on the other
hand, are supposed to be completely autonomous,
thus relying to onboard power system and
intelligence.

Remotely controlled UVMSs represent the
state of the art in underwater manipulation, while
autonomous or semiautonomous UVMSs still are
in their embryonic stage. All over the world, few
experimental setups have been developed within
on-purpose projects; see, e.g., the European
project Trident (2012).

Sensory System

Any manipulation task requires that some vari-
ables are measured; those may concern the inter-
nal state of the system such as the end effector
as well the vehicle position and orientation or the
velocities. Some others concern the surrounding
environment as it is the case of vision systems
or range measurements. Underwater sensing is
characterized by poorer performance with respect
to the ground corresponding variables due to
the physical properties of the water as medium
carrying the electromagnetic or acoustic signals.

One of the major challenges in underwater
robotics is the localization due to the absence
of a single, proprioceptive sensor that measures
the vehicle position and the impossibility to use
the Global Navigation Satellite System (GNSS)
under the water. The use of redundant multisensor
systems, thus, is common in order to perform sen-
sor fusion and give fault detection and tolerance
capabilities to the vehicle.
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Mathematical Models of Marine Vehicle-Manipulator Systems, Fig. 1 Sketch of a UVMS, the inertial frame as
well as the frames attached to all the rigid bodies are highlighted

Localization

A possible approach for AUV localization is to
rely on inertial navigation systems (INSs); those
are algorithms that implement dead reckoning
techniques, i.e., the estimation of the position by
properly merging and integrating measurements
obtained with inertial and velocity sensors. Dead
reckoning suffers from numerical drift due to the
integration of sensor noise, as well as sensor bias
and drift, and may be prone to the presence of
external currents and model uncertainties. Since
the variance of the estimation error grows with
the distance traveled, this technique is only used
for short dives.

Several algorithms are based on the concept
of trilateration. The vehicle measures its distance
with respect to known positions and properly uses
this information by applying geometric-based
formulas. Under the water, the technology for
trilateration is not based on the electromagnetic
field, due to the attenuation of its radiations, but
on acoustics.

Among the commercially available solutions,
long, short, and ultrashort baseline systems have
found widespread use. The differences are in
the baseline wavelength, the required distance
among the transponders, the accuracy, and the
installation cost. Acoustic underwater positioning
is commercially mature, and several companies
offer a variety of products.

In case of intervention, when the UVMS is
close to the target, rather than the absolute posi-
tion with respect to an inertial frame, it is crucial
to estimate the relative position with respect to
the target itself. In such a case, vision-based
systems may be considered.

Actuation

Underwater vehicles are usually controlled
by thrusters and/or control surfaces. Control
surfaces, such as rudders and sterns, are typically
used in vehicles working at cruise speed,
i.e., torpedo-shaped vehicles usually used in
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monitoring or cable/pipeline inspection. In such
vehicles a main thruster is used together with at
least one rudder and one stern.

This configuration is unsuitable for UVMSs
since the force/moment provided by the control
surfaces is the function of the velocity and it is
null in hovering, when typically manipulation is
performed.

The relationship between the force/moment
acting on the vehicle and the control input of the
thrusters is highly nonlinear. It is the function
of structural variables such as the density of the
water, the tunnel cross-sectional area, the tunnel
length, the volumetric flow rate between input
and output of the thrusters, and the propeller di-
ameter. The state of the dynamic system describ-
ing the thrusters is constituted by the propeller
revolution, the speed of the fluid going into the
propeller, and the input torque.

Modeling

UVMSs can be modeled as rigid bodies con-
nected to form a serial chain; the vehicle is the
floating base, while each link of the manipulator
represents an additional rigid body with one DOF,
typically the rotation around the corresponding
joint’s axis. Roughly speaking, modeling of a
UVMS is the effort to represent the physical
relationships of those bodies in order to measure
and control its end effector, typically involved in
a manipulation task.

The first step of modeling is the so-called di-
rect kinematics, consisting in computing the po-
sition/orientation of the end effector with respect
to an inertial, i.e., world fixed, frame. This is done
via geometric relationship function of the system
kinematic parameters, typically the lengths of
the links, and the current system configuration,
i.e., the vehicle position/orientation and the joint
positions.

Velocities of each rigid body affect the follow-
ing rigid bodies and thus the end effector. For
example, a vehicle roll movement or the joint
velocity is projected into a linear and angular
end-effector velocity. This velocity transforma-
tion is studied by the differential kinematics.

Analytic and/or geometric approaches may be
used to retrieve those relationships. The study
of the velocity-related equations is fundamental
to understand how to balance the movement be-
tween vehicle and manipulator and, within the
manipulator, how to distribute it among the joints.
This topic is strictly related to differential, and
inverse, kinematics for industrial robots.

The extension of Newton’s second law to
UVMSs leads to a number of nonlinear differ-
ential equations that link together the systems
generalized forces and accelerations. With the
word generalized forces, it is here intended as
the forces and moments acting on the vehicles
and the joint torques. Correspondingly, one is
interested in the vehicle linear and angular accel-
erations and joint accelerations. Those equations
couple together all the DOFs of the structure, e.g.,
a force applied to the vehicle causes acceleration
also on the joints. Study of the dynamics is crucial
to design the controller.

It is not possible to neglect that the bodies are
moving in the water, the theory of fluidodynamics
is rather complex, and it is difficult to develop
a simple model for most of the hydrodynamic
effects. A rigorous analysis for incompressible
fluids would need to resort to the Navier-Stokes
equations (distributed fluid flow). However, most
of the hydrodynamic effects have no significant
influence in the range of the operative velocities
for UVMS intervention tasks. In particular, it
is necessary to model added masses, linear and
quadratic damping terms, and the buoyancy.

Control

Not surprisingly, the mathematical model of
UVMS shares most of the characteristics
of industrial robots as well as space robots
modeling. Having taken into account to the
physical differences, the control problems are
also similar:
• Kinematic control. The control problem is

given in terms of motion of the end effector
and needs to be transformed into the motion
of the vehicle and the manipulator. This is
often approached by resorting to the inverse
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differential kinematic algorithms. In particu-
lar, algorithms for redundant systems need to
be considered since a UVMS always possess
at least six DOFs. Moving a UVMS requires
to handle additional variables with respect to
the end effector such as the vehicle roll and
pitch to preserve energy, the robot manipula-
bility, the mechanical joint limits, or eventual
directional sensing.

• Motion control. Low-level control algorithms
are designed to allow the system tracking the
desired trajectory. UVMSs are characterized
by different dynamics between vehicle and
manipulator, uncertainty in the model parame-
ter knowledge, poor sensing performance, and
limit cycle in the thruster model. On the other
hand, the limited bandwidth of the closed-
loop system allows the use of simple control
approaches.

• Interaction control. Several applications re-
quire exchange of forces with the environ-
ment. A pure motion control algorithm is
not devised for such operation and specific
force control algorithms, both direct and indi-
rect, may be necessary. Master/slave systems
or haptic devices may be used on the pur-
pose, while autonomous interaction control
still is in the research phase for the marine
environment.

Summary and Future Directions

This article is aimed at giving a short overview
of the main mathematical and technological chal-
lenges arising with UVMSs. All the components
of an underwater mission, perception, actuation,
and communication with the surface, are char-
acterized by poorer performances with respect
to the current industrial or advanced robotics
applications.

The underwater environment is hostile; as an
example the marine current provides disturbances
to be counteracted by the dynamic controller, or
the sand’s whirlwinds obfuscate the vision-based
operations close to the sea bottom. Both tele-
operated and autonomous underwater missions
require a significant human effort in planning,

testing, and monitoring all the operations. Fault
detection and recovery policies are necessary in
each step to avoid loss of expensive hardware.

Future generation of UVMSs needs to be au-
tonomous, to percept and contextualize the en-
vironment, to react with respect to unplanned
situations, and to safely reschedule the tasks
of complex missions. Those characteristics are
being shared by all the branches of the service
robotics.

Cross-References

�Advanced Manipulation for Underwater Sam-
pling

�Mathematical Models of Ships and Underwater
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Recommended Reading

The book of Fossen (1994) is one of the first
books dedicated to control problems of marine
systems, both underwater and surface. The same
author presents, in Fossen (2002), an updated
and extended version of the topics developed in
the first book and in Fossen (2011), a handbook
on marine craft hydrodynamics and control. A
short introductory chapter to marine robotics may
be found in Antonelli et al. (2008). Robotics
fundamentals are also useful and can be found
in Siciliano et al. (2009). To the best of our
knowledge, Antonelli (2014) is the only mono-
graph devoted to addressing the specific problems
of underwater vehicle-manipulator systems.
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Abstract

This entry describes the equations of motion
of ships and underwater vehicles. Standard
hydrodynamic models in the literature are
reviewed and presented using the nonlinear
robot-like vectorial notation of Fossen (1991,
1994, 2011). The matrix-vector notation is highly
advantageous when designing control systems
since well-known system properties such as
symmetry, skew-symmetry, and positiveness can
be exploited in the design.

Keywords

Autonomous underwater vehicle (AUV); Degrees
of freedom; Euler angles; Hydrodynamics; Kine-
matics; Kinetics; Maneuvering; Remotely oper-
ated vehicle (ROV); Seakeeping; Ship; Underwa-
ter vehicles

Introduction

The subject of this entry is mathematical model-
ing of ships and underwater vehicles. With ship

we mean “any large floating vessel capable of
crossing open waters,” as opposed to a boat,
which is generally a smaller craft. An underwater
vehicle is a “small vehicle that is capable of
propelling itself beneath the water surface as well
as on the water’s surface.” This includes un-
manned underwater vehicles (UUVs), remotely
operated vehicles (ROVs), autonomous under-
water vehicles (AUVs) and underwater robotic
vehicles (URVs).

This entry is based on Fossen (1991, 2011),
which contains a large number of standard
models for ships, rigs, and underwater vehicles.
There exist a large number of textbooks on
mathematical modeling of ships; see Rawson
and Tupper (1994), Lewanddowski (2004), and
Perez (2005). For underwater vehicles, see
Allmendinger (1990), Sutton and Roberts (2006),
Inzartsev (2009), Anotonelli (2010), and Wadoo
and Kachroo (2010). Some useful references
on ship hydrodynamics are Newman (1977),
Faltinsen (1990), and Bertram (2012).

Degrees of Freedom
A mathematical model of marine craft is usu-
ally represented by a set of ordinary differential
equations (ODEs) describing the motions in six
degrees of freedom (DOF): surge, sway, heave,
roll, pitch, and yaw.

Hydrodynamics
In hydrodynamics it is common to distinguish
between two theories:
• Seakeeping theory: The motions of ships

at zero or constant speed in waves are an-
alyzed using hydrodynamic coefficients and
wave forces, which depends of the wave ex-
citation frequency and thus the hull geometry
and mass distribution. For underwater vehicles
operating below the wave-affected zone, the
wave excitation frequency will not influence
the hydrodynamic coefficients.

• Maneuvering theory: The ship is moving in
restricted calm water – that is, in sheltered
waters or in a harbor. Hence, the maneuvering
model is derived for a ship moving at positive
speed under a zero-frequency wave excitation

http://www.irs.uji.es/trident
http://www.irs.uji.es/trident
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assumption such that added mass and damping
can be represented by constant parameters.
Seakeeping models are typically used for

ocean structures and dynamically positioned
vessels. Several hundred ODEs are needed to
effectively represent a seakeeping model; see
Fossen (2011), and Perez and Fossen (2011a,b).

The remainder of this entry assumes maneu-
vering theory, since this gives lower-order mod-
els typically suited for controller-observer design.
Six ODEs are needed to describe the kinemat-
ics, that is, the geometrical aspects of motion
while Newton-Euler’s equations represent addi-
tional six ODEs describing the forces and mo-
ments causing the motion (kinetics).

Notation
The equations of motion are usually represented
using generalized position, velocity and forces
(Fossen 1991, 1994, 2011) defined by the state
vectors:

� WD Œx; y; z; �; �;  �> (1)

� WD Œu; v;w; p; q; r�> (2)

� WD ŒX; Y;Z;K;M;N �> (3)

where � is the generalized position expressed in
the north-east-down (NED) reference frame fng.
A body-fixed reference frame fbg with axes:
xb – longitudinal axis (from aft to fore)
yb – transversal axis (to starboard)
zb – normal axis (directed downward)
is rotating about the NED reference frame fng
with angular velocity ! D Œp; q; r�>. The gen-
eralized velocity vector � and forces � are both
expressed in fbg, and the 6-DOF states are de-
fined according to SNAME (1950):
• Surge position x, linear velocity u, force X
• Sway position y, linear velocity v, force Y
• Heave position z, linear velocity w, force Z
• Roll angle �, angular velocity p, momentK
• Pitch angle � , angular velocity q, momentM
• Yaw angle  , angular velocity r , momentN

Kinematics
The generalized velocities P� and � in fbg and
fng, respectively satisfy the following kinematic
transformation (Fossen 1994, 2011):

P� D J.�/� (4)

J.�/ WD
�

R.‚/ 03�3
03�3 T.‚/

�
(5)

where ‚ D Œ�; �;  �> is the Euler angles and

R.‚/ D
2

4
c c� �s c� C c s�s�
s c� c c� C s�s�s 
�s� c�s�

s s� C c c�s�
�c s� C s�s c�

c�c�

3

5 (6)

with s � D sin.�/, c � D cos.�/ and t � D tan.�/.
The matrix R is recognized as the Euler angle

rotation matrix R 2 SO.3/ satisfying RR> D
R>R D I, and det.R/ D 1, which implies that R
is orthogonal. Consequently, the inverse rotation
matrix is given by: R�1 D R>. The Euler rates
P‚ D T .‚/! are singular for � ¤ ˙�=2 since:

T.‚/ D
2

4
1 s�t� c�t�
0 c� �s�
0 s�=c� c�=c�

3

5 ; � ¤ ˙�

2

(7)

Singularities can be avoided by using unit quater-
nions instead (Fossen 1994, 2011).

Kinetics

The rigid-body kinetics can be derived using the
Newton-Euler formulation, which is based on
Newton’s second law. Following Fossen (1994,
2011) this gives:

MRB P� C CRB.�/� D �RB (8)

where MRB is the rigid-body mass matrix, CRB

is the rigid-body Coriolis and centripetal matrix
due to the rotation of fbg about the geographical
frame fng. The generalized force vector �RB rep-
resents external forces and moments expressed in
fbg. In the nonlinear case:

�RB D �MA P��CA.�/��D.�/��g.�/C� (9)
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where the matrices MA and CA.�/ represent
hydrodynamic added mass due to acceleration
P� and Coriolis acceleration due to the rotation
of fbg about the geographical frame fng. The
potential and viscous damping terms are lumped
together into a nonlinear matrix D.�/ while
g.�/ is a vector of generalized restoring forces.
The control inputs are generalized forces given
by �.

Formulae (8) and (9) together with (4) are
the fundamental equations when deriving the ship
and underwater vehicle models. This is the topic
for the next sections.

ShipModel

The ship equations of motion are usually
represented in three DOFs by neglecting heave,
roll and pitch. Combining (4), (8), and (9)
we get:

P� D R. /� (10)

M P� C C.�/�CD.�/� D � C �wind C �wave

(11)

where � WD Œx; y;  �> , � WD Œu; v; r�> and

R. / D
2

4
c �s 0

s c 0

0 0 1

3

5 (12)

is the rotation matrix in yaw. It is assumed that
wind and wave-induced forces �wind and �wave

can be linearly superpositioned. The system ma-
trices M D MRB C MA and C.�/ D CRB.�/ C
CA.�/ are usually derived under the assumption
of port-starboard symmetry and that surge can
be decoupled from sway and yaw (Fossen 2011).
Moreover,

M D

2

6
4

m �XPu 0 0

0 m � Y Pv mxg � YPr
0 mxg �N Pv Iz �NPr

3

7
5

(13)

CRB.�/ D

2

6
4

0 �mr �mxgr
mr 0 0

mxgr 0 0

3

7
5 (14)

CA.�/ D

2

6
4

0 0 Y Pvv C YPr r
0 0 �XPuu

�Y Pvv � YPr r XPuu 0

3

7
5

(15)

Hydrodynamic damping will, in its simplest
form, be linear:

D D

2

6
4

�Xu 0 0

0 �Yv �Yr
0 �Nr �Nr

3

7
5 (16)

while a nonlinear expression based on second-
order modulus functions describing quadratic
drag and cross-flow drag is:

D.�/ D

2

6
6
6
4

�X juju juj 0

0 �Y jvjv jvj �Y jr jv jr j

0 �N jvjv jvj �N jr jv jr j
0

�Y jvjr jvj �Y jr jr jr j
�N jvjr jvj �N jr jr jr j

3

7
5 (17)

Other nonlinear representations are found in Fos-
sen (1994, 2011).

In the case of irrotational ocean currents, we
introduce the relative velocity vector:

�r D � � �c

where �c D Œubc ; v
b
c ; 0�

> is a vector of current
velocities in fbg. Hence, the kinetic model takes
the form:

MRB P� C CRB.�/�„ ƒ‚ …
rigid-body forces

C MA P�r C CA.�r /�r C D.�r /�r„ ƒ‚ …
hydrodynamic forces

D � C �wind C �wave
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This model can be simplified if the ocean cur-
rents are assumed to be constant and irrotational
in fng. According to Fossen (2011, Property 8.1),
MRB P� C CRB.�/� � MRB P�r C CRB.�r /�r if
the rigid-body Coriolis and centripetal matrix sat-
isfies CRB.�r / D CRB.�/. One parametrization
satisfying this is (14). Hence, the Coriolis and
centripetal matrix satisfies C.�r / D CRB.�r / C
CA.�r / and it follows that:

M P�r C C.�r /�r C D.�r /�r D � C �wind C �wave

(18)

The kinematic equation (10) can be modi-
fied to include the relative velocity �r according
to:

P� D R. /�r C �
unc ; v

n
c ; 0

�>
(19)

where the ocean current velocities unc = constant
and vnc = constant in fng. Notice that the body-
fixed velocities �c D R. />Œunc ; vnc ; 0�> will
vary with the heading angle  .

The maneuvering model presented in this
entry is intended for controller-observer design,
prediction, and computer simulations, as
well as system identification and parameter
estimation. A large number of application-
specific models for marine craft are found in
Fossen (2011, Chap. 7).

Hydrodynamic programs compute mass, iner-
tia, potential damping and restoringforces while

a more detailed treatment of viscous dissipa-
tive forces (damping) and sealoads are found in
the extensive literature on hydrodynamics – see
Faltinsen (1990) and Newman (1977).

Underwater Vehicle Model

The 6-DOF underwater vehicle equations of
motion follow from (4), (8), and (9) under the
assumption that wave-induced motions can be
neglected:

P� D J.�/� (20)

M P� C C.�/� C D.�/� C g.�/ D � (21)

with generalized position � WD Œx; y; z; �; �;  �>
and velocity � WD Œu; v;w; p; q; r�> . Assume that
the gravitational force acts through the center
of gravity (CG) defined by the vector rg WD
Œxg; yg; zg�> with respect to the coordinate origin
fbg. Similarly, the buoyancy force acts through
the center of buoyancy (CB) defined by the vector
rb WD Œxb; yb; zb�>. For most vehicles yg D yb D
0.

For a port-starboard symmetrical vehicle with
homogenous mass distribution, CG satisfying
yg D 0 and products of inertia Ixy D Iyz D 0,
the system inertia matrix becomes:

M WD

2

6
6
6
6
66
6
6
6
66
6
6
6
6
66
4

m � X Pu 0 �X Pw 0 mzg�X Pq 0

0 m � Y Pv 0 �mzg�Y Pp 0 mxg�Y Pr

�X Pw 0 m �Z Pw 0 �mxg�Z Pq 0

0 �mzg�Y Pp 0 Ix�K Pp 0 �I zx�K Pr

mzg�X Pq 0 �mxg�Z Pq 0 Iy�M Pq 0

0 mxg�Y Pr 0 �I zx�K Pr 0 Iz�N Pr

3

7
7
7
7
77
7
7
7
77
7
7
7
7
77
5

(22)
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where the hydrodynamic derivatives are defined
according to SNAME (1950). The Coriolis and
centripetal matrices are:

CA.�/D

2

6
6
6
6
6
6
4

0 0 0 0 �a3 a2
0 0 0 a3 0 �a1
0 0 0 �a2 a1 0

0 �a3 a2 0 �b3 b2
a3 0 �a1 b3 0 �b1

�a2 a1 0 �b2 b1 0

3

7
7
7
7
7
7
5

(23)

where

a1 D XPuuCX PwwCX Pqq
a2 D Y PvvCY PppCYPrr
a3 D ZPuuCZ PwwCZ Pqq
b1 D K PvvCK PppCKPr r
b2 D MPuuCM PwwCM Pqq
b3 D N PvvCN PppCNPr r

(24)

and

CRB.�/ D

2

6
6
66
6
6
4

0 �mr mq mzgr �mxgq �mxgr
mr 0 �mp 0 m.zgr C xgp/ 0

�mq mp 0 �mzgp �mzgq mxgp

�mzgr 0 mzgp 0 �I xzp C I zr �I yq
mxgq �m.zgr C xgp/ mzgq Ixzp � I zr 0 �I xzr C I xp

mxgr 0 �mxgp Iyq Ixzr � I xp 0

3

7
7
77
7
7
5

(25)

Notice that this representation of CRB.�/

only depends on the angular velocities p,
q, and r , and not the linear velocities
u; v, and r . This property will be exploited
when including drift due to ocean cur-
rents.

Linear damping for a port-starboard symmet-
rical vehicle takes the following form:

D D �

2

6
6
6
6
66
4

Xu 0 Xw 0 Xq 0

0 Yv 0 Yp 0 Yr
Zu 0 Zw 0 Zq 0

0 Kv 0 Kp 0 Kr

Mu 0 Mw 0 Mq 0

0 Nv 0 Np 0 Nr

3

7
7
7
7
77
5

(26)

Let W D mg and B D �gr denote
the weight and buoyance where m is the
mass of the vehicle including water in
free floating space, r the volume of fluid
displaced by the vehicle, g the accelera-
tion of gravity (positive downward), and �
the water density. Hence, the generalized
restoring forces for a vehicle satisfying
yg D yb D 0 becomes (Fossen 1994,
2011):

g.�/D

2

6
66
6
6
6
4

.W � B/s�
�.W � B/c�s�
�.W � B/c�c�
.zgW � zbB/c�s�
.zgW � zbB/s�C.xgW � xbB/c�c�
�.xgW � xbB/c�s�

3

7
77
7
7
7
5

(27)

The expression for D can be extended to include
nonlinear damping terms if necessary. Quadratic
damping is important at higher speeds since
the Coriolis and centripetal terms C.�/� can
destabilize the system if only linear damping is
used.

In the presence of irrotational ocean currents,
we can rewrite (20) and (21) in terms of relative
velocity �r D � � �c according to:

P� D J.�/�r C �
unc ; v

n
c ;w

n
c ; 0; 0; 0

�>
(28)

M P�r C C.�r /�r C D.�r /�r C g.�/ D � (29)

where it is assumed that CRB.�r / D CRB.�/,
which clearly is satisfied for (25). In addition, it
is assumed that unc , v

n
c , and wnc are constant. For

more details see Fossen (2011).
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Programs and Data

The Marine Systems Simulator (MSS) is a Mat-
lab/Simulink library and simulator for marine
craft (http://www.marinecontrol.org). It includes
models for ships, underwater vehicles, and float-
ing structures.

Summary and Future Directions

This entry has presented standard models for
simulation of ships and underwater vehicles. It
is recommended to consult Fossen (1994, 2011)
for a more detailed description of marine craft
hydrodynamics.

Cross-References

�Control of Networks of Underwater
Vehicles

�Control of Ship Roll Motion
�Dynamic Positioning Control Systems for

Ships and Underwater Vehicles
�Underactuated Marine Control

Systems
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Abstract

Mean Field Game (MFG) theory studies the ex-
istence of Nash equilibria, together with the indi-
vidual strategies which generate them, in games
involving a large number of agents modeled by
controlled stochastic dynamical systems. This
is achieved by exploiting the relationship be-
tween the finite and corresponding infinite limit
population problems. The solution of the infi-
nite population problem is given by the fun-
damental MFG Hamilton-Jacobi-Bellman (HJB)
and Fokker-Planck-Kolmogorov (FPK) equations
which are linked by the state distribution of a
generic agent, otherwise known as the system’s
mean field.
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Introduction

Large-population, dynamical, multi-agent,
competitive, and cooperative phenomena occur
in a wide range of designed and natural
settings such as communication, environmental,
epidemiological, transportation, and energy
systems, and they underlie much economic
and financial behavior. Analysis of such
systems is intractable using the finite population
game theoretic methods which have been
developed for multi-agent control systems
(see, e.g., Basar and Ho 1974; Basar and
Olsder 1999; Ho 1980; and Bensoussan and
Frehse 1984). The continuum population game
theoretic models of economics (Aumann and
Shapley 1974; Neyman 2002) are static, as,
in general, are the large-population models
employed in network games (Altman et al.
2002) and transportation analysis (Correa
and Stier-Moses 2010; Haurie and Marcotte
1985; Wardrop 1952). However, dynamical (or
sequential) stochastic games were analyzed in
the continuum limit in the work of Jovanovic
and Rosenthal (1988) and Bergin and Bernhardt
(1992), where the fundamental mean field
equations appear in the form of a discrete
time dynamic programming equation and an
evolution equation for the population state
distribution.

The mean field equations for dynamical games
with large but finite populations of asymptotically
negligible agents originated in the work of Huang
et al. (2003, 2006, 2007) (where the framework
was called the Nash Certainty Equivalence
Principle) and independently in that of Lasry
and Lions (2006a,b, 2007), where the now
standard terminology of Mean Field Games
(MFGs) was introduced. Independent of both
of these, the closely related notion of Oblivious

Equilibria for large-population dynamic games
was introduced by Weintraub et al. (2005) in
the framework of Markov Decision Processes
(MDPs).

One of the main results of MFG theory is that
in large-population stochastic dynamic games in-
dividual feedback strategies exist for which any
given agent will be in a Nash equilibrium with
respect to the pre-computable behavior of the
mass of the other agents; this holds exactly in
the asymptotic limit of an infinite population and
with increasing accuracy for a finite population
of agents using the infinite population feedback
laws as the finite population size tends to infinity,
a situation which is termed an "-Nash equilib-
rium. This behavior is described by the solution
to the infinite population MFG equations which
are fundamental to the theory; they consist of
(i) a parameterized family of HJB equations (in
the nonuniform parameterized agent case) and
(ii) a corresponding family of McKean-Vlasov
(MV) FPK PDEs, where (i) and (ii) are linked
by the probability distribution of the state of
a generic agent, that is to say, the mean field.
For each agent, these yield (i) a Nash value
of the game, (ii) the best response strategy for
the agent, (iii) the agent’s stochastic differential
equation (SDE) (i.e., the MV-SDE pathwise de-
scription), and (iv) the state distribution of such
an agent (via the MV FPK for the parameterized
individual).

Dynamical Agents

In the diffusion-based models of large-population
games, the state evolution of a collection of N
agents Ai ; 1 � i � N < 1; is specified by a set
N of controlled stochastic differential equations
(SDEs) which in the important linear case take
the form

dxi .t/ D ŒFi xi .t/CGiui .t/�dt CDidwi .t/;

1 � i � N;

where xi 2 R
n is the state, ui 2 R

m the control
input, and wi the state Wiener process of the i th
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agent Ai , where fwi ; 1 � i � N g is a collec-
tion ofN independent standard Wiener processes
in R

r independent of all mutually independent
initial conditions. For simplicity, throughout this
entry, all collections of system initial conditions
are taken to be independent, zero mean and have
finite second moment.

A simplified form of the general case treated
in Huang et al. (2007) and Nourian and Caines
(2013) is given by the following set of controlled
SDEs which for each agent Ai includes state
coupling with all other agents:

dxi .t/ D 1

N

NX

jD1
f .t; xi .t/; ui .t/; xj .t//dt

C 	dwi .t/; 1 � i � N;

where here, for the sake of simplicity, only
the uniform (non-parameterized) generic
agent case is presented. The dynamics of
a generic agent in the infinite population
limit of this system is then described by the
following controlled MV stochastic differential
equation:

dx.t/ D f Œt; x.t/; u.t/; 
t �dt C 	dw.t/;

where f Œt; x; u; 
t � D R
Rn
f .t; x; u; y/
t .dy/,

with the initial condition measure 
0 specified,
where 
t.�/ denotes the state distribution
of the population at t 2 Œ0; T �. The dy-
namics used in the analysis in Lasry and
Lions (2006a,b, 2007) and Cardaliaguet
(2012) are of the form dxi .t/ D ui .t/dt C
	dwi .t/.

The dynamical evolution of the state xi of
the i th agent Ai in the discrete time Markov
Decision Processes (MDP)-based formulation
of the so-called anonymous sequential games
(Bergin and Bernhardt 1992; Jovanovic and
Rosenthal 1988; Weintraub et al. 2005) is
described by a Markov state transition function,
or kernel, of the form PtC1 WD P.xi .t C
1/jxi .t/; x�i .t/; ui .t/; Pt /.

Agent Performance Functions

In the basic finite population linear-quadratic dif-
fusion case, the agent Ai ; 1 � i � N , possesses
a performance, or loss, function of the form

JNi .ui ; u�i / D E

Z T

0

fkxi .t/ �mN.t/k2Q
C kui .t/k2Rgdt;

where we assume the cost coupling to be of the
form mN.t/ WD .xN .t/C �/; � 2 R

n, where u�i
denotes all agents’ control laws except for that
of the i th agent and xN denotes the population
average state .1=N /

PN
iD1 xi ; and where here and

below the expectation is taken over an underlying
sample space which carries all initial conditions
and Wiener processes.

For the nonlinear case introduced in the pre-
vious section, a corresponding finite population
mean field loss function is

JNi .ui I u�i / WD

E

Z T

0

0

@.1=N /
NX

jD1
L.t; xi .t/; ui .t/; xj .t//

1

Adt;

1 � i � N;

where L is the nonlinear state cost-coupling
function. Setting, by possible abuse of notation,
LŒt; x; u; 
t � D R

Rn
L.t; x; u; y/
t .dy/, the

infinite population limit of this cost function
for a generic individual agent A is given by

J.u; 
/ WD E

Z T

0

LŒt; x.t/; u.t/; 
t �dt;

which is the general expression for the infinite
population individual performance functions
appearing in Huang et al. (2006) and Nourian and
Caines (2013) and which includes those of Lasry
and Lions (2006a,b, 2007) and Cardaliaguet
(2012). Exponentially discounted costs with
discount rate parameter � are employed for
infinite time horizon performance functions in
Huang et al. (2003, 2007), while the sample path
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limit of the long-range average is used for ergodic
MFG problems in Lasry and Lions (2006a, 2007)
and Li and Zhang (2008) and in the analysis of
adaptive MFG systems (Kizilkale and Caines
2013).

The Existence of Equilibria

The objective of each agent is to find strategies
(i.e., control laws) which are admissible with
respect to information and other constraints and
which minimize its performance function. The
resulting problem is necessarily game theoretic

and consequently central results of the topic con-
cern the existence of Nash Equilibria and their
properties.

The basic linear-quadratic mean field problem
has an explicit solution characterizing a Nash
equilibrium (see Huang et al. 2003, 2007).
Consider the scalar infinite time horizon
discounted case, with nonuniform parameterized
agents A� with parameter distribution F.�/; � 2
A, and dynamical parameters identified as
a� WD F� ; b� WD G�;Q WD 1; r WD RI then
the so-called Nash Certainty Equivalence (NCE)
equation scheme generating the equilibrium
solution takes the form

�s� D ds�

dt
C a� s� � b2�

r
…�s� � x�;

dx�

dt
D
�
a� � b2�

r
…�

�
x� � b2�

r
s� ; 0 � t < 1;

x.t/ D
Z

A
x�.t/dF.�/;

x�.t/ D �.x.t/C �/;

�…� D 2a�…� � b2�
r
…� C 1; …� > 0; Riccati Equation

where the control action of the generic
parameterized agent A� is given by u0� .t/ D
� b�

r
.…�x� .t/ C s� .t//; 0 � t < 1: u0� is the

optimal tracking feedback law with respect to
x�.t/which is an affine function of the mean field
term x.t/, the mean with respect to the parameter
distribution F of the � 2 A parameterized state
means of the agents. Subject to the conditions
for the NCE scheme to have a solution, each
agent is necessarily in a Nash equilibrium in all
full information causal (i.e., non-anticipative)
feedback laws with respect to the remainder of
the agents when these are employing the law u0.

It is an important feature of the best response
control law u0� that its form depends only on
the parametric data of the entire set of agents,

and at any instant it is a feedback function
of only the state of the agent A� itself and
the deterministic mean field-dependent offset
s� .

For the general nonlinear case, the MFG
equations on Œ0; T � are given by the linked
equations for (i) the performance function
V for each agent in the continuum, (ii) the
FPK for the MV-SDE for that agent, and
(iii) the specification of the best response
feedback law depending on the mean field
measure 
t and the agent’s state x.t/. In the
uniform agents case, these take the following
form.

The Mean Field Game HJB: (MV) FPK
Equations
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[MV-HJB] � @V.t; x/

@t
D inf

u2U

	
f Œt; x.t/; u.t/; 
t �

@V .t; x/

@x
C LŒt; x.t/; u.t/; 
t �




C 	2

2

@2V .t; x/

@x2
;

V .T; x/ D 0; .t; x/ 2 Œ0; T � � R;

[MV-FPK]
@
.t; x/

@t
D �@ff Œt; x; u.t/; 
t �
.t; x/g

@x
C 	2

2

@2
.t; x/

@x2
;

[MV-BR] u.t/ D '.t; x.t/j
t /; .t; x/ 2 Œ0; T � � R:

The general nonlinear MFG problem is
approached by different routes in Huang et al.
(2006) and Nourian and Caines (2013), and Lasry
and Lions (2006a,b, 2007) and Cardaliaguet
(2012), respectively. In the former, the so-called
probabilistic method solves the MFG equations
directly. Subject to technical conditions, an
iterated contraction argument establishes the
existence of a solution to the HJB-(MV) FPK
equations; the best response control laws are
obtained from these MFG equations, and
these are necessarily Nash equilibria within all
causal feedback laws for the infinite population
problem. In Lasry and Lions (2006a, 2007) the
MFG equations on the infinite time interval (i.e.,
the ergodic case) are obtained as the limit of Nash
equilibria for increasing finite populations, while
in the expository notes of Cardaliaguet (2012) the
analytic properties of solutions to the HJB-FPK
equations on the finite interval are analyzed using
PDE methods including the theory of viscosity
solutions.

In Huang et al. (2003, 2006, 2007), Nourian
and Caines (2013), and Cardaliaguet (2012), it
is shown that subject to technical conditions,
the solutions to the HJB-FPK scheme yield "-
Nash solutions for finite population MFGs in that
for any " > 0, there exists a population size
N" such that for all larger populations the use

of the feedback law given by the MFG infinite
population scheme gives each agent a value to
its performance function within " of the infinite
population Nash value.

A counterintuitive feature of these results is
that, asymptotically in population size, observa-
tions of the states of rival agents are of no value to
any given agent; this is in contrast to the situation
in single-agent optimal control theory where the
value of observations on an agent’s environment
is in general positive.

Current Developments and Open
Problems

There is now an extensive literature on Mean
Field Games, the following being a sample:
the mathematical literature has focused on
the study of general classes of solutions to
the fundamental HJB-FPK equations (see e.g.,
Cardaliaguet (2013)), while in systems and
control, the theory of major-minor agent MFG
problems (in economics terminology, atoms
and continua) is being developed (Huang 2010;
Nourian and Caines 2013; Nguyen and Huang
2012), adaptive control extensions of the LQG
theory have been carried out (Kizilkale and
Caines 2013), and the risk-sensitive case has
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been analyzed (Tembine et al. 2012). Much work
is now under way in the applications of MFG
theory to economics, finance, distributed energy
systems, and electrical power markets. Each
of these areas has significant open problems,
including the application of mathematical
transport theory to HJB-FPK equations, the
role of MFG theory in portfolio optimization,
and the analysis of systems where the presence
of partially observed major and minor agent
states incurs mean field and agent state
estimation.

Cross-References

�Dynamic Noncooperative Games
�Game Theory: Historical Overview
� Stochastic Dynamic Programming
� Stochastic Linear-Quadratic Control
� Stochastic Maximum Principle
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Abstract

Mechanism design is concerned with the design
of strategic environments to achieve desired
outcomes at equilibria of the resulting game.
We briefly overview central ideas in mechanism
design. We survey both objectives the mechanism
designer may seek to achieve, as well as
equilibrium concepts the designer may use
to model agents. We conclude by discussing
a seminal example of mechanism design
at work: the Vickrey-Clarke-Groves (VCG)
mechanisms.

Keywords

Game theory; Incentive compatibility; Vickrey-
Clarke-Groves mechanisms

Introduction

Informally, mechanism design might be
considered “inverse game theory.” In mechanism
design, a principal (the “designer”) creates a
system (the “mechanism”) in which strategic
agents interact with each other. Typically, the
goal of the mechanism designer is to ensure
that at an “equilibrium” of the resulting strategic
interaction, a “desirable” outcome is achieved.
Examples of mechanism design at work include
the following:
1. The FCC chooses to auction spectrum among

multiple competing, strategic bidders to max-
imize the revenue generated. How should the
FCC design the auction?

2. A search engine decides to run a market for
sponsored search advertising. How should the
market be designed?

3. The local highway authority decides to charge
tolls for certain roads to reduce congestion.
How should the tolls be chosen?

In each case, the mechanism designer is shap-
ing the incentives of participants in the system.
The mechanism designer must first define the
desired objective and then choose a mechanism
that optimizes that objective given a prediction of
how strategic agents will respond. The theory of
mechanism design provides guidance in solving
such optimization problems.

We provide a brief overview of some central
concepts in mechanism design. In the first
section, we delve into more detail on the structure
of the optimization problem that a mechanism
designer solves. In particular, we discuss two
central features of this problem: (1) What
is the objective that the mechanism designer
seeks to achieve or optimize? (2) How does the
mechanism designer model the agents, i.e., what
equilibrium concept describes their strategic
interactions? In the second section, we study
a specific celebrated class of mechanisms, the
Vickrey-Clarke-Groves mechanisms.

Objectives and Equilibria

A mechanism design problem requires two essen-
tial inputs, as described in the introduction. First,
what is the objective the mechanism designer is
trying to achieve or optimize? And second, what
are the constraints within which the mechanism
designer operates? On the latter question, perhaps
the biggest “constraint” in mechanism design is
that the agents are assumed to act rationally in
response to whatever mechanism is imposed on
them. In other words, the mechanism designer
needs to model how the agents will interact with
each other. Mathematically, this is modeled by
a choice of equilibrium concept. For simplicity,
we focus only on static mechanism design, i.e.,
mechanism design for settings where all agents
act simultaneously.

Objectives
In this section we briefly discuss three objec-
tives the mechanism designer may choose to
optimize for: efficiency, revenue, and a fairness
criterion.
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1. Efficiency. When the mechanism designer fo-
cuses on “efficiency,” they are interested in
ensuring that the equilibrium outcome of the
game they create is a Pareto efficient outcome.
In other words, at an equilibrium of the game,
there should be no individual that can be made
strictly better off while leaving all others at
least as well off as they were before. The most
important instantiation of the efficiency crite-
rion arises in quasilinear settings, i.e., settings
where the utility of all agents is measured in
a common, transferable monetary unit. In this
case, it can be shown that achieving efficient
outcomes is equivalent to maximizing the ag-
gregate utility of all agents in the system.
See Chap. 23 in Mas-Colell et al. (1995) for
more details on mechanism design for efficient
outcomes.

2. Revenue. Efficiency may be a reasonable goal
for an impartial social planner; on the other
hand, in many applied settings, the mechanism
designer is often herself a profit-maximizing
party. In these cases, it is commonly the goal
of the mechanism designer to maximize her
own payoff from the mechanism itself.

A common example of this scenario is in
the design of optimal auctions. An auction is a
mechanism for the sale of a good (or multiple
goods) among many competing buyers. When
the principal is self-interested, she may wish
to choose the auction design that maximizes
her revenue from sale; the celebrated paper
of Myerson (1981) studies this problem in
detail.

3. Fairness. Finally, in many settings, the
mechanism designer may be interested more
in achieving a “fair” outcome – even if such
an outcome is potentially not Pareto efficient.
Fairness is subjective, and therefore, there
are many potential objectives that might be
viewed as fair by the mechanism designer.
One common setting where the mechanism
design strives for fair outcomes is in cost
sharing: in a canonical example, the cost
of a project must be shared “fairly” among
many participants. See Chap. 15 of Nisan
et al. (2007) for more discussion of such
mechanisms.

Equilibrium Concepts
In this section we briefly discuss a range of equi-
librium concepts the mechanism designer might
use to model the behavior of players. From an op-
timization viewpoint, mechanism design should
be viewed as maximization of the designer’s
objective, subject to an equilibrium constraint.
The equilibrium concept used captures the mech-
anism designer’s judgment about how the agents
can be expected to interact with each other, once
the mechanism designer has fixed the mech-
anism. Here we briefly discuss three possible
equilibrium concepts that might be used by the
mechanism designer.
1. Dominant strategies. In dominant strategy

implementation, the mechanism designer
assumes that agents will play a (weak or strict)
dominant strategy against their competitors.
This equilibrium concept is obviously quite
strong, as dominant strategies may not exist
in general. However, the advantage is that
when the mechanism possesses dominant
strategies for each player, the prediction of
play is quite strong. The Vickrey-Clarke-
Groves mechanisms described below are
central in the theory of mechanism design
with dominant strategies.

2. Bayesian equilibrium. In a Bayesian
equilibrium, agents optimize given a common
prior distribution about the other agents’
preferences. In Bayesian mechanism design,
the mechanism designer chooses a mechanism
taking into account that the agents will play
according to a Bayesian equilibrium of the
resulting game. This solution concept allows
the designer to capture a lack of complete
information among players, but typically
allows for a richer family of mechanisms than
mechanism design with dominant strategies.
Myerson’s work on optimal auction design is
carried out in a Bayesian framework (Myerson
1981).

3. Nash equilibrium. Finally, in a setting where
the mechanism designer believes the agents
will be quite knowledgeable about each
other’s preferences, it may be reasonable to
assume they will play a Nash equilibrium of
the resulting game. Note that in this case,
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it is typically assumed the designer does not
know the utilities of agents at the time the
mechanism is chosen – even though agents do
know their own utilities at the time the result-
ing game is actually played. See, e.g., Moore
(1992) for an overview of mechanism design
with Nash equilibrium as the solution concept.

The Vickrey-Clarke-Groves
Mechanisms

In this section, we describe a seminal exam-
ple of mechanism design at work: the Vickrey-
Clarke-Groves (VCG) class of mechanisms. The
key insight behind VCG mechanisms is that by
structuring payment rules correctly, individuals
can be incentivized to truthfully declare their
utility functions to the market and in turn achieve
an efficient allocation. VCG mechanisms are an
example of mechanism design with dominant
strategies and with the goal of welfare maxi-
mization, i.e., efficiency. The presentation here
is based on the material in Chap. 5 of Berry and
Johari (2011), and the reader is referred there
for further discussion. See also Vickrey (1961),
Clarke (1971), and Groves (1973) for the original
papers discussing this class of mechanisms.

To illustrate the principle behind VCG mech-
anisms, consider a simple example where we al-
locate a single resource of unit capacity amongR
competing users. Each user’s utility is measured
in terms of a common currency unit; in particular,
if the allocated amount is xr and the payment to
user r is tr , then her utility is Ur.xr / C tr ; we
refer to Ur as the valuation function, and let the
space of valuation functions be denoted by U .
For simplicity we assume the valuation functions
are continuous. In line with our discussion of
efficiency above, it can be shown that the Pareto
efficient allocation is obtained by solving the
following:

maximize
X

r

Ur.xr / (1)

subject to
X

r

xr � 1I (2)

x � 0: (3)

However, achieving the efficient allocation re-
quires knowledge of the utility functions; what
can we do if these are unknown? The key insight
is to make each user act as if they are opti-
mizing the aggregate utility, by structuring pay-
ments appropriately. The basic approach in a
VCG mechanism is to let the strategy space of
each user r be the set U of possible valuation
functions and make a payment tr to user r so that
her net payoff has the same form as the social
objective (1). In particular, note that if user r
receives an allocation xr and a payment tr , the
payoff to user r is

Ur.xr /C tr :

On the other hand, the social objective (1) can be
written as

Ur.xr /C
X

s¤r
Us.xs/:

Comparing the preceding two expressions, the
most natural means to align user objectives with
the social planner’s objectives is to define the
payment tr as the sum of the valuations of all
users other than r .

A VCG mechanism first asks each user to
declare a valuation function. For each r , we use
OUr to denote the declared valuation function of

user r and use OU D . OU1; : : : ; OUR/ to denote the
vector of declared valuations. Formally, given a
vector of declared valuation functions OU, a VCG
mechanism chooses the allocation x. OU/ as an
optimal solution to (1)–(2) given OU, i.e.,

x. OU/ 2 arg max
x�0WPr xr�1

X

r

OUr.xr /: (4)

The payments are then structured so that

tr . OU/ D
X

s¤r
OUs.xs. OU//C hr. OU�r /: (5)

Here hr is an arbitrary function of the declared
valuation functions of users other than r , and
various definitions of hr give rise to variants of
the VCG mechanisms. Since user r cannot affect
this term through the choice of OUr , she chooses
OUr to maximize
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Ur.xr . OU//C
X

s¤r
OUs.xs. OU//:

Now note that given OU�r , the above expression is
bounded above by

max
x�0WPr xr�1

2

4Ur.xr /C
X

s¤r
OUs.xs/

3

5 :

But since x. OU/ satisfies (4), user r can achieve
the preceding maximum by truthfully declaring
OUr D Ur . Since this optimal strategy does not

depend on the valuation functions . OUs; s ¤ r/

declared by the other users, we recover the impor-
tant fact that in a VCG mechanism, truthful dec-
laration is a weak dominant strategy for user r .

For our purposes, the interesting feature of the
VCG mechanism is that it elicits the true utilities
from the users and in turn (because of the defini-
tion of x. OU/) chooses an efficient allocation. The
feature that truthfulness is a dominant strategy is
known as incentive compatibility: the individual
incentives of users are aligned, or “compatible,”
with overall efficiency of the system. The VCG
mechanism achieves this by effectively paying
each agent to tell the truth. The significance of
the approach is that this payment can be properly
structured even if the resource manager does
not have prior knowledge of the true valuation
functions.

Summary and Future Directions

Mechanism design provides an overarching
framework for the “engineering” of economic
systems. However, many significant challenges
remain. First, VCG mechanisms are not
computationally tractable in complex settings,
e.g., combinatorial auctions (Hajek 2013);
finding computationally tractable yet efficient
mechanisms is a very active area of current
research. Second, VCG mechanisms optimize
for overall welfare, rather than revenue, and
finding simple mechanisms that maximize
revenue also presents new challenges. Finally,

we have only considered implementation in static
environments. Most practical mechanism design
settings are dynamic. Dynamic mechanism
design remains an active area of fruitful research.
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the system under study with information coming
from experimental data. In this article the role
of mathematical models in control system design
and the problem of developing compact control-
oriented models are discussed.

Keywords

Analytical models; Computational modeling;
Continuous-time systems; Control-oriented mod-
eling; Discrete-time systems; Parameter-varying
systems; Simulation; System identification;
Time-invariant systems; Time-varying systems;
Uncertainty

Introduction

The design of automatic control systems requires
the availability of some knowledge of the dynam-
ics of the process to be controlled. In this respect,
current methods for control system synthesis can
be classified in two broad categories: model-free
and model-based ones.

The former aim at designing (or tuning) con-
trollers solely on the basis of experimental data
collected directly on the plant, without resorting
to mathematical models.

The latter, on the contrary, assume that suit-
able models of the plant to be controlled are
available, and rely on this information to work
out control laws capable of meeting the design
requirements.

While the research on model-free design
methods is a very active field, the vast majority
of control synthesis methods and tools fall in
the model-based category and therefore assume
that knowledge about the plant to be controlled
is encoded in the form of dynamic models of
the plant itself. Furthermore, in an increasing
number of application areas, control system
performance is becoming a key competitive
factor for the success of innovative, high-
tech systems. Consider, for example, high-
performance mechatronic systems (such as
robots); vehicles enhanced by active integrated
stability, suspension, and braking control;

aerospace systems; advanced energy conversion
systems. All the abovementioned applications
possess at least one of the following features,
which in turn call for accurate mathematical
modeling for the design of the control system:
closed-loop performance critically depends on
the dynamic behavior of the plant; the system
is made of many closely interacting subsystems;
advanced control systems are required to obtain
competitive performance, and these in turn
depend on explicit mathematical models for their
design; the system is safety critical and requires
extensive validation of closed-loop stability and
performance by simulation.

Therefore, building control-oriented mathe-
matical models of physical systems is a crucial
prerequisite to the design process itself (see, e.g.,
Lovera (2014) for a more detailed treatment of
this topic).

In the following, two aspects related to mod-
eling for control system synthesis will be dis-
cussed, namely, the role of models for control
system synthesis and the actual process of model
building itself.

The Role of Models for Control
System Synthesis

Mathematical models play a number of different
roles in the design of control systems. In particu-
lar, different classes of mathematical models are
usually employed: detailed, high-fidelity models
for system simulation and compact models for
control design. In this section the two model
classes are presented and their respective roles in
the design of control systems are described. Note,
in passing, that although hybrid system control is
an interesting and emerging field, this entry will
focus on purely continuous-time physical mod-
els, with application to the design of continuous-
time or sampled-time control systems.

Detailed Models for System Simulation
Detailed models play a double role in the control
design process. On one hand, they allow checking
how good (or crude) the compact model is, com-
pared to a more detailed description, thus helping
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to develop good compact models. On the other
hand, they allow closed-loop performance verifi-
cation of the controlled system, once a controller
design is available. Indeed, verifying closed-loop
performance using the same simplified model
that was used for control system design is not
a sound practice; conversely, verification per-
formed with a more detailed model is usually
deemed a good indicator of the control system
performance, whenever experimental validation
is not possible for some reason.

Object-oriented modeling (OOM) method-
ologies and equation-based, object-oriented
languages (EOOLs) provide very good support
for the development of such high-fidelity
models, thanks to equation-based modeling,
acausal physical ports, hierarchical system
composition, and inheritance; see Tiller (2001)
for a comprehensive overview. Any continuous-
time EOOL model is equivalent to the set of
differential-algebraic equations (DAEs)

F.x.t/; Px.t/; u.t/; y.t/; p; t/ D 0; (1)

where x is the vector of dynamic variables, u is
the vector of input variables, y is the vector of
algebraic variables, p is the vector of parameters
and t is the time. It is interesting to highlight that
the object-oriented approach (in particular, the
use of replaceable components) allows defining
and managing families of models of the same
plant with different levels of complexity, by pro-
viding more or less detailed implementations of
the same abstract interfaces. This feature of OOM
allows the development of simulation models for
different purposes and with different degrees of
detail throughout the entire life of an engineering
project, from preliminary design down to com-
missioning and personnel training, all within a
coherent framework.

In particular, when focusing on control sys-
tems verification (and regardless of the actual
control design methodology) once the controller
has been set up, an OOM tool can be used to
run closed-loop simulations, including both the
plant and the controller model. Many OOM tools
provide model export facilities, which allow to
connect a plant model with only causal external

connectors (actuator inputs and sensor outputs)
to a causal controller model in a causal simu-
lation environment. From a mathematical point
of view, this corresponds to reformulating (1) in
state-space form, by means of analytical and/or
numerical transformations.

Finally, it is important to point out that
physical model descriptions based on partial-
differential equations (PDEs) can be handled in
the OOM framework by means of discretization
using finite volume, finite elements, or finite
differences methods.

Compact Models for Control Design
The requirements for a control-oriented model
can vary significantly from application to applica-
tion. Design models can be tentatively classified
in terms of two key features: complexity and
accuracy. For a dynamic model, complexity can
be measured in terms of its order; accuracy, on
the other hand, can be measured using many
different metrics (e.g., time-domain simulation
or prediction error, frequency domain matching
with the real plant, etc.) related to the capability
of the model to reproduce the behavior of the true
system in the operating conditions of interest.

Broadly speaking, it can be safely stated that
the required level of closed-loop performance
drives the requirements on the accuracy and
complexity of the design model. Similarly,
it is intuitive that more complex models
have the potential for being more accurate.
So, one might be tempted to resort to very
detailed mathematical representations of the
plant to be controlled in order to maximize
closed-loop performance. This consideration
however is moderated by a number of additional
requirements, which actually end up driving the
control-oriented modeling process. First of all,
present-day controller synthesis methods and
tools have computational limitations in terms of
the complexity of the mathematical models they
can handle, so compact models representative of
the dominant dynamics of the system under study
are what is really needed. Furthermore, for many
synthesis methods (such as, e.g., LQG or H1
synthesis), the complexity of the design model
has an impact on the complexity of the controller,
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which in turn is constrained by implementation
issues. Last but not least, in engineering projects,
the budget of the control-oriented modeling
activity is usually quite limited, so the achievable
level of accuracy is affected by this limitation.

It is clear from the above discussion that devel-
oping mathematical models suitable for control
system synthesis is a nontrivial task but rather
corresponds to the pursuit of a careful tradeoff
between complexity and accuracy. Furthermore,
throughout the model development, one should
keep in mind the eventual control application of
the model, so its mathematical structure has to be
compatible with currently available methods and
tools for control system analysis and design.

Control-oriented models are usually formu-
lated in state-space form:

Px.t/ D f .x.t/; u.t/; p; t/
y.t/ D g.x.t/; u.t/; p; t/

(2)

where x is the vector of state variables, u is the
vector of system inputs (control variables and dis-
turbances), y is the vector of system outputs, p is
the vector of parameters, and t is the continuous
time. In the following, however, the focus will
be on linear models, which constitute the starting
point for most control law design methods and
tools. In this respect, the main categories of
models used in control system synthesis can be
defined as follows.

Linear Time-Invariant Models
Linear time-invariant (LTI) models can be de-
scribed in state-space form as

Px.t/ D Ax.t/C Bu.t/
y.t/ D Cx.t/CDu.t/

(3)

or, equivalently, using an input-output model
given by the (rational) transfer function

G.s/ D C.sI � A/�1B CD; (4)

where s denotes the Laplace variable. In many
cases, the dynamics of systems in the form (2) in
the neighborhood of an equilibrium (trim) point

is approximated by (3) via analytical or numerical
linearization.

If, on the contrary, the control-oriented model
is obtained by linearization of the DAE system
(1), then a generalized LTI (or descriptor) model
in the form

E Px.t/ D Ax.t/C Bu.t/
y.t/ D Cx.t/CDu.t/

(5)

is obtained. Clearly, a generalized LTI model is
equivalent to a conventional one as long as E
is nonsingular. The generalized form, however,
encompasses the wider class of linearized plants
with a singular E .

Linear Time-Varying Models
In some engineering applications, the need may
arise to linearize the detailed model in the neigh-
borhood of a trajectory rather than around an
equilibrium point. Whenever this is the case, a
linear time-varying (LTV) model is obtained, in
the form

Px.t/ D A.t/x.t/C B.t/u.t/
y.t/ D C.t/x.t/CD.t/u.t/:

(6)

An important subclass is the one of time periodic
behavior of the state-space matrices of the model,
which corresponds to a linear time periodic (LTP)
model. LTP models arise when considering the
linearization along periodic trajectories or, as it
occurs in a number of engineering problems,
whenever rotating systems are considered (e.g.,
spacecraft, rotorcraft, wind turbines). Finally, it
is interesting to recall that (discrete-time) LTP
models are needed to model multi-rate sampled
data systems.

Linear Parameter-Varyingmodels
The control-oriented modeling problem can be
also formulated as the one of simultaneously
representing all the linearizations of interest
for control purposes of a given nonlinear plant.
Indeed, in many control engineering applications
a single control system must be designed to
guarantee the satisfactory closed-loop operation
of a given plant in many different operating
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conditions (either equilibria or trajectories).
Many design techniques are now available for
this problem (see, e.g., Mohammadpour and
Scherer 2012), provided that a suitable model in
parameter-dependent form has been derived for
the system to be controlled. Linear parameter-
varying (LPV) models, described in state-space
form as

Px.t/ D A.p.t//x.t/C B.p.t//u.t/
y.t/ D C.p.t//x.t/CD.p.t//u.t/

(7)

are linear models the state-space representation
of which depends on a parameter vector p that
can be time varying. The elements of vector p
may or may not be measurable, depending on the
specific problem formulation. The present state
of the art of LPV modeling can be briefly sum-
marized by defining two classes of approaches
(see Lopes dos Santos et al. (2011) for details).
Analytical methods based on the availability of
reliable nonlinear equations for the dynamics of
the plant, from which suitable control-oriented
representations can be derived (by resorting to,
broadly speaking, suitable extensions of the fa-
miliar notion of linearization, developed in order
to take into account off-equilibrium operation
of the system). Experimental methods based en-
tirely on identification, i.e., aimed at deriving
LPV models for the plant directly from input/ out-
put data. In particular, some LPV identification
techniques assume that one global identification
experiment in which both the control input and
the parameter vector are (persistently) excited in a
simultaneous way, while others aim at deriving a
parameter-dependent model on the basis of local
experiments only, i.e., experiments in which the
parameter vector is held constant and only the
control input is excited.

Modern control theory provides methods and
tools to deal with design problems in which
stability and performance have to be guaranteed
also in the presence of model uncertainty, both
for regulation around a specified operating point
and for gain scheduled control system design.
Therefore, modeling for control system synthesis
should also provide methods to account for model
uncertainty (both parametric and nonparametric)
in the considered model class.

Most of the existing control design literature
assumes that the plant model is given in the form
of a linear fractional transformation (LFT) (see,
e.g., Skogestad and Postlethwaite (2007) for an
introduction to LFT modeling of uncertainty and
Hecker et al. (2005) for a discussion of algo-
rithms and software tools). LFT models consist
of a feedback interconnection between a nominal
LTI plant and a (usually norm-bounded) operator
which represents model uncertainties, e.g., poorly
known or time-varying parameters, nonlineari-
ties, etc. A generic such LFT interconnection
is depicted in Fig. 1, where the nominal plant
is denoted with P and the uncertainty block is
denoted with �. The LFT formalism can be also
used to provide a structured representation for the
state-space form of LPV models, as depicted in
Fig. 2, where the block �.˛/ takes into account
the presence of the uncertain parameter vector
˛, while the block �.p/ models the effect of
the varying operating point, parameterized by the
vector of time-varying parameters p. Therefore,
LFT models can be used for the design of robust
and gain scheduling controllers; in addition they
can also serve as a basis for structured model
identification techniques, where the uncertain pa-
rameters that appear in the feedback blocks are
estimated based on input/output data sequences.
The process of extracting uncertain/scheduling
parameters from the design model of the system

Δ

u yP

Model Building for Control System Synthesis, Fig. 1
Block diagram of the typical LFT interconnection adopted
in the robust control framework

Δ(α)

Δ(p)

u(t) u(t)S

Model Building for Control System Synthesis, Fig. 2
Block diagram of the typical LFT interconnection adopted
in the robust LPV control framework
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to be controlled is a highly complex one, in which
symbolic techniques play a very important role.
Tools already exist to perform this task (see, e.g.,
Hecker et al. 2005), while a recent overview of
the state of the art in this research area can be
found in Hecker and Varga (2006).

Finally, it is important to point out that there is
a vast body of advanced control techniques which
are based on discrete-time models:

x.k C 1/ D f .x.k/; u.k/; p; k/
y.k/ D g.x.k/; u.k/; p; k/

(8)

where the integer time step k usually corresponds
to multiples of a sampling period Ts . Many tech-
niques are available to transform (2) into (8).
Furthermore, LTI, LTV, and LPV models can
be formulated in discrete time rather than in
continuous time.

Building Models for Control System
Synthesis

The development of control-oriented models of
physical systems is a complex task, which in
general implies a careful combination of prior
knowledge about the physics of the system under
study with information coming from experimen-
tal data. In particular, this process can follow
very different paths depending on the type of
information which is available on the plant to be
controlled. Such paths are typically classified in
the literature as follows (see, e.g., Ljung (2008)
for a more detailed discussion).

White box modeling refers to the development
of control-oriented models on the basis of first
principles only. In this framework, one uses the
available information on the plant to develop
a detailed model using OOM or EOOL tools
and subsequently works out a compact control-
oriented model from it. If the adopted tool
only supports simulation, then one can run
simulations of the plant model, subject to suitably
chosen excitation inputs (ranging from steps to
persistently exciting input sequences such as,
e.g., pseudorandom binary sequences and sine

sweeps) and then reconstruct the dynamics by
means of system identification methods. Note
that in this way the structure/order selection stage
of the system identification process provides
effective means to manage the complexity versus
accuracy tradeoff in the derivation of the compact
model. A more direct approach, presently
supported by many tools, is to directly compute
the A;B;C;D matrices of the linearized system
around specified equilibrium (trim) points,
using symbolic and/or numerical linearization
techniques. The result is usually a high-order
linear system, which then can (sometimes
must) be reduced to a low-order system by
using model order reduction techniques (such
as, e.g., balanced truncation). Model reduction
techniques (see Antoulas (2009) for an in-depth
treatment of this topic) allow to automatically
obtain approximated compact models such as
(3), starting from much more detailed simulation
models, by formulating specific approximation
bounds in control-relevant terms (e.g., percentage
errors of steady-state output values, norm-
bounded additive or multiplicative errors of
weighted transfer functions, or L2-norm errors
of output transients in response to specified input
signals).

Black box modeling, on the other hand, cor-
responds to situations in which the modeling
activity is entirely based on input-output data
collected on the plant (which therefore must be
already available), possibly in dedicated, suitably
designed, experiments (see Ljung 1999). Regard-
less of the type of model to be built (i.e., linear or
nonlinear, time invariant or time varying, discrete
time or continuous time), the black box approach
consists of a number of well-defined steps. First
of all the structure of the model to be identified
must be defined: in the linear time-invariant case,
this corresponds to the choice of the number of
poles and zeros for an input-output model or
to the choice of model order for a state-space
representation; in the nonlinear case structure
selection is a much more involved process in
view of the much larger number of degrees of
freedom which are potentially involved. Once
a model structure has been defined, a suitable
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cost function to measure the model performance
must be selected (e.g., time-domain simulation or
prediction error, frequency domain model fitting,
etc.) and the experiments to collect identification
and validation data must be designed. Finally,
the uncertain model parameters must be esti-
mated from the available identification dataset
and the model must be validated on the validation
dataset.

Grey box modeling (in various shades) corre-
sponds to the many possible intermediate cases
which can occur in practice, ranging from the
white box approach to the black box one. As
recently discussed in Ljung (2008), the critical
issue in the development of an effective approach
to control-oriented grey box modeling lies in
the integration of existing methods and tools for
physical systems modeling and simulation with
methods and tools for parameter estimation. Such
integration can take place in a number of different
ways depending on the relative role of data and
priors on the physics of the system in the specific
application. A typical situation which occurs fre-
quently in applications is when a white box model
(developed by means of OOM or EOOL tools)
contains parameters having unknown or uncertain
numerical values (such as, e.g., damping factors
in structural models, aerodynamic coefficients
in aircraft models and so on). Then, one may
rely on input-output data collected in dedicated
experiments on the real system to refine the
white box model by estimating the parameters
using the information provided by the data. This
process is typically dependent on the specific
application domain as the type of experiment,
the number of measurements, and the estimation
technique must meet application-specific con-
straints (see, e.g., Klein and Morelli (2006) for
an overview of grey box modeling in aerospace
applications).

Summary and Future Directions

In this article the problem of model building
for control system synthesis has been con-

sidered. An overview of the different uses
of mathematical models in control system
design has been provided and the process
of building compact control-oriented models
starting from prior knowledge about the system
and/or experimental data has been discussed.
Present-day modeling and simulation tools
support advanced control system design in a
much more direct way. In particular, while
methods and tools for the individual steps in the
modeling process (such as OOM, linearization
and model reduction, parameter estimation) are
available, an integrated environment enabling
the pursuit of all the abovementioned paths
to the development of compact control-
oriented models is still a subject for future
development. The availability of such a tool
might further promote the application of
advanced, model-based techniques that are
currently limited by the model development
process.
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Abstract

Model order reduction (MOR) is here understood
as a computational technique to reduce the order
of a dynamical system described by a set of or-
dinary or differential-algebraic equations (ODEs
or DAEs) to facilitate or enable its simulation,
the design of a controller, or optimization and
design of the physical system modeled. It focuses
on representing the map from inputs into the
system to its outputs, while its dynamics are
treated as a black box so that the large-scale
set of describing ODEs/DAEs can be replaced
by a much smaller set of ODEs/DAEs without
sacrificing the accuracy of the input-to-output
behavior.

Keywords

Balanced truncation; Interpolation-based meth-
ods; Reduced-order models; SLICOT;
Truncation-based methods

Problem Description

This survey is concerned with linear time-
invariant (LTI) systems in state-space form

E Px.t/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/CDu.t/; (1)

where E;A 2 R
n�n are the system matrices,

B 2 R
n�m is the input matrix, C 2 R

p�n is the
output matrix, and D 2 R

p�m is the feedthrough
(or input–output) matrix. The size n of the matrix
A is often referred to as the order of the LTI
system. It mainly determines the amount of time
needed to simulate the LTI system.

Such LTI systems often arise from a finite ele-
ment modeling using commercial software such
as ANSYS or NASTRAN which results in a
second-order differential equation of the form

M Rx.t/CD Px.t/CKx.t/ D F u.t/;

y.t/ D Cpx.t/C Cv Px.t/;

where the mass matrixM , the stiffness matrixK ,
and the damping matrixD are square matrices in
R
s�s , F 2 R

s�m, Cp; Cv 2 R
q�s , x.t/ 2 R

s ,
u.t/ 2 R

m, y.t/ 2 R
q . Such second-order dif-

ferential equations are typically transformed to a
mathematically equivalent first-order differential
equation

�
I 0

0 M

�

„ ƒ‚ …
E

� Px.t/
Rx.t/

�

„ƒ‚…
Pz.t/

D
�
0 I

�K �D
�

„ ƒ‚ …
A

�
x.t/

Px.t/
�

„ƒ‚…
z.t/

C
�
0

F

�

„ƒ‚…
B

u.t/

y.t/ D �
Cp Cv

�

„ ƒ‚ …
C

�
x.t/

Px.t/
�

„ƒ‚…
z.t/

;

http://dx.doi.org/10.1007/978-1-4471-5058-9_4
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where E;A 2 R
2s�2s , B 2 R

2s�m, C 2 R
q�2s ,

z.t/ 2 R
2s , u.t/ 2 R

m, y.t/ 2 R
q . Various

other linearizations have been proposed in the
literature.

The matrix E may be singular. In that case
the first equation in (1) defines a system of
differential-algebraic equations (DAEs); other-
wise it is a system of ordinary differential equa-
tions (ODEs). For example, for E D �

J 0
0 0

�
with

a j � j nonsingular matrix J , only the first j
equations in the left-hand side expression in (1)
form ordinary differential equations, while the
last n � j equations form homogeneous linear
equations. If further A D �

A11 A12
0 A22

�
and B D

�
B1
B2

�
with the j � j matrix A11, the j � m

matrix B1 and a nonsingular matrix A22, this is
easily seen: partitioning the state vector x.t/ Dh
x1.t/
x2.t/

i
with x1.t/ of length j , the DAE E Px.t/ D

Ax.t/ C Bu.t/ splits into the algebraic equation
0 D A22x2.t/C B2u2.t/, and the ODE

J Px1.t/ D A11x1.t/C �
B1 �A12A�1

22 B2
�

u.t/:

To simplify the description, only continuous-
time systems are considered here. The discrete-
time case can be treated mostly analogously; see,
e.g., Antoulas (2005).

An alternative way to represent LTI systems is
provided by the transfer function matrix (TFM),
a matrix-valued function whose elements are ra-
tional functions. Assuming x.0/ D 0 and tak-
ing Laplace transforms in (1) yields sX.s/ D
AX.s/CBU.s/, Y.s/ D CX.s/CDU.s/, where
X.s/; Y.s/, and U.s/ are the Laplace transforms
of the time signals x.t/; y.t/ and u.t/, respec-
tively. The map from inputs U to outputs Y is
then described by Y.s/ D G.s/U.s/ with the
TFM

G.s/ D C.sE �A/�1B CD; s 2 C: (2)

The aim of model order reduction is to find an
LTI system

eE PQx.t/ D eA Qx.t/CeBu.t/; Qy.t/ D eC Qx.t/CeDu.t/
(3)

of reduced-order r 	 n such that the correspond-
ing TFM

eG.s/ D eC.seE �eA/�1eB C eD (4)

approximates the original TFM (2). That is,
using the same input u.t/ in (1) and (3), we
want that the output Qy.t/ of the reduced order
model (ROM) (3) approximates the output y.t/
of (1) well enough for the application considered
(e.g., controller design). In general, one requires
ky.t/ � Qy.t/k � " for all feasible inputs u.t/,
for (almost) all t in the time domain of interest,
and for a suitable norm k � k: In control theory
one often employs the L2- or L1-norms on R

or Œ0;1�, respectively, to measure time signals
or their Laplace transforms. In the situations
considered here, the L2-norms employed in
frequency and time domain coincide due to the
Paley-Wiener theorem (or Parseval’s equation
or the Plancherel theorem, respectively); see
Antoulas (2005) and Zhou et al. (1996) for
details. As Y.s/ � eY .s/ D .G.s/ � eG.s//U.s/,
one can therefore consider the approximation
error of the TFM kG.�/ � eG.�/k measured in an
induced norm instead of the error in the output
ky.�/� Qy.�/k.

Depending on the choice of the norm, different
MOR goals can be formulated. Typical choices
are (see, e.g., Antoulas (2005) for a more thor-
ough discussion)
• kG.�/� eG.�/kH1

, where

kF.:/kH1
D sups2CC

	max.F.s//:

Here, 	max is the largest singular value of
the matrix F.s/. This minimizes the maximal
magnitude of the frequency response of the
error system and by the Paley-Wiener theorem
bounds the L2-norm of the output error.

• kG.�/� eG.�/kH2 , where (with { D p�1)

kF.�/k2H2
D 1

2�

Z C1

�1
tr
�
F.{!/�F.{!/

�
d!:

This ensures a small error ky.�/� Qy.�/kL1.0;1/

D supt>0ky.t/ � Qy.t/k1 (with k : k1
denoting the maximum norm of a vector)
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uniformly over all inputs u.t/ having bounded
L2-energy, that is,

R1
0 u.t/T u.t/dt � 1; see

Gugercin et al. (2008).
Besides a small approximation error, one may
impose additional constraints for the ROM. One
might require certain properties (such as sta-
bility and passivity) of the original systems to
be preserved. Rather than considering the full
nonnegative real line in time domain or the full
imaginary axis in frequency domain, one can
also consider bounded intervals in both domains.
For these variants, see, e.g., Antoulas (2005) and
Obinata and Anderson (2001).

Methods

There are a number of different methods to con-
struct ROMs, see, e.g., Antoulas (2005), Ben-
ner et al. (2005), Obinata and Anderson (2001),
and Schilders et al. (2008). Here we concen-
trate on projection-based methods which restrict
the full state x.t/ to an r-dimensional subspace
by choosing Qx.t/ D W �x.t/; where W is an
n � r matrix. Here the conjugate transpose of
a complex-valued matrix Z is denoted by Z�;
while the transpose of a matrix Y will be denoted
by Y T : Choosing V 2 C

n�r such that W �V D
I 2 R

r�r yields an n � n projection matrix … D
V W � which projects onto the r-dimensional sub-
space spanned by the columns of V along the
kernel ofW �. Applying this projection to (1), one
obtains the reduced-order LTI system (3) with

eEDW �EV; QADW �AV; eBDW �B; eC DCV

(5)

and an unchanged eD D D: If V D W , … is
an orthogonal projector and is called a Galerkin
projection. If V ¤ W , … is an oblique projector,
sometimes called a Petrov-Galerkin projection.

In the following, we will briefly discuss the
main classes of methods to construct suitable
matrices V andW : truncation-based methods and
interpolation-based methods. Other methods, in
particular combinations of the two classes dis-
cussed here, can be found in the literature. In case
the original LTI system is real, it is often desirable

to construct a real reduced-order model. All of
the methods discussed in the following either do
construct a real reduced-order system or there is
a variant of the method which does. In order to
keep this exposition at a reasonable length, the
reader is referred to the cited literature.

Truncation BasedMethods
The general idea of truncation is most easily
explained by modal truncation: For simplicity,
assume that E D I and that A is diagonalizable,
T �1AT D DA D diag.1; : : : ; n/. Further we
assume that the eigenvalues ` 2 C of A can be
ordered such that

Re.n/ � Re.n�1/ � : : : � Re.1/ < 0; (6)

(i.e., all eigenvalues lie in the open left half
complex plane). This implies that the system is
stable. Let V be the n � r matrix consisting of
the first r columns of T and let W � be the first r
rows of T �1, that is, W D V.V �V /�1. Applying
the transformation T to the LTI system (1) yields

T �1Px.t/D .T �1AT /T �1x.t/C .T �1B/u.t/ (7)

y.t/D .CT /T �1x.t/CDu.t/ (8)

with

T �1AT D
�
W �AV

A2

�
; T �1BD

�
W �B
B2

�
;

and CT D ŒCV C2� ; where W �AV D
diag.1; : : : ; r / and A2 D diag.rC1; : : : ; n/:
Preserving the r dominant poles (eigenvalues
with largest real part) by truncating the rest (i.e.,
discarding A2;B2, and C2 from (7)) yields the
ROM as in (5). It can be shown that the error
bound

kG.�/� eG.�/kH1
� kC2k kB2k 1

jRe.rC1/j

holds (Benner 2006). As eigenvalues contain only
limited information about the system, this is not
necessarily a meaningful reduced-order system.
In particular, the dependence of the input–output
relation on B and C is completely ignored.
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This can be enhanced by more refined dominance
measures taking B and C into account; see, e.g.,
Varga (1995) and Benner et al. (2011).

More suitable reduced-order systems can be
obtained by balanced truncation. To introduce
this concept, we no longer need to assume A to
be diagonalizable, but we require the stability
of A in the sense of (6). For simplicity, we
assume E D I . For treatment of the DAE case
(E ¤ I ), see Benner et al. (2005, Chap. 3).
Loosely speaking, a balanced representation
of an LTI system is obtained by a change of
coordinates such that the states which are hard
to reach are at the same time those which are
difficult to observe. This change of coordinates
amounts to an equivalence transformation of the
realization .A;B; C;D/ of (1) called state-space
transformation as in (7), where T now is the ma-
trix representing the change of coordinates. The
new system matrices .T �1AT; T �1B; CT;D/
form a balanced realization of (1). Truncating in
this balanced realization the states that are hard
to reach and difficult to observe results in a ROM.

Consider the Lyapunov equations

APCPAT CBBT D 0; ATQCQACCTC D 0:

(9)

The solution matrices P and Q are called con-
trollability and observability Gramians, respec-
tively. If both Gramians are positive definite, the
LTI system is minimal. This will be assumed
from here on in this section.

In balanced coordinates the Gramians P

and Q of a stable minimal LTI system satisfy
P D Q D diag.	1; : : : ; 	n/ with the Hankel
singular values 	1 � 	2 � : : : � 	n > 0: The
Hankel singular values are the positive square
roots of the eigenvalues of the product of the
Gramians PQ, 	k D p

k.PQ/: They are
system invariants, i.e., they are independent of
the chosen realization of (1) as they are preserved
under state-space transformations.

Given the LTI system (1) in a non-balanced
coordinate form and the Gramians P and Q

satisfying (9), the transformation matrix T which
yields an LTI system in balanced coordinates
can be computed via the so-called square root
algorithm as follows:

• Compute the Cholesky factors S and R of the
Gramians such that P D ST S;Q D RTR.

• Compute the singular value decomposition of
SRT D ˆ†�T , where ˆ and � are orthogo-
nal matrices and † is a diagonal matrix with
the Hankel singular values on its diagonal.
T D STˆ†� 1

2 yields the balancing trans-
formation (note that T �1 D †

1
2ˆT S�T D

†� 1
2 �T R).

• Partitionˆ;†; � into blocks of corresponding
sizes,

† D
�
†1

†2

�
; ˆ D

�
ˆ1
ˆ2

�
; �T D

�
�T1
�T2

�
;

with †1 D diag.	1; : : : ; 	r / and apply T

to (1) to obtain (7) with

T �1AT D
�
W TAV A12
A21 A22

�
; T �1BD

�
W TB

B2

�
;

(10)

and CT D ŒCV C2� for W D RT�1†
� 1
2

1 and

V D STˆ1†
� 1
2

1 : Preserving the r dominant
Hankel singular values by truncating the rest
yields the reduced-order model as in (5).

As W TV D I , balanced truncation is an oblique
projection method. The reduced-order model is
stable with the Hankel singular values 	1; : : : ; 	r .
It can be shown that if 	r > 	rC1, the error bound

kG.�/� eG.�/kH1
� 2

nX

kDrC1
	k (11)

holds. Given an error tolerance, this allows to
choose the appropriate order r of the reduced
system in the course of the computations.

As the explicit computation of the balancing
transformation T is numerically hazardous, one
usually uses the equivalent balancing-free square
root algorithm (Varga 1991) in which orthogonal
bases for the column spaces of V and W are
computed. The so obtained ROM is no longer
balanced, but preserves all other properties (er-
ror bound, stability). Furthermore, it is shown
in Benner et al. (2000) how to implement the
balancing-free square root algorithm using low-
rank approximations to S and R without ever
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having to resort to the square solution matrices
P and Q of the Lyapunov equations (9). This
yields an efficient algorithm for balanced trunca-
tion for LTI systems with large dense matrices.
For systems with large-scale sparse A efficient
algorithms based on sparse solvers for (9) exist;
see Benner (2006).

By replacing the solution matrices P and Q
of (9) by other pairs of positive (semi-)definite
matrices characterizing alternative controllability
and observability related system information,
one obtains a family of model reduction methods
including stochastic/bounded-real/positive-real
balanced truncation. These can be used if further
properties like minimum phase, passivity, etc. are
to be preserved in the reduced-order model; for
further details, see Antoulas (2005) and Obinata
and Anderson (2001).

The balanced truncation yields good approxi-
mation at high frequencies as eG.{!/ ! G.{!/

for ! ! 1 (as eD D D), while the maximum
error is often attained for ! D 0: For a perfect
match at zero and a good approximation for low
frequencies, one may employ the singular pertur-
bation approximation (SPA, also called balanced
residualization). In view of (7) and (10), balanced
truncation can be seen as partitioning T �1x ac-
cording to (10) into ŒxT1 ; x

T
2 �
T and setting x2 � 0

(i.e., Px2 D 0 as well). For SPA, one only sets
Px2 D 0, such that

Px1 D W TAVx1 C A12x2 CW TBu;

0 D A21x1 C A22x2 CB2u:

Solving the second equation for x2 and inserting
it into the first equation yields

Px1 D �
W TAV �A12A�1

22 A21
�
x1

C �
W TB �A12A�1

22 B2
�

u:

For the output equation, it follows

Qy D �
CV � C2A

�1
22 A21

�
x1C�D � C2A

�1
22 B2

�
u:

This reduced-order model makes use of the in-
formation in the matrices A12; A21; A22; B2; and
C2 discarded by balanced truncation. It fulfills

eG.0/ D G.0/ and the error bound (11); more-
over, it preserves stability.

Besides SPA, another related truncation
method that is not based on projection is
optimal Hankel norm approximation (HNA). The
description of HNA is technically quite involved;
for details, see Zhou et al. (1996) and Glover
(1984). It should be noted that the so obtained
ROM usually has similar stability and accuracy
properties as for balanced truncation.

Interpolation-BasedMethods
Another family of methods for MOR is based
on (rational) interpolation. The unifying feature
of the methods in this family is that the origi-
nal TFM (2) is approximated by a rational ma-
trix function of lower degree satisfying some
interpolation conditions (i.e., the original and
the reduced-order TFM coincide, e.g., G.s0/ D
eG.s0/ at some predefined value s0 for which
A � s0E is nonsingular). Computationally this
is usually realized by certain Krylov subspace
methods.

The classical approach is known under
the name of moment-matching or Padé(-type)
approximation. In these methods, the transfer
functions of the original and the reduced order
systems are expanded into power series, and
the reduced-order system is then determined so
that the first coefficients in the series expansions
match. In this context, the coefficients of the
power series are called moments, which explains
the term moment matching.

Classically the expansion of the TFM (2) in a
power series about an expansion point s0

G.s/ D
1X

jD0
Mj .s0/.s � s0/

j (12)

is used. The moments Mj.s0/; j D 0; 1; 2; : : :,
are given by

Mj.s0/ D �C Œ.A � s0E/
�1E�j .A� s0E/

�1B:

Consider the (block) Krylov subspace Kk.F;H/

D spanfH;FH;F 2H; : : : ; F k�1H g for F D
.A � s0E/

�1E and H D �.A � s0E/
�1B with
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an appropriately chosen expansion point s0 which
may be real or complex. From the definitions
of A;B , and E , it follows that F 2 K

n�n
and H 2 K

n�m, where K D R or K D C

depending on whether s0 is chosen in R or in
C. Considering Kk.F;H/ column by column,
this leads to the observation that the number of
column vectors in fH;FH;F 2H; : : : ; F k�1H g
is given by r D m � k, as there are k blocks
F jH 2 K

n�m; j D 0; : : : ; k � 1. In the case
when all r column vectors are linearly inde-
pendent, the dimension of the Krylov subspace
Kk.F;H/ is m � k: Assume that a unitary basis
for this block Krylov subspace is generated such
that the column space of the resulting unitary
matrix V 2 C

n�r spans Kk.F;G/. Applying the
Galerkin projection… D V V � to (1) yields a re-
duced system whose TFM satisfies the following
(Hermite) interpolation conditions at s0:

eG.j /.s0/ D G.j /.s0/; j D 0; 1; : : : ; k � 1:

That is, the first k � 1 derivatives of G and eG
coincide at s0. Considering the power series ex-
pansion (12) of the original and the reduced-order
TFM, this is equivalent to saying that at least the
first k moments fMj.s0/ of the transfer function
eG.s/ of the reduced system (3) are equal to the
first k moments Mj.s0/ of the TFM G.s/ of the
original system (1) at the expansion point s0:

Mj.s0/ D fMj.s0/; j D 0; 1; : : : ; k � 1:

If further the r columns of the unitary matrix W
span the block Krylov subspace Kk.F;H/ for
F D .A�s0E/�T E andH D �.A�s0E/�T C T ;

applying the Petrov-Galerkin projection … D
V.W �V /�1W � to (1) yields a reduced system
whose TFM matches at least the first 2k moments
of the TFM of the original system.

Theoretically, the matrix V (and W )
can be computed by explicitly forming the
columns which span the corresponding Krylov
subspace Kk.F;H/ and using the Gram-Schmidt
algorithm to generate unitary basis vectors for
Kk.F;H/: The forming of the moments (the
Krylov subspace blocks F jH ) is numerically
precarious and has to be avoided under all

circumstances. Using Krylov subspace methods
to achieve an interpolation-based ROM as
described above is recommended. The unitary
basis of a (block) Krylov subspace can be
computed by employing a (block) Arnoldi or
(block) Lanczos method; see, e.g., Antoulas
(2005), Golub and Van Loan (2013), and Freund
(2003).

In the case when an oblique projection is
to be used, it is not necessary to compute two
unitary bases as above. An alternative is then to
use the nonsymmetric Lanczos process (Golub
and Van Loan 2013). It computes bi-unitary (i.e.,
W �V D Ir ) bases for the above mentioned
Krylov subspaces and the reduced-order model
as a by-product of the Lanczos process. An
overview of the computational techniques for
moment-matching and Padé approximation
summarizing the work of a decade is given in
Freund (2003) and the references therein.

In general, the discussed MOR approaches are
instances of rational interpolation. When the
expansion point is chosen to be s0 D 1,
the moments are called Markov parameters and
the approximation problem is known as partial
realization. If s0 D 0, the approximation problem
is known as Padé approximation.

As the use of one single expansion point s0
leads to good approximation only close to s0,
it might be desirable to use more than one ex-
pansion point. This leads to multipoint moment-
matching methods, also called rational Krylov
methods; see, e.g., Ruhe and Skoogh (1998),
Antoulas (2005), and Freund (2003).

In contrast to balanced truncation, these (ratio-
nal) interpolation methods do not necessarily pre-
serve stability. Remedies have been suggested;
see, e.g., Freund (2003).

The use of complex-valued expansion points
will lead to a complex-valued reduced-order sys-
tem (3). In some applications (in particular, in
case the original system is real valued), this
is undesired. In that case one can always use
complex-conjugate pairs of expansion points as
then the entire computations can be done in real
arithmetic.

The methods just described provide good ap-
proximation quality locally around the expansion
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points. They do not aim at a global approxi-
mation as measured by the H2- or H1-norms.
In Gugercin et al. (2008), an iterative procedure
is presented which determines locally optimal
expansion points w.r.t. the H2-norm approxima-
tion under the assumption that the order r of
the reduced model is prescribed and only 0th-
and 1st-order derivatives are matched. Also, for
multi-input multi-output systems (i.e., m and p
in (1) are both larger than one), no full mo-
ment matching is achieved, but only tangential
interpolation: G.sj /bj D eG.sj /bj ; c�

j G.sj / D
c�
j
eG.sj /; c�

j G
0.sj /bj D c�

j
eG 0.sj /bj ; for certain

vectors bj ; cj determined together with the opti-
mal sj by the iterative procedure.

Tools

Almost all commercial software packages
for structural dynamics include modal analy-
sis/truncation as a means to compute a ROM.
Modal truncation and balanced truncation are
available in the MATLAB R� Control System
Toolbox and the MATLAB R� Robust Control
Toolbox.

Numerically reliable, well-tested, and efficient
implementations of many variants of balancing-
based MOR methods as well as Hankel
norm approximation and singular perturbation
approximation can be found in the Subroutine
Library In Control Theory (SLICOT, http://www.
slicot.org) (Varga 2001). Easy-to-use MATLAB
interfaces to the Fortran 77 subroutines from
SLICOT are available in the SLICOT Model
and Controller Reduction Toolbox (http://
slicot.org/matlab-toolboxes/basic-control); see
Benner et al. (2010). An implementation of
moment matching via the (block) Arnoldi
method is available in MOR for ANSYS R�(http://
modelreduction.com/Software.html).

There exist benchmark collections with
mainly a number of LTI systems from various
applications. There one can find systems in
computer-readable format which can easily be
used to test new algorithms and software:

• Oberwolfach Model Reduction Benchmark
Collection
http://simulation.uni-freiburg.de/downloads/
benchmark/

• NICONET Benchmark Examples
http://www.icm.tu-bs.de/NICONET/
benchmodred.html
The MOR WiKi http://morwiki.mpi-magde

burg.mpg.de/morwiki/ is a platform for MOR
research and provides discussions of a number
of methods, links to further software packages
(e.g., MOREMBS and MORPACK), as well as
additional benchmark examples.

Summary and Future Directions

MOR of LTI systems can now be considered
as an established computational technique. Some
open issues still remain and are currently investi-
gated. These include methods yielding good ap-
proximation in finite frequency or time intervals.
Though numerous approaches for these tasks
exist, methods with sharp local error bounds are
still desirable. A related problem is the reduction
of closed-loop systems and controller reduction.
Also, the generalization of the methods discussed
in this essay to descriptor systems (i.e., systems
with DAE dynamics), second-order systems, or
unstable LTI systems has only been partially
achieved. An important problem class getting a
lot of current attention consists of (uncertain)
parametric systems. Here it is important to pre-
serve parameters as symbolic quantities in the
ROM. Most of the current approaches are based
in one way or another on interpolation. MOR for
nonlinear systems has also been a research topic
for decades. Still, the development of satisfactory
methods in the context of control design having
computable error bounds and preserving interest-
ing system properties remains a challenging task.

Cross-References

�Basic Numerical Methods and Software for
Computer Aided Control Systems Design

�Multi-domain Modeling and Simulation
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Synonyms

MRAC

Abstract

The fundamentals and design principles of
model reference adaptive control (MRAC)
are described. The controller structure and
adaptive algorithms are delineated. Stability and
convergence properties are summarized.

Keywords

Certainty equivalence; Lyapunov-SPR design;
MIT rule

Introduction

Model reference adaptive control (MRAC) is an
important adaptive control approach, supported
by rigorous mathematical analysis and effective
design toolsets. It is made up of a feedback
control law that contains a controller C.s; �c/
and an adjustment mechanism that generates the
controller parameter updates �c .t/ online. While
different MRAC configurations can be found
in the literature, the structure shown in Fig. 1
is commonly used and includes all the basic
components of an MRAC system. The prominent
features of MRAC are that it incorporates a
reference model which represents the desired

http://slicot.org/working-notes/
http://slicot.org/working-notes/
http://dx.doi.org/10.1007/978-1-4471-5058-9_100015
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Model Reference Adaptive Control, Fig. 1 Schematic
of MRAC

input–output behavior and that the controller
and adaptation law are designed to force the
response of the plant, yp , to track that of the
reference model, ym, for any given reference
input r .

Different approaches have been used to
design MRAC, and each may lead to a different
implementation scheme. The implementation
schemes fall into two categories: direct and
indirect MRAC. The former updates the
controller parameters �c directly using an
adaptive law, while the latter updates the plant
parameters �p first using an estimation algorithm
and then updates �c by solving, at each time t ,
certain algebraic equations that relate �c with the
online estimates of �p . In both direct and indirect
MRAC schemes, the controller structure is kept
the same as that which would be used in the case
that the plant parameters are known.

MRC Controller Structure

Consider the design objective of model reference
control (MRC) for linear time-invariant systems:
Given a reference modelM.s/, find a control law
such that the closed-loop system is stable and
yp ! ym as t ! 1 for any bounded reference
signal r .

For the case of known plant parameters, the
MRC objective can be achieved by designing
the controller so that the closed-loop system
has a transfer function equal to M.s/. This

is the so-called model matching condition.
To assure the existence of a causal controller
that meets the model matching condition and
guarantees internal stability of the closed-
loop system, the following assumptions are
essential:
• A1. The plant has a stable inverse, and

the reference model is chosen to be
stable.

• A2. The relative degree of M.s/ is equal to or
greater than that of the plant Gp.s/. Herein,
the relative degree of a transfer function refers
to the difference between the orders of the
denominator and numerator polynomials.

It should be noted that these assumptions are
imposed to the MRC problem so that there is
enough structural flexibility in the plant and in
the reference model to meet the control objec-
tives. A1 is necessary for maintaining internal
stability of the system while meeting the model
matching condition, and A2 is needed to ensure
the causality of the controller. Both assumptions
are essential for non-adaptive applications when
the plant parameters are known, let alone for
the adaptive cases when the plant parameters are
unknown.

The reference model plays an important role
in MRAC, as it will define the feasibility of
MRAC design as well as the performance of
the resulting closed-loop MRAC system. The
reference model should reflect the desired closed-
loop performance. Namely, any time-domain or
frequency-domain specifications, such as time
constant, damping ratio, natural frequency, band-
width, etc., should be properly reflected in the
chosen transfer functionM.s/.

The controller structure for the MRAC is de-
rived with these assumptions for the known plant
case and extended to the adaptive case by com-
bining it with a proper adaptive law. Under as-
sumptions A1–A2, there exist infinitely many
control solutions C that will achieve the MRC
design objective for a given plant transfer func-
tion Gp.s/. Nonetheless, only those extendable
to MRAC with the simplest structure are of in-
terest. It is known that if a special controller
structure with the following parametrization is
imposed, then the solution to the model matching
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condition, in terms of the ideal parameter ��
c , will

be unique:

up D ��T
1 !1 C ��T

2 !2 C ��T
3 yp C c�

0 r D ��T
c !

where ��
c 2 R2n, n is the order of the plant,

��
c D

2

66
4

��
1

��
2

��
3

c�
0

3

77
5 ; ! D

2

66
4

!1
!2
yp
r

3

77
5

and !1; !2 2 Rn�1 are signals internal to the
controller generated by stable filters (Ioannou and
Sun 1996).

This MRC control structure is particularly ap-
pealing for adaptive control development, as the
parameters appear linearly in the control law ex-
pression, leading to a convenient linear paramet-
ric model for adaptive algorithm development.

Adaptation Algorithm

Design of adaptive algorithms for parameter
updating can be pursued in several different
approaches, thereby resulting in different MRAC
schemes. Three direct design approaches,
namely, the Lyapunov-SPR, the certainty
equivalence, and the MIT rule, will be briefly
described together with indirect MRAC.

Lyapunov-SPR Design

One popular MRAC algorithm is derived us-
ing Lyapunov’s direct method and the Meyer-
Kalman-Yakubovich (MKY) Lemma based on
the strictly positive real (SPR) argument. The
concept of SPR transfer functions originates from
network theory and is related to the driving point
impendence of dissipative networks. The MKY
Lemma states that given a stable transfer function
M.s/ and its realization .A;B; C; d/ where d �
0 and all eigenvalues of the matrix A are in the
open left half plane: If M.s/ is SPR, then for
any given positive definite matrix L D LT > 0,
there exists a scalar � > 0, a vector q, and a
P D PT > 0 such that

ATP C PA D �qqT � �L
PB � C D ˙qp

2d

By choosing M.s/ to be SPR, one can formulate
a Lyapunov function consisting of the state track-
ing and parameter estimation errors and use the
MKY Lemma to define the adaptive law that will
force the derivative of the Lyapunov function to
be semi-negative definite. The resulting adaptive
law has the following simple form:

P� D ��e1!sign.c�
0 /

where e1 D yp � ym is simply the tracking error
and c�

0 D km=kp with km; kp being the high
frequency gain of the transfer function for the
reference model M.s/ and the plant Gp.s/, re-
spectively. This algorithm, however, applies only
to systems with relative degree equal to 0 or 1,
which is implied by the SPR condition imposed
onM.s/ and assumption A2.

The Lyapunov-SPR-based MRAC design is
mathematically elegant in its stability analysis but
is restricted to a special class of systems. While
it can be extended to more general cases with
relative degrees equal to 2 and 3, the resulting
control law and adaptive algorithm become much
more complicated and cumbersome as efforts
must be made to augment the control signal in
such a way that the MKY Lemma is applicable to
the “reformulated” reference model.

Certainty Equivalence Design

For more general cases with a high relative de-
gree, another design approach based on “certainty
equivalence” (CE) principle is preferred, due to
the simplicity in its design as well as its robust-
ness properties in the presence of modeling er-
rors. This approach treats the design of the adap-
tive law as a parameter estimation problem, with
the estimated parameters being the controller
parameter vector ��

c . Using the specific linear
formulation of the control law and assuming
that ��

c satisfies the model matching condition,
one can show that the ideal controller parameter
satisfies the following parametric equation:
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z D ��T
c !p

with

z D M.s/up; !p D

2

6
6
4

M.s/!1
M.s/!2
M.s/yp
yp

3

7
7
5

This parametric model allows one to derive adap-
tive laws to estimate the unknown controller
parameter ��

c using standard parameter identifi-
cation techniques, such as the gradient and least
squares algorithms. The corresponding MRAC is
then implemented in the CE sense where the un-
known parameters are replaced by their estimated
value. It should be noted that a CE design does
not guarantee closed-loop stability of the result-
ing adaptive system, and additional analysis has
been carried out to establish closed-loop stability.

MIT Rule

Besides the Lyapunov-SPR and CE approaches
mentioned earlier, the direct MRAC problem can
also be approached using the so-called MIT rule,
an early form of MRAC developed in the 1950s–
1960s in the Instrumentation Laboratory at MIT
for flight control. The designer defines a cost
function, e.g., a quadratic function of tracking
error, and then adjusts parameters in the direction
of steepest descent. The negative gradient of the
cost function is usually calculated through the
sensitivity derivative approach. The formulation
is quite flexible, as different forms of MIT rule
can be derived by changing the cost function
following the same procedure and reusing the
same sensitivity functions. Despite its effective-
ness in some practical applications, MRAC sys-
tems designed with MIT rule have had stability
and robustness issues.

Indirect MRAC

While most of the MRAC systems are
designed as direct adaptive systems, indirect
MRAC systems can also be developed which

explicitly estimate the plant parameter �p as
an intermediate step. The adaptive law for an
indirect MRAC includes two basic components:
one for estimating the plant parameters and
another for calculating the controller parameters
based on the estimated plant parameters. This
approach would be preferred if the plant transfer
function is partially known, in which case
the identification of the remaining unknown
parameters represents a less complex problem.
For example, if the plant has no zeros, the indirect
scheme estimates n C 1 parameters, while the
direct scheme has to estimate 2n parameters.

Indirect MRAC is a CE-based design. As such,
the design is intuitive but the design process does
not guarantee closed-loop stability, and separate
analysis has to be carried out to establish stability.
Except for systems with a low number of zeros,
the “feasibility” problem could also complicate
the matter, in the sense that the MRC problem
may not have a solution for the estimated plant
at some time instants even though the solution
exists for the real plant. This problem is unique
to the indirect design, and several mitigating
solutions have been found at the expense of more
complicated adaptation or control algorithms.

Stability, Robustness, and Parameter
Convergence

Stability for MRAC often refers to the properties
that all signals are bounded and tracking error
converges to zero asymptotically. Robustness for
adaptive systems implies that signal boundedness
and tracking error convergence (to a small residue
set) will be preserved in the presence of small
perturbations such as disturbances, un-modeled
dynamics, and time-varying parameters. For dif-
ferent MRAC schemes, different approaches are
used to establish their properties.

For the Lyapunov-SPR-based MRAC systems,
stability is established in the design process
where the adaptive law is derived to enforce
a Lyapunov stability condition. For CE-based
designs, establishing stability for the closed-
loop MRAC system is a nontrivial exercise
for both direct and indirect schemes. Using
properly normalized adaptive laws for parameter
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estimation, however, stability can be proved
for direct and indirect MRAC schemes. For
MRAC systems designed with the MIT rule, local
stability can be established under more restrictive
conditions, such as when the parameters are close
to the ideal ones.

It should be noted that the adaptive control
algorithm in the original form has been
shown to have robustness issues, and extensive
publications in the 1980s and 1990s were
devoted to robust adaptive control in attempts
to mitigate the problem. Many modifications
have been proposed and shown to be effective
in “robustifying” the MRAC; interested readers
are referred to the article on �Robust Adaptive
Control for more details.

Parameter convergence is not an intrinsic
requirement for MRAC, as tracking error
convergence can be achieved without parameter
convergence. It has been shown, however,
that parameter convergence could enhance
robustness, particularly for indirect schemes.
As in the case for parameter identification, a
persistent excitation (PE) condition needs to
be imposed on the regression signal to assure
parameter convergence in MRAC. In general,
PE is accomplished by properly choosing the
reference input r . It can be established for most
MRAC approaches that parameter convergence is
achieved if, in addition to conditions required for
stability, the reference input r is sufficiently rich
of order 2n; Pr is bounded, and there is no pole-
zero cancelation in the plant transfer function. A
signal is called to be sufficiently rich of order m
if it contains at least m=2 distinct frequencies.

Summary and Future Directions

MRAC incorporates a reference model to capture
the desired closed-loop responses and designs
the control law and adaptation algorithm to force
the output of the plant to follow the output of
the reference model. Several different design
approaches are available. Stability, robustness,
and parameter convergence have been established
for different MRAC designs with appropriate
assumptions.

MRAC had been a very active and fruitful
research topic from the 1960s to 1990s, and it
formed important foundations for modern adap-
tive control theory. It also found many successful
applications ranging from chemical process con-
trols to automobile engine controls. More recent
efforts have been mostly devoted to integrating it
with other design approaches to treat nonstandard
MRAC problems for nonlinear and complex dy-
namic systems.

Cross-References

�Adaptive Control of Linear Time-Invariant
Systems

�Adaptive Control, Overview
�History of Adaptive Control
�Robust Adaptive Control

Recommended Reading

MRAC has been well covered in several text-
books and research monographs. Astrom and
Wittenmark (1994) presented different MRAC
schemes in a tutorial fashion. Narendra and An-
naswamy (1989) focused on stability of determin-
istic MRAC systems. Ioannou and Sun (1996)
covered the detailed derivation and analysis of
different MRAC schemes and provided a unified
treatment for their stability and robustness analy-
sis. MRAC systems for discrete-time (Goodwin
and Sin 1984) and for nonlinear (Krstic et al.
1995) processes are also well explored.
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Abstract

In many applications, e.g., in chemical process
control, the purpose of control is to achieve an
optimal performance of the controlled system
despite the presence of significant uncertainties
about its behavior and of external disturbances.
Tracking of set points is often required for lower-
level control loops, but at the system level in
most cases, this is not the primary concern
and may even be counterproductive. In this
entry, the use of dynamic online optimization
on a moving finite horizon to realize optimal
system performance is discussed. By real-
time optimization, a performance-oriented
or economic cost criterion is minimized or
maximized over a finite horizon while the usual
control specifications enter as constraints but
not as set points. This approach integrates the
computation of optimal set-point trajectories and
of the regulation to these trajectories.

Keywords

Model-predictive control (MPC); Integrated op-
timization and control; Real-time optimization
(RTO); Performance optimizing control; Process
control

Introduction

From a systems point of view, the purpose of
automatic feedback control (and that of manual
control as well) in many cases is not primarily to
keep the controlled variables at their set points as
well as possible or to track dynamic set-point
changes but to operate the system such that
its performance is optimized in the presence

of disturbances und uncertainties, exploiting the
information gained in real time from the available
measurements. This holds generally for the
higher control layers in the process industries but
similarly for many other applications. Suppose
that, for example, the availability of cooling
water at a lower temperature than assumed as
a worst case during plant design enables plant
operation at a higher throughput. In this case,
what sense does it make to enforce the nominal
operating point by tight feedback control? For
a combustion engine, the goal is to achieve the
desired torque with minimum consumption of
fuel. For a cooling system, the goal is to keep
the temperature of the goods or of a room within
certain bounds with minimum consumption of
energy, possibly weighted against the wear of the
equipment. To regulate some variables to their
set points may help to achieve these goals but it
is not the real performance target for the overall
system. Feedback control loops therefore usually
are part of control hierarchies that establish
good performance of the overall system and the
meeting of constraints on its operation.

There are four main approaches to the integra-
tion of feedback control with system performance
optimization:
– Choice of regulated variables such that, im-

plicitly via the regulation of these variables to
their set points, the performance of the overall
system is close to optimal (see the chapter on
�Control Structure Selection).

– Tracking of necessary conditions of optimality
where variables which determine the optimal
operating policy are kept at or close to their
constraints. This is a widespread approach
especially in chemical batch processes where,
e.g., the feeding of reactants is such that the
maximum cooling power available is used
(Finkler et al. 2014); see also the chapter
on �Control and Optimization of Batch Pro-
cesses).
In these two approaches, the choice of the opti-

mal set points or constraints to be tracked is done
off-line, and they are then implemented by the
feedback layer of the process control hierarchy
(see the chapter on �Control Hierarchy of Large
Processing Plants: An Overview).

http://dx.doi.org/10.1007/978-1-4471-5058-9_247
http://dx.doi.org/10.1007/978-1-4471-5058-9_251
http://dx.doi.org/10.1007/978-1-4471-5058-9_241
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– Combination of a regulatory (tracking) feed-
back control with an optimization of the set
points or system trajectories (called real-time
optimization in the process industries) (see
the chapter on �Real-Time Optimization of
Industrial Processes).

– Reformulation of model-predictive control
such that the control target is not the tracking
of references but the optimization of the
system performance over a finite horizon,
taking constraints of system variables or
inputs into account directly within the
online optimization. Here, the optimization
is performed with a dynamic model, in
contrast to the steady-state optimization in
real-time optimization or in the choice of self-
optimizing control structures.
The first three approaches are currently state

of the art in the process industries. Tracking of
necessary conditions of optimality is usually de-
signed based on process insight rather than based
upon a rigorous analysis, and the same holds
for the selection of regulatory control structures.
The last one is the most challenging approach in
terms of the required models and algorithms and
computing power, and its theoretical foundations
are still under development. But on the other
hand, it also has the highest potential in terms
of the resulting performance of the controlled
system, and it is structurally simple and easier to
tune because the natural performance specifica-
tion does not have to be translated into controller
tunings, weights, etc. Therefore, the idea of direct
model-based performance optimizing control has
found much attention in process control in recent
years.

The four approaches above are discussed in
more detail below. We also provide some histor-
ical notes and outline some areas of continuing
research.

Performance Optimization
by Regulation to Fixed Set Points

Morari et al. (1980) stated that the objective in
the synthesis of a control structure is “to trans-
late the economic objectives into process control

objectives.” A subgoal in this “translation” is to
select the regulatory control structure of a process
such that steady-state optimality of process oper-
ations is realized to the maximum extent possible
by driving the selected controlled variables to
suitably chosen set points. A control structure
with this property was termed “self-optimizing
control” by Skogestad (2000). It should adjust
the manipulated variables by keeping a function
of the measured variables constant such that the
process is operated at the economically optimal
steady state in the presence of disturbances. From
a system point of view, a control structure that
yields nice transient responses and tight control
of the selected variables may be of little use or
even counterproductive if keeping the regulated
variables at their set points does not improve
the performance of the system. Ideally, in the
steady state, a similar performance is obtained as
it would be realized by optimizing the stationary
values of the operational degrees of freedom of
the system for known disturbances d and a per-
fect model. By regulating the controlled variables
to their set points at the steady state in the pres-
ence of disturbances, a mapping u D f .yset; d /

is implicitly realized which should be an approx-
imation of the performance optimizing inputs
uopt.d/. The choice of the self-optimizing control
structure takes only the steady-state performance
into account, not the dynamic reaction of the
controlled plant. An extension of the approach to
include also the dynamic behavior can be found
in Pham and Engell (2011).

Tracking of Necessary Conditions
of Optimality

Very often, the optimal operation of a system in
a certain phase of its evolution or under certain
conditions is defined by some variables being
at their constraints. If these variables are known
and the conditions can be monitored, a switching
control structure can be built that keeps the (pos-
sibly changing) set of critical variables at their
constraints despite inaccuracies of the model,
external disturbances, etc. In fact it turns out that
such control schemes can, in the case of varying

http://dx.doi.org/10.1007/978-1-4471-5058-9_243
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parameters and in the presence of disturbances,
perform as good as sophisticated model-based
optimization schemes (Finkler et al. 2013).

Performance Optimization
by Steady-State Optimization
and Regulation

A well-established approach to create a link be-
tween regulatory control and the optimization of
the performance of a system is to compute the
set points of the controllers by an optimization
layer. In process operations, this layer is called
real-time optimization (RTO) (see, e.g., Marlin
and Hrymak (1997) and the references therein).
An RTO system is a model-based, upper-level
control system that is operated in closed loop and
provides set points to the lower-level control sys-
tems in order to maintain the process operation
as close as possible to the economic optimum.
It usually comprises an estimation of the plant
state and plant parameters from the measured
data and an economic or otherwise performance-
related optimization of the operating point using
a detailed nonlinear steady-state model.

As the RTO system employs a stationary pro-
cess model and the optimization is only per-
formed if the plant is approximately in a steady
state, the time between successive RTO steps
must be large enough for the plant to reach a new
steady state after the last commanded move. This
structure is based upon a separation of concerns
and of time-scales between the RTO system and
the process control system. The RTO system
optimizes the system economics on a medium
timescale (shifts to days), while the control sys-
tem provides tracking and disturbance rejection
on shorter timescales from seconds to hours.

As an approximation to real-time optimization
with a nonlinear rigorous plant model, in many
MPC implementations nowadays, an optimiza-
tion of the steady-state values based on the linear
model that is used in the MPC controller is imple-
mented. Then the gain matrix of the model must
be estimated carefully to obtain good results.

Performance Optimizing Control

Model-predictive control has become the stan-
dard solution for demanding control problems in
the process industries (Qin and Badgwell 2003)
and increasingly is used also in other domains.
The core idea is to employ a model to predict the
effect of the future manipulated variables on the
future controlled variables over a finite horizon
and to use optimization to determine sequences
of inputs which minimize a cost function over the
so-called prediction horizon. In the unconstrained
case with linear plant model and a quadratic
cost function, the optimal control moves can
be computed by a closed-form solution. When
constraints on inputs, outputs, and possibly also
state variables are present, for a quadratic cost
function and linear plant model, the optimization
problem becomes a quadratic program (QP) that
has to be solved in real time.

When the system dynamics are nonlinear
and linear models are only sufficiently accurate
within narrow operation bands, as is the case
in many chemical processes, nonlinear model
predictive control which is based on nonlinear
models of the process dynamics provides
superior performance and therefore has met
increasing interest both in theory and in practice.
The classical formulation of nonlinear model-
predictive tracking control (TC) is

min
u
�TC . Ny; u/

�TC D
NP

nD1

 
PP

iD1
�n;i

�
yn;ref .k � i/� Nyn .k C i//2

�C
RP

lD1

 
MP

jD1
˛l;j�u2l .k C j /

!
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s.t.

x.iC1/Df.x.i/ ; z .i/ ; u.i/; i/ ; i D k; : : : ; kCP

0 D g .x .i/ ; z .i/ ; u.i/; i/ ; i D k; : : : ; k C P

y.iC1/ D h .x.i C 1/; u.i// ; i D k; : : : ; kCP
xmin � x .i/ � xmax; i D k; : : : ; k C P

ymin � Ny .i/ � ymax; i D k; : : : ; k C P

umin � u .i/ � umax; i D k; : : : ; k CM

��umin � �u .i/ � �umax; i D k; : : : ; k CM

u .i/ D u .i � 1/C�u .i/ ; i D k; : : : ; k CM

u .i/ D u .k CM/ ; 8i > k CM:

Here f and g represent the plant model in the
form of a system of differential-algebraic Equa-
tions and h is the output function. P is the
length of the prediction horizon and M is the
length of the control horizon, and y1; � � � ; yN are
the predicted control outputs, u1; � � � ; uR are the
control inputs. ˛ and � represent the weights on
the control inputs and the control outputs, respec-
tively. yref refers to the set point or the desired
output trajectory, and Oy(i) are the corrected model
predictions. N is number of the controlled out-
puts, and R is the number of the control inputs.
Compensation for plant-model mismatch and un-
measured disturbances is usually done using the
bias correction equations:

d .k/ D ymeas.k/ � y.k/;

Ny .k C i/ D y .k C i/Cd .k/ ; i D k; : : : ; kCP:
The idea of direct performance optimizing con-
trol (POC) is to replace this formulation by a
performance-related objective function:

min
u
�POC .y; u/

�POC D
RP

lD1

 
MP

jD1
˛l;j�u2l .k C j /

!

�
�

PP

iD1
ˇi .k C i/

�
:

Here  .k C i/ represents the value of the per-
formance cost criterion at the time step [k C i ].

The optimization of the future control moves is
subject to the same constraints as before. In ad-
dition, instead of reference tracking, constraints
are formulated for all outputs that are critical for
the operation of the system or its performance,
e.g., product quality specifications or limitations
of the equipment. In contrast to reference track-
ing, these constraints usually are one-sided (in-
equalities) or define operation bands. By this
formulation, e.g., the production revenues can be
maximized online over a finite horizon, consid-
ering constraints on product purities and waste
stream impurities. Feedback enters into the com-
putation by the initialization of the model with
a new initial state that is estimated from the
available measurements of system variables and
by the bias correction. Thus, direct performance
optimizing control realizes an online optimiza-
tion of all operational degrees of freedom in a
feedback structure without tracking of a priori
fixed set points or reference trajectories. The reg-
ularization term that penalizes control moves is
added to the purely economic objective function
to obtain smoother solutions.

This approach has several advantages over a
combined steady-state optimization/ linear MPC
scheme:
• Immediate reaction to disturbances, no wait-

ing for the plant to reach a steady state is
required.

• “Overregulation” is avoided – no variables are
forced to fixed set points and all degrees of
freedom can be used to improve the (eco-
nomic) performance of the plant.

• Performance goals and process constraints do
not have to be mapped to a control cost that
defines a compromise between different goals.
In this way, the formulation of the optimiza-
tion problem and the tuning are facilitated
compared to achieving good performance by
tuning of the weights of a tracking formula-
tion.

• More constraints than available manipulated
variables can be handled as well as more
manipulated variables than variables that have
to be regulated.

• No inconsistency arises from the use of differ-
ent models on different layers.

• The overall scheme is structurally simple.
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Similar to any NMPC controller that is designed
for reference tracking, a successful implementa-
tion will require careful engineering such that as
many uncertainties as possible are compensated
by simple feedback controllers and only the key
dynamic variables are handled by the optimizing
controller based on a rigorous model of the essen-
tial dynamics and of the stationary relations of the
plant without too much detail.

History and Examples

The idea of economic or performance optimizing
control originated from the process control com-
munity. The first papers on directly integrating
economic considerations into model-predictive
control Zanin et al. (2000) proposed to achieve
a better economic performance by adding an eco-
nomic term to a classical tracking performance
criterion and applied this to the control of a flu-
idized bed catalytic cracker. Helbig et al. (2000)
discussed different ways to integrate optimization
and feedback control including direct dynamic
optimization for the example of a semi-batch
reactor. Toumi and Engell (2004) and Erdem
et al. (2004) demonstrated online performance
optimizing control schemes for simulated mov-
ing bed (SMB) chromatographic separations in
lab scale. SMB processes are periodic processes
and constitute prototypical examples where ad-
ditional degrees of freedom can be used to si-
multaneously optimize system performance and
to meet product specifications. Bartusiak (2005)
reported already industrial applications of care-
fully engineered performance optimizing NMPC
controllers.

Direct performance optimizing control
was suggested as a promising general new
control paradigm for the process industries by
Rolandi and Romagnoli (2005), Engell (2006,
2007), Rawlings and Amrit (2009), and others.
Meanwhile it has been demonstrated in many
simulation studies that direct optimization of
a performance criterion can lead to superior
economic performance compared to classical
tracking (N)MPC, e.g., Ochoa et al. (2010) for a

bioethanol process and Idris and Engell (2012)
for a reactive distillation column.

Further Issues

Modeling and Robustness
In a direct performance optimizing control ap-
proach, sufficiently accurate dynamic nonlinear
process models are needed. While in the pro-
cess industries, nonlinear steady-state models are
nowadays available for many processes because
they are built and used extensively in the pro-
cess design phase, there is still a considerable
additional effort required to formulate, imple-
ment, and validate nonlinear dynamic process
models. The effort for rigorous or semi-rigorous
modeling usually dominates the cost of an ad-
vanced control project. The alternative approach
to use black-box or gray-box models as pro-
posed frequently in nonlinear model-predictive
control may be effective for regulatory control
where the model only has to capture the es-
sential dynamic features of the plant near an
operating point, but it seems to be less suitable
for optimizing control where the optimal plant
performance is aimed at and hence the best sta-
tionary values of the inputs and of the controlled
variables have to be computed by the controller.
As increasingly so-called operator training sim-
ulators are built in parallel to the construction
of a plant and are continuously used and up-
dated after the commissioning phase, it seems
attractive to use the models contained in the
simulators also for online optimization. However,
the model formulations often are not suitable for
this purpose.

Model inaccuracies always have to be taken
into account. They not only lead to suboptimal
performance but also can cause that the con-
straints even on measured variables cannot be met
in the future because of an insufficient back-off
from the constraints. A new approach to deal with
uncertainties about model parameters and future
influences on the process is multistage scenario-
based optimization with recourse. Here the model
uncertainties are represented by a set of scenarios
of parameter variations and the future availability
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of additional information is taken into account.
It has been demonstrated that this is an effective
tool to handle model uncertainties and to auto-
matically generate the necessary back-off without
being overly conservative (Lucia et al. 2013).

State Estimation
For the computation of economically optimal
process trajectories based upon a rigorous non-
linear process model, the state variables of the
system at the beginning of the prediction horizon
must be known. As not all states will be measured
in a practical application, state estimation is a
key ingredient of a performance optimizing con-
troller. Extended Kalman filters are the standard
solution used in the process industries, if the
nonlinearities are significant, unscented Kalman
filters or particle filters may be used. A novel
approach is to formulate the state estimation
problem also as an optimization problem on a
moving horizon (Rao et al. 2003). The estima-
tion of some important varying unknown model
parameters can be included in this formulation.
As accurate state estimation is at least as critical
for the performance of the closed-loop system
as the exact tuning of the optimizing controller,
more attention should be paid to the investigation
of the performance of state estimation schemes
in realistic situations with non-negligible model-
plant mismatch.

Stability
Optimization of a cost function over a finite hori-
zon in general neither assures optimality of the
complete trajectory beyond this horizon nor sta-
bility of the closed-loop system. Closed-loop sta-
bility has been addressed extensively in the the-
oretical research in nonlinear model-predictive
control. Stability can be assured by a proper
choice of the stage cost within the prediction
horizon and the addition of a cost on the ter-
minal state and the restriction of the terminal
state to a suitable set. In performance optimizing
MPC, there is no a priori known steady state
to which the trajectory should converge, and the
economic cost function may not satisfy the usual
conditions for closed-loop stability, e.g., because
it only involves some of the inputs. In recent

years, important results on closed-loop stabil-
ity guaranteeing formulations have nonetheless
been obtained, involving terminal constraints or
a quasi-infinite horizon (Angeli et al. 2012; Diehl
et al. 2011; Grüne 2013).

Reliability and Transparency
Nowadays quite large nonlinear dynamic opti-
mization problems can be solved in real time,
not only for slow processes as they are found in
the chemical industry but also in mechatronics
and automotive control. So this issue does no
longer prohibit the application of a performance
optimizing control scheme to complex systems.
A practically very important limiting issue how-
ever is that of reliability and transparency. It is
difficult to guarantee that a nonlinear optimizer
will provide a solution which at least satisfies
the constraints and gives a reasonable perfor-
mance for all possible input data. While for an
RTO scheme an inspection of the commanded
set points by the operators usually will be fea-
sible, this is less likely to be realistic in a dy-
namic situation. Hence, automatic result filters
are necessary as well as a backup scheme that
stabilizes the process in the case where the result
of the optimization is not considered safe. In
the process industries, the operators will con-
tinue to supervise the operation of the plant in
the foreseeable future, so a control scheme that
includes performance optimizing control must be
structured into modules, the outputs of which can
still be understood by the operators so that they
build up trust in the optimization. Good operator
interfaces that display the predicted moves and
the predicted reaction of the plant and enable
comparisons with the operators’ intuitive strate-
gies are believed to be essential for practical
success.

Effort vs. Performance
The gain in performance by a more sophisticated
control scheme always has to be traded against
the increase in cost due to the complexity of
the control scheme – a complex scheme will
not only cause cost for its implementation, but
it will need more maintenance by better qual-
ified people than a simple one. If a carefully
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chosen standard regulatory control layer leads
to a close-to-optimal operation, there is no need
for optimizing control. If the disturbances that
affect profitability and cannot be handled well
by the regulatory layer (in terms of economic
performance) are slow, the combination of reg-
ulatory control and RTO is sufficient. In a more
dynamic situation or for complex nonlinear mul-
tivariable plants, the idea of direct performance
optimizing control should be explored and im-
plemented if significant gains can be realized in
simulations.
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Abstract

This entry describes how models can be formed
from the basic principles of physics and the other
fields of science. Use can be made of similarities
between different domains which leads to the
concepts of bond graphs and, more abstractly, to
port-controlled Hamiltonian systems. The class
of models is naturally extended to differential
algebraic equation (DAE) models. The concepts
described here form a natural basis for parameter
identification in gray box models.
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Introduction

The approach to the modeling of dynamic
systems depends on how much is known about
the system. When the internal mechanisms are
known, it is natural to model them using known
relationships from physics, chemistry, biology,
etc. Often the result is a model of the following
form:

dx

dt
D f .x; uI �/; y D h.x; uI �/ (1)

where u is the input, y is the output, and the
state x contains internal physical variables, while
� contains parameters. Typically all of these
are vectors. The model is known as a state
space model. In many cases some elements in

� are unknown and have to be determined using
parameter estimation. When used in connection
with system identification, these models are
sometimes referred to as gray box models (in
contrast to black box models) to indicate that
some degree of physical knowledge is assumed.
In � System Identification: An Overview, various
connections between physical models and
parameter estimation are discussed.

Overview of Physical Modeling

Since modeling covers such a wide variety of
physical systems, there are no universal system-
atic principles. However, a few concepts have
wide application. One of them is the preserva-
tion of certain quantities like energy, leading to
balance equations. A simple example is given by
the heating of a body. If W is the energy stored
as heat, P1 an external power input, and P2 the
heat loss to the environment per time unit, energy
balance gives

dW

dt
D P1 � P2 (2)

To get a complete model, one needs also con-
stitutive relations, i.e., relations between relevant
physical variables. For instance, one might know
that the stored energy is proportional to the tem-
perature T;W D CT and that the energy loss is
from black body radiation,P2 D kT 4. The model
is then

C
dT

dt
D P1 � kT 4 (3)

The model is now an ordinary differential equa-
tion with state variable T , input variable P1 and
parameters C and k.

Physical Analogies and General
Structures

Physical Analogies
Physicists and engineers have noted that mod-
eling in different areas of physics often gives
very similar models. The term “analogies” is

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Fig. 1 Electric circuit

often used in modeling to describe this fact. Here
we will show some analogies between electrical
and mechanical phenomena. Consider the electric
circuit given in Fig. 1. An ideal voltage source is
connected in series with an inductor, a resistor,
and a capacitor. Using u and v to denote the
voltages over the voltage source and capacitor,
respectively, and i to denote the current, a math-
ematical model is

C
dv

dt
D i

L
di

dt
CRi C v D u

(4)

The first equation uses the definition of capaci-
tance and the second one uses Kirchhoff’s voltage
law. Compare this to the mechanical system of
Fig. 2 where an external force F is applied to
a mass m that is also connected to a damper b
and a spring with spring constant k. If S is the
elongation force of the spring and w the velocity
of the mass, a system model is

dS

dt
D kw

m
dw

dt
C bw C S D F

(5)

Here the first equation uses the definition of
spring constant and the second one uses New-
ton’s 2nd law. The models are seen to be the
same with the following correspondences be-
tween time-varying quantities

u $ F; i $ w; v $ S (6)

and between parameters

C $ 1=k; L $ m; R $ b (7)

m

k

b

F

Modeling of Dynamic Systems from First Principles,
Fig. 2 Mechanical system

Note that the products (voltage) � (current) and
(force) � (velocity) give the power.

Bond Graphs
The bond graph is a tool to do systematic model-
ing based on the analogies of the previous section.
The basic element is the bond

*ef

formed by a half arrow showing the direction of
positive energy flow. Two variables are associated
with the bond, the effort variable e and the flow
variable f . The product ef of these variables
gives the power. In the electric domain e is
voltage and f is current. For mechanical systems
e is force, while f is velocity. Bond graph theory
has three basic components to describe storage
and dissipation of energy. The relations

˛
de

dt
D f; ˇ

df

dt
D e; �f D e (8)

are known as C, I, and R elements, respectively.
Input signals are modeled by elements called
effort sources Se or flow sources Sf , respectively.
A bond graph describes the energy flow between
these elements. When the energy flow is split, it
can either be at s junctions where the flows are
equal and the efforts are added or at a p junction
where efforts are equal and flows are additive.
The model (5), for instance, can be described
by the bond graph in Fig. 3. The graph shows
how the energy from the external force is split
into the acceleration of the mass, the elongation
of the spring, and dissipation into the damper. The
splitting of the energy flow is accomplished by an
s element, meaning that the velocity is the same
for all elements but that the forces are added:
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F D N C S C T (9)

Here T and N denote the forces associated with
the damper and the mass, respectively. From (8)
it follows that

k�1 dS
dt

D w; m
dw

dt
D N; bw D T (10)

Together (9) and (10) give the same model as (5).
Using the correspondences (6), (7) it is seen that
the same bond graph can also represent the elec-
tric circuit (4). An overview of bond graph mod-
eling is given in Rosenberg and Karnopp (1983).
A general overview of modeling, including bond
graphs and the connection with identification, can
be found in Ljung and Glad (1994b).

Port-Controlled Hamiltonian Systems
Many physical processes can be modeled as
Hamiltonian systems. This means that there are
state variables x, a scalar functionH , and a skew
symmetric matrixM so that the system dynamics
is

dx

dt
D MrH.x/ (11)

The function H is called the Hamiltonian of the
system. To be useful in a control context, this
model class has to be extended to handle inputs

and dissipation phenomena. To give an example
the mechanical system used above is considered
again.

Introduce x1 as the length of the spring so that
dx1=dt D w. If H1 is the energy stored in the
spring, then the following relations hold:

H1 .x1/ D kx21
2
;
@H1

@x1
D kx1 D S (12)

Introducing x2 for the momentum and H2 as the
kinetic energy, one has dx2=dt D N and

H2 .x2/ D x22
2m

;
@H2

@x2
D m�1x2 D w (13)

Let H D H1 CH2 be the total energy. Then the
following relation holds:

dx

dt
D
��

0 1

�1 0
�

�
�
0 0

0 b

���
@H=@x1
@H=@x2

�
C
�
0

1

�
F

(14)

This model is a special case of

dx

dt
D .M �R/rH.x/C Bu (15)

where M is a skew symmetric and R a nonnega-
tive definite matrix, respectively. The model type
is called a port-controlled Hamiltonian system
with dissipation. Without external input (B D
0) and dissipation (R D 0), it reduces to an
ordinary Hamiltonian system of the form (11).
For systems generated by simple bond graphs, it
can be shown that the junction structure gives the
skew symmetric M , while the R elements give
the matrix R. The storage of energy in I and C
elements is reflected in H . The reader is directed
to Duindam et al. (2009) for a description of the
port Hamiltonian approach to modeling.

Component-BasedModels and
Modeling Languages

Since engineering systems are usually assembled
from components, it is natural to treat their math-
ematical models in the same way. This is the idea
behind block-oriented models where the output
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of one model is connected to the input of another
one:

u1 y1 = u2 y2

A nice feature of this block connection is that
the state space description is preserved. Suppose
the individual models are of the form (1)

dxi

dt
D fi .xi ; ui /; yi D hi .xi ; ui /; i D 1; 2

(16)

Then the connection u2 D y1 immediately gives
the state space model

d

dt

�
x1
x2

�
D
�

f1.x1; u1/
f2.x2; h1.x1; u1//

�
;

y2 D h2.x2; h1.x1; u1//

(17)

with input u1, output y2, and state (x1; x2).
This fact is the basis of block-oriented mod-
eling and simulation tools like the MATLAB-
based Simulink. Unfortunately the preservation
of the state space structure does not extend to
more general connections of systems. Consider,
for instance, two pieces of rotating machinery
described by

Ji
d!i

dt
D �bi!i CMi; i D 1; 2 (18)

where !i is the angular velocity, Mi the external
torque, Ji the moment of inertia, and bi the damp-
ing coefficient. Suppose the pieces are joined
together so that they rotate with the same angular
velocity. The mathematical model would then be

J1
d!1

dt
D �b1!1 CM1

J2
d!2

dt
D �b2!2 CM2

!1 D !2

M1 D �M2

(19)

This is no longer a state space model of the
form (1), but a mixture of dynamic and static
relationships, usually referred to as a differential

algebraic equation (DAE). The difference from
the connection of blocks in block diagrams is
that now the connection is not between an input
and an output. Instead there are the equations
!1 D !2 and M1 D �M2 that destroy the state
space structure. There exist modeling languages
like Modelica (Fritzson 2000; Tiller 2001) or
SimMechanics in MATLAB (MathWorks 2002)
that accept this more general type of model. It
is then possible to form model libraries of basic
components that can be interconnected in very
general ways to form models of complex systems.
However, this more general structure poses some
challenges when it comes to analysis and simula-
tion that are described in the next section.

Differential Algebraic Equations
(DAE)

This model (19) is a special case of the general
differential algebraic equation

F.d z=dt; z; u/ D 0 (20)

A good description of both theory and numerical
properties of such equations is given in Kunkel
and Mehrmann (2006). In many cases it is possi-
ble to split the variables and equations in such a
way that the following structure is achieved:

F.d z1=dt; z1; z2; u/ D 0; F2.z1; z2; u/ D 0

(21)

If z2 can be solved from the second equation
and substituted into the first one, and if d z1=dt
can then be solved from the first equation, the
problem is reduced to an ordinary differential
equation in z1. Often, however, the situation is
not as simple as that. For the example (19) an
addition of the first two equations gives

.J1 C J2/
d!1

dt
D �.b1 C b2/!1 (22)

which is a standard first-order system description.
Note, however, that in order to arrive at this result,
the relation!1 D !2 has to be differentiated. This
DAE thus includes an implicit differentiation.



Modeling of Dynamic Systems from First Principles 745

M

In the general case one can investigate how many
times (20) has to be differentiated in order to get
an explicit expression for d z=dt . This number is
called the (differentiation) index. Both theoretical
analysis and practical experience show that the
numerical difficulties encountered when solving
a DAE increase with increasing index; see, e.g.,
the classical reference Brenan et al. (1987). It
turns out that mechanical systems in particu-
lar give high-index models when constructed by
joining components, and this has been an obstacle
to the use of DAE models. For linear DAE models
the role of the index can be seen more easily. A
linear model is given by

E
d z

dt
C F z D Gu (23)

where the matrix E is singular (if E is invertible,
multiplication with E�1 from the left gives an
ordinary differential equation). The system can
be transformed by multiplying with P from the
left and changing variables with z D Qw.P;Q
nonsingular matrices). The transformed model is
now

PEQ
dw

dt
C PFQw D PGu (24)

If E C F is nonsingular for some value of the
scalar , then it can be shown that there is a
choice of P and Q such that (24) takes the form

�
I 0

0 N

��
dw1=dt
dw2=dt

�
C
��A 0

0 I

��
w1
w2

�
D
�
B1
B2

�
u

(25)

where N is a nilpotent matrix, i.e., Nk D 0 for
some positive integer k. The smallest such k turns
out to be the index of the DAE. The transformed
model (25) thus contains an ordinary differential
equation:

dw1
dt

D Aw1 CB1u (26)

Using the nilpotency of N , the equation for w2
can be rewritten:

w2 D B2u �NB2 du

dt
C � � � C .�N/k�1B2

dk�1u
dtk�1

(27)

This expression shows that an index k > 1

implies differentiation of the input (unless N B2
happens to be zero). This in turn implies potential
difficulties, e.g., if u is a measured signal.

Identification of DAEModels
The extended use of DAE models in modern
modeling tools also means that there is a need
to use these models in system identification. To
fully use system identification theory, one needs
a stochastic model of disturbances. The inclusion
of such disturbances leads to a class of models de-
scribed as stochastic differential algebraic equa-
tions. The treatment of such models leads to some
interesting problems. In the previous section it
was seen that DAE models often contain implicit
differentiations of external signals. If a DAE
model is to be well posed, this differentiation
must not affect signals modeled as white noise.
In Gerdin et al. (2007), conditions are given that
guarantee that stochastic DAEs are well posed.
There it is also described how a maximum like-
lihood estimate can be made for DAE models,
laying the basis for parameter estimation.

Differential Algebra
For the case where models consist of polynomial
equations, it is possible to manipulate them in
a very systematic way. The model (20) is then
generalized to

F.dnz=dtn; : : : ; d z=dt; z/ D 0 (28)

where z is now a vector containing an arbitrary
mix of inputs, outputs, and internal variables.
There is then a theory based on Ritt (1950) that al-
lows the transformation of (28) to a standard form
where the properties of the system can be easily
determined. The process is similar to the use of
Gröbner bases but also includes the possibility of
differentiating equations. Of particular interest to
identification is the possibility of determining the
identifiability of parameters with these tools. The
model is then of the form

F.dmy=dtm; : : : ; dy=dt; y; dnz=dtn;

: : : ; d z=dt; zI �/ D 0
(29)
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where y contains measured signals, z contains
unmeasured variables, and � is a vector of pa-
rameters to be identified, while F is a vector of
polynomials in these variables. It was shown in
Ljung and Glad (1994a) that there is an algorithm
giving for each parameter �k a polynomial:

gk.d
my=dtm; : : : ; dy=dt; yI �k/ D 0 (30)

This relation can be regarded as a polynomial
in �k where all coefficients are expressed in
measured quantities. The local or global identifi-
ability will then be determined by the number of
solutions. If �k is unidentifiable, then no equation
of the form (30) will exist, and this fact will also
be demonstrated by the output of the algorithm.

Summary and Future Directions

There is no general method to derive models from
first principles. However, modeling techniques
based on bond graphs or port-controlled Hamilto-
nian systems offer a systematic approach for large
model classes. Modeling languages like Modelica
make the practical work with modeling much
easier. A fundamental problem that comes up is
that models are not necessarily in state space form
but are so called differential algebraic equation
(DAE) models. Much of the future work is ex-
pected to deal with the handling of DAE models
and in the development of modeling languages.

Cross-References

�Nonlinear System Identification: An Overview
of Common Approaches

� System Identification: An Overview

Recommended Reading

A classical book on physical modeling is Rosen-
berg and Karnopp (1983) with emphasis on bond
graph techniques. The physical modeling and
identification perspectives are tied together in
Ljung and Glad (1994b). A good reference for

Hamiltonian techniques is Duindam et al. (2009).
The Modelica modeling language is treated in
Tiller (2001) and Fritzson (2000). The former
emphasizes the physical modeling point of view;
the latter also gives details of the language itself.
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Abstract

Petri net is a generic term used to designate a
broad family of related formalisms for discrete
event views of (dynamic) Systems (DES), all
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sharing some basic relevant features, such as
minimality in the number of primitives, local-
ity of the states and actions (with consequences
for model construction), or temporal realism.
The global state of a system is obtained by the
juxtaposition of the different local states. We
should initially distinguish between autonomous
formalisms and those extended by interpretation.
Models in the latter group are obtained by re-
stricting the underlying autonomous behaviors
by means of constraints that can be related to
different kinds of external events, in particular to
time. This article first describes place/transition
nets (PT-nets), by default simply called Petri nets
(PNs). Other formalisms are then mentioned. As
a system theory modeling paradigm for concur-
rent DES, Petri nets are used in a wide variety of
application fields.

Keywords

Condition/event nets (CE-nets); Continuous Petri
nets (CPNs); Diagrams; Fluidization; Grafcet;
Hybrid Petri nets (HPNs); Marking Petri nets;
Place/transition nets (PT-nets); High-level Petri
nets (HLPNs)

Introduction

Petri nets (PNs) are able to model concurrent
and distributed DES (�Models for Discrete
Event Systems: An Overview). They constitute
a powerful family of formalisms with different
expressive purposes and power. They may be
applied to inter alia, modeling, logical analysis,
performance evaluation, parametric optimization,
dynamic control (minimum makespan, super-
visory control, or other kinds), diagnosis, and
implementation issues (eventually fault tolerant).
Hybrid and continuous PNs are particularly
useful when some parts of the system are highly
populated. Being multidisciplinary, formalisms
belonging to the Petri nets paradigm may cover
several phases of the life cycle of complex DES.

A Petri net can be represented as a bipartite
directed graph provided with arcs inscriptions;
alternatively, this structure can be represented in

algebraic form using some matrices. As in the
case of differential equations, an initial condition
or state should be defined in order to represent
a dynamic system. This is done by means of an
initial distributed state. The English translation of
the Carl Adam Petri’s seminal work, presented in
1962, is Petri (1966).

Untimed Place/Transition Net
Systems

A place/transition net (PT-net) can be viewed as
N D hP; T;Pre;Posti, where:
• P and T are disjoint and finite nonempty sets

of places and transitions, respectively.
• Pre and Post are jP j � jT j sized, natural-

valued (zero included), incidence matrices.
The net is said to be ordinary if Pre and Post
are valued on f0; 1g. Weighted arcs permit
the abstract modeling of bulk services and
arrivals.

A PT-net is a structure. The Pre (Post) function
defines the connections from places to transitions
(transitions to places). Those two functions can
alternatively be defined as weighted flow relations
(nets as graphs). Thus, PT-nets can be represented
as bipartite directed graphs with places (p, using
circles) and transitions (t , using bars or rectan-
gles) as nodes: N D hP; T; F;W i, where F 

.P � T / [ .T � P/ is the flow relation (set of
directed arcs, with dom.F /[range.F / D P[T ),
and W W F ! N

C assigns a natural weight to
each arc.

The net structure represents the static part
of the DES model. Furthermore, a “distributed
state” is defined over the set of places, known
as the marking. This is “numerically quantified”
(not in an arbitrary alphabet, as in automata),
associating natural values to the local state
variables, the places. If a place p has a value
�.m.p/ D �/, it is said to have � tokens
(frequently depicted in graphic terms with v

black dots or just the number inside the place).
The places are “state variables,” while the
markings are their “values”; the global state
is defined through the concatenation of local
states. The net structure, provided with an initial

http://dx.doi.org/10.1007/978-1-4471-5058-9_52
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Modeling, Analysis, and Control with Petri Nets,
Fig. 1 Most basic PN constructions: The logical OR
is present around places, in choices (or branches) and

attributions (or meets); the logical AND is formed around
transitions, in joins (or waits or rendezvous) and forks (or
splits)

Modeling, Analysis, and Control with Petri Nets, Fig. 2 Only transitions b and c are initially enabled. The results
of firing b or c are shown subsequently

marking, to be denoted as .N ; m0/, is a Petri net
system, or marked Petri net.

The last two basic PN constructions in Fig. 1
( join and fork) do not appear in finite-state ma-
chines; moreover, the arcs may be valued with
natural numbers. The dynamic behavior of the net
system (trajectories with changes in the marking)
is produced by the firing of transitions, some
“local operations” which follows very simple
rules.

Markings in net systems evolve according to
the following firing (or occurrence) rules (see,
Fig. 2):
• A transition is said to be enabled at a given

marking if each input place has at least as
many tokens as the weight of the arc joining
them.

• The firing or occurrence of an enabled tran-
sition is an instantaneous operation that re-
moves from (adds to) each input (output) place
a number of tokens equal to the weight of
the arc joining the place (transition) to the
transition (place).

The precondition of a transition can be seen as the
resources required for the transition to be fired.
The weight of the arc from a place to a transition

represents the number of resources to be con-
sumed. The post-condition defines the number
resources produced by the firing of the transition.
This is made explicit by the weights of the arcs
from the transition to the places. Three important
observations should be taken into account:
• The underlying logic in the firing of a tran-

sition is non-monotonic! It is a consump-
tion/production logic.

• Enabled transitions are never forced to fire:
This is a form of non-determinism.

• An occurrence sequence is a sequence of fired
transitions 	 D t1 : : : tk . In the evolution
from m0, the reached marking m can be easily
computed as:

m D m0 C C � � ; (1)

where C D Post – Pre is the token flow matrix
(incidence matrix if N is self-loop free) and
� the firing count vector corresponding to � .
Thus m and � are vectors of natural numbers.
The previous equation is the state-transition

equation (frequently known as the fundamental
or, simply, state equation). Nevertheless, two im-
portant remarks should be made:
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• It represents a necessary but not sufficient
condition for reachability; the problem is that
the existence of a � does not guarantee that a
corresponding sequence 	 is firable from m0;
thus, certain solutions – called spurious (Silva
et al. 1998) – are not reachable. This implies
that – except in certain net system subclasses –
only semi-decision algorithms can usually be
derived.

• All variables are natural numbers, which im-
ply computational complexity.

It should be pointed out that in finite-state ma-
chines, the state is a single variable taking values
in a symbolic unstructured set, while in PT-net
systems, it is structured as a vector of nonnegative
integers. This allows analysis techniques that do
not require the enumeration of the state space.

At a structural level, observe that the negation
is missing in Fig. 1; its inclusion leads to the so-
called inhibitor arcs, an extension in expressive
power. In its most basic form, if the place at
the origin of an inhibitor arc is marked, it “in-
hibits” the enabling of the target transition. PT-
net systems can model infinite-state systems, but
not Turing machines. PT-net systems provided
with inhibitor arcs (or priorities on the firing of
transitions) can do it.

With this conceptually simple formalism, it
is not difficult to express basic synchronization
schemas (Fig. 3). All the illustrated examples use
joins. When weights are allowed in the arcs,
another kind of synchronization appears: Sev-
eral copies of the same resource are needed (or
produced) in a single operation. Being able to
express concurrency and synchronization, when
viewing the system at a higher level, it is possible
to build cooperation and competition relation-
ships.

Analysis and Control of Untimed
PTModels

The behavior of a concurrent (eventually dis-
tributed) system is frequently difficult to under-
stand and control. Thus, misunderstandings and
mistakes are frequent during the design cycle. A
way of cutting down the cost and duration of the

design process is to express in a formalized way
properties that the system should enjoy and to use
formal proof techniques. Errors can be eventually
detected close to the moment they are introduced,
reducing their propagation to subsequent stages.
The goal in verification is to ensure that a given
system is correct with respect to its specification
(perhaps expressed in temporal-logic terms) or to
a certain set of predetermined properties.

Among the most basic qualitative properties of
“net systems” are the following: (1) reachability
of a marking from a given one; (2) boundedness,
characterizing finiteness of the state space; (3)
liveness, related to potential fireability of all tran-
sitions starting on an arbitrary reachable marking
(deadlock-freeness is a weaker condition in which
only global infinite fireability of the net system
model is guaranteed, even if some transitions
no longer fire); (4) reversibility, characterizing
recoverability of the initial marking from any
reachable one; and (5) mutual exclusion of two
places, dealing with the impossibility of reaching
markings in which both places are simultane-
ously marked.

All the above are behavioral properties, which
depend on the net system .N ;m0/. In practice,
sometimes problems with a net model are rooted
in the net structure; thus, the study of the struc-
tural counterpart of certain behavioral proper-
ties may be of interest. For example, a “net”
is structurally bounded if it is bounded for any
initial marking; a “net” is structurally live if an
initial marking exists that make the net system
live (otherwise stated, it reflect non-liveness for
arbitrary initial markings, a pathology of the net).

Basic techniques to analyze net systems in-
clude: (1) enumeration, in its most basic form
based on the construction of a reachability graph
(a sequentialized view of the behavior). If the net
system is not bounded, losing some information,
a finite coverability graph can be constructed; (2)
transformation, based on an iterative rewriting
process in which a net system enjoys a certain
property if and only if a transformed (“sim-
pler” to analyze) one also does. If the new sys-
tem is easier to analyze, and the transformation
is computationally cheap, the process may be
extremely interesting; (3) structural, based on
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Modeling, Analysis, and Control with Petri Nets,
Fig. 3 Basic synchronization schemes: (1) Join or ren-
dezvous, RV; (2) Semaphore, S; (3) Mutual exclusion
semaphore (mutex), R, representing a shared resource;
(4) Symmetric RV built with two semaphores; (5) Asym-
metric RV built with two semaphores (master/slave);
(6) Fork-join (or par-begin/par-end); (7) Non-recursive
subprogram (places i and j cannot be simultaneously

marked – must be in mutex – to remember the returning
point; for simplicity, it is assumed that the subprogram is
single input/single output); (8) Guard (a self-loop from a
place through a transition); its role is like a traffic light:
If at least one token is present at the place, it allows the
evolution, but it is not consumed. Synchronizations can
also be modeled by the weights associated to the arcs
going to transitions

graph properties, or in mathematical program-
ming techniques rooted on the state equation;
(4) simulation, particularly interesting for gaining
certain confidence about the absence of certain
pathological behaviors. Analysis strategies com-
bining all these kinds of techniques are extremely
useful in practice.

Reachability techniques provide sequentialized
views for a particular initial marking. Moreover
they suffer from the so-called state explosion
problem. The reduction of this computational
issue leads to techniques such as stubborn
set methods (smaller, equally informative

reachability graphs), also to non-sequentialized
views such as those based on unfoldings.
Transformation techniques are extremely useful,
but not complete (i.e., not all net systems can
be reduced in a practical way). In most cases,
structural techniques only provide necessary or
sufficient conditions (e.g., a sufficient condition
for deadlock-freeness, a necessary condition for
reversibility, etc.), but not a full characterization.
As already pointed out, a limitation of methods
based on the state equation for analyzing net
systems is the existence of non reachable
solutions (the so-called spurious solutions). In
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this context, three kinds of related notions that
must be differentiated are the following: (1)
some natural vectors (left and right annullers
of the token flow matrix, C: P-semiflows and
T-semiflows), (2) some invariant laws (token
conservation and repetitive behaviors), and
(3) some peculiar subnets (conservative and
consistent components, generated by the subsets
of nodes in the P- and T-semiflows, respectively).

More than analysis, control leads to synthesis
problems. The idea is to enforce the given system
in order to fulfill a specification (e.g., to enforce
certain mutual exclusion properties). Technically
speaking, the idea is to “add” some elements in
order to constrain the behavior in such a way that
a correct execution is obtained. Questions related
to control, observation, diagnosis, or identifica-
tion are all areas of ongoing research.

With respect to classical control theory, there
are two main differences: Models are DES and
untimed (autonomous, fully nondeterministic,
eventually labeling the transitions in order to
be able to consider the PNs languages). Let us
remark that for control purposes, the transitions
should be partitioned into controllable (when
enabled, you can either force or block the
firing) and uncontrollable (if enabled, the firing
is nondeterministic). A natural approach to
synthesize a control is to start modeling the plant
dynamics (by means of a PN, P) and adopting a
specification for the desired closed-loop system
(S). The goal is to compute a controller (L)
such that S equals the parallel-composition of
P and L; in other words, controllers (called
“supervisors”) are designed to ensure that only
behaviors consistent with the specification may
occur. The previous equality is not always
possible, and the goal is usually relaxed to
minimally limit the behavior within the specified
legality (i.e., to compute maximally permissive
controllers). For an approach in the framework
of finite-state machines and regular languages,
see � Supervisory Control of Discrete-Event
Systems. The synthesis in the framework of
Petri nets and having goals as enforcing some
generalized mutual exclusions constraints in
markings or avoiding deadlocks, for example,
can be efficiently approached by means of the

so named structure theory, based on the direct
exploitation of the structure of the net model
(using graph or mathematical programming
theories and algorithms, where the initial marking
is a parameter).

Similarly, transitions (or places) can be parti-
tioned into observable and unobservable. Many
observability problems may be of interest; for ex-
ample, observing the firing of a subset of transi-
tions to compute the subset of markings in which
the system may be. Related to observability, di-
agnosis is the process of detecting a failure (any
deviation of a system from its intended behavior)
and identifying the cause of the abnormality. Di-
agnosability, like observability or controllability,
is a logical criterion. If a model is diagnosable
with respect to a certain subset of possible faults
(i.e., it is possible to detect the occurrence of
those faults in finite time), a diagnoser can be
constructed (see section “Diagnosis and Diagnos-
ability Analysis of Petri Nets” in �Diagnosis of
Discrete Event Systems). Identification of DES
is also a question that has required attention in
recent years. In general, the starting point is a
behavioral observation, the goal being to con-
struct a PN model that generates the observed
behavior, either from examples/counterexamples
of its language or from the structure of a reach-
ability graph. So the results are derived models,
not human-made models (i.e., not made by de-
signers).

The Petri Nets Modeling Paradigm

Along the life cycle of DES, designers may deal
with basic modeling, analysis, and synthesis from
different perspectives together with implemen-
tation and operation issues. Thus, the designer
may be interested in expressing the basic struc-
ture, understanding untimed possible behaviors,
checking logic properties on the model when
provided with some timing (e.g., in order to
guarantee if a certain reaction is possible before
3 ms; something relevant in real-time systems),
computing some performance indices on timed
models (related to the throughput in the firing of a
given transition, or to the length of a waiting line,

http://dx.doi.org/10.1007/978-1-4471-5058-9_54
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expressed as the number of tokens in a place),
computing a schedule or control that optimizes
a certain objective function, decomposing the
model in order to prepare an efficient imple-
mentation, efficiently determining redundancies
in order to increase the degree of fault tolerance,
etc. For these different tasks, different formalisms
may be used. Nevertheless, it seems desirable
to have a family of related formalisms rather
than a collection of “unrelated” or weakly related
formalisms. The expected advantages would in-
clude coherence among models usable in dif-
ferent phases, economy in the transformations
and synergy in the development of models and
theories.

Other Untimed PN Formalisms: Levels of
Expressive Power
PT-net systems are more powerful than condi-
tion/event (CE) systems, roughly speaking the
basic seminal formalism of Carl Adam Petri in
which places can be marked only with zero or
one token (Boolean marking). CE-systems can
model only finite-state systems. As already said,
“extensions” of the expressive power of untimed
PT-net systems to the level of Turing machines
are obtained by adding inhibitor arcs or priorities
to the firing of transitions.

An important idea is adding the notion of
individuals to tokens (e.g., from anonymous
to labeled or colored tokens). Information in
tokens allows the objects to be named (they
are no longer indistinguishable) and dynamic
associations to be created. Moving from PT-
nets to so-called high-level PNs (HLPNs) is
something like “moving from assembler to
high-level programming languages,” or, at
the computational level, like “moving from
pure numerical to a symbolic level.” There
are many proposals in this respect, the more
important being predicate/transition nets and
colored PNs. Sometimes, this type of abstraction
has the same theoretical expressiveness as
PT-net systems (e.g., colored PNs if the
number of colors is finite); in other words,
high-level views may lead to more compact

and structured models, while keeping the
same theoretical expressive power of PT-
nets (i.e., we can speak of “abbreviations,”
not of “extensions”). In other cases, object-
oriented concepts from computer programming
are included in certain HLPNs. The analysis
techniques of HLPNs can be approached
with techniques based on enumeration, trans-
formation, or structural considerations and
simulation, generalizing those developed for PT-
net systems.

Extending Net Systems with External
Events and Time: Nonautonomous
Formalisms
When dealing with net systems that interact with
some specific environment, the marking evolu-
tion rule must be slightly modified. This can
be done in an enormous number of ways, con-
sidering external events and logical conditions
as inputs to the net model, in particular some
depending on time. The same interpretation given
to a graph in order to define a finite-state diagram
can be used to define a marking diagram, a for-
malism in which the key point is to recognize that
the state is now numerical (for PT-net systems)
and distributed. For example, drawing a parallel
with Moore automata, the transitions should be
labeled with logical conditions and events, while
unconditional actions are associated to the places.
If a place is marked, the associated actions are
emitted.

Even if only time-based interpretations are
considered, there are a large number of successful
proposals for formalisms. For example, it should
be specified if time is associated to the firing of
transitions (T-timing may be atomic or in three
phases), to the residence of tokens in places (P-
timed), to the arcs of the net, as tags to the
tokens, etc. Moreover, even for T-timed models,
there are many ways of defining the timing: time
intervals, stochastic or possibilistic forms, and
the deterministic case as a particular one. If the
firing of transitions follows exponential pdfs, and
the conflict resolution follows the race policy
(i.e., fire in conflicts the first that ends the task,
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not a preselection policy), the underlying Markov
chain described is isomorphic to the reachability
graph (due to the Markovian “memoryless” prop-
erty). Moreover, the addition of immediate transi-
tions (whose firing is instantaneous) enriches the
practical modeling possibilities, eventually com-
plicating the analysis techniques. Timed models
are used to compute minimum and maximum
time delays (when time intervals are provided,
in real-time problems) or performance figures
(throughput, utilization rate of resources, average
number of tokens – clients – in services, etc.). For
performance evaluation, there is an array of tech-
niques to compute bounds, approximated values,
or exact values, sometimes generalizing those
that are used in certain queueing network classes
of models. Simulation techniques are frequently
very helpful in practice to produce an educated
guess about the expected performance.

Time constraints on Petri nets may change
logical properties of models (e.g., mutual exclu-
sion constraints, deadlock-freeness, etc.), calling
for new analysis techniques. For example, certain
timings on transitions can transform a live system
into a non-live one (if to the net system in Fig. 2
are associated deterministic times to transitions
and a race policy with the time associated to tran-
sition c smaller than that of transition a, transition
b cannot be fired, after firing transition d; thus it
is non-live, while the untimed model was live).
By the addition of some time constraints, the
transformation of a non-live model into a live one
is also possible. So additional analysis techniques
need to be considered, redefining the state, now
depending also on time, more than just on the
marking.

Finally, as in any DES, the optimal control
of timed Petri net models (scheduling, sequenc-
ing, etc.) may be approached by techniques as
dynamic programming or perturbation analysis
(presented in the context of queueing networks
and Markov chains, see � Perturbation Analysis
of Discrete Event Systems). In practice, those
problems are frequently approached by means
of some partially heuristic strategies. About the
diagnosis of timed Petri nets, see �Diagnosis of
Discrete Event Systems. Of course, all these tasks
can be done with HLPNs.

Fluid and Hybrid PN Models
Different ideas may lead to different kinds of
hybrid PNs. One is to fluidize (here to relax the
natural numbers of discrete markings into the
nonnegative reals) the firing of transitions that are
“most time” enabled. Then the relaxed model has
discrete and continuous transitions, thus also dis-
crete and continuous places. If all transitions are
fluidized, the PN system is said to be fluid or con-
tinuous, even if technically it is a hybrid one. In
this approach, the main goal is to try to overcome
the state explosion problem inherent to enumer-
ation techniques. Proceeding in that way, some
computationally NP-hard problems may become
much easier to solve, eventually in polynomial
time. In other words, fluidization is an abstraction
that tries to make tractable certain real-scale DES
problems (�Discrete Event Systems and Hybrid
Systems, Connections Between).

When transitions are timed with the so-called
infinite server semantics, the PN system can be
observed as a time differentiable piecewise affine
system. Thus, even if the relaxation “simplifies”
computations, it should be taken into account that
continuous PNs with infinite server semantics
are able to simulate Turing machines. From a
different perspective, the steady-state throughput
of a given transition may be non-monotonic with
respect to the firing rates or the initial marking
(e.g., if faster or more machines are used, the un-
controlled system may be slower); moreover, due
to the important expressive power, discontinuities
may even appear with respect to continuous de-
sign parameters as firing rates, for example.

An alternative way to define hybrid Petri nets
is a generalization of hybrid automata: The net
system is a DES, but sets of differential equations
are associated to the marking of places. If a
place is marked, the corresponding differential
equations contribute to define its evolution.

Summary and Future Directions

Petri nets designate a broad family of related
DES formalisms (a modeling paradigm) each
one specifically tailored to approach certain
problems. Conceptual simplicity coexists with

http://dx.doi.org/10.1007/978-1-4471-5058-9_58
http://dx.doi.org/10.1007/978-1-4471-5058-9_56
http://dx.doi.org/10.1007/978-1-4471-5058-9_55
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powerful modeling, analysis, and synthesis
capabilities. From a control theory perspective,
much work remains to be done for both untimed
and timed formalisms (remember, there are many
different ways of timing), particularly when
dealing with optimal control of timed models.
In engineering practice, approaches to the latter
class of problems frequently use heuristic strate-
gies. From a broader perspective, future research
directions include improvements required to
deal with controllability and the design of
controllers, with observability and the design
of observers, with diagnosability and the design
of diagnosers, and with identification. This work
is not limited to the strict DES framework, but
also applies to analogous problems relating to
relaxations into hybrid or fluid approximations
(particularly useful when high populations are
considered). The distributed nature of system is
more and more frequent and is introducing new
constraints, a subject requiring serious attention.
In all cases, different from firing languages
approaches, the so named structure theory of
Petri nets should gain more interest.

Cross-References

�Applications of Discrete-Event Systems
�Diagnosis of Discrete Event Systems
�Discrete Event Systems and Hybrid Systems,

Connections Between
�Models for Discrete Event Systems: An

Overview
� Perturbation Analysis of Discrete Event

Systems
� Supervisory Control of Discrete-Event Systems

Recommended Reading

Topics related to PNs are considered in well
over a hundred thousand papers and reports.
The first generation of books concerning this
field is Brauer (1980), immediately followed by
Starke (1980), Peterson (1981), Brams (1983),
Reisig (1985), and Silva (1985). The fact that
they are written in English, French, German, and
Spanish is proof of the rapid dissemination of this

knowledge. Most of these books deal essentially
with PT-net systems. Complementary surveys
are Murata (1989), Silva (1993), and David and
Alla (1994), the latter also considering some
continuous and hybrid models. Concerning high-
level PNs, Jensen and Rozenberg (1991) is a se-
lection of papers covering the main developments
during the 1980s. Jensen and Kristensen (2009)
focuses on state space methods and simulation
where elements of timed models are taken into
account, but performance evaluation of stochastic
systems is not covered. Approaching the present
day, relevant works written with complementary
perspectives include inter alia, Girault and Valk
(2003), Diaz (2009), David and Alla (2010),
and Seatzu et al. (2013). The consideration of
time in nets with an emphasis on performance
and performability evaluation is addressed in
monographs such as Ajmone Marsan et al.
(1995), Bause and Kritzinger (1996), Balbo
and Silva (1998), and Haas (2002), while timed
models under different fuzzy interpretations are
the subject of Cardoso and Camargo (1999).
Structure-based approaches to controlling PN
models is the main subject in Iordache and
Antsaklis (2006) or Chen and Li (2013). Different
kinds of hybrid PN models are studied in Di
Febbraro et al. (2001), Villani et al. (2007), and
David and Alla (2010), while a broad perspective
about modeling, analysis, and control of contin-
uous (untimed and timed) PNs is provided by
Silva et al. (2011).

DiCesare et al. (1993) and Desrochers and Al-
Jaar (1995) are devoted to the applications of
PNs to manufacturing systems. A comprehensive
updated introduction to business process systems
and PNs can be found in van der Aalst and
Stahl (2011). Special volumes dealing with other
monographic topics are, for example, Billington
et al. (1999), Agha et al. (2001), and Cortadella
et al. (2002). An application domain for Petri
nets emerging over the last two decades is sys-
tems biology, a model-based approach devoted to
the analysis of biological systems (Koch et al.
2011; Wingender 2011). Furthermore, it should
be pointed out that Petri nets have also been em-
ployed in many other application domains (e.g.,
from logistics to musical systems).

http://dx.doi.org/10.1007/978-1-4471-5058-9_59
http://dx.doi.org/10.1007/978-1-4471-5058-9_56
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http://dx.doi.org/10.1007/978-1-4471-5058-9_58
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For an overall perspective of the field over the
five decades that have elapsed since the publica-
tion of Carl Adam Petri’s PhD thesis, including
historical, epistemological, and technical aspects,
see Silva (2013).
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Abstract

This entry provides a brief description of model
predictive control (MPC) technology and how it
is used in practice. The emphasis here is on re-
fining and chemical plant applications where the
technology has achieved its greatest acceptance.
After a short description of what MPC is and
how it fits into the hierarchy of control functions,
the basic algorithm is presented as a sequence of
three optimization problems. The steps required
for a successful application are then outlined,
followed by a summary and outline of likely
future directions for MPC technology.

Keywords
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Introduction

Model predictive control (MPC) refers to a class
of computer control algorithms that utilize an
explicit mathematical model to predict future
process behavior. At each control interval, in the
most general case, an MPC algorithm solves a
sequence of three nonlinear programs to answer
the following essential questions: where is the

process heading (state estimation), where should
the process go (steady-state target optimization),
and what is the best sequence of control (input)
adjustments to send it to the right place (dynamic
optimization). The first control (input) adjust-
ment is implemented and then the entire cal-
culation sequence is repeated at the subsequent
control cycles.

MPC technology arose first in the context of
petroleum refinery and power plant control prob-
lems (Cutler and Ramaker 1979; Richalet et al.
1978). Specific needs that drove the development
of MPC technology include the requirement for
economic optimization and strict enforcement
of safety and equipment constraints. Promising
early results led to a wave of successful industrial
applications, sparking the development of several
commercial offerings (Qin and Badgwell 2003)
and generating intense interest from the academic
community (Mayne et al. 2000). Today MPC
technology permeates the refining and chemical
industries and has gained increasing acceptance
in a wide variety of areas including chemicals,
automotive, aerospace, and food processing ap-
plications. The total number of MPC applications
worldwide was estimated in 2003 to be 4,500
(Qin and Badgwell 2003).

MPC Control Hierarchy

In a modern chemical plant or refinery, MPC
is part of a multilevel hierarchy, as illustrated
in Fig. 1. Moving from the top level to the
bottom, the control functions execute at a
higher frequency but cover a smaller geographic
scope. At the bottom level, referred to as
Level 0, proportional-integral-derivative (PID)
controllers execute several times a second within
distributed control system (DCS) hardware.
These controllers adjust individual valves to
maintain desired flows, pressures, levels, and
temperatures.

At Level 1, MPC runs once a minute
to perform dynamic constraint control for
an individual processing unit, such as crude
distillation unit or a fluid catalytic cracker (Gary
et al. 2007). It typically utilizes a linear dynamic

http://dx.doi.org/10.1007/978-1-4471-5058-9_100014
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Model-Predictive Control in Practice, Fig. 1 Hierarchy of control functions in a refinery/chemical plant

model identified directly from process step-test
data. The MPC has the job of holding the unit
at the best economic operating point in the
face of dynamic disturbances and operational
constraints.

At Level 2, a real-time optimizer (RTO) runs
hourly to calculate optimal steady-state targets
for a collection of processing units. It uses a
rigorous first-principles steady-state model to cal-
culate targets for key operating variables such
as unit temperatures and feed rates. These are
typically passed down to several MPCs for im-
plementation.

At Level 3, planning and scheduling func-
tions are carried out daily to optimize economics
for an entire chemical plant or refinery. Simple
steady-state models are typically used at this
level, with some nonlinear but mostly linear con-
nections between model inputs and outputs. Key
operating targets and economic data are typ-
ically passed to several RTO applications for
implementation.

Note that a different mathematical model of
the process is used at each level of the hierarchy.
These models must be reconciled in some man-
ner with current plant operation and with each
other in order for the overall system to function
properly.

MPCAlgorithms

MPC algorithms function in much the same way
that an experienced human operator would ap-
proach a control problem. Figure 2 illustrates the
flow of information for a typical MPC imple-
mentation. At each control interval, the algorithm
compares the current model output prediction
yp to the measured output ym and passes the
prediction error e and control (input) u to a
state estimator, which estimates the dynamic state
x. The most commonly used methods for state
estimation can be viewed as special cases of
an optimization-based formulation called mov-
ing horizon estimation (MHE) (Rawlings and
Mayne 2009). The state estimate Ox, which in-
cludes an estimate of the process disturbances
Od , is then passed to a steady-state optimizer to

determine the best operating point for the unit.
The steady-state optimizer must also consider
operator-entered output and control (input) tar-
gets yt and ut . The steady-state state and control
(input) targets xs and us are then passed, along
with the state estimate Ox, to a dynamic optimizer
to compute the best trajectory of future control
(input) adjustments. The first computed control
(input) adjustment is then implemented and the
entire calculation sequence is repeated at the
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Model-Predictive Control in Practice, Fig. 2 Information flow for MPC algorithm

next control interval. The various commercial
MPC algorithms differ in such details as the
mathematical form of the dynamic model and
the specific formulations of the state estimation,
steady-state optimization, and dynamic optimiza-
tion problems (Qin and Badgwell 2003).

In the general case, the MPC algorithm must
solve the three optimization problems outlined
above at each control interval. For the case of
linear models and reasonable tuning parameters,
these problems take the form of a convex
quadratic program (QP) with a constant, positive-
definite Hessian. As such, they can be solved
relatively easily using standard optimization
codes. For the case of a linear state-space model,
the structure can be exploited even further to
develop a specialized solution algorithm using an
interior point method (Rao et al. 1998).

For the case of nonlinear models, these
problems take the form of a nonlinear program
(NLP) for which the solution domain is no longer
convex, greatly complicating the numerical
solution. A typical strategy is to iterate on
a linearized version of the problem until
convergence (Bielger 2010).

Implementation

The combined experience of thousands of MPC
applications in the process industries has led to
a near consensus on the steps required for a
successful implementation:
• Justification – make the economic case for the

application.

• Pre-test – design the control and test sensors
and actuators.

• Step-test – generate process response data.
• Modeling – develop model from process re-

sponse data.
• Configuration – configure the software and

test preliminary tuning by simulation.
• Commissioning – turn on and test the con-

troller.
• Post-audit – measure and certify economic

performance.
• Sustainment – monitor and maintain the appli-

cation.
The most expensive of these steps, both in

terms of engineering time and lost production, is
the generation of process response data through
the step test. This is accomplished, in principle,
by making significant adjustments to each vari-
able that will be adjusted by the MPC while
operating open loop to prevent compensating
control action. This will necessarily cause abnor-
mal movement in key operating variables, which
may lead to lower throughput and off-spec prod-
ucts. Significant progress has been made in re-
cent years to minimize these difficulties through
the use of approximate closed-loop step testing
(Darby and Nikolaou 2012).

Once the application has been commis-
sioned, it is critical to set up an aggressive
monitoring and sustainment program. MPC
application benefits can fall off quickly
due to changes in the process operation
and as new personnel interact with it. New
constraint variables may need to be added
and key sections of the model may need
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to be updated as time goes on. The math-
ematical problem of MPC monitoring re-
mains a topic of current academic research
(Zagrobelny et al. 2012).

Note that the implementation steps outlined
above must be carried out by a carefully selected
project team that typically includes, in addition
to the MPC expert, an engineer with detailed
knowledge of the process and an operator with
significant relevant experience.

Summary and Future Directions

Model predictive control is now a mature tech-
nology in the process industries. A representative
MPC algorithm in this domain includes a state
estimator, a steady-state optimizer, and a dynamic
optimizer, running once a minute. A successful
MPC application usually starts with a careful
economic justification, includes significant par-
ticipation from process engineers and operators,
and is maintained with an aggressive sustainment
program. Many thousands of such applications
are currently operating around the world, gen-
erating billions of dollars per year in economic
benefits.

Likely future directions for MPC prac-
tice include increasing use of nonlinear
models, improved state estimation through
unmeasured disturbance modeling (Pannocchia
and Rawlings 2003), and development of
more efficient numerical solution methods
(Zavala and Biegler 2009).

Cross-References

�Distributed Model Predictive Control
�Nominal Model-Predictive Control
�Optimization Algorithms for Model Predictive

Control
�Tracking Model Predictive Control

Recommended Reading

The first descriptions of MPC technology appear
in papers by Richalet et al. (1978) and Cutler

and Ramaker (1979). A detailed summary of the
history of MPC technology development, as well
as a survey of commercial offerings through 2003
can be found in the review article by Qin and
Badgwell (2003). Darby and Nikolaou present a
more recent summary of MPC practice (Darby
and Nikolaou 2012). Textbook descriptions of
MPC theory and design, suitable for classroom
use, include Rawlings and Mayne (2009) and
Maciejowski (2002). The book by Ljung (1999)
provides a good summary of methods for identi-
fying dynamic models from test data. Theoretical
properties of MPC are analyzed in a highly cited
paper by Mayne and coworkers (2000). Guide-
lines for designing disturbance models so as to
achieve offset-free control can be found in Pan-
nocchia and Rawlings (2003). Numerical solution
strategies for the nonlinear programs found in
MPC are discussed in the book by Biegler (2010).
An efficient interior-point method for solving the
linear MPC dynamic optimization is described
in Rao et al. (1998). A promising algorithm for
solving the nonlinear MPC dynamic optimiza-
tion is outlined in Zavala and Biegler (2009).
A data-based method for tuning Kalman Filters,
which are often used for MPC state estimation,
is described in Odelson et al. (2006). A new
method for monitoring the performance of MPC
is summarized in Zagrobelny et al. (2012). A
readable summary of refining operations can be
found in Gary et al. (2007).
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Abstract

This article provides an introduction to discrete
event systems (DES) as a class of dynamic
systems with characteristics significantly
distinguishing them from traditional time-driven
systems. It also overviews the main modeling
frameworks used to formally describe the
operation of DES and to study problems related
to their control and optimization.
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Introduction

Discrete event systems (DES) form an important
class of dynamic systems. The term was intro-
duced in the early 1980s to describe a DES in
terms of its most critical feature: the fact that
its behavior is governed by discrete events which
occur asynchronously over time and which are
solely responsible for generating state transitions.
In between event occurrences, the state of a DES
is unaffected. Examples of such behavior abound
in technological environments, including com-
puter and communication networks, manufac-
turing systems, transportation systems, logistics,
and so forth. The operation of a DES is largely
regulated by rules which are often unstructured
and frequently human-made, as in initiating or
terminating activities and scheduling the use of
resources through controlled events (e.g., turning
equipment “on”). On the other hand, their op-
eration is also subject to uncontrolled randomly
occurring events (e.g., a spontaneous equipment
failure) which may or may not be observable
through sensors. It is worth pointing out that the
term “discrete event dynamic system” (DEDS) is
also commonly used to emphasize the importance
of the dynamical behavior of such systems (Cas-
sandras and Lafortune 2008; Ho 1991).

There are two aspects of a DES that define its
behavior:
1. The variables involved are both continuous

and discrete, sometimes purely symbolic, i.e.,
nonnumeric (e.g., describing the state of a
traffic light as “red” or “green”). This renders
traditional mathematical models based on dif-
ferential (or difference) equations inadequate
and related methods based on calculus of lim-
ited use.

2. Because of the asynchronous nature of events
that cause state transitions in a DES, it is
neither natural nor efficient to use time as a
synchronizing element driving its dynamics.

http://dx.doi.org/10.1007/978-1-4471-5058-9_100004
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It is for this reason that DES are often referred
to as event driven, to contrast them to clas-
sical time-driven systems based on the laws
of physics; in the latter, as time evolves state,
variables such as position, velocity, tempera-
ture, voltage, etc., also continuously evolve. In
order to capture event-driven state dynamics,
however, different mathematical models are
necessary.
In addition, uncertainties are inherent in

the technological environments where DES are
encountered. Therefore, associated mathematical
models and methods for analysis and control
must incorporate such uncertainties. Finally,
complexity is also inherent in DES of practical
interest, usually manifesting itself in the form of
combinatorially explosive state spaces. Although
purely analytical methods for DES design,
analysis, and control are limited, they have
still enabled reliable approximations of their
dynamic behavior and the derivation of useful
structural properties and provable performance
guarantees. Much of the progress made in this
field, however, has relied on new paradigms
characterized by a combination of mathematical
techniques, computer-based tools, and effective
processing of experimental data.

Event-driven and time-driven system com-
ponents are often viewed as coexisting and
interacting and are referred to as hybrid systems
(separately considered in the Encyclopedia,
including the article �Discrete Event Systems
and Hybrid Systems, Connections Between).
Arguably, most contemporary technological
systems are combinations of time-driven
components (typically, the physical parts of a
system) and event-driven components (usually,
the computer-based controllers that collect data
from and issue commands to the physical parts).

Event-Driven vs. Time-Driven
Systems

In order to explain the difference between time-
driven and event-driven behavior, we begin
with the concept of “event.” An event should
be thought of as occurring instantaneously and

causing transitions from one system state value
to another. It may be identified with an action
(e.g., pressing a button), a spontaneous natural
occurrence (e.g., a random equipment failure), or
the result of conditions met by the system state
(e.g., the fluid level in a tank exceeds a given
value). For the purpose of developing a model
for DES, we will use the symbol e to denote an
event. Since a system is generally affected by
different types of events, we assume that we can
define a discrete event set E with e 2 E .

In a classical system model, the “clock” is
what drives a typical state trajectory: with every
“clock tick” (which may be thought of as an
“event”), the state is expected to change, since
continuous state variables continuously change
with time. This leads to the term time driven.
In the case of time-driven systems described by
continuous variables, the field of systems and
control has based much of its success on the use
of well-known differential-equation-based mod-
els, such as

Px.t/ D f.x.t/;u.t/; t/; x.t0/ D x0 (1)

y.t/ D g.x.t/;u.t/; t/; (2)

where (1) is a (vector) state equation with initial
conditions specified and (2) is a (vector) output
equation. As is common in system theory, x.t/
denotes the state of the system, y.t/ is the output,
and u.t/ represents the input, often associated
with controllable variables used to manipulate
the state so as to attain a desired output. Com-
mon physical quantities such as position, veloc-
ity, temperature, pressure, flow, etc., define state
variables in (1). The state generally changes as
time changes, and, as a result, the time variable t
(or some integer k D 0; 1; 2; : : : in discrete time)
is a natural independent variable for modeling
such systems.

In contrast, in a DES, time no longer serves
the purpose of driving such a system and may
no longer be an appropriate independent variable.
Instead, at least some of the state variables are
discrete, and their values change only at certain
points in time through instantaneous transitions
which we associate with “events.” If a clock
is used, consider two possibilities: (i) At every

http://dx.doi.org/10.1007/978-1-4471-5058-9_55
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clock tick, an event e is selected from the event
set E (if no event takes place, we use a “null
event” as a member of E such that it causes no
state change), and (ii) at various time instants (not
necessarily known in advance or coinciding with
clock ticks), some event e “announces” that it
is occurring. Observe that in (i) state transitions
are synchronized by the clock which is solely
responsible for any possible state transition. In
(ii), every event e 2 E defines a distinct process
through which the time instants when e occurs
are determined. State transitions are the result of
combining these asynchronous concurrent event
processes. Moreover, these processes need not
be independent of each other. The distinction
between (i) and (ii) gives rise to the terms time-
driven and event-driven systems, respectively.

Comparing state trajectories of time-driven
and event-driven systems is useful in understand-
ing the differences between the two and setting
the stage for DES modeling frameworks. Thus, in
Fig. 1, we observe the following: (i) For the time-

x(t)

t
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s2

s3
s4

x(t)

t
t1 t2 t3 t4 t5

e1 e2 e3 e4 e5
e

Models for Discrete Event Systems: An Overview,
Fig. 1 Comparison of time-driven and event-driven state
trajectories

driven system shown, the state space X is the set
of real numbers R, and x.t/ can take any value
from this set. The function x.t/ is the solution
of a differential equation of the general form
Px.t/ D f .x.t/; u.t/; t/, where u.t/ is the input.
(ii) For the event-driven system, the state space is
some discrete setX D fs1; s2; s3; s4g. The sample
path can only jump from one state to another
whenever an event occurs. Note that an event
may take place, but not cause a state transition,
as in the case of e4. There is no immediately
obvious analog to Px.t/ D f .x.t/; u.t/; t/, i.e., no
mechanism to specify how events might interact
over time or how their time of occurrence might
be determined. Thus, a large part of the early
developments in the DES field has been devoted
to the specification of an appropriate mathemati-
cal model containing the same expressive power
as (1)–(2) (Baccelli et al. 1992; Cassandras and
Lafortune 2008; Glasserman and Yao 1994).

We should point out that a time-driven
system with continuous state variables, usually
modeled through (1)–(2), may be abstracted
as a DES through some form of discretization
in time and quantization in the state space.
We should also point out that discrete event
systems should not be confused with discrete
time systems. The class of discrete time systems
contains both time-driven and event-driven
systems.

Timed and UntimedModels
of Discrete Event Systems

Returning to Fig. 1, instead of constructing the
piecewise constant function x.t/ as shown, it is
convenient to simply write the timed sequence of
events f.e1; t1/; .e2; t2/; .e3; t3/; .e4; t4/; .e5; t5/g
which contains the same information as the
state trajectory. Assuming that the initial state
of the system (s2 in this case) is known and that
the system is “deterministic” in the sense that
the next state after the occurrence of an event is
unique, we can recover the state of the system
at any point in time and reconstruct the DES
state trajectory. The set of all possible timed
sequences of events that a given system can ever



Models for Discrete Event Systems: An Overview 763

M

execute is called the timed language model of
the system. The word “language” comes from
the fact that we can think of the event E as an
“alphabet” and of (finite) sequences of events as
“words” (Hopcroft and Ullman 1979). We can
further refine such a model by adding statistical
information regarding the set of state trajectories
(sample paths) of the system. Let us assume that
probability distribution functions are available
about the “lifetime” of each event type e 2 E ,
that is, the elapsed time between successive
occurrences of this particular e. A stochastic
timed language is a timed language together with
associated probability distribution functions for
the events.

Stochastic timed language modeling is the
most detailed in the sense that it contains event
information in the form of event occurrences and
their orderings, information about the exact times
at which the events occur (not only their relative
ordering), and statistical information about suc-
cessive occurrences of events. If we delete the
timing information from a timed language, we
obtain an untimed language, or simply language,
which is the set of all possible orderings of
events that could happen in the given system.
For example, the untimed sequence correspond-
ing to the timed sequence of events in Fig. 1 is
fe1; e2; e3; e4; e5g.

Untimed and timed languages represent
different levels of abstraction at which DES
are modeled and studied. The choice of the
appropriate level of abstraction clearly depends
on the objectives of the analysis. In many
instances, we are interested in the “logical
behavior” of the system, that is, in ensuring that
all the event sequences it can generate satisfy
a given set of specifications, e.g., maintaining
a precise ordering of events. In this context,
the actual timing of events is not required,
and it is sufficient to model only the untimed
behavior of the system. Supervisory control
that is discussed in the article � Supervisory
Control of Discrete-Event Systems is the term
established for describing the systematic means
(i.e., enabling or disabling events which are
controllable) by which the logical behavior
of a DES is regulated to achieve a given

specification (Cassandras and Lafortune 2008;
Moody and Antsaklis 1998; Ramadge and
Wonham 1987).

On the other hand, we may be interested in
event timing in order to answer questions such
as the following: “How much time does the sys-
tem spend at a particular state?” or “Can this
sequence of events be completed by a partic-
ular deadline?” More generally, event timing
is important in assessing the performance of a
DES often measured through quantities such as
throughput or response time. In these instances,
we need to consider the timed language model
of the system. Since DES frequently operate in a
stochastic setting, an additional level of complex-
ity is introduced, necessitating the development
of probabilistic models and related analytical
methodologies for design and performance anal-
ysis based on stochastic timed language models.
Sample path analysis and perturbation analysis,
discussed in the entry �Perturbation Analysis
of Discrete Event Systems, refer to the study of
sample paths of DES, focusing on the extrac-
tion of information for the purpose of efficiently
estimating performance sensitivities of the sys-
tem and, ultimately, achieving online control and
optimization (Cassandras and Lafortune 2008;
Glasserman 1991; Ho and Cao 1991; Ho and
Cassandras 1983).

These different levels of abstraction are com-
plementary, as they address different issues about
the behavior of a DES. Although the language-
based approach to DES modeling is attractive,
it is by itself not convenient to address verifica-
tion, controller synthesis, or performance issues.
This motivates the development of discrete event
modeling formalisms which represent languages
in a manner that highlights structural information
about the system behavior and can be used to
address analysis and controller synthesis issues.
Next, we provide an overview of three major
modeling formalisms which are used by most
(but not all) system and control theoretic method-
ologies pertaining to DES. Additional modeling
formalisms encountered in the computer science
literature include process algebras (Baeten and
Weijland 1990) and communicating sequential
processes (Hoare 1985).

http://dx.doi.org/10.1007/978-1-4471-5058-9_54
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764 Models for Discrete Event Systems: An Overview

Automata

A deterministic automaton, denoted by G, is a
six-tuple

G D .X ; E ; f; �; x0;Xm/;

where X is the set of states, E is the finite set of
events associated with the transitions in G, and
f W X � E ! X is the transition function;
specifically, f .x; e/ D y means that there is
a transition labeled by event e from state x to
state y and, in general, f is a partial function
on its domain. � W X ! 2E is the active event
function (or feasible event function); �.x/ is the
set of all events e for which f .x; e/ is defined
and it is called the active event set (or feasible
event set) of G at x. Finally, x0 is the initial
state and Xm 
 X is the set of marked states.
The terms state machine and generator (which
explains the notationG) are also used to describe
the above object. Moreover, if X is a finite set, we
call G a deterministic finite-state automaton. A
nondeterministic automaton is defined by means
of a relation over X � E � X or, equivalently, a
function from X � E to 2X .

The automatonG operates as follows. It starts
in the initial state x0, and upon the occurrence of
an event e 2 �.x0/ 
 E , it makes a transition to
state f .x0; e/ 2 X . This process then continues
based on the transitions for which f is defined.
Note that an event may occur without changing
the state, i.e., f .x; e/ D x. It is also possible that
two distinct events occur at a given state causing
the exact same transition, i.e., for a; b 2 E ,
f .x; a/ D f .x; b/ D y. What is interesting
about the latter fact is that we may not be able
to distinguish between events a and b by simply
observing a transition from state x to state y.

For the sake of convenience, f is always
extended from domain X � E to domain X �
E�, where E� is the set of all finite strings
of elements of E , including the empty string
(denoted by "); the * operation is called the
Kleene closure. This is accomplished in the fol-
lowing recursive manner: f .x; "/ WD x and
f .x; se/ WD f .f .x; s/; e/ for s 2 E� and
e 2 E . The (untimed) language generated by

G and denoted by L.G/ is the set of all strings
in E� for which the extended function f is
defined. The automaton model above is one in-
stance of what is referred to as a generalized
semi-Markov scheme (GSMS) in the literature of
stochastic processes. A GSMS is viewed as the
basis for extending automata to incorporate an
event timing structure as well as nondeterministic
state transition mechanisms, ultimately leading
to stochastic timed automata, discussed in the
sequel.

Let us allow for generally countable sets X
and E and leave out of the definition any con-
sideration for marked states. Thus, we begin with
an automaton model .X ; E ; f; �; x0/. We extend
the modeling setting to timed automata by in-
corporating a “clock structure” associated with
the event set E which now becomes the input
from which a specific event sequence can be
deduced. The clock structure (or timing structure)
associated with an event set E is a set V D fvi W
i 2 Eg of clock (or lifetime) sequences

viDfvi;1; vi;2; : : :g; i 2 E ; vi;k 2 R
C; k D 1; 2; : : :

Timed Automaton. A timed automaton is de-
fined as a six-tuple

.X ; E ; f; �; x0;V/;

where V D fvi W i 2 Eg is a clock structure
and .X ; E ; f; �; x0/ is an automaton. The automa-
ton generates a state sequence x0 D f .x; e0/
driven by an event sequence fe1; e2; : : :g gener-
ated through

e0 D arg min
i2�.x/fyi g (3)

with the clock values yi , i 2 E , defined by

y0
iD
	
yi � y� if i ¤ e0 and i 2 �.x/
vi;NiC1 if i D e0 or i … �.x/ i 2 �.x0/

(4)

where the interevent time y� is defined as

y� D min
i2�.x/fyi g (5)
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and the event scores Ni , i 2 E , are defined by

N 0
i D

	
Ni C 1 if i D e0 or i … �.x/
Ni otherwise

i 2 �.x0/:

(6)

In addition, initial conditions are yi D vi;1 and
Ni D 1 for all i 2 �.x0/. If i … �.x0/, then yi
is undefined and Ni D 0.

A simple interpretation of this elaborate def-
inition is as follows. Given that the system is at
some state x, the next event e0 is the one with
the smallest clock value among all feasible events
i 2 �.x/. The corresponding clock value, y�,
is the interevent time between the occurrence of
e and e0, and it provides the amount by which
the time, t , moves forward: t 0 D t C y�. Clock
values for all events that remain active in state x0
are decremented by y�, except for the triggering
event e0 and all newly activated events, which are
assigned a new lifetime vi;NiC1. Event scores are
incremented whenever a new lifetime is assigned
to them. It is important to note that the “system
clock” t is fully controlled by the occurrence of
events, which cause it to move forward; if no
event occurs, the system remains at the last state
observed.

Comparing x0 D f .x; e0/ to the state equa-
tion (1) for time-driven systems, we see that
the former can be viewed as the event-driven
analog of the latter. However, the simplicity of
x0 D f .x; e0/ is deceptive: unless an event se-
quence is given, determining the triggering event
e0 which is required to obtain the next state x0
involves the combination of (3)–(6). Therefore,
the analog of (1) as a “canonical” state equation
for a DES requires all Eqs. (3)–(6). Observe that
this timed automaton generates a timed language,
thus extending the untimed language generated
by the original automatonG.

In the definition above, the clock structure V
is assumed to be fully specified in a deterministic
sense and so are state transitions dictated by
x0 D f .x; e0/. The sequences fvig, i 2 E , can
be extended to be specified only as stochastic
sequences through distribution functions denoted
by Fi , i 2 E . Thus, the stochastic clock structure
(or stochastic timing structure) associated with

an event set E is a set of distribution functions
F D fFi W i 2 Eg characterizing the stochastic
clock sequences

fVi;kg D fVi;1; Vi;2; : : :g; i 2 E ;
Vi;k 2 R

C; k D 1; 2; : : :

It is usually assumed that each clock sequence
consists of random variables which are inde-
pendent and identically distributed (iid) and that
all clock sequences are mutually independent.
Thus, each fVi;kg is completely characterized by
a distribution function Fi .t/ D P ŒVi � t �. There
are, however, several ways in which a clock struc-
ture can be extended to include situations where
elements of a sequence fVi;kg are correlated or
two clock sequences are interdependent. As for
state transitions which may be nondeterministic
in nature, such behavior is modeled through state
transition probabilities as explained next.

Stochastic Timed Automaton. We can extend
the definition of a timed automaton by viewing
the state, event, and all event scores and clock
values as random variables denoted respectively
by capital letters X , E , Ni , and Yi , i 2 E . Thus,
a stochastic timed automaton is a six-tuple

.X ; E ; �; p; p0; F /;

where X is a countable state space; E is a count-
able event set; �.x/ is the active event set (or fea-
sible event set); p.x0I x; e0/ is a state transition
probability defined for all x; x0 2 X , e0 2 E and
such that p.x0I x; e0/ D 0 for all e0 … �.x/; p0 is
the probability mass functionP ŒX0 D x�, x 2 X ,
of the initial state X0; and F is a stochastic clock
structure. The automaton generates a stochastic
state sequence fX0;X1; : : :g through a transition
mechanism (based on observationsX D x, E 0 D
e0):

X 0 D x0 with probability p.x0I x; e0/ (7)

and it is driven by a stochastic event sequence
fE1;E2; : : :g generated exactly as in (3)–(6) with
random variables E , Yi , and Ni , i 2 E , instead
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of deterministic quantities and with fVi;kg �
Fi (� denotes “with distribution”). In addition,
initial conditions are X0 � p0.x/, Yi D Vi;1, and
Ni D 1 if i 2 �.X0/. If i … �.X0/, then Yi is
undefined and Ni D 0.

It is conceivable for two events to occur at
the same time, in which case we need a priority
scheme to overcome a possible ambiguity in the
selection of the triggering event in (3). In prac-
tice, it is common to expect that every Fi in
the clock structure is absolutely continuous over
Œ0;1/ (so that its density function exists) and
has a finite mean. This implies that two events
can occur at exactly the same time only with
probability 0.

A stochastic process fX.t/g with state space
X which is generated by a stochastic timed au-
tomaton .X ; E ; �; p; p0; F / is referred to as a
generalized semi-Markov process (GSMP). This
process is used as the basis of much of the sample
path analysis methods for DES (see Cassandras
and Lafortune 2008; Glasserman 1991; Ho and
Cao 1991).

Petri Nets

An alternative modeling formalism for DES is
provided by Petri nets, originating in the work
of C. A. Petri in the early 1960s. Like an au-
tomaton, a Petri net (Peterson 1981) is a device
that manipulates events according to certain rules.
One of its features is the inclusion of explicit
conditions under which an event can be enabled.
The Petri net modeling framework is the subject
of the article �Modeling, Analysis, and Control
with Petri Nets. Thus, we limit ourselves here to
a brief introduction. First, we define a Petri net
graph, also called the Petri net structure. Then,
we adjoin to this graph an initial state, a set of
marked states, and a transition labeling function,
resulting in the complete Petri net model, its
associated dynamics, and the languages that it
generates and marks.

Petri Net Graph. A Petri net is a directed
bipartite graph with two types of nodes, places
and transitions, and arcs connecting them. Events

are associated with transition nodes. In order
for a transition to occur, several conditions may
have to be satisfied. Information related to these
conditions is contained in place nodes. Some
such places are viewed as the “input” to a tran-
sition; they are associated with the conditions
required for this transition to occur. Other places
are viewed as the output of a transition; they
are associated with conditions that are affected
by the occurrence of this transition. A Petri net
graph is formally defined as a weighted directed
bipartite graph .P; T;A;w/ where P is the finite
set of places (one type of node in the graph), T
is the finite set of transitions (the other type of
node in the graph), A 
 .P � T / [ .T � P/

is the set of arcs with directions from places to
transitions and from transitions to places in the
graph, and w W A ! f1; 2; 3; : : :g is the weight
function on the arcs. Let P D fp1; p2; : : : ; png,
and T D ft1; t2; : : : ; tmg. It is convenient to
use I.tj / to represent the set of input places to
transition tj . Similarly, O.tj / represents the set
of output places from transition tj . Thus, we have
I.tj / D fpi 2 P W .pi ; tj / 2 Ag and O.tj / D
fpi 2 P W .tj ; pi / 2 Ag.

Petri Net Dynamics. Tokens are assigned to
places in a Petri net graph in order to indi-
cate the fact that the condition described by that
place is satisfied. The way in which tokens are
assigned to a Petri net graph defines a mark-
ing. Formally, a marking x of a Petri net graph
.P; T;A;w/ is a function x W P ! N D
f0; 1; 2; : : :g. Marking x defines row vector x D
Œx.p1/; x.p2/; : : : ; x.pn/�, where n is the number
of places in the Petri net. The i th entry of this
vector indicates the (nonnegative integer) number
of tokens in place pi , x.pi / 2 N. In Petri
net graphs, a token is indicated by a dark dot
positioned in the appropriate place. The state of
a Petri net is defined to be its marking vector
x. The state transition mechanism of a Petri net
is captured by the structure of its graph and by
“moving” tokens from one place to another. A
transition tj 2 T in a Petri net is said to be
enabled if

x.pi / � w.pi ; tj / for all pi 2 I.tj / : (8)

http://dx.doi.org/10.1007/978-1-4471-5058-9_53
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In words, transition tj in the Petri net is enabled
when the number of tokens in pi is at least as
large as the weight of the arc connecting pi to
tj , for all places pi that are input to transition
tj . When a transition is enabled, it can occur or
fire. The state transition function of a Petri net is
defined through the change in the state of the Petri
net due to the firing of an enabled transition. The
state transition function, f W Nn � T ! N

n, of
Petri net .P; T;A;w; x/ is defined for transition
tj 2 T if and only if (8) holds. Then, we set
x0 D f .x; tj / where

x0.pi / D x.pi /� w.pi ; tj /C w.tj ; pi /;

i D 1; : : : ; n : (9)

An “enabled transition” is therefore equivalent to
a “feasible event” in an automaton. But whereas
in automata the state transition function enumer-
ates all feasible state transitions, here the state
transition function is based on the structure of
the Petri net. Thus, the next state defined by (9)
explicitly depends on the input and output places
of a transition and on the weights of the arcs con-
necting these places to the transition. According
to (9), if pi is an input place of tj , it loses as many
tokens as the weight of the arc from pi to tj ; if it
is an output place of tj , it gains as many tokens as
the weight of the arc from tj to pi . Clearly, it is
possible that pi is both an input and output place
of tj .

In general, it is entirely possible that, after
several transition firings, the resulting state is
x D Œ0; : : : ; 0� or that the number of tokens in
one or more places grows arbitrarily large after
an arbitrarily large number of transition firings.
The latter phenomenon is a key difference with
automata, where finite-state automata have only a
finite number of states, by definition. In contrast,
a finite Petri net graph may result in a Petri net
with an unbounded number of states. It should
be noted that a finite-state automaton can always
be represented as a Petri net; on the other hand,
not all Petri nets can be represented as finite-state
automata.

Similar to timed automata, we can define
timed Petri nets by introducing a clock structure,
except that now a clock sequence vj is associated

with a transition tj . A positive real number,
vj;k, assigned to tj has the following meaning:
when transition tj is enabled for the kth time,
it does not fire immediately, but incurs a firing
delay given by vj;k ; during this delay, tokens are
kept in the input places of tj . Not all transitions
are required to have firing delays. Thus, we
partition T into subsets T0 and TD, such that
T D T0 [ TD . T0 is the set of transitions always
incurring zero firing delay, and TD is the set
of transitions that generally incur some firing
delay. The latter are called timed transitions. The
clock structure (or timing structure) associated
with a set of timed transitions TD 
 T of a
marked Petri net .P; T;A;w; x/ is a set V D
fvj W tj 2 TDg of clock (or lifetime) sequences
vj D fvj;1; vj;2; : : :g, tj 2 TD , vj;k 2 R

C;
k D 1; 2; : : : A timed Petri net is a six-tuple
.P; T;A;w; x;V/, where .P; T;A;w; x/ is a
marked Petri net and V D fvj W tj 2 TDg is
a clock structure. It is worth mentioning that
this general structure allows for a variety of
behaviors in a timed Petri net, including the
possibility of multiple transitions being enabled
at the same time or an enabled transition being
preempted by the firing of another, depending
on the values of the associated firing delays.
The need to analyze and control such behavior
in DES has motivated the development of a
considerable body of analysis techniques for
Petri net models which have been proven to be
particularly suitable for this purpose (Moody and
Antsaklis 1998; Peterson 1981).

Dioid Algebras

Another modeling framework is based on devel-
oping an algebra using two operations: minfa; bg
(or maxfa; bg) for any real numbers a and b and
addition .a C b/. The motivation comes from
the observation that the operations “min” and
“C” are the only ones required to develop the
timed automaton model. Similarly, the operations
“max” and “C” are the only ones used in de-
veloping the timed Petri net models described
above. The operations are formally named addi-
tion and multiplication and denoted by ˚ and ˝
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respectively. However, their actual meaning (in
terms of regular algebra) is different. For any two
real numbers a and b, we define

Addition W a˚ b � maxfa; bg (10)

Multiplication W a˝ b � a C b: (11)

This dioid algebra is also called a .max;C/
algebra (Baccelli et al. 1992; Cuninghame-Green
1979). If we consider a standard linear discrete
time system, its state equation is of the form

x.k C 1/ D Ax.k/C Bu.k/;

which involves (regular) multiplication (�) and
addition (C). It turns out that we can use a
.max;C/ algebra with DES, replacing the .C;�/
algebra of conventional time-driven systems, and
come up with a representation similar to the one
above, thus paralleling to a considerable extent
the analysis of classical time-driven linear sys-
tems. We should emphasize, however, that this
particular representation is only possible for a
subset of DES. Moreover, while conceptually
this offers an attractive way to capture the event
timing dynamics in a DES, from a computa-
tional standpoint, one still has to confront the
complexity of performing the “max” operation
when numerical information is ultimately needed
to analyze the system or to design controllers for
its proper operation.

Control and Optimization of Discrete
Event Systems

The various control and optimization methodolo-
gies developed to date for DES depend on the
modeling level appropriate for the problem of
interest.

Logical Behavior. Issues such as ordering
events according to some specification or
ensuring the reachability of a particular state are
normally addressed through the use of automata
and Petri nets (Chen and Lafortune 1991; Moody
and Antsaklis 1998; Ramadge and Wonham
1987). Supervisory control theory provides

a systematic framework for formulating and
solving problems of this type; a comprehensive
coverage can be found in Cassandras and
Lafortune (2008). Logical behavior issues are
also encountered in the diagnosis of partially
observed DES, a topic covered in the article
�Diagnosis of Discrete Event Systems.

Event Timing. When timing issues are intro-
duced, timed automata and timed Petri nets are
invoked for modeling purposes. Supervisory con-
trol in this case becomes significantly more com-
plicated. An important class of problems, how-
ever, does not involve the ordering of individual
events, but rather the requirement that selected
events occur within a given “time window” or
with some desired periodic characteristics. Mod-
els based on the algebraic structure of timed Petri
nets or the .max;C/ algebra provide convenient
settings for formulating and solving such prob-
lems (Baccelli et al. 1992; Glasserman and Yao
1994).

Performance Analysis. As in classical control
theory, one can define a performance (or cost)
function as a means for quantifying system
behavior. This approach is particularly crucial
in the study of stochastic DES. Because of
the complexity of DES dynamics, analytical
expressions for such performance metrics in
terms of controllable variables are seldom
available. This has motivated the use of
simulation and, more generally, the study
of DES sample paths; these have proven to
contain a surprising wealth of information for
control purposes. The theory of perturbation
analysis presented in the article � Perturbation
Analysis of Discrete Event Systems has provided
a systematic way of estimating performance
sensitivities with respect to system parameters
(Cassandras and Lafortune 2008; Cassandras and
Panayiotou 1999; Glasserman 1991; Ho and Cao
1991).

Discrete Event Simulation. Because of the
aforementioned complexity of DES dynamics,
simulation becomes an essential part of DES
performance analysis (Law and Kelton 1991).
Discrete event simulation can be defined as a

http://dx.doi.org/10.1007/978-1-4471-5058-9_56
http://dx.doi.org/10.1007/978-1-4471-5058-9_58
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systematic way of generating sample paths of
a DES by means of a timed automaton or its
stochastic counterpart. The same process can be
carried out using a Petri net model or one based
on the dioid algebra setting.

Optimization. Optimization problems can be
formulated in the context of both untimed and
timed models of DES. Moreover, such problems
can be formulated in both a deterministic and a
stochastic setting. In the latter case, the ability
to efficiently estimate performance sensitivities
with respect to controllable system parameters
provides a powerful tool for stochastic gradient-
based optimization (when one can define
derivatives) (Vázquez-Abad et al. 1998).

A treatment of all such problems from an
application-oriented standpoint, along with fur-
ther details on the use of the modeling frame-
works discussed in this entry, can be found in the
article �Applications of Discrete-Event Systems.

Cross-References

�Applications of Discrete-Event Systems
�Diagnosis of Discrete Event Systems
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Mathematical models arising in biology might
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preserving ordering of their solutions with
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respect to initial data: in words, the “more” of
x (the state variable) at time 0, the more of it
at all subsequent times. Similar monotonicity
properties are possibly exhibited also with
respect to input levels. When this is the case,
important features of the system’s dynamics can
be inferred on the basis of purely qualitative
or relatively basic quantitative knowledge of
the system’s characteristics. We will discuss
how monotonicity-related tools can be used
to analyze and design biological systems
with prescribed dynamical behaviors such
as global stability, multistability, or periodic
oscillations.

Keywords

Feedback interconnections; Monotone dynamics;
Monotonicity checks

Introduction

Ordinary differential equations of a scalar
unknown, under suitable assumptions for unicity
of solutions, trivially enjoy the property that any
pair of ordered initial conditions (according to
the standard � order defined for real numbers)
gives rise to ordered solutions at all positive times
(as well as negative, though this is less relevant
for the developments that follow). Monotone
systems are a special but significant class of
dynamical models, possibly evolving in high-
dimensional or even infinite-dimensional state
spaces, that are nevertheless characterized by
a similar property holding with respect to a
suitably defined notion of partial order. They
became the focus of considerable interest in
mathematics after a series of seminal papers
by Hirsch (1985, 1988) provided the basic
definitions as well as deep results showing
how generic convergence properties of their
solutions are expected under suitable technical
assumptions. Shortly before that Smale (1976),
Smale’s construction had already highlighted
how specific solutions could instead exhibit

arbitrary behavior (including periodic or chaotic).
Further results along these lines provide insight
into which set of extra assumptions allow one
to strengthen generic convergence to global
convergence, including, for instance, existence of
positive first integrals (Banaji and Angeli 2010;
Mierczynski 1987), tridiagonal structure (Smillie
1984), or positive translation invariance (Angeli
and Sontag 2008a).

While these tools were initially developed
having in mind applications arising in ecology,
epidemiology, chemistry, or economy, it was due
to the increased importance of mathematical
modeling in molecular biology and the
subsequent rapid development of systems biology
as an emerging independent field of investigation
that they became particularly relevant to biology.
The paper Angeli and Sontag (2003) first
introduced the notion of control monotone
systems, including input and output variables,
that is of interest if one is looking at systems
arising from interconnection of monotone
modules. Small-gain theorems and related
conditions were defined to study both positive
(Angeli and Sontag 2004b) and negative (Angeli
and Sontag 2003) feedback interconnections by
relating their asymptotic behavior to properties
of the discrete iterations of a suitable map,
called the steady-state characteristic of the
system.

In particular, convergence of this map is re-
lated to convergent solutions for the original con-
tinuous time system; on the other hand, specific
negative feedback interconnections can instead
give rise to oscillations as a result of Hopf bi-
furcations as in Angeli and Sontag (2008b) or
to relaxation oscillators as highlighted in Gedeon
and Sontag (2007).

A parallel line of investigation, originated in
the work of Volpert et al. (1994), exploited the
specific features of models arising in biochem-
istry by focusing on structural conditions for
monotonicity of chemical reaction networks (An-
geli et al. 2010; Banaji 2009). Monotonicity is
only one of the possible tools adopted in the
study of dynamics for such class of models in
the related field of chemical reaction networks
theory.
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Mathematical Preliminaries

To illustrate the main tools of monotone dynam-
ics, we consider the following systems defined
on partially ordered input, state, and output
spaces. Namely, along with the sets U;X; Y

(which denote input, state, and output space,
respectively), we consider corresponding partial
orders �X;�U ;�Y . A typical way of defining
a partial order on a set S embedded in some
Euclidean space E , S � E , is to first identify
a cone K of positive vectors which belong to
E . A cone in this context is any closed convex
set which is preserved under multiplication times
nonnegative scalars and such thatK\�K D f0g.
Accordingly we may denote s1 �S s2 whenever
s1 � s2 2 K . A typical choice of K in the case
of finite-dimensional E D R

n is the positive
orthant, (K D Œ0;C1/n), in which case � can be
interpreted as componentwise inequalities. More
general orthants are also very useful in several
applications as well as more exotic cones, smooth
or polyhedral, according to the specific model
considered. When dealing with input signals, we
let U denote the set of locally essentially bounded
and measurable functions of time. In particular,
we inherit a partial order on U from the partial
order on U according to the following definition:

u1.�/ �U u2.�/ , u1.t/ �U u2.t/ 8 t 2 R:

When obvious from the context, we do not
emphasize the space to which variables belong
and simply write �. Strict order notions are also
of interest and especially relevant for some of
the deepest implications of the theory. We let
s1  s2 denote s1 � s2 and s1 ¤ s2. While for
partial orders induced by positivity cones, we let
s1 � s2 denote s1 � s2 2 int.K/.

A dynamical system is for us a continuous
map ' W R � X ! X which fulfills the property,
'.0; x/ D x for all x 2 X and '.t2; '.t1; x// D
'.t1 C t2; x/ for all t1; t2 2 R. Sometimes, when
solutions are not globally defined (for instance, if
the system is defined through a set of nonlinear
differential equations), it is enough to restrict the
definitions that follow to the domain of existence
of solutions.

Definition 1 A monotone system ' is one that
fulfills the following:

8x1; x2 2 X W x1 � x2 '.t; x1/ � '.t; x2/

8 t � 0: (1)

A system ' is strongly monotone when the fol-
lowing holds:

8x1; x2 2 X W x1  x2 '.t; x1/ � '.t; x2/

8 t > 0: (2)

A control system is characterized by two con-
tinuous mappings: ' W R � X � U ! X and the
readout map h W X � U ! Y .

Definition 2 A control system is monotone if

8 u1; u2 2 U W u1 � u2; 8 x1; x22X W x1 � x2;

8 t � 0 '.t; x1; u1/ � '.t; x2; u2/ (3)

and

8 u1; u2 2 U W u1 � u2; 8 x1; x22X W x1 � x2;

h.x1; u1/ � h.x2; u2/: (4)

Notice that for any ordered state and input pairs
x1; x2, u1; u2, the signals y1 and y2 defined
as y1.t/ WD h.'.t; x1; u1/; u1.t//, y2.t/ WD
h.'.t; x2; u2/; u2.t// also fulfill, thanks to the
Definition 2, y1.t/ �Y y2.t/ (for all t � 0).

A system which is monotone with respect to
the positive orthant is called cooperative. If a
system is cooperative after reverting the direction
of time, it is called competitive. Checking if
a mathematical model specified by differential
equations is monotone with respect to the partial
order induced by some cone K is not too diffi-
cult. In particular, monotonicity, in its most basic
formulation (1), simply amounts to a check of
positive invariance of the set � WD f.x1; x2/ 2
X2 W x1 � x2g for a system formed by two copies
of ' in parallel. This can be assessed without
explicit knowledge of solutions, for instance, by
using the notion of tangent cones and Nagumo’s
theorem (Angeli and Sontag 2003). Sufficient
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conditions also exist to assess strong monotonic-
ity, for instance, in the case of orthant cones.
Finding whether there exists an order (as induced,
for instance, by a suitable cone K) which can
make a system monotone is instead a harder task
which normally entails a good deal of insight in
the systems dynamics.

It is worth mentioning that for the special case
of linear systems, monotonicity is just equiva-
lent to invariance of the cone K , as incremental
properties (referred to pairs of solutions) are just
equivalent to their non-incremental counterparts
(referred to the 0 solution). In this respect, a
substantial amount of theory exists starting from
classical works such as the Perron-Frobenius the-
ory on positive and cone-preserving maps; this is,
however, outside the scope of this entry, and the
interested reader may refer to Farina and Rinaldi
(2000) for a recent book on the subject.

MonotoneDynamics

We divide this section in three parts; first we sum-
marize the main tools for checking monotonicity
with respect to orthant cones, then we recall some
of the main consequences of monotonicity for the
long-term behavior of solutions and, finally, we
study interconnections of monotone systems.

Checking Monotonicity
Orthant cones and the partial orders they induce
play a major role in biology applications. In fact,
for systems described by equations

Px D f .x/ (5)

with X � R
n open and f W X ! R

n of class C1,
the following characterization holds:

Proposition 1 The system ' induced by the set
of differential equations (5) is cooperative if and
only if the Jacobian @f

@x
is a Metzler matrix for all

x 2 X .

We recall thatM is Metzler ifmij � 0 for all i ¤
j . Let ƒ D diagŒ1; : : : ; n� with i 2 f�1; 1g
and assume that the orthant O D ƒŒ0;C1/n.
It is straightforward to see that x1 �O x2 ,

ƒx1 � ƒx2, where � denotes the partial order
induced by the positive orthant, while �O de-
notes the order induced by O. This means that
we may check monotonicity with respect to O
by performing a simple change of coordinates
z D ƒx. As a corollary:

Proposition 2 The system ' induced by the set
of differential equations (5) is monotone with
respect to �O if and only if ƒ@f

@x
ƒ is a Metzler

matrix for all x 2 X .

Notice that conditions of Propositions 1 and 2
can be expressed in terms of sign constraints on
off-diagonal entries of the Jacobian; in biological
terms a sign constraint in an off-diagonal entry
amounts to asking that a particular species (mean-
ing chemical compound or otherwise) consis-
tently exhibit throughout the considered model’s
state space either an excitatory or inhibitory effect
on some other species of interest. Qualitative
diagrams showing effects of species on each other
are commonly used by biologists to understand
the working principles of biomolecular networks.

Remarkably, Proposition 2 has also an in-
teresting graph theoretical interpretation if one

thinks of sign

@f

@x

�
as the adjacency matrix of a

graph with nodes x1 : : : xn corresponding to the
state variables of the system.

Proposition 3 The system ' induced by the set
of differential equations (5) is monotone with
respect to �O if and only if the directed graph

of adjacency matrix sign

@f

@x

�
(neglecting diag-

onal entries) has undirected loops with an even
number of negative edges.

This means in particular that @f

@x
must be sign

symmetric (no predator-prey-type interactions)
and in addition that a similar parity property has
to hold on undirected loops of arbitrary length.
Sufficient conditions for strong monotonicity are
also known, for instance, in terms of irreducibil-
ity of the Jacobian matrix (Kamke’s condition;
see Hirsch and Smith 2003).

Asymptotic Dynamics
As previously mentioned, several important im-
plications of monotonicity are with respect to
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asymptotic dynamics. Let E denote the set of
equilibria of '. The following result is due to
Hirsch (1985).

Theorem 1 Let ' be a strongly monotone sys-
tem with bounded solutions. There exists a zero
measure set Q such that each solution starting in
XnQ converges toward E .

Global convergence results can be achieved for
important classes of monotone dynamics. For
instance, when increasing conservation laws are
present (see Banaji and Angeli 2010):

Theorem 2 LetX � K � R
n be any two proper

cones. Let ' on X be strongly monotone with
respect to the partial order induced by K and
preserving a K-increasing first integral. Then
every bounded solution converges.

Dually to first integrals, positive translation in-
variance of the dynamics also provide grounds
for global convergence (see Angeli and Sontag
2008a):

Theorem 3 If a system is strongly monotone and
fulfills '.t; x0Chv/ D '.t; x0/Chv for all h 2 R

and some v � 0, then all solutions with bounded
projections in v? converge.

The class of tridiagonal cooperative systems has
also been investigated as a significant remarkable
class of global convergent dynamics; see Smillie
(1984). These arise from differential equations
Px D f .x/ when @fi=@xj D 0 for all ji � j j > 1.

Finally it is worth emphasizing how signif-
icant for biological systems, often subject to
phenomena evolving at different timescales, are
also results on singular perturbations (Gedeon
and Sontag 2007; Wang and Sontag 2008).

Interconnected Monotone Systems
Results on interconnected monotone SISO sys-
tems are surveyed in Angeli and Sontag (2004a).
The main tool used in this context is the notion of
input-state and input–output steady-state charac-
teristic.

Definition 3 A control system admits a well-
defined input-state characteristic if for all
constant inputs u there exists a unique globally

asymptotically stable equilibrium kx.u/ and
the map kx.u/ is continuous. If moreover the
equilibrium is hyperbolic, then kx is called a
non-degenerate characteristic. The input–output
characteristic is defined as ky.u/ D h.kx.u//.

Let ' be system with a well-defined input–output
characteristic ky ; we may define the iteration

ukC1 D ky.uk/: (6)

It is clear that fixed points of (6) correspond to
input values (and therefore to equilibria through
the characteristic map kx) of the closed-loop
system derived by considering the unity feedback
interconnection u D y. What is remarkable for
monotone systems is that both in the case of
positive and negative feedback and in a precise
sense, stability properties of the fixed points of
the discrete iteration (6) are matched by stability
properties of the corresponding associated solu-
tions of the original continuous time system. See
Angeli and Sontag (2004b) for the case of posi-
tive feedback interconnections and Angeli et al.
(2004) for applications of such results to synthe-
sis and detection of multistability in molecular
biology.

Multistability, in particular, is an important
dynamical feature of specific cellular systems and
can be achieved, with good degree of robustness
with respect to different types of uncertainties, by
means of positive feedback interconnections of
monotone subsystems. The typical input–output
characteristic ky giving rise to such behavior is,
in the SISO case, that of a sigmoidal function
intersecting in 3 points the diagonal u D y. Two
of the fixed points, namely, u1 and u3 (see Fig. 1),
are asymptotically stable for (6), and the cor-
responding equilibria of the original continuous
time monotone system are also asymptotically
stable with a basin of attraction which covers
almost all initial conditions. The fixed-point u2
is unstable and the corresponding equilibrium is
also such (under suitable technical assumption
on the non-degeneracy of the I-O characteristic).
Extensions of similar criteria to the MIMO case
are presented in Enciso and Sontag (2005).
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u2u1 u3 u

ky(u)

Monotone Systems in Biology, Fig. 1 Fixed points of
a sigmoidal input–output characteristic

Negative feedback normally destroys mono-
tonicity. As a result, the likelihood of complex
dynamical behavior is highly increased. Never-
theless, input–output characteristics still can pro-
vide useful insight in the system’s dynamics at
least in the case of low feedback gain or, for
high feedback gains, in the presence of suffi-
ciently large delays. For instance, unity negative
feedback interconnection of a SISO monotone
system may give rise to a unique and globally
asymptotically stable fixed point of (6), thanks
to the decreasingness of the input–output char-
acteristic and as shown in Fig. 2. Under such
circumstances a small-gain result applies and
global asymptotic stability of the corresponding
equilibrium is guaranteed regardless of arbitrary
input delays in the systems. See Angeli and
Sontag (2003) for the simplest small-gain theo-
rem developed in the context of SISO negative
feedback interconnections of monotone systems
and Enciso and Sontag (2006) for generalizations
to systems with multiple inputs as well as delays.
A generalization of small-gain results to the case
of MIMO systems which are neither in a positive
nor negative feedback configuration is presented
in Angeli and Sontag (2011).

u1 u

ky(u)

Monotone Systems in Biology, Fig. 2 Fixed point of a
decreasing input–output characteristic

When the iteration (6) has an unstable fixed
point, for instance, it converges to a period-
2 solution, one may expect insurgence of
oscillations around the equilibrium through a
Hopf bifurcation provided sufficiently large
delays in the input channels are allowed. This
situation is analyzed in Angeli and Sontag
(2008b) and illustrated through the study of the
classical Golbeter’s model for the Drosophila’s
circadian rhythm.

Summary and Future Directions

Verifying that a control system preserves some
ordering of initial conditions provides impor-
tant and far-reaching implications for its dynam-
ics. Insurgence of specific behaviors can often
be inferred on the basis of purely qualitative
knowledge (as in the case of Hirsch’s generic
convergence theorem) as well as additional basic
quantitative knowledge as in the case of positive
and negative feedback interconnections of mono-
tone systems. For the above reasons, applications
in molecular biology of monotone system’s the-
ory are gradually emerging: for instance, in the
study of MAPK cascades or circadian oscilla-
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tions, as well as in Chemical Reaction Networks
Theory. Generally speaking, while monotonicity
as a whole cannot be expected in large networks,
experimental data shows that the number of neg-
ative feedback loops in biological regulatory net-
works is significantly lower than in a random
signed graph of comparable size Maayan et al.
(2008).

Analyzing the properties of monotone dynam-
ics may potentially lead to better understanding
of the key regulatory mechanisms of complex
networks as well as the development of bottom-
up approaches for the identification of meaning-
ful submodules in biological networks. Poten-
tial research directions may include both novel
computational tools and specific applications to
systems biology, for instance:
• Algorithms for detection of monotonicity with

respect to exotic orders (such as arbitrary
polytopic cones or even state-dependent
cones)

• Application of monotonicity-based ideas to
control synthesis (see, for instance, Aswani
and Tomlin (2009) where the special class of
piecewise affine systems is considered)

Cross-References

�Deterministic Description of Biochemical Net-
works

� Spatial Description of Biochemical Networks
� Stochastic Description of Biochemical

Networks

Recommended Reading

For readers interested in the mathematical details
of monotone systems theory we recommend the
following:

Smith H (1995) Monotone dynamical systems:
an introduction to the theory of competitive
and cooperative systems. Mathematical sur-
veys and monographs, vol 41. AMS, Provi-
dence

A more recent technical survey of aspects related
to asymptotic dynamics of monotone systems is

Hirsch MW, Smith H (2005) Monotone
dynamical systems (Chapter 4). In: Canada A,
Drábek P, Fonda A (eds) Handbook of
differential equations ordinary differential
equations, vol 2. Elsevier
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Abstract

The fundamental idea behind symbolic control
is to mitigate the complexity of a dynamic sys-
tem by limiting the set of available controls to
a typically finite collection of symbols. Each
symbol represents a control law that may be
either open or closed loop. With these symbols,
a simpler description of the motion of the system
can be created, thereby easing the challenges
of analysis and control design. In this entry,
we provide a high-level description of symbolic

control; discuss briefly its history, connections,
and applications; and provide a few insights into
where the field is going.
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Introduction

Systems and control theory is powerful paradigm
for analyzing, understanding, and controlling dy-
namic systems. Traditional tools in the field for
developing and analyzing control laws, however,
face significant challenges when one needs to
deal with the complexity that arises in many
practical, real-world settings such as the control
of autonomous, mobile systems operating in un-
certain and changing physical environments. This
is particularly true when the tasks to be achieved
are not easily framed in terms of motion to a point
in the state space. One of the primary goals of
symbolic control is to mitigate this complexity
by abstracting some combination of the system
dynamics, the space of control inputs, and the
physical environment to a simpler, typically fi-
nite, model.

This fundamental idea, namely, that of ab-
stracting away the complexity of the underlying
dynamics and environment, is in fact a quite
natural one. Consider, for example, how you
give instructions to another person wanting to
go to a point of interest. It would be absurd
to provide details at the level of their actua-
tors, namely, with commands to their individual
muscles (or to carry the example to an even
more absurd extreme, to the dynamic components
that make up those muscles). Rather, very high-
level commands are given, such as “follow the
road,” “turn right,” and so on. Each of these
provides a description of what to do with the
understanding that the person can carry out those
commands in their own fashion. Similarly, the en-
vironment itself is abstracted, and only elements
meaningful to the task at hand are described.
Thus, continuing the example above, rather than
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providing metric information or a detailed map,
the instructions may use environmental features
to determine when particular actions should be
terminated and the next begun, such as “follow
the road until the second intersection, then turn
right.”

Underlying the idea of symbolic control is
the notion that rich behaviors can result from
simple actions. This premise was used in many
early robots and can be traced back at least to
the ideas of Norbert Wiener on cybernetics (see
Arkin 1998). It is at the heart of the behavior-
based approach to robotics (Brooks 1986). Sim-
ilar ideas can also be seen in the development
of a high-level language (G-codes) for Computer
Numerically Controlled (CNC) machines. The
key technical ideas in the more general setting
of symbolic control for dynamic systems can be
traced back to Brockett (1988) which introduced
ideas of formalizing a modular approach to pro-
gramming motion control devices through the
development of a Motion Description Language
(MDL).

The goal of the present work is to introduce the
interested reader to the general ideas of symbolic
control as well as to some of its application
areas and research directions. While it is not a
survey paper, a few select references are provided
throughout to point the reader in hopefully fruit-
ful directions into the literature.

Models and Approaches

There are at least two related but distinct ap-
proaches to symbolic control. Both begin with a
mathematical description of the system, typically
given as an ordinary differential equation of the
form

Px D f .x; u; t/; y D h.x; t/ (1)

where x is a vector describing the state of the
system, y is the output of the sensors of the
system, and u is the control input.

Under the first approach to symbolic control,
the focus is on reducing the complexity of the

space of possible control signals by limiting the
system to a typically finite collection of control
symbols. Each of these symbols represents a
control law that may be open loop or may utilize
output feedback. For example, follow the road
could be a feedback control law that uses sensor
measurements to determine the position relative
to the road and then applies steering commands
so that the system stays on the road while simul-
taneously maintaining a constant speed. There
are, of course, many ways to accomplish the
specifics of this task, and the details will depend
on the particular system. Thus, an autonomous
four-wheeled vehicle equipped with a laser range
finder, an autonomous motorcycle equipped with
ultrasonic sensors, or an autonomous aerial vehi-
cle with a camera would each carry out the com-
mand in their own way, and each would have very
different trajectories. They would all, however,
satisfy the notion of follow the road. Description
of the behavior of the system can then be given in
terms of the abstract symbols rather than in terms
of the details of the trajectories.

Typically each of these symbols describes an
action that at least conceptually is simple. In
order to generate rich motions to carry out com-
plex tasks, the system is switched between the
available symbols. Switching conditions are of-
ten referred to as interrupts. Interrupts may be
purely time-based (e.g., apply a given symbol
for T seconds) or may be expressed in terms
of symbols representing certain environmental
conditions. These may be simple function of
the measurements (e.g., interrupt when an in-
tersection is detected) or may represent more
complicated scenarios with history and dynamics
(e.g., interrupt after the second intersection is
detected). Just as the input symbols abstract away
the details of the control space and of the mo-
tion of the system, the interrupt symbols abstract
away the details of the environment. For example,
intersection has a clear high-level meaning but
a very different sensor “signature” for particular
systems.

As a simple illustrative example, consider a
collection of control symbols designed for mov-
ing along a system of roads, {follow road, turn
right, turn left}, and a collection of interrupt
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Motion Description Languages and Symbolic Con-
trol, Fig. 1 Simple example of symbolic control with a
focus on abstracting the inputs. Two systems, a snakelike
robot and an autonomous car, are given a high-level plan
in terms of symbols for navigating a right-hand turn.

The systems each interpret the same symbols in their
own ways, leading to different trajectories due both to
differences in dynamics and also to different sensors cues
as caused, for example, by the parked vehicle encountered
by the car in this scenario

symbols for triggering changes in such a setting,
{in intersection, clear of intersection}. Suppose
there are two vehicles that can each interpret
these symbols, an autonomous car and a snake-
like robot, as illustrated in Fig. 1. It is reasonable
to assume that the control symbols each describe
relatively complex dynamics that allow, for ex-
ample, for obstacle avoidance while carrying out
the action. Figure 1 illustrates a possible situation
where the two systems carry out the plan defined
by the symbolic sequence:

(Follow the road UNTIL in intersection)
(Turn right UNTIL clear of intersection)

The intent of this plan is for the system to nav-
igate a right-hand turn. As shown in the figure,
the actual trajectories followed by the systems
can be markedly different due in part to sys-
tem dynamics (the snakelike robot undulates,
while the car does not) as well as to different
sensor responses (when the car goes through,
there is a parked vehicle that it must navigate
around, while the snakelike robot found a clear
path during its execution). Despite these dif-
ferences, both systems achieve the goal of the
plan.

The collection of control and interrupt
symbols can be thought of as a language for
describing and specifying motion and are used

to write programs that can be compiled into
an executable for a specific system. Different
rules for doing this can be established that
define different languages, analogous to different
high-level programming languages such as
C++, Java, or Python. Further details can
be found in, for example, Manikonda et al.
(1998).

Under the second approach, the focus is on
representing the dynamics and state space (or
environment) of the system in an abstract, sym-
bolic way. The fundamental idea is to lump all
the states in a region into a single abstract el-
ement and to then represent the entire system
with a finite number of these elements. Control
laws are then defined that steer all the states
in one element into some state in a different
region. The symbolic control system is then the
finite set of elements representing regions to-
gether with the finite set of controllers for moving
between them. It can be thought of essentially
as a graph (or more accurately as a transition
system) in which the nodes represent regions in
the state space and the edges represent achiev-
able transitions between them. The goal of this
abstraction step is for the two representations to
be equivalent (or at least approximately equiv-
alent) in that any motion that can be achieved
in one can be achieved in the other (in an ap-
propriate sense). Planning and analysis can then
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Motion Description Languages and Symbolic Con-
trol, Fig. 2 Simple example of symbolic control with a
focus on abstracting the system dynamics and environ-
ment. The initial environment (left image) is segmented
into different regions and simple controllers developed
for moving from region to region. The image shows two
possible controllers: one that actuates the robot through
a tight slither pattern to move forward by one region and

one that twists the robot to face the cell to the left before
slithering across and then reorienting. The combination of
regions and actions yields a symbolic abstraction (center
image) that allows for planning to achieve specific goals,
such as moving through the right-hand turn. Executing
this plan leads to a physical trajectory of the system (right
image)

be done on the (simpler) symbolic model. Fur-
ther details on such schemes can be found in,
for example, Tabuada (2006) and Bicchi et al.
(2006).

As an illustrative example, consider as before
a snakelike robot moving through a right-hand
turn. In a simplified view of this second approach
to symbolic control, one begins by dividing the
environment up into regions and then defining
controllers to steer the robot from region to region
as illustrated in the left image in Fig. 2. This
yields the symbolic model shown in the center
of Fig. 2. A plan is then developed on this model
to move from the initial position to the final
position. This planning step can take into account
restrictions on the motion and subgoals of the
task. Here, for example, one may want the robot
to stay to the right of the double yellow line that is
in its lane of traffic. The planR2 ! R4 ! R6 !
R8 ! R9 ! R10 is one sequence that drives
the system around the turn while satisfying the
lane requirement. Each transition in the sequence
corresponds to a control law. The plan is then
executed by applying the sequence of control
laws, resulting in the actual trajectory shown in
the right image in Fig. 2.

Applications and Connections

The fundamental idea behind symbolic control,
namely, mitigating complexity by abstracting a
system, its environment, and even the tasks to be
accomplished into a simpler but (approximately)
equivalent model, is a natural and a powerful one.
It has clear connections to both hybrid systems
(Brockett 1993; Egerstedt 2002) and to quantized
control (Bicchi et al. 2006), and the tools from
those fields are often useful in describing and
analyzing systems with symbolic representations
of the control and of the dynamics. Symbolic
control is not, however, strictly a subcategory of
either field, and it provides a unique set of tools
for the control and analysis of dynamic systems.

Brockett’s original MDL was intended to
serve as a tool for describing and planning
robot motion. Inspired in part by this, languages
for motion continue to be developed. Some
of these extend and provide a more formal
basis for motion programming (Manikonda
et al. 1998) and interconnection of dynamic
systems into a single whole (Murray et al.
1992), while some are designed for specialized
dynamics or applications such as flight vehicles
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(Frazzoli et al. 2005), self-assembly (Klavins
2007), and other areas. In addition to studying
standard systems and control theoretic ideas,
including notions of reachability (Bicchi et al.
2002) and stability (Tarraf et al. 2008), the
framework of symbolic control introduces
interesting questions such as how to understand
the reduction of complexity that can be achieved
for a given collection of symbols (Egerstedt and
Brockett 2003).

While there are many application areas of
symbolic control, the one that is perhaps most
active is that of motion planning for autonomous
mobile robots (Belta et al. 2007). As illustrated
in Figs. 1 and 2, symbolic control allows the
planning problem (i.e., the determination of how
to achieve a desired task) to be separated from
the complexities of the dynamics. The approach
has been particularly fertile when coupled with
symbolic descriptions of the tasks to be achieved.
While point-to-point commands are useful, and
can be often thought of as symbols themselves
from which to build more complicated com-
mands, most tasks that one would want mobile
robots to carry out involve combinations of spa-
tial goals (move to a certain location), sequencing
(first do this and then do that) or other tempo-
ral requirements (repeatedly visit a collection of
regions), as well as safety or other restrictions
(avoid obstacles or regions that are dangerous
for the robot to traverse). Such tasks can be
described using a variety of temporal logics.
These are, essentially, logic systems that include
rules related to time in addition to the standard
Boolean operators. These tasks can be combined
with a symbolic description of a system and then
automated tools used both to check whether the
system is able to perform the desired task and
to design plans that ensure the system will do
so (Fainekos et al. 2009). To ensure that results
on the abstract, symbolic system are valid on
the original dynamic system, methods exist for
guaranteeing the equivalence of the two mod-
els, in an appropriate sense (Girard and Pappas
2007).

Summary and Future Directions

Symbolic control proceeds from the basic goal
of mitigating the complexity of dynamic systems,
especially in real-world scenarios, to yield a sim-
plification of the problems of analysis and control
design. It builds upon results from diverse fields
while also contributing new ideas to those areas,
including hybrid system theory, formal languages
and grammars, and motion planning. There are
many open, interesting questions that are the
subject of ongoing investigations as well as the
genesis of future research.

One particularly fruitful direction is that of
combining symbolic control with stochasticity.
Systems that operate in the real world are subject
to noise with respect both to their inputs (noisy
actuators) and to their outputs (noisy sensors).
Recent work along these lines can be found in the
formal methods approach to motion planning and
in hybrid systems (Abate et al. 2011; Lahijanian
et al. 2012). The fundamental idea is to use
a Markov chain, Markov decision process, or
similar model as the symbolic abstraction and
then, as in all symbolic control, to do the analysis
and planning on this simpler model.

Another interesting direction is to address
questions of optimality with respect to the
symbols and abstractions for a given dynamic
system. Of course, the notion of “optimal” must
be made clear, and there are several reasonable
notions one could define. There is a clear
trade-off between the complexity of individual
symbols, the number of symbols used in the
motion “alphabet,” and the complexity in terms
of, say, average number of symbols required to
code programs that achieve a given set of tasks.
The complexity of a necessary alphabet is also
related to the variety of tasks the system might
need to perform. An autonomous vacuuming
robot is likely to need far fewer symbols in its
library than an autonomous vehicle that must
operate in everyday traffic conditions and respond
to unusual events such as traffic jams. The
question of the “right” set of symbols can also
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be of use in efficient descriptions of motion in
domains such as dance (Baillieul and Ozcimder
2012).

It is intuitively clear that to handle complex
scenarios and environments, a hierarchical ap-
proach is likely needed. Organizing symbols into
progressively higher levels of abstraction should
allow for more efficient reasoning, planning, and
reaction to real-world settings. Such structures
already appear in existing works, such as in
the behavior-based approach of Brooks (1986),
in the extended Motion Description Language
in Manikonda et al. (1998), and in the Spatial
Semantic Hierarchy of Kuipers (2000). Despite
these efforts, there is still a need for a rigorous
approach for analyzing and designing symbolic
hierarchical systems.

The final direction discussed here is that of the
connection of symbolic control to emergent be-
havior in large groups of dynamic agents. There
are a variety of intriguing examples in nature in
which large numbers of agents following sim-
ple rules produce large-scale, coherent behavior,
including in fish schools and termite and ant
colonies (Johnson 2002). How can one predict
the global behavior that will emerge from a large
collection of independent agents following sim-
ple rules (symbols)? How can one design a set of
symbols to produce a desired collective behavior?
While there has been some work in symbolic con-
trol for self-assembling systems (Klavins 2007),
this general topic remains a rich area for research.

Cross-References

�Multi-vehicle Routing
�Robot Motion Control
�Walking Robots
�Wheeled Robots

Recommended Reading

Brockett’s original paper Brockett (1988) is a sur-
prisingly short but informational read. More thor-

ough descriptions can be found in Manikonda
et al. (1998) and Egerstedt (2002). An excellent
description of symbolic control in robotics, par-
ticularly in the context of temporal logics and
formal methods, can be found in Belta et al.
(2007). There are also several related articles in
a 2011 special issue of the IEEE Robotics and
Automation magazine (Kress-Gazit 2011).

Bibliography

Abate A, D’Innocenzo A, Di Benedetto MD (2011) Ap-
proximate abstractions of stochastic hybrid systems.
IEEE Trans Autom Control 56(11):2688–2694

Arkin RC (1998) Behavior-based robotics. MIT, Cam-
bridge

Baillieul J, Ozcimder K (2012) The control theory of
motion-based communication: problems in teaching
robots to dance. In: American control conference,
Montreal, pp 4319–4326

Belta C, Bicchi A, Egerstedt M, Frazzoli E, Klavins E,
Pappas GJ (2007) Symbolic planning and control of
robot motion [Grand Challenges of Robotics]. IEEE
Robot Autom Mag 14(1):61–70

Bicchi A, Marigo A, Piccoli B (2002) On the reachabil-
ity of quantized control systems. IEEE Trans Autom
Control 47(4):546–563

Bicchi A, Marigo A, Piccoli B (2006) Feedback encoding
for efficient symbolic control of dynamical systems.
IEEE Trans Autom Control 51(6):987–1002

Brockett RW (1988) On the computer control of move-
ment. In: IEEE International conference on robotics
and automation, Philadelphia, pp 534–540

Brockett RW (1993) Hybrid models for motion control
systems. In: Trentelman HL, Willems JC (eds) Essays
on control. Birkhauser, Boston, pp 29–53

Brooks R (1986) A robust layered control system for
a mobile robot. IEEE J Robot Autom RA-2(1):14–
23

Egerstedt M (2002) Motion description languages for
multi-modal control in robotics. In: Bicchi A,
Cristensen H, Prattichizzo D (eds) Control problems
in robotics. Springer, pp 75–89

Egerstedt M, Brockett RW (2003) Feedback can reduce
the specification complexity of motor programs. IEEE
Trans Autom Control 48(2):213–223

Fainekos GE, Girard A, Kress-Gazit H, Pappas GJ (2009)
Temporal logic motion planning for dynamic robots.
Automatica 45(2):343–352

Frazzoli E, Dahleh MA, Feron E (2005) Maneuver-based
motion planning for nonlinear systems with symme-
tries. IEEE Trans Robot 21(6):1077–1091

http://dx.doi.org/10.1007/978-1-4471-5058-9_218
http://dx.doi.org/10.1007/978-1-4471-5058-9_168
http://dx.doi.org/10.1007/978-1-4471-5058-9_179
http://dx.doi.org/10.1007/978-1-4471-5058-9_178


782 Motion Planning for Marine Control Systems

Girard A, Pappas GJ (2007) Approximation metrics for
discrete and continuous systems. IEEE Trans Autom
Control 52(5):782–798

Johnson S (2002) Emergence: the connected lives of ants,
brains, cities, and software. Scribner, New York

Klavins E (2007) Programmable self-assembly. IEEE
Control Syst 27(4):43–56

Kress-Gazit H (2011) Robot challenges: toward develop-
ment of verification and synthesis techniques [from the
Guest Editors]. IEEE Robot Autom Mag 18(3):22–23

Kuipers B (2000) The spatial semantic hierarchy. Artif
Intell 119(1–2):191–233

Lahijanian M, Andersson SB, Belta C (2012) Temporal
logic motion planning and control with probabilistic
satisfaction guarantees. IEEE Trans Robot 28(2):396–
409

Manikonda V, Krishnaprasad PS, Hendler J (1998) Lan-
guages, behaviors, hybrid architectures, and motion
control. In: Baillieul J, Willems JC (eds) Mathematical
control theory. Springer, New York, pp 199–226

Murray RM, Deno DC, Pister KSJ, Sastry SS (1992)
Control primitives for robot systems. IEEE Trans Syst
Man Cybern 22(1):183–193

Tabuada P (2006) Symbolic control of linear systems
based on symbolic subsystems. IEEE Trans Autom
Control 51(6):1003–1013

Tarraf DC, Megretski A, Dahleh MA (2008) A framework
for robust stability of systems over finite alphabets.
IEEE Trans Autom Control 53(5):1133–1146

Motion Planning for Marine Control
Systems

Andrea Caiti
DII – Department of Information Engineering &
Centro “E. Piaggio”, ISME – Interuniversity
Research Centre on Integrated Systems for the
Marine Environment, University of Pisa, Pisa,
Italy

Abstract

In this chapter we review motion planning al-
gorithms for ships, rigs, and autonomous marine
vehicles. Motion planning includes path and tra-
jectory generation, and it goes from optimized
route planning (off-line long-range path genera-
tion through operating research methods) to re-
active on-line trajectory reference generation, as
given by the guidance system. Crucial to the ma-
rine systems case is the presence of environmen-

tal external forces (sea state, currents, winds) that
drive the optimized motion generation process.

Keywords

Configuration space; Dynamic programming;
Grid search; Guidance controller; Guidance sys-
tem; Maneuvering; Motion plan; Optimization
algorithms; Path generation; Route planning;
Trajectory generation; World space

Introduction

Marine control systems include primarily ships
and rigs moving on the sea surface, but also
underwater systems, manned (submarines) or un-
manned, and eventually can be extended to any
kind of off-shore moving platform.

A motion plan consists in determining what
motions are appropriate for the marine system to
reach a goal, or a target/final state (LaValle 2006).
Most often, the final state corresponds to a geo-
graphical location or destination, to be reached by
the system while respecting constraints of phys-
ical and/or economical nature. Motion planning
in marine systems hence starts from route plan-
ning, and then it covers desired path generation
and trajectory generation. Path generation in-
volves the determination of an ordered sequence
of states that the system has to follow; trajectory
generation requires that the states in a path are
reached at a prescribed time.

Route, path, and trajectory can be generated
off-line or on-line, exploiting the feedback from
the system navigation and/or from external
sources (weather forecast, etc.). In the feedback
case, planning overlaps with the guidance system,
i.e., the continuous computation of the reference
(desired) state to be used as reference input by
the motion control system (Fossen 2011).

Formal Definitions and Settings

Definitions and classifications as in Goerzen et al.
(2010) and Petres et al. (2007) are followed
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throughout the section. The marine systems under
considerations live in a physical space referred
to as the world space (e.g., a submarine lives in
a 3-D Euclidean space). A configuration q is a
vector of variables that define position and orien-
tation of the system in the world space. The set
of all possible configurations is the configuration
space, or C -space. The vector of configuration
and configuration rate of changes is the state

of the system x D �
qT q̇T

�T
, and the set of

all the possible states is the state space. The
kino-dynamic model associated to the system is
represented by the system state equations. The
regions of C -space free from obstacles are called
C -free.

The path planning problem consists in deter-
mining a curve � W Œ0; 1� ! C -free; s ! �.s/,
with � (0) corresponding to the initial configu-
ration and � (1) corresponding to the goal con-
figuration. Both initial and goal configurations
are in C -free. The trajectory planning problem
consists in determining a curve � and a time
law: t ! s .t/ s:t: � .s/ D �.s .t//. In both
cases, either the path or the trajectory must be
compatible with the system state equations. In
the following, definitions of motion algorithm
properties are given referring to path planning,
but the same definitions can be easily extended
to trajectory planning.

A motion planning algorithm is complete if
it finds a path when one exists, and returns a
proper flag when no path exists. The algorithm is
optimal when it provides the path that minimizes
some cost function J . The (strictly positive) cost
function J is isotropic, when it depends only
on the system configuration (J D J (q)), or
anisotropic, when it depends also on an external
force field f (e.g., sea currents, sea state, weather
perturbations ) (J D J (q,f)). The cost function
J induces a pseudometric in the configuration
space; the distance d between configurations q1
and q2 through the path � is the “cost-to-go” from
q1 to q2 along � :

d .q1; q2/ D s 1
0 J.�q1q2 .s/ ; f/ds (1)

An optimal motion planning problem is:

– Static if there is perfect knowledge of the
environment at any time, dynamic otherwise

– Time-invariant when the environment does
not evolve (e.g., coastline that limits the C -
free subspace), time-variant otherwise (e.g.,
other systems – ships, rigs – in navigation)

– Differentially constrained if the system state
equations act as a constraint on the path,
differentially unconstrained otherwise
In practice, optimal motion planning problems

are solved numerically through discretization of
the C -space. Resolution completeness/optimality
of an algorithm implies the achievement of the
solution as the discretization interval tends to
zero. Probabilistic completeness/optimality im-
plies that the probability of finding the solution
tends to 1 as the computation time approaches
infinity. Complexity of the algorithm refers to the
computational time required to find a solution as
a function of the dimension of the problem.

The scale of the motion w.r. to the scale of the
system defines the specific setting of the problem.
In cargo ships route planning from one port call
to the next, the problem is stated first as static,
time-invariant, differentially unconstrained path
planning problem; once a large-scale route is thus
determined, it can be refined on smaller scales,
e.g., smoothing it, to make it compatible with ship
maneuverability. Maneuvering the same cargo
ship in the approaches to a harbor has to be
casted as a dynamic, time-variant, differentially
constrained trajectory planning problem.

Large-Scale, Long-Range Path
Planning

Route determination is a typical long-range path
planning problem for a marine system. The
geographical map is discretized into a grid, and
the optimal path between the approaches of the
starting and destination ports is determined as a
sequence of adjacent grid nodes. The problem
is taken as time-invariant and differentially
unconstrained, at least in the first stages of
the procedure. It is assumed that the ship will
cruise at its own (constant) most economical
speed to optimize bunker consumption, the major
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source of operating costs (Wang and Meng
2012). Navigation constraints (e.g., allowed ship
traffic corridors for the given ship class) are
considered, as well as weather forecasts and
predicted/prevailing currents and winds. The
cost-to-go Eq. (1) is built between adjacent nodes
either in terms of time to travel or in terms of
operating costs, both computed correcting the
nominal speed with the environmental forces.
Optimality is defined in terms of shortest
time/minimum operating cost; the anisotropy
introduced by sea/weather conditions is the
driving element of the optimization, making
the difference with respect to straightforward
shortest route computation. The approach is
iterated, starting with a coarse grid and then
increasing grid resolution in the neighborhood of
the previously found path.

The most widely used optimization approach
for surface ships is dynamic programming
(LaValle 2006); alternatively, since the deter-
mination of the optimal path along the grid nodes
is equivalent to a search over a graph, the A*
algorithm is applied (Delling et al. 2009). As the
discretization grid gets finer, system dynamics are
introduced, accounting for ship maneuverability
and allowing for deviation from the constant
ship speed assumption. Dynamic programming
allows to include system dynamics at any level
of resolution desired; however, when system
dynamics are considered, the problem dimension
grows from 2-D to 3-D (2-D space plus time).

In the case of underwater navigation, path
planning takes place in a 3-D world space, and
the inclusion of system dynamics makes it a
4-D problem; moreover, bathymetry has to be
included as an additional constraint to shape
the C -free subspace. Dynamic programming
may become unfeasible, due to the increase
in dimensionality. Computationally feasible
algorithms for this case include global search
strategies with probabilistic optimality, as genetic
algorithms (Alvarez et al. 2004), or improved
grid-search methods with resolution optimality,
as FM* (Petres et al. 2007).

Environmental force fields are intrinsically dy-
namic fields; moreover, the prediction of such
fields at the moment of route planning may be

updated as the ship is in transit along the route.
The path planning algorithms can/must be rerun,
over a grid in the neighborhood of the nominal
path, each time new environmental information
becomes available. Kino-dynamic model of the
ship must be included, allowing for deviation
from the established path and ship speed varia-
tion around the nominal most economical speed.
The latter case is particularly important: increas-
ing/decreasing the speed to avoid a weather per-
turbation keeping the same route may indeed
result in a reduced operating cost with respect
to path modifications keeping a constant speed.
This implies that the timing over the path must be
specified. Dynamic programming is well suited
for this transition from path to trajectory gen-
eration, and it is still the most commonly used
approach to trajectory (re)planning in reaction to
environmental predictions update.

When discretizing the world space, the min-
imum grid size should still be large enough to
allow for ship maneuvering between grid nodes.
This is required for safety, to allow evasive ma-
neuvering when other ships are at close ranges,
and for the generation of smooth, dynamics-
compliant trajectories between grid points. This
latter aspect bridges motion planning with guid-
ance.

Trajectory Planning, Maneuvering
Generation, and Guidance Systems

Once a path has been established over a spatial
grid, a continuous reference has to be generated,
linking the nodes over the grid. The generation
of the reference trajectory has to take into ac-
count all the relevant dynamic properties and
constraints of the marine system, so that the
reference motion is feasible. In this scenario, the
path/trajectory nodes are way-points, and the tra-
jectory generation connects the way-points along
the route. The approaches to trajectory generation
can be divided between those that do not compute
explicitly in advance the whole trajectory and
those that do.

Among the approaches that do not need ex-
plicit trajectory computation between way-points,
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Motion Planning for Marine Control Systems, Fig. 1 Generation of a reference trajectory with a system model and
a guidance controller (Adapted from Fossen (2011))

the most common is the line-of -sight (LOS)
guidance law (Pettersen and Lefeber 2001). LOS
guidance can be considered a path generation,
more than a trajectory generation, since it does
not impose a time law over the path; it computes
directly the desired ship reference heading
on the basis of the current ship position and
the previous and next way-point positions. A
review of other guidance approaches can be
found in Breivik and Fossen (2008), where
maneuvering along the path and steering around
the way-points are also discussed. From such a
set of different maneuvers, a library of motion
primitives can be built (Greytak and Hover
2010), so that any motion can be specified as
a sequence of primitives. While each primitive
is feasible by construction, an arbitrary sequence
of primitives may not be feasible. An optimized
search algorithm (dynamic programming, A*) is
again needed to determine the optimal feasible
maneuvering sequence.

Path/trajectory planning explicitly computing
the desired motion among two way-points may
include a system dynamic model, or may not.
In the latter case, a sufficiently smooth curve
that connects two way-points is generated, for
instance, as splines or as Dubins paths (LaValle
2006). Curve generation parameters must be set
so that the “sufficiently smooth” part is guaran-
teed. After curve generation, a trim velocity is
imposed over the path (path planning), or a time
law is imposed, e.g., smoothly varying the system
reference velocity with the local curvature radius.

Planners that do use a system dynamic model
are described in Fossen (2011) as part of the
guidance system. In practice, the dynamic model

is used in simulation, with a (simulated) feed-
back controller (guidance controller), the next
way-point as input, and the (simulated) system
position and velocity as output. The simulated
results are feasible maneuvers by construction
and can be given as reference position/velocity to
the physical control system (Fig. 1).

Summary and Future Directions

Motion planning for marine control systems em-
ploys methodological tools that range from oper-
ating research to guidance, navigation, and con-
trol systems. A crucial role in marine applica-
tions is played by the anisotropy induced by the
dynamically changing environmental conditions
(weather, sea state, winds, currents – the external
force fields). The quality of the plan will depend
on the quality of environmental information and
predictions.

While motion planning can be considered a
mature issue for ships, rigs, and even standalone
autonomous vehicles, current and future research
directions will likely focus on the following
items:
– Coordinated motion planning and obstacle

avoidance for teams of autonomous surface
and underwater vehicles (Aguiar and Pascoal
2012; Casalino et al. 2009)

– Naval traffic regulation compliant maneuver-
ing in restricted spaces and collision evasion
maneuvering (Tam and Bucknall 2010)

– Underwater intervention robotics (Antonelli
2006; Sanz et al. 2010)
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Cross-References

�Control of Networks of Underwater Vehicles
�Mathematical Models of Marine Vehicle-Ma-
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Vehicles
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Recommended Reading

Motion planning is extensively treated in LaValle
(2006), while the essential reference on marine
control systems is the book by Fossen (2011).
Goerzen et al. (2010) reviews motion planning
algorithms in terms of computational properties.
The book Antonelli (2006) includes the treatment
of planning and control in intervention robots.
The papers Breivik and Fossen (2008) and Tam
et al. (2009) provide a survey of both termi-
nology and guidance design for both open and
close space maneuvering. In particular, Tam et al.
(2009) links motion planning to navigation rules.
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Abstract

Motion planning refers to the design of an open-
loop or feedforward control to realize prescribed
desired paths for the system states or outputs. For
distributed-parameter systems described by par-
tial differential equations (PDEs), this requires to
take into account the spatial-temporal system dy-
namics. Here, flatness-based techniques provide
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a systematic inversion-based motion planning ap-
proach, which is based on the parametrization of
any system variable by means of a flat or basic
output. With this, the motion planning problem
can be solved rather intuitively as is illustrated for
linear and semilinear PDEs.

Keywords

Basic output; Flatness; Formal integration; For-
mal power series; Trajectory assignment; Trajec-
tory planning; Transition path

Introduction

Motion planning or trajectory planning refers to
the design of an open-loop control to realize
prescribed desired temporal or spatial-temporal
paths for the system states or outputs. Examples
include smart structures with embedded actua-
tors and sensors such as adaptive optics in tele-
scopes, adaptive wings or smart skins, thermal
and reheating processes in steel industry, and
deep drawing, start-up, shutdown, or transitions
between operating points in chemical engineer-
ing, as well as multi-agent deployment and for-
mation control (see, e.g., the overview in Meurer
2013).

For the solution of the motion planning and
tracking control problem for finite-dimensional
linear and nonlinear systems, differential flat-
ness as introduced in Fliess et al. (1995) has
evolved into a well-established inversion-based
technique. Differential flatness implies that any
system variable can be parametrized in terms of
a flat or a so-called basic output and its time
derivatives up to a problem-dependent order. As
a result, the assignment of a suitable desired
trajectory for the flat output directly yields the
respective state and input trajectories to realize
the prescribed motion. Flatness can be adapted to
systems governed by partial differential equations
(PDEs). For this, different techniques have been
developed utilizing operational calculus or spec-
tral theory for linear PDEs, (formal) power series
for linear PDEs, and PDEs involving polynomial

nonlinearities as well as formal integration for
semilinear PDEs using a generalized Cauchy-
Kowalevski approach. To illustrate the principle
ideas and the evolving research results starting
with Fliess et al. (1997), subsequently different
techniques are introduced based on selected ex-
ample problems. For this, the exposition is pri-
marily restricted to parabolic PDEs with a brief
discussion of motion planning for hyperbolic
PDEs before concluding with possible future re-
search directions.

Linear PDEs

In the following, a scalar linear diffusion-reaction
equation is considered in the state variable x.z; t/
with boundary control u.t/ governed by

@tx.z; t/ D @2zx.z; t/C rx.z; t/ (1a)

@zx.0; t/ D 0; x.1; t/ D u.t/ (1b)

x.z; 0/ D 0: (1c)

This PDE describes a wide variety of thermal and
fluid systems including heat conduction and tubu-
lar reactors. Herein, r 2 R refer to the reaction
coefficient and the initial state is without loss of
generality assumed zero. In order to solve the
motion planning problem for (1), a feedforward
control t 7! u�.t/ is determined to realize a
finite-time transition between the initial state and
a final stationary state x�

T .z/ to be imposed for
t � T .

Formal Power Series
By making use of the formal power series expan-
sion of the state variable

x.z; t/ ! Ox.z; t/ D
1X

nD0
Oxn.t/ zn

nŠ
(2)

the evaluation of (1) results in the 2nd-order
recursion

Oxn.t/ D @t Oxn�2.t/ � rxn�2.t/; n � 2 (3a)

Ox1.t/ D 0: (3b)



788 Motion Planning for PDEs

In order to be able to solve (3) for Oxn.t/, it
is hence required to impose Ox0.t/ D Ox.0; t/.
Denoting y.t/ D x.0; t/ or respectively

Ox0.t/ D y.t/ (3c)

implies

Ox2n.t/ D .@t � r/n ı y.t/; Ox2nC1.t/ D 0: (4)

Hence, any series coefficient in (2) can be differ-
entially parametrized by means of y.t/. Taking
into account the inhomogeneous boundary con-
dition in (1b), i.e.,

u.t/ D x.1; t/ D
1X

nD0

xn.t/

nŠ
D

1X

nD0

x2n.t/

.2n/Š
(5)

yields that y.t/ D x.0; t/ can be considered as a
flat or basic output. In particular, by prescribing
a suitable trajectory t 7! y�.t/ 2 C1.R/ for
y.t/, the evaluation of (5) yields the feedforward
control u�.t/ which is required to realize the
spatial-temporal path x�.z; t/ obtained from the
substitution of y�.t/ into (2) with coefficients
parametrized by (4). This, however, relies on the
uniform convergence of (2) in view of (4) with at
least a unit radius of convergence in z. For this,
the notion of a Gevrey class function is needed
(Rodino 1993).

Definition 1 (Gevrey class) The function y.t/
is in GD;˛.�/, the Gevrey class of order ˛ in
� 
 R, if y.t/ 2 C1.�/ and for every closed
subset �0 of � there exists a D > 0 such that
supt2�0 j@nt y.t/j � DnC1.nŠ/˛ .

The set GD;˛.�/ forms a linear vector space and
a ring with respect to the arithmetic product of
functions which is closed under the standard rules
of differentiation. Gevrey class functions of order
˛ < 1 are entire and are analytic if ˛ D 1.

Theorem 1 Let y.t/ 2 GD;˛.R/ for ˛ < 2,
then the formal power series (2) with coefficients
(4) converges uniformly with infinite radius of
convergence.

The proof of this result can be, e.g., found in
Laroche et al. (2000) and Lynch and Rudolph
(2002) and relies on the analysis of the recursion
(3) taking into account the assumptions on the
function y.t/.

Trajectory Assignment
To apply these results for the solution of the
motion planning problem to achieve finite-time
transitions between stationary profiles, it is cru-
cial to properly assign the desired trajectory y�.t/
for the basic output y.t/. For this, observe that
stationary profiles xs.z/ D xs.zIys/ are due
to the flatness property (Classically stationary
solutions are to be defined in terms of stationary
input values xs.1/ D us.) governed by

0 D @2zx
s.z/C rxs.z/ (6a)

@zx
s.0/ D 0; xs.0/ D ys: (6b)

Hence, assigning different ys results in different
stationary profiles xs.zIys/. The connection be-
tween an initial stationary profile xs0.zIys0/ and a
final stationary profile xsT .zIysT / is achieved by
assigning y�.t/ such that

y�.0/ D ys0; y�.T / D ysT

@nt y
�.0/ D 0; @nt y

�.T / D 0; n � 1:

This implies that y�.t/ has to be locally nonan-
alytic at t 2 f0; T g and in view of the previous
discussion has thus to be a Gevrey class function
of order ˛ 2 .1; 2/. For specific problems differ-
ent functions have been suggested fulfilling these
properties. In the following, the ansatz

y�.t/ D ys0 C .ysT � ys0/˚T;� .t/ (7a)

is used with

˚T;� .t/ D

8
ˆ̂
<

ˆ̂
:

0; t � 0
R t
0 hT;� .�/d�R T
0 hT;� .�/d�

t 2 .0; T /
1; t � T

(7b)

for hT;� .t/ D exp .�Œt=T .1 � t=T /��� / if t 2
.0; T / and hT;� .t/ D 0 else. It can be shown that
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Motion Planning for
PDEs, Fig. 1 Simulated
spatial-temporal transition
path (top) and applied
flatness-based feedforward
control u�.t / and desired
trajectory y�.t / (bottom)
for (1)

(7b) is a Gevrey class function of order ˛ D 1C
1=� (Fliess et al. 1997). Alternative functions are
presented, e.g., in Rudolph (2003).

Simulation Example
In order to illustrate the results of the motion
planning procedure described above, let r D �1
in (1). The differential parametrization (4) of the
series coefficients is evaluated for the desired
trajectory y�.t/ defined in (7) for ys0 D 0 and
ysT D 1 with the transition time T D 1 and
the parameter � D 2. With this, the finite-
time transition between the zero initial stationary
profile x�

0 .z/ D 0 and the final stationary profile
x�
T .z/ D xsT .z/ D ysT cosh.z/ is realized along the

trajectory x.0; t/ D y�.t/. The corresponding

feedforward control and spatial-temporal transi-
tion path are shown in Fig. 1.

Extensions and Generalizations
The previous considerations constitute a first
systematic approach to solve motion planning
problems of systems governed by PDEs. The
underlying techniques can be, however, further
generalized to address coupled systems of
PDEs, certain classes of nonlinear PDEs (see
also section “Semilinear PDEs”), or in-domain
control.

While the application of formal power series
is restricted to boundary control diffusion-con-
vection-reaction systems, the approach can be
combined with so-called resummation techniques
to overcome convergence issues such as slowly
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converging or even divergent series expansions
(Laroche et al. 2000; Meurer and Zeitz 2005).

Flatness-based techniques for motion planning
can be also embedded into an operator theoretic
context using semigroup theory by restricting
the analysis to so-called Riesz spectral operators.
This enables to analyze coupled systems of linear
PDEs with both boundary and in-domain control
in a single and multiple spatial coordinates with
a common framework (Meurer 2011, 2013). In
addition, experimental results for flexible beam
and plate structures with embedded piezoelectric
actuators confirm the applicability of this design
approach and the achievable high tracking ac-
curacy when transiently shaping the deflection
profile (Schröck et al. 2013).

Semilinear PDEs

Flatness can be extended to semilinear PDEs.
This is subsequently illustrated for the diffusion-
reaction system

@tx.z; t/ D @2zx.z; t/C r.x.z; t// (8a)

@zx.0; t/ D 0; x.1; t/ D u.t/ (8b)

x.z; 0/ D 0 (8c)

with boundary input u.t/. Similar to the previous
section, the motion planning problem refers to the
determination of a feedforward control t 7! u�.t/
to realize finite-time transitions starting at the
initial profile x�

0 .z/ D x.z; 0/ D 0 to achieve a
final stationary profile x�

T .z/ for t � T .

Formal Power Series
If r.x.z; t// is a polynomial in x.z; t/ or an
analytic function, then similar to the previous sec-
tion, formal power series can be applied to solve
the motion planning problem. This, however, re-
lies on the successive evaluation of Cauchy’s
product formula. As an example, consider

r.x.z; t// D r1x.z; t/C r2x
2.z; t/;

then the formal power series ansatz (2) results in
the recursion

Oxn.t/ D @t Oxn�2.t/ � r1xn�2.t/

� r2
n�2X

jD0

 
n

j

!

Oxj .t/ Oxn�j .t/; n � 2

(9a)

Ox1.t/ D 0: (9b)

Similar to the linear setting in the section “Linear
PDEs” above, the recursion can be solved for
Oxn.t/ by imposing Ox0.t/ D Ox.0; t/ or respectively

Ox0.t/ D y.t/: (9c)

As a result, also in this nonlinear setting any
series coefficient can be expressed in terms of
y.t/ and its time derivatives. Hence, y.t/ D
x.0; t/ denotes a basic output for the semilinear
PDE (8). The uniform series convergence can
be analyzed by restricting any trajectory y.t/ to
a certain Gevrey order ˛ while simultaneously
restricting the absolute values of d , r1 and r2
(Dunbar et al. 2003; Lynch and Rudolph 2002).
These restrictions can be approached using, e.g.,
resummation techniques to sum slowly converg-
ing or divergent series to a meaningful limit.
The reader is therefore referred to Meurer and
Zeitz (2005) or Meurer and Krstic (2011), with
the latter introducing a PDE-based approach for
formation control of multi-agent systems.

Formal Integration
A generalization of these results has been re-
cently suggested in Schörkhuber et al. (2013) by
making use of an abstract Cauchy-Kowalevski
theorem in Gevrey classes. In order to illustrate
this, solve (8a) for @2zx.z; t/ and formally inte-
grate with respect to z taking into account the
boundary conditions (8b). This yields the implicit
solution

x.z; t/ D xC.0; t/
Z z

0

Z p

0

�
@tx.q; t/

�r.x.q; t//�dqdp (10a)

u.t/ D x.1; t/; (10b)
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which can be used to develop to a flatness-based
design systematics for motion planning given
semilinear PDEs. For this, introduce

y.t/ D x.0; t/; (11)

and rewrite (10b) in terms of the sequence of
functions .x.n/.z; t//1nD0 according to

x.0/.z; t/ D y.t/ (12a)

x.nC1/.z; t/ D x.0/.z; t/C
Z z

0

Z p

0

�
@tx

.n/.q; t/

�r.x.n/.q; t//�dqdp: (12b)

From this, it is obvious that y.t/ denotes a ba-
sic output differentially parametrizing the state
variable x.z; t/ D limn!1 x.n/.z; t/ and the
boundary input u.t/ D x.1; t/ provided that
the limit exists as n ! 1. As is shown in
Schörkhuber et al. (2013) by making use of
scales of Banach spaces in Gevrey classes and
abstract Cauchy-Kowalevski theory, the conver-
gence of the parametrized sequence of functions
.x.n/.z; t//1nD0 can be ensured in some compact
subset of the domain z 2 Œ0; 1�. Besides its
general setup this approach provides an itera-
tion scheme, which can be directly utilized for
a numerically efficient solution of the motion
planning problem.

Simulation Example
Let the reaction be subsequently described by

r.x.z; t// D sin.2�x.z; t//: (13)

The iterative scheme (12) is evaluated for the
desired trajectory y�.t/ defined in (7) for ys0 D 0

and ysT D 1 with the transition time T D 1 and
the parameter � D 1, i.e., the desired trajectory
is of Gevrey order ˛ D 2. The resulting feed-
forward control u�.t/ and the spatial-temporal
transition path resulting from the numerical so-
lution of the PDE are depicted in Fig. 2. The
desired finite-time transition between the zero
initial stationary profile x�

0 .z/ D 0 and the final
stationary profile x�

T .z/ D xsT .z/ determined by

0 D @2zx
s.z/C r.xs.z// (14a)

@zx
s.0/ D 0; xs.0/ D ys: (14b)

is clearly achieved along the prescribed path
y�.t/.

Extensions and Generalizations
Generalizations of the introduced formal integra-
tion approach to solve motion planning problems
for systems of coupled PDEs are, e.g., provided
in Schörkhuber et al. (2013). Moreover, linear
diffusion-convection-reaction systems with spa-
tially and time-varying coefficients defined on
a higher-dimensional parallelepipedon are ad-
dressed in Meurer and Kugi (2009) and Meurer
(2013).

Hyperbolic PDEs

Hyperbolic PDEs exhibiting wavelike dynam-
ics require the development of a design sys-
tematics explicitly taking into account the finite
speed of wave propagation. For linear hyperbolic
PDEs, operational calculus has been success-
fully applied to determine the state and input
parametrizations in terms of the basic output
and its advanced and delayed arguments (Pe-
tit and Rouchon 2001, 2002; Rouchon 2001;
Rudolph and Woittennek 2008; Woittennek and
Rudolph 2003). In addition, the method of char-
acteristics can be utilized to address both linear
and quasi-linear hyperbolic PDEs. Herein, a suit-
able change of coordinates enables to reformulate
the PDE in a normal form, which can be (for-
mally) integrated in terms of a basic output. With
this, also an efficient numerical procedure can
be developed to solve motion planning problems
for hyperbolic PDEs (Woittennek and Mounier
2010).

Summary and Future Directions

Motion planning constitutes an important design
step when solving control problems for systems
governed by PDEs. This is particularly due to
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Motion Planning for
PDEs, Fig. 2 Simulated
spatial-temporal transition
path (top) and applied
flatness-based feedforward
control u�.t / and desired
trajectory y�.t / (bottom)
for (8) with (13)

the increasing demands on quality, accuracy, and
efficiency, which require to turn away from the
pure stabilization of an operating point toward
the realization of specific start-up, transition, or
tracking tasks. In view of these aspects, future re-
search directions might deepen and further evolve
the following:
– Semi-analytic design techniques taking into

account suitable approximation schemes for
complex-shaped spatial domains

– Nonlinear PDEs and coupled systems of non-
linear PDEs with boundary and in-domain
control

– Applications arising, e.g., in aeroelasticity,
micromechanical systems, fluid flow, and
fluid-structure interaction.

Cross-References

�Boundary Control of 1-D Hyperbolic Systems
�Boundary Control of Korteweg-de Vries and

Kuramoto–Sivashinsky PDEs
�Control of Fluids and Fluid-Structure Interac-

tions

Bibliography

Dunbar W, Petit N, Rouchon P, Martin P (2003) Motion
planning for a nonlinear Stefan problem. ESAIM Con-
trol Optim Calculus Var 9:275–296

Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness
and defect of non–linear systems: introductory theory
and examples. Int J Control 61:1327–1361

http://dx.doi.org/10.1007/978-1-4471-5058-9_11
http://dx.doi.org/10.1007/978-1-4471-5058-9_13
http://dx.doi.org/10.1007/978-1-4471-5058-9_15


Motorcycle Dynamics and Control 793

M

Fliess M, Mounier H, Rouchon P, Rudolph J (1997)
Systèmes linéaires sur les opérateurs de Mikusiński et
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Abstract

A basic model due to Sharp which is useful in
the analysis of motorcycle behavior and control
is developed. This model is based on linearization
of a bicycle model introduced by Whipple, but is
augmented with a tire model in which the lateral
tire force depends in a dynamic fashion on tire be-
havior. This model is used to explain some of the
important characteristics of motorcycle behavior.
The significant dynamic modes exhibited by this
model are capsize, weave, and wobble.

Keywords

Bicycle; Capsize; Counter-steering; Motorcycle;
Single-track vehicle; Tire model; Weave; Wobble

Introduction

The bicycle is mankind’s ultimate solution
to the quest for a human-powered vehicle
(Herlihy 2006). The motorcycle just makes riding
more fun. Bicycles, motorcycles, scooters, and
mopeds are all examples of single-track vehicles
and have similar dynamics. The dynamics of a
motorcycle are considerably more complicated
than that of a four-wheel vehicle such as a
car. The first obvious difference in behavior
is stability. An unattended upright stationary
motorcycle is basically an inverted pendulum
and is unstable about its normal upright position,
whereas a car has no stability issues in the
same configuration. Another difference is that a
motorcycle must lean when cornering. Although
a car leans a little due to suspension travel, there
is no necessity for it to lean in cornering. A
perfectly rigid car would not lean. Furthermore,
beyond low speeds, the steering behavior of a
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motorcycle is not intuitive like that of a car.
To turn a car right, the driver simply turns the
steering wheel right; on a motorcycle, the rider
initially turns the handlebars to the left. This is
called counter-steering and is not intuitive.

A Basic Model

To obtain a basic motorcycle model, we start
with four rigid bodies: the rear frame (which
includes a rigidly attached rigid rider), the front
frame (includes handlebars and front forks), the
rear wheel, and the front wheel; see Fig. 1. We
assume that both frames and wheels have a plane
of symmetry which is vertical when the bike is
in its nominal upright configuration. The front
frame can rotate relative to the rear frame about
the steering axis; the steering axis is in the plane
of symmetry of each frame and in the nominal
upright configuration of the bike, the angle it
makes with the vertical is called the rake angle
or caster angle and is denoted by �. The rear
wheel rotates relative to the rear frame about an
axis perpendicular to the rear plane of symmetry
and is symmetrical with respect to this axis. The
same relationship holds between the front wheel
and the front frame. Although each wheel can
be three dimensional, we model the wheels as
terminating in a knife edge at their boundaries
and contact the ground at a single point. Points
Q and P are the points on the ground in contact
with the front and rear wheels, respectively.

B

h

QP S

cb
w

GA

UA

G

ε

Motorcycle Dynamics and Control, Fig. 1 Basic
model

Each of the above four bodies are described by
their mass, mass center location, and a 3 � 3 in-
ertia matrix. Two other important parameters are
the wheelbase w and the trail c. The wheelbase
is the distance between the contact points of the
two wheels in the nominal configuration, and the
trail is the distance from the front wheel contact
point Q to the intersection S of the steering axis
with the ground. The trail is normally positive,
that is, Q is behind S . The point G locates the
mass center of the complete bike in its nominal
configuration, whereas GA is the location of the
mass center of the front assembly (front frame
and wheel).

Description of Motion

Considering a right-handed reference frame e D
. Oe1; Oe2; Oe3/ with origin O fixed in the ground, the
bike motion can be described by the location of
the rear wheel contact point P relative to O ,
the orientation of the rear frame relative to e,
and the orientation of the front frame relative
to the rear frame; see Fig. 2. Assuming the bike
is moving along a horizontal plane, the location
of P is usually described by Cartesian coordi-
nates x and y. Let reference frame b be fixed
in the rear frame with Ob1 and Ob3 in the plane
of symmetry with Ob1 along the nominal P � S

e3 e2

e1O

S

b̂3

b̂1

x

y

ψ δ

P

φ

MotorcycleDynamics and Control, Fig. 2 Description
of motion
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line; see Fig. 2. Using this reference frame, the
orientation of the rear frame is described by a
3-1-2 Euler angle sequence which consists of a
yaw rotation by  about the 3-axis followed by
a lean (roll) rotation by � about the 1-axis and
finally by a pitch rotation by � about the 2-axis.
The orientation of the front frame relative to the
rear frame can be described by the steer angle ı.
Assuming both wheels remain in contact with the
ground, the pitch angle � is not independent; it is
uniquely determined by ı and �. In considering
small perturbations from the upright nominal
configuration, the variation in pitch is usually
ignored. Here we consider it to be zero. Also the
dynamic behavior of the bike is independent of
the coordinates x; y, and  . These coordinates
can be obtained by integrating the velocity of P
and P .

TheWhipple Bicycle Model

The “simplest” model which captures all the
salient features of a single track vehicle for a
basic understanding of low-speed dynamics and
control is that originally due to Whipple (1899).
We consider the linearized version of this model
which is further expounded on in Meijaard et al.
(2007). The salient feature of this model is that
there is no slip at each wheel. This means that
the velocity of the point on the wheel which
is instantaneously in contact with the ground is
zero; this is illustrated in Fig. 3 for the rear wheel.
No slip implies that there is no sideslip which
means that the velocity of the wheel contact
point ( NvP in Fig. 3) is parallel to the intersection
of the wheel plane with the ground plane; the
wheel contact point is the point moving along the
ground which is in contact with the wheel.

The rest of this entry is based on linearization
of motorcycle dynamics about an equilibrium
configuration corresponding to the bike traveling
upright in a straight line at constant forward
speed v WD vP , the speed of the rear wheel
contact point P . In the linearized system, the
longitudinal dynamics are independent of the
lateral dynamics, and in the absence of driving
or braking forces, the speed v is constant.

With no sideslip at both wheels, kinematical
considerations (see Fig. 4) show that the yaw
rate P is determined by ı; specifically for small
angles we have the following linearized relation-
ship:

P D �vı C 
 Pı (1)

where � D c�=w, c� D cos �, and 
 D cc�=w is
the normalized mechanical trail. In Fig. 4, ıf D
c�ı is the effective steer angle; it is the angle
between the intersections of the front wheel plane
and the rear frame plane with the ground. Thus
we can completely describe the lateral bike dy-
namics with the roll angle � and the steer angle
ı. To obtain the above relationship, first note that,
as a consequence of no sideslip, NvP D v Ob1 and
NvQ is perpendicular to Of2. Taking the dot product
of the expression,

NvQ D NvP C .wCc/ P Ob2 � c. P C Pıf / Of2 ;

with Of2 while noting that Ob1 � Of2 D � sin ıf and
Ob2 � Of2 D cos ıf results in

0 D �v sin ıf C .w C c/ P cos ıf � c. P C Pıf / :

Linearization about ı D 0 yields the desired
result.

The relationship in (1) also holds for four
wheel vehicles. There one can achieve a desired
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Motorcycle Dynamics and Control, Fig. 3 No slip:
vP
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Motorcycle Dynamics and Control, Fig. 4 Some kine-
matics
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Motorcycle Dynamics and Control, Fig. 5 Inverted
pendulum with accelerating support point

constant yaw rate P d by simply letting the steer
angle ı D P d=�v. However, as we shall see, a
motorcycle with its steering fixed at a constant
steer angle is unstable. Neglecting gyroscopic
terms, it is simply an inverted pendulum. With its
steering free, a motorcycle can be stable over a
certain speed range and, if unstable, can be easily
stabilized above a very low speed by most people.
Trials riders can stabilize a motorcycle at any
speed including zero.

To help understand the effect of steer angle
on bike behavior, we initially ignore the mass
and inertia of the front assembly along with
gyroscopic effects, and we assume that the Ob1
axis is a principle axis of inertia of the rear frame
with moment of inertia Ixx . Angular momentum
considerations about the Ob1 axis and linearization
results in

Ixx R� CmhaB D mgh� C .Nf c�c/ı (2)

where Nf is the normal force (vertical and
upwards) on the front wheel and aB is the lat-
eral acceleration (perpendicular to rear frame) of
point B which is the projection of G onto the
Ob1 axis. By considering a moment balance about
the pitch axis Ob2 through P , one can obtain that
Nf D mgb=w. Notice that, with the steering
fixed at ı D 0, Eq. (2) is the equation of motion of
a simple inverted pendulum whose support axis
is accelerating horizontally with acceleration aB .
This is illustrated in Fig. 5.

Basic kinematics reveal that aB D v P C b R 
and, recalling relationship (1), Eq. (2) now yields
the lean equation:

Ixx R� �mgh� D �m�ı
Rı � c�ıv Pı � k�ı.v/ı

(3)

wherem�ı D 
mhb > 0, c�ı D mh.
Cb�/ > 0
and k�ı.v/ D �
mgbCmh�v2. Note that v is a
constant parameter corresponding to the nominal
speed of the rear wheel contact point.

With ı D 0, we have a system whose be-
havior is characterized by two real eigenvalues:
˙pmgh=Ixx : This system is unstable due to
the positive eigenvalue

p
mgh=Ixx. For v suf-

ficiently large, the coefficient k�ı.v/ is positive
and one can readily show that the above system
can be stabilized with positive feedback ı D
K� provided K > mgh=k�ı.v/. This helps
explain the stabilizing effect of a rider turning
the handlebars in the direction the bike is falling.
Actually, the rider input is a steer torque Tı
about the steer axis.

To explain why an uncontrolled motorcycle
can be stable or easily stabilized, one also has
to look at the effect that � has on ı; in general,
a lean perturbation results in the front assembly
turning in the same direction, that is, a positive
perturbation of � results in a positive change in ı.

The lean equation also explains why a motor-
cycle must lean when cornering above a certain
speed. Suppose the motorcycle is in a right hand
corner of radius R at some constant speed v: in
this scenario, P D v=R and, with ı constant,
(1) implies that ı D P =�v D 1=�R; with ı

and � constant, the lean equation now requires
that � D k�ı.v/ı=mgh D k�ı.v/=mgh�R. For
higher speeds, k�ı.v/ � mh�v2; hence � �
v2=gR. Since aB D v2=R, the lean angle �
is approximately aB=g. Hence, to corner with a
lateral acceleration aB D v2=R, the motorcycle
must lean at an angle of approximately aB=g.

The lean equation can also help explain
counter-steering; that is, at speeds above a
reasonably low speed, one can initiate a turn by
turning the handlebars in the opposite direction to
which one wants to go; to turn right, one initially
turns the handlebars to the left. See Limebeer and
Sharp (2006) for further discussion.

Taking into account the mass and inertia of
the front assembly, gyroscopic effects and cross
products of inertia of the rear frame, one can



Motorcycle Dynamics and Control 797

M

show (see Meijaard et al. 2007) that the lean
equation (3) still holds with

m�ı D 
Ixz C IA�x

c�ı D 
mhC �Ixz C 
ST C c�SF

k�ı.v/ D k0�ı C k2�ıv
2

k0�ı D �SAg;
k2�ı D �.mhC ST /

Here Ixx is the moment of inertia of the total
motorcycle and rider in the nominal configuration
about the Ob1 axis and Ixz is the inertia cross
product w.r.t the Ob1 and Ob3 axes. The term IA�x
is the front assembly inertia cross product with
respect to the steering axis and the Ob1 axis; see
Meijaard et al. (2007) for a further description of
this parameter. Also, SA D 
mb CmAuA where
mA is the mass of the front assembly (front wheel
and front frame) and uA is the offset of the mass
center of the front assembly from the steering
axis, that is, the distance of this mass center from
the steering axis; see Fig. 1. The terms SF D
IFyy=rF and ST D IRyy=rR C IFyy=rF are
gyroscopic terms due the rotation of the front
and rear wheels where rF and rR are the radii
of the front and rear wheels, while IFyy and
IRyy are the moments of inertias of the front and
rear wheels about their axles. It is assumed that
the mass center of each wheel is located at its
geometric center.

By considering an angular momentum balance
about a vertical axis through P , one can obtain
an expression for the lateral force at the front
wheel. Angular momentum considerations about
the steering axis for the front assembly and lin-
earization then yield the steer equation:

mı�
R� Cmıı

Rı C vcı� P� C vcıı Pı
Ckı�� C kıı.v/ı D Tı

(4)

where

mı� D m�ı

mıı D IA�� C 2
IA�z C 
2Izz

k�ı D kı�

kıı.v/ D k0ıı C k2ııv
2

k0ıı D �s�SAg;
k2ıı D �.SA C s�SF /

cı� D �.
ST C cSF /

cıı D 
 .SA C �Izz/C �IA�z

Here, Izz is the moment of inertia of the total
motorcycle and the rider in the nominal config-
uration about the Ob3 axis, IA�� is the moment of
inertia of the front assembly about the steering
axis, and IA�z is the front assembly inertia cross
product with respect to the steering axis and the
vertical axis through P . The lean equation (3)
combined with the steer equation (4) provide an
initial model for motorcycle dynamics. This is
a linear model with the nominal speed v as a
constant parameter and the rider’s steering torque
Tı as an input.

Modes of Whipple Model

At v D 0, the linearized Whipple model (3)–
(4) has two pairs of real eigenvalues: ˙p1;˙p2
with p2 > p1 > 0; see Fig. 6. The pair ˙p1
roughly describe inverted pendulum behavior of
the whole bike with fixed steering, while ˙p2
describe inverted pendulum behavior of the front
assembly with the rear frame fixed upright. As
v increases the real eigenvalues corresponding
to p1 and p2 meet and from there on form a

−p2 −p1 p1 p2

CASTOR

WEAVE

CAPSIZE

vc

vw

MotorcycleDynamics and Control, Fig. 6 Variation of
eigenvalues of Whipple model with speed v
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complex conjugate pair of eigenvalues which re-
sult in a single oscillatory mode called the weave
mode. Initially the weave mode is unstable, but
is stable above a certain speed vw, and for large
speeds, its eigenvalues are roughly a linear func-
tion of v; thus it becomes more damped and its
frequency increases with speed. The eigenvalue
corresponding to �p2 remains real and becomes
more negative with speed; this is called the cas-
tor mode, because it roughly corresponds to the
front assembly castoring about the steer axis. The
eigenvalue corresponding to �p1 also remains
real but increases, eventually becoming slightly
positive above some speed vc , resulting in an un-
stable system; the corresponding mode is called
the capsize mode. Thus the bike is stable in
the autostable speed range .vw; vc/ and unstable
outside this speed range. However, above vc , the
unstable capsize mode is easily stabilized by a
rider and usually without conscious effort. This is
because the time constant of the unstable capsize
mode is very small (Astrom et al. 2005).

Sharp71Model

The Whipple bicycle model is not applicable
at higher speeds. In particular, it does not con-
tain a wobble mode which is common to bi-
cycle and motorcycle behavior at higher speeds
(Sharp 1971). A wobble mode is characterized
mainly by oscillation of the front assembly about
the steering axis and can sometimes be unstable.
Also, in a real motorcycle, the damping and
frequency of the weave mode do not continually
increase with speed; the damping usually starts
to decrease after a certain speed; sometimes this
mode even becomes unstable. At higher speeds,
one must depart from the simple non-slipping
wheel model. In the Whipple model, the lateral
force F on a wheel is simply that force which
is necessary to maintain the non-holonomic con-
straint which requires the velocity of the wheel
contact point to be parallel to the wheel plane,
that is, no sideslip. Actual tires on wheels slip
in the longitudinal and lateral direction, and the
lateral force depends on slip in the lateral direc-
tion, that is, sideslip. This lateral slip is defined

TOP VIEW FRONT VIEW

WHEEL
WHEEL

N

F
FP

P

φ
v P

α

Motorcycle Dynamics and Control, Fig. 7 Lateral
force, slip angle, and camber angle

by the slip angle ˛ which is the angle between
the contact point velocity and the intersection of
the wheel plane and the ground; see Fig. 7.

The lateral force also depends on the tire
camber angle which is the roll angle of the tire;
motorcycle tires can achieve large camber angles
in cornering; modern MotoGP racing motorcy-
cles can achieve camber angles of nearly 65ı.
Thus an initial linear model of a tire lateral force
is given by

F D N.�k˛˛ C k��/ (5)

whereN is the normal force on the tire, k˛ > 0 is
called the tire cornering stiffness, and k� > 0

is called the camber stiffness. Modifying the
above Whipple model with the tire force model
results in the appearance of the wobble mode.
Since lateral forces do not instantaneously re-
spond to changes in slip angle and camber, the
dynamic model,

	

v
PF C F D N.�k˛˛ C k��/ ; (6)

is usually used where 	 > 0 is called the
relaxation length of the tire. This yields more
realistic behavior (Sharp 1971). In this model
the weave mode damping eventually decreases at
higher speeds and the frequency does not con-
tinually increase. The frequency of the wobble
mode is higher than that of the weave mode and
its damping decreases at higher speeds.
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Further Models

To obtain nonlinear models, resort is usually
made to multi-body simulation codes. In recent
years, several researchers have used such codes to
make nonlinear models which take into account
other features such as frame flexibility, rider
models, and aerodynamics; see Cossalter (2006),
Cossalter and Lot (2002), Sharp and Limebeer
(2001), and Sharp et al. (2004). The nonlinear
behavior of the tires is usually modeled with
a version of the Magic formula; see Pacejka
(2006), Sharp et al. (2004), and Cossalter et al.
(2003). Another line of research is to use some
of these models to obtain optimal trajectories for
high performance; see Saccon et al. (2012).

Summary and Future Directions

We have presented a basic linearized model of a
motorcycle or bicycle useful for the understand-
ing and control of these two wheeled vehicles.
It seems that inclusion of further features in the
model and the consideration of full nonlinear
behavior require the use of multibody simulation
software. Future research will consider models
which will include the engine, transmission, and
an active pilot. Autonomous control of these
vehicles will also be considered.

Cross-References

� Pilot-Vehicle System Modeling
�Transmission
�Vehicle Dynamics Control

Bibliography

Astrom KJ, Klein RE, Lennarstsson A (2005) Bicycle dy-
namics and control. IEEE Control Syst Mag 25(4):26–
47

Cossalter V, Lot R (2002) A motorcycle multi-body
model for real time simulations based on the natural
coordinates approach. Veh Syst Dyn 37(6):423–447

Cossalter V, Doria A, Lot R, Ruffo N, Salvador M
(2003) Dynamic properties of motorcycle and scooter

tires: measurement and comparison. Veh Syst Dyn
39(5):329–352

Cossalter V (2006) Motorcycle dynamics. Second English
Edition, LULU

Herlihy DV (2006) Bicycle: the history. Yale University
Press, New Haven

Limebeer DJN, Sharp RS (2006) Bicycles, motorcycles,
and models. IEEE Control Syst Mag 26(5):34–61

Meijaard JP, Papadopoulos JM, Ruina A, Schwab AL
(2007) Linearized dynamics equations for the balance
and steer of a bicycle: a benchmark and review –
including appendix. Proc R Soc A 463(2084):1955–
1982

Pacejka HB (2006) Tire and vehicle dynamics, 2nd edn.
SAE International, Warrendale, PA

Saccon A, Hauser J, Beghi A (2012) Trajectory ex-
ploration of a rigid motorcycle model. IEEE Trans
Control Syst Technol 20(2):424–437

Sharp RS (1971) The stability and control of motorcycles.
J Mech Eng Sci 13(5):316–329

Sharp RS, Limebeer DJN (2001) A motorcycle model
for stability and control analysis. Multibody Syst Dyn
6:123–142

Sharp RS, Evangelou S, Limebeer DJN (2004) Advances
in the modelling of motorcycle dynamics. Multibody
Syst Dyn 12(3):251–283

Whipple FJW (1899) The stability of the motion of a
bicycle. Q J Pure Appl Math 30:312–348

Moving Horizon Estimation

James B. Rawlings
University of Wisconsin, Madison,
WI, USA

Synonyms

MHE

Abstract

Moving horizon estimation (MHE) is a state esti-
mation method that is particularly useful for non-
linear or constrained dynamic systems for which
few general methods with established properties
are available. This entry explains the concept of
full information estimation and introduces mov-
ing horizon estimation as a computable approx-
imation of full information. The basic design
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methods for ensuring stability of MHE are pre-
sented. The relationships of full information and
MHE to other state estimation methods such
as Kalman filtering and statistical sampling are
discussed.

Keywords

Full information estimation; Kalman filtering;
Statistical sampling

Introduction

In state estimation, we consider a dynamic sys-
tem from which measurements are available. In
discrete time, the system description is

xC D f .x;w/ y D h.x/C v (1)

The state of the systems is x 2 R
n, the mea-

surement is y 2 R
P , and the notation xC means

x at the next sample time. A control input u
may be included in the model, but it is con-
sidered a known variable, and its inclusion is
irrelevant to state estimation, so we suppress it in
the model under consideration here. We receive
measurement y from the sensor, but the process
disturbance, w 2 R

g; measurement disturbance
v 2 R

p; and system initial state, x.0/, are
considered unknown variables.

The goal of state estimation is to construct or
estimate the trajectory of x from only the mea-
surements y. Note that for control purposes, we
are usually interested in the estimate of the state
at the current time, T , rather than the entire tra-
jectory over the time interval Œ0; T �. In the mov-
ing horizon estimation (MHE) method, we use
optimization to achieve this goal. We have two
sources of error: the state transition is affected
by an unknown process disturbance (or noise),
w, and the measurement process is affected by
another disturbance, v. In the MHE approach, we
formulate the optimization objective to minimize
the size of these errors thus finding a trajectory of
the state that comes close to satisfying the (error-
free) model while still fitting the measurements.

First, we define some notation necessary to
distinguish the system variables from the es-
timator variables. We have already introduced
the system variables .x;w; y; v/. In the estima-
tor optimization problem, these have correspond-
ing decision variables, which we denote by the
Greek letters .�; !; �; �/. The relationships be-
tween these variables are

�C D f .�; !/ y D h.�/C � (2)

and they are depicted in Fig. 1. Notice that �
measures the gap between the model prediction
� D h.�/ and the measurement y. The optimal
decision variables are denoted . Ox; Ow; Oy; Ov/, and
these optimal decisions are the estimates pro-
vided by the state estimator.

Full Information Estimation

The full information objective function is

VT .�.0/;!/ D `x
�
�.0/�x0

�C
T�1X

iD0
`i .!.i/; �.i//

(3)
subject to (2) in which T is the current time, ! is
the estimated sequence of process disturbances,
.!.0/; : : : ; !.T � 1//, y.i/ is the measurement
at time i , and x0 is the prior, i.e., available,
value of the initial state. Full information here
means that we use all the data on time interval
Œ0; T � to estimate the state (or state trajectory) at
time T . The stage cost `i .!; �/ costs the model
disturbance and the fitting error, the two error
sources that we reconcile in all state estimation
problems.

The full information estimator is then defined
as the solution to

min
�.0/;!

VT .�.0/;!/ (4)

The solution to the optimization exists for all
T 2 I�0 under mild continuity assumptions and
choice of stage cost. Many choices of (positive,
continuous) stage costs `x.�/ and `i .�/ are possi-
ble, providing a rich class of estimation problems
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Moving Horizon Estimation, Fig. 1 The state, mea-
sured output, and disturbance variables appearing in the
state estimation optimization problem. The state trajectory

(gray circles in lower half ) is to be reconstructed given the
measurements (black circles in upper half )

that can be tailored to different applications. Be-
cause the system model (1) and cost function (3)
are so general, it is perhaps best to start off by
specializing them to see the connection to some
classic results.

Related Problem: The Kalman Filter

If we specialize to the linear dynamic model
f .x;w/ D Ax C Gw, h.x/ D Cx, and let x.0/,
w, and v be independent, normally distributed
random variables, the classic Kalman filter is
known to be the statistically optimal estimator,
i.e., the Kalman filter produces the state estimate
that maximizes the conditional probability of
x.T / given y.0/; : : : ; y.T /. The full information
estimator is equivalent to the Kalman filter given
the linear model assumption and the following
choice quadratic of stage costs

`x.�.0/; x0/ D .1=2/ k�.0/� x0k2P�1
0

`i .!; �/ D .1=2/

�
k!k2Q�1 C k�k2R�1

�

in which random variable x.0/ is assumed to have
mean x0 and variance P0 and random variables w
and v are assumed zero mean with variances Q
and R, respectively. The Kalman filter is also a
recursive solution to the state estimation problem
so that only the current mean Ox and varianceP of
the conditional density are required to be stored,
instead of the entire history of measurements
y.i/; i D 0; : : : ; T . This computational effi-
ciency is critical for success in online application
for processes with short time scales requiring fast
processing.

But if we consider nonlinear models, the max-
imization of conditional density is usually an
intractable problem, especially in online appli-
cations. So, MHE becomes a natural alternative
for nonlinear models or if an application calls for
hard constraints to be imposed on the estimated
variables.
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Moving the Horizon

An obvious problem with solving the full infor-
mation optimization problem is that the number
of decision variables grows linearly with time T ,
which quickly renders the problem intractable for
continuous processes that have no final time. A
natural alternative to full information is to con-
sider instead a finite moving horizon of the most
recent N measurements. Figure 2 displays this
idea. The initial condition �.0/ is now replaced
by the initial state in the horizon, �.T � N/,
and the decision variable sequence of process
disturbances is now just the last N variables
! D .!.T � N/; : : : ; !.T � 1//. Now, the
big question remaining is what to do about the
neglected, past data. This question is strongly
related to what penalty to use on the initial state in
the horizon�.T �N/. If we make this initial state
a free variable, that is equivalent to completely
discounting the past data. If we wish to retain
some of the influence of the past data and keep the
moving horizon estimation problem close to the
full information problem, then we must choose
an appropriate penalty for the initial state. We
discuss this problem next.

Arrival Cost. When time is less than or equal
to the horizon length, T � N , we can simply
do full information estimation. So we assume
throughout that T > N . For T > N , we express
the MHE objective function as

Moving Horizon Estimation, Fig. 2 Schematic of the
moving horizon estimation problem

OVT .�.T �N/;!/ D �T�N .�.T �N//

C
T�1X

iDT�N
`i.!.i/; �.i//

subject to (2). The MHE problem is defined to be

min
�.T�N/;!

OVT .�.T �N/;!/ (5)

in which ! D f!.T �N/; : : : ; !.T �1/g and the
hat on V distinguishes the MHE objective func-
tion from full information. The designer must
now choose this prior weighting�k.�/ for k > N .

To think about how to choose this prior
weighting, it is helpful to first think about solving
the full information problem by breaking it
into two non-overlapping sequences of decision
variables: the decision variables in the time
interval corresponding to the neglected data
.!.0/; !.1/; : : : ; !.T � N � 1// and those in
the time interval corresponding to the considered
data in the horizon .!.T �N/; : : : ; !.T � 1//. If
we optimize over the first sequence of variables
and store the solution as a function of the terminal
state �.T � N/, we have defined what is known
as the arrival cost. This is the optimal cost to
arrive at a given state value.

Definition 1 (arrival cost) The (full informa-
tion) arrival cost is defined for k � 1 as

Zk.x/ D min
�.0/;!

Vk.�.0/;!/ (6)

subject to (2) and �.kI�.0/;!/ D x.

Notice the terminal constraint that � at time k
ends at value x. Given this arrival cost function,
we can then solve the full information problem by
optimizing over the remaining decision variables.
What we have described is simply the dynamic
programming strategy for optimizing over a sum
of stage costs with a dynamic model (Bertsekas
1995).

We have the following important equivalence.

Lemma 1 (MHE and full information estima-
tion) The MHE problem (5) is equivalent to
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the full information problem (4) for the choice
�k.�/ D Zk.�/ for all k > N and N � 1.

Using dynamic programming to decompose the
full information problem into an MHE prob-
lem with an arrival cost penalty is conceptu-
ally important to understand the structure of the
problem, but it doesn’t yet provide us with an
implementable estimation strategy because we
cannot compute and store the arrival cost when
the model is nonlinear or other constraints are
present in the problem. But if we are not too
worried about the optimality of the estimator and
are mainly interested in other properties, such
as stability of the estimator, we can find simpler
design methods for choosing the weighting �k.�/.
We address this issue next.

Estimator Properties: Stability

An estimator is termed stable if small distur-
bances .w; v/ lead to small estimate errors x �
Ox as time increases. Precise definitions of this
basic idea are available elsewhere (Rawlings and
Ji 2012), but this basic notion is sufficient for
the purposes of this overview. In applications,
properties such as stability and insensitivity to
model errors are usually more important than
optimality. It is possible for a filter to be optimal
and still not stable. In the linear system context,
this cannot happen for “nice” systems. Such nice
systems are classified as detectable. Again, the
precise definition of detectability for the linear
case is available in standard references (Kwaker-
naak and Sivan 1972). Defining detectability for
nonlinear systems is a more delicate affair, but
useful definitions are becoming available for the
nonlinear case as well (Sontag and Wang 1997).

If we lower our sights and do not worry if
MHE is equivalent to full information estimation
and require only that it be a stable estimator, then
the key result is that the prior penalty �k.�/ need
only be chosen smaller than the arrival cost as
shown in Fig. 3. See Rawlings and Mayne (2009,
Theorem 4.20) for a precise statement of this
result. Of course this condition includes the flat
arrival cost, which does not penalize the initial

MovingHorizonEstimation, Fig. 3 Arrival costZk.x/,
underbounding prior weighting �k.x/, and MHE optimal
value OV 0

k ; for all x and k > N , Zk.x/ � �k.x/ � OV 0
k ,

and Zk. Ox.k// D �k. Ox.k// D OV 0
k

state in the horizon at all. So neglecting the past
data completely leads to a stable estimator for
detectable systems. If we want to improve on this
performance, we can increase the prior penalty,
and we are guaranteed to remain stable as long as
we stay below the upper limit set by the arrival
cost.

Related Problem: Statistical Sampling

MHE is based on optimizing an objective func-
tion that bears some relationship to the condi-
tional probability of the state (trajectory) given
the measurements. As discussed in the section
on the Kalman filter, if the system is linear with
normally distributed noise, this relationship can
be made exact, and MHE is therefore an optimal
statistical estimator. But in the nonlinear case,
the objective function is chosen with engineering
judgment and is only a surrogate for the condi-
tional probability. By contrast, sampling methods
such as particle filtering are designed to sam-
ple the conditional density also in the nonlinear
case. The mean and variance of the samples then
provide estimates of the mean and variance of
the conditional density of interest. In the limit
of infinitely many samples, these methods are
exact. The efficiency of the sampling methods
depends strongly on the model and the dimension
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of the state vector n, however. The efficiency of
the sampling strategy is particularly important
for online use of state estimators. Rawlings and
Bakshi (2006) and Rawlings and Mayne (2009,
pp. 329–355) provide some comparisons of par-
ticle filtering with MHE and also describe some
hybrid methods combining MHE and particle
filtering.

Summary and Future Directions

MHE is one of few state estimation methods that
can be applied to nonlinear models for which
properties such as estimator stability can be es-
tablished (Rao et al. 2003; Rawlings and Mayne
2009). The required online solution of an opti-
mization problem is computationally demanding
in some applications but can provide signifi-
cant benefits in estimator accuracy and rate of
convergence (Patwardhan et al. 2012). Current
topics for MHE theoretical research include treat-
ing bounded rather than convergent disturbances
and establishing properties of suboptimal MHE
(Rawlings and Ji 2012). The current main focus
for MHE applied research involves reducing the
online computational complexity to reliably han-
dle challenging large dimensional, nonlinear ap-
plications (Kuhl et al. 2011; Lopez-Negrete and
Biegler 2012; Zavala and Biegler 2009; Zavala
et al. 2008).

Cross-References

�Bounds on Estimation
�Estimation, Survey on
�Extended Kalman Filters
�Nonlinear Filters
� Particle Filters

Recommended Reading

Moving horizon estimation has by this point
a fairly extensive literature; a recent overview
is provided in Rawlings and Mayne (2009,
pp. 356–357). The following references provide

either (i) general background required to
understand MHE theory and its relationship to
other methods or (ii) computational methods for
solving the real-time MHE optimization problem
or (iii) challenging nonlinear applications that
demonstrate benefits and probe the current limits
of MHE implementations.
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Abstract

One starting point for the analysis and design
of a control system is the block diagram
representation of a plant. Since it is nontrivial to
convert a physical model of a plant into a block
diagram, this can be performed manually only
for small plant models. Based on research from
the last 35 years, more and more mature tools
are available to achieve this transformation fully
automatically. As a result, multi-domain plants,
for example, systems with electrical, mechanical,
thermal, and fluid parts, can be modeled in a
unified way and can be used directly as input–
output blocks for control system design. An
overview of the basic principles of this approach
is given. This provides also the possibility to use
nonlinear, multi-domain plant models directly in
a controller. Finally, the low-level “Functional
Mockup Interface” standard is sketched to
exchange multi-domain models between many
different modeling and simulation environments.

Keywords

Block diagram; Bond graph; Differential-
algebraic equation (DAE) system; Flow variable;

FMI for Co-Simulation; FMI for Model
Exchange; Functional Mockup Interface; Inverse
models; Modelica; Object-oriented modeling;
Potential variable; Stream variable; Symbolic
transformation; VHDL-AMS

Introduction

Methods and tools for control system analysis
and design usually require an input–output block
diagram description of the plant to be controlled.
Apart from small systems, it is nontrivial to de-
rive such models from first principles of physics.
Since a long time, methods and tools are available
to construct such models automatically for one
domain, for example, a mechanical model, an
electronic, or a hydraulic circuit. These domain-
specific methods and tools are, however, only
of limited use for the modeling of multi-domain
systems.

In the dissertation (Elmqvist 1978), a suitable
approach for multi-domain, object-oriented
modeling has been developed by introducing
a modeling language to define models on
a high level based on first principles. The
resulting DAE (differential-algebraic equation)
systems are transformed with proper algorithms
automatically in a block diagram description
with input and output signals based on ODEs
(ordinary differential equations).

In 1978, the computers were not powerful
enough to apply this method on larger systems.
This changed in the 1990s, and then the tech-
nology has been substantially improved, many
different modeling languages appeared (and also
disappeared), and the technology was introduced
in commercial simulation environments.

In Table 1, an overview of the most important
standards, languages, and tools in the year 2013
for multi-domain modeling is given:

The Modelica language is a standard from
The Modelica Association (Modelica Associa-
tion 2012). The first version was released in
1997. Also a large free library is provided with
about 1,300 model components from many do-
mains. There are several software tools support-
ing this modeling language and the free Modelica

http://dx.doi.org/10.1007/978-1-4471-5058-9_116
http://dx.doi.org/10.1007/978-1-4471-5058-9_250
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Multi-domain Modeling and Simulation, Table 1 Multi-domain modeling and simulation environments

Tool name Web (accessed December 2013)

Environments based on the Modelica Standard (https://www.Modelica.org)

CyModelica http://cydesign.com/

Dymola http://www.dymola.com/

JModelica.org http://www.jmodelica.org/

LMS Imagine.Lab AMESim http://www.lmsintl.com/LMS-Imagine-Lab-AMESim

MapleSim http://www.maplesoft.com/products/maplesim

MWorks http://en.tongyuan.cc/

OpenModelica https://openmodelica.org/

SimulationX http://www.itisim.com/simulationx/

Wolfram SystemModeler http://www.wolfram.com/system-modeler/

Environments based on the VHDL-AMS Standard (http://www.eda.ora/twiki/bin/view.cai/P10761)

ANSYS Simplorer http://www.ansys.com/Products

Saber http://www.synopsys.com/Systems/Saber

SMASH http://www.dolphin.fr/medal/products/smash/smashoverview.php

SystemVision http://www.mentor.com/products/sm/systemvision

Virtuoso AMS designer http://www.cadence.com

Environments with vendor-specific multi-domain modeling languages

EcosimPro http://www.ecosimpro.com/

gPROMS http://www.psenterprise.com/gproms

OpenMAST http://www.openmast.org/

Simscape https://www.mathworks.com/products/simscape

Environments based on the Bond Graph Methodology

20-sim http://www.20sim.com/

Standard Library. The examples of this entry are
mostly provided from this standard.

The following registered trademarks are refer-
enced:

Registered
trademark

Owner of trademark

AMESim IMAGINE SA

ANSYS ANSYS Inc.

Dymola Dassault Systemes AB

EcosimPro Empresarios Agrupados A.I.E.

gPROMS Process Systems Enterprise Limited

MATLAB The MathWorks Inc

Modelica Modelica Association

Saber Sabremark Limited partnership

SimulationX ITI GmbH

Simulink The MathWorks Inc

SystemVision Mentor Graphics Corporation

Virtuoso Cadence Design

• The VHDL-AMS language is a standard from
IEEE (IEEE 1076.1-2007 2007), first released

in 1999. It is an extension of the widely used
VHDL hardware description language. This
language is especially used in the electronics
community.

• There are several vendor-specific modeling
languages, notably Simscape from Math-
Works as an extension to Simulink, as well
as MAST, the underlying modeling language
of Saber (Mantoolh and Vlach 1992). In 2004,
MAST was published as OpenMAST under
an open source license.

• Bond graphs (see, e.g., Karnopp et al. 2012)
are a special graphical notation to define
multi-domain systems based on energy flow.
It was invented in 1959 by Henry M. Paynter.
In the section “Modeling Language Princi-

ples”, the principles of multi-domain modeling
based on a modeling language are summarized.
In the section “Models for Control Systems”,
it is shown how such models can be used not
only for simulation but also as components in
nonlinear control systems. Finally, in the section

https://www.Modelica.org
http://cydesign.com/
http://www.dymola.com/
http://www.jmodelica.org/
http://www.lmsintl.com/LMS-Imagine-Lab-AMESim
http://www.maplesoft.com/products/maplesim
http://en.tongyuan.cc/
https://openmodelica.org/
http://www.itisim.com/simulationx/
http://www.wolfram.com/system-modeler/
http://www.eda.ora/twiki/bin/view.cai/P10761
http://www.ansys.com/Products
http://www.synopsys.com/Systems/Saber
http://www.dolphin.fr/medal/products/smash/smash overview.php
http://www.mentor.com/products/sm/systemvision
http://www.cadence.com
http://www.ecosimpro.com/
http://www.psenterprise.com/gproms
http://www.openmast.org/
https://www.mathworks.com/products/simscape
http://www.20sim.com/
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“The Functional Mockup Interface”, an overview
about a low-level standard for the exchange of
multi-domain systems is described.

Modeling Language Principles

Schematics: TheGraphical View
Modelers nowadays require a simple to use
graphical environment to build up models. With
very few exceptions, multi-domain environments
define models by schematic diagrams. A typical
example is given in Fig. 1, showing a simple
direct-current electrical motor in Modelica.

In the lower left part, the electrical circuit
diagram of the DC motor is visible, consisting
mainly of the armature resistance and inductance
of the motor, a voltage source, and component
“emf” to model in an idealized way the electro-
motoric forces in the air gap. On the lower right
part, the motor inertia, a gear box, and a load
inertia are present. In the upper part, the heat
transfer of the resistor losses to the environment
is modeled with lumped elements.

A component, like a resistor, rotational inertia,
or convective heat transfer, is shown as an icon
in the diagram. On the border of a component,
small rectangular or circular signs are present
representing the “physical ports.” Ports are con-
nected by lines and model the (idealized) physical
or signal interaction between ports of different
components, for example, the flow of electrical
current or heat or the rigid mechanical coupling.

Components are built up hierarchically from
other components. On the lowest level, compo-
nents are described textually with the respec-
tive modeling language (see section “Component
Equations”).

Coupling Components by Ports
The ports define how of a component can interact
with other components. A port contains (a) a def-
inition of the variables that describe the interface
and (b) defines in which way a tool can automat-
ically construct the equations of connections. A
typical scenario is shown in Fig. 2 where the ports
of the three components A, B, C are connected
together at one point P:

heatCapacitor

thermalCond convection

const

inductor

resistor

−
+

ground

emf

signalV
oltage

iSensor

motorInertia loadInertia
gear

fixedTemp

T=20

deg�C

k=20

k=1.016

J=0.00025 J=100
ratio=105

L=0.061

R=13.8

C

A

GcG=G

Multi-domain Modeling and Simulation, Fig. 1 Modelica schematic of DC motor with mechanical load and heat
losses
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When cutting away the connection lines, the
resulting system consists of three decoupled com-
ponents A, B, C and a new component around
P describing the infinitesimally small connection
point. The balance equations and the boundary
conditions of the respective domain must hold at
all these components. When drawing the connec-
tion lines, enough information must be available
in the port definitions so that the tool can con-
struct the equations of the infinitesimally small
connection points automatically.

To summarize, the component developer is
responsible that the balance equations and bound-
ary conditions are fulfilled for every component
(A, B, C in Fig. 2), and the tool is responsible that
the balance equations and boundary conditions
are also fulfilled at the points where the compo-
nents are connected together (P in Fig. 2). As a

A B

C

P

P
A B

C

Multi-domain Modeling and Simulation, Fig. 2
Cutting the connections around the connection point P
results in three decoupled components A, B, C and a new
component around P describing the infinitesimally small
connection point

consequence, the balance equations and bound-
ary conditions are fulfilled in the overall model
containing all components and all connections.

In order that a tool can automatically construct
the equations at a connection point, every port
variable needs to be associated to a port variable
type. In Table 2, some port variable types of
Modelica are shown. In this table it is assumed
that u1; u2,. . . un; y; v1; v2; : : : ; vn; f1; f2; : : :, fn,
s1, s2; : : : ; sn are corresponding port variables
from different components that are connected
together at the same point P.

Port variable types “input” and “output” define
the “usual” signal connections in block diagrams.

“Potential variables” and “flow variables” are
used to define standard physical connections. For
example, an electrical port contains the electrical
potential and the electrical current at the port,
and when connecting electrical ports together,
the electrical potentials are identical and the sum
of the electrical currents is zero, according to
Table 2. This corresponds exactly to Kirchhoff’s
voltage and current laws.

“Stream variables” are used to describe the
connection semantics of intensive quantities in
bidirectional fluid flow, such as specific enthalpy
or mass fraction. Here, the idealized balance
equation at a connection point states, for exam-
ple, that the sum of the port enthalpy flow rates is
zero and the port enthalpy flow rate is computed
as the product of the mass flow rate (a flow
variable fi ) and the directional specific enthalpy
si , which is either the (yet unknown) mixing-
specific enthalpy smix when the flow is from
the connection point to the port or the specific
enthalpy si in the port when the flow is from
the port to the connection point. More details

Multi-domain Modeling and Simulation, Table 2 Some port variable types in Modelica

Port variable type Connection semantics

Input variables ui , output variable y u1 D u2 D : : :D un D y (exactly one output variable can
be connected to n input variables)

Potential variables vi v1 D v2 D : : :D vn

Flow variables fi 0 D P
fi

Stream variables si (with associated flow variables fi ) 0 D P
fi Osi I Osi D

	
smix if fi > 0
si if fi � 0

.0 D P
fi /
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Multi-domain Modeling and Simulation, Table 3 Some port definitions from Modelica

Domain Port variables

Electrical analog Electrical potential in [V] (pot.)
electrical current in [A] (flow)

Elec. multiphase Vector of electrical ports

Electrical quasi-stationary Complex elec. potential (pot.)
complex elec. current (flow)

Magnetic flux tubes Magnetic potential in [A] (pot.)
magnetic flux in [Wb] (flow)

Translational (1-dim. mechanics) Distance in [m] (pot.)
cut-force in [N] (flow)

Rotational (1-dim. mechanics) Absolute angle in [rad] (pot.)
cut-torque in [Nm] (flow)

2-dim. mechanics Position in x-direction in [m] (pot.)
position in y-direction in [m] (pot.)
absolute angle in [rad] (pot.)
cut-force in x-direction in [N] (flow)
cut-force in y-direction in [N] (flow)
cut-torque in z-direc. in [Nm] (flow)

3-dim. mechanics Position vector in [m] (pot.)
transformation matrix in [1] (pot.)
cut-force vector in [N] (flow)
cut-torque vector in [Nm] (flow)

1-dim. heat transfer Temperature in [K] (pot.)
heat flow rate in [W] (flow)

1-dim. thermo-fluid pipe flow Pressure in [Pa] (pot.)
mass flow rate in [kg/s] (flow)
spec. enthalpy in [J/kg] (stream)
mass fractions in [1] (stream)

and explanations are available from Franke et al.
(2009). In Table 3 some of the port definitions are
shown that are defined in the Modelica Standard
Library.

Component Equations
Implementing a component in a modeling lan-
guage means to (a) define the ports of the com-
ponent and (b) provide the equations describing
the relationships between the port variables. For
example, an electrical capacitor with constant
capacitance C can be defined by the equations in
the right side of Fig. 3.

Such a component has two ports, the pins
“p” and “n,” and the port variables are the elec-
trical currents ip; in flowing into the respective
ports and the electrical potentials vp; vn at the
ports. The first component equation states that
if the current ip at port “p” is positive, then the
current in at port “n” is negative (therefore, the
current flowing into “p” is flowing out of “n”).

0 = +
= −

=

Multi-domain Modeling and Simulation, Fig. 3
Equations of a capacitor component

Furthermore, the two remaining equations state
that the derivative of the difference of the port
potentials is proportional to the current flowing
into port “p.”

One important question is how many equa-
tions are needed to describe such a component?
For an input–output block, this is simple: all input
variables are known, and for all other variables,
one equation per unknown is needed. Count-
ing equations for physical components, such as
a capacitor, is more involved: the requirement
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that any type of component connections shall
always result in identical numbers of unknowns
and equations of the overall system leads to the
following counting rule (for a proof, see Olsson
et al. 2008):
1. The number of potential and the number of

flow variables in a port must be identical.
2. Input variables and variables that appear dif-

ferentiated are treated as known variables.
3. The number of equations of a component must

be equal to the number of unknowns minus the
number of flow variables.

In the example of the capacitor, there are 5 un-
knowns (ip, in, vp; vn, du/dt) and 2 flow variables
(ip, in). Therefore, 5�2 D 3 equations are needed
to define this component.

Modeling languages are used to provide a tex-
tual description of the ports and of the equations
in a specific syntax. For example, in Modelica
the capacitor from Fig. 3 can be defined as Fig. 4
(keywords of the Modelica language are written
in boldface):

In VHDL-AMS the capacitor model can be
defined as shown in Fig. 5.

One difference between Modelica and VHDL-
AMS is that in Modelica all equations need to be
explicitly given and port variables (such as p.i)
can be directly accessed in the model (Fig. 4). In-

type Voltage = Real (unit="V");
type Current = Real (unit="A");

connector  Pin
Voltage v;

flow Current i;
end Pin;

model Capacitor
parameter Real C(unit="F");
Pin p,n;
Voltage u;

equation
0 = p.i + n.i;
u = p.v – n.v;
C*der(u) = p.i;

end Capacitor;

Multi-domain Modeling and Simulation, Fig. 4
Modelica model of capacitor component

stead, in VHDL-AMS (and some other modeling
languages), port variables cannot be accessed in
a model, and instead via the “quantity .. across
.. through .. to ..” construction, the relationships
between the port variables are implicitly defined
and correspond to the Modelica equations “0 D
p.i C n.i” and “u D p.v � n. v.”

Simulation of Multi-domain Systems
Collecting all the component equations of
a multi-domain system model together with
all connection equations results in a DAE
(differential-algebraic equation) system:

0 D f.Px; x;w; y;u; t/ (1)

where t 2 R is time, x.t/ 2 R
nx are vari-

ables appearing differentiated, w.t/ 2 R
nw are

algebraic variables, y.t/ 2 R
ny are outputs,

u.t/ 2 R
nu are inputs, and f 2 R

nxCnwCny are
the DAE equations. Equation (1) can be solved
numerically with an integrator for DAE systems;
see, for example, Brenan et al. (1996). For DAEs
that are linear in their unknowns, a complete
theory for solvability is available based on matrix
pencils (see, e.g., Brenan et al. 1996) and also
reliable software for their analysis (Varga 2000).

Unfortunately, only certain classes of nonlin-
ear DAEs can be directly solved numerically

subtype voltage is real;
subtype current is real;
nature electrical is

voltage across
current through
electrical_ref reference;

entity CapacitorInterface IS
generic(C: real);
port (terminal p, n: electrical);

end entity CapacitorInterface;
architecture SimpleCapacitor of

CapacitorInterface is
quantity u across i through p to n;

begin
i == C*u’dot;

end architecture SimpleCapacitor;

Multi-domain Modeling and Simulation, Fig. 5
VHDL-AMS model of capacitor component
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in a reliable way. Domain-specific software,
as, e.g., for mechanical systems, transforms
the underlying DAE into a form that can be
more reliably solved, using domain-specific
knowledge. This is performed by differentiating
certain equations of the DAE analytically and
utilizing special integration methods for the
resulting overdetermined set of differential-
algebraic equations. Multi-domain simulation
software uses the following approaches:
(a) The DAE (1) is directly solved numerically

using an implicit integration method, such
as a linear multistep method. Typically, all
VHDL-AMS simulators use this approach.

(b) The DAE (1) is symbolically transformed in
a form that is equivalent to a set of ODEs
(ordinary differential equations), and then
either explicit or implicit ODE or DAE in-
tegration methods are used to numerically
solve the transformed system. The transfor-
mation is based on the algorithms of Pan-
telides (1988) and of Mattsson and Söderlind
(1993) and might require to analytically dif-
ferentiate equations. Typically, all Modelica-
based simulators, but also EcosimPro, use
this approach.

For many models both approaches can be applied
successfully. There are, however, systems where
approach (a) is successful and fails for (b) or vice
versa.

DAEs (1) derived from modeling languages
usually have a large number of equations but with
only a few unknowns in every equation. In order
to solve DAEs of this kind efficiently, both with
(a) or (b), typically graph theory and/or sparse
matrix methods are utilized. For method (b) the
fundamental algorithms have been developed in
Elmqvist (1978) and later improved in further
publications. For a recent survey and comparison
of some of the algorithms, see Frenkel et al.
(2012).

Solving the DAE (1) means to solve an ini-
tial value problem. In order that this can be
performed, a consistent set of initial variables
Px0 D Px .t0/ ; x0 D x .t0/ ; w0 D w .t0/ ; y0 D
y .t0/ ; u0 D u .t0/ has to be determined first at
the initial time t0: In general, this is a nontrivial
task. For example, often (1) shall start in steady

state, that is, it is required that Px0 D 0 and
therefore at the initial time (1) is required to
satisfy

0 D f .0; x0; w0; y0; u0; t0/ (2)

Equation (2) is a nonlinear algebraic system of
equations in the unknowns x0; w0, y0; u0. These
are nx Cnw Cny equations for nx Cnw Cny Cnu

unknowns. Therefore, nu further conditions must
be provided (usually some elements of u0 and/or
y0 are fixed to desired physical values). Solving
(2) for the unknowns is also called “DC operat-
ing point calculation” or “trimming.” Nonlinear
equation solvers are based on iterative methods
that require usually a sufficiently accurate initial
guess for all unknowns. In a large multi-domain
system model, this is not practical, and therefore,
methods are needed to solve (2) even if generic
guess values in a library are provided that might
be far from the solution of the system at hand.

For analog electronic circuit simulations, a
large body of theory, algorithms, and software is
available to solve (2) based on homotopy meth-
ods. The basic idea is to solve a sequence of non-
linear algebraic equation systems by starting with
an easy to solve simplified system, characterized
by the homotopy parameter  D 0. This system
is continuously “deformed” until the desired one
is reached at  D 1. The solution at iteration i
is used as guess value for iteration i C 1, and at
every iteration, the solution is usually computed
with a Newton-Raphson method.

The simplest such approach is “source step-
ping”: the initial guess values of all electrical
components are set to “zero voltage” and/or “zero
current.” All (voltage and current) sources start
at zero, and their values are gradually increased
until the desired source values are reached. This
method may not converge, typically due to the
severe nonlinearities at switching thresholds in
logical circuits.

There are several, more involved approaches,
called “probability one homotopy” methods. For
these method classes, proofs exist that they con-
verge with probability one (so practically al-
ways). These algorithms can only be applied for
certain classes of DAEs; see, for example, the
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“Variable Stimulus Probability One Homotopy”
from Melville et al. (1993).

Although strong results exist for analog elec-
trical circuit simulators, it is difficult to generalize
them to the large class of multi-domain systems
covered by a modeling language. In Modelica
a “homotopy” operator was introduced into the
language (Sielemann et al. 2011) in order that a
library developer can formulate simple homotopy
methods like the “source stepping” in a com-
ponent library. A generalization of probability
one methods for multi-domain systems was de-
veloped in the dissertation of Sielemann (2012)
and was successfully applied to air distribution
systems described as 1-dim. thermo-fluid pipe
flow.

Models for Control Systems

Models for Analysis
The multi-domain models from section “Mod-
eling Language Principles” can be utilized to
evaluate the properties of a control system by
simulation. Also control systems can be designed
by nonlinear optimization where at every opti-
mization step one or several simulations of a plant
model are executed. Furthermore, modeling en-
vironments usually provide a means to linearize
the nonlinear DAE (1) of the underlying model
around an operating point:

x .t/ � xop C�x.t/;w.t/ � wop C�w.t/;
y.t/ � yop C�y.t/; u.t/ � uop C�u.t/

(3)
resulting in

�Pxred D A �xred C B �u
�y D C�xred C D �u

(4)

where�xred is a vector consisting of elements of
the vector of �x, the vector �w is eliminated by
exploiting the algebraic constraints, and A, B, C,
D are constant matrices. Simulation tools provide
linear analysis and synthesis methods on this
linearized system and/or export it for usage in an
environment like Matlab, Maple, Mathematica,
or Python.

Multi-domain models might also be used
directly in nonlinear Kalman filters, moving
horizon estimators, or nonlinear model predictive
control. For example, the company ABB is using
moving horizon estimation and nonlinear model
predictive control based on Modelica models
to significantly improve the start-up process of
power plants (Franke and Doppelhamer 2006).

Inverse Models
A large body of literature exists about the theory
of nonlinear control systems that are based on
inverse plant models; see, for example, Isidori
(1995). Methods such as feedback linearization,
nonlinear dynamic inversion, or flat systems use
an inverse plant model in the control loop. How-
ever, a major obstacle is how to automatically
utilize an inverse plant model in a controller with-
out being forced to manually set up the equations
in the needed form which is not practical for
larger systems. Modeling languages can solve
this problem as discussed below.

Nonlinear inverse models can be utilized in
various ways in a control system. The simplest
approach, as feed forward controller, is shown in
Fig. 6.

Under the assumption that the models of the
plant and of the inverse plant are completely
identical and start at the same initial state, then
from the construction the control error e is zero
and y = T(s) � yref where T is a diagonal matrix
with the transfer functions of the low-pass filters
on the diagonal (so y � yref for reference signals

low pass
filters

inverse plant
model

feedback
controller

plant

, ,

−

Multi-domain Modeling and Simulation, Fig. 6
Controller with inverse plant model in the feed forward
path. The inverse plant model needs usually also
derivatives of yref as inputs. These derivatives are
provided by appropriate low-pass filters
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that have a frequency spectrum below the cutoff
frequency of the low-pass filters). Since actually
the assumption is usually not fulfilled, there will
be a nonzero control error e and the feedback
controller has to cope with it. This controller
structure with a nonlinear inverse plant model
has the advantage that the feed forward part is
useful over the complete operating range of the
plant.

Various other structures with nonlinear plant
models are discussed in Looye et al. (2005),
such as compensation controllers, feedback lin-
earization controllers, and nonlinear disturbance
observers.

It turns out that nonlinear inverse plant
models can be generated automatically with
the techniques that have been developed for
modeling languages; see section “Modeling
Language Principles”. In particular, constructing
an inverse model from (1) means that the inputs
u are defined to be outputs, so they are no longer
knowns but unknowns, and outputs y are defined
to be inputs, so they are no longer unknowns
but knowns. The resulting system is still a
DAE and can therefore be handled as any other
DAE.

Therefore, defining an inverse model with a
modeling language just requires exchanging the
definition of input and output signals. In Model-
ica, this can be graphically performed with the
nonstandard input–output block from Fig. 8.

This block has two inputs and two outputs and
described by the equations

u1 D u2I y1 D y2

From a block diagram point of view this looks
strange. However, from a DAE point of view,
this just states constraints between two input and
two output signals. In Fig. 8, it is shown how this
block can be used to invert a simple second order
system.

The output of the low-pass filter is connected
to the output of the second-order system and
therefore this model computes the input of the
second-order system, from the input of the filter.

A Modelica environment will generate from
this type of definition the inverse model, thereby

differentiating equations analytically and solving
algebraic variables of the model in a different way
as for a simulation model. The whole transforma-
tion is nontrivial, but it is just the standard method
used by Modelica tools as for any other type of
DAE system.

The question arises whether a solution of the
inverse model exists, is unique, and whether the
model is stable (otherwise, it cannot be applied
in a control system). In general, a nonlinear
inverse model consists of linear and/or nonlinear
algebraic equation systems and of linear and/or
nonlinear differential equations. Therefore, from
a formal point of view, the same theorems as for
a general DAE apply; see, for example, Brenan
et al. (1996). Furthermore, all these equations
need to be solved with a numerical method.
For some classes of systems, it can be shown
that mathematically a unique solution exists and
that the system is stable. However, in general,
one cannot expect that it is possible to provide
such a proof for complex inverse plant models.
Still, inverse plant models have been successfully
utilized by automatic generation from a Modelica
tool, e.g., for robots, satellites, aircrafts, vehicles,
and thermo-fluid systems.

The Functional Mockup Interface

Many different types of simulation environments
are in use. One cannot expect that a generic
approach as sketched in section “Modeling
Language Principles” will replace all these
environments with their rich set of domain-
specific knowledge, analysis, and synthesis
features. Practically, all simulation environments
provide a vendor-specific interface in order
that a user can import components that are not
describable by the simulation environment itself.
Typically, this requires to provide a component
as a set of C or Fortran functions with a particular
calling interface. In the control community,
the most widely used approach of this kind is
the S-Function interface from The MathWorks,
where Simulink is used as integration platform,
and model components from other environments
are imported as S-Functions.
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u1 u2 y1 y2

Multi-domain Modeling
and Simulation, Fig. 7
Modelica
InverseBlockConstraint
block

filter

f_cut=10
w=0.1

2
secondOrder

Multi-domain Modeling
and Simulation, Fig. 8
Inversion of a second-order
system in Modelica

In 2010 the vendor-independent standard
“Functional Mockup Interface 1.0” was
published (FMI Group 2010). This is a low-
level standard for the exchange of models
between different simulation environments. This
standard allows to exchange only either the model
equations (called “FMI for Model Exchange”) or
the model equations with an embedded solver
(called “FMI for Co-Simulation”). This standard
was quickly adopted by many simulation
environments, and in 2013 there are more than
40 tools that support it (for an actual list of
tools, see https://www.fmi-standard.org/tools).
In particular nearly all Modelica environments
can export Modelica models in this format, and
therefore, Modelica multi-domain models can be
imported in other environments with low effort.

A software component which implements the
FMI is called Functional Mockup Unit (FMU).
An FMU consists of one zip-file with extension
“.fmu” containing all necessary components to
utilize the FMU either for Model Exchange, for
Co-Simulation, or for both. The following sum-
mary is an adapted version from Blochwitz et al.
(2012):
1. An XML-file contains the definition of all

exposed variables of the FMU, as well as
other model information. It is then possible to
run the FMU on a target system without this
information, i.e., without unnecessary over-
head. Furthermore, this allows determining all

properties of an FMU from a text file, without
actually loading and running the FMU.

2. A set of C-functions is provided to execute
model equations for the Model Exchange case
and to simulate the equations for the Co-
Simulation case. These C-functions can be
provided either in binary form for different
platforms or in source code. The different
forms can be included in the same model zip-
file.

3. Further data can be included in the FMU zip-
file, especially a model icon (bitmap file),
documentation files, maps and tables needed
by the model, and/or all object libraries or
DLLs that are utilized.

Summary and Future Directions

Multi-domain modeling based on a DAE descrip-
tion and defined with a modeling language is an
established approach, and many tools support it.
This allows to conveniently define plant models
from many domains for the design and evalua-
tion of control systems. Furthermore, nonlinear
inverse plant models can be easily constructed
with the same methodology and can be utilized
in various ways in nonlinear control systems.

Current research focuses on the support of
the complete life cycle: defining requirements
of a system formally on a “high level,”

https://www.fmi-standard.org/tools
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considerably improving testing by checking these
requirements automatically when evaluating a
system design by simulations, and providing
complete tool chains from nonlinear multi-
domain models to embedded systems. The
latter will allow convenient and fast target code
generation of nonlinear controllers, extended and
unscented Kalman filters, optimization-based
controllers, or moving horizon estimators.

Furthermore, the methodology itself is further
improved. For example, in 2012, Modelica was
extended with language elements to define multi-
rate sampled data systems in a precise way, as
well as state machines.

Cross-References
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Synonyms
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Abstract

Dynamic processes, both continuous and
batch, are characterised by autocorrelated
measurements which are allied to the effects
of process dynamics and disturbances. The
common multivariate statistical process control
(MSPC) approaches have been to use principal
component analysis (PCA) or projection to latent
structures (PLS) to build a model that captures the
simultaneous correlations amongst the variables,
but that ignores the serial correlation in the
data during normal operations. Under such
conditions it is difficult to perform efficient fault
detection and diagnosis. An alternative approach
to account for the process dynamics in MSPC is
to use multiresolution analysis (MRA) by way
of wavelet decomposition. Here, the individual
measurements are decomposed into different

scales (or frequencies) and the signals in each
decomposed scale are then used for MSP which
provides an indirect way of handling process
dynamics.

Keywords

Multiresolution analysis; Partial least squares
(PLS); Principal component analysis (PCA);
Projection to latent structures (PLS); Wavelet
transform

Definition

Multiscale principal component analysis
(MSPCA) and its extension multiscale projection
to latent structures (MSPLS) combine the
abilities of these multivariate tools to de-
correlate the variables by extracting linear
relationships with that of wavelet analysis, to
extract deterministic features and approximately
de-correlate autocorrelated measurements.
Multiscale modeling makes use of the wavelet
transform which allows a signal (measurement)
to be viewed in multiple resolutions with each
resolution representing a different frequency.
That is, wavelet transform allows complex
information to be decomposed into basic
components at different positions and scales.

Motivation and Background

One of the drawbacks of the conventional
PCA (or PLS)-based MSPC is that although
the PCA/PLS model captures the correlations
among the variables, it ignores the serial
(auto)correlation in the process variables and
measurements. One way to overcome this issue
is to include time-lagged variables in the PCA
or PLS model. In this way, PCA and PLS will
explicitly model both the correlations among
the variables and the serial correlations in the
individual variables. The impact is an increase in
the number principal components required, but
the multivariate monitoring model will be able
to detect any changes in the serial correlation of

https://www.modelica. org/events/modelica2011/Proceedings/pages/papers/04 1 ID 154 a fv.pdf
https://www.modelica. org/events/modelica2011/Proceedings/pages/papers/04 1 ID 154 a fv.pdf
http://elib.dlr.de/11629/01/varga cacsd2000p2.pdf
http://elib.dlr.de/11629/01/varga cacsd2000p2.pdf
http://dx.doi.org/10.1007/978-1-4471-5058-9_100016
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the variables as well as changes in relationships
among the variables. This article focuses on
multiscale-multiway PCA using batchwise
data unfolding. However, the methodology
can equally be applied to PLS-based process
performance monitoring (MSPC).

In multivariate statistical process control
(MSPC), the multivariate statistical techniques
of principle component analysis (PCA) and
projection to latent structures {Partial Least
Squares} (PLS) together with monitoring metrics
based on Hotelling’s T 2 (directly related to
the Mahalanobis distance that monitors the
fit of new observations to the model space)
and the squared prediction error (SPE) or Q
statistic (that monitors the residual space-model
mismatch) are used to simultaneously monitor
the process variables (Kourti and MacGregor
1996; Qin 2003). A recent survey provides an
excellent state-of-the-art review of the methods
and applications of data-driven fault detection
and diagnosis that have been developed over the
last two decades (Qin 2012).

Process measurements typically exhibit multi-
scale behavior as a consequence of representing
the cumulative effect of a number of underlying
process phenomena including process dynamics,
measurement noise, and disturbances. To address
these issues, methodologies are required to ad-
dress (i) the multiscale nature of process data and
(ii) the inability of some existing algorithms to
handle autocorrelation. One approach is through
the use of multiresolution analysis and wavelets
Mallat (1998). Informative discussions and ap-
plication studies related to using multiresolution
analysis and wavelet decompositions to enhance
PCA-based process monitoring and fault detec-
tion have been presented, for example, by Bakshi
(1998), Misra et al. (2002), Aradhye et al. (2003),
Lu et al. (2003), Yoon and MacGregor (2004) and
Reis and Saraiva (2006). Yoon and MacGregor
in their comprehensive MSPCA study discussed
their approach in the context of other multiscale
approaches and illustrated the methodology using
simulated data from a continuous stirred-tank
reactor system. A major contribution of the paper
was to extend fault isolation methods based on
contribution plots to multiscale PCA approaches.
Although some 9 years old, Ganesan et al. (2004)

provided review of wavelet-based multiscale sta-
tistical process monitoring.

The Approach

Multiresolution analysis (MRA) provides the
theoretical basis for the derivation of a com-
putationally efficient algorithm for the wavelet
transform Mallat (1998). MRA allows the
dynamic aspects of the data in to be taken into
account in MSPC. The individual signals are
decomposed into different scales (frequencies),
and data in each decomposed scale are then used
for MSPC which provides an indirect approach
to handling process dynamics. Multiscale MSPC
(MSPCA) enables the simultaneous extraction
of process correlations across data as well as
accounting for autocorrelation within sensor
data. In this way, it captures correlations among
the process variables made by various events
occurring at different scales.

MSPCA calculates the principal components
of wavelet coefficients at each scale and com-
bines these at the relevant wavelet scales. Due
to its multiscale nature, MSPCA is very useful
for the modeling of data containing contribu-
tions from events whose behavior changes over
both time and frequency. Process monitoring by
MSPCA, and process prediction by MSPLS, in-
volves combining those scales where significant
events are detected. Approximate de-correlation
of wavelet coefficients also makes MSPCA ef-
fective for the monitoring of autocorrelated mea-
surements.

The Algorithm

Wavelets are a family of basis functions that
provide a mapping from the time domain to the
time-frequency domain. They can be used to
decompose the signal into different resolutions by
projecting onto the corresponding wavelet basis
functions using multiresolution analysis (MRA).
A wavelet set is constructed from a fundamen-
tal basis function or the mother wavelet by a
process of translation and dilation. The wavelet
set is defined as wavelet analysis which provides
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methodologies for the extraction of the time and
frequency content of a signal. Conventional fre-
quency analysis based on the Fourier transform
consists of decomposing a signal into sine waves
of different frequencies. Wavelet analysis decom-
poses the original signal in a similar manner. The
major difference is that while Fourier analysis
uses sine waves of infinite length, multiresolution
analysis uses waveforms of finite length. The
finite length of the wavelets allows them to de-
scribe local events in both the time and frequency
domain.

The wavelet transform, an extension to the
Fourier transform, projects the original signal
down onto wavelet basis functions, providing a
mapping from the time domain to the timescale
plane. The wavelet functions, which are localized
in the time and frequency domain, are obtained
from a single prototype wavelet, the mother
wavelet, by dilation and translation. The wavelet
set is defined as

 a;b.t/ D 1
pjaj 

�
t � b

a

�

where  is the mother wavelet function, a the
dilation parameter, and b the translation param-
eters, and the factor 1pjaj is used to ensure that
each wavelet function has the same energy as the
mother wavelet. The discrete wavelet transform
with dyadic dilation and translation is used in this
overview. A definition of continuous and discrete
wavelet transforms can be found in Daubechies
(1992). In the discrete case, the dilation and
translation parameters are discretized as a D am0
and b D kb0a

m
0 . If a0 D 2 and b0 D 1, a dyadic

dilation and translation is carried out; however,
a0 and b0 are not restricted to these values. The
discrete wavelet form, which is widely used in
process monitoring and chemical signal analy-
sis, is

 jk .t/ D a
�j=2
0  .a

�jt
0 � kb0/

A recursive algorithm for wavelet decompo-
sition and the reconstruction of a discrete signal
of dyadic length is often used Mallat (1998)
and is known as the pyramid algorithm. The
fast discrete wavelet decomposition consists of

three components, low-pass filters L.n/, high-
pass filters H.n/, and dyadic decimation. By
passing the input signal through this pair of
filters, the projection of the original signal
onto the scaling and wavelet functions for the
multiresolution analysis is performed. Dyadic
decimation, or down-sampling, removes every
odd member of a sequence, thus halving the
original number of samples. The low-pass filter
resembles a moving average, while the high-pass
filter extracts the detailed information contained
in the signal. The discrete wavelet transform
operates by taking a sequence of values, applying
L.n/ and H.n/ and then repeating this same
procedure to the approximation coefficients. In
this way, the original signal vector is smoothed
and halved through L, and the vector of
approximation coefficients is again smoothed
and halved through L. Successive application of
the low-pass filter results in the approximation
coefficients, becoming an increasingly smooth
version of the original signal. At the same time
as smoothing the signal, each iteration extracts
the high frequency information in the data.
The repeated application of L, followed by H
is, in effect, a band-pass filter. The result of
applying high-/low-pass filters to a signal is
a set of coefficients describing the details of
the signals DL and a second set describing the
approximations of the signals AL. The original
signal s can then be represented by

x.t/ D
LX

jD1
Dj .t/CAL.t/

where Dj and Aj are referred to as the j th level
wavelet details and approximation, respectively.

Figure 1 shows schematically the multi-
resolution-based wavelet decomposition.

One of the most popular choices of wavelets
are those of the Daubechies’ family. These
wavelets are compactly supported in the time
domain and have good frequency domain
decay. Moreover, Daubechies’ wavelets (DaubN)
possess a different type of smoothness which
is determined by the vanishing moments N .
This makes it possible to match the wavelet
smoothness to the smoothness of the signals to
be analyzed. The signal can then be decomposed
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Multiscale Multivariate
Statistical Process
Control, Fig. 1 Schematic
of multiresolution wavelet
decomposition

into its contributions from multiple scales
as a weighted sum of dyadically discretized
orthonormal basis functions:

x.t/ D
LX

mD1

NX

kD1
dmk mk.t/C

NX

kD1
alk'lk.t/

where x.t/ represents the process measurements,
dmk represents the wavelet or detail signal coeffi-
cient at scalem and location k, and aLk represent
the scaled signal or scaling function coefficient
of �.t/ at the coarsest scale L and location
k. The scaling function, or father wavelet, �mk
captures the low-frequency content of the original
signal that is not captured by wavelets at the
corresponding or finer scales.

The wavelet transformation is applied to
decompose a multivariate signal X into its
approximate, A1 to AL, and detail, D1 to DL,
coefficients for the first to Lth level, respectively.
For more information, see Bakshi (1998), Misra
et al. (2002) and Aradhye et al. (2003). Figure 2
shows a schematic representation of a typical
MSPCA multivariate statistical process control
scheme.

An example of the application of multiway-
multiscale MPCA to a benchmark-fed batch

fermentation process (Birol et al. http://
www.chee.iit.edu~control/software.html) was
presented by Alawi and Morris (2007). The
application used a combination of multiblock
statistical modeling approaches together with
multiscale-multiway batch monitoring. Figure 3
shows the multiscale-multiway monitoring
scheme for process monitoring and fault
detection. At every time point, the batch process
variables are decomposed into scales to the
wavelet domain and then reconstructed back
to the time domain. The scales/details and the
approximations are collected into separate ma-
trices (blocks). Multiblock PCA is then applied
to the wavelets details and approximation. Fault
detection based on the T 2s and Qs statistics was
used along with contribution plots incorporating
confidence bounds to enhance fault diagnosis.

Figure 4 compares the monitoring statistics
for the multiscale-multiway PCA and conven-
tional multiway PCA for a slowly drifting sen-
sor fault showing the potential for multiscale
MPCA (MSPCA) in being able to detect faster
subtle process and sensor faults than conventional
multiway MSPC. It is noted that sensor drift is
confined to one scale band at low frequency. It has
been observed that multiscale approaches appear
to provide little improvement if a fault effect is

http://www.chee.iit.edu~control/software.html
http://www.chee.iit.edu~control/software.html
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Multiscale Multivariate Statistical Process Control, Fig. 2 Schematic representation of multiscale PCA-based
MSPC

Multiscale Multivariate Statistical Process Control, Fig. 3 Multiscale-multiway batch process monitoring scheme

spread over more than one frequency band or
the fault effect occurs mainly in a scale with
dominant variance. Thus, a monitoring method
that gives the best detection and identification
of faults will depend on the fault characteristics
with multiscale approaches, providing an advan-
tage when the faults localized in frequency or
that appear in scales that normally have small
variance.

Other Applications of Multiscale
MPCA

There have a number of nonlinear extensions. For
example, multiscale PLS approaches have been

developed, e.g., Teppola and Minkkinen (2000)
and Lee et al. (2009). Nonlinear approaches have
also been explored. For example, Lee et al. (2004)
proposed a batch monitoring approach using
multiway kernel principal component analysis,
Shao et al. (1999) proposed a wavelet-based
nonlinear PCA algorithm, Choi et al. (2008)
described a study of a kernel-based MSPCA
algorithm for nonlinear multiscale monitoring,
and most recently Zhang and Ma (2011) com-
pared fault diagnosis of nonlinear processes using
multiscale KPCA and multiscale KPLS. Wavelet
multiscale approaches have also been widely
discussed in spectroscopic data processing (Shao
et al. 2004).
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Multiscale Multivariate Statistical Process Control,
Fig. 4 Comparison of MPCA and multiscale MSPCA for
a range of subtle sensor drift faults magnitude ! against
fault detection delay
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moving in a metric space, in order to complete
spatially localized, exogenously generated tasks
in an efficient way. Control policies depend on
several factors, including the definition of the
tasks, of the task generation process, of the vehi-
cle dynamics and constraints, of the information
available to the vehicles, and of the performance
objective. Ensuring the stability of the system,
i.e., the uniform boundedness of the number of
outstanding tasks, is a primary concern. Typical
performance objectives are represented by mea-
sures of quality of service, such as the average
or worst-case time a task spends in the system
before being completed or the percentage of tasks
that are completed before certain deadlines. The
scalability of the control policies to large groups
of vehicles often drives the choice of the informa-
tion structure, requiring distributed computation.

Keywords

Cooperative control; Decentralized control; Dy-
namic routing; Networked robots; Task allocation

Introduction

Multi-vehicle routing problems in systems and
control theory are concerned with the design of
control policies to coordinate several vehicles
moving in a metric space, in order to complete
spatially localized, exogenously generated tasks
in an efficient way. Key features of the prob-
lem are that tasks arrive sequentially over time
and planning algorithms should provide control
policies (in contrast to preplanned routes) that
prescribe how the routes should be updated as a
function of those inputs that change in real time.
This problem is usually referred to as dynamic
vehicle routing (DVR). In DVR problems, ensur-
ing the stability of the system, i.e., the uniform
boundedness of the number of outstanding tasks,
is a primary concern.

Motivation and Background
As a motivating example, consider the following
scenario: a team of unmanned aerial vehicles

(UAVs) is responsible for investigating possible
threats over a region of interest. As possible
threats are detected, by intelligence, high-altitude
or orbiting platforms, or by ground sensor net-
works, one of the UAVs must visit its location
and investigate the cause of the alarm, in order
to enable an appropriate response if necessary.
Performing this task may require the UAV not
only to fly to the possible threat’s location but
also to spend additional time on site. The objec-
tive is to minimize the average time between the
appearance of a possible threat and the time one
of the UAVs completes the close-range inspection
task. Variations may include priority levels, time
windows during which the inspection task must
be completed, and sensors with limited range.

In order to perform the required mission, the
UAVs (or, more in general, mission control)
need to repeatedly solve three coupled decision-
making problems:
1. Task allocation: which UAV shall pursue

each task? What policy is used to assign tasks
to UAVs? How often should the assignment
be revised?

2. Service scheduling: given the list of tasks to
be pursued, what is the most efficient ordering
of these tasks?

3. Loitering paths: what should UAVs without
pending assignments do?

The optimization process must take into account,
for example, algebraic or differential constraints
(such as obstacle avoidance or bounded cur-
vature, respectively), sensing constraints, com-
munication constraints, and energy constraints.
Furthermore, one might require a decentralized
control architecture.

DVR problems, including the above UAV
routing problem, are generally intractable due
to their multifaceted combinatorial, differential,
and stochastic nature, and consequently solution
approaches have been devised that look either
at heuristic algorithms or at approximation
algorithms with some guarantee on their
performance.

Related Problems
DVR problems represent the dynamic counter-
part of the well-known static vehicle routing
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problem (VRP), whereby (i) a team of n vehicles
is required to service a set of nT “static” tasks in
a metric space, (ii) each task requires a certain
amount of on-site service, (iii) and the goal is to
compute a set of routes that minimizes the cost
of servicing the tasks; see Toth and Vigo (2001)
for a thorough introduction to this problem. The
VRP is static in the sense that vehicle routes
are computed assuming that no new tasks arrive.
The VRP is an important research topic in the
operations research community.

Approaches for Multi-vehicle Routing

Broadly speaking, there are three main
approaches available in the literature to tackle
dynamic vehicle routing problems. The first
approach relies on heuristic algorithms. In the
second approach, called “competitive analysis
approach,” routing policies are designed to
minimize the worst-case ratio between their
performance and the performance of an optimal
off-line algorithm which has a priori knowledge
of the entire input sequence. In the third
approach, the routing problem is embedded
within the framework of queueing theory.
Routing policies are then designed to stabilize
the system in terms of uniform boundedness of
the number of outstanding tasks and to minimize
typical queueing-theoretical cost functions such
as the expected time the tasks remain in the queue.
Since the generation of tasks and motion of the
vehicles is within an Euclidean space, one can
refer to this third approach as “spatial queueing
theory.”

Heuristic Approach
The main aspect of the heuristic approach is that
routing algorithms are evaluated primarily via nu-
merical, statistical and experimental studies, and
formal performance guarantees are not available.
A naïve, yet reasonable approach to design a
heuristic algorithm for DVR would be to adapt
classic queueing policies. However, perhaps sur-
prisingly, this adaptation is not at all straightfor-
ward. For example, routing algorithms based on a
first-come-first-served policy, whereby tasks are

fulfilled in the order in which they arrive, are un-
able to stabilize the system for all stabilizable task
arrival rates, in the sense that with such routing al-
gorithms the average number of tasks grows over
time without bound, even though there exist alter-
native routing algorithms that would maintain the
number of tasks uniformly bounded (Bertsimas
and van Ryzin 1991).

The most widely applied approach is
to combine static routing methods (e.g.,
VRP-like methods, nearest neighbor strategies,
or genetic algorithms) and sequential re-
optimization, where the re-optimization horizon
is chosen heuristically. In particular, greedy
nearest neighbor strategies, whose formal
characterization still represents an open problem,
are known to perform particularly well in some
notable cases (Bertsimas and van Ryzin 1991).
However, the joint selection of a static routing
method and of the re-optimization horizon in
the presence of vehicle and task constraints
(e.g., differential motion constraints, or task
priorities) makes the application of this approach
far from trivial. For example, one can show that
an erroneous selection of the re-optimization
horizon can lead to pathological scenarios where
no task ever receives service (Pavone 2010).
Additionally, performance criteria in dynamic
settings commonly differ from those of the
corresponding static problems. For example, in
a dynamic setting, the time needed to complete
a task may be a more important factor than the
total vehicle travel cost.

Competitive Analysis Approach
The distinctive feature of the competitive analy-
sis approach is the method used to evaluate an
algorithm’s performance, which is called compet-
itive analysis. In competitive analysis, the per-
formance of a (causal) algorithm is compared
to the performance of a corresponding off-line
algorithm (i.e., a non-causal algorithm that has
a priori knowledge of the entire input) in the
worst-case scenario. Specifically, an algorithm is
c-competitive if its cost on any problem instance
is at most c times the cost of an optimal off-line
algorithm:
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Costcausal.I / � c Costoptimal off-line.I /;

for all problem instances I:

In the recent past, several dynamic vehicle
routing problems have been successfully studied
in this framework, under the name of the online
traveling repairman problem (Jaillet and Wagner
2006), and many interesting insights have been
obtained. However, the competitive analysis
approach has some potential disadvantages. First,
competitive analysis is a worst-case analysis;
hence, the results are often overly pessimistic
for normal problem instances, and potential
statistical information about the problem (e.g.,
knowledge of the spatial distribution of future
tasks) is often neglected. Second, the worst-
case analysis usually requires a finite horizon
problem formulation, which precludes the
study of useful properties such as stability.
Third, competitive analysis is used to bound
the performance relative to an optimal off-line
algorithm, which, by being non-causal, does not
belong to the feasible set of routing algorithms
one is optimizing over. Hence, with this approach
one minimizes the “cost of causality” in
the worst-case scenario, but not necessarily
the worst-case cost (which would require
comparison with an optimal causal routing
algorithm). Finally, many important real-world
constraints for DVR, such as time windows,
priorities, differential constraints on vehicle’s
motion, and the requirement of teams to fulfill
a task, have so far proved to be too complex
to be considered in the competitive analysis
framework (Golden et al. 2008, page 206). Some
of these drawbacks have been recently addressed
by Van Hentenryck et al. (2009) where a
combined stochastic and competitive analysis
approach is proposed for a general class of
combinatorial optimization problems and is
analyzed under some technical assumptions.

Spatial Queueing Theory
Spatial queueing theory embeds the dynamic ve-
hicle routing problem within the framework of
queueing theory. Spatial queueing theory consists
of three main steps, namely, development of a

spatial queueing model, establishment of funda-
mental limitations of performance, and design of
algorithms with performance guarantees. More
specifically, the formulation of a model entails
detailing four main aspects:
1. A model for the dynamic component of the

environment: this is usually achieved by as-
suming that new events are generated (either
adversarially or stochastically) by an exoge-
nous process.

2. A model for targets/tasks: tasks are usually
modeled as points in a physical environment
distributed according to some (possibly un-
known) distribution, might require a certain
level of on-site service time, and can be sub-
ject to a variety of constraints, e.g., time win-
dows, priorities, etc.

3. A model for the vehicles and their motion:
besides their number, one needs to specify
whether the vehicles are subject to alge-
braic (e.g., obstacles) or differential (e.g.,
minimum turning radius) constraints, sensing
constraints, and fuel constraints. Also, the
control could be centralized (i.e., coordinated
by a central station) or decentralized and
subject to communication constraints.

4. Performance criterion: examples include the
minimization of the waiting time before ser-
vice, loss probabilities, expectation-variance
analysis, etc.
Once the model is formulated, one seeks

to characterize fundamental limitations of
performance (in the form of lower bounds for
the best achievable cost); the purpose of this step
is essentially twofold: it allows the quantification
of the degree of optimality of a routing algorithm
and provides structural insights into the problem.
As for the last step, the design of a routing
algorithm usually relies on a careful combination
of static routing methods with sequential re-
optimization. Desirable properties for the static
methods are the following: (i) the static problem
can be solved (at least approximately) in
polynomial time and (ii) the static method is
amenable to a statistical characterization (this is
essential for the computation of performance
bounds). Formal performance guarantees on
a routing algorithm are then obtained by
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quantifying the ratio between an upper bound on
the cost delivered by that algorithm and a lower
bound for the best achievable cost. Such a ratio,
being an estimate of the degree of optimality of
the algorithm, should be close to one and possibly
independent of system parameters. The proposed
algorithms are finally evaluated via numerical,
statistical and experimental studies, including
Monte-Carlo comparisons with alternative
approaches.

An interesting feature of this approach is that
the performance analysis usually yields scaling
laws for the quality of service in terms of model
data, which can be used as useful guidelines
to select system parameters when feasible (e.g.,
number of vehicles).

In order to make the model tractable, the ar-
rival process of tasks is assumed stationary (with
possibly unknown parameters) with statistically
independent arrival times. These assumptions,
however, can be unrealistic in some scenarios, in
which case the competitive analysis approach
may represent a better alternative. From a
technical standpoint, one should note that spatial
queueing models are inherently different from
traditional, nonspatial queueing models. The
main reason is that in spatial queueing models,
the “service time” per task has both a travel
and an on-site component. Although the on-
site service requirements can often be modeled
as “statistically” independent, the travel times
are inherently statistically coupled. Hence, in
contrast to standard queueing models, service
times in spatial queueing models are statistically
dependent, and this deeply affects the solution to
the problem.

Pioneering work in this context is that of Bert-
simas and van Ryzin (1991), who introduced
queueing methods to solve the baseline DVR
problem (a vehicle moves along straight lines and
visits tasks whose time of arrival, location, and
on-site service are stochastic; information about
task location is communicated to the vehicle upon
task arrival). Next section provides an overview
of the application of spatial queueing theory to
such simplified DVR problem, referred to in
the literature as dynamic traveling repairman
problem (DTRP).

Applying Spatial Queueing Theory
to DVR Problems

Spatial Queueing TheoryWorkflow for
DTRP

Model
The DTRP, which, incidentally, captures well the
salient features of the UAV scenario outlined
in the Motivation Section, can be modeled as
follows. In a geographical region Q of area A,
a dynamic process generates spatially localized
tasks. The process generating tasks is modeled
as a spatio-temporal Poisson process, i.e., (i) the
time between consecutive generation instants has
an exponential distribution with intensity  >

0 and (ii) upon arrival, the locations of tasks
are independently and uniformly distributed in
Q. The location of the new tasks is assumed
to be immediately available to a team of n ser-
vicing vehicles. The vehicles provide service in
Q, traveling at a speed at most equal to v; the
vehicles are assumed to have unlimited fuel and
task-servicing capabilities. Each task requires an
independent and identically distributed amount of
on-site service with finite mean duration s > 0.
A task is completed when one of the vehicles
moves to its location and performs its on-site
service. The objective is to design a routing policy
that maximizes the quality of service delivered
by the vehicles in terms of the average steady-
state time delay T between the generation of a
task and the time it is completed (in general, in
a dynamic setting, the focus is on the quality
of service as perceived by the “end user,” rather
than, for example, fuel economies achieved by
the vehicles). Other quantities of interest are the
average number nT of tasks waiting to be com-
pleted and the waiting timeW of a task before its
location is reached by a vehicle. These quantities,
however, are related according to T D W C s

(by definition) and by Little’s law, stating that
nT D W , for stable queues.

The system is considered stable if the expected
number of waiting tasks is uniformly bounded at
all times, or equivalently, that tasks are removed
from the system at least at the same rate at
which they are generated. In the case at hand,
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the time to complete a task is the sum of the
time to reach its location (which depends on the
routing policy) plus the time spent at that location
in on-site service (which is independent of the
routing policy). Since, by definition, the service
time is no shorter than the on-site service time
s, then a weaker necessary condition for stability
is % WD s=n < 1; the quantity % measures
the fraction of time the vehicles are performing
on-site service. Remarkably, it turns out that this
is also a sufficient condition for stability, in the
sense that, if this condition is satisfied, one can
find a stabilizing policy. Note that this stability
condition is independent of the size and shape of
Q and of the speed of the vehicles.

Fundamental Limitations of Performance
To derive lower bounds, the main difficulty con-
sists in bounding (possibly in a statistical sense)
the amount of time spent to reach a target lo-
cation. The derivation of these bounds becomes
simpler in asymptotic regimes, i.e., looking at
cases when % ! 0C and % ! 1�, which are often
called “light-load” and “heavy-load” conditions,
respectively.

Consider first the case in which % ! 0C
(light-load regime). A set of n points is called the
n-median of Q if it globally minimizes the ex-
pected distance between a random point sampled
uniformly from Q and the closest point in such
set. In other words, the n-median of Q globally
minimizes the function

Hn.p1; p2; : : : ; pn/

WD E
�
mink2f1;:::;ng kpk � qk�

D 1

A

Z

Q
min

k2f1;:::;ng
kpk � qk dq:

Let H�
n be the global minimum of this function.

Geometric considerations show that H�
n scales

proportionally to
p
A=n.

Incidentally, the n-median of Q induces a
Voronoi partition that is called Median Voronoi
Tessellation, whose importance will become clear
in the next section. Recall that the Voronoi di-
agram of Q induced by points .p1; : : : ; pn/ is
defined by

Vi D
n
q 2 Qj kq � pik � kq � pjk; 8j ¤ i;

j 2 f1; : : : ; ng
o
;

where Vi is the region associated with the i -th
“generator” point pi (see also �Optimal Deploy-
ment and Spatial Coverage). The distance H�

n

certainly provides a lower bound on the expected
distance traveled by a vehicle to reach a task, and
hence one obtains the lower bound

T � H�
n

v
C s:

This lower bound is tight in light-load conditions
(% ! 0C), as it will be seen in the next section.

Consider now the case in which % ! 1�
(heavy load). LetD be the average travel distance
per task for some routing policy. By using ar-
guments from geometrical probability (indepen-
dent of algorithms), one can show that D �
ˇ2

p
A=

p
2nT as % ! 1�, where ˇ2 is a constant

that will be specified later. As discussed, for
stability, one needs s CD=v < n=. Combining
the stability condition with the bound on the
average travel distance per task, one obtains

s C ˇ2
p
A

v
p
2nT

� n


:

Since, by Little’s law, nT D W and T D W Cs,
one finally obtains (recall that % D s=n):

T � ˇ22
2

A

v2


n2 .1 � %/2 C s; .as % ! 1�/:

A salient feature of the above lower bound is
that it scales quadratically with the number of ve-
hicles (as opposed to the square-root scaling law
one has in light-load conditions); note, however,
that congestion effects are not included in this
model. This bound also shows that the quality
of service, which is proportional to 1=.1 � %/2,
degrades much faster as the target load increases
than in nonspatial queueing systems (where the
growth rate is proportional to 1=.1� %/).

http://dx.doi.org/10.1007/978-1-4471-5058-9_217
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Design of Routing Algorithms
The design of an optimal light-load policy es-
sentially relies on mimicking the proof strategy
employed for the light-load lower bound. Specif-
ically, a routing policy whereby (1) one vehicle
is assigned to each of the n median locations
of Q, (2) new tasks are assigned to the nearest
median location and its corresponding vehicle,
and (3) each vehicle services tasks according to
a first-come-first-served policy is asymptotically
optimal, i.e.,

T ! Hn

v
C s; .as % ! 0C/:

Note that under this strategy “regions of domi-
nance” are implicitly assigned to vehicles accord-
ing to a Median Voronoi Tessellation.

The heavy-load case is more challenging.
Consider, first, the following single-vehicle
routing policy, based on a partition of Q into
p � 1 subregions fQ1, Q2, . . . , Qpg of equal
area A=p. Such a partition can be obtained, e.g.,
as sectors centered at the median of Q. Define a
cyclic ordering for the subregion, such that, e.g.,
if the vehicle is in region Qi , the “next” region is
Qj , where j follows i in the cyclic ordering (in
other words, j D .i C 1/modp).

1. If there are no outstanding tasks, move to
the median of the region Q.

2. Otherwise, visit the “next” subregion;
subregions with no tasks are skipped.
Compute a minimum-length path from
the vehicle’s current position through all
the outstanding tasks in that subregion.
Complete all tasks on this path, ignoring
new tasks generated in the meantime.
Repeat.

The problem of computing the shortest path
through a number of points is related to the well-
known traveling salesman problem (TSP). While
the TSP is a prototypically hard combinatorial
optimization problem, it is well known that the
Euclidean version of the problem can be approx-
imated efficiently (Vazirani 2001). Furthermore,
the length ETSP.nT/ of a Euclidean TSP through

nT points independently and uniformly sampled
in Q is known to satisfy the following property:

lim
nT!1 ETSP.nT/=

p
nTDˇ2 �pA; almost surely;

where ˇ2 � 0:712 is a constant (the same
ˇ2 constant that appeared in the previous sec-
tion) (Steele 1990).

It can be shown that, using the above routing
policy, the average system time T satisfies

T � �.p/
A

v2


.1 � %/2
C s; .as % ! 1�/;

where �.1/ D ˇ22 and �.p/ ! ˇ22=2 for large p.
These results critically exploit the statistical char-
acterization of the length of an optimal TSP tour.
Hence, the proposed policy achieves a quality
of service that is arbitrarily close to the optimal
one, in the asymptotic regime of heavy load (and,
indeed, also of light load).

The above single-vehicle routing policies can
be fairly easily lifted to an efficient multi-vehicle
routing policy. The key idea (akin to the one in the
light-load case) is to (1) partition the workspace
into n regions of dominance (with disjoint interi-
ors and whose union is Q), (2) assign one vehicle
to each region, and (3) have each vehicle follow
a single-vehicle routing policy within its own re-
gion. This approach leads to the following multi-
vehicle routing policy for the DTRP problem:

1. Partition Q into n regions of dominance
of equal area and assign one vehicle to
each region.

2. Each vehicle executes a single-vehicle
DTRP policy in its own subregion.

Using as single-vehicle policy the routing pol-
icy described above, the average system time T
in heavy-load satisfies

T � �.p/
A

v2


n2 .1 � %/2
C s; .% ! 1�/:

Hence, by comparing this result with the cor-
responding lower bound, one concludes that a
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simple partitioning strategy leads to a multi-
vehicle routing policy whose performance is ar-
bitrarily close to the optimal one in heavy load.

Mode of Implementation
The scalability of the control policies to large
groups of vehicles often requires a distributed
implementation of multi-vehicle routing strate-
gies. For the DTRP, a distributed implementa-
tion can be obtained by devising decentralized
algorithms for environment partitioning. In the
solution proposed in Pavone (2010), power dia-
grams are the key geometric concept to obtain,
in a decentralized fashion, partitions suitable for
both the light-load case (requiring, as seen before,
a Median Voronoi Tessellation) and the heavy-
load case (requiring an equal-area partition). The
power diagram of Q is defined as

Vi D
n
q 2 Qj kq � pik2 � wi�kq � pjk2 � wj ;

8j ¤ i; j 2 f1; : : : ; ng
o
;

where .pi ;wi / 2 Q � R are a set of “power
points” and Vi is the subregion associated with
the i -th power point. Note that power diagrams
are a generalization of Voronoi diagrams: when
all weights are equal, the power diagram and the
Voronoi diagram are identical. The basic idea,
then, is to associate to each vehicle i a virtual
power point, which is an artificial (or logical)
variable whose value is locally controlled by the
i -th vehicle. The cell Vi becomes the region of
dominance for vehicle i , and each vehicle updates
its own power point according to a decentralized
gradient-descent law with respect to a cover-
age function (�Optimal Deployment and Spatial
Coverage), until the desired partition is achieved.
The reader is referred to Pavone (2010) for more
details.

Extensions and Discussion
By integrating additional ideas from dynamics,
teaming, and distributed algorithms, the spatial
queueing theory approach has been recently ap-
plied to scenarios with complex models for the
tasks such as time constraints, service priori-

ties, translating tasks, and adversarial generation;
has been extended to address aspects concerning
robotic implementation such as complex vehi-
cle dynamics, limited sensing range, and team
forming; and has even been tailored to integrate
humans in the design space; see Bullo et al.
(2011) and references therein. Despite the sig-
nificant modeling differences, the “workflow” is
essentially the same as in the DTRP: a queueing
model that captures the salient features of the
problem at hand, characterization of the funda-
mental limitations of performance, and design of
algorithms with provable performance bounds.
The last step, as for the DTRP, often involves
lifting a single-vehicle policy to a multi-vehicle
policy through the strategy of environment par-
titioning. Within this context, a number of parti-
tioning schemes and corresponding decentralized
partitioning algorithms relevant to a large variety
of DVR problems are discussed in Pavone et al.
(2009).

This workflow efficiently and transparently
decouples the three decision-making problems
mentioned in the Introduction Section, i.e., “task
allocation,” “service scheduling,” and “loitering
paths.” In fact, task allocation is addressed via
the strategy of environment partitioning, service
scheduling is addressed by applying a single-
vehicle routing policy within the individual
regions of dominance, and the loitering paths
resolve in placing the vehicles at or around
specific points within the dominance regions
(e.g., the median). Note, however, that in some
important cases, e.g., DVR problems where
goods have to be transported from a pickup
location to a delivery location or where vehicles
are differentially constrained and operate in a
“congested” workspace, multi-vehicle policies
that rely on static partitions perform poorly or
are not even feasible (Pavone et al. 2009), and
task allocation and service scheduling need to be
addressed as tightly coupled.

Through spatial queueing theory one is
usually able to characterize the performance
of multi-vehicle routing policies in asymptotic
regimes. To ensure “satisfactory” performance
under general operation conditions, a common
strategy is to consider heuristic modifications

http://dx.doi.org/10.1007/978-1-4471-5058-9_217
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to a baseline asymptotically efficient routing
policy in such a way that, on the one hand,
asymptotic performance is preserved, and, on the
other hand, light- and heavy-load performances
are “smoothly” and efficiently blended in the
intermediate load case. The interested reader
can find more information in Bullo et al.
(2011).

Summary and Future Directions

The three main approaches available to tackle
DVR problems are (i) heuristic algorithms, (ii)
competitive analysis, and (iii) spatial queueing
theory. Broadly speaking, the competitive anal-
ysis approach is well suited when worst-case
guarantees are sought, e.g., because there is not
enough statistical information about the problem
at hand. Spatial queueing theory represents a
powerful alternative in cases where it is possi-
ble to leverage statistical information and one
seeks average-case guarantees. Finally, for some
problems the complexity of the model makes
an analytical treatment very difficult, in which
case the only option is to resort to an heuristic
approach (possibly relying on insights derived
by applying competitive analysis and/or spatial
queueing theory to a simplified version of the
problem).

Future directions include the extension of the
three aforementioned approaches to increasingly
complex problem setups, for example, higher-
fidelity vehicle dynamics and environments
and sophisticated sensing and communication
constraints, novel applications (e.g., search and
rescue missions, map maintenance, and pursuit-
evasion), and inclusion of game-theoretical tools
to address adversarial scenarios. Specifically, for
the spatial queueing theory approach, key future
directions include the problem of addressing
optimality of performance in intermediate

regimes (current optimality results are only
available either in the light or heavy-load
regimes), online estimation of the statistical
parameters (e.g., spatial distribution of the tasks),
and formulations that take into account second-
order moments and large-deviation probabilities.
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Abstract

Game theory plays a central role in studying sys-
tems with a number of interacting players com-
peting for a common resource. A communication
network serves as a prototypical example of such
a system, where the common resource is the net-
work, consisting of nodes and links with limited
capacities, and the players are the computers,
web servers, and other end hosts who want to
transfer information over the shared network. In
this entry, we present several examples of game-
theoretic interaction in communication networks
and present a simple mathematical model to study
one such instance, namely, resource allocation in
the Internet.

Keywords and Phrases

Congestion games; Network economics; Price-
taking users; Routing games; Strategic users

Introduction

A communication network can be viewed as a
collection of resources shared by a set of compet-
ing users. If the network were totally unregulated,
then each user would attempt to grab as many
resources in the network as possible, resulting in
poor network performance, a situation commonly
referred to as the tragedy of the commons (Hardin
1968). In reality, there is a carefully designed
set of network protocols and pricing mechanisms
which provide incentives to users to act in a
socially responsible manner. Since game theory
is the mathematical discipline which studies the
interactions between selfish users, it is a natu-
ral tool to use to design these network control
mechanisms. We now provide a few examples
of network problems which naturally lend them-
selves to game-theoretic analysis. Later, we will
elaborate on the game-theoretic formulation of
one of these examples.
• Resource Allocation: A network such

as the Internet is a collection of links,
where each link has a limited data-carrying
capacity, usually measured in bits per second.
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The Internet is shared by billions of users,
and the actions of these users have to be
regulated so that they share the resources in
the network in a fair manner. Equivalently,
this problem can be viewed as one in which
a network designer has to design a collection
of protocols so that the users of the network
can equitably allocate the available resources
among themselves without the intervention of
a central authority. Such protocols are built
into every computer connected to the Internet
today, to allow for seamless operation of the
network. The problem of designing such
protocols can be posed as a game-theoretic
problem in which the players are the network
and the traffic sources using the network
(Kelly 1997).

• Routing Games: Finding appropriate routes
for each user’s data traffic is a particular form
of resource allocation mentioned above. How-
ever, routing has applications beyond commu-
nication networks (with the other major ap-
plication area being transportation networks),
so it is useful to discuss routing separately.
In communication networks, each user may
attempt to find the minimum-delay route for
its traffic, with help from the network, to
minimize the delay experienced by its packets.
In a transportation network, each automobile
on the road attempts to take the path of least
congestion through the network. An active
area of research in game theory is one which
tries to understand the impact of individual
user decisions on the global performance of
the network (Roughgarden 2005). An interest-
ing result in this regard is the Braess paradox
which is an example of a road transporta-
tion network in which the addition of a road
leads to increased delays when each user self-
ishly choose a route to minimize its delay. Of
course, if routes are chosen to minimize the
overall delay experienced in the network such
a paradox will not arise.

• Peer-to-Peer Applications: Many studies have
indicated that file sharing between users (also
known as peers) directly, without using a
centralized web site such as YouTube, is a
dominant source of traffic in the Internet.

For such a peer-to-peer service to work,
each peer should not only download files
from others, but should also be willing to
sacrifice some of its resources to upload files
to others. Naturally, peers would prefer to
only download and not upload to minimize
their resource usage. The design of incentive
schemes to induce users to both download
and upload files is another example of a
game-theoretic problem in a network (Qiu
and Srikant 2004).

• Network Economics: In addition to end-user
interaction, Internet service providers (ISPs)
have to interact with each other to allow their
customers access to all the web sites in the
world. For example, one ISP may have a
customer who wants to access a web site
connected to another ISP. In this case, the data
traffic must cross ISP boundaries, and thus,
one ISP has to transport data destined for a
customer of another ISP. Thus, ISPs must be
willing to contribute resources to satisfy the
needs of customers who do not directly pay
them. In such a situation, ISPs must have bilat-
eral agreements (commonly known as peering
agreements) to ensure that the selfish interest
of each ISP to minimize its resource usage
is aligned with the needs of its customers.
Again, game theory is the right tool to study
such inter-ISP interactions (Courcoubetis and
Weber 2003).

• Spectrum Sharing: Large portions of the ra-
dio spectrum are severely underutilized. Typ-
ically, portions of the spectrum are assigned
to a primary user, but the primary user does
not use it most of the time. There has been
a surge of interest recently in the concept of
cognitive radio, whereby radios are cognitive
of the presence or absence of the primary
user, and when the primary user is absent,
another radio can use the spectrum to transmit
its data. When there are many users and the
available spectrum is split into many channels,
it is impossible for users to perfectly coordi-
nate their transmissions to achieve maximum
network utilization. In these situations, game-
theoretic protocols which take into account the
noncooperative behavior of the users can be
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designed to allow secondary users to access
the available channels as efficiently as possi-
ble (Saad et al. 2009).
In the next section, we will elaborate on one of

the applications above, namely, resource alloca-
tion in the Internet, and show how game-theoretic
modeling can be used to design fair resource
sharing.

Resource Allocation and Game
Theory

Consider a network consisting of L links, with
link l having capacity cl . Suppose that there areR
users sharing the network, with each user r being
characterized by a set of links which connect the
user’s source to its destination. Since each user
uses a fixed route in our model, we will use r to
denote both the user and the route used by the
user. We use the notation l 2 r to denote that
link l is a part of route r . Let xr denote the rate
at which user r transmits data. Thus, we have the
following natural constraints, which state that the
total data rate on any link must be less than or
equal to the capacity of the link:

X
r Wl2r

xr � cl ; 8l: (1)

Associated with each user is a concave utility
function Ur.xr / which is the utility that user
r derives by transmitting data at rate xr . The
network utility maximization problem is to solve

max
x�0

X
r

Ur .xr /; (2)

subject to the constraint (1). In (2), x denotes the
vector .x1; x2; : : : ; xR/ and x � 0 means that
each component of x must be greater than or
equal to zero. Note that the goal of the network
in (2) is to maximize the sum of the utilities of
the users in the network.

Let pl be the Lagrange multiplier correspond-
ing to the capacity constraint in (1) for link l .
Then the Lagrangian for the problem is given by

L.x; p/ D
X
r

Ur.xr /�
X
l

pl .yl � cl /; (3)

where we have used the notation yl WD P
r Wl2r xr

to denote the total data rate on link l . If p is
known, then the optimal x can be calculate by
solving

max
x�0 L.x; p/:

Notice that the optimal solution for each xr can
be obtained by solving

max
xr�0

Ur.xr /� qrxr ; (4)

where qr D P
l2r pl . Thus, if the Lagrange

multipliers are known, then the network utility
maximization can be interpreted as a game in
the following manner. Suppose that the network
charges each user qr dollars for every bit trans-
mitted by user r though the network. Then, qrxr
is the dollars per second spent by the user if xr is
measured in bits per second. Interpreting Ur.xr /
as the dollars per second that the user is willing
to pay for transmitting at rate xr , the optimization
problem in (4) is the problem faced by user
r which wants to maximize its net utility, i.e.,
utility minus cost. Thus, the individual optimal
solution for each user is also the solution to
the network utility maximization problem. The
above game-theoretic interpretation of the net-
work utility maximization problem is somewhat
trivial since, given the pl ’s or qr ’s, there is no
interaction between the users. Of course, this
interpretation relies on the ability of the network
to compute p. We next present a scheme to com-
pute p, which couples the users closely and thus
allows for a richer game-theoretic interpretation.

Suppose that the network wants to compute p
but does not have access to the utility functions
of the users. The network asks each user r to bid
an amount wr which is interpreted as the dollars
per second that the user is willing to pay. The
network then assumes that user r’s utility func-
tion is wr logxr and solves the network utility
maximization. While this choice of utility func-
tion may seem arbitrary, the resulting solution x
has a number of attractive properties, including a
form of fairness called proportional fairness. The
proportionally fair resource allocation solution
to (4) is given by
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wr
xr

D qr : (5)

The network then allocates rate xr to user r and
charges qr dollars per bit. From (5), the amount
charged to user r per second is wr , thus satisfying
the original interpretation of wr . Knowing that the
network charges users in this manner, how might
a user choose its bid wr? Recall that user r’s goal
is to solve (4). Substituting from (5), the problem
in (4) can be rewritten as

max
wr�0

Ur

�
wr
qr

�
� wr : (6)

Thus, the users’ problem of selecting w can be
viewed as a game, with each user’s objective
given by (6). Note that qr is given by (5) and
thus depends on all the wr ’s. Depending upon the
application, the game can be solved under one of
two assumptions:
• Price-Taking Users: Under this assumption,

users are assumed to take the price qr as given,
i.e., they do not attempt to infer the impact of
their actions on the price. This is a reasonable
assumption in a large network such as the In-
ternet, where the impact of a single user on the
link prices is negligible, and it is practically
impossible for any user to infer the impact
of its decisions on the prevailing price of the
network resources. When the users are price
taking, the socially optimal solution, i.e., the
solution to the network utility maximization
problem, coincides with the Nash equilibrium
of the game. To see this, note that the solution
to (6) is given by

1

qr
U 0
r

�
wr
qr

�
� 1 D 0;

under the assumption that the utility function
is differentiable and the solution is bounded
away from zero. Using (5), this equation re-
duces to

U 0
r .xr / D qr ;

which maximizes the Lagrangian (3). It is not
difficult to see that the complementary slack-
ness equations in the Karush-Kuhn-Tucker

conditions are satisfied since the constraints
for (2) and the proportionally fair solution
are the same. Thus, under the price-taking
assumption, the equilibrium of the game so-
lution is the same as the socially optimal
solution provided the network computes qr us-
ing the proportionally fair resource allocation
formulation.

• Strategic Users: In networks where the num-
ber of users is small, it may be possible for
each user to know the topology of the network,
and thus, each user may be able to solve for
the proportionally fair resource allocation if
it has access to other users’ bids. In other
words, it may be possible to compute a Nash
equilibrium by taking into account the impact
of the wr ’s on the qr ’s. When the users are
strategic, the socially optimal solution could
be quite different from the Nash equilibrium.
The ratio of the network utility under the
socially optimal solution to the network utility
under a Nash equilibrium is called the price of
anarchy.

There is a rich literature associated with both
interpretations of the network congestion game.
In the case of price-taking users, much of the
emphasis in the literature has been on designing
distributed algorithms to achieve the socially op-
timal solution (Shakkottai and Srikant 2007). In
the case of strategic users, the focus has been on
characterizing the price of anarchy (Johari and
Tsitsiklis 2004; Yang and Hajek 2007).

Summary and Future Directions

We have presented a number of applications
which involve the interactions of selfish users
over a network. For the resource allocation
application, we have also described how simple
mathematical models can be used to provide
incentives for users to act in a socially optimal
manner. In particular, we have shown that, under
the reasonable price-taking assumption and an
appropriate computation of link prices, selfish
users automatically maximize network utility. In
the case where the users are strategic, the goal is
to characterize the price of anarchy.
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Moving forward, two areas which require con-
siderable further research are the following: (i)
inter-ISP routing and (ii) spectrum sharing. The
Internet is a fairly reliably network, and any
unreliability often arises due to routing issues
among ISPs. As mentioned in the introduction,
peering arrangements between ISPs are necessary
to make sure that ISPs carry each others’ traffic
and are appropriately compensated for it, either
through reciprocal traffic-carrying agreements or
actual monetary transfer. Thus, the policy that
an ISP uses to route traffic may be governed by
these peering agreements. The more complicated
these policies are, the more chances there are
for routing misconfigurations that lead to service
interruptions. This interplay between policies and
technology in the form of routing algorithms is an
interesting topic for further study.

Cognitive radios and spectrum sharing are
expected to be significant technological com-
ponents of future wireless networks. Designing
algorithms for selfish radios to share the avail-
able spectrum while respecting the rights of the
primary user of the spectrum is a challenge that
requires considerable further attention. This area
of research requires one to combine sensing tech-
nologies to sense the presence of other users
with game-theoretic models to ensure fair chan-
nel access to the secondary users, subject to the
constraint that the primary user should not be
affected by the presence of the secondary users.
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Abstract

When shared, band-limited, real-time communi-
cation networks are employed in a control system
to exchange information between spatially dis-
tributed components, such as controllers, actua-
tors, and sensors, it is categorized as a networked
control system (NCS). The primary advantages
of a NCS are reduced complexity and wiring,
reduced design and implementation cost, ease of
system maintenance and modification, and effi-
cient data sharing. In addition, this unique archi-
tecture creates a way to connect the cyberspace
to the physical space for remote operation of sys-
tems. The NCS architecture allows for perform-
ing more complex tasks, but also requires taking
the network effects into account when designing
control laws and stability conditions. In this entry,
we review significant results on the architecture
and stability analysis of a NCS. The results pre-
sented address communication network-induced
challenges such as time delays, scheduling, and
information packet dropouts.
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Introduction

From the washing machine, air conditioner, and
microwave oven to the telephone, stereo, and
automobile, embedded computers are present in
the modern home. In a factory environment, there
are thousands of networked smart sensors and
actuators with embedded processors, working to
complete a coordinated task. The trend in manu-
facturing plants, homes, buildings, aircraft, and
automobiles is toward distributed networking.
This trend can be inferred from many proposed
or emerging network standards, such as con-
troller area network (CAN) for automotive and
industrial automation, BACnet for building au-
tomation, PROFIBUS and WorldFIP fieldbus for
process control, and IEEE 802.11, and Blue-
tooth wireless standards for applications such
as mobile sensor networks, HVAC systems, and
unmanned aerial vehicles.

The traditional dedicated point-to-point wired
connection in control systems has been success-
fully implemented in industry for decades. With
the advance of communication network and hard-
ware technologies, it is common to integrate the
communication network into the control system
to replace the dedicated point-to-point connection
to achieve reduced weight and power, lower cost,
simpler installation and maintenance, and higher
reliability, to name a few advantages. For exam-
ple, a typical new automobile has two controller
area networks (CANs): a high-speed one in front
of the firewall for the engine, transmission, and
traction control and a low-speed one for locks,
windows, and other devices (Johansson et al.
2005).

The conventional definition of a networked
control system (NCS) is as follows: When a
feedback control system is closed via a com-
munication channel, which may be shared with
other nodes outside the control system, then the
control system is called a NCS. A NCS can also

be described as a feedback control system where
the control loops are closed through a real-time
communication network.

Architecture of Networked Control
Systems

The architecture of a NCS consists of a band-
limited, digital communication network physi-
cally and electronically integrated with a spatially
distributed control system, operated on a given
plant. Digital information, such as controller sig-
nals, actuator signals, sensor signals, and operator
input, is transmitted via the network. The compo-
nents connected by the network include all nodes
of the control system, such as the supervisory
(or “network owner”) computer, controller soft-
ware and hardware, actuators, and sensors. In this
structure, the feedback control system’s loops are
closed over the shared communication network.

The communication network can be wired or
wireless and may be shared with other unrelated
nodes outside the control system. As illustrated in
Fig. 1, the shared communication channel, which
multiplexes signals from the sensors to the con-
trollers and/or from the controllers to the actua-
tors, serves many other uses besides control. Each
of the system components directly connected to
the network via a network interface is denoted
a physical node. Besides the network interface,
the sensors and actuator nodes are typically smart
nodes with embedded microprocessors. Some-
times, the controller is colocated with the smart
actuator. Several key issues make networked con-
trol systems distinct from traditional control sys-
tems (Hespanha et al. 2007; Yang 2006).

Band-Limited Channels
Bandwidth limitation of the shared communica-
tion channel requires that all nodes in the network
must share (e.g., time sharing or frequency shar-
ing, etc.) the common network resource without
interfering with each other.

Sampling and Delays
In a NCS, the plant outputs are sampled by
the sensors, which can convert continuous-time
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NetworkedControl Systems: Architecture and Stability Issues, Fig. 1 A general networked control system (NCS)
architecture

analog signals to digital signals; perform prepro-
cessing, filtering, and encoding; and package the
data signal so that it is ready for transmission.
After winning the medium access control and
being transmitted over the network, the package
containing the sampled data signal arrives at the
receiver side, which could be a controller or a
smart actuator with a controller collocated with
it. The receiver unpacks and decodes the signal.
This process is quite different from the traditional
periodic sampling in digital control. The overall
delay between sampling and the eventual decod-
ing of the transmitted packet at the receiver can be
time varying and random due to both the network
access delay (i.e., the time it takes for a shared
network to accept the data) and the transmission
delay (i.e., the time during which data are in
transit inside the network). This also depends on
the highly variable network conditions, such as
congestion and channel quality. In some NCSs,
the data transmitted are time stamped, which
means that the receiver may have an estimate of
the delay’s duration and could take appropriate
corrective action. Given the rapid advance of em-
bedded computation and communication hard-
ware technology today, the transmission delay in

many embedded systems can be neglected when
compared with the magnitude of network access
delay.

Packet Dropouts
It is possible in a NCS that a packet may be
lost while it is in transit through the network.
The packet that contains important sampling data
or control signals may drop occasionally due
to transmission errors of the physical network
link, message collision, or node failures, to
name a few. Overflow in queue or buffer can
lead to network congestion and package loss.
Thus, the use of queues is not favored by NCSs
in general. Packet dropouts also happen if the
receiver discards outdated arrivals that have long
delays. Most network protocols are equipped
with transmission-retry mechanisms, such as
TCP, that guarantee the eventual delivery of
packets. These protocols, unfortunately, are not
appropriate for a NCS since the retransmission
of old sensor data or calculated control signals
is generally not very useful when new, time-
critical data are available. Using selected old
data for estimation or prediction is an exception,
where old data may be packaged with the new
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data in one packet. It is advantageous to discard
the old, un-transmitted data and transmit a new
packet if and when it becomes available. In this
way, the controller always receives fresh data for
its control calculation, and the actuator always
executes the up-to-date command to control the
plant.

Modeling Errors, Uncertainties, and
Disturbances
In a distributed NCS, modeling errors, uncertain-
ties, and disturbances always exist when using
the mathematical model to describe the physical
process. These factors may lead to a major impact
on the overall system performance and cause
failure in fulfilling the desired objectives. Wang
and Hovakimyan (2013) proposed a reference
model-based architecture to decouple the design
of controller and communication schemes. A ref-
erence model is introduced in each subsystem
as a bridge to build the connection between the
real system and an ideal model, free of uncer-
tainties. The closeness between the real system
and the reference model is associated only with
plant uncertainties, and the difference between
the reference model and the ideal model is only
in the communication constraints.

Stability of Networked Control
Systems

The stability of a control system is often ex-
tremely important and is generally a safety re-
quirement. Examples include the control of rock-
ets, robots, airplanes, automobiles, or ships. In-
stability in any one of these systems can result
in an unimaginable accident and loss of life.
The stability of a general dynamical system with
no input can be described with the Lyapunov
stability criteria, which is stated as follows: A
linear system is stable if its impulse response
approaches zero as time approaches infinity or if
every bounded input produces a bounded output.

When sensors, controllers, and actuators
are not colocated and use a shared network
to communicate, the feedback loop of a NCS
is closed over the network. Network-induced,

variable delays, and packet dropouts can degrade
the performance of a NCS. For example, the
NCS may have a longer settling time or bigger
overshoot in the step response. Furthermore,
the NCS may become unstable when delays
and/or packet dropouts exceed a certain range.
Designers choosing to use a NCS architecture,
however, are motivated not by performance but
by cost, maintenance, and reliability gains.

Band-Limited Channels
Inspired by Shannon’s results on the maximum
bit rate that a communication channel can carry
reliably, a significant research effort has been
devoted to the problem of determining the min-
imum bit rate that is needed to stabilize a system
through feedback over a finite capacity channel
(Baillieul 1999; Nair and Evans 2000; Tatikonda
and Mitter 2004; Wong and Brockett 1999; Bail-
lieul and Antsaklis 2007). This has been solved
exactly for linear plants, but only conservative re-
sults have been obtained for nonlinear plants. The
data-rate theorem that quantifies a fundamental
relationship between unstable physical systems
and the rate at which information must be pro-
cessed in order to stably control them was proved
independently under a variety of assumptions.
Minimum bit rate and quantization becomes es-
pecially important for networks designed to carry
very small packets with little overhead, because
encoding measurements or actuation signals with
less bits can save network bandwidth.

Most of the NCS stability results presented
here, however, are based on the observation that
the channel can transmit a finite number of pack-
ets per unit of time (packet rate) and each packet
can carry certain number of bits in the data
field. The packets on a real-time control network
typically are frequent and have small data seg-
ments compared to their headers. For example, a
CAN II packet with a single 16-bit data sample
has fixed 64 bits of overhead associated with
identifier, control field, CRC, ACK field, and
frame delimiter, resulting in 25 % utilization, and
this utilization can never exceed 50 % (data field
length is limited to 64 bits). Thus, the quan-
tization effects imposed by the communication
networks are generally ignored.
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Network-Induced Delays
A significant number of results have attempted to
characterize a maximum upper bound on the sam-
pling or transmission interval for which stability
of the NCS can be guaranteed. The upper bound
is sometimes called the maximum allowable
transfer interval (MATI) (Walsh 2001a). These
results implicitly attempt to minimize the packet
rate or schedule the traffic of the control network
that is needed to stabilize a system through
feedback. The general approach is to design
the controller using established techniques,
considering the network to be transparent, and
then to analyze the effect of the network on
closed-loop system performance and stability.

The NCS with a linear time-invariant (LTI)
plant/controller pair and one-channel feedback
(see Fig. 2) can be modeled by the following
continuous-time system, where x includes the
states of the plant and the controller, x.t/ D
Œxp.t/; xc.t/�

T :

Px D Ax C B Oy; y D C.x/ (1)

Oy.t/ D
� Oyk�1; t 2 Œtk ; tk C �k/

Oyk; t 2 Œtk C �k I tkC1/
(2)

The signal y is a vector of sensor measurements
and Oy is the input to a continuous-time controller
collocated with the actuators. Alternatively, Oy
can be viewed as the input to the actuators and
y as the desired control signal computed by a
controller collocated with the sensors. The signal
y(t) is sampled at times ftk W k 2 N g and
the samples y.k/ WD y.tk/ are sent through the
network. But the samples arrive at the destination

Networked Control Systems: Architecture and Sta-
bility Issues, Fig. 2 A NCS architecture with one-
channel feedback (controller collocated with actuator)

after a (possibly variable) delay of £k, where
we assume that the network delays are always
smaller than one sampling interval. For periodic
sampling and constant delays, a sufficient and
necessary condition for exponential stability of
the NCS (Eqs. 1 and 2) was derived (Zhang et al.
2001). By using the augmented state space model
and based on the stability of nonlinear hybrid
systems, they also proved the sufficient condition
for stability of the NCS in the time-invariant
case.

If we now assume the sampling intervals are
constant and the computation and transmission
delays are negligible, then the variable network
access delays serve as the main source of delays
in a NCS (Lin et al. 2003, 2005). Using average
dwell time results for discrete switched systems,
Zhai et al. (2002) provided conditions such that
NCS stability is guaranteed. Also, the authors
consider robust disturbance attenuation analysis
for this class of NCSs.

When the network delay is not constant or
when the signal y(t) is sampled in a nonperiodic
fashion, the system (1) and (2) is not time invari-
ant and one needs a Lyapunov-based argument to
prove its stability. Zhang and Branicky (2001) de-
rived the sufficient condition to ensure the NCS in
Fig. 2 is exponentially stable. They also proposed
a randomized algorithm to find the largest value
of sampling interval for which stability can be
guaranteed.

For a model-based NCS with state and output
feedback, an explicit model of the plant is used
to produce an estimate of the plant state behavior
between transmission times (Montestruque
and Antsaklis 2004). Sufficient conditions for
Lyapunov stability are derived for a model-based
NCS when the controller/actuator is updated
with the sensor information at nonconstant time
intervals. A NCS with transmission times that are
driven by a stochastic process with identically
independently distributed and Markov-chain-
driven transmission times almost sure stability
and mean-square sufficient conditions for
stability are introduced. Onat et al. (2011)
adapted above stability results to model-
based predictive NCSs with realistic structure
assumptions.



840 Networked Control Systems: Architecture and Stability Issues

Networked Control Systems: Architecture and Sta-
bility Issues, Fig. 3 A NCS architecture with two-
channel feedback

Control Network Scheduler
In general a Multi-Input/Multi-Output (MIMO)
NCS with two-channel feedback, both the sam-
pled plant output and controller output are trans-
mitted via a network (see Fig. 3). Because of the
network, only the reported output y(t) is available
to the controller and its prediction processes;
similarly, only Ou(t) is available to the actuators on
the plant. We label the network-induced error

e.t/ WD Œ Oy.t/; Ou.t/�T � Œy.t/; u.t/�T

and the combined state of controller and plant
x.t/ D Œxp.t/; xc.t/�

T . The state of the entire
NCS is given by z.t/ D Œx.t/; e.t/�T . Following
this general approach, the controller is designed
using established techniques without considering
the presence of the network.

The behavior of the network-induced error
e.t/ is mainly determined by the architecture
of the NCS and the scheduling strategy. In the
special case of one-package transmission, there is
only one node transmitting data on the network;
therefore, the entire vector e.t/ is set to zero at
each transmission time. For multiple nodes trans-
mitting measured outputs y.t/ and/or computed
inputs u.t/, the transmission order of the nodes
depends on the scheduling strategy chosen for
the NCS. In other words, the scheduling strategy
decides which components of e.t/ are set to zero
at the transmission times.

Static and dynamic schedulers (a.k.a. proto-
cols) are two main categories used in a NCS.
When the network resource or transmission order
are pre-allocated or determined before run-time,

it is called a static scheduler, such as round-
robin scheduling. A dynamic scheduler deter-
mines the network allocation while the system
runs. A novel dynamic network scheduler, try-
once-discard (TOD) and several variations were
introduced for wired and wireless NCSs (Walsh
and Ye 2001; Ye et al. 2001). For linear and
nonlinear NCSs with the new dynamic and com-
monly used static schedulers, an analytic proof
of global exponential stability of a MIMO NCS
was provided (Walsh 2001a; Walsh et al. 2001b).
Simulation and experiment results showed that
the dynamic schedulers outperform static sched-
ulers in terms of NCS performance, e.g., a bigger
MATI.

Nesic and Teel (2004a,b) generalize the above
results by considering a nonlinear NCS with
external disturbances and more general class of
protocols (or schedulers). They considered a new
class of Lyapunov uniformly globally asymptot-
ically stable (UGAS) protocols in a NCS. It is
shown that if the controller is designed without
taking into account the network, it yields input-
to-state stability (ISS) with respect to external
disturbances (not necessarily with respect to the
network-induced error), and then the same con-
troller will achieve semi-global practical ISS for
the NCS when implemented via the network
with a Lyapunov UGAS protocol. Moreover, the
ISS gain is preserved. The adjustable parameter
with respect to which semi-global practical ISS
is achieved is the MATI between transmission
times. The authors also studied the input–output
Lp stability of a NCS for a large class of network
scheduling protocols. It is shown that polling,
static protocols, and dynamic protocol such as
TOD belong to this class. Results in Nesic and
Teel (2004a) provide a unifying framework for
generating new scheduling protocols that pre-
serve Lp stability properties of the system, if
a design parameter is chosen to be sufficiently
small. The most general version of these results
can also be used to model a NCS with data packet
dropouts. The proof technique used is based on
the small gain theorem and lends itself to an easy
interpretation.

A framework for analyzing the stability of
a general nonlinear NCS with disturbances in
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the setting of Lp stability was provided by Tab-
bara et al. (2007). Their presentation provides
sharper results for both gain and MATI than
previously obtainable and details the property of
uniformly persistently exciting scheduling pro-
tocols. This class of protocols was shown to
lead to stability for high enough transmission
rates. This was a natural property to demand,
especially in the design of wireless scheduling
protocols. The property is used directly in a novel
proof technique based on the notions of vector
comparison and (quasi)-monotone systems. Via
simulations, analytical, and numerical compari-
son, it is verified that the uniform persistence of
excitation property of protocols is, in some sense,
the “finest” property that can be extracted from
wireless scheduling protocols.

Delays and Packet Dropouts
Packet dropouts can be modeled as either
stochastic or deterministic phenomena. For a
one-channel feedback NCS, Zhang and Branicky
(2001) consider a deterministic dropouts model,
with packet dropouts occurring at an asymptotic
rate. Stability conditions were studied for a NCS
with deterministic and stochastic dropouts (Seiler
and Sengupta 2005).

Sometimes, the NCS was characterized as
a continuous-time delayed differential equation
(DDE) with the time-varying delay £(t). One
important advantage is that the equations are
still valid even when the delays exceed the sam-
pling interval. Researchers successfully used the
Lyapunov–Krasovskii (Yue et al. 2004) and the
Razumikhin theorems (Yu et al. 2004) to study
the stability of a NCS that is modeled as DDEs.

Summary and Future Directions

This article introduced the concept of a net-
worked control system and its general architec-
ture. Several key issues specific to a NCS, such as
band-limited channels, network-induced delays,
and information packet dropouts, were explained.
The stability condition of a NCS with various net-
work effects was discussed with several common
modeling techniques.

In terms of future directions, there has been
significant effort in analyzing networked control
systems with variable sampling rate, but most
results investigate the stability for a given worst-
case interval between consecutive sampling
times, leading to conservative results. An open
area of research would be to look at methods that
take into account a stochastic characterization for
the inter-sampling times. Substantial work has
also been devoted to determining the stability
of a NCS, as described in this article. Possible
open areas of research would be to consider
design issues related to the joint stability and
performance of the system. The design and
development of controllers for a NCS is also an
open area of research. In designing a controller
for a NCS, one has to take into account the
challenges introduced by the communication
network. Only afterward can analysis of the
whole system take place.
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Abstract

This entry discusses optimal estimation and con-
trol for lossy networks. Conditions for stability
are provided both for two-link and multiple-link
networks. The online adaptation of network re-
sources (controlled communication) is also con-
sidered.
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Introduction

Network Control Systems (NCSs) are spatially
distributed systems in which the communication
between sensors, actuators, and controllers
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occurs through a shared band-limited digital
communication network. In this entry, we
consider the problem of estimation and control
over such networks.

A significant difference between NCSs and
standard digital control is the possibility that
data may be lost while in transit through the
network. Typically, packet dropouts result from
transmission errors in physical network links
(which is far more common in wireless than
in wired networks) or from buffer overflows
due to congestion. Long transmission delays
sometimes result in packet reordering, which
essentially amounts to a packet dropout if the
receiver discards “outdated” arrivals. Reliable
transmission protocols, such as TCP, guarantee
the eventual delivery of packets. However, these
protocols are not appropriate for NCSs since
the retransmission of old data is generally not
useful. Another important difference between
NCSs and standard digital control systems is
that, due to the nature of network traffic, delays
in the control loop may be time varying and
nondeterministic.

In this entry, we concentrate on the problem of
control and estimation in the presence of packet
losses, leaving other important features of NCSs
(such as quantization and random delays) to be
addressed in other entries of this encyclopedia.
Consequently, we assume that the network can be
viewed as a channel that can carry real numbers
without distortion, but that some of the messages
may be lost. This network model is appropriate
when the number of bits in each data packet is
sufficiently large so that quantization effects can
be ignored, but packet dropouts cannot. For more
general channel models, see, for example, Imer
and Basar (2005).

This entry also does not address network trans-
mission delays explicitly. In general, network
delays have two components: one that is due to
the time spent transmitting packets and another
due to the time packets wait in buffers waiting
to be transmitted. Delays due to packet transmis-
sion present little variation and may be modeled
as constants. For control design purposes, these
delays may be incorporated into the plant model.
Delays due to buffering depend on the network

traffic and are typically random; they can be ana-
lyzed using the techniques developed in Antunes
et al. (2012).

Notation and Basic Definitions. Throughout
the entry, R stands for real numbers and N for
nonnegative integers. For a given matrix A 2
R
n�n and vector x 2 R

n; kxk WD p
x0x denotes

the Euclidean norm of x, and �.A/ the set of
eigenvalues of A. Random variables are gener-
ally denoted in boldface. For a random variable
y;EŒy� stands for the expectation of y.

Two-Link Networks

Here, we consider a control/estimation problem
when all network effects can be modeled using
two erasure channels: one from the sensor to the
controller and the other from the controller to the
actuator (see Fig. 1).

We restrict our attention to a linear time-
invariant (LTI) plant with intermittent observa-
tion and control packets:

xkC1 D Axk C �kBuk C wk; (1a)

yk D �kCxk C vk; (1b)

8k 2 N; xk;wk 2 R
n; yk; vk 2 R

p, where
.x0;wk; vk/ are mutually independent, zero-mean
Gaussian with covariance matrices .P0;Rw; Rv/,
and �k; �k 2 f0; 1g are i.i.d. Bernoulli random
variables with Prf�k D 1g D N� and Prf�k D
1g D N�. The variable �k models the packet loss
between sensor and controller, whereas �k mod-
els the packet loss between controller and actua-
tor. When there is a packet drop from controller

Actuator

Controller

Plant Sensor

Erasure channel Erasure channel

Networked Control Systems: Estimation and Control
Over Lossy Networks, Fig. 1 Control system with two
network links
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to actuator, we set the actuator’s output to zero.
Different strategies, such as holding the control
input, could still be modeled using (1) by aug-
menting of the state vector.

The information available to the controller up
to time k is given by the information set:

Ik D fP0g [ fy`; �` W ` � kg [ f�` W ` � k � 1g:

Here, we make an important assumption that
acknowledgment packets from the actuator
are always received by the controller so that
�`; ` � k � 1 is available at time k to the remote
estimator.

Optimal Estimation with Remote
Computation
The optimal mean-square estimate of xk , given
the information known to the remote estimator at
time k, is given by

Oxkjk WD EŒxkjIk�:

This estimate can be computed recursively using
the following time-varying Kalman filter (TVKF)
(Sinopoli et al. 2004):

Ox0j�1 D 0; (2a)

Oxkjk D Oxkjk�1 C �kFk.yk � C Oxkjk�1/; (2b)

OxkC1jk D AOxkjk C �kBuk; (2c)

with the gain matrix Fk calculated recursively as
follows

Fk D PkC
0.CPkC 0 CRv/

�1;

PkC1 D APkA
0 CRw � �kAFk.CPkC

0 CRv/

F 0
kA

0:

Each Pk corresponds to the estimation error co-
variance matrix

Pk D E
�
.xk � Oxkjk�1/.xk � Oxkjk�1/0

�
:

For this estimator, there exists a critical
value �c for the dropout rate N� , above which

the estimation error covariance becomes
unbounded:

Theorem 1 (Sinopoli et al. 2004) Assume that�
A;R1=2w

�
is controllable, .A; C / is observable,

and A is unstable. Then there exists a critical
value �c 2 .0; 1� such that

EŒPk� � M;8k 2 N , N� � �c

where M is a positive definite matrix that may
depend on P0. Furthermore, the critical value �c
satisfies �min � �c � �max, where the lower bound
is given by

�min D 1 � 1

.max fj�.A/jg/2 ; (3)

and the upper bound is given by the solution to
the following (quasi-convex) optimization prob-
lem:

�max D minf� � 0 W ��.Y;Z/ > 0;
0 � Y � I for some Y;Zg;

where

��.Y;Z/ D
2
64

Y
p
�.YACZC/

p
1 � �YAp

�.A0Y C C 0Z0/ Y 0p
1 � �A0Y 0 Y

3
75 :

Remark 1 In some special cases, the upper
bound in (3) is tight in the sense that �c � �min.
The largest class of systems known for which
this occurs is that of nondegenerate systems
defined in Mo and Sinopoli (2012). Examples of
systems in this class include (1) those for which
the matrix C is invertible and (2) those with a
detectable pair .A; C / and such that the matrix
A is diagonalizable with unstable eigenvalues
having distinct absolute values.



Networked Control Systems: Estimation and Control Over Lossy Networks 845

N

Optimal Control with Remote
Computation
From a control perspective, one may also be
interested in finding control sequences uN D
fu1; : : : ;uN�1g, as functions of the information
set IN , which minimize cost functions of the
form

JD lim
N!1

1

N
E

"
N�1X
kD0

.x0
kW xk C �ku0

kUuk/jIk
#
:

Theorem 2 (Schenato et al. 2007) Assume that
(A, B) and .A;R1=2w / are controllable, (A, C)
and .A;W 1=2/ are observable, and A is unstable.
Then, finite control costs J are achievable if
and only if N� > �c and N� > �c , where the
critical value �c is given by the (quasi-convex)
optimization problem

�c D minf� � 0 W ��.Y;Z/ > 0;
0 � Y � I for someY;Zg;

where

��.Y;Z/ D
2
66664

Y Y
p
�ZU 1=2

p
�.YA0 CZB 0/

p
1 � �YA0

Y W �1 0 0 0p
�U 1=2Z0 0 I 0 0p

�.AY C BZ0/ 0 0 Y 0p
1 � �AY 0 0 0 Y

3
77775
:

Moreover, under the above conditions, the
separation principle holds in the sense that the
optimal control is given by

uk D �.B 0SB C U /�1B 0SAOxkjk;

where Oxkjk is an optimal state estimate given
by (2) and the matrix S is the solution to the
modified algebraic Riccati (MARE) equation

S D A0SACW � N�A0SB.B 0SB C U /�1B 0SA:

Solutions to the MARE may be obtained itera-
tively when N� > �c .

Estimation with Local Computation
To reduce the gap between the bounds �min and
�max on the critical value of the drop probability
in Theorem 1 and to allow for larger probabil-
ities of drop, one may choose to compute state
estimates at the sensor and transmit those to
the controller/actuator. This scheme is motivated
by the growing number of smart sensors with
embedded processing units that are capable of
local computation. For the LTI plant

xkC1 D Axk C Buk C wk;

yk D Cxk C vk;

the smart sensor can compute locally an opti-
mal state estimate using a standard stationary
Kalman filter and transmits this estimate to the
controller. We model packet dropouts as before
using the process �k and assume that the process
�k is known to the smart sensor by means of an
perfect acknowledgment mechanism. This allows
the sensor to know uk exactly and to use it in the
Kalman filter.

Let Qxkjk D EŒxkjy`; �`; ` � k� denote the local
estimates transmitted by the sensor. Using the
messages successfully received up to time k, the
remote estimator computes the optimal estimate

Oxkjk�1 D EŒxkj�`; Qx`j`; ` � k � 1�:

recursively by

Ox0j�1 D 0;

Oxkjk D .1 � �k/Oxkjk�1 C �k Qxkjk; k 2 N;

OxkC1jk D AOxkjk C Buk
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Notice that now we are applying the (TVKF)
to estimate Qxk, which is fully observable. Since
�min and �max in Theorem 2 are equal for fully
observable processes (Schenato et al. 2007), the
local computation scheme grants a minimal criti-
cal value �c as stated in the theorem below.

Theorem 3 Assume that .A;R1=2w / is control-
lable, (A, C) is OBSERVABLE, and A is unstable.
Then the critical value �c is given by �min in (3),
i.e.,

EŒPk� � M;8k 2 N , N� � �min

where M is a positive definite matrix that may
depend on P0.

Drops in the Acknowledgement Packets
When there are drops in the acknowledgment
channel from the actuator to the controller, the
controller does not always know �k , and there-
fore, it might not always have access to the
control inputs that are actually applied to the
plant. In this case, the posterior state proba-
bility becomes a Gaussian mixture distribution
with infinitely many components, and the sepa-
ration principle no longer holds (Schenato et al.
2007). This makes the estimation and control
problems computationally more difficult, and,
due to the smaller information set, some perfor-
mance degradation in the control performance
should be expected. For this reason, it is generally
a good design choice to keep controller and actua-
tor collocated when drops in the acknowledgment
channels are significant.

Buffering
As an alternative to the approach described in
section “Estimation with Local Computation” to
use local computation at a smart sensor to allow
for larger probabilities of drop, the designer may
also consider the transmission of a sequence
of previous measurements yk; yk�1; : : : ; yk�N
in each packet. This approach is motivated
by the fact that often data packets can carry
much more than one vector of measured outputs.
When N is reasonably large, one should expect
similar estimation/control performances as in

the approach described in section “Estimation
with Local Computation”, but with a reduced
computational effort at the sensor.

Analogously, an improvement to zeroing or
simply holding the control input in case of
packet drops between controller and actuator
is for the controller to transmit a control
sequence uk;ukC1; : : : ;ukCN that contains not
only the control uk to be used at the current
time instant but also a few future controls
ukC1;ukC2; : : : ;ukCN . In the case of packet
drops between controller and actuator, the
actuator can use previously received “future”
control inputs in lieu of the one contained in the
lost packet. The sequence of future control inputs
may be obtained, e.g., by an optimal receding
horizon control strategy (Gupta et al. 2006).

Estimation with Markovian Drops
When �k is a Markov process, we no longer
have a separation principle, and the optimal con-
troller may depend on the drops sequence. Yet,
optimal state estimates are obtained using the
same TVKF presented earlier. Below, we give
conditions for the stability of the error covariance
when drops are governed by the Gilbert-Elliot
model: Prf�kC1 D j j�k D ig D pij; i; j 2
f0; 1g.

Theorem 4 (Mo and Sinopoli 2012) Assume
that .A; R1=2w / is controllable, A is unstable, and
the system given by the pair .A; C / is nonde-
generate as discussed in Remark 1. Moreover,
suppose that the transition probabilities for the
Gilbert-Elliot model satisfy p01Ip10 > 0. Then
the expected error covariance EŒPk� is uniformly
bounded if

p01 > �min

and it is unbounded for some initial condition if
p01 < �min.

Networks withMultiple Links

We now consider feedback loops that are closed
over a network of communication links, each of
which drops packets according to a Bernoulli
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process. The sensor communicates with a con-
troller across the network, and we assume that
controller and actuator are collocated. The net-
work may be represented by a graph G with nodes
in the set V and edges in the set E , where edges
are drawn between two communicating nodes.
We denote by pij the probability of a drop when
node i transmits to node j . Drops are assumed to
be independent across links and time.

To maximize robustness with respect to drops,
sensors use a Kalman filter to compute an optimal
estimate for the state of the process based on
their measurements and transmit this estimate
across the network. When the sensors do not
have access to the process input, they can take
advantage of the linearity of the Kalman filter:
as the output of a Kalman filter is the sum of a
term due to measurements with another term due
to control inputs, sensors may compute only the
contribution due to measurements and transmit
it to the controller, which can subsequently add
the contribution due to the control inputs. This
guarantees that optimal state estimates can still
be computed at the control node, even when the
sensors do not know the control input (Gupta
et al. 2009).

The communication in the network goes as
follows. Sensors time stamp their estimates and
broadcast them to all nodes in their communi-
cation ranges. After receiving information from
their neighbors, nodes compare time stamps and
keep only the most recent estimates. These esti-
mates are broadcasted to all neighboring nodes.
When the controller receives new information,
the optimal Kalman estimate is reconstructed,
taking into account the total transmission delay
(learned from the packet time stamps), and a
standard LQG control can be used (Gupta et al.
2009).

To determine whether or not this procedure
results in a stable closed loop, one defines a cut
C D .S; T / to be a partition of the node set
V such that the sensor node is in S and the
controller node is in T . The cut-set is then defined
as the set of edges .i; j / 2 E such that i 2 S
and j 2 T , i.e., the set of edges that connect
the sets S and T . The max-cut probability is then
defined as

pmax-cut D max
all cuts.S;T /

Y
.i;j /2S�T

pij :

The above maximization can be rewritten as a
minimization over the sums of �logpij , which
leads to a linear program known as the mini-
mum cut problem in network optimization theory
(Cook 1995).

Theorem 5 (Gupta et al. 2009) Assume that
Rw; Rv > 0, that .A;B/ is stabilizable, that
.A; C / is observable, and that A is unstable. Then
the control and communication policy described
above is optimal for quadratic costs, and the
expected state covariance is bounded if and only
if

pmax-cut � .maxfj�.A/jg/2 < 1:

Estimation with Controlled
Communication

To actively reduce network traffic and power
consumption, sensor measurements may not be
sent to the remote estimator at every time step. In
addition, one may have the ability to somewhat
control the probability of packet drops by varying
the transmit power or by transmitting copies of
the same message through multiple channel real-
izations. This is known as controlled communi-
cation, and it allows the designer to establish a
trade-off between communication and estimation
performance.

We consider the local estimation scenario de-
scribed in section “Estimation with Local Com-
putation” with the difference that the Bernoulli
drops are now modulated as follows

�k D
(
1 with prob: �k

0 with prob: 1 ��k

where the sensor is free to choose�k 2 Œ0; pmax�

as a function of the information available up to
time k. With its choice, the sensor incurs on a
communication cost c.�k/ at time k, where c.�/
is some increasing function that may represent,
for example, the energy needed in order to trans-
mit with a probability of drop equal to �k . Note
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that transmission scheduling, where �k is either
0 or pmax, is a special case of this framework.

In order to choose �k , the sensor considers
the estimation error Qek WD Qxkjk � Oxkjk�1 between
the local and the remote estimators. This error
evolves according to

QekC1 D
(

dk with prob: �k

AQek C dk with prob: 1 ��k

where dk is the innovations process arising from
the standard Kalman filter in the smart sensor.

Our objective is to find a “communication
policy” that minimizes the long-term average cost

QJ WD lim
K!1

1

K
E

"
K�1X
kD0

kQekk2 C �c.�k/

#
;

� > 0; (4)

which penalizes a linear combination of the re-

mote estimation error variance E
h
kQekk2

i
and

the average communication cost EŒc.�k/�. In
this context, a communication policy should be
understood as a rule that selects �k as a function
of the information available to the sensor.

When

.1 � pmax/maxfj�.A/jg2 < 1;

there exists an optimal communication policy that
chooses �k as a function of Qek, which may be
computed via dynamic programming and value
iteration (Mesquita et al. 2012). While this pro-
cedure can be computationally difficult, it is of-
ten possible to obtain suboptimal but reasonable
performance with rollout policies such as the
following one:

�k D arg min
�2Œ0;pmax �

Œ.pmax ��/Qe0
kA

0HAQek

C �c.�/� (5)

where H is the positive semidefinite solution to
the Lyapunov equation .1 � pmax/A

0HA �H D
�I (Mesquita et al. 2012).

When computing Qek and �k in (5) is com-
putationally too costly for the sensor, one may
prefer to make �k a function of the number
of consecutive dropped packets `k . In this case,
minimizing QJ in (4) is equivalent to minimizing
the cost

NJ WD lim
K!1

1

K
E

"
K�1X
kD0

trace
�
†`k

�C �c.�k/

#
;

where

†` WD
X̀
mD0

A0mRwA
m:

Since `k belongs to a countable set, one can very
efficiently solve this optimization using dynamic
programming (Mesquita et al. 2012).

Summary and Future Directions

Most positive results in the subject rely on the
assumption of perfect acknowledgments and on
actuators and controllers being collocated. Future
research should address ways of circumventing
these assumptions.

Cross-References

�Data Rate of Nonlinear Control Systems and
Feedback Entropy

� Information and Communication Complexity
of Networked Control Systems

�Networked Control Systems: Architecture and
Stability Issues
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Abstract

This entry provides a brief overview on net-
worked systems from a systems and control per-
spective. We pay special attention to the nature
of the interactions among agents; the critical
role played by information sharing, dissemina-
tion, and aggregation; and the distributed control
paradigm to engineer the behavior of networked
systems.

Keywords

Autonomous networks; Cooperative control;
Multi-agent systems; Swarms

Introduction

Networked systems appear in numerous scientific
and engineering domains, including communica-
tion networks (Toh 2001), multi-robot networks
(Arkin 1998; Balch and Parker 2002), sensor
networks (Santi 2005; Schenato et al. 2007),
water irrigation networks (Cantoni et al. 2007),
power and electrical networks (Chow 1982;
Chiang et al. 1995; Dörfler et al. 2013), camera
networks (Song et al. 2011), transportation
networks (Ahuja et al. 1993), social networks
(Jackson 2010), and chemical and biological
networks (Kuramoto 1984; Strogatz 2003).
Their applications are pervasive, ranging from
environmental monitoring, ocean sampling,
and marine energy systems, through search
and rescue missions, high-stress deployment in
disaster recovery, health monitoring of critical
infrastructure to science imaging, the smart grid,
and cybersecurity.

The rich nature of networked systems makes
it difficult to provide a definition that, at the
same time, is comprehensive enough to capture
their variety and simple enough to be expressive
of their main features. With this in mind, we
loosely define a networked system as a “system of
systems,” i.e., a collection of agents that interact
with each other. These groups might be hetero-
geneous, composed by human, biological, or en-
gineered agents possessing different capabilities
regarding mobility, sensing, actuation, commu-
nication, and computation. Individuals may have
objectives of their own or may share a common
objective with others – which in turn might be ad-
versarial with respect to another subset of agents.

In a networked system, the evolutions of the
states of individual agents are coupled. Coupling
might be the result of the physical interconnec-
tion among the agents, the consequence of the im-
plementation of coordination algorithms where
agents use information about each other, or a
combination of both. There is diversity too in the
nature of agents themselves and the interactions
among them, which might be cooperative, adver-
sarial, or belong to the rich range between the
two. Due to changes in the state of the agents, the
network, or the environment, interactions among
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agents may be changing and dynamic. Such inter-
actions may be structured across different layers,
which themselves might be organized in a hi-
erarchical fashion. Networked systems may also
interact with external entities that specify high-
level commands that trickle down through the
system all the way to the agent level.

A defining characteristic of a networked sys-
tem is the fact that information, understood in a
broad sense, is sparse and distributed across the
agents. As such, different individuals have access
to information of varying degrees of quality.
As part of the operation of the networked sys-
tem, mechanisms are in place to share, transmit,
and/or aggregate this information. Some informa-
tion may be disseminated throughout the whole
network or, in some cases, all information can
be made centrally available at a reasonable cost.
In other scenarios, however, the latter might turn
out to be too costly, unfeasible, or undesirable
because of privacy and security considerations.
Individual agents are the basic unit for decision
making, but decisions might be made from in-
termediate levels of the networked system all the
way to a central planner. The combination of in-
formation availability and decision-making capa-
bilities gives rise to an ample spectrum of possi-
bilities between the centralized control paradigm,
where all information is available at a central
planner who makes the decisions, and the fully
distributed control paradigm, where individual
agents only have access to the information shared
by their neighbors in addition to their own.

Perspective from Systems
and Control

There are many aspects that come into play when
dealing with networked systems regarding com-
putation, processing, sensing, communication,
planning, motion control, and decision making.
This complexity makes their study challenging
and fascinating and explains the interest that,
with different emphases, they generate in a large
number of disciplines. In biology, scientists
analyze synchronization phenomena and self-
organized swarming behavior in groups with

distributed agent-to-agent interactions (Okubo
1986; Parrish et al. 2002; Conradt and Roper
2003; Couzin et al. 2005). In robotics, engineers
design algorithmic solutions to help multivehicle
networks and embedded systems coordinate
their actions and perform challenging spatially
distributed tasks (Arkin 1998; Committee on
Networked Systems of Embedded Computers
2001; Balch and Parker 2002; Howard et al. 2006;
Kumar et al. 2008). Graph theorists and applied
mathematicians study the role played by the
interconnection among agents in the emergence
of phase transition phenomena (Bollobás 2001;
Meester and Roy 2008; Chung 2010). This
interest is also shared in communication and
information theory, where researchers strive to
design efficient communication protocols and
examine the effect of topology control on group
connectivity and information dissemination
(Zhao and Guibas 2004; Giridhar and Kumar
2005; Lloyd et al. 2005; Santi 2005; Franceschetti
and Meester 2007). Game theorists study the gap
between the performance achieved by global,
network-wide optimizers and the configurations
that result from selfish agents interacting locally
in social and economic systems (Roughgarden
2005; Nisan et al. 2007; Easley and Kleinberg
2010; Marden and Shamma 2013). In mechanism
design, researchers seek to align the objectives
of individual self-interested agents with the
overall goal of the network. Static and mobile
networked systems and their applications to the
study of natural phenomena in oceans (Paley
et al. 2008; Graham and Cortés 2012; Zhang
and Leonard 2010; Das et al. 2012; Ouimet and
Cortés 2013), rivers (Ru and Martínez 2013;
Tinka et al. 2013), and the environment (DeVries
and Paley 2012) also raise exciting challenges in
estimation theory, computational geometry, and
spatial statistics.

The field of systems and control brings a
comprehensive approach to the modeling, analy-
sis, and design of networked systems. Emphasis
is put on the understanding of the general
principles that explain how specific collective
behaviors emerge from basic interactions; the
establishment of models, abstractions, and tools
that allow us to reason rigorously about complex
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interconnected systems; and the development
of systematic methodologies that help engineer
their behavior. The ultimate goal is to establish a
science for integrating individual components
into complex, self-organizing networks with
predictable behavior. To realize the “power
of many” and expand the realm of what is
possible to achieve beyond the individual agent
capabilities, special care is taken to obtain
precise guarantees on the stability properties
of coordination algorithms, understand the
conditions and constraints under which they
work, and characterize their performance and
robustness against a variety of disturbances and
disruptions.

Research Issues – and How the Entries
in the Encyclopedia Address Them

Given the key role played by agent-to-agent inter-
actions in networked systems, the Encyclopedia
entries �Graphs for Modeling Networked In-
teractions and �Dynamic Graphs, Connectivity
of deal with how their nature and effect can be
modeled through graphs. This includes diverse
aspects such as deterministic and stochastic
interactions, static and dynamic graphs, state-
dependent and time-dependent neighboring
relationships, and connectivity. The importance
of maintaining a certain level of coordination
and consistency across the networked system is
manifested in the various entries that deal with
coordination tasks that are, in some way or an-
other, related to some form of agreement. These
include consensus (�Averaging Algorithms
and Consensus), formation control (�Vehicular
Chains), cohesiveness, flocking (� Flocking
in Networked Systems), synchronization
(�Oscillator Synchronization), and distributed
optimization (�Distributed Optimization). A
great deal of work (e.g., see �Optimal Deploy-
ment and Spatial Coverage and �Multi-vehicle
Routing), is also devoted to the design of
cooperative strategies that achieve spatially
distributed tasks such as optimal coverage, space
partitioning, vehicle routing, and servicing. These
entries explore the optimal placement of agents,

the optimal tuning of sensors, and the distributed
optimization of network resources. The entry
�Estimation and Control over Networks explores
the impact that communication channels may
have on the execution of estimation and control
tasks over networks of sensors and actuators.
A strong point of commonality among the
contributions is the precise characterization of the
scalability of coordination algorithms, together
with the rigorous analysis of their correctness
and stability properties. Another focal point is
the analysis of the performance gap between
centralized and distributed approaches in regard
to the ultimate network objective.

Further information about other relevant
aspects of networked systems can be found
throughout this Encyclopedia. Among these, we
highlight the synthesis of cooperative strategies
for data fusion, distributed estimation, and
adaptive sampling, the analysis of the network
operation under communication constraints (e.g.,
limited bandwidth, message drops, delays, and
quantization), the treatment of game-theoretic
scenarios that involve interactions among
multiple players and where security concerns
might be involved, distributed model predictive
control, and the handling of uncertainty,
imprecise information, and events via discrete-
event systems and triggered control.

Summary and Future Directions

In conclusion, this entry has illustrated ways
in which systems and control can help us de-
sign and analyze networked systems. We have
focused on the role that information and agent
interconnection play in shaping their behavior.
We have also made emphasis on the increasingly
rich set of methods and techniques that allow
to provide correctness and performance guar-
antees. The field of networked systems is vast
and the amount of work impossible to survey in
this brief entry. The reader is invited to further
explore additional topics beyond the ones men-
tioned here. The monographs (Ren and Beard
2008; Bullo et al. 2009; Mesbahi and Egerst-
edt 2010; Alpcan and Başar 2010) and edited
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http://dx.doi.org/10.1007/978-1-4471-5058-9_213
http://dx.doi.org/10.1007/978-1-4471-5058-9_214
http://dx.doi.org/10.1007/978-1-4471-5058-9_221
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volumes (Kumar et al. 2004; Shamma 2008;
Saligrama 2008), and manuscripts (Olfati-Saber
et al. 2007; Baillieul and Antsaklis 2007; Leonard
et al. 2007; Kim and Kumar 2012), together
with the references provided in the Encyclopedia
entries mentioned above, are a good starting point
to undertake this enjoyable effort. Given the big
impact that networked systems have, and will
continue to have, in our society, from energy and
transportation, through human interaction and
healthcare, to biology and the environment, there
is no doubt that the coming years will witness
the development of more tools, abstractions, and
models that allow to reason rigorously about
intelligent networks and for techniques that help
design truly autonomous and adaptive networks.
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Abstract

There has been great interest recently in “uni-
versal model-free controllers” that do not need
a mathematical model of the controlled plant,
but mimic the functions of biological processes
to learn about the systems they are controlling
online, so that performance improves automati-
cally. Neural network (NN) control has had two
major thrusts: approximate dynamic program-
ming, which uses NN to approximately solve the
optimal control problem, and NN in closed-loop
feedback control.

Keywords

Adaptive control; Learning systems; Neural net-
works; Optimal control; Reinforcement learning

Neural Feedback Control

The objective is to design NN feedback con-
trollers that cause a system to follow, or track,
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a prescribed trajectory or path. Consider the dy-
namics of an n-link robot manipulator

M.q/ Rq C Vm.q; Pq/ Pq CG.q/C F. Pq/C �d D �

(1)

with q.t/ 2 Rn the joint variable vector, M.q/
an inertia matrix, Vm a centripetal/coriolis ma-
trix, G.q/ a gravity vector, and F.�/ representing
friction terms. Bounded unknown disturbances
and modeling errors are denoted by �d and the
control input torque is �.t/. The sliding mode
control approach (Slotine and Li 1987) can be
generalized to NN control systems. Given a de-
sired trajectory, qd 2 Rn define the tracking error
e.t/ D qd .t/� q.t/ and the sliding variable error
r D Pe C �e with � D �T > 0. Define the
nonlinear robot function,

f .x/ DM.q/. Rqd C � Pe/C Vm.q; Pq/. Pqd C �e/

CG.q/C F. Pq/

with the known vector x.t/ of measured signals
is selected as, x D �

eT PeT qTd PqTd RqTd
�
.

NN Controller for Continuous-Time
Systems
The NN controller is designed based on func-
tional approximation properties of NN as shown
in Lewis et al. (1999). Thus, assume that f .x/
can be approximated by Of .x/ D OW T 	. OV T x/

with OV ; OW the estimated NN weights. Select the
control input, � D OW T 	. OV T x/ C Kvr � v with
Kv a symmetric positive definite gain and v.t/
a robustifying function. This NN control struc-
ture is shown in Fig. 1. The outer proportional-
derivative (PD) tracking loop guarantees robust
behavior. The inner loop containing the NN is
known as a feedback linearization loop, and the
NN effectively learns the unknown dynamics
online to cancel the nonlinearities of the system.
Let the estimated sigmoid Jacobian be O	 0 �
d	.z/
d z jzD OV T x . Then, the NN weight tuning laws are

provided by

POW D F O	rT � F O	 0 OV T xrT � kF krk OW ;

POV D Gx
� O	 OW r�T � kG krk OV ;

with any constant symmetric matrices F;G > 0,
and scalar tuning parameter k > 0.

NN Controller for Discrete-Time Systems
Most feedback controllers today are implemented
on digital computers. This requires the specifi-
cation of control algorithms in discrete time or
digital form (Lewis et al. 1999). To design such
controllers, one may consider the discrete-time
dynamics xkC1 D f .xk/ C g.xk/uk with un-
known functions f .�/; g.�/. The digital NN con-
troller derived in this situation has the form of a
feedback linearization controller shown in Fig. 1.
One can derive tuning algorithms, for a discrete-
time neural network controller with L layers, that
guarantee system stability and robustness (Lewis
et al. 1999). For the i -th layer, the weight updates
are of the form

OWi.k C 1/ D OWi.k/� ˛i O
i .k/ OyTi .k/
� �

			I � ˛i O
i .k/ O
i .k/T
			 OWi.k/

where O
i .k/ are the output functions of layer i ,
0 < � < 1 is a design parameter, and

Oyi .k/ D
( OW T

i
O
i .k/CKvr.k/ for iD1; : : : ; L � 1,

r.k C 1/ for i D L

with r.k/ a filtered error.

Feedforward Neurocontroller
Industrial, aerospace, DoD, and MEMS assembly
systems have actuators that generally contain
deadzone, backlash, and hysteresis. Since these
actuator nonlinearities appear in the feedforward
loop, the NN compensator must also appear in
the feedforward loop. This design is significantly
more complex than for feedback NN controllers.
Details are given in Lewis et al. (2002). Feedfor-
ward controllers can offset the effects of dead-
zone if properly designed. It can be shown that
a NN deadzone compensator has the structure
shown in Fig. 2.
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Neural Control and Approximate Dynamic Programming, Fig. 1 Neural network robot controller

Neural Control and Approximate Dynamic Programming, Fig. 2 Feedforward NN for deadzone compensation

The NN compensator consists of two NNs.
NN II is in the direct feedforward control loop,
and NN I is not directly in the control loop but
serves as an observer to estimate the (unmea-
sured) applied torque �.t/. The feedback stability
and performance of the NN deadzone compen-
sator have been rigorously proven using nonlinear

stability proof techniques. The two NN were each
selected as having one tunable layer, namely, the
output weights. The activation functions were set
as a basis by selecting fixed random values for
the first-layer weights. To guarantee stability, the
output weights of the inversion NN II (subscript
i denotes weights and sigmoids of the inversion)
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and the estimator NN I should be tuned respec-
tively as

POWi D T	i .Viw/r
T OW T 	 0.V T u/V T

� k1T krk OWi � k2T krk
			 OWi

			 OWi ;

POW D �S	 0.V T u/V T OWi	i .V
T
i w/rT

� k1S krk OW ;

with design matrices T; S > 0 and tuning gains
k1; k2.

Approximate Dynamic Programming
for Feedback Control

The current status of work in approximate dy-
namic programming (ADP) for feedback control
is given in Lewis and Liu (2012). ADP is a
form of reinforcement learning based on an ac-
tor/critic structure. Reinforcement learning (RL)
is a class of methods used in machine learning
to methodically modify the actions of an agent
based on observed responses from its environ-
ment (Sutton and Barto 1998). The actor/critic
structures are RL systems that have two learning
structures: A critic network evaluates the perfor-
mance of a current action policy, and based on
that evaluation, an actor structure updates the ac-
tion policy as shown in Fig. 3. Adaptive optimal
controllers (Lewis et al. 2012b) have been pro-
posed by adding optimality criteria to an adaptive

controller or adding adaptive characteristics to an
optimal controller.

Optimal Adaptive Control of Discrete-Time
Nonlinear Systems
Consider a class of discrete-time systems de-
scribed by the deterministic nonlinear dynamics
in the affine state space difference equation form

xkC1 D f .xk/C g.xk/uk; (2)

with state xk 2 Rn and control input uk 2
Rm. A deterministic control policy is defined
as a function from state space to control space
Rn ! Rm. That is, for every state xk , the policy
defines a control action uk D h.xk/ as a feedback
controller. Define a deterministic cost function
that yields the value function:

V.xk/ D
1X
iDk

� i�kr.xi ; ui /;

with 0 < � � 1 a discount factor,Q.xk/; R > 0,
and uk D h.xk/ a prescribed feedback control
policy. The optimal value is given by Bellman’s
optimality equation:

V �.xk/ D min
h.:/

�
r.xk; h.xk//C �V �.xkC1/

�
;

which is the discrete-time Hamilton-Jacobi-
Bellman (HJB) equation. Two forms of RL can be
based on policy iteration (PI) and value iteration
(VI). For temporal difference learning, PI is

Neural Control and
Approximate Dynamic
Programming, Fig. 3 RL
with an actor/critic
structure
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written as follows in terms of the deterministic
Bellman equation.

Algorithm 1 PI for discrete-time systems
1: procedure
2: Given admissible policies h0.xk/
3: while

		V hi � V hi
		 � ac do

4: Solve for the value V.i/.x/ using

ViC1.xk/ D r.xk; hi .xk//C �ViC1.xkC1/

5: Update the control policy h.iC1/.xk/ using

hiC1.xk/ D arg min
h.�/

�
r.xk; h.xk//C �ViC1.xkC1/

�

6: i WD i C 1

7: end while
8: end procedure

where ac is a small number that checks the
algorithm convergence. Value iteration is similar,
but the policy evaluation procedure is performed
as ViC1.xk/ D r.xk; hi .xk// C �Vi.xkC1/. In
value iteration, we can select any initial control
policy, not necessarily admissible or stabilizing.
In the control system shown in Fig. 3, the critic
and the actor NNs are tuned online using the
observed data

�
xk; xkC1; r.xk; hi .xk//

�
along the

system trajectory. The critic and actor are tuned
sequentially in both the PI and the VI. That is, the
weights of one neural network are held constant,
while the weights of the other are tuned until
convergence. This procedure is repeated until
both neural networks have converged. Thus, the
controller learns the optimal controller online.
The convergence of value iteration using two
neural networks for the discrete-time nonlinear
system (2) is proven in Al-Tamimi et al. (2008).
Design of an ADP controller that uses only output
feedback is given in Lewis and Vamvoudakis
(2011).

Optimal Adaptive Control of
Continuous-Time Nonlinear Systems
RL is considerably more difficult for continuous-
time systems than for discrete-time systems, and
fewer results are available. This subsection will
provide the formulation of optimal control prob-
lem followed by an offline PI algorithm provided

in Abu-Khalaf and Lewis (2005) that will give
us the structure for the proposed online algo-
rithms that follow. Consider the following non-
linear time-invariant affine in the input dynamical
system given by

Px.t/ D f .x.t//C g.x.t//u.t/I x.0/ D x0 (3)

with x.t/ 2 Rn; f .x.t// 2 Rn; g.x.t// 2
Rn�m and control input u.t/ 2 Rm. We assume
that f .0/ D 0; f .x/ C g.x/u is Lipschitz
continuous on a set ˝ � Rn that contains the
origin and that the system is stabilizable on ˝ ,
that is, there exists a continuous control function
u.t/ 2 U such that the system is asymptotically
stable on ˝ . Define the infinite horizon integral
cost 8t � 0

V.xt / D
Z 1

t

r.x.�/; u.�//d�; (4)

with Q.x/ positive definite and R 2 Rm�m
a symmetric positive definite matrix. For any
admissible control policy if the associated cost
(4) is C1, then an infinitesimal version is the
Bellman equation, and the optimal cost function
V �.x/ is defined by

V �.x0/ D min
u

�Z 1

0

r.x; u/d�

�

which satisfies the HJB equation. By employing
the stationarity condition, the optimal control
function for the given problem is

u�.x/ D �1
2
R�1gT .x/

@V �.x/
@x

: (5)

Inserting the optimal control (5) into the Bellman
equation, one obtains the formulation for HJB
equation in terms of @V �.x/

@x
and with boundary

condition V �.0/ D 0

0 D r.x; u�/C @V �.x/
@x

T

.f .x/C g.x/u�/;
(6)

which for the linear case becomes the well-
known Riccati equation. In order to find the
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optimal control solution for the problem, one
needs to solve the HJB equations (6) for the value
function and then substitute in (5) to obtain the
optimal control. However, due to the nonlinear
nature of the HJB equation, finding its solution is
generally difficult or impossible. The following
PI algorithm is an iterative algorithm for solving
optimal control problems and will give us the
structure for the online learning algorithm.

Algorithm 2 PI for continuous-time systems
1: procedure
2: Given admissible policies u.0/

3: while
			V u.i/ � V u.i/

			 � ac do

4: Solve for the value V .i/.x/ using Bellman’s
equation

Q.x/C @V

@x

u.i/ T

.f .x/C g.x/u.i//C u.i/
T
Ru.i/D0;

V u.i/ .0/ D 0

5: Update the control policy u.iC1/ using

u.iC1/ D �
 
1

2
R�1gT .x/

@V u.i/

@x

T!

6: i WD i C 1

7: end while
8: end procedure

A PI algorithm that solves online the HJB
equation without full information of the plant

dynamics is proposed in Vrabie et al. (2009)
where the Bellman equation is proved to be
equivalent to the integral reinforcement learn-
ing form with an optimal value given for some
T > 0 as

V �.x.t// D arg min
u

Z tCT

t

r.x.�/; u.�//d�

C V �.x.t C T //:

Therefore, the temporal difference error for
continuous-time systems can be defined as

e.t W t C T / D �.t W t C T /C V.x.t C T //

� V.x.t//;

with �.t W t C T / � R tCT
t r.x.�/; u.�//d� with-

out any information of the plant dynamics. The
IRL controller just given tunes the critic neural
network to determine the value while holding
the control policy fixed. The IRL algorithm can
be implemented online by RL techniques using
value function approximation OV .x/ D OW T

1 
.x/

in a critic approximator network. Using that ap-
proximation in the PI algorithm, one can use
batch least squares or recursive least squares
to update the value function, and then on con-
vergence of the value parameters, the action is
updated. The implementation of the IRL optimal
adaptive control algorithm is shown in Fig. 4.

Neural Control and ApproximateDynamic Programming, Fig. 4 Hybrid optimal adaptive controller based on IRL
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The work in Vamvoudakis and Lewis (2010)
presents a way of finding the optimal control
solution in a synchronous manner along with
stability and convergence guarantees but with
known dynamics. This procedure is more nearly
in line with accepted practice in adaptive control.

A synchronous online learning algorithm that
avoids the knowledge of drift dynamics is pro-
posed in Vamvoudakis et al. (2013).

Learning in Games
Reinforcement learning techniques have been ap-
plied to design adaptive controllers that converge
to the solution of two-player zero-sum games
in Vamvoudakis and Lewis (2012) and Vrabie
et al. (2012), of multiplayer nonzero-sum games
in Vamvoudakis et al. (2012a), and of Stackelberg
games in Vamvoudakis et al. (2012b). In these
cases, the adaptive control structure has multiple
loops, with action networks and critic networks
for each player. The adaptive controller for zero-
sum games finds the solution to the H-infinity
control problem online in real time. This adaptive
controller does not require any systems dynamics
information.

Summary and Future Directions

This entry discusses some neuro-inspired adap-
tive control techniques. These controllers have
multi-loop, multi-timescale structures and can
learn the solutions to Hamilton-Jacobi design
equations such as the Riccati equation online
without knowing the full dynamical model of the
system. A method known as Q learning allows the
learning of optimal control solutions online, in
the discrete-time case, for completely unknown
systems. Q learning has not yet been fully inves-
tigated for continuous-time systems.

Cross-References

�Adaptive Control, Overview
� Stochastic Games and Learning
�Optimal Control and the Dynamic Program-

ming Principle
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Abstract

Model-predictive control is a controller design
method which synthesizes a sampled data feed-
back controller from the iterative solution of
open-loop optimal control problems. We describe
the basic functionality of MPC controllers, their
properties regarding feasibility, stability and per-
formance, and the assumptions needed in order
to rigorously ensure these properties in a nominal
setting.

Keywords

Recursive feasibility; Sampled-data feedback;
Stability

Introduction

Model-predictive control (MPC) is a method for
the optimization-based control of linear and non-

linear dynamical systems. While the literal mean-
ing of “model-predictive control” applies to virtu-
ally every model-based controller design method,
nowadays the term commonly refers to control
methods in which pieces of open-loop optimal
control functions or sequences are put together
in order to synthesize a sampled data feedback
law. As such, it is often used synonymously with
“receding horizon control.”

The concept of MPC was first presented in
Propoı̆ (1963) and was reinvented several times
already in the 1960s. Due to the lack of suf-
ficiently fast computer hardware, for a while
these ideas did not have much of an impact.
This changed during the 1970s when MPC was
successfully used in chemical process control. At
that time, MPC was mainly applied to linear sys-
tems with quadratic cost and linear constraints,
since for this class of problems algorithms were
sufficiently fast for real-time implementation – at
least for the typically relatively slow dynamics
of process control systems. The 1980s have then
seen the development of theory and increasingly
sophisticated concepts for linear MPC, while in
the 1990s nonlinear MPC (often abbreviated as
NMPC) attracted the attention of the MPC com-
munity. After the year 2000, several gaps in the
analysis of nonlinear MPC without terminal con-
straints and costs were closed, and increasingly
faster algorithms were developed. Together with
the progress in hardware, this has considerably
broadened the possible applications of both linear
and nonlinear MPC.

In this entry, we explain the functionality of
nominal MPC along with its most important
properties and the assumptions needed to
rigorously ensure these properties. We also
give some hints on the underlying proofs. The
term nominal MPC refers to the assumption
that the mismatch between our model and the
real plant is sufficiently small to be neglected
in the following considerations. If this is not
the case, methods from robust MPC must be
used (�Robust Model-Predictive Control). We
describe all concepts for nonlinear discrete time
systems, noting that the basic results outlined in
this entry are conceptually similar for linear and
for continuous-time systems.

http://dx.doi.org/10.1007/978-1-4471-5058-9_2


Nominal Model-Predictive Control 861

N

Model-Predictive Control

In this entry, we discuss MPC for discrete time
control systems of the form

xu.j C 1/ D f .xu.j /; u.j //; xu.0/ D x0 (1)

with state xu.j / 2 X , initial condition x0 2 X,
and control input sequence u D .u.0/; u.1/; : : :/
with u.k/ 2 U , where the state space X and
the control value space U are normed spaces.
For control systems in continuous time, one may
either apply the discrete time approach to a sam-
pled data model of the system. Alternatively,
continuous-time versions of the concepts and
results from this entry are available in the liter-
ature; see, e.g., Findeisen and Allgöwer (2002) or
Mayne et al. (2000).

The core of any MPC scheme is an optimal
control problem of the form

minimize JN .x0;u/ (2)

w.r.t. u D .u.0/; : : : ; u.N � 1// with

JN .x0;u/ W
N�1X
jD0

`.xu.j /; u.j //C F.xu.N //

(3)

subject to the constraints

u.j / 2 U; xu.j / 2 X for j D 0; : : : ; N � 1

xu.N / 2 X0;
(4)

for control constraint set U � U , state con-
straint set X � X , and terminal constraint set
X0 � X . The function ` W X 	 U ! R is
called stage cost or running cost; the function
F W X ! R is referred to as terminal cost.
We assume that for each initial value x0 2 X,
the optimal control problem (2) has a solution
and denote the corresponding minimizing control
sequence by u�. Algorithms for computing u�
are discussed in �Optimization Algorithms for
Model Predictive Control and �Explicit Model
Predictive Control.

The key idea of MPC is to compute the values
�N .x/ of the MPC feedback law �N from the
open-loop optimal control sequences u�. To
formalize this idea, consider the closed-loop
system

x�N .k C 1/ D f
�
x�N .k/; �N

�
x�N .k/

��
: (5)

In order to evaluate �N along the closed-loop
solution, given an initial value x�N .0/ 2 X, we
iteratively perform the following steps.

Basic MPC Loop
1. Set k WD 0.
2. Solve (2)–(4) for x0 D x�N .k/; denote

the optimal control sequence by u� D
.u�.0/; : : : ; u�.N � 1//.

3. Set �N .x�N .k// W u�.0/, compute x�N .kC1/

according to (5), set k WD kC1. and go to (1).
Due to its ability to handle constraints and pos-
sibly nonlinear dynamics, MPC has become one
of the most popular modern control methods in
the industry (�Model-Predictive Control in Prac-
tice). While in the literature various variants of
this basic scheme are discussed, here we restrict
ourselves to this most widely used basic MPC
scheme.

When analyzing an MPC scheme, three prop-
erties are important:
• Recursive Feasibility, i.e., the property that the

constraints (4) can be satisfied in Step (ii) in
each sampling instant

• Stability, i.e., in particular convergence of
the closed-loop solutions x�N .k/ to a desired
equilibrium x� as k ! 1

• Performance, i.e., appropriate quantitative
properties of x�N .k/

Here we discuss these three issues for two widely
used MPC variants:
1. MPC with terminal constraints and costs
2. MPC with neither terminal constraints nor

costs
In (a), F and X0 in (3) and (4) are specifically
designed in order to guarantee proper perfor-
mance of the closed loop. In (b), we set F � 0

and X0 D X. Thus, the choice of ` and N

in (3) is the most important part of the design
procedure.

http://dx.doi.org/10.1007/978-1-4471-5058-9_9
http://dx.doi.org/10.1007/978-1-4471-5058-9_10
http://dx.doi.org/10.1007/978-1-4471-5058-9_8
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Recursive Feasibility

Since the ability to handle constraints is one
of the key features of MPC, it is important to
ensure that the constraints x�N .k/ 2 X and

�N .x�N .k// 2 U are satisfied for all k � 0. How-
ever, beyond constraint satisfaction, the stronger
property x�N .k/ 2 XN is required, where XN

denotes the feasible set for horizonN ,

XN WD fx2Xj there exists u such that (4) holds}.

The property x 2 XN is called feasibility of
x. Feasibility of x D x�N .k/ is a prerequisite
for the MPC feedback �N being well defined,
because the nonexistence of such an admissible
control sequence u would imply that solving (2)
under the constraints (4) in Step (ii) of the MPC
iteration is impossible.

Since for k � 0 the state x�N .k C 1/ D
f .x�N .k/; u

�.0// is determined by the solution
of the previous optimal control problem, the usual
way to address this problem is via the notion of
recursive feasibility. This property demands the
existence of a set A � X such that:
• For each x0 2 A, the problem (2)–(4) is

feasible.
• For each x0 2 A and the optimal control u?

from (2) to (4), the relation f .x0; u�.0// 2 A

holds.
It is not too difficult to see that this property
implies x�N .k/ 2 A for all k � 1 if x�N .0/ 2 A.

For terminal-constrained problems, recursive
feasibility is usually established by demanding
that the terminal constraint set X0 is viable or
controlled forward invariant. This means that for
each x 2 X0, there exists u 2 U with f .x; u/ 2
X0. Under this assumption, it is quite straight-
forward to prove that the feasible set A D XN

is also recursively feasible (Grüne and Pannek
2011, Lemma 5.11). Note that viability of X0

is immediate if X0 D fx�g and x� 2 X is an
equilibrium, i.e., a point for which there exists
u� 2 U with f .x�; u�/ D x�. This setting is
referred to as equilibrium terminal constraint.

For MPC without terminal constraints, the
most straightforward way to ensure recursive fea-
sibility is to assume that the state constraint set X

is viable (Grüne and Pannek 2011, Theorem 3.5).
However, checking viability and even more con-
structing a viable state constraint set is in general
a very difficult task. Hence, other methods for
establishing recursive feasibility are needed. One
method is to assume that the sequence of feasible
sets XN ;N 2 N becomes stationary for someN0,
i.e., that XNC1 D XN holds for all N � N0.
Under this assumption, recursive feasibility of
XN0 follows, see Kerrigan (2000, Theorem 5.3).
However, like viability, stationarity is difficult to
verify.

For this reason, a conceptually different
approach to ensure recursive feasibility was
presented in Grüne and Pannek (2011, Theo-
rem 8.20); a similar approach for linear systems
can be found in Primbs and Nevistić (2000).
The approach is suitable for stabilizing MPC
problems in which the stage cost ` penalizes the
distance to a desired equilibrium x� (cf. section
“Stability”). Assuming the existence – but not
the knowledge – of a viable neighborhood N
of x�, one can show that any initial point x0
for which the corresponding open-loop optimal
solution satisfies xu�.j / 2 N or some j � N is
contained in a recursively feasible set. The fact
that ` penalizes the distance to x� then implies
xu�.j / 2 N for suitable initial values. Together,
these properties yield the existence of recursively
feasible sets AN which become arbitrarily large
as N increases.

Stability

Stability in the sense of this entry refers to the fact
that a prespecified equilibrium x� 2 X – typically
a desired operating point – is asymptotically sta-
ble for the MPC closed loop for all initial values
in some set S. This means that the solutions
x�N .k/ starting in S converge to x� as k ! 1
and that solutions starting close to x� remain
close to x� for all k � 0. Note that this setting can
be extended to time-varying reference solutions;
see �Tracking Model Predictive Control.

In order to enforce this property, we assume
that the stage cost ` penalizes the distance to the
equilibrium x� in the following sense: ` satisfies

http://dx.doi.org/10.1007/978-1-4471-5058-9_3
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`.x�; u�/ D 0 and ˛1 .jxj/ � `.x; u/ (6)

for all x 2 X and u 2 U. Here ˛1 is a
K1 function, i.e., a continuous function ˛1 W
Œ0;1/ ! Œ0;1/ which is strictly increasing,
unbounded, and satisfies ˛1.0/ D 0. With jxj, we
denote the norm on X . In this entry, we exclu-
sively discuss stage costs ` satisfying (6). More
general settings using appropriate detectability
conditions are discussed in Rawlings and Mayne
(2009, Sect. 2.7) or Grimm et al. (2005) in the
context of stabilizing MPC. Even more general `
are allowed in the context of economic MPC; see
the �Economic Model Predictive Control article.

In case of terminal constraints and terminal
costs, a compatibility condition between ` and
F is needed on X0 in order to ensure stability.
More precisely, we demand that for each x 2 X0

there exists a control value u 2 U such that
f .x; u/ 2 X0 and

F.f .x; u// � F.x/ � �`.x; u/ (7)

holds. Observe that the condition f .x; u/ 2 X0

is again the viability condition which we already
imposed for ensuring recursive feasibility. Note
that (7) is trivially satisfied for F � 0 in case of
X0 D fx�g by choosing u D u�.

Stability is now concluded by using the opti-
mal value function

VN .x0/ WD inf
u s:t: (4)

JN .x0;u/

as a Lyapunov function. This will yield stability
on S D XN, as XN is exactly the set on which VN
is defined. In order to prove that VN is a Lyapunov
function, we need to check that VN is bounded
from below and above byK1 functions˛1 and ˛2
and that VN is strictly decaying along the closed-
loop solution.

The first amounts to checking

˛1 .jxj/ � VN .x/ � ˛2 .jxj/ (8)

for all x 2 XN. The lower bound follows
immediately from (6) (with the same ˛1), and
the upper bound can be ensured by conditions

on the problem data (see, e.g., Rawlings and
Mayne 2009, Sect. 4.5; Grüne and Pannek 2011,
Sect. 5.3).

For ensuring that VN is strictly decreasing
along the closed-loop solutions, we need to prove

VN .f .x; �N .x/// � VN .x/� `.x; �N .x//: (9)

In order to prove this inequality, one uses on
the one hand the dynamic programming principle
stating that

VN�1.f .x; �N .x/// D VN .x/ � `.x; �N .x//:
(10)

On the other hand, one shows that (7) implies

VN�1.x/ � VN .x/ (11)

for all x 2 XN . Inserting (11) with f .x; �N .x//
in place of x into (10) then immediately
yields (9). Details of this proof can be found,
e.g., in Mayne et al. (2000), Rawlings and Mayne
(2009), or Grüne and Pannek (2011). The survey
Mayne et al. (2000) is probably the first paper
which develops the conditions needed for this
proof in a systematic way; a continuous-time
version of these results can be found in Fontes
(2001).

Summarizing, for MPC with terminal con-
straints and costs, under the conditions (6)–(8),
we obtain asymptotic stability of x� on SDXN.

For MPC without terminal constraints and
costs, i.e., with X0 D X and F � 0, these
conditions can never be satisfied, as (7) will
immediately imply `.x; u/ D 0 for all x 2
X, contradicting (6). Moreover, without terminal
constraints and costs, one cannot expect (9) to
be true. This is because without terminal con-
straints, the inequality VN�1.x/ � VN .x/ holds,
which together with the dynamic programming
principle implies that if (9) holds, then it holds
with equality. This, however, would imply that
�N is the infinite horizon optimal feedback law,
which – though not impossible – is very unlikely
to hold.

http://dx.doi.org/10.1007/978-1-4471-5058-9_6
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Thus, we need to relax (9). In order to do so,
instead of (9), we assume the relaxed inequality

VN .f .x; �N .x/// � VN .x/ � ˛`.x; �N .x//

(12)

for some ˛ > 0 and all x 2 X, which is still
enough to conclude asymptotic stability of x�
if (6) and (8) hold. The existence of such an ˛
can be concluded from bounds on the optimal
value function VN . Assuming the existence of
constants �K � 0 such that the inequality

VK.x/ � �K min
u2U `.x; u/ (13)

holds for all K D 1; : : :; N and x 2 X, there are
various ways to compute ˛ from �1; : : :; �N , see
Grüne (2012, Sect. 3). The best possible estimate
for ˛, whose derivation is explained in detail in
Grüne and Pannek (2011, Chap. 6), yields

˛ D 1 �
.�N � 1/

NQ
iD2

.�i � 1/
NQ
iD2

�i �
NQ
iD2

.�i � 1/
: (14)

Though not immediately obvious, a closer look at
this term reveals ˛ ! 1 as N ! 1 if the �K are
bounded. Hence, ˛ > 0 for sufficiently large N .

Summarizing the second part of this section,
for MPC without terminal constraints and costs,
under the conditions (6), (8), and (13), asymptotic
stability follows on S D X for all optimization
horizons N for which ˛ > 0 holds in (14).
Note that the condition (13) implicitly depends
on the choice of `. A judicious choice of ` can
considerably reduce the size of the horizonN for
which ˛ > 0 holds, see Grüne and Pannek (2011,
Sect. 6.6) and thus the computational effort for
solving (2)–(4).

Performance

Performance of MPC controllers can be
measured in many different ways. As the MPC
controller is derived from successive solutions
of (2), a natural quantitative way to measure its

performance is to evaluate the infinite horizon
functional corresponding to (3) along the closed
loop, i.e.,

J c`1.x0; �N / WD
1X
kD0

`
�
x�N .k/; �N

�
x�N .k/

��

with x�N .0/ D x0. This value can then be
compared with the optimal infinite horizon value

V1.x0/ WD inf
uWu.k/2U;xu.k/2X

J1.x0;u/

where

J1.x0;u/ WD
1X
kD0

`.xu.k/; u.k//:

To this end, for MPC with terminal constraints
and costs, by induction over (9) and using non-
negativity of `, it is fairly easy to conclude the
inequality

J c`1.x0; �N / � VN .x0/

for all x 2 XN . However, due to the conditions
on the terminal cost in (7), VN may be consid-
erably larger than V1 and an estimate relating
these two functions is in general not easy to
derive (Grüne and Pannek 2011, Examples 5.18
and 5.19). However, it is possible to show that un-
der the same assumptions guaranteeing stability,
the convergence

VN .x/ ! V1.x/

holds for N ! 1 (Grüne and Pannek 2011,
Theorem 5.21). Hence, we recover approximately
optimal infinite horizon performance for suffi-
ciently large horizonN .

For MPC without terminal constraints and
costs, the inequality VN .x0/ � V1.x0/ is im-
mediate; however, (9) will typically not hold. As
a remedy, we can use (12) in order to derive an
estimate. Using induction over (12), we arrive at
the estimate

J c`1.x0; �N / � VN .x0/=˛ � V1.x0/=˛:
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Since ˛ ! 1 as N ! 1, also in this case
we obtain approximately optimal infinite horizon
performance for sufficiently large horizonN .

Summary and Future Directions

MPC is a controller design method which uses
the iterative solution of open-loop optimal control
problems in order to synthesize a sampled data
feedback controller �N . The advantages of MPC
are its ability to handle constraints, the rigorously
provable stability properties of the closed loop,
and its approximate optimality properties. As-
sumptions needed in order to rigorously ensure
these properties together with the corresponding
mathematical arguments have been outlined in
this entry, both for MPC with terminal constraints
and costs and without. Among the disadvantages
of MPC are the computational effort and the fact
that the resulting feedback is a full state feedback,
thus necessitating the use of a state estimator to
reconstruct the state from output data (�Moving
Horizon Estimation).

Future directions include the application of
MPC to more general problems than set point
stabilization or tracking, the development of effi-
cient algorithms for large-scale problems includ-
ing those originating from discretized infinite-
dimensional control problems, and the under-
standing of the opportunities and limitations of
MPC in increasingly complex environments; see
also �Distributed Model Predictive Control.

Cross-References

�Distributed Model Predictive Control
�Economic Model Predictive Control
�Explicit Model Predictive Control
�Model-Predictive Control in Practice
�Moving Horizon Estimation
�Optimization Algorithms for Model Predictive

Control
�Robust Model-Predictive Control
� Stochastic Model Predictive Control
�Tracking Model Predictive Control

Recommended Reading

MPC in the form known today was first described
in Propoı̆ (1963) and is now covered in several
monographs, two recent ones being Rawlings and
Mayne (2009) and Grüne and Pannek (2011).
More information on continuous-time MPC can
be found in the survey by Findeisen and Allgöwer
(2002). The nowadays standard framework for
stability and feasibility of MPC with stabiliz-
ing terminal constraints is presented in Mayne
et al. (2000); for a continuous-time version, see
Fontes (2001). Stability of MPC without terminal
constraints was proved in Grimm et al. (2005)
under very general conditions; for a comparison
of various such results, see Grüne (2012). Feasi-
bility without terminal constraints is discussed in
Kerrigan (2000) and Primbs and Nevistić (2000).
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Abstract

We consider the control of nonlinear systems in
which parameters are uncertain and may vary.
For such systems the control must adapt to the
parameter change to deliver closed-loop perfor-
mance, such as asymptotic stability or tracking.
A concise description of available methods and
basic adaptive stabilization results, which can be
used as building blocks for complex adaptive
control problems, are discussed.
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Introduction

The adaptive control problem, namely, the prob-
lem of designing a feedback controller which
contains an adaptation mechanism to counteract
changes in the parameters of the system to be
controlled, is of significant importance in ap-
plications. In almost all systems, physical pa-
rameters are subject to changes. These may be
triggered, for example, by changes in temperature
(the volume of a liquid/gas), aging (the friction
coefficient of a mechanical system), or normal
operation (the mass of the fuel of an aircraft
changes during flight, the center of mass of a
vehicle is affected by its load).

While adaptive control is naturally associated
with the notion of estimation, i.e., the parameters
of a system have to be identified to design a
controller, it may be possible to design adaptive
controllers which do not rely on a complete pa-
rameter estimation: it is sufficient to estimate the
effect of the parameters on the control signal.

Adaptive control is different from robust con-
trol. In the simplest possible occurrence, the aim
of robust control is to design a control law guar-
anteeing performance specifications for a given
range of parameter values. Robust control thus
requires some a priori information on the parame-
ter. Adaptive control does not require any a priori
information on the parameter, although any such
information can be exploited in the controller
design, but requires a parameterized model: a
model which contains information on the way the
parameters affect the dynamics of the system.

The adaptive control problem for general non-
linear systems can be formulated as follows. Con-
sider a nonlinear system described by equations
of the form

Px D F.x; u; �/; y D H.x; �/; (1)

where x.t/ 2 Rn denotes the state of the system,
u.t/ 2 Rm denotes the input of the system,
� 2 Rq denotes the constant unknown parameter,
y.t/ 2 Rp denotes the measured output, and
F W Rn 	 Rm 	 Rq ! Rn and H W Rn 	 Rq !
Rp are smooth mappings. While we focus on
continuous-time systems, similar considerations
apply to discrete-time systems. In what follows,
for simplicity, we mostly assume that y D x: the
whole state of the system is available for control
design.

The adaptive control problem consists in find-
ing, if possible, a dynamic control law described
by equations of the form

PO� D w.x; O�; r/; (2)

u D v.x; O�; r/; (3)

with r.t/ 2 Rs an exogenous (reference) signal
and w W Rn 	 Rq 	 Rs ! Rq and v W
Rn 	 Rq 	 Rs ! Rm smooth mappings, such
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that the closed-loop system, described by the
equations

Px D F.x; v.x; O� ; r/; �/; PO� D w.x; O� ; r/;
(4)

has specific properties. For example, one could
require that all trajectories be bounded and the
x-component of the state converge to a given
value x? (this is the so-called adaptive regulation
requirement) or that the input-output behavior
of the system from the input r to some user-
defined output signal coincide with a given refer-
ence model (this is the so-called model reference
adaptive control requirement).

A natural way to characterize design specifi-
cations for the adaptive control problem and to
facilitate its solution is to assume the existence of
a known parameter controller, described by the
equation

u D v?.x; �; r/; (5)

such that the nonadaptive closed-loop system
Px D F.x; v?.x; �; r/; �/ satisfies given design
specifications. In this perspective, the adaptive
control problem boils down to the design of
the update law (2) and of the feedback law (3)
such that the behavior of the adaptive closed-loop
system matches that of the nonadaptive closed-
loop system Px D F.x; v?.x; �; r/; �/.

The above description suggests a design
method for the feedback law: one could replace
� with O� in Eq. (5). This design is often known
as certainty equivalence design and lends itself
to the interpretation that O� be an estimate for � .
Naturally, one could also modify the feedback
law, replacing � with O� and adding x-dependant
terms: this is often called a redesign. Redesign
may be guided by various considerations, for
example, it may be based on the use of a specific
Lyapunov function (yielding the so-called
Lyapunov redesign), or by structural properties
of the system, or by robustness constraints.

The interpretation of O� as an estimate for �
leads to two similar approaches for the design
of the update law. The former, pursued in the
so-called indirect adaptive control, relies on the
design of a parameter estimator, for example,

using recursive least-square methods. This ap-
proach has its roots in identification theory and
has been studied in-depth for linear systems. The
latter relies on the observation that the design of
an update law is equivalent to the design of a
(reduced-order) observer for the extended system

Px D F.x; u; �/; P� D 0;

with output y D x. This approach has its roots in
the theory of nonlinear observer design.

The approaches described so far relies on a
sort of separation principle: the update law and
the feedback law are designed separately. While
this approach may be adequate for linear systems,
for nonlinear systems it is often necessary to
design the update law and the feedback law in
one step, i.e., the selection of the feedback law
depends upon the selection of the update law
and vice versa. To illustrate this design method,
and provide some explicit adaptive control design
tools, we focus on a special class of nonlinear sys-
tems: systems which are linearly parameterized
in the unknown parameter.

Linearly Parameterized Systems

Consider the system (1) and assume the mapping
F is affine in the parameter � and in the control
u, namely,

F.x; u; �/ D f0.x/C g.x/u C f1.x/�; (6)

with f0 W Rn ! Rn, g W Rn ! Rn 	 Rm

and f1 W Rn ! Rn 	 Rq smooth mappings.
For this class of systems, under additional as-
sumptions, it is possible to provide systematic
adaptive control design tools. We provide two
formal results: additional results (depending on
the specific assumptions imposed on the system)
may be derived. In both cases the focus is on
the adaptive stabilization problem: the goal of
the adaptive controller is to render a given equi-
librium stable, in the sense of Lyapunov, and to
guarantee convergence of the x-component of the
state (recall that the state of the adaptive closed-
loop system is the vector .x; O�/).
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Theorem 1 Consider the system (6) and a point
x�. Assume there exist a known parameter con-
troller

u D v0.x/C v1.x/�;

with v0 W Rn ! Rm and v1 W Rn ! Rm 	 Rq

smooth mappings, and a positive definite and
radially unbounded function V W Rn ! R, such
that V.x?/ D 0 and

@V

@x
f �.x; �/ < 0

for all x ¤ x?.
Then the update law

PO� D �
�
@V

@x
g.x/v1.x/

�>

and the feedback law

u D v0.x/C v1.x/ O�

are such that all trajectories of the closed-loop
system are bounded and lim

t!1x.t/ D x?.

Theorem 2 Consider the system (6) and a point
x�. Assume there exists a known parameter con-
troller u D v.x; �/ such that the closed-loop
system

Px D f �.x; �/;

where f �.x; �/ D f0.x/Cf1.x/�Cg.x/v.x; �/,
has a globally asymptotically stable equilibrium
at x�. Assume, in addition, that there exists a
mapping ˇ W Rn ! Rq such that all trajectories
of the system

Pz D �


@̌

@x
f1.x/

�
z;

Px D f �.x/C g.x/ .v.x; � C z/ � v.x; �//
(7)

are bounded and satisfy

lim
t!1

Œg.x.t// .v.x.t/; � C z.t// � v.x.t/; �//� D 0:

Then the update law

PO� D � @̌
@x

h
f0.x/C f1.x/

� O� C ˇ.x/
�

C g.x/v.x; O� C ˇ.x//
i

(8)

and the feedback law

u D v.x; O� C ˇ.x//

are such that all trajectories of the closed-loop
system are bounded and lim

t!1x.t/ D x?.

The stability properties of the adaptive closed-
loop system in Theorem 1 can be studied with the
Lyapunov functionW.x; O�/ D V.x/C 1

2
k O���k2,

whereas a Lyapunov analysis for the adaptive
closed-loop system of Theorem 2 can be carried
out, under additional assumptions, via a Lya-
punov function of the form W.x; O�/ D V.x/ C
1
2
k O���Cˇ.x/k2. This suggests that in Theorem 1

O� plays the role of the estimate of � , whereas in
Theorem 2 such a role is played by O� C ˇ.x/.
Note that in none of the theorems, the parame-
ter estimate is required to converge to the true
value of the parameters, although in Theorem 2
the feedback law is required to converge, along
trajectories, to the known parameter controller.
This has a very important, possibly counterin-
tuitive, consequence: the asymptotic nonadaptive
controller u D v.x; O�1/, where O�1 D lim

t!1
O�.t/,

provided the limit exists, is not in general a
stabilizing controller for system (6).

Example 1 Consider the nonlinear system de-
scribed by the equation Px D u C �x2; with
x.t/ 2 R, u.t/ 2 R, and � 2 R. A known
parameter controller satisfying the assumptions
of Theorem 1 (with and V.x/ D x2=2) and of
Theorem 2 (with ˇ.x/ D x) is u D �x � �x2:

The resulting update laws and feedback laws are

PO�1 D x3; u1 D �x � O�x2;

and

PO�2 D x; u2 D �x � . O� C x/x2;
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respectively, the subscripts “1” and “2” are used
to refer to the construction in Theorem 1 and 2,
respectively.

The basic building blocks in Theorems 1 and 2
can be exploited repeatedly to design adaptive
controllers for systems with a specific structure,
for example, for systems described by the equa-
tions

Px1 D x2 C '1.x1/
>�;

Px2 D x3 C '2.x1; x2/
>�;

:::

Pxi D xiC1 C 'i.x1; : : : ; xi /
>�;

:::

Pxn D u C 'n.x1; : : : ; xn/
>�;

(9)

with xi .t/ 2 R, for i D 1; : : : ; n, u.t/ 2 R, 'i W
Ri ! Rq , for i D 1; : : : ; n, smooth mappings,
and � 2 Rq . Note that the last of the equations
(9) can be replaced by

Pxn D N�u C 'n.x1; : : : ; xn/
>�;

with N� 2 R, provided its sign is known (this
condition may be removed using the so-called
Nussbaum gain). The parameter N� is often re-
ferred to as the high-frequency gain of the sys-
tem: a terminology borrowed from linear systems
theory.

Output Feedback Adaptive Control

A key feature of the parameterized systems de-
scribed so far is that these are linearly parame-
terized in � . The linear parameterization allows
to develop systematic design tools, such as those
given in Theorems 1 and 2. Such results, how-
ever, require full information on the state of the
system. If only partial information on the state
is available, one has to combine an estimator of
the state with an update law. Such a combina-
tion requires either strong assumptions on the
system or very specific structures. For example,
it is feasible if the system is not only linearly
parameterized in the parameter � , but it is also

linearly parameterized in the unmeasured states,
namely, it is described by equations of the form

Px1 D x2 C  1.x1/ C '1.x1/
>�;

Px2 D x3 C  2.x1/ C '2.x1/
>�;

:::

Pxi D xiC1 C  i .x1/ C 'i .x1/
>� C biu;

:::

Pxn�1 D xn C  n�1.x1/ C 'n�1.x1/
>� C bn�1u;

Pxn D  n.x1/ C 'n.x1/
>� C bnu;

y D x1

with xi .t/ 2 R, for i D 1; : : : ; n, u.t/ 2 R,
y.t/ 2 R, 'i W R ! Rq , and  i W R ! R,
for i D 1; : : : ; n, smooth mappings, � 2 Rq ,
and b D Œbi ; � � � ; bn�1; bn�> unknown, but such
that the sign of bn is known and the polynomial
bns

n�i C bn�1sn�i�1 C � � � C bi has all roots with
negative real part (this implies that the system,
with input u and output y, is minimum phase).

Nonlinear Parameterized Systems

Adaptive control of nonlinearly parameterized
systems is an open area of research. The design
of adaptive controllers relies often upon struc-
tural assumptions, for example, the existence of
a monotonic parameterization, as in the system
described by the equation

Px D F.x; u/Cˆ.x; �/;

with x.t/ 2 Rn, u.t/ 2 Rm, � 2 Rq , and F W
Rn 	Rm ! Rn and ˆ W Rn 	 Rq ! Rn smooth
mappings and such that, for all x, the mappingˆ
satisfies the monotonicity condition

.�a � �b/> .ˆ.x; �a/�ˆ.x; �b// > 0;

for all �a ¤ �b . Alternatively, the design may
exploit the so-called over-parameterization, for
example, the equation of the system

Px D u C  1.x/ sin � C  2.x/ cos �;
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with x.t/ 2 R, u.t/ 2 R, and � 2 R, may be
rewritten in over-parameterized form as

Px D u C  1.x/�1 C  2.x/�2;

with �i 2 R, for i D 1; 2. Note that the
over-parameterized form overlooks the important
information that �21 C �22 D 1.

Summary and Future Directions

The problem of adaptive stabilization for non-
linear systems has been discussed. Two concep-
tual building blocks for the design of stabilizing
adaptive controllers have been discussed, and
classes of systems for which these blocks al-
low to explicitly design adaptive controllers have
been given. The role of parameter convergence,
or lack thereof, has been briefly discussed to-
gether with connections between adaptive and
observer designs. The difficulties associated with
non-full state measurement and with nonlinear
parameterization have been also briefly high-
lighted. Several problems have not been dis-
cussed, for example, model reference adaptive
control, robust adaptive control, universal adap-
tive controllers, and the use of projections to
incorporate prior knowledge on the parameter.
Details on these can be found in the bibliography
below.
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Abstract

Nonlinear filters estimate the state of dynami-
cal systems given noisy measurements related to
the state vector. In theory, such filters can pro-
vide optimal estimation accuracy for nonlinear
measurements with nonlinear dynamics and non-
Gaussian noise. However, in practice, the actual
performance of nonlinear filters is limited by the
curse of dimensionality. There are many different
types of nonlinear filters, including the extended
Kalman filter, the unscented Kalman filter, and
particle filters.
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Description of Nonlinear Filters

Nonlinear filters are algorithms that estimate the
state vector (x) of a nonlinear dynamical system
given measurements of nonlinear functions of the
state vector corrupted by noise. Such filters also
quantify the uncertainty in the resulting estimate
of the state vector (e.g., using the error covariance
matrix). Some nonlinear filters compute the entire
probability density of the state vector conditioned
on the set of measurements available, rather than
computing a point estimate of the state vector
(e.g., conditional mean or maximum likelihood).
For some applications the conditional probability
density of x is highly non-Gaussian (e.g., strongly
multimodal). Even if the measurement noise and
the process noise and the initial uncertainty in
x are all Gaussian, the conditional density of
x can be non-Gaussian, owing to the nonlin-
earities in the dynamics or measurements. The
dynamical systems can evolve in continuous time
or discrete time, and the measurements can be
made in continuous time or at discrete times.
The most popular nonlinear filter in practical
applications is the extended Kalman filter (EKF),
but there are many other families of nonlin-
ear filters, including particle filters, unscented
Kalman filters (UKFs), batch least squares, exact
finite-dimensional filters, Gaussian sum filters,
cubature Kalman filters, etc. Table 1 summarizes
the most popular nonlinear filters. The theory
for nonlinear filters is relatively simple (see Ho
and Lee 1964), but the crucial practical issue is
computational complexity, even today with fast
modern inexpensive computers, e.g., graphical
processing units (GPUs). See Ristic et al. (2004)
for a book which is both accessible to engineers
and thorough.

Bayesian Formulation of Filtering
Problem

The Bayesian approach to nonlinear filters is by
far the most popular formulation of the problem
(see Ho and Lee 1964), and it has virtually
eliminated all other competing theories, because
it is simple, general, systematic, and useful. All
ten nonlinear filters listed in Table 1 are Bayesian.
The Bayesian approach uses a model of the dy-
namics of x as well as a model of the measure-
ments. For example, discrete-time dynamics and
measurement models are typically of the form

x.tkC1/ D f.x.tk/; tk/C w.tk/

z.tk/ D h.x.tk/; tk/C v.tk/

in which x.tk/ is the d-dimensional state vector at
time tk, z.tk/ is the m-dimensional measurement
vector at time tk, v is the measurement noise, and
w is the so-called process noise. Both v and w are
often modeled as Gaussian zero-mean random
processes with statistically independent values at
distinct discrete times, but these models could be
highly non-Gaussian with statistically correlated
random values. The initial probability density of
x before any measurements are available is also
used in the Bayesian formulations. Real physical
systems are most commonly modeled as evolving
in continuous time using Itô stochastic differen-
tial equations:

dx D f.x.t/; t/dt C dw

However, most engineers would rather think
of the above Itô equation as an ordinary differen-
tial equation driven by Gaussian white noise:

dx=dt D f.x.t/; t/C dw=dt

Mathematicians prefer the Itô equation to avoid
the embarrassment that the time derivative of w(t)
does not exist. For details of stochastic calculus,
see Jazwinski (1998). Such mathematical sub-
tleties rarely cause any trouble in practical en-
gineering applications. We emphasize, however,
that it is important to correctly model continuous-
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Nonlinear Filters, Table 1 Summary of nonlinear filters

Nonlinear filter

Conditional
probability
density

Computational
complexity Comments References

1. Extended Kal-
man filter (EKF)

Gaussian d3 Gives good accuracy for
many practical
applications but can be
highly suboptimal in
difficult problems

Gelb et al. (1974)

2. Unscented Kal-
man filter(UKF)

Gaussian d3 Often the UKF beats the
EKF, but sometimes the
EKF is better than the
UKF; see Noushin (2008)
for details

Julier and
Uhlmann (2003)

3. Batch least sq-
uares

Gaussian d3 Often beats the EKF
accuracy but can fail for
multimodal or other
strongly non-Gaussian
densities

Sorenson (1980)

4. Particle filter Arbitrary Varies from d3 to
exponential in d,
depending on many
features of the problem

Often beats the EKF
accuracy but can fail due
to the curse of
dimensionality and
particle degeneracy and
ill-conditioning

Doucet (2011)

5. Cubature Kal-
man filter

Gaussian d3 Sometimes beats the EKF
and UKF for difficult
nonlinear non-Gaussian
problems, but not always

Haykin (2010)

6. Gaussian sum Arbitrary Varies from d3 to
exponential in d,
depending on many
features of the problem

Beats the EKF for certain
difficult nonlinear
non-Gaussian problems

Sorenson (1988)

7. Exact finite-di-
mensional filters

Exponential
family

d3 Beats the EKF for certain
difficult nonlinear non-
Gaussian problems

Daum (2005)

8. Implicit
particle filters

Arbitrary Suffers from the curse
of dimensionality
(i.e., computation time
grows exponentially
in d)

Only low-dimensional
numerical examples have
been published so far

Chorin (2009)

9. Particle flow
filter

Arbitrary Faster than standard
particle filters by many
orders of magnitude
for high-dimensional
problems (but
unfortunately there is
no explicit formula for
computation time)

Beats the EKF by orders
of magnitude for certain
difficult nonlinear
non-Gaussian problems

Daum (2013)

10. Numerical so-
lution of Fokker-
Planck equation

Arbitrary Suffers from the curse
of dimensionality
(i.e., computation time
grows exponentially
in d)

Beats the EKF by orders
of magnitude for certain
difficult nonlinear
non-Gaussian problems

Ristic (2004)
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time random processes for the evolution of the
state vector (x) in many practical applications.
Similarly, one can model measurements in con-
tinuous time using Itô calculus:

dz D h.x.t/; t/dt C dv

Most engineers consider continuous-time mea-
surement models as impractical and unnecessar-
ily complicated mathematically, because digital
computers always require discrete-time measure-
ments and there are no practical analog com-
puters that can be used for nonlinear filtering,
owing to the overwhelming superiority of digital
computers in terms of accuracy, stability, dy-
namic range, and flexibility. Nevertheless, there
are many papers published by researchers us-
ing continuous-time measurement models. But
the vast majority of practical papers on nonlin-
ear filters use discrete time measurement models
for obvious reasons. This contrasts sharply with
the practical importance of correctly modeling
continuous-time random processes for the evolu-
tion of the state vector (x).

Nonlinear Filter Algorithms

There is no universally best nonlinear filter for
all applications, and there is much debate about
which is the best nonlinear filter for any given
application. Even if we knew the best nonlinear
filter for a given computer, the answer could be
very different for a different computer; in partic-
ular, some filters can exploit massively parallel
processing architectures, whereas others cannot.
Research and development of nonlinear filters
should continue rapidly for the foreseeable fu-
ture. More generally, there is no universal the-
ory of computational complexity for practical
algorithms of this type; perhaps the closest ap-
proximation to such a theory is “information-
based complexity” (IBC); e.g., see Traub and
Werschulz (1998) and Dick et al. (2013). The
estimation accuracy of x and the computational
complexity of the nonlinear filter are intimately
connected, as shown below for particle filters.

There is no useful way to quantify the com-
putational complexity of nonlinear filters with-
out also quantifying estimation accuracy of x.
This contrasts with standard computational com-
plexity theory (e.g., P vs. NP) because we are
interested in approximations rather than exact so-
lutions. This is the basic idea of IBC. In practice,
engineers compare the estimation accuracy and
computational complexity of different nonlinear
filters using Monte Carlo simulations for specific
applications and specific computers.

The most active area of current research in
nonlinear filters is focused on particle filters,
which have the promise of optimal accuracy for
essentially any nonlinear filter problem, at the
cost of very high computational complexity for
high-dimensional problems. In the early days
(1994–2004), researchers often asserted that par-
ticle filters “beat the curse of dimensionality,”
but it is well known today that this assertion
is wrong (e.g., see Daum 2005). Unfortunately,
there is no useful theory of computational com-
plexity for particle filters, but rather the currently
available theory gives asymptotic bounds on ac-
curacy with generic “constants.” Such bounds
on the variance of estimation error are generally
of the form c/N in which N is the number of
particles and c is the generic so-called constant.
But we know that the so-called constant actually
varies by many orders of magnitude depending
on the specifics of the problem, including the
following: (1) dimension of the state vector be-
ing estimated, (2) uncertainty in the initial state
vector, (3) measurement accuracy, (4) stability
of the dynamical system that describes the time
evolution of the state vector, (5) geometry of
the conditional probability densities (e.g., uni-
modal, log-concave, multimodal, etc.), (6) Lip-
schitz constants of the log probability densi-
ties, (7) curvature of the nonlinear dynamics and
measurements, (8) ill-conditioning of the Fisher
information matrix for the estimation problem,
etc. Moreover, there are no tight bounds on the
so-called constant c for practical nonlinear filter
problems, but rather the best bounds for simple
MCMC problems are known to be 30 orders of
magnitude too large; see Dick et al. (2013).
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Discrete-Time Measurement Models

Research papers on nonlinear filters are often
mathematically abstract, but advanced math is not
required for practical engineering applications
(e.g., see Ho and Lee 1964). In particular, one
can avoid the advanced stochastic mathematics
used for continuous-time measurements by using
discrete-time measurements, which is the practi-
cal case of interest anyway, owing to the use of
digital computers to implement such algorithms.
The notion that continuous-time measurements
results in simpler, better, or more elegant results
for nonlinear filters is misleading; for exam-
ple, we have the elegant innovation theory for
continuous-time measurements (Kailath 1970),
but this theory is not applicable for discrete-
time measurements, likewise with the elegant
formula for propagating the conditional mean
for continuous-time measurements (the so-called
Fujisaki-Kallianpur-Kunita formula). More gen-
erally, the simple discrete-time version of Bayes’
rule suffices for practical real-world engineering
applications; there is rarely a need to employ
the more complex continuous-time version. The
discrete time formula for Bayes’ rule is simply

p.x.tk/; tkjZk/ D p.x.tk/; tkjZk�1/p.zkjx.tk//=p.zkjZk�1/

in which

p.x.tk/, tkjZk/ D probability density of x at time
tk conditioned on Zk; this is also called the
“posteriori probability density”

x.t/ D state vector of the dynamical system at
time t

Zk D set of all measurements up to and including
time tk

zk D measurement vector at time tk
p.zkjx.tk// D probability density of zk condi-

tioned on x.tk/; this is also called the “like-
lihood”

p.AjB/ D probability density of A conditioned
on B

This is all one needs to know about Bayes’
rule for practical engineering applications of non-
linear filtering; see Ho and Lee (1964). Bayes’

rule is a simple formula that multiplies two prob-
ability densities and normalizes it by dividing by
p.zkjZk�1/. In most applications, there is no need
to normalize the density, and hence, Bayes’ rule
for the unnormalized conditional density is even
simpler:

p.x.tk/; tkjZk/ D p.x.tk/; tkjZk�1/p.zkjx.tk//

We see that Bayes’ rule for the unnormalized
conditional density is simply a multiplication of
two densities (i.e., the likelihood and the prior).

Summary and Future Directions

In practical applications, the most popular non-
linear filter is the extended Kalman filter (EKF),
followed by the unscented Kalman filter (UKF).
These two filters give good accuracy and robust
performance for many practical applications. The
computational complexity of both the EKF and
UKF grows as the cube of the dimension of the
state vector, and hence, they are very practical
to run in real time on laptops or PCs for many
real- world applications. But there are also many
difficult nonlinear or non-Gaussian problems for
which the EKF and UKF give suboptimal accu-
racy, and in some cases, they give surprisingly
bad accuracy. The accuracy of optimal nonlinear
filters is limited by the curse of dimensionality.
We know how to write the equations for the
optimal nonlinear filter, but the solution generally
takes an exponentially increasing time to com-
pute as the dimension of the state vector grows.
There are many different kinds of nonlinear fil-
ters, and this is still an active field of research,
as shown in Crisan and Rozovskii (2011). Future
research is likely to exploit advances in compu-
tational complexity theory for approximation of
functions in the style of information-based com-
plexity (IBC) rather than P vs. NP theory. This
is because we want good fast approximations
rather than exact algorithms. A lucid introduc-
tion to IBC is Traub and Werschulz (1998), and
recent work is surveyed in Dick et al. (2013).
Another fruitful direction of research is to ex-
ploit the recent advances in transport theory,
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as explained in Daum (2013); the best intro-
duction to transport theory is the book by Vil-
lani (2003), which is very accessible yet thor-
ough. Research in exact finite-dimensional fil-
ters is difficult but could yield substantial im-
provements in accuracy and computational com-
plexity; for example, see Benes (1981), Marcus
(1984), and Daum (2005). Progress in nonlin-
ear filter research could be inspired by many
diverse fields, including fluid dynamics, quan-
tum chemistry, quantum field theory, gauge the-
ory, string theory, Lie superalgebras, Lie super-
groups, and neuroscience. An important open
research topic is the stability of nonlinear fil-
ters, which is obviously a fundamental limita-
tion to good theoretical upper bounds on esti-
mation error. We still do not have a practical
theory of stability for nonlinear filters. Perhaps
the closest approximation to such a theory is
the lucid paper by van Handel (2010), which
makes an interesting attempt at understanding
the stability of nonlinear filters. In particular,
van Handel’s paper aims to generalize Kalman’s
theory of stability for the Kalman filter by con-
necting stability with the essence of controlla-
bility and observability. A good survey of what
is known about stability theory for nonlinear
filters is given in various articles in Crisan and
Rozovskii (2011).
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Abstract

Sampled-data systems are control systems in
which the feedback law is digitally implemented
via a computer. They are prevalent nowadays
due to the numerous advantages they offer
compared to analog control. Nonlinear sampled-
data systems arise in this context when either the
plant model or the controller is nonlinear. While
their linear counterpart is now a mature area,
nonlinear sampled-data systems are much harder
to deal with and, hence, much less understood.
Their inherent complexity leads to a variety of
methods for their modeling, analysis, and design.
A summary of these methods is presented in this
entry.

Keywords

Discrete time; Nonlinear; Sampled data; Sam-
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Introduction

Definition: A control system in which a
continuous-time plant is controlled by a digital
computer is referred to as a sampled-data
control system or simply a sampled-data system
(Chen and Francis 1994); see Fig. 1. Nonlinear
sampled-data systems arise when either the
model of the plant or the controller is nonlinear;
otherwise the system is referred to as a linear
sampled-data system.

Motivation: Sampled-data control is prefer-
able to continuous-time (analog) control for a

range of reasons including reduced cost, reduced
wiring, more robust hardware, easier and more
flexible programming, and so on. Nowadays, a
large majority of controllers are implemented
on digital computers, and, hence, sampled-data
systems are prevalent in practice. On the other
hand, nonlinear plant models are necessary in
numerous applications when a wide range of op-
erating conditions need to be considered or when
truly nonlinear phenomena, such as friction or
state/input constraints, are not negligible. Hence,
there are many situations where nonlinear plant
models are essential, such as vertical takeoff and
landing of an aircraft, robots, automotive engines,
and biochemical reactors, to name a few. It has
to be noted that the nonlinearity may also come
from the controller even when we consider linear
plants as it is the case in adaptive control or model
predictive control with constraints, for example.

Structure of sampled-data systems: Figure 1
presents a typical structure of a sampled-data
system which consists of a continuous-time plant,
an analog-to-digital (A/D) converter (i.e., a sam-
pler), a digital-to-analog (D/A) converter (i.e., a
hold device), and a discrete-time controller.

The A/D converter takes measurements y.tk/
of a continuous-time output signal y.t/, such as
temperature or pressure, at sampling time instants
tk; k D 0; 1; : : : and sends them to the control
algorithm. The measurements are obtained with
finite precision (i.e., they are quantized); this ef-
fect is not considered in this entry. The sampling
instants tk are often equidistant, that is, tk D kT;

k D 0; 1; : : :, where the distance T between any
two consecutive sampling instants is referred to
as the sampling period. The sampling period is
an important degree of freedom in the design of
sampled-data systems and it needs to be carefully
selected.

The control algorithm is discrete in nature. It
takes the sequence of measurements y.tk/ and
processes them to produce a sequence of control
values u.tk/. The D/A converter converts the se-
quence of control values u.tk/ into a continuous-
time signal u.t/ that drives the actuators which
control the plant. Typically, a zero-order hold is
used, i.e., u.t/ D u.tk/;8t 2 Œtk ; tkC1/. However,
it is possible to use other types of holds.
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D/A
converter

A/D
converter

Continuous-time
plant

Discrete-time
controller

u(tk) u(t) y(t) y(tk)
Nonlinear Sampled-Data
Systems, Fig. 1
Sampled-data (control)
system

Note that the system in Fig. 1 can be general-
ized in many ways. An important generalization
is multi-rate sampling where the output of the
system is sampled at one sampling rate while
the control inputs are updated at a different sam-
pling rate. Another generalization are networked
control systems which are discussed in the last
section.

Modeling

The combination of continuous-time and
discrete-time components renders the analysis
and the design of sampled-data systems
challenging. Still, linear systems allow for
computationally efficient analysis and design
techniques that benefit from the z and ı

transforms, as well as convex optimization
(Chen and Francis 1994). Nonlinear sampled-
data systems, one the other hand, are much harder
to deal with since the aforementioned methods do
not apply in this case. This inherent difficulty has
led to a variety of models for different analysis
and design methods:
1. Continuous-time models
2. Discrete-time models
3. Sampled-data models
We discuss bellow each of these models, their
features, and the analysis or design methods that
exploit them.

Continuous-time models basically ignore the
sampling process and assume that all signals are
continuous time. They are the coarsest approx-
imation of the sampled-data system and they

are useful only for very small sampling periods.
Nevertheless, they are invaluable and are used as
the first step in the controller/observer design in
the so-called emulation design approach.

Discrete-time models only capture the be-
havior of the sampled-data system at sampling
instants. Indeed, they ignore the inter-sample be-
havior of the system and this is their main draw-
back. There are two ways in which nonlinear
discrete-time models arise: (i) from the identi-
fication of the plant model using the sampled
measurements and (ii) from the discretization
of a known continuous-time plant model. For
instance, black box identification methods often
lead to nonlinear discrete-time models in input-
output form, such as NARMA (nonlinear auto-
regressive moving average) models (Chen et al.
1989; Juditsky et al. 1995). Depending on the
approximating functions used, the nonlinearities
can be polynomial, neural network type, fuzzy
type, and so on. On the other hand, the discretiza-
tion of the continuous-time plant model requires
an exact analytic solution of a set of nonlinear
differential equations. When such an analytic
solution exists, we can obtain the exact discrete-
time models of the system; this is typically as-
sumed for linear plants. Nonlinear sampled-data
systems are different from their linear counter-
parts in that it is typically impossible to obtain the
exact discrete-time model and only approximate
discrete-time models are available for analysis
and design (Nešić et al. 1999; Nešić and Teel
2004).

Sampled-data models capture the true be-
havior of the sampled-data system including its
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inter-sample behavior. There are several ways
in which this can be achieved. One way is to
model the piecewise constant signals that arise
from zero-order hold devices as signals with a
time-varying delay; this gives rise to time-delay
nonlinear models (Teel et al. 1998). Another
recently proposed approach is to model nonlinear
sampled-data systems as hybrid dynamical sys-
tems (Goebel et al. 2012). An extensive analy-
sis and design toolbox has been developed for
hybrid dynamical systems and these results can
be used for nonlinear sampled-data systems. An-
other class of models, based on the so-called lift-
ing, has been applied for linear systems where the
system is represented as a discrete-time system
with infinite dimensional input and output spaces.
While this approach has been very successful in
the linear context (Chen and Francis 1994), it ap-
pears that it is not as useful for nonlinear systems
due to difficulties arising from harder analysis
and prohibitive computational requirements.

TheMain Issues and Analysis

Controllability/observability: Issues arising
due to sampling in linear systems transfer to
the nonlinear context although they are less
understood in this case. For instance, it is
well known that sampling may “destroy” the
controllability and/or observability properties of
the system (Chen and Francis 1994). In other
words, if the continuous-time plant model is
controllable/observable, then the corresponding
exact discrete-time model of the plant may
not verify these properties for some sampling
periods. A simple test is available for linear
systems to avoid this phenomenon, but we are
not aware of similar results in the nonlinear
context.

Finite escape times: A major difference
between continuous-time linear and nonlinear
systems is that the former have well defined
solutions for constant control inputs and
arbitrarily long sampling periods. This is not
the case, in general, for nonlinear systems as they
may exhibit finite escape times. In other words,
for a constant input it may happen for some initial

conditions of a nonlinear system that solutions
blow up within a time that is shorter than the
sampling period. As a consequence, for such an
initial condition and input, the exact discrete-time
system cannot be defined. This is a fundamental
obstacle to achieving global stability results for
nonlinear systems if the sampling period is fixed
and independent of the size of the initial state.
Nevertheless, it is possible to ensure semi-global
stability properties for very general nonlinear
systems which means that any compact domain
of convergence can be achieved if the sampling
period is sufficiently reduced (Nešić and Teel
2004).

Model structure is changed: An important
issue for nonlinear sampled-data systems is that
the sampling modifies the structure of the model.
When the continuous-time plant model has a
certain structure, such as triangular or affine
in the input, the corresponding exact discrete-
time model will not inherit it; see Monaco and
Normand-Cyrot (2007) and Yuz and Goodwin
(2005). This significantly complicates the design
of sampled-data systems via the discrete-
time approach since many nonlinear design
techniques, like backstepping or forwarding, are
heavily reliant on the structure of the model.

Zero dynamics: Probably the most signifi-
cant aspect of the changed structure are the so-
called sampling zeros. In linear systems, it is well
known that if a continuous-time linear system of
relative degree r � 2 is sampled, then generically
for fast sampling the discrete-time models of
the plant will have relative degree r D 1. In
other words, sampling introduces extra zeros in
the model which are often unstable and thus
render the system non-minimum phase. It is well
known that the controller design is much harder
for non-minimum phase systems, and, moreover,
there are certain fundamental performance limi-
tations in this case. Recently, results that extend
the notion of sampling zeros to the nonlinear
sampled-data systems have been reported; see
the references in Monaco and Normand-Cyrot
(2007).

Passivity: Some plant properties like passivity
are much more restrictive in discrete time than
in continuous time. Indeed, it is necessary for a
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continuous-time plant to have relative degree 1
or 0 to be passive, whereas only relative degree
0 discrete-time plants may possess this property.
In other words, an exact discrete-time model of
a passive continuous-time plant of relative degree
1 will not be passive; that is, sampling typically
destroys passivity.

Controller Design

Linearization: The simplest way to design
sampled-data nonlinear systems is to linearize the
plant at a given operating point. In this case, the
nonlinear plant dynamics are approximated by a
linear model around a chosen equilibrium, and
then any of the linear sampled-data techniques
can be applied to the linearized model. The
obtained solution is then implemented on the true
nonlinear plant. The drawback of this technique
is that the solution would typically perform well
only in the vicinity of the selected equilibrium
point.

Nonlinear methods: An alternative is to per-
form designs that rely on a nonlinear plant model.
These approaches can be divided into feedback
linearization, emulation design method, (approxi-
mate and exact) discrete-time design method, and
sampled-data design method.

Feedback linearization: Some classical prob-
lems, like feedback linearization, are harder for
sampled-data systems than continuous-time ones.
It was shown that a class of discrete-time nonlin-
ear systems for which feedback linearization is
possible is smaller than the corresponding class
of continuous-time systems (Grizzle 1987). This
has led to approximate feedback linearization
techniques which consider achieving feedback
linearization approximately with an error that can
be reduced by reducing the length of the sampling
period (Arapostathis et al. 1989).

Continuous-time design method (Emulation
design): Emulation is a design technique consist-
ing of two steps. In the first step, a continuous-
time controller or observer is designed for the
continuous-time plant while ignoring sampling
to achieve appropriate stability, performance,
and/or robustness guarantees. In the second step,

the designed controller/observer is discretized
for implementation and the sampling period is
reduced sufficiently for the method to work. This
method is approximate since the continuous-time
plant model approximates well the sampled-data
systems only for sufficiently small sampling peri-
ods. The discretization can be done using various
implicit or explicit Runge-Kutta methods, such as
the forward or backward Euler method (Monaco
and Normand-Cyrot 2007; Yuz and Goodwin
2005). The emulation method is probably the
best understood of all design methods. It was
shown that a range of stability properties that
can be cast in terms of dissipation inequalities
are preserved in an appropriate sense under the
emulation approach (Laila et al. 2002). Moreover,
nonconservative estimates of the upper bound for
the required sampling period in emulation have
been reported recently (Nešić et al. 2009).

Exact discrete-time design method: Exact
discrete-time design method assumes that
an exact discrete-time model of the plant is
available to the designer; see Kötta (1995)
and the references cited therein. This approach
is reasonable when black box identification
techniques are used for modeling. Moreover,
in some rare cases it is possible to obtain
the exact discrete-time model of the plant by
integrating the continuous-time model with
fixed inputs (assuming the zero-order hold is
used). This is the case when the plant dynamics
are linear while the control law is nonlinear
(e.g., adaptive control) or the plant is linear
with state/input constraints, which is a setup
often used in the model predictive control. The
literature on exact discrete-time design method
is vast and many of the nonlinear continuous-
time design techniques, like backstepping,
forwarding, and passivity-based designs, are
extended to discrete-time nonlinear systems; see
Kötta (1995) and Grizzle (1987). A drawback
of these methods is that they assume a special
structure of the discrete-time nonlinear model,
such as upper or lower triangular structure, which
is typically much more restrictive in discrete-
time than in continuous-time due to the loss of
structure due to sampling that was discussed
earlier.
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Approximate discrete-time design method:
Due to the nonlinearity, it is impossible in
most cases to obtain an exact discrete-time
plant model by integrating its continuous-time
model equations; instead, a range of approximate
discrete-time plant models, such as Runge-Kutta,
can be used for controller/observer design. It
was recently shown that this design method
may lead to disastrous consequences where the
controller stabilizes the approximate discrete-
time plant model for all (arbitrarily small)
sampling periods while the same controller
destabilizes the exact discrete-time plant model
for all sampling periods; see Nešić and Teel
(2004) and Nešić et al. (1999). This is true even
for linear systems and some commonly used
discretization techniques and controller designs.
These considerations have led to the development
of a framework for controller design based on
approximate discrete-time models (Nešić et al.
1999; Nešić and Teel 2004). This framework
provides checkable conditions on the continuous-
time plant model, the approximate discrete-time
model and the controller that guarantee that
the controllers designed in this manner would
stabilize the exact discrete-time model and,
hence, the nonlinear sampled-data system for
sufficiently small sampling periods. The design
is based on families of approximate discrete-time
models parameterized with the sampling period,
and the design objectives are more demanding
than in the continuous-time nonlinear systems.
Ideas from numerical analysis are adapted
to this context. This framework was used to
design controllers and observers for classes of
nonlinear sampled-data systems where typically
Euler approximate discretization is employed to
generate the approximate discrete-time model.

Sampled-data design method: Both emula-
tion and discrete-time design methods have their
drawbacks. Indeed, the former method ignores
the sampling at the design stage, whereas the
latter method ignores and may produce unaccept-
able inter-sampling behavior. Thus, methods that
use a sampled-data model of the plant for design
are much more attractive. There are two possible
ways in which this can be achieved for nonlinear
sampled-data systems.

The first approach consists of representing
nonlinear sampled-data systems as systems with
time-varying delays (Teel et al. 1998). However,
controller design tools for such systems need to
be further developed.

The second approach involves representing
the nonlinear sampled-data system as a hybrid
dynamical system. Recent advances on model-
ing and analysis of hybrid dynamical systems
(Goebel et al. 2012) offer great opportunities in
this context, but the full potential of this approach
is still to be exploited. Nonlinear sampled-data
systems are just a small subclass of hybrid dy-
namical systems, and developing specific anal-
ysis and design tools tailored to this class of
systems seems promising.

It should be emphasized that there are many
related techniques, such as discrete-time adaptive
control and model predictive control, that deal
with classes of nonlinear sampled-data systems
but are not a part of the mainstream nonlinear
sampled-data literature.

Summary and Future Directions

Summary: Sampled-data control systems
are nowadays prevalent and there are many
situations where nonlinear models need to be
used to deal with wider ranges of operating
conditions, more restrictive constraints, and
enhanced performance specifications. Despite
their increasing importance, the design of
nonlinear sampled-data systems remains largely
unexplored, and it is much less developed than
its continuous-time counterpart. A variety of
models, analysis, and design techniques make
nonlinear sampled-data literature very diverse
and a comprehensive textbook reference or a
unifying approach is still missing. Many open
questions remain for nonlinear sampled-data
systems, such as results on multi-rate sampling,
design techniques based on sampled-data models,
and other generalizations which are discussed
below.

Future Directions: In the 1990s, a new gener-
ation of digitally controlled systems has evolved
from the more classical sampled-data systems
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which are generally referred to as networked
control systems (NCS); see Heemels et al. (2010)
and the references cited therein. These systems
exploit digital wired or wireless communication
networks within the control loops. Such a setup
is introduced to reduce the cost, weight, and
volume of the engineered systems, but its spe-
cial structure imposes new challenges due to the
communication constraints, data packet dropouts,
quantization of data, varying sampling periods,
time delays, etc. At the same time, these systems
provide new flexibilities due to the distributed
computation within the control system that can
be used to improve the performance and mitigate
some of the undesirable network effects on the
overall system performance. Moreover, embed-
ded microprocessors allow for event-triggered
and self-triggered sampling (Anta and Tabuada
2010) that are still largely unexplored especially
for nonlinear systems. Design of NCS was identi-
fied as one of the biggest challenges to the control
research community in the twenty-first century,
and more than a decade of intense research on this
topic still has not provided a comprehensive and
unifying approach for their analysis and design.
Novel results on modeling and Lyapunov stability
theory for (nonlinear) hybrid dynamical systems
appear to offer the right analysis design tools but
they are still to be converted into efficient and
easy-to-use design tools in the control engineers’
toolbox.

Cross-References
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Abstract

Particle filters are computational methods open-
ing up for systematic inference in nonlinear/non-
Gaussian state-space models. The particle filters
constitute the most popular sequential Monte
Carlo (SMC) methods. This is a relatively recent
development, and the aim here is to provide
a brief exposition of these SMC methods and
how they are key enabling algorithms in solving
nonlinear system identification problems. The
particle filters are important for both frequentist
(maximum likelihood) and Bayesian nonlinear
system identification.
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Particle filter; Particle MCMC; Particle smoother;
Sequential Monte Carlo

Introduction

The state-space model (SSM) offers a general
tool for modeling and analyzing dynamical phe-
nomena. The SSM consists of two stochastic pro-
cesses: the states fxtgt�1 and the measurements
fytgt�1, which are related according to

xtC1 j .xt D xt / 
 f�.xtC1 j xt ; ut /; (1a)

yt j .xt D xt / 
 h�.yt j xt ; ut /; (1b)

and the initial state x1 
 ��.x1/. We use bold
face for random variables and 
 means “dis-
tributed according to.” The notation xtC1 j .xt D
xt / stands for the conditional probability of xtC1
given xt D xt . The state process fxtgt�1 is a

Markov process, implying that we only need to
condition on the most recent state xt, since that
contains all information about the past. Further-
more, � denotes the parameters, f�.�/ and h�.�/
that are probability density functions, encoding
the dynamic and the measurement models, re-
spectively. In the interest of a compact notation,
we will suppress the input ut throughout the text.

The SSM introduced in (1) is general in that
it allows for nonlinear and non-Gaussian rela-
tionships. Furthermore, it includes both black-
box and gray-box models on state-space form.
Nonlinear black-box and gray-box models are
covered by �Nonlinear System Identification:
An Overview of Common Approaches. The off-
line nonlinear system identification problem can
(slightly simplified) be expressed as recovering
information about the parameters � based on the
information in the T measured inputs u1WT ,
fu1; : : : ; uT g and outputs y1WT . For a thorough ex-
position of the system identification problem, we
refer to � System Identification: An Overview.
Nonlinear system identification has a long his-
tory, and a common assumption of the past has
been that of linearity and Gaussianity. This as-
sumption is very restrictive, and we have now
witnessed well over half a century of research
devoted to finding useful approximate algorithms
allowing this assumption to be weakened. This
development has significantly intensified during
the past two decades of research on sequential
Monte Carlo (SMC) methods (including particle
filters and particle smoothers). However, the use
of SMC for nonlinear system identification is
more recent than that. The aim here is to in-
troduce the key ideas enabling the use of SMC
methods in solving nonlinear system identifica-
tion problems, and as we will see, it is not a
matter of straightforward application. The devel-
opment of SMC-based identification follows two
clear trends that are indeed more general: (1) The
problems we are working with are analytically
intractable, and hence, the mindset has to shift
from searching for closed-form solutions to the
use of computational methods, and (2) the new
algorithms have basic building blocks that are
themselves algorithms. Both these trends call for
new developments.

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_100


Nonlinear System Identification Using Particle Filters 883

N

Before the SMC methods are introduced
in section “Sequential Monte Carlo”, their
need is clearly explained by formulating both
the Bayesian and the maximum likelihood
identification problems in sections “Bayesian
Problem Formulation” and “Maximum Like-
lihood Problem Formulation”, respectively.
Solutions to these problems are then provided in
sections “Bayesian Solutions” and “Maximum
Likelihood Solutions”, respectively. Finally,
we give some intuition for online (recursive)
solutions in section “Online Solutions”, and in
section “Summary and Future Directions”, we
conclude with a summary and directions for
future research.

Bayesian Problem Formulation
In formulating the Bayesian problem, the param-
eters � are modeled as unknown stochastic vari-
ables, ı.e., the model (1) needs to be augmented
with a prior density for the parameters � 

p.�/. The aim in Bayesian system identification
is to compute the posterior density of � given
the measurements p.� j y1WT /. More generally,
we typically compute the joint posterior of the
parameters � and the states x1WT ,

p.�; x1WT j y1WT / D p.x1WT j �; y1WT /p.� j y1WT /:
(2)

By explicitly including the state variables x1WT in
the problem formulation according to (2), they
take on the role of auxiliary variables. The reason
for including the state variables x1WT as auxiliary
variables is that the alternative of excluding them
would require us to analytically marginalize the
states x1WT . This is not possible for the model (1)
under study. However, once we have an approxi-
mation of p.�; x1WT j y1WT / available, the density
p.� j y1WT / is easily obtained by straightforward
marginalization.

Maximum Likelihood Problem
Formulation
In formulating the maximum likelihood (ML)
problem, the parameters � are modeled as un-
known deterministic variables. The ML formula-
tion offers a systematic way of computing point

estimates of the unknown parameters � in a
model, by making use of the information avail-
able in the obtained measurements y1WT . The
ML estimate is obtained by finding the � that
maximizes the so-called log-likelihood function,
which is defined as

`T .�/ , logp�.y1WT / D
TX
tD1

logp�.yt j y1Wt�1/:

(3)

Note that we use � as a subindex to denote
that the corresponding probability density func-
tion is parameterized by � , analogously to what
was done in (1). The one step ahead predictor
p�.yt j y1Wt�1/ is computed by marginalizing
p.yt ; xt j y1Wt�1/ D h�.yt j xt /p� .xt j y1Wt�1/
w.r.t. xt , i.e., integrating out xt from p.yt ; xt j
y1Wt�1/. To summarize, the ML estimate O�ML is
obtained by solving the following optimization
problem:

O�ML , arg max
�

PT
tD1 log

R
h�.yt j xt /

p�.xt j y1Wt�1/dxt : (4)

This problem formulation clearly reveals the im-
portant fact that the nonlinear state inference
problem (here computing p�.xt j y1Wt�1/) is
inherent in any maximum likelihood formulation
for identification of SSMs. For linear Gaussian
models, the Kalman filter offers closed-form so-
lutions for the state inference problem, but for
nonlinear models, there are no closed-form solu-
tions available.

Sequential Monte Carlo

Solving the nonlinear system identification
problem implicitly requires us to solve various
nonlinear state inference problems. We will, for
example, need to approximate the smoothing
density p.x1WT j y1WT / and the filtering
density p.xt j y1Wt /. The SMC samplers
offer approximate solutions to these and other
nonlinear state inference problems, where
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the accuracy is only limited by the available
computational resources. This section only deals
with the state inference problem, allowing us to
drop the � in the notation for brevity.

Most SMC samplers hinge upon importance
sampling, motivating section “Importance Sam-
pling”. In section “Particle Filter”, we make use
of importance sampling in computing an approxi-
mation of the filtering density p.xt j y1Wt /, and in
section “Particle Smoother”, a particle smoothing
strategy is introduced to approximately compute
p.x1WT j y1WT /.

Importance Sampling
Let z be a random variable distributed according
to some complicated density �.z/ and let '.�/ be
some function of interest. Importance sampling
offers a systematic way of evaluating integrals of
the form

E Œ'.z/� D
Z
'.z/�.z/dz; (5)

without requiring samples directly generated
from �.z/. The density �.z/ is referred to as
the target density, i.e., the density we are trying
to sample from. The importance sampler relies
on a proposal density q.z/, from which it is
simple to generate samples, let zi 
 q.z/,
i D 1; : : : ; N . Since each sample zi is drawn
from the proposal density rather than from
the target density �.z/, we must somehow
account for this discrepancy. The so-called
importance weights Qwi D �.zi /=q.zi / encode
the difference. By normalizing the weights
wi D Qwi =

PN
jD1 Qwj , we obtain a set of

weighted samples fzi ;wi gNiD1 that can be used to
approximately evaluate the integral (5) resulting
in E Œ'.z/� � PN

iD1 wi '.zi /. Schön and Lindsten
(2014) provide an introduction to importance
sampling within a dynamical systems setting,
whereas Robert and Casella (2004) provide a
general treatment.

Particle Filter
The solution to the nonlinear filtering problem
is provided by the following two recursive
equations:

p.xt j y1Wt / D h.yt j xt /p.xt j y1Wt�1/
p.yt j y1Wt�1/ ; (6a)

p.xt j y1Wt�1/ D
Z
f .xt j xt�1/

p.xt�1 j y1Wt�1/dxt�1: (6b)

In the general case (1) there are no analytical
solutions available for the above equations. The
particle filter maintains an empirical approxima-
tion of the solution, which at time t�1 amounts to

OpN .xt�1 j y1Wt�1/ D
NX
iD1

wi
t�1ıxit�1

.xt�1/; (7)

where ıxit�1
.xt�1/ denotes the Dirac delta mass

located at xit�1. Furthermore, wi
t�1 and xit�1 are

referred to as the weights and the particles, re-
spectively. We will now derive the particle filter
by designing an importance sampler allowing
us to approximately solve (6). The derivation is
performed in an inductive fashion, starting by
assuming that p.xt�1 j y1Wt�1/ is approximated
by (7). Inserting (7) into (6b) results in OpN
.xt j y1Wt�1/ D PN

iD1 wi
t�1f .xt j xit�1/; which is

used in (6a) to compute an approximation of the
filtering density p.xt j y1Wt / up to proportionality.
Hence, this allows us to target p.xt j y1Wt /
using an importance sampler, where the form of
OpN .xt j y1Wt�1/ suggests that new samples can be

proposed according to

xit 
 q.xt j y1Wt / D
NX
iD1

wi
t�1f .xt j xit�1/: (8)

It is worth noting that we can obtain a more
general algorithm by replacing f .xt j xit�1/ in
the above mixture with a density q.xt j xit�1; yt /.
However, in the interest of a simple, but still
highly useful algorithm, we keep (8). The pro-
posal density (8) is a weighted mixture consisting
of N components, which means that we can
generate a sample Qxit from it via a two-step
procedure: first we select which component to
sample from, and secondly we generate a sample
from that component. More precisely, the first
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N

Algorithm 1 Bootstrap particle filter (for i D
1; : : : ; N )
1. Initialization (t D 1):

(a) Sample xi1 � �.x1/.
(b) Compute the importance weights Qwi

1 D h.y1 j xi1/
and normalize wi

1 D Qwi
1=
PN

jD1 Qwj
1 .

2. For t D 2 to T do:
(a) Resample fxit�1;w

i
t�1g resulting in equally

weighted particles fQxit�1; 1=N g.
(b) Sample xit � f .xt j Qxit�1/.
(c) Compute the importance weights Qwi

t D h.yt j xit /
and normalize wi

t D Qwi
t =
PN

jD1 Qwj
t .

part amounts to selecting one of the N particles
fxit�1gNiD1 according to

P

�
Qxt�1 D xit�1 j fxjt�1;w

j
t�1gNjD1


D wi

t�1;

where the selected particle is denoted as Qxt�1.
By repeating this N times, we obtain a set of
equally weighted particles fQxit�1gNiD1, constituting
an empirical approximation of p.xt�1 j y1Wt�1/,
analogously to (7). We can then draw xit 

f .xt j Qxit�1/ to generate a realization from the
proposal (8). This procedure that turns a weighted
set of samples into an unweighted one is com-
monly referred to as resampling.

Finally, using the approximation OpN .xt j
y1Wt�1/ in (6a) and the proposal density according
to (8) allows us to compute the weights as
Qwi
t D h.yt j xit /. Once all the N weights are

computed and normalized, we obtain a collection
of weighted particles fxit ;w

i
t gNiD1 targeting the

filtering density at time t . We have now (in a
slightly nonstandard fashion) derived the so-
called bootstrap particle filter, which was the first
particle filter introduced by Gordon et al. (1993)
two decades ago. Since the introduction of
Algorithm 1, the surrounding theory and practice
have undergone significant developments; see,
e.g., Doucet and Johansen (2011) for an up-
to-date survey. The weights fwi

1WT gNiD1 and
the particles fxi1WT gNiD1 are random variables,
and in executing the algorithm, we generate
one realization from these. This is a useful
insight both when it comes to understanding,
but also when it comes to the analysis of the

particle filters. There is by now a fairly good
understanding of the convergence properties of
the particle filter; see, e.g., Doucet and Johansen
(2011) for basic results and further pointers into
the literature.

Particle Smoother
A particle smoother is an SMC method targeting
the joint smoothing density p.x1WT j y1WT / (or
one of its marginals). There are several different
strategies for deriving particle smoothers. Rather
than mentioning them all, we introduce one pow-
erful and increasingly popular strategy based on
backward simulation, giving rise to the family
of forward filtering/backward simulation (FFBSi)
samplers.

In an FFBSi sampler the joint smoothing den-
sity p.x1WT j y1WT / is targeted by complementing
a forward particle filter with a second recur-
sion evolving in the time-reversed direction. The
following factorization of the joint smoothing
density

p.x1WT j y1WT / D
 
T�1Y
tD1

p.xt j xtC1; y1Wt /
!

p .xT j y1WT /;

immediately suggests a highly useful time-
reversed recursion. Start by generating a sample
QxT 
 p.xT j y1WT /. We then continue generating
samples backward in time by sampling from the
so-called backward kernel p.xt j xtC1; y1Wt /
according to Qxt 
 p.xt j QxtC1; y1Wt /, for
t D T � 1; : : : ; 1. The resulting sample
Qx1WT , . Qx1; : : : ; QxT / is then by construction a
sample from the joint smoothing density. Hence,
in performing M backward simulations, we
obtain the following approximation of the joint
smoothing density:

OpM.x1WT j y1WT / D
MX
iD1

1

M
ıQxi1WT .x1WT /: (9)

For details on how to design algorithms
implementing the backward simulation strategy,
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derivations, properties, and references, we refer
to the recent survey on backward simulation
methods by Lindsten and Schön (2013).

Bayesian Solutions

Strategies
The posterior density (2) is analytically
intractable, but we can make use of Markov chain
Monte Carlo (MCMC) samplers to address the
inference problem. An MCMC sampler allows
us to approximately generate samples from
an arbitrary target density �.z/. This is done
by simulating a Markov chain (ı.e., a Markov
process) fzŒr�gr�1, which is constructed in such
a way that the stationary distribution of the chain
is given by �.z/. The sample paths fzŒr�gRrD1 of
the chain can then be used to draw inference
about the target distribution. Two constructive
ways of finding a suitable Markov chain to
simulate are provided by the Metropolis Hastings
(MH) and the Gibbs samplers, where the latter
can be interpreted as a special case of the
former. See, e.g., Robert and Casella (2004)
for details on MCMC. A Gibbs sampler targeting
p.�; x1WT j y1WT / is given by
(i) Draw � 0 
 p.� j x1WT ; y1WT /.

(ii) Draw x0
1WT 
 p.x1WT j � 0; y1WT /.

The second step is hard, since it requires us
to generate a sample from the joint smoothing
density. Simply replacing step (ii) with a back-
ward simulator does not result in a valid method
(Andrieu et al. 2010).

One interesting solution is provided by the
family of particle MCMC (PMCMC) sampler,
first introduced by Andrieu et al. (2010). PM-
CMC provides a systematic way of combining
SMC and MCMC, where SMC is used to con-
struct the proposal density for the MCMC sam-
pler. The so-called particle Gibbs (PG) sampler
resolves the problems briefly mentioned above by
a nontrivial modification of the SMC algorithm.
Introducing the PG sampler lies outside the scope
of this work; we refer the reader to the ground-

breaking work by Andrieu et al. (2010). During
the past 3 years, the PG samplers have developed
quite a lot, and improved versions are surveyed
and explained by Lindsten and Schön (2013).

A Nontrivial Example
To place PMCMC in the context of nonlinear sys-
tem identification, we will now solve a nontrivial
identification problem. The PG sampler is used
to compute the posterior density for a general
Wiener model (linear Gaussian system followed
by a static nonlinearity) (Giri and Bai 2010):

xtC1 D �
A B

� �xt
ut

�
C vt ; vt 
 N .0;Q/;

(10a)

zt D Cxt ; (10b)

yt D g.zt /C et ; et 
 N .0; r/:
(10c)

Based on observed inputs u1WT and outputs y1WT ,
we wish to identify the model (10). We place
a matrix normal inverse Wishart (MNIW) prior
on f.A;B/;Qg, an inverse gamma prior on r,
and a Gaussian process (Rasmussen and Williams
2006) prior on the function g, resulting in a
semiparametric model. We can without loss of
generality fix the matrix C according to C D
.1; 0; : : : ; 0/. For a complete model specification,
we refer to Lindsten et al. (2013).

The posterior distribution p.�; x1WT j y1WT /
is computed using a newly developed PG
sampler referred to as particle Gibbs with
ancestor sampling (PGAS); see Lindsten and
Schön (2013). In the present experiment we
make use of T D 1;000 observations. The
dimension of the state–space is 6, the linear
dynamics contains complex poles resulting in
oscillations as seen in Fig. 1, and the nonlinearity
is non-monotonic; see Fig. 2. A subspace
method is used to find an initial guess for the
linear system, and the static nonlinearity is
initialized using a linear function (i.e., a straight
line).



Nonlinear System Identification Using Particle Filters 887

N

10−1 100

−30

−20

−10

0

10

Frequency (rad/s)

M
ag

n.
 (d

B
)

10−1 100

−200

0

200

Frequency (rad/s)

Ph
as

e 
(d

eg
)

Nonlinear System
Identification Using
Particle Filters, Fig. 1
Bode diagram of the
sixth-order linear system.
The black curve is the true
system. The red curve is
the estimated posterior
mean of the Bode diagram,
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99 % Bayesian credibility
interval
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ters, Fig. 2 The black curve is the true static nonlinearity
(non-monotonic). The red curve is the estimated posterior
mean of the static nonlinearity, and the shaded area is the
99 % Bayesian credibility interval

It is worth pausing for a moment to reflect
upon the posterior distribution p.�; x1WT j y1WT /
that we are computing. The unknown “parame-
ters” � live in the space‚ D R

64	F , where F is
an appropriate function space. The states x1WT live
in the space R

6�1;000. Hence, p.�; x1WT j y1WT /
is actually a rather complicated object for this
example.

Using the PGAS sampler (with N D
15 particles), we construct a Markov chain
f�Œr�; x1WT Œr�gRrD1 with p.�; x1WT j y1WT / as
its stationary distribution. We run this Markov
chain for R D 25;000 iterations, where
the first 10;000 are discarded. The result is
visualized in Figs. 1 and 2, where we plot
the Bode diagram for the linear system and
the static nonlinearity, respectively. In both
figures we also provide the 99 % Bayesian
credibility interval. MATLAB code for Bayesian
identification of Wiener models is available
from user.it.uu.se/~thosc112/research/software.
html.

The resonance peaks are accurately modeled,
but the result is less accurate at low frequen-
cies (likely due to a lack of excitation). The
fact that the posterior mean is inaccurate at low
frequencies is encoded in our estimate of the
posterior distribution as shown by the credibility
intervals.

In Figs. 1 and 2, we have visualized not only
the posterior mean but also the uncertainty for the
entire model. We could do this since the model
is a linear dynamical system followed by a static
nonlinearity. It would be most interesting if we

user.it.uu.se/~thosc112/research/software.html
user.it.uu.se/~thosc112/research/software.html
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can come up with ways in which we could visu-
alize the uncertainty inherent in general nonlinear
dynamical systems.

Maximum Likelihood Solutions

Identifying the parameters � in a general non-
linear SSM using maximum likelihood amounts
to solving the optimization problem (3). This
is a challenging problem for several reasons,
for example, it requires the computation of the
predictor densityp�.yt j y1Wt�1/. Furthermore, its
gradient (possibly also its Hessian) is very useful
in setting up an efficient optimization algorithm.
There are no closed-form solutions available for
these objects, forcing us to rely on approxima-
tions. The SMC methods briefly introduced in
section “Sequential Monte Carlo” provide rather
natural tools for this task, since they are capable
of producing approximations where the accuracy
is only limited by the available computational
resources.

To establish a clear interface between the
maximum likelihood problem (3) and the SMC
methods, it has proven natural to make use of
the expectation maximization (EM) algorithm
(Dempster et al. 1977). The EM algorithm
proceeds in an iterative fashion to compute ML
estimates of unknown parameters � in probabilis-
tic models involving latent variables. The strategy
underlying the EM algorithm is to exploit the
structure inherent in the probabilistic model to
separate the original problem into two closely
linked problems. The first problem amounts to
computing the so-called intermediate quantity

Q.�; � 0/ ,
Z

logp�.x1WT ; y1WT /

p� 0.x1WT j y1WT /dx1WT
D E� 0 Œlogp�.x1WT ; y1WT / j y1WT � ; (11)

where we have already made use of the
fact that the latent variables in an SSM are
given by the states. Furthermore, � 0 denotes
a particular value for the parameters � . We
can show that by choosing a new � such that

Q.�; � 0/ � Q.� 0; � 0/, the likelihood is either
increased or left unchanged, ı.e., `T .�/ � `T .�

0/.
The EM algorithm now suggests itself in that

we can generate a sequence of iterates f�kgk�1
that guarantees that the log-likelihood is not de-
creased for increasing k by alternating the fol-
lowing two steps: (1) (Expectation) compute the
intermediate quantity Q.�; �k/ and (2) (maxi-
mization) compute the subsequent iterate �kC1
by maximizing Q.�; �k/ w.r.t. � . This procedure
is then repeated until convergence, guaranteeing
convergence to a stationary point on the likeli-
hood surface.

The FFBSi particle smoother offers an approx-
imation of the joint smoothing density p� 0.x1WT j
y1WT / according to (9), which inserted into (11)
provides an approximative solution OQM .�; � 0/ to
the expectation step. In solving the maximization
step, we typically want gradients of the interme-
diate quantity r�

OQM.�; � 0/. These can also be
approximated using (9). The above development
is summarized in Algorithm 2, providing a solu-
tion where the basic building blocks are them-
selves complex algorithms, an SMC algorithm
for the E step and a nonlinear optimization algo-
rithm for the M step. This means that we have the
option of replacing the FFBSi particle smoother
in step 2a with any other algorithm capable of
producing estimates of the joint smoothing den-
sity. The family of PMCMC methods introduced
in section “Bayesian Solutions” contains several
highly interesting alternatives. A detailed account
on Algorithm 2 is provided by Schön et al.
(2011); see also Cappé et al. (2005).

Algorithm 2 EM for nonlinear system identifica-
tion
1. Initialization: Set k D 0 and initialize �k .
2. Expectation (E) step:

(a) Compute an approximation OpM
�k
.x1WT j y1WT /, for

example, using an FFBSi sampler.
(b) Calculate OQM.�; �k/.

3. Maximization (M) step: Compute

�kC1 D arg max
�

OQM.�; �k/:

4. Check termination condition. If satisfied, terminate;
otherwise, update k ! k C 1 and return to step 2.
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N

Finally, we mention Fisher’s identity opening
up yet another avenue for designing ML esti-
mators using SMC approximations. Even if we
are not interested in using EM when solving
the nonlinear system identification problem, the
intermediate quantity (11) is useful. The reason
is provided via Fisher’s identity,

r� `T .�/
ˇ̌
�D� 0

D r�Q.�; � 0/
ˇ̌
�D� 0

D R r� logp�.x1WT ; y1WT /
ˇ̌
�D� 0

p� 0.x1WT j y1WT /dx1WT ;
which provides a means to compute approxi-
mations of the log-likelihood gradient. Hessian
approximations are also available, but these are
more involved. Hence, Fisher’s identity opens up
for direct use of any off-the-shelf gradient-based
optimization method in solving (4).

Online Solutions

Online (also referred to as recursive or adap-
tive) identification refers to the problem where
the parameter estimate is updated based on the
parameter estimate at the previous time step and
the new measurement. This is used when we
are dealing with big data sets and in real-time
situations. SMC offers interesting opportunities
when it comes to deriving online solutions for
nonlinear state- space models. The most direct
idea is simply to make use of a gradient method

�t D �t�1 C �tr� logp�.yt j y1Wt�1/;

where f�tg is the sequence of step sizes. Fisher’s
identity (12) opens up for the use of SMC in
approximating r� logp�.yt j y1Wt�1/ However,
this leads to a rapidly increasing variance,
something that can be dealt with by the so-called
“marginal” Fisher identity; see Poyiadjis et al.
(2011) for details.

An interesting alternative is provided by an
online EM algorithm; see, e.g., Cappé (2011) for
a solid introduction. The online EM approaches
rely on the additive properties of the Q-function.
The area of online solutions via SMC is likely

to grow in the future as there is a clear need
motivated by the constantly growing data sets and
there are also clear theoretical opportunities.

Summary and Future Directions

We have discussed how SMC samplers can be
used to solve nonlinear system identification
problems, by sketching both Bayesian and
ML solutions. A common feature of the
resulting algorithms is that they are (nontrivial)
combinations of more basic algorithms. We
have, for example, seen the combined use of
a particle smoother and a nonlinear optimization
solver in Algorithm 2 to compute ML estimates.
As another example we have the class of
PMCMC methods, where the basic building
blocks are provided by SMC samplers and
MCMC samplers. The use of SMC and MCMC
methods for nonlinear system identification has
only just started to take off, and it presents very
interesting future prospects. Some directions for
future research are as follows: (1) The family
of PMCMC algorithms is rich and fast growing,
with great potential for further developments. For
example, its use in solving the state smoothing
problem (i.e., computing p.x1WT j y1WT /) is likely
to provide better algorithms in the near future.
(2) Related to this is the potential to design new
particle smoothers capable of generating new
particles also in the time-reversed direction. (3)
There are open and highly relevant challenges
when it comes to designing backward simulators
for Bayesian nonparametric methods (Hjort et al.
2010). A key question here is how to represent
the backward kernel p.xt j xtC1; y1Wt / in such
nonparametric settings. (4) The use of Bayesian
nonparametric models will open up interesting
possibilities for hybrid system identification,
since they allow us to systematically express and
work with uncertainties over segmentations.

Cross-References

�Nonlinear System Identification: An Overview
of Common Approaches

�System Identification: An Overview
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Recommended Reading

An overview of SMC methods for system iden-
tification is provided by Kantas et al. (2009),
and a thorough introduction to SMC is provided
by Doucet and Johansen (2011). The forthcom-
ing monograph by Schön and Lindsten (2014)
provides a textbook introduction to particle fil-
ters/smoothers (SMC), MCMC, PMCMC, and
their use in solving problems in nonlinear system
identification and nonlinear state inference. A
self-contained introduction to particle smoothers
and the backward simulation idea is provided by
Lindsten and Schön (2013). The work by Cappé
et al. (2005) also contains a lot of very relevant
material in this respect.
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Abstract

Nonlinear mathematical models are essential
tools in various engineering and scientific
domains, where more and more data are recorded
by electronic devices. How to build nonlinear
mathematical models essentially based on
experimental data is the topic of this entry. Due
to the large extent of the topic, this entry provides
only a rough overview of some well-known
results, from gray-box to black-box system
identification.

Keywords

Black-box models; Block-oriented models; Gray-
box models; Nonlinear system identification

Introduction

The wide success of linear system identification
in various applications (Ljung 1999; � System
Identification: An Overview) does not necessarily
mean that the underlying dynamic systems are
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N

intrinsically linear. Quite often, linear system
identification can be successfully applied to a
nonlinear system if its working range is restricted
to a neighborhood of some working point. Nev-
ertheless, some advanced engineering systems
may exhibit significant nonlinear behaviors under
their normal working conditions, so do most
biological or social systems. There is therefore an
increasing demand on nonlinear dynamic system
modeling theory. Nonlinear system identification
is studied to partly answer this demand, when
experimental data carry the essential information
for modeling purpose.

Nonlinear system identification, compared to
its linear counterpart, is a much more vast topic,
as in principle a nonlinear model can be any
description of a system which is not linear. For
this reason, this entry provides only a rough
overview of some well-known results.

An overview of the basic concepts of system
identification can be found in � System Iden-
tification: An Overview, notably the five basic
elements to be taken into account in each ap-
plication, among which the (nonlinear) model
structures will be mainly focused on by this
entry, as they represent the essential particu-
larities of nonlinear system identification prob-
lems.

The various model structures used in non-
linear system identification are often classified
by the level of available prior knowledge about
the considered system: from white-box models
to black-box models, via gray-box models. In
principle, a white-box model is fully built from
prior knowledge. Such a fully white-box ap-
proach is rarely feasible for complex systems
because of insufficient prior knowledge or of in-
tractable system complexity. Therefore, the sys-
tem identification methods summarized in this
entry concern gray-box and black-box models,
for which experimental data play an essential
role.

For ease of presentation, the main content of
this entry will be restricted to the single-input
single-output (SISO) case. The multiple-input
multiple-output (MIMO) case will be discussed
in the section “Multiple-Input Multiple-Output
Systems” below.

Gray-BoxModels

This section covers gray-box models, from the
most to the least demanding ones in terms of prior
knowledge.

Parametrized Physical Models
The dynamic behaviors of some engineering
systems are governed by well-known physical
laws, typically in the form of differential
equations, possibly with unknown parameters.
These parametrized physical equations can
be used as gray-box models for system
identification. In most situations, such a model
can be written in the form of a vectorial first-order
ordinary differential equation (ODE), known as
state equation, and can be generally written as

dx.t/

dt
D f .x.t/; u.t/I �/ (1)

where t represents the time, x.t/ is the state
vector, u.t/ the input, and f .�/ a (nonlinear)
function parametrized by the vector � .

The observation on the system (typically with
electronic sensors), referred to as the output and
denoted by y.t/, is related to x.t/ and u.t/
through another known parametrized equation

y.t/ D h.x.t/; u.t/I �/C v.t/ (2)

where v.t/ represents the measurement error.
With digital electronic instruments, the input

u.t/ and the output y.t/ are sampled at some
discrete-time instants, say t D �; 2�; 3�; : : : ; N�

with some constant sampling period � > 0. For
the sake of notation simplicity, let the sampling
period � D 1 and assume ideal instantaneous
samplers; then the sampled input-output data set
is denoted by

ZN D fu.1/; y.1/; u.2/; y.2/; : : : ; u.N /; y.N /g :
(3)

In some applications, data samples are made at
irregular time instants. Some studies are particu-
larly focused on system identification in this case
(Garnier and Wang 2008).

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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The main remaining task of gray-box system
identification is to estimate the parameter vec-
tor � from the data set ZN . The identification
criterion is typically defined with the aid of an
output predictor derived from the system model.
A natural output predictor is simply based on
the numerical solution of the state equation (1):
for some given value of � , initial state x.0/ and
some assumed inter-sample behavior of the input
u.t/ (e.g., with a zero order hold), the trajectory
of x.t/, denoted by Ox.t j�/, is computed with a
numerical ODE solver, then the output prediction
is computed as

Oy.t j�/ D h. Ox.t j�/; u.t/I �/: (4)

The parameter vector � is typically estimated
by minimizing the sum of squared prediction
error ".t j�/ D y.t/ � Oy.t j�/. See � System
Identification: An Overview and Bohlin (2006)
for more details.

The predictor based on the numerical solution
of the state equation (1) (known as a simulator)
may be in trouble if this equation with the given
value of � is unstable. Moreover, the state equa-
tion (1) may also be subject to some modeling
error that should be taken into account in the
output predictor. In such cases, the output predic-
tor can be made with the aid of some nonlinear
state observer (Gauthier and Kupka 2001) or
some nonlinear filtering algorithm (Doucet and
Johansen 2011).

Alternatively, sequential Monte Carlo (SMC)
methods can also be applied to the identification
of (small size) nonlinear state-space systems,
typically assuming a discrete-time counterpart of
the model described by Eqs. (1) and (2). See
�Nonlinear System Identification Using Particle
Filters.

The gray-box approach is particularly useful
in an engineering field when some software li-
brary of commonly used components is available.
In this case, a system model can be built by
connecting available component models. Never-
theless, the “connection” of the component mod-
els may introduce algebraic constraints through
variables shared by connected components, lead-
ing to differential algebraic equations (DAE),

which are a wider class of dynamic system mod-
els than the abovementioned state-space mod-
els (�Modeling of Dynamic Systems from First
Principles). For most dynamic systems, it is pos-
sible to avoid the DAE formulation by causality
analysis, so that the connections between differ-
ent system components are treated as information
flow, instead of algebraic constraints. There ex-
ist also some theoretic studies on DAE system
identifiability (Ljung and Glad 1994) and some
recent developments on the identification of such
systems (Gerdin et al. 2007).

Combined Physical and Black-Box Models
It may happen that, in a complex system, part
of the components is well described by physical
laws (possibly with available models from a soft-
ware library), but some other components are not
well studied. In this case, the latter components
can be dealt with black-box models (or possibly
empirical models). The entire model can be fitted
to a collected data set ZN , like in the case of the
previous subsection.

Block-Oriented Models
Complex systems, notably those studied in en-
gineering, are often made of a certain number
of components; thus a system model can be
built by connecting component models. In this
sense, such component-based models could be
said “block-oriented.” In the system identifica-
tion literature, the term block-oriented model is
often used in a particular context (Giri and Bai
2010), where it is typically assumed that each
component is either a linear dynamic subsystem
or a nonlinear static one. Here, the term “static”
means that the behavior of the component is
memoryless and can be described by an algebraic
equation. The study of system identification with
such models is motivated by the fact that, when a
controlled system is stabilized around a working
point, its dynamic behavior can be well described
by a linear model, but its actuators and sensors
may exhibit significant nonlinear behaviors like
saturation or dead zone. The choice of a particular
block-oriented model structure depends on the
prior knowledge about the underlying system,

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_106
http://dx.doi.org/10.1007/978-1-4471-5058-9_102
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u(t) Linear
Dynamic

Nonlinear
Static

y(t)x(t)

Nonlinear System Identification: An Overview of
CommonApproaches, Fig. 1 Hammerstein system

u(t) Nonlinear
Static

Linear 
Dynamic

y(t)z(t)

Nonlinear System Identification: An Overview of
CommonApproaches, Fig. 2 Wiener system

with specific identification methods available for
different model structures.

The most frequently studied block-oriented
models for system identification concern the
Hammerstein system and the Wiener system,
each composed of two blocks, as illustrated,
respectively, in Figs. 1 and 2.

Hammerstein System Identification
A SISO Hammerstein system is typically formu-
lated as

x .t/ D f .u .t// (5a)

y .t/ C a1y.t � 1/C � � � C anay.t � na/

D b1x .t � 1/C � � � C bn
b
x .t � nb/

C v .t/ : (5b)

If the nonlinearity f .�/ is expressed in the form
of

f .u/ D
mX
lD1

�l�l .u/ (6)

with some chosen basis functions �l.�/, then
the identification problem amounts to fitting the
model parameters �l ; ai ; bj to a collected data
set ZN . A well-known method is based on over-
parametrization (Bai 1998): replace in (5b) each
x.t � j / with the right-hand side of (6) and treat
each parameter product bj �l as an individual
parameter, then the newly parametrized model is
equivalent to a linear ARX model (� System
Identification: An Overview), which can be

estimated by a well-established linear system
identification method. As the nb Cm parameters
bj and �l ; are replaced by nbm parameters
in the new parametrization, the term “over-
parametrization” refers to the fact that typically
nb Cm < nbm. The estimated over-parametrized
model can be reduced to the original parametriza-
tion, usually through the singular value decom-
position (SVD) of the matrix filled with the esti-
mated parameter products bj �l . See Giri and Bai
(2010) for other identification methods with vari-
ant formulations of Hammerstein system model.

When the linear subsystem is approximated
by a finite impulse response (FIR) model, it is
possible to first estimate the linear model before
estimating a model for the nonlinear block (Gre-
blicki and Pawlak 1989).

Wiener System Identification
A SISO Wiener system is typically formulated as

z.t/ D
1X
kD1

hku.t � k/ (7a)

y.t/ D g.z.t//C v.t/ (7b)

where the sequence h1; h2,. . . is the impulse re-
sponse of the linear subsystem, g.�/ is some non-
linear function, and v.t/ is a noise independent of
the input u.t/.

Some methods for Wiener system identifica-
tion assume a finite impulse response (FIR) of
the linear subsystem. In this case, the linear sub-
system model is characterized by the vector col-
lecting the FIR coefficients hT = [h1; h2,. . . , hn].
There are two typical kinds of efficient solutions,
assuming either the Gaussian distribution of the
input u.t/ (Greblicki 1992) or the monotonicity
of the nonlinear function g.�/ (Bai and Reyland
Jr 2008). In both cases, it is possible to directly
estimate the FIR coefficients h from the input-
output dataZN , without explicitly estimating the
unknown nonlinear function g.�/: The estimated
h can be used to compute the internal variable
z.t/. It then becomes relatively easy to estimate
the nonlinear function g.�/ from the computed
z.t/ and the measured y.t/.

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Other Block-OrientedModel Structures
Among block-oriented models composed of
more blocks, the most well-known ones concern
Hammerstein-Wiener system and Wiener-
Hammerstein system. They are both composed
of 3 blocks connected in series, the former has
a linear dynamic block preceded and followed
by two nonlinear static blocks, and the latter
has a nonlinear static block in the middle of
two linear dynamic blocks. In general, the
prediction error method (PEM) (Ljung 1999)
is applied to the identification of such systems,
with heuristic methods for the initialization
of model parameters. Some recent results on
Hammerstein-Wiener system identification have
been reported in Wills et al. (2013). There exist
also some other variants, with parallel blocks
or feedback loops. In most cases, each block is
either linear dynamic or nonlinear static, but
there is a notable exception: hysteresis blocks.
Hysteresis is a phenomenon typically observed
in some magnetic or mechanic systems. Its
mathematical description is both dynamic and
strongly nonlinear and cannot be decomposed
into linear dynamic and nonlinear static blocks.
Due to the importance of hysteresis components
in some control systems, system identification
involving such blocks is currently an active
research topic (Giri et al. 2008).

LPV Models
Linear parameter-varying (LPV) models could be
classified as black-box models, because typically
they rely more on experimental data than on prior
knowledge. However, engineers often have good
insights into such models; they are thus presented
in the gray-box section.

From Gain Scheduling to LPV Models
Gain scheduling is a method originally developed
for the control of nonlinear systems. It consists
in designing different controllers for different
working points of a nonlinear system and in
switching among the designed controllers accord-
ing to the actual working point. It is typically
assumed that the working point is determined by
some observed variable (vector) referred to as the
scheduling variable and denoted by �. Around

each considered working point, the nonlinear
system is linearized so that the corresponding
controller can be designed from the linear control
theory. A by-product of this controller design
procedure is a collection of linearized models
indexed by the scheduling variable �. This col-
lection, seen as a whole model of the globally
nonlinear system, is known as an LPV model
(Toth 2010). This approach has been particularly
successful in the field of flight control.

An LPV model can be formulated either in
input-output form or in state-space form. In the
input-output form, a SISO model can be written
as

y .t/Ca1 .�/ y .t�1/C � � � C ana .�/ y .t � na/

D b1 .�/ u .t � 1/C � � � C bnb .�/ u .t � nb/
C v .t/ : (8)

and in the state-space form as

x .t C 1/ D A .�/ x .t/CB .�/ u .t/C w .t/
(9a)

y .t/ D c .�/ x .t/CD .�/ u .t/C v .t/

(9b)

As a global model of the whole nonlinear
system, the �-dependent parameters (matrices)
ai .�/; bj .�/; A.�/, etc., are functions defined for
all � 2 �, where � is the relevant working
range of the considered system (a compact subset
of a real vector space). If originally the LPV
model was built through a collection of linearized
models around different working points, then the
values of these functions are first defined for
the corresponding discrete values of �. For other
values of � 2 �, these functions can be defined
by interpolation. Alternatively, by choosing some
parametric forms of ai .�/; bj .�/; A.�/, etc., the
whole LPV model can also be estimated by fitting
it to a data set ZN , through nonlinear optimiza-
tion (Toth 2010).

Local Linear Models
In an LPV model, the model parameters can in
principle depend on the scheduling variable � in
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any chosen manner. A particularly useful case
is when they are formulated as expansions over
local basis functions. For example, in (8), the
parameter ai .�/ may be expressed as

ai .�/ D
mX
lD1

ai;l �l .�/ (10)

where kl.�/ are some chosen bell-shaped (local)
basis functions, typically the Gaussian function,
centered at different positions � D cl; 2 �, and
ai;l are coefficients of the expansion. Similarly

bj .�/ D
mX
lD1

bi;l�l .�/ : (11)

Assume that the basis functions are normalized
such that

mX
lD1

�l .�/ D 1 (12)

for all � 2 �. Then the LPV model (8) can be
viewed as an interpolation of m “local” models

y.t/C a1;ly.t � 1/C � � � C ana;l y.t � na/

D b1;lu.t � 1/C � � � C bnb;lu.t � nb/Cv.t/
(13)

indexed by l D 1; 2; : : : ; m. Each of these linear
models is valid for � close to cl , the center of the
corresponding basis function �l.�/; hence, they
are called local linear models.

If the local basis functions �l.�/ are viewed as
membership functions of fuzzy sets, then the local
linear model is strongly related to the Takagi-
Sugeno fuzzy model (Takagi and Sugeno 1985).
An advantage of this point of view is the possi-
bilities of incorporating prior knowledge in the
form of linguistic rules and of interpreting some
local linear models resulting from system identi-
fication.

There are two approaches to building local
linear models. The first one is the local ap-
proach: for each chosen value of cl; 2 �, a
local model is estimated from data corresponding
to the values of � within a neighborhood of
cl . This approach has the advantages of being
computationally efficient, easily updatable, and
well understood by engineers. The second one

is the global approach: all the model parameters
are estimated simultaneously by solving a single
optimization problem for the whole model. This
approach can produce more accurate models in
terms of prediction error, but it is numerically
much more expensive and may lead to models
difficult to be interpreted by engineers.

The practical success of local linear models
strongly depends on the possibility of finding a
scheduling variable � of small dimension rel-
evantly determining the working point of the
considered system. If there exists a nonlinear
state-space model of the system, then in principle
the working point is determined jointly by the
state and the input of the system. As quite often
physically meaningful state variables are not fully
observed, they cannot be used in the definition of
�. It is possible to define � as delayed output and
input variables, e.g.,

�TD Œy.t/; : : : ; y.t�na/; u.t�1/; : : : ; u.t�nb/�

but it typically leads to a vector of quite large
dimension. It is thus important to use practical
insights about a given system to find a relevant
vector � of reduced dimension.

For a single-dimensional �, the choice of
the local basis function centers cl can be made
following some practical insight or equally
spaced within �. For a large-dimensional �,
this task is more difficult. The equally spaced
approach would lead to too many local models,
as their number would exponentially increase
with the dimension of �. In this case, an
empirical approach, called local linear model
tree (LOLIMOT) (Nelles 2001), can be applied.
It iteratively partitions � in order to place the
local basis functions where the system is more
likely nonlinear or where the available data are
more concentrated.

Black-BoxModels

Ideally speaking, a black-box model should be
solely built from experimental data, without any
prior knowledge. In practice, some prior knowl-
edge is always necessary, though experimental
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data play a much more important role. For in-
stance, the choice of the input and output vari-
ables, implying some causality relationship, is an
important prior knowledge.

With the fast development of electronic de-
vices, more and more sensor signals are available
in various fields, notably for engineering, envi-
ronmental, and biomedical systems. Meanwhile,
the processing power of modern computers in-
creases every year. Black-box modeling has thus
more and more potential applications. Neverthe-
less, the importance of prior knowledge in a
modeling procedure should not be forgotten. In
general prior knowledge leads to more reliable
models in terms of validity range, as the validity
of physical equations is often well understood. In
contrast, for a black-box model essentially based
on experimental data, it may be hard to ensure
its validity for interpolation and even harder for
extrapolation.

Input-Output Black-Box Models
As the primary role of a mathematical model
is to predict the output of the system for given
input values, it is natural to design black-box
models directly in the form of a predictor. As
the output y.t/ of a dynamic system depends on
the past inputs, a predicted output Oy .t/ may be
formulated in the form of

Oy .t/ D f .u .t � 1/ ; u .t � 2/ ; : : : ; u .t � nb//

(14)

where f .�/ is some nonlinear function (to be
estimated from experimental data) and nb is a
chosen integer. In principle, nb can be infinitely
large (as y.t/ depends on all the past inputs
in general), but in practice, a model of finite
complexity has to be chosen. If the considered
system is stable in the sense that sufficiently old
past inputs are (gradually) forgotten, then it is
reasonable to truncate the dependence on the past
inputs.

The model structure (14) is similar to the
linear finite impulse response (FIR) model (Ljung
1999). It is known that, for linear system identi-
fication, the use of ARX models, predicting y.t/
from both past inputs and past outputs, is often

more efficient than FIR models, in the sense of
requiring fewer model parameters. By analogy,
the nonlinear ARX model takes the form

Oy .t/ D f .y .t � 1/ ; : : : ; y .t � na/;
u .t � 1/ ; : : : :u .t � nb// : (15)

This is likely the most frequently used black-
box model structure for nonlinear dynamic sys-
tem identification (Sjöberg et al. 1995; Juditsky
et al. 1995).

Nonlinear Function Estimators
For a nonlinear ARX model in the form of (15),
the nonlinear function f .�/ has to be estimated
from an available input-output data set ZN . Typ-
ically, an estimator of f .�/ with some chosen
parametric structure is used. Let


T .t/ D Œy .t � 1/ ; : : : ; y .t � na/;
u .t � 1/ ; : : : ; u .t � nb/� ; (16)

then system identification in this case amounts to
solving a nonlinear regression problem

y .t/ D g .
 .t/ I �/C v .t/ (17)

where g.�/ is a chosen nonlinear function
parametrized by � , capable of approximating
a large class of nonlinear functions by appropri-
ately adjusting � , and v.t/ is the modeling error
to be minimized in some sense.

The most well-known nonlinear function es-
timators implementing g.�/ in practice are poly-
nomials, splines, multiple-layer neural networks,
radial basis networks, wavelets, and fuzzy-neural
estimators. Most of these estimators can be writ-
ten in the form

g .
 .t/ I �/ D
mX
lD1

�l� .˛l .
 � ˇl // (18)

or in some close variant of this form, where
�.�/ is some “mother” basis function dilated
and translated by ˛l and ˇl before being
weighted by �l in the sum forming the estimator
(Sjöberg et al. 1995). For example, �.�/ is
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typically chosen as a (Gaussian) bell-shaped
function in radial basis networks or a sigmoid
(S-shaped) function in multiple-layer neural
networks.

Another approach to nonlinear function
estimation is called nonparametric estimation.
Its main idea is to estimate f ('*) for any
given value of '* by the (weighted) average
of the values of y.t/ in the available data
set corresponding to values of '.t/ close to
'*. This category includes kernel estimators
(Nadaraya 1964) and memory-based estimators
(Specht 1991).

The nonlinear function estimation problem as
formulated in (17) can also be addressed with the
Gaussian process model. Assume that g in (17) is
a Gaussian process whose covariance matrix for
any regressor pair '.t/ and '.�/ is a known func-
tion of the regressor pair, then the posterior dis-
tribution of g given observations on y.t/ can be
computed by applying the Bayes’ theorem under
certain assumptions (Rasmussen and Williams
2006). This method is strongly related to the least
squares support vector machines (Suykens et al.
2002) and to some extent is similar to kernel
estimators.

The difficulty for estimating a nonlinear func-
tion f .'/ strongly depends on the dimension of
'. In the single-dimensional case, most existing
methods can produce satisfactory results. When
the dimension of ', say n, increases, in order to
keep the data “density” unchanged, the number
of data points must increase exponentially with
n. This fact implies that, in the high-dimensional
case (say n > 10), for most practically available
data sets, the data points are sparse in the space
of '. It is thus practically impossible to estimate
f .'/ with a good accuracy everywhere in the
space of '. In order to remedy this problem, prior
knowledge can be used to form a more elaborated
vector ' of reduced dimension, instead of the
simple form of past input and output variables.
The resulting model will be more of gray-box
nature. If this approach is not possible, one has
to expect that the estimation algorithm automat-
ically discovers some low-dimension nature of
the nonlinear relationship being estimated. The
success would depend on the suitability of the

chosen particular nonlinear function estimator for
the considered system.

State-Space Black-Box Models
For a gray-box model in the form of (1) and
(2), it is assumed that the parametric forms of
the nonlinear functions f .�/ and h.�/ are known
from prior knowledge. If no such knowledge is
available, it is possible to estimate these nonlinear
functions with some function estimator, like those
introduced in the previous subsection. Such an
approach leads to state-space black-box models.
In practice, it is easier to use the discrete-time
counterpart of the state equation (1). Because
typically the state vector x.t/ is not directly
observed, the estimation of f .�/ and h.�/ cannot
be formulated as nonlinear regression problems,
in contrast to the case of input-output black-
box models. Another difficulty is related to the
nonuniqueness of the state-space representation
of a given system: any (linear or nonlinear) state
transformation would lead to a different state-
space representation of the same system. In some
existing methods, a linear state-space model is
first estimated; then nonlinear function estimators
are used to compensate the residuals of f .�/ and
h.�/ after their linear approximations (Paduart
et al. 2010).

Multiple-Input Multiple-Output
Systems

For multiple-input multiple-output (MIMO)
systems, state-space models like (1)–(2) remain
in the same form, by considering vector values
of the notations u.t/ and y.t/ at each time
instant, up to some similar adaptation of the other
involved notations. For input-output models like
(15), the involved notations can also be vector
valued, but the fact that different inputs and/or
outputs can have different delays makes the
notations more complicated. For block-oriented
models, though a MIMO linear block is usually
described by a general linear model in state-
space form or in input-output form, there is no
consensus for the structural choice of MIMO
nonlinear blocks.
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Some Practical Issues

The general practical aspects discussed in
� System Identification: An Overview are
of course also valid for nonlinear system
identification, but some particularities in the
nonlinear case should be highlighted.

It is important to apply appropriate input sig-
nals so that the collected data convey sufficient
information for system identification. The de-
sign of input signals for this purpose is known
as experiment design. In the framework of lin-
ear system identification, experiment design is
usually formulated through the optimization of
the covariance matrix of model parameter esti-
mates (�Experiment Design and Identification
for Control), which often leads to non-convex
optimization problems. Experiment design in the
nonlinear case has not been systematically stud-
ied. If possible, the chosen input signal should
be similar to what will be actually applied to
the considered system and cover various working
conditions. Another simple rule is that the input
should excite a nonlinear system at different am-
plitudes, whereas binary input signals are often
used for linear systems.

Model validation is a particularly delicate
task for nonlinear black-box models. As already
mentioned when such models are introduced,
the available data points are usually sparse
when a nonlinear function is estimated in a
high-dimensional space; it is thus practically
impossible to uniformly ensure the estimation
accuracy of the nonlinear function. It is important
to extensively perform cross-validation, by
testing the validity of the model on large data sets
that have not been used for model estimation.

Regularization is also an important issue for
nonlinear black-box models. Because of lack of
prior knowledge, each nonlinear black-box model
has a flexible structure in order to cover a large
class of nonlinear systems, typically with many
model parameters, implying large variances of
parameter estimates (� System Identification: An
Overview). Appropriately applying a regularized
criterion for model parameter estimation can re-
duce the variances. For gray-box models, prior
knowledge can be used for regularization through

a Bayesian approach, but this approach is not
applicable to black-box models.

Summary and Future Directions

Compared to linear system identification, the non-
linear case is a much more vast topic, of which
this entry provides only a rough overview. The
main lines that should be retained are that both
prior knowledge and experimental data are re-
quired for system identification and that the more
prior knowledge is incorporated in a model, the
better the extent of its validity is understood. The
lack of prior knowledge should be compensated by
the processing of large amounts of data. The data
that can be processed within an acceptable time
depend on the power of computers that progresses
every year. Meanwhile, the research and develop-
ment of efficient algorithms for large data process-
ing with multiple or massively parallel processors
are an exciting topic in system identification.

Cross-References

�Experiment Design and Identification for Con-
trol

�Modeling of Dynamic Systems from First Prin-
ciples

�Nonlinear System Identification Using Particle
Filters

�System Identification: An Overview

Recommended Reading

Nonlinear system identification is covered by a
vast literature. After the readings about general
topics on system identification (see � System
Identification: An Overview and references
therein), the reader may further read (Nelles
2001) for black-box system identification,
(Bohlin 2006) for gray-box system identification,
(Giri and Bai 2010) for block-oriented system
identification, and (Toth 2010) for LPV system
identification.
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Abstract

The notion of zero dynamics plays a role in
nonlinear systems that is analogous to the role
played, in a linear system, by the notion of zeros
of the transfer function. In this article, we review
the basic concepts underlying the definition of
zero dynamics and discuss its relevance in the
context of nonlinear feedback design.

Keywords

High-gain feedback; Inverse systems; Minimum-
phase nonlinear systems; Normal forms; Output
regulation; Stabilization

Introduction

The concept of zero dynamics of a nonlinear
system was introduced in the early 1980s as the
nonlinear analogue of the concept of transmission
zero of a linear system. This concept played
a fundamental role in the development of sys-
tematic methods for asymptotic stabilization of
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relevant classes of nonlinear systems. As a matter
of fact, a nonlinear system in which the zero dy-
namics possess a globally asymptotically stable
equilibrium can be robustly stabilized, globally
or at least with guaranteed region of attraction,
by means of output feedback. This is a nonlinear
analogue of a well-know property of linear sys-
tems, namely, the property that an n-dimensional
linear systems having n � 1 zeros with neg-
ative real part can be stabilized by means of
proportional output feedback, if the feedback
gain is sufficiently large. The concept of zero
dynamics also plays a relevant role in variety of
other problems of feedback design, such as input-
output linearization with internal stability, non-
interacting control with internal stability, output
regulation, and feedback equivalence to passive
systems.

The Zero Dynamics

One of the cornerstones of the geometric the-
ory of control systems (for linear as well as
for nonlinear systems) is the analysis of how
the observability property can be influenced by
feedback. This study, originally conceived in the
context of the problem of disturbance decoupling,
had far reaching consequences in a number of
other domains. One of these consequences is the
possibility of characterizing in “geometric terms”
the notion of zero of the transfer function of
a system. In a (single-input single-output and
minimal) linear system, a complex number z is
a zero of the transfer function if and only if the
input u.t/ D exp.zt/ yields – for a suitable
choice of the initial state – a forced response
in which the output is identically zero. This
“open-loop” and “time-domain” characterization
has a “closed-loop and “geometric” counterpart:
all such z’s coincide with the eigenvalues of the
unobservable part of the system, once the latter
has been rendered maximally unobservable by
means of feedback. One of the earlier successes
of the geometric approach to the analysis and
design of nonlinear systems was the possibility
of extending these equivalent characterizations to
the domain of nonlinear systems.

To see how this is possible, consider for sim-
plicity the case of a system modeled by equations
of the form

Px D f .x/C g.x/u
y D h.x/

with state x 2 R
n, input u 2 R, output y 2

R and in which f .x/; g.x/; h.x/ are smooth
functions. Systems of this forms are called input-
affine systems. The analysis of such systems is
rendered particularly simple if appropriate no-
tations are used. Given any real-valued smooth
function �.x/ and any n-vector valued smooth
function X.x/, let LX�.x/ denote the (direc-
tional) derivative of �.x/ along X.x/, that is the
real-valued smooth function

LX�.x/ D
nX
iD1

@�

@xi
Xi.x/ ;

and, recursively, set LdX� D LXL
d�1
X �.x/ for

any d � 1.
Suppose there exists an integer r � 1 with the

following properties

Lgh.x/ D LgLf h.x/ D � � � D LgL
r�2
f h.x/

D 0 8x 2 R
n

LgL
r�1
f h.x/ ¤ 0 8x 2 R

n :

If this is the case, it is possible to show that the
set

Z� D fx 2 R
n W h.x/ D Lh.x/ D � � �

D Lr�1f h.x/ D 0g

is a smooth sub-manifold of Rn, of codimension
r . It is also easy to show that the state-feedback
law

u�.x/ D � Lrf h.x/

LgL
r�1
f h.x/

renders the vector

f �.x/ D f .x/C g.x/u�.x/
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tangent to Z�, at each point x of Z�. In other
words, Z� is an invariant manifold of the
feedback-modified system

Px D f �.x/:

It is seen from this construction that the output
y.t/ D h.x.t// of the system is identically zero
if and only if x.0/ 2 Z� and u.t/ D u�.x.t//,
where x.t/ is the solution of Px D f �.x/ passing
through x.0/ at time t D 0. As a consequence,
the restriction of Px D f �.x/ to its invariant
manifold Z� characterizes all internal dynamics
that occur in the system once initial condition and
input are chosen in such a way that the output is
constrained to be identically zero. The dynamics
in question are called the zero-dynamics of the
system. Note that this construction demonstrates,
as anticipated, the equivalence between an “open-
loop” and a “closed-loop” characterization of all
the (internal) dynamics of a given system that
are compatible with the constraint that the output
is identically zero. This construction can be ex-
tended to multi-input multi-output systems, with
the aid of an appropriate recursive algorithm,
known as the zero dynamics algorithm (Isidori
1995).

Normal Forms

The coordinate-free construction presented above
becomes even more transparent if special coordi-
nates are chosen. To this end, set

g�.x/ D 1

LgL
r�1
f h.x/

g.x/

and define, recursively,

X0.x/ D g�.x/; Xk.x/ D Œf �.x/; Xk�1.x/� ;

for 1 � k � r�1, in which ŒY.x/;X.x/� denotes
the Lie bracket of Y.x/ andX.x/. It is possible to
show that if the vector fields X0.x/; : : : ; Xn�1.x/
are complete, there exists a smooth nonlinear,
globally defined, change of variables by means
of which the system can be transformed into a
system of the form

Pz D f0.z; �/
P� D Ar� CBr Œq0.z; �/C b.z; �/u�

y D Cr�

in which z 2 R
n�r , � 2 R

n, the matrices
Ar ,Br ,Cr have the form

Ar D

0
BBBB@

0 1 0 � � � 0
0 0 1 � � � 0
� � � � � � �
0 0 0 � � � 1
0 0 0 � � � 0

1
CCCCA
; Br D

0
BBBB@

0

0

� � �
0

1

1
CCCCA
;

Cr D �
1 0 0 � � � 0� ;

and b.z; �/ ¤ 0 for all .z; �/. These equations are
said to be in normal form (Isidori 1995).

It is easy to check that, in these coordinates,
the manifold Z� is the set of all pairs .z; �/
having � D 0, the state feedback law u�.x/ is
the function

u�.z; �/ D � q0.z; �/

b.z; �/

and the restriction of Px D f �.x/ to the manifold
Z� is nothing else than

Pz D f0.z; 0/:

The latter provide a simple characterization of
the zero dynamics of the system, once that the
latter has been brought to its normal form.

It is worth observing that, in the case of a
linear system, functions f0.z; �/ and q0.z; �/ are
linear functions, and b.z; �/ is a constant. Conse-
quently, the normal form can be written as

Pz D F z CG�
P� D Ar� C BrŒH z CK� C bu�
y D Cr� :

It is also easy to check that the transfer func-
tion of the system can be expressed as

T .s/ D b
det.sI � F /

det.sI � A/
;
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in which

A D
�
F G

BrH Ar C BrK

�
:

From this it is concluded that in a (controllable
and observable) linear system, the zeros of the
transfer function T .s/ coincide with the eigen-
values of F . In other words, in a linear system
the zero dynamics are linear dynamics whose
eigenvalues coincide with the zeros of the transfer
function of the system.

The Inverse System

Another property associated with the notion of
zero of the transfer function, in a (single-input
single-output) linear system, is the fact that the
zeros characterize the dynamics of the inverse
system (the latter being – loosely speaking – a
system able to reproduce the input u.t/ from
output y.t/ that this input has generated). This
property has an immediate analogue for nonlinear
systems. Considering system in normal form and
setting

yr�1.t/ D col.y.t/; y.1/.t/; : : : ; y.r�1/.t// ;

it is easily seen that the input u.t/ can be deter-
mined as the output of a dynamical system, driven
by yr�1.t/ and y.r/.t/, modeled by

Pz D f0.z; yr�1/

u D y.r/ � q0.z; yr�1/
b.z; yr�1/

:
(1)

Thus, it is concluded that the unforced internal
dynamics of the inverse system coincide with the
zero dynamics as defined above.

It should be stressed, though, that the coin-
cidence is limited to the case of single-input
single-output systems. For a multi-input multi-
output nonlinear systems, the link between zero
dynamics and the dynamics of the inverse system
is more subtle. This is essentially due to the fact
that while the concept of zero dynamics only
seeks to determine the dynamics compatible with

the constraint that the output is identically zero,
the inverse system must describe all dynamics
resulting in any admissible output function. As a
consequence, computation of the zero dynamics
and computation of the inverse system (whenever
this is possible) are not equivalent and the lat-
ter is possible only under substantially stronger
assumptions. The computation of the zero dy-
namics is based on an extension (Isidori 1995)
of the classical algorithm of Wonham (1979) for
the computation of the largest controlled invariant
subspace in the kernel of the output map, while
the computation of the inverse system is based
on extensions, due to Hirschorn (1979) and Singh
(1981) of the so-called structure algorithm intro-
duced by Silverman (1969) for the computation
of inverses and zero structure at the infinity.
For a comparison of such assumptions and of
their influence on the outcome of the associated
algorithms, see Isidori and Moog (1988).

Input-Output Linearization

An appealing feature of the normal form de-
scribed above is the straightforward observation
that a (state) feedback law of the form

u D 1

b.z; �/
Œ�q0.z; �/CKr� C v�

changes the system into a system

Pz D f0.z; �/
P� D .Ar C BrKr/� CBrv

y D Cr�

whose input-output behavior (between input v
and output y) is fully linear (and stable if Kr is
chosen so that the matrixAr CBrKr in Hurwitz).
In fact, the law in question renders the sys-
tem partially unobservable, with all nonlinearities
confined to its unobservable part (Isidori et al.
1981). This control law is clearly non-robust,
as it relies upon exact cancelation of possibly
uncertain terms, but it can be rendered robust
by means of appropriate dynamic compensation
(Freidovich and Khalil 2008).
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The system obtained in this way has the struc-
ture of a cascade of two sub-systems, one of
which, modeled as

Pz D f0.z; �/ ;

is seen as “driven” by the input �. This motivates
the interest in classifying the asymptotic proper-
ties of such subsystem, as discussed below.

Asymptotic Properties of the Zero
Dynamics

Linear systems with no zeroes in the right-half
complex plane are traditionally called minimum-
phase systems, in view of certain properties of the
Bode gain and phase plots of its transfer function.
Thus, in view of the interpretation given above,
linear systems whose zero dynamics are asymp-
totically stable are minimum-phase systems. This
terminology has been (somewhat abusively, but
with the clear intent of providing a concise and
expressive characterization) borrowed to classify
nonlinear systems whose zero dynamics have
desirable (from the stability viewpoint) proper-
ties. Assuming that z D 0 is an equilibrium of
Pz D f0.z; 0/, the following cases are consid-
ered:
• A nonlinear system is locally minimum-phase

(respectively, locally exponentially minimum-
phase) if the equilibrium z D 0 of Pz D f0.z; 0/
is locally asymptotically (respectively locally
exponentially) stable (Byrnes and Isidori
1984).

• A nonlinear system is globally minimum-
phase if the equilibrium z D 0 of Pz D f0.z; 0/
is globally asymptotically stable (Byrnes and
Isidori 1991).

• A nonlinear system is strongly minimum-
phase if the system Pz D f0.z; �/, viewed as
a system with input � and state z, is input-to-
state stable (Liberzon 2002).
According to the well-known criterion of

Sontag (1995) for input-to-state stability, a
system is strongly minimum phase if and only
if there exists a positive definite and proper
smooth real-valued function V.z/, class K1

functions ˛.�/; ˛.�/; ˛.�/ and a class K function
�.�/ satisfying

˛.jzj/ � V.z/ � ˛.jzj/ 8z

@V

@z
f0.z; �/ � �˛.jzj/ 8.z; �/

such that jzj � �.j�j/:

As a special case, it is seen that a system is
globally minimum phase if and only if there
exists a function V.z/, bounded as above, such
that

@V

@z
f0.z; 0/ � �˛.jzj/ 8z :

If, instead, the weaker inequality

@V

@z
f0.z; 0/ � 0 8z

holds, the system is said to be globally weakly
minimum-phase.

The criterion summarized above is of
paramount importance in the design of feedback
laws to the purpose of stabilizing nonlinear
systems that are globally (or strongly) minimum
phase, as it will be seen below.

Zero Dynamics and Stabilization

The first and foremost immediate implication of
the properties described above is the fact that the
feedback law

u D 1

b.z; �/
Œ�q0.z; �/CKr�� ;

if Kr is chosen so that the matrix Ar C BrKr

in Hurwitz, globally asymptotically stabilizes
the equilibrium .z; �/ D .0; 0/ of a strongly
minimum-phase system. In fact, as observed, the
corresponding closed-loop system can be seen as
an asymptotically stable (linear) system driving
an input-to-state stable (nonlinear) system. As
already observed, this control mode is non-
robust (as it relies upon exact cancelations) and
requires the availability of the full state .z; �/
of the controlled system. However, both these
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deficiencies can be to some extent fixed, by
means of appropriate techniques, that will be
briefly reviewed below.

If the requirement of global stability is re-
placed by the (weaker) requirement of stability
with a guaranteed region of attraction, then the
desired control goal can be achieved by means
of a much simpler law, depending only on the
partial state � and not requiring cancelations.
Stability with a guaranteed region of attraction
essentially means that a given equilibrium is
rendered asymptotically stable, with a region of
attraction that contains an a priori fixed compact
set. In this context, the most relevant results can
be summarized as follows.

Assume the system possesses a globally de-
fined normal form and, without loss of generality,
let b.z; �/ > 0. Let the system be controlled by a
“partial state” feedback of the form

u D �kKr� ;

in which k 2 R. Under this control mode, the
following results are obtained:
• Suppose the system is strongly minimum

phase. Then, there is a matrix Kr and, for
every choice of a compact set C and of a
number " > 0, there are a number k� and a
time T � such that, if k � k�, all trajectories of
the closed-loop system with initial condition
in C are bounded and satisfy jx.t/j � " for all
t � T �.

• Suppose the system is strongly minimum
phase and also locally exponentially minimum
phase. Suppose q0.0; 0/ D 0. Then, there
is a matrix Kr and, for every choice of a
compact set C there is a number k� such
that, if k � k�, the equilibrium x D 0 of
the system is locally asymptotically stable,
with a domain of attraction that contains the
set C.
In these results, the system is stabilized by

means of a static control law that depends only
on the partial state � and not on the (possi-
bly unknown) quantities q0.z; �/, b.z; �/. Bear-
ing in mind the fact that the r components of
� coincide with the output y and its deriva-
tives y.1/; : : : ; y.r�1/, it is possible to replace the

control in question by means of a dynamic control
law that only depends on the output y, following
a design paradigm originally proposed by H.
Khalil. In fact, if the system is strongly minimum
phase and also locally exponentially minimum
phase and if q0.0; 0/ D 0, asymptotic stability
with a guaranteed region of attraction can be
achieved by means of dynamical feedback law of
the form Khalil and Esfandiari (1993)

PO�1 D O�2 C �cr�1.y � O�1/
PO�2 D O�3 C �2cr�2.y � O�1/

� � �
PO�r�1 D O�r C �r�1c1.y � O�1/

PO�r D �rc0.y � O�1/
u D �	L.kKr

O�/ ;

in which � and the ci are design parameters and
	L.s/ is a smooth saturation function, character-
ized as follows: 	L.s/ D s if jsj � L, 	L.s/
is odd and monotonically increasing, with 0 <
	 0
L.s/ � 1, and lims!1 	L.s/ D L.1 C c/ with
0 < c � 1. The number L is a design parameter
also.

It is also possible to show that a suitable
“extension” of this dynamic feedback law can be
used to asymptotically recover the effects of the
input-output linearizing law considered earlier.
In this way, the lack of robustness intrinsically
present in such control law is overcome (Frei-
dovich and Khalil (2008)).

Output Regulation

The concept of zero dynamics plays a fundamen-
tal role in the problem of output regulation. The
problem in question considers a controlled plant
modeled by

Px D f .w; x; u/
e D h.w; x/ ;

in which u is the control input, w is a set of ex-
ogenous variables (command and disturbances),



Nonlinear Zero Dynamics 905

N

and e is a set of regulated variables. The exoge-
nous variables are thought of as generated by an
autonomous system

Pw D s.w/

known as the exosysten. The problem is to design
a (possibly dynamic) controller

Pxc D fc.xc; e/

u D hc.xc; e/

driven by the regulated variable e, such that
in the resulting closed-loop system all trajecto-
ries are ultimately bounded and limt!1 e.t/ D
0: The problem in question has been the ob-
ject of intensive research in the past years. In
what follows we limit ourselves to highlight the
role of the concept of zero dynamics in this
problem.

Assume that the set W where the exosystem
evolves is compact and invariant and suppose a
controller exists that solves the problem of output
regulation. Then, the associated closed-loop has a
steady-state locus (see Isidori and Byrnes 2008),
the graph of a possibly set-valued map defined on
W . Suppose the map in question is single-valued,
which means that for each given exogenous input
function w.t/, there exists a unique steady-state
response, expressed as x.t/ D �.w.t// and
xc.t/ D �c.w.t//. If, in addition,�.w/ and �c.w/
are continuously differentiable, it is readily seen
that

Ls�.w/ D f .w; �.w/;  .w//
0 D h.w; �.w//

Ls�c.w/ D fc.�c.w/; 0/

 .w/ D hc.�c.w/; 0/

8w 2 W:

The first two equations, introduced in Isidori
and Byrnes (1990), are known as the nonlinear
regulator equations. They clearly show that the
graph of the map �.w/ is a manifold contained
in the zero set of the output map e, rendered
invariant by the control u D  .w/. In particular,
the steady-state trajectories of the closed-loop
system are trajectories of the zero dynamics of

the controlled plant. The second two equations,
on the other hand, interpret the ability, of the
controller, to generate the feedforward input nec-
essary to keep e.t/ D 0 in steady-state. This is
a nonlinear version of the well-known internal
model principle of Francis and Wonham (1975).

Passivity

Consider a nonlinear input-affine system having
the same number m of inputs and outputs and
recall that this system is said to be passive if
there exists a continuous nonnegative function
real-valued function W.x/, with W.0/ D 0, that
satisfies

W.x.t// �W.x.0// �
Z t

0

yT.s/u.s/ds

along trajectories. The function W.x/ is the so-
called storage function of the system.

It is well known that the notion of passiv-
ity plays an important role in system analysis
and that the theory of passive systems leads to
powerful methodologies for the design of feed-
back laws for nonlinear systems. In this context,
the question of whether a given, non-passive,
nonlinear system could be rendered passive by
means of state feedback is indeed relevant. It
turns out that this possibility can be simply ex-
pressed as a property of the zero dynamics of the
system.

Suppose that Lgh.x/ is nonsingular and set
g�.x/ D g.x/ŒLgh.x/�

�1. If the m columns
of g�.x/ are complete and commuting vector
fields, there exists a globally defined change of
coordinates that brings the system in normal form

Pz D f0.z; y/
Py D q0.z; y/C b.z; y/u

Then, there exists a feedback law u D ˛.z; y/ that
renders the resulting closed-loop system passive,
with a C2 and positive definite storage function
W.x/, if and only if the system is globally weakly
minimum phase (Byrnes et al. 1991).
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Limits of Performance

It is well-known that linear systems having zeros
in the left-half plane are difficult to control, and
obstruction exists to the fulfillment of certain
control specifications. One of these is found in
the analysis of the so-called cheap control prob-
lem, namely, the problem of finding a stabilizing
feedback control that minimizes the functional

J" D 1

2

Z 1

0

ŒyT.t/y.t/C "uT.t/u.t/�dt

when " > 0 is small. As " ! 0, the optimal
value J �

" tends to J �
0 , the ideal performance. It

is well-known that, in a linear system, J �
0 D 0

if and only if the system is minimum phase and
right invertible and, in case the system has zeros
with positive real part, it is possible to express
explicitly J �

0 in terms of the zeros in question. If
the (linear) system is expressed in normal form as

Pz D F z CG�
P� D H z CK� C bu
y D �

with b ¤ 0, and the zero dynamics are antistable
(that is all the eigenvalues of F have positive real
part), it can be shown that J �

0 coincides with the
minimal value of the energy

J D 1

2

Z 1

0

�T.t/�.t/dt

required to stabilize the (antistable) system Pz D
F zCG�. In other words, the limit as " ! 0 of the
optimal value of J" is equal to the least amount of
energy required to stabilize the dynamics of the
inverse system.

This result has an appealing nonlinear coun-
terpart (Seron 1999). In fact, for a nonlinear
input-affine system having the same numberm of
inputs and outputs in normal form, with f0.z; �/
of the form f0.z; �/ D f0.z/ C g0.z/� and Pz D
f0.z/ antistable, under appropriate technical as-
sumptions (mostly related to the existence of the
solution of the associated optimal control prob-
lems), the same result holds: the lowest attainable

value of the L2 norm of the output coincides with
the least amount of energy required to stabilize
the dynamics of z.

Summary and Future Directions

The concept of zero dynamics plays an important
role in a large number of problems arising in
analysis and design of nonlinear control systems,
among which the most relevant ones are the
problems of asymptotic stabilization and those of
asymptotic tracking/rejection of exogenous com-
mand/disturbance inputs. Essentially, all such ap-
plications deal with single-input single-output
systems, require the system to be preliminarily
reduced to a special form by means of appropriate
change of coordinates, and assume the dynamics
in question to be globally asymptotically stable.
The analysis of systems having many inputs and
many outputs, of systems in which normal forms
cannot be defined, and of systems in which the
zero dynamics are unstable is still a challenging
and unexplored area of research.
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in System Identification

Rik Pintelon and Johan Schoukens
Department ELEC, Vrije Universiteit Brussel,
Brussels, Belgium

Abstract

This entry gives an overview of classical
and state-of-the-art nonparametric time and
frequency-domain techniques. In opposition to

parametric methods, these techniques require
no detailed structural information to get
insight into the dynamic behavior of complex
systems. Therefore, nonparametric methods are
used in system identification to get an initial
idea of the model complexity and for model
validation purposes (e.g., detection of unmodeled
dynamics). Their drawback is the increased
variability compared with the parametric
estimates. Although the main focus of this entry
is on the classical identification framework
(estimation of dynamical systems operating
in open loop from known input, noisy output
observations), the reader will also learn more
about (i) the connection between transient and
leakage errors, (ii) the estimation of dynamical
systems operating in closed loop, (iii) the
estimation in the presence of input noise, and (iv)
the influence of nonlinear distortions on the linear
framework. All results are valid for discrete- and
continuous-time systems. The entry concludes
with some user choices and practical guidelines
for setting up a system identification experiment
and choosing an appropriate estimation method.

Keywords

Best linear approximation; Correlation method;
Empirical transfer function estimate; Errors-
in-variables; Feedback; Frequency response
function; Gaussian process regression; Impulse
transient response modeling method; Local
polynomial method; Local rational method;
Noise (co)variances; Noise power spectrum;
Spectral analysis

Introduction

Nonparametric representations such as frequency
response functions (FRFs) and noise power spec-
tra are very useful in system identification: they
are used (i) to verify the quality of the identifi-
cation experiment (high or poor signal-to-noise
ratio?), (ii) to get quickly insight into the dy-
namic behavior of the plant (complex or easy
identification problem?), and (iii) to validate the
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parametric plant and noise models (detection of
unmodeled dynamics); see also � System Identi-
fication: An Overview. In addition, via specially
designed periodic excitation signals, it is possible
to detect and quantify the nonlinear distortions
in the FRF estimate. As such, without estimating
a parametric model, the users can easily decide
whether or not the linear framework is accurate
enough for their particular application.

The estimation of the nonparametric models
typically starts from sampled input-output signals
u.nTs/ and y.nTs/; n D 0; 1; : : : ; N � 1, that
are transformed to the frequency domain via the
discrete Fourier transform (DFT)

X.k/ D 1p
N

N�1X
nD0

x.nTs/e
�j 2�kn=N (1)

with Ts the sampling period, x D u or y, and
X D U or Y . One of the main difficulties
in estimating an FRF and noise power spec-
trum is the leakage error in the DFT spectrum
X.k/ D DFT.x.t// (1). It is due to the finite
duration NTs of the experiment, and it increases
the mean square error of the nonparametric esti-
mates. Therefore, all methods try to suppress the
leakage error as much as possible.

This entry starts by a detailed analysis of
the leakage problem (section “The Leakage
Problem”), followed by an overview of standard
and advanced nonparametric time (section
“Nonparametric Time-Domain Techniques”) and
frequency (section “Nonparametric Frequen-
cy-Domain Techniques”) domain techniques.
First, it is assumed that the system operates
in open loop (see Fig. 1) and that known
input, noisy output observations are available
(sections “Nonparametric Time-Domain Tech-
niques” and “Nonparametric Frequency-Domain
Techniques”). Next, section “Extensions”
extends the results to systems operating in
closed loop (section “Systems Operating in
Feedback”); to noisy input, noisy output
observations (section “Noisy Input, Noisy Output
Observations”); and to nonlinear systems (section
“Nonlinear Systems”). Finally, some user choices
are discussed (section “User Choices”) and

Plant

N
oi
se

Nonparametric Techniques in System Identification,
Fig. 1 Classical identification framework: discrete- or
continuous-time plant operating in open loop; known in-
put u.t /, noisy output y.t/ observations; and v.t/ filtered
discrete-time or band-limited continuous-time white noise
e.t/ that is independent of u.t /. y0.t/ denotes the true
output of the plant. In the continuous-time case, it is
assumed that the unobserved driving noise source e.t/ has
finite variance and constant (white) power spectrum within
the acquisition bandwidth

some practical guidelines are given (section
“Guidelines”). Unless otherwise stated, the input
u.t/ and the disturbing noise v.t/ are assumed to
be statistically uncorrelated.

The Leakage Problem

For arbitrary excitations u.t/, the relationship
between the true inputU.k/ and true outputY0.k/
DFT spectra (1) of a linear dynamic system is
given by

Y0.k/ D G.�k/U.k/C TG.�k/ (2)

where �k D j!k or exp.�j!kTs/ for,
respectively, continuous- and discrete-time
systems; !k D 2�k=.NTs/; G.�k/ the plant
frequency response function; and TG.�k/

the leakage error due to the plant dynamics
(Pintelon and Schoukens 2012, Section 6.3.2).
The leakage error TG.�/ is a smooth function of
the frequency that decreases to zero asO.N�1=2/
for N increasing to infinity. It depends on the
difference between the initial and final conditions
of the experiment and has exactly the same poles
as the plant transfer function. Therefore, the

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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time-domain response of TG.�/ is decaying
exponentially to zero as a transient error.

From this short discussion, it can be concluded
that the leakage error in the frequency domain
is equivalent to the transient error in the time
domain. The only difference being that the former
depends on the difference between the initial and
final conditions, while the latter solely depends
on the initial conditions.

Standard spectral analysis methods (see sec-
tion “Spectral Analysis Method”) suppress the
leakage term TG.�k/ in (2) by multiplying the
time-domain signals with a window w.t/ before
taking the DFT (1)

.X.k//W D 1p
Nwrms

N�1X
nD0

w.nTs/x.nTs/e
�j 2� kn

N

(3)

with wrms D
�
N�1P
nD0

jw.nTs/j2 =N
�1=2

the root

mean square (rms) value of the window w.t/.
The scaling in (3) is such that the transformation
preserves the rms value of the signal. The rela-
tionship between the DFT spectra .U.k//W and
.Y0.k//W of the windowed input-output signals
w.t/u.t/ and w.t/y0.t/ is given by

.Y0.k//WDG.�k/ .U.k//W CEint.k/CEleak.k/

(4)

where Eint.k/ and Eleak.k/ are, respectively, the
interpolation error and the remaining leakage
error

Eint.k/ D .G.�k/U.k//W �G.�k/ .U.k//W
(5)

Eleak.k/ D .TG.�k//W (6)

Note that Eint.k/ D 0 if G.�k/ is constant
within the bandwidth ofW.k/, while the interpo-
lation error is large if the FRF varies significantly
within the window bandwidth. To keep Eint.k/

small, the frequency resolution 1=.NTs/ should
be sufficiently large and the window bandwidth
should be small enough. On the other hand, a
larger window bandwidth is beneficial for reduc-
ing the leakage error Eleak.k/. Hence, choosing
an appropriate window for nonparametric FRF

and noise power spectrum estimation is making
a trade-off between the reduction of the leakage
error Eleak.k/ and the increase of the interpola-
tion error Eint.k/ (Schoukens et al. 2006).

Note that exactly the same analysis can be
made for the continuous- or discrete-time dynam-
ics of the disturbing output noise v.t/ in Fig. 1

V.k/ D H.�k/E.k/C TH.�k/ (7)

with H.�k/ the noise frequency response
function, E.k/ the DFT of the unobserved
driving discrete-time or band-limited continuous-
time white noise source e.t/ (Pintelon and
Schoukens 2012, Section 6.7.3), and TH.�k/

the noise leakage (transient) term. The noise
leakage term is often neglected but can be
important for lightly damped systems (e.g., in
modal analysis). Most nonparametric techniques
suppress the sum of the plant and noise leakage
errors TG.�k/C TH.�k/.

If an integer number of periods of the
steady-state response to a periodic excitation
is measured, then the plant leakage error TG.�k/

in (2) is zero, which simplifies significantly the
estimation problem. Therefore, for the frequency-
domain techniques, a distinction is made between
periodic and nonperiodic excitations. Note,
however, that the noise leakage (transient)
term TH.�k/ in (7) remains different from
zero.

Nonparametric Time-Domain
Techniques

The time-domain methods estimate the impulse
response of the plant via the time-domain rela-
tionship that the true output y0.t/ equals the con-
volution product between the impulse response
g.t/ and the true input u.t/. For discrete-time
systems, it takes the form

y0.t/ D
1X
nD0

g.n/u.t � n/ (8)

In practice only a finite number of impulse re-
sponse coefficients g.t/ can be estimated from
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N input-output samples, and, therefore, (8) is
approximated by a finite sum

y0.t/ �
LX
nD0

g.n/u.t � n/ (9)

where L � N � 1 should also be determined
from the data. From (9), it can be seen that
the response depends on the past input values
u.�1/; u.�2/; : : :; u.�L/. Since these values are
unknown, an exponentially decaying transient
error is present in the first L samples of the pre-
dicted output (9). This transient error is the time-
domain equivalent of the leakage error TG.�k/

in (2). To remove the transient error, the first L
output samples can be discarded in the predicted
output (9). It reduces the amount of data from N

to N � L and, hence, increases the mean square
error of the estimates. If it is known that the
transfer function has no direct term, then g.0/ D
0, and the sum (9) starts from n D 1.

CorrelationMethods
Correlation methods have been studied inten-
sively since the end of the 1950s (see Eykhoff
1974) and are nowadays still used in telecom-
munication channel estimation and equalization.
The impulse response coefficients are found by
minimizing the sum of the squared differences
between the observed output samples and the
output samples predicted by (9)

N�1X
tDL

.y.t/ �
LX
nD0

g.n/ u.t � n//2 (10)

w.r.t. g.m/;m D 0; 1; : : :; L. The solution of
this linear least squares problem is given by the
famous Wiener-Hopf equation

ORyu.m/ D
LX
nD0

g.n/ ORuu.m � n/ (11)

for m D 0; 1; : : :; L, where ORyu and ORuu are
estimates of, respectively, the cross- and autocor-
relation functionsRyu.�/ D Efy.t/u.t � �/g and
Ruu.�/ D Efu.t/u.t � �/g

ORyu.m/ D 1

N � L

N�1X
tDL

y.t/u.t �m/ (12)

ORuu.m � n/ D 1

N �L
N�1X
tDL

u.t � n/u.t �m/
(13)

(Godfrey 1993, Chapter 1; Ljung 1999, Chap-
ter 6). Since the number of estimated impulse
response coefficientsL can grow with the amount
of data N , the correlation method (11) is clas-
sified as being nonparametric. If the input is
white noise, then the expected value of ORuu.m/ is
proportional to the Kronecker delta ı.m/, and the
cross-correlation ORyu.m/ (11) is – within a scal-
ing factor – a good approximation of the impulse
response. This property is used in blind channel
estimation.

Gaussian Process Regression
The linear least squares (10) solution can be
(very) sensitive to disturbing output noise if L
is not much smaller than N . This problem is
circumvented by the Gaussian process regression
approach. The key idea consists in modeling
the impulse response coefficients g.n/ as a
zero-mean Gaussian process with a certain
covariance structure PL that depends on a few
hyper-parameters (Pillonetto et al. 2011). In
Chen et al. (2012), it has been shown that the
Gaussian process regression is equivalent to
the following regularized (see also � System
Identification Techniques: Convexification, Reg-
ularization, and Relaxation) linear least squares
problem

N�1X
tDL

.y.t/ �
LX
nD0

g.n/u.t � n//2 C 	2gT P�1
L g

(14)

where g D .g.0/; g.1/; : : :; g.L//T and with
	2 the variance of the output disturbance. The
hyper-parameters defining PL and the noise vari-
ance 	2 are estimated via an empirical Bayes
method.

http://dx.doi.org/10.1007/978-1-4471-5058-9_101
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Nonparametric Frequency-Domain
Techniques

The frequency-domain techniques estimate the
frequency response function (FRF) using rela-
tionship (2) or (4) between the input-output DFT
spectra. We start with the simplest approach and
gradually increase the complexity of the esti-
mation methods. Note that nonparametric FRF
estimation is still a quickly evolving research
area, such that the pros and cons of the advanced
methods are yet not well established.

Empirical Transfer Function Estimation
If an integer number of periods P of the steady-
state response to a periodic excitation is ob-
served, then the leakage term in TG.�k/ in (2)
is zero, and the FRF is estimated by dividing the
output by the input DFT spectra at the excited
frequencies (Pintelon and Schoukens 2012, Sec-
tion 2.4)

OG.�k/ D Y.k/

U.k/
(15)

The output noise variance 	2V .k/ is estimated via
the sample variance O	2V .k/ of the output DFT
spectra over the P consecutive signal periods.
The variance of the FRF estimate (15) is then
given by

var. OG.�k// D 	2V .k/

P jU.k/j2 (16)

where jU.k/j is the magnitude of U.k/.
Applying (15) to random excitations gives

the empirical transfer function estimate (Ljung
1999, Section 6.3). Due to the presence of the
plant leakage error TG.�k/=U.k/, the statistical
properties of (15) for random inputs are quite
different from those for periodic inputs. While
the empirical transfer function estimate (ETFE) is
unbiased and has finite variance (16) for periodic
inputs, it is biased and has infinite variance for
random inputs (Broersen 2004). To improve the
statistical properties of the ETFE for random
inputs, one can either approximate locally the
ETFE by a polynomial (Stenman et al. 2000)
or perform a weighted average of ETFEs over

subrecords of the total response (Ljung 1999,
Section 6.4). In Heath (2007), it is shown that the
optimally (in mean square sense) weighted ETFE
equals the spectral analysis method.

Spectral Analysis Method
The spectral analysis method is available in any
digital spectrum analyzer. It is based on the
relationship between the FRF and the cross-
and autopower spectra of the input-output
signals

G.�/ D Syu.�/

Suu.�/
D F fRyu.�/g
F fRuu.�/g (17)

with F fg the Fourier transform (Bendat and Pier-
sol 1980, Chapter 4; Brillinger 1981, Chapter 8).
Comparing (11) and (17), it can be seen that the
spectral analysis method is the frequency-domain
equivalent of the correlation method (take the
Fourier transform of the expected value of (11)).
There are basically two methods for estimating
the cross- and autopower spectra in (17) from
sampled data: the Blackman and Tukey (1958)
and the Welch (1967) procedures.

The Blackman-Tukey procedure (Blackman
and Tukey 1958; Ljung 1999, Section 6.4) con-
sists in taking the DFT (3) of the windowed cross-
and autocorrelation functions, viz.,

ORyu.�/ D 1

N

N�1X
tD
y.t/ u.t � �/ (18)

OSRyu.k/ D 1p
N

N�1X
�D0

w.�/ ORyu.�/e
�j 2� k�

N (19)

resulting in an FRF estimate (17) at the full
frequency resolution 1=.NTs/ of the measure-
ment. It can be shown that (19) is a smoothed
version of the periodogram Y.k/U.k/, where is
NU the complex conjugate of U (Brillinger 1981,

Chapter 5).
In the Welch approach (Welch 1967; Pin-

telon and Schoukens 2012, Section 2.6), the N
input-output samples are split into M subrecords
of N=M samples each, and the DFT spectra
.U Œm�.k//W and .Y Œm�.k//W of the windowed
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input and output samples are calculated via (3)
where N is replaced by N=M , giving

OSYW UW .k/ D 1

M

MX
mD1

�
Y Œm�.k/

�
W
�
U Œm�.k/

�
W

(20)

OSUW UW .k/ D 1

M

MX
mD1

ˇ̌�
U Œm�.k/

�
W
ˇ̌2

(21)

The spectral analysis estimate of the FRF and its
variance are then given by

OG.�k/ D
OSYW UW .k/
OSUW UW .k/

(22)

var. OG.�k// � 	2V .k/

M
E

n OS�1
UW UW

.k/
o

(23)

(Brillinger 1981, Chapter 8; Heath 2007). Finally,
the output noise variance 	2V .k/ in (23) is esti-
mated as

O	2V .k/ D M

M � 1

0
B@ OSYW YW .k/ �

ˇ̌
ˇ OSYW UW .k/

ˇ̌
ˇ
2

OSUW UW .k/

1
CA

(24)

(Brillinger 1981, Chapter 8; Pintelon and
Schoukens 2012, Section 2.5.4). Due to
the spectral width of the window used, the
estimates (22) and (24) are correlated over
the frequency (the correlation length is about
twice the spectral width). Note that (21) is used
for estimating noise power spectra (Brillinger
1981, Chapter 5). Note also that for periodic
excitations combined with a rectangular window
w.nTs/ D 1, the spectral analysis estimate (22),
where each subrecord is equal to a signal period,
simplifies to the ETFE (15).

Compared with the Blackman-Tukey proce-
dure (19), the FRF estimate (22) based on the
Welch approach (20) and (21) has a frequency
resolution and a variance (23) that are M times
smaller. In measurement devices, the FRFs are
estimated using the Welch approach (20)–(22)
where each subrecord is an independent measure-
ment with a fixed number of samples. The reason
for this is that the cross- and autopower spectra
estimates (20) and (21) can easily be updated as

more experiments (input-output data records) are
available. If the number of measured records M
increases to infinity, then (22) converges to the
true value, provided a perfect suppression of the
leakage error.

In measurement devices, the quality of the
spectral analysis estimate (22) is often quantified
via the coherence �2.!/

�2.!/ D
ˇ̌
Syu.�/

ˇ̌2
Syy.�/Suu.�/

(25)

which is comprised between 0 and 1. It is related
to the variance of the spectral analysis estimate as

var. OG.�k// D 1 � �2.!k/2
�

.!k/ jG.�k/j2

A coherence smaller than 1 indicates the presence
of disturbing noise, residual leakage errors, non-
linear distortions, or a nonobserved input.

Following the same lines of Welch (1967),
the statistical properties of the spectral analysis
estimate (22) can be improved via overlapping
subrecords in the cross- and autopower spectra
estimates (20) and (21). This has been studied in
detail for noise power spectra in Carter and Nut-
tall (1980) and for FRFs in Antoni and Schoukens
(2007).

Advanced Methods
The goal of the advanced methods is to estimate
the FRF at the full frequency resolution 1=.NTs/
of the experiment duration NTs while suppressing
the influence of the leakage and the noise errors.
Without some extra information, it is impossi-
ble to achieve this goal via (2). The additional
piece of information that allows one to solve the
problem is that the FRF and the leakage error are
locally smooth functions of the frequency.

The local polynomial method (Pintelon and
Schoukens 2012, Chapter 7) approximates the
FRF and the leakage error in (2) locally in the
frequency band Œk � n; k C n� by a polynomial.
From the residuals of the local linear least squares
solution, one also gets an estimate of the output
noise variance 	2V and, hence, also of the variance
of the FRF. The whole procedure is repeated for
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all DFT frequencies k in the frequency band of
interest. The correlation length of the estimates
equals ˙2n, which is twice the local bandwidth
of the polynomial approximation.

The local rational method (McKelvey and
Guérin 2012) follows the same lines as the local
polynomial method, except that the FRF and the
leakage error in (2) are locally approximated by
rational forms with the same poles (G D B=A

and TG D I=A). Due to the common poles,
the local rational approximation problem can be
transformed into a local linear least squares prob-
lem. The method is biased but suppresses better
the plant leakage error of lowly damped systems.

The transient impulse response modeling
method (Hägg and Hjalmarsson 2012) ap-
proximates the FRF and the leakage error by,
respectively, finite impulse and transient response
models, giving a large sparse global linear least
squares problem. From the residuals of the global
linear least squares solution, one gets an estimate
of the output noise variance 	2V and, hence, also
of the variance of the FRF. This approach has the
best smoothing properties and is recommended
in case the noise error is dominant.

Extensions

In sections “Nonparametric Time-Domain Tech-
niques” and “Nonparametric Frequency-Domain
Techniques,” it is assumed that the linear plant
operates in open loop and that the input is known
exactly. If the plant operates in feedback and/or
the input observations are noisy, then the pre-
sented time and frequency-domain techniques are
biased. In sections “Systems Operating in Feed-

back” and “Noisy Input, Noisy Output Observa-
tions,” it is shown that the estimation bias can
be avoided if a known external reference signal
is available (typically the signal stored in the
arbitrary waveform generator).

Since most real-life systems behave to some
extent nonlinearly, it is important to detect and
quantify the nonlinear effects in FRF estimates.
This issue is handled in section “Nonlinear Sys-
tems.”

Systems Operating in Feedback
The key difficulty of estimating the FRF of a plant
operating in feedback (see Fig. 2) using nonpe-
riodic excitations is that the true input u.t/ is
correlated with the process noise v.t/. The direct
approaches of sections “Nonparametric Time–
Domain Techniques” and “Nonparametric Fre-
quency-Domain Techniques” lead to biased esti-
mates (Wellstead 1981). This can easily be seen
from the ETFE (15) applied to the feedback setup
in Fig. 2

OG.�k/ D G.�k/Gact.�k/R.k/C V.k/

Gact.�k/R.k/ �Gfb.�k/V .k/
(26)

where Gact.�k/ and Gfb.�k/ are, respectively,
the actuator and feedback dynamics. From (26),
it follows that in those frequency bands where
the process noise V.k/ dominates, one rather
estimates minus the inverse of the feedback dy-
namics instead of the plant FRF. On the other
hand, at those frequencies where the reference
signal injects most power, the ETFE (26) will be
close to the plant FRF.

Actuator

Feedback

Plant

Nonparametric Techniques in System Identification,
Fig. 2 Plant operating in closed loop: r.t/ is the ex-
ternal reference signal, the known input u.t / depends

on the process noise v.t/, and y.t/ is the noisy output
observation
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Actuator Plant

Nonparametric Techniques in System Identification,
Fig. 3 Errors-in-variables framework: r.t/ is the external
reference signal; ng.t/ is the generator noise; mu.t /,

my.t/ are the input and output measurement errors; v.t/ is
the process noise; and u.t /, y.t/ are the noisy input, noisy
output observations

If a known external reference signal is avail-
able, then the bias is avoided via the indirect
method proposed in Wellstead (1981)

G.�/ D Syr.�/=Srr.�/

Sur .�/=Srr.�/
D Syr.�/

Sur .�/
: (27)

The basic idea consists in modeling the feedback
setup (see Fig. 2) from the known reference to the
input and output simultaneously. This reduces the
single-input, single-output closed loop problem
to a single-input, two-output open loop problem.
Since the process noise v.t/ is independent of
the reference signal r.t/, the direct estimate of
the single-input, two-output FRF is unbiased.
Calculating the ratio of the two FRFs finally
gives the indirect estimate (27). This procedure
can be applied to any of the direct methods
of sections “Nonparametric Time-Domain Tech-
niques” and “Nonparametric Frequency-Domain
Techniques.” Proceeding in this way, unstable
plants operating in a stabilizing feedback loop
can also be handled.

If the excitation is periodic, then the process
noise v.t/ is independent of the periodic part
of the input u.t/, and the ETFE (15) converges
to the true value as the number of periods P
tends to infinity (Pintelon and Schoukens 2012,
Section 2.5). Hence, in the periodic case, no
external reference is needed.

Noisy Input, Noisy Output Observations
The key difficulty of estimating the FRF of a plant
excited by a nonperiodic signal from noisy input,
noisy output observations (see Fig. 3) is that the

input autopower spectrum in (17) is biased. In-
deed, due to the noise on the input, Suu.�/ is
too large, resulting in too small direct FRF esti-
mates. This is true for all direct FRF approaches
in sections “Nonparametric Time-Domain Tech-
niques” and “Nonparametric Frequency-Domain
Techniques.” Applying the indirect method of
section “Systems Operating in Feedback” re-
moves the bias because the noise on the in-
put is independent of the reference signal (e.g.,
see (27)). Proceeding in this way, the closed
loop case (see Fig. 2) with noisy input, noisy
output observations is also solved by the indirect
method.

If the excitation is periodic, then the mean
value of the input-output DFT spectra over the
P consecutive periods converges to the their
true values as P tends to infinity (Pintelon
and Schoukens 2012, Section 2.5). Hence, the
ETFE (15) is still consistent, and no external
reference is needed. The same conclusion is valid
for systems operating in feedback.

Nonlinear Systems
The classes of nonlinear systems considered are
those systems whose steady-state response to
a periodic input is periodic with the same pe-
riod as the input. It excludes phenomena such
as chaos and subharmonics but allows for hard
nonlinearities such as saturation, dead zones, and
clipping.

The classes of excitations considered are
stationary random signals with a specified
power spectrum and probability density function.
An important special case is the class of
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NL
PISPO

BLA

Nonparametric Techniques in System Identification,
Fig. 4 Best linear approximation (BLA) of a nonlinear
(NL) period in, same period out (PISPO) system, excited
by a zero-mean random signal u.t / with a given power
spectrum and probability density function. y.t/ is the
zero-mean part of the actual output of the nonlinear
system. uDC and yDC are the DC levels of the actual input
and output of the nonlinear system. The zero-mean output
residual ys.t/ is uncorrelated with – but not independent
of – the input u.t /

Gaussian excitation signals with a specified
power spectrum. This class includes random
phase multisines (a sum of harmonically
related sinewaves with user-specified amplitudes
and random phases) with the same Riemann
equivalent power spectrum (Pintelon and
Schoukens 2012, Section 4.2).

Consider a nonlinear (NL) period in, same
period out (PISPO) system excited by a random
excitation belonging to a particular class (see
Fig. 4). The FRF (17), where the expected value
is taken w.r.t. the random realization of the exci-
tation, is the best (in mean square sense) linear
approximation (BLA) of the nonlinear PISPO
system, because the difference ys.t/ between the
actual output of the nonlinear system (DC value
excluded) and the output predicted by the linear
approximation is uncorrelated with the input u.t/
(Enqvist and Ljung 2005). Although uncorre-
lated with the input, the output residual ys.t/
still depends on u.t/. If the NL PISPO system
operates in feedback (see Fig. 2), then the indirect
method (27) is used for calculating the BLA, and
the output residual ys.t/ is uncorrelated with –
but not independent of – the reference signal r.t/
(Fig. 2).

For the class of Gaussian excitation signals, it
can be shown that the DFT spectrum YS.k/ of

ys.t/ has the following properties (Pintelon and
Schoukens 2012, Section 3.4.4):
1. YS.k/ has zero-mean value: EfYs.k/g D 0.
2. YS.k/ it is uncorrelated with – but not inde-

pendent of �U.k/ W EfY.k/U.k/g D 0.
3. YS.k/ is asymptotically .N ! 1/ normally

distributed.
4. YS.k/ is asymptotically .N ! 1/ uncorre-

lated over the frequency.
These second-order properties are exactly the
same as those of a filtered white noise distur-
bance, except that the noise is independent of
the input. It shows that it is impossible to dis-
tinguish the nonlinear distortions ys.t/ from the
disturbing noise v.t/ in FRF measurements using
stationary random excitations (only second-order
statistics are involved in (22)–(24)).

Using random phase multisines, it is possible
to detect and quantify the nonlinear distortions
because ys.t/ is then periodically related to the
input u.t/ (property of the NL PISPO system).
Indeed, analyzing the FRF over consecutive sig-
nal periods quantifies the noise variance v.t/

(ys.t/ does not change over the periods), while
analyzing the FRF over different random phase
realizations of the input quantifies the sum of the
noise variance and the variance of the nonlinear
distortions (ys.t/ depends on the random phase
realization of the input). Subtracting both vari-
ances gives an estimate of the variance of the non-
linear distortions. While this variance quantifies
exactly the variability of the nonparametric FRF
estimate due to the nonlinear distortions, it can
(significantly) underestimate the variability of a
parametric plant model. The basic reason for this
is that the true variance of the parametric plant
model also depends on the nonzero higher (>2)
order moments between the input u.t/ and the
nonlinear distortions ys.t/.

User Choices

There is no clear answer to the question which
of the presented techniques is the best. It strongly
depends on the intended use of the nonparametric
estimates and the particular application handled.
For example, the intended use can be:
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1. A smooth representation of the FRF
2. Use of the nonparametric estimates as an in-

termediate step for parametric modeling of the
plant

In the first case, one should opt for the mini-
mum mean square error solution, while in the
second case, it is crucial that the nonparametric
estimates are unbiased, possibly at the price of an
increased variance. Indeed, the parametric plant
modeling step cannot eliminate the bias error in
the nonparametric estimates while it suppresses
the variance error.

The application-dependent answers to the fol-
lowing questions strongly influence the choice
and the settings of the method used:
1. Is a large frequency resolution needed and/or

is leakage the dominant error?
2. Is the noise or the leakage error dominant?
3. Is it necessary to detect and quantify the non-

linear behavior?
If the answer to the first question is yes, then
one should opt for one of the advanced methods
(section “Advanced Methods”) or use the spec-
tral analysis estimates (section “Spectral Analysis
Method”) with a small numberM of subrecords.
On the other hand, if the noise error is dominant,
then M in (22)–(24) should be chosen as large
as possible. To detect and quantify the nonlinear
effects, one should use periodic signals (random
phase multisines) combined with the ETFE (sec-
tion “Empirical Transfer Function Estimation”).

Finally, comparing the different nonparamet-
ric techniques is also not straightforward because
of their different
1. Frequency resolution
2. Quality of the estimated noise model
3. Correlation length over the frequency
The latter is set by the spectral width of the
window used in the spectral analysis method and
the local bandwidth in the advanced methods.

Guidelines

While the previous sections give well-established
facts about the different nonparametric techniques,

in this section, we provide some advices/
guidelines based on our personal interpretation
of these facts:
• Always store the reference signal together

with the observed input-output signals. The
knowledge of the reference signal allows one
to solve nonparametrically the closed loop and
errors-in-variables problems.

• Whenever possible use periodic excitation sig-
nals (random phase multisines): they allow
one to estimate from one experiment the FRF,
the noise level, and the level of the nonlinear
distortions. As such the deviation of the true
dynamic behavior from the ideal linear time-
invariant framework is quantified.

• Select one of the advanced methods if fre-
quency resolution is of prime interest.

• If the goal of the identification experiment
is to minimize the prediction error, then the
Gaussian process regression method is a very
promising approach.

• For lowly damped systems and a limited fre-
quency resolution, the local rational method is
a good candidate solution.

• Use a minimum mean square solution for a
smooth representation of the FRF.

• Choose unbiased nonparametric estimates for
use in parametric plant modeling (estimation,
validation, and model selection).

• When comparing nonparametric techniques,
always take into account all aspects of
the estimates: the bias and variance of
the FRF and noise model, the frequency
resolution, and the correlation length over the
frequency.

Summary and Future Directions

Nonparametric techniques are very useful
because they simplify the parametric plant
modeling in the initial selection of the model
complexity and in the detection of unmodeled
dynamics. The classical correlation and spectral
analysis methods developed in the 1950s and
refined till the 1980s are still widely used.
Recently, advanced time- and frequency-domain
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methods have been developed which all try to
minimize the sensitivity (bias and variance) of the
nonparametric estimates to disturbing noise, non-
linear distortion, and transient (leakage) errors.

The renewed research interest in nonparamet-
ric techniques should be continued to handle
the following challenging problems: short data
sets, missing data, detection and quantification of
time-variant behavior, modeling of time-variant
dynamics, and modeling of nonlinear dynamics.

Cross-References

� Frequency Domain System Identification
� Frequency-Response and Frequency-Domain

Models
� System Identification: An Overview
� System Identification Techniques: Convexifica-

tion, Regularization, and Relaxation

Recommended Reading

The classical correlation (see section “Correla-
tion Methods”) and spectral analysis (see section
“Spectral Analysis Method”) methods are well
covered by the text books listed below. The rec-
ommended reading list includes the basic papers
on the spectral analysis methods (Blackman and
Tukey 1958; Welch 1967; Wellstead 1981) and
the most recent developments described in sec-
tions “Gaussian Process Regression” and “Ad-
vanced Methods.”
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Abstract

This expository article provides a brief review
of numerical methods for stochastic control in
continuous time. It concentrates on the methods
of Markov chain approximation for controlled
diffusions. Leaving most of the technical details
out with the broad general audience in mind,
it aims to serve as an introductory reference
or a user’s guide for researchers, practitioners,
and students who wish to know some-
thing about numerical methods for stochastic
control.
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Introduction

This expository article provides a brief review
of numerical methods for stochastic control in
continuous time. Leaving most of the technical
details out with the broad general audience in
mind, it aims to serve as an introductory reference
for researchers, practitioners, and students, who
wish to know something about numerical meth-
ods for stochastic controls.

The study of stochastic control has witnessed
tremendous progress in the last few decades; see,
for example, Fleming and Rishel (1975), Fleming
and Soner (1992), Kushner (1977), and Yong and
Zhou (1999) among others, for fundamentals of

stochastic controls as well as historical remarks.
Much of the development has been accompanied
by the needs and progress in science, engineering,
as well as finance. Typically, the problems are
highly nonlinear, so a closed-form solution is
very difficult to obtain. As a result, designing
feasible numerical algorithms becomes vitally
important. Among the many approximation
methods, the Markov chain approximation
methods have shown most promising features.
Primarily for treating diffusions, the Markov
chain approximation method was initiated in the
1970s (Kushner 1977) and substantially devel-
oped further in Kushner (1990b) and Kushner
and Dupuis (1992). Nowadays, such method
are used for more complex jump diffusions, or
systems with random switchings. There were also
efforts to incorporate the methods into an expert
system so that the methods can be placed into
an easily usable tool box (Chancelier et al. 1986,
1987). In addition to the existing applications in
a wide variety of engineering problems, recently
applications include such areas as insurance,
quantile hedging for guaranteed minimum death
benefits, dividend payment and investment
strategies with capital injection, singular control,
risk management, portfolio selection with
bounded constraints, and production planning
and manufacturing problems; see Jin et al. (2011,
2012, 2013), Sethi and Zhang (1994), and Yin
et al. (2009) and references therein.

Let us begin with the controlled diffusion
problem. We wish to minimize the cost function
defined by

J.x; u.�//DEx
hZ �

0

R.X.t/; u.t//dtCB.X.�//
i
;

(1)

with the R
r -valued process X.t/ defined by the

solution of the stochastic differential equation

dX.t/ D b.X.t/; u.t//dt C 	.X.t//dW;

X.0/ D x (2)
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where x 2 R
r , u.�/ is a U -valued, measurable

process with U � R
d being a compact control

set, W.�/ is an r-dimensional standard Brownian
motion, and � is the first exit time of the diffusion
from a bounded domain D, that is, � D minft W
X.t/ 62 D0g with D0 denoting the interior of D,
b.�; �/ W Rr 	 R

d 7! R
r , 	.�/ W Rr 7! R

r 	 R
r ;

and R.�; �/ W Rr 	 R
d 7! R and B.�/ W Rr 7! R.

In the above, b.�/ is the control-dependent drift,
	.�/ is the diffusion matrix, R.�/ is the running
cost, and B.�/ is the terminal or boundary cost.
Throughout the entry, we assume that the stop-
ping time � < 1 with probability one (w.p.1) for
simplicity. Denote the value function by V.x/ D
infu J.x; u.�//; where the inf is taken over all
admissible controls. Write the transpose of Y 2
R
d1�d2 as Y 0 with d1; d2 � 1, a.x/ D 	.x/	 0.x/,

and define the generator of the controlled Markov
process by

Luf .x/ D 1

2
tr.a.x/fxx.x//C b0.x; u/fx.x/;

(3)

for a suitably smooth function f .�/, where fx.�/
and fxx.�/ denote the gradient and Hessian
of f .�/, respectively. Note that the operator
is control dependent. Using @D to denote the
boundary of D, then the associated Hamilton-
Jacobi-Bellman (HJB) equation satisfied by the
value function is given by

(
inf

u
ŒLuV.x/CR.x; u/� D 0; x 2 D0;

V .x/ D B.x/; x 2 @D: (4)

The subject matter of this article is to
solve the optimal stochastic control problem
numerically.

The rest of the entry is arranged as follows.
Section “Markov Chain Approximation” focuses
on Markov chain approximation. It illustrates
how one can construct the controlled Markov
chain in discrete time for the approximation of
the continuous-time stochastic control problems.
Section “Illustration: A One-Dimensional Prob-
lem” uses a one-dimensional case as an example

for illustration. Section “Numerical Computa-
tion” discusses the implementation issues. We
conclude the entry with a few further remarks.

Markov Chain Approximation

The main idea was initiated in Kushner (1977)
and streamlined, extended, and further developed
in Kushner and Dupuis (1992). An earlier paper
describing how to discretize the elliptic HJB
equation and then interpret it according to a
controlled Markov chain can be found in Kushner
and Kleinman (1968). This section illustrates
the Markov chain approximation methods with
simple setup. The reader is suggested to read the
references mentioned above for a comprehensive
treatment. To begin, let h > 0 be a small
“step size” in the approximation. Instead of
the domain D, we need to work with a finite
set to ensure computational feasibility. Set R

r
h

to be r-dimensional lattice cube, i.e., R
r
h D

f: : : ;�2h;�h; 0; h; 2h; : : :gr (an r-dimensional
product of the indicated set). Denote the interior
of D by D0, and define D0

h D D0 \ R
r
h.

We shall construct a controlled, discrete-time
Markov chain, whose transition probabilities
have desired properties in line with the controlled
diffusion and whose values are in Dh

0 . Suppose
that f˛hng is a time-homogeneous, discrete-time,
controlled Markov chain with finite state space
Dh
0 and transition probabilities P D .p.x; yjv//

with x; y 2 Dh
0 . Here we only consider the

case that the Markov chain has a finite state
space. This is sufficient for our computational
purposes. At any time n, the control action is a
random variable denoted by uhn taking values in a
compact set U . Set the interpolation interval by
�th.x; v/ > 0 and write �thn D �th.˛n; uhn/
such that supx;v �t

h.x; v/ ! 0 as h ! 0

but infx;v �th.x; v/ > 0 for each h > 0. The
control is admissible if the Markov property
P.˛hnC1 D yj˛hi ; uhi I i � n/ D P.˛hnC1 D
yj˛hn; uhn/ D P.˛hn; yjuhn/ holds. Use Uh

to denote the collection of controls, which
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are determined by a sequence of measurable
functions F h

n .�/ such that uhn D F h
n .˛

h
k ; k �

nI uhk; k < n/:Denote the conditional expectation

given f˛hj ; uhj W j � n; ˛hn D x; uhn D vg by Eh
n .

We say that a control policy is locally consistent
if

Eh
n˛

h
n D b.x; v/�th.x; v/C o.�h.x; v//;

Eh
n Œ�˛

h
n �Eh

n�˛
h
n�Œ�˛

h
n � Eh

n�˛
h
n�

0 D a.x/�th.x; v/C o.�th.x; v//; (5)

a.x/ D 	.x/	 0.x/; j�˛hn j ! 0 as h ! 0 uniformly in n; !;

where �˛hn D ˛hnC1 � ˛hn . The meaning of the
local consistency can be seen from the corre-
sponding controlled diffusion (2) (withX.0/ D x

and u.t/ D v for t 2 Œ0; ı�, where ı > 0 is a small
parameter) in that Ex.X.ı/ � x/ D b.x; v/ı C
o.ı/, ExŒX.ı/ � x�ŒX.ı/ � x�0 D a.x/ı C o.ı/:

Let �h be the first time that f˛hng leaves the setD0
h.

We have an approximation for the cost function of
the controlled diffusion (1) given by

J h.x; uh/ D Euh
x

2
4
�h�1X
jD0

R.˛hj ; u
h
j /�t

h
j C B.˛h�h/

3
5:

(6)

Define thn D Pn�1
jD0 �thj and the continuous-

time interpolations ˛h.t/ D ˛hn , uhn D uhn for
t 2 Œthn ; t

h
nC1/: Define the first exit time of ˛h.�/

from D0
h by �h D th�h : Corresponding to the

continuous-time problems, the first term on the
right-hand side of (6) represents the running cost
and the last term gives the terminal cost. Denote
the value function by V h.x/. Then it satisfies the
dynamic programming equation

V h.x/ D

8̂
<
:̂

inf
v2Uh

ŒR.x; v/�th.x; v/

CPy p
h.x; yjv/V h.y/�; x 2D0

h;

B.x/; x 62 D0
h:

(7)

Proving the convergence of the numerical al-
gorithms is an important task. This requires the
use of local consistency, interpolation of the ap-
proximating sequences in continuous time, as
well as martingale representation. The proof is

facilitated by the use of the so-called relaxed
controls (Kushner and Dupuis 1992, p. 267),
which enables us to characterize the limit under
the framework of weak convergence. The detailed
argument is beyond the scope of this entry. We
refer the reader to Kushner and Dupuis (1992,
Chapter 10) for further reading on the proof of
convergence and the conditions needed.

Illustration: A One-Dimensional
Problem

In this section, we use a one-dimensional exam-
ple to illustrate the Markov chain approximation
methods, which enables us to present the results
with a better visualization. Consider (2) with x 2
R. We proceed to find the transition probabilities
and interpolation intervals for the Markov chain
f˛hng. To construct a controlled Markov chain that
is locally consistent, we first consider a special
case, namely, the control space has only one
admissible control uh 2 Uh. In this case, min in
(7) can be removed. Discretize the HJB equation
using upwind finite difference method with step
size h > 0 by

V.x/ ! V h.x/

Vx.x/ ! V h.x C h/ � V h.x/

h
for b.x; v/ > 0;

Vx.x/ ! V h.x/� V h.x � h/

h
for b.x; v/ < 0;

Vxx.x/ ! V h.x C h/ � 2V h.x/C V h.x � h/
h2

:

For x 2 D0
h, it leads to
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V h.x C h/� V h.x/

h
bC.x; v/ � V h.x/ � V h.x � h/

h
b�.x; v/

Ca.x/

2

V h.x C h/ � 2V h.x/C V h.x � h/
h2

CR.x; v/ D 0;

where bC and b� are the positive and nega-
tive parts of b, respectively. Comparing with the
dynamic programming equation, we obtain the
transition probabilities

ph.x; x C h/jv/ D .a.x/=2/C hbC.x; v/
Q� ;

ph.x; x � h/jv/ D .a.x/=2/C hb�.x; v/
Q� ;

ph.�/ D 0; otherwise, �th.x; v/ D h2

Q� ;

with Q� D a.x/ C hjb.x; v/j being well defined.
With the transition probabilities given above, we
can proceed to verify the local consistency by
straight forward calculations and prove the de-
sired convergence.

Numerical Computation

To numerically approximate the controlled diffu-
sions, frequently used methods are either value
iterations or policy iterations (iteration in policy
space). Using Markov chain approximation in
conjunction with either value iteration or iteration
in policy space, we can further obtain a sequence
of value functions fV h;ng such that V h;n ! V h

as n ! 1. The procedures can be described as
follows.

Value Iteration
1. Given a tolerance " > 0, set n D 0; for x 2
D0
h, set V h;0 D constant (for instance, 0).

2. Using V h;n obtained in (7) to obtain V h;nC1.
3. If jV h;nC1�V h;nj > ", go to Step 3 above with
n ! nC 1.

Policy Iteration
1. Given a tolerance " > 0, set n D 0; for x 2
D0
h, take an initial control uh0.x/ D constant.

Use uh0.x/ in lieu of v, solve (7) to find V h;0.�/.

2. Find an improved control by
uh;nC1.x/ WD argminv2Uh Œ

P
y p

h..x; y/jv/
V h;n.y/CR.x; v/�th.x; v/�:

3. Find V h;nC1.�/with uh;nC1.�/ by solving (7). If
jV h;nC1 � V h;nj > ", go to Step 2 above with
n ! nC 1.

Further Remarks

Variations of the Problems. Variants of the
problems can be considered. For example, one
may consider nonlinear filtering problems or sin-
gularly perturbed control and filtering problems.
For problems arising in manufacturing systems,
one often needs to treat controlled Markov chain
with no diffusion terms. Such a case can also
be handled by the Markov chain approximation
methods; see Sethi and Zhang (1994) for the
problem and Yin and Zhang (2013, Chapter 9) for
the numerical methods. In this article, we mainly
discussed the approach by using probabilistic
approach for getting the weak convergence of
the interpolations of the controlled Markov chain.
One can also use the so-called viscosity solution
methods to treat the convergence; see Barles
and Souganidis (1991) (also Kushner and Dupuis
1992, Chapter 11).

Variance Control. In this entry, only drift in-
volves control term. When the diffusion term is
also subject to controls, the problem becomes
more difficult. In Peng (1990), the idea of using
backward stochastic differential equations was
initiated, which had significant impact in the
development of such stochastic control problems.
Detailed discussions can be found in Yong and
Zhou (1999). The numerical problems for diffu-
sion term involving controls can also be treated;
see Kushner (2000) for further discussion. In this
case, the so-called numerical noise or numerical
viscosity can be introduced, so care must be
taken.
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Complex Models Involving Jump and Switch-
ing. Note that only controlled diffusions are
considered in this entry. More complex models
such as controlled jump diffusions (Kushner and
Dupuis 1992), switching diffusions (Yin and Zhu
2010), and switching jump diffusions can be
treated (Song et al. 2006). Differential games can
also be treated (Kushner 2002; Song et al. 2008).

Differential Delay Systems. Stochastic differ-
ential delay systems may come into play. The
corresponding numerical algorithms have been
studied extensively in Kushner (2008). Due to
their inherent infinite dimensionality, a main is-
sue here concerns suitable finite approximation to
the memory segments.

Rates of Convergence. This entry mainly
discusses the convergence of the approximation
methods. There is also much interest in ascertain-
ing rates of convergence. Such effort goes back
to the paper Menaldi (1989) (see also Zhang
2006). Subsequently, it has been resurgent effort
in dealing with this issue from a nonlinear partial
differential equation point of view; see Krylov
(2000). Our recent work Song and Yin (2009)
complements the study by providing a probabilis-
tic approach for treating switching diffusions.

Stochastic Approximation. In certain optimal
control problems, the optimal controls or near-
optimal controls turn out to be of threshold
type. An alternative way of solving such
problems leading to at least suboptimal or
near-optimal control is to use a stochastic
approximation approach; see Kushner and
Yin (2003) for a comprehensive treatment of
stochastic approximation algorithms. Some
successful examples include manufacturing
systems (Yin and Zhang 2013, Section 9.3) and
liquidation decision making (Yin et al. 2002).
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� Stochastic Dynamic Programming
� Stochastic Maximum Principle
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Abstract

In this article we describe the three most
common approaches for numerically solving
nonlinear optimal control problems governed by
ordinary differential equations. For computing
approximations to optimal value functions and
optimal feedback laws, we present the Hamilton-
Jacobi-Bellman approach. For computing
approximately optimal open-loop control
functions and trajectories for a single initial
value, we outline the indirect approach based
on Pontryagin’s maximum principle and the
approach via direct discretization.

Keywords

Direct discretization; Hamilton-Jacobi-Bellman
equations; Optimal control; Ordinary differential
equations; Pontryagin’s maximum principle

Introduction

This article concerns optimal control problems
governed by nonlinear ordinary differential equa-
tions of the form

Px.t/ D f .x.t/; u.t// (1)

with f W R	R
n	R

m ! R
n. We assume that for

each initial value x 2 R
n and measurable control

function u.�/ 2 L1.R;Rm/ there exists a unique
solution x.t/ D x.t; x; u.�// of (1) satisfying
x.0; x; u.�// D x.

Given a state constraint set X � R
n and a

control constraint set U � R
m, a running cost

g W X	U ! R, a terminal cost F W X ! U , and
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a discount rate ı � 0, we consider the optimal
control problem

minimize
u.�/2UT .x/

J T .x; u.�// (2)

where

J T .x; u.�// WD
Z T

0

e�ısg.x.s; x; u.�//; u.s//ds

C e�ıT F.x.T; x; u.�///
(3)

and

UT .x/ WD
�

u.�/ 2 L1.R; U /
ˇ̌
ˇ̌ x.s; x; u.�// 2 X

for all s 2 Œ0; T �
�

(4)

In addition to this finite horizon optimal con-
trol problem, we also consider the infinite horizon
problem in which T is replaced by “1,” i.e.,

minimize
u.�/2U1.x/

J1.x; u.�// (5)

where

J1.x; u.�// WD
Z 1

0

e�ısg.x.s; x; u.�//; u.s//ds
(6)

and

U1.x/ WD
�

u.�/ 2 L1.R; U /
ˇ̌
ˇ̌x.s; x; u.�// 2 X
for all s � 0

�
; (7)

respectively.
The term “solving” (2)–(4) or (5)–(7) can

have various meanings. First, the optimal value
functions

V T .x/ D inf
u.�/2UT .x/

J T .x; u.�//

or
V1.x/ D inf

u.�/2U1.x/
J1.x; u.�//

may be of interest. Second, and often more im-
portantly, one would like to know the optimal

control policy. This can be expressed in open-
loop form u? W R ! U , in which the function
u? depends on the initial value x and on the
initial time which we set to 0 here. Alternatively,
the optimal control can be computed in state-
and time-dependent closed-loop form, in which
a feedback law �? W R 	 X ! U is sought. Via
u?.t/ D �?.t; x.t//, this feedback law can then
be used in order to generate the time-dependent
optimal control function for all possible initial
values. Since the feedback law is evaluated along
the trajectory, it is able to react to perturbations
and uncertainties which may make x.t/ deviate
from the predicted path. Finally, knowing u? or
�?, one can reconstruct the corresponding opti-
mal trajectory by solving

Px.t/ D f .x.t/; u?.t// or

Px.t/ D f .x.t/; �?.t; x.t///:

Hamilton-Jacobi-Bellman Approach

In this section we describe the numerical ap-
proach to solving optimal control problems via
Hamilton-Jacobi-Bellman equations. We first de-
scribe how this approach can be used in order
to compute approximations to the optimal value
function V T and V1, respectively, and after-
wards how the optimal control can be synthesized
using these approximations. In order to formulate
this approach for finite horizon T , we interpret
V T .x/ as a function in T and x. We denote
differentiation w.r.t. T and x with subscript T
and x, i.e., V T

x .x/ D dV T .x/=dx, V T
T .x/ D

dV T .x/=dT etc.
We define the Hamiltonian of the optimal

control problem as

H.x; p/ WD max
u2U f�g.x; u/ � p � f .x; u/g;

with x; p 2 R
n, f from (1), g from (3) or (6), and

“�” denoting the inner product in R
n. Then, under

appropriate regularity conditions on the problem
data, the optimal value functions V T and V1
satisfy the first order partial differential equations
(PDEs)
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V T
T .x/C ıV T .x/CH.x; V T

x .x// D 0

and
ıV1.x/CH.x; V1

x .x// D 0

in the viscosity solution sense. In the case of
V T , the equation holds for all T � 0 with the
boundary condition V 0.x/ D F.x/.

The framework of viscosity solutions is
needed because in general the optimal value
functions will not be smooth; thus, a generalized
solution concept for PDEs must be employed (see
Bardi and Capuzzo Dolcetta 1997). Of course,
appropriate boundary conditions are needed at
the boundary of the state constraint set X .

Once the Hamilton-Jacobi-Bellman char-
acterization is established, one can compute
numerical approximations to V T or V1 by
solving these PDEs numerically. To this end,
various numerical schemes have been suggested,
including various types of finite element and
finite difference schemes. Among those, semi-
Lagrangian schemes Falcone (1997) or Falcone
and Ferretti (2013) allow for a particularly
elegant interpretation in terms of optimal control
synthesis, which we explain for the infinite
horizon case.

In the semi-Lagrangian approach, one takes
advantage of the fact that by the chain rule for
p D V1

x .x/ and constant control functions u,
the identity

ıV1.x/ � p � f .x; u/ D d

dt

ˇ̌
ˇ̌
tD0

� .1� ıt/V1

.x.t; x; u//

holds. Hence, the left-hand side of this equality
can be approximated by the difference quotient

V1.x/ � .1 � ıh/V1.x.h; x; u//
h

for small h > 0. Inserting this approximation
into the Hamilton-Jacobi-Bellman equation, re-
placing x.h; x; u/ by a numerical approxima-
tion Qx.h; x; u/ (in the simplest case, the Euler
method Qx.h; x; u/ D x C hf .x; u/), multiplying

by h, and rearranging terms, one arrives at the
equation

V1
h .x/ D min

u2U fhg.x; u/

C .1 � ıh/V1
h . Qx.h; x; u//g

defining an approximation V1
h � V1. This is

now a purely algebraic dynamic programming-
type equation which can be solved numerically,
e.g., by using a finite element approach. The
equation is typically solved iteratively using a
suitable minimization routine for computing the
“min” in each iteration (in the simplest case, U
is discretized with finitely many values and the
minimum is determined by direct comparison).
We denote the resulting approximation of V1 by
QV1
h . Here, approximation is usually understood

in the L1 sense (see Falcone 1997 or Falcone
and Ferretti 2013).

The semi-Lagrangian scheme is appealing for
synthesis of an approximately optimal feedback
because V1

h is the optimal value function of
the auxiliary discrete-time problem defined by Qx.
This implies that the expression

�?h.x/ WD argmin
u2U

fhg.x; u/

C .1 � ıh/V1
h . Qx.h; x; u//g;

is an optimal feedback control value for this
discrete-time problem for the next time step, i.e.,
on the time interval Œt; t C h/ if x D x.t/. This
feedback law will be approximately optimal for
the continuous-time control system when applied
as a discrete-time feedback law, and this ap-
proximate optimality remains true if we replace
V1
h in the definition of �?h by its numerically

computable approximation QV1
h . A similar con-

struction can be made based on any other numer-
ical approximation QV1 � V1, but the explicit
correspondence of the semi-Lagrangian scheme
to a discrete-time auxiliary system facilitates the
interpretation and error analysis of the resulting
control law.

The main advantage of the Hamilton-
Jacobi approach is that it directly computes an
approximately optimal feedback law. Its main
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disadvantage is that the number of grid nodes
needed for maintaining a given accuracy in
a finite element approach to compute QV1

h

in general grows exponentially with the state
dimension n. This fact – known as the curse
of dimensionality – restricts this method to low-
dimensional state spaces. Unless special structure
is available which can be exploited, as, e.g., in
the max-plus approach (see McEneaney 2006), it
is currently almost impossible to go beyond state
dimensions of about n D 10, typically less for
strongly nonlinear problems.

Maximum Principle Approach

In contrast to the Hamilton-Jacobi-Bellman ap-
proach, the approach via Pontryagin’s maximum
principle does not compute a feedback law. In-
stead, it yields an approximately open-loop op-
timal control u? together with an approximation
to the optimal trajectory x? for a fixed initial
value. We explain the approach for the finite
horizon problem. For simplicity of presentation,
we omit state constraints in our presentation, i.e.,
we set X D R

n and refer to, e.g., Vinter (2000),
Bryson and Ho (1975), or Grass et al. (2008) for
more general formulations as well as for rigorous
versions of the following statements.

In order to state the maximum principle
(which, since we are considering a minimization
problem here, could also be called minimum
principle), we define the non-minimized
Hamiltonian as

H.x; p; u/ D g.x; u/C p � f .x; u/:

Then, under appropriate regularity assumptions,
there exists an absolutely continuous function p W
Œ0; T � ! R

n such that the optimal trajectory x?

and the corresponding optimal control function
u? for (2)–(4) satisfy

Pp.t/ D ıp.t/ � Hx.x
?.t/; p.t/; u?.t// (8)

with terminal or transversality condition

p.T / D Fx.x
?.T // (9)

and

u?.t/ D argmin
u2U

H.x?.t/; p.t/; u/; (10)

for almost all t 2 Œ0; T � (see Grass et al. 2008,
Theorem 3.4). The variable p is referred to as the
adjoint or costate variable.

For a given initial value x0 2 R
n, the numer-

ical approach now consists of finding functions
x W Œ0; T � ! R

n, u W Œ0; T � ! U and p W
Œ0; T � ! R

n satisfying

Px.t/ D f .x.t/; u.t// (11)

Pp.t/ D ıp.t/ � Hx.x.t/; p.t/; u.t// (12)

u.t/ D argmin
u2U

H.x.t/; p.t/; u/ (13)

x.0/ D x0; p.T / D Fx.x.T // (14)

for t 2 Œ0; T �. Depending on the regularity of
the underlying data, the conditions (11)–(14) may
only be necessary but not sufficient for x and
u being an optimal trajectory x? and control
function u?, respectively. However usually x and
u satisfying these conditions, are good candidates
for the optimal trajectory and control, thus justi-
fying the use of these conditions for the numerical
approach. If needed, optimality of the candidates
can be checked using suitable sufficient optimal-
ity conditions for which we refer to, e.g., Maurer
(1981) or Malanowski et al. (2004). Due to the
fact that in the maximum principle approach first
optimality conditions are derived which are then
discretized for numerical simulation, it is also
termed first optimize then discretize.

Solving (11)–(14) numerically amounts to
solving a boundary value problem, because the
condition x?.0/ D x0 is posed at the beginning
of the time interval Œ0; T � while the condition
p.T / D Fx.x

?.T // is required at the end.
In order to solve such a problem, the simplest
approach is the single shooting method which
proceeds as follows:

We select a numerical scheme for solving the
ordinary differential equations (11) and (12) for
t 2 Œ0; T � with initial conditions x.0/ D x0,
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p.0/ D p0 and control function u.t/. Then, we
proceed iteratively as follows:
(0) Find initial guesses p00 2 R

n and u0.t/ for
the initial costate and the control, fix " > 0,
and set k WD 0.

(1) Solve (11) and (12) numerically with initial
values x0 and pk0 and control function uk.
Denote the resulting trajectories by Qxk.t/ and
Qpk.t/.

(2) Apply one step of an iterative method for
solving the zero-finding problem G.p/ D 0

with

G.pk0 / WD Qpk.T / � Fx. Qxk.T //

for computing pkC1
0 . For instance, in case of

the Newton method we get

pkC1
0 WD pk0 �DG.pk0 /�1G.pk0 /:

If kpkC1
0 � pk0k < ", stop; else compute

ukC1.t/ WD argmin
u2U

H.xk.t/; pk.t/; u/;

set k WD k C 1, and go to (1).
The procedure described in this algorithm is
called single shooting because the iteration
is performed on the single initial value pk0 .
For an implementable scheme, several details
still need to be made precise, e.g., how to
parameterize the function u.t/ (e.g., piecewise
constant, piecewise linear or polynomial), how
to compute the derivative DG and its inverse
(or an approximation thereof), and the argmin in
(2). The last task considerably simplifies if the
structure of the optimal control, e.g., the number
of switchings in case of a bang-bang control, is
known.

However, even if all these points are set-
tled, the set of initial guesses p00 and u0 for
which the method is going to converge to a
solution of (11)–(14) tends to be very small.
One reason for this is that the solutions of (11)
and (12) typically depend very sensitively on
p00 and u0. In order to circumvent this problem,
multiple shooting can be used. To this end, one
selects a time grid 0 D t0 < t1 < t2 <

: : : < tN D T and in addition to pk0 intro-
duces variables xk1 ; : : : ; x

k
N�1; pk1 ; : : : ; pkN�1 2

R
n. Then, starting from initial guesses p00 , u0, and

x01; : : : ; x
0
N�1; p01; : : : ; p0N�1, in each iteration the

Eqs. (11)–(14) are solved numerically on the in-
tervals Œtj ; tjC1� with initial values xkj and pkj ,
respectively. We denote the respective solutions
in the k-th iteration by Qxkj and Qpkj . In order
to enforce that the trajectory pieces computed
on the individual intervals Œtj ; tjC1� fit together
continuously, the map G is redefined as

G.xk1 ; : : : ; x
k
N�1; pk0 ; pk1 ; : : : ; pkN�1/ D

0
BBBBBBBBBB@

Qxk0 .t1/ � xk1
:::

QxkN�2.t1/ � xkN�1
Qpk0 .t1/ � pk1

:::

QpkN�2.t1/ � pkN�1
QpkN�1.T / � Fx. QxkN�1.T //

1
CCCCCCCCCCA

:

The benefit of this approach is that the so-
lutions on the shortened time intervals depend
much less sensitively on the initial values and
the control, thus making the problem numerically
much better conditioned. The obvious disadvan-
tage is that the problem becomes larger as the
function G is now defined on a much higher di-
mensional space but this additional effort usually
pays off.

While the convergence behavior for the multi-
ple shooting method is considerably better than
for single shooting, it is still a difficult task to
select good initial guesses x0j , p0j and u0. In order
to accomplish this, homotopy methods can be
used (see, e.g., Pesch 1994) or the result of a
direct approach as presented in the next section
can be used as an initial guess. The latter can
be reasonable as the maximum principle-based
approach can yield approximations of higher ac-
curacy than the direct method.

In the presence of state constraints or mixed
state and control constraints, the conditions (12)–
(14) become considerably more technical and
thus more difficult to be implemented numeri-
cally (cf. Pesch 1994).
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Direct Discretization

Despite being the most straightforward and sim-
ple of the approaches described in this article,
the direct discretization approach is currently the
most widely used approach for computing single
finite horizon optimal trajectories. In the direct
approach, we first discretize the problem and then
solve a finite dimensional nonlinear optimiza-
tion problem (NLP), i.e., we first discretize, then
optimize. The main reasons for the popularity
of this approach are the simplicity with which
constraints can be handled and the numerical ef-
ficiency due to the availability of fast and reliable
NLP solvers.

The direct approach again applies to the finite
horizon problem and computes an approximation
to a single optimal trajectory x?.t/ and control
function u?.t/ for a given initial value x0 2 X .
To this end, a time grid 0 D t0 < t1 < t2 < : : : <

tN D T and a set Ud of control functions which
are parameterized by finitely many values are
selected. The simplest way to do so is to choose
u.t/ � uj 2 U for all t 2 Œti ; tiC1�. However,
other approaches like piecewise linear or piece-
wise polynomial control functions are possible,
too. We use a numerical algorithm for ordinary
differential equations in order to approximately
solve the initial value problems

Px.t/ D f .x.t/; ui /; x.ti / D xi (15)

for i D 0; : : : ; N � 1 on Œti ; tiC1�. We de-
note the exact and numerical solution of (15)
by x.t; ti ; xi ; ui / and Qx.t; ti ; xi ; ui /, respectively.
Finally, we choose a numerical integration rule in
order to compute an approximation

I.ti ; tiC1; xi ; ui / �
Z tiC1

ti

e�ıt

g.x.t; ti ; xi ; u/; u.t//dt:

In the simplest case, one might choose Qx as
the Euler scheme and I as the rectangle rule,
leading to

Qx.tiC1; ti ; xi ; ui / D xi C .tiC1 � ti /f .xi ; ui /

and

I.ti ; tiC1; xi ; ui / D .tiC1 � ti /e
�ıti g.xi ; ui /:

Introducing the optimization variables
u0; : : : ; uN�1 2 R

m and x1; : : : ; xN 2 R
n, the

discretized version of (2)–(4) reads

minimize
xj2Rn;uj2Rm

N�1X
iD0

I.ti ; tiC1; xi ; u/C e�ıT F.xN /

subject to the constraints

uj 2 U; j D 0; : : : ; N � 1

xj 2 X; j D 1; : : : ; N

xjC1 D Qx.tjC1; tj ; xj ; u/; j D 0; : : : ; N

This way, we have converted the optimal control
problem (2)–(4) into a finite dimensional nonlin-
ear optimization problem (NLP). As such, it can
be solved with any numerical method for solving
such problems. Popular methods are, for instance,
sequential quadratic programming (SQP) or in-
terior point (IP) algorithms. The convergence of
this approach was proved in Malanowski et al.
(1998); for an up-to-date account on theory and
practice of the method, see Gerdts (2012) and
Betts (2010). These references also explain how
information about the costates p.t/ can be ex-
tracted from a direct discretization, thus linking
the approach to the maximum principle.

The direct method sketched here is again a
multiple shooting method, and the benefit of this
approach is the same as for solving boundary
problems, thanks to the short intervals Œti ; tiC1�;
the solutions depend much less sensitively on the
data than the solution on the whole interval Œ0; T �,
thus making the iterative solution of the resulting
discretized NLP much easier. The price to pay is
again the increase of the number of optimization
variables. However, due to the particular structure
of the constraints guaranteeing continuity of the
solution, the resulting matrices in the NLP have
a particular structure which can be exploited
numerically by a method called condensing (see
Bock and Plitt 1984).
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An alternative to multiple shooting methods
are collocation methods, in which the internal
variables of the numerical algorithm for solv-
ing (15) are also optimization variables. However,
nowadays, the multiple shooting approach as de-
scribed above is usually preferred. For a more
detailed description of various direct approaches,
see also Binder et al. (2001), Sect. 5.

Further Approaches for Infinite
Horizon Problems

The last two approaches only apply to finite
horizon problems. While the maximum princi-
ple approach can be generalized to infinite hori-
zon problems, the necessary conditions become
weaker and the numerical solution becomes con-
siderably more involved (see Grass et al. 2008).
Both the maximum principle and the direct ap-
proach can, however, be applied in a receding
horizon fashion, in which an infinite horizon
problem is approximated by the iterative solution
of finite horizon problems. The resulting control
technique is known under the name of model
predictive control (MPC; see Grüne and Pannek
2011), and under suitable assumptions, a rigorous
approximation result can be established.

Summary and Future Directions

The three main numerical approaches to optimal
control are:
• The Hamilton-Jacobi-Bellman approach,

which provides a global solution in feedback
form but is computationally expensive for
higher dimensional systems

• The Pontryagin maximum principle approach
which computes single optimal trajectories
with high accuracy but needs good initial
guesses for the iteration

• The direct approach which also computes sin-
gle optimal trajectories but is less demanding
in terms of the initial guesses at the expense of
a somewhat lower accuracy

Currently, the main trends in numerical optimal
control lie in the areas of Hamilton-Jacobi-

Bellman equations and direct discretization. For
the former, the development of discretization
schemes suitable for increasingly higher
dimensional problems is in the focus. For the
latter, the popularity of these methods in online
applications like MPC triggers continuing effort
to make this approach faster and more reliable.

Beyond ordinary differential equations, the
development of numerical algorithms for the
optimal control of partial differential equations
(PDEs) has attracted considerable attention
during the last years. While many of these
methods are still restricted to linear systems,
in the near future we can expect to see many
extensions to (classes of) nonlinear PDEs. It is
worth noting that for PDEs, maximum principle-
like approaches are more popular than for
ordinary differential equations.

Cross-References

�Discrete Optimal Control
�Economic Model Predictive Control
�Nominal Model-Predictive Control
�Optimal Control and the Dynamic Program-

ming Principle
�Optimal Control and Pontryagin’s Maximum

Principle
�Optimization Algorithms for Model Predictive

Control

Bibliography

Bardi M, Capuzzo Dolcetta I (1997) Optimal control
and viscosity solutions of Hamilton-Jacobi-Bellman
equations. Birkhäuser, Boston

Betts JT (2010) Practical methods for optimal control
and estimation using nonlinear programming, 2nd edn.
SIAM, Philadelphia

Binder T, Blank L, Bock HG, Bulirsch R, Dahmen W,
Diehl M, Kronseder T, Marquardt W, Schlöder JP,
von Stryk O (2001) Introduction to model based op-
timization of chemical processes on moving horizons.
In: Grötschel M, Krumke SO, Rambau J (eds) Online
optimization of large scale systems: state of the art.
Springer, Heidelberg, pp 295–340

Bock HG, Plitt K (1984) A multiple shooting algorithm
for direct solution of optimal control problems. In:
Proceedings of the 9th IFAC world congress, Bu-
dapest. Pergamon, Oxford, pp 242–247

http://dx.doi.org/10.1007/978-1-4471-5058-9_47
http://dx.doi.org/10.1007/978-1-4471-5058-9_6
http://dx.doi.org/10.1007/978-1-4471-5058-9_1
http://dx.doi.org/10.1007/978-1-4471-5058-9_209
http://dx.doi.org/10.1007/978-1-4471-5058-9_200
http://dx.doi.org/10.1007/978-1-4471-5058-9_9


930 Numerical Methods for Nonlinear Optimal Control Problems

Bryson AE, Ho YC (1975) Applied optimal control.
Hemisphere Publishing Corp., Washington, DC. Re-
vised printing

Falcone M (1997) Numerical solution of dynamic pro-
gramming equations. In: Appendix A in Bardi M,
Capuzzo Dolcetta I (eds) Optimal control and viscos-
ity solutions of Hamilton-Jacobi-Bellman equations.
Birkhäuser, Boston

Falcone M, Ferretti R (2013) Semi-Lagrangian approxi-
mation schemes for linear and Hamilton-Jacobi equa-
tions. SIAM, Philadelphia

Gerdts M (2012) Optimal control of ODEs and DAEs. De
Gruyter textbook. Walter de Gruyter & Co., Berlin

Grass D, Caulkins JP, Feichtinger G, Tragler G, Behrens
DA (2008) Optimal control of nonlinear processes.
Springer, Berlin

Grüne L, Pannek J (2011) Nonlinear model predictive
control: theory and algorithms. Springer, London

Malanowski K, Büskens C, Maurer H (1998) Conver-
gence of approximations to nonlinear optimal control

problems. In: Fiacco AV (ed) Mathematical program-
ming with data perturbations. Lecture notes in pure
and applied mathematics, vol 195. Dekker, New York,
pp 253–284

Malanowski K, Maurer H, Pickenhain S (2004) Second-
order sufficient conditions for state-constrained op-
timal control problems. J Optim Theory Appl
123(3):595–617

Maurer H (1981) First and second order sufficient
optimality conditions in mathematical program-
ming and optimal control. Math Program Stud 14:
163–177

McEneaney WM (2006) Max-plus methods for nonlinear
control and estimation. Systems & control: founda-
tions & applications. Birkhäuser, Boston

Pesch HJ (1994) A practical guide to the solution of
real-life optimal control problems. Control Cybern
23(1–2):7–60

Vinter R (2000) Optimal control. Systems & control:
foundations & applications. Birkhäuser, Boston



O

Observer-Based Control

H.L. Trentelman1 and Panos J. Antsaklis2
1Johann Bernoulli Institute for Mathematics and
Computer Science, University of Groningen,
Groningen, AV, The Netherlands
2Department of Electrical Engineering,
University of Notre Dame, Notre Dame,
IN, USA

Abstract

An observer-based controller is a dynamic
feedback controller with a two-stage structure.
First, the controller generates an estimate of the
state variable of the system to be controlled,
using the measured output and known input
of the system. This estimate is generated by a
state observer for the system. Next, the state
estimate is treated as if it were equal to the exact
state of the system, and it is used by a static
state feedback controller. Dynamic feedback
controllers with this two-stage structure appear
in various control synthesis problems for linear
systems. In this entry, we explain observer-based
control in the context of internal stabilization by
dynamic measurement feedback.

Keywords

Detectability; Dynamic output feedback control;
Internal stabilization; Separation principle;

Stabilizability; State observers; Static state
feedback

Introduction

In this entry, we explain the notion of observer-
based feedback control. Given a to-be-controlled
system in input-state-output form, together with
a control objective, the problem is to design a
feedback controller such that the closed-loop
system meets the objective. In the case when
all state variables of the system are available
for control, the design problem is considered
to be simpler, and often the controller can be
chosen to be a static state feedback control law.
In the more general case where the controller
has access only to a linear function of the
state variables, the problem is more involved
and requires the design of a dynamic feedback
control law. The key idea of observer-based
feedback control is the following. As a first
step, one determines a state observer for the
system, i.e., a system that estimates the state of
the system based on the measured outputs and
inputs of the system. Next, the state estimate
is treated as if it were exactly equal to the
actual state of the system and is used by a
static state feedback controller. In this way, a
dynamic feedback controller is obtained that is
composed of a (dynamic) state observer and a
static feedback part.

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
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Dynamic Output Feedback Control

Consider the controlled and observed system †:

Px.t/ D Ax.t/C Bu.t/C Ed.t/;

y.t/ D Cx.t/;

z.t/ D Hx.t/;

(1)

with x.t/ 2 X D R
n the state, u.t/ 2 R

m

the control input, and y.t/ 2 R
p the mea-

sured output. The signal d.t/ may represent a
disturbance input or a desired reference signal,
while the signal z.t/ is a controlled output signal.
A; B; C; E , and H are maps (or matrices).
In general, a linear controller for this system is
a finite-dimensional linear time-invariant system
� represented by

Pw.t/ D Kw.t/C Ly.t/;

u.t/ D Mw.t/CNy.t/:
(2)

The state space of the controller is assumed to be
W D R

q for some positive integer q. K;L;M ,
and N are assumed to be linear maps (or matri-
ces). The controller (2) takes the observations y
as its input and generates the control function u as
its output. The closed-loop system resulting from
the interconnection of † and � is described by
the equations

� Px.t/
Pw.t/

�
D
 
ACBNC BM

LC K

!�
x.t/

w.t/

�
C
�
E

0

�
d.t/;

z.t/ D�
H 0

� �x.t/
z.t/

�
:

(3)

The control action of interconnecting the con-
troller � with the system (1) is called dynamic
feedback. The state space of the closed-loop sys-
tem (3) is called the extended state space and is
equal to the Cartesian productX �W D R

nCq . In
general, a feedback control problem amounts to
finding linear mapsK;L;M , andN such that the
closed-loop system (3) satisfies the control design
specifications.

Observer-Based Controllers

Given the system (1) and a control objective,
the problem thus arises on how to determine the
maps K;L;M , and N so that the closed-loop
systems meet the objective. As an example, take
the special case when E in (1) is equal to zero
(i.e., the system has no external disturbances or
reference signals) and that we wish the closed-
loop system (3) to be internally stable, i.e., we
want to find the maps K;L;M , and N so that
the eigenvalues �i of the system map of (3) are in
the open left half-plane, i.e., satisfy Re.�i / < 0

for all i . If we had access to the entire state
variable x (instead of only to the linear function
y D Cx), then this problem would be simpler:
assuming that the system is stabilizable (The
system Px D Ax C Bu is called stabilizable if
there exists a map F such that A C BF has all
its eigenvalues in the open left half-plane), find
a map F such that the eigenvalues of A C BF

are in the open left half-plane; then take the static
state feedback controller u D Fx as the control
law. That is, we would choose the state space
dimension of the controller � equal to 0 and the
mapsK ,L, andM to be void, and we would take
N D F .

In general, however, we only have access to a
given linear function y D Cx of x, determined
by the output map C . The key idea of observer-
based control is the following:
Use the theory of observer design to find an
observer for the state x of the system (1), i.e.,
an observer that generates an estimate � of the
system state x based on the measured output
y and the control input u. Next, apply a static
feedback u D F � mimicking the (not permissible)
control law u D Fx.

This idea leads to a dynamic feedback con-
troller (2) of a very particular structure: the con-
troller is the combination of a state observer
(with a certain state space dimension) and a static
control law acting on the state estimate. This two-
stage structure, separating estimation and control,
is often called the separation principle. We will
work out this idea in more detail for the case
when E D 0 (no external disturbances or ref-
erence signals) and the aim is to obtain internal
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stability of the system. Before doing this, we first
explain the most important material on observers
that is needed in the sequel.

State Observers

If the state is not available for measurement, one
can try to reconstruct it using a system, called
observer, that takes the control input and the
measured output of the original system as inputs
and yields an output that is an estimate of the
state of the original system. Again in case that
in the system (1) we have E D 0, i.e., there are
no disturbance signals. This is illustrated in the
following picture:

Σ
Ω

u y

The quantity � is supposed to be an estimate,
in some sense, of the state, and w is the state
variable of the observer. In general, the observer,
denoted by �, has equations of the form

Pw.t/ D Pw.t/CQu.t/CRy.t/;

�.t/ D Sw.t/:
(4)

It turns out that particular choices for P;Q;R,
and S , specifically P D A�GC (where the map
G has to be determined), Q D B , R D G, and
S D I , lead to

P�.t/ D .A�GC/�.t/C Bu.t/CGy.t/: (5)

Introducing the estimation error e W D � � x and
interconnecting the system (1) with (5), we find
that the error e satisfies the differential equation

Pe.t/ D .A �GC/e.t/: (6)

Hence all possible errors converge to 0 as t tends
to infinity if and only if A � GC is a stability
matrix, i.e., has all its eigenvalues in the open left
half-plane. In that case, we call (5) a stable state
observer. Thus, a stable state observer exists if
and only if G can be found such that A � GC is
a stability matrix. The problem of finding such a
G is dual to the problem of finding a matrix F
to a pair .A;B/ such that A C BF is a stability
matrix.

Definition 1 The pair .C;A/ is called detectable
if there exists a matrix G such that A � GC is a
stability matrix, i.e., has all its eigenvalues in the
open left half-plane.

Theorem 1 Given system†, the following state-
ments are equivalentW
1. † has a stable state observer.
2. .C;A/ is detectable.

The equation for � can be rewritten using an
artificial output � D C� as P� D A� C Bu C
G.y � �/. The interpretation of this is as follows.
If � is the exact state, then � D y, and hence �
obeys exactly the same differential equation as x.
Otherwise, the equation for � has to be corrected
by a term determined by the output error y � �.
Consequently, the state observer consists of an
exact replica †dup of the original system with an
extra input channel for incorporating the output
error and an extra output, the state of the observer,
which serves as the desired estimate for the state
of the original system. The following diagram
depicts the situation:

u Σ
y

−
+ G Σdup

C
h
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Observer-Based Stabilization

We now work out the ideas put forward in the
previous sections for the special case of stabi-
lization by dynamic measurement feedback, i.e.,
to find a controller (2) such that the closed-
loop system (3) is internally stable; equivalently,
the system mapping of (3) is a stability matrix.
Again, we restrict ourselves to the case when
E D 0.

We assume that we know how to stabilize by
state feedback and how to build a state observer.
If we have a plant of which we do not have the
state available for measurement, we use a state
observer to obtain an estimate of the state, and
we apply the state feedback to this estimate rather
than to the true state. This is illustrated by the
following picture:

Σ
Ω

u y

F

Again, consider the system† given by (1) and
let the observer � be given by (5) . Combining
this with u D F � yields

Px.t/ D Ax.t/CBF �;

P�.t/ D .A�GC C BF /�.t/CGCx.t/:
(7)

Introducing again e W D � � x, we obtain, in
accordance with the previous section,

Px.t/ D .AC BF /x.t/CBFe.t/;

Pe.t/ D .A �GC/e.t/:

That is, the equation Pxe D Aexe with

xe W D
�
x

e

�
; Ae W D

�
ACBF BF

0 A�GC

�
:

Assume that † is stabilizable and detectable.
Then F and G can be found such that A C BF

and A � GC are stability matrices. Since the
set of eigenvalues of Ae is the union of those
of A C BF and A � GC , it follows that Ae
is a stability matrix. Consequently, the system
Pxe D Aexe is asymptotically stable; equivalently,
every solution xe D .x; e/ converges to 0 as t
tends to infinity. Of course, if .x; �/ is a solution
of (7), then � D xCe, with xe D .x; e/ a solution
of Pxe D Aexe . Hence .x; �/ also converges to 0
as t goes to infinity. Thus we have proved the “if”
part of the following theorem:

Theorem 2 There exists an internally stabilizing
dynamic feedback controller for † if and only if
† is stabilizable and detectable. A controller is
given by

P�.t/ D .A�GC/�.t/C Bu.t/CGy.t/;

u.t/ D F �.t/;
(8)

where F is any map such that A C BF is a
stability matrix and G is any map such that
A�GC is a stability matrix.

The controller (8) is an observer-based dynamic
feedback controller, since it is composed of a
state observer and a static feedback part.

Summary and Future Directions

We have given an introduction to observer-based
feedback controllers and have explained that such
controllers are dynamic feedback controllers that
can be represented as the composition of a state
observer for the system, together with a static
control law mimicking a (not permitted) static
state feedback control law. We have given a
detailed description of this principle for the case
that the system to be controlled has no external
disturbances or reference signals and the control
objective is internal stability of the system. More
intricate versions of the principle of observer-
based feedback control appear in control design
problems for linear systems with external distur-
bances and reference signals and with different,
more sophisticated, control objectives. Examples
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of these are the regulator problem, the problem
of disturbance decoupling with internal stability,
the H2 optimal control problem, and the H1
suboptimal control problem.
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Abstract

Observers are objects delivering estimation of
variables which cannot be directly measured.
The access to such hidden variables is made
possible by combining modeling and measure-
ments. But this is bringing face to face real world
and its abstraction with, as a result, the need
for dealing with uncertainties and approxima-
tions leading to difficulties in implementation and
convergence.

Keywords

Detectability; Distinguishability; Estimation

Introduction

Observers are answers to the question of
estimating, from observed/measured/empirical
variables, denoted y, and delivered by sensors
equipping a real-world system, some “theoreti-
cal” variables, called hidden variables in this text,
denoted z, which are involved in a mathematical
model related to this system. The measured
variables make what is called the a posteriori
information on the hidden variables, whereas the
model is part of the a priori information. Because
a model cannot fit exactly a system, introduction
of uncertainties is mandatory.

Typically this model describing the link be-
tween hidden and measured variables is made of
three components:
• A dynamic model describes the dynam-

ics/evolution ( Px denotes the time deriva-
tive dx

dt
):

Px.t/Df .x.t/;t;ıs.t//resp. xkC1Dfk
�
xk; ı

s
k

�
;

(1)

where t , in the continuous case, or k, in the
discrete case, is an evolution parameter, called
time in this text; x is a state, assumed finite
dimensional in this text; and ıs represents
the uncertainties in the state dynamics. Any
possible known inputs are represented here by
the time dependence of f .

• A sensor model relates state and measured
variables:

y.t/Dh �x.t/; t; ım.t/�resp.yk Dhk
�
xk; ı

m
k

�
(2)

with ım representing the uncertainties in the
measurements.

• A model which relates state and hidden vari-
ables:

z.t/D h�
x; t; ıh.t/

�
resp. zk D h

k

�
xk; ı

h
k

�
(3)

where again ıh represents the uncertainties in
the hidden variables.

In a deterministic setting, the a priori information
on the uncertainties .ıs; ım; ıh/ may be that the
values of ıs , ım, and ıh are unknown but belong
to known sets�s ,�m, and�h. Namely, we have:

http://dx.doi.org/10.1007/978-1-4471-5058-9_196
http://dx.doi.org/10.1007/978-1-4471-5058-9_197
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ıs.t/2�s.t/; ım.t/2 �m.t/; ıh.t/2 �h.t/ ;

respectively, ısk 2 �s
k ; ı

m
k 2 �m

k ; ı
h
k 2 �h

k :
(4)

In a stochastic setting and more specifically in a
Bayesian approach, it may be that ıs , ım, and ıh

are unknown realizations of stochastic processes
for which we know the probability distributions.

Similarly we may also know a priori that we
have:

x.t/ 2 X .t/; z.t/ 2 Z.t/
respectively, xk 2 Xk; zk 2 Zk

(5)

where the sets X and Z are known or we may
have a priori probability distribution for x and z.

In this context, the a priori information is the
data of the functions f , h, and

h

, of the sets
�s , �m, and�h or the corresponding probability
distribution and so may be also of the sets X
and Z or the corresponding a priori probability
distribution.

In the next section, we state the observation
problem and give the solutions which are direct
consequences of the deterministic and stochastic
setting given above. This will allow us to see
that an observer is actually a dynamical system
with the measurements as inputs and the estimate
as output. But approximations in the implemen-
tation of these solutions, not knowing how to
initialize, may lead to convergence problems even
when the uncertainties disappear. The second part
of this text is devoted to this convergence topic.

To ease the presentation, we deal only with
the discrete time case in section “Set Valued
and Conditional Probability Valued Observers”
and the continuous time case in sections “An
Optimization Approach” and “Convergent
Observers.”

Observation Problem and Its
Solutions

The Observation Problem
Let Xıs .x; t; s/, respectively Xıs

l .x; k/, denote a
solution of (1) at time s, respectively l , going
through x at time t , respectively k, and under the
action of ıs .

Observation problem At each time t , respectively
k, given the function s 2�t � T; t� 7! y.s/,
respectively the sequence l 2 fk �K; : : : ; kg 7!
yl , find an estimation Oz.t/, respectively Ozk , of z.t/,
respectively, zk , satisfying

Oz.t/D h� Ox.t/; t; ıh.t/� resp. Ozk D h

k

� Oxk; ıhk
�
:

where Ox.t/, respectively Oxk , is to be found as a
solution of

Ox.t/ 2 X .t/ ;

y.s/Dh�Xıs. Ox.t/; t; s/; s; ım.s/� 8s 2�t�T; t�;

respectively

Oxk 2 Xk ;

yl Dhl
�
X
ıs

l . Oxk; k/; ıml
�

8l 2 fk �K; : : : ; kg

and where the time functions ıs , ım, and ıh must
agree with the a priori (deterministic/stochastic)
information or minimized in some way.

In this statement T , respectivelyK , quantifies
the time window length or memory length during
which we record the measurement. The accu-
mulation with time of measurements, together
with the model equations (1)–(3) and the as-
sumptions on .ıs; ım; ıh/, gives a redundancy of
data compared with the number of unknowns that
the hidden variables are. This is why it may be
possible to solve this observation problem.

To simplify the following presentation, we
restrict our attention on the case where the hidden
variables are actually the full model state, i.e.,

z D h

.x/ D x :

When z differs from x, observers are called
functional observers.

Set-Valued and Conditional
Probability-Valued Observers
Conceptually the answer to this problem is easy
at least when the memory increases with time
( PT .t/ D 1 resp. KkC1 D Kk C 1) leading to an
infinite non-fading memory. It consists in starting
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from all what the a priori information makes
possible and to eliminate what is not consistent
with the a posteriori information. In the set-
valued observer setting, in the discrete time case,
this gives the following observer. To ease its read-
ing, we underline the data given by the a priori
information. It requires the introduction of two
sets �k and �kjk�1 which are updated at each time
k when a new measurement yk is made available.
�k is the set which xk is guaranteed to belong to at
time k, knowing all the measurements up to time
k, and �kjk�1 is the same but with measurements
known up to time k � 1.
Set-valued observer:

Initialization: �0DX0
At each time k: pre-

diction (flowing)
�kjk�1Dfk�1.�k�1;�s

k�1/

restriction
(consistency)

�k D ˚
x 2 ��kjk�1

T
Xk
� W

yk 2 hk.x;�m
k /
o

estimation Oxk 2 �k

A key feature here is that this observer has a state
�k – a set – and is a dynamical system in the form:

�kC1 D 'k.�k; yk/; Oxk 2 �k

with y as input and Ox as output which is not
single valued. Important also, the initial condition
of the state � is given by the a priori information.

In the stochastic setting, following the
Bayesian paradigm, the observer has the same
structure but with the state �k being a conditional
probability. See Jazwinski (2007, Theorem 6.4)
or Candy (2009, Table 2.1). In that setting too the
observer is not a single state; it is the (a posteriori)
conditional probability of the random variable xk
given the a priori information and the sequence
of measurements l 2 fk �K; : : : ; kg 7! yl .
Comments
Implementation: For the time being, except for

very specific cases (Kalman filter, . . . ), the set-
valued and the conditional probability-valued
observers remain conceptual since we do not
know how to manipulate numerically sets
and probability laws. Their implementation
requires approximations. For instance, see

Milanese et al. (1996) and Witsenhausen
(1966) for the set case and Arulampalam
et al. (2002), Bucy and Joseph (1987),
Candy (2009), and Jazwinski (2007) for the
conditional probability case.

Need of finite or infinite but fading memory:
In these observers, model states x which are
consistent with the a priori information but
do not agree with the a posteriori information
are eliminated (set intersection or probability
product). But once a point is eliminated, this is
forever. As a consequence if there is, at some
time, a misfit between a priori and a posteriori
information, it is mistakenly propagated in
future times. A way to round this problem
is to keep the information memory finite or
infinite but fading. In particular, with fixed
length memory, consistent points which were
disregarded due to measurements which are
no more in the memory are reintroduced. This
says also that observers should not be sensitive
to their initial condition.

Not single-valued estimate. The observers intro-
duced above realize a lossless data compres-
sion with extracting and preserving all what
concerns the hidden variables in the redun-
dant data given by a priori and a posteriori
information. But this “lossless compression”
answer is not single valued (set valued or
conditional probability valued) as a result of
taking uncertainties into account. Actually, to
get a single-valued answer, the observation
problem must be complemented by making
precise for what the estimation is made. For
instance, we may want to select the most likely
or the average or more generally some cost-
minimizing estimate Ox among all the possible
ones given by �. In this way we obtain an
observer giving a single-valued estimate:

�kC1 D 'k.�k; yk/; Oxk D 	k.�k/

respectively

P�.t/D'.�.t/; y.t/; t/; Ox.t/D	.�.t/; t/
(6)

But then, in general, we lose information, and
in particular we have no idea on the confidence
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level this estimate has. Also, since the function
	 , at least, encodes for what the estimate Ox is
used, for different uses, different functions 	
may be needed.

An Optimization Approach
A shortcut to obtain directly an observer giving
a single-valued estimate is to design it by trading
off among a priori and a posteriori information
(see Cox 1964, pages 7–10; Alamir 2007). For
example, in the continuous time case, we can
select the estimate Ox.t/ among the minimizers (in
x) of

C.fs 7! ıs.s/g; x; t/ D
Z t

�1
C
�
ıs.s/; y.s/;

Xıs .x; t; s/; s
�
ds

where Xıs .x; t; s/ is still the notation for a so-
lution to (1) and fs 7! ıs.s/g, representing the
unmodelled effect on the dynamics, is among the
arguments for the minimization. The infinitesimal
cost C is chosen to take nonnegative values
and be such that C.0; h.x; s/; x; s/ is zero. For
instance, it can be

C.ıs; y; x; s/ D kısk2x C dy.y; h.x; s//
2

where k:kx is a norm at the point x and dy
is a distance in the measurement space. In the
same spirit, instead of optimization, a minimax
approach can be followed. See, for instance, Bert-
sekas and Rhodes (1971), Başar and Bernhard
(1995, Chapter 7), and Willems (2004).

With x fixed, the minimization of C is an
infinite horizon optimal control problem in
reverse time. Solving on line this problem is
extremely difficult and again approximations
are needed. We do not go on with this
approach, but we remark that, under extra
assumptions, the observer we obtain following
this approach can also be implemented in
the form of a dynamical system (6) but with
the specificity that the estimate Ox is part
of the observer state � and its dynamics
are a copy of the undisturbed model with a
correction term which is zero when the estimated

state reproduces the measurement. Namely,
we get

POx.t/Df . Ox.t/; t; 0/CE
�
f
 7!y.
/g; Ox.t/;y.t/; t

�

where E is zero when h. Ox.t/; t/ D y.t/. But, as
opposed to what we saw in the previous section,
the initial condition for the part Ox of the observer
state is unknown. Hence, we encounter again
the need for the observer to forget its initial
condition.

Convergent Observers

We have mentioned that often an observer can be
implemented as a dynamical system, but without
knowing necessarily how to initialize it. Also
approximation is involved both in its design and
its implementation. So, at least when it gives a
single-valued estimate, we are facing the problem
of convergence of this estimate to the “true”
value, at least when there is no uncertainties. We
concentrate now our attention on the study of this
convergence, but, to simplify, in the continuous
time case only.

Let the model and observer dynamics be

Px.t/ D f .x.t/; t/; y.t/ D h.x.t/; t/ (7)

P� D '.�.t/; y.t/; t/; Ox.t/ D 	.�.t/; y.t/; t/

(8)

with the observer state � of finite dimension
m. We denote by .X.x; t; s/;„..x; �/; t; s// a
solution of (7)–(8).

Since we are dealing with convergence, the
focus is on what is going on when the time
becomes very large and in particular on the set
� of model states which are accumulation points
of some solution. Specifically we are interested in
the stability properties of the set

Z.t/ D
n
.x; �/ W x 2 �& x D 	.�; h.x; t/; t/

o

which is contained in the zero estimation error set
associated with the given model-observer pair.

Definition 1 (convergent observer) We say the
observer (8) is convergent if for each t , there
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exists a set Za.t/ � Z.t/, such that on the
domain of existence of the solution, a distance
between the point .X.x; t; s/;„..x; �/; t; s// and
the set Za.s/ is upperbounded by a real function
s 7! ˇcx;�;t .s/, may be dependent on .x; �; t/, with
nonnegative values, strictly decreasing and going
to zero as s goes to infinity.

Necessary Conditions for Observer
Convergence

No Restriction on 	
It is possible to prove that if the observer is
convergent, then,
Necessity of detectability: When h and 	 are

uniformly continuous in x and �, respectively,
the estimate Ox does converge to the model state
x. In this case, two solutions of the model (7)
which produce the same measurement must
converge to each other. This is an asymptotic
distinguishability property called detectability.
If we are interested not only in the asymptotic
behavior but also in the transient (as for output
feedback), a property stronger than detectabil-
ity is needed. In particular instantaneous dis-
tinguishability (see section “Observers Based
on Instantaneous Distinguishability”) is neces-
sary if we want to be able to impose the decay
rate of the function ˇcx;�;t .

Necessity of m � n � p: For each t , there exists
a subset Xa.t/ of �, supposed to collect the
model states which can be asymptotically esti-
mated and such that we can associate, to each
of its point x, a set 	i .x; t/ allowing us to
redefine the set Za.t/ as

Za.t/D
˚
.x; �/ W x 2 Xa.t/& � 2 	i .x; t/� :

This implies that for each t and each x in
Xa.t/, there is a point � satisfying

x D 	.�; h.x; t/; t/ : (9)

This is a surjectivity property of the function
	 but of a special kind since h.x; t/ is an
argument of 	 . We say that, for each t , the
function 	 is surjective to Xa.t/ given h. In
a “generic” situation this property requires

the dimension m of the observer state � to
be larger or equal to the dimension n of the
model state x minus the dimension p of the
measurement y.

	 Is Injective Given h
We consider now the case where the observer
has been designed with a function 	 which is
injective given h, namely, we have the following
implication, when x is in Xa.t/,
h
	.�1; h.x; t/; t/ D 	.�2; h.x; t/; t/

& �1 2 	i .x; t/
i

H) �1 D �2 :

In a “generic” situation, this property, together
with the surjectivity given h, implies that the
dimension m of the observer state � should be
between n � p and n.

If a convergent observer has such a function
	 , then .x; t/ 7! 	i .x; t/, which is (of course) a
(single valued) function, admits a Lie derivative

.Lf 	
i .x; t/ D limdt!0

	i .X.x;t;tCdt/;tCdt/�	i.x;t/
dt

/

Lf 	
i satisfying

Lf 	
i .x; t/D'.	i .x; t/; h.x; t/; t/ 8x 2 Xa.t/

(10)

This says (very approximatively) that ' is nothing
but the image of the vector field f , under the
change of coordinates .x; t/ 7! .	 i .x; t/; t/ but
again all this given h. As partly obtained in the
optimization approach, the observer dynamics are
then a copy of the model dynamics with maybe a
correction term which is zero when the estimated
state reproduce the measurement.

If moreover the functions h and 	 are uni-
formly continuous in x and �, respectively, then,
given �1 and �2 a distance between„..x; �1/; t; s/
and „..x; �2/; t; s/ goes to zero as s goes to
infinity. This property is related to what was
called extreme stability (see Yoshizawa 1966) in
the 1950s and 1960s and is called incremental
stability today (see Angeli 2002). It holds when,
with denoting by „y.�; t; s/ the solution at time
s of the observer dynamics :
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P�.t/ D '.�.t/; y.t/; t/

going through � at time t and under the action
of y, the flow � 7! „y.�; t; s/ is a strict con-
traction (see Jouffroy (2005) for a bibliography
on contraction) for each s > t or, at least, if a
distance between any two solutions „y.�1; t; s/

and„y.�2; t; s/, with the same input y, converges
to 0.

Sufficient Conditions
Knowing now how a convergent observer should
look like, we move to a quick description of some
such observers.

Observers Based on Contraction
Since the flow generated by the observer should
be a contraction, we may start its design by
picking the function ' as

P�.t/ D '.�.t/; y.t/; t/ D A�.t/ C B.y.t/; t/

where A, not related to f , is a matrix whose
eigenvalues have strictly negative real part. Under
weak restriction, there exists a function 	i satis-
fying (10), namely,

Lf 	
i .x; t/ D A	i .x; t/ C B.h.x; t/; t/ :

(11)

To obtain a convergent observer, it is then suf-
ficient that there exists a (uniformly continuous)
function 	 satisfying

x D 	.	 i .x; t/; h.x; t/; t/

For this to be possible, the function 	i should
be injective given h. This injectivity holds when
the observer state has dimension m � 2.nC 1/,
the model is distinguishable, and provided the
eigenvalues of A have a sufficiently negative
real part and are not in a set of zero Lebesgue
measure.

Unfortunately, we are facing again a possible
difficulty in the implementation since an expres-
sion for a function 	i satisfying (11) is needed
and the function 	 W .�; y; t/ 7! Ox.t/ is known
implicitly only as

� D 	i . Ox.t/; t/ :

See Andrieu and Praly (2006), Luenberger
(1964), and Shoshitaishvili (1990).

Observers Based on Instantaneous
Distinguishability
Instantaneous distinguishability means that we
can distinguish as quickly as we want two model
states by looking at the paths of the measurements
they generate. A sufficient condition to have this
property can be obtained by looking at the Taylor
expansion in s of h.X.x; t; s/; s/. Indeed, we
have:

h.X.x; t; s/; s/ D
m�1X
iD0

hi .x; t/
.s � t/i
i Š

Co �.s � t/m�1�

where hi is a function obtained recursively as

h0.x; t/ D h.x; t/

hiC1.x; t/ D P
2hi .x; t/ D @hi

@x
.x; t/f .x; t/

C @hi
@t
.x; t/:

If there exists an integer m such that, in some
uniform way with respect to t , the function

x 7! Hm.x; t/ D .h0.x; t/ ; : : : ; hm�1.x; t//

is injective, then we do have instantaneous distin-
guishability. We say the system is differentially
observable of order m when this injectivity prop-
erty holds. When a system has such a property,
the model state space has a very specific struc-
ture as discussed in Isidori (1995, Section 1.9).
It means that we can reconstruct x from the
knowledge of y and itsm�1 first time derivatives,
i.e., there exists a functionˆ such that we have:

x D ˆ.Hm.x; t/; t/ :

This way, we are left with estimating the deriva-
tives of y. This can be done as follows. With the
notation �i D hi�1.x; t/, we obtain:
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P�.t/ D F �CG hm
�
ˆ.�.t/; t/ ; t

�

where

F � D .�2 ; : : : ; �m ; 0/ ; GD.0 ; : : : ; 0 ; 1/ :

When the last term on the right hand side is
Lipschitz, we can find a convergent observer in
the form:

P�.t/ D F �.t/CG hm . Ox.t/; t /CK.y.t/� �1.t//;

Ox.t/ D 	 .�.t/; t / ;

with � being actually an estimation of � and
where K is a constant matrix and 	 is a modified
version of ˆ keeping the estimated state in its a
priori given set X .t/.

This is the high-gain observer paradigm.
See Gauthier and Kupka (2001) and Tornambe
(1988). The implementation difficulty is in
the function Ô , not to mention sensitivity to
measurement uncertainty.

Observers with 	 Bijective Given h

Case Where � Is the Identity Function A con-
vergent observer whose function 	 is the identity
has the following form:

P� D f .�; t/

C E
�f
 7! y.
/g; �.t/; y.t/; t� ; Ox.t/ D �.t/:

(12)

The only piece remaining to be designed is the
correction term E . It has to ensure convergence
and may be also other properties like symmetry
preserving (see Bonnabel et al. 2008).

For this design, a first step is to exhibit some
specific properties of the vector field f by writing
it in some appropriate coordinates. For example,
there may exist coordinates such that the
expression of f takes the form f.x.t/; h.x; t/; t/

and the corresponding observer (12) is such
that there exists a positive definite matrix P

for which the function s 7! .X.x; t; d / �
OX..x; Ox/; t; s//0P.X.x; t; d / � OX..x; Ox/; t; s//

is strictly decaying (if not zero). A necessary
condition for this to be possible is that f is

monotonic tangentially to the level sets of the
function h, i.e., for all .x; y; v; t/ satisfying
y D h.x; t/ and @h

@x
.x; t/v D 0, we have:

vT P
@f

@x
.x; y; t/ v � 0: (13)

This is another way of expressing a detectability
condition. This expression is coordinate depen-
dent, hence the importance of choosing the coor-
dinates properly.

When this condition is strict and uniform in t ,
it is sufficient to get a locally convergent observer
and even a nonlocal one when h is linear in x, i.e.,
h.x; t/ D H.t/x, again a coordinate-dependent
condition. In this latter case the observer takes the
form

P�.t/ D f.�.t/; y.t/; t/ C `.�.t// P�1H.t/T

Œy.t/ �H.t/�.t/�;
Ox.t/ D �.t/;

where ` is a real function to be chosen with suf-
ficiently large values. If (13) is strict and uniform
and holds for all v, the correction term is not
needed.

There are many other results of this type,
exploiting one or the other specificity of the
dependence on x of the function f – monotonicity,
convexity, . . . . See Fan and Arcak (2003), Krener
and Isidori (1983), Respondek et al. (2004), San-
felice and Praly (2012), . . .

Case Where .x; t/ 7! .�i .x; t/; h.x; t/; t/ Is
a Diffeomorphism At each time t we know
already that the model state x we want to es-
timate satisfy y.t/ D h.x; t/. So, as remarked
in Luenberger (1964), when .h.x; t/; t/ can be
used as part of coordinates for .x; t/, we need
to estimate the remaining part only. This can be
done if we find a function 	i , whose values are
n�p dimensional, such that .x; t/ 7! .y; �; t/ D
.h.x; t/; 	 i .x; t/; t/ is a diffeomorphism and the
flow � 7! �y.�; t; s/ generated by

P�.t/ D @	i

@x
.x.t/; t/f .x.t/; t/ C @	i

@t
.x.t/; t/;

D '.�.t/; y.t/; t/
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is a strict contraction for all s > t . Indeed in this
case the observer dynamics can be chosen as

P�.t/ D '.�.t/; y.t/; t/

and the estimate Ox.t/ is obtained as solution of

	i . Ox.t/; t/ D �.t/; h. Ox.t/; t/ D y.t/:

This is the reduced-order observer paradigm.
See, for instance, Besançon (2000, Proposi-
tion 3.2), Carnevale et al. (2008), and Luenberger
(1964, Theorem 4).
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Abstract

Observers are dynamical systems which process
the input and output signals of a given dynamical
system and deliver an online estimate of the
internal state of the given system which asymp-
totically converges to the exact value of the state.
For linear, finite-dimensional, time-invariant sys-
tems, observers can be designed provided a weak
observability property, known as detectability,
holds.

Keywords

Linear systems; Observers; Reduced order
observer; State estimation

Introduction

Consider a linear, finite-dimensional, time-
invariant system described by equations of the
form


x D Ax C Bu;

y D Cx CDu;
(1)

with x.t/ 2 R
n, u.t/ 2 R

m, y.t/ 2 R
p and A,

B , C , and D matrices of appropriate dimensions
and with constant entries, and the problem of
estimating its state from measurements of the
input and output signals. In Eq. (1) 
x.t/ stands
for Px.t/, if the system is continuous-time, and
for x.t C 1/, if the system is discrete-time. In
addition, if the system is continuous-time, then
t 2 R

C, i.e., the set of nonnegative real numbers,
whereas if the system is discrete-time, then t 2
ZC, i.e., the set of nonnegative integers.

We are interested in determining an online
estimate xe.t/ 2 R

n, i.e., the estimate at time t
has to be a function of the available information
(input and output) at the same time instant. This
implies that the estimate is generated by means of
a device (known as filter) processing the current
input and output of the system and generating a
state estimate. The filter may be instantaneous,
i.e., the estimate is generated instantaneously by
processing the available information. In this case
we have a static filter. Alternatively, the state es-
timate can be generated processing the available
information through a dynamical device. In this
case we have a dynamic filter.

Assume, for simplicity, that D D 0. This
assumption is without loss of generality. In fact,
if y D Cx C Du and u are measurable, then
also Qy D Cx is measurable. Assume, in addition,
that the filter which generates the online estimate
is linear, finite-dimensional, and time-invariant.
Then we may have the following two configura-
tions:
• Static filter. The state estimate is generated via

the relation

xe D My CN u; (2)

with M and N constant matrices of appropri-
ate dimensions. The resulting interconnected
system is described by the equations


x D Ax CBu;

xe D MCx CN u:
(3)

• Dynamic filter. The state estimate is generated
by the system
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� D F � C Ly CHu;

xe D M� CNy C P u;
(4)

with F , L,H ,M ,N and P constant matrices
of appropriate dimensions. The resulting in-
terconnected system is described by the equa-
tions


x D Ax C Bu;


� D F � C LCx CHu;

xe D M� CNCx C P u:

(5)

In what follows we study in detail the dynamic
filter configuration. This is mainly due to the fact
that this configuration allows us to solve most es-
timation problems for linear systems. Moreover,
while the use of a static filter is very appealing, it
provides a useful alternative only in very specific
situations.

State Observer

A state observer is a filter that allows to estimate,
asymptotically or in finite time, the state of a sys-
tem from measurements of the input and output
signals.

The simplest possible observer can be
constructed considering a copy of the system,
the state of which has to be estimated. This
means that a candidate observer for system (1) is
given by


� D A� C Bu

xe D �:
(6)

To assess the properties of this candidate state
observer, let e D x � xe be the estimation error
and note that 
e D Ae: As a result, if e.0/ D 0,
then e.t/ D 0 for all t and for any input signal
u. However, if e.0/ ¤ 0, then, for any input
signal u, e.t/ is bounded only if the system (1)
is stable and converges to zero only if the system
(1) is asymptotically stable. If these conditions do
not hold, the estimation error is not bounded and
system (6) does not qualify as a state observer
for system (1). The intrinsic limitation of the
observer (6) is that it does not use all the available
information, i.e., it does not use the knowledge of

the output signal y. This observer is therefore an
open-loop observer.

To exploit the knowledge of y, we modify
the observer (6) adding a term which depends
upon the available information on the estimation
error, which is given by ye D Cxe � y: This
modification yields a candidate state observer
described by


� D A� C Bu C Lye;

xe D �:
(7)

To assess the properties of this candidate state
observer, note that e D x � xe is such that


e D .AC LC/e: (8)

The matrix L (known as output injection gain)
can be used to shape the dynamics of the estima-
tion error. In particular, we may selectL to assign
the characteristic polynomialp.s/ ofACLC . To
this end, note that

p.s/ D det.sI � .ACLC// D det.sI � .A0 C C 0L0//:

Hence, there is a matrix L which arbitrarily
assigns the characteristic polynomial of AC LC

if and only if the system


� D A0� C C 0v

is reachable or, equivalently, if and only if the
system (1) is observable.

We summarize the above discussion with two
formal statements.

Proposition 1 Consider system (1) and suppose
the system is observable. Let p.s/ be a monic
polynomial of degree n. Then there is a matrix
L such that the characteristic polynomial of AC
LC is equal to p.s/. Note that for single-output
systems, the matrixL assigning the characteristic
polynomial of AC LC is unique.

Proposition 2 System (1) is observable if and
only if it is possible to arbitrarily assign the
eigenvalues of AC LC .
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Detectability

The main goal of a state observer is to provide an
online estimate of the state of a system. This goal
may be achieved, as discussed in the previous
section, if the system is observable. However,
observability is not necessary to achieve this goal:
in fact the unobservable modes are not modified
by the output injection gain. This implies that
there exists a matrix L such that system (8) is
asymptotically stable if and only if the unob-
servable modes of system (1) have negative real
part, in the case of continuous-time systems, or
have modulo smaller than one, in the case of
discrete-time systems. To capture this situation,
we introduce a new definition.

Definition 1 (Detectability) System (1) is de-
tectable if its unobservable modes have negative
real part, in the case of continuous-time systems,
or have modulo smaller than one, in the case of
discrete-time systems.

Example 1 (Deadbeat observer) Consider a
discrete-time system described by equations of
the form

x.t C 1/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/;

and the problem of designing a state observer,
described by the equation (7), such that, for any
initial condition x.0/ and for any u, e.k/ D
0; for all k � N , and for some N > 0.
A state observer achieving this goal is called a
deadbeat state observer. To achieve this goal, it is
necessary to select L such that .A C LC/N D
0 or, equivalently, such that the matrix A C
LC has all eigenvalues equal to 0. Note that
N � n.

Reduced Order Observer

We have shown that, under the hypotheses of
observability or detectability, it is possible to
design an asymptotic observer of order n for the
system (1). However, this observer is somewhat

oversized, i.e., it gives an estimate for the n

components of the state vector, without making
use of the fact that some of these components can
be directly determined from the output function,
e.g., if y D x1 there is no need to reconstruct
x1. It makes, therefore, sense to design a re-
duced order observer, i.e., a device that esti-
mates only the part of the state vector which is
not directly attainable from the output. To this
end consider the system (1) with D D 0 and
assume that the matrix C has p independent
rows. This is the case if rank C D p, whereas
if rank C < p it is always possible to elimi-
nate redundant rows. Then there exists a matrix
Q such that, possibly after reordering the state
variables,

QC D ŒI C2� :

Let

v D Qy D QCx D x1 C C2x2;

in which x1.t/ 2 R
p and x2.t/ 2 R

n�p denote
the first p and the last n�p components of x.t/.
Observe that the vector v is measurable.

From the definition of v, we conclude that
if v and x2 are known, then x1 can be easily
computed, i.e., there is no need to construct an
observer for x1.

Define now the new coordinates

" Ox1
Ox2

#
D T x D

"
I C2

0 I

#	
x1
x2




and note that, by construction, v D Qy D Ox1: In
the new coordinates, the system, with output v, is
described by equations of the form


 Ox1 D QA11 Ox1 C QA12 Ox2 C QB1u;

 Ox2 D QA21 Ox1 C QA22 Ox2 C QB2u;
v D Ox1:
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To construct an observer for Ox2, consider the
system


� D F � CHv CGu;

with state �, driven by u and v, and with output

w D � C Lv:

The idea is to select the matrices F , H , G, and
L in such a way that w be an estimate for Ox2. Let
w � Ox2 be the observation error. Then


w � 
 Ox2 D F � CHv CGu CL

	
QA11 Ox1 C QA12 Ox2 C QB1u



�
	

QA21 Ox1 C QA22 Ox2 C QB2u



D F � C
�
H C L QA11 � QA12

�
Ox1 C

	
L QA12 � QA22



Ox2 C

	
G C L QB1 � QB2



u: (9)

To have convergence of the estimation error to
zero, regardless of the initial conditions and of
the input signal, we must have


.w � Ox2/ D F.w � Ox2/ (10)

and F must have all eigenvalues with negative
real part, in the case of continuous-time systems,
or with modulo smaller than one, in the case
of discrete-time systems. Comparing Eqs. (9) and
(10), we obtain that the matrices F ,H , G, and L
must be such that

L QA12 � QA22 D �F;
H CL QA11 � QA21 D FL;

G C L QB1 � QB2 D 0:

We now show how the previous equations can be
solved and how the stability condition of F can
be enforced. Detectability of the system implies
that the (reduced system) 
 Q� D QA22 Q� with output
Qy D QA12� is detectable. As a result, there exists a
matrix L such that the matrix

F D QA22 �L QA12
has all eigenvalues with negative real part, in the
case of continuous-time systems, or with modulo
smaller than one, in the case of discrete-time
systems. Then the remaining equations are solved
by

H D FL � L QA11 C QA21;
G D �L QB1 C QB2:

Finally, from Ox1 D v and the estimate w of Ox2,
we build an estimate xe of the state x inverting
the transformation T , i.e.,

	
x1e
x2e



D
	
I �C2
0 I


 	
v

w



:

Summary and Future Directions

The problem of estimating the state of a linear
system from input and output measurements can
be solved provided a weak observability condi-
tion holds. The problem addressed in this entry
is the simplest possible estimation problem: the
underlying system is linear and all variables are
exactly measured. Observers for nonlinear sys-
tems and in the presence of signals corrupted by
noise can also be designed exploiting some of
the basic ingredients, such as the notions of error
system and of output injection, discussed in this
entry.
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Optimal Control andMechanics

Anthony Bloch
Department of Mathematics, The University of
Michigan, Ann Arbor, MI, USA

Abstract

There are very natural close connections between
mechanics and optimal control as both involve
variational problems. This is a huge subject and
we just touch on some interesting connections
here. A survey and history may be found in
Sussman and Willems (1997). Other aspects may
be found in Bloch (2003).

Keywords

Nonholonomic integrator; Sub-Riemannian opti-
mal control; Variational problems

Variational Nonholonomic Systems
and Optimal Control

Variational nonholonomic problems (i.e., con-
strained variational problems) are equivalent to
optimal control problems under certain regularity
conditions. This issue was investigated in Bloch
and Crouch (1994), employing the classical re-
sults of Rund (1966) and Bliss (1930), which re-
late classical constrained variational problems to
Hamiltonian flows, although not optimal control
problems. We outline the simplest relationship
and refer to Bloch (2003) for more details.

Let Q be a smooth manifold and TQ

its tangent bundle with coordinates .qi ; Pqi /.
Let L W TQ ! R be a given smooth Lagrangian
and let ˆ W TQ ! R

n�m be a given smooth
function. We consider the classical Lagrange
problem:

minq.�/
Z T

0

L.q; Pq/dt (1)

subject to the fixed endpoint conditions q.0/ D 0,
q.T / D qT and subject to the constraints

ˆ.q; Pq/ D 0:

Consider a modified Lagrangianƒ.q; Pq; �/ D
L.q; Pq/C � �ˆ.q; Pq/ with Euler–Lagrange equa-
tions

d

dt

@ƒ

@ Pq .q; Pq; �/� @ƒ
@q
.q; Pq; �/ D 0; ˆ.q; Pq/ D 0:

(2)

We can rewrite this equation in Hamiltonian
form and show that the resulting equations are
equivalent to the equations of motion given by
the maximum principle for a suitable optimal
control problem. Set p D @ƒ

@ Pq .q; Pq; �/ and con-
sider this equation together with the constraints
ˆ.q; Pq/ D 0. We can solve these two equations
for . Pq; �/ under suitable conditions as discussed
in Bloch (2003). We obtain the standard Hamil-
tonian equations with H.q; p/ D p � �.q; p/ �
L.q; �.q; p//.

We now compare this to the optimal control
problem

http://dx.doi.org/10.1007/978-1-4471-5058-9_199
http://dx.doi.org/10.1007/978-1-4471-5058-9_84
http://dx.doi.org/10.1007/978-1-4471-5058-9_249
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minu.�/
Z T

0

g.q; u/dt (3)

subject to q.0/ D 0, q.T / D qT , Pq D f .q; u/;
where u 2 R

m and f; g are smooth functions.
Then we have the following:

Theorem 1 The Lagrange problem and optimal
control problem generate the same (regular) ex-
tremal trajectories, provided that:
(i) ˆ.q; Pq/ D 0 if and only if there exists a u

such that Pq D f .q; u/.
(ii) L.q; f .q; u// D g.q; u/.

For the proof and more details, see Bloch (2003).

The n-Dimensional Rigid Body

An interesting mechanical example is the n-
dimensional rigid body. See Manakov (1976) and
Ratiu (1980).

One can introduce a related system which we
will call the symmetric representation of the rigid
body; see Bloch et al. (2002).

By definition, the left invariant representa-
tion of the symmetric rigid body system is given
by the first-order equations

PQ D Q�I PP D P� (4)

whereQ;P 2 SO.n/ and where� is regarded as
a function of Q and P via the equations

� WDJ�1.M/ 2 so.n/ and M WDQTP�PTQ:

One can check that differentiating M yields
the classical form of the n-dimensional rigid body
equations. For more on the precise relationship,
see Bloch et al. (2002).

Now we can link the symmetric representation
of the rigid body equations with the theory of
optimal control. This work, developed in Bloch
and Crouch (1996) and more generally in Bloch
et al. (2002), has been further extended to optimal
control problems for the infinitesimal generators
of group actions (so-called Clebsch optimal con-
trol problems) in Gay-Balmaz and Ratiu (2011)
and Bloch et al. (2011, 2013) and even further to

a class of embedded control problems in Bloch
et al. (2011, 2013).

Let T > 0, Q0;QT 2 SO.n/ be given and
fixed. Let the rigid body optimal control problem
be given by

min
U2so.n/

1

4

Z T

0

hU; J.U /idt (5)

subject to the constraint onU that there be a curve
Q.t/ 2 SO.n/ such that

PQ D QU Q.0/ D Q0; Q.T / D QT :

(6)

Proposition 1 The rigid body optimal control
problem has optimal evolution equations (4)
where P is the costate vector given by the
maximum principle.

The optimal controls in this case are given by

U D J�1.QTP � PTQ/: (7)

Kinematic Sub-Riemannian Optimal
Control Problems

Optimal control of underactuated kinematic sys-
tems give rise to very interesting mechanical
systems.

The problem is referred to as sub-Riemannian
in that it gives rise to a geodesic flow with
respect to a singular metric (see the work of
Strichartz (1983, 1987) and Montgomery (2002)
and references therein). This problem has an
interesting history in control theory (see Brock-
ett 1973, 1981; Baillieul 1975). See also Bloch
et al. (1994) and Sussmann (1996) and further
references below.

We consider control systems of the form

Px D
mX
iD1

Xiui ; x 2 M; u 2 � � R
m; (8)

where � contains an open subset that contains
the origin,M is a smooth manifold of dimension
n, and each of the vector fields in the collection
F WD fX1; : : : ; Xkg is complete.
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We assume that the system satisfies the acces-
sibility rank condition and is thus controllable,
since there is no drift term. Then we can pose the
optimal control problem

min
u.�/

Z T

0

1

2

mX
iD1

u2i .t/dt (9)

subject to the dynamics (8) and the endpoint
conditions x.0/ D x0 and x.T / D xT . These
problems were studied by Griffiths (1983) from
the constrained variational viewpoint and from
the optimal control viewpoint by Brockett (1981,
1983). In the sub-Riemannian geodesic problem,
abnormal extremals play an important role. See
work by Strichartz (1983), Montgomery (1994,
1995), Sussmann (1996), and Agrachev and
Sarychev (1996).

Example: Optimal Control and a Particle
in a Magnetic Field The control analysis
of the Heisenberg model or nonholonomic
integrator goes back to Brockett (1981) and
Baillieul (1975), while a modern treatment of
the relationship with a particle in a magnetic
field may be found in Montgomery (1993), for
example. A nice treatment of the pure mechanical
aspects of a particle in a magnetic field may be
found in Marsden and Ratiu (1999).

The Heisenberg optimal control equations are
a particular case of planar charged particle mo-
tion in a magnetic field. This may be seen by
considering the slightly more general problem
below.

We now consider the optimal control problem

min
Z
.u2 C v2/dt (10)

subject to the equations

Px D u;

Py D v;

Pz D A1u C A2v; (11)

where A1.x; y/ and A2.x; y/ are smooth func-
tions of x and y. A1 D y and A2 D �x
recover the Heisenberg/nonholonomic integrator
equations. More generally we get the flow of a
particle in a magnetic field – it is not hard to
carry out the optimal control analysis to see this.
Details are in Bloch (2003).
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Optimal Control and Pontryagin’s
MaximumPrinciple

Richard B. Vinter
Imperial College, London, UK

Abstract

Pontryagin’s Maximum Principle is a collection
of conditions that must be satisfied by solutions
of a class of optimization problems involving
dynamic constraints called optimal control prob-
lems. It unifies many classical necessary condi-
tions from the calculus of variations. This article
provides an overview of the Maximum Principle,
including free-time and nonsmooth versions. A
time-optimal control problem is solved as an
example to illustrate its application.

Keywords

Dynamic constraints; Hamiltonian system; Maxi-
mum principle; Nonlinear systems; Optimization

Optimal Control

A widely used framework for studying mini-
mization problems, encountered in the optimal
selection of flight trajectories and other areas
of advanced engineering design and operation
involving dynamic constraints, is to view them as
special cases of the problem:

.P /

8̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

Minimize J.x.:/; u.:// W
D R T

0
L.t; x.t/; u.t//dt C g.x.0/; x.T //

over measurable functions u.:/ W
Œ0; T � ! Rm and

absolutely continuous functions x.:/ W
Œ0; T � ! Rn satisfying

Px.t/ D f .t; x.t/; u.t// a.e.,

u.t/ 2 � a.e.,

.x.0/; x.T // 2 C;
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the data for which comprise a number T > 0,
functionsf W Œ0; T ��Rn�Rm ! Rn,L W Œ0; T ��
Rn � Rm ! R and g W Rn � Rn ! R and sets
C � Rn and � � Rm.

It is assumed that set C has the functional in-
equality and equality constraint set representation

C D f.x0; x1/ 2 Rn W �i .x0; x1/ � 0

for i D 1; 2; : : : ; k1 and
 i .x0; x1/ D 0 for i D 1; 2; : : : ; k2 g;

(1)

in which �i W Rn � Rn ! R, i D 1; : : : ; k1 and
 i W Rn � Rn ! R, i D 1; : : : ; k2 are given
functions.

A control function is a measurable function
u.:/ W Œ0; T � ! Rm satisfying u.t/ 2 � a.e.
t 2 Œ0; T � A state trajectory x.:/ associated
with a control function u.:/ is a solution to the
differential equation Px.t/ D f .t; x.t/; u.t//. A
pair of functions .x.:/; u.:// comprising a control
function u.:/ and an associated state trajectory
x.:/ satisfying the condition .x.0/; x.T // 2
C is a feasible process. A feasible process
. Nx.:/; Nu.:// which achieves the minimum of
J.x.:/; u.:// over all feasible processes is called
a minimizer.

Frequently, the initial state is fixed, i.e., C
takes the form

CDfx0g �C1 for some x02Rn and some C1�Rn:

In this case, (P ) is a minimization problem
over control functions. Allowing freedom in the
choice of initial state introduces a flexibility
into the formulation which is useful in some
applications however.

Optimization problems involving dynamic
constraints (such as, but not exclusively, those
expressed as controlled differential equations)
are known as optimal control problems. Various
frameworks are available for studying such
problems. .P / is of special importance, since
it embraces a wide range of significant dynamic
optimization problems which are beyond the
reach of traditional variational techniques and,
at the same time, it is well suited to the

derivation of general necessary conditions of
optimality.

TheMaximum Principle

The centerpiece of optimal control theory is a
set of conditions that a minimizer . Nx.:/; Nu.://
must satisfy, known as Pontryagin’s Maximum
Principle or, simply, the Maximum Principle. It
came to prominence through a 1961 book, which
appeared in English translation as Pontryagin LS
et al. (1962). It bears the name of L S Pontryagin,
because of his role as leader of the research group
at the Steklov Institute, Moscow, which achieved
this advance. But the first proof is attributed to
Boltyanskii. For given � � 0, define the Hamil-
tonian functionH� W Œ0; T ��Rn�Rn�Rm ! R

0

H�.t; x; p; u/ WD pT f .t; x; u/ � �L.t; x; u/:

Theorem 1 (The Maximum Principle) Let
. Nx.:/; Nu.:// be a minimizer for (P ). Assume that
the following hypotheses are satisfied:

(i) g is continuously differentiable.
(ii) �i , i D 1; : : : ; k1 and i , i D 1; : : : ; k2, are

continuously differentiable.
(iii) With Qf .t; x; u/ D .L.t; x; u/; f .t; x; u//,

Qf .:; :; :/ is continuous, Qf .t; :; u/ is continu-
ously differentiable for each .t; u/, and there
exist � > 0 and k.:/ 2 L1 such that

j Qf .t; x; u/ � Qf .t; x0; u/j � k.t/jx � x0j

for all x; x0 2 Rn such that jx � Nx.t/j � �

and jx0 � Nx.t/j � �, and u 2 �, a.e. t 2
Œ0; T �

(iv) � is a Borel set.
Then, there exist a number � (� D 0 or 1), an
absolutely continuous arc p W Œ0; T � ! Rn,
numbers ˛i � 0 for i D 1; : : : ; k1 and numbers
ˇi for i D 1; : : : ; k2 satisfying

.p.:/; �; f˛i g; fˇi g/ 6D .0; 0; f0; : : : 0g; f0; : : : 0g/

and such that the following conditions are satis-
fied:
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The Adjoint Equation:

� Pp.t/ D @

@x
f T .t; Nx.t/; Nu.t//p.t/

�� @
@x
LT .t; Nx.t/; Nu.t//; a.e.,

The Maximization of the Hamiltonian Condi-
tion:

H�.t; Nx.t/; p.t/; Nu.t//
D max

u2� H�.t; Nx.t/; p.t/; u/ a.e.,

The Transversality Condition:

.pT .0/;�pT .T // D �rg. Nx.0/; Nx.T //

C
k1X
iD1

˛ir�i . Nx.0/; Nx.T //

C
k2X
iD1

ˇir i . Nx.0/; Nx.T //

and ˛i D 0 for all i 2 f1; : : : ; k1g such

that �i . Nx.0/; Nx.T // < 0; in which

rh.x0; x1/. Nx0; Nx1/ W

D
	
@

@x0
h. Nx0; Nx1/; @

@x1
h. Nx0; Nx1/



: (2)

If the functions L.t; x; u/ and f .t; x; u/ are
independent of t , then also

Constancy of the Hamiltonian for Au-
tonomous Problems:

H�. Nx.t/; p.t/; Nu.t// D c a.e.

for some constant c.

We allow the cases k1 D 0 (no inequality
constraints) and k2 D 0 (no equality endpoint
constraints). In the first case, the non-degeneracy
condition becomes .p.:/; �; fˇi g/ 6D .0; 0; 0/

and the summation involving the ˛i ’s is dropped
from the transversality condition. The second
case, or any combination of the two cases, is
treated similarly.

Derivation of the costate equation and
boundary conditions. A simple way to derive

the differential equations for the pi .:/’s is, first,
to construct the Hamiltonian H�.t; x; p; u/ D
pT f .t; x; u/pT f .t; x; u/ � �L.t; x; u/ and,
second, to use the fact that the i th component
pi.:/ of the costate p.t/ D Œp1.t/; : : : ; pn.t/�

T

satisfies the equation:

� Ppi .t/ D @

@xi
H�.t; Nx.t/; p.t/; Nu.t//

for i D 1; : : : ; n:

The preceding equations are of course merely a
component-wise statement of the costate equa-
tion above. In many applications the endpoint
constraints take the form

xi .0/ D �i0 for i 2 J0 and xi .0/ 2 Rn for i … J0
xi .T / D �i1 for i 2 J1 and xi .0/ 2 Rn for i … J1

for given index sets J0; J1 � f0; : : : ; ng and n-
vectors �i0 for i 2 J0 and �i1 for i 2 J1, i.e., the
endpoints of each state trajectory component are
either “fixed” or “free.” In such cases the rules for
setting up the boundary conditions on the pi .:/’s
are

pi .0/ 2 Rn for i 2 J0 and pi.0/

D �
@

@x0i
g. Nx.0/; Nx.T // for i … J0

pi .T / 2 Rn for i 2 J1 and � pi .T /

D �
@

@x1i
g. Nx.0/; Nx.T // for i … J1;

i.e., if xi .0/ (respectively xi .T /) is fixed,
then pi .0/ (respectively pi .T /) is free, and if
xi .0/ (respectively xi .T /) is free, then pi .0/

(respectively pi .T /) is fixed.
The optimal control problem .P / is a general-

ization of the following problem in the calculus
of variations:

8̂
ˆ̂<
ˆ̂̂:

Minimize
R T
0
L.t; x.t/; Px.t//dt

over absolutely continuous arcs x.:/:
Œ0; T � ! Rn satisfying

.x.0/; x.T // D .a; b/:

(3)
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for given L W Œ0; T ��Rn �Rn ! R and .a; b/ 2
Rn �Rn. This problem is a special case of (P ) in
which f .t; x; u/ D u, � D Rn, k1 D 0, k2 D 2n

and

�
. 1.x0; x1/; : : : ;  

n.x0; x1/
�
;�

 nC1.x0; x1/ : : : ;  2n.x0; x1/
�

D �
xT0 � aT ; xT1 � bT � :

It is a straightforward exercise to deduce
from the Maximum Principle, in this special
case, that a minimizer satisfies the classical
Euler–Lagrange and Weierstrass conditions
and also that the minimizer and associate
costate arc satisfy Hamilton’s system of
equations, under an additional uniform con-
vexity hypothesis on L.t; x; :/. Thus, the
Maximum Principle unifies many of the classical
necessary conditions from the calculus of
variations and, furthermore, validates them
under reduced hypotheses. But it has far-
reaching implications, beyond these conditions,
because it allows the presence of pathwise
constraints on the velocities, expressed in terms
of a controlled differential equation and a
control constraint set, which are encountered
in engineering design, econometrics, and other
areas.

The Hamiltonian System

In favorable circumstances, we are justified in
setting the cost multiplier � D 1 and, fur-
thermore, the maximization of the Hamiltonian
condition permits us, for each t , to express u as a
function of x and p:

u D u�.t; x; p/:

The Maximum Principle now asserts that a min-
imizing arc Nx.:/ is the first component of a pair
of absolutely continuous functions . Nx.:/; p.://
satisfying Hamilton’s system of equations:

.� PpT .t/; PNxT .t// D rxpH1.t; Nx.t/; p.t/; u�

.t; Nx.t/; p.t/// a.e. ; (4)

in which rxpH1 denotes the gradient of
H.t; x; p; u/ w.r.t. the vector ŒxT ; pT �T variable
for fixed .t; u/, together with the endpoint
conditions

. Nx.0/; Nx.T // 2 C and .pT .0/;�pT .T //
D �rg. Nx.0/; Nx.T //

C
k1X
iD1

˛ir�i . Nx.0/; Nx.T //

C
k2X
iD1

ˇir i . Nx.0/; Nx.T //;

for some nonnegative numbers f˛i g and numbers
fˇig satisfying

˛i D 0 for all i 2 f1; : : : ; k1g such that

� �i . Nx.0/; Nx.T // < 0;

where rg;r� and r etc., are as defined in (2).
The minimizing control satisfies the relation

Nu.t/ D u�.t; Nx.t/; p.t//:

Notice that the first-order vector differential
equation (4) is a system of 2n scalar, first-
order differential equations. Let us suppose
that Nk1 inequality endpoint constraints are
active at . Nx.0/; Nx.T //. Then, satisfaction of
the active constraints and the transversality
condition impose 2nC Nk1 C k2 on the boundary
values of . Nx.:/; p.://. Taking account of the
fact, however, that there are Nk1 C k2 unknown
endpoint multipliers, we see that the effective
number of endpoint constraints accompanying
the differential equation (4) is

2nC Nk1 C k2 � . Nk1 C k2/ D 2n:

Thus, the set of 2n scalar first-order differen-
tial equations (4) defining the “two-point bound-
ary value problem” to determine . Nx; p/ has the
“right” number of endpoint conditions.
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Refinements

Free-Time Problems: Consider a variant on the
“autonomous” case of problem .P / (L and f
do not depend on t), call it .F T /, in which the
terminal time T is no longer fixed, but is a choice
variable along with the control function and the
initial state, and the cost function is

QJ .T; x.:/; u.://

WD
Z T

0

L.x.t/; u.t//dt C Qg.T; x.0/; x.T //

for some function Qg.:; :; /. Take a minimizer
. NT ; Nx.:/; Nu.:// for .F T /. Assume, in addition
to hypotheses (i)–(iii), that � is bounded and
the function k.:/ in (iii) is bounded. Then the
Maximum Principle conditions (for data in which
the end time is frozen at T D NT ) continue to
be satisfied for some p.:/ W Œ0; NT � ! Rn and
�, including the constancy of the Hamiltonian
condition

H�. Nx.t/; p.t/; Nu.t// D c a.e t 2 Œ0; NT �

for some constant c. But a new condition is
required to reflect the extra degree of freedom
in the new problem specification, namely, the
free end time. This is an additional transversality
condition involving the constant value c of the
Hamiltonian:

Free Time Transversality Condition: c D
� @
@T
g. NT ; Nx.0/; Nx.T //:

Other Refinements: Versions of the Maximum
Principle are available to take account of
pathwise functional inequality constraints on
state variables (“pure” state constraints) and
of both state and control variables (“mixed”
constraints). Maximum Principle-like conditions
have also been derived for optimal control
problems in which the dynamic constraint takes
the form of a retarded differential equation with
control terms and in which the class of control
functions is enlarged to include Dirac delta
functions (“impulse” optimal control problems).

The NonsmoothMaximum Principle

In early derivations of the Maximum Principle,
it was assumed that the functions f .t; x; u/ and
L.t; x; u/ were continuously differentiable with
respect to the x variable. A major research en-
deavor since the early 1970s has been to find
versions of the Maximum Principle than remain
valid when the functions f .t; x; u/ and L.t; x; u/
satisfy merely a “bounded slope” or, synony-
mously, a Lipschitz continuity condition with
respect to x. Such functions are “nonsmooth” in
the sense that they can fail to be differentiable,
in the conventional sense, at some points in their
domains. An overview of the Maximum Principle
would be incomplete without reference to such
advances.

The search for nonsmooth optimality
conditions is motivated by a desire to solve
optimal control problems where, in particular,
the function f .t; x; u/ is a piecewise linear
function of x (for fixed .t; u/). Such functions
arise, for example, when the f .t; x; u/ is
constructed empirically via a lookup table and
linear interpolation. Nonsmooth cost integrands
are encountered when they are constructed using
“pointwise” supremum and/or “absolute value”
operations. The function

J.x.:// D
Z T

0

jx.t/jdt C maxfx.1/; 0g ;

which penalizes the L1 norm of the state trajec-
tory and the terminal value of the scalar state, but
only if this is nonnegative, is a case in point.

When attempting to generalize the Maximum
Principle to allow for nonsmooth data, we en-
counter the challenge of interpreting the adjoint
equation, which can be written as

� Pp.t/ D @

@x
H�.t; Nx.t/; Nu.t/p.t//;

in circumstances when the x-gradients of f and
L are not defined, at least not in a conventional
sense. One approach to dealing with this problem
is via the Clarke generalized gradient @m of
functionmW Rn ! R at a point Nx:
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@m. Nx/ WD co f� j there exist sequences xi ! Nx,
�i ! � such that, for each i , m.:/ is Frêchet
differentiable at xi and �i D @

@x
m.xi /g:

Here, “co” means closed convex hull. In a land-
mark paper, Clarke FH 1976, Clarke proved
a necessary condition commonly referred to as
the nonsmooth Maximum Principle, in which the
adjoint equation is replaced by a differential in-
clusion involving the (partial) generalized gradi-
ent @xH.t; Nx.t/; p.t/; Nu.t// of H.t; :; p.t/; Nu.t//
w.r.t x, evaluated at Nx.t/, namely,

� PpT .t/ 2 @x H.t; Nx.t/; Nu.t// a.e. t 2 Œ0; T �:

This formulation of the “adjoint inclusion” for
the nonsmooth Maximum Principle and the un-
restricted hypothesis under which it is derived in
this paper remain state of the art.

Example

We illustrate the application of the Maximum
Principle with a simple example. It has the fol-
lowing interpretation. A 1 kg mass is located 1m
along the line and has zero velocity. We seek a
time NT > 0 s. which is the minimum over all
times T > 0 having the property: there exists a
time-varying force u.t/, 0 � t � 1 satisfying

�1 � u.t/ � C1

such that, under the action of the force, the mass
is located at the origin with zero velocity at time
T . Note that, in consequence of Newton’s second
law, the vector x.t/ D .x1.t/; x2.t// comprising
the displacement and velocity of mass satisfies

	 Px1.t/
Px2.t/



D

	
0 1

0 0


 	
x1.t/

x2.t/



C
	
0

1



u.t/:

(5)

This is a special case of the free-time problem

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂:

Minimize T
over times T > 0, measurable functions u.:/:

Œ0; T � ! R and
absolutely continuous functions x.:/:
Œ0; T � ! R2 such that

Px.t/ D Ax.t/C bu.t/ a.e.
u.t/ 2 � a.e.
.x1.0/; x2.0// D .1; 0/ and

.x1.T /; x2.T // D .0; 0/:

in which A D
	
0 1

0 0



, b D

	
0

1



and � D

Œ�1;C1�.
The (free-time) Maximum Principle provides

the following information about a minimizing
end time NT , control Nu.:/, and corresponding
state Nx.:/ D . Nx1.:/; Nx2.://. There exists an arc
p.:/ D Œp1.:/; p2.:/�

T such that
PNx1.t/ D Nx2.t/ and PNx2.t/ D Nu.t/ ; (6)

� Pp1.t/ D 0 and � Pp2.t/ D p1.t/; (7)

Nu.t/ D arg max fp2.t/u j u 2 Œ�1;C1�g (8)

. Nx1; Nx2/.0/D.1; 0/and. Nx1; Nx2/.T /D.0; 0/ (9)

p1.t/ Nx2.t/C jp2.t/j D � for all t: (10)

Condition (1) permits us to express Nu.:/ in terms
of p2.:/, thus

Nu.t/ D signfp2.t/g ;

and thereby eliminate Nu.:/. It can be shown that
relations (6)–(2) have a unique solution for NT ,
Nu.t/, Nx.t/, p.t/ and � D 0 or 1. Furthermore,
these relations cannot be satisfied with � D 0.
The unique solution (with � D 1) is

NT D 2

. Nx1.t/; Nx2.t//

D
8<
:
.1 � 1

2
t2;�t/ if t 2 Œ0; 1/

. 1
2

� .t � 1/C 1
2
.t � 1/2;

�1C 1
2
.t � 1// if t 2 Œ1; 2�;

Nu.t/ D
� �1 if t 2 Œ0; 1/

C1 if t 2 Œ1; 2�;
p1.t/D�1 and p2.t/D�1 C t for t 2 Œ0; 2�:
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The Maximum Principle is a necessary condition
of optimality. Since a minimizer exists and since
. NT ; Nx.:/; Nu.:/; p.:// is a unique solution to the
Maximum Principle relations, it follows that
. NT ; Nx.:/; Nu.:// is the solution to the problem.

This problem is amenable to simpler, more
elementary, solution techniques. But the above
solution is enlightening, because it highlights
important generic features of the Maximum Prin-
ciple. We see how the “maximization of the
Hamiltonian condition” can be used to eliminate
the control function and thereby to set up a two-
point boundary problem for Nx.:/ and p.:/ (a very
nonclassical construction).
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Abstract

This entry illustrates the application of Bellman’s
dynamic programming principle within the con-
text of optimal control problems for continuous-
time dynamical systems. The approach leads to a
characterization of the optimal value of the cost
functional, over all possible trajectories given
the initial conditions, in terms of a partial dif-
ferential equation called the Hamilton–Jacobi–
Bellman equation. Importantly, this can be used
to synthesize the corresponding optimal control
input as a state-feedback law.

Keywords

Continuous-time dynamics; Hamilton–Jacobi–
Bellman equation; Optimization; Nonlinear
systems; State feedback

Introduction

The dynamic programming principle (DPP) is
a fundamental tool in optimal control theory.
It was largely developed by Richard Bellman
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in the 1950s (Bellman 1957) and has since been
applied to various problems in deterministic and
stochastic optimal control. The goal of optimal
control is to determine the control function and
the corresponding trajectory of a dynamical sys-
tem which together optimize a given criterion
usually expressed in terms of an integral along
the trajectory (the cost functional) (Fleming and
Rishel 1975; Macki and Strauss 1982). The func-
tion which associates with the initial condition
of the dynamical system the optimal value of the
cost functional among all the possible trajectories
is called the value function. The most interest-
ing point is that via the dynamic programming
principle, one can derive a characterization of the
value function in terms of a nonlinear partial dif-
ferential equation (the Hamilton–Jacobi–Bellman
equation) and then use it to synthesize a feedback
control law. This is the major advantage over
the approach based on the Pontryagin Maximum
Principle (PMP) (Boltyanskii et al. 1956; Pon-
tryagin et al. 1962). In fact, the PMP merely gives
necessary conditions for the characterization of
the open-loop optimal control and of the corre-
sponding optimal trajectory. The DPP has also
been applied to construct approximation schemes
for the value function although this approach suf-
fers from the “curse of dimensionality” since one
has to solve a nonlinear partial differential equa-
tion in a high dimension. Despite the elegance of
the DPP approach, its practical application is lim-
ited by this bottleneck, and the solution of many
optimal control problems has been accomplished
instead via the two-point boundary value problem
associated with the PMP.

The Infinite Horizon Problem

Let us present the main ideas for the classical infi-
nite horizon problem. Let a controlled dynamical
system be given by

(
Py.s/ D f .y.s/; ˛.s//

y.t0/ D x0:
(1)

where x0; y.s/ 2 R
d , and

˛ W Œt0; T � ! A � R
m;

with T finite or C1. Under the assumption that
the control is measurable, existence and unique-
ness properties for the solution of (1) are ensured
by the Carathèodory theorem:

Theorem 1 (Carathèodory) Assume that:
1. f .�; �/ is continuous.
2. There exists a positive constant Lf > 0 such

that

jf .x; a/ � f .y; a/j � Lf jx � yj;

for all x; y 2 R
d , t 2 R

C and a 2 A.
3. f .x; ˛.t// is measurable with respect to t .

Then, there is a unique absolutely continuous
function y W Œt0; T � ! R

d that satisfies

y.s/ D x0 C
Z s

t0

f .y.	/; ˛.	//d	: (2)

which is interpreted as the solution of (1).

Note that the solution is continuous, but only a.e.
differentiable, so it must be regarded as a weak
solution of (1). By the theorem above, fixing a
control in the set of admissible controls

˛ 2 A WD f˛ W Œt0; T � ! A;measurableg

yields a unique trajectory of (1) which is denoted
by yx0; t0 .sI˛/. Changing the control policy
generates a family of solutions of the controlled
system (1) with index ˛. Since the dynamics (1)
are “autonomous,” the initial time t0 can be
shifted to 0 by a change of variable. So to simplify
the notation for autonomous dynamics, we can
set t0 D 0 and we denote this family by yx0.sI˛/
(or even write it as y.s/ if no ambiguity over
the initial state or control arises). It is customary
in dynamic programming, moreover, to use the
notations x and t instead of x0 and t0 (since x
and t appear as variables in the Hamilton–Jacobi–
Bellman equation).

Optimal control problems require the intro-
duction of a cost functional J W A ! R which
is used to select the “optimal trajectory” for (1).
In the case of the infinite horizon problem, we set
t0 D 0, x0 D x, and this functional is defined as
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Jx.˛/ D
Z 1

0

g.yx.s; ˛/; ˛.s//e
��sds (3)

for a given � > 0. The function g represents
the running cost and � is the discount factor,
which can be used to take into account the re-
duced value, at the initial time, of future costs.
From a technical point of view, the presence of
the discount factor ensures that the integral is
finite whenever g is bounded. Note that one can
also consider the undiscounted problem (� D
0) provided the integral is still finite. The goal
of optimal control is to find an optimal pair
.y�; ˛�/ that minimizes the cost functional. If
we seek optimal controls in open-loop form, i.e.,
as functions of t , then the Pontryagin Maximum
Principle furnishes necessary conditions for a
pair .y�; ˛�/ to be optimal.

A major drawback of an open-loop control is
that being constructed as a function of time, it
cannot take into account errors in the true state
of the system, due, for example, to model errors
or external disturbances, which may take the evo-
lution far from the optimal forecasted trajectory.
Another limitation of this approach is that a new
computation of the control is required whenever
the initial state is changed.

For these reasons, we are interested in the
so-called feedback controls, that is, controls ex-
pressed as functions of the state of the system.
Under feedback control, if the system trajectory
is perturbed, the system reacts by changing its
control strategy according to the change in the
state. One of the main motivations for using the
DPP is that it yields solutions to optimal control
problems in the form of feedback controls.

DPP for the Infinite Horizon Problem
The starting point of dynamic programming is to
introduce an auxiliary function, the value func-
tion, which for our problem is

v.x/ D inf
˛2AJx.˛/; (4)

where, as above, x is the initial position of the
system. The value function has a clear meaning:
it is the optimal cost associated with the initial

position x. This is a reference value which can
be useful to evaluate the efficiency of a control –
if Jx. N̨ / is close to v.x/, this means that N̨ is
“efficient.”

Bellman’s dynamic programming principle
provides a first characterization of the value
function.

Proposition 1 (DPP for the infinite horizon
problem) Under the assumptions of Theorem 1,
for all x 2 R

d and 	 > 0,

v.x/ D inf
˛2A

�Z 	

0

g.yx.sI˛/; ˛.s//e��sds

C e��	 v.yx.	 I˛//
�
: (5)

Proof Denote by Nv.x/ the right-hand side of (5).
First, we remark that for any x 2 R

d and N̨ 2 A,

Jx. N̨ / D
Z 1

0

g. Ny.s/; N̨ .s//e��sds

D
Z 	

0

g. Ny.s/; N̨ .s//e��sds

C
Z 1

	

g. Ny.s/; N̨ .s//e��sds

D
Z 	

0

g. Ny.s/; N̨ .s//e��sds C e��	

�
Z 1

0

g. Ny.s C 	/; N̨ .s C 	//e��sds

�
Z 	

0

g. Ny.s/; N̨ .s//e��sds C e��	 v. Ny.	//

(here, yx.s; N̨ / is abbreviated as Ny.s/). Taking
the infimum over all trajectories, first over the
right-hand side and then the left of this inequality,
yields

v.x/ � Nv.x/ (6)

To prove the opposite inequality, we recall that
Nv is defined as an infimum, and so, for any x 2
R
d and " > 0, there exists a control N̨" (and the

corresponding evolution Ny") such that
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Nv.x/C"�
Z 	

0

g. Ny".s/; N̨".s//e��sdsCe��	v. Ny".	//:
(7)

On the other hand, the value function v being also
defined as an infimum, for any x 2 R

d and " > 0,
there exists a control Q̨" such that

v. Ny".	//C " � J Ny".	/. Q̨"/: (8)

Inserting (8) in (7), we get

Nv.x/ �
Z 	

0

g. Ny".s/; N̨".s//e��sds

Ce��	J Ny".	/. Q̨"/ � .1C e��	 /"

� Jx. Ǫ / � .1C e��	 /"

� v.x/ � .1C e��	 /"; (9)

where Ǫ is a control defined by

Ǫ .s/ D
(

N̨".s/ 0 � s < 	

Q̨".s � 	/ s � 	:
(10)

(Note that Ǫ .�/ is still measurable). Since " is
arbitrary, (9) finally yields Nv.x/ � v.x/.

We observe that this proof crucially relies on
the fact that the control defined by (10) still
belongs to A, being a measurable control. The
possibility of obtaining an admissible control by
joining together two different measurable con-
trols is known as the concatenation property.

The Hamilton–Jacobi–Bellman
Equation

The DPP can be used to characterize the value
function in terms of a nonlinear partial differ-
ential equation. In fact, let ˛� 2 A be the
optimal control, and y� the associated evolution
(to simplify, we are assuming that the infimum is
a minimum). Then,

v.x/D
Z 	

0

g.y�.s/; ˛�.s//e��sdsCe��	 v.y�.	//;

that is,

v.x/�e��	 v.y�.	//D
Z 	

0

g.y�.s/; ˛�.s//e��sds

so that adding and subtracting e��	v.x/ and
dividing by 	 , we get

e��	 .v.x/ � v.y�.	///
	

C v.x/.1 � e��	 /
	

D 1

	

Z 	

0

g.y�.s/; ˛�.s//e��sds:

Assume now that v is regular. By passing to the
limit as 	 ! 0C, we have

lim
	!0C

�v .y
�.	//� v.x/

	

D �Dv.x/ � Py�.x/ D �Dv.x/ � f .x; ˛�.0//

lim
	!0C

v.x/
.1 � e��	 /

	
D �v.x/

lim
	!0C

1

	

Z 	

0

g.y�.s/; ˛�.s//e��sdsDg.x; ˛�.0//

where we have assumed that ˛�.�/ is continuous
at 0. Then, we can conclude

�v.x/�Dv.x/ � f .x; a�/� g.x; a�/ D 0 (11)

where a� D ˛�.0/. Similarly, using the equiva-
lent form

v.x/C sup
˛2A

�
�
Z 	

0

g.y.s/; ˛.s//e��sds

�e��	v.y.	//
� D 0

of the DPP and the inequality, this implies for any
(continuous at 0) control ˛ 2 A,

�v.x/ �Dv.x/ � f .x; a/ � g.x; a/
� 0; for every a 2 A: (12)

Combining (11) and (12), we obtain the
Hamilton–Jacobi–Bellman equation (or dynamic
programming equation):
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�u.x/C sup
a2A

f�f .x; a/ �Du.x/� g.x; a/g D 0;

(13)

which characterizes the value function for the
infinite horizon problem associated with mini-
mizing (3). Note that given x, the value of a
achieving the max (assuming it exists) corre-
sponds to the control a� D ˛�.0/, and this makes
it natural to interpret the argmax in (13) as the
optimal feedback at x (see Bardi and Capuzzo
Dolcetta (1997) for more details).

In short, (13) can be written as

H.x; u;Du/ D 0

with x 2 R
d , and

H.x; u;p/D�u.x/Csup
a2A

f�f .x; a/�p�g.x; a/g:
(14)

Note that H.x; u; �/ is convex (being the sup of
a family of linear functions) and that H.x; �; p/
is monotone (since � > 0). It is also easy to
see that the solution u is not differentiable even
when f and g are smooth functions (i.e., f; g;2
C1.Rn; A/), so we need to deal with weak so-
lution of the Bellman equation. This can be done
in the framework of viscosity solutions, a theory
initiated by Crandall and Lions in the 1980s
which has been successfully applied in many
areas as optimal control, fluid dynamics, and
image processing (see the books Barles (1994)
and Bardi and Capuzzo Dolcetta (1997) for an
extended introduction and numerous applications
to optimal control). Typically viscosity solutions
are Lipschitz continuous solutions so they are
differentiable almost everywhere.

An Extension to theMinimum Time
Problem

In the minimum time problem, we want to min-
imize the time of arrival of the state on a given
target set T . We will assume that T � R

d is
a closed set. Then our cost functional will be
given by

J.x; ˛/ D tx.˛/

where

tx.˛/ WD

8̂
ˆ̂̂<
ˆ̂̂̂:

minft W yx.t; ˛/ 2 T g if yx.t; ˛/ 2 T
for some t � 0

C1 ifyx.t; ˛/ … T
for any t � 0

The corresponding value function is called the
minimum time function

T .x/ WD inf
˛.�/2A tx.˛.�//: (15)

The main difference with respect to the previous
problem is that now the value function T will be
finite valued only on a subset R which depends
on the target, on the dynamics, and on the set of
admissible controls.

Definition 1 The reachable set R is defined by

R WD [t>0R.t/ D fx 2 R
n W T .x/ < C1g

where, for t > 0, R.t/ WD fx 2 R
n W T .x/ < tg.

The meaning is clear: R is the set of initial points
which can be driven to the target in finite time.
The system is said to be controllable on T if
for all t > 0, T � int.R.t// (here, int(D)
denotes the interior of the set D). Assuming
controllability in a neighborhood of the target one
gets the continuity of the minimum time function
and under the assumptions made on f , A, and T ,
one can prove some interesting properties:

(i) R is open.
(ii) T is continuous on R.

(iii) lim
x!x0

T .x/ D C1, for any x0 2 @R.

Now let us denote by XD the characteristic func-
tion of the set D. Using in R arguments similar
to the proof of DPP in the previous section one
can obtain the following DPP:

Proposition 2 (DPP for the minimum time
problem) For any x 2 R, the value function
satisfies

T .x/ D inf
˛2Aft ^ tx.˛/C Xft�tx.˛/gT .yx.t; ˛//g

for any t � 0 (16)
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and

T .x/ D inf
˛2Aft C T .yx.t; ˛//g

for any t 2 Œ0; T .x/� (17)

From the previous DPP, one can also obtain the
following characterization of the minimum time
function.

Proposition 3 Let RnT be open and T 2
C.RnT /, then T is a viscosity solution of

max
a2A f�f .x; a/ � rT .x/g D 1 x 2 RnT

(18)

coupled with the natural boundary condition

8<
:
T .x/ D 0 x 2 @T
lim
x!@R

T .x/ D C1

By the change of variable v.x/ D 1�e�T .x/, one
can obtain a simpler problem getting rid of the
boundary condition on @R (which is unknown).
The new function v will be the unique viscosity
solution of an external Dirichlet problem (see
Bardi and Capuzzo Dolcetta (1997) for more
details), and the reachable set can be recovered
a posteriori via the relation R D fx 2 R

d W
v.x/ < 1g.

Further Extensions and Related
Topics

The DPP has been extended from deterministic
control problems to many other problems. In
the framework of stochastic control problems
where the dynamics are given by a diffusion,
the characterization of the value function
obtained via the DPP leads to a second-order
Hamilton–Jacobi–Bellman equation (Fleming
and Soner 1993; Kushner and Dupuis 2001).
Another interesting extension has been made in
differential games where the DPP is based on the
delicate notion of nonanticipative strategies for
the players and leads to a nonconvex nonlinear
partial differential equation (the Isaacs equation)

(Bardi and Capuzzo Dolcetta 1997). For a
short introduction to numerical methods based
on DP and exploiting the so-called “value
iteration,” we refer the interested reader to the
Appendix A in Bardi and Capuzzo Dolcetta
(1997) and to Kushner and Dupuis (2001) (see
also the book Howard (1960) for the “policy
iteration”).

Cross-References

�Numerical Methods for Nonlinear Optimal
Control Problems

�Optimal Control and Pontryagin’s Maximum
Principle
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Abstract

One approach to linear control system design in-
volves the matching of certain input-output mod-
els with respect to a quantification of closed-
loop performance. The approach is based on a
parametrization of all stabilizing feedback con-
trollers, which relies on the existence of co-
prime factorizations of the plant model. This
parametrization and spectral factorization meth-
ods for solving model-matching problems are
described within the context of impulse-response
energy and worst-case energy-gain measures of
controller performance.

Keywords

Coprime factorization; H2 control; H1 control;
Spectral factorization; Youla-Kučera controller
parametrization

Introduction

Various linear control problems can be formu-
lated in terms of the interconnection shown in
Fig. 1; e.g., see Francis and Doyle (1987), Boyd
and Barratt (1991), and Zhou et al. (1996). The
linear system K is a controller (with input y and
output u � v1) to be designed for the generalized
plant model G. The latter is constructed so that
controller performance (i.e., the quality of K
relative to specifications) can be quantified as a
nonnegative functional of

H.G;K/ D G11 CG12K.I �G22K/
�1G21;

(1)

which relates the input w and the output z when
v1 D 0 and v2 D 0. The objective is to select
K , to minimize this measure of performance.
Alternatively, controllers that achieve a speci-
fied upper bound are sought. It is also usual to
require internal stability, which pertains to the
fictitious signals v1 and v2, as discussed more
subsequently. The best known examples are H2

and H1 control problems. In the former, perfor-
mance is quantified as the energy (resp. power)
of z when w is impulsive (resp. unit white noise),
and in the latter, as the worst-case energy gain
from w to z, which can be used to reflect robust-
ness to model uncertainty; see Zhou et al. (1996).

The special case of G22 D 0 gives rise to
a (weighted) model-matching problem, in that
the corresponding performance map H.G;K/ D
G11 C G12KG21 exhibits affine dependence on
the design variable K , which is chosen to match
G12KG21 to �G11 with respect to the scalar quan-
tification of performance. Any internally stabiliz-
able problem withG22 ¤ 0, can be converted into
a model-matching problem. The key ingredients
in this transformation are coprime factorizations
of the plant model. The role of these and other
factorizations in a model-matching approach to
H2 and H1 control problems is the focus of this
article.

For the sake of argument, finite-dimensional
linear time-invariant systems are considered via
real-rational transfer functions in the frequency
domain, as the existence of all factorizations

ΣΣ

G =

⎡
⎢⎢⎣

G11 G12

G21 G22

⎤
⎥⎥⎦

K

u

v1

w

v2 y

z

Optimal Control via Factorization and Model Match-
ing, Fig. 1 Standard interconnection for control system
design
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employed is well understood in this setting.
Indeed, constructions via state-space realizations
and Riccati equations are well known. The merits
of the model-matching approach pursued here
are at least twofold: (i) the underlying algebraic
input-output perspective extends to more
abstract settings, including classes of distributed-
parameter and time-varying systems (Desoer
et al. 1980; Vidyasagar 1985; Curtain and Zwart
1995; Feintuch 1998; Quadrat 2006); and (ii)
model matching is a convex problem for various
measures of performance (including mixed
indexes) and controller constraints. The latter
can be exploited to devise numerical algorithms
for controller optimization (Boyd and Barratt
1991; Dahleh and Diaz-Bobillo 1995; Qi et al.
2004).

First, some notation regarding transfer
functions and two measures of performance
for control system design is defined. Coprime
factorizations are then described within the
context of a well-known parametrization of
stabilizing controllers, originally discovered
by Youla et al. (1976) and Kucera (1975). This
yields an affine parametrization of performance
maps for problems in standard form, and thus, a
transformation to a model-matching problem.
Finally, the role of spectral factorizations in
solving model-matching problems with respect
to impulse-response energy (H2) and worst-case
energy-gain (H1) measures of performance is
discussed.

Notation and Nomenclature

R generically denotes a linear space of matrices
having fixed row and column dimensions,
which are not reflected in the notation for
convenience, and entries that are proper real-
rational functions of the complex variable s;
i.e.,

�Pm
kD1 bksk

�
=
�Pn

kD1 aksk
�

for sets of
real coefficients fakgnkD1 and fbkgmkD1 with
m � n < 1. The compatibility of matrix
dimensions is implicitly assumed henceforth.
All matrices in R have (nonunique) “state-space”
realizations of the form C.sI � A/�1B C D,
where A;B;C and D are real valued matrices.

This form naturally arises in frequency-domain
analysis of the input-output map associated with
the time-domain model Px.t/ D Ax.t/ C Bu.t/,
with initial condition x.0/ D 0 and output
equation y.t/ D Cx.t/ C Du.t/, where Px
denotes the time derivative of x and u is the
input. The study of such linear time-invariant
differential equation models via the Laplace
transform and multiplication by real-rational
transfer function matrices is fundamental in
linear systems theory (Kailath 1980; Francis
1987; Zhou et al. 1996). P 2 R has an inverse
P�1 2 R if and only if limjsj!1 P.s/ is a
nonsingular matrix. The superscripts T and 	
denote the transpose and complex conjugate
transpose. For a matrix Z D Z� with complex
entries, Z > 0 means z�Zz � �z�z for
some � > 0 and all complex vectors z of
compatible dimension. P�.s/ WD P.�s/T ,
whereby .P.j!//� D P�.j!/ for all real !
with j WD p�1. Zeros of transfer function
denominators are called poles.

In subsequent sections, several subspaces of
R are used to define and solve two standard
linear control problems. The subspace B � R
comprises transfer functions that have no poles
on the imaginary axis in the complex plane. For
P 2 B, the scalar performance index

kP k1 WD max�1�!�1 N
.P.j!// � 0

is finite; the real number N
.Z/ is the maximum
singular value of the matrix argument Z. This
index measures the worst-case energy-gain from
an input signal u, to the output signal y D P u.
Note that kP k1 <  if and only if 2I �
P�.j!/P.j!/ > 0 for all �1 � ! � 1.

The subspace S � B � R consists of transfer
functions that have no poles with positive real
part. A transfer function in S is called stable
because the corresponding input-output map is
causal in the time domain, as well as bounded-
in-bounded-out (in various senses). If P 2 S is
such that P�P D I , then it is called inner. If
P;P�1 2 S, then both are called outer.

Let L denote the subspace of strictly-proper
transfer functions in B; i.e., for all entries of the
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matrix, the degree n of the denominator exceeds
the degreem of the numerator. Observe that P 2
L if and only if P� 2 L. Moreover, P1P2 2 L
and P3P1 2 L for all P1 2 L and Pi 2 B,
i D 2; 3. Now, for P1; P2 2 L, define the inner-
product

hP1;P2i WD 1

2�

Z 1

�1
trace.P�

1 .j!/P2.j!//d!<1

and the scalar performance index kP k2 WDphP;P i � 0 for P 2 L. This index equates
to the root-mean-square (energy) measure of the
impulse response and the covariance (power)
of the output signal y D P u, when the input
signal u is unit white noise. By the properties
trace.Z1 C Z2/ D trace.Z1/ C trace.Z2/ and
trace.Z1Z2/ D trace.Z2Z1/ of the matrix trace,
it follows that hP1 C P2; P3i D hP1; P3i C
hP2; P3i and

hP1; P2P3i D hP�
2 P1; P3i D hP1P�

3 ; P2i
D hP�

3 ;P
�
1 P2i for Pi 2L; iD1; 2; 3:

(2)

The (not closed) subspace L � B � R can be
expressed as the direct sum L D HCH?, where
H D L \ S and H? is the subspace of transfer
functions in L that have no poles with negative
real part. That is, given P 2 L, there is a unique
decomposition P D ˘ C.P / C ˘ �.P /, with
˘ C.P / 2 H and ˘ �.P / 2 H?. Observe that
P 2 H if and only if P� 2 H?. It can be shown
via Plancherel’s theorem that hP1; P2i D 0 for
P1 2 H? and P2 2 H. Finally, note that P1P2 2
H and P3P1 2 H for P1 2 H and Pi 2 S,
i D 2; 3.

Coprime and Spectral Factorizations

Given P 2 R, the factorizations P D NM�1 D
QM�1 QN are said to be (doubly) coprime over S,

if N , M , QN , QM are all elements of S and there
exist U0, V0, QU0, QV0 all in S such that

 QV0 � QU0
� 	M
N



D I and

� QN QM � 	U0
V0



D I

(3)

hold; i.e.,

MT NT

�
and

� QN QM �
are right in-

vertible in S. Importantly, if the factorizations are
coprime and P 2 S, then M�1 D QV0 � QU0P and
QM�1 D V0�PU0 are in S, as sums of products of

transfer functions in S; i.e., M and QM are outer.
Doubly coprime factorizations over S always ex-
ist, but these are not unique. Constructions from
state-space realizations can be found in Zhou
et al. (1996, Chapter 6) and Francis (1987), for
example. As mentioned above, coprime factor-
izations play a role in transforming a standard
problem into the special case of a model matching
problem, via the Youla-Kučera parametrization of
internally stabilizing controllers presented in the
next section.

Subsequently, a special coprime factoriza-
tion proves to be useful. If P�.s/P.s/ D
M��.s/N�.s/N.s/M�1.s/ > 0 for s on the
extended imaginary axis (i.e., for s D j! with
�1 � ! � 1), then it is possible to choose
the factor N to be inner. In this case, if P
is also an element of S, then P D NM�1
is called an inner-outer factorization, and
P�P D .M�1/�M�1 is called a spectral
factorization, since M;M�1 2 S. More
generally, if � D �� 2 B satisfies �.s/ > 0

for s on the extended imaginary axis, then there
exists a (non-unique) spectral factor ˙;˙�1 2 S
such that � D ˙�˙ . Similarly, there exists
a co-spectral factor Q̇ ; Q̇ �1 2 S such that
� D Q̇ Q̇ �. State-space constructions via
Riccati equations can be found in Zhou et al.
(1996, Chapter 13), for example.

Affine Controller/Performance-Map
Parametrization

With reference to Fig. 1, a generalized plant
modelG D 

G11 G12
G21 G22

� 2 R is said to be internally
stabilizable if there exists a K 2 R such that
the nine transfer functions associated with the
map from the vector of signals .w; v1; v2/ to
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the vector of signals .z; u; y/, which includes
the performance map H.G;K/ D G11 C
G12K.I � G22K/

�1G21, are all elements of S.
Accounting in this way for the influence of the
fictitious signals v1 and v2, and the behavior
of the internal signals u and y, amounts to
following requirement: Given minimal state-
space realizations, any nonzero initial condition
response decays exponentially in the time domain
when G and K are interconnected according
to Fig. 1 with w D 0, v1 D 0 and v2 D 0.
Not every G 2 R is internally stabilizable
in the sense just defined; for example, take
G11 to have a pole with positive real part and
G21 D G12 D G22 D 0. A necessary condition
for stabilizability is .I � G22K/

�1 2 R; i.e., the
inverse must be proper. The latter always holds if
G22 is strictly proper, as assumed henceforth to
simplify the presentation. It is also assumed that
G is internally stabilizable.

It can be shown that G is internally stabilized
by K if and only if the standard feedback in-
terconnection of G22 and K , corresponding to
w D 0 in Fig. 1, is internally stable. That is, if
and only if the transfer function

	
I �K

�G22 I



2 R; (4)

which relates u and y to v1 and v2 by virtue of the
summing junctions at the interconnection points,
has an inverse in S; see Francis (1987, Theo-
rem 4.2). Substituting the coprime factorizations
K D UV �1 D QV �1 QU and G22 D NM�1 D
QM�1 QN , it follows that the inverse of (4) is an

element of S if and only if

	
M U

N V


�1
2 S ,

	 QV � QU
� QN QM


�1
2 S:

(5)

The equivalent characterizations of internal
stability in (5) lead directly to affine parametriza-
tions of controllers and performance maps.
Specifically, following the approach of Desoer
et al. (1980), Vidyasagar (1985), and Francis
(1987), suppose that the factorizations G22 D
NM�1 D QM�1 QN are doubly coprime in the

sense that (3) holds for some U0; V0; QU0; QV0 2 S.
Indeed, since 0 D G22 � G22 D QM�1. QMN �
QNM/M�1, it follows that

	 QV0 � QU0
� QN QM


 	
M U0
N V0



D
	
I 0

0 I




D
	
M U0
N V0


 	 QV0 � QU0
� QN QM



:

(6)

Exploiting this and the condition (5), it holds that
K D UV �1 stabilizes G22 if and only if

U D.U0�MQ/ and V D.V0�NQ/ with Q2S:

Similarly, K stabilizes G22 if and only if K D
. QV0 �Q QN/�1. QU0 �Q QM/ withQ 2 S. Together,
these constitute the Youla-Kučera parametriza-
tions of internally stabilizing controllers. Impor-
tantly, the coprime factors that appear in these
are affine functions of the stable parameter Q.
Moreover, using (6), an affine parametrization of
the standard performance map (1) holds by direct
substitution of either controller parametrization.
Specifically,

H.G;K/ D G11 CG12K.I �G22K/�1G21
D T1 C T2QT3 with Q 2 S; (7)

where T1 D G11 C G12U0 QMG21, T2 D �G12M
and T3 D QMG21. Clearly, T1 2 S since this
is the performance map when Q D 0 2 S.
By the assumption that G is stabilizable, it fol-
lows that T2 and T3 are also elements of S;
see Francis (1987, Chapter 4). The so-called Q-
parametrization in (7) motivates the subsequent
consideration of model-matching problems with
respect to the standard measures of control sys-
tem performance k � k2 and k � k1.

Model-Matching via Spectral
Factorization

Bearing in mind the Q-parametrization (7), con-
sider the following H2 model-matching problem,
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where inf denotes greatest lower bound (infi-
mum) and Ti 2 S, i D 1; 2; 3:

inf
Q2S kT1 C T2QT3k2:

Assume that T2.s/ and T3.s/ have full column
and row rank, respectively, for s on the extended
imaginary axis. Also assume that T1 is strictly
proper, whereby Q must be strictly proper, and
thus an element of H � S, for the performance
index to be finite. Under this standard collec-

tion of assumptions, the infimum is achieved as
shown below.

A minimizer of the convex functional f WD
Q 2 H 7! h.T1 C T2QT3/; .T1 C T2QT3/i
is a solution of the model matching problem.
Given spectral factorizations ˚�˚ D T �

2 T2
and ��� D T3T

�
3 (i.e., ˚;˚�1;�;��1 2

S), which exist by the assumptions on the
problem data, let R WD ˚Q� and W WD
˚��T �

2 T1T
�
3 �

��. Then for Q 2 H, which
is equivalent to R 2 H by the properties of
spectral factors, it follows that

(8)
f .Q/ D hT1; T1i C h˚��T �

2 T1T
�
3 �

��; Ri C hR;˚��T �
2 T1T

�
3 �

��i C hR;Ri
D hT1; T1i C h.˘ �.W /C ˘ C.W /CR/; .˘ �.W /C ˘ C.W /CR/i � hW;W i
D hT1; T1i � h˘ C.W /;˘ C.W /i C h.˘ C.W /CR/; .˘ C.W /CR/i; (9)

where the second last equality holds by
“completion-of-squares” and the last equality
holds since h˘ C.W /;˘ �.W /i D 0 D
hR;˘ �.W /i. From (9) it is apparent that

Q D �˚�1˘ C.˚��T �
2 T1T

�
3 �

��/��1

is a minimizer of f . As above, spectral fac-
torization is a key component of the so-called
Wiener-Hopf approach of Youla et al. (1976) and
DeSantis et al. (1978).

Now consider the H1 model-matching prob-
lem

inf
Q2S kT1 C T2QT3k1;

given Ti 2 S, i D 1; 2; 3. This is more chal-
lenging than the problem discussed above, where
k � k2 is the performance index. While sufficient
conditions are again available for the infimum
to be achieved, computing a minimizer is gener-
ally difficult; see Francis and Doyle (1987) and
Glover et al. (1991). As such, nearly optimal
solutions are often sought by considering the
relaxed problem of finding the set of Q 2 S that
satisfy kT1CT2QT3k1 <  for a value of  > 0
greater than, but close to, the infimum.

With a view to highlighting the role of factor-
ization methods and simplifying the presentation,
suppose that T2 is inner, which is possible without
loss of generality via inner-outer factorization if
T2.s/ has full column rank for s on the extended
imaginary axis. Furthermore, assume that T3 D
I . Following the approach of Francis (1987) and
Green et al. (1990), let X� D 

X�
1 X�

2

� WD
T2 I � T2T �

2

� 2 B, so that X�X D I and
XT2 D Œ I0 �. Observe that

kT1 C T2Qk1 D kX.T1 C T2Q/k1

D
����
	
T �
2 T1 CQ

.I � T2T
�
2 /T1


����
1
< 

(10)

if and only if

0 < 2I � T �
1 .I � T2T

�
2 /T1

� .T �
2 T1 CQ/�.T �

2 T1 CQ/ (11)

on the extended imaginary axis. Note that (11)
implies 0 < 2I � T �

1 .I � T2T
�
2 /

2T1. Thus, it
follows that there exists a Q 2 S for which (10)
holds if and only if the following are both sat-
isfied: (a) there exists a spectral factorization



Optimal Control via Factorization and Model Matching 967

O

2��� D 2I � T �
1 .I � T2T

�
2 /

2T1; and (b)
there exists an NR.D Q��1/ 2 S such that k NW C
NRk1 <  , where NW WD T �

2 T1�
�1 2 B. The

condition (b) is a well-known extension problem
and a solution exists if and only if the induced
norm of the Hankel operator with symbol NW is
less than  , which is part of a result known as
Nehari’s theorem. In fact, (b) is equivalent to the
existence of a spectral factor �;� �1 2 S with
� �1
11 2 S such that

� �
	
I 0

0 �2I


� D

	
I NW
0 I


� 	
I 0

0 �2I

 	
I NW
0 I



;

(12)

in which case k NW C NRk1 �  if and only if
NR D NR1 NR�1

2 with
 NRT1 NRT2

� WD  NST I �� �T ,
NS 2 S and k NSk1 �  ; see Ball and Ran

(1987), Francis (1987), and Green et al. (1990)
for details, including state-space constructions of
the factors via Riccati equations. Noting that

	
T2 T1
0 I


�	
I 0

0 �2I

	
T2 T1
0 I



D
	
I 0

0 �


�	
I NW
0 I


�

	
I 0

0 �2I

	
I NW
0 I


	
I 0

0 �



;

it follows using (12) that there exists a Q 2 S
such that (10) holds if and only if there exists
a spectral factor ˝;˝�1 2 S with ˝�1

11 2 S�
˝ D �


I 0
0 �

��
that satisfies

	
T2 T1
0 I


�	
I 0

0 �2I

	
T2 T1
0 I



D˝�

	
I 0

0 �2I


˝;

(13)

in which case kT1 C T2Qk1 �  if and only if
Q D Q1Q

�1
2 , where


QT
1 Q

T
2

� WD 
ST I

�
˝�T ,

S 2 S and kSk1 �  ; see Green et al.
(1990). So-called J -spectral factorizations of
the kind in (12) and (13) also appear in the
chain-scattering/conjugation approach of Kimura
(1989, 1997) and the factorization approach
of Ball et al. (1991), for example.

Summary

The preceding sections highlight the role of co-
prime and spectral factorizations in formulating
and solving model-matching problems that arise
from standard H2 and H1 control problems.
The transformation of standard control problems
to model-matching problems hinges on an affine
parametrization of internally stabilized perfor-
mance maps. Beyond the problems considered
here, this parametrization can be exploited to
devise numerical algorithms for various other
control problems in terms of convex mathemat-
ical programs.

Cross-References

�H-Infinity Control
�H2 Optimal Control
�Polynomial/Algebraic Design Methods
�Spectral Factorization
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Optimal Control with State Space
Constraints

Heinz Schättler
Washington University, St. Louis, MO, USA

Abstract

Necessary and sufficient conditions for optimal-
ity in optimal control problems with state space
constraints are reviewed with emphasis on geo-
metric aspects.

Keywords

Admissible control; Bolza form; Mayer problem

Problem Formulation and
Terminology

Many practical problems in engineering or
of scientific interest can be formulated in the
framework of optimal control problems with state
space constraints. Examples range from the space
shuttle reentry problem in aeronautics (Bonnard
et al. 2003) to the problem of minimizing the base
transit time in bipolar transistors in electronics
(Rinaldi and Schättler 2003).

An optimal control problem with state space
constraints in Bolza form takes the following
form: minimize a functional

J.u/ D
Z T

t0

L.t; x.t/; u.t//dt C ˚.T; x.T //

over all Lebesgue measurable functions u W
Œt0; T � ! U that take values in a control set
U � R

m, subject to the dynamics

Px.t/ D F.t; x.t/; u.t//; x.t0/ D x0;

terminal constraints

�.T; x.T // D 0;

and state space constraints

h˛.t; x.t// � 0 for ˛ D 1; : : : ; r:

The focus of this contribution is on state space
constraints, and, for simplicity, in this formula-
tion, we have omitted mixed control state space
constraints of the form gˇ.t; x; u/ � 0. States
x lie in R

n and controls in R
m; typically, the

control set U � R
m is compact and convex,

often a polyhedron. The time-varying vector field
F W R � R

n � U ! R
n is continuously differen-

tiable in .t; x/, and the terminal constraint N D
f.t; x/ W �.t; x/ D 0g is defined by continuously
differentiable mappings  i W R � R

n ! R
k with
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the property that the gradients r i D .
@ i
@t
;
@ i
@x
/

(which we write as row vectors) are linearly
independent on N . The terminal time T can be
free or fixed; a fixed terminal time simply would
be prescribed by one of the functions  i . The
state space constraints

M˛ D f.t; x/ W h˛.t; x/ D 0g; ˛ D 1; : : : ; r;

are defined by continuously differentiable time-
varying vector fields h˛ W R�R

n ! R; .t; x/ 7!
h˛.t; x/, and we assume that the gradients rh˛
do not vanish on M˛ . In particular, each set M˛

thus is an embedded submanifold of codimension
1 of RnC1. We denote by h D .h1; : : : ; hr /

T the
time-varying vector field defining the state space
constraints.

Terminology: Admissible controls are locally
bounded Lebesgue measurable functions that
take values in the control set, u W Œt0; T � ! U .
Given any admissible control, the initial value
problem Px.t/ D F.t; x.t/; u.t//, x.t0/ D x0,
has a unique solution defined on some maximal
open interval of definition I . This solution is
called the trajectory corresponding to the control
u and the pair .x; u/ is a controlled trajectory. An
arc � of the graph of a trajectory defined over
an open interval I for which none of the state
space constraints is active is called an interior
arc, and � is a boundary arc if at least one
constraint is active on all of I . We call � anM˛-
boundary arc over I if only the constraint h˛ � 0

is active on I . The times 	 when interior arcs and
boundary arcs meet are called junction times and
the corresponding pairs .	; x.	// junction points.

Despite the abundance and importance of
practical problems that can be described as
optimal control problems with state space
constraints, for such problems the theory still
lacks the coherence that the theory for problems
without state space constraints has reached and
there still exist significant gaps between the
theories of necessary and sufficient conditions
for optimality for optimal control problems with
state space constraints. The theory of existence
of optimal solutions differs little between optimal
control problems with and without state space

constraints, is well established, and will not
be addressed here (e.g., see Cesari 1983 or the
Filippov-Cesari theorem in Hartl et al. 1995).

Necessary Conditions for Optimality

First-order necessary conditions for optimality
are given by the Pontryagin maximum principle
(Pontryagin et al. 1962). The zero set of even a
smooth (C1) function can be an arbitrary closed
subset of the state space. As a result, in necessary
conditions for optimality, the multipliers associ-
ated with the state space constraints a priori are
only known to be nonnegative Radon measures
(Ioffe and Tikhomirov 1979; Vinter 2000). Let
u� W Œt0; T � ! U be an optimal control with
corresponding trajectory x� and, for simplicity of
presentation, also assume that no state constraints
are active at the terminal time so that the standard
transversality conditions apply. Then it follows
that there exist a constant �0 � 0, an absolutely
continuous function �, which we write as row-
vector, � W Œt0; T � ! .Rn/�, and nonnegative
Radon measures �˛ 2 C �.Œt0; T �IR/, ˛ D
1; : : : ; r , with support in the sets R˛ D ft 2
Œt0; T � W h˛.t; x�.t// D 0g, which do not all
vanish simultaneously, i.e.,

�0 C k�k1 C
rX

˛D1
�˛.Œt0; T �/ > 0;

such that with

�.t/ D �.t/ �
rX

˛D1

Z
Œt0;t /

@h˛

@x
.s; x�.s//d�˛.s/;

and

HDH.t; �0; �; x; u/D�0L.t; x; u/C�F.t; x; u/

the following conditions hold:
(a) The adjoint equation holds in the form

P�.t/ D �@H
@x
.t; �0; �.t/; x�.t/; u�.t//
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D ��0 @L
@x
.t; x�.t/; u�.t//

� �.t/@F
@x
.t; x�.t/; u�.t//;

and there exists a row-vector� 2 .Rk/� such
that

�.T / D �0
@˚

@x
.T; x�.T //C �

@�

@x
.T; x�.T //

and

0 D H.T; �0; �.T /; x�.T /; u�.T //

C �0
@˚

@t
.T; x�.T //C �

@�

@t
.T; x�.T //:

(b) The optimal control minimizes the Hamil-
tonian over the control set U along
.�.t/; x�.t//:

H.t; �0; �.t/; x�.t/; u�.t//

D min
v2U H.t; �0; �.t/; x�.t/; v/:

Furthermore,

H.t; �0; �.t/; x�.t/; u�.t//

D H.T; �0; �.t/; x�.t/; u�.t//

�
Z
Œt;T �

@H

@t
.s; �0; �.s/; x�.s/; u�.s//ds

C
rX

˛D1

Z
Œt;T �

@h˛

@t
.s; x�.s//d�˛.s/

Controlled trajectories .x; u/ for which there
exist multipliers such that these conditions are
satisfied are called extremals. In general, it cannot
be excluded that �0 vanishes and extremals with
�0 D 0 are called abnormal, while those with
�0 > 0 are called normal. In this case, the
multiplier can be normalized, �0 D 1.

Special Case: A Mayer Problem for
Single-Input Control Linear Systems
Under the general assumptions formulated above,
the sets R˛ � Œt0; T � when a particular con-
straint is active can be arbitrarily complicated.

But in many practical applications, state con-
straints have strong geometric properties – often
they are embedded submanifolds – and it is pos-
sible to strengthen these necessary conditions for
optimality in the sense of specifying the measures
further. We formulate the conditions for a partic-
ular case of common interest.

We consider an optimal control problem in
Mayer form (i.e., L 
 0) for a single-input
control linear system with dynamics

Px D F.t; x; u/ D f .t; x/C ug.t; x/

and the control set U a compact interval, U D
Œa; b�. Adjoining time as extra state variable, Pt 

1, and defining

F0.t; x/D
�

1

f .t; x/

�
and G.t; x/D

�
0

g.t; x/

�
;

for a continuously differentiable function k W R�
R
n ! R

n, the expressions

LF0k W R � R
n ! R

n;

.t; x/ 7! .LF0k/ .t; x/

D @k

@t
.t; x/C @k

@x
.t; x/f .t; x/

and

LGk W R � R
n ! R

n;

.t; x/ 7! .LGk/ .t; x/ D @k

@x
.t; x/g.t; x/

represent the Lie (or directional) derivatives of
the function k along the vector fields F0 and G,
respectively. In terms of this notation, the deriva-
tive of the function h˛ (defining the manifoldM˛)
along trajectories of the system is given by

Ph˛.t; x.t// D d

dt
h˛.t; x.t//

D LF0h˛.t;x.t//Cu.t/LGh˛.t;x.t//:

If the function LGh˛ does not vanish at a point
.Qt ; Qx/ 2 M˛, then there exists a neighborhood
V of .Qt ; Qx/ such that there exists a unique



Optimal Control with State Space Constraints 971

O

control u˛ D u˛.t; x/ which solves the equation
Ph˛.t; x/ D 0 on V and u˛ is given in feedback
form as

u˛.t; x/ D �LF0h˛.t; x/
LGh˛.t; x/

:

The manifold M˛ is said to be control invariant
of relative degree 1 if the Lie derivative of h˛ with
respect toG, LGh˛, does not vanish anywhere on
M˛ and if the function u˛.t; x/ is admissible, i.e.,
takes values in the control set Œa; b�.

Thus, for a control-invariant submanifold of
relative degree 1, the control that keeps the man-
ifold invariant is unique, and the corresponding
dynamics induce a unique flow on the constraint.
This assumption corresponds to the least degener-
ate, i.e., in some sense most generic or common,
scenario and is satisfied for many practical prob-
lems.

Suppose the reference extremal is normal and
let �˛ be an M˛-boundary arc defined over an
open interval I with corresponding boundary
control u˛ that takes values in the interior of the
control set along �˛. Then the Radon measure�˛
is absolutely continuous with respect to Lebesgue
measure on I with continuous and nonnegative
Radon-Nikodym derivative �˛.t/ given by

�˛.t/ D
�.t/

�
@g

@t
.t; x�.t//C Œf; g�.t; x�.t//

�
LGh˛.t; x�.t//

where Œf; g� denotes the Lie bracket of the time-
varying vector fields f and g in the variable x,

Œf; g�.t; x/ D @g

@x
.t; x/f .t; x/� @f

@x
.t; x/g.t; x/:

In particular, in this case, the adjoint equation can
be expressed in the more common form

P�.t/ D ��.t/@F
@x
.t; x�; u�/� �˛.t/

@h˛

@x
.t; x�/;

with all partial derivatives evaluated along the
reference trajectory. Furthermore, the multiplier
� remains continuous at entry or exit if the
controlled trajectory .x�; u�/meets the constraint

M˛ transversally (e.g., see Schättler 2006). This
follows from the following characterization of
transversal connections between interior and
boundary arcs due to Maurer (1977): if 	 is an
entry or exit junction time between an interior arc
and an M˛-boundary arc for which the reference
control u� has a limit at 	 along the interior
arc, then the interior arc is transversal to M˛

at entry or exit if and only if the control u� is
discontinuous at 	 .

Informal Formulation of Necessary
Conditions
In order to ensure the practicality of necessary
conditions for optimality, it is essential that be-
sides atomistic structures at junctions that lead to
computable jumps in the multipliers, the Radon
measures �˛ have no singular parts with respect
to Lebesgue measure. If it is assumed a priori that
optimal controlled trajectories are finite concate-
nations of interior and boundary arcs, and if the
constraint sets have a reasonably regular structure
(embedded submanifolds and transversal inter-
sections thereof) and satisfy a rather technical
constraint qualification (see Hartl et al. 1995)
that guarantees that the restrictions of the system
to active constraints have solutions, then it is
possible to specify the above necessary condi-
tions further and formulate more user friendly
versions for the determination of the multipliers.
Such formulations have become the standard for
numerical computations, but they still have not
always been established rigorously and somewhat
carry the stigma of a heuristic nature. Neverthe-
less, it is often this more concrete set of condi-
tions that allow to solve problems numerically
and analytically. If then, in conjunction with
sufficient conditions for optimality, it is possible
to verify the optimality of the computed extremal
solutions, this generates a satisfactory theoretical
procedure. Such conditions, following Hartl et al.
(1995), generally are referred to as the “informal
theorem”.

Suppose .x�; u�/ is a normal extremal con-
trolled trajectory defined over the interval Œt0; T �
with the property that the graph of x� is a finite
concatenation of interior and boundary arcs with
junction times 	i , i D 1; : : : ; k, t0 D 	0 < 	1 <
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: : : < 	k < 	kC1 D T . Under an appropriate
constraint qualification, there exist a multiplier �,
� W Œt0; T � ! .Rn/�, which is absolutely con-
tinuous on each subinterval Œ	i ; 	iC1�; multipliers
�˛ , �˛ W Œt0; T � ! .Rn/�, which are continuous
on each interval Œ	i ; 	iC1�; a vector � 2 .Rk/�;
and vectors �.	i / 2 .Rr /�, i D 1; : : : ; k, with
nonnegative entries such that:
(a) (adjoint equation) On each interval

.	i ; 	iC1/, i D 0; : : : ; r , � satisfies the
adjoint equation in the form

P�.t/ D �@L
@x
.t; x�.t/; u�.t//

��.t/@F
@x
.t; x�.t/; u�.t//

�
rX

˛D1
�˛.t/

@h˛

@x
.t; x�/;

with �˛.t/ D 0 if the constraint M˛ is not
active at time t . Assuming that no state space
constraint is active at the terminal time, the
value of the multiplier � at the terminal time
is given by the transversality condition

�.T / D @˚

@x
.T; x�.T //C �

@�

@x
.T; x�.T //:

At any junction time 	i between an interior
arc and a boundary arc, the multiplier � may
be discontinuous satisfying a jump condition
of the form

�.	i�/ D �.	iC/C �.	i /
@h

@x
.	i ; x�.	i //

and the complementary slackness condition

�.	i /
@h

@x
.	i ; x�.	i // D 0

holds.
(b) The optimal control minimizes the Hamil-

tonian over the control set U along
.�.t/; x�.t//:

H.t; �.t/; x�.t/; u�.t//

D min
v2U H.t; �.t/; x�.t/; v/

and at the junction times 	i we have that

H.	i ; �.	i�/; x�.	i /; u�.	i�//
D H.	i ; �.	iC/; x�.	i /; u�.	iC//

��.	i /@h
@t
.	i ; x�.	i //:

Sufficient Conditions for Optimality

The literature on sufficient conditions for opti-
mality for optimal control problems with state
space constraints is limited. The value function
for an optimal control problem at a point .t; x/ in
the extended state space, V D V.t; x/, is defined
as the infimum over all admissible controls u for
which the corresponding trajectory starts at the
point x at time t and satisfies all the constraints
of the problem,

V.t; x/ D inf
u2U J.u/:

Any sufficiency theory for optimal control prob-
lems, one way or another, deals with the solution
of the corresponding Hamilton-Jacobi-Bellman
(HJB) equation:

@V

@t
.t; x/C min

u2U

�
@V

@x
.t; x/F.t; x; u/

CL.t; x; u/g 
 0;

V .T; x/ D ˚.T; x/ whenever �.T; x/ D 0:

Value functions for optimal control problems
rarely are differentiable everywhere, but gener-
ally have singularities along lower-dimensional
submanifolds. Nevertheless, under some techni-
cal assumptions and with proper interpretations
of the derivatives, this equation describes the
evolution of the value function of an optimal
control problem and, if an appropriate solution
can be constructed, indeed solves the optimal
control problem.

There exists a broad theory of viscosity so-
lutions to the HJB equation (e.g., Fleming and



Optimal Control with State Space Constraints 973

O

Soner 2005; Bardi and Capuzzo-Dolcetta 2008)
that is also applicable to problems with state
space constraints (Soner 1986) and, under vary-
ing technical assumptions, characterizes the value
function V as the unique viscosity solution to the
HJB equation. This has led to the development of
algorithms that can be used to compute numerical
solutions.

A more classical and more geometric
approach to solving the HJB equation is based
on the method of characteristics and goes back to
the work of Boltyansky on a regular synthesis
for optimal control problems without state
space constraints (Boltyanskii 1966). This work
follows classical ideas of fields of extremals
from the calculus of variations and imposes
technical conditions that allow to handle the
singularities that arise in the value functions
(e.g., see, Schättler and Ledzewicz 2012).
Stalford’s results in Stalford (1971) follow
this approach for problems with state space
constraints, but a broadly applicable theory of

regular synthesis, as it was developed by Piccoli
and Sussmann in (2000) for problems without
state space constraints, does not yet exist for
problems with state space constraints. Results
that embed a controlled reference extremal into
a local field of extremals have been given by
Bonnard et al. (2003) or Schättler (2006), and
these constructions show the applicability of the
concepts of a regular synthesis to problems with
state space constraints as well.

Examples of Local Embeddings
of Boundary Arcs
We illustrate the typical, i.e., in some sense most
common, generic structures of local embeddings
of boundary arcs in Figs. 1 and 2. The state
constraint M˛ is a control-invariant submanifold
of relative degree 1 and represented by a hori-
zontal line as it arises when limits on the size
of a particular state are imposed. Figure 1 shows
the typical entry-boundary-exit concatenations of
an interior arc followed by a boundary arc and

Optimal Controlwith
State Space Constraints,
Fig. 1 A typical local
synthesis around a
boundary arc when no
terminal constraints are
present

Optimal Controlwith
State Space Constraints,
Fig. 2 A typical local
synthesis around a
boundary arc when
terminal constraints are
present
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another interior arc. The local embedding of the
boundary arc differs substantially from classi-
cal local imbeddings for unconstrained problems
in the sense that this field necessarily contains
small pieces of trajectories which, when propa-
gated backward, are not close to the reference
trajectory. This, however, does not affect the
memoryless properties required for a synthesis
forward in time, and strong local optimality of
the reference trajectory can be proven combining
synthesis type arguments with homotopy type
approximations of the synthesis (Schättler 2006).
The one trajectory marked as black line in Fig. 1
corresponds to an optimal trajectory that meets
the constraint only at the junction point and
immediately bounces back into the interior. Such
a trajectory arises as the limit when the concate-
nation structure of optimal controlled trajecto-
ries changes from interior-boundary-interior arcs
to trajectories that do not meet the constraint.
These structures are one of the extra sources
for singularities in the value function that come
up in optimal control problems with state space
constraints. Switching surfaces for the interior
arcs, as one is also shown in this figure, do not
cause such a loss of differentiability if they are
crossed transversally be the extremal trajectories
of the field.

Figure 2 depicts the structure of an optimal
synthesis for a problem from electronics, the
problem of minimizing the base transit time of
bipolar homogeneous transistors. The electrical
field that determines the transit time is controlled
by tailoring a distribution of dopants in the base
region, and this dopant profile becomes an impor-
tant design parameter determining the speed of
the device. But due to physical and engineering
limitations, the variables describing the dopants
need to be limited, and thus this becomes an
optimal control problem with state space con-
straints represented by hard limits on the vari-
ables. The constraints here are control invariant
of relative degree 1. Optimal solutions, in the
presence of initial and terminal constraints, have
both portions along the upper and lower control
limits of the constrained variable and typically
proceed from the upper to the lower values along
an optimal singular control (which takes values in

the interior of the control set) in the interior of the
admissible domain, possibly with saturation if the
control limits are reached.

Cross-References

�Numerical Methods for Nonlinear Optimal
Control Problems

�Optimal Control and Pontryagin’s Maximum
Principle

Bibliography

Bardi M, Capuzzo-Dolcetta I (2008) Optimal control and
viscosity solutions of Hamilton-Jacobi-Bellman equa-
tions. Springer, New York

Boltyanskii VG (1966) Sufficient conditions for optimal-
ity and the justification of the dynamic programming
principle. SIAM J Control Optim 4:326–361

Bonnard B, Faubourg L, Launay G, Trélat E (2003)
Optimal control with state space constraints and the
space shuttle re-entry problem. J Dyn Control Syst
9:155–199

Cesari L (1983) Optimization – theory and applications.
Springer, New York

Fleming WH, Soner HM (2005) Controlled Markov pro-
cesses and viscosity solutions. Springer, New York

Frankowska H (2006) Regularity of minimizers and of ad-
joint states in optimal control under state constraints.
Convex Anal 13:299–328

Hartl RF, Sethi SP, Vickson RG (1995) A survey of
the maximum principles for optimal control problems
with state constraints. SIAM Rev 37:181–218

Ioffe AD, Tikhomirov VM (1979) Theory of extremal
problems. North-Holland, Amsterdam/New York

Maurer H (1977) On optimal control problems with
bounded state variables and control appearing linearly.
SIAM J Control Optim 15:345–362

Piccoli B, Sussmann H (2000) Regular synthesis and
sufficient conditions for optimality. SIAM J Control
Optim 39:359–410

Pontryagin LS, Boltyanskii VG, Gamkrelidze RV,
Mishchenko EF (1962) Mathematical theory of opti-
mal processes. Wiley-Interscience, New York

Rinaldi P, Schättler H (2003) Minimization of the base
transit time in semiconductor devices using optimal
control. In: Feng W, Hu S, Lu X (eds) Dynamical
systems and differential equations. Proceedings of the
4th international conference on dynamical systems
and differential equations. Wilmington, May 2002,
pp 742–751

Schättler H (2006) A local field of extremals for optimal
control problems with state space constraints of rela-
tive degree 1. J Dyn Control Syst 12:563–599

http://dx.doi.org/10.1007/978-1-4471-5058-9_208
http://dx.doi.org/10.1007/978-1-4471-5058-9_200


Optimal Deployment and Spatial Coverage 975

O

Schättler H, Ledzewicz U (2012) Geometric optimal con-
trol. Springer, New York

Soner HM (1986) Optimal control with state-space con-
straints I. SIAM J Control Optim 24:552–561

Stalford H (1971) Sufficient conditions for optimal control
with state and control constraints. J Optim Theory
Appl 7:118–135

Vinter RB (2000) Optimal control. Birkhäuser, Boston

Optimal Deployment and Spatial
Coverage

Sonia Martínez
Department of Mechanical and Aerospace
Engineering, University of California, La Jolla,
San Diego, CA, USA

Abstract

Optimal deployment refers to the problem of how
to allocate a finite number of resources over a
spatial domain to maximize a performance metric
that encodes certain quality of service. Depend-
ing on the deployment environment, the type of
resource, and the metric used, the solutions to this
problem can greatly vary.

Keywords

Coverage control algorithms; Facility location
problems

Introduction

The problem of deciding what are optimal geo-
graphic locations to place a set of facilities has a
long history and is the main subject in operations
research and management science; see Drezner
(1995). A facility can be broadly understood as
a service such as a school; a hospital; an airport;
an emergency service, such as a fire station; or,
more generally, routes of a vehicle, from buses
to aircraft, an autonomous vehicle, or a mobile
sensor.

The specific formulation of facility location
problems depends very much on the particular
underlying application. A distinguishing feature
is that all involve strategic planning, accounting
for the long-term impact on the facility operating
cost and their fast response to the demand. Thus,
these problems lead to constrained optimization
formulations which are typically very hard to
solve optimally. The computational complexity
of such problems, which, even in their most basic
formulations, typically lead to NP-hard problems,
has made their solution largely intractable until
the advent of high-speed computing.

Locational optimization techniques have also
been employed to solve optimal estimation
problems by static sensor networks, mesh and
grid optimization design, clustering analysis, data
compression, and statistical pattern recognition;
see Du et al. (1999). However, these solutions
typically require centralized computations and
availability of information at all times.

When the facilities are multiple vehicles or
mobile sensors, the underlying dynamics may
require additional changes and further analysis
that guarantee the overall system stability. In
what follows, we review a particular coverage
control problem formulation in terms of the
so-called expected-value multicenter functions
that makes the analysis tractable leading to
robust, distributed algorithm implementations
employing computational geometric objects such
as Voronoi partitions.

Basic Ingredients from
Computational Geometry

In order to formulate a basic optimal deployment
problem and algorithm, we require of several
notions from computational geometry; see Bullo
et al. (2009) for more information.

Let S be a measurable set of R
m, for m 2

N, consider a distance function d on R
m, and

let P D fp1; : : : ; png be n distinct points of
S , corresponding to locations of certain facil-
ities. The Voronoi partition of S generated by
P and associated with d is given by V.P / D
fV1.P /; : : : ; Vn.P /g, where
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Vi.P / D ˚
q 2 S j d.pi ; q/ � d.pj ; q/;

j 2 P n fig�; i 2 f1; : : : ; ng:

Given r 2 R>0, denote by B.pi ; r/ the closed
ball of center pi and radius r . The r-limited
Voronoi partition of S generated by P and as-
sociated with d is the Voronoi partition of the
set S \ [n

iD1B.pi ; r/, denoted as Vr .P / D
fV1;r .P /; : : : Vn;r .P /g.

Let � W S ! R�0 be a measurable density
function on S . The area and the centroid (or
center of mass) of W � S with respect to � are
the values

A�.W / D
Z
W

�.q/dq;

CM�.W / D 1

A�.W /

Z
W

q�.q/dq:

We say that the set of distinct points P in S

is a centroidal Voronoi configuration (resp., a r-
limited centroidal Voronoi configuration) if each
pi is at the centroid of its own Voronoi cell.
That is, pi D CM�.Vi .P //, i 2 f1; : : : ; ng
(resp., pi D CM�.Vi;r .P //, and i 2 f1; : : : ; ng).
Voronoi partitions and centroidal Voronoi config-
urations help assess the distribution of locations
in a spatial domain as we establish below.

A Voronoi partition induces a natural proxim-
ity graph, called the Delaunay graph, over the
set of points P . We recall that a graph G is a
pair G D .V;E/ where V is a set of n vertices
and E is a set of ordered pair of vertices, E �
V � V , called edge set. A proximity graph is
a graph function defined on the set S , which
assigns a set of distinct points P � S to a graph
G.P / D .P;E.P //, where E.P / is a function
of the relative locations of the point set. Example
graphs include the following:
1. The r-disk graph, Gdisk,r , for r 2 R>0. Here,
.pi ; pj / 2 Edisk,r .P / if d.pi ; pj / � r .

2. The Delaunay graph, GD. We have .pi ; pj / 2
ED.P / if Vi .P / \ Vj .P / ¤ ;.

3. The r-limited Delaunay graph, GLD,r , for r 2
R>0. Here, .pi ; pj / 2 ELD,r .P / if Vi;r .P / \
Vi;r .P / ¤ ;.

Expected-ValueMulticenter
Functions

Facility location problems consist of spatially
allocating a number of sites to provide certain
quality of service. Problems of this class are for-
mulated in terms of multicenter functions and, in
particular, expected-value multicenter functions.

To define these, consider � W S ! R�0
a density function over a bounded measurable
set S � R

m. One can regard � as a function
measuring the probability that some event takes
place over the environment. The larger the value
of �.q/, the more important the location q will
have. We refer to a nonincreasing and piecewise
continuously differentiable function f W R�0 !
R, possibly with finite jump discontinuities, as a
performance function.

Performance functions describe the utility of
placing a node at a certain distance from a loca-
tion in the environment. The smaller the distance,
the larger the value of f , that is, the better the
performance. For instance, in sensing problems,
performance functions can encode the signal-to-
noise ratio between a source with an unknown
location and a sensor attempting to locate it.
Without loss of generality, it can be assumed that
f .0/ D 0.

An expected-value multicenter function mod-
els the expected value of the coverage over any
point in S provided by a set of points p1; : : : ; pn.
Formally,

H.p1; : : : ; pn/D
Z
S

max
i2f1;:::;ng

f.kq�pik2/�.q/dq;
(1)

where k � k2 denotes the 2-norm of R
m. This

definition can be understood as follows: consider
the best coverage of q 2 S among those provided
by each of the nodes p1; : : : ; pn, which corre-
sponds to the value maxi2f1;:::;ng f .kq � pik2/.
Then, modulate the performance by the impor-
tance �.q/ of the location q. Finally, the infinites-
imal sum of this quantity over the environment S
gives rise to H.p1; : : : ; pn/ as a measure of the
overall coverage provided by p1; : : : ; pn.

From here, we can formulate the following
geometric optimization problem, known
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as the continuous p-median problem, see
Drezner (1995):

max
fp1;:::;png�S

H.p1; : : : ; pn/: (2)

The expected-value multicenter function can
be alternatively described in terms of the Voronoi
partition of S generated by P D fp1; : : : ; png.
Let us define the set

C D ˚
.p1; : : : ; pn/ 2 .Rm/n j pi D pj

for some i ¤ j g ;

consisting of tuples of n points, where some of
them are repeated. Then, for .p1; : : : ; pn/ 2 Sn n
C, one has

H.p1; : : : ; pn/D
nX
iD1

Z
Vi .P /

f .kq�pik2/�.q/dq:

(3)

This expression of H is appealing because it
clearly shows the result of the overall coverage
of the environment as the aggregate contribution
of all individual nodes. If .p1; : : : ; pn/ 2 C, then
a similar decomposition of H can be written in
terms of the distinct points P D fp1; : : : ; png.

Inspired by (3), a more general version of
the expected-value multicenter function is given
next. Given .p1; : : : ; pn/ 2 Sn and a partition
fW1; : : : ;Wng of S , let

H.p1; : : : ; pn;W1; : : : ;Wn/

D
nX
iD1

Z
Wi

f .kq � pik2/�.q/dq: (4)

For all .p1; : : : ; pn/ 2 Sn n C, we have that
H.p1; : : : ;pn/DH.p1; : : : ; pn;V1.P /; : : : ;Vn.P //.
With respect to, e.g., sensor networks, this
function evaluates the performance associated
with an assignment of the sensors’ locations
at .p1; : : : ; pn/ and a region assignment
.W1; : : : ;Wn/.

Moreover, one can establish that the Voronoi
partition (Du et al. 1999) V.P / is optimal for
H among all partitions of S . That is, let P D

fp1; : : : ; png 2 S . For any performance function
f and for any partition fW1; : : : ;Wng of S ,

H.p1; : : : ; pn; V1.P /; : : : ; Vn.P // �
H.p1; : : : ; pn;W1; : : : ;Wn/;

with a strict inequality if any set in fW1; : : : ;Wng
differs from the corresponding set in fV1.P /; : : : ;
Vn.P /g by a set of positive measure.

Next, we characterize the smoothness of the
expected-value multicenter function (Cortés et al.
2005). Before stating the precise properties, let
us introduce some useful notation. For a perfor-
mance function f , let discont.f / denote the (fi-
nite) set of points where f is discontinuous. For
each a 2 discont.f /, define the limiting values
from the left and from the right, respectively, as

f�.a/ D lim
x!a�

f .x/; fC.a/ D lim
x!aC

f .x/:

Recall that the line integral of a function g W
R
2 ! R over a curve C parameterized by a con-

tinuous and piecewise continuously differentiable
map  W Œ0; 1� ! R

2 is defined as follows:

Z
C

g D
Z
C

g./d WD
Z 1

0

g..t// k P.t/k2 dt;

and is independent of the selected parameteriza-
tion.

Now, given a set S � R
m that is bounded

and measurable, a density � W S ! R�0, and
a performance function f W R !�0 R, the
expected-value multicenter functionH W Sn ! R

is globally Lipschitz (Given S � R
h, a function

f W S ! R
k is globally Lipschitz if there exists

K 2 R>0 such that kf .x/ � f .y/k2 � Kkx �
yk2 for all x; y 2 S .) on Sn; and continuously
differentiable on Sn n C, where for i 2 f1; : : : ; ng

@H
@pi

.P / D
Z
Vi .P /

@

@pi
f .kq � pik2/�.q/dq

C
X

a2discont.f /

�
f�.a/ � fC.a/

�
Z
Vi .P /\ @B.pi ;a/

nout.q/�.q/dq; (5)
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where nout is the outward normal vector to
B.pi ; a/.

Different performance functions lead to differ-
ent expected-value multicenter functions. Let us
examine some important cases.

Distortion Problem
Consider the performance function f .x/ D �x2.
Then, on Sn n C, the expected-value multicenter
function takes the form

Hdistor.p1; : : : ; pn/D �
nX
iD1

Z
Vi .P /

kq � pik22�.q/dq:
In signal compression �Hdistor is referred to as
the distortion function and is relevant in many
disciplines where including vector quantization,
signal compression, and numerical integration;
see Gray and Neuhoff (1998) and Du et al.
(1999). Here, distortion refers to the average
deformation (weighted by the density �) caused
by reproducing q 2 S with the location pi in
P D fp1; : : : ; png such that q 2 Vi.P /. By
means of the Parallel Axis Theorem (see Hibbeler
2006), it is possible to express Hdistor as a sum

Hdistor.p1; : : : ; pn;W1; : : : ;Wn/

D
nX
iD1

� J�.Wi ;CM�.Wi //

� A�.Wi/kpi � CM�.Wi /k22; (6)

where J�.W; p/ D R
W

kq � pk2�.q/dq is the
so-called moment of inertia of the region W

about p with respect to �. In this way, the terms
J�.Wi ;CM�.Wi// only depend on the partition
of S , whereas the second terms multiplied by
A�.Wi / include the particular location of the
points. As a consequence of this observation, the
optimality of the centroid locations for Hdistor

follows Bullo et al. (2009). More precisely, let
fW1; : : : ;Wng be a partition of S . Then, for any
set points P D fp1; : : : ; png in S ,

Hdistor
�
CM�.W1/; : : : ;CM�.Wn/;W1; : : : ;Wn

�
� Hdistor.p1; : : : ; pn;W1; : : : ;Wn/;

and the inequality is strict if there exists i 2
f1; : : : ; ng for which Wi has nonvanishing area
and pi 6D CM�.Wi /. In other words, the centroid
locations CM�.W1/; : : : ;CM�.Wn/ are optimal
for Hdistor among all configurations in S .

Note that when n D 1, the node location that
optimizes p 7! Hdistor.p/ is the centroid of the
set S , denoted by CM�.S/.

Recall that the gradient of Hdistor on Sn n C
takes the form,

@Hdistor

@pi
.P / D2A�.Vi .P //.CM�.Vi .P // � pi /;

i 2 f1; : : : ; ng;

that is, the i th component of the gradient points
in the direction of the vector going from pi
to the centroid of its Voronoi cell. The critical
points of Hdistor are therefore the set of centroidal
Voronoi configurations in S . This is a natural
generalization of the result for the case n D 1,
where the optimal node location is the centroid
CM�.S/.

Area Problem
For r 2 R>0, consider the performance function
f .x/ D 1Œ0;r�.x/, that is, the indicator function
of the closed interval Œ0; r�. Then, the expected-
value multicenter function becomes

Harea,r.p1; : : : ; pn/ D
nX
iD1

A�.Vi .P /\B.pi ; r//

D A�.[n
iD1B.pi ; r//;

which corresponds to the area, measured accord-
ing to �, covered by the union of the n balls
B.p1; r/; : : : ; B.pn; r/.

Let us see how the computation of the partial
derivatives of Harea,r specializes in this case.
Here, the performance function is differentiable
everywhere except at a single discontinuity, and
its derivative is identically zero. Therefore, the
first term in (5) vanishes. The gradient of Harea,r
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on Sn n C then takes the form, for each i 2
f1; : : : ; ng,

@Harea,r

@pi
.P / D

Z
Vi .P /\ @B.pi ;r/

nout.q/�.q/dq;

where nout is the outward normal vector to
B.pi ; r/. The critical points of Harea,r correspond
to configurations with the property that each pi
is a local maximum for the area of Vi;r .P / D
Vi .P / \ B.pi ; r/ at fixed Vi.P /. We refer to
these configurations as r-limited area-centered
Voronoi configurations.

Optimal Deployment Algorithms

Once a set of optimal deployment configurations
have been characterized, the next step is to devise
a distributed algorithm that allows a group of
mobile robots to converge to such configurations.
Gradient algorithms are the first of the options
that should be explored.

For the expected-value multicenter functions,
robots whose dynamics can be described by first-
order integrator dynamics and which can commu-
nicate at predetermined communication rounds of
a fixed time schedule, these laws present a similar
structure, loosely described as follows:

[Informal description] In each communication
round, each robot performs the following tasks: (i)
it transmits its position and receives its neighbors’
positions; (ii) it computes a notion of the geometric
center of its own cell, determined according to
some notion of partition of the environment. (iii)
Between communication rounds, each robot moves
toward this center.

The notions of geometric center and of par-
tition of the environment differ depending on
what is the type of expected-value multicenter
function used. In the Voronoi-center deployment
algorithm, the geometric center just reduces to
CM�.Vi /. In the limited-Voronoi-normal deploy-
ment problem in (ii), each agent computes the
direction of v D @Harea,r

@pi
for some r and (iii)

moves for a maximum step size in this direction
to ensure the area function will be decreased.

The Voronoi-center deployment algorithm
achieves convergence of a set of nodes
to a centroidal Voronoi configuration, thus
maximizing the expected-value multicenter
function Hdistor. The algorithm is distributed over
the proximity graph GD, as the computation of
the centroids requires information in NGD.pi /,
for each i 2 f1; : : : ; ng. Additional properties of
this algorithm are that the algorithm is adaptive
to agent departures or arrivals and amenable to
asynchronous implementations.

On the other hand, the limited-Voronoi-normal
deployment algorithm achieves convergence to a
set that locally maximizes the area covered by the
set of sensing balls. The algorithm is distributed
in the sense that agents only need to know in-
formation from neighbors in the proximity graph
G2r or, more precisely, GLD,r . Thus, it can be
implemented by agents that employ range-limited
interactions. It enjoys similar robustness proper-
ties as the Voronoi-center deployment algorithm.

Simulation Results

We show evolutions of the Voronoi-centroid de-
ployment algorithm in Fig. 1. One can verify that
the final network configuration is a centroidal
Voronoi configuration. For each evolution we
depict the initial positions, the trajectories, and
the final positions of all robots.

Finally, we show an evolution of limited-
Voronoi-normal deployment algorithm in
Fig. 2. One can verify that the final network
configuration is an r

2
-limited area-centered

Voronoi configuration. In other words, the
deployment task is achieved.

Future Directions for Research
The algorithms described above achieve
locally optimal deployment configurations with
respect to expected-value multicenter functions.
However, this simplified setting does not
account for many important constraints, such
as obstacles and deployment in non-convex
environments (Pimenta et al. 2008; Caicedo-
Nùñez and Žefran 2008), deployment with vis-
ibility sensors, range-limited and wedge-shaped
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Optimal Deployment and Spatial Coverage, Fig. 1
The evolution of the Voronoi-centroid deployment algo-
rithm with n D 20 robots. The left-hand (resp., right-
hand) figure illustrates the initial (resp., final) locations

and Voronoi partition. The central figure illustrates the
evolution of the robots. After 13 s, the value of Hdistor has
monotonically increased to approximately �0:515

Optimal Deployment and Spatial Coverage, Fig. 2
The evolution of the limited-Voronoi-normal deployment
algorithm with n D 20 robots and r D 0:4. The
left-hand (resp., right-hand) figure illustrates the initial
(respectively, final) locations and Voronoi partition. The

central figure illustrates the evolution of the robots. The
r
2
-limited Voronoi cell of each robot is plotted in light

gray. After 36 s, the value of Harea, with a D r
2
, has

monotonically increased to approximately 14:141

footprints (Ganguli et al. 2006; Laventall
and Cortés 2009), and energy and vehicle
dynamical restrictions (Kwok and Martínez
2010a,b). Deployment strategies find application
in exploration and data gathering tasks, and so
these algorithms have been expanded to account
for uncertainty and learning of unknown density
functions (Schwager et al. 2009; Graham and
Cortés 2012; Zhong and Cassandras 2011;
Martínez 2010). Gossip and self-triggered
communications (Bullo et al. 2012; Nowzari
and Cortés 2012), self-triggered computations
for region approximation (Ru and Martínez
2013), and area equitable partitions (Cortés
2010) have also been investigated. Much work is
currently being devoted to solve on the current
limitations of these nontrivial extensions, which
make the problem settings significantly harder to
solve.

Cross-References

�Graphs for Modeling Networked Interactions
�Multi-vehicle Routing
�Networked Systems
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Yutaka Yamamoto
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Abstract

This article gives a brief overview on the modern
development of sampled-data control. Sampled-
data systems intrinsically involve a mixture of
two different time sets, one continuous and the
other discrete. Due to this, sampled-data systems
cannot be characterized in terms of the stan-
dard notions of transfer functions, steady-state
response, or frequency response. The technique
of lifting resolves this difficulty and enables the
recovery of such concepts and simplified solu-
tions to sampled-data H1 and H2 optimization
problems. We review the lifting point of view, its
application to such optimization problems, and
finally present an instructive numerical example.

Keywords

Computer control; Frequency response; H1 and
H2 optimization; Lifting; Transfer operator

Introduction

A sampled-data control system consists of
a continuous-time plant and a discrete-time
controller, with sample and hold devices
that serve as an interface between these two
components. As can be seen from this fact,
sampled-data systems are not time invariant,
and various problems arise from this property.

To be more specific, consider the unity-
feedback control system shown in Fig. 1; r is
the reference signal, y the system output, and
e the error signal. These are continuous-time
signals. The error e.t/ goes through the sampler
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Optimal Sampled-Data Control, Fig. 1 A unity-feedback system

Optimal Sampled-Data Control, Fig. 2 Sampling with 0-order hold

(or an A/D converter) S. This sampler reads out
the values of e.t/ at every time step h called
the sampling period and produces a discrete-
time signal ed Œk�, k D 0; 1; 2; : : : (Fig. 2). In
particular, the sampling operator S acts on a
continuous-time signal w.t/, t � 0, as

S.w/Œk� WD w.kh/; k D 0; 1; 2; : : :

The discretized signal is then processed by the
discrete-time controller C.z/ and becomes a con-
trol input ud . There can also be a quantization
effect, although for the sake of simplicity this is
neglected here. The obtained signal ud then goes
through another interface H called a hold device
or a D/A converter to become a continuous-time
signal. A typical example is the 0-order hold
where H simply maintains the value of a discrete-
time signal wŒk� constant as its output until the
next sampling time:

.H.wŒk�// .t/ WD wŒk�; for kh � t < .k C 1/h:

A typical sample-hold action is shown in Fig. 2.
While one can consider a nonlinear plant P or

controllerC , or infinite-dimensionalP andC we
confine ourselves to linear and finite-dimensional
P and C , and also suppose that P and C are time
invariant in continuous time and in discrete time,
respectively.

TheMain Difficulty

As stated above, the unity-feedback system Fig. 1
is not time invariant either in continuous time or
in discrete time, even when the plant and con-
troller are both time invariant in their respective
domains of operators. The mixture of the two
time sets prohibits the total closed-loop system
from being time invariant.
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The lack of time-invariance implies that we
cannot naturally associate to sampled-data sys-
tems such classical concepts of transfer functions,
steady-state response and frequency response.

One can regard Fig. 1 as a time-invariant
discrete-time system by ignoring the intersample
behavior and focusing attention on the sample-
point behavior only. But the obtained model does
not then reflect what happens between sampling
times. This approach can lead to the neglect
of undesirable inter-sample oscillations, called
ripples. To monitor the intersample behavior,
the notion of the modified z-transform was
introduced, see, e.g., Jury (1958) and Ragazzini
and Franklin (1958); however, this transform is
usable only after the controller has been designed
and hence not for the design problems considered
in this article.

Lifting: A Modern Approach

A new approach was introduced around 1990–
1991 (Bamieh et al. 1991; Tadmor 1991; Toivo-
nen 1992; Yamamoto 1990, 1994). The new idea,
now called lifting, makes it possible to describe
sampled-data systems via a time-invariant model
while maintaining the intersample behavior.

Let f .t/ be a continuous-time signal. Instead
of sampling f .t/, we will represent it as a se-
quence of functions. Namely, we set up the cor-
respondence:

L W f 7! ff Œk�.�/g1
kD0;

f Œk�.�/ D f .khC �/; 0 � � < h (1)

See Fig. 3.

This idea makes it possible to view a (time-
invariant or even periodically time-varying)
continuous-time system as a linear, time-invariant
discrete-time system.

Let
Px.t/ D Ax.t/C Bu.t/
y.t/ D Cx.t/:

(2)

be a given continuous-time plant and lift the input
u.t/ to obtain uŒk�.�/. We apply this lifted input
with the timing t D kh (h is the prespecified sam-
pling rate as above) and observe how it affects the
system. Let xŒk� be the state at time t D kh. The
state xŒk C 1� at time .k C 1/h is given by

xŒk C 1� D eAhxŒk� C
Z h

0

eA.h�	/BuŒk�.	/d	:

(3)

The right-hand side integral defines an operator

L2Œ0; h/ ! R
n W u.�/ 7!

Z h

0

eA.h�	/Bu.	/d	:

While the state-transition (3) only described a
discrete-time update, the system keeps producing
an output during the intersample period. If we
consider the lifting of x.t/, it is easily seen to be
described by

xŒk�.�/ D eA�xŒk�C
Z �

0

eA.��	/BuŒk�.	/d	:

As such, the lifted output yŒk�.�/ is given by

yŒk�.�/ D CeA�xŒk�C
Z �

0

CeA.��	/BuŒk�.	/d	:

(4)

Observe that formulas (3) and (4) take the form

Optimal Sampled-Data Control, Fig. 3 Lifting
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xŒk C 1� D AxŒk� C BuŒk�

yŒk� D CxŒk�C DuŒk�;

and the operators A;B; C;D do not depend
on the time variable k. In other words, it is
possible to describe this continuous-time system
with discrete timing, once we adopt the lifting
point of view. To be more precise, the operators
A;B; C;D are defined as follows:

A W R
n ! R

n W x 7! eAhx

B W L2Œ0; h/ ! R
n W u 7! R h

0
eA.h�	/Bu.	/d	

C W R
n ! L2Œ0; h/ W x 7! CeA.�/x

D W L2Œ0; h/ ! L2Œ0; h/ W u 7!R �
0
CeA.��	/Bu.	/d	

(5)

Thus the continuous-time plant (2) can be de-
scribed by a time-invariant discrete-time model.
Once this is done, it is straightforward to connect
this expression with a discrete-time controller,
and hence, sampled-data systems (for example,
Fig. 1) can be fully described by time-invariant
discrete-time equations, without discarding the
intersampling information. We will also denote
the overall equation (with discrete-time controller
included) abstractly in the form

xŒk C 1� D AxŒk� C BuŒk�
yŒk� D CxŒk�C DuŒk�:

(6)

While the obtained discrete-time model is a time
invariant, the input and output spaces are now
infinite dimensional. Its transfer function (oper-
ator) is defined as

G.z/ WD D C C.zI � A/�1B: (7)

Note that A in (6) is a matrix because it is so for
A in (5). Hence, (6) is stable ifG.z/ is analytic for
fz W jzj � 1g, provided that there is no unstable
pole-zero cancellation.

Definition 1 LetG.z/ be the transfer operator of
the lifted system given by (7), which is stable in
the sense above. The frequency response operator
is the operator

G.ej!h/ W L2Œ0; h/ ! L2Œ0; h/ (8)

regarded as a function of ! 2 Œ0; !s/ (!s WD
2�=h). Its gain at ! is defined to be

kG.ej!h/k D sup
v2L2Œ0;h/

kG.ej!h/vk
kvk : (9)

The maximum kG.ej!h/k over Œ0; !s/ is the H1
norm of G.z/. The H2-norm of G is defined by

kGk2 WD
 
h

2�

Z 2�=h

0

trace fG�.ej!h/G.ej!h/gd!
!1=2

;

(10)

where the trace here is taken in the sense of
Hilbert-Schmidt norm; see Chen and Francis
(1995) for details.

H 1 and H 2 Control Problems

A significant consequence of the lifting approach
described above is that various robust control
problems such as H1 and H2 control problems
for sampled-data control systems can be
converted to corresponding discrete-time (finite-
dimensional) problems. The approach was
initiated by Chen and Francis (1990) and later
solved by Bamieh and Pearson (1992), Kabamba
and Hara (1993), Sivashankar and Khargonekar
(1994), Tadmor (1991), and Toivonen (1992)
in more complete forms; see Chen and Francis
(1995) for the pertinent historical accounts.

Let us introduce the notion of generalized
plants. Suppose that a continuous time plant is
given in the following model:

Pxc.t/ D Axc.t/C B1w.t/C B2u.t/
z.t/ D C1xc.t/CD11w.t/CD12u.t/
y.t/ D C2xc.t/

(11)

Here w is the exogenous input, u.t/ control input,
y.t/ measured output, and z.t/ is the controlled
output. The objective is to design a controller that
takes the sampled measurements of y and returns
a control variable u according to the following
formula:

xd Œk C 1� D Adxd Œk�C BdSyŒk�
vŒk� D Cdxd Œk�CDdSyŒk�

uŒk�.�/ D H.�/vŒk�

(12)
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Optimal Sampled-Data Control, Fig. 4 Sampled feed-
back system

where H.�/ is a suitable hold function. This
is depicted in Fig. 4. The objective here is to
design or characterize a controller that achieves
a prescribed performance level  > 0 in such a
way that

kTzwk1 <  (13)

where Tzw denotes the closed-loop transfer oper-
ator from w to z. This is the H1 control problem
for sampled-data systems. If we take the H2-
norm (10) instead, then the problem becomes that
of the H2 (sub)optimal control problem.

The difficulty here is that both w and z are
continuous-time variables, and hence their lifted
variables are infinite dimensional. A remarkable
fact here is that the H1 problem (and the
H2 problem as well) (13) can be equivalently
transformed to an H1 problem for a finite-
dimensional discrete-time system. We will
indicate in the next section how this can be done.

H 1 Norm Computation and
Reduction to Finite Dimension

Let us write the system (11) and (12) in the form

xŒk C 1� D AxŒk�C BuŒk�
yŒk� D CxŒk�C DuŒk�:

(14)

as in (6). For simplicity of treatments, assume
D11 in (11) to be zero; for the general case, see
Yamamoto and Khargonekar (1996).

LetG.z/ be the transfer operatorG.z/ WD DC
C.zI � A/�1B. The H1 norm of G is given as
the maximum of the singular values of the gain
G.ej!h/ for ! 2 Œ0; 2�=h/.

Now consider the singular value equation

.2I �G�G.ej!h//w D 0: (15)

and suppose that  > kDk. A crux here is
that A;B; C are finite-rank operators, and we can
reduce this to a finite-dimensional rank condition.
Taking the adjoint of (14), we obtain

pŒk� D A�pkC1 C C�vŒk�

eŒk� D B�pkC1 C D�vŒk�:

Taking the z-transforms of both sides, setting z D
ej!h, and substituting v D y and e D 2w, we
obtain

ej!hx D Ax C Bw

p D ej!hA�p C C�.Cx C Dw/

.2 � D�D/w D ej!hB�p C D�Cx:

Eliminating the variable w then yields

�
ej!h

	
I BR�1

 B�
0 A� C C�DR�1

 B�



�
	

A C BR�1
 D�C 0

C�.I C DR�1
 D�/C I


�	
x

p



D 0 (16)

whereR D .I �D�D/. The important point to
be noted here is that all the operators appearing
here are actually matrices. For example, B is an

operator from L2Œ0; h/ to R
n, and its adjoint B�

is an operator from R
n to L2Œ0; h/. Hence, the

composition BR�1
 B� is a linear operator from
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R
n into itself, i.e., a matrix. Thus, for a given

 the singular value equation admits a nontrivial
solution w for (15) if and only if the finite-
dimensional equation (16) admits a nontrivial so-
lution


x p

�T
(Yamamoto 1993; Yamamoto and

Khargonekar 1996). (Note that R is invertible
since  > kDk.)

It is possible to find matricesA;B;C such that
A D A C BR�1

 D�C, BB
�
=2 D BR�1

 B�, and

C
�
C D C�.I C DR�1

 D�/C, and hence (16) is
equivalent to

 
�

"
I �B B�

=2

0 A
�

#
�
	

A 0

�C�
C I


!	
x

p



D 0

(17)

for � D ej!h. In other words, we have that
kGk1 <  if and only if there exists no � of
modulus 1 such that (17) holds.

It can be proven that by substituting the ex-
pressions of (11) and (12) for .A;B; C;D/, one
obtains a finite-dimensional discrete-time gener-
alized plant Gd with digital controller (12) such
that kGk1 <  if and only if kGdk1 <  . The
precise formulas for the discrete-time plant can
be found, e.g., Bamieh and Pearson (1992), Chen
and Francis (1995), Kabamba and Hara (1993),
Yamamoto and Khargonekar (1996), and Cantoni
and Glover (1997).

An H 1 Design Example

For sampled-data control systems, there used to
be, and still is, a rather common myth that if
one takes a sufficiently fast sampling rate, it will
not cause a major problem. This can be true for
continuous-time design, but we here show that if
we employ a sample-point discretization without
a performance consideration for intersampling
behavior, fast sampling rates can cause a serious
problem.

Take a simple second-order plant P.s/ D
1=.s2C0:1sC1/, and consider the disturbance re-
jection problem minimizing the H1-norm from
w to z as given in Fig. 5. Set the sampling time
h D 0:5. We execute the following:

• Sampled-dataH1 design with the generalized
plant

G.s/ D
	
P.s/ P.s/

P.s/ P.s/



;

• Discrete-time H1 design with the discrete-
time generalized plant Gd.z/ given by the
step-invariant transformation (see, e.g., Chen
and Francis 1995) of G.s/.
Figures 6 and 7 show the frequency and

time responses of the two resulting closed-
loop systems, respectively. In Fig. 6, the solid
curve shows the response of the sampled design,
while the dash-dotted curve shows the discrete-
time frequency response, but purely reflecting
its sample-point behavior only. At first glance,
it may appear that the discrete-time design
performs better. But when we actually compute
the lifted sampled-data frequency response in
the sense defined in Definition 1, it becomes
obvious that the sampled-data design is far
superior. The dashed curve shows the frequency
response of the closed-loop, i.e., that of G.s/
connected with the discrete-time designed
Kd . The response is similar to the discrete-
time frequency response in low frequency, but
exhibits a very sharp peak around the Nyquist
frequency (i.e., half the sampling frequency;
in the present case, �=h � 6:28 rad/s, i.e.,
1=2h D 1Hz).

This can also be verified from the initial-
state responses Fig. 7 with x.0/ D .1; 1/. The
solid curve shows the sampled-data design
and the dashed curve the discrete-time one.
Both responses decay to zero rapidly at
sampled instants as shown by the circles for
the discrete-time design. But the discrete-time
design exhibits very large ripples, with period
approximately 1 s. This corresponds to 1Hz,
which is the same as 2� D �=h [rad/s],
i.e., the Nyquist frequency. This is precisely
captured in the lifted frequency response in
Fig. 6.

It is worth noting that when we take the
sampling period h smaller, the response for the
discrete-time design becomes even more oscilla-
tory and shows a very high peak in the frequency
response.
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Optimal Sampled-Data
Control, Fig. 5
Disturbance rejection

Optimal Sampled-Data
Control, Fig. 6 Frequency
responses h D 0:5

Summary, Bibliographical Notes, and
Future Directions

We have given a short summary of the main
achievements of modern sampled-data control
theory. Particularly, we have reviewed how the
technique of lifting resolved the intrinsic diffi-
culty arising from the mixture of two distinct time
sets: continuous and discrete. This idea further
led to the new notions of transfer operators and
frequency response. These notions together en-
abled us to treat optimal sampled-data control
problems in a unified and transparent way. We
have outlined how the sampled-data H1 control
problem can equivalently be reduced to a cor-
responding discrete-time H1 problem, without
sacrificing the performance in the intersample be-
havior. This has been exemplified by a numerical
example.

There are other performance indices for opti-
mality, typically those arising from H2 and L1

norms. These problems have also been studied
extensively, and fairly complete solutions are
available. For the lack of space, we cannot list all
references, and the reader is referred to Chen and
Francis (1995) and Yamamoto (1999) for a more
concrete survey and references therein.

For classical treatments of sampled-data con-
trol, it is instructive to consult Jury (1958) and
Ragazzini and Franklin (1958). The textbook
Åström and Wittenmark (1996) covers both clas-
sical and modern aspects of digital control. For a
mathematical background of the computation of
adjoints treated in section “H1 Norm Computa-
tion and Reduction to Finite Dimension,” consult
Yamamoto (2012) as well as Yamamoto (1993).

Since control devices are now mostly digital,
the importance of sampled-data control will
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Optimal Sampled-Data Control, Fig. 7 Initial-state responses h D 0:5

definitely increase. While the linear, time-
invariant case as treated here is now fairly
complete, sampled-data control for a nonlinear
or an infinite-dimensional plant seems to be still
quite an open issue, although it is unclear if the
methodology treated here is effective for such
classes of plants.

Sampled-data control has much to do with
signal processing. Indeed, since it can optimize
continuous-time performance, it can shed a new
light on digital signal processing. Traditionally,
Shannon’s paradigm based on the perfect band-
limiting hypothesis and the sampling theorem
has been prevalent in the signal processing
community. Since the sampling theorem opts
for perfect reconstruction, the resulting theory
reduces mostly to discrete-time problems. In
other words, the intersample information is
buried in the sampling theorem. It should,
however, be noted that the very stringent band-
limiting hypothesis is almost never satisfied
in reality, and various approximations are
necessitated. In contrast, sampled-data control
can provide an optimal platform for dealing with
and optimizing the response between sampling

points when the band-limiting hypothesis does
not hold. See, for example, Yamamoto et al.
(2012) and Nagahara and Yamamoto (2012) for
the idea and some efforts in this direction.

Cross-References

�Control Applications in Audio Reproduction
�H2 Optimal Control
�H-Infinity Control
�Optimal Control via Factorization and Model

Matching
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Abstract

This entry reviews optimization algorithms for
both linear and nonlinear model predictive con-
trol (MPC). Linear MPC typically leads to spe-
cially structured convex quadratic programs (QP)
that can be solved by structure exploiting active
set, interior point, or gradient methods. Nonlin-
ear MPC leads to specially structured nonlinear
programs (NLP) that can be solved by sequential
quadratic programming (SQP) or nonlinear inte-
rior point methods.

Keywords

Banded matrix factorization; Convex optimiza-
tion; Karush-Kuhn-Tucker (KKT) conditions;
Sparsity exploitation

Introduction

Model predictive control (MPC) needs to solve
at each sampling instant an optimal control prob-
lem with the current system state Nx0 as initial
value. MPC optimization is almost exclusively
based on the so-called direct approach which
first discretizes the continuous time system to
obtain a discrete time optimal control problem
(OCP). This OCP has as optimization variables
a state trajectory X D Œx>

0 ; : : : ; x
>
N �

> with xi 2
R
nx for i D 0; : : : ; N and a control trajectory

U D Œu>
0 ; : : : ; u

>
N�1�> with ui 2 R

nu for i D
0; : : : ; N � 1. For simplicity of presentation, we
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restrict ourselves to the time-independent case,
and the OCP we treat in this article is stated as
follows:

minimize
X;U

N�1X
iD0

L.xi ; ui / C E .xN / (1a)

subject to x0 � Nx0 D 0; (1b)

xiC1 � f .xi ; ui / D 0; i D 0; : : : ; N � 1;

(1c)

h.xi ; ui / � 0; i D 0; : : : ; N � 1;

(1d)

r .xN / � 0: (1e)

The MPC objective is stated in Eq. (1a), the sys-
tem dynamics enter via Eq. (1c), while path and
terminal constraints enter via Eqs. (1d) and (1e).
All functions are assumed to be differentiable and
to have appropriate dimensions (h.x; u/ 2 R

nh

and r.x/ 2 R
nr ). Note that Nx0 2 R

nx is not an op-
timization variable, but a parameter upon which
the OCP depends via the initial value constraint in
Eq. (1b). The optimal solution trajectories depend
only on this value and can thus be denoted by
X�. Nx0/ and U �. Nx0/. Obtaining them, in partic-
ular the first control value u�

0 . Nx0/, as fast and
reliably as possible for each new value of Nx0 is
the aim of all MPC optimization algorithms. The
most important dividing line is between convex
and non-convex optimal control problems (OCP).
If the OCP is convex, algorithms exist that find a
global solution reliably and in computable time.
If the OCP is not convex, one usually needs to be
satisfied with approximations of locally optimal
solutions. The OCP (1) is convex if the objec-
tive (1a) and all components of the inequality
constraint functions (1d) and (1e) are convex and
if the equality constraints (1c) are linear.

We typically speak of linear MPC when the
OCP to be solved is convex, and otherwise of
nonlinear MPC.

General Algorithmic Features for MPC
Optimization
In MPC we would dream to have the solution to
a new optimal control problem instantly, which is

impossible due to computational delays. Several
ideas can help us to deal with this issue.

Off-line Precomputations and Code
Generation
As consecutive MPC problems are similar and
differ only in the value Nx0, many computations
can be done once and for all before the MPC
controller execution starts. Careful preprocessing
and code optimization for the model routines is
essential, and many tools automatically gener-
ate custom solvers in low-level languages. The
generated code has fixed matrix and vector di-
mensions, has no online memory allocations, and
contains a minimal number of if-then-else state-
ments to ensure a smooth computational flow.

Delay Compensation by Prediction
When we know how long our computations for
solving an MPC problem will take, it is a good
idea not to address a problem starting at the cur-
rent state but to simulate at which state the system
will be when we will have solved the problem.
This can be done using the MPC system model
and the open-loop control inputs that we will ap-
ply in the meantime. This feature is used in many
practical MPC schemes with non-negligible com-
putation time.

Division into Preparation and Feedback Phase
A third ingredient of several MPC algorithms is
to divide the computations in each sampling time
into a preparation phase and a feedback phase.
The more CPU intensive preparation phase is
performed with a predicted state Nx0, before the
most current state estimate, say Nx0

0, is available.
Once Nx0

0 is available, the feedback phase delivers
quickly an approximate solution to the optimiza-
tion problem for Nx0

0.

Warmstarting and Shift
An obvious way to transfer solution information
from one solved MPC problem to the next one
uses the existing optimal solution as an initial
guess to start the iterative solution procedure of
the next problem. We can either directly use
the existing solution without modification for
warmstarting or we can first shift it in order to
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account for the advancement of time, which is
particularly advantageous for systems with time-
varying dynamics or objectives.

IteratingWhile the Problem Changes
A last important ingredient of some MPC algo-
rithms is the idea to work on the optimization
problem while it changes, i.e., to never iterate
the optimization procedure to convergence for an
MPC problem getting older and older during the
iterations but to rather work with the most current
information in each new iteration.

Convex Optimization for Linear MPC

Linear MPC is based on a linear system model of
the form xiC1 D Axi CBui and convex objective
and constraint functions in (1a), (1d), and (1e).
The most widespread linear MPC setting uses
a convex quadratic objective function and affine
constraints and solves the following quadratic
program (QP):

minimize
X;U

1

2

N�1X
iD0

	
xi
ui


>	
Q S

S> R


	
xi
ui



C 1

2
x>
NPxN

(2a)

subject to x0 � Nx0 D 0; (2b)

xiC1 �Axi � Bui D 0;i D 0; : : : ; N � 1;
(2c)

b C Cxi CDui � 0;i D 0; : : : ; N � 1;
(2d)

c C FxN � 0: (2e)

Here, b; c are vectors and Q;S;R;P; C;D;F

matrices, and matrices

	
Q S

S> R



and P are sym-

metric and positive semi-definite to ensure the QP
is convex.

Sparsity Exploitation
The QP (2) has a specific sparsity structure that
can be exploited in different ways. One way is to
reduce the variable space by a procedure called
condensing and then to solve a smaller-scale QP

instead of (2). Another way is to use a banded
matrix factorization.

Condensing
The constraints (2b) and (2c) can be used to
eliminate the state trajectory X . This yields an
equivalent but smaller-scale QP of the following
form:

minimize
U 2 R

Nnu

1

2

	
U

Nx0

> 	

H G

G> J


 	
U

Nx0



(3a)

subject to d CK Nx0 CMU � 0: (3b)

The number of inequality constraints is the same
as in the original QP (2) and given by m D
Nnh C nr . Note that in the simplest case without
inequalities (m D 0), the solution U �. Nx0/ of
the condensed QP can be obtained by setting the
gradient of the objective to zero, i.e., by solving
HU �. Nx0/ C G Nx0 D 0. The factorization of a
dense matrixH with dimensionNnu�Nnu needs
O.N3n3u/ arithmetic operations, i.e., the compu-
tational cost of condensing-based algorithms typ-
ically grows cubically with the horizon lengthN .

Banded Matrix Factorization
An alternative way to deal with the sparsity is
best sketched at hand of a sparse convex QP (2)
without inequality constraints (2d) and (2e). We
define the vector of Lagrange multipliers Y D
Œy>
0 ; : : : ; y

>
N �

> and the Lagrangian function by

L.X;U; Y / D y>
0 .x0 � Nx0/C 1

2
x>
NPxN

C 1

2

N�1X
iD0

	
xi
ui


>	
Q S

S> R


	
xi
ui



Cy>

iC1

.xiC1�AxiCBui /: (4)

If we reorder all unknowns that enter the Lagran-
gian and summarize them in the vector

W D Œy>
0 ; x

>
0 ; u

>
0 ; y

>
1 ; x

>
1 ; u

>
1 ; : : : ; y

>
N ; x

>
N �

>

the optimal solution W �. Nx0/ is uniquely charac-
terized by the first-order optimality condition
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rWL.W �/ D 0:

Due to the linear quadratic dependence of L on
W , this is a block-banded linear equation in the
unknownW �:

2
66666666664

0 I

I Q S �A>
S> R �B>
�A �B 0 I

I Q � �
� � �
� � 0 I

I P

3
77777777775
W �D

2
66666666664

Nx0
0

0

0

�
�
�
0

3
77777777775
:

Because the above matrix has nonzero elements
only on a band of width 2nx C nu around the di-
agonal, it can be factorized with a computational
cost of orderO.N.2nx C nu/

3/.

Treatment of Inequalities
An important observation is that both the un-
condensed QP (2) and the equivalent condensed
QP (3) typically fall into the class of strictly con-
vex parametric quadratic programs: the solution
U �. Nx0/; X�. Nx0/ is unique and depends piecewise
affinely and continuously on the parameter Nx0.
Each affine piece of the solution map corresponds
to one active set and is valid on one polyhedral
critical region in parameter space. This observa-
tion forms the basis of explicit MPC algorithms
which precompute the map u�

0 . Nx0/, but it can also
be exploited in online algorithms for quadratic
programming, which are the focus of this section.

We sketch the different ways of how to treat
inequalities only for the condensed QP (3), but
they can equally be applied in sparse QP al-
gorithms that directly address (2). The optimal
solution U �. Nx0/ for a strictly convex QP (3)
is – together with the corresponding vector of
Lagrange multipliers, or dual variables ��. Nx0/ 2
R
m – uniquely characterized by the so-called

Karush-Kuhn-Tucker (KKT) conditions, which
we omit for brevity. There are three big families
of solution algorithms for inequality-constrained
QPs that differ in the way they treat inequalities:
active set methods, interior point methods, and
gradient projection methods.

Active Set Methods
The optimal solution of the QP is characterized
by its active set, i.e., the set of inequality con-
straints (3b) that are satisfied with equality at this
point. If one would know the active set for a given
problem instance Nx0, it would be easy to find the
solution. Active set methods work with guesses
of the active set which they iteratively refine.
In each iteration, they solve one linear system
corresponding to a given guess of the active set.
If the KKT conditions are satisfied, the optimal
solution is found; if they are not, another division
into active and inactive constraints needs to be
tried. A crucial observation is that an existing
factorization of the linear system can be reused to
a large extent when only one constraint is added
or removed from the guess of the active set. Many
different active set strategies exist, three of which
we mention: Primal active set methods first find
a feasible point and then add or remove active
constraints, always keeping the primal variables
U feasible. Due to the difficulty of finding a
feasible point first, they are difficult to warmstart
in the context of MPC optimization. Dual active
set strategies always keep the dual variables �
positive. They can easily be warmstarted in the
context of MPC. Parametric or online active
set strategies ensure that all iterates stay primal
and dual feasible and go on a straight line in
parameter space from a solved QP problem to
the current one, only updating the active set when
crossing the boundary between critical regions, as
implemented in the online QP solver qpOASES.

Active set methods are very competitive in
practice, but their worst case complexity is not
polynomial. They are often used together with the
condensed QP formulation, for which each active
set change is relatively cheap. This is particu-
larly advantageous if an existing factorization can
be kept between subsequent MPC optimization
problems.

Interior Point Methods
Another approach is to replace the KKT condi-
tions by a smooth approximation that uses a small
positive parameter 	 > 0:

HU � CG Nx0 CM>�� D 0; (5a)
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�
d CK Nx0 CMU ��

i
��
i C 	 D 0; i D 1; : : : ; m:

(5b)

These conditions form a smooth nonlinear system
of equations that uniquely determines a primal
dual solution U �. Nx0; 	/ and ��. Nx0; 	/ in the in-
terior of the feasible set. They are not equiv-
alent to the KKT conditions, but for 	 ! 0,
their solution tends to the exact QP solution. An
interior point algorithm solves the system (5a)
and (5b) by Newton’s method. Simultaneously,
the path parameter 	 , that was initially set to
a large value, is iteratively reduced, making the
nonlinear set of equations a closer approximation
of the original KKT system. In each Newton
iteration, a linear system needs to be factored
and solved, which constitutes the major com-
putational cost of an interior point algorithm.
For the condensed QP (3) with dense matrices
H;M , the cost per Newton iteration is of order
O.N3/. But the interior point algorithm can also
be applied to the uncondensed sparse QP (2),
in which case each iteration has a runtime of
order O.N/. In practice, for both cases, 10–30
Newton iterations usually suffice to obtain very
accurate solutions. As an interior point method
needs always to start with a high value of 	 and
then reduces it during the iterations, warmstarting
is of minor benefit. There exist efficient code
generation tools that export convex interior point
solvers as plain C-code such as CVXGEN and
FORCES.

Gradient Projection Methods
Gradient projection methods do not need to
factorize any matrix but only evaluate the
gradient of the objective function HU Œk� C G Nx0
in each iteration. They can only be implemented
efficiently if the feasible set is a simple set
in the sense that a projection P.U / on this
set is very cheap to compute, as, e.g., for
upper and lower bounds on the variables U ,
and if we know an upper bound LH > 0

on the eigenvalues of the Hessian H . The
simple gradient projection algorithm starts
with an initialization U Œ0� and proceeds as
follows:

U ŒkC1� D P
�
U Œk� � 1

LH
.HU Œk� CG Nx0/

�
:

An improved version of the gradient projection
algorithm is called the optimal or fast gradient
method and has probably the best possible iter-
ation complexity of all gradient type methods.
All variants of gradient projection algorithms
are easy to warmstart. Though they are not as
versatile as active set or interior point methods,
they have short code sizes and can offer ad-
vantages on embedded computational hardware,
such as the code generated by the tool FIOR-
DOS.

Optimization Algorithms for
Nonlinear MPC

When the dynamic system xiC1 D f .xi ; ui /
is not affine, the optimal control problem (1)
is non-convex, and we speak of a nonlinear
MPC (NMPC) problem. NMPC optimization
algorithms only aim at finding a locally optimal
solution of this problem, and they usually do
it in a Newton-type framework. For ease of
notation, we summarize problem (1) in the form
of a general nonlinear programming problem
(NLP):

minimize
X;U

ˆ.X;U / (6a)

subject to Geq.X;U; Nx0/ D 0; (6b)

Gineq.X;U / � 0: (6c)

Let us first discuss a fundamental choice that
regards the problem formulation and number of
optimization variables.

Simultaneous vs. Sequential Formulation
When an optimization algorithm addresses prob-
lem (6) iteratively, it works intermediately with
nonphysical, infeasible trajectories that violate
the system constraints (6b). Only at the optimal
solution the constraint residual is brought to zero
and a physical simulation is achieved. We speak
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of a simultaneous approach to optimal control
because the algorithm solves the simulation and
the optimization problems simultaneously. Vari-
ants of this approach are direct discretization or
direct multiple shooting.

On the other hand, the equality con-
straints (6b) could easily be eliminated by
a nonlinear forward simulation for given
initial value Nx0 and control trajectory U ,
similar to condensing in linear MPC. Such a
forward simulation generates a state trajectory
Xsim. Nx0; U / such that for the given value of Nx0; U
the equality constraints (6b) are automatically
satisfied: Geq.Xsim. Nx0; U /; U; Nx0/ D 0. Inserting
this map into the NLP (6) allows us to formulate
an equivalent optimization problem with a
reduced variable space:

minimize
U

ˆ.Xsim. Nx0; U /; U / (7a)

subject to Gineq.Xsim. Nx0; U /; U / � 0: (7b)

When solving this reduced problem with an it-
erative optimization algorithm, we sequentially
simulate and optimize the system, and we speak
of the sequential approach to optimal control.

The sequential approach has a lower dimen-
sional variable space and is thus easier to use
with a black-box NLP solver. On the other hand,
the simultaneous approach leads to a sparse NLP
and is better able to deal with unstable nonlinear
systems. In the remainder of this section, we
thus only discuss the specific structure of the
simultaneous approach.

Newton-Type Optimization
In order to simplify notation further, we summa-
rize and reorder all optimization variables U and
X in a vectorV D Œx>

0 ; u
>
0 ; : : : ; x

>
N�1; u>

N�1; x>
N �

>
and use the same problem function names as
in (6) also with the new argument V .

As in the section on linear MPC, we can
introduce multipliers Y for the equalities and �
for the inequalities and define the Lagrangian

L.V; Y; �/ D ˆ.V /C Y >Geq.V; Nx0/
C �>Gineq.V /: (8)

All Newton-type optimization methods try to
find a point satisfying the KKT conditions by
using successive linearizations of the problem
functions and Lagrangian. For this aim, starting
with an initial guess .V Œ0�; Y Œ0�; �Œ0�/, they
generate sequences of primal-dual iterates
.V Œk�; Y Œk�; �Œk�/.

An observation that is crucial for the efficiency
of all NMPC algorithms is that the Hessian of
the Lagrangian is at a current iterate given by a
matrix of the form

r2
V L.�/ D

2
6666666664

Q
Œk�
0 S

Œk�
0

S
Œk�;>
0 R

Œk�
0

Q
Œk�
1 S

Œk�
1

S
Œk�;>
1 R

Œk�
1 � �

� �
P Œk�

3
7777777775
:

This block sparse matrix structure makes it possi-
ble to use in each Newton-type iteration the same
sparsity-exploiting linear algebra techniques as
outlined in section “Convex Optimization for
Linear MPC” for the linear MPC problem.

Major differences exist on how to treat the
inequality constraints, and the two big families of
Newton-type optimization methods are sequen-
tial quadratic programming (SQP) methods and
nonlinear interior point (NIP) methods.

Sequential Quadratic Programming (SQP)
A first variant to iteratively solve the KKT sys-
tem is to linearize all nonlinear functions at the
current iterate .V Œk�; Y Œk�; �Œk�/ and to find a new
solution guess from the solution of a quadratic
program (QP):

minimize
V

ˆquad.V IV Œk�; Y Œk�; �Œk�/ (9a)

subject to Geq;lin.V; Nx0IV Œk�/ D 0; (9b)

Gineq;lin.V IV Œk�/ � 0: (9c)

Here, the subindex “lin” in the constraints G�;lin
expresses that a first-order Taylor expansion at
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V Œk� is used, while the QP objective is given
by ˆquad.V IV Œk�; Y Œk�; �Œk�/ D ˆlin.V IV Œk�/ C
1
2
.V � V Œk�/>r2

VL.�/.V � V Œk�/. Note that the
QP has the same sparsity structure as the QP (2)
resulting from linear MPC, with the only differ-
ence that all matrices are now time varying over
the MPC horizon. In the case that the Hessian
matrix is positive semi-definite, this QP is convex
so that global solutions can be found reliably
with any of the methods from section “Con-
vex Optimization for Linear MPC.” The solu-
tion of the QP along with the corresponding
constraint multipliers gives the next SQP iterate
.V ŒkC1�; Y ŒkC1�; �ŒkC1�/. Apart from the presented
“exact Hessian” SQP variant, which has quadratic
convergence speed, several other SQP variants
exist, which make use of other Hessian approx-
imations. A particularly useful Hessian approx-
imation for NMPC is possible if the original
objective functionˆ.V / is convex quadratic, and
the resulting SQP variant is called the generalized
Gauss-Newton method. In this case, one can just
use the original objective as cost function in the
QP (9a), resulting in convex QP subproblems and
(often fast) linear convergence speed.

Nonlinear Interior Point (NIP) Method
In contrast to SQP methods, an alternative way
to address the solution of the KKT system is to
replace the last nonsmooth KKT conditions by a
smooth nonlinear approximation, with 	 > 0:

rVL.V �; Y �; ��/ D 0 (10a)

Geq.V
�; Nx0/ D 0 (10b)

Gineq;i .V
�/ ��

i C 	 D 0; i D 1; : : : ; m:

(10c)

We summarize all variables in a vector W D
ŒV >; Y >; �>�> and summarize the above set of
equations as

GNIP.W; Nx0; 	/ D 0: (11)

The resulting root finding problem is then
solved with Newton’s method, for a descending
sequence of path parameters 	 Œk�. The NIP

method proceeds thus exactly as in an interior
point method for convex problems, with the only
difference that it has to re-linearize all problem
functions in each iteration. An excellent software
implementation of the NIP method is given in the
form of the code IPOPT.

Continuation Methods and Tangential
Predictors
In nonlinear MPC, a sequence of OCPs with
different initial values NxŒ0�0 ; NxŒ1�0 ; NxŒ2�0 ; : : : is solved.
For the transition from one problem to the next,
it is beneficial to take into account the fact that
the optimal solution W �. Nx0/ depends almost ev-
erywhere differentiably on Nx0. The concept of a
continuation method is most easily explained in
the context of an NIP method with fixed path
parameter N	 > 0. In this case, the solution
W �. Nx0; N	/ of the smooth root finding problem
GNIP.W

�. Nx0; N	/; Nx0; N	/ D 0 from Eq. (11) is
smooth with respect to Nx0. This smoothness can
be exploited by making use of a tangential pre-
dictor in the transition from one value of Nx0 to
another. Unfortunately, the interior point solution
manifold is strongly nonlinear at points where the
active set changes, and the tangential predictor is
not a good approximation when we linearize at
such points.

Generalized Tangential Predictor and
Real-Time Iterations
In fact, the true NLP solution is not determined
by a smooth root finding problem (10a)–(3)
but by the (nonsmooth) KKT conditions. The
solution manifold has smooth parts when the
active set does not change, but non-differentiable
points occur whenever the active set changes.
We can deal with this fact naturally in an SQP
framework by solving one QP of form (9) in
order to generate a tangential predictor that
is also valid in the presence of active set
changes. In the extreme case that only one
such QP is solved per sampling time, we speak
of a real-time iteration (RTI) algorithm. The
computations in each iteration can be subdivided
into two phases, the preparation phase, in
which the derivatives are computed and the QP
is condensed, and the feedback phase, which
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only starts once NxŒkC1�
0 becomes available and

in which only a condensed QP of form (3) is
solved, minimizing the feedback delay. This
NMPC algorithm can be generated as plain
C-code, e.g., by the tool ACADO. Another
class of real-time NMPC algorithms based on
a continuation method can be generated by the
tool AutoGenU.

Cross-References

�Explicit Model Predictive Control
�Model-Predictive Control in Practice
�Numerical Methods for Nonlinear Optimal

Control Problems

Recommended Reading

Many of the algorithmic ideas presented in this
article can be used in different combinations than
those presented, and several other ideas had to be
omitted for the sake of brevity. Some more details
can be found in the following two overview arti-
cles on MPC optimization: Binder et al. (2001)
and Diehl et al. (2009). The general field of nu-
merical optimal control is treated in Bryson and
Ho (1975), Betts (2010), and the even broader
field of numerical optimization is covered in the
excellent textbooks (Fletcher 1987; Wright 1997;
Nesterov 2004; Gill et al. 1999; Nocedal and
Wright 2006; Biegler 2010). General purpose
open-source software for MPC and NMPC is de-
scribed in the following papers: FORCES (Dom-
ahidi et al. 2012), CVXGEN (Mattingley and
Boyd 2009), qpOASES (Ferreau et al. 2008),
FiOrdOs (Richter et al. 2011), AutoGenU (Oht-
suka and Kodama 2002), ACADO (Houska et al.
2011), and IPOPT (Wächter and Biegler 2006).
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Abstract

This entry describes the basic setup of linear ro-
bust control and the difficulties typically encoun-
tered when designing optimization algorithms to
cope with robust stability and performance spec-
ifications.
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Linear Robust Control

Robust control allows dealing with uncertainty
affecting a dynamical system and its environ-
ment. In this section, we assume that we have a
mathematical model of the dynamical system
without uncertainty (the so-called nominal
system) jointly with a mathematical model of
the uncertainty. We restrict ourselves to linear
systems: if the dynamical system we want to
control has some nonlinear components (e.g.,
input saturation), they must be embedded in
the uncertainty model. Similarly, we assume
that the control system is relatively small
scale (low number of states): higher-order
dynamics (e.g., highly oscillatory but low energy
components) are embedded in the uncertainty
model. Finally, for conciseness, we focus
exclusively on continuous-time systems, even
though most of the techniques described in this
section can be transposed readily to discrete-time
systems.

Our control system is described by the first-
order ordinary differential equation

Px D A .ı/ x CD .ı/ u
y D C .ı/ x

where as usual x 2 R
n denotes the states, u 2

R
m denotes the controlled inputs, and y 2 R

p

denotes the measured outputs, all depending on
time t , with Px denoting the time derivative of x.
The system is subject to uncertainty and this is
reflected by the dependence of matrices A, B ,
andC on uncertain parameter ı which is typically
time varying and restricted to some bounded set

ı 2 � � R
q:

A linear control law

u D Ky

modeled by a matrix K 2 R
m	p must be

designed to overcome the effect of the uncertainty
while optimizing some performance criterion
(e.g., pole placement, disturbance rejection,
H2 or H1 norm). Sometimes, a relevant
performance criterion is that the control should
be stabilizing for the largest possible uncertainty
(measured, e.g., by some norm on �). In this
section, for conciseness, we restrict our attention
to static output feedback control laws, but most
of the results can be extended to dynamical output
feedback control laws, where the control signal u
is the output of a controller (a linear system to be
designed) whose input is y.

UncertaintyModels

Amongst the simplest possible uncertainty mod-
els, we can find the following:
• Unstructured uncertainty, also called norm-

bounded uncertainty, where

� D fı 2 R
q W jjıjj � 1g

and the given norm can be a standard vector
norm or a more complicated matrix norm if ı is
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interpreted as a vector obtained by stacking the
column of a matrix
• Structured uncertainty, also called polytopic

uncertainty, where

� D conv fıi ; i D 1; : : : ; N g
is a polytope modeled as the convex combination
of a finite number of given vertices ıi 2 R

q; i D
1; : : : ; N

We can find more complicated uncertainty
models (e.g., combinations of the two above: see
Zhou et al. 1996), but to keep the developments
elementary, they are not discussed here.

Nonconvex Nonsmooth Robust
Optimization

The main difficulties faced when seeking a feed-
back matrixK are as follows:
• Nonconvexity: The stability conditions are

typically nonconvex in K .
• Nondifferentiability: The performance cri-

terion to be optimized is typically a non-
differentiable function of K .

• Robustness: Stability and performance
should be ensured for every possible instance
of the uncertainty.

So if we are to formulate the robust control
problem as an optimization problem, we should
be ready to develop and use techniques from non-
convex, nondifferentiable, robust optimization.

Let us first elaborate on the first difficulty
faced by optimization-based robust control,
namely, the nonconvexity of the stability
conditions. In continuous time, stability of a
linear system Px D Ax is equivalent to negativity
of the spectral abscissa, which is defined as the
maximum real part of the eigenvalues of A:

˛.A/ D maxfRe � W det.�In �A/ D 0; � 2 Cg:

It turns out that the open cone of matrices
A 2 R

n	n such that ˛.A/ < 0 is nonconvex
(Ackermann 1993). This is illustrated in Fig. 1
where we represent the set of vectors K D

.k1; k2; k3/ 2 R
3 such that k21 C k22 C k23 < 1

and ˛.A.K// < 0 for

A.K/ D
��1 k1
k2 k3

�
:

There exist various approaches to handling non-
convexity. One possibility consists of building
convex inner approximations of the stability re-
gion in the parameter space. The approxima-
tions can be polytopes, balls, ellipsoids, or more
complicated convex objects described by linear
matrix inequalities (LMI). The resulting stability
conditions are convex, but surely conservative, in
the sense that the conditions are only sufficient
for stability and not necessary. Another approach
to handling nonconvexity consists of formulating
the stability conditions algebraically (e.g., via the
Routh-Hurwitz stability criterion or its symmetric
version by Hermite) and using converging hier-
archies of LMI relaxations to solve the result-
ing nonconvex polynomial optimization problem:
see, e.g., Henrion and Lasserre (2004) and Chesi
(2010).

The second difficulty characteristic of
optimization-based robust control is the potential
nondifferentiability of the objective function.
Consider for illustration one of the simplest
optimization problems which consists of
minimizing the spectral abscissa ˛.A.K// of
a matrix A.K/ depending linearly on a matrix
K . Such a minimization makes sense since
negativity of the spectral abscissa is equivalent
to system stability. Then typically, ˛.A.K// is
a continuous but non-Lipschitz function of K ,
which means that its gradient can be unbounded
locally. In Fig. 2, we plot the spectral abscissa
˛.A.K// for

A.K/ D
�
0 1

K �K
�

andK 2 R. The function is non-Lipschitz atK D
0, at which the global minimum ˛.A.0// D 0

is achieved. Nonconvexity of the function is also
apparent in this example. The lack of convexity
and smoothness of the spectral abscissa and other
similar performance criteria renders optimization
of such functions particularly difficult (Burke
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et al. 2001, 2006b). In Fig. 3, we represent graphs
of the spectral abscissa (with flipped vertical
axis for better visualization) of some small-size
matrices depending on two real parameters, with
randomly generated parametrization. We observe
the typical nonconvexity and lack of smoothness
around local and global optima.

The third difficulty for optimization-based
robust control is the uncertainty. As explained
above, optimization of a performance criterion
with respect to controller parameters is already
a potentially difficult problem for a nominal
system (i.e., when the uncertainty parameter is
equal to zero). This becomes even more difficult
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OptimizationBasedRobust Control, Fig. 3 The graph of the negative spectral abscissa for some randomly generated
matrix parametrizations

when this optimization must be carried out for
all possible instances of the uncertainty ı in
�. This is where the above assumption that the
uncertainty set � has a simple description proves
useful. If the uncertainty ı is unstructured and
not time varying, then it can be handled with the
complex stability radius (Ackermann 1993), the
pseudospectral abscissa (Trefethen and Embree
2005), or via an H1 norm constraint (Zhou et al.
1996). If the uncertainty ı is structured, then
we can try to optimize a performance criterion
at every vertex in the polytopic description
(which is a relaxation of the problem of
stabilizing the whole polytope). An example
is the problem of simultaneous stabilization,
where a controllerK must be found such that the
maximum spectral abscissa of several matrices
Ai .K/; i D 1; : : : ; N is negative (Blondel 1994).
Finally, if the uncertainty ı is time varying, then
performance and stability guarantees can still be
achieved with the help of Lyapunov certificates or
potentially conservative convex LMI conditions:
see, e.g., Boyd et al. (1994) and Scherer et al.
(1997).

A unified approach to addressing conflicting
performance criteria and uncertainty consists of
searching for locally optimal solutions of a nons-
mooth optimization problem that is built to incor-
porate minimization objectives and constraints
for multiple plants. This is called (linear robust)
multiobjective control, and formally, it can be
expressed as the following optimization prob-
lem

minK maxiD1;:::;N fgi .K/ W ˇi D 1g
s:t: gi .K/ � ˇi ; i D 1; : : : ; N;

where each gi (K) is a function of the closed-
loop matrix Ai.K/ (e.g., a spectral abscissa
or an H1 norm) and the scalars ˇi are given
and such that if ˇi D 1 for some i , then gi
appears in the objective function and not in a
constraint: see Gumussoy et al. (2009) for details.
In the above problem, the objective function,
a maximum of nonsmooth and nonconvex
functions, is typically also nonsmooth and
nonconvex. Moreover, without loss of generality,
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we can easily impose a sparsity pattern on
controller matrix K to account for structural
constraints (e.g., a low-order decentralized
controller).

Software Packages

Algorithms for nonconvex nonsmooth opti-
mization have been developed and interfaced
for linear robust multiobjective control in the
public domain Matlab package HIFOO released
in Burke et al. (2006a) and based on the theory
described in Burke et al. (2006b). In 2011,
The MathWorks released HINFSTRUCT, a
commercial implementation of these techniques
based on the theory described in Apkarian and
Noll (2006).

Cross-References

�H-Infinity Control
�LMI Approach to Robust Control
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Abstract

Structured output feedback controller synthesis
is an exciting new concept in modern control
design, which bridges between theory and
practice insofar as it allows for the first time
to apply sophisticated mathematical design
paradigms like H1 or H2 control within
control architectures preferred by practitioners.
The new approach to structured H1 control,
developed during the past decade, is rooted
in a change of paradigm in the synthesis
algorithms. Structured design may no longer
be based on solving algebraic Riccati equations
or matrix inequalities. Instead, optimization-
based design techniques are required. In
this essay we indicate why structured con-
troller synthesis is central in modern control
engineering. We explain why non-smooth
optimization techniques are needed to compute
structured control laws, and we point to
software tools which enable practitioners
to use these new tools in high-technology
applications.
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Introduction

In the modern high-technology field of control,
engineers usually face a large variety of con-
curring design specifications such as noise or
gain attenuation in prescribed frequency bands,
damping, decoupling, constraints on settling or
rise time, and much else. In addition, as plant
models are generally only approximations of the
true system dynamics, control laws have to be
robust with respect to uncertainty in physical
parameters or with regard to un-modeled high-
frequency phenomena. Not surprisingly, such a
plethora of constraints present a major challenge
for controller tuning, not only due to the ever-
growing number of such constraints but also
because of their very different provenience.

The dramatic increase in plant complexity is
exacerbated by the desire that regulators should
be as simple as possible, easy to understand and
to tune by practitioners, convenient to hardware
implement, and generally available at low cost.
Such practical constraints explain the limited use
of black-box controllers, and they are the driving
force for the implementation of structured control
architectures, as well as for the tendency to re-
place hand-tuning methods by rigorous algorith-
mic optimization tools.

Structured Controllers

Before addressing specific optimization tech-
niques, we introduce some basic terminology
for control design problems with structured
controllers. A state-space description of the given
P used for design is given as

P W
8<
:

PxP D AxP C B1w C B2u
z D C1xP CD11w CD12u
y D C2xP CD21w CD22u

(1)

where A, B1,: : : are real matrices of appropriate
dimensions, xP 2 R

nP is the state, u 2 R
nu the

control, y 2 R
ny the measured output, w 2 R

nw

the exogenous input, and z 2 R
nz the regulated

output. Similarly, the sought output feedback
controllerK is described as

K W
� PxK DAKxK C BKy

u DCKxK CDKy
(2)

with xK 2 R
nK and is called structured if

the (real) matrices AK;BK;CK;DK depend
smoothly on a design parameter x 2 R

n, referred
to as the vector of tunable parameters. Formally,
we have differentiable mappings

AK D AK.x/; BK D BK.x/; CK D CK.x/;

DK D DK.x/;

and we abbreviate these by the notation K.x/ for
short to emphasize that the controller is structured
with x as tunable elements.

A structured controller synthesis problem is
then an optimization problem of the form

minimize kTwz.P;K.x//k
subject to K.x/ closed-loop stabilizing

K.x/ structured, x 2 R
n

(3)

where Twz.P;K/ D F`.P;K/ is the lower feed-
back connection of (1) with (2) as in Fig. 1 (left),
also called the linear fractional transformation
(Varga and Looye 1999). The norm k�k stands for
the H1 norm, the H2 norm, or any other system
norm, while the optimization variable x 2 R

n

regroups the tunable parameters in the design.
Standard examples of structured controllers

K.x/ include realizable PIDs and observer-based,
reduced-order, or decentralized controllers,
which in state space are expressed as

2
4 0 0 1

0 �1=	 �kD=	
kI 1=	 kP C kD=	

3
5 ;
	
A� B2Kc �Kf C2 Kf

�Kc 0



;

	
AK BK
CK DK



;

2
664

q

diag
iD1

AKi
q

diag
iD1

BKi

q

diag
iD1

CKi
q

diag
iD1

DKi

3
775 :
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Optimization-Based Control Design Techniques and Tools, Fig. 1 Black-box full-order controller K on the left,
structured 2-DOF control architecture withK D block-diag.K1;K2/ on the right

Optimization-Based
Control Design
Techniques and Tools,
Fig. 2 Synthesis of K D
block-diag.K1; : : : ; KN /

against multiple
requirements or models
P .1/; : : : ; P .M/. Each
Ki.x/ can be structured

In the case of a PID, the tunable parameters
are x D .	; kP ; kI ; kD/, for observer-based
controllers x regroups the estimator and state-
feedback gains .Kf ;Kc/, for reduced order
controllers nK < nP the tunable parameters x
are the n2K C nKny C nKnu C nynu unknown
entries in .AK;BK; CK;DK/, and in the
decentralized form x regroups the unknown
entries in AK1; : : : ;DKq . In contrast, full-
order controllers have the maximum number
N D n2P C nP ny C nP nu C nynu of degrees of
freedom and are referred to as unstructured or as
black-box controllers.

More sophisticated controller structures K.x/
arise from architectures like, for instance, a
2-DOF control arrangement with feedback
block K2 and a set-point filter K1 as in Fig. 1
(right). Suppose K1 is the 1st-order filter
K1.s/ D a=.s C a/ and K2 the PI feedback
K2.s/ D kP C kI =s. Then the transfer Try
from r to y can be represented as the feedback
connection of P andK.x/ with

P WD

2
664
A 0 0 B

C 0 0 D

0 I 0 0

�C 0 I �D

3
775 ; K.x/ WD

	
K1.s/ 0

0 K2.s/



;

where K.x/ takes a typical block-diagonal
structure featuring the tunable elements x D
.a; kP ; kI /.

In much the same way, arbitrary multi-loop in-
terconnections of fixed-model elements with tun-
able controller blocksKi.x/ can be rearranged as
in Fig. 2 so that K.x/ captures all tunable blocks
in a decentralized structure general enough to
cover most engineering applications.

The structure concept is equally useful to
deal with the second central challenge in control
design: system uncertainty. The latter may be
handled with �-synthesis techniques (Stein and
Doyle 1991) if a parametric uncertain model
is available. A less ambitious but often more
practical alternative consists in optimizing the
structured controller K.x/ against a finite set
of plants P .1/; : : : ; P .M/ representing model
variations due to uncertainty, aging, sensor and
actuator breakdown, and un-modeled dynamics,
in tandem with the robustness and performance
specifications. This is again formally covered by
Fig. 2 and leads to a multi-objective constrained
optimization problem of the form

minimize f .x/ D max
k2SOFT;i2Ik

kT .k/wi zi .K.x//k
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subject to g.x/ D max
k2HARD;j2Jk

kT .k/wj zj .K.x//k � 1

K.x/ structured and stabilizing

x 2 R
n (4)

where T .k/wi zi denotes the i th closed-loop robust-
ness or performance channel wi ! zi for the
kth plant model P .k/.s/. The rationale of (4)
is to minimize the worst-case cost of the soft
constraints kT .k/wi zi k, k 2 SOFT while enforcing
the hard constraints kT .k/wj zj k � 1, k 2 HARD.
Note that in the mathematical programming ter-
minology, soft and hard constraints are classi-
cally referred to as objectives and constraints.
The terms soft and hard point to the fact that
hard constraints prevail over soft ones and that
meeting hard constraints for solution candidates
is mandatory.

Optimization Techniques Over the
Years

During the late 1990s, the necessity to develop
design techniques for structured regulators
K.x/ was recognized (Fares et al. 2001), and
the limitations of synthesis methods based on
algebraic Riccati equations (AREs) or linear
matrix inequalities (LMIs) became evident, as
these techniques can only provide black-box
controllers. The lack of appropriate synthesis
techniques for structured K.x/ led to the
unfortunate situation, where sophisticated
approaches like the H1 paradigm developed by
academia since the 1980s could not be brought to
work for the design of those controller structures
K.x/ preferred by practitioners. Design engineers
had to continue to rely on heuristic and ad hoc
tuning techniques, with only limited scope and
reliability. As an example, post-processing to
reduce a black-box controller to a practical size
is prone to failure. It may at best be considered a
fill-in for a rigorous design method which directly
computes a reduced-order controller. Similarly,
hand-tuning of the parameters x remains a
puzzling task because of the loop interactions
and fails as soon as complexity increases.

In the late 1990s and early 2000s, a change
of methods was observed. Structured H2- and
H1-synthesis problems (3) were addressed by
bilinear matrix inequality (BMI) optimization,
which used local optimization techniques based
on the augmented Lagrangian method (Fares
et al. 2001; Noll et al. 2002; Kocvara and Stingl
2003), sequential semidefinite programming
methods (Fares et al. 2002; Apkarian et al. 2003),
and non-smooth methods for BMIs (Noll et al.
2009; Lemaréchal and Oustry 2000). However,
these techniques were based on the bounded
real lemma or similar matrix inequalities and
were therefore of limited success due to the
presence of Lyapunov variables, i.e., matrix-
valued unknowns, whose dimension grows
quadratically in nP C nK and represents the
bottleneck of that approach.

The epoch-making change occurs with the
introduction of non-smooth optimization tech-
niques (Noll and Apkarian 2005; Apkarian and
Noll 2006b,c, 2007) to programs (3) and (4).
Today non-smooth methods have superseded ma-
trix inequality-based techniques and may be con-
sidered the state of the art as far as realistic
applications are concerned. The transition took
almost a decade.

Alternative control-related local optimization
techniques and heuristics include the gradient
sampling technique of Burke et al. (2005),
derivative-free optimization discussed in Kolda
et al. (2003) and Apkarian and Noll (2006a)
and particle swarm optimization; see Oi
et al. (2008) and references therein and also
evolutionary computation techniques (Lieslehto
2001). The last three classes do not exploit
derivative information and rely on function
evaluations only. They are therefore applicable
to a broad variety of problems including those
where function values arise from complex
numerical simulations. The combinatorial nature
of these techniques, however, limits their
use to small problems with a few tens of
variable. More significantly, these methods often
lack a solid convergence theory. In contrast,
as we have demonstrated over recent years
(Apkarian and Noll 2006b; Noll et al. 2008),
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specialized non-smooth techniques are highly
efficient in practice, are based on a sophis-
ticated convergence theory, are capable of
solving medium-size problems in a matter
of seconds, and are still operational for
large-size problems with several hundreds of
states.

Non-smooth Optimization
Techniques

The benefit of the non-smooth casts (3) and
(4) lies in the possibility to avoid searching for
Lyapunov variables, a major advantage as their
number .nP C nK/

2=2 usually largely dominates
n, the number of true decision parameters x.
Lyapunov variables do still occur implicitly in the
function evaluation procedures, but this has no
harmful effect for systems up to several hundred
states. In abstract terms, a non-smooth optimiza-
tion program has the form

minimize f .x/
subject to g.x/ � 0

x 2 R
n

(5)

where f; g W R
n ! R are locally Lipschitz

functions and are easily identified from the cast
in (4).

In the realm of convex optimization, non-
smooth programs are conveniently addressed by
so-called bundle methods, introduced in the late
1970s by Lemaréchal (1975). Bundle methods
are used to solve difficult problems in integer pro-
gramming or in stochastic optimization via La-
grangian relaxation. Extensions of the bundling
technique to non-convex problems like (3) or
(4) were first developed in Apkarian and Noll
(2006b,c, 2007), Apkarian et al. (2008), Noll
et al. (2009), and, in more abstract form, Noll
et al. (2008).

Figure 3 shows a schematic view of a
non-convex bundle method consisting of a
descent-step generating inner loop (yellow
block) comparable to a line search in smooth
optimization, embedded into the outer loop

Optimization-Based Control Design Techniques and Tools, Fig. 3 Flowchart of proximity control bundle
algorithm
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(blue box), where serious iterates are processed,
stopping criteria are applied, and the model
tradition is assured. Serious steps or iterates refer
to steps accepted in a line search, while null steps
are unsuccessful steps visited during the search.
By model tradition, we mean continuity of the
model between (serious) iterates xj and xjC1
by recycling some of the older planes used at
counter j into the new working model at j C 1.
This avoids starting the first inner loop k D 1 at
j C 1 from scratch and therefore saves time.

At the core of the interaction between in-
ner and outer loop is the management of the
proximity control parameter 	 , which governs
the stepsize kx � ykk between trial steps yk

at the current serious iterate x. Similar to the
management of a trust region radius or of the
stepsize in a line search, proximity control al-
lows to force shorter trial steps if agreement of
the local model with the true objective function
is poor and allows larger steps if agreement is
satisfactory.

Oracle-based bundle methods traditionally as-
sure global convergence in the sense of subse-
quences under the sole hypothesis that for every
trial point x, the function value f .x/ and a Clarke
subgradient � 2 @f .x/ are provided. In automatic
control applications, it is as a rule possible to
provide more specific information, which may be
exploited to speed up convergence.

Computing function value and gradients of the
H2 norm f .x/ D kTwz .P;K.x// k2 requires es-
sentially the solution of two Lyapunov equations
of size nP CnK (see Apkarian et al. 2007; Rautert
and Sachs 1997). For the H1 norm, f .x/ D
kTwz .P;K.x// k1, function evaluation is based
on the Hamiltonian algorithm of Benner et al.
(2012) and Boyd et al. (1989). The Hamiltonian
matrix is of size nP C nK so that function eval-
uations may be costly for very large plant state
dimension (nP > 500), even though the number
of outer loop iterations of the bundle algorithm is
not affected by a large nP and generally relates
to n, the dimension of x. The additional cost for
subgradient computation for large nP is relatively
cheap as it relies on linear algebra (Apkarian and
Noll 2006b).

Computational Tools

The novel non-smooth optimization methods
became available to the engineering commu-
nity since 2010 via the MATLAB Robust
Control Toolbox (Robust Control Toolbox 4.2
2012; Gahinet and Apkarian 2011). Routines
HINFSTRUCT , LOOPTUNE , and SYSTUNE are
versatile enough to define and combine tunable
blocks Ki.x/, to build and aggregate design
requirements T .k/wz of different nature, and to
provide suitable validation tools. Their imple-
mentation was carried out in cooperation with
P. Gahinet (MathWorks). These routines further
exploit the structure of problem (4) to enhance
efficiency (see Apkarian and Noll 2006b, 2007).

It should be mentioned that design problems
with multiple hard constraints are inherently
complex. It is well known that even simultaneous
stabilization of more than two plants P .j / with
a structured control law K.x/ is NP-complete so
that exhaustive methods are expected to fail even
for small to medium problems. The principled
decision made in Apkarian and Noll (2006b)
and reflected in the MATLAB routines is to
rely on local optimization techniques instead.
This leads to weaker convergence certificates
but has the advantage to work successfully
in practice. In the same vein, in (4) it is
preferable to rely on a mixture of soft and hard
requirements, for instance, by the use of exact
penalty functions (Noll and Apkarian 2005).
Key features implemented in the mentioned
MATLAB routines are discussed in Apkarian
(2013), Gahinet and Apkarian (2011), and
Apkarian and Noll (2007).

Design Example

Design of a feedback regulator is an interactive
process, in which tools like SYSTUNE ,
LOOPTUNE , or HINFSTRUCT support the
designer in various ways. In this section we
illustrate their enormous potential by solving
a multi-model, fixed-structure reliable flight
control design problem.
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Optimization-Based Control Design Techniques and Tools, Fig. 4 Synthesis interconnection for reliable control

Optimization-Based Control Design Techniques and Tools, Table 1 Outage scenarios where 0 stands for failure

Outage cases Diagonal of outage gain

Nominal mode 1 1 1 1 1

Right elevator outage 0 1 1 1 1

Left elevator outage 1 0 1 1 1

Right aileron outage 1 1 0 1 1

Left aileron outage 1 1 1 0 1

Left elevator and right aileron outage 1 0 0 1 1

Right elevator and right aileron outage 0 1 0 1 1

Right elevator and left aileron outage 0 1 1 0 1

Left elevator and left aileron outage 1 0 1 0 1

In reliable flight control, one has to maintain
stability and adequate performance not only in
nominal operation but also in various scenarios
where the aircraft undergoes outages in elevator
and aileron actuators. In particular, wind gusts
must be alleviated in all outage scenarios to main-
tain safety. Variants of this problem are addressed
in Liao et al. (2002).

The open loop F16 aircraft in the scheme of
Fig. 4 has six states, the body velocities u; v;w
and pitch, roll, and yaw rates q; p; r . The state
is available for control as is the flight-path bank
angle rate � (deg/s), the angle of attack ˛ (deg),
and the sideslip angle ˇ (deg). Control inputs are
the left and right elevator, left and right aileron,

and rudder deflections (deg). The elevators are
grouped symmetrically to generate the angle of
attack. The ailerons are grouped antisymmetri-
cally to generate roll motion. This leads to three
control actions as shown in Fig. 4. The controller
consists of two blocks, a 3�6 state-feedback gain
matrix Kx in the inner loop and a 3 � 3 integral
gain matrixKi in the outer loop, which leads to a
total of 27 D dim x parameters to tune.

In addition to nominal operation, we consider
eight outage scenarios shown in Table 1.

The different models associated with the
outage scenarios are readily obtained by pre-
multiplication of the aircraft control input by a
diagonal matrix built from the rows in Table 1.
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Optimization-Based Control Design Techniques and Tools, Fig. 5 Responses to step changes in �, ˛, and ˇ for
nominal design

The design requirements are as follows:
• Good tracking performance in �, ˛, and ˇ

with adequate decoupling of the three axes.
• Adequate rejection of wind gusts of 5 m/s.
• Maintain stability and acceptable performance

in the face of actuator outage.
Tracking is addressed by an LQG cost

(Maciejowski 1989), which penalizes integrated
tracking error e and control effort u via

J D lim
T!1E

�
1

T

Z T

0

kWeek2 C kWuuk2dt
�
:

(6)
Diagonal weights We and Wu provide tuning
knobs for trade-off between responsiveness, con-
trol effort, and balancing of the three channels.
We use We D diag.20; 30; 20/;Wu D I3 for nor-
mal operation and We D diag.8; 12; 8/;Wu D I3
for outage conditions. Model-dependent weights
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Optimization-Based Control Design Techniques and Tools, Fig. 6 Responses to step changes in �, ˛, and ˇ for
fault-tolerant design

allow to express the fact that nominal operation
prevails over failure cases. Weights for failure
cases are used to achieve limited deterioration of
performance or of gust alleviation under deflec-
tion surface breakdown.

The second requirement, wind gust allevia-
tion, is treated as a hard constraint limiting the
variance of the error signal e in response to white
noise wg driving the Dryden wind gust model.

In particular, the variance of e is limited to 0:01
for normal operation and to 0:03 for the outage
scenarios.

With the notation of section “Non-smooth Op-
timization Techniques,” the functions f .x/ and
g.x/ in (5) are f .x/ WD maxkD1;:::;9 kT .k/rz .x/k2
and g.x/ WD maxkD1;:::;9 kT .k/wge.x/k2, where r
denotes the set-point inputs in �, ˛, and ˇ. The
regulated output z is
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zT WD
h
.W

1=2
e e/T .W

1=2
u u/T

iT
;

with x D .vec.Ki /; vec.Kx// 2 R
27. Soft

constraints are the square roots of J in (6)
with appropriate weightings We and Wu, hard
constraints the RMS values of e, suitably
weighted to reflect variance bounds of 0:01 and
0:03. These requirements are covered by the
Variance and WeightedVariance options
in Robust Control Toolbox 4.2 (2012).

With this setup, we tuned the controller
gains Ki and Kx for the nominal scenario only
(nominal design) and for all nine scenarios
(fault-tolerant design). The responses to set-
point changes in �, ˛, and ˇ with a gust speed
of 5 m/s are shown in Fig. 5 for the nominal
design and in Fig. 6 for the fault-tolerant design.
As expected, nominal responses are good but
notably deteriorate when faced with outages. In
contrast, the fault-tolerant controller maintains
acceptable performance in outage situations.
Optimal performance (square root of LQG cost
J in (6)) for the fault-tolerant design is only
slightly worse than for the nominal design (26
vs. 23). The non-smooth program (5) was solved
with SYSTUNE , and the fault-tolerant design
(9 models, 11 states, 27 parameters) took 30 s
on Mac OS X with 2:66GHz Intel Core i7 and
8GB RAM. The reader is referred to Robust
Control Toolbox 4.2 (2012) or higher versions,
for further examples, and additional details.

Future Directions

From an application viewpoint, non-smooth
optimization techniques for control system
design and tuning will become one of the
standard techniques in the engineer’s toolkit.
They are currently studied in major European
aerospace industries.

Future directions may include:
• Extension of these techniques to gain schedul-

ing in order to handle larger operating do-
mains.

• Application of the available tools to integrated
system/control when both system physical
characteristics and controller elements are

optimized to achieve higher performance.
Application to fault detection and isolation
may also reveal as an interesting vein.

Cross-References

�H-Infinity Control
�Optimization Based Robust Control
�Robust Synthesis and Robustness Analysis
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Abstract

Managers can stake a claim by committing to
capital investments today that can influence their
rivals’ behavior or take a “wait-and-see” or step-
by-step approach to avoid possible adverse mar-
ket consequences tomorrow. At the core of this
corporate dilemma lies the classic trade-off be-
tween commitment and flexibility. This trade-
off calls for a careful balancing of the merits
of flexibility against those of commitment. This
balancing is captured by option games.

Keywords

Game theory; Option games; Optimal stopping;
Real options

Introduction

The global competitive environment has become
increasingly more challenging as modern
economies undergo unprecedented changes in
the midst of the global economic turmoil. Real-
world dilemmas corporate managers face today
are driven by the interplay among strategic
and market uncertainty. The tech industry
has evolved most rapidly, putting companies
unable to respond to market developments
and technological breakthroughs at severe
disadvantage. Corporate management’s plans
and how they implement their strategy will likely
determine whether the firm will survive and be
successful in the marketplace or become extinct.
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Formulating the right strategy in the right
competitive environment at the right time is a
nontrivial task. Whether to invest in a new tech-
nology, a new product or enter a new market is
a strategic decision of immense importance. Cor-
porate management must assess strategic options
with proper analytical tools that can help deter-
mine whether to commit to a particular strategic
path, given scarce or costly resources, or whether
to stay flexible. Oftentimes, firms need to position
themselves flexibly to capitalize on future oppor-
tunities as they emerge, while limiting potential
losses arising from adverse future circumstances.
In many cases, corporate managers find them-
selves in need to revise their decision plans in
view of actual market developments when facing
an uncertain future; they can then decide to un-
dertake only those projects with sufficiently high
prospects in the future to justify commitment at
that time. This needs to be balanced with the
need to make irreversible strategic commitments
to seize first-mover advantage presenting rivals
with a fait accompli to which they have no choice
but adapt.

Capital Budgeting Ignoring Strategic
Interactions

Net Present Value
Prevailing management approaches simplify
matters and often lead to investment decisions
that are detrimental to the firm’s long-term well-
being. Suppose a firm’s future cash flow at time
t is given by a random variable Xt . Cash flows
then evolve as a geometric Brownian motion

dXt D gXtdt C 
XtdBt andX0 
 x

with drift parameterg and volatility 
 . The Brow-
nian motion .Bt I t � 0/ captures exogenous
market uncertainty. The standard criterion used
in corporate finance is based on discounted cash
flows (DCF) or net present value (NPV). This
consists in assessing the current value of a project
by discounting the expected future cash flows
EŒXt � at a constant discount rate, r . Management
supposedly creates shareholder value by under-

taking projects with positive NPV, i.e., projects
for which the present value of cash flows, v.x/ DR1
0
e�rtEŒXt �dt , exceeds the necessary invest-

ment cost, I . In the present case, the firm will
invest under the zero-NPV criterion if

x

r � g � I (1)

This traditional criterion views investment oppor-
tunities as now-or-never decisions under passive
management. However, this precludes the possi-
bility to adjust future decisions in case the market
develops off the expected path. While market
uncertainty is factored in through the discount
rate, the flexibility management has is typically
not properly accounted for.

Real Options Analysis
It has become standard practice in finance and
strategy to interpret real investment opportunities
as being analogous to financial options. This view
is well accepted among academics and practi-
tioners alike and is at the core of real options
analysis (ROA). ROA is an extension of option-
pricing theory to real investment situations (My-
ers 1977; Trigeorgis 1996). This approach effec-
tively allows one to capture the dynamic nature of
decision-making since it factors in management’s
flexibility to revise and adapt its decision in the
face of market uncertainty. ROA allows managers
with flexibility to adapt to actual market devel-
opments as uncertainty gets resolved. Managers
may, for example, delay the start (or closure) of a
project depending on its prospects. This approach
leverages on optimal stopping theory (e.g., see
Bensoussan and Lions 1982; Dixit and Pindyck
1994) and is considered to be more reflective
of real decision-making than traditional methods.
In the case the firm can delay the decision to
invest, for example, the problem is one of optimal
stopping:

V.x/ D maxT EŒe�rT .v.XT / � I /�

by ROA, the discount rate r is the risk-free
interest (Dixit and Pindyck 1994; Trigeorgis
1996). The time of managerial action, T, is
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now a strategic decision variable random by
nature as the decision maker faces an uncertain
environment. This problem has an analytical
solution characterized by a threshold policy, say
a trigger NX , given by

NX
r � g

D b

b � 1I (2)

where b is the positive root of a quadratic
function (e.g., see Dixit and Pindyck 1994) and
b=.b � 1/ > 1. When decisions are costly or
difficult to reverse, corporate managers would be
more cautious and careful to make decisions. A
firm should not always commit immediately –
even if the NPV criterion (1) indicates so – but
wait until the gross project value is sufficiently
positive to cover the investment cost I by a factor
larger than one, as expressed in (2). Investing
prematurely may destroy shareholder value.
Real options may justify sometimes undertaking
projects with negative (static) net present value
if it creates a platform for growth options or
delaying projects with positive NPV.

Accounting for Strategic Interactions
in Capital Budgeting

Strategic Uncertainty
As natural monopolies have lost their secular
well-protected positions owing to market liber-
alization in the European Union and elsewhere
across the globe, strategic interdependencies have
become new key challenge for managers. At
the same time sectors traditionally populated by
multiple firms have undergone significant consol-
idation, often resulting in oligopolistic situations
with a reduced number of players. The ongoing
economic crisis has amplified these consolidation
pressures. These two ongoing phenomena – lib-
eralization and consolidation – have put high on
the corporate agenda the assessment of strategic
options under competition. Standard real options
analysis often examines investment decisions as
if the option holder has a proprietary right to
exercise. This perspective may not be realistic
in the new oligopolistic environment as several

firms may share the right to a related investment
opportunity in the industry.

Game Theory
In oligopolistic industries, firms often have dif-
ficulty predicting how rivals will behave and
make decisions based on beliefs about their likely
behavior. A theory that helps characterize beliefs
and form predictions about which strategies op-
ponents will follow is helpful in analyzing such
oligopolistic situations. Game theory has tradi-
tionally been used to frame strategic interactions
arising in conflict situations involving parties
with different objectives or interests. It attempts
to model behavior in strategic situations or games
in which one party’s success in making choices
depends on the choices of other players through
influencing one another’s welfare. Game theory
adopts a different perspective on optimization, as
the focus is on the formation of beliefs about
how rivals’ optimal strategies. Finance theory
has been primarily concerned with “moves by
nature,” while game theory focuses on “optimiza-
tion problems” involving multiple players. To
solve a game, one needs to reduce a complex
multiplayer problem into a simpler structure that
captures the essence of the conflict situation. One
can then derive useful predictions about how
rivals are likely to react in a given situation.
Game theory helped reshape microeconomics by
providing analytical foundations for the study of
market behavior and has been at the foundation
of the Nobel prize winning research field of
industrial organization.

Dynamic game theory (see, e.g., Basar and
Olsder 1999) addresses problems in which
several parties are in repeated interaction.
Strategic management approaches based on
dynamic economic theory can provide a richer
foundation for understanding developments and
competitive reactions within an industry. As
firm competitiveness involves interactions among
several players (rivals, suppliers or clients), game
theoretic analysis brings important insights into
strategic management in addressing such issues
as first- and second-mover advantages, firm
entry and exit decisions, strategic commitment,
reputation, signaling, and other informational
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effects. A key lesson is that, when firms react to
one another, it may sometimes be appropriate
for one firm to take an aggressive stance in
expectation that rivals will back off. Dynamic
industrial organization includes the analysis of
“games of timing” such as preemption games
or war of attrition, whereby firms decide on
appropriate investment timing under rivalry.

Option Games

The earlier optimal stopping problem falls in the
category of “games of timing” when a firm’s
entry decision influences another firm’s market
strategy. Option games are most suitable to help
model situations where a firm that has a real op-
tion to (dis)invest faces rivalry. Here, the problem
consists in finding a Nash equilibrium solution
for the two-player equivalent of the above optimal
stopping problem. This solution must also satisfy
certain dynamic consistency criteria. For sequen-
tial investments, the follower is faced with a
single-agent optimal investment timing problem;
it will thus enter if the gross project value exceeds
the investment cost by a sufficient factor. A firm
entering the market early on, i.e., a leader, earns
temporary monopoly rents as long as demand
remains below the follower’s entry threshold.
Following the follower’s entry, the firms act as
a duopoly. As long as the leader’s value exceeds
the follower’s, there is an incentive for one firm to
invest, but not necessarily for both of them, lead-
ing to a “coordination problem.” The competitive
pressure will dissipate away the leader’s first-
mover advantage, leading to a market entry point
that is not socially optimal and to rent dissipa-
tion. Unfortunately, the multiplayer problem does
not involve a simple analytical solution, since at
each point a duopolist firm might end up in any
of four distinct situations (two-by-two matrix)
depending on the rival’s entry decision. Option
games indicate in each situation which driving
force (commitment vs. flexibility) prevails and
whether to go ahead with the investment or wait
and see. Main drivers of the prevailing market

equilibrium include the riskiness of the venture,

 , the magnitude of the first-mover advantage and
the exclusive or shared ability to reap the benefits
of the investment vis-à-vis rivals. When firms
can grasp a large first-mover advantage from in-
vesting early but cannot differentiate themselves
sufficiently from each other, they may be tempted
to wage a preemptive war, investing prematurely
at an early market stage that actually kills option
value. If firms are more on an equal footing but
do not see much benefit from investing early,
they may prefer to wait and invest (jointly) at a
later stage when the future market is sufficiently
mature. If, however, one firm has a comparative
cost advantage that dominates (e.g., a radical or
drastic technological superiority) its rival indus-
try, participants may prefer a consensual leader-
follower investment arrangement involving less
option value destruction.

Conclusions

Corporate management’s strategic tool kit should
provide clearer guidance on whether to pursue
a wait-and-see stance in the face of uncertain
market developments or jump on the first-mover
bandwagon to build competitive advantage. We
discussed two different modeling approaches that
provide complementary perspectives and insights
to help management deal with issues of flexibility
versus commitment: real options and dynamic
game theory. While each approach separately
might turn a blind eye to flexibility or commit-
ment, an integrative perspective through “options
games" might provide the right balance and serve
as a tool kit for adaptive competitive strategy.
Both perspectives ultimately aim to derive bet-
ter insights into industry dynamics under indus-
try conditions characterized by both market and
strategic uncertainty.

Option games pave the way for a consis-
tent approach in addressing managerial decision-
making, elevating the art of strategy to scientific
analysis. Option games integrates in a common,
consistent framework recent advances made in
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these diverse set of disciplines. This emerging
field that represents a promising strategic man-
agement tool that can help guide managerial
decisions through the complexity of the modern
competitive marketplace.
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Abstract

The nonlinear Kuramoto equations for n coupled
oscillators are derived and studied. The oscilla-
tors are defined to be synchronized when they os-
cillate at the same frequency and their phases are
all equal. A control-theoretic viewpoint reveals
that synchronized states of Kuramoto oscillators
are locally asymptotically stable if every oscilla-
tor is coupled to all others. The problem of syn-
chronization in Kuramoto oscillators is closely
related to rendezvous, consensus, and flocking
problems in distributed control. These problems,
with their elegant solution by graph theory, are
discussed briefly.

Keywords

Graph theory; Kuramoto model; Laplacian;
Oscillator; Synchronization

Introduction

An oscillator is an electronic circuit or other kind
of dynamical system that produces a periodic
signal. If several oscillators are coupled together
in some fashion and the periodic signals that they
each produce are of the same frequency and are in
phase, the oscillators are said to be synchronized.
The book Sync: The Emerging Science of Spon-
taneous Order, by Strogatz, introduces a wide
variety of phenomena where oscillators synchro-
nize. Some examples from biology: networks of
pacemaker cells in the heart, circadian pacemaker
cells in the suprachiasmatic nucleus of the brain,

http://dx.doi.org/10.1007/978-1-4471-5058-9_36
http://dx.doi.org/10.1007/978-1-4471-5058-9_34
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Oscillator Synchronization, Fig. 1 Two metronomes
on a board that is on two pop cans. After the metronomes
are let go at the same frequency but at different times, they
soon become synchronized and tick in unison.

metabolic synchrony in yeast cell suspensions,
groups of synchronously flashing fireflies, and
crickets that chirp in unison. Engineering exam-
ples include clock synchronization in distributed
communication networks and electric power net-
works with synchronous generators.

A very simple example of oscillator synchro-
nization was discovered by Christiaan Huygens,
the prominent Dutch scientist and mathematician
who lived in the 1600s. One of his contributions
was the invention of the pendulum clock, where a
pendulum swings back and forth with a constant
frequency. Huygens observed that two pendulum
clocks in his house synchronized after some time.
The explanation for this phenomenon is that the
pendula were coupled mechanically through the
wooden frame of the house. The same principle
can be observed by a fun, simple experiment. As
in Fig. 1, put two pop cans on a table, on their
sides and parallel to each other. Place a board on
top of them, and place two (or more) metronomes
on the board. Set the metronomes to tick at the
same frequency. Start them off ticking but not in
unison. Within a few minutes they will be ticking
in unison.

In this essay we derive what are known as
the Kuramoto equations, a mathematical model
of n oscillators, and then we study when they will
synchronize.

The KuramotoModel

In 1975 the Japanese researcher Yoshiki Ku-
ramoto gave one of the first serious mathemati-

cal studies of coupled oscillators. To derive Ku-
ramoto’s equations, we begin with a simple hy-
pothetical setup. Imagine n runners going around
a circular track. Suppose they’re all going at
roughly the same speed, but each adjusts his/her
speed based on the speeds of his/her nearest
neighbors. If some runner passes another, that one
tends to speed up to close the gap. The synchro-
nization question is do the runners eventually end
up running together in a tight pack?

Idealize the runners to be merely points, num-
bered k D 1; : : : ; n. They move on the unit
circle in the complex plane. A point on the unit
circle can be written as ej� , where j denotes the
unit imaginary number and � denotes the angle
measured counterclockwise from the positive real
axis. The position of point k at time t is zk.t/ D
ej.!tC�k.t//, where ! is the nominal rotational
speed in rad/s, and �k.t/ is the difference between
the actual angle at time t and the nominal angle
!t . Notice that ! is a constant positive real
number and it is the same for all n points. As
in circuit theory, it simplifies the mathematics to
refer all the positions to the sinusoid ej!t , and
therefore we define the local position of point k
to be pk.t/ D zk.t/=ej!t , i.e., pk.t/ D ej�k.t/:
Differentiate the local position with respect to
time and let “dot” denote d=dt : Ppk D ej�kj P�k:
Define the local rotational velocity vk D P�k and
substitute into the preceding equation:

Ppk D vkjpk: (1)

The local velocity vk could be positive or neg-
ative. Notice that if we view pk as a vector
from the origin and view multiplication by j

as rotation by �=2, then jpk can be viewed as
tangent to the circle at the point pk – see the
picture on the left in Fig. 2.

Now we propose a feedback law for vk in
Eq. (1); see the picture on the right in Fig. 2. Take
vk proportional to the projection of pi onto the
tangent at pk , that is, vk D hpi ; jpki. Here the
inner product between two complex numbers v;w
is hv;wi D Re Nvw. (You may check that this is
equivalent to the usual dot product of vectors in
R
2.) Thus from (1) the model to get k to close the

gap is Ppk D hpi ; jpkijpk.



Oscillator Synchronization 1017

O

Oscillator Synchronization, Fig. 2 Left: The vectors pk
and jpk . Right: The local velocity vk

More generally, suppose that point k pays
attention to not just point i but a fixed set of points
called its neighbors. Let Nk denote the index set
of neighbors of point k and for simplicity assume
Nk does not depend on time. We consider the
control law vk D P

i2Nk
hpi ; jpki and thereby

arrive at the model of the evolution of the posi-
tions pk :

Ppk D
X
i2Nk

hpi ; jpkijpk:

However, the Kuramoto model gives the evo-
lution of the angles �k rather than the points pk .
To find the equation for �k , we observe that

hpi ; jpki D Re . Npijpk/
D Re

�
e�j�i j ej�k

�
D sin.�i � �k/:

In this way, the controlled points move according
to

Ppk D
X
i2Nk

sin.�i � �k/jpk:

Substitute in pk D ej�k and then cancel jpk :

P�k D
X
i2Nk

sin.�i � �k/; k D 1; : : : ; n: (2)

This is the Kuramoto model of coupled oscil-
lators in terms of the phases of the oscillators.
There are n coupled nonlinear ordinary differen-
tial equations.

Equation (2) has the vector form P� D g.�/.
There are some variations in the literature about

the state space associated with this equation. It is
important to get the state space right because oth-
erwise the concepts of stability and synchroniza-
tion become shaky. The phase angles �k are real
numbers with units of radians, so at first glance
the state space is R

n. But the angles are defined
modulo 2� and so their values are restricted to lie
in the interval Œ0; 2�/. In this way the state space
becomes Œ0; 2�/n. For example, if n D 2 the state
space is the square Œ0; 2�/ � Œ0; 2�/ viewed as
a subset of the plane R

2. The mapping � 7! ej�

is a one-to-one correspondence from the interval
Œ0; 2�/ to the unit circle in the complex plane
C. This unit circle is usually denoted S

1, the
superscript signifying the circle’s dimension as a
manifold. By this correspondence the state space
of (2) is the n-fold product S1 � � � � � S

1, and this
is sometimes called the n-torus, denoted T

n.
To recap, in what follows, the state space

is Œ0; 2�/n. This is an n-dimensional manifold
rather than a vector space.

Synchronization

Control-theoretic methods, for example, that of
Sepulchre et al. (2007), have been insightful. We
address now the question of whether or not the
oscillators in (2) synchronize, that is, the phases
asymptotically converge to a common value. In
the state space, Œ0; 2�/n, the set of synchronized
states is the set of vectors � of the form c1,
where c 2 Œ0; 2�/ and 1 is the vector of 1’s. The
simplest case is when every point is a neighbor of
every other point, i.e., Nk contains every integer
in the set 1; : : : ; n except k. Then (2) becomes

P�k D
nX
iD1

sin.�i � �k/; k D 1; : : : ; n: (3)

Let us show that if the initial phases �k.0/ are
all close enough together, then �.t/ converges
asymptotically to a synchronized state. This will
show that the synchronized states are locally
asymptotically stable in a certain sense.

As stated before, Eq. (3) has the form P� D
g.�/. The function g.�/ is the gradient of a
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positive definite function. Indeed, let rej denote
the average of the points ej�1 ; : : : ; ej�n . Of course,
r and  are functions of � , and so we have

r.�/ej .�/ D 1

n

�
ej�1 C � � � C ej�n

�

and therefore

r.�/ D 1

n

ˇ̌
ej�1 C � � � C ej�n

ˇ̌
:

The average of n points on the unit circle lives
inside the unit disc, and therefore r.�/ is a real
number between 0 and 1. It equals 1 if and only
if the n points are equal, that is, the n phases are
equal, and this is the state where the phases are
synchronized.

Define the function

V.�/ D n2

2
r.�/2

D 1

2

ˇ̌̌
ej�1 C � � � C ej�n

ˇ̌̌2

D 1

2

�
ej�1C � � � Cej�n

� �
e�j�1C � � � Ce�j�n

�
:

Thus

@V.�/

@�k
D sin.�1 � �k/C � � � C sin.�n � �k/

and therefore (3) can be written as P� D
@V.�/=@�: This is a gradient equation. If �.0/
is chosen so that all the phases are close enough
together, then r.�.0// will be close to 1, and
therefore � will move in a direction to increase
V.�/, that is, increase r.�/, until in the limit
r.�/ D 1 and the phases are synchronized.

There are results, e.g., Sepulchre et al. (2008),
when the coupling is not all-to-all. Also, the term
“synchronization” is used more generally than
just for oscillators Wieland et al. (2011).

Rendezvous, Consensus, Flocking,
and Infinitely Many Oscillators

Synchronization of coupled oscillators is closely
related to other problems known as rendezvous,

consensus, or flocking problems. Phase synchro-
nization is replaced by the requirement of mobile
robots gathering at some location, by the require-
ment of temperature sensors in a sensor network
converging to the same temperature estimate, or
by the requirement that mobile robots should
head in the same direction. The simplest form of
these problems has the equations

P�k D
X
i2Nk

.�i � �k/; k D 1; : : : ; n: (4)

Notice that this can be obtained from the Ku-
ramoto model (2) merely by replacing sin.�i��k/
by �i � �k in (2), that is, by linearizing the
latter at a synchronized state. We shall continue
to call �k a phase of an oscillator. When do the
phases evolving according to (4) synchronize?
The answer to the question involves a lovely col-
laboration between graph theory and dynamics.

Introduce a directed graph that is in one-to-
one correspondence with the neighbor structure.
The graph is made up of n nodes, one for each
oscillator. From each node there is an arrow to
every neighbor of that node; that is, from node
k is an arrow to every node in Nk . Denote the
adjacency matrix and the degree matrix of the
graph by, respectively, A and D. That is, aij D 1

if j is a neighbor of i and dii equals the sum of
the elements on row i of A. The Laplacian of the
graph is defined to be L D D � A. Then (4) is
equivalent to simply

P� D �L�; (5)

where � is still the vector with elements
�1; : : : ; �n. Whether or not synchronization
occurs depends on the connectivity of the graph.
We stop here and refer the reader to the articles
�Averaging Algorithms and Consensus and
�Flocking in Networked Systems

Suppose there are an infinite but countable
number of oscillators in the model (5). When will
they synchronize? To answer this, we have to be
more specific.

Let us allow an infinite number of oscillators
numbered by the integers, positive, zero, and
negative. Denote the phases by �k and let �

http://dx.doi.org/10.1007/978-1-4471-5058-9_214
http://dx.doi.org/10.1007/978-1-4471-5058-9_215
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denote the phase vector, whose kth component is
�k . Assume each oscillator has only finitely many
neighbors, let Nk denote the set of neighbors of
oscillator k, and let L be the Laplacian of the as-
sociated graph. Finally, let �.t/ evolve according
to the Eq. (5). This equation isn’t automatically
well posed in the sense that there may not be a
solution defined for all t > 0. We have to impose
a framework so that solutions do indeed exist.
One natural space in which to place �.0/ is `2,
the Hilbert space of square-summable sequences.
If L is a bounded operator on `2, then so is e�Lt
for every t > 0, and hence the phase vector
exists and belongs to `2 for every t > 0. Another
natural space in which to place �.0/ is `1, the
Banach space of bounded sequences. Again, a
phase vector exists for all t > 0 if L is a bounded
operator on `1.

The following example is from Feintuch and
Francis (2012). Take the neighbor sets to be
Nk D fk � 1g. The graph is a chain: There is
an arrow from node k to node k � 1, for every
k, and the Laplacian is the infinite matrix with
1 on the diagonal, �1 on the first subdiagonal,
and zero elsewhere. This Laplacian is a bounded
operator on both `2 and `1. Now the vector c1,
where 1 is the vector of all 1’s, belongs to `1
for every real number c, but it belongs to `2

only for c D 0. So the phases can potentially
synchronize at any value in `1, but only at 0 in
`2. For the example under discussion, if the initial
phase vector is in `2, then the phases synchro-
nize at 0. By contrast, there exist initial phase
vectors in `1 such that synchronization does
not occur. Even worse, limt!1 �.t/ does not
exist. The conclusion is that whether or not the
oscillators will synchronize is a difficult question
in general.

Summary and Future Directions

The Kuramoto model is a widely used paradigm
for coupled oscillators. The model has the form
P� D f .E�/, where � is the vector of phases,
the matrix E maps � into the vector of possible
differences �i � �k , and f is a function. The
Kuramoto model considered in this essay is not

the most general. A more general model allows
different frequencies !k instead of just one, and
also a coupling gainK , leading to the model

P�k D !k C K

n

X
i2Nk

sin.�i � �k/; k D 1; : : : ; n:

(6)

An important problem associated with the
Kuramoto model is to determine which synchro-
nized states are stable. The linearized equation is
interesting in its own right and relates to problems
of rendezvous, consensus, and flocking.

Reference Dörfler and Bullo (2014) offers
some questions for future study. In particular,
it would be interesting to extend the Kuramoto
model beyond the first-order oscillators of (2).
Also, the case of general neighbor sets has much
room for exploration.

Asymptotic stability is a robust property. For
example, if the origin is asymptotically stable
for the system Px D Ax, it remains so if A is
perturbed by a sufficiently small amount. This
is because the spectrum of a matrix is a con-
tinuous function of the matrix. The sketch in
Fig. 1 vividly depicts the concept of synchronized
oscillators. A topic for future study is that of ro-
bustness. Mathematically, if the two metronomes
are identical, they will synchronize perfectly –
this can be proved. Of course, physically two
metronomes cannot be identical, and yet they will
synchronize if they are close enough physically.
A mathematical study of this phenomenon might
be interesting.

Cross-References

�Averaging Algorithms and Consensus
�Flocking in Networked Systems
�Graphs for Modeling Networked Interactions
�Networked Systems
�Vehicular Chains

Recommended Reading

The literature on the Kuramoto model is
huge – there are now many hundreds of journal

http://dx.doi.org/10.1007/978-1-4471-5058-9_214
http://dx.doi.org/10.1007/978-1-4471-5058-9_215
http://dx.doi.org/10.1007/978-1-4471-5058-9_212
http://dx.doi.org/10.1007/978-1-4471-5058-9_211
http://dx.doi.org/10.1007/978-1-4471-5058-9_221
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papers continuing the study of oscillators using
Kuramoto’s model. There is space here only to
highlight a few sources.

You can find a mathematical study of
coupled metronomes in Pantaleone (2002). Also,
Pantaleone’s webpage Pantaleone describes
some experimental observations. Kuramoto’s
original paper is Kuramoto (1975). Dörfler and
Bullo have recently written a comprehensive
survey (Dörfler and Bullo (2014)). Strogatz has
written extensively on oscillator synchronization.
His book Sync is fascinating and is highly
recommended (Strogatz 2004). See also Strogatz
(2000) and Strogatz and Stewart (1993). The
papers Scardovi et al. (2007) and Dörfler
and Bullo (2011) are recommended for more
recent results, the latter treating the general
model (6).

Getting phases in oscillators to synchronize is
a special case of getting the states or outputs of
coupled systems asymptotically to converge to
a common value. There is a very large number
of references on these subjects, a seminal one
being Jadbabaie et al. (2003); others are Lin et al.
(2007) and Moreau (2005). Regarding infinitely
many oscillators, the physics literature treats only
a continuum of oscillators, whereas countably
many oscillators are the subject of Feintuch and
Francis (2012).

Acknowledgments I greatly appreciate the help from
Luca Scardovi, Florian Dörfler, and Francesco Bullo.
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Roma, Italy

Abstract

This entry discusses some of the salient fea-
tures of the output regulation problem for hybrid
systems, especially in connection with the steady-
state characterization. In order to better high-
light such peculiarities, the discussion is mostly
focused on the simplest class of linear time-
invariant systems exhibiting such behaviors. In
comparison with the usual regulation theory, the
role played by the zero dynamics and by the
presence of more inputs than outputs is particu-
larly striking.
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Introduction

Output regulation is one of the most classical
problems in control theory, and its celebrated
solution in the linear time-invariant case (Davison
1976; Francis and Wonham 1976) is character-
ized by remarkable elegance and ideas (like the
internal model principle). While the extension to
nonlinear systems is still an active field of inves-
tigation, the study of output regulation for hybrid
systems is also being actively pursued, and sev-
eral surprising results have already appeared for
the linear case, suggesting that a richer structure
arises in hybrid output regulation problems due to
the interplay between flow and jump dynamics.

The problem can be stated as follows. A
known exosystem E with initial state belonging
to a suitably defined set W0 produces a signal
w possibly affecting both the plant P and the
compensator C; the compensator has to guarantee
that for any initial state of E in a set W0:
• All closed-loop responses are bounded.
• The output e of P asymptotically converges to

zero.
In order to avoid trivialities, the exosystem E
is assumed to be such that its state evolution
from nonzero initial states in W0 is bounded and
not asymptotically converging to zero, both in
forward and in backward time.

Two typical embodiments of the output regu-
lation problem are the disturbance rejection and
the reference tracking problems. In disturbance
rejection, w acts as a disturbance on P and cannot
be measured by C, and the output e from which
the effect of w has to be canceled is the actual
plant output. In reference tracking, w contains the
references to be tracked by an output yr of P ,
so that w can be assumed to be known by C; by
defining the regulated output e as e D yr � r , the
reference tracking problem is cast as an output
regulation problem.

The solution of an output regulation prob-
lem entails the solution of two subproblems: the
definition of a set of zero output steady-state
solutions and the asymptotic stabilization of such
solutions (or at least making them attractive; in
many cases of interest, the achievement of this
last objective actually yields asymptotic stabi-
lization). As a matter of fact, the stabilization
subproblem is already widely studied and de-
scribed per se; for this reason, after some short
remarks in section “Stabilization Obstructions in
Hybrid Regulation”, the remainder of this pre-
sentation will focus only on steady-state-related
issues, for the simplest class of systems which
exhibit the most peculiar and interesting phe-
nomena of hybrid steady-state behavior (see in
particular section “Key Features in Hybrid vs
Classical Output Regulation”). For concreteness,
only hybrid systems E , P characterized by linear
time-invariant (flow and jump) dynamics will
be considered; following Goebel et al. (2012,
Chap. 2), a two-dimensional parameterization of
hybrid time .t; k/ 2 R � N will be used, with t
measuring the flow of (usual) time and k counting
the number of jumps experienced by the solution
(see Fig. 1 for a specific example). So, the exosys-
tem E will be described at time .t; k/ by

Pw D Sw ; .w; t; k/ 2 CE ; (1a)

wC D Jw ; .w; t; k/ 2 DE ; (1b)

1

2

3

4

M 2 M 3 M 4 M t

k

0
0

(t2, 2)

(t3, 2)

(t3,3)

(t4, 3)

(t4, 4)

Output Regulation Problems in Hybrid Systems,
Fig. 1 Hybrid time domain T for a “sampled data” hybrid
system. Dots indicate .t; k/ 2 T when jumps occur
(see section “Hybrid Steady-State Generation” for the tk
notation)



1022 Output Regulation Problems in Hybrid Systems

and the plant P will be described at time .t; k/ by

Px D Ax C Bu C Pw ; .x; u; t; k/ 2 CP ;
(2a)

xC D Ex CRw ; .x; u; t; k/ 2 DP ;
(2b)

e D Cx CQw ; (2c)

with x.t; k/ 2 R
n, u.t; k/ 2 R

m, e.t; k/ 2 R
p,

w.t; k/ 2 R
q , and suitably defined flow sets CE ,

CP and jump sets DE , DP .

Stabilization Obstructions in Hybrid
Regulation

The achievement of asymptotic stabilization of
the desired (zero output) steady-state responses
for the considered class of linear hybrid systems
crucially depends on whether the plant P and
the exosystem E have synchronous jump times or
not.

Asynchronous Jumps
Typically, jumps in P and E will be asyn-
chronous, and this will cause the undesirable
phenomenon that genuinely close trajectories
will look “distant” around each jump when the
distance is measured according to the usual
Euclidean norm. The simplest illustration of
such phenomenon consists in considering two
trajectories of the same system starting from
"-close initial conditions. Consider the system

Pv D 1; v 2 Œ0; 1�; vC D 0; v 62 .0; 1/;

with the initial states v0 D 0 and v1 D ", 0 <
" < 1. The two ensuing solutions at time .t; k/
are immediately computed as

v.t; kI v0/Dt � k; t 2 Œk; k C 1�;

v.t; kI v1/D
(
t � k C "; t 2 Œk; k C 1 � "�;
t � k C " � 1; t 2 Œk C 1 � "; k C 1�;

Hence, the (Euclidean) distance between the two
solutions at time .t; k/ is given by

d.t; k/ D
(
"; t 2 Œk; k C 1 � "�;

.1 � "/; t 2 Œk C 1 � "; k C 1�I

in other words, choosing " > 0 as small as de-
sired, arbitrarily close initial conditions generate
trajectories which are apart by a finite amount (as
close as desired to 1) during the arbitrarily small
time intervals where t 2 Œk C 1 � "; k C 1�.
Since stability deals with trajectories remaining
close forever and attractivity deals with trajecto-
ries getting closer and closer, examples such as
the one above pose serious issues when defining
(let alone establish) stability and attractivity in
the hybrid case. Similar problems arise not only
in output regulation problems but also in other
areas like state tracking, observers, and general
interconnections of hybrid systems.

However, intuition suggests (and mathematics
confirms, by using a suitable notion of “dis-
tance”) that such trajectories are close indeed.
Several approaches have been proposed in order
to overcome such difficulty. Considering as an
example a bouncing ball tracking another bounc-
ing ball, the problematic time intervals are those
between the bounce of the first ball hitting the
ground and the bounce of the other ball; in such
a case, the modified distances are defined by
either
• Allowing to exclude sufficiently short

“problematic” intervals (possibly requiring
that their length asymptotically tends to zero);
see, e.g., Galeani et al. (2008, 2012)

• Considering alternative “mirrored” trajecto-
ries computed as if the last jump did not
happen; see, e.g., Forni et al. (2013a,b)

• Using a “stretched” distance function ı such
that when point a is in the jump set and
its image via the jump map is g.a/, then
ı.a; b/ D ı.g.a/; b/; see, e.g., Biemond et al.
(2013).

While the first approach has been proposed first,
the other two (which are strongly related) have
the advantage of providing (under mild additional
hypotheses) global control Lyapunov functions.
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Finally, it is worth noting that the most adequate
tools to address similar issues for general hybrid
systems are the “graphical distance” among hy-
brid arcs and related concepts (see Goebel et al.
2012, Chap. 5).

Synchronous Jumps
When synchronous jumps are considered, the
above issue disappears, and asymptotic stabiliza-
tion becomes a much simpler matter. Although
synchronous jumps look more like an exception
than a rule in hybrid systems, they are very
reasonable for specific classes of problems.

In order to have synchronous jumps, some
authors have considered the use of “jump inputs”
which impose a jump at a certain time, which
can be physically reasonable in some systems,
e.g., two tanks separated by a movable wall,
assuming that when the wall is removed the fluid
reaches the equilibrium configuration almost in-
stantaneously.

Another relevant class consists of “sampled
data” systems, whose jumps are essentially due
to digital components which operate at a fixed
sampling rate, which will be considered in the
rest of this entry. In such a case, letting 	M be the
sampling period, the time domain of the hybrid
system is fixed as (see Fig. 1)

T WD f.t; k/ W t 2 Œk	M ; .k C 1/	M �; k 2 Zg;
(3)

all jumps happen exactly for .t; k/ with t D .kC
1/	M , and then (1) can be simplified as

Pw D Sw ; (4a)

wC D Jw ; (4b)

and (2) can be simplified as

Px D Ax C Bu C Pw ; (5a)

xC D Ex CRw ; (5b)

e D Cx CQw ; (5c)

since flow and jump times are clear from the
context.

For the latter class of systems, by using linear
time-invariant hybrid control laws and observers

(and an easily provable separation principle), it is
easily shown that:
• Under a hybrid stabilizability hypothesis,

state feedback stabilization of (5) is easily
achieved.

• Output feedback stabilization of (5) from e

is also trivial under an additional hybrid de-
tectability hypothesis.

• Under hybrid detectability of the cascade
of (4) and (5), w can be asymptotically
estimated from e.

Due to the above facts, it can be assumed without
loss of generality that (5) is asymptotically sta-
ble (equivalently, that all eigenvalues of EeA	M

have modulus strictly less than one). Asymptotic
stability then yields incremental stability, since
letting Ox and Lx denote two motions under the
same inputs u, w and only differing in their initial
states, it is immediate to see that their difference
Qx WD Ox � Lx evolves as

PQx D POx � PLx D A Ox C Bu C Pw

� .A Lx C Bu C Pw/;

QxC D OxC � LxC D E Ox CRw � .E Lx CRw/;

that is, PQx D A Qx, QxC D E Qx, and so it is
just a free motion of the plant, asymptotically
converging to zero. Incremental stability implies
that regulation is achieved as soon as it is shown
that for any exogenous input w it is possible
to find an input u and an initial state of (5)
such that e is identically zero, since then any
other motion arising from a different initial state
will asymptotically converge to the motion with
identically zero e. Moreover, it is easy to see that
asymptotic stability of the origin actually implies
uniform, global, and exponential stability of any
trajectory for such systems.

Hybrid Steady-State Generation

From this point on, the rest of the presentation
will be focused only on the case where the prob-
lem data are of the form (3) to (5), since this
allows to provide an uncluttered view on some
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peculiar features of hybrid steady-state motions,
without the burden of having to take care of
delicate stability issues arising in more general
contexts.

Based on the preceding discussion, there is no
loss of generality at this point in assuming that:
• Plant (5) is asymptotically stable, which is

equivalent to all eigenvalues of EeA	M having
a magnitude strictly less than one.

• Exosystem (4) is Poisson stable, which is
equivalent to all eigenvalues of JeS	M having
a magnitude equal to one.
It is also customary to distinguish between full

information and error feedback regulation, where
in the first case controller C has access to the
complete state .w; x/ of the cascade of E and P ,
whereas in the second case C can only measure
the output e of P .

Having assumed asymptotic stability of plant
P , the only role of compensator C consists in
generating the correct steady-state input, since
then, by incremental stability of P , asymptotic
regulation is ensured from any initial state. Re-
calling the expression of T in (3), for the follow-
ing developments it is useful to define the jump
times tk and the elapsed time of flow since last
jump 
 as

tk WD k	M ; 
.t; k/ WD t � k	M I

the arguments of 
.t; k/ will usually be omitted
since clear from the context. Note that 
 satisfies
P
 D 1, 
C D 0, and it is often explicitly
introduced as an additional timer variable.

The Full Information Case
Consider the candidate steady-state motion and
input:

	
xss.t; k/

uss.t; k/



D
	
….
/

�.
/



w.t; k/: (6)

Requiring that such expressions actually charac-
terize a response of the considered plant, as well
as the associated output is zero, amounts to ask
that:
• During flows, Pxss.t; k/ has to satisfy the two

equations:

Pxss.t; k/ D P….
/w.t; k/C….
/ Pw.t; k/;
Pxss.t; k/ D Axss.t; k/C Buss.t; k/

C Pw.t; k/:

• At jumps, xC
ss .t; k/ has to satisfy the two

equations:

xC
ss .tkC1; k/ D ….0/wC.tkC1; k/;

xC
ss .tkC1; k/ D Exss.tkC1; k/CRw.tkC1; k/:

• For the output ess to be identically zero:

0 D Cxss.t; k/CQw.t; k/:

Substituting (6) in the above conditions and con-
sidering that such relations should hold for all
values of w, the following hybrid regulator equa-
tions are obtained:

P….
/C….
/S D A….
/C B�.
/C P;

(7a)

….0/J D E….	M /CR; (7b)

0 D C….
/CQ: (7c)

Equations (7) can be shown to be both necessary
and sufficient for (6) to solve the output regula-
tion problem under the considered assumptions.
Once a solution of (7) is available, the full in-
formation regulator simply reduces to the time-
varying static feedforward controller

u.t; k/ D �.
/w.t; k/ (8)

which just provides as input the steady-state input
uss characterized as in (6); in fact, since (5) is
incrementally stable (as follows from its asymp-
totic stability, which was assumed without loss of
generality), its output response under the control
law (8) must converge to the output response
associated to (6).

For later use, note that in the non-hybrid case
where P and E only flow

Pw D Sw; (9a)
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Px D Ax C Bu C Pw; (9b)

e D Cx CQw; (9c)

the candidate steady state (6) is replaced by

	
xss.t/

uss.t/



D
	
…

�



w.t/; (10)

and (7) reduces to the celebrated regulator equa-
tions (or Francis equations)

…S D A…C B� C P; (11a)

0 D C…CQ; (11b)

and, as above, assuming without loss of gener-
ality that the plant is asymptotically stable, the
full information regulator reduces to the time-
invariant static feedforward controller:

u.t; k/ D �w.t; k/ (12)

The Error Feedback Case
When the exosystem state is not measured, a
dynamic compensator of the form

P� D F � CGe ; (13a)

�C D L� ; (13b)

u D H� ; (13c)

which is also supposed to flow and jump accord-
ing to the a priori fixed time domain T considered
for the plant, is introduced, and the corresponding
candidate steady-state motion including � is

2
4xss.t; k/�ss.t; k/

uss.t; k/

3
5 D

2
4….
/†.
/

�.
/

3
5w.t; k/: (14)

By following similar steps as above, requiring
invariance of such a manifold in the space of
.x; �; u;w/, as well as zero output on it, leads
to the conclusion that in addition to (7), the
following relations must be satisfied as well:

P†.
/C†.
/S D F†.
/ ; (15a)

†.0/J D L†.	M / : (15b)

�.
/ D H†.
/ ; (15c)

Equations (7) and (15) can be shown to be both
necessary and sufficient for (13) to solve the
output regulation problem under the considered
assumptions and generalize the corresponding
conditions for the non-hybrid case where P and
E only flow (see (9)) and (13) and (14) are
replaced by

P� D F � CGe ; (16a)

u D H� ; (16b)
2
4xss.t/�ss.t/

uss.t/

3
5 D

2
4…†
�

3
5w.t/; (16c)

and (15) reduces to

†S D F†; (17a)

� D H†: (17b)

Relations (17) are an expression of the in-
ternal model principle, stating that in order to
achieve error feedback regulation, the compen-
sator C must include a suitable “copy” of the
exosystem, namely, (17a) imposes a constraint on
the � dynamics of C which, coupled with (17b),
ensures that the signal uss D �w used in the full
information case can be equivalently produced
(without measuring w!) as uss D H†�. A similar
interpretation can be given to (15), which must
be required in addition to (7) in order for (13) to
solve the hybrid error feedback output regulation
problem.

Key Features in Hybrid vs Classical
Output Regulation

While the previous section mainly aimed at show-
ing how the classical theory generalizes in the
hybrid case (at least for a special class of hybrid
systems), the aim of this section is to point out
some of the striking differences between the two



1026 Output Regulation Problems in Hybrid Systems

cases. Before proceeding further, and in order to
keep focus on the characterization of the steady-
state response, it is worth mentioning here that al-
though time-varying systems will be considered,
no issue regarding nonuniform stability (like in
general nonautonomous systems) arises since the
timer 
 just ranges in the compact set Œ0; 	M � due
to the assumed periodic structure of T (see also
the end of section “Synchronous Jumps”).

Comparing the classical and the hybrid output
regulator and considering that P and E are time
invariant, it seems somewhat strange that in the
output feedback case the linear time-invariant
regulator (16a) and (16b) generalizes to a hybrid
linear time-invariant regulator (13), whereas in
the full information case the linear time-invariant
regulator (12) generalizes to a hybrid linear time-
varying regulator (8).

One argument in favor of the time-varying reg-
ulator (8) is based on the following consideration.
It is well known that (11) has a unique solution
in the case of a square plant (m D p) under the
nonresonance condition between the zeros of P
and the eigenvalues of E , requiring that

rank

	
A � sI B
C 0



D nC p; 8s 2 ƒ.S/;

whereƒ.S/ denotes the spectrum of S . In such a
case, (11) amounts to a system of nqCpq linear
equations in nq C mq unknowns (the elements
of…, �), which might be expected to be satisfied
sincem � p. If one were trying to use the unique
constant solution .…; �/ of (11) as a solution
of (7), clearly (7a) and (7c) would be satisfied,
but then (7b) would impose other nq equations
on … which would unlikely be satisfied. For
this reason, apparently the additional degree of
freedom offered by choosing time dependent …
and � might be of help. In fact, it can be shown
that if m D p and under a hybrid nonreso-
nance condition (involving EeA	M and JeS	M )
between P and E , (7a) and (7b) have a unique
solution for any choice of �.
/, so that the design
boils down to satisfying (7c) by choosing �.
/;
but is this always possible? In order to answer
this nontrivial question, a different path must be
followed. While a complete formal analysis can

be performed, the following discussion will be
mainly based on showing the simplest examples
exhibiting the pathologies of interest.

Consider the system with 	M D 1 (so that
tk D k, for all k 2 Z) and

Pw D 0; (18a)

wC D �w; (18b)

	 Px1
Px2



D
	�1 0

0 �2

 	
x1
x2



C
	
0

1



u C

	
0

1



w;

(18c)

	
xC
1

xC
2



D
	
0 1

2e 1


 	
x1
x2



; (18d)

e D 
0 1
� 	x1
x2



� w: (18e)

The unique steady-state solution achieving out-
put regulation can be simply computed. In fact,
by (18a) and (18b),

w.t; k/ D .�1/kw.0; 0/I

then, by (18e) it appears that ess D 0, 8.t; k/ 2 T
implies

x2;ss .t; k/ D w.t; k/ D .�1/kw.0; 0/;

8.t; k/ 2 T ;

which in turn implies that Px2;ss D 0 for all t 2
.k; k C 1/, k 2 Z and the unique steady-state
input

uss D 2x2;ss � w:

Since (18d) implies that x1;ss.tkC1; k C 1/ D
x2;ss.tkC1; k/ D w.tkC1; k/ and (18c) implies
that x1;ss.t; k/ D �e�.t�k/x1;ss.tk ; k/, for t 2
.tk; tkC1/, it follows that

x1;ss.t; k/ D �e�.t�tk/w.tk ; k/; t 2 .tk; tkC1/;
(19)

which finally is coherent with the jump equation
for x2;ss in (18d) since
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x2;ss.tkC1; kC1/D2ex1;ss.tkC1; k/Cx2;ss.tkC1; k/

D2e.�e�1/w.tk ; k/C w.tk ; k/
(20a)

D � w.tk ; k/ (20b)

D.�1/kC1w.0; 0/: (20c)

Before commenting the meaning of the above

derived steady-state evolution, it is worth noting
that (18) might actually derive from an original
system with (18c) replaced by
	 Px1

Px2



D
	�1 0

1 �2

 	
x1
x2



C
	
0

1



u C

	
0

1



w; (21)

under the preliminary state feedback

u D �x1 C v: (22)

Such a feedback renders the subspace
fx W x2 D 0g unobservable (when the system
only flows) and reveals that the dynamics of x1
in (18c) is the flow zero dynamics of P , that
is, the zero dynamics of P when jumps are
inhibited. Having set the stage, several interesting
observations can be made now.

The flow zero dynamics samples the ex-
ogenous signal w at jumps and then evolves
according to its own modes (see (19)). In fact,
while in the classical case (10) the state and input
at steady state can be expressed as a constant
matrix times the current value of w, the real
nature of the time dependence of � and … in (6)
is linked to this phenomenon of sampling w.tk ; k/
and propagating along the zero dynamics. A
suitable analysis shows that ….
/, �.
/ contain
products of matrices with rightmost factor e�S

(which recovers w.tk ; k/ D e�S
w.t; k/ from the
current value w.t; k/ of w) and leftmost factor
containing the fundamental matrix of the flow
zero dynamics. It is worth mentioning that the
“motion along the zeros” in the present context is
strongly related to the same kind of motions used
for perfect tracking in non-hybrid systems. The
above insight about the nature of the dependence
on 
 in (6) also reveals why in the output feed-
back case (13) such dependence is not needed:
the required modes of the flow zero dynamics in

that case are provided by copying them in the
compensator dynamics!

An even stronger consequence of the analysis
above is a flow zero dynamics internal model
principle, which essentially states that any output
feedback compensator solving the output regula-
tion problem must be able to produce as free re-
sponses (during flow) a suitable subset of the nat-
ural modes of the flow zero dynamics (and a suit-
ably modified version applies to the feedforward
static compensator (8)). It is worth noting that
while the classical internal model principle re-
quires exact knowledge of the exosystem modes
(which is kind of a mild requirement, especially
when the exosystem models references, or con-
stant offsets), the flow zero dynamics internal
model principle requires the exact knowledge of
the modes of the zero dynamics, which typically
depends on not precisely known plant parame-
ters; clearly, this fact poses serious questions in
view of the achievement of robust regulation.

A final point, also raising serious issues about
what can be robustly achieved (and how) in the
setting of hybrid output regulation, is the fact
that generically, existence of solutions is not
robust to arbitrarily small parameter varia-
tions. In particular, looking again at the compu-
tations in (20), it should be clear that the involved
functions are all fixed by previous reasonings,
whereas satisfaction of (20) crucially depends on
exact cancellations of certain coefficients. Any
small variations of such coefficients in (18d)
imply that the problem admits no steady state
yielding zero output. This fact is in sharp contrast
with classical regulation, where the nonresonance
condition ensures existence of (different) solu-
tions for small parameter variations. It has to be
noted, though, that under additional conditions,
robust existence of solutions is guaranteed if
the plant is fat, that is, m > p. Using again the
previous example, this is the case if an additional
input is introduced

	 Px1
Px2



D
	�1 0

0 �2

 	
x1
x2



C
	
1 0

0 1


 	
u1
u2



C
	
0

1



w;

since then even a constant (suitably chosen) value
of u1 can be used to ensure that when the time to
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jump arrives, the value of x1 is such to ensure
a correct jump for x2 (remember that since x1
is unobservable during flows, its motion can be
changed as wished if this helps with ensuring that
the observable x2 achieves zero output).

Summary and Future Directions

The investigation of the output regulation prob-
lem for hybrid systems is still at a very early
stage. While the issues of stabilization of the
manifold where regulation is achieved seem to
be a relatively better understood topic (possibly
drawing from a richer literature on stabilization
of hybrid systems), the geometry and design of
such manifold appear to involve several much
more intricate issues, whose understanding will
be crucial in order to achieve more complete
solutions.

Already in the very simplified case of linear
dynamics and synchronous jumps, the important
role played by the whole flow zero dynamics
for feasibility (existence of solutions in the nom-
inal parameter values) and by the availability
of more inputs than outputs for well posedness
(existence of solutions for slightly perturbed pa-
rameter values) marks a strong difference with
the linear non-hybrid case, where both properties
are granted by satisfaction of the nonresonance
condition, which only involves the spectrum of
the zero dynamics, even for square plants.

While the expected final goal of this investiga-
tion should hopefully lead to the design of robust
output regulators based on a suitable internal
model principle, a deeper understanding of the
structure of the steady-state motion achieving
regulation, as well as of the effect of additional
inputs in shaping it, seems to be an important
preliminary step towards such goal.

Cross-References

�Hybrid Dynamical Systems, Feedback Control
of

�Nonlinear Zero Dynamics
�Regulation and Tracking of Nonlinear Systems

Recommended Reading

Foundational contributions on classical output
regulation are Francis and Wonham (1976), Davi-
son (1976), and Wonham (1985); more recent
monographs include Huang (2004), Trentelman
et al. (2001), Pavlov et al. (2005), Saberi et al.
(2000), and Byrnes et al. (1997). Goebel et al.
(2012) provides a solid introduction to a pow-
erful and elegant framework for hybrid systems,
including a thorough discussion of stability is-
sues related to those mentioned here. Regulation
problems (mainly reference tracking) for classes
of hybrid systems with asynchronous jumps are
presented in Biemond et al. (2013), Forni et al.
(2013a,b), Morarescu and Brogliato (2010), and
Galeani et al. (2008, 2012); synchronous jumps
(and the ensuing advantages) are considered e.g.,
Sanfelice et al. (2013). The class of linear systems
with synchronous jumps considered in sections
“Hybrid Steady State Generation” and “Key Fea-
tures in Hybrid vs Classical Output Regulation”
has been proposed in Marconi and Teel (2010,
2013) and studied in Cox et al. (2011, 2012); the
issues related to flow zero dynamics, fat plants
and robustness have been discussed in Carnevale
et al. (2012a,b, 2013), partly developing remarks
contained in Galeani et al. (2008, 2012).
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Parallel Robots
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Robotics Laboratory, Seoul National University,
Seoul, Korea

Abstract

Parallel robots are closed chains consisting of a
fixed and moving platform that are connected by
a set of serial chain legs. Parallel robots typically
possess both actuated and passive joints and may
even be redundantly actuated. Although more
structurally complex and possessing a smaller
workspace, parallel robots are usually designed
to exploit one or more of the natural advantages
they possess over their serial counterparts, e.g.,
higher stiffness, increased positioning accuracy,
and higher speeds and accelerations. In this chap-
ter we provide an overview of the kinematic
and dynamic modeling of parallel robots, a de-
scription of their singularity behavior, and basic
methods developed for their control.

Keywords

Closed kinematic chain; Closed loop mechanism;
Parallel manipulator

Introduction

A parallel robot refers to a kinematic chain in
which a fixed platform and moving platform
are connected to each other by several serial
chains, or legs. The legs, which typically have
the same kinematic structure, are connected to
the fixed and moving platforms at points that are
distributed in a geometrically symmetric fashion.
The Stewart-Gough platform (Fig. 1) is a well-
known example of a parallel robot: each of the
six legs is a UPS structure (i.e., consisting of
rigid links serially connected by a universal, pris-
matic, and spherical joint), with the prismatic
joint actuated. Other examples of parallel robots
include the 6 � RUS platform of Fig. 2, the
haptic interface device of Fig. 3, and the eclipse
mechanism of Fig. 4.

Parallel robots can be regarded as a special
class of closed chain mechanisms (i.e., chains
that contain one or more closed loops) and are
purposely designed to exploit the specific ad-
vantages afforded by the closed chain structure,
e.g., for improved stiffness, greater positioning
accuracy, or higher speed. Parallel robots should
be distinguished from two or more cooperating
serial robots that may form closed loops during
execution of a task (e.g., a robotic hand grasping
an object). Some of the fastest velocities and
accelerations recorded by industrial robots have
been achieved by parallel robots, primarily by

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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Parallel Robots, Fig. 1 Stewart-Gough platform

placing the actuators on the fixed platform and
thereby minimizing the mass of the moving parts.

Many of the model-based techniques devel-
oped for the control of traditional serial chain
robots are also applicable to a large class of
parallel robots. On the other hand, kinematic and
dynamic models for parallel robots are inher-
ently more complex. Parallel robots also pos-
sess features not found in serial robots, e.g.,
passive joints, the possibility of redundant actu-
ation, and a diverse range of singularity behav-
ior, that need to be considered when designing
a control law. We therefore begin with a brief
overview of the kinematic and dynamic mod-
eling of parallel robots before discussing their
control.

Modeling

Kinematics
Whereas the kinematic degrees of freedom, or
mobility, of a serial chain robot can be obtained as
the sum of the degrees of freedom of each of the
joints, the situation is somewhat more complex
for parallel robots and closed chains in general,
since only a subset of the joints can be indepen-
dently actuated. The mobility of a parallel robot
corresponds to the total degrees of freedom of
the joints that can be independently actuated. In
some cases the number of actuated joint degrees

of freedom may exceed the kinematic degrees of
freedom, in which case we say that the robot is
redundantly actuated.

A parallel robot with a designated end-effector
frame also has a notion of forward and inverse
kinematics. While for serial chains the forward
kinematics is a well-defined mapping and the
inverse kinematics can typically have multiple
solutions, for parallel robots the situation is less
straightforward. For the Stewart-Gough platform
of Fig. 1, in which the leg lengths can be adjusted
by actuating the prismatic joints, the inverse kine-
matics is unique and straightforward to obtain,
whereas the forward kinematics will have multi-
ple solutions. For other types of parallel robots
in which the legs themselves contain one or
more closed loops, both the forward and inverse
kinematics can have multiple solutions.

The notion of kinematic singularities for par-
allel robots is also much more involved than
the case for serial robots. Whereas kinematic
singularities for serial chain robots are charac-
terized by configurations at which the forward
kinematics Jacobian (i.e., the linear mapping re-
lating joint velocities to end-effector frame ve-
locities) becomes singular, for parallel robots and
closed chains in general, there exist other notions
of singularities not found in serial chains. For
example, given a parallel robot with kinematic
mobility m – if the parallel robot consists only
of one degree-of-freedom joints, this implies that
exactlym joints can be actuated – there may exist
configurations in which these m joints cannot be
independently actuated. Conversely, even if them
actuated joints are each fixed to some value, the
parallel robot may fail to be a structure, i.e., some
of the links may be able to move.

In the above scenario, choosing a different set
of m actuated joints may remedy this situation,
in which case such singularities are referred to
as actuator singularities. Configurations at which
singularity behavior occurs regardless of which
joints are actuated are denoted configuration sin-
gularities. The final class of singularities are end-
effector singularities, which correspond to the
usual serial chain notion of kinematic singularity,
in which the end-effector loses one or more
degrees of freedom of available motion.
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Ball joint

Universal joint

Revolute joint

Parallel Robots, Fig. 2 6�RUS platform

Universal JointPrismatic Joint

Universal Joint

Parallel Robots, Fig. 3 A 3� PUU haptic interface

Dynamics
In the case of a parallel robot whose actuated
degrees of freedom coincides with its kinematic
mobility m, it is possible to choose an indepen-
dent set of generalized coordinates of dimension
m, denoted q 2 R

m and typically identified with
the actuated joints, and to express the dynamics
in the standard form

M.q/ Rq C C.q; Pq/ Pq CG.q/ D �; (1)

where � 2 R
m denotes the vector of input

joint torques, M.q/ denotes the n � n mass ma-
trix, the matrix-vector product C.q; Pq/ Pq denotes
the vector of Coriolis terms, and G.q/ 2 R

m

Parallel Robots, Fig. 4 The 3 � PPRS eclipse parallel
mechanism

denotes the vector of gravitational forces. The
structure of the dynamic equations is identical
to that for serial chain robots. Also like the case
for serial chain robots, the Coriolis matrix term
C.q; Pq/ 2 R

m�m is not unique, so that one
should ensure that the correct C.q; Pq/ is used
in, e.g., any control law whose stability depends
on the matrix PM.q/ � 2C.q; Pq/ being skew-
symmetric.
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It is also important to keep in mind that the
q must satisfy the kinematic constraint equations
imposed by the loop closure constraints. That is,
if � 2 R

n denotes the vector of all joints (both
actuated and passive), then q 2 R

m, m � n,
will be a subset of � whose values can only
be obtained by solution of the kinematic con-
straint equations; depending on the nature of the
kinematic constraints, one may have to resort to
iterative numerical methods.

If the parallel robot is redundantly actuated,
then the dynamics are subject to a further set of
constraints on the input torques. Letting qe denote
the set of independent generalized coordinates
and qa be the vector of all actuated joints, the
vector of actuated joint torques �a must then
further satisfy ST �a D W T � , where � denotes
the vector of joint torques for an equivalent tree
structure system that moves identically to the
redundantly actuated parallel robot and W and S
are defined, respectively, by

S D @�

@qe
; W D @qa

@qe
: (2)

Compared to the dynamics for serial chain robots,
the dynamics for parallel robots is, in general,
considerably more complex and computation-
ally involved. The recursive algorithms that are
available for computing the inverse and forward
dynamics of serial chain robots can also be used
to develop similar recursive algorithms for par-
allel robot dynamics; however, the computations
will be considerably more involved and require
multiple iterations.

Motion Control

Exactly Actuated Parallel Robots
For parallel robots whose actuated degrees of
freedom match the kinematic mobility (this ex-
cludes the set of all redundantly actuated parallel
robots), most control laws developed for serial
chain robots are also applicable. This is not al-
together surprising in light of the similarity in
the structure of the kinematic and dynamic equa-
tions between serial and parallel robots. Control

laws for serial robots are also covered in this
handbook, and we refer the reader to �Linear
Matrix Inequality Techniques in Optimal Control
for the essential details. Here we summarize
the most basic control laws and point out any
additional computational or other requirements
that are needed when applying these laws to
parallel robots. Note that other control laws and
techniques developed for serial chain robots, e.g.,
robust, sliding mode, can also be applied with the
same additional considerations and requirements
outlined below:
1. Computed torque control: Computed torque

control for parallel robots has the same control
law structure as for serial robots, i.e.,

� D M.q/
��Kpe �Kv Pe� C �ff ; (3)

where e denotes the tracking error,Kp andKv

are the proportional and derivative feedback
gain matrices, and �ff denotes the feedfor-
ward term required to cancel the nonlinear dy-
namics. Robust versions of computed torque
control are also applicable to parallel robots
under the same set of conditions, e.g., estab-
lishing appropriate bounds on the mass matrix
eigenvalues and on the norm of the Coriolis
matrix.

2. Augmented PD control: The augmented PD
control law for serial robots is also applicable
to parallel robots, i.e.,

� D �Kpe�Kv PeCM.q/ Rqd CC.q; Pq/ PqCG.q/;
(4)

where qd is the reference trajectory to be
tracked and Kp and Kv are the proportional
and derivative feedback gains. Asymptotic sta-
bility is also established under the same con-
ditions.

3. Adaptive control: Because the dynamic equa-
tions for parallel robots are also linear in the
link mass and inertial parameters, i.e.,

M.q/ Rq C C.q; Pq/ Pq CG.q/ D ˆ.q; Pq; Rq/p;
(5)

http://dx.doi.org/10.1007/978-1-4471-5058-9_207
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where p denotes the vector of link mass and
inertial parameters, adaptive control laws de-
veloped for serial robots can also be used.

4. Other control methods: There exist
numerous control methods developed for
serial robots, e.g., task space or operational
space control, sliding mode control, and
various nonlinear control techniques; with
few exceptions most of these algorithms can
also be applied to exactly actuated parallel
robots with minimal modification.

Redundantly Actuated Parallel Robots
As described earlier, parallel robots exhibit a
much more diverse range of singularity behavior
than their serial counterparts, many of which
depend on the choice of actuated joints (actua-
tor singularities). One way to eliminate actuator
singularities is via redundant actuation, i.e., the
total degrees of freedom of the actuated joints ex-
ceeds the kinematic mobility of the mechanism.
Redundant actuation offers some protection in
the event of failed actuators and, when combined
with an appropriate control law, offers an effec-
tive means of reducing joint backlash, increas-
ing speed and payload and stiffness, controlling
compliance through the generation of internal
forces, and even improving power efficiency (as
an analogy, the human musculoskeletal system
is redundantly actuated by antagonistic muscles).
Of course, redundant actuation introduces a new
set of control challenges, since the control in-
puts must be designed so as not to conflict with
the kinematic constraints inherent in the parallel
robot; loosely speaking, the actuated joints can
no longer be independently controlled, since the
consequences of unintended antagonistic actua-
tion may be catastrophic.

The control of cooperating manipulators (see
�Optimal Control and Mechanics) has a long
history in robotics, and many of the control tech-
niques developed for such multi-arm systems can
also be applied to redundantly actuated parallel
robots. One can also apply the control strategies
developed for exactly actuated parallel robots to
the redundantly actuated case, but modifications

are necessary to account for the different structure
of the dynamic equations.

Like all model-based control algorithms, the
above control laws are subject to model un-
certainties. Whereas in serial chains the effects
of model uncertainty simply lead to errors in
tracking, for redundantly actuated parallel robots,
the consequences can lead to internal forces in
addition to end-effector tracking errors. Perhaps
the most significant effect of any modeling errors
is that, unlike the serial chain case, the kine-
matic errors can potentially alter the shape of
the configuration space (recall that the configu-
ration space will in general be a curved space
for closed chains) and also interfere with any
PD feedback introduced into the control. The
development of control laws that are robust to
such modeling errors and disturbances remains
an open and ongoing area of research in parallel
robot control.

Force Control

Both hybrid force-position control and impedance
control are well-known and widely applied
concepts in serial robots and can be extended
in a straightforward manner to exactly actuated
parallel robots. Recall that the basic feature of
hybrid force-position control is that the task
space is decomposed into force- and position-
controlled directions, whereas in impedance
control, the goal is have the robot maintain
a certain desired spatial stiffness in the task
space. Controllers that combine aspects of force-
position and impedance control have also been
proposed and developed for both serial robots
and exactly actuated parallel robots. Modeling
errors will cause deviations in both the force-
and position-controlled directions – leading
to motions in force-controlled directions and
forces in position-controlled directions – which
can be addressed by, e.g., a switching control
strategy.

The problem of force control for redundantly
actuated parallel robots, which encompasses
both force-position and impedance control, has
also received some attention in the literature.

http://dx.doi.org/10.1007/978-1-4471-5058-9_46
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The main difference with the exactly actuated
case is that internal forces can now be generated,
which requires a more detailed and coordinate-
invariant examination of stiffness. Control
methods that combine elements of force-position
and impedance control for redundantly actuated
parallel robots have received only limited
attention in the literature.

Cross-References
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Recommended Reading

The monograph (Merlet 2006) offers a detailed
and comprehensive treatment of all aspects of
parallel robots, with a particularly thorough treat-
ment of the kinematics and singularity analysis.
Mueller (2008) provides an excellent survey of
the dynamics and control of redundantly actuated
parallel robots and is based on the preceding
work (Mueller 2005). Cheng et al. (2003) exam-
ines in detail the dynamic model for redundantly
actuated parallel robots and the basic control
strategies; Nakamura and Ghodoussi (1989) also
examines dynamic models for redundantly actu-
ated parallel robots. Stiffness analysis and con-
trol of redundantly actuated parallel robots are
addressed in Yi and Freeman (1993), Chakarov
(2004), and Fasse and Gosselin (1998). Analysis
of specific parallel robots engaged in various
control tasks includes Caccavale et al. (2003),
Honegger et al. (1997), Kim et al. (2001), and
Satya et al. (1995). The basic references on robot
control are Murray et al. (1994), Spong et al.
(2006), Anderson and Spong (1988), and Ghor-
bel (1995) focuses on PD control for closed
chains.
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Abstract

The particle filter computes a numeric approxi-
mation of the posterior distribution of the state
trajectory in nonlinear filtering problems. This
is done by generating random state trajectories
and assigning a weight to them according to
how well they predict the observations. The
weights are instrumental in a resampling step,
where trajectories are either kept or thrown
away. This exposition will focus on explaining
the main principles and the main theory in an
intuitive way, illustrated with figures from a
simple scalar example. A real-time application
is used to graphically show how the particle
filter solves a nontrivial nonlinear filtering
problem.

Keywords

Estimation; Kalman filter; Nonlinear filtering;
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Introduction

The particle filter computes an arbitrarily good
solution to nonlinear filtering problems. The
goal in nonlinear filtering is to compute the
posterior distribution of the state vector in
a dynamic model, given measurements that
are related to the state. Bayes rule provides
a recursive but computationally intractable
solution. Monte Carlo (MC) methods can
essentially solve all Bayesian inference problems.

However, for nonlinear filtering, the complexity
increases exponentially in time. The MC
approach would be to generate a large number
of state trajectories (called particles) and
their corresponding sequences of predicted
measurements and then weighs together the
trajectories according to how well the predicted
and actual measurement sequences match each
other.

With increasing time, the fit is deemed to
be poor, since the state space increases expo-
nentially in time. This is usually referred to as
the depletion (or degeneracy) problem. The ap-
proach in the particle filter is to simulate only
one step at the time and then resample the tra-
jectories if needed. For this reason, the parti-
cle filter is sometimes referred to as a sequen-
tial Monte Carlo method. The resampling step
keeps the trajectories that give a good fit, while
the bad ones are discarded. The novel idea in
the particle filter when it was first published in
1993 was the introduction of this resampling
step.

Depletion is still a problem, despite the
resampling step. Mitigating depletion has
ever since the beginning been the most
pressing issue in applied particle filtering. This
tutorial will present the basic particle filter
algorithm and discuss ways to avoid depletion
problems both in general terms and in a simple
example.

The particle filter computes an approximation
to the Bayes optimal filter, conditioned on a
sequence of observations and a nonlinear non-
Gaussian system. It is important to note that the
PF approximates the posterior distribution of
the state trajectory, from which the mean and
covariance are easily extracted. In contrast, the
extended Kalman filter (EKF) computes the mean
and covariance for an approximate dynamical
system (linearized with Gaussian noise). The
unscented Kalman filter (UKF) likewise also
approximates the mean and covariance. Both
EKF and UKF can only approximate unimodal
(one peak) posterior distributions. There are
filter bank approximations, like the interacting
multiple model (IMM) algorithm, that can keep
track of a given number of modes in the posterior.
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However, the PF does this in a more natural
way.

The Basic Particle Filter

Nonlinear filtering aims at estimating the
distribution of a state sequence x1WN D
.x1; x2; : : : ; xN / from a sequence of observations
y1WN D .y1; y2; : : : ; yN /, given a state space
model of the form

xkC1 D f .xk; vk/ or p.xkC1jxk/; (1a)

yk D h.xk; ek/ or p.yk jxk/: (1b)

Here, vk denotes process noise, and ek is the
measurement noise. The stochastic variables
vk , ek for all k and x0 are assumed mutually
independent, with known distributions pv , pe,
and px0 , which are all being part of the model
specification.

The particle filter (PF) works with a set of
random trajectories. Each trajectory is formed
recursively by iteratively simulating the model
with some randomness and then updating the
likelihood of each trajectory based on the ob-
servation. In words, we first evaluate the set of
particles at hand by comparing how well they
predict the current observation. In this way, the
particles are assigned a weight. We keep the
particles with large weight and throw away the
particles with small weight, using a stochastic
resampling procedure. After this step, we get a
smaller set of particles, where many particles
have several replicas. We then simulate each
particle to the next observation time using the
dynamical model. After this prediction step, all
particles will be unique (because they are based
on different realizations of the process noise).
Below, the basic algorithm (sometimes called
bootstrap PF or sequential importance resampling
(SIR) PF) is summarized.
• Define a set of random states (particles) by

sampling x.i/0 � px0.x0/.
• Iterate in k D 0; 1; : : : :

1 Measurement update: Compute the weight
!
.i/

k D pe.yk � h.x
.i/

k // and normalize so
PN

iD1 !
.i/

k D 1.

2 Resampling: Resample each particle with
probability !.i/k .

3 Time update: Simulate one time step by
taking v.i/k � pv.vk/ and then set x.i/kC1 D
f .x

.i/

k ; v
.i/

k /.
The main design parameter here is the number
N of particles. A common trick to make the
filter more robust is to increase the variance of
pv and pe above. This is called dithering (or
jittering) and is a practical way to get more robust
nonlinear filters.

To illustrate some of the aspects and for
later reference, a simple example will be
introduced.

Example: First-Order Linear Gaussian
Model

The Kalman filter (KF) provides the posterior dis-
tribution in an analytical form for linear Gaussian
models and is thus suitable for evaluations and
comparisons. A linear Gaussian model looks like

xkC1 D Fxk C vk; vk � N.0;Q/: (2a)

yk D Hxk C ek; ek � N.0;R/; (2b)

x0 � N .�0; P0/ ; (2c)

We will use the scalar case for the illustrations,
and the figures that follow are based on F D 0:9,
H D 1, Q D 1, R D 0:01, P0 D 1. The
particle filter in the scalar case simplifies to the
Matlab algorithm in Table 1. Figure 1 compares
the sample-based representation of the PF with
the Gaussian distribution provided by the KF
for the first two time steps. This shows how
well the marginal distribution p.xkjy1Wk/ is
approximated by the samples x.i/k from the PF.
A rule of thumb is that 30 samples are needed to
approximate a univariate Gaussian distribution.
As will be discussed later, the number of
samples is effectively only 10 here, which
explains the small deviation of the Gaussian
functions.

To illustrate the fundamental depletion prob-
lem in the PF, the set of trajectories x.i/1Wk that
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Particle Filters, Table 1 Matlab code for scalar linear Gaussian model

Particle Filters, Fig. 1 Set of samples fx.i/k giD1WN compared to first a Gaussian approximation of the particles (blue)
and second to the true posterior distribution provided by the Kalman filter (green)

approximates the posterior (smoothing) distri-
bution p.xkjy1Wk/ is illustrated in Fig. 2. The
upper plot shows a case where the trajectories
are all the same initially. The behavior in the
upper plot is typical for the basic particle filter
in cases where the measurements are more in-
formative than the state transition model (small
measurement noise, R < Q). The lower plot
shows a particle filter that is working better, and
the modification is explained in the following
section.

Proposal Distributions

The time update in the basic PF predicts parti-
cles in step 4 according to the dynamic model.
The most general derivation of the particle filter
allows for sampling from a more general pro-
posal (also called importance) distribution. This
proposal distribution can be any function that
can be sampled from, and it can depend on both
the previous state and the current measurement.
From a filtering perspective, it may appear as
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Particle Filters, Fig. 2 Set of trajectories fx.i/1W10 �
x1W10giD1WN for two different proposal distributions, one
bad one (prior) leading to particle depletion and one good

one (likelihood). Note that the smoothing distribution
p.xkjy1W10/ can be approximated with the set of particles
fx.i/k giD1WN using the marginalization principle

“cheating” to look at the next measurement when
doing the time update, but one has to look at a full
cycle of the iteration scheme.

If a proposal distribution of the functional
form q.xkjxk�1; yk/ is used, then steps 1 and 3
have to be modified as follows:

1 Weight update: Time and measurement up-
dates:

w.i/
kjk�1 / w.i/

k�1jk�1
p.x

.i/

k jx.i/k�1/
q.x

.i/

k jx.i/k�1; yk/
; (3a)

w.i/
kjk / w.i/

kjk�1p.yk jx.i/k /: (3b)

3 Prediction: Generate samples from the pro-
posal

x
.i/

kC1 � q.xkC1jx.i/k ; ykC1/ (3c)

The most natural proposal distributions are the
following:

• The prior q.xkC1jx.i/k ; ykC1/ D p.xkC1jx.i/k /,
as used in the basic PF.

• The likelihood q.xkC1jx.i/k ; ykC1/ /
p.ykC1jxkC1/. For the model (2), the proposal
becomes N.yk=h;Rk=h2/.

• The optimal (minimizing weight variance)
choice q.xkC1jx.i/k ; ykC1/ / p.ykC1jxkC1/
p.xkC1j x.i/k /. For the model (2), the optimal
proposal is provided by one cycle of the
Kalman filter, initialized with the particle
x
.i/

k .

The optimal proposal keeps the weights constant,
and this would in theory avoid depletion, where
depletion is interpreted as excessive weight vari-
ance. Figure 2 compares the set of trajectories for
the prior and likelihood proposals, respectively.
Apparently, the likelihood proposal is to prefer
here, since it suffers less from depletion in the
particle history. The practical limitation with the
last two alternatives is that one has to be able to
sample from the likelihood, so in practice there
needs to be more measurements than states in the
model.
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Particle Filters, Fig. 3 The efficient number of particles Neff.k/=N for prior proposal (blue) and likelihood proposal
(green) (N D 1;000)

Adaptive Resampling

Resampling is crucial to avoid depletion. Without
resampling, all trajectories except for one will
get zero weight quite quickly. However, there is
no need to resample at every iteration. Actually,
resampling increases the weight variance, which
is undesired. The question is how to decide if
resampling is needed. The efficient number of
particles estimated as

Neff.k/ D 1
PN

iD1
�
w.i/
kjk

�2 ; (4)

is one suitable indicator. If all particles have the
same weight w.i/

kjk D 1=N , then Neff.k/ D N .
Conversely, if one weight is one and all other
zero, then Neff.k/ D 1. Thus, Neff can be inter-
preted as a measure of how many particles that
actually contribute to the solution.

Figure 3 shows the evolution of Neff.k/ for
prior and likelihood proposals, respectively. With
resampling in every iteration, the likelihood pro-

posal performs very well with Neff.k/ � N ,
while the prior proposal effectively uses only
10 % of the particles. Thus, Neff.k/ is a good
indicator of the quality of the proposal distribu-
tion.

In Fig. 1, N D 100 so effectively 10 samples
are contributing to the Gaussian approximation,
which as mentioned before is too small a number
to get a good result.

As a comparison, Fig. 3 also shows Neff if
resampling is never used, then Neff.k/ normally
decreases over time. The likelihood proposal does
not decrease as fast as the prior proposal, and for
this very short data sequence resampling is really
not needed at all.

In summary, resampling increases weight vari-
ance and decreases the performance of the filter.
On the other hand, without resampling the effec-
tive number of particles converges monotonously
to only one. So, the idea of adaptive resampling
is natural. The key idea is to resample only if
the effective number of particles is small. The
usual rule of thumb is that resampling is needed
if Neff.k/ < 2N=3.
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Resampling was the main contribution in Gor-
don et al. (1993) to get a working algorithm.

Marginalization

The posterior distribution approximation
provided by the particle filter converges with the
number of particles. In theory, the convergence
rate is gk=N , where gk is a polynomial function
in time k. In practice, it appears that the required
number of particles increases very quickly with
state dimension. Unless a very good proposal
distribution is found, the practical limit for the
state dimension is around 3–4 as a rough rule of
thumb.

For applications with a large number of states,
one can in many cases still use the particle filter.
The idea is to find a linear Gaussian substructure
in the model and then divide the state vector
xk into two parts: xlk for the states that appear
linearly and xnk for the remaining states. Bayes
rule provides the factorization

p.xlk; x
n
1Wk jy1Wk/ D p.xlkjxn1Wk; y1Wk/p.xn1Wkjy1Wk/

(5)

With a linear Gaussian substructure for xlk , given
the whole trajectory xn1Wk , then the Kalman filter
applies and provides a Gaussian distribution for
the first factor in (5). The second factor is re-
solved using a marginalization procedure so that
the particle filter can be applied.

The bottom line is that each particle is associ-
ated with one Kalman filter. The method is called
Rao-Blackwellized particle filter, or marginalized
particle filter, in literature.

Illustrative Application: Navigation
byMapMatching

A nontrivial application where the PF solves a
nonlinear filtering problem, where Kalman filter-
based approaches would fail, is described in Fors-
sell et al. (2002). The problem is to compute a
robust estimate of the position of a car, without
using infrastructure such as cellular networks or

satellites. The approach is based on measuring
wheel speeds on one axle and from that dead
reckon a nominal trajectory using standard odo-
metric formulas. A road map is then used as a
measurement, to rule out impossible or unlikely
maneuvers. There is no numeric measurement yk
in this approach, but the likelihood p.ykjxk/ in
the model (1b) is large when xk corresponds to a
road position and decays quickly to zero outside
the road network. Figure 4 illustrates the particle
cloud gradually focuses around the true position
with time. In particular, the number of modes in
the posterior distributions is rather high initially,
but decreases over time, in particular after each
turn.

The particle filter is sometimes believed to be
too computer intensive for real-time applications.
As described in Forssell et al. (2002), this demon-
strator implemented a particle filter on a pocket
computer anno 2001 with N D 15;000 parti-
cles running in 10 Hz. Thus, the computational
complexity of the particle filter should not be
overemphasized in practice.

Summary and Future Directions

The particle filter can be seen as a black-box
solution to the nonlinear filtering problem, where
any nonlinear dynamical model with arbitrary
noise distributions can be plugged in. The main
tuning parameter is the number of particles, and
the PF will work in theory if this number is large
enough. In practice, there are many tricks the
user has to be aware of to mitigate the curse of
dimensionality (depletion) that occurs for large
state spaces (more than three) or long time se-
quences (more than a couple of samples). One
engineering trick is dithering, to increase the vari-
ance in the involved noise distributions from their
nominal values. More theoretical ways to miti-
gate depletion include clever choices of proposal
distributions to sample from and marginalization
(to solve a subset of the estimation problem with
a Kalman filter).

Current and future research directions include
the issues above. A further trend concerns
the related smoothing problem, which is
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Particle Filters, Fig. 4 Car navigation using wheel speed
and a street map. The figures illustrate of how the particle
representation of the position posterior distribution of
position (course state is now shown) improves over time.
After four turns, the posterior is essentially unimodal, and

a position marker can be shown. The circle denotes GPS
position, which is only used for comparison. (a) After first
turn. (b) After second turn. (c) After third turn. (d) After
fourth turn

interesting in itself, but which has turned out
to be instrumental in joint state and parameter
estimation problems. There are also many
attempts to make the particle filter more robust,
including ideas of filter banks and invoking
a second layer of sampling algorithms to
implement the proposal distribution. There is also
a trend to use the particle filter as a computational

engine for more complex problems, such as
the simultaneous localization and mapping
(SLAM) problem, and to approximate the
probability hypothesis density (PHD) for multi-
sensor multi-target tracking. Finally, there
are a large number of papers reporting on
applications in traditional as well as new
disciplines.
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Recommended Reading

Particle filtering (PF) as a research area started
with the seminal paper (Gordon et al. 1993)
and the independent developments in Kitagawa
(1996) and Isard and Blake (1998). The state of
the art is summarized in the article collection
Doucet et al. (2001), the surveys Liu and Chen
(1998), Arulampalam et al. (2002), Djuric et al.
(2003), Cappé et al. (2007), Gustafsson (2010),
and the monograph Ristic et al. (2004).
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Abstract

Perturbation analysis (PA) is a systematic
methodology for estimating the sensitivities
(gradient) of performance measures in discrete
event systems (DES) with respect to various
model or control parameters of interest. PA takes
advantage of the special structure of DES sample
realizations and is based entirely on observable
system data. In particular, it does not require
knowledge of the stochastic characterizations of
the random processes involved and is simple
to implement in a nonintrusive manner. PA
estimators, therefore, enable implementations
for real-time control in addition to off-line
optimization. The article presents the main
ideas and statistical properties of PA techniques
for both DES and recent generalizations to
stochastic hybrid systems (SHS), especially for
the simplest class of sensitivity estimators known
as infinitesimal perturbation analysis (IPA).
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Introduction

Sensitivity analysis is an essential component
of the system design process in a wide vari-
ety of application areas. In essence, it provides
quantitative variations of performance metrics
resulting from possible perturbations in design
set points and, hence, can be used in optimization
and control as well as provide measures of per-
formance robustness. Perturbation analysis (PA)
is a systematic technique for computing sample-
based sensitivity estimators of performance met-
rics in discrete event systems (DES) by using
the special properties of their sample realizations.
The effectiveness of such estimators (e.g., unbi-
asedness) depends on the characteristics of the
DES to which PA is applied and on the specific
performance metric of interest. The purpose of
this article is to present and explain some of the
main ideas and fundamental techniques of PA.

Figure 1 depicts an abstract schematic where
the operation of a stochastic system depends on
a parameter � that is chosen from a given set
�. Let J.�/ be an expected value performance
function of the system, and suppose that J.�/ D
E

�
L.�/

�
, where E

� � �
denotes expectation and

L.�/ is a sample realization computable from
a sample path of the system. In many situa-
tions J.�/ lacks a closed-form expression, and
its sample realization, L.�/, provides the most
practical way for its estimation. Applications of
sensitivity analysis often concern the effects of
perturbations in the parameter � on the sample
realization L.�/. Denoting such perturbations by
�� , their effects can be characterized by the
difference term L.� C��/�L.�/. PA provides
such difference terms from the same sample path
that was used for computing L.�/. Furthermore,
if � 2 Rn and the function L.�/ is differentiable,
then PA can compute the gradient term rL.�/

Perturbation Analysis of Discrete Event Systems,
Fig. 1 Framework for perturbation analysis (PA)

from the same sample path. These sample path-
based sensitivities can be used, under suitable
conditions, to estimate the quantities J.�C��/�
J.�/ and rJ.�/, respectively.

The PA theory was pioneered by Yu-Chi Ho
who led its eventual development by his own
group and other researchers over two decades.
The early works were motivated by optimal re-
source management problems in manufacturing
and concerned the effects of buffer allocation on
throughput in transfer lines (Ho and Cassandras
1983; Ho et al. 1979). Subsequently PA was
developed in the setting of queueing networks by
virtue of their wide use as models in applications.
In this setting, typically � is a set point param-
eter affecting service times, inter-arrival times,
routing fractions, buffer sizes, and various flow
control laws; J.�/ is an expected value perfor-
mance metric like average delay, throughput, and
loss; and L.�/ is a sample realization of J.�/.
The special structure of sample paths of queueing
networks often yields simple PA algorithms for
the difference terms L.� C��/ � L.�/, as well
as the gradient term rL.�/, from the common
sample path. The PA techniques for computing
L.� C��/�L.�/ are collectively referred to as
finite perturbation analysis (FPA), while those for
computing rL.�/ are called infinitesimal pertur-
bation analysis (IPA) (Ho et al. 1983). Much of
the development of PA has focused on IPA, rather
than FPA, due to its greater simplicity and natural
use in optimization, and, hence, it will be the
focal point of this article. For comprehensive ex-
positions of PA and its various techniques, please
see Ho and Cao (1991), Glasserman (1991), and
Cassandras and Lafortune (2008).

The purpose of the IPA gradient, rL.�/, is
to estimate rJ.�/. This, however, is only useful
as long as rL.�/ is an unbiased realization of
rJ.�/, namely,

E
�rL.�/� D rEŒL.�/� D rJ.�/;

and in this case it is said that IPA is unbiased
(Cao 1985). Since J.�/ D E

�
L.�/

�
, unbiased-

ness means the commutativity of the operators of
differentiation with respect to � and integration
(expectation) in the probability space, and this is
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closely related to the condition that, w.p.1, the
random function L.�/ is continuous throughout
�. As a matter of fact, the two conditions are
practically synonymous. However, shortly after
the emergence of IPA, it became apparent that
in many queueing models of interest, L.�/ is
not continuous and, hence, IPA is not unbiased
(Heidelberger et al. 1988). Subsequently various
techniques to overcome this problem were ex-
plored, including the so-called cut and paste of
the sample paths and re-parametrization of the
underlying probability space via statistical con-
ditioning. For a more comprehensive coverage
of such techniques, please see Cassandras and
Lafortune (2008) and references therein. These
techniques can yield unbiased gradient estimators
in principle but often at the expense of pro-
hibitive computing costs. Recently an alternative
approach has emerged, based on stochastic flow
models (SFM) that are comprised of fluid queues
(Cassandras et al. 2002). It extends, significantly,
the class of models and problems where IPA is
unbiased and has the added advantage of yielding
very simple gradient estimators.

The following sections of this article present
IPA in the general setting of DES, explain the
limits of its scope in queueing models, describe
alternative PA techniques for extending those
limits, present the SFM approach, and conclude
with some thoughts on future research directions.

DES Setting for IPA

IPA can be applied to any DES modeled
as a stochastic timed automaton, defined in
Cassandras and Lafortune (2008) and discussed
in �Models for Discrete Event Systems: An
Overview. Briefly, a stochastic timed automaton
is a sextuple .E ;X ; �; p; p0;G/, where E is an
event set, X is a state space, and � .x/ � E is the
set of feasible events when the state is x, defined
for all x 2 X . The initial state is drawn from
p0.x/ D P ŒX0 D x�. Subsequently, given that
the current state is x, with each feasible event
i 2 � .x/, we associate a clock value Yi , which
represents the time until event i is to occur. Thus,
comparing all such clock values, we identify the

triggering event E 0 D arg mini2� .x/fYig, where
Y � D mini2� .x/fYig is the inter-event time (the
time elapsed since the last event occurrence).
To simplify the notation we define e0 WD E 0.
Thus, with e0 determined, the state transition
probabilities p.x0I x; e0/ are used to specify
the next state x0. Finally, the clock values are
updated: Yi is decremented by Y � for all i
(other than the triggering event) which remain
feasible in x0, while the triggering event (and all
other events which are activated upon entering
x0) is assigned a new lifetime sampled from a
distributionGi . The setG D fGi W i 2 Eg defines
the stochastic clock structure of the automaton.

Let T˛;n denote the nth occurrence time of
event ˛ 2 E , and let V˛;n denote a realization
of the lifetime event distribution G˛ such that
V˛;n D T˛;n � Tˇ;m for some (any) event ˇ 2 E
and m 2 f1; 2; : : :}. One can then always write
T˛;n D Vˇ1;k1 C : : : C Vˇs;ks for some s. Let
us now consider a parameter � 2 R which can
only affect one or more of the event lifetime
distributions G˛.xI �/; in particular, � does not
affect the state transition mechanism. The case
where � 2 Rn can be handled in similar ways,
but the one-dimensional case permits us to use
the derivative notation rather than the gradient
symbol, which simplifies the presentation. View-
ing lifetimes as functions of �; V˛;k.�/, it can
be shown (under mild technical conditions, see
Glasserman (1991)) that

dV˛;k

d�
D � Œ@G˛.xI �/=@��.V˛;k ;�/

Œ@G˛.xI �/=@x�.V˛;k ;�/
; (1)

where the subscript .V˛;k; �/ indicates that the
corresponding derivative of G˛ is evaluated at
the point .V˛;k ; �/. This describes how a pertur-
bation in � generates a perturbation in the as-
sociated event lifetime V˛;k . Such a perturbation
can now propagate through the DES to affect
various event occurrence times according to the
dynamics prescribed by the stochastic timed au-
tomaton. Event time derivatives dT˛;n.�/=d� are
given by

dT˛;n

d�
D

X

ˇ;m

dVˇ;m

d�
	.˛; nIˇ;m/; (2)

http://dx.doi.org/10.1007/978-1-4471-5058-9_52
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where 	.˛; nIˇ;m/ is a triggering indicator tak-
ing values in f0; 1g so that 	.˛; nIˇ;m/ D 1 if
the nth occurrence of event ˛ is triggered by the
mth occurrence of ˇ, 	.˛; nI˛; n/ D 1 for all
˛ 2 E , 	.˛; nIˇ0; m0/ D 1 if 	.˛; nIˇ;m/ D 1

and 	.ˇ;mIˇ0; m0/ D 1, and 	.˛; nIˇ;m/ D 0

otherwise.
This leads to a general-purpose algorithm for

evaluating event time derivatives along an ob-
served sample path (see Algorithm 1) of a DES
modeled as a stochastic timed automaton. In
particular, we define a perturbation accumulator,
�˛ , for every event ˛ 2 E . The accumulator �˛

is updated at event occurrences in two ways: (i) It
is incremented by dV˛=d� whenever an event ˛
occurs, and (ii) it is coupled to an accumulator
�ˇ whenever an event ˇ (possibly ˇ D ˛)
occurs that activates an event ˛. No particular
stopping condition is specified, since this may
vary depending on the problem of interest.

Sample Function Derivatives. Since many
sample performance functions L.�/ of interest
can be expressed in terms of event times T˛;n, we
can use (2) and Algorithm 1

Algorithm 1 General-purpose IPA algorithm for
stochastic timed automata
1. Initialization

If event ˛ is feasible at x0: �˛ WD
dV˛;1=d�

Else, for all other ˛ 2 E: �˛ WD 0

2. Whenever event ˇ is observed
If event ˛ is activated with new lifetime V˛:

2.1. Compute dV˛=d� through (1)
2.2. �˛ WD �ˇ C dV˛=d�

in order to obtain derivatives of the form
dL.�/=d� . As an example, a large class of such
functions is of the form

LT .�/ D
Z T

0

C.x.t; �//dt;

where C.x.t; �// is a bounded cost associated
with operating the system at state x.t; �/. Then,

dLT

d�
D

N.T /X

kD1

dTk

d�
ŒC.xk�1/� C.xk/�;

where N.T / counts the total number of events
observed in Œ0; T � and xk is the state remaining
fixed in any interval .Tk; TkC1/ with Tk D T˛;n
for some ˛ 2 E , n D 1; 2; : : :.

Estimation of Performance Measure Deriva-
tives. Using dLT .�/=d� from above, we can
obtain unbiased estimates of dJ=d� if the follow-
ing condition holds:

dJ.�/

d�
D E

�
dLT .�/

d�

�
:

As mentioned earlier, this key condition is closely
related to the continuity of the sample perfor-
mance functions. A discontinuity often is caused
by a swap in the order of two events that results
from small variations in � and yields different
future state trajectories. However, it is possible
that the future state trajectory following the oc-
currence of the two events is invariant under
their order, and in this case the two events are
said to commute. This commuting condition, de-
fined by Glasserman, was shown to be identical,
under broad assumptions, to the continuity of
the sample functions L.�/ and, hence, to the
unbiasedness of IPA (Glasserman 1991).

The main ideas discussed in this section will
next be illustrated on a simple queue.

Queueing Example
Consider the IPA gradient (derivative) of the
expected sojourn time (delay) in a GI/G/1 queue
with respect to a real-valued parameter of its
arrival process. Assume that the queue is empty at
time t D 0, and it serves its customers according
to the order of their arrivals. Let us denote by
ak; k D 1; 2; : : :, the arrival times, and by
sk; k D 1; 2; : : :, the service times of consecutive
customers. Furthermore, we denote by vk; k D
1; 2; : : :, the kth inter-arrival time, namely, vk D
ak �ak�1, where a0 WD 0. Observe that the queue
is a stochastic timed automaton as defined earlier,
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with event space farrival; departureg, state space
f0; 1; : : :g representing the queue’s occupancy,
and feasible event set farrivalg when x D 0 and
farrival; departureg when x > 0.

Let � 2 R is a parameter of the distribution of
the inter-arrival times, and, hence, the realizations
of v depend on � in a functional manner. For
example, if the arrival process is Poisson and �
is its rate, then a realization of the inter-arrival
times has the form v D �� ln.1 � !/, where
! 2 Œ0; 1� is a uniform variate. To emphasize
the dependence of v on � , we denote it by v.�/,
while its dependence on ! is implicit. Similarly,
the arrival times depend on � and, hence, are
denoted by ak.�/, but the service times sk do
not depend on � . The departure time of the kth
customer and its delay depend on � and are
denoted by dk.�/ and Dk.�/, respectively. The
forthcoming paragraphs discuss the derivatives
of these functions with respect to � ; we use the
prime symbol to indicate such derivatives in order
to simplify the notation.

Define the sample performance function

LN .�/ WD N�1
NX

kD1
Dk.�/

for a given N > 0. Under stability conditions,
with probability 1 (w.p.1), limN!1LN .�/ D
J.�/, where J.�/ denotes the mean of the delay’s
stationary distribution. The role of IPA is to
estimate J 0.�/ via the sample derivative L0

N .�/,
and this is justified as long as limN!1L0

N .�/ D
J 0.�/w.p.1. In this case, IPA is said to be strongly
consistent. In contrast, unbiasedness pertains to
the performance function JN .�/ WD E

�
LN .�/

�

and means that E
�
L0
N .�/

� D J 0
N .�/. The con-

cepts of strong consistency and unbiasedness are
closely related except that the latter concerns
finite-horizon processes while the former pertains
to stationary distributions in steady state. Both
concepts have been extensively investigated in
recent years: strong consistency in the setting of
Markov chains and Markov decision processes
Cao (2007) and unbiasedness in the context of
stochastic hybrid systems, as will be described
in the sequel. We will focus the rest of the
discussion on the issue of unbiasedness.

Since LN .�/ D N�1 PN
kD1 Dk.�/, its IPA

derivative is L0
N .�/ D N�1 PN

kD1 D0
k.�/, and

since Dk.�/ D ak.�/ � dk.�/, it follows that
D0
k.�/ D a0

k.�/ � d 0
k.�/. The last two derivative

terms are computable via the following recursive
procedures. First, ak.�/ D ak�1.�/Cvk.�/, and,
hence,

a0
k.�/ D a0

k�1.�/C v0
k.�/:

The term v0
k.�/ has to be obtained directly from

the realization of v, and this often is possible
since such realizations depend functionally on
� ; for instance, in the previous example, v D
�� ln.1 � !/ and, hence, v0.�/ D � ln.1 � !/.
Next, dk.�/ is given by the Lindley equation

dk.�/ D max
˚
ak.�/; dk�1.�/

� C sk;

and, therefore, denoting by `k the index of the
customer that started the busy period containing
customer k, we have that

d 0
k.�/ D a0̀

k
.�/:

From these recursive relations it follows that
D0
k.�/ D 0 if customer k starts a busy period and

D0
k.�/ D � Pk

iD`kC1 v0
i .�/ if customer k does

not start a busy period.
These equations shed light on the structure of

IPA in a general class of queueing networks. First
there is the perturbation generation, namely, the
sampling of derivative (gradient) terms directly
from the sample sequence of variates (!) which
defines the sample path; that was v0.�/ in the
above example. These terms drive the recursive
equations that yield the IPA derivatives. The re-
cursive equations often are based on the tracking
of certain events such as the start of busy periods
or idle periods, and the process of tracking the
derivatives through them is referred to as pertur-
bation propagation. In the above example it is
obvious how the perturbation propagation tracks
the busy periods at the queue. Furthermore, in a
network setting, the perturbations can propagate
from one queue to the next in a natural fashion.
For instance, suppose that customers departing
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Fig. 2 Queue with two customer classes

from the queue analyzed above enter a second
queue. Then the derivative terms d 0

k.�/ of the up-
stream queue act as the derivative terms a0

k.�/ of
the downstream queue. This structure of pertur-
bations’ generation and propagation through the
tracking of busy periods and other events often
yields simple recursive algorithms for computing
the IPA derivatives.

Concerning the issue of unbiasedness, it is
clear that in the above example, the sample func-
tion LN .�/ is continuous in � and, hence, IPA is
unbiased. However, in many systems of interest
the IPA, derivative is biased. For example, con-
sider the two-input, single-server queue shown
in Fig. 2, where customers are served according
to their arrival order regardless of source. Sup-
pose that � is a parameter of the upper arrival
process, but not of the lower arrival process, and
denote the respective inter-arrival times of the
input streams by v1;k.�/; k D 1; 2; : : : ; and
v2;m m D 1; 2; : : : ; as indicated in the figure.
Furthermore, let d1;k.�/ denote the departure
time from the queue of the kth customer that
came from the upper source, and let d2;m.�/
denote the departure time from the queue of the
mth customer that came from the lower source.
Similarly, let D1;k.�/ and D2;m.�/ be the delays
of the kth customer from the upper source and
the mth customer from the lower source, respec-
tively. Lastly, in analogy with the previous exam-
ple, consider the sample performance functions
L1;N .�/ WD N�1 PN

kD1 D1;k.�/ and L2;N .�/ WD
N�1 PN

mD1 D2;m.�/.
The IPA derivativesL0

1;N .�/ andL0
2;N .�/ have

quite similar expressions to those derived earlier,
but they are not unbiased. To see this point,
suppose that v1;k.�/ is a monotone increasing
function of � , and consider the functions a1;k.�/,
d1;k.�/, and d2;k.�/ for a common sample path.
Suppose that at some point N� the order of arrivals
of the nth customer from the upper source

and the mth customer from the lower source
is swapped. Then the service order of these
customers will be swapped as well, inducing
discontinuities in d1;k.�/ and d2;m.�/ at the point
� D N� . Consequently, the sample performance
functions L1;N .�/ and L2;N .�/ also will be
discontinuous at � D N� , and hence, their IPA
derivatives are biased. Furthermore, if the queue
is a part of a network and its output process
directs customers to other queues, then the
discontinuities in the various traffic processes
will propagate downstream.

The causes of biasedness in queueing net-
works include multiple customer classes, non-
Markovian routing, and loss (spillover) due to
finite buffers. This leaves out a limited class of
networks where IPA can be unbiased and, hence,
useful in applications. The following sections
describe various approaches to overcome this
problem.

IPA Extensions

When IPA fails (because the commuting con-
dition is violated or a sample function exhibits
discontinuities in �), one can still use the PA ap-
proach to derive unbiased performance sensitivity
estimates. There are two ways to accomplish this:
(i) by modifying the stochastic timed automaton
model so that IPA is “made to work” and (ii) by
paying the price of more information collected
from the observed sample path, in which case,
the same essential PA philosophy can lead to
unbiased and strongly consistent estimators, but
these are no longer as simple as IPA ones. Re-
garding (i), the main idea here is that there may
be more than one way to construct (statistically
equivalent) sample paths of a stochastic DES,
and while one way leads to discontinuous sample
functions L.�/, another does not; a variety of
such ways is provided in Cassandras and Lafor-
tune (2008). Regarding (ii), the methodology of
smoothed perturbation analysis (SPA) (Gong and
Ho 1987) provides a generalization of IPA in
which more information is extracted from a DES
sample path in order to gain some knowledge
about the magnitude of jumps in L.�/.
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The main idea of SPA lies in the “smoothing
property” of conditional expectation. If we are
willing to extract information from a sample path
and denote it by Z , called the characterization
of the sample path, then we can evaluate, not just
the sample functionL.�/, but also the conditional
expectation E

�
L.�/ j Z

�
(provided we have

some distributional knowledge based on which
this expectation can be evaluated). This can result
in a much smoother function of � than L.�/.
Thus, starting with the condition for an IPA
estimator to be unbiased,

rJ.�/ D E
�rL.�/�;

we rewrite the left-hand side above as shown
below, replacing J.�/ D E

�
.L.�/

�
by the ex-

pectation of a conditional expectation:

rJ.�/ D rE�
L.�/

� D rE�
EŒL.�/ j Z��;

(3)

where the inner expectation is a conditional one
and the conditioning is on the characterization
Z . Treating E

�
L.�/ j Z

�
as the new sample

function, we expect it to be “smoother” than
L.�/, and, in particular, continuous in � . Then,
under some additional conditions (comparable
to those made in the development of IPA) the
interchange of differentiation and expectation in
(3) can be justified:

rJ.�/ D E
�rEŒL.�/ j Z��:

Letting LZ.�/ WD E
�
L.�/ j Z

�
, the SPA

estimator of rJ.�/ is

ŒrJ.�/�SPA D rLZ.�/: (4)

Naturally, the idea is to minimize the amount
of added information represented by Z , since
this incurs added costs we would like to avoid.
The choice of the characterization Z generally
depends on the sample function considered and
the system under study.

A number of other extensions to IPA have also
been developed (see Cassandras and Lafortune
2008). It is also worth mentioning that the PA
approach can be applied to a parameter � taking

values from a finite set � D f�0; �1; : : : ; �M g.
The theory of concurrent estimation and sample
path constructability provides techniques to
estimate performance measures of the DES
through the process of constructing sample
paths under each of �0; �1; : : : ; �M ; for details
see Cassandras and Lafortune (2008).

SFM Framework for IPA

The stochastic flow model (SFM) framework
essentially consists of fluid queues which forego
the notion of the individual customer and focus
instead on the aggregate flow. In such a fluid
queue, traffic and service processes are character-
ized by instantaneous flow rates as opposed to the
arrival, departure, and service times of discrete
customers. The SFM qualifies as a stochastic hy-
brid system with bilayer dynamics: discrete event
dynamics at the upper layer and time-driven dy-
namics at the lower layer. The discrete events are
associated with abrupt (discontinuous) changes in
traffic-flow processes, such as the boundaries of
busy periods at the queues. In contrast, the time-
driven dynamics describe the continuous evolu-
tion of flow rates between successive discrete
events, usually by differential equations or ex-
plicit functional terms. Performance metrics that
are natural to SFMs typically reflect quantitative
measures of flow rates, like average throughput,
buffer workload, and loss.

Due to the smoothing effects of SFMs, they
appear to provide a far more natural setting for
IPA than their analogous discrete queueing coun-
terparts. Furthermore, their IPA gradients often
are computable via extremely simple algorithms
that are based entirely on the observed sample
path. Consequently SFMs could, in principle, be
implemented on the sample paths generated by an
actual system rather than simulations thereof and
thus be used in real-time optimization.

All of this next will be explained via a con-
crete example of a queue which, though simple,
captures the salient features of the SFM setting
for IPA. For a more comprehensive discussion,
please see Cassandras et al. (2010), Wardi et al.
(2010), and Yao and Cassandras (2013).
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Fig. 3 Basic SFM

Consider the fluid queue depicted in Fig. 3
whose input and output flow rate processes
are denoted, respectively, by ˛.t/ and ı.t/.
The output flow process depends on the input
flow process via the action of the server as well as
the buffer size. The server is characterized by an
instantaneous processing rate, denoted by ˇ.t/,
and the buffer size, namely, the maximum amount
of fluid the buffer can hold, is denoted by c. Fluid
overflow occurs when the inflow (arrival) rate
exceeds the service rate while the buffer is full,
and the overflow (loss) rate is denoted by 
.t/.

Suppose that ˛.t/ and ˇ.t/ are random func-
tions defined on a suitable probability space, and
assume that they are piecewise continuous and of
bounded variation w.p.1. In order to describe their
functional relations to ı.t/ and 
.t/, we define
the state variable to be the amount of fluid in
the buffer (workload) and denote it by x.t/. The
dynamics of the system evolve according to the
following one-sided differential equation,

dx

dtC
D

(
0; if x.t/ D 0 and ˛.t/ � ˇ.t/
0; if x.t/ D c and ˛.t/ 	 ˇ.t/
˛.t/� ˇ.t/; otherwise;

and ı.t/ and 
.t/ are related to them via

ı.t/ D
	
ˇ.t/; if x.t/ > 0
˛.t/; if x.t/ D 0;

and


.t/ D
	
˛.t/ � ˇ.t/; if x.t/ D c

0; if x.t/ < c:

Network arrangements of such fluid queues, with
specified routing and control schemes, provide a
rich class of SFMs.

Let � 2 R be a parameter of the inflow rate,
the service rate, or a network control law; for

instance, � can be the on time of the flow from an
off/on source, a uniform rate of the server, or the
threshold level in a threshold-based flow control.
Then the aforementioned traffic processes are
functions of � and t and, hence, are denoted by
˛.� I t/, ˇ.� I t/, x.� I t/, etc. Fix the parameter � ,
and consider the evolution of the system over a
given time horizon Œ0; T �. Performance measures
of interest in applications include the average
loss rate over the horizon Œ0; T � and the average
workload there which is related to the delay by
Little’s Law. Related to them are the sample per-
formance functions L
;T .�/ WD R T

0

.�; t/dt and

Lx;T .�/ WD R T
0
x.�; t/dt ; the former is called

the loss volume and the latter, the cumulative
workload.

To illustrate the forms of their IPA derivatives,
consider the basic SFM shown in Fig. 3, and let �
be its buffer size, namely, � D c. We say that
a busy period of the queue is lossy if it incurs
some loss at any amount. Let us denote by NT
the number of lossy busy periods in the horizon
Œ0; T �. Then (see Cassandras et al. 2002), the IPA
derivative of the loss volume has the following
form:

L0

;T .�/ D �NT ;

where again we use the prime symbol to de-
note derivative with respect to � . This formula
amounts to a counting process and indeed it is
very simple. As an example, Fig. 4 depicts a
typical state trajectory derived from a sample
path. It is readily seen that the first busy period is
lossy while the second one is not, and therefore,
L0

;T .�/ D �1.
Concerning the cumulative workload, suppose

that the queue has M lossy busy periods in the
time interval Œ0; T �, and let us enumerate them by
the counter m D 1; : : : ;M . Moreover, denote by
um the first time the buffer becomes full in itsmth
lossy busy period and by vm, the end-time of that
busy period. Then (see Cassandras et al. 2002),

L0
x;T .�/ D

MX

mD1

�
vm � um

�
:

In the example provided by Fig. 4, L0
x;T .�/ D

v1 � u1.
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Fig. 4 State trajectory of the SFM

These equations for the IPA derivatives not
only are very simple, but require no knowledge
of the specific form of the processes f˛.t/g or
fˇ.t/g, their realizations, or underlying probabil-
ity law. They depend only on limited informa-
tion which is directly observed from the sample
path and, hence, are said to be nonparametric or
model free. Furthermore, they have been shown
to possess considerable robustness to modeling
variations that do not cause significant alterations
of the busy periods of the queue. A case of
interest is when the SFM formalism is used as
an abstraction of a queue. Then the above IPA
formulas that were derived from an analysis of
the SFM can be successfully applied to sample
paths that are generated from the discrete queue.
This is in contrast to the IPA formulas that are
derived from the discrete queue, which generally
are highly biased.

All of these properties of IPA in the SFM
setting, including its unbiasedness, simplicity, the
nonparametric nature of its algorithms, and its ro-
bustness to model variations, have had extensions
to SFM networks and systems beyond the basic
model (see Cassandras et al. 2010; Wardi et al.
2010; Yao and Cassandras 2013). As mentioned
above, this suggests the potential application of
IPA not only in system optimization via off-line
simulation but also in real-time control where
the sample paths are generated from the actual
system.

Summary and Future Directions

In the past 10 years, the focus of research on
IPA has shifted from the setting of queueing
systems to the framework of SFMs. The main
reason for this shift is that IPA yields unbiased

gradient estimators for a considerably richer class
of networks and performance functions in the
SFM setting than for their analogous queueing
models. Furthermore, the algorithms for comput-
ing the IPA gradients often are nonparametric,
robust to modeling variations, and very simple to
compute, and, hence, they hold out promise of
implementations in real-time control in addition
to off-line optimization.

In analogy with the extension of the scope of
IPA from queueing systems to stochastic timed
automata, the SFM framework has been extended
to stochastic hybrid systems (SHS), defined in
Cassandras et al. (2010). In such systems, in-
cluding SFMs, the functional description of the
time-driven dynamics is changed according to the
occurrence of specific events. However, whereas
in SFMs these dynamics are described by explicit
functional relations, in SHS they are expressed
by differential equations. The aforementioned,
appealing properties of IPA gradients in the SFM
setting appear to have extensions to the wider
context of SHS.

Future directions in the use of IPA are ex-
pected to focus on the control of high-speed
large-volume networks and, more generally, the
control of stochastic hybrid systems.
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Abstract

We introduce the theories and methodologies
that utilize the special features of discrete event
dynamic systems (DEDSs) for perturbation anal-
ysis (PA) and optimization of steady-state per-
formance. Such theories and methodologies usu-
ally take different perspectives from the tradi-
tional optimization approaches and therefore may
lead to new insights and efficient algorithms.

The topic discussed includes the gradient-based
optimization for systems with continuous param-
eters and the direct-comparison-based optimiza-
tion for systems with discrete policies, which is
an alternative to dynamic programming and may
apply when the latter fails. Furthermore, these
new insights can also be applied to continuous-
time and continuous-state dynamic systems, lead-
ing to a new paradigm of optimal control.

Keywords
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Sensitivity analysis; Queueing networks

Introduction

In this chapter, we introduce the theories and
methodologies that utilize the special features
of discrete event dynamic systems (DEDSs)
for perturbation analysis (PA) and optimization
of steady-state performance. Such theories and
methodologies usually take different perspectives
from the traditional optimization approaches
and therefore may lead to new insights and
efficient algorithms. Furthermore, these new
insights can also be applied to continuous-time
and continuous state dynamic systems, leading to
a new paradigm of optimal control.

As discussed in � Perturbation Analysis of
Discrete Event Systems, perturbation analysis
(PA) can be applied to both performance in
finite-period and steady-state performance. This
chapter will mainly focus on the latter and a
related topic, the sensitivity-based optimization
of steady-state performance of stochastic discrete
event dynamic systems.

Gradient-Based Approaches

Basic Ideas
The gradient-based performance optimization of
discrete event dynamic systems (DEDSs) consists
of three steps:

http://dx.doi.org/10.1007/978-1-4471-5058-9_58
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1. Developing efficient algorithms to estimate
the performance gradients using the special
features of a DEDS

2. Studying the properties of the gradient esti-
mates, including investigating whether they
are unbiased and/or strongly consistent

3. With the gradient estimates, developing effi-
cient optimization algorithms

Steps 1 and 2 are referred to as PA, and Step 3 is
usually done together with standard gradient-
based optimization approaches, such as hill-
climbing type of approaches and stochastic
approximation approaches such as the Robbins-
Monro algorithm (Robbins and Monro 1951).

Our focus here is on PA for steady-state per-
formance. The main principle for estimating the
gradients of steady-state performance is decom-
position. In a DEDS, a small change in the
value of a system parameter induces a series of
changes on the system’s sample path; each of
such changes is called a perturbation. A single
perturbation alone will affect the sample path and
therefore affect the system performance. Such an
effect is typically small, and therefore, the linear
superposition usually holds. Thus, the effect of a
small parameter change on the steady-state per-
formance can be determined by summing up the
effects of all the perturbations induced (or gener-
ated) by the parameter change. This principle is
illustrated by Fig. 1, and it applies to many differ-
ent systems with different performance criteria.
Following the principle, efficient algorithms can
be developed, and their strong consistency can be

proved Cao (2007). Its application to queueing
systems and Markov systems will be discussed in
the following two subsections.

Queueing Systems
The gradient-based approach for DEDSs starts
with queueing systems, known as infinitesimal
perturbation analysis (IPA), or simply PA,
�Perturbation Analysis of Discrete Event
Systems. Queueing systems are widely used
as a model for many DEDSs in literature
and have very unique structural features, and
PA utilizes such special features to develop
fast algorithms to estimate the performance
gradients.

We first give a brief explanation for the simple
rules of PA of queueing systems (Ho and Cao
1983, 1991). Consider a closed Jackson network
with M servers and N customers. The service
times of customers at server i are exponentially
distributed with service rate �i , i D 1; 2; � � � ;M .
After a customer completes its service at server
i , it goes to server j with a routing probability
qij , i; j D 1; 2; � � � ;M . The service discipline is
first come first served. The number of customers
at server i is denoted as ni , and the system
state is denoted as n D .n1; n2; � � � ; nM /. The
state process is n.t/ D .n1.t/; n2.t/; � � � ; nM .t//
with ni .t/ being the number of customers at
server i at time t , i D 1; 2; � � � ;M , t 	 0.
Define Tl as the l th state transition time of the
process n.t/.

Perturbation Analysis
of Steady-State
Performance and
Sensitivity-Based
Optimization, Fig. 1 The
decomposition of
performance changes

http://dx.doi.org/10.1007/978-1-4471-5058-9_58
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Perturbation Analysis
of Steady-State
Performance and
Sensitivity-Based
Optimization, Fig. 2
Perturbation generation
and propagation in a
queueing network

Figure 2 illustrates an example of a sample
path where each stair-style line represents a tra-
jectory of the number of customers at one server,
and the customer transitions among servers are
indicated by dotted arrows.

An exponentially distributed service time with
rate� can be generated according to s D � 1

�
ln �,

where � is a uniformly distributed random num-
ber in [0, 1]. Now let the service rate of a server,
say server k, change from �k to �k C ��k,
��k << �k . Then the service time s will change
to s0 D � 1

�kC��k ln � (the same � is used for both
s and s0). Thus, the perturbation of the service
time induced by the change in �k is

�s D s0 � s � ���k
�k

s: (1)

In summary, because of a small (infinitesimal)
change of service rate ��k, every customer’s
service completion time at server k will obtain
(be delayed by) a perturbation that is propor-
tional to its original service time with a multiplier
���k

�k
. This is the rule of perturbation genera-

tion.
Next, we observe that a perturbation will af-

fect the service starting and completion times
of other customers in the same server and in
other servers in the network. We say a pertur-
bation will be propagated through the network.

First, the perturbations generated at a server will
accumulate until this server is idle. When the
server enters an idle period, all its perturbations
will be lost. (After the idle period, the service
starting time is determined by the customer that
terminates the idle period, which carries the per-
turbation of another server.) Second, when a
customer finishes its service at server i and enters
server j after an idle period of server j , server j
will obtain the same amount of perturbations as
server i . If server j is not idle at this time, the
perturbation at server i will only affect the arrival
time of this customer and will not affect any other
customers/servers.

Figure 2 illustrates the perturbation generation
and propagation process of a network in which
the service rate of server 1 is decreased with
an infinitesimal amount. Given a system sam-
ple path obtained by simulation or observation,
we can record the perturbations of all servers
as they are generated and propagated along the
sample path. From the perturbations we can get
a perturbed sample path and finally get the per-
formance changes caused by the change in the
service rate. Specifically, we have the following
algorithm for the perturbations of the service
completion times (if server k’s service rate is
perturbed).

In Step 2, we add sk;l as the perturbation
generated, instead ���k

�k
sk;l as indicated by (1).
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Algorithm 1 Perturbation Analysis
1. Initialization: Set variables �i D 0, i D 1; 2; � � � ;M .
2. Perturbation generation: At the l th service completion

time of server k, set �k D �k C sk;l , l D 1; 2; � � � ,
where sk;l is the service time of the l th customer at
server k.

3. Perturbation propagation: If a customer from server i
terminates an idle period of server j , set �j D �i ,
i; j D 1; 2; � � � ;M .

The factor ���k
�k

will be canceled when esti-
mating performance derivatives with respect to
��k . The algorithm yields a perturbed sample
path. With the original path and the perturbed
path, we can estimate the original and perturbed
(steady-state) throughput, then the estimates of
its derivative with respect to �k can be obtained,
and it is proved that the estimate is strongly
consistent. Only a few lines need to be added in
the simulation code to obtain the derivatives. Ex-
periments show that the results are very accurate
(error is around 5 %, compared with analytical
results, Ho and Cao 1983).

Markov Systems
The decomposition principle shown in Fig. 1
has been applied to Markov systems (Cao
2007).

Consider an irreducible and aperiodic Markov
chain X D fXn W n 	 0g on a finite state
space S D f1; 2; � � � ;M g with transition prob-
ability matrix P D Œp.j ji/� 2 Œ0; 1�M�M .
Let  D .1; : : : ; M / be the vector repre-
senting its steady-state probabilities and f D
.f1; f2; � � � ; fM /T be the reward (or cost) vector,
where “T” represents transpose. We have Pe D
e, where e D .1; 1; � � � ; 1/T is an M-dimensional
vector whose all components equal 1, and we
have  D P . We consider the long-term av-
erage (steady-state) performance defined as

	 D E.f / D
MX

iD1
ifi

D f D lim
L!1

FL

L
; w:p:1; (2)

where

FL D
L�1X

lD0
f .Xl /:

Let P 0 be another ergodic transition probabil-
ity matrix on the same state space. Suppose P
changes to P.ı/ D P C ıQ D ıP 0 C .1 � ı/P ,
with ı > 0, Q D P 0 � P D Œq.j ji/�, and
the reward function f keeps the same. We have
Qe D 0. The performance measure will change
to 	.ı/ D 	 C �	.ı/. The derivative of 	 in the
direction ofQ is defined as d	.ı/

dı
D limı!0

�	.ı/

ı
.

In this discrete-state Markov system, a pertur-
bation means that the system is perturbed from
one state i to another state j . For example,
consider the case where q.i jk/ D 1

2
, q.j jk/ D 1

2
,

and q.l jk/ D 0 for all l ¤ i; j . Suppose that
these probabilities change to q.i jk/ D 1

2
C ı,

q.j jk/ D 1
2

� ı, and q0.l jk/ D 0 for all l ¤ i; j .
Then it may happen that at some time in the orig-
inal sample path the system transits from state k
to state i , but in the perturbed path it transits from
state k to state j instead. In this case, we say
that the change in transition probabilities induces
a perturbation from i to j at this time. To study
the effect of such a perturbation, we consider two
independent sample paths X D fXnIn 	 0g and
X0 D fX 0

nIn 	 0g with X0 D i and X 0
0 D j ;

both of them have the same transition matrix P .
The average effect of a perturbation from i to j ,
i; j D 1; � � � ;M , on FL can be measured by the
perturbation realization factor defined as

d.i; j / D lim
L!1E

"
L�1X

lD0
. f .X 0

l /� f .Xl//jX0

D i; X 0
0 D j

#

: (3)

The matrix D 2 RM�M , with d.i; j / as its
.i; j /th element, is called a realization matrix.
We can prove that D satisfies the equation (Cao
2007)

D � PDPT D F; (4)

where F D feT � ef T . Because d.i; j / D
�d.j; i/, for any i; j , we may define a vector
g D .g.1/; � � � ; g.M//T such that
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d.i; j / D g.j / � g.i/; (5)

and D D geT � egT . g is called a performance
potential, which can be estimated with many
sample path-based algorithms, and it satisfies the
Poisson equation (Cao 2007)

.I � P C e/g D f: (6)

Intuitively, (3) and (5) indicate that every visit
to state i contributes to FL on the average by the
amount of g.i/, so the effect of a perturbation
from i to j is d.i; j / D g.j / � g.i/. Now,
we consider a sample path consisting of L tran-
sitions. Among these transitions, on the average
there are Li transitions at which the system
is at state i . After being at state i , the system
jumps to state j on the averageLip.j ji/ times.
If the transition probability matrix P changes
to P.ı/ D P C ıQ, then the change in the
number of visits to state j after being at state
i is Liq.j ji/ı D Li Œp

0.j ji/ � p.j jji/�ı.
This contributes a change of fLi Œp0.j ji/ �
p.j ji/�ıgg.i/ to FL. Thus, the total change in FL
due to the change of P to P.ı/ is

�FL D
MX

i;jD1
Li Œp

0.j ji/ � p.j ji/�ıg.i/

D L.Qg/ı:

Finally, we have

d	

dı
D lim

ı!0

1

ı

�FL

L
D Qg D .P 0 �P/g: (7)

If the reward function also changes from f to
f .ı/ D f C ı.f 0 � f /, then (7) becomes

d	

dı
D Œ.P 0g C f 0/ � .Pg C f /�: (8)

Further Works
The ideas described in the previous subsections
may stimulate new research topics in theoretical
analysis, estimation algorithms, and applications.
Here we can only give a very brief review for
some of them.

1. There is a large literature on whether the
PA-based derivative estimates are unbiased
(finite period) and/or strongly consistent
(steady state). This was first formulated in
Cao (1985) and was further discussed in
Heidelberger et al. (1988). By now, there
have been extensive studies in this direction:
proving the unbiasedness or consistency for
various systems and modifying the approach
for system when the IPA estimates are not
unbiased (e.g., Cassandras and Lafortune
1999; Fu and Hu 1997; Glasserman 1991).
This also includes the recently proposed
fluid model; see � Perturbation Analysis of
Discrete Event Systems.

2. Another research topic is how to develop fast
and efficient algorithms for estimating the
performance gradients, especially in the case
of Markov systems; see e.g., Cao and Wan
(1998), Baxter and Bartlett (2001), and Cao
(2005). This is called policy gradients in the
reinforcement learning literature.

3. There are also research works on how the
gradient estimates and policy iteration (see
section “Direct Comparison and Policy Iter-
ation”) can be combined with stochastic ap-
proximation approaches to develop fast con-
vergent optimization algorithms; see Marbach
and Tsitsiklis (2001) for gradient-based ap-
proach and Fang and Cao (2004) for policy
iteration-based approach.

Direct Comparison and Policy
Iteration

The sensitivity-based view has been extended
to optimization in discrete spaces of policies.
With this view, we can develop a new approach
to performance optimization based on a direct
comparison of the performance of any two poli-
cies. This provides an alternative to the standard
dynamic programming to solving the Markov
decision processes (MDP) types of problems; it
also has been applied to solve some problems
when the standard MDP fails (Cao 2007; Cao and
Wan 2013).

http://dx.doi.org/10.1007/978-1-4471-5058-9_58
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In an MDP, there is an action space denoted as
A. For simplicity, we only consider the discrete
case. When the system is at any state i 2 S , an ac-
tion ˛ D d.i/ is taken, which controls the system
transition probability, denoted as p˛.j ji/, i; j 2
S , and the reward function, denoted as f .i; ˛/.
The mapping d W S ! A is called a policy. Since
a policy corresponds to a transition probability
matrix Pd D Œpd.i/.j ji/�Mi;jD1 and the reward

vector f d D .f .1; d.1//; � � � ; f .M; d.M///T ,
we also call the pair .P; f / a policy.

Consider two policies .P; f / and .P 0; f 0/,
and assume that the Markov chain under both
policies is ergodic. We use prime “ 0 ” to de-
note the quantities associated with .P 0; f 0/. First,
multiplying both sides of the Poisson equation (6)
with  0 on the left and after some calculations, we
get

	0 � 	 D  0f.P 0g C f 0/ � .Pg C f /g: (9)

This is called a performance difference formula,
and many optimization results can be derived
from it in an intuitive way.

Policy Iteration and the Optimality Equation
The difference formula (9) has a nice decompo-
sition structure: it contains two factors, the first
one  0, which does not depend on P , and the
second one .P 0gCf 0/� .PgCf /, in which all
the parameters are known except the performance
potential g, which can be obtained by only ana-
lyzing system with P . This nice feature makes
the difference formula the basis of performance
optimization.

For two M -dimensional vectors a and b, we
define a D b if a.i/ D b.i/ for all i D
1; 2 � � � ;M ; a � b if a.i/ � b.i/ for all i D
1; 2 � � � ;M ; a < b if a.i/ < b.i/ for all i D
1; 2 � � � ;M ; and a 
 b if a.i/ < b.i/ for at least
one i and a.j / D b.j / for other components.
The relation � includes D, 
, and <. Similar
definitions are used for the relations >, �, and
	.

Next, we note that  0.i/ > 0 for all i D
1; 2; � � � ;M . Thus, from (9), we know that if
.P 0 � P/g C .f 0 � f / � 0, then 	0 � 	 > 0.

From (9) and the fact  0 > 0, the proof of the
following lemma is straightforward.

Lemma 1 If Pg C f 
 .�/ P 0g C f 0, then
	 < .�/ 	0.

It is interesting to note that in the lemma, we
use only the potentials with one Markov chain,
i.e., g. Thus, because of the special structure of
the performance difference formula (9), if the
condition in Lemma 1 holds, to compare the
performance measures under two policies, we
may only need the potentials with one policy.

Policy iteration and the optimality equation
can be easily derived from (9) and Lemma 1.

Algorithm 2 Policy Iteration
1. Guess an initial policy d0, and set k D 0.
2. (Policy evaluation) Obtain the potential gdk by solving

the Poisson equation .I � Pdk /gdk C 	dk e D f dk or
estimating it on a sample path. (The superscript “dk”
is added to quantities associated with policy dk .)

3. (Policy improvement) Choose

dkC1 2 arg

	
max
d2D

�
f d C Pdgdk

�

; (10)

component-wise (i.e., to determine an action for each
state). If in state i , action dk.i/ attains the maximum,
and set dkC1.i/ D dk.i/.

4. If dkC1 D dk , stop; otherwise, set k WD k C 1 and go
to Step 2.

It follows directly from Lemma 1 that when
the iteration does not stop, the performance im-
proves at each iteration. It can be proved easily by
construction that the iteration stops at an optimal
policy. Again, from Lemma 1, when the iteration
stops at a polict Od , it holds

	
Od e C g

Od D max
d2D

n
f d C Pdg

Odo
: (11)

This is the Hamilton-Jacobi-Bellman (HJB) opti-
mality equation. If we further define the Q-factor,

Qd.i; ˛/ D f .i; ˛/C
X

j

p˛.j ji/gd .j /�: (12)

Then the policy iteration equation (10) and the
HJB equation (11) become
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dkC1.i/ WD arg max
˛2AfQdk.i; ˛/g (13)

and
Q

Od .i; ˛/ D max
ˇ2AfQ Od .i; ˇ/g: (14)

The only difference between (8) and (9) is
that  in (8) is replaced by  0 in (9). This leads
to an interesting observation: policy iteration in
MDPs in fact chooses the policy with the steepest
directional derivative as the policy in the next
iteration. Therefore, policy iteration in fact can
be viewed as the “gradient-based” optimization
in a discrete space.

In our approach, the HJB equation and pol-
icy iteration are obtained from the performance
difference equation (9), which compares the per-
formance of any two policies. It is hence called
a direct-comparison based approach. This ap-
proach also applies to more general problems,
such as multichain Markov systems, systems with
absorbing states, and problems with other per-
formance criteria such as the discounted perfor-
mance and the bias, etc.

The direct-comparison approach has been suc-
cessfully applied to the nth-bias optimality prob-
lem (Cao 2007). Essentially, starting with the
performance difference formulas (those similar
to (9) for different performance), we can de-
velop a simple and direct approach to derive the
results that are equivalent to the sensitive dis-
count optimality for multichain Markov systems
with long-run average criteria (Puterman 1994),
and no discounting is needed and no dynamic
programming is used. The approach, motivated
by the development for discrete event dynamic
systems, provides a clear overall picture for the
area of MDP.

The direct-comparison approach can also be
applied to some problems where dynamic pro-
gramming fails, including the event-based opti-
mization problems, where the sequence of events
may not be Markovian; see the next section.

Event-Based Optimization

It is well known that for most systems modeled
by Markov processes, the state spaces are too

large, and it is not computationally feasible to
implement policy iteration or to solve the HJB
equations. On the other hand, in many practical
problems in engineering, finance, and social sci-
ences, control actions are only taken when certain
events occur. For example, in the traffic control
of a network of subnetworks, often times one
cannot control the traffic in the same subnetwork,
and control actions are only applied when there
are packets transferring among different subnet-
works. In a portfolio management problem, the
investor sells or buys stocks when the price his-
tory experiences some predetermined patterns
(e.g., reaches some level). In a sensor network,
actions are taken only when one of the sensors
detects some abnormal situations. In a material
handling problem, actions are taken when the
inventory level falls below certain threshold.

Conceptually, anything happened in the past
can be chosen as an event. However, the number
of such events is too big (much bigger than the
number of states), and studying all these events
makes analysis infeasible and defeats our original
purpose. Therefore, to properly define events, we
need to strike a balance between the generality on
one hand and the applicability on the other hand.

In the event-based setting, an event e is de-
fined as a set of state transitions with certain
common properties. That is, e WD fhi; j i W
i; j 2 S and hi; j i has common propertiesg,
where hi; j i denotes a state transition from i to
j . This definition can also be easily generalized
to represent a finite sequence of state transitions.
We shall see that in many real problems, the
number of events requiring control actions is
usually much smaller than that of the states.

An event-based policy d is defined as a map-
ping from E to A, with E being the space of all
events. That is, d W E ! A. Let De denote the
set of all the stationary and deterministic policies.
The reward function under policy d is denoted
as f d D f .i; d.e//, and the associated long-run
average performance is denoted as 	d . When an
event e happens, we choose an action a D d.e/

according to a policy d , where e 2 E and d 2 De .
Our goal is to find an optimal policy Od which
maximizes the long-run average performance as
follows.
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Od D arg max
d2De

˚
	d

�
(15)

The main difficulty in developing the event-
based optimization theories and algorithms lies in
the fact that the sequence of events is usually not
Markovian. The standard optimization approach
such as dynamic programming does not apply
to such problems. However, we can apply the
direct-comparison approach to this event-based
optimization problem. Here we give a very brief
discussion.

Consider an event-based policy d , d 2
De . When event e occurs, the conditional
transition probability is denoted as pd.e/.j ji; e/.
Let d .i je/ be the conditional steady-state
probability of state i when event e occurs under
policy d . Define the aggregated Q-factor

Qd.e; ˛/ D P
i 

d .i je/
�

h
f .i; ˛/C P

j p
˛.j ji; e/gd .j /

i
: (16)

We may use these aggregated Q-factors to de-
velop an event-based policy iteration algorithms
as Algorithm 2 and obtain the policy iteration
equation (cf. (13))

dkC1.e/ WD arg max
˛2AfQdk.e; ˛/g; e 2 E ;

(17)

and the event-based HJB optimality equation (cf.
(14)) is

Q
Od .e; ˛/ D max

ˇ2AfQ Od .e; ˇ/g: (18)

It can be proved that if the conditional probability
h.i je/ does not depend on the policy; i.e.,

h.i je/ D d .i je/; 8 i; e; and h; d; (19)

then policy iteration (17) indeed leads to a se-
quence of increasing performance and (18) spec-
ifies an event-based optimal policy.

The event-based aggregated Q-factor (16) can
be estimated on a sample path in the same way as
for potentials (Cao 2007). The number of events
requiring actions is usually much smaller than the

number of states, and in some cases such as the
network admission control problem, it is linear to
the system size.

The crucial condition for the above event-
based optimization is (19). There are many prob-
lems, such as the control of the networks of
networks and the portfolio management problem,
for which the condition holds; there are also many
problems for which the condition does not hold.
The error in applying (18) and policy iteration
(17) comes from the difference between h.i je/
and d .i je/ at each iteration. Further research is
needed.

We use a computer network as an example, in
which each computer or router can be modeled
as a queueing subnetwork and the computer
network is then a network of such subnetworks.
Assume that there is an M subnetwork, and
subnetwork m, m D 1; 2; � � � ;M , consists of
km servers. The number of customers at the
j th server of subnetwork m is denoted as nm;j ,
j D 1; 2; � � � ; km, and the number of customers
in all the servers in subnetwork m is denoted as
Nm D Pkm

jD1 nm;j . Suppose the service time is
exponentially distributed, then the system state
is n WD .n1;1; � � � ; n1;k1 I � � � InM;1; � � � ; nM;kM /,
and the aggregated state is N WD .N1; � � � ; NM /.
Suppose that the transition probabilities among
the servers in the same subnetwork are fixed and
we can only control the transition probabilities
among the subnetworks, and furthermore, we
can only observe N. Then the problem can
be modeled as an event-based optimization
with an event being a customer transition
among subnetworks, and meanwhile, the
aggregated state is N. It can be proved that
the condition (19) holds, and therefore, we
may apply policy iteration (17) and HJB
equation (18).

Many existing problems fit the event-based
framework. For example, in a partially observ-
able Markov decision process (POMDP), we may
define an observation, or a sequence of observa-
tions, as an event. Other examples include state
and time aggregations, hierarchical control (hy-
brid systems), and options. Different events can
be defined to capture the special features in these
different problems. In this sense, the event-based
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approach may provide a unified view to these
different problems (Cao 2007).

The Sensitivity-Based Approach and
Optimal Control

We refer to the approaches discussed in the
previous sections the sensitivity-based approach.
When the parameters are continuous, it is the
gradient-based approach, and the focus is on de-
veloping efficient algorithms that utilize the par-
ticular system structure to estimate the gradients
(to justify the algorithms, the unbiasedness or the
consistency of the estimates should be proved).
When the parameters are discrete, it is the direct-
comparison approach that leads to policy iteration
and the HJB equations, and policy iteration can
be viewed as the gradient-based method in dis-
crete spaces. This approach is different from the
conventional dynamic programming, and it has
been successfully applied to MDP with different
criteria and the n-bias optimization problems as
well as the event-based optimization and some
other problems that dynamic programming fails.

This sensitivity-based approach was motivated
by the study of discrete event dynamic systems
(DEDS). It has been realized that the principles
and methodologies developed for DEDSs also
apply to the optimization of continuous-time and
continuous-state (CTCS) systems. Here are some
examples:
1. CTCS systems: For CTCS systems, the dy-

namic is driven by Brownian motions or Levy
processes. The transition probability matrix in
DEDS should be replaced by the infinitesimal
generator in CTCS, which is an operator on
the space of continuous functions. With the
performance difference formulas, we can re-
develop the stochastic optimal control theory
for many performance measures, including
the long-run average, discounted performance,
and finite horizon problems, with no dynamic
programming; see Cao et al. (2011).

2. Time-inconsistent optimization problems: In
behavioral finance, people’s preference is
modeled with a distorted probability. For
example, a risk-taking person buys lotteries,

because in her/his mind, s/he enlarges the
possibility of winning a large sum, and a risk
averse person buys insurance, because s/he is
afraid of a big loss and therefore enlarges its
probability.
The optimization problem with a distorted

probability suffers from the time-inconsistent is-
sue; i.e., an optimal policy for the problem in
period Œt; T /, 0 < t < T , is not optimal in the
same period for the problem in Œ0; T �. Thus, the
standard dynamic programming fails.

The gradient-based approach has been applied
to the portfolio management problem with prob-
ability distortion. With this approach, we discov-
ered that the performance with distorted probabil-
ity maintains some sort of linearity called mono-
linearity. This property shed new insights to the
portfolio management problem and the nonlinear
expected utility theory (Cao and Wan 2013).

Conclusion

A sensitivity-based approach has been developed
to the performance optimization of discrete event
dynamic systems (DEDS). The approach utilizes
the dynamic structure of DEDS. For systems with
continuous parameters, it is the gradient-based
optimization, in which the special feature of a
DEDS helps in developing efficient algorithms to
estimate the performance derivatives; for systems
with discrete policies, it is the direct-comparison-
based approach, with which policy iteration and
HJB equations can be derived intuitively by us-
ing the performance difference formulas. Policy
iteration can be viewed as the gradient method
in a discrete space. The estimation of gradients
and the implementation of policy iteration can be
carried out on a given sample path, and efficient
online learning algorithms can be developed (Cao
2007).

The sensitivity-based approach was developed
for DEDSs, but its principle also applies to
systems with continuous-state spaces. The
approach provides an alternative to the traditional
dynamic programming and therefore can be
applied to some problems where dynamic
programming does not work.
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Synonyms

Proportional-Integral-Derivative Control

Abstract

Since their introduction in industry a century
ago, proportional–integral–derivative (PID) con-
trollers have become the de facto standard for
the process industry. In this entry, fundamentals
of PID control are outlined, starting from the
basic control law. Additional functionalities and
the tuning and automatic tuning of the parameters
are then considered.

Keywords

Anti-windup; Autotuning; Controller tuning;
Derivative action; PI control; Proportional
control; Proportional-integral-derivative control;
Ziegler-Nichols

Introduction

A proportional–integral–derivative (PID) con-
troller is a three-term controller that has a long
history in the automatic control field, starting
from the beginning of the last century. Owing
to its intuitiveness and relative simplicity, in
addition to the satisfactory performance that it is
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able to provide with a wide range of processes,
it has become the de facto standard controller
in industry. It has been evolving along with
the progress of technology, and nowadays it is
very often implemented in digital form rather
than with pneumatic or electrical components. It
can be found in virtually all kinds of control
equipments, either as a stand-alone (single-
station) controller or as a functional block in
Programmable Logic Controllers (PLCs) and
Distributed Control Systems (DCSs). Actually,
the new potentialities offered by the development
of the digital technology and of the software
packages have led to a significant growth of the
research in the PID control field: new effective
tools have been devised for the improvement
of the analysis and design methods of the basic
algorithm as well as for the improvement of the
additional functionalities that are implemented
with the basic algorithm in order to increase its
performance and its ease of use.

The success of the PID controllers is also
enhanced by the fact that they often represent the
fundamental component for more sophisticated
control schemes that can be implemented when
the basic control law is not sufficient to achieve
the required performance or when a more com-
plicated control task is of concern.

Basics

Using a PID controller means applying a feed-
back controller that consists of the sum of three
types of control actions: a proportional action, an
integral action, and a derivative action.

The proportional control action is proportional
to the current control error, according to the
expression

u.t/ D Kpe.t/ D Kp.r.t/ � y.t//; (1)

where u is the controller output, Kp is the pro-
portional gain, r is the reference signal, and y
is the process output. Its meaning is straightfor-
ward, since it implements the typical operation of
increasing the control variable when the control
error is large (with appropriate sign). The transfer

function of a proportional controller can be triv-
ially derived as

C.s/ D Kp: (2)

The main drawback of using a pure proportional
controller is that, in general, it cannot set to zero
the steady-state error. This motivates the addition
of a bias (or reset) term ub , namely,

u.t/ D Kpe.t/C ub: (3)

The value of ub can then be adjusted manually
until the steady-state error is reduced to zero.

In commercial products, the proportional gain
is often replaced by the proportional band PB,
which is the range of error that causes a full-range
change of the control variable, i.e.,

PB D 100

Kp

: (4)

The integral action is proportional to the integral
of the control error, i.e.,

u.t/ D Ki

Z t

0

e.�/d�; (5)

where Ki is the integral gain. It appears that
the integral action is related to the past values
of the control error. The corresponding transfer
function is

C.s/ D Ki

s
: (6)

The presence of an integral action allows to
reduce the steady-state error to zero when a step
reference signal is applied or a step load distur-
bance occurs. In other words, the integral action
is able to set automatically the correct value of
ub in (3) so that the steady-state error is zero. For
this reason, the integral action is also often called
automatic reset.

While the proportional action is based on the
current value of the control error and the integral
action is based on the past values of the control
error, the derivative action is based on the pre-
dicted future values of the control error. An ideal
derivative control law can be expressed as
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u.t/ D Kd

de.t/

dt
; (7)

where Kd is the derivative gain. The correspond-
ing controller transfer function is

C.s/ D Kds: (8)

The meaning of the derivative action can be better
understood by considering the first two terms of
the Taylor series expansion of the control error at
time Td ahead:

e.t C Td / ' e.t/C Td
de.t/

dt
: (9)

If a control law proportional to this expression is
considered, i.e.,

u.t/ D Kp

�
e.t/C Td

de.t/

dt

�
; (10)

this naturally results in a PD controller. The
control variable at time t is therefore based on the
predicted value of the control error at time tCTd .
For this reason, the derivative action is also called
anticipatory control, or rate action, or pre-act.

The combination of the proportional, integral,
and derivative actions can be done in different
ways. In the so-called ideal or non-interacting
form, the PID controller is described by the
following transfer function:

Ci.s/ D Kp

�
1C 1

Ti s
C Td s

�
; (11)

where Kp is the proportional gain, Ti is the
integral time constant, and Td is the derivative
time constant. An alternative representation is the
series or interacting form:

Cs.s/ D K 0
p

�
1C 1

T 0
i s

� �
T 0
d s C 1

�

D K 0
p

�
T 0
i s C 1

T 0
i s

� �
T 0
d s C 1

�
; (12)

where the fact that a modification of the value
of the derivative time constant T 0

d affects also
the proportional action justifies the nomenclature

adopted. Suitable conversion formulae can be
applied to obtain an ideal PID controller equiv-
alent to a series one. Obtaining an equivalent PID
controller in series form starting from an ideal
one is possible only if the zeros of the ideal PID
controller are real.

Additional Functionalities

The expression (11) or (12) of a PID controller is
actually not employed in practical cases because
of a few problems that can be solved with suitable
modifications of the basic control law.

Modifications of the Derivative Action
From Expressions (11) and (12), it appears that
the controller transfer function is not proper,
because of the derivative action, and therefore,
it cannot be implemented in practice. Indeed, the
high-frequency gain of the pure derivative action
is responsible for the amplification of the mea-
surement noise in the manipulated variable. This
problem can be solved by filtering the derivative
action with (at least) a first-order low-pass filter.
The filter time constant should be selected in
order to suitably filter the noise and to avoid a
significant influence on the dominant dynamics
of the PID controller. Thus, it can be selected
as Td=N , where N generally assumes a value
between 1 and 33, although in the majority of the
practical cases its setting falls between 8 and 16.
Alternatively, the overall control variable can be
filtered.

Another issue related to the derivative ac-
tion that has to be considered is the so-called
derivative kick. In fact, when an abrupt (step-
wise) change of the set-point signal occurs, the
derivative action is very large, and this results
in a spike in the control variable signal, which
is undesirable. This problem could be simply
avoided by applying the derivative term to the
process output only instead of the control error. In
this case, the ideal (not filtered) derivative action
becomes

u.t/ D �KpTd
dy.t/

dt
: (13)
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Obviously, when the set-point signal is constant,
applying the derivative term to the control error
or to the process variable is equivalent. Thus,
the load disturbance rejection performance is the
same in both cases.

Set-Point Weighting for Proportional
Action
A typical problem with the design of a feedback
controller is to achieve a high performance both
in the set-point following task and in the load
disturbance rejection task at the same time. For
example, for stable processes, a fast load dis-
turbance rejection is achieved with a high-gain
(aggressive) controller, which gives an oscillatory
set-point step response on the other side. This
problem can be approached by using a two-
degree-of-freedom control architecture, where a
feedback controller is designed to achieve a high
bandwidth and therefore a satisfactory load dis-
turbance rejection performance, and then the set-
point signal is filtered before applying it to the
closed-loop system.

In the context of PID control, this can be
achieved by weighting the set-point signal for
the proportional action, that is, to define the
proportional action as follows:

u.t/ D Kp.ˇr.t/ � y.t//; (14)

where the value of ˇ is between 0 and 1.
In this way, the control scheme has a feedback

controller (11), and the set-point signal is filtered
by the system

F.s/ D 1C ˇTi s C TiTd s
2

1C Tis C TiTd s2
: (15)

The load disturbance rejection task is decoupled
from the set-point following task, and obviously
it does not depend on the weight ˇ, which can
be employed to smooth the (step) set-point sig-
nal in order to damp the response to a set-
point change. The smaller the value of ˇ, the
smaller the overshoot and the higher the rise
time.

Anti-windup
One of the most well-known possible sources
of performance degradation is the so-called inte-
grator windup phenomenon, which occurs when
the controller output saturates (typically when a
large set-point change occurs). In this case, the
system operates as in the open-loop case, since
the actuator is at its maximum (or minimum)
limit, regardless of the process output value. The
control error decreases more slowly than in the
ideal case (where there are no saturation limits),
and therefore, the integral term becomes large (it
winds up). Thus, even when the value of the pro-
cess variable attains that of the reference signal,
the controller still saturates due to the integral
term, and this generally yields large overshoots
and settling times.

In order to cope with this problem, an addi-
tional functionality designed for this purpose can
be conveniently used. This can be done in differ-
ent ways. For example, in the conditional inte-
gration approach, the integration is stopped when
the control variable saturates and the control error
and the control variable have the same sign.
Alternatively, in the back-calculation approach,
the integral term is recomputed when the con-
troller saturates by feeding back the difference of
the saturated and unsaturated control signal.

Tuning

The selection of the PID parameters, i.e., the
tuning of the PID controller, is obviously the
crucial issue in the overall controller design. This
operation should be performed in accordance
with the control specifications (which should take
into account the set-point following, the load
disturbance rejection, the control effort, and the
robustness of the system). A major advantage of
the PID controller is that its parameters have a
clear physical meaning, and therefore, manual
tuning is relatively simple. For example, for sta-
ble processes, increasing the proportional gain
leads, in general, to a faster but more oscillatory
response. In fact, by increasing Kp for the same
value of the control error, the proportional control
action increases, and so does the aggressiveness
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of the controller. Then, increasing the integral
time constant (i.e., decreasing the effect of the
integral action) results, in general, in a slower
response but in a more damped system. This is
because a larger value of Ti implies a smaller
value of the control action at a given time instant
of the transient response (assuming the same
values of the past control errors). Finally, increas-
ing the derivative time constant gives a damping
effect. Indeed, if the set point is constant, the
derivative action is proportional to the derivative
of the process variable with a negative sign, and
therefore, the derivative action increases (with a
negative sign) when the slope of the transient
response increases (so that a big overshoot is
avoided). However, in this context, much care
should be taken to avoid increasing the derivative
time constant too much as an opposite effect
might occur in this case and an unstable system
could eventually result. This is because the pre-
diction over a too long time interval might be
wrong.

The above considerations can be understood
by considering a transient response in the time
domain but also by considering the frequency
response of the system and how it changes by
modifying the PID parameters. For example, the
effect of increasing the three controller actions
can be seen as translating any point of the Nyquist
plot in each of the directions shown in Fig. 1.

From another point of view, analogous consid-
erations can be done by considering the Bode
plot. For example, considering a PID controller
in ideal form with a filter on the overall control
action, the effect of modifying the three param-
eters in the controller Bode plot is shown in
Fig. 2. The effects of the parameter modifica-
tion in the achieved performance can be better
ascertained by plotting the frequency response
of the loop transfer function for different cases.
As an example, consider the process P.s/ D
1=.10s C 1/e�4s and the PID controller C.s/ D
Kp.1 C 1

Ti s
C Td s/

1
Tf sC1 where the parameters

are in the following ranges: Kp 2 Œ2; 15=4�,
Ti 2 Œ4; 16�, Td 2 Œ1:5; 4�, being always Tf D
0:1. From Fig. 3, it appears that an increment of
Kp yields an increment of the bandwidth and a
decrement of the phase margin. Conversely, an
increment of Ti has an opposite effect. Finally,
it can be seen that the increment of Td initially
yields to an increment of the bandwidth and of
the phase margin at the same time, but then a
sudden increment of the bandwidth occurs, and
this corresponds to a sudden decrement of the
phase margin (because of the dead time of the
process) with a possible loss of stability.

In any case, in order to ease the procedure, a
large number of tuning rules have been proposed
in the last century, starting from the well-known
Ziegler–Nichols ones (Nichols and Ziegler 1942).
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Different approaches in this context are analyzed
hereafter.

Empirical Tuning
Empirical tuning methods (like the Ziegler–
Nichols and its refinements, Cohen–Coon, or
Chien–Hrones–Reswick ones (O’Dwyer 2006))
consist in selecting the parameters of the PID
controllers by using some empirical formulae
which give the PID gains based on parameters of
the process. Usually, the process parameters are
those of a first-order-plus-dead-time (FOPDT)
model or the ultimate gain and frequency of
the process itself (the ultimate gain is the largest
value of a proportional-only control that produces
a sustained oscillation of the process variable,
that is, that results in a marginally stable closed-
loop system, while the ultimate frequency is
the frequency of the corresponding sustained
oscillation). These parameters can be obtained by
means of a simple open-loop (step response) or
closed-loop (relay feedback) experiment.

Model-Based Tuning
In model-based tuning (like the Dahlin’s and
Haalman’s methods and the Internal Model Con-
trol one (O’Dwyer 2006)), the PID control law
is determined analytically starting from a process
model and by selecting an appropriate (closed-
loop) target transfer function. The user generally
selects the desired closed-loop time constant as
a tuning parameter which allows the handling of
the trade-off between aggressiveness and robust-
ness (and control effort). In this context, accord-
ing to the well-known SIMC (Simplified Internal
Model Control) tuning rules (Skogestad 2003),
the closed-loop time constant should be selected
equal to the dead time of the process.

Optimal Tuning
Optimal tuning rules aim at minimizing a given
objective function. Usually, an integral function
of the control error is selected for this purpose,
for example,

J D
Z 1

0

tne2.t/dt (16)

where n D 0; 1; 2 or the Integrated Absolute
Error

IAE D
Z 1

0

je.t/jdt: (17)

By solving the optimization problem for different
kinds of (normalized) processes and by interpo-
lating the results, it has been possible to obtain
tuning formulae that give the PID gains based
on the process parameters. Actually, it should
be noted that as no (robustness) constraints are
considered in the optimization procedure, a poor
robustness may eventually result in the control
system.

Robust Tuning
Recently, tuning rules which explicitly consider
the robustness issue have been devised. In partic-
ular, the maximum of the sensitivity function is
often considered as robustness index. A selected
value of Ms is then employed as a constraint
in finding the optimal PID parameters which
minimize a given performance index. An addi-
tional constraint on the maximum complemen-
tary sensitivity function can also be considered.
For example, the AMIGO tuning rules (Åström
and Hägglund 2004) have been devised by ap-
plying this approach, where the integral gain is
maximized in order to obtain the best reduction
of load disturbances.

Automatic Tuning

The functionality of automatically identifying the
process model and tuning the controller based on
that model is called automatic tuning (or, sim-
ply, auto-tuning) (�Autotuning). In particular, an
identification experiment is performed after an
explicit request of the operator, and the values
of the PID parameters are updated at the end
of it (for this reason, the overall procedure is
also called one-shot automatic tuning or tuning-
on-demand). The design of an automatic tuning
procedure involves many critical issues, such as
the choice of the identification procedure (usually
based on an open-loop step response or on a relay
feedback experiment), of the a priori selected

http://dx.doi.org/10.1007/978-1-4471-5058-9_113
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(parametric or non parametric) process model,
and of the tuning rule.

The one-shot automatic tuning functionality
is available in practically all the single-station
controllers available on the market. More ad-
vanced control units might provide a self-tuning
functionality, where the identification procedure
is continuously performed during routine process
operation in order to track possible changes of
the system dynamics and the PID parameters
values are adaptively modified. In this case, all
the issues related to adaptive control have to be
taken into account. In particular, performance
assessment methodologies, which are capable to
evaluate if the PID design can be improved, are of
significant relevance in this context (�Controller
Performance Monitoring).

Design Tools

Although one of the major advantages of
PID controllers is their relative simplicity,
Computer-Aided Control System Design tools
(�Computer-Aided Control Systems Design:
Introduction and Historical Overview) have been
developed in order to help the user in their
design (starting from the identification of the
process) by taking into account the different
control requirements in a given application
(Guzman et al. 2008). In this context, all the
additional functionalities can be considered,
as well as more complex control architectures
where, in any case, the PID control is still the
basic element (�Control Structure Selection,
�Control Hierarchy of Large Processing Plants:
An Overview).

Summary and Future Directions

PID controllers are the most employed controllers
in industry, and the knowledge about their use
is well established, with the presence of many
effective tuning and automatic tuning techniques.
Despite this, PID controllers are still being de-
veloped under many points of view. For example,
design methodologies for more complex control

schemes (like cascade control or control of mul-
tivariable systems with or without the use of a
decoupling strategy) can be improved. Further,
the advancement of the technologies poses new
problems that need to be addressed. For example,
the use of wireless sensors and actuators calls for
event-based PID controllers whose design should
take into account the asynchronous sampling.
The availability of faster and faster microproces-
sors has also stimulated an increasing interest in
fractional-order PID controllers which allows a
more flexible design at the expense of an incre-
ment of the complexity.

Recommended Reading

Basic concepts of PID controllers can be found
in almost every book on process control. For a
detailed treatment, see (Åström and Hägglund
2006) where all the methodological as well as
technological aspects are covered. An excellent
collection of tuning rules can be found in
O’Dwyer (2006). More advanced topics can be
found in Tan et al. (1999), Yu (2006), Johnson
and Moradi (2005), Knospe (2006), Visioli
(2006), Wang et al. (2008), Visioli and Zhong
(2010), and Vilanova and Visioli (2012).
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Pilot-Vehicle SystemModeling

Alexander Efremov
Moscow Aviation Institute, Moscow, Russia

Abstract

The main types and variables of pilot-aircraft
systems and pilot control response characteristics
are considered. The basic regularities of pilot be-
havior exposed in closed-loop systems are briefly
discussed. Different types of models of pilot
behavior are reviewed including classical models
(McRuer’s and structural) and an optimal control
model.

Keywords

Crossover pilot model; Describing function;
Manual control; Pilot behavior; Pilot optimal
control model Remnant spectral density;
Structural model

Introduction

Modern flight control and navigation systems
are characterized by two features: (1) they em-
ploy fly-by-wire controls and (2) they introduce
extensive automation support into the cockpit,
ranging from complex augmented flight control
systems in manual control modes to powerful
flight management computers and autopilots that
assume responsibility for most flight control tasks
(and which may operate the aircraft in ways that
are difficult for pilots to monitor and understand).
These modern systems leave the pilot in a su-
pervisory control mode most of the time. Conse-
quently, crew members monitor, supervise, plan,
and, in essence, serve as information managers.
The level of supervisory control tasks can be
different from conventional command control in
which the operator issues auto-pilot commands
(“set altitude”, “set airspeed,” etc.) and task-level
control in which the operator issues commands
such as “line formation,” “trail formation,” etc.
Although civilian pilots have experience flying
their aircraft manually, they are seldom in active,
direct control of the aircraft. However, if a failure
or unexpected upset occurs, they are required
to assume control immediately. As for military
pilots, they (especially fighter pilots) use manual
control in the majority of piloting tasks.

The effective use of manned flight vehicles has
always required a satisfactory match of vehicle
characteristics (which include vehicle dynamics,
control manipulators, displays) with the human
pilot’s characteristics as a flight controller. The
provision of proper vehicle handling qualities by
the flight control system and display and manip-
ulator design has often posed serious problems
which the vehicle system engineer must solve.

Their solutions require the knowledge of mu-
tual interactions between the pilot and the vehi-
cle. The understanding of such interactions re-
quires a mathematical theory which can be used
to explain known findings and to predict new
ones. For handling qualities, such theory is based
on the methods of control engineering and treats
the pilot-vehicle system as a closed-loop (in gen-
eral, a multiloop) entity. The sine qua non of the
theory is a model of pilot dynamic characteristics
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Pilot-Vehicle SystemModeling, Fig. 1 Pilot-aircraft system

in a form suitable for application using relatively
conventional control engineering techniques. An
adequate description of a pilot’s dynamics re-
sponse characteristics is not easily obtained be-
cause of the pilot’s inherent adaptability and
capacity for learning.

Main Variables of the Pilot-Aircraft
System

The pilot-aircraft manual control system, shown
in Fig. 1, is characterized by a number of
variables. The main group of these variables
is the so-called task variables which comprise
all the system inputs (command inputs i.t/,
disturbances d.t/) and control system elements
(display, manipulators, and controlled element
dynamics, which is defined by the aircraft frame
and flight control system dynamics).

A specific feature of pilot-aircraft systems
is the dependence of the piloting task on the
task variables. For different piloting tasks, these
variables or their parameters differ too. Stability
of the closed-loop system is always a necessary,
though not sufficient, criterion for the control
strategy. Consequently, the pilot’s dynamics are
profoundly affected by the display and controlled
element dynamics, because his response must be
adapted to provide the necessary loop stability
and accuracy. The characteristics of the other task
variables .i.t/; d.t//, related to the mission and
control strategy, also exert direct influence on the
pilot dynamics, although their effects are more

in the nature of adjustment and emphasis than of
changes in fundamental form.

These variables constitute an enormous range
of possible conditions and piloting tasks. In ad-
dition to the task variables, the other groups
of variables–procedural (p–instructions, training
schedule order of presentation of trials etc.), en-
vironmental ("–illumination, vibration, temper-
ature, and so forth), pilot centered (�–physical
condition, motivation etc.)—have less influence
on pilot-aircraft system features.

Types of Pilot-Aircraft Systems

The structure of the pilot-aircraft system depends
on the piloting task. Some tasks (for example,
the pitch tracking task) can be interpreted with
the help of the single loop compensatory block
diagram. In that case the pilot perceives only the
error signal, y.t/ D e.t/ D i.t/ � x.t/, and
control c.t/. Figure 1 is the pilot pitch control
command. The other tasks require more com-
plicated descriptions. For example, the landing
task is a multiloop compensatory task, where
the inner loop closed by the pilot is the pitch
control loop. Some piloting tasks are multichan-
nel control tasks, in which the pilot perceives
several visual stimuli (for example pitch angle
and bank angle) and generates commands in
several channels too. Pilots also perceive stimuli
of different sensing modalities (visual, vestibular,
kinesthetic). In cases where these influence his
actions, the multimodality of the pilot-aircraft
system has to be analyzed.
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A great many past experiments in which
human dynamic measurements were taken
have been conducted for investigation of
compensatory tracking tasks. Some practical
piloting tasks (e.g., aim-to-aim tracking in case
when the target flies against a background of
clouds) correspond to pursuit conditions. In that
case, the pilot perceives the information about
the error signal e.t/ and the input signal i.t/.

In many piloting tasks the single loop compen-
sation system defines the main features of more
complicated types of pilot-aircraft systems and its
flying qualities. Therefore, this type of the system
has been investigated in more depth.

Pilot Control Response
Characteristics

The most obvious aspect of human dynamic be-
havior in a manual control task is the pilot’s
control actions within that task. When the key
variables are fixed and the signals in the control
loop are approximately time stationary over an
interval of interest, the pilot-vehicle system can
be presented as a quasi-linear system. In that
case, the pilot response can be presented by
two components: the pilot-describing function,
Wp.j!/, taking into account the linear portion of
pilot response on the stimulus e.t/, and remnant
ne.t/, which takes into account all nonlinear,
nonstationary effects of pilot behavior (Fig. 2).

In the majority of piloting tasks ne.t/ is a
stationary process characterizing the remnant
spectral density Snene .!/ (McRuer and Krendel
1974). The pilot control response characteristics
Wp.j!/ and Snene .!/ depend explicitly on
the task variables (McRuer and Jex 1967;
McRuer et al. 1968). In much experimental
research, the technique for identification of
these characteristics was based on the use
of an input signal consisting of the sum of
non-harmonically-related sine waves with cut
off frequency !i at 1.5, 2.5, and 4 rad/s
and different controlled element dynamics
(Allen and Jex 1972; Magdaleno 1972; Shirley
1969).

In addition to control response, other types of
pilot’s responses also characterize his behavior:
physiological (F ) and psychophysiological re-
sponses (Fig. 1). For one of the psychophysio-
logical response characteristics, the pilot opinion
rating (PR) is widely used in experimental in-
vestigations as well as for the measurement of
pilot control response. Pilot opinion ratings are
defined by specialized scales (e.g., the Cooper-
Harper scale (Cooper and Harper 1969)).

Modeling Pilot Behavior in Manual
Control

Experimental investigations have demonstrated
a specific regularity: for a variety of forcing
functions and controlled elements the slope of the
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open-loop describing function jWOL.j!/j vs fre-
quency was unity, i.e., �20 dB/dec in the region
of the crossover frequency !c (McRuer and Jex
1967). This observation has led to the conclusion
that near !c , WOL.j!/ can be presented by the
“crossover model” (McRuer and Jex 1967)

WOL.j!/ D Wp.j!/ �WC D !c

j!
e�j!�e

This model has two parameters:

!c D !co.!c/C�!.!i /

�e D �o.!c/C��.!i /

For the controlled element dynamics WC D
K

s.T sC1/ , the increase of constant T leads to an
increase of �0 and a decrease of !C0. The empiri-
cal dependences of �!c and ��e on !i obtained
for the rectangular form of input spectrum are the
following:�! D 0:18!i , �� D �0:07!i .

McRuer proposed several modifications of the
open-loop system crossover and pilot describing
function models (McRuer and Krendel 1974).
One of the simplest ones (used widely in many
researches) which might be recommended for
description of pilot-aircraft system characteristics
in the crossover frequency range is the following

Wp.j!/ D Kp

TLj! C 1

T1j! C 1
e�j!�e

The selection of the parameters Kp, TL, and TI
is carried out by using “adjustment rules” so
that the closed-loop system conforms to experi-
mental frequency response characteristics. These
adjustment rules reflect the main features of pilot
behavior – adaptation and optimization.

A more complicated model of pilot describ-
ing function (“structural model”) was offered by
R. Hess (1979, 1984). It takes into account the
additional inner loop generated by the pilot as
a result of his response to the kinesthetic cue
(Fig. 3). The modification of this model (Efremov
and Tjaglik 2011) demonstrated good agreement
with the pilot describing function as measured in
experiments. One of the features of this modified
model is the criterion used for the parameter
optimization: I D minŒ�2e � or I D minŒ�2e C
ˇ�2n�. This procedure requires the knowledge of
the pilot remnant spectral density. For the single
loop system, such a model was developed by
Levison et al. (1969).

Snene .!/ D 0:01
�2e C �2Pe T

2
L

1C T 2L!
2

In the limited number of researches, the classic
approach to pilot modeling considered above was
used for more complicated types of the pilot-
aircraft system, when the pilot perception of mo-
tion cues was taken into account (multimodality
system (Hess 1990)) or for a case of the multiloop
pilot-aircraft system (Stapleford et al. 1967).

A different approach to pilot behavior model-
ing was developed by Kleiman et al. (1970). It is
based on the modern optimal control theory and
assumes that the pilot’s goal is to minimize the
cost function:

I D lim
T

1

T

Z T

0

.xQxT C uQcu
T C PuGc PuT /dt

The model takes into account the main pilot
limitation parameters: time delay in perception,
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the observation and motor noises, and the neuro-
muscular dynamics.

The predictive part of the model consists of
the optimal controller (�L�

), Kalman filter and
predictor (Fig. 4). The software for definition of
these elements allows the use of this model for
the different types of the pilot-aircraft systems.

The classical and optimal pilot behavior mod-
els have been applied widely for different man-
ual control tasks: the development of alternative
criteria for flying qualities (Efremov et al. 1998;
Neal and Smith 1971), the flight control system
(Schmidt 1979) and display design (Klein and
Clement 1973), the analysis of reasons for pilot-
induced oscillation (McRuer 1997) and the de-
velopment of means for its suppression (Efremov
1995), and many others.

In some of the researches, attempts have been
made to find the relationship between the pa-
rameters of the closed-loop system, pilot con-
trol response characteristics, and pilot opinion
ratings. The technique developed in these re-
searches is called the “paper pilot technique”
(Anderson 1970). The following modification of
this technique has enabled a close match between
the results of mathematical modeling (PR;TL,
accuracy, etc.) of the different types of the pilot-
aircraft system and the results of experimental
investigations (Efremov and Ogloblin 2006).

Summary and Future Directions

Pilot behavior has been studied extensively
for single-loop stationary manual control
tasks. Two approaches to the mathematical
modeling of the pilot behavior have been

developed: classical and optimal control. Both
of them have produced good agreement with
experimental results. The discussed models
describe one of the main features of the
pilot adaptation – “parameter adaptation”,
when a change of any task variable causes a
change of human operator control response
characteristics. Only a limited number of
experimental investigations have been carried
out for more complicated cases: multiloop and
multimodality pilot-aircraft closed-loop systems.
Broader investigations are necessary in the future
to obtain accurate pilot mathematical models
for these cases. Future investigation in pilot
behavior modeling area is also necessary for
better formulations of other aspects of pilot
adaptation:
– “Structural adaptation”, when the pilot selects

the loops and the best type of behavior (com-
pensatory, pursuit, etc.) appropriate for the
different task variables and, in the case of the
flight control system, changes in dynamics.

– “Goal adaptation”, when a change of the pilot-
ing task or a failure in the controlled element
dynamics is accompanied by a change of the
goals.

Other future directions in pilot modeling are the
development of models to predict the results
in the case of sharp changes of controlled
element dynamics, to optimize the controlled
element dynamics, to define the relationship
between the pilot control response characteristics
and his opinion rating in different piloting
tasks, to get new criteria for the handling
qualities, prediction of pilot-induced oscillations,
and to solve many other manual control
problems.
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Abstract

Polynomial techniques have made important con-
tributions to systems and control theory. Alge-
braic formalism offers several useful tools for
control system design. In most cases, control
systems are designed to be stable and to meet
additional performance specifications, such as
optimality or robustness. The basic tool is a
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parameterization of all controllers that stabilize
a given plant. Optimal or robust controllers are
then obtained by an appropriate selection of the
parameter. An alternative tool is a reduction of
controller synthesis to a solution of a polynomial
equation of specific type. These two polyno-
mial/algebraic approaches will be presented as
closely related rather than isolated alternatives.

Keywords

Controller synthesis; Linear systems; Polynomial
equation approach to control system design;
Youla-Kučera parameterization of stabilizing
controllers

Stabilizing Controllers

The majority of control problems can be formu-
lated using the diagram shown in Fig. 1. Given a
plant S , determine a controller R such that the
feedback control system is stable and satisfies
some additional performance specifications, such
as reference tracking, disturbance attenuation,
optimality, or robustness.

Suppose that the plant and the controller are
linear time-invariant single-input single-output
continuous-time systems with real rational
transfer functions Sand R, respectively. Stability
is understood as the input-output stability, i.e.,
whenever the exogenous inputs ı and � are
essentially bounded in amplitude, so too are the
output signals � and 	 (hence also " and �).

It is natural to separate the design task
into two consecutive steps: (1) stabilization
and (2) achievement of additional performance
specifications. To do this, all solutions of the first
step, i.e., all controllers that stabilize the given
plant, must be found.

How can one characterize such controllers?
Denote Hs the reference-to-error transfer
function (sometimes called the sensitivity
function) and Hc the disturbance-to-control
transfer function (the so-called complementary
sensitivity function) in the closed-loop control
system, namely,

Hs D 1

1C SR
; Hc D SR

1C SR
:

Now suppose that S can be expressed as the ratio
of two coprime polynomials, S D b=a, and that
the controller has alike form,R D q=p. Then the
two closed-loop transfer functions can be written
as

Hs D a
p

ap C bq
WD aX;

Hc D b
q

ap C bq
WD bY

Consequently, if R stabilizes S , then the ratio-
nal functions X and Y are bound to be stable.
These functions cannot be arbitrary, however,
since Hs C Hc D 1. The stability equation
follows as

aX C bY D 1:

Any stabilizing controller for S can be expressed
as R D Y=X.D q=p/, where X and Y are a
stable rational solution pair of the stability equa-
tion. This solution can be expressed in parametric
form:

X D x C bW; Y D y � aW;

furnishing in turn an explicit parameterization of
the set of all stabilizing controllers for S :

R D y � aW

x C bW
;

known as the Youla-Kučera parameterization.
Here x and y are any polynomials satisfying the
Bézout equation ax C by D 1, while W is
a free parameter ranging over the set of stable
real rational functions such that x C bW is not
identically zero.

Polynomial/Algebraic Design Methods, Fig. 1
Feedback control system
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Example 1 Consider an integrator plant S.s/ D
1=s. The Bézout equation admits a solution x D
0, y D 1 so that the set of all stabilizing
controllers for S is given by

R.s/ D 1 � sW
W

for any stable real rationalW ¤ 0.
The parameter

W.s/ D 1

s C 1

yields R D 1, a proportional gain controller. The
parameter

W.s/ D s

s2 C s C 1

results in a proportional-integral controller

R.s/ D 1C 1

s
:

Taking W D 1 leads to the stabilizing controller
R.s/ D 1� s. The feedback system is stable, but
it has a pole at s D 1.

Additional Performance
Specifications

There is a simple formula that generates all the
stabilizing controllers for a given plant. Using
this formula, we can obtain a parameterization
of all stable closed-loop transfer functions that
can be obtained by stabilizing a given plant. The
bonus is that the parameterization is affine in the
free parameter W . In contrast, the controller R
appears in a nonlinear fashion:

�
v

y

�
D 1

1C SR

�
1 R

S SR

� �
d

r

�

D
�
a.x C bW / a.y � aW /
b.x C bW / b.y � aW /

� �
d

r

�
:

As R andW are in a one-to-one correspondence,
it is convenient to use W in lieu of R in the

design process and calculate R subsequently.
Thus, the parameterization of all stabilizing con-
trollers makes it possible to separate the design
process into two steps: the determination of all
stabilizing controllers and the selection of the
parameter that achieves the remaining design
specifications. The extra benefit is that both tasks
are linear.

Asymptotic Properties
Asymptotic properties of control systems can
easily be accommodated in the sequential design
procedure. These include the elimination of an
offset due to step references, the ability of system
output to follow a class of reference signals,
or the asymptotic elimination of specific distur-
bances.

In Fig. 1, asymptotic reference tracking means
that the output 	 follows the reference � as time
approaches infinity, which is to say that the error
" approaches zero for large times. On the other
hand, we speak of asymptotic disturbance elimi-
nation if the effect of the disturbance ı decreases
at the output 	 for increasing time. In terms of
Laplace transforms, " D Hs� and 	 D SHsı are
to be stable rational functions.

Example 8.1 Consider the plant S.s/ D 1=.s C
1/. The Bézout equation admits a solution x D 0,
y D 1. The set of all stabilizing controllers for S
is

R.s/ D 1 � .s C 1/W

W

for any stable real rational W ¤ 0. The
achievable sensitivity transfer functions are
Hs D .s C 1/W .

To track a step reference, � D 1=s, we
must take W D sW1 for any stable rational
W1 ¤ 0. To eliminate a sinusoidal disturbance,
ı D s=.s2 C !2/, we constrain the parameter as
W D .s2 C !2/W2 for any stable rational W2 ¤
0. To meet both requirements, we simply take
W D s.s2 C !2/W3 for any stable rationalW3 ¤
0, say W D s.s2 C !2/=.s C 1/4.

The resulting controller is

R.s/ D 3s3 C .6 � !2/s2 C .4� !2/s C 1

s.s2 C !2/
:
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The controller obtained in Example 8.1 demon-
strates the internal model principle: the unstable
modes to be followed or eliminated must be gen-
erated by the controller unless they are present in
the plant.

H2 Optimal Control
The sequential design procedure will be further
illustrated on the design of linear-quadratic op-
timal controllers. Given a plant with transfer
function S D b=a, the task is to find a con-
troller that stabilizes the control system of Fig. 1
while minimizing the H2 norm of some closed-
loop transfer function, say of the complementary
sensitivity functionHc .

The H2 norm is defined for any strictly proper
rational functionG analytic on the imaginary axis
as

kGk2 D

vu
u
u
t

1

2

1Z

�1
jG.j!/ j2 d! :

The set of complementary sensitivity functions
that can be achieved in the stabilized control
system is

Hc D b.y � aW / ;

where W is a free stable rational parameter. The
parameter will be selected so as to minimize the
H2 norm of Hc .

Let ˛ˇ be a polynomial defined by keeping
the stable (in Re s < 0) zeros of ab while
replacing the unstable (in Re s 	 0) ones with
their negative values. Then ab=˛ˇ is inner (or all
pass) and

kHck2 D




˛ˇ

ab
Hc





2

D




˛yˇ

a
� ˛Wˇ





2

:

Consider the decomposition

˛yˇ

a
D r C q

a

where r is a polynomial and q=a is strictly proper.
With this decomposition,

kHck22 D



q

a




2

2
C k r � ˛Wˇ k22

because q=a and r � ˛Wˇ are orthogonal and
thus the cross-terms contribute nothing to the
norm. The last expression is a complete square
whose first part is independent of W . Hence the
minimizing parameter is W D r=˛ˇ, and if it
is indeed stable and admissible, it defines the
unique optimal controller. Otherwise, no optimal
controller exists.

The consequent minimum norm equals

min
W

kHck2 D



q

a




2
:

Example 8.2 To illustrate, consider the plant
S.s/ D 1=.s � 1/. The class of all stabilizing
controllers for S is found to be

R.s/ D 1 � .s � 1/W

W

for a free stable rational parameter W ¤ 0. The
complementary sensitivity transfer function is

Hc.s/ D 1 � .s � 1/W:

Now ˛ D s C 1; ˇ D 1 and the polynomial part
of

˛yˇ

a
D s C 1

s � 1 D 1C 2

s � 1

is r D 1. ThusHc attains minimumH2 norm for

W.s/ D 1

s C 1

and the corresponding optimal controller is
R.s/ D 2.

The optimal complementary sensitivity func-
tion is

Hc.s/ D 2

s C 1

and kHck2 D p
2.

Robust Stabilization
The notion of robust stability addresses stabiliza-
tion of plants subject to modeling errors, when
the actual plant may differ from the nominal
model, using a fixed controller. The ultimate goal
is to stabilize the actual plant. The actual plant is



1080 Polynomial/Algebraic Design Methods

unknown, however, so the best one can do is to
stabilize a large enough set of plants.

Thus the basis technique to model plant un-
certainty is to model the plant as belonging to
a set. Such a set can be either structured – for
example, there is a finite number of uncertain
parameters – or unstructured: the frequency re-
sponse lies in a set in the complex plane for every
frequency. The unstructured uncertainty model
is more important for several reasons. On the
one hand, it is well suited to represent high-
frequency modeling errors, which are generically
present and caused by such effects as infinite-
dimensional electromechanical resonance, trans-
port delays, and diffusion processes. On the other
hand, the unstructured model of uncertainty leads
to a simple and useful design theory.

The unstructured set of plants is usually
constructed as a neighborhood of the nominal
plant, with the uncertainty represented by
additive or multiplicative perturbations. The size
of the neighborhood is measured by a suitable
norm, most common being the H1 norm that is
defined for any rational function G analytic on
the imaginary axis as

kG k1 D sup
!

jG.j!/ j :

Let us illustrate the design for robust stability
under unstructured norm-bounded multiplicative
perturbations. Consider a nominal plant with
transfer function S and its neighborhood S�
defined by

S� WD .1C F�/S

where F is a fixed stable rational function and
� is a variable stable rational function such that
k�k1 � 1.

The idea behind this uncertainty model is that
F� is the normalized plant perturbation away
from 1:

S�

S
� 1 D F� :

Hence if k�k1 � 1, then for all frequencies !

ˇ
ˇ̌
ˇ
S�.j!/

S.j!/
� 1

ˇ
ˇ̌
ˇ D jF.j!/ j

so that jF.j!/ j provides the uncertainty profile
while � accounts for phase uncertainty.

Now suppose that R is a controller that sta-
bilizes the nominal plant S . Applying the small
gain theorem, R is seen to stabilize the entire
family of plants S� if and only if

kHcF k1 < 1:

This is a necessary and sufficient condition for
robust stabilization of the nominal plant S .

The set of all stabilizing controllers for S D
b=a is described by the formula

R D y � aW

x C bW

where ax C by D 1 and W is a free stable
rational parameter. The robust stability condition
then reads

k b.y � aW /F k1 < 1:

Any stable rationalW that satisfies this inequality
then defines a robustly stabilizing controllerR for
S . In case W actually minimizes the norm, one
obtains the best robustly stabilizing controller.

Example 8.3 Consider a plant with the transfer
function

S�.s/ D s C 1

s � 1 e
��s

where the time delay � is known only to the
extent that it lies in the interval 0 � � � 0:2.
The task is to find a controller that stabilizes the
uncertain plant S� . The time-delay factor e��s
can be treated as a multiplicative perturbation of
the nominal plant

S.s/ D s C 1

s � 1

by embedding S� in the family

S� WD .1C F�/S

where � ranges over the set of stable rational
functions such that k�k1 � 1. To do this, F
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Polynomial/Algebraic
Design Methods, Fig. 2
Bode plots of F (dotted)
and e� 0:2s � 1 (solid)

should be chosen so that the normalized pertur-
bation satisfies

ˇ
ˇ
ˇ̌ S�.j!/
S.j!/

� 1
ˇ
ˇ
ˇ̌ D ˇ

ˇe�j!� � 1
ˇ
ˇ � jF.j!/ j

for all ! and � . A little time with the Bode
magnitude plot shows that a suitable uncertainty
profile is

F.s/ D 3s C 1

s C 9
:

Figure 2 is the Bode magnitude plot of this F and
e��s � 1 for � D 0:2, the worst value.

The task of stabilizing the uncertain plant
S� is thus replaced by that of stabilizing every
element in the set S�, that is to say, by robustly
stabilizing the nominal plant S with respect to the
multiplicative perturbations defined by F .

The set of all stabilizing controllers for S is
found to be

R.s/ D 0:5 � .s � 1/W
�0:5C .s C 1/W

where W ¤ 0:5=.s C 1/ is any stable rational
parameter. The robust stability condition reads

kP �QW k1 < 1

where

P.s/ D 0:5.s C 1/
3s C 1

s C 9
;

Q.s/ D .s � 1/.s C 1/
3s C 1

s C 9
:

SinceQ has one unstable zero at s D 1, it follows
from the maximum modulus theorem that the
minimum of the H1 norm taken over all stable
rational functions W is P.1/ D 0:4 < 1 and this
minimum is achieved for

W.s/ D P.s/ � P.1/
Q.s/

D 1

10

15s C 31

.s C 1/.3s C 1/
:

Thus, the robust stability condition is satisfied,
and the corresponding best robustly stabilizing
controller is

R.s/ D 2

13

s C 9

s C 1
:

Polynomial Equation Approach

In order to determine the set of all stabilizing
controllers for a given plant, it is enough to deter-
mine one particular solution of the Bézout equa-
tion. It is therefore plausible that performance
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specifications in addition to stability can be met
by selecting an appropriate solution of a poly-
nomial equation that is related to the Bézout
equation.

The reduction of controller synthesis to solv-
ing polynomial equations is referred to as the
polynomial equation approach to control system
design. The equations involved are Diophantine
equations of the form

ap C bq D d

where a, b, and d are given polynomials and p,
q are polynomials to be found. Such an equation
is solvable for any d if and only if a and b are
coprime polynomials. Then, the solution set is
given by

p D p0 C bt ; q D q0 � at

where p0, q0 is a particular solution and t is an
arbitrary polynomial.

Such an equation is in fact the pole placement
equation. Thus, pole placement is a prototype
control problem.

Pole Placement
The requirement of stability places all closed-
loop system poles within the left half-plane Re
s < 0. Very often, however, we wish to allocate
the poles to a specific region of the half-plane or
to achieve specific pole positions.

Given a plant S D b=a, the set of all stabiliz-
ing controllers for S is

R D y � aW
x C bW

where x, y are polynomials such that axC by D
1 and W is a free stable rational parameter. Let
W D w=d for a stable polynomial d . Then

R D dy � aw

dx C bw
WD q

p

and the closed-loop pole polynomial is given by

ap C bq D d.ax C by/ D d :

Thus W parameterizes all stabilizing controllers
for S , the denominator polynomial d ofW speci-
fies the positions of the control system poles, and
the numerator polynomial w of W represents the
remaining degrees of freedom, i.e., parameterizes
all stabilizing controllers that assign the specified
poles.

Example 8.4 Consider the plantS.s/ D 1=.s�1/
and the set of stabilizing controllers for S :

R.s/ D 1 � .s � 1/W

W
; W ¤ 0:

Let the desired pole locations be given by the
polynomial d D s2 C 2s C 1. This is achieved
by putting W D w=d for an arbitrary numerator
polynomial w ¤ 0.

It is to be noted that d specifies the poles at
finite positions only. Poles at s D 1 will occur
whenever R is not proper rational. To avoid this
situation, w should be constrained to w D s C !

for any real !. Then the set of controllers that
achieve the desired pole placement is

R.s/ D .3 � !/s C .1C !/

s C !
:

Alternatively, one can solve the pole placement
equation ap C bq D d directly. The solution set
is

p D t ; q D s2 C 2s C 1 � .s � 1/t

and q=p is proper if and only if t D sC!, ! real.

H2 Optimal Control
The H2 optimal control is a special case of
pole placement. Indeed, the optimal controller is
given by

R D y � aW
x C bW

D
y � a r

˛ˇ

x C b r
˛ˇ

D ˛yˇ � ar

˛xˇ C br
WD q

p

and

ap C bq D a.˛xˇ C br/C b.˛yˇ � ar/

D ˛ˇ.ax C by/ D ˛ˇ :
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Thus, the (finite) pole positions of theH2 optimal
control system are given by the pole polynomial
d D ˛ˇ. The system has no poles at s D 1 as the
optimal complementary sensitivity functionHc is
strictly proper.

The pole placement equation, however, has
more than one solution. Which one is optimal?
The one with q=a is strictly proper. It is the
solution pair p, q with q having a least degree.

Example 8.5 Let us reconsider Example 8.2. As
an alternative, one can solve the Diophantine
equation

.s � 1/p C q D s C 1

for the solution pair p, q such that q=.s � 1/

is strictly proper. This yields the least-degree
solution pair with respect to q, namely, p D 1,
q D 2. The optimal controller is R D q=p D 2.

Summary and Future Directions

The benefits of representing stabilizing con-
trollers by a single parameter include (1)
easy accommodation of additional design
specifications by selecting an appropriate
parameter, (2) all transfer functions in a stabilized
system are linear in the parameter (while they
are nonlinear in the controller), and (3) the
parameter belongs to a smaller set of stable
rational functions (while the controller is any
rational).

The results presented here for linear time-
invariant systems with rational transfer functions
can be generalized to extend the scope of the
theory to include distributed-parameter systems,
time-varying systems, and even nonlinear sys-
tems.

The transfer functions of distributed-
parameter systems are no longer rational, and
coprime factorizations cannot be assumed
a priori to exist. The coefficients of time-
varying systems are functions of time, and the
operations of multiplication and differentiation
do not commute. In nonlinear systems, transfer
functions are replaced by input-output maps.

Technical assumptions may prevent one from
parameterizing the entire set of internally
stabilizing controllers; still, the subset may be
large enough for practical purposes. For many
systems of physical and engineering interest, the
above difficulties can be circumvented and the
algebraic/polynomial approach carries over with
suitable modifications.
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The use of polynomials, in one way or another,
in feedback control system design can be traced
back to Newton et al. (1957) and Jury (1958).
The authors noted that for a closed-loop system
to be stable, Hc must absorb the plant unstable
zeros. The plant was assumed to be stable; if
this assumption were dropped, Hs would have
been found to absorb the plant unstable poles.
These conditions are equivalent to polynomial
divisibility conditions and hence to the Bézout
stability equation, which appears later in Kučera
(1974).

The first attempt to use polynomials in an
explicit manner is due to Volgin (1962), a
student of Tsypkin. He obtained a solution of
the pole placement problem through the solution
of a polynomial equation, known as the pole
placement equation. Åström (1970) published a
polynomial equation solution to the minimum
variance control problem for minimum-phase
plants. The ultimate publication that presents
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the polynomial equation approach to multi-input
multi-output control system design is Kučera
(1979).

The underlying problem in any control system
design is that of stability. It is logical to design
the control system step by step: stabilization
first and then the additional performance
specifications. To do this, we need to know
any and all stabilizing controllers for the given
plant.

This problem was first addressed and solved
for finite-dimensional, linear time-invariant
systems using transfer function methods; see
Larin et al. (1971), Kučera (1975), Youla et al.
(1976a,b), and Kučera (1979). A state-space
representation of all stabilizing controllers was
derived later by Nett et al. (1984).

It took decades to appreciate the importance
of the result and come up with applications. The
milestones were the observations by Desoer et al.
(1980) that the polynomial fraction approach can
be extended to linear systems with nonrational
transfer functions, as well as the result by
Hammer (1985) showing that the approach is
applicable to a broad class of nonlinear systems.
Further generalizations were obtained by Paice
and Moore (1990), Anderson (1998), and
Quadrat (2003, 2006).

The parameterization of all controllers that
stabilize a given plant was labeled the Youla-
Kučera parameterization in Anderson (1998).
This result launched an entirely new area of
research and has ultimately become a new
paradigm for control system design.

Tutorial textbooks on this subject include
Vidyasagar (1985), Doyle et al. (1992), and
Kučera (2003, 2011). The reader is further
referred to the survey papers by Kučera (1993),
Anderson (1998), and Kučera (2007).

Advanced and recent applications of
the Youla-Kučera parameterization include
stabilization under constrained inputs (Henrion
et al. 2001), robust stabilization with fixed-order
controllers (Henrion et al. 2003), accommodation
of time-domain constraints on inputs and outputs
(Henrion et al. 2005a), and determination of
least-order stabilizing controllers (Henrion et al.
2005b).
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parametrization. Part I: the fractional ideal approach to
SISO systems. Syst Control Lett 50:135–148

Quadrat A (2006) On a generalization of the Youla-Kučera
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Abstract

Voltage stability of electric power systems is a
challenging topic both theoretically and in prac-
tice. This article touches briefly on the main
aspects of the problem and highlights theoretical
foundations and fundamental methods for voltage
stability analysis. The single-load radial system is
used to introduce relevant concepts, such as the
PV curve and the instability mechanism, while
the implications for a meshed, multiple-load sys-
tem are briefly outlined. Some applications to
practical problems are briefly enumerated.

Keywords

Active and reactive power; Load dynamics; Load
tap changers (LTC); Maximum power transfer;
PV curve; Stability conditions

Introduction

Voltage stability is related to the maximum power
transfer in an AC (alternating current) network.
In normal conditions, system load demand should
never come close to this limit. As, however, elec-
tricity demand started swelling after 1970s with
an increasingly faster pace, transmission network
investments could not follow closely enough.
Investment cost in transmission is usually high,
and difficulties with environmental constraints
and “not in my back yard” mentality of local
communities did not make transmission network
expansion any easier. Power systems are thus
relying for their continuing operation more and
more on (reactive power) compensation and auto-
matic controls to maintain transmission capacity
of relatively weakening networks.

As a result several instances of voltage insta-
bility started to appear in several industrialized
countries after the 1980s (Taylor 1994) leading
to smaller or larger area blackouts, much to the
surprise of the power engineering community
that was not prepared to deal with this type of
events, in which a usual and expected phase of
gradual voltage decline suddenly precipitates to
an uncontrollable voltage drop leading to partial
or total blackout after a succession of equipment
disconnection by protection devices.

In power system engineering practice, voltage
drops following load ramping or sudden events,
such as equipment loss (line, generator switching,
etc.), usually referred to in power engineering
literature as contingencies, are calculated by solv-
ing a set of nonlinear algebraic equations known
as the power flow problem. As these are “steady-
state” equations, the dynamic aspect leading to
an accelerating, cascading failure is not obvious.
One should notice however in the above account
the keyword “nonlinear”: nonlinear equations at
the maximum power transfer limit no longer have
a solution. This was and is one of the keys in
understanding the voltage stability problem. To
take it one step further, close to the loss of
solution (loss of equilibrium), a set of dormant
(up to this point) dynamics become dominant
leading the system to instability. The following
sections will explain these notions.
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P1+jQ1

PG+jQG V V2

P

r 1

E

Power System Voltage Stability, Fig. 1 Single-load
radial system

Single Generator-Load (Radial)
System

Maximum Power Transfer
In any electric network (DC or AC), there is a
maximum power that can be transferred between
any two nodes. In a two-node radial system, the
maximum power transfer coincides with the well-
known impedance matching conditions. For a
radial AC system, when the load is restricted to
a constant power factor, the impedance matching
condition is that the source (network) impedance
is equal in magnitude to the load impedance.

Consider the radial system of Fig. 1. In this
system we assume that the load active power P
(and possibly reactive power Q/ is fed through
a transformer with adjustable tap ratio r (in per
unit). The tap is automatically adjusted by a load
tap changer (LTC) so as to keep the secondary
voltage V2 within a deadband. We will consider
throughout that the LTC is a part of the load.

The simplest case for this radial system is
when both the line and transformer are lossless
(PG D P1 D P/ and the load is kept to unity
power factor (Q D 0). The generator is assumed
as a constant voltage source E . If we further
assume that the transformer leakage reactance
is negligible (Q1 D Q D 0 in Fig. 1), the
maximum power transfer in this simple case is
encountered when the load impedance, as seen
from the primary (r2/G/, is equal to the line
reactance:

X D r2=G (1)

where the load conductance G D P=V 2
2 . It can

be readily shown that the maximum power in this
case is Pmax D E2=2X . Note that this is a static
condition that is not related to how the load varies
with the voltage V2.

The most popular way of visualizing the max-
imum power condition is through the PV curve of
Fig. 2, in which the consumed (transferred) power
P is plotted versus the primary (transmission)
side voltage V .

In Fig. 2 the nose-shaped solid line is the net-
work characteristic corresponding to all possible
solution of the network equations for a given P
(or V /. The maximum power transfer is easily
identified as the tip of the curve (point C). Note
that PV curves can be plotted for any load power
factor and line resistance.

Load Dynamics and Voltage Stability
As stated above, maximum power transfer is a
static condition based on network equations only.
To identify its relation to voltage stability, some
form of load dynamics must be introduced. Load
dynamics are generally changing the load charac-
teristics so as to adjust load power consumption
P to a given load demand Po. As a disturbance
usually reduces voltage (and thus consumption
of a voltage-sensitive load), load dynamics tend
to restore the consumption to the pre-disturbance
demand.

Load restoration can be continuous, for in-
stance, represented by a time-varying conduc-
tance following the ODE:

T PG D Po

V 2
o

� P

V 2
o

D Po

V 2
o

�G
�
V2

Vo

�
(2)

Clearly in this case, the stability condition is that
the consumption P D GV 2

2 increases with the
increase of the load conductanceG:

@P

@G
> 0 (3)

It is easily verified from Fig. 2 that this condition
is met only in the upper part of the PV curve
before point C, whereas in the lower part, after
point C, increased conductance results in lower
consumption violating (3). Clearly at C, (3) holds
as an equality.

Assuming the load on the secondary side to
be a constant admittance, we can distinguish
two types of load characteristics in Fig. 2: the



Power System Voltage Stability 1087

P

U
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V2 = V 2
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transient load
characteristics

r ↑

r ↑

S

V

C

Power SystemVoltage
Stability, Fig. 2 PV curve
of the radial system

transient (short-term) load characteristic shown
with dotted lines corresponds to a specific trans-
former tap ratio r , whereas the long-term load
characteristic corresponds to equilibrium con-
ditions where V2 is within the deadband and
approximately equal to Vo and is shown with
dashed lines for different load demands.

Load dynamics can also be discrete, e.g.,
driven by the tap changing transformer of Fig. 1.
As the LTC is trying to restore the secondary
voltage, it will reduce r when V2 < Vo–d and
will increase r when V2 > Vo C d , where d is
half of the deadband.

The effect of tap ratio increase in the upper
and lower part of the PV curve is shown in Fig. 2
(points S and U). In the upper part, increased r
will reduce consumption which implies that V2
is also reduced as expected. In the lower part
(point U), increased r will increase consumption
indicating an increased V2 and thus an unstable
LTC operation. The stability condition in this
case is

@V2

@r
< 0 (4)

Clearly for either discrete or continuous dynam-
ics, at the maximum power point C, a stable and
an unstable equilibrium branch come together,
leaving no equilibrium points for higher demand.
In bifurcation theory this point is known as a
saddle-node bifurcation (SNB).

Effect of Generation
The generator behind the constant voltage source
E of Fig. 1 supplies the active power consumed
by the load (it would cover also active losses, if
present). In practice this means that it requires
a governor with PI (proportional plus integral)
control, as is customary for autonomous systems
and a prime mover of the required capacity. The
generator also maintains the constant voltage E
assumed in the calculations. This requires an
automatic voltage regulator (AVR), which can be
assumed in this simple example as being also
of PI type. The AVR is adjusting the DC rotor
(field) current of the synchronous generator so as
to maintain the terminal voltage constant.

For a given load, the active and reactive
generation PG + j QG required is directly
calculated from the network equations. The
electromotive force (EMF) corresponding to
the field current can then be determined using
standard synchronous machine equations and
preferably taking into account the saturation
of the machine iron core (Van Cutsem and
Vournas 1998). It should be noted that due to
thermal constraints, it is not possible to exceed a
maximum rotor current in continuous operation.
This results in a rotor current limit that is
enforced by the generator overexcitation limiter
(OEL). If loading conditions are such that the
OEL is activated, the generator terminal voltage
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E cannot be maintained constant, and thus the
voltage sourceE has to be replaced by a constant
EMF in series with the generator reactance. This
leads to a much more restrictive limit for the
maximum power transfer.

In power flow calculations, the generator exci-
tation limit is usually represented by a maximum
allowable reactive generation Qmax

G . When this
limit is reached, the reactive generation remains
constant, and thus the terminal voltage is allowed
to vary, i.e., the generator becomes a PQ bus.
Note however that Qmax

G of an actual generator is
not constant but depends on terminal voltage and
on active generation.

In any case the overexcitation limit of syn-
chronous generators and the resulting limitation
of the reactive support they offer is an important
factor determining maximum power and thus
voltage stability limits. In practice voltage insta-
bility is reached only after some critical genera-
tors have reached the overexcitation limit.

Voltage InstabilityMechanism

Following the preceding discussion, it is possible
to describe the mechanism of voltage instability
as follows (Van Cutsem and Vournas 1998):

Voltage instability stems from the attempt of load
dynamics to restore power consumption beyond
the capability of the combined transmission and
generation system.

A voltage instability incident can occur either
through a gradual load increase up to the max-
imum power limit or most commonly following
a contingency (or a cascade of contingencies)
drastically reducing the maximum power transfer
below the pre-contingency demand. Thus, any
attempt at restoring power to the pre-contingency
demand will induce an unstable response leading
to voltage collapse.

As the load dynamics are the driving force
of voltage instability, the time scale of load
restoration is the one characterizing voltage
stability. Thus, fast recovering loads, such as
induction motors and power electronics-driven
devices, tend to restore load in a second or less
and constitute what is known in power system

dynamic analysis as the short-term time scale
(Kundur et al. 2004). Study of relevant problems
(motor stalling, etc.) is part of short-term voltage
stability analysis.

In a slower time scale of several seconds up
to minutes, load recovery dynamics include the
LTCs and thermostatically controlled loads. This
is the time scale of long-term voltage stability
analysis (Kundur et al. 2004). Note that for long-
term voltage stability, the short-term dynamics
such as those of motors and generators are con-
sidered to be in equilibrium. In system represen-
tation this assumption leads to the replacement of
short-term differential equations with algebraic
equilibrium equations. This assumption is known
as the quasi-steady-state (QSS) approximation.

Multiple-Load (Meshed) System

The single-load system of Fig. 1 serves well in
defining the voltage stability problem and helps
visualize its significance through the PV curve
representation and the maximum loading or crit-
ical point C. In actual power systems, however,
there are multiple loads defining a multidimen-
sional space where it is sometimes tricky to apply
the simple concepts of Fig. 1. For instance, it
is important to distinguish between the supply
system which can be represented by a Thevenin
equivalent and the consumption part where loads
affect each other and cannot be examined individ-
ually, one at a time.

Consider the power system of Fig. 3, where
multiple generators are feeding a number of loads
through a meshed network represented by the
complex admittance matrix Y. The steady-state
conditions of the system including generation and
load are traditionally represented by the power
flow equations:

.PGi C jQGi /� .PAi C jQAi / � OVi
XN

jD1
OViY �

ij
OV �
j D 0 i D 1; : : : ; N (5)

Using real variables, (5) can be written as

g.x; p/ D 0 (6)
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Power SystemVoltage
Stability, Fig. 3 Meshed
power system

where p is the vector of independent parame-
ters (load demands, generator setpoints) and x
the vector of dependent variables (voltages and
angles).

Note that in this representation, the load
is referred to the primary side of LTC
transformers as in Fig. 1. This can be considered
constant at equilibrium corresponding, for
instance, to secondary (distribution side)
voltage restoration at its setpoint value VBi D
Voi .

Concerning generators the active power PGi
cannot be treated as constant when load is vary-
ing, so there has to be a participation factor
attached to each generator bus that will represent
primary or secondary frequency regulation char-
acteristic (Van Cutsem and Vournas 1998). This is
sometimes referred to as the distributed slack bus
approach. For reactive power the limits Qmax

Gi of
reactive support should be set, beyond which the
generator voltage is no longer constant (switch
from PV to PQ bus).

The solution of the N nonlinear complex
equations (5) for a given load demand determines
all complex voltages in the system. As in the
simple radial system case, there may exist
multiple solutions, some of which unstable, or
no solutions at all. The stability limits, where (3)
and (4) hold as equalities for the radial system,
are now given by the singularity of the Jacobian
of the equilibrium conditions (6):

det Dxg D 0 (7)

The stability limit can be determined also by the
singularity of the state matrix (Medanic et al.
1987; Van Cutsem and Vournas 1998):

det A D det

�
@Vi

@rj

�
D 0 (8)

Note that the impedance matching condition for
a single load amounts to the diagonal element
aii=0 which is much more strict than the singu-
larity condition (8) that marks the actual onset
of instability. The points satisfying (7) and (8)
are critical points and form a multidimensional
manifold in parameter space called bifurcation
surface.

Applications

The above analysis briefly touches on fundamen-
tals. Detailed analysis tools for voltage stabil-
ity include (but are not limited to) continuation
power flow, VQ curves, time simulation (short-
term, long-term, QSS), sensitivity, and eigen-
value/singular value analysis. Voltage security
analysis is presently applied online in various
control centers based on the above methods of
analysis for a large number of contingencies.
Countermeasures to voltage instability and col-
lapse cover a wide spectrum, from automatic
reactive devices switching to special protection
controls and load shedding as a last resort. Fur-
ther details can be sought in textbooks Taylor
(1994) and Van Cutsem and Vournas (1998).
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Abstract

Powertrain electrification and hybridization
have rapidly become part of the portfolio of
all major automotive manufacturers, ranging
from hybrid-electric, to plug-in hybrid-electric,
to battery-electric vehicles, to hybrid-hydraulic
and hybrid-mechanical solutions. The increased
complexity of the powertrain systems associated
with hybrid vehicles presents interesting control
challenges and problems, and this entry describes
the more common architectures of hybrid-electric

vehicle powertrains and their operation, focusing
on the important problem of optimal control for
energy management of hybrid-electric vehicles,
on mode switching, and on battery management.
In the conclusion, a connection is made between
these problems and their interaction with
intelligent transportation systems.

Keywords

Battery management; Intelligent transportation
systems; Vehicle-grid interaction

Introduction

Increasingly stringent fuel economy and emis-
sions regulations have required the automotive in-
dustry to consider more fuel-efficient powertrains
and alternative primary sources of transportation
fuels. Powertrain electrification and hybridiza-
tion have rapidly become part of the portfolio
of all major automotive manufacturers, ranging
from hybrid-electric, to plug-in hybrid-electric,
to battery-electric vehicles, to hybrid-hydraulic
and hybrid-mechanical solutions. The increased
complexity of the powertrain systems associ-
ated with hybrid vehicles presents interesting
control challenges and problems. This entry de-
scribes control problems associated with hybrid-
electric vehicles (HEVs) and battery-electric ve-
hicles (BEVs).

HEV Powertrains
An HEV powertrain contains at least two power
sources: a primary engine – typically a com-
bustion engine or a fuel cell fueled by a chem-
ical fuel (in liquid or gaseous form) – and a
secondary power source that makes use of a
rechargeable energy storage system (RESS) that
permits buffering the power demand of the ve-
hicle so as to provide choices in the use of the
power sources. While it is possible to design
hybrid powertrains using secondary hydraulic or
mechanical energy conversion and storage de-
vices (hydraulic pump/motors and accumulators,
mechanical flywheels), the majority of hybrid

http://dx.doi.org/10.1007/978-1-4471-5058-9_102
http://dx.doi.org/10.1007/978-1-4471-5058-9_99
http://dx.doi.org/10.1007/978-1-4471-5058-9_261
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P
Powertrain Control for Hybrid-Electric and Electric Vehicles, Fig. 1 Hybrid powertrain configurations (After
Rizzoni and Peng (2013), courtesy: Dr. Chiao-Ting Li, the University of Michigan)

powertrains in use today employ electric ma-
chines and electrochemical energy storage de-
vices (batteries and supercapacitors); thus, this
entry focuses exclusively on hybrid-electric ve-
hicles (HEVs). Electric vehicles (EVs) can be
viewed as a special case of HEVs in which no
internal combustion engine is present, and many
of the considerations that follow apply also to
hydraulic and mechanical hybrids. HEVs may be
classified according to their powertrain architec-
ture as shown in Fig. 1.

A series HEV powertrain employs an electric
machine (EM) to propel the vehicle while using
an internal combustion engine (ICE) coupled to
a second EM as an electrical generator set. In
a series HEV, the electrical generator set can
provide power directly to the electric traction

system, via an electrical DC bus, or can charge
an RESS (e.g., battery), or can perform both
functions Motive power to the vehicle is delivered
by the primary EM. Thus, a series HEV blends
electrical power from an RESS with electrical
power generated by an ICE-powered generator
set to provide motive power to the vehicle. De-
ciding how much electrical power to draw from
each of the two power sources to meet the power
demand of the vehicle is an important control
objective. A further feature of interest is the
ability to recover some of the kinetic energy of
the vehicle during braking events by using the
traction EM in generator mode to recharge the
RESS.

A parallel HEV powertrain blends mechanical
power from the ICE and one or more EMs
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through appropriate mechanical coupling and
transmission elements to deliver motive power
to the vehicle or to recharge the RESS. In a
parallel HEV powertrain, the same EM is used
to provide power to the vehicle (motor mode)
and to provide energy to the RESS (generator
mode); in the latter case, the RESS can be
recharged either by providing power from the
ICE in excess of that required by the vehicle or
by converting the kinetic energy of the vehicle
into electrical power through the braking action
of the EM.

A third configuration, the one that is most
commonly found among passenger vehicles in
commercial production today, is the power-split
HEV, in which the benefits of both series and
parallel HEVs are achieved most commonly by
using one or more planetary gear sets to couple
two EMs – to the ICE on one side and to the
driveline on the other.

Regardless of architecture, HEV powertrains
enable fuel savings and emissions reductions by
operating in a variety of modes that include
load leveling, regenerative braking, engine start-
stop, and transmission optimization (Miller 2004;
Rizzoni and Peng 2013). All of these functions
benefit from the availability of an RESS and of
bidirectional power converters, that is, the electric
drive system(s) that can serve both motor and
generator functions.

HEV Operation
An HEV is considered charge sustaining if the
RESS is recharged only by power supplied by the
ICE or by regenerative braking. If, on the other
hand, the vehicle is designed to deplete energy
stored in the RESS during the course of a trip,
ending the trip with a lower state of stored energy
than at the start and requiring recharging from
the electrical grid, the vehicle is called charge de-
pleting and is commonly referred to as a plug-in
HEV (PHEV). PHEVs can in turn be subdivided
into blended-mode PHEVs, in which stored elec-
trical energy and fuel chemical energy are used
jointly to achieve minimum overall energy use,
and extended-range electric vehicles (EREVs),
in which electrical energy is used exclusively to
power the vehicle, until a lower bound is reached,

at which point the vehicle uses both ICE and
EM(s) to behave like a charge-sustaining hybrid.
In principle, any of the architectures of Fig. 1 can
be used in any of these modes. A battery-electric
vehicle, or BEV, is an extreme case of an EREV,
in which the vehicle is not equipped with an ICE.
Miller (2004) provides an excellent overview of
the technology underlying each of the powertrain
architectures mentioned so far.

Control Problems in X-EVs

Let us refer to the general case of a hybrid or
electric vehicle as an X-EV, with the X in X-EV
representing any of the architecture discussed so
far: X� D H, PH, ER, or B. X-EVs enable mul-
tiple configurations and operating modes of the
powertrain, presenting a number of interesting
control problems above and beyond those that are
already present in non-hybrid powertrains (e.g.,
engine and transmission control). In general, the
control architecture of an HEV is hierarchical,
with a higher-level (supervisory) controller that
manages the power flows and mode changes (e.g.,
from electric to hybrid in an EREV) to meet the
vehicle fuel economy, emissions, performance,
and drivability requirements. Figure 2 depicts
a hierarchical control architecture in use in a
prototype PHEV.

In an X-EV, two problems are especially
important: optimal energy management, that
is, the ability to optimize the energy use of
a vehicle during a trip, and mode switching,
that is, the ability to select the appropriate
operating mode and to smoothly switch between
modes.

The higher-level controller issues set points
to lower-level controllers that are used to
manage the ICE, the EM(s), the mechanical
transmission system, the brake system, and
the RESS, as well as other auxiliary functions
in the vehicle. In this article we primarily
consider the higher-level controller and focus
on two problems that are especially relevant
to HEVs: optimal energy management and
mode switching. In addition, we also consider
the battery controller (often called battery
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management system or BMS), which while
being a low-level control is very specific to
X-EVs.

Optimal EnergyManagement
The optimal energy management problem in an
X-EV consists of finding the control u.t/ that
leads to the minimization of a performance index
J over the time horizon t – tf , corresponding to
a driving cycle, or trip; the problem is subject to
constraints that are related:
(i) To physical limitations of the actuators and

the energy stored in the RESS
(ii) To the requirement to maintain the RESS

state of energy within prescribed limits
(in a charge-sustaining X-EV) or to track
a specified RESS stored energy trajectory (in
charge-depleting X-EVs)

Let L.�/ be a suitable function of the system
states and inputs that accounts for the quantities
we wish to minimize, for example, fuel consump-
tion or emissions of carbon dioxide. Then, we
define the cost function

J.x.t/; u.t// D
tfZ

t0

L.x.t/; u.t/; t /dt (1)

which is to be minimized for every trip. In gen-
eral, the exact driving cycle, or profile, associated
with a trip is not completely known; thus, a causal
solution to this problem is impossible to achieve
without making some assumptions. Various ap-
proaches to solve (1) have been proposed over
the years; we cite (i) dynamic programming (DP),
(ii) local optimization solutions as surrogates of a
global solution, (iii) Pontryagin’s minimum prin-
ciple (PMP), and (iv) rule-based methods. Onori
et al. (2014) provide a comprehensive overview
of the problem as well as detailed examples. We
briefly review approaches (i), (ii), and (iii) in the
present article.

Global Optimization by Dynamic
Programming
If the driving cycle, represented by the vehicle
instantaneous velocity over time, �.t/ is known,
it is possible to cast (1) in such a form that

a DP solution is possible. For example, in
a charge-sustaining X-EV, one can find the
sequence of inputs that minimizes the trip
fuel consumption while sustaining the desired
state of charge of a battery and meeting the
speed profile of the vehicle. In this problem,
the input is the power supplied by the battery
to the electric machine, and the state of
charge of the battery, SOC, is the only state;
all other subsystems (engine, electric drives,
transmission, etc.) are modeled via quasi-static
efficiency models that can be represented by
algebraic equations (e.g., Willans lines, Rizzoni
et al. 1999) or by maps. The vehicle velocity
profile, �.t/ is converted to a vehicle power
request, PREQ .t/, knowing the vehicle load
characteristics (aerodynamic, inertial, rolling and
drivetrain friction, and road grade). In turn,
the power required to meet a specific load
profile is the sum of the power delivered by the
ICE and EM, PREQ.t/ D PICE.t/ C PBAT.t/.
So, for example, we seek the control input,
PBAT.t/, that corresponds to the minimum fuel

consumption, that is, min
fPICE.t/;PBAT.t/8tg

tfR

t0

Pmf .t/dt ,

while delivering the requested vehicle power.
The problem has physical constraints in the
actuators (maximum and minimum power that
can be delivered by ICE and EM), as well as the
requirement for the control policy to be charge
sustaining, which is translated into the additional
condition SOC.t0/ D SOC.tf /. While this is
only a sketch of the problem formulation (see
Onori et al. (2014) for a detailed treatment),
it should be clear that it is possible to find a
DP solution. If the vehicle is charge depleting,
the problem can be similarly formulated with
SOC.tf / < SOC.t0/.

In practice, this approach requires complete
information of the vehicle velocity profile, and
DP is not an implementable, causal solution
to the X-EV energy management problem. It
is, however, a very useful tool to establish
a benchmark for a problem or as an aid in
developing a rule base (Onori et al. 2014).
Stochastic DP methods have been proposed to
circumvent the need to know the driving cycle
exactly (see, e.g., Tate et al. 2007).
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Local Optimization by Equivalent Fuel
Consumption Minimization
A heuristic approach that has met with success
is to solve (1) as a local optimization problem,

wherein
tfR

t0

min
fPICE.t/;PBAT .t/8tg

Pmf .t/dt is used as an

approximation for min
fPICE.t/;PBAT .t/8tg

tfR

t0

Pmf .t/dt .

This approach gives rise to the Equivalent fuel
Consumption Minimization Strategy (ECMS)
(Paganelli et al. 2001), which accounts for
the use of stored electrical energy, in units of
chemical fuel use (g/s), such that one can define
an “equivalent fuel consumption” taking into
account the cost of the electrical energy used to
producePBAT .t/ by way of the fuel that must
be used at a future time to replenish the stored
electrical energy in the RESS. The equivalent
fuel consumption is defined in (2):

Pmf;eq.t/ D Pmf .t/C Pmeq.t/ D Pmf .t/

Cs.t/ Ebatt

QLHV
S POC.t/ (2)

In (2), Pmf;eq is the equivalent fuel consumption,
Pmf is the actual chemical fuel consumption, Pmeq

is the virtual fuel consumption corresponding to
the use of electricity stored in the battery (to be
replenished in the future), EBAT is the energy
capacity of the battery,QLHV is the lower heating
value of the chemical fuel, and s.t/ is the equiva-
lence factor that assigns a cost to the use of elec-
tricity. Then, the global minimization problem of
(1), with L.�/ equal to Pmf;eq , becomes the prob-

lem of finding
tfR

t0

min
fPICE.t/;PBAT .t/8tg

Pmf .t/dt . This

approach, which can be easily implemented, has
been used widely and has been shown to closely
approximate the global optimal solution if suffi-
cient knowledge of the vehicle driving cycle is
available. The method does requires empirical
calibration and tuning of the equivalence factor,
s.t/, the optimal value of which is dependent
on the driving cycle. Such calibration could be
automated by using a predictor to generate a
short-horizon estimate of the driving cycle and an

adaptor to generate an appropriate s.t/ (Musardo
et al. 2005).

Optimization by Pontryagin’s Minimum
Principle
Pontryagin’s minimum principle (PMP) can also
be employed to solve the X-EV energy manage-
ment problem. If, again, the fast dynamics of the
system are neglected the state equation is

Px.t/ D f .x; u; t / D � 1

EBAT
IBAT.x; u; t / (3)

where x D SOC is the state of charge of the
battery,EBAT is the energy capacity of the battery,
and IBAT is the instantaneous battery current. If
the input is the power requested of the battery,
PBAT .t/, which in turn determines the engine
power request, PICE .t/, and hence the fuel con-
sumption, then the Hamiltonian function can be
defined to be

H.x.t/; PBAT.t/; �.t// D Pmf .PBAT.t// � �.t/ �
f .x.t/; PBAT.t/; t / (4)

In (4), f .�/ is given by Eq. (3), and the control
PBAT.t/ that which minimizes Eq. (4) at each time
instant is

P �
BAT.t/ D arg min

PBAT

H.x.t/; PBAT.t/; �.t// (5)

The co-state variable, �.t/, is the solution of

P�.t/ D ��.t/@f .x.t/; u.t//
@x

(6)

Eqs. 3 and 5, with boundary conditions x.t0/ and
x.tf / , can be solved numerically; in Serrao et al.
(2009, 2011) it is shown that the co-state �.t/ is
related to the equivalence factor of Eq. (2), con-
firming that the intuitive ECMS solution is in fact
the PMP solution, providing that the equivalence
factor (or co-state) is time varying and satisfies

H.t; x; u; �/ D Pmf C �.t/ Px.t/ and

s.t/ D ��.t/QLHV

EBAT
(7)
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Powertrain Control for Hybrid-Electric and Electric Vehicles, Fig. 3 State diagram illustrating mode switching in
a PHEV (Courtesy: The Ohio State University EcoCAR 2 Team)

The PMP solution is also cycle dependent, as
the optimal initial condition for the co-state is
dependent on the driving cycle. This dependence
on the driving cycle, whether expressed in
terms of an equivalent fuel consumption in
the ECMS solution or as the initial condition
of the co-state in the PMP solution, is an
unavoidable consequence of the fact that the fuel
consumption of a vehicle is strongly dependent
on the driving conditions, which affect the vehicle
load.

The basic concepts outlined above continue
to be the subject of further development; for
example, integrating available trip information
available from navigation and geographical
information systems into predictive energy
management algorithms and considering battery
aging as a cost in the optimization function
are but two of the research areas being
pursued.

Mode Switching
X-EV architectures permit multiple operating
modes to exploit the design and control flexibility
available in the powertrain. Some examples are
the following: an X-EV could operate in pure
EV mode or in hybrid mode (whether series,
parallel, or power-split), could use special control
algorithms during regenerative braking events
to provide maximum energy recovery without
adversely affecting brake and vehicle stability
control systems, and could implement special
start-stop control strategies that minimize fuel
consumption at idle without adversely affecting
engine cold- or warm-start emissions and
without inducing unwanted transient vibrations
(Canova et al. 2009). Figure 3 depicts an
example of a state flow diagram that could be
implemented in a finite state machine. Mode
switching can result in drivability problems
(Wei and Rizzoni 2004), that is, in undesirable
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transient response characteristics during mode
changes. An X-EV can, in this context, be
represented as a hybrid system (Koprubasi et al.
2007).

Battery Management Systems
The most common RESS in hybrid vehicle is
the electrochemical battery. A hybrid or electric
vehicle uses a battery pack that is typically com-
posed of modules, which are in turn comprised
of battery cells connected in series and parallel.
Battery management systems are necessary to
provide charge balancing, cell protection, state of
charge and state of health estimation, and other
functions related to the management of the stored
energy. A good overview of battery systems and
associated control problems may be found in
Rahn and Wang (2013).

Two important problems related to battery
management are state of charge (SOC) and state
of health (SOH) estimation. SOC estimation is a
necessary component of any battery management
system. The SOC of battery is defined by the
following equations, in which x is the SOC,QBAT

is the battery capacity in ampere-hours, and 	 is
the battery charging/discharging efficiency:

Px.t/ D 	

QBAT.t/
� IBAT.t/ x.t/ D x.t0/

C 1

3;600 �QBAT.t/

tfZ

t0

IBAT.�/ � d� (8)

In practice, there are two problems with
using current integration (also called Coulomb
counting) to estimating SOC: (i) errors in
numerical integration accumulate and may cause
significant bias error in the estimate, and (ii)
the actual capacity of the battery is unknown
during vehicle operation, as it changes over
time due to battery aging. A second SOC
estimation approach consists of correlating
the battery open-circuit voltage to the SOC,
but this approach also suffers from significant
uncertainty, as the open-circuit voltage-SOC
correlation curves are only accurate in stationary
conditions (constant temperature, with battery
at rest). SOC estimation has been the subject of

much research and has seen the use of Kalman
filters, extended Kalman filters, particle filters,
and other estimation approaches (Chaturvedi
et al. 2010).

The SOH of a battery degrades over time
due to two principal factors: capacity fade
and power fade (which can also be thought
of as conductance fade caused by an increase
in the internal resistance of the battery).
These phenomena are the result of complex
electrochemical interactions that are specific
to battery chemistry. The ability to estimate
the capacity and resistance of a battery during
actual operation is a very important aspect of
battery management. As in the case of SOC
estimation, no direct measurement is possible
outside of controlled laboratory conditions;
hence, estimation algorithms must be employed
(Chaturvedi et al. 2010). It is important to
observe that SOC and SOH estimation algorithms
operate on two completely different time scales,
as the SOC of a battery fluctuates over time
windows of minutes or hours, while the SOH
changes very slowly over time, with measurable
changes occurring over periods of months or
years.

Summary and Future Directions

In summary, the control of X-EV powertrains is
a rich subject for control theoreticians and practi-
tioners, presenting topics related to optimization
and optimal control (for energy management,
battery aging), hybrid control (for drivability),
adaptive and predictive control, and estimation.
Further, the electrification of ground vehicles
presents interesting opportunities to integrate ve-
hicles with the electric power and communi-
cation networks infrastructures. The following
paragraphs describe two such opportunities.

Vehicle-Grid Interaction
As the penetration of plug-in vehicles, PHEVs
and BEVs, increases, their impact on the electric
power grid cannot be neglected; the consideration
of increased electric power demand and of the
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timing of vehicle charging must be included in
the control/optimization of the electric power
grid.

The electric grid and the transportation system
are the two largest sectors that produce green-
house gas emissions. When large numbers of
vehicles are electrified and draw power from the
electric grid, it is important to aim for reduced
overall greenhouse gas emissions rather than just
shifting emissions from tailpipes to power plant
stacks. Controlling the charging of plug-in ve-
hicles to alleviate the impact to the grid has
been studied, including the idea of using plug-
in vehicles as ancillary services to the grid, pos-
sibly with significant renewable power sources
connected to the grid. Modeling and simulating
this integrated system require information on de-
tailed grid load profiles, power generation pricing
and carbon emissions, wind statistics, and vehi-
cle usage statistics. In addition, charging control
must balance multiple factors: grid stability, fully
charging all vehicles, minimizing data collection
and communication, and overall system carbon
emission minimization.

Intelligent Transportation Systems
X-EVs, as well as conventional vehicles, will
benefit from the ability to analyze traffic and geo-
graphical information in real time to quantify the
effects of infrastructure, environment, and traffic
flow on vehicle fuel economy and emissions,
and to permit the application of forecasting and
optimization methods for energy management
(Gong et al. 2011; Wollaeger et al. 2012). There
are significant opportunities to achieve significant
fuel savings and emissions reduction by consid-
ering the large-scale interactions of vehicles with
one another and with the infrastructure, further
exploiting the flexibility inherent in X-EVs.

Cross-References

�Engine Control
�Optimal Control and Pontryagin’s Maximum

Principle
�Optimal Control and the Dynamic Program-

ming Principle
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Programmable Logic Controllers
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Synonyms

PLC

Abstract

Programmable logic controllers (PLCs) are a spe-
cial form of computing hardware and software
tailored for use in industrial control. The hard-
ware is built for rough environments and offers
various input and output ports for industrial sen-
sor and actuator signals as well as communication
systems. The main software features are hard
real-time capabilities and a set of standardized
programming languages specifically designed for
the realization of automation functions.

Keywords

Function blocks; Ladder diagram; Ladder logic;
Logic control; Real-time control

Introduction

Since the 1970s, the programmable logic
controller (PLC) has been the primary workhorse
of industrial automation. For a long time,
it has provided a distinct field of research,
development, and application, mainly for control
engineering. This area has produced its own
design methods and programming languages.
Due to its importance for industrial application,
a lot of these methods have been standardized by
the International Electrotechnical Commission
(IEC). Currently the most influential standards
are IEC 61131 (John and Tiegelkamp 2010)
and IEC 61499 (Vyatkin 2011). While the
latter one is dedicated to distributed systems,
IEC 61131 covers the PLC as such. This standard

consists of several parts. The most important ones
are:
Part 1 : General information. This part covers

the CONCEPT of PLCs. It describes the
general idea and typical functionalities, most
importantly, the cyclic processing of the
application program working on a stored
image of the input and output values.

Part 2 : Equipment requirements and tests. Here
requirements on the PLC HARDWARE (elec-
trical, mechanical, and functional) and corre-
sponding tests are defined.

Part 3 : Programming languages. This is the
most important part of the standard. Based
on already existing PLC programming lan-
guages, a harmonization of the SOFTWARE
structure was achieved. This includes a
general software model together with a
set of different standardized programming
languages. IEC 61131-3 paved the way from
proprietary programming solutions to a set
of well-accepted languages, allowing easier
training of PLC programmers and – to some
extent – the reuse of application solutions on
different hardware platforms.
While Part 2 is of importance for PLC man-

ufacturers only, Parts 1 and 3 contain relevant
information for PLC users, especially for de-
signers of PLC control applications. Before dis-
cussing these points, the definition of PLC from
IEC 61131-1 is reproduced and discussed:

A PLC is a digital electrical system used
in manufacturing. It utilizes programmable
memory to store practice-oriented con-
trol programs. Thus is suitable for im-
plementation of specific functions such as
combinatorial control, sequence control,
time-, count- and arithmetic functions. Due
to its special arrangement of digital or analog
input/output, it is used for controlling vari-
ous machines and processes. .: : :/

This definition is focused on the usage of the
device and would – taken out of the context – also
cover industrial PCs or microcontroller-based
control solutions. The specifics of PLC hardware

http://dx.doi.org/10.1007/978-1-4471-5058-9_100018
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are discussed in Part 2 of the standard. However,
much more important for distinguishing a PLC
from other control hardware are the properties
of the execution model described in Part 2 and
discussed in the following.

Execution Model

In designing PLC applications, the execution
model has to be considered. The main idea is
the cyclic execution together with an I/O image.
While microcontrollers and PCs typically use
an event-based execution model (the application
waits for external events from the environment –
interrupts – and reacts accordingly), the PLC
follows a time-based scheme (the application
scans the environment at instances in time –
often a fixed cycle time – and reacts on the new
status of the input ports).

A PLC cycle consists of three iterated steps:
input reading, program execution, and output
writing. Together with the concept of the process
image – a reserved memory space where input
and output variables are stored – this execution
model leads to the following:
(a) During one cycle, input and output values are

kept fixed, i.e., a change in input signal values
during a cycle will not be seen by the program
executed. This means that a temporal change
in an input signal value that is shorter than the
cycle time may not be registered by the PLC
at all.

(b) Changes in output signal settings by the pro-
gram will be switched to the actual output
ports only after execution of the complete
program. This actually means that for an out-
put signal where the value is changed several

times during one program execution, only the
last change will be set to the hardware output
of the PLC.

(c) The response time of a PLC, i.e., the time
between a change in an input signal and the
corresponding reaction at the output port of a
PLC, lies between one and two PLC cycles,
depending on when the change at the input
port occurs relative to the PLC cycle.

While the time needed for input reading and
output writing is constant over all cycles, the time
for program execution may vary due to condi-
tional execution of some program parts. However,
normally the PLC is operated with a fixed cycle
time set high enough to allow for the worst-case
execution time of the application program.

The advantage of the described concept is the
deterministic behavior of the resulting system
with a very simple way to determine the timing
behavior. This is important for most PLC appli-
cations:
(a) Open-loop control, where the reaction to a

change of an input signal has to be reached
in a limited time, especially in safety-critical
applications.

(b) Closed-loop control, where the design of a
discrete-time control algorithm is based on
the assumption of a fixed sample-time.

To realize control functions, an application pro-
gram has to be written for the PLC. To this end,
Part 3 of the IEC 61131 defines a software model
together with a set of programming languages.

Software Model and Programming

The original idea that led to the development of
the first programmable logic controller (PLC) in
1968 was to replace hardwired control equipment
at machines. Back then, the controllers of
machines, for example, lathes or grinders,
typically consisted of a cabinet of interconnected
relays. The size of such a controller could be
considerable and its failure rate was high due to
mechanical defects of single relays. Furthermore,
the initial setup was very time-consuming and
error prone, because the relays (often hundreds
of them) had to be wired by hand. The biggest
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drawback of this technology, however, was
the problems arising if a controller had to be
changed, employing a new function or adjusting
to a new production task. Then the hardwired
structure had at least partially to be disassembled
and rewired. Here was the main advantage of
a controller that could be adjusted by changing
software instead of hardware.

Since the first PLCs in the early seventies
reached the market, graphical programming
methods are used to develop the control
algorithms. These are ladder diagram (LD,
sometimes also referred to as ladder logic)
and later function block diagram (FBD). The
implementation of LD on the very first PLC
(the Modicon 084) was intended to allow an
easy access for the people doing hardwired
relay logic until then. (More on the history of
PLCs can be found on the website of Dick
Morley, commonly known as the father of the
PLC (http://www.barn.org/FILES/historyofplc.
html).)

LD, at least in its early forms, is basically
the graphical representation of its hardwired fore-
father. The name ladder comes from the fact
that on both sides of the drawing, there is a
power rail and horizontally between those rails,
like rungs on a ladder, sequences of logical el-
ement are drawn. The basic of these elements
are relays (switches), depending on input sig-
nals or internal variables, and coils (memories
to store variables and set output signals). The
ladder is processed in a top-down and left-right
fashion.

Figure 1 shows an example of an LD. Every
rung can be read as an IF THEN ELSE statement.
The first rung of the ladder means IF (Var1 D 1

AND Var2 D 1) THEN (Var3 WD 1I Var4 WD 0)
ELSE (Var3 WD 0I Var4 WD 1). The second rung
is IF (Var3 D 1 OR Var4 D 0) THEN (Var1 W D
1) ELSE (Var1 WD 0).

While LD resembles relay logic, FBD is a
graphical mimicking of the wiring of simple logic
gates, like AND, OR, NOT, or FLIP-FLOP. Both
languages (LD as well as FBD) are still part of
the IEC 61131-3. However, they are not well
suited for the description of sequential and con-
current algorithms because they have no means

Var1 Var2

Var3

Var4

Var3 Var4

Var1

Programmable Logic Controllers, Fig. 1 Example of a
PLC program written in Ladder Diagram (LD)

for the visual description of the control flow in a
program.

The IEC 61131-3 standard also contains a
language that is intended for the graphical de-
scription of sequential and concurrent behavior:
the sequential function chart (SFC). The SFC is
based on Grafcet (David 1995) and represents
a form of Petri net (with very special dynamics
and functionality). Due to its high functionality,
SFC can be easily applied for the structuring
of a PLC program on a high level. However,
it is cumbersome (and by the standard also not
intended) to use for the specification of a low-
level sequential algorithm, as, for example, the
alternative switching between two motors.

In addition to the three graphical languages,
there are also two textual languages in the stan-
dard: the assembler-like Instruction List (IL) and
the Pascal-like Structured Text (ST).

The decision for one of the languages is based
on functional aspects of the application to be
realized (high-level languages SFC and ST vs.
low-level languages LD, IL, and FBD) but also
on traditions in the application domain (e.g., LD
in automotive manufacturing vs. FBD in process
industry), the geographical region (e.g., LD in the
US vs. IL in Germany), and the preferences of
the programmer (graphical vs. textual). To allow
for flexible solutions and the optimal choice of
languages, IEC 61131-3 allows the use of dif-
ferent languages for different parts of the control
application.

An application in IEC 61131-3 is structured
into program organization units (POUs). Each of
the POUs contains a header in a unified syntax for
parameter and variable definitions and a body for

http://www.barn.org/FILES/historyofplc.html
http://www.barn.org/FILES/historyofplc.html
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the actual program code. This body can be written
in any one of the defined PLC languages.

There are three types of POUs: Program,
Function Block, and Function. A program is the
top-level POU of a PLC application. Only in a
program, variables can be linked to actual input
and output ports. A program can call Function
Blocks which in turn may call other function
blocks. Programs and function blocks can also
call Functions. A POU of type function has no
internal memory while a Function Block has
memory.

IEC 61131-3 introduced the type and instance
concept into PLC programming. A Function
Block is always the instantiation of a Function
Block Type. Each instantiation gets its own
name and variable space. This concept is
similar to – but much older than – the class-
object instantiation idea of object-oriented
programming languages. The exclusive use of
symbolic variables without direct references
to hardware addresses or ports in Function
Blocks allows their easy reuse in one or
more applications and the definition of widely
applicable Function Block (Type) Libraries.

Summary and Future Directions

PLCs are a proven technology in industrial au-
tomation. They follow a simple but deterministic
execution and software model. This is the main
reason why PLCs are still here and will be here
for quite some time to come even if there is
faster and fancier technology like embedded PCs
available.

Currently the third edition of IEC 61131-3 is
nearly ready for publishing. In addition to minor
corrections, this new edition adds some concepts
from object-oriented programming to the existing
software model. First tools on the market already
support these extensions.

For the future, two trends can be seen. First,
there is a growing trend to integrate PLC pro-
gramming into model-based software develop-
ment processes: either by generating PLC code
from existing model-based toolchains or by inte-
grating model-based approaches, especially from

the object-oriented domain, into PLC program-
ming environments. Either way this is due to
the fact that the complexity in PLC application
is rising while the development time should be
decreased.

Second, there is a growing interest in the use
of formal methods in the PLC domain. In recent
years, a lot of interdisciplinary work was aimed
in this direction. This work results in the formal-
ization of different steps in the control design
process depending on what problems are to be
solved (Frey and Litz 2000):
1. The demand for reduced development time

and the possible reuse of existing software
modules result in the need for a formal ap-
proach to the development of the PLC pro-
grams.

2. The demand for high-quality solutions and
especially the application of PLC in safety-
critical processes result in the need for valida-
tion procedures, i.e., formal methods to prove
specific static and dynamic properties of the
programs.

3. The large numbers of already installed PLC
programs, together with the high expense of
programming, lead to the search for verifi-
cation and validation methods that can be
applied directly to programs written in PLC-
specific programming languages such as lad-
der diagram.

To conclude, more than 50 years after its in-
vention, the PLC is still an industrial success
story, and due to ever-increasing demands on the
complexity and correctness of its applications, it
also still provides much room for further research
and development.
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Pursuit-Evasion Games and
Zero-Sum Two-Person Differential
Games

Pierre Bernhard
INRIA-Sophia Antipolis Méditerranée, Sophia
Antipolis, France

Abstract

Differential games arose from the investigation,
by Rufus Isaacs in the 1950s, of pursuit-
evasion problems. In these problems, closed-loop
strategies are of the essence, although defining
what is exactly meant by this phrase, and what is
the “Value” of a differential game, is difficult.
For closed-loop strategies, there is no such
thing as a “two-sided maximum principle,”
and one must resort to the analysis of Isaacs’
equation, a Hamilton Jacobi equation. The
concept of viscosity solutions of Hamilton-
Jacobi equations has helped solve several of these
issues.

Keywords

Closed loop strategies; Isaacs’ condition; Viscos-
ity solutions

Historical Perspective

The history of differential games (DG in
short) starts with Rufus Isaacs, who coined
the phrase in his pioneering work of the
early 1950s (Isaacs 1951), which was largely
ignored until the publication of his book
Isaacs (1965). Through the investigation of
particular problems, Isaacs invented by himself
(with his own names) the concepts of state
and control variables, of feedback, his “tenet
of transition” – better known as Bellman’s
optimality principle – the (Hamilton-Jacobi-
Caratheodory-)Isaacs equation, barriers, some
difficult corner conditions (“equivocal lines”),
singular arcs (“universal lines”), etc.

Another very early work was Kelendzerize’s
chapter “A Pursuit Problem” in the historical
book by Pontryagin et al. (1962), but it lacked
closed-loop strategies.

John Breakwell and a few followers (Break-
well and Merz 1969; Breakwell 1977) picked up
Isaacs’ work where he had left it, still working on
particular problems, but adding the power of the
computer to analyze the solution of Isaacs’ equa-
tion via the structure and singularities of fields
of extremal trajectories, while most of the litera-
ture concentrated on making precise the concepts
of closed-loop strategies and of the Value of
the game. Prominent figures in that quest are
Krasovskii and Subbotin (1977), Fleming (1961),
Friedman (1971), Blaquière et al. (1969), Elliot
and Kalton (1972), Emilio and Roxin (1969), and
Varaiya and Lin (1969) who together invented the
concept of non-anticipative strategies.

The major later innovation was Crandall and
Lions’ viscosity solutions of PDEs (Crandal and
Lions 1983; Lions 1982) applied to DGs and its
Isaacs equation by Evans and Souganidis (1984)
and Lions and Souganidis (1985).

We also refer the reader to the entry (Quincam-
poix 2009) of another Springer Encyclopedia.

http://dx.doi.org/10.1007/978-1-4471-5058-9_245
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General Setup

We shall be interested in (continuous time) two-
person zero-sum DGs with complete information,
this last phrase meaning that both players
know exactly and instantly the state of the
system, but (usually) not their opponent’s
control.

The available space of a short article does
not allow us to attempt to give the most gen-
eral setup of a zero-sum two-person perfect-
information differential game. We shall therefore
concentrate on a typical class, with a finite dimen-
sional state space, as follows. The data are:
1. A two-player dynamical system with state x 2

R
n, control variables u 2 U � R

`, v 2 V �
R
m (U and V will often be assumed compact),

and its dynamics

Px D f .t; x; u; v/ ; x.t0/ D x0 :

Denoting U and V the sets of measurable
functions from R to U and V respectively,
one assumes regularity and growth conditions
on f to guarantee existence and uniqueness
of the solution x.�/ for all .t0; x0/ and all
.u.�/; v.�// 2 U � V .

2. A termination condition, often given by a tar-
get set T 2 R � R

n, open or closed according
to necessity, defining a final time as t1 D
infft j .t; x.t// 2 T g: If T D fT g � R

n,
final time is fixed and equal to T . The question
of whether there is a finite t1 is one of central
interest in pursuit-evasion games.

3. Sets of admissible closed-loop strategies ˚
and � . One should choose them in such a
way that replacing .u; v/ by a pair .�;  / 2
˚ � � in the dynamics always produces a
(unique) admissible pair of control functions
.u.�/; v.�// D � .t0; x0I�; / 2 U � V .

4. A performance measure, or payoff, typically

J.t0; x0I u.�/; v.�// D
8
<

:
K.t1; x.t1//C

Z t1

t0

L.t; x.t/; u.t/; v.t// dt if t1 < 1 ;

1 if t1 D 1 :

We let

G.t0; x0I�; / WD J.t0; x0I� .t0; x0I�; // :

5. A concept of “solution,” where the first player
wants to minimize the performance index
while the second one wishes to maximize it.
(In our choice of definition of J , we have
assumed that player one wants over anything
else to make the game terminate. If we define
J as the integral even for infinite end-time,
Isaacs’ tenet of transition may not hold.)

If

inf
�2˚ sup

 2�
G.t0; x0I�; /

D sup
 2�

inf
�2˚ G.t0; x0I�; / D V.t0; x0/ ;

then V is called the Value function of the
game. Several concepts of upper Value and

lower Value may be defined (including the first
and second terms above) that have to coincide
for a Value to exist.

Isaacs’ Condition In the framework of this
short entry, we shall always assume that the
game satisfies Isaacs’ condition. It bears on the
Hamiltonian H.t; x; p; u; v/ WD L.t; x; u; v/ C
hp; f .t; x; u; v/i and reads

8.t; x; p/ 2 R � R
n � R

n;

inf
u2U

sup
v2V

H.t; x; p; u; v/

D sup
v2V

inf
u2U

H.t; x; p; u; v/ : (1)

Strategies and Value

In pursuit-evasion games, the concept of closed-
loop strategies is of the essence, and it is ex-
tremely important for all DGs. Yet, allowing state
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feedback strategies such as u.t/ D �.t; x.t//,
v.t/ D  .t; x.t//, poses a difficult problem:
what classes ˚ and � of functions � and  

to allow? The notations inf� or sup have no
meaning if one does not answer that question.
Experience tells us that discontinuous feedbacks
are necessary to find the solution of many ex-
amples, but then existence, or uniqueness, of the
solution of the dynamical equation cannot be
guaranteed.

Isaacs’ K-strategies were a partial attempt
to address this issue. More developed concepts
were proposed, from limit of piecewise
constant, or piecewise open-loop, controls
(Fleming 1961; Friedman 1971) to extensions
of the notion of solution of a differential
equation (Krasovskii and Subbotin 1977),
also proving the existence of a Value. The
equivalence of all these Values was an issue
until the advent of viscosity solutions of Isaacs’
equation.

A tool used to accommodate state-feedback
strategies (Bernhard 1977) is

Lemma 1 (Berkovitz) If V � � , then, 8� for
which this expression is well defined,

sup
 2�

G.t0; x0I�; / D sup
v.�/2V

G.x0; t0; �; v.�// :

As a consequence, a saddle-point .�?;  ?/ solu-
tion is defined by

8u.�/ 2 U ;8v.�/ 2 V

G.t0; x0I�?; v.�// � V.t0; x0/

� G.t0; x0I u.�/;  ?/ ; (2)

confronting the closed-loop saddle point strate-
gies to open-loop controls only. (This proves
useful in the analysis of Nash equilibria of
nonzero-sum DGs.)

Another consequence of Berkovitz’ lemma is
that if a DG has a saddle point in open-loop
controls, it is a saddle point over closed-loop
controls as well. (But the existence condition may
be less stringent for the later.) The relationship
between different forms of the strategies has been

further clarified by Başar (1977) and Başar and
Olsder (1982).

As far as the existence of the Value is con-
cerned, the problem for a large class of DGs is
solved with non-anticipative strategies defined as
˚ W V ! U such that

8t ; Œ8s < t v1.s/ D v2.s/� ) Œ�.v1.�//.t/
D �.v2.�//.t/� ;

and likewise for � (notice that for this concept
of strategies, (2) is the natural formulation of a
saddle point) and with the notion of viscosity so-
lution of Isaacs’ equation. See Theorem 1 below.

Games of Pursuit Evasion

An important class of DGs is the game of pur-
suit evasion. Typically, in these games the state
x is composed of a sub-vector y of Pursuer
state(s) and a sub-vector z of Evader state(s).
The dynamical function f is separated likewise,
the dynamics of the Pursuer depending on the
Pursuer’s control(s) and that of the Evader on
the Evader’s control(s). Typically, the payoff is
time until capture defined as .t; x.t// 2 T (the
target is often called capture set). This form of
DG automatically satisfies Isaacs’ condition (1).

Qualitative Game
In pursuit-evasion games, the main issue is to
distinguish initial states, called capturable, for
which a Pursuer’s strategy causing finite-time
capture against any defense exists, from those,
called safe, for which the Evader has a strategy
guaranteeing escape against any defense. This
is the topic of the qualitative game or game of
kind (Isaacs). A theorem of the alternative is
one which states that for a particular (class of)
game(s), every initial state is either capturable or
safe. Such theorems have been proved for classes
of pursuit-evasion games covering essentially all
cases of interest, under Isaacs condition (1) with
L D 0 (Cardaliaguet 1996; Cardaliaguet et al.
2001; Krasovskii and Subbotin 1977).
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Capturable states are separated from safe
states by a barrier, a piecewise smooth manifold
which has to be semipermeable. This means that
for all .t; x/ on the barrier where this barrier is a
smooth manifold with normal �.t; x/, it should
hold that

min
u2U

max
v2V h�.t; x/; f .t; x; u; v/i
D max

v2V min
u2U

h�.t; x/; f .t; x; u; v/i D 0 :

A minimax pair .u; v/ D . O'.t; x; �/; O .t; x; �//
is called a pair of semipermeable strategies.
If the boundary of the capture set is a
smooth manifold with local outward normal
n.t; x/, its usable part is the region where
infu2U supv2V hn.t; x/; f .t; x; u; v/i < 0. The
natural barrier is a semipermeable manifold
constructed backward from its boundary
(the BUP), with n as final � and using the
characteristic equations:

Px D f .x; O�; O / ; P�t D ��t @f .t; x; O'; O /
@x

:

(These trajectories are abnormal trajectories of
the calculus of variations). In most examples,
only part of the manifold thus constructed is
a barrier, and the complete barrier is made of
manifolds pieced together according to a junction
condition insuring that the corners “do not leak”
(Breakwell), analogous to the corner conditions
of the next section.

Quantitative Game
The quantitative game, or game of degree
(Isaacs), is played inside the capture zone,
typically with time of capture as the payoff. It
is ruled by Isaacs’ equation in a fashion similar
to that of games of finite duration (see below).
Yet, the interplay between the qualitative and the
quantitative game may be quite subtle and plays a
prominent role in determining the actual capture
zone. The Value function is usually discontinuous
across other barriers inside the capture zone.

Other Approaches
Other approaches have been developed to solve
games of pursuit evasion.

An early approach by Pontryagin (1967), ex-
tended by Pshenichnyi (1968), used geometric
methods for linear pursuit-evasion games with
convex compact control sets. Krasovskii’s stable
bridges (Krasovskii and Subbotin 1977) are a
concept close to Isaacs’ semipermeability. Patsko
and Turova (2001) have developed, for some
families of DGs, an efficient numerical procedure
to compute recursively hypersurfaces of con-
stant time-to-capture, whose discontinuities dis-
play the barriers. Cardaliaguet et al. (1999) have
developed a theoretical and numerical procedure
building on Aubin’s viability theory, which re-
quires less regularity on the data than other ap-
proaches.

Provided that care be applied, a quantitative
game may be transformed into a family of quali-
tative games – an approach used by Krasovskii,
Blaquière et al., and Cardaliaguet et al. – and
conversely, a fruitful approach is to investigate
capturability of initial states as a function of a
parameter defining the “size” of the capture set,
imbedding the qualitative game into a quantita-
tive game of the type game of approach.

Games of Finite Duration

Wherever termination of the game is not an issue,
the major tool in investigating a DG is Isaacs’
equation, a partial differential equation bearing
on the Value function:

8.t; x/ … T ; @V

@t
.t; x/

C minu2U maxv2VH.t; x;rxV; u; v/ D 0 ;

8.t; x/ 2 T ; V .t; x/ D K.t; x/ :
(3)

For any DG where all trajectories are transverse
to the boundary @T , and with adequate regularity
conditions on the data (and still under condition
(1)), it holds that

Theorem 1 The DG has a Value in non-
anticipative strategies, which is the only bounded,
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P

uniformly continuous viscosity solution of the
equation obtained by changing signs in (3) as
�@V=@t � minu2U maxv2VH D 0. And all other
Values coincide.

One possible way to solve Isaacs’ equation is
via the investigation of its field of characteris-
tics. Their equations are Isaacs’ retrograde path
equations: let .Ou; Ov/ D . O'.t; x; p/; O .t; x; p// be
the saddle point ofH.t; x; p; u; v/, assumed here
to be unique, one integrates from the target set
backward:

Px D f .t; x; Ou; Ov/ ; (4)

Pp D �
�
@H.t; x; p; Ou; Ov/

@x

�t
: (5)

The above equations are similar to Pontryagin’s
maximum principle equations. However, a major
difference lies in the corner conditions. While
Pontryagin’s theorem extends to control theory
the Erdman-Weierstrass condition stating that the
adjoint vector (here p) is continuous along an
extremal trajectory, in (4) and (5),p is to coincide
with rxV and may be discontinuous along
an extremal trajectory. These discontinuities
cannot be found by a local analysis along an
isolated trajectory and require that a complete
field of extremals be constructed, synthesizing a
state feedback strategy.

The analysis of the conditions that hold at
such corners, equivocal manifolds (Isaacs), enve-
lope manifolds (Breakwell), and focal manifolds
(Merz), has been a large part of the early Isaacs-
Breakwell theory. It has been for its larger part
synthesized by Bernhard (1977), except a general
constructive analysis of focal manifolds which
had to wait until Melikyan and Bernhard (2005).

The absence of a “two-sided Pontryagin prin-
ciple” for closed-loop differential games forces
one to resort to the solution of Isaacs’ equation
or an equivalent. This is the reason why no
practical method of solution exists beyond a state
dimension of 3 or 4, counting time if the game
is not time invariant. An exception is the linear
quadratic game. (See article �Linear Quadratic
Zero-sum Two-person Differential Games in this
encyclopaedia).

Conclusion

Except for very particular games, “solving” a
DG remains a difficult task. Numerical meth-
ods suffer the famous “curse of dimensional-
ity.” Moreover, many of them strive to compute
the Value function. But the optimal strategies
typically depend on the gradient of the Value
function, requiring a stronger convergence of the
approximation algorithms than pointwise, or C0

or L2, if they are to be computed as well. Further
advances in numerical algorithms tackling this
problem would be useful, as well as uncovering
new classes of DGs for which further analytical
results could be obtained.

Cross-References

�Dynamic Noncooperative Games
�Game Theory: Historical Overview
�Linear Quadratic Zero-Sum Two-Person Dif-

ferential Games
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Abstract

Designing reliable and high-performance control
systems is an essential priority of every
control engineering project. In many practical
circumstances the presence of model uncertainty
challenges the design. One robust control
approach for these cases, deeply rooted in
the classical frequency domain, is quantitative
feedback theory (QFT). Providing a control
solution that guarantees the achievement of a
multi-objective set of performance specifications
for every plant within the model uncertainty
(quantification), QFT balances the trade-off
between the simplicity of the compensator

structure and the minimization of the activity
of the controller at each frequency (“cost of
feedback”). Previous results indicate that the
QFT methodology has been able to provide
successful control solutions to a large variety
of real applications, including linear and
non-linear plants, stable and unstable systems,
multi-input multi-output processes, minimum
and non-minimum phase plants, containing time-
delay, lumped or distributed parameters, etc.

Keywords

Frequency domain control; Quantitative con-
troller design; Robust control

Definition

Quantitative Feedback Theory (QFT) is a ro-
bust control engineering design methodology that
uses the feedback to simultaneously and quantita-
tively: (1) reduce the effects of plant uncertainty
and (2) satisfy performance control specifica-
tions. The method searches for a controller that
guarantees the satisfaction of the required perfor-
mance specifications for every plant within the
model uncertainty (robust control).

QFT is rooted in the classical frequency
domain. It involves Bode diagrams and Nichols
charts (magnitude/phase diagrams). It relies on
the observation that feedback is needed when
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the plant presents model uncertainty and/or
there are uncertain disturbances. QFT balances
quantitatively: (a) the simplicity of the controller
structure, (b) the minimization of the so-called
cost of feedback, controller magnitude at each
frequency, (c) the plant model uncertainty and
(d) the achievement of the desired performance
specifications, all at each frequency of interest.
The technique has been successfully applied to a
wide variety of real-world control problems.

Historical Notes

Many of the frequency domain fundamentals
were established by Hendrik Bode in his seminal
book Network Analysis and Feedback Amplifier
Design, published in 1945 (Van Nostrand). The
book strongly influenced the understanding
of automatic control theory for many years,
especially where system sensitivity and feedback
constraints are concerned.

Almost 20 years later, in 1963, a new influen-
tial book entitled Synthesis of Feedback Systems
(Academic Press), written by Isaac Horowitz,
proposed for the first time a formal combina-
tion of the frequency domain methodology with
plant model uncertainty (robust control) under a
quantitative analysis. The new book addressed
an extensive set of sensitivity problems in feed-
back control and was the first work in which
a control problem was treated quantitatively in
a systematic way. The book laid the foundation

for a new control design methodology that had
been introduced briefly in a previous paper by
Horowitz in 1959: the one that became known
as Quantitative feedback theory (or QFT) in the
early 1970s.

Fundamentals

A detailed study of the QFT fundamentals
and applications can be found in the books
written by Garcia-Sanz and Houpis (2012),
Houpis et al. (2006), Sidi (2002), Yaniv (1999),
and Horowitz (1993); see the “Recommended
Reading” section.

The QFT methodology provides a multi-
criteria engineering understanding of the
controller design process, as it quantifies the
balance among the controller structure, cost of
feedback, performance specifications, and model
plant uncertainty at each frequency of interest.
The basic steps of the QFT methodology are
summarized in Fig. 1 and are presented in the
following sub-sections.

Define Plant Model and Uncertainty:
Templates Generation (Steps 1, 2 & 3)
First of all, the dynamics of the plant to
be controlled are described in the frequency
domain. Taking the plant model in terms of
transfer functions with mixed parametric, non-
parametric and even model structure uncertainty,
the frequency domain description is carried out

 Step 1: Define plant models and associated uncertainty 

 Step 2: Obtain templates representation at specified frequencies wi

 Step 3: Select nominal plant P0( jw)

 Step 4: Define control specifications: Stability
 Step 5: Define control specifications: Performance
 Step 6: Calculate stability bound (U-contour) on Nichols Chart
 Step 7: Calculate performance bounds (reference tracking, disturbancerejection,etc)
 Step 8: Calculate combined (worst case scenario) bounds
 Step 9: Synthesize feedback controller G( jω) s.t. L0( jw) = P0( jw) G( jw) satisfies all bounds

 Step 10: Synthesize prefilter controllerF ( jw)
 Step 11: Analysis in the frequency domain
 Step 12: Analysis in the time domain (linear)
 Step 13: Analysis in the time domain (nonlinear)

Control
Specifications

Bounds

Loopshaping

Prefilter

Plant model &
uncertainty

Validation

Quantitative Feedback Theory, Fig. 1 Summary of QFT controller design methodology
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Quantitative Feedback Theory, Fig. 2 From the parameter space to the Nichols chart: (a) 2-dimensional parameter
space, (b) Template of the plant P (j!) at ! = 1 rad/s, (c) Typical templates for frequencies ! 2 Œ!min, !max]

by calculating “templates”, which are sets of
complex numbers at each frequency of interest
! 2 Œ!min, !max� rad/second: a projection of
the n-dimensional parameter space through the
transfer function/functions onto the Nichols
chart.

As an example, and for “! D 1 rad/s,
Fig. 2b represents the QFT template of the

3-parameter plant P.j!/ D exp.�j! �/
.

�
.j!/2 C 2 � !n .j!/C !2n

�
, with !n 2

[0.7, 1.2], � 2 [0, 2], and �

D 0:02.

Each template =P.j!i / D fP.j!i /g rep-
resents on the Nichols chart and at a specific
frequency !i all the possible plants within the
model uncertainty (see Fig. 2c). One particular
case, defined as a set of specific parameters of
the n-dimensional parameter space is arbitrarily
selected to define the nominal plant P0.j!/, a
member of the family of plants within the uncer-
tainty (see Fig. 2b).

Define Control Specifications (Steps 4 & 5)
The standard two-degree-of-freedom (2DOF)
control system diagram is shown in Fig. 3.
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F(s) G(s) P(s)
U(s) Y(s)

–

D(s)

+

+

+

H(s)

N(s)

+

+

M(s)

R(s) E(s)

Quantitative Feedback
Theory, Fig. 3
Multi-Input-Single-Output
2DOF feedback control
system. s � j!

It includes the set of uncertain plants P.j!/ to
be controlled, the disturbance dynamics M.j!/,
the feedback path dynamics H.j!/, and the
loop controller G.j!/ and prefilter F.j!/,
both to be design. On the other hand, R.j!/,
E.j!/, U.j!/, Y.j!/, D.j!/, and N.j!/ are
vectors representing respectively the reference
input, signal error, controller output, plant output,
disturbance input, and sensor noise input. From
the diagram (Fig. 3), it is easy to derive the
following three input/output equations (note the
dependency on j! is removed):

Y D PG

1C PGH
FRC M

1C PGH
D � PGH

1C PGH
N I

U D G

1C PGH
FR � GH

1C PGH
.MD CN/ and

E D 1

1C PGH
FR � HM

1C PGH
D � H

1C PGH
N

Without losing generality, and with a straight-
forward block diagram manipulation, F.s/ and
G.s/ can be modified to have H.s/ D 1. Now,
the stability and performance specifications are
defined by limiting the magnitude of each transfer
function of the three previous equations at each
frequency of interest, jTk.j!/j � ık.!/, k D 1–
4, such that,
Stability and noise reduction: jT1(j!)j Dˇ̌

ˇ Y (j!)
R(j!)F (j!)

ˇ̌
ˇ D

ˇ̌
ˇ Y (j!)
N (j!)

ˇ̌
ˇ D

ˇ̌
ˇ P (j!) G(j!)
1CP (j!) G(j!)

ˇ̌
ˇ

� ı1(!) ; ! 2 �1 ,

Disturbance rejection: jT2(j!)j D
ˇ̌
ˇ Y (j!)
D(j!)

ˇ̌
ˇ Dˇ̌

ˇ M(j!)
1CP (j!) G(j!)

ˇ̌
ˇ � ı2(!); ! 2 �2 ,

Control effort reduction: jT3(j!)j Dˇ̌
ˇ U (j!)
M(j!) D(j!)

ˇ̌
ˇ D

ˇ̌
ˇU (j!)
N (j!)

ˇ̌
ˇ D

ˇ̌
ˇ U (j!)
R(j!) F (j!)

ˇ̌
ˇ Dˇ̌

ˇ G(j!)
1CP (j!) G(j!)

ˇ̌
ˇ � ı3(!); ! 2 �3

Reference tracking: ı4inf(!) < jT4(j!)j Dˇ̌
ˇ Y (j!)
R(j!)

ˇ̌
ˇ D

ˇ̌
ˇF (j!) P (j!) G(j!)

1CP (j!) G(j!)

ˇ̌
ˇ �

ı4sup(!); ! 2 �4,

jG(j!)Pd (j!)j
jG(j!)Pe(j!)j

j1CG(j!)Pe(j!)j
j1CG(j!)Pd (j!)j � ı4(!)

D ı4 sup(!)

ı4 inf(!)
; ! 2 �4

QFT Bounds (Steps 6, 7 & 8)

For the nominal plant P0.j!/, the QFT method-
ology converts the stability and performance
specifications ık.!/ and the model plant
uncertainty into a set of constrains or bounds
for each frequency of interest on the Nichols
chart (the Horowitz-Sidi Bounds).

The !i plant template, =P.j!i / D fP.j!i /g,
is approximated by a finite set of plants fPr.j!i /,
r D 1; 2 : : :}. Each plant can be expressed in its
polar form as Pr.j!i / D p.!i / exp.j�.!i // D
p†� . Likewise the controller polar form is
G.j!i / D g.!i / exp.j�/ D g†�, with a
controller phase � that varies from �2� to
0. Therefore, and for every frequency !i , the
previous control specifications fjTk.j!i /j �
ık.!i /, k D 1; : : : ; 4} are translated into a
set of quadratic inequalities with the format
I k!i (p; �; ık; �) D a g2 C b g C c � 0, such
that,
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Q

Quantitative FeedbackTheory, Fig. 4 (a) QFT-bounds
and G(j!) design –loopshaping–. (b) Prefilter F (j!)
design: reference tracking specifications ı4sup(!) and

ı4inf(!), and upper and lower limits of T4 due to the plant
uncertainty: ı4inf(!) � jT4j � ı4sup(!)

Stability and noise reduction: p2
�
1 � 1

ı21

�

g2 C 2 p cos.� C �/ g C 1 � 0;

Disturbance rejection: p2 g2 C 2 p cos.� C �/

g C
�
1 � m2

ı22

�
� 0; with typically m D p;1;

or other options,

Control effort reduction:
�
p2 � 1

ı23

�
g2C

2 p cos.� C �/ g C 1 � 0, and

Reference tracking: p2ep
2
d

�
1 � 1

ı24

�
g2C

2 pe pd

�
pe cos.� C �d /� pd

ı24
cos.�C�e/

�
g

C
�
p2e � p2d

ı24

�
� 0

Now, with an appropriate algorithm (see
references), the above quadratic inequalities are
translated into a set of curves on the Nichols
chart for each frequency of interest and type
of specification: the individual specification
bounds. Then, the more demanding (worst
case) bound, i.e., the most restrictive one at
every phase and each frequency of interest
is computed to obtain the intersection of
bounds, or the combined QFT bounds (see
Fig. 4a).

ControllerG (j!) Design: Loop-Shaping
(Step 9)
Although the objective of designing a controller
for an infinite number of plants seems to be a very
arduous task (there is an infinite number of plants
due to the model uncertainty), the integration
of all the information (uncertainty and specifica-
tions) in a set of simple curves (the QFT bounds)
will allow the designer to use just a single plant,
the nominal plant P0, and the bounds to design
the controller.

Then, in the design stage (loop-shaping), the
controller G.j!/ is synthesized on the Nichols
chart by adding poles and zeros until the nominal
loop, defined as L0.j!/ D P0.j!/G.j!/,
lies near its bounds (see Fig. 4a). The bounds
express the plant models with uncertainty and
the performance specifications at each frequency.
An optimal controller in the sense of QFT will
be obtained if L0.j!/ lies exactly on the bounds
at each frequency. Practically speaking, a good
design will place L0.j!/ above the continuous-
line bounds and below the dashed-line bounds,
and will have the minimum possible magnitude
at every frequency. A general formulation for
the controller structure G.s/ is expressed by the
following transfer function:
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G.s/ D
kG

nrz

…
iD1

�
s
zi

C 1
� ncz=2

…
iD1

�
s2

jzi j2 C 2Re.zi /

jzi j2 s C 1
�

sr
mrp

…
jD1

�
s
pj

C 1
� mcp=2

…
jD1

�
s2

jpj j2 C 2Re.pj /

jpj j2 s C 1

�

where kG is the controller gain, zi is a zero (real
or complex) with mrz and mcz the number of real
and complex zeroes respectively, and pj is a pole
(real or complex) with mrp and mcp the number
of real and complex poles respectively (mcz and
mcp even numbers). The controller may have also
some poles at the origin (integrators), with r D 0,
1 or 2, etc.

PrefilterF (j!) Design (Step 10)
If the feedback system includes a reference track-
ing problem, then the best choice is to use a
prefilter F.s/ – the second degree of freedom.
While the feedback controller G.s/ reduces the
effect of the uncertainty and improves stability,
disturbance rejection, and other specifications,
the prefilter F.s/ is designed to fulfill reference
tracking requirements. Figure 4b shows a typical
prefilter design in the Bode diagram. ı4sup.!/ and
ı4inf.!/ are the reference tracking specifications,
defined as a band (outer dashed lines, Fig. 4b).
The transfer function T4 shows an upper and a
lower limit (inner dashed lines, Fig. 4b) due to the
plant uncertainty. After an appropriate prefilter
design, the T4 limits will be in the middle of the
ı4sup�ı4inf band:

ı4inf.!/ � jT4j � ı4sup.!/; jT4(j!)j D
ˇ̌
ˇ̌ Y (j!)

R(j!)

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌ P (j!) G(j!)

1C P (j!) G(j!)
F (j!)

ˇ̌
ˇ̌

Validation (Steps 11, 12, 13)
Once the design of the controller (and prefilter
if needed) is finished, it will be convenient to
analyze the performance of the complete control
system under different scenarios, including: (a)
frequency domain analysis of each specification
for all the significant plants within the model
uncertainty and (b) time domain simulations, typ-
ically using a Monte Carlo campaign for the

uncertainty, first with the linear system and then
with nonlinear elements (saturation, etc.).

Programs and Data

Computer-aid-design (CAD) tools have definitely
facilitated the use of QFT. The MATLAB code
of the interactive object-oriented QFT CAD
tool developed by Garcia-Sanz et al. for ESA-
ESTEC (2014) can be found at http://cesc.case.
edu/OurQFTCT.htm (free download). Another
popular QFT CAD tool in the 1990s, developed
by Borghesani, Chait & Yaniv, can be found
at http://www.terasoft.com/products/QFT/index.
html.

Applications and Future Directions

• QFT has been successfully applied to a
wide variety of control problems, including
stable and unstable plants minimum and
non-minimum phase systems, single-input
single-output and multiple-input multiple-
output processes, with linear and nonlinear
characteristics, longtime delay, distributed
parameter systems, and time-varying plants;
and has been combined with feed-forward
control topologies, multi-loop systems, etc.
Also, QFT has been used in many real-world
applications: e.g., flight control, wind energy,
water treatment plants, spacecraft, power
systems, mechanical systems, motion control,
chemical reactors, etc. (see Garcia-Sanz and
Houpis 2012; Houpis et al. 2006).

• Future research on QFT includes among oth-
ers new multiple-input multiple-output tech-
niques, nonlinear plants, distributed parameter
systems, load-sharing control, etc.

http://cesc.case.edu/OurQFTCT.htm
http://cesc.case.edu/OurQFTCT.htm
http://www.terasoft.com/products/QFT/index.html
http://www.terasoft.com/products/QFT/index.html
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Abstract

This article briefly describes the topic of quan-
tized control with limited data rates. The focus
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is on the problem of stabilizing a linear time-
invariant plant over a digital channel and the
associated data rate theorems. It is shown that
the deepest results in this area require a uni-
fied treatment of its communications and control
aspects.

Keywords

Control under communication constraints; Quan-
tization; Quantized control

Introduction

One of the standard assumptions of classical con-
trol theory is that the signals sent from sensors to
controllers and from controllers to actuators take
continuous values with infinite precision. The ad-
vent of computer-based and digitally networked
control systems challenged this assumption, since
the analog plant outputs or control variables in
such systems must be reduced to finite bit strings
or discrete symbols for storage, manipulation,
and transmission. This process of converting a
continuous-valued variable into a finite-valued
one is called quantization and entails a potentially
significant loss of resolution and closed-loop per-
formance. Quantized control is concerned with
the analysis and design of control systems which
feature such analog-to-digital conversions in the
feedback loop.

There is a vast literature on this topic and the
aim of this article is to briefly explain some of
its key ideas. For reasons of space, the discus-
sion is largely confined to the question of how
to stabilize a linear time-invariant plant over a
digital channel. It is shown that the deepest results
here emerge from treating the communications
and control aspects jointly, instead of separately.
The reader is referred to the survey (Nair et al.
2007) and the references therein for a discussion
of other issues such as optimality and transient
performance.

http://dx.doi.org/10.1007/978-1-4471-5058-9_237
http://dx.doi.org/10.1007/978-1-4471-5058-9_239
http://dx.doi.org/10.1007/978-1-4471-5058-9_118
http://dx.doi.org/10.1007/978-1-4471-5058-9_240
http://cesc.case.edu/OurQFTCT.htm
http://cesc.case.edu/OurQFTCT.htm
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Quantization

Quantization has long been an object of study
in communications and information theory –
see Gersho and Gray (1993) and the references
therein. In its simplest form, a signal x.�/ W R !
R
n is first sampled at regular time intervals

t D 0; �; 2�; : : : to yield a discrete-time signal
.x.k�//k2Z, with the sampling frequency 1=�

chosen to be greater than the Nyquist frequency
of x (i.e., twice its bandwidth). Each sample
xk WD x.k�/ is then passed through a static,
memoryless quantizer Q to yield a quantized
discrete-time signal

x
q

k D Q.xk/ 2 fq1; : : : qM g � R
n; k 2 Z�0:

(1)

which can take M distinct values in R
n. If the

quantizer is known to both transmitter and re-
ceiver, each of theseM values can be represented
by a binary string with dlog2M e bits. When the
input dimension n D 1, the quantizer is called
scalar; otherwise, it is a vector quantizer. The
regions Ri WD Q�1.qi /; 1 � i � M , are called
the quantizer cells and together form a partition of
R
n. Thus an M -valued quantizer is fully defined

by its quantizer cells Ri and associated quantizer
points qi ; 1 � i � M .

The quantization error or quantizer noise is
defined as nk WD x

q

k � xk . When the inputs xk
are identically distributed random variables, then
a standard goal is to design Q so as to minimize
the mean-square quantizer noise

D WD EŒjjQ.xk/ � xk jj2�; (2)

where EŒ�� is the expectation functional. This
yields an optimal quantizer Q� with cells that
satisfy the nearest-neighbor property, i.e.,

x2Ri�)jjQ�.x/�qi�jj�jjQ�.x/�qj� jj;8j ¤ i:

When jj � jj is the Euclidean norm (possibly
weighted), the quantizer cells Ri�, 1 � i � m,
are convex polygons and form a Voronoi partition
of Rn, and furthermore qi� is the centroid of Ri�
with respect to the stationary distribution FX of

xk , i.e., qi� D EŒxkjxk 2 Ri��. As a consequence,
the optimal quantizer is statistically unbiased,
i.e., EŒnk� D 0, and furthermore xk and the
quantizer noise nk are uncorrelated at time k, i.e.,
EŒxknT

k � D 0. However, note that nk and xj may
be correlated for j ¤ k, and (nk) may itself be a
correlated process.

If Q is not optimal but M is large (i.e.,
the quantizer is high resolution or fine), then
EŒxknT

k � D o.1=M/, provided that qi is the cen-
troid of Ri with respect to Lebesgue measure 	
and xk has a probability density function (pdf) fX
with suitable continuity properties. The reasoning
here is that each region Ri will typically be very
small, so that fX will not vary much on each Ri ,
yielding a conditional pdf of xk given Ri that is
approximately uniform on Ri .

When Q is a scalar uniform quantizer on
an interval [a, b], these considerations yield the
asymptotic formula

D � .b � a/2=.12M2/; (3)

provided that the overload regions – i.e., the tails
of fX.x/ on the regions x < a or x > b –
make negligible contributions toD. Note that this
expression does not depend on the distribution of
the input. For large M , it can be shown that the
optimal vector quantizer has a normalized point
density proportional to f 1=3

X and yields

Dmin � c

M2

�Z
fX.x/

1=3d	.x/

�3
; (4)

where the constant c depends only on n.

Quantized Control: Basic Formulation

Much of the theory of quantized control concerns
finite-dimensional linear time-invariant (LTI)
plants. A formulation is provided in this section
to help fix ideas, for the case of a single feedback
loop containing a single errorless digital channel.

Consider the discrete-time plant

xkC1 D AxkCBukCvk; yk D FxkCwk; (5)
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where at every time k 2 Z�0, xk 2 R
n is the

state with x0 unknown, uk 2 R
m is the control

input, yk 2 R
p is the measured output, vk 2 R

n

is unknown process noise, wk 2 R
p is unknown

measurement noise, andA,B , and F are constant
known matrices of appropriate dimensions. For
the problem to be well posed, assume that the
matrix pairs (A, B) and (F , A) are, respectively,
reachable and observable. Suppose that the out-
put sensors communicate with the controller over
a digital channel that can carry one symbol sk
from a finite, possibly time-varying alphabet Sk
of cardinality Mk � 1 during the (k C 1)-th
sampling interval. Assume for simplicity that the
channel is errorless, with negligible propagation
delay. The asymptotic average rate at which the
channel transports data may then be defined as

R WD lim
k!1

1

k

k�1X
jD0

log2Mj .bits/sample/: (6)

Note that if the channel alphabet Sk is constant
or varies periodically with k, the inferior limit
reduces to a straight limit.

In full generality, each transmitted symbol
may depend on all past and present measurements
and past symbols,

sk D 
k.y
k
0 ; s

k�1
0 / 2 Sk; 8k 2 Z�0; (7)

where 
k is the coder mapping at time k. At time
k the controller has s0; : : : ; sk available and then
applies a control law of the general form

uk D ık.s
k
0 / 2 R

m; 8k 2 Z�0; (8)

where ık is the controller mapping at time k.
In practice, additional memory or structural

constraints are usually placed on the general
coding and control rules (7) and (8). For instance,
if a static quantizer of the form (1) is used, then
the coding alphabet Sk � S will be constant
and sk � 
.yk/ will represent the index of
the quantizer cell that contains yk . Similarly,
a static, memoryless controller is captured by
setting uk D ı.sk/ in (8).

Finite-dimensional coding and control laws
may be formulated by defining internal coder and
controller states  
k and  ık with local updates of
the form

sk D 

�
yk;  




k�1
�
;  




k D �
�
sk;  




k�1
�
; (9)

 ık D �
�
sk;  

ı
k�1

�
; uk D ı

�
 ık

�
: (10)

If the states  
k and  ık are finite valued, then the
coding and control laws are called finite-state.

Additive Noise Model

Early approaches to quantized control modeled
quantization errors as additive noise, in order to
allow the use of well-developed tools from linear
stochastic control (Curry 1970). While this was
reasonable at high quantizer resolution, it failed
to capture two key properties.

A simple example illustrates this. Consider
a scalar, noiseless, fully observed, unstable LTI
plant – i.e., (5) with n D 1, A D a with jaj > 1,
B , C D 1, and wk , vk D 0 – where x0 is
a random variable. Under static, high-resolution
uniform quantization, the data available to the
controller is expressed as a noisy linear measure-
ment

y0
k WD Q.xk/ D xk C nk; k 2 Z�0;

where the quantizer error process (nk) is treated
as zero mean white noise uncorrelated with (xk)
and having constant variance given by (3).

The first shortcoming of this approach is that
it precludes the possibility of asymptotic mean-
square stability, which would effectively require
the controller to estimate the initial state x0 with a
mean-square error diminishing strictly faster than
a�2k . This turns out to be impossible under the
uncorrelatedness assumption and the constraint
jaj > 1.

However, in the seminal paper (Delchamps
1990), it was shown that asymptotic stability
could in fact be achieved, by using a nonlinear
controller that exploited the correlation between
successive quantizer errors. To see this, suppose
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that the unknown initial state x0 is confined to a
known interval [�l0, l0]. At time k � 0, suppose
that lk � 0, k D 1; 2; : : : represent bounds to be
determined on the future states xk . Let Q be a
static one-bit quantizer – i.e., with M D 2 – such
thatQ.x/ D 1 if x � 0 andQ.x/ D �1 if x < 0.
At time k let uk D �0:5alkQ.x/ so that

xkC1 D
�
a.xk � 0:5lk/ if 0 � xk � xk
a.xk C 0:5lk/ if � lk � xk < 0

:

) jxkC1j � 0:5jajlk DW lkC1.
If jaj < 2 then lk ! 0, and asymptotic sta-

bility is achieved uniformly and with exponential
convergence.

However, the main drawback of the additive
white noise model is that it does not predict the
loss of closed-loop stability that can result when
the quantizer resolution is too coarse. This is
because the number M of quantizer points only
serves to determine the variance of the additive
noise nk : reducing M increases the variance of
nk and the mean-square states, but they remain
bounded over time. In contrast, a rigorous anal-
ysis reveals that stability is impossible by any
means, linear or nonlinear, when M drops below
a certain threshold.

Numerous proofs of this loss of stability exist.
In a stochastic setting, the argument is based on
fixing the coder and controller and expanding out
the closed-loop dynamics of the scalar LTI plant
to write

xk D akx0 � akzk (11)

where zk WD �a�k Pk�1
jD0 ak�j�1uj . As zk is a

function of sk�1
0 2 Sk , it can take at most Mk

values. Furthermore, in the absence of noise, it
is fully determined by x0, for a given coding
and control policy (7) and (8). Thus zk can be
regarded as the output Q0

k.x0/ of an Mk-valued
quantizer. Substituting this into (11) yields

xk D ak.x0 �Q0
k.x0//:

From the asymptotic quantizer result (4), it then
follows that for large k,

EŒx2k� � c
a2k

M2k

�Z
fX0.x/

1=3d	.x/

�3
:

Thus a necessary condition for asymptotic mean-
square stabilizability is that M > jaj – see Nair
and Evans (2000) for details.

The Data Rate Theorem

The discussions above emphasized the need for a
more rigorous approach to quantized control. In
the literature, the necessary condition M > jaj
was first derived in a nonrandom setting, where
it was shown to be both sufficient and necessary
to be able to ensure uniform stability (Baillieul
1999; Wong and Brockett 1999).

The sufficiency argument is constructive. Let
Q be an M -level uniform quantizer on Œ�1; 1�,
with cells formed by partitioning Œ�1; 1� into
M subintervals R1; : : :; RM of equal length and
setting Q.z/ to be the midpoint of Ri when
z 2 Ri . Suppose that at time k the unknown
state xk lies in a known interval Œ�l; l �, and set
uk D �alQ.xk=l/. Thus

jxkC1j D jajjxk � lQ.xk=l/j

D jajl
ˇ̌
ˇx
l

�Q
�x
l

�ˇ̌
ˇ � jaj l

M
:

When M > jaj, the right-hand side < l . Thus
xkC1 2 Œ�l; l � as well, and boundedness is
achieved. Uniform asymptotic stability can be
achieved by replacing the constant parameter l in
the argument above with a time-varying bound lk ,
updated as lkC1 D jajlk=M ! 0.

The necessity argument is based on volume
partitioning. The basic idea is to fix an arbitrary
coding and control policy and let mk be the
Lebesgue measure of the set of values that xk can
take at time k 2 Z�0. After k time steps, the plant
dynamics expand this uncertainty volumem0 by a
factor jajk . However, the coder effectively divides
this region into Mk disjoint, exhaustive pieces,
each of which is shifted by the controller. As
Lebesgue measure is translation invariant, it then
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follows thatmk � jajkm0=M
k. ConsequentlyM

must exceed jaj if the closed loop is uniformly
asymptotically stable.

The tight criterion M > jaj, or equivalently
R > log2jaj, was the first instance of the data
rate theorem. Volume-partitioning arguments and
Jordan canonical forms can be used to generalize
it to LTI plants with vector-valued states, yielding
the necessary and sufficient condition

R >
X

i Wj�i j�1
log2j�i j DW H; (12)

where �1; : : : ; �n are the eigenvalues of A. This
criterion is remarkably universal, having been
shown to be tight for a variety of settings and
objectives: e.g., for asymptotic r-th moment sta-
bilizability with random, unbounded x0 and no
process or measurement noise (Nair and Evans
2003); uniform stabilizability with bounded x0
and no process or measurement noise (Baillieul
2002); uniform stabilizability with bounded ini-
tial state, process, and measurement noise (Hes-
panha et al. 2002; Tatikonda and Mitter 2004);
and mean-square stabilizability with random, un-
bounded initial state, process, and measurement
noise (Nair and Evans 2004).

The deep nature of (12) becomes even clearer
when it is noted that the right-hand side of (12)
coincides with the intrinsic entropy generation
rate H of the (open-loop) plant, in both the
Kolmogorov-Sinai and topological senses; that
is, it describes the growth rate of the number of
distinguishable state trajectories. Thus the data
rate theorem states that stability is possible iff
the communication rate in the feedback loop
exceeds the rate at which the plant generates
uncertainty. This interpretation leads to the notion
of feedback entropy (see cross-reference to article
by C. Kawan).

Zooming Quantized Control

When the plant noise and initial state of the plant
(5) are bounded, stability (in a uniform sense) can
be guaranteed by applying a linear observer to
track the plant states with bounded error and then

applying a suitable static, memoryless coding and
control policy on the observer states xok .

However, if the noise or initial state has
unbounded support – e.g., when they are
Gaussian or when prior bounds on them are
not known – then stability cannot be achieved
by any such static memoryless scheme or indeed
by any scheme where the control inputs (8) are
bounded (Nair and Evans 2004). The explanation
is simple: due to the infinite support, there is a
nonzero probability that the propagated state Axt
will be beyond reach of the control input at some
time t . The unstable plant dynamics then amplify
this shortfall, causing the same phenomenon to
occur with increasing probability at subsequent
times and inevitably leading to instability.

One solution is to use a zooming quantizer,
i.e., having a dynamic range lk > 0 that is
not bounded a priori but expands or contracts
according to the most recent symbol (Brockett
and Liberzon 2000). In the noiseless case, if this
symbol corresponds to the “overload region” of
the quantizer (as indicated by a special symbol),
then the range is updated as lkC1 WD �out lk ,
where �out > 1 is the “zoom-out” factor. Other-
wise lkC1 WD �inlk , where �in < 1 is the “zoom-
in” coefficient.

In the communications literature such
schemes are called adaptive quantizers (Good-
man and Gersho 1974). If �out is sufficiently large
compared to the unstable open-loop eigenvalues,
and if �in is not too small, then global asymptotic
stability ensues. With unbounded noise in the
plant, variants of this scheme guarantee mean-
square stability at any data rate satisfying (12)
(Nair and Evans 2004) or input-to-state stability
(Liberzon and Nesic 2007).

Zooming quantization is an important example
of a finite-dimensional coder-controller (9) and
(10), with lk playing the role of an internal state
variable. As the range update is driven by the
symbols, both coder and controller can each gen-
erate identical copies of lk, provided that there are
no errors in the channel and they both start from
the same initial range l0. The important issue
of how to design a scheme that can cope with
mismatched initial internal states or a small level
of channel errors is as yet largely unexplored.
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Erroneous Digital Channels

The information-theoretic aspects of quantized
control become especially pronounced when the
channel is not error-free. In this case, the data rate
theorem (12) can be extended, but in ways that
are highly dependent on the precise setting and
stability objective.

A common figure of merit for a stochastic dis-
crete memoryless channel (DMC) is its ordinary
capacity C. This is defined operationally as the
largest block-code bit rate that can be transmitted
across the channel with negligible probability
of decoding error, and also coincides with the
largest rate of Shannon information across the
channel (Shannon 1948). For a noiseless LTI
plant with random initial state controlled over a
DMC, the condition C > H is a tight criterion
for almost sure (a.s.) asymptotic stabilizability
(Matveev and Savkin 2007a). This is a natural
generalization of (12).

On the other hand, if the objective is to bound
the state moments of a scalar LTI plant subject to
bounded process noise, then the achievability of
this goal is determined by the anytime capacity
Cany (Sahai and Mitter 2006): this is essentially
given by the fastest decay rate of the decoding
error probability.

However, if the aim is a.s. boundedness of an
LTI plant with random initial state and bounded,
nonstochastic process noise, then the stabilizabil-
ity criterion changes again to C0f > H (Matveev
and Savkin 2007b). Here C0f is the zero-error
feedback capacity of the channel, defined as the
largest block-code bit rate that can be transmitted
across the channel with exactly zero probability
of decoding error and with perfect channel feed-
back (Shannon 1956).

As C0f < Cany < C for most channels, these
conditions do not coincide. This suggests that
there is no universal, operationally relevant in-
formation theory for feedback control over error-
prone channels: such a theory must instead be
tailored to match the underlying objectives and
assumptions. For systems with nonstochastic dis-
turbances, preliminary steps in this direction have
been taken in Nair (2012, 2013). The reader is
also referred to You and Xie (2011) and Minero

et al. (2013) for information-theoretic analyses of
stochastic linear systems controlled via Markov
channels.

Summary and Future Directions

This article described the key elements of quan-
tized control with finite data rates, emphasiz-
ing the interplay between coding and control.
A great deal is now known about the funda-
mental limitations on stability in quantized con-
trol systems consisting a single feedback loop.
Two major directions for future research suggest
themselves:
– Little work has been done on designing

optimal coding and control schemes or
determining optimal costs at a given rate,
apart from one or two special cases and
structural results – see Nair et al. (2007)
and the references therein. It is very unlikely
that explicit, closed-form solutions will be
possible. However, numerical approaches
based on the Lloyd-Max algorithm, particle
filtering, and model-predictive control may
prove fruitful.

– Networked control systems usually consist of
a number of subsystems interconnected over a
network. Furthermore, in multi-agent systems
the main objective may not be stability, but
rather coordination or consensus to a com-
mon state. Comparatively little is known about
the data rate requirements and information-
theoretic aspects of these problems.
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Abstract

In this article, we study the tools and method-
ologies for the analysis and design of control
systems in the presence of random uncertainty.
For analysis, the methods are largely based on
the Monte Carlo simulation approach, while for
design new randomized algorithms have been de-
veloped. These methods have been successfully
employed in various application areas, which in-
clude systems biology; aerospace control; control
of hard disk drives; high-speed networks; quan-
tized, embedded, and electric circuits; structural
design; and automotive and driver assistance.

Keywords

Chernoff bound; Hoeffding inequality; Monte
Carlo simulation; Randomization algorithms

Preliminaries

Randomized methods for control deal with the
design of uncertain and complex systems. They

have been originally developed for linear sys-
tems affected by structured uncertainty, usually
expressed in the so-called M � � configuration.
A similar approach may be followed when deal-
ing with uncertainty in other contexts, such as
uncertainty in the environment (random distur-
bances) or even when there is no uncertainty in
the problem formulation, but the complexity of
the problem is such that randomized methods
may be the best approach, since these methods
are known to break the curse of dimensionality,
see Tempo et al. (2013) for details.

For the sake of simplicity, we consider here an
uncertain plant transfer function P.s; q/ affected
by parametric uncertainty

q D Œq1 : : : q`�
T

bounded in a set Q � R`. The objective is to
design the parameters � 2 Rn of a controller
transfer function C.s; �/ so to guarantee robustly
some desired performance. This is reformulated
as the problem of finding a design satisfying some
uncertain constraints of the form

f .�; q/ � for all q 2 Q:

In other words, the goal is to design a robust con-
troller which satisfies the uncertain constraints.
Specific examples of these constraints include an
H1 or H2 norm bound on the closed-loop sensi-
tivity function or time-domain specifications.

Since this objective may be too hard to achieve
in many situations, we are relaxing it as follows:

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015



1124 Randomized Methods for Control of Uncertain Systems

we would like to design controller parameters � 2
Rn such that a certain violation is allowed, i.e.,

�
f .�; q/ � 0 for all q 2 QgoodI
f .�; q/ > 0 for all q 2 Qbad

where the good and bad sets satisfy the equations

�
Qgood [ Qbad D QI
Qgood \ Qbad D Ø;

and the goal is to guarantee that the bad set Qbad

is “small” enough. To state this concept more pre-
cisely, we assume that q 2 Q is a random vector
with given probability density function (pdf), and
we introduce the probability of violation and the
controller reliability.

Definition 1 (Probability of Violation and Re-
liability) The probability of violation for the
controller parameters � 2 Rn is defined as

V .�/ PDProb fq 2 Q W f .�; q/ > 0g :

The reliability of the design � 2 Rn is given by

R .�/ D 1 � V .�/ :

In this context, we are satisfied if, given a viola-
tion level /2 .0; 1/, the probability of violation
is sufficiently small, i.e., V .�/ �/. We remark
that relaxing the requirement of robust satisfac-
tion of the uncertain constraints f .�; q/ � 0 to a
probabilistic one (by means of the probability of
violation) is not helpful computationally because
computing exactly the probability V .�/ is very
hard in general because it requires to solve a
multidimensional integral over the nonconvex do-
main defined by f .�; q/ > 0, with q 2 Q � R`.
The problem is then resolved introducing Monte
Carlo randomized algorithms (formally defined
in the next section). This is a computational
approach which leads to solutions which are often
denoted as PAC (probably approximately correct)
(Vidyasagar 2002).

More precisely, for fixed design � 2 Rn, to
compute a Monte Carlo approximation based
on N random simulations, we generate N

independent identically distributed (iid) random

samples of q 2 Q, called the multisample, of the
uncertainty q according to the given probability
density function

q.1:::N / D
n
q.1/; : : : ; q.N/

o
2 QN :

The cardinality N of the multisample q.1:::N /

is often referred to as the sample complexity
(Vidyasagar 2001). The empirical violation of the
design � is then defined.

Definition 2 (Empirical Violation) For given
� 2 Rn, the empirical violation of V .�; q/
with respect to the multisample q.1:::N / D˚
q.1/; : : : ; q.N/

� 2 QN is given by

OVN
�
�; q.1:::N /

�
PD 1

N

NX
iD1

If

�
�; q.i/

�

where If
�
�; q.i/

�
is the indicator function

If

�
�; q.i/

�
PD
�
0 if f

�
�; q.i/

� � 0

1 otherwise.

Monte Carlo Randomized Algorithms
for Analysis

In this section, we study Monte Carlo randomized
algorithms for analysis, i.e., when the controller
parameters are fixed, and in particular we con-
centrate on a PAC computation of the probability
of violation. In agreement with classical notions
in computer science (Mitzenmacher and Upfal
2005; Motwani and Raghavan 1995), a random-
ized algorithm (RA) is formally defined as an
algorithm that makes random choices during its
execution to produce a result. This implies that,
even for the same input data, the algorithm might
produce different results at different runs, and,
moreover, the results may be incorrect. There-
fore, statements regarding properties of these
algorithms are necessarily of probabilistic nature.

Formally, the probabilistic parameters ",
ı 2 .0; 1/ called accuracy and confidence,
respectively, are introduced. For any � , the PAC
approach provides an empirical violation which is
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an approximation OVN
�
�; q.1:::N /

�
to V .�/ within

accuracy ", and this event holds with confidence
1 � ı.

Monte Carlo Randomized Algorithm
Given a design � 2 Rn, a Monte Carlo
randomized algorithm (MCRA) is a randomized
algorithm that provides an approximation
OVN
�
�; q.1:::N /

�
to V .�/ based on the multisample

q.1:::N /. Given accuracy " and confidence ı, the
approximation may be incorrect, i.e.,

ˇ̌̌
V .�/� OV

�
�; q.1:::N /

�ˇ̌̌
> �

but the probability of such an event is bounded,
and it is smaller than ı.

In general, the results obtained by an MCRA
as well as its running time would be different
from one run to another since the algorithm is
based on random sampling. As a consequence,
the computational complexity of such an algo-
rithm is usually measured in terms of its expected
running times. MCRA are efficient because the
expected running time is of polynomial order
in the problem size (Tempo et al. 2013). One-
sided and two-sided Monte Carlo randomized
algorithms may be also defined (Tempo and Ishii
2007).

To derive the probabilistic properties of
MCRA, we need to state the so-called Hoeffding
inequality, which provides a bound on the error
between the probability of violation and the
empirical violation (Vidyasagar 2002).

Two-Sided Hoeffding Inequality
For fixed � 2 Rn and " 2 .0; 1/, we have

Prob
n
q.1:::N / 2 QN W

ˇ̌
ˇV .�/� OV

�
�; q.1:::N /

�ˇ̌ˇ
> �

o
� 2e�2N�2 :

For fixed accuracy ", we observe that the right-
hand side of this equation approaches zero
exponentially. Furthermore, if we bound the
right-hand side of this equation with confidence
ı, we immediately obtain the classical (additive)

Chernoff bound (Chernoff 1952) which is stated
next.

Chernoff Bound
For any " 2 .0; 1/ and ı 2 .0; 1/, if

N � 1

2�2
log

2

ı

then, with probability greater than 1� ı, we have

ˇ̌
ˇV .�/ � OV

�
�; q.1:::N /

�ˇ̌ˇ � �:

The Chernoff bound provides an indication of the
required sample size, i.e., it provides the so-called
sample complexity. More precisely, the sample
complexity of a randomized algorithm is defined
as the minimum cardinality of the multisample
q.1:::N / that needs to be drawn in order to achieve
the desired accuracy " and confidence ı. Notice
that the confidence enters the Chernoff bound
in a logarithmic fashion, while accuracy enters
quadratically, and therefore, it is much more
expensive computationally. Other large deviation
inequalities and sample complexity bounds are
discussed in the literature, including in particular
the (multiplicative) Chernoff bound and the log-
over-log bound for computing the so-called em-
pirical maximum (Tempo et al. 1997). We refer
to Vidyasagar (2002) for additional details.

Remark 1 (Las Vegas Randomized Algorithms)
Las Vegas randomized algorithms (LVRA) are
based on random samples generated according
to a discrete probability density function, instead
of a continuous pdf as in the case of Monte
Carlo. Therefore, contrary to MCRA, LVRA pro-
vide the “correct answer” with probability one
because the entire search space can be fully ex-
plored. However, because of randomization, the
running time of an LVRA is random (similarly to
MCRA) and may be different in each execution.
Hence, it is of interest to study the expected
running time of the algorithm. It is noted that
the expectation is with respect to the random
samples generated during the execution of the
algorithm and not to the problem data. Classical
examples of LVRA are within computer science
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and include the well-known randomized quick-
sort (RQS) algorithm for ranking numbers, which
is implemented in a C library of the UNIX op-
erating system (Knuth 1998). Other more recent
developments in systems and control regarding
these algorithms are for the PageRank compu-
tation in the Google search engine (Ishii and
Tempo 2010), consensus over large-scale net-
works (Fagnani and Zampieri 2008), localization
and coverage control of robotic networks (Bullo
et al. 2012), and opinion dynamics (Frasca et al.
2013). These problems are generally formulated
in a graph theoretic setting consisting of nodes
and links, and either the nodes or the links are
randomly selected according to a given “local”
protocol (often called gossip) based on a given
discrete pdf.

Randomized Algorithms for Control
Design

This section deals with control problems which
require computing a design � 2 Rn satisfying
some probabilistic properties on the uncertain
constraints f .�; q/. Two classes of problems,
feasibility and optimization, are considered.

Feasibility Problem
Given uncertain constraints f .�; q/ and level /2
.0; 1/, compute � 2 Rn such that

V .�/ D Prob fq 2 Q W f .�; q/ > 0g �/ : (1)

The second problem relates to the optimization of
a linear function of the design parameters under
probability constraints.

Optimization Problem
Given uncertain constraints f .�; q/, a linear ob-
jective function cT � and level p 2 .0; 1/, solve
the constrained optimization problem

min� cT �

subject to V .�/ D Prob fq 2 Q W f .�; q/ > 0g
� p: (2)

Optimization problems subject to constraints of
the form V .�/ D Prob fq 2 Q W f .�; q/ > 0g �
/ are often called chance constraint optimization
(Uryasev 2000).

Most of the algorithms that have been stud-
ied in the literature follow two main paradigms
and are often based on the following convexity
assumption.

Convexity Assumption
The uncertain constraint f .�; q/ is convex in �
for any fixed value of q 2 Q.

The two solution paradigms that have been
proposed are now summarized. The algorithms
have been implemented in the Toolbox RACT
(Randomized Algorithms Control Toolbox) for
probabilistic analysis and control design in the
presence of uncertainty (Tremba et al. 2008).

Paradigm 1 (Sequential Approach)
Under the convexity assumption, we study
the Feasibility Problem (1). The algorithms
presented in the literature (see, e.g., (Calafiore
et al. 2011) for finding a probabilistic feasible
design) follow a general iterative scheme (Fig. 1),
which consists of successive randomization steps
to handle uncertainty and optimization steps to
update the design parameters. In particular, these
algorithms share two fundamental ingredients:
1. A probabilistic oracle which performs a

random check, with the objective to assess
whether the probability of violation V

�
�.k/

�
of the current candidate solution O�.k/ is
smaller than a given level p and returns a
certificate of unfeasibility, that is, a value

q.k/ such that f
� O�.k/; q.k/

�
> 0, when the

candidate solution is found unfeasible
2. An update rule upd which exploits the con-

vexity of the problem for constructing a new
candidate solution O�.kC1/ based on the proba-
bilistic oracle outcome
In this paradigm, the algorithm returns a de-

sign O�k such that

V
� O�k

�
D Prob

n
q 2 Q W f

� O�k; q
�
> 0

o
� �
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Randomized Methods for Control of Uncertain Sys-
tems, Fig. 1 Paradigm for sequential design consisting
of probabilistic oracle and update rule

is larger than 1�ı. That is, the violation probabil-
ity associated to the design O�k is smaller than the
level �, and this event holds with large confidence
1 � ı.

Paradigm 2 (Scenario Approach)
Under the convexity assumption, we study the
optimization problem (2). We remark that, even
under these assumptions, solving this problem
is very hard computationally because the prob-
abilistic constraint is nonconvex. To alleviate this
difficulty, we reformulate problem (2) as a so-
called scenario problem introduced in Calafiore
and Campi (2006), which is now described.

For randomly extracted scenarios q.1:::N /, this
approach requires to compute � 2 Rn that solves
the convex optimization problem subject to a
finite number of sampled constraints

O�N D min� cT �

subject to f
�
�; qi

� � 0; i D 1; : : : ; N
(3)

In this paradigm, the algorithm returns in one-
shot a design O�N and the sample complexity N
such that

V
� O�N

�
D Prob

n
q 2 Q W f

� O�N ; q
�
> 0

o
� �

is larger than 1�ı. That is, the violation probabil-
ity associated to the design O�N is smaller than the
levelp, and this event holds with large confidence
1 � ı.

Concluding Remarks

Other probabilistic approaches have been pro-
posed in the literature for control design, which
are not based on the convexity assumption. A
noticeable example is the strategy based on statis-
tical learning theory (Valiant 1984; Vapnik 1998)
which has the objective to design a controller
without any convexity assumptions (Alamo et al.
2009). In particular, in Alamo et al. (2013), the
general class of sequential probabilistic valida-
tion (SPV) algorithms has been introduced. A
specific SPV algorithm tailored to scenario prob-
lems, providing a sequential scheme for dealing
with the optimization problem, has been recently
studied in Chamanbaz et al. (2013).
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Abstract

When a state variable description of a linear
system is known, then its input–output behavior
can be easily realized by interconnecting simpler
components. The problem of realization refers to
the following: given an input–output description
such as the impulse response, or the transfer
function in the case of time-invariant systems,
find a state variable description, the impulse re-
sponse of which is the given one. Existence and
minimality conditions are discussed. We are in-
terested in realizations of minimum order which
is the case when the realization is both control-
lable and observable. Realizations in both the
continuous-time and discrete-time systems are
discussed.

Keywords

Controllability; Irreducible; Minimal order;
Observability; Realizations

Introduction

The problem of system realization is as follows:
given an external description of a linear system,
specifically its impulse response (or its transfer
function in the case of a time-invariant system),
determine an internal state variable description
that generates the given impulse response (or the
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transfer function). The name reflects the fact that
if a (continuous-time) state variable description
is known, an operational amplifier circuit can
be easily built to realize (actually simulate) the
system response.

Before we discuss realizations, we review the
key relations between internal state variable and
external impulse response or transfer function
descriptions.

Consider a system described by

Px D A.t/x C B.t/u; y D C.t/x CD.t/u;
(1)

where x.t/, the state vector, is a column vector of
dimension n (x.t/ 2 Rn) and u.t/ 2 Rm, y.t/ 2
Rp are the inputs and outputs of the system.
A.t/ 2 Rn�n, B.t/ 2 Rn�m, C.t/ 2 Rp�n,
D.t/ 2 Rp�m with entries continuous functions.
The output response is given by

y.t/ D C.t/˚.t; t0/x0 C
Z t

0

H.t; �/u.�/d�;

(2)

where ˚.t; t0/ is the n � n transition matrix of
Px D A.t/x, x.t0/ D x0 is the initial condition,
andH.t; �/ is the p�m impulse response matrix
given by

H.t; �/ D

8̂<
:̂
C.t/˚.t; �/B.t/

CD.t/ı.t � �/ t � �;

0 t < �;

(3)

where ı.t � �/ is the impulse (delta or Dirac)
function applied at time t D � . Recall that
H.t; �/ denotes the response at time t when an
impulse input is applied at time � assuming zero
initial conditions.

In the time-invariant system, (1) becomes

Px D Ax CBu; y D Cx CDu; (4)

and the output response in this case is

y.t/ D CeAtx0 C
Z t

0

H.t; �/u.�/d�; (5)

where, without loss of generality, the initial time
t0 was taken to be zero. In this case, the impulse
response is

H.t; �/ D
(
CeA.t��/B CDı.t � �/ t � �;

0 t < �:

(6)

Recall that time invariance implies that
H.t; �/ D H.t � �; 0/, and so � , which is the
time an impulse input is applied to the system,
can be taken to be zero .� D 0/, without loss of
generality, to give H.t; 0/. The transfer function
of the system is the (one-sided or unilateral)
Laplace transform of H.t; 0/, namely,

H.s/ D LŒH.t; 0/� D C.sI �A/�1B CD: (7)

A realization of H.t; �/ is any state variable
description (1), fA.t/; B.t/; C.t/;D.t/g, the im-
pulse response of which is H.t; �/, that is, (3)
is satisfied, similarly for the time-invariant case
when (6) is satisfied.

In the time-invariant case, a realization is com-
monly defined in terms of the transfer function
matrix H.s/. Then a realization of H.s/ is any
state variable description (4), fA;B;C;Dg, the
transfer function of which is H.s/, that is, (7) is
satisfied.

There are alternative conditions under which a
set of fA;B;C;Dg is a realization of someH.s/.
To this end, expand H.s/ in a Laurent series to
obtain

H.s/ D H0 CH1s
�1 CH2s

�2 C � � � : (8)

The matrices Hi , i D 0; 1; 2; : : : are called
Markov parameters of the system and can be
determined as follows:

H0 D lim
s!1H.s/; H1 D lim

s!1 s.H.s/ �H0/;

Hk D lim
s!1 sk.H.s/ �†k�1

iD0Hi s
�i /; k � 1:

It can be shown that a set fA;B;C;Dg is a
realization of H.s/ if and only if

H0 D D and Hi D CAi�1B; i D 1; 2; : : : :

(9)
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Below we introduce conditions for the existence
of a realization givenH.t; �/ or H.s/.

Note that if a realization does exist, then there
is an infinite number of realizations. One could
see this, for example, by considering equivalent
descriptions of a realization – all have the same
impulse response or transfer function.

Existence andMinimality

It can be shown that H.t; �/ is realizable as the
impulse response of a system described by (1) if
and only if H.t; �/ can be decomposed into

H.t; �/ D M.t/N.�/CD.t/ı.t � �/; (10)

for t � � , where M; N , and D are p �
n; n � m; and p � m matrices, respectively,
with continuous real-valued entries and with n
finite. If in addition to (10), M.t/ and N.t/ are
differentiable and

H.t; �/ D H.t � �; 0/; (11)

thenH.t; �/ is realizable as the impulse response
of a system described by a time-invariant sys-
tem (4).

In the time-invariant case, it is more common
to work with a given transfer functionH.s/. Then
H.s/ is realizable, as the transfer function matrix
of a time-invariant system described by (4), if and
only if H.s/ is a matrix of rational functions and
satisfies

lim
s!1H.s/ < 1; (12)

that is, if and only if H.s/ is a proper rational
matrix or equivalently if and only if

lim
s!1H.s/ D D (13)

is a constant.
We are interested in realizations (4) of a given

transfer function matrix H.s/ of least order n
(A 2 Rn�n), called minimal or irreducible real-
izations of H.s/.

The following two results completely solve the
minimal realization problem.

Theorem 1 An n-dimensional realization
fA;B;C;Dg of H.s/ is minimal (irreducible,
of least order) if and only if it is both reachable
(or controllable) and observable.

Note that if .A;B/ is not controllable, then by
separating the controllable and uncontrollable
parts of the system by an equivalence transforma-
tion and taking only the controllable part, one can
still obtain H.s/ because the uncontrollable part
of the system cancels out in H.s/. Similarly for
observability. So controllability and observability
are necessary conditions for minimality. It can be
shown that they are also sufficient.

Theorem 2 If a minimal realization of order n is
found, then any other minimal realization may be
obtained via equivalence transformation.

Specifically, if fA;B;C;Dg and f NA; NB; NC ; NDg
are realizations ofH.s/ and fA;B;C;Dg is min-
imal, then f NA; NB; NC; NDg is also minimal if and
only if there exists a nonsingular matrix P such
that

NA D PAP�1; NB D PB; NC D CP�1; ND D D:

(14)

Discrete-Time Linear Systems

The definitions and results for the discrete-time
case are completely analogous to the ones in
the continuous-time case. They are summarized
below for completeness.

Consider systems described by

x.k C 1/ D A.k/x.k/C B.k/u.k/;

y.k/ D C.k/x.k/CD.k/u.k/:
(15)

The output response is

y.k/D C.k/˚.k; k0/x0C
k�1X
iDk0

H.k; i/u.i/; k>k0;

(16)

where ˚.k; k0/ is the n � n transition matrix and
H.k; i/ is the p � m discrete-impulse (pulse)
response:
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˚.k; l/ D
�
A.k � 1/ � � �A.l/ k > l;

I k D l ;
(17)

H.k; i/ D
8<
:
C.k/˚.k; i C 1/B.i/ k > i;

D.k/ k D i ;

0 k < i:
(18)

In the time-invariant case, Eqs. (15) and (16)
become

x.k C 1/ D Ax.k/C Bu.k/;

y.k/ D Cx.k/CDu.k/; (19)

and

y.k/ D CAkx0 C
k�1X
iD0

H.k; i/u.i/; k > 0;

(20)

where, without loss of generality, k0 is taken to
be zero.

The discrete-impulse (pulse) response is now
given by

H.k; i/ D

8̂
<
:̂
CAk�.iC1/B k > i;

D k D i;

0 k < i:

(21)

Since the system is time invariant, H.k; i/ D
H.k � i; 0/ and i , the time the pulse input is
applied, can be taken to be zero. The transfer
function matrix for (19) is the (one-sided or
unilateral) z-transform of H.k; 0/:

H.z/ D ZfH.k; 0/g D C.zI � A/�1B CD:

(22)
It can be shown that given a p � m matrix

H.k; i/, k � i , it is realizable as the pulse
response of a system (15) if and only if H.k; i/
can be decomposed as

H.k; i/ D
(
M.k/N.i/ k > i;

D.k/ k D i:
(23)

If, in addition, H.k; i/ D H.k � i; 0/, then it is
realizable via a time-invariant description (19).

Similarly to the continuous-time case, H.z/
is realizable as the transfer function matrix of a
system described by (19) if and only if

lim
z!1H.z/ < 1: (24)

A realization (19) of H.z/ is minimal if and
only if it is reachable (controllable from the
origin) and observable. And if (19) is a minimal
realization of H.z/, then any other minimal real-
ization is equivalent to (19).

Realization Algorithms

Given a transfer functionH.s/ (or H.z/), we are
interested in finding a minimal (irreducible, or of
least order) realization of the form (4) (or (19)).

First note that there are methods to determine
the order n of a minimal realization directly
from H.s/ via the characteristic polynomial
and notions such as McMillan degree of H.s/
or via the Markov parameters of H.s/ and
the Hankel matrix. This can be done without
finding a minimal realization. Knowing the
order of a minimal realization in advance
is useful as it provides a guide as to what
we should expect when we determine an
actual realization. Details may be found in the
references below.

In special cases, it is possible that the realiza-
tion algorithm results directly in a controllable
and observable and therefore minimal realization.
It is more common however for the algorithm
to result in just an either controllable or observ-
able realization, in which case an extra step is
needed to isolate the uncontrollable, say, part
of the realization and take only the part that it
is both controllable and observable. The reader
should consult any of the references below for
detailed descriptions of several realization algo-
rithms.

Here an example is given of a single-input,
single-output system where the resulting real-
ization is controllable and observable, therefore
minimal.

Example 1

H.s/ D b2s
2 C b1s C b0

s3 C a2s2 C a1s C a0
:
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A D
2
4 0 1 0

0 0 1

�a0 �a1 �a2

3
5 ; B D

2
4 00
1

3
5 ;

C D �
b0; b1; b2

	
;

is controllable ((A, B) have a form called
controller form) and observable and therefore
minimal realization of H.s/; note that all
cancellations are assumed to have already taken
place between numerator and denominator of
a transfer function H.s/. This algorithm easily
generalizes to the case when the degree of the
denominator ofH.s/ is n (in this example it is 3).
Note that if lims!1H.s/ D D ¤ 0, then apply
the previous algorithm to OH.s/ D H.s/ � D to
obtain A, B , and C .

Summary

The state variable realization of impulse
responses and transfer functions was one of
the early problems addressed by system theory.
Its solution provides clear understanding of the
relations between external (input–output) and
internal descriptions of systems. A key result is
that any minimal order realization is controllable
and observable. Many realization algorithms
may be found in the literature. Extensions to
polynomial matrix descriptions can also be found
in the literature, as well as extensions to partial
realizations.

Cross-References

�Linear Systems: Continuous-Time, Time-In-
variant State Variable Descriptions

�Linear Systems: Continuous-Time, Time-Vary-
ing State Variable Descriptions

�Linear Systems: Discrete-Time, Time-Invariant
State Variable Descriptions

�Linear Systems: Discrete-Time, Time-Varying,
State Variable Descriptions

�Linear Systems: Continuous-Time Impulse Re-
sponse Descriptions

�Linear Systems: Discrete-Time Impulse Re-
sponse Descriptions

Recommended Reading

A clear understanding of the relationship between
external and internal descriptions of systems is
one of the principal contributions of systems
theory. This topic was developed in the early
1960s with original contributions from Gilbert
(1963) and Kalman (1963). The role of control-
lability and observability in minimal realization
is due to Kalman (1963); see also Kalman et al.
(1969). For extensive historical comments, see
Kailath (1980). The time-varying case is treated
in Brockett (1970), Antsaklis and Michel (2006),
and Rugh (1996).
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Abstract

RTO aims to optimize the operation of the pro-
cess taking into account economic terms directly.
There are several fundamental gears for smooth
operating of an RTO solution. The RTO loop is an
extension of feedback control system and consists
of subsystems for (a) steady-state detection, (b)
data reconciliation and measurement validation,
(c) process model updating, and (d) model-based
optimization followed by solution validation and
implementation. There are several alternatives for
each one of these subsystems. This contribution
introduces some of the currently used approaches
and gives some perspectives for future works in
this area.

Keywords

Data reconciliation; Model updating; Online
optimization; Parameter selection; Steady-state
detection

Introduction

Effectiveness, efficiency, product quality, process
safety, and low environmental impact are the
main driving forces for the improvement of the
operation of industrial processes. Real-time (or
online) optimization (RTO) is one of the options
that are available to achieve these goals and is
attracting considerable industrial interest due to
its direct and indirect benefits.

RTO systems are model-based, closed-loop
process control systems whose objective is to
maintain the process operation as nearly as pos-
sible to the optimal operating point. Such RTO
systems use rigorous process models and current
economic information to predict the optimal pro-
cess operating conditions. Additionally, RTO can
mitigate and reject long-term disturbances and
performance losses (e.g., due to fouling of heat
exchangers or deactivation of catalysts).

The direct benefit from applying RTO is
improving the economic performance in terms
of increasing the profit of the plant and reducing
energy consumption and pollutant emissions.

These are also called the online benefits. The
indirect benefits result from the tools used in the
implementation of RTO. For instance, a better
understanding of the processes can be employed
to debottleneck the plant and to reduce operating
difficulties. In addition, abnormal measurement
information obtained from gross error detection
can help instrumentation and process engineers
to troubleshoot the plant instrument errors.
Parameter estimation is very useful for process
engineers to evaluate the equipment conditions
and to identify decreasing efficiencies and other
sources of problems. Furthermore, the detailed
process simulation of the model used in online
optimization can be used for process monitoring
and serve as a training tool for new operators.
Finally, the rigorous process model can be
used for process maintenance, advanced process
control, process design, facility planning, and
process monitoring.

Real-time optimization (RTO) solutions have
been developed since the early 1980s, and nowa-
days there are many petrochemical and chemi-
cal applications, especially in the production of
ethylene and propylene in fluid catalytic cracking
units (FCCUs) (Darby et al. 2011). Other suc-
cessful industrial applications are mentioned in
Alkaya et al. (2009) with the respective economic
returns.

Control Layers and the RTO Concept

Usually the process control is stratified into sev-
eral layers, which have different response times
and control objectives. RTO is located in an
intermediate layer that provides the connection
between plant scheduling (medium-term plan-
ning) and the control system (short-term process
performance). In a plant control hierarchy, pro-
cess disturbances are controlled using process
controllers, whereas the RTO system must track
changes in the optimum operating conditions
caused by low-frequency process changes (e.g.,
raw material quality and composition, catalyst
deactivation).

The typical structure of an RTO system is
shown in Fig. 1, which depicts the elements
of the closed-loop system. The RTO loop is
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Real-Time Optimization of Industrial Processes, Fig. 1 Basic structure of the traditional RTO

an extension of the feedback control system
and consists of subsystems for (a) steady-state
detection, (b) data reconciliation and measure-
ment validation, (c) process model updating,
and (d) model-based optimization followed
by solution validation and implementation.
Once the plant operation has reached a steady
state, the plant data .y D ŒYe; Ys; Y r�/ are
gathered and validated to detect and correct
gross errors in the process measurements, and
at the same time the measurements may be
reconciled using material and energy balances to
ensure that the data set used for model updating
is consistent. These validated measurements
are used to estimate model parameters .�/

to ensure that the model represents the plant
faithfully at the current operating point. Then,
the optimum controller set points .YsSET/ and
manipulated targets .UTARGETS and UeTARGETS/

are calculated using the updated model and are
transferred to the advanced process controllers
after they have been validated to be effectively
applied.

Each layer in Fig. 1 has its own specific tasks
as discussed in the following:

1. Regulatory layer. This layer is focused on
basic (e.g., temperature, flow rate) and inven-
tory (e.g., level and pressure) control ensuring
safety and operational stability for the indus-
trial plant. The holdups of vapors and gases
are measured by pressure sensors, while the
holdups of liquids and solids are measured
by level and weighing sensors. In the case
of unstable processes, the regulatory layer is
also responsible for their stabilization, e.g.,
by temperature control of industrial reactors.
No industrial process can operate without this
control layer. The typical operation time scan
is in the order of seconds. For its design,
typical questions that have to be answered
are the following: “How to ensure safe unit
operation?” “How to quickly meet the de-
mands coming from the supervisory layer or
from the operators?” “How to prevent distur-
bances to propagate throughout the plant?”
The control technology that prevails in this
layer is SISO (single-input-single-output) PID
controllers, with very few cases where the
derivative action is effectively employed. In
Fig. 1, Yr are the controlled variables of this
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layer (e.g., levels, flow rates, pressures, tem-
peratures, pH), and Ur are the correspond-
ing manipulated variables, typically control
valves.

2. Supervisory layer. This layer is concerned
with the quality of the final product. The goal
is to ensure the specifications without infring-
ing the operating limits of the equipment.
Typically, in this layer there is a strong interac-
tion between the controlled variables, requir-
ing tailored multi-look control structures or
the use of multivariate control techniques. The
dominant advanced technology in this layer is
model predictive control (MPC). In this layer
the calculations and updates are performed on
the time scale of minutes and the typical asso-
ciated question is “how to ensure the quality of
the final product while satisfying the operating
constraints and improving the profitability by
reducing the variability of the product param-
eters?” Here the controlled variables (Ys) are
usually related to the product quality and the
manipulated variables are the set points for the
regulatory layer YrSET and additional manipu-
lated variables (Us) not used by the regulatory
layer (e.g., variable frequency drive).

3. RTO layer. Here the main focus is the prof-
itability of the process. Specifications and op-
erating points (i.e., set points and targets for
the manipulated variables) are determined by
solving an optimization problem that aims
at maximizing the profitability of the pro-
cess under stationary conditions. When the
optimal operating point is close to the op-
erational limits, the real-time optimization is
quite straightforward, since it is enough to take
the process to these limits, which is usually
done by solving a linear programming (LP)
optimization problem. Such simple solutions
are effective especially in cases where it is
known that to maximize or to minimize the
flow rate of a given stream will maximize the
profitability. As this kind of solution can be
easily implemented, most commercial predic-
tive controllers already have an LP or QP layer
integrated, using as a model the gain of the
dynamic model used in the MPC. However,
for processes with large recycling streams and

pronounced nonlinearity, this type of solution
is not enough to bring the system to its op-
timal operating conditions. In this case, it is
essential to use a nonlinear optimizer that aims
at driving the system to operate in the best
operating region. When the industrial process
works essentially in steady state, the problem
can be solved using stationary models. The
solutions offered on the market typically in-
volve the use of a stationary process simulator
(e.g., Aspen Plus, PRO II). The RTO sampling
times are in the time scale of hours and the
questions to be answered are the following:
“What is the best way of operation?” “How
to increase the profitability of the process?”
“How to decrease energy consumption and to
increase the process efficiency?”

Four Elements of Classical Real-Time
Optimization

A standard RTO solution requires that all four
calculation blocks illustrated in Fig. 1 work to-
gether smoothly. In fact, each block can be for-
mulated as an optimization problem by itself.
Sometimes these optimization problems are com-
bined together. Below the alternative techniques
that can be applied to each of these subsystems
are discussed.

Steady-State Detection (SSD)
As indicated in Fig. 1, the RTO loop execution
begins with the detection of a steady state. Iden-
tifying a steady state may be difficult because
process variables are noisy and measurements do
not settle at a constant value. Being at a steady
state can be defined as an acceptable constancy
of the measurements over a given period of time.
Therefore, tests for stationarity are commonly
based on checking the constancy of the measured
quantities.

Mejía et al. (2010) compared 6 different ap-
proaches to SSD using 5,760 simulated data sets.
They concluded that the method based on the
estimation of the absolute value of the first and
the second derivatives defined by
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IDER D
ˇ̌̌
ˇ̌cdy
dx

ˇ̌̌
ˇ̌C 10

ˇ̌̌
ˇ̌bd2y
dt2

ˇ̌̌
ˇ̌ (1)

gives the best results. Although this idea is quite
simple, as being at a steady state means zero
derivatives by definition, it has some implemen-
tation issues, due to signal noise and outliers.
These problems can be reduced by smoothing
the plant data using smoothing splines, noncausal
Butterworth filters, or wavelet decompositions.
The second best compared approach was the local
autocorrelation (Mejía et al. 2010) followed by
the two statistical nonparametric tests of indepen-
dence hypothesis proposed by Bebar (2005) and
by the method of Cao and Rhinehart (1995).

Data Reconciliation (DR)
Within the mathematical models of industrial
processes, the balance equations that result from
conservation laws of mass, energy, etc., are the
core that cannot be subject to debate. If the mea-
sured data do not satisfy the balance equations,
this fact must be attributed to measurement errors
or to fundamental model inadequacies. Ruling
out the latter, as measurement errors are always
present, before using the measured data, they
should be adjusted to obey the conservation laws
and other constraints, e.g., of their ranges. The
adjustment using optimization techniques com-
bined with the statistical theory of errors is called
data reconciliation. Unfortunately the adjustment
of all variables can be greatly affected by “gross
errors” in one variable, so such errors must be
detected.

The relationship between a measurement of a
variable and its true value can be represented by

ym D y C
error‚ …„ ƒ

er C eg (2)

where ym and y are the measured and true values,
while er and eg are the random and gross errors,
respectively. The random errors .er / are assumed
to be zero mean and normally distributed (Gaus-
sian), since they are the result of the simultaneous
effect of several causes. The gross errors .eg/
are caused by large nonrandom events. They can

be subdivided into measurement-related errors,
such as malfunctioning sensors (e.g., incorrect
calibration, sensor degradation, or damage to the
electronics), and processes-related errors, such as
process leaks.

In the absence of gross errors, the simplest
version of data reconciliation can be stated as a
quadratic programming (QP) problem

min
y

1

2
.y � ym/

TQ�1.y � ym/ (3)

subject to the linear or linearized constraint re-
lated to the process model, written as

A � y � c D 0:

The covariance matrix .Q/, which is usually
diagonal, captures the variance of the sensors and
is responsible to distribute the errors among the
measurements .ym/. The solution of this problem
is the reconciled value that for this simple case is
given analytically by

y D �
I �QAT .AQA/�1A	 ym

CQAT .AQAT /�1c:

A rigorous formulation of the reconciliation
problem is possible even with nonlinear
constraints; only the general existence and
uniqueness of a solution is not warranted
theoretically.

Several statistical tests have been constructed
for the detection of gross errors. Some of them
are based in the distribution of the constraint
residuals, i.e., rc D A � ym � c, and others
are based on the distribution of the estimated
error after the reconciliation procedure, i.e., Oe D
ym � y. The evaluation of rc does not require
solving previously the associated data reconcil-
iation problem. For a complete discussion and
review, see Narasimhan and Jordache (1999) and
Sequeira et al. (2002).

Model Updating
A key, yet difficult, decision in model parameter
adaptation is to select the parameters that are
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adapted. These parameters should be identifiable
and represent actual changes in the process, and
their adaptation should help to approach the true
process optimum. Clearly, the smaller the subset
of parameters, the better the confidence in the
parameter estimates and the lower the required
excitation (also the better the regularization ef-
fect). But too few adjustable parameters can lead
to misleading models and thus wrong proposals
for operational changes.

In general, the parameter estimation and up-
dating are limited not only by the lack of in-
formation available from experimental data but
also by the correlation between the parameters
that are identified. The estimation of correlated
parameters leads to a high degree of uncertainty
in the model, since different combinations of
parameter values lead to the same value of the
objective function in the estimation problem.

The selection of the right number of parame-
ters to be identified can be done by the analysis of
the sensitivity matrix .S/. The elements of S; sij ,
are the partial derivatives of the measurement yi
with respect to the parameter �j evaluated at the
current value of the parameter .�0/, i.e.,

sij D


@yi

@�j

�ˇ̌ˇ̌
�D�0

: (4)

In general, different parameters and measure-
ments have distinct magnitudes. Therefore, scal-
ing is a key issue that has a strong impact on
the results. Traditionally each element of the
matrix S is scaled by the initial guess �0j of
the parameter and by the average value of the
measurement i.ysi /. The scaled elements ss;ij are
then given by

ss;ij D


�0j

ysi

�

@yi

@�j

�ˇ̌ˇ̌
�D�0

(5)

This scaling procedure has some problems, once
it requires both a good initial guess for the pa-
rameters and representative average values for the
measurements. But the main drawback is that it
does not consider the multivariable nature exist-
ing among all parameters and outputs. To solve
these drawbacks, Botelho et al. (2012) proposed

to apply diagonal scaling matrices L and R that
result from the solution of the convex optimiza-
tion problem to find the minimized condition
number of the sensitivity matrix, �.LSR/, i.e.,

minL;R �.LSR/

s:t:L 2 <nyXny; diagonal and nonsingular
R 2 <n�Xn� ; diagonal and nonsingular

(6)

This convex optimization problem can be solved
using the LMI (linear matrix inequality) approach
as described by Boyd et al. (1994). With the
optimized scaling matrices L and R, the scaled
sensitivity matrix Ss is given by

Ss D LSR (7)

With Ss , the best subset of parameters to be es-
timated can be determined using the non-square
relative gain array matrix (NSRGA) as also pro-
posed by Botelho et al. (2012). The NSRGA
can be easily calculated for the scaled sensitivity
matrix by

NSRGA .Ss/ defSs ı .S	s /T (8)

where .S
	
s /
T is the transpose of the pseudo-

inverse of Ss and ı is the entrywise product (also
known as the Hadamard or element-wise prod-
uct). The rows of NSRGA .Ss/ are related to the
output measurements, whereas the columns are
related to the parameters. The sum of the values
in each column, whose values can vary between
0 and 1, reflects the relevance of each parameter,
and it can be used to sort in descending order
their influence on the outputs. When the sum of a
column is close to 1, the corresponding parameter
has a small correlation with the other ones and a
strong influence on the output measurements.

Figure 2 illustrates the typical ordering pro-
duced by sorting the NSRGA .Ss/ in descending
order. Thus, it is possible to have an idea of which
parameters should be selected for estimation. The
values presented in this figure suggest that the
parameters P11 and P4 have very small corre-
lation with the others and should be selected as
updated parameters, whereas the parameters P12
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Real-Time Optimization of Industrial Processes, Fig. 2 Illustrative example of using NSRGA .Ss/ to rank the
parameters

and P1 show the opposite behavior and should
not be updated.

Solving the Optimization Problem
Nonlinear programs for RTO can be formulated
using models of different complexities. For ex-
ample, RTO can be based on process models sim-
ilar to those used for design and analysis, using
commercial simulators (e.g., Aspen Plus, PRO II,
HYSYS, etc.). On the other hand, because these
problems need to be solved at regular intervals
(at least every few hours), detailed simulation
models can be partly replaced by correlations or
operating curves that are fitted to the process and
updated on a longer time scale.

If a rigorous process model is used, the num-
ber of nonlinear equations can be very large. The
model is usually built by linking smaller sub-
models. The optimization problem can be for-
mulated as the following nonlinear programming
problem (NLP):

minxM;SM f .xM ; SM /
s:t:

M1 .xM1; SM1I �M1/ D 0
:::

Mn .xMn; SMnI �Mn/ D 0

OC .xM ; SM / � 0

xM D ŒxM1; : : : ; xMn� ; SM D ŒSM1; : : : ; SMn� ;
(9)

whereMi are the unit modules that can be solved
by a tailored procedure in the modular approach
or all together in the equation-oriented approach.
Each unit model Mi has internal variables xMi

and parameters �Mi . These unit models are con-
nected by the input and output streams SMi .
Additionally, there are operating constraints OC
to capture the possible lower and upper bounds
and other equipment constraints. The objective
function f .xM ; SM / is based on an economic
model that involves the raw materials, products,
and operating costs.

Successive quadratic programming (SQP) has
become the most popular method for solving
these nonlinear constrained optimization prob-
lems. SQP converges the equality and inequality
constraints simultaneously with the optimality
conditions. This strategy requires relatively few
function evaluations and often performs effi-
ciently for process optimization problems. The
NLP solver can be implemented in a nonintrusive
way, similar to recycle convergence modules that
are already in place. As a result, the structure of
the simulation environment and the unit operation
blocks does not need to be modified in order
to include the optimization, so that SQP can
be easily incorporated within existing modular
simulators and therefore be applied directly
to flow sheets modeled in these commercial
simulators. However, in this case derivative
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information must be obtained by numerical
differentiation which increases the effort and
slows down convergence near the optimum.

For fully equation-oriented models with the
exact first and second derivatives for all con-
straints and objective functions, efficient NLP
algorithms were developed. For instance, large
equation-based models can be solved efficiently
with structured barrier NLP solvers (see Biegler
2010 for a detailed overview). But for problems
where function evaluations are expensive, and
gradients and Hessians are difficult to obtain, it
is not clear that large-scale NLP solvers should
be applied. Black-box optimization models with
inexact (or approximated) derivatives and few de-
cision variables are poorly served by large-scale
NLP solvers, and derivative-free optimization al-
gorithms should be considered instead. For the
standard RTO problems formulated using mod-
ular process simulator model, SQP and reduced-
space SQP methods are expected to perform well
(see Alkaya et al. 2009; Biegler 2010 for detailed
discussion).

After solving the RTO optimization problem,
it is necessary to decide if the solution can be
implemented. For this, it is necessary to ver-
ify if the dominant cause of the plant changes
is noise, since in this case implementing these
changes could lower the profit. Thus, an impor-
tant challenge in RTO results analysis is to deter-
mine when to implement the calculated changes
(Miletic and Marlin 1996).

Summary and Future Directions

RTO aims at optimizing the operation of the pro-
cess taking into account economic terms directly.
There are several fundamental needs for a smooth
operation of an RTO solution. The central point is
the mathematical modeling which can be a com-
plex first principle model or be based on simple
operating curves. If a good model is available, it
is necessary to have a good characterization of
the inlet streams (properties and composition),
to employ data reconciliation and gross error
detection and steady-state identification. Finally,
the efficiency of the optimizer is a key issue.

Due to the time and resources needed to imple-
ment and maintain an RTO solution, a full RTO
project involves a certain high risk. Therefore, in
cases where simpler and easier approaches can be
applied with equivalent economic benefits, they
should be used instead. For processes with large
recycle streams, it is worthwhile to apply the
classical RTO strategy, i.e., the one discussed in
the last section. In this case the optimal solution
is not trivial, once it is not simply the maximal
capacity of the plant. For the cases where the op-
timal operating constraint is a direct consequence
of the operating process capacity, the economic
optimization can be easily included in the LP or
QP layer implemented usually within a model
predictive controller.

In the previous section, the so-called two-
step approach, where the measurements are
used to refine the process model, which is then
used to repeat the optimization, was described.
Several RTO schemes have emerged since the
development of this two-step approach in the
1970s. Recently, it has been proposed to update
the model differently. Instead of adjusting the
model parameters, one updates correction terms
that are added to the cost and constraint functions
of the optimization problem. The technique,
labeled as modifier adaptation (RTO-MA), forces
the modeled cost and constraints to match the
plant values (Gao and Engell 2005; Marchetti
et al. 2009). The main advantage of RTO-MA
compared to the two-step approach lies in its
ability to converge to the true plant optimum,
even in the presence of structural plant-model
mismatch. RTO-MA is a static optimization
method which means that its application to a
continuous process requires waiting for reaching
the steady state before taking measurements,
updating the correction terms, and repeating the
numerical optimization. Hence, several iterations
are generally required before convergence can
be achieved. In contrast, implicit methods, such
as self-optimizing control (Skogestad 2000) and
NCO tracking (François et al. 2005), propose
to adjust the inputs online in a control-inspired
manner. Especially simple to be implemented is
the “self-optimizing” approach, where a feedback
control structure is chosen so that maintaining
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some function of the measured variables constant
automatically maintains the process near an
economically optimal steady state in the presence
of disturbances. The problem is posed from a
plantwide perspective, since the economics are
determined by overall plant behavior.

The classical steady-state RTO has some
drawbacks related to its low frequency of
execution. It is normally run twice or three
times per day and one does not consider the
cost of transiting from one operating condition
to another. Some plants need to respond to
market changes very quickly, like grade changes
in polymerization and petroleum process. In
these processes, market competition requires
the capability to accommodate fast and cost-
effective transitions so that companies can
produce and sell on demand at favorable prices.
To provide this capability, dynamic RTO is
being developed and implemented in industrial
processes. The largest difference between steady-
state and dynamic RTOs is that traditional RTO
only provides optimal operating conditions at
the steady state, while dynamic RTO provides a
trajectory of changes of operating conditions.
Dynamic RTO does not require steady-state
conditions to be applied. The formulation and
solution of the problem DRTO are very similar to
the approach used to solve nonlinear predictive
controllers (NMPC), with the primary difference
the inclusion of economic aspects in the objective
function (Engell 2007).

Cross-References

�Control Structure Selection
� Industrial MPC of Continuous Processes
�Model-Based Performance Optimizing Control
�Model-Predictive Control in Practice

Recommended Reading

As a number of design decisions must be made
in the construction of a RTO system, there
is no single approach how to implement it.
The elements of the solution were discussed

here which should be viewed as a starting
point for further reading. The review paper by
Engell (2007) discusses and compares several
approaches for RTO and DRTO giving a quite
general and broad perspective of the area. For
the reader interested more in the solution and
formulation of the optimization problems, the
book by Biegler (2010) is a very good starting
point and gives a complete discussion about the
solvers currently used, illustrating the application
with several examples. For data reconciliation
and gross error detection the book by Narasimhan
and Jordache (1999) is a good starting point.
Finally, an industrial discussion about RTO
and alternative approaches that have been used
in the industry can be found in Darby et al.
(2011).
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Abstract

Redundancy may occur in different ways in
a robotic system. This entry focuses on the
resolution of kinematic redundancy, i.e., on
the techniques for exploiting the redundant
degrees of freedom in the solution of the inverse
kinematics problem; this is indeed an issue of

major relevance for motion planning and control
purposes.

Keywords

Algorithmic singularity; Kinematic singularity;
Optimization; Redundancy; Task-oriented kine-
matics; Task-space augmentation

Introduction

Redundant robots possess more resources than
those strictly required to execute their task; this
provides the robot with an increased capacity
of facing real-world applications by allowing
to handle performance issues besides the mere
achievement of a given motion trajectory.

Redundancy may occur in the sensory
system, in the mechanical structure, and/or in
the actuation system, thus allowing, e.g., fault
accommodation, multisensory perception, dex-
terous motion, and load sharing. Nevertheless,
unless otherwise specified, by redundant robot it
is meant one that has a kinematically redundant
mechanical structure, i.e., provided with more
degrees of freedom than those strictly required to
execute its task; this also typically leads to a re-
dundancy in the number of actuators and sensors.
Noticeably, kinematic redundancy is usually the
key to handle the avoidance of singular configu-
rations, the occurrence of joint limits, the engage-
ment of obstacles in the workspace, and the mini-
mization of joint torques or energy. In practice, if
properly managed, the increased dexterity char-
acterizing kinematically redundant robots may al-
low them to achieve a higher degree of autonomy.

In principle, no robot is inherently redundant;
rather, there are certain tasks with respect to
which it may become redundant. Nevertheless,
since most papers in the classical literature on the
topic have dealt with robotic manipulators (for
which a general task consists in tracking an end-
effector motion trajectory requiring six degrees
of freedom), a robot arm with seven or more
joints is often considered as a typical example
of an inherently redundant manipulator. However,
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even robot arms with fewer degrees of freedom,
like conventional six-joint industrial manipula-
tors, may become kinematically redundant for
specific tasks, such as simple end-effector posi-
tioning without constraints on the orientation.

In the case of traditional industrial applica-
tions involving nonredundant mechanical struc-
tures, the occurrence of singular configuration
and/or the presence of obstacles in the workcell
resulted in the need of a carefully structured (and
static) working space where the motion of the
manipulator could be planned in advance.

On the other hand, the presence of redundant
degrees of freedom allows motions of the manip-
ulator that do not displace the end effector (the
so-called self-motions or internal motions); this
implies that the same end-effector task can be ex-
ecuted with several different joint motions, giving
the possibility of better exploiting the workspace
of the manipulator and ultimately resulting in
a more versatile robotic arm (see Fig. 1). Such
feature is a key to allow operation in unstructured
and/or dynamically varying environments that
characterize advanced industrial applications and
service robotics scenarios.

The biological archetype of a robotic manip-
ulator is the human arm, which, not surprisingly,
also inspires the terminology used to characterize
the serial-chain structure of a robot arm. Remark-
ably, a simple look at the human arm kinematics
from the torso to the hand allows to recognize
seven degrees of freedom (three at the shoulder,

RedundantRobots, Fig. 1 A self-motion of the arm that
keeps the end-effector positioned at the blue spot. It is
possible to choose configurations that both take the blue
spot and avoid the red obstacle

one at the elbow, and three at the wrist) that make
a manipulator kinematically redundant.

The kinematic arrangement of the human arm
has been replicated in a number of robots of-
ten termed as human-armlike manipulators (see,
e.g., Fig. 2). Manipulators with a larger number
of joints are often called hyperredundant robots
and include – among others – snakelike robots
(Fig. 3).

The use of two or more robotic structures
to execute a task (as in the case of cooper-
ating manipulators or multifingered hands or
multiarm/multilegged robots) also gives rise
to kinematic redundancy. A headed multilimb
structure is typical of a humanoid robot (Fig. 4).
Redundant mechanisms also include vehicle-
manipulator systems (Fig. 5).

Although the realization of a kinematically
redundant structure raises a number of issues
from the point of view of mechanical design, this
entry focuses on the techniques for exploiting
the redundant degrees of freedom in the solution

Redundant Robots, Fig. 2 The Mitsubishi PA-10 ma-
nipulator
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Redundant Robots, Fig. 3 The SnakeRobots.com S7
snake robot prototype

Redundant Robots, Fig. 4 The Honda ASIMO

of the inverse kinematics problem. This is an
issue of major relevance for motion planning and
control purposes.

Task-Oriented Kinematics

The relationship between the N variables rep-
resenting the configuration q of an articulated

Redundant Robots, Fig. 5 The KUKA youBot

manipulator in the joint space and the M vari-
ables describing an assigned task t in an ap-
propriate task space constitutes a task-oriented
kinematics; this can be established at the position,
velocity, or acceleration level. Typically, one has
N � M , so that the joints can provide at least the
degrees of freedom required for the end-effector
task. If N > M strictly, the manipulator is
kinematically redundant.

At the position level, the direct kinematics
equation takes on the form

t D kt.q/ ; (1)

where kt is a nonlinear vector function.
Besides the direct kinematics expressed at the

position level, it is useful to consider the first-
order differential kinematics (Whitney 1969)

Pt D J t.q/ Pq ; (2)

that can be obtained by differentiating Eq. (1)
w.r.t. time. In (2), the mapping between the task-
space and the joint-space velocities is held by the
M � N task Jacobian matrix J t.q/ D @kt=@q

(also called analytic Jacobian).
Remarkably, Pt expresses the rate of change of

the variables adopted to describe the task and thus
does not necessarily have the meaning of an end-
effector velocity. In general, by denoting the end-
effector spatial velocity vN as the stack of the 3D
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translational and angular end-effector velocities,
the following relationship holds

Pt D T .t/ vN ; (3)

where T is an M � 6 transformation matrix.
For a given manipulator, the mapping

vN D J .q/ Pq (4)

relates a joint-space velocity to the corresponding
end-effector velocity through the 6�N geometric
Jacobian matrix J .

By comparing (2)–(4), the relation between
the geometric Jacobian and the task Jacobian can
be found as

J t.q/ D T .t/J .q/ : (5)

Further differentiation of (2) w.r.t. time pro-
vides the following relationship between the ac-
celeration variables:

Rt D J t.q/ Rq C PJ t.q; Pq/ Pq : (6)

This equation is also known as second-order
differential kinematics.

Singularities
A robot configuration q is singular if the task
Jacobian matrix is rank deficient at it. Consider-
ing the role of J t in (2) and (6), it is easy to realize
that at a singular configuration, it is impossible to
generate end-effector task velocities or accelera-
tions in certain directions. Further insight can be
gained by looking at (5), which indicates that a
singularity may be due to a loss of rank of the
transformation matrix T and/or of the geometric
Jacobian matrix J .

Rank deficiencies of T are only related to the
mathematical relationship between vN and t, Pt;
for this reason, a configuration at which T is sin-
gular is referred to as a representation singularity.
A representation singularity is not directly related
to the true motion capabilities of the manipulator
structure, which can be instead inferred by the
analysis of the geometric Jacobian matrix. Rank

deficiencies of J are in fact related to loss of
mobility of the manipulator end effector; indeed,
end-effector velocities exist in this case that are
unfeasible for any velocity commanded at the
joints. A configuration at which J is singular is
referred to as a kinematic singularity.

Since redundancy resolution methods involve
the inversion of the task differential kinemat-
ics (2) and (6), the handling of singularities
through proper treatment of the Jacobian matrix
is very important. However, due to space
limitations, this topic is out of the scope of
this entry and in the following, we will assume
that the Jacobian matrices at issue are all full
rank.

Null-Space Velocities
With a full-rank task Jacobian, at each configu-
ration an N � M dimensional null space of J t

exists made of the set of joint-space velocities
that yield zero task velocity; these are thus called
null-space velocities in short.

Remarkably, the components of Pq in the null-
space of J t produce a change in the configuration
of the manipulator without affecting its task ve-
locity. This can be exploited to achieve additional
goals – like obstacle or singularity avoidance – in
addition to the realization of a desired task motion
and constitutes the core of redundancy resolution
approaches.

Inverse Differential Kinematics
The inverse kinematics problem can be solved
by inverting the direct kinematics equation (1),
the first-order differential kinematics (2) or the
second-order differential kinematics (6). With a
time-varying desired task reference, it is con-
venient to solve the differential kinematic re-
lationships because these represent linear equa-
tions with the task Jacobian as the coefficient
matrix.

For a kinematically redundant manipulator,
the general solution of (2) or (6) can be expressed
by resorting to the pseudoinverse J

	
t of the task

Jacobian matrix (Whitney 1969).
The general solution of (2) can be written as

Pq D J
	
t .q/ Pt C N J t.q/ Pq0 ; (7)
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where

N J t.q/ D I � J
	
t .q/J t.q/

is an orthogonal projection matrix into the null-
space of J t , and Pq0 is an arbitrary joint-space
velocity; the second part of the solution is there-
fore a null-space velocity. The particular solution
obtained by setting Pq0 D 0 in (7) is known as the
pseudoinverse solution.

As for the second-order kinematics (6), its
solution can be expressed in the general form

Rq D J
	
t .q/

�Rt � PJ t.q; Pq/ Pq�C N J t.q/ Rq0 ; (8)

where Rq0 is an arbitrary joint-space acceleration.
In summary, for a kinematically redundant

manipulator, the inverse kinematics problem ad-
mits an infinite number of solutions, so that a
methodology to select one of them is needed.

Redundancy Resolution via
Optimization

An approach to redundancy resolution is based on
the optimization of suitable performance criteria.

Performance Criteria
The availability of redundant degrees of freedom
can be used to improve the value of performance
criteria during the motion. These criteria may
depend on the robot joint configuration only or
involve also velocities and/or accelerations.

The most frequently considered performance
objective for trajectory tracking tasks is
singularity avoidance. In fact, singularities lead
to decreased mobility, and adding kinematic
redundancy allows to reduce the extension of
the workspace region where the manipulator
is necessarily at a singular configuration
(unavoidable singularities Baillieul et al. 1984).
Possible performance criteria to drive the
manipulator motion out of avoidable singu-
larities are configuration-dependent functions
that characterize the distance from singular
configurations, i.e., the manipulability measure,

the condition number, and the smallest singular
value of J t.

Since kinematic inversion produces very high
joint velocities in the vicinity of singular config-
urations, a conceptually different possibility is to
minimize the norm of the joint velocity generated
by the redundancy resolution scheme.

Redundancy can be also used to keep a robot
away from undesired regions of the joint space or
of the task space. For example, it might be desired
that a manipulator avoids reaching mechanical
joint limits (Liégeois 1977). Another interesting
application is obstacle avoidance, which can be
enforced by minimizing suitable artificial poten-
tial functions defined on the basis of the image of
the obstacle region in the configuration space.

Many other performance criteria can be found
in the literature.

Local Optimization
Equation (7) provides least-squares solutions to
the end-effector task constraint (2), so that it
minimizes kPt � J Pqk.

The simplest form of local optimization is rep-
resented by the pseudoinverse solution that pro-
vides the joint velocity with the minimum norm
among those which realize the task constraint.
Clearly, the joint movement generated by this
locally optimal solution does not provide global
velocity minimization along the entire manipula-
tor motion; therefore, singularity avoidance is not
guaranteed (Baillieul et al. 1984).

In terms of the inverse differential kinematics
problem, the least-squares property may quantify
the accuracy of the end-effector task realization,
while the minimum norm property may be rele-
vant for the feasibility of the joint-space veloci-
ties.

Another possibility is to use the general solu-
tion (7), choosing Pq0 as

Pq0 D �kH rH.q/ ; (9)

where kH is a scalar stepsize and rH.q/ denotes
the gradient of a scalar configuration-dependent
performance criterionH which is desired to min-
imize (Liégeois 1977).
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As for the second-order solution (8), choosing
Rq0 D 0 gives the minimum norm acceleration
solution.

Global Optimization
Local optimization algorithms can lead to unsat-
isfactory performance over long-duration tasks.
It is therefore natural to consider the possibility
of selecting Pq0 in (7) so as to minimize integral
criteria of the form

Z tf

ti

H.q/ dt

defined over the whole duration of the task. Un-
fortunately, the solution of these problems (natu-
rally formulated within the Calculus of Variations
framework) may not exist and does not admit a
closed form in general. One way to make the
problem solvable is to use an integral criterion
in quadratic form in the joint velocities or ac-
celerations. However, this is more easily done
at the second-order kinematic level (see sec-
tion “Second-Order Redundancy Resolution”).

Redundancy Resolution via Task
Augmentation

Another approach to redundancy resolution
consists in augmenting the task vector so as
to tackle additional objectives expressed as
constraints.

Extended Jacobian
The extended Jacobian technique (Baillieul 1985)
enforces an appropriate number of functional
constraints to be fulfilled along with the original
end-effector task.

Given an objective function g.q/, if J t has full
rank a set of N �M independent constraints can
be obtained from the equation

@g.q/

@q

ˇ̌
ˇ̌
qDbq N J t.bq/ D 0T ;

where bq is the current joint configuration such
that the function g.q/ is at an extreme; these

N � M independent constraints can be written
in vector form as

h.bq/ D 0 :

For a motion that tracks a trajectory t.t/ by
keeping g.q/ extremized at each time, it is

�
t.t/

0


D
�

kt
�
q.t/

�
h
�
q.t/

�

;

that, similarly to (1) and (2), leads to define an
extended Jacobian matrix as

J ext.q/ D
2
4 J t.q/
@h.q/

@q

3
5 :

Therefore, if the initial joint configuration ex-
tremizes g.q/ and provided that J ext does not
become singular, the time integral of the inverse
mapping

Pq D J �1
ext.q/

� Pt
0


(10)

tracks the assigned end-effector trajectory t.t/

propagating joint configurations that extremize
g.q/.

The extended Jacobian method has a major
advantage over the pseudoinverse solution in that
it is cyclic, i.e., it generates repetitive joint motion
from a repetitive task motion. Moreover, solution
(10) can be made equivalent to (7) via suitable
choice of the vector Pq0 (Baillieul 1985).

Augmented Jacobian
The task-space augmentation approach is based
on the direct definition of a constraint task to be
fulfilled along with the end-effector task (Sciav-
icco and Siciliano 1988).

In detail, let tc collect P variables that de-
scribe the additional tasks to be fulfilled besides
the end-effector task t. In the general case, it is
P � N �M although full redundancy exploita-
tion suggests to consider exactly P D N �M .

The relation between the joint-space and the
constraint-task coordinates can be considered as
a direct kinematics equation
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tc D kc.q/ ;

where kc is a continuous nonlinear vector func-
tion. At this point, an augmented task can be
defined by stacking the end-effector task with the
constraint task as

ta D
�

t

tc


D
�

kt.q/

kc.q/


:

According to this definition, finding a joint con-
figuration q that brings ta at some desired value
means to satisfy both the end effector and the
constraint task at the same time.

A solution to this problem can be found at the
differential level by inverting the mapping

Pta D J a.q/ Pq (11)

where the matrix

J a.q/ D
�

J t.q/

J c.q/



is termed augmented Jacobian and J c.q/ D
@kc=@q is the P � N constraint-task Jacobian
matrix.

A particular choice for the constraint-task vec-
tor is tc D h.q/, with h defined as explained in
section “Extended Jacobian”, that allows the aug-
mented Jacobian method to embed the extended
Jacobian one.

Algorithmic Singularities
The specification of additional goals besides
tracking the end-effector task raises the
possibility that configurations exist at which
the augmented kinematics problem is singular
while the sole end-effector task kinematics is
not; these configurations are termed algorithmic
singularities (Baillieul 1985). With reference
to the velocity mappings (10) and (11), an
algorithmically singular configuration is one at
which the extended and the augmented Jacobians,
respectively, are singular while J t is full rank.

Remarkably, algorithmic singularities arise
from the way in which the constraint task
conflicts with the end-effector task and are not

a problem of the specific inverse kinematic
technique (Baillieul 1985). This is easily
understandable in simple situations such as
that of a desired trajectory passing through an
obstacle, where either the trajectory is tracked
or the obstacle is avoided, so that both tasks
cannot be achieved together. If the origin of
the conflict between the two tasks has a clear
meaning, the algorithmic singularity may be
avoided by keenly specifying the constraint task
case-by-case; otherwise, analytical tools must be
adopted.

Task Priority
Conflicts between the end-effector task and the
constraint task are handled in the framework of
the task-priority strategy by suitably assigning
an order of priority to the given tasks and then
satisfying the lower-priority task only in the null-
space of the higher-priority task (Maciejewski
and Klein 1985; Nakamura et al. 1987). The idea
is that, when an exact solution does not exist, the
reconstruction error should only affect the lower-
priority task.

With reference to solution (7), the task-priority
method consist in computing Pq0 so as to suitably
achieve the P -dimensional constraint-task veloc-
ity Ptc. Remarkably, the projection of Rq0 onto
the null-space of Jt ensures lower priority of the
constraint task with respect to the end-effector
task since it results in a null-space velocity for
the end-effector task.

Consistently with the defined order of priority
between the two tasks, a reasonable choice is
then to guarantee exact tracking of the primary-
task velocity while minimizing the constraint-
task velocity reconstruction error Ptc � J c Pq; this
gives (Maciejewski and Klein 1985)

Pq DJ
	
t .q/PtC�J c.q/N J t.q/

�	� Ptc�J c.q/J
	
t .q/Pt

�
:

(12)
It can be recognized that the problem of al-

gorithmic singularities still remains; in fact, the
matrix J c � N J t may lose rank with full-rank
J t and J c. However, differently from the task-
space augmentation approach, correct primary-
task solutions are expected as long as the sole
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primary-task Jacobian matrix is full rank. On the
other hand, out of the algorithmic singularities,
the task-priority strategy gives the same solution
as the task-space augmentation approach; this
implies that close to an algorithmic singularity,
the solution becomes ill-conditioned and large
joint velocities may result.

Another approach is to relax minimization of
the secondary-task velocity reconstruction con-
straint and simply pursue tracking of the compo-
nents of J 	

c
Ptc that do not conflict with the primary

task (Chiaverini 1997), namely,

Pq D J
	
t .q/Pt C N J t.q/J

	
c.q/ Ptc : (13)

A nice property of solution (13) is that algorith-
mic singularities are decoupled from the singular-
ities of J c.

Second-Order Redundancy
Resolution

Redundancy resolution at the acceleration level
allows the consideration of dynamic performance
along the manipulator motion. Moreover, the ob-
tained acceleration profiles (together with the
corresponding positions and velocities) can be
directly used as reference signals of task-space
dynamic controllers.

The simplest scheme operating at the acceler-
ation level is represented by (8) with Rq D 0. Sim-
ilar to the velocity-level pseudoinverse solution,
the joint motion generated by this locally optimal
solution does not result in global acceleration
minimization. Remarkably, provided that the ap-
propriate boundary conditions are satisfied, this
solution leads to the minimization of the integral
of PqT Pq (Kazerounian and Wang 1988).

More flexibility in the choice of performance
criteria is obviously obtained by considering the
full second-order solution (8). Let the manipula-
tor dynamic model be expressed as

� D H .q/ Rq C c.q; Pq/C �g.q/ ;

where � is the vector of actuator torques, H is
the manipulator inertia matrix, c is the vector of

centrifugal/Coriolis terms, and �g is the gravi-
tational torque vector. Choosing the null-space
acceleration in (8) as

Rq0 D ��H .q/N J t.q/
�	

�
�
H .q/J

	
t .q/

�
Rt� PJ t.q; Pq/ Pq

�
Cc.q; Pq/C�g.q/

�

leads to the local minimization of the actuator
torque norm �T� (Hollerbach and Suh 1987).

Another interesting inverse solution, which
minimizes the integral of the manipulator kinetic
energy, is the following Kazerounian and Wang
(1988):

Rq D J
	

t;H
.q/
�

Rt � PJ t.q; Pq/ Pq
�

C
�
I�J

	

t;H
.q/J t.q/

�
H �1.q/ c.q; Pq/ ;

where the inertia-weighted task Jacobian pseu-
doinverse can be computed as

J
	

t;H
.q/ D H �1.q/J T

t .q/

�
J t.q/H �1.q/J T

t .q/
��1

:

Once again, the correct boundary conditions must
be used.

Summary and Future Directions

To discuss kinematic redundancy, the concept of
task-oriented kinematics has been first recalled
with the basic methods for its inversion at the
velocity and acceleration level. Next, different
methods to solve kinematic redundancy at the
velocity level have been arranged in two main
categories, namely, those based on the optimiza-
tion of suitable performance criteria and those
relying on the augmentation of the task space.
Finally, redundancy resolution methods at the
acceleration level have been considered in order
to take into account dynamics issues, e.g., torque
or kinetic energy minimization.

Besides the classical linear algebra methods
and optimization tools still ever under inves-
tigation, new methodological approaches to
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Redundant Robots, Fig. 6 The DLR rolling justin

redundancy resolution recently include learning
algorithms (Rolf et al. 2010) and soft computing
techniques (Liu and Li 2006). Active fields of
new applications are in sensorial redundancy for
data fusion (Luo and Chang 2012) and in systems
(like the one in Fig. 6) with a large number of
degrees of freedom, namely, hyperredundant
robots (Salvietti et al. 2009), humanoids (Kanoun
and Laumond 2010), and multirobot systems
(Antonelli et al. 2010).

Cross-References

�Cooperative Manipulators
�Optimal Control and Mechanics
�Robot Motion Control

Recommended Reading

Because of space and scope limitations, in
drawing on overview of such a mature and well-
developed topic, there are a number of techniques

and details that go neglected in any case; a
slightly more extensive treatment of kinematic
redundancy, including a touch on singularity
robustness, cyclicity, and hyperredundant ma-
nipulators with related first-reading bibliography
can be found in Chiaverini et al. (2008). Other
major issues of interest that could not be covered
here are in the use of kinematic redundancy for
fault tolerance, for improved grasping, and for
motion/force control; see, e.g., Roberts et al.
(2008), Prats et al. (2011), and Khatib (1990),
respectively.
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Regulation and Tracking
of Nonlinear Systems
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Abstract

A classical problem in control theory is the de-
sign of feedback laws such that the effect of
exogenous inputs on selected output variables is
asymptotically rejected. This includes problems
of asymptotic tracking and disturbance rejection.
In this entry, the fundamentals of the theory are
presented, as well as constructive procedures for
the design of a controller, which embeds an “in-
ternal model” of the generator of the exogenous
inputs. Current and future research directions are
also discussed.

Keywords

Nonlinear output regulation; Robust control; Sta-
bilization of nonlinear systems; Tracking

Introduction

The problem of controlling a dynamical systems
in such way that a “regulated” output tracks ref-
erence signals or rejects exogenous disturbances
is ubiquitous in control theory. Among various
possible different approaches to the solution of
this problem, in this entry we present the so-
called theory of nonlinear output regulation. A
distinctive feature of this theory is that refer-
ence/disturbance signals to be tracked/rejected
are thought of as unknown functions of time,
which belong to the set of all trajectories gen-
erated by an autonomous nonlinear system (the
so-called exosystem). Fundamental in this setting
is the concept of internal model, developed in
the early 1970s for linear systems by Francis
and Wonham (1976) and subsequently extended,
beginning with the work (Isidori and Byrnes
1990), to the case nonlinear systems. Since these
early contributions, nonlinear output regulation
has been an active research domain, in which con-
stant improvements have brought the theory to a
stage of full maturity. In this entry we introduce
the fundamental principles of the nonlinear out-
put regulation theory and the associated design
tools. The entry ends with an overview of actual
research trends and future research directions.

The Generalized Tracking Problem
for Nonlinear Systems

We consider the class of time-invariant smooth
nonlinear systems described in the form

Px D f .w; x; u/
e D h.w; x/
y D k.w; x/

(1)

in which x 2 Rn is the state, u 2 Rm is the
control input, y 2 Rq is the measured output, and



Regulation and Tracking of Nonlinear Systems 1151

R

e 2 Rp is the regulation error. The input w 2 Rs

models exogenous signals that might represent
references to be tracked, exogenous disturbances
to be rejected, or also parametric uncertainties.
In this framework the problem is to design a
controller of the form

P
 D '.
; y/ 
 2 R�

u D �.
; y/
(2)

such that the associated closed-loop system
(1)–(2) has bounded trajectories .x.t/; 
.t//

and the resulting error e.t/ D h.w.t/; x.t// is
asymptotically vanishing, i.e., limt!1 e.t/ D 0.
The previous framework encompasses several
standard control problems, such as the problem
in which a system of the form Px D f .x; u/,
with measured output y D k.x/ and regulated
output yr D hr.x/, must be controlled in such a
way that yr.t/ asymptotically tracks a reference
signal y�.t/. This is the case, in fact, if we set
w.t/ D y�.t/, define e D h.w; x/ D w � hr.x/,
and drop the dependence from w in the functions
f .�/ and k.�/ in (1). Similarly, the previous
framework lends itself to capture a scenario of
disturbance suppression, in which, in a system of
the form Px D f .d; x; u/, with measured output
y D k.x/ and regulated output yr D h.x/,
the effect of a disturbance d.t/ on the regulated
output yr.t/ must be asymptotically rejected.
This is the case if we set w.t/ D d.t/ and drop
the dependence on w in h.�/ and k.�/ in (1).
Similarly, by letting h.x/ D x and interpreting
the variable w as parametric uncertainty, the
previous setting captures the problem of robust
output feedback stabilization, at the origin, of
an uncertain system of the form Px D f .w; x; u/
with measured output y D k.w; x/. Of course,
the general case of tracking reference signals in
presence of exogenous disturbances can be cast
in a similar manner.

The ability of solving the problem in question
strongly depends on the amount of knowledge
one assumes about the exogenous variable w in
the design of the controller (2). Among the dif-
ferent options available, in this entry we present
the so-called theory of output regulation, in which
the exogenous variable is assumed to be an un-

known member of a known family of functions of
time. Specifically, it is assumed that w.t/ is an
unspecified member of the set of all trajectories
generated by an autonomous nonlinear system of
the form

Pw D s.w/ (3)

as its initial condition w.0/ ranges on a prescribed
set W � Rs . In this framework, system (3),
usually referred to as the “exosystem,” is assumed
to be known and its knowledge potentially ex-
ploitable in the design of (2). The specific “mem-
ber” w.t/ of the family, however, is unspecified
as the initial condition w.0/ is not known. The
fact of regarding w.t/ as unknown member of
a known family seems to be the right trade-off
between the favorable but unrealistic situation in
which w.t/ is assumed to be perfectly known and
the opposite realistic but conservative situation in
which w.t/ is regarded as a totally unknown sig-
nal. An elementary, and yet meaningful, example
is given by the case in which w.t/ belongs to
the family of periodic functions of time with an
unspecified frequency, phase, and amplitude. In
this case the exosystem (3) is a nonlinear system
of the form (w 2 R3)

Pw1 D w2 Pw2 D �w23 w1 Pw3 D 0 :

Solutions of the previous system, in fact, are pe-
riodic functions, with frequency w3.t/ � w3.0/
and amplitude and phase depending on the spe-
cific initial condition .w1.0/;w2.0//. Other sit-
uations, such as exosystems modeling nonlinear
oscillators, can be dealt with in a similar fashion.

In the previous context, the problem of output
regulation can be formally cast as follows. Let
X � Rn be a set of initial conditions for (1).
Then, the problem consists in finding a controller
of the form (2), with initial conditions in a set
� � R� , such that the trajectories of the closed-
loop system (1)–(2) augmented with (3), originat-
ing from an initial condition .w.0/; x.0/; 
.0// 2
W � X � � , are bounded and limt!1 e.t/ D 0

uniformly in the initial conditions (The property
of “uniformity” is relevant in the context of out-
put regulation. It reflects the requirement that
the time needed for the error e.t/ to reach an
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�-neighborhood of the origin only depends on the
set W � X � �i , where the initial conditions
are supposed to range, and on � but not on the
particular value of the initial condition within
W � X � � .). Depending on the assumptions
on the set X where the initial conditions of the
plant are assumed to range, the problem is further
classified in semiglobal output regulation, if the
set X is a known compact but otherwise arbitrary
set of Rn, or global output regulation if X D Rn.

Output Regulation Principles

Steady State for Nonlinear Systems
and Internal Model Principle
Since the objective is to design the controller such
that the effect of the exogenous variable is asymp-
totically rejected by the regulation error, it is
apparent that any approach to the solution of the
problem of output regulation must be necessarily
grounded on a precise characterization of the no-
tion of “steady state” for a nonlinear system. As it
is the case for the familiar version of this concept
in linear systems theory, a notion of “steady
state,” for the system consisting of (1)–(3), should
be able to capture the “limiting behavior” – if
any – that such system asymptotically approaches
when the “transient behavior,” due to the effect of
specific initial conditions of plant and controller,
fades out and a “persistent behavior,” induced
only by the specific exogenous input, emerges. In
this respect, the mathematical tool that has been
shown to be at the core of a rigorous notion of
steady state for nonlinear systems is the one of
!-limit set of a set. We refer the reader to Hale
et al. (2002) for a definition of this notion and
to Byrnes and Isidori (2003) for a description
of its use in the characterization of the steady-
state behavior of a nonlinear system. In this entry,
we simply observe that if the trajectories of the
system (3)–(1)–(2) that originate from the set of
initial conditionsW �X�� are bounded (which,
in turn, is one of the requirements of the problem
in question), then there exists a compact set A �
Rs�Rn�R� , which is precisely the !-limit set of
the setW �X�� under the dynamics of (3)–(1)–
(2), that is invariant for the closed-loop system

and that uniformly attracts its trajectories. The
set A is usually referred to as steady-state locus,
while the restriction of the closed-loop dynamics
to the set A are the steady-state dynamics of
the closed-loop system. The latter characterize
the “limiting behavior” of the system towards
which all the closed-loop trajectories converge to.
Unlike the case of linear systems, though, in a
nonlinear context we cannot expect, in general,
that the steady-state behavior is only governed
by the exogenous w, namely, that the asymptotic
behavior of the closed-loop system is totally
independent of the initial conditions of the plant
and of the regulator. Assuming that the set W is
compact and invariant for (3), it can be proven
(see Isidori and Byrnes 2008) that the set A is the
graph of a set-valued map defined onW , namely,
that there exists a map  W W ! Rn � R� , which
is set-valued in general, such that

A D f.w; x; 
/ 2 W �Rn�R� W .x; 
/ 2 .w/g :

Clearly the steady-state locus and the asso-
ciated steady-state dynamics of the closed-loop
system depend on the design of the controller (2).
The role of the latter is not only to enforce the
existence of a steady state, which is equivalent to
enforce bounded closed-loop trajectories, but also
to guarantee that the error converges asymptoti-
cally to zero uniformly in the initial conditions.
In this respect, by bearing in mind the asymptotic
properties of the set A, it can be seen that a
sufficient condition under which a regulator of the
form (2) solves the problem of output regulation
is that the steady-state locus is “shaped” in such a
way that the regulation error is zero on it, namely,

A � f.w; x; 
/ W h.w; x/ D 0g : (4)

In fact, it can be proved that condition (4) is not
only sufficient but also necessary (see Byrnes and
Isidori 2003) as a consequence of the require-
ment that the error converges to zero uniformly
in the initial conditions. That is, any regulator
that solves the problem in question necessarily
enforces a steady state such that the steady-state
locus fulfills (4).
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In view of the previous considerations, a cru-
cial property required to any regulator is to induce
a steady-state locus A fulfilling (4). This key
feature can be further elaborated by highlighting
two necessary conditions, involving separately
the plant and the regulator, leading to the notions
of regulator equations and internal model prop-
erty. To this purpose, consider the simplified, yet
relevant, case in which the map .�/ is single-
valued and smooth, and let �.w/ and �.w/ be the
two components of .w/ associated to x and 
,
respectively. By letting

c.w/ D �.�.w/; k.w; �.w/// (5)

it is immediately realized that the fact that A is
invariant for (1)–(3) implies that the functions
�.�/ and �.�/ necessarily fulfill

@�.w/

@w
s.w/ D f .w; �.w/; c.w// (6)

and

@�.w/

@w
s.w/ D '.�.w/; k.w; �.w/// (7)

for all w 2 W . Furthermore, the fact that e must
be zero on A (see (4)) implies that necessarily

h.w; �.w// D 0 (8)

for all w 2 W . Equations (6) and (8), interpreted
as equations in the unknown �.w/ and c.w/, in-
volve only the regulated plant (1) and are known
as regulator equations (see Isidori 1995; Isidori
and Byrnes 1990). The functions c.w.t// and
�.w.t//, with w.t/ solution of (3), represent, re-
spectively, the desired steady-state control input
and state towards which the actual control input u
and state x of (1) should converge in order to have
the regulation goal fulfilled. On the other hand,
Eqs. (5) and (7), interpreted as equations in the
unknown �.w/, point out the so-called internal
model property required to any regulator solving
the output regulation problem, that is, the ability
of the regulator to reproduce the ideal steady-
state input c.w.t//, for all possible w.t/ solution
of (3), once it is driven by the measured output of

the plant in the ideal steady state (namely, by the
function k.w.t/; �.w.t///). In fact, this property
can be achieved by incorporating in the controller
an appropriate “internal model” of the exogenous
dynamics (3).

Regulator Design
As emphasized in the previous discussion, the
design of the regulator involves the fulfillment
of two crucial properties. The first is the inter-
nal model property, namely, the ability of gen-
erating, by means of the regulator outputs, all
possible “feedforward inputs” which force an
identically zero regulation error and, in turn, to
guarantee the existence of an invariant steady-
state set on which the error is identically zero.
The second property asks that such a steady-
state set is asymptotically stable for the closed-
loop system with a domain of attraction including
the set of initial conditions. A systematic design
procedure of regulators simultaneously fulfilling
the previous two properties can be found under
sufficient conditions that essentially restrict the
class of regulated plants (1). In particular, in the
following, we consider the class of single input-
single output systems that are affine in the input u,
with a measurable error variable (i.e., e D y) and
that after an appropriate change of coordinates
can be written in the form

Pz D fz.w; z; e/ z 2 Rn�1
Pe D a.w; z; e/C b.w; z; e/u e; u 2 R

(9)

with fz.�; �; �/, a.�; �; �/, and b.�; �; �/ smooth func-
tions with b.w; z; e/ ¤ 0 for all .w; z; e/. Sys-
tems of this kind possess a well-defined unitary
relative degree (The restriction to systems with
unitary relative degree is just made for sake of
simplicity. Higher relative degree can be equally
dealt with, Isidori (1995).) between the input u
and the output e, and the Eqs. (9) are said to be
in normal form (see Isidori 1995, 2013). In these
coordinates an easy calculation shows that the
solution of the regulator Eqs. (6) and (8) takes the
form �.w/ D .�z.w/; 0/, where �z.�/ W W !
Rn�1 is a solution of
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@�z.w/

@w
s.w/ D fz.w; �z.w/; 0/ ;

and

c.w/ D � a.w; �z.w/; 0/

b.w; �z.w/; 0/
:

In addition, we further restrict the class of sys-
tems by asking for a minimum-phase property
(Isidori 1995, 2013). In the present context, the
property in question amounts to asking that the
set B D f.w; z/ 2 W � Rn�1 W z D �z.w/g is
asymptotically stable for the system

Pw D s.w/
Pz D fz.w; z; 0/

with a domain of attraction containing W � Z,
with Z the set where the initial condition of z is
expected to range.

Existence of the relative degree and the prop-
erty of minimum-phase are all what is needed to
design a regulator. The regulator takes the form

P
 D F 
 CG.�.
/C �.e// 
 2 R�

u D �.
/C �.e/
(10)

in which .F;G/ is a controllable pair and �.�/
and �.�/ are real-valued functions to be properly
designed. In particular, it can be shown (see
Marconi et al. 2007) that if �, the dimension of
the regulator is taken sufficiently large relative
to the dimension of w (specifically, � � 2s C 2)
and if F is any matrix whose eigenvalues have
negative real part, there exist a continuously
differentiable function �.�/ and a continuous
function �.�/ such that

@�.w/

@w
s.w/ D F�.w/CGc.w/

c.w/ D �.�.w//
(11)

for all w 2 W . This being the case, it is seen
that the regulator (10) fulfills conditions (5)–(7)
and therefore has the internal model property,
regardless of how �.�/ is chosen, provided
that �.0/ D 0. In particular, in the closed-
loop system (3), (9), and (10), the invariant set
A D f.w; z; e; 
/ 2 W � Rn�1 � R � R� W z D
�z.w/; e D 0; 
 D �.w/g fulfills (4) regardless

of how �.�/ is chosen. The function �.�/ is a
degree of freedom that can be chosen to make
the steady-state set A asymptotically stable. In
this respect the minimum-phase assumption and
the fact that F is a Hurwitz matrix play a role.
In fact, the closed-loop system (3), (9), and (10),
interpreted as a system with state .w; z; e/, input
�.�/, and output e, have relative degree one and
it is minimum-phase. This fact makes it possible
to use standard high-gain arguments to show that
there exists a function �.�/ such that the set A is
asymptotically stable for the closed-loop systems
with a domain of attraction containing any
(arbitrarily large) compact set of initial conditions
(see Marconi et al. 2007; Teel and Praly 1995).

The delicate part in the procedure illustrated
above is the design of the function �.�/ that is
required to fulfill (11) for a suitable �.�/. Ex-
act, although hardly implementable in practice,
expressions for the function �.�/ can be found
in Marconi and Praly (2008). More constructive
design procedures can be found at the price of
restricting the class of systems and exosystems
that can be dealt with. Such procedures require
that the autonomous dynamical system with “out-
put” u�

Pw D s.w/
u� D c.w/ ;

namely, the system characterizing all possible
ideal steady-state inputs, is “immersed” into a
system exhibiting certain structural properties
(Loosely speaking, the autonomous system with
output ˙ is immersed into the autonomous
system with output Q̇ if the set of all possible
functions of time generated as outputs of ˙ is a
subset of the set of all possible functions gener-
ated as outputs of Q̇ .). In this respect a number
of alternative solutions have been proposed in
literature that differ for the kind of underlying
immersion assumption and consequent regulator
design procedure. Immersion into a linear known
observable system (see Byrnes et al. 1997; Huang
and Lin 1994; Khalil 1994; Serrani et al. 2000),
immersion into a linear unknown (but linearly
parameterized) system (Serrani et al. 2001),
immersion into a linear system having a nonlinear
output map (Chen and Huang 2004), immersion
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into a nonlinear system linearizable by output
injection (Delli Priscoli 2004), immersion into a
system in canonical observability form Byrnes
and Isidori (2004), and immersion into a system
in a nonlinear adaptive observability form Delli
Priscoli et al. (2006a,b) are a few examples of
approaches proposed in literature.

Summary and Future Directions

The theory of output regulation for nonlinear
systems is an active area of investigation.
Research efforts are, in particular, addressed
to the problems of weakening the minimum-
phase assumption and of identifying robust
design procedures, to asymptotically stabilize
the steady-state locus, not necessarily based on
high-gain principles. Recently, the problem of
output regulation for multivariable systems has
been also addressed (Isidori and Marconi 2012).
In this case a paradigm shift in the design of
the regulator and of the stabilizer is expected
to deal with the problem in its full generality.
Finally, it is worth mentioning that the theory
of output regulation and internal model-based
design methods are being used for the problem
of reaching a consensus between the outputs
of a network of nonlinear systems exchanging
relative information over a communication graph.
In this case it has been proved the necessity of
internal model-based regulators (Wieland 2010)
and the research activity is now conveyed to
identify constructive design strategies for classes
of nonlinear systems and network topologies.

Cross-References

�Differential Geometric Methods in Nonlinear
Control

�Lyapunov’s Stability Theory
�Nonlinear Zero Dynamics
�Tracking and Regulation in Linear Systems
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Risk-Sensitive Stochastic Control

Hideo Nagai
Osaka University, Osaka, Japan

Abstract

Motivated by understanding “robustness” from
the view points of stochastic control, the studies
of risk-sensitive control have been developed.
The idea was applied to portfolio optimization
problems in mathematical finance, from which
new kinds of problem on stochastic control,
named “large deviation control,” have been
brought, and currently the studies are in progress.

Keywords

Large deviation control; Mathematical finance;
Robustness

Risk-Sensitive Criterion

Risk-sensitive stochastic control has the criterion

J.x; 0IT I �/ D 1

�
logEŒe�fR T0 f .Xs ;us /dsC'.XT /g�

(1)

with � ¤ 0, whereXt is the state variable process
defined by the controlled stochastic differential
equation

dXt D .Xt /dBt Cb.Xt ; ut /dt; X0 D x (2)

with the control parameter process ut . Here
.x/ W RN 7! RN ˝ Rd and b.x; u/ W
RN � Rm 7! RN . When � ! 0, the criterion
behaves as

J.x; 0IT I �/ 	 EŒ
R T
0
f .Xs; us/ds C '.XT /�

C �

2
VarŒ

R T
0 f .Xs; us/ds C '.XT /�CO.�2/:

Then, minimizing the criterion with � > 0 is
considered to be risk averse, while with � < 0 it
is to be risk seeking. The problem minimizing the
classical criterion EŒ

R T
0 f .Xs; us/ds C '.XT /�

corresponds to the case of � D 0, which is risk
neutral.

When f .x; u/ D 1
2
x�Qx C 1

2
u�Su; '.x/ D

1
2
x�Ux, and b.x; u/ D Ax C Cu; .x/ � †

with constant matrices Q; S; U; A; C; †,
minimizing the criterion subject to the state vari-
able processes Xt is called a linear exponen-
tial quadratic Gaussian (LEQG) control problem,
where one may assume Q and U to be nonnega-
tive definite and S positive definite.

H-J-B Equations

The Hamilton-Jacobi-Bellman (H-J-B) equation
for the problem minimizing criterion J defined
by (1) among the controlled processes governed
by (2) is seen to be

�
@v
@t

C 1
2
trŒa.x/D2v�CH.x;rv/ D 0

v.T; x/ D '.x/;
(3)

where a.x/ WD �
aij .x/

� D �
.�/ij .x/

�
and

H.x; p/D �

2
p�a.x/pCinf

u
fb.x; u/�pCf .x; u/g:

In an LEQG case, where we assume that Q; U
are nonnegative definite and S positive definite,
the H-J-B equation has the solution expressed as

v.t; x/ D 1

2
x�P.t/x CG.t/;

by using the solutions G.t/ of ordinary differen-
tial equation
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R

PG.t/C 1

2
trŒP††�� D 0; G.T / D 0

and P.t/ of the Riccati equation

PP .t/C PAC A�P � P.CS�1C � � �††�/

P CQ D 0

with the terminal condition P.T / D U , provided
that it has a nonnegative definite solution P.t/.
However, it may occur that the Riccati equation
does not have any solution if � is large. In
that case, we say that the risk-sensitive control
problem “breaks down.” Namely, there is no
control which makes the criterion have a finite
value. On the other hand, if it has a solution,
then the optimal feedback control is seen to be
�S�1C �P.t/x and the optimal diffusion process
turns out to be the solution to

dXt D †dBtC.AXt�CS�1C �Xt/dt; X0 D x:

The situation can extend to certain general cases.
Under sufficiently general conditions one can say
that if H-J-B equation (3) has a solution, then no
“breakdown” occurs in the corresponding risk-
sensitive stochastic control problem (cf. Bensous-
san and Nagai 2000; Bensoussan et al. 1998;
Nagai 1996).

The LEQG problems were first investigated in
Jacobson (1973), and then a theory of the LEQG
control with complete or partial state information
is developed in Whittle (1981) and Bensoussan
and Van Schuppen (1985). Development of the
studies of nonlinear risk-sensitive control can be
seen in Bensoussan et al. (1998), Nagai (1996),
Fleming and McEneaney (1995), etc.

Singular Limits and H 1 Control

The large deviation theory of Freidlin-Wentzell
applies to the risk-sensitive control problem with
the criterion

J�.x; 0IT / D �

�
logEŒe

�
�

R T
0 f 12 u�

s S.Xs/usCV.Xs/gds/�
(4)

and the controlled dynamics

dXt D p
�.Xt /dBt C fb.Xt/C C.Xt /utgdt:

(5)
The corresponding H-J-B equation is

�
@v�
@t

C �
2
trŒa.x/D2v��CH0.x;rv�/C V D 0

v�.T; x/ D 0;
(6)

H0.x; p/ D �
2
p�a.x/p C b.x/�p

C infu2Rmfu�C.x/p C 1
2
u�S.x/ug

D b.x/�p � 1
2
p�fCS�1C.x/� � �a.x/gp:

By employing viscosity solution theory, we can
see that, when sending � ! 0, the solution v� of
(6) converges to the viscosity solution w of the
equation

�
@w
@t

CH0.x;rw/C V D 0

w.T; x/ D 0:
(7)

Noting that H0.x; p/ can be regarded as

H0.x; p/ D supzfz�p � 1
2�

z�a.x/�1zg
C infufu�C.x/p C 1

2
u�S.x/ug;

Equation (7) is written as

@w
@t

C supzfz�Dw � 1
2�
.Dw/�a.x/�1Dwg

C infufu�C.x/Dw C 1
2
u�S.x/ug D 0

w.T; x/ D 0:

This equation has a unique viscosity solution un-
der suitable conditions. Further, w.0; x/ is char-
acterized as the lower value of the differential
game with the criterion

I.0; T I z:; u.z:// D
Z T

0

‰.xs; zs ; u.z:/s/ds;

‰.x; z; u/ D � 1

2�
z�a.x/�1zC 1

2
u�S.x/uCV.x/

and the controlled dynamics

dxs D fb.xs/C zs C C.xs/u.z:/sgds; x0 D x;

where zs is a measurable,RN -valued function on
Œ0; T � such that

R T
0

jzs j2ds < 1 and the set of
such fzsg is denoted by ZT . Further, let U be the
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totality of a measurable,Rm-valued function such
that

R T
0

jusj2ds < 1 and u.z:/ be a map defined
on Z with its value on U such that whenever for
each 0 � � � T and z.1/; z.2/ 2 Z , z.1/.s/ D
z.2/.s/, almost everywhere on 0 � s � � , then
u.z.1/: /s D u.z.2/: /s , a.e. on 0 � s � � , and the set
of such u.z:/ is denoted by �U . Thus, the lower
value of the game is defined as

w.0; x/ D inf
u.z:/2�U

sup
z2Z

I.0; T I z:; u.z://

(cf. Bensoussan and Nagai 1997 and references
therein). The differential game is known to be re-
lated to H1 or Robust control. If � is large, then
H-J-B equation (6) may fail to have a solution (cf.
Bensoussan and Nagai 1997, 2000). The size of �
ensuring the existence of solution to (6) is related
to the level of robustness which the above differ-
ential game concerns (Basar and Bernhard 1991;
Bensoussan and Nagai 1997, 2000; Bensoussan
et al. 1998; Whittle 1990).

Risk-Sensitive Asset Management

The idea of risk-sensitive control applies to
mathematical finance (Bielecki and Pliska 1999;
Fleming 1995). Consider a market model with
m C 1 securities, where the security prices are
defined by

dS0.t/ D r.Xt /S
0.t/dt;

dSi.t/ D Si .t/f˛i .Xt/dt C
nCmX
kD1

ik.Xt /dB
k
t g;

i D 1; : : :m, with an n C m dimen-
sional Brownian motion process Bt D
.B1

t ; B
2
t ; : : : ; B

nCm
t / defined on a filtered

probability space .�;F ; P IFt /. The volatilities
 , the instantaneous mean returns ˛ of the risky
assets, and the interest rate r of the riskless
asset are affected by the economic factors
.X1

t ; : : : ; X
n
t / defined as the solution of the

stochastic differential equation

dXt D ˇ.Xt/dt C�.Xt /dBt ; X.0/ D x 2 Rn:

Let us set the total wealthWT of an investor to be
WT D P

i N
i
T S

i
T with N i

T , number of the share
invested to i th security SiT at time T , and W0

the initial wealth. Expected power utility maxi-
mization maximizing 1

�
EŒW

�
T � D 1

�
EŒe� logWT �,

� < 1;¤ 0 (Merton 1990) is equivalent to

sup
1

�
logEŒe� logWT �; (8)

and it has been studied in terms of “risk-sensitive
asset management.” When introducing portfolio
proportion hit invested to i th security defined by

hi .t/ D Ni .t/Si .t/

W.t/
for each i D 0; : : : ; m and

setting h.t/� D .h1.t/; h2.t/; : : : ; hm.t//, the
total wealth Wt turns out to satisfy

dW.t/

W.t/
D fr.Xt/C h.t/� Ǫ .Xt/gdt

C h.t/�.Xt /dBt ;

under the self-financing condition, where Ǫ .x/ D
˛.x/ � r.x/1; 1 D .1; 1; : : : ; 1/�. In consider-
ing the maximization problem, the portfolio pro-
portion ht is considered an investment strategy
to be controlled and assumed to be GS;Xt WD
.S.u/; X.u/; u � t/ progressively measurable
in the case of full information. The problem is
often considered under partial information where
ht is assumed to be GSt WD .S.u/; u � t/

measurable. Here we first discuss the case of full
information, and the set of admissible strategies
A.T / (or A) is determined as the totality of
GS;Xt progressively measurable investment strate-
gies satisfying some suitably defined integrability
conditions.

Considering (8) for � < 0 amounts to studying
the minimization problem

Ov.0; x/ D inf
h:2A.T /

logEŒe� logWT .h/�: (9)

Then introducing a probability measure ph de-
fined by
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R

Ph.A/DEŒe�
R T
0 h�

s .Xs/dWs� �2

2

R T
0 h�

s 
�.Xs/hsdsWA�;

A 2 FT , the value function is expressed as

Ov.0; x/ D � logW0 C inf
h:2A.T /

logEhŒe�� R T0 �.Xs ;hs /ds�

with the initial wealth W0, where

�.x; h/ D �h� Ǫ .x/C 1 � �
2

h��.x/h � r.x/

and Ǫ .x/ D ˛.x/�r.x/1. By using the Brownian
motion Bh

t WD Bt � �
R t
0
�.Xs/hsds under the

new probability measure Ph, the dynamics of the
economic factor Xt is written as

dXt D fˇ.Xt/C ���.Xt/ht gdt C �.Xt/dB
h
t :

(10)

Thus, we arrive at the risk-sensitive control prob-
lem with the value function Ov.0; x/ and the con-
trolled dynamics Xt governed by (10). Note that
1��
2
> 0 for � < 1 and that the case where � < 0

is called risk averse, which we mainly discuss
here. Then the corresponding H-J-B equation is
deduced as

8<
:

@v
@t

C 1
2
trŒ���D2v�C 1

2
.Dv/����Dv

C infhfŒˇ C ���h��Dv � ��.x; h/g D 0;

v.T; x/ D � logW0;
(11)

which can be rewritten as

8<
:

@v
@t

C 1
2
trŒ���D2v�C ˇ�

� Dv

C 1
2
.Dv/��N�1

� ��Dv � U� D 0;

v.t; x/ D � logW0:

(12)

Here U� D � �

2.1��/ Ǫ�.�/�1 Ǫ C r.x/; ˇ� D
ˇ C �

1�� �
�.�/�1 Ǫ and N�1

� D I C
�

1�� 
�.�/�1: Under suitable conditions H-

J-B equation (12) has a solution with sufficient
regularities (Bensoussan et al. 1998; Nagai 2003).
Moreover, identification

v.0; xIT / � v.0; x/ D Ov.0; x/ (13)

can be verified. Further, Oh.t; Xt/ D 1
1�� .

�/�1
f Ǫ .Xt/ C ��Dv.t; Xt /g is the optimal invest-
ment strategy for problem (9) (Nagai 2003).

A typical example is the case of linear Gaus-
sian model such that r.x/ D r , ˛.x/ D Ax C a,
.x/ D †, ˇ.x/ D Bx C b, �.x/ D ƒ, where
A; B; †; ƒ are constant matrices; a; b are
constant vectors; and r is a constant. Then, the
solution to (12) has an explicit representation as
v.t; x/ D 1

2
x�P.t/x C q.t/�x C k.t/, where

P.t/ is the negative semi-definite solution to the
Riccati equation

PP .t/CP.t/ƒN�1ƒ�P.t/CK�
1 P.t/C P.t/K1

C �

1�� A
�.††�/�1A D 0; P.T / D 0

(14)
and q.t/; k.t/ are, respectively, the solutions to

Pq.t/C .K1 CƒN�1ƒP.t//�q.t/C P.t/b

C �

1�� .A
�CP.t/ƒ†�/.††�/�1 OaD 0; q.T /D0

(15)
and

Pk.t/C 1
2
trŒƒƒ�P.t/�C 1

2
q.t/�ƒƒ�q.t/

C �

2.1��/ . Oa C†ƒ�q.t//�.††�/�1
. Oa C†ƒ�q.t// D 0;

k.T / D � logW0;
(16)

where K1 WD B C �

1�� ƒ†
�.††�/�1A , Oa D

a � r1 and N�1 WD I C �

1�� †
�.††�/�1†.

In this case the optimal strategy has a more
explicit form: Oht D 1

1�� .††
�/�1Œ Oa C AXt� C

1
1�� .††

�/�1Œ†ƒ�q.t/ C †ƒ�P.t/Xt � (cf.
Davis and Lleo 2008; Kuroda and Nagai 2002).

The economic factor Xt may be more suitably
considered to be unobservable and then the prob-
lem should be formulated as the risk-sensitive
stochastic control problem under partial infor-
mation. Indeed, one can formulate the problem
by regarding the log prices Y it WD logSit , i D
0; 1; 2; : : : ; m as the observable quantities and the
economic factor Xt as the unobservable system
process. As for linear Gaussian models and hid-
den Markov models, the problems are reduced
to the ones of full information by obtaining the
relevant controlled dynamics in a finite dimen-
sion through deducing the filtering equation by
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the methods of change of measure (Nagai 1999;
Nagai and Runggaldier 2008). Further, one can
obtain the explicit form of the optimal strategy,
which is GSt measurable, in the case of linear
Gaussian model (Nagai 1999) as the parallel
result to the above.

Linear Gaussian models for 0 < � < 1 are
extensively studied in Fleming and Sheu (1999,
2002). In that case, one concerns the problems

sup
h

logEŒe� logWT .h/�; (17)

or

N�.�/ D sup
h

lim
T!1

1

T
logEŒe� logWT .h/�: (18)

If 0 < � is small, there is a stationary solution
of (14) and the verification theorem holds for
the problem on infinite horizon (so does for the
problem on a finite time horizon). Further, under
some conditions there is a threshold N� such that
N�.�/ D 1 for N� < � . To know explicitly the size
of N� is important, while it is limited to the case of
1 dimension to be able to realize.

Problems on Infinite Horizon

The value for the problem on infinite time horizon
counterpart of (9) is defined as

O�.�/ D inf
h:2A

�.hI �/; (19)

�.hI �/ D lim
T!1

1

T
logEŒe� logWT .h/�

when suitably setting the set A of admissible
strategies. The corresponding H-J-B equation of
ergodic type for the problem is seen to be

�.�/ D 1
2
trŒ���D2w�C ˇ�

�Dw
C 1
2
.Dw/��N�1

� ��Dw � U�:

(20)

However, when setting as A D fh:jŒ0;T � 2
A.T /; 8T g, identification of O�.�/ with the
solution �.�/ to the H-J-B equation (20) cannot
be seen in general. Indeed, even in the case of

linear Gaussian model, such identification does
not always hold (Fleming and Sheu 1999; Kuroda
and Nagai 2002; Nagai 2003) if � < 0. Instead,
introduce the asymptotic value

Q�.�/ D lim
T!1

1

T
Ov.0; xIT /:

Then we can see that �.�/ D Q�.�/ under suffi-
ciently general conditions (cf. Hata et al. 2010;
Nagai 2012).

In the case of the linear Gaussian model, the
solution to the H-J-B equation of ergodic type
is given by w.x/ D 1

2
x� NPx C Nq�x with the

stationary solutions NP of (14) and Nq of (15), and
if

P�†�.††�/�1†ƒ�P < A�.††�/�1A

holds, then one can see that �.�/ D O�.�/
(Kuroda and Nagai 2002). Further, the optimal
strategy is given by Oht D Oh.Xt/; with Oh.x/ D
1
1�� .††

�/�1Œ Oa C †ƒ�q C .A C †ƒ�P /x�
(Kuroda and Nagai 2002). Decomposition as
Oht D 1

1�� Oh1t C 1
1�� Oh2t WD 1

1�� .††
�/�1Œ Oa C

AXt� C 1
1�� .††

�/�1Œ†ƒ�q C †ƒ�PXt � is
regarded as a generalization of Merton’s Mutual
Funds Theorem (Davis and Lleo 2008; Merton
1990). Here Oh1t is a log utility portfolio (Kelly
portfolio) (Kelly 1956). See also Nagai and
Peng (2002) concerning the partial information
counterparts of the results in Kuroda and Nagai
(2002).

In relation to the above problems on mathe-
matical finance, a new kind of problem studying

I.�/ D lim
T!1

1

T
inf

h2A.T / logP.logWT .h/ � �T /

(21)

for a given constant �, arises, and it is called
“downside risk minimization.” The problem is
considered “large deviation control” and can be
discussed as the dual to risk-sensitive asset man-
agement (19) in the risk-averse case � < 0

(Hata et al. 2010; Nagai 2011, 2012). Indeed, we
obtain
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I.�/ D � inf
k2.�1;��

sup
�<0

f�k � O�.�/g:

Further, an asymptotically optimal strategy is
given as follows. For given �, take �.�/ which
attains the supremum in sup�<0f��� O�.�/g, then

the optimal strategy Oh.t; Xt /, 0 � t � T for prob-
lem (9) with � D �.�/ forms the asymptotically
optimal strategy for (21). Historically, the studies
of “upside maximization” concerning

NI .�/ D sup
h2A

lim
T!1

1

T
logP.logWT .h/ � �T /

have been preceding (cf. Pham 2003), and the
duality relationship between this and (18) was
discussed. To develop further studies for the prob-
lem, there are difficulties to know the size of N�
(Cf. Fleming and Sheu 1999, 2002).

Cross-References

�Credit Risk Modeling
� Financial Markets Modeling
� Investment-Consumption Modeling
�Option Games: The Interface Between Optimal

Stopping and Game Theory

Bibliography

Basar T, Bernhard P (1991) H1 – optimal control
and related minimax design problems. Birkhäuger,
Boston/Cambridge

Bensoussan A (1992) Stochastic control of partially ob-
servable systems. Cambridge University Press, Cam-
bridge

Bensoussan A, Nagai H (1997) Min–max characterization
of a small noise limit on risk-sensitive control. SIAM
J Control Optim 35:1093–1115

Bensoussan A, Nagai H (2000) Conditions for no break-
down and Bellman equations of risk-sensitive control.
Appl Math Optim 42:91–101

Bensoussan A, Van Schuppen JH (1985) Optimal con-
trol of partially observable stochastic systems with
an exponential-of-integral performance index. SIAM
J Control Optim 23:599–613

Bensoussan A, Frehse J, Nagai H (1998) Some results on
risk-sensitive control with full information. Appl Math
Optim 37:1–41

Bielecki TR, Pliska SR (1999) Risk sensitive
dynamic asset management. Appl Math Optim 39:
337–360

Davis M, Lleo S (2008) Risk-sensitive benchmarked asset
management. Quant Financ 8:415–426

Fleming WH (1995) Optimal investment models and
risk-sensitive stochastic control. IMA vol Math Appl
65:75–88

Fleming WH, McEneaney WM (1995) Risk-sensitive con-
trol on an infinite horizon. SIAM J Control Optim
33:1881–1915

Fleming WH, Sheu SJ (1999) Optimal long term growth
rate of expected utility of wealth. Ann Appl Probab
9(3):871–903

Fleming WH, Sheu SJ (2002) Risk-sensitive control and
an optimal investment model. II. Ann Appl Probab
12(2):730–767

Hata H, Nagai H, Sheu SJ (2010) Asymptotics of the
probability minimizing a “down-side” risk. Ann Appl
Probab 20:52–89

Jacobson DH (1973) Optimal stochastic linear systems
with exponential performance criteria and their rela-
tion to deterministic differential games. IEEE Trans
Autom Control 18:124–131

Kelly J (1956) A new interpretation of information rate.
Bell Syst Tech J 35:917–926

Kuroda K, Nagai H (2002) Risk sensitive portfolio op-
timization on infinite time horizon. Stoch Stoch Rep
73:309–331

Merton RC (1990) Continuous time finance. Blackwell,
Malden

Nagai H (1996) Bellman equations of risk-sensitive con-
trol. SIAM J Cont Optim 34:74–101

Nagai H (1999) Risk-sensitive dynamic asset management
with partial information. In: “Stochastics in finite and
infinite dimensions”, a volume in honor of G. Kallian-
pur. Birkhäuser, Boston, pp 321–340

Nagai H (2003) Optimal strategies for risk-sensitive port-
folio optimization problems for general factor models.
SIAM J Control Optim 41:1779–1800

Nagai H (2011) Asymptotics of the probability mini-
mizing a “down-side” risk under partial information.
Quant Financ 11:789–803

Nagai H (2012) Downside risk minimization via a
large deviation approach. Ann Appl Probab 22:
608–669

Nagai H, Peng S (2002) Risk-sensitive dynamic portfolio
optimization with partial information on infinite time
horizon. Ann Appl Probab 12(1):173–195

Nagai H, Runggaldier WJ (2008) PDE approach to utility
maximization for market models with hidden Markov
factors. In: Dalang et al (ed) Seminar on stochastic
analysis, random fields and applications V. Progress in
probability. Birkhäser, Basel, pp 493–506

Pham H (2003) A large deviations approach to optimal
long term investment. Financ Stoch 7: 169–195

Whittle P (1981) Risk-sensitive linear/quadratic/Gaussian
control. Adv Appl Probab 13:764–767

Whittle P (1990) A risk-sensitive maximum principle.
Syst Control Lett 15:183–192

http://dx.doi.org/10.1007/978-1-4471-5058-9_43
http://dx.doi.org/10.1007/978-1-4471-5058-9_42
http://dx.doi.org/10.1007/978-1-4471-5058-9_39
http://dx.doi.org/10.1007/978-1-4471-5058-9_41


1162 Robot Grasp Control

Robot Grasp Control

Domenico Prattichizzo
University of Siena, Siena, Italy

Abstract

Robotic grasping is the process of establishing
a physical connection between the robot (or an
appendage of the robot called the gripper) and
an external object in such a way that the robot
can exert forces and torques on the object. Grasp
control requires the satisfaction of contact con-
straints, of which two types are considered. Form
constraints specify geometric configurations of
the gripper that bring it into contact with the
object to be grasped. This article is principally
concerned with force constraints and force clo-
sure that specify forces exerted on the object
that are sufficient to lift, move, or otherwise
manipulate it.

Keywords

Force constraints; Force closure; Grasp con-
straints; Grasp matrix; Hand Jacobian; Twists;
Wrenches

Introduction

Grasp control refers to the art of controlling the
motion of an object by constraining its dynamics
through contacts with a hand. The process of con-
trolling the grasp is not limited to robotic hands
only but also applies to human hands (Johansson
and Edin 1991) and to all other mechanisms using
contact constraints to control the motion of the
manipulated object (Brost and Goldberg 1996).

A crucial role in the control of grasping is
played by contact constraints. All the interactions
between the robotic hand and the grasped object
occur at the contacts whose understanding is
paramount (Salisbury and Roth 1983). The uni-
lateral nature of contact interaction in grasping

makes the control problems much more challeng-
ing than cooperative manipulation where multiple
arms hold the object rigidly allowing bilateral
force transmission at each contact point (Chiac-
chio et al. 1991).

The importance of unilateral contact con-
straints in grasping led a large part of the
literature to focus on the closure properties
of the grasp (Bicchi 1995). Those properties
refer to the ability of a grasp to prevent
motions of the grasped object relying only
on unilateral frictionless constraints in case
of form closure (Reuleaux 1876) and on
contact constraints with friction in case of force
closure (Nguyen 1988). While form closure is
a purely geometric property of the grasp and
depends on where the unilateral contact points
are on the object, force closure depends on the
ability that the robotic hand has to resist and
apply forces to the object through the contacts
while satisfying the friction constraints. In other
terms force closure directly involves the control
of the robotic hand kinematics and not only the
geometry of the contacts (Bicchi 1995). This
entry focuses on force-closed grasps.

The optimal choice of the contact points on the
object surface is a critical issue known as grasp
planning. Among the many optimal criteria that
have been proposed in the literature to choose the
contact points, I want to recall the one proposed
in Ferrari and Canny (1992) where the grasp-
ing configuration is evaluated according to the
magnitude of the largest worst-case disturbance
wrench that can be resisted by the grasp.

Many approaches have been studied in the
literature on grasp planning in the presence of
uncertainties. The uncertainty can be either due to
the shape of the object which is partially known
or partially sensed as in Goldfeder et al. (2009)
or due to the errors in positioning the fingers on
the object during the grasping (Roa and Suarez
2009). In what follows all the parameters of the
grasp including those related to the hand, the
object, and the contact points are assumed to be
known with no uncertainties.

The main objective of grasp control is that of
tracking a desired trajectory with the grasped
object by applying a set of contact forces
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satisfying the friction constraints (Bicchi and
Kumar 2000). Complex in-hand object motions
can be obtained by rolling and sliding the contact
points on the object surface as proposed in
Montana (1988) or by using finger gaiting to
get large-scale motions (Han and Trinkle 1998).
This entry deals with non-rolling and non-sliding
contact points and summarizes the fundamental
theory of computed-torque control for object
trajectory and internal force control proposed
in Li et al. (1989). For a comprehensive review of
the theory of grasping and its control, the reader
is referred to Murray et al. (1994), Shimoga
(1996), Okamura et al. (2000), Bicchi and Kumar
(2000), and Prattichizzo and Trinkle (2008).

Contact and GraspModel

Notations and definitions on grasping are taken
from Prattichizzo and Trinkle (2008). Refer to
Fig. 1 and let fN g represent the inertial frame
fixed to the palm of the robotic hand. Let u D
ŒpT ; �T �T 2 R6 denote the vector describing the
position and orientation of frame fBg, fixed to
the object, relative to fN g. Vector � expresses the

Euler angles, the pitch-roll-yaw variables, or the
exponential coordinates parameterizing SO.3/.
Denote by � D ŒvT !T �T 2 R6 the twist of the
object. It is worth to note that � is not equal to
Pu, but satisfies � D U.u/Pu where matrix U 2
R6�6 is such that UUT is the identity matrix, and
the dot over the variable implies differentiation
with respect to time (Murray et al. 1994). The
joint variables of the robotic hand are defined
by q D Œq1 : : : qnq �

T 2 Rnq . Let nc be the
number of contact points. The position of contact
point i in fN g is defined by the vector ci 2 R3,
in the contact point frame fC gi whose axes are
f Oni ; Oti ; Ooig where the unit vector Oni is normal
to the tangent plane at the contact, and directed
toward the object while the other two unit vectors
are orthogonal and lie in the tangent plane.

Two matrices are of utmost importance in
grasp analysis: the grasp matrix G and the hand
Jacobian J . These two matrices are computed
using the complete grasp matrix, the complete
Jacobian, and the contact selection matrix that are
defined as follows: the transpose of the complete
grasp matrix QGT 2 R6nc�6 maps the object twist
to the nc twist vectors of the contact frames fC gi
as thought on the object �c;obj D QGT �, while
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the complete hand Jacobian Matrix QJ 2 R6nc�nq
maps the joint velocities to the twists of the con-
tact frames as thought on the hand �c;hnd D QJ Pq:

When a contact occurs between the hand and
the object, assuming no sliding, some compo-
nents of the relative contact twist between the
object and the hand are set to zero according to
the used contact model. In this entry the hard-
finger (HF) and the soft-finger (SF) contact mod-
els are considered (Mason and Salisbury 1985).
Those components are selected by the contact
selection matrix which selects m components of
the relative contact twists for all the contacts and
sets them to zero:H.�c;hnd��c;obj/ D 0. For more
details on how to compute the contact selection
matrix, the reader is referred to Prattichizzo and
Trinkle (2008). Then the following contact con-
straint equation is obtained:

�
J �GT

	 � Pq
�


D 0 (1)

where the transpose of the grasp matrix and the
hand Jacobian are finally defined by multiplying
the contact selection matrix and the transpose of
the complete grasp matrix and the complete hand
Jacobian as

GT D H QGT 2 Rm�6
J D H QJ 2 Rm�nq

In the force domain, the wrenches that the hand
applies to the object at the contact points are
collected in the vector �. Correspondingly, on
the hand, a force vector ��, opposite to the
preceding one, is applied by the object through
the contact points. At each contact point, the
contact wrenches have components only along
the directions constrained by the contact model.
Furthermore, contact force components must sat-
isfy the friction constraints (see section “Force
Closure and Grasp Control”). More specifically,
the m-dimensional vector � D Œ�T1 : : : �Tnc �

T

contains the contact wrench components applied
to the object through the nc contacts, where the
wrench at contact i is defined, for the differ-
ent contact models here considered, as �i D
Œfin fit fio�

T for the HF contact model and

�i D Œfin fit fio min�
T for the SF contact

model. The subscripts indicate one normal (n)
and two tangential .t; o/ components of contact
force fi and momentmi at contact i .

In terms of forces, the grasp matrix maps
the transmitted contact wrenches � to the set of
wrenches that the hand can apply to the object
G�, and the transpose of hand Jacobian maps the
contact forces �� to the corresponding vector of
joint loads �J T �.

Grouping all the noncontact wrenches applied
to the object in g 2 R6 and all the noncontact
contributions to the joint loads of the robotic hand
in � 2 Rnq , the rigid-body dynamic equations of
the whole system, consisting of the hand and of
the grasped object, are

Mobj.u/ P� CNobj.u; �/ D G�C g

Mhnd.q/ Rq CNhnd.q; Pq/ D �J T �C �

where Mobj.�/ and Mhnd.�/ are symmetric, pos-
itive definite inertia matrices and Nobj.�; �/ and
Nhnd.�; �/ are the velocity-product terms for the
object and the hand, respectively. For the sake of
simplicity, the gravity terms are disregarded.

The dynamics of the hand and object are not
independent but depend on the kinematic con-
straints imposed by the contact model (1)

��G
JT


� D

�
g

�



subject to J Pq D GT �

(2)

where

g D g �Mobj.u/ P� �Nobj.u; �/:
� D � �Mhnd.q/ Rq �Nhnd.q; Pq/

It is worth underlying that dynamics can be dis-
regarded for slow motions of the hand and of the
object, while it becomes very relevant in applica-
tions with high-speed grasping and manipulation
as discussed in Namiki et al. (2003).
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Controllable Wrenches and Twists

From the first equation in (2) to impose any
motion to the object by contact forces, the grasp
matrix G must be full row rank, i.e., rank .G/ D
6, which is equivalent to have a trivial null space
of GT , i.e., N .GT / D 0. This is an important
property of the grasp which has been referred to
as non-indeterminate in Prattichizzo and Trinkle
(2008) to reflect the idea that the contacts on the
object are placed in a way that there are no twists
of the object that are not controllable by contact
wrenches.

However, this condition depends only on the
contacts on the object and does not consider the
role of the hand kinematics which comes from
the second equation in (2) and from the contact
constraint. Under the simplifying assumption that
N .J T / D 0, referred to as non-defective grasp
in Prattichizzo and Trinkle (2008), it is simple
to verify that, for any given contact wrench �, a
control torque � exists which is able to apply the
given contact wrench. The mechanical interpreta-
tion of this assumption is that when N .J T / D 0,
there are no contact forces resisted by the robotic
hand constraints, i.e., with zero joint load. The
simplifying assumption of non-defective grasps
ensures that N .J T / \ N .G/ D 0 which is
a necessary condition to determine the contact
force � from the rigid-body equation (2) as shown
in Prattichizzo and Trinkle (2008).

If a grasp is non-defective, it means that each
finger of the robotic hand involved in the contact
with the object must have a number of joints
sufficient to control all the components of the
contact wrench. For example, in the case of two
HF contact points occurring at the fingertips of a
two-fingered robotic hand, each finger must have
at least three joints and must be in a non-singular
configuration.

This entry does not consider whole-hand or
power grasps which, differently from the fingertip
grasps, exploit the whole surface of the fingers,
including the palm, to constraint the object. The
analysis of controllable wrenches and twists for
whole-arm grasps, taking into account the hand
and object dynamics, can be found in Prattichizzo
and Bicchi (1997).

Force Closure and Grasp Control

The dynamic formulation of the grasp with the
contact kinematic constraints given in (2) holds
only if the contact forces satisfy the friction law
imposing constraints on the components of the
contact force and moment. Limiting the analy-
sis to HF contact models, Coulomb friction law
requires that the components of contact force �i
at the i -th contact lie inside the friction cone
Fi

Fi D f.fin; fit ; fio/ j
q
f 2
it C f 2

io � �ifing
(3)

where �i represents the friction coefficient at the
i -th contact. Extending to all contact points, � is
constrained to lie in F where F is the generalized
friction cone defined as: F D F1 � � � � � Fnc D
f� 2 Rm j �i 2 Fi I i D 1; : : : ; ncg.

While grasping an object, the applied contact
forces must be consistent with the friction con-
straints. This is not straightforward for the grasp
control and requires to exploit the beneficial char-
acteristics of the internal forces. From the object
dynamics in (2), for a given g, one gets

� D �GCg CN.G/� (4)

where GC denotes the generalized inverse of the
grasp matrix and N.G/ denotes a matrix whose
columns form a basis for N .G/, and � is a vector
parameterizing the solution set. The contact force
� consists of a particular solution balancing the g
term and of a homogeneous solution belonging to
the null space of the grasp matrix.

In general, the particular solution �GCg does
not satisfy the friction constraint (3) at all the con-
tact points and needs the homogeneous solution
�h D N.G/� to keep the contact forces within
the friction cones. Contact forces �h in N .G/ are
referred to as internal forces since they do not
contribute to the object dynamics, i.e., G�h D
0. Instead, these forces affect the tightness of
the grasp and play a crucial role in maintaining
grasps that rely on friction. The existence of a
nontrivial null space of the grasp matrix is a
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desirable property and has been referred to as
graspability (Prattichizzo and Trinkle 2008).

Another relevant and desirable property of the
grasp is the frictional force closure which means
that for any noncontact wrench g, an internal
force �h exists such that the contact force �

in (4) belongs to the generalized friction cone F .
In Murray et al. (1994) the authors state that a
grasp has frictional form closure if and only if the
grasp matrix is full row rank (non-indeterminate
grasp) and there exists �h such that G�h D 0

and �h belong to the interior of the generalized
friction cone F .

Grasp control is about using contact forces,
which must satisfy the friction constraints, so as
to let the object to track a given trajectory. This is
also referred to as dexterous manipulation (Bicchi
and Kumar 2000). In Li et al. (1989), a computed-
torque controller is proposed to track both the
desired trajectory of the grasped object udes and
the desired internal force �h;des. Under the ad-
ditional simplifying assumption that the robotic
hand Jacobian is invertible, i.e., there are no
redundant motions of the fingers, the computed-
torque control law

� D Nhnd.q; Pq/C J TGCNobj.u; �/
�MhndJ.q/J

�1 PJ Pq CMho PU Pu
CMhoU.Rudes �Kv Peu �Kueu/

CJ T .�h;des �Ks

R
e�h/;

with Mho D MhndJ.q/J
�1GT C J T GCMobjJ

guarantees that both the trajectory and the inter-
nal force errors

eu D u � udes

e�h D �h � �h;des

with respect to the desired object trajectory udes

and internal force �h;des converge to zero ac-
cording to a second- and first-order dynamics,
respectively.

Reu CKv Peu CKueu D 0

e�h CKs

R
e�h D 0

where Kv, Ku, and Ks are positive definite
matrices.

The computed-torque controller proposed
in Li et al. (1989) guarantees only that the desired
object trajectory and the desired internal forces
are asymptotically tracked, but it does not ensure
the non-violation of friction constraints by the
contact forces. To guarantee that the contact force
vectors remain in the friction cone during the
manipulation, a force distribution problem must
be solved at each time instant. The force closure
assumption ensures that a solution exists that sat-
isfies the friction constraints during the manipula-
tion. This solution, which becomes the reference
for the internal force control, can be found with
an efficient algorithm, based on the minimization
of a convex function that checks the force closure
property at each time instant (Bicchi 1995).

Summary and Future Directions

The basic foundation of grasp control has been
reviewed with a particular attention to modeling
of contact constraints, force closure, and control
of object motion and internal forces. This entry
did not explicitly address grasp stability that
is often equated to grasp closure, because all
external forces can be balanced by the hand. A
more formal analysis of grasp stability in terms
of deflection from an equilibrium point has been
proposed for hands with general kinematics in
Jen et al. (1996).

The computed-torque control is a classical
approach to the grasp control. For a deeper study
of other approaches to grasp control based on pas-
sivity theory, the reader is referred to Wimboeck
et al. (2011).

Recent developments in underactuated robotic
hands Birglen et al. (2008) have led to a renewed
interest in grasp control. Designing hand with a
lower number of actuators has a lot of advantages
in terms of robustness and reliability but dramati-
cally reduces the dexterous manipulation abilities
which can be recovered only by designing new
control algorithms (Prattichizzo et al. 2013).

Cross-References

�Force Control in Robotics
�Parallel Robots
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�Robot Visual Control
�Walking Robots

Recommended Reading

Grasp synthesis and dexterous manipulation
are important research topics. Grasp synthesis
is the problem of choosing the posture of the
hand and contact point locations to optimize
a grasp quality metric. One of the first studies
of grasp synthesis for multi-fingered hands was
undertaken in Jameson (1985) where the author
proposed a Levenberg-Marquardt algorithm
to search the surface of an object for the
locations of three points that would achieve force
closure. Since this work, many other metrics
and approaches to searching for high-quality
grasps have been implemented as discussed in
Nguyen (1988), Pollard (1997), Park and Starr
(1992), Chen and Burdick (1993), and references
therein.

Dexterous manipulation is the capability of
manipulating an object so as to arbitrarily steer
its configuration in space. Research on dexter-
ous manipulation first appeared in Hanafusa and
Asada (1979) where the authors developed a plan
to turn a nut onto a bolt. Since then a progression
of increasingly complex manipulation tasks have
been studied to varying degrees of detail. For
the planar case the reader is referred to Mason
(1982), Brost (1991), Peshkin and Sanderson
(1988), Lynch (1996), and references therein.
Several approaches have been proposed to plan-
ning and execute dexterous manipulation tasks in
three dimensions continues in Cherif and Gupta
(1999), Han et al. (2000), and Higashimori et al.
(2007). Dexterous manipulation can be evaluated
with manipulability ellipsoids of velocity and
force as proposed in Chiacchio et al. (1991)
for multiple-fingered systems and more recently
in Prattichizzo et al. (2012) for underactuated
robotic hands.
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Robot Motion Control
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Abstract

The motion control problem for robots, both for
manipulator arms and for wheeled mobile robots,
is to determine a time sequence of control inputs
to achieve a desired motion, or output, response.
The control inputs are usually motor currents
but can be translated into torques or velocities
for the purpose of control design. The desired
motion is typically given by a reference trajec-
tory, consisting of positions and velocities that
are generated from motion planning and trajec-
tory generation algorithms designed to calculate
collision-free paths, taking into account various
kinematic and dynamic constraints on the robot.
In this chapter we give an overview of some
common control methods for motion control of
robots, concentrating on the control of manipula-
tor arms.

Keywords

Adaptive control; Feedback linearization; Inverse
kinematics; Motion planning; Passivity-based
control; PID control; Robust control
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Introduction

We consider the motion control problem for an
n-degree-of-freedom robot manipulator, such
as shown schematically in Fig. 1. The variables
�1; : : : ; �n are the joint variables, which define
the configuration of the robot at each instant of
time.

A robot manipulator is fundamentally a posi-
tioning device designed to move material, parts,
tools, or specialized devices through variable
programmed motions for the performance of
a variety of tasks (Robot Institute of America,
1980). Thus, manipulator tasks, such as materials
transfer, welding, and painting, and even tasks
involving the control of interaction forces, such
as assembly or grinding, are performed through
the coordination and control of the motion of the
joints of the robot.

A typical robot control architecture is shown
in Fig. 2, which is designed to translate sensing
into action, through motion planning, trajectory
generation, and feedback control. In this entry we
concentrate on the function of the controller.

Motion Planning

The desired joint motions are specified as refer-
ence trajectories (positions and velocities) gener-
ated from motion planning algorithms that must
determine collision-free paths taking into account
various kinematic and dynamic constraints on
the robot (Lavelle 2006). A detailed discussion
of motion planning is outside the scope of this
entry. The motion planning problem begins by

decomposing a given task into a discrete set of
end-effector motions. A continuous path for the
end-effector in the task space is then computed,
taking into account issues of joint limits and col-
lisions with objects in the workspace, including
self-collisions.

Finding optimal paths in configuration space
is computationally complex, and methods
have been developed to determine feasible,
suboptimal paths using various methods such
as artificial potential functions, grid search, and
roadmaps (Lavelle 2006).

Once a feasible path in task space is
determined, a trajectory, which is a time-
parameterized function in task space or
configuration space, is computed. To compute
configuration space or joint space trajectories
from task space trajectories, the inverse
kinematics of the manipulator is used.

Trajectory Generation

To simplify computation, joint-level trajectories
are typically generated by calculating the inverse
kinematics only at discrete points along the task
space trajectory and then interpolating between
these points. Two of the most common interpola-
tion schemes utilize either polynomials in time or
trapezoidal velocity profiles.

For example, a cubic polynomial reference
trajectory, �r .t/, may be specified as

�r .t/ D a0 C a1t C a2t
2 C a3t

3

Robot Motion Control,
Fig. 1 Six-link robot
manipulator
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Robot Motion Control, Fig. 2 Control architecture for robot control
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Robot Motion Control, Fig. 3 A cubic polynomial ref-
erence trajectory

If the desired positions and velocities of the joint
variable are specified at initial and final times,
t0 and tf , respectively, it is a simple calculation
to determine the four polynomial coefficients,
a0; : : : ; a3. The reference velocity and accelera-
tion are then given by

P�r .t/ D a1 C 2a2t C 3a3t
2
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RobotMotionControl, Fig. 4 Trapezoidal velocity pro-
file

R�r .t/ D 2a2 C 6a3t

A typical cubic polynomial trajectory is shown in
Fig. 3.

A trapezoidal velocity profile is illustrated in
Fig. 4.

In this case, the velocity of the joint angle
increases linearly to a maximum value, Vmax,
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which remains constant for a period of time and
then decreases linearly.

Independent Joint Control

The simplest approach to control design for
a multi-degree-of-freedom manipulator is to
treat each link of the robot as a single-
input/single-output (SISO) system and design
the controllers independently for each link.
Proportional, integral, derivative (PID) control
is the most common method employed in this
case. This approach works well for highly geared
manipulators moving at relatively low speeds,
since the large gear reduction and low speed
tend to reduce the coupling effects among the
various links. More advanced linear or nonlinear
control methods can be used to achieve higher
performance at the expense of added complexity
of the control system.

The basic architecture of such a system, using
a linear model to represent the dynamics of each
joint of the robot, is shown in the frequency
domain in Fig. 6.

The control design objective is to choose the
compensator in such a way that the plant out-
put � tracks or follows a desired output, given
by the reference signal, �r . The control signal,
however, is not the only input acting on the
system. Disturbances, which are really inputs
that we do not control, also influence the behavior
of the output. Therefore, the controller must be
designed, in addition, so that the effects of the
disturbance,D, on the plant output are reduced. If
this is accomplished, the plant is said to reject the
disturbances. The twin objectives of tracking and
disturbance rejection are central to any control
methodology.

The plant transfer function, P.s/, represents
the dynamics of a single degree-of-freedom sys-
tem, typically inertia and damping,

P.s/ D 1

Js2 C Bs
(1)

C.s/ is a PID compensator

u.s/ D


KpCKi

s
CKds

�
.�r .s/��.s// (2)

where Kp, Ki , Kd are the proportional, integral,
and derivative gains, respectively, and �r .s/ �
�.s/ is the tracking error between the reference
trajectory �r .s/ and joint variable �.s/.

Set-Point Tracking

If the reference trajectory �r is a constant set
point, then the closed-loop transfer function,
T .s/, from �r to � (with D D 0) is

T .s/ D P.s/C.s/

1C P.s/C.s/

D Kds
2 CKps CKi

Js3 C .B CKd/s2 CKps CKi

Applying the Routh-Hurwitz criterion, it follows
that the closed-loop system is stable if the gains
are positive and

Ki <
.B CKd/Kp

J
(3)

In addition, the presence of the integral control
term, Ki

s
, guarantees zero steady-state error to a

constant disturbance termD.

Feedforward Control

In order to track nonconstant reference signals,
such as a cubic polynomial trajectory or trape-
zoidal velocity trajectory, a feedforward term
may be superimposed on the PID control signal as
shown in Fig. 5. Under the condition that the plant
P.s/ is minimum phase, the feedforward transfer
functionF.s/ can be taken as 1=P.s/, the inverse
of the plant. This guarantees asymptotic tracking
of any time-varying reference trajectory provided
the closed-loop transfer function is stable.

PID control is, by far, the most common type
of control used in industry due to its simplicity.
The main problem in implementing PID control
is in the tuning, that is, in the choice of the
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Robot Motion Control, Fig. 5 Feedforward control architecture

Robot Motion Control, Fig. 6 Single-axis control

proportional, derivative, and integral gains. As
we see from the inequality (3), the magnitude of
the integral gain Ki is limited by the stability
constraint. Therefore, one common design rule
of thumb is to first set Ki D 0 and design the
proportional and derivative gains, Kp and Kd , to
achieve the desired transient behavior (rise time,
settling time, and so forth) and then to choose Ki

within the limits imposed by (3) to remove the
steady-state error.

Advanced Control Methods

Advanced control methods for robots generally
aim to take into account issues such as dynamic
coupling between joints; compliance in the joints
or links; uncertainty in the inertia parameters,
such as the masses and moments of inertia of the
links; and robustness to sensor noise and other
effects. A common model of the dynamics of
n-link, rigid robots, i.e., without consideration of
friction, elasticity in the joints or links, and other
effects, is given by the so-called Euler-Lagrange
equations

M.�/ R� C C.�; P�/ P� C g.�/ D � (4)

where � D .�1; �2; : : : ; �n/
T is the vector of

configuration (joint) variables as in Fig. 1. The
n-dimensional vectors, P� and R� , are then the
joint velocities and accelerations, respectively.
The n � n matrix,M.�/, is called the inertia ma-
trix. The vectors C.�; P�/ P� and g.�/ are Coriolis
and centrifugal forces and gravitational forces,
respectively.

Equation (4) is a system of n coupled, nonlin-
ear, second-order equations and is, in fact, a rep-
resentation of Newton’s Second Law of Motion,
where the (generalized) forces acting on the joints
of the robot (� � C.�; P�/ P� � g.�/) equate to the
mass times acceleration, given byM.�/ R� .

In this case, the control problem becomes one
of choosing the control input torque vector �.t/,
as a function of time, so that the solution, .�.t/,
P�.t//, of Eq. (4) tracks a reference trajectory of
joint positions and velocities, .�r .t/, P�r .t//.

Feedback Linearization Control

An intuitive method of control for this system
is the method of feedback linearization, which
computes the input torque � according to
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� D M.�/a C C.�; P�/ P� C g.�/ (5)

a D R�r CKd. P�r � P�/CKp.�
r � �/ (6)

withKd ,Kp matrices of appropriate velocity and
position error gains.

The control law given by Eqs. (5) and (6)
is often referred to as the method of inverse
dynamics although historically, the method of
inverse dynamics control was implemented as a
feedforward control

� D M.�r/aC C.�r ; P�r / P�r C g.�r / (7)

a D R�r CKd. P�r � P�/CKp.�
r � �/ (8)

using the reference position and velocity in place
of the measured state. The primary reason for
implementing the inverse dynamics in this fash-
ion was the lack of sufficiently fast computation
to enable computation of the terms in Eq. (5) in
real time. The nonlinearities in Eq. (7) could be
precomputed offline and stored to facilitate real-
time implementation. With the advent of faster
computers, the feedback linearization control is
now feasible in real time.

Equations (5) and (6) form a so-called inner-
loop/outer-loop architecture (Fig. 7). The signif-
icance of this architecture is that the nonlinear
inner-loop control term (5) results in a linear
system with input a and output � . The design of
the outer-loop control can then take advantage of
control methods for linear systems. In fact, the
control (6) in this case is simply a PD control with
feedforward acceleration.

The result of the controller (5) and (6) is a
closed-loop system in terms of the tracking error,
e.t/ D �.t/ � �r .t/, that satisfies the linear
equation

Re CKd Pe CKpe D 0 (9)

and therefore, the tracking error converges
exponentially to zero for any given reference
trajectory.

Task Space Linearization

The inner-loop/outer-loop control architecture
above can be modified to track trajectories
directly in the task space. Moreover, one can
achieve task space tracking by modifying
only the outer-loop control a in Eq. (6) while
leaving the inner-loop control (5) unchanged. Let
X 2 R6 represent the end-effector position and
orientation and let Xr.t/ be a reference trajectory
in task space. Since X is a function of the joint
variables � , we have

PX D J.�/ P� (10)

RX D J.�/ R� C PJ .�/ P� (11)

where J is the manipulator Jacobian. If we now
choose the outer-loop term a according to

a D J�1˚aX � PJ P�� (12)

with

aX D RXr �K0.X �Xr/ �K1. PX � PXr/ (13)

we see that the result is a linear system in the task
space tracking error eX.t/ D X.t/ �Xr.t/

ReX CK1
PeX CK0

eX D 0 (14)

Robot Motion Control,
Fig. 7 Inner-loop/
outer-loop control
architecture
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Therefore, a modification of the outer-loop con-
trol achieves a linear and decoupled system di-
rectly in the task space coordinates without the
need to compute a joint space trajectory and
without the need to modify the nonlinear inner-
loop control.

It is important to note that the above result
is valid in the case of six degree-of-freedom
manipulators when the Jacobian J is square and
invertible. The case when the Jacobian is not
invertible, for example, at kinematic singularities,
or when the number of joints is not equal to the
dimension of the task space is outside the scope
of this entry.

Robust and Adaptive Control

There are several theoretical and practical chal-
lenges to the method of feedback linearization
control discussed in the previous section. For
example, in order to compute Eq. (5), one must
have exact knowledge of the parameters defining
Eq. (4). In addition, effects of compliance, fric-
tion, and so on are not modeled by Eq. (4) and so
the stability and performance of the system pre-
dicted by Eq. (9) may not be achieved in practice.
This has stimulated a great deal of research into
robust and adaptive control, control of elasticity,
and other issues.

In distinguishing between robust control and
adaptive control, we follow the commonly ac-
cepted notion that a robust controller is a fixed
controller designed to satisfy performance spec-
ifications over a given range of uncertainties,
whereas an adaptive controller incorporates some
sort of online parameter estimation. This distinc-
tion is important. For example, in a repetitive
motion task, the tracking errors produced by a
fixed robust controller would tend to be repetitive
as well, whereas tracking errors produced by an
adaptive controller might be expected to decrease
over time as the plant and/or control parameters
are updated based on runtime information. At
the same time, adaptive controllers that perform
well in the face of parametric uncertainty may
not perform well in the face of other types of

uncertainty such as external disturbances or un-
modeled dynamics.

Robust Feedback Linearization

If we denote by OM.�/, OC.�; P�/, and Og.�/ expres-
sions for the terms M.�/, C.�; P�/, and g.�/ in
the equations of motion (4) based on nominal or
estimated values of the true parameters, we can
define a control input

u D OM.�/.a C ıa/C OC.�; P�/ P� C Og.�/ (15)

where a is as defined in Eq. (6) and ıa represents
an additional control intended to compensate for
the parameter uncertainty. This leads to the state
space model in terms of the tracking error e

Pe D Ae C BfıaC �g

where � represents the uncertainty resulting from
inexact cancellation of nonlinearities and

A D
�
0 I

�K0 �K1


I B D

�
0

I



Under the assumption that the uncertainty is
bounded as jj�jj � �.e; t/, the control term ıa

can be chosen as

ıa D

8̂
<̂
ˆ̂:

��.e; t/ BT Pe
jjBTPejj I if jjBTPejj > �

��.e; t/� BT Pe I if jjBTPejj � �

The Lyapunov function

V D eT Pe (16)

where P is a symmetric, positive definite matrix
satisfying a Lyapunov equation

ATP C PACQ D 0 (17)

for a given symmetric positive definite matrix Q
can be used to show uniform ultimate bound-
edness of all trajectories, where the size of the
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ultimate boundedness set depends on �. This is
a practical notion of asymptotic stability in the
sense that the tracking errors can be made small.

Passivity-Based Control

Passivity-based control is an alternative to feed-
back linearization control considered previously
and relies on some fundamental structural prop-
erties of the Euler-Lagrange equations, primarily
linearity in the parameters and passivity.

The passivity property (Ortega and Spong
1989) of robot dynamics follows from the fact
that the matrix N.q; Pq/ D PM.q/ � 2C.q; Pq/ is
skew symmetric, that is, the components njk of
N satisfy njk D �nkj (Spong et al. 2006). This
property implies that the total energy E of the
robot satisfies

PE D P�T u (18)

and can be used to design provably correct robust
and adaptive control laws.

Linearity in the Parameters

The robot equations of motion are defined in
terms of certain parameters, such as link masses,
moments of inertia, etc. The complexity of the
dynamic equations makes the determination of
these parameters a difficult task. Fortunately, the
equations of motion are linear in these inertia
parameters in the following sense: There ex-
ists an n � ` matrix function Y.q; Pq; Rq/ and an
`-dimensional constant vector ˆ such that the
Euler-Lagrange equations can be written as

M.�/ R� CC.�; P�/ P� Cg.�/ D Y.�; P�; R�/ˆ (19)

The function Y.�; P�; R�/ is called the regressor
and ˆ 2 R` is the parameter vector. The dimen-
sion of the parameter space, that is, the number
of parameters needed to write the dynamics in
this way, is not unique, and finding a minimal set
of parameters that can parameterize the dynamic
equations is difficult in general.

Passivity-Based Robust Control

The passivity and linearity-in-the-parameters
properties of the robot dynamics can be exploited
to design robust and adaptive controllers that do
not attempt to cancel the system nonlinearities as
in the inverse dynamics approach. A passivity-
based robust controller may be defined as

u D OM.�/a C OC.�; P�/v C Og.�/ �Kr (20)

where the quantities v, a, and r are given as

v D P�r �ƒ Q�
a D Pv D R�r �ƒ

PQ�
r D P� � v D PQ� Cƒ Q�

andK is a diagonal matrix of positive gains.
Using the linearity-in-the-parameters prop-

erty, the closed-loop system can be written as

M.�/Pr C C.�; P�/r CKr D Y.�; P�; a; v/
. Ô �ˆ/ (21)

In the robust passivity-based approach, the term
Ô is chosen as

Ô D ˆ0 C ıˆ

whereˆ0 is a fixed nominal parameter vector and
ıˆ is an additional control term. The additional
term ıˆ can be designed according to

ıˆ D

8̂
<̂
ˆ̂:

�� Y T r
jjY T r jj I if jjY T r jj > �

��� Y T r I if jjY T r jj � �

where � is a (constant) bound on the parameter
uncertainty. Uniform ultimate boundedness of
the tracking errors follows using the Lyapunov
function

V D 1

2
rTM.�/r C Q�T ƒK Q�
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where, as before, the size of the ultimate bound-
edness set depends on the parameter �.

Passivity-Based Adaptive Control

In the adaptive version of this approach, we con-
sider again the control law (20) and the resulting
closed-loop system

M.�/Pr C C.�; P�/r CKr D Y. Ô �ˆ/

In this case, the term Ô is taken as the output of
an estimator

PÔ D ���1Y T .�; P�; a; v/r (22)

The Lyapunov function

V D 1

2
rTM.�/r C Q�TƒK Q� C 1

2
Q̂ T � Q̂

can be used to show global convergence of the
tracking errors to zero and boundedness of the
parameter estimates.

One of the problems with the adaptive
control approaches considered here is the so-
called parameter drift problem. It can be
shown that the estimated parameters converge
to the true parameters provided the reference
trajectory satisfies the condition of persistency of
excitation

˛I �
Z t0CT

t0

Y T .�r ; P�r ; R�r /Y.�r ; P�r ; R�r /dt � ˇI

for all t0, where ˛, ˇ, and T are positive
constants.

Summary and Future Directions

We have discussed the commonly applied meth-
ods of PID control, feedback linearization con-
trol, as well as robust and adaptive control for

motion control of robot manipulators. There is a
large and relatively mature body of literature on
these methods, and in fact, the material here is
now contained in standard textbooks in robotics,
such as Siciliano et al. (2010) and Spong et al.
(2006).

Future directions in robot motion control in-
clude the full integration of vision, force, and
position feedback, cooperative control of mul-
tiple arms, and advances in machine learning
and human-robot interaction. Direct control of
robots through brain-machine interfaces is also
an active area of research and will enable new
areas of applications such as medical assistive
robots.

Cross-Referenes

�Adaptive Control, Overview
�Cooperative Manipulators
�Flexible Robots
�Force Control in Robotics
�Lyapunov’s Stability Theory
�Robot Teleoperation

Recommended Reading

Many of the fundamental theoretical problems
in motion control of robot manipulators were
solved during an intense period of research from
about the mid-1980s until the early-1990s dur-
ing which time researchers first began to exploit
the structural properties of manipulator dynamics
such as feedback linearizability, skew symmetry
and passivity, multiple time-scale behavior, and
other properties. For a more advanced treatment
of some of these topics, the reader is referred
to Spong et al. (1992) and Canudas de Wit et al.
(1996).

A survey of robust control of robots up to
about 1990 is found in Abdallah et al. (1991). The
passivity-based robust control result here is due
to Spong (1992). The first results in passivity-
based adaptive control of manipulators were
in Horowitz and Tomizuka (1986) and Slotine
and Li (1987). The Lyapunov stability proof

http://dx.doi.org/10.1007/978-1-4471-5058-9_110
http://dx.doi.org/10.1007/978-1-4471-5058-9_175
http://dx.doi.org/10.1007/978-1-4471-5058-9_176
http://dx.doi.org/10.1007/978-1-4471-5058-9_169
http://dx.doi.org/10.1007/978-1-4471-5058-9_77
http://dx.doi.org/10.1007/978-1-4471-5058-9_172
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of passivity-based adaptive control is due
to Spong et al. (1990). A unifying treatment
of adaptive manipulator control from a passivity
perspective was presented in Ortega and Spong
(1989).
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Abstract

Robots may allow human beings to physically
interact with remote objects and environments.
This possibility is known as robot teleoperation
and permits to operate in conditions or environ-
ments dangerous for human operators. Although
teleoperation was among the first developments
in robotics back in the 1950’s, still nowadays
there are important and difficult challenges for
researchers and scientists, showing the intrinsic
difficulties of this fascinating field of robotics.

Keywords

Bilateral control; Force reflection; Robot teleop-
eration; Time delay

Introduction

A robotic teleoperation system allows to repro-
duce the actions of a human operator and to
interact physically with objects and environments
placed at a distance. This possibility has always
attracted the human being, and telemanipulation
has been one of the first fields to be developed in
robotics: the first modern applications of this type
of technology are dated back to the 1940s and
the early 1950s for handling radioactive material
(Goertz and Thompson 1954), for underwater
and space applications (Martin and Kuban 1985;
Vertut and Coiffet 1986), and for human pros-
theses (Kobrinskii 1960). For an overview on
applications, see Sheridan (1992), Hokayem and
Spong (2006), Ferre et al. (2007) and the related
references. Nevertheless, despite the research
interest and the many existing devices, many
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challenging problems have still to be fully solved
both from the technical and control point of view.

In these notes, an overview on robot teleop-
eration is presented. In particular, the following
points are illustrated:
• General description of a telemanipulation sys-

tem and of its key components: the “master,”
the “slave,” and the “communication channel”

• Overview on applications and existing devices
• Some control techniques for telemanipulation

systems: “traditional” force reflection, shared
compliance control, Passivity-based control,
predictive control, four-channel architecture

General Description
of a Telemanipulation System

A telemanipulator is a complex mechatronic sys-
tem in which the main elements are a master (or
local) and a slave (or remote) device, intercon-
nected by a communication channel. The overall
system is interfaced on one side (the master) with
a human operator and on the other (the slave) with
the environment: see Fig. 1.

Both the master and slave devices have a local
controller, with a hardware/software complexity
that can be quite different depending on the

system and task to be executed. Key features
of this type of devices, usually not present in a
typical robotic manipulation system, are:
1. A human operator is involved in the loop for

the (high-level) control of the task execution.
2. It is necessary to provide to the operator,

possibly in real time, data related to the task.
This implies the presence of a suitable user
interface and the selection of proper signals
transmitted to the operator. These signals, e.g.,
related to forces applied to the environment,
relevant positions of the slave, graphical video
data, and tactile or acoustic information, have
strong implications on the control properties
and performances of the system.

3. A communication channel is present between
the master and the slave. This channel may
represent a source of problems when time-
delays are present since, as well known from
the control theory, delays in a feedback loop
may generate instability. Problems of this
type, firstly observed in a force feedback
scheme in 1965 (Ferrel 1966), arise, for
example, in underwater or space operations.
Note that even time-delays of the order of
the tenth of a second may create instability
problems.

Robot Teleoperation, Fig. 1 A telemanipulation system and its block scheme representation. Subscriptsm and s refer
to variables at the master and slave site, respectively
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In the block diagram of Fig. 1, some implicit
choices have been made. The operator specifies
a desired velocity ( Pxm) to be applied to the envi-
ronment through the master, the communication
channel, and the slave and receives back a force
signal (fmd ). In the figure, the flow of the signals
could be reversed as well, letting the operator
specify a force to the environment and receiving
back a velocity information. This is equivalent
to reversing the roles of the master and slave
devices. When this operation is possible, the tele-
operation system is defined bilaterally controlled
(Bejczy and Handlykken 1981).

One of the goals of the control system is to
have, in steady state, the slave velocity equal to
the master velocity, i.e., Pxs D Pxm, and similarly
for the forces, fmd D fs . When this is accom-
plished, the teleoperator is defined transparent
(Lawrence 1993).

In this general framework, the main features
of the components of a telemanipulator are the
following.

The Master
The master, or local system, is the interface
through which the operator specifies commands
to the whole device. Typical features of the
master are:
– Capability of assigning tasks to the slave and

providing the operator with relevant infor-
mation about the task development. In fact,
an important feature of the master is its ca-
pability of providing the operator with the
telepresence, i.e., the sensation of being in
some manner involved with task execution.
In this respect, several solutions have been
adopted, varying from joysticks and/or con-
soles (Hirzinger et al. 1992) to exoskeletons
(Bergamasco et al. 2007; Smith et al. 1992)
and so on. In these devices, different types
of signals may be reflected to the operator,
from simple graphical data to full kinetostatic
information.

– Capability of acquiring and processing data
from both the operator and the slave. Typi-
cal elaborations are filtering, prediction, delay
compensation, modeling of remote and local
dynamics, and so on.

The Slave
The slave, or remote system, is the part of the
teleoperator which directly interacts with the en-
vironment for task execution. Requirements sim-
ilar to the master may be specified for the slave
system:
– A robotic system for the interaction with the

environment and the execution of the task
planned by the operator. This part, usually
provided with autonomous features, has to be
in some way customized to operate in particu-
lar environments, e.g., submarine, outer space,
and nuclear areas. Note that the kinematics
and the dynamics of the remote manipulator
may be different from those of the local one
(when present), originating several problems
when telepresence is needed for task execution
(Colgate 1993).

– Signal acquisition and processing. Sensory
capability is a main requirement for the slave
device, which is often equipped with video
cameras, force/tactile sensors, proximity sen-
sors, and so on.

– Capability of data processing. Also the
remote site must be able to elaborate the
information needed for task execution. In fact,
besides other considerations, the destabilizing
effects caused by communication delays
and/or restricted bandwidths of transmission
must be compensated locally, providing
the slave system with a certain degree of
autonomy.

The Communication Line
The communication line represents the link be-
tween the master and slave sites. Different plat-
forms may be used for this purpose, from radio
connections by means of satellites to cables for
underwater operations. The main drawback that
can be introduced by this element is a delay, due
both to a physical delay in the transmission line
(e.g., in a long satellite communication) and to
limited bandwidth of the hardware. This delay,
that sometimes is not even constant, can cause
noticeable instability problems if proper compen-
sating actions are not taken.
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An Overview on Applications

Use of telemanipulators, in the broader sense of
the terminology, may be found in a number of
different applications developed since the early
1950s. First examples of these devices have been
designed and realized for operations in radioac-
tive environments and for human limb prostheses.
At the moment, this type of technology is applied
in a number of different fields: space, underwa-
ter, medicine, hazardous environments, security,
simulators, and so on.

Space Applications
Robotics is used in space for exploration, sci-
entific experiments, and commercial activities.
Main reasons of space telerobotics are the high
costs and the hostile environment for human
beings. For many years, the main example of
teleoperation in space was applications in space
shuttle activities where the operators had a direct
control of the task executed by the manipula-
tor. Nowadays, an important application of robot
technology is for planetary missions, where au-
tonomous telerobots are required and the operator
has only a supervisory control of the task. Main
directions of current research activity for space
robotics are the development of arms for both
intra-vehicular and extravehicular activities, free-
flying platforms, and planetary rovers.

Among the most known examples of robot
arms for space one can list the Canadian Remote
Manipulator System (RMS), installed on the US
space shuttles. The 6 degree-of-freedom (dof)
arm, built by the Canadian firm SPAR, had a
flexible, 15 m long structure and was capable
of executing preprogrammed and/or teleoperated
tasks. Five arms have been built, working on
space shuttles from 1981 to 2011. Since 2001
the Canadarm 2 is used on the ISS (Interna-
tional Space Station). This 7 dof, 17.6 m long
arm is used for assembly and maintenance pur-
poses.

Concerning planetary exploration, a first
successful space telerobotic program has been the
Mars Viking Program, which performed scien-
tific experiments on Mars in 1976. More recently,
NASA has sent to Mars the rovers Sojourner

in 1997 (working for about 3 months) and
Spirit and Opportunity, which arrived in 2004.
Opportunity is still working (January 2014), see
http://marsrovers.jpl.nasa.gov/home/index.html.
New missions on Mars with other, more complex,
rovers are currently planned by NASA.

With the current technological possibilities,
further substantial developments in this field are
slowed down by the large amount of money and
time required to guarantee a successful mission.
However, relevant technical problems still ex-
ist due to reliability requirements, weight con-
straints, hostile environments and communica-
tion time-delays (ranging from 1 s in earth orbits
to 4–40 min or more for planetary missions).

Underwater
After the first successful military applications of
underwater telerobotics (in 1966 the US Navy’s
CURV – Cable-controlled Underwater Recovery
Vehicle – was successfully employed to retrieve
a nuclear bomb from the ocean), extensive use of
ROVs (remote operated vehicles) has started in
the 1980s for offshore operations for oil/gas in-
dustry. At the moment, underwater telerobotics is
mainly used for business, military missions, and
scientific expeditions. Telerobotic (autonomous)
tasks are usually limited to small routine tasks
rather than complete activities, for example, sim-
ple tool switching operations, repetitive bolt/nut
screwing, and piloting to new locations. First ex-
amples of underwater teleoperation were mainly
based on manned submersibles, either free swim-
ming or connected to a surface ship, and with
teleoperated arms on the outer structure. In more
recent operations, human operators remotely con-
trol the submersibles by long fiber-optic cables
for data communication, increasing the costs and
complexity of the missions.

Probably, the most important users are in the
business field, where it is more convenient to use
teleoperated devices rather than human divers
to perform inspections and repairs on deep sea
equipment. The main users of telesubmersibles
are the oil and communication (telephone) indus-
tries, where underwater pipes and cables require
routine operations. The scientific community
uses this technology for marine biological,

http://marsrovers.jpl.nasa.gov/home/index.html
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geological, and archeological missions, while the
military have used telerobotics in many salvage
operations, such as plane or watercraft recovery.

The conditions of the water environment, e.g.,
the high pressures, the poor visibility, and the
communication difficulties, cause the major prob-
lems in this field. In order to solve the problems
due to the high pressure, a very robust mechanical
structure and (typically) hydraulic actuators are
employed. On the other hand, vision problems
are not so easily solved, being related to several
factors of the environment. External lighting is
necessary, and other technologies (e.g., sonar) are
sometimes used. Computer graphic simulation
may help the user during task execution in par-
tially known environments. For references, see,
e.g., Ridao et al. (2007).

Medical Telerobotics
Several teleoperated devices are found in the
medical field. In fact, robotic manipulators are
used to perform surgery, diagnose illnesses or in-
juries, help impaired people, and train specialized
medical personnel.

Robotic systems of different complexities
have been developed since the 1950s for aid
to impaired people. Among the most common
systems are automated wheelchairs, controlled
by voice or by joysticks for hand, mouth, eye, or
head movements.

At the moment, there is a relevant interest
in applying teleoperated devices in microsurgery
operations, e.g., eye surgery, where small precise
movements are needed. The movements of the
operator are scaled down by the mechanism so
that very fine operations can be performed while
maintaining a suitable telepresence effect. An-
other important class of surgical process consists
of the so-called minimally invasive procedures. In
this case, the surgeon operates through small in-
sertions using thin medical instruments and small
video cameras. The increased difficulties for the
surgeon are partially compensated by computers,
which are used to create virtual environments
where the use of telepresence plays a fundamen-
tal role.

A very attractive application is the use of
telemanipulators in remote surgery operations.

Telediagnosis may also broaden the range of a
single doctor by allowing to exam a patient visu-
ally or viewing records on a computer interface.
Finally, telepresence is becoming very important
for the instruction of specialized doctors and to
perform rehearsals before the actual operation.

Security
Applications in this area aim to employ teler-
obotic devices for the protection of persons and
properties. Most systems used in this area are
teleoperated devices since these tasks require
decision capabilities and intelligence levels not
currently possible for machines, although the
use of autonomous systems is more and more
frequent.

In the area of security, robots may be used
for patrolling buildings and for protection pur-
poses. These devices can either be autonomous
or teleoperated. Military applications adopt prin-
cipally teleoperation, mainly for locating enemies
or dangerous equipment without direct risk for
human personnel. Unmanned aeroplanes or tele-
operated devices for the detection and destruction
of mines or bombs are well-known examples of
this technology. Teleoperation is also used for fire
extinguishing, in order to spray water or chemical
agents with remotely operated vehicles.

Telerobotics in Hazardous Environments
Robots may substitute human beings for opera-
tions in hazardous environments; as a matter of
fact, nuclear industry was the first important user
of modern teleoperating devices. Telerobotics is
applied in several nuclear or chemical plants and
also for military applications (e.g., for build-
ing military equipment and arms) in a variety
of tasks. Besides direct handling of radioactive
or chemical material, robots are used in waste
cleanup/disposal and plant inspection. Ammuni-
tion disposal also makes use of telerobotic ma-
chines.

Telerobotics in Mining and Other
Industries
Besides the typical use of robots in a number of
industrial applications (assembly, welding, paint-
ing, and so on), other applications of robotic
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systems in nonconventional production processes
have been developed, for example, in mines, con-
structions, agriculture, warehousing, and many
other activities.

Use of telemanipulators for mining applica-
tions, despite the relevant motivations such as
high costs and risks of human work, finds dif-
ficulties and limitations caused by the particular
environment and the relevant level of autonomy
requested to operate in mines. As a matter of fact,
the mining industry has only recently started to
experiment teleoperated devices; see e.g., Duff
et al. (2010). These machines are being developed
to perform frame wall building, structure testing,
hole drilling, wall blasting, mine digging, and
so on.

In construction tasks, not considering that all
construction/destruction machinery controlled by
a human can be regarded as examples of teleoper-
ators (e.g., cranes and front-end loaders), applica-
tions of real telerobotic systems are not so numer-
ous because of the unstructured environments and
the nonrepetitive tasks. Current work in this area
concerns the development of machines for earth
movement, construction of structures, building
window washing, bridge inspection and mainte-
nance, and power line repair.

The Control Problem

For the development of a reliable teleoperation
system, providing force feedback to the user, the
problems caused by the interaction of the robotic
device with the environment and the possible
time-delays caused by the communication
channel have to be properly considered and
solved.

In telemanipulation without either force feed-
back to the operator or a local compliance con-
trol, the remote manipulator is strictly controlled
according to the master position signal. As a
consequence, the system results in being stiff,
and errors between the master and slave posi-
tions may cause excessive and undesired contact
forces.

In bilateral telemanipulation, it has been
proven that a profitable manner for increasing
system performances (e.g., in terms of task com-
pletion time, total contact time, and cumulative
contact force) is to reflect back to the operator
information about the force applied to the
environment. On the other hand, it results that the
force reflection gain, that gives to the operator
the feeling of the interaction, destabilizes
the system, especially when time-delays are
present.

Control schemes for robotic teleoperation de-
vices can be classified according to the general
structures reported in Fig. 2, showing the direct
teleoperation, the coordinated teleoperation, and
the supervisory control schemes. In the direct
teleoperation scheme, possible only for negli-
gible time delays, the operator has direct con-
trol of the slave robot and receives feedback
in real time. In the coordinated teleoperation
scheme, the operator still controls the remote
robot, but low-level control loops in the slave
system are present because time delays do not
allow the operator to control directly the ac-
tuators. In the supervisory control scheme, the
remote site has more autonomy and task exe-
cution is controlled locally, while the operator
gives mainly high-level commands and acts as
a supervisor. A local loop is present also at the
master side, indicating the presence of (usually) a
model (graphical, mathematical, etc.) of the slave
site to improve performances in case of large time
delays.

Some of the main control architectures for
teleoperation devices presented in literature
to deal with the problems of time-delay and
force reflection are now briefly described
and commented. The considered architectures
are the “traditional” force reflection, the
shared compliance control, the passivity-based
teleoperation, the predictive control, and the four-
channel scheme. However, many other control
schemes have been presented in the literature;
see, e.g., Arcara and Melchiorri (2002), Hirche
et al. (2007), and therefore what is presented here
is a brief, though significant, overview in order
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Robot Teleoperation, Fig. 2 Possible structures of bilateral control schemes for robotic teleoperation

Robot Teleoperation,
Fig. 3 The “traditional
force reflection”
transmission scheme

to focus on the major problems encountered in
this field and on some of the approaches for their
solutions.

Traditional Force Reflection Teleoperation
The simplest manner of transmitting the remote
force to the operator is to reflect it directly,
without any particular elaboration, as shown
in Fig. 3. The resulting transmission equations
are

(
fmd .t/ D fs.t � T /

Pxsd .t/ D Pxm.t � T /
(1)

where T is the time-delay introduced by the com-
munication network and subscript d indicates the
desired set point for the master (m) and slave (s)
controllers.

This technique presents relevant instability
problems due to time-delays. As a matter of fact,
it is possible to verify that the communication
channel does not present strictly passive
properties, even for limited bandwidths of the
input signals Pxm and fs . This result is valid
also considering an attenuation between fmd
and fs , i.e., introducing a force reflection
gain Gfr < 1:0 in (1) and computing
therefore fmd .t/ D Gfrfs.t � T /. The
attenuation reduces the telepresence sensation
and degrades the performances, but still does
not cause a passive (then stable) network.
The nonpassive channel has the global effect
of introducing in the overall system energy
flows that, if not properly reduced by the
local controllers, contribute to destabilize the
telemanipulator.

The dynamics of the overall system may
be described by the following two sets of
equations: the first taking into account the
master dynamics and the force transmitted by
the communication channel and the second
including the slave dynamics, the position
signals of the channel, and the local position
controller:
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(
Mm Pxm.t/ D �fmd .t/ � Bm Pxm.t/ �Khxm.t/

fmd .t/ D fs.t � T /

8̂
<̂
ˆ̂:

Ms Pxs.t/ D fs.t/ � Bs Pxs.t/
Pxsd .t/ D Sp Pxm.t � T /

fs.t/ D KpŒxsd .t/ � xs.t/�

In the above equations, Mi and Bi , i D m; s,
are masses and damping factors at the master and
slave sites, Kh represents the operator (simply
modeled as a stiffness) and Kp the slave po-
sition controller. The gain Sp has been added,
with respect to Eq. (1), in order to scale velocity
variables between the two robotic systems.

It can be shown that this control scheme does
not guarantee stability in the presence of time
delays, although in practical applications stability
may still be achieved for small time delays due
to dissipation introduced by friction and the local
controllers.

Shared Compliance Control
As previously mentioned, both the interactions of
the robotic device with the environment and the
effects of time-delays have to be considered in
the definition of control strategies for telemanip-
ulation systems. The position-error based force
reflection scheme deals with both these effects
(Kim et al. 1992). This scheme is based on the
computation of the feedback signal fmd as a
force proportional to the error between master
and slave positions:

fmd.t/ D Gfr Œxm.t/ � xs.t � T /�

This signal gives to the operator a sensation
related to the difference between the postures of
the robotic devices caused either by interactions
or delays. Note that in this manner an elastic
(proportional) element is introduced between the
positions of the robots. This allows to obtain a
stable behavior of the overall system comprehen-
sive of local controllers, at least for limited values
of Gfr .

An additional feature for dealing with prob-
lems due to time-delays is the so-called shared
compliance control (SCC). A local, autonomous
force feedback is realized at the slave site in order

to program active compliance and damping of the
robotic device. This control action is important
when compliance has to be realized between the
(stiff) mechanical device and its environment and
during the collision or contact phases. The over-
all control system is therefore based on sharing
autonomous and human-driven control actions. A
block diagram of the whole system, including the
master and slave dynamics (1=.Mms

2 C Bms C
Kh/ and 1=.Mss

2 CBss/ respectively), the force
reflection gain (Gfr ), the shared compliance con-
troller (Gcc), and an environment model (Ke), is
shown in Fig. 4.

For a given time-delay, the force reflection
gain Gfr can be increased with respect to the
traditional force reflection scheme. In any case,
when the time-delay increases, the gain has to be
correspondingly decreased to guarantee stability,
i.e., the value of Gfr depends directly on the
amount of time-delay. In fact, also this control
scheme in general does not present passivity
features, although it can be shown that it may be
stable (for a limited range of time delays) with a
proper choice of the control parameters.

Passivity-Based Teleoperation
A control scheme inspired by the passivity theory
(Van der Schaft 2000) is now described. Basic
consideration is that the communication channel
may represent, if proper actions are not taken,
a non-passive element between the master and
slave. With proper modifications, the transmis-
sion line presents passive properties, and there-
fore, the stability of the overall system may be
achieved for any value of the time-delay T .

Lossless Transmission Line
Results of passivity and scattering theories can be
used to show that in traditional force reflection
teleoperation, Eq. (1), the instability of the overall
system in presence of time-delays is caused by
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Robot Teleoperation, Fig. 4 Position-error based force reflection with SCC at the remote site

the non passive properties of the communication
channel (Niemeyer and Slotine 1991). On the
other hand, it has been shown that the definition
of a communication network based on a lossless
transmission line provides the system with pas-
sivity features for any time-delay (Anderson and
Spong 1989), facilitating therefore the stability of
the overall system.

For the definition of a lossless transmission
line, it is convenient to refer, instead of the
velocity and force variables Px; f at each port
(see Fig. 3), to the equivalent wave variables u
and v that are related to the passivity formalism
and whose definition derives from the theory of
electric circuits. By using these variables, it is
possible to describe the power balance in a circuit
as the difference of two positive terms which
consider the input and the output power. In fact,
by introducing the input wave u D ŒuTm; uTs �

T

and the output wave v D ŒvTm; v
T
s �
T , the power

balance in the teleoperator can be expressed as

P D 1

2

�
uT u � vT v�Df T PxD Œf T

m ; f
T
s �

� Pxm
� Pxs



By considering a proper scaling factor b, defined
as the characteristic impedance of the transmis-
sion line, the previous equation defines the fol-
lowing transformations between power and wave
variables:

um D 1p
2b
.fm C b Pxm/ us D 1p

2b
.fs � b Pxs/

vm D 1p
2b
.fm � b Pxm/ vs D 1p

2b
.fs C b Pxs/

The resulting network is described by

8<
:
fmd.t/ D fs.t � T /C bŒ Pxm.t/ � Pxsd .t � T /�

Pxsd .t/ D Pxm.t � T /C 1
b
Œfmd .t � T /� fs.t/�

In terms of wave variables, the passivity-based
communication network is described as (see
Fig. 5)

8<
:
fmd .t/ D b Pxm.t/C p

2b vm.t/

Pxsd .t/ D �1
b
Œfs.t/ � p

2b vs.t/�

In analogy with electric networks, impedance
adaptation should be added to both extremities
of the transmission line, as described e.g., in
Niemeyer and Slotine (1991).

Predictive Control
In a well-known example of space telerobotics,
the ROTEX project (Hirzinger et al. 1992), the
problems introduced by force feedback and time-
delays have been solved in a different manner. In
fact, in this case the force information is not trans-
mitted to the operator, and an extensive use of
graphic simulation and telesensor programming
is made to help control of the task execution.

In particular, the predictive display technique
(Sheridan 1992) has been employed for gener-
ating and extrapolating beforehand visual indi-
cations, such as cursors or wire frame models
of the manipulator and its environment. These
information are generated by the control sys-
tem and assist the operator in driving the task



1186 Robot Teleoperation

Robot Teleoperation, Fig. 5 Transmission line based on passivity

execution more efficiently. In this case, a proper
prediction algorithm has to be set on the basis of
current initial conditions of the manipulator and,
possibly, of current control variables.

In telerobotics, predictive displays have to
be purposely designed in order to consider the
prediction of motions of the manipulator. Usually,
the task is graphically simulated in real time,
without time-delay, exploiting a model of the
remote environment and of the slave device. The
operator can observe the task executed by the
remote system on the screen, where a simulated
copy (with T D 0 s) of the robotic device can
be superimposed on the real operating device in
the scene of the remote site. In this manner, the
operator may program appropriate actions for the
interaction with the environment.

This type of task planning helps when a no-
ticeable time-delay occurs. In fact, when opera-
tors deal with relevant time-delays (e.g., larger
than 1 s), usually they operate with a “move
and wait” strategy, conservatively specifying only
small displacements to the remote robot. By us-
ing predictive display, the time required to ex-
ecute complex tasks is greatly reduced. On the
other hand, the operator has only visual informa-
tion about the remote environment and the task
execution.

Four-Channel Scheme
A generalization of the scheme of Fig. 1, the
so-called four-channel architecture (Hirche et al.
2007; Lawrence 1993), is shown in Fig. 6. In this
scheme, both the velocity and force signal of

the master and slave are transmitted, and with
a proper choice of the four blocks C1; C2; C3,
and C4 many design goals can be achieved, in
particular concerning the stability and the trans-
parency of the overall system. In particular, if
C3 D C4 D 0, the standard velocity-force trans-
mission scheme is obtained, while ideal trans-
parency is achieved if C1 D Zcs; C2 D C3 D
I; C4 D �Zcm. In the figure, the blocks Zm and
Zs represent the master and the slave dynamics
(impedances), respectively, while Cm and Cs are
the local master and slave controllers, f �

h is an
external force applied by the user, and f �

e an
exogenous force from the environment.

Summary and Future Directions

In these notes, an overview on telemanipulation
has been presented with the aim of giving a
general presentation of the impact of this area of
robotics on both industry and research, of outlin-
ing typical problems encountered in dealing with
remote manipulation systems, and of illustrating
some approaches for their solution.

In this respect, it has to be pointed out that,
besides the control schemes considered in these
notes (purposely developed for telerobotic sys-
tems), many other schemes have been presented
in the literature (see, e.g., Hokayem and Spong
2006, Ferre et al. 2007, and Arcara and Mel-
chiorri 2002). More in general, however, a rele-
vant literature exists, and important results have
been presented from a methodological point of
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Robot Teleoperation, Fig. 6 Block scheme of the four-channel architecture. (a) The human operator. (b) Master
controller. (c) Communication line. (d) Slave controller. (e) Environment

view to face control problems of time-delay sys-
tems: see for example, Gu et al. (2003).

There are, however, other important aspects of
telemanipulation which, for space constraints,
can only be mentioned here, such as the
“impedance shaping” (typical in applications in
which there is a relevant dynamic/mechanical
difference between the master and slave
mechanisms) or criteria for defining (and
measuring) performance of teleoperator systems,
such as the “time to completion,” criteria based
on energy consumption, dexterity, and so on.
Other interesting, and important, extensions are
the possibility of controlling remote teams of
robots cooperating for the execution of a common
task (e.g., for aerial inspections, transport of
heavy loads, etc.).

Future developments of robotic teleoperation
systems will deal with the technological improve-
ments of the user interface, giving to the operator
more “realistic” feedback of the remote environ-
ment, the application of this type of technology
to more complex situations, and the use of multi-
robot systems controlled either by one or more
cooperating users. Control will play in any case a
fundamental role in these scenarios.

Cross-References

�Advanced Manipulation for Underwater Sam-
pling

�Control of Linear Systems with Delays

�Disaster Response Robot
�Force Control in Robotics
�Model-Predictive Control in Practice
�Redundant Robots
�Robot Visual Control

Recommended Reading

Introductory and historical perspectives of
telemanipulation, along with descriptions
of several interesting applications of this
technology, may be found in Ferre et al.
(2007), Hokayem and Spong (2006), Sheridan
(1992), and Vertut and Coiffet (1986). Specific
applications, e.g., space, underwater, medical,
and hazardous environment, are described in
Duff et al. (2010), Hirzinger et al. (1992),
http://marsrovers.jpl.nasa.gov/home/index.html,
and Ridao et al. (2007). Some of the main control
schemes specifically developed for this type of
robotic devices are reported in Anderson and
Spong (1989), Arcara and Melchiorri (2002),
Colgate (1993), Hirche et al. (2007), Kim et al.
(1992), and Niemeyer and Slotine (1991), while
some basic background material on control
theory is available in Gu et al. (2003) and Van der
Schaft (2000).
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Robot Visual Control

François Chaumette
Inria, Rennes, France

Abstract

This article presents the basic concepts of vision-
based control, that is, the use of visual data
to control the motions of a robotics system. It
details the modeling steps allowing the design
of kinematics control schemes. Applications are
also described.

Keywords

Jacobian; Kinematics; Robot control; Visual ser-
voing

Introduction

Visual control, also named visual servoing, refers
to the use of computer vision data as input of real-
time closed-loop control schemes to control the
motion of a dynamic system, a robot typically
(Chaumette and Hutchinson 2008; Hutchinson
et al. 1996). It can be seen as sensor-based control
from a vision sensor and relies on techniques
from image processing, computer vision, and
control theory.

An iteration of the control scheme consists of
the following steps:

http://marsrovers.jpl.nasa.gov/home/index.html
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Robot Visual Control, Fig. 1 A few images acquired
during two visual servoing tasks: on the top, pedestrian
tracking using a pan-tilt camera; on the bottom, control-

ling the 6 degrees of freedom of an eye-in-hand system so
that an object appears at a particular position in the image
(shown in blue)

• Acquire an image.
• Extract some useful image measurements.
• Compute the current value of the visual fea-

tures used as inputs of the control scheme.
• Compute the error between the current and the

desired values of the visual features.
• Update the control outputs, which are usually

the robot velocity, to regulate that error to
zero, i.e., to minimize its norm.

For instance, for the first example depicted on
Fig. 1, the image processing part consists in ex-
tracting and tracking the center of gravity of the
moving people, the visual features are composed
of the two Cartesian coordinates of this center
of gravity, and the control schemes compute the
pan and tilt velocities so that the center of gravity
is as near as possible of the image center de-
spite the unknown motion of the people. In the
second example where a camera mounted on a
six-degrees-of-freedom robot arm is considered,
the image measurements are a set of segments
that are tracked in the image sequence. From
these measurements and the knowledge of the 3D
object model, the pose from the camera to the
object is estimated and used as visual features.
The control scheme now computes the six com-
ponents of the robot velocity so that this pose
reaches a particular desired value corresponding

to the object position depicted in blue on the
images.

Basic Theory

Main if not all visual servoing tasks can be
expressed as the regulation to zero of an error e.t/
which is defined by

e.t/ D s.m.r.t//; a/� s�.t/: (1)

The parameters in (1) are defined as follows
(Chaumette and Hutchinson 2008). The vector
m.r.t// is a set of image measurements (e.g.,
the image coordinates of interest points, or the
area, the center of gravity, and other geometric
characteristics of an object). These image mea-
surements depend on the pose r.t/ between the
camera and the environment. They are used to
compute a vector s.m.r.t//; a/ of visual features,
in which a is a set of parameters that represent
potential additional knowledge about the sys-
tem (e.g., coarse camera intrinsic parameters or
3D model of objects). The vector s�.t/ contains
the desired value of the features, which can be
either constant in the case of a fixed goal or
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varying if the task consists in following a spec-
ified trajectory.

Visual servoing schemes mainly differ in the
way that the visual features are designed. As
represented on Fig. 2, the two most classical ap-
proaches are named image-based visual servoing
(IBVS), in which s consists of a set of 2D pa-
rameters that are directly expressed in the image
(Espiau et al. 1992; Weiss et al. 1987), and
pose-based visual servoing (PBVS), in which s
consists of a set of 3D parameters related to the
pose between the camera and the target (Weiss
et al. 1987; Wilson et al. 1996). In that case,
the 3D parameters have to be estimated from
the image measurements either through a pose
estimation process using the knowledge of the 3D
target model, or through a partial pose estima-
tion process using the properties of the epipolar
geometry between the current and the desired
images, or finally through a triangulation process
if a stereovision system is considered. Inside
IBVS and PBVS approaches, many possibilities
exist depending on the choice of the features.
Each choice will induce a particular behavior of
the system. There also exist hybrid approaches,
named 2-1/2D visual servoing, which combine
2D and 3D parameters in s in order to benefit
from the advantages of IBVS and PBVS while
avoiding their respective drawbacks (Malis et al.
1999).

The design of the control scheme is based on
the link between the time variation of the features

and the robot control inputs, which are usually
the velocity of the robot joints q. This relation is
given by

Ps D Js Pq C @s
@t

(2)

where Js is the features Jacobian matrix, defined
from the equation above similarly as the classical
robot Jacobian. For an eye-in-hand system (see
the left part of Fig. 3), the term @s

@t
represents

the time variation of s due to a potential object
motion, while for an eye-to-hand system (see the
right part of Fig. 3) it represents the time variation
of s due to a potential sensor motion.

As for the features Jacobian, in the eye-in-
hand configuration, it can be decomposed as
Chaumette and Hutchinson (2008)

Js D Ls
cVn J.q/ (3)

where
• J.q/ is the robot Jacobian such that vn D

J.q/ Pq where vn is the robot end effector ve-
locity.

• cVn is the spatial motion transform matrix
from the vision sensor to the end effector. It
is given by

cVn D
�
cRn Œctn�� cRn

0 cRn


(4)

where cRn and ctn are respectively, the rota-
tion matrix and the translation vector between

Rc* Rc*

Rc Rc

S*

S*

S

S

Robot Visual Control, Fig. 2 If the goal is to move the
camera from frame Rc to the desired frame Rc� , two
main approaches are possible: IBVS on the left, where the

features s and s� are expressed in the image, and PBVS
on the right, where the features s and s� are related to the
pose between the camera and the observed object
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Robot Visual Control,
Fig. 3 In visual servoing,
the vision sensor can be
either mounted on the robot
(eye-in-hand configuration)
or remote and observing
the robot (eye-to-hand
configuration). For the
same robot motion, the
motion produced in the
image will be opposite
from one configuration to
the other

the sensor frame and the end effector frame
and where Œctn�� is the skew symmetric matrix
associated to ctn. Matrix cVn is constant when
the vision sensor is rigidly attached to the end
effector, which is usually the case. Thanks to
the robustness of closed-loop control schemes,
a coarse approximation of cRn and ctn is suf-
ficient in practice to get an estimation of cVn.
If needed, an accurate estimation is possible
through classical hand-eye calibration meth-
ods.

• Ls is the interaction matrix of s defined such
that s D Lsv where v is the relative velocity
between the camera and the environment.
In the eye-to-hand configuration, the features

Jacobian Js is composed of Chaumette and
Hutchinson (2008)

Js D �Ls
cVf

f Vn J.q/ (5)

where
• f Vn is the spatial motion transform matrix

from the robot reference frame to the end
effector frame. It is known from the robot
kinematics model.

• cVf is the spatial motion transform matrix
from the camera frame to the reference frame.
It is constant as long as the camera does not
move. In that case, similarly as for the eye-
in-hand configuration, a coarse approximation
of cRf and ctf is usually sufficient to get an
estimation of cVf .

A lot of works have concerned the modeling
of the visual features and the determination of
the analytical form of the interaction matrix. To
give just an example, in the case of an image
point with normalized Cartesian coordinates x D
.x; y/ and whose 3D corresponding point has
depthZ, its interaction matrix is given by Espiau
et al. (1992)

Lx D
"

�1=Z 0 x=Z xy �.1C x2/ y

0 �1=Z y=Z 1C y2 �xy �x

#

(6)

where the three first columns contain the ele-
ments related to the three components of the
translational velocity and where the three last
columns contain the elements related to the three
components of the rotational velocity.

By just changing the parameters representing
the same image point, that is, by using the cylin-
drical coordinates defined by � D .�; �/ with
� D p

x2 C y2 and � D Arctan.y=x/, the
interaction matrix of these parameters has a com-
pletely different form (Chaumette and Hutchin-
son 2008):

L� D
" �c=Z �s=Z �=Z .1C �2/s �.1C �2/c 0

s=.�Z/ �c=.�Z/ 0 c=� s=� �1

#

(7)

where c D cos � and s D sin � . This implies
that using the Cartesian coordinates or the cylin-
drical coordinates as visual features will induce
a different behavior, that is, a different robot
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trajectory and a different trajectory of the point
in the image.

Currently, the analytical form of the interac-
tion matrix is available for most classical geomet-
rical primitives, such as segments, straight lines,
ellipses, moments related to planar objects of any
shape (Chaumette 2004), and also coordinates of
3D points and pose parameters. Methods also
exist to estimate off-line or online a numerical
value of the interaction matrix. Omnidirectional
vision sensors, the coupling between a camera
and structured light, and even 2D echographic
probes have also been studied. A large variety of
visual features is thus available for many vision
sensors.

Once the modeling step has been performed,
the design of the control scheme can be quite
simple. The most classical control scheme has
the following form (Chaumette and Hutchinson
2008):

Pq D ��bJs
C.s � s�/C bJs

C @s�

@t
� bJs

Cc@s
@t

(8)

where � is a positivive gain tuning the rate of
convergence of the system and bJs

C is the Moore-
Penrose pseudo inverse of an approximation or
an estimation of the features Jacobian. The ex-
act value of all its elements is indeed generally
unknown since it depends of the intrinsic and
extrinsic camera parameters, as well as of some
3D parameters such as the depth of the point in
Eqs. (6) and (7).

The second term of the control scheme an-
ticipates for the variation of s� in the case of a
nonconstant desired value. The third term com-
pensates as much as possible a possible target
motion in the eye-in-hand case and a possible
camera motion in the eye-to-hand case. They are
both null in the case of a fixed desired value and a
motionless target or camera. They try to remove
the tracking error in the other cases.

Following the Lyapunov theory, the stabil-
ity of the system can be studied (Chaumette
and Hutchinson 2008). Generally, visual servo-
ing schemes can be demonstrated to be locally
asymptotically stable (i.e., the robot will con-
verge if it starts from a local neighborhood of

the desired pose) if the errors introduced in bJs

are not too strong. Some particular visual ser-
voing schemes can be demonstrated to be glob-
ally asymptotically stable (i.e., the robot will
converge whatever its initial pose) under similar
conditions.

Finally, when the visual features do not con-
strain all the robot degrees of freedom, it is
possible to combine the visual task with supple-
mentary tasks such as, for instance, joint limits
avoidance or the visibility constraint (to be sure
that the target considered will always remain
in the camera field of view). In that case, the
redundancy framework can be applied and the
error to be regulated to zero has the following
form:

e D bJs
C.s � s�/C .I � bJs

CbJs/ e2 (9)

where .I � bJs
CbJs/ is a projection operator on

the null space of the visual task so that the
supplementary task e2 will be achieved at best
under the constraint that the visual task is realized
(Espiau et al. 1992). A similar control scheme
to (8) is now given by

Pq D �� e �
c@e
@t
: (10)

This scheme has for instance been applied for
the first example depicted on Fig. 4 where the
rotational motion of the mobile robot is con-
trolled by vision, while its translational motion is
controlled by the odometry to move at a constant
velocity.

Applications

Potential applications of visual servoing are nu-
merous. It can be used as soon as a vision sensor
is available and a task is assigned to a dynamic
system to control its motion. A non-exhaustive
list of examples is (see Fig. 4):
• The control of a pan-tilt-zoom camera, as

illustrated in Fig. 1 for the pan-tilt case
• Grasping using a robot arm
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Robot Visual Control, Fig. 4 Few applications of visual
servoing: navigation of a mobile robot to follow a wall
using an omnidirectional vision sensor (top row), grasping

a ball with a humanoid robot (middle row), assembly of
MEMS and film of a dialogue within the constraints of a
script in animation (bottom row)

• Locomotion and dexterous manipulation with
a humanoid robot

• Micro- or nano-manipulation of MEMS or
biological cells

• Pipe inspection by an underwater autonomous
vehicle

• Autonomous navigation of a mobile robot in
indoor or outdoor environment

• Aircraft landing
• Autonomous satellite rendezvous

• Biopsy using ultrasound probes or heart mo-
tion compensation in medical robotics

• Virtual cinematography in animation

Summary and Future Directions

Visual servoing is basically a nonlinear control
problem. Several modeling works have been re-
alized to design visual features so that the control
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problem is transformed as much as possible to a
linear control problem, leading to better stability
properties. On one hand, improvements on this
topic are still expected. On the other hand, the
design of advanced control schemes, such as
optimal control or model predictive control, is
another way to make improvements. Then, taking
into account dynamic constraints, such as non-
holonomic constraints or underactuated systems,
also necessitates the design of specific control
laws.

Cross-References

�Lyapunov’s Stability Theory
�Redundant Robots
�Robot Motion Control

Recommended Reading

In addition to the classical tutorial Hutchinson
et al. (1996) and the most recent one Chaumette
and Hutchinson (2008), the books Corke (1997,
2011) and the collection of papers Hashimoto
(1993), Kriegman et al. (1998), and Chesi et al.
(2010) provide a good overview of past and
recent works in the field. The other references
below cited in text present the main pioneering
contributions in visual servoing.
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Abstract

Robust adaptive control pertains to the satis-
factory behavior of adaptive control systems
in the presence of nonparametric perturbations
such as disturbances, unmodeled dynamics, and
time delays. This article covers the highlights of
robust adaptive controllers, methods used, and
results obtained. Both methods of achieving
robustness, which include modifications in
the adaptive law and persistent excitation
in the reference input, are presented. In
both cases, results obtained for robustness
to disturbances and unmodeled dynamics are
discussed.
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Introduction

The central problem in adaptive control pertains
to regulation and tracking of systems in the pres-
ence of parametric uncertainties. The classical
adaptive control problem solved in 1980 assumed
that the underlying transfer function had un-
known parameters, but no other uncertainties. No
disturbances, delays, time variations in parame-
ters, or unmodeled dynamics were assumed to
be present. Under these ideal conditions, it was
shown that an adaptive controller can be designed
so that the closed-loop system has bounded sig-
nals and that asymptotic regulation and tracking
were possible.

With asymptotic regulation and tracking
achieved under such ideal conditions, the goal
of robust adaptive control was to ensure globally
bounded signals in the closed-loop adaptive
system when the plant was subjected to a
variety of nonparametric perturbations such as
external disturbances, time-varying parameters,
unmodeled dynamics, and time delays. With
adaptation in the control parameters in the ideal
case accommodating parametric uncertainties,
the approaches developed in robust adaptive
control focused on developing solutions in the
perturbed case to accommodate nonparametric
uncertainties and improving on the classical
adaptive controller which either underperformed
or even exhibited instability with the introduction
of nonparametric perturbations.

We briefly present the adaptive control solu-
tions for the ideal case before proceeding with
robust adaptive control.

Classical Adaptive Control

Adaptive Control of Plants with State
Feedback
One of the very first problems where stable adap-
tive control was solved was for the case when
states are accessible (Narendra and Kudva 1972),
with the plant given by (The argument t is sup-
pressed for the sake of convenience, except for
emphasis.)

Pxp D Apxp C b�u (1)

where Ap 2 Rn�n and the scalar � are unknown
parameters with b and the sign of � known
and .Ap; b/ controllable. An adaptive controller
that ensures global boundedness and asymptotic
regulation and tracking for such plants is of the
form

u D �Tx .t/xp C �r.t/r; (2)

and the adaptive laws for adjusting the unknown
parameters are given by

P� D �sign.�/�!bTmPe; (3)

where ! D �
xTp ; r

	T
and � D �

�Tx ; �r
	T

, xm is
the state of a reference model

Pxm D Amxm C br (4)

with Am Hurwitz, and P being the solution of the
Lyapunov equationATmP CPAm D �Q,Q > 0.
The reference model in (4) is to be chosen so that
certain matching conditions are satisfied, which
are of the form

Ap C b��?Tx D Am; ���
r D 1 (5)

for some �� D Œ��T
x ; ��

r �
T . In such a case, the

controller in (2) and (3) guarantees stability and
ensures that x.t/ tracks xm.t/. The underlying
Lyapunov function is quadratic in e and the
parameter error Q� D � � ��, given by

V D 1

2

�
eT Pe C � Q�T ��1 Q�

�
(6)

with a negative semi-definite time derivative PV
given by

PV � �eTQe: (7)

Adaptive Control of Plants with Output
Feedback
Consider the single-input single-output (SISO)
system of equations
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y.t/ D W.s/u.t/ (8)

where u 2 < is the input, y 2 < the measurable
output, and s the differential operator. The trans-
fer function of the plant is parameterized as

W.s/ , kp
Z.s/

P.s/
(9)

where kp is a scalar andZ.s/ andP.s/ are monic
polynomials with deg.Z.s// < deg.P.s//. The
following assumptions will be made throughout:

Assumption 1 W.s/ is minimum phase.

Assumption 2 The sign of kp is known.

Assumption 3 The relative degree n� and the
order of W.s/ are known.

The goal is to design a control input u so that
the output y in (8) tracks the output ym of the
reference system

ym.t/ D Wm.s/r.t/ , km
Zm.s/

Pm.s/
r.t/ (10)

where km is a scalar and Zm.s/ and Pm.s/ are
monic polynomials with Wm.s/ relative degree
n�.

The structure of the adaptive controller is now
presented:

P!1.t/ D ƒ!1 C b�u.t/ (11)

P!2.t/ D ƒ!2 C b�y.t/ (12)

!.t/ , Œr.t/; !T1 .t/; y.t/; !
T
2 .t/�

T (13)

�.t/ , Œk.t/; �T1 .t/; �0.t/; �
T
2 .t/�

T (14)

u D �T .t/! (15)

where ƒ 2 <.n�1/�.n�1/ is Hurwitzx, b� 2 <n�1,
!1; !2 2 <n�1, and � 2 <2n is an adaptive gain
vector with k.t/ 2 <, �1.t/ 2 <n�1, �2.t/ 2
<n�1, and �0.t/ 2 <.

The update law for the adaptive parameter
differs depending on whether the relative degree
of Wm.s/ is unity or greater than one and can be
described as follows:

P�.t/ D �sign.kp/�ey! n� D 1 (16)

and

P�.t/ D �sign.kp/�
ea�

1C �T �
n� � 2 (17)

where ey D y � ym, ea is an augmented error,
and � is a modified regressor, both of which are
determined by the following equations:

� D W.s/!; ! D Œr; !T1 ; y; !
T
2 �
T ; (18)

e2 D �T � �W.s/Œ�T !� (19)

ea D ey C k1.t/e2 (20)

Pk1 D � eae2

1C �T �
(21)

The results of Narendra and Annaswamy
(2005) guarantee that the above adaptive
controller in Eqs. (11)–(21) will guarantee that
ey.t/ tends to zero as t ! 1 with all signals
remaining bounded in both the n� D 1 and
n� � 2 cases.

Need for Robust Adaptive Control
When a disturbance � is present, the plant dynam-
ics often is of the form

Pxp D Apxp C b�.u C �.t// (22)

while the reference model and the controller re-
main the same as in (4) and (2), respectively. This
in turn necessitates new tools for the analysis and
synthesis of adaptive systems. The main reason
for this is the fact that the standard Lyapunov
function candidate given by

V D 1

2
eT Pe C 1

2
� Q�T ��1 Q� (23)

together with the parameter adjustment as in (3)
yields a time derivative

PV � �1
2
eTQe C k1kekd0 k1 > 0; (24)

where d0 is an upper bound on the perturbation
�. The second term on the right-hand side of (24)
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causes PV to be sign indefinite. This is because
V is a function of both e and Q� , and therefore,
the second term can be large compared to the
first with the second argument of V , Q� , which
can be arbitrary, causing PV to be sign indefi-
nite. The same property is what caused PV to be
semi-definite in the ideal case. Hence, in this
perturbed case, no guarantees of boundedness
can be provided. In fact, it can be shown that if
�.t/ is chosen in a particular manner, the closed-
loop signals can actually be shown to become
unbounded, either in the presence of bounded
disturbances (Narendra and Annaswamy 2005) or
with unmodeled dynamics (Rohrs et al. 1985).
This in turn led to the area of robust adaptive
control.

Various approaches that have been developed
under the rubric of robust adaptive control can be
grouped into two categories. The first of these is
related to modifications in the adaptive laws so as
to ensure boundedness. These changes consist of
modifications in the adaptive law (3) as

P� D ��!.t/bTmPe � g.�; e/ (25)

The problem then reduces to finding a suitable
g.�; e/. This is discussed in detail in the next sec-

tion. The second approach used in adaptive con-
trol pertains to the use of a persistently exciting
reference signal r . The latter ensures parameter
convergence of the adaptive system and there-
fore exponential stability. This in turn ensures
robustness of the overall system. These details are
addressed in section “Robust Adaptive Control
with Persistently Exciting Reference Input.”

Robust Adaptive Control with
Modifications in the Adaptive Law

Robustness to Bounded Disturbances
When a bounded input disturbance � is present,
the plant dynamics is changed as

Pxp D Apxp C b�.u C �.t//; (26)

while the reference model and the controller
remain the same as in (4) and (2), respectively. As
mentioned above, a modification to the adaptive
law as in (25) is needed. Over the years, different
choices have been suggested for the nonlinear
function g.�; e/. For example, these are chosen
as

g.�; e/ D

8̂
<
:̂
� Ioannou and Sun (2013)
jjejj� Narendra and Annaswamy (2005)

�
�
1 � jj� jj

�max

�2
Kreisselmeier and Narendra (1982)

(27)

where �max is a known bound on the parameter � .
(One can choose to set  to zero if k�k � �max,
as is done in Ioannou and Sun (2013), Tsakalis
and Ioannou (1987) and many other references
in the literature.) An alternate approach that is
different from (25) is to not have an additive
term g.�; P/ but rather set P� D 0 whenever the
error e is small in some sense. Such a dead
zone approach was suggested, for example, in
Egardt (1979) and Peterson and Narendra (1982).
It can be shown that each one of these choices
leads to boundedness, which is described be-
low. Without loss of generality, we assume that
� > 0.

With the same Lyapunov function candidate as
in (23), its time derivative now becomes

PV � � 1

2
eTQe C k1kekk�k

� 1

2
k Q�kT g.�; e/; k1 > 0 (28)

The property of g.:; :/, together with the fact that
� is bounded, ensures that PV < 0 outside a com-
pact set� in the .e; Q�/ space. This ensures global
boundedness of both e and Q� . Boundedness of xp
follows.
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In all of the above methods, the idea behind
adding the term g.e; �/ is this: the parameter
� can drift away from the correct direction due
to the term k1kekk�k, and the construction of
g.e; �/ is such that it counteracts this drift and
keeps the parameter in check, by adding a nega-
tive quadratic term in Q� . The boundedness of both
e and � is simultaneously assured in the above
since V has a time derivative PV that is nonpositive
outside a compact set in the .e; Q�/ space. It should
be noted however that this was possible to a large
extent because �was bounded, and as a result, the
sign-indefinite term remained linear in kek.

An alternative procedure, originally proposed
in Pomet and Praly (1992) and revised and refined
in Khalil (2001) and Lavretsky (2010), proceeds

in a slightly different manner. Here, the bounded-
ness of � is first established, independent of the
error equation. It should be noted that a similar
approach is adopted in the context of output
feedback in plants with higher relative degree
by using normalization and an augmented error
approach (Narendra and Annaswamy 2005). In
Khalil (2001) and Lavretsky (2010), no normal-
ization is used but a projection algorithm. This is
described below.

The projection algorithm for adjusting the pa-
rameter � is given by

P� D Proj.�; y/; (29)

where

Proj.�; y/ D

8̂
<
:̂
y � rf .�/.rf .�//T

krf .�/k2 yf .�/

if Œf .�/ > 0
V
yTrf .�/ > 0�

y otherwise

(30)

y D �eT Pb! (31)

f .�/ D k � k2 �� 02
max

"2 C 2"� 0
max

(32)

where � 0
max and " are arbitrary positive constants,

and �0 and�1 are defined as

�0 D ˚
� 2 Rnjf .�/ � 0

�
�1 D ˚

� 2 Rnjf .�/ � 1
�
:

(33)

From the above relations, one can show that

�.0/ 2 �0 H) �.t/ 2 �1:

In addition,

� 0
max D max

�2�0
.k�k/ ; �max D max

�2�1
.k�k/ (34)

where �max D � 0
max C " (Matsutani et al. 2011).

Robustness to Unmodeled Dynamics
One of the major observations in the early eight-
ies was the stark difference between the sys-
tem signals in the ideal adaptive system and the
perturbed adaptive system when the perturbation
was due to a commonly present unmodeled dy-
namics such as those of an actuator used for con-
trol implementation. Among other references, the
publication in Rohrs et al. (1985) pointed out the
fact that when an adaptive controller prescribed
for a first-order plant is evaluated with unmodeled
dynamics present, instability occurs readily and
for a wide range of command signals. A number
of solutions have been suggested to alleviate this
instability and form the subject matter of this
section.

We consider the plant in (26) with an addi-
tional unmodeled dynamics so that

Pxp DApxp C b�v

Px� DA�x� C b�u; v D QcT� x�:
(35)
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where A� is a Hurwitz matrix. If � D v � u, then
the plant dynamics can be rewritten as

Pxp D Apxp C b�.u C �/ (36)

Unlike the bounded disturbance case, no upper
bound d0 can be assumed to exist as � is a state-
dependent disturbance. It is this that causes a
huge difference between deriving boundedness in
section “Robustness to Bounded Disturbances”
and here in section “Robustness to Unmodeled
Dynamics.” Significant effort has been extended
in the adaptive control community in this regard.
These results fall into two categories (i) that
assure global boundedness for a narrow class of
unmodeled dynamics and (ii) that assure semi-
global boundedness for a slightly larger class of
unmodeled dynamics. More recently, some re-
sults have been obtained that are able to establish
global boundedness with minimal restrictions on
the unmodeled dynamics. In what follows, we
give examples of each of the above two cases as
well as the recent results.

Global Boundedness in the Presence of a Small
Class of Unmodeled Dynamics
For the plant in (26), under assumptions in (5),
the plant can be rewritten as

Px D Amx C b�.u C ��T
x x C �/ (37)

where � and ��
x are unknown, Am and b are

known, and � D v � u whose state-space rep-
resentation can be shown to be of the form

Px� D A�x� C b�u; � D cT� x� (38)

for some vector c�.
For a class of unmodeled dynamics fc�; A�; b�g,

if the control input in (2) and the projection
algorithm in (29) with y and f .�/ chosen as
in (31) and (32) are used, one can guarantee
boundedness. In particular, if the inequality

k�x;max�max

 
b0

A�

!
< 1 (39)

is satisfied, where b0 is an upper bound on jjb�jj
and A denotes the singular value of the matrix
A, then boundedness follows. That is, robustness
of adaptive controllers can be ensured if the
unmodeled dynamics is fast and their zeros are
restricted in some sense.

A specific example of such an unmodeled
dynamics is given by

cT� .sI � A�/
�1b� D �2�s

1C �s
: (40)

Global Boundedness for a Large Class of
Unmodeled Dynamics: A First-Order Example
A different approach can be taken for the problem
of unmodeled dynamics which allows a global re-
sult, for a class of adaptive systems (Hussain et al.
2013). The main idea here is to use the projection
algorithm and use properties of adaptive systems
in conjunction with linear time-varying systems.
This is presented in this section using a first-order
plant.

We consider the control of

Pxp.t/ D apxp.t/C kpv.t/ (41)

where ap is unknown and kp is known. It is
assumed that japj � Na, where Na is a known
positive constant. The unmodeled dynamics is
given by (38) with

G�.s/ , cT� .sInxn �A�/�1b�. (42)

The goal is to design the control input such that
xp.t/ follows xm.t/ which is specified by the
reference model

Pxm.t/ D amxm.t/C kmr.t/ (43)

where am < 0 and r.t/ is the reference input. The
adaptive controller we propose is given by

u.t/ D �.t/xp.t/C km

kp
r.t/ (44)

where the parameter �.t/ is updated using a
projection algorithm given by
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P�.t/ D� Proj.�.t/;�xp.t/.xp.t/ � xm.t///;

� > 0 (45)

and

Proj.�; y/D

8̂
ˆ̂<
ˆ̂̂:

�2max � �2

�2max � � 02
max
y Œ� 2 �A; y� > 0�

y otherwise

(46)

�0 D f� 2 R1 j �� 0
max � � � � 0

maxg
�1 D f� 2 R1 j ��max � � � �maxg (47)

�A D �1n�0

with positive constants � 0
max and �max given by

� 0
max >

Na C jamj
kp

; �max D � 0
max C "0; (48)

where "0 is an arbitrary constant. It can be shown
that if �max is chosen as in (48), then the closed

adaptive system specified by Eqs. (41)–(48) al-
ways has guaranteed bounded solutions for a
class of unmodeled dynamics G�.s/. There is an
optimal value of "0, however, for which a largest
class of G�.s/ can be found.

It should be noted that in the Rohrs example
in Rohrs et al. (1985), the plant is first order, with
ap D �1, and

G� D w2n
s2 C 2�!ns C !2n

; (49)

for � D 1; !n D 15. It is easy to show
that for these values of � and !n, if �max D 17,
then Eq. (48) is satisfied and that the closed-loop
system is robust to G�.

In general, for a first-order plant as in (41), it
can be shown that the adaptive system is robust
for G� for all .�; !n/ that satisfy the following
inequalities for all japj � a:

�ap�2 C f .ap; !n/� � kp�max

4
> 0

!n > !nmin

(50)

where

f .ap; !n/ D a2p C !2n

2!n

wnmin D max

 
Na
2�
; 2� Na;

q
Nakp�max

(
1C

s
1 � Na

kp�max

)!
(51)

When a time delay � is present in the plant to
be controlled, the plant under consideration can
be represented as in (37) where

�.t/ D u.t � �/ � u.t/

Similar results of global boundedness can be
derived in this case as well (Matsutani 2013;
Matsutani et al. 2012, 2013).

Robust Adaptive Control with
Persistently Exciting Reference Input

We return to the plant in (26) with the control
input as in (2) and the adaptive law as in (3).

When �.t/ is bounded with a finite upper bound
d0, it can be shown that no modifications are nec-
essary in the adaptive law to ensure boundedness
if the reference input is persistently exciting. It
can be shown that if the reference input r.t/ is
such that the vector !� defined as !� D ŒxTm; r�

T

is persistently exciting with

ˇ̌
ˇ̌ 1
T

Z tCT

t

!�T .�/wd�
ˇ̌
ˇ̌� kd0 8 t � t0;8w2Rn

where k; T are finite constants and w is a unit
vector, then the adaptive system is well behaved,
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i.e., has globally bounded solutions (Narendra
and Annaswamy 2005).

An alternative approach for achieving robust-
ness has been addressed in Anderson et al. (1986)
that addresses local stability in the presence of
persistently exciting signals. The starting point
for this investigation is (35) but when all states
are not accessible. Assuming that an output y D
cTp xp is measurable and a controller as in (11)–
(15) and a reference model as in (10) are used,
the underlying error equation can be written as

e1 D W m.s/
� Q� >! C �

�
(52)

where W m.s/ is asymptotically stable, Q� is the
parameter error vector, and � is the effect of the
unmodeled dynamics � at the output. Suppose
the standard adaptive law is used, and as a first
step the perturbation � is ignored, the underlying
error equation and the adaptive law are given by

e1 D W m.s/ Q� >! (53)

PQ� D ��e1!; � > 0: (54)

If the origin in the .e1; Q�/ space of (53) and (54)
is exponentially stable, all solutions of (52) are
bounded for sufficiently small initial conditions
and �.t/. Therefore, the question that is of inter-
est is the set of conditions of persistent excitation
that will assure such an exponential stability. This
is addressed in Anderson et al. (1986). The un-
derlying tool is the Method of Averaging (Arnold
1982; Hale 1969; Krylov and Bogoliuboff 1943)
used in the study of nonlinear oscillations and
addresses the stability property of the differential
equation

Px D �f .x; t; �/; x.0/ D x0 (55)

where � is a small parameter. By a process of
averaging, the nonautonomous system in (55)
is approximated by an autonomous differential
equation in xav , an averaged value of x. This
autonomous system, which is easier to analyze,
can be used to derive stability properties of (55).

In order to use the method of averaging
for robust adaptive control, we write Eqs. (53)
and (54) as

2
4 Pe

PQ�

3
5 D

2
4 A b!>

��!h> 0

3
5
2
4e

Q�

3
5 (56)

Theorem 1 Let !.t/ be bounded, almost peri-
odic, and persistently exciting. Then there exists
a c� > 0 such that for all � 2 .0; c��, the origin
of (56) is exponentially stable if

<
�
�i


Z T

0

!.t/ NWm.s/!
>.t/dt

�
> 0;

8i D 1; : : : ; n (57)

and is unstable if

<
�
�j


Z T

0

!.t/ NWm.s/!
>.t/dt

�
< 0;

for some j D 1; : : : ; n (58)

In Kokotovic et al. (1985), it is fur-
ther shown that !.t/ can be expressed at
!.t/ D P1

kD�1�.i�k/ exp.i�kt/ and the
inequality in (57) can be satisfied if the condition

1X
kD�1

< � NWm.i�k/
	< �

�.i�k/ N�>.i�k/
	
> 0

(59)
is satisfied, where N�.i�k/ is the complex conju-
gate of �.i�k/. Given a general transfer function
NWm.s/, there exists a large class of functions !

that satisfies (59), even when NWm.s/ is not SPR.
! in Theorem 1 is not an independent variable

but rather an internal variable of the nonlinear
system in (56). Hence, it cannot be shown to be
bounded or persistently exciting. If !� represents
the signal corresponding to ! in the reference
model, it can be made to satisfy (57) by the proper
choice of the reference input. Expressing ! D
!� C !e , ! will also be bounded, persistently
exciting, and satisfy (57) if !e is small. This can
be achieved by choosing the initial conditions
e.t0/ and Q�.t0/ in (56) to be sufficiently small.
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The conditions of Theorem 1 are then verified,
and for a sufficiently small �, exponential stabil-
ity of the origin of (56) follows.

Theorem 1 provides conditions for exponen-
tial stability and instability when the solutions
of the adaptive system are sufficiently close to
the tuned solutions. These are very valuable in
understanding the stability and instability mecha-
nisms peculiar to adaptive control in the presence
of different types of perturbations. Many of these
results have been summarized and presented in a
unified fashion in Anderson et al. (1986).

Cross-References

�Adaptive Control, Overview
�History of Adaptive Control
�Nonlinear Adaptive Control
� Stochastic Adaptive Control
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Robust Control in GapMetric

Li Qiu
Hong Kong University of Science and
Technology, Hong Kong SAR, China

Abstract

Robust control needs to start with a model of
system uncertainty. What is a good uncertainty
model? First it needs to capture the possible
system perturbations and uncertainties. Second
it needs to be mathematically tractable. The gap
metric was introduced by Zames and El-Sakkary
for this purpose. Its study climaxed in an award-
winning paper by Georgiou and Smith. A modi-
fied gap, called the �-gap, was later discovered by

http://dx.doi.org/10.1007/978-1-4471-5058-9_110
http://dx.doi.org/10.1007/978-1-4471-5058-9_120
http://dx.doi.org/10.1007/978-1-4471-5058-9_117
http://dx.doi.org/10.1007/978-1-4471-5058-9_231
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Vinnicombe and was shown to have advantages.
With these metrics in hand, robust stabilization
issues can be nicely addressed.

Keywords

Gap metric; H-infinity control; �-gap metric;
Robust stabilization; Uncertain system

Introduction

The gap is rooted in mathematical literature for
the purpose of measuring the distance between
unbounded operators (Kato 1976). It is intro-
duced to control theory by Zames and El-Sakkary
(1980) to measure the distance between systems
and subsequently to model an uncertain sys-
tem, with the recognition that a possibly unstable
system is simply a possibly unbounded opera-
tor. Here only continuous-time systems will be
treated. Discrete-time systems can be treated in
an analogous way. Let us identify a linear time-
invariant (LTI) system with its transfer function.
The set of m-input p-output finite-dimensional
LTI systems is then identified with the set Rp�m
of p � m real rational matrices. Such a system
can be considered as a linear operator from input
space Hm

2 to output space Hp
2 , defined by the

input-output relation y D P u. Here H2 is the
collection of all bounded-energy signals x.s/
satisfying

kxk2 WD sup
>0



1

2�

Z 1

�1
jx. C j!/j2d!

�1=2

< 1:

This operator is possibly unbounded since for an
input u 2 Hm

2 , the corresponding output y D P u
is not necessarily in Hp

2 . It is bounded if and only
if P is stable, i.e., if and only if P 2 RHp�m1 , the
set of p �m real rational matrices bounded over
Re s > 0. In this case, the induced operator norm
is the H1 norm of P :

kP k1 D sup
Re s>0

NŒP.s/� D sup
!2R

NŒP.j!/�:

No matter whether or not P is stable, we define
the graph of P as

GP D
��

u
y


2 HmCp

2 W y D P u

�
;

i.e., the graph is the set of all finite energy input-
output pairs. It is easy to see that GP is a linear
subspace of HmCp

2 and a little more effort shows
that it is closed. Hence it uniquely corresponds
to a bounded linear operator on HmCp

2 , called the
orthogonal projection onto GP , denoted by ˘GP .
Now with two systems P1; P2 2 Rp�m , the gap
in between is defined as

ı.P1; P2/ D k˘GP1 �˘GP2 k:

That the gap is a metric in Rp�m follows from
the fact that the induced operator norm used
above defines a metric on the set of all orthogonal
projections.

With the gap between two systems, an uncer-
tain system described by the gap is simply a gap
metric ball with a center P , called the nominal
system, and a radius r , qualifying the amount of
uncertainty:

B.P; r/ D f QP 2 Rp�m W ı. QP ;P / < rg:

Gap Computation and Robust
Stabilization

With the basic definitions constructed above, the
following questions are then asked:
Computation: How can the gap between two

systems be computed?
Analysis: How much stability robustness does

a stable feedback system have against gap
uncertainty in the plant or in both the plant and
the controller?

Synthesis: How can a feedback controller be de-
signed so that the feedback system has optimal
robustness against gap uncertainty?
For the question on computation, it is rather

easy to see that if P1 and P2 are static, also said
to be memoryless, systems, i.e., P1.s/ D K1 and
P2.s/ D K2, then
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ı.P1; P2/ D NŒ.I CK1K
0
1/

�1=2

.K1 �K2/.I CK 0
2K2/

�1=2�:

In the single-input-single-output case, this is ex-
actly the chordal distance between two numbers
K1 and K2. Hence the expression above general-
izes the chordal distance between two complex
numbers to constant matrices. What if P1 and
P2 are dynamic systems? It is not until Georgiou
(1988) when the computation of the gap was
settled by using the coprime factorization.

For each P 2 Rp�m, there are

� QV � QU
� QN QM


;

�
M U

N V


2 RH.mCp/�.mCp/1

such that P D NM�1 D QM�1 QN and

� QV � QU
� QN QM

�
M U

N V


D
�
I 0

0 I


:

These matrices are said to give a doubly coprime
factorization of P . Also P D NM�1 and P D
QM�1 QN are said to be right and left coprime fac-

torizations, respectively. In the doubly coprime
factorization, we can further require

MT .�s/M.s/CNT .�s/N.s/ D I and

QM.s/ QMT .s/C QM.s/ QMT .s/ D I:

In this case, the coprime factorizations are said to
be normalized.

Theorem 1 (Computation of the gap) Let
Pi D NiM

�1
i ; i D 1; 2; be normalized right

coprime factorizations. Then

ı.P1; P2/ D max

�
inf

Q2RHm�m
1

k
�
M1

N1


�
�
M2

N2


Qk1; inf

Q2RHm�m
1

k
�
M2

N2


�
�
M1

N1


Qk1

�
:

The problems of finding the two infima above
are H1 model-matching problems, special forms
of H1 control problems. See article �Optimal
Control via Factorization and Model Matching
and article �H-Infinity Control in this encyclo-
pedia. In principle, they can be solved using the
standard ways.

The analysis and synthesis questions are
satisfactorily answered by Georgiou and Smith
(1990). Let us consider the feedback system
shown in Fig. 1.

Such a feedback system is denoted by a plant
and controller pair or simply a feedback pair
.P; C / 2 Rp�m�Rm�p . This closed-loop system

is stable if the transfer matrix from

�
w1

�w2


to

�
u1
y2


, nicknamed the Gang of Four matrix,

GoF D
�
.I C PC/�1 .I C PC/�1C
C.I C PC/�1 P.I C PC/�1C



D
�
I

P


.I C PC/�1

�
I C

	

is stable, i.e., belongs to RH1.

Theorem 2 (Stability margin) Assume .P; C /
form a stable closed-loop system. All feedback
systems . QP ;C / with QP 2 B.P; r/ are stable if
and only if r � kGoF k�11 .

It follows from Theorem 2 that kGoF k�11 is
the stability margin of the closed-loop system
in Fig. 1. The natural design problem is then
to design a controller C for a given P such
that kGoF k�11 is maximized or equivalently
kGoF k1 is minimized. Such a problem again
is an H1 control problem, which is the
topic of article �H-Infinity Control in this
encyclopedia. It is realized by Georgiou and
Smith (1990) that this particular H1 control
problem has some unique features. Let P have
a normalized doubly coprime factorization and
let

R.s/ D MT .�s/U.s/CNT .�s/V .s/:

Then

http://dx.doi.org/10.1007/978-1-4471-5058-9_206
http://dx.doi.org/10.1007/978-1-4471-5058-9_166
http://dx.doi.org/10.1007/978-1-4471-5058-9_166
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� � P

�
� �C

�
y1 y2

w1

w2

u1

u2

−

Robust Control in Gap Metric, Fig. 1 An uncertain
feedback system

inf
C

kGoF k1 D
 
1C inf

Q2RHm�p
1

kR �Qk1

!1=2
:

The minimization over Q above is a one-
block H1 model-matching problem. It can
be solved rather easily, much more easily
than the H1 model-matching problem arising
in the computation of gap. After finding an
optimal Q, an optimal controller is obtained
as

C D �.U �MQ/.V �NQ/�1:
Qiu and Davison (1992a) extended Theorem 2

to the case when both the plant and controller are
subject to uncertainty.

Theorem 3 (The arcsin theorem) Assume
.P; C / form a stable closed-loop system. All

feedback systems . QP ; QC/ 2 B.P; rP / � B.C; rC /
are stable if and only if

arcsin rP C arcsin rC � arcsin kGoF k�11 :

This theorem further strengthens the role of
kGoF k�11 as the stability robustness of the feed-
back system .P; C /.

The �-Gap

Partly because of the lack of efficient ways in
computing the gap, there were efforts in seeking
other metrics on Rp�m with better numerical
and analytical properties. Several such metrics
were proposed, including the graph metric by
Vidyasagar (1984), pointwise gap metric by
Qiu and Davison (1992b), and �-gap metric by
Vinnicombe (1993). The winner is the �-gap
which is defined by ingeniously exploring the
special structures and properties of rational
matrices in Rp�m. For P1; P2 2 Rp�m , let
Pi D NiM

�1
i ; i D 1; 2; be normalized right

coprime factirizations. Define the �-gap metric as

ı�.P1; P2/ D sup
!2R

N ˚ŒI C P1.j!/P1.j!/
���1=2ŒP1.j!/ � P2.j!/�ŒI C P2.j!/

�P2.j!/��1=2
�

if detŒMT
2 .�s/M1.s/ C NT

2 .�s/N1.s/� has
equal number of unstable poles and zeros and
ı�.P1; P2/ D 1 otherwise. Apparently �-gap is
easier to compute than the gap. When the pole-
zero number condition is satisfied, the �-gap is
the peak of the chordal distance between the
system frequency responses. The �-gap is no
greater than the gap, i.e.,

ı�.P1; P2/ � ı.P1; P2/:

Hence the �-gap ball

B�.P; r/ D f QP 2 Rp�m W ı�. QP ;P / < rg
is a superset of the gap ball with the same center
and radius. Theorems 2 and 3 can be restated

with the gap balls B replaced by the new gap
balls B� . Consequently the restated Theorems 2
and 3 are less conservative than the original ver-
sions for the gap. The optimal robust stabilization
problems for the gap and the �-gap are the same:
design C to maximizing kGoF k�11 for a given
P .

Summary and Future Directions

The gap, as well as the �-gap, and the associated
robust control theory can be extended to infinite
dimensional systems as in Georgiou and Smith
(1992) and Ball and Sasane (2012), time-varying
systems as in Foias, Georgiou, and Smith et al.
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(1993) and Feintuch (1998), and even nonlinear
systems as in Georgiou and Smith (1997), Ander-
son et al. (2002), James et al. (2005), and Bian
and French (2005), in varying degrees. There are
still research opportunities in these extensions.
The use of normalized coprime factorizations
seems to be an obstacle in these extensions.

For a plant P , the controller optimizing
kGoF k1 is not always a good controller. This
gives another example where “optimal” is not
always equal to “good.” One reason is that the
actual plant uncertainty cannot necessarily be
well described by a gap ball or a �-gap ball.
Another reason is that performance issues other
than the stability robustness, such as tracking and
disturbance rejection, are not taken into account
in the optimization. The actual plant uncertainty
might be better described by a gap ball centered
at a frequency-shaped plant QP D WoPWi where
Wi and Wo are real rational weighting matrices
which can also be chosen to address tracking and
disturbance rejection requirements. In this case,
an optimal controller QC can then be designed
to optimize the GoF matrix corresponding the
shaped plant QP . Finally C D Wi

QCWo is used
as a designed controller for the original plant
P . With the proper choice of Wi and Wo, it is
more likely that a good controller will result.
This loop-shaping design method was proposed
in McFarlane and Glover (1992) and further
developed in Vinnicombe (2001).

In the process of obtaining the arcsin theorem,
it has been realized that the gap and even more
so the �-gap are closely related to the canonical
angles between linear subspaces. In fact the gap
is the sin of the largest canonical angle between
certain subspaces and the largest canonical angle
itself is also a metric, a better one in some
geometric sense. For the latest development on
canonical angles, see Qiu et al. (2008) and Zhang
and Qiu (2010).

In addition to the effort in deepening and
expanding the notion of gap and its use in robust
control, there is also effort in making it more
accessible and more closely related to classical
frequency response analysis; see Qiu and Zhou
(2013). It again appears that the use of coprime
factorizations in the current theory is hinder-
ing this effort. Hence, circumventing the use of

coprime factorizations, normalized or not, in the
development of the gap would help its extension
and popularization.

Cross-References

�H-Infinity Control
�Optimal Control via Factorization and Model

Matching
�Robust Synthesis and Robustness Analysis

Techniques and Tools

Recommended Reading

The most authoritative work on gap, �-gap and
the associated robust stabilization theory is the
comprehensive monograph Vinnicombe (2001).
This theory is inherently an input-output fre-
quency domain theory. However many related
computations, such as those of doubly normal-
ized coprime factorizations, H1 model match-
ing, and the optimal controller synthesis, can
be done using state-space formulas and further
using MATLAB programs. Vinnicombe (2001)
contains a list of such state-space formulas. This
theory provides a good example of the once pop-
ular and successful philosophy behind the linear
multivariable control theory: thinking in terms of
transfer functions and computing in term of state-
space equations.

The system and control background needed
to understand and study the gap, the �-gap, and
robust stabilization, in particular the coprime
factorization and frequency domain stabilization
theory, can be found in Vidyasagar (1985).

The book Zhou and Doyle (1998) also con-
tains considerable content on gap based robust
control.

Bibliography

Anderson BDO, Brinsmead TS, De Bruyne F (2002)
The Vinnicombe metric for nonlinear operators. IEEE
Trans Autom Control 47:1450–1465

Ball JA, Sasane AJ (2012) Extension of the �-metric.
Complex Anal Oper Theory 6:65–89

http://dx.doi.org/10.1007/978-1-4471-5058-9_166
http://dx.doi.org/10.1007/978-1-4471-5058-9_206
http://dx.doi.org/10.1007/978-1-4471-5058-9_145


Robust Control of Infinite Dimensional Systems 1207

R

Bian W, French M (2005) Graph topologies, gap metrics,
and robust stability for nonlinear systems. SIAM J
Control Optim 44:418–443

El-Sakkary AK (1985) The gap metric: robustness of
stabilization of feedback systems. IEEE Trans Autom
Control 30:240–247

Feintuch A (1998) Robust control theory in Hilbert space.
Springer, New York

Foias C, Georgiou TT, Smith MC (1993) Robust stability
of feedback systems: a geometric approach using the
gap metric. SIAM J Control Optim 31:1518–1537

Georgiou TT (1988) On the computation of the gap
metric. Syst Control Lett 11:253–257

Georgiou TT, Smith MC (1990) Optimal robustness in the
gap metric. IEEE Trans Autom Control 35:673–687

Georgiou TT, Smith MC (1992) Robust stabilization in
the gap metric: controller design for distributed plants.
IEEE Trans Autom Control 37:1133–1143

Georgiou TT, Smith MC (1997) Robustness analysis of
nonlinear feedback systems: an input-output approach.
IEEE Trans Autom Control 42:1200–1221

Glover K, McFarlane DC (1989) Robust stabilization
of normalized coprime factor plant descriptions with
H1 bounded uncertainties. IEEE Trans Autom Con-
trol 34:821–830

James MR, Smith MC, Vinnicombe G (2005) Gap met-
rics, representations and nonlinear robust stability.
SIAM J Control Optim 43:1535–1582

Kato T (1976) Perturbation theory for linear operators,
2nd edn. Springer, Berlin

McFarlane DC, Glover K (1992) A loop shaping design
procedure using H1-synthesis. IEEE Trans Autom
Control 37:759–769

Qiu L, Davison EJ (1992a) Feedback stability under
simultaneous gap metric uncertainties in plant and
controller. Syst Control Lett 18:9–22

Qiu L, Davison EJ (1992b) Pointwise gap metrics
on transfer matrices. IEEE Trans Autom Control
37:741–758

Qiu L, Zhang Y, Li CK (2008) Unitarily invariant met-
rics on the Grassmann space. SIAM J Matrix Anal
27:501–531

Qiu L, Zhou K (2013) Preclassical tools for postmodern
control. IEEE Control Syst Mag 33(4): 26–38

Vidyasagar M (1984) The graph metric for unstable plants
and robustness estimates for feedback stability. IEEE
Trans Autom Control 29:403–418

Vidyasagar M (1985) Control system synthesis: a factor-
ization approach. MIT, Cambridge

Vinnicombe G (1993) Frequency domain uncertainty
and the graph topology. IEEE Trans Autom Control
38:1371–1383

Vinnicombe G (2001) Uncertainty and feedback: H1

loop-shaping and the �-gap metric. Imperial Collage
Press, London

Zames G, El-Sakkary AK (1980) Unstable systems and
feedback: the gap metric. In: Proceedings of the 16th
Allerton conference, Illinois, pp 380–385

Zhang Y, Qiu L (2010) From subadditive inequalities of
singular values to triangular inequalities of canonical
angles. SIAM J Matrix Anal Appl 31:1606–1620

Zhou K, Doyle JC (1998) Essentials of robust control.
Prentice Hall, Upper Saddle River

Robust Control of Infinite
Dimensional Systems

Hitay Özbay
Department of Electrical and Electronics
Engineering, Bilkent University, Ankara, Turkey

Abstract

Basic robust control problems are studied for
the feedback systems where the underlying plant
model is infinite dimensional. The H1 optimal
controller formula is given for the mixed sensitiv-
ity minimization problem with rational weights.
Key steps of the numerical computations required
to determine the controller parameters are illus-
trated with an example where the plant model
include time delay terms.

Keywords

Coprime factorizations; Direct design methods;
Inner-outer factorizations

Introduction

Robust control deals with the feedback system
shown in Fig. 1, where P� represents the uncer-
tain physical plant and C is a fixed controller to
be designed.

Here, it is assumed that the controller and the
plant are linear time invariant (LTI) systems and

Robust Control of Infinite Dimensional Systems,
Fig. 1 Feedback system F.C; P�/ with fixed controller
C and uncertain plant P�
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they are represented by their transfer functions.
Furthermore, P� satisfies the following condi-
tions:

P�.s/ D P.s/C�.s/

where P is the nominal plant model, with P.s/
and P�.s/ having the same number of poles in
CC; and there is a known uncertainty boundW.s/
satisfying

j�.j!/j < jW.j!/j 8 ! 2 R:

Definition 1 All P� satisfying the above condi-
tions are said to be in the set of uncertain plants
P , which is characterized by the given functions
P.s/ and W.s/.

Depending on physical system modeling,
other forms of uncertainty representations can be
more convenient than the additive unstructured
uncertainty model taken here; see, e.g., Doyle
et al. (1992), Özbay (2000), and Zhou et al.
(1996) for the examples of multiplicative,
coprime factor, parametric, and structured
uncertainty descriptions. Note that for notational
convenience and simplicity of the presentation,
single-input-single-output (SISO) plants are
considered here; for extensions to multi-input-
multi-output (MIMO) plants, see, e.g., Curtain
and Zwart (1995).

When the plant under consideration is infi-
nite dimensional, the transfer function P.s/ is
irrational, i.e., it cannot be expressed as a ratio
of two polynomials (it does not admit a finite-
dimensional state-space representation). Typical
examples of such systems are spatially distributed
parameter systems modeled by partial differential
equations, fractional-order systems, and systems
with time delays. The reader is referred to Curtain
and Morris (2009) for examples of transfer func-
tions of distributed parameter systems. There are
many interesting industrial applications where
fractional-order transfer functions are used for
modeling and control, see, e.g., Monje et al.
(2010); typically, such functions are rational in
s˛ , where ˛ is a rational number in the open
interval .0; 1/. Transfer functions of systems
with time delays involve terms like e�hs where
h > 0 is the delay; see Sipahi et al. (2011) for

various real-life examples where time-delay mod-
els appear. Transfer functions considered here are
functions of the complex variable s with real
coefficients, so P.s/ D P.s/ where s denotes the
complex conjugate of s.

Definition 2 A linear time invariant system H

is said to be stable if its transfer function H.s/
is bounded and analytic in CC. In this case, the
system norm is

kHk D kHk1 D sup
Re.s/>0

jH.s/j;

which is equivalent to the energy amplification
through the system H; see Doyle et al. (1992)
and Foias et al. (1996).

Definition 2 is sometimes called the H1-
stability, and in this setting, the set of all stable
plants is the function spaceH1. It is worth noting
that for infinite-dimensional systems, there are
other definitions of stability (Curtain and Zwart
1995; Desoer and Vidyasagar 2009), leading to
different measures of the system norm.

Robust Control Design Objectives

Let F.C; P�/ denote the feedback system shown
in Fig. 1. This system is said to be robustly stable
if all the transfer functions from external inputs
.r; v/ to internal signals .e; u/ are in H1 for all
P� 2 P . In the controller design, robust stability
of the feedback system is the primary constraint.

The feedback system F.C; P�/ is robustly
stable if and only if the following conditions hold;
see, e.g., Doyle et al. (1992) and Foias et al.
(1996),

.a/ S; CS; PS 2 H1;where SD.1C PC/�1,

and

.b/ kW CSk1 � 1 :

In order to illustrate these design constraints
for robustly stabilizing controller, as an example,
consider a strictly proper stable plant, i.e.,

P 2 H1 with lim
jsj!1

jP.s/j D 0:
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In this case, all controllers in the form C D
Q=.1 � PQ/ satisfy condition .a/ for any Q 2
H1 (moreover, any controller C satisfying .a/
must be in this form for some Q 2 H1). Now
consider a rationalW.s/with a stableQ such that
jQ.j!/j is a continuous function of! 2 R. Then,
condition .b/ becomes

kWQk1 � 1 ” jQ.j!/j � jW.j!/j�1
8! 2 R:

So, whenever the modeling uncertainty is “large”
on a frequency band ! 2 �, the magnitude of Q
should be “small” in this region.

When the plant is unstable, say p 2 CC is
a pole of P.s/ of multiplicity one, conditions .a/
and .b/ impose a restriction on the controller, that
leads to

1 � kWCSk1 �
ˇ̌
ˇ̌W.p/
N.p/

ˇ̌
ˇ̌ where N.p/

D lim
s!p

.s � p/

.s C p/
P.s/:

So, a necessary condition, for .b/ to hold in this
case, is jW.p/j � jN.p/j, which means that the
modeling uncertainty at the unstable pole of the
plant should be small enough for the existence of
a robustly stabilizing controller. This is one of the
fundamental quantifiable limitations of feedback
systems with unstable plants; see Stein (2003) for
further discussions on other limitations.

Many other performance-related design objec-
tives, such as reference tracking and disturbance
attenuation, are captured by the sensitivity mini-
mization, which is defined as finding a controller
satisfying .a/ and achieving

.c/ kW1Sk1 � �

for the smallest possible � > 0, for a given stable
sensitivity weight W1.s/. Selection of W1 de-
pends on the class of reference signals and distur-
bances considered; see Doyle et al. (1992), Özbay
(2000), and Stein (2003) for general guidelines.
Stability robustness and performance objectives
defined above can be blended to define a single

H1-optimization problem, known as the mixed
sensitivity minimization: given W1, W2, P , find a
controller C satisfying .a/ and achieving

.d/

����
�
W1S

W2T

����1
WD

sup
Re.s/>0



jW1.s/S.s/j2CjW2.s/T .s/j2

� 1
2

��

for the smallest possible � > 0, where
T .s/ WD 1 � S.s/ and W2.s/ represents
the multiplicative uncertainty bound, with
jW2.j!/j D jW.j!/j=jP.j!/j; 8 ! 2 R: The
smallest achievable � is the optimal performance
level �opt and the corresponding controller is
denoted by Copt. Typically, when P is infinite
dimensional so is the optimal controller.

DesignMethods

Approximation of the Plant
One possible way to design a robust controller
for an infinite-dimensional plant P is to design
a robust controller Ca for an approximate finite-
dimensional plant Pa; (for a frequency domain
approximation technique for infinite-dimensional
systems, see Gu et al. 1989). When W1, W2, and
Pa are finite dimensional, standard state-space
methods, Zhou et al. (1996), can be used to find
an H1 controller Ca achieving

����
�
W1Sa
W2Ta

����1
� �a

for the smallest possible �a, where Sa WD .1 C
PaCa/

�1 and Ta D .1� Sa/. Then, the controller
C D Ca satisfies .a/ and achieves the perfor-
mance objective .d/ with

� D .�aC"/ 1

1 � " ; " WD kCaSa.P �Pa/k1;

where it is assumed that the approximation of the
plant is made in such a way that " < 1. Clearly,
if �a ! �opt as " ! 0, then � ! �opt as



1210 Robust Control of Infinite Dimensional Systems

" ! 0. The conditions under which �a ! �opt

are discussed in Morris (2001).

Direct DesignMethods
The classical two-Riccati equation approach,
Zhou et al. (1996), developed for finite-
dimensional systems, has been extended to
various classes of infinite-dimensional systems
by using the state-space techniques where
semigroup theory plays an important role; see
van Keulen (1993) for further details.

In order to illustrate some of the key steps of
a frequency domain method developed in Foias
et al. (1996), consider a specific example where
the plant is given as

P.s/ D .s � 1/.s C 2/ e�hs

.s2 C 2s C 2/.s C 1 � 3e�2hs/
;

h D ln.2/ 
 0:693: (1)

First, compute the location of the poles in CC
using available numerical tools for finding the
roots of quasi-polynomials; see, e.g., Sipahi et al.
(2011) for references. For the simple example
chosen here, P.s/ has only one pole in CC, at
s D 0:5 (for larger values of h, the number of
unstable poles of P may be higher). Now, the
plant can be factored as follows:

P.s/ D MN.s/NO.s/

MD.s/
(2)

where

MN.s/ D s � 1
s C 1

e�hs MD.s/ D s � 0:5
s C 0:5

are all-pass (inner) transfer functions and

NO.s/ D .s C 2/.s C 1/

.s2 C 2s2 C 2/.s C 0:5/

s � 0:5

s C 1 � 3e�2hs

�

is a minimum-phase (outer) transfer function.
Note that

s � 0:5

s C 1 � 3e�2hs D 1

1CHF .s/
;

HF .s/ D1:5 1 � e�2h.s�0:5/

s � 0:5
: (3)

The impulse response of HF is hF .t/ D 1:5et=2

when t 2 Œ0; 2h� and hF .t/ D 0 otherwise.
Stability of NO can also be verified from the
Nyquist graph of HF . Also, note that NO.s/ can
be factored as NO.s/ D N1.s/N2.s/ where

N1.s/ D .s C 2/.s C 1/

.s2 C 2s2 C 2/



1

1CHF .s/

�
;

N2.s/ D 1

s C 0:5

withN1;N�1
1 2 H1 andN2 is finite-dimensional

(first order in this example).
The above steps illustrate coprime factoriza-

tions and inner-outer factorizations for systems
with time delays (retarded case). For systems
represented by PDEs or integrodifferential equa-
tions, plant transfer function can be factored sim-
ilarly, provided that the poles and zeros in CC can
be computed numerically.

When the plant is in the form (2) given above
and the weights W1 and W2 are rational, the
optimal performance level and the corresponding
optimal controller is obtained by the following
procedure (see Foias et al. (1996) for details).
• Controller parameterization transforms the

mixed sensitivity minimization to a problem
of finding the smallest � > 0 for which there
exists Q 2 H1 such that

����
�
W1

0


�
�
W1N2

�W2N2


MN.RCMDQ/

����
1

��

whereR.s/ is a rational function (whose order
is one less than the order of MD) satisfying
certain interpolation conditions at the zeros of
MD.s/.

• A spectral factorization determinesW0 2 H1
such that W �1

0 2 H1 and

�jW1.j!/j2 C jW2.j!/j2
� jN2.j!/j2

D jW0.j!/j2 8 ! 2 R;
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(here, it is assumed that W2N2 and .W2N2/
�1

are in H1).
• By using the norm preserving property of the

unitary matrices and the commutant lifting
theorem, it has been shown that

�opt D k
�
�

‡


k

where � is the Hankel operator whose symbol
is

MD.�s/


MN.�s/W �1

0 .�s/N2.�s/W1.�s/W1.s/ �W0.s/R.s/

�

and ‡ is the Toeplitz operator whose symbol
isW1.s/W2.s/N2.s/W

�1
0 .s/. Moreover, under

mild technical assumptions, the optimal con-
troller is obtained from a nonzero  o 2 H2

satisfying

�
�2opt � .��� C ‡�‡/

�
 o D 0

The operator .��� C ‡�‡/ is in the form of
a skew-Toeplitz operator that gives the name
to this approach. See Foias et al. (1996) for a
detailed exposition.

OptimalH1-Controller
The above steps have been implemented, and
the final optimal controller expression has been
obtained in a simplified form described below.

Let ˛1; : : : ; ˛` 2 CC be the zeros of
MD.s/, i.e., unstable poles of the plant (for
simplicity of the exposition, they are assumed
to be distinct). The sensitivity weight can
be written as W1.s/ D nW1.s/=dW1.s/,
for two coprime polynomials nW1 and dW1

with deg.nW1/ � deg.dW1/ DW n1 � 1.
Define

E�.s/ WD


W1.�s/W1.s/

�2
� 1

�

and let ˇ1; : : : ; ˇ2n1 be the zeros of E�.s/,
enumerated in such a way that �ˇn1Ck D
ˇk 2 CC, for k D 1; : : : ; n1. For notational
convenience, assume that the zeros of E� are
distinct for � D �opt.

Now define a rational function depending on
� > 0 and the weightsW1 and W2,

F�.s/ WD �
dW1.�s/
nW1.s/

G� .s/

where G� 2 H1 is an outer function determined
from the spectral factorization

G�.�s/G�.s/

D


1C W2.�s/W2.s/

W1.�s/W1.s/
� W2.�s/W2.s/

�2

��1
:

With the above definitions, under certain mild
conditions (satisfied generically in most practical
cases), the optimal controller can be expressed as

Copt.s/ D E�.s/MD.s/F� .s/L.s/

1CMN.s/F� .s/L.s/
N�1
O .s/ (4)

where � D �opt and L.s/ D L2.s/=L1.s/ with
polynomials L1 and L2, of degree n1 C ` � 1,
determined from the interpolation conditions:

L1.ˇk/CMN.ˇk/F� .ˇk/L2.ˇk/ D 0 k D 1; : : : ; n1

L1.˛k/CMN.˛k/F�.˛k/L2.˛k/ D 0 k D 1; : : : ; `

L2.�ˇk/CMN.ˇk/F�.ˇk/L1.�ˇk/ D 0 k D 1; : : : ; n1

L2.�˛k/CMN.˛k/F�.˛k/L1.�˛k/ D 0 k D 1; : : : ; `:
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The above system of equations can be rewritten
in the matrix form

R� ˆ D 0 (5)

where the 2.n1 C `/ � 1 vector ˆ contains the
coefficients of L1 and L2, and R� is a 2.n1 C
`/ � 2.n1 C `/ matrix which can be computed
numerically when � is fixed. The optimal per-
formance level �opt is the largest � which makes
R� singular. The corresponding nonzero ˆ gives
L.s/, and hence, all the components of Copt are
computed.

Example 1 Consider the weighted sensitivity
minimization for the plant (1) with the following
first-order weights:

W1.s/ D 1

s
; W2.s/ D k s (6)

where k > 0 represents the relative importance
of the multiplicative uncertainty with respect to
the tracking performance under steplike reference
inputs (see Doyle et al. 1992; Özbay 2000). With
(6) the functions E�.s/ and F�.s/ are computed
as

E�.s/ D 1C �2s2

��2s2 ; F�.s/ D �� s
ks2 C k�s C 1

;

where k� D
s
2k � k2

�2
: (7)

In this example ` D 1 and n1 D 1, with ˛1 D
0:5, ˇ1 D j=� . For k D 0:1, the largest �
which makes R� singular is �opt D 7:452, and
the coefficients of the corresponding L.s/ are
computed from the SVD of R�opt ,

L.s/ D �0:0867� 0:99623 s
�0:0867C 0:99623 s

D 0:087C s

0:087� s :

Note that zeros of E�.s/MD.s/ in CC appear as
roots of the equation

1CMN.s/F�.s/L.s/ D 0:

Hence, there are internal unstable pole-zero can-
celations in the representation (4). An internally
stable implementation of this controller is shown
in Gumussoy (2011) using a realization similar to
(3).

The above approach can also be extended to a
class of infinite-dimensional plants with infinitely
many poles in CC; see Gumussoy and Özbay
(2004) for technical details.

Summary and Future Directions

This entry briefly summarized robust control
problems involving linear time invariant infinite-
dimensional plants with dynamic uncertainty
models. Salient features of these robust control
problems are captured by the mixed sensitivity
minimization problem, for which a numerical
computational procedure is outlined under
the assumption that the weights are rational
functions. Note that different types of plant
models involving probabilistic, parametric, or
structured (MIMO case) uncertainty are left out
in this entry. Other robust control problems that
are not discussed here include simultaneous
stabilization (control of finitely many plant
models by a single robust controller) and strong
stabilization (robust control with the added
restriction that the controller must be stable)
of infinite-dimensional systems. Stable robust
controller design techniques for different types of
systems with time delays are illustrated in Özbay
(2010) and Wakaiki et al. (2013); see also their
references.

For practical implementation of infinite-
dimensional robust controllers, it is important to
find low-order approximations of stable irrational
transfer functions with prescribed H1 error
bound. There exist many different approximation
techniques for various types of transfer functions,
but there is still need for computationally efficient
algorithms in this area. Another interesting topic
along the same lines is direct computation
of fixed-order H1 controllers for infinite-
dimensional plants. In fact, computation of H1-
optimal PID controllers is still a challenging
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problem for infinite-dimensional plants, except
for some time-delay systems satisfying certain
simplifying structural assumptions. Advances in
numerical optimization tools will play critical
roles in the computation of low (or fixed)-order
robust controller design for infinite-dimensional
plants; see, e.g., Gumussoy and Michiels (2011)
for recent results along this direction.

In the past, robust control of infinite-
dimensional systems found applications in
many different areas such as chemical pro-
cesses, flexible structures, robotic systems,
transportation systems, and aerospace. Robust
control problems involving systems with time-
varying and uncertain time delays appear in
control of networks and control over networks.
Ongoing research in the networked systems area
include generalization of these problems to more
complex and interconnected systems.

There are also many interesting robust control
problems in biological systems, where typical
underlying plant models are nonlinear and
infinite dimensional. Some of these problems
are solved under simplifying assumptions; it
is expected that robust control theory will
make significant contributions to this field by
extensions of the existing results to more realistic
plant and uncertainty models.
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Abstract

Aiming at increasing system reliability and avail-
ability, integration of fault diagnosis into feed-
back control systems and integrated design of
control and diagnosis receive considerable atten-
tion in research and industrial applications. In the
framework of robust control, integrated diagnosis
and control systems are designed to meet the
demand for system robustness. The core of such
systems is an observer that delivers needed infor-
mation for a robust fault detection and feedback
control.

Keywords

Observer-based fault diagnosis and control;
Residual generation

Introduction

Advanced automatic control systems are marked
by the high integration degree of digital electron-
ics, intelligent sensors, and actuators. In parallel
to this development, a new trend of integrating
model-based fault detection and isolation (FDI)
into the control systems can be observed (Blanke
et al. 2006; Ding 2013; Gertler 1998; Isermann
2006; Patton et al. 2000), which is strongly driven
by the enhanced needs for system reliability and
availability.

A critical issue surrounding the integration
of a diagnostic module into a feedback control
loop is the interaction between the control and

diagnosis. Initiated by Nett et al. (1988), study
on the integrated design of control and diagnosis
has received much attention, both in the research
and application domains. The original idea of the
integrated design scheme proposed by Nett et al.
(1988) is to manage the interactions between the
control and diagnosis in an integrated manner
(Ding 2009; Jacobson and Nett 1991).

Robustness is an essential performance for
model-based control and diagnostic systems. In
the control and diagnosis framework, robustness
is often addressed in different context (Ding
2013) and thus calls for special attention in
the integrated design of control and diagnostic
systems. In their study on fault-tolerant controller
architecture, Zhou and Ren (2001) have proposed
to deal with the integrated design in the
framework of the Youla parametrization of
stabilization controllers (Zhou et al. 1996),
which also builds the basis for achieving high
robustness in an integrated control and diagnosis
system. Below, we present the basic ideas and
some representative schemes and methods for the
integrated design of robust diagnosis and control
systems.

Plant Model and Factorization
Technique

Consider linear time invariant (LTI) systems
given in the state space representation

Px.t/ D Ax.t/C Bu.t/C Edd.t/C Ef f .t/

y.t/ D Cx.t/CDu.t/C Fdd.t/C Ff f .t/

z.t/ D Czx.t/CDzu.t/

where x 2 Rn; y 2 Rm; u 2 Rku stand
for the plant state, output, and input vectors,
respectively. z 2 Rkz is the controlled
output vector. d 2 Rkd ; f 2 Rkf denote
disturbance and fault vectors, respectively.
A;B;C;D;Cz;Dz; Ed ;Ef ; Fd ; Ff are known
matrices of appropriate dimensions.

A transfer matrix G.s/ D D C C.sI �
A/�1B with the minimal state space realization
.A;B; C;D/ can be factorized into
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G.s/ D OM�1.s/ ON.s/
OM.s/ D I � C.sI � AL/

�1L
ON.s/ D D C C .sI � AL/

�1 BL
AL D A �LC;BL D B �LD

where L is selected so that AL is stable and can
be interpreted as an observer gain matrix. This
factorization is called left coprime (Zhou et al.
1996).

Parametrization of Stabilizing
Controllers

Let
u.s/ D K.s/y.s/

be an LTI feedback controller. By means of the
well-known Youla parametrization (Zhou et al.
1996), all stabilizing controllers can be described
and parametrized by

K.s/ D
� OX.s/�Qc.s/ ON.s/

��1 �
� OY .s/�Qc.s/ OM.s/

�

OX.s/ D I � F.sI � AL/
�1BL

OY .s/ D F.sI �AL/�1L

where Qc.s/ is a stable parameter matrix, and F
is selected so thatAF D ACBF is stable and can
be interpreted as a state feedback gain matrix.

Parametrizations of Residual
Generators

Given the system under consideration, an LTI
residual generator is a dynamic system with
u.t/; y.t/ as its inputs and r.t/ as output which
satisfies, for d.t/ D 0; f .t/ D 0;

8x.0/; u.t/; lim
t!1 r.t/ D 0:

Residual generation is the first step for a success-
ful fault diagnosis. The generated residual vector

is an indicator for the occurrence of a fault. It is
well known that all LTI residual generators can
be parametrized by

r.s/ D R.s/
� OM.s/y.s/ � ON.s/u.s/

�

where R.s/ is a stable parameter matrix and
called post-filter (Ding 2013).

Integration of Controller and
Residual Generator into a Control
Loop

It is remarkable that both the feedback controllers
and residual generators can be parametrized
based on the left coprime factorization of the
plant model. This is the basis for an integration
of diagnosis and control into a feedback control
system. In Ding et al. (2010), it is demonstrated
that the abovementioned Youla parametrization
form is in fact an observer-based feedback
controller, which can be expressed by

u.s/ D F Ox.s/CQc.s/
� ON.s/u.s/� OM.s/y.s/

�

where Ox.s/ is a state estimate delivered by a full-
order state observer (Anderson 1998; Zhou et al.
1996). Moreover, the residual generator can also
be written as

r.s/ D R.s/ro.s/; ro.s/ D y.s/ � Oy.s/

with Oy.s/ being the output estimate delivered by
an observer (Ding 2013). As a result, a stabiliza-
tion feedback controller and residual generator
can be integrated into a dynamic system of the
following form:

POx.t/ D A Ox.t/C Bu.t/C Lro.t/

D AL Ox.t/C BLu.t/C Ly.t/

ro.t/ D y.t/ � Oy.t/; Oy.t/ D C Ox.t/CDu.t/�
u.s/
r.s/


D
�
F Ox.s/
0


C
��Qc.s/

R.s/


ro.s/:
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The core of the above control and diagnostic
system is a state observer that delivers a state esti-
mation Ox.t/ and the primary residual vector ro.t/.
The design parameters of this integrated control
and diagnosis system are L;F I the observer and
state feedback control gain matrices, as well as
Qc.s/; R.s/:

Robustness of Diagnostic and Control
Systems

While in the robust control framework, the con-
troller design is typically formulated as minimiz-
ing a system norm of the transfer function matrix
from the disturbance vector d to the control
output z (Zhou et al. 1996), the design objective
of a robust fault detection system consists in an
optimal trade-off between the robustness against
d and the sensitivity to the fault vector f: Consid-
ering that

r.s/ D R.s/ .y.s/ � Oy.s//
D R.s/

� ONd.s/d.s/C ONf .s/f .s/
�

ONd.s/ D Fd C C .sI � AL/
�1 .Ed �LFd /

ONf .s/ D Ff C C .sI � AL/
�1 �Ef �LFf

�

Ding (2013), the design objective can be formu-
lated as

sup
R.s/

���R.s/ ONf .s/
���

index���R.s/ ONd.s/
���

or in a suboptimum form as finding R.s/ so that
for some given ˛ > 0; ˇ > 0

���R.s/ ONd.s/
��� � ˛;

���R.s/ ONf .s/
���

index
> ˇ:

Similar to the robust controller design, a (system)
norm like H2 or H1 norm, denoted by k�k ;
is applied for the evaluation of the influence of
the disturbances. Differently, the evaluation of
the sensitivity to the fault vector, expressed by
R.s/ ONf .s/; can be realized using either a system
norm or the so-called H� index, denoted by

k�k� ; which indicates the minimum influence of
f on r (Ding 2013).

In order to detect the fault occurrence reliably
and successfully, a decision-making procedure is
needed. It consists of a further evaluation of the
residual signal and a detection logic. Typically,
a signal norm of r; e.g., L2 norm; and a simple
detection logic like

� krk > Jth H) Alarm for fault
krk � Jth H) Fault-free

are adopted for this purpose, where Jth is a
further design parameter and called threshold
(Ding 2013). The threshold setting depends on
the dynamics of r; its norm-based evaluation, and
has significant influence on the fault detection
performance. For the purpose of reducing false
alarms, the threshold is often set as

Jth D sup
fD0;kdk�dd

krk

D sup
fD0;kdk�dd

���R.s/ ONd.s/d.s/
��� :

That is, the threshold is set to be the maximum
value of the influence of the disturbances on the
residual signal in the fault-free case. Thus, differ-
ent designs of the residual generator will result
in different threshold settings. In this context,
an optimal design of a fault diagnosis system is
understood as an integrated design of the residual
generator, the evaluation function, and the thresh-
old (Ding 2013).

An Integrated Design Scheme
for Robust Diagnosis and Control

Assume that the system under our consideration
satisfies the following conditions:
• kdk2 � ıd .
• .A;B/ is stabilizable and .C;A/ is detectable.
• D D 0.
• DT

z Dz > 0 and FdF T
d > 0.

•

�
A � j!I B
Cz D


has full column rank for all !.

•

�
A � j!I Ed

C Fd


has full row rank for all !.
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Then, the following observer and state feed-
back gain matrices

L� D �
EdF

T
d C YCT

� �
FdF

T
d

��1
F � D � �DT

z Dz
��1 �

BTX CDT
z Cz

�

as well as

Q�
c .s/ D 0;R�.s/ D �

FdF
T
d

��1=2

result in an optimal integrated design of the
robust diagnostic and control system with
• H2 optimal control performance
• Maximal fault detectability and the optimal

threshold setting

Jth D sup
fD0;kdk�ıd

krk2 D ıd

where Y � 0;X � 0 are respectively the solution
of the following two Riccati equations:

AY C YAT C EdE
T
d � �

EdF
T
d C YCT

� �
�
FdF

T
d

��1 �
EdF

T
d C YCT

�T D 0

ATX CXAC CT
z Cz � �

CT
z Dz CXB

� �
�
DT

z Dz
��1 �

CT
z Dz CXB

�T D 0:

That L�; F � lead to minimizing the H2 norm
of the transfer matrix from d to z is a well-
known result (Zhou et al. 1996). The optimal fault
detection performance can be understood from
two different viewpoints:
• Optimum in the sense of

8!; sup
R.s/

i

�
R.j!/ ONf .j!/

�
���R.s/ ONd.s/

���1

D i

��
FdF

T
d

��1=2 ON �
f .j!/

�

where i

�
R.j!/ ONf .j!/

�
is the i -th

singular value of matrix R.j!/ ONf .j!/;
i D 1; � � � ; kf ; ON �

f .s/ D ONf .s/ jLDL� (Ding
2013).

• A fault that can be detected by any LTI detec-
tion system will also be detected using the de-
tection system with the above parameter and
threshold setting. Thus, this detection system
provides the maximal fault detectability (Ding
2013).

It is worth remarking that:
• The assumptions mentioned above are stan-

dard in the H2 optimal control (Zhou et al.
1996).

• The optimization problem

8!; sup
R.s/

i

�
R.j!/ ONf .j!/

�
���R.s/ ONd.s/

���1

is a more general form of the so-called
H�=H1 or H1=H1 optimization of
observer-based fault detection systems, and
thus, its solution is called unified solution
(Ding 2013).

• The solution given above is a state space real-
ization of the robust fault detection problems,
which is e.g., described by Ding (2013) in
Theorem 7.16.

• This integrated design scheme can also be ap-
plied to discrete-time and stochastic systems
(Ding 2013).

Summary and Future Directions

Increasing reliability and availability of advanced
automatic control systems is of considerable
practical interests. Integration of fault diagnosis
into feedback control systems and integrated
design of robust control and diagnosis are useful
solutions for real-time applications (Ding 2009).
They can also be integrated into a fault-tolerant
control system (Blanke et al. 2006; Zhou and
Ren 2001). A further potential application field
is fault diagnosis in feedback control loops using
embedded residual signals (Ding et al. 2010).

From the viewpoint of research, integrated
design of robust control and diagnosis in
nonlinear and time-varying dynamic systems
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are challenging issues. The L2-gain technique for
nonlinear control (Van der Schaft 2000) and the
fault detection scheme proposed by Li and Zhou
(2009) are promising and useful results for the
future investigations in this area.

Cross-References

� Fault Detection and Diagnosis
� Fault-Tolerant Control
�Robust H2 Performance in Feedback Control
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Abstract

This entry discusses an important compromise
in feedback design: reconciling the superior per-
formance characteristics of the H2 optimization
criterion, with robustness requirements expressed
through induced norms such as H1. The fact that
both criteria have frequency-domain characteri-
zations and involve similar state-space machinery
motivated many researchers to seek an adequate
combination. We review here robust H2 analysis
methods based on convex optimization developed
in the 1990s and comment on their implications
for controller synthesis.

Keywords

Linear matrix inequalities; Mixed H2/H1 con-
trol; Robustness analysis; Structured uncertainty

Introduction

Can mathematics help us deal with the inevitable
theory-practice gap? Should we be optimistic
and assume that discrepancies between models
and nature are random and neutral towards our
actions or be pessimistic and design for the worst
such discrepancies? Feedback control theory has
struggled with these questions, perhaps more so
than other fields.

During the surge of optimal control in the
1960s, optimism carried the day. A prominent
example is the LQG (H2) regulator, which mini-
mizes the effect of random disturbances and has
an elegant state-space solution; in comparison,
the frequency-domain designs of classical con-
trol appeared primitive and conservative. But the

http://dx.doi.org/10.1007/978-1-4471-5058-9_223
http://dx.doi.org/10.1007/978-1-4471-5058-9_226
http://dx.doi.org/10.1007/978-1-4471-5058-9_164
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pessimists struck back in the late 1970s, showing
things could go very wrong (unstable) with LQG,
when a parameter variation was introduced in the
plant model. This ushered in the robust control
era of the 1980s, with its worst-case analysis of
stability over deterministic sets of plants, leading
to other design metrics such as H1 control. In
this mentality, exogenous disturbances were also
treated as an adversary to be protected against in
the worst case, perhaps an excess of pessimism.

The robust H2 problem incarnates the search
for a middle ground, where stability is treated
with the conservatism it deserves, but perfor-
mance is optimized for a more neutral noise. This
entry summarizes efforts made around the 1990s
to seek this compromise.

H2 Optimal Control

In the feedback diagram of Fig. 1, signals are
vector valued, and we focus on continuous time.
G is a linear system with a given state-space
representation. Initially omit the upper loop (set
� D 0). The LQG regulator is the controller K
that internally stabilizes the feedback loop and
minimizes the variance of the error variable z,
assuming the input v is white Gaussian noise.

For an alternative description, denote by
OTzv.s/ the closed-loop transfer function from
v to z; we wish to design K such that OTzv.s/

is analytic in Re.s/ � 0 and has minimum H2

norm, defined by

k OTzvkH2 D

Z 1

�1
Tr. OTzv.j!/

� OTzv.j!//
d!

2�

� 1
2

I
(1)

here Tr denotes matrix trace and � denotes conju-
gate transpose. The equivalence between this H2-
optimal control and LQG follows from classical
filtering, modeling v as uncorrelated components
of unit power spectral density over all frequency.
By adding a filter in the input of G, noise of
known, colored spectrum can be accommodated
as well.

A different motivation, in the case of scalar
v, is to observe that k OTzvk2H2

is the energy (L2-
norm square) of the system impulse response.

Robust H2 Performance in Feedback Control, Fig. 1
Feedback control and model uncertainty

Thus it measures the transient error in response
to known inputs or initial conditions which may
be generated by an impulse.

The H2 (LQG) optimal feedback has an ele-
gant solution, computable in state-space through
two algebraic Riccati equations (AREs). Its quick
popularity was, however, hampered due to its
lack of stability margins: a small error in model
parameters can make the closed-loop unstable
(Doyle 1978). This motivated methods to explic-
itly address such modeling errors.

Model Uncertainty and Robustness

Suppose some parameter in the model of G is
uncertain, ˛ D ˛0 C �ı, ı 2 Œ�1; 1�; often,
the normalized variation ı can be “pulled out”
into the uncertainty block � of Fig. 1. The same
technique can account for unmodeled linear time-
invariant (LTI) dynamics, e.g., high frequency
effects: they can be “covered” by a normalized
transfer function O�.j!/ and frequency weights
that connect it to G. Even further, a nonlinear or
time-varying (NL,TV) modeling error can be rep-
resented through an operator � in signal space.
The references contain details on this modeling
technique.

To analyze the effect of such errors, suppose
K has been chosen to stabilize G and M is
the resulting closed-loop system, with state-space
representation

Px D Ax C Bpp C Bvv; (2)
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Robust H2 Performance in Feedback Control, Fig. 2
Robustness analysis setup

q D Cqx;

z D Czx:

A is an n � n stable (Hurwitz) matrix, and for
simplicity there are no feed-through terms. Fig-
ure 2, represents the interconnection of M with
the uncertainty.

To quantify the size of uncertainty, it is con-
venient to use an induced norm (gain) in signal
space and constrain � to the normalized ball
fk�k � 1g. If the subsystem Mqp in feedback
with� satisfies itself the induced norm constraint
kMqpk < 1, the small gain theorem implies
robust stability over the entire ball. Focusing for
the rest of this article on the L2 signal space
(square-integrable functions), the latter induced
norm is equivalent to the H1 norm of the transfer
function:

k OMqp.s/kH1
WD ess sup

!2R
N. OMqp.j!//;

where N.�/ denotes matrix maximum singular
value.

This motivates H1-optimal control: design
K to minimize the above quantity with internal
stability. This problem also admits state-space
solutions based on AREs and thus is a valid
competing paradigm to H2.

To accommodate multiple sources of uncer-
tainty within Fig. 1, we can use a block diagonal
structure:

� D diag Œ�1; : : : ; �d � : (3)

Here, different uncertainty blocks (parametric,
LTI, LTV, or NL) enter in separate “channels”;
B� denotes the unit ball of operators with the pre-
scribed structure. For stability studies, causality
of the operator is required.

Robust stability under structured uncertainty
is a rich topic: we refer to the article on the
structured singular value (�) in this encyclope-
dia. We invoke here robustness conditions based
on the set ƒ of positive definite matrix scalings
or multipliers of the form:

ƒ D diag Œ�1I; : : : ; �d I � ; (4)

with submatrices of the same dimensions as the
blocks in (3), thus commuting with a matrix� of
that structure.

Consider the frequency family of matrix in-
equalities

OM �
qp.j!/ƒ.!/

OMqp.j!/ �ƒ.!/ < 0 8!I
ƒ.!/ 2 ƒ: (5)

At each !, this is a linear matrix inequality
(LMI); testing its feasibility is a convex, tractable
problem. A solution implies the scaled-small
gain condition

N
�
ƒ.!/

1
2 OMqp.j!/ƒ

� 1
2 .!/

�
< 1I

this “� upper bound” implies robust stability
when uncertainty is LTI, through commuting
ƒ.!/ with O�.j!/.

If uncertainty is NLTV, (5) must be
strengthened to enforce ƒ.!/ � ƒ, constant
in frequency. This condition turns out to
be both necessary and sufficient for robust
stability. Here the LMIs would be coupled in
frequency; however, the Kalman-Yakubovich-
Popov lemma reduces them to an equivalent
LMI in terms of the state-space matrices in (2),
with variables ƒ 2 ƒ and an n � n matrix
P > 0:

�
A�P C PAC C �

q ƒCq PBp
B�
pP �ƒ


< 0: (6)
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What about performance? The mapping
Tzv.�/ between the disturbance v and the error z
now depends on the uncertainty. The default pro-
cedure in robust control has been to measure per-
formance with the same induced norm, evaluating
kTzv.�/kL2!L2 in the worst-case over � 2 B�:

This can be computed with similar complexity to
establishing robust stability. It amounts, however,
to treating noise with the same worst-case
mentality as stability, a questionable choice. For
instance, in LTI systems the worst-case signals
are sinusoids at the worst frequency and spatial
direction; while one should protect against such
signals arising in the �-loop due to instability, it
is not natural to expect them as external distur-
bances, which are usually of broad spectrum.

RobustH2 Performance Analysis

In the absence of uncertainty, the H2 norm of the
nominal mapping Tzv.0/ D Mzv provides a natu-
ral performance criterion, measuring the response
to flat-spectrum disturbances or the transient re-
sponse. When uncertainty is present, it motivates
a worst-case analysis of stability; a natural com-
bination is to impose robust H2 performance:
evaluating the worst-case H2 norm of Tzv.�/

over the uncertainty class B�: We will highlight
some methods based on semidefinite program-
ming to perform such evaluations; for further
details and comparisons, we refer to Paganini and
Feron (1999).

A Frequency Domain Robust Performance
Criterion
Consider the following optimization:

Jf W D inf
Z 1

�1
Tr.Y.!//

d!

2�
; subject to

OM.j!/�
�
ƒ.!/ 0

0 I


OM.j!/�

�
ƒ.!/ 0

0 Y.!/


<0

(7)

for each !, and ƒ.!/ 2 ƒ.
Here OM is the transfer function in Fig. 2; a

submatrix of the above includes (5), implying

robust stability under structured LTI uncertainty.
Furthermore, we have the robust H2 performance
bound (Paganini 1999):

sup
�2BLTI

�

kTzv.�/k2H2
� Jf: (8)

We sketch the argument based on the Fourier
transforms Op.j!/; etc., for signals in Fig. 2. Ap-
plying the quadratic form in (7) to the joint vector
of Op and Ov gives

dX
iD1

�i .!/j Oqi j2CjOzj2�
dX
iD1

�i .!/j Opi j2COv�Y.!/ Ov:

The subvectors Opi , Oqi correspond to uncertainty
blocks, Opi D O�i.j!/ Oqi ; since N. O�i.j!// � 1,
j Oqi j � j Opi j. Also �i .!/ > 0, so these terms can
be simplified, leading to

j OTzv.j!/ Ovj2 D jOzj2 � Ov�Y.!/ Ov:

This means OTzv.j!/
� OTzv.j!/ � Y.!/ for every

�, and therefore the H2 norm bound

kTzv.�/k2H2
�
Z 1

�1
Tr.Y.!//

d!

2�

holds, from which (8) follows.
The computation involved in (7) at each fre-

quency is a semidefinite program (SDP): min-
imizing the linear cost Tr.Y.!// subject to an
LMI constraint, a tractable problem. Adding a
frequency sweep, we have a practical method to
bound the desired robust performance.

The inequality (8) is in general strict. Beyond
the usual conservatism of convex bounds for �,
when noise is of dimension m, a conservatism
of up to this order may appear; an improvement
to address this issue with augmented SDPs is
given in Sznaier et al. (2002). Finally, causality of
the uncertainty is not imposed in the frequency-
domain criterion.

As in the study of robust stability, we wish to
extend the analysis to NLTV uncertainty blocks.
Now the mapping Tzv.�/ can no longer be rep-
resented by a transfer function, so what is the
“H2” cost? We return to our motivation for this
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performance notion: to measure the effect of
disturbances of flat spectrum.

In Paganini (1999), the flat-spectrum property
is imposed as a deterministic constraint on the
input disturbances. For the scalar v case, define
W�;B � L2 by the family of integral quadratic
constraints:

Z ˇ

�ˇ
jv.j!/j2 d!

2�

(
� ˇ

�
C � 8ˇI

� ˇ

�
� �; ˇ 2 Œ0; B�: (9)

This imposes that the cumulative spectrum is
approximately linear (to a tolerance � > 0),
up to bandwidth B , and has sublinear growth
beyond that. Extensions to vector-valued signals
are also given. For a stable LTI system Tzv, it is
not difficult to verify that

kTzvk2H2
D lim

�!0

B!1
sup
v2W�;B

kTzvvk22;

but the right-hand side applies to NLTV systems
as well. The following result can be established
in the latter case:

lim
�!0

B!1
sup

v2W�;B ;�2BNLTV
�

kTzv.�/vk22 D J0
f;

where the right-hand side is the variant of (7) with
the restriction that ƒ.!/ � ƒ, constant in fre-
quency. In this case the characterization is exact,
with equality above. This follows from a duality
argument in function space, where Y.!/ appears
as the multiplier for the constraint in (9). While
coupled in frequency, J0

f is again equivalent to a
finite-dimensional SDP in state space.

Let us review, instead, a different state-space
method, motivated by alternate definitions of the
H2 cost.

A State-Space Criterion Invoking Causality
Consider the semidefinite program

Js WD inf Tr.B�
v PBv/ subject to P > 0, ƒ 2 ƒ,

�
A�P C PAC C �

q ƒCq C C �
z Cz PBp

B�
pP �ƒ


< 0:

(10)

The LMI above is very similar to (6); indeed
it provides a robust stability certificate and in
addition a bound on a generalized H2 cost, for ar-
bitrary (NLTV) causal uncertainty blocks. Again,
we sketch the argument.

For stability, consider the system of Fig. 2 with
v � 0, initial condition x.0/ D x0. Define the
storage function V.x/ D x�Px; differentiating it
under (2) and applying the LMI (10) to the joint
vector of x.t/, p.t/ yield

PVCjzj2��q�ƒqCp�ƒpD
dX
iD1

�i .jpi j2�jqi j2/:

Integrating the above over .0; t/, the sum on
the right becomes nonpositive because �i > 0

and the operator �i W qi ! pi is causal and
contractive. This leads to

V.x.t//C
Z t

0

jz.�/j2d� � V.x0/; (11)

which implies Lyapunov stability; the bound can
be sharpened to prove asymptotic stability. Also,
letting t ! 1 yields the energy bound kzk22 �
V.x0/.

Suppose now that x0 is generated by applying
to the (causal) system at rest, an impulse v.t/ D
ı.t/, assumed scalar. The result is x.0C/ D
Bv , so V.x0/ D B�

v PBv; the impulse response
energy of Tzv.�/ is thus bounded. Minimizing
over P , ƒ leads to the robust H2 performance
bound

sup
�2BNLTV

�

kTzv.�/ı.t/k22 � Js;

where the H2 cost is generalized as the impulse
response energy. An extension to multiple im-
pulse channels is available. This kind of result
was first obtained by Stoorvogel (1993) for un-
structured uncertainty.

An alternate notion of H2 cost for NLTV
systems, also considered in Stoorvogel (1993),
is the average output variance when the input
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is random white noise. This is formalized by
replacing (2) with a stochastic differential equa-
tion (e.g., Oksendal 1985) and extending the
bound (11) using Ito calculus; for details see
Paganini and Feron (1999). The following robust
H2 performance bound is obtained:

lim sup
�!1

1

�

Z �

0

Ejz.t/j2dt: � Js 8� 2 BNLTV
� :

What if the uncertainty is time invariant? In-
corporating frequency-dependent scalings, with
causality, into the state-space approach must be
done approximately, generating Oƒ.j!/ through
the span of a predefined finite basis of causal,
rational transfer functions. Searching over this
basis for a bound on the impulse response energy
can be pursued with state-space SDPs, now of a
size increasing with the basis dimensionality. We
refer to Feron (1997) for details.

RobustH2 Synthesis

Prior sections have focused on the robustness
analysis of a closed-loop system M , obtained
from G after designing a nominally stabilizing
controller. Can we synthesize K with robust H2

performance as an objective? We overview some
contributions to this question.

MultiobjectiveH2/H1 Control
Let us discuss first the more modest objective
of optimizing nominal H2 performance while
guaranteeing robust stability. If the uncertainty
block � in Fig. 2 is unstructured, the problem is
equivalent to

Minimize k OMzvkH2 ; subject to k OMqpkH1
< 1:

Using a Youla parameterization of stabilizing
controllers, OM.s/ depends affinely on a stable
parameter OQ.s/; this makes the optimization over
OQ convex. However it has been shown to give

infinite-dimensional solutions that must be ap-
proximated by suitable truncations; see Sznaier
et al. (2000) and references therein.

To better exploit the state-space structure
common to H2 and H1 synthesis, Bernstein
and Haddad (1989) proposed a simplification:
minimize an auxiliary cost that upper bounds
the H2 norm while imposing the H1 constraint,
through a common storage function. This cost
is optimized by controllers of the order of the
plant, characterized in terms of coupled AREs;
later on Khargonekar and Rotea (1991) recast this
problem using convex optimization. Also Zhou
et al. (1994) and Doyle et al. (1994) studied the
dual (transpose) structure.

The latter version is in fact directly related to
the analysis condition (10), with a fixedƒ D �I .
A matrix P satisfying this condition imposes
the H1 norm restriction and upper bounds the
nominal H2 cost. This idea of imposing multiple
objectives through a common storage function
has more general applicability: Scherer et al.
(1997) showed that all such problems admit
tractable synthesis based on LMIs, with solutions
of the same order as the plant.

Synthesis for Robust Performance
We have seen that rather than just an upper bound
on nominal performance, (10) ensures the more
stringent robust H2 performance requirement;
therefore it becomes the basis of a robust H2

synthesis technique. In Stoorvogel (1993) this
method is laid out for unstructured uncertainty:
search linearly over the scalar � and solve the
auxiliary cost synthesis problem for each �.

What about structured uncertainty? We run
here into a general difficulty of such synthesis
questions, even for robust stability alone. In that
case, seeking simultaneously a controllerK and a
scalingƒ so that conditions (5) or (6) are satisfied
by the resulting M is not a computationally
friendly problem. In the absence of a general
solution method, iterating between an H1 design
of K for fixed ƒ and the analysis conditions to
find ƒ is commonly used for design.

Things can be no easier for robust H2 per-
formance, but the iterative procedure does gen-
eralize to the conditions in (10): for fixed K , the
SDP will return structuredƒ’s, which can then be
fixed for a multiobjective synthesis step based on
the “auxiliary cost” in (10) as discussed above.
If constant ƒ are used (designing for NLTV
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uncertainty), all controllers obtained are of the
order of the plant.

If uncertainty is LTI, an alternative is to carry
out the analysis step in the frequency domain,
finding a ƒ.!/, Y.!/ through (7). In the corre-
sponding situation for �-synthesis, where only
ƒ.!/ is found, a step of fitting and spectral
factorization is needed to approximate such scal-
ings through a rational weights, which are then
incorporated into H1 synthesis. A similar fre-
quency weight in the performance channel can
approximate the effect of Y.!/, thus relying on
weighted H1 synthesis to pursue the H2 per-
formance objective. Of course, the order of the
resulting controllers is increased.

Summary and Future Directions

The tradeoff between performance and robust-
ness is essential to feedback control. In the
case of linear multivariable design, it motivated
a compromise between H2 performance and
H1-type robustness, pursued with the state-
space and frequency-domain tools common
to these metrics. We have highlighted robust
H2 analysis conditions obtained in the 1990s
based on semidefinite programming, which
provided the greatest flexibility to integrate
the aforementioned tools and different points
of view (worst-case, average case) present in
this problem. As in other situations, the robust
synthesis question has proven more difficult:
design cannot be “automated” to the degree that
was once envisioned.

The passage of time makes issues that once
attracted strong attention look narrow in scope,
so it is not natural to indicate directions that
directly follow on this work. Perhaps the best
legacy that the robust H2 generation can take
to other problems is the willingness to integrate
various disciplines (dynamics, operator theory,
stochastics, optimization) to face the demands of
applied mathematical research.

Cross-References

�H-Infinity Control
�KYP Lemma and Generalizations/Applications

�Linear Quadratic Optimal Control
�LMI Approach to Robust Control
�Structured Singular Value and Applications:

Analyzing the Effect of Linear Time-Invariant
Uncertainty in Linear Systems

Recommended Reading

LQG control is covered in many textbooks, e.g.,
Anderson and Moore (1990). A standard text
for robust control with an H1 perspective, in-
cluding structured singular values, the Youla pa-
rameterization, and the Riccati equation solu-
tion for H1 synthesis, is Zhou et al. (1996);
see also Sánchez-Peña and Sznaier (1998) with
application examples. The textbook of Dullerud
and Paganini (2000) incorporates the more recent
developments based on LMIs; see Boyd and Van-
denberghe (2004) for background on semidefinite
programming.
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Robust Model-Predictive Control

Saša Raković
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Abstract

Model-predictive control (MPC) is indisputably
one of the rare modern control techniques that has
significantly affected control engineering practice
due to its unique ability to systematically handle
constraints and optimize performance. Robust
MPC (RMPC) is an improved form of the nom-
inal MPC that is intrinsically robust in the face
of uncertainty. The main objective of RMPC is
to devise an optimization-based control synthe-
sis method that accounts for the intricate in-
teractions of the uncertainty with the system,
constraints, and performance criteria in a theo-
retically rigorous and computationally tractable
way. RMPC has become an area of theoreti-
cal relevance and practical importance but still
offers the fundamental challenge of reaching a
meaningful compromise between the quality of
structural properties and the computational com-
plexity.

Keywords

Model-predictive control; Robust optimal con-
trol; Robust stability

Introduction

RMPC is an optimization-based approach to the
synthesis of robust control laws for constrained
control systems subject to bounded uncertainty.
RMPC synthesis can be seen as an adequately
defined repetitive decision-making process, in
which the underlying decision-making process
is a suitably formulated robust optimal control
(ROC) problem. The underlying ROC problem
is specified in such a way so as to ensure that
all possible predictions of the controlled state
and corresponding control actions sequences sat-
isfy constraints and that the “worst-case” cost is
minimized. The decision variable in the corre-
sponding ROC problem is a control policy (i.e., a
sequence of control laws) ensuring that different
control actions are allowed at different predicted
states, while the uncertainty takes on a role of the
adversary. RMPC utilizes recursively the solution
to the associated ROC problem in order to im-
plement the feedback control law that is, in fact,
equal to the first control law of an optimal control
policy.

A theoretically rigorous approach to RMPC
synthesis can be obtained either by employing,
in a repetitive fashion, the dynamic programming
solution of the corresponding ROC problem
or by solving online, in a recursive manner,
an infinite-dimensional optimization problem
(Rawlings and Mayne 2009). In either case, the
associated computational complexity renders the
exact RMPC synthesis hardly ever tractable.
This computational impracticability of the
theoretically exact RMPC, in conjunction with
the convoluted interactions of the uncertainty
with the evolution of the controlled system,
constraints, and control objectives, has made
RMPC an extremely challenging and active
research field. It has become evident that a
prominent challenge is to develop a form
of RMPC synthesis that adequately handles
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the effects of the uncertainty and yet is
computationally plausible. Contemporary
research proposals aim to address the inevitable
trade-off between the quality of guaranteed
structural properties and the corresponding
computational complexity. A categorization of
the existing proposals for RMPC synthesis can
be based on the treatment of the effects of
the uncertainty. In this sense, two alternative
approaches to RMPC synthesis appear to be
dominant.

The first category of the alternative approaches
is represented by the methods that utilize,
when possible, inherent robustness of nominal
MPC synthesis. These proposals deploy a
nominal MPC, albeit designed for a suitably
modified control system, constraints, and control
objectives. Such approaches are computationally
practicable. However, the effects of the uncer-
tainty are taken care of in an indirect way; the
robustness properties of the controlled dynamics
are frequently addressed via an a posteriori
input-to-state stability analysis, which might be
unnecessarily conservative and geometrically
insensitive. Equally important drawbacks of
these approaches to RMPC synthesis arise due
to the fact that the nominal MPC synthesis is
itself an inherently fragile (nonrobust) process;
in particular, the stability property of the
conventional MPC might fail to be robust
(Grimm et al. 2004) and, furthermore, the optimal
control of constrained discrete time systems,
employed for the nominal MPC synthesis, can be
a fragile process itself (Raković 2009).

The second category of RMPC design
methods encapsulates the approaches that take
the effects of the uncertainty into account more
directly. These proposals are compatible with
the emerging consensus: there is a need for the
deployment of the simplifying approximations
of the underlying control policy and sensible
prioritization and modification of control
objectives so as to simultaneously enhance
computational tractability and ensure a priori
guarantees of the desirable topological properties
and system-theoretic rigor. The simplifying
parameterizations of the control policy are em-
ployed primarily to allow for a computationally

efficient handling of the interactions of the
uncertainty with the evolution of the controlled
system and constraints. The control objectives are
prioritized and modified when necessary, in order
to ensure that the corresponding ROC problem
is computationally tractable. The effectiveness
of such methods depends crucially on the ability
to detect a sufficiently rich parameterization of
control policy and to devise a systematic way for
meaningful simplification of control objectives.

In a stark contrast to a well-matured theory
of the nominal MPC synthesis, a systematic as-
sessment of, and unified exposure to, the current
state of affairs in the RMPC field is a highly
demanding chore. Nevertheless, it is possible to
outline the main aspects of the exact RMPC syn-
thesis and to provide an overview of the dominant
simplifying approximations.

Contemporary Setting and
Uncertainty Effect

The contemporary approach to the exact RMPC
synthesis is now delineated in a step-by-step
manner.

The system: The most common setting in
RMPC synthesis considers the control systems
modelled, in discrete time, by

xC D f .x; u;w/ ; (1)

where x 2 Rn, u 2 Rm, w 2 Rp, and xC 2
Rn are, respectively, the current state, control
and uncertainty, and the successor state, while
f .�; �; �/ W Rn � Rm � Rp ! Rn is the state
transition map assumed to be continuous. Thus,
when xk , uk , and wk are the state, the control,
and the uncertainty at the time instance k, then
xkC1 D f (xk , uk, wk) is the state at the time
instance k C 1.

The constraints: The system variables x, u, and
w are subject to hard constraints:

.x; u;w/ 2 X � U � W; (2)
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where the constraint sets X and U represent state
and control constraints, while the constraint set
W specifies geometric bounds on the uncertainty.
The constraint sets X � Rn;U � Rm, and W �
Rp are assumed to be compact.

The control policy: It is necessary to specify,
in a manner that is compatible with the type
and nature of the uncertainty, the information
available for the RMPC synthesis. The traditional
state feedback setting treats the case in which,
at any time instance k, the state xk is known
when the current control uk is determined, while
the values of the current and future uncertainty
.wkCi / are not known but are guaranteed to take
the values within the uncertainty constraint set W
(i.e., wkCi 2 W). Within this setting, the use of a
control policy,

…N�1 WD f�0 .�/ ; �1 .�/ ; : : : ; �N�1 .�/g ; (3)

where N is the prediction horizon and each
�k.�/ : Rn ! Rm is a control law, is structurally
permissible and desirable.

The generalized state and control predictions:
Because of the uncertainty, the ordinary state and
control predictions, as employed in the nominal
MPC, are not suitable. Clearly, when x and �.x/
are the current state and control, then the succes-
sor state xC can take any value in the possible set
of successor states {f (x, �.x/;w) : w 2 W}.
Consequently, it is necessary to consider suitably
generalized state and control predictions. The
interaction of the uncertainty with the predicted
behavior of the system is captured naturally by
invoking the maps F.�; �/ and G.�; �/ specified,
for any subset X of Rn and any control function
�.�/ W Rn ! Rm, by

F .X; �/ WDff .x; � .x/ ;w/ Wx2X;w2Wg and

G .X; �/ WD f� .x/ W x 2 Xg : (4)

Within the considered setting, the corresponding
state and control predictions are, in fact, set-
valued and, for each relevant k, obey the relations

XkC1DF .Xk; �k/ and Uk DG .Xk; �k/ ; with

X0WD fxg : (5)

The set sequences XN :D {X0;X1; : : :; XN�1; XN}
and UN�1 :D {U0; U1; : : :; UN�1} represent the
possible sets of the predicted states and control
actions, which are commonly known as the state
and control tubes. Evidently, the state and control
tubes are functions of the initial state x and
a control policy …N�1. Reversely, for a given
initial state x, any structurally permissible control
policy …N�1 results in the possible sets of the
predicted states and control actions.

The robust constraint satisfaction: One of
the primary objectives in RMPC synthesis is
to ensure that the generalized state and control
predictions satisfy state and control constraints.
Because of the repetitive nature of RMPC, it
would be ideal to consider the control policy and
generalized state and control predictions over the
infinite horizon (i.e., forN D 1). Unfortunately,
this is hardly ever practicable in a direct fashion.
When the prediction horizon is finite, the robust
constraint satisfaction reduces to the conditions
that for all k D 0; 1; : : :; N � 1, the set inclusions

Xk � X and Uk � U (6)

hold true and that the possible set of states XN
at the prediction time instance N satisfies the set
inclusion

XN � Xf ; (7)

where Xf � X is a suitable terminal constraint
set.

The terminal constraint set: In order to ac-
count for the utilization of the control policy
…N�1 and generalized state and control predic-
tions over the finite horizon N and to ensure that
these can be prolonged indirectly over the infinite
horizon, a terminal constraint set is employed.
This set is obtained by considering the uncertain
dynamics

xC D f
�
x; �f .x/ ;w

�
(8)
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controlled by a local control function �f .�/. The
design of a control law �f .�/ is usually performed
offline in an optimal manner by considering the
unconstrained version of the system (1), while
the terminal constraint set Xf accounts locally
for the state and control constraints. The terminal
constraint set Xf is assumed to be compact and
robust positively invariant for the dynamics (8)
and constraint sets (2). Thus, the set Xf and a
local control function �f .�/ satisfy

F
�
Xf ; �f

� � Xf � X and Uf

WD G
�
Xf ; �f

� � U; (9)

or, equivalently, Xf � X, and for all x 2
Xf , it holds that �f .x/ 2 U and 8w 2 W,
f .x; �f .x/;w/ 2 Xf . The most appropriate
choice for Xf is the maximal robust positively
invariant set for the dynamics (8) and constraint
sets (2).

The generalized origin: Due to the presence
of the uncertainty, the stabilization of the origin
might not be attainable and, thus, it might be
necessary to consider the origin in a general-
ized sense. The most natural candidate for the
generalized origin is a minimal robust positively
invariant set for the dynamics (8) and constraint
sets (2). This set is entirely determined by the
associated state set dynamics

XC D F
�
X; �f

�
; (10)

which are completely induced by the local dy-
namics (8) and the uncertainty constraint set
W. The generalized origin, namely, the minimal
robust positively invariant set, is compact and
well defined in the case when the local control
function �f .�/ ensures that the corresponding
map F.�; �f / is a contraction on the space of
compact subsets of Xf (Artstein and Raković
2008), which we assume to be the case. The
generalized origin XO is the unique solution to
the fixed-point set equation.

X D F
�
X; �f

�
; (11)

and is an exponentially stable attractor for the
state set dynamics (10) with the basin of at-
traction being the space of compact subsets of
Xf . Thus, the conventional (0,0) fixed-point pair
ought to be replaced by the fixed-point pair of sets
.XO;UO/ required to satisfy

XO D F
�
XO; �f

� � interior
�
Xf
�

and

UO WD G
�
XO; �f

� � Uf : (12)

The generalized cost functions: The perfor-
mance requirements are, as usual, expressed via
a cost function, which is obtained by considering
a stage cost function `.�; �/ W X � U ! RC and
a terminal cost function Vf .�/ W Xf ! RC. The
stage cost function `.�; �/ is continuous and, due to
the uncertainty, adequately lower bounded w.r.t.
to the generalized origin XO . The latter condition
requires that for all x 2 X and all u 2 U, the
function `.�; �/ satisfies

˛1 .dist .XO; x// � ` .x; u/ ; (13)

where ˛1.�/ is a K-class (Kamke’s) function and
dist.XO; �/ is the distance function from the set
XO. The consideration of the generalized origin
requires the additional condition that for all x 2
XO, the use of local control function �f .�/ is “free
of charge” w.r.t. `.�; �/, i.e., that for all x 2 XO ,
we have

`
�
x; �f .x/

� D 0: (14)

As in the case of the terminal constraint set Xf ,
the terminal cost function Vf .�/ is employed to
account for the utilization of the finite predic-
tion horizon N , and it should provide locally a
theoretically suitable upper bound of the highly
desired infinite horizon cost. The terminal cost
function Vf .�/ is assumed to be continuous and
adequately upper bounded w.r.t. the generalized
origin XO . The latter bound reduces to the re-
quirement that for all x 2 Xf , we have

Vf .x/ � ˛2 .dist .XO; x// ; (15)

where, as above, ˛2.�/ is a K-class function. In
addition, the terminal cost function Vf .�/ satisfies
locally a usual condition for robust stabilization,
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which is expressed by the requirement that for all
x 2 Xf and all w 2 W, it holds that

Vf
�
f
�
x; �f .x/ ;w

���Vf .x/��` �x; �f .x/� :
(16)

The cost function VN .�; �; �/ is defined, for
all x 2 X, all …N�1, and all wN�1 WD
fw0;w1; : : :;wN�1g, by

VN .x;…N�1;wN�1/ WD
N�1X
kD0

` .xk; uk/CVf .xN /;
(17)

where, for notational simplicity, uk WD �k.xk/

and xk WD xk.x;…N�1;wN�1/ denote the so-
lution of (1) when the initial state is x, control
policy is …N�1, and uncertainty realization is
wN�1.

The exact ROC: In view of the uncertainty,
the corresponding exact ROC problem PN .x/,
for any x 2 X, aims to optimize the “worst-
case” performance so that it takes the form of an
infinite-dimensional minimaximization:

JN .x;…N�1/WD max
wN�12WN

VN .x;…N�1;wN�1/ ;

V 0
N .x/ WD min

…N�12…N�1.x/
JN .x;…N�1/ ;

…0
N�1 .x/2arg min

…N�12…N�1.x/
JN .x;…N�1/ ;

(18)

where …N�1.x/ denotes the set of the constraint
admissible control policies defined, for all x 2 X,
by

…N�1 .x/ WD f…N�1 W conditions .5/–.7/ holdg :
(19)

The value function V 0
N .�/ might not admit a

unique optimal control policy, so that …0
N�1 .�/

represents a selection from the set of optimal
control policies (this selection is usually induced
by a numerical solver employed for the online
calculations). The effective domain XN of the
value function V 0

N .�/ and associated optimal con-
trol policy…0

N�1 .�/ is given by

XN WD fx 2 Rn W …N�1 .x/ ¤6 0g : (20)

and is known in the literature as the N -step min–
max controllable set to a target set Xf . Within the
considered setting, the set XN is a compact subset
of X such that Xf � XN .

The exact RMPC: The exact RMPC synthesis
requires online solution of the minimaximization
(18) in order to implement numerically the con-
trol law �00 .�/. The control law �00 .�/ is well
defined for all x 2 XN , and it induces the
controlled uncertain dynamics specified, for all
x 2 XN , by

xC 2F .x/ ;F .x/ WD˚
f
�
x; �00 .x/ ;w

� Ww2W
�
:

(21)
Within the considered setting, the exact RMPC
law �00 .�/ renders the N -step min–max control-
lable set XN robust positively invariant. Namely,
for all x 2 XN , it holds that

F .x/ � XN � X and �00 .x/ 2 U: (22)

Furthermore, the associated value function
V 0
N .�/ W XN ! RC is, by construction,

a Lyapunov certificate verifying the robust
asymptotic stability of the generalized origin XO
for the controlled uncertain dynamics (21) with
the basin of attraction being equal to the N -step
min–max controllable set XN . More precisely,
for all x 2 XN , it holds that

˛1 .dist .XO; x// � V 0
N .x/ � ˛3 .dist .XO; x// ;

(23)
where ˛3.�/ is a suitable K-class function, while
for all x 2 XN and all xC 2 F.x/, it holds that

V 0
N

�
xC� � V 0

N .x/ � �˛1 .dist .XO; x// : (24)

Clearly, under fairly natural conditions, the ex-
act RMPC synthesis induces rather strong struc-
tural properties, but the associated computational
complexity is overwhelming. However, in the
above overview, the effects of the uncertainty
have been “dissected” and the “basic building
blocks” employed for the exact RMPC synthesis
have been clearly identified. In turn, this step-by-
step overview suggests indirectly the meaningful
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and simplifying approximations in order to en-
hance computational practicability.

Computational Simplifications

The computational intractability of the exact
RMPC synthesis can be tackled by considering
suitable parameterizations of control policy
…N�1 and associated state and control tubes
XN and UN�1 and by adopting computationally
simpler performance criteria.

The core simplification is the use of finite-
dimensional parameterization of control policy.
The control policy should be suitably parameter-
ized so as to allow for the utilization of both the
least conservative generalized state and control
predictions and a range of simpler, but sensible,
cost functions.

The explicit form of the exact state and control
tubes is usually highly complex, and it is com-
putationally beneficial to employ, when feasible,
the implicit representation of the possible sets of
predicted state and control actions. An alternative
is to utilize outer-bounding approximations of the
exact state and control tubes; these are obtained
by making use of simpler sets that usually admit
finite-dimensional parameterizations. In the latter
case, the exact set dynamics of the state and
control tubes given by (5) are usually relaxed to
set inclusions

fx0g � X0; and, F .Xk; �k/ � XkC1
and G .Xk; �k/ � Uk:

The generalized origin, i.e., the minimal robust
positively invariant set XO , is an integral com-
ponent for the analysis. Its explicit computation
is rather demanding and, hence, its use for the
online calculations might not be convenient. A
computationally feasible alternative is to deploy
the terminal constraint set Xf as a “relaxed form”
of the generalized origin; this is particularly ben-
eficial when the local control function �f .�/ is
optimal w.r.t. infinite horizon cost associated with
the unconstrained version of the system (1).

The performance requirements should be care-
fully prioritized and modified when necessary, in

such a way so as to be expressible by the cost
functions that do not require intractable minimax
optimization but still ensure that the associated
value function verifies the robust stability and
attractivity of the generalized origin XO or the
terminal constraint set Xf .

The outlined guidelines have played a piv-
otal role in devising a number of theoretically
sound and computationally efficient parameter-
ized RMPC syntheses within the setting of linear
control systems subject to additive disturbances
and polytopic constraints. In this linear–polytopic
setting, the state transition map f (�, �, �) of (1) is
linear:

f .x; u;w/ D Ax C Bu C w; (25)

where the matrix pair .A;B/ 2 Rn�n � Rn�m
is assumed to be known and strictly stabilizable.
The local control function �f .�/ and associated
local uncertain dynamics are linear:

u D Kx and xC D .AC BK/ x C w: (26)

The matrix K 2 Rm�n is designed offline and
is such that the eigenvalues of the matrix AC BK
are strictly inside of the unit circle. The constraint
sets X and U are polytopes (A polytope is a con-
vex and compact set specified by finitely many
linear/affine inequalities, or by a convex hull of
finitely many points) in Rn and Rm that contain
the origin in their interior. The uncertainty con-
straint set W is a polytope in Rn that contains the
origin.

The terminal constraint set Xf is the maximal
robust positively invariant for xC D .ACBK/xC
w and constraint set (XK;W) where XK WD fx 2
X W Kx 2 Ug. The set Xf is assumed to be
a polytope in Rn that contains the generalized
originXO (which is the minimal robust positively
invariant set for xC D .A C BK/x C w and
constraint set (XK;W)) in its interior.

It has recently been demonstrated that the
major simplified RMPC syntheses in the linear–
polytopic setting employ control policies within
the class of separable state feedback (SSF)
control policies (Raković 2012). More precisely,
the predictions of the overall states xk and
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associated control actions uk are parameterized
in terms of the predictions of the partial states
x.j;k/; j D 0; 1; : : :; k and partial control actions
u.j;k/; j D 0; 1; : : :; k via

xk D
kX

jD0
x.j;k/ and uk D

kX
jD0

u.j;k/; (27)

where, for notational simplicity, uk WD �k.xk/

and u.j;k/ WD �.j;k/.x.j;k//. To ensure the dynam-
ical consistency with (25), the predicted partial
states x.j;k/ evolve according to

x.j;kC1/ D Ax.j;k/ C Bu.j;k/; (28)

(for j D 0; 1; : : :; N � 1 and k D j; j C
1: : :; N �1), while the “partial” initial conditions
x.k;k/ satisfy

x.0;0/ D x and (29a)

x.k;k/ D wk�1 for k D 1; 2; : : : ; N: (29b)

As elaborated on in Raković (2012) and Raković
et al. (2012), the utilization of the SSF control
policy allows for:
• The deployment of the highly desirable im-

plicit representation of the exact state and con-
trol tubes induced by the SSF control policy.
This implicit representation is parameterized
via O.N2/ decision variables.

• The numerically convenient formulation of
the robust constraint satisfaction via O.N2/

linear/affine inequalities and equalities.
• The computationally efficient minimization of

an upper bound of the “worst-case” cost for
which the stage and terminal cost functions are
specified in terms of the weighted distances
from the terminal constraint set Xf and the
associated control set Uf D KXf .

As shown in Raković (2012) and Raković et al.
(2012), the RMPC control laws, based on the use
of the SSF control policy, can be implemented
online by solving a standard convex optimiza-
tion problem whose complexity (in terms of the
numbers of decision variables and affine inequal-
ities and equalities) isO.N2/. The corresponding

RMPC synthesis ensures directly that the termi-
nal constraint set Xf is robustly exponentially
stable, and it also induces indirectly the robust
exponential stability of the generalized origin
XO.

The previously dominant control policy pa-
rameterizations include time-invariant affine state
feedback (TIASF), time-varying affine state feed-
back (TVASF), and affine in the past distur-
bances feedback (APDF) control policies. All of
these parameterizations are subsumed by the SSF
control policy, as all of them induce additional
structural restrictions on the parameterizations
of the predicted state and control actions spec-
ified in (27) and on the associated dynamics
given by (28), (29) and (30). In particular, the
TIASF control policy (Chisci et al. 2001; Gossner
et al. 1997) imposes structural restrictions that,
for each relevant k,

u.j;k/ D Kx.j;k/ for j D 1; 2; : : : ; k; (30)

where K is the local control matrix of (26). The
TVASF control policy (Löfberg 2003) induces
less restrictive requirements that, for each rele-
vant k,

u.j;k/ D K.j;k/x.j;j / for j D 1; 2; : : : ; k; (31)

where the matrices K.j;k/ 2 Rm�n are part of
the decision variable. The APDF control policy
(Goulart et al. 2006; Löfberg 2003) is an alge-
braic reparameterization of the TVASF control
policy, which requires the conditions that, for
each relevant k,

u.j;k/ D M.j;k/x.j;k/ for j D 1; 2; : : : ; k; (32)

where the matrices M.j;k/ 2 Rm�n are part of
the decision variable. A comprehensive trade-
off analysis between the quality of guaranteed
structural properties and the associated compu-
tational complexity and a theoretically meaning-
ful ranking of the existing RMPC syntheses in
the linear–polytopic setting is reported in the
recent plenary paper (Raković 2012). Therein, it
is demonstrated that the dominant approach is the
RMPC synthesis utilizing the SSF control policy
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(Raković 2012) (also known as the parameterized
tube MPC (Raković et al. 2012)).

Summary and Future Directions

The exact RMPC synthesis has reached a re-
markable degree of theoretical maturity in the
general setting. The corresponding theoretical
advances are, however, accompanied with the im-
peding computational complexity. On the bright
side of the things, a number of rather sophisti-
cated RMPC synthesis methods, which are both
computationally efficient and theoretically sound,
have been developed for the frequently encoun-
tered linear–polytopic case.

The further advances in the RMPC field might
be driven by the utilization of more structured
types and models of the uncertainty. The chal-
lenge of devising a computationally efficient and
theoretically sound RMPC synthesis might need
to be tackled in several phases; the initial steps
might focus on adequate RMPC synthesis for
particular classes of nonlinear control systems.
Finally, it would seem reasonable to expect that
the lessons learned in the RMPC field might play
an important role for the research developments
in the fields of the stochastic and adaptive MPC.

Cross-References

�Nominal Model-Predictive Control
� Stochastic Model Predictive Control

Recommended Reading

The recent monograph (Rawlings and Mayne
(2009)) provides an in-depth systematic exposure
to the RMPC field and is also a rich source
of relevant references. The invaluable overview
of the theory and computations of the maxi-
mal and minimal robust positively invariant sets
can be found in (Artstein and Raković (2008),
Kolmanovsky and Gilbert (1998), Raković et al.
(2005), and Blanchini and Miani (2008)). The
important paper (Scokaert and Mayne (1998))

points out the theoretical benefits of the use of the
control policy, but it also indicates indirectly the
computational impracticability of the associated
feedback min–max RMPC. The early tube MPC
synthesis (Mayne et al. 2005) is both compu-
tationally efficient and theoretically sound, and
it represents an important step forward in the
linear–polytopic setting. The so-called homoth-
etic tube MPC synthesis (Raković et al. 2013) is
a recent improvement of the first generation of
the tube MPC synthesis (Mayne et al. 2005), and
it has a high potential to effectively handle the
parametric uncertainty of the matrix pair (A, B).
The current state of the art in the linear–polytopic
setting is reached by the RMPC synthesis using
the SSF control policy (Raković 2012; Raković
et al. 2012). The output feedback RMPC synthe-
sis in the linear–polytopic setting can be handled
with direct extensions of the tube MPC syntheses
(Mayne et al. 2009).
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Abstract

This entry provides a brief summary of the syn-
thesis and analysis tools that have been developed
by the robust control community. Many software
tools have been developed to implement the ma-
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jor theoretical techniques in robust control. These
software tools have enabled robust synthesis and
analysis techniques to be successfully applied to
numerous industrial applications.
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Introduction

Robust control is a methodology to address
the effect of uncertainty on feedback systems.
This approach includes techniques and tools to
model system uncertainty, assess stability and/or
performance characteristics of the uncertain
system, and synthesize controllers for uncertain
systems. The theory was developed over a
number of years. The foundational results can
be found in classical papers Packard and Doyle
(1993a), Desoer et al. (1980), Doyle (1978,
1982), Doyle et al. (1989), Doyle and Stein
(1981), Megretski and Rantzer (1997), Safonov
(1982), Willems (1971), and Zames (1981)
and more recent textbooks Boyd et al. (1994),
Desoer and Vidyasagar (2008), Dullerud and
Paganini (2000), Francis (1987), Skogestad and
Postlethwaite (2005), Vidyasagar (1985), and
Zhou et al. (1996). It should be emphasized that
this entry is not meant to be a survey and more
complete references to the literature can be found
in the cited textbooks. The remainder of this entry
discusses the main theoretical and computational
tools for robust synthesis and robustness analysis.

Notation

R and C denote the set of real and complex
numbers, respectively. Rm�n and Cm�n denote
the sets of m � n matrices whose elements are in
R and C, respectively. A single superscript index
is used for vectors, e.g., Rn denotes the set of
n � 1 vectors whose elements are in R. For a
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matrix M 2 Cm�n, MT denotes the transpose
and M � denotes the complex conjugate trans-
pose. A matrixM is Hermitian (Skew-Hermitian)
if M D M � (M D �M �). The maximum
singular value of a matrixM is denoted by N.M/.
The trace of a matrix M , denoted t rŒM �, is the
sum of the diagonal elements. M D M � is a
positive semidefinite matrix, denoted M � 0,
if all eigenvalues are nonnegative. M D M �
is negative semidefinite, denoted M  0, if
�M � 0. Ln2Œ0;1/ is the space of functions
u W Œ0;1/ ! Rn satisfying kuk < 1 where
kuk WD �R1

0
u.t/T u.t/ dt

	0:5
. For u 2 Ln2Œ0;1/,

uT denotes the truncated function uT .t/ D u.t/
for t � T and u.t/ D 0 otherwise. The extended
space, denoted L2e , is the set of functions u such
that uT 2 L2 for all T � 0. The Fourier transform
Ov WD F.v/ maps the time domain signal v 2
Ln2Œ0;1/ to the frequency domain by

Ov.j!/ WD
Z 1

0

e�j!t v.t/dt (1)

Capital letters are used to represent dynamical
systems. For linear systems, the same letter is
used to represent the system, its convolution
kernel, as well as its frequency-response function.
Lowercase letters denote time-signals, and
! represents the continuous-time frequency
variable. For an m � n system G, define the
H1 and H2 norms as kGk1 D sup! N .G.j!//
and kGk2 D

q
1
2�

R1
�1 t rŒG.j!/�G.j!/�d!.

The L1 norm of G is defined as kGk1 D
max1�i�m

Pn
jD1

R1
0

jgij .t/jdt where gij .t/ is
the response of the i th output due to a unit
impulse in the j th input. The entry describes
continuous-time systems. Most results carry over,
in a similar form, to discrete-time systems.

Theoretical Tools

Uncertainty Modeling
In order to analyze and/or design for the de-
grading effects of uncertainty, it is imperative
that explicit models of uncertainty be charac-
terized. Two distinct forms of uncertainty are

considered: signal uncertainty and model uncer-
tainty. Signal uncertainty represents external sig-
nals (plant disturbances, sensor noise, reference
signals) as sets of time functions, with explicit
descriptions. For example, a particular reference
input might be characterized as belonging to the
set
˚

4
2sC1d W d 2 L2; kdk2 � 1

�
. This set is often

referred to as a weighted ball in L2. The transfer
function 4

2sC1 is called a weighting function and
it shapes the normalized signals d , in a manner
that its output represents the actual traits of the
reference inputs that occur in practice.

Model uncertainty represents unknown or par-
tially specified gains (more generally, operators)
that relate pairs of signals in the model. For ex-
ample, z and w are signals within a model and are
related by an operator N as w D N .z/. Typical
partial specifications either constrain N to be
drawn from a specified set or describe the set of
signals .w; z/ that N allows. An uncertain pa-
rameter ı is modeled as time-invariant (i.e., con-
stant), belonging to the interval Œa; b� and relating
z and w as w.t/ D ız.t/. An uncertain linear
dynamic element, � is modeled as linear, time-
invariant, causal system, described by a convolu-
tion kernel ı whose frequency-response function

(i.e., Fourier transform) satisfies max!
ˇ̌
ˇ Oı.j!/

ˇ̌
ˇ �

1, and relating z and w as w D ı ? z. More
generally, consider an L2 bounded, causal oper-
ator, mapping L2;e ! L2;e relating the signals as
w D �.z/. The behavior of � is unknown but
constrained by a family of multipliers, f…˛g˛2A.
Specifically, each …˛ is a Hermitian, matrix-
valued function of frequency, and for any z 2 L2,
the mapping� is known to satisfy

Z 1

�1

� Oz.j!/
Ow.j!/

�
…˛.!/

� Oz.j!/
Ow.j!/


d! � 0

This is called an integral quadratic constraint
(IQC) description of �, as the input/output pairs
of � satisfy a family of quadratic, integral con-
straints. These different descriptions of model
uncertainty are related. For example, if w.t/ D
ız.t/, with w.t/ 2 Rn and z.t/ 2 Rn, and
ı 2 R; jıj � 1, then for any Hermitian-valued
X W R ! Cn�n with X.!/ � 0 for all ! 2 R and
Skew-Hermitian Y W R ! Cn�n,
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Z 1

�1

� Oz.j!/
Ow.j!/

� �
X.!/ Y.!/

Y �.!/ �X.!/
 � Oz.j!/

Ow.j!/

d!

D
Z 1

�1
Oz�.j!/

�
.1� ı2/X.!/

	 Oz.j!/d!

which is always � 0. Hence, the uncertain pa-
rameter can be recast as an operator satisfying an
infinite family of IQCs. Nonlinear operators may
also satisfy IQCs and it is common to “model”
known nonlinear elements (e.g., saturation) by
enumerating IQCs that they satisfy (Megretski
and Rantzer 1997). An uncertain dynamic model
is made up of an interconnection of these un-
certain elements with a known (usually) linear
system G.

Performance Metric
The main goal of robustness analysis is to assess
the degrading effects of uncertainty. For this, a
concrete notion of performance is needed, re-
sulting in a mathematical/computational exercise
to quantify the average or worst-case effects of
the two types of uncertainty, signal and model,
described earlier. In the robust control frame-
work, adequate performance is characterized in
terms of the variability of possible behavior of
particular signals. For instance, in the presence
of reference inputs and disturbance inputs, as
well as parameter uncertainty, it is required that
tracking errors (e) and control inputs (u) re-
main small. A common measure of smallness
is the L2 norm of signals. Typically, frequency-
dependent weighting functions are used to prefer-
entially weight one frequency range over another
and/or to weight one signal relative to another.
In this way, adequate performance be defined
as kW Œ eu �k2 � 1, where W is a stable, linear
system, called the “output” weighting function.
Weighting functions are often used to transform
a collection of performance objectives into a
single norm bound objective in the robust control
framework.

Robustness Analysis
Robustness analysis refers to the task of ascer-
taining the stability and/or performance char-
acteristics of the uncertain system, given the

limited knowledge about the uncertain informa-
tion. The main result from Megretski and Rantzer
(1997) concerns the stability of the interconnec-
tion shown in Fig. 1, where G is a known, stable,
linear system and � is an operator that satisfies
the IQC defined by …. Under some important
technical conditions, the theorem states “if there
exists an � > 0 such that

�
G.j!/

I

�
….!/

�
G.j!/

I


 ��I (2)

for all ! 2 R, then the interconnection is stable.”
Stability here refers to finite L2 gain from inputs
.r1; r2/ to loop signals .u1; u2/.

Multiple IQCs satisfied by � can be incorpo-
rated into the analysis. In particular, assume that
� satisfies the IQCs defined by the multipliers
f…kgNkD1. Then � satisfies the IQC defined by
any mutliplier of the form …˛ WD PN

kD1 ˛k…k

where ˛k � 0. The stability test amounts to
a semi-infinite, semidefinite feasibility problem:
find nonnegative scalars f˛kgNkD1 such that for
some � > 0,

�
G.j!/

I

�
…˛.!/

�
G.j!/

I


 ��I (3)

for all ! 2 R. This infinite family of matrix in-
equalities (one for each frequency) can be equiv-
alently expressed as a finite-dimensional linear
matrix inequality (LMI) under some additional
restrictions.

The structured singular value (�) approach
provides an alternative robust stability test in
the case of only linear, time-invariant uncertainty

r2 u2
G

y2

r1u1Δ
y1

Robust Synthesis and Robustness Analysis Tech-
niques and Tools, Fig. 1 Feedback interconnection for
IQC stability test



1236 Robust Synthesis and Robustness Analysis Techniques and Tools

(parametric or dynamic). Suppose � is drawn
from a set of matrices, � � Cm�n of the form

� D ˚
diag

�
ır1It1 ; : : : ; ı

r
V ItV ;

ıc1Ir1; : : : ; ı
c
SIrS ;�1; : : : ; �F

	 W
ırk 2 R; ıci 2 C; �j 2 Cmj�nj �

The inclusion of complex-valued, uncertain ma-
trices within � may seem unusual and hard to
motivate. However, in terms of their effect on
stability, these are equivalent to the uncertain
linear dynamic element introduced earlier in the
Uncertainty Modeling section. This is discussed
in more detail in the entry � Structured Singular
Value and Applications: Analyzing the Effect
of Linear Time-Invariant Uncertainty in Linear
Systems.

Using the Nyquist stability criterion, the
.G;�/ interconnection is stable for all � 2 �,
with N .�/ < ˇ if and only if G is stable, and

det.I �G.j!/�/ 6D 0

for all � 2 � with N .�/ < ˇ and all ! 2 R
including ! D 1. The importance of the nonva-
nishing determinant condition warrants a defini-
tion of its own, the structured singular value. For
a matrixM 2 Cn�m, and � as given, define

��.M/ WD 1

min f N .�/ W�2�; det .I�M�/D0g

unless no � 2 � makes .I �M�/ singular,
then ��.M/ WD 0. In this parlance, the .G;�/
interconnection is stable for all � 2 �, with
N .�/ < ˇ if and only if

��.G.j!// � 1

ˇ

for all ! 2 R including ! D 1.
In summary, the structured singular value ap-

proach employs a Nyquist-based argument, re-
sulting in a nonvanishing determinant condition,
which must hold over all frequency and all pos-
sible frequency-response values of the uncertain
elements. However, checking the nonvanishing
determinant is difficult, and sufficient conditions,

in the form of semidefinite programs (Doyle
1982; Fan et al. 1991) to ensure this are derived.
This results in semidefinite feasibility problems
which must hold at all frequencies. It is common
to verify these only on a finite grid of frequencies,
which is equivalent to ensuring that the closed-
loop poles cannot migrate across the stability
boundary at these frequencies. Semidefinite pro-
grams can be defined which carve out inter-
vals around these fixed frequencies to completely
guarantee stability.

Robust Synthesis
Synthesis refers to the mathematical design of the
control law. The nominal synthesis problem (with
no uncertainty) is formulated using the generic
feedback structure shown in Fig. 2. The various
signals in the diagram are the control inputs u,
measurements y, exogenous disturbances d , and
regulated variables e.P is a generalized plant that
contains all information required to specify the
synthesis problem. This includes the dynamics
of the actual plant being controlled as well as
any frequency domain weights that are used to
specify the performance objective. The objective
of an optimal control problem is to synthesize
a controller K that minimizes the closed-loop
(e.g., H2, H1, L1) norm from disturbances (d )
to regulated variables (e), i.e., solve

min
allowable K

kFL.P;K/k

where FL.P;K/ denotes the system obtained by
closing the controller K around the lower loop
of P . The H2, H1, and L1 optimal control
problems refer to the choice of the specific norm
kFL.P;K/k used to specify the performance. A
generalization of the H1 performance objective
is simply to require that the closed-loop map
from d ! e satisfy an IQC defined by a given
multiplier …, called the performance multiplier,
Apkarian and Noll (2006). The H2, H1 and L1
optimal control problems formulated as in Fig. 2
only involve signal uncertainty. In other words,
these design problems do not explicitly account
for the effects of model uncertainty.

http://dx.doi.org/10.1007/978-1-4471-5058-9_163
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Robust Synthesis and Robustness Analysis Tech-
niques and Tools, Fig. 2 Feedback interconnection for
H2, H1, and L1 optimal control

Robust synthesis refers to control design that
explicitly accounts for model uncertainty. It is
usually formulated as a worst-case optimization,
where the controller is chosen to minimize the
worst-case effect of the signal and model uncer-
tainty, loosely

min
allowable K

max
allowable d;�

kT .d;�;K/k

where d is a set of exogenous disturbances
and � corresponds to the model uncertainty
set. T represents the closed-loop relationship
between d , � and the controller K . �-synthesis
is a specific technique developed to synthesize
control algorithms which achieve robust
performance, i.e., performance in the presence
of signal and model uncertainty. The objective
of �-synthesis is to minimize over all stabilizing
controllers K , the peak value of �� .FL.P;K//
of the closed-loop transfer function defined by
the interconnection in Fig. 3. P is the generalized
plant model. The� block is the uncertain element
from the set �, which parameterizes all of the
assumed model uncertainty in the problem. The
�-synthesis optimization has high computational
complexity (so-called NP-hard problem), though
practical algorithms and software have been
developed to design controllers using this control
technique (Balas et al. 2013). Alternative robust
synthesis approaches exist and often involve
nonlinear optimization algorithms (Apkarian and
Noll 2006). Drastic simplification regarding the
models and uncertainty can be made resulting
in problems that can be solved using LMI and

Δ

zw

P de
u

K

y

Robust Synthesis and Robustness Analysis Tech-
niques and Tools, Fig. 3 Feedback interconnection for
� synthesis

semidefinite programming techniques (Boyd and
Barrat 1991; Boyd et al. 1994).

Computational Tools

The MATLAB Robust Control Toolbox is a
commercially available software product that
is part of the Mathworks control product line.
It is tightly integrated with Control System
Toolbox and Simulink products (Balas et al.
2013). The Robust Control Toolbox includes
tools to analyze and design multi-input, multi-
output control systems with uncertain elements.
The primary building blocks, called uncertain
elements or atoms, are uncertain real parameters
and uncertain linear, time-invariant objects.
These can be used to create coarse and simple
or detailed and complex descriptions of model
uncertainty. The uncertain object data structure
eliminates the need to generate models of
uncertainty and control analysis and design
problem formulations, thereby allowing the
practicing engineer to apply advanced robust
control theory to their applications. Functions are
available to analyze the robust stability, robust
performance, and worst-case performance of
uncertain multivariable system models using
the structured singular value, �. The Robust
Control Toolbox also includes multivariable
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control synthesis tools to compute controllers that
optimize worst-case performance and identify
worst-case parameter values.

The IQC-Beta Toolbox is a publicly avail-
able robust analysis toolbox based on the IQC
framework (Jönsson et al. 2004). A wide range
of robust stability and performance analysis tests
are available for uncertain, nonlinear, and time-
varying systems. IQC-Beta is written in MAT-
LAB and works seamlessly with the Control
System Toolbox objects and basic interconnec-
tion functions. The Users manual nicely com-
plements the literature on IQCs. The Computer
Aided Control System Design package in Scilab,
an open source numerical computation software,
includes functionality for robustness analysis and
the synthesis of robust control algorithms for
multivariable systems (http://www.scilab.org/).

Conclusions

Robust control analysis and synthesis software
tools are widely available and have been
extensively used by industry since the late
1980s. The availability of software tools for
robustness analysis and synthesis played a major
role in their wide and ubiquitous adoption in
industry. They have been successfully applied
to a variety of applications including aircraft
flight control, launch vehicles, satellites, compact
disk players, disk drives, backhoe excavators,
nuclear power plants, helicopters, thin film
extrusion, gas- and diesel-powered engines,
missile autopilots, heating and ventilation
systems, process control, and active suspension
systems.
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Abstract

Robustness analysis is the process of checking
whether a system’s function is maintained despite
perturbations. Robustness analysis of biological
models is typically applied to differential equa-
tion models of biochemical reaction networks.
While robustness is primarily a yes-or-no ques-
tion, for many applications in biological mod-
els, it is also desired to compute a quantitative
robustness measure. Such a measure is usually
defined to be the maximum size of perturbations
that the system can still tolerate. In addition, it
is often of interest to specifically compute fragile
perturbations, i.e., perturbations for which the
system loses its function.

Keywords

Biochemical reaction networks; Fragile perturba-
tions; Parametric uncertainty; Robustness mea-
sure; Structural uncertainty

Introduction

In biological systems analysis, robustness is the
property that a system maintains its function
in the face of internal or external perturbations
(Kitano 2007). For a robustness analysis, one

therefore needs to specify the system to be ana-
lyzed, the function that should be maintained, and
the perturbation class.

The models to which robustness analysis is
applied are mostly differential equation models
of biochemical reaction networks. They are gen-
erally written as

Px D Sv.x/; (1)

where x 2 Rn is the vector of intracellular
concentrations; S 2 Rn�m is the stoichiometric
matrix, containing the information how the in-
dividual network components participate in the
reactions; and v.x/ 2 Rm is the reaction rate
vector, in most cases a nonlinear function of the
concentrations x.

The biological functions that are being studied
by robustness analysis are very broad, pertain-
ing to the wide range of biological functions
implemented by biochemical reaction networks.
Specific problems being considered are:
1. The occurrence of qualitative dynamical pat-

terns such as sustained oscillations or multi-
stability, where the system converges to one
of multiple stable steady states depending on
initial conditions or external stimuli (Eissing
et al. 2005; Ma and Iglesias 2002).

2. The steady-state concentration value for a sub-
set of the biochemical network’s components
(Shinar and Feinberg 2010; Steuer et al. 2011).

3. Quantitative measures derived from the net-
work’s dynamics, for example, the period of
sustained oscillations (Stelling et al. 2004).
For the perturbation classes, two approaches

can be distinguished. In parametric robustness
analysis, a parametrized biological model is
given, and the perturbation consists in varying
the values of the parameters away from their
nominal value. In structural robustness analysis,
perturbations to the interaction structure of the
network or the functional form of the reaction
rate functions v.x/ are considered. Robustness
analysis with these perturbation classes is
presented in more detail below.

The perturbation class is also relevant for
two applications of robustness analysis which
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go beyond simply deciding whether a system
is robust or not. First, it is often of interest to
get a better quantification of robustness than a
binary decision. Then, it is common to define
a robustness measure, which usually quantifies
how large perturbations can be without affecting
the system’s function (Ma and Iglesias 2002;
Morohashi et al. 2002). Such a measure requires
an appropriate definition of the perturbation size.
With parametric perturbations, norms in parame-
ter space are often useful (Ma and Iglesias 2002;
Waldherr and Allgöwer 2011). With structural
perturbations, the proximity of interaction func-
tions in function space (Breindl et al. 2011) or the
number of changes in the interaction structure can
be evaluated.

Second, one often desires to compute spe-
cific non-robust perturbations, i.e., perturbations
within the given class for which the system loses
the considered functionality. There is a close rela-
tion between non-robust perturbations and the ro-
bustness measure, in that the norm of the smallest
non-robust perturbation is equal to the robustness
measure. Yet, it is often easier to compute a ro-
bustness measure than a non-robust perturbation.
Especially algorithms that give a lower bound on
the robustness measure will usually not provide a
non-robust perturbation.

An illustration of the key characteristics in
robustness analysis is shown in Fig. 1. This
also illustrates that any norm-based robustness

Robustness Analysis of Biological Models, Fig. 1
Illustration of key characteristics in robustness analysis

measure depends on the nominal situation, where
no perturbation is present.

When performing robustness analysis on a
mathematical model of the considered system,
the potential mismatch between model and sys-
tem has to be kept in mind. By comparing the
mathematical analysis results to experimental ob-
servations, robustness analysis methods are also
useful for the validation or invalidation of biolog-
ical network models (Bates and Cosentino 2011).

Robustness Analysis with Parametric
Perturbations

Robustness analysis with parametric perturba-
tions is applied to parametrized differential equa-
tion models of biochemical reaction networks,
which are described by an equation of the form

Px D Sv.x; �/; (2)

where � 2 Rp is a vector of parameters. Such
parameters may, for example, represent the total
expression level of proteins involved in the re-
action network, where usually a large variability
due to the stochastic process of gene expression
occurs.

This entry focuses on two specific system
functionalities for robustness with respect
to parametric perturbations, the qualitative
dynamical behavior, and the steady-state level of
a subset of the network’s components. These are
particularly relevant for biological models: the
dynamical behavior often represents qualitative
biological regulatory mechanisms, whereas the
steady-state level of network components with
a downstream regulatory effect is important for
the stimulus-response relation of a biological
network.

The Qualitative Dynamical Behavior
Considering the qualitative dynamical behavior,
it is of interest to distinguish situations of a
globally stable equilibrium point, multiple locally
stable equilibrium points, or sustained oscilla-
tions due to a limit cycle or more complex attrac-
tors. Since changes in these dynamical patterns
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correspond to the occurrence of bifurcations in
the model dynamics (2), this type of robustness
analysis is closely related to bifurcation analysis.
In the case of scalar, positive parameters�, a cor-
responding robustness measure DOR has been
defined by Ma and Iglesias (2002) as

DOR D 1 � max

� L�
�0
;
�0

O� ; 0
�
; (3)

where L� and O� are the closest bifurcation points
smaller and larger than �, respectively. The ro-
bustness measure DOR is between 0 and 1 and
indicates how much the parameter can be varied
before reaching a bifurcation: for any multiplica-
tive perturbation of less than .1 � DOR/�1,
no bifurcation will occur. A generalization to
multiparametric models has been proposed in
Waldherr and Allgöwer (2011): their robustness
measure % is defined as

% D supf% � 1 j no bifurcation occurs in the

hyperrectangle Œ%�1�0; %�0�g: (4)

The measure % directly gives the multiplicative
parameter variation up to which no bifurcation
occurs.

In general, the information required for a
bifurcation-based robustness measure will only
be available from a complete bifurcation analysis
of the model. When restricting the types of
bifurcations that are considered to bifurcations
of equilibrium point, one can however check
robustness by studying linear approximations
at the system’s equilibrium points. Since the
reaction rates v.x; �/ are usually modeled as
polynomial or rational functions, polynomial
programming methods can be applied to compute
a robustness measure (Waldherr and Allgöwer
2011) in this case.

The Steady-State Output Concentration
In biochemical network analysis, mostly linear
outputs of the form

y D Cx; (5)

with C 2 Rq�n are considered. A common
special case is that the rows of C are a subset of
the rows of the identity matrix in Rn, i.e.,

C D �
eT
i

�
i2Iy ; (6)

and Iy � f1; 2; : : : ; ng is the index set defining
the output concentrations.

A biochemical network has a robust steady-
state output concentration, if the steady-state out-
put Ny is independent of the parameters � (Steuer
et al. 2011). For a steady-state map Ny D h.�/,
this corresponds to the condition

h0.�/ D 0: (7)

For the special case of an output given
by (6), a sufficient and necessary condition
for steady-state output robustness has been
discovered by Steuer et al. (2011). The
condition amounts to checking that a vector
P , which describes the perturbation of the
reaction rates under parameter variations, is
in a subspace I D imM C kerS diag.˛/
for any ˛ in the kernel of S , where M is a
matrix composed of the normalized derivatives
of the reaction rates with respect to the
concentrations which do not appear in the output.
A notable underlying assumption here is that
the network’s steady state does not undergo
any local bifurcations within the considered
parameter region, which directly relates back to
the robustness analysis discussed in the previous
section.

For the special case where parameters are the
concentrations of conserved chemical species, a
sufficient condition for steady-state output ro-
bustness has also been discovered by Shinar and
Feinberg (2010). They propose the term absolute
concentration robustness for this property. Here,
the assumption that no local bifurcations occur
within the considered parameter region is not
required a priori but rather is also a consequence
of the proposed condition.
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Robustness Analysis with Structural
Perturbations

Robustness analysis with parametric perturba-
tions is based on the assumption that the re-
action rate expressions are exact and that all
perturbations are captured by parameter varia-
tions. This assumption can hardly be justified
for many practical models, and an analysis with
structural perturbations becomes necessary. Such
analyses have discovered models which are very
robust against parametric perturbations but non-
robust against structural perturbations (Jacobsen
and Cedersund 2008).

The biological functions for which rigorous
results on structural robustness are available are
again related to the nonoccurrence of bifurcations
in the model. For the restriction to local bifur-
cations of equilibria, linear systems theory offers
efficient analysis tools for structural robustness.

In a first step, a structural perturbation of
the network’s interaction graph was suggested
(Jacobsen and Cedersund 2008). This approach
considers the network’s Jacobian

A D S
@v

@x
. Nx/ (8)

evaluated at a steady state Nx. The Jacobian is then
perturbed to

QA D diagAC .A� diagA/.I C�/; (9)

where diagA is the diagonal of A and � is a
perturbation matrix, containing uncertain time-
invariant linear systems as elements.

As an alternative approach, Waldherr et al.
(2009) have suggested a structural perturbation
of the reaction rate expressions. Thereby, the
network’s Jacobian is perturbed to

QA D S



@v

@x
. Nx/C�

�
: (10)

In the case of real �, this perturbation simply
corresponds to a change in the reaction rate slopes
at steady state.

With both approaches, robustness analysis
with structured singular values can be applied
to test for changes in the local dynamics at the
considered equilibrium point. This allows to
evaluate a model’s robustness against this type
of structural perturbations and also yields non-
robust perturbations.

Summary and Future Directions

Robustness analysis of biological models is well
established in biological network theory. Math-
ematical methods rooted in systems and control
are particularly beneficial for approaching this
task.

While this entry focuses on models of bio-
chemical reaction networks given by differential
equations, the robustness analysis problem has
also been studied in other model frameworks,
for example, discrete dynamical models (Chaves
et al. 2006). Yet, beyond simulation-based stud-
ies, robustness analysis is still an open problem
in many practically relevant biological model
classes. This concerns, for example, stochastic
models or models on the cell population level.

In a similar manner, it will be important to
extend the perturbation classes that are being
considered and to include, for example, time-
varying or other perturbations that are relevant
for biological models. Concerning the biological
function, most robustness analysis methods focus
on the steady-state behavior. In the future, it
will be of interest to also take, for example, the
transient dynamics into account.

In linear systems theory, the concept of robust
performance is well established. While efforts
have been made to transfer that concept to bio-
chemical networks (Doyle and Stelling 2005),
it remains difficult to quantify performance of
such networks, thus impeding the development
of stringent robustness analysis tools. One of
the reasons for this difficulty is certainly that
biological performance is more naturally defined
in the time domain than in the frequency domain,
which narrows the conclusions that could be
drawn from a direct application of classical robust
performance analysis methods.
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Abstract

Robust quantum control theory is concerned with
the design of controllers for quantum systems
taking into account uncertainty is the model of the
system. The robust open-loop control of quantum
systems is discussed in this entry. Also discussed
is the robust stability analysis problem for quan-
tum systems, and two forms of quantum small
gain theorem are presented. In addition, the entry
discusses the design of robust quantum feedback
control systems.
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Introduction

The control of systems whose dynamics are gov-
erned by the laws of quantum mechanics is the
subject of quantum control theory. The topic of
quantum control theory is covered in the com-
panion article Petersen (2014). As in the case
of classical control theory, the models used in
quantum control are often subject to uncertain-
ties. This motivates the study of robust quantum
control, in which the quantum systems to be
controlled are modeled as uncertain quantum sys-
tems, e.g., see Mabuchi and Khaneja (2005). A
related problem is the problem of robust estima-
tion and filtering for uncertain quantum systems,
e.g., see Yamamoto and Bouten (2009). The issue
of robust stability is particularly important in the
case of quantum feedback control since in this
case, there is always the possibility of instability.
An important area of quantum control theory is
open-loop quantum control; see Petersen (2014).
Since uncertainties arise in the quantum system
models being considered, the robustness of open-
loop quantum control systems is also important,
e.g., see Li and Khaneja (2009), Rabitz (2002),
and Owrutsky and Khaneja (2012).

This entry surveys some of the important re-
search results on robust quantum control which
have arisen in various application areas. These
include some recent results on robust open-loop
control of quantum systems; see Zhang and Ra-
bitz (1994). Also considered are some recent
results on robust stability analysis results for
uncertain quantum systems, which amount to
quantum versions of the classical small gain the-
orem; see Petersen et al. (2012). Finally, the
entry looks at robust quantum feedback controller
design; see James et al. (2008) and Dong et al.
(2009).

Robust Open-Loop Control of
Quantum Systems

In the robust open-loop control of quantum sys-
tems, the quantum system is modeled in the
Schrödinger picture. The models can be given

either in terms of the Schrödinger equation for the
system state j .t/i:

i
@

@t
j .t/i D

"
H0 C

mX
kD1

uk.t/Hk

#
j .t/i (1)

or the master equation for the system density
operator �:

P�.t/ D �i
" 
H0 C

mX
kD1

uk.t/Hk

!
; �.t/

#
(2)

e.g., see Petersen (2014). In these equations, H0

is the free Hamiltonian of the system and Hk are
corresponding control Hamiltonians. In the ro-
bust open-loop control of quantum systems, these
quantities are assumed to be uncertain and the
control law uk.t/ is to be designed to guarantee
an adequate level of performance for all possible
values of the uncertainties. Here, performance is
measured in terms of the fidelity between the
actual final state or density matrix of the system
and the desired final state or density matrix, e.g.,
see Nielsen and Chuang (2000).

In the minimax optimal control approach to
robust open-loop control of quantum systems, the
uncertainties in the Hamiltonian are represented
in terms of a vector quantity w which is subject
to constraints. Then, the robust control problem
is the minimax optimal control problem

min
u

max
w
J.u;w/

where J.u;w/ is a suitable cost function, and the
problem is subject to the constraints defined by
the system dynamics (1) and the constraints on
the uncertainty w; see Zhang and Rabitz (1994).
Some standard numerical procedures have been
proposed to solve this minimax optimal control
problem with applications in chemical physics;
see Zhang and Rabitz (1994).

Related to the robust open-loop control of
quantum systems is the control of inhomoge-
neous quantum ensembles. In this problem,
the same control signal uk.t/ is applied to
a large number of quantum particles in an
ensemble. Also, the Hamiltonians corresponding
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to individual particles may have different
parameter values, and so this problem is
equivalent to a robust open-loop quantum
control problem, e.g., see Li and Khaneja
(2006). In studying this problem, the issue of
controllability has been considered (see, e.g., Li
and Khaneja 2009) as in the standard open-loop
quantum control problem; see Petersen (2014).
Also, numerical methods have been proposed
for constructing an optimal control law for
inhomogeneous ensembles, e.g., see Ruths and Li
(2012) and Owrutsky and Khaneja (2012). This
approach has arisen in applications to chemical
physics.

Robustness Analysis for Uncertain
Quantum Systems

The problem of robust stability analysis for un-
certain quantum systems was considered in the
paper D’Helon and James (2006) which was con-
cerned with the feedback interconnection of two
quantum optical systems as shown in Fig. 1. In
this interconnection, each of the quantum systems
is linear quantum optical systems described in the
Heisenberg picture by linear quantum stochastic
differential equations (QSDEs) of the form

dx.t/ D Ax.t/dt C Bdu.t/I
dy.t/ D Cx.t/dt CDdu.t/I (3)

Robustness Issues in Quantum Control, Fig. 1
Feedback interconnection of two quantum optical systems

see James et al. (2008) and Petersen (2014) for
more details on this class of quantum system
models. Here, x.t/ are vector system variables
which are operators on the underlying Hilbert
space of the system. Also, the input and output
fields are decomposed as du.t/ D ˇu.t/dtCdQu.t/
and dy.t/ D ˇy.t/dt C d Qy.t/ where ˇu.t/, ˇy.t/
denote the signal parts of the quantities du.t/,
dy.t/, respectively. Furthermore, dQu.t/, d Qy.t/ de-
note the noise parts of the quantities du.t/, dy.t/,
respectively, e.g., see James et al. (2008). Such a
system is stable and has a finite gain g > 0 if
there exist constants � > 0 and � > 0 such that

Z t

0

hkˇy.�/k2idt � �C �t

C
Z t

0

hkˇu.�/k2idt 8t > 0I

e.g., see D’Helon and James (2006) and James
and Gough (2010). Here, h�i denotes quantum
expectation.

The two quantum optical systems shown in
Fig. 1 are interconnected via beam splitters which
are described by equations

u1D �1w1 �
q
1 � �21y2I z1D

q
1 � �21w1 C �1y2I

u2D �2w2 �
q
1 � �22y1I z2D

q
1 � �22w2 C �2y1

where �1 2 .0; 1/ and �2 2 .0; 1/ are given
constants. The quantum small gain theorem es-
tablished in D’Helon and James (2006) shows
that if each of the quantum systems in Fig. 1 is
stable and has finite gains g1 > 0 and g2 > 0 re-

spectively such that
q
1 � �21

q
1 � �22g1g2 < 1,

then the feedback interconnected system will also
be stable and have a finite gain. This result can be
thought of as a stability robustness result if the
first quantum system is regarded as the nominal
quantum system and the second quantum system
is regarded as being the uncertain part of the
system subject to the given finite gain constraint.

An alternative approach to the robust stability
analysis of uncertain quantum systems considers
an uncertain quantum system described using the
.S;L;H/ description (see Petersen (2014) and
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Gough and James (2009) for more details on
this class of quantum systems). Here, the system
Hamiltonian is described in terms of vectors of
annihilation and creation operators a and a#,
respectively, as

H D 1

2

�
a	 aT

	
M

�
a

a#


C 1

2
Q�	� Q�

where M is a known complex Hermitian matrix
describing the nominal Hamiltonian,� is a com-
plex Hermitian uncertainty matrix subject to the

norm bound k�k � 2
�

, and Q� D E

�
a

a#


. Also,

E is a known complex matrix describing the
uncertainty structure. Furthermore, it is assumed
that S D I and the coupling operator vector L is

such that

�
L

L#


D N

�
a

a#


where N is a known

complex matrix. This uncertain quantum system
is robustly mean square stable if the H1 norm
bound condition

�����E


sI C iJM C 1

2
JN 	JN

��1
JE	

�����1
<
�

2

is satisfied where J D
�
I 0

0 �I


; see Petersen

et al. (2012).

Robust Feedback Control of Quantum
Systems

Schrödinger Picture Approaches to Robust
Measurement-Based Quantum Feedback
Control
A number of results have appeared which use
Schrödinger picture models (see Petersen 2014)
in robust measurement-based quantum feedback
control. These results are based on uncertain
quantum system models of the form (1) or (2) and
extend the results mentioned above by allowing
for measurements of the quantum system in order
to achieve improved robustness against uncer-
tainties in the system Hamiltonian. For example,
consider a quantum system of the form (1) with
uncertainties in the system Hamiltonian. Then a

measurement feedback robust control scheme can
be constructed which involves periodic projective
measurements on the system. In a projective
measurement of the quantum system (1), the state
j .t/i collapses to an eigenstate of H0 corre-
sponding to the measurement outcome obtained.
The sliding mode control algorithm uses open-
loop time optimal control (see Petersen 2014) to
steer the state of the system back to a specified
eigenstate of the system whenever a measurement
is obtained which does not correspond to this
desired eigenstate; see Dong and Petersen (2009).
This desired eigenstate is referred to as the slid-
ing mode domain, and the state of the system
is guaranteed to stay within the sliding mode
domain with a specified probability provided that
the measurement sampling period in the pro-
posed feedback control algorithm is chosen to be
sufficiently fast; see Dong and Petersen (2009).
In the case of two-level quantum systems, this
sliding mode control approach is implemented
using a Lyapunov method for open-loop quantum
control to steer the system back to the sliding
mode domain; see Petersen (2014) and Dong and
Petersen (2012). In all of these cases, robustness
is ensured by including uncertainty in the under-
lying quantum system models and then taking
this into account in the design of the control laws
and sampling period.

Another approach to the measurement-
based robust quantum feedback control problem
involves an extension of the robust open-loop
control results considered in section “Robust
Open-Loop Control of Quantum Systems.” In this
approach, robust open-loop control results are
extended to solve the problem of stabilization of
an ensemble of quantum particles; see Beauchard
et al. (2012).

Heisenberg Picture Approaches to Robust
Quantum Feedback Control
Consider a quantum linear system modeled in
the Heisenberg picture by quantum stochastic
differential equations (QSDEs) as follows:

dx.t/ D Ax.t/dt C Bdw.t/I
dy.t/ D Cx.t/dt CDdw.t/I (4)
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see Petersen (2014) for details on this class of
quantum system models which arises in the area
of quantum optics. In the robust quantum feed-
back control problem, the matrices A, B , C ,
D may be uncertain and a feedback controller
can be designed using the quantum H1 control
approach to ensure that the resulting closed-loop
system is robustly stable; see James et al. (2008).
In the case of measurement-based feedback con-
trol, the controller is a classical system described
by linear stochastic differential equations of the
form

dxK.t/ D AKxk.t/dt CBKdy.t/

ˇu.t/dt D CKxk.t/dt I (5)

see Petersen (2014). In the case of coherent feed-
back control, the controller is another quantum
linear system described by QSDEs of the form

dxK.t/ D AKxk.t/dt C BKdy.t/C NBKd NwK.t/
dyK.t/ D CKxk.t/dt C NDKd NwK.t/I (6)

see Petersen (2014).
In this approach to robust quantum feedback

control, the uncertainty in the quantum system
being controlled is represented by uncertainty
in the matrix A as A D QA C QB� QC where
� is a constant but unknown uncertain matrix
satisfying the bound �T� � I . The controller,
which may be either a classical controller or a co-
herent controller, is designed using the quantum
H1 approach. Then the resulting closed-loop
system will be robustly stable; see James et al.
(2008). Similarly, in the case of uncertainty in
the plant Hamiltonian matrix such as considered
in section “Robustness Analysis for Uncertain
Quantum Systems” or uncertainty in the form
of an uncertain subsystem connected optically to
the plant in feedback, also as considered in sec-
tion “Robustness Analysis for Uncertain Quan-
tum Systems,” then the quantum H1 approach
combined with the robust stability analysis results
of section “Robustness Analysis for Uncertain
Quantum Systems” shows that the quantum H1
method can also be used to design robustly stabi-
lizing controllers in these cases.

Summary and Future Directions

To date there have been only a few papers pub-
lished in the general area of robust quantum
control. The results which were considered in this
entry covered open-loop and feedback quantum
control problems along with stability robustness
analysis problems. A common theme in the re-
sults which were considered is that they were
based on uncertain quantum mechanical models.
It is expected that future research in this area will
intensify as the use of feedback control becomes
more prevalent in areas of experimental quantum
technology.
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Abstract

Run-to-run (R2R) control is a form of adap-
tive model-based process control that can be
tailored to environments where the process is
discrete, dynamic, and highly unobservable; this
is characteristic of processes in the semiconduc-
tor manufacturing industry. It generally has, at

its roots, a rather straightforward approach to
adaptive model-based control such as a first-order
linear plant model with moving average weight-
ing applied to adapt the (zeroth-order) constant
term in the model. Most of the complexity of
R2R control science lies and will continue to
lie in extensions to support practical applica-
tion of R2R control in semiconductor manu-
facturing facilities of the future; these exten-
sions include support for weighting and bound-
ing of parameters, run-time modeling of a large
number of disturbance types, and incorporating
prediction information such as virtual metrol-
ogy and yield prediction into the control solu-
tion.

Keywords

Adaptive control; Advanced process control
(APC); EWMA control; Feed-forward and
feedback control; Model-based control; R2R
control; Run-to-run control; Single-threaded
control; Virtual metrology; Wafer-to-wafer
control; Yield prediction

Introduction

The semiconductor manufacturing industry
involves the processing of semiconductor
“wafers” using a variety of physical and chemical
processes to produce dies or “chips” that contain
a number of nanometer size features organized
in layers. As feature sizes shrink, the industry
must innovate to maintain acceptable product
yield and throughput. One effective dimension
of innovation that has been utilized since the
early 1990s is model-based process control.
The use of this technology in semiconductor
manufacturing has been largely industry
specific due to unique industry requirements
and been given the name “run-to-run (R2R)
control.”

R2R control is defined as “: : :a form of dis-
crete process and machine control in which the
product recipe with respect to a particular ma-
chine process is modified ex situ, i.e., between

http://dx.doi.org/10.1007/978-1-4471-5058-9_243
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Run-to-Run Control in Semiconductor Manufacturing, Fig. 1 Input/output structure of a typical R2R control
solution

machine ‘runs,’ so as to minimize process drift,
shift, and variability” (Moyne et al. 2000). (The
“recipe” is the group of process settings for a pro-
cess or process step, e.g., temperature, flow, and
pressure.) The term “R2R control” was coined in
the early 1990s in the semiconductor industry as
the industry struggled to come up with mecha-
nisms to keep critical semiconductor manufactur-
ing processes such as chemical vapor deposition
(CVD), chemical mechanical polishing (CMP),
and reactive ion etching (RIE) under control.
The processes are highly unobservable and are
subjected to a number of disturbances. However,
many of these disturbances can be modeled or
tracked as they create measurable shifts in the
process (e.g., after a maintenance operation) or
gradual drifts in the process (e.g., chamber wall
“seasoning” of an etch process over time, result-
ing in polymer buildup on chamber walls, causes
changes to the operational effectiveness of the
tool). Process and product quality is generally
assessed through metrology measurements made
ex situ, i.e., after the process is complete; ex-
amples of post-process metrology parameters are
wafer average deposited or removed film thick-
ness and film uniformity. R2R control generally
uses statistically developed models of tool pro-
cess operation updated or “tuned” with process
metrology feedback information on a “run-to-
run” basis to keep the process under control and
process quality high, in the face of these process
drifts and shifts, as shown in Fig. 1. Note that the
granularity of control could be wafer-to-wafer, or
batch-to-batch (“lot-to-lot”), etc.

Run-to-Run Control Approach

Because the processes are highly unobservable
and dynamic, rather simple model forms are
usually employed with filtering techniques
used to track process shift and drift. The most
commonly utilized R2R controller in the industry
is the exponentially weighted moving average
(EWMA) controller. The algorithm uses a
linear model with an additional constant term.
(Equations will use the following notation:
arrays of vectors will be capitals, vectors
will be lower case, and indexing within a
vector or matrix will be lower case with
subscripts. In addition, the special subscript
“t” will be reserved for time or run number
information.)

Y D Ax C c (1)

where:
y D System output,
x D Input (Recipe),
A D Slope coefficients for equation,
c D Constant term for linear model.

Each output represents a target of control (usu-
ally measured by pre- and post-process metrol-
ogy tools), and each input represents an ad-
justable parameter in the recipe.

y1 D a11x1 C a12x2 C : : :a1mxm C c1

: : :

yn D an1x1 C an2x2 C : : :anmxm C cn (2)
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The models are generally developed by ex-
ecuting a design of experiments (DOE), where
the process area is explored with respect to the
allowed variation of the process inputs by pro-
cessing wafers with various input settings (see,
e.g., Box and Draper 1987). Statistical packages
are then used to determine the base model of
the form described in (1) at the normal process
operating point. As the processes are dynamic,
the base model is updated on a “run-to-run” basis
to compensate for model error. The algorithm
operates under the assumption that the underlying
process is locally approximated by a first-order
linear polynomial model in the form of equa-
tion (1) and that this polynomial model can be
maintained near a local optimal point solely by
updating the constant term “c.”

The control process involves updating the
model and then using that model to compute
a recipe update. The model is updated by first
comparing the actual process output, Yt, to the
model-predicted process output, AXt. Using an
EWMA filtering technique as an example, the
constant term, ct can be updated as follows:

ct D ˛.yt � Axt/C .1 � ˛/ct�1 (3)

where ’ is a weighting factor between 0 and
1, often called a “forgetting factor.” Note that
because of the additive nature of the EWMA
series, the Ct calculation only requires knowledge
(and storage) of the previous run measurements;
this, combined with its relative simplicity, led to
the widespread adoption of EWMA as the R2R
controller filter of choice in this industry during
the 1990s and early 2000s.

Once the model is updated, the process recipe
is calculated. Since there are generally more in-
puts that can be tuned than outputs measured, the
process is underdetermined and there is an infi-
nite solution space. Approaches such as Lagrange
multipliers are used to determine the solution that
is closest to the previous solution (Moyne et al.
2000).

Many extensions and alternatives to this
basic approach have been developed and
deployed over the past 10 years. These include
(1) the replacement of EWMA filtering with

other approaches such as the more general
Kalman filtering, (2) explicitly modeling drift
(termed “predictor corrector”), (3) modeling
updates to first-order terms (in the “A”
matrix), and (4) leveraging phenomenological
models that capture process knowledge in
equation forms, customized and tuned with
statistical data. Perhaps the most important
extensions to the basic approach involve
addressing the practical issues associated
with control systems application in this
area. For example, providing capabilities for
addressing bounding, weighting, and granularity
(e.g., integer) of input and output settings
often requires much more programming
effort than supporting the core algorithm
(Moyne et al. 2000).

Current Status and Future Extensions

Over the past 10 years, R2R control has evolved
from a value-added capability applied to a few
processes, to a required component to achieve
cost and productivity competitiveness in most
processes in the semiconductor manufacturing
industries (ITRS 2014). As part of this evolution,
a number of common trends in the R2R control
space have emerged:
Support for fab-wide reusable and reconfigurable
solutions for R2R control: As the benefits of
R2R control were proven across multiple pro-
cesses in semiconductor fabrication facilities, the
focus turned to reusable and reconfigurable inte-
grated “fab-wide” solutions for R2R control. The
event-based capabilities described in Chapter 9 of
Moyne et al. (2000) were leveraged to provide
these solutions as they allow for integration and
configuration of R2R control solutions to the
particular application environment. This event-
based approach has also been used to integrate
R2R control with other capabilities such as fault
detection and classification (FDC), work schedul-
ing, and “virtual metrology” (see below), to pro-
vide another level of benefits towards improved
product yield and throughput (Khan et al. 2007;
Moyne 2004, 2009).
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Movement to more granular control: The
evermore stringent requirements on product
quality are being addressed in large part by a
movement from batch-level control (often called
“lot-based control” in this domain), to wafer-
level control (usually called “wafer-to-wafer”
(W2W) control), to within-wafer (WIW) control.
Although the granularity has changed, the basic
approach to control has not. It is important to
note that the improvement in quality associated
with this trend results mostly from the use
of pre-(process) metrology to reject incoming
product disturbances, rather than post metrology
to address the dynamics of the plant model (ITRS
2014; Moyne et al. 2000).
Support for control across multiple recipes using
“single-threaded control”: Semiconductor man-
ufacturing process control systems are character-
ized by a number of disturbance types that usually
can be modeled as independent from the base pro-
cess model and from each other. Perhaps the most
common type of disturbance that is addressed
is recipe or product change. When there is a
change in product and related product recipe, a
single-process model must be adjusted to capture
this disturbance while maintaining knowledge of
process drift and/or shift. Oftentimes this pro-
cess disturbance can be modeled as a shift to
the overall process. Thus, the process model of
equation (1) can be adjusted to the following:

Y D Ax C c1 C c2 C c3 C : : :C cn (4)

where:

c1; c2; : : :cn�1 D constant terms associated
with modeled disturbances such as product

cn D constant term associated with process
dynamics (drift and shift)

c1 C c2 C : : :cn D c in Eq. (1)
Approaches have been devised for the assess-

ment of ci associated with a particular disturbance
type (Edgar et al. 2004; Zou 2013); the result is
that a single-control model can be used across
multiple product recipes and other disturbance
types.
Enhancing R2R control with “virtual metrology”:
Ex-situ metrology plays a crucial role in semicon-
ductor manufacturing as it is often the only source
of product quality data before and after a process.
However, given its high capital equipment cost
and cycle time impact on critical processes, op-
timizing metrology by minimizing wasteful use
and optimizing measurement value is important.
Virtual metrology (VM) is a new technology
rapidly gaining acceptance in the marketplace as
an efficient and cost-effective way to optimize
and augment metrology value. VM is a model-
ing and metrology prediction solution whereby
process and product data, such as in situ fault
detection (FD) information and upstream metrol-
ogy information, is correlated to post-process
metrology data. This same data can then be used
to predict metrology information when conven-
tional metrology data is not available (Cheng
et al. 2011; Khan et al. 2007).

One of the uses of VM that is expected to
become prominent over the next decade is in
support of enhanced R2R control. As shown in
Fig. 2, fault detection (FD) summary information

Run-to-Run Control in
Semiconductor
Manufacturing, Fig. 2
Virtual metrology
enhanced R2R control
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is used along with adaptive VM modeling to pre-
dict metrology information. The VM predictions
are then used to fill in the measurement gaps in
feed-forward and feedback control thus enabling
wafer-to-wafer or even within-wafer control. One
of the research challenges is to optimally tune the
control to best utilize both the real and predicted
metrology information. This requires that VM
data contain information on predicted measure-
ment data quality (Khan et al. 2007).

u.n/ Tunable process inputs
v.n/ FD summary information
y.k/ Metrology measurement data for mea-

sured wafers
Oy.n/ Predicted metrology measurements for all
wafers
˛1.n/ Feedback filter coefficient for feedback of

measured data
˛2.n/ Feedback filter coefficient for feedback of

predicted data
Movement towards interprocess and eventually
fab-wide control: The generally accepted vision
of the future of advanced process control (APC)
in general is a fabrication-wide fully integrated
solution that incorporates all of the APC ca-
pabilities (R2R control, FDC, fault prediction,
and statistical process control) as well as pre-
dictive capabilities such as predictive scheduling,
predictive maintenance, virtual metrology, and
predictive yield (ITRS 2014). Opportunities for
research and development exist with the inte-
gration of these technologies, especially as the
powers of the predictive domain are tapped. For
example, it is expected that R2R control will
eventually incorporate predicted yield as a target
with feedback to multiple coordinated process
controllers (Moyne and Schulze 2010). Thus, the
future of research in R2R control, while evolving,
should remain strong in the coming years.

Summary and Future Directions

R2R control is a form of adaptive model-based
process control that is tailored to environments
where the process is discrete, dynamic, and
highly unobservable; this is characteristic of
processes in the semiconductor manufacturing

industry. R2R control has evolved from a strictly
research effort in the early 1990s to a required
facility-wide capability in all of semiconductor
manufacturing. It generally has, at its roots,
a rather straightforward approach to adaptive
model-based control. Most of the complexity of
R2R control science lies and will continue to
lie in extensions to support practical application
of R2R control in semiconductor manufacturing
facilities of the future.

The science of R2R control will continue to
expand as the academic and industry communi-
ties look to incorporating capabilities that will
allow R2R control to continue to be an integral
part of the fabrication facility of the future. One
key research direction over the next decade is the
development of approaches for incorporating vir-
tual metrology and yield prediction into control
solutions. Other focus areas will likely include
hybrids of R2R control and continuous process
control, learning mechanisms for single-threaded
control in “high-mix” environments where there
are a large number of disturbances that should be
modeled, phenomenological R2R control mod-
els, and model libraries that combine stochastic
information with process physics and chemistry
knowledge, control solutions that are more di-
rectly optimized to financial parameters such as
yield and throughput, and R2R control solutions
that incorporate other analysis capabilities, such
as FDC, either algorithmically or via event-based
control rule approaches. Each of these topics
provides significant opportunity for research as
well as benefit in application to semiconductor
manufacturing facilities.
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Sampled-Data H-Infinity
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Abstract

H1 optimization is central in robust control.
When controllers are implemented by computers,
sampled-data control systems arise. Designing
H1-optimal controllers in purely continuous
time or in purely discrete time is standard
in robust control; in this entry, we discuss
the process of sampled-data optimization,
namely, designing digital controllers based on
a continuous-time H1 performance measure.

Keywords

Computer control; H1 discretization; Robust
control; Sampled-data systems

Introduction

Robust control deals mainly with controller de-
sign against uncertainties in system modeling
and disturbances. The central tool used is H1
optimization.

In continuous time, consider the standard
setup in Fig. 1, where G is the generalized plant
and K is the controller; G has two inputs (w,
the exogenous input, and u, the control input)
and two outputs (z, the output to be controlled,
and y, the measured output); K processes y to
generate u. The H1-optimal control problem
is to design K to stabilize G and minimize the
H1 norm of the closed-loop system in Fig. 1
from w to z, denoted Tzw. When both G and K
are continuous-time, linear time-invariant (LTI),
the H1 norm, kTzwk, relates to the frequency
response matrix bT zw.j!/ as follows:

kTzwk D sup
!

N�
h

bT zw.j!/
i

;

where N� indicates the maximum singular value.
This H1-optimal control problem in the LTI
case is solvable by many techniques, e.g., Riccati
equations and linear matrix inequalities – see
robust control textbooks by Zhou et al. (1996) and
Dullerud and Paganini (2000).

Sampled-Data Control

When controllers are implemented by digital
computers, periodic samplers and zero-order
holds are used to model analog-to-digital and
digital-to-analog conversion. Replacing K in
Fig. 1 by sampler S (with period h), discrete-
time controller Kd , and zero-order hold H

(synchronized with S ), we obtain a sampled-data

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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Sampled-Data H-Infinity Optimization, Fig. 1
Standard control setup in continuous time

Sampled-Data H-Infinity Optimization, Fig. 2
Sampled-data control setup

control system shown in Fig. 2; here, S converts
y into a discrete-time sequence  ; Kd , a real-
time algorithm in the computer, inputs  and
computes another sequence � , which is converted
by H into u.

There are in general three approaches to de-
sign a digital controllerKd : design a continuous-
time controller K and then implement digitally
via approximation, discretize the plant and then
designKd in discrete time, and finally, designKd

directly based on continuous-time performance
specifications (Chen and Francis 1995). The last
approach is followed in the H1 optimization
framework.

Sampled-DataH1 Discretization

The sampled-data H1 control problem is to de-
sign Kd directly to stabilize G in Fig. 2 and
minimize kTzwk. Notice that even if G is LTI in
continuous time and Kd is LTI in discrete time,
the closed-loop system Tzw is no longer LTI, due
to the presence of S and H in the control loop;

Sampled-Data H-Infinity Optimization, Fig. 3 The
equivalent discrete-time system

in this case, the H1 norm is interpreted as the
L2-induced norm:

kTzwk D supfkzk2 W kwk2 D 1gI

here, k � k2 represents the L2 norm on signals.
The sampled-data H1 control problem has

been shown to be equivalent to a purely discrete-
time H1 control problem (Kabamba and Hara
1993; Bamieh and Pearson 1992; Toivonen
1992); the process is known as sampled-data
H1 discretization: for � > 0, construct an LTI
discrete-time system Geq;d connected to Kd as
in Fig. 3; the two systems, Tzw in Fig. 2 and
T�! W ! 7! � in Fig. 3, are equivalent in that
kTzwk < � if kT�!k < � , where the latter norm is
`2-induced, and since T�! is LTI in discrete time,
it equals the H1 norm of the corresponding
transfer function bT �!.z/. Thus, pure discrete-
time techniques are immediately applicable.

There are several ways to present this dis-
cretization. However, the computation is quite
involved and hence is not given here; interested
readers can find details in the papers by Kabamba
and Hara (1993), Bamieh and Pearson (1992),
and Toivonen (1992), or the book by Chen and
Francis (1995). Note that the H1 discretization
process is not quite exact in the sense that Geq;d
depends on � (Chen and Francis 1995).

Summary and Future Directions

In sampled-data H1 optimization, the key idea
is to address the hybrid nature of the problem,
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considering intersample behavior in formulation;
the main tool is the so-called continuous lifting
(Yamamoto 1994; Bamieh and Pearson 1992),
making use of periodicity of sampled-data
systems.

The ideas and tools developed in sampled-
data control theory are still being used in emerg-
ing areas such as hybrid systems and networked
control systems. For example, in event-triggered
control systems, information exchange and con-
trol updating are not time driven but are done
by certain event-triggering schemes, resulting in
necessarily nonlinear and time-varying closed-
loop dynamics; the analysis and synthesis issues
in such systems are still challenging.

Cross-References

�H-Infinity Control
�LMI Approach to Robust Control
�Optimal Sampled-Data Control
�Optimization Based Robust Control

Recommended Reading

The continuous-time H1 control problem and
its solutions are discussed extensively in several
textbooks, e.g., Zhou et al. (1996) and Dullerud
and Paganini (2000). The discrete-time H1 con-
trol problem was solved via the approach of Ric-
cati equations in Iglesias and Glover (1991). The
sampled-data H1 control problem was solved si-
multaneously with different methods in Kabamba
and Hara (1993), Bamieh and Pearson (1992),
and Toivonen (1992); details of the solution dis-
cussed here can be found in the book by Chen and
Francis (1995).
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Abstract

For digital devices to interact with the physical
world, an interface is needed that transforms the
signals from analog to digital and vice versa.
Ideal samplers and zero-order hold devices are
incorporated to derive discrete-time models of
continuous-time systems. State variable descrip-
tions and transfer functions are used.

Keywords

Continuous-time approximations; Digital
control; Discrete-time approximations; Quan-
tization; Reconstruction; Sampled-data systems;
Sampling

Introduction

Sampled-data systems are discrete-time models
of continuous-time processes useful in the digital
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control of continuous-time systems. A digital
controller cannot communicate directly with a
continuous system and an interface is needed.

Consider a continuous-time system having
u.t/ as its input and y.t/ as its output.
A/D Converter: The continuous-time signal
y.t/ is converted into a discrete-time signal
f Ny.k/g, k � 0; k 2 Z, which is a sequence
of values f Ny.0/; Ny.1/; � � � g determined by the
relation

Ny.k/ D y.tk/: (1)

This is the ideal A/D (analog to digital) con-
verter that samples y.t/ at times t0; t1; t2 � � �
producing the sequence fy.t0/; y.t1/; � � � g also
denoted as fy.tk/g.

D/A Converter: The D/A (digital to analog)
converter receives as its input a sequence
fNu.k/g, k D 0; 1; 2; � � � and outputs a
(piecewise) continuous-time signal u.t/
determined by

u.t/ D Nu.k/; tk � t < tkC1; k D 0; 1; 2; � � � :
(2)

That is, this D/A converter keeps the value of
u.t/ constant at the last value of the sequence
entered, until a new value comes in. Such
a device is called a zero-order hold (ZOH)
device.

Higher-Order Hold

The ZOH device described above implements a
particular procedure of data reconstruction or
extrapolation. The general problem is as follows:

Given a sequence of real numbers f Nf .k/g,
k D k0; k0 C 1; � � � derive f .t/, t � t0 so that

f .tk/ D Nf .k/; k D k0; k0 C 1; � � �

Clearly, there is a lot of flexibility in assigning
values to f .t/ in between the samples Nf .k/; in
other words there is a lot of flexibility in assigning
the intersample behavior in f .t/.

A way to approach the problem is to start by
writing a power series expansion of f .t/ for t ,
tk � t < tkC1, namely,

f .t/ Df .tk/C f .1/.tk/.t � tk/C f .2/.tk/

2Š

.t � tk/
2 C � � �

where f .n/.tk/ D d.n/f .t/

dtn
jtDtk , that is, the nth

order derivative of f .t/ evaluated at t D tk
(assuming that the derivatives exist).

Now if the function f .t/ is approximated in
the interval tk � t < tkC1 by the constant value
f .tk/ taken to be equal to Nf .k/, then

f .t/ D f .tk/ .D Nf .k//; tk � t < tkC1

which is exactly the relation implemented by a
ZOH. Note that here the zero-order derivative
of the power series is used which leads to an
approximation by a constant which is a zero-
degree polynomial.

It is clear that more than the first term in the
power series can be taken to approximate f .t/.
If, for example, the first two terms are taken, then

f .t/ D f .tk/C f .1/.tk/.t � tk/

D f .tk/C f .tk/ � f .tk�1/
tk � tk�1

.t � tk/

D Nf .k/C
Nf .k/� Nf .k � 1/
tk � tk�1

.t � tk/

for tk � t < tkC1, where an approximation for
the derivative f .1/.t/ has been used. The approx-
imation between tk and tkC1 is a ramp with slope
determined by f .tk/ D Nf .k/ and the previous
value f .tk�1/ D Nf .k � 1/. Here the first-order
derivative of the power series is used which leads
to an approximation by a first-degree polynomial.
A device that implements such approximation is
called a first-order hold (FOH). Similarly, we can
define a second-order hold. Note that the formula
of the above FOH is derived if we decide to use
a first-degree polynomial to approximate f .t/ on
tk � t < tkC1 and then enforce f .tk/ D Nf .k/
and f .tk�1/ D Nf .k�1/. This approach is known
as polynomial interpolation.

Obtaining a continuous (or piecewise contin-
uous) function from given discrete values may
be seen as a continualization procedure. Contrast
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this with the discretization procedure introduced
by sampling earlier in this section.

u–(k ) y–(k )u (t ) y(t )
D /A A /D

x = Ax + Bu
y = Cx + Du

The continuous-time system with input u.t/
and output y.t/ together with the interface A/D
and D/A converters can be seen as a system that
receives a sequence of values fNu.k/g as its input
and produces a sequence of output values f Ny.k/g.
A digital controller can receive the system output
f Ny.k/g as input and produce a fNu.k/g.

Quantization: The sampled output Ny.k/ 2 R

and it can take on an infinite number of values. In
a digital device, however, a variable can take on
only a finite number of values – this is because of
the finite wordlength that is of the finite number
of bits in the registers. So for f Ny.k/g to be used by
a digital controller, an additional step is needed,
that is, Ny.k/ needs to be quantized. Under quan-
tization, for example, values 2:315; 2:308; 2:3
with a 0:1 quantization step are all represented
as 2:3. Quantization is an approximation and for
short wordlengths, fewer number of levels, may
lead to significant errors. Here we do not consider
quantization.

Discrete-Time Models

Let a linear, continuous-time, time-invariant sys-
tem be described by

Px.t/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/CDu.t/:
(3)

If we consider some initial time tk , its state
response for t � tk is

x.t/ D eA.t�tk/x.tk/C
Z t

tk

eA.t��/Bu.�/d�: (4)

In view of (2), in a ZOH the input u.t/will remain
constant and equal to u.tk/ (D Nu.k/) for a time
period tkC1 � tk . So

x.t/ D eA.t�tk / Nx.k/C
�Z t

tk

eA.t��/Bd�
�

Nu.k/;
(5)

where Nx.k/ D x.tk/, Nu.k/ D u.tk/. For t D tkC1,
(5) becomes

Nx.k C 1/ D NA.k/ Nx.k/C NB.k/Nu.k/ (6)

where NA.k/ , eA.tkC1�tk / and NB.k/ ,
R tkC1

tk
eA.tkC1��/Bd� .

Consider now the output y.t/ and assume that
it is sampled at times t 0k that do not necessarily
coincide with the instants tk at which the input
is adjusted (tk � t 0k < tkC1). Then if Ny.k/ ,
y.t 0k/,

Ny.k/ D NC.k/ Nx.k/C ND.k/Nu.k/; (7)

where

NC.k/ D CeA.t
0

k�tk /

ND.k/ D C

"

Z t 0k

tk

eA.t
0

k��/d�
#

B CD:

In the case when all k D 0; 1; 2; � � � , t 0k D tk
and tkC1 � tk D T a constant period, called the
sampling period. Then the sampled-data system
is given by

Nx.k C 1/ D NA Nx.k/C NB Nu.k/
Ny.k/ D NC Nx.k/C ND Nu.k/ (8)

where

NA D eAT ; NB D
�Z T

0

eA�d�

�

B;

NC D C; ND D D:

The intersample behavior of the continuous sys-
tem can be determined using (5).

Example 1 Let the continuous-time system be
given by (3) where

A D
�

0 1

0 0

�

; B D
�

0

1

�

; C D Œ1 0�;D D 0;
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and let T denote the sampling period. The trans-
fer function of the continuous-time system is
OH.s/ D C.sI � A/�1B D 1=s2, the double

integrator. The discrete-time state-space repre-
sentation of the system, which represents the
continuous-time system preceded by a zero-order
hold (D/A converter) and followed by a sampler
[an (ideal) A/D converter], both sampling syn-
chronously at a rate of 1/T, is given by Nx.kC1/ D
NA Nx.k/C NB Nu.k/, Ny.k/ D NCx.k/, where

NA D eAT D
1
X

jD1
.T j =j Š/Aj D

�

1 0

0 1

�

C

�

0 1

0 0

�

T D
�

1 T

0 1

�

;

NB D
�Z T

0

eA�d�

�

B

D
�Z T

0

�

1 �

0 1

�

d�

��

0

1

�

D
�

T T 2=2

0 T

� �

0

1

�

D
�

T 2=2

T

�

;

NC D C D Œ1 0�:

The transfer function (relating Ny to Nu ) is given by

OH.z/ D NC.zI � NA/�1 NB

D Œ1 0�

�

z � 1 �T
0 z � 1

��1 �
T 2=2

T

�

D Œ1 0�

�

1=.z � 1/ T=.z � 1/2

0 1=.z � 1/
�

�

T 2=2

T

�

D T 2

2

.z C 1/

.z � 1/2 :

If we focus on single-input, single-output sys-
tems and consider ideal sampler A/D and ZOH
D/A, then given the transfer function G.s/ of
the continuous system, there is a direct formula
to determine the transfer function of its discrete
approximationH.z/, namely,

H.z/ D .1 � z�1/ZfG.s/=sg: (9)

Here ZfG.s/=sg means that first the inverse
Laplace transform of G.s/=s is taken to obtain
f .t/ , ŒL�1.G.s/=s/�. The function f .t/ is then
sampled to obtain f .kT /, k D 0; 1; 2; � � � and the
z-transform of f .kT / is evaluated. To illustrate,
in the above example G.s/ D 1

s2
; G.s/=s D 1

s3
,

and f .t/ D L�1. 1
s3
/ D 1

2
t2; t � 0. Then

H.z/ D .1 � z�1/Zf1
2
.kT /2g

D .1 � z�1/
T 2

2
Zfk2g

D T 2

2

z C 1

.z � 1/3

as before.

Summary

Sampled-data systems arise in the digital con-
trol of systems and include both continuous and
discrete-time dynamics. Discrete-time approxi-
mations of continuous-time systems using ideal
samplers and ZOH devices were derived using
state variable descriptions. Extensions include
quantization and lead to hybrid dynamical sys-
tems which include both continuous and discrete
variable dynamics.

A variation of the approach described in this
entry of deriving sampled-data systems uses the
discrete-time delta operator. This approach has
the advantage that as the sampling period T !
0, the discrete-time model reverts to the orig-
inal continuous-time model, which is not the
case with the more common approach described
above.

Cross-References

�Linear Systems: Continuous-Time, Time-In-
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�Linear Systems: Discrete-Time, Time-Invariant
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Recommended Reading

State variable and transfer function descriptions
are covered in a variety of textbooks including
Antsaklis and Michel (2006), Kailath (1980),
Chen (1984), and DeCarlo (1989). For addi-
tional material on sampled-data systems, refer to
Aström and Wittenmark (1990), Franklin et al.
(1998), Jury (1958), and Ragazzini and Franklin
(1958).
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Abstract

Spacecraft control systems are described for
single and distributed space systems. The attitude
dynamics is formulated including flexible and
sloshing phenomena, followed by a description

of attitude sensors and actuators. H1 and robust
controls are formulated as signal-based two
degree-of-freedom control architectures. The
equations are given for the relative motion
dynamics between spacecraft on elliptical orbits
with the generic Yamanaka-Ankersen state
transition matrix. Formulations are provided for
rendezvous and docking scenarios and formation
flying control, maneuvers, avionics, and laser
metrology systems together with the onboard
autonomy needs.

Keywords

Flexible modes; Formation flying; Fractionated
spacecraft; H1 control; Multivariable systems;
Relative dynamics; Rendezvous and docking;
Robust control; Sloshing; Spacecraft attitude
control; Spacecraft position control

Introduction

This entry explains the control needs of space-
craft after they have been separated from the
launch vehicle and injected onto their initial orbit.

Actuators and sensors are explained followed
by the control objectives. The state-of-the-
art control techniques and architectures are
addressed.

Spacecraft are classically well-known physi-
cal systems that can be described by first princi-
ples. The advantage is fairly precise plant models
and uncertainty characterization of physical pa-
rameters. This is well suited for a model-based
control design approach.

Mission Types

From a control point of view, space missions can
be split into two main categories according to
which physical states need to be controlled:
Attitude Control: This is needed by any space-

craft irrespective of the mission objectives.
Such missions are typically low earth orbit
(LEO) missions for astronomy, observations,
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and, in higher orbits, constellations for navi-
gation and communication. Further, there are
interplanetary and planetary exploration sci-
ence missions. The pointing requirements vary
from a few degrees to milli-arc seconds.

Relative Position Control: Within distributed
space systems, this is relevant for rendezvous
and docking (RVD) and formation flying
(FF) missions. It leads to a 6 degree-of-
freedom (DOF) control problem as the
relative attitude is also needed. The former is
mostly for missions to space station logistics
infrastructures and the latter for scientific
missions. Relative position can also be
required during the final stages of controlled
planetary landings. Another category is
missions with ultrahigh control performance
requirements, where the spacecraft platform
and the science instrument need to be
considered as one coupled system.

Attitude Control

Fundamentally the three attitude angles � and
angular rates ! need to be controlled to a certain
reference. See Fig. 1 for definition.

The general rigid body dynamics expressed
in a rotating frame(�), which is mostly the case
when orbiting a central body, can be expressed as

N D d�.I!�/
dt

C ! � I!� (1)

where I is the constant inertia matrix, ! is the
inertial angular velocity, and N is the torque
acting on the spacecraft (Wie 1998).

The kinematics can be described by one of the
12 sets of Euler angles (can have singularities) or
the hypercomplex quaternion vector (no singular-
ities) (Hughes 1986).

The dynamics and kinematics equations need
to be linearized and are in the general form of a
coupled 12th order system. It is the fundamental
model for the rigid body spacecraft control de-
sign.

Most modern spacecraft have large flexible
appendices in the form of solar panels and large
antennae reflectors. Fuel sloshing is a similar
lightly damped oscillatory phenomena, which
often needs to be taken into consideration.
The incorporation of dynamic elements such
as flexible panels, antennae, and sloshing fuel
can be modeled by Eqs. (2) and (3) provided the
overall rotation rate ! and linear accelerations Rx
are not too large.

MT

� Rx
P!
�

D
�

F
N

�

� L R� (2)

R�k C 2�k	k P�k C	2
k�k D � 1

mk

LT

� Rx
P!
�

(3)

Satellite Control, Fig. 1
Spacecraft body (black)
and reference (red) frames.
The frames coincide for
� D 0
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where

MT : rigid body mass/inertia matrix
Rx; P! : linear and angular acceleration
F;N : forces and torques on the spacecraft
�k : the kth flexible state
�k : the kth flexible damping factor
	k : the kth flexible eigen frequency
mk : the kth modal mass (normalized to 1)
L : participation matrix of the kth mode

For attitude only the second row of Eq. (2) is
needed, but translation is included here for the
sake of completeness and later use.

The sensors utilized are typically gyroscopes
for measuring the inertial angular rate, sun sen-
sors to measure orientation at low accuracy, and
star trackers for high-precision angular attitude
measurements. All of those sensors are linear
in their normal operational range and it suffices
to use bias noise models for synthesis. Gyros
do need a drift estimation and compensation to
function properly over longer time. All sensors
utilize redundancy for providing measurements
around all three axes as well as providing fault
tolerance. Some scientific observatory spacecraft
use their telescopes for attitude measurements in
order to obtain the required precision beyond the
capability of star trackers.

The actuators producing pure torques are
magnetic torquers, reaction wheels, and control
momentum gyros. The last can produce large
torques used for rapid slew maneuvers with
little power. The last two types have nonlinear
issues around low to zero speed due to friction
issues. They accumulate angular momentum
from asymmetric disturbances. This leads to a
need for thrusters for angular momentum off-
loading. Thrusters are also used to control the
attitude directly on many spacecraft. They are
mostly of on-off type, though continuous ones
exist, and will need to be pulse width modulated
(PWM) to obtain quasi-linear behavior. The
nonlinear on-off nature needs to be taken into
account for the control closed loop analysis. It
is done by use of the negative inverse describing
function (Ogata 1970) for stability analysis and
nonlinear modeling for verification simulations in
the time domain. For larger numbers of thrusters,
an optimization-based selection algorithm is
applied to the controller output.

Before using the plant model in Eq. (2) for a
flexible spacecraft, a simpler multivariable model
of a rigid spacecraft is used as in Eq. (4):

Px D
�

0 Bk
0 Ad

�

x C
�

0
Bd

�

N (4)

where x D Œ
x; 
y; 
z; !x; !y; !z�
T, Bk is identity,

Bd D I�1, and Ad is the general Jacobian for
the dynamics having a real right half-plane (RHP)
pole. See Ankersen (2011). The model describes
the angular deviation from some reference frame,
whose orientation can be arbitrary. It uses the
Euler (3; 2; 1) rotation in the kinematics.

The state of the art of attitude control is today
mostly based on H1 type of robust controllers
with synthesis performed in the frequency
domain. Requirements are often specified in
the time domain, but formal methods exist to
transform them into frequency domain weighting
functions (ESA Handbook 2011) enhancing both
synthesis and analysis. System uncertainties can
be formulated as structured linear fractional
transformations (LFT) with a general control
configuration as illustrated in Fig. 2.

Commonly the H1 controller K is designed,
and the lower loop in Fig. 2 is closed via a lower
LFT such that N D Fl.P;K/ and robust stability
(RS) and robust performance (RP) analysis is
performed on the N;� system (Skogestad and
Postlethwaite 1996).

P

K

Δ

zw

uΔ yΔ

u v

Satellite Control, Fig. 2 Robust control formulation,
where � is the structured uncertainty, K is the controller,
P the partitioned formulation of the plant with weights,
and w and z are exogenous inputs and outputs, respec-
tively
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On high performance pointing spacecraft, ac-
tive vibration suppression of, e.g., cryocoolers
is needed. The implementation of control design
and recursive system identification can achieve
significantly better attenuation compared to clas-
sical passive isolation techniques.

Lately optimization-based codesign of struc-
tures and control has been performed success-
fully. A joint performance function is formu-
lated (mass, stiffness, pointing, fuel, etc.) and an
optimization is performed (differential evolution
algorithm) iterating on control design and finite
element models (FEM). A �-synthesis controller
is synthesized, the pointing performance is ful-
filled, and 15–20 % mass saving is obtained on
the flexible structures. The entire process is fully
automated (Falcoz et al. 2013).

Relative Position Control

For all distributed space systems, relative dy-
namics is important. Rendezvous and formation
flying missions need tracking or maintenance of
the desired relative separation, orientation, and
position between or among the spacecraft. This
is common and independent of the mission type
and will be described in general terms ahead of
the specific RVD and FF missions.

The general relative position dynamics
between centers of mass (COMs) is in Eq. (5),
where it is observed that the in-plane motion
(x, z) is decoupled from the out-of-plane
motion (y).

Rx � !2x � 2!Pz � P!z C k!
3
2 x D 1

mc

Fx

Ry C k!
3
2 y D 1

mc

Fy (5)

Rz � !2z C 2! Px C P!x � 2k!
3
2 z D 1

mc

Fz

where ! D !.t/ is the orbital angular rate, mc is
the chaser mass, Fxyz is the force on the chaser,
and k is a constant determined by the orbit and
is valid for any Keplerian orbit with eccentricity
" < 1.

The Yamanaka-Ankersen equations (Ya-
manaka and Ankersen 2002) provide the

generalized homogeneous solution in the form
of the transition matrix ˆ, where the solution can
be written as

x.t/ D ƒ�1.�/ˆ.�/ˆ�1
0 .�0/ƒ.�0/x.t0/ (6)

where � is the orbital true anomaly and ƒ are
transformation matrices to and from the time
domain. The elements of ˆ in Eq. (6) are detailed
in (Ankersen 2011), where relevant particular so-
lutions are also to be found. Equation (6) reduces
to the well-known Clohessy-Wiltshire equations
for circular orbits (" D 0) (Clohessy and Wilt-
shire 1960). Equation (6) is used for feedfor-
ward control and trajectory propagation in the
guidance function. During the final approach (see
Fig. 3), a model accounting for the docking port-
to-port relative position and the couplings from
the relative attitude to the position is utilized and
formulated in Eqs. (7) and (8) (Ankersen 2011):

Px D
�

Ap 0
0 Ac

�

x C
�

Bp 0
0 Bc

�

u (7)

y D

2

6

6

4

I 0 Bdc1 0
0 I 0 Bdc2
0 0 I 0
0 0 0 I

3

7

7

5

x (8)

where x D Œxp; Pxp;�c; !c�
T, y D Œxpp; Pxpp;�c;

!c �
T, index p refers to COM positions, index c to

chaser attitude, index pp to port-to-port position,
and Bdc1 ;Bdc2 are the coupling matrices of the
docking port.

A relative motion scenario for a typical RVD
mission looks like in Fig. 4. During the final
approach (<300 m range), the chaser relative
attitude and relative position are controlled.
During the other phases, the chaser attitude
is Earth pointing and the relative position is
controlled at the station-keeping (SK) points,
s0; � � � ; s4 in Fig. 4. The trajectories are typically
open loop feedforward controlled (often with
midcourse corrections).

The avionics sensors for the attitude control
part are generally similar to those described
earlier under attitude control in connection
with Fig. 1. Active laser CCD type of sensors
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Satellite Control, Fig. 3
Definition of
COM-to-COM and
port-to-port positions, s
and spp , respectively,
between two spacecraft

R−bar

S0S1

S2

S3

S3aS4

Pre−Homing

AE

Fly around

Closing

Homing

V−bar

Satellite Control, Fig. 4 This figure shows the phases of typical relative motion approach. The shaded area is a keep-
out zone (KOZ) defined for safety reasons. V-bar is the x-axis and R-bar is the z-axis

is used to measure the relative position (range
and line-of-sight (LOS) angles) and at short
range (<50 m) the relative attitude. They
require a target pattern to provide precise
measurements at short range. Accelerometers
are used, particularly for pulsed maneuvers.
The next generation of RVD GNC systems, test
flown, will utilize Lidar, infrared cameras, and
visual cameras in combination with advanced
image processing providing RVD capabilities
with both cooperative and passive target
spacecraft.

The actuators are mostly thrusters arranged to
achieve controllability for all the 6DOF maneu-
vers needed. Based upon the controller output,
the active thrusters are selected by means of some

type of fuel optimization algorithm. The selected
thrusters are then pulse width modulated (PWM)
within the sampling time.

The controllers are frequently of multivariable
H1 type. They are similar to what is described
in connection with Fig. 2. Flexible modes and
in particular sloshing need to be taken into ac-
count using Eq. (2). Sloshing pendulum mod-
els are used during boost maneuvers and spring
mass damper models during other modes. The
couplings between relative attitude and relative
position in Eq. (8) can be analytically decoupled
setting the matrix C to identity and premultiply-
ing with a decoupling matrix Vd , such that

VdC D I , Vd D C�1 (9)
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Satellite Control, Fig. 5
Principal structure of the 2
degree-of-freedom
controller

and by the inversion theorem for partitioned ma-
trices the upper right partition just changes sign.
The designed controller then needs to be premul-
tiplied by V�1

d , which facilitates a simpler control
design maintaining the 6DOF performance after
2 times 3DOF synthesis.

A 2 degree-of-freedom control architecture as
in Fig. 5 is beneficial since much of the perfor-
mance is achieved by controller K1. The structure
of the synthesis formulation is a signal-based
model-reference configuration for the H1 con-
trol rather than the more classical mixed sensitiv-
ity type. It has proven to have higher robustness
and performance for this type of applications.
As an example, consider a controller that has to
follow a sawtooth motion of the docking port
of the International Space Station (ISS) with an
amplitude of 0:4m and reversal times of 8 s. The
signal-based model-reference controller manages
to track such a motion with errors less than
0:01m compared to the best operational perfor-
mance of 0:08m.

Formation flying usually includes more than
two spacecraft with the need to be controlled
relative to each other. The objective of FF is to
form an instrument in space, not possible with
fixed structures, like a synthetic aperture or an
interferometer of large size.

The performance needs are high and require
innovative high-precision (<1m) metrology
sensors. They are based on divergent laser beams
for the coarse part to be able to transit from
lower to higher accuracy. The fine metrology
uses a laser beam and internal interferometers
to reach the m domain. Actuators are in the
range of N thrust, which can be achieved
with either cold gas or electrical propulsion
thrusters.

The maneuvers realized by entire formations
are rotation, resizing, and slew while maintaining
the formation in most cases (Alfriend et al. 2010).

Formation flying missions with the highest
performance requirements have optical payloads,
which need to have internal control loops at com-
ponent level. To reach the performance required
for applications such as optical interferometry,
the formation and payload must be considered
as one system. The synthesis of a multivariable
controller then handles all the cross couplings in
the system needed to reach performance. Beyond
flexible modes, such systems might also have a
need for active vibration damping for systems
using cryocoolers.

The GNC architecture is often centralized for
nominal science operational modes. For the for-
mation deployment and contingency situations, a
decentralized control architecture is needed. This
leads to a dual architecture GNC system in gen-
eral for formation flying systems. The onboard
autonomy needs to be fairly high in order to cope
with the contingencies in the formation without
ground intervention.

Finally there is an emerging concept of
fractionated spacecraft. There, a formation
consists of a large number of small simple
vehicles maneuvering relative to each other fully
autonomously based upon the nearest neighbor
knowledge and not necessarily information about
the entire formation (Cornford 2012).

Summary and Future Directions

The control of spacecraft has been described for
pure attitude control needs and for spacecraft per-
forming relative proximity maneuvers like ren-
dezvous and formation flying. The focus has been
on sensors, actuators, dynamics, and the robust
control methods applied today.

The further development direction of the field
is expected to be increased on board autonomy
with replanning capabilities and fault-tolerant
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GNC designs. Model predictive control (MPC)
will enter in particular on the guidance functions.
More integrated GNC system-level designs, of
multidisciplinary nature, are expected.

Cross-References

� Fault-Tolerant Control
�H-Infinity Control
�Model-Predictive Control in Practice
�Nominal Model-Predictive Control
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Abstract

For manufacturers operating batch plants, pro-
duction scheduling is a critical and challeng-
ing problem. A thorough understanding of the
problem and the variety of solutions approaches
is needed to achieve a successful application.
This entry will present a brief overview of batch
operations and the state of the art of batch plant
scheduling for nonexperts in the field.

Keywords

Dispatching rules; Optimization; Process
networks; Production sequencing; Product wheel

Introduction

Batch plants, manufacturing operations com-
posed of unit operations that operate in batch
mode, are the primary manufacturing operations
for the production of high margin products
such as pharmaceuticals, specialty chemicals,
and advanced materials. The scheduling of the
sequence of operations over time has a significant
impact on the overall performance of a batch
plant (White 1989). The economic importance of
batch plants, and the importance of scheduling
for batch plants, has spawned a large body of
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research on the topic and a variety of commercial
offerings.

The Nature of Batch Plants

In batch operations, the material transformation
takes place in stages and the operation of each
stage occurs over a specified time while the
material remains in a particular unit operation
performing that stage of production. (A familiar
batch operation is baking a cake. Ingredients and
their amounts, specified by a recipe, are com-
bined and then subjected to a constant tempera-
ture over specified period of time to produce a
cake.) A batch plant may have parallel units for
some stages. Other stages may be operated in a
continuous flow mode with a storage unit feeding
the stage and another storage unit receiving the
stage output. The path through the unit operations
may be product dependent. Batch plants have
highly diverse operational characteristics.

There are two broad categories of batch pro-
cesses: (1) sequential where a batch moves from
one stage to another without losing its identity
and (2) networked where batches can be com-
bined or split to feed downstream units (Mendez
et al. 2006). Sequential processes can be further
classified as single stage, multi-stage, or multi-
purpose.

The nature of a batch process and the different
process structures can be explored by referring
to the process depicted in Fig. 1 (Chu et al.
2013). As drawn, this batch plant operates as
a multi-stage sequential process where a batch
starts in raw material preparation stage (selected

raw materials are loaded and then blended for a
specified time), moves to the reaction stage with
two parallel units (prepared raw materials plus
additives react at a constant temperature for a
specified period of time), moves to the finish-
ing stage (intermediate product is subjected to a
vacuum for a specified period of time to remove
volatile by-products), and finally is processed in
the drumming stage (finished product is packaged
in drums). If finished product storage tanks were
placed between finishing and drumming to allow
the drumming stage to be scheduled indepen-
dently of the first three stages, then the drum-
ming operation would represent a single stage
sequential process. If we further assume that for
some finished products Reactor 1 produces a
batch of precursor for Reactor 2 and that some
products produced in the reactors bypass the
finishing stage and go directly to drumming, then
the underlying plant would be a multi-purpose
sequential process. Finally, if intermediate stor-
age tanks exist for storing multiple batches of
the precursors produced by Reactor 1 and the
contents of the tanks are drawn off to produce
multiple, subsequent batches in both reactors then
the underlying plant is a networked process.

Besides the general structure of a batch
plant, the specific processing requirements,
resources needs, and process constraints have
significant impact on the complexity of the
scheduling problem. One important aspect
is limited resources that are shared between
different operations. The availability and capacity
of shared resources place a severe constraint on
the timing of competing operations. Another
significant factor is intermediate storage between

Scheduling of Batch Plants, Fig. 1 Example batch plant (Solid lines represent material flows from limited inventory.
Dashed lines represent material flow from unlimited inventory)
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stages and the inventory policies that are
enforced. Like shared resources, intermediate
storage places hard constraints on the timing
of upstream and downstream stages, especially
when no storage is available. A third important
constraint on scheduling is product transition
policies that dictate what operations need to
be performed to move from one product to
another in a given stage. Such operations,
sometimes called setups, might involve cleaning,
or producing buffer batches to isolate the
chemistry of one product from another. These
operations involve costs and subtract from the
productive use of the equipment so they have
significant impact on the sequencing of products
through the plant.

Production Scheduling of Batch
Plants

Production scheduling in a batch plant involves
three fundamental decisions: (1) determining the
size of each batch in each stage, (2) assigning

a batch to a processing unit in each stage, and
(3) determining the sequence and timing of pro-
cessing on each unit. These decisions are well
illustrated by a graphical planning board or Gantt
chart as shown in Fig. 2 (Chu et al. 2013). Per-
sonnel charged with creating and managing pro-
duction schedules often rely on such a graphical
tool to construct, analyze and report the schedule.
Generally production schedules are determined
using the information listed in Table 1.

The scope of the scheduling decisions is de-
fined by the level of process detail considered
in the scheduling problem. This idea can be
examined by referring to Figs. 1 and 2. Such a
Gantt chart could apply to a batch plant with four
stages of production: raw material preparation,
reaction, finishing, and drumming, with two par-
allel reactors in the reaction stage. If dedicated
finished product storage exists with large enough
capacity to cover the process lead time then one
schedule could be confined to the first three stages
of production and a different schedule applied to
the drumming stage. The scope of the scheduling
problem could be further reduced if raw material
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Scheduling of Batch Plants, Fig. 2 Gantt chart of a production schedule

Scheduling of Batch Plants, Table 1 Information generally used to construct a production schedule

Scheduling information Examples

Detailed production recipes Batch times, processing rates, unit ratios, sequence dependencies

Equipment data Capacities, availabilities, product suitability

Facility information Shared resource availability and capacities, storage capacities

Production costs Raw materials, utilities, setups, cleanings, manpower

Production targets Inventory replenishments, customer orders with due dates

Current process status Current inventories, operations in progress, schedule items fixed in future time
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preparation only takes place just in time to load a
reactor rather than execute as soon as possible. In
this situation, the time for raw material prepara-
tion could be added to the reactor batch time and
the schedule would involve only the reactors and
the finishing system with the raw material unit
or units schedule implied by the reactor sched-
ule. At a higher level still, the first three stages
of production could be considered a production
train and scheduling could then be reduced to
planning campaigns of batches for each product
over time with the detailed synchronization of
the individual stages left to operations personnel.
Obviously with each level of abstraction some
efficiency in the schedule is lost and subsequently
the opportunity to increase throughput of the
plant.

In most batch plants a person with a title such
as “production scheduler” is charged with the
scheduling decisions. In general, the production
scheduler is responsible for delivering a produc-
tion schedule that meets customer orders on time
and maintains finished product inventory while
dealing with rush orders, late deliveries, equip-
ment breakdowns and other contingencies. Gen-
erally schedulers develop and publish a schedule
to manufacturing on a regular basis (e.g., every
2 days, once a week, etc.) and then monitor
ongoing circumstances (e.g., actual production
vs. plan, new demand, etc.) to determine if minor
adjustments to the schedule are needed or if a
complete new schedule needs to be published.
The construction of a schedule can be an iter-
ative process involving negotiations with manu-
facturing, supply chain, sales, maintenance and
logistics. The tools available to the production
scheduler can have a significant impact on the
quality of schedules they produce.

It is evident from the description above that
production scheduling of batch plants is really
carried out as an exercise in rescheduling in
response to disturbances identified through feed-
back from the process and market. Under these
circumstances production scheduling serves as
a form of high level feedback control of the
process. In this regard the manipulated variables
are the production amounts for each product and
the controlled variables are the inventory levels

and customer service levels for each product.
A scheduling problem can be converted to a
state-space formulation and compared to model
predictive control (Subramanian et al. 2012).

Solution Approaches

The solution approaches applied to scheduling
batch plants cover a wide spectrum of sophis-
tication. A very simple form is nothing more
than a sequence of batches maintained on a white
board in the plant control room. A level above
this would be the use of custom spreadsheets for
arranging batches chronologically and computing
finished product inventory. Another step up is the
use of a manually manipulated Gantt chart as
illustrated in Fig. 2, possibly pre-populated by an
automated planning application that determines
the volume to be produced across the units of
production while leaving the detailed sequencing
and timing decisions to the production scheduler.
The highest level of sophistication involves an
automatically generated schedule with the appli-
cation retrieving all the necessary data from the
appropriate business databases and plant control
system.

Regardless of the level of sophistication, all
solution approaches rely on two fundamental
components for developing a schedule. One is the
modeling paradigm used to represent the physical
system in a more abstract way. The primary
components are: material balances in terms of
batches or units of measure (e.g., pounds), and
timing information as either precedence-based
describing the order of operations or time grid-
based describing the instant at which any opera-
tion takes place. Time can either be described by
a continuous representation or divided into dis-
crete increments. Within these two aspects of the
modeling framework, significant freedom exists
to describe the scheduling problem. The second
fundamental component is the solution method
used to generate the schedule. Each method has
its strengths; therefore solutions combining meth-
ods are also used. The essential problem is to
produce the information needed to draw the Gantt
chart in Fig. 2 given the information in Table 1.
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Product Wheel
While the primary objective of production
scheduling is to meet customer orders while
managing finished product inventory, other
operational issues need to be managed, such as
minimizing product transition costs, minimizing
variability in manufacturing operations, keeping
the scheduling process simple, and balancing
the tradeoff between production lead times,
inventory, and transition losses. The product
wheel is a practical approach widely used in
industry to address these competing issues. A
product wheel is a regular repeating sequence
of products made on a specific unit operation or
an entire production process. A product wheel
is typically depicted as a pie chart as shown
in Fig. 3. Segments of the pie, called spokes
of the wheel, represent a production campaign
of a particular product. The size of the spoke
represents the length of the campaign relative to
the overall duration, or cycle time, of the wheel.

A product wheel has specific design parame-
ters to address various operations objectives. The
sequences is fixed and optimized for minimum
transition costs. The overall cycle time is fixed
and optimized to balance lead time and inventory
costs. The campaign size or spokes for each
product are sized to match average demand for
each product. The fixed pattern of the product
wheel provides manufacturing with a predictable
operational rhythm and the production scheduler
with a very structured decision framework. Refer
to King and King (2013) for a complete treatment
of product wheels.

In practice, the duration of a campaign for a
given product will vary from cycle to cycle as it

A

B

C

D

E
F

Scheduling of Batch Plants, Fig. 3 Product wheel

will be sized to replenish any inventory consumed
in the previous cycle. Low volume products may
not be made on every cycle, although they will
have a fixed location in the sequence. This same
approach applies to make-to-order products that
are not inventoried but produced to fill specific
orders. Thus, in some cases a product wheel may
be composed of several different but repeating
cycles.

Dispatching Rules Used in Discrete
Manufacturing
Batch processes are closely related to discrete
manufacturing. Batches processed on a unit are
analogous to jobs processed on a machine. Much
of the literature on machine scheduling has fo-
cused on the analysis of the specifics encountered
in general classes of problems such as single
machines, parallel machines, flow shops and job
shops, and developing constructive scheduling
rules where a schedule is built up by adding one
job at a time (Blackstone et al. 1982). Under cer-
tain circumstances these rules used for machine
scheduling can be applied to scheduling batch
plants. This allows one to take advantage of a
great body of literature, and at times, very simple
scheduling rules that have proven optimality or
worst case performance limits.

Consider again the batch process referred to in
Fig. 1 which has two parallel reactors. The two
reactors can be modeled as a single stage process
and scheduled like parallel machines using the
simple shortest processing time first (SPT) rule if
the following circumstances hold: (1) raw mate-
rial preparation can be included in the batch time
of reactors, (2) significant storage exists between
the reactors and finishing to essentially isolate
the two stages, (3) product specific batch times
are identical for both reactors, (4) the number
of batches of each product is given (perhaps the
result of an inventory policy for make to stock
products), and (5) the objective is to minimize
the total completion time for all batches. The SPT
rule is simply to select, whenever a reactor is free,
the batch with the shortest processing time from
those yet to be processed. This can be proven
to produce an optimal schedule for the given
conditions.
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Another simple dispatching rule to mention is
the earliest due date first (EDD) rule. This rule
is designed for single stage processes without
parallel units where each batch has an associated
due date. The rule simply orders the batches in
increasing order of their due dates to minimize
the maximum lateness of all orders.

The conditions needed for the SPT rule or
the EDD rule to produce an optimal schedule
can be quite restrictive when considering batch
processes, however these rules and others found
in the machine scheduling literature (Baker and
Trietsch 2009) can still produce a good initial
schedule even in cases where optimality condi-
tions are not satisfied. Once generated, the sched-
ule can be improved by manual manipulation of
the Gantt chart or the application of improvement
heuristics.

Improvement Heuristics
Improvement heuristics try to improve the current
schedule by searching for alternative solutions
either in the neighborhood of the current schedule
or by broadly exploring the solution space. The
behavior of these algorithms is determined by
tuning parameters that balance the use of the two
search techniques and the underlying algorithm
that performs the search. Improvement heuristics
generally have the following basic procedure:
Step 1: Initialize – determine a starting schedule
Step 2: Generate alternatives – build modifica-

tions to the current schedule
Step 3: Check for improvements in modified

schedule – if no improvement is found return
to Step 2 otherwise proceed to Step 4

Step 4: Check for termination – terminate the al-
gorithm if the number of iterations is exceeded
or minimal improvement is obtained.

Many improvement heuristics are inspired by
processes found in nature. Two of the more pop-
ular heuristics are simulated annealing which
mimics the crystal formation during the cooling
process of dense matter (Ryu et al. 2001) and
genetic algorithms that mimic the evolution of a
species over time (Löhl et al. 1988). A key aspect
of improvement heuristics is the representation
of the schedule in context of the algorithm used.
For problems with complicated constraints this
becomes a challenge. Nevertheless, when tuned

properly and used where they fit the problem,
improvement heuristics can produce very good
schedules quickly.

Tree SearchMethods
The scheduling solutions considered so far have
taken a relatively simple view of a batch process
as a single stage process or a flow shop. In
situations where a batch plant involves shared
resources, complicated transition rules or is a
process network, tree search methods are better
suited because they can deal with a large number
of degrees of freedom and many types of con-
straints. Tree search methods rely on representing
alternative schedules as the final nodes in a tree
where intermediate nodes represent partial solu-
tions of the schedule. To be practical, these meth-
ods must be able to effectively search through the
tree while pruning non promising branches (see
Fig. 4). Three of the most popular techniques are
mathematical programming, constraint program-
ming, and beam search.

Mathematical programming solution tech-
niques for scheduling generally convert the
problem to a mixed integer linear programming
(MILP) formulation where branching at nodes of
the tree represent alternative values of the integer
or binary variables. The tree is searched by a
branch-and-bound algorithm which eliminates a
node and the branch that emanates from it if the
lower bound of the objective function represented
by the terminal nodes of the branch is larger than
the current best schedule. The MILP formulation
can be stated generically as

min z D cx C fy

s:t: Ax C By � b

x 2 <nC; y 2 f0; 1gp

where c, f; b are vector of constants,A andB are
matrices of constants, and the solution is defined

Scheduling of Batch Plants, Fig. 4 Trimming the solu-
tion tree
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by the vector variables x and y. A key feature of
using mathematical programming is to represent
the relationships implied in Table 1 and Fig. 1 in
terms of algebraic descriptions. The advantage of
this approach is that a proven optimal solution
exists for a problem stated this way. This provides
the means to assess the quality of the solution
and the impact of implementing the solution. The
drawback of this approach is that since binary
variables are used to represent the assignment of
a batch to a processing unit, and the sequence
and timing of processing on each unit, their num-
ber grows rapidly with the number of units and
the length of the scheduling horizon. However,
the performance of modern computing hardware
and commercial solvers for MILP problems has
allowed industrial size problems to be tackled.

A large variety of modeling paradigms have
been developed to produce a MILP solution
(Floudas and Lin 2004; Mendez et al. 2006).
They address both sequential and networked
processes using continuous time or discrete
time representations. For sequential processes,
time slot approaches have been developed. For
networked processes, the resource task network
and the state task network have been investigated
by many researchers and have been used in
industrial applications.

Constraint programming (CP) formulates a
problem by writing constraints; but unlike the
MILP method, the CP method stresses the feasi-
bility of solutions rather than optimality. Another
important difference is that constraints in the CP
method do not have to be formulated as algebraic
relationships but can be a more general form, thus
making it easier in CP to represent complicated
constraints. CP processes the constraints sequen-
tially to reduce the space of possible solutions. At
each node in the tree, CP processes one constraint
after another, reducing the search space at each
constraint. Being much newer than mathemati-
cal programming, constraint programming has a
smaller body of literature to review but excellent
performance has been reported in the literature
(Baptiste et al. 2001).

In the beam search method, the branch-and-
bound algorithm is modified to only evaluate the
most promising nodes at any given level of the
search tree (Ow and Morton 1988). The number

of nodes evaluated is called the beam width and it
is a key tuning parameter of the method. Another
important element of the method is the technique
used to retain nodes for complete evaluation. The
technique must balance speed versus thorough
evaluation to keep the method practical without
discarding promising nodes. The beam search
method applied to scheduling has been investi-
gated by many authors (Sabuncuoglu and Bayiz
1999).

Simulation
The simulation approach to scheduling batch
plants relies on representing the plant and the
relationships inferred by Table 1 in a computer
program whose algorithms recreate the behavior
of the plant when executed. Generally, the sim-
ulators used for batch operations apply discrete
event simulation (DES) where entities that have
attributes like size, due date, priority, etc. are
operated on by activities for a specified duration.
Fundamental to DES are the use of queues to hold
entities until conditions in the simulation allow
them to proceed to their next activity. Time in a
DES does not proceed in a continuous manner but
rather advances when activities occur. Simulation
has the advantage of being able to describe pro-
cesses and operating policies of arbitrary com-
plexity and model variability in the process oper-
ation. Simulators can be used to evaluate manu-
ally created schedules or can be combined with
optimization and heuristics to produce schedules
by simulation-based optimization (Pegden 2011).

An alternative to DES for batch scheduling
is the use of multi-agent simulators which are
composed of semiautonomous agents assigned
to represent the operation of the process and the
associated decision making. Each agent has a
local goal and communicates with other agents to
accomplish it. Like DES, multi-agent simulators
are capable of describing very complicated
processes. A production schedule can be built
through negotiations between agents (Chu et al.
2013).

Selecting a Solution Approach
The selection of the approach for a given batch
plant should be value-based, balancing improved
revenue with long term cost of ownership by
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considering such factors as the technical compe-
tency of the production scheduler, the expected
capacity utilization of the plant, the operational
complexity of the plant, and the cost to main-
tain the scheduling application. The key is to
obtain the least complicated solution by reducing
the scheduling problem to the highest level of
abstraction and by using the simplest solution
method that provides an effective schedule. See
Harjunkoski et al. (2013) and Pinedo (2008) for a
survey of methods and recommendations for their
practical application.

Summary and Future Directions

While there are a great variety of solution
methods for scheduling, there are still promising
research areas to be investigated. The recent
introduction of sophisticated, object oriented
process control systems with ties to enterprise
management systems sets the stage for the
development of automatic, real time scheduling.
It is here that the principles of feedback control
can be applied to batch plant scheduling. Pursuit
of this goal will require continued development
of fast, adaptive scheduling methods, real time
assessment techniques of schedule performance,
and tight integration of scheduling with the
process control.

Cross-References

�Control and Optimization of Batch Processes
�Models for Discrete Event Systems: An

Overview

Bibliography

Baker KR, Trietsch D (2009) Principles of sequencing and
scheduling. Wiley, Hoboken

Baptiste P, Le Pape C, Nuijten W (2001) Constrained-
based scheduling: applying constraint programming to
scheduling problems. Kluwer Academic, Dordrecht

Blackstone JH, Phillips DT, Hogg GL (1982) A state-of-
the art survey of dispatching rules for manufacturing
job shop operations. Int J Prod Res 20:27–45

Chu Y, Wassick JM, You F (2013) Efficient scheduling
method of complex batch processes with general net-
work structure via agent-based modeling. AIChE J.
doi:10.1002/aic.14101 (accepted)

Floudas CA, Lin XX (2004) Continuous-time versus
discrete-time approaches for scheduling of chemical
processes: a review. Comput Chem Eng 28:2109–2129

Harjunkoski I, Maravelias C, Bongers P, Castro P, En-
gell S, Grossmann I, Hooker J, Méndez C, Sand G,
Wassick J (2013, submitted) Scope for industrial appli-
cations of production scheduling models and solution
methods. Comput Chem Eng 60:277–296

King PL, King JS (2013) The product wheel handbook:
creating balanced flow in high-mix process operations.
Productivity Press, New York

Löhl T, Schulz C, Engell S (1988) Sequencing of batch
operations for a highly coupled production process:
genetic algorithms versus mathematical programming.
Comput Chem Eng 22:S579–S585

Mendez CA, Cerda J, Grossmann IE, Harjunkoski I,
Fahl M (2006) State-of-the-art review of optimization
methods for short-term scheduling of batch processes.
Comput Chem Eng 30:913–946

Ow PS, Morton TE (1988) Filtered beam search in
scheduling. Int J Prod Res 26:35–62

Pegden DD (2011) Business benefits of Simio’s risk-
based planning and scheduling (RPS). In: Simio –
resources – white papers. http://www.simio.com/
resources/white-papers/. Accessed 1 June 2013

Pinedo ML (2008) Scheduling: theory, algorithms, and
practice, 3rd edn. Springer, New York

Ryu JH, Lee HK, Lee IB (2001) Optimal scheduling
for a multiproduct batch process with minimization
of penalty on due date period. Ind Eng Chem Res
40:228–233

Sabuncuoglu I, Bayiz M (1999) Job shop scheduling with
beam search. Eur J Oper Res 118:390–412

Subramanian K, Maravelias CT, Rawlings JB (2012) A
state-space model for chemical production scheduling.
Comput Chem Eng 47:97–110

White CH (1989) Productivity analysis of a large
multiproduct batch processing facility. Comput Chem
Eng 13:239–245

Wong TN, Leungy CW, Mak KL, Fung RYK (2006) Inte-
grated process planning and scheduling/rescheduling –
an agent-based approach. Int J Prod Res 44:3627–3655

Singular Trajectories in Optimal
Control

Bernard Bonnard1 and Monique Chyba2
1Institute of Mathematics, University of
Burgundy, Dijon, France
2University of Hawaii-Manoa, Manoa, HI, USA

Abstract

Singular trajectories arise in optimal control as
singularities of the end-point mapping. Their im-
portance has long been recognized, at first in the

http://dx.doi.org/10.1007/978-1-4471-5058-9_251
http://dx.doi.org/10.1007/978-1-4471-5058-9_52
http://www.simio.com/resources/white-papers/
http://www.simio.com/resources/white-papers/


Singular Trajectories in Optimal Control 1275

S

Lagrange problem in the calculus of variations
where they are lifted into abnormal extremals.
Singular trajectories are candidates as minimizers
for the time-optimal control problem, and they
are parameterized by the maximum principle via
a pseudo-Hamiltonian function. Moreover, be-
sides their importance in optimal control theory,
these trajectories play an important role in the
classification of systems for the action of the
feedback group.

Keywords

Abnormal extremals; End-point mapping;
Martinet flat case in sub-Riemannian geometry;
Pseudo-Hamiltonian

Introduction

The concept of singular trajectories in optimal
control corresponds to abnormal extrema in op-
timization. Suppose that a point x� 2 X ' R

n

is a point of extremum for a smooth function
L W R

n ! R under the equality constraints
F.x/ D 0 where F W X ! Y is a smooth
mapping into Y ' R

p, p < n. The Lagrange
multiplier rule (Agrachev et al. 1997) asserts the
existence of nonzero pairs .�0; ��/ of Lagrange
multipliers such that �0L0.x�/C ��F 0.x�/ D 0.
The normality condition is given by �0 ¤ 0, and
the abnormal case corresponds to the situation
when the rank of F 0.x�/ is strictly less than p.

Abnormal extremals have played an impor-
tant role in the standard calculus of variations
(Bliss 1946). Indeed, consider a classical La-
grange problem:

dx

dt
.t/ D F.x.t/; u.t//; min

u.:/

Z T

0

L.x.t/; u.t//dt

x.0/ D x0; x.T / D x1;

where x.t/ 2 X ' R
n, u.t/ 2 R

m, F and L
are smooth. Using an infinite dimensional frame-
work, the Lagrange multiplier rule still holds and
an abnormal extremum corresponds to a singular-
ity of the set of constraints.

Definition

Consider a system of Rn: dx
dt
.t/ D F.x.t/; u.t//

where F is a smooth mapping from R
n � R

m

into R
n. Fix x0 2 R

n and T > 0. The end-
point mapping is the mapping Ex0;T W u.:/ 2
U ! x.T; x0; u/ where U � L1Œ0; T � is the set
of admissible controls such that the correspond-
ing trajectory x.:; x0; u/ is defined on Œ0; T �. A
control u.:/ and its corresponding trajectory are
called singular on Œ0; T � if u.:/ 2 U is such
that the Fréchet derivativeE 0x0;T of the end-point
mapping is not of full rank n at u.:/.

Fréchet Derivative and Linearized
System

Given a reference trajectory x.:/, t 2 Œ0; T �,
associated to u.:/ with x.0/ D x0, and solution
of dx

dt
.t/ D F.x.t/; u.t//, the system

Pıx.t/ D A.t/ıx.t/C B.t/ıu.t/

with

A.t/ D @F

@x
.x.t/; u.t//; B.t/ D @F

@u
.x.t/; u.t//

is called the linearized system along the control-
trajectory pair .u.:/; x.://.

Let M.t/ be the fundamental matrix, t 2
Œ0; T � solution of

PM.t/ D A.t/M.t/; M.0/ D In:

Integrating the linearized system with ıx.0/ D 0,
one gets the following proposition.

Proposition 1 The Fréchet derivative ofEx0;T at
u.:/ is given by

E 0x0;T
u .v/ D M.T /

Z T

0

M�1.t/B.t/v.t/dt:
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Computation of the Singular
Trajectories and Pontryagin
Maximum Principle

According to the previous computations, a con-
trol u.:/ with corresponding trajectory x.:/ is
singular on Œ0; T � if the Fréchet derivative E 0x0;T
is not of full rank at u.:/. This is equivalent to
the condition that the linearized system is not
controllable (Lee and Markus 1967).

Such a condition is difficult to verify directly
since the linearized system is time-depending and
the computation is associated to the Maximum
Principle (Pontryagin et al. 1962).

Let p� be a nonzero vector such that p�
is orthogonal to Im.E 0x0;T / and let p.t/ D
p�M.T /M�1.t/; then p.:/ is solution of the
adjoint system

Pp.t/ D �p.t/@F
@u
.x.t/; u.t//

and satisfies almost everywhere the equality

p.t/
@F

@u
.x.t/; u.t// D 0:

Introduce the pseudo-Hamiltonian H.x; p; u/ D
hp;F.x; u/i, where h:; :i is the Euclidean inner
product, one gets the following characterization.

Proposition 2 If .x; u/ is a singular control-
trajectory pair on Œ0; T �, then there exists a
nonzero adjoint vector p.:/ defined on Œ0; T �

such that .x; p; u/ is solution a.e. of the following
equations:

dx

dt
D @H

@p
.x; p; u/;

dp

dt
D �@H

@x
.x; p; u/

@H

@u
.x; p; u/ D 0:

Application to the Lagrange Problem

Consider the problem

dx

dt
.t/ D F.x.t/; u.t//;min

Z T

0

L.x.t/; u.t//dt

with x.0/ D x0, x.T / D x1.

Introduce the cost-extended pseudo-Hamilton-
ian: QH.x; p; u/ D hp;F.x; u/i C p0L.x; u/; it
follows that the maximum principle is equivalent
to the Lagrange multiplier rule presented in the
introduction:

d Qx
dt

D @ QH
@ Qp . Qx; Qp; u/; d Qp

dt
D �@

QH
@ Qx . Qx; Qp; u/

@ QH
@u
. Qx; Qp; u/ D 0

where Qx D .x; x0/ is the extended state variable
solution of dx

dt
D F.x; u/; dx

0

dt
D L.x; u/ and

Qp D .p; p0/ is the extended adjoint vector. One
has the condition h Qp; QE 0x0;T

u .v/i D 0where QEx0;T

is the cost-extended end-point mapping.

The Role of Singular Extremals in
Optimal Control

While the traditional treatment in optimization
of singular extremals is to consider them as a
pathology, in modern optimal control, they play
an important role which is illustrated by two
examples from geometric optimal control.

Singular Trajectories in Quantum Control
Up to a normalization (Lapert et al. 2010), the
time minimization saturation problem is to steer
in minimum time the magnetization vector M D
.x; y; z/ from the north pole of the Bloch Ball
N D .0; 0; 1/ to its center O D .0; 0; 0/. The
evolution of the system is described by the Bloch
equation in nuclear magnetic resonance (Levitt
2008)

dx

dt
D �� x C u2z

dy

dt
D �� � u1z

d z

dt
D �.1� z/C u1y � u2x

where .�; �/ are proportional to the inverse of
the relaxation times and u D .u1; u2/ is the
control radio frequency-magnetic field bounded
according to juj � M . Due to the z-symmetry of
revolution, one can restrict the problem to the 2D
single-input case
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dy

dt
D ��y � uz;

d z

dt
D �.1� z/C uy

that can be written as dq

dt
D F.q/C uG.q/.

According to the maximum principle, the
time-optimal solutions are the concatenations
of regular extremals for which u.t/ D
M signhp.t/; G.q.t//i and singular arcs where
hp.t/; G.q.t//i D 0, 8t , and p.t/ is solution of
the adjoint system. Differentiating with respect
of time and using the Lie bracket notation
ŒX; Y �.q/ D @X

@q
.q/Y.q/ � @Y

@q
.q/X.q/, we get

hp; ŒG; F �.q/i D 0;

hp; ŒŒG; F �;G�.q/i C uhp; ŒŒG; F �; F �.q/i D 0:

This leads to two singular arcs:
• The vertical line y D 0, corresponding to the

z-axis of revolution
• The horizontal line z D �

2.��� /
The interesting physical case is when 2� >

3� where the vertical singular line is such that
�1 < �

2.��� / < 0. In this case, the time minimum
solution is represented on Fig. 1. On Fig. 2 we
draw the experimental solution in the deoxy-
genated blood case, compared with the standard
inversion recovery sequence.

σ M

+M

−M

σ −M

B

A σsh

σsv

P

Σ1

Σ2 Σ3
Σ4

Singular Trajectories in Optimal Control, Fig. 1 The
computed optimal solution is the following concatenation:
bang arc � 0

M with the horizontal singular arc �sh followed
by a bang arc P and finally the singular vertical arc �sv

Abnormal Extremals in SR Geometry
Sub-Riemannian geometry was introduced by
R.W. Brockett as a generalization of Riemannian
geometry (Brockett 1982; Montgomery 2002)
with many applications in control (for instance, in
motion planning (Bellaiche et al. 1998; Gauthier
and Zakalyukin 2006) and quantum control).
Its formulation in the framework of control
theory is

Pq.t/ D
m
X

iD1
ui .t/Fi .q.t//; min

u.:/

Z T

0

.

m
X

iD1
u2i .t/dt/

where q 2 U open set in R
n, m < n and

F1; � � � ; Fm are smooth vector fields which forms
an orthonormal basis of the distribution they
generate.

According to the maximum principle, normal
extremals are solutions of the Hamiltonian vector
field Hn, Hn D 1

2
.
Pm

iD1 Hi .q; p/
2/, Hi D

hp;Fi.q/i for i D 1; � � �m. Again abnormal
extremals can be computed by differentiating the
constraintHi D 0 along the extremals. Their first
occurrence takes place in the so-called Martinet
flat case: n D 3;m D 2, F1; F2 are given by

F1 D @

@x
C y2

2

@

@z
; F2 D @

@y

where q D .x; y; z/ 2 U neighborhood of
the origin, and the metric is given by ds2 D
dx2Cdy2. The singular trajectories are contained
in the Martinet plane M W y D 0 and are
the lines z D z0. An easy computation shows
that they are optimal for the problem. We rep-
resent below the role of the singular trajectories
when computing the sphere of small radius, from
the origin, intersected with the Martinet plane
(Fig. 3).

Summary and Future Directions

Singular trajectories play an important role
in many optimal control problem such as in
quantum control and cancer therapy (Schättler
and Ledzewicz 2012). They have to be carefully
analyzed in any applications; in particular in
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Singular Trajectories in
Optimal Control, Fig. 2
Experimental result. Usual
inversion sequence in
green, optimal computed
sequence in blue

Singular Trajectories in Optimal Control, Fig. 3
Projection of the SR sphere on the xz-plane. The singular
line is x D t and the picture shows the pinching of the SR
sphere in the singular direction

Boscain and Piccoli (2006) the authors provide
for single-input systems in two dimensions a
classification of optimal synthesis with singular
arcs.

Additionally, from a theoretical point of view,
singular trajectories can be used to compute feed-
back invariants for nonlinear systems (Bonnard
and Chyba 2003). In relation, a purely mathemat-

ical problem is the classification of distributions
describing the nonholonomic constraints in sub-
Riemannian geometry (Montgomery 2002).
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Abstract

Small signal rotor angle stability analysis in
power systems is associated with insufficient
damping of oscillations under small disturbances.

Rotor angle oscillations due to insufficient
damping have been observed in many power
systems around the world. This entry overviews
the predominant approach to examine small
signal rotor angle stability in large power systems
using eigenvalue analysis.

Keywords

Eigenvalues; Eigenvectors; Low-frequency oscil-
lations; Mode shape; Oscillatory modes; Partici-
pation factors; Small signal rotor angle stability

Small Signal Rotor Angle Stability
in Power Systems

As power system interconnections grew in num-
ber and size, automatic controls such as voltage
regulators played critical roles in enhancing reli-
ability by increasing the synchronizing capability
between the interconnected systems. As technol-
ogy evolved the capabilities of voltage regula-
tors to provide synchronizing torque following
disturbances were significantly enhanced. It was,
however, observed that voltage regulators tended
to reduce damping torque, as a result of which the
system was susceptible to rotor angle oscillatory
instability. An excellent exposition of the mech-
anism and the underlying analysis is provided in
the textbooks (Anderson and Fouad 2003; Sauer
and Pai 1998; Kundur 1993), and a number of
practical aspects of the analysis are detailed in
Eigenanalysis and Frequency Domain Methods
for System Dynamic Performance (1989) and
Rogers (2000). Two types of rotor angle oscil-
lations are commonly observed. Low-frequency
oscillations involving synchronous machines in
different operating areas are commonly referred
to as inter-area oscillations. These oscillations
are typically in the 0.1–2 Hz frequency range.
Oscillations between local machines or a group
of machines at a power plant are referred to as
plant mode oscillations. These oscillations are
typically above the 2 Hz frequency range. The
modes associated with rotor angle oscillations are
also termed inertial modes of oscillation. Other
modes of oscillations associated with the various
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controls also exist. With the integration of signifi-
cant new wind and photovoltaic generation which
are interconnected to the grid using converters,
new modes of oscillation involving the converter
controls and conventional synchronous generator
states are being observed.

The basis for small signal rotor angle stability
analysis is that the disturbances considered are
small enough to justify the use of linear analysis
to examine stability (Kundur et al. 2004). As a re-
sult, Lyapunov’s first method Vidyasagar (1993)
provides the analytical underpinning to analyze
small signal stability. Eigenvalue analysis is the
predominant approach to analyze small signal
rotor angle stability in power systems. Commer-
cial software packages that utilize sophisticated
algorithms to analyze large-scale power systems
with the ability to handle detailed models of
power system components exist.

The power system representation is described
by a set of nonlinear differential algebraic equa-
tions shown in (1)

Px D f .x; z/
0 D g .x; z/

(1)

where x is the state vector and z is a vector of
algebraic variables. Small signal stability analysis
involves the linearization of (1) around a system
operating point which is typically determined by
conducting a power flow analysis:

�

� Px
0

�

D
�

J1 J2
J3 J4

� �

�x

�z

�

(2)

The power system state matrix can be obtained
by eliminating the vector of algebraic variables
�z in (2)

� Px D �

J1 � J2J
�1
4 J3

�

�x D A�x (3)

where A represents the system state matrix.
Based on Lyapunov’s first method, the eigen-
values of A characterize the small signal
stability behavior of the nonlinear system in
a neighborhood of the operating point around
which the system is linearized. The eigenvectors
corresponding to the eigenvalues also provide

significant qualitative information. For each
eigenvalue �i , there exists a vector ui known
as the right eigenvector of A which satisfies the
equation

Aui D �iui (4)

There also exists a row vector vi known as the left
eigenvector of A which satisfies

viA D �ivi (5)

For a system which has distinct eigenvalues, the
right and left eigenvectors form an orthogonal set
governed by

viuj D kij
where
kij ¤ 0 i D j

kij D 0 i ¤ j

(6)

One set (either right or left) of eigenvectors are
usually scaled to unity and the other set obtained
by solving (6) with kij D 1. The right eigen-
vectors can be assembled together as columns
of a square matrix U , and the corresponding
left eigenvectors can be assembled as rows of a
matrix V ; then

V D U�1 (7)

and
VAU D ƒ (8)

where ƒ is a diagonal matrix with the distinct
eigenvalues as the diagonal entries. The relation-
ship in (8) is a similarity transformation and in
the case of distinct eigenvalues provides a path-
way to obtain solutions to the linear system of
equations (3). Applying the following similarity
transformation to (3)

�x D U z ! �xi .t/ D
n
X

jD1
uij zj e

�j t (9)

U Pz D AU z (10)

Pz D U�1AU z D VAU z D ƒz (11)

Pzi .t/ D �i zi ) zi .t/ D zi .0/ e
�i t (12)

zi .0/ D vTi �x .0/ (13)
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zi .t/ D vTi �x .0/ e
�i t (14)

From (9) and (14), it can be observed that the
right eigenvector describes how each mode of the
system is distributed throughout the state vector
(and is referred to as the mode shape), and the
left eigenvector in conjunction with the initial
conditions of the system state vector determines
the magnitude of the mode. The right eigenvector
or the mode shape has been often used to iden-
tify dynamic patterns in small signal dynamics.
One problem with the mode shape is that it is
dependent on the units and scaling of the state
variables as a result of which it is difficult to com-
pare the magnitudes of entries that are disparate
and correspond to states that impact the dynam-
ics differently. This resulted in the development
of the participation factors (Pérez-Arriaga et al.
1982) which are dimensionless and independent
of the choice of units. The participation factor is
expressed as

pik D vikuik (15)

The magnitude of the participation factor mea-
sures the relative participation of the i th state
variable in the kth mode and vice versa.

Small Signal Stability Analysis Tools
for Large Power Systems

Efficient software tools exist that facilitate the
application of the methods in section “Small
Signal Rotor Angle Stability in Power Systems”
to large power systems (Powertech 2012; Martins
1989). These tools incorporate detailed models of
power system components and also leverage the
sparsity in power systems. The building of the A
matrix is a complex task for large power systems
with a multitude of dynamic components. The ap-
proach in Powertech (2012) utilizes a technique
where state space equations are developed for
each dynamic component in the system using a
solved power flow solution and the dynamic data
description for a given system. These state space
equations are then coupled based on the system
topology, and the system A matrix is derived as
in (3). Reference Martins (1989) takes advan-

tage of the sparsity of the Jacobian matrix in
(2) and develops efficient algorithms to determine
the eigenvalues and eigenvectors. The software
tools also provide the flexibility of a number
of different options with regard to eigenvalue
computations:
1. Calculation of a specific eigenvalue at a spec-

ified frequency or with a specified damping
ratio

2. Simultaneous calculation of a group of
relevant eigenvalues in a specified frequency
range or in specified damping ratio range

In addition to the features described above, com-
mercial software packages also provide features
to evaluate:
1. Frequency response plots
2. Participation factors
3. Transfer functions, residues, controllability,

and observability factors
4. Linear time response to step changes
5. Eigenvalue sensitivities to changes in speci-

fied parameters

Applications of Small Signal Stability
Analysis in Power Systems

Small signal stability analysis tools are used for
a range of applications in power systems. These
applications include:
Analysis of local stability problems – These types
of stability problems are primarily associated
with the tuning of control associated with the
synchronous generator, converter interconnected
renewable resources, and HVDC link current
control. In certain cases analysis of local stability
problems could also involve design of supple-
mentary controllers which enhance the stability
region. Since the stability problem pertains to a
local portion of the power system, there is signif-
icant flexibility in modeling the system. In many
instances local stability problems facilitate the
use of a simple representation of a power system
which could include the particular machine or
a local group of machines in question together
with a highly equivalenced representation of the
rest of the system. In cases where controls other
than generator controls influence stability, e.g.,
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static VAr compensators or HVDC links, the
system representation would need to be extended
to include portions of the system where these
devices are located. Typical small signal stability
problems that are analyzed include:
1. Power system stabilizer design
2. Automatic voltage regulator tuning
3. Governor tuning
4. DC link current control
5. Small signal stability analysis for subsyn-

chronous resonance
6. Load modeling effects on small signal stability
References Eigenanalysis and Frequency Domain
Methods for System Dynamic Performance
(1989) and Rogers (2000) provide comprehensive
examples of the analysis conducted for each of
the problems listed above.
Analysis of global stability problems – These
types of stability problems are associated with
controls that impact generators located in differ-
ent areas of the power systems. The analysis of
these inter-area problems requires a more system-
atic approach and involves representation of the
power system in greater detail. The problems that
are analyzed under this category include:
1. Power system stabilizer design
2. HVDC link modulation
3. Static VAr compensator controls
References Eigenanalysis and Frequency Domain
Methods for System Dynamic Performance
(1989) and Rogers (2000) again provide details of
the analysis conducted for each of the problems
listed under this category.

Cross-References

�Lyapunov Methods in Power System Stability
�Lyapunov’s Stability Theory
� Power System Voltage Stability
� Stability: Lyapunov, Linear Systems
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Abstract

Many biological behaviors require that biochemi-
cal species be distributed spatially throughout the
cell or across a number of cells. To explain these
situations accurately requires a spatial description
of the underlying network. At the continuum
level, this is usually done using reaction-diffusion
equations. Here we demonstrate how this class of
models arises. We also show how the framework
is used in two popular models proposed to explain
spatial patterns during development.
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Introduction

Cells are complex environments consisting of
spatially segregated entities, including the nu-
cleus and various other organelles. Even within
these compartments, the concentrations of vari-
ous biochemical species are not homogeneous,
but can vary significantly. The proper localization
of proteins and other biochemical species to their
respective sites is important for proper cell func-
tion. This can be because the spatial distribution
of signaling molecules itself confers information,
such as when a cell needs to respond to a spatially
graded cue to guide its motion (Iglesias and De-
vreotes 2008) or growth pattern (Lander 2013).
Alternatively, information that is obtained in one
part of the cell must be transmitted to another part
of the cell, as when receptor-ligand binding at the
cell surface leads to transcriptional responses in
the nucleus. Frequently, describing the action of
a biological network accurately requires not only
that one account for the chemical interactions
between the different components but that the
spatial distribution of the signaling molecules
also be considered.

Accounting for Spatial Distribution
in Models

Mathematical models of biological networks usu-
ally assume that reactions take place in well-
stirred vessels in which the concentrations of
the interacting species are spatially homogeneous
and hence need not be accounted for explicitly.
These systems also assume that the volume is
constant. When the spatial location of molecules
in cells is important, the concentration of species
changes in both time and space.

Compartmental Models
One way to account for spatial distribution of
signaling components is through compartmental
models. As the name suggests, in these models
the cell is divided into different regions that are
segregated by membranes. Within each compart-
ment, the concentration of the network species

is assumed to be spatially homogeneous. The
membranes in these models can be assumed to be
either permeable or impermeable. In permeable
membranes, information passes through small
openings, such as ion channels or nuclear pores,
which allow molecules to move from one side
of the membrane to the other. With imperme-
able membranes, information must be transduced
by transmembrane signaling elements, such as
cell-surface receptors, that bind to a signaling
molecule in one side of the membrane and release
a secondary effector on the other side. Note that
in this case, the membrane itself acts as a third
compartment.

Compartmental models offer simplicity, since
the reactions that happen in a single region obey
the same reaction kinetics usually assumed in
spatially homogeneous models. Even when the
reactions involve more than one compartment,
as in ligand-receptor binding, this can still be
described by the usual reaction dynamics. Care
must be taken, however, to account properly for
the different effects on the respective concentra-
tions as molecules move from one compartment
to another. In models of spatially homogeneous
systems, there is little practical difference be-
tween writing the ordinary-differential equations
in terms of molecule numbers or concentrations,
since the two are proportional to each other ac-
cording to the volume, which is constant. In
a compartmental model, if the molecule moves
from one compartment to another, there is con-
servation of molecule numbers, but not concen-
trations. For example, if a species is found in
two compartments with volumes V1 and V2 and
transfer rates k12 and k21 s�1, then the differential
equations describing transport between compart-
ments can be expressed in terms of numbers (n1
and n2) as follows:

dn1
dt

D �k12n1 C k21n2

dn2
dt

D Ck12n1 � k21n2:

Dividing by the respective volumes (C1 D n1=V1
and C2 D n2=V2), we obtain equations for the
concentrations
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dC1
dt

D �k12C1 C k21.
V2
V1
/C2

dC2
dt

D Ck12. V1V2 /C1 � k21C2:

In the former case, the two equations add to zero,
indicating that n1.t/ C n2.t/ D constant. In the
latter, if V1 ¤ V2, then C1.t/C C2.t/ varies over
time as molecules move from one compartment
to the other.

Diffusion and Advection
If the distribution of molecules inside any sin-
gle compartment is spatially heterogeneous, then
models must account for this spatial distribu-
tion. At the continuum level, this is done using
reaction-diffusion equations. The basic assump-
tion is a conservation principle expressed as a
continuity equation:

@�

@t
C rj D f;

which relates the changes in the density (�) of a
conserved quantity (in our case, the concentration
of a species: � D C ) to the flux j and any net
production f . In biological networks, the latter
represents the net effect of all the reactions that
affect the concentration of the species includ-
ing binding, unbinding, production, degradation,
post-translational modifications, etc.

In biological models, the flux term usually
comes from one of two sources: diffusion or
advection. According to Fick’s law, diffusive flux
is proportional to the negative gradient of the con-
centration of the species as particles move from
regions of high concentration to regions of low
concentration. The coefficient of proportionality
is the diffusion coefficient,D:

jdiff D �DrC:

Fick’s law describes thermally driven Brownian
motion of molecules at the continuum level. If
the species is embedded in a moving field, then
the flux is proportional to the velocity of the
underlying fluid. In this case, we have advective
flow:

jadv D vC:

In biological systems, advection can arise
because of the movement of the cytoplasm,
but it can also represent directed transport of
molecules, such as the movement of cargo along
filaments by processive motors. In general,
molecules exhibit both diffusive and advective
motion: j D jdiff C jadv, leading to

@C

@t
C r.�DrC C vC / D f;

which, under the assumption that the diffusion
coefficient and the transport velocity are inde-
pendent of spatial location, leads to the reaction-
diffusion-advection equation:

@C

@t
D Dr2C � vrC C f:

Being a second-order partial differential, the
solution requires an initial condition and two
boundary conditions. Common choices for
the latter include periodic (e.g., in models of
closed boundaries) or no-flux (to describe the
impermeability of membranes) assumptions.

Measuring Diffusion Coefficients
Invariably, solving the reaction-diffusion equa-
tion requires knowledge of the diffusion coeffi-
cient of the molecule. Experimentally, this can be
done in a number of ways. In fluorescence recov-
ery after photobleaching (FRAP), a laser is used
to photobleach normally fluorescent molecules
in a specific area of the cell. As these “dark”
molecules are replaced by fluorescent molecules
from non-bleached areas, the fluorescent inten-
sity of the bleached area recovers. Higher dif-
fusion leads to faster recovery. The time to half
recovery, �1=2, can be used to estimate D. If
recovery occurs by lateral diffusion, then

D D r20 �

4�1=2

where r0 is the 1=e2 radius of the Gaussian profile
laser beam and � is a parameter that depends on
the extent of photobleaching, which ranges from
1 to 1.2 (Chen et al. 2006).
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These days, it is increasingly common to mea-
sure lateral diffusion coefficients by observing
the trajectory of single molecules. A molecule
with diffusion coefficient D undergoing Brow-
nian motion in a two-dimensional environment
is expected to have mean-square displacement
(MSD) equal to

hr2i D 4Dt:

Thus, the coefficient D can be obtained by mea-
suring how the MSD changes as a function of the
time interval t . This method can also show if the
molecule is undergoing advection in which case

hr2i D 4Dt C v2t2:

This super-diffusive behavior can be seen in the
concave nature of the plot of hr2i against t . This
plot will also reveal barriers to diffusion. For
example, if the molecule is confined to move in
a circular region of radius a, then, as t increases,
hr2i cannot exceed a2.

Both these methods work best for molecules
diffusing on a membrane. For molecules dif-
fusing in the cytoplasm, the three-dimensional
imaging required is considerably more difficult,
particularly since the diffusion of particles in the
cytoplasm (D 	 1–10m2 s�1) is usually orders
of magnitude greater than for membrane-bound
proteins (D 	 0:01–0:1 m2 s�1). In this case,
an analytical expression can be used to estimate
the diffusion coefficient. The diffusion coefficient
of a spherical particle of radius r moving in a low
Reynolds number liquid with viscosity � is given
by the Stokes-Einstein equation:

D D kBT

6��r
:

The exact viscosity of the cell is unknown, but es-
timates that � is approximately five times that of
water lead to diffusion coefficients of cytoplasmic
proteins that match those measured using FRAP.

Diffusion-Limited Reaction Rates
Even in compartments that are considered well
stirred, the diffusion of molecules is necessary for

reactions to take place. In particular, before two
molecules can react, they must come together. To
see how diffusion influences this, suppose that
spherical molecules of speciesA andB with radii
rA and rB , respectively, come together to form a
complexAB at a rate kd . This rate represents the
likelihood that molecules of A and B collide at
random and hence will depend on the diffusion
properties of the two species. The molecules in
this complex can dissociate at rate k0

d or can
be converted to species C at rate kr . Thus, the
overall reaction involves two steps:

AC B
kd�*)�
k0

d

AB

AB
kr�! C:

Assuming that the system is at quasi-steady-state,
that is, the concentration of AB is constant, the
effective rate of production C is given by

keff D kdkr

k0
d C kr

:

There are two regions of operation. If k0
d 
 kr ,

then keff � kr.kd=k
0
d /. In this case production

is said to be reaction limited. If k0
d � kr , then

keff � kd and production is diffusion limited. In
this case, it is possible to find kd as a function of
the species’ diffusion coefficients.

Assume that species A is stationary, in which
case the effective diffusion is the sum of the two
diffusion coefficients: D D DA CDB . The con-
centration of species B depends on the distance
away from molecules of A. Because we assume
that the reaction rate is fast, at the point of contact
(r? D rACrB ) the concentration is zero since any
molecules of AB are quickly converted to C . At
the other extreme, as r ! 1, the concentration
approaches the bulk concentrationB0. According
to Fick’s law, this concentration gradient causes a
flux density given by j D �D.@B=@r/. The total
flux into a sphere of radius r is then

J D 4�r2j D �4�Dr2 @B
@r
;
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which, at steady state, is constant. Solving this
equation for B.r/ using the two boundary equa-
tions leads to a flux

J D �4�DB0r?;

from which we have that

kd D 4�Dr?:

A typical value for kd , using the Einstein-Stokes
formula, is

4�

�

2 � kBT

6��.r?=2/

�

r? D 8kBT

3�

� 103 m�1 s�1:

Spatial Patterns

The effect of spatial heterogeneities has been of
long interest to developmental biologists, who
study how spatial patterns arise. Two distinct
models have been proposed to explain how this
patterning can arise. Here we introduce these
models and discuss their relative merits. Though
usually seen as competing models, there is recent
evidence suggesting that both models may play
complementary roles during development (Reth
et al. 2012).

Morphogen Gradients
A morphogen is a diffusible molecule that is
produced or secreted at one end of an organism.
Diffusion away from the localized source forms
a concentration gradient along the spatial dimen-
sion. Morphogens are used to control gene ex-
pression of cells lying along this spatial domain.
Thus, a morphogen gradient gives rise to spatially
dependent expression profiles that can account
for spatial developmental patterns (Rogers and
Schier 2011).

The mathematics behind the formation of a
morphogen gradient are relatively straightfor-
ward. The concentration of the morphogen is
denoted by C.x; t/. There is a constant flux (j0)
at one end (x D 0) of a finite one-dimensional

domain of length L, but the morphogen cannot
exit at the other end. The species diffuses inside
the domain and also decays at a rate proportional
to its concentration (f D �kC ). Thus, the
concentration is governed by the reaction-
diffusion equation:

@C

@t
D D

@2C

@x2
� kC;

with boundary conditions:D@C
@x

D �j0 at x D 0,
and D@C

@x
D 0 at x D L. We focus on the steady

state:
d2 NC
dx2

D k

D
NC ;

so that the initial condition is not important. In
this case, the distribution of the species is given
by

NC.x/ D �j0

D

cosh.ŒL � x�=�/

sinh.L=�/
:

Thus, the shape of the gradient is roughly ex-
ponential with parameter � D p

D=k, known
as the dispersion, which specifies the average
distance that molecules diffuse into the domain
before they are degraded or inactivated. Equally
important in determining the gradient, however,
is the spatial dimension (L) relative to the dis-
persion, ˆ D L=�, a ratio known as the Thiele
modulus. If ˆ � 1, then the concentration will
be approximately homogeneous. Alternatively,
ˆ 
 1 leads to a sharp transition close to the
boundary where there is flux and a relatively flat
concentration thereafter.

Though morphogen gradients are commonly
used to describe signaling during development,
where the gradient can extend across a number
of cells, the mathematics described above are
equally suitable for describing concentration gra-
dients of intracellular proteins. In this case, the
dimension of the cell has a significant effect on
the shape of the gradient (Meyers et al. 2006).

As discussed above, morphogen gradients are
established in an open-loop mode. As such, the
actual concentration experienced at a point down-
stream of the source of the morphogen will vary
depending on a number of parameters, includ-
ing the flux j0 and the rate of degradation k.
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Moreover, because the concentration of the mor-
phogen decreases as the distance from the source
grows, the relative stochastic fluctuations will
increase. How to manage this uncertainty is an
active area of research (Rogers and Schier 2011;
Lander 2013).

Diffusion-Driven Instabilities
In 1952, Alan Turing proposed a model of how
patterns could arise in biological systems (Turing
1952). His interest was in explaining how an
embryo, initially spherical, could give rise to a
highly asymmetric organism. He posited that the
breaking of symmetry could be a result of the
change in the stability of the homogeneous state
of the network which would amplify small fluc-
tuations inherent in the initial symmetry. Turing
sought to explain how these instabilities could
arise using only reaction-diffusion systems.

To illustrate how diffusion-driven instabilities
can arise, we work with a single two-species
linear reaction network:

@

@t

�

C1
C2

�

D A

�

C1
C2

�

C @2

@x2
D

�

C1
C2

�

where A D Œ a11 a12a21 a22 � specifies the reaction terms
and the diagonal matrix D D �

D1 0
0 D2

	

the diffu-
sion coefficients.

We assume that, in the absence of diffusion,
the system is stable, so that det.A/ > 0 and
trace.A/ < 0. When considering diffusion in
a one-dimensional environment of length L, we
must consider the spatial modes, which are of
the form exp.iqx/. In this case, stability of the
system requires that trace.A � q2D/ < 0 and
det.A � q2D/ > 0. The former is always true,
since trace.A � q2D/ D trace.A/ � q2.D1 C
D2/ < trace.A/ < 0. However, the condition on
the determinant can fail since

det.A� q2D/ D D1D2q
4 � q2.a22D1 C a11D2/

C det.A/: (1)

Since det.A/ > 0, diffusion-driven instabilities
can only occur if the term a22D1 C a11D2 > 0,
by which it follows that at least one of a11 or a22

must be positive. Since traceA < 0, it follows
that the diagonal terms must have opposite sign.
Usually, it is assumed that a11 > 0 and that a22 <
0. Since det.A/ > 0, it follows that a12 and a21
must also have opposite sign.

These requirements in the sign pattern
of the two molecules lead to one of two
classes of systems. In the first class, known
as activator/inhibitor systems, the activator
(assume species 1) is autocatalytic (a11 > 0)
and also stimulates the inhibitor (a21 > 0), which
negatively regulates the activator (a12 < 0). In
the other class, known as substrate-depletion
systems, a product (species 1) is autocatalytic
(a11 > 0), but in its production consumes
(a21 < 0) the substrate (species 2) whose
presence is needed for formation of the product
(a12 > 0). Note that both systems involve an
autocatalytic positive feedback loop (a11 > 0), as
well as a negative feedback loop involving both
species (a12a21 < 0).

The stability condition also imposes a nec-
essary condition on the dispersion of the two
species, (�i D p

Di=jaii j), since

a22D1 C a11D2 > 0 H) ��21 C �22 > 0

Thus, the species providing the negative feed-
back (inhibitor or substrate) must have higher
dispersion (�2 > �1). This requirement is usually
referred to as local activation and long-range
inhibition.

These conditions are necessary, but not suffi-
cient. They ensure that the parabola defined by
Eq. 1 has real roots. However, when diffusion
takes place in finite domains, the parameter q can
only take discrete values q D 2�n=L for integers
n. Thus, for a spatial mode to be unstable, it must
be that det.A � q2D/ < 0 at specific values of q
corresponding to integers n. If the dimension of
the domain is changing, as would be expected in
a growing domain, the parameter q2 will decrease
over time suggesting that higher modes may lose
stability. Thus, the nature of the pattern may
evolve over time.

Over the years, Turing’s framework has been
a popular model among theoretical biologists
and has been used to explain countless patterns
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seen in biological systems. It has not had the
same level of acceptance among biologists, likely
because of the difficulty of mapping a complex
biological system involving numerous interacting
species into the simple nature of the theoretical
model (Kondo and Miura 2010).

Summary and Future Directions

Spatial aspects of biochemical signaling are
increasingly playing a role in the study of cellular
signaling systems. Part of this interest is the
desire to explain spatial patterns seen in sub-
cellular localizations observed through live cell
imaging using fluorescently tagged proteins. The
ever-increasing computational power available
for simulations is also facilitating this progress.
Specially built spatial simulation software, such
as the Virtual Cell, is freely available and
tailor-made for biological simulations enabling
simulation of spatially varying reaction networks
in cells of varying size and shape (Cowan et al.
2012).

Of course, cell shapes are not static, but evolve
in large part due to the effect of the underlying
biochemical system. This requires simulation
environments that solve reaction-diffusion
systems in changing morphologies. This has
received considerable interest in modeling cell
motility (Holmes and Edelstein-Keshet 2013).

Another aspect of spatial models that is only
now being addressed is the role of mechanics in
driving spatially dependent models. For example,
it has recently been shown that the interaction be-
tween biochemistry and biomechanics can itself
drive Turing-like instabilities (Goehring and Grill
2013).

Finally, we note that our discussion of spa-
tially heterogeneous signaling has been based
on continuum models. As with spatially invari-
ant systems, this approach is only valid if the
number of molecules is sufficiently large that the
stochastic nature of the chemical reactions can be
ignored. In fact, spatial heterogeneities may lead
to localized spots requiring a stochastic approach,
even though the molecule numbers are such that
a continuum approach would be acceptable if the

cell were spatially homogeneous. The analysis
of stochastic interactions in these systems is still
much in its infancy and is likely to be an increas-
ingly important area of research (Mahmutovic
et al. 2012).
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Abstract

For more than half a century, spectral factoriza-
tion is encountered in various fields of science
and engineering. It is a useful tool in robust
and optimal control and filtering and many other
areas. It is also a nice control-theoretical concept
closely related to Riccati equation. As a quadratic
equation in polynomials, it is a challenging alge-
braic task.
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Polynomial Spectral Factorization

As a mathematical tool, the spectral factoriza-
tion was invented by Wiener in 1940s to find
a frequency domain solution of optimal filtering
problems. Since then, this technique has turned
up numberless applications in system, network
and communication theory, robust and optimal
control, filtration, prediction and state reconstruc-
tion. Spectral factorization of scalar polynomials
is naturally encountered in the area of single-
input single-output systems.

In the context of continuous-time problems,
real polynomials in a single complex variable s
are typically used. For such a polynomial p.s/,
its adjoint p�.s/ is defined by

p�.s/ D p.�s/; (1)

which results in flipping all roots across the imag-
inary axis. If the polynomial is symmetric, then
p�.s/ D p.s/ and its roots are symmetrically
placed about the imaginary axis.

The symmetric spectral factorization problem
is now formulated as follows: Given a symmetric
polynomial b.s/,

b�.s/ D b.s/; (2)

that is also positive on the imaginary axis

b.i!/ > 0 for all real !; (3)

find a real polynomial x.s/, which satisfies

x.s/x�.s/ D b.s/ (4)

as well as

x.s/ ¤ 0; Res � 0: (5)

Such an x.s/ is then called a spectral factor of
b.s/. By (5), the spectral factor is a stable poly-
nomial in the continuous-time (Hurwitz) sense.

Obviously, (4) is a quadratic equation in poly-
nomials and its stable solution is the desired
spectral factor.

Example 1 Given

b.s/ D 4C s4 D .1C j C s/ .1 � j C s/

.1C j � s/ .1 � j � s/ ;

(4) results in the spectral factor

x.s/ D 2C 2sC s2 D .1C j C s/ .1 � j C s/ :

When the right-hand side polynomial b.s/

has some imaginary-axis roots, the problem
formulated strictly as above becomes unsolvable
since (3) does not hold and hence (5) cannot be
fulfilled. A more relaxed formulation may then
find its use requiring only b.i!/ � 0 instead
of (3) and x.s/ ¤ 0 only for Res > 0 instead
of (5). Clearly, the imaginary-axis roots of b.s/
must then appear in x.s/ and x�.s/ as well.
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In the realm of discrete-time problems, one
usually encounters two-sided polynomials, which
are polynomial-like objects (In fact, one can stay
with standard one-sided polynomials (either in
nonnegative or in nonpositive powers only), if
every adjoint p�.z/ is multiplied by proper power
of z to create a one-sided polynomial Np.z/ D
p�.z/zn.) with positive and/or negative powers
of a complex variable z, such as, for example,
p.z/ D z�1 C 1 C 2z. Here, the adjoint p�.z/
stands simply for

p�.z/ D p.z�1/ (6)

and the operation results in flipping all roots
across the unit circle. If the two-sided polynomial
is symmetric, then p�.z/ D p.z/ and its roots are
symmetrically placed about the unit circle.

In its discrete-time version, the spectral fac-
torization problem is stated as follows: Given a
symmetric two-sided polynomial b.z/ that meets
the conditions of symmetry

b�.z/ D b.z/ (7)

and positiveness (here on the unit circle)

b.ei!/ > 0 real !; �� < ! � �; (8)

find a real polynomialx.z/ in nonnegative powers
of z to satisfy

x.z/x�.z/ D b.z/ (9)

and
x.z/ ¤ 0; jzj � 1: (10)

By (10), the spectral factor is a stable polynomial
in the discrete-time (Schur) sense.

Example 2 For

b.z/ D 2z�2 C 6z�1 C 9C 6z C 2z2

D 2z�2.z C 0:5C 0:5j /.z C 0:5 � 0:5j /
.z C 1C j /.z C 1 � j /

D 4.z C 0:5C 0:5j /.z C 0:5 � 0:5j /
� .z�1 C 0:5C 0:5j /

.z�1 C 0:5 � 0:5j /

(9) yields

x.z/ D1C 2z C 2z2 D 2.z C 0:5C 0:5j /

.z C 0:5 � 0:5j /

as the desired spectral factor.

When the right-hand side b.z/ possesses some
roots on the unit circle, this problem turns out
to be unsolvable as (8) fails. If necessary, a
less restrictive formulation can then be applied
replacing (8) by b.ei!/ � 0 and with x.z/ ¤ 0

only for jzj > 1 instead of (10). Clearly, the unit-
circle roots of b.z/ must then appear both in x.z/
and x�.z/.

When formulated as above, the spectral fac-
torization problem is always solvable and its
solution is unique up to the change of sign (if x is
a solution, so is �x and no other solutions exist).

Polynomial Matrix Spectral
Factorization

Matrix version of the problem has been encoun-
tered since 1960s. In the world of continuous-
time problems, real polynomial matrices in a
single complex variable s are used. For such a
real polynomial matrix P.s/, its adjoint P �.s/ is
defined as

P �.s/ D PT .�s/: (11)

A polynomial matrix P.s/ is symmetric or, more
precisely, para-Hermitian, if P �.s/ D P.s/.
Needless to say, only square polynomial matrices
can be symmetric.

The matrix spectral factorization problem is
defined as follows: Given a symmetric polyno-
mial matrix B.s/,

B�.s/ D B.s/; (12)

that is also positive definite on the imaginary axis

B.i!/ > 0 for all real !; (13)

find a square real polynomial matrixX.s/, which
satisfies

X.s/X�.s/ D B.s/ (14)
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and has no zeros in the closed right half plain
Re s � 0. Such an X.s/ is then called a left
spectral factor ofB.s/. A right spectral factor
Y.s/ is defined similarly by replacing (14) with

Y �.s/Y.s/ D B.s/: (15)

Example 3 For a symmetric matrix

B.s/ D
�

2 � s2 �2 � s

�2C s 4 � s2

�

;

we have

X.s/ D
�

1:4C s �0:2
�1:2 1:6C s

�

as a left spectral factor and

Y.s/ D
�

1C s 0

�1 2C s

�

as a right one.

As in the scalar case, less restrictive definitions
are sometimes used where the given right-hand
side matrix B.s/ is only nonnegative definite on
the imaginary axis and so the spectral factor is
free of zeros in the open right half plain Re s > 0
only.

In the kingdom of discrete-time, two-sided
real polynomial matrices P.z/ are used having
in general entries with both positive and negative
powers of the complex variable z. For such a
matrix, its adjoint P �.z/ is defined by

P �.z/ D PT .z�1/: (16)

Clearly, if P.z/ has only nonnegative powers of z,
then P �.z/ has only nonpositive powers of z and
vice versa. A square two-sided polynomial matrix
P.z/ is (para-Hermitian) symmetric if P �.z/ D
P.z/.

Here is the discrete-time version of matrix
spectral factorization problem. Given a two-sided
polynomial matrix B.z/ that is symmetric

B�.z/ D B.z/ (17)

and positively definite on the unit circle

B.ei!/ > 0 real !; �� < ! � �; (18)

find a real polynomial matrixX.z/ in nonnegative
powers of z such that

X.z/X�.z/ D B.z/ (19)

and has no zeros on and outside of the unit circle.
Such an X.z/ is then called a left spectral factor
ofB.z/. A right (The right and the left spectral
factor are sometimes called the factor and the
cofactor, respectively, but the terminology is not
set at all.) spectral factor Y(z) is defined similarly
by replacing (19) with

Y �.z/Y.z/ D B.z/ (20)

Example 4 A symmetric two-sided polynomial
matrix

B.z/ D
��2z�1 C 5 � 2z 2z�1 � 1

�1C 2z 2z�1 C 6C 2z

�

has a left spectral factor

X.z/ Š
��1:1C 1:9z 0:55

�0:8z 0:95C 2:1z

�

and a right spectral factor

Y.z/ D
�

2z � 1 1

0 1C 2z

�

:

As before, less restrictive formulations are some-
times encountered where the given symmetric
B.z/ is only nonnegatively definite on the unit
circle and so the spectral factor must have no
zeros only outside of the unit circle.

When formulated as above, the matrix spectral
factorization problem is always solvable. The
spectral factors are unique up to an orthogonal
matrix multiple. That is, if X and X 0 are two left
spectral factors of B, then

X 0 D UX (21)
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whereU is a constant orthogonal matrix UUT D
I , while if Y and Y 0 are two right spectral factors
of B , then

Y 0 D Y V (22)

where V is a constant orthogonal matrix
V T V D I .

J -Spectral Factorization

In robust control, game theory and several other
fields, the symmetric right-hand side in the ma-
trix spectral factorization may have a general
signature. With such a right-hand side, standard
(positive or nonnegative definite) factorization
becomes impossible. Here, a similar yet different
J -spectral factorization takes its role.

In the context of continuous-time problems,
the J-spectral factorization problem is formulated
as follows. Given a symmetric polynomial matrix
B.s/,

B�.s/ D B.s/; (23)

find a square real polynomial matrix X.s/, which
satisfies

X.s/JX�.s/ D B.s/; (24)

where X.s/ has no zeros in the open right half
plain Re s > 0 and J is a signature matrix of the
form

J D
2

4

I1 0 0

0 �I2 0
0 0 0

3

5 (25)

with I1 and I2 unit matrices of not necessarily
the same dimensions. The bottom right block
of zeros is often missing, yet it is considered
here for generality. Such an X.s/ is called a
left J-spectral factor ofB.s/. A right J-spectral
factor is defined by

Y �.s/J Y.s/ D B.s/ (26)

instead of (24). For discrete-time problems, the
J -spectral factorization is defined analogously.

The J-spectral factorization problem is quite
general having standard (either positive or
nonnegative) spectral factorization as a particular
case. No necessary and sufficient existence

conditions appear to be known for J -spectral
factorization. A sufficient condition by Jakubovič
(1970) states that the problem is solvable if the
multiplicity of the zeros on the imaginary axis
of each of the invariant polynomials of the
right-hand side matrix is even. In particular,
this condition is satisfied whenever det B.s/
has no zeros on the imaginary axis. In turn,
the condition is violated if any of the invariant
factors is not factorable by itself. An example of
a nonfactorizable polynomial is 1 + s2.

The J -spectral factors are unique up to a J -
orthogonal matrix multiple. That is, if X and X 0
are two left J -spectral factors of B , then

X 0 D UX; (27)

where U is a J -orthogonal matrix UJU T D J ,
while if Y and Y 0 are two right J -spectral factors
of B , then

Y 0 D Y V; (28)

where V is a J -orthogonal matrix V T JV D J .

Example 5 For

B.s/ D
�

0 1 � s
1C s 2 � s2

�

the signature matrix reads

J D
�

1 0

0 �1
�

and the right J -spectral factor is

Y.s/ D

2

6

6

4

1C s
3 � s2

2

1C s
1 � s2

2

3

7

7

5

Nonsymmetric Spectral Factorization

Spectral factorization can also be non-symmetric.
For a scalar polynomial p (either in s or in z), this
means to factor it directly as

p D pCp� (29)
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where pC is a stable factor of p (having all its
roots either in the open left half plane or inside
of the unit disc, depending on the variable type)
while p� is the “remaining” that is unstable fac-
tor. Eventual roots of p at the stability boundary
either associate to pC or to p�, depending on the
application problem at hand.

For a matrix polynomial P , the non-
symmetric factorization is naturally twofold:
Either

P D PCP� (30)

or
P D P�PC: (31)

For scalar polynomials, symmetric and non-
symmetric spectral factors are closely related.
Given p and having computed a symmetric factor
x for pp� as in (4) or (9) to get

x�x D p�p (32)

Then

pC D gcd .p; x/ and p� D gcd
�

p; x�� (33)

where gcd stands for a greatest common divisor.
In reverse,

x D pC .p�/� and x� D p� �pC�� : (34)

Unfortunately, no such relations exist for the
matrix case.

Example 6 For example,

p.s/ D 1 � s2

factorizes into

pC.s/ D 1C s; p�.s/ D 1 � s

while for

P.s/ D
�

1C s 0

1C s2 1 � s

�

we have

P�.s/ D
�

1 1

s 1

�

; PC.s/ D
�

s �1
1 1

�

:

Algorithms and Software

Spectral factorization is a crucial step in the
solution of various control, estimation, filtration,
and other problems. It is no wonder that a va-
riety of methods has been developed over the
years for the computation of spectral factors. The
most popular ones are briefly mentioned here.
For details on particular algorithms, the reader is
referred to the papers recommended for further
reading.

Factor Extraction Method
If all roots of the right-hand side polynomial
are known, the factorization becomes trivial. Just
write the right-hand side as a product of first and
second order factors and then collect the stable
ones to create the stable factor. If the roots are
not known, one can first enumerate them and
then proceed as above. Somewhat surprisingly, a
similar procedure can be used for the matrix case.
To every zero, a proper matrix factor must be
extracted. For further details, see Callier (1985)
or Henrion and Sebek (2000).

Bauer’s Algorithm
This procedure is an iterative scheme with linear
rate of convergence. It relies on equivalence be-
tween the polynomial spectral factorization and
the Cholesky factorization of a related infinite-
dimensional Toeplitz matrix. For further details,
see Youla and Kazanjian (1978).

Newton-Raphson Iterations
An iterative algorithm with quadratic conver-
gence rate based on consecutive solutions of sym-
metric linear polynomial Diophantine equations.
It is inspired by the classical Newton’s method for
finding a root of a function. To learn more, read
Davis (1963), Ježek and Kučera (1985), Vostrý
(1975).

Factorization via Riccati Equation
In state-space solution of various problems, an al-
gebraic Riccati equation plays the role of spectral
factorization. It is therefore not surprising that the
spectral factor itself can directly be calculated by
solution of a Riccati equation. For further info,
see e.g. Šebek (1992).
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FFT Algorithm
This is the most efficient and accurate procedure
for factorization of scalar polynomials with very
high degrees (in orders of hundreds or thou-
sands). Such polynomials appear in some special
problems of signal processing in advanced audio
applications involving inversions of dynamics of
loudspeakers or room acoustics. The algorithm
is based on the fact that logarithm of a product
(such as the spectral factorization equation) turns
into a sum of logarithms of particular entries. For
details, see Hromčík and Šebek (2007)

All the procedures above are either directly
programmed or can be easily composed from
the functions of Polynomial Toolbox for Matlab,
which is a third-party Matlab toolbox for polyno-
mials, polynomial matrices and their applications
in systems, signals, and control. For more details
on the toolbox, visit www.polyx.com.

Consequences and Comments

Polynomial and polynomial matrix spectral fac-
torization is an important step when frequency
domain (polynomial) methods are used for op-
timal and robust control, filtering, estimation, or
prediction. Numerous particular examples can be
found throughout this Encyclopedia as well as
in the textbooks and papers recommended for
further reading below.

Spectral factorization of rational functions and
matrices is an equally important topic but it is
omitted here due to lack of space. Inquiring
readers are referred to the papers Oara and Varga
(2000) and Zhong (2005).
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Techniques and Tools

Recommended Reading

Nice tutorial books on polynomials and polyno-
mial matrices in control theory and design are
Kučera (1979), Callier and Desoer (1982), and
Kailath (1980)

The concept of spectral factorization was intro-
duced by Wiener (1949), for further informa-
tion see later original papers Wilson (1972)
or Kwakernaak and Šebek (1994) as well as
survey papers Kwakernaak (1991), Sayed and
Kailath (2001) or Kučera (2007).

Nice applications of spectral factorization in con-
trol problems can be found e.g. in Green et al.
(1990), Henrion et al. (2003) or Zhou and
Doyle (1998). For its use of in other engi-
neering problems see e.g. Sternad and Ahlén
(1993).
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Kučera V (1979) Discrete linear control: the polynomial
equation approach. Wiley, Chichester
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Abstract

Uncertainty is an inherent feature of all real-
life complex systems. It can be described in

different forms; we focus on the parametric de-
scription. The simplest results on stability of lin-
ear systems under parametric uncertainty are the
Kharitonov theorem, edge theorem, and graphical
tests. More advanced results include sufficient
conditions for robust stability with matrix un-
certainty, LMI tools, and randomized methods.
Similar approaches are used for robust control
synthesis, where performance issues are crucial.

Keywords
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systems; Matrix; Parametric uncertainty and
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methods; Robust and optimal design; Robust
stability; Tsypkin–Polyak plot

Introduction

Mathematical models for systems and control are
often unsatisfactory due to the incompleteness
of the parameter data. For instance, the ideas
of off-line optimal control can only be applied
to real systems if all the parameters, exogenous
perturbations, state equations, etc. are known pre-
cisely. Moreover, feedback control also requires
a detailed information which is not available in
most cases. For example, to drive a car with four-
wheel control, the controller should be aware of
the total weight, location of the center of gravity,
weather conditions, and highway properties as
well as many other data which may not be known.
In that respect, even such a relatively simple real-
life system can be considered a complex one; in
such circumstances, control under uncertainty is
a highly important issue.

The focus in this article is on the parametric
uncertainty; other types of uncertainty can be
treated in more general models of robustness.
This topic became particularly popular in the
control community in the mid- to late 1980s
of the previous century; at large, the results of
this activity have been summarized in the mono-
graphs (Ackermann 1993; Barmish 1994; Bhat-
tacharyya et al. 1995).
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We start with problems of stability of polyno-
mials with uncertain parameters and present the
simplest robust stability results for this case to-
gether with the most important machinery. Next,
we consider stability analysis for the matrix un-
certainty; most of the results are just sufficient
conditions. We present some useful tools for the
analysis, such as the LMI technique and random-
ized methods. Robust control under parametric
uncertainty is the next step; we briefly discuss
several problem formulations for this case.

Stability of Linear Systems Subject to
Parametric Uncertainty

Consider the closed-loop linear, time invariant
continuous time state space system

Px D Ax; x.0/ D x0; (1)

where x.t/ 2 R
n is the state vector, x0 is an

arbitrary finite initial condition, and A 2 R
n�n

is the state matrix. The system is stable (i.e., no
matter what x0 is, the solutions tend to zero as
t ! 1) if and only if all eigenvalues �i of the
matrix A have negative real parts:

Re�i < 0; i D 1; : : : ; n; (2)

in which case, A is said to be a Hurwitz matrix.
If it is known precisely, checking condition (2) is
immediate. For instance, one might compute the
characteristic polynomial

p.s/ D det.sI �A/ D a0 C a1s C � � � C
an�1sn�1 C sn (3)

of A (here, I is the identity matrix) and use any
of the stability tests (e.g., the Routh algorithm,
Routh–Hurwitz test, and graphical tests such as
the Mikhailov plot or Hermite–Biehler theorem),
see Gantmacher (2000). Alternatively, the eigen-
values can be directly computed using the cur-
rently available software, such as MATLAB.

However, things get complicated if the knowl-
edge of the matrix A is incomplete; for instance,

it can depend on the (real) parameters q D
.q1; : : : ; qm/ which take arbitrary values within
the given intervals:

A D A.q/; q
i

� qi � qi ; i D 1; : : : ; m:

(4)

In that case, we arrive at the robust stability
problem; i.e., the goal is to check if condition (2)
holds for all matrices in the family (4).

The two main components of any robust sta-
bility setup are the feasible set Q � R

`, in which
the uncertain parameters are allowed to take their
values (usually a ball in some norm; e.g., the
box as in (4)), and the uncertainty structure,
which defines the functional dependence of the
coefficients on the uncertain parameters. Of the
most interest are the affine and multiaffine depen-
dence; typically, more general situations are hard
to handle.

Simple Solutions
In some cases, the robust stability problem ad-
mits a simple solution. Perhaps the most strik-
ing example is the so-called Kharitonov theo-
rem (Kharitonov 1978); also see Barmish (1994),
where this seminal result is referred to as a spark
because of its transparency and elegance.

Namely, consider the interval polynomial
family

P D fp.s/ D q0 C q1s C � � � C qns
n;

q
i

� qi � qi ; i D 0; : : : ; ng; (5)

where the coefficients qi are allowed to take
values in the respective intervals independently
of each other and distinguish the following four
elements in this family:

p1.s/ D a0 C q
1
s C q2s

2 C q3s
3 C : : :

p2.s/ D q
0

C q1s C q2s
2 C q

3
s3 C : : :

p3.s/ D q0 C q1s C q
2
s2 C q

3
s3 C : : :

p4.s/ D q0 C q
1
s C q

2
s2 C q3s

3 C : : :

By the Kharitonov theorem, the interval fam-
ily (5) is robustly stable (i.e., all polynomials
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in (5) are Hurwitz having all roots with negative
real parts) if and only if the four Kharitonov
polynomials, p1; p2; p3; and p4, are Hurwitz.

A simple and transparent proof of this
result can be obtained using the value set
concept (Zadeh and Desoer 1963) and the zero
exclusion principle (Frazer and Duncan 1929),
the two general tools which are in the basis of
many results in the area of robust stability. We
illustrate these concepts via robust stability of
polynomials.

Given the uncertain polynomial family

P.s;Q/ D fp.s; q/; q 2 Qg;

the set

V.!/ D fp.j!; q/W ! � 0; q 2 Qg

is referred to as the value set, which is, by
definition, the set on the complex plane obtained
by fixing the argument s to be j! for a certain
value of ! and letting the uncertain parameter
vector q sweep the feasible domain.

The zero exclusion principle states that, un-
der certain regularity requirements, the uncertain
polynomial family is robustly stable if and only
if it contains a stable element and the following
condition holds:

0 … V.!/ 8 ! � 0: (6)

To use this machinery, one has to be able
to compute efficiently the value set and check
condition (6). For the interval family (5), the
value set can be shown to be the rectangle with
coaxial edges and the vertices being the values of
the four Kharitonov polynomials; see Fig. 1.

Being an extremely propelling result, the
Kharitonov theorem is not free of drawbacks.
First of all, it is not capable of determining
the maximal lengths of the uncertainty intervals
that retain the robust stability. This relates to an
important notion of robust stability margin; for
simplicity, we define this quantity for the case
of the interval family (5). Namely, introduce the
nominal polynomial p0.s/ with coefficients

q0i D .qi C q
i
/=2;

Stability and Performance of Complex Systems
Affected by Parametric Uncertainty, Fig. 1 The
Kharitonov rectangular value set

and the scaling factors

˛i D .qi � q
i
/=2

for the deviations of the coefficients. Then the
robust stability margin rmax is defined as follows:

rmax D supfr W p.s; q/ (5) is stable 8 qi W
jqi � q0i j � r˛i ; i D 1; : : : ; ng: (7)

Anther drawback of the Kharitonov result is
its inapplicability to the discrete-time case (Schur
stability of polynomials).

A more flexible graphical test for robust stabil-
ity uses the so-called Tsypkin–Polyak plot (Tsyp-
kin and Polyak 1991), which is defined as the
parametric curve on the complex plane:

z.!/ D x.!/Cjy.!/; j D p�1I 0 � ! < 1;

where

x.!/ D q00 � q02!
2 C : : :

˛0 C ˛2!2 C : : :
;

y.!/ D q01 � q03!2 C : : :

˛1 C ˛3!2 C : : :
: (8)

Then, by the Tsypkin–Polyak criterion, the poly-
nomial family (5) is robustly stable if and only
if the following conditions hold: (i) q00 > ˛0,
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Stability and Performance of Complex Systems
Affected by Parametric Uncertainty, Fig. 2 The
Tsypkin–Polyak plot

q0n > ˛n, and (ii) as ! changes zero to infinity,
the curve z.!/ goes consecutively through n

quadrants in the counterclockwise direction and
does not intersect the unit square with the vertices
.˙1;˙j /.

Unlike the Kharitonov theorem, with this test,
the robust stability margin of family (5) can be
determined as the size of the maximal square
inscribed in the curve z.!/; see Fig. 2. More-
over, with minor modifications, this test applies
to dependent uncertainty structures where the
coefficient vector q D .q0; : : : ; qn/

> is confined
to a ball in `p-norm, not to a box as in (5).

On top of that, the Tsypkin–Polyak plot can be
built for discrete-time systems which do not ad-
mit any counterparts of the Kharitonov theorem.

It is fair to say that interval polynomial fami-
lies is an idealization, since the coefficients of the
characteristic polynomial can hardly be thought
of as the physical parameters of the real-world
system. As a step towards more realistic formu-
lations, consider the affine polynomial family of
the form

p.s/ D p0.s/C
m
X

iD1
qipi .s/; jqi j � 1;

i D 1; : : : ; m; (9)

where pi are the given polynomials and the qi s
are the uncertain parameters (clearly, they can

be scaled to take values in the segment Œ�1; 1�).
The famous edge theorem (Bartlett et al. 1988)
claims that checking the robust stability of such a
family is equivalent to checking the edges of the
uncertainty box, i.e., the points q 2 R

m with all
but one components being fixed to ˙1, while the
“free” coordinate varies in Œ�1; 1�.

Complex Solutions
Obviously, the affine model (9) covers just a
small part of problems with parametric uncer-
tainty. Closed-form solutions cannot be obtained
in the general case; however, many important
classes of systems can be analyzed efficiently.

Thus, in the engineering practice, block dia-
gram description of systems is often more conve-
nient than differential equations of the form (1).
The blocks are associated with typical elements
such as amplifiers, integrators, lag elements, and
oscillators, which are connected in a certain cir-
cuit. In this case, transfer functions are the most
adequate tool for dealing with such systems. For
instance, the transfer function of the lag element
is given by

W.s/ D 1=.T s C 1/;

where the scalar T is the time constant of the
element. In terms of differential equations, this
means that the input u.t/ of a block and its
output x.t/ satisfy the equation T Px C x D u.

Assume now we have a set of m cascade
connected elements with uncertain time constants

T i � Ti � T i ; i D 1; : : : ; m; (10)

with known lower and upper bounds. The char-
acteristic polynomial of such a connection em-
braced by the feedback with gain k is known to
have the form

p.s/ D k C .1C T1s/ � � � .1C Tms/: (11)

Hence, the robust stability problem reduces
to checking if all polynomials (11) with
constraints (10) are Hurwitz. Note that the
coefficients of such a polynomial depend
multilinearly on the uncertain parameters Ti
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(cf. linear dependence in (9)), making the
problem much more complicated.

The solution of the problem above was ob-
tained in Kiselev et al. (1997) for many impor-
tant special cases; the closely related problem of
finding the “critical gain” (the maximal value of k
retaining the robust stability) was also addressed.

Using the similar technique, closed-form
solutions can be obtained for a number of
similar problems such as robust sector stability,
robust stability of distributed systems, robust
D-decomposition, to name just a few.

Difficult Problems: Possible Approaches
In spite of the apparent progress obtained in the
area of parametric robustness, the list of unsolved
problems is still quite large. Moreover, some of
the formulations were shown to be NP-hard, mak-
ing it hard to believe that any efficient solution
methods will ever be found.

One of such fundamental problems is robust
stability of the interval matrix. Specifically, as-
sume that the entries aij of the matrix A in (1)
are interval numbers

aij � aij � aij ; i; j D 1; : : : ; nI

the problem is to check if the interval matrix
is robustly stable, i.e., if the eigenvalues of all
matrices in this family have negative real parts.
Numerous attempts to prove a Kharitonov-like
theorem for matrices have failed, and the results
by Nemirovskii (1994) on NP-hardness showed
that these generalizations are not possible. It was
also shown that the edge theorem for matrix
families is not valid. The other NP-hard problems
in robustness include the analysis of systems with
interval delays, parallel connection of uncertain
blocks, problem (11)–(10) with nested segments
ŒT i ; T i �, and others.

However, a change in the statement of the
problem often allows for simple and elegant so-
lutions. We mention three fruitful reformulations.

In the first approach, the uncertain parameters
are assumed to have random rather than determin-
istic nature; for instance, they are assumed to be
uniformly distributed over the respective intervals
of uncertainty. We next specify an acceptable

tolerance ", say " D 0:01, and check if the
resulting random family of polynomials is stable
with probability no less than .1 � "/; see Tempo
et al. (2013) for a comprehensive exposition of
such a randomized approach to robustness.

In many of the NP-hard robustness problems,
such a reformulation often leads to exact or ap-
proximate solutions. Moreover, the randomized
approach has several attractive properties even
in the situations where the deterministic solution
is available. Indeed, the deterministic statements
of robustness problems are minimax; hence, the
answer is dictated by the “worst” element in
the family, whereas these critical values of the
uncertain parameters are rather unlikely to occur.
Therefore, by neglecting a small risk of viola-
tion of the stability, the admissible domains of
variation of the parameters may be considerably
extended. This effect is known as the proba-
bilistic enhancement of robustness margins; it
is particularly tangible for the large number of
the parameters. Another attractive property of the
randomized approach is its low computational
complexity which only slowly grows with in-
crease of the number of uncertain parameters.

To illustrate, let us turn back to problem (11)–
(10) and use the value set approach. In the con-
sidered problem, this set can be efficiently built.

Assume now that the parameters Ti are inde-
pendent random variables uniformly distributed
over the respective segments (10) and consider
the random variable

� D �.!/ D log.p.j!/�k/ D
m
X

iD1
log.1Cj!Ti /:

(12)
The right-hand side of the last relation is the
sum of independent complex-valued random
variables; for m large, its behavior obeys the
central limit theorem, so that the probability
that � belongs to the respective confident
ellipse E D E.!/ is close to unity. In other
words, we have

p.j!/ � k C eE :D G.!/;

and the set G.!/ is referred to as a probabilistic
predictor of the value set V.!/; it is the shifted
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set of points of the form ez; z 2 E � C. The
predictor G.!/ constitutes a small portion of the
deterministic value set V.!/, yielding the proba-
bilistic enhancement of the robustness margin.

Note also that the computation of E and eE is
nearly trivial and, in contrast to the construction
of the true value set V , the complexity does not
grow with increase of m.

The second approach to solving “hard” prob-
lems in robust stability relates to the notion of su-
perstability (Polyak and Shcherbakov 2002). The
matrix A of system (1) (and the system itself) is
said to be superstable, if its entries aij ; i; j D
1; : : : ; n, satisfy the relations

aii < 0; min
i
.�aii �

X

j¤i
jaij j/ D � > 0:

The following estimate holds for the solutions
of the superstable system (1):

kx.t/k1 � kx.0/k1e��t ;

i.e., it is stable, and the (nonsmooth) function
kxk1 is a Lyapunov function for the system.
Since the condition of superstability is formu-
lated in terms of linear inequalities on the entries
ofA, checking robust superstability of affine (and
in particular, interval) matrix families is immedi-
ate. Similar situation holds for so-called positive
systems.

The third approach to robustness analysis re-
lates to quadratic stability (Leitmann 1979; Boyd
et al. 1994). Namely, a family of systems is said
to be robustly quadratically stable if it possesses
a common quadratic Lyapunov function V.x/ D
x>Px with positive definite matrix P . In other
words, an uncertain family of matrices A.q/, q 2
Q has to satisfy the following set of the matrix
Lyapunov-type inequalities:

A.q/P C PA.q/>  0; q 2 Q; P � 0;

(13)

where the symbols ;� stand for the sign-
definiteness of a matrix.

The inequality above is referred to as a linear
matrix inequality (LMI), (Boyd et al. 1994); there
exist both efficient numerical methods for solving

such inequalities (interior point methods) and
various software, e.g., MATLAB. This approach
can be directly applied at least in the following
two cases: (i) the set Q contains a finite number
of points and (ii) Q is a polyhedron and the
dependence A.q/ is affine. In the general setup
or in the high-dimensional problems, randomized
methods can be employed.

Finding the quadratic robust stability margin
(by analogy with the stability margin, this is the
maximum span of the feasible set Q that allows
for the existence of the common Lyapunov func-
tion) in this problem is also possible; it reduces
to the minimization of a linear function over the
solutions of a similar LMI.

Note that the approaches based on superstabil-
ity and quadratic stability provide only sufficient
conditions for robustness.

Robust Control

So far, of our primary interest was in assessing
the robust stability of a closed-loop system with
synthesized linear feedback. A more important
problem is to design a controller that makes the
closed-loop system robustly stable and guaran-
tees certain robust performance of the system.

Robust Stabilization
Let the linear system

Px D A.q/x C Bu

depend on the vector q 2 Q of uncertain param-
eters. In the simplest form, the problem of robust
stabilization consists in finding the linear static
state feedback

u D Kx

that guarantees the robust stability of the closed-
loop system. Alternatively, static or dynamic
output robustly stabilizing controllers can be
considered in the situations where only the linear
output y D Cx of the system is available, but not
the complete state vector x.

If the number of controller parameters to be
tuned is small (which is the case for PI or PID
controllers), then the design can be accomplished
using the D-decomposition technique.
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In the general formulation, the problem of
robust design is complicated; it can, however,
be addressed with the use of randomized
methods (Tempo et al. 2013). Other plausible
approaches include superstability and quadratic
stability; respectively, the problem reduces
to solving linear programs or linear matrix
inequalities in the coefficients of the controller.

Robust Performance
Needless to say, the robust stabilization problem
is not the only one in the area of optimal con-
trol. As a rule, a certain cost function is always
involved (say, integral quadratic), and its desired
value should be guaranteed for all admissible
values of the uncertain parameters. Moreover,
robust stability is a necessary condition for such
a guaranteed estimate to exist. This sort of prob-
lems can often be cast in the form of LMIs which
must be satisfied for all admissible values of
the parameters. Such robust LMIs can be solved
either directly or using various randomized tech-
niques presented in Tempo et al. (2013).

Conclusions

In spite of the considerable progress attained in
the parametric robustness of complex systems,
this topic is still a vivid and active research
area. To date, randomization, superstability, and
quadratic stability present the most efficient and
diverse tools for the analysis and design of sys-
tems affected by parametric uncertainty.
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definitions of asymptotic stability, basin of at-
traction, and uniform asymptotic stability for a
compact set. It points out mild assumptions un-
der which different characterizations of asymp-
totic stability are equivalent, as well as when an
asymptotically stable compact set exists. It also
summarizes necessary and sufficient conditions
for asymptotic stability in terms of Lyapunov
functions.

Keywords

Asymptotic stability; Basin of attraction; Hybrid
system; Lyapunov function

Introduction

A hybrid dynamical system combines continuous
change and instantaneous change. Instantaneous
change is the only type of change available for
variables like counters, switches, and logic vari-
ables. Instantaneous change may also be a good
approximation of what occurs to velocities in
mechanical systems at the time of an impact with
a wall, floor, or some other rigid body. At other
times, velocities evolve continuously. Continu-
ous change is also natural for position variables,
continuous timers, and voltages and currents. For
mathematical convenience, it is typical in the
analysis of hybrid dynamical systems to embed
all of these variables into a Euclidean space,
with the understanding that many points in the
state space will never be reached. For example, a
logic variable that naturally takes values in the set
foff; ong is typically embedded in the real number
line where its two distinct values are associated
with two distinct numbers, the only numbers that
this variable will visit during its evolution.

A finite-dimensional dynamical system that
exhibits continuous change exclusively is typi-
cally modeled by an ordinary differential equa-
tion, or sometimes a more flexible differential
inclusion. A system that exhibits purely instan-
taneous change is typically modeled by a dif-
ference equation or inclusion. Consequently, a
hybrid dynamical system combines a differential
equation or inclusion with a difference equation

or inclusion. A big part of the modeling effort for
hybrid systems is directed at determining which
type of evolution should be allowed at each point
in the state space. To this end, subsets of the state
space are specified where each type of behavior
is allowed, like in the description of the heating
system given above.

Though the behavior of a hybrid dynamical
system can be quite complex and nonconven-
tional, it is still reasonable to ask the same sta-
bility questions for them that might be asked
about classical differential or difference equa-
tions. Moreover, the same stability analysis tools
that are used for classical systems are also quite
useful for hybrid dynamical systems. The empha-
sis of this entry is on basic stability theory for hy-
brid dynamical systems, focusing on definitions
and tools that also apply to classical systems.

Mathematical Modeling

SystemData
A hybrid dynamical system with state x belong-
ing to a Euclidean space R

n combines a differ-
ential equation or inclusion, written formally as
Px D f .x/ or Px 2 F.x/, with a difference
equation or inclusion xC D g.x/ or xC 2 G.x/,
where Px indicates the time derivative and xC
indicates the value after an instantaneous change.
The mapping f or F is called the flow map, while
the mapping g or G is called the jump map. A
complete model also specifies where in the state
space continuous evolution is allowed and where
instantaneous change is allowed. The set where
continuous evolution is allowed is called the flow
set and is denoted C , whereas the set where in-
stantaneous change is allowed is called the jump
set and is denoted D. The overall model, using
inclusions for generality, is written formally as

x 2 C Px 2 F.x/ (1a)

x 2 D xC 2 G.x/: (1b)

Solutions
It is natural for solutions of (1) to be functions of
two different types of time: a variable t that keeps
track of the amount of ordinary time that has



Stability Theory for Hybrid Dynamical Systems 1303

S

elapsed and a variable j that counts the number
of jumps. There is a special structure to the types
of domains that are allowed. A compact hybrid
time domain is a set E � R�0 � Z�0, that
is, a subset of the product of the nonnegative
real numbers and the nonnegative integers, of the
form

E D
J
[

iD0
.Œti ; tiC1� � fig/

for some J 2 Z�0 and some sequence of non-
decreasing times 0 D t0 � t1 � � � � � tJC1.
It is possible for several of these times to be the
same, which would correspond to more than one
jump at the given time. A hybrid time domain
is a set E � R�0 � Z�0 such that for each
.T; J / 2 E , the set E \ .Œ0; T � � f0; : : : ; J g/
is a compact hybrid time domain. In contrast to
a compact hybrid time domain, a hybrid time
domain may have an infinite number of intervals,
or it may have a finite number of intervals with
the last one being unbounded or of the form
ŒtJ ; tJC1/; that is, it may be open on the right. A
hybrid arc is a function x, defined on a hybrid
time domain, such that t 7! x.t; j / is locally
absolutely continuous for each j ; in particular,
t 7! x.t; j / is differentiable for almost every
t where it is defined, and this mapping is the
integral of its derivative. The notation “dom x”
denotes the domain of x. Finally, a hybrid arc is a
solution of (1) if the following two properties are
satisfied:
1. For " > 0, .s; j /; .s C "; j / 2 dom x implies

that x.t; j / 2 C and Px.t; j / 2 F.x.t; j // for
almost all t 2 Œs; s C "�.

2. .t; j /; .t; j C 1/ 2 dom x implies that
x.t; j / 2 D and x.t; j C 1/ 2 G.x.t; j //.

For a hybrid system with no flow dynamics, each
solution has a time domain of the form f0g �
f0; : : : ; J g for some J 2 Z�0 or f0g � Z�0.
For a hybrid system with no jump dynamics,
each solution has a time domain of the form
Œ0;1/�f0g, Œ0; T ��f0g, or Œ0; T /�f0g for some
T � 0. No assumptions are made in this entry to
guarantee existence of nontrivial solutions since
stability theory does not hinge on existence of so-
lutions; rather, it simply makes statements about
the behavior of solutions when they exist. To

ensure robustness of various stability properties,
the following basic regularity assumptions are
usually imposed.

Assumption 1 The data .C; F;D;G/ satisfy the
following conditions:
1. The sets C and D are closed.
2. The set-valued mapping F is outer semi-

continuous, locally bounded, and F.x/ is
nonempty and convex for each x 2 C .

3. The set-valued mapping G is outer semi-
continuous, locally bounded, and G.x/ is
nonempty for each x 2 D.

To elaborate further, a set-valued mapping, like
F , is said to be outer semicontinuous if for each
convergent sequence f.xi ; yi /g1

iD0 that satisfies
yi 2 F.xi / for all i 2 Z�0, its limit, denoted
.x; y/, satisfies y 2 F.x/. It is said to be locally
bounded if for each bounded set K1 � R

n

there exists a bounded set K2 � R
n such that,

for every x 2 K1, every y 2 F.x/ belongs
to K2; the latter condition is sometimes written
F.K1/ � K2. If C is closed, f is a function
f W C ! R

n that is continuous, and F is a set-
valued mapping that has the single value f .x/ for
each x 2 C and is empty for x … C , then F is
outer semicontinuous, locally bounded, and F.x/
is nonempty and convex for each x 2 C .

Stability Theory

Definitions and Relationships
Given a dynamical system, predicting or control-
ling the system’s long-term behavior is of pri-
mary importance. A system’s long-term behavior
may be more complicated than just converging to
an equilibrium point. This fact motivates studying
stability of and convergence to a set of points.
For simplicity, this entry focuses on stability of
sets that are compact, that is, they are closed
and bounded. A variety of stability concepts are
defined below. Each of these concepts applies
to continuous-time or discrete-time systems as
readily as to hybrid systems.

A compact set A � R
n is said to be Lyapunov

stable for (1) if for each " > 0 there exists ı > 0

such that for every solution of (1), x.0; 0/ 2
AC ıB implies x.t; j / 2 AC "B for all .t; j / 2
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dom x, where A C ıB indicates the set of points
whose distance to the set A is less than or equal
to ı. In order for a compact set to be Lyapunov
stable for (1), it must be forward invariant for
(1), that is, each solution of (1) with x.0; 0/ 2 A
satisfies x.t; j / 2 A for all .t; j / 2 dom x.
However, forward invariance does not necessarily
imply Lyapunov stability.

For a compact set A � R
n, its basin of

attraction for (1), denoted BA, is the set of points
from which each solution to (1) is bounded and
each solution to (1) having an unbounded time
domain converges to A, the latter being written
mathematically as limtCj!1 jx.t; j /jA D 0

where jx.t; j /jA denotes the distance of x.t; j /
to the set A. Each point that does not belong to
C [D belongs to BA since there are no solutions
from such points. A compact set A is said to be
attractive for (1) if its basin of attraction contains
a neighborhood of itself, that is, there exists " > 0
such that AC "B � BA. A compact set A is said
to be globally attractive if BA D R

n.
A compact set is said to be asymptotically

stable for (1) if it is Lyapunov stable and attrac-
tive for (1). A compact set is said to be globally
asymptotically stable for (1) if it asymptotically
stable for (1) and BA D R

n. It is useful to know
that the basin of attraction for an asymptotically
stable set is always open.

Theorem 1 Under Assumption 1, if a compact
set is asymptotically stable for (1), then its basin
of attraction is an open set.

A compact set A � R
n is said to be uniformly

attractive for (1) if it is attractive for (1) and for
each compact set K � BA and each ı > 0

there exists T > 0 such that for every solution
x of (1), x.0; 0/ 2 K and t C j � T imply
x.t; j / 2 A C ıB. A compact set is said to
be uniformly globally attractive for (1) if it is
globally attractive and uniformly attractive for
(1). Uniform attractivity goes beyond attractivity
by asking that the amount of time it takes each
solution to get close to A is uniformly bounded
over initial conditions in compact subsets of the
basin of attraction.

A compact set A � R
n is said to be Lagrange

stable relative to an open set O � A for (1) if for
each compact set K1 � O there exists a compact

set K2 � O such that for every solution of (1),
x.0; 0/ 2 K1 implies x.t; j / 2 K2 for all .t; j / 2
dom x. In Lagrange stability for the case O D
R
n, a bound on the initial conditions is given and

a bound on the ensuing solutions must be found;
this is in contrast to Lyapunov stability where a
bound on the solutions is given and a bound on
the initial conditions must be found.

A compact set is said to be uniformly asymp-
totically stable for (1) if it is Lyapunov stable,
attractive, Lagrange stable relative to its basin
of attraction, and uniformly attractive for (1).
A compact set is said to be uniformly glob-
ally asymptotically stable for (1) if it is uni-
formly asymptotically stable for (1) and BA D
R
n. There is no difference between asymptotic

stability and uniform asymptotic stability under
Assumption 1.

Theorem 2 Under Assumption 1, a compact set
is uniformly asymptotically stable for (1) if and
only if it is locally asymptotically stable for (1).

As noted earlier, forward invariance does not
imply Lyapunov stability. However, when cou-
pled with uniform attractivity, Lyapunov stability
ensues.

Theorem 3 Under Assumption 1, a compact set
is uniformly asymptotically stable for (1) if and
only if it is forward invariant and uniformly
attractive for (1).

Asymptotic stability can be converted to
global asymptotic stability by shrinking the
flow and jump sets to be compact subsets of the
basin of attraction. However, global asymptotic
stability of a compact set A for x 2 C; Px D f .x/

for each compact set C does not necessarily
imply global asymptotic stability of A for
Px D f .x/.

In some situations it is easier to assert the
existence of a compact asymptotically stable set
than it is to find one explicitly. In this direction,
given a set X � R

n, consider the set of points
z with the property that there exist a sequence
of solutions fxi g1

iD0 to (1) with initial conditions
in X and a sequence of times f.ti ; ji /g1

iD0 with
.ti ; ji / 2 dom xi for each i 2 Z�0 such that
z D limi!1 xi .ti ; ji /. This set of points is called
the !-limit set of X for (1) and is denoted	.X/.
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Theorem 4 Let Assumption 1 hold. For the sys-
tem (1), if X is compact and 	.X/ is nonempty
and contained in the interior of X (i.e., there
exists " > 0 such that 	.X/ C "B � X ),
then the set 	.X/ is compact and uniformly
asymptotically stable with basin of attraction
containingX and equal to the basin of attraction
for X .

Robustness
A given model .C; F;D;G/ may have some
mismatch with a physical process that it aims
to describe. One way to capture some of this
mismatch is to consider the behavior of solutions
to a system with inflated data .Cı; Fı;Dı;Gı/,
ı � 0, defined as follows:

Cı WD fx 2 R
n W .x C ıB/\ C ¤ ¿g (2a)

Fı.x/ WD coF..x C ıB/ \ C/C ıB (2b)

Dı WD fx 2 R
n W .x C ıB/\D ¤ ¿g (2c)

Gı WD G..x C ıB/ \D/C ıB: (2d)

The notation x C ıB indicates a closed ball
of radius ı centered at the point x. Evaluating
a set-valued mapping at a set of points means
to collect all vectors that belong to the set-
valued mapping at any point in the set that
serves as the argument of the set-valued
mapping. The notation “coF..x C ıB/ \ C/”
indicates the closed, convex hull of the set
ff 2 R

n W f 2 F.z/; z 2 .x C ıB/\ C g. Note
that .C0; F0;D0;G0/ D .C; F;D;G/. More
generally, the components of .C; F;D;G/ are
contained in .Cı; Fı;Dı;Gı/. The inflation
data in (2) satisfy the regularity properties of
Assumption 1 when .C; F;D;G/ do.

Proposition 1 If the data .C; F;D;G/ satisfy
Assumption 1 then, for each ı > 0, the inflated
data .Cı; Fı;Dı;Gı/ satisfy Assumption 1.

From the point of view of asymptotic stability,
the behavior of solutions to .Cı; Fı;Dı;Gı/ for
ı > 0 small is not too different from those of
.C; F;D;G/.

Theorem 1 Under Assumption 1, if A is asymp-
totically stable with basin of attractionBA for the
hybrid system with data .C; F;D;G/, then for

each " > 0 and each compact set K satisfying
K � BA, there exist ı > 0 and a compact set
Aı � A C "B that is asymptotically stable with
K � BAı

for .Cı; Fı;Dı;Gı/.

The robustness result of Theorem 1 has sev-
eral consequences beyond the observations in the
preceding examples. One of the consequences is
the following reduction principle.

Theorem 2 Under Assumption 1, if A1 is
asymptotically stable with basin of attraction
BA1 for the hybrid system with data .C; F;D;G/
and the compact set A2 � A1 is globally
asymptotically stable for the hybrid system with
data .C \ A1; F; C \ A2; G/, then the compact
set A2 is asymptotically stable with basin of
attraction BA1 for the hybrid system with data
.C; F;D;G/.

Lyapunov Functions
Arguably the most common method for establish-
ing asymptotic stability is known as Lyapunov’s
method and uses a Lyapunov function. A function
V W Rn ! R�0 is a Lyapunov function candidate
for (1) if it is continuously differentiable on an
open neighborhood of the flow set C , it is defined
for all x 2 C [D[G.D/ (dom V denotes the set
of points where it is defined), and it is continuous
on its domain. Some of these conditions can be
relaxed but are imposed in this entry to keep the
discussion simple. Given a compact set A and an
open set O satisfying A � O � R

n, a Lyapunov
function candidate for (1) is called a Lyapunov
function for .A; O/ if:
(L1) For x 2 .C [D [ G.D// \O , V.x/ D 0

if and only if x 2 A.
(L2) For each x 2 C \ O and f 2 F.x/,

hrV.x/; f i � 0.
(L3) For each x 2 D\O and g 2 G.x/, V.g/�

V.x/ � 0.
A Lyapunov function for .A; O/ is called a
proper Lyapunov function for .A; O/ if, in
addition,
(L4) limi!1 V.xi / D 1 when the sequence

fxi g1
iD0, satisfying xi 2 .C [D[G.D//\

O for all i 2 Z�0, is unbounded or ap-
proaches the boundary of O .

The next result does not use Assumption 1,
though the rest of the results in this entry do.
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Theorem 3 Let A � O � R
n with A compact

and O open. If there exists a Lyapunov function
for .A; O/, then A is Lyapunov stable for (1).
If there exists a proper Lyapunov function for
.A; O/ then A is also Lagrange stable with
respect to O for (1).

We can also conclude asymptotic stability
from a Lyapunov function when it is known
that there are no complete solutions along which
the Lyapunov function is equal to a positive
constant.

Theorem 4 Let A � O � R
n with A compact

and O open. Under Assumption 1, if there exists
a Lyapunov function for .A; O/ and there is no
solution x of (1) starting in OnA that has an un-
bounded time domain and satisfies V.x.t; j // D
V.x.0; 0// for all .t; j / 2 dom x, then A is
uniformly asymptotically stable for (1). If the
Lyapunov function is a proper Lyapunov function
for .A; O/, then the basin of attraction for A
containsO .

The simplest way to rule out solutions
that keep a Lyapunov function equal to a
positive constant is by finding a (proper) strict
Lyapunov function for .A; O/, which is a
(proper) Lyapunov function for .A; O/ that also
satisfies:
(L20) For each x 2 .C \O/nA and f 2 F.x/,

hrV.x/; f i < 0.
(L30) For each x 2 .D \ O/nA and g 2 G.x/,

V.g/ � V.x/ < 0.

Theorem 5 Let A � O � R
n with A compact

and O open. Under Assumption 1, if there ex-
ists a strict Lyapunov function for .A; O/, then
A is uniformly asymptotically stable for (1). If
there exists a proper strict Lyapunov function
for .A; O/, then A is uniformly asymptotically
stable for (1) with basin of attraction contain-
ing O .

While a strict Lyapunov function can be dif-
ficult to find, and this fact has motivated other
more sophisticated stability analysis tools that
have appeared in the literature, it is reassuring to
know that whenever A is compact and asymptot-
ically stable, there exists a proper strict Lyapunov
function for .A;BA/.

Theorem 6 Under Assumption 1, if the com-
pact set A is asymptotically stable for (1), then
there exists a proper strict Lyapunov function
for .A;BA/. More specifically, for each � > 0

there exists a smooth function V with dom V D
BA that V.x/ D 0 if and only if x 2 A,
limi!1 V.xi / D 1 when the sequence fxi g1

iD0,
satisfying xi 2 BA for all i 2 Z�0, is un-
bounded or tends to the boundary of BA, and
such that:
1. For all x 2 C \ BA and f 2 F.x/ ,

hrV.x/; f i � ��V.x/.
2. For all x 2 D \ BA and g 2 G.x/,
V.g/ � exp.��/V.x/.

Summary and Future Directions

Under Assumption 1, stability theory for hybrid
dynamical systems is very similar to stability
theory for differential equations or difference
equations with continuous right-hand sides. In
particular, Lyapunov functions are a very com-
mon analysis tool for hybrid dynamical systems,
though a Lyapunov function can be difficult to
find in the same way that they are challenging to
find for classical systems. With stability theory
for hybrid dynamical systems firmly in place,
future research is expected to exploit this theory
more fully for the development of control algo-
rithms with new capabilities.
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Abstract

The notion of stability allows to study the qualita-
tive behavior of dynamical systems. In particular
it allows to study the behavior of trajectories
close to an equilibrium point or to a motion.

The notion of stability that we discuss has been
introduced in 1882 by the Russian mathematician
A.M. Lyapunov, in his doctoral thesis; hence,
it is often referred to as Lyapunov stability. In
this entry we discuss and characterize Lyapunov
stability for linear systems.

Keywords

Eigenvalues; Equilibrium points; Linear systems;
Motions; Stability

Introduction

Consider a linear, time-invariant, finite-
dimensional system, i.e., a system described by
equations of the form

�x D Ax C Bu;

y D Cx CDu;
(1)

with x.t/ 2 IRn, u.t/ 2 IRm, y.t/ 2 IRp and
A 2 IRn�n, B 2 IRn�m, C 2 IRp�n, and D 2
IRp�m constant matrices. In Eq. (1) �x.t/ stands
for Px.t/ if the system is continuous-time and for
x.t C 1/ if the system is discrete-time. Since the
system is time-invariant, it is assumed, without
loss of generality, that all signals are defined for
t � 0, that is, if the system is continuous-time,
then t 2 IRC, i.e., the set of non-negative real
numbers, whereas if the system is discrete-time,
then t 2 ZC, i.e., the set of non-negative integers.
For ease of notation, the argument “t” is dropped
whenever this does not cause confusion, and we
use the notation t � 0 to denote either IRC or
ZC. Finally, we use either x.t; x.0/; u/ or x.t/
to denote the solution of the first of equations (1)
at a given time t � 0, with the initial condition
x.0/ and the input signal u. The former is used
when it is important to keep track of the initial
state and external input u, whereas the latter is
used whenever there is not such a need.

Definition 1 (Equilibrium) Consider the
system (1). Assume the input u is constant, i.e.,
u.t/ D u0 for all t � 0 and for some constant
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u0. A state xe is an equilibrium of the system
associated to the input u0 if xe D x.t; xe; u0/; for
all t � 0.

Proposition 1 (Equilibria of linear systems)
Consider the system (1) and assume u.t/ D u0,
for all t , where u0 is a constant vector. Then the
following hold.
• If u0 D 0 then the origin is an equilibrium.
• For continuous-time systems, if A is invertible,

for any u0 there is a unique equilibrium xe D
�A�1Bu0. If A is not invertible, the system
has either infinitely many equilibria or it has
no equilibria.

• For discrete-time systems, if I�A is invertible,
for any u0 there is a unique equilibrium xe D
.I � A/�1Bu0. If I � A is not invertible, the
system has either infinitely many equilibria or
it has no equilibria.

Proposition 2 Consider the continuous-time,
time-invariant, linear system

Px D Ax C Bu;

y D Cx CDu;

and the initial condition x.0/ D x0. Then, for all
t � 0,

x.t/ D eAtx0 C
Z t

0

eA.t��/Bu.�/d� (2)

and

y.t/ D CeAtx0C
Z t

0

CeA.t��/Bu.�/d�CDu.t/:

(3)

Proposition 3 Consider the discrete-time, time-
invariant, linear system (to simplify the notation
we use xC.t/ to denote x.t C 1/ and we drop the
argument t)

xC D Ax C Bu;

y D Cx CDu;

and the initial condition x.0/ D x0. Then, for all
t � 0,

x.t/ D Atx0 C
t�1
X

iD0
At�1�iBu.i/ (4)

and

y.t/ D CAtx0 C
t�1
X

iD0
CAt�1�iBu.i/CDu.t/:

(5)

Definitions

In this section we provide some notions and defi-
nitions which are applicable to general dynamical
systems.

Definition 2 (Lyapunov stability) Consider the
system (1) with u.t/ D u0, for all t � 0 and
for some constant u0. Let xe be an equilibrium
point. The equilibrium is stable (in the sense of
Lyapunov) if for every � > 0 there exists a
ı D ı.�/ > 0 such that kx.0/ � xek < ı implies
kx.t/�xek < �; for all t � 0, where the notation
k � k denotes the Euclidean norm in R

n:

In stability theory the quantity x.0/ � xe is
called initial perturbation, and x.t/ is called per-
turbed evolution. Therefore, the definition of sta-
bility can be interpreted as follows. An equi-
librium point xe is stable if however we select
a tolerable deviation �, there exists a (possibly
small) neighborhood of the equilibrium xe such
that all initial conditions in this neighborhood
yield trajectories which are within the tolerable
deviation.

The property of stability dictates a condition
on the evolution of the system for all t � 0. Note,
however, that in the definition of stability, we
have not requested that the perturbed evolution
converge asymptotically, that is, for t ! 1, to
xe . This convergence property is very important
in applications, as it allows to characterize the
situation in which not only the perturbed evolu-
tion remains close to the unperturbed evolution,
but it also converges to the initial (unperturbed)
evolution. To capture this property we introduce
a new definition.
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Definition 3 (Asymptotic stability) Consider
the system (1) with u.t/ D u0, for all t � 0 and
for some constant u0. Let xe be an equilibrium
point. The equilibrium is asymptotically stable
if it is stable and if there exists a constant
ıa > 0 such that kx.0/ � xek < ıa implies
lim
t!1 kx.t/ � xek D 0:

In summary, an equilibrium point is asymp-
totically stable if it is stable, and whenever the
initial perturbation is inside a certain neighbor-
hood of xe , the perturbed evolution converges,
asymptotically, to the equilibrium point, which is
thus said to be attractive. From a physical point
of view, this means that all sufficiently small
initial perturbations give rise to effects which can
be a priori bounded (stability) and which vanish
asymptotically (attractivity).

It is important to highlight that, in general,
attractivity does not imply stability: it is possible
to have an equilibrium of a system which is not
stable (i.e., it is unstable), yet for all initial per-
turbations, the perturbed evolution converges to
the equilibrium. This however is not the case for
linear systems, as discussed in section “Stability
of Linear Systems”. We conclude the section with
two simple examples illustrating the notions that
have been introduced.

Example 1 Consider the discrete-time system
xC D �x; with x.t/ 2 IR. This system has a
unique equilibrium at xe D 0. Note that for any
initial condition x0 2 IR, one has

x2t�1 D �x0; x2t D x0;

for all t � 1 and integer. This implies that the
equilibrium is stable, but not attractive.

Example 2 Consider the continuous-time system

Px1 D !x2; Px2 D �!x1;

with ! a positive constant. The system has a
unique equilibrium at xe D 0. This equilib-
rium is stable, but not attractive. To see this
note that, along the trajectories of the system,
x1 Px1 C x2 Px2 D 0; and this implies that, along
the trajectories of the system, x21.t/ C x22.t/ is

constant, i.e., x21.t/ C x22.t/ D x21.0/ C x22.0/:

Therefore, the state of the system remains on
the circle centered at the origin and with radius
q

x21.0/C x22.0/, for all t � 0: the condition for
stability holds with ı.�/ D �.

Definition 4 (Global asymptotic stability)
Consider the system (1) with u.t/ D u0, for
all t � 0 and for some constant u0. Let xe be
an equilibrium point. The equilibrium is globally
asymptotically stable if it is stable and if, for all
x.0/, lim

t!1 kx.t/ � xek D 0:

The property of (global) asymptotic stability
can be strengthened imposing conditions on the
convergence speed of kx.t/ � xek.

Definition 5 (Exponential stability) Consider
the system (1) with u.t/ D u0, for all t � 0 and
for some constant u0. Let xe be an equilibrium
point. The equilibrium is exponentially stable if
there exists � > 0, in the case of continuous-time
systems, and 0 < � < 1 in the case of discrete-
time systems, such that for all � > 0, there exists
a ı D ı.�/ > 0 such that kx.0/�xek < ı implies
kx.t/ � xek < �e��t ; in the case of continuous-
time systems, and kx.t/ � xek < ��t ; in the case
of discrete-time systems, for all t � 0.

Definition 6 (Stability of motion) Consider the
system (1). Let

M D f.t; x.t// 2 T � IRng;

with x.t/ D x.t; x0; u/, for given x0 and u,
and T D IRC, in the case of continuous-time
systems, and T D ZC, in the case of discrete-
time systems, be a motion. The motion is stable
if for every � > 0 there exists a ı D ı.�/ > 0

such that kx.0/� x0k < ı implies

kx.t; x.0/; u/ � x.t; x0; u/k < �; (6)

for all t � 0.

The notion of stability of a motion is sub-
stantially the same as the notion of stability of
an equilibrium. The important issue is that the
time-parametrization is important, i.e., a motion
is stable if, for small initial perturbations, the
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perturbed evolution is close, for any fixed t �
0, to the non-perturbed evolution. This does not
mean that if the perturbed and unperturbed trajec-
tories are close, then the motion is stable: in fact
the trajectories may be close but may be followed
with different timing, which means that for some
t � 0 condition (6) may be violated.

Stability of Linear Systems

The notion of stability relies on the knowledge
of the trajectories of the system. As a result,
even if this notion is very elegant and useful
in applications, it is in general hard to assess
stability of an equilibrium or of a motion. There
are, however, classes of systems for which it
is possible to give stability conditions without
relying upon the knowledge of the trajectories.
Linear systems belong to one such class. In this
section we study the stability properties of linear
systems, and we show that, because of the linear
structure, it is possible to assess the properties
of stability and attractivity in a simple way. To
begin with, we recall some properties of linear
systems.

Proposition 4 Consider a linear, time-invariant
system. (Asymptotic) stability of one motion im-
plies (asymptotic) stability of all motions. In
particular, (asymptotic) stability of any motion
implies and is implied by (asymptotic) stability of
the equilibrium xe D 0.

The above statement, together with the result
in Proposition 1, implies the following important
properties.

Proposition 5 If the origin of a linear system
is asymptotically stable, then, necessarily, the
origin is the only equilibrium of the system for
u D 0. Moreover, asymptotic stability of the zero
equilibrium is always global. Finally, asymptotic
stability implies exponential stability.

The above discussion shows that the stability
properties of a motion (e.g., an equilibrium) of a
linear system are inherited by all motions of the
system. Moreover, for linear systems, local prop-
erties are always global properties. This means

that, with some abuse of terminology, we can
refer the stability properties to the linear system,
for example, we say that a linear system is stable
to mean that all its motions are stable. Stability
properties of a linear, time-invariant system are
therefore properties of the free evolution of its
state: for this class of systems, it is possible to
obtain simple stability tests.

Proposition 6 A linear, time-invariant system is
stable if and only if keAtk � k, for continuous-
time systems, or kAtk � k, for discrete-time
systems, for all t � 0 and for some k > 0. It is
asymptotically stable if and only if lim

t!1 eAt D 0,

for continuous-time systems, or lim
t!1At D 0, for

discrete-time systems. To state the next result we
need to define the geometric multiplicity of an
eigenvalue. To this end we recall a few facts. Con-
sider a matrixA 2 IRn�n and a polynomialp.�/.
The polynomial p.�/ is a zeroing polynomial for
A if p.A/ D 0. Note that, by Cayley-Hamilton
Theorem, the characteristic polynomial of A is
a zeroing polynomial for A. Among all zeroing
polynomials there is a unique monic polynomial
pM.�/ with smallest degree. This polynomial is
called the minimal polynomial of A. Note that
the minimal polynomial of A is a divisor of the
characteristic polynomial of A. If A has r � n

distinct eigenvalues �1, . . . , �r , then

pM.�/ D .� � �1/m1.� � �2/m2 � � � .� � �r/
mr ;

where the number mi denotes, by definition, the
geometric multiplicity of �i , for i D 1; � � � ; r .
This means that the geometric multiplicity of �i
equals the multiplicity of �i as a root of pM.�/.
Recall, finally, that the multiplicity of �i as a
root of the characteristic polynomial is called
algebraic multiplicity.

Proposition 7 The equilibrium xe D 0 of a
linear, time-invariant system is stable if and only
if the following conditions hold.
• In the case of continuous-time systems, the

eigenvalues of A with geometric multiplicity
equal to one have non-positive real part, and
the eigenvalues of A with geometric multiplic-
ity larger than one have negative real part.
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• In the case of discrete-time systems, the eigen-
values of A with geometric multiplicity equal
to one have modulo not larger than one, and
the eigenvalues ofA with geometric multiplic-
ity larger than one have modulo smaller than
one.

Proof Let �1, �2, � � � , �r , with r � 1, be the
distinct eigenvalues of A, i.e., the distinct roots
of the characteristic polynomial of A. Then

eAt D
r
X

iD1

mi
X

kD1
Rik

tk�1

.k � 1/Še
�i t ;

for some matricesRik , wheremi is the geometric
multiplicity of the eigenvalue �i . This matrix
is bounded if and only if the conditions in the
statement hold. Similarly,

At D
r
X

iD1

mi
X

kD1
Rik

tk�1

.k � 1/Š�
t�kC1
i ;

for some matrices Rik, and this is bounded if and
only if the conditions in the statement hold. G

Proposition 8 The equilibrium xe D 0 of a
linear, time-invariant system is asymptotically
stable if and only if the following conditions
hold.
• In the case of continuous-time systems, the

eigenvalues of A have negative real part.
• In the case of discrete-time systems, the eigen-

values of A have modulo smaller than one.

Proof The proof is similar to the one of the
previous proposition, once it is noted that, for
the considered class of systems and as stated in
Proposition 6, asymptotic stability implies and is
implied by boundedness and convergence of eAt

or At . G

Remark 11.1 For linear, time-varying systems,
i.e., systems described by equations of the form

�x D A.t/x C B.t/u;

y D C.t/x CD.t/u;

it is possible to provide stability conditions in
the spirit of the boundedness and convergence
conditions in Proposition 6. These require the
definition of a matrix, the so-called monodromy
matrix, which describes the free evolution of the
state of the system. It is, however, not possible
to provide conditions in terms of eigenvalues
of the matrix A.t/ similar to the conditions in
Propositions 7 and 8.

We conclude this discussion with an alterna-
tive characterization of asymptotic stability in
terms of linear matrix inequalities.

Proposition 9 The equilibrium xe D 0 of a
linear, time-invariant system is asymptotically
stable if and only if the following conditions
hold.
• In the case of continuous-time systems, there

exists a symmetric positive definite matrix
P D P 0 such that A0P C PA < 0:

• In the case of discrete-time systems, there ex-
ists a symmetric positive definite matrix P D
P 0 such that A0PA � P < 0:

To complete our discussion we stress that
stability properties are invariant with respect to
changes in coordinates in the state space.

Corollary 1 Consider a linear, time-invariant
system and assume it is (asymptotically)
stable. Then any representation obtained by
means of a change of coordinates of the form
x.t/ D L Ox.t/, with L constant and invertible, is
(asymptotically) stable.

Proof The proof is based on the observation
that the change of coordinates transforms the
matrix A into QA D L�1AL and that the matrices
A and QA are similar, that is, they have the same
characteristic and minimal polynomials. G

Summary and Future Directions

The property of Lyapunov stability is instrumen-
tal to characterize the qualitative behavior of
dynamical systems. For linear, time-invariant sys-
tems, this property can be studied on the basis of
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the location, and multiplicity, of the eigenvalues
of the matrix A. The property of Lyapunov sta-
bility can be studied for more general classes of
systems, including nonlinear systems, distributed
parameter systems, and hybrid systems, to which
the basic definitions given in this article apply.
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State Estimation for Batch Processes

Wolfgang Mauntz
Fakultät Bio- und Chemieingenieurwesen,
Technische Universität Dortmund, Dortmund,
Germany

Abstract

The information about certain safety or quality
parameters during a batch process is valuable
for a variety of reasons. In case a direct mea-
surement is too expensive, too slow or nonex-
isting, a state estimator estimating the desired
quantities based on a model and various other
measurements may be a good alternative. The
most prominent method is calorimetry, where the
heat of reaction is measured. This entry gives an
overview of different alternatives that support a
safe and successful batch operation.

Keywords

Calorimetry; Observer; Soft sensor; State
estimator

Introduction

Continuous processes are used to produce a prod-
uct at a constant rate. They are designed to
operate at constant conditions, i.e., the state of
the process (conversion, temperatures, pressures,
concentrations, etc.) does not vary. In contrast,
(semi-)batch processes execute a recipe which
means that they are typically operated within a
wide range of states. The state of the (semi-
batch) process should constantly be monitored.
This information is useful for several purposes:
• Process safety: abnormal process states such

as the accumulation of hazardous substances
or reactive materials may lead to dangerous
situations such as runaway reactions. The ear-
lier an abnormal state is detected, the better
it can be corrected, and the higher is the
probability that loss can be avoided.

http://dx.doi.org/10.1007/978-1-4471-5058-9_85
http://dx.doi.org/10.1007/978-1-4471-5058-9_186
http://dx.doi.org/10.1007/978-1-4471-5058-9_190
http://dx.doi.org/10.1007/978-1-4471-5058-9_187
http://dx.doi.org/10.1007/978-1-4471-5058-9_191
http://dx.doi.org/10.1007/978-1-4471-5058-9_77
http://dx.doi.org/10.1007/978-1-4471-5058-9_266
http://dx.doi.org/10.1007/978-1-4471-5058-9_263
http://dx.doi.org/10.1007/978-1-4471-5058-9_260
http://dx.doi.org/10.1007/978-1-4471-5058-9_137
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• Quality: if the batch is not operated along
the standard trajectory, off-spec product may
result which in turn results in extra effort
and/or second-grade product if this is discov-
ered in time and in a customer complaint if not
discovered before delivery.

• Profit: the better the state is known, the less
conservative the underlying control scheme
needs to be and the more the process can
be pushed to its limits. This may lead to
a higher throughput, less by-products, or
less energy consumption. Advanced control
schemes which are typically applied for this
purpose require knowledge of the state of the
process.
The literature offers a wide range of ways

to monitor a batch process. In some processes,
the observation of simple measurements like
temperatures, pressures, and the time that a
process step takes for execution is sufficient
to guarantee for safe standard product in
minimum time. Examples include some melt-
polymerizations.

However, as soon as the process is more com-
plex, more information than just temperatures
and pressures is required to monitor the process
to meet the goals mentioned above. It may be
sufficient to measure other easy to measure prop-
erties like conductivities, flow rates, pH values,
sound velocities, attenuations, etc. However, in
many cases these measurements do not give the
complete state of the system. Properties like com-
plex gas phase compositions cannot be measured
this way. This might require the installation of
more sophisticated measurements as, e.g., NIR
spectroscopy, online gas chromatography, Raman
spectroscopy, or ion mobility spectroscopy. These
measurements require significant effort in terms
of installation cost and maintenance. In other
situations, no online measurement may be avail-
able at all. These cases include the measurement
of the distribution of the molecular weight in a
polymer melt.

In these cases, where direct online measure-
ments are either too expensive or not available at
all, several methods are available to obtain infor-
mation on the status of the batch (�Estimation,
Survey on).

• Statistical Methods
Experiences from historical batches are used
in a statistical way to predict whether a batch
runs normally. This can, e.g., be accomplished
by defining a golden batch and a correspond-
ing corridor around these trajectories. More
sophisticated methods use principal compo-
nent analysis (PCA) or partial least squares
(PLS) to get a hint at abnormal situations.
These methods are even capable of pointing
at the origin of a possible problem. They are
restricted to problem detection and typically
cannot be used for control purposes.

• Model-Based State Estimation
The state of the system (temperatures,
pressures, concentrations, etc.) is estimated
online which allows for problem detection
as well as control applications. This method
will be described in more detail in the next
chapter.

General reviews of state estimation techniques
can be found in Besancon (2007), Schei (2008),
and a review of industrial applications is, e.g.,
given in Fortuna et al. (2007).

Model-Based State Estimation

The basic idea of a state estimator (which is
frequently also called observer or soft sensor) is
to run a mathematical model of the process in par-
allel to the process itself, to compare the available
measurements to the values which are predicted
by the model, and to correct the estimated state by
a suitable function of the observed error, usually
an additive correction term that depends on the
error. For a state estimator to converge to the
true state, the considered system needs to be
observable. For details, see �Controllability and
Observability. The scheme of a state estimator
is sketched in Fig. 1. The real system processes
the input u to give the system state x which
is affected by the system noise �. The mea-
surements y are perturbed by the measurement
noise '. The model predicts a system state Ox
and a measurement Oy. The difference between the
measured value y and predicted value Oy is then
fed back to correct the estimated state.

http://dx.doi.org/10.1007/978-1-4471-5058-9_60
http://dx.doi.org/10.1007/978-1-4471-5058-9_192
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State Estimation for
Batch Processes, Fig. 1
Principle of a state
estimator

For linear systems, the most commonly used
state estimators are the Luenberger observer and
the Kalman filter (�Kalman Filters). Both mul-
tiply the prediction error .y � Oy/ by a weighting
matrix K to update the estimated state Ox:

POx D AOx C Bu C K.y � Oy/

The two techniques use different approaches for
determining the matrix K:
Luenberger Observer The basic assumption is

that the deviation e.t/ between x and Ox is due
to wrong initial values Ox0. K is computed by
choosing the desired speed of convergence of
the error

Pe.t/ D Px.t/ � POx.t/
D .A � KC/ e.t/

to zero. This is done by placing the eigenval-
ues of the matrix .A � KC/ in the left half
plane.

Kalman Filter The basic assumption is that the
error e.t/ is caused by white noise in the
system � as well as in the measurement '.
The idea is to minimize the expectation of the
quadratic error

min
Ox

E
�

.Ox.t/ � x.t//T .Ox.t/ � x.t//
�

:

K is computed from the noise covariance ma-
trices and the system dynamics and varies with
time.

The tuning of the state estimators is not trivial.
The larger the absolute value of the eigenvalues
in the Luenberger approach, the faster the error
will converge to zero but the more prone the state
estimator will be to measurement noise. A similar
trade-off exists for the Kalman filter where the
covariance matrices of the noise terms � and '

and the covariance of the initial state �0 need to
be defined.

For nonlinear systems, a variety of
approaches is available. The most frequently used
estimators are based on using the nonlinear model
for the prediction of the state and linearizations
of the system dynamics are used to update the
matrix K. The extended Kalman filter (EKF)
(�Extended Kalman Filters) and the extended
Luenberger observer (ELO) are representatives
of this class of approaches. The EKF is most
widely used. Extensions are the constrained EKF
and the unscented EKF.

As examples are known where the EKF fails
due the nonlinearity of the system, methods based
on ideas other than the linearization of system
dynamics have been developed. These methods
include the moving horizon estimator (MHE)
(�Moving Horizon Estimation) and the parti-
cle filter. Because of the increasing capabilities
of modern computers and significant improve-
ments in dynamic optimization algorithms, the
MHE is a very promising alternative. The idea
of the method is to minimize the sum of the
squared errors of the system noise �l , the mea-
surement noise 'l , and the error of the initial state
�k�N which are weighted by weighing matrices
Pk;Q and R over a predefined horizon of past
sampling steps k �N; : : : ; k

http://dx.doi.org/10.1007/978-1-4471-5058-9_61
http://dx.doi.org/10.1007/978-1-4471-5058-9_62
http://dx.doi.org/10.1007/978-1-4471-5058-9_4
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min
�i ;'j

�Tk�NP�1
k �k�N C

k�1
X

lDk�NC1
�Tl Q�1�l

C
k
X

lDk�NC1
'Tl R�1'l

s:t: the system model and the measurement
equations are satisfied and further
inequality constraints
(e.g., physical limits of variables) hold.

The possibility to define constraints on the es-
timated states, e.g., that concentrations must be
nonnegative, is an important advantage of the
MHE approach. If the horizon is reduced to one
single measurement, the constrained extended
Kalman filter results which combines the sim-
plicity of the EKF with the possibility to include
constraints on the estimated states. Efficient im-
plementations of the MHE have led to the method
being capable of estimating the state of rather
large systems in real time (Diehl et al. 2006;
Küpper and Engell 2007).

Calorimetry

Temperature measurements are probably the
cheapest available measurements in chemical
processes, and most plants are typically
well equipped with temperature sensors. To
exploit temperature measurements, e.g., for
the observation of exothermic or endothermic
reactions, heat balances are set up and solved
for the heat of reaction which then enables
the computation of the reaction rate. This is
typically referred to as calorimetry. Reviews
are given, e.g., in Hergeth (2006), McKenna
et al. (2000), and Landau (1996). For ajacketed

reactor, the heat balance around a semi-batch
reactor typically reads (see also Fig. 2)

CP;R
dTR

dt
D PQR C kA.TJ � TR/

C
X

i

PmF;i cp;F i .TF;i � TR/; (1)

where PQR represents the heat of reaction, kA
the overall heat transfer coefficient between the
reactor content and the jacket, TR the reactor
temperature, TJ the jacket temperature, TF the
feed temperature, CP;R the overall heat capacity
of the reactor, and the last term on the right side
is the enthalpy added by the feed to the reactor. If
kA is known, PQR can directly be computed as all
other quantities in Eq. (1) are known or measured.
This is referred to as heat flow calorimetry.

In industrial practice, kA usually is not known
and varies over time due to changes of the filling
level, changes of the viscosity of the reaction
mixture, and fouling. Then other heat balances
and measurements can be added to enable a direct
computation or estimation of kA. Typically, the
jacket heat balance is chosen

CP;J
dTJ

dt
D kA.TR � TJ /C kAjack.Tenv � TJ /

C PmJ cp;J .TJ;in � TJ /: (2)

If necessary, also other phenomena like direct
heat losses from the reactor content to the envi-
ronment or the influence of the reactor lid can
be taken into account by adding additional terms
or additional heat balances. This method is called
heat balance calorimetry.

In order to compute PQR and kA from Eqs. (1)
and (2), two different approaches can be used:
1. Equations (1) and (2) are solved to give

(3a)

ckA D CP;J
dTJ
dt

� kAjack.Tenv � TJ / � PmJ cp;J .TJ;in � TJ /

TR � TJ

OPQR D CP;R
dTR

dt
� kA.TJ � TR/�

X

i

PmF;i cp;F i .TF;i � TR/: (3b)
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State Estimation for
Batch Processes, Fig. 2
The reactor and its jacket
as considered for
calorimetry

In this approach, the derivatives need to be
computed from the measurements which in-
troduces noise in the evaluation and requires
a filtering either of the derivatives or of the
estimates.

2. Equations (1) and (2) are implemented in
a nonlinear state estimator. To estimate the
unknown quantities ckA and OPQR by this ap-
proach, additional assumptions about their dy-
namics must be made. A common approach is
to add the so-called dummy derivatives

d OPQR

dt
D 0

d ckA

dt
D 0;

The tuning of calorimetric estimation schemes
has been discussed in the literature, but for
each case, tests in simulation runs using
recorded batch data should be performed.
Experimental results of the application of the

direct solution equations (3) and an EKF for the
estimation of PQR and kA are shown in Fig. 3. A
laboratory-scale 10 l metal reactor was filled with
water. Cold water was injected into the reactor
to simulate the feed of reactants. The reactor is

equipped with a heating rod by which different
values of PQR could be simulated. Figure 3a
shows the measured temperatures and the feed
stream; Fig. 3b shows the estimates. The dotted
line displays the measured power uptake, the
thin, black line represents the estimates from the
evaluation of Eqs. (3), and the gray line shows the
results obtained with an EKF. The EKF was tuned
slightly more aggressively than the PT1-filter that

was used to filter the values of OPQR and ckA that
were obtained from Eqs. (3).

It can be seen that the quality of both eval-
uation methods is comparable. A difference in
performance can be seen in the estimation of kA
at the points in time where TR � TJ . This is due
to the denominator in Eq. (3b) which becomes
� 0. At this point, kA is unobservable. The EKF
estimates of kA are more smooth. This does not
have an impact on the estimation of PQR because
the heat transfer from the jacket to the reactor is
zero at this point. This behavior is of importance
if ckA is used in other algorithms, e.g., for control
purposes.

A practical problem is the determination of the
parameters of the system model. Especially the
heat capacity of the reactor CP;R is difficult to
determine as it is not clear how much impact the
reactor material has. Also the heat capacities of
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State Estimation for Batch Processes, Fig. 3 Illustration of the results of direct estimation (Eqs. 3) and the use of an

EKF. (a) Measured data. (b) Estimates from inverted equations (3) and EKF as well as measured OPQR

intermediate products and mixtures with the raw
materials and final products may not be known.
That is why typically CP;R is considered a “free”
parameter which is used to fit the estimates to
measured data. If the adjustment of the available
parameters is not sufficient to yield a satisfactory
performance of the estimator, further extensions
can be considered:
• If pressurized vessels are considered, the wall

thickness may be considerable, and the heat
accumulation may influence the results. In this
case, the extension of the set of equations by
an equation for the heat transfer through the
wall may be considered (Saenz de Buruaga
et al. 1997).

• If large-scale vessels are considered, the
cooling fluid in the jacket may not be perfectly
mixed, and a temperature gradient will be
present. In many cases, cooling coils are
welded on the outside surface of the reactor.
In this case, the equation for the perfectly
mixed jacket (Eq. (2)) should be replaced by
a model for a plug flow reactor (Krämer and
Gesthuisen 2005).

• For large industrial reactors, the perfect
mixing assumption of the reactor contents
does not necessarily hold true. Especially if
polymerization reactions are considered, the
reactor content may become rather viscous.
A straightforward method to cope with this
problem is a detailed computational fluid
dynamics (CFD) simulation. However, due

to the numerical complexity, this appears
infeasible for online applications. A practical
alternative is the placement of several temper-
ature sensors and using a weighted average
over their readings. A different approach is
the usage of a multi-zonal model, the idea of
which resembles the idea of a CFD model;
however the number of zones (elements) is
much smaller (Bezzo et al. 2004).
Heat balance calorimetry becomes inaccurate

if the mass flow through the jacket is so large that
the temperature difference between the cooling
stream entering the jacket and leaving the jacket
.TJ;in � TJ / is in the order of magnitude of
the measurement error. This mode of operation
is typically used in laboratory-scale reactors to
avoid temperature gradients in the jacket. To
estimate the states in such setups, a technique
called temperature oscillation calorimetry (TOC)
can be used. The idea is to add a small but
well-measurable sinusoidal signal to the typically
constant set point of the reactor temperature TR
(see Fig. 4 for an example). The reaction of the
jacket temperature to the oscillating reactor tem-
perature can be used to compute kA, e.g., by es-
timating its amplitude ıTJ (Tietze et al. 1996) or
by adding an additional equation which describes
the second derivative of the reactor temperature
d2TR
dt2

to the set of heat balances (Mauntz et al.
2007).

Calorimetry estimates the total heat of the
reactions in the reactor. It can be used to estimate
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the overall chemical conversion of a process.
Due to its integral character, the heat of reaction
of parallel and consecutive reactions cannot be
estimated separately (Hergeth 2006). However,
if models of the chemical kinetics are known
and reliable, it is possible to couple this kinetic
model with calorimetry and to observe the com-
plete state of the reaction based on calorimet-
ric estimates. This solution may however not
be robust as slight errors in the kinetic model
may lead to significant errors in the estimates
of all concentrations. In order to build a more
robust state estimator, additional measurements
should be installed and integrated into the state
estimator. For example, for reactions including
a phase change from the gas phase to the liquid
phase, a pressure measurement may be suitable.
For some polymerization reactions, sound veloc-
ity and sound attenuation measurements can be
valuable (Brandt et al. 2012). The additional mea-
surement can be incorporated into the observation
scheme by augmenting the measurement model
g (see Fig. 1) by the corresponding measurement
equation.

Summary

In this contribution, different methods that can
be used to determine the states of (semi-)batch
reactions have been described. State estimation
is useful to reconcile measurement errors and
whenever direct online measurements are either
too expensive or not available at all.

Linear state estimation is a mature topic.
However as chemical batch reactors in most cases
have nonlinear dynamics, nonlinear methods
should be applied. Extensions of linear state
estimators based on linearizations of the system
(e.g., the EKF) are the most widely used
nonlinear state estimators. However examples are
known where these estimators fail. Thus, other
approaches, e.g., based on online optimization
(MHE), have been developed. They deliver
promising results in terms of observation quality
and computational speed even for large-scale
systems.

The most widespread application of state
estimation techniques in batch processes is
calorimetry which is suitable for significantly
exothermic or endothermic reactions. The
heat balances around the reactor contents
and the jacket are set up and solved. The
estimated heat of reaction is used to estimate the
chemical conversion of the process. The method
makes use of commonly installed temperature
measurements in the reactor. Extensions to
include other measurements have been discussed.
Problems that typically occur in laboratory-
scale reactors can be overcome with the help
of temperature oscillation calorimetry.
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Abstract

Statistical process control has been successfully
utilized for process monitoring and variation re-
duction in manufacturing applications. This entry
aims to review some of the important moni-
toring methods. Topics discussed include: She-
whart’s model, NX and R control charts, EWMA
and CUSUM charts for monitoring small pro-
cess shifts, process monitoring for autocorrelated
data, and integration of statistical and engineering
(or automatic) control techniques. The goal is
to provide readers from control theory, mechan-
ical engineering, and electrical engineering an
expository overview of the key topics in statistical
process control.

Keywords

CUSUM; EWMA; Feedback control; Shewhart
control chart; Time-series analysis

Introduction

Variation control is an important goal in manufac-
turing. The main set of tools for variation control
used in discrete-part manufacturing industries up
to the 1960s was developed by W. Shewhart in the
1920s and is known today as statistical process
control, or SPC (Shewhart 1939). Shewhart’s
SPC model assumes that the process varies about
a fixed mean and that consecutive observations
from a process are independent, as follows:
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Yt D �0 C �t (1)

in which �0 is the in-control process mean and �t
is iid (independent identically distributed) white

noise �
iid	 N.0; �2/. The Shewhart model can be

used in distinguishing assignable cause variation
from common cause variation. For example, a
mean change from �0 to �1 D �0Cı (where ı is
the unknown magnitude of change) or a variance
increase from �20 to �21 at an unknown point in
time can be detected as assignable causes.

The objective of this entry is to highlight some
of the important references in the SPC literature
and to discuss similarities and joint applications
SPC has with automatic process control. The
literature on statistical process control and appli-
cations to engineering problems is vast; therefore,
no effort is made for an exhaustive review. More
complete reviews of the literature on statistical
process control and adjustment methods can be
found in texts including Montgomery (2013),
Ryan (2011), and Del Castillo (2002).

Shewhart Control Charts

Shewhart’s NX and R control charts are used
to distinguish between common cause and
assignable causes of variation (Shewhart 1939)
by monitoring, respectively, the process mean
and process variance. “Common cause” variation
is the natural variability of the process due to
uncontrollable factors in the environment that
is not avoidable without substantial changes

to the process. “Assignable cause” variation
is due to unwanted disturbances or upsets to
the process that can be detected and removed
to produce acceptable quality products. When
only common cause variation exists, the process
is said to be operating “in statistical control.”
Assignable causes of variation include operator
changes, machine calibration errors or raw
material variation between suppliers.

Another concept that is closely related to the
Shewhart’s model is process capability. Process
capability indices are used to assess whether the
process is operating in a satisfactory manner with
respect to the engineering specifications. It is
crucial to attain a stable process (eliminating all
problematic causes) before undertaking such a
capability analysis because only when the sam-
ples come from a stable probability distribution
can the future behavior of the process be pre-
dicted “within probability limits determined by
the common cause system” (Box and Kramer
1992).

Figure 1 illustrates the two main phases,
referred to as Phase I and Phase II, in con-
structing Shewhart charts (Sullivan 2002), using
semiconductor lithography process data given
in Montgomery (2013). It is desired to establish
a statistical control of the width of the resist
using NX and R charts. Twenty-five preliminary
subgroups, each of size five wafers, were taken
at one-hour intervals and the resist width is
measured. In Phase I, “retrospective analysis,”
the historical data from the process is analyzed
to bring an initially out-of-control process into

ba

Statistical Process Control in Manufacturing, Fig. 1 Shewhart NX and R charts from (a) Phase I analysis and
(b) Phase II analysis



Statistical Process Control in Manufacturing 1321

S

statistical control. Subgroups y1; : : : ; yn of size
n are taken, and subgroup average Ny is used
to monitor process mean �0, and the subgroup
range is used to monitor standard deviation of
the process mean � NY D �=

p
n. The upper and

lower control limits are found for the NX chart
as fUCL;LCLg D �0 ˙ L� NY where L is a
constant representing the width of the control
limits. Commonly chosen three-sigma limits
(i.e., L D 3) provide a probability p D 0:0027

that a single point falls outside the limits when
process is in control (“false alarm probability”).
Points that fall outside the control limits are
investigated, and if an assignable cause was
identified, then this point is omitted and control
limits are recalculated. This is repeated until no
further points plot outside the limits. In Phase
II these charts are used to detect shifts in the
process mean and variability.

The NX and R charts from Phase I data in
Fig. 1a indicate statistical control; hence the com-
puted control limits can be used for Phase II
monitoring. Twenty additional subgroups (also of
size 5) are taken in Phase II while the control
charts are in use. The Phase II charts shown in
Fig. 1b indicate that process variability is stable
but the process mean has shifted at subgroup 18.
The general trend in the NX chart indicates that
process mean probably has shifted earlier around
subgroup 13.

EWMA, CUSUM, and Changepoint
Estimation

Shewhart charts can detect large magnitude pro-
cess upsets reasonably well; however, they are
relatively slow to detect small shifts. In order
to reduce the reaction time for smaller shifts, a
set of “runs” rules (e.g., two out of three runs
beyond 2� limits or four out of five runs beyond
1� limits) has been proposed Western Electric
(1956). A more systematic method is to accu-
mulate information over successive observations
using CUSUM and EWMA statistics rather than
basing the detection on a single sample. In the
cumulative sum (CUSUM) chart, a running total
Pt

iD1. NYt � �0/ is plotted against subgroup num-
ber t , and a shift from the in-control mean �0 is

signaled by an upward or downward linear trend
in the plot. A two-sided CUSUM is defined as
Woodall and Adams (1993):

Sṫ D maxf˙Zt � k C Sṫ�1; 0g for t D 1; 2; : : :

(2)

where SC
t and S�

t are the one-sided upper and
lower cusums, respectively, Zt D . NYt � �0/=� NY
is the standardized subgroup average, k D j�1 �
�0j=.2�/ is the reference value, and �1 is the
level of process mean to be detected. An out-of-
control signal is given at the first t for which St >
h where h is a suitably chosen threshold, usually
selected based on the desired average number of
samples to signal an alarm, also called the aver-
age run length (ARL). The recommended value
for the threshold h is 4 or 5 (corresponding to
four or five times the process standard deviation
�), and the value for the reference k is almost
always taken as 0.5 (corresponding to shift size
j�1 � �0j D �) (Montgomery 2013).

Another chart that accumulates deviations
over several samples is the exponentially
weighted moving average (EWMA) which is
based on the statistic (Lucas and Saccucci 1990)

Zt D � NYt C .1 � �/Zt�1 (3)

where 0 < � < 1 is a smoothing constant.
Smaller � provides large smoothing (similar
to a large subgroup size n in the Shewhart
charts). The starting value is the in-control
mean Z0 D �0. It can be shown that Zt
is a weighted average of all previous sample
means, where the weights decrease geometrically
with the age of the subgroup mean. The
EWMA statistic is plotted against the control
limits �0 ˙ L� NY

p

.�=.2� �//Œ1 � .1 � �/2t �.
Shewhart charts that are effective for large shifts
are more useful for Phase I, and CUSUM or
EWMA charts that are effective for small shifts
are more appropriate for Phase II.

We illustrate in Fig. 2 how to monitor with
CUSUM and EWMA charts with the lithography
data. The in-control process mean and standard
deviation �0 and � are found from the Phase
I data. CUSUM upper and lower statistics Sṫ
computed with Phase II data are plotted in Fig. 2a
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Statistical Process Control in Manufacturing, Fig. 2 Phase II charts for lithography data (a) CUSUM chart and
(b) EWMA chart

(reference value k D 0:5 and threshold h D 4

are used.). The upper cusum statistic SC
t crosses

the upper control limit indicating an upward shift
at subgroup 15. The EWMA statistic applied
with � D 0:2 on Phase II data, shown Fig. 2b,
crosses the upper control limit at subgroup 16.
Both charts have improved the reaction times of
the Shewhart chart.

When a control chart signals an assignable
cause, it does not indicate when the process
change actually occurred. Estimating the instant
of the change, or changepoint estimation, is es-
pecially useful in Phase I analysis where little
is known about the process, and it is important
to identify and remove the out-of-control sam-
ples from consideration (Hawkins et al. 2003;
Basseville and Nikiforov 1993; Pignatiello and
Samuel 2001). The process is modeled as

Yi 	 N.�1; �
2/ for i D 1; 2; : : : ; �

Yi 	 N.�2; �
2/ for i D � C 1; : : : ; n (4)

where � is the unknown changepoint, at which the
in-control mean �1 is assumed to shift to a new
value �2 assuming �1; � are known but �2 is un-
known. A generalized likelihood ratio (GLR) test
statistic �t D Pt

iD1 logf2.yi /=f1.yi / is used
to test the hypothesis of a changepoint against
the null hypothesis that there is no change. As-
suming normality f .y/ D 1=

p
2�� expŒ�.y �

�/2=.2�2/� is the probability density function of
the quality characteristic. The changepoint model

is equivalent to the CUSUM chart when all pa-
rameters �1; �2 and � are known a priori. For
the lithography Phase II data in Fig. 1b, it can be
shown that the changepoint can be estimated as
subgroup 13.

SPC on Controlled and
Autocorrelated Processes

It is well known that automatic control perfor-
mance relies heavily on the accuracy of the pro-
cess models. An active field of research in recent
years is the monitoring of controlled systems
using SPC charts (Box and Kramer 1992) in
order to reduce the effect of model accuracy.
Shewhart charts can be used to monitor the output
of a feedback-controlled process; however, as the
controller effectively corrects the shift, only a
short window of opportunity is provided to detect
the shift (Vander Wiel et al. 1992). Tsung and
Tsui (2008) showed that monitoring the control
actions gives better run-length performance than
monitoring the output for small- and medium-
size shifts, and monitoring the output gives better
performance for large shifts. In monitoring con-
trolled processes, measurements taken at short
intervals with positive autocorrelation usually in-
flate the rate of false alarms (Harris and Ross
1991). Widening the control limits and monitor-
ing the residuals of a time-series model fitted
to the observations are some of the strategies
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Statistical Process Control in Manufacturing, Fig. 3 (a) Shewhart chart for autocorrelated process. (b) Shewhart
chart for residuals
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Statistical Process Control in Manufacturing, Fig. 4 (a) Shewhart chart for controlled process Yt . (b) Shewhart
chart for input Xt

employed to reduce the number of false alarms
(Alwan and Roberts 1988).

To illustrate the effects of autocorrelation, we
consider simulated data from an autoregressive
moving average ARMA(1,1) time-series distur-
bance process Dt D 0:8Dt�1 C �t � 0:3�t�1
(Box et al. 1994) defined with the white noise

process �t
iid	 N.0; 12/ (with in-control mean

�0 D 0 and variance �2D D 1:694). Figure 3a
shows a realization of the process monitored with
a Shewhart chart (control limits at�0˙3�D). Due
to autocorrelation, false alarms are signaled at
samples 81–83. Figure 3b shows the control chart
monitoring of the residuals of an ARMA(1,1)
model. Residuals (standard normal with mean 0
and variance 1) are not autocorrelated, so the
Shewhart chart for residuals does not signal any
false alarms.

We illustrate monitoring of controlled pro-
cesses with simulated data from a transfer func-
tion model Yt D 2Xt�1 C Dt where Xt are the
adjustments made on the process. A proportional
integral control ruleXt D �0:1Yt�0:15Pt

iD1 Yi
is employed, and the disturbance Dt is assumed
to follow the ARMA model considered earlier.
As an assignable cause, the disturbance mean has
shifted at sample 100 by a magnitude of 3�D .
Figure 4 shows the Shewhart charts monitoring
the output Yt and the input Xt . The effect of
assignable cause (at sample 100) on the output
is quickly removed by the controller; however,
a sustained shift remains in the control input.
The control chart for the input Fig. 4b signals the
first alarm at sample 101 (much quicker) than the
control chart for the output Fig. 4a which signals
at sample 110.
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Summary and Future Directions

In this entry we reviewed some of the commonly
used statistical process monitoring methods for
manufacturing systems. Due to space limitations,
only several important topics including Phase I
and Phase II monitoring with Shewhart, EWMA,
and CUSUM charts were discussed, highlight-
ing main applications with numerical examples.
Other current research areas include multivariate
methods for monitoring processes with multiple
quality characteristics taking advantage of rela-
tionships among them (Lowry and Montgomery
1992), profile monitoring for processes that gen-
erate functional data (Woodall et al. 2004), multi-
stage monitoring for processes with multiple pro-
cessing steps and variation transmission (Tsung
et al. 2008), and run-to-run EWMA control for
semiconductor manufacturing processes that re-
quire handling of multiple types of products,
operators, and machine tools (Butler and Stefani
1994).

Cross-References

�Controller Performance Monitoring
�Multiscale Multivariate Statistical Process

Control
�Run-to-Run Control in Semiconductor Manu-

facturing
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Abstract

Stochastic adaptive control denotes the control
of partially known stochastic control systems.
The stochastic control systems can be described
by discrete- or continuous-time Markov chains
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or Markov processes, linear and nonlinear
difference equations, and linear and nonlinear
stochastic differential equations. The solution of
a stochastic adaptive control problem typically
requires the identification of the partially known
stochastic system and the simultaneous control of
the partially known system using the information
from the concurrent identification scheme. Two
desirable goals for the solution of a stochastic
adaptive control problem are called self-tuning
and self-optimality. Self-tuning denotes the
convergence of the family of adaptive controls
indexed by time to the optimal control for the true
system. Self-optimizing denotes the convergence
of the long-run average costs to the optimal long-
run average cost for the true system. Typically
to achieve the self-optimality, it is important
that the family of parameter estimators from the
identification scheme be strongly consistent, that
is, this family converges (almost surely) to the
true parameter values. Thus, with self-optimality,
asymptotically a partially known system can be
controlled as well as the corresponding known
system.

Keywords

Bayesian estimation; Brownian motion; Markov
processes; Self-tuning regulators

Motivation and Background

In almost every formulation of a stochastic con-
trol problem from a physical system, the physical
system is incompletely known so the stochastic
system model is only partially known. This lack
of knowledge can often be described by some
unknown parameters for a mathematical model,
and the noise inputs for the model can describe
unmodeled dynamics or perturbations to the sys-
tem. The lack of knowledge of some parameters
of the model can be modeled either by random
variables with known prior distributions or as
fixed unknown values. The former description
requires Bayesian estimation, and the latter de-
scription requires parameter estimation such as
least squares or maximum likelihood.

Stochastic adaptive control arose as a natural
evolution from the results in stochastic control,
and in particular it developed for some well-
known control problems. The optimal control
of Markov chains had been developed for some
time, so it was natural to investigate the adaptive
control of Markov chains. Mandl (1973) was
probably the first to consider this adaptive control
problem in generality. His conditions for strong
consistency of a family of estimators were fairly
restrictive. Borkar and Varaiya (1982) simpli-
fied the conditions for the estimation part of the
problem by only requiring convergence of the
estimators of the parameters so that the resulting
transition probabilities of the Markov chain are
identical to the transition probabilities for the true
optimal solution.

A second major direction for stochastic
adaptive control is described by ARMAX
(autoregressive-moving average with exogenous
inputs) models. These are discrete-time models
that can be described in terms of polynomials
in a time shift operator. A closely related and
often equivalent model is multidimensional linear
difference equations in a state-space form. Since
the solution of the infinite time horizon stochastic
control problem was available in the late 1950s, it
was natural to consider the adaptive control prob-
lem. Methods such as least squares, weighted
least squares, maximum likelihood, and stochas-
tic approximation were used for parameter identi-
fication and a certainty equivalence adaptive con-
trol for the system, that is, using the current esti-
mate of the parameters as the true parameters to
verify self-optimality. An important development
in stochastic adaptive control is a result called
the self-tuning regulator where the convergence
of estimators of unknown parameters implied the
convergence of the output tracking error (Astrom
and Wittenmark 1973; Goodwin et al. 1981; Guo
1995, 1996; Guo and Chen 1991; Kumar 1990).

A number of monographs treat various aspects
of stochastic adaptive control problems, e.g.,
Astrom and Wittenmark (1989), Chen and Guo
(1991), Kumar and Varaiya (1986), and Ljung
and Soderstrom (1983). An extensive survey
article on the early years of stochastic adaptive
control is given by Kumar (1985).
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Structures and Approaches

Various requirements can be made for the adap-
tive control of a stochastic system. It can only
be required that the family of adaptive controls is
stabilizing the unknown system or that the family
of adaptive controls converges to the optimal
control for the true system or that the family of
adaptive controls has a long-run average cost that
is equal to the optimal average cost for the true
system. The identification part of the adaptive
control problem can be Bayesian estimation (Ku-
mar 1990) if the parameters are assumed to be
random variables or parameter estimation (Bercu
1995; Lai and Wei 1982) if the parameters are
assumed to be unknown constants. The identifi-
cation scheme may also incorporate information
about the running cost.

For linear systems with white noise inputs, it is
well known to use least squares (or equivalently
maximum likelihood) estimation to estimate pa-
rameters. However, for stochastic adaptive con-
trol problems, the sufficient conditions for the
family of estimators to be strongly consistent are
fairly restrictive (e.g., Lai and Wei 1982), and in
fact the family of estimators may not even con-
verge in general. A weighted least squares esti-
mation scheme can guarantee convergence of the
family of estimators (Bercu 1995) and can often
be strongly consistent (Guo 1996). Some other
estimation methods are stochastic approximation
(Guo and Chen 1991) and an ordinary differential
equation approach (Ljung and Soderstrom 1983).
For discrete-time nonlinear systems, a family of
strongly consistent estimators may not converge
sufficiently rapidly even to stabilize the nonlinear
system (Guo 1997).

The study of stochastic adaptive control of
continuous-time linear stochastic systems with
long-run average quadratic costs developed
somewhat after the corresponding discrete-time
study (e.g., Duncan and Pasik-Duncan 1990). A
solution with basically the natural assumptions
from the solution of the known system problem
using a weighted least squares identification
scheme is given in Duncan et al. (1999).

Another family of stochastic adaptive control
problems is described by linear stochastic

equations in an infinite dimensional Hilbert
space. These models can describe stochastic
partial differential equations and stochastic
hereditary differential equations. Some linear-
quadratic-Gaussian control problems have been
solved, and these solutions have been used to
solve some corresponding stochastic adaptive
control problems (e.g., Duncan et al. 1994a).

Optimal control methods such as Hamilton-
Jacobi-Bellman equations and a stochastic maxi-
mum principle have been used to solve stochastic
control problems described by nonlinear stochas-
tic differential equations (Fleming and Rishel
1975). Thus, it was natural to consider stochas-
tic adaptive control problems for these systems.
The results are more limited than the results
for linear stochastic systems (e.g., Duncan et al.
1994b).

Other stochastic adaptive control problems
have recently emerged that are modeled by
multi-agents, such as mean field stochastic
adaptive control problems (e.g., Nourian et al.
2012).

ADetailed Example: Adaptive
Linear-Quadratic-Gaussian Control

This example is a model that is the most well
known continuous-time stochastic adaptive con-
trol problem. Likewise for a known continuous-
time system, this stochastic control problem is
the most basic and well known. The controlled
system is described by the following stochastic
differential equation:

dX.t/ D AX.t/dt C BU.t/dt C CdW.t/

X.0/ D X0

where X.t/ 2 Rn; U.t/ 2 Rm, and .W.t/; t � 0/

is an Rp-valued standard Brownian motion and
.A;B; C / are appropriate linear transformations.
X.t/ is the state of the system at time t and U.t/
is the control at time t . It is assumed thatA;B;C
are unknown linear transformations. The cost
functional, J.�/, is a long-run average (ergodic)
quadratic cost functional that is given by
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J.U / D lim supT!1
1

T

Z T

0

< QX.t/; X.t/ >

C < RU.t/; U.t/ > dt

where R > 0 and Q � 0 are symmetric linear
transformations and < �; � > is the canonical
inner product in the appropriate Euclidean space.
The standard assumptions for the control of the
known system are made also for the adaptive
control problem, that is, the pair .A;B/ is con-
trollable and .A;Q

1
2 / is observable. An optimal

control for the known system is

U 0.t/ D �R�1BT SX.t/

where S is the unique positive, symmetric solu-
tion of the following algebraic Riccati equation:

AT S C SA� SBR�1BT S CQ D 0

The optimal cost is

J.U 0/ D t r.C T SC /

The unknown quantity CTC can be identified
given .X.t/; t 2 Œa; b�/ for a < b arbitrary from
the quadratic variation of Brownian motion, so
the identification of C is not considered here.
Since it is assumed that the pair .A;B/ is un-
known, the system equation is rewritten in the
following form:

dX.t/ D 
T '.t/dt C CdW.t/

where 
T D ŒA B� and 'T .t/ D ŒXT .t/ U T .t/�.
A family of continuous-time weighted least
squares recursive estimators .
.t/; t � 0/ of

 is given by the following stochastic equation:

d
.t/ D a.t/P.t/'.t/ŒdXT .t/ � 'T .t/
.t/dt�

dP.t/ D �a.t/P.t/'.t/'T .t/P.t/dt

where .a.t/; t � 0/ is a suitable family of
positive stochastic weights (Duncan et al.
1999). A family of estimates . O
.t/; t � 0/ is
obtained from .
.t/; t � 0/ and is expressed
as O
.t/ D ŒA.t/ B.t/� (Duncan et al. 1999).

A process .S.t/; t � 0/ is obtained using
.A.t/; B.t// by solving the following stochastic
algebraic Riccati equation for each t � 0:

AT .t/S.t/C S.t/A.t/

� S.t/B.t/R�1BT .t/S.t/CQ D 0

A certainty equivalence method is used to de-
termine the control, that is, it is assumed that
the pair .A.t/; B.t// is the correct pair for the
true system, so a certainty equivalence adaptive
control U.t/ is given by

U.t/ D R�1BT S.t/X.t/

It can be shown (Duncan et al. 1999) that the
family of estimators ..A.t/; B.t//; t � 0/ is
strongly consistent and that the family of adaptive
controls given by the previous equality is self-
optimizing, that is, the long-run average cost
J.U / D J.U 0/ D t r.C T SC / where S is the
solution of the algebraic Riccati equation for the
true system.

Future Directions

A number of important directions for stochastic
adaptive control are easily identified. Only three
of them are described briefly here. The adaptive
control of the partially observed linear-quadratic-
Gaussian control problem (Fleming and Rishel
1975) is a major problem to be solved using the
same assumptions of controllability and observ-
ability as for the known system. This problem
is a generalization of the example given above
where the output (linear transformation) of the
system is observed with additive noise and the
family of controls is restricted to depend only on
these observations. Another major direction is to
modify the detailed example above by replacing
the Brownian motion in the stochastic equation
for the state by an arbitrary fractional Brown-
ian motion or by an arbitrary square-integrable
stochastic process with continuous sample paths.
For this latter problem it is necessary to use
recent results for optimal controls for the true
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system and to have strongly consistent families of
estimators. A third major direction is the adaptive
control of nonlinear stochastic systems.
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� Stochastic Linear-Quadratic Control
� System Identification: An Overview

Acknowledgments Research supported by NSF grant
DMS 1108884, AFOSR grant FA9550-12-1-0384, and
ARO grant W911NF-10-1-0248.

Bibliography

Astrom KJ, Wittenmark B (1973) On self-tuning regula-
tors. Automatica 9:185–199

Astrom KJ, Wittenmark B (1989) Adaptive control.
Addison-Wesley, Reading

Bercu B (1995) Weighted estimation and tracking for
ARMAX models. SIAM J Control Optim 33:89–106

Borkar V, Varaiya P (1982) Identification and adaptive
control of Markov chains. SIAM J Control Optim
20:470–489

Chen HF, Guo L (1991) Identification and stochastic
adaptive control. Birkhauser, Boston

Duncan TE, Pasik-Duncan B (1990) Adaptive control of
continuous time linear systems. Math Control Signals
Syst 3:43–60

Duncan TE, Maslowski B, Pasik-Duncan B (1994a) Adap-
tive boundary and point control of linear stochastic
distributed parameter systems. SIAM J Control Optim
32:648–672

Duncan TE, Pasik-Duncan B, Stettner L (1994b) Almost
self-optimizing strategies for the adaptive control of
diffusion processes. J Optim Theory Appl 81:470–507

Duncan TE, Guo L, Pasik-Duncan B (1999) Adaptive
continuous-time linear quadratic Gaussian control.
IEEE Trans Autom Control 44:1653–1662

Fleming WH, Rishel RW (1975) Deterministic and
stochastic optimal control. Springer, New York

Goodwin G, Ramadge P, Caines PE (1981) Discrete time
stochastic adaptive control. SIAM J Control Optim
19:820–853

Guo L (1995) Convergence and logarithm laws of self-
tuning regulators. Automatica 31:435–450

Guo L (1996) Self-convergence of weighted least squares
with applications. IEEE Trans Autom Control 41:79–
89

Guo L (1997) On critical stability of discrete time adap-
tive nonlinear control. IEEE Trans Autom Control
42:1488–1499

Guo L, Chen HF (1991) The Astrom-Wittenmark self-
tuning regulator revisited and ELS based adaptive
trackers. IEEE Trans Autom Control 36:802–812

Kumar PR (1985) A survey of some results in stochastic
adaptive control. SIAM J Control Optim 23:329–380

Kumar PR (1990) Convergence of adaptive control
schemes with least squares estimates. IEEE Trans
Autom Control 35:416–424

Kumar PR, Varaiya P (1986) Stochastic systems, estima-
tion, identification and adaptive control. Prentice-Hall,
Englewood Cliffs

Lai TL, Wei CZ (1982) Least square estimation is stochas-
tic regression models with applications to identifica-
tion and control of dynamic systems. Ann Stat 10:154–
166

Ljung L, Soderstrom T (1983) Theory and practice of
recursive identification. MIT, Cambridge

Mandl P (1973) On the adaptive control of finite state
Markov processes. Z Wahr Verw Geb 27:263–276

Nourian M, Caines PE, Malhame RP (2012) Mean field
LQG control in leader-follower stochastic multi-agent
systems: likelihood ratio based adaptation. IEEE Trans
Autom Control 57:2801–2816

Stochastic Description
of Biochemical Networks

João P. Hespanha1 and Mustafa Khammash2
1Center for Control, Dynamical Systems and
Computation, University of California, Santa
Barbara, CA, USA
2Department of Biosystems Science and
Engineering, Swiss Federal Institute of
Technology at Zurich (ETHZ), Basel,
Switzerland

Abstract

Conventional deterministic chemical kinetics of-
ten breaks down in the small volume of a living
cell where cellular species (e.g., genes, mRNAs,
etc.) exist in discrete, low copy numbers and
react through reaction channels whose timing
and order is random. In such an environment,
a stochastic chemical kinetics framework that
models species abundances as discrete random
variables is more suitable. The resulting models
consist of continue-time discrete-state Markov
chains. Here we describe how such models can
be formulated and numerically simulated, and we
present some of the key analysis techniques for
studying such reactions.
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Introduction

The time evolution of a spatially homogeneous
mixture of chemically reacting molecules is often
modeled using a stochastic formulation, which
takes into account the inherent randomness of
thermal molecular motion. This formulation is
important when modeling complex reactions in-
side living cells, where small populations of key
reactants can set the stage for significant stochas-
tic effects. In this entry, we review the basic
stochastic model of chemical reactions and dis-
cuss the most common techniques used to simu-
late and analyze this model.

Stochastic Models of Chemical
Reactions

We start by considering a set of N molecular
species (reactants) S1; : : : ;SN that are confined
to a fixed volume˝ . These species react through
M possible reactions R1; : : : ; RM . In this for-
mulation of chemical kinetics, we shall assume
that the system is in thermal equilibrium and is
well mixed. Thus, the reacting molecules move
due to their thermal energy. The population of
the different reactants is described by a random
process X.t/ D .X1.t/ : : : XN .t//

T , where Xi.t/
is a random variable that models the abundance
(in terms of the number of copies) of molecules of
species Si in the system at time t . For the allow-
able reactions, we shall only consider elementary
reactions. These could either be monomolecular,
Si ! products, or bimolecular, Si C Sj !
products. Upon the firing of reactionRk , a transi-
tion occurs from some state X D xi right before
the reaction fires to some other state X D xi C
sk , which reflects the change in the population
immediately after the reaction has fired. sk is
referred to as the stoichiometric vector. The set

Stochastic Description of Biochemical
Networks, Table 1 Propensity functions for elementary
reactions. The constants c, c0, and c00 are related to k,
k0, and k00, the reaction rate constants from deterministic
mass-action kinetics. Indeed it can be shown that c D k,
c0 D k0=˝, and c00 D 2k00=˝

Reaction type Propensity function

Si ! Products cxi

Si C Sj ! Products .i ¤ j / c0xixj

Si C Si ! Products c00xi .xi � 1/=2

of allowable M reactions defines the so-called
stoichiometry matrix:

S D �

s1 � � � sM
	

:

To each reaction Rk , we associate a propensity
function, wk.x/ that describes the rate of that re-
action. More precisely, wk.x/h is the probability
that, given the system is in state x at time t ,
Rk fires once in the time interval Œt; t C h/. The
propensity functions for elementary reactions is
given in Table 1.

Limiting to the Deterministic Regime

There is an important connection between the
stochastic process X.t/, as represented by the
continuous-time discrete-state Markov chain de-
scribed above, and the solution of a related de-
terministic reaction rate equations obtained from
mass-action kinetics. To see this, let ˚.t/ D
Œ˚1.t/; : : : ; ˚N .t/�

T be the vector concentrations
of species S1; : : : ; SN . According to mass-action
kinetics, ˚.�/ satisfies the ordinary differential
equation:

P̊ D Sf .˚.t//; ˚.0/ D ˚0:

In order to compare the ˚.t/ withX.t/, which
represents molecular counts, we divide X.t/ by
the reaction volume to get X˝.t/ D X.t/=˝ . It
turns out that X˝.t/ limits to ˚.t/: According to
Kurtz (Ethier and Kurtz 1986), for every t � 0:

lim
˝!1 sup

s�t
ˇ

ˇX˝.s/ � ˚.s/
ˇ

ˇ D 0; almost surely:
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Hence, over any finite time interval, the
stochastic model converges to the deterministic
mass-action one in the thermodynamic limit.
Note that this is only a large volume limit result.
In practice, for a fixed volume, a stochastic
description may differ considerably from the
deterministic description.

Stochastic Simulations

Gillespie’s stochastic simulation algorithm (SSA)
constructs sample paths for the random process
X.t/ D .X1.t/ : : : :XN .t//

T that are consistent
with the stochastic model described above (Gille-
spie 1976). It consists of the following basic
steps:
1. Initialize the state X.0/ and set t D 0.
2. Draw a random number � 2 .0;1/ with

exponential distribution and mean equal to
1=
P

k wk.X.t//.
3. Draw a random number k 2 f1; 2; : : : ;M g

such that the probability of k D i 2
f1; 2; : : : ;M g is proportional to wi .X.t//.

4. Set X.t C �/ D X.t/C sk and t D t C � .
5. Repeat from (2) until t reaches the desired

simulation time.
By running this algorithm multiple times with
independent random draws, one can estimate the
distribution and statistical moments of the ran-
dom process X.t/.

The Chemical Master Equation (CME)

The chemical master equation (CME), also
known as the forward Kolmogorov equation,
describes the time evolution of the probability
that the system is in a given state x. The CME
can be derived based on the Markov property of
chemical reactions. Suppose the system is in state
x at time t . Within an error of order O.h2/, the
following statements apply:
• The probability that an Rk reaction fires ex-

actly once in the time interval Œt; tCh/ is given
by wk.x/h.

• The probability that no reactions fire in
the time interval Œt; t C h/ is given by
1 �P

k wk.x/dx.

• The probability that more than one reaction
fires in the time interval Œt; t C h/ is zero.
Let P.x; t/, denote the probability that the

system is in state x at time t . We can express
P.x; t C h/ as follows:

P.x; t C h/ D P.x; t/

 

1 �
X

k

wk.x/h

!

C
X

k

P.x � sk; t/wk.x � sk/hC O.h2/:

The first term on the right-hand side is the prob-
ability that the system is already in state x at
time t , and no reactions occur in the next h. In
the second term on the right-hand side, the kth
term in the summation is the probability that the
system at time t is an Rk reaction away from
being at state x and that an Rk reaction takes
place in the next h.

Moving P.x; t/ to the left-hand side, dividing
by h, and taking the limit as h goes to zero yields
the chemical master equation (CME):

dP.x; t/

dt
D PM

kD1



wk.x � sk/P.x � sk; t/

�wk.x/P.x; t/
�

: (1)

The CME defines a linear dynamical system in
the probabilities of the different states (each state
is defined by a specific number of molecules of
each of the species). However, there are generally
an infinite number of states, and the resulting
infinite linear system is not directly solvable.
One approach to overcome this difficulty is to
approximate the solution of the CME by truncat-
ing the states. A particular truncation procedure
that gives error bounds is called the finite-state
projection (FSP) (Munsky and Khammash 2006).
The key idea behind the FSP approach is to keep
those states that support the bulk of the proba-
bility distribution while projecting the remaining
infinite states onto a single “absorbing” state.
See Fig. 1.

The left panel in the figure shows the infi-
nite states of a system with two species. The
arrows indicate transitions among states caused



Stochastic Description of Biochemical Networks 1331

S

Stochastic Description of Biochemical Networks, Fig. 1 The finite-state projection

by allowable chemical reactions. The underlying
stochastic process is a continuous-time discrete-
state Markov process. The right panel shows the
projected (finite-state) system for a specific pro-
jection region (box). The projection is obtained
as follows: transitions within the retained sates
are kept, while transitions that emanate from
these states and end at states outside the box
are channeled to a single new absorbing state.
Transitions into the box are deleted. The resulting
projected system is a finite-state Markov process.
The probability of each of its finite states can be
computed exactly. It can be shown that the trun-
cation, as defined here, gives a lower bound for
the probability for the original full system. The
FSP algorithm provides a way for constructing
an approximation of the CME that satisfies any
prespecified accuracy requirement.

Moment Dynamics

While the probability distribution P.x; t/ pro-
vides great detail on the state x at time t , often
statistical moments of the molecule copy num-
bers already provide important information about
their variability, which motivates the construction

of mathematical models for the evolution of such
models over time.

Given a vector of integers m WD .m1;m2; : : : ;

mn/, we use the notation �.m/ to denote the
following uncentered moment of X :

�.m/ WD EŒXm1
1 X

m2
2 � � �Xmn

n �:

Such moment is said to be of order
P

i mi . With
N species, there are exactly N first-order mo-
ments eŒXi �, 8i 2 f1; 2; : : : ; N g, which are just
the means; N.N � 1/=2 second-order moments
eŒX2

i �, 8i and eŒXiXj �, 8i ¤ j , which can
be used to compute variances and covariance;
N.N � 1/.N � 2/=6 third-order moments; and
so on.

Using the CME (1), one can show that

d�.m/

dt
D E

h
X

k

wk.X/



.X1 C s1;k/
m1.X2 � s2;k/

m2

� � � .XN � sN;k/
mN � X

m1
1 X

m2
2 � � �XmN

N

�i

;

and, because the propensity functions are all
polynomials on x (cf. Table 1), the expected
value in the right-hand side can actually be writ-
ten as a linear combination of other uncentered
moments of X . This means that if we construct a
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vector � containing all the uncentered moments
of x up to some order k, the evolution of � is
determined by a differential equation of the form

d�

dt
D A�C B N�; � 2 R

K; N� 2 R
NK (2)

whereA andB are appropriately defined matrices
and N� is a vector containing moments of order
larger than k. The equation (2) is exact, and we
call it the (exact) k-order moment dynamics, and
the integer k is called the order of truncation.
Note that the dimensionK of (2) is always larger
than k since there are many moments of each
order. In fact, in general,K is of order nk .

When all chemical reactions have only one
reactant, the term B N� does not appear in (2),
and we say that the exact moment dynamics
are closed. However, when at least one chemical
reaction has two or more reactants, then the term
B N� appears, and we say that the moment dynam-
ics are open since (2) depends on the moments
in N�, which are not part of the state �. When
all chemical reactions are elementary (i.e., with
at most two reactants), then all moments in N� are
exactly of order k C 1.

Moment closure is a procedure by which one
approximates the exact (but open) moment dy-
namics (2) by an approximate (but now closed)
equation of the form

P� D A� C B'.�/; � 2 R
K (3)

where '.�/ is a column vector that approximates
the moments in N�. The function '.�/ is called the
moment closure function, and (3) is called the ap-
proximate kth-order moment dynamics. The goal
of any moment closure method is to construct
'.�/ so that the solution � to (3) is close to the
solution � to (2).

There are three main approaches to construct
the moment closure function '.�/:
1. Matching-based methods directly attempt to

match the solutions to (2) and (3) (e.g., Singh
and Hespanha 2011).

2. Distribution-based methods construct '.�/ by
making reasonable assumptions on the statis-

tical distribution of the molecule counts vector
x (e.g., Gomez-Uribe and Verghese 2007).

3. Large volume methods construct '.�/ by as-
suming that reactions take place on a large
volume (e.g., Van Kampen 2001).

It is important to emphasize that this classifi-
cation is about methods to construct moment
closure. It turns out that sometimes different
methods lead to the same moment closure
function '.�/.

Conclusion and Outlook

We have introduced complementary approaches
to study the evolution of biochemical networks
that exhibit important stochastic effects.

Stochastic simulations permit the construction
of sample paths for the molecule counts, which
can be averaged to study the ensemble behavior
of the system. This type of approach scales well
with the number of molecular species, but can be
computationally very intensive when the number
of reactions is very large. This challenge has
led to the development of approximate stochastic
simulation algorithms that attempt to simulate
multiple reactions in the same simulation step
(e.g., Rathinam et al. 2003).

Solving the CME provides the most detailed
and accurate approach to characterize the ensem-
ble properties of the molecular counts, but for
most biochemical systems such solution cannot
be found in closed form, and numerical methods
scale exponentially with the number of species.
This challenge has led to the development of
algorithms that compute approximate solutions
to the CME, e.g., by aggregating states with
low probability, while keeping track of the error
(e.g., Munsky and Khammash 2006).

Moment dynamics is attractive in that the
number of kth-order moments only scales poly-
nomially with the number of chemical species,
but one only obtains closed dynamics for very
simple biochemical networks. This limitation has
led to the development of moment closure tech-
niques to approximate the open moment dynam-
ics by a closed system of ordinary differential
equations.
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Abstract

This article is concerned with one of the tra-
ditional approaches for stochastic control prob-
lems: Stochastic dynamic programming. Brief
descriptions of stochastic dynamic programming
methods and related terminology are provided.
Two asset-selling examples are presented to il-
lustrate the basic ideas. A list of topics and
references are also provided for further reading.

Keywords

Asset-selling rule; Bellman equation; Hamilton-
Jacobi-Bellman equation; Markov decision
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control; Viscosity solution

Introduction

The term dynamic programming was introduced
by Richard Bellman in the 1940s. It refers to a
method for solving dynamic optimization prob-
lems by breaking them down into smaller and
simpler subproblems.

To solve a given problem, one often needs
to solve each part of the problem (subproblems)
and then put together their solutions to obtain an
overall solution. Some of these subproblems are
of the same type. The idea behind the dynamic
programming approach is to solve each subprob-
lem only once in order to reduce the overall
computation.

The cornerstone of dynamic programming
(DP) is the so-called principle of optimality
which is described by Bellman in his 1957 book
(Bellman 1957):

Principle of Optimality: An optimal policy has
the property that whatever the initial state and
initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state
resulting from the first decision.

This principle of optimality gives rise to DP
(or optimality) equations, which are referred to as
Bellman equations in discrete-time optimization
problems or Hamilton-Jacobi-Bellman (HJB)
equations in continuous-time ones. Such
equations provide a necessary condition for
optimality in terms of the value of the underlying
decision problem. By and large, an optimal
control policy in most cases can be obtained by
solving the associated Bellman (HJB) equation.
In view of this, dynamic programming is a
powerful tool for a broad range of control and
decision-making problems. When the underlying
system is driven by certain type of random

http://dx.doi.org/10.1007/978-1-4471-5058-9_87
http://dx.doi.org/10.1007/978-1-4471-5058-9_93
http://dx.doi.org/10.1007/978-1-4471-5058-9_89
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disturbance, the corresponding DP approach is
referred to as stochastic dynamic programming.

Terminology

The following concepts are often used in stochas-
tic dynamic programming.

An objective function describes the objective
of a given optimization problem (e.g., maximiz-
ing profits, minimizing cost, etc.) in terms of the
states of the underlying system, decision (control)
variables, and possible random disturbance.

State variables represent the information
about the current system under consideration. For
example, in a manufacturing system, one needs
to know the current product inventory in order to
decide how much to produce at the moment. In
this case, the inventory level would be one of the
state variables.

The variables chosen at any time are called the
decision or control variables. For instance, the
rate of production over time in the manufacturing
system is a control variable. Typically, control
variables are functions of state variables. They
affect the future states of the system and the
objective function.

In stochastic control problems, the system is
also affected by random events (noise). Such
noise is referred to system disturbance. The
noise is often not available a priori. Only their
probabilistic distributions are known.

The goal of the optimization problem is to
choose control variables over time so as to either
maximize or minimize the corresponding objec-
tive function. For example, in order to maximize
the overall profits, a manufacturing firm has to
decide how much to produce over time so as to
maximize the revenue by meeting the product
demand and minimize the costs associated with
inventory. The best possible value of the objective
is called value function, which is given in terms
of the state variables.

In the next two sections, we give two examples
to illustrate how stochastic DP methods are used
in discrete and continuous time.

An Asset-Selling Example
(Discrete Time)

Consider a person wants to sell an asset (e.g.,
a car or a house). She is offered an amount
of money every period (say, a day). Let
v0; v1; : : : ; vN�1 denote the amount of these
random offers. Assume they are independent and
identically distributed. At the end of each period,
the person has to decide whether to accept the
offer or reject it. If she accepts the offer, she can
put the money in a bank account and receive a
fixed interest rate r > 0; if she rejects the offer,
she waits till the next period. Rejected offers
cannot be recycled. In addition, she has to sell
her asset by the end of the N th period and accept
the last offer vN�1 if all previous offers have been
rejected. The goal is to decide when to accept an
offer to maximize the overall return at the N th
period.

In this example, for each k, vk is the random
disturbance. The control variables uk take values
in fsell; holdg. The state variables xk are given by
the equations

x0 D 0I xkC1 D
(

sold if uk D sell

vk otherwise:

Let

hN .xN / D
(

xN if xN 6D sold;

0 otherwise:

hk.xk; uk; vk/ D

8

ˆ

<

ˆ

:

.1C r/N�kxk if xk 6D sold
and uk D sell

0 otherwise:
for k D 0; 1; : : : ; N � 1:

Then, the payoff function is given by

Efvkg

 

hN .xN /C
N�1
X

kD0
hk.xk; uk; vk/

!

:

Here, Efvkg represents the expected value over
fvkg. The corresponding value functions Vk.xk/
satisfy the following Bellman equations:
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VN .xN / D
�

xN if xN 6D sold;
0 otherwise:

Vk.xk/ D
�

max
�

.1C r/N�kxk; EVkC1.vk/
�

if xk 6D sold
0 otherwise:

for k D 0; 1; : : : ; N � 1:

The optimal selling rule can be given as (assum-
ing xk 6D sold) (see Bertsekas 1987):

accept the offer

vk�1 D xk if .1C r/N�kxk � EVkC1.vk/;

reject the offer

vk�1 D xk if .1C r/N�kxk < EVkC1.vk/:

Given the distribution for vk , one can compute
Vk backwards and solve the Bellman equations,
which in turn leads to the above optimal selling
rule.

Note that such backward iteration only works
with finite horizon dynamic programming. When
working with an infinite horizon (discounted or
long-run average) payoff function, often used
methods are value iteration (successive approxi-
mation) and policy iteration. The idea is to con-
struct a sequence of functions recursively so that
they converge pointwise to the value function.
For description of these iteration methods, their
convergence properties, and error bound analysis,
we refer the reader to Bertsekas (1987).

Next, we consider a continuous-time asset-
selling problem.

An Asset-Selling Example
(Continuous Time)

Suppose a person wants to sell her asset. The
price xt at time t 2 Œ0;1/ of her asset is given
by a stochastic differential equation

dxt

xt
D �dt C �dwt ;

where � and � are known constants and wt is
the standard Brownian motion representing the
disturbance. Suppose the transaction cost is K
and the discount rate r . She has to decide when to
sell her asset to maximize an expected return. In
this example, the state variable is price xt , control
variable is a function of selling time � , and the
payoff function is given by

J.x; �/ D Ee�r� .x� �K/:

Let V.x/ denote the value function, i.e., V.x/ D
sup� J.x; �/. Then the associate HJB equation is
given by

min
n

rV .x/ � x�
dV.x/

dx
� x2�2

2

d2V .x/

dx2
;

V .x/ �K
o

D 0: (1)

Let

x� D Kˇ

ˇ � 1
;

where

ˇ D 1

�2

0

@

�2

2
� �C

s

�

� � �2

2

�2

C 2r�2

1

A :

Then the optimal selling rule can be given as (see
Øksendal 2007):

�

sell if xt � x�;
hold if xt < x�:

In general, to solve an optimal control problem
via the DP approach, one first needs to solve the
associate Bellman (HJB) equations. Then, these
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solutions can be used to come up with an optimal
control policy. For example, in the above case,
given the value function V.x/, one should hold if

rV .x/ � x�dV.x/
dx

� x2�2

2

d2V .x/

dx2
D 0

and sell when V.x/�K D 0. The threshold level
x� is the exact dividing point between the first
part equals zero and the second part vanishes.
In addition, one can also provide a theoretical
justification in terms of a verification theorem to
show that the solution obtained this way is indeed
optimal (see Fleming and Rishel (1975), Fleming
and Soner (2006), or Yong and Zhou (1999)).

HJB Equation Characterization and
Computational Methods

In continuous-time optimal control problem, one
major difficulty that arises in solving the asso-
ciated HJB equations (e.g., (1)) is the charac-
terization of the solutions. In most cases, there
is no guarantee that the derivatives or partial
derivatives exist. In this connection, the concept
of viscosity solutions developed by Crandall and
Lions in the 1980s can often be used to char-
acterize the solutions and their uniqueness. We
refer the reader to Fleming and Soner (2006) for
related literature and applications. In addition, we
would like to point out that closed-form solutions
are rare in stochastic control theory and difficult
to obtain in most cases. In many applications,
one needs to resort to computational methods.
One typical way to solve an HJB equation is
the finite difference methods. An alternative is
Kushner’s Markov chain approximation methods;
see Kushner and Dupuis (1992).

Summary and Future Directions

In this article, we have briefly stated stochastic
DP methods, showed how they work in two
simple examples, and discussed related issues.
One serious limitation of the DP approach is
the so-called curse of dimensionality. In other

words, the DP does not work for problems with
high dimensionality. Various efforts have been
devoted to search for approximate solutions.
One approach developed in recent years is the
multi-time-scale approach. The idea is to classify
random events according to the frequency of
their occurrence. Frequent occurring events are
grouped together and treated as a single “state”
to achieve the reduction of dimensionality. We
refer the reader to Yin and Zhang (2005, 2013)
for related literature and theoretical development.
Finally, we would like to mention that stochastic
DP has been used in many applications in eco-
nomics, engineering, management science, and
finance. Some applications can be found in Sethi
and Thompson (2000). Additional references are
also provided at the end for further reading.
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Abstract

A stochastic game was introduced by Lloyd
Shapley in the early 1950s. It is a dynamic
game with probabilistic transitions played by
one or more players. The game is played in a
sequence of stages. At the beginning of each
stage, the game is in a certain state. The players
select actions, and each player receives a payoff
that depends on the current state and the chosen
actions. The game then moves to a new random
state whose distribution depends on the previous
state and the actions chosen by the players. The
procedure is repeated at the new state, and the
play continues for a finite or infinite number of
stages. The total payoff to a player is often taken
to be the discounted sum of the stage payoffs

or the limit inferior of the averages of the stage
payoffs.

A learning problem arises when the agent does
not know the reward function or the state transi-
tion probabilities. If an agent directly learns about
its optimal policy without knowing either the
reward function or the state transition function,
such an approach is called model-free reinforce-
ment learning. Q-learning is an example of such
a model.
Q-learning has been extended to a noncooper-

ative multi-agent context, using the framework of
general-sum stochastic games. A learning agent
maintainsQ-functions over joint actions and per-
forms updates based on assuming Nash equilib-
rium behavior over the current Q-values. The
challenge is convergence of the learning protocol.

Keywords

Asynchronous dynamic programming; Dynamic
programming; Equilibrium; Markov decision
process; Q-learning; Reinforcement learning;
Repeated game

Introduction

A Stochastic Game
Definition 1 (Stochastic games) A stochastic
game is a dynamic game with probabilistic
transitions played by one or more players. The
game is played in a sequence of stages. At the
beginning of each stage, the game is in a certain
state. The players select actions, and each player
receives a payoff that depends on the current state
and the chosen actions. The game then moves to
a new random state whose distribution depends
on the previous state and the actions chosen by
the players. The process is repeated at the new
state, and the play continues for a finite or infinite
number of stages.

The total payoff to a player can be defined in
various ways. It depends on the payoffs at each
stage and strategies chosen by players. The aim
of the players is to control their total payoffs in
the game by appropriate actions.
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The notion of a stochastic game was
introduced by Lloyd Shapley (1953) in the
early 1950s. Stochastic games generalize both
Markov decision processes (see also MDP) and
repeated games. A repeated game is equivalent
to a stochastic game with a single state. The
stochastic game is played in discrete time with
past history as common knowledge for all the
players. An individual strategy for a player is a
map which associates with each given history
a probability distribution on the set of actions
available to the players. The players’ actions at
stage n determines the players’ payoffs at this
stage and the state s 2 S at stage nC 1.

Learning
Learning is acquiring new, or modifying and re-
inforcing existing, knowledge, behaviors, skills,
values, or preferences, and may involve synthe-
sizing different types of information. The ability
to learn is possessed by humans, animals, and
some machines which will be later called agents.
In the context of this entry, learning refers to
a particular class of stochastic game theoretical
models.

Definition 2 (Learning in stochastic games) A
learning problem arises when an agent does not
know the reward function or the state transition
probabilities. If the agent directly learns about its
optimal policy without knowing either the reward
function or the state transition function, such
an approach is called model-free reinforcement
learning. Q-learning is an example of such a
model.

Learning models constitute a branch of larger
literature. Players follow a form of behavioral
rule, such as imitation, regret minimization, or re-
inforcement. Learning models are most appropri-
ate in settings where players have a good under-
standing of their strategic environment and where
the stakes are high enough to make forecasting
and optimization worthwhile. The known ap-
proaches are formulated as minimax-Q (Littman
1994), Nash-Q (Hu and Wellman 1998), tinker-
ing with learning rates (“Win or Learn Fast”-
WoLF, Bowling and Veloso 2001) and multiple
timescale Q-learning (Leslie and Collins 2005).

Model of Stochastic Game

Let us assume that the environment is modeled
by the probability space .	;F ;P/. An N -person
stochastic game is described by the objects
.N;S; Xk; Ak; rk; q/ with the interpretation
that:
1. N is a set of players, withjNj D N 2 N.
2. S is the set of states of the game, and it is

finite.
3.

�!
X D X1 � X2 � : : : � XN is the state of
actions, where Xk is a nonempty, finite space
of actions for player k.

4. Ak’s are correspondences from S into
nonempty subsets of Xk . For each s 2 S,
Ak .s/ represents the set of actions available
to player k in state s. For s 2 S, denote�!
A.s/ D A1.s/ � A2.s/ � : : : � AN .s/.

5. rk W S � �!
X ! < is a payoff function for

player k.

6. q is a transition probability from S� �!
X to S,

called the law of motion among states. If s is
a state at a certain stage of the game and the

players select �!x 2 �!
A.s/, then q




� js; �!x
�

is

the probability distribution of the next state of
the game.

The stochastic game generates two processes:
1. f�ngTnD1 with values in S

2. f˛ngTnD1 with values in
�!
X

Strategies

Let H D S1 � �!
X 1 � S2 � � � � be the space of

all infinite histories of the game and Hn D S1 ��!
X1�S2��!

X 2�� � �Sn the histories up to stage n.

Definition 3 A player’s strategy � D f˛ngTnD1
consists of random maps ˛n W 	 � Hn ! X .
In other words, the strategy associates with each
given history a probability distribution dependent
on the set of actions available to the player. If
˛n is dependent on the history only, it is called
deterministic.

The mathematical description of the strategies
can be made as follows:
1. For player i 2 N, a deterministic strategy

specifies a choice of actions for the player at
every stage of every possible history.
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2. A mixed strategy is a probability distribution
over deterministic strategies.

3. Restricted classes of strategies:
1. A behavioral strategy – a mixed strategy

in which the mixing takes place at each
history independently.

2. A Markov strategy – a behavioral strategy
such that for each time t , the distribution
over actions depends only on the current
state, but the distribution may be different
at time t than at time t 0 ¤ t .

3. A stationary strategy – a Markov strategy in
which the distribution over actions depends
only on the current state (not on the time t).

The Total Payoff Types
For any profile of strategies � D .�1; : : : ; �N / of
the players and every initial state s1 D s 2 S, a
probability measure P�

s and a stochastic process
f�n; ˛ng are defined on H in a canonical way,
where the random variables �n and ˛n describe
the state and the actions chosen by the players,
respectively, on the nth stage of the game. Let us
define E�

s the expectation operator with respect
to the probability measure P�

s . For each profile
of strategies � D .�1; : : : ; �N / and every initial
state s 2 S, the following are considered:
1. The expectedT-stage payoff to player k, for

any finite horizon T , defined as

ˆTk .�/.s/ D E�
s

 

T
X

nD1
rk.�n; ˛n/

!

2. The ˇ-discounted expected payoff to player k,
where ˇ 2 .0; 1/ is called the discount factor,
defined as

ˆ
ˇ

k .�/.s/ D E�
s

 1
X

nD1
ˇn�1rk.�n; ˛n/

!

3. The average payoff per unit time for player k
defined as

ˆk.�/.s/ D lim sup
T

1

T
ˆTk .�/.s/

Equilibria
Let �� D �

��
1 ; : : : ; �

�
N

� 2 … be a fixed profile
of the players’ strategies. For any strategy �k 2
…k of player k, we write

�

���k; �k
�

to denote the
strategy profile obtained from�� by replacing��

k

with �k .

Definition 4 (A Nash equilibrium) A strategy
profile �� D �

��
1 ; : : : ; �

�
N

� 2 … is called a
Nash equilibrium (in …) for the average payoff
stochastic game if no unilateral deviations from it
are profitable, that is, for each s 2 S ,

ˆk.�
�/.s/ � ˆk.�

��k; �k/.s/

for every player k and any strategy �k .

Definition 5 (An "-Nash equilibrium) A
strategy profile �� D �

��
1 ; : : : ; �

�
N

�

is called
an "-(Nash) equilibrium of the average payoff
stochastic game if for every k 2 N, we have

ˆk.�
�/.s/ � ˆk.�

��k; �k/.s/ � �;

for the given " > 0 and all �k .

Nash equilibria and "-Nash equilibria are anal-
ogously defined for the T -stage stochastic games,
ˇ-discounted stochastic games, and the average
payoff per unit time stochastic games.

Construction of an Equilibrium
For stochastic games with a finite state space
and finite action spaces, the existence of a sta-
tionary equilibrium has been shown (cf. Herings
and Peeters 2004). The stationary strategies at
time t do not depend on the entire history of
the game up to that time. This allows reduction
of the problem of finding discounted stationary
equilibria in a general n-person stochastic game
to that of finding a global minimum in a non-
linear program with linear constraints. Solving
this nonlinear program is equivalent to solving
a certain nonlinear system for which it is known
that the objective value in the global minimum
is zero (cf. Filar et al. 1991). However, as is
noted by Breton (1991), the convergence of an
optimization algorithm to the global optimum is
not guaranteed.
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The solution of the finite horizon finite
stochastic game can be construct by dynamic
programming (see, e.g., Nowak and Szajowski
1998; Tijms 2012). For discounted games, the
solution construction is based on an equivalence
(the two-person case is presented here for
simplicity):
1.
�

��
1 ; �

�
2

�

is an equilibrium point in the
discounted stochastic game with equilibrium

payoffs



ˆ
ˇ
1


�!� �
�

; ˆ
ˇ
2


�!� �
��

.

2. For each s 2 S, the pair
�

��
1 .s/; �

�
2 .s/

�

constitutes an equilibrium point in the static
bimatrix game (B1.s/,B2.s//with equilibrium

payoffs



ˆ
ˇ
1




s;�!� �
�

; ˆ
ˇ
2




s;�!� �
��

, where

for players k D 1; 2, and pure actions
(a1; a2/ 2 A1.s/�A2.s/, an admissible action
space at state s, the elements of Bk.s/ related
to (a1; a2/

bk.s; a1; a2/ WD .1� ˇ/rk.s; a1; a2/

CˇE.a1;a2/
s ˆ

ˇ

k


�!� �
� (1)

An algorithm for recursive computation of
stationary equilibria in stochastic games can
be derived from (1). It starts with bimatrix
games with ˇ D 0, and then a careful
equilibrium selection process guarantees its
convergence under mild assumptions on the
model (see, e.g., Herings and Peeters 2004).

A Brief History of the Research on
Stochastic Games
The notion of a stochastic game was introduced
by Shapley (1953) in the early 1950s. It is a
dynamic game with probabilistic transitions
played by one or more players. The game is
played in a sequence of stages. At the beginning
of each stage, the game is in a certain state. The
players select actions, and each player receives
a payoff that depends on the current state and
the chosen actions. The game then moves to a
new random state whose distribution depends on
the previous state and the actions chosen by the
players. The process is repeated at the new state,
and the play continues for a finite or an infinite
number of stages. The total payoff to a player is
often taken to be the discounted sum of the stage

payoffs or the limit inferior of the averages of the
stage payoffs.

The theory of nonzero-sum stochastic games
with the average payoffs per unit time for the
players started with the papers by Rogers (1969)
and Sobel (1971). They considered finite state
spaces only and assumed that the transition prob-
ability matrices induced by any stationary strate-
gies of the players are irreducible. Until now, only
special classes of nonzero-sum average payoff
stochastic games have been shown to possess
Nash equilibria (or "-equilibria). A review of
various cases and results for generalization to
infinite state spaces can be found in the survey
paper by Nowak and Szajowski (1998).

Learning in Stochastic Game

The problem of an agent learning to act in an
unknown world is both challenging and interest-
ing. Reinforcement learning has been successful
at finding optimal control policies for a sin-
gle agent operating in a stationary environment,
specifically a Markov decision process. Learning
to act in multi-agent systems offers additional
challenges (see the following surveys: Shoham
and Leyton-Brown 2009, Chap. 7; Weiß and Sen
1996; Buşoniu et al. 2010). We provide here, an
overview of a general idea of learning for single
and multi-agent systems:
1. Goals of single-agent reinforcement learning

are to determine the optimal value and a con-
trol policy which maximizes the payoff. The
model of such a system can be built based on
the framework of Markov decision processes
with discounted payoff. Suppose the policy is
stationary and defined by a function h W S !
X . Such a policy defines what action should
be taken in each state: ˛n.�/ WD h.�/. There are
various ways to learn the optimal policy. The
most straightforward way is based on the Q-

values: Qh.s; a/ D
1
P

jD0
ˇ
jr
jC1. The greedy ac-

tion is a D arg max
a02A.s/

Qh.s; a0/ (see the article

on Q-learning in Reinforcement learning).
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2. Multi-agent reinforcement learning can be
employed to solve a single task, or an agent
may be required to perform a task in an
environment with other agents, either human,
robot, or software ones. In either case, from an
agent’s perspective, the world is not stationary.
In particular, the behavior of the other agents
may change as they also learn to better
perform their tasks. This type of a multi-agent
nonstationary world creates a difficult problem
for learning to act in these environments. Such
a nonstationary scenario can be viewed as a
game with multiple players. In game theory, in
the study of such problems, there is generally
an underlying assumption that the players
have similar adaptation and learning abilities.
Therefore, the actions of each agent affect
the task achievement of the other agents. It
allows to build the value of the game and an
equilibrium strategy profile in following steps.
Stochastic games can be seen as an exten-

sion of the single-agent Markov decision process
framework to include multiple agents whose ac-
tions all impact the resulting rewards and the next
state. They can also be viewed as an extension
of the framework of matrix games. Such a view
emphasizes the difficulty of finding the optimal
behavior in stochastic games since the optimal
behavior of any one agent depends on the be-
havior of other agents. A comprehensive study of
the multi-agent learning techniques for stochas-
tic games does not yet exist. For the interested
reader, there are monographs by Fudenberg and
Levine (1998) and Shoham and Leyton-Brown
(2009) and the special issue of the journal Ar-
tificial Intelligence (Vohra and Wellman 2007),
which could be consulted.

Despite its interesting properties, Q-learning
is a very slow method that requires a long period
of training for learning an acceptable policy. In
practice, to reduce the problem, there are par-
allel computing implementation models of Q-
learning.

Summary and Future Directions

Details concerning solution concepts for stochas-
tic games can be found in Filar and Vrieze (1997).

The refinements of the Nash equilibrium con-
cept have been known in the economic dynamic
games (see Myerson 1978). The Nash equilib-
rium concept may be extended gradually when
the rules of the game are interpreted in a broader
sense, so as to allow preplay or even intraplay
communication. A well-known extension of the
Nash equilibrium is Aumann’s correlated equi-
librium (see Aumann 1987), which depends only
on the normal form of the game. Two other
solution concepts for multistage games have been
proposed by Forges (1986): the extensive form
correlated equilibrium, where the players can
observe private exogenous signals at every stage,
and the communication equilibrium, where the
players are furthermore allowed to transmit in-
puts to an appropriate device at every stage. An
application of the notion of correlated equilibria
for stochastic games can be found in Nowak and
Szajowski (1998).

In economics, in the context of economic
growth problems, Ramsey (1928) has introduced
an overtaking optimality and independently (Ru-
binstein 1979) for repeated games. The crite-
rion has been investigated for some stochastic
games by Carlson and Haurie (1995) and Nowak
(2008), and others. The existence of overtaking
optimal strategies is a subtle issue, and there
are counterexamples showing that one has to be
careful with making statements on overtaking
optimality.

Regarding a stochastic game and learning,
let us mention that the first idea can be found
in the papers by Brown (1951) and Robinson
(1951). Some convergence results for a fictitious
play have been given by Shoham and Leyton-
Brown (2009) in Theorem 7.2.5. An important
example showing non-convergence was given by
Shapley (1964). In multi-person stochastic games
and learning, convergence to equilibria is a ba-
sic stability requirement (see, e.g., Greenwald
and Hall 2003; Hu and Wellman 2003). This
means that the agents’ strategies should eventu-
ally converge to a coordinated equilibrium. Nash
equilibrium is most frequently used, but their
usefulness is suspected. For instance, in Shoham
and Leyton-Brown (2009), there is an argument
that the link between stage-wise convergence to
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Nash equilibria and the performance in stochastic
games is unclear.
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In this short article, we briefly review some
major historical studies and recent progress
on continuous-time stochastic linear-quadratic
(SLQ) control and related mean-variance (MV)
hedging.
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Introduction

A stochastic linear-quadratic (SLQ) control
problem is the optimal control of a linear
stochastic dynamic equation subject to an
expected quadratic cost functional of the system
state and control. As shown in Athans (1971), it is
a typical case of optimal stochastic control both in
theory and application. Due to the linearity of the
system dynamics and the quadratic feature of the
cost functions, the optimal control law is usually
synthesized into a feedback (also called closed)
form of the optimal state, and the corresponding
proportional coefficients are specified by the
associated Riccati equation. In what follows, we
restrict our exposition within the continuous-
time SLQ problem, and further, mainly for the
finite-horizon case.

The initial study on the continuous-time SLQ
problem seems to be due to Florentin (1961).
However, his linear stochastic control system is
assumed to be Gaussian. That is, the system noise
is additive and has neither multiplication with the
state nor with the control. Such a case is usually

termed as the linear-quadratic Gaussian (LQG)
problem, and in the case of complete observation,
the optimal feedback law remains to be invariant
when the white noise vanishes. The continuous-
time partially observable case was first discussed
by Potter (1964) and a more general formulation
was later given by Wonham (1968a). It is proved
that the optimal control can be obtained by the
following two separate steps: (1) generate the
conditional mean estimate of the current state
using a Kalman filter and (2) optimally feed back
as if the conditional mean state estimate was the
true state of the system. This result is referred
to as the certainty equivalence principle or the
strict separation theorem. Different assumptions
were discussed by Tse (1971) for the separation
of control and state estimation.

Wonham (1967, 1968b, 1970) investigated
the SLQ problem in a fairly general systematic
framework. In the first two papers, his stochastic
system is able to admit a state-dependent
noise. Finally, Wonham (1970) considered the
following very general (admitting both state-
and control-dependent noise) linear stochastic
differential system driven by a d -dimensional
Brownian motionW D .W 1;W 2; � � � ;W d /:

Xt D x C
Z t

0

.AsXs C Bsus/ dt

C
Z t

0

d
X

iD1
.C i

s Xs CDi
sus/ dW

i
s ; t 2 Œ0; T �I

and the following cost functional:

J.u/ D EhMXT ;XT i

CE

Z T

0

ŒhQtXt ;Xt i C hNtut ; uti� dt:

Here, T > 0;Xt 2 Rn is the state at time t ,
and ut 2 Rm is the control at time t: Assume
that all the coefficients A;BIC i ;Di ; i D
1; 2; : : : ; d IQ;N are piecewisely continuous
matrix-valued (of suitable dimensions) functions
of time, and M;Qt are nonnegative matrices and
Nt is uniformly positive. Wonham (1970) gave
the following Riccati equation:
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(

� PKt D A�
t Kt CKtAt C C i�

t KtC
i
t � �t .Kt /.Nt CDi�

t KtD
i
t /�t .Kt/; t 2 Œ0; T /I

KT D M:
(1)

Here, the asterisk stands for transpose, the re-
peated superscripts imply summation from 1 to
d , and the function � is defined by

�t .K/ WD �.NtCDi
t KD

i
t /

�1.KBtCC i�
t KD

i
t /

�

for time t 2 Œ0; T � and any K 2 S nC WD
fall nonnegative n � n matricesg. This Riccati
equation is a nonlinear ordinary differential
equation (ODE). Since the nonlinear term
�t .K/.Nt C Di�

t KD
i
t /�t .K/ in the right-hand

side is not uniformly Lipschitz in K in general,
the standard existence and uniqueness theorem of
ODEs does not directly tell whether this Riccati
equation has a unique continuous solution in
S nC. To solve this issue, Wonham (1970) used
Bellman’s principle of quasilinearization and
constructed the following sequence of successive
linear approximating matrix-valued ODEs.

Define for .t;K; Q�/ 2 Œ0; T � �Rn�n � Rm�n,

Ft .K; Q�/ WD ŒAt C Bt Q���K CKŒAt C Bt Q��
CŒC i

t CDi
t

Q���KŒC i
t CDi

t
Q��

CQt C Q��Nt Q�: (2)

For K 2 S nC, the matrix Ft .K; Q�/ �
Ft .K; �t .K// is nonnegative, that is,

Ft .K; Q�/ � Ft .K; �t.K//; 8 Q� 2 Rm�n: (3)

Riccati equation (1) can then be written into the
following form:

� � PKt D Ft .Kt ; �t .Kt //; t 2 Œ0; T /I
KT D M:

(4)

The iterating linear approximations are therefore
structured as follows: Set K0 � M and for l D
1; 2; : : : ;

� � PKl
t D Ft .K

l
t ; �t .K

l�1
t //; t 2 Œ0; T /I

Kl
T D M:

(5)

Using the above minimal property (3) of
Ft .K; �/ at �t .K/, Wonham showed that the
unique nonnegative solution Kl of ODE (5)
is monotonically decreasing in the sequential
number l D 1; 2; : : : : Using the method
of monotone convergence, the sequence of
solutions fKlg is shown to converge to some
K 2 S nC, which turns out to solve Riccati
equation (1).

The Case of Random Coefficients
and Backward Stochastic Riccati
Equation

Bismut (1976, 1978) are the first studies on
the SLQ problem with random coefficients.
Let fFt ; t 2 Œ0; T �g be the completed
natural filtration of W . When the coefficients
A;BIC i ;Di ; i D 1; 2; : : : ; d IQ;N and M

may be random, with A;BIC i ;Di ; i D
1; 2; : : : ; d IQ;N being Ft -adapted and essen-
tially bounded and M being FT -measurable
and essentially bounded, Bismut (1976, 1978)
used the stochastic maximum principle for
optimal control and derived the following Riccati
equation:

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�dKt D ŒA�
t Kt CKtAt C C i�

t KtC
i
t C C i�

t L
i
t C LitC

i
t

�‰t.Kt ; Lt /.Nt CDi�
t KtD

i
t /‰t .Kt ; Lt /� dt � Li dW i

t ; t 2 Œ0; T /I

KT D M

(6)
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where the function ‰t for t 2 Œ0; T � is defined as
follows:

‰t.K;L/ WD �.Nt CDi
t KD

i
t /

�1.KBt C C i�
t KD

i
t C LiDi

t /
�;8 K 2 S nC;8L

WD .L1; � � � ; Ld / 2 .Rn�n/d :

Peng (1992b) used his stochastic Hamilton-
Jacobi-Bellman equation to the SLQ problem
and also derived the above equation. They both
established the existence and uniqueness of an
adapted solution of backward stochastic Riccati
equation (6) when the function ‰t.K;L/ does
not contain L. However, Bismut used the fixed-
point method, and Peng (1992b) used Bellman’s
principle of quasilinearization and the method
of monotone convergence. Neither methodology
works for the general case of quadratic growth
in the second unknown variable L in the drift
of the stochastic equation. Bismut (1976, 1978)
and Peng (1999) stated the general case as an
open problem. By considering the stochastic
equation for the inverse of Kt , Kohlmann and
Tang (2003a) solved some particular cases where
the function ‰t.K;L/ can depend on L. Tang
(2003) finally solved the general case, using the
method of stochastic flows.

In the general case, the optimal feedback co-
efficient ‰t.Kt ; Lt / at time t depends on Lt in a
linear manner, which is in general not essentially
bounded with respect to .t; !/. Kohlmann and
Tang (2003b) observed that the stochastic integral
process

R �
0
Lit dW

i
t is a BMO-martingale.

Indefinite SLQ Problem

Chen (1985) contains a theory of singular
(the control weighting matrix vanishing in the
quadratic cost functional) LQG control, which
is a particular type of indefinite SLQ problems.
In the deterministic linear-quadratic (LQ) control
theory, the well posedness (i.e., the value function
is finite on Œ0; T � � Rn) of the problem suggests
that the control weighting matrix N in the
quadratic cost functional be positive definite. In
the stochastic case, when Nt is slightly negative,

the SLQ may still be well posed if the control
could also increase the intensity of the system
noise. Peng (1992a) used an indefinite but well-
posed SLQ problem to illustrate his new second-
order stochastic maximum principle. Chen et al.
(1998) gave a deeper study on this feature of
the SLQ problem. Yong and Zhou (1999) gave a
systematic account of the progress around in the
indefinite SLQ problem.

Mean-Variance Hedging

In the theory of finance, Duffie and Richardson
(1991) introduced the SLQ control model to
hedge a contingent claim in an incomplete
market. Schweizer (1992) developed a first
framework for MV hedging, and then it was
extended to a very general setting in Gouriéroux
et al. (1998). Before 2000, the martingale
method was used to solve the MV hedging
problem. Kohlmann and Zhou (2000) began
to use the standard SLQ theory to derive the
optimal hedging strategy for a general contingent
claim in a financial market of deterministic
coefficients, and such a SLQ methodology was
subsequently extended to very general settings
for financial markets by Kohlmann and Tang
(2002, 2003b), Bobrovnytska and Schweizer
(2004), and Jeanblanc et al. (2012). See more
detailed surveys on the literature by Pham (2000),
Schweizer (2010), and Jeanblanc et al. (2012).

Summary and Future Directions

In comparison to the continuous-time determin-
istic LQ theory, the continuous-time SLQ theory
has the following two striking features: An indef-
inite SLQ problem may be well posed, and the
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optimal feedback coefficient may be unbounded
due to its linear dependence on the martingale
part L of the stochastic solution of the Ric-
cati equation. Due to the second feature, the
convergence of the sequence of successive ap-
proximations constructed via Bellman’s quasi-
linearization still remains to be solved in the
general case. This problem partially motivates
Delbaen and Tang (2010) to study the regularity
of unbounded stochastic differential equations
and also may help to explain the necessity of rich
studies on mean-variance hedging and closed-
ness of stochastic integrals with respect to semi-
martingales (as in Delbaen et al. 1994, 1997) in
various general settings.

Cross-References

� Stochastic Maximum Principle

Recommended Reading

The theory of SLQ control in various contexts
is available in textbooks, monographs, or papers.
Anderson and Moore (1971, 1989), Bensoussan
(1992), and Chen (1985) include good accounts
of the LQG control theory. Wonham (1970) in-
cludes a full introduction to the SLQ problem
with deterministic piecewise continuous-time co-
efficients. Bismut (1978) gives a systematic and
readable French introduction to SLQ problem
with random coefficients. Yong and Zhou (1999)
include an extensive discussion on the well-posed
indefinite SLQ problem. Tang (2003) gives a
complete solution of a general backward stochas-
tic Riccati equation.
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Abstract

The stochastic maximum principle (SMP) gives
some necessary conditions for optimality for
a stochastic optimal control problem. We give
a summary of well-known results concern-
ing stochastic maximum principle in finite-
dimensional state space as well as some recent
developments in infinite-dimensional state space.

Keywords

Adjoint process; Backward stochastic differential
equations; Brownian motion; Hilbert-Schmidt
operators

Introduction

The problem of finding sufficient conditions for
optimality for a stochastic optimal control prob-
lem with finite-dimensional state equation had
been well studied since the pioneering work of
Bismut (1976, 1978). In particular, Bismut in-
troduced linear backward stochastic differential
equations (BSDEs) which have become an active
domain of research since the seminal paper of
Pardoux and Peng in 1990 concerning (nonlinear)
BSDEs in Pardoux and Peng (1990).

The first results on SMP concerned only the
stochastic systems where the control domain is
convex or the diffusion coefficient does not con-
tain control variable. In this case, only the first-
order expansion is needed. This kind of SMP
was developed by Bismut (1976, 1978), Kushner
(1972), and Haussmann (1986). It is important to
note that (Bismut 1978) introduced linear BSDE
to represent the first-order adjoint process.

Peng made a breakthrough by establishing the
SMP for the general stochastic optimal control
problem where the control domain need not to be
convex and the diffusion coefficient can contain
the control variable. He solved this general case
by introducing the second-order expansion and
second-order BSDE. We refer to the book Yong
and Zhou (1999) for the account of the theory
of SMP in finite-dimensional spaces and describe
Peng’s SMP in the next section.

Despite the fact that the problem has been
solved in complete generality more than 20 years
ago, the infinite-dimensional case still has impor-
tant open issues both on the side of the generality
of the abstract model and on the side of its
applicability to systems modeled by stochastic
partial differential equations (SPDEs). The last
section is devoted to the recent development of
SMP in infinite-dimensional space.



1348 Stochastic Maximum Principle

Statement of SMP

Formulation of Problem
Let .	;F ;P/ be a complete probability space,
on which anm-dimensional Brownian motionW
is given. Let fFtgt�0 be the natural completed
filtration of W .

We consider the following stochastic
controlled system:

dx.t/ D b.x.t/; u.t//dt C �.x.t/; u.t//dW.t/;

x.0/ D x0; (1)

with the cost functional

J.u.�// D E

�Z T

0

f .x.t/; u.t//dt C h.x.T //



:

(2)

In the above, b; �; f; h are given functions with
appropriate dimensions. .U; d/ is a separable
metric space.

We define

U D fu W Œ0; T � �	
! U j u is fFt gt�0 � adapted g: (3)

The optimal problem is: Minimize J.u.�//
over U .

Any Nu 2 U satisfying

J.Nu/ D inf
u2U J.u/ (4)

is called an optimal control. The corresponding
Nx and . Nx; Nu/ is called an optimal state

process/trajectory and optimal pair, respec-
tively.

In this section, we assume the following stan-
dard hypothesis:

Hypothesis 1 1. The functions b W R
n � U 7!

R
n, � D .�1; � � � ; �m/ W R

n � U 7! R
n�m,

f W R
n � U 7! R and h W R

n 7! R are
measurable functions.

2. For ' D b; �j ; j D 1; � � � ; m; f , the func-
tions x 7! '.x; u/ and x 7! h.x/ are C2,
denoted 'x and 'xx (respectively, hx and hxx),
which are also continuous functions of .x; u/.

3. There exists a constantK > 0 such that

j'xj C j'xxj C jhxj C jhxxj � K;

and

j'j C jhj � K.1C jxj C juj/:

Adjoint Equations
Let us first introduce the following backward
stochastic differential equations (BSDEs).

dp.t/ D �fbx. Nx.t/; Nu.t//T p.t/ (5)

C
m
X

jD1
�jx . Nx.t/; Nu.t//T qj .t/

�fx. Nx.t/; Nu.t//gdt C q.t/dW.t/;

p.T / D �hx. Nx.T //:

The solution .p; q/ to the above BSDE (first-
order BSDE) is called the first-order adjoint
process.

dP.t/ D �fbx. Nx.t/; Nu.t//T P.t/C P.t/bx. Nx.t/; Nu.t//C
m
X

jD1
�jx . Nx.t/; Nu.t//T P.t/�jx . Nx.t/; Nu.t//

C
m
X

jD1
f�jx . Nx.t/; Nu.t//TQj .t/CQj .t/�

j
x . Nx.t/; Nu.t//g

CHxx. Nx.t/; Nu.t/; p.t/; q.t//gdt C
m
X

jD1
Qj .t/dW

j .t/; (6)

P.T / D �hxx. Nx.T //;
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where the HamiltonianH is defined by

H.x; u; p; q/ D hp; b.x; u/i
C trŒqT �.x; u/� � f .x; u/: (7)

The solution .P;Q/ to the above BSDE (second-
order BSDE) is called the second-order adjoint
process.

Stochastic Maximum Principle
Let us now state the stochastic maximum
principle.

Theorem 1 Let . Nx; Nu/ be an optimal pair of
problem. Then there exist a unique couple .p; q/
satisfying (5) and a unique couple .P;Q/ satis-
fying (6), and the following maximum condition
holds:

H. Nx.t/; Nu.t/; p.t/; q.t// �H. Nx.t/; u; p.t/; q.t//

�1
2

tr.f�. Nx.t/; Nu.t// � �. Nx.t/; u/gT P.t/f�. Nx.t/; Nu.t// � �. Nx.t/; u/g/ � 0: (8)

SMP in Infinite-Dimensional Space

The problem of finding sufficient conditions
for optimality for a stochastic optimal control
problem with infinite-dimensional state equation,
along the lines of the Pontryagin maximum
principle, was already addressed in the early
1980s in the pioneering paper (Bensoussan
1983).

Whereas the Pontryagin maximum principle
for infinite-dimensional stochastic control prob-
lems is a well-known result as far as the con-
trol domain is convex (or the diffusion does not
depend on the control; see Bensoussan 1983;
Hu and Peng 1990), for the general case (that
is when the control domain need not be convex
and the diffusion coefficient can contain a control
variable), existing results are limited to abstract
evolution equations under assumptions that are
not satisfied by the large majority of concrete
SPDEs.

The technical obstruction is related to the fact
that (as it was pointed out in Peng 1990) if the
control domain is not convex, the optimal control
has to be perturbed by the so-called spike varia-
tion. Then if the control enters the diffusion, the
irregularity in time of the Brownian trajectories
imposes to take into account a second variation
process. Thus, the stochastic maximum principle
has to involve an adjoint process for the second
variation. In the finite-dimensional case, such
a process can be characterized as the solution

of a matrix-valued backward stochastic differ-
ential equation (BSDE), while in the infinite-
dimensional case, the process naturally lives in a
non-Hilbertian space of operators and its charac-
terization is much more difficult. Moreover, the
applicability of the abstract results to concrete
controlled SPDEs is another delicate step due to
the specific difficulties that they involve such as
the lack of regularity of Nemytskii-type coeffi-
cients in Lp spaces.

Concerning results on the infinite-dimensional
stochastic Pontryagin maximum principle, as we
already mentioned, in Bensoussan (1983) and Hu
and Peng (1990), the case of diffusion indepen-
dent on the control is treated (with the difference
that in Hu and Peng (1990) a complete charac-
terization of the adjoint to the first variation as
the unique mild solution to a suitable BSDE is
achieved).

The paper Tang and Li (1994) is the first one
in which the general case is addressed with, in
addition, a general class of noises possibly with
jumps. The adjoint process of the second vari-
ation .Pt /t2Œ0;T � is characterized as the solution
of a BSDE in the (Hilbertian) space of Hilbert-
Schmidt operators. This forces to assume a very
strong regularity on the abstract state equation
and control functional that prevents application
of the results in Tang and Li (1994) to SPDEs.

Then in the papers by Fuhrman et al. (2012,
2013), the state equation is formulated, only in a
semiabstract way in order, on one side, to cope
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with all the difficulties carried by the concrete
nonlinearities and, on the other, to take advantage
of the regularizing properties of the leading ellip-
tic operator.

Recently in Lü and Zhang (2012), Pt was
characterized as “transposition solution” of
a backward stochastic evolution equation in
L.L2.O//. Coefficients are required to be twice
Fréchet differentiable as operators in L2.O/.
Finally, even more recently in a couple of
preprints (Du and Meng (2012, 2013)), the
processPt is characterized in a similar way as it is
in Fuhrman et al. (2012, 2013). Roughly speaking
it is characterized as a suitable stochastic bilinear
form. As it is the case in Lü and Zhang (2012), in
Du and Meng (2012, 2013) as well, the regularity
assumptions on the coefficients are too restrictive
to apply directly the results in Lü and Zhang
(2012), Du and Meng (2012, 2013) to controlled
SPDEs.
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Introduction

Stochastic model predictive control (SMPC)
refers to a family of numerical optimization
strategies for controlling stochastic systems
subject to constraints on the states and inputs
of the controlled system. In this approach,
future performance is quantified using a cost
function evaluated along predicted state and input
trajectories. This leads to a stochastic optimal
control problem, which is solved numerically to
determine an optimal open-loop control sequence
or alternatively a sequence of feedback control
laws. In MPC, only the first element of this
optimal sequence is applied to the controlled
system, and the optimal control problem is
solved again at the next sampling instant on the
basis of updated information on the system state.
The numerical nature of the approach makes it
applicable to systems with nonlinear dynamics
and constraints on states and inputs, while
the repeated computation of optimal predicted
trajectories introduces feedback to compensate
for the effects of uncertainty in the model.

Robust MPC (RMPC) tackles problems with
hard state and input constraints, which are to
be satisfied for all realizations of model uncer-
tainty. However, RMPC is too conservative in
many applications and stochastic MPC (SMPC)
provides less conservative solutions by handling
a wider class of constraints which are to be
satisfied in mean or with a specified probability.
This is achieved by taking explicit account of the
probability distribution of the stochastic model
uncertainty in the optimization of predicted per-
formance. Constraints limit performance and an
advantage of MPC is that it allows systems to
operate close to constraint boundaries. Stochas-
tic MPC is similarly advantageous when model
uncertainty is stochastic with known probability
distribution and the constraints are probabilistic
in nature.

Applications of SMPC have been reported in
diverse fields, including finance and portfolio
management, risk management, sustainable
development policy assessment, chemical
and process industries, electricity generation
and distribution, building climate control,

andtelecommunications network traffic control.
This entry aims to summarize the theoretical
framework underlying SMPC algorithms.

Stochastic MPC

Consider a system with discrete time model

xC D f .x; u;w/ (1)

z D g.x; u; v/ (2)

where x 2 R
nx and u 2 R

nu are the system
state and control input and xC is the succes-
sor state (i.e., if xi is the state at time i , then
xC D xiC1 is the state at time i C 1). Inputs
w 2 R

nw and v 2 R
nv are exogenous distur-

bances with unknown current and future values
but known probability distributions, and z 2 R

nz

is a vector of output variables that are subject to
constraints.

The optimal control problem that is solved on-
line at each time step in SMPC is defined in terms
of a performance index JN .x; Ou; Ow/ evaluated
over a future horizon of N time steps. Typically
in SMPC JN .x; Ou; Ow/ is a quadratic function of
the following form (in which kxk2Q D xTQx)

JN .x; Ou; Ow/ D
N�1
X

iD0
.k Oxik2Q C kOuik2R/C Vf . OxN /

(3)

for positive definite matrices Q and R, and a
terminal cost Vf .x/ defined as discussed in sec-
tion “Stability and Convergence.” Here Ou WD
fOu0; : : : ; OuN�1g is a postulated sequence of con-
trol inputs and Ox.x; Ou; Ow/ WD f Ox0; : : : ; OxN g is the
corresponding sequence of states such that Oxi is
the solution of (1) at time i with initial state
Ox0 D x, for a given sequence of disturbance
inputs Ow WD f Ow0; : : : ; OwN�1g. Since Ow is a ran-
dom sequence, JN .x; Ou; Ow/ is a random variable,
and the optimal control problem is therefore for-
mulated as the minimization of a cost VN .x; Ou/
derived from JN .x; Ou; Ow/ under specific assump-
tions on Ow. Common definitions of VN .x; Ou/ are
as follows.
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(a) Expected value cost:

VN .x; Ou/ WD Ex.J.x; Ou; Ow//
where Ex.�/ denotes the conditional expecta-
tion of a random variable .�/ given the model
state x.

(b) Worst-case cost, assuming Owi 2 W for all
i with probability 1, for some compact set
W � R

nw :

VN .x; Ou/ WD max
Ow2WN

J.x; Ou; Ow/:

(c) Nominal cost, assuming Owi is equal to some
nominal value, e.g., if Owi D 0 for all i , then

VN .x; Ou/ WD J.x; Ou; 0/;

where 0 D f0; : : : ; 0g.
The minimization of VN .x; Ou/ is performed

subject to constraints on the sequence of outputs
Ozi WD g. Oxi ; Oui ; Ovi /, i � 0. These constraints
may be formulated in various ways, summa-
rized as follows, where for simplicity we assume
nz D 1.
(A) Expected value constraints: for all i ,

Ex.Ozi / � 1:

(B) Probabilistic constraints pointwise in time:

Prx.Ozi � 1/ � p;

for all i and for a given probability p.
(C) Probabilistic constraints over a future hori-

zon:

Prx.Ozi � 1; i D 0; 1; : : : ; N / � p

for a given probability p.
In (B) and (C), Prx.A/ represents the conditional
probability of an event A that depends on the
sequence Ox.x; Ou; Ow/, given that the initial model
state is Ox0 D x; for example the probabil-
ity Prx.Ozi � 1/ depends on the distribution of
f Ow0; : : : ; Owi�1; Ovi g.

The important special case of state constraints
can also be handled by (A)–(C) through
appropriate choice of the function g.x; u; v/. For
example the constraint Prx.h.x/ � 1/ � p,
for a given function h W R

n ! R, can be
expressed in the form (B) with z D g.x; u; v/ WD
h.f .x; u;w// and v WD w in (2).

In common with other receding horizon con-
trol strategies, SMPC is implemented via the fol-
lowing algorithm. At each discrete time step:
(i) Minimize the cost index VN .x; Ou/ over Ou

subject to the constraints on Ozi , i � 0, given
the current system state x.

(ii) Apply the control input u D Ou�
0 .x/ to the sys-

tem, where Ou�.x/ D fOu�
0 .x/; : : : ; Ou�

N�1.x/g
is the minimizing sequence given x.

If the system dynamics (1) are unstable, then
performing the optimization in step (i) directly
over future control sequences can result in a small
set of feasible states x. To avoid this difficulty
the elements of the control sequence Ou are usu-
ally expressed in the form Oui D uT . Oxi / C si ,
where uT .x/ is a locally stabilizing feedback law,
and fs0; : : : ; sN�1g are optimization variables in
step (i).

Constraints and Recursive Feasibility

The constraints in (B) and (C) include hard con-
straints (p D 1) as a special case, but in general
the conditions (A)–(C) represent soft constraints
that are not required to hold for all realizations
of model uncertainty. However, these constraints
can only be satisfied if the state belongs to a
subset of state space, and the requirement (com-
mon in MPC) that the optimization in step (i)
of the SMPC algorithm should remain feasible
if it is initially feasible therefore implies ad-
ditional constraints. For example, the condition
Prx.Oz0 � 1/ � p can be satisfied only if x be-
longs to the set for which there exists Ou0 such
that Prx.g.x; Ou0; Ov0/ � 1/ � p. Hence, soft con-
straints implicitly impose hard constraints on the
model state.

SMPC algorithms typically handle the condi-
tions relating to feasibility of constraint sets in
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one of two ways. Either the SMPC optimization
is allowed to become infeasible (often with penal-
ties on constraint violations included in the cost
index), or conditions ensuring robust feasibility
of the SMPC optimization at all future times
are imposed as extra constraints in the SMPC
optimization.

The first of these approaches has been used
in the context of constraints (C) imposed over
a horizon, for which conditions ensuring future
feasibility are generally harder to characterize in
terms of algebraic conditions on the model state
than (A) or (B). A disadvantage of this approach
is that the closed-loop system may not satisfy the
required soft constraints, even if these constraints
are feasible when applied to system trajectories
predicted at initial time.

The second approach treats conditions for fea-
sibility as hard constraints and hence requires a
guarantee of recursive feasibility, namely, that the
SMPC optimization must remain feasible for the
closed-loop system if it is feasible initially. This
can be achieved by requiring, similarly to RMPC,
that the conditions for feasibility of the SMPC
optimization problem should be satisfied for all
realizations of the sequence Ow. For example, for
given Ox0 D x, there exists Ou satisfying that the
conditions of (B) if

Pr Oxi .g. Oxi ; Oui ; Ovi / � 1/ � p; i D 0; 1; : : : (4a)

Oxi 2 X 8f Ow0; : : : ; Owi�1g 2 W i ; i D 1; 2; : : :

(4b)

where X is the set

X D fx W 9u such that Prx.g.x; u; v/ � 1/ � pg:

Furthermore, an SMPC optimization that
includes the constraints of (4) must remain
feasible at subsequent times (since (4) ensures
the existence of OuC such that each element of
Ox.f .x; Ou0; Ow0/; OuC; OwC/ lies in X for all Ow0 2 W
and all OwC 2 WN ).

Satisfaction of (4) at each time step i on the
infinite horizon i � N can be ensured through
a finite number of constraints by introducing
constraints on the N -step-ahead state OxN . This

approach uses a fixed feedback law, uT .x/, to
define a postulated input sequence after the initial
N -step horizon via Oui D uT . Oxi / for all i � N .
The constraints of (4) are necessarily satisfied for
all i � N if a constraint

OxN 2 XT
is imposed, where XT is robustly positively in-
variant with probability 1 under uT .x/, i.e.

f .x; uT .x/;w/ 2 XT ; 8x 2 XT ; 8w 2 W ;

(5)

and furthermore the constraint Prx.z � 1/ � p is
satisfied at each point in XT under uT .x/, i.e.,

Prx.g.x; uT .x/; v/ � 1/ � p; 8x 2 XT :

Although the recursively feasible constraints
(4) account robustly for the future realizations
of the unknown parameter w in (1), the key
difference between SMPC and RMPC is that
the conditions in (4) depend on the probability
distribution of the parameter v in (2). It also
follows from the necessity of hard constraints
for feasibility that the distribution of w must in
general have finite support in order that feasibility
can be guaranteed recursively. On the other hand
the support of v in the definition of z may be
unbounded (an important exception being the
case of state constraints in which v D w).

Stability and Convergence

This section outlines the stability properties of
SMPC strategies based on cost indices (a)–(c) of
section “Stochastic MPC” and related variants.
We use V �

N .x/ D VN .x; Ou�.x// to denote the
optimal value of the SMPC cost index, and XT
denotes a subset of state space satisfying the
robust invariance condition (5). We also denote
the solution at time i of the system (1) with
initial state x0 D x and under a given feedback
control law u D �.x/ and disturbance sequence
w D fw0;w1; : : :g as xi .x; �;w/.

The expected value cost index in (a) results in
mean-square stability of the closed-loop system
provided the terminal term Vf .x/ in (3) satisfies
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ExVf .f .x; uT .x/;w/ � Vf .x/ � kxk2Q
� kuT .x/k2R

for all x in the terminal set XT . The optimal cost
is then a stochastic Lyapunov function satisfying

ExV
�
N .f .x; Ou�

0 .x/;w// � V �
N .x/ � kxk2Q

� kOu�
0 .x/k2R:

For positive definite Q this implies the closed-
loop system under the SMPC law is mean-square
stable, so that xi .x; Ou�

0 ;w/ ! 0 as i ! 1 with
probability 1 for any feasible initial condition x.
For the case of systems (1) subject to additive
disturbances, the modified cost

VN .x; Ou/ WD Ex

"

N�1
X

iD0
.k Oxik2Q C kOuik2R � lss/

C Vf . OxN /
#

where lss WD limi!1 Ex.kxi .x; uT ;w/k2Q C
kuik2R/ under ui D uT .xi / results in the asymp-
totic bound

lim
n!1

1

n

n�1
X

iD0
Ex.kxi .x; Ou�

0 ;w/k2Q C kuik2R/ � lss

along the closed-loop trajectories of (1) under the
SMPC law ui D Ou�

0 .xi /, for any feasible initial
condition x.

For the worst-case cost (b), if Vf .x/ is de-
signed as a control Lyapunov function for (1),
with

Vf .f .x; uT .x/;w/ � Vf .x/�kxk2Q �kuT .x/k2R

for all w 2 W and all x 2 XT , then V �
N .x/ is a

Lyapunov function satisfying

V �
N .f .x; Ou�

0 .x/;w/ � V �
N .x/�kxk2Q�kOu�

0 .x/k2R

for all w 2 W , implying x D 0 is an asymptot-
ically stable equilibrium of (1) under the SMPC
law u D Ou�

0 .x/. Clearly the system model (1) can-
not be subject to unknown additive disturbances
in this case. However, for the case in which the
system (1) is subject to additive disturbances,
a variant of this approach uses a modified cost
which is equal to zero inside some set of states,
leading to asymptotic stability of this set rather
than an equilibrium point. Also in the context
of additive disturbances, an alternative approach
uses an H1-type cost,

VN .x; Ou/ WD max
Ow2WN

"

N�1
X

iD0
.k Oxik2Q C kOuik2R�

�2k Owik2/C Vf . OxN /
�

for which the closed-loop trajectories of (1) under
the associated SMPC law ui D Ou�

0 .xi / satisfy

1
X

iD0
.kxi .x; Ou�

0 ;w/k2Q C kuik2R/ � �2

1
X

iD0
kwik2 C V �

N .x0/

provided Vf .f .x; uT .x/;w// � Vf .x/ �
.kxk2Q CkuT .x/k2R ��2kwk2/ for all w 2 W and
x 2 XT .

Algorithms employing the nominal cost (c)
typically rely on the existence of a feedback law
uT .x/ such that the system (1) satisfies, in the
absence of constraints and under ui D uT .xi /,
an input-to-state stability (ISS) condition of the
form

1
X

iD0
.kxi .x; uT ;w/k2QCkuik2R/��2

1
X

iD0
kwik2Cˇ

(6)

for some � and ˇ > 0. If Vf .x/ satisfies

Vf .f .x; uT .x/; 0// � Vf .x/ � .kxk2Q
C kuT .x/k2R/
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for all x 2 XT , then the closed-loop system
under SMPC with the nominal cost (c) satisfies
an ISS condition with the same gain � as the
unconstrained case (6) but a different constant ˇ.

Implementation Issues

In general stochastic MPC algorithms require
more computation than their robust counterparts
because of the need to determine the probability
distributions of future states. An important ex-
ception is the case of linear dynamics and purely
additive disturbances, for which the model (1)–
(2) becomes

xC D Ax C Bu C w (7)

z D Cx CDu C v (8)

where A;B;C;D are known matrices. In this
case the expected value constraints (A) and prob-
abilistic constraints (B), as well as hard con-
straints that ensure future feasibility of the SMPC
optimization in each case, can be invoked non-
conservatively through tightened constraints on
the expectations of future states. Furthermore, the
required degree of tightening can be computed
off-line using numerical integration of proba-
bility distributions or using random sampling
techniques, and the online computational load is
similar to MPC with no model uncertainty.

The case in which the matrices A;B;C;D in
the model (7)–(8) depend on unknown stochastic
parameters is more difficult because the predicted
states then involve products of random variables.
An effective approach to this problem uses a
sequence of sets (known as a tube) to recursively
bound the sequence of predicted states via one
step-ahead set inclusion conditions. By using
polytopic bounding sets that are defined as the
intersection of a fixed number of half-spaces,
the complexity of these tubes can be controlled
by the designer, albeit at the expense of con-
servative inclusion conditions. Furthermore, an
application of Farkas’ Lemma allows these sets

to be computed online through linear conditions
on optimization variables.

Random sampling techniques developed
for general stochastic programming problems
provide effective means of handling the soft
constraints arising in SMPC. These techniques
use finite sets of discrete samples to represent
the probability distributions of model states and
parameters. Furthermore bounds are available
on the number of samples that are needed
in order to meet specified confidence levels
on the satisfaction of constraints. Probabilistic
and expected value constraints can be imposed
using random sampling, and this approach has
also been applied to the case of probabilistic
constraints over a horizon (C) through a scenario-
based optimization approach.

Summary and Future Directions

This entry describes how the ideas of MPC and
RMPC can be extended to the case of stochas-
tic model uncertainty. Crucial in this develop-
ment is the assumption that the uncertainty has
bounded support, which allows the assertion of
recursive feasibility of the SMPC optimization
problem. For simplicity of presentation we have
considered the case of full-state feedback. How-
ever, stochastic MPC can also be applied to the
output feedback case using a state estimator if
the probability distributions of measurement and
estimation noise are known.

An area of future development is optimization
over sequences of feedback policies. Although
an observer at initial time cannot know the
future realizations of random uncertainty,
information on Oxi will be available to the
controller i -steps ahead, and, as mentioned in
section “Stochastic MPC” in the context of
feasible initial condition sets, Oui must therefore
depend on Oxi . In general the optimal control
decision is of the form Oui D �i . Oxi /where�i.�/ is
a feedback policy. This implies optimization over
arbitrary feedback policies, which is generally
considered to be intractable since the required
online computation grows exponentially with the
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horizon N . However, approximate approaches to
this problem have been suggested which optimize
over restricted classes of feedback laws, and
further developments in this respect are expected
in the future.
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Recommended Reading

A historical perspective on SMPC is provided
by Åström and Wittenmark (1973), Charnes
and Cooper (1963), and Schwarm and Nikolaou
(1999). A treatment of constraints stated in terms
of expected values can be found, for example, in
Primbs and Sung (2009). Probabilistic constraints
and the conditions for recursive feasibility can
be found in Kouvaritakis et al. (2010) for the
additive case, whereas the general case of multi-
plicative and additive uncertainty is described in
Evans et al. (2012), which uses random sampling
techniques. Random sampling techniques were
developed for random convex programming
(Calafiore and Campi 2005) and were used in
a scenario-based approach to predictive control
in Calafiore and Fagiano (2013). An output
feedback SMPC strategy incorporating state
estimation is described in Cannon et al. (2012).

The use of the expectation of a quadratic cost
and associated mean-square stability results are
discussed in Lee and Cooley (1998). Robust sta-
bility results for MPC based on worst-case costs
are given by Lee and Yu (1997) and Mayne et al.
(2005). Input-to-state stability of MPC based on
a nominal cost is discussed in Marruedo et al.
(2002).

Descriptions of SMPC based on closed-loop
optimization can be found in Lee and Yu (1997)
and Stoorvogel et al. (2007). These algorithms
are computationally intensive and approximate

solutions can be found by restricting the class of
closed-loop predictions as discussed, for exam-
ple, in van Hessem and Bosgra (2002) and Primbs
and Sung (2009).
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Abstract

This article covers stock trading from a feedback
control point of view. To this end, the mechanics
and practical considerations associated with the
use of feedback-based algorithms are explained
for both real-world trading and scenarios involv-
ing numerical simulation.
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Introduction

Stock trading involves the purchase and sale
of shares of ownership in public companies by
an individual or entity such as a pension fund,
mutual fund, hedge fund, or endowment. These
shares are typically traded in markets, such as the
New York Stock Exchange and the NASDAQ,
with the trader’s goal generally being to increase
wealth. The words feedback control in the title of
this article broadly refer to the use of information
such as prices, profits and losses which becomes
available to the trader over time and is used to
make purchase and sales decisions according
to some set of rules. That is, the size of the
stock position being held varies with time. The
mapping from information to the investment
level is called the feedback law and is typically
described with a closed-loop configuration and

classical algorithms which come from the body
of research called control theory; e.g., see Astrom
and Murray (2008).

For simplicity, in this article, we restrict atten-
tion to trading a single stock while noting that the
concepts described herein are readily modified
to address the multi-stock case, i.e., a portfolio.
To our knowledge, the basic idea of viewing
portfolios in a control-theoretic setting goes back
to Merton (1969) where optimal control concepts
are explicitly used; see also Samuelson (1969)
where a less general formulation is considered.
Whereas the theoretical foundations in their work
rely on idealized assumptions such as “friction-
less markets” and “continuous trading,” the main
objective in this article is to describe the practical
considerations and complexities which arise in
real-world stock trading via feedback control and
associated simulations. That is, the exposition
to follow includes no significant idealizing as-
sumptions and emphasizes implementation issues
and constraints which are encountered by the
practitioner; i.e., the purpose of this article is to
describe trading mechanics in a feedback context.
Hence, when we define a trading strategy in the
sequel, we include no significant discussion of
performance metrics related to risk and return;
the reader is referred to the book by Luenberger
(1998) for coverage of these topics.

Feedback Versus Open-Loop Control

We first elaborate on the definitions above by
pointing out the distinction between trading a
stock via feedback control and its alternative,
“open-loop control.” This is done via simple ex-
amples: Suppose an investor buys $1;000 of stock
at time t D 0 with the a priori plan to make no
changes in this position until some prespecified
future time t D T . Then, this buy-and-hold trad-
ing strategy falls within the realm of open-loop
control. If instead this same investor adds $1;000
to the position every month, then this type of
dollar-cost averaging strategy would still fall into
the open-loop category. That is, in both scenarios,
no information is being used to modify the stock
position over time. Finally, suppose this same
investor makes a $1;000 purchase only at the end
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of those months over which the account value
has decreased. Then this type of buy-low investor
is now using a simple feedback control strategy
because gain-loss information is being used to
modify the stock position over time. The ability
of feedback to cope with the uncertainty of future
price movements is an important advantage of its
use in trading.

Closed-Loop Feedback Configuration

To describe stock trading via feedback control in
a more formal manner, the first step involves the
creation of a closed-loop feedback configuration
involving the trader and the broker; see Fig. 1. In
the figure, the feedback controller resides inside
the block labeled “trader.” There is a wide diver-
sity of possible algorithms which the trader can
use to modify the investment level over time. In
some cases, a fixed model for future stock prices
is central to the trading algorithm. Oftentimes, no
stock price model is used at all, and trading sig-
nals are generated based on “price patterns.” This
falls under the umbrella “technical analysis” in
its purest form; e.g., see the books by Kirkpatrick
and Dahlquist (2007) and Lo and Hasanhodzic
(2010) for further details. In any event, regardless
of the trading method used, the time-varying
control signal is the investment level I.t/.

Discrete Time and Short Selling

Since this article aims to describe real-world
stock-trading mechanics as opposed to theoretical

results, we work in discrete time. That is, the
initial investment at time t D 0 is denoted
by I0 D I.0/, and assuming trade updates can
be performed every �t units of time, I.t/ is
replaced by I.k/

:D I.k�t/. We also allow for
the possibility that I.k/ < 0. In this case, the
trader is called a short seller and the following
is meant: Shares valued at I.k/ are borrowed
from the broker and immediately sold in the
market in the hope that the price will decline.
If such a decline occurs, the short seller can
“cover” the position and realize a profit by buying
back the stock and returning the borrowed shares
to the broker. Alternatively, if the stock price
increases, the short seller can continue to hold
the position with a “paper loss” or buy back the
borrowed stock at a loss. For the more classical
case when I.k/ > 0, the trade is said to be
long. Finally, to conclude this section, analogous
to what was done for the investment, we use the
notation p.k/; g.k/, and V.k/ to represent the
stock price, trading gains or losses, and account
value at time t D k�t .

First Ingredient: Price Data

A trading system, be it a simulation or real-
money implementation, involves sequential price
data p.k/. This can be obtained either in real time
or can be historical stock market data. As far as
historical data is concerned, there are various rec-
ognized sources that provide end-of-day “closing
prices,” adjusted for splits and dividends. These
can be downloaded for free from Yahoo! Finance.
Another possibility, available from the Wharton

Stock Trading via
Feedback Control, Fig. 1
Feedback loop involving
trader and broker
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Research Data Services for a subscription fee, is
the comprehensive database of historical prices at
time scales from monthly to tick by tick.

It is also possible to conduct stock-trading
simulations using synthetic data. For example,
one of the most common ways that synthetic
prices are generated is via a geometric Brownian
motion process. That is, a process drift � and
a volatility � > 0, say on an annualized basis,
are provided to the simulator, and prices are
generated sequentially in time via a recursion
such as the Euler scheme with iterates

p.k C 1/ D



1C ��t C ��.k/
p
�t
�

p.k/

where �t is measured in years and �.k/ is a
zero-mean normally distributed random variable
with unit standard deviation. A code used for
simulation of stock trading should also include a
check that p.k/ � 0. The reader is referred to
the textbook by Oksendal (1998) for a detailed
description of this celebrated stochastic price
model.

Second Ingredient: The Feedback Law

The second ingredient for trading is the
previously mentioned mapping taking the
information available to the trader to the amount
invested I.k/. This feedback law is the “heart” of
the controller and allows it to adapt to uncertain
and changing market conditions. Perhaps the
simplest example of a stock-trading feedback law
is obtained using a classical linear time-invariant
controller. In this case, the trader modulates the
level of investment I.k/ in proportion to the
cumulative gains or losses from trading according
to the formula

I.k/ D I0 CKg.k/:

This is an example of technical analysis with no
stock price model being used; see Fig. 2.

Using the feedback law above, the trader ini-
tially invests I.0/ D I0 in the stock and then
begins to monitor the cumulative gain or loss
g.k/ associated with this investment. One begins

with states g.0/ D 0 and I.0/ and subsequently
changes I.k/ if the position begins to either make
or lose money depending on the movement of the
stock. The constant of proportionality K above,
the so-called feedback gain, is used to scale
the investment level. When I0 and K are posi-
tive, I.k/ is initially positive and the trade is long.
Alternatively, when I0 and K are negative, I.k/
is initially negative; hence, the trader is a short
seller. This type of classical linear feedback is an
example of a strategy which falls within the well-
known class of “trend followers.”

As a second example, we consider a long trade
with I0;K > 0 and investor who wishes to limit
the trade to some level Imax > I0. In this case,
the feedback loop includes a nonlinear saturation
block, see Fig. 3, and the update equation for
investment is

I.k/ D minfI0 CKg.k/; Imaxg:
A short-trade version of the above can similarly
be defined and there are also variations of this
scheme, involving the notion of “reset,” which
assures that excessive time is not spent in the
saturation regime when the stock price is falling
after a long period of increase or decrease.

In the formula above and in the sequel, for
simplicity, we allow I.k/ to represent a fractional
number of shares. In practice, this type of frac-
tional holding is only allowed in some restricted
situations such as reinvestment of dividends or
dollar allocations to buy shares of a mutual fund.
However, in cases where a significant number
of shares are being bought or sold, the use of
fractional shares is a good approximation which
can be used for all practical purposes. Finally,
to conclude this section, we mention a subtlety
which is easily overlooked in a simulation: If the
intention of the trader is to be “long,” then I.k/ <
0 should be ruled out by including the condition
I.k/ D maxfI.k/; 0g as part of the control logic.

Order-FillingMechanics

At time t D k�t , the trader specifies the de-
sired investment update to the broker who is
responsible for providing a “fill” via interaction
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Stock Trading via Feedback Control, Fig. 2 Stock trading via linear feedback

Stock Trading via Feedback Control, Fig. 3 Feedback loop with saturation

with the stock exchange. The way this step is
carried out depends on a number of factors: If
the stock being purchased is not heavily traded,
there may be “liquidity” issues which manifest
themselves as “bid-ask spread.” In general, there
will always exist an ask price and a bid price for
any stock in the market. To see how a liquidity
issue can arise, imagine a trader who wishes to
purchase 100 shares at the ask price of $100
per share. If there are only 75 shares available
at $100, the trader will need to pay more for the
second portion of the purchase. For example, if
there are 500 shares available with an ask price
of $102 and transaction costs charged by the
broker are 5 cents per share, the following will
occur: The trader will obtain 100 shares with
two “partial fills” and end up with an average
acquisition cost of $100.55. This type of bid-ask
gap scenario may arise for a large trader such as
a hedge fund. For example, if millions of shares
are being purchased at time t D k�t , the price

of the final shares acquired may be significantly
higher than the initial shares.

In the case when a stock trades with large daily
volume, if large “market movers” such as hedge
funds are not transacting, it can often be assumed
in simulations that the trader is a price taker. That
is, one assumes bid-ask spread is zero and trading
is said to be “highly liquid.” The final point to
mention is that there are different order types
which can be specified by the trader. The three
most common order types are called market,
limit, and stop.

The bottom line on order filling is as follows:
When stock trading is carried out or simulated,
all of the complications above can be handled via
appropriate interpretation of the stock price p.k/
at time t D k�t . This is accomplished as
follows: When a trade is executed, be it with mul-
tiple transactions or as a special order type, we
take p.k/ to be the average weighted price. For
example, to illustrate for a long trade involving



Stock Trading via Feedback Control 1361

S

two transactions, suppose a trader arrives at in-
vestment level I.k/ via two trades: the first is in-
vestment Ia.k/ to purchase shares at price pa.k/
and the second is an investment Ib.k/ to purchase
shares at price pb.k/. Then, the average cost to
acquire these shares is readily calculated to be

p.k/ D pa.k/pb.k/

pa.k/Ib.k/C pb.k/Ia.k/
�I.k/:

where �I.k/ is the amount of the stock transac-
tion at time t D k�t . This quantity is given by

�I.k/ D I.k/� .1C �.k � 1//I.k � 1/

where

�.k � 1/
:D p.k/ � p.k � 1/

p.k � 1/

is the percentage change in the stock price
from k � 1 to k. Subsequently, transactions at
later times t > k�t can be carried out as if all
shares were acquired at price p.k/.

When this multiple-transaction issue arises in
real trading, it may not be possible to predict in
advance what price p.k/will result. For example,
in the 100-share scenario above, the outcome
depended on the bid-ask queue. Notice that this
did not present a problem as far as gain-loss
accounting is concerned; i.e., the average price
per share $100.55 was readily calculated. How-
ever, when it comes to simulation, a model for
“share acquisition” would need to be assumed.
For example, for the case of geometric Brownian
motion described earlier, a common model is
that the trader is a price taker and that liquidity
is sufficiently high so that an order involving
investment �I.k/ is filled at the sample-path
price p.k/; i.e., no averaging over multiple trans-
actions is required.

Gain-Loss Accounting

A broker generally provides frequent updates on
gains and losses g.k/ attributable to stock price
changes. That is,

g.k C 1/ D g.k/C �.k/I.k/� T .k/

where T .k/ is the so-called transaction costs,
most of which consist of the broker’s commis-
sion. These costs are charged for each trade and
are much lower nowadays versus decades ago.
For example, using a discount broker, one can
easily obtain commission rates of less than $5 per
trade, even when a large number of shares are be-
ing transacted. Modulo the transaction costs, the
equation above simply states that the change in
the cumulative gain or loss �g.k/ over a time in-
crement �t is equal to the investment I.k/ mul-
tiplied by the return on the stock �p.k/=p.k/.

Interest Accumulation andMargin
Charges

In many brokerage accounts, it is possible to bor-
row funds or shares from the broker to purchase
or short sell a stock. This is referred to as trading
on margin and the broker will charge an interest
rate on the borrowed funds known as the margin
rate. While in practice there is a limit on how
much money can be borrowed, it can be quite
large; e.g., hedge funds can easily obtain access
to many multiples of their account value. Another
possibility is that the trader is not fully invested
and the account contains “idle cash” on which
interest, paid by the broker, accrues.

To cover both the interest and margin accrual,
we work with the account cash, surplus or short-
fall, to determine whether interest is accrued or
margin charges need to be paid. For a long trade
with I.k/ > 0 for the period �t , we work with
the broker interest rate, often called the risk-free
return, rf > 0, or the broker margin rate m to
obtain the interest accrual

A.k/ D rf maxfV.k/� I.k/; 0g
CmminfV.k/ � I.k/; 0g:

For the case of a short trade with I.k/ < 0,
the formula above will only hold for traders with
very large accounts who have sufficient leverage
with the broker so as to be allowed to capitalize
on the proceeds of a short sale. For the typical
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small- to medium-size trading account, the short-
sale proceeds are generally “held aside” and the
account is “marked to market” on a daily basis.
As a result, the A.k/ equation above needs to be
revised to account for “cash in reserve” and turns
out to provide smaller interest rate accruals to the
trader.

Finally, the broker’s report generally includes
the entire value of the account V.k/. This number
is made up of the stock positions, either idle or
borrowed cash and “dividends”D.k/ which may
be paid periodically to the trader by the company
whose shares are being held. Thus, the broker
performs the calculation

V.k C 1/ D V.0/C g.k/C A.k/CD.k/

and a trader can typically see these updates in real
time.

Collateral Requirements and
Margin Calls

When formulating the simulation model for trad-
ing, it is important to take account of the fact
that the size of the trader’s investment I.k/ is
limited by the collateral requirements of the bro-
ker. For example, when a long stock position
falls dramatically, a trader on margin may find
that I.k/ exceeds the account value V.k/ by too
large an amount to meet the broker’s collateral
requirements. In this case, new transactions are
“stopped” and a so-called in guates results; i.e.,
to avoid forced liquidation of positions to bring
the account back into compliance, the trader
must deposit new assets or cash into the account
within a short prespecified time period. In simu-
lations, for a brokerage account with total market
value V.k/, a constraint of the sort

jI.k/j � �V.k/

can be imposed with � D 2 being rather typical.

Simulation Example

We provide a simulation example illustrating the
use of control in stock trading and its ability to
adapt to the inherent uncertainty in stock price

movements. Figure 4 shows the daily closing
prices from January 1, 2008 to June 1, 2012
of Google (GOOG), traded on the NASDAQ
stock exchange. The figure also includes the 50-
day simple moving average pav.k/ which will
be used with a control law whose investment
level depends on sign changes in p.k/ � pav.k/;
see Brock et al. (1992) where moving average
crossing strategies are studied. There is no trading
during the first 50 days while the moving average
is being initialized. Subsequently, the trading be-
gins at the first instant k D k� when the moving
average has been crossed. For k � k�, the control
law for the investment level is given by

I.k/ D I0signfp.k/� pav.k/g

where I0 D $20;000 is used in the simulation. To
make the example more interesting, we assume
initial account value V.0/ D $10;000. Hence,
the issue of margin is immediately in play. In
the simulation, we use risk-free rate rf D 0:015

corresponding to 1:5% per annum and a margin
rate m D 0:03 corresponding to 3% per annum.
It is assumed that interest may be obtained on
the proceeds of short sales at the risk-free rate.
Google does not pay a dividend, so no adjustment
of closing prices is required. A transaction cost of
$3 per trade is charged. This charge occurs every
day of trading because the position is adjusted
daily to target I.k/ D ˙$20; 000. We assume the
broker imposes a collateral constraint of jI.k/j �
2V.k/ to limit I.k/ when sufficient funds are
not available. Furthermore, we assume that it is
possible to hold a fractional number of shares and
that a “market-on-close” order each day is filled
at the closing price. Finally, Fig. 4 also shows the
evolution of the account value V.k/ over time.

Summary and Future Directions

This article concentrated entirely on trading me-
chanics and simulation using strategies based
on control-theoretic considerations. In a future
version of the encyclopedia, it would be desirable
to include a “companion” article which covers
the topic of performance metrics. That is, once
trading or simulation is complete, it is natural to
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Stock Trading via Feedback Control, Fig. 4 Feedback trading of Google

ask whether the algorithm used was successful or
not. To this end, there is a large body of literature
covering measures for risk and return which are
important for performance strategy evaluation
purposes. One highlight of this literature is the
paper by Artzner et al. (1999) on coherent risk
measures, a topic pursued in current research.
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Recommended Reading

In addition to the basic references cited in the
previous sections, there is a growing body of
literature on stock trading and financial markets
with a control-theoretic flavor. In contrast to this
article, the focal point in this literature is largely
performance-related issues rather than the “nuts
and bolts” of stock-trading mechanics which are
described here. For the uninitiated reader, one
starting reference for an overview of the liter-
ature would be the tutorial paper by Barmish
et al. (2013). To provide a capsule summary,
it is convenient to subdivide the literature into
two categories: The first category, called model-
based approaches, involves an underlying param-
eterized model structure which may or may not
be completely specified. The second category of
papers, called model-free approaches, falls under
the previously mentioned umbrella of technical
analysis. That is, the stock price is viewed as an
external input with no predictive model for its
evolution. In addition, no parameter estimation is
involved and feedback trade signals are generated
based on some observed “patterns” of prices or
trading gains. Thus, this line of research high-
lights the ability of feedback to cope with the
uncertainty of an unmodelled price process.
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Abstract

This chapter introduces strategic form games,
which provide a framework for the analysis of
strategic interactions in multi-agent environ-
ments. We present the main solution concept
in strategic form games, Nash equilibrium, and
provide tools for its systematic study. We present
fundamental results for existence and uniqueness
of Nash equilibria and discuss their efficiency
properties. We conclude with current research
directions in this area.

Keywords

Efficiency; Existence; Nash equilibrium; Strate-
gic form games; Uniqueness

Introduction

Many problems in communication, decision, and
technological networks as well as in social and
economic situations depend on human choices,
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which are made in anticipation of the behavior
of the others in the system. Examples include
how to map your drive over a road network,
how to use the communication medium, and how
to choose strategies for resource use and more
conventional economic, financial, and social de-
cisions such as which products to buy, which
technologies to invest in, or who to trust. The
defining feature of all of these interactions is
the dependence of an agent’s objective (payoff,
utility, or survival) on others’ actions. Game the-
ory focuses on formal analysis of such strategic
interactions. Here, we will review strategic form
games, which focus on static game-theoretic in-
teractions and present the relevant solution con-
cept.

Strategic FormGames

A strategic form game is a model for a static game
in which all players act simultaneously without
knowledge of other players’ actions.

Definition 1 (Strategic Form Game) A strate-
gic form game is a triplet
hI; .Si /i2I ; .ui /i2Ii where:
1. I is a finite set of players, I D f1; : : : ; I g.
2. Si is a nonempty set of available actions for

player i .
3. ui W S ! R is the utility (payoff) function of

player i where S D Q

i2I Si .

We will use the terms action and (pure) strat-
egy interchangeably. (We will later use the term
“mixed strategy” to refer to randomizations over
actions.) We denote by si 2 Si an action for
player i , and by s�i D Œsj �j¤i a vector of actions
for all players except i . We refer to the tuple
.si ; s�i / 2 S as an action (strategy) profile or out-
come. We also denote by S�i D Q

j¤i Sj the set
of actions (strategies) of all players except i . Our
convention throughout will be that each player i
is interested in action profiles that “maximize” his
utility function ui .

The next two examples illustrate strategic
form games with finite and infinite strategy sets.

Example 1 (Finite Strategy Sets) We consider a
two-player game with finite strategy sets. Such a

game can be represented in matrix form, where
the rows correspond to the actions of player 1 and
columns represent the actions of player 2. The
cell indexed by row x and column y contains a
pair .a; b/, where a is the payoff to player 1 and
b is the payoff to player 2, i.e., a D u1.x; y/ and
b D u2.x; y/. This class of games is sometimes
referred to as bimatrix games. For example, con-
sider the following game of “Matching Pennies.”

HEADS TAILS

HEADS �1; 1 1;�1
TAILS 1;�1 �1; 1

Matching Pennies

This game represents “pure conflict” in the
sense that one player’s utility is the negative of
the utility of the other player, i.e., the sum of
the utilities for both players at each outcome is
“zero.” This class of games is referred to as zero-
sum games (or constant-sum games) and has been
studied extensively in the game theory literature
(Basar and Olsder 1995).

Example 2 (Infinite Strategy Sets) We next
present a game with infinite strategy sets. We
consider a simple network game where two
players send data or information flows over a
communication network represented by a single
link. Each player i derives a value for sending si
units of flow over the link given by

vi .si / D
(

ai si � s2i
2

if si � ai ;
a2i
2

if si � ai ;

where ai 2 Œ0; 1� is a player-specific scalar. Each
player also incurs a per-flow delay or latency cost,
due to congestion on the link, represented by the
function l.s/ D s, where s is the total flow on the
link, i.e., s D s1 C s2 (see Fig. 1). The resulting
interactions can be represented by the strategic
form game hI; .Si /; .ui /i, which consists of:
1. A set of two players, I D 1; 2

2. A strategy set Si D Œ0; 1� for each player i ,
where si 2 Si represents the amount of flow
player i sends over the link

3. A utility function ui for each player i given
by value derived from sending si units of flow
minus the total latency cost, i.e.,
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Strategic Form Games and Nash Equilibrium, Fig. 1
A network game with two players

ui .s1; s2/ D vi .si /� si l.s1 C s2/:

Nash Equilibrium

We next introduce the fundamental solution con-
cept for strategic form games, Nash equilibrium.
A Nash equilibrium captures a steady state of
the play in a strategic form game such that each
player acts optimally given their “correct” con-
jectures about the behavior of the other players.

Definition 2 (Nash Equilibrium) A (pure strat-
egy) Nash equilibrium of a strategic form game
hI; .Si /; .ui /i2Ii is a strategy profile s� 2 S such
that for all i 2 I, we have

ui .s
�
i ; s

��i / � ui .si ; s
��i / for all si 2 Si :

Hence, a Nash equilibrium is a strategy profile
s� such that no player i can profit by unilaterally
deviating from his strategy s�

i , assuming every
other player j follows his strategy s�

j . The def-
inition of a Nash equilibrium can be restated in
terms of best-response correspondences.

Definition 3 (Nash Equilibrium – Restated)
Let hI; .Si /; .ui /i2Ii be a strategic form game.
For any s�i 2 S�i , consider the best-response
correspondence of player i , Bi .s�i /, given by

Bi.s�i / D fsi 2 Si j ui .si ; s�i / � ui .s
0
i ; s�i /

for all s0
i 2 Si g:

We say that an action profile s� is a Nash
equilibrium if

s�
i 2 Bi.s��i / for all i 2 I:

Thus, if we define the best-response corre-
spondence B.s/ D ŒBi .s�i /�i2I , the set of Nash
equilibria is given by the set of fixed points of
B.s/. Below, we give two examples of games
with pure strategy Nash equilibria.

Example 3 (Battle of the Sexes) Consider a two-
player game with the following payoff structure:

BALLET SOCCER

BALLET 2; 1 0; 0

SOCCER 0; 0 1; 2

Battle of the Sexes

This game, referred to as the Battle of the
Sexes game, represents a scenario in which the
two players wish to coordinate their actions but
have different preferences over their actions.
This game has two pure strategy Nash equilibria,
i.e., the strategy profiles (BALLET, BALLET) and
(SOCCER, SOCCER).

Example 4 Recall the network game given in
Example 2. To simplify the computations, let us
assume without loss of generality that a1 � a2 �
a1
3

. It can be seen that the best-response functions
(single-valued in this case) of the players are
given by

Bi .s�i / D max
n

0;
ai � s�i

3

o

for i D 1; 2:

The unique pure strategy Nash equilibrium of this
game is the fixed point of these functions given by

.s�
1 ; s

�
2 / D

�

3a1 � a2

8
;
3a2 � a1

8

�

:

Mixed Strategy Nash Equilibrium
Consider the two-player “penalty kick” game
between a penalty taker and a goalkeeper that
has the same payoff structure as the matching
pennies:

LEFT RIGHT

LEFT 1;�1 �1; 1
RIGHT �1; 1 1;�1

Penalty kick game
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This game does not have a pure strategy Nash
equilibrium. It can be verified that if the penalty
taker (column player) commits to a pure strategy,
e.g., chooses LEFT, then the best response of
the goalkeeper (row player) would be to choose
the same side leading to a payoff of �1 for the
penalty taker. In fact, the penalty taker would be
better off following a strategy which randomizes
between LEFT and RIGHT, ensuring that the goal-
keeper cannot perfectly match his action. This
is the idea of “randomized” or mixed strategies
which we will discuss next.

We first introduce some notation. Let ˙i de-
note the set of probability measures over the pure
strategy (action) set Si . We use �i 2 ˙i to denote
the mixed strategy of player i . When Si is a
finite set, a mixed strategy is a finite-dimensional
probability vector, i.e., a vector whose elements
denote the probability with which a particular
action will be played. For example, if Si has two
elements, the set of mixed strategies ˙i is the
one-dimensional probability simplex, i.e., ˙i D
f.x1; x2/ j xi � 0; x1 C x2 D 1g. We use
� 2 ˙ D Q

i2I ˙i to denote a mixed strategy
profile. Note that this implicitly assumes that
players randomize independently. We similarly
denote ��i 2 ˙�i D Q

j¤i ˙j .
Following von Neumann-Morgenstern

expected utility theory, we extend the payoff
functions ui from S to ˙ by

ui .�/ D
Z

S

ui .s/d�.s/;

i.e., the payoff of a mixed strategy � is given by
the expected value of pure strategy payoffs under
the distribution � .

We are now ready to define the mixed strategy
Nash equilibrium.

Definition 4 (Mixed Strategy Nash Equilib-
rium) A mixed strategy profile �� is a mixed
strategy Nash equilibrium if for each player i ,

ui .�
�
i ; �

��i / � ui .�i ; �
��i / for all �i 2 ˙i :

Note that since ui .�i ; ���i / D R

Si
ui .si ; ���i /

d�i .si /, it is sufficient to check only pure strategy

“deviations” when determining whether a given
profile is a Nash equilibrium. This leads to the
following characterization of a mixed strategy
Nash equilibrium.

Proposition 1 A mixed strategy profile �� is a
mixed strategy Nash equilibrium if and only if for
each player i ,

ui .�
�
i ; �

��i / � ui .si ; �
��i / for all si 2 Si :

We also have the following useful character-
ization of a mixed strategy Nash equilibrium in
finite strategy set games.

Proposition 2 Let G D hI; .Si /i2I ; .ui /i2Ii be
a strategic form game with finite strategy sets.
Then, �� 2 ˙ is a Nash equilibrium if and only if
for each player i 2 I, every pure strategy in the
support of ��

i is a best response to ���i .

Proof Let �� be a mixed strategy Nash equi-
librium, and let E�

i D ui .��
i ; �

��i / denote the
expected utility for player i . By Proposition 1, we
have

E�
i � ui .si ; �

��i / for all si 2 Si :

We first show that E�
i D ui .si ; ���i / for all si in

the support of ��
i (combined with the preceding

relation, this proves one implication). Assume to
arrive at a contradiction that this is not the case,
i.e., there exists an action s0

i in the support of ��
i

such that ui .s0
i ; �

��i / < E�
i . Since ui .si ; ���i / �

E�
i for all si 2 Si , this implies that

X

si2Si
��
i .si /ui .si ; �

��i / < E�
i ;

which is a contradiction. The proof of the other
implication is similar and is therefore omitted.

It follows from this characterization that every
action in the support of any player’s equilib-
rium mixed strategy yields the same payoff. This
characterization extends to games with infinite
strategy sets: �� 2 ˙ is a Nash equilibrium if and
only if for each player i 2 I, given ���i , no action
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in Si yields a payoff that exceeds his equilibrium
payoff, and the set of actions that yields a payoff
less than his equilibrium payoff has ��

i -measure
zero.

Example 5 Let us return to the Battle of the
Sexes game.

BALLET SOCCER

BALLET 2; 1 0; 0

SOCCER 0; 0 1; 2

Battle of the Sexes

Recall that this game has 2 pure strategy Nash
equilibria. Using the characterization result in
Proposition 2, we show that it has a unique
mixed strategy Nash equilibrium (which is not a
pure strategy Nash equilibrium). First, by using
Proposition 2 (and inspecting the payoffs), it
can be seen that there are no Nash equilibria
where only one of the players randomizes over
its actions. Now, assume instead that player 1
chooses the action BALLET with probability p 2
.0; 1/ and SOCCER with probability 1 � p and
that player 2 chooses BALLET with probability
q 2 .0; 1/ and SOCCER with probability 1 � q.
Using Proposition 2 on player 1’s payoffs, we
have the following relation:

2 � q C 0 � .1 � q/ D 0 � q C 1 � .1 � q/:

Similarly, we have

1 � p C 0 � .1 � p/ D 0 � p C 2 � .1 � p/:

We conclude that the only possible mixed strat-
egy Nash equilibrium is given by q D 1

3
and

p D 2
3
.

Existence of Nash Equilibrium

The first question that one contemplates in ana-
lyzing a strategic form game is whether it has a
pure or mixed strategy Nash equilibrium. While
it may be possible to explicitly construct a Nash
equilibrium (using either computational means or
characterization results), this may be a tedious
task in the case of both large finite strategy
set games or infinite strategy set games with

complicated utility functions. One is therefore of-
ten interested in establishing existence of an equi-
librium, using conditions on the utility functions
and constraint sets, before trying to understand
its properties. In the sequel, we present results
on existence of an equilibrium for games with
finite and infinite strategy sets. The proofs of
such existence results typically use fixed point
arguments on the best-response correspondences
of the players. They are omitted here and can be
found in graduate-level game theory text books
(see Fudenberg and Tirole 1991 and Myerson
1991).

Finite Strategy Set Games
We have seen that while the matching pennies
game (and the penalty kick game with the same
payoff structure) does not have a pure strategy
Nash equilibrium, it has a mixed strategy Nash
equilibrium. The next theorem, states that this
existence result extends to all finite strategy set
games.

Theorem 1 (Nash) Every strategic form game
with finite strategy sets has a mixed strategy Nash
equilibrium.

Infinite Strategy Set Games
A stronger result on existence of a pure strategy
Nash equilibrium can be established in infinite
strategy set games under some topological con-
ditions on the utility functions and constraint
sets (see Debreu 1952, Fan 1952, and Glicksberg
1952).

Theorem 2 (Debreu, Fan, Glicksberg) Con-
sider a strategic form game hI; .Si /i2I ; .ui /i2Ii
with infinite strategy sets such that for each
i 2 I:
1. Si is convex and compact.
2. ui .si ; s�i / is continuous in s�i .
3. ui .si ; s�i / is continuous and quasiconcave in
si . (LetX be a convex set. A function f W X !
R is quasiconcave if every upper level set of
the function, i.e., fx 2 X j f .x/ � ˛g for
every scalar ˛, is a convex set (see Bertsekas
et al. 2003).)

The game has a pure strategy Nash equilibrium.
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Note that Theorem 1 is a special case of this
result. For games with finite strategy sets, mixed
strategy sets are simplices and hence are convex
and compact, and utilities are linear in (mixed)
strategies; hence, they are concave functions of
(mixed) strategies (and continuous functions of
mixed strategy profiles).

The next example shows that quasiconcavity
cannot be dispensed with in the previous exis-
tence result.

Example 6 Consider the game where two players
pick a location s1; s2 2 R

2 on the circle. The
payoffs are

u1.s1; s2/ D �u2.s1; s2/ D d.s1; s2/;

where d.s1; s2/ denotes the Euclidean distance
between s1ands2 2 R

2. It can be verified that
this game does not have a pure strategy Nash
equilibrium. However, the strategy profile where
both players mix uniformly on the circle is a
mixed strategy Nash equilibrium.

Without quasiconcavity, one can establish the
following existence result (see Glicksberg 1952).

Theorem 3 (Glicksberg) Consider a strategic
form game hI; .Si /i2I ; .ui /i2Ii, where the Si
are nonempty compact metric spaces and the
ui W S ! R are continuous functions. The game
has a mixed strategy Nash equilibrium.

Uniqueness of Nash Equilibrium

Another important question that arises in the
analysis of strategic form games is whether the
Nash equilibrium is unique. This is important for
the predictive power of Nash equilibrium since
with multiple equilibria, the outcome of the game
cannot be uniquely pinned down. The following
result by Rosen provides sufficient conditions
for uniqueness of an equilibrium in games with
infinite strategy sets (see Rosen 1965). (Except
for games that are strictly dominant solvable,
there are no general uniqueness results for finite
strategic form games.)

We first introduce some notation to state this
result. Given a scalar-valued function f W Rn !
R, we use the notation rf .x/ to denote the
gradient vector of f at point x, i.e.,

rf .x/ D
�

@f .x/

@x1
; : : : ;

@f .x/

@xn

�T

:

Given a scalar-valued function F W QI
iD1Rmi !

R, we use the notation riF .x/ to denote the
gradient vector of F with respect to xi at point
x, i.e.,

riF .x/ D
�

@F.x/

@x1i
; : : : ;

@F.x/

@x
mi
i

�T

:

We use the notation rF.x/ to denote

rF.x/ D Œr1F1.x/; : : : ;rI FI .x/�
T : (1)

We assume that the strategy set Si of each
player i is given by

Si D fxi 2 R
mi j hi .xi / � 0g; (2)

where hi W R
mi 7! R is a concave function.

(Since hi is concave, it follows that the set Si is
a convex set.) The next definition introduces the
key condition used in establishing the uniqueness
of a pure strategy Nash equilibrium.

Definition 5 We say that the utility functions
.u1; : : : ; uI / are diagonally strictly concave for
x 2 S , if for every x�; Nx 2 S , we have

. Nx � x�/Tru.x�/C .x� � Nx/Tru. Nx/ > 0:

We can now state the result on uniqueness of
pure strategy Nash equilibrium in strategic form
games.

Theorem 4 (Rosen) Consider a strategic form
game hI; .Si /; .ui /i. For all i 2 I, assume that
the strategy sets Si are given by Eq. (2), where
hi is a concave function, and there exists some
Qxi 2 R

mi such that hi . Qxi / > 0. Assume also that
the utility functions .u1; : : : ; uI / are diagonally
strictly concave for x 2 S . Then, the game has
a unique pure strategy Nash equilibrium.
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We next provide a tractable sufficient con-
dition for the utility functions to be diagonally
strictly concave. Let U.x/ denote the Jacobian of
ru.x/ [see Eq. (1)]. Specifically, if the xi are all
1-dimensional, then U.x/ is given by

U.x/ D

0

B

B

B

@

@2u1.x/
@x21

@2u1.x/
@x1@x2

� � �
@2u2.x/
@x2@x1

: : :

:::

1

C

C

C

A

:

Proposition 3 (Rosen) For all i 2 I, assume
that the strategy sets Si are given by Eq. (2),
where hi is a concave function. Assume that the
symmetric matrix .U.x/ C UT .x// is negative
definite for all x 2 S , i.e., for all x 2 S , we
have

yT .U.x/C UT .x//y < 0; 8 y ¤ 0:

Then, the payoff functions .u1; : : : ; uI / are diag-
onally strictly concave for x 2 S .

Rosen’s sufficient conditions for uniqueness
are quite strong. Recent work has extended such
uniqueness results to hold under weaker condi-
tions using differential topology tools. The main
idea is to provide sufficient conditions so that
the indices of all stationary points can be shown
to be positive, which from a generalization of
the Poincare-Hopf theorem (Simsek et al. 2007,
2008) implies that there exists a unique equilib-
rium (see Simsek et al. 2005 for applications of
this methodology to several network games).

Efficiency of Nash Equilibria

Because the Nash equilibrium corresponds to the
fixed point of the best-response correspondences
of the players, there is no presumption that it is
efficient or maximizes any well-defined weighted
sum of utility functions of the players. This fact
is clearly illustrated by the well-known Prisoner’s
Dilemma game. For some a > 0; b > 0, and
c > 0 with a > b, the payoff matrix is given by:

DON’T CONFESS CONFESS

DON’T CONFESS a; a b � c; aC c

CONFESS aC c; b � c b; b

Prisoner’s Dilemma

This game, generally used for capturing the
dilemma of cooperation among selfish agents,
has a unique (pure strategy) Nash equilibrium.
(In fact each player has a dominant strategy, see
Fudenberg and Tirole 1991, which is (CONFESS,
CONFESS)). This clearly illustrates two aspects
of the inefficiencies that arise in Nash equilib-
ria. First, the unique Nash equilibrium is Pareto
inferior meaning that if both players cooperated
and chose DON’T CONFESS, they would both
obtain the higher payoff of a. Second, the extent
of inefficiency can be arbitrarily large based on
the values of a and b. We can capture this by the
efficiency loss (or Price of Anarchy as known in
the literature) defined as

Efficiency LossD inf
parameters

P

i ui .equilibrium/
P

i ui .social optimum/
;

where the social optimum is the strategy profile
that maximizes the sum of utility functions. In the
preceding example, this is clearly

inf
a;b

b

a
D 0;

showing that efficiency loss can be arbitrarily
large. In problems that have more structure, the
efficiency loss can be bounded away from zero. A
well-known example is by Pigou, which showed
that in a network routing game where the conges-
tion penalty can be described by linear latency
functions (see Example 2), the efficiency loss
is 3/4 (Pigou 1920). Roughgarden and Tardos
in an important contribution (Roughgarden and
Tardos 2000) showed that this is a lower bound
for such routing games over all possible network
topologies.

Summary and Future Directions

This article has provided an introduction to the
basics of strategic form games. After defining
the concept of Nash equilibrium, which is the
basis of much of recent game theory, we have
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presented fundamental results on its existence
and uniqueness. We also briefly discussed issues
of efficiency of Nash equilibria.

Though game theory is a mature field, there
are still several important areas for inquiry. The
first is a more systematic analysis and catego-
rization of classes of games by their equilibrium
and efficiency properties. Recent work by Can-
dogan et al. (2010, 2011, 2013) provides tools
for systematically analyzing equivalence classes
of games that may be useful for such an investi-
gation. The second area that is very much active
concerns computational issues, which we have
not considered here. Recent literature showed
that computation of Nash equilibria in finite strat-
egy set games is potentially hard and focused
on developing algorithms for computing approx-
imate Nash equilibria (see Daskalakis et al. 2006
and Lipton et al. 2003). Ongoing research in
this area focuses on infinite strategy set games
and exploits special structure to develop algo-
rithms for computing (exact and approximate)
Nash equilibria (Parrilo 2006; Stein et al. 2008).
A third area is to develop a better application
of tools of strategic form games and understand
the resulting efficiency losses in networks and
large-scale systems. Work in this area uses game-
theoretic models to investigate resource alloca-
tion, pricing, and investment problems in net-
works (Johari and Tsitsiklis 2004; Acemoglu and
Ozdaglar 2007; Acemoglu et al. 2009; Njoroge
et al. 2013). A fourth area of research is to
develop and apply alternative solution concepts
for strategic form games. While some of the
research in game theory has focused on subsets of
Nash Equilibria (see Fudenberg and Tirole 1991),
from a computational point of view, the set of
correlated equilibria, which is a superset of the
set of Nash Equilibria, is also attractive since it
can be represented as the optimal solution set
of a linear program. Correlated equilibrium can
be implemented using a correlation scheme (a
trusted party) or cryptographic tools as shown
in Izmalkov et al. (2007). Recent work investi-
gates alternative solution concepts for symmetric
games intermediate between Nash and correlated
equilibria (Stein et al. 2013), which can be imple-
mented using specific correlation schemes.
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Abstract

Stream of variation (SoV) theory is a unified,
model-based method for modeling, analyzing,
and controlling variation in multistage manufac-
turing systems. A SoV model represents variation
and its propagation in a multistage system using
the recursive structure of state space models; such
models can be derived from physical knowledge
and/or estimated empirically using system opera-
tional data. Immediately, the SoV model enables
integrated design and optimization for product
and process tolerancing, allocation of distributed

sensors in production lines, and evaluation of
multistage system designs. With the help of these
functions, the SoV method fulfills the objectives
of system monitoring, diagnosis, and control and,
ultimately, reduces a system’s variation during
its operation. The SoV method can be further
extended to model the interactions among prod-
uct quality and tooling reliability, known as the
quality and reliability chain effects, which is the
crucial element in carrying out quality-ensured
maintenance, as well as system reliability evalu-
ation and optimization. The SoV theory has been
successfully implemented in assembly, machin-
ing, and semiconductor manufacturing processes.
More research and development are needed to
extend the SoV theory to manufacturing systems
with complex configurations.

Keywords

Data fusion; Engineering-driven statistics; Mul-
tistage manufacturing system; Quality improve-
ment; Variation reduction

Introduction

A multistage system refers to a system consisting
of multiple units, stations, or operations to finish a
final product or a service. Multistage systems are
ubiquitous in modern manufacturing processes
and service systems. In most cases, the final
product or service quality of a multistage system
is determined by complex interactions among
multiple stages – the quality characteristics of
one stage are not only influenced by the local
variations at that stage but also by the variations
propagated from upstream stages. Multistage sys-
tems present significant challenges for quality
engineering research and system improvement.

The stream of variation (SoV) theory has been
developed to understand and represent the com-
plex production stream and data stream involved
in the modeling and analysis of variation and
its propagation in a multistage manufacturing
system (Fig. 1).
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Stream of Variations Analysis, Fig. 1 Variation propagation in a multistage manufacturing process (MMP) and
notations in SoV modeling (Reproduced from Shi 2006)

Stream of VariationModel

The foundation of the SoV theory is a mathe-
matical model that links the key product quality
characteristics with key process control charac-
teristics (e.g., fixture error, machine error, etc.) in
a multistage system. This model has a state space
representation that describes the deviation and its
propagation in an N -stage process (as shown in
Fig. 1) and takes the form of

xk D Ak�1xk�1 C Bkuk C wk; k D 1; 2; : : :; N;

(1)

yk D Ckxk C vk; fkg � f1; 2; : : :; N g; (2)

where k is the stage index, xk is the state vector
representing the key quality characteristics of
the product (or intermediate work piece) after
stage k, uk is the control vector representing
the tooling deviations (e.g., no fault occurs if
all tooling deviations are within their tolerances;
fault occurs when excessive tooling deviations
are beyond their tolerances; active adjustments
of tooling deviations can be done to achieve
error compensation objectives) at stage k, and yk
is the measurement vector representing product
quality measurements at stage k. Vectors wk and
vk represent modeling error and sensing error,
respectively. The coefficient matrices Ak;Bk , and
Ck are determined by product and process de-
sign information: Ak represents the impact of
the deviation transition from stage k�1 to stage
k, Bk represents the impact of the local tooling
deviation on the product quality at stage k, and
Ck is the measurement matrix, which can be

obtained from the defined quality features of the
product at stage k.

If we repeat the modeling efforts for each stage
from k D 1 to N , we will get the deviation
and its propagation throughout the multistage
manufacturing systems. By taking variances on
both sides of (1) and (2) and by assuming inde-
pendence among certain variables, we will obtain
the variation and its propagation model for the
multistage manufacturing system.

The SoV models (1) and (2) can be obtained
from product and process design information
and/or from the system operational data. In Shi
(2006), two basic modeling methods, a physics-
driven method and a data-driven method, were
investigated. In the physics-driven modeling, the
kinematic relationships between key control char-
acteristics (KCC) and key product characteristics
(KPC) are identified through a detailed physi-
cal analysis of the product and manufacturing
process. A set of carefully defined coordinate
systems are defined to represent the whole sys-
tem, including the quality features in the part
coordinates, part orientation to fixture/machine
coordinates, and tooling to fixture/machine co-
ordinates. Based on these coordinate systems,
SoV models (1) and (2) are obtained using the
state space model framework. In the data-driven
modeling approach, system operational data are
measured for those selected KPC and KCC vari-
ables. System identification and estimation meth-
ods are adopted to construct the SoV model.
In some cases, data mining and clustering tech-
niques are used to identify inherent relation-
ships of the system in pre-processing. The SoV
model may have different formulations, such as
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the state space model, input-output model, and
piecewise linear regression tree model. In most
cases, engineering-driven statistical analysis is
commonly used in the data analysis and modeling
efforts.

With models (1) and (2), variation reduction
can be achieved in both design and manufactur-
ing phases by using mathematical optimization
to make optimal decisions. However, significant
challenges exist in both the model development
for specific processes and model utilization to
realize the benefits of the analytical capability
of this model. These challenges are addressed
in the SoV methodological research (Shi 2006).
In more detail, the SoV methodology addresses
the following important questions for variation
reduction in a multistage manufacturing process.

SoV-Enabled Monitoring and
Diagnosis

In multistage manufacturing systems, it is chal-
lenging to systematically find the root causes of
a severe variability in terms of isolating both the
manufacturing station and the underlying cause
in that station. During continuous production, ex-
cessive product variation may occur at any stage
of a multistage manufacturing system due to
worn tooling, tooling breakage, and/or abnormal
incoming part variation. The SoV theory presents
systematic approaches for root cause identifica-
tion. In this approach, a new concept of “sta-
tistical methods driven by engineering models”
is proposed to integrate the product and process
design knowledge with the on-line statistics. By
solving the difference equation of models (1) and
(2) and with some mathematical simplifications,
the SoV model can be transformed into an input-
output format as

y D � � u C ©; (3)

where y is an n � 1 vector of product
quality measurements, � is an n � p con-
stant system matrix determined by prod-
uct/process designs, u is a p � 1 random vector
representing the process faults, and © is an n � 1

random vector representing measurement noises,
un-modeled faults, and high-order nonlinear
terms. During production, the product quality
features (y) are measured, and the data are used
to conduct statistical analysis based on the model
(1) to identify root causes. Two basic methods are
developed for root cause diagnosis: (i) variation
pattern matching: In this method, all potential
variation patterns can be obtained from the matrix
� resulting from the off-line system design.
During the system operation, observed variation
patterns can be obtained from the covariance
matrix of y. A pattern matching can be performed
to identify the root causes. (ii) estimation-based
diagnosis: With the SoV model and availability
of on-line measurement of quality feature (y), the
deviation value of u can be estimated on-line. A
hypothesis testing of u and its variance reveals
the significant changes that occurred to u, corre-
sponding to the root causes of the system. Various
estimators and their performances are evaluated
in the diagnosis study (Chapter 11 of Shi 2006).

SoV-Enabled Sensor Allocation and
Diagnosability

The issue of diagnosability refers to the problem
of whether the product measurements contain
sufficient information for the diagnosis of critical
process faults, i.e., if root causes of process faults
can be diagnosed. The diagnosability analysis
is investigated based on model (3) that links
potential process faults (u) and product quality
measurements (y). In the SoV theory, a set of
criteria is developed to evaluate the mean di-
agnosability and variance diagnosability for a
system. Similar to observability in control theory,
diagnosability is determined by the Ak , Bk , and
Ck matrices (k D 1; : : :;N) in the SoV models
(1) and (2) (or the � matrix in model (3)). In some
cases, only a subset of variables (vs. specific root
cause variables) can be identified as potential root
causes of the process faults, which are referred to
as minimum diagnosable classes.

One emphasis in the SoV-enabled diagnos-
ability study is to promote the concept of the
“process-oriented measurement” strategy. In
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current industrial practice, most of the existing
measurement strategies focus on the product
coherence inspection (i.e., product-oriented
measurements), which is effective for detecting
product imperfection, but may not be effective
to identify the root causes of product quality
failures. The SoV theory proposes a “process-
oriented measurement” concept with a distributed
sensing strategy. In this strategy, selected key
control characteristics, as well as selected key
product characteristics, will be measured in the
selected stages for both detecting product defects
and identifying their root causes.

SoV-Enabled Design and
Optimization

Variation analysis and design evaluations are con-
ducted in the product and process design stage to
identify critical components, features, and manu-
facturing operations. With the SoV model defined
in (3) and certain assumptions, we can represent
the KPC-to-KCC relationship as

Q†y D
N
X

kD1
�k†uk�

T
k ; (4)

where Q†y is the variance-covariance matrix
of product quality features resulting from the
variance-covariance matrix .†uk / of tooling
errors. Based on (3) and (4), the following four
tasks can be performed: (i) tolerance analysis
by allocating the tooling tolerance .uk/ and
then predicting the final product tolerance
.yN /; (ii) tolerance synthesis by fixing the final
product tolerance (yN ) and then assigning the
tolerance for individual tooling components
(uk) with certain cost objectives minimized; (iii)
sensitivity study by identifying the critical tooling
components (uk) that have significant impacts on
the final production variation through evaluation
of the defined sensitivity indices; and (iv) process
planning by optimizing parameters in Ak and Bk
matrices to minimize the final product variation.

One unique feature of SoV-enabled design and
optimization is to provide a unified method for

simultaneous optimization of product and process
tooling tolerance, as well as process planning.
This is because the SoV models (1) and (2)
represent the product quality features (xk and yk),
tooling features (uk), and the process planning
formation (Ak and Bk) within one mathematical
model. As a result, a math-based optimization
is feasible to achieve the best quality through
process-oriented tolerance synthesis for product
and process, as well as optimized process plan-
ning.

SoV-Enabled Process Control and
Quality Compensation

The SoV model provides the opportunity to apply
active control for dimensional variation reduction
in a multistage manufacturing system. The ba-
sic idea is to implement a system-level control
strategy during production to minimize the end-
of-line product variance, which is propagated
from upstream manufacturing stages. An optimal
control scheme was devised to use the state space
structure of the SoV model by treating the control
as a stochastic discrete-time predictive control
problem. The optimization index for determining
the optimal control action is formulated as

J�

k D min
uk
Jk D min

uk
E
h

OyT
N jk

QN OyN jk C uTk Rkuk
i

;

s.t. C L
k;c � uk;c � CU

k;c ; k D 1; : : : ; N; c D 1; : : : ; nu;k :

(5)

where OyN jk denotes the product quality at the
final stage N that is predicted at stage k and
nu;k is the dimension of the control action uk .
The constraints [CLk;c; CUk;c] define the upper and
lower actuator limits that can be applied on each
part/substage. QN 2 Rm�m is a positive semi-
definite matrix, and Rk 2 Rn�n is a positive
definite matrix.

This optimization index takes the form
of the widely accepted cost function of a
linear-quadratic regulator under the predictive
control framework and thus satisfies the
common requirements in control theory. Various
research topics have been investigated under
this framework, including the feed-forward
control for multistage process, cautious control
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considering model uncertainties, and actuator
layout optimization in control system designs.

SoV-Enabled Product Quality and
Reliability ChainModeling and
Analysis

There is a complex, intricate relationship between
product quality and tooling reliability in a mul-
tistage manufacturing system. A degraded (or
failed) production tool leads to a large variability
in product quality and/or an excessive number of
defects; on the other hand, excessive variability of
product quality features accelerates the degrada-
tion and failure rates of production tooling at the
station thereafter. For a multistage manufacturing
system, these interactions are more complex as
variations propagate from one stage to the next
stage. Thus, a “chain effect” between the product
quality (Q) and tooling reliability (R) can be
observed and thus noted as the “QR chain” effect.
Modeling of the QR chain is an integrated effort
of the SoV model and the semi-Markov process
model. The QR chain model plays an essential
role in system reliability modeling and mainte-
nance decisions and has led to new concepts of
quality-ensured maintenance strategy, and toler-
ance synthesis considering tool degradation and
system down time.

Summary and Future Directions

The concept of stream of variation for multistage
systems can be applied to a very broad range
of systems, although the existing work mostly
focuses on the quality control of multistage dis-
crete manufacturing processes. A comprehensive
discussion on the stream of variation theory for
a multistage manufacturing system is summa-
rized in a monograph (Shi 2006). In addition,
Shi and Zhou (2009) provides a survey of emerg-
ing methodologies for tackling various issues in
multistage systems including modeling, analysis,
monitoring, diagnosis, control, inspection, and
design optimization.

The success of the multistage system frame-
work in manufacturing processes will certainly
stimulate the application of this framework to
other systems. For example, monitoring and di-
agnosis of the abnormalities in throughput, cycle
time, and lead time of a multistage production
system are very promising application areas un-
der the multistage system framework. The supply
chain and logistics management, which involve
multiple suppliers/venders in an interconnected
fashion, can be treated as another multistage
system with network structures. Most service
systems such as health-care clinics, hospitals, and
transportation systems are inherently multistage
as well. It will be interesting to expand the stream
of variation theory to these broadly defined mul-
tistage systems for their quality control, variation
reduction, and other system-level performance
improvement.

Cross-References

�Fault Detection and Diagnosis
�Multiscale Multivariate Statistical Process

Control
�Statistical Process Control in Manufacturing

Recommended Reading

The monograph (Shi 2006) provides detailed re-
sults of the stream of variation theory discussed
in this entry. In addition, the first five chapters
of Shi (2006) provide views of basic statistical
and system analysis tools needed for the SoV
research and development. Some recent develop-
ments related to the SoV theory and applications
are summarized in a review paper (Shi and Zhou
2009).
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Abstract

This entry presents the most commonly used
formulations of robust stability and robust H1
performance for linear systems with highly
structured, linear, time-invariant uncertainty.
The structured singular value function (�) is
specifically defined for this purpose, involving
a problem-specific set, called the uncertainty
set. With the uncertainty set chosen, � is a real-
valued function defined on complex matrices
of a fixed dimension. A few key properties
are easily derived from the definition and
then applied to solve the robustness analysis
problem. Computation of �, which is required
to implement the analysis tests, is difficult, so
computable and refinable upper and lower bounds
are derived.

Keywords

Robustness analysis; Robust control; Structured
uncertainty

Notation, Definition, and Properties

R and C are the real and complex numbers;
CC D f� 2 C W Re.�/ � 0g; Cn is the set of
n� 1 vectors and Cn�m the set of n�m matrices

Gary Balas: deceased.

with elements in C. N�.�/ refers to the maxi-
mum singular value of a matrix; for A 2 Cn�n,
� .A/ is the spectral radius (largest, in magnitude,
eigenvalue of A), and �R .A/ is the real spectral
radius (largest, in magnitude, real, eigenvalue of
A); R is the ring of proper rational functions,
S D fg 2 R W g has no poles in CCg; S��� de-
notes matrices with elements in S, where the
exact dimensions are unspecified, but clear from
context; finally, no notational distinction is made
between a linear system, its transfer function,
and/or its frequency response function.

Let R;S , and F be nonnegative integers
and r1; : : : ; rR, s1; : : : ; sS , and f1; : : : ; fF
be positive integers. Define sets �R WD
fdiag Œı1Ir1 ; � � � ; ıRIrR � W ıi 2 Rg,

�C WD fdiag Œı1Is1 ; � � � ; ıSIsS ;�1; � � � ; �F �

W ıi 2 C; �k 2 Cfk�fk�

and their diagonal augmentation, � WD
fdiag Œ�R;�C � W �R 2 �R; �C 2 �Cg � Cn�n:
The set � is called the block structure. The
block structure can be generalized to handle
nonsquare blocks in �C at the expense of
additional notation. If R D 0, then � is called a
complex block structure. If S D F D 0, then �

is called a real block structure. For M 2 Cn�n,
��.M/ is defined as

��.M/ WD 1

minf N�.�/ W�2 �; det.I �M�/ D 0g

unless no � 2 � makes I � M� singular, in
which case ��.M/ WD 0, (Doyle 1982; Safonov
1982). The function ��.�/ W Cn�n ! R is upper
semicontinuous. Following Fan et al. (1991), the
constraint set in the definition can be written as
f N�.�/ W 9w; z 2 Cn;w D M z; z D �w;w 6D 0ng,
so that without loss of generality, at the minimum,
the elements �1; : : : ; �F each have rank equal
to 1. For specific block structures, simplifications
occur: if R D S D 0 and F D 1, then
��.M/ D N�.M/; if R D F D 0 and S D 1,
then ��.M/ D � .M/; and if S D F D 0

and R D 1, then ��.M/ D �R .M/. In general
�R .M/ � ��.M/ � N�.M/. Associated with
� define B� WD f� 2 � W N� .�/ � 1g. Since
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I � M� is singular if and only if M� has an
eigenvalue exactly equal to 1, it follows that
��.M/ D max�2B�

�R .M�/. If � is a complex
block structure, then �R .�/ can be replaced with
� .�/, and in that case ��.�/ W Cn�n ! R is
continuous.

A common application is to quantify the
effect (in structured singular value terms) that
an uncertain matrix � has on the expression
FL .M;�/ WD M11 CM12� .I �M22�/

�1 M21,
a linear fractional transformation (LFT) of �
by M . This is conceptually straightforward
(informally called the main loop theorem)
using the Schur formula for determinants.
Specifically, let �1 � Cn1�n1 , �2 � Cn2�n2
be block structures � and � C.n1Cn2/�.n1Cn2/
be their block-diagonal augmentation. For
M 2 C.n1Cn2/�.n1Cn2/, ��.M/ < 1 if and only if
��2.M22/ < 1 and

max
�22B�2

��1
.FL .M;�2// < 1:

Finally (Packard and Pandey 1993) if �1 is
a block structure, and �2 is a complex block
structure, and M satisfies ��1

.M11/ < ��.M/,
then ��.�/ is continuous on an open ball around
M . Loosely speaking, “if there are any complex
blocks, and M is such that they matter, then �
is continuous at M .” This means that at points
of discontinuity, only �R 2 �R need to be
nonzero. For any polynomial p W Cn ! C,
there is a minimum-norm root (using k�k1 on
Cn) whose components all have equal modulus
(Doyle 1982). Defining

Q� WD fdiag Œ�R;�C � W N� .�R/�1;��
C�C D I g

and employing this result (Young and Doyle
1997) derives that ��.M/ D maxQ2Q�

�R .MQ/.
This gives a generalized maximum-modulus-like
theorem for LFTs (Packard and Pandey 1993).
Revisiting the setup for the main loop theorem,
assume further that �2 is a complex block struc-
ture. If ��2.M22/ < 1, then

max
�22B�2

��1.FL .M;�2// D max
Q22Q�2

��1.FL .M;Q2// :

This leads to specialized results per Boyd and
Desoer (1985), Packard and Pandey (1993), and
Tits and Fan (1995) for stable transfer function
matrices. For any block structure � � Cn�n and
M 2 Sn�n, then

max

�

sup
!2R

��.M.j!// ; ��.M.1//



D max

(

sup
s2CC

��.M.s// ; ��.M.1//

)

:

Robustness of Stability
and Performance

There are several uncertain system formulations
that all result in the same �-analysis test to assess
the robustness of stability and/or performance
(Wall et al. 1982; Foo and Postlethwaite 1988).
In this article, we present the simplest and most
common interpretation. Consider an interconnec-
tion of known systems, fGi gMiD1, and unknown
systems f�kgNkD1, as described by

2

4

q1
e

q2

3

5 D H

2

4

z1
d

z2

3

5

where z1 D diag ŒG1; : : : ; GM � .q1 C w1/,
z2 D diag Œ�1; : : : ; �N � .q2 C w2/, and H 2
R.n1CneCn2/�.p1CndCp2/ (naturally partitioned
as a block 3-by-3 array). This is depicted in
Fig. 1. Each Gi and �k is assumed to be a finite-
dimensional, time-invariant linear system, with
proper transfer function, and a stabilizable and
detectable internal state-space description.

The interconnection is well posed if for any
initial conditions and any (say) piecewise con-
tinuous inputs w1, w2, and d , there exist unique
solutions to the interconnection equations. By
manipulating the state-space or transfer function
descriptions of a well-posed interconnection, a
state-space model or proper transfer function de-
scription for the map from .d;w/ to .e; z/ can be
derived. A well-posed interconnection is stable
if the resultant state-space model is internally
stable – the eigenvalues of its “A” matrix are in
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Structured Singular Value and Applications: Ana-
lyzing the Effect of Linear Time-Invariant Uncer-
tainty in Linear Systems, Fig. 1 Interconnection of
G1; : : : ; GM ; �1; : : : ; �N

the open, left-half plane. Given some restrictions
on the values of the elements of � , robustness
analysis poses the question: is the interconnec-
tion well posed and stable for all possible values
of �? And if so, then is the k�k1 gain from
d -to-e � 1 for all possible values of �? The
goal of the analysis is to confirm “yes” or supply
a particular � which proves that the answer is
“no” (by rendering the interconnection ill-posed,
unstable, or with d -to-e gain>1). Standard linear
systems theory gives that the interconnection is
well posed if and only if

det

�

I �
�

H11 H13

H31 H33

� �

G.1/ 0

0 �.1/

��

6D 0;

and that the interconnection is stable if and only
if the transfer function matrix T w;z, mapping
Œw1I w2� to Œz1I z2�, is an element of S���.

The assumptions on each�k are of three kinds:
(i) �k is a stable linear system, known only to
satisfy k�kk1 < 1; (ii) �k is a stable linear
system of the form �kI , where the scalar linear
system �k is known to satisfy k�kk1 < 1; (iii)
�k is a constant gain, of the form �kI , where
the scalar �k 2 R is known to satisfy �1 <

�k < 1. Note the similarity between this and the
block structure � (via �R and �C) introduced
earlier. After rearrangement, this block-diagonal
augmentation of uncertain systems is a norm-
bounded (by 1) element of the set

� WD fdiag Œ�R; �U � W �R 2 �R; �U 2 S���;

�U .s0/ 2 �C 8s0 2 CCg :

Since 0 is a possible value of � , two necessary
conditions (denoted c.1 and c.2, respectively)
for robust well-posedness and stability are at
� D 0, specifically det .I �G.1/H11/ 6D 0 and
V WD G.s/.I � H11G.s//

�1 2 S���. Assuming
det .I �G.1/H11/ 6D 0 (i.e., c.1), the Schur
formula for block determinants reduces the well-
posedness condition to

det
�

I � �.1/
�

H33 CH31.I �G.1/H11/
�1

G.1/H13�/ 6D 0:

Define M WD H33 C H31G.I �H11G/
�1H13 2

S���, and X WD I � �M . Then

T w;z D
�

V C VH13X
�1�H31V VH13X

�1�
X�1�H31V X�1�

�

Assuming c.2, namely, V 2 S���, then X�1 2
S��� implies that T w;z 2 S��� – moreover
T w;z 2 S��� implies that X�1 D I C T

w;z
22 M 2

S���. Finally, since both M and � are stable,
it follows that X�1 2 S��� if and only if
det .I �M.s0/�.s0// 6D 0 8s0 2 CC: The
maximum-modulus property gives the robustness
theorem. With the definition ofM and conditions
c.1 and c.2, the uncertain system is robustly stable
and well posed if and only if

max

�

sup
!2R

��.M.j!// ; ��.M.1//



� 1:

Indeed, if the condition holds, then by maximum-
modulus theorem and the definition of �, it fol-
lows that det.I � M.s/�.s// 6D 0 for all s 2
CC as well as s D 1, since �.s/ 2 � and
N� .�.s// < 1. This gives well-posedness and
stability for all such � , as desired (an alternate
proof, using the Nyquist criterion is also com-
mon). Conversely, if the condition is violated,
then at some frequency (0, nonzero, or 1), � is
larger than 1, as evidenced by a (constant matrix)
� 2 � � Cn�n, N� .�/ < 1, which causes sin-
gularity. If the frequency is nonzero (and finite),
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the interpolation lemmas in the appendix enable
replacing the complex blocks with stable, real-
rational entries. Otherwise (0 or 1), the matrix
is such that � is continuous, and hence a finite,
nonzero frequency also has � > 1, or only the
real blocks are necessary to cause singularity. In
all cases, � 2 � with k�k1 < 1 exists to cause
ill-posedness or instability (Tits and Fan 1995).

Robustness of performance, measured as
�

�T e;d
�

�1, can be addressed, using the main loop
theorem, and an additional complex full block
(recall N� .�/ D ��.�/ when F D 1; S D R D 0).
Define

MP W D
�

H22 H23

H32 H33

�

C
�

H21

H31

�

G.I �H11G/
�1 �H12 H13

	

and �P WD fdiag Œ�P ;�� W �P 2 Cnd�ne ;
� 2 �g. With conditions c.1 and c.2, the
uncertain system is robustly stable and well posed
and satisfies

�

�T e;d
�

�1 � 1 if and only if

max

�

sup
!2R

��P.MP .j!// ; ��P.MP .1//



� 1:

Computations

The robust stability and robust performance the-
orems require computing � on the frequency re-
sponse function M.j!/. Computing � is known
to be a computationally difficult problem (Toker
and Ozbay 1998), so exact computational meth-
ods are generally not pursued. Reliable algo-
rithms have been developed which yield upper
and lower bounds, which are often sufficiently
close for many engineering problems.

Lower Bounds
Recall that ��.M/ D max�2B�

�R .M�/ D
maxQ2Q�

�R .MQ/. Practically speaking, these
maximizations yield lower bounds for ��.M/,
since the global maximum may not be attained.
In addition to gradient-based ascent methods, the
optimality conditions for Q 2 Q� to be a local
maximum of the function �R .M�/ on the set

B� can be derived (Young and Doyle 1997). A
solution approach, similar to a Jacobi iteration,
leads to an iteration that resembles combinations
of the familiar power methods for spectral radius
and maximum singular value. If the iteration con-
verges (which is not guaranteed), a lower bound
for ��.M/ (along with a corresponding � 2 �)
is produced. Studies with matrices constructed
to have ��.M/ D 1 suggest that the iteration
is very reliable for complex block structures,
though usually quite poor for purely real block
structures. There are several, more computation-
ally demanding algorithms available for purely
real block structures (de Gaston and Safonov
1988; Sideris and Sanchez Pena 1989). For the
common situation, with both real and complex
blocks, where continuity is assured, the power
algorithm generally has adequate performance.

Upper Bounds
Define G� WD fGD �G� W G�D ���G� 8�2�g,

D� WD fD D D� � 0 W D� D �D 8� 2 �g,
subsets of Cn�n. Elements of D� are of the
form diag

�

Dr1; : : : ;DrR ;Ds1 ; : : : ;DsS ; d1If1 ;

: : : ; dF IfF
	

, and therefore D 2 D� implies that

D
1
2 2 D� too. Likewise,

G� WD fdiag ŒGR; 0� W GR D �G�
R 2 C���;

GR�R D �RGR 8�R 2 �Rg :

A concise derivation (Helmersson 1995) verifies
the upper bound formula (Fan et al. 1991). If
ˇ > 0, G 2 G�; and D 2 D� satisfy M �DM �
ˇ2D C GM C M �G� � 0, then ��.M/ � ˇ.
Indeed, if � 2 � has det.I � M�/ D 0, there
exist nonzero w; z 2 Cn with w D M z; z D �w.
Certainly z�.M �DM�ˇ2DCGMCM �G�/z �
0. Making substitutions gives

0 � w�Dw � ˇ2w���D�w

Cw���Gw C w�G��w

D w�Dw � ˇ2w�D1
2���D1

2

w C w���Gw � w���Gw

D w�D1
2
�

I � ˇ2���
�

D
1
2 w:
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Since D is invertible and w 6D 0n, it must be
that N� .�/ � ˇ�1, as desired. The constraint
M �DM � ˇ2DCGM CM �G� � 0 is a linear
matrix inequality (LMI) in the variablesD andG.
Minimizing ˇ over G 2 G� and D 2 D� subject
to the LMI constraint (using Boyd and El Ghaoui
1993, for instance) yields the best upper bound
that this inequality can produce.

Further Perspectives
The robustness tests involve bounding
��.M.j!// over the entire real axis. A common
approach is to use a dense frequency gridding and
upper/lower bound calculations at each gridded
point. The advantages, simplicity and trivial
parallelization, are offset with disadvantages, in
that the peak value (over R) may not be reflected
accurately by the peak across the finite grid.
In fact, such a grid-based test determines the
smallest � 2 � which can cause a pole to
migrate from the left-half plane into the right-
half plane at exactly one of the frequency grid
points (as opposed to any location). Nevertheless,
with some continuity assurances in place and a
dense grid, this is often adequate knowledge for
most engineering decisions. However, the brute-
force grid approach can be avoided by treating
the frequency-variable (!) as an additional
real parameter (since M.j!/ is an LFT of 1

!
)

(Ferreres et al. 2003). This is a generalization
of the Hamiltonian methods to compute the H1
norm of a linear system without a frequency grid,
coupled with an alternative form of the upper
bound (Young et al. 1995). Moreover, if only the
peak value (upper bound, say) across frequency
is desired, this approach can be fast, as some
calculations rule out large frequency ranges to
not contain the peak.

Improved upper bounds can be derived using
higher-order arguments, changing the LMI con-
straint into a sum-of-squares constraint (which
ultimately is just a larger LMI). Alternatively,
branch-and-bound techniques are especially use-
ful at reducing the conservativeness of the .D;G/
upper bound when there are several real parame-
ters .R > 0/ (Newlin and Young 1997).

Appendix: Interpolation Lemmas

Two interpolation lemmas make the connection
between robustness to constant-gain, complex-
valued uncertainties (�) and stable, finite-
dimensional, time-invariant linear systems
described by ODEs with real coefficients (�).
Lemma 1 is used (block by block and element
by element on the relevant vector directions
within each block) to interpolate complex blocks
causing singularity into real-rational blocks
which cause singularity at a particular frequency.

Lemma 1 Given a positive N! > 0 and a com-
plex number ı, with Imag .ı/ 6D 0, there is
a ˇ > 0 such that by proper choice of sign

˙ jıj s�ˇ
sCˇ

ˇ

ˇ

ˇ

sDj N! D ı:

Lemma 2 Suppose M 2 Cn�n and N! > 0. If
� 2 � satisfies det.In � M�/ D 0, then there
is a � 2 � with k�k1 � N�.�/ and det.In �
M�.j N!// D 0.

Summary and Future Directions

The structured singular value, �, is a linear alge-
bra construct, defined to exactly deal with linear,
time-invariant uncertainty in linear systems. The
main issues are computational, focused on effi-
cient manners to compute reasonably tight upper
and lower bounds at each frequency and, more
specifically, ascertain the peak value across fre-
quency. Alternatives to the worst-case approach
to robustness analysis are gaining favor and may
be applicable in analysis and design situations
where the abstraction of a worst-case view is too
conservative (Calafiore et al. 2000).
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Recommended Reading

A comprehensive list of references, including
theory, computations, and diverse applications
would require many pages. The list below
is minimal and does not do justice to the
many researchers who have made significant
contributions to this subject. In addition to the
cited work, connections to Kharitonov’s theorem
can be found in Chen et al. (1994). Textbooks,
such as Dullerud and Paganini (2000) and Zhou
et al. (1996), include derivations and additional
citations.
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Abstract

Optimization problems arising in the control of
some important types of physical systems lead
naturally to problems in sub-Riemannian opti-
mization. Here we provide context and back-
ground material on the relevant mathematics and
discuss some specific problem areas where these
ideas play a role.
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Introduction

After a start in the early 1970s, over the last two
decades, sub-Riemannian geometry and the re-
lated theory of subelliptic operators have become
popular topics in the control literature. Their
study is sometimes linked to questions involving
the dynamics and control of mechanical systems
with nonholonomic (nonintegrable) constraints
and the use of what has classically been called
quasi-coordinates because both subjects depend
on Lie algebraic techniques. However, here we
limit ourselves to problems in sub-Riemannian
optimization per se, describing how they arise in
various areas of physics and engineering. Most
famously, the second law of thermodynamics, as
recast by Carathéodory in differential geometric
form, provides an example of the reach of sub-
Riemannian geometry into the engineering world.

The statement of control theoretic problems
often begins with a description of the system of
interest in differential equation form:

Px D f .x/C
X

uigi .x/ I x 2 X; u 2 R
m

with X an n-dimensional manifold. In well-
motivated control problems, n is almost always
larger than m; the dimension of the space of
controls is less than the dimension of the state
space. In the case of mechanical systems, the
phrase under actuated is sometimes used to
characterize this, but the situation is ubiquitous.
The analysis is complicated by presence of the
immutable drift term f. When it is desired to use
an optimization principle to find a good choice
for u, one introduces a performance measure,
often of the form

� D
Z t1

0

L.x; u/ dt

and attempts to minimize � subject to whatever
constraints there may be on u and x. If there is
no drift term and if the Lie algebra generated by
fg1; g2; � � � ; gmg defines a distribution that spans
the tangent space ofX at every point, the problem
falls under the purview of sub-Riemannian geom-
etry. In this case, one can describe the situation
as Px D G.x/u with G being an x-dependent
rectangular matrix of rank m everywhere.

This entry is written from a control theory
point of view. The problems discussed here pro-
vided the impetus for some later mathematical
work, often not discussing the motivation. The
purely mathematical work is de-emphasized here,
much as the mathematical work often gives little
or no attention to the control theoretic work that
preceded it.

The Distance Function

A prototype control problem leading to sub Rie-
mannian geometry is that of steering the system
Px1 D u1 Px2 D u2 Px3 D x1u2 � x2u1 from one
state to another while minimizing

� D
Z 1

0

q

u21 C u22 dt

It might seem that this is just a minor change from
a standard shortest path problem in Riemannian
geometry, e.g., it might be thought as a limiting
case of a standard Riemannian geodesic problem
in which the infinitesimal length is given by

.ds/2 D

h

dx1 dx2 dx3

i
2

6

4

1 0 �y
0 1 x

�y x � C x2 C y2

3

7

5

�1

2

6

4

dx1

dx2

dx3

3

7

5

and � is allowed to go to zero. However, because
when � equals zero this matrix is singular, it can-
not be used to define the equations for geodesics.
The most direct attack seems to be to use a
Lagrange multiplier to enforce the condition on
x3, which leads to the minimization of
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� D
Z 1

0

Px21 C Px22 C �.x1 Px2 � x2 Px1/ dt

This yields a set of �-dependent linear equations
for x1 and x2. Solving these shows that the
projections of the minimum length trajectories
onto the .x1; x2/-plane are circular arcs.

In Riemannian geometry, the set of points
which are of distance r from a given point will,
for r sufficiently small, form a co-dimension
one manifold diffeomorphic to a sphere. In this
qualitative sense, Riemannian spaces are locally
isotropic. In sub-Riemannian geometry, the set of
points of distance r > 0 from a distinguished
point x0 does not have such a simple structure.
For example, for the problem just discussed, we
have the approximations

d D
q

x21 C x22 C jx3j=.x21 C x22/

for jx3j � .x21 C x22/

and

d D 2�jx3j �
q

8�.x21 C x22/jx3j

for
q

x21 C x22 � jx3j

That is, for points bounded by paraboloids, defin-
ing a region near the .x1; x2/-plane, the distance
is close to the Riemannian distance, whereas
in a cone containing the x3 axis, the distance
is close to the square root of the Riemannian
distance. These approximations make it clear that
d.x1; x2; x3/ is not differentiable at points on the
x3 axis. There is much more that can be said here.
One interesting topic concerns the number of
trajectories that satisfy the first-order necessary
conditions and join a point to the origin.

More Examples

Consider the kinematic equations of the unicycle.
If .x; y/ are the coordinates of the center of the
wheel and 
 is the heading angle, then these are

Px D cos 
u2 I Py D sin 
u2 I P� D u1

It is of interest to generate a “shortest path” be-
tween two points in .x; y; 
/-space where short-
est is defined as the integral of some function
of x; y; 
; u1; u2. This is typical of the kind of
path planning problems in which nonholonomic
constraints lead to sub-Riemannian problems. A
variety of such problems arise in robotics with
optimal steering programs for cars being one
example.

As an example involving a compact manifold,
let X be the space of 3-by-3 orthogonal matrices
and consider the system described by

Px D
2

4

0 u1 u2
�u1 0 0

�u2 0 0

3

5x

In this case, the manifold X is three dimensional
and the control space is two dimensional. If we
wish to minimize the integral of u2 C v2 subject
to x.0/ D x0 and x.1/ D x1, we have a typical
sub-Riemannian geodesic problem.

If the controls contain random effects, efforts
to analyze the situation lead to related problems
in stochastic process. The most widely studied of
these are described by an Itô equation of the form

dx D f .x/dt C
X

gi .x/dwi

The corresponding equation for the evolution of
the probability density �.t; x/ can be put in the
form

@�

@t
D
X

ai .x/
@

@xi
�.t; x/

C
X

bij .x/
@

@xi

@

@xj
�.t; x/

However, rather than the right-hand side being
a fully elliptic operator, as it would be in a
typical heat equation (e.g., the Laplace-Beltrami
operator), the symmetric matrix B.x/ D bij .x/

is singular. If the gi satisfy the bracket-generating
condition, the density equation is said to be subel-
liptic. The system described by the Itô equation
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2

4

dx1
dx2
dx3

3

5 D
2

4

�dt dw1 dw2
�dw1 �dt=2 0

�dw2 0 �dt=2

3

5

2

4

x1
x2
x3

3

5

evolves on the two-sphere and the spectrum of the
subelliptic operator is discrete. The diffusion time
constants, i.e., the eigenvalues of the subelliptic
operator, can be computed explicitly and com-
pared with those of the fully elliptic operator, i.e.,
the standard Laplacian on the spherical shell.

Much has been written on the ways in which
subelliptic diffusion does, and does not, share the
properties of the ordinary diffusion equation.

A Special Structure

A rich, and especially tractable, class of sub-
Riemannian problems come from the following
situation. Suppose that G is a Lie group with Lie
algebra G and that H is a closed subgroup with
Lie algebra H . According to one definition, the
pair H � G is said to define a symmetric space
if the Lie algebra G, viewed as a vector space, is
the direct sum ofH andK with ŒH;K� � K and
ŒK;K� � H . Let x evolve in G as

Px D ux I x 2 G I u 2 K

For the sake of exposition, suppose that G is a
matrix Lie group. We look for paths joining x0
and x1 that are shortest in the sense that

� D
Z 1

0

jjujj dt I

is minimized, where jjujj2 D tr.uT u/ . (This leads
to the same trajectories as those which minimize
the integral of jjujj2.) To find the first-order nec-
essary conditions using the maximum principle,
define a Hamiltonian as h.x; p; u/ D tr.pT ux C
uT u/. Thus, Pp D �uT p and minimizing over u
implies 2u D ��1.xpT / where �1 is the projec-
tion ontoK . The productm D xpT satisfies Pm D
Œm; �1.m/�. Using the structural properties of the
Lie algebra, we see that .d=dt/�0.m/ D 0 and
that .d=dt/�1.m/ D Œ�1.m/;m0�. Working out
the implications, we see that trajectories of the

form x.t/ D eat e.b�a/t with a 2 H and b 2 K

satisfy the first-order optimality conditions.
To illustrate, we consider the generalization of

an earlier example. Let X be the space of n-by-
n orthogonal matrices and consider the system
described by

Px D

2

6

6

6

6

6

4

0 u1 u2 � � � un�1
�u1 0 0 � � � 0

�u2 0 0 � � � 0
:::

:::
::: � � � :::

�un�1 0 0 � � � 0

3

7

7

7

7

7

5

x

Here the role of H is played by the sub-algebra
of the set of real n-by-n skew-symmetric ma-
trices consisting those whose first row and col-
umn vanish and K consists of the subset whose
lower-right .n � 1/-by-.n � 1/ sub-matrix van-
ishes. In this case, the paths satisfying the first-
order necessary conditions take the form x.t/ D
eht e.k�h/tx.0/.

Nonintegrability and Cyclic Processes

Of course nonintegrable stands in opposition to
the word integrable, as it is used in the consider-
ation of integration performed along paths, e.g.,

I D
Z

�

g1.x/dx1 C g2.x/dx2 C � � � C gn.x/dxn

If the path � starts at Nx and ends at Ox, then the
equality of mixed partials @gi =@xj D @gj =@xi
implies that along any two paths with these end
points, the integral has the same value, provided
that one of the paths can be continuously de-
formed into the other with the gi being well
defined along the deformation. In particular, if
� is a closed curve so Nx D Ox, then under these
assumptions, the integral is zero.

On the other hand, there is a large list of
important processes in biology and engineering,
such as those involving the thermodynamic cy-
cles of internal combustions engines or air con-
ditioners, that depend critically on nonintegrable
effects. These include cyclic phenomena such as
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walking and breathing and a widely used mecha-
nisms for efficient voltage conversion in electrical
engineering. Thus, both nature and technology
provide examples of processes in which the pis-
tons, valves, etc. move along a smooth path and at
the end of a cycle return to their initial configura-
tion, while a related integral is not zero. Perhaps,
the best-known path problem of this type is the
Carnot cycle.

Questions about sub-Riemannian optimization
enter here both as the optimization of the path
defining the cycle and in the optimal regulation
of the output of such cyclic processes. In general,
the output can adjust both the amplitude and
frequency of the cycle (volume of air per cycle
and respiration rate), although in some cases one
or the other of these might be fixed. For exam-
ple, cruise control for automobiles regulates the
frequency (rpm) of the engine but cannot adjust
the stroke length of the pistons, whereas speed
control of a running animal ordinarily involves
adjusting both the length of the stride and the
“steps” per minute. The primary considerations
for these control processes are stability and re-
sponse time, with the shape of the cycles being
determined by some measure of efficiency. It
seems that the optimization of such regulatory
processes deserves more attention.

Cross-References

�Learning Theory
�Markov Chains and Ranking Problems in Web

Search
�Modeling, Analysis, and Control with Petri

Nets
�Nonlinear Adaptive Control
�Redundant Robots

Recommended Reading

Material on sub-Riemannian geometry can be
found in the very readable survey (Strichartz
1986) and in more depth in Gromov (1996).
The examples discussed here have mostly come
from the literature Brockett (1973a,b), Baillieul

(1975), and Brockett (1999) and these papers
contain motivational material as well. Symmetric
spaces are discussed in the sub-Riemannian con-
text in Strichartz (1986), but for the optimization
aspect, see Brockett (1999). Reference Brockett
(2003) studies the regulation of sub-Riemannian
cycles.
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Abstract

An overview is given of the class of subspace
techniques (STs) for identifying linear, time-
invariant state-space models from input-output
data. STs do not require a parametrization of the
system matrices and as a consequence do not
suffer from problems related to local minima
that often hamper successful application of
parametric optimization- based identification
methods.

http://dx.doi.org/10.1007/978-1-4471-5058-9_227
http://dx.doi.org/10.1007/978-1-4471-5058-9_135
http://dx.doi.org/10.1007/978-1-4471-5058-9_53
http://dx.doi.org/10.1007/978-1-4471-5058-9_117
http://dx.doi.org/10.1007/978-1-4471-5058-9_173


Subspace Techniques in System Identification 1387

S

The overview follows the historic line of de-
velopment. It starts from Kronecker’s result on
the representation of an infinite power series by a
rational function and then addresses, respectively,
the deterministic realization problem, its stochas-
tic variant, and finally the identification of a state-
space model given in innovation form.

The overview summarizes the fundamental
principles of the algorithms to solve the problems
and summarizes the results about the statistical
properties of the estimates as well as the practi-
cal issues like choice of weighting matrices and
the selection of dimension parameters in using
these STs in practice. The overview concludes
with probing some future challenges and makes
suggestions for further reading.

Keywords

Extended observability matrix; Hankel matrix;
Innovation model; State-space model; Singular
value decomposition (SVD)

Introduction

Subspace techniques (STs) for system identifi-
cation address the problem of identifying state-
space models of MIMO dynamical systems. The
roots of ST were laid by the German mathe-
matician Leopold Kronecker (ı1823–�1891). In
Kronecker (1890) Kronecker established that a
power series could be represented by a rational
function when the rank of the Hankel operator
with that power series as its symbol was finite. In
the early 1990s of the twentieth century, new gen-
eralizations of the idea of Kronecker were pre-
sented for identifying linear, time-invariant (LTI)
state-space models from input-output data or out-
put data only. These new generalizations were
formulated from different perspectives, namely,
within the context of canonical variate analysis
(Larimore 1990), within a linear algebra context
(Van Overschee and De Moor 1994; Verhae-
gen 1994), and subspace splitting (Jansson and
Wahlberg 1996). Despite their different origin,
the close relationship between these methods was
quickly established by a unifying theorem that

interpreted these methods as a singular value
decomposition (SVD) of a weighted matrix from
which an estimate of the column space of the
observability matrix or the row space of the state
sequence of the given system or Kalman filter
for observing the state of that system is derived
(Van Overschee and De Moor 1995). This sub-
space calculation is the key feature that leads to
the indication by ST for system identification or
subspace identification methods (SIM).

The STs are attractive complementary tech-
niques to the maximum likelihood or prediction
error framework. They do not require the user to
specify a parametrization of the system matrices
of the state-space model, and the user is not
confronted with the problems due to possible
local minima of a nonlinear parameter optimiza-
tion method that is often necessary in estimating
the parameters of a state-space model via, e.g.,
prediction error methods. Though the statisti-
cal properties such as consistency and efficiency
have been investigated, such as in Bauer and
Ljung (2002), the estimates obtained via ST are
in general not optimal in the statistical minimum
variance sense. However, practical evidence with
the use of ST in a wide variety of problems has
indicated that ST provides accurate estimates.
As such they are often used as an initialization
to the maximum likelihood or prediction error
parametric identification methods.

In this chapter we make a distinction between
output only or stochastic identification problems
and input–output or combined deterministic-
stochastic identification problems. The first
occurs when identifying, e.g., the eigenmodes
of a bridge from ambient acceleration responses
of the bridge. The second occurs when, in
addition to ambient excitations that cannot be
directly measured, controlled excitations through
actuators integrated in the system are used during
the collection of the input–output data.

The outline of this chapter is as follows. In the
next section, we formulate the LTI state-space
model identification problems and outline the
general strategy of ST. The presentation of ST
is given according to the historical development
of ST. It starts with a summary of the solution
to the deterministic realization problem, which
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considers the noise-free “impulse” response
of the system. Subsequently we present the
stochastic realization problem which considers
the output-only identification problem where
the output is assumed to be a filtered zero-
mean, white-noise sequence. The ST solution is
discussed assuming samples of the covariance
function of the output to be given. The
deterministic-stochastic identification problem
is considered in section “Combined Determin-
istic-Stochastic ST.” In this section we first
consider open-loop identification experiments.
For this case, the basic linear regression problem
is formulated that is at the heart of many
ST. Second reference is made to a framework
for analyzing and understanding the statistical
properties of ST, the selection of the order, as
well as to a number of open problems in the un-
derstanding of important choices the user has to
made. Closed-loop identification experiments are
considered in the third part of section “Combined
Deterministic-Stochastic ST,” while the fourth
part makes a brief reference to ST papers that go
beyond the LTI case.

Finally we provide a brief overview on future
research directions and conclude with some rec-
ommended literature for further exploration.

ST in Identification: Problems and
Strategy

The LTI system to be analyzed in this chapter is
given by the following state-space model:

x.k C 1/ D Ax.k/C Bu.k/CKe.k/

y.k/ D Cx.k/CDu.k/C e.k/ (1)

with u.k/ 2 R
m the (measurable) input,

e.k/ a zero-mean, white-noise sequence with
EŒe.k/e.k/T � D R, y.k/ 2 R

` the (measurable)
output, and x.k/ 2 R

n the state vector. This
model is in the so-called innovation form since
the sequence e.k/ is the innovation signal in a
Kalman filtering context.

The historical sequence of ST developments
considers the following open-loop problem for-
mulations. In the deterministic realization prob-
lem, the innovation sequence e.k/ is zero, and the
input u.k/ is an impulse. The stochastic realiza-
tion problem considers the case where the input
u.k/ is zero and the given data is assumed to be
samples of the covariance function of the output.
The combined deterministic-stochastic identifica-
tion problem considers the model (1) for generic
input u.k/.

The general strategy of ST is to formulate an
intermediate step in deriving the parameters of
the system matrices of interest from the given
data; see Fig. 1. This intermediate step makes the
ST different from the parametric model identifi-
cation framework that aims for a direct estimation
of the parameters of the system matrices by (in
general) nonlinear parameter optimization tech-
niques. The intermediate step in ST aims to deter-
mine a matrix from the given data that reveals an
(approximation of an) essential subspace of the
unknown system. This essential subspace can be

Direct (Non−Linear) Parameter Optimization Strategy

State Space
Model
Realization

Intermediate ST strategy

Subspace
Revealing
Matrix

Given Data:
{u(k), y(k)}Nk=1
or {CAj–1B}Nj=1
etc.

Subspace Techniques in System Identification, Fig. 1
Schematic representation of the intermediate step of
ST to derive from the given data (input–output data
fu.k/; y.k/g, Markov parameters fCAj�1Bg, etc.) a sub-
space revealing matrix, from which the subspace of in-
terest is computed via, e.g., singular value decomposition
and that enables the computation of the state-space model

realization by solving a (convex) linear least-squares prob-
lem. The commonly used approach to directly go from
the given data to a state-space realization via in general
nonlinear parameter optimization methods is indicated by
the arrow directly connecting the given data box to the
state-space realization box



Subspace Techniques in System Identification 1389

S

the extended observability matrix of (1) as given
by the matrix Os:

Os D

2

6

6

4

C

CA

� � �
CAs�1

3

7

7

5

for s > n;

or the state sequence of a Kalman filter designed
for (1). Essential for ST is that both the interme-
diate step to reveal the subspace of interest and
the subsequent derivation of the system matrices
from that subspace and the given data are done
via convex optimization methods and/or linear
algebra methods.

Realization Theory: The Progenitor
of ST

The Deterministic Realization Problem
In the 1960s, the cited result of Kronecker in-
spired independently Ho and Kalman, Silverman
and Youla, and Tissi to present an algorithm
to construct a state-space model from a Hankel
matrix of impulse response coefficients (Schutter
2000). This breakthrough gave rise to the field
of realization theory. One key problem in real-
ization theory that paved the way for subspace
identification is the determination of a minimal
realization from a finite number of samples of
the impulse response of a deterministic system,
assumed to have a minimal representation as
in (1) for e.k/ � 0. The samples of the im-
pulse response are called the Markov parame-
ters. The minimal realization sought for is the
LTI model with quadruple of system matrices
ŒAT ; BT ; CT ;D�, withAT 2 R

n�n and nminimal
such that the pair .AT ; CT / is observable, the
pair .AT ; BT / is controllable, and the transfer
function D C CT .zI � AT /

�1BT equals D C
C.zI �A/�1B with z the complex variable of the
z-transform. When A is stable, the latter transfer
function can be written into the matrix power
series:

DCC.zI�A/�1B D DC
1
X

jD1
CAj�1Bz�j (2)

Following the cited result of Kronecker, the solu-
tion to the minimum realization problem is based
on the construction of the (block-)Hankel matrix
Hs;N constructed from the Markov parameters
fCAj�1BgNjD1 as

Hs;N D

2

6

4

CB CAB � � � CAN�sB
:::

: : :
:::

CAs�1B CAsB � � � CAN�1B

3

7

5 (3)

For the deterministic realization problem, the
intermediate ST step simply is the storage of the
impulse response data into a Hankel matrix. The
subsequent step is to derive from this matrix a
subspace from which the system matrices can
be either read-off or computed via linear least
squares. How this is done is outlined next.

When the order n of the minimal realization is
known and the Hankel matrix dimension param-
eters s;N are chosen such that

s > n N � 2n� 1 (4)

the Hankel matrix Hs;N has rank n. A
numerically reliable way to compute that rank
is via the SVD of Hs;N . Under the assumption
that the rank of Hs;N is n, we can denote that
SVD as Un†nV T

n , with †n 2 R
n�n positive

definite and with the columns of the matrices
Un and Vn orthonormal. By the minimality
of (1) (for e.k/ � 0), Hs;N can be factored
as Os

�

B AB � � � AN�sB
	 D OsCN�sC1 or as




Un†
1
2
n

�


†
1
2
n V

T
n

�

, and these factors are related
as

Un†
1
2
n D OsT

�1 D Os;T †
1
2
n V

T
n D T CN�sC1

D CN�sC1;T

for T 2 R
n�n a nonsingular transformation.

Therefore Os;T resp. CN�sC1;T act as the
extended observability resp. controllability
matrix of a similarly equivalent triplet of system
matrices .AT ; BT ; CT /. This correspondence
allows to read-off the system matrices CT and
BT as the first ` rows of the matrix Os;T and
the first m columns of CN�sC1;T resp. Further
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the shift-invariance property of the extended
observability resp. controllability matrices allows
to find the system matrix AT of the minimal
realization. For example, consider the extended
observability matrix Os , then the shift-invariance
property states that:

Os;T .1 W .s�1/`; W/AT D Os;T .`C1 W s`; W/ (5)

where the notation M.u W v; W/ indicates the
submatrix of M from rows u to rows v. The
shift-invariance property delivers a set of linear
equations from which the system matrix AT can
be computed via the solution of a linear least-
squares problem when s > n.

Finding the dimension parameters s .and N/
of the Hankel matrixHs;N is a nontrivial problem
in general. When only the Markov parameters are
given and the knowledge that they stem from a
finite-order state-space model, a possible sequen-
tial strategy is to select s and N equal to the
upperbounds in (4) for presumed orders n and
nC 1, respectively. When the rank of the Hankel
matrices for these two selections of s (and N ) is
identical, the right dimensioning of the Hankel
matrix Hs;N is found. Otherwise the presumed
order is increased by one.

The Stochastic Realization Problem
The output-only identification problem aims at
determining a mathematical model from a mea-
sured multivariate time series fy.k/gNkD1 with
y.k/ 2 R

`. Such a model can be then used for
predicting future values of the (output) data from
past values.

In the vein of the revival of the work of
Kronecker on realizing dynamical systems from
its impulse response, Faure and a number of
contemporaries like Akaike and Aoki made pi-
oneering contributions to extend this methodol-
ogy to stochastic processes (Van Overschee and
De Moor 1993). These extensions are known as
solutions to the stochastic realization problem.

This problem is formulated for y.k/ to be a
Markovian stochastic process. Reusing the nota-
tion in (1) y.k/ is assumed to be generated by
(1) with the input u.k/ � 0. The A matrix in (1)
is again assumed to be stable. The given data in

the early formulations of the stochastic realiza-
tion problem was the samples of the covariance
function

Ry.j / D EŒy.k/y.k � j /T �

These samples define the strictly positive real
spectral density function of y.k/:

ˆy.z/ D
1
X

jD�1
Ry.j /z

�j > 0 (6)

Given the samples of the covariance function
Ry.j /, the stochastic realization problem was to
find an innovation model representation of the
form

Ox.k C 1/ D AT Ox.k/CKT e
0.k/

Qy.k/ D CT Ox.k/C e0.k/ (7)

with e0.k/ a zero-mean, white-noise input with
covariance matrix Re , the pair .AT ; CT / observ-
able, and AT stable, such that the spectral density
functionsˆy.z/ and ˆ Qy.z/ are equal.

The partial similarity between this problem
and the minimal realization problem becomes
clear when expressing the covariance function
samples Ry.j / in terms of the system matrices
in (1)–for u.k/ � 0 as

Ry.j / D CAj�1G for j ¤ 0 (8)

with the matrices G and Ry.0/ derived from the
following covariance expressions:

EŒx.k/x.k/T � D †x W †x
D A†xA

T CKRKT (9)

EŒx.k C 1/y.k/T � D G W G
D A†xC

T CKR (10)

EŒy.k/y.k/T � D Ry.0/ W Ry.0/
D C†xC

T CR (11)

Since the spectral density has a two-sided series
expansion, there is a so-called forward stochastic



Subspace Techniques in System Identification 1391

S

realization problem (considering Ry.j / for
j � 0 only) and a backward version. Here we
only treat the forward one. Drawing the parallel
between the samples of the covariance function
Ry.j /, as given in (6)–(8) and the Markov
parameters in (2), we can use the deterministic
tools from realization theory to find a minimal
realization .AT ; CT ;GT /.

The intermediate ST step in the stochastic
realization problem is the construction of a Han-
kel matrix similar to the matrix Hs;N as in the
deterministic realization problem but now from
the samples of the covariance function Ry.j /

in (8).
With the triplet .AT ; CT ;GT / determined, the

innovation model (7) is classically completed via
the solution of a Riccati equation in the unknown
†x . This Riccati equation results by noting that
R > 0, and therefore, KRKT can be written as
KR.R/�1RTKT . This reduces the expression for
†x in (9) with the help of (10) and (1) as

†x D A†xA
T C .G � A†xC

T /.Ry.0/

�C†xCT /�1.G �A†xCT /T (12)

By replacing the triplet .A; C;G/ with the found
minimal realization .AT ; CT ;GT / in this Riccati
equation, its solution †x;T enables in the end to
define the missing quantities as

Re D Ry.0/� CT†x;T C T
T

KT D .GT �AT†x;T C T
T /R

�1
e (13)

By the positive realness of ˆy.z/ and the similar
equivalence between the triplets .AT ; CT ;GT /
and .A; C;G/, the solution †x;T is positive defi-
nite.

A persistent problem in solving the stochas-
tic realization problem has existed for a long
time when using approximate values of the sam-
ples Ry.j /. This problem is that the estimated
power spectrum based on estimates of the triplet
.AT ; CT ;GT / is no longer positive real.

An approximate solution overcoming the
problem of the loss of positive realness of the

estimated power spectrum was provided in the
vein of the ST developed in the early 1990s as
discussed in the next section.

Combined
Deterministic-Stochastic ST

Identification of LTI MIMO Systems in
Open Loop
Since the golden 1960s and 1970s of the twen-
tieth century, many attempts have been made to
make the insights from deterministic and stochas-
tic realization theory useful for system identifi-
cation. To mention a few, there are attempts to
use the solutions to the deterministic realization
problem with measured or estimated impulse re-
sponse data. One such method is known under the
name of the eigensystem realization algorithm
(ERA) (Juang and Pappa 1985) and has been
used for modal analysis of flexible structures,
like bridges, space structures, etc. Although these
methods tend to work well in practice for these
resonant structures that vibrate (strongly), they
did not work well for other type of systems and an
input different from an impulse. Extensions to the
stochastic realization problem considered the use
of finite sample average estimates of the covari-
ance function as an attempt to make the method
work with finite data length sequences. As in-
dicated in section “The Stochastic Realization
Problem,” these approximations of the covariance
function tended to violate the positive realness
property of the underlying power spectrum.

In the early 1990s of the twentieth century,
new breakthroughs were made working directly
with the input–output data of an assumed LTI sys-
tem without the need to first compute the Markov
parameters or estimating the samples of covari-
ance functions. Pioneers that contributed to these
breakthroughs were Van Overschee and De Moor,
introducing the N4SID approach (Van Overschee
and De Moor 1994); Verhaegen, introducing the
MOESP approach (Verhaegen 1994); and Lari-
more, presenting ST in the framework of canoni-
cal variate analysis (CVA) (Larimore 1990).

These three pioneering contributions consid-
ered the identification of the state-space model
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(1) from the input–output data fu.k/; y.k/gNkD1
recorded in open loop. The pair .A; C / was
assumed to be observable, and the pair .A;KR/
controllable. The innovation noise covariance
matrix R was assumed to be positive definite.

The formulation of the intermediate ST step
from which these three pioneering contributions
can be derived (by weighting the result of Theo-
rem 1) and that is at the heart of many more vari-
ants is summarized in Theorem 1. This theorem
requires two preparations: first the storage of the
input and output sequences into (block-) Hankel
matrices and relating these Hankel matrices via
the model parameters and second to make three
observations about the model (1) when presented
in the prediction form. This form is obtained
by replacing x.k/ by Ox.k/ and e.k/ by y.k/ �
C Ox.k/ �Du.k/ and is given by

Ox.k C 1/ D .A�KC/ Ox.k/
C.B �KD/u.k/CKy.k/

y.k/ D C Ox.k/CDu.k/C e.k/ (14)

To compact the notation we make the following
substitutions: A D .A � KC/ and B D Œ.B �
KD/ K�.

Let the Hankel matrix with the “future” part
fy.k/gNkDpC1 be defined as

Yf D

2

6

6

6

4

y.p C 1/ y.p C 2/ � � � y.N � f C 1/

y.p C 2/
:::

: : :

y.p C f / � � � y.N /

3

7

7

7

5

(15)

for the dimensioning parameters p and f se-
lected such that

p � f > n

In a similar way we define the Hankel matrices
Uf and Ef from the input u.k/ and the inno-
vation e.k/, respectively. Then with the defini-
tion of the (block-)Toeplitz matrix Tu from the
quadruple of system matrices .A;B; C;D/ as

Tu D

2

6

6

6

6

6

4

D 0 � � � 0
CB D 0

CAB CB 0

:: :

CAf�1B CAf�2B � � � D

3

7

7

7

7

7

5

and similarly the definition of the Toeplitz ma-
trix Te from the quadruple of system matrices
.A;K;C; I /, we can relate the data Hankel ma-
trices Yf and Uf as

Yf D Of
� Ox.p C 1/ � � � Ox.N � f C 1/

	

CTuUf C TeEf

D Of OXf C TuUf C TeEf (16)

Based on the prediction form (14), 3, key ob-
servations are made to support the rational of the
intermediate step summarized in Theorem 1:
O1: The standard assumption that the transfer

function from e.k/ to y.k/ is minimum
phase leads to the fact that matrix A is
stable. Therefore, there exists a finite integer
p such that

Ap � 0

O2: The state-pace model of (14) has inputs
u.k/ and y.k/. Grouping both together into

the new vector z.k/ D
�

u.k/
y.k/

�

enables to

express the state Ox.k C p/ as

Ox.kCp/DAp Ox.k/C
p
X

jD1
Aj�1Bz.kCp�j /

for k � 1. With the assumption that
Ap � 0 and the definition of the input-
output data vector sequence Z.k/ D
�

z.k/T � � � z.k C p � 1/T
	T

, we have the
following approximation of the state:

Ox.kCp/ � �Ap�1B � � � B	Z.k/ D LzZ.k/

As such the state sequence OXf in (16) can
be approximated by

LzZpDLz
�

Z.1/Z.2/ � � �Z.N�f �pC1/	 :
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O3: The (approximate) knowledge of the
row space of the state sequence in OXf
makes that the unknown system matrices
.A;B; C;D;K/ appear (approximately)
linearly in the model (14).

The intermediate ST step to retrieve a matrix
with relevant subspaces is summarized in the
following theorem taken from Peternell et al.
(1996).

Theorem 1 (Peternell et al. 1996) Consider the
model (1) with all stochastic processes assumed
to be ergodic and with the input u.k/ to be sta-
tistically uncorrelated from the innovation e.`/
for all k; `. Consider the following least-squares
problem:
� OLu

N
OLz
N

	 D arg min
Lu;Lz

kYf � �

Lu Lz
	

�

Uf
Zp

�

k2F
(17)

with k:k2F denoting the Frobenius norm of a
matrix, then

lim
N!1

OLz
N D Of Lz C OfAp�z

with �z a bounded matrix.

The theorem delivers the matrix OLz
N via the solu-

tion of a convex linear least-squares problem that
has asymptotically (in the number of measure-
ments N ) the extended observability matrix Of

as its column space and that has asymptotically
(in the number of measurements as well as in
the dimension parameter p) the matrix Lz as its
row space. Based on the expression of the state
sequence OXf given in the observation O2 above,
the estimate of the row space of Lz delivers an
estimate of the row space of the state sequence
Xf . The observation O3 then shows that this
intermediate step allows to derive an estimate
of the system matrices ŒA;B; C;D;K� (up to
a similarity transformation) via a linear least-
squares problem.

Towards Understanding the Statistical
Properties
Many ST variants for system identification us-
ing data recorded in open loop have been de-
veloped since the early 1990s of the twentieth

century. These variants mainly differ in the use
of weighting matrices W` and Wr in the product
W`

OLz
NWr prior to computing the subspaces of

interest. The effect on the accuracy and the statis-
tical properties of the estimated model by these
weighting matrices is yet not fully understood
as is that of the dimensioning parameters p and
f in the definition of the data Hankel matrices
Yf ; Uf ;Zp . Only for very specific restrictions
results have been achieved. For example, in Bauer
and Ljung (2002), it has been shown that when
the input u.k/ in (1) is either non-present or zero-
mean white noise, as well as when the system
order n of the underlying system to be known and
letting in addition to the dimension parameter p
and the number of data points N the dimension
parameter f go to infinity, that the weighting
matrices selected to represent the CVA approach
(Larimore 1990) yield an optimal minimum vari-
ance estimate. A framework for analyzing the sta-
tistical properties like consistency and asymptotic
distribution of the estimates determined by the
class of STs that were discovered in the 1990s is
given in Bauer (2005).

The minimum variance property of the esti-
mates by the CVA approach (Larimore 1990) is
theoretically not yet proven for more generic and
practically relevant experimental conditions. For
these cases, the choices of the different weight-
ing matrices, the dimensioning parameters f; p,
as well as selecting the system order are of-
ten diverted to user. Despite this fact, practi-
cal evidence has shown that STs are able to
accurately identify state-space models for LTI
MIMO systems under industrially realistic cir-
cumstances. As such they are by now accepted
and widely used as a common engineering tool
in various areas, such as model-based control,
fault diagnostics, etc. Further they generally pro-
vide excellent initial estimates to the nonlinear
parametric optimization methods in prediction
error or maximum likelihood estimation meth-
ods.

Identification of LTI MIMO Systems in
Closed Loop
The least-squares problem (17) in Theo-
rem 1 leads to biased estimates when using
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input-output data that is recorded in a closed-loop
identification experiment. This is because of
the correlation between the measurable input
and the innovation sequence. A number of
solutions have been developed to overcome
this problem. We refer to the paper van der
Veen et al. (2013) for an overview of a number
of these rescues. A simple and performant
rescue is described here based on the work in
Chiuso (2010). The intermediate ST step in
order to avoid biased estimates is to estimate
a high-order vector autoregressive models
with exogenous inputs, a so-called VARX
model:

min
‚

N�p
X

kD1
ky.k C p/ �‚Z.k/ �Du.k C p/k22

(18)
Using the result on the approximation of the state
vector Ox.k C p/ in observation O2, it can be
shown that the solution O‚ of (18) is an approx-
imation of the parameter vector:

O‚ D
h

3CAp�1B � � � cCB
i

Then using this solution O‚ and O1 above leads
to the following “subspace revealing matrix” (cf.
Fig. 1):

2

6

6

6

6

6

4

3CAp�1B 3CAp�2B � � � 3CAp�f B � � � bCB
0 3CAp�1B 5CAp�f C1B � � � 1CAB
:::

: : :

0 0 � � � 3CAp�1B � � � 3CAf�1B

3

7

7

7

7

7

5

(19)

As in the open-loop case of section “Iden-
tification of LTI MIMO Systems in Open
Loop,” column and row weighting matrices
as well as changing the size of the subspace
revealing matrix (19) can be used to influence
the accuracy of the estimates (Chiuso 2010). The
subspace of interest of this weighted subspace
revealing matrix is its row space that is an
approximation of that of the state sequence
OXf as in (16), now extended to make the size

compatible to the weighted version of (19).
Similarly as in the open-loop case, knowledge of
this subspace turns the estimation of the system
matrices ŒA;B; C;D;K� (up to a similarity
transformation) into a linear least-squares
problem. The statistical asymptotic properties
of this closed-loop ST and the treatment of the
dimensioning parameters have also been studied
in Chiuso (2010). Here, the result is proven that
the asymptotic variance of any system invariant
of the model estimated via the above closed-

loop ST is a nonincreasing function of the
dimensioning parameter f when the input u.k/
to the plant is generated by an LQG controller
with a white-noise reference input.

Beyond LTI Systems
The summarized discrete-time ST methodology
has been extended in various ways. A number of
important extensions including representative
papers are towards continuous-time systems
(van der Veen et al. 2013), using frequency-
domain data (Cauberghe 2006) or for different
classes of nonlinear systems, like block-
oriented Wiener and/or Hammerstein and linear
parameter-varying systems (van Wingerden and
Verhaegen 2009). ST for linear time-varying
systems with changing dimension of the state
vector is treated in Verhaegen and Yu (1995), and
finally we mention the developments to make ST
recursive (van der Veen et al. 2013).
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Summary and Future Directions

Subspace techniques aim at simplifying the
system identification cycle and make it more
user-friendly. Still a number of challenges persist
in improving on this general goal. A critical
one is the “optimal” selection of the weighting
matrices and the dimensioning parameters p and
f of the subspace revealing matrix. Optimality
here can be expressed, e.g., by the minimality
of the variance of the estimates but could
also be viewed more generally in relationship
with the use of the model, e.g., in terms of
the performance of a model-based closed-loop
design. A profound theoretical framework is
necessary to fully automate the selection of the
weighting matrices and dimensioning and order
indices. This would substantially contribute to
fully automated identification procedures for
doing system identification (for linear systems).

A second challenge is to better integrate
ST with robust controller design. This requires
the assessment of the model quality and the
selection of an optimal input. Particular to
the integration of ST to control design is the
striking similarity of data equations used in ST
and model predictive control. The challenge is
to further exploit this similarity to develop data-
driven model predictive control methodologies
that are robust w.r.t. the identified model
uncertainty.

One interesting development in ST is the use
of regularization via the nuclear norm in order to
improve the model order selection with respect
to, e.g., SVD-based ST in Liu and Vandenberghe
(2010).

A final challenge is to extend ST for LTI sys-
tems to other classes of dynamic systems, such as
nonlinear, hybrid, and large-scale systems.

Cross-References

�Linear Systems: Discrete-Time, Time-Invariant
State Variable Descriptions

�Realizations in Linear Systems Theory

�Sampled-Data Systems
�System Identification: An Overview

Recommended Reading

The recommended readings for further study are
the books that appeared on the topic of subspace
identification. In the books Verhaegen and Ver-
dult (2007) and Katayama (2005), the topic of
subspace identification is treated in a wider con-
text for classroom teaching at the MSc level since
more elaborate topics relevant in the understand-
ing of ST are treated, such as key results from
linear algebra, linear least squares, and Kalman
filtering. The book Van Overschee and De Moor
(1996) is focused on subspace identification only
and also emphasizes the success of ST on various
applications. All these books provide access to
numerical implementations for getting hands-on
experience with the methods. The integration of
subspace methods with other identification ap-
proaches is done in the toolbox (Ljung 2007).

There also exist a number of overview arti-
cles. An overview of the early developments of
ST since the 1990s of the twentieth century is
given in Viberg (1995). Here also the link be-
tween ST for identifying dynamical systems and
the signal processing application of direction-of-
arrival problems was clearly made. A more recent
overview article is van der Veen et al. (2013). In
this article also reference is made to the statistical
analysis and closed-loop application of ST.

Many papers have appeared reporting success-
ful application of subspace methods in practical
applications. We refer to the book Van Overschee
and De Moor (1996) and the overview paper
van der Veen et al. (2013).
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Abstract

We introduce background and base model for
supervisory control of discrete-event systems,
followed by discussion of optimal controller
existence, a small example, and summary of
control under partial observations. Control
architecture and symbolic computation are noted
as approaches to manage state space explosion.
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Introduction

Discrete-event (dynamic) systems (DES or
DEDS) constitute a relatively new area of
control science and engineering, which has
taken its place in the mainstream of control
research. Recently, DES have been combined
with continuous systems in an area called hybrid
systems.
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Problems and methods for DES have been
investigated for some time, although not neces-
sarily with a “control” flavor. The parent domains
can be identified as operations research and soft-
ware engineering.

Operations research deals with systems of in-
terconnected stores and servers which operate
on processed items. For instance, manufacturing
systems employ queues, buffers, and bins (which
store workpieces). These are served by machines,
robots, and automatic guided vehicles (AGVs),
which process workpieces. The main problems
are to measure quantitative performance and es-
tablish trade-offs, for instance flow vs. cost, and
to optimize design parameters such as buffer size
and maintenance frequency.

The relevant areas of software engineering
include operating systems control, concurrent
computing, and real-time (embedded or reactive)
systems, with focus on synchronization algo-
rithms that enforce mutual exclusion and resource
sharing in the presence of concurrency, as in the
classical problems of Readers & Writers and
Dining Philosophers. The main objectives are
(i) to guarantee safety (“Nothing bad will ever
happen”), as in mutual exclusion and deadlock
prevention, and (ii) to guarantee liveness
(“Something good will happen eventually”), for
instance, successful computational termination
and eventual access to a desired resource.

DES from a Control Viewpoint

With these domains in mind, we consider DES
from a control viewpoint. In general, control
deals with dynamic systems, defined as entities
consisting of an internal state space, together
with a state-evolution or transition structure, and
equipped (for control purposes) with both an
input mechanism for actuation and an output
channel for observation and feedback. The ob-
jective of control is to bring together information
and dynamics in some purposeful combination:
the interplay between observation and control or
decision-making is fundamental.

In this framework, a DES is a dynamic sys-
tem that is discrete, in time and usually in state

space; is asynchronous or event driven, that is
driven by events or instantaneous happenings in
time (which may or may not include the tick
of a clock); and is nondeterministic, namely,
embodies internal chance or other unmodeled
mechanisms of choice which govern its state
transitions. With a manufacturing system, for
example, the dynamic state might include the
status of machines (idle, working, down, under
maintenance or repair), the contents of queues
and buffers, and the locations and loads of robots
and AGVs, while transitions (discrete events)
occur when queues and buffers are incremented
or decremented, robots load or unload, and ma-
chines start work, finish work, or break down
(the “choice” between finishing work success-
fully and breaking down, being thus nondeter-
ministic). In this example and many others, the
objectives of design and analysis include logi-
cal correctness in the presence of concurrency
and timing constraints, and quantitative perfor-
mance such as rates of production, all of which
depend crucially on feedback control synthesis
and optimization. To this end the models will
tend to be DES or hybrid systems. Nevertheless
one finds the continuing relevance of standard
control-theoretic concepts like feedback, stabil-
ity, controllability, and observability, along with
their roles in large-system architectures embody-
ing hierarchical, decentralized, and distributed
functional organization.

Here we focus on models and problems from
which explicit constraints of timing are absent
and which can be considered in a framework of
finite-state machines and the corresponding reg-
ular languages. While the theory has been gener-
alized to more flexible and technically advanced
settings, our restricted framework is already rich
enough to support numerous applications and re-
mains challenging for large systems of industrial
size.

BaseModel for Control of DES

The formal structure of a DES to be controlled
will resemble the simple “machine” called
MACH shown in Fig. 1. The state set of MACH
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is Q D fI;W;Dg, interpreted as Idle, Working,
or Broken Down. MACH is initialized at state
qo D I , denoted by an entering arrow without
source. The transition structure is displayed in
Fig. 1 as a transition diagram, whose nodes are
the states q 2 Q and edges are the transitions,
each labeled with a symbol � in the alphabet
†, here fw; c; b; rg. If a transition (labeled) �
is an edge from q to q0, then “the event � can
occur at state q.” Transitions (or events) are
interpreted as instantaneous in time, while states
are thought of as locations where MACH is able
to reside for some indeterminate time interval.
The occurrence of w means “MACH enters the
Working state from Idle” and similarly for c; b; r .
These transitions determine the state-transition
function of MACH, denoted by ı W Q�† ! Q.
Thus ı.I;w/ D W , ı.W; b/ D D, and so on.
Notice that ı is a partial function, defined at each
state q 2 Q for only a subset of event (labels)
in †. To denote that ı.q; �/ is defined at state
q 2 Q for the event � 2 †, we write ı.q; �/Š.
The function ı can be extended in a standard way
to ı W Q � †� ! Q, where †� is the set of
all finite strings of elements of †, including the
empty string �. Thus ı.q; �/ WD q and inductively
if q0 WD ı.q; s/Š, then

ı.q; s:�/ WD ı.ı.q; s/; �/ WD ı.q0; �/

whenever ı.q0; �/Š. Graphically the strings s D
�1 : : : �k 2 †� for which ı.q; s/Š are precisely
those for which there exists a path in the transi-
tion diagram starting from q and having succes-
sive edges labeled �1; : : : ; �k .

We call any subset of †� (i.e., any set of
strings of elements from †) a language over

SupervisoryControl ofDiscrete-Event Systems, Fig.1
MACH

† and accordingly speak of sublanguages of a
language over†.

For MACH, the execution of a production cy-
cle, namely the event sequence (or string) w:c, or
a work-breakdown-repair cycle, the string w:b:r:,
can be considered successful, and the correspond-
ing string is said to be marked. States which are
entered by marked strings are marked states and
identified in a transition diagram by an outgoing
arrow with no target. In Fig. 1, the only marked
state happens to be the initial state, which is thus
shown with a double arrow; in general there could
be several marked states, which may or may
not include the initial state. The marked states
comprise a subsetQm � Q, which may be empty
(at one extreme) or equal to Q (at the other).
The case Qm D Q (all states marked) would
imply that every string of events is considered
as significant or successful as any other, while
the case Qm D ; (no state marked, so there are
no successful strings) plays a technical role in
computation.

In general a generator is a tuple G D
.Q;†; ı; qo;Qm/ usually interpreted physically
as for MACH above, but mathematically
consisting merely of the finite-state set Q, finite
alphabet †, marked subset Qm � Q, with initial
state qo 2 Q, and (partial) transition function
ı W Q � † ! Q. Additionally we bring in the
closed behavior L.G/ of G, defined as all the
strings of†� which G can generate starting from
the initial state, in the sense

L.G/ WD fs 2 †� j ı.qo; s/Šg:

Of central importance also is the marked behavior
of G, namely, the sublanguage of L.G/ given by

Lm.G/ WD fs 2 L.G/ j ı.qo; s/ 2 Qmg:

We need several definitions. A string s0 is a
prefix of a string s 2 †�, written s0 � s, if s0
can be extended to s, namely, there exists a string
w in †� such that s0:w D s. The closure of a
language M � †� is the language M consisting
of all prefixes of strings in M :

M WD fs0 2 †� j s0 � s for some s in M g
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A language N over † is (prefix-)closed if it
contains all its prefixes, namely, N D N . In this
notation G is said to be nonblocking if L.G/ D
Lm.G/, namely, any (generated) string inL.G/ is
a prefix of, and so can be extended to, a marked
string of G.

The semantics of G (its mathematical mean-
ing) is simply the pair of languages Lm.G/,
L.G/. In general the latter may be infinite subsets
of†�, while G itself is a finite object, considered
to represent an algorithm for the generation of
its behaviors. Unless G is trivial (has empty state
set), it is always true that � 2 L.G/.

Transition labeling of G is deterministic: at
every q, at most one transition is defined for each
given event � , namely,

ı.q; �/ D q0 & ı.q; �/ D q00 implies q0 D q00:

It is quite acceptable, however, that at distinct
states q and r , both ı.q; �/Š and ı.r; �/Š (where
these evaluations are usually not equal).

To formulate a control problem for G, we
first adjoin a control technology or mechanism
by which G may be actuated to affect its tem-
poral behavior, namely, determine the strings it
is permitted to generate. To this end we assume
that a subset of events †c � †, called the
controllable events, are capable of being enabled
or disabled by an external controller. Think of a
traffic light being turned green or red to allow
or prohibit passage (vehicle transition) through
an intersection. The complementary event subset
†u WD † � †c is uncontrollable; events � 2 †u

cannot be externally disabled but may be consid-
ered permanently enabled. For G D MACH one
might reasonably assume †c D fw; rg, †u D
fc; bg. At a given state q of G, it will be true in
general that ı.q; �/Š both for some (controllable)
events � 2 †c and for some (uncontrollable)
events � 2 †u. Among the � 2 †c , at a given
time, some may be externally enabled and others
disabled. So, G will nondeterministically choose
its next generated event from the subset

f� 2 †u j ı.q; �/Šg [ f� 2 †c j ı.q; �/Š &

� is externally enabledg
(1)

We formalize external enablement by a supervi-
sory control function V W L.G/ ! Pwr.†/,
where Pwr.:/ stands for power set. For s 2
L.G/, the evaluation V.s/ is defined to be the
event subset

V.s/ WD †u [ f� 2 †c j � is externally enabled

following sg (2)

In other words, the set (1) is expressible as

V.s/ \ f� 2 † j s:� 2 L.G/g (3)

namely, the subset of events that, immediately
following the generation of s by G, are either
enabled by default (executable events in †u) or
else by the external controller’s decision (a subset
of executable events in †c).

It is now easy to visualize how the generating
action of G is restricted by the action of V.:/.
Initially (having generated the empty string) G
chooses �1 2 V.�/. Proceeding inductively, after
G has generated s D �1:�2 : : : �k 2 L.G/, s is
fed back to the controller, which evaluates V.s/
according to (2), announcing the result to G,
which then chooses �kC1 in (3), and the process
repeats. Of course the process would terminate
any time the set (3) happened to become empty
(although it need not). In any case, we denote the
subset of L.G/ so determined as L.V=G/, called
the closed behavior of V=G, where the latter
symbol (formally undefined) stands for G under
the supervision of V . It is clear that supervision
is a feedback process (Fig. 2), inasmuch as the
choice of �kC1 in (3) is not, in general, known
in advance, hence must be executed before the
succeeding evaluation V.s:�kC1/ can allow the
generating process to continue. With the closed
behavior of V=G now determined, we define the
marked behavior

Lm.V=G/ WD L.V=G/\Lm.G/ (4)

namely, those marked strings of G that survive
under supervision by V . Thus supervisory control
is nonblocking if L.V=G/ D Lm.V=G/.
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Feedback loop V=G

Existence of Controls for DES:
Controllability

Of fundamental interest is the question: what sub-
languages ofL.G/ qualify as a languageL.V=G/
for some choice of supervisory control function
V ? In other words, what is the scope of controlled
behavior(s) for a given G? So far we know that
L.V=G/ is a sublanguage of L.G/, but it is not
usually the case that an arbitrary sublanguage
would qualify. For instance, the empty string
language f�g ¤ L.V=G/ for any V as in (2)
above, in case ı.qo; �/Š for some � in†u, for such
� cannot be disabled.

Assume G is equipped with the technology of
controllable events, hence uncontrollable events
†u � †. We make the basic definition: the
language K � †� is controllable (with respect
to G) provided

For all s 2 K and for all � 2 †u,

whenever s:� 2 L.G/ then s:� 2 K. (5)

Informally, a string s can never exit from
K as the result of the execution by G
of an uncontrollable event: K is invariant
under the uncontrollable flow. In terms of
G D MACH, above, the languages f�g, fwb;wcg
are controllable, but fwg, fw;wcwg are not.
For instance, H WD fw;wcwg has closure
H D f�;w;wc;wcwg, which contains the string
s WD w, but sb D wb can be executed in
MACH, b is uncontrollable, and sb has exited
from H . It is logically trivial from (5) that the
empty language ; (with no strings whatever) is
controllable.

We can now answer the fundamental question
posed above.

Given a nonempty sublanguageK � L.G/;

there exists a supervisory control function V
(6)

such that K D L.V=G/, if and only if

K is controllable.

This result exhibits the L.V=G/ property in a
structured way; furthermore, both the contain-
ment K � L.G/ and the controllability property
(5) (or its absence) can be effectively (algorith-
mically) decided in case K itself is the closed or
marked behavior of some given DES over†.

A key fact easily provable from (5) is that the
family of all controllable languages (with respect
to a fixed G) is algebraically closed under union,
namely,

If K1 and K2 are controllable languages,

then so is K1 [K2: (7)

In fact (7) can be extended to an arbitrary finite or
infinite union of controllable languages.

Given G as above, considered as the plant to
be controlled, suppose a new (regular) language
E is specified, as the maximal set of strings
that we are prepared to tolerate for generation
by G; for instance, E could be considered the
legal language for G (irrespective of what G is
potentially capable of generating, namely,L.G/).
Let us confine attention to the sublanguage of E
that contains only marked strings of G, namely,
E \ Lm.G/. We now bring in the family C.E \
Lm.G// of all controllable sublanguages of E \
Lm.G/ (including the empty language). From
(7) and its infinite extension, there follows the
existence of the controllable language

Ksup WD [fK j K 2 C.E \Lm.G//g (8)

We have Ksup � E \ Lm.G/, and clearly if
K 0 is controllable and K 0 � E \ Lm.G/, then
K 0 � Ksup. Ksup is therefore the supremal
(largest) controllable sublanguage ofE\Lm.G/.
Furthermore, if Ksup is nonempty, then by (6)
there exists a supervisory control V such that
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SupervisoryControl ofDiscrete-Event Systems, Fig.3
Hasse diagram

Ksup D L.V=G/; in this sense V is optimal
(maximally permissive), allowing the generation
by G of the largest possible set of marked strings
that the designer considers legal. We have thus es-
tablished abstractly the existence and uniqueness
of an optimal control for given G and E . This
simple conceptual picture is displayed (Fig. 3)
as a Hasse diagram, in which nodes represent
sublanguages of †� and rising lines (edges) the
relation of sublanguage containment.

In a Hasse diagram it could be that Ksup col-
lapses to the empty language ;. This means that
there is no supervisory control for the problem
considered, either because the specifications are
too severe and the problem is over-constrained
or because the control technology is inadequate
(more events need to be controllable).

Under the finite-state assumption, Ksup is
effectively representable by a DES KSUP, which
may serve as the optimal feedback controller,
as displayed in Fig. 4. Here a string s generated
by G drives KSUP; at each state of KSUP,
the events defined in its transition structure are
exactly those available to G for nondeterministic
execution (in its corresponding state) at the next

synchronization

KSUP G s

SupervisoryControl ofDiscrete-Event Systems, Fig.4
Implementation of V=G

step of the process. In this way the feedback
control process is inductively well defined. The
computational complexity of this design (cf.
(8)) is O.jEj2 � jGj2/ where E is a DES with
Lm.E/ D E and j � j denotes state size. The
controller state size is jKSUPj � jEj � jGj, the
product bound being of typical order.

Supervisory Control Design:
Small Factory

The following example, Small Factory (SF), is an
illustration of supervisor design. As in Fig. 5, SF
consists of two machines MACH1 and MACH2
each similar to MACH above, connected by a
buffer BUF of capacity 2. In case of breakdown
the machines can be repaired by a SERVICE
facility as shown. Transition structures of the
machines and design specifications are also dis-
played in Fig. 5. †c (†u) are odd (even) num-
bered events. When self-looped with all irrelevant
events to form BUFSPEC, the latter specifies
that the machines must be controlled in such a
way that BUF is not overflowed (an attempt by
MACH1 to deposit a workpiece in BUF when
it is full) or subject to underflow (an attempt by
MACH2 to take a workpiece from BUF when it
is empty). In addition, SERVICE must enforce
priority of repair for MACH2: when the latter
is down, repair of MACH1 (if in progress) must
be interrupted and only resumed after MACH2
has been repaired; this logic is expressed by
BRSPEC (appropriately self-looped). To form
the plant model G for the DES to be controlled,
we compute the synchronous product of MACH1
and MACH2. The result, say G = FACT, is a
DES of which the components MACHi are free
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to execute their events independently except for
synchronization on events that are shared (here,
none). Similarly we form the synchronous prod-
uct of BUFSPEC and BRSPEC to obtain the full
specification DES SPEC. We now execute the
optimization step in the Hasse diagram (Fig. 3);
this yields the SF controller KSUP(21,47) with
21 states and 47 transitions. Online synchroniza-
tion of KSUP with FACT will result in genera-
tion of the optimal controlled behavior Ksup by
the feedback loop. Since Ksup � Lm.G/ by (8),
our marking conventions ensure that KSUP is
nonblocking.

In general the languageKsup will include in its
structure not only the constraints required by con-
trol but also the physical constraints enforced by
the plant structure itself (here, FACT). The latter
are thus redundant in the online synchronization
of the plant with the controller KSUP. A more
economical controller is obtained if the plant
constraints are projected out of KSUP to obtain
a reduced controller, say KSIM. Mathematically,
projection amounts to constructing a control con-
gruence or dynamically (and control) consistent
partition on the state set of KSUP and taking
the cells of this partition, abstractly, as the new

states for KSIM. In SF KSUP (21,47) is reduced
to KSIM(5,18), which when synchronized with
FACT yields exactly KSUP but is less than one-
quarter the state size. In practice a state size
reduction factor of ten or more is not uncommon.

Supervisor Architecture and
Computation

As noted earlier, the state size jKSUPj of con-
troller KSUP is on the order of the product
of state sizes of the plant, say jPLANTj, and
specification, say jSPECj. As these in turn are the
synchronous products of individual plant compo-
nents or partial specifications, jKSUPj tends to
increase exponentially with the numbers of plant
components and specifications, the phenomenon
of exponential state space explosion. The result
is that centralized or monolithic controllers such
as KSUP can easily reach astronomical state
sizes in realistic industrial models, thereby be-
coming infeasible in terms of computer storage
for practical design. This issue can be addressed
in two basic ways: by decentralized and hier-
archical architectures, possibly in heterarchical
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combination, and by symbolic DES representa-
tion and computation, where what is stored are
not DES and their controller transition struc-
tures in extensional (explicit) form, but instead
intensional or algorithmic recipes from which the
required state and control variable evaluations are
computed online when actually needed.

Supervisory Control Under Partial
Observations

Hierarchical control is one example of control
under partial observations, a high-level manager
(say) observing not full low-level operation but
rather an abstraction. Partial observation has been
studied mainly for abstractions given by natural
projections. For a DES G over alphabet †, let
†o � † be a subalphabet interpreted as the
events that can be recorded by some external
observer. A mapping P W †� ! †�

o is called
a natural projection if its action is simply to erase
from a string s in †� all the events in s (if
any) that do not belong to †o, while preserving
the order of events in †o. P extends naturally
to a mapping of languages over †. One can
then implement an induced operator on DES, say
Project .G/ D PG, with semantics

Lm.PG/ D PLm.G/; L.PG/ D PL.G/:

While in worst cases jPGj can be exponentially
larger than jGj, such blowup seems to be rare,
and typically jPGj � jGj, namely, P results
in simplification of the model G. By use of P
it is possible to carry over to DES the control-
theoretic concept of observability. Two strings
s; s0 2 †� are look-alikes with respect to P if
Ps D Ps0, namely, are indistinguishable to an
observer (or channel) modeled by P . Thus, given
G and P as above, a sublanguage K � L.G/
is observable if, roughly, look-alike strings in K
have the same one-step extensions in K that are
compatible with membership in L.G/ and also
satisfy a consistency condition with respect to
membership in Lm.G/. For control under ob-
servations through P , one defines a supervisory

control function V W L.G/ ! Pwr.†/ to be
feasible if it assumes the same value on look-alike
strings, in other words respects the observation
constraint enforced by P . It then turns out that
a language K � Lm.G/ can be synthesized in
a feedback loop including G and the feedback
channel P if and only if K is both controllable
and observable.

Although this result is conceptually satisfy-
ing, it is computationally inconvenient because,
by contrast with controllability, the property of
sublanguage observability is not in general closed
under union. A substitute for observability is
sublanguage normality, a stronger property than
observability but one that is indeed closed un-
der union. Since the family of controllable and
normal sublanguages of a given specification lan-
guage is nonempty (the empty language belongs)
and is closed under union, a (unique) supremal
(or optimal) element exists and can be computed;
it therefore solves the problem of supervisory
control under partial observations, albeit under
the normality restriction. The latter has the fea-
ture that the resulting supervisor can only disable
a controllable event if the latter is observable,
i.e., belongs to †o. In some applications this
restriction might preclude the existence of a so-
lution altogether; in others it could be harmless,
or even desirable as a safety property, in that if
the intended disablement of a controllable event
happened to fail, and the event occurred after
all, the fault would necessarily be observable and
thus optimistically remediable in good time.

An intermediate property is known that
is weaker than normality but stronger than
observability, called relative observability. The
family of relatively observable sublanguages of
a given specification language is closed under
union and thus does possess a supremal element,
which in the regular case can be effectively
computed. When combined with controllability,
relative observability yields a solution to the
problem of supervisory control under partial
observations which places no limitation on the
disablement of unobservable controllable events.
Examples show that a nontrivial solution of this
type may exist in cases where the normality
solution is empty.
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Summary and Future Directions

Supervisory control of discrete-event systems,
while relatively new, has reached a first level
of maturity in that it is soundly based in
a standard framework of (especially) finite-
state machines and regular languages. It has
effectively incorporated its own versions of
control-theoretic concepts like stability (in
the sense of nonblocking), controllability,
observability, and optimality (in the sense of
maximal permissiveness). Modular architectures
and, on the computational side, symbolic
approaches enable design of both monolithic
and heterarchical/distributed controllers for DES
models of industrial size. Major challenges
remain, especially to develop criteria by which
competing architectures can be meaningfully
compared and to organize control functionality
in ways that are not only tractable but also
transparent to the human user and designer.
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Abstract

Switching adaptive control is one of the advanced
approaches to adaptive control. By employing an
array of simple candidate controllers, a properly
designed monitoring function and switching law,
this approach is capable to search in real time
for a correct candidate controller to achieve the
given control objective such as stabilization and
set-point regulation. This approach can deal with
large parameter uncertainties and offers good
robustness against unmodelled dynamics. This
article offers a brief introduction to switching
adaptive control, including some historical back-
ground, basic concepts, key design components,
and technical issues.
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Introduction

Switching adaptive control, also known as
switched adaptive control or multiple model
adaptive control, refers to an adaptive control
technique which deploys a set of controllers
and a switching law to achieve a given control
objective. The concept of switching adaptive
control is generalized from the traditional gain
scheduling technique (Leith and Leithead 2000).
As in the standard adaptive control setting, the
model for the controlled plant is assumed to
contain uncertain parameters, and the control
objective is to stablize the system and, in many
cases, to deliver certain performance using
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real-time information in the measured output.
What differentiates switching adaptive control
from gain scheduling is that the uncertain
parameters are not directly measured and the
switching is determined by the system response.
This seemingly minor difference is very impor-
tant because parameter estimation may not be
possible due to the lack of persistent excitation;
moreover, the sensitivity of the measured output
is often suppressed by the feedback control which
makes closed-loop identification of the uncertain
parameters difficult. Compared with classical
adaptive control, switching adaptive control
has better inherent robustness against parameter
uncertainties and unmodelled dynamics.

By early 1980s, the classical adaptive control
theory for linear systems had been well estab-
lished under a set of so-called classical assump-
tions, which include:
• Known order of the plant (or known maximum

order of the plant)
• Known relative degree of the plant
• Minimum phase dynamics
• Known sign of the high-frequency gain (which

is the gain of the plant when the input is high-
frequency sinusodial signal)

At the same time, it was recognized that the
classical adaptive control approach has inherent
robustness problems against even miniature un-
modelled dynamics (Rohrs et al. 1985). While
this generated a wave of research aiming at robus-
tification of the classical adaptive control theory
(see, e.g., Ioannou and Sun 1996), a new line
of research took place aiming at relaxing the
classical assumptions. Nussbaum (1983) paved
the way by showing that knowledge of the sign
of the high-frequency gain can be avoided for a
first order linear system. Morse (1985) developed
a “universal controller” which can adaptively sta-
blize any strictly proper, minimum-phase system
with relative degree not exceeding two. Martens-
son (1985) gave a very surprising result by show-
ing that asymptotic stabilization can be achieved
adaptively by simply assuming that there exists
a finite order stabilizer. But Martensson’s con-
troller is impractical due to the need for exhaus-
tive online search of the stabilizer and subsequent
excessively high overshoots. Switching adaptive

control was then introduced in Fu and Barmish
(1986), aiming at achieving adaptive stabilization
with minimal assumptions and a guarantee of
exponential convergence rate for the state. In
contrast to the work of Martensson, a compact-
ness requirement is made on the set of possible
plants and an upper bound on the order of the
plant is assumed. These assumptions allow a set
of possible plants to be partitioned into a finite
number of subsets, with each stabilizable by a
single controller. A monitoring function and a
switching law are then designed to sequentially
eliminate incorrect candidate controllers until an
appropriate controller is found. Due to the fact
that the number of candidate controllers may be
large, many follow-up works on switching adap-
tive control focused on speeding up the switching
process by eliminating incorrect candidate con-
trollers without trying them (Zhivoglyadov et al.
2000, 2001). These results can also deal with
slowly time-varying parameters and infrequent
parameter jumps.

Another major breakthrough came from the
works of Morse (1996, 1997) under the term
of supervisory control. His work considers set-
point regulation for uncertain linear systems. A
different compactness requirement is used to al-
low unmodelled dynamics in the system. More
specifically, the given uncertain linear system is
assumed to belong to a union of sub-families of
systems, with each sub-family having a linear
controller capable to achieve set-point regulation.
Suitably defined output-squared estimation errors
are used as monitoring functions and a candi-
date controller is selected whose corresponding
performance signal is the smallest. The major
advantages of this switching law are that the
“correct” controller can usually be quickly iden-
tified without cycling through all possible can-
didate controllers, leading to a good closed-loop
performance.

More recent research on switching adaptive
control focuses on more systematic and alterna-
tive approaches to the design of candidate con-
trollers and switching laws; see, e.g., Anderson
et al. (2000), Hespanha et al. (2001), and Morse
(2004). Generalizations to nonlinear systems are
also found Battistelli et al. (2012).
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Design of Switching Adaptive Control

A switching adaptive controller consists of the
following key ingredients:
• Design of control covering
• Design of monitoring function
• Selection of dwell time
For illustrative purposes, we consider an adaptive
stabilization problem where the system has the
following model:

Px .t/ D Ax .t/C Bu .t/
y .t/ D Cx .t/

with state x .t/ 2 Rn for some 1 � n � nmax and
the measured output y .t/ 2 Rr . The given set
of uncertain plants† consits of triplets (A;B;C )
and we use the notation †.n/ to denote the subset
of † consisting of those plants having order n. It
is assumed that every possible plant .A;B; C / 2
† is a minimal realization (i.e., both controllable
and observable) and that every †.n/ is a compact
set (i.e., it is closed and bounded). The control
objective is to design an adaptive controller to
drive the state to zero asymptotically, i.e., x.t/ !
0 as t ! 1. It is clear that each possible
plant in † admits a linear dynamic stabilizer.
An alternative description of the uncertain plant
is introduced in Morse (1996, 1997) where its
transfer function is a member of a continuously
parameterized set of admissible transfer functions
of the form

† �
[

p2P

˚

�p C • W k•k � "p
�

In the above, P is a compact set in a finite dimen-
sional space, vp is a nominal transfer function
with its coefficients depending continuously on
p, • is the transfer function of some unmodelled
dynamics, k•k represents a shifted H1 norm
(obtained by first shifting the poles of • slightly to
the right and then computing its H1 norm), and
"p is sufficiently small so that each set of plants
˚

#p C • W j•j � "
�

is stabilizable by a single con-
troller for all p 2 P .

Control covering: The purpose is to decompose
the given set of plants into a union of subsets
such that each subsetPi admits a single controller
Ki (called candidate controller) to achieve the
given control objective. This is typically done us-
ing two properties: inherent robustness of linear
controllers and the existence of a finite cover for
any compact set. More specifically, if a candidate
controller renders a desired control objective for a
given plant, then the same objective is maintained
when the plant is perturbed slightly. For example,
Fu and Barmish (1986) uses the fact that if a given
plant is stabilized by a controller then the same
controller stabilizes all the plants with sufficiently
small parameter perturbations. Similarly, Morse
(1996, 1997) uses the fact that the same controller
achieves set-point regulation for a small neigh-
borhood of plants. Combining this property with
the finite covering property yields

† D
N
[

iD1
†i

such that each subset †i admits a single con-
trollerKi .

Monitoring Function: The generation of the
adaptive switching controller is accomplished us-
ing a switching law or switching logic whose
task is to determine, at each time instant, which
candidate controller is to be applied. The core of
the switching law is a monitoring function. Its
very basic role is to be able to detect whether
the applied candidate controller is consistent with
the corresponding plant subset so that wrong
candidate controllers can be eliminated one by
one until an appropriate controller is found. A
major difficulty for switching adaptive control
design is that persistent excitation is not assumed.
Consequently, it is not always possible to detect
the correct plant subset using the measured out-
put. The key idea is to check which plant subsets
are consistent with the generated output.

One simple monitoring function uses a finite-
time L2 norm of the measured output:

V .t; �/ D
Z t

t��
ky .s/k2 ds
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where � is the so-called dwell time. It turns
out that for some properly chosen dwell time, a
correctly applied candidate controller is able to
guarantee some decay property for the monitor-
ing function, i.e., V .t; �/ � e�œ�V .t � �; �/ for
some œ > 0. This property is sufficient to allow
a wrong candidate controller to be eliminated.
However, much smarter monitoring functions can
be designed so that infeasible candidate con-
trollers (those not corresponding to the true plant)
can be eliminated without even being applied.
This can be done using the falsification approach
in parameter estimation where the basic idea
is to eliminate all plant subsets †i inconsistent
with the measured output signal. For example,
consider the following discrete-time model:

y .t/ D �a1y .t � 1/ � a2y .t � 2/
Cb1u .t � 1/C b2u .t � 2/C w .t/

where ai and bi are uncertain parameters and w(t)
is a bounded disturbance, i.e., jw .t/j � • for
some •. For this example, we may eliminate all
the uncertain parameter subsets which violate the
following constraint (Zhivoglyadov et al. 2000):

jy .t/C a1y .t � 1/C a2y .t � 2/

�b1u .t � 1/ � b2u .t � 2/j � •

More generally, one can use the so-called multi-
estimator (Morse 1996, 1997) which involves an
array of estimators, one for each plant subset †i
using its nominal model. The output estimation
error e; .l/ for each such estimator is then used to
construct a monitoring function, e.g.,

Vi .t; �/ D
Z t

t��
e�2œ.t�s/ kei .s/k2 ds

where � is the dwell time as before and œ > 0 is
an exponential weighting parameter used to guar-
antee the decay rate of the monitoring function as
before. Instead of using the monitoring functions
to eliminate infeasible candidate controllers, the
candidate controller corresponding to the least
estimation error, as measured by the least mon-
itoring function, is selected. The main advantage

of the multi-estimator based monitoring functions
is that falsification of candidate controllers is
done implicitly and a “correct” controller can be
quickly reached, leading to good performance.

Dwell Time: The dwell time � as defined above
is a critical component in switching adaptive con-
trol. Serving in the monitoring function, this is the
minimum nonzero amount of time for a candidate
controller to be applied before switching. That
is, this provides a sufficient time lag to build the
monitoring function so that its exponential decay
property is detected when a correct candidate
controller is applied. This will allow detection
of infeasible plant subsets and selection of a
“correct” controller. The use of a dwell time also
avoids arbitrarily fast switching, thus gaurantee-
ing the solvability of the system dynamics.

The dwell time can be selected a priori by
using the fact that if a matrix A is stable, then
there exist some positive values œ and � such that
�

�eAt
�

� � e�œ� for all i > � . This leads to the
desired exponential decaying property

V .t; �/ � e�œ�V .t � �; �/

for the aforementioned monitoring function for
adaptive stabilization.

Alternatively, the dwell time can be chosen
implicitly. Hespanha et al. (2001) suggest a hys-
teresis switching logic method. This method em-
ploys a hysteresis parameter h > 0. Suppose
the candidate controller Kj is applied at time ti ,
thenKj is kept until the next switching time tiC1
which is the minimum t � ti , such that

.1C h/ min
1�k�N Vk .t; t � ti / � Vj .t; t � ti /

Because h > 0, the time difference tlC1 � ti > 0

is lower bounded, which implies the existence of
a dwell time.

Summary and Future Directions

Switching adaptive control is a conceptually sim-
ple control technique capable to deal with large
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parameter uncertainties. The use of simple can-
didate controllers (typically linear) imply good
closed-loop behavior and good robustness against
unmodelled dynamics. Although the discussion
above assumes that the number of plant subsets
is finite, this assumption is not essential; see
Anderson et al. (2000).

Switching adaptive control renders the closed-
loop system a switched system or hybrid system,
for which a wide range of tools are available to
aid the analysis of such a system; see, e.g., Liber-
zon (2003). However, unique features of such
a system arise from the fact that the switching
mechanism is chosen by the designer, rather than
being a part of the given plant. How to best design
the switching mechanism is an interesting issue.

Future works for switching adaptive control
include:
1. How to simplify the design of candidate con-

trollers. Finite covering based design often
yields a large number of plant subsets, hence
a large number of candidate controllers. Since
most of the candidate controllers do not need
to apply (which is the case when falsification
based switching logic is used, for example),
smarter ways are needed for the design of
candidate controllers.

2. Wider applications. Most of the research so far
focuses on stabilization and set-point regula-
tion (which is essentially a stabilization prob-
lem). How to incorporate general performance
criteria is an essential and yet challenging
issue.

3. Better design of monitoring functions and the
corresponding switching logic. Most exist-
ing monitoring functions use a finite-time L2
norm of the output (or regulation error), with
the key feature that some exponential decay
property is guaranteed when the candidate
controller is “correct.” Note that the key pur-
pose of the monitoring function and the corre-
sponding switching logic is to allow fast fal-
sification of infeasible candidate controllers.
Thus, a much wider range of monitoring func-
tions can possibly be used. In particular, how
to incorporate set membership identification
techniques (Milanese and Taragna 2005) may
be of particular interest.
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Abstract

In this entry we review the theory of optimal
synthesis. We describe the steps necessary to
solve an optimal control problem and the suf-
ficient conditions for optimality given by the
theory. We describe some relevant examples that
have important applications in mechanics, in the
theory of hypo-elliptic operators and for the study
of models of geometry of vision. Finally, we
discuss the problem of optimal stabilization and
the difficulties encountered if one tries to give the
solution to the problem in feedback form.

Keywords

Affine control systems; Extremals; Pontryagin
Maximum Principle; Sub-Riemannian geometry;
Time-optimal synthesis

Optimal Control

An optimal control problem with fixed initial and
terminal conditions can be seen as a problem

of calculus of variations under nonholonomic
constraints:

Pq.t/ D f .q.t/; u.t//; (1)

Z T

0

L.q.t/; u.t// dt ! min .T fixed or free/;

(2)
q.0/ D q0; q.T / D q1: (3)

Here we make the following set of assumptions:
(H) q belongs to a finite-dimensional smooth

manifold M of dimension n. As a function of
time q(.) is assumed to be Lipschitz continuous.
The control u(.) is a L1 function taking values
in a set U � R

m. For simplicity, we assume that
the functions f and L, defined on M � R

m, are
smooth.

The dynamics Pq.t/ D f .q.t/; u.t// play the
role of the nonholonomic constraint (nonholo-
nomic means that it is a constraint on the velocity
but not necessarily on the position).

Solving an optimal control problem in general
is a very difficult task. Usually, to attack such a
problem, the steps are the following:
• STEP 0: EXISTENCE. First, one has to guar-

antee the existence of a solution to (1)–(3).
The most important sufficient condition for
the existence of minimizers is the famous
Filippov theorem (see for instance Agrachev
and Sachkov (2004) for a proof) saying the
following: introduce a new variable (the so-
called augmented state) Oq W D .q0; q/ 2
R � M satisfying the following dynamics:

POq .t/ D
� Pq0.t/

Pq.t/
�

D
�

L.q.t/; u.t//
f .q.t/; u.t//

�

DW Of . Oq.t/; u.t// (4)

then if (i) U is compact; (ii) the set of ve-
locities F. Oq/ W D f Of . Oq; u/ j u 2 U g is
convex for every Oq; (iii) for every T > 0 and
Oq0 2 R � M , there exists a compact setK �
R � M such that all solutions of (4) starting
from Oq0 stay in K for t 2 Œ0; T �; then there
exist Lipschitz minimizers. Other theorems
that can be applied in more general functional
classes or under less restrictive hypotheses can
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be found in the literature. See for instance
Bressan and Piccoli (2007), Cesari (1983), and
Vinter (2010).

• STEP 1: FIRST ORDER NECESSARY
CONDITIONS. In optimal control, the first
order necessary conditions for optimality
are given by the celebrated Pontryagin
Maximum Principle (Pontryagin et al. 1961)
(see also Agrachev and Sachkov (2004) for
a more recent viewpoint). The Pontryagin
Maximum Principle (PMP for short) extends
the (Hamiltonian version of the) Euler-
Lagrange equations of calculus of variations
to problems with nonholonomic constraints.
For a discussion about the relation between
variational problems under nonholonomic
constrains and variational principles in
nonholonomic mechanics, see Bloch (2003).

The PMP restricts the set of candidate optimal
trajectories starting from q0 to a family of tra-
jectories, called extremals, parameterized by a
covector p.0/ 2 T �

q0
M . In addition, there are

two kinds of special extremals: (i) the singular
extremals for which the maximization condition
given by the PMP does not permit directly obtain-
ing the control and (ii) the abnormal extremals
which are candidate optimal trajectories for any
cost function. For certain classes of problems,
abnormal extremals and singular trajectories co-
incide.

The set of all trajectories satisfying the PMP
(in general having intersections and not being
all optimal forever) is called an extremal synthe-
sis. The requirement that the trajectories start-
ing from q0 reach the final point q1 (at time
T , fixed or free) is usually not very useful at
this step. This requirement is rather made at
STEP 4.
• STEP 2. HIGHER ORDER CONDITIONS.

Higher order conditions are used to restrict
further the set of candidate optimal trajec-
tories. The most important conditions are
those used to eliminate singular extremals
(which usually are very hard to treat) as the
Goh condition and the generalized Legendre-
Clebsch conditions (see for instance Agrachev
and Sachkov 2004). Other theories that
provide higher order conditions (which apply

also to extremals that are not singular) are for
instance: higher order maximum principles
(Bressan 1985; Krener 1977), generalized
Morse-Maslov index theories (Agrachev
and Sachkov 2004), and envelope theory
(Sussmann 1986, 1989, see also Boscain and
Piccoli 2004, Cap. 1.3.2).

• STEP 3. SELECTION OF THE OPTIMAL
TRAJECTORIES. This step is the most
difficult one. Indeed, one should check that
each extremal of the extremal synthesis
does not intersect another extremal having
a smaller cost at the intersection point. This
comparison should be done not only among
extremals which are close, one to the other,
but among all of them. The problem is indeed
global.
One of the techniques to address this prob-
lem in a very elegant way takes the name of
optimal synthesis theory, and was developed
almost together with the birth of the Pon-
tryagin Maximum Principle. This theory dates
back to the paper of Boltyanskii (1966) and
was further developed by Brunovsky (1980,
1978), Sussmann (1980, 1979), and Piccoli
and Sussmann (2000).

Roughly speaking, the theory of optimal
synthesis permits to conclude that if one has
an extremal synthesis having certain regular-
ity properties, then this extremal synthesis is
indeed an optimal synthesis.

An optimal synthesis is a collection of opti-
mal trajectories starting from q0 and reaching
the various points of the space:

Sq0 D f�q.:/ W Œ0; Tq� ! M j q 2 M; �q is

a trajectory of (1) minimizing the cost
R Tq
0

L.q.t/; u.t/ dt with �.0/ D q0; �.T / D qg

An optimal synthesis should also verify the
following condition: if �q defined on Œ0; T �
and � 0

q defined on Œ0; T 0� (with T 0 2�0; T Œ/
belong to Sq0 and we have q0 D �q.T

0/ then
�q0 D �qjŒ0;T 0�. More details are given in the
next section.

• STEP 4. SELECTION OF THE TRAJEC-
TORY REACHING THE FINAL POINT.
Once an optimal synthesis is computed,
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one selects the optimal trajectory reaching
the desired final point solving the equation
�.T / D q1, in the set of all trajectories
belonging to the optimal synthesis.

Remark 1 Notice that one could require that the
final point is reached at STEP 1. This would
considerably reduce the set of candidate optimal
trajectories already at STEP 1, but would not
permit to apply the powerful (global) theorems of
STEP 3. As a consequence, one would be obliged
to compare by hands all extremals going from q0
to q1.

Sufficient Conditions for Optimality:
The Theory of Optimal Synthesis

There exists a general principle for which every
synthesis formed by extremals is optimal under
very mild regularity conditions. We will illustrate
a classical case of a feedback smooth on a strat-
ification, due to Boltianskii and Brunovsky, see
Boltyanskii (1966) and Brunovsky (1980, 1978).
More general results can be found in Piccoli and
Sussmann (2000). This principle is very strong
and is valid only because the synthesis is a global
object, while given a single trajectory satisfying
PMP, there is no regularity condition which en-
sures optimality.

For simplicity, from now on, we assume that
M D R

n is an Euclidean space and q0 D 0 and
indicate by S a candidate optimal synthesis from
0, the general case follows easily. A set P � M

is said a curvilinear open polytope of dimension
p, if there exists a polytope (i.e., bounded closed
region intersection of a finite number of half-
spaces) P 0 � R

p and a smooth map � W Rp !
R
n, injective with jacobian having maximal rank

at every point, such that �.P 0n@P 0/ D P .
Let	 be an open subset ofM (for the induced

topology) containing the origin in its interior. We
say that S is a Boltyanskii–Brunovsky regular
synthesis, briefly BB synthesis, if the following
holds.

There exists a 6–tuple„ D .P ;P1;P2;
Q

; †; u/
such that

(BB1) P is a collection of curvilinear open poly-
hedra and 	 is disjoint union of elements of
P . If Pj ¤ Pk 2 P and Pk \ Pj ¤ 6 0 then
Pk � @Pj and dim.Pk/ < dim.Pj /. f0g 2 P
and the elements of P are called “cells”.

(BB2) Pnff0gg is the disjoint union of P1 (the
set of “type I cells”) and P2 (the set of “type II
cells”),

(BB3) the feedback u : fq W 9P1 2 P1; q 2
P1g ! U and

Q W P1 ! P are maps, † W
P2 ! P1 is a multifunction, with non empty
values, such that the following properties are
satisfied:
(i) The function u is of class C1 on each cell.

(ii) If P1 2 P1, then f .q; u.q// 2 TqP1 (the
tangent space to P1 at q) for every q 2 P1.
In addition, for each q 2 P1, if we let �q be
the maximally defined solution to the initial
value problem

P� D f .�; u.�//; �.0/ D x ; � 2 P1 ;

(5)

and define tq D sup Dom.�q/, then the
limit �q.tq�/ WD limt

"tq
�q.t/ exists and

belongs to
Q

.P1/.
(iii) If P2 2 P2, then for each q 2 P2 and

P 2 †.P2/ there exists a unique curve
�Pq W Œ0; tPq Œ! 	 such that the restriction

of �Pq to
i

0; tPq

i

is a maximally defined

integral curve of the vector field f .�; u.�//
on P , and �Pq .0/ D q.

(iv) On every cell P1 2 P1, q ! tq is a
continuously differentiable function, and
.t; q/ ! �q.t/, .t; q/ ! uq.t/ WD u.�q.t//
are continuously differentiable maps on the
set

E.P / WD f.t; q/ W q 2 P1; t 2 Œ0; tq�g:

If P2 2 P2 the same holds for every
tPq ; �

P
q ; uPq , with P 2 †.P2/.

(v) For every q 2 	nf0g, the trajectory �q W
Œ0; Tq� ! M;�q 2 S, is obtained by
piecing together the trajectories on every
single cell. Moreover, �q changes cell a
finite number of times.
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Theorem 1 (Sufficiency theorem for BB syn-
thesis) Let S be a BB synthesis on M formed
by extremal trajectories, then S is optimal.

Remark 2 Theorem 1 can be proved also for syn-
thesis on an open subset 	 of M , under suitable
conditions, see Piccoli and Sussmann (2000).

Some Relevant Examples

Even if the sufficient conditions for optimality
given by the theory of optimal synthesis are
very powerful, in general computing explicitly an
optimal synthesis is very hard and the complexity
grows quickly with the dimension of the space.
The main difficulties are:
• The integration of the Hamiltonian equations

given by the PMP (which in general is not
integrable, unless there are many symmetries);

• The characterisation of singular and abnormal
extremals;

• The verification of the hypotheses of the suf-
ficient conditions for optimality given by syn-
thesis theory.
For these reasons, the computation of optimal

synthesis is already challenging in dimension 2,
and few examples have been solved in dimension
3. In higher dimensions, only very symmetric
problems have been completely solved. In the fol-
lowing, we list some of the most relevant optimal
synthesis that have been computed up to now.

Time-Optimal Synthesis for Affine Control
Systems on 2-D Manifolds
Let M be a 2-D manifold and consider the prob-
lem of finding the time-optimal synthesis starting
from a point q0 for a system of the type

Pq D F.q/C uG.q/; juj � 1; F.q0/ D 0

(6)

Here we assume that F and G are Lie-bracket
generating. The condition F.q0/ D 0 guaran-
tees local controllability around q0, for a generic
pair .F;G/. A complete theory for this kind of
systems, was developed in Bressan and Piccoli
(1998), Piccoli (1996), and Boscain and Piccoli
(2004), under generic conditions on the vector

fields F and G. More precisely, in Boscain and
Piccoli (2004) it was provided: (i) an algorithm
building explicitly the time-optimal synthesis; (ii)
a classification of synthesis in terms of graphs;
(iii) a classification of synthesis singularities; (iv)
an analysis of the properties of the minimum time
function.

Here we just recall that optimal trajectories
are a finite concatenation of bang (trajectories
corresponding to constant control C1 or �1) and
singular arcs (for which the control may corre-
spond to something different from C1 or �1).

Under generic conditions, the optimal syn-
thesis provides a stratification of M . In the re-
gions of dimension 2, the control is either C1
or �1. The regions of dimension 1 called Frame
Curves can be: (i) arcs of optimal trajectories
(that may be bang or singular); (ii) switching
curves (i.e., curves made of points in which the
control switches from C1 or �1, or viceversa);
(iii) overlap curves (i.e., curves made of points
where the extremals lose their optimality). The
region of dimension 0 called Frame Points are
points where frame curves intersect. Generically,
they can be of 23 types. See Boscain and Piccoli
(2004, p. 60).

Some Relevant Time-Optimal Synthesis
for 3D Problems
As we saw in the previous section, for minimum
time problems in dimension 2, many results can
be obtained, and in most cases a time-optimal
synthesis can be constructed. The situation is
different for time-optimal problems in dimension
3. Indeed, beside trivial cases, the time-optimal
synthesis was computed in full details for few
examples only. One is the Reed and Shepp’s car,

0
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The time-optimal synthesis for this problem was
computed in Soueres and Laumond (1996). The
extreme complexity of the optimal synthesis ob-
tained for this simple example had the effect that
no other time-optimal synthesis in dimension 3
or larger, with one or two bounded controls, were
computed up to the last 2-years.

Very recently, the interest in time-optimal syn-
thesis for systems of the type

Pq D
m
X

iD1
u1Fi .q/; jui j � 1; .i D 1; : : : ; m/

(8)

where q belongs to a n-dimensional manifold and
2 � m � n, has attracted new attention.

This is indeed a problem of nonstrictly convex
sub-Finsler geometry that appears in the study of
asymptotic cones of nilpotent groups in geomet-
ric group theory (Gromov 1981; Breuillard and
Le Donne 2012).

Sub-Riemannian Geometry
A very important class of optimal control prob-
lems is the one called sub-Riemannian. LetM be
a n-dimensional manifold .n � 2/ and consider
the problem of finding the time-optimal synthesis
starting from a point q0 for the problem

Pq D
m
X

iD1
uiFi .q/;

Z 1

0

v

u

u

t

m
X

iD1
u2i dt ! min;

.2 � m � n/ (9)

Here we assume that the family of vector fields
fFi giD1:::m is Lie-bracket generating. This kind of
optimal-control problems includes Riemannian
geometry and many of its generalizations that
usually take the name of sub-Riemannian geom-
etry (see Bellaiche (1996), Montgomery (2002)
and the pioneering work by Brockett (1982)). The
complete time optimal synthesis was computed in
a few relevant cases:
• The Heisenberg group (Gaveau 1977; Ger-

shkovich and Vershik 1988).
• The local 3-dimensional contact case, under

generic conditions (Agrachev 1996; El-Alaoui
et al. 1996).

• Some relevant left-invariant problem on sim-
ple Lie groups, i.e., SO.3/; SU.2/; Sl.2/, see
Boscain and Rossi (2008).

• The left-invariant problem on the group of
rototranslation SE.2/ that has important ap-
plications in models of geometry of vision
(Boscain et al. 2012; Sachkov 2011; Petitot
2008).

• In dimension bigger than 3, only the quasi-
Heisenberg case (Charlot 2002) and certain
multidimensional generalizations of the
Heisenberg case has been computed (Beals
et al. 1996).

• In dimension 2, problems of type (8) are
called problems of almost-Riemannian geom-
etry. The basic example (the so-called Grushin
case) was studied in Bellaiche (1996) and the
study of the synthesis in the generic case,
permitted to obtain some generalizations of
the Gauss-Bonnet theorem (Agrachev et al.
2008).

Some of the synthesis mentioned above permitted
to obtain important results for the theory of hypo-
elliptic operators (Hormander 1967). Moreover,
they permitted to clarify the relation between
small-time heat kernel asymptotics and the prop-
erties of the value function for the problem (9).
See for instance Barilari et al. (2012) and refer-
ences therein.

Connections with the Stabilization
Problem

Consider now the control system Pq(t) D
f .q(t); u(t)/ ; under the hypothesis (H). Fix
q0 2 M and assume that there exists u0 2 U

such that f (q0; u0) D 0: A stabilization problem
can be stated as follows:
(P): For every Nq 2 M , find a trajectory of

the control system Pq(t) D f .q(t); u(t)/ ;
(under hypothesis (H)) with boundary con-
ditions q(0)= Nq; q.T / D q0. (Here T could
be required to be finite or not, depending on
the problem.)

An elegant way of giving a solution to the prob-
lem (P) is to give a stabilizing feedback, namely
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a function K.q/ such that for every Nq 2 M the
solution of

Pq(t) D f .q(t); K(t)/ (10)

with initial condition q.0/ D Nq steers Nq to q0.
It is well known that in general it is not

possible to give the solution to (P) in feedback
form. Indeed there may be topological constraints
(in the sense of Brockett, see for instance Brock-
ett (1983)) that prevent such a feedback to be
continuous. Hence, in general, one cannot guar-
antee existence and uniqueness of classical or
Caratheodory solutions to the ODE (10). This
problem attracted a lot of attention since the pio-
neering work of Brockett and several approaches
have been proposed: e.g., via generalized con-
cept of solutions, patchy feedback, time varying
feedback etc. (see for instance Clarke et al. 1997;
Ancona and Bressan 1999; Coron 1992).

Sometimes one considers an “optimal control”
variant of the problem (P):

(Po): For every Nq 2 M , find the trajectory of
the control system Pq(t) D f .q(t); u(t)/ ;
(under hypothesis (H)) minimizing the
cost

R T

0 L .q(t); u(t)/ dt (here T can be
fixed or free), with boundary conditions
q.0/ D Nq; q(T )= q0.
The cost can be an additional constraint
given by the problem, or can be added
artificially to have a method and a good
concept of solution to solve problem (P).
Indeed, a way of giving the solution to
problem (Po) (and hence to (P)) is to find
the optimal synthesis starting from q0 for
the problem

(–Po): for every Nq 2 M , solve
8

<

:

Pq D �f .q; u/; u 2 U
R T

0
L.q.t/; u.t// dt ! min
q.0/ D q0; q.T / D Nq;

and then to reverse the time. In other
words if � W Œ0; T � ! M is the solution
of (–Po) steering q0 in Nq, then �.T � t/ is
the solution to (Po) steering Nq in q0. This
type of solution to problem (Po) is called
an “optimal stabilizing synthesis”.

Extracting a Feedback from
an Optimal Synthesis

It is interesting to see what happens if one tries
to extract a feedback from an optimal stabilizing
synthesis.

If each optimal trajectory of the optimal syn-
thesis corresponds to a regular enough control
(e.g., smooth or piecewise) the feedback corre-
sponding to the optimal synthesis can be defined
easily in the following way: if .� (.); u(.)/ defined
in Œ0; T � is a pair trajectory-control of the optimal
synthesis, then K(�.t/) D u.t/ for every t 2
Œ0; T � :

However, as already mentioned, in most of
the situations K.q/ is not continuous. (Notice
that even in the case in which all trajectories of
the optimal synthesis are smooth it may happen
that K.q/ is not continuous.) Hence, in gen-
eral, one cannot guarantee existence and unique-
ness of classical or Caratheodory solutions to the
ODE (10).

One could think of enlarging the concept of
the solution of (10) by using Filippov, Krasowski,
or CLSS (Clarke et al. 1997) solutions (see for
instance Marigo and Piccoli 2002, Piccoli and
Sussmann 2000 and references therein). However
none of these types of solutions are adapted
to give the solution of an optimal stabilization
problem in feedback form. To fix the ideas, let
us consider the case of Filippov solutions. In
Piccoli and Sussmann (2000) the authors build
examples of optimal synthesis for which the cor-
responding feedbacks generate solutions that are
either Filippov but nonoptimal or optimal but not
Filippov. The same can be done with the other
types of solutions mentioned above. Also, it is
possible to build an example showing an optimal
stabilizing synthesis for which the corresponding
feedback generates non optimal trajectories even
in classical sense. This is presented in the next
section.

Hence, at the moment an optimal stabi-
lizing synthesis remains the only possible
concept of solution for an optimal stabilizing
problem.
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u = +1

u = –1

(–1, 0)

Synthesis Theory in
Optimal Control, Fig. 1
An optimal stabilizing
synthesis for which the
corresponding feedback
generates nonoptimal
trajectories

An Example of a Time-Optimal Synthesis
Whose Feedback Generates Nonoptimal
Trajectories
We present an example exhibiting the phe-
nomenon of nonuniqueness of trajectories
for the closed-loop equation arising from the
feedback extracted from an optimal synthesis.
In particular the optimal feedback admits
nonoptimal (classical) solutions. This well
illustrates the importance of using the synthesis
as concept of solution for an optimal stabilization
problem.

Consider the planar system:

Pq D F (q) C uG(q); juj � 1;

where q D .x; y/ and:

F.q/ D
�

1 � y

2
xC1
2

�

; G.q/ D
� � y

2
xC1
2

�

;

and the target is the origin.
The trajectories corresponding to the constant

control equal to �1 are straight horizontal lines
going from left to right, while those correspond-
ing to C1 are circles centered at the point .�1; 1/,
running counterclockwise. The optimal synthesis
is described in Fig. 1. For a proof of optimality
see Piccoli and Sussmann (2000).

Starting from the point .�1; 0/, we have an
infinite number of classical solutions to the dis-
continuous optimal feedback. Indeed at that point
we have F+G =F � G, so given any natural
number n, the trajectory running n times on the
circle centered at .�1; 1/ and then going to the
origin with control �1 is a classical solution
to the discontinuous optimal feeback. However,
only the one corresponding to n D 0 is optimal.

About other concepts of solutions starting
from .�1; 0/, one can prove the following. Kra-
sowski or CLSS include classical solutions (and
hence produce many nonoptimal trajectories).
There is only one Filippov solution, that is the
one that rotates indefinitely on the circle and
never goes to the origin. This trajectory is not a
solution to the stabilization problem since it does
not reach the target.

Cross-References

�Optimal Control and Mechanics
�Sub-Riemannian Optimization
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Abstract

The past decade has seen tremendous advances
in DNA recombination and measurement
techniques. These advances have reached a
point in which de novo creation of biomolecular
circuits that accomplish new functions is now
possible, leading to the birth of a new field called
synthetic biology. Sophisticated functions that
are highly sought in synthetic biology range
from recognizing and killing cancer cells, to
neutralizing radioactive waste, to efficiently
transforming feedstock into fuel, to control the
differentiation of tissue cells. To reach these

objectives, however, there are a number of
open problems that the field has to overcome.
Many of these problems require a system-level
understanding of the dynamical and robustness
properties of interacting systems, and hence, the
field of control and dynamical systems theory
may highly contribute. In this entry, we review
the basic technology employed in synthetic
biology and a number of simple modules and
complex systems created using this technology
and discuss key system-level problems along
with challenging research questions for the field
of control theory.

Keywords

Biomolecular systems; Gene expression; Robust-
ness; Modularity

Introduction to Synthetic Biology

Synthetic biology is an emerging engineering dis-
cipline in which the biochemical and biophysical
principles present in living organisms are used to
engineer new systems (Baker et al. 2006). These
systems will have the ability of accomplishing
a number of remarkable tasks, such as turning
waste into energy sources, neutralizing radioac-
tive waste, detecting environmental pathogens, or
recognizing cancer cells with the aim of targeting
them for deletion. While synthetic biology can be
employed to create new functionalities, it can also
enable the understanding of fundamental design
principles of living systems. In fact, implement-
ing a circuit with a prescribed behavior provides a
powerful means to test hypotheses regarding the
underlying biological mechanisms.

The functions of living organisms are
controlled by biomolecular circuits, in which
proteins and genes interact with each other
through activation and repression interactions
forming complex networks. A common signal
carrier is the concentration of the active form
of a protein, which can be controlled through
a number of mechanisms, including gene
expression regulation and post-translational
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modification. Through the process of gene
expression, proteins are produced by their
corresponding genes, whose production rates
can be activated or repressed by other proteins
(transcription factors). Once the proteins are
produced, they can be activated or inhibited,
by other proteins or smaller molecules, through
post-translation modification processes including
covalent modification, such as phosphorylation,
and allosteric modification (Alon 2007).
We next describe some salient aspects of
gene expression focusing, for simplicity, on
prokaryotic systems.

A gene is a piece of DNA whose expression
rate can often be controlled by a DNA sequence
upstream of the gene itself, called promoter. The
promoter contains the binding regions for the
RNA polymerase, an enzyme that transcribes the
gene into a messenger RNA molecule, which is
then translated into protein by the ribosomes.
The promoter also contains operator sites, which
are binding regions where other proteins, called
transcription factors, can bind. If these proteins
are activators, they will help the RNA polymerase
in binding the promoter to start transcription. By
contrast, if these proteins are repressors, they will
prevent the RNA polymerase from binding the
promoter. These activation and repression inter-
actions are highly nonlinear and often stochastic;
therefore, the most commonly used modeling
frameworks include systems of nonlinear ordi-
nary differential equations, stochastic differen-
tial equations, or the chemical master equation
(Gillespie 1977, 2000).

The basic technique for constructing synthetic
circuits is that of assembling, through the pro-
cess of cloning, DNA sequences with prescribed
combinations of promoters and genes such that
a desired network of activation and repression
interaction is created. For example, if we would
like to create an inverter where protein A re-
presses protein B, we can simply place the gene
of B under the control of a promoter repressed by
protein A. Currently, there is a library of parts that
one can use to assemble a desired circuit this way.
The set of parts includes promoters, gene cod-
ing sequences, terminators, and ribosome binding
sites. Terminators are DNA sequences placed at

the end of a gene to make the RNA polymerase
terminate transcription, while ribosome binding
sites are DNA sequences placed at the beginning
of a gene, which establish the rate at which
ribosomes will bind to the mRNA, determining
the overall translation rate (Endy 2005). An area
of intense research is the expansion of the library
by creating mutations of existing parts or by
assembling new ones.

Once a DNA sequence is created that encodes
the desired circuit, it is inserted in a living cell
either on the chromosome itself or on DNA
plasmids. When the circuit is inserted in the
chromosome, it will be in one copy, while when
it is inserted in DNA plasmids, it will be in
as many copies as the plasmid copy number.
Plasmid copy number can vary from low copy
(5–10 copies), to medium copy (20 copies), to
high copy (about 100 copies). Once in the cell,
the circuit will have the required resources to
function, including RNA polymerase, ribosomes,
amino acids, and ATP (the cell energy currency).
In this sense, the cell can be viewed as a chassis
for the synthetic circuits. The operation of the
circuit can then be observed by monitoring the
concentration of reporters, that is, of proteins that
are easy to detect and quantify. These include
fluorescent proteins, that is, proteins that exhibit
bright fluorescence when exposed to light of a
specific wave length. Examples include the green,
red, blue, and yellow fluorescent proteins. These
fluorescent proteins are mainly employed in two
different ways to measure the amount of a protein
of interest. One can fuse the gene of the fluores-
cent protein with the gene expressing the protein
of interest. Alternatively, one can use the protein
of interest as a transcription factor of the fluo-
rescent protein. In both cases, the concentration
of the fluorescent protein will provide an indirect
measurement of the concentration of the protein
of interest.

It is also possible to apply external inputs to
a circuit to control the activity of transcription
factors. This is accomplished through the use of
inducers, which are small signaling molecules
that can be injected in the cell culture and en-
ter the cell wall. These inducers bind specific
transcription factors and either activate them,
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allowing the transcription factor to bind the pro-
moter operator sites, or inhibit them, reducing the
transcription factor’s ability to bind the promoter
operator sites.

Examples of Synthetic Biology
Modules

A number of modules comprising two or three
genes have been fabricated in the earlier days
of synthetic biology (Atkinson et al. 2003;
Becskei and Serrano 2000; Elowitz and Leibler
2000; Gardner et al. 2000; Stricker et al. 2008).
We can group them into oscillators (Atkinson
et al. 2003; Elowitz and Leibler 2000; Stricker
et al. 2008), mono-stable systems (Becskei and
Serrano 2000), and bistable systems called toggle
switches (Gardner et al. 2000). More recently,
feedforward loops have also been fabricated
(Bleris et al. 2011).

Oscillators. The creation of circuits whose
protein concentrations oscillate periodically in
time has been a major focus. In fact, the abil-
ity of creating an oscillator has the potential of
shedding light into the mechanisms at the basis of
natural clocks, such as circadian rhythms and the
cell cycle. Oscillator designs can be divided into
two types: loop oscillators (Elowitz and Leibler
2000), in which repression/activation interactions
occur in a loop topology, or oscillators based on
the interplay between an autocatalytic loop and
negative feedback (Atkinson et al. 2003; Stricker
et al. 2008) (see Fig. 1).

The design requirements of synthetic circuits
are usually explored through models of varying
detail, starting with the use of low-dimensional
“toy models,” which are composed of a set of
nonlinear ordinary differential equations describ-
ing the rate of change of the circuit’s proteins.
These models allow application of a number of
tools from dynamical systems theory to infer
parameter or structural requirements for a desired
behavior. After toy models are analyzed, larger-
scale mechanistic models are constructed, which
include all the intermediate species taking part in
the biochemical reactions. These models can be

AB
AB

C

A

B A

Negative autoregulation Toggle switch

Activator-repressor clock Repressilator

Synthetic Biology, Fig. 1 Early gene circuits that have
been fabricated in bacteria E. coli: the negatively au-
toregulated gene (Becskei and Serrano 2000), the toggle
switch (Gardner et al. 2000), the activator-repressor clock
(Atkinson et al. 2003), and the repressilator (Elowitz and
Leibler 2000)

either deterministic or stochastic. Simulation is
usually required for the study of these more com-
plicated models, and the Gillespie algorithm is
often employed for stochastic simulations (Gille-
spie 1977).

As an example of a toy model and related
analysis, consider the activator-repressor clock
of Atkinson et al. (2003) shown in Fig. 1. This
oscillator is composed of an activator A activating
itself and a repressor B, which, in turn, represses
the activator A. Both activation and repression
occur through transcription regulation. Denoting
in italics the concentration of species, a toy model
of this clock can be written as

PA D ˇA.A=Ka/
n C ˇ0;A

1C .A=Ka/n C .B=Kb/m
� �AA;

PB D ˇB.A=Ka/
n C ˇ0;B

1C .A=Ka/n
� �BB;

(1)

in which �A and �B represent protein decay (due
to dilution and/or degradation). The functions
.ˇA.A=Ka/

nCˇ0;A/=.1C.A=Ka/
nC .B=Kb/

m/

and .ˇB.A=Ka/
n C ˇ0;B/=.1C .A=Ka/

n/ are
called Hill functions and are the most commonly
used models for transcription regulation (Alon
2007). The first Hill function in system (1)
increases with A and decreases with B , while
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the second one increases with A, as expected
since A is an activator and B is a repressor. The
key mechanism by which this system displays
sustained oscillations is a supercritical Hopf bi-
furcation with bifurcation parameter the relative
timescale of the activator dynamics with respect
to the repressor dynamics (Del Vecchio 2007).
Specifically, as the activator dynamics become
faster than the repressor dynamics, the system
goes through a supercritical Hopf bifurcation and
a stable periodic orbit appears (Fig. 2).

Mono-stable systems. The mono-stable sys-
tem engineered through negative autoregulation
was fabricated with the aim of understanding the
role of negative feedback in attenuating biolog-
ical noise. The results of Becskei and Serrano
(2000) clearly showed that negative autoregula-
tion can reduce intrinsic noise. Furthermore, the
results of Austin et al. (2005) demonstrated that
while low frequency noise is attenuated, noise
at high frequency can be amplified by negative
autoregulation in accordance with Bode’s integral
formula (Åström and Murray 2008).

Bistable systems. The toggle switch of Gard-
ner et al. (2000) was the first bistable system
constructed. It constitutes the simplest circuit
with memory, in which the state of the system
can be switched from one equilibrium (low, high)
to the other (high, low) by external inputs. Once
the system state is switched to one of these
two equilibria, it will stay there unless another
external perturbation is applied.

Feedforward loops. While the early circuits
described so far were fabricated mainly to in-
vestigate design principles for limit cycles and
for robustness, many more circuits after those
have been fabricated with the aim of solving
concrete engineering problems. As an example,
the incoherent feedforward circuit of Bleris et al.
(2011) was fabricated in bacteria E. coli with the
aim of making protein production independent
of DNA plasmid copy number. In fact, DNA
copy number fluctuates stochastically with pos-
sibly large deviations from the nominal value.
As a consequence, the concentration of proteins
expressed from genes residing on a plasmid also
fluctuates stochastically. In order to make protein
concentration independent of an unknown DNA
copy number, one could leverage principles for
disturbance rejection such as integral control.
While an explicit integral control action is partic-
ularly hard to implement through biological parts,
incoherent feedforward loops are easier to imple-
ment and can accomplish the same disturbance
rejection task. In these loops, the disturbance in-
put affects the output through two branches, one
in which the disturbance activates the output and
a longer one in which the disturbance represses
the output (Alon 2007). If these two branches
are appropriately balanced, the steady-state value
of the output will be practically independent
of the disturbance input, leading to disturbance
rejection to constant or slowly changing distur-
bances.
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FromModules to Systems

One approach to creating systems that can ac-
complish sophisticated tasks is to assemble to-
gether simpler modules, such as those described
in the previous section (Purnick and Weiss 2009).
For example, the artificial tissue homeostasis cir-
cuit proposed by Miller et al. (2012) is composed
of several interconnected modules, including an
activator-repressor clock, a toggle switch, a cou-
ple of inverters, and an “and” gate. Control of
tissue homeostasis refers to the ability of regulat-
ing a cell type to a constant level in a multicellu-
lar community. This ability is central in several
diseases such as cancer and diabetes, in which
tissue homeostasis is misregulated. The design
proposed by Miller et al. (2012) illustrates how
a synthetic biological circuit can be modularly
created to accomplish this complicated regulation
function.

Layered logic gates are often necessary in
order to integrate multiple signals. Moon et al.
(2012) have constructed an “and” gate that inte-
grates more than two signals by cascading pairs
of “and” gates. Of course, problems of latency
become more relevant as the number of layers
increases and methods to mitigate these effects
are being developed.

An application that requires the integration
of multiple signals is the cell-type classifier of
Xie et al. (2011). Here, a synthetic gene cir-
cuit is created that integrates sensory informa-
tion from a number of molecular markers to
determine whether a cell is in a specific state,
that is, cancer, and, in such a case, produces a
protein output triggering cell death. The design
of this circuit is based on the composition of
three key modules. Specifically, a double in-
version module senses high levels of a molec-
ular marker, a single inversion module senses
low levels of a molecular marker, and a logical
“and” module finally integrates the outputs of
the other two modules to produce the output
protein.

Finally, biofuels are another high-impact
application of synthetic biology (Peralta-Yahya
et al. 2012). Metabolic engineering has been

employed for a long time in order to engineer
microbes to produce advanced biofuels with
similar properties to petroleum-based fuels. One
challenge in using microbes (or other living
organisms) to convert feedstock into biofuel
is that of overcoming the endogenous cell
regulation to achieve sufficiently high yields
such that advanced biofuels are economically
advantageous. Specifically, engineered pathways
are optimized on the basis of nominal operating
conditions, but these conditions often change
when microbes are in bioreactors. To mitigate
this problem, synthetic gene circuits have
been designed to sense the metabolic status
of the host and regulate key points in the
metabolic pathway to optimize yield (Zhang
et al. 2012).

Main System-Level Challenges
to Design

One major challenge in synthetic biology is the
ability of going from simple modules to larger
sophisticated systems (Purnick and Weiss 2009).
Problems in advancing in this direction can be
divided into two categories: “hardware” problems
and system-level problems. Hardware problems
include issues such as the availability of enough
orthogonal parts to allow scaling up the size
of synthetic circuits. We do not expand on this
here and instead focus on system-level problems.
These include issues such as context dependence
(Cardinale and Arkin 2012), that is, the fact that
modules behave in a poorly predictable way once
interacting together in the cell environment. This
is a major obstacle to creating larger circuits that
behave predictably.

Problems of context dependence can be
further divided into three qualitatively different
types: (a) inter-modular interactions, (b) interac-
tions of synthetic circuits with the cell machinery,
(c) perturbations in the external environment. We
analyze each of them separately.
(a) When modules are connected to each other

to create larger systems, a protein in an
upstream module is used as an “input” to
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a downstream module. This fact creates a
“loading” on the upstream system due to the
fact that the output protein cannot take part
in the upstream module reactions whenever
it is taking part in the downstream module
reactions. As a consequence, the behavior
of the upstream system changes compared
to when the system functions in isolation
(Del Vecchio et al. 2008; Saez-Rodriguez
et al. 2004). These loading effects have
been called retroactivity to extend the notion
of loading and impedance to biomolecular
systems. Accordingly, solutions to mitigate
this problem are being investigated (Franco
et al. 2011; Jayanthi and Del Vecchio 2011;
Mishra et al. 2013).

(b) Ideally, the cell should function as a “chassis”
for synthetic biology circuits. In practice,
this is not the case because the endogenous
circuitry interacts with synthetic circuits
even when parts that are orthogonal to the
endogenous systems are employed. A major
example of this interaction is the depletion
of cellular resources, such as ATP, RNA
polymerase, and ribosomes, which are re-
quired for the operation of synthetic circuits.
This depletion reduces cell fitness, with
deleterious consequences also for synthetic
circuits, a phenomenon called “metabolic
burden” (Bentley et al. 1990). A more subtle
phenomenon than purely reducing cell fitness
is that synthetic circuits compete with each
other for the same resources. This fact creates
implicit and unwanted coupling among
circuits with unpredictable consequences.
Approaches to mitigate these problems are
under investigation. One direction is the
use of orthogonal RNA polymerase and
ribosomes (Wenlin and Chin 2009; Rackham
and Chin 2005). A completely different,
but complementary, direction is that of
establishing implementable design principles
that allow circuits to function robustly
despite fluctuations in the resources they
use.

(c) The external environment where a cell
operates has a number of physical attributes,
which may also be subject to perturba-

tions. These physical attributes include
temperature, acidity, nutrients’ level, etc.
Perturbations in these attributes often lead
to poor cell fitness or to nonstandard growth
conditions, ultimately leading to synthetic
circuits malfunctions.

Summary and Future Directions

The future of synthetic biology highly depends
on the ability of scaling up the complexity of
design to create more sophisticated functions.
While a number of issues, such as the avail-
ability of enough orthogonal parts, can be suc-
cessfully addressed by (nontrivial) fabrication of
new parts, issues such as context dependence
require a system-level dynamic understanding of
circuits and their interactions. Here is where con-
trol and dynamical systems theory could greatly
contribute. Control theory has proven critical to
reason about and engineer robustness in a number
of concrete applications including aerospace and
automotive systems, robotics and intelligent ma-
chines, manufacturing chains, electrical, power,
and information networks. Similarly, control the-
ory could enable the understanding of principles
that ensure robust behavior of synthetic circuits
once interacting with each other in the cell en-
vironment, leading to the ultimate progress of
synthetic biology.

A number of challenges need to be addressed
for the successful application of control and dy-
namical systems theory to synthetic biology. The
behavior of synthetic circuits is highly nonlinear
and, as a consequence, control theoretic tools de-
signed for understanding robustness in linear sys-
tems are not directly applicable. Understanding
how to exploit the rich structure of biomolecular
circuits to quantitatively reason about robustness
to interconnections, competition for shared re-
sources, and fluctuations of temperature and nu-
trients is likely to have a major impact. Even with
this understanding, however, the question of how
to implement robust designs with the currently
available biomolecular mechanisms must be ad-
dressed. Stochasticity is another major problem
since the behavior of synthetic circuits is intrin-
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sically noisy. Unfortunately, the availability of
analytical tools that allow quantification of how
perturbations and uncertainty propagate through
a nonlinear stochastic system is still limited, and
designers often resort to stochastic simulation.
Finally, the values of the salient parameters of
the available parts are poorly known. Physical
attributes such as binding affinities, ribosome
binding site strengths, promoter strengths, etc. are
only known within very coarse bounds. These
bounds are also usually determined based on a
specific organism and in specific growth condi-
tions, which may be different from the ones in
which the circuit is ultimately running. Hence, a
central question is how to design and implement a
system such that the prescribed behavior is robust
to all sources of perturbations described above
within a large range of possible parameter values.

Cross-References

�Deterministic Description of Biochemical Net-
works

� Identification and Control of Cell Populations
�Robustness Analysis of Biological Models
� Stochastic Description of Biochemical
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Abstract

This contribution discusses various aspects im-
portant to software for system identification. Es-
sential functionality for existing practice and the
algorithmic fundamentals this relies on are con-
sidered together with a brief discussion of ad-
ditional commonly useful support tools. Since
software is intimately tied to the hardware that it
runs on, a discussion on this topic follows with an
emphasis on considering how future system iden-
tification software developments might best align
with clear current and future trends in computer
architecture developments.

Keywords

System identification; Computer-aided design;
Parameter estimation; Software

Introduction

Fundamental to the practice of system identi-
fication is the employment of appropriate soft-

ware to compute system estimates and evaluate
their properties. One option is for the user to
code the necessary routines themselves in their
computer language of choice. For simple situ-
ations, such as least-squares estimation with a
linearly parametrized model, this approach is
feasible.

However, it quickly becomes onerous and time
consuming as one moves even slightly beyond
this simple example. In response to this, re-
searchers have developed a number of software
packages designed to accommodate classes of
data formats, model structures, and estimation
methods.

The purpose of this contribution is to profile
the support that available system identification
software provides, the underlying foundations
on which this software depends, and the future
capabilities that may be expected due to trends in
desktop and portable computer capacity.

The material to follow depends on explana-
tions, definitions, and background presented in
�System Identification: An Overview, by Ljung,
which should be read in conjunction with this
contribution.

Essential Functionality

The essence of system identification software
packages is that they implement an identification
method I as defined in � System Identification:
An Overview.

Typically, this involves taking a model struc-
ture specification M.
/ together with N ob-
served data points ZN and translating that to a
cost function VN .
/ for which a minimizer

O
 , arg min

2DM

VN .
/ (1)

is then computed in order to deliver a system
estimate M. O
/.

While the details of these fundamental opera-
tions vary according to the chosen model struc-
ture and method, there are some shared aspects.
To pick a starting point, subspace-based estima-
tion methods (� Subspace Techniques in System

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_107
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Identification) have been one of the most signif-
icant developments in the near history of system
identification, and they fundamentally involve a
first stage of setting up and solving the optimiza-
tion problem

Ǒ D arg min
ˇ

kY �ˆˇk2F ; (2)

where Y;ˆ are data-dependent matrices, ˇ is a

- dependent matrix, and k � kF is the Frobenius
norm, which, for anm�nmatrix A, is defined as

kAkF D
v

u

u

t

m
X

iD1

n
X

jD1
jaij j2: (3)

This is a classic least-squares optimization prob-
lem, which also arises in other system identifi-
cation contexts, particularly when the prediction
Oy.t j 
/ is a linear function of 
 .

As is well known Golub and Loan (1989), the
minimizer Ǒ satisfies the “normal equations”

.ˆTˆ/ Ǒ D ˆT Y; (4)

and if ˆTˆ is invertible, this allows for a closed-
form solution

Ǒ D .ˆTˆ/�1ˆT Y: (5)

While formally correct, no system identification
software packages would compute Ǒ in this man-
ner since it is computationally inefficient and
sensitive to numerical rounding errors.

Drawing on decades of study on this topic
in the numerical computations literature (Golub
and Loan 1989), system identification software
packages rely on the QR factorization

ˆ D QR D ŒQ1 j Q2�

�

R1
0

�

; (6)

where Q is square and satisfies QTQ D I

(the identity matrix) and R contains the upper
triangular square and invertible block R1. This
decomposition of ˆ allows the normal Eq. (4) to
be re-expressed as

R1 Ǒ D QT
1 Y: (7)

Since R1 is upper triangular, the solution Ǒ may
then be found by elementary and numerically
robust backward substitution (Golub and Loan
1989).

The importance of efficient and accurate solu-
tion of normal equations to any system identifi-
cation software is not limited to these subspace
or linearly parametrized cases. For instance, the
very general class of prediction error methods
encompassed by the formulation (1) involves a
cost VN .
/ that depends on the vector

E.
/ , Œ".t1; 
/; � � � ; ".tN ; 
/�T (8)

of differences between the observed data and the
response of a model parametrized by 
 . In the
case of time-domain data, the elements of (8) are
defined by

".t; 
/ , y.t/ � Oy.t j 
/: (9)

In this general situation, it is most commonly
the case that no closed-form solution for the
optimization problem (1) exists.

The strategy then taken by most system
identification software packages is to employ
a gradient-based search for a minimizer. These
methods are motivated by the use of a linear
approximation of E.
/ about a current putative
minimizer 
k according to

E.
/ � E.
k/C J.
k/.
 � 
k/; (10)

where J.
k/ denotes the Jacobian matrix

J.
k/ ,
@E.
/

@


ˇ

ˇ

ˇ

ˇ


D
k
: (11)

In the very common situation where VN .
/ is
a quadratic function of E.
/, this implies the
associated approximation

VN .
/ D TracefET .
/E.
/g
D kEk2F � kE.
k/C J.
k/.
 � 
k/k2F :

(12)

http://dx.doi.org/10.1007/978-1-4471-5058-9_107
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Via this reasoning, computation of an appropriate
“search direction” p D 
 � 
k again involves
the efficient solution of a linear least-squares
problem of the form (2), namely,

p D arg min
p

kE.
k/C J.
k/ pk2F : (13)

More generally, system identification software
packages extend this rationale and solve (1) by
generating a sequence of iterations f
kg, which
are refined according to


kC1 D 
k C �p; (14)

where � is a step length that at each iteration k
may be altered until a cost decrease

VN .
kC1/ < VN .
k/ (15)

is achieved and the search direction p again
involves the solution of normal equations

�

J.
k/
T J.
k/C �I

	

p D �J.
k/T E.
k/:
(16)

The choice � > 0 implies what is called a
Levenberg–Marquardt method, while � D 0

leads to a so-called Gauss–Newton update strat-
egy, and there are further variants such as “trust
region” methods that are typically offered as
options.

Via (16) we see that again system identifi-
cation software comes to fundamentally depend
on underpinning numerical linear algebra, in this
case, again via the QR decomposition.

Another decomposition, the singular value de-
composition (SVD), also has a significant role to
play, particularly with respect to subspace-based
methods where it is essential to the extraction of
an estimated system parametrization O
 from Ǒ
referred to in (2).

In addition to matrix decompositions, other
system identification methods depend on many
other even more fundamental linear algebra tools
such as basic matrix/vector operations, matrix
inversion, and eigen-decomposition. Because of
this dependence, most (Ljung 2012; Kollár et al.
2006; Young and Taylor 2012; Garnier et al.

2012; Ninness et al. 2013) but not all (Hjalmars-
son and Sjöberg 2012) currently available system
identification software packages are built upon
the MathWorks MATLAB (originally short for
“matrix laboratory”) package, which provides an
efficient interface to the widely accepted standard
numerical linear algebra libraries LAPACK and
EISPACK. For example, solving (2) efficiently
and robustly via QR decomposition and back-
substitution of (7) is achieved transparently using
the MATLAB backslash operator with the simple
command: beta = Phi\Y.

Additional Functionality and the
Decision-Making Process

As emphasized in � System Identification: An
Overview, the provision of an estimated model is
typically an iterative process (illustrated diagram-
matically in Fig. 4 of � System Identification: An
Overview) of which just one component is the
implementation of an identification method I to
deliver a system estimate M. O
/.

In addition to this “essential functionality,”
system identification software must also provide
tools and a logistical support for the decision-
making process of assessing M. O
/ and, based on
this, perhaps altering aspects such as the choice
of model structure M, the experiment design X ,
or indeed the identification method I.

To support this, system identification software
packages may offer further capabilities such as:
1. Nonparametric estimation methods that

deliver estimates of linear system frequency
response without involving a parametrized
model structure M.
/ and hence not
involving (1)

2. Data preprocessing tools, such as to remove
trends and to frequency selectively prefilter
data before use

3. Visualization tools to display and compare
the time- and frequency-domain response of
estimated models

4. Model validation tools to determine if esti-
mated models can be falsified by observed
data

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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5. Model accuracy measures that deliver statis-
tical confidence bounds on estimated parame-
ters

6. Additional data processing tools such as
Kalman filtering and smoothing routines
and sequential Monte Carlo (particle filter)
routines that are used to compute VN .
/ but
have many other applications

7. Graphical user interface (GUI) support in
order to aid organization of the various
aspects of data preprocessing, model structure
selection, algorithm selection, estimate
computation, model validation, and model
visualization

8. The employment of symbolic computation
capabilities to aid complex model structure
specification and preprocessing for efficient
numerical implementation (Hjalmarsson and
Sjöberg 2012)

Note that with the exception of this last point (8),
the computations associated with this additional
functionality again depend fundamentally on ef-
ficient numerical linear algebra software.

Computing Platforms

Currently available system identification
software packages are designed for standard
desktop computing environments, and as such

their capabilities are intimately tied to those of
the central processing unit (CPU), memory, and
other architectural features of this hardware.

For instance, the linear algebra underpinnings
just discussed are typically implemented in se-
rially coded form, and hence bus bandwidth,
together with memory and CPU speed, will be
the fundamental factor affecting software perfor-
mance. Taking CPU speed as an example, the
evolution of clock speed for the very commonly
used Intel architecture CPUs is shown as the red
curve in Fig. 1 and, as can be seen, has largely
plateaued over the last decade after two orders of
magnitude growth in the decade preceding it.

As a result, and roughly speaking, system
estimates that took a minute to compute in the
early 1990s took under a second to compute in
the early part of this century, but are essentially
no faster to compute now, a further decade later.

As a result, while system identification
software has continued to grow in sophistication,
in areas that involve high computational burdens,
such as estimation of complex and high-
dimensional model structures, or the imple-
mentation of compute intensive algorithms, the
capability of system identification software has
been hardware limited for some time.

At the same time, as the blue line in Fig. 1
illustrates, Moore’s law continues to hold, and
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System Identification
Software, Fig. 1 Trends
in desktop CPU capacity
taking Intel as an example.
Serial throughput speeds
have long plateaued, but
transistor density continues
to grow, which delivers
growing multiple cores
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transistor densities continue to increase. While
this is delivering no greater serial CPU speed, it is
delivering multiple CPU core availability. Future
advances in system identification software capa-
bility will therefore need to exploit the potential
for parallel computation.

Indeed, in current MATLAB, the fundamen-
tal numerical linear algebra routines previously
mentioned such as QR-based solution of normal
equations, eigenvalue, and SVD decompositions
will all automatically execute on multiple compu-
tational threads on multicore-enabled machines.
Expanding this to take advantage of even higher
levels of parallelism is the subject of current
research.

While these developments will deliver perfor-
mance enhancements for existing system iden-
tification methods, they will also open up the
possibility for new tools to be added to system
identification software suites.

For example, in addition to the existing sub-
space, prediction error, and maximum likelihood
methods just mentioned, there is another impor-
tant estimation approach that does not involve the
solution of an optimization problem such as (1)
or (2) and for which there is always a closed-
form expression for the parameter estimate. It is
the conditional mean estimate

O
 D E f
 j Y g ; (17)

which is a Bayesian approach that depends on
the calculation of the posterior density of the
parameters 
 given the data Y according to

p.
 j Y / D p.Y j 
/p.
/
p.Y /

; (18)

where p.
/ is a prior that allows for incorpo-
ration of user knowledge (before observing the
data) and p.Y j 
/ is the usual data likelihood.

Not only does this estimate have an explicit
formulation; it is also the minimum mean square
error estimate in that for any other estimate Ǒ D
f .Y / computed as any other measurable function
f of the data Y , it holds that

E
n

k
 � O
k2
o

� E
n

k
 � Ǒk2
o

: (19)

In this sense, the conditional mean (17) is the
most accurate estimate. Furthermore, quantifi-
cations of estimation accuracy may be directly
obtained via the marginal densities p.
i j Y / of
individual parameter vector values 
i .

Nevertheless, it is currently not widely used.
There are no doubt philosophical reasons for this
stemming from the well-known debate between
frequentist and Bayesian perspectives on infer-
ence (Efron 2013).

Another key reason is that it is difficult to
compute. It requires the evaluation of a multidi-
mensional integral,

E f
 j Y g D
Z Z

� � �
Z


 p.
 j YN / d
1 � � � d
n

(20)
as does the computation of the marginal densities

p.
i j YN / D
Z

� � �
Z

p.
 j YN / d
1

� � � d
i�1d
iC1 � � � d
n: (21)

Evaluating these quantities requires adding fun-
damentally new capability beyond efficient linear
algebra support to system identification software.
It involves adding capability for numerical inte-
gration.

Integration in one dimension is straightfor-
ward. The well-known and used Simpson’s rule
is remarkably efficient in that the relationship
between the computational error and the number
of grid pointsm obeys

Error D O.m�4/ (22)

so that every order of magnitude increase in m
delivers four extra digits of precision. However,
(20) is an n
 D dimf
g dimensional integral, and
m grid points on each of n
 axes imply

M D mn
 (23)

function evaluations. This can blow up quite
quickly, as illustrated in Fig. 2 for the case of
only modest m D 30 grid points and with
respect to the very simple problem of estimating a
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System Identification Software, Fig. 2 Increase in
number of function evaluations M required for Simpson’s
rule integration with m D 30 grid points on each pa-
rameter axis associated with linear output-error models of
increasing order. Note that accounting for both numerator
and denominator parameters, n
 D 2� model order C 1

straightforward linear output-error model of in-
creasing order.

On a serial CPU platform, there is an upper
limit of time available to wait for a result and
hence an upper limit M of function evaluations
that are tolerable. Viewed as a function of this,
the accuracy of simple Simpson’s rule methods is

Error D O.M�4=n
 /; (24)

which is not attractive as model complexity and
hence n
 grows.

A further and vitally important problem is that
it will generally not be clear where to allocate the
m grid points on each axis since the support of the
posterior p.
 j Y / is not readily known. Indeed,
a main point of computing the multidimensional
integrals associated with the marginals (21) is to
determine this support.

A strategy to address these difficulties is based
on the strong law of large numbers (SLLN).
Namely, if random draws xi 	 p.x/ from a den-
sity p.x/ can be obtained, then sample averages
of functions of them converge with probability
one to the ensemble average expectation, which
is an integral:

1

M

M
X

iD1
f .xi /

w:p:1�! E
˚

f .xi /
� D

Z

f .x/p.x/ dx:

(25)
This principle may then be used as a “random-
ized” method to compute an estimate OIM of an
integral I ; viz.,

I D
Z

f .x/p.x/ dx � OIM , 1

M

M
X

iD1
f .xi /:

(26)
Furthermore, if the xi are independent draws,
then

Varf OIM g D 1

M2

M
X

iD1
Varff .xi /g D 1

M
Varff .x/g;

(27)
and hence the absolute error in integral evaluation
is

O.jI � OIM j/ � O.M�1=2/: (28)

The vital point is that as opposed to (24), this
error is independent of the dimension of x and
hence independent of the dimension of the in-
tegral I . Furthermore, the grid points are the
realizations fxi g, which naturally will lie within
the support of the integrand f .x/p.x/ and do not
need to be otherwise designed.

Of course, this depends on a means to draw
samples from an arbitrary density p.�/ of inter-
est, but simple methods such as the Metropolis–
Hastings methods and “slice sampler” exist to
achieve this Mackay (2003).

Importantly too, these randomized methods
are ideally suited to exploiting the growing
availability of desktop multicore computing
platforms. Generating M realizations to form
the integral approximation OIM in (26) may be
achieved in one-tenth the time simply by running
ten independently initialized random number
generators in parallel, each generating one M=10
length realization. The method (26) is thus (in
principal) trivial to parallelize.

Furthermore, much greater parallelization
and hence also speedup may be achieved by
employing the “graphics processing units”
(GPUs) in desktop computers. These GPUs are
inexpensive because they service a high volume
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consumer demand for interactive gaming, which
requires high-speed numerical computation for
3D-projected graphics. As such these GPUs
have evolved to provide hundreds of parallel
processing cores, each clocked in the gigahertz
range.

To give an impression of the computational
capability of GPU-based platforms, the single-
precision giga-FLOPS (floating-point operations
per second) performance history for NVIDIA
brand GPUs and Intel architecture processors
designed for desktop applications is profiled in
Fig. 3.

This shows theoretical performance, assuming
all cores may be fully utilized constantly. In
reality, this is never possible due to communi-
cation and architecture restrictions. For example,
GPU architectures are based on an SIMD (single
instruction, multiple data) design, so at any one
time many cores must execute the identical in-
struction, but may do so on different data. Analy-
sis of these and other aspects relevant for system
identification software implementation requires
detailed study (Lee et al. 2010).

The fact that desktop hardware architectures
have and will continue to offer more but not
faster processing cores may be exploited in sys-
tem identification software beyond this Bayesian
setting. For example, the last decade has seen
great interest in delivering estimation methods for
an increasingly broad range of nonlinear model
structures, a quite general version of which can
be expressed in the nonlinear state–space form

x.t C 1/ 	 p.x.t C 1/ j x.t/; 
/ (29)

y.t/ 	 p.y.t/ j x.t/; 
/: (30)

In principle, there is no reason why this can-
not be straightforwardly addressed by the usual
maximum likelihood approach of forming the
likelihood

p.YN j 
/ D
N
Y

tD1
p.y.t/ j Yt�1; 
/;

Yt D fy.1/; � � � ; y.t/g (31)

and then using this as the cost function VN .
/
in (1) and then proceeding with the usual
gradient-based search. Indeed, there exist explicit
formulae for computing the predictive densities
p.y.t/ j Yt�1; 
/ required in (31). Namely, the
coupled measurement update

p.x.t/ j Yt ; 
/ D p.y.t/ j x.t/; 
/p.x.t/ j Yt�1; 
/
p.y.t/ j Yt�1; 
/

p.y.t/ j Yt�1; 
/ D
Z

p.y.t/ j x.t/; 
/p.x.t/ j Yt�1/ dx.t/

and time update

p.x.t C 1/ j Yt ; 
/ D
Z

p.x.t C 1/ j x.t/; 
/ p.x.t/ j Y.t/; 
/ dx.t/

(32)

equations.
However, again we are faced with the problem

of numerically evaluating multidimensional inte-
grals. The integral dimension this time is that of
the state vector x.t/, which may be less than that
of the parameter vector 
 just discussed, but 2N
of these integrals needs to be evaluated in order to
compute the likelihood (31), and this needs to be
redone for each step of any associated gradient-
based search.

Again, a randomized algorithm approach
based on the SLLN could be considered as a
way forward in system identification software
development. Indeed, sequential Monte Carlo
(SMC) algorithms (aka particle filtering) (Doucet
and Johansen 2011) have been specifically
developed to compute the above integrals
involved in the time and measurement update,
and there has been recent work (Schön et al.
2011; Andrieu et al. 2010) on employing this to
develop software for the estimation of the general
nonlinear model (29) and (30).

The resulting algorithms are computationally
intensive, to the point where implementation on
serial CPU architectures means they are lim-
ited to deployment on nonlinear model structures
of very low state dimension. However, again
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because the SLLN is at the heart of the methods,
and averaging over one long run on a serial ma-
chine is numerically equivalent (but potentially
much faster) to averaging over multiple shorter
runs computed in parallel, there is scope for
future system identification software to employ
these approaches.

Examples of Available System
Identification Software

With the features of current and perhaps future
system identification software packages profiled,
it may be useful to make specific mention
of particular system identification software
packages that have been under active develop-
ment for a substantial period of time. These
include the following commercially available
packages:
1. The MathWorks System Identification Tool-

box (Ljung 2012), which is arguably the most
mature and comprehensive system identifica-
tion software available

2. The GAMAX Frequency Domain System Iden-
tification Toolbox (Kollár et al. 2006), which
specializes in estimation of models based on
measurements in the frequency domain

3. The Adaptx software (Larimore 2000) special-
izing in the estimation of state–space models
using subspace-based methods

Noncommercial and freely available system
identification software packages that are relevant
include:
1. The “computer-aided program for time-

series analysis and identification of noisy
systems” (CAPTAIN) toolbox (Young and
Taylor 2012), which provides a platform
supporting the “refined instrumental vari-
able” (RIV) algorithm for linear system
estimation;

2. The “continuous-time system identification”
(CONTSID) toolbox (Garnier et al. 2012),
which specializes in the estimation of
continuous-time models

3. The “interactive software tool for system
identification education” (ITSIE) tool-
box (Guzmán et al. 2012), which has an
emphasis on education and training in system
identification principles

4. The “University of Newcastle identification
toolbox” (UNIT) software (Ninness et al.
2013) that is designed as an open platform
for researchers to evaluate the performance
of new methods relative to established
ones
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Summary and Future Directions

A case can be mounted that at its heart, system
identification is about the design of software and
the understanding of the results provided by it.
Certainly, the field has been built on decades
of deep theoretical contributions, but this has
been very practically focused either on delivering
new algorithms that may be directly implemented
or on better understanding the performance of
existing algorithms.

Efficient numerical linear algebra routines
have traditionally been the foundation of
the resulting proven and effective system
identification methods and software to date, and
these have scaled in effectiveness as desktop
computing clock speeds have scaled.

However, the recent past and the foreseeable
future see CPU speed as static and with an in-
creasing number of available processor cores.
Delivering greater system identification capacity
will require the development of methods whose
software implementations can harness this grow-
ing availability of multiple processor cores.

Cross-References

� Frequency Domain System Identification
�Nonlinear System Identification Using Particle

Filters
� System Identification: An Overview
� System Identification Techniques: Convexifica-

tion, Regularization, and Relaxation

Recommended Reading

For readers wishing to gain a deeper under-
standing of the numerical linear algebra aspects
discussed here, the classic text (Golub and Loan
1989) is recommended. Those wishing further
background on the calculation of multidimen-
sional integrals via randomized algorithms such
as Metropolis–Hastings and slice sampling will
find (Mackay 2003) useful. The particle filtering
methods mentioned here for nonlinear estima-
tion problems are clearly explained in Doucet

and Johansen (2011). Readers interested in fur-
ther detail on numerical computations on GPU-
based platforms supporting these computations
will find (Lee et al. 2010) useful.
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Abstract

System identification has been developed, by
and large, following the classical parametric ap-
proach. In this entry we discuss how regulariza-
tion theory can be employed to tackle the system
identification problem from a nonparametric (or
semi-parametric) point of view. Both regulariza-
tion for smoothness and regularization for sparse-
ness are discussed, as flexible means to face
the bias/variance dilemma and to perform model
selection. These techniques have also advantages
from the computational point of view, leading
sometimes to convex optimization problems.

Keywords

Kernel methods; Nonparametric methods; Opti-
mization; Sparse Bayesian learning; Sparsity

Introduction

System identification is concerned with auto-
matic model building from measured data. Under
this unifying umbrella, this field spans a rather
broad spectrum of topics, considering different
model classes (linear, hybrid, nonlinear, contin-
uous, and discrete time) as well as a variety
of methodologies and algorithms, bringing to-
gether in a nontrivial way concepts from classical
statistics, machine learning, and dynamical sys-
tems.

Even though considerable effort has been de-
voted to specific areas, such as parametric meth-
ods for linear system identification which are by
now well developed (see the introductory article

�System Identification: An Overview), it is fair
to say that modeling still is, by far, the most time-
consuming and costly step in advanced process
control applications. As such, the demand for
fast and reliable automated procedures for system
identification makes this exciting field still a very
active and lively one.

Suffices here to recall that, following
this classic parametric maximum likelihood
(ML)/prediction error (PE) framework, the
candidate models are described using a finite
number of parameters 
 2 R

n. After the model
classes have been specified, the following two
steps have to be undertaken:
(i) Estimate the model complexity On.

(ii) Find the estimator O
 2 R
On minimizing a cost

function J.
/, e.g., the prediction error or
(minus) the log-likelihood.

Both of these steps are critical, yet for different
reasons: step (ii) boils down to an optimization
problem which, in general, is non-convex and as
such it is very hard to guarantee that a global
minimum is achieved. The regularization tech-
niques discussed in this entry sometimes allow
to reformulate the identification problem as a
convex program, thus solving the issue of local
minima.

In addition fixing the system complexity equal
to the “true” one is a rather unrealistic assump-
tion and in practice the complexity n has to be
estimated as per step (i). In practice there is never
a “true” model, certainly not in the model class
considered. The problem of statistical modeling
is first of all an approximation problem; one
seeks for an approximate description of “real-
ity” which is at the same time simple enough
to be learned with the available data and also
accurate enough for the purpose at hand. On this
issue see also the section “Trade-off Between
Bias and Variance” in � System Identification:
An Overview. This has nontrivial implications,
chiefly the facts that classical order selection
criteria are based on asymptotic arguments and
that the statistical properties of estimators O
 after
model selection, called post-model-selection esti-
mators (PMSEs), are in general difficult to study
(Leeb and Pötscher 2005) and may lead to un-
desirable behavior. Experimental evidence shows

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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that this is not only a theoretical problem but also
a practical one (Pillonetto et al. 2011; Chen et al.
2012). On top of this statistical aspect, there is
also a computational one. In fact the model se-
lection step, which includes as special cases also
variable selection and structure selection, may
lead to computationally intractable combinatorial
problems. Two simple examples which reveal the
combinatorial explosion of candidate models are
the following: (a) Variable selection: consider
a high-dimensional time series (MIMO) where
not all inputs/outputs are relevant and one would
like to select k out of m available input signals
where k is not known and needs to be inferred
from data; (see, e.g., Banbura et al. (2010) and
Chiuso and Pillonetto (2012)), and (b) structure
selection: consider all autoregressive models of
maximal lag p with only p0 < p nonzero coeffi-
cients and one would like to estimate how many
(p0) and which coefficients are nonzero. The
same combinatorial problem arises in hybrid sys-
tem identification (e.g., switching ARX models).
Given that enumeration of all possible models
is essentially impossible due the combinatorial
explosion of candidates, selection could be per-
formed using greedy approaches from multivari-
ate statistics, such as stepwise methods (Hocking
1976).

The system identification community, inspired
by work in statistics (Tibshirani 1996; Mackay
1994), machine learning (Rasmussen and
Williams 2006; Tipping 2001; Bach et al.
2004), and signal processing (Donoho 2006;
Wipf et al. 2011), has recently developed and
adapted methods based on regularization to
jointly perform model selection and estimation
in a computationally efficient and statistically
robust manner. Different regularization strategies
have been employed which can be classified
in two main classes: regularization induced
by so-called smoothness priors (aka Tikhonov
regularization; see Kitagawa and Gersh (1984)
and Doan et al. (1984) for early references in the
field of dynamical systems) and regularization
for selection. This latter is usually achieved by
convex relaxation of the `0 quasinorm (such
as `1 norm and variations thereof such as sum
of norms, nuclear norm, etc.) or other non-

convex sparsity-inducing penalties which can be
conveniently derived in a Bayesian framework,
aka sparse Bayesian learning (SBL) (Mackay
1994; Tipping 2001; Wipf et al. 2011).

The purpose of this entry is to guide the
reader through the most interesting and promis-
ing results on this topic as well as areas of
active research; of course this subjective view
only reflects the author’s opinion, and of course
different authors could have offered a different
perspective.

While, as mentioned above, system identifica-
tion studies various classes of models (ranging
from linear to general “nonlinear” models), in
this entry, we shall restrict our attention to spe-
cific ones, namely, linear and hybrid dynamical
systems. The field of nonlinear system identifi-
cation is so vast (a quote sometimes attributed
to S. Ulam has it that the study of nonlinear
systems is a sort of “non-elephant zoology”)
that even though it has largely benefitted from
the use of regularization, it cannot be addressed
within the limited space of this contribution. The
reader is referred to the Encyclopedia chapters
�Nonlinear System Identification: An Overview
of Common Approaches and �Nonlinear System
Identification Using Particle Filters for more de-
tails on nonlinear model identification.

System Identification

Let ut 2 R
m, yt 2 R

p be, respectively, the
measured input and output signals in a dynamical
system; the purpose of system identification is
to find, from a finite collection of input-output
data fut ; yt gt2Œ1;N �, a “good” dynamical model
which describes the phenomenon under observa-
tion. The candidate model will be searched for
within a so-called “model set” denoted by M.
This set can be described in parametric form
(see, e.g., Eq. (3) in �System Identification: An
Overview) or in a nonparametric form. In this en-
try we shall use the symbolMn.
/ for parametric
model classes where the subscript n denotes the
model complexity, i.e., the number of free param-
eters.

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_106
http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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Linear Models
The first part of the entry will address identifica-
tion of linear models, i.e., models described by a
convolution

yt D
1
X

kD1
gt�kuk C

1
X

kD0
ht�kek t 2 Z (1)

where g and h are the so-called impulse re-
sponses of the system and fetgt2Z is a zero-
mean white noise process which under suitable
assumptions is the one-step-ahead prediction er-
ror; a convenient description of the linear system
(1) is given in terms of the transfer functions

G.q/ WD
1
X

kD1
gkq

�k H.q/ WD
1
X

kD0
hkq

�k

The linear model (1) naturally yields an “opti-
mal” (in the mean square sense) output predictor
which shall be denoted later on by Oyt jt�1. As
mentioned above, under suitable assumptions, the
noise et in (1) is the so-called innovation process
et D yt � Oyt jt�1. See also Eq. (8) in � System
Identification: An Overview.

When g and h are described in a parametric
form, we shall use the notation gk.
/, hk.
/, and,
likewise, G.q; 
/, H.q; 
/, and Oyt jt�1.
/.
Example 7 Consider the so-called “output-error”
model, i.e., assume H.q/ D 1. An example
of parametric model class is obtained restricting
G.q; 
/ to be a rational function

G.q; 
/ D K

n
Y

iD1

q � zi
q � pi

where 
 WD ŒK; p1; z1; : : : ; pn; zn� is the parame-
ter vector. Note that the parameter vector 
 may
subjected to constraints 
 2 $, e.g., enforcing
that the system be bounded input, bounded output
(BIBO) stable (jpi j < 1) or that the impulse
response be real (K 2 R and poles pi and zeros
zi appear in complex conjugate pairs).

An example of nonparametric model is ob-
tained, e.g., postulating that gk is a realization
of a Gaussian process (Rasmussen and Williams

2006) with zero mean and a certain covariance
function R.t; s/ D cov.gt ; gs/. For instance, the
choice R.t; s/ D �tıt�s , where j�j < 1 and
ık is the Kronecker symbol, postulates that the
gt and gs are uncorrelated for t ¤ s and that
the variance of gt decays exponentially in t ; this
latter condition ensures that each realization gk ,
k > 0, is BIBO stable with probability one. The
exponential decay of gt guarantees that, to any
practical purpose, it can be considered zero for
t > T for a suitably large T . This allows to
approximate the OE model with a “long” finite
impulse response (FIR) model

G.q/ D
T
X

kD1
gkz�k (2)

where gk , k D 1; : : : ; T , is modeled as a zero-
mean Gaussian vector with covariance †, with
elements Œ†�ts D R.t; s/.

Remark 1 Note that the model (2), which has
been obtained from truncation of a nonparametric
model, could in principle be thought as a para-
metric model in which the parameter vector 

contains all the entries of gk , k D 1; : : : ; T . Yet
the truncation index T may have to be large even
for relatively “simple” impulse responses; for
instance, fgk.
/gk2ZC may be a simple decaying
exponential, gk.
/ D ˛�k , which is described by
two parameters (amplitude and decay rate), yet
if j�j ' 1, the truncation index T needs to be
large (ideally T ! 1) to obtain sensible results
(e.g., with low bias). Therefore, the number of
parameters T .m � p/ may be larger (and in fact
much larger) than the available number of data
points N . Under these conditions, the parameter

 cannot be estimated from any finite data seg-
ment unless further constraints are imposed.

The Role of Regularization in Linear
System Identification

In order to simplify the presentation, we shall
refer to the linear model (1) and assume that
H.q/ D 1, i.e., we consider the so-called linear
output-error (OE) models. The extension to more

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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general model classes can be found in Pillonetto
et al. (2011), Chen et al. (2012), Chiuso and
Pillonetto (2012), and references therein.

The main purpose of regularization is to con-
trol the model complexity in a flexible manner,
moving from families of rigid, finite dimensional
parametric model classes Mn.
/ to flexible, pos-
sibly infinite dimensional, models. To this pur-
pose one starts with a “suitably large” model
class which is constrained through the use of so-
called regularization functionals. To simplify the
presentation, we consider the FIR (2). The esti-
mator O
 is found as the solution of the following
optimization problem

O
 D arg min
2Rn JF .
/C JR.
 I�/ (3)

where JF .
/ is the “fit” term often measured in
terms of average squared prediction errors:

JF .
/ WD 1
N

PN
tD1 kyt � Oyt jt�1.
/k2 (4)

while JR.
 I�/ is a regularization term which
penalizes certain parameter vectors 
 associated
to “unlikely” systems. Equation (3) can be seen
as a way to deal with the bias-variance trade-
off. The regularization term JR.
 I�/may depend
upon some regularization parameters � which
need to be tuned using measured data. In its
simplest instance,

JR.
 I�/ D �JR.
/

where � is a scale factor that controls “how
much” regularization is needed. We now discuss
different forms of regularization JR.
 I�/ which
have been studied in the literature.

Example 8 Let us consider the FIR model in
Eq. (2) and let 
 be a vector containing all the
unknown coefficients of the impulse response
fgkgkD1;:::;T . The linear least squares estimator

O
LS WD arg min

1

N

N
X

tD1
kyt � Oyt jt�1.
/k2 (5)

is ill-posed unless the number of data N is larger
(and in fact much larger) that the number of
parameters T . From the statistical point of view,
the estimator (5) would result for large T in
small bias and large variance. The purpose of
regularization is to render the inverse problem of
finding 
 from the data fyt gtD1;:::;N well posed,
thus better trading bias versus variance. The sim-
plest form of regularization is indeed the so-
called ridge regression or its weighted version
(aka generalized Tikhonov regularization), where
the 2-norm of the vector 
 is weighted w.r.t. a
positive semidefinite matrixQ,

O
Reg WD arg min

1

N

N
X

tD1
kyt � Oyt jt�1.
/k2

C �
>Q
 (6)

which result in so-called regularization for
smoothness; see section “Regularization for
Smoothness.” The choice of the weighting Q

is highly nontrivial in the system identification
context, and the performance of the regularized
estimator O
Reg heavily depends on this.

Remark 2 In order to formalize these ideas for
nonparametric models or, equivalently, when the
parameter 
 is infinite dimensional, one has to
bring in functional analytic tools, such as re-
producing kernel Hilbert spaces (RKHS). This
is rather standard in the literature on ill-posed
inverse problems and has been recently intro-
duced also in the system identification setting
(Pillonetto et al. 2011). We shall not discuss these
issues here because, we believe, the formalism
would render the content less accessible.

Note that this regularization approach admits
a completely equivalent Bayesian formulation
simply setting

p.yj
/ / e�JF .
/ p.
 j�/ / e�JR.
 I�/ (7)

The densities p.yj
/ and p.
 j�/ are, respec-
tively, the likelihood function and the prior, which
in turn may depend on the unknown regulariza-
tion parameters �, aka hyperparameters in this
Bayesian formulation. This is straightforward in
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the finite dimensional setting, while it requires
some care when 
 is infinite dimensional. With
reference to Example 7, and assuming 
 con-
tains the impulse response coefficients gk in (2),
p.
 j�/ is a Gaussian density with zero mean and
covariance † which may be depend upon some
regularization parameters �. From the definitions
(7), it follows that

p.
 jy; �/ / p.yj
/p.
 j�/ (8)

from which point estimators of 
 can be obtained
(e.g., as posterior mean, MAP, etc.). As such, with
some abuse of terminology, we shall indifferently
refer to JR.
 I�/ as the “regularization term” or
the “prior.” The unknown parameter � is used
to introduce some flexibility in the regularization
term JR.
 I�/ or equivalently in the prior p.
 j�/
and is tuned based on measured data as discussed
later on.

The regularization term JR.
 I�/ can be
roughly classified in regularization for smooth-
ness, which attempts to control complexity in a
smooth fashion and regularization for sparseness
which, on top of estimation, also aims at selecting
among a finite (yet possibly very large) number
of candidate model classes.

Regularization for Smoothness
Let us consider a single-input, single-output FIR
model of length T (arbitrarily large) and let

 WD Œg1 g2 : : : gT �

> 2 R
T be the (finite)

impulse response; define also y 2 R
N be the

vector of output observations, ˚ the regressor
matrix with past input samples, and e the vector
with innovations (zero mean, variance �2I ). With
this notation the convolution input-output equa-
tion (1) takes the form

y D ˚
 C e

Following the prescriptions of ridge regression,
a regularized estimator O
 can be found
setting

JR.
 I�/ D 
>K�1.�/
 (9)

where the matrix K.�/, aka kernel, is tailored to
capture specific properties of impulse responses
(exponential decay, BIBO stability, smoothness,
etc.). Early references include Doan et al. (1984)
and Kitagawa and Gersh (1984), while more
recent work can be found in Pillonetto and De
Nicolao (2010), Pillonetto et al. (2011) and Chen
et al. (2012) where several choices of kernels are
discussed.

Example 9 The simplest example of kernel is the
so-called “exponentially decaying” kernel

K.�/ WD �D.�/ D.�/ WD diagf�; : : : ; �T g
(10)

where � WD .�; �/ with 0 < � < 1 and � � 0.

For fixed �, the estimator O
.�/ is the solution
of a quadratic problem and can be written in
closed form (aka ridge regression):

O
.�/ D K.�/˚> �˚K.�/˚> C �2I
��1

y

(11)

Two common strategies adopted to estimate the
parameters � are cross validation (Ljung 1999)
and marginal likelihood maximization. This latter
approach is based on the Bayesian interpretation
given in Eqs. (7) from which one can compute
the so-called “empirical Bayes” estimator O
EB WD
O
. O�ML/ of 
 plugging in (11) the estimator of �
which maximizes the marginal likelihood:

O�ML WD arg max
�

p.�jy/

D arg max
�

Z

p.�; 
 jy/ d
 (12)

The main strength of the marginal likelihood
is that, by integrating the joint posterior over
the unknown hyperparameters 
 , it automatically
accounts for the residual uncertainty in 
 for
fixed �. When both JF and JR are quadratic
costs, which corresponds to assuming that e and

 are independent and Gaussian, the marginal
likelihood in (12) can be computed in closed form
so that
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O�ML WD arg min
�

log.det.†.�///

C y>†�1.�/y

†.�/ WD ˚K.�/˚> C �2I (13)

It is here interesting to observe that O�ML which
solves (12) under certain conditions leads to
K. O�ML/ D 0 (see Example 10), so that the
estimator of 
 in (11) satisfies O
. O�ML/ D 0.
This simple observation is the basis of so-called
sparse Bayesian learning (SBL); we shall return
to this issue in the next section when discussing
regularization for sparsity and selection.

Unfortunately the optimization problem (12)
(or (13)) is not convex and thus subjected to the
issue of local minima. However, both experimen-
tal evidence and some theoretical results support
the use of marginal likelihood maximization for
estimating regularization parameters; see, e.g.,
Rasmussen and Williams (2006) and Aravkin
et al. (2014).

Regularization for Sparsity: Variable
Selection and Order Estimation
The main purpose of regularization for sparseness
is to provide estimators O
 in which subsets or
functions of the estimated parameters are equal
to zero.

Consider the multi-input, multi-output OE
model

yt;j D
m
X

iD1

T
X

kD1
gk;ij ut�k;i C et;i j D 1; : : : ; p

(14)

where yt;j denotes the j th component of yt 2
R
p; let also 
 2 R

T .mCp/ be the vector containing
all the impulse response coefficients gk;ij , j D
1; : : : ; p, i D 1; : : : ; m, and k D 1; : : : ; T . With
reference to Eq. (14), simple examples of sparsity
one may be interested in are:

(i) Single elements of the parameter vector 
 ,
which corresponds to eliminating specific
lags of some variables from the model (14).

(ii) Groups of parameters such as the impulse
response from i th input to the j th output

gk;ij , k D 1; : : : ; T , thereby eliminating the
i th input from the model for the j th output.

(iii) The singular values of the Hankel matrix
H.
/ formed with the impulse response
coefficients gk ; in fact the rank of the
Hankel matrix equals the order (i.e., the
McMillan degree) of the system. (Strictly
speaking any full rank FIR model of length
T has McMillan degree T � p. Yet, we
consider fgkgkD1;:::;T to be the truncation of
some “true” impulse response fgkgkD1;:::;1,
and, as such, the finite Hankel matrix
built with the coefficients gk will have
rank equal to the McMillan degree of
G.q/ D P1

kD1 gkz�k .)
To this purpose one would like to penalize the

number of nonzero terms, let them be entries of

 , groups, singular values, etc. This is measured
by the `0 quasinorm or its variations: group `0
and `0 quasinorm of the Hankel singular values,
i.e., the rank of the Hankel matrix. Unfortunately
if JR is a function of the `0 quasinorm, the
resulting optimization problem is computation-
ally intractable; as such one usually resorts to
relaxations. Three common ones are described
below.

One possibility is to resort to greedy
algorithms such as orthogonal matching pursuit;
generically it is not possible to guarantee
convergence to a global minimum point.

A very popular alternative is to replace the
`0 quasinorm by its convex envelope, i.e., the `1
norm, leading to algorithms known in statistics
as LASSO (Tibshirani 1996) or its group version
Group LASSO (Yuan and Lin 2006):

JR.
 I�/ D �k
k1 (15)

Similarly the convex relaxation of the rank (i.e.,
the `0 quasinorm of the singular values) is the
so-called nuclear norm (aka Ky Fan n-norm or
trace norm), which is the sum of the singular
values kAk� WD tracefpA>Ag where

p� denotes
the matrix square root which is well defined for
positive semidefinite matrices. In order to control
the order (McMillan degree) of a linear system,
which is equal to the rank of the Hankel matrix
H.
/ built with the impulse response described
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by the parameter 
 , it is then possible to use the
regularization term

JR.
 I�/ D �kH.
/k� (16)

thus leading to convex optimization problems
(Fazel et al. 2001). Both (16) and (15) induce
sparse or nearly sparse solutions (in terms of
elements or groups of 
 (15) or in terms of
Hankel singular values (16)), making them at-
tractive for selection. It is interesting to observe
that both `1 and group `1 are special cases of
the nuclear norm if one considers matrices with
fixed eigenspaces. Yet, as well documented in
the statistics literature, both (16) and (15) do not
provide a satisfactory trade-off between sparsity
and shrinking, which is controlled by the regu-
larization parameter �. As � varies one obtains
the so-called regularization path. Increasing �

the solution gets sparser but, unfortunately, it
suffers from shrinking of nonzero parameters. To
overcome these problems, several variations of
LASSO have been developed and studied, such
as adaptive LASSO (Zou 2006), SCAD (Fan
and Li 2001), and so on. We shall now discuss
a Bayesian alternative which, to some extent,
provides a better trade-off between sparsity and
shrinking than the `1 norm.

This Bayesian procedure goes under the name
of sparse Bayesian learning and can be seen
as an extension of the Bayesian procedure for
regularization described in the previous section.
In order to illustrate the method, we consider its
simplest instance. Consider an MIMO system as
in (14) with p D 1 and m D 2, i.e.,

yt D PT
kD1 gk;1ut�k;1 CPT

kD1 gk;2ut�k;2 C et
D �>

t;1g1 C �>
t;2g2 C et

(17)

where gi WD Œg1;i ; : : : ; gt;i �. Let 
 WD Œg>
1 g>

2 �
>

and assume that the gi ’s are independent Gaus-
sian random vectors with zero mean and co-
variances �iK . Letting ˚i WD Œ�1;i ; : : : ; �N;i �

>
and following the formulation in (7) and (8), it
follows that the marginal likelihood estimator of
� takes the form

O�ML WD arg min
�i�0

log.det.†.�///C y>†�1.�/y

†.�/ WD �1˚1K˚
>
1 C �2˚2K˚

>
2 C �2I

(18)

After O�ML has been found, the estimator of 
 is
found in closed form as per Eq. (11). It can be
shown that under certain conditions on the obser-
vation vector y, the estimated hyperparameters
O�ML;i lie at the boundary, i.e., are exactly equal
to zero. If O�ML;i D 0, then, from Eq. (11), also
Ogi D 0; this reveals that in (17) the i th input does
not enter into the model; see also Example 10 for
a simple illustration.

These Bayesian methods for sparsity have
been studied in a general regression framework
in Wipf et al. (2011) under the name of “type-
II” maximum likelihood. Further results can be
found in Aravkin et al. (2014) which suggest
that these Bayesian methods provide a better
trade-off between sparsity and shrinking (i.e.,
are able to provide sparse solution without
inducing excessive shrinkage on the nonzero
parameters).

Remark 3 A more detailed analysis, see, for
instance, Aravkin et al. (2014), shows that
LASSO/GLASSO (i.e., `1 penalties) and SBL
using the “empirical Bayes” approach can be
derived under a common Bayesian framework
starting from the joint posterior p.�; 
 jy/.
While SBL is derived from the maximization
� of the marginal posterior, LASSO/GLASSO
corresponds to maximizing the joint posterior
after a suitable change of variables. For reasons
of space, we refer the interested reader to the
literature for details.

Recent work on the use of sparseness for
variable selection and model order estimation
can be found in Wang et al. (2007), Chiuso and
Pillonetto (2012); and references therein.

Example 10 In order to illustrate how sparse
Bayesian learning leads to sparse solutions, we
consider a very simplified scenario in which the
measurements equation is

yt D 
ut�1 C et
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where et is zero-mean, unit variance Gaussian
and white and ut is a deterministic signal. The
purpose is to estimate the coefficient 
 , which
could be possibly equal to zero. Thus, the esti-
mator should reveal whether ut�1 influences yt
or not.

Following the SBL framework, we model 
 as
a Gaussian random variable, with zero mean and
variance �, independent of et . Therefore, yt is
also Gaussian, zero mean, and variance u2t�1�C1.
Therefore, assuming N data points are available,
the likelihood function for � is given by

L.�/ D
N
Y

iD1

1
q

2�.u2t�1�C 1/

e

�
1

2

N
X

iD1

y2t

u2t�1�C 1

Defining now

O�ML WD arg min
��0

� 2log L.�/

one obtains that

O�ML D max .0; ��/

where �� is the solution of

N
X

tD1

u4t�1�C u2t�1
�

1 � y2t
�

u2t�1�C 1
D 0

which unfortunately doesn’t have a closed form
solution. If however we assume that the input ut
is constant (without loss of generality say that
ut D 1), we obtain that

�� D 1

N

N
X

tD1
y2t � 1

thus

O�ML D max

 

0;
1

N

N
X

tD1
y2t � 1

!

Clearly this is a threshold estimator which sets
to zero O�ML when the sample variance of yt

is smaller than the variance of et , which was
assumed to be equal to 1. Thus, the empirical
Bayes estimator of 
 , as per Eq. (11), is given by

O
 D
O�ML

PN
iD1 u2t�1 O�ML C 1

N
X

iD1
ytut�1

which is clearly equal to zero when O�ML D 0.

Extensions: Regularization for Hybrid
Systems Identification andModel
Segmentation

An interesting extension of linear systems is a
class of so-called hybrid models described by a
relation of the form

yt D Oy
k .t jt � 1/C et
Oy
k .t jt � 1/ D L
k .y

�
t ; u

�
t /


k 2 R
nk k D 1; : : : ; K

(19)

where the predictor Oy
k .t jt � 1/, which is
a linear function L
k .y

�
t ; u

�
t / of the “past”

histories y�
t WD fyt�1; yt�2; : : : :g and u�

t WD
fut�1; ut�2; : : : :g, is parametrized by a parameter
vector 
k 2 R

nk ; there are K different parameter
vectors 
k, k D 1; : : : ; K , whose evolution over
time is determined by a so-called switching
mechanism. The name hybrid hints at the fact
that the model is described continuous-valued (y,
u, and e) and discrete-valued (k) variables.

A well-studied subclass of (19) is composed
by the so-called switching ARX models, where
the predictor takes the special form

Oy
k .t jt � 1/ D �>
t 
k 
k 2 R

nk (20)

The regressor �t is a finite vector containing
inputs us and outputs ys in a finite past window
s 2 Œt � 1; t � T �, plus possibly a constant com-
ponent to model changing “means.” The value
of k 2 Œ1;K� is determined by the switching
mechanism p.�t ; t/ W Rnk � R ! f1; : : : ; Kg.

Two extreme but interesting cases are (i)
p.�t ; t/ D pt , where p.�/ is an exogenous and
not measurable signal, and (ii) p.�t ; t/ D p.�t /,
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where p.�/ is an endogenous unknown measur-
able function of the regression vector �t . In any
case, from the identification point of view, k
at time t is not assumed to be known and, as
such, the identification algorithm has to operate
without knowledge of this switching mechanism.

Identification of systems in the form (20) re-
quires to estimate (a) the number of models K
and the position of the switches between different
models, (b) the “dimension” of each model nk ,
(c) the value of the parameters 
k, and, possibly,
(d) the function p.�t ; t/ which determines the
switching mechanism.

Steps (b) and (c) are essentially as in
section “System Identification” (see also the
introductory paper � System Identification: An
Overview); however, this is complicated by steps
(a) and (d), which in particular require that one is
able to estimate, from data alone, which system
is “active” at each time t .

Step (a), which is also related to the problem
of model segmentation, has been tackled in the
literature; see e.g., Ozay et al. (2012), Ohlsson
and Ljung (2013), and references therein, by
applying suitable penalties on the number of
different models K and/or on the number of
switches. Note that p.�t ; t/ ¤ p.�s; s/ if and
only if 
t ¤ 
s . Based on this simple observation,
one can construct a regularization which counts
either the number of switches, i.e.,

JR.
 I �/ WD �

N
X

tD2
kk
t � 
t�1kk0; (21)

or attempts to approximate the total number of
different models computing

JR.
 I �/ WD �

N
X

t;sD1
w.s; t/kk
t � 
skk0 (22)

for a suitable weighting w.t; s/; see Ohlsson and
Ljung (2013).

As discussed above, these quasinorms lead,
in general, to unfeasible optimization problems
(NP-hard). An exception is the case where one
considers bounded noise, i.e., solves a problem
of the form

min

t

N
X

tD2
k
t � 
t�1k0 s:t: kyt � �>

t 
tk1 < �

(23)

which is shown to be a convex problem; see
Ozay et al. (2012). In general relaxations are
used, typically using the `1/group-`1 penalties,
thus relaxing (21) and (22) to

JR.
 I�/ WD �
PN

tD2 k
t � 
t�1k1
JR.
 I�/ WD �

PN
t;sD1 w.s; t/k
t � 
sk1 (24)

This yields to the convex optimization problems:

min

t

X

t

�

yt � �>
t 
t

�2C�
N
X

tD2
k
t �
t�1k1 (25)

or

min

t

X

t

�

yt � �>
t 
t

�2 C �

N
X

t;sD1
w.s; t/k
t � 
sk1

(26)

Summary and Future Directions

We have presented a bird’s eye overview of reg-
ularization methods in system identification. By
necessity this overview was certainly incomplete
and we encourage the reader to browse through
the recent literature for new developments on
this exciting topic; we hope the references we
have provided are a good starting point. While
regularization is quite an old topic, we believe it is
fair to say that the nontrivial interaction between
regularization and system theoretic concepts pro-
vides a wealth of interesting and challenging
problems. Just to mention a few open questions:
(i) how and why smoothness priors relate to
system order (McMillan degree), (ii) how can
one design kernels which, at the same time, are
descriptive for dynamical systems and lead to
computationally attractive problems suited for
online identification, (iii) how should kernels
for multi-output systems be designed, and (iv)
which are the statistical properties of Bayesian

http://dx.doi.org/10.1007/978-1-4471-5058-9_100
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procedures such as SBL and its extensions in
the context of system identification. Last but not
least, while some results are available, nonlinear
system identification still offers significant chal-
lenges.

Cross-References

�Nonlinear System Identification Using Particle
Filters

�Nonlinear System Identification: An Overview
of Common Approaches

� Subspace Techniques in System Identification
� System Identification: An Overview

Recommended Reading

The use of regularization methods for system
identification can be traced back to the 1980s,
see Doan et al. (1984) and Kitagawa and Gersh
(1984); yet it is fair to say that the most signif-
icant developments are rather recent and there-
fore the literature is not established yet. The
reader may consult Fazel et al. (2001), Pillonetto
et al. (2011), Chen et al. (2012), Chiuso and
Pillonetto (2012) and references therein. Clearly
all this work has largely benefitted from cross
fertilization with neighboring areas and, as such,
very relevant work can be found in the fields
of machine learning (Bach et al. 2004; Mackay
1994; Tipping 2001; Rasmussen and Williams
2006), statistics (Hocking 1976; Tibshirani 1996;
Fan and Li 2001; Wang et al. 2007; Yuan and
Lin 2006; Zou 2006), signal processing (Donoho
2006; Wipf et al. 2011) and econometrics (Ban-
bura et al. 2010).
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System Identification: An Overview
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Abstract

This entry gives an overview of system identifi-
cation. It outlines the basic concepts in the area
and also serves as an umbrella contribution for
the related nine articles on system identifications
in this encyclopedia. The basis is the classical
statistical approach of parametric methods using
maximum likelihood and prediction error meth-
ods. The paper also describes the properties of the
estimated models for large data sets.
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An Introductory Example

System identification is the theory and art of
estimating models of dynamical systems, based
on observed inputs and outputs. Consider as a
concrete example the Swedish aircraft fighter
Gripen; see Fig. 1. From one of the earlier test
flights, some data were recorded as depicted in
Fig. 2.

To design the simulation software and the
autopilot, the aircraft manufacturer, the SAAB
company, needed a mathematical model for the
dynamics of the system. It is a question to de-
scribe how, in this case, the pitch rate is affected
by the three inputs. A fair amount of knowledge
exists about aircraft dynamics, and in industrial
practice, “gray-box” models based on Newton’s
laws of motion and unknown parameters like
aerodynamical derivatives are employed to esti-
mate the flight dynamics. Here, for the purpose
of illustrating basic principles, let us just try a
simple “black-box” difference equation relation.
Denote the output, the pitch rate, at sample num-
ber t by y.t/, and three control inputs at the same
time by uk.t/; k D 1; 2; 3. Then assume that we
can write

y.t/ D � a1y.t � 1/� a2y.t � 2/� a3y.t � 3/
C b1;1u1.t � 1/C b1;2u1.t � 2/
C b2;1u2.t � 1/C b2;2u2.t � 2/

C b3;1u3.t � 1/C b3;2u3.t � 2/ (1)

In this simple relationship, we can adjust the
parameters to fit the observed data as well as
possible by a common least squares fit. We use
only the 90 first data points of the observed
data. That gives certain numerical values of the
9 parameters above:

a1 D �1:15; a2 D 0:50; a3 D �0:35;
b1;1 D �0:54 b1;2 D 0:4; b2;1 D 0:15;

b2;2 D 0:16; b3;1 D 0:16; b3;2 D 0:07 (2)

We may note that this model is unstable – it has
a pole at 1:0026, but that is in order, because the
pitch channel of the real aircraft is unstable at the
velocity and altitude in question.

How can we test if this model is reasonable?
Since we used only half of the observed data
for the estimation, we can test the model on the
whole data record. Since the model is unstable
it is natural to test it by letting it predict future
outputs, say five samples ahead, and compare
with the measured outputs. That is done in
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System Identification:
An Overview, Fig. 1 The
Swedish aircraft Gripen
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System Identification: An Overview, Fig. 2 Data from
an early test flight of Gripen. These data cover 3 s of
flight and are sampled at 60 Hz. (a) The output: pitch rate.

(b) Control input 1: elevator angle. (c) Control input 2:
leading edge flap. (d) Control input 3: canard angle

Fig. 3. We see that the simple model (2) provides
quite reasonable predictions over data it has
not seen before. This could conceivably be
improved if more elaborate model structures

than (1) were tried out. Also, in practice more
advanced techniques would be required to
validate that the estimated model is sufficiently
reliable.
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System Identification: An Overview, Fig. 3 The mea-
sured output (solid line) compared to the 5-step-ahead
prediction one (dashed line)

This simple introductory example points to the
basic flow of system identification and it also
points to the pertinent issues, which will be listed
in the section “The State-of-the-Art Identification
Setup.”

Models and System Identification

The Omnipresent Model
It is clear to everyone in science and engineer-
ing that mathematical models are playing in-
creasingly important roles. Today, model-based
design and optimization is the dominant engi-
neering paradigm to systematic design and main-
tenance of engineering systems. It has proven
very successful and is widely used in basically
all engineering disciplines. Concerning control
applications, the aerospace industry is the earliest
example on a grand-scale of this paradigm. This
industry was very quick to adopt the theory for
model-based optimal control that emerged in the
1960s and is spending great efforts and resources
on developing models. In the process industry,
model predictive control (MPC) has during the
last 25 years become the dominant method to
optimize production on an intermediate level.
MPC uses dynamical models to predict future

process behavior and to optimize the manipulated
variables subject to process constraints.

Increasing demands on performance, ef-
ficiency, safety, and environmental aspects
are pushing engineering systems to become
increasingly complex. Advances in (wireless)
communications systems and microelectronics
are key enablers for this rapid development,
allowing systems to be efficiently interconnected
in networks, reducing costs and size, and paving
the way for new sensors and actuators.

Model-based techniques are also gaining im-
portance outside engineering applications. Let us
just mention systems biology and health care. In
the latter case it is expected that personalized
health systems will become more and more im-
portant in the future.

Common to the examples given above are the
requirements of permeating sensing, actuation,
communication, and computation abilities of the
engineering systems, in many cases in distributed
architectures. It is also clear that these systems
should be able to operate in a reliable way in
an uncertain and temporally and spatially chang-
ing environment. In many applications, cognitive
abilities and abilities to adapt will be important.
With systems being decentralized and typically
containing many actuators, sensors, states, and
nonlinearities, but with limited access to sensor
information, model building that delivers models
of sufficient fidelity becomes very challenging.

System Identification: Data-Driven
Modeling
Construction of models requires access to
observed data. It could be that the model is
developed entirely from information in signals
from the system (“black-box models”) or it
could be that physical/engineering insights are
combined with such information (“gray-box
models”). In any case, verification (validation)
of a model must be done in the light of measured
data. Theories and methodologies for such
model construction have been developed in
many different research communities (to some
extent independently). System identification is
the term used in the control community for
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the area of constructing mathematical models
of dynamical systems from measured input-
output signals. Other communities use other
terms for often very similar techniques. The term
machine learning has become very common
in recent years, e.g., Rasmussen and Williams
(2006).

System identification has a history of more
than 50 years, since the term was coined by
Lotfi Zadeh (1956). It is a mature research field
with numerous publications, textbooks, confer-
ence series, and software packages. It is often
used as an example in the control field of an
area with good interaction between theory and
industrial practice. The backbone of the the-
ory relies upon statistical grounds, with maxi-
mum likelihood methods and asymptotic analy-
sis (in the number of observed data). The goal
of the system identification field is to find a
model of the plant in question as well as of
its disturbances and also to find a characteriza-
tion of the uncertainty bounds of the descrip-
tion.

The State-of-the-Art Identification
Setup

To approach a system identification problem, like
in section “An Introductory Example,” a number
of questions need to be answered, such as
• What model type, e.g., (1) should be used?
• How should the parameters in the model be

adjusted?
• What inputs should be applied to obtain a

good model?
• How do we assess the quality of the model?
• How do we gain confidence in an estimated

model?
There is a very extensive literature on the sub-
ject, with many textbooks, like Ljung (1999),
Söderström and Stoica (1989), and Pintelon and
Schoukens (2012).

System identification is characterized by five
basic concepts:
• X : The experimental conditions under which

the data is generated
• D: The data

M I
M(q̂ )

X
D

V

OK ?
No, try new M Yes!

No, try new X

System Identification: An Overview, Fig. 4 The iden-
tification work loop

• M: The model structure and its parameters 

• I: The identification method by which a pa-

rameter value O
 in the model structure M.
/

is determined based on the data D
• V : The validation process that scrutinizes the

identified model
See Fig. 4. It is typically an iterative process
to navigate to a model that passes through the
validation test (“is not falsified”), involving re-
visions of the necessary choices. For several of
the steps in this loop, helpful support tools have
been developed. It is however not quite possible
or desirable to fully automate the choices, since
subjective perspectives related to the intended use
of the model are very important.

M: Model Structures

A model structure M is a parameterized collec-
tion of models that describe the relations between
the inputs u and outputs y of the system. The pa-
rameters are denoted by 
 so M.
/ is a particular
model. The model set then is

M D fM.
/j
 2 DMg (3)

Many ways exist to collect mathematical
expressions that encompass a model; see, e.g.,
�Modeling of Dynamic Systems from First
Principles, �Nonlinear System Identification:
An Overview of Common Approaches, and

http://dx.doi.org/10.1007/978-1-4471-5058-9_102
http://dx.doi.org/10.1007/978-1-4471-5058-9_104
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�Nonlinear System Identification Using Particle
Filters. The models may be both linear and
nonlinear as well as time invariant and time
varying, and it is useful to have as a common
ground that a model gives a rule to predict
(one-step-ahead) the output at time t , i.e., y.t/
(a p-dimensional column vector), based on
observations of previous input-output data up
to time t � 1 (denoted by Zt�1).

Oy.t j
/ D g.t; 
;Zt�1/ (4)

This covers a broad variety of model descriptions,
sometimes in a somewhat abstract way. The de-
scriptions become much more explicit when we
specialize to linear models.
A note on “inputs” It is important to include
all measurable disturbances that affect y among
the inputs u to the system, even if they cannot
be manipulated as control inputs. In some
cases the system may entirely lack measurable
inputs, so the model (4) then just describes
how future outputs can be predicted from
past ones. Such models are called time series
and correspond to systems that are driven by
unobservable disturbances. Most of the tech-
niques described in this entry apply also to such
models.
A note on disturbances A complete model
involves both a description of the input-output
relations and a description of how various
noise sources affect the measurements. The
noise description is essential to understand both
the quality of the model predictions and the
model uncertainty. Proper control design also
requires a picture of the disturbances in the
system.

Linear Models
For linear time invariant systems, a general model
structure is given by the transfer functionG from
input u to output y and the transfer function H
from a white noise source e to output additive
disturbances (for notational convenience, we spe-
cialize to single-input-single-output systems, but
all expressions are valid in the multivariable case
with simple notational changes):

y.t/ D G.q; 
/u.t/CH.q; 
/e.t/ (5a)

Ee2.t/ D �2I Ee.t/eT .k/ D 0 if k ¤ t

(5b)

(E denotes mathematical expectation.) This
model is in discrete time and q denotes
the shift operator qy.t/ D y.t C 1/. We
assume for simplicity that the sampling
interval is a one-time unit. The expansion
of G.q; 
/ in the inverse (backwards) shift
operator gives the impulse response of the
system:

G.q; 
/u.t/ D
1
X

kD1
gk.
/q

�ku.t/

D
1
X

kD1
gk.
/u.t � k/ (6)

The discrete time Fourier transform (or the z-
transform of the impulse response, evaluated in
z D ei!) gives the frequency response of the
system:

G.ei!; 
/ D
1
X

kD1
gk.
/e

�ik! (7)

The function G describes how an input sinusoid
shifts phase and amplitude when it passes through
the system.

The additive noise term v D He is quite
versatile, and with a suitable choice of H , it can
describe a disturbance with arbitrary spectrum.
To link with the predictor as a unifying model
concept, it is useful to compute the predictor for
(5a) (the conditional mean of y.t/ given past
data), which is

Oy.t j
/ D G.q; 
/u.t/C Œ1 �H�1.q; 
/�

Œy.t/ �G.q; 
/u.t/� (8)

Note that the expansion of H�1 starts with “1,”
so the first term starts with h1q�1 so there is a
delay in y. It is easy to interpret the first term
as a simulation using the input u, adjusted with
a prediction of the additive disturbance v.t/ at

http://dx.doi.org/10.1007/978-1-4471-5058-9_106
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time t , based on past values of v. The predictor
is thus an easy reformulation of the basic transfer
functions G and H . The question now is how to
parameterize these.

Black-Box Models
A black-box model uses no physical insight or
interpretation, but is just a general and flexible
parameterization. It is natural to let G and H be
rational in the shift operator:

G.q; 
/ D B.q/

F.q/
I H.q; 
/ D C.q/

D.q/
(9a)

B.q/ D b1q
�1 C b2q

�2 C : : : bnbq
�nb (9b)

F.q/ D 1C f1q
�1 C : : :C fnf q

�nf (9c)


 D Œb1; b2; : : : ; fnf � (9d)

C andD are like F monic, i.e., start with a “1.”
A very common case is that F D D D

A and C D 1 which gives the ARX model
(autoregressive with exogenous input):

y.t/ D A�1.q/B.q/u.t/C A�1.q/e.t/ or
(10a)

A.q/y.t/ D B.q/u.t/C e.t/ or (10b)

y.t/C a1y.t � 1/C : : :C anay.t � na/

(10c)

D b1u.t � 1/C : : :C bnbu.t � nb/

(10d)

This is the model structure we used in (1) in the
introductory example, but for several inputs.

Other common black-box structures of
this kind are FIR (finite impulse response
model, F D C D D D 1), ARMAX (autore-
gressive moving average with exogenous input,
F D D D A), and BJ (Box-Jenkins, all four
polynomials are different.)

Gray-Box Models
If some physical facts are known about the sys-
tem, it is possible to build that into a gray-box
model. It could, for example, be that for the
airplane in the introduction, the motion equa-
tions are known from Newton’s laws, but certain

parameters are unknown, like the aerodynam-
ical derivatives. Then it is natural to build a
continuous-time state-space model from physical
equations:

Px.t/ D A.
/x.t/C B.
/u.t/

y.t/ D C.
/x.t/CD.
/u.t/C v.t/
(11)

Here 
 are simply some entries of the matrices
A;B;C;D, corresponding to unknown physical
parameters, while the other matrix entries sig-
nify known physical behavior. This model can
be sampled with well-known sampling formulas
(obeying the input inter-sample properties, zero-
order hold, or first-order hold) to give

x.t C 1/ D F.
/x.t/C G.
/u.t/
y.t/ D C.
/x.t/CD.
/u.t/C w.t/

(12)

The model (12) has the transfer function from u
to y

G.q; 
/ D C.
/ŒqI � F.
/��1G.
/CD.
/

(13)

so we have achieved a particular parameterization
of the general linear model (5a).

Continuous-Time Models
The general model description (4) describes how
the predictions evolve in discrete time. But in
many cases, we are interested in continuous-
time (CT) models, like models for physical in-
terpretation and simulation (e.g., electrical cir-
cuit simulators like ADS, Spice, Spectre, and
Microwave Office use continuous-time models).
But CT model estimation is contained in the
described framework, as the linear state-space
model (11) illustrates. More comments on direct
estimation of CT models are given in section “Es-
timating Continuous Time Models.”

Nonlinear Models
A nonlinear model is a relation (4), where the
function g is nonlinear in the input-output data
Z. There is a rich variation in how to specify the



System Identification: An Overview 1449

S

function g more explicitly. A quite general way
is the nonlinear state-space equation, which is a
counterpart to (12):

x.t C 1/ D f .x.t/; v.t/; 
/

y.t/ D h.x.t/; e.t/; 
/
(14)

where v and e are white noises. This is further
discussed in �Nonlinear System Identification:
An Overview of Common Approaches, where x
is described as a Markov process with v defining
the transitions, and in �Nonlinear System Identi-
fication: An Overview of Common Approaches,
where (14) (v � 0) is related to a continuous-
time gray-box model. The latter article also dis-
cusses several other nonlinear model structures
that can be seen as extensions and modifications
of linear models: nonlinear mappings of past
input-output data corresponding to (10), mixing
static nonlinearities with linear dynamical mod-
els, etc.

I: Identification Methods: Criteria

The goal of identification is to match the model
to the data. Here the basic techniques for such
matching will be discussed.

Time Domain Data
Suppose now we have collected a data record in
the time domain

ZN D fu.1/; y.1/; : : : ; u.N /; y.N /g (15)

Since the model is in essence a predictor, it is
quite natural to evaluate it by how well it predicts
the measured output. So, form the prediction
errors for (4):

".t; 
/ D y.t/ � Oy.t j
/ (16)

The “size” of this error can be measured by some
scalar norm:

`.".t; 
// (17)

and the performance of the predictor over the
whole data record ZN becomes

VN .
/ D
N
X

tD1
`.".t; 
// (18)

A natural parameter estimate is then

O
N D arg min

2DM

VN .
/ (19)

This is the prediction error method (PEM) and is
applicable to general model structures. See, e.g.,
Ljung (1999) or (2002) for more details. See also
�Nonlinear System Identification: An Overview
of Common Approaches.

The PEM approach can be embedded in a
statistical setting to guarantee optimal statistical
properties. The ML methodology below offers a
systematic framework to do so:

AMaximum Likelihood View
If the system innovations e have a probability
density function (pdf) f .x/, then the criterion
function (18) with `.x/ D � logf .x/ will be the
logarithm of the likelihood function. See Lemma
5.1 in Ljung (1999). More specifically, assume
that the system has p outputs and that the innova-
tions are Gaussian with zero mean and covariance
matrix�, so that

y.t/ D Oy.t j
/C e.t/; e.t/ 2 N.0;�/ (20)

for the 
 that generated the data. Then it follows
that the negative logarithm of the likelihood func-
tion for estimating 
 from y is

LN .
/ D 1

2
ŒVN .
/CN log det�CNp log 2��

(21)

where VN .
/ is defined by (18), with

`.".t; 
// D "T .t; 
/��1".t; 
/ (22)

So the maximum likelihood model estimate
(MLE) for known � is obtained by minimizing
VN .
/. If � is not known, it can be included

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_104
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among the parameters and estimated, (Ljung
1999, page 218), which results in a criterion

DN.
/ D det
N
X

tD1
".t; 
/"T .t; 
/ (23)

to be minimized.

The EM Algorithm
The EM algorithm (Dempster et al. 1977) is
closely related to the ML technique. It is a method
that is especially useful when the ML criterion
is difficult to evaluate from the observed data
but would be easier to find if certain unobserved
latent variables were known. The algorithm alter-
nates between an expectation step estimating the
log likelihood and a maximization step bringing
the parameter estimate closer in each step to
the MLE. Its application to the nonlinear state-
space model (14) is described in �Nonlinear
System Identification: An Overview of Common
Approaches.

Regularization
Solving for the estimate in (19) is a so-called
inverse problem, which means that the solution
may be ill conditioned. To deal with that in (18),
we could add a quadratic norm:

WN.
/ D VN.
/C �.
 � 
�/T R.
 � 
�/ (24)

(� is a scaling, R is a positive semidefinite
(psd) matrix, and 
� is a nominal value of the
parameters). The estimate is then found by
minimizing WN.
/. The criterion (24) makes
sense in a classical estimation framework as
an ad hoc modification of the MLE to deal
with possible ill-conditioned minimization
problems. The added quadratic term then
serves as proper (Tikhonov) regularization of
an ill-conditioned inverse problem; see, for
example, Tikhonov and Arsenin (1977). This
criterion is a clear-cut balance between model
fit and a penalty on the model parameter
size. The amount of penalty is governed by �
and R.

Other useful regularization penalties could be
to add an `1 norm of the parameter. Such tech-
niques are further discussed in � System Identifi-
cation Techniques: Convexification, Regulariza-
tion, and Relaxation.

Bayesian View
For a broader perspective it is useful to invoke a
Bayesian view. Then the sought parameter vector

 is itself a random vector with a certain pdf. This
random vector will of course be correlated with
the observations y. If we assume that the prior
distribution of 
 (before y has been observed) is
Gaussian with mean 
� and covariance matrix˘ ,


 2 N.
�; ˘/ (25)

its prior pdf is

P.
/ D 1
p

.2�/p det.˘/
e�.
�
�/T ˘�1.
�
�/=2

(26)

The posterior (after y has been measured) pdf
then is by Bayes rule (Y denoting all measured
y signals)

P.
 jY / D P.
; Y /

P.Y /
D P.Y j
/P.
/

P.Y /
(27)

In the last step P.Y j
/ is the likelihood function
(cf. the negative log likelihood functionLN .
/ in
(21)),P.
/ is the prior pdf (26), and P.Y / is a 
-
independent normalization. Apart from this nor-
malization, and other 
-independent terms, twice
the negative logarithm of (27) equals WN.
/ in
(24) with

�R D ˘�1 (28)

That means that with (28), the regularized
estimate from (24) is the maximum a posteriori
(MAP) estimate. As more and more data become
available, the role of the prior will tend to zero,
so as N ! 1 the MAP Estimate ! MLE.

This Bayesian interpretation of the regularized
estimate also gives a clue to select the regulariza-
tion quantities �;R; 
�.

http://dx.doi.org/10.1007/978-1-4471-5058-9_104
http://dx.doi.org/10.1007/978-1-4471-5058-9_101
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For black-box models, a reasonable prior
(˘; 
�) may not be available. Then it is possible
to parameterize them with hyperparameters ˛
and then estimate these through the marginal
likelihood:

Ǫ D arg maxP.Y j˛/ (29)

A survey of how such techniques may improve
system identification techniques is given in Pil-
lonetti et al. (2014).

More aspects of the Bayesian view of system
identification are given in � System Identification
Techniques: Convexification, Regularization, and
Relaxation and in �Nonlinear System Identifica-
tion Using Particle Filters.

Frequency Domain Data
Frequency domain data are obtained either from
frequency analysers or by applying the Fourier
transform to measured time domain data. The
data could be in the input-output form

YN .e
i!k /; UN .e

i!k /; k D 1; 2; : : : ;M (30)

YN .z/ D 1p
N

N
X

kD1
y.k/z�k (31)

or being observed samples from the frequency
function

OOGN.ei!k /; k D 1; 2; : : : ;M (32)

e.g., OOGN.ei!/ D YN .e
i!/

UN .ei!/
.ETFE/ (33)

((33) is the empirical transfer function estimate,
ETFE).

Linear Parametric Models
By taking the Fourier transform of (5a), we see
that

Y.ei!/ D G.ei!; 
/U.ei!/ (34)

plus a noise term that has variance

�2jH.ei!; 
/j2 (35)

Simple least squares (LS) curve fitting of (34)
says that we should fit observations with weights
that are inversely proportional to the measure-
ment variance. That gives the weighted LS cri-
terion

VN .
/ D
M
X

kD1
jY.ei!k /

�G.ei!k ; 
/UN .e
i!k /j2=jH.ei!k ; 
/j2

(36)

(the constant �2 does not affect the minimization
of VN ).

It can readily be verified that (36) coincides
with (18), (`."/ D j"j2) by Parseval’s identity in
case M D N and the frequencies !k are selected
as the DFT grid.

Notice that (36) can be written as

VN .
/ D
M
X

kD1

ˇ

ˇ

ˇ

ˇ

YN .e
i!k /

UN .ei!k /
�G.ei!k ; 
/

ˇ

ˇ

ˇ

ˇ

2

�
ˇ

ˇ

ˇ

ˇ

UN .e
i!k /

H.ei!k ; 
/

ˇ

ˇ

ˇ

ˇ

2

(37)

We can see that as a properly weighted curve
fitting of the frequency function to the ETFE (33).

See �Frequency Domain System Identifica-
tion for more details of using frequency domain
data for estimating dynamical systems.

Nonparametric Methods
From frequency domain data, the frequency
response functions G.ei!/;H.ei!/ can also
be estimated directly as functions without
any parametric model. See �Nonparametric
Techniques in System Identification for a detailed
account of this.

IV and SubspaceMethods

Instrumental Variables
The family of identification methods that can
be described as minimizing a specific criterion
function, like (19), covers many theoretically and
practically important techniques. Still, several
methods do not belong to this family. A useful

http://dx.doi.org/10.1007/978-1-4471-5058-9_101
http://dx.doi.org/10.1007/978-1-4471-5058-9_106
http://dx.doi.org/10.1007/978-1-4471-5058-9_108
http://dx.doi.org/10.1007/978-1-4471-5058-9_109
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technique is to characterize a good model, as one
that gives prediction errors that are uncorrelated
with available information:

O
 D sol
2DM

N
X

tD1
".t; 
/�.t; 
/ D 0 (38)

Here, ".t; 
/ is the prediction error (16), and sol
means “solution to.” The sequence f�.t/; t D
1; : : : ; N g is constructed from the observed data,
possibly also dependent on some design variables
that are included in 
 . Typically �.t/ is con-
structed from past inputs, so a good model should
not have prediction errors that are correlated
with past observations. The variables � are called
instrumental variables, and there is an extensive
literature about how to select these. See, e.g.,
Ljung (1999), Section 7.5, Söderström and Stoica
(1983), and Young (2011).

Subspace Methods
A related technique is to estimate black-box state-
space models like (12) (without any internal para-
metric structure) by realizing the states from
data and then estimating the matrices by least
squares method. This gives a powerful family of
methods for state-space model estimation. They
are described in detail in � Subspace Techniques
in System Identification. The major advantage
of subspace methods is that they easily apply to
multiple-input-multiple-output systems and are
non-iterative. A drawback is that the model prop-
erties and their dependence on certain design
variables are not fully known.

Errors-in-Variables (EIV) Techniques
The estimation techniques described so far as-
sume that the input has been measured without
errors. In some cases, it is natural to assume that
both inputs and outputs have measurement errors.
The estimation problem then becomes more diffi-
cult, and some kind of knowledge about the mea-
surement errors is typically required. In Pintelon
and Schoukens (2012), Section 8.2, it is described
how criteria of the type (36) are modified in the
presence of input noise, and Söderström (2007)
can be consulted for a summarizing treatise on

EIV techniques. See also the section “Errors-in-
Variables Framework” in � Frequency Domain
System Identification.

Asymptotic Properties of
the EstimatedModels

An estimated model is useless, unless something
is known about its reliability and error bounds.
Therefore, it is important to analyze the model
properties.

Bias and Variance
The observations, certainly of the output from the
system, are affected by noise and disturbances,
which of course also will influence the esti-
mated model parameters (19). The disturbances
are typically described as stochastic processes,
which makes the estimate O
N a random variable.
This has a certain pdf and often the analysis is
restricted to its mean and variance only. The dif-
ference between the mean and a true description
of the system measures the bias of the model.
If the mean coincides with the true system, the
estimate is said to be unbiased. The total error in
a model thus has two contributions: the bias and
the variance.

Properties of the PEM Estimate (19)
as N ! 1
Except in simple special cases, it is quite difficult
to compute the pdf of the estimate O
N . However,
its asymptotic properties as N ! 1 are easier
to establish. The basic results can be summarized
as follows (E denotes mathematical expectation;
see Ljung (1999), chapters 8 and 9, for a more
complete treatment):
• Limit Model:

O
N ! 
�

D arg min

�

lim
N!1

1

N
VN .
/ � E`.".t; 
//

�

(39)

http://dx.doi.org/10.1007/978-1-4471-5058-9_107
http://dx.doi.org/10.1007/978-1-4471-5058-9_108
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So the estimate will converge to the best
possible model, in the sense that it gives the
smallest average prediction error.

• Asymptotic Covariance Matrix for Scalar
Output Models:
In case the prediction errors e.t/ D ".t; 
�/
for the limit model are approximately white,
the covariance matrix of the parameters is
asymptotically given by:

Cov O
N 	 �.`/

N

�

Cov
d

d

Oy.t j
/

��1
(40)

So the covariance matrix of the parameter
estimate is given by the inverse covariance
matrix of the gradient of the predictor wrt the
parameters. Here (prime denoting derivatives)

�.`/ D EŒ`0.e.t//�2

E`00.e.t/�2
(41)

Note that

�.`/ D �2 D Ee2.t/ if `.e/ D e2=2

If the model structure contains the true system,
it can be shown that this covariance matrix is
the smallest that can be achieved by any unbi-
ased estimate, in case the norm ` is chosen as
the logarithm of the pdf of e. That is, it fulfills
the the Cramér-Rao inequality (Cramér 1946).

These results are valid for quite general model
structures. Now, specialize to linear models (5a)
and assume that the true system is described by

y.t/ D G0.q/u.t/CH0.q/e.t/ (42)

which could be general transfer functions, pos-
sibly much more complicated than the model.
Then

• 
� D arg min



Z �

��
jG.ei!; 
/ �G0.ei!/j2

ˆu.!/

jH.ei!; 
/j2 d! (43)

That is, the frequency function of the limiting
model will approximate the true frequency
function as well as possible in a frequency
norm given by the input spectrum ˆu and the
noise model.

• For a linear black-box model

CovG.ei!; O
N / 	 n

N

ˆv.!/

ˆu.!/
as n;N ! 1

(44)

where n is the model order andˆv is the noise
spectrum �2jH0.e

i!/j2. The variance of the
estimated frequency function at a given fre-
quency is thus, for a high-order model, propor-
tional to the noise-to-signal ratio at that fre-
quency. That is a natural and intuitive result.

Trade-Off Between Bias and Variance
Generally speaking the quality of the model de-
pends on the quality of the measured data and
the flexibility of the chosen model structure (3).
A more flexible model structure typically has
smaller bias, since it is easier to come closer to
the true system. At the same time, it will have
a higher variance: With higher flexibility it is
easier to be fooled by disturbances. So the trade-
off between bias and variance to reach a small
total error is a choice of balanced flexibility of
the model structure.

As the model gets more flexible, the fit to
the estimation data in (19), VN . O
N /, will always
improve. To account for the variance contribu-
tion, it is thus necessary to modify this fit to
assess the total quality of the model. A much used
technique for this is Akaike’s criterion, (AIC)
(Akaike 1974):

O
N D arg min
M;
2DM

2LN .
/C 2dim
 (45)

where LN is the negative log likelihood function.
The minimization also takes place over a family
of model structures with different number of
parameters (dim 
).

For Gaussian innovations e with unknown and
estimated variance, AIC takes the form
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O
N D arg min
M;
2DM

"

log det

"

1

N

N
X

tD1
".t; 
/"T .t; 
/

#

C 2
dim


N

#

(46)

after normalization and omission of model-
independent quantities.

A variant of AIC is to put a higher penalty on
the model complexity:

O
N D arg min Œ2LN .
/C dim
 logN� (47)

This is known as Bayesian information criterion
(BIC) or Rissanen’s minimum description length
(MDL) criterion (Rissanen 1978).

Section “V : Model Validation” contains fur-
ther aspects on the choice of model structure.

X : Experiment Design

Experiment design is the question of choosing
which signal to measure, the sampling rate, and
designing the input.

The theory of experiment design primarily
relies upon analysis of how the asymptotic pa-
rameter covariance matrix (40) depends on the
design variables: so the essence of experiment
design can be symbolized as

min
X

tracefC ŒE .t/ T .t/��1g

where  is the gradient of the prediction wrt the
parameters and the matrix C is used to weight
variables reflecting the intended use of the model.

For linear systems the input design is often
expressed as selecting the spectrum (frequency
contents) of u.

This leads to the following recipe: Let the in-
put’s power be concentrated to frequency regions
where a good model fit is essential and where
disturbances are dominating.

Issues of experiment design are treated in
much more detail in �Experiment Design and
Identification for Control.

The measurement setup, like if band-limited
inputs are used to estimate continuous-time
models and how the experiment equipment is
instrumented with band pass filters (see, e.g.,
Pintelon and Schoukens 2012, Sections 13.2–3),
also belongs to the important experiment design
questions.

V : Model Validation

Model validation is about examining and
scrutinizing an estimated model to check if
it can be used for its purpose. These methods
unavoidably are problem dependent and contain
several subjective elements, and no conclusive
procedure for validation can be given. A
few useful techniques will be listed in this
section. Basically it is a matter of trying to
falsify a model under the conditions it will
be used for and also to gain confidence in
its ability to reproduce new data from the
system.

Falsifying Models: Residual Analysis
An estimated model is never a correct
description of a true system. In that sense,
a model cannot be “validated.” Instead it is
instructive to try and falsify it, i.e., confront
it with facts that may contradict its correct-
ness. A good principle is to look for the
simplest unfalsified model; see, e.g., Popper
(1934).

Residual analysis is the leading technique
for falsifying models: The residuals, or one-
step-ahead prediction errors O".t/ D ".t; O
N / D
y.t/ � Oy.t j O
N / should ideally not contain
any traces of past inputs or past residuals. If
they did, it means that the predictions are not
ideal. So, it is natural to test the correlation
functions

http://dx.doi.org/10.1007/978-1-4471-5058-9_103
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OrO";u.k/ D 1

N

N
X

tD1
O".t C k/u.t/ (48)

OrO".k/ D 1

N

N
X

tD1
O".t C k/O".t/ (49)

and check that they are not larger than
certain thresholds. Here N is the length
of the data record and k typically ranges
over a fraction of the interval Œ�NN�. See,
e.g., Ljung (1999), Section 16.6 for more
details.

Comparing Different Models
When several models have been estimated, it
is a question to choose the “best one.” Then,
models that employ more parameters naturally
show a better fit to the data, and it is necessary to
outweigh that. The model selection criteria AIC
(46) and BIC (47) are examples of how such
decisions can be taken. They can be extended
to regular hypothesis tests where more complex
models are accepted or rejected at various test
levels (Ljung 1999, Sect. 16.4).

Making comparisons in the frequency domain
is a very useful complement for domain experts
who are used to think in terms of natural frequen-
cies, natural damping, etc.

Cross Validation
Cross validation is an important statistical con-
cept that loosely means that the model perfor-
mance is tested on a data set (validation data)
other than the estimation data. There is an ex-
tensive literature on cross validation, e.g., Stone
(1977), and many ways to split up available data
into estimation and validation parts have been
suggested. A simple way, often used in system
identification, is to use one-half of the data to
estimate the model and the other half to evaluate
simulation or prediction fit. Trying out different
model structures (or other decision variables,
like regularization parameters), one then picks
the choice that gives the best performance on
validation data.

Other Topics

Numerical Algorithms and Software
Support
The central numerical task to estimate the model
lies in the innocent-looking “arg min” in (38).
Since the criterion often is non-convex, this
global minimization can be nontrivial. Typically
some iterative numerical optimization method,
like Gauss-Newton, Levenberg-Marquardt, or
trust regions, e.g., Nocedal and Wright (2012),
is employed. The iterations are initiated at a
carefully selected point, for black-box linear
systems often based on ARX or subspace
estimates.

The practical use of system identification
relies upon efficient software support. Many
such packages exist. They are further treated
along with numerical and computational aspects
in � System Identification Software.

Estimating Continuous-Time Models
Most of the techniques described here formally
seem to deal with estimating discrete time
model. However continuous-time (CT) models
are to be preferred in many contexts, and most
of the modeling of physical systems really
concern CT models. A natural approach is to
do physical modeling in continuous time as in
(11) and then do estimation of the CT matrices
via the sampled model (12). All the described
algorithms and results apply to this approach
to CT model estimation. Another approach is
to use band-limited inputs and compute the CT
Fourier transforms of data (that coincide with
the discrete time transforms for band-limited
data) and apply � Frequency Domain System
Identification.

Yet another approach is to directly fit CT
model parameters to discrete time data, using
specially designed filters; see, e.g., Garnier and
Wang (2008).

Recursive Estimation
For certain adaptive and in-line applications, it
may be necessary to continuously compute the
models by recursively updating the estimates.
The techniques for that resemble state-estimation

http://dx.doi.org/10.1007/978-1-4471-5058-9_105
http://dx.doi.org/10.1007/978-1-4471-5058-9_108
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algorithms and are dealt with in a general setting
in �Nonlinear System Identification Using Parti-
cle Filters. See also Ch 11 in Ljung (1999).

Data Management
The collected data often requires particular atten-
tion before it can be used for estimation. Issues
like missing observations, obviously erroneous
values (outliers), slowly varying disturbances,
trends, etc., need attention. In industrial appli-
cations, a practical question is often to select
portions of the data records that contain rele-
vant information for the model building. Such
questions are application dependent and related
to experiment design and also to database man-
agement. Some techniques for preparing data for
identification are mentioned in Ch 14 of Ljung
(1999).

Summary and Future Directions

System identification is a mature and well-
established area in automatic control. The
methods are successfully and routinely applied
in industrial practice, and the understanding
of theoretical issues is mostly excellent. The
standard theory relies very much on basic
statistical concepts and methods.

What is exciting about future development is
what increased computation power may mean
for the area: Can nonlinear models be efficiently
estimated by massive computational efforts? Will
tools inspired by machine learning turn out to
be superior to the conventional approaches?
Can reliable uncertainty regions be computed
for arbitrary noises and without the asymptotic
formulas?

Several of these questions are illuminated in
the articles listed under Cross-References.

Cross-References

There are several articles in this encyclopedia
that deal with aspects of system identification.
They have been coordinated with this overview
and the text has listed how they complement the

issues treated here. For easy reference, here is a
complete list of associated articles:

�Experiment Design and Identification for Con-
trol

�Frequency Domain System Identification
�Modeling of Dynamic Systems from First Prin-

ciples
�Nonlinear System Identification: An Overview

of Common Approaches
�Nonlinear System Identification Using Particle

Filters
�Nonparametric Techniques in System Identifi-

cation
�Subspace Techniques in System

Identification
�System Identification Software
�System Identification Techniques: Convexifica-

tion, Regularization, and Relaxation

Recommended Reading

A text book that covers and extends the material
in this contribution is Ljung (1999). Another text
book in the same spirit is Söderström and Stoica
(1989), while Pintelon and Schoukens (2012)
gives a comprehensive treatment of frequency
domain methods. Recursive methods are treated
in Young (2011).
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Tactical Missile Autopilots

Curtis P. Mracek
Raytheon Missile Systems, Waltham, MA, USA

Abstract

Tactical missile autopilots are part of the
wider guidance navigation and control missile
system whose goal is to achieve a successful
intercept. The missile autopilot task is to turn
guidance commands into fin deflection and is
generally divided into two lateral direction (pitch
and yaw) controllers and the roll orientation
or roll rate controller. These three “channel
control” outputs are then mixed to produce fin
commands. The controllers can be composed
of different architectures but most lateral
autopilots use a three loop structure with
acceleration and angular rate feedback. The
roll controller is usually either a proportional
integral (PI) or proportional integral derivative
(PID) controller. The controllers are designed
using gain scheduling for large flight envelope
applications and have nonlinear elements to
shape the time response. Integrator reset logic,
to deal with control surface saturation, is also an
integral part of tactical missile autopilots.

Keywords

Classical control; Control surfaces; Pitch;
Proportional and integral control; Roll channel;
Tactical missile; Yaw channels

Introduction

The purpose of a tactical missile is to intercept
targets, and since tactical missile autopilots are
part of the larger tactical missile system, they
must contribute to that goal. The process by
which a missile executes an intercept is by first
sensing the target. The target information is then
used to generate guidance commands. The guid-
ance commands are determined such that if fol-
lowed with precision the missile will intercept the
target. The problem is to follow with precision.
This is where the autopilot comes in. The missile
autopilot receives guidance commands and pro-
duces control deflections to move the missile in a
manner consistent with completing the intercept.
There are many control challenges unique to
tactical missiles, namely closing velocities can
be very high and targets very small and very
maneuverable. Usually the guidance commands
are acceleration commands though other quan-
tities are sometimes used. For this discussion,
acceleration commands will be the autopilot

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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commands. Once the acceleration commands or
demands (as some in the guidance community
call the autopilot inputs) are presented to the au-
topilot, the autopilot’s only concern is to produce
the desired command as fast as possible with
some level of robustness. The key performance
metric is the time of response. The response time
is a key factor that drives the miss distance, and
thus the probability of a successful intercept.
Another metric, though less important than the
response time, is the available maneuverability.
As mentioned, the autopilot achieves the desired
acceleration through moving the control surfaces.
Usually, the control surfaces are aerodynamic and
either positioned in front of (canard control) or in
back of (tail control) the center of gravity. Both
tail and canard control surfaces will be called fins
for the purposes of this analysis. Some recent
missile designs have significantly altered the au-
topilot design problem by using both canards and
tails or other effectors like reaction jets.

The tactical missile autopilot control problem
is therefore to produce accelerations by moving
the fins in a controlled manner such that the
response is as fast as possible while remaining
under control under various flight conditions and
in the presence of uncertainties (being robust).
Tactical missiles autopilots are a classic control
challenge in that there is a direct trade between
performance and robustness. The tactical autopi-
lot tends to lean toward the performance instead
of the robustness because, as the continuing argu-
ment goes, “what good is the missile being stable
if you miss the target” versus “if the missile is
unstable it may never get to the target.” So far,
relevant analysis has mentioned the controller but
mostly ignored robustness. Achieving robustness
is done through the use of feedback, and in
tactical missiles, inertial sensing devices are used
to provide this critical information. These tactical
sensors are currently packaged as a complete
inertial sensor suite. This suite usually consists of
three orthogonal linear accelerometers and three
angular rate gyros. One reason guidance com-
mands are the linear acceleration is that the sens-
ing device directly measures this desired quantity.

There are two noticeable differences between
tactical missile control and other aerodynamic

control applications. The first is that the dynam-
ics and controls are divided into three distinct
channels with each channel nearly independent
of the other two. These are the lateral (pitch and
yaw) channels and the axial (roll) channel. The
pitch and yaw designs are usually very similar,
if not identical, and the roll channel is separate.
The second is that the controllers (fins) are in-
tertwined. That is, there are no predominately
pitch, yaw, or roll controllers, such as there are
on airplanes. At least two and sometimes four
fins are used in a single channel. This mixing
of controls is through what is called a fin mix.
This fin mixing occurs in the software (used
to be hardware in analog controllers) after the
autopilot and prior to the signals being sent to the
individual fins.

Historically tactical missile autopilot devel-
opment has consisted of both a design phase
and an analysis phase. This distinction is due
to the controller being designed on a subset of
the operating envelope. That design is then eval-
uated at many more conditions to determine if
the design works well enough everywhere to be
deployed. In both the design and analysis phases,
models are used to establish performance and
robustness. Linear planar, linear coupled, and
nonlinear models are used. The linear models
are usually restricted to the early design phases
and the frequency response determination of the
system. The nonlinear models are used for time
domain analysis.

The remainder of the chapter is organized
by examining the linear planar pitch and yaw
autopilots, followed by roll control. The concept
of combining controllers is then presented. This
is followed by a short section on other consid-
erations, such as coupled designs and nonlinear
elements.

Pitch and Yaw Control

For tactical missile autopilot development, the
equations of motion are usually derived in a
body-fixed system with the two lateral velocities
replaced by the local angle of attack .’/ and
sideslip angle .“/. It should be noted that the



Tactical Missile Autopilots 1461

T

sideslip is not defined as the aircraft sideslip
but instead as the equivalent of the angle of
attack in the horizontal plane. This is because
of the symmetry that is found in missiles that
does not exist in aircraft. The nonlinear equations
of motion can be found in Blakelock (1991).
For tactical missiles there is usually no axial
acceleration control, and thus the total veloc-
ity equation is uncontrollable and removed from
both the design and analysis. For the coupled
equations of motion of the system, there are five
equations of motion and three control inputs.
For a planar view of the problem, the pitch and
yaw channels in a tactical missile autopilot are
usually separated, and with the appropriate sign
changes in the feedback signals can use the same
gains. These channels use an inertial measuring
device for feedback. Usually these sensors come
in a package with three accelerometers and the
gyros. The outputs of these devices used in the
pitch are the linear acceleration perpendicular
to the axial direction and the angular rate of
the missile about the other perpendicular axis.
That is, the z linear acceleration (Azm) and the
y angular rate (qm). Using the other four sensors
would cause coupling between pitch and yaw and
roll, and thus this sensor information is usually
ignored in the pitch channel. They are available
and used in select cases where there is strong
aerodynamic coupling, in which case these cross
channels can be used to decouple the system.
Without getting into the actual definitions of
all the variables and the numerical values (see
Mracek and Ridgely 2005a for full details), the
state space linearized equations of motion for the
pitch plane are:

A D
�

1=Vmo
�

Z˛o
m � AXo

�
1

M˛o=IYY 0

�

B D
�

Zıpo=mVmo

Mıpo=IYY

�

C D
�

Z˛o=mg � M˛o Nx=gIYY 0

0 1

�

D D
�

Zıpo=mg � M
ıpo Nx=gIYY

0

�

where

Px D Ax C Bu
y D Cx C Du

x D
�

˛

q

�
u D ıp yD

�
Azm

qm

�

Thus in the most reduced form, the tactical
missile autopilot equations of motion reduce to
two equations with two variables and one control.
This is a very simple control problem. Since
full state feedback can be used to provide an
“optimal” control solution, only two feedback
signals are needed for the above state space prob-
lem. For a tail controlled missile, the two state
control leads ultimately to increasing missile ac-
celeration in the wrong direction, as faster and
faster designs are realized. This is because the
system is, in controls language, “non-minimum
phase.” That is, tail controlled missiles move
in the wrong direction before they move in the
commanded direction. Canard controlled mis-
siles do not suffer this problem. See Mracek
(2005) and Gutman (2003) on the relative mer-
its of canards and tails. If the control rate is
used as the input instead of the control position,
there would be three states in the basic plant
used in the analysis, and three signals would
need to be included. Now if we consider the
fin position as a variable for feedback with the
accelerometer and gyro feedbacks, there are a
number of different combinations of sensor feed-
back signals that can be used to solve the three
state problem. There are, in fact, nine possible
topologies, two of which are consistently robust,
with one topology showing excellent robustness
characteristic. For a complete comparison see
Mracek and Ridgely (2005b). This topology is
shown in Fig. 1. Notice that there is an inte-
gral in the formulation. This limits the actual
command rate from being infinite when a step
command is input to the system. Without the
command going through the integrator the con-
troller would see the step, and, since the force
instantly produces an acceleration, the feedback
would jump (given no actuation delay). A typ-
ical acceleration response to a step acceleration
command and control deflection rate needed to
produce the response is presented in Figs. 2 and 3,
respectively.
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Tactical Missile
Autopilots, Fig. 1 Three
loop pitch topology
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The feedback control law is:

ıp D KIAzKss

Z
AZc dt � KIAz

Z
AZmdt

CK�

Z
qmdt C Kqqm

Clearly, other components within the autopilot
loop have to be considered. The control actu-
ation system (CAS) and inertial measurement
device characteristics need to be included in the
design and synthesis of the autopilot. To this
end, the gains are usually selected to provide the
best performance (in the time domain) based on
constraints. The above optimal control solution
provides guaranteed margins, but when the ad-
ditional components are included in the analysis
the margins are an important constraint in the
ultimate performance that can be achieved. Like
most control problems, the constraints are both
time and frequency dependent. Because of the
emphasis on performance, some of the margin
constraints must be examined closely. For a more
detailed treatment of the three loop autopilot see
Zarchan (2002).

Roll Control

Thus far we have discussed the two lateral chan-
nels of the missile. That is because those two are
the channels that directly affect the miss distance.
The third channel does not directly influence the
miss but it still is usually controlled. The roll
channel is usually the fastest of the channels for
a tactical missile. Historically, the three channels
were decoupled by moving the roll “out of the

way” of the other channels by designing to a
higher bandwidth than the pitch and yaw chan-
nels. Because of the need for squeezing perfor-
mance this practice is not always employed. The
cost of not increasing the bandwidth of the roll
beyond the pitch and yaw is that the interde-
pendence of the channels needs more scrutiny.
The roll channel has only one sensor element,
the roll rate senor. This measures the angular
rate of the body about its central axis relative
to the inertial frame. The objective, and thus the
autopilot, can differ depending on the missile
application. Mostly the objective would be one
of the following: maintain zero roll rate, zero
integral of roll rate, or some preferred Euler angle
orientation. The last two can be accomplished
with the same autopilot architecture, with excep-
tion handling for the Euler roll control based on
the singularity in the Euler roll angle at ˙90ı
pitch orientations.

Since there is only one sensor and one control,
this channel is a classical SISO system and can be
controlled with a proportional derivative (PD) or
proportional integral derivative (PID) controller.
The three loop topologies with integral roll rate
reference are presented in Fig. 4.

Gain Scheduling

Early generation missiles had analog autopilots
and some were marvels of ingenuity. Now digital
control is used almost exclusively. As can be
readily seen from the above discussion, the
autopilots performance is largely dictated by
gains within a given topology. Unlike with early
autopilots, with digital control the gains can be
set precisely and can vary greatly as needed

Tactical Missile
Autopilots, Fig. 4 Three
loop roll topology
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over a wide range of flight conditions. Rarely
can a single set of gains be found that provides
adequate performance under all conditions. Thus,
the autopilot design process is to design for a
large number of flight conditions and then join
the individual designs into a coherent whole.
Typically, the conditions for the individual
designs would be something like Mach number,
altitude, and center of mass location. Once the
individual gains are designed, they are joined
together through an algorithm. Most likely they
are “looked up” as a continuous function of
the independent variables through some sort of
interpolation. This gain changing philosophy is
called gain scheduling. There have been some
successful attempts for full envelope autopilot
design. Dynamic inversion or model-based
approaches have also been developed, most
notably JDAM (Wise et al. 2005) where the
autopilot was borrowed and adjusted on the fly
from a sister design. The argument for the validity
of this approach is that the flight conditions are
not changing rapidly so they can be ignored.
Of course the synthesis of the design needs to
include examination of “off break point” condi-
tions (flight conditions within the flight envelope
that were not considered in the design process)
to ensure compliance with stability requirements.
History has shown that tactical missile autopilot
gains tend to be somewhat power functions
of dynamic pressure based on the design
constraints.

Other Considerations

The selection of gains using planar linear models
and then scheduling them is not the complete
autopilot design exercise. There are other chal-
lenges that must be considered. First, the plant
equations are coupled through both the kinematic
equations and the aerodynamics of the problem.
There are two predominant ways to attack this
problem in autopilot design. The first is as dis-
cussed earlier in which the system is made to
be as decoupled as possible, create gains for

the decoupled system and analyze them in the
coupled system. The second is to use feedback
to create a more integrated design through cross
coupling terms.

Besides the coupling there can be other prob-
lems. The design problem is hard enough as de-
scribed above, but we have learned over the years
that the models developed earlier have neglected
certain aspects of the missile that can lead to
problems. One aspect is that missiles can be very
flexible, and since an inertial sensor is being used
for feedback, the flexible characteristics can drive
the missile unstable. The flexible characteristics
were examined by Nesline and Nesline (1985).
In that paper, the flexible model is presented and a
technique for ignoring the first mode is discussed.
(It should be noted that the model presented in the
appendix has some “typos” and should be used
with caution.)

Another aspect is the consideration of
nonlinear elements of the autopilot. These
could include integrator reset logic, command
error limits, and acceleration limits. The
three loop autopilot has an integrator and
the fact that integrators “wind up” when the
output is saturated. For tactical missiles this
saturation could be caused by position or
rate limits. The integrator should be reset
to account for these conditions so that the
missile responds quicker when the system
is no longer in a saturated condition. The
command error limits can be used to modify
the response characteristics to achieve a
more consistent response. Finally, acceleration
limits are used to limit the input into the
system such that the guidance commands
do not put the missile into a position from
which it cannot maintain controlled flight.
Generating acceleration limits is a complex topic
itself.

Summary and Future Directions

Tactical missile autopilots are generally designed
by separating the problem into two independent
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lateral controls (pitch and yaw), with a third
control governing the roll attitude. A good au-
topilot design produces a balance between per-
formance and robustness and incorporates non-
linear elements and integrator resets. The design
process take into account robustness throughout
the flight envelope and structural elements.

From a controls standpoint, the future direc-
tion of tactical missile autopilot development is
in nonlinear, adaptive, and fault tolerant control.
Adaptive control is useful not only because it
provides a more predictable flight response but
also because of the potential in reducing or maybe
even eliminating development time.

Cross-References

�Aircraft Flight Control
� PID Control
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Time-Scale Separation in Power
System Swing Dynamics: Singular
Perturbations and Coherency

Joe H. Chow
Department of Electrical and Computer Systems
Engineering, Rensselaer Polytechnic Institute,
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Abstract

Large power systems often exhibit slow and
fast electromechanical oscillations between
interconnected synchronous machines. The
slow interarea oscillations involve coherent
groups of machines swinging together. This
coherency phenomenon can be attributed to
the coherent areas of machines being weakly
coupled, either because of higher impedance
transmission lines, heavily loaded transmission
lines, or fewer connections between the coherent
areas compared to the connections within a
coherent area. Singular perturbations can be used
to display the time-scale separation of the slow
interarea modes and the faster local modes.

Keywords

Model reduction; Power system oscillations; Sin-
gular perturbations; Two-time-scale systems

Interarea Mode Oscillation in a Power
System

A large power system consists of interconnected
synchronous machines supplying power to
loads via transmission lines. As a dynamical
system, it can be considered as the rotating
inertias of the synchronous machines interacting
electrically through the impedances of the
transmission system. During a disturbance, such
as a lightning strike on a transmission line, the
rotating inertias will oscillate against each other.
The frequency and extent of these oscillations
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Time-Scale Separation in Power SystemSwingDynamics: Singular Perturbations and Coherency, Fig. 1 Two-
area, four-machine system example
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may vary: the local modes of frequencies
1–2.5 Hz originate from the interactions of
a few close-by machines, and the interarea
modes of frequencies 0.2–0.8 Hz involve groups
of machines swinging against other groups.
Coherency is this phenomenon of groups of
machines swinging together against other groups
of machines during disturbances.

Coherency can be illustrated in the simple
power system shown in Fig. 1 (Rogers 2000). The
system consists of two areas: Generators 1 and
2 in Area 1 and Generators 11 and 12 in Area
2. For a disturbance in Area 1, Fig. 2 shows the
response of the machine speeds. The interarea
mode consists of Generators 1 and 2 swinging
coherently against Generators 11 and 12. The

difference between the responses of Generators
1 and 2 is due to the local mode in Area 1, which
is excited by the disturbance.

Coherency Analysis

Coherency with respect to the slow interarea
modes, also known as slow coherency, is an
inherent property of many power systems. Tradi-
tional power systems consist of operating regions
dictated by physical or administrative constraints
with relatively strong connections within an
operating region. These control regions are also
interconnected with tielines to share base-load
and seasonal power resources as well as to rely on
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each other for reserves. Thus a practical intercon-
nected power system will, by design, necessarily
have strong connections within each operating
region and weaker connections between the
regions. Due to the time-scale separation of the
slow interarea modes and the faster local modes,
the coherency phenomenon can be analyzed
using singular perturbations method provided
a suitable small parameter can be identified.

For a simplified coherency analysis, the lin-
earized second-order model of an N -machine
power system

M
d 2�ı

dt2
D K�ı (1)

can be used. In (1), ı is the N -dimensional
vector of individual machine rotor angles ıi , i D
1; : : : ; N , � denotes small perturbations, M is
the diagonal matrix of machine rotational inertias
mi , i D 1; : : : ; N , and the connection matrix K

consists of the linearized synchronizing coeffi-
cients Kij between machines i and j , denoting
the restoring force between the two machines.

An important property of K is

Kii D �
NX

j D1;j ¤i

Kij (2)

that is, the sum of each row of K is zero. Thus
K has a zero eigenvalue, which is known as
the system mode. This mode arises due to the
lack of a reference, as only the relative angles
between the machines are important. It can be
eliminated when one of the machines is chosen
as the reference.

Suppose the N -machine system has r areas of
coherent machines, whose internal connections
within the areas are stronger than the external
connections between the areas. The weak connec-
tion strength is denoted by a small parameter ",
which can be the ratio of the relative stiffness of
the internal transmission lines versus the external
transmission lines, or the ratio of the smaller
number of external connections versus the larger
number of internal connections, or both. Thus
the connection matrix of linearized synchronizing
coefficients can be rewritten as

K D KI C "KE (3)

where KI is the matrix of internal connections
and KE is the matrix of external connections
scaled by ". If the machine angles in each co-
herent area are arranged in consecutive order in
the vector ı, then KI is block diagonal with r

zero eigenvalues, that is, one system mode per
area.

Singular Perturbation Analysis

To exhibit the time scales in (1) and (3), a trans-
formation to obtain the slow variables and the
fast variables is introduced. The slow motion is
obtained by defining for each area, an inertia-
weighted aggregate variable

y˛ D
nX̨

iD1

m˛
i �ı˛

i =m˛;

m˛ D
nX̨

iD1

m˛
i ; ˛ D 1; 2; : : : ; r

(4)

where n˛ is the number of machines in area ˛, m˛
i

is the inertia of machine i in area ˛, and m˛ is the
aggregate inertia of area ˛. For the fast dynamics,
we select in each area a reference machine, say
the first machine, and define the motions of the
other machines in the same area relative to this
reference machine by the local variables

z˛
i�1 D �ı˛

i � �ı˛
1 ; i D 2; 3; : : : ; n˛;

˛ D 1; 2; : : : ; r

(5)

The transformations (4) and (5) can be combined
to form

�
y

z

�
D

�
M �1

a U T M

G

�
�ı (6)

where

U D blockdiag.u1; u2; : : : ; ur / (7)
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is the grouping matrix with n˛ �1 column vectors

u˛ D �
1 1 : : : 1

�T
; ˛ D 1; 2; : : : ; r (8)

Ma D diag.m1; m2; : : : ; mr/ D U T M U (9)

and

G D blockdiag.G1; G2; : : : ; Gr/ (10)

with G˛ being the .n˛ � 1/ � n˛ matrix

G˛ D

2
664

�1 1 0 : 0

�1 0 1 : 0

: : : : :

�1 0 0 : 1

3
775 (11)

The inverse of this transformation is explicitly
known

�ı D �
U GT.GGT /�1

� �
y

z

�
(12)

Applying the transformation (6) to the model
(1) and (3), the electromechanical model be-
comes

Ma Ry D "Kay C "Kad z

Md Rz D "Kday C .Kd C "Kdd /z (13)

where

Md D .GM �1GT /�1; Ka D U T KEU

Kda D U T KEM �1GT Md ;

Kda D Md GM �1KEU

Kd D Md GM �1KI M �1GT Md ;

Kdd D Md GM �1KEM �1GT Md (14)

Note that Ka, Kad , and Kda are independent
of the internal connection matrix KI because
KI U D 0: Furthermore, Ka is negative semi-
definite and Kdd is negative definite. System
(13) is in the standard singularly perturbed form
(Kokotović et al. 1986) showing that y is the
slow variable and z is the fast variable. Thus "

is both the weak connection parameter and the

singular perturbation parameter, giving rise to
slow coherency.

The dynamics of the singularly perturbed
system (13) are approximated by the interarea
modes ˙j

p�"�.M �1Ka/ and the local

modes ˙j

q
��.M �1

d Kdd /, where � denotes
eigenvalues.

Identifying Coherent Areas

Several methods can be used to identify coherent
areas, including the following:
1. Time simulation method (Podmore 1978):

This method simulates the dynamic responses
to a selected set of disturbances and groups
the machines having similar time responses
as coherent areas. For a faster simulation, a
linearized power system model can be used.

2. Eigenvector method (Chow et al. 1982): This
method computes the slow eigenvalues of the
matrix M �1K and identifies machines with
similar row vectors of the slow eigenvector
matrix as coherent machines.

3. Weak link methods (Nath et al. 1985;
Zaborszky et al. 1982): These methods search
through the transmission line impedances to
find the weak links between the areas.

Applications

The applications of the coherency concept in-
clude:
1. Dynamic model reduction (deMello et al.

1975): The synchronous machines in a
coherent area can be aggregated into a single
equivalent machine, thus reducing the system
size. Model reduction programs capable
of handling upwards of 30,000 buses are
available (Morison and Wang 2013).

2. Interarea mode analysis and damping con-
trol design (Larsen et al. 1995): Damping
of interarea modes is an operational concern
for systems with heavily loaded long-distance
transmission lines. The slow coherency con-
cept contributes to the development of damp-
ing controller design.
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3. Islanding as a defense mechanism (You et al.
2004): During system disturbances causing
severe power flow interruption, the last resort
may be to separate the systems into viable
islands, avoiding a total system blackout. Co-
herent areas tend to be natural choices of
islands.
In addition to power system analysis, the

coherency concept and methods can potentially
be applied to dynamic systems with a system
mode (eigenvalue equal to 0 for a continuous-
time model and eigenvalue equal to 1 for
a discrete-time model). An example is the
PageRank computation in (Ishii et al. 2012).

Cross-References

�Consensus of Complex Multi-agent Systems
�Lyapunov Methods in Power System Stability
�Markov Chains and Ranking Problems in Web

Search
�Model Order Reduction: Techniques and Tools
� Small Signal Stability in Electric Power Sys-

tems

Recommended Reading

An early investigation of coherency was reported
in Podmore and Germond (1977). A recent com-
pilation of power system coherency, model reduc-
tion, and interarea oscillation results can be found
in Chow (2013).
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Abstract

Tracking and regulation refer to the ability of
a control system to track/reject a given family
of reference/disturbance signals modelled as so-
lutions of a differential/difference equation. The
problem can be posed as a stabilization prob-
lem with a constraint on the steady-state re-
sponse of the system. For linear, time-invariant,
systems, the problem can be solved provided
a system of linear matrix equations admits a
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solution. Properties of this system of equations
are discussed, together with a general property of
all controllers achieving tracking and regulation:
the so-called internal model principle.

Keywords

Internal model principle; Linear systems; Regu-
lation; Tracking

Introduction

Consider a linear system affected by disturbances
and such that its output is required to asymp-
totically track a certain, prespecified, reference
signal. In what follows, we discuss and solve
this control problem known as the tracking and
regulation problem.

Consider a linear control system described by
equations of the form

�x D Ax C Bu C P d;

e D Cx C Qd;
(1)

with x.t/ 2 Rn, u.t/ 2 Rm, e.t/ 2 Rp,
d.t/ 2 Rr , and A, B , P , C , and Q constant
matrices. In Eq. (1), �x D �x.t/ stands for
Px.t/, if the system is continuous-time, and for
x.t C 1/, if the system is discrete-time. Since the
system is time-invariant, it is assumed, without
loss of generality, that all signals are defined for
t � 0, that is, if the system is continuous-time,
then t 2 RC, i.e., the set of nonnegative real
numbers, whereas if the system is discrete-time,
then t 2 ZC, i.e., the set of nonnegative integers.
For ease of notation, the argument “t” is dropped
whenever this does not cause confusion, and we
use the notation t � 0 to denote either RC or ZC.

The signal d.t/, denoted exogenous signal,
is in general composed of two components: the
former models a set of disturbances acting on
the system to be controlled and the latter a set
of reference signals. In what follows we assume
that the exogenous signal is generated by a lin-
ear system, denoted exosystem, described by the
equation

�d D Sd; (2)

with S a matrix with constant entries. Note
that, under this assumption, it is possible to
generate, for example, constant or polynomial
references/disturbances and sinusoidal refer-
ences/disturbances with any given frequency.

The variable e.t/, denoted tracking error, is
a measure of the error between the ideal be-
havior of the system and the actual behavior.
Ideally, the variable e.t/ should be regulated
to zero, i.e., should converge asymptotically to
zero, despite the presence of the disturbances. If
this happens, we say that the tracking error is
regulated to zero, i.e., converges asymptotically
to zero; hence, the disturbances are not affect-
ing the asymptotic behavior of the system and
the output Cx.t/ is asymptotically tracking the
reference signal �Qd.t/. In general the tracking
error does not naturally converge to zero; hence,
it is necessary to determine an input signal u.t/

which drives it to zero. The simplest possible way
to construct such an input signal is to assume that
it is generated via static feedback of the state x.t/

of the system to be controlled and of the state d.t/

of the exosystem, i.e.,

u D Kx C Ld: (3)

In practice it is unrealistic to assume that both
x.t/ and d.t/ are measurable; hence, it may be
more natural to assume that the input signal u.t/

is generated via dynamic feedback of the error
signal only, i.e., it is generated by the system

�� D F� C Ge

u D H�;
(4)

with �.t/ 2 R� , for some � > 0, and F , G, and
H matrices with constant entries.

Using the above definitions, it is possible to
formally pose the regulator problem as follows.

Definition 1 (Full information regulator prob-
lem) Consider the system (1), driven by the
exosystem (2) and interconnected with the con-
troller (3). The full information regulator problem
is the problem of determining the matrices K
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and L of the controller such that ((S) stands for
stability and (R) for regulation):
(S) The system �x D .A C BK/x is asymptoti-

cally stable.
(R) All trajectories of the system

�d D Sd;

�x D .A C BK/x C .BL C P /d;

e D Cx C Qd;

(5)

are such that lim
t!1 e.t/ D 0:

Definition 2 (Error feedback regulator prob-
lem) Consider the system (1), driven by the
exosystem (2) and interconnected with the con-
troller (4). The error feedback regulator problem
is the problem of determining the matrices F , G,
and H of the controller such that:
(S) The system

�x D Ax C BH�;

�� D F� C GCx;

is asymptotically stable.
(R) All trajectories of the system

�d D Sd;

�x D Ax C BH� C P d;

�� D F� C G.Cx C Qd/;

e D Cx C Qd;

(6)

are such that lim
t!1 e.t/ D 0:

The Full Information Regulator
Problem

Consider the full information regulator problem
and assume the following.

Assumption 1 The matrix S of the exosystem
has all eigenvalues with nonnegative real part,
in the case of continuous-time systems, or with
modulo not smaller than one, in the case of
discrete-time systems.

Assumption 2 The system (1) with d D 0 is
reachable.

Assumption 1 implies that there are no initial
conditions d.0/ such that the signal d.t/ con-
verges (asymptotically) to zero. This assumption
is not restrictive. In fact, disturbances converging
to zero do not have any effect on the asymptotic
behavior of the system, and references which
converge to zero can be tracked simply by driving
the state of the system to zero, i.e., by stabilizing
the system. Assumption 2 implies that it is pos-
sible to arbitrarily assign the eigenvalues of the
matrix A C BK by a proper selection of K . Note
that, in practice, this assumption can be replaced
by the weaker assumption that the system (1) with
d D 0 is stabilizable.

We now present a preliminary result which
is instrumental to derive a solution to the full
information regulator problem.

Lemma 1 Consider the full information regula-
tor problem. Suppose Assumption 1 holds. Sup-
pose, in addition, that there exist matrices K and
L such that condition (S) holds.

Then condition (R) holds if and only if there
exists a matrix … 2 Rn�r such that the equations

…S D .A C BK/… C .P C BL/;

0 D C … C Q;
(7)

hold.

Proof Consider the system (5) and the coordi-
nates transformation

Od D d;

Ox D x � …d;

where … is the solution of the equation

…S D .A C BK/… C .P C BL/:

This equation is a so-called Sylvester equation.
The Sylvester equation is a (matrix) equation of
the form

A1X D XA2 C A3;
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in the unknown X . This equation has a unique
solution, for any A3, if and only if the matrices A1

and A2 do not have common eigenvalues. Note
that, by condition (S) and Assumption 1, there is
a unique matrix … which solves this equation.
In the new coordinates Ox and Od , the system is
described by the equations

� Od D S Od;

� Ox D .A C BK/ Ox;

e D C Ox C .C … C Q/ Od:

By condition (S) lim
t!1 Ox.t/ D 0, hence condi-

tion (R) holds, by Assumption 1, if and only if
C … C Q D 0: In summary, under the stated
assumptions, condition (R) holds if and only if
there exists a matrix … such that Eqs. (7) hold.

We are now ready to state and prove the result
which provides conditions for the solvability of
the full information regulator problem.

Theorem 1 Consider the full information reg-
ulator problem. Suppose Assumptions 1 and 2
hold. There exists a full information control law
described by Eq. (3) which solves the full infor-
mation regulator problem if and only if there exist
two matrices … and � such that the equations

…S D A… C B� C P;

0 D C … C Q;
(8)

hold.

Proof (Necessity) Suppose there exist two ma-
trices K and L such that conditions (S) and
(R) of the full information regulator problem
hold. Then, by Lemma 1, there exists a matrix
… such that Eqs. (7) hold. As a result, the
matrices … and � D K… C L are such that
Eqs. (8) hold.

(Sufficiency) The proof of the sufficiency is con-
structive. Suppose there are two matrices …

and � such that Eqs. (8) hold. The full infor-
mation regulator problem is solved selecting
K and L as follows. The matrix K is any
matrix such that the system �x D .A CBK/x

is asymptotically stable. By Assumption 2,

such a matrix K does exist. The matrix L is
selected as L D � � K…: This selection is
such that condition (S) of the full information
regulator problem holds; hence, to complete
the proof, we have only to show that, with K

and L as selected above, Eqs. (7) hold. This is
trivially the case. In fact, replacing L in (7)
yields Eqs. (8), which hold by assumption.
As a result, also condition (R) of the full
information regulator problem holds, and this
completes the proof.

The proof of Theorem 1 implies that a con-
troller which solves the full information regulator
problem is described by the equation

u D Kx C .� � K…/d;

with K such that a stability condition holds,
and … and � such that Eqs. (8) hold. By As-
sumption 2, the stability condition can be always
satisfied. As a result, the solution of the full
information regulator problem relies upon the
existence of a solution of Eqs. (8).

The FBI Equations

Equations (8), known as the Francis-Byrnes-
Isidori (FBI) equations, are linear equations in
the unknowns … and � , for which the following
statement holds.

Lemma 2 Equations (8), in the unknowns … and
� , are solvable for any P and Q if and only if

rank

�
sI � A B

C 0

�
D n C p; (9)

for all s which are eigenvalues of the matrix S .

For single-input, single-output systems (i.e.,
m D p D 1), the condition expressed by
Lemma 2 has a very simple interpretation. In fact,
the complex numbers s such that

rank

�
sI � A B

C 0

�
< n C 1
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are the zeros of the system

�x D Ax C Bu;

y D Cx;

that is the roots of the numerator polynomial of
the transfer function W.s/ D C.sI �A/�1B; i.e.,
the zeros of W.s/. This implies that, for single-
input, single-output systems, the full information
regulator problem is solvable if and only if the
eigenvalues of the exosystem are not zeros of the
transfer function of the system (1) with input u,
output e, and d D 0.

The Error Feedback Regulator
Problem

To provide a solution to the error feedback
regulator problem, we need to introduce a new
assumption.

Assumption 3 The system

�
�x

�d

�
D

�
A P

0 S

� �
x

d

�
;

e D �
C Q

� �
x

d

� (10)

is observable.

Note that Assumption 3 implies observability
of the system

�x D Ax;

y D Cx:
(11)

To show this property, note that observability of
the system (10) implies that

rank

2
666664

C Q

CA
:::

:::
:::

CAnCr�1
:::

3
777775

D n C r:

This, in turn, implies

rank

2
6664

C

CA
:::

CAnCr�1

3
7775 D n

and, by Cayley-Hamilton Theorem,

rank

2
6664

C

CA
:::

CAn�1

3
7775 D n;

which implies observability of system (11). Sim-
ilarly to what discussed in the case of Assump-
tion 2, Assumption 3 can be replaced by the
weaker assumption that the system (10) is de-
tectable. We are now ready to state and prove the
result which provides conditions for the solvabil-
ity of the error feedback regulator problem.

Theorem 2 Consider the error feedback regu-
lator problem. Suppose Assumptions 1–3 hold.
There exists an error feedback control law de-
scribed by Eq. (4) which solves the full informa-
tion regulator problem if and only if there exist
two matrices … and � such that the equations

…S D A… C B� C P;

0 D C … C Q;
(12)

hold.

Remark Theorem 2 can be alternatively stated
as follows. Consider the error feedback regulator
problem. Suppose Assumptions 1–3 hold. Then
the error feedback regulator problem is solvable if
and only if the full information regulator problem
is solvable.

Proof (Necessity) The proof of the necessity is
similar to the proof of the necessity of Theo-
rem 1, hence omitted.

(Sufficiency) The proof of the sufficiency is con-
structive. Suppose there are two matrices …

and � such that Eqs. (12) hold. Then, by The-
orem 1, the full information control law u D
KxC.��K…/d; with K such that the system
�x D .A C BK/x is asymptotically stable,
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solves the full information regulator prob-
lem. This control law is not implementable,
because we only measure e. However, by As-
sumption 3, it is possible to build asymptotic
estimates 	 and ı of x and d ; hence, imple-
ment the control law

u D K	 C .� � K…/ı: (13)

To this end, consider an observer described by
the equation

�
�	

�ı

�
D

�
A P

0 S

� �
	

ı

�

C
�

G1

G2

� ��
C Q

� �
	

ı

�
� e

�

C
�

B

0

� �
K � � K…

� �
	

ı

�
:

The estimation errors ex D x � 	 and ed D
d � ı are such that

�
�ex

�ed

�
D

��
A P

0 S

�
C

�
G1

G2

� �
C Q

��

�
ex

ed

�
I (14)

hence, by Assumption 3, there exist G1

and G2 that assign the eigenvalues of this
error system. Note now that the control
law (13) can be rewritten as u D Kx C
.� � K…/d � .Kex C .� � K…/ed / I
hence, the control law is composed of the
full information control law, which solves
the regulator problem, and of an additive
disturbance, which decays exponentially to
zero. Such a disturbance does not affect
the regulation requirement, provided the
closed-loop system is asymptotically stable.
Therefore, to complete the proof, we need
to show that condition (S) holds. In the
coordinates x, ex, and ed , the closed-loop
system, with d D 0, is described by the
equations

2
64

�x

�ex

�ed

3
75 D

2
64

A C BK �BK �B.� � K…/

0 A C G1C P C G1Q

0 G2C S C G2Q

3
75

2
64

x

ex

ed

3
75 : (15)

Recall that the matrices G1 and G2 have been
selected to render system (14) asymptotically
stable and that K is such that the system �x D
.ACBK/x is asymptotically stable. As a result,
system (15) is asymptotically stable.

The Internal Model Principle

The proof of Theorem 2 implies that a controller
which solves the error feedback regulator prob-
lem is described by equations of the form (4) with

�D
"

	

ı

#
;

F D
"
A C G1C C BK P C G1Q C B.� � K…/

G2C S C G2Q

#
;

G D
"

G1

G2

#
; H D

h
K � � K…

i
;

(16)

K , G1, and G2 such that a stability condition
holds and … and � such that Eqs. (12) hold.
This controller, and in particular the matrix F ,
possesses a very interesting property.

Proposition 1 (Internal model property) The
matrix F in Eq. (16) is such that

F † D †S;

for some matrix † of rank r . In particular, any
eigenvalue of S is also an eigenvalue of F .

Proof Let

† D
�

…

I

�

and note that rank† D r , by construction, and
that
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F † D
�

A… C G1C … C BK… C P C G1Q

CB.� � K…/ � G2C … C S � G2Q

�

D
�

.A… C B� C P / C G1.C … C Q/

S � G2.C … C Q/

�

D
�

…S

S

�
D †S;

hence the first claim. To prove the second claim,
let � be an eigenvalue of S and v the correspond-
ing eigenvector. Then Sv D �v; hence,

F †v D †Sv D �†v;

which shows that � is an eigenvalue of F with
eigenvector †v, and this proves the second claim.

It is possible to prove that the property high-
lighted in Proposition 1 is shared by all error
feedback control laws which solve the considered
regulation problem. This property, which is often
referred to as the internal model principle, can be
interpreted as follows. The control law solving
the regulator problem has to contain a copy of
the exosystem, i.e., it has to be able to generate,
when e D 0, a copy of the exogenous signal.

Summary and Future Directions

The problem of tracking and regulation for linear
systems in the presence of references and/or dis-
turbances generated by a linear signal generator
has been solved. It has been shown that the
problem is solvable provided a system of linear
matrix equations admits a solution. The tracking
and regulation problem can be studied and solved
for more general classes of systems, including
nonlinear systems, distributed parameter systems,
and hybrid systems, exploiting the same ideas
presented in this article.
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Abstract

The main objective of tracking model predictive
control is to steer the tracking error, that is, the
difference between the reference and the output,
to zero while the constraints are satisfied. In order
to predict the expected evolution of the tracking
error, some assumptions on the future values
of the reference must be considered. Since the
reference may differ from expected, the tracking
problem is inherently uncertain.

The most extended case is to assume that the
reference will remain constant along the pre-
diction horizon. Tracking predictive schemes for
constant references are typically based on a two-
layer control structure in which, provided the
value of the reference, first, an appropriate set
point is computed and then a nominal MPC
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is designed to steer the system to this target.
Under certain assumptions, closed-loop stability
can be guaranteed if the initial state is inside the
feasibility region of the MPC. However, if the
value of the reference is changed, then there is no
guarantee that feasibility and stability properties
of the resulting control law hold. Specialized
predictive controllers have been designed to deal
with this problem. Particularly interesting is the
so-called MPC for tracking, which ensures recur-
sive feasibility and asymptotic stability of the set
point when the value of the reference is changed.

The presence of exogenous disturbances or
model mismatches may lead to the controlled
system to exhibit offset error. Offset-free control
in the presence of unmeasured disturbances can
be addressed by using disturbance models and
disturbance estimators together with the tracking
predictive controller.

Keywords

Loss of feasibility; MPC for tracking; Offset-free
control; Set-point tracking

Introduction

The problem of designing and stabilizing model
predictive control (MPC) schemes to regulate a
system to the origin has been widely studied,
and there are well-known solutions for varied
cases including linear, nonlinear, and uncertain
systems, among others (Rawlings and Mayne
2009).

The objective of tracking MPC is to ensure a
tracking error, which is the difference between a
reference or desired output r and the actual output
y, tends to zero.

The most common tracking problem is when
the reference r is constant. In this case, the con-
troller is required to steer the state x of the plant
and the control input u applied to the plant to a set
point .xr ; ur / where the tracking error yr is zero
and the plant is in equilibrium (at rest); the state
xr is called a target. It is also necessary to ensure
that xr is asymptotically stable for the controlled

system, i.e., that the state x converges to xr and
that, near xr , small changes in x cause small
changes in the subsequent trajectory. A relatively
straightforward solution for this problem exists.

Set-point tracking is a relevant control prob-
lem in the process industry in which the plant is
typically designed to operate at an equilibrium
point that maximizes the profit of the plant. In
this case, the optimal set point is calculated online
by a real-time optimizer (RTO) according to an
economic criteria. The set points remain constant
for a long period of time, until the RTO, which
is executed at a very low frequency, calculates a
different set point. The steady-state target associ-
ated to the given set point must be calculated and
provided to the MPC to track this target.

The tracking problem is considerably more
difficult when the reference r varies in a way not
known a priori because MPC is naturally suited
to deterministic control problems. Uncertainty
requires the “invention” of special techniques so
that a variety of solutions have been proposed
in the literature to deal with a varying reference
(Bemporad et al. 1997; Chisci and Zappa 2003;
Limon et al. 2008; Maeder and Morari 2010;
Pannocchia and Rawlings 2003; Rossiter et al.
1996).

Another tracking problem arises when there
exists a mismatch between the model used for
prediction in the optimal control problem and the
real plant. If the reference is constant and the
model mismatch is sufficiently small not to cause
loss of asymptotic stability, the state and control
will converge to values at which the predicted
tracking error, but not the actual tracking error,
is zero. The difference between the predicted and
actual values of the output y is known as the
offset; offset-free tracking when the reference is
constant may be achieved by incorporation of a
suitable observer to estimate the offset.

Notation
The set IM denotes the set of integers
f0; 1; � � � ; M g. In denotes the identity matrix
in R

n�n. z denotes a signal (or time sequence)
z D fz.0/; z.1/; � � � g, whose cardinality is
inferred from the context. A signal that depends
on a parameter � is denoted as z.�/ and z.i I �/
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denotes its i th element. A closed polyhedron
X � R

n is a set that results of the intersection
of a finite number of hyperplanes as follows:
X D T

i fx W Fi x � fi g, where Fi 2 R
1�n and

fi 2 R.

Problem Statement

In this article, for the sake of simplicity, we
consider that the system to be controlled can
be modeled as a linear time-invariant system
described by a discrete-time state-space linear
model:

x.k C 1/ D Ax.k/ C Bu.k/ (1a)

y.k/ D Cx.k/ (1b)

where x.k/ 2 R
n, u.k/ 2 R

m, and y.k/ 2 R
p are

the state, the manipulable inputs, and the outputs
of the system at time step k, respectively. This
model will be used to calculate the predictions in
the predictive controller.

The evolution of the plant must be such that
the constraint

.x.k/; u.k// 2 Z (2)

is satisfied for all k � 0. The set Z is a
closed polyhedron. Without loss of generality, we
assume that .0; 0/ 2 Z .

The main objective of tracking model predic-
tive control is to steer the system output to the
reference, that is, steer the tracking error y � r to
zero, while the constraints are satisfied. In order
to predict the expected evolution of the tracking
error, some assumptions on the future values
of the reference must be considered. Since the
reference may differ from expected, the tracking
problem is inherently uncertain.

Thus, assuming that the reference signal is
known a priori, r D fr.0/; r.1/; � � � g, the tracking
model predictive control law 
.x.k/; r/ must be
designed to ensure that the resulting controlled
system

x.k C 1/ D Ax.k/ C B
.x.k/; r/

y.k/ D Cx.k/

satisfies the constraints, i.e., .x.k/; u.k// 2 Z
for all k � 0 is stable and, if it is possible,
the controlled output converges to the reference,
that is,

lim
k!1 ky.k/ � r.k/k D 0:

It is assumed that the system is stabilizable
and that the outputs are linearly independent. It
is also considered that the state is measured and
available at each sample.

TrackingMPC for a Constant
Reference

The most simple tracking problem is to consider
that the reference signal is a constant signal in the
future equal to the actual value of the reference,
i.e., r.k/ D r . This control problem is very
common in the process industry, for instance,
where processes are typically designed to operate
at certain equilibrium point.

Determining the Set Point
Corresponding to each value r of the reference is
a set point .xr ; ur / that is ideally an equilibrium
point of the prediction model, i.e., it satisfies

xr D Axr C Bur : (3)

The set point .xr ; ur / is also required to satisfy

yr D Cxr D r (4)

and

.xr ; ur / 2 Z
so that the tracking error y � r is zero and the
constraint (2) is satisfied at the set point. Because
the set point is an equilibrium point, the tracking
error remains zero once the set point is reached.

Conditions for the existence of a set point pos-
sessing the above properties are given in Rawl-
ings and Mayne (2009, Lemma 1.14).

In practice, the condition .xr ; ur / 2 Z is
replaced by .xr ; ur / 2 Zs � interiorfZg in
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order to ensure that the constraint .xr ; ur / 2 Z
is not active at the set point, and the tracking
error requirement is slightly relaxed so that the
set point is determined by solving

.xr ; ur / D arg min
.xs;us /2Zs

`t .xs; us; r/ (5)

where `t is a convex function, typically a
quadratic function as follows:

`t .xs; us; r/ D kCxs � rk2
Qs

C kusk2
Rs

This problem is referred to as steady-state
target optimization problem (Rao and Rawlings
1999).

Model Predictive Controller Design
If the reference to be tracked is a constant,
i.e., r.k/ D r for all k, then the control
objective is to stabilize the system and steer
the initial state x.0/ to the set-point state xr .
As is usual in model predictive control, a finite
horizon optimization problem that depends on
the current state x and the constant reference r is
solved yielding a control sequence uo.x; r/ D
fuo.0I x; r/; uo.1I x; r/; � � � ; uo.N � 1I x; r/g
and the associated state trajectory xo.x; r/ D
fxo.0I x; r/ D x; xo.1I x; r/; � � � ; xo.N I x; r/g,
where N is the prediction horizon. The first
element of this sequence, namely, uo.0I x; r/, is
applied to the system.

Because the reference is constant, the appro-
priate optimal control problem PN .x; r/ is a
slight variation of that discussed in the article
�Nominal Model-Predictive Control and is de-
fined by

min
u

N �1X
j D0

`.x.j /; u.j /; r/ C Vf .x.N /; r/

s:t: x.0/ D x; (6a)

x.j C 1/ D Ax.j / C Bu.j /;

j 2 IN �1 (6b)

.x.j /; u.j // 2 Z; j 2 IN �1 (6c)

x.N / 2 Xf .r/ (6d)

The stage cost function `.�/ is a measure of
the predicted tracking error set point, that is,
`.xr ; ur ; r/ D 0 and `.x; u; r/ � ˛1.kx � xrk/.
The terminal cost function Vf .�/ is such that

˛2.kx � xrk/ � Vf .xr ; r/ � ˛3.kx � xr k/:

Functions ˛i are K1 functions (see the article
�Nominal Model-Predictive Control). The set of
states where this optimization problem is feasible
is denoted as XN .r/.

The solution of the optimal control problem
PN .x; r/ yields the receding horizon control law


N .x; r/ D uo.0I x; r/

and the system under model predictive control
satisfies

x.k C 1/ D Ax.k/ C B
N .x.k/; r/ (7)

Because the horizon N is finite, xr is not nec-
essarily asymptotically stable for this system, but
asymptotic stability can be ensured if the terminal
cost function Vf .�/ and the terminal region Xf .r/

are chosen appropriately.
The functions `.�/, Vf .�/ and the set Xf .r/

must satisfy the following condition.

Stability conditions for nominal MPC: For all
x 2 Xf .r/, there exists a control input u such
that .x; u/ 2 Z and the successor state xC D
Ax C Bu are contained in Xf .r/ and

Vf .xC; r/ � Vf .x; r/ � �`.x; u; r/:

These conditions are trivially satisfied taking
Xf .r/ D xr and Vf .x; r/ D 0.

Under these assumptions, the optimiza-
tion problem is recursively feasible, i.e., if
PN .x.0/; r/ is feasible, then all subsequent
problems PN .x.i/; r/ are also feasible. Besides,
the optimal cost function is a Lyapunov function
of the system (7). Then, the set point .xr ; ur / is
an asymptotically stable equilibrium point of the
system (7) and the domain of attraction is XN .r/.

http://dx.doi.org/10.1007/978-1-4471-5058-9_1
http://dx.doi.org/10.1007/978-1-4471-5058-9_1
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Tracking MPC for a Changing
Reference

The previous predictive controller is inherently
deterministic, since it is assumed that the refer-
ence is known and this will remain constant in
the future. However, in a realistic scenario, the
reference may be changed without a predefined
deterministic law or even randomly. In this sec-
tion, a tracking predictive controller, for the case
when the reference is constant or varying but
ultimately constant, is presented.

Feasibility and Stability Issues
If the reference r is constant, tracking MPC
ensures asymptotic stability of the target state
xr and convergence to zero of the tracking error
y�r . However, if the reference r varies, recursive
feasibility (i.e., feasibility of PN .x.k/; r.k// at
each time instant k) and asymptotic stability may
be compromised. For each value of r , the feasi-
bility region XN .r/ is the set of states for which
PN .x; r/ has a solution; it is also the domain
of attraction for the closed-loop system (7). If r

changes value from r1 to r2, the terminal con-
straint set Xf .r2/ and the terminal cost function
Vf .�; r2/ have to be computed. The current state

x, which lies in XN .r1/, does not necessarily lie
in XN .r2/ so that 
N .�; r2/ is undefined and the
model predictive controller fails.

This phenomenon is illustrated for the double
integrator system where

A D
�
1 1

0 1

�
; B D

�
0 0:5

1 0:5

�
; C D �

1 0
�

and the set of constraints is given by

Z D f.x; u/ W kxk1 � 5; kuk1 � 0:3g

The initial state is x.0/ D .2:91; �1:83/ and
the initial value of the reference is r1 D �2. The
corresponding set point is .xr1 ; ur1/ where xr1 D
.�2; 0/ and ur1 D .0; 0/. If the reference changes
from r1 to r2, the new set point is .xr2 ; ur2/ where
xr2 D .4:5; 0/ and ur2 D .0; 0/. The horizon
is chosen to be N D 3 and the domains of
attraction for the two values of r are, respectively,
X3.r1/ and X3.r2/. These two domains, X3.r1/

and X3.r2/, are disjoint. While r D r1, the state
trajectory commencing at x.0/ 2 X3.r1/ remains
in X3.r1/. If r subsequently changes its value
to r2 at time t1, the model predictive controller

Tracking Model
Predictive Control, Fig. 1
Example of the double
integrator: terminal regions
(Xf .r1/ and Xf .r2/) and
domains of attraction of
MPC (X3.r1/, X3.r2/, and
X10.r2/)
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fails since x.t1/ does not lie in X3.r2/. This is
illustrated in Fig. 1.

These feasibility and stability issues can
be overcome if the predictive controller is
redesigned for the new set point. This would
require the calculation of a new terminal set
and a prediction horizon each time the set point
changes. For instance, in the example of Fig. 1,
if the terminal constraint is recalculated for r2

and the prediction horizon is chosen as N D 10,
then the MPC controller steers the system to
the reference r2 since x.0/ 2 X10.r2/. This
recalculation can be done off-line if the set-point
changes are a priori known (Findeisen et al. 2000;
Wan and Kothare 2003). Other methods to avoid
this issue are designing a predictive controller to
provide a certain degree of robustness to set-point
variations (Pannocchia 2004; Pannocchia and
Kerrigan 2005) and a predictive control law with
a mode to recover recursive feasibility (Chisci
and Zappa 2003; Rossiter et al. 1996) or using
specialized predictive control laws (Magni and
Scattolini 2005; Magni et al. 2001). Another
solution to this case is to use a reference governor
and a predictive controller (Bemporad et al. 1997;
Olaru and Dumur 2005).

Stabilizing MPC for Tracking
The idea behind the reference governor is to
introduce an artificial reference ra that is ma-
nipulated to ensure that the current state is in
the domain of attraction XN .ra/ while tends to
the actual reference r if r remains constant or
tends to a constant. In Limon et al. (2008), this
idea is used to formulate the MPC for tracking.
The artificial reference ra is an extra decision
variable in the optimal control problem to avoid
the loss of feasibility issue. In order to enforce
the convergence to the actual reference r , a term
that penalizes the deviation between the artificial
reference ra and the actual reference r , `o.r

a; r/

is added. This function is assumed to be convex
in ra. A suitable choice of this term is the cost
function of the steady-state target calculator (5),
i.e., `o.r

a; r/ D `t .xra ; ura ; r/, where .xra ; ura /

is the artificial set point associated to the artificial
reference ra.

The optimal model predictive control problem
P t

N .x; r/ for tracking is given by

min
u;ra

N �1X
j D0

`.x.j /; u.j /; ra/ C Vf .x.N /; ra/

C`o.ra; r/s:t:x.0/ D x; (8a)

x.j C 1/ D Ax.j / C Bu.j /;

j 2 IN �1 (8b)

.x.j /; u.j // 2 Z; j 2 IN �1 (8c)

ra 2 R (8d)

.x.N /; ra/ 2 � (8e)

where R D fr W .xr ; ur / 2 Zs ; Axr C Bur D
xr ; Cxr D rg.

Condition (3) is an extended terminal con-
straint of both the terminal state x.N / and the
artificial reference ra. The feasibility region of
this optimization problem Xt

N is the set of states
that can be steered to any reference of the set R
in N steps, that is,

Xt
N D

[
ra2R

XN .ra/

The terminal cost function Vf .�/ and the ter-
minal constraint set, � , must satisfy appropriately
modified stability conditions in order to ensure
recursive feasibility and asymptotic stability of
.xr ; ur /. The stability conditions are the follow-
ing.

Stability conditions for tracking MPC: For all
.x; ra/ 2 � , there exists a u satisfying:
(i) .x; u/ 2 Z

(ii) the successor state xC D Ax C Bu such that
.xC; ra/ 2 � and
Vf .xC; ra/ � Vf .x; ra/ � �`.x; u; ra/.

As shown in Limon et al. (2008), if the termi-
nal control law is chosen as u D K.x�xra /Cura

with K such that the eigenvalues of A C BK are
in the unitary disk, then the terminal set � can be
calculated using standard algorithms to compute
positively invariant sets for constrained linear
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systems and it is a polyhedron. A simple choice of
the terminal cost and constraint satisfying these
assumptions is Vf .�/ D 0 and � D f.x; ra/ W
x D xra g.

Theorem 1 If the stability conditions for track-
ing MPC hold, then predictive control law de-
rived from the optimal control problem P t

N .x; r/

is such that:
1. For all feasible initial state, i.e., x.0/ 2 Xt

N ,
and for all r 2 R

p, the optimization problem
is recursively feasible, that is, if P t

N .x.0/; r/

is feasible, then all the subsequent problems
P t

N .x.i/; r/ are also feasible.
2. If r is admissible, i.e., r 2 R, then the

set point .xr ; ur / is an asymptotically stable
equilibrium point of the closed-loop system
and the domain of attraction is Xt

N .
3. If r is not admissible, that is, r 62 R, then the

set point .xr� ; ur�/ such that

r� D arg min
ra2R `o.ra; r/

is asymptotically stable and the domain of
attraction is Xt

N .
4. The domain of attraction Xt

N is larger than the
domain of the nominal MPC for any reference
r 2 R, that is, XN .r/ � Xt

N , and contains all
the equilibrium points contained in Zs .

5. If the reference r.k/ is not constant and con-
verges to a steady value r , the optimization
problem is recursively feasible and the set
point .xr ; ur / is an asymptotically stable equi-
librium point for all x.0/ 2 Xt

N .

In Fig. 2a the aforementioned properties are
illustrated for the example of the double inte-
grator. The MPC for tracking has been designed
with the same prediction horizon N D 3 and the
same terminal control law and the terminal cost
function that in the previous tracking MPC case.
The initial state is also the same and the reference
signal is r.k/ D r2 for k � 30 and r.k/ D r1 for
k > 30. Notice that the tracking MPC cannot be
used to do this without redesign. In Fig. 2a, it can
be seen that the domain of attraction of the MPC
for tracking Xt

3 is larger than the domain provided
by the standard tracking MPC X3.r1/ or X3.r2/.

This figure also shows the state portrait of the
closed-loop trajectory. In Fig. 2b the trajectories
of the reference signal r, the controlled output
y, and the artificial target output yra D Cxra

are depicted. Notice the role of the artificial
target: yra differs from the reference in order to
guarantee recursive feasibility and finally con-
verges to the reference r to enforce asymptotic
stability.

Offset-Free Tracking

In practice there may exist mismatches between
the prediction model and the dynamics of the
real plant to be controlled, due, for instance, to
un-modeled nonlinearities or unmeasured distur-
bances. This would require to design the pre-
dictive controller to be robust to this uncertain
effects. Assuming that the predictive controller
based on nominal predictions is robustly stable
and considering that the controlled system con-
verges to a steady state, there may exist a steady
error between set point and the output.

This offset can be canceled taking into ac-
count a prediction model corrected by a distur-
bance model (Pannocchia and Rawlings 2003).
To achieve offset-free control, the disturbance
is assumed to be an integrating disturbance as
follows:

x.k C 1/ D Ax.k/ C Bu.k/ C Bd d.k/ (9a)

d.k C 1/ D d.k/ (9b)

y.k/ D Cx.k/ C Dd d.k/ (9c)

Matrices Bd and Dd define the disturbance
model and these are chosen to guarantee offset-
free control. They are typically chosen as Bd D 0

and Dd D Ip .
The disturbance signal d.k/ is estimated using

an observer based on the disturbance model. The
disturbance model and the estimator gains can
be calculated separately, but this may lead to
a poor closed-loop performance. A joint design
procedure has been proposed in Pannocchia and
Bemporad (2007).
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Tracking Model Predictive Control, Fig. 2 The double
integrator controlled by the MPC for tracking. (a) Com-
parison of the domains of attraction of the tracking MPC

X3.r1/ and X3.r2/ vs. the domain of attraction of the
MPC for tracking Xt

3 . (b) Trajectories of the reference,
the controlled output, and the artificial reference ra

Once the estimated disturbance Od is
available, the corrected prediction model (9)
must be used to calculate the MPC tar-
get in the steady-state target optimization
problem (5) .xr ; ur / and to calculate the
predictions in the optimization problem
PN .x; xr ; ur ; Od/.

Future Directions

Tracking model predictive control is an
inherently uncertain control problem due to the
unexpected changes in the reference. Constant
reference tracking has been widely studied and
there exist a number of nice solutions.
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The case of trajectory tracking is not as mature
as the set-point tracking case. If the reference
signal is known a priori, this can be used to
calculate the predicted cost. This control problem
can be solved by using a two-layer structure: a
trajectory planning on top of a predictive control
law that steers the system to the trajectory tar-
get. Asymptotic stability to the trajectory target
can be proved using terminal equality constraint
resorting on the regulation problem. Another in-
teresting line is to assume that the reference
is the output of a certain dynamic system. For
different families of trajectories, such as ramps
or sinusoidal signals, Maeder and Morari (2010)
has proposed a reference tracking MPC based on
extended disturbance models.

The problem of tracking MPC in case of
unknown (or changing) reference signals can be
considered an open problem that deserves more
research efforts.

Another interesting control problem is the
tracking of unreachable (equilibrium point as
well as trajectory) targets. Recently this problem
has been posed as an economic model predictive
control problem (Rawlings and Mayne 2009).
Therefore, the stabilizing design of economic
MPC presented in Angeli et al. (2012) can be
extended to the case of tracking unreachable
targets.

Cross-References

�Economic Model Predictive Control
�Nominal Model-Predictive Control
�Regulation and Tracking of Nonlinear Systems
�Tracking and Regulation in Linear Systems

Recommended Reading

The book Camacho and Bordons (2004) covers
the classic approach to the tracking MPC. In
Rawlings and Mayne (2009), the authors deal
with the tracking MPC in a very general and
clear way and survey existing results on stability,
target calculation, and offset-free control for lin-
ear and nonlinear models. In Muske (1997), the

reachability of set points is studied and in Rao
and Rawlings (1999), the target calculation prob-
lem. Disturbance models are widely analyzed
in Pannocchia and Rawlings (2003), Pannocchia
and Bemporad (2007), Maeder et al. (2009), and
Maeder and Morari (2010). Another offset-free
MPC based on the internal model principle can
be found in Magni and Scattolini (2007). Fur-
ther results on MPC for tracking are addressed
in Ferramosca et al. (2009). A survey on the
MPC for tracking can be found in Limon et al.
(2012).
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Abstract

Automotive transmissions are fundamental
components in modern vehicles. They are
required to make the engine operating at the
most efficient operating point for providing the
necessary torque at the wheels and minimizing
the fuel consumptions. Moreover, transmissions

should be able to smooth or to filter out power
source torque oscillations that can appear in
the driveline. For achieving such objectives,
the automotive industry has looked at different
technological solutions. The introduction of elec-
tronically controlled transmissions contributed
to augment the possibilities of new solutions
that would not have been implementable
without the flexibility and the performance of
electronic control. Thus, recent technological
developments of automotive transmissions gave
the opportunity to engineers and control scientists
for investigating challenging control problems
with daily life practical applications.

Keywords

Actuators; Clutch engagement; Driveline; Dry
clutch; Electrohydraulic; Electronic control; Gear
shifting; Multivariable control; Optimal control;
Powertrain; Sensors; Smart materials; Torque
converter

Introduction

In motor vehicles, the transmission is an impor-
tant system that transfers the power generated
by the internal combustion engine to the wheels,
according to the driver’s requests. The transmis-
sion, together with the engine, the driveshaft,
differential, and driven wheels, constitutes the
powertrain (sometimes driveline or drive train
is used to denote the powertrain excluding the
engine and the transmission). The first fundamen-
tal objective of a transmission is to adjust the
ratio between the wheel speed and the engine
speed in order to achieve the optimal operating
point of the engine, independently of the vehicle
velocity. Indeed, typical internal combustion en-
gines provide low torques at low engine speeds,
and, thus, it is necessary to amplify the torque
making the engine work at higher speeds when
the vehicle is at low speeds, e.g., during a launch
from standstill. From an equivalent point of view,
the transmission allows to amplify the engine
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torque transferred to the wheels when higher
accelerations are needed. For such reasons, every
type of transmission has some devices that allow
selection of select the ratio between its input
shaft angular speed (engine side) and its output
shaft angular speed (the side toward the wheels).
The transmission’s input shaft is connected to the
flywheel of the engine, while the output shaft of
the transmission is connected to the final drive
(containing the differentials) through the drive
shaft. (In British English, the term propeller shaft
is also used when dealing with a rear-wheel-
driven vehicle.) Even though such subsystems
are differently located depending on the vehicle
layout (if front-wheel or rear-wheel driven or
even all-wheel driven), they all are parts of the
powertrain and determine its behavior.

Transmissions can be viewed also as systems
that allow the transfer of power from the engine
to the vehicle in a smooth and efficient way.
In order to achieve such basic and fundamental
objectives as well as to improve fuel economy,
performance, and drivability, many technologies
have been introduced into the market of automo-
tive transmissions.

Types of Transmissions

In manual transmissions (MT), a set of gears
provides each the different speed conversion ra-
tios, and any gear can be selected by the driver
by acting on the shift lever. For interrupting the
power flow during the gear selection, a clutch is
requested that disconnects the transmission from
the flywheel of the engine and reconnects it just
after the selection of the new gear. All such
operations are performed manually by the driver.

Automatic transmissions (AT) are the other
well-known type of automotive transmissions.
Hydraulic ATs do not have the clutch for connect-
ing the transmission to the flywheel; instead they
have a torque converter that provides the fluid
coupling between the transmission and the engine
realizing both a damping of the powertrain vibra-
tions and a torque multiplication. Moreover in
ATs, a set of planetary gear allows the selection

of different gear ratios. The driver selects only the
operation mode, and the selection of the gear is
implemented through the electronic control. The
main limits of these transmissions are the low ef-
ficiency (particularly due to the slip of the torque
converter), a larger space requirement, and a
higher weight. The new generations of automatic
transmissions have reduced such disadvantages,
thanks to the use of lightweight materials and
more shifting steps, and, above all, the replace-
ment of conventional hydraulic components by
electronic and electrohydraulic counterparts.

Indeed the electronic transmission control not
only improves fuel economy, performances, and
drivability, but it also gives flexibility and new
possibilities (e.g., diagnostics, fault detection,
integration with other subsystems) that overcome
the intrinsic disadvantages like complexity and
development cost (Deur et al. 2006). Electronic
transmission control played a fundamental role
also in the introduction of new technologies that
have exploited automatic control techniques.
Thus, in recent years, continuously variable
transmissions, automated manual transmissions,
dual clutch transmissions, and electrically
variable transmissions have appeared in the
market, which was traditionally dominated by
ATs and MTs (Sun and Hebbale 2005).

An automated manual transmission (AMT)
system can be viewed as an MT with some
controlled actuators as add-ons: it still has a (dry
or wet) clutch assembly and a multispeed gear-
box, both of which are equipped with electrome-
chanical or electrohydraulic actuators which are
commanded by an electronic control unit. In
AMTs the gearshift can be decided automatically
by the transmission control unit (TCU) or even
manually by the driver. In both cases after the
gearshift command, the TCU manages all the
shifting steps, through suitable signals sent to
the engine, the clutch assembly, and the gearbox.
This technology has the advantages of lower
weight, lower costs, and higher efficiency with
respect to ATs.

It is worth highlighting one limitation of
AMTs, the reduction in driving comfort caused
by lack of traction during gear shift actuation.
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Indeed the torque interruption leads to perceived
jerks due to vehicle acceleration discontinuity
and is very different compared to the smoother
conventional automatic transmissions with torque
converters (Lucente et al. 2007).

Automated manual transmissions have
become popular in Europe for their higher
performances with respect to MTs and for their
lower cost compared to ATs. In North America,
instead, their use is limited because of the
torque interruption during shifts that causes some
discomfort.

An offshoot of the AMT is the dual clutch
transmission (DCT), in which the gearbox
assembly has two separate and independent
clutches, one for odd gears and one for even
gears. In a DCT, shifts can be achieved without
noticeable torque gap, by applying the engine
torque to one clutch while the engine torque
is being disconnected from the other clutch.
The result is gentle, jerk-free gear shifts with
the same comfortable driving of an automatic
transmission combined with the efficiency
and the performance of an economic manual
transmission. In both DCT and AMT, electronic
control (in particular aimed to solve the clutch
engagement control problem) is the key to
ensuring a smooth torque transfer.

As a further transmission technology, the con-
tinuously variable transmission (CVT) enables
the engine to operate in a wide range of speed
and load conditions independently from the speed
and the torque requests of the vehicle. A modern
CVT system consists of a steel belt that runs
between two variable-width pulleys. The distance
between pulley cones can be varied to change
the gear ratio between shafts, thus generating an
infinite number of “gears.” A CVT is less efficient
than a standard discrete AT due to the losses
in the belt-pulley system, but it can improve
fuel economy by making the engine work in
better operating conditions. Related to CVT is the
electrically variable transmission (EVT) that
appeared in the market with hybrid electric ve-
hicles recently and use electric machines, namely
motors/generators with planetary gear sets, so as
to enable the function of CVTs with flexibility,
controllability, and better performance. This type

of transmission is usually found in hybrid electric
vehicles.

By looking at the different types of automotive
transmissions, it is possible to classify electron-
ically controlled transmissions into two groups:
discrete ratio and continuously variable transmis-
sions. The first group deals with the problem
of automating the shift scheduling (“when-to”)
or also controlling the shift execution (“how-
to”) (Hrovat and Powers 1988). The latter group
deals with control problems that live in a con-
tinuous domain (like classical “process control”),
and that allows the design of simpler control
software. Indeed the discrete ratio transmissions
are more complex to control since they determine
many large transients of short duration due to
gear shifts, and moreover their intrinsic mixed
discrete-continuous nature gives rise to dynamic
systems in which continuous time dynamics in-
teract with discrete event dynamics. In other
words such class of controlled transmissions can
be considered a significant application of what
control theory calls hybrid systems. This makes
transmission control a very interesting and chal-
lenging control engineering problem.

Control Problems for Automotive
Transmissions

Electronic control applied to automotive trans-
missions enables improved efficiency and fuel
economy, better shift quality and comfort, and
flexible driving. In order to achieve such ob-
jectives, different approaches can be used for
designing suitable control laws, and a hierarchi-
cal approach is often required for dealing with
the complexity of the several problems. Thus,
recently produced cars together with the engine
control unit also have a TCU that manages all
transmission operations and sends command sig-
nals to actuators in order to perform the desired
behavior. Some dedicated devices are then avail-
able for tackling challenging control problems
and for trying to solve them exploiting classical
feedback and/or modern model-based control.
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Low Level Control
In electronically controlled transmissions, many
hydraulic functions of conventional transmis-
sions have to be replaced by electrohydraulic
systems. Thus it is a fundamental requirement
to be able to control actuators in a suitable way.
Usually classical PID regulators are employed
for this type of low level controls whose aim
consists of regulating some variables to reference
values computed by a higher level controller. For
instance, in AMTs the concentric slave cylinder
is controlled to make the clutch disk follow a
position reference signal computed by the TCU.
The clutch position reference can be obtained
by taking into account some models of the
clutch transmission characteristic (Vasca et al.
2011), thus realizing a feedforward/feedback
architecture.

Other examples of low level controls in au-
tomotive transmissions are related to the clutch
fill process (Song et al. 2010) in ATs, or the
line pressure control, or also the CVT belt load
control.

Calibration Process
Most of the industrial control strategies applied
to automotive transmissions are based on feedfor-
ward/feedback architectures. Feedforward con-
trol typically relies on detailed models of the
transmission that quite often consist of some
lookup tables rather than specific physical mod-
els. Lookup tables are used also for implementing
adaptive feedback controllers, and thus, the use
of tables with calibrated variables is widespread
in automotive transmission control. With the in-
creasing number of required functionalities, the
calibration process for transmission control sub-
systems becomes more and more complex. Then
it becomes important to investigate automated
and systematic approaches for the calibration
process in order to improve the reliability and
performances and, above all, for diminishing the
development time.

Of course, a different approach that looks at
developing model-based control strategies could
be the way to reduce the number of calibration
variables and, thus, the calibration effort and
time. The main obstacle to that is the uncertain

environment that makes it very challenging to
find robust control solutions.

Gear Shifting
The gear shift execution is a common problem
in all discrete ratio transmission. In Figs. 1 and 2,
the schemes of two transmission architectures are
reported. Although we are looking at completely
different typologies like ATs and AMTs, the
gear shift problem is almost the same from an
abstract point of view: commanding the actuator
for getting a desired torque at the primary shaft of
the transmission in order to have the possibility
of disengaging the old gear, engaging the neutral
gear, and then engaging the new gear, without
shuffles, and limiting the jerk experienced by the
driver. In ATs the basic idea is to control the
hydraulic pressures of the torque converter to
transfer smoothly the power from the engine to
the driveline while minimizing the torque distur-
bance at the output shaft. Analogously in AMTs
with dry clutch, the actuator is commanded for
positioning the clutch disk toward the flywheel,
exerting a pressure that is transformed into the
transmitted torque.

For instance, a wet clutch of an automatic
transmission gives the following transmitted
torque (Deur et al. 2006):

T D n Ap papp �.!; papp; �/ re sgn.!/

where n is the number of friction surfaces, Ap is
the piston area, papp is the hydraulic pressure, �

is the friction coefficient (depending also on the
clutch fluid temperature �), re is the equivalent
radius of the clutch, and ! is the clutch slip speed,
i.e., the difference between the engine speed and
the speed of the input shaft of the transmission.

For a dry clutch of an automated manual
transmission (Vasca et al. 2011),

T D nFpp.xto/�.!; �/re sgn.!/

where Fpp is the force exerted by the cushion
spring depending on the clutch actuator position
xto and � is the clutch disk temperature.

In both cases, the actuator allows regulation of
the torque transmitted, respectively, through the
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Transmission, Fig. 1 Architecture of an automatic transmission

Transmission, Fig. 2 Architecture of an automated manual transmission

torque converter or the dry clutch under a slipping
condition. The main problem is that in modern
transmissions, there are no low-cost torque sen-
sors, and thus, due also to model uncertainties and
highly variable operating conditions, it is not pos-
sible to regulate the transmitted torque through a
closed-loop scheme. What is usually done is to
control the engine speed and/or the speed of the
input shaft of the transmission. Quite often, their
difference (the slip speed) is the variable to be
controlled.

Many different approaches have been pro-
posed in the literature for solving such control
problems that can be formulated as simply as
a regulation problem of the slip speed or as
a more complex multivariable control problem
that considers the engine and clutch torques as
control variables and the slip speed and vehicle
speed as controlled variables, possibly solving
the problem through robust control tools. The

problem can be formulated quite naturally also as
an optimal control problem that aims to minimize
the engagement time, the driveline oscillations, or
the dissipated energy. For example, by defining
the time derivative of the clutch torque as one
control variable, the transmitted torque becomes
a state variable, and the energy dissipated during
the engagement phase can be expressed as the
cross product of two state variables (Garofalo
et al. 2002)

Ed D
Z Nt

0

!.s/T .s/ds;

and the clutch engagement can be expressed as an
optimal control problem with free final time (the
engagement time, Nt) and a final state constraint
(i.e., !.Nt / D 0).

Some authors have also proposed a differ-
ent solution for the gear shifting problem by
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acting through the engine control (Pettersson and
Nielsen 2000). The idea is to control the gear
shifting using directly the engine as the actuator
that allows to modulate the transferred torque to
the transmission (see Figs. 1 and 2). In particular
the engine is controlled so as to get a zero
transferred torque in the transmission and then
the neutral gear is engaged. In this way, a virtual
clutch is realized.

Driveline Modeling
When model-based control is used for automotive
transmissions, it is important to have a good
model of the driveline that is detailed enough
for capturing the main dynamics and, at the
same time, sufficiently simple to deal with for
designing not so complex controllers. Vehicu-
lar drivelines have many elastic parts making
mechanical resonances occurring. Handling such
resonances is important for driveability but also
for reducing mechanical stresses. Thus driveline
control is crucial not only during gear shifting but
also for a more general powertrain control that
could manage wheel-speed oscillations induced
by sudden accelerations or following from the
road roughness.

Integrated Powertrain Management
Shift scheduling is an additional interesting prob-
lem of electronically controlled transmissions.
The shift point is usually based on some mea-
surements like the vehicle speed, the maximum
acceleration or throttle angle. In this case the
control strategy is open-loop and implemented
through lookup tables.

As the number of gears increases, the shift
schedule gets more complicated. Thus it becomes
important to take into account also the actual
driving scenario. For example, entering a curve
during uphill driving is quite different relative to
a downhill driving situation, so it can be very
useful getting information on the steering angle,
the road grade, vehicle acceleration, etc. More
information, together with new degrees of free-
dom that are available to modern vehicles (e.g.,
vehicles with electronic throttle control), give the
opportunity to realize an integrated powertrain
control which coordinates the engine control and

the transmission control allowing to manage the
gear scheduling and the gear shifting execution
in a more flexible way, trying to optimize the
fuel consumption and to improve the driveabil-
ity (Kim et al. 2007).

Diagnostics
In all automotive applications, safety is a fun-
damental issue that becomes more and more
critical when the number of subsystems and their
interaction increases, as it happens when intro-
ducing electronic control. Thus, diagnosing faults
of control systems is a challenging problem, in
particular when there is limited information. To
this aim, systems and control theory can be very
useful for designing observer or fault detection
algorithms that could deal with these types of
problems.

Summary and Future Directions

In summary transmission control is a fertile ap-
plication for looking at challenging problems of
much interest for both control scientists and en-
gineers, giving the opportunity for investigating
topics like optimal control (e.g., for gear shifting
and integrated powertrain control), robust con-
trol (for driveline modeling and control), esti-
mation (diagnostics), and adaptive and predictive
control.

Technological developments could affect the
possibilities and the effectiveness of transmission
control. Of course new sensing devices can
improve the reliability and the precision of
the feedback, but they can also open the door
to new control architectures. For instance,
the phenomenon of inverse magnetostriction
that converts material strain into magnetic
property changes can be exploited to measure
transmitted torque, and some magnetoelastic
torque sensors have been investigated by a
number of researchers (Klimartin 2003; Pietron
et al. 2013). In this way the gear shifting control
problem can be attacked by closing the loop on
the transmitted torque measurement, avoiding
more or less complex torque observers or, at
least, improving the control performances.
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Analogous considerations can be carried out
at the actuation level. For instance, Kim and Choi
(2011) have proposed a new clutch actuator with
a self-energizing mechanism so as to amplify
the normal force applied on the contact surfaces
for the engagement. That idea allows the clutch
module to consume less energy for actuating the
overall system. Smart-material-based actuation
devices were also developed by a number of
researchers in recent years (Chaudhuri and
Wereley 2012), and some specific applications
to automotive transmissions are currently under
investigation, like magnetorheological fluid
dual clutch transmissions that are discussed in
Chen et al. (2012).

At the system level, one of the most interesting
research directions deals with the communication
and coordination among different control subsys-
tems like the engine control, transmission control,
and electronic stability control, with the final aim
of integrating all such subsystems for integrated
powertrain management.

Cross-References

�Engine Control
� Powertrain Control for Hybrid-Electric and

Electric Vehicles

Recommended Reading

Hrovat et al. (2010) give an overview of auto-
motive transmissions in their chapter on power-
train control of the CRC Control Handbook. Of
course transmission control is discussed also in
classical automotive control books: one of the
first well-known books dedicated to automotive
control was Kiencke and Nielsen (2005). There
a whole chapter on driveline control deals with
driveline modeling and gear shifting for clutch-
based transmissions. A more recent book on
automotive control is Ulsoy et al. (2012) where
transmission control for all-wheel drive vehicles
is also presented.

In the scientific literature, many papers deal
with transmission control: here, in particular, we
would like to cite the optimal control approach
for ATs by Haj-Fraj and Pfeiffer (2001), a deep
discussion on AMT control in Glielmo et al.
(2006), and, more recently, papers on DCTs
like Kulkarni et al. (2007) and Senatore (2009); in
the latter, the author illustrates the wide selection
of patents on dual clutch.

Regarding automotive technologies, an
overview of automotive sensors can be
found in Fleming (2008), while a discussion
on smart materials and the integration of
mechanics, materials, and electronics (the so-
called mechamatronics discipline) are presented
by Munhoz et al. (2007).
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Abstract

Dynamic vision is a subfield of computer vision
dealing explicitly with problems characterized
by image features that evolve in time according
to some underlying dynamics. Examples include
sustained target tracking, activity classification
from video sequences, and recovering 3D geom-
etry from 2D video data. This article discusses
the central role that systems theory can play
in developing a robust dynamic vision frame-
work, ultimately leading to vision-based systems
with enhanced autonomy, capable of operating in
stochastic, cluttered environments.

Keywords

Event detection; Multiframe tracking; Structure
from motion

Background

In this article, we represent linear time invariant
(LTI) systems by their associated transfer matrix

G.z/. The “size” of G.z/, which plays a key
role in assessing the effects of uncertainty, will
be measured using the H1 norm, defined as
kGk1

:D sup! �
�
G.ej!

�
, where � .:/ denotes

maximum singular value. For scalar systems,
this reduces to the peak value of the frequency
response (i.e., the maximum gain of the system).
In the matrix case, this definition takes into ac-
count both the worst-case frequency and spatial
direction. Background material on the H1 norm,
its computation and its significance in the context
of robust control theory, is given in Sánchez–
Peña and Sznaier (1998). A general coverage of
linear systems theory, including alternative repre-
sentations of linear systems and their associated
properties, can be found, for instance, in Rugh
(1996).

Multiframe Tracking

A requirement common to most dynamic vision
applications is the ability to track objects across
frames, in order to collect the data required by
a subsequent activity analysis step. Current ap-
proaches integrate correspondences between in-
dividual frames over time, using a combination
of some assumed simple target dynamics (e.g.,
constant velocity) and empirically learned noise
distributions (Isard and Blake 1998; North et al.
2000). However, while successful in many sce-
narios, these approaches are vulnerable to model
uncertainty, occlusion, and appearance changes,
as illustrated in Fig. 1.

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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Uncertainty and Robustness in Dynamic Vision, Fig. 1 Unscented particle filter-based tracking in the presence of
occlusion

As shown next, the fragility noted above can
be avoided by modeling the motion of the target
as the output of a dynamical system, to be iden-
tified directly from the available data, along with
bounds on the identification error. In the sequel,
we consider two different cases: (i) the motion of
the target is known to belong to a relatively small
set of a priori known motion modalities; and (ii)
no prior knowledge is available.

The case of known motion models: Consider
first the case where a set of models known to
span all possible motions of the target is known a
priori, as it is often the case with human motion.
In this case, the position yk of a given target can
be modeled as y.z/ D F.z/e.z/ C �.z/ where e
and �k denote a suitable input and measurement
noise, respectively, and where F admits an ex-

pansion of the form F D

Fp

‚ …„ ƒ
NpX

jD1
pjF j CFnp. Here

F j represent the (known) motion modalities of
the target and kFnpk1 � K , e.g., a bound on the
maximum admissible approximation error of the
expansion Fp to F is available. In the reminder
of this article, we will further assume that a set
membership descriptions �k 2 N is available
and, without loss of generality, that e.z/ D 1 (i.e.,
motion of the target is modeled as the impulse
response of the unknown operator F ).

In this context, the next location of the target
feature yk can be predicted by first identifying
the relevant dynamics F and then using it to
propagate its past values. In turn, identifying the
dynamics entails finding an operator F.z/ 2 S :D˚F.z/WF D Fp C Fnp

�
such that y � � D F ,

precisely the class of interpolation problem
addressed in Parrilo et al. (1999). As shown
there, finding such an operator reduces to solving
a linear matrix inequality (LMI) feasibility
problem. Once this operator is found, it can be
used in conjunction with a particle (or a Kalman)
filter to predict the future location of the target.
Figure 2 shows the tracking results obtained
using this approach. Here, we used a combination
of a priori information: (i) 5% noise level and (ii)
Fp 2 spanŒ 1

z�1 ;
z

z�a ;
z

.z�1/2 ;
z2

.z�1/2 ;
z2�cos!z

z2�2 cos!zC1 ,
sin!z2

z2�2 cos!zC1 � where a 2 f0:9; 1; 1:2; 1:3; 2g and
! 2 f0:2; 0:45g. The experimental information
consisted of the position of the target in N D 20

frames, where it was not occluded. Note that,
by exploiting predictive power of the identified
model, the Kalman filter is now able to track the
target past the occlusion, eliminating the need
for using a (more computationally expensive)
particle filter.

Unknown motion models: This case could be
addressed in principle by performing a purely
nonparametric worst-case identification (Parrilo
et al. 1999) and then proceeding as above.
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Uncertainty and Robustness in Dynamic Vision, Fig. 2 Using the identified model in combination with Kalman
filter allows for robust tracking in the presence of occlusion

However, a potential difficulty here stems from
the high order of the resulting model (recall that
the order of the central interpolant is the number
of experimental data points). If a bound n on
the order of the underlying models is available,
this difficulty can be avoided by recasting the
prediction problem into a rank minimization
form, which in turn can be relaxed to a semi-
definite optimization. To this effect, recall that
(Ding et al. 2008), in the absence of noise,
given 2n values of fykgtkDt�2nC1, its next value
ytC1 is the unique solution to the following rank
minimization problem:

ytC1 D argmin
y

frank ŒHnC1.y/�g where HnC1.y/

:D

2

6
6
6
4

yt�2nC1 yt�2nC2 � � � yt�n
yt�2nC2 yt�2nC3 � � � yt�nC1

:::
:::

: : :
:::

yt�nC1 yt�nC2 � � � y

3

7
7
7
5

(1)

Clearly, the same result holds if multiple el-
ements of the sequence y are missing, at the
price of considering longer sequences (the total
number of data points should exceed 2n). This
result allows for handling both noisy and missing
data (due, for instance, to occlusion), by simply
solving

min� frank ŒH.�/�g subject to v 2 Nv

where �i D
�

yi � vi if i 2 Ia
xi if i 2 Im

Uncertainty and Robustness in Dynamic Vision,
Fig. 3 Trajectory prediction. Rank minimization (1) ver-
sus Kalman filtering (2)

Ia and Im denote the set of available (but noisy)
and missing measurements, respectively, and
where Nv is a set membership description of
the noise v. In the case where Nv admits a
convex description, using the nuclear norm as
a surrogate for rank (Fazel et al. 2003) allows for
reducing this problem to a convex semi-definite
program. Examples of these descriptions are balls
in `1, e.g., N :D fvW jvkj � �g or constraints
on the norm of Hv, the Hankel matrix of the
noise sequence, which under mild ergodicity
assumptions are equivalent to constraints on the
magnitude of the noise covariance. Figure 3
illustrates the effectiveness of this approach.
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As shown there, the rank minimization-based
filter successfully predicts the location of the
target, while a Kalman filter-based tracker fails
due to the substantial occlusion.

Event Detection and Activity
Classification

Using the trajectories generated by the track-
ing step for activity recognition entails (i) seg-
menting the data into homogeneous segments
each corresponding to a single activity and (ii)
classifying these activities, typically based on
exemplars from a database of known activities.
As shown in the sequel, both steps can be ef-
ficiently accomplished by exploiting the proper-
ties of the underlying system. The starting point
is to model these activities as the output of a
switched piecewise linear system. In this context,
under suitable dwell time constraints, each switch
(indicating a change in the underlying activity)
can be identified by simply searching for points
associated with discontinuities in the rank of
the associated Hankel matrix, as illustrated in
Fig. 4. Further, in this framework, the problem of
classifying each subactivity can be recast into the
behavioral model (in)validation setup shown in
Fig. 5. Here yi .:/ represents the impulse response
of the (unknown) LTI system G, affected by
measurement noise �i 2 N and uncertainty

�i 2 D that accounts for the variability intrinsic
to two different realizations of the same activity.
Two different time series are considered to be
realizations of the same activity if there exists at
least one pair .�1; �2/ 2 N 2, one pair .�1;�2/ 2
D2, a LTI system G with McMillan degree at
most nG , and suitable initial conditions x1, x2
resulting in the observed data. Remarkably, this
model (in)validation problem can be reduced to
a rank minimization form. In the simpler case
where �i D 0, the problem can be solved us-
ing the following algorithm (Sznaier and Camps
2011):

Next, consider the more realistic case where
the trajectories are also affected by bounded
model uncertainty �, k�k1 � � , where �

is given as part of a priori information. In
this scenario, the internal signal z is given by
z.t/ D �.t/ � �.t/; � 2 N , where the signal �
satisfies

y D .1C�/ � �; for some � 2 D (2)

where � denotes convolution. Exploiting Theo-
rem 2.3.6 in Chen and Gu (2000) leads to an
LMI condition in the variables z; �, for feasibil-
ity of (2). Thus, the only modification to Al-
gorithm 1 required to handle model uncertainty
is to incorporate this additional (convex) con-
straint to the rank minimization problems. Table 1
shows the results of applying this approach to

Uncertainty and Robustness in Dynamic Vision, Fig. 4 The jump in the rank of the Hankelmatrix corresponds to
the time instant where the subjectsmeet and exchange a bag
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Uncertainty and Robustness in Dynamic Vision, Fig. 5 Model (in)validation setup

2 video sequences, walking and running, from
the KTH database (Laptev et al. 2008). Sam-
ple frames from these sequences are shown in
Fig. 6. In order to reduce the dimensionality of
the data, the frames were first projected into a
three-dimensional space using principal compo-
nent analysis (PCA), and the resulting time series
were used as the input to Algorithm 1, assum-
ing 10% noise and 10% model uncertainty. As
shown in Table 1, the algorithm correctly identi-
fies the subsequences (a)–(c) as being generated
by the same underlying activity (walking).

Algorithm 1 Behavioral model (in)validation
Data: Noisy measurements y1; y2.
A priori information: noise description �i 2 N
1. Solve the following rank–minimization problems:

rmin1 D min�1
rank.Hy1 � H�1 /

subject to: �1 2 N .
rmin2 D min�2

rank.Hy2 � H�2 /

subject to: �2 2 N .
rmin12 D min�1

rank.ŒHy1n Hy2n �/

subject to: �1; �2 2 N
Hy1n D Hy1 � H�1

Hy2n D Hy2 � H�2

2. The given trajectories were generated by the
same LTI system with McMillan degree � nG iff:
rmin1 D rmin2 D rmin12 � nG

Uncertainty and Robustness in Dynamic
Vision, Table 1 Activity classification results.
Sequences (a)–(c) correspond to walking and (d) to
running

Activity pair Rank.H1/ Rank(H2) Rank(ŒH1 H2�)

.a; b/ 4 4 4

.a; c/ 4 4 4

.a; d/ 4 8 8

Summary and Future Directions

Vision-based systems are uniquely positioned
to address the needs of a growing segment of
the population. Aware sensors endowed with
scene analysis capabilities can prevent crime,
reduce time response to emergency scenes, and
render viable the concept of ultra-sustainable
buildings. Moreover, the investment required to
accomplish these goals is relatively modest since
a large number of cameras are already deployed
and networked. Arguably, at this point, one of
the critical factors limiting widespread use of
these systems is their potential fragility when
operating in unstructured scenarios. This article
illustrates the key role that control theory can play
in developing a comprehensive, provably robust
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Uncertainty and Robustness in Dynamic Vision, Fig. 6 Sample frames from KTH activity video database. (a)
Walking. (b) Running

dynamic vision framework. In turn, computer
vision provides a rich environment both to draw
inspiration from and to test new developments in
systems theory.

Cross-References

� Particle Filters
�Estimation, Survey on

Recommended Reading

Details on how to select good features to track
can be found in Richard Szeliski (2010). Using
dynamics to recover 3D structure from 2D data is
covered in Ayazoglu et al. (2010). Finally, further

details on the connection between identification
and the problem of extracting actionable infor-
mation from large data streams can be found, for
instance, in Sznaier (2012).
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Abstract

For underactuated marine vessels, the dimension
of the configuration space exceeds that of the
control input space. This article describes un-
deractuated marine vessels and the control chal-
lenges they pose. In particular, there are two
main approaches to design control systems for
underactuated marine vessels. The first approach
reduces the number of degrees of freedom (DOF)

that it seeks to control such that the number of
DOF equals the number of independent control
inputs. The control problem is then a fully actu-
ated control problem – something that simplifies
the control design problem significantly – but
special attention then has to be given to the
inherent internal dynamics that has to be carefully
analyzed. The other approach to design control
systems for underactuated marine vessels seeks
to control all DOF using only the limited number
of control inputs available. The control problem
is then an underactuated control problem and is
quite challenging to solve. In this article, it is
shown how line-of-sight methods can solve the
underactuated control problems that arise from
path following and maneuvering control of un-
deractuated marine vessels.

Keywords

Marine vessels; Underactuated marine control
problems; Underactuated marine vessels; Under-
actuation

Introduction

Marine systems are often equipped with fewer
independent actuators than degrees of freedom.
Examples include conventional ships/surface
vessels that are typically equipped with a main
thruster and a rudder or with two independent
main thrusters, but without a side thruster. As a
result, we have no control force in the sideways
direction. This means that the forward motion
(the surge motion) and the orientation (the yaw
motion) can be controlled directly, while there is
no direct way to influence the sideways motion
of the surface vessel (the sway motion). The
vessel is then said to be underactuated in sway.
It is an underactuated system since it has only
two independent control inputs, giving force and
torque in surge and yaw, while the system has
three degrees of freedom: surge, sway, and yaw.
This underactuation leads to challenges when it
comes to designing the control system.
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Definition: Underactuated
Marine Vessels

In order to properly define what we mean by
underactuated marine vessels, we need the math-
ematical model (�Mathematical Models of Ships
and Underwater Vehicles; Fossen 2011):

M P	 C C.	/	 CD.	/	 C g.�/ D
�



0

�

P� D J.�/	

where the configuration vector � 2 R
n, the

velocity vector 	 2 R
n, while the vector of

independent control inputs 
 2 R
m. The vessel is

underactuated because n > m, i.e., the dimension
of the configuration space exceeds that of the
control input space (Oriolo and Nakamura 1991;
Pettersen and Egeland 1996).

The underactuation leads to a second-order
nonholonomic constraint

Mu P	 C Cu.	/	 CDu.	/	 C gu.�/ D 0

whereMu denotes the last n�m rows of the ma-
trix M and Cu.	/;Du.	/, and gu.�/ are defined
similarly.

Definitions of nonholonomic and holonomic
constraints can be found in Goldstein (1980).
More facts about these kinds of constraints and
conditions for when this second-order nonholo-
nomic can be integrated to either a first-order
nonholonomic or a holonomic constraint can be
found in Tarn et al. (2003).

Control of Underactuated
Marine Vessels

As we have seen above, the underactuation leads
to a constraint, and this gives challenges when
it comes to designing the control system. In
particular, it can be shown that if gu.�/ has a
zero element, then there exists no continuous or
discontinuous state feedback law that can asymp-
totically stabilize the equilibrium point .�; 	/ D
.0; 0/ (Pettersen and Egeland 1996). This means

that in order to stabilize an equilibrium point,
control methods from linear or classical nonlinear
control theory cannot be applied.

There are two main classes of approaches to
control underactuated marine vessels. The first
class approaches the control problem by reducing
the number of degrees of freedom that are to be
controlled, while the other class seeks to control
all degrees of freedom using the limited number
of control inputs available.

If we reduce the number of degrees of free-
dom (DOF) that we seek to control, such that
the number of DOF agrees with the number of
independent control inputs, then we have a fully
actuated control problem although the vessel is
underactuated. This may at first sight look like
a very simple way to design a control system
for underactuated marine vessels. Note, however,
that then, there will inherently be internal dynam-
ics that needs to be examined carefully (Isidori
1995; Nijmeijer and van der Schaft 1990). Say,
for instance, that we only care about controlling
the position of the ship, and we choose not to care
very much about the orientation of the ship. We
do, for instance, want the ship to follow a straight
line trajectory .xr .t/; yr .t//, where x and y give
the ship’s position in an earth-fixed coordinate
system, and the angle giving the ship orientation,
 ; is not so important to us. It is quite straight-
forward to use, for instance, output feedback
linearization to this end (Isidori 1995; Nijmeijer
and van der Schaft 1990). The resulting dynamics
of the subsystem .x; y/ is then called the external
dynamics. We have full control over this using the
two independent control inputs and can make it
track any smooth trajectory .xr .t/; yr .t//. Every-
thing looks simple when considering the external
dynamics only, but the internal dynamics can
frequently be hard to predict. The orientation of
the ship, given by the yaw angle psi, also needs
to be analyzed. The controlled motion will not
necessarily have the ship aligned with the tangent
of the trajectory, for instance. Firstly, the ship
control system that only focuses on the position
variables .x; y/ may equally well result in the
ship moving backward along the line; a behavior
that is not really desirable with respect to energy
efficiency or for passenger comfort. Secondly,

http://dx.doi.org/10.1007/978-1-4471-5058-9_121
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there will always be environmental disturbances:
currents, wind, and waves, and we need to make
a thorough stability analysis of the internal dy-
namics in order to guarantee sufficient robustness
properties for these. So to conclude, if you reduce
the number of DOF that you seek to control, in
order to achieve a fully actuated control problem,
then you need to consider the internal dynamics
very carefully when dealing with underactuated
marine vessels.

If we follow the other approach to controlling
underactuated marine vessels, where we seek to
control more degrees of freedom than we have
independent control inputs, then we not only have
an underactuated marine vessel at hand, but we
also have an underactuated control problem. This
is a challenging control problem, and we will now
see how this can be solved for path following and
maneuvering control.

Path Following andManeuvering
Control of UnderactuatedMarine
Vessels

For path following control systems, the control
objective is to make the vessel follow a given path
P , often defined as a parametrized path

Yd WD fy 2 R
m W 9� 2 R such that y D yd .�/g

where m � n and yd is continuously
parametrized by the path variable � . The control
objective is thus to force the output y to converge
to the desired path yd .�/ W limt!1 jy.t/ �
yd .�.t//j D 0. This constitutes a geometric task.
When there is also a dynamic task, for instance,
a speed assignment like forcing the path speed P�
to converge to a desired speed vs.�.t/; t/

lim
t!1 j P�.t/ � vs.�.t/; t/j D 0

then the control problem is an output maneuver-
ing problem (Skjetne et al. 2004).

Line-of-sight (LOS) guidance control has
proven to be a powerful tool for path following
and maneuvering control of underactuated
vessels. LOS guidance is much used in practice

for manual control of ships, where the helmsman
typically will steer the vessel toward a point
lying a constant distance, called the look-ahead
distance, ahead of the vessel along the desired
path. LOS guidance is simple, intuitive, and easy
to tune, and it can be shown that it provides
nice path convergence properties (Breivik and
Fossen 2004; Børhaug et al. 2008; Caharija et al.
2012; Fredriksen and Pettersen 2006; Lefeber
et al. 2003). For the simplified case without any
environmental disturbances and when the desired
path is a straight line, the LOS guidance law for
an underactuated surface vessel is given by

 d D  LOS D � tan�1
� y
�

	
; � > 0

where y is the cross-track error. The angle  LOS

is called the line-of-sight (LOS) angle, and geo-
metrically, it corresponds to the orientation of the
vessel when headed toward the point that lies a
distance� > 0 ahead of the vessel along the path
y D 0, cf. Fig. 1. The look-ahead distance � is a
control design parameter.

In order to handle ocean currents and other
environmental disturbances such as wind and
waves, the LOS guidance law can be extended
with integral action

 mLOS D � tan�1
�
yC�yint
�

	
; � > 0

Pyint D �y

.yC�yint/2C�2

Underactuated Marine Control Systems, Fig. 1
Illustration of LOS guidance
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where � > 0 is a design parameter, an integral
gain, and � > 0 has the same interpretation as
above. The integral effect will generate a sideslip
angle that allows the vessel to stay on the desired
path even though affected by environmental dis-
turbances with components normal to the path,
even though the vessel has no control forces to
act in the sideways direction.

Various standard control techniques can read-
ily be used to track the above guidance com-
mands. LOS guidance can also be extended to the
3D case for path following/maneuvering control
of underactuated autonomous underwater vehi-
cles (AUV), cf. the references given above.

Summary and Future Directions

Underactuated marine vessels are vessels for
which the dimension of the configuration space
exceeds that of the control input space. There
are two main approaches to design control
systems for underactuated marine vessels. The
first approach reduces the number of degrees of
freedom (DOF) that it seeks to control, such
that the number of DOF equals the number
of independent control inputs. The control
problem is then a fully actuated control problem,
something that simplifies the control design
problem significantly, but special attention
then has to be given to the inherent internal
dynamics that has to be carefully analyzed. The
other approach to design control systems for
underactuated marine vessels seeks to control all
DOF using only the limited number of control
inputs available. The control problem is then
an underactuated control problem, and this is a
quite challenging control problem. In this entry,
it is shown how line-of-sight methods can solve
the underactuated control problems that arise
from path following and maneuvering control of
underactuated marine vessels.

Future developments of underactuated marine
control systems will include solving more un-
deractuated control problems of marine vessels
taking into account both the complete mathe-
matical model of the vessels and also advanced

mathematical models of all the environmental
disturbances in both 2D and 3D.
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Abstract

Underactuated robots, robots with fewer actua-
tors than degrees of freedom, are found in many
robot applications. This entry classifies underac-
tuated robots according to their dynamics and
constraints and provides an overview of control-
lability, stabilization, and motion planning.
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Introduction

An underactuated robot is a robot with fewer
actuators (control inputs) than the number of
variables describing its configuration (degrees of
freedom). Some robots have this property un-
avoidably, while others are specifically designed
this way, perhaps to save the cost of actuators.
Examples include:
• A cart and pendulum (inverted pendulum).

This system has two degrees of freedom, the
linear position of the cart and the angle of
the pendulum, but only one control input, the
acceleration of the cart.

• A car. A car has only two control inputs
(steering and forward/backward speed) but at
least three degrees of freedom: the position
.x; y/ and orientation � of the chassis. If the
steering and/or rolling angles of the wheels
are included in the representation of the con-
figuration, the car has even more degrees of
freedom.

• A walking robot. When a biped steps with
one foot in the air and the toes of the other
foot on the ground, there is no actuator at the
toes to directly control the angle between the
foot and the ground.

• A quadrotor flying robot. A quadrotor has
four control currents driving the four pro-
pellers, but its configuration is described by
six variables: .x; y; z/ position and roll, pitch,
and yaw.

• An underactuated robot hand. Robot hands
generally have many joints, up to four per
finger for anthropomorphic hands. To reduce
cost, a small number of motors (as few as one)
may be used to open and close the fingers,
with joint motions coupled by springs.

• Robot manipulation. When a robot arm and
hand manipulates a rigid object, the entire
system, taken together, has at least six more
degrees of freedom than actuators – the six
degrees of freedom of the object.
In all underactuated robot systems of interest,

the fewer control inputs are somehow coupled
to all of the degrees of freedom. This entry
focuses on coupling through the inertia matrix
and kinematic constraints. In addition, this entry
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focuses on control of the full configuration, or
more generally the state, of the robot system.
Other goals, such as successfully grasping an
object with a compliant underactuated hand, are
outside the scope of this entry.

Classification of Underactuated
Robots

The robot has n degrees of freedom, and its
configuration is written in local coordinates as a
column vector q 2 R

n. If the robot is described
as a kinematic system, then its state x is simply q
and the control inputs are velocities. If the robot
is a mechanical system, then its state is x D
ŒqT ; PqT �T and the control inputs are accelerations
(forces). Let p denote the dimension of the state
space, where p D n for a kinematic system and
p D 2n for a mechanical system.

The equations of motion of an underactuated
robot can be written in the control-affine form

Px D f .x/C
mX

iD1
uigi .x/ where m < n: (1)

The vector field f .x/ is a drift vector field
describing the unforced motion of the robot,
the gi .x/ are linearly independent control vector
fields describing how the controls act on the
robot, and u D Œu1; : : : ; um�T is the control.
Kinematic systems are commonly drift-free
(f .x/ D 0). For a mechanical system, the
drift field f .x/ typically includes velocities
acting on positions and gravity acting on
velocities.

The fact that the number of controls m is less
than the number of degrees of freedom n can be
viewed as n�m constraints on the motion. For a
kinematic system, these are velocity constraints.
For a mechanical system, these are acceleration
constraints. In addition, a mechanical system may
be subject to a separate set of k velocity con-
straints, often called Pfaffian constraints, of the
form

A.q/ Pq D 0; (2)

where A.q/ 2 R
n�k . Such constraints arise from

conservation laws and rolling without slip, for
example.

Understanding the integrability of these con-
straints is key to understanding the controllability
of underactuated robots (section “Determining
Controllability”). For example, if acceleration
constraints can be integrated to yield equivalent
velocity constraints, then the dimension of the
space of reachable velocities of the mechanical
system is reduced. If velocity constraints can
be integrated to yield equivalent configuration
constraints, then the dimension of the reachable
configuration space is reduced. If some velocity
constraints are integrable to configuration con-
straints, we simply eliminate those configuration
variables from the description of the system so we
can focus on the controllable degrees of freedom.
Velocity constraints that cannot be integrated are
called nonholonomic, while configuration con-
straints are called holonomic.

Based on the type of constraints, we can clas-
sify underactuated robots into three categories –
pure kinematic, pure mechanical, and mixed
kinematic and mechanical – as described below.

Pure Kinematic
This category consists of systems with velocities
as inputs, as well as mechanical systems that can
be modeled by a kinematic reduction that has
time-differentiable velocities as controls (Bullo
and Lewis 2004; Bullo et al. 2002). (The actual
acceleration controls of the original system are
the time derivatives of these velocities.) Exam-
ples of mechanical systems that can be reduced
to kinematic systems include systems with actua-
tors for every degree of freedom (fully actuated
systems, of little interest here) and mechanical
systems whose acceleration constraints can be
completely integrated to equivalent velocity con-
straints.

Example 1 (Upright rolling wheel) Consider a
wheel of radius R rolling upright on a hori-
zontal plane (Fig. 1a). The center of the wheel
is .px; py; pz/, and the orientation is described
by its “leaning” angle � , rolling angle  , and
heading angle �. The constraints that the wheel
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Underactuated Robots,
Fig. 1 (a) A wheel in
space, then confined to be
upright on a horizontal
plane with coordinates
.px; py;  ; �/. (b) A top
view of a robotic
snakeboard. The
configuration is given by
.px; py; �/ for the board,
the steering angle � of the
wheels, and the angle  of
the reaction wheel

remain upright and touching the plane can be
written differentially as Ppz D 0 and P� D 0,
but these constraints can be integrated to the
equivalent configuration constraints pz D R and
� D 0, so we eliminate these variables from the
description of the configuration and focus on the
remaining four coordinates.

Writing the configuration vector as q D
Œpx; py;  ; ��

T and the two control inputs as
the rolling velocity u1 D P and the heading rate
of change u2 D P�, the control system is

Pq D u1g1.q/C u2g2.q/;

where g1.q/ D ŒR cos�;R sin �; 1; 0�T and
g2.q/ D Œ0; 0; 0; 1�T . Implicit in these equations
of motion are the two rolling constraints
A.q/ Pq D 0, where

A.q/ D
�
1 0 �R cos� 0

0 1 �R sin � 0

�
:

These velocity constraints cannot be integrated to
equivalent configuration constraints.

Example 2 (Reaction-wheel satellite) The three-
dimensional orientation of a satellite can be con-
trolled by spinning internal reaction wheels. The
controls to the reaction wheels are torques. By
conservation of angular momentum, the total an-
gular momentum P of the satellite is subject to
the constraints

P D J! C
X

i

Ji!i D constant;

where J is the inertia of the satellite body,! is its
angular velocity, Ji is the inertia of momentum
wheel i , and !i is its angular velocity. These
constraints are velocity constraints – given the
angular velocity of the momentum wheels, the
angular velocity of the satellite is known. Thus,
we can treat the original mechanical system as
a kinematic system with (differentiable) angular
velocities of the momentum wheels as inputs.
If the system satisfies P D 0, the kinematic
reduction is drift-free.

While satellite orientation is commonly
controlled using three orthogonal reaction
wheels (a fully actuated system), two reaction
wheels suffice to control the orientation of
the kinematic reduction in the case P D 0.
This is apparent from the fact that successive
rotations about two orthogonal body-fixed axes
(e.g., body-referenced ZYZ Euler angles) are
sufficient to arbitrarily orient a rigid body in
space.

Pure Mechanical
This category consists of mechanical systems
without any velocity constraints.

Example 3 (3R robot arm with a passive joint)
The dynamics of a robot arm are determined by
its inertia matrix M.q/, from which the kinetic
energy K D 1

2
PqTM.q/ Pq is derived, and its

potential energy V.q/. If one of the joints of the
arm rotates freely without an actuator, the arm
is underactuated. One such robot is a planar arm
with two actuated joints and one passive (Bullo
and Lynch 2001; Lynch et al. 2000). For this
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robot, the acceleration constraint arising from the
lack of an actuator cannot be integrated to an
equivalent velocity constraint.

Mixed Kinematic and Mechanical
This category consists of mechanical systems
with both (1) velocity constraints and (2) accel-
eration constraints that cannot be integrated.

Example 4 (Snakeboard) The snakeboard is a
skateboard with steerable wheels. The rider
can locomote without touching the ground by
twisting his or her body while steering the
wheels. The configuration of a robotic model of
the snakeboard and rider (Ostrowski et al. 1994)
consists of the position .x; y/ and orientation
� of the board, the steering angle of the wheels
(assumed to be coupled to be equal and opposite),
and the angle of a reaction wheel representing
the rider (Fig. 1b). The controls are the steering
torque to the wheels and the driving torque of the
reaction wheel. This system is mixed because of
the presence of the no-slipping constraint at the
wheels.

While in some cases it is obvious whether
velocity or acceleration constraints can be inte-
grated to equivalent constraints on configuration
or velocity, respectively, in general this is not
trivial. Instead of attempting to determine the
integrability of constraints, we typically study
the reachable sets of the system (1). This is
the topic of controllability of nonlinear systems,
section “Determining Controllability”.

Underactuated robots can also be classified ac-
cording to the set of available controls U � R

m.
For example, the control set could be a discrete
set of points in R

m, or only nonnegative values,
or a bounded set of Rm containing the origin in
the interior. For simplicity, assume u 2 U D R

m.

Control Challenges

Determining Controllability
For linear systems of the form Px D AxCBu, x 2
R
p; u 2 R

m, there is one notion of controllability,
determined by the Kalman rank condition (KRC).
If the rank of the matrix

ŒB AB A2B : : : Ap�1B�

is p, then it is possible to transfer the system from
any state to any other state in finite time.

Most underactuated systems of the form (1),
such as all of the examples given above, are non-
linear systems, however. For nonlinear systems,
there are many possible notions of controllability
(see Bullo and Lewis 2004; Lynch et al. 2011;
Nijmeijer and van der Schaft 1990; Sussmann
1983). Some examples include:
• Small-time local accessibility (STLA) at x: For

any time T > 0, the reachable set starting
from x at times t < T contains a full-
dimensional subset of the state space.

• Small-time local controllability (STLC) at x:
For any time T > 0, the reachable set starting
from x at times t < T contains a neighbor-
hood of x.

• Global controllability: The robot can reach
any state from any other state.

STLC is strictly stronger than STLA. Neither im-
plies global controllability nor does global con-
trollability imply either of the local properties.
STLA and STLC are illustrated in Fig. 2.

STLA can be tested by a Taylor expansion of
flows along vector fields. A key object in this
study is the Lie bracket of two vector fields
V1.x/ and V2.x/, defined as the new vector
field

ŒV1; V2� D @V2

@x
V1 � @V1

@x
V2:

If the system were to start from x and flow along
V1 for a short time �, then V2 for �, then �V1 for �,
then �V2 for �, a Taylor expansion shows that the
net motion of the system would be �2ŒV1; V2�.x/
(plus terms of order �3 and higher). If this direc-

Underactuated Robots, Fig. 2 Example reachable sets
in small time for systems that are STLA and STLC at x



Underactuated Robots 1507

U

tion is neither zero nor a linear combination of V1
and V2, then effectively a new motion direction
has been created.

For the upright rolling wheel, the Lie bracket
of g1 (forward-backward rolling) and g2 (turn-
ing) is

Œg1; g2� D ŒR sin �;�R cos�; 0; 0�T ;

a sideways “parallel parking” motion. This new
direction increases the dimension of the locally
reachable set beyond what could be reached by a
local linearization of the nonlinear system.

Roughly speaking, the Lie algebra of a set
of vector fields V is the set of vector fields V ,
all iterated Lie brackets of these vector fields,
and their linear combination. For example, the
Lie algebra of V D fg1; g2g includes Œg1; g2�,
Œg1; Œg1; g2��, Œg2; Œg1; Œg1; g2���, etc., as well as
their linear combinations. Deeper Lie brackets
correspond to higher-order terms in the Taylor
expansion of flows.

With these concepts, a theorem due to Chow
(1939) says that a system (1) satisfies STLA
at x if the dimension of the Lie algebra of
ff; g1; : : : ; gmg at x is p, the dimension of the
state space. This is known as the Lie algebra rank
condition (LARC). Most underactuated systems
of interest satisfy the LARC but not the KRC.
For the upright rolling wheel, the linearization
at any q fails the KRC, but the four-dimensional
configuration space is spanned by g1, g2, Œg1; g2�,
and Œg2; Œg1; g2�� at all q, satisfying the LARC.
Therefore the system is STLA at all points.

The STLA property can be strengthened to
STLC if the system additionally satisfies certain
symmetry properties, allowing it to proceed both
forward and backward along Lie bracket direc-
tions. For example, if f .x/ D 0 and the control
set U contains the origin in the interior, the LARC
implies STLC. This is the case for the upright
rolling wheel. More general notions of symmetry
have also been derived (e.g., Sussmann 1987).

For mechanical systems, STLC can only hold
at zero-velocity states where f .x/ D 0. In
addition, velocity constraints may prevent the
system from reaching a 2n-dimensional set in
state space. A more relevant question may be

whether the configuration alone can be locally
controlled at zero-velocity states. Specialized
Lie-algebraic controllability tests have been
developed for configuration controllability of
mechanical and mixed systems (Bullo and Lewis
2004; Bullo and Lynch 2001; Bullo et al. 2002;
Lewis 2000).

Global controllability results often derive from
STLC at all states for drift-free systems or from
STLA and global properties of the vector fields
or the topology of the state space (Choset et al.
2005).

Feedback Stabilization
For some underactuated robots, the linearization
at a state x may satisfy the KRC. An example
is an inverted pendulum linearized at a balanced
equilibrium state. In this case, it is possible to
derive a linear feedback controller, based on the
linearization, to stabilize the balanced state.

For many underactuated systems of interest,
however, the linearization at a desired state is
not controllable. For such systems, a famous
theorem due to Brockett (1983), plus subsequent
strengthening, implies the following:

Theorem 1 For any drift-free underactuated
kinematic system of the form (1), there exists no
time-invariant continuous state feedback law that
stabilizes the origin.

For example, there exists no continuous state-
feedback control law that can stabilize the upright
rolling wheel to a desired configuration.

This obstruction to stabilizability has resulted
in a number of different approaches to feedback
control of underactuated systems, including (1)
time-varying feedback control laws, (2) feed-
back control laws that are discontinuous in the
state, and (3) two-degree-of-freedom controllers
consisting of a motion planner plus a feedback
controller for the easier problem of stabilizing
the nominal trajectory. Strategies for planning
nominal motions for two-degree-of-freedom con-
trollers are discussed next.

Motion Planning
Given an initial state x.0/ D xstart and a goal
state xgoal, the motion planning problem for a
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system Px D h.x; u/ is to find a control history
u W Œ0; T � ! U such that

xgoal D x0 C
Z T

0

h.x.s/; u.s//ds

while avoiding any obstacles that may be present
in the environment. It may also be desired to
minimize some notion of cost,

J D
Z T

0

L.x.s/; u.s//ds:

One choice ofL.s/ is uT .s/u.s/, the square of the
control effort.

Ideally the motion planning method would
be complete (guaranteed to find a solution in
finite time if one exists) or probabilistically
complete (if a solution exists, the probability
of finding a solution goes to one as time goes to
infinity).

A variety of approaches to motion planning
have been proposed in the robotics literature.
Approaches that apply to underactuated systems
include:
• Search-based methods. A popular class of

search-based methods are rapidly exploring
random trees (RRTs) and variants (LaValle
and Kuffner 2001). These approaches offer
probabilistic completeness for many systems,
including systems with obstacles, but naïve
implementations may be slow to find solu-
tions, and the solutions generally do not sat-
isfy optimality criteria.

• Numerical optimization. The control history
can be converted to a finite parameterization
using representations such as polynomials, cu-
bic B-splines, wavelets, and truncated Fourier
series. Numerical optimization methods can
then be applied to solve the two-point bound-
ary value problem while minimizing a cost
function. Gradient-based numerical optimiza-
tion methods may yield locally optimal so-
lutions, but they may suffer from numerical
convergence problems, and they may get stuck
in local minima depending on an initial guess.
Optimization methods that do not use gradient
information potentially offer globally optimal

solutions, but typically at the expense of sig-
nificantly longer computation times.

• Fictitious input methods. These methods
assume that there is a direct control input
available for each Lie bracket motion
direction. These fictitious inputs are then
converted to a sequence of feasible inputs
utilizing the Campbell-Baker-Hausdorff-
Dynkin expansion of flows (Lafferriere and
Sussmann 1991). In general, these methods
require iterative application to account for
errors in the approximate conversion.

• Trajectory transformation methods. One way
to deal with obstacles is to first use a global
motion planner that is complete under the
assumption that the robot has no motion
constraints. Then the template unconstrained
solution is iteratively subdivided into smaller
pieces, with each piece replaced by an
obstacle-free feasible trajectory generated
by a local planner. If the system is drift-
free and STLC at all configurations, then it
is possible to develop a local planner that
guarantees success of the transformation
from an unconstrained trajectory to a feasible
trajectory as the subdivisions get small enough
(Laumond et al. 1994).
Often it is possible to exploit structure of the

equations of motion beyond the general form (1).
Making use of extra structure can reduce the
computational complexity of motion planning.
• Chained form, sinusoidal controls, and av-

eraging. Certain drift-free kinematic systems
can be transformed to a canonical chained
form. For systems in such a form, sinusoidal
controls of integrally related frequencies can
be chosen to drive one of the configuration
variables to its desired value while having zero
net effect on configuration variables already at
their desired value. In this way, configuration
variables can be driven sequentially to their
desired values (Murray and Sastry 1993).

For many underactuated systems, si-
nusoidal controls can be used to achieve
approximate motion in each Lie bracket
direction needed to complete the LARC. The
resulting periodic motions are sometimes
called gaits, and motion planning can be
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achieved using a finite set of gaits (Bullo
and Lewis 2004; Ostrowski et al. 1994).

• Differentially flat systems. For certain under-
actuated systems with u 2 R

m, there exist a
set of m functions wi of the state, the control,
and its derivatives,

wi .x; u; Pu; Ru; : : : ; u.r//; i D 1 : : :m;

such that the states and control inputs can
be expressed as functions of w and its time
derivatives. The wi are called flat outputs. The
motion planning problem is to find w.t/; t 2
Œ0; T �, such that w.0/; Pw.0/; Rw.0/; : : : and
w.T /; Pw.T /; Rw.T /; : : : satisfy the constraints
specified by xstart and xgoal. The problem
changes from constrained motion planning
in the p-dimensional state space to finding
a curve satisfying start and end constraints
on w and its derivatives (Fliess et al. 1995;
Sira-Ramirez and Agrawal 2004).

• Kinematic reductions. Motion planning in
configuration space is a lower-dimensional
problem than motion planning in
configuration-velocity space. Therefore, when
a mechanical system can be reduced to
a kinematic equivalent, motion planning
can be more efficient. Examples include
mechanical systems that can be fully reduced
to a kinematic system (like the reaction-
wheel satellite) and mechanical systems
that admit rank-1 kinematic reductions –
vector fields on configuration space that
can be followed at any speed, despite the
underactuation constraints. These vector fields
become primitives for motion planning on
configuration space (Bullo and Lewis 2004;
Bullo and Lynch 2001; Bullo et al. 2002;
Choset et al. 2005).

Summary and Future Directions

Underactuated systems arise in all areas of
robotics, including robot manipulation and
aerial, ground, and underwater locomotion.
Underactuation raises a number of challenging
issues in robot motion planning and control.

While significant progress has been made, further
research is needed on computationally efficient
motion planning and robust stabilization of
nominal trajectories. In addition, although this
entry focuses on systems that can be described
by a single set of dynamics, many interesting
underactuated systems are hybrid systems
that experience changing contact constraints.
Examples include biped robots striding from
one foot to the next and robot manipulators that
manipulate objects with changing contact modes
(grasping, rolling, pushing, etc.). Further work is
needed to incorporate contact models, beyond
simple kinematic constraints, and changing
equations of motion in motion planning and
control of hybrid underactuated systems.

Cross-References

�Controllability and Observability
�Differential Geometric Methods in Nonlinear

Control
�Feedback Linearization of Nonlinear Systems
�Feedback Stabilization of Nonlinear Systems
�Hybrid Dynamical Systems, Feedback Con-
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�Lie Algebraic Methods in Nonlinear Control
�Nonlinear Zero Dynamics
�Underactuated Marine Control Systems
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Recommended Reading

Introductions to underactuated robot systems can
be found in Choset et al. (2005), Lynch et al.
(2011), and Murray et al. (1994).

While this entry focuses on configuration
spaces modeled locally as R

n, most robotic
systems consist of rigid bodies whose positions
and orientations can be described globally as
elements of the Lie group SE.3/ or one of its
subgroups: SE.2/, SO.3/, or SO.2/. Geometric
methods for control of underactuated systems
make use of the extra structure of Lie groups and
their Lie algebras, symmetries, and concepts
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from geometric mechanics such as tangent
and cotangent bundles, Riemannian metrics on
manifolds, symplectic manifolds, connections,
fiber bundles, covariant derivatives, etc. Excellent
treatments can be found in Bloch et al. (2003),
Bullo and Lewis (2004), and Murray et al. (1994).
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Validation and Verification
Techniques and Tools
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Abstract

Validation and verification (V&V) of advanced
control systems is required for their use in fielded
systems. A comprehensive V&V process involv-
ing analysis, simulation, and experimental testing
should be used to assess closed-loop system per-
formance and identify system limitations. This
entry discusses current V&V methods and tools
as well as future research directions for safety-
critical control applications.

Keywords

Closed-loop system stability and performance;
Software Verification; Stability and performance
robustness; Uncertainties and uncertainty mod-
els; Validation of Safety-Critical Systems

Introduction

Control system validation and verification (V&V)
is an assurance that the closed-loop system (i.e.,

the control system acting on the plant being
controlled) remains stable and performs within
acceptable performance metrics across the oper-
ational region of application. Basic definitions of
validation and verification are given below (IEEE
2011).

Validation: The assurance that a product, ser-
vice, or system meets the needs of the customer
and other identified stakeholders. It often in-
volves acceptance and suitability with external
customers.

Verification: The evaluation of whether or not
a product, service, or system complies with a reg-
ulation, requirement, specification, or imposed
condition. It is often an internal process.

Control system validation can therefore be
thought of as a confirmation that the algorithms
are performing their intended functions and an
affirmation of their effectiveness in performing
these functions. Validation is a rigorous evalu-
ation process that should involve clearly iden-
tifying system limitations, including regions of
operation within which stability or acceptable
levels of performance are not guaranteed. Verifi-
cation can be thought of as a confirmation that the
system implementation in software and hardware
is correctly executing the algorithms as designed
(and validated). This includes a rigorous evalu-
ation of system requirements and specifications
and a clear determination of whether or not they
have been met. V&V methods include analy-
sis, simulation, and experimental testing, which
are (ideally) applied in an integrated or iterative
manner to corroborate results across methods of

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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evaluation. In the case of aircraft flight control
and other safety-critical control applications, the
V&V process must ultimately lead to system cer-
tification. The following subsections summarize
control system V&V analytical, simulation, and
experimental test methods in terms of the current
(or recommended) state of practice. A summary
and some future research directions for safety-
critical control applications are also provided.

Control System Validation

Validation methods, involving analysis, simula-
tion, and experimental testing, are utilized to en-
sure against errors and significant deficiencies in
the underlying control system algorithms under
realistic operational conditions for the intended
application. System weaknesses and limitations
are also identified through the validation pro-
cess. Control system validation begins with an
analysis of closed-loop system stability, perfor-
mance, and robustness. Linear systems theory
forms the basis for analytical stability and ro-
bustness methods and the associated software
tools that are currently available for closed-loop
system validation. In current practice, stability
of nonlinear systems is determined by evalu-
ating the stability of the linearized closed-loop
system at numerous equilibrium points across
the operating range (or envelope) of the system.
Closed-loop stability is assessed by computing
the eigenvalues of the linearized closed-loop sys-
tem at a number of equilibrium points in the
region of operation. It should be noted, how-
ever, that stability is not guaranteed between
the operating points analyzed. Moreover, if the
control system utilizes gain scheduling across the
operating envelope, stability cannot be guaran-
teed for interpolated gains between the design
points. Relative stability is determined by gain
and phase margins for single-input, single-output
(SISO) systems and by the multivariable stability
margin (see, e.g., Lavretsky and Wise 2013) for
multiple-input, multiple-output (MIMO, or mul-
tivariable) systems. Time-delay margins, defined
as the minimum time delay required to destabilize
the closed-loop system, can be determined from

phase margin and verified in nonlinear simula-
tion. Stability robustness is assessed in terms of
uncertainties, including parametric uncertainties
and unmodeled dynamics in the mathematical
model of the plant. Advanced robustness analysis
methods based on the structured singular value
(Zhou et al. 1996) require the uncertainties to
be separated from the nominal plant into what is
termed a linear fractional transformation (LFT).
Advanced robustness methods can be used to
assess stability and performance robustness, as
well as worst-case combinations of uncertain-
ties that result in destabilization, loss of perfor-
mance, or the lowest robustness margins. LFT
models can be formulated for the analysis of
nonlinearities, expressed as multivariate polyno-
mials, around a trim condition or over subregions
within the operational envelope. Stability over
a region or subregion of the operating envelope
can be guaranteed using linear parameter-varying
(LPV) methods (see Apkarian and Gahinet 1995;
Packard 1994; Rugh and Shamma 2000; Wu
et al. 1996). Nonlinear stability and control are
addressed more fully in Slotine and Li (1991)
and Khalil (2002), as well as in numerous other
texts. Analytical methods and software tools are
available in Matlab R�, using the Control Sys-
tem ToolboxTM and Robust Control ToolboxTM.
LFR/LFT modeling methods and software tools
are described in Magni (2004, 2006), Hecker
et al. (2005), Varga et al. (1998), and Belcastro
et al. (2005) and provided in the Robust Control
Toolbox R�. An LPV ToolboxTM is also under
development and will become available soon (see
Balas et al. 2013b).

Performance is usually assessed using a high-
fidelity simulation of the plant under expected
operational conditions. The simulation should
include nonlinear plant dynamics, noise, distur-
bances, and any other phenomena anticipated un-
der operation. Nominal performance is assessed
in terms of the control system design objectives,
which typically include (at a minimum) closed-
loop steady-state tracking and transient response
characteristics. Transient response characteristics
typically include delay time, rise time, peak time,
maximum overshoot, and settling time (see, e.g.,
Ogata 1970). Steady-state tracking error is also
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typically assessed. Performance robustness can
be evaluated using Monte Carlo simulation tech-
niques (see, e.g., Kroese et al. 2011), in which
parameters and operational conditions are var-
ied over numerous simulation runs in order to
statistically evaluate an extensive set of uncer-
tainties and operational variations. Stability ro-
bustness can also be assessed using Monte Carlo
simulation techniques and by utilizing worst-
case uncertainties and time-delay margins ob-
tained during analysis. If the plant is a vehicle or
robotic manipulator to be operated by a human,
the handling qualities must also be evaluated
to assess human-system interfaces and interac-
tions. A real-time high-fidelity simulation with
a human interface representative of the opera-
tional environment is required for this evaluation.
For aircraft, piloted simulation evaluations are
conducted using a cockpit mock-up, and han-
dling qualities are assessed under various scenar-
ios using the Cooper-Harper Scale (Cooper and
Harper 1969). Susceptibility to operator-induced
oscillations, for example, resulting from time de-
lays in the controlled response, may typically be
uncovered using operator-in-the-loop simulation
evaluations.

Experimental testing should be conducted
under realistic conditions that cover the entire
(potential) operational space of the plant
being controlled in order to assess realistic
operational performance. For aircraft, this
includes flight testing using full-scale and/or
subscale test vehicles under nominal and
off-nominal conditions. If the analytical and
simulation evaluations provide a good match
to the experimental evaluations, the test matrix
can be comprised of key high-risk conditions to
confirm desired behavior.

Validation methods should be applied in
an iterative manner comparing results from
the analysis, simulation, and experimental
tests and going back to reevaluate in one
domain based on results from another. For
example, analysis results should provide good
predictions of results seen in simulation and
experimental testing. If a good match is
not obtained, the analysis model may have
to be improved or another analysis method

utilized to reduce conservatism in the result.
Similarly, simulation results should provide a
good prediction of experimental test results.

Control SystemVerification

System verification is ideally performed by or in
collaboration with a computer science specialist
to ensure against errors in the software/hardware
implementation of the control algorithms.
Control system verification begins with an
analysis (Rushby 1995, 2009) of the software
and hardware implementation requirements to
ensure completeness and accuracy in the system
specification. Several refinement steps are taken
to transform the control system requirements
to those implementable on the actual avionics
hardware to be fielded. Verification, consisting
of tests and analyses, is required to confirm
requirements traceability and compliance from
one refinement to another, to confirm accuracy of
the algorithms, and to assure compliance and
robustness of the final code with respect to
the original control algorithms, to ensure that
no errors are introduced from the refinement
itself or related to the target computing platform.
Formal analysis methods can be used to evaluate
software logic and other software mechanisms for
correctness under all operational conditions and
to provide correctness proofs. Formal methods
can also be utilized for model checking to verify
system properties through an exhaustive search
of all possible states that can be entered during
execution (Berard et al. 1998). One software
verification tool is called PVS (Owre et al. 1992),
developed by SRI International, and is available
on the Internet as an open-source software tool.
Other methods and tools are also available from
SRI International, as well as other sources.

Simulation techniques are used to evaluate
software code, modules, subsystems, and the full
system. Once the software has been verified, it
is implemented on actual or representative hard-
ware and evaluated using hardware-in-the-loop
simulation and experimental testing. Experimen-
tal testing should include laboratory evaluations
under all possible operational conditions and in
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a relevant application environment. For aircraft,
this would include flight testing of the control
system on the actual avionics hardware to be
fielded.

Summary and Future Directions

This entry has summarized current and
recommended practices for control system V&V,
including methods and tools for analysis,
simulation, and experimental testing. The V&V
process ensures against errors and deficiencies
in the underlying system algorithms (validation)
and in its software/hardware implementation
(verification). Analysis, simulation, and ex-
perimental testing are performed iteratively to
utilize and confirm results between evaluation
techniques.

A comprehensive validation process is per-
formed to assure control system effectiveness
across the operational envelope of the plant and
to identify system limitations and weaknesses.
Current analysis methods for control system val-
idation are typically based on linear systems
theory and focus on nominal operations under
model uncertainties and anticipated disturbances
(e.g., noisy measurement signals). This analy-
sis includes stability, performance (e.g., track-
ing accuracy), and robustness. Advanced robust
control analysis methods have been applied to
safety-critical applications, such as aircraft (see
Fielding et al. 2002; Varga et al. 2012), to as-
sess robust stability and performance. These two
references provide a global optimization-based
worst-case approach as a “necessary condition”
technique for flight control system validation or
as a “sufficient condition” technique for invali-
dation. High-fidelity nonlinear simulation evalu-
ations are performed in batch and real time to
assess robustness under system and operational
uncertainties and to assess interface effectiveness
for human-in-the-loop operations (if applicable).
Experimental testing under realistic operationally
relevant conditions is performed across key oper-
ating conditions to confirm analytical and simu-
lation predictions.

System verification is performed to ensure
correctness of the hardware/software implemen-
tation. Various analysis and testing methods, in-
cluding advanced formal analysis methods, are
used to assess completeness of the system re-
quirements and specification and software ele-
ments (e.g., logic). Model checking techniques
are used to verify system properties. Code is
tested in simulation and on representative or ac-
tual hardware under realistic operationally rele-
vant conditions.

Future research directions will enable the
V&V of nonlinear and adaptive control systems
(see, e.g., Hovakimyan and Cao 2010; Tallant
et al. 2004) that improve performance under
highly uncertain conditions, as well as the
V&V of complex integrated safety-critical
systems for operation under off-nominal and
hazardous conditions (see Belcastro 2010,
2012). These systems will include diagnostic
and prognostic algorithms for integrated vehicle
health management, resilient control systems that
enable the detection and mitigation of multiple
hazards, supervisory systems that provide safety
assurance (for safety-critical operations), and
intelligent interface and decision-based systems
that enable human-optional and fully autonomous
operations. These systems will inherently involve
stochastic decision-making and nonlinear and
adaptive control algorithms. V&V of these future
systems poses significant technical challenges
and is the subject of current research. Some
of these challenges include the following: (1)
development and validation of multidisciplinary
simulation models for characterizing hazardous
condition effects; (2) validation of adaptive,
diagnostic/prognostic, and reasoning algorithms
under numerous off-nominal and hazardous
conditions; (3) verification of software-intensive
highly complex systems; and (4) determining
a level of confidence in V&V results for
hazardous application domains that cannot be
fully replicated during the evaluations.

Research on modeling and simulation meth-
ods is being performed to characterize multidis-
ciplinary effects of off-nominal and hazardous
conditions, and validation of these models can
be difficult. For aircraft applications, hazardous
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conditions relate to aircraft loss of control (LOC)
and precursor conditions. LOC is a complex and
highly nonlinear phenomenon for which there is
little available data. Hazardous conditions con-
sidered in this research include vehicle upset
conditions (e.g., stall/departure), vehicle impair-
ment conditions (e.g., failure, icing, and dam-
age), and external disturbances (e.g., inclement
weather and wake vortices). Multidisciplinary
models under development include aerodynamic,
propulsion, and airframe structure effects. For
example, simulation models for characterizing
aircraft flight dynamics and control effects under
upset conditions are currently being developed
(see, e.g., Foster et al. 2005; Groen et al. 2012),
as well as propulsion effects resulting from the
associated reduced flow conditions (Liu et al.
2013). Model validation is being performed using
available flight and accident data, as well as ex-
perimental testing in the laboratory and through
subscale and full-scale flight testing. The en-
hanced high-fidelity simulation models resulting
from this research will be used in the develop-
ment and validation of onboard control systems
designed to detect and mitigate these hazards.

Current research efforts for validating
the above future systems include nonlinear
robustness analysis methods and software tools
(see (Chakraborty et al. 2011a, b), Balas
et al. 2013a; Packard et al. 2010; Summers
et al. 2013), nonlinear analysis methods
for controlled systems (Gill et al. 2012;
Kwatny et al. 2013), uncertainty quantification
and robustness analysis methods for mixed
uncertainties and multiple objectives (Kenny
et al. 2012), and the analysis of stochastic
filters (see, e.g., Reif et al. 1999; Rhudy et al.
2013a, b, c). The term “mixed uncertainty”
refers to aleatory and epistemic uncertainties.
Aleatory uncertainties are typically stochastic
(or statistical) and represent operational or
environmental uncertainties (e.g., turbulence)
that cannot be altered or controlled during
experiments or fielded applications. Epistemic
uncertainties are typically deterministic and arise
from lack of knowledge about the plant resulting
from modeling assumptions, neglected effects
(e.g., unmodeled dynamics), and parametric

uncertainties resulting from inaccurate measure-
ments or operational variability. These analysis
methods and tools will be used iteratively with
simulation evaluations and experimental testing
methods, as described herein, to comprehensively
assess nonlinear and adaptive control systems
that enable resilience under multiple hazards.

Current research efforts on software ver-
ification focus on argument-based safety
assurance for highly complex integrated systems
of systems; assessment tools for evaluating
the safety and coordination of authority and
autonomy assignments; methods for ensuring
safety-critical properties of distributed systems;
and the development of tools and techniques for
assessing software-intensive systems in meeting
performance safety objectives. Research on
software-intensive systems includes the devel-
opment of methods and tools to detect, diagnose,
and predict adverse events due to a software fault
or failure once the software has been verified and
is in operation. Some recent references on this
work include Holloway (2012), Xu et al. (2013),
Driscol et al. (2012), Person et al. (2011), and
Latorella and Feary (2011).

Research has been initiated on developing
methodologies for determining (i.e., quantifying)
the predictive capability of the validation
process for systems designed to operate under
conditions that cannot be fully replicated during
evaluations. Predictive capability assessment
is an evaluation of the validity and level of
confidence that can be placed in the validation
process and results under nominal and hazardous
conditions (and their associated boundaries).
The need for this evaluation arises from the
inability to fully evaluate these technologies
under actual hazards to be encountered by the
fielded system. A detailed disclosure is required
of model, simulation, and emulation validity
for the off-nominal conditions being considered
in the validation, interactions that have been
neglected, assumptions that have been made, and
uncertainties associated with the models and data.
Cross-correlations should be utilized between
analytical, simulation, and ground test and flight
test results in order to corroborate the results
and promote efficiency in covering the very
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large space of operational and off-nominal and
hazardous conditions being evaluated. The level
of confidence in the validation process and results
must be established for subsystem technologies
as well as the fully integrated system. This
includes an evaluation of error propagation
effects across subsystems and an evaluation of
integrated system effectiveness in mitigating
hazardous conditions and preventing cascading
errors, faults, and failures across subsystems.
Metrics for performing this evaluation are also
needed.

Cross-References
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troduction and Historical Overview

� Interactive Environments and Software Tools
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�Robust Synthesis and Robustness Analysis
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Abstract

Current prevailing control technology enables
vehicle dynamic control through powertrain
torque manipulation and individual wheel
braking. Longitudinal control can maintain
vehicle acceleration/braking capability within
the physical limits that the road condition can
support, while vehicle lateral control can preserve
vehicle steering/handling capability up to the
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maximum capacity offered by the road/tire
interaction. Since most of these controllers are
driver-assist systems, their objective is to retain
the vehicle dynamic state in operating regions
familiar to drivers. In general, this implies that
the controller will keep the tire in its linear region
and avoid excessive slipping, skidding, or sliding.

Keywords

Active yaw control; Electronic stability control;
Evasive maneuvers; Lateral dynamics; Traction
assist; Traction control; Vehicle stability assist

Introduction

Vehicle dynamics control generally refers to the
active modification of longitudinal and lateral tire
forces and the corresponding dynamics of ground
vehicles using sensors and actuators. While it
may also include vehicle active or semi-active
suspension control (Hrovat 1997), vehicle dy-
namics control in this entry will focus on trac-
tion control – vehicle longitudinal control and
electronic stability control – combined vehicle
longitudinal and lateral control.

Simply speaking, tire force is generated when
there exists a velocity difference between tire
tread and the ground, also known as tire slip.
As illustrated in Fig. 1, the longitudinal tire force

first grows proportionally with the tire slip, in
a so-called linear region, and then saturates as
tire slip passes beyond a certain threshold. The
figure also shows the coupling effect between
longitudinal and lateral tire forces. That is, the
available lateral force (as a function of tire slip
angle) decreases when the longitudinal tire slip
increases, and the available longitudinal force (as
a function of tire slip) decreases as the lateral
tire slip angle increases. This coupling effect is
essential for understanding vehicle dynamics and
leads to numerous control applications.

Traction Control

Since vehicle motion relies on the tire/ground
interaction, it is important for the purpose of
vehicle controllability to maintain tire/road inter-
action in a linear and predictable way. Anti-lock
braking systems (ABS), and traction control (TC)
in particular, monitor and control the tire slip so
that the longitudinal tire force can best support
and balance the corresponding brake torque (dur-
ing ABS intervention) or driveline torque (during
TC intervention) delivered to the wheels. Without
the wheel/tire slip control, tire force may saturate,
resulting in both the reduction of longitudinal and
lateral tire force capacity, with the corresponding
reduction in decelerating/accelerating capability,
or loss of road grip/lateral tire force capacity.
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Control Design

The objective of a TC system is to ensure lon-
gitudinal tire force capacity while maintaining
a good margin on available lateral force road
grip (see Fig. 1). Based on the tire force/slip
characteristics, this can be achieved by regulating
the longitudinal tire slip, roughly defined as the
relative velocity between the contact patch of the
tire and the road surface. This can be expressed
as the difference between the vehicle traveling
speed and tire rotational speed, as defined in
Eq. 1, according to the Society of Automotive
Engineers (SAE), where V is the vehicle speed,
! is the angular speed of the tire, and R is the
effective tire rolling radius. The effective rolling
radius is defined so that vehicle speed equals the
product ofR and ! (i.e., V D R!) when there is
no torque applied to the wheel and the tire is free
rolling.

s D V �R!
V

; (1)

At low slip, the longitudinal tire force grows
as the slip increases (Carlson and Gerdes 2003),
while at high slip it passes its peak and begins
to decrease (Deur et al. 2004). High slips oc-
cur when wheels are locked during braking or
are overspinning during acceleration. A traction
control system uses feedback control to regulate
wheel/tire slip.

Sensors and Actuators

To regulate driven wheel slips effectively with
closed loop control, wheel speed sensors at the
non-driven wheels are utilized for vehicle speed
estimation (V in Eq. 1). In the case of all-wheel
drive or four-wheel drive systems, a longitudinal
accelerometer is typically added for the speed
estimate. As the amount of desired wheel slip
may vary depending on maneuvers, accelerator
pedal, steering angle, and yaw rate signals may
be used as well. Some systems deploy steering
wheel angle and yaw rate sensors for direct signal
assessment and signal sharing competency, while
others estimate these signals based on the speed
difference between left and right wheels, for

subsystem modularity across various vehicle con-
figurations and platforms as well as calibration
independency.

Powertrain and brake torque modulation are
typically used for actuation to regulate driven
wheel slips.

Control SystemBehavior

Wheel/tire slip targets are typically adjusted
based on vehicle driveline configurations as
well as vehicle maneuvers. When a vehicle is
cornering, a low slip target is generated to assure
sufficient margin in lateral tire force capacity.
Similarly, rear wheel drive vehicles may warrant
a lower slip target than front or all-wheel drive
vehicles. When a driver presses hard on the
accelerator pedal, the slip target can be raised
to accommodate higher acceleration. In addition,
the target can be adjusted based on vehicle speed
and estimated road available friction, all in an
attempt to optimize the longitudinal traction
force while keeping sufficient margin on lateral
grip (Fodor et al. 1998; Hrovat et al. 2000).

Uniform Friction Surface: (Uniformmu)
Unless equipped with advanced driveline mech-
anism such as active limited slip differential or
torque vectoring differential (Deur 2010), a vehi-
cle is typically equipped with open differential,
thus transmitting the powertrain torque evenly to
both left and right driven wheels. Since there is
no difference between the left and right wheel
torque that can be supported by the uniform
driving surface, wheel slip regulation can be quite
effectively achieved by modulating only the pow-
ertrain torque. One successful example of this is
Ford’s engine-only traction control system, intro-
duced in 2006 on its Fusion and F150 models,
which was well received by media experts and
customers (Healey 2005).

Nonuniform Friction Surface: (Split mu)
For driving surfaces offering different tire/road
characteristics, different wheel torque can be
supported on different sides. In this case, a
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vehicle equipped with an open differential would
transmit only the minimum torque (set by the
low friction side) to the road. Any additional
driveline torque that cannot be supported by
the road surfaces results in spinning the wheel
on the low friction side. Since open differential
transmits equal amount of torque left and right,
the additional tire force available on the higher
friction side would not be fully utilized with
powertrain only actuation. In this case, by
applying additional brake torque at the low
road friction side, the driveline torque can
be balanced at the higher level offered by
the high friction side. Care must be taken to
avoid aggressive brake application which can
cause driveline and/or half shaft oscillations
(Fodor et al. 1998; Hrovat et al. 2000).

Control Challenges

Given that road/tire interaction varies with
multiple environmental factors, the tire force/slip
relationship depicted in Fig. 1 is only a qualitative
characterization, and the actual optimal slip
for a desired traction force is difficult to
accurately establish. While the peak traction
force and the corresponding road friction
potential (i.e., mu) can be detected once
the wheel starts to spin, it is difficult to do
so prior to a wheel spin event (Gustafsson
1996).

Since the powertrain actuation is less percep-
tible yet occasionally sluggish, and the brake ap-
plication can be fast but intrusive at times, it can
be a control challenge to optimize the actuation
combination and bandwidth.

If a priori knowledge of friction potential
and optimal slip can be learned, detailed
powertrain/driveline actuation delay and
dynamics can be modeled, and optimal actuation
combination and bandwidth can be incorporated;
it is conceivable that further improvement in
wheel slip and traction control can be achieved,
using advanced control approaches such as model
predictive control (Borrelli et al. 2006), for
example.

Electronic Stability Control

According to the Society of Automotive
Engineers (SAE), an electronic stability control
system (ESC) is a computer-controlled system
that augments vehicle directional stability by
applying and adjusting individual wheel braking.
It is operational over the full speed range of
the vehicle and is capable of monitoring both
driver steering input and vehicle yaw rate to
limit vehicle understeering and oversteering, as
appropriate.

The wide proliferation of ESC in recent
years (Van Zanten 2000) across the vehicle
fleet has allowed various evaluation studies of
its effectiveness in real-world environments.
Among them, the United States NHTSA
(National Highway Traffic Safety Adminis-
tration) study (Dang 2004) concluded that
ESC reduces fatal single vehicle crashes by
35 %, while single vehicle crashes involving
sport utility vehicles (SUVs) are reduced
by 67 %. Similar conclusions were arrived
in other subsequent studies, including the
statement that “Electronic stability control
could prevent nearly one-third of all fatal
crashes . . . ” from the Insurance Institute for
Highway Safety organization (IIHS 2006).
Many of these effectiveness studies are
summarized in a literature review by Ferguson
(2007).

Control Design

The objective of an ESC system is to provide
vehicle controllability and predictability to assist
the driver. This can be achieved by preventing
excessive deviations between the intended and
actual lateral response of the vehicle, especially
during critical maneuvers such as a sudden en-
counter with a slippery/icy road.

During driving, a driver relies on a mental
model of the vehicle’s response to his/her steering
input developed from previous driving experi-
ence. A vehicle model, as described in Eq. 2 and
Fig. 2, is often used to describe nominal lateral
vehicle behaviors.
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I R D 2aFyf � 2bFyr

C c.�Fxf;l C Fxf;r � Fxr;l C Fxr;r / (2)

where m is the vehicle mass; V and Vy are
vehicle longitudinal and lateral velocity, corre-
spondingly; P is vehicle yaw rate; and ı is the
steering angle. Parameters a and b are the dis-
tance between vehicle center of gravity to front
and rear axle; c is the half track width. Fx and
Fy denote the longitudinal and lateral/cornering
tire force, with subscript indicating longitudinal
(x) or lateral (y) direction, as well as the specific
corner of the vehicle (front, rear, left, and right).

Note that the corresponding longitudinal dy-
namics can be described as

m PV D mvy P CFxf;l CFxr;l CFxf;r CFxr;r (3)

As the available road friction is not always
known, a nominal vehicle lateral response de-
rived from a hi-mu surface may not be feasible
and may not best represent a driver’s intent. To
modify the feedback to best adapt to the road
condition, ESC would do one or more of the
following: Adjust the driver intended yaw rate
according to detected lateral acceleration capa-
bility (Tseng et al. 1999), balance between yaw

rate and lateral acceleration error when both are
compared to a nominal vehicle model (Manning
and Crolla 2007), or balance between yaw rate
error and detected excessive sideslip angle (Di
Cairano et al. 2013).

Sensors and Actuators

In order to effectively provide vehicle control-
lability through an embedded controller, ESC
systems are equipped with a steering angle sen-
sor, wheel speed sensors, a yaw rate sensor, and a
lateral accelerometer. Additional sensors such as
a longitudinal accelerometer and a roll rate sensor
may be installed to better observe the vehicle
dynamic states and provide improved fidelity for
estimated vehicle behaviors. The actuators of an
ESC system are the individual wheel brakes and
powertrain torque.

Control SystemBehavior

A vehicle can exhibit understeering and/or
oversteering behaviors during aggressive
lateral maneuvers. Figure 3 illustrates how a
vehicle equipped with ESC may provide better
controllability.

Understeering – When a vehicle does not
turn in as much as desired by the driver (see
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upper Fig. 3). In this case, the vehicle yaw rate,
an ESC measured/monitored signal, would be
less than the driver desired value. For example,
a vehicle on ice may experience extreme
understeering that keeps the vehicle moving
straight even when the steering wheel is turned.
In this case, ESC applies corrective yaw moment
to increase the yaw rate through individual wheel
braking. Most of the longitudinal braking force is
applied on rear axle inside wheel in the attempt
to increase the lateral force capacity on the front
axle while decreasing the lateral force capacity
on the rear axle. As such, the vehicle experiences
not only the yaw moment correction but also the
reduction of understeering tendency with ESC
brake application.

Oversteering – When a vehicle turns too much,
i.e., yaws with a smaller turning radius than
the one needed to negotiate the road (see lower
Fig. 3). In this case, the vehicle yaw rate would be

larger than the driver desires. The vehicle tends
to build up a large sideslip angle, resulting in a
spinout due to the saturation of rear tire force. In
this case, ESC applies corrective yaw moment to
decrease the size of yaw rate through individual
wheel braking. The longitudinal braking force is
applied mostly on the front axle outside wheel
to preserve the lateral force capacity on the rear
axle and decrease the lateral force capacity on
the front axle. As such, the vehicle experiences
not only the yaw moment correction but also
the reduction of oversteering tendency with ESC
brake application.

Evasive Maneuver – During an evasive
maneuver, such as an aggressive double lane
change, the vehicle may first turn in one
direction, followed by an oversteer in the
other direction. Due to delay and lag of
actuator response in practice, feedforward
control is typically used to ensure brake
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application would generate corrective yaw
moment in the appropriate direction. Further
improvement could be possible by using
road/traffic preview along with (semi)autonomous
intervention based on advanced optimal control
such as model predictive control (Falcone et al.
2008), for example.

Skidding and Oversteering – When both
front and rear tires experience large tire slip
angle, both tire forces are saturated. In this case,
the vehicle is operating in a region where the
rear tire slip angle can grow rapidly. Unless
the front steering is delicately and quickly
balanced, the excessive rear tire slip angle
could cause the vehicle to spin out. In this
case, in addition to applying corrective yaw
moment similar to the above oversteering case,
ESC may command light braking on all four
wheels in an attempt to further slow down the
vehicle.

Rollover Mitigation – An ESC system may
be extended to further provide a more control-
lable vehicle behavior and mitigate rollover risks
in evasive maneuvers that demand a large and
sudden lateral force. For example, Roll Stability
Control TM system introduced at Ford in 2003
monitors vehicle roll behavior in addition to ve-
hicle yaw behavior to assist the driver (Lu et al.
2007).

Control Challenges

In order to best provide the assistance to drivers’
desire, it is important to assess the vehicle dy-
namic state and driver intention with high fidelity.
This can be challenging in the presence of various
factors that directly influence the vehicle behav-
ior or sensor readings but are not or cannot be
directly measured. For example, the road bank
angle information is typically unavailable, but it
has a direct influence on the lateral accelerometer
measurement and could be misinterpreted as a
discrepancy between vehicle yaw rate and lateral
force (Tseng 2001; Tseng et al. 2007). And de-
spite its criticality in vehicle dynamics control,

the available road surface friction capacity and
the vehicle sideslip angle typically cannot be
measured (Tseng 2002, Ryu 2002, Ahn et al.
2013). The driver’s intent is prescribed by a
mental model in the computer, but we cannot
directly read the driver’s mind. In addition, the
controller should detect when a sensor is mis-
behaving and giving out false or biased readings
(Xu and Tseng 2007). While advanced observers
have been developed to address these challenges,
it is foreseeable that optimization in these areas
could further improve the observer fidelity and
overall ESC performance.
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Abstract

Even since the pioneering work of Levine
and Athans and Melzer and Kuo, control
of vehicular formations has been a topic
of active research. In spite of its apparent
simplicity, this problem poses significant
engineering challenges, and it has often inspired
theoretical developments. In this article, we view
vehicular formations as a particular instance of
dynamical systems over networks and summarize
fundamental performance limitations arising
from the use of local feedback in formations
subject to stochastic disturbances. In topology
of regular lattices, it is impossible to have
coherent large formations, which behave like
rigid lattices, in one and two spatial dimensions;
yet this is achievable in 3D. This is a consequence
of the fact that, in 1D and 2D, local feedback
laws with relative position measurements are
ineffective in guarding against disturbances
with slow temporal variations and large spatial
wavelength.

Keywords

Fundamental performance limitations; Localized
control; Optimal control; Relative information
exchange; Spatially invariant systems; Toeplitz
and circulant matrices; Vehicular formations

Introduction

Control of vehicular strings has been an active
area of research for almost five decades (Levine
and Athans 1966; Lin et al. 2012; Melzer and
Kuo 1971a, b; Middleton and Braslavsky 2010;
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Seiler et al. 2004; Swaroop and Hedrick 1996,
1999; Varaiya 1993). This problem represents a
special instance of more general vehicular for-
mation problems which are encountered in the
control of unmanned aerial vehicles, satellite for-
mations, and groups of autonomous robots (Bullo
et al. 2009; Mesbahi and Egerstedt 2010). Even
for the simplest control objective, in which it is
desired to maintain a constant cruising velocity
and a constant distance between the neighboring
vehicles, it has been long recognized that lim-
ited information exchange between the vehicles
imposes fundamental performance limitations for
control design. In particular, look-ahead strate-
gies that rely only on relative spacing information
with respect to the preceding vehicle suffer from
string instability. This phenomenon is character-
ized by unfavorable amplification of disturbances
downstream the vehicular string (Middleton and
Braslavsky 2010; Seiler et al. 2004; Swaroop and
Hedrick 1996, 1999). In order to avoid this unfa-
vorable spatial application, it is typically required
to broadcast the state of the leader to the rest of
the formation.

While a precise characterization of funda-
mental performance limitations in the control of
vehicular formations is still an open question, in
this article we review recent progress in this area.
We begin by highlighting performance limits
that arise even in optimally controlled vehicular
strings. The LQR problem for vehicular strings
was originally formulated in pioneering papers by
Levine and Athans (1966) and Melzer and Kuo
(1971a, b). These formulations were revisited
in Jovanović and Bamieh (2005) where it was
shown that the time constant of the optimally
controlled closed-loop system increases linearly
with the number of vehicles. This reference also
employed spatially invariant theory (Bamieh
et al. 2002) to demonstrate the lack of exponential
stability in the limit of an infinite number of
vehicles and to explain the arbitrarily slowing
rate of convergence observed in numerical
studies of finite strings of increasing sizes.
We then summarize a recent result that viewed
vehicular strings as the 1D version of vehicular
formations on regular lattices in arbitrary
spatial dimensions and established fundamental

performance limitations of spatially invariant
localized feedback strategies with relative
position measurements (Bamieh et al. 2012).
It was shown that it is impossible to achieve
robustness to stochastic disturbances with only
localized feedback in 1D and 2D; yet this can
be achieved in 3D. This is a consequence of
the fact that, in 1D and 2D, local feedback laws
are ineffective in guarding against disturbances
with slow temporal variations and large spatial
wavelength. An “accordion” type of motion
experienced by these spatiotemporal modes
compromises formation throughput, and it may
occur even in formations that are string stable.
Since the phenomenon that we describe also
occurs in distributed averaging algorithms,
global mean first passage time of random walks,
effective resistance in electrical networks, and
statistical mechanics of harmonic solids, it is
relevant for a broad class of networked dynamical
systems.

Optimal Control of Vehicular Strings

We next summarize a linear quadratic regulator
problem for vehicular strings (Levine and
Athans 1966; Melzer and Kuo 1971a, b) and
demonstrate that strategies that penalize only
relative position errors between neighboring
vehicles yield nonuniform rates of convergence
towards the desired formation (Jovanović
and Bamieh 2005). In particular, the time
constant of the optimally controlled closed-loop
system increases linearly with the number of
vehicles, and the formation loses exponential
stability in the limit of infinite vehicular
strings.

Optimal Control of Finite Strings
A string consisting ofM identical unit mass vehi-
cles is shown in Fig. 1a. Each vehicle is modeled
as a point mass that obeys the double-integrator
dynamics:

Rxn D un; n 2 f1; : : : ;M g (1)
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Vehicular Chains, Fig. 1 Finite and infinite strings of vehicles

Vehicular Chains, Fig. 2 Finite string with fictitious lead
and follow vehicles

where xn is the position of the nth vehicle and un
is the control applied on the nth vehicle. A control
objective is to provide the desired constant cruis-
ing velocity Nv and to keep the constant distance ı
between the neighboring vehicles. By introducing
the absolute position and velocity error variables

pn.t/ WD xn.t/ � Nvt C nı

vn.t/ WD Pxn.t/ � Nv; n 2 f1; : : : ;M g

system (1) can be brought into the state-space
form (Melzer and Kuo 1971a, b):

� Pp
Pv
�

D
�
0 I

0 0

� �
p

v

�
C
�
0

I

�
u DW A C Bu

(2)

where p WD Œp1 � � �pM �T , v WD Œv1 � � �vM �T , and
u WD Œu1 � � � uM �T .

Following Melzer and Kuo (1971a, b),
fictitious lead and follow vehicles, respectively,
indexed by 0 and M C 1, are added to the
formation; see Fig. 2. These two vehicles are
constrained to move at the desired velocity
Nv, and the relative distance between them is
assumed to be equal to .M C 1/ı for all times.
A quadratic performance index that penalizes
control effort, relative position, and absolute
velocity error variables is associated with
system (2):

J D 1

2

Z 1

0

 
MC1X
nD1

qp.pn.t/ � pn�1.t//2

C
MX
nD1

.qvv
2
n.t/C r u2n.t//

!
dt

D 1

2

Z 1

0

. �.t/Q .t/C u�.t/Ru.t//dt:

(3)

The control problem (2) and (3) is in the standard
LQR form with the state and control weights:

Q WD
�
Qp 0

0 qvI

�
; Qp WD qpTM ; R WD rI:

Here, TM is anM�M symmetric Toeplitz matrix
with the first row given by [ 2 �1 0 � � � 0 ] 2 RM .

We next briefly summarize the explicit solu-
tion to the LQR problem (2) and (3) and refer
the reader to Jovanović and Bamieh (2005) for
additional details. By performing a spectral de-
composition of the Toeplitz matrix TM ,

TM D U�TU
�; UU � D U �U D I

�T D diagf�1.TM /; : : : ; �M .TM /g
�n.TM / D 2

�
1 � cos n�

MC1
�
; n 2 f1; : : : ;M g

(4)

the solution to the LQR algebraic Riccati equa-
tion can be represented as

P WD
�
P1 P

�
0

P0 P2

�
; P0 D U�0U

�; P2 D U�2U
�;

P1 D U�1U
�:

(5)
Here,

�0 D p
rqp�

1=2
T

�2 D p
r
�
2
p
rqp�

1=2
T C qvI

�1=2
�1 D p

qp�
1=2
T

�
2
p
rqp�

1=2
T C qvI

�1=2
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and the eigenvalues of the closed-loop A-matrix
are determined by the solutions to the following
system of the uncoupled quadratic equations:

s2n C bnsn C cn D 0; n 2 f1; : : : ;M g
cn WD �

�n.TM /qp
ı
r
�1=2

bn WD .2cn C qv=r/
1=2 :

(6)

From the above expression, it can be shown
that in large-scale formations, the least-stable
eigenvalue of the closed-loop system approaches
the imaginary axis at the rate that is inversely
proportional to the number of vehicles. As can
be seen from the PBH detectability test, this is
because the pair (Q, A) gets closer to losing its
detectability as the number of vehicles increases.
This clearly indicates that the resulting optimal
control strategy leads to closed-loop systems with
arbitrarily slow decay rates as the number of ve-
hicles increases. As summarized in section “Op-
timal Control of Infinite Strings,” the absence
of a uniform rate of convergence for a finite
number of vehicles manifests itself as the absence
of exponential stability in the limit of infinite
vehicular strings.

Optimal Control of Infinite Strings
The LQR problem for a system of identical
unit mass vehicles in an infinite string (see
Fig. 1b) was originally studied in Melzer and
Kuo (1971a). As summarized below, using the
theory for spatially invariant linear systems
(Bamieh et al. 2002), it was shown in Jovanović
and Bamieh (2005) that the resulting LQR
controller does not provide exponential stability
of the closed-loop system due to the lack of
detectability of the pair (Q, A).

The infinite dimensional equivalent of (2) is
given by

� Ppn
Pvn
�

D
�
0 I

0 0

� �
pn
vn

�
C
�
0

I

�

un DW An n C Bnun; n 2 Z (7)

J D1

2

Z 1

0

X
n2Z

�
qp.pn.t/ � pn�1.t//2

Cqvv2n.t/C r u2n.t/
�
dt

(8)

Vehicular Chains, Fig. 3 The spectra of the closed-loop
generators in LQR-controlled finite (symbols) and infinite
(solid line) strings of vehicles with M = 50 and qp D
qv D r = 1. The closed-loop eigenvalues of the finite
string are points in the spectrum of the closed-loop infinite
string. As the number of vehicles increases, the number of
eigenvalues that accumulate in the vicinity of the stability
boundary gets larger and larger

with qp , qv, and r being positive design pa-
rameters. Spatial invariance over a discrete spa-
tial lattice Z can be used to establish that the
solution to the LQR problem does not provide
an exponentially stabilizing feedback for system
(7). In particular, the spectrum of the closed-
loop generator in an LQR-controlled spatially
invariant string of vehicles (7) with performance
index (8) is given by the solutions to the following
�-parameterized quadratic equation:

s2� C b�s� C c� D 0;

c� WD �
2.qp

ı
r/.1 � cos �/

�1=2
b� WD .2c� C qv=r/

1=2

(9)

where � 2 Œ0; 2�/ denotes the spatial wave num-
ber. By comparing (4), (6) and (9), we see that
the closed-loop eigenvalues of the finite string are
points in the spectrum of the closed-loop infinite
string. Furthermore, from these equations it fol-
lows that as the size of the finite string increases,
this set of points becomes dense in the spectrum
of the infinite string closed-loop A-operator. The
spectrum of the closed-loop generator, shown in
Fig. 3 for qp D qv D r D 1, illustrates the
absence of exponential stability.
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Coherence in Large-Scale Formations

Fundamental performance limitations arising
from the use of local feedback in networks
subject to stochastic disturbances were recently
examined in Bamieh et al. (2012). For consensus
and vehicular formation control problems in
topology of regular lattices, it was shown that
it is impossible to guarantee robustness to
stochastic exogenous disturbances in one and
two spatial dimensions. Yet it was proved that
this is achievable in 3D. This phenomenon is a
consequence of the fact that, in 1D and 2D, local
feedback laws are ineffective in guarding against
disturbances with large spatial wavelength,
and it has also been observed in global mean
first passage time of random walks, effective
resistance in electrical networks, and statistical
mechanics of harmonic solids. We next briefly
summarize the implications of these results for
the control of vehicular formations and refer the
reader to Bamieh et al. (2012) for details.

Stochastically Forced Vehicular
Formations with Local Feedback
Let us consider M WD Nd identical vehicles
arranged in a d -dimensional torus, ZdN , with the
double integrator dynamics:

Rxn D un C wn (10)

where n WD .n1; : : :; nd / is a multi-index with
each ni 2 ZN WD f0; : : :; N � 1g, u is the
control input, and w is a mutually uncorrelated
white stochastic forcing. Each position vector
xn is a d -dimensional vector with components

xn WD �
x1n � � � xdn

	T
. The control objective is to

have the nth vehicle follow the absolute desired
trajectory Nxn:

Nxn WD NvtCnı ,

2
64

Nx1n
:::

Nxdn

3
75 WD

2
64

Nv1
:::

Nvd

3
75 tC

2
64
n1
:::

nd

3
75 ı:

In other words, it is desired that all vehicles
move with constant heading velocity Nv while

maintaining their respective position in a ZdN grid
with spacing of ı in each dimension.

By introducing the position and velocity devi-
ations from the desired trajectory,

pn WD xn � Nxn; vn WD Pxn � Nv

and by confining our attention to static-feedback
policies,

u.t/ D �ŒKp Kv �

�
p.t/

v.t/

�
(11)

equations of motion for the controlled system
(10) can be brought into the state-space form

� Pp
Pv
�

D
�

0 I

�Kp �Kv

� �
p

v

�
C
�
0

I

�

w DW A C Bw
z D C :

(12)

Here, p and v are the position and velocity
vectors of all vehicles, z is the performance out-
put, and w is the forcing vector.

An Example
In one-dimensional formations with nearest
neighbor relative position and velocity measure-
ments, the control acting on the nth vehicle is
given by

un.t/ D �k�
p .pn.t/ � pn�1.t//

�kC
p .pn.t/ � pnC1.t//

�k�
v .vn.t/ � vn�1.t//

�kC
v .vn.t/ � vnC1.t//

(13)

where kṗ and kv̇ are positive design parameters.
For a system that evolves over a 1D lattice, the
feedback gain matrices Kp and Kv are tridiag-
onal Toeplitz matrices implying that the closed-
loop systems have been effectively converted into
a mass-spring-damper system shown in Fig. 4.
Figure 5 shows the results of a stochastic simula-
tion for the closed-loop system (12) and (13) with
100 vehicles with desired inter-vehicular spacing
ı D 20 and kṗ D kv̇ D 1. These plots
indicate the lack of formation coherence. This is
only discernible when one “zooms out” to view
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Vehicular Chains, Fig. 4 Finite string of vehicles with a nearest neighbor relative position and velocity feedback

Vehicular Chains, Fig. 5 Position trajectories of a
stochastically forced formation with 100 vehicles con-
trolled with nearest neighbor strategy (13). Left plot

demonstrates accordion-like motion of the entire forma-
tion; right plot shows that vehicle-to-vehicle distances are
relatively well regulated

the entire formation. The length of the formation
fluctuates stochastically, but with a distinct slow
temporal and long spatial wavelength signature.
In contrast, the zoomed-in view in Fig. 5 shows a
relatively well-regulated vehicle-to-vehicle spac-
ing. In general, small-scale (both temporally and
spatially) disturbances are well regulated, while
large-scale disturbances are not. This indicates
that a local feedback strategy (13) cannot regulate
against large-scale disturbances.

Structural Assumptions
We now list the assumptions on the operators
Kp , Kv, and C in (12) under which asymptotic
scaling trends summarized in section “Scaling
of Variance per Vehicle with System Size” are
obtained.
(A1) Spatial invariance. Operators Kp, Kv,

and C in (12) are spatially invariant with
respect to ZdN .

(A2) Spatial localization. The feedback (11)
uses only local information from a neigh-
borhood of width 2q, where q is indepen-
dent of N .

(A3) Reflection symmetry. The interactions be-
tween vehicles exhibit mirror symmetry.

(A4) Coordinate decoupling. For d � 2, con-
trol in each coordinate direction depends
only on measurements of position and ve-
locity error vector components in that co-
ordinate.

While assumptions (A3) and (A4) were made
to simplify calculations, assumptions (A1) and
(A2) were essential for the developments in
Bamieh et al. (2012).

Performance Measures
We next examine the dependence of the steady-
state variance of stochastically forced system (12)
on the number of vehicles. In the presence of
relative position or velocity measurements, the
matrix A in (12) is not necessarily Hurwitz,
and the state  may not have finite steady-state
variance. However, for connected networks, the
performance output z that does not penalize the
motion of the mean will have finite steady-state
variance; this is because the modes of A at the
origin will be unobservable from z. The steady-
state variance of z,
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V WD
X
n2ZdN

lim
t!1E �zTn .t/zn.t/� (14)

is quantified by the square of the H2 norm of
the system (12) from w to z, and it can be
determined from the solution of the algebraic
Lyapunov equation.

We next summarize two different performance
measures for stochastically forced vehicular for-
mations.
(P1) Local error. This is a measure of the dif-

ference of neighboring vehicles positions from
the desired spacing. In 1D, the performance
output of the nth vehicle is given by

zn WD pn � pn�1:

In d -dimensions, the performance output vec-
tor contains as its components the local er-
ror in each respective dimension. Since this
output involves quantities local to any vehicle
within a formation, the corresponding steady-
state variance is referred to as a microscopic
performance measure, Vmicro.

(P2) Deviation from average. This is a measure
of the deviation of each vehicle’s position
error from the average of the overall position
error.

zn WD pn � 1

M

X
j2ZdN

pj : (15)

Since this output determines deviation from av-
erage, and thereby quantities that are far apart in

the network, the corresponding steady-state vari-
ance is referred to as a macroscopic performance
measure, Vmacro.

Scaling of Variance per Vehicle with
System Size
We next summarize asymptotic bounds for both
microscopic and macroscopic performance mea-
sures derived in Bamieh et al. (2012). The upper
bounds result from simple feedback laws similar
to the one given in (13). In the situations where
either absolute position or velocity measurement
are available, additional terms proportional to pn
and vn will appear in (13). The lower bounds
have been obtained for any linear static feedback
control policy satisfying the structural assump-
tions (A1)–(A4) and the following constraint on
control variance at each vehicle:

E �uTn un
� � Umax: (16)

Under this constraint, the equivalence between
scaling trends of lower and upper bounds can be
established. As illustrated in Table 1, the depen-
dence of the asymptotic bounds on the number of
vehicles is strongly influenced by the underlying
spatial dimension d .

Since the macroscopic performance measure
captures how well the formation regulates against
large-scale disturbances, the scaling results
presented in Table 1 demonstrate that local
feedback with relative position measurements
is unable to regulate against these large-scale

Vehicular Chains, Table 1 Asymptotic scalings of microscopic and macroscopic performance measures in terms of
the total number of vehicles M D Nd , the spatial dimensions d , and the control effort per vehicle Umax. Quantities
listed are up to a multiplicative factor that is independent of M or Umax:

Feedback type Vmicro/M Vmacro/M

Absolute position
Absolute velocity

1
Umax

1
Umax

Relative position
Absolute velocity

1
Umax

1
Umax

8<
:

M d D 1

log.M/ d D 2

1 d � 3

Relative position
Relative velocity

1
U 2max

8<
:

M d D 1

log.M/ d D 2

1 d � 3

1
U2max

8̂
ˆ̂<
ˆ̂̂:

M3 d D 1

M d D 2

M1=3 d D 3

log.M/ d D 4

1 d � 5
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disturbances in 1D. To the contrary, in higher
spatial dimensions, local feedback can regulate
against large-scale disturbances and provide
formation coherence. As shown in Table 1, the
“critical dimension” needed to achieve network
coherence depends on the type of feedback
strategy: dimension 3 for relative position and
absolute velocity feedback and dimension 5 for
relative position and velocity feedback.

Summary and Future Directions

For stochastically forced vehicular formations in
topology of regular lattices, we have summa-
rized fundamental performance limitations re-
sulting from the use of local feedback. Even for
formations that are string stable, local feedback
is not capable of guarding against slowly varying
disturbances with long spatial wavelength in 1D
and 2D. The observed phenomenon also arises in
distributed averaging and estimation algorithms,
global mean first passage time of random walks,
effective resistance in electrical networks, and
statistical mechanics of harmonic solids. Since
performance measures that we used to quantify
robustness to disturbances are easily extensible
to networks with arbitrary topology and more
complex node dynamics, they can be used to eval-
uate performance of a broad class of networked
dynamical systems in future studies.
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devices. Vibration control of buildings subjected
to dynamic loadings such as large earthquakes,
strong winds, or heavy traffic is one of the most
important factors to take into consideration to
secure the users. Since energy dissipation is the
key technology in vibration control, many kinds
of devices have been developed for structural
mitigation. Seismic retrofit of buildings is very
important because long-period earthquakes occur
at considerable distances from the seismic center.
Here, we introduce the application of specific
devices to the vibration control system design of
real buildings, especially in Japan, where there
are many earthquakes.

Keywords

Active control; Base isolation; Energy dissipa-
tion; Seismic response control; Seismic retrofit;
Semi-active control; Vibration control

Introduction

Vibration control of buildings subjected to dy-
namic loadings such as large earthquakes, strong
winds, or heavy traffic is one of the most impor-
tant factors to consider for the safety of building
occupants. Energy dissipation is the key tech-
nology in vibration control, and many kinds of
devices have been developed for structural mit-
igation (Soong and Spencer 2002; Spencer and
Nagarajaiah 2003). In Japan, the 2011 earthquake
occurred on the Pacific coast of Tohoku, pro-
longed for an extended period to the Tokyo area
400 km away from the seismic center, and caused
fatal damages to the buildings of the surrounding
areas.

Therefore, seismic retrofitting of buildings
is very important in Japan because long-period
earthquakes occur at sites far away from their
seismic center as well. In particular, old super-
high-rise buildings are concentrated in the
central ward of Tokyo, Shinjuku, and they
have been built on the basis of the theory
of flexible structures. During a long-period
earthquake, super-high-rise buildings have very

large displacement (about 0.5 m) because of
resonance vibration and may need a few minutes
to dissipate the structural vibrations. These
buildings need to be retrofitted by adding some
energy dissipating devices, such as active mass
dampers (AMDs), tuned mass dampers, rotating
inertial mass dampers, and passive/semi-active
base isolation devices.

This entry reviews a vibration control system
design of buildings in terms of energy dissipa-
tion and seismic isolation including full active
control devices and semi-active or passive de-
vices. We introduce the application of specific
devices to the vibration control system design of
real buildings.

Active Mass Damper

Active, semi-active, or passive mass damper sys-
tems have been installed in a large number of
high-rise buildings as shown in Fig. 1 (Soong and
Spencer 2002; Spencer and Nagarajaiah 2003).
Although active mass dampers have historically

u

Mass damper system

Ground motion

Wind force

xn-1

xn

xa

Vibration Control SystemDesign for Buildings, Fig. 1
Active, semi-active, or passive mass damper system in-
stalled in an n-storied building subjected to wind force and
ground motion
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used ball-screw-type actuators, the IHI Corpo-
ration has now developed AMDs driven by a
linear motor, making the production of a long
stroke type easier than that in the case of the ball-
screw-type actuator (Koike et al. 2011). Other
advantages of using a linear actuator are lesser
noise and vibration, lightweight, and compact-
ness. Thanks to these advantages, it is expected
that linear motor type AMDs will be installed
in existing buildings as seismic retrofitting de-
vices. To avoid reaching the stroke length limit
of the actuator because of a large earthquake,
a displacement control of the mass is applied.
A phase lead compensation in response to the
displacement signal is used to preview the mass
stroke.

The two AMDs have been installed in
the Docomo Tohoku building of Japan in the
same direction to improve by 9.5 % the
damping ratio of the 1st mode of the trans-
lational vibration. The weight of the mass is
20,000 kg, and the total weight of the device
is about 25,000 kg. The control experiment
was performed by exciting the building with
AMDs, and a damping ratio of 11 % was
obtained by activating the vibration control with
AMDs.

Seismic Retrofitting

Shimizu Corporation modified the super-high-
rise building (height D 100 m) in the Shibaura
ward of Tokyo, Japan, by installing rotational
inertia mass dampers. The rotational inertia mass
damper has a mechanism consisting of a ball
screw and a rotational inertia mass, with which
the relative translational displacement between
stories can be changed to rotational motion of the
damper to efficiently increase the dissipation of
the kinetic energy.

Although in the previous seismic retrofitting
many dampers have been distributed in each
floor as shown in Fig. 2a, Shimizu Corporation
concentrated the rotational inertia mass dampers
on the lower floors of the building (e.g., 1–7) as
shown in Fig. 2b. The seismic response against
the 2011 Tohoku earthquake would now be re-
duced by about 35 % not only for the maximum
displacement but also for the maximum accelera-
tion of the top floor. Moreover, the duration time
would become 220 s instead of 400 s. The method
of retrofitting super-high-rise buildings is very
unique because the lower floors behave as isola-
tion layers of the base isolation system. Although
the displacement of the lower floors becomes

u

u

u

u

Ground motion

u

u

Ground motion

Distributed energy dissipation
device 

Energy dissipation device
concentrated in lower floors

a bVibration Control
SystemDesign for
Buildings, Fig. 2 Seismic
retrofitting. (a) Distributed
energy dissipation device.
(b) Energy dissipation
device concentrated in
lower floors
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slightly larger than that before the retrofit, the
whole building has a good seismic response per-
formance.

Semi-active Base Isolation

The semi-active base isolation system as shown
in Fig. 3 has been mounted in a building for the
first time in 2000. The building is located on the
Yagami campus of the Keio University in Yoko-
hama, Japan, and the base isolation system in two
directions consists of eight semi-active hydraulic
dampers that can change the damping coefficient
in four steps using a controllable orifice. The
maximum damping force is 640 kN, while the
switching law of damping coefficients is based on
the optimal bilinear control theory. The damper
is modeled on the lines of the Maxwell model,
where a spring and a damper are connected in
series, and the objective function on the kinetic
energy of the building and the constraint func-
tion of the squared damping force are adopted
(Yoshida and Fujio 2000).

u
Ground
disp. w

x1

xn-1

xn

Isolation
layer

Vibration Control SystemDesign for Buildings, Fig. 3
Semi-active base isolation system

In 2008, another type of semi-active base iso-
lation system has been installed by Collaboration
Complex in the Hiyoshi campus of the Keio Uni-
versity in Yokohama, Japan. The system consists
of eight semi-active dampers along with eight
conventional hydraulic fluid dampers in each di-
rection of the X–Y axes. While the maximum
force of the semi-active damper and the conven-
tional hydraulic fluid damper is about 1,000 kN,
the semi-active damper can change the damping
coefficient in two steps, high side, 3.68 MNs/m
and low side, 1.23 MNs/m. When an earthquake
manifests, the high damping coefficient in normal
status is switched to the low side. This switch
enables the suppression of the acceleration re-
sponse of the building at the early stages of the
earthquake. After the early stage, according to
the acceleration response filtered on the isola-
tion layer, the low damping coefficient should
be switched to the high side again to avoid the
collision of the building with the foundations.

Magneto-rheological (MR) fluid dampers
have been studied by many researchers, and
in 2001, two 300 kN MR fluid dampers have
been installed in Nihon-Kagaku-Miraikan, the
Tokyo National Museum of Emerging Science
and Innovation. Similarly in 2003, 400 kN MR
fluid dampers have been installed in a residential
building in Japan (Fujitani et al. 2003).

Although MR fluid dampers have been con-
trolled by various laws (Jansen and Dyke 2000), a
gain-scheduled control method was introduced to
control the electric current generated by the elec-
tromagnet of the MR damper (Nishimura et al.
2002). A system controlled by a damping force is
a bilinear control system, where the control input
depends not only on the relative velocity but also
on the damping coefficient. A virtual semi-active
damper model was proposed that is capable of
changing the damping coefficient with the valve
open ratio, which is assumed to be governed by
the input to the dynamics of 2nd-order system.
In this device, the optimized variable damping
coefficient is determined by the input. Moreover,
the valve opening ratio is limited to certain values
to constrain the damping force to the maximum
value. However, the controllability of the bilinear
control system using the variable damping force
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depends on the relative velocity of the damper. If
the relative velocity equals zero, then the system
is uncontrollable. Thus, the systems relative to
the positive and the negative sides of the relative
velocity are separated. Furthermore, the current–
force relationship of the MR damper is consid-
ered.

The control method using an MR damper was
verified on a 9 m high building-like structure. The
structure had four degrees of freedom and a total
weight of about 33,000 kg. The MR damper has a
maximum force of about 40 kN and its current–
force relationship is nonlinear (Watakabe et al.
2008). The experimental results demonstrated a
good seismic isolation performance in compari-
son with the skyhook control. The gain-scheduled
control proposed gently varied the damping force
according to the input current.

Full Active Base Isolation

Full active base isolation systems have been stud-
ied by many researchers (Nishimura and Kojima
1999) who evidenced that they are affected by
the saturation of the force generated by the ac-
tuator following a large earthquake. The seis-
mic isolation performance should be held even
though the force saturation occurred. To control
the vibrations, it was proposed to use a hyperbolic
function for representing the saturation to smooth
the input force (Itagaki and Nishimura 2005).

In 2010, the Obayashi Corporation imple-
mented the active base isolation system in real
buildings (Endo et al. 2011). Two hydraulic
actuators are connected to the building through a
spring in each direction of the X–Y axes to avoid
the transmission of the high-frequency vibration
from the actuator to the building. The control
system is based on the displacement control
of the hydraulic actuator and achieves absolute
seismic control. The control force is necessary
to eliminate the spring and damper forces in the
isolation layer, and the skyhook damper force is
added to the control force for the stabilization of
the whole system.

A trigger mechanism using a friction damper
is equipped with serial hydraulic actuators and

can avoid the transmission of the excess input
force from the actuator to the building. If the
excess input force is generated from the actu-
ator in fail, the friction damper can absorb a
force of about 1,000 kN so as not to damage the
building and the actuator itself. The maximum
force of the hydraulic actuator is 1,100 kN, the
maximum displacement of the hydraulic actuator
is 200 mm, the maximum displacement of the
lead–rubber bearing is 500 mm, the maximum
displacement of the trigger mechanism with the
friction damper is 750 mm, the spring constant of
the connected spring is 16,300 kN/mm, and the
maximum stroke is 58 mm. Compared to passive
isolation, simulations demonstrated that the base
isolation system performed well, especially dur-
ing earthquakes with maximum acceleration less
than 200 cm=s2.

Summary and Future Directions

Seismic retrofitting may become increasingly
important for protecting buildings from large and
long-period earthquakes. The optimization of the
structural mitigation as a whole system must be
the objective of future studies aiming to achieve
an effective energy dissipation and seismic
isolation of buildings. Energy harvesting from
vibration control or three-dimensional isolation
devices will draw attention in the near future.
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(1997), Soong and Spencer (2002), and Spencer
and Nagarajaiah (2003) discuss applications of
vibration control systems to buildings or bridges
to support infrastructures. Rossetto and Duffour
(2012) and Saatcioglu (2012) discuss earthquake-
resistant design and structural mitigation of earth-
quakes with structural control including with pas-
sive devices.
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Walking Robots

Ambarish Goswami
Honda Research Institute, Mountain View,
CA, USA

Abstract

This article presents an overview of mobile
“walking” robots that use their legs to move from
one place to another. Walking robots represent
a fascinating class of machines which holds
the potential for breakthrough applications and
inspires multidisciplinary research with rich
scientific content. The key feature that separates
walking robots from all other classes of mobile
robots is their ability to explore unprepared
surfaces using discrete footholds. In this respect,
these robots are truly the machine counterparts of
biological land animals.

Keywords

Balance; Fall; Gait; Humanoid robots

Introduction

The adventure of modern robotics is generally
considered to have started from the middle of
the twentieth century (International Federation

of Robotics 2011). During the first few decades
of this new journey, robots were not mobile.
Somewhat similar to trees, these so-called
“arm” manipulator robots were securely rooted
to the ground. The free end of these robots
typically consisted of an end-effector “hand”
with which a number of mostly manufacturing-
related tasks, such as welding, spray-painting,
and pick-and-place operations, were performed.
Life was simple, if a bit boring. However,
from the end of the 1960s, this started to
change.

Fiction writers had earlier imagined a variety
of mobile robots such as in “I, Robot” (Asimov
1950), Otho (Hamilton 1940), and Maria
(Malone 2004). Scientists and engineers
also ventured to build a number of quite
sophisticated machines such as the General
Electric experimental “walking truck” quadruped
robot by Mosher shown in Fig. 1 and the
Sparko and Elektro by Westinghouse (http://
en.wikipedia.org/wiki/Elektro). However, they
were not considered truly autonomous in the
sense we describe modern robots. Some of the
major personalities who are primarily responsible
for forever transforming the state of stationary
existence of robots and giving them intelligent
mobility are Profs. I. Kato, M. Vukobratovic, and
R. McGhee, followed by Prof. M. Raibert.

Because walking robots used legs for locomo-
tion, they immediately became the mechatronic
cousins to the entire range of biological legged
creatures, starting from tiny creatures to large
animals. Indeed, today we have robotic versions

J. Baillieul, T. Samad (eds.), Encyclopedia of Systems and Control, DOI 10.1007/978-1-4471-5058-9,
© Springer-Verlag London 2015
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Walking Robots, Fig. 1 GE “walking truck” developed
by Mosher

Walking Robots, Fig. 2 Adaptive suspension vehicle
(ASV), Ohio State University

of spiders and cockroaches, geckoes and lizards,
dogs and cheetah, and even humanoids. We have
seen very large robots such as the ASV (Wal-
dron and McGhee 1986) shown in Fig. 2 and the
Dante (Bares and Wettergreen 1999), shown in
Fig. 4. We have also seen single-legged robots,
which even Mother Nature has not considered
creating so far.

Early History

The early researchers whom we mentioned
above started paving the way for walking robots.
These robots walked with their legs, explored
their own environments, and sometimes even
ventured outside. Once these walking robots
started appearing on the scene, life was never the
same.

Prof. Kato pioneered walking robot research
at Waseda University (Japan) through a series
of remarkable biped humanoid robots, of which
WL-5 is credited with genuine bipedal walk-
ing and WL-6 with displaying the first dynamic
gait. At the same time, Prof. Vukobratovic was
conducting research activities in exoskeleton and
other areas at the Mihailo Pupin Institute (former
Yugoslavia). He was instrumental in formaliz-
ing the concept of dynamic balance using the
zero moment point (ZMP) concept (Sardain and
Bessonnet 2004; Vukobratović and Juričić 1969),
which is used to this day. In the USA, Prof.
McGhee conducted path-breaking research on
computer-controlled machines at the Ohio State
University. He created the Ohio hexapod and
later, with colleague Prof. Ken Waldron, devel-
oped the truly spectacular Adaptive Suspension
Vehicle (ASV) hexapod.

Prof. Raibert started building robots in the
USA, first at Carnegie Mellon University and
then at Massachusetts Institute of Technol-
ogy (Raibert 1989). With his colleagues, he
created a series of robots, which, unlike their
stationary predecessors, were characteristically
full of energy. Situation permitting, they
would occasionally deviate from conventional
walking and running and would burst into
aerial somersaults and other acrobatic motions.
Prof. Raibert continues to actively shape the
field of walking robots to the present day; his
company Boston Dynamics (recently acquired
by Google Inc.) has introduced a number of high-
performance robots, such as LittleDog, BigDog,
RHex, Petman, and Atlas.

The hardware, sensing, and control aspects
of walking robots were steadily gaining
sophistication during the 1990s. However, except
for the new appreciation of walking dynamics
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in the study of passive bipedal gait (McGeer
1990), there was no unexpected leap in the world
of walking robots. This changed in 1996 when
Honda publicly announced the humanoid robot
P2, the result of their robotics project, till then
unknown to the outside world. This was to be
superseded by the P3 robot and then the ASIMO
humanoid robot project in 2000, which became
another important event in the humanoid robot
history.

Characteristics of Walking Robots

Compared to other forms of land locomotion,
legged walking possesses the distinct capability
of locomotion using discrete footholds (Raibert
1989). Unlike wheeled mobile robots or cars,
walking robots do not need a continuous prepared
surface such as paved road, trail, or track in order
to travel. By virtue of this single feature, a vast
extent of land surface, which is not accessible
to wheeled robots, opens up to walking robots.
Indeed, at least in principle, walking robots are
able to reach almost any location, on earth and on
other planets, wherever human and other legged
creatures can go.

Legged locomotion is natural to terrains where
the only means of locomotion must be through
the use of unstructured footholds, which can be
irregularly spaced both horizontally and verti-
cally. Due to the unique design of the leg, legged
creatures can largely isolate the “payload” or
the upper body from the geometric details of
the terrain profile during locomotion. Both for
biological creatures and for walking robots, this
brings benefit in the form of significant energy
savings. For walking robots this also reduces
mechanical stress, vibration, and wear on the
system hardware, which makes them suitable for
locomotion in rough natural terrain.

In contrast, wheeled robots are typically faster,
mechanically less complex, and energetically
more efficient. However, these benefits must
be supported by very expensive infrastructure
overhead. In many places such expenditure is not
practical or not even desirable.

Classification of Walking Robots

Walking robots have been built in different sizes
and morphologies. These robots have ranged in
sizes from small hexapods (Lewinger et al. 2005),
medium-sized robots (Fig. 4), and relatively large
robots such as the BigDog (Raibert et al. 2008)
from Boston Dynamics and Toyota iWalk (Fig. 4)
and also a few giant robots such as Dante (Bares
and Wettergreen 1999) and Ambler (Fig. 4) from
CMU and the ASV (Waldron and McGhee 1986)
from OSU. With further miniaturization, it is
conceivable that we will see even smaller walking
robots in the future with unanticipated and sur-
prising application domains. One can also imag-
ine gigantic walking robots in potential applica-
tions in large construction sites such as in bridge,
building, or ships, but we have not started seeing
them just yet.

In terms of the number of legs, we have
already seen monopods, Figs. 3b and 4a; bipeds,
Fig. 8a–c; tripod, Fig. 4b; quadruped, Fig. 4a, b;
hexapods, Figs. 4c, d and 2; octopod, Fig. 4e; and
“centipede” robots with many legs, Fig. 4f.

Other than monopods, robots with odd-
numbered legs are curiously absent in this list.
Creatures with odd-numbered legs are also not
found in nature. It is not clear if an engineering
rationale is present behind this trend or the
biological inspiration is simply missing for the
creators of legged robots.

In addition to size and morphology, walking
robots can be classified in terms of the number
and types of leg joints, type of gait (e.g., walking
or running), or the domain of movement. The
next section is devoted to the humanoid robots,
which is perhaps the most popular class of walk-
ing robots.

Humanoid Robots

Humanoid robots belong to a unique class of
two-legged walking robots that has a special
place in the popular psyche. These robots are the
subject of special affection and fascination due
to their similarity with human beings. In fact,



1540 Walking Robots

Walking Robots, Fig. 3 Early walking robots: (a) Waseda WL-10 (Image courtesy Atsuo Takanishi) and (b) one-
legged robot (Image courtesy of Boston dynamics)

humanoid robots might be the original inspiration
behind the entire field of robotics and perhaps
also its ultimate goal. Being perpetually inspired
by movies and novels, a long-standing dream
of the human has been to create a mechatronic
replica of themselves, the human, which will be
fully general-purpose endowed with all human
functionalities except perhaps the full indepen-
dence of thought and action.

Humanoid robots exist in different sizes, in-
cluding smaller robots such as NAO (Gouaillier
et al. 2009), HOAP, and QRIO (Ishida et al. 2004)
and life-sized robots such as HRP, HUBO, and
ASIMO. Despite their differences, these robots
bear a close resemblance to the kinematic design
and proportions of a human being and share
a common human-mimicking morphology. In-
deed, the perceived similarity between humanoid
robots and the human is so close that we routinely
describe aspects of such robots using anthropo-
morphic terms. Terms like head, arm, hand, leg,
thigh, shank, ankle, spine, gait, stumble, fall,
facial expression, and even emotion are hardly
ever used to describe any other man-made device.
Some popular humanoid robots are shown in
Fig. 9.

At current technical level, humanoid robots
cannot compete in their actual utility with
robots such as Roomba the vacuum cleaner,
the bomb-sniffing robot, or the huge population
of fully active and cost-effective welding and
spray-painting robots. Yet, our fascination
with humanoids remains as strong as ever,
and novel applications of such robots are
continuously being explored (Fig. 7). Humanoid
robots are currently considered in roles of
educators (Falconer 2013; Yamasaki and
Nakagawa 2006), dance partners (Kosuge 2010),
waiters, babysitters, companions for autistic
children or for seniors (Robins et al. 2012),
security, or emergency response team. Curiously,
the functionality of walking is not relevant or
central to many of these roles.

Dynamic Equations ofWalking
Robots

The dynamic equations of a walking robot can be
expressed in the following form:

H .q/ Rq CC .q; Pq/ Pq C�g.q/ D � C� c C� ext;

(1)
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Walking Robots, Fig. 4 Walking robots with different
number of legs: (a) monopod, Toyota hopping robot;
(b) tripod, STriDER, RoMeLa (Image courtesy of Den-
nis Hong); (c) large hexapod, McGhee, OSU; (d) RHex

(RHex robot image courtesy of Boston Dynamics);
(e) octopod, Spider, RoMeLa (Image courtesy of Dennis
Hong); and (f) many legs, centipede, Harvard
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Walking Robots, Fig. 5 Two quadruped robots: (a) Sony Aibo (Image courtesy of Sony) and (b) BigDog robot (Image
courtesy of Boston Dynamics)

Walking Robots, Fig. 6 Large walking robots: (a) Dante II, CMU; (b) Ambler, CMU; and (c) John Deere Walking
Tractor
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Walking Robots, Fig. 7 Novel application of walking robots: human-carrying “chair” robots, (a) iWalk of Toyota and
(b) WL-16RV multi-purpose biped locomotor from Waseda University (Image courtesy of Atsuo Takanishi)

where q is the vector of the robot’s generalized
coordinates, which contains the world frame
transformation matrix of its base link and all its
joint angles. The generalized velocity vector is
expressed as Pq D ŒvB

P��T where vB is the base
velocity and P� is the vector of joint velocities.
Additionally, H is the joint-space inertia matrix;
C is the matrix of Coriolis, centrifugal, and
gyroscopic terms; and �g is the vector of gravity
terms. Finally, � D Œ0 ��T is the joint torque
vector, � c D J T

c f c is the joint torque resulting
from the contact forces f c such as from the
ground, and � ext D J T

e f e is the joint torque due
to external interaction forces f e .

The contact conditions which the robot must
satisfy can be written in the form of Eq. 2. The
physical constraints due to ground friction, center
of pressure (CoP) condition (explained subse-
quently), torque limits, etc., can be expressed as
in Eq. 3

J c. Rq/ D b.q; Pq/ ; (2)

AŒ Rq � f c�
T � b.q; Pq/ ; (3)

The friction condition ensures that the robot
feet do not slide on the ground, and the CoP
condition corresponds to maintaining the resul-
tant of the ground reaction force (GRF) within

the perimeter of the support polygon (Sardain and
Bessonnet 2004) so that toppling is prevented.

Some of the generalized coordinates of the
robot, specifically those which describe the base
link of the robot to the world frame, are not
powered, as apparent from the joint torque vector
representation � D Œ0 ��T , in Eq. 1. In other
words, the robot is called underactuated. In fact,
all walking robots are underactuated, and it is one
of the central characteristics that sets these robots
apart from other robots. Underactuation plays a
very important role in the dynamics, motion plan-
ning, and control of walking robots (Chevallereau
et al. 2005).

Balance and Stability

Even after several decades of research, balance
maintenance has remained one of the most im-
portant issues of walking robots and especially
of humanoid robots. Although the basic dynam-
ics of balance are currently understood (Sardain
and Bessonnet 2004; Vukobratović and Juričić
1969), robust and general controllers that can
deal with discrete and nonlevel foot support as
well as large, unexpected, and unknown exter-
nal disturbances such as from a moving sup-
port, a slip, and a trip have not yet emerged.
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Walking Robots, Fig. 8
Two well-known
human-sized humanoid
robots: (a) ASIMO,
Honda. (b) HRP-2, AIST
(Image courtesy of AIST).
(c) HUBO, Korea

In comparison with the elegance and versatility
of human balance, present-day humanoid robots
appear quite deficient.

Balance generally refers to the ability of a
walking robot to maintain a sustained gait with
a reasonably upright posture without falling
(Kajita and Espiau 2008). Robot gait can be static
or dynamic. A robot with a static gait would
continue to stay upright even if its joints were
suddenly frozen. Static gait and movement under
static balance are safe but are slow and lacks

elegance. A dynamic gait is fluid and natural
looking as it harnesses and exploits the inertial
characteristics of the physical robot. However,
the robot must be in motion for it to sustain an
upright stature. Suddenly locking the joints may
cause a fall.

The location and the nature of the resultant
GRF on the support polygon of the robot have
been traditionally used to interpret the dynamic
state of the robot’s movement. The point where
the resultant GRF acts on the robot is called its
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Walking Robots, Fig. 9 Three popular humanoid robots: (a) AIST HRP-4 (Image courtesy of AIST), (b) Toyota
Partner Robot, and (c) Waseda University Wabian (Image courtesy of Atsuo Takanishi)

Walking Robots, Fig. 10 Three small humanoid robots: Aldebaran NAO (Image courtesy of Aldebaran), Fujitsu
HOAP-2, and Sony QRIO (Image courtesy of Sony)

zero moment point (ZMP), and it is equivalent to
the CoP for planar support. Figure 11 explains the
concept of CoP.

As shown in Fig. 11, two types of interaction
forces act on the foot at the foot/ground interface.

They are the normal forces f ni , always directed
upward (Fig. 11, left), and the frictional tangen-
tial forces f t i (Fig. 11, middle). CoP, denoted
by P , is the point where the resultant Rn D
P

f ni acts. With respect to a coordinate origin
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Walking Robots, Fig. 11 Definition of center of pres-
sure (CoP), shown for one foot of a humanoid robot.
The idea can be extended to any walking robot, and in

a general setting, a single footprint is replaced by the
support polygon which is the convex hull of all ground
contact of the robot

O , OP D
P

r i fni
P

fni

, where r i is the vector to

the point of action of force f i and fni is the
magnitude of f ni .

Because of the unilaterality of the foot/ground
constraint f ni � 0, which implies that P must
lie within the support polygon. The resultant of
the tangential forces may be represented at P

by a force Rt D P
f t i and a moment M D

P
r i � f t i where r i is the vector from P to

the point of application of
P

f t i . A basic control
objective for walking robots is to maintain the
CoP within the perimeter of the support polygon.

Safety

Safety is a serious concern that is paramount to
any application where robots are likely to coexist
in interactive human environments. The power of
mobility of walking robots adds to this concern.

Out of a number of possible situations where
safety is an issue, one that involves a balance

loss and fall is particularly worrisome for walking
robots. All walking robots, and in fact all mo-
bile robots, are subjected to this unique “failure”
mode. A fall may be caused due to unexpected
or excessive external forces, unusual or unknown
slipperiness, and slope or profile of the ground,
causing the robot to slip, trip, or topple. Fall can
also result when the balance controller is partially
or fully incapacitated due to an internal failure of
the robot involving its sensor or actuator.

Fall can be costly in terms of the damage to
the robot and also, depending on the shape and
size of the robot, can result in external damage
and injury to human.

For humanoid robots, fall is a particularly
serious issue (Fujiwara et al. 2002). Humanoid
robots, similar to humans, have a larger ratio of
CoM height to support area size, which makes
them more susceptible to fall, in case of a failure.
At the same time, due to their higher CoM, a fall
of such robots contains generally higher kinetic
energy which is able to cause higher damage and
injury.



Walking Robots 1547

W

Summary

Walking robots represent an important class of
autonomous machines which can find application
in the general area of service robotics. The power
of mobility makes these robots uniquely capable
of serving in niche need areas such as plant main-
tenance and security, disaster response, personal
companion, and so on. Humanoid walking robots
have attracted strong popular fascination, and this
has fueled their rapid development. At present it
appears that defense-related applications are the
most likely to experience practical use of walking
robots.

Walking robots possess interesting and com-
plex kinematics and dynamics. Control of such
machines, especially with regard to balancing,
motion planning, and reactive behavior, is a rich
research area that is challenging and demands
special skill-sets.

Cross-References

�Disaster Response Robot
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�Robot Teleoperation
�Underactuated Robots

Recommended Reading

Out of the references listed below, Vukobratović
and Juričić (1969) is the earliest paper dealing
with bipedal robot balance, and it introduces the
concept of ZMP. A very good recent overview of
legged robots can be found in Kajita and Espiau
(2008). Also of interest is the foundational paper
on passive bipedal gait by McGeer (1990).
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Abstract

The use of mobile robots in service applications
is steadily increasing. Most of these systems
achieve locomotion using wheels. As a conse-
quence, they are subject to differential constraints
that are nonholonomic, i.e., non-integrable. This
article reviews the kinematic models of wheeled
robots arising from these constraints and dis-
cusses their fundamental properties and limita-
tions from a control viewpoint. An overview of
the main approaches for trajectory planning and
feedback motion control is provided.

Keywords

Differential flatness; Nonholonomic constraints;
Nonlinear controllability; Smooth stabilizability

Introduction

Although all robots are, by definition, capable
of movement, the expression mobile robots
is mainly used to indicate robots that can
displace their own base by means of some
locomotion mechanism. Most often, this consists
of a set of wheels. The main advantage of
mobile robots over fixed-base manipulators

is their virtually unlimited workspace. As a
consequence, such robots are fundamental in
service applications, which require increased
capabilities of autonomous motion.

More precisely, from a mechanical viewpoint,
a wheeled robot essentially consists of a rigid
body (base) equipped with a system of wheels.
This basic arrangement may be complicated, for
example, by attaching to the base one or more
trailers, or by mounting a manipulator on the base
(mobile manipulator).

Any wheeled vehicle is subject to kinematic
constraints that in general reduce its local mobil-
ity while leaving intact the possibility of reaching
arbitrary configurations by appropriate maneu-
vers. For example, any driver knows by experi-
ence that, while it is impossible to move instan-
taneously a car in the direction orthogonal to its
heading, it is still possible to park it anywhere,
at least in the absence of obstacles. This peculiar
feature makes wheeled mobile robots very chal-
lenging from the control viewpoint, and in fact,
some recent developments in nonlinear control
were triggered by the study of these systems.

Here, we will consider only mobile robots that
are equipped with conventional wheels, either
orientable or fixed (as the front or rear wheels of a
car, respectively). Omnidirectional mobile robots
realized using, e.g., Mecanum wheels, are not
covered in this article. Indeed, the local mobility
of these vehicles is unrestricted, and therefore no
special control treatment is necessary.

The most popular wheel arrangement for mo-
bile robots is the differential drive, in which two
fixed wheels whose axes of rotation coincide are
controlled by separate actuators (see Fig. 1). One
or more passive (caster) wheels are usually added
for statical balance. This wheeled robot is the
most agile, in that it can rotate on the spot by
applying equal and opposite angular speeds to the
wheels. A kinematically equivalent arrangement
is the synchro drive, in which three orientable
wheels are synchronously driven by two motors
through mechanical coupling; the first motor pro-
vides traction, whereas the second controls the
common orientation of the wheels.

Other possible wheel arrangements are those
of a tricycle (one steering and two fixed wheels)



Wheeled Robots 1549

W

Wheeled Robots, Fig. 1 The Pioneer by Adept is a
popular differential-drive platform

and of a car (two steering and two fixed wheels).
Vehicles of this type are however less common
in robotics, due partly to their reduced maneuver-
ability (they have a nonzero turning radius) and
partly to their increased mechanical complexity.
For example, both these vehicles require a spe-
cific device (differential) for distributing traction
torque to the driving wheels.

Modeling

The starting point for modeling wheeled mobile
robots is the single wheel. This may be repre-
sented as an upright disk rolling on the ground.
Its configuration is described by three generalized
coordinates: the Cartesian coordinates .x; y/ of
the contact point with the ground, measured in
a fixed reference frame, and the orientation �

of the disk plane with respect to the x axis
(see Fig. 2). The configuration vector is therefore
q D .x y �/T . The pure rolling constraint is
expressed as

�
sin � � cos �

�
� Px

Py
�

D 0 (1)

and entails that, in the absence of slipping,
the velocity of the contact point has a zero
component in the direction orthogonal to the
wheel plane. The angular speed of the wheel
around the vertical axis is instead unconstrained.

Wheeled Robots, Fig. 2 Generalized coordinates for a
single wheel

The kinematic constraint (1) is nonholonomic,
i.e., it cannot be integrated to a geometric
constraint; this may be easily shown using
Frobenius theorem, a well-known differential
geometry result on integrability of differential
forms. An important consequence of this fact is
that constraint (1) implies no loss of accessibility
in the configuration space of the wheel.

In a single-body vehicle equipped with multi-
ple wheels, the n-dimensional configuration vec-
tor q consists of the Cartesian coordinates of a
representative point on the robot, the orientation
of all independently orientable wheels, plus the
orientation of the body if there are fixed wheels.
By writing one pure rolling constraint like (1)
for each independent wheel, orientable or fixed,
and expressing it in the chosen generalized coor-
dinates, one obtains a set of k constraints in the
form

AT .q/ Pq D 0: (2)

Kinematic constraints of this form (i.e., linear in
the generalized velocities) are called Pfaffian. In
wheeled mobile robots, Pfaffian constraints are in
general completely nonholonomic.

The k Pfaffian constraints (2) reduce the num-
ber of degrees of freedom (i.e., independent in-
stantaneous motions) of the robot to m D n � k.
In particular, at each configuration q, the general-
ized velocities must belong to the m-dimensional
null space of matrix AT .q/:

Pq D
mX

j D1

gj .q/uj D G.q/u; (3)

where vectors g1.q/; : : : ; gm.q/ are a basis of
N .AT .q// and u D .u1 : : : um/T is a coefficient
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vector. Kinematically admissible trajectories are
the solutions of (3), which is called kinematic
model of the wheeled mobile robot. This model
can be seen as a nonlinear dynamic system, with
q as state and u as input. In particular, system (3)
is driftless and has more state variables than
control inputs.

For example, consider the unicycle, a rather
ideal mobile robot equipped with a single, ori-
entable wheel. The generalized coordinates for
this robot are q D .xy �/T , the same as the single
wheel, and the vehicle is subject to the rolling
constraint (1). One possible kinematic model for
the unicycle is then

0

@
Px
Py
P�

1

A D
0

@
cos �

sin �

0

1

A v C
0

@
0

0

1

1

A !; (4)

where v D p Px2 C Py2 and ! D P� represent,
respectively, the driving and steering velocity of
the wheel. Both the differential-drive and the
synchro-drive robots are kinematically equivalent
to the unicycle, i.e., their kinematic model can be
put in the form (3) by properly defining q and u.

Similar to what is done for robot manipulators,
the dynamic models of wheeled mobile robots
may be derived following the Euler-Lagrange
method. The main difference is the presence of
the nonholonomic Pfaffian constraints, which
give rise to reaction forces expressed via
Lagrange multipliers (Neimark and Fufaev
1972).

Structural Properties

The nonholonomic nature of wheeled mobile
robots has precise consequences in terms of struc-
tural properties of the kinematic model (3).

The first, and most important, is that in spite
of the reduced number of degrees of freedom, a
wheeled robot is controllable in its configuration
space; i.e., given two arbitrary configurations,
there always exists a kinematically admissible
trajectory (with the associated velocity inputs)
that transfers the robot from one to the other

Wheeled Robots, Fig. 3 In spite of its restricted local
mobility, a nonholonomic wheeled robot can reach any
point in its configuration space

(Fig. 3). Since the kinematic model (3) is drift-
less, a well-known result (Chow theorem) implies
that it is controllable if and only if the accessibil-
ity rank condition holds:

dim N� D n; (5)

where N� denotes the involutive closure of distri-
bution � D fg1; : : : ; gmg under the Lie bracket
operation. In turn, this is guaranteed to be true in
view of the nonholonomy of constraints (2). For
example, since the Lie bracket of the two input
vector fields in (4) is always linearly independent
from them, the kinematic model of the unicycle
is controllable.

However, the controllability of wheeled mo-
bile robots is intrinsically nonlinear. In fact, the
linear approximation of (3) at any configuration
clearly results to be uncontrollable due to the
reduced number of inputs. In practice, this means
that no linear feedback can stabilize the system
at a given configuration. The situation is actu-
ally worse: for nonholonomic robots, there exists
no continuous time-invariant feedback law that
provides point stabilization. This negative result
can be established on the basis of a celebrated
result on smooth stabilizability of control systems
due to Brockett (1983). Note that the result does
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not apply to time-varying stabilizing controllers,
which may thus be continuous in q.

Another related drawback of wheeled mo-
bile robots is that in general, they do not admit
universal controllers, i.e., feedback control laws
that can asymptotically stabilize arbitrary state
trajectories, either persistent or not (Lizárraga
2004). This means that, in principle, tracking and
regulation problems in wheeled robots should be
addressed using separate approaches.

All the above limitations of nonholonomic
systems are established with reference to the
kinematic model, but of course, they are passed
on to dynamic models. Altogether, they con-
tribute to making the control problem for wheeled
mobile robots much more difficult than, for
example, for robotic manipulators, which are
linearly controllable, smoothly stabilizable and
admit universal controllers.

Trajectory Planning

Trajectory planning for wheeled robots is a
nontrivial problem, because not all trajectories
are feasible – once again, a consequence of
nonholonomy. This leads to the necessity of
maneuvering, i.e., performing certain specific
movements, in order to execute transfer
motions.

Most kinematic models of wheeled mobile
robots exhibit a property known as differential
flatness (Fliess et al. 1995): namely, there exists a
set of outputs z, called flat outputs, such that the
state q and the control inputs u can be expressed
algebraically as a function of z and its time
derivatives up to a certain order � :

q D ' .z; Pz; Rz; : : : ; z.�// (6)

u D � .z; Pz; Rz; : : : ; z.�//: (7)

As a consequence, once an output trajectory z.t/
is specified, the associated state trajectory q.t/

and control history u.t/ are uniquely determined.
For example, the unicycle admits z D .x y/T as
flat outputs. In fact, once a Cartesian trajectory is
assigned for the contact point with the ground,
the wheel orientation �.t/ is constrained to be

tangent to the trajectory; the associated control
input v and ! are then uniquely and algebraically
computable from q.t/.

Differential flatness is particularly useful for
planning. For example, assume that we want to
transfer a wheeled mobile robot from an initial
configuration qi to a final configuration qf . One
then computes the corresponding values zi and zf

of the flat outputs, plus the appropriate boundary
conditions, and uses any interpolation scheme
(e.g., polynomial interpolation) to plan the tra-
jectory of z. The evolution of the generalized co-
ordinates q, together with the associated control
inputs u, can then be computed algebraically from
(6–7). The resulting configuration space trajec-
tory will automatically satisfy the nonholonomic
constraints (2).

Another approach to nonholonomic trajectory
planning is based on the possibility of putting the
equations of most wheeled robots into a canonical
format known as a 2-input chained form

Pz1 D w1

Pz2 D w2

Pz3 D z2w1 (8)

:::

Pzn D zn�1w1

by means of a feedback transformation, i.e., a
change of coordinates z D ˛.q/ coupled with an
input transformation w D ˇ.q/u. In particular,
this is always possible with kinematic models (3)
for which n � 4 and m D 2 (e.g., unicy-
cle or car-like robots). Once the system is cast
in the form (8), one may use sinusoidal open-
loop controls at integrally related frequencies
to drive all variables sequentially to their final
values (Murray and Sastry 1993). This approach
is particularly interesting from a theoretical view-
point because such control maneuvers achieve
motion in the direction of the Lie brackets of the
input vector fields.

Note that differential flatness and chained-
form transformability are equivalent properties
for 2-input nonholonomic mobile robots.
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Feedback Control

The motion control problem for wheeled mobile
robots is generally formulated with reference to
the kinematic model (3). For example, in the
case of the unicycle (4), this means that the
control inputs are directly v and !, the driving
and steering velocities. There are essentially two
reasons for taking this simplifying assumption.

First, the kinematic model (3) fully captures
the essential nonlinearity of single-body wheeled
robots, which stems from their nonholonomic
nature. This is another fundamental difference
with respect to the case of robotic manipula-
tors, in which the main source of nonlinearity
is the inertial coupling among multiple bodies.
Second, in mobile robots it is typically not pos-
sible to command directly the wheel torques,
because there are low-level wheel control loops
integrated in the hardware or software architec-
ture. Any such loop accepts as input a reference
value for the wheel angular speed, which is then
reproduced as accurately as possible by stan-
dard regulation actions (e.g., PID controllers).
In this situation, the actual inputs available for
high-level control are precisely these reference
velocities.

Two basic control problems can be considered:
• Trajectory tracking: the robot must asymp-

totically track a desired Cartesian trajectory
.xd .t/; yd .t//.

• Point stabilization: the robot must asymptoti-
cally reach a desired configuration qd .
From a practical point of view, the most rele-

vant of these problems is certainly the first. This
is because mobile robots must be able to operate
in unstructured workspaces that invariably con-
tain obstacles. Clearly, forcing the robot to move
along (or close to) a trajectory planned in advance
reduces considerably the risk of collisions. The
point stabilization problem, however, is more dif-
ficult and therefore particularly interesting from a
scientific perspective. In a certain sense, the rela-
tive difficulty of the two problems is reminescent
of human car driving: learning to drive a car along
a road is relatively easy, whereas parking poses a
greater challenge.

Trajectory Tracking
Several methods are available to drive a wheeled
mobile robot in feedback along a desired trajec-
tory. A straightforward possibility is to compute
first the linear approximation of the system along
the desired trajectory (which, unlike the approx-
imation at a configuration, results to be control-
lable) and then stabilize it using linear feedback.
Only local convergence, however, can be guar-
anteed with this approach. For the kinematic
model of the unicycle, global asymptotic stability
may be achieved by suitably morphing the linear
control law into a nonlinear one (Canudas de Wit
et al. 1993).

In robotics, a popular approach for trajectory
tracking is input–output linearization via static
feedback. In the case of a unicycle, consider as
output the Cartesian coordinates of a point B

located ahead of the wheel, at a distance b from
the contact point with the ground. The linear
mapping between the time derivatives of these
coordinates and the velocity control inputs turns
out to be invertible provided that b is nonzero;
under this assumption, it is therefore possible to
perform an input transformation via feedback that
converts the unicycle to a parallel of two simple
integrators, which can be globally stabilized with
a simple proportional controller (plus feedfor-
ward). This simple approach works reasonably
well. However, if one tries to improve tracking
accuracy by reducing b (so as to bring B close
to the ground contact point), the control effort
quickly increases.

Trajectory tracking with b D 0 (i.e.,
for the actual contact point on the ground)
can be achieved using dynamic feedback
linearization (Oriolo et al. 2002). In particular,
this method provides a one-dimensional dynamic
compensator that transforms the unicycle into a
parallel of two double integrators, which is then
globally stabilized with a proportional-derivative
controller (plus feedforward). In contrast to static
feedback linearization, no residual zero dynamics
is present in the transformed system. However,
the dynamic compensator has a singularity
when the unicycle driving velocity is zero.
This is expected, because otherwise the tracking
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controller would represent a universal controller.
Note that dynamic feedback linearizability using
the x; y outputs is related to them being flat – the
two properties are equivalent.

Point Stabilization
The impossibility of stabilizing a nonholonomic
mobile robot using continuous pure-state feed-
back has generated two main directions of re-
search to solve the problem:
• Discontinuous feedback, i.e., time-invariant

control laws u D �.q/, where � is discon-
tinuous precisely at the configuration that one
seeks to stabilize.

• Time-varying feedback, in the form u D
�.q; t/ where � may or may not be continuous
at the desired configuration.
For the unicycle, a well-known stabilizing

controller belonging to the first category was
designed by Aicardi et al. (1995) by formulating
the problem in polar coordinates centered at the
goal and then using a Lyapunov-like analysis to
establish asymptotic convergence. The controller,
once rewritten in original coordinates, turns out
to be discontinuous at the goal (not surprisingly).
Although this rules out proper stability in the
sense of Lyapunov, this controller is effective in
that it produces rather natural approach trajecto-
ries to the goal.

Continuous time-varying stabilizers in the
sense of Lyapunov exist (Samson 1993) but have
mainly theoretical interest due to their provably
slow (polynomial) rate of convergence; this is a
direct consequence of the fact that the linear ap-
proximation of the system is not controllable. A
more effective approach is to give up (Lipschitz-)
continuity at the desired configuration. As shown
by M’Closkey and Murray (1997) and Morin and
Samson (2000), this allows to design control laws
that guarantee a modified form of exponential
convergence to the goal.

Most of the aforementioned control designs –
both for trajectory tracking and point stabilization
– were first developed with reference to the unicy-
cle robot but can be carried out on chained forms,

thereby providing an effective extension to other
kinematic models, e.g., the car-like robot.

Summary and Future Directions

Wheeled mobile robots are increasingly present
in applications. Over the last two decades, sig-
nificant results have been reached in terms of
modeling, planning and control of these systems,
and the field is now considered to be well estab-
lished, at least from an application point of view.
Nevertheless, a number of research directions are
still open, including the following:
• Planning and control for non-flat systems:

Relatively harmless wheeled robots (such as
a unicycle towing more than one off-hooked
trailer) are not flat.

• Robustness: The performance of controllers in
the presence of disturbances and model pertur-
bations has not received sufficient attention so
far.

• Localization: Feedback control requires
accurate measurements of the configuration
variables, which in mobile robots cannot be
reliably reconstructed from onboard sensors
(odometric data). Integration of exteroceptive
sensing is essential to this end.

• Vision-based control: As an alternative to
localization-based methods, the feedback
loop may be closed directly in the image
plane, with significant advantages in terms of
simplicity and robustness.

• Multi-robot systems: The problem is to control
the motion of multiple mobile robots in order
to perform a cooperative motion task, e.g.,
formation control.
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Recommended Reading

For background material on nonlinear control-
lability, including the necessary concepts of
differential geometry, see Sastry (2005). General
introductions to mobile robots can be found
in Siegwart and Nourbakhsh (2004), Choset et al.
(2005), Morin and Samson (2008), and Siciliano
et al. (2009). A classification of wheeled mobile
robots based on the number, placement, and type
of wheels was proposed by Bastin et al. (1996).
A detailed extension of some of the planning and
control techniques reviewed in this article to the
case of car-like kinematics is given in De Luca
et al. (1998). A framework for the stabilization
of non-flat nonholonomic robots was presented
by Oriolo and Vendittelli (2005). Recent work
aimed at designing practical universal controllers
was carried out by Morin and Samson (2009).
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