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With its strong emphasis on practical applications that help students understand the relevance of what they are learning, the 
second edition of System Dynamics builds on the strengths of the fi rst edition with a careful and focused reorganization to 
further improve student accessibility of the material.

System Dynamics includes the strongest treatment of computational software and system simulation of any available text, 
with its early introduction of MATLAB and Simulink. The text’s extensive coverage also includes discussion of the root locus 
and frequency response plots, among other methods, for assessing system behavior in the time and frequency domains as well 
as topics such as function discovery, parameter estimation, and system identifi cation techniques, motor performance evaluation, 
and system dynamics in everyday life. 

New features and their benefits:  
   Block diagrams are now presented in Chapter 9 to be closer to their applications in control system analysis.  

The material in Chapter 5 dealing with transfer functions and state variable methods has been reorganized to better 
delineate the advantages of each method. 

   Introduction to MATLAB, offered on the text website, provides readers with a practical, concise guide to the program. 

   The dynamics review in Chapter 2 and the introduction to electrical systems in Chapter 6 have been edited for a more 
concise presentation of the material. 

   The former Chapter 11 has been split into two chapters to focus more concisely on PID control system design issues 
(the new Chapter 11) and compensator design (the new Chapter 12).

   The fi nal chapter (Vibration Applications) now includes coverage of active vibration control systems and nonlinear vibration. 

Retained/hallmark features:  
   The fi rst edition’s extensive coverage of mechanical, electrical, fl uid, and thermal systems is retained.

   Function discovery, parameter estimation, and system identifi cation techniques are covered in several chapters.

   MATLAB is introduced in the fi rst chapter and used throughout the book as an optional feature. 

   Simulink is introduced in Chapter 5 and used as an optional feature in remaining chapters for doing systems simulation. 

M
d. D

alim
 #999877 12/18/08 C

yan M
ag Y

elo B
lack



palm-38591 pal29273˙fm December 17, 2008 18:40

System Dynamics
Second Edition

i



palm-38591 pal29273˙fm December 17, 2008 18:40

ii



palm-38591 pal29273˙fm December 17, 2008 18:40

System Dynamics
Second Edition

William J. Palm III
University of Rhode Island

iii



palm-38591 pal29273˙fm December 17, 2008 18:40

SYSTEM DYNAMICS, SECOND EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Previous
edition © 2005. No part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc.,
including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance
learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

1 2 3 4 5 6 7 8 9 0 QPD/QPD 0 9

ISBN 978–0–07–352927–1
MHID 0–07–352927–3

Global Publisher: Raghothaman Srinivasan
Senior Sponsoring Editor: Bill Stenquist
Director of Development: Kristine Tibbetts
Developmental Editor: Lora Neyens
Senior Marketing Manager: Curt Reynolds
Project Manager: Melissa M. Leick
Lead Production Supervisor: Sandy Ludovissy
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
Compositor: ICC Macmillan
Typeface: 10.5/12 Times Roman
Printer: Quebecor World Dubuque, IA

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of
MATLAB® and Simulink® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® and Simulink® software.

Library of Congress Cataloging-in-Publication Data

Palm, William J. (William John), 1944-
System dynamics / William J. Palm III. – 2nd ed.

p. cm.
Includes index.
ISBN 978–0–07–352927–1 — ISBN 0–07–352927–3 (hard copy : alk. paper) 1. Automatic control—

Mathematical models. 2. Dynamics—Mathematical models. 3. System analysis. I. Title.
TJ213.P228 2010
620.1’04015118—dc22

2008045193

www.mhhe.com

iv

http://www.mhhe.com


palm-38591 pal29273˙fm December 17, 2008 18:40

To my wife, Mary Louise; and to my children, Aileene, Bill, and Andrew.

v



palm-38591 pal29273˙fm December 17, 2008 18:40

CONTENTS

Preface ix

About the Author xiv

C H A P T E R 1
Introduction 1

1.1 Introduction to System Dynamics 2
1.2 Units 7
1.3 Developing Linear Models 9
1.4 Function Identification and Parameter

Estimation 15
1.5 Fitting Models to Scattered Data 23
1.6 MATLAB and the Least-Squares Method 29
1.7 Chapter Review 37
Problems 37

C H A P T E R 2
Modeling of Rigid-Body Mechanical
Systems 42

2.1 Translational Motion 43
2.2 Rotation About a Fixed Axis 48
2.3 Equivalent Mass and Inertia 55
2.4 General Planar Motion 61
2.5 Chapter Review 70
Problems 70

C H A P T E R 3
Solution Methods for Dynamic Models 80

3.1 Differential Equations 81
3.2 Response Types and Stability 92
3.3 The Laplace Transform Method 101
3.4 Transfer Functions 115
3.5 Partial-Fraction Expansion 118
3.6 The Impulse and Numerator Dynamics 128
3.7 Additional Examples 134
3.8 Computing Expansion Coefficients with

MATLAB 139

3.9 Transfer-Function Analysis in
MATLAB 142

3.10 Chapter Review 148
Problems 150

C H A P T E R 4
Spring and Damper Elements in Mechanical
Systems 157

4.1 Spring Elements 158
4.2 Modeling Mass-Spring Systems 167
4.3 Energy Methods 176
4.4 Damping Elements 184
4.5 Additional Modeling Examples 193
4.6 Collisions and Impulse Response 205
4.7 MATLAB Applications 208
4.8 Chapter Review 212
Problems 213

C H A P T E R 5
State-Variable Models and Simulation
Methods 224

5.1 State-Variable Models 225
5.2 State-Variable Methods with MATLAB 236
5.3 The MATLAB ode Functions 242
5.4 Simulink and Linear Models 249
5.5 Simulink and Nonlinear Models 255
5.6 Chapter Review 263
Problems 264

C H A P T E R 6
Electrical and Electromechanical
Systems 272

6.1 Electrical Elements 273
6.2 Circuit Examples 279
6.3 Impedance and Amplifiers 289
6.4 Electric Motors 297
6.5 Analysis of Motor Performance 304

vi



palm-38591 pal29273˙fm December 17, 2008 18:40

Contents vii

6.6 Sensors and Electroacoustic Devices 314
6.7 MATLAB Applications 317
6.8 Simulink Applications 325
6.9 Chapter Review 328
Problems 329

C H A P T E R 7
Fluid and Thermal Systems 339

Part I. Fluid Systems 340
7.1 Conservation of Mass 340
7.2 Fluid Capacitance 345
7.3 Fluid Resistance 350
7.4 Dynamic Models of Hydraulic

Systems 355
7.5 Pneumatic Systems 369
Part II. Thermal Systems 372
7.6 Thermal Capacitance 372
7.7 Thermal Resistance 374
7.8 Dynamic Models of Thermal

Systems 383
Part III. MATLAB and Simulink Applications 391
7.9 MATLAB Applications 391
7.10 Simulink Applications 395
7.11 Chapter Review 400
Problems 400

C H A P T E R 8
System Analysis in the Frequency
Domain 415

8.1 Frequency Response of First-Order
Systems 416

8.2 Frequency Response of Higher-Order
Systems 432

8.3 Frequency Response Examples 442
8.4 Filtering Properties of Dynamic

Systems 453
8.5 System Identification from Frequency

Response 461
8.6 Frequency Response Analysis Using

MATLAB 466
8.7 Chapter Review 469
Problems 470

C H A P T E R 9
Transient Response and Block Diagram
Models 480

9.1 Response of First-Order Systems 482
9.2 Response of Second-Order Systems 490
9.3 Description and Specification of Step

Response 498
9.4 Parameter Estimation in the Time Domain 507
9.5 Introduction to Block Diagrams 516
9.6 Modeling Systems with Block Diagrams 523
9.7 MATLAB Applications 532
9.8 Simulink Applications 533
9.9 Chapter Review 536
Problems 537

C H A P T E R 10
Introduction to Feedback Control
Systems 546

10.1 Closed-Loop Control 547
10.2 Control System Terminology 550
10.3 Modeling Control Systems 551
10.4 The PID Control Algorithm 565
10.5 Control System Analysis 572
10.6 Controlling First-Order Plants 577
10.7 Controlling Second-Order Plants 587
10.8 Additional Examples 595
10.9 MATLAB Applications 609
10.10 Simulink Applications 615
10.11 Chapter Review 619
Problems 619

C H A P T E R 11
Control System Design and the Root
Locus Plot 632

11.1 Root Locus Plots 633
11.2 Design Using the Root Locus Plot 638
11.3 State-Variable Feedback 665
11.4 Tuning Controllers 674
11.5 Saturation and Reset Windup 680
11.6 MATLAB Applications 687



palm-38591 pal29273˙fm December 17, 2008 18:40

viii Contents

11.7 Simulink Applications 693
11.8 Chapter Review 695
Problems 696

C H A P T E R 12
Compensator Design and the Bode Plot 713

12.1 Series Compensation 714
12.2 Design Using the Bode Plot 733
12.3 MATLAB Applications 748
12.4 Simulink Applications 752
12.5 Chapter Review 753
Problems 753

C H A P T E R 13
Vibration Applications 763

13.1 Base Excitation 764
13.2 Rotating Unbalance 769

13.3 Vibration Absorbers 775
13.4 Modes of Vibrating Systems 783
13.5 Active Vibration Control 792
13.6 Nonlinear Vibration 796
13.7 MATLAB Applications 805
13.8 Chapter Review 807
Problems 808

A P P E N D I C E S

A. Guide to Selected MATLAB Commands
and Functions 815

B. Fourier Series 822
C. Introduction to MATLAB (on the text

website)
D. Numerical Methods (on the text

website)

Glossary 824

Index 827



palm-38591 pal29273˙fm December 17, 2008 18:40

PREFACE

System dynamics deals with mathematical modeling and analysis of devices and
processes for the purpose of understanding their time-dependent behavior. While
other subjects, such as Newtonian dynamics and electrical circuit theory, also

deal with time-dependent behavior, system dynamics emphasizes methods for han-
dling applications containing multiple types of components and processes such as
electromechanical devices, electrohydraulic devices, and fluid-thermal processes. Be-
cause the goal of system dynamics is to understand the time-dependent behavior of a
system of interconnected devices and processes as a whole, the modeling and analysis
methods used in system dynamics must be properly selected to reveal how the con-
nections between the system elements affect its overall behavior. Because systems of
interconnected elements often require a control system to work properly, control system
design is a major application area in system dynamics.

TEXT PHILOSOPHY

This text is an introduction to system dynamics and is suitable for such courses com-
monly found in engineering curricula. It is assumed that the student has a background in
elementary differential and integral calculus and college physics (dynamics, mechanics
of materials, thermodynamics, and electrical circuits). A previous course in differen-
tial equations is desirable but not necessary, as the required material on differential
equations, as well as Laplace transforms and matrices, is developed in the text.

The decision to write a textbook often comes from the author’s desire to improve
on available texts. The decisions as to what topics to include and what approach to take
emerge from the author’s teaching experiences that give insight as to what is needed
for students to master the subject. This text is based on the author’s thirty-seven years
of experience in teaching system dynamics.

This experience shows that typical students in a system dynamics course are not yet
comfortable with applying the relevant concepts from earlier courses in dynamics and
differential equations. Therefore, this text reviews and reinforces these important topics
early on. Students often lack sufficient physical insight to relate the mathematical results
to applications. The text therefore uses everyday illustrations of system dynamics to
help students to understand the material and its relevance.

If laboratory sessions accompany the system dynamics course, many of the text’s
examples can be used as the basis for experiments. The text is also a suitable reference
on hardware and on parameter estimation methods.

MATLAB® AND SIMULINK®1

MATLAB and Simulink are used to illustrate how modern computer tools can be
applied in system dynamics.2 MATLAB was chosen because it is the most widely
used program in system dynamics courses and by practitioners in the field. Simulink,

1MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
2The programs in this text will work with the following software versions, or higher versions: Version 6 of
MATLAB, Version 5 of Simulink, and Version 5 of the Control Systems Toolbox.

ix
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which is based on MATLAB and uses a diagram-based interface, is increasing in
popularity because of its power and ease of use. In fact, students convinced the author
to use Simulink after they discovered it on their own and learned how easy it is to use!
It provides a useful and motivational tool.

It is, however, not necessary to cover MATLAB or Simulink in order to use the
text, and it is shown how to do this later in the Preface.

CORE MATERIAL FOR SYSTEM DYNAMICS

This text has been designed to accommodate a variety of courses in system dynamics.
The core material is in Chapters 1 through 6 and Chapters 8 and 9.

Chapter 1 introduces the basic terminology of system dynamics, covers commonly
used functions, and reviews the two systems of units used in the text: British Engineering
(FPS) units and SI units. These are the unit systems most commonly used in system
dynamics applications. The examples and homework problems employ both sets of
units so that the student will become comfortable with both. Chapter 1 also introduces
methods for parameter estimation. These methods are particularly useful for obtaining
spring constants and damping coefficients. The chapter then illustrates how MATLAB
can be used for this purpose.

Chapter 2 covers rigid-body dynamics, including planar motion. Using the models
developed in Chapter 2, Chapter 3 reviews solution methods for linear ordinary differ-
ential equations where either there is no forcing function (the homogeneous case) or
where the forcing function is a constant. The chapter then develops the Laplace trans-
form method for solving differential equations and applies it to equations having step,
ramp, sine, impulse, and other types of forcing functions. It also introduces transfer
function models.

Chapter 4 covers modeling of mechanical systems having stiffness and damping,
and it applies the analytical methods developed in Chapter 3 to solve the models.

Chapter 5 develops the state-variable model, which is useful for certain analytical
techniques as well as for numerical solutions. The optional sections of this chapter
introduce Simulink, which is based on diagram descriptions, and apply the chapter’s
concepts using MATLAB.

Chapter 6 treats modeling of electric circuits, operational amplifiers, electro-
mechanical devices, sensors, and electroacoustic devices. It also discusses how motor
parameters can be obtained, and it shows how to analyze motor performance.

Chapters 8 and 9 cover analysis methods in the frequency domain and the time
domain, respectively. Chapter 8 demonstrates the usefulness of the transfer function
for understanding and analyzing a system’s frequency response. It introduces Bode
plots and shows how they are sketched and interpreted to obtain information about time
constants, resonant frequencies, and bandwidth.

Chapter 9 integrates the modeling and analysis techniques of earlier chapters with
an emphasis on understanding system behavior in the time domain, using step, ramp,
and impulse functions primarily. The chapter covers step response specifications such as
maximum overshoot, peak time, delay time, rise time, and settling time. Block diagram
models are graphical representations of system structure. Chapter 9 introduces these
models as preparation for Chapter 10, which deals with control systems.

ALTERNATIVE COURSES IN SYSTEM DYNAMICS

The choice of remaining topics depends partly on the desired course emphasis and
partly on whether the course is a quarter or semester course.
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Some courses omit fluid and thermal systems, which are covered in Chapter 7.
This chapter can be skipped if necessary because only some examples in the remaining
chapters, and not the theory and methods, depend on it. Part I of the chapter covers
fluid systems. Part II covers thermal systems. These two parts are independent of each
other. A background in fluid mechanics or heat transfer is not required to understand
this chapter, but students should have had elementary thermodynamics before covering
the material on pneumatic systems in Section 7.5.

Chapters 10, 11, and 12 deal with a major application of system dynamics, namely,
control systems. Chapter 10 is an introduction to feedback control systems, including
the PID control algorithm applied to first- and second-order plants. Chapter 11 deals
with control systems in more depth and includes design methods based on the root locus
plot and practical topics such as compensation, controller tuning, actuator saturation,
reset wind-up, and state-variable feedback, with emphasis on motion control systems.
Chapter 12 covers series compensation methods and design with the Bode plot.

Chapter 13 covers another major application area, vibrations. Important practical
applications covered are vibration isolators, vibration absorbers, modes, and suspension
system design.

At the author’s institution, the system dynamics course is a junior course required
for mechanical engineering majors. It covers Chapters 1 through 10, with some optional
sections omitted. This optional material is then covered in a senior elective course in
control systems, which also covers Chapters 11 and 12.

GLOSSARY AND APPENDICES

There is a glossary containing the definitions of important terms, four appendices, and
an index. Appendices C and D are on the text website.

Appendix A is a collection of tables of MATLAB commands and functions, orga-
nized by category. The purpose of each command and function is briefly described in
the tables.

Appendix B is a brief summary of the Fourier series, which is used to represent a
periodic function as a series consisting of a constant plus a sum of sine terms and cosine
terms. It provides the background for some applications of the material in Chapter 8.

Appendix C is a self-contained introduction to MATLAB, and it should be read first
by anyone unfamiliar with MATLAB if they intend to cover the MATLAB and Simulink
sections. It also provides a useful review for those students having prior experience with
MATLAB.

Appendix D covers basic numerical methods, such as the Runge-Kutta algorithms,
that form the basis for the differential equation solvers of MATLAB. It is not neces-
sary to master this material to use the MATLAB solvers, but the appendix provides a
background for the interested reader.

CHAPTER FORMAT

The format of each chapter follows the same pattern, which is

1. Chapter outline
2. Chapter objectives
3. Chapter sections
4. MATLAB sections (in most chapters)
5. Simulink section (in most chapters)
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6. Chapter review
7. References
8. Problems

This structure has been designed partly to accommodate those courses that do
not cover MATLAB and/or Simulink, by placing the optional MATLAB and Simulink
material at the end of the chapter. Note that coverage of Simulink requires that the chap-
ter’s MATLAB sections also be covered. Because the chapter problems are arranged
according to the chapter section whose concepts they illustrate, all problems requiring
MATLAB and/or Simulink have been placed in separate, identifiable groups.

OPTIONAL TOPICS

In addition to the optional chapters (7, 10, 11, 12, and 13), some chapters have sections
dealing with material other than MATLAB and Simulink that can be omitted without
affecting understanding of the core material in subsequent chapters. All such optional
material has been placed in sections near the end of the chapter. This optional material
includes:

1. Function discovery, parameter estimation, and system identification techniques
(Sections 1.4, 1.5, 8.5, and 9.4)

2. General theory of partial fraction expansion (Section 3.5)
3. Impulse response (Sections 3.6 and 4.6)
4. Motor performance (Section 6.5)
5. Sensors and electroacoustic devices (Section 6.6)

DISTINGUISHING FEATURES

The following are considered to be the major distinguishing features of the text.

1. MATLAB. Stand-alone sections in most chapters provide concise summaries
and illustrations of MATLAB features relevant to the chapter’s topics.

2. Simulink. Stand-alone sections in chapters 5 through 12 provide extensive
Simulink coverage not found in most system dynamics texts.

3. Parameter estimation. Coverage of function discovery, parameter estimation,
and system identification techniques is given in Sections 1.4, 1.5, 8.5, and 9.4.
Students are uneasy when they are given parameter values such as spring stiffness
and damping coefficients in examples and homework problems, because they
want to know how they will obtain such values in practice. These sections show
how this is done.

4. Motor performance evaluation. Section 6.5 discusses the effect of motor
dynamics on practical considerations for motor and amplifier applications, such
as motion profiles and the required peak and rated continuous current and torque,
and maximum required voltage and motor speed. These considerations offer
excellent examples of practical applications of system dynamics, but are not
discussed in most system dynamics texts.

5. System dynamics in everyday life. Commonly found illustrations of system
dynamics are important for helping students to understand the material and its
relevance. This text provides examples drawn from objects encountered in
everyday life. These examples include a storm door closer, fluid flow from a



palm-38591 pal29273˙fm December 17, 2008 18:40

Preface xiii

bottle, shock absorbers and suspension springs, motors, systems with gearing,
chain drives, belt drives, a backhoe, a water tower, and cooling of liquid in a cup.

6. Theme applications. Two common applications provide themes for examples
and problems throughout the text. These are motion control systems such as a
conveyor system and a robot arm, and vehicle suspension systems.

WEBSITE

The publisher maintains a website for this text at www.mhhe.com/palm. An on-line
instructors manual is available at this site. It contains solutions to the problems and
other pedagogical aids, and is accessible to instructors who have adopted the text for
their course. The site is also home to the text Appendices C & D.

ELECTRONIC TEXTBOOK OPTION

This text is offered through CourseSmart for both instructors and students. CourseSmart
is an online resource where students can purchase access to this and other McGraw-Hill
textbooks in a digital format. Through their browsers, students can access the complete
text online for almost half the cost of a traditional text. Purchasing the eTextbook also
allows students to take advantage of CourseSmart’s web tools for learning, which in-
clude full text search, notes and highlighting, and email tools for sharing notes between
classmates. To learn more about CourseSmart options, contact your sales representative
or visit www.CourseSmart.com.
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1C H A P T E R

Introduction

CHAPTER OUTLINE

1.1 Introduction to System Dynamics 2

1.2 Units 7

1.3 Developing Linear Models 9

1.4 Function Identification and
Parameter Estimation 15

1.5 Fitting Models to Scattered Data 23

1.6 MATLAB®1 and the Least-Squares Method 29

1.7 Chapter Review 37

Problems 37

CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Define the basic terminology of system dynamics.

2. Apply the basic steps used for engineering problem
solving.

3. Apply the necessary steps for developing a
computer solution.

4. Use units in both the FPS and the SI systems.

5. Develop linear models from given algebraic
expressions.

6. Identify the algebraic form and obtain the
coefficient values of a model, given a set of data.

7. Apply MATLAB to the methods of this chapter.

T his chapter introduces the basic terminology of system dynamics, which includes
the notions of system, static and dynamic elements, input, and output. Because
we will use both the foot-pound-second (FPS) and the metric (SI) systems of

units, the chapter introduces these two systems. Developing mathematical models of
input-output relations is essential to the applications of system dynamics. Therefore, we
begin our study by introducing some basic methods for developing algebraic models
of static elements. We show how to use the methods of function identification and
parameter estimation to develop models from data, and how to fit models to scattered
data by using the least-squares method. We then show how to apply MATLAB for this
purpose.

1MATLAB is a registered trademark of The MathWorks, Inc.

1
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Although Sections 1.4, 1.5, and 1.6 provide the foundation for understanding how
to develop models of static elements, coverage of these sections is not required to
understand the methods of the remaining chapters, because the appropriate models will
be supplied in the examples and chapter problems and thus need not be derived. ■

1.1 INTRODUCTION TO SYSTEM DYNAMICS
This text is an introduction to system dynamics. We presume that the reader has some
background in calculus (specifically, differentiation and integration of functions of
a single variable) and in physics (specifically, free body diagrams, Newton’s laws
of motion for a particle, and elementary dc electricity). In this section we establish
some basic terminology and discuss the meaning of the topic “system dynamics,” its
methodology, and its applications.

SYSTEMS

The meaning of the term system has become somewhat vague because of overuse. The
original meaning of the term is a combination of elements intended to act together to
accomplish an objective. For example, a link in a bicycle chain is usually not considered
to be a system. However, when it is used with other links to form a chain, it becomes
part of a system. The objective for the chain is to transmit force. When the chain is
combined with gears, wheels, crank, handlebars, and other elements, it becomes part
of a larger system whose purpose is to transport a person.

The system designer must focus on how all the elements act together to achieve
the system’s intended purpose, keeping in mind other important factors such as safety,
cost, and so forth. Thus, the system designer often cannot afford to spend time on the
details of designing the system elements. For example, our bicycle designer might not
have time to study the metallurgy involved with link design; that is the role of the
chain designer. All the systems designer needs to know about the chain is its strength,
its weight, and its cost, because these are the factors that influence its role in the
system.

With this “systems point of view,” we focus on how connections between the
elements influence the overall behavior of the system. This means that sometimes we
must accept a less-detailed description of the operation of the individual elements to
achieve an overall understanding of the system’s performance.

INPUT AND OUTPUT

Like the term “system,” the meanings of input and output have become less precise.
Nowadays, for example, a factory manager will call a meeting to seek “input,” meaning
opinions or data, from the employees, and the manager may refer to the products
manufactured in the factory as its “output.” However, in the system dynamics meaning
of the terms, an input is a cause; an output is an effect due to the input. Thus, one input
to the bicycle is the force applied to the pedal. One resulting output is the acceleration
of the bike. Another input is the angle of the front wheel; the output is the direction of
the bike’s path of travel.

The behavior of a system element is specified by its input-output relation, which
is a description of how the output is affected by the input. The input-output relation
expresses the cause-and-effect behavior of the element. Such a description, which is
represented graphically by the diagram in Figure 1.1.1, can be in the form of a table
of numbers, a graph, or a mathematical relation. For example, a force f applied to a
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System

Boundary

Inputs Outputs

Figure 1.1.1 A system input-
output diagram, showing the
system boundary.

particle of mass m causes an acceleration a of the particle. The input-output or causal
relation is, from Newton’s second law, a = f/m. The input is f and the output is a.

The input-output relations for the elements in the system provide a means of speci-
fying the connections between the elements. When connected together to form a system,
the inputs to some elements will be the outputs from other elements.

The inputs and outputs of a system are determined by the selection of the system’s
boundary (see Figure 1.1.1). Any causes acting on the system from the world external
to this boundary are considered to be system inputs. Similarly, a system’s outputs
are the outputs from any one or more of the system elements that act on the world
outside the system boundary. If we take the bike to be the system, one system input
would be the pedal force; another input is the force of gravity acting on the bike. The
outputs may be taken to be the bike’s position, velocity, and acceleration. Usually, our
choices for system outputs are a subset of the possible outputs and are the variables
in which we are interested. For example, a performance analysis of the bike would
normally focus on the acceleration or velocity, but not on the bike’s position.

Sometimes input-output relations are reversible, sometimes not. For example, we
can apply a current as input to a resistor and consider the resulting voltage drop to be the
output (v = i R). Or we can apply a voltage to produce a current through the resistor
(i = v/R). However, acceleration is the cause of a change in velocity, but not vice
versa. If we integrate acceleration a over time, we obtain velocity v; that is v = ∫

a dt .
Whenever an output of an element is the time integral of the input and the direction
of the cause-effect relation is not reversible, we say that the element exhibits integral
causality. We will see that integral causality constitutes a basic form of causality for
all physical systems.

Similar statements can be made about the relation between velocity and displace-
ment. Integration of velocity produces displacement x : x = ∫

v dt . Velocity is the cause
of displacement, but not vice versa.

Note that the mathematical relations describing integral causality can be reversed;
for example, we may write a = dv/dt , but this does not mean that the cause-and-effect
relation can be reversed.

STATIC AND DYNAMIC ELEMENTS

When the present value of an element’s output depends only on the present value of its
input, we say the element is a static element. For example, the current flowing through
a resistor depends only on the present value of the applied voltage. The resistor is thus
a static element. However, because no physical element can respond instantaneously,
the concept of a static element is an approximation. It is widely used, however, because
it results in a simpler mathematical representation; that is, an algebraic representation
rather than one involving differential equations.

If an element’s present output depends on past inputs, we say it is a dynamic
element. For example, the present position of a bike depends on what its velocity has
been from the start.



palm-38591 book December 17, 2008 11:10

4 CHAPTER 1 Introduction

In popular usage, the terms static and dynamic distinguish situations in which no
change occurs from those that are subject to changes over time. This usage conforms
to the preceding definitions of these terms if the proper interpretation is made. A static
element’s output can change with time only if the input changes and will not change
if the input is constant or absent. However, if the input is constant or removed from
a dynamic element, its output can still change. For example, if we stop pedaling, the
bike’s displacement will continue to change because of its momentum, which is due to
past inputs.

A dynamic system is one whose present output depends on past inputs. A static
system is one whose output at any given time depends only on the input at that time. A
static system contains all static elements. Any system that contains at least one dynamic
element must be a dynamic system. System dynamics, then, is the study of systems that
contain dynamic elements.

MODELING OF SYSTEMS

Table 1.1.1 contains a summary of the methodology that has been tried and tested by
the engineering profession for many years. These steps describe a general problem-
solving procedure. Simplifying the problem sufficiently and applying the appropriate
fundamental principles is called modeling, and the resulting mathematical description
is called a mathematical model, or just a model. When the modeling has been finished,
we need to solve the mathematical model to obtain the required answer. If the model
is highly detailed, we may need to solve it with a computer program.

The form of a mathematical model depends on its purpose. For example, design
of electrical equipment requires more than a knowledge of electrical principles. An
electric circuit can be damaged if its mounting board experiences vibration. In this
case, its force-deflection properties must be modeled. In addition, resistors generate
heat, and a thermal model is required to describe this process. Thus, we see that devices

Table 1.1.1 Steps in engineering problem solving.

1. Understand the purpose of the problem.
2. Collect the known information. Realize that some of it might turn out to be not needed.
3. Determine what information you must find.
4. Simplify the problem only enough to obtain the required information. State any assumptions

you make.
5. Draw a sketch and label any necessary variables.
6. Determine what fundamental principles are applicable.
7. Think generally about your proposed solution approach and consider other approaches before

proceeding with the details.
8. Label each step in the solution process.
9. If you use a program to solve the problem, hand check the results using a simple version of the

problem. Checking the dimensions and units, and printing the results of intermediate steps in
the calculation sequence can uncover mistakes.

10. Perform a “reality check” on your answer. Does it make sense? Estimate the range of the
expected result and compare it with your answer. Do not state the answer with greater
precision than is justified by any of the following:
a. The precision of the given information.
b. The simplifying assumptions.
c. The requirements of the problem.
Interpret the mathematics. If the mathematics produces multiple answers, do not discard some
of them without considering what they mean. The mathematics might be trying to tell you
something, and you might miss an opportunity to discover more about the problem.
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can have many facets: thermal, mechanical, electrical, and so forth. No mathematical
model can deal with all these facets. Even if it could, it would be too complex, and thus
too cumbersome, to be useful.

For example, a map is a model of a geographic region. But if a single map contains
all information pertaining to the roads, terrain elevation, geology, population density,
and so on, it would be too cluttered to be useful. Instead, we select the particular type
of map required for the purpose at hand. In the same way, we select or construct a
mathematical model to suit the requirements of a particular study.

The examples in this text follow the steps in Table 1.1.1, although for compactness
the steps are usually not numbered. In each example, following the example’s title,
there is a problem statement that summarizes the results of steps 1 through 5. Steps 6
through 10 are described in the solution part of the example. To save space, some steps,
such as checking dimensions and units, are not always explicitly displayed. However,
you are encouraged to perform these steps on your own.

CONTROL SYSTEMS

Often dynamic systems require a control system to perform properly. Thus, proper
control system design is one of the most important objectives of system dynamics.
Microprocessors have greatly expanded the applications for control systems. These
new applications include robotics, mechatronics, micromachines, precision engineer-
ing, active vibration control, active noise cancellation, and adaptive optics. Recent
technological advancements mean that many machines now operate at high speeds and
high accelerations. It is therefore now more often necessary for engineers to pay more
attention to the principles of system dynamics.

THEME APPLICATIONS

Two common applications of system dynamics are in (1) motion control systems and
(2) vehicle dynamics. Therefore we will use these applications as major themes in many
of our examples and problems.

Figure 1.1.2 shows a robot arm, whose motion must be properly controlled to move
an object to a desired position and orientation. To do this, each of the several motors
and drive trains in the arm must be adequately designed to handle the load, and the
motor speeds and angular positions must be properly controlled. Figure 1.1.3 shows
a typical motor and drive train for one arm joint. Knowledge of system dynamics is
essential to design these subsystems and to control them properly.

Mobile robots are another motion control application, but motion control applica-
tions are not limited to robots. Figure 1.1.4 shows the mechanical drive for a conveyor
system. The motor, the gears in the speed reducer, the chain, the sprockets, and the
drive wheels all must be properly selected, and the motor must be properly controlled
for the system to work well. In subsequent chapters we will develop models of these
components and use them to design the system and analyze its performance.

Our second major theme application is vehicle dynamics. This topic has received
renewed importance for reasons related to safety, energy efficiency, and passenger
comfort. Of major interest under this topic is the design of vehicle suspension systems,
whose elements include various types of springs and shock absorbers (Figure 1.1.5).
Active suspension systems, whose characteristics can be changed under computer con-
trol, and vehicle-dynamics control systems are undergoing rapid development, and their
design requires an understanding of system dynamics.
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Figure 1.1.2 A robot arm.
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Figure 1.1.3 Mechanical drive for a robot
arm joint.
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Figure 1.1.4 Mechanical drive for a
conveyor system.
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Figure 1.1.5 A vehicle suspension system.
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COMPUTER METHODS

The computer methods used in this text are based on MATLAB and Simulink.®1 If
you are unfamiliar with MATLAB, Appendix C on the textbook website contains a
thorough introduction to the program. No prior experience with Simulink is required;

1Simulink is a registered trademark of The MathWorks, Inc.
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Table 1.1.2 Steps for developing a computer solution.

1. State the problem concisely.
2. Specify the data to be used by the program. This is the “input.”
3. Specify the information to be generated by the program. This is the “output.”
4. Work through the solution steps by hand or with a calculator; use a simpler set of data

if necessary.
5. Write and run the program.
6. Check the output of the program with your hand solution.
7. Run the program with your input data and perform a reality check on the output.
8. If you will use the program as a general tool in the future, test it by running it for a range of

reasonable data values, and perform a reality check on the results. Document the program with
comment statements, flow charts, pseudo-code, or whatever else is appropriate.

we will introduce the necessary methods as we need them. For the convenience of those
who prefer to use a software package other than MATLAB or Simulink, we have placed
all the MATLAB and Simulink material in optional sections at the end of each chapter.
They can be skipped without affecting your understanding of the following chapters.
If you use a program, such as MATLAB, to solve a problem, follow the steps shown in
Table 1.1.2.

1.2 UNITS
In this book we use two systems of units, the FPS system and the metric SI. The common
system of units in business and industry in English-speaking countries has been the foot-
pound-second (FPS) system. This system is also known as the U.S. customary system or
the British Engineering system. Much engineering work in the United States has been
based on the FPS system, and some industries continue to use it. The metric Système
International d’Unités (SI) nevertheless is becoming the worldwide standard. Until the
changeover is complete, engineers in the United States will have to be familiar with
both systems.

In our examples, we will use SI and FPS units in the hope that the student will
become comfortable with both. Other systems are in use, such as the meter-kilogram-
second (mks) and centimeter-gram-second (cgs) metric systems and the British system,
in which the mass unit is a pound. We will not use these, because FPS and SI units are
the most common in engineering applications. We now briefly summarize these two
systems.

FPS UNITS

The FPS system is a gravitational system. This means that the primary variable is force,
and the unit of mass is derived from Newton’s second law. The pound is selected as the
unit of force and the foot and second as units of length and time, respectively. From
Newton’s second law of motion, force equals mass times acceleration, or

f = ma (1.2.1)

where f is the net force acting on the mass m and producing an acceleration a. Thus,
the unit of mass must be

mass = force

acceleration
= pound

foot/(second)2

This mass unit is named the slug.



palm-38591 book December 17, 2008 11:10

8 CHAPTER 1 Introduction

Table 1.2.1 SI and FPS units.

Unit name and abbreviation

Quantity SI Unit FPS Unit

Time second (s) second (sec)
Length meter (m) foot (ft)
Force newton (N) pound (lb)
Mass kilogram (kg) slug
Energy joule (J) foot-pound (ft-lb),

Btu (= 778 ft-lb)
Power watt (W) ft-lb/sec,

horsepower (hp)
Temperature degrees Celsius (◦C), degrees Fahrenheit (◦F),

degrees Kelvin (K) degrees Rankine (◦R)

Table 1.2.2 Unit conversion factors.

Length 1 m = 3.281 ft 1 ft = 0.3048 m
1 mile = 5280 ft 1 km = 1000 m

Speed 1 ft /sec = 0.6818 mi /hr 1 mi /hr = 1.467 ft /sec
1 m/s = 3.6 km/h 1 km/h = 0.2778 m/s
1 km/hr = 0.6214 mi /hr 1 mi /hr = 1.609 km/h

Force 1 N = 0.2248 lb 1 lb = 4.4484 N
Mass 1 kg = 0.06852 slug 1 slug = 14.594 kg
Energy 1 J = 0.7376 ft-lb 1 ft-lb = 1.3557 J
Power 1 hp = 550 ft-lb /sec 1 hp = 745.7 W

1 W = 1.341 × 10−3 hp
Temperature T ◦C = 5(T ◦F − 32)/9 T ◦F = 9T ◦C/5 + 32

Through Newton’s second law, the weight W of an object is related to the object
mass m and the acceleration due to gravity, denoted by g, as follows: W = mg. At the
surface of the earth, the standard value of g in FPS units is g = 32.2 ft /sec2.

Energy has the dimensions of mechanical work; namely, force times displacement.
Therefore, the unit of energy in this system is the foot-pound (ft-lb). Another energy unit
in common use for historical reasons is the British thermal unit (Btu). The relationship
between the two is given in Table 1.2.1. Power is the rate of change of energy with time,
and a common unit is horsepower. Finally, temperature in the FPS system can be
expressed in degrees Fahrenheit or in absolute units, degrees Rankine.

SI UNITS

The SI metric system is an absolute system, which means that the mass is chosen as the
primary variable, and the force unit is derived from Newton’s law. The meter and the
second are selected as the length and time units, and the kilogram is chosen as the mass
unit. The derived force unit is called the newton. In SI units the common energy unit
is the newton-meter, also called the joule, while the power unit is the joule/second, or
watt. Temperatures are measured in degrees Celsius, ◦C, and in absolute units, which
are degrees Kelvin, K. The difference between the boiling and freezing temperatures of
water is 100◦C, with 0◦C being the freezing point.

At the surface of the earth, the standard value of g in SI units is g = 9.81 m/s2.
Table 1.2.2 gives the most commonly needed factors for converting between the

FPS and the SI systems.
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OSCILLATION UNITS

There are three commonly used units for frequency of oscillation. If time is measured
in seconds, frequency can be specified as radians /second or as hertz, abbreviated Hz.
One hertz is one cycle per second (cps). The relation between cycles per second f and
radians per second ω is 2π f = ω. For sinusoidal oscillation, the period P , which is
the time between peaks, is related to frequency by P = 1/ f = 2π/ω. The third way of
specifying frequency is revolutions per minute (rpm). Because there are 2π radians per
revolution, one rpm = (2π/60) radians per second.

1.3 DEVELOPING LINEAR MODELS
A linear model of a static system element has the form y = mx + b, where x is the
input and y is the output of the element. As we will see in Chapter 3, solution of dy-
namic models to predict system performance requires solution of differential equations.
Differential equations based on linear models of the system elements are easier to solve
than ones based on nonlinear models. Therefore, when developing models we try to ob-
tain a linear model whenever possible. Sometimes the use of a linear model results in a
loss of accuracy, and the engineer must weigh this disadvantage with advantages gained
by using a linear model. In this section, we illustrate some ways to obtain linear models.

DEVELOPING LINEAR MODELS FROM DATA

If we are given data on the input-output characteristics of a system element, we can
first plot the data to see whether a linear model is appropriate, and if so, we can
extract a suitable model. Example 1.3.1 illustrates a common engineering problem—
the estimation of the force-deflection characteristics of a cantilever support beam.

A Cantilever Beam Deflection Model EXAMPLE 1.3.1

■ Problem
The deflection of a cantilever beam is the distance its end moves in response to a force applied
at the end (Figure 1.3.1). The following table gives the measured deflection x that was produced
in a particular beam by the given applied force f . Plot the data to see whether a linear relation
exists between f and x .

Force f (lb) 0 100 200 300 400 500 600 700 800

Deflection x (in.) 0 0.15 0.23 0.35 0.37 0.5 0.57 0.68 0.77

Dial Gauge

Weight f

Beam

Deflection x

Figure 1.3.1 Measurement of
beam deflection.
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Figure 1.3.2 Plot of beam
deflection versus applied force.
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■ Solution
The plot is shown in Figure 1.3.2. Common sense tells us that there must be zero beam deflection
if there is no applied force, so the curve describing the data must pass through the origin. The
straight line shown was drawn by aligning a straightedge so that it passes through the origin
and near most of the data points (note that this line is subjective; another person might draw a
different line). The data lies close to a straight line, so we can use the linear function x = a f to
describe the relation. The value of the constant a can be determined from the slope of the line,
which is

a = 0.78 − 0

800 − 0
= 9.75 × 10−4 in./lb

As we will see in Chapter 4, this relation is usually written as f = kx , where k is the beam
stiffness. Thus, k = 1/a = 1025 lb/in.

Once we have discovered a functional relation that describes the data, we can use
it to make predictions for conditions that lie within the range of the original data. This
process is called interpolation. For example, we can use the beam model to estimate the
deflection when the applied force is 550 lb. We can be fairly confident of this prediction
because we have data below and above 550 lb and we have seen that our model describes
this data very well.

Extrapolation is the process of using the model to make predictions for condi-
tions that lie outside the original data range. Extrapolation might be used in the beam
application to predict how much force would be required to bend the beam 1.2 in.
We must be careful when using extrapolation, because we usually have no reason to
believe that the mathematical model is valid beyond the range of the original data. For
example, if we continue to bend the beam, eventually the force is no longer proportional
to the deflection, and it becomes much greater than that predicted by the linear model.
Extrapolation has a use in making tentative predictions, which must be backed up later
on by testing.
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In some applications, the data contains so much scatter that it is difficult to identify
an appropriate straight line. In such cases, we must resort to a more systematic and
objective way of obtaining a model. This topic will be treated in Section 1.5.

LINEARIZATION

Not all element descriptions are in the form of data. Often we know the analytical form of
the model, and if the model is nonlinear, we can obtain a linear model that is an accurate
approximation over a limited range of the independent variable. Examples 1.3.2 and
1.3.3 illustrate this technique, which is called linearization.

Linearization of the Sine Function EXAMPLE 1.3.2

■ Problem
We will see in Chapter 2 that the models of many mechanical systems involve the sine function
sin θ , which is nonlinear. Obtain three linear approximations of f (θ) = sin θ , one valid near
θ = 0, one near θ = π/3 rad (60◦), and one near θ = 2π/3 rad (120◦).

■ Solution
The essence of the linearization technique is to replace the plot of the nonlinear function with
a straight line that passes through the reference point and has the same slope as the nonlinear
function at that point. Figure 1.3.3 shows the sine function and the three straight lines obtained
with this technique. Note that the slope of the sine function is its derivative, d sin θ/dθ = cos θ ,
and thus the slope is not constant but varies with θ .

Consider the first reference point, θ = 0. At this point the sine function has the value
sin 0 = 0, the slope is cos 0 = 1, and thus the straight line passing through this point with
a slope of 1 is f (θ) = θ . This is the linear approximation of f (θ) = sin θ valid near θ = 0,
line A in Figure 1.3.3. Thus we have derived the commonly seen small-angle approximation
sin θ ≈ θ .

0 0.5 1 1.5 2 2.5 3 3.5
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0.4
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Figure 1.3.3 Three linearized
models of the sine function.
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Next consider the second reference point, θ = π/3 rad. At this point the sine function has
the value sin π/3 = 0.866, the slope is cos π/3 = 0.5, and thus the straight line passing through
this point with a slope of 0.5 is f (θ) = 0.5(θ − π/3) + 0.866, line B in Figure 1.3.3. This is the
linear approximation of f (θ) = sin θ valid near θ = π/3.

Now consider the third reference point, θ = 2π/3 rad. At this point the sine function has the
value sin 2π/3 = 0.866, the slope is cos 2π/3 = −0.5, and thus the straight line passing through
this point with a slope of −0.5 is f (θ) = −0.5(θ − 2π/3) + 0.866, line C in Figure 1.3.3. This
is the linear approximation of f (θ) = sin θ valid near θ = 2π/3.

In Example 1.3.2 we used a graphical approach to develop the linear approximation.
The linear approximation can also be developed with an analytical approach based on
the Taylor series. The Taylor series represents a function f (θ) in the vicinity of θ = θr

by the expansion

f (θ) = f (θr ) +
(

d f

dθ

)
θ=θr

(θ − θr ) + 1

2

(
d2 f

dθ2

)
θ=θr

(θ − θr )
2 + · · ·

+ 1

k!

(
dk f

dθ k

)
θ=θr

(θ − θr )
k + · · · (1.3.1)

Consider the nonlinear function f (θ), which is sketched in Figure 1.3.4. Let
[θr , f (θr )] denote the reference operating condition of the system. A model that is
linear can be obtained by expanding f (θ) in a Taylor series near this point and trun-
cating the series beyond the first-order term. If θ is “close enough” to θr , the terms
involving (θ − θr )

i for i ≥ 2 are small compared to the first two terms in the series. The
result is

f (θ) = f (θr ) +
(

d f

dθ

)
r
(θ − θr ) (1.3.2)

Figure 1.3.4 Graphical
interpretation of function
linearization.
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where the subscript r on the derivative means that it is evaluated at the reference point.
This is a linear relation. To put it into a simpler form let m denote the slope at the
reference point.

m =
(

d f

dθ

)
r

(1.3.3)

Let y denote the difference between f (θ) and the reference value f (θr ).

y = f (θ) − f (θr ) (1.3.4)

Let x denote the difference between θ and the reference value θr .

x = θ − θr (1.3.5)

Then (1.3.2) becomes

y = mx (1.3.6)

The geometric interpretation of this result is shown in Figure 1.3.4. We have replaced
the original function f (θ) with a straight line passing through the point [θr , f (θr )]
and having a slope equal to the slope of f (θ) at the reference point. Using the (y, x)

coordinates gives a zero intercept, and simplifies the relation.

Linearization of a Square-Root Model EXAMPLE 1.3.3

■ Problem
We will see in Chapter 7 that the models of many fluid systems involve the square-root function√

h, which is nonlinear. Obtain a linear approximation of f (h) = √
h valid near h = 9.

■ Solution
The truncated Taylor series for this function is

f (h) = f (hr ) + d
(√

h
)

dh

∣∣∣∣
r

(h − hr )

where hr = 9. This gives the linear approximation

f (h) =
√

9 + 1

2
h−1/2

∣∣∣∣
r

(h − 9) = 3 + 1

6
(h − 9)

This equation gives the straight line shown in Figure 1.3.5.

Sometimes we need a linear model that is valid over so wide a range of the inde-
pendent variable that a model obtained from the Taylor series is inaccurate or grossly
incorrect. In such cases, we must settle for a linear function that gives a conservative
estimate.
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Figure 1.3.5 Linearization of
the square-root function.
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EXAMPLE 1.3.4 Modeling Fluid Drag

■ Problem
The drag force on an object moving through a liquid or a gas is a function of the velocity. A
commonly used model of the drag force D on an object is

D = 1

2
ρ ACDv2 (1)

where ρ is the mass density of the fluid, A is the object’s cross-sectional area normal to the relative
flow, v is the object’s velocity relative to the fluid, and CD is the drag coefficient, which is usually
determined from wind-tunnel or water-channel tests on models. Curve A in Figure 1.3.6 is a plot
of this equation for an Aerobee rocket 1.25 ft in diameter, with CD = 0.4, moving through the
lower atmosphere where ρ = 0.0023 slug/ft3, for which equation (1) becomes

D = 0.00056v2 (2)

a. Obtain a linear approximation to this drag function valid near v = 600 ft /sec.
b. Obtain a linear approximation that gives a conservative (high) estimate of the drag force

as a function of the velocity over the range 0 ≤ v ≤ 1000 ft /sec.

■ Solution
a. The Taylor series approximation of equation (2) near v = 600 is

D = D|v=600 + d D

dv

∣∣∣∣
v=600

(v − 600) = 201.6 + 0.672(v − 600)

This straight line is labeled B in Figure 1.3.6. Note that it predicts that the drag force will
be negative when the velocity is less than 300 ft /sec, a result that is obviously incorrect.
This illustrates how we must be careful when using linear approximations.

b. The linear model that gives a conservative estimate of the drag force (that is, an estimate
that is never less than the actual drag force) is the straight-line model that passes through
the origin and the point at v = 1000. This is the equation D = 0.56v, shown by the
straight line C in Figure 1.3.6.
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Figure 1.3.6 Models of fluid
drag.

1.4 FUNCTION IDENTIFICATION AND
PARAMETER ESTIMATION

Function identification, or function discovery, is the process of identifying or discov-
ering a function that can describe a particular set of data. The term curve fitting is also
used to describe the process of finding a curve, and the function generating the curve,
to describe a given set of data. Parameter estimation is the process of obtaining values
for the parameters, or coefficients, in the function that describes the data.

The following three function types can often describe physical phenomena.

1. The linear function y(x) = mx + b. Note that y(0) = b.
2. The power function y(x) = bxm . Note that y(0) = 0 if m ≥ 0, and y(0) = ∞ if

m < 0.
3. The exponential function y(x) = b(10)mx or its equivalent form y = bemx , where

e is the base of the natural logarithm (ln e = 1). Note that y(0) = b for both
forms.

For example, the linear function describes the voltage-current relation for a resistor
(v = i R) and the velocity versus time relation for an object with constant acceleration
a (v = at + v0). The distance d traveled by a falling object versus time is described by
a power function (d = 0.5gt2). The temperature change �T of a cooling object can be
described by an exponential function (�T = �T0e−ct ).

Each function gives a straight line when plotted using a specific set of axes:

1. The linear function y = mx + b gives a straight line when plotted on rectilinear
axes. Its slope is m and its y intercept is b.

2. The power function y = bxm gives a straight line when plotted on log-log axes.
3. The exponential function y = b(10)mx and its equivalent form, y = bemx , give a

straight line when plotted on semilog axes with a logarithmic y axis.



palm-38591 book December 17, 2008 11:10

16 CHAPTER 1 Introduction

Figure 1.4.1 The power
function y = 2x−0.5 and the
exponential function
y = 10(10−x ), plotted on
rectilinear, semi-log, and
log-log axes, respectively.
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These properties of the power and exponential functions are illustrated in Figure 1.4.1,
which shows the power function y = 2x−0.5 and the exponential function y = 10(10−x).

When we need to identify a function that describes a given set of data, we look for
a set of axes (rectilinear, semi-log, or log-log) on which the data forms a straight line,
because a straight line is the one most easily recognized by eye, and therefore we can
easily tell if the function will fit the data well.

Using the following properties of base-ten logarithms, which are shared with natural
logarithms, we have:

log (ab) = log a + log b

log (am) = m log a

Take the logarithm of both sides of the power equation y = bxm to obtain

log y = log (bxm) = log b + m log x

This has the form Y = B + m X if we let Y = log y, X = log x , and B = log b. Thus if
we plot Y versus X on rectilinear scales, we will obtain a straight line whose slope is m
and whose intercept is B. This is the same as plotting log y versus log x on rectilinear
scales, so we will obtain a straight line whose slope is m and whose intercept is log b.
This process is equivalent to plotting y versus x on log-log axes. Thus, if the data can be
described by the power function, it will form a straight line when plotted on log-log axes.

Taking the logarithm of both sides of the exponential equation y = b(10)mx we
obtain:

log y = log [b(10)mx ] = log b + mx log 10 = log b + mx

because log 10 = 1. This has the form Y = B + mx if we let Y = log y and B = log b.
Thus if we plot Y versus x on rectilinear scales, we will obtain a straight line whose
slope is m and whose intercept is B. This is the same as plotting log y versus x on
rectilinear scales, so we will obtain a straight line whose slope is m and whose intercept
is log b. This is equivalent to plotting y on a log axis and x on a rectilinear axis. Thus, if
the data can be described by the exponential function, it will form a straight line when
plotted on semilog axes (with the log axis used for the ordinate).
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This property also holds for the other exponential form: y = bemx . Taking the
logarithm of both sides gives

log y = log (bemx) = log b + mx log e

This has the form
Y = B + Mx

if we let Y = log y, B = log b, and M = m log e. Thus if we plot Y versus x on
rectilinear scales, we will obtain a straight line whose slope is M and whose intercept
is B. This is the same as plotting log y versus x on rectilinear scales, so we will obtain
a straight line whose slope is m log e and whose intercept is log b. This is equivalent to
plotting y on a log axis and x on a rectilinear axis. Thus, equivalent exponential form
will also plot as a straight line on semilog axes.

STEPS FOR FUNCTION IDENTIFICATION

Here is a summary of the procedure to find a function that describes a given set of data.
We assume that the data can be described by one of the three function types given above.
Fortunately, many applications generate data that can be described by these functions.
The procedure is

1. Examine the data near the origin. The exponential functions y = b(10)mx and
y = bemx can never pass through the origin (unless, of course b = 0, which is a
trivial case). See Figure 1.4.2 for examples with b = 1. The linear function y =
mx + b can pass through the origin only if b = 0. The power function y = bxm

can pass through the origin but only if m > 0. See Figure 1.4.3 for examples.
2. Plot the data using rectilinear scales. If it forms a straight line, then it can be

represented by the linear function, and you are finished. Otherwise, if you have
data at x = 0, then
a. If y(0) = 0, try the power function, or
b. If y(0) �= 0, try the exponential function.
If data is not given for x = 0, proceed to step 3.
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Figure 1.4.2 Examples of
exponential functions.
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Figure 1.4.3 Examples of
power functions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

The Power Function y = xm

m =  –0.5

m = 2
m = 1

m = 0.5

m = 0

3. If you suspect a power function, plot the data using log-log scales. Only a power
function will form a straight line. If you suspect an exponential function, plot it
using semilog scales. Only an exponential function will form a straight line.

OBTAINING THE COEFFICIENTS

There are several ways to obtain the values of the coefficients b and m. If the data lie
very close to a straight line, we can draw the line through the data using a straightedge
and then read two points from the line. These points can be conveniently chosen to
coincide with gridlines to eliminate interpolation error. Let these two points be denoted
(x1, y1) and (x2, y2).

For the linear function y = mx + b, the slope is given by

m = y2 − y1

x2 − x1

Once m is computed, b can be found by evaluating y = mx + b at a given point, say
the point (x1, y1). Thus b = y1 − mx1.

For the power function y = bxm , we can write the following equations for the two
chosen points.

y1 = bxm
1 y2 = bxm

2

These can be solved for m as follows.

m = log(y2/y1)

log(x2/x1)

Once m is computed, b can be found by evaluating y = bxm at a given point, say the
point (x1, y1). Thus b = y1x−m

1 .
For the exponential function y = b(10)mx we can write the following equations

for the two chosen points.

y1 = b(10)mx1 y2 = b(10)mx2
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These can be solved for m as follows.

m = 1

x2 − x1
log

y2

y1

Once m is computed, b can be found by evaluating y = b(10)mx at a given point, say
the point (x1, y1). Thus b = y110−mx1 .

A similar procedure can be used for the other exponential form, y = bemx . The
solutions are

m = 1

x2 − x1
ln

y2

y1

b = y1e−mx1

If the data are scattered about a straight line to the extent that it is difficult to
identify a unique straight line that describes the data, we can use the least-squares
method to obtain the function. This method finds the coefficients of a polynomial of
specified degree n that best fits the data, in the so-called “least-squares sense.” We
discuss this method in Section 1.5. The MATLAB implementation of this method uses
the polyfit function, which is discussed in Section 1.6.

Examples 1.4.1 and 1.4.2 feature experiments that you can easily perform on your
own. Engineers are often required to make predictions about the temperatures that will
occur in various industrial processes, for example. Example 1.4.1 illustrates how we
can use function identification to predict the temperature dynamics of a cooling process.

Temperature Dynamics of Water EXAMPLE 1.4.1

■ Problem
Water in a glass measuring cup was allowed to cool after being heated to 204◦F. The ambient air
temperature was 70◦F. The measured water temperature at various times is given in the following
table.

Time (sec) 0 120 240 360 480 600

Temperature (◦F) 204 191 178 169 160 153

Time (sec) 720 840 960 1080 1200

Temperature (◦F) 147 141 137 132 127

Obtain a functional description of the water temperature versus time.

■ Solution
Common sense tells us that the water temperature will eventually reach the air temperature of
70◦. Thus we first subtract 70◦ from the temperature data T and seek to obtain a functional
description of the relative temperature, �T = T − 70. A plot of the relative temperature data
is shown in Figure 1.4.4. We note that the plot has a distinct curvature and that it does not pass
through the origin. Thus we can rule out the linear function and the power function as candidates.

To see if the data can be described by an exponential function, we plot the data on a semilog
plot, which is shown in Figure 1.4.5. The straight line shown can be drawn by aligning a straight-
edge so that it passes near most of the data points (note that this line is subjective; another person
might draw a different line). The data lie close to a straight line, so we can use the exponential
function to describe the relative temperature.
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Figure 1.4.4 Plot of relative
temperature versus time.
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Figure 1.4.5 Semilog plot of
relative temperature versus
time.
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Using the second form of the exponential function, we can write �T = bemt . Next we
select two points on the straight line to find the values of b and m. The two points indicated by
an asterisk were selected to minimize interpolation error because they lie near grid lines. The
accuracy of the values read from the plot obviously depends on the size of the plot. Two points
read from the plot are (1090, 60) and (515, 90). Using the equations developed previously to
compute b and m (with t replacing x and �T replacing y), we have

m = 1

1090 − 515
ln

60

90
= −0.0007

b = 90e−0.0007(515) = 129
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Figure 1.4.6 Comparison of
the fitted function with the
data.

Thus the estimated function is

�T = 129e−0.0007t or T = �T + 70 = 129e−0.0007t + 70

where �T and T are in ◦F and time t is in seconds. The plot of �T versus t is shown in
Figure 1.4.6. From this we can see that the function provides a reasonably good description of
the data. In Section 1.5 we will discuss how to quantify the quality of this description.

Engineers often need a model to calculate the flow rates of fluids under pressure.
The coefficients of such models must often be determined from measurements.

Orifice Flow EXAMPLE 1.4.2

■ Problem
A hole 6 mm in diameter was made in a translucent milk container (Figure 1.4.7). A series of
marks 1 cm apart was made above the hole. While adjusting the tap flow to keep the water height
constant, the time for the outflow to fill a 250-ml cup was measured (1 ml = 10−6 m3). This was
repeated for several heights. The data are given in the following table.

Height h (cm) 11 10 9 8 7 6 5 4 3 2 1

Time t (s) 7 7.5 8 8.5 9 9.5 11 12 14 19 26

Obtain a functional description of the volume outflow rate f as a function of water height h
above the hole.

■ Solution
First obtain the flow rate data in ml/s by dividing the 250 ml volume by the time to fill:

f = 250

t
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Figure 1.4.7 An experiment to determine
flow rate versus liquid height.
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Figure 1.4.8 Plot of flow rate data.
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Figure 1.4.9 Log-log plot of
flow rate data.
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A plot of the resulting flow rate data is shown in Figure 1.4.8. There is some curvature in the plot,
so we rule out the linear function. Common sense tells us that the outflow rate will be zero when
the height is zero, so we can rule out the exponential function because it cannot pass through
the origin.

The log-log plot shown in Figure 1.4.9 shows that the data lie close to a straight line, so we
can use the power function to describe the flow rate as a function of height. Thus we can write

f = bhm



palm-38591 book December 17, 2008 11:10

1.5 Fitting Models to Scattered Data 23

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

40

Height (cm)

F
lo

w
 R

at
e 

(m
l/s

)
Figure 1.4.10 Comparison of
the flow rate function and the
data.

The straight line shown can be drawn by aligning a straightedge so that it passes near most of
the data points (note that this line is subjective; another person might draw a different line). Next
we select two points on the straight line to find the values of b and m. The two points indicated
by an asterisk were selected to minimize interpolation error because they lie near grid lines.
The accuracy of the values read from the plot obviously depends on the size of the plot. The
values of the points as read from the plot are (1, 9.4) and (8, 30). Using the equations developed
previously to compute b and m (with h replacing x and f replacing y), we have

m = log (30/9.4)

log (8/1)
= 0.558

b = 9.4 (1−0.558) = 9.4

Thus the estimated function is f = 9.4h0.558, where f is the outflow rate in ml/s and the water
height h is in centimeters. The plot of f versus h is shown in Figure 1.4.10. From this we can
see that the function provides a reasonably good description of the data. In Section 1.5 we will
discuss how to quantify the quality of this description.

1.5 FITTING MODELS TO SCATTERED DATA
In practice the data often will not lie very close to a straight line, and if we ask two
people to draw a straight line passing as close as possible to all the data points, we will
probably receive two different answers. A systematic and objective way of obtaining a
straight line describing the data is the least-squares method. Suppose we want to find
the coefficients of the straight line y = mx + b that best fits the following data.

x 0 5 10

y 2 6 11

According to the least-squares criterion, the line that gives the best fit is the one that
minimizes J , the sum of the squares of the vertical differences between the line and the
data points (see Figure 1.5.1). These differences are called the residuals. Here there are
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Figure 1.5.1 Illustration of
the least-squares criterion.
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x

three data points and J is given by

J =
3∑

i=1

(mxi + b − yi )
2

Substituting the data values (xi , yi ) given in the table, we obtain

J = (0m + b − 2)2 + (5m + b − 6)2 + (10m + b − 11)2

The values of m and b that minimize J can be found from ∂ J/∂m = 0 and ∂ J/∂b = 0.

∂ J

∂m
= 2(5m + b − 6)(5) + 2(10m + b − 11)(10) = 250m + 30b − 280 = 0

∂ J

∂b
= 2(b − 2) + 2(5m + b − 6) + 2(10m + b − 11) = 30m + 6b − 38 = 0

These conditions give the following equations that must be solved for the two unknowns
m and b.

250m + 30b = 280

30m + 6b = 38

The solution is m = 9/10 and b = 11/6. The best straight line in the least-squares
sense is y = (9/10)x + 11/6. This is shown in Figure 1.5.2 along with the data.

If we evaluate this equation at the data values x = 0, 5, and 10, we obtain the
values y = 1.8333, 6.3333, and 10.8333. These values are different than the given data
values y = 2, 6, and 11 because the line is not a perfect fit to the data. The value of J is
J = (1.8333 − 2)2 + (6.3333 − 6)2 + (10.8333 − 11)2 = 0.1666. No other straight line
will give a lower value of J for these data.
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Figure 1.5.2 Example of a
least-squares fit.

THE GENERAL LINEAR CASE

We can generalize the preceding results to obtain formulas for the coefficients m and b
in the linear equation y = mx + b. Note that for n data points,

J =
n∑

i=1

(mxi + b − yi )
2

The values of m and b that minimize J are found from ∂ J/∂m = 0 and ∂ J/∂b = 0.
These conditions give the following equations that must be solved for m and b:

∂ J

∂m
= 2

n∑
i=1

(mxi + b − yi ) xi = 2
n∑

i=1

mx2
i + 2

n∑
i=1

bxi − 2
n∑

i=1

yi xi = 0

∂ J

∂b
= 2

n∑
i=1

(mxi + b − yi ) = 2
n∑

i=1

mxi + 2
n∑

i=1

b − 2
n∑

i=1

yi = 0

These equations become

m
n∑

i=1

x2
i + b

n∑
i=1

xi =
n∑

i=1

yi xi (1.5.1)

m
n∑

i=1

xi + bn =
n∑

i=1

yi (1.5.2)

These are two linear equations in terms of m and b.
Because the exponential and power functions form straight lines on semilog

and log-log axes, we can use the previous results after computing the logarithms of
the data.
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EXAMPLE 1.5.1 Fitting Data with the Power Function

■ Problem
Find a functional description of the following data:

x 1 2 3 4

y 5.1 19.5 46 78

■ Solution
These data do not lie close to a straight line when plotted on linear or semilog axes. However,
they do when plotted on log-log axes. Thus a power function y = bxm can describe the data.
Using the transformations X = log x and Y = log y, we obtain the new data table:

X = log x 0 0.3010 0.4771 0.6021

Y = log y 0.7076 1.2900 1.6628 1.8921

From this table we obtain
4∑

i=1

Xi = 1.3803
4∑

i=1

Yi = 5.5525

4∑
i=1

Xi Yi = 2.3208
4∑

i=1

X2
i = 0.6807

Using X , Y , and B = log b instead of x , y, and b in (1.5.1) and (1.5.2) we obtain

0.6807m + 1.3803B = 2.3208

1.3803m + 4B = 5.5525

The solution is m = 1.9802 and B = 0.7048. This gives b = 10B = 5.068. Thus, the desired
function is y = 5.068x1.9802.

CONSTRAINING MODELS TO PASS THROUGH A GIVEN POINT

Many applications require a model whose form is dictated by physical principles. For
example, the force-extension model of a spring must pass through the origin (0, 0)

because the spring exerts no force when it is not stretched. Thus a linear model y =
mx + b sometimes must have a zero value for b. However, in general the least-squares
method will give a nonzero value for b because of the scatter or measurement error that
is usually present in the data.

To obtain a zero-intercept model of the form y = mx , we must derive the equation
for m from basic principles. The sum of the squared residuals in this case is

J =
n∑

i=1

(mxi − yi )
2

Computing the derivative ∂ J/∂m and setting it equal to zero gives the result

m
n∑

i=1

x2
i =

n∑
i=1

xi yi (1.5.3)

which can be easily solved for m.
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If the model is required to pass through a point not at the origin, say the point
(x0, y0), subtract x0 from all the x values, subtract y0 from all the y values, and then
use (1.5.3) to find the coefficient m. The resulting equation will be of the form

y = m(x − x0) + y0 (1.5.4)

Point Constraint EXAMPLE 1.5.2

■ Problem
Consider the data given at the beginning of this section.

x 0 5 10

y 2 6 11

We found that the best-fit line is y = (9/10)x + 11/6. Find the best-fit line that passes through
the point x = 10, y = 11.

■ Solution
Subtracting 10 from all the x values and 11 from all the y values, we obtain a new set of data in
terms of the new variables X = x − 10 and Y = y − 11.

X −10 −5 0

Y −9 −5 0

Expressing (1.5.3) in terms of the new variables X and Y , we have

m
3∑

i=1

X2
i =

3∑
i=1

Xi Yi

3∑
i=1

X2
i = (−10)2 + 52 + 0 = 125

3∑
i=1

Xi Yi = (−10)(−9) + (−5)(−5) + 0 = 115

Thus, m = 115/125 = 23/25 and the best-fit line is Y = (23/25)X . In terms of the original
variables, this line is expressed as y − 11 = (23/25)(x − 10) or y = (23/25)x + 9/5.

CONSTRAINING A COEFFICIENT

Sometimes we know from physical theory that the data can be described by a function
with a specified form and specified values of one of more of its coefficients. For example,
the fluid-drag relation states that D = ρCDv2/2. In this case, we know that the relation
is a power function with an exponent of 2, and we need to estimate the value of the
drag coefficient CD . In such cases, we can modify the least-squares method to find the
best-fit function of a specified form.

Fitting a Power Function with a Known Exponent EXAMPLE 1.5.3

■ Problem
Fit the power function y = bxm to the data yi . The value of m is known.
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■ Solution
The least-squares criterion is

J =
n∑

i=1

(bxm − yi )
2

To obtain the value of b that minimizes J , we must solve ∂ J/∂b = 0.

∂ J

∂b
= 2

n∑
i=1

xm
i

(
bxm

i − yi

) = 0

This gives

b =
∑n

i=1 xm
i yi∑n

i=1 x2m
i

(1)

THE QUALITY OF A CURVE FIT

In general, if the arbitrary function y = f (x) is used to represent the data, then the error
in the representation is given by ei = f (xi ) − yi , for i = 1, 2, 3, . . . , n. The error ei

is the difference between the data value yi and the value of y obtained from the function;
that is, f (xi ). The least-squares criterion used to fit a function f (x) is the sum of the
squares of the residuals, J . It is defined as

J =
n∑

i=1

[ f (xi ) − yi ]
2 (1.5.5)

We can use this criterion to compare the quality of the curve fit for two or more functions
used to describe the same data. The function that gives the smallest J value gives the
best fit.

We denote the sum of the squares of the deviation of the y values from their mean
ȳ by S, which can be computed from

S =
n∑

i=1

(yi − ȳ)2 (1.5.6)

This formula can be used to compute another measure of the quality of the curve fit, the
coefficient of determination, also known as the r-squared value. It is defined as

r2 = 1 − J

S
(1.5.7)

For a perfect fit, J = 0 and thus r2 = 1. Thus, the closer r2 is to 1, the better the fit. The
largest r2 can be is 1. The value of S is an indication of how much the data is spread
around the mean, and the value of J indicates how much of the data spread is left
unaccounted for by the model. Thus, the ratio J/S indicates the fractional variation
left unaccounted for by the model. It is possible for J to be larger than S, and thus it is
possible for r2 to be negative. Such cases, however, are indicative of a very poor model
that should not be used. As a rule of thumb, a very good fit accounts for at least 99%
of the data variation. This corresponds to r2 ≥ 0.99.

For example, the function y = 9/10x + 11/6 derived at the beginning of this
section has the values S = 40.6667, J = 0.1666, and r2 = 0.9959, which indicates a
very good fit. The line y = (23/25)x + 9/5, which is constrained to pass through the
point x = 10, y = 11 gives the values S = 40.6667, J = 0.2, and r2 = 0.9951. So the
constraint degraded the quality of the fit but very slightly.
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The power function y = 5.068x1.9802 derived in Example 1.5.1 has the values S =
3085.8, J = 2.9192, and r2 = 0.9991. Thus its fit is very good.

When the least-squares method is applied to fit quadratic and higher-order polyno-
mials, the resulting equations for the coefficents are linear algebraic equations, which
are easily solved. Their solution forms the basis for MATLAB algorithm contained in
the polyfit function, which is discussed in Section 1.6.

INTEGRAL FORM OF THE LEAST-SQUARES CRITERION

Sometimes we must obtain a linear description of a process over a range of the inde-
pendent variable so large that linearization is impractical. In such cases we can apply
the least-squares method to obtain the linear description. Because there are no data in
such cases, we use the integral form of the least-squares criterion.

Fitting a Linear Function to a Power Function EXAMPLE 1.5.4

■ Problem
a. Fit the linear function y = mx to the power function y = axn over the range 0 ≤ x ≤ L .

The values of a and n are given.
b. Apply the result to the Aerobee drag function D = 0.00056v2 over the range 0 ≤ v ≤ 1000,

discussed in Example 1.3.4.

■ Solution
a. The appropriate least-squares criterion is the integral of the square of the difference

between the linear model and the power function over the stated range. Thus,

J =
∫ L

0
(mx − axn)2 dx

To obtain the value of m that minimizes J , we must solve ∂ J/∂m = 0.

∂ J

∂m
= 2

∫ L

0
x(mx − axn) dx = 0

This gives

m = 3a

n + 2
Ln−1 (1)

b. For the Aerobee drag function D = 0.00056v2, a = 0.00056, n = 2, and L = 1000. Thus,

m = 3(0.00056)

2 + 2
10002−1 = 0.42

and the linear description is D = 0.42v, where D is in pounds and v is in ft /sec. This is the
linear model that minimizes the integral of the squared error over 0 ≤ v ≤ 1000 ft /sec.

1.6 MATLAB AND THE LEAST-SQUARES METHOD
We now show how to use MATLAB’s polyfit function to fit polynomials and func-
tions that can be transformed into polynomials. The polyfit function is based on the
least-squares method. Its syntax is p=polyfit(x,y,n). The function fits a poly-
nomial of degree n to data described by the vectors x and y, where x is the independent
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variable. The result p is the row vector of length n + 1 that contains the polynomial
coefficients in order of descending powers.

EXAMPLE 1.6.1 Fitting First and Second Degree Polynomials

■ Problem
Use the polyfit function to find the first and second degree polynomials that fit the following
data in the least-squares sense. Evaluate the quality of fit for each polynomial.

x 0 1 2 3 4 5 6 7 8 9 10

y 48 49 52 63 76 98 136 150 195 236 260

■ Solution
The following MATLAB program computes the polynomial coefficients.

x = (0:10);

y = [48, 49, 52, 63, 76, 98, 136, 150, 195, 236, 260];

p_first = polyfit(x,y,1)

p_second = polyfit(x,y,2)

The polynomial coefficients of the first degree polynomial are contained in the vector p_first,
and the coefficients of the second degree polynomial are contained in the vector p_second.
The results are p_first = [22.1909, 12.0455], which corresponds to the polynomial
y = 22.1909x +12.0455, and p_second = [2.1993, 0.1979, 45.035], which cor-
responds to the polynomial y = 2.1993x2 + 0.1979x + 45.035.

We can use MATLAB to plot the polynomials and to evaluate the “quality of fit” quantities
J , S, and r2. The following script file does this.

x = (0:10);

y = [48, 49, 52, 63, 76, 98, 136, 150, 195, 236, 260];

mu = mean(y);

xp = (0:0.01:10);

for k = 1:2

yp(k,:) = polyval(polyfit(x,y,k),xp);

J(k) = sum((polyval(polyfit(x,y,k),x)-y).^2);
S(k) = sum((polyval(polyfit(x,y,k),x)- mu).^2);
r2(k) = 1-J(k)/S(k);

end

subplot(2,1,1)

plot(xp,yp(1,:),x,y,'o'),axis([0 10 0 300]),xlabel('x'),...
ylabel('y'),title('First-degree fit')

subplot(2,1,2)

plot(xp,yp(2,:),x,y,'o'),axis([0 10 0 300]),xlabel('x'),...
ylabel('y'),title('Second-degree fit')

disp('The J values are:'),J
disp('The S values are:'),S
disp('The r^2 values are:'),r2
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Figure 1.6.1 Plots of first-
and second-degree polynomial
curve fits.

The polynomial coefficients in the above script file are contained in the vector polyfit
(x,y,k). If you need the polynomial coefficients, say for the second-degree polynomial, type
polyfit(x,y,2) after the program has been run.

The plots are shown in Figure 1.6.1. The following table gives the values of J , S, and r2

for each polynomial.

Degree n J S r2

1 4348 54,168 0.9197
2 197.9 58,318 0.9997

Because the second-degree polynomial has the largest r2 value, it represents the data better than
the first-degree polynomial, according to the r2 criterion. This is also obvious from the plots.

When we type p=polyfit(z,w,1), MATLAB will fit a linear function w =
p1z + p2. The coefficients p1 and p2 are the first and second elements in the vector p;
that is, p will be [p1, p2]. With a suitable transformation, the power and exponential
functions can be transformed into a linear function, but the polynomial w = p1z + p2

has a different interpretation in each of the three cases.

The linear function: y = mx + b. In this case the variables w and z in the
polynomial w = p1z + p2 are the original data variables, and we can find the
linear function that fits the data by typing p=polyfit(x,y,1). The first
element p1 of the vector p will be m, and the second element p2 will be b.
The power function: y = bxm . In this case log y = m log x + log b, which has the
form w = p1z + p2, where the polynomial variables w and z are related to the
original data variables x and y by w = log y and z = log x . Thus, we can find the
power function that fits the data by typing p = polyfit(log10(x),
log10(y),1). The first element p1 of the vector p will be m, and the second
element p2 will be log b. We can find b from b = 10p2 .



palm-38591 book December 17, 2008 11:10

32 CHAPTER 1 Introduction

The exponential function: y = bemx . In this case, ln y = mx + ln b, which has
the form w = p1z + p2, where the polynomial variables w and z are related to the
original data variables x and y by w = ln y and z = x . Thus, we can find the
exponential function that fits the data by typing p = polyfit(x,log(y),1).
The first element p1 of the vector p will be m, and the second element p2 will be
ln b. We can find b from b = ep2 .

Note

The notation for logarithms used by MATLAB is different than that used in mathematical
expressions. Do not make the common mistake of using the MATLAB function log to represent
the base-ten logarithm. The natural logarithm ln x is expressed in MATLAB by log(x),
whereas the base-ten logarithm log x is expressed as log10(x) in MATLAB.

Example 1.6.2 illustrates how to use MATLAB to estimate the force-deflection
characteristics of the cantilever support beam treated in Example 1.3.1.

EXAMPLE 1.6.2 A Cantilever Beam Deflection Model

■ Problem
The force-deflection data from Example 1.3.1 for the cantilever beam shown in Figure 1.4.1 is
given in the following table.

Force f (lb) 0 100 200 300 400 500 600 700 800

Deflection x (in.) 0 0.15 0.23 0.35 0.37 0.5 0.57 0.68 0.77

Use MATLAB to obtain a linear relation between x and f , estimate the stiffness k of the beam,
and evaluate the quality of the fit.

■ Solution
In the following MATLAB script file the data are entered in the arrays x and f. The arrays xp
and fp are created to plot the straight line at many points.

x = [0, 0.15, 0.23, 0.35, 0.37, 0.5, 0.57, 0.68, 0.77];

f = (0:100:800);

p = polyfit(f,x,1)

k = 1/p(1)

fp = (0:800);

xp = p(1)*fp+p(2);

plot(fp,xp,f,x,'o'), xlabel('Applied Force f (lb)'), ...

ylabel('Deflection x (in.)'), ...

axis([0 800 0 0.8])

J = sum((polyval(p,f)-x).^2)
S = sum((polyval(p,f)-mean(x)).^2)
r2 = 1 - J/S

The computed values in the array p are p = [9.1667 × 10−4, 3.5556 × 10−2]. Thus the fitted
straight line is x = 9.1667 × 10−4 f + 3.5556 × 10−2. Note that this line, which is shown
in Figure 1.6.2, does not pass through the origin as required, but it is close (it predicts that
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Figure 1.6.2 Models of beam
deflection. Unconstrained
linear function.

x = 0.035556 in. when f = 0). The quality-of-fit values are J = 0.0048, S = 0.5042, and
r2 = 0.9905, which indicates a very good fit.

Solving for f gives f = (x − 3.5556 × 10−2)/9.1667 × 10−4 = 1091x − 38.7879. The
computed value of the stiffness k is the coefficient of x ; thus k = 1091 lb/in.

Constraining the Curve Fit EXAMPLE 1.6.3

■ Problem
Use MATLAB to fit a straight line to the beam force-deflection data given in Example 1.6.2, but
constrain the line to pass through the origin.

■ Solution
We can apply (1.5.3), noting here that the measured variable is the deflection x and the indepen-
dent variable is the force f . Thus (1.5.3) becomes

m
n∑

i=1

f 2
i =

n∑
i=1

fi xi

The MATLAB program to solve this equation for m and k is

x = [0, 0.15, 0.23, 0.35, 0.37, 0.5, 0.57, 0.68, 0.77];

f = (0:100:800);

m = sum(f.*x)/sum(f.^2);
k = 1/m

J = sum((m*f-x).^2)
S = sum((m*f-mean(x)).^2)
r2 = 1 - J/S

The answer is k = 1021 lb/in. The corresponding line is shown in Figure 1.6.3. The quality-of-fit
values are J = 0.0081, S = 0.5765, and r2 = 0.9859, which indicates a good fit.



palm-38591 book December 17, 2008 11:10

34 CHAPTER 1 Introduction

Figure 1.6.3 Linear function
constrained to pass through
the origin.
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EXAMPLE 1.6.4 Temperature Dynamics of Water

■ Problem
Consider again Example 1.4.1. Water in a glass measuring cup was allowed to cool after being
heated to 204◦F. The ambient air temperature was 70◦F. The measured water temperature at
various times is given in the following table.

Time (sec) 0 120 240 360 480 600

Temperature (◦F) 204 191 178 169 160 153

Time (sec) 720 840 960 1080 1200

Temperature (◦F) 147 141 137 132 127

Obtain a functional description of the water temperature versus time.

■ Solution
From Example 1.4.1, we learned that the relative temperature, �T = T −70 has the exponential
form

�T = bemt

We can find values of m and b by using p = polyfit(x,log(y),1). The first element p1

of the vector p will be m, and the second element p2 will be ln b. We can find b from b = ep2 .
The following MATLAB program performs the calculations.

time = (0:120:1200);

temp = [204,191,178,169,160,153,147,141,137,132,127];

rel_temp = temp - 70;

log_rel_temp = log(rel_temp);
p = polyfit(time,log_rel_temp,1);
m = p(1),b = exp(p(2))

DT = b*exp(m*time);
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J = sum((DT-rel_temp).^2)
S = sum((rel_temp - mean(rel_temp)).^2
r2 = 1 - J/S

The results are m = −6.9710×10−4 and b = 1.2916×102, and the corresponding function is

�T = bemt or T = �T + 70 = bemt + 70

The quality-of-fit values are J = 47.4850, S = 6.2429×103, and r2 = 0.9924, which indicates
a very good fit.

Orifice Flow EXAMPLE 1.6.5

■ Problem
Consider again Example 1.4.2. A hole 6 mm in diameter was made in a translucent milk container
(Figure 1.4.7). A series of marks 1 cm apart was made above the hole. While adjusting the tap
flow to keep the water height constant, the time for the outflow to fill a 250 ml cup was measured
(1 ml = 10−6 m3). This was repeated for several heights. The data are given in the following table.

Height h (cm) 11 10 9 8 7 6 5 4 3 2 1

Time t (s) 7 7.5 8 8.5 9 9.5 11 12 14 19 26

Obtain a functional description of the volume outflow rate f as a function of water height h
above the hole.

■ Solution
First obtain the flow rate data in ml/s by dividing the 250 ml volume by the time to fill:

f = 250

t
In Example 1.4.2, we learned that the following power function can describe the data:

f = bhm

We can find the values of m and b by using p=polyfit(log10(x),log10(y),1). The
first element p1 of the vector p will be m, and the second element p2 will be log b. We can find
b from b = 10p2 . The following MATLAB program performs the calculations.

h = (1:11);

time = [26, 19, 14, 12, 11, 9.5, 9, 8.5, 8, 7.5, 7];

flow = 250./time;

logflow = log10(flow);logheight = log10(h);

p = polyfit(logheight,logflow,1);

m = p(1),b =10^p(2)
F = b*h.^m;
J = sum((F - flow).^2)
S = sum((flow - mean(flow)).^2)
r2 = 1 - J/S

The results are m = 0.5499 and b = 9.4956, and the corresponding function is

f = bhm = 9.4956h0.5499

The quality-of-fit values are J = 2.5011, S = 698.2203, and r2 = 0.9964, which indicates a
very good fit.
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Sometimes we know from physical theory that the data can be described by a
power function with a specified exponent. For example, Torricelli’s principle of hy-
draulic resistance states that the volume flow rate f of a liquid through a restriction
is proportional to the square root of the pressure drop p across the restriction; that is,
q = c

√
p = cp1/2. In many applications, the pressure drop is due to the weight of

liquid in a container. This is the case for water in the milk container of Example 1.6.5.
In such situations, Torricelli’s principle states that the flow rate is proportional to the
square root of the height h of the liquid above the orifice. Thus,

f = b
√

h = bh1/2

where b is a constant that must be determined from data.

EXAMPLE 1.6.6 Orifice Flow with Constrained Exponent

■ Problem
Consider the data of Example 1.6.5. Determine the best-fit value of the coefficient b in the
square-root function

f = bh1/2

Height h (cm) 11 10 9 8 7 6 5 4 3 2 1

Time t (s) 7 7.5 8 8.5 9 9.5 11 12 14 19 26

■ Solution
First obtain the flow rate data in ml/s by dividing the 250 ml volume by the time to fill:

f = 250

t

Referring to Example 1.5.3, whose model is y = bxm , we see here that y = f , h = x , m = 0.5,
and a = b. From Equation (1) of that example,

a =
∑n

i=1 h0.5
i yi∑n

i=1 hi
(1)

The MATLAB program to carry out these calculations is shown next.

h = (1:11);

time = [26, 19, 14, 12, 11, 9.5, 9, 8.5, 8, 7.5, 7];

flow = 250./time;

a = sum(sqrt(h).*flow)/sum(h)

f = a*sqrt(h);

J = sum((f - flow).^2)
S = sum((flow - mean(flow)).^2)
r2 = 1 - J/S

The result is a = 10.4604 and the flow model is f = 10.4604
√

h. The quality-of-fit values are
J = 5.5495, S = 698.2203, and r2 = 0.9921, which indicates a very good fit.



palm-38591 book December 17, 2008 11:10

Problems 37

1.7 CHAPTER REVIEW
This chapter introduced the basic terminology of system dynamics, which includes the
notions of system, static and dynamic elements, input, and output. The chapter also
introduced the foot-pound-second (FPS) and the metric (SI) systems of units, which
will be used throughout this text. We developed methods for obtaining algebraic models
of input-output relations. We saw how to obtain algebraic models of specified form,
how to use the methods of function identification and parameter estimation to develop
models from data, and how to apply the least-squares method. We then showed how to
apply MATLAB for this purpose.

Review of Objectives

Now that you have finished this chapter, you should be able to

1. Define the terms: static and dynamic elements, static and dynamic systems, input,
and output.

2. Discuss the principle of integral causality.
3. Apply the basic steps used for engineering problem solving.
4. Understand the steps in developing a computer solution.
5. Use both FPS and SI units.
6. Develop linearized models from given algebraic expressions.
7. Identify the algebraic form and obtain the coefficient values of a model, given a

set of data.
8. Apply the least-squares method to obtain an algebraic model of a specified form,

given a set of data.
9. Use MATLAB to implement the least-squares method.

PROBLEMS
Section 1.2 Units

1.1 Calculate the weight in pounds of an object whose mass is 3 slugs. Then
convert the weight to newtons and the mass to kilograms.

1.2 Folklore has it that Sir Isaac Newton formulated the law of gravitation
supposedly after being hit on the head by a falling apple. The weight of an
apple depends strongly on its variety, but a typical weight is 1 newton!
Calculate the total mass of 100 apples in kilograms. Then convert the total
weight to pounds and the total mass to slugs.

1.3 A ball is thrown a distance of 50 feet, 5 inches. Calculate the distance in meters.
1.4 How many 60 watt lightbulbs are equivalent to one horsepower?
1.5 Convert the temperature of 70◦F to ◦C.
1.6 A particular motor rotates at 3000 revolutions per minute (rpm). What is its

speed in rad/sec, and how many seconds does it take to make one revolution?
1.7 The displacement of a certain object is described by y(t) = 23 sin 5t , where t

is measured in seconds. Compute its period and its oscillation frequency in
rad/sec and in hertz.

Section 1.3 Developing Linear Models

1.8 The distance a spring stretches from its “free length” is a function of how much
tension is applied to it. The following table gives the spring length y that was
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produced in a particular spring by the given applied force f . The spring’s free
length is 4.7 in. Find a functional relation between f and x , the extension from
the free length (x = y − 4.7).

Force f (pounds) Spring length y (inches)

0 4.7
0.47 7.2
1.15 10.6
1.64 12.9

1.9 The following “small angle” approximation for the sine is used in many
engineering applications to obtain a simpler model that is easier to understand
and analyze. This approximation states that sin x ≈ x, where x must be in
radians. Investigate the accuracy of this approximation by creating three plots.
For the first plot, plot sin x and x versus x for 0 ≤ x ≤ 1. For the second plot,
plot the approximation error sin(x) − x versus x for 0 ≤ x ≤ 1. For the third
plot, plot the percent error [sin(x) − x]/sin(x) versus x for 0 ≤ x ≤ 1. How
small must x be for the approximation to be accurate within 5%?

1.10 Obtain two linear approximations of the function f (θ) = sin θ , one valid near
θ = π/4 rad and the other valid near θ = 3π/4 rad.

1.11 Obtain two linear approximations of the function f (θ) = cos θ , one valid near
θ = π/3 rad and the other valid near θ = 2π/3 rad.

1.12 Obtain a linear approximation of the function f (h) = √
h, valid near h = 25.

1.13 Obtain two linear approximations of the function f (r) = r2, one valid near
r = 5 and the other valid near r = 10.

1.14 Obtain a linear approximation of the function f (h) = √
h, valid near h = 16.

Noting that f (h) ≥ 0, what is the value of h below which the linearized model
loses its meaning?

1.15 The flow rate f in m3/s of water through a particular pipe, as a function of the
pressure drop p across the ends of the pipe (in N/m2) is given by f = 0.002

√
p.

Obtain a linear model of f as a function of p that always underestimates the
flow rate over the range 0 ≤ p ≤ 900.

Section 1.4 Function Identification and Parameter Estimation

In the following problems for Section 1.4, solve the problem by drawing a straight
line by eye using a straightedge.
1.16 In each of these problems, plot the data and determine the best function y(x)

(linear, exponential, or power function) to describe the data.
a.

x 25 30 35 40 45

y 0 250 500 750 1000

b.

x 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10

y 1500 1220 1050 915 810 745 690 620 520 480 410 390

c.

x 550 600 650 700 750

y 41.2 18.62 8.62 3.92 1.86
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1.17 The population data for a certain country are given here.

Year 1990 1991 1992 1993 1994 1995

Population (millions) 10 10.5 11.1 11.6 12.2 12.8

Plot the data and obtain a function that describes the data. Estimate when the
population will be double its 1990 size.

1.18 The half-life of a radioactive substance is the time it takes to decay by half. The
half-life of carbon-14, which is used for dating previously living things, is
5500 years. When an organism dies, it stops accumulating carbon-14. The
carbon-14 present at the time of death decays with time. Let C(t)/C(0) be the
fraction of carbon-14 remaining at time t . In radioactive carbon dating, it is
usually assumed that the remaining fraction decays exponentially according
to the formula

C(t)

C(0)
= e−bt

a. Use the half-life of carbon-14 to find the value of the parameter b and plot
the function.

b. Suppose we estimate that 90% of the original carbon-14 remains. Estimate
how long ago the organism died.

c. Suppose our estimate of b is off by ±1%. How does this affect the age
estimate in part (b)?

1.19 Quenching is the process of immersing a hot metal object in a bath for a
specified time to improve properties such as hardness. A copper sphere 25 mm
in diameter, initially at 300◦C, is immersed in a bath at 0◦C. Measurements of
the sphere’s temperature versus time are shown here. Plot the data and find a
functional description of the data.

Time (s) 0 0.1 0.2 0.3 0.4 0.5 0.6

Temperature (◦C) 300 150 75 35 12 5 0

1.20 The useful life of a machine bearing depends on its operating temperature, as
shown by the following data. Plot the data and obtain a functional description
of the data. Estimate a bearing’s life if it operates at 150◦F.

Temperature (◦F) 100 120 140 160 180 200 220

Bearing life (hours × 103) 28 21 15 11 8 6 4

1.21 A certain electric circuit has a resistor and a capacitor. The capacitor is initially
charged to 100 V. When the power supply is detached, the capacitor voltage
decays with time as shown in the following data table. Find a functional
description of the capacitor voltage v as a function of time t .

Time (s) 0 0.5 1 1.5 2 2.5 3 3.5 4

Voltage (V) 100 62 38 21 13 7 4 2 3
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1.22 Water (of volume 425 ml) in a glass measuring cup was allowed to cool after
being heated to 207◦F. The ambient air temperature was 70◦F. The measured
water temperature at various times is given in the following table.

Time (sec) 0 300 600 900 1200 1500

Temperature (◦F) 207 182 167 155 143 135

Time (sec) 1800 2100 2400 2700 3000

Temperature (◦F) 128 123 118 114 109

Obtain a functional description of the relative water temperature (�T =
T − 70) versus time.

1.23 Consider the milk container of Example 1.4.2 (Figure 1.4.7). A straw 19 cm
long was inserted in the side of the container. While adjusting the tap flow to
keep the water height constant, the time for the outflow to fill a 250-ml cup was
measured. This was repeated for several heights. The data are given in the
following table.

Height (cm) 11 10 9 8 7 6 5 4 3 2 1

Time (s) 7 7 7 8 9 10 11 13 15 17 23

Obtain a functional description of the volume outflow rate f through the
straw as a function of water height h above the hole.

1.24 Consider the milk container of Example 1.4.2 (Figure 1.4.7). A straw 9.5 cm
long was inserted in the side of the container. While adjusting the tap flow to
keep the water height constant, the time for the outflow to fill a 250-ml cup was
measured. This was repeated for several heights. The data are given in the
following table.

Height (cm) 11 10 9 8 7 6 5 4 3 2 1

Time (s) 6 6 6 7 8 9 9 11 13 17 21

Obtain a functional description of the volume outflow rate f through the straw
as a function of water height h above the hole.

Section 1.5 Fitting Models to Scattered Data

1.25 Use the least-squares method to fit the linear function y = mx + b to the data
given in the following table. Evaluate the quality of the fit by computing J , S,
and r2.

x 0 2 4 6

y 4.5 39 72 94

1.26 Use the least-squares method to fit the power function y = bxm to the data
given in the following table. Evaluate the quality of the fit by computing J , S,
and r2.

x 0 1 2 3 4

y 1 8 50 178 490

1.27 Use the least-squares method to fit the exponential function y = bemx to the
data given in the following table. Evaluate the quality of the fit by computing
J , S, and r2.

x 0 0.4 0.8 1.2

y 6.3 22 60 215
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1.28 Use the least-squares method to fit the linear function y = mx + b to the data
given in the following table. Constrain the function to pass through the point
(0, 0). Evaluate the quality of the fit by computing J , S, and r2.

x 0 2 4 6

y 4.5 39 72 94

1.29 Use the least-squares method to fit the power function y = bxm to the data
given in the following table. Constrain the exponent of the function to be
m = 3. Evaluate the quality of the fit by computing J , S, and r2.

x 0 1 2 3 4

y 1 8 50 178 490

1.30 (a) Use the least-squares method to derive the equation for b to fit the
exponential function y = bemx to a given set of data yi , where the exponent m
is constrained to a specified value. (b) Fit the function y = be−3x to the data
given in the following table. Evaluate the quality of the fit by computing J , S,
and r2.

x 0 0.4 0.8 1.2

y 6.3 22 60 215

1.31 Use the least-squares method to fit the linear function y = mx + b to the
function y = 5x2 over the range 0 ≤ x ≤ 4.

1.32 (a) Use the least-squares method to fit the linear function y = mx + b to the
function y = ax2 + bx over the range 0 ≤ x ≤ L . (b) Apply the results to the
case where a = 3, b = 5, and L = 2.

1.33 (a) Use the least-squares method to fit the linear function y = mx + b to the
exponential function y = bemx over the range 0 ≤ x ≤ L . (b) Apply the results
to the case where m = −5, b = 15, and L = 1.

Section 1.6 MATLAB and the Least-Squares Method

In Problems 1.34 through 1.48, work the problem using MATLAB.
1.34 Do Problem 1.16.
1.35 Do Problem 1.17.
1.36 Do Problem 1.18.
1.37 Do Problem 1.19.
1.38 Do Problem 1.20.
1.39 Do Problem 1.21.
1.40 Do Problem 1.22.
1.41 Do Problem 1.23.
1.42 Do Problem 1.24.
1.43 Do Problem 1.25.
1.44 Do Problem 1.26.
1.45 Do Problem 1.27.
1.46 Do Problem 1.28.
1.47 Do Problem 1.29.
1.48 Do Problem 1.30.
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Obtain the equations of motion for an object
consisting of a single mass undergoing simple
translation or simple rotation.

2. Solve the equations of motion when the applied
forces or moments are either constants or simple
functions of time.

3. Apply the principle of conservation of mechanical
energy to analyze systems acted on by conservative
forces.

4. Apply the concepts of equivalent mass and
equivalent inertia to obtain a simpler model of
a multimass system whose motions are directly
coupled.

5. Obtain the equation of motion of a body in planar
motion involving simultaneous translation and
rotation.

W hen modeling the motion of objects, the bending or twisting of the object
is often negligible, and we can model the object as a rigid body. We begin
this chapter by reviewing Newton’s laws of motion and applying them to

rigid bodies where the object’s motion is relatively uncomplicated, namely, simple
translations and simple rotation about a fixed axis. We then introduce energy-based
methods and the concepts of equivalent mass and equivalent inertia, which simplify
the modeling of systems having both translating and rotating components. Following

42
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that we treat the case of general motion in a plane, involving simultaneous translation
and rotation.

In Chapter 4 we will consider systems that have nonrigid, or elastic, behavior. ■

2.1 TRANSLATIONAL MOTION
A particle is a mass of negligible dimensions. We can consider a body to be a particle if
its dimensions are irrelevant for specifying its position and the forces acting on it. For
example, we normally need not know the size of an earth satellite to describe its orbital
path. Newton’s first law states that a particle originally at rest, or moving in a straight line
with a constant speed, will remain that way as long as it is not acted upon by an unbal-
anced external force. Newton’s second law states that the acceleration of a mass particle
is proportional to the vector resultant force acting on it and is in the direction of this force.
Newton’s third law states that the forces of action and reaction between interacting bod-
ies are equal in magnitude, opposite in direction, and collinear. The third law is summa-
rized by the commonly used statement that every action is opposed by an equal reaction.

For an object treated as a particle of mass m, the second law can be expressed as

ma = m
dv
dt

= f (2.1.1)

where a and v are the acceleration and velocity vectors of the mass and f is the force
vector acting on the mass (Figure 2.1.1). Note that the acceleration vector and the force
vector lie on the same line.

If the mass is constrained to move in only one direction, say along the direction of
the coordinate x , then the equation of motion is the scalar equation

ma = m
dv

dt
= f (2.1.2)

or
dv

dt
= f

m
= a (2.1.3)

It will be convenient to use the following abbreviated “dot” notation for time
derivatives:

ẋ(t) = dx

dt
ẍ(t) = d2x

dt2

Thus, we can express the scalar form of Newton’s law as mv̇ = f .

y

x

z

f

a

v

m

Figure 2.1.1 Particle motion
showing the coordinate
system, the applied force f, and
the resulting acceleration a,
velocity v, and path.
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If we assume that the object is a rigid body and we neglect the force distribution
within the object, we can treat the object as if its mass were concentrated at its mass
center. This is the point mass assumption, which makes it easier to obtain the trans-
lational equations of motion, because the object’s dimensions can be ignored and all
external forces can be treated as if they acted through the mass center. If the object
can rotate, then the translational equations must be supplemented with the rotational
equations of motion, which are treated in Sections 2.2 and 2.4.

MECHANICAL ENERGY

Conservation of mechanical energy is a direct consequence of Newton’s second law.
Consider the scalar case (2.1.2), where the force f can be a function of displacement x .

mv̇ = f (x)

Multiply both sides by v dt and use the fact that v = dx/dt .

mv dv = v f (x) dt = dx

dt
f (x) dt = f (x) dx

Integrate both sides. ∫
mv dv = mv2

2
=

∫
f (x) dx + C (2.1.4)

where C is a constant of integration.
Work is force times displacement, so the integral on the right represents the total

work done on the mass by the force f (x). The term on the left-hand side of the equal
sign is called the kinetic energy (KE).

If the work done by f (x) is independent of the path and depends only on the end
points, then the force f (x) is derivable from a function V (x) as follows:

f (x) = −dV

dx
(2.1.5)

Then, in this case, f (x) is called a conservative force. If we integrate both sides of the
last equation, we obtain

V (x) =
∫

dV = −
∫

f (x) dx

or from (2.1.4),

mv2

2
+ V (x) = C (2.1.6)

This equation shows that V (x) has the same units as kinetic energy. V (x) is called the
potential energy (PE) function.

Equation (2.1.6) states that the sum of the kinetic and potential energies must be
constant, if no force other than the conservative force is applied. If v and x have the
values v0 and x0 at the time t0, then

mv2
0

2
+ V (x0) = C

Comparing this with (2.1.6) gives

mv2

2
− mv2

0

2
+ V (x) − V (x0) = 0 (2.1.7)

which can be expressed as

�KE + �PE = 0 (2.1.8)
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where the change in kinetic energy is �KE = m(v2 −v2
0)/2 and the change in potential

energy is �PE = V (x)−V (x0). For some problems, the following form of the principle
is more convenient to use:

mv2
0

2
+ V (x0) = mv2

2
+ V (x) (2.1.9)

In the form (2.1.8), we see that conservation of mechanical energy states that the
change in kinetic energy plus the change in potential energy is zero. Note that the
potential energy has a relative value only. The choice of reference point for measuring
x determines only the value of C , which (2.1.7) shows to be irrelevant.

Gravity is an example of a conservative force, for which f = −mg. The gravity
force is conservative because the work done lifting an object depends only on the change
in height and not on the path taken. Thus, if x represents vertical displacement,

V (x) = mgx

and

mv2

2
+ mgx = C (2.1.10)

mv2

2
− mv2

0

2
+ mg(x − x0) = 0 (2.1.11)

Speed of a Falling Object EXAMPLE 2.1.1

■ Problem
An object with a mass of m = 2 slugs drops from a height of 30 ft above the ground (see
Figure 2.1.2). Determine its speed after it drops 20 ft to a platform that is 10 ft above the ground.

Figure 2.1.2 A falling object.

Platform

m � 2

10�

20�

Ground

■ Solution
Measuring x from the ground gives x0 = 30 ft and x = 10 ft at the platform. If the object is dropped
from rest, then v0 = 0. From (2.1.11)

m

2
(v2 − 0) + mg(10 − 30) = 0

or v2 = 40g. Using g = 32.2 ft /sec2, we obtain v = √
644 = 25.4 ft /sec. This is the speed of the

object when it reaches the platform.
Note that if we had chosen to measure x from the platform instead of the ground, then v0 = 0,

x0 = 20, and x = 0 at the platform. Equation (2.1.11) gives

m

2
(v2 − 0) + mg(0 − 20) = 0

or v2 = 40g, which gives the same answer as before. When x is measured from the platform,
(2.1.10) gives C = 20mg. When x is measured from the ground, C = 30mg, but the two values of
C are irrelevant for solving the problem because it is the change in kinetic and potential energies
that governs the object’s dynamics.
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CONSTANT FORCE CASE

For the point mass model, ma = f , (2.1.9) can be used to find the speed v as a function
of displacement x . If f is a constant, then

mv2

2
= f (x − x0) + mv2

0

2
(2.1.12)

Noting that work equals force times displacement, the work done on the mass by the
force f is f (x −x0). Thus (2.1.12) says that the final energy of the mass, mv2/2, equals
the initial energy, mv2

0/2, plus the work done by the force f . This is a statement of
conservation of energy.

DRY FRICTION FORCE

Not every constant force is conservative. A common example of a non-conservative
force is the dry friction force. This force is non-conservative because the work done by
the force depends on the path taken. The dry friction force F is directly proportional
to the force N normal to the frictional surface. Thus F = μN . The proportionality
constant is μ, the coefficient of friction.

The dry friction force that exists before motion begins is called static friction
(sometimes shortened to stiction). The static friction coefficient has the value μs to
distinguish it from the dynamic friction coefficient μd , which describes the friction
after motion begins. Dynamic friction is also called sliding friction, kinetic friction,
or Coulomb friction. In general, μs > μd , which explains why it is more difficult to
start an object sliding than to keep it moving. We will use the symbol μ rather than μd

because most of our applications involve motion.
Because Coulomb friction cannot be derived from a potential energy function, the

conservation of mechanical energy principle does not apply. This makes sense phys-
ically because the friction force dissipates the energy as heat, and thus mechanical
energy, which consists of kinetic plus potential energy, is not conserved. Total energy,
of course, is conserved.

EXAMPLE 2.1.2 Equation of Motion with Friction

■ Problem
Derive the equation of motion (a) for the block of mass m shown in Figure 2.1.3a and (b) for the
mass m on an incline, shown in Figure 2.1.3b. In both cases, a force f1, which is not the friction
force, is applied to move the mass.

■ Solution
a. The free body diagrams are shown in Figure 2.1.3a for the two cases: v > 0 and v < 0.

The normal force N is the weight mg. Thus the friction force F is μN , or F = μmg. If
v > 0, the equation of motion is

mv̇ = f1 − μmg v > 0 (1)

Dry friction always opposes the motion. So, for v < 0,

mv̇ = f1 + μmg v < 0 (2)

Equations (1) and (2) are the desired equations of motion.
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(a)

(b)

g

Motion

v

f1

f1

F

N

mg sin �

�

mg cos �

m

Motion

f1

F
N

mg sin �
mg cos �

mm

m m
f1F

mg

Motion

N

f1

g

v
mg

f1

N

F

Motion

m

Figure 2.1.3 Motion with
friction a) on a horizontal
surface and b) on an inclined
plane.

b. The friction force depends on the force normal to the surface. For the mass m shown in
Figure 2.1.3b, the normal force N must equal mg cos φ as long as the mass is in contact
with the surface. The free body diagrams are shown in the figure for the two cases: v > 0
and v < 0. Newton’s second law applied in the direction parallel to the surface gives, for
v > 0,

mv̇ = f1 − mg sin φ − μmg cos φ v > 0 (3)

For v < 0,

mv̇ = f1 − mg sin φ + μmg cos φ v < 0 (4)

Equations (3) and (4) are the desired equations of motion.

Motion with Friction on an Inclined Plane EXAMPLE 2.1.3

■ Problem
For the mass shown in Figure 2.1.3b, m = 2 kg, φ = 30◦, v(0) = 3 m/s, and μ = 0.5. Determine
whether the mass comes to rest if (a) f1 = 50 N and (b) f1 = 5 N.

■ Solution
Because the velocity is initially positive [v(0) = 3], we use equation (3) of Example 2.1.2:

2v̇ = f1 − (sin 30◦ + 0.5 cos 30◦)(2)(9.81) = f1 − 18.3

For part (a), f1 = 50 and thus v̇ = (50−18.3)/2 = 15.85 and the acceleration is positive. Thus,
because v(0) > 0, the speed is always positive for t ≥ 0 and the mass never comes to rest.

For part (b), f1 = 5, v̇ = (5−18.3)/2 = −6.65, and thus the mass is decelerating. Because
v(t) = −6.65t + 3, the speed becomes zero at t = 3/6.65 = 0.45 s.
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2.2 ROTATION ABOUT A FIXED AXIS
In this section, we consider the dynamics of rigid bodies whose motion is constrained
to allow only rotation about an axis through a nonaccelerating point. In Section 2.4 we
will treat the case of rotation about an axis through an accelerating point.

For planar motion, which means that the object can translate in two dimensions
and can rotate only about an axis that is perpendicular to the plane, Newton’s second
law can be used to show that

IO ω̇ = MO (2.2.1)

where ω is the angular velocity of the mass about an axis through a point O fixed in an
inertial reference frame and attached to the body (or the body extended), IO is the mass
moment of inertia of the body about the point O , and MO is the sum of the moments
applied to the body about the point O .

This situation is illustrated in the Figure 2.2.1. The angular displacement is θ , and
θ̇ = ω. The term torque and the symbol T are often used instead of moment and M .
Also, when the context is unambiguous, we use the term “inertia” as an abbreviation for
“mass moment of inertia.”

CALCULATING INERTIA

The mass moment of inertia I about a specified reference axis is defined as

I =
∫

r2 dm (2.2.2)

where r is the distance from the reference axis to the mass element dm. The expressions
for I for some common shapes are given in Table 2.2.1.

If the rotation axis of a homogeneous rigid body does not coincide with the body’s
axis of symmetry, but is parallel to it at a distance d, then the mass moment of inertia
about the rotation axis is given by the parallel-axis theorem,

I = Is + md2 (2.2.3)

where Is is the inertia about the symmetry axis (see Figure 2.2.2).

Figure 2.2.1 An object rotating about a
fixed axis.

Axis

M

�

I�

Figure 2.2.2 Illustration of the parallel-axis
theorem.

d

Symmetry

Rotation
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Table 2.2.1 Mass moments of inertia of common elements

Sphere IG = 2

5
m R2

R

G

Mass rotating about point O IO = m R2

R

O

m

Hollow cylinder Ix = 1

2
m(R2 + r 2)

Iy = Iz = 1

12
m(3R2 + 3r 2 + L2)y

z
L

G

xR

rr

Rectangular prism Ix = 1

12
m(b2 + c2)

G

c

b

y

x
z

a

A Rod-and-Bob Pendulum EXAMPLE 2.2.1

■ Problem
The pendulum shown in Figure 2.2.3a consists of a concentrated mass mC (the bob) a distance LC

from point O , attached to a rod of length L R and inertia IRG about its mass center. (a) Obtain its
equation of motion. (b) Discuss the case where the rod’s mass m R is small compared to the
concentrated mass. (c) Determine the equation of motion for small angles θ .
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Figure 2.2.3 A rod-and-bob pendulum.

(a)

G

O

�

L

g

LR
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mC

(b)

mg

mg sin �

mg cos �

G

O

�

mC
�

(c)

mRg

O

g

mCg
mg

G

m � mR � mC

LC
L

mC

LR
2

(d)

m

�

L

O

■ Solution
a. For the pendulum shown in Figure 2.2.3a, the inertia of the concentrated mass mC about

point O is mC L2
C (see Table 2.2.1). From the parallel-axis theorem, the rod’s inertia about

point O is

IRO = IRG + m R

(
L R

2

)2

and thus the entire pendulum’s inertia about point O is

IO = IRO + mC L2
C = IRG + m R

(
L R

2

)2

+ mC L2
C

With the moment equation (2.2.1) about point O , the moment MO is caused by the
perpendicular component of the weight mg acting through the mass center at G (see
Figure 2.2.3b). Thus the desired equation of motion is

IO θ̈ = −mgL sin θ (1)

The distance L between point O and the mass center G of the entire pendulum is not
given, but can be calculated as follows (Figure 2.2.3c). If the entire pendulum mass were
concentrated at G, the weight force would produce the same moment about point O as the
real pendulum. Thus, taking moments about point O , we have

mgL = mC gLC + m R g
L R

2
where m = mC + m R . Solve for L to obtain

L = mC LC + m R(L R/2)

mC + m R
(2)

b. If we neglect the rod’s mass m R compared to the concentrated mass mC , then we can take
m R = IRG = 0, m = mC , L = LC , and IO = mL2. In this case, the equation of motion
reduces to

L θ̈ + g sin θ = 0 (3)

This is a model for a pendulum whose mass is concentrated at a distance L from the pivot
point, like that shown in Figure 2.2.3d. Note that this equation of motion is independent
of the value of m.

c. For small angles, sin θ ≈ θ if θ is in radians. Substituting this approximation into
equation (3) gives

L θ̈ + gθ = 0 (4)
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We will learn how to solve this equation for θ(t) in Chapter 3, and we will see that it is
easier to solve than equation (3).

ENERGY AND ROTATIONAL MOTION

The work done by a moment M causing a rotation through an angle θ is

W =
∫ θ

0
M dθ (2.2.4)

Multiply both sides of (2.2.1) by ω dt , and note that ω = dθ/dt .

Iω dω = M dθ

Integrating both sides gives∫ ω

0
Iω dω = 1

2
Iω2 =

∫ θ

0
M dθ (2.2.5)

We thus see that the work done by the moment M produces the kinetic energy of rotation:
KE = Iω2/2. Figure 2.2.4 Pulley forces.

T1 T2

�

R

PULLEY DYNAMICS

Pulleys can be used to change the direction of an applied force or to amplify forces. In
our examples, we will assume that the cords, ropes, chains, and cables drive the pulleys
without slipping and are inextensible; if not, then they must be modeled as springs.
Figure 2.2.4 shows a pulley of inertia I whose center is fixed to a support. Assume that
the tension forces in the cable are different on each side of the pulley. Then application
of (2.2.1) gives

I θ̈ = RT1 − RT2 = R(T1 − T2)

An immediate result of practical significance is that the tension forces are approximately
equal if I θ̈ is negligible. This condition is satisfied if either the pulley rotates at a constant
speed or if the pulley inertia is negligible compared to the other inertias in the system.
The pulley inertia will be negligible if either its mass or its radius is small. Thus, when
we neglect the mass, radius, or inertia of a pulley, the tension forces in the cable may be
taken to be the same on both sides of the pulley.

The force on the support at the pulley center is T1 + T2. If the mass, radius, or inertia
of the pulley are negligible, then the support force is 2T1.

Energy Analysis of a Pulley System EXAMPLE 2.2.2

■ Problem
Figure 2.2.5a shows a pulley used to raise the mass m2 by hanging a mass m1 on the other side
of the pulley. If pulley inertia is negligible then it is obvious that m1 will lift m2 if m1 > m2.
How does a nonnegligible pulley inertia I change this result? Also, investigate the effect of the
pulley inertia on the speed of the masses.

■ Solution
Define the coordinates x and y such that x = y = 0 at the start of the motion. If the pulley cable
is inextensible, then x = y and thus ẋ = ẏ. If the cable does not slip, then θ̇ = ẋ/R. Because we
were asked about the speed and because the only applied force is a conservative force (gravity),

blaxe
Highlight

blaxe
Highlight

blaxe
Highlight

blaxe
Highlight



palm-38591 book December 17, 2008 11:21

52 CHAPTER 2 Modeling of Rigid-Body Mechanical Systems

Figure 2.2.5 A pulley system
for lifting a mass.

y x

�

m1

m2

I
R

(a)

�

y

x
m1

m2

m2g

T2

T1

IR

m1g

(b)

this suggests that we use an energy-based analysis. If the system starts at rest at x = y = 0, then
the kinetic energy is initially zero. We take the potential energy to be zero at x = y = 0. Thus,
the total mechanical energy is initially zero, and from conservation of energy we obtain

KE + PE = 1

2
m1 ẋ2 + 1

2
m2 ẏ2 + 1

2
I θ̇2 + m2gy − m1gx = 0

Note that the potential energy of m1 has a negative sign because m1 loses potential energy when
x is positive.

Substituting y = x , ẏ = ẋ , and θ̇ = ẋ/R into this equation and collecting like terms gives

1

2

(
m1 + m2 + I

R2

)
ẋ2 + (m2 − m1)gx = 0

and thus

ẋ =
√

2(m1 − m2)gx

m1 + m2 + I/R2
(1)

The mass m2 will be lifted if ẋ > 0; that is, if m2 < m1. So the pulley inertia does not affect
this result. However, because I appears in the denominator of the expression for ẋ , the pulley
inertia does decrease the speed with which m1 lifts m2.

In Example 2.2.2, it is inconvenient to use an energy-based analysis to compute
x(t) or the tensions in the cable. To do this it is easier to use Newton’s law directly.

EXAMPLE 2.2.3 Equation of Motion of a Pulley System

■ Problem
Consider the pulley system shown in Figure 2.2.5a. Obtain the equation of motion in terms of x
and obtain an expression for the tension forces in the cable.

■ Solution
The free body diagrams of the three bodies are shown in part (b) of the figure. Newton’s law for
mass m1 gives

m1 ẍ = m1g − T1 (1)
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Newton’s law for mass m2 gives

m2 ÿ = T2 − m2g (2)

Equation (2.2.1) applied to the inertia I gives

I θ̈ = RT1 − RT2 = R(T1 − T2) (3)

Because the cable is assumed inextensible, x = y and thus ẍ = ÿ. We can then solve (1) and
(2) for the tension forces.

T1 = m1g − m1 ẍ = m1(g − ẍ) (4)

T2 = m2 ÿ + m2g = m2(ÿ + g) = m2(ẍ + g) (5)

Substitute these expressions into (3).

I θ̈ = (m1 − m2)gR − (m1 + m2)Rẍ (6)

Because x = Rθ , ẍ = Rθ̈ , and (6) becomes

I
ẍ

R
= (m1 − m2)gR − (m1 + m2)Rẍ

which can be rearranged as (
m1 + m2 + I

R2

)
ẍ = (m1 − m2)g (7)

This is the desired equation of motion. We can solve it for ẍ and substitute the result into equa-
tions (4) and (5) to obtain T1 and T2 as functions of the parameters m1, m2, I , R, and g.

Equation (7) can be solved for ẋ(t) and x(t) by direct integration.
Let

A = (m1 − m2)gR2

(m1 + m2)R2 + I

Then (7) becomes ẍ = A, whose solutions are ẋ = At + ẋ(0) and x = At2/2 + ẋ(0)t + x(0).
Note that if we use the solutions to express ẋ as a function of x , we will obtain the same expression
as equation (1) in Example 2.2.2.

PULLEY-CABLE KINEMATICS

Consider Figure 2.2.6. Suppose we need to determine the relation between the velocities
of mass m A and mass m B . Define x and y as shown from a common reference line
attached to a fixed part of the system. Noting that the cable lengths wrapped around the
pulleys are constant, we can write x + 3y = constant. Thus ẋ + 3ẏ = 0. So the speed
of point A is three times the speed of point B, and in the opposite direction.

In many problems, we neglect the inertia of the pulleys so as to keep the resulting
model as simple as possible. As we will see, the models of many practical engineering
applications are challenging enough without introducing pulley dynamics. Exam-
ple 2.2.4 illustrates such an application.
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Figure 2.2.6 A
multiple-pulley system.

y
x

mA

mB

A

B

EXAMPLE 2.2.4 Lifting a Mast

■ Problem
A mast weighing 500 lb is hinged at its bottom to a fixed support at point O (see Figure 2.2.7).
The mast is 70 ft long and has a uniform mass distribution, so its center of mass is 35 ft from O .
The winch applies a force f = 380 lb to the cable. The mast is supported initially at the 30◦

angle, and the cable at A is initially horizontal. Derive the equation of motion of the mast. You
may assume that the pulley inertias are negligible and that the pulley diameter d is very small
compared to the other dimensions.

■ Solution
Part (b) of the figure shows the geometry of the mast at some angle θ > 30◦, with the diameter d
neglected. From the law of sines,

sin φ = P
sin(180◦ − μ − θ)

Q
= P

sin(μ + θ)

Q

From the law of cosines,

Q =
√

P2 + L2 − 2P L cos(180◦ − μ − θ) =
√

P2 + L2 + 2P L cos(μ + θ) (1)

Figure 2.2.7 A system for lifting a mast.
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where H = 20 ft, W = 5 ft, and

μ = tan−1

(
H

W

)
= tan−1

(
20

5

)
= 76◦ = 1.33 rad

P = √
H 2 + W 2 = 20.6 m

The moment equation about the fixed point O is

IO θ̈ = −mgR cos θ + f L P

Q
sin(μ + θ) (2)

The moment of inertia is

IO = 1

3
m(70)2 = 1

3

500

32.2
702 = 25,400 slug-ft2

The force f at point A is twice the applied force of 380 lb, because of the action of the small pulley.
Thus f = 760 lb. With the given values, the equation of motion becomes

25,400 θ̈ = −17,500 cos θ + 626,000

Q
sin(1.33 + θ) (3)

where

Q =
√

2020 + 1650 cos(1.33 + θ) (4)

Equation (3) cannot be solved in closed-form to find θ(t), so it must be solved numerically using
the methods to be introduced in Chapter 5.

2.3 EQUIVALENT MASS AND INERTIA
Some systems composed of translating and rotating parts whose motions are directly
coupled can be modeled as a purely translational system or as a purely rotational system,
by using the concepts of equivalent mass and equivalent inertia. These models can be
derived using kinetic energy equivalence.

Equivalent mass and equivalent inertia are complementary concepts. A system
should be viewed as an equivalent mass if an external force is applied, and as an equiv-
alent inertia if an external torque is applied. Examples 2.3.1–2.3.5 will illustrate this
approach.

A Vehicle on an Incline: Energy Analysis EXAMPLE 2.3.1

■ Problem
A tractor pulls a cart up a slope, starting from rest and accelerating to 20 m/s in 15 s (Figure 2.3.1a).
The force in the cable is f , and the body of the cart has a mass m. The cart has two identical
wheels, each with radius R, mass mw , and inertia Iw about the wheel center. The two wheels are
coupled with an axle whose mass is negligible. Assume that the wheels do not slip or bounce.
Derive an expression for the force f using kinetic energy equivalence.

■ Solution
The assumption of no slip and no bounce means that the wheel rotation is directly coupled to the
cart translation. This means that if we know the cart translation x , we also know the wheel
rotation θ , because x = Rθ if the wheels do not slip or bounce. Because the input is the force f ,
we will derive an equivalent mass, and thus we will visualize the system as a block of mass me

being pulled up the incline by the force f , as shown in Figure 2.3.1b. The wheels will roll without
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Figure 2.3.1 A vehicle on an
incline.

(c)

N

(m � 2mw)g cos �

(m � 2mw)g sin �

f

(a)

m mw

R

�

f

Iw

�

2 wheels!

g

v

(b)

v

me

f

�

slipping (pure rolling) if the tangential force between the wheel and the surface is smaller than
the static friction force. In this case the tangential force does no work because it does not act
through a distance (see Section 2.4), and thus there is no energy loss due to friction. Therefore,
in our equivalent model, Figure 2.3.1b, there is no friction between the block and the surface.

The kinetic energy of the system is

KE = 1

2
mv2 + 1

2

(
2mwv2

) + 1

2

(
2Iwω2

)
Because v = Rω, we obtain

KE = 1

2

(
m + 2mw + 2

Iw

R2

)
v2 (1)

For the block in Figure 2.3.1b, KE = 0.5mev
2. Comparing this with equation (1) we see that

the equivalent mass is given by

me = m + 2mw + 2
Iw

R2
(2)

The free body diagram is shown in part (c) of the figure. Note that the gravity force is
determined, not from the equivalent mass me, but from the actual mass m + 2mw . The reason
for this can be seen from the potential energy expression. Assuming that the center of mass of
the cart coincides with the axle location, we can express the potential energy of the system as
(m +2mw )gx sin θ , where ẋ = v. Therefore, the actual mass m +2mw must be used to compute
the gravity force.

From the free body diagram we obtain the following equation of motion.

mev̇ = f − (m + 2mw )g sin θ (3)

where me is given by equation (2).
The acceleration is v̇ = 20/15 = 4/3 m/s2. Substitute this into equation (3) and solve for f :

f = 4

3
me + (m + 2mw )g sin θ (4)

This is the force required to provide the specified acceleration.
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N �
�1
�2

T1

T2

I1

I2

�1

�2

Figure 2.3.2 A spur-gear pair.

MECHANICAL DRIVES

Gears, belts, levers, and pulleys transform an input motion, force, or torque into another
motion, force, or torque at the output. For example, a gear pair can be used to reduce
speed and increase torque, and a lever can increase force.

Several types of gears are used in mechanical drives. These include helical, spur,
rack-and-pinion, worm, bevel, and planetary gears. Other mechanical drives use belts
or chains. We now use a spur gear pair, a rack-and-pinion gear pair, and a belt drive
to demonstrate the use of kinetic energy equivalence to obtain a model. This approach
can be used to analyze other gear and drive types.

A pair of spur gears is shown in Figure 2.3.2. The input shaft (shaft 1) is connected
to a motor that produces a torque T1 at a speed ω1, and drives the output shaft (shaft 2).
One use of such a system is to increase the effective motor torque. The gear ratio N is
defined as the ratio of the input rotation θ1 to the output rotation θ2. Thus, N = θ1/θ2.
From geometry we can see that N is also the speed ratio N = ω1/ω2. Thus, the pair is
a speed reducer if N > 1. The gear ratio is also the diameter ratio N = D2/D1, and the
gear tooth ratio N = n2/n1, where n is the number of gear teeth.

If the gear inertias are negligible or if there is zero acceleration, and if we neglect
energy loss due to friction, such as that between the gear teeth, then the input work T1θ1

must equal the output work T2θ2. Thus, under these conditions, T2 = T1(θ1/θ2) = N T1,
and the output torque is greater than the input torque for a speed reducer. For cases that
involve acceleration and appreciable gear inertia, the output torque is less than N T1.

Equivalent Inertia of Spur Gears EXAMPLE 2.3.2

■ Problem
Consider the spur gears shown in Figure 2.3.2. Derive the expression for the equivalent inertia Ie

felt on the input shaft.

■ Solution
Let I1 and I2 be the total moments of inertia on the shafts. The kinetic energy of the system is
then

KE = 1

2
I1ω

2
1 + 1

2
I2ω

2
2 = 1

2
I1ω

2
1 + 1

2
I2

(
ω1

N

)2
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or

KE = 1

2

(
I1 + 1

N 2
I2

)
ω2

1

Therefore the equivalent inertia felt on the input shaft is

Ie = I1 + I2

N 2
(1)

This means that the dynamics of the system can be described by the model Ieω̇1 = T1.

A spur gear pair consists of only rotating elements. However, a rack-and-pinion
consists of a rotating component (the pinion gear) and a translating component (the
rack). The input to such a device is usually the torque applied to the shaft of the pinion.
If so, then we should model the device as an equivalent inertia. The following example
shows how to do this.

EXAMPLE 2.3.3 Equivalent Inertia of a Rack-and-Pinion

■ Problem
A rack-and-pinion, shown in Figure 2.3.3, is used to convert rotation into translation. The input
shaft rotates through the angle θ as a result of the torque T produced by a motor. The pinion
rotates and causes the rack to translate. Derive the expression for the equivalent inertia Ie felt on
the input shaft. The mass of the rack is m, the inertia of the pinion is I , and its mean radius is R.

■ Solution
The kinetic energy of the system is (neglecting the inertia of the shaft)

KE = 1

2
mẋ2 + 1

2
I θ̇2

where ẋ is the velocity of the rack and θ̇ is the angular velocity of the pinion and shaft. From
geometry, x = Rθ , and thus ẋ = Rθ̇ . Substituting for ẋ in the expression for KE, we obtain

KE = 1

2
m

(
Rθ̇

)2 + 1

2
I θ̇2 = 1

2

(
m R2 + I

)
θ̇2

Thus the equivalent inertia felt on the shaft is

Ie = m R2 + I (1)

and the model of the system’s dynamics is Ie θ̈ = T , which can be expressed in terms of x as
Ie ẍ = RT .

Figure 2.3.3 A rack-and-
pinion gear.
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Belt and chain drives are good examples of devices that can be difficult to analyze
by direct application of Newton’s laws but can be easily modeled using kinetic energy
equivalence.

Equivalent Inertia of a Belt Drive EXAMPLE 2.3.4

■ Problem
Belt drives and chain drives, like those used on bicycles, have similar characteristics and can
be analyzed in a similar way. A belt drive is shown in Figure 2.3.4. The input shaft (shaft 1)
is connected to a device (such as a bicycle crank) that produces a torque T1 at a speed ω1, and
drives the output shaft (shaft 2). The mean sprocket radii are r1 and r2, and their inertias are I1

and I2. The belt mass is m.
Derive the expression for the equivalent inertia Ie felt on the input shaft.

■ Solution
The kinetic energy of the system is

KE = 1

2
I1ω

2
1 + 1

2
I2ω

2
2 + 1

2
mv2

If the belt does not stretch, the translational speed of the belt is v = r1ω1 = r2ω2. Thus we can
express KE as

KE = 1

2
I1ω

2
1 + 1

2
I2

(
r1ω1

r2

)2

+ 1

2
m

(
r1ω1

)2 = 1

2

[
I1 + I2

(
r1

r2

)2

+ mr2
1

]
ω2

1

Therefore, the equivalent inertia felt on the input shaft is

Ie = I1 + I2

(
r1

r2

)2

+ mr2
1 (1)

This means that the dynamics of the system can be described by the model Ieω̇1 = T1.

r2

m

r1

T1

v

�1
�2

I1

I2

Figure 2.3.4 A belt drive.

A Robot-Arm Link EXAMPLE 2.3.5

■ Problem
A single link of a robot arm is shown in Figure 2.3.5. The arm mass is m and its center of mass
is located a distance L from the joint, which is driven by a motor torque Tm through a pair of
spur gears. The values of m and L depend on the payload being carried in the hand and thus can
be different for each application. The gear ratio is N = 2 (the motor shaft has the greater speed).
The motor and gear rotation axes are fixed by bearings.
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Figure 2.3.5 A robot-arm
link.

�1

�2

IG1

N

IS2

L

m

�

Tm
g

Im

IS1

IG2

g

Im

G2

�

L

G1G1

m

To control the motion of the arm we need to have its equation of motion. Obtain this equation
in terms of the angle θ . The given values for the motor, shaft, and gear inertias are

Im = 0.05 kg · m2 IG1 = 0.025 kg · m2 IS1 = 0.01 kg · m2

IG2 = 0.1 kg · m2 IS2 = 0.02 kg · m2

■ Solution
Our approach is to model the system as a single inertia rotating about the motor shaft with a
speed ω1. To find the equivalent inertia about this shaft we first obtain the expression for the
kinetic energy of the total system and express it in terms of the shaft speed ω1. Note that the
mass m is translating with a speed Lω2.

KE = 1

2

(
Im + IS1 + IG1

)
ω2

1 + 1

2

(
IS2 + IG2

)
ω2

2 + 1

2
m

(
Lω2

)2

But ω2 = ω1/N = ω1/2. Thus,

KE = 1

2

[
Im + IS1 + IG1 + 1

22

(
IS2 + IG2 + mL2

)]
ω2

1

Therefore, the equivalent inertia referenced to the motor shaft is

Ie = Im + IS1 + IG1 + 1

22

(
IS2 + IG2 + mL2

) = 0.115 + 0.25mL2

The equation of motion for this equivalent inertia can be obtained in the same way as that
of a pendulum, by noting that the gravity moment mgL sin θ , which acts on shaft 2, is also felt
on the motor shaft, but reduced by a factor of N due to the gear pair. Thus,

Ieω̇1 = Tm − 1

N
mgL sin θ

But ω1 = Nω2 = N θ̇ . Thus

Ie N θ̈ = Tm − 1

N
mgL sin θ

Substituting the given values, we have

2(0.115 + 0.25mL2)θ̈ = Tm − 9.8

2
mL sin θ

or

(0.23 + 0.5mL2)θ̈ = Tm − 4.9mL sin θ (1)

We will discuss techniques for solving this equation in Chapter 3.
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2.4 GENERAL PLANAR MOTION
In Section 2.1 we limited our attention to systems undergoing pure translation, and
in Section 2.2 we analyzed systems rotating about a single nonaccelerating axis. As
demonstrated by the examples in Section 2.3, we can use energy equivalence to model
a system as if it were in pure translation or pure rotation, but only if the motions of the
rotating and translating components are directly coupled. We now consider the general
case of an object undergoing translation and rotation about an accelerating axis.

We will restrict our attention to motion in a plane. This means that the object can
translate in two dimensions and can rotate only about an axis that is perpendicular to
the plane. Many practical engineering problems can be handled with the plane motion
methods covered here. The completely general motion case involves translation in three
dimensions, and rotation about three axes. This type of motion is considerably more
complex to analyze, and is beyond the scope of our coverage.

FORCE EQUATIONS

Newton’s laws for plane motion are derived in basic dynamics references, and we will
review them here. We assume that the object in question is a rigid body that moves in
a plane passing through its mass center, and that it is symmetrical with respect to that
plane. Thus it can be thought of as a slab with its motion confined to the plane of the
slab. We assume that the mass center and all forces acting on the mass are in the plane
of the slab.

We can describe the motion of such an object by its translational motion in the plane
and by its rotational motion about an axis perpendicular to the plane. Two force equa-
tions describe the translational motion, and a moment equation is needed to describe
the rotational motion. Consider the slab shown in Figure 2.4.1, where we arbitrarily
assume that three external forces f1, f2, and f3 are acting on the slab. Define an x-y
coordinate system as shown with its origin located at a nonaccelerating point. Then the
two force equations can be written as

fx = maGx (2.4.1)

fy = maG y (2.4.2)

y

x

f1

f3aG

f2

aPP

G

r

O

d

�

Figure 2.4.1 Planar motion
of a slab.
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where fx and fy are the net forces acting on the mass m in the x and y directions, re-
spectively. The mass center is located at point G. The quantities aGx and aG y are the
accelerations of the mass center in the x and y directions relative to the fixed x-y
coordinate system.

MOMENT EQUATIONS

Recall that in Section 2.2 we treated the case where an object is constrained to rotate
about an axis that passes through a fixed point O . For this case, we can apply the
following moment equation:

IOα = MO (2.4.3)

where α is the angular acceleration of the mass about the axis through point O , IO is
the mass moment of inertia of the body about the point O , and MO is the sum of the
moments applied to the body about the point O .

The following moment equation applies regardless of whether or not the axis of
rotation is constrained:

MG = IGα (2.4.4)

where MG is the net moment acting on the body about an axis that passes through
the mass center G and is perpendicular to the plane of the slab. IG and α are the
mass moment of inertia and angular acceleration of the body about this axis. The net
moment MG is caused by the action of the external forces f1, f2, f3, . . . and any couples
applied to the body. The positive direction of MG is determined by the right-hand rule
(counterclockwise if the x-y axes are chosen as shown).

Note that point G in the preceding equation must be the mass center of the object;
no other point may be used. However, in many problems the acceleration of some
point P is known, and sometimes it is more convenient to use this point rather than the
mass center or a fixed point. The following moment equation applies for an accelerating
point P , which need not be fixed to the body:

MP = IGα + maGd (2.4.5)

where the moment MP is the net moment acting on the body about an axis that passes
through P and is perpendicular to the plane of the slab, aG is the magnitude of the accel-
eration vector aG , and d is the distance between aG and a parallel line through point P
(see Figure 2.4.1).

An alternative form of this equation is

MP = IPα + mrx aPy − mryaPx (2.4.6)

where aPx and aPy are the x and y components of the acceleration of point P relative
to the x-y coordinate system. The terms rx and ry are the x and y components of the
location of G relative to P , and IP is the mass moment of inertia of the body about an
axis through P . Note that in general, MP does not equal MG , and IP does not equal IG .
If point P is fixed at some point O , then aPx = aPy = 0, and the moment equation (2.4.6)
simplifies to (2.4.3), because MO = MP and IO = IP . Note that the angular acceleration
α is the same regardless of whether point O , G, or P is used.

Figure 2.4.2 Motion of a
wheel.

N

ft

f

v

R

� SLIDING VERSUS ROLLING MOTION

Wheels are common examples of systems undergoing general plane motion with both
translation and rotation. The wheel shown in Figure 2.4.2 can have one of three possible
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motion types:

1. Pure rolling motion. This occurs when there is no slipping between the wheel
and the surface. In this case, v = Rω.

2. Pure sliding motion. This occurs when the wheel is prevented from rotating
(such as when a brake is applied). In this case, ω = 0 and v �= Rω.

3. Sliding and rolling motion. In this case ω �= 0. Because slipping occurs in this
case, v �= Rω.

The wheel will roll without slipping (pure rolling) if the tangential force ft is
smaller than the static friction force μs N , where N is the force of the wheel normal
to the surface. In this case, the tangential force does no work because it does not act
through a distance. If the static friction force is smaller than ft , the wheel will slip.

In Example 2.3.1, we modeled the wheeled vehicle as an equivalent translating
mass. We can “lump” the rotating elements with the translating elements only when the
translational and rotational motions are directly related to one another. If the vehicle’s
wheels slip, we cannot express the vehicle’s translational speed in terms of the wheels’
rotational speed. We must then treat the vehicle body and the wheels as separate masses,
and apply Newton’s laws to each separately. We must also take this approach if we need
to compute any forces internal to the system.

A Vehicle on an Incline: Force Analysis EXAMPLE 2.4.1

■ Problem
Consider again the system of Example 2.3.1, in which a tractor pulls a cart up a slope (Fig-
ure 2.3.1a). The force in the cable is f , and the body of the cart has a mass m. The cart has
two identical wheels, each with radius R, mass mw , and inertia Iw about the wheel center. The
two wheels are coupled with an axle whose mass is negligible. Assume that the center of mass
of the cart coincides with the axis of the axle. In Example 2.3.1, we assumed that the wheels
do not slip. Now we want to develop a model that can be used to examine this assumption and
also to compute the forces on the axle. Apply Newton’s laws to develop a model of the system.
(a) Show that the model gives the same result as equation (3) of Example 2.3.1, assuming no
slip and no bounce. (b) Use the model to discuss the no-slip assumption.

■ Solution
a. The free body diagrams of the cart and the wheel-axle subsystem are shown in

Figure 2.4.3. The forces Rx and Ry are the reaction forces between the cart and the axle.
The forces ft and N are the tangential and normal forces acting on both wheels as a result
of their contact with the road’s surface. Newton’s second law applied to the cart gives

mẍ = Rx − mg sin θ + f (1)

mÿ = Ry − mg cos θ (2)

Rx

G

N

Ry

2mwg cos �

�

2mwg sin �
ft

x
Ry

Rx
f

mg cos �

mg sin �

y

G

m

Figure 2.4.3 Free-body
diagrams of the cart body and
the wheel-axle subsystem.
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Newton’s second law applied to the wheel-axle subsystem gives

2mw ẍ = −Rx − 2mw g sin θ − ft (3)

2mw ÿ = N − Ry − 2mw g cos θ (4)

Application of the moment equation about the center of mass of the wheel-axle subsystem
gives

2Iw ω̇ = R ft (5)

The assumption of no slip means that

ẍ = v̇ = Rω̇ (6)

Substitute this into equation (5) and solve for ft :

ft = 2Iw

R2
ẍ (7)

Substitute this into equation (3) and solve for Rx :

Rx = −
(

2mw + 2Iw

R2

)
ẍ − 2mw g sin θ (8)

Substitute this into equation (1) and collect terms to obtain(
m + 2mw + 2

Iw

R2

)
ẍ = f − (m + 2mw )g sin θ (9)

which is the same as equation (3) of Example 2.3.1 since ẍ = v̇.
b. The assumption of no bounce means that ÿ = 0. For this condition, equations (2) and (4)

can be solved for N to obtain

N = (m + 2mw )g cos θ (10)

Slip occurs if the tangential force ft is greater than the maximum static friction force,
which is μs N . Thus, if we solve equation (9) for ẍ and substitute it into equation (7), the
resulting value of ft must be no greater than μs N or else slip will occur. Thus, slip will not
occur if

μs(m + 2mw )g cos θ ≥ 2Iw
f − (m + 2mw )g sin θ

(m + 2mw )R2 + 2Iw
(11)

EXAMPLE 2.4.2 A Rolling Cylinder

■ Problem
A solid cylinder of mass m and radius r starts from rest and rolls down the incline at an angle θ

(Figure 2.4.4). The static friction coefficient is μs . Determine the acceleration of the center of
mass aGx and the angular acceleration α. Assume that the cylinder rolls without bouncing, so
that aG y = 0. Assume also that the cylinder rolls without slipping. Use two approaches to solve
the problem: (a) Use the moment equation about G, and (b) use the moment equation about P .
(c) Obtain the frictional condition required for the cylinder to roll without slipping.

■ Solution
The free body diagram is shown in the figure. The friction force is F and the normal force is N .
The force equation in the x direction is

maGx = fx = mg sin θ − F (1)
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Figure 2.4.4 A cylinder
rolling down an inclined plane.

In the y direction,

maG y = fy = N − mg cos θ (2)

If the cylinder does not bounce, then aG y = 0 and thus from (2),

N = mg cos θ (3)

a. The moment equation about the center of mass gives

IGα = MG = Fr (4)

Solve for F and substitute it into (1):

maGx = mg sin θ − IGα

r
(5)

If the cylinder does not slip, then

aGx = rα (6)

Solve this for α and substitute into (5):

maGx = mg sin θ − IGaGx

r2

Solve this for aGx :

aGx = mgr2 sin θ

mr2 + IG
(7)

For a solid cylinder, IG = mr2/2, and the last expression reduces to

aGx = 2

3
g sin θ (8)

b. We could have used instead the moment equation (2.4.5) about the point P , which is
accelerating. This equation is

MP = IGα + maGx d

where d = r and MP = (mg sin θ)r . Thus

mgr sin θ = IG
aGx

r
+ maGx r

Solving this for aGx we obtain the same expression as (7). The angular acceleration is
found from (6).
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c. The maximum possible friction force is Fmax = μs N = μsmg cos θ . From (4), (6), and (7),

F = IGα

r
= IGaGx

r2
= IGmg sin θ

IG + mr2

If Fmax > F , the cylinder will not slip. The condition of no slip is therefore given by

μs cos θ >
IG sin θ

IG + mr2
(9)

For a solid cylinder, this reduces to

μs cos θ >
1

3
sin θ (10)

EXAMPLE 2.4.3 Maximum Vehicle Acceleration

■ Problem
It is required to determine, as a function of the friction coefficient μs , the maximum acceleration
of the rear-wheel drive vehicle shown in Figure 2.4.5. The vehicle mass is 1800 kg, and its
dimensions are L A = 1.3 m, L B = 1 m, and H = 0.5 m.

Assume that the mass of the wheels is small compared with the total vehicle mass and ne-
glect the effects of the vehicle suspension. These assumptions enable us to ignore the rolling
and vertical motions of the wheels and thus to treat the vehicle as a single rigid body translating
in only one direction, with no rotating parts. The assumption of negligible wheel mass implies
that there is no tangential force on the front wheels.

Assume that each front wheel experiences the same reaction force NA/2. Similarly, each
rear wheel experiences the same reaction force NB/2. Thus the traction force μs NB is the total
traction force due to both driving wheels. The traction force is due to the torque T applied from
the engine through the axles to the rear wheels. Thus, when the rear wheels are on the verge of
slipping, μs NB = T/R, where R is the radius of the rear wheels.

Figure 2.4.5 Vehicle
acceleration.
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■ Solution
The key to solving this problem is to recognize that the maximum traction force, and therefore
the maximum acceleration, is obtained when the driving tires are just on the verge of slipping
relative to the road surface. In this condition, the friction force, which is the traction force, is
given by μs NB . From the free body diagram shown in Figure 2.4.5b, Newton’s law applied in
the x direction gives

fx = maGx or μs NB = maGx (1)

In the y direction, if the vehicle does not leave the road, Newton’s law gives

fy = maG y or NA + NB − mg = 0 (2)

The moment equation about the mass center G gives

MG = IGα or NB L B − μs NB H − NA L A = 0 (3)

because α = 0 if the vehicle body does not rotate.
Equation (1) shows that we need to find NB to determine the acceleration aGx . Equations (2)

and (3) can be solved for NB . The solution is

NB = mgL A

L A + L B − μs H
= 9.8(1.3)m

1.3 + 1 − 0.5μs
= 25.5

4.6 − μs
m (4)

and thus the maximum acceleration is

aGx = μs NB

m
= 25.5μs

4.6 − μs

An alternative approach to the problem is to use the moment equation (2.4.5) about the
accelerating point P shown in the figure. This approach avoids the need to solve two equations
to obtain NB . This equation gives

MP = IGα + maGd or μs NB H − NB(L A + L B) + mgL A = 0 (5)

because α = 0 and d = 0. This gives the same solution as equation (4).

The analysis in Example 2.4.3 ignored the effects of the vehicle suspension. This
simplification results in the assumption that the vehicle body does not rotate. You may
have noticed, however, that a vehicle undergoing acceleration will have a pitching
motion that is made possible because of the suspension springs. So a complete analysis
of this problem would include this effect. However, it is always advisable to begin with
a simplified version of a problem, to make sure you understand the problem’s basic
features. If you cannot solve the problem with the suspension effects ignored, then
you certainly will not be able to solve the more complex problem that includes the
suspension dynamics!

DYNAMICS OF A PERSONAL TRANSPORTER

Personal transporters are small vehicles designed to carry usually only one person.
They have become more available because of the advent of less expensive sensors
and more powerful microprocessor control systems to handle the complex calculations
required to balance the vehicle. There are a variety of designs, including unicycles, but
Figure 2.4.6 illustrates a two-wheel version. The transporter’s motors drive the wheels
to balance the vehicle with the help of a computer-control system using tilt sensors and
gyroscopes.

One type of gyroscope used is a vibrating structure gyroscope that functions much
like the halteres of some winged insects. These are small knobbed cantilever–beam-like
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Figure 2.4.6 A personal
transporter.

f

structures that are flapped rapidly to maintain stability when flying. The vibrating beam
tends to keep vibrating in the same plane even though its support rotates. When used
as a sensor, the transducer attached to the beam detects the bending strain that results
from the Coriolis acceleration. These sensors are simpler and less expensive than a
rotating gyroscope.

We have restricted our coverage of dynamics to inertial (for example, non-rotating)
coordinate systems. The Coriolis acceleration is a term that appears in the equations
of motion of an object when expressed in a rotating frame of reference (see [Meriam,
2002]). The Coriolis acceleration depends on the velocity of the object. A reference
frame fixed to the Earth is actually rotating and therefore non-inertial. Thus a projectile,
due to the Coriolis acceleration, appears to curve to the right in the northern hemisphere
and to the left in the southern hemisphere. For many applications, the effect of the
Coriolis term is negligible because of the relatively small velocities. However, in the
vibrating gyroscope, the oscillation, and thus the velocity, of the beam are large, and
thus the Coriolis effect is detectable.

The transporter will be balanced (kept nearly upright) as long as the wheels stay
under the center of gravity. Thus the transporter can be balanced by driving the wheels
in the direction of leaning. This means that to accelerate forward, the person should
lean forward. A representation of the transporter is shown in Figure 2.4.6. The drive
motor applies a torque to the wheel-axle subsystem. The tangential force between the
wheel and the road is f . This force acts in the opposite direction on the vehicle body
and propels the transporter forward (to the left in the figure).

The dynamics of a personal transporter are similar to a classic control problem
called the inverted pendulum1.

1This problem is a good example of why you should be careful to check any technical information, especially
any obtained from the Internet. The author found several websites, including an entry in a well-known online
encyclopedia, that contained erroneous equations of motion for the inverted pendulum. The equations derived
here are equivalent to those derived in [Cannon, 1967].
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Transporter Equations of Motion EXAMPLE 2.4.4

■ Problem
We may model the transporter as a cart of mass M (which includes the equivalent mass of the
wheel-axle subsystem) and an inverted pendulum attached to the cart by a pivot at point P (see
Figure 2.4.7a). The pendulum mass is m and its center of mass G is a distance L from P . The
inertia of the pendulum about G is IG . For generality we include an applied torque T about the
pivot, which is due to a motor at the pivot in some applications. Derive the equations of motion
with f and T as the inputs, and x and φ as the outputs.

■ Solution
The free body diagrams are shown in Figure 2.4.7b. First consider the pendulum. The vertical and
horizontal components of the pendulum’s mass center are L cos φ and x −L sin φ, respectively.
For the horizontal direction Newton’s law gives:

m
d2

dt2
(x − L sin φ) = H (2.4.7)

where H is the horizontal component of the reaction force at the pivot. The moment equation
(2.4.6) about the pendulum’s pivot point P gives:

(IG + mL2)φ̈ − mLẍ cos φ = T + mgL sin φ (2.4.8)

where IG + mL2 is the pendulum’s moment of inertia about the pivot point.
Now consider the base. Newton’s law in the horizontal direction gives:

Mẍ = − f − H (2.4.9)

Because we are assuming that the base does not rotate or move vertically, we need not consider
the moments and vertical forces on the base, unless we need to compute the reaction forces V ,
R1, and R2.

Evaluate the derivative in (2.4.7) to obtain:

mẍ − mL
d

dt
(cos φ φ̇) = mẍ − mL(− sin φ φ̇2 + cos φ φ̈) = H (2.4.10)

Figure 2.4.7 (a) model of a personal
transporter. (b) free-body diagram of the base
and the inverted pendulum.
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Solve (2.4.9) for the reaction force H : H = − f − Mẍ . Substitute this into (2.4.10) and collect
terms to obtain:

(m + M)ẍ − mL(cos φ φ̈ − sin φ φ̇2) = − f (2.4.11)

The equations of motion are (2.4.8) and (2.4.11).

2.5 CHAPTER REVIEW
In this chapter we reviewed Newton’s laws of motion and applied them first to situ-
ations where the object’s motion is relatively simple—simple translations or simple
rotations—and then to the case of translation and rotation in a plane. We assumed that
the masses are rigid and we restricted our analysis to forces that are constant or func-
tions of time. We introduced the concepts of equivalent mass and equivalent inertia.
These concepts simplify the modeling of systems having both translating and rotating
components whose motions are directly coupled.

Now that you have finished this chapter, you should be able to

1. Obtain the equations of motion for an object consisting of a single mass
undergoing simple translation or rotation, and solve them when the applied forces
or moments are either constants or simple functions of time.

2. Apply the principle of conservation of mechanical energy to analyze systems
acted on by conservative forces.

3. Apply the concepts of equivalent mass and equivalent inertia to obtain a simpler
model of a multimass system whose motions are directly coupled.

4. Obtain the equation of motion of a body in planar motion, involving simultaneous
translation and rotation.
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PROBLEMS
Section 2.1 Translational Motion

2.1 Consider the falling mass in Example 2.1.1 and Figure 2.1.2. Find its speed
and height as functions of time. How long will it take to reach (a) the platform
and (b) the ground?

2.2 A baseball is thrown horizontally from the pitcher’s mound with a speed of
90 mph. Neglect air resistance, and determine how far the ball will drop by
the time it crosses home plate 60 ft away.

2.3 For the mass shown in Figure 2.1.3b, m = 10 kg, φ = 25◦, v(0) = 2 m/s, and
μ = 0.3. Determine whether the mass comes to rest if (a) f1 = 100 N and
(b) f1 = 50 N. If the mass comes to rest, compute the time at which it stops.

2.4 A particle of mass m slides down a frictionless ramp starting from rest (see
Figure P2.4). The lengths L and H and the angle θ are given. Derive an
expression for the distance D of the impact point.
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Figure P2.4
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2.5 A radar tracks the flight of a projectile (see Figure P2.5). At time t , the radar
measures the horizontal component vx(t) and the vertical component vy(t) of
the projectile’s velocity and its range R(t) and elevation φ(t). Are these
measurements sufficient to compute the horizontal distance D from the radar
to the launch point of the projectile? If so, derive the expression for D as a
function of g and the measured values vx(t), vy(t), R(t), and φ(t).

Section 2.2 Rotation About a Fixed Axis

2.6 Table 2.2.1 gives the inertia IO for a point mass in rotation. Suppose instead
that a sphere of radius r is in rotation about a fixed point O a distance R from
its center of mass. Find the inertia IO of the sphere about the point O .

2.7 The pendulum shown in Figure P2.7 consists of a slender rod weighing 3 lb
and a block weighing 10 lb.
a. Determine the location of the center of mass.
b. Derive the equation of motion in terms of θ .

2.8 The scale shown in Figure P2.8 measures the weight mg of an object placed on
the scale, by using a counterweight of mass mc. Friction in the pivot point at A

Figure P2.7
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causes the pointer to eventually come to rest at an angle θ , which indicates the
measured value of the weight mg. The angle β has a fixed value that depends
on the shape of the scale arm. (a) Neglect the friction in the pivot and neglect
the mass of the scale arm, and obtain the scale’s equation of motion. (b) Find
the equilibrium relation between the weight mg and the angle θ . (c) Find the
weight mg if mc = 5 kg, L1 = 0.2 m, L2 = 0.15 m, β = 30◦, and θ = 20◦.

2.9 The motor in Figure P2.9 lifts the mass mL by winding up the cable with a
force FA. The center of pulley B is fixed. The pulley inertias are IB and IC .
Pulley C has a mass mC . Derive the equation of motion in terms of the speed
vA of point A on the cable with the force FA as the input.

Figure P2.9
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2.10 Instead of using the system shown in Figure 2.2.5a to raise the mass m2, an
engineer proposes to use two simple machines, the pulley and the inclined
plane, to reduce the weight required to lift m2. The proposed design is shown
in Figure P2.10. The pulley inertias are negligible. The available horizontal
space limits the angle of the inclined plane to no less than 30◦.
a. Suppose that the friction between the plane and the mass m2 is negligible.

Determine the smallest value m1 can have to lift m2. Your answer should
be a function of m2 and θ .

b. In practice, the coefficient of dynamic friction μd between the plane and
the mass m2 is not known precisely. Assume that the system can be started
to overcome static friction. For the value of m1 = m2/2, how large can μd

be before m1 cannot lift m2?

Section 2.3 Equivalent Mass and Inertia

2.11 Derive the expression for the equivalent inertia Ie felt on the input shaft, for the
spur gears treated in Example 2.3.2, where the shaft inertias are Is1 and Is2 .

2.12 Draw the free body diagrams of the two spur gears shown in Figure 2.3.2. Use
the resulting equations of motion to show that T2 = N T1 if the gear inertias are
negligible or if there is zero acceleration.

2.13 The geared system shown in Figure P2.13 represents an elevator system. The
motor has an inertia I1 and supplies a torque T1. Neglect the inertias of the
gears, and assume that the cable does not slip on the pulley. Derive an
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Figure P2.13

expression for the equivalent inertia Ie felt on the input shaft (shaft 1). Then
derive the dynamic model of the system in terms of the speed ω1 and the
applied torque T1. The pulley radius is R.

2.14 Derive the expression for the equivalent inertia Ie felt on the input shaft, for the
rack and pinion treated in Example 2.3.3, where the shaft inertia is Is .

2.15 Derive the expression for the equivalent inertia Ie felt on the input shaft, for the
belt drive treated in Example 2.3.4, where the shaft inertias connected to the
sprockets are Is1 and Is2 .

2.16 For the geared system shown in Figure P2.16, proper selection of the gear ratio
N can maximize the load acceleration ω̇2 for a given motor and load. Note that
the gear ratio is defined such that ω1 = Nω2. Assuming that the inertias I1 and
I2 and the torques T1 and T2 are given,
a. Derive the expression for the load acceleration ω̇2.
b. Use calculus to determine the value of N that maximizes ω̇2.

2.17 For the geared system shown in Figure P2.17, assume that shaft inertias and
the gear inertias I1, I2, and I3 are negligible. The motor and load inertias in
kg · m2 are

I4 = 0.03 I5 = 0.15

The speed ratios are

ω1

ω2
= ω2

ω3
= 1.6

Derive the system model in terms of the speed ω3, with the applied torque T as
the input.
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Figure P2.16
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2.18 For the geared system discussed in Problem 2.17, shown in Figure P2.17, the
inertias are given in kg · m2 as

I1 = 10−3 I2 = 3.84 × 10−3 I3 = 0.0148

I4 = 0.03 I5 = 0.15

The speed ratios are

ω1

ω2
= ω2

ω3
= 1.6

Derive the system model in terms of the speed ω3, with the applied torque T as
the input. The shaft inertias are negligible.

2.19 The geared system shown in Figure P2.19 is similar to that used in some
vehicle transmissions. The speed ratios (which are the ratios of the gear radii)
are

ω2

ω1
= 3

ω3

ω2
= 3

5

ω4

ω3
= 13

11

a. Determine the overall speed ratio ω4/ω1.
b. Derive the equation of motion in terms of the velocity ω4, with the torque

T1 as the input. Neglect the inertias of the gears and the shafts.

2.20 The lead screw (also called a power screw or a jack screw) is used to convert
the rotation of a motor shaft into a translational motion of the mass m (see
Figure P2.20). For one revolution of the screw, the mass translates a distance L
(called the screw lead ). As felt on the motor shaft, the translating mass appears
as an equivalent inertia. Use kinetic energy equivalence to derive an expression
for the equivalent inertia. Let Is be the inertia of the screw.
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2.21 At time t = 0, the operator of the road roller disengages the transmission so
that the vehicle rolls down the incline (see Figure P2.21). Determine an
expression for the vehicle’s speed as a function of time. The two rear wheels
weigh 500 lb each and have a radius of 4 ft. The front wheel weighs 800 lb and
has a radius of 2 ft. The vehicle body weighs 9000 lb. Assume the wheels roll
without slipping.

10°

Figure P2.21

2.22 Derive the equation of motion of the block of mass m1 in terms of its
displacement x (see Figure P2.22). The friction between the block and the
surface is negligible. The pulley has negligible inertia and negligible friction.
The cylinder has a mass m2 and rolls without slipping.

m1

x

R

� �

Figure P2.22

2.23 Assume the cylinder in Figure P2.23 rolls without slipping. Neglect the mass
of the pulleys and derive the equation of motion of the system in terms of the
displacement x .
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Figure P2.23
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2.24 A single link of a robot arm is shown in Figure P2.24. The arm mass is m and
its center of mass is located a distance L from the joint, which is driven by a
motor torque Tm through two pairs of spur gears. The gear ratios are N1 = 2
(the motor shaft has the greater speed) and N2 = 1.5 (the shaft connected to
the link has the slower speed). Obtain the equation of motion in terms of the
angle θ , with Tm as the input. Neglect the shaft inertias relative to the other
inertias. The given values for the motor and gear inertias are

Im = 0.05 kg · m2 IG1 = 0.025 kg · m2 IG2 = 0.1 kg · m2

IG3 = 0.025 kg · m2 IG4 = 0.08 kg · m2

The values for the link are

m = 10 kg L = 0.3 m

2.25 A conveyor drive system to produce translation of the load is shown in
Figure P2.25a. The reducer is a gear pair that reduces the motor speed by a
factor of 10:1. The motor inertia is I1 = 0.002 kg · m2. The reducer inertia as
felt on the motor shaft is I2 = 0.003 kg · m2. Neglect the inertia of the
tachometer, which is used to measure the speed for control purposes. The
properties of the remaining elements are given here.
Sprockets:

Sprocket 1: radius = 0.05 m weight = 9 N
Sprocket 2: radius = 0.15 m weight = 89 N

Chain weight: 107 N
Drive shaft: radius = 0.04 m weight = 22 N
Drive wheels (four of them): radius = 0.2 m weight = 89 N each
Drive chains (two of them): weight = 670 N each
Load friction torque measured at the drive shaft: 54 N · m
Load weight: 450 N
a. Derive the equation of motion of the conveyor in terms of the motor

velocity ω1, with the motor torque T1 as the input.
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Figure P2.25a
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b. Suppose the motor torque is constant at 10 N · m. Determine the resulting
motor velocity ω1 and load velocity v as functions of time, assuming the
system starts from rest.

c. The profile of a desired velocity for the load is shown in Figure P2.25b,
where v0 = 1 m/s, t1 = t3 = 0.5 s, and t2 = 2 s. Use the equation of
motion found in part (a) to compute the required motor torque for each
part of the profile.

Section 2.4 General Planar Motion

2.26 A person pushes a roller of radius R and inertia m R2/2, with a force f applied
at an angle of φ to the horizontal (see Figure P2.26). The roller weighs 800 N
and has a diameter of 0.4 m. Assume the roller does not slip. Derive the
equation of motion in terms of (a) the rotational velocity ω of the roller and
(b) the displacement x .

f
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Figure P2.26
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2.27 A slender rod 1.4 m long and of mass 20 kg is attached to a wheel of radius
0.05 m and negligible mass, as shown in Figure P2.27. A horizontal force f is
applied to the wheel axle. Derive the equation of motion in terms of θ . Assume
the wheel does not slip.

Figure P2.27
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2.28 A slender rod 1.4 m long and of mass 20 kg is attached to a wheel of mass 3 kg
and radius 0.05 m, as shown in Figure P2.27. A horizontal force f is applied
to the wheel axle. Derive the equation of motion in terms of θ . Assume the
wheel does not slip.

2.29 Consider the rolling cylinder treated in Example 2.4.2. Assume that the no-slip
condition is not satisfied, so that the cylinder slips while it rolls. Derive
expression for the translational acceleration aGx and the angular acceleration α.
The coefficient of dynamic friction is μd .

2.30 A hoop of mass m and radius r starts from rest and rolls down an incline at an
angle θ . The hoop’s inertia is given by IG = mr2. The static friction coefficient
is μs . Determine the acceleration of the center of mass aGx and the angular
acceleration α. Assume that the hoop rolls without bouncing or slipping. Use
two approaches to solve the problem: (a) Use the moment equation about the
mass center G and (b) use the moment equation about the contact point P .
(c) Obtain the frictional condition required for the hoop to roll without
slipping.

2.31 It is required to determine the maximum acceleration of the rear-wheel-drive
vehicle shown in Figure P2.31. The vehicle mass is 1700 kg, and its
dimensions are L A = 1.2 m, L B = 1.1 m, and H = 0.5 m. Assume that each
front wheel experiences the same reaction force NA/2. Similarly, each rear

Figure P2.31
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wheel experiences the same reaction force NB/2. Thus the traction force μs NB

is the total traction force due to both driving wheels. Assume that the mass of
the wheels is small compared with the total vehicle mass; this assumption
enables us to treat the vehicle as a translating rigid body with no rotating
parts.

Figure P2.32
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2.32 Figure P2.32 illustrates a pendulum with a base that moves horizontally. This
is a simple model of an overhead crane carrying a suspended load with cables.
The load mass is m, the cable length is L , and the base acceleration is a(t).
Assuming that the cable acts like a rigid rod, derive the equation of motion in
terms of θ with a(t) as the input.

2.33 Figure P2.33 illustrates a pendulum with a base that moves vertically. The base
acceleration is a(t). Derive the equation of motion in terms of θ with a(t) as
the input. Neglect the mass of the rod.

Figure P2.33
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CHAPTER OBJECTIVES

When you have finished this chapter you should be able
to do the following:

1. Apply the trial-solution method or the Laplace
transform method, whichever is appropriate, to
obtain the solution of a linear differential equation
model.

2. When applying the Laplace transform method, be
able to perform the appropriate expansion and apply
the appropriate transform properties to obtain the
inverse transform.

3. Identify the free, forced, transient, and steady-state
components of the complete response.

4. Obtain transfer functions from models expressed as
single equations or as sets of equations.

5. Evaluate the effects of impulse inputs and input
derivatives on the response.

6. Use MATLAB to apply the chapter’s methods.

D ynamic models are differential equations that describe a dynamic system. In
Chapter 2, we encountered differential equations of the form ẋ = f (t) and
ẍ = c, which were easily solved by integrating the right-hand side with respect

to time. In this chapter, we develop methods for obtaining analytical solutions to other
differential equations commonly found in engineering applications. In Section 3.1,
we introduce some important concepts and terminology associated with differential
equations, and present methods for quickly solving simple differential equations.
Section 3.2 introduces the concepts of free, forced, transient, and steady-state response,
and explains the important concept of stability.

80
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An important tool for obtaining solutions in general is the Laplace transform, in-
troduced in Section 3.3. It also forms the basis for the important concept of the transfer
function, covered in Section 3.4. The partial-fraction expansion, used with the Laplace
transform, is covered in Section 3.5. The effects of impulse inputs and input deriva-
tives on a system’s dynamic response are treated in Section 3.6. Section 3.7 presents
additional, in-depth examples.

Sections 3.8 and 3.9 show how to use MATLAB to obtain partial-fraction expan-
sions and to obtain responses to step, impulse, and other input function types. A review
of the chapter’s main concepts is given in Section 3.10. ■

3.1 DIFFERENTIAL EQUATIONS
An ordinary differential equation (ODE) is an equation containing ordinary, but not
partial, derivatives of the dependent variable. Because the subject of system dynamics
is time-dependent behavior, the independent variable in our ODEs will be time t .

In a standard form for expressing an ODE, all functions of the dependent variable
are placed on the left-hand side of the equal (=) sign, and all isolated constants and
isolated functions of time are placed on the right-hand side. The quantities in the right-
hand side are called the input, or forcing function. The dependent variable is called the
solution or the response. For example, consider the equation 3ẍ +7ẋ +2t2x = 5 + sin t ,
where x is the dependent variable. The input is 5 + sin t and the response is x(t). If
the right-hand side is zero, the equation is said to be homogeneous; otherwise, it is
nonhomogeneous.

INITIAL CONDITIONS

An example of an ODE is 2ẋ + 6x = 3, where x is the dependent variable. “Solving the
equation” means to obtain the function x(t) that satisfies the equation. For this example,
the function is x(t) = Ce−3t + 0.5, where C is a constant. We cannot determine a
numerical value for C unless we are given a specified value for x at some time t . Most
commonly x is specified at some starting time, usually denoted t0. The specified value
of x at t0 is denoted x0 and is called the initial condition. Often the starting time t0 is
taken to be at t = 0.

When solving differential equations, you need never wonder if your answer is cor-
rect, because you can always check your answer by substituting it into the differential
equation and by evaluating the solution at t = t0.

CLASSIFICATION OF DIFFERENTIAL EQUATIONS

We can categorize differential equations as linear or nonlinear. Linear differential
equations are recognized by the fact that they contain only linear functions of the de-
pendent variable and its derivatives. Nonlinear functions of the independent variable
do not make a differential equation nonlinear. For example, the following equations are
linear.

ẋ + 3x = 5 + t2 ẋ + 3t2x = 5 3ẍ + 7ẋ + 2t2x = sin t
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whereas the following equations are nonlinear:

2ẍ + 7ẋ + 6x2 = 5 + t2, because of x2

3ẍ + 5ẋ2 + 8x = 4, because of ẋ2

ẍ + 4x ẋ + 3x = 10, because of x ẋ

The equation ẋ +3t2x = 5 is a variable-coefficient differential equation, so named
because one of its coefficients is a function of the independent variable t . By contrast,
the equation ẋ + 2x = 5 is a constant-coefficient differential equation. When solving
constant-coefficient equations, the initial time t0 can always be chosen to be 0. This
simplifies the solution form.

The order of the equation is the order of the highest derivative of the dependent
variable in the equation. The equation 3ẍ + 7ẋ + 2x = 5 is thus called a second-order
differential equation.

A model can consist of more than one equation. For example, the model

3ẋ1 + 5x1 − 7x2 = 5

ẋ2 + 4x1 + 6x2 = 0

consists of two equations that must be solved simultaneously to obtain the solution for
the two dependent variables x1(t) and x2(t). The equations are said to be coupled.
Although each equation is first order, the set can be converted into a single differential
equation of second order. Thus, solving a set of two coupled first-order equations is
equivalent to solving a single second-order equation. In general, a coupled set of dif-
ferential equations can be reduced to a single differential equation whose order is the
sum of the orders of the individual equations in the set.

SEPARATION OF VARIABLES

You can solve the equation

ẋ = g(t) f (x) (3.1.1)

by separating the variables x and t as follows. First write the equation as

dx

f (x)
= g(t) dt

Then integrate both sides to obtain∫ x(t)

x(0)

dx

f (x)
dx =

∫ t

0
g(t) dt

The solution x(t) can be found if the integrals on the left and on the right can be evaluated
and if the resulting expression can be solved for x as a function of t .

EXAMPLE 3.1.1 Separation of Variables for a Linear Equation

■ Problem
Use separation of variables to solve the following problem for t ≥ 0.

ẋ + 2x = 20 x(0) = 3 (1)
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Figure 3.1.1 Response for
Example 3.1.1.

■ Solution
Comparing this with (3.1.1) we see that f (x) = 20 − 2x and g(t) = 1. First write the equation
as

dx

dt
= 20 − 2x or

dx

20 − 2x
= dt

Integrate both sides to obtain ∫ x(t)

3

dx

20 − 2x
dx =

∫ t

0
dt = t

The integral on the left can be evaluated as follows:

ln[20 − 2x(t)] − ln[20 − 2(3)] = −2t

Solve for x(t) to obtain

x(t) = 10 − 7e−2t (2)

The plot of this function is shown in Figure 3.1.1.

TRIAL-SOLUTION METHOD

We can use the results of Example 3.1.1 to gain insight into the solution of the equation
ẋ + ax = b, where a �= 0. Its solution has the form

x(t) = C + Dest (3.1.2)

where C , D, and s are constants to be determined. We can verify that this form is the
solution by substituting x(t) into the differential equation, as follows:

ẋ + ax = s Dest + a
(
C + Dest) = (s + a)Dest + aC = b
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The only way this equation can be true is if s + a = 0 and aC = b. Thus s = −a and
C = b/a. The remaining constant, D, can determined from the initial value x(0) as
follows. Substituting t = 0 into the solution form gives x(0) = C + De0 = C + D.
Thus D = x(0) − C = x(0) − b/a, and the solution can be written as

x(t) = b

a
+

[
x(0) − b

a

]
e−at (3.1.3)

The exponential coefficient s is called the characteristic root, and its equation s + a = 0
is called the characteristic equation. We will soon see that characteristic roots are of
great use in determining the form of the trial solution.

This insight leads to the trial-solution method for solving equations. It can be
used to solve higher-order equations as well. The method is useful for quickly ob-
taining solutions of common ODEs whose solution forms are already known from
experience.

EXAMPLE 3.1.2 Two Distinct, Real Roots

■ Problem
Use the trial-solution method to solve the following problem.

ẍ + 7ẋ + 10x = 20 x(0) = 5 ẋ(0) = 3

■ Solution
Substitute the trial-solution form

x(t) = C + Dest (1)

into the ODE and collect terms to obtain(
s2 + 7s + 10

)
Dest + 10C = 20

The only way this equation can be true is if C = 20/10 = 2 and s2 + 7s + 10 = 0, which is the
characteristic equation. The roots of this equation can be found with the quadratic formula given
in Table 3.1.1. So we now have two characteristic roots, s = −2 and s = −5. The form given
by equation (1) with C = 2 will solve the ODE with either value of s, but it cannot satisfy both
initial conditions. Therefore, we need an additional term with an arbitrary constant. It has been
found that the appropriate trial-solution form is

x(t) = C + D1es1t + D2es2t (2)

where s1 and s2 are the two characteristic roots. Substituting this form into the ODE and collecting
terms gives (

s2
1 + 7s1 + 10

)
D1es1t + (

s2
2 + 7s2 + 10

)
D2es2t + 10C = 20 (3)

Because both s1 and s2 satisfy the characteristic equation s2 + 7s + 10 = 0, equation (3) is
satisfied if C = 2. Thus the solution is

x(t) = 2 + D1e−2t + D2e−5t (4)
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Table 3.1.1 Roots and complex numbers.

The quadratic formula
The roots of as2 + bs + c = 0 are given by

s = −b ± √
b2 − 4ac

2a
For complex roots, s = σ ± jω, the quadratic can be expressed as

as2 + bs + c = a
[
(s + σ)2 + ω2

] = 0

Complex numbers
Rectangular representation:

z = x + j y, j = √−1

Magnitude and angle:

|z| =
√

x2 + y2 θ = � z = tan−1 y

x
Polar and exponential representation:

z = |z|� θ = |z|e jθ

Equality: If z1 = x1 + j y1 and z2 = x2 + j y2, then

z1 = z2 if x1 = x2 and y1 = y2

Addition:

z1 + z2 = (x1 + x2) + j (y1 + y2)

Multiplication:

z1z2 = |z1||z2|� (θ1 + θ2)

z1z2 = (x1x2 − y1 y2) + j (x1 y2 + x2 y1)

Complex-Conjugate Multiplication:

(x + j y)(x − j y) = x2 + y2

Division:

1

z
= 1

x + y j
= x − j y

x2 + y2

z1

z2
= |z1|

|z2|
� (θ1 − θ2)

z1

z2
= x1 + j y1

x2 + j y2
= x1 + j y1

x2 + j y2

x2 − j y2

x2 − j y2
= (x1 + j y1)(x2 − j y2)

x2
2 + y2

2

The two constants, D1 and D2, are determined from the initial conditions as follows:

x(0) = 2 + D1 + D2 = 5

ẋ(0) = (−2D1e−2t − 5D2e−5t
)∣∣

t=0
= −2D1 − 5D2 = 3

The solution of these two equations is D1 = 6 and D2 = −3. Thus, the solution is

x(t) = 2 + 6e−2t − 3e−5t

The plot of this function is shown in Figure 3.1.2. The “hump” is caused by the positive value of
ẋ(0). Note that e−5t < 0.02 for t > 4/5. Thus the response is approximately given by x(t) = 2 +
6e−2t for t > 4/5. Because e−2t < 0.02 for t > 2, the response is essentially constant for t > 2.



palm-38591 book December 17, 2008 12:1

86 CHAPTER 3 Solution Methods for Dynamic Models

Figure 3.1.2 Response for
Example 3.1.2.
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Calculator Tip

Now is a good time to learn how to use your calculator to solve for polynomial roots. Determine
whether and how your calculator can find complex roots and determine how it expresses com-
plex numbers; for example, on some calculators the number 3 + 7 j is expressed as (3, 7). Try
calculating the roots of the following equations: s2 + 6s + 13 = 0 (Answer: s = −3 ± 2 j) and
s3 + 12s2 + 45s + 50 = 0 (Answer: s = −2, s = −5, and s = −5).

The trial solution x(t) = C + D1es1t + D2es2t always gives the correct solution of
the equation ẍ + aẋ + bx = c if b �= 0 and if the two characteristic roots are distinct.
Example 3.1.3 shows how repeated, real roots are handled.

EXAMPLE 3.1.3 Two Repeated, Real Roots

■ Problem
Use the trial-solution method to solve the following problem.

5ẍ + 20ẋ + 20x = 28 x(0) = 5 ẋ(0) = 8

■ Solution
If we substitute the trial-solution form

x(t) = C + Dest (1)

into the ODE and collect terms, we obtain(
5s2 + 20s + 20

)
Dest + 20C = 28

The only way this equation can be true is if C = 28/20 = 1.4 and 5s2 + 20s + 20 = 0. This
gives two identical roots, s = −2 and s = −2. The form given by equation (1) with C = 1.4 will
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solve the ODE with s = −2, but it cannot satisfy both initial conditions. Therefore, we need an
additional term with an arbitrary constant. From experience it has been found that when the roots
are identical (or repeated ), the appropriate trial-solution form is

x(t) = C + (D1 + D2t)es1t (2)

Substituting this form into the ODE and collecting terms gives

(
5s2

1 + 20s1 + 20
)

D1es1t + (
5s2

1 + 20s1 + 20
)

D2tes1t

+ (10s1 + 20)D2es1t + 20C = 28 (3)

Because s1 = −2, 5s2
1 + 20s1 + 20 = 0 and 10s1 + 20 = 0. Thus equation (3) is satisfied if C =

28/20 = 1.4. The solution is, therefore,

x(t) = 1.4 + (D1 + D2t)e−2t (4)

The two constants, D1 and D2, are determined from the initial conditions as follows:

x(0) = 1.4 + D1 = 5

ẋ(0) = [
D2e−2t − 2(D1 + D2t)e−2t

]∣∣
t=0

= D2 − 2D1 = 8

The solution of these two equations is D1 = 3.6 and D2 = 15.2. Thus the ODE solution is

x(t) = 1.4 + (3.6 + 15.2t)e−2t

The plot of this function is shown in Figure 3.1.3. The “hump” is caused by the positive value
of D2 along with the factor t that multiplies e−2t . For this model, a hump in the response will
occur whenever D2 > 0, even if ẋ(0) is zero or negative.
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Figure 3.1.3 Response for
Example 3.1.3.
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An exponential trial-solution form often leads to the correct answer, even though we
may want to express the final answer in a more convenient form. This situation occurs
when the roots are imaginary or complex, as illustrated by Examples 3.1.4 and 3.1.5.

EXAMPLE 3.1.4 Two Imaginary Roots

■ Problem
Use the trial-solution method to solve the following problem:

ẍ + 16x = 144 x(0) = 5 ẋ(0) = 12

■ Solution
Substituting x(t) = C + Dest into the ODE gives(

s2 + 16
)

Dest + 16C = 144

Thus C = 144/16 = 9 and s2 + 16 = 0, so the roots are s = ±4 j , where j = √−1. Because
two initial conditions must be satisfied, from Example 3.1.2 we know that the general solution
form is

x(t) = C + D1e4 j t + D2e−4 j t (1)

This solution is difficult to interpret until we use Euler’s identities (Table 3.1.2):

e4 j t = cos 4t + j sin 4t e−4 j t = cos 4t − j sin 4t

If we substitute these two identities into equation (1) and collect terms, we find that the solution
has the form

x(t) = C + (D1 + D2) cos 4t + j (D1 − D2) sin 4t (2)

Because x(t) must be real, this equation can be used to show that D1 and D2 must be complex
conjugates. Thus equation (2) reduces to

x(t) = C + B1 cos 4t + B2 sin 4t

Table 3.1.2 The exponential function.

Taylor series

ex = 1 + x + x2

2
+ x3

6
+ · · · + xn

n!
+ · · ·

Euler’s identities

e jθ = cos θ + j sin θ

e− jθ = cos θ − j sin θ

Limits
lim

x→∞
xe−x = 0 if x is real.

lim
t→∞

e−st = 0 if the real part of s is positive.

If a is real and positive,
e−at < 0.02 if t > 4/a.
e−at < 0.01 if t > 5/a.
The time constant is τ = 1/a.
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Figure 3.1.4 Response for
Example 3.1.4.

where B1 = D1+D2 and B2 = j (D1−D2) are real constants that depend on the initial conditions.
Evaluating x(t) and ẋ(t) at t = 0, we obtain

x(0) = C + B1 = 5 ẋ(0) = 4B2 = 12

or B1 = 5 − C = 5 − 9 = −4 and B2 = 3. Therefore, the solution is

x(t) = 9 + 3 sin 4t − 4 cos 4t

The plot of this function is shown in Figure 3.1.4. The response is a constant-amplitude oscil-
lation about the value x = 9. The radian frequency of oscillation is 4, which gives a period of
2π/4 = π/2.

Several examples in Chapter 2 resulted in equations of motion of the following form:

θ̈ + b sin θ = T (t)

If |θ | is small, then equations of this type can be solved by using the following approx-
imation to obtain a linear model: sin θ ≈ θ . The resulting model is

θ̈ + bθ = T (t)

and its characteristic roots are s = ± j
√

b. Therefore the solution will oscillate with a
radian frequency of

√
b.

Motion of a Robot-Arm Link EXAMPLE 3.1.5

■ Problem
In Example 2.3.5 in Chapter 2 we derived the equation of motion of a single link in a robot arm,
shown again in Figure 3.1.5. The equation is(

0.23 + 0.5mL2
)
θ̈ = Tm − 4.9mL sin θ
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Figure 3.1.5 A single link of a
robot arm.
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Solve this equation for the case where Tm = 0.5 N · m, m = 10 kg, and L = 0.3 m. Assume that
the system starts from rest at θ = 0 and that the angle θ remains small.

■ Solution
If |θ | is small, then sin θ ≈ θ and the equation of motion becomes(

0.23 + 0.5mL2
)
θ̈ = Tm − 4.9mLθ (1)

For the given values, the equation is

0.68θ̈ = 0.5 − 14.7θ

The characteristic equation is 0.68s2 + 14.7 = 0 and the roots are s = ±4.65 j . Following the
method of Example 3.1.4, we obtain the following solution:

θ(t) = 0.5

14.7
(1 − cos 4.65t) = 0.034(1 − cos 4.65t) (2)

Thus, the model predicts that the arm oscillates with a frequency of 4.65 rad/s about θ = 0.034
with an amplitude of 0.034 rad. To obtain the linear model (1), we used the approximation
sin θ ≈ θ . Therefore, before we accept the solution (2), we should check the validity of this
assumption. The maximum value that θ will reach is twice the amplitude, or 2(0.034)= 0.068 rad.
Therefore, because sin 0.068 = 0.068 to three decimal places, our assumption that sin θ ≈ θ is
justified.

Example 3.1.4 shows that when the roots are imaginary, the trial solution should
contain a sine and a cosine function. When the roots are complex, the sine and cosine
should be multiplied by an exponential. This is illustrated in Example 3.1.6.

EXAMPLE 3.1.6 Two Complex Roots

■ Problem
Use the trial-solution method to solve the following problem:

ẍ + 6ẋ + 34x = 68 x(0) = 5 ẋ(0) = 7

■ Solution
Substituting x(t) = C + Dest into the ODE gives(

s2 + 6s + 34
)

Dest + 34C = 68
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Figure 3.1.6 Response for
Example 3.1.6.

Thus C = 68/34 = 2 and s2 + 6s + 34 = 0, so the roots are s = −3 ± 5 j . Because two initial
conditions must be satisfied, from Example 3.1.4 we know that the solution form is

x(t) = C + D1e−3+5 j t + D2e−3−5 j t = C + e−3t
(

D1e5 j t + D2e−5 j t
)

From Example 3.1.4, we now know that the complex exponential terms within the parentheses
produce the following form:

x(t) = C + e−3t (B1 cos 5t + B2 sin 5t)

From the initial conditions,

x(0) = C + B1 = 5 ẋ(0) = −3B1 + 5B2 = 7

or B1 = 5 − C = 3 and B2 = 16/5. The solution is

x(t) = 2 + e−3t

(
3 cos 5t + 16

5
sin 5t

)

The plot of this function is shown in Figure 3.1.6. Note that although the solution contains a sine
and a cosine function, which oscillate, we do not observe many oscillations in the plot. This
is because the exponential e−3t , and thus the amplitude of the oscillations, decays to a very small
number before more than one oscillation can occur (e−3t < 0.02 for t > 4/3 = 1.33 and the
oscillation period is 2π/5 = 1.26).

SUMMARY OF THE TRIAL-SOLUTION METHOD

The examples of the trial-solution method were chosen to illustrate the solutions to the
most common differential equations encountered in system dynamics, namely, linear,
constant-coefficient equations, each with a constant on the right-hand side. We treated
two categories:

1. First-order equation: ẋ + ax = b a �= 0
2. Second-order equation: ẍ + aẋ + bx = c b �= 0
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Table 3.1.3 Solution forms.

Equation Solution form

First order: ẋ + ax = b a �= 0 x(t) = b

a
+ Ce−at

Second order: ẍ + aẋ + bx = c b �= 0

1. (a2 > 4b) distinct, real roots: s1, s2 x(t) = C1es1t + C2es2t + c

b

2. (a2 = 4b) repeated, real roots: s1, s1 x(t) = (C1 + tC2)e
s1t + c

b

3. (a = 0, b > 0) imaginary roots: s = ± jω, x(t) = C1 sin ωt + C2 cos ωt + c

b
ω = √

b

4. (a �= 0, a2 < 4b) complex roots: s = σ ± jω, x(t) = eσ t (C1 sin ωt + C2 cos ωt) + c

b
σ = −a/2, ω = √

4b − a2/2

The solution form for each case is given in Table 3.1.3. Note that the solution for the
second-order case can have one of four possible forms, depending on the nature of the
two roots. The case with imaginary roots is actually a special case of complex roots
where the real part is zero. Table 3.1.3 does not give formulas for the undetermined
constants in the solution, because often all we require is the general form of the solution.
To determine the values of these constants, you must be given the initial conditions.

ASSESSMENT OF SOLUTION BEHAVIOR

Note that the characteristic equation can be quickly identified from the ODE by replac-
ing ẋ with s, ẍ with s2, and so forth. For example, 3ẍ + 30ẋ + 222x = 148 has the
characteristic equation 3s2 + 30s + 222 = 0 and the roots s = −5 ± 7 j . This is case
4 in Table 3.1.3, and the solution form is (since 148/222 = 2/3)

x(t) = e−5t(C1 sin 7t + C2 cos 7t) + 2

3
From this form we can tell that the solution will oscillate with a radian frequency of 7.
The oscillations will eventually disappear because of the exponential term e−5t , which
is less than 0.02 for t > 4/5. Thus, as t → ∞, x(t) → 2/3. Sometimes this is all the
information we need about the solution, and if so, we need not evaluate the constants C1

and C2.
The trial-solution method works well when the right-hand side of the equation is

constant. However, as we will discover, there are important applications where the right-
hand side is a function of time, such as t , t2, sin t , and so forth. For such applications, a
set of trial-solution forms can be developed, but a more systematic and general method
is provided by the Laplace transform, which is the subject of Section 3.3.

3.2 RESPONSE TYPES AND STABILITY
The solution of ẋ + ax = b given by (3.1.3) is

x(t) = b

a︸︷︷︸
steady state

+
[

x(0) − b

a

]
e−at

︸ ︷︷ ︸
transient

(3.2.1)

Note that the solution consists of two parts, one that disappears with time due to the e−at

term, and one that remains. These terms are called the transient and the steady-state
responses, respectively. Both responses need not occur; it is possible to have one without
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the other. For example, there is no transient response in the preceding solution if x(0) =
b/a, and there is no steady-state response if b = 0. The complete or total response is
the sum of the transient and steady-state responses. This property of linear differential
equations, called superposition, is a useful property, as we will see in our later studies.

The solution (3.1.3) can also be rearranged as follows:

x(t) = x(0)e−at︸ ︷︷ ︸
free

+ b

a

(
1 − e−at)

︸ ︷︷ ︸
forced

(3.2.2)

The first part of the solution depends on the initial condition x(0) and is called the free
response, because it describes the system’s behavior when it is “free” of the externally
applied input. The second part depends on the input b and is called the forced response.
Both responses need not occur; it is possible to have one without the other. For example,
there is no free response if the initial conditions are zero, and there is no forced response
if there is no input.

It is extremely useful to distinguish between the free and the forced responses
because this separation enables us to focus on the effects of the input by temporarily
setting the initial conditions to zero and concentrating on the forced response. When
we have finished analyzing the forced response we can obtain the complete response
by adding the free response to the forced response. This separation is possible because
of the superposition property.

THE TIME CONSTANT

The free response of the first-order model may be written in the form

x(t) = x(0)e−at = x(0)e−t/τ (3.2.3)

where we have introduced a new parameter τ with the definition

τ = 1

a
if a > 0 (3.2.4)

The equation ẋ + ax = b may be expressed in terms of τ by replacing a with 1/τ as
follows.

τ ẋ + x = bτ (3.2.5)

The new parameter τ has units of time and is the model’s time constant. It gives a
convenient measure of the exponential decay curve and an estimate of how long it will
take for the transient response to disappear, leaving only the steady-state response. The
free response and the meaning of the time constant are illustrated in Figure 3.2.1. After
a time equal to one time constant has elapsed, x has decayed to 37% of its initial value.
We can also say that x has decayed by 63%. At t = 4τ , x(t) has decayed to 2% of its
initial value. At t = 5τ , x(t) has decayed to 1% of its initial value. The time constant
is defined only when a > 0. If a ≤ 0 the free response does not decay to 0 and thus the
time constant has no meaning.

The time constant is useful also for analyzing the response when the forcing func-
tion is a constant. We can express the total response given by form (3.2.1) in terms of
τ by substituting a = 1/τ as follows.

x(t) = bτ︸︷︷︸
steady state

+ [x(0) − bτ ] e−t/τ︸ ︷︷ ︸
transient

= xss + [x(0) − xss] e−t/τ (3.2.6)
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Figure 3.2.1 The free
response x(t) = x(0)e−t/τ .

0 1 2 3 4 5
0

t/τ

x(
t)

x(0)

0.37x(0)

0.02x(0)

Figure 3.2.2 The step
response x(t) = xss (1 − e−t/τ ).
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t/τ

x(
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xss

0.63xss

0.98xss

Slope = xss/τ

where xss = b/a = bτ , which is the steady-state response. The response approaches
the constant value bτ as t → ∞. The forced response (for which x(0) = 0) is plotted
in Figure 3.2.2. At t = τ , the response is 63% of the steady-state value. At t = 4τ ,
the response is 98% of the steady-state value, and at t = 5τ , it is 99% of steady-state.
Thus, because the difference between 98% and 99% is so small, for most engineering
purposes we may say that x(t) reaches steady-state at t = 4τ , although mathematically,
steady-state is not reached until t = ∞.

If x(0) �= 0, the response is shifted by x(0)e−t/τ . At t = τ , 37% of the difference
between the initial value x(0) and the steady-state value remains. At t = 4τ , only 2%
of this difference remains.
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Responses for Second-Order, Distinct Roots EXAMPLE 3.2.1

■ Problem
Identify the transient, steady-state, free, and forced responses of the following equation, whose
characteristic roots are −2 and −5:

ẍ + 7ẋ + 10x = c

■ Solution
Following the procedure used in Example 3.1.2, we see that the solution form is

x(t) = c

10︸︷︷︸
steady state

+ D1e−2t + D2e−5t︸ ︷︷ ︸
transient

(1)

where we have identified the transient and steady-state solutions. Because of the e−2t and e−5t

terms, the transient response eventually disappears as t increases. The coefficients D1 and D2

can be found in terms of arbitrary initial conditions in the usual way:

D1 = 5

3
x(0) + 1

3
ẋ(0) − c

6
D2 = −2

3
x(0) − 1

3
ẋ(0) + c

15

Substituting these expressions into equation (1) and isolating the initial conditions gives

x(t) =
[

5

3
x(0) + 1

3
ẋ(0)

]
e−2t +

[
−2

3
x(0) − 1

3
ẋ(0)

]
e−5t

︸ ︷︷ ︸
free

+ c

(
1

10
− 1

6
e−2t + 1

15
e−5t

)
︸ ︷︷ ︸

forced

Note that if the initial conditions are zero, the solution consists of only the forced response. If
the input c is zero, the solution consists of only the free response.

THE DOMINANT-ROOT APPROXIMATION

The time constant concept is not limited to first-order models. It can also be used to
estimate the response time of higher-order models. In Example 3.2.1, the two roots are
−2 and −5. They generate the exponentials e−2t and e−5t in the response. Because
e−5t decays to 0 faster than e−2t , the term D2e−5t will disappear faster than the term
D1e−2t , provided that |D2| is not much greater than |D1|. The time constant of the root
−5 is τ1 = 1/5, and thus the term D2e−5t will be essentially 0 for t > 4τ1 = 4/5.
Thus, for t > 4/5, the response from equation (1) of the example is essentially given
by x(t) = c/10 + D1e−2t . The root −2 is said to be the dominant root because it
dominates the response relative to the term D2e−5t , and the time constant τ2 = 1/2 is
said to be the dominant time constant. We can estimate how long it will take for the
transient response to disappear by multiplying the dominant time constant by 4. Here
the answer is t = 4/2 = 2.

We cannot make exact predictions based on the dominant root because the initial
conditions that determine the values of D1 and D2 can be such that |D2| >> |D1|, so that
the second exponential influences the response for longer than expected. The dominant
root approximation, however, is often used to obtain a quick estimate of response time.
The farther away the dominant root is from the other roots (the “secondary” roots), the
better the approximation.
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The dominant-root approximation can be applied to higher-order models. If all the
roots have negative real parts (some roots may be complex), the dominant root is the
one having the largest time constant, and the time it will take the transient response to
disappear can be estimated by multiplying the dominant time constant by 4.

EXAMPLE 3.2.2 Responses for Second-Order, Complex Roots

■ Problem
Identify the transient, steady-state, free, and forced responses of the following equation, whose
characteristic roots are −3 ± 5 j :

ẍ + 6ẋ + 34x = c

■ Solution
Following the procedure used in Example 3.1.6, we see that the solution form is

x(t) = c

34︸︷︷︸
steady state

+ e−3t (B1 cos 5t + B2 sin 5t)︸ ︷︷ ︸
transient

(1)

where we have identified the transient and steady-state solutions. Because of the e−3t term, the
transient response, which is oscillatory, eventually disappears as t increases. The coefficients B1

and B2 can be found in terms of arbitrary initial conditions in the usual way.

B1 = x(0) − c

34
B2 = 34ẋ(0) + 102x(0) − 3c

170

Substituting these expressions into equation (1) and isolating the initial conditions gives

x(t) = x(0)e−3t cos 5t + ẋ(0) + 3x(0)

5
e−3t sin 5t︸ ︷︷ ︸

free

+ c

34

(
1 − e−3t cos 5t − 3

5
e−3t sin 5t

)
︸ ︷︷ ︸

forced

If the initial conditions are zero, the solution consists of only the forced response. If the input c
is zero, the solution consists of only the free response.

TIME CONSTANTS AND COMPLEX ROOTS

The model in Example 3.2.2 has complex roots: −3 ± 5 j . These lead to the term e−3t

in the response. Thus we may apply the concept of a time constant to complex roots by
computing the time constant from the negative inverse of the real part of the roots. Here
the model’s time constant is τ = 1/3, and thus the response is essentially at steady
state for t > 4τ = 4/3. Since complex roots occur only in conjugate pairs, each pair
has the same time constant.

EXAMPLE 3.2.3 Responses for Second-Order, Imaginary Roots

■ Problem
Identify the transient, steady-state, free, and forced responses of the following equation, whose
characteristic roots are ±4 j :

ẍ + 16x = c
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■ Solution
Following the procedure used in Example 3.1.6, we see that the solution form is

x(t) = c

16
+ B1 cos 4t + B2 sin 4t︸ ︷︷ ︸

steady state

Because there are no terms that disappear as t → ∞, there is no transient response. Note that
part of the steady-state response is oscillatory. This example shows that the steady-state response
need not be constant.

To identify the free and forced responses, we must obtain the expressions for B1 and B2

as functions of the initial conditions. These are B1 = x(0) − c/16 and B2 = ẋ(0)/4. Thus the
solution can be expressed as

x(t) = x(0) cos 4t + ẋ(0)

4
sin 4t︸ ︷︷ ︸

free

+ c

16
(1 − cos 4t)︸ ︷︷ ︸

forced

Since the roots here have no real part, no time constant is defined for this model. This makes
sense because there is no transient response here.

To summarize, we can separate the total response as follows:

1. Transient Response The part of the response that disappears with time.
2. Steady-State Response The part of the response that remains with time.
3. Free Response The part of the response that depends on the initial conditions.
4. Forced Response The part of the response due to the forcing function.

STABILITY

We have seen free responses that approach 0 as t → ∞. We have also seen free responses
that approach a constant-amplitude oscillation as t → ∞. The free response may also
approach ∞. For example, the model ẋ = 2x has the free response x(t) = x(0)e2t and
thus x → ∞ as t → ∞.

Let us define some terms.

Unstable A model whose free response approaches∞ as t → ∞ is said to be unstable.

Stable If the free response approaches 0, the model is stable.

Neutral Stability The borderline case between stable and unstable. Neutral stabil-
ity describes a situation where the free response does not approach ∞ but does not
approach 0.

The stability properties of a linear model are determined from its characteristic
roots. To understand the relationship between stability and the characteristic roots,
consider some simple examples.

The first-order model ẋ + ax = f (t) has the free response x(t) = x(0)e−at , which
approaches 0 as t → ∞ if the characteristic root s = −a is negative. The model is
unstable if the root is positive because x(t) → ∞ as t → ∞.

A borderline case, called neutral stability, occurs if the root is 0. In this case x(t)
remains at x(0). Neutral stability describes a situation where the free response does not
approach ∞ but does not approach 0.

Now consider the following second-order models, which have the same initial
conditions: x(0) = 1 and ẋ(0) = 0. Their responses are shown in Figure 3.2.3.
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Figure 3.2.3 Examples of
unstable and neutrally stable
models.
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1. The model ẍ − 4x = f (t) has the roots s = ±2, and the free response:

x(t) = 1

2

(
e2t + e−2t)

2. The model ẍ − 4ẋ + 229x = f (t) has the roots s = 2 ± 15 j , and the free
response:

x(t) = e2t
(

cos 15t − 2

15
sin 15t

)
3. The model ẍ + 256x = f (t) has the roots s = ±16 j , and the free response:

x(t) = cos 16t

From the plots we can see that none of the three models displays stable behavior. The
first and second models are unstable, while the third is neutrally stable. Thus, the free
response of a neutrally stable model can either approach a nonzero constant or settle
down to a constant amplitude oscillation.

The effect of the real part of the characteristic roots can be seen from the free
response form for the complex roots σ ± ω j (entry 4 in Table 3.1.3, with c = 0):

x(t) = eσ t(C1 sin ωt + C2 cos ωt)

Clearly, if the real part is positive (that is, if σ > 0), then the exponential eσ t will grow
with time and so will the amplitude of the oscillations. This is an unstable case.

If the real part is 0 (that is, σ = 0), then the exponential becomes e0t = 1, and the
amplitude of the oscillations remains constant. This is the neutrally stable case. The
imaginary part of the root is the frequency of oscillation; it has no effect on stability.

Model 1 is unstable because of the exponential e2t , which is due to the positive root
s = +2. The negative root s = −2 does not cause instability because its exponential
disappears in time.

If we realize that a real number is simply a special case of a complex number
whose imaginary part is 0, then these examples show that a linear model is unstable if
at least one root has a positive real part. We will see that the free response of any linear,



palm-38591 book December 17, 2008 12:1

3.2 Response Types and Stability 99

constant-coefficient model, of any order, consists of a sum of terms, each multiplied by
an exponential. Each exponential will approach ∞ as t → ∞, if its corresponding root
has a positive real part. Thus we can make the following statement about linear models.

Stability Test for Linear Constant-Coefficient Models

A constant-coefficient linear model is stable if and only if all of its characteristic roots
have negative real parts.

The model is neutrally stable if one or more roots have a zero real part, and the remaining
roots have negative real parts.

The model is unstable if any root has a positive real part.

If a linear model is stable, then it not possible to find a set of initial conditions for
which the free response approaches ∞ as t → ∞. However, if the model is unstable,
there might still be certain initial conditions that result in a response that disappears in
time. For example, the model ẍ − 4x = 0 has the roots s = ±2, and thus is unstable.
However, if the initial conditions are x(0) = 1 and ẋ(0) = −2, then the free response is
x(t) = e−2t , which approaches 0 as t → ∞. Note that the exponential e2t corresponding
to the root at s = +2 does not appear in the response because of the special nature of
these initial conditions.

Because the time constant is a measure of how long it takes for the exponential
terms in the response to disappear, we see that the time constant is not defined for
neutrally stable and unstable cases.

A PHYSICAL EXAMPLE

A physical example illustrating the meaning of stability is shown in Figure 3.2.4.
Suppose that there is some slight viscous friction in the pivot point of the pendulum.
In part (a) the pendulum is hanging and is at rest at θ = 0. If something disturbs it
slightly, it will oscillate about θ = 0 and eventually return to rest at θ = 0. We thus see
that the system is stable. As we will see in Chapter 4, its equation of motion for small
θ is mL2θ̈ + cθ̇ + mgLθ = 0. Its roots are

s = −c ± √
c2 − 4m2L3g

2mL2

If c is positive and small but nonzero, these roots will be complex with a negative
real part, and the pendulum will oscillate before coming to rest. If c is large enough,
these roots will be real and negative, and the pendulum will not oscillate before coming

�

�

L

L

(a) (b)

m

m
Figure 3.2.4 Pendulum
illustration of stability
properties.
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to rest. In both cases, however, the system is stable because the pendulum eventually
returns to its rest position at θ = 0.

Now suppose that c = 0. The roots will be imaginary, and the pendulum therefore
will oscillate forever about θ = 0 if disturbed. This is an example of neutral stability.

If the pendulum is perfectly balanced at θ = π , as in Figure 3.2.4b, it will never
return to θ = π if it is disturbed. So, this is a case of an unstable system. The equation
of motion for this case, for θ near π , is mL2θ̈ + cθ̇ − mgLθ = 0. Its roots are

s = −c ± √
c2 + 4m2L3g

2mL2

Because of the + sign under the square root, we can see that the roots will be real and
positive. Thus the pendulum will not oscillate about θ = π but will continue to fall
away if disturbed. In this case, the system is unstable. Because the model is based on
the assumption that θ is close to π , we cannot draw any conclusions from the model
regarding the behavior when θ is not near π .

THE ROUTH-HURWITZ CONDITION

The characteristic equation of many systems has the form ms2 + cs + k = 0. A simple
criterion exists for quickly determining the stability of such a system. This is proved
in homework problem 3.6. The condition states that the second-order system whose
characteristic polynomial is ms2 + cs + k is stable if and only if m, c, and k have the
same sign. This requirement is called the Routh-Hurwitz condition.

STABILITY AND EQUILIBRIUM

An equilibrium is a state of no change. The pendulum in Figure 3.2.4 is in equilibrium at
θ = 0 and when perfectly balanced at θ = π . The equilibrium at θ = 0 is stable, while
the equilibrium at θ = π is unstable. From this we see that the same physical system
can have different stability characteristics at different equilibria. So we see that stability
is not a property of the system alone, but is a property of a specific equilibrium of the
system. When we speak of the stability properties of a model, we are actually speaking
of the stability properties of the specific equilibrium on which the model is based.

Figure 3.2.5 shows a ball on a surface that has a valley and a hill. The bottom of the
valley is an equilibrium, and if the ball is displaced slightly from this position, it will
oscillate forever about the bottom if there is no friction. In this case, the equilibrium is
neutrally stable. The ball, however, will return to the bottom if friction is present, and
the equilibrium is stable in this case.

If we displace the ball so much to the left that it lies outside the valley, it will never
return. Thus, if friction is present, we say that the valley equilibrium is locally stable
but globally unstable. An equilibrium is globally stable only if the system returns to it
for any initial displacement.

Figure 3.2.5 Surface
illustration of stability
properties.

Valley
equilibrium

Hill
equilibrium
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The equilibrium on the hilltop is globally unstable because, if displaced, the ball
will continue to roll down the hill.

For linear models, stability analysis using the characteristic roots gives global
stability information. However, for nonlinear models, linearization about an equilibrium
gives us only local stability information.

3.3 THE LAPLACE TRANSFORM METHOD
The Laplace transform provides a systematic and general method for solving linear
ODEs, and is especially useful either for nonhomogeneous equations whose right-hand
side is a function of time or for sets of equations. Another advantage is that the trans-
form converts linear differential equations into algebraic relations that can be handled
easily.

Although named after Laplace, the transform actually is based on the work of
Léonard Euler, from 1763, for solving second-order linear ODEs. The Laplace trans-
form L[x(t)] of a function x(t) is defined as follows.

L[x(t)] = lim
T →∞

[ ∫ T

0
x(t)e−st dt

]
(3.3.1)

but is usually expressed more compactly as

L[x(t)] =
∫ ∞

0
x(t)e−st dt (3.3.2)

The variable of integration, t , is arbitrary, and the transform is a function of the parameter
s, which is a complex number. This definition is the so-called one-sided transform,
which is used in applications where the variable x(t) is zero for t < 0. In our applications
we will always assume that this is true.

A simpler notation for the transform uses the uppercase symbol to represent the
transform of the corresponding lowercase symbol; that is,

X (s) = L[x(t)] (3.3.3)

The process of determining the time function x(t) whose transform is X (s) is de-
noted by

x(t) = L−1[X (s)]

where the symbol L−1 denotes the inverse transform.
When the limit in (3.3.1) is not finite, there is no Laplace transform defined for

x(t). For many common functions, we can choose s to obtain a finite limit. In prac-
tice, however, when solving ODEs, we need not be concerned with the choice for s,
because the transforms of common functions that have transforms have been derived
and tabulated. Table 3.3.1 is a table of commonly needed transforms.

For some relatively simple functions either the Laplace transform does not exist
(such as for et2

and 1/t), or it cannot be represented as an algebraic expression (such as
for 1/(t + a)). In the latter case, the integral must be represented as an infinite series,
which is not very useful for our purposes.

The Laplace transform of a function x(t) exists for all s > γ if x(t) is piecewise con-
tinuous on every finite interval in the range t ≥ 0 and satisfies the relation |x(t)| ≤ Meγ t



palm-38591 book December 17, 2008 12:1

102 CHAPTER 3 Solution Methods for Dynamic Models

Table 3.3.1 Table of Laplace transform pairs.

X (s) x( t), t ≥ 0

1. 1 δ(t), unit impulse

2.
1

s
us(t), unit step

3.
c

s
constant, c

4.
e−s D

s
us(t − D), shifted unit step

5.
n!

sn+1
tn

6.
1

s + a
e−at

7.
1

(s + a)n

1

(n − 1)!
tn−1e−at

8.
b

s2 + b2
sin bt

9.
s

s2 + b2
cos bt

10.
b

(s + a)2 + b2
e−at sin bt

11.
s + a

(s + a)2 + b2
e−at cos bt

12.
a

s(s + a)
1 − e−at

13.
1

(s + a)(s + b)

1

b − a

(
e−at − e−bt

)
14.

s + p

(s + a)(s + b)

1

b − a

[
(p − a)e−at − (p − b)e−bt

]
15.

1

(s + a)(s + b)(s + c)

e−at

(b − a)(c − a)
+ e−bt

(c − b)(a − b)
+ e−ct

(a − c)(b − c)

16.
s + p

(s + a)(s + b)(s + c)

(p − a)e−at

(b − a)(c − a)
+ (p − b)e−bt

(c − b)(a − b)
+ (p − c)e−ct

(a − c)(b − c)

for all t ≥ 0 and for some constants γ and M [Kreyzig, 2006]. These conditions are
sufficient but not necessary. For example, the function 1/

√
t is infinite at t = 0 but it

has a transform, which is
√

π/s.
The inverse Laplace transform L−1[X (s)] is that time function x(t) whose trans-

form is X (s); that is, x(t) =L−1[X (s)]. It can be shown that if two continuous functions
have the same transform, then the functions are identical. This is of practical significance
because we will need to find the function x(t), given X (s).

TRANSFORMS OF COMMON FUNCTIONS

We now derive a few transforms to develop an understanding of the method. Remember
that because the lower limit in the transform definition is t = 0, the behavior of the
function x(t) for t < 0 is irrelevant to finding the transform.
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Transform of a Constant EXAMPLE 3.3.1

■ Problem
Suppose x(t) = c, a constant, for t ≥ 0. Determine its Laplace transform.

■ Solution
From the transform definition, we have

L[x(t)] = lim
T →∞

(∫ T

0
ce−st dt

)
= c lim

T →∞

(∫ T

0
e−st dt

)
or

L(c) = c lim
T →∞

(
1

−s
e−st

∣∣∣∣
T

0

)
= c lim

T →∞

(
1

−s
e−sT + 1

s
e0

)
= c

s

where we have assumed that the real part of s is greater than zero, so that the limit of e−sT exists
as T → ∞. Thus the transform of a constant c is c/s.

The Step Function The step function is so named because its shape resembles a stair
step (see Figure 3.3.1). If height of the step is 1, the function is called the unit-step
function, denoted by us(t). It is defined as

us(t) =
{

0 t < 0
1 t > 0

and is undefined and discontinuous at t = 0.

Figure 3.3.1 The unit-step
function.

1

us(t)

tSuppose the function x(t) is zero for t < 0 and a nonzero constant, say M , for
t > 0. Then we can express it as x(t) = Mus(t). The value of M is the magnitude of
the step function; if M = 1, the function is the unit step function. From the results of
Example 3.3.1, we can easily see that the Laplace transform of x(t) = Mus(t) is M /s.

The Exponential Function EXAMPLE 3.3.2

■ Problem
Derive the Laplace transform of the exponential function x(t) = e−at , where a is a constant.

■ Solution
From the transform definition, we have

L
(
e−at

) = lim
T →∞

(∫ T

0
e−at e−st dt

)
= lim

T →∞

(∫ T

0
e−(s+a)t dt

)
or

L
(
e−at

) = lim
T →∞

[
1

−(s + a)
e−(s+a)t

∣∣∣∣
T

0

]
= 1

s + a

THE LINEARITY PROPERTY

The Laplace transform is a definite integral, and thus it has the properties of such in-
tegrals (Table 3.3.2). For example, a multiplicative constant can be factored out of the
integral, and the integral of a sum equals the sum of the integrals. These facts lead to the
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Table 3.3.2 Properties of the Laplace transform.

x( t) X (s) = ∫ ∞
0

f ( t)e−st d t

1. a f (t) + bg(t) aF(s) + bG(s)

2.
dx

dt
s X (s) − x(0)

3.
d2x

dt2
s2 X (s) − sx(0) − ẋ(0)

4.
dn x

dtn
sn X (s) −

n∑
k=1

sn−k gk−1

gk−1 = dk−1x

dtk−1

∣∣∣∣
t=0

5.

∫ t

0

x(t) dt
X (s)

s
+ g(0)

s

g(0) =
∫

x(t) dt

∣∣∣∣
t=0

6. x(t) =
{

0 t < D
g(t − D) t ≥ D

= us(t − D)g(t − D) X (s) = e−s DG(s)

7. e−at x(t) X (s + a)

8. t x(t) −d X (s)

ds
9. x(∞) = lim

s→0
s X (s)

10. x(0+) = lim
s→∞

s X (s)

linearity property of the transform; namely, for the functions f (t) and g(t), if a and b
are constants, then

L[a f (t) + bg(t)] = aL[ f (t)] + bL[g(t)] = aF(s) + bG(s)

One use of the linearity property is to determine transforms of functions that are linear
combinations of functions whose transforms are already known. For example, if x(t) =
6 + 4e−3t , its transform is

X (s) = 6

s
+ 4

s + 3
= 10s + 18

s(s + 3)

The inverse transform also has the linearity property, so that

L−1[aF(s) + bG(s)] = aL−1[F(s)] + bL−1[G(s)] = a f (t) + bg(t)

We can often avoid the integration operations by using the linearity property and
suitable identities, as shown in Example 3.3.3.

EXAMPLE 3.3.3 The Sine and Cosine Functions

■ Problem
Derive the Laplace transforms of the exponentially decaying sine and cosine functions, e−at sin ωt
and e−at cos ωt , where a and ω are constants.
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■ Solution
Note that from the Euler identity, e jθ = cos θ + j sin θ , with θ = ωt , we have

e−at (cos ωt + j sin ωt) = e−at e jωt = e−(a− jω)t (1)

Thus the real part of e−(a− jω)t is e−at cos ωt and the imaginary part is e−at sin ωt . However, from
the result of Example 3.3.2, with a replaced by a − jω, we have

L
[
e−(a− jω)t

] = 1

s + a − jω
(2)

In this form, we cannot identify the real and imaginary parts. To do so we multiply the num-
erator and denominator by the complex conjugate of the denominator and use the fact that
(x − j y)(x + j y) = x2 + y2 (see Table 3.1.1); that is,

1

x − j y
= x + j y

(x − j y)(x + j y)
= x + j y

x2 + y2

Thus with x = s + a and y = ω, equation (2) becomes

L
[
e−(a− jω)t

] = 1

s + a − jω
= s + a + jω

(s + a − jω)(s + a + jω)

= s + a + jω

(s + a)2 + ω2
= s + a

(s + a)2 + ω2
+ j

ω

(s + a)2 + ω2

From equation (1) we see that the real part of this expression is the transform of e−at cos ωt and
the imaginary part is the transform of e−at sin ωt . Therefore,

L
(
e−at cos ωt

) = s + a

(s + a)2 + ω2

and

L
(
e−at sin ωt

) = ω

(s + a)2 + ω2

Note that the transforms of the sine and cosine can be obtained by letting a = 0. Thus

L(cos ωt) = s

s2 + ω2
and L(sin ωt) = ω

s2 + ω2

Another property of the Laplace transform is called shifting along the s-axis or
multiplication by an exponential. This property states that

L
[
e−at x(t)

] = X (s + a) (3.3.4)

To derive this property, note that

L
[
e−at x(t)

] =
∫ ∞

0
e−at x(t)e−st dt =

∫ ∞

0
x(t)e−(s+a)t dt

= X (s + a)
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EXAMPLE 3.3.4 The Function te−at

■ Problem
Derive the Laplace transform of the function te−at .

■ Solution
Here the function x(t) is t , X (s) = 1/s2, and thus from (3.3.4),

L
[
e−at x(t)

] = L
(
te−at

) = 1

s2

∣∣∣∣
s→s+a

= 1

(s + a)2

Another property is multiplication by t . It states that

L[t x(t)] = −d X (s)

ds
(3.3.5)

To derive this property, note that

d

ds
X (s) = d

ds

[∫ ∞

0
x(t)e−st dt

]
= −

∫ ∞

0
t x(t)e−st dt = −L[t x(t)]

EXAMPLE 3.3.5 The Function t cos ωt

■ Problem
Derive the Laplace transform of the function t cos ωt .

■ Solution
Here the function x(t) is cos ωt , X (s) = s/(s2 + ω2), and thus from (3.3.5),

L[t x(t)] = L(t cos ωt) = − d

ds

(
s

s2 + ω2

)
= s2 − ω2

(s2 + ω2)2

EXAMPLE 3.3.6 The Shifted Step Function

■ Problem
If the discontinuity in the unit-step function occurs at t = D, Figure 3.3.2, then the function
x(t) = Mus(t − D) is 0 for t < D and M for t > D. The function us(t − D) is called the shifted
step function. Determine X (s).

■ Solution
From the transform definition, we have

L[x(t)] = lim
T →∞

[∫ T

0
Mus(t − D)e−st dt

]
= lim

T →∞

(∫ D

0
0e−st dt +

∫ T

D
Me−st dt

)

Figure 3.3.2 Shifted step
function.

M

Mus(t � D)

D t
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or

L[x(t)] = 0 + M lim
T →∞

(
1

−s
e−st

∣∣∣∣
T

D

)
= M lim

T →∞

(
1

−s
e−sT + 1

s
e−s D

)
= M

s
e−s D

Thus the transform of the shifted unit-step function us(t − D) is e−s D/s.

Example 3.3.6 introduces a property of the transform called shifting along the t-
axis. From this example, we see that the effect of the time shift D is to multiply the
transform of the unshifted function by e−s D . This illustrates the time-shifting property,
which states that if

x(t) =
{

0 t < D
g(t − D) t > D

then X (s) = e−s DG(s).

The Rectangular Pulse Function EXAMPLE 3.3.7

■ Problem
The rectangular pulse function P(t) is shown in Figure 3.3.3a. Derive the Laplace transform
of this function (a) from the basic definition of the transform and (b) from the time-shifting
property.

■ Solution
a. From the definition of the transform,

L[P(t)] =
∫ ∞

0
P(t)e−st dt =

∫ D

0
1e−st dt +

∫ ∞

D
0e−st dt =

∫ D

0
1e−st dt

= e−st

−s

∣∣∣∣
D

0

= 1

s

(
1 − e−s D

)
b. Figure 3.3.3b shows that the pulse can be considered to be composed of the sum of a

unit-step function and a shifted, negative unit-step function. Thus, P(t) = us(t) −
us(t − D) and from the time-shifting property,

P(s) = L[us(t)] − L[us(t − D)] = 1

s
− e−s D 1

s
= 1

s

(
1 − e−s D

)
which is the same result obtained in part (a)

D

(a)

1
us(t)

�us(t � D)
�1

(b)

1

P(t)

t t

Figure 3.3.3 (a) Rectangular
pulse function. (b) Rectangular
pulse composed of two step
functions.
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THE DERIVATIVE PROPERTY

To use the Laplace transform to solve differential equations, we will need to obtain
the transforms of derivatives. Applying integration by parts to the definition of the
transform, we obtain

L
(

dx

dt

)
=

∫ ∞

0

dx

dt
e−st dt = x(t)e−st

∣∣∞
0 + s

∫ ∞

0
x(t)e−st dt

= sL[x(t)] − x(0) = s X (s) − x(0) (3.3.6)

This procedure can be extended to higher derivatives. For example, the result for the
second derivative is

L
(

d2x

dt2

)
= s2 X (s) − sx(0) − ẋ(0) (3.3.7)

The general result for any order derivative is given in Table 3.3.2.

THE INITIAL VALUE THEOREM

Sometimes we will need to find the value of the function x(t) at t = 0+ (a time in-
finitesimally greater than 0), given the transform X (s). The answer can be obtained
with the initial value theorem, which states that

x(0+) = lim
t→0+

x(t) = lim
s→∞[s X (s)] (3.3.8)

The conditions for which the theorem is valid are that the latter limit exists and that the
transforms of x(t) and dx/dt exist. If X (s) is a rational function and if the degree of
the numerator of X (s) is less than the degree of the denominator, then the theorem will
give a finite value for x(0+). If the degrees are equal, then the initial value is undefined
and the initial value theorem is invalid (see Section 3.6 for a discussion of this case).
The proof of the theorem is obtained in Problem 3.43.

For the transform

X (s) = 7s + 2

s(s + 6)

the theorem gives

x(0+) = lim
s→∞

7s + 2

s + 6
= 7

This is confirmed by evaluating the inverse transform, x(t) = 1/3 + (20/3)e−6t . (We
state the inverse transform here for illustrative purposes only; normally we apply the
theorem in situations where the inverse transform is not convenient to obtain.)

We will see important applications of this theorem in Section 3.6.

THE FINAL VALUE THEOREM

To find the limit of the function x(t) as t → ∞, we can use the final value theorem. The
theorem states that

f (∞) = lim
t→∞ x(t) = lim

s→0
s F(s) (3.3.9)
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The theorem is true if the following conditions are satisfied. The functions x(t) and
dx/dt must possess Laplace transforms, and x(t) must approach a constant value as
t → ∞. The latter condition will be satisfied if all the roots of the denominator of s X (s)
have negative real parts. The proof of the theorem is obtained in Problem 3.44.

For example, if X (s) = 1/s, which corresponds to x(t) = 1, then

lim
s→0

s X (s) = lim
s→0

s
1

s
= 1

which is correct. (We state the inverse transform here for illustrative purposes only; nor-
mally we apply the theorem in situations where the inverse transform is not convenient
to obtain.)

As another example, if

X (s) = 7

(s + 4)2 + 49

then

lim
s→0

s X (s) = lim
s→0

7s

(s + 4)2 + 49
= 0

which is correct [X (s) has the inverse transform x(t) = e−4t sin 7t].
The function x(t) will approach a constant value if all the roots of the denominator

of s X (s) have negative real parts. Thus a common situation in which the theorem does
not apply is a periodic function. For example, if x(t) = sin 5t , then X (s) = 5/(s2+25),
and

lim
s→0

s X (s) = lim
s→0

5s

s2 + 25
= 0

Thus the limit exists but the result is incorrect, because x(t) continually oscillates and
therefore does not approach a constant value.

The theorem is not applicable to the transform

X (s) = 9s + 2

s(s − 8)

because, after the s terms are canceled, the denominator of s X (s) is s − 8, which has
the positive root s = 8. Therefore x(t) does not approach a constant value as t → ∞
[this can be observed from the inverse transform, which is x(t) = −1/4 + (37/4)e8t ].

SOLVING EQUATIONS WITH THE LAPLACE TRANSFORM

We now show how to solve differential equations by using the Laplace transform.
Consider the linear first-order equation

ẋ + ax = f (t) (3.3.10)

where f (t) is the input and a is a constant. If we multiply both sides of the equation
by e−st and then integrate over time from t = 0 to t = ∞, we obtain∫ ∞

0
(ẋ + ax) e−st dt =

∫ ∞

0
f (t)e−st dt

or

L(ẋ + ax) = L[ f (t)]
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Using the linearity property, this becomes

L(ẋ) + aL(x) = L[ f (t)]

Using the derivative property and the alternative transform notation, the above equation
can be written as

s X (s) − x(0) + aX (s) = F(s) (3.3.11)

This equation is an algebraic equation that can be solved for X (s) in terms of F(s) and
x(0). Its solution is

X (s) = x(0)

s + a
+ 1

s + a
F(s) (3.3.12)

The denominator of the first term on the right side is s + a, which is the characteristic
polynomial of the equation.

The inverse operation gives

x(t) = L−1
[

x(0)

s + a

]
+ L−1

[
1

s + a
F(s)

]
(3.3.13)

This equation shows that the solution consists of the sum of two terms. The first term
depends on the initial condition x(0) but not on the forcing function f (t). This part
of the solution is the free response. From Table 3.3.1, entry 6, it is seen that the free
response is x(0)e−at .

The second term on the right side of (3.3.13) depends on the forcing function f (t)
but not on the initial condition x(0). This part of the solution is forced response. It
cannot be evaluated until F(s) is available.

EXAMPLE 3.3.8 Step Response of a First-Order Equation

■ Problem
When the input is a step function, the response is sometimes called the step response. Suppose
that the input f (t) of the equation ẋ + ax = f (t) is a step function of magnitude M whose
transform is F(s) = M/s. Obtain the expression for the complete response.

■ Solution
From (3.3.13) the forced response is obtained from

L−1

[
1

s + a
F(s)

]
= L−1

(
1

s + a

M

s

)
This transform can be converted into a sum of simple transforms as follows.

1

s + a

M

s
= C1

s
+ C2

s + a
(1)

To determine C1 and C2 we can use the least common denominator (LCD) s(s + a) and write
the expression as

1

s + a

M

s
= C1(s + a) + C2s

s(s + a)

Comparing the numerators on the left and right sides, we see that this equation is true only if

M = C1(s + a) + C2s = (C1 + C2)s + aC1
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for arbitrary values of s. This requires that C1 + C2 = 0 and aC1 = M . Thus, C1 = M/a and
C2 = −M/a, and equation (1) becomes

1

s + a

M

s
= M

a

(
1

s
− 1

s + a

)

Thus, using entries 2 and 6 in Table 3.3.1, we see that the forced response is

M

a

(
1 − e−at

)
The addition of the free and the forced responses gives the complete response:

x(t) = x(0)e−at + M

a

(
1 − e−at

)
(2)

The principle of superposition for a linear equation implies that the complete re-
sponse is the sum of the free and the forced responses. With the Laplace transform ap-
proach the initial conditions are automatically accounted for and we can treat the free
response separately from the forced response.

To solve a differential equation by using the Laplace transform, we must be able
to obtain a function x(t) from its transform X (s). This process is called inverting the
transform. In Example 3.3.8 we inverted the transform by expressing it as a sum of
simple transforms that appear in our transform table. The algebra required to find the
coefficients C1 and C2 is rather straightforward. This sum is called a partial-fraction ex-
pansion. The form of a partial-fraction expansion depends on the roots of the transform’s
denominator. These roots consist of the characteristic roots plus any roots introduced by
the transform of the forcing function. When there are only a few roots, using the LCD
method quickly produces a solution for the expansion’s coefficients. The coefficients
can also be determined by the general-purpose formulas, which are advantageous for
some problems. These are discussed in Section 3.5.

A case requiring special attention occurs when there are repeated factors in the
denominator of the transform. Example 3.3.9 shows how this case is handled.

Ramp Response of a First-Order Equation EXAMPLE 3.3.9

■ Problem
Determine the complete response of the following model, which has a ramp input:

ẋ + 3x = 5t x(0) = 10

■ Solution
Applying the transform to the equation we obtain

s X (s) − x(0) + 3X (s) = 5

s2

Solve for X (s).

X (s) = x(0)

s + 3
+ 5

s2(s + 3)
= 10

s + 3
+ 5

s2(s + 3)

[We could also have obtained this result directly by using (3.3.12) with a = 3 and F(s) = 5/s2.]
The free response is given by the first term on the right-hand side and is 10e−3t . To find the
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Figure 3.3.4 Response for
Example 3.3.9.
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forced response, we express the second term on the right as

5

s2(s + 3)
= C1

s2
+ C2

s
+ C3

s + 3

As a general rule, the partial-fraction expansion must include one term for each distinct factor
of the denominator; here, s and s + 3. However, when there are repeated factors (here, the extra
factor s), we must include additional terms, one for each extra factor that is repeated. We may
now use the LCD method to obtain the coefficients C1, C2, and C3.

5

s2(s + 3)
= C1(s + 3) + C2s(s + 3) + C3s2

s2(s + 3)
= (C2 + C3)s2 + (C1 + 3C2)s + 3C1

s2(s + 3)

Comparing the numerators we see that C2 + C3 = 0, C1 + 3C2 = 0, and 3C1 = 5. Thus,
C1 = 5/3, C2 = −C1/3 = −5/9, and C3 = −C2 = 5/9. The forced response is

C1t + C2 + C3e−3t = 5

3
t − 5

9
+ 5

9
e−3t

The complete response is the sum of the free and the forced response, and is

x(t) = 10e−3t + 5

3
t − 5

9
+ 5

9
e−3t

The plot of the response is shown in Figure 3.3.4. Because e−3t < 0.02 for t > 4/3, the response
for t > 4/3 is approximately given by x(t) = 5t/3 − 5/9, which is the equation of a straight
line with slope 5/3 and intercept −5/9.

Complex factors in the denominator of the transform can be often handled easily
by using the fact that the complex conjugates s = −a ± bj correspond to the quadratic
factor (s + a)2 + b2.
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Transform Inversion for Complex Factors EXAMPLE 3.3.10

■ Problem
Invert the following transform by representing it as the sum of terms that appear in Table 3.3.1:

X (s) = 8s + 13

s2 + 4s + 53

■ Solution
The roots of the denominator are s = −2 ± 7 j and so the transform can be expressed as

X (s) = 8s + 13

(s + 2)2 + 49

We can express X (s) as a sum of terms similar to entries 10 and 11 in Table 3.3.1, as follows
(note that a = 2 and b = 7):

X (s) = 8s + 13

(s + 2)2 + 49
= C1

s + 2

(s + 2)2 + 49
+ C2

7

(s + 2)2 + 49
= C1(s + 2) + 7C2

(s + 2)2 + 49

Comparing numerators, we see that

8s + 13 = C1(s + 2) + 7C2 = C1s + 2C1 + 7C2

This is true only if C1 = 8 and 2C1 + 7C2 = 13, or C2 = −3/7. Thus,

x(t) = C1e−2t cos 7t + C2e−2t sin 7t = 8e−2t cos 7t − 3

7
e−2t sin 7t

Step Response of a Second-Order Equation EXAMPLE 3.3.11

■ Problem
Obtain the complete response of the following model:

ẍ + 4ẋ + 53x = 15us(t) x(0) = 8 ẋ(0) = −19

■ Solution
Transforming the equation gives

s2 X (s) − sx(0) − ẋ(0) + 4[s X (s) − x(0)] + 53X (s) = 15

s

Solve for X (s) using the given initial conditions.

X (s) = x(0)s + ẋ(0) + 4x(0)

s2 + 4s + 53
+ 15

s(s2 + 4s + 53)

= 8s + 13

s2 + 4s + 53
+ 15

s(s2 + 4s + 53)
(1)

The first term on the right of equation (1) corresponds to the free response and is the same
transform inverted in Example 3.3.10. Thus the free response is

8e−2t cos 7t − 3

7
e−2t sin 7t (2)
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The second term on the right of equation (1) corresponds to the forced response. It can be
expressed as follows:

15

s[(s + 2)2 + 72]
= C1

s
+ C2

s + 2

(s + 2)2 + 72
+ C3

7

(s + 2)2 + 72

= C1[(s + 2)2 + 72] + C2s(s + 2) + 7C3s

s[(s + 2)2 + 72]

= (C1 + C2)s2 + (4C1 + 2C2 + 7C3)s + 53C1

s[(s + 2)2 + 72]

Comparing numerators on the left and right sides, we see that C1 +C2 = 0, 4C1 +2C2 +7C3 = 0,
and 53C1 = 15. Thus, C1 = 15/53, C2 = −15/53, and C3 = −30/371, and the forced response is

15

53
− 15

53
e−2t cos 7t − 30

371
e−2t sin 7t (3)

The complete response is the sum of the free and forced responses given by equations (2) and (3):

x(t) = 15

53
+ 409

53
e−2t cos 7t − 27

53
e−2t sin 7t (4)

The response is plotted in Figure 3.3.5. The radian frequency of the oscillations is 7, which
corresponds to a period of 2π/7 = 0.897. The oscillations are difficult to see for t > 2 because
e−2t < 0.02 for t > 2. So for most practical purposes we may say that the response is essentially
constant with a value 15/53 for t > 2.

Alternatively, we could have combined the terms on the right side of equation (1) into a
single term as follows:

X (s) = x(0)s2 + [ẋ(0) + 4x(0)]s + 15

s(s2 + 4s + 53)
= 8s2 + 13s + 15

s[(s + 2)2 + 72]

Figure 3.3.5 Response for
Example 3.3.11.
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Inversion of this transform gives the complete response directly.

X (s) = 8s2 + 13s + 15

s(s2 + 4s + 53)
= C1

s
+ C2

s + 2

(s + 2)2 + 72
+ C3

7

(s + 2)2 + 72

= (C1 + C2)s2 + (4C1 + 2C2 + 7C3)s + 53C1

s[(s + 2)2 + 72]

Comparing numerators on the left and right sides, we see that C1+C2 = 8, 4C1+2C2+7C3 = 13,
and 53C1 = 15. Thus, C1 = 15/53, C2 = 409/53, and C3 = −27/53, and the corresponding
response is identical to that given by equation (4), as it should be.

As Example 3.3.11 shows, the step response of a second-order equation with com-
plex roots results in a transform of the following form:

As2 + Bs + C

s[(s + a)2 + b2]
= C1

s
+ C2

s + a

(s + a)2 + b2
+ C3

b

(s + a)2 + b2
(3.3.14)

Using the same procedure employed in Example 3.3.11, we can show that the resulting
coefficients are as follows:

C1 = C

a2 + b2
C2 = A − C1 C3 = B − a A − aC1

b
(3.3.15)

The response is

x(t) = C1 + C2e−at cos bt + C3e−at sin bt (3.3.16)

3.4 TRANSFER FUNCTIONS
The complete response of a linear ODE is the sum of the free and the forced responses.
For zero initial conditions the free response is zero, and the complete response is the
same as the forced response. Thus we can focus our analysis on the effects of the input
only by taking the initial conditions to be zero temporarily. When we have finished
analyzing the effects of the input, we can add to the result the free response due to any
nonzero initial conditions.

The concept of the transfer function is useful for analyzing the effects of the input.
Consider the model

ẋ + ax = f (t) (3.4.1)

and assume that x(0) = 0. Transforming both sides of the equation gives

s X (s) + aX (s) = F(s)

Then solve for the ratio X (s)/F(s) and denote it by T (s):

T (s) = X (s)

F(s)
= 1

s + a

The function T (s) is called the transfer function of (3.4.1).
The transfer function is the transform of the forced response divided by the trans-

form of the input. It can be used as a multiplier to obtain the forced response transform
from the input transform; that is, X (s) = T (s)F(s). The transfer function is a property
of the system model only. The transfer function is independent of the input function
and the initial conditions.
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The transfer function concept is extremely useful for several reasons.

1. Transfer Functions and Software. Software packages such as MATLAB do
not accept system descriptions expressed as single, higher-order differential
equations. Such software, however, does accept a description based on the
transfer function. In Section 3.9 we will see how MATLAB does this. In
Chapter 9 we will see that the transfer function is the basis for a graphical system
description called the block diagram, and block diagrams are used to program the
Simulink dynamic simulation software. So the transfer function is an important
means of describing dynamic systems.

2. ODE Equivalence. It is important to realize that the transfer function is
equivalent to the ODE. If we are given the transfer function we can reconstruct
the corresponding ODE. For example, the transfer function

X (s)

F(s)
= 5

s2 + 7s + 10

corresponds to the equation ẍ + 7ẋ + 10x = 5 f (t). You should develop
the ability to obtain transfer functions from ODEs and ODEs from transfer
functions. This process is easily done because the initial conditions are assumed
to be zero when working with transfer functions. From the derivative property,
this means that to work with a transfer function you can use the relations
L(ẋ) = s X (s), L(ẍ) = s2 X (s), and so forth. Examples 3.4.1 and 3.4.2 will show
how straightforward this process is.

3. The Transfer Function and Characteristic Roots. Note that the denominator
of the transfer function is the characteristic polynomial, and thus the transfer
function tells us something about the intrinsic behavior of the model, apart from
the effects of the input and specific values of the initial conditions. In the previous
equation, the characteristic polynomial is s2 + 7s + 10 and the roots are −2 and
−5. The roots are real, and this tells us that the free response does not oscillate
and that the forced response does not oscillate unless the input is oscillatory.
Because the roots are negative, the model is stable and its free response
disappears with time.

MULTIPLE INPUTS AND OUTPUTS

Obtaining a transfer function from a single ODE is straightforward, as we have seen.
Sometimes, however, models have more than one input or occur as sets of equations
with more than one dependent variable. It is important to realize that there is one transfer
function for each input-output pair. If a model has more than one input, a particular
transfer function is the ratio of the output transform over the input transform, with all
the remaining inputs ignored (set to zero temporarily).

EXAMPLE 3.4.1 Two Inputs and One Output

■ Problem
Obtain the transfer functions X (s)/F(s) and X (s)/G(s) for the following equation.

5ẍ + 30ẋ + 40x = 6 f (t) − 20g(t)
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■ Solution
Using the derivative property with zero initial conditions, we can immediately write the equation
as

5s2 X (s) + 30s X (s) + 40X (s) = 6F(s) − 20G(s)

Solve for X (s).

X (s) = 6

5s2 + 30s + 40
F(s) − 20

5s2 + 30s + 40
G(s)

When there is more than one input, the transfer function for a specific input can be obtained by
temporarily setting the other inputs equal to zero (this is another aspect of the superposition prop-
erty of linear equations). Thus, we obtain

X (s)

F(s)
= 6

5s2 + 30s + 40

X (s)

G(s)
= − 20

5s2 + 30s + 40

Note that the denominators of both transfer functions have the same roots: s = −2 and s = −4.

We can obtain transfer functions from systems of equations by first transforming the
equations and then algebraically eliminating all variables except for the specified input
and output. This technique is especially useful when we want to obtain the response of
one or more of the dependent variables in the system of equations.

A System of Equations EXAMPLE 3.4.2

■ Problem
a. Obtain the transfer functions X (s)/V (s) and Y (s)/V (s) of the following system of

equations:

ẋ = −3x + 2y

ẏ = −9y − 4x + 3v(t)

b. Obtain the forced response for x(t) and y(t) if the input is v(t) = 5us(t).

■ Solution
a. Here two outputs are specified, x and y, with one input, v. Thus there are two transfer

functions. To obtain them, transform both sides of each equation, assuming zero initial
conditions.

s X (s) = −3X (s) + 2Y (s)

sY (s) = −9Y (s) − 4X (s) + 3V (s)

These are two algebraic equations in the two unknowns, X (s) and Y (s). Solve the first
equation for Y (s):

Y (s) = s + 3

2
X (s) (1)

Substitute this into the second equation.

s
s + 3

2
X (s) = −9

s + 3

2
X (s) − 4X (s) + 3V (s)
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Then solve for X (s)/V (s) to obtain

X (s)

V (s)
= 6

s2 + 12s + 35
(2)

Now substitute this into equation (1) to obtain

Y (s)

V (s)
= s + 3

2

X (s)

V (s)
= s + 3

2

6

s2 + 12s + 35
= 3(s + 3)

s2 + 12s + 35
(3)

The desired transfer functions are given by equations (2) and (3). Note that denominators
of both transfer functions have the same factors, s = −5 and s = −7, which are the roots
of the characteristic equation: s2 + 12s + 35.

b. From equation (2),

X (s) = 6

s2 + 12s + 35
V (s) = 6

s2 + 12s + 35

5

s
= 30

s(s2 + 12s + 35)

The denominator factors are s = 0, s = −5, and s = −7, and thus the partial-fraction
expansion is

X (s) = C1

s
+ C2

s + 5
+ C3

s + 7

where C1 = 6/7, C2 = −3, and C3 = 15/7. The forced response is

x(t) = 6

7
− 3e−5t + 15

7
e−7t (4)

From (1) we have y = (ẋ + 3x)/2. From (4) we obtain

y(t) = 9

7
+ 3e−5t − 30

7
e−7t

3.5 PARTIAL-FRACTION EXPANSION
To solve a differential equation by using the Laplace transform, we must be able to
obtain a function x(t) from its transform X (s). This process is called inverting the
transform. Unless the transform is a simple one appearing in the transform table, it will
have to be represented as a combination of simple transforms.

The expansions in Section 3.3 are simple examples of partial-fraction expansions.
In practice, however, we might encounter higher-order system models or complicated
inputs. Both situations require a general approach to obtaining the expansion, and this
section develops such an approach.

Most transforms occur in the form of a ratio of two polynomials, such as

X (s) = N (s)

D(s)
= bmsm + bm−1sm−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
(3.5.1)

In all of our examples, m ≤ n. If X (s) is of the form (3.5.1), the method of partial-
fraction expansion can be used. Note that we assume that the coefficient an is unity. If
not, divide the numerator and denominator by an . The first step is to solve for the n roots
of the denominator. If the ai coefficients are real (as they will be for all our applications),
any complex roots will occur in conjugate pairs.

There are two cases to be considered. The first is where all the roots are distinct;
the second is where two or more roots are identical (repeated).
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DISTINCT ROOTS CASE

If all the roots are distinct, we can express X (s) in (3.5.1) in factored form as follows:

X (s) = N (s)

(s + r1)(s + r2) · · · (s + rn)
(3.5.2)

where the roots are s = −r1, −r2, . . . , −rn . This form can be expanded as

X (s) = C1

s + r1
+ C2

s + r2
+ · · · + Cn

s + rn
(3.5.3)

where

Ci = lim
s→−ri

[X (s)(s + ri )] (3.5.4)

Multiplying by the factor (s + ri ) cancels that term in the denominator before the limit
is taken. This is a good way of remembering (3.5.4). Each factor corresponds to an
exponential function of time, and the inverse transform is

x(t) = C1e−r1t + C2e−r2t + · · · + Cne−rn t (3.5.5)

One Zero Root and One Negative Root EXAMPLE 3.5.1

■ Problem
Obtain the inverse Laplace transform of

X (s) = 5

s(s + 3)

■ Solution
The denominator roots are s = 0 and s = −3, which are distinct and real. Thus the partial-fraction
expansion has the form

X (s) = 5

s(s + 3)
= C1

s
+ C2

s + 3

Using the coefficient formula (3.5.4), we obtain

C1 = lim
s→0

[
s

5

s(s + 3)

]
= lim

s→0

[
5

(s + 3)

]
= 5

3

C2 = lim
s→−3

[
(s + 3)

5

s(s + 3)

]
= lim

s→−3

(
5

s

)
= −5

3

The inverse transform is

x(t) = C1 + C2e−3t = 5

3
− 5

3
e−3t

A Third-Order Equation EXAMPLE 3.5.2

■ Problem
Use two methods to obtain the solution of the following problem:

10
d3x

dt3
+ 100

d2x

dt2
+ 310

dx

dt
+ 300x = 750us(t)

x(0) = 2 ẋ(0) = 4 ẍ(0) = 3
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■ Solution
a. Using the Laplace transform method, we have

10
[
s3 X (s) − ẍ(0) − sẋ(0) − s2x(0)

] + 100
[
s2 X (s) − ẋ(0) − sx(0)

]
+ 310[s X (s) − x(0)] + 300X (s) = 750

s

Solving for X (s) using the given initial values we obtain

X (s) = 2s3 + 24s2 + 105s + 75

s(s3 + 10s2 + 31s + 30)
= 2s3 + 24s2 + 105s + 75

s(s + 2)(s + 3)(s + 5)

Since the roots of the cubic are s = −2, −3, and −5, the partial-fraction expansion is

X (s) = C1

s
+ C2

s + 2
+ C3

s + 3
+ C4

s + 5

For this problem the LCD method requires a lot of algebra, and the coefficients can be
more easily obtained from the formula (3.5.4). They are

C1 = lim
s→0

s X (s) = 5

2

C2 = lim
s→−2

(s + 2)X (s) = 55

6

C3 = lim
s→−3

(s + 3)X (s) = −13

C4 = lim
s→−5

(s + 5)X (s) = 10

3

Thus, the answer is

x(t) = 5

2
+ 55

6
e−2t − 13e−3t + 10

3
e−5t (1)

The plot of the response is shown in Figure 3.5.1. The response contains three
exponentials. The terms e−3t and e−5t die out faster than e−2t , so for t > 4/3, the response
is approximately given by x(t) = 5/2 + (55/6)e−2t . For t > 2, the response is

Figure 3.5.1 Response for
Example 3.5.2.
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approximately constant at x = 5/2. The “hump” in the response is produced by the
positive values of ẋ(0) and ẍ(0).

b. From the ODE we can immediately obtain the characteristic equation 10s3 + 100s2

+ 310s + 300 = 0, which has the roots s = −2, −3, and −5. These roots will generate in
the solution negative exponential functions that will approach zero as t → ∞, leaving
only a constant term produced by the step input. Therefore the form of the solution is

x(t) = C1 + C2e−2t + C3e−3t + C4e−5t (2)

Because the time derivatives of x will approach zero as t → ∞, the value of the constant
term C1 can be found by setting the derivatives equal to zero in the ODE and solving for x .
This gives x = 750/300 = 5/2 and therefore C1 = 5/2.

The values of the remaining coefficients can be found with the initial conditions by
differentiating (2) to obtain

x(0) = C1 + C2 + C3 + C4 = 5

2
+ C2 + C3 + C4 = 2

ẋ(0) = −2C2 − 3C3 − 5C4 = 4

ẍ(0) = 4C2 + 9C3 + 25C4 = 3

These are three equations in three unknowns. Their solution is C2 = 55/6, C3 = −13, and
C4 = 10/3. Thus the solution is given by equation (1).

The preferred method is a personal choice. The Laplace method requires some
algebra to handle the initial conditions, whereas the second method requires that three
simultaneous equations be solved.

Calculator Tip

Sometimes it is convenient to obtain the coefficients of a partial-fraction expansion by solving
simultaneous linear algebraic equations. So now is a good time to learn how to use your calcu-
lator to solve such equations. Remember to arrange the unknowns in the equations in consistent
order. For example, the three equations from the previous example are

C2 + C3 + C4 = −0.5

−2C2 − 3C3 − 5C4 = 4

4C2 + 9C3 + 25C4 = 3

Determine how to enter the equation coefficients; usually for these equations you would first enter
the coefficients of the first equation as 1, 1, 1, −0.5. Then enter the coefficients of the second
equation as −2, −3, −5, 4, and enter the coefficients of the third equation in a similar way.
Solve the preceding three equations as a test; the answer to four decimal places is C2 = 9.1666,
C3 = −13, and C4 = 3.3333, which is equivalent to the hand solution.

REPEATED-ROOTS CASE

Suppose that p of the roots have the same value s = −r1, and the remaining (n − p)

roots are distinct and real. Then X (s) is of the form

X (s) = N (s)

(s + r1)p(s + rp+1)(s + rp+2) · · · (s + rn)
(3.5.6)
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The expansion is

X (s) = C1

(s + r1)p
+ C2

(s + r1)p−1
+ · · · + C p

s + r1
+ · · ·

+ C p+1

s + rp+1
+ · · · + Cn

s + rn
(3.5.7)

The coefficients for the repeated roots are found from

C1 = lim
s→−r1

[
X (s)(s + r1)

p] (3.5.8)

C2 = lim
s→−r1

{
d

ds

[
X (s)(s + r1)

p]} (3.5.9)

...

Ci = lim
s→−r1

{
1

(i − 1)!

di−1

dsi−1

[
X (s)(s + r1)

p]} i = 1, 2, . . . , p (3.5.10)

The coefficients for the distinct roots are found from (3.5.4). The solution for the time
function is

f (t) = C1
t p−1

(p − 1)!
e−r1t + C2

t p−2

(p − 2)!
e−r1t + · · · + C pe−r1t + · · ·

+ C p+1e−rp+1t + · · · + Cne−rn t (3.5.11)

EXAMPLE 3.5.3 One Negative Root and Two Zero Roots

■ Problem
Compare two methods for obtaining the inverse Laplace transform of

X (s) = 5

s2(3s + 12)

■ Solution
The denominator roots are s = −12/3 = −4, s = 0, and s = 0. Thus the partial-fraction expansion
has the form

X (s) = 5

s2(3s + 12)
= 1

3

5

s2(s + 4)
= C1

s2
+ C2

s
+ C3

s + 4

Using the coefficient formulas (3.5.4), (3.5.8), and (3.5.9) with p = 2 and r1 = 0, we obtain

C1 = lim
s→0

[
s2 5

3s2(s + 4)

]
= lim

s→0

[
5

3(s + 4)

]
= 5

12

C2 = lim
s→0

d

ds

[
s2 5

3s2(s + 4)

]
= lim

s→0

d

ds

[
5

3(s + 4)

]
= lim

s→0

[
−5

3

1

(s + 4)2

]
= − 5

48

C3 = lim
s→−4

[
(s + 4)

5

3s2(s + 4)

]
= lim

s→−4

(
5

3s2

)
= 5

48
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With the LCD method we have

1

3

[
5

s2(s + 4)

]
= C1

s2
+ C2

s
+ C3

s + 4
= C1(s + 4) + C2s(s + 4) + C3s2

s2(s + 4)

= (C2 + C3)s2 + (C1 + 4C2)s + 4C1

s2(s + 4)

Comparing numerators, we see that C2 + C3 = 0, C1 + 4C2 = 0, and 4C1 = 5/3, which give
C1 = 5/12, C2 = −5/48, and C3 = 5/48.

The inverse transform is

x(t) = C1t + C2 + C3e−4t = 5

12
t − 5

48
+ 5

48
e−4t

In terms of effort required, for this example the two methods are roughly equivalent. For
repeated roots, coefficient formula (3.5.9) requires that we obtain the derivative of a ratio of
functions, but the LCD method requires three equations to be solved for three unknowns, although
here the third equation is easily solved because it contains only one unknown.

Ramp Response of a First-Order Model EXAMPLE 3.5.4

■ Problem
Use the Laplace transform to solve the following problem:

3ẋ + 12x = 5t x(0) = 0

■ Solution
Taking the transform of both sides of the equation, we obtain

3[s X (s) − x(0)] + 12X (s) = 5

s2

Solve for X (s) using the given value of x(0).

X (s) = 5

s2(3s + 12)

The partial-fraction expansion was obtained in Example 3.5.3. It is

X (s) = 5

12

1

s2
− 5

48

1

s
+ 5

48

1

s + 4

and the inverse transform is

x(t) = 5

12
t − 5

48
+ 5

48
e−4t

Two Repeated Roots and One Distinct Root EXAMPLE 3.5.5

■ Problem
Obtain the inverse Laplace transform of

X (s) = 7

(s + 3)2(s + 5)
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■ Solution
The denominator roots are s = −5, s = −3, and s = −3. Thus, the partial-fraction expansion has
the form

X (s) = 7

(s + 3)2(s + 5)
= C1

(s + 3)2
+ C2

s + 3
+ C3

s + 5

where

C1 = lim
s→−3

[
(s + 3)2 7

(s + 3)2(s + 5)

]
= lim

s→−3

(
7

s + 5

)
= 7

2

C2 = lim
s→−3

d

ds

[
(s + 3)2 7

(s + 3)2(s + 5)

]
= lim

s→−3

d

ds

(
7

s + 5

)

= lim
s→−3

[ −7

(s + 5)2

]
= −7

4

C3 = lim
s→−5

[
(s + 5)

7

(s + 3)2(s + 5)

]
= lim

s→−5

[
7

(s + 3)2

]
= 7

4

The inverse transform is

x(t) = C1te−3t + C2e−3t + C3e−5t = 7

2
te−3t − 7

4
e−3t + 7

4
e−5t

For this example the LCD method would be the more difficult method because it requires
more algebra and the solution of the following equations: C2 + C3 = 0, C1 + 8C2 + 6C3 = 0,
and 5C1 + 15C2 + 9C3 = 7.

EXAMPLE 3.5.6 Exponential Response of a First-Order Model

■ Problem
Use the Laplace transform to solve the following problem.

ẋ + 5x = 7te−3t x(0) = 0

■ Solution
Taking the transform of both sides of the equation, we obtain

s X (s) − x(0) + 5X (s) = 7

(s + 3)2

Solve for X (s) using the given value of x(0).

X (s) = 7

(s + 3)2(s + 5)

The partial-fraction expansion was obtained in Example 3.5.5. It is

X (s) = 7

2(s + 3)2
− 7

4(s + 3)
+ 7

4(s + 5)

and the inverse transform is

x(t) = 7

2
te−3t − 7

4
e−3t + 7

4
e−5t

The plot of the response is shown in Figure 3.5.2. The “hump” in the response is caused by the
multiplicative factor of t in the input 7te−3t .
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Figure 3.5.2 Response for
Example 3.5.6.

Four Repeated Roots EXAMPLE 3.5.7

■ Problem
Choose the most convenient method for obtaining the inverse transform of

X (s) = s2 + 2

s4(s + 1)

■ Solution
There are four repeated roots (s = 0) and one distinct root, so the expansion is

X (s) = C1

s4
+ C2

s3
+ C3

s2
+ C4

s
+ C5

s + 1

Because there are four repeated roots, use of (3.5.10) to find the coefficients would require taking
the first, second, and third derivatives of the ratio (s2 + 2)/(s + 1). Therefore the LCD method
is easier to use for this problem. Using the LCD we obtain

X (s) = C1(s + 1) + C2s(s + 1) + C3s2(s + 1) + C4s3(s + 1) + C5s4

s4(s + 1)

= (C5 + C4)s4 + (C4 + C3)s3 + (C3 + C2)s2 + (C2 + C1)s + C1

s4(s + 1)

Comparing numerators we see that

s2 + 2 = (C5 + C4)s
4 + (C4 + C3)s

3 + (C3 + C2)s
2 + (C2 + C1)s + C1

and thus C1 = 2, C2 + C1 = 0, C3 + C2 = 1, C4 + C3 = 0, and C5 + C4 = 0. These give
C1 = 2, C2 = −2, C3 = 3, C4 = −3, and C5 = 3. So the expansion is

X (s) = 2

s4
− 2

s3
+ 3

s2
− 3

s
+ 3

s + 1
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The inverse transform is

x(t) = 1

3
t3 − t2 + 3t − 3 + 3e−t

COMPLEX ROOTS

When some of the roots of the transform denominator are complex, the expansion has
the same form as (3.5.3), because the roots are in fact distinct. Thus, the coefficients Ci

can be found from (3.5.4). However, these coefficients will be complex numbers, and
the form of the inverse transform given by (3.5.5) will not be convenient to use. We
now demonstrate two methods that can be used; the choice depends on whether or not
you want to avoid the use of complex-valued coefficients.

EXAMPLE 3.5.8 Two Complex Roots

■ Problem
Use two methods to obtain the inverse Laplace transform of

X (s) = 3s + 7

4s2 + 24s + 136
= 3s + 7

4(s2 + 6s + 34)

■ Solution
a. The denominator roots are s = −3 ± 5 j . To avoid complex-valued coefficients, we note

that the denominator of X (s) can be written as (s + 3)2 + 52, and we can express X (s)
as follows:

X (s) = 1

4

[
3s + 7

(s + 3)2 + 52

]
(1)

which can be expressed as the sum of two terms that are proportional to entries 10 and 11
in Table 3.3.1.

X (s) = 1

4

[
C1

5

(s + 3)2 + 52
+ C2

s + 3

(s + 3)2 + 52

]

We can obtain the coefficients by noting that

C1
5

(s + 3)2 + 52
+ C2

s + 3

(s + 3)2 + 52
= 5C1 + C2(s + 3)

(s + 3)2 + 52
(2)

Comparing the numerators of equations (1) and (2), we see that

5C1 + C2(s + 3) = C2s + 5C1 + 3C2 = 3s + 7

which gives C2 = 3 and 5C1 + 3C2 = 7. Thus C1 = −2/5. The inverse
transform is

x(t) = 1

4
C1e−3t sin 5t + 1

4
C2e−3t cos 5t = − 1

10
e−3t sin 5t + 3

4
e−3t cos 5t

b. The denominator roots are distinct and the expansion (3.5.4) gives

X (s) = 3s + 7

4s2 + 24s + 136
= 3s + 7

4(s + 3 − 5 j)(s + 3 + 5 j)

= C1

s + 3 − 5 j
+ C2

s + 3 + 5 j
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where, from (3.5.4),

C1 = lim
s→−3+5 j

(s + 3 − 5 j)X (s) = lim
s→−3+5 j

3s + 7

4(s + 3 + 5 j)

= −2 + 15 j

40 j
= 15 + 2 j

40

This can be expressed in complex exponential form as follows (see Table 3.3.2):

C1 = |C1|e jφ =
∣∣∣∣15 + 2 j

40

∣∣∣∣e jφ =
√

229

40
e jφ

where φ = tan−1(2/15) = 0.1326 rad.
The second coefficient is

C2 = lim
s→−3−5 j

(s + 3 + 5 j)X (s) = lim
s→−3−5 j

3s + 7

4(s + 3 − 5 j)

= 2 + 15 j

40 j
= 15 − 2 j

40

Note that C1 and C2 are complex conjugates. This will always be the case for coefficients
of complex-conjugate roots in a partial-fraction expansion. Thus, C2 = |C1|e− jφ =√

229e−0.1326 j/40.
The inverse transform gives

x(t) = C1e(−3+5 j)t + C2e(−3−5 j)t = C1e−3t e5 j t + C2e−3t e−5 j t

= |C1|e−3t
[
e(5t+φ) j + e−(5t+φ) j

] = 2|C1|e−3t cos(5t + φ)

where we have used the relation e jθ + e− jθ = 2 cos θ , which can be derived from the Euler
identity (Table 3.3.2). Thus

x(t) =
√

229

20
e−3t cos(5t + 0.1326)

This answer is equivalent to that found in part (a), as can be seen by applying the
trigonometric identity cos(5t + φ) = cos 5t cos φ − sin 5t sin φ.

Free Response of a Second-Order Model with Complex Roots EXAMPLE 3.5.9

■ Problem
Use the Laplace transform to solve the following problem:

4ẍ + 24ẋ + 136x = 0 x(0) = 7

4
ẋ(0) = −35

4

■ Solution
Taking the transform of both sides of the equation, we obtain

4[s2 X (s) − x(0)s − ẋ(0)] + 24[s X (s) − x(0)] + 136X (s) = 0

Solve for X (s) using the given values of x(0) and ẋ(0).

X (s) = 4[x(0)s + ẋ(0)] + 24x(0)

4s2 + 24s + 136
= 3s + 7

4(s2 + 6s + 34)
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The expansion was obtained in Example 3.5.8. It is

X (s) = − 1

10

[
5

(s + 3)2 + 52

]
+ 3

4

[
s + 3

(s + 3)2 + 52

]
and the inverse transform is

f (t) = − 1

10
e−3t sin 5t + 3

4
e−3t cos 5t

3.6 THE IMPULSE AND NUMERATOR DYNAMICS
In our development of the Laplace transform and its associated methods, we have as-
sumed that the process under study starts at time t = 0. Thus the given initial conditions,
say x(0), ẋ(0), . . . , represent the situation at the start of the process and are the result
of any inputs applied prior to t = 0. That is, we need not know what the inputs were
before t = 0 because their effects are contained in the initial conditions.

The effects of any inputs starting at t = 0 are not felt by the system until an in-
finitesimal time later, at t = 0+. For the models we have seen thus far, the dependent
variable x(t) and its derivatives do not change between t = 0 and t = 0+, and thus
the solution x(t) obtained from the differential equation will match the given initial
conditions when x(t) and its derivatives are evaluated at t = 0. The results obtained
from the initial value theorem will also match the given initial conditions.

However, we will now investigate the behavior of some systems for which x(0) �=
x(0+), or ẋ(0) �= ẋ(0+), and so forth for higher derivatives. The initial value theorem
gives the value at t = 0+, which for some models is not necessarily equal to the value
at t = 0. In these cases the solution of the differential equation is correct only for t > 0.
This phenomenon occurs in models having impulse inputs and in models containing
derivatives of a discontinuous input, such as a step function.

THE IMPULSE

An input that changes at a constant rate is modeled by the ramp function. The step
function models an input that rapidly reaches a constant value, while the rectangular
pulse function models a constant input that is suddenly removed. The impulse is similar
to the pulse function, but it models an input that is suddenly applied and removed after
a very short time. The impulse, which is a mathematical function only and has no
physical counterpart, has an infinite magnitude for an infinitesimal time.

Consider the rectangular pulse function shown in Figure 3.6.1a. Its transform is
M(1 − e−s D)/s. The area A under the pulse is A = M D and is called the strength of
the pulse. If we let this area remain constant at the value A and let the pulse duration D
approach zero, we obtain the impulse, represented in Figure 3.6.1b. Because M = A/D,

Figure 3.6.1 (a) The
rectangular pulse. (b) The
impulse.

A
 �

 M
D

M

A

D0 t 0 t

(a) (b)



palm-38591 book December 17, 2008 12:1

3.6 The Impulse and Numerator Dynamics 129

the transform F(s) is

F(s) = lim
D→0

A

D

1 − e−s D

s
= lim

D→0

Ase−s D

s
= A

after using L’Hopital’s limit rule. If the strength A = 1, the function is called a unit
impulse.

The unit impulse, called the Dirac delta function δ(t) in mathematics literature,
often appears in the analysis of dynamic systems. It is an analytically convenient ap-
proximation of an input applied for only a very short time, such as when a high-speed
object strikes a stationary object. The impulse is also useful for estimating the system’s
parameters experimentally and for analyzing the effect of differentiating a step or any
other discontinuous input function.

In keeping with our interpretation of the initial conditions, we consider the impulse
δ(t) to start at time t = 0 and finish at t = 0+, with its effects first felt at t = 0+.

Impulse Response of a Simple First-Order Model EXAMPLE 3.6.1

■ Problem
Obtain the unit-impulse response of the following model in two ways: (a) by separation of
variables and (b) with the Laplace transform. The initial condition is x(0) = 3. What is the value
of x(0+)?

ẋ = δ(t)

■ Solution
a. Integrate both sides of the equation to obtain

∫ x(t)

x(0)

ẋ(t) dx =
∫ t

0
δ(t) dt = 1

because the area under a unit impulse is 1. This gives

x(t) − x(0) = 1 or x(t) = x(0) + 1 = 3 + 1 = 4

This is the solution for t > 0 but not for t = 0. Thus, x(0+) = 4 but x(0) = 3, so the
impulse has changed x(t) instantaneously from 3 to 4.

b. The transformed equation is

s X (s) − x(0) = 1 or X (s) = 1 + x(0)

s

which gives the solution x(t) = 1 + x(0) = 4. Note that the initial value used with the
derivative property is the value of x at t = 0.

The initial value theorem gives

x(0+) = lim
s→∞

s X (s) = lim
s→∞

s
1 + x(0)

s
= 1 + 3 = 4

which is correct.
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EXAMPLE 3.6.2 Impulse Response of a First-Order Model

■ Problem
Obtain the unit-impulse response of the following model. The initial condition is x(0) = 0. What
is the value of x(0+)?

X (s)

F(s)
= 1

s + 5

■ Solution
Because f (t) = δ(t), F(s) = 1, and the response is obtained from

X (s) = 1

s + 5
F(s) = 1

s + 5

The response is x(t) = e−5t for t > 0. This gives

x(0+) = lim
t→0+

x(t) = lim
t→0+

e−5t = 1

So the impulse input has changed x from 0 at t = 0 to 1 at t = 0+. This same result could have
been obtained from the initial value theorem:

x(0+) = lim
s→∞

s X (s) = lim
s→∞

s
1

s + 5
= 1

EXAMPLE 3.6.3 Impulse Response of a Simple Second-Order Model

■ Problem
Obtain the unit-impulse response of the following model in two ways: (a) by separation of
variables and (b) with the Laplace transform. The initial conditions are x(0) = 5 and ẋ(0) = 10.
What are the values of x(0+) and ẋ(0+)?

ẍ = δ(t) (1)

■ Solution
a. Let v(t) = ẋ(t). Then the equation (1) becomes v̇ = δ(t), which can be integrated to

obtain v(t) = v(0) + 1 = 10 + 1 = 11. Thus ẋ(0+) = 11 and is not equal to ẋ(0).
Now integrate ẋ = v = 11 to obtain x(t) = x(0) + 11t = 5 + 11t . Thus, x(0+) = 5

which is the same as x(0).
So for this model the unit-impulse input changes ẋ from t = 0 to t = 0+ but does not

change x .
b. The transformed equation is

s2 X (s) − sx(0) − ẋ(0) = 1

or

X (s) = sx(0) + ẋ(0) + 1

s2
= 5s + 11

s2
= 5

s
+ 11

s2

which gives the solution x(t) = 5 + 11t and ẋ(t) = 11. Note that the initial values used
with the derivative property are the values at t = 0.

The initial value theorem gives

x(0+) = lim
s→∞

s X (s) = lim
s→∞

s
5s + 11

s2
= 5



palm-38591 book December 17, 2008 12:1

3.6 The Impulse and Numerator Dynamics 131

and because L(ẋ) = s X (s) − x(0),

ẋ(0+) = lim
s→∞

s[s X (s) − x(0)] = lim
s→∞

s

(
5s + 11

s
− 5

)
= 11

as we found in part (a).

Impulse Response of a Second-Order Model EXAMPLE 3.6.4

■ Problem
Obtain the unit-impulse response of the following model. The initial conditions are x(0) = 0,
ẋ(0) = 0. What are the values of x(0+) and ẋ(0+)?

X (s)

F(s)
= 1

2s2 + 14s + 20

■ Solution
Because F(s) = 1, the response is obtained from

X (s) = 1

2s2 + 14s + 20
F(s) = 1

2s2 + 14s + 20
= 1

6

1

s + 2
− 1

6

1

s + 5

and the response is x(t) = (e−2t − e−5t )/6. This gives

x(0+) = lim
t→0+

x(t) = lim
t→0+

(
e−2t − e−5t

6

)
= 0

and

ẋ(0+) = lim
t→0+

ẋ(t) = lim
t→0+

(−2e−2t + 5e−5t

6

)
= 1

2

So the impulse input has not changed x between t = 0 and t = 0+ but has changed ẋ from 0 to
1/2. These results could have been obtained from the initial value theorem:

x(0+) = lim
s→∞

s X (s) = lim
s→∞

s
1

2s2 + 14s + 20
= 0

and, noting that x(0) = 0,

ẋ(0+) = lim
s→∞

s[s X (s) − x(0)] = lim
s→∞

s
s

2s2 + 14s + 20
= 1

2

In summary, be aware that the solution x(t) and its derivatives ẋ(t), ẍ(t), . . . will
match the given initial conditions at t = 0 only if there are no impulse inputs and no
derivatives of inputs that are discontinuous at t = 0.

If X (s) is a rational function and if the degree of the numerator of X (s) is less
than the degree of the denominator, then the initial value theorem will give a finite
value for x(0+). If the degrees are equal, then initial value is undefined and the initial
value theorem is invalid. The latter situation corresponds to an impulse in x(t) at t = 0
and therefore x(0+) is undefined. When the degrees are equal the transform can be
expressed as a constant plus a partial-fraction expansion. For example, consider the
transform

X (s) = 9s + 4

s + 3
= 9 − 23

s + 3

The inverse transform is x(t) = 9δ(t) − 23e−3t and therefore x(0+) is undefined.
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NUMERATOR DYNAMICS

The following model contains a derivative of the input g(t):

5ẋ + 10x = 2ġ(t) + 10g(t)

Its transfer function is

X (s)

G(s)
= 2s + 10

5s + 10

Note that the input derivative ġ(t) results in an s term in the numerator of the transfer
function, and such a model is said to have numerator dynamics. So a model with input
derivatives has numerator dynamics, and vice versa, and thus the two terms describe
the same condition.

With such models we must proceed carefully if the input is discontinuous, as is
the case with the step function, because the input derivative produces an impulse when
acting on a discontinuous input. To help you understand this, we state without rigorous
proof that the unit impulse δ(t) is the time-derivative of the unit-step function us(t);
that is,

δ(t) = d

dt
us(t) (3.6.1)

This result does not contradict common sense, because the step function changes from
0 at t = 0 to 1 at t = 0+ in an infinitesimal amount of time. Therefore its derivative
should be infinite during this time. To further indicate the correctness of this relation,
we integrate both sides and note that the area under the unit impulse is unity. Thus,∫ 0+

0
δ(t) dt =

∫ 0+

0

d

dt
us(t) dt = us(0+) − us(0) = 1 − 0 = 1

which gives 1 = 1.
Thus an input derivative will create an impulse in response to a step input. For

example, consider the model

5ẋ + 10x = 2ġ(t) + 10g(t)

If the input g(t) = us(t), the model is equivalent to

5ẋ + 10x = 2δ(t) + 10us(t)

which has an impulse input.
Numerator dynamics can significantly alter the response, and the Laplace transform

is a convenient and powerful tool for analyzing models having numerator dynamics.

EXAMPLE 3.6.5 A First-Order Model with Numerator Dynamics

■ Problem
Obtain the transfer function and investigate the response of the following model in terms of the
parameter a. The input g(t) is a unit-step function.

5ẋ + 10x = aġ(t) + 10g(t) x(0) = 0
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Figure 3.6.2 Plot of the
response for Example 3.6.5.

■ Solution
Transforming the equation with x(0) = 0 and solving for the ratio X (s)/G(s) gives the transfer
function:

X (s)

G(s)
= as + 10

5s + 10

Note that the model has numerator dynamics if a �= 0.
For a unit-step input, G(s) = 1/s and

X (s) = as + 10

s(5s + 10)
= 1

s
+ a − 5

5

1

s + 2
Thus the response is

x(t) = 1 + a − 5

5
e−2t

From this solution or the initial-value theorem we find that x(0+) = a/5, which is not equal
to x(0) unless a = 0 (which corresponds to the absence of numerator dynamics). The plot of
the response is given in Figure 3.6.2 for several values of a. The initial condition is different for
each case, but for all cases the response is essentially constant for t > 2 because of the term e−2t .

A Second-Order Model with Numerator Dynamics EXAMPLE 3.6.6

■ Problem
Obtain the transfer function and investigate the response of the following model in terms of the
parameter a. The input g(t) is a unit-step function.

3ẍ + 18ẋ + 24x = aġ(t) + 6g(t) x(0) = 0 ẋ(0) = 0

■ Solution
Transforming the equation with zero initial conditions and solving for the ratio X (s)/G(s) gives
the transfer function:

X (s)

G(s)
= as + 6

3s2 + 18s + 24

Note that the model has numerator dynamics if a �= 0.
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Figure 3.6.3 Plot of the
response for Example 3.6.6.
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For a unit-step input, G(s) = 1/s and

X (s) = as + 6

s(3s2 + 18s + 24)
= 1

4

1

s
+ a − 3

6

1

s + 2
+ 3 − 2a

12

1

s + 4

Thus the response is

x(t) = 1

4
+ a − 3

6
e−2t + 3 − 2a

12
e−4t

From this solution or the initial-value theorem we find that x(0+) = 0, which is equal to x(0),
and that ẋ(0+) = a/3, which is not equal to ẋ(0) unless a = 0 (which corresponds to the
absence of numerator dynamics). The plot of the response is given in Figure 3.6.3 for several
values of a. Notice that a “hump” in the response (called an “overshoot”) does not occur for
smaller values of a and the height of the hump increases as a increases. However, the value of
a does not affect the steady-state response.

3.7 ADDITIONAL EXAMPLES
This section contains additional examples of solving dynamic models.

EXAMPLE 3.7.1 Transform of A sin(ωt + φ)

■ Problem
(a) Derive the Laplace transform of the function A sin(ωt + φ). (b) Generalize the answer from
part (a) to find the Laplace transform of Ae−at sin(ωt + φ).

■ Solution
a. Because we already have the transforms of sin ωt and cos ωt , we can use the following

trigonometric identity to obtain our answer:

sin(ωt + φ) = sin ωt cos φ + cos ωt sin φ
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From the linearity property of the transform,

L[A sin(ωt + φ)] = A

∫ ∞

0
sin ωt cos φe−st dt + A

∫ ∞

0
cos ωt sin φe−st dt

= A cos φL(sin ωt) + A sin φL(cos ωt)

= A cos φ
ω

s2 + ω2
+ A sin φ

s

s2 + ω2

Combining these terms gives the answer:

L[A sin(ωt + φ)] = A
s sin φ + ω cos φ

s2 + ω2

b. Following the same procedure and using the fact that

L
(
e−at sin ωt

) = ω

(s + a)2 + ω2
L
(
e−at cos ωt

) = s + a

(s + a)2 + ω2

we see that

L
[

Ae−at sin(ωt + φ)
] = A cos φL

(
e−at sin ωt

) + A sin φL
(
e−at cos ωt

)
= A cos φ

ω

(s + a)2 + ω2
+ A sin φ

s + a

(s + a)2 + ω2

Combining these terms gives the answer:

L
[

Ae−at sin(ωt + φ)
] = A

s sin φ + a sin φ + ω cos φ

(s + a)2 + ω2

Response in the Form A sin(ωt + φ) EXAMPLE 3.7.2

■ Problem
Given that

F(s) = 3s + 10

s2 + 16

obtain f (t) in the form f (t) = A sin(ωt + φ), where A > 0.

■ Solution
From the results of part (a) of Example 3.7.1, we see that the form f (t) = A sin(ωt + φ) has
the transform

A
s sin φ + ω cos φ

s2 + ω2

Comparing this with F(s) we see that ω = 4 and A(s sin φ + ω cos φ) = 3s + 10. Therefore,
A sin φ = 3 and Aω cos φ = 4A cos φ = 10, or

sin φ = 3

A
cos φ = 10

4A
(1)

Because A > 0, these equations reveal that sin φ > 0 and cos φ > 0. Therefore, φ is in the
first quadrant (0 ≤ φ ≤ π/2 rad) and can be computed as follows:

φ = tan−1 sin φ

cos φ
= tan−1 3/A

10/4A
= tan−1 3

10/4
= 0.876 rad
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To find A, we use the fact that sin2 φ + cos2 φ = 1 for any angle φ. From equations (1) we
have

sin2 φ + cos2 φ =
(

3

A

)2

+
(

10

4A

)2

= 1

This gives A2 = 9 + 100/16 = 244/16. Because A was specified to be positive, we take the
positive square root to obtain A = √

61/2. The solution is

f (t) = 1

2

√
61 sin(4t + 0.876)

EXAMPLE 3.7.3 Sine Form of the Response

■ Problem
Obtain the solution to the following problem in the form of a sine function with a phase angle:

3ẍ + 12ẋ + 87x = 5 x(0) = 2 ẋ(0) = 7

■ Solution
Applying the Laplace transform we obtain

3
[
s2 X (s) − sx(0) − ẋ(0)

] + 12[s X (s) − x(0)] + 87X (s) = 5

s

which gives

X (s) = 6s2 + 45s + 5

3s(s2 + 4s + 29)
= 2s2 + 15s + 5/3

s
[
(s + 2)2 + 25

] (1)

Because the denominator roots are s = 0 and s = −2 ± 5 j , we know that the form of the
solution is

x(t) = C1 + C2e−2t sin(5t + φ)

Using the results of Example 3.7.1 with a = 2 and ω = 5, we can write the transform of x(t) as

X (s) = C1

s
+ C2

s sin φ + 2 sin φ + 5 cos φ

(s + 2)2 + 25

This can be expressed as a single fraction as follows:

X (s) = C1

[
(s + 2)2 + 25

] + C2s(s sin φ + 2 sin φ + 5 cos φ)

s
[
(s + 2)2 + 25

]
= (C1 + C2 sin φ)s2 + (4C1 + 2C2 sin φ + 5C2 cos φ)s + 29C1

s
[
(s + 2)2 + 25

] (2)

Comparing the numerators of equations (1) and (2) we see that

C1 + C2 sin φ = 2 4C1 + 2C2 sin φ + 5C2 cos φ = 15 29C1 = 5

3

The third equation gives C1 = 5/87 = 0.0575, and the first equation gives

C2 sin φ = 2 − C1 = 169

87
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From the second equation, we have C2 cos φ = 947/435. Taking C2 to be positive, we see that
both sin φ and cos φ are positive, and thus φ is in the first quadrant. Therefore

φ = tan−1

(
sin φ

cos φ

)
= tan−1

(
169/87

947/435

)
= 0.729 rad

Because sin2 φ + cos2 φ = 1,

sin2 φ + cos2 φ =
(

169

87C2

)2

+
(

947

435C2

)2

= 1

which gives C2 = 2.918. Thus the solution is

x(t) = 0.0575 + 2.918e−2t sin(5t + 0.729)

The shifting property, entry 6 in Table 3.3.2, can be used to invert transforms con-
taining the function e−Ds . This enables us to obtain the response to inputs composed
of shifted step or ramp functions.

Pulse Response of a First-Order Model EXAMPLE 3.7.4

■ Problem
Suppose a rectangular pulse P(t) of unit height and duration 2 is applied to the first-order model
ẋ + 4x = P(t) with a zero initial condition. Use the Laplace transform to determine the response.

■ Solution
The problem to be solved is

ẋ + 4x = P(t) x(0) = 0

Taking the transform of both sides of the equation and noting that the initial condition is zero,
we obtain

s X (s) + 4X (s) = P(s) = 1 − e−2s

s

Solve for X (s).

X (s) = P(s)

s + 4
= 1 − e−2s

s(s + 4)

Let

Y (s) = 1

s(s + 4)

Then

X (s) = (
1 − e−2s

)
Y (s)

and from the shifting property,

x(t) = y(t)us(t) − y(t − 2)us(t − 2) (1)
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Figure 3.7.1 Plot of the
solution for Example 3.7.4.
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To find y(t), note that the denominator roots of Y (s) are s = 0 and s = −4. Thus we can express
Y (s) as follows:

Y (s) = C1

s
+ C2

s + 4
= 1

4

(
1

s
− 1

s + 4

)

Therefore,

y(t) = 1

4
− 1

4
e−4t

and from equation (1),

x(t) =
(

1

4
− 1

4
e−4t

)
−

[
1

4
− 1

4
e−4(t−2)

]
us(t − 2)

So for 0 ≤ t ≤ 2,

x(t) = 1

4
− 1

4
e−4t

and for t ≥ 2,

x(t) = 1

4
− 1

4
e−4t − 1

4
+ 1

4
e−4(t−2) = 1

4

[
e−4(t−2) − e−4t

]
The function’s graph is shown in Figure 3.7.1.

EXAMPLE 3.7.5 Series Solution Method

■ Problem
Obtain an approximate, closed-form solution of the following problem for 0 ≤ t ≤ 0.5:

ẋ + x = tan t x(0) = 0 (1)
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■ Solution
If we attempt to use separation of variables to solve this problem we obtain

dx

tan t − x
= dt

so the variables do not separate. In general, when the input is a function of time, the equation
ẋ + g(x) = f (t) does not separate. The Laplace transform method cannot be used when the
Laplace transform or inverse transform either does not exist or cannot be found easily. In this
example, the equation cannot be solved by the Laplace transform method, because the transform
of tan t does not exist.

An approximate solution of the equation ẋ + x = tan t can be obtained by replacing tan t
with a series approximation. The number of terms used in the series determines the accuracy of
the resulting solution for x(t). The Taylor series expansion for tan t is

tan t = t + t3

3
+ 2t5

15
+ 17t7

315
+ · · · |t | <

π

2

The more terms we retain, the more accurate is the series. Also, the series becomes less accurate
as the absolute value of t increases. To demonstrate the series solution method, let us use a series
with two terms: tan t = t + t3/3. At the largest value of t , t = 0.5, the two-term series gives
0.5417 versus 0.5463 for the true value of tan 0.5. So the two-term series is accurate to at least
two decimal places over the range of t we are interested in (0 ≤ t ≤ 0.5).

Using the two-term series we need to solve the following problem:

ẋ + x = t + t3

3
x(0) = 0

Using the Laplace transform we obtain

s X (s) + X (s) = 1

s2
+ 1

3

3!

s4

or

X (s) = s2 + 2

s4(s + 1)

The inverse transform was obtained in Example 3.5.7 and is

x(t) = 1

3
t3 − t2 + 3t − 3 + 3e−t

We can expect this approximate solution of equation (1) to be accurate to at least two decimal
places for 0 ≤ t ≤ 0.5. Of course, greater accuracy can be achieved by retaining more terms in
the Taylor series for tan t .

3.8 COMPUTING EXPANSION COEFFICIENTS
WITH MATLAB

You can use MATLAB to easily compute the coefficients in the partial-fraction expan-
sion. The appropriate MATLAB function is residue. Let X (s) denote the transform.
In the terminology of the residue function, the expansion coefficients are called the
residues and the factors of the denominator of X (s) are called the poles. The poles
include the characteristic roots of the model and any denominator roots introduced by
the input function. If the order m of the numerator of X (s) is greater than the order n
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of the denominator, the transform can be represented by a polynomial K (s), called the
direct term, plus a ratio of two polynomials where the denominator degree is greater
than the numerator degree. For example,

X (s) = 6s3 + 57s2 + 120s + 80

s2 + 9s + 14
= 6s + 3 + 9s + 38

s2 + 9s + 14
(3.8.1)

or

X (s) = 6s + 3 + 5
1

s + 7
+ 4

1

s + 2
(3.8.2)

Here the direct term is the polynomial K (s) = 6s + 3.

SYNTAX OF THE residue FUNCTION

The syntax of the residue function is as follows:

[r,p,K] = residue(num,den)

where num and den are arrays containing the coefficients of the numerator and de-
nominator of X (s). The output of the function consists of the array r, which contains
the residues, the array p, which contains the poles, and the array K, which contains the
coefficients of the direct term K (s) in polynomial form.

Using (3.8.1) as an example, you would type

[r,p,K] = residue([6,57,120,80],[1,9,14])

The answer given by MATLAB is r = [5, 4], p = [-7, -2], and K = [6, 3],
which corresponds to (3.8.2). Note that the order in which the residues are displayed
corresponds to the order in which the poles are displayed.

REPEATED POLES

Repeated poles are handled as follows. Consider the equation ẍ +9ẋ +14x = 3ġ +2g,
where g(t) = 4e−7t . If the initial conditions are zero, the transform of the response is

X (s) = 3s + 2

s2 + 9s + 14

4

s + 7
= 12s + 8

(s + 2)(s + 7)2

= 12s + 8

s3 + 16s2 + 77s + 98

The repeated poles are s = −7, −7; one of them is a characteristic root and the other is
due to the input. To obtain the expansion, type

[r,p,K] = residue([12, 8],[1, 16, 77, 98])

The answer given by MATLAB isr =[0.64, 15.2, -0.64],p = [-7, -7, -2],
and K = []. This corresponds to the expansion

X (s) = 0.64
1

s + 7
+ 15.2

1

(s + 7)2
− 0.64

1

s + 2
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Note that for the residues due to repeated poles, the residue corresponding to the highest
power is displayed as the last of those residues. The response here is

x(t) = 0.64e−7t + 15.2te−7t − 0.64e−2t

COMPLEX POLES

Complex poles are handled as follows. Consider the equation ẍ + 6ẋ + 34x = 4ġ + g,
where g(t) is a unit-step function and the initial conditions are zero. The transform of
the response is

X (s) = 4s + 1

(s2 + 6s + 34)s
= 4s + 1

s3 + 6s2 + 34s

To obtain the expansion, type

[r,p,K] = residue([4, 1],[1, 6, 34, 0])

Observe that the last coefficient in the denominator is 0. The answer given by
MATLAB is r = [-0.0147-0.3912i, -0.0147+0.3912i, 0.0294], p =
[-3+5i, -3-5i, 0], and K = []. (Note that MATLAB uses the symbol i to rep-
resent the imaginary number

√−1, whereas we have been using the symbol j .) The
MATLAB results correspond to the expression

X (s) = −0.0147 − 0.3912 j

s + 3 − 5 j
+ −0.0147 + 0.3912 j

s + 3 + 5 j
+ 0.0294

s

The response is

x(t) = (−0.0147 − 0.3912 j)e(−3+5 j)t + (−0.0147 + 0.3912 j)e(−3−5 j)t + 0.0294
(3.8.3)

This form is not very useful because of its complex coefficients, but we can convert it
to a more useful form by noting that the first two terms in the expansion have the form

C + j D

s + a − jb
+ C − j D

s + a + jb
(3.8.4)

which corresponds to the time function

(C + j D)e(−a+ jb)t + (C − j D)e(−a− jb)t

Using Euler’s identities: e± jbt = cos bt ± j sin bt , the previous form can be written as

2e−at(C cos bt − D sin bt) (3.8.5)

Using this identity with C = −0.0147 and D = −0.3912, we can write the response
(3.8.3) as

x(t) = 2e−3t(−0.0147 cos 5t + 0.3912 sin 5t) + 0.0294
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3.9 TRANSFER-FUNCTION ANALYSIS IN MATLAB
Some of the functions from the MATLAB Control System Toolbox can be used to solve
linear, time-invariant (constant-coefficient) differential equations. They are called ODE
solvers and are powerful tools for studying dynamic systems.

THE tf AND tfdata FUNCTIONS

The ODE solvers in the Control System Toolbox can accept various descriptions of the
equations to be solved. Here we will focus on the solvers that accept a transfer function
model of the system. An LTI object describes a linear, time-invariant model, or sets of
equations, here referred to as the system. An LTI object can be created from different
descriptions of the system, it can be analyzed with several functions, and it can be
accessed to provide alternative descriptions of the system. For example, the equation

5ẍ + 9ẋ + 4x = f (t)

is the reduced-form description of a particular system. From the reduced form we can
immediately obtain the transfer function description of the model. It is

X (s)

F(s)
= 1

5s2 + 9s + 4
(3.9.1)

To create an LTI object from a transfer function, you use the tf(num,den) func-
tion, where the array num is the array of coefficients of the numerator of the transfer
function, arranged in order of descending powers of s, and den is the array of coeffi-
cients of the denominator of the transfer function, also arranged in descending order.
The result is the LTI object that describes the system in the transfer function form. For
equation (3.9.1), the session is

	sys1 = tf(1, [5, 9, 4]);

Here is another example. The LTI object sys2 in transfer function form for the
equation

5
d3x

dt3
+ 4

d2x

dt2
+ 7

dx

dt
+ 3x = 6

d2 f

dt2
+ 9

d f

dt
+ 2 f (3.9.2)

is created with the session:

	sys2 = tf([6, 9, 2],[5, 4, 7, 3]);

As we will see in Chapter 5, we can also create an LTI object from descriptions
of the system other than its transfer function. If the LTI object already exists, we can
extract the coefficients of the numerator and denominator of the transfer function model
by using the tfdata function. Its syntax is [num, den] = tfdata(sys).

ODE SOLVERS

The Control System Toolbox provides several solvers for linear models. These solvers
are categorized by the type of input function they can accept: some of these are a step
input, an impulse input, and a general input function.

In their basic form, each of the following functions automatically puts a title and
axis labels on the plot. You can change these by activating the Plot Editor or by
right-clicking on the plot. This brings up a menu that includes the Properties as a
choice. Selecting Properties enables you to change the labels as well as other features
such as limits, units, and style.
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The menu obtained by right-clicking on the plot also contains Characteristics as a
choice. The contents of the subsequent menu depend on the particular function. When
the step function is used, the Characteristics menu includes Peak Response, Rise
Time, Settling Time, and Steady State. When you select Peak Response, for example,
MATLAB identifies the peak value of the response curve and marks its location with a
dot and dashed lines. Moving the cursor over the dot displays the numerical values of
the peak response and the time at which it occurs. The Rise Time is the time required
for the response to go from 10% to 90% of its steady-state value. The Settling Time is
the time required for the response to settle within 2% of its steady-state value. You can
change these percents by selecting the Characteristics tab under the Properties menu.
The rise time and settling time are frequently used as measures of system performance
and are discussed in Chapter 9.

The step Function The step function plots the unit-step response, assuming that
the initial conditions are zero. The basic syntax is step(sys), where sys is the
LTI object. The time span and number of solution points are chosen automatically. To
specify the final time tfinal, use the syntax step(sys,tfinal). To specify a
vector of times of the form t = (0:dt:tfinal), at which to obtain the solution,
use the syntax step(sys,t). When called with left-hand arguments, as [y, t] =
step(sys,...), the function returns the output response y, and the time array t
used for the simulation. No plot is drawn. The array y is p × q × m, where p is
length(t), q is the number of outputs, and m is the number of inputs.

The syntax step(sys1,sys2,...,t) plots the step response of multiple LTI
systems on a single plot. The time vector t is optional. You can specify line color,
line style, and marker for each system; for example, step(sys1,'r', sys2,
'y--',sys3,'gx'). The steady-state response and the time to reach that state are
automatically determined. The steady-state response is indicated by a horizontal dotted
line.

Step Response of a Second-Order Model EXAMPLE 3.9.1

■ Problem
Consider the following model:

X (s)

F(s)
= cs + 5

10s2 + cs + 5

a. Plot the unit-step response for c = 3 using the time span selected by MATLAB.
b. Plot the unit-step response for c = 3 over the range 0 ≤ t ≤ 15.
c. Plot the unit-step responses for c = 3 and c = 8 over the range 0 ≤ t ≤ 15. Put the plots

on the same graph.
d. Plot the step response for c = 3, where the magnitude of the step input is 20. Use

the time span selected by MATLAB.

■ Solution
The MATLAB programs are shown below for each case.

a. This illustrates the use of the step function in its most basic form.

sys1 = tf([3,5],[10,3,5]);

step(sys1)

The plot is shown in Figure 3.9.1.



palm-38591 book December 17, 2008 12:1

144 CHAPTER 3 Solution Methods for Dynamic Models

Figure 3.9.1 Response for
part (a) of Example 3.9.1.
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Figure 3.9.2 Response for
part (b) of Example 3.9.1.
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b. This illustrates how to use a user-selected time span and spacing.

sys1 = tf([3,5],[10,3,5]);

t = (0:0.01:15);

step(sys1,t)

The plot is shown in Figure 3.9.2.
c. This illustrates how to plot two responses on the same graph.

sys1 = tf([3,5],[10,3,5]);

sys2 = tf([8,5],[10,8,5]);

t = (0:0.01:15);

step(sys1,' ',sys2,'--',t)

The plot is shown in Figure 3.9.3.
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Figure 3.9.3 Response for
part (c) of Example 3.9.1.
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Figure 3.9.4 Response for
part (d) of Example 3.9.1.

d. This illustrates how to obtain the response when the magnitude of the step input is not
unity. The output of the step(sys1) function is for a unit-step input, and so it must be
multiplied by 20. This multiplication can be performed within the plot function.

sys1 = tf([3,5],[10,3,5]);

[y, t] = step(sys1);

plot(t,20*y),xlabel('t'),ylabel('x(t)')

The plot is shown in Figure 3.9.4.
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Note that when the step function is used without an assignment on the left-hand
side of the equal sign, it automatically computes and plots the steady-state response,
and puts a title and axis labels on the plot, with the assumption that the unit of time is
seconds. When the form [y, t] = step(sys) is used, however, the steady-state
response is not computed, and you must put the labels on the plot.

The impulse Function The impulse function plots the unit-impulse response,
assuming that the initial conditions are zero. The basic syntax is impulse(sys),
where sys is the LTI object. The time span and number of solution points are chosen
automatically. For example, the impulse response of (3.9.1) is found as follows:

	sys1 = tf(1,[5, 9, 4]);
	impulse(sys1)

The extended syntax of the impulse function is identical to that of the step
function. The characteristics available with the impulse function by right-clicking
on the plot are the Peak Response and the Settling Time.

EXAMPLE 3.9.2 Impulse Response of Second-Order Models

■ Problem
In Example 3.6.4 we obtained the response of the following model to a unit impulse:

X (s)

F(s)
= 1

2s2 + 14s + 20

Our analysis showed that if x(0) = ẋ(0) = 0, then x(0+) = 0 and ẋ(0+) = 1/2. Use the
impulse function to verify these results.

■ Solution
The session is shown here.

	sys1 = tf(1,[2, 14, 20]);

	impulse(sys1)

The plot is shown in Figure 3.9.5. From it we see that x(0+) = 0 and that ẋ(0+) is positive
as predicted. We are unable to determine the exact value of ẋ(0+) from this plot, so we multiply
the transfer function by s to obtain the transfer function for v = ẋ .

V (s)

F(s)
= s

2s2 + 14s + 20

We now use the impulse function on this transfer function.

	sys2 = tf([1, 0],[2, 14, 20]);

	impulse(sys2)

The plot is shown in Figure 3.9.6. From it we see that ẋ(0+) = 0.5 as predicted.
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Figure 3.9.5 Impulse
response of x(t) for
Example 3.9.2.
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Figure 3.9.6 Impulse
response of v = ẋ(t) for
Example 3.9.2.

The lsim Function The lsim function plots the response of the system to an
arbitrary input. The basic syntax for zero-initial conditions islsim(sys,u,t), where
sys is the LTI object, t is a time array having regular spacing, as t = (0:dt:tf),
and u is a matrix with as many columns as inputs, and whose i th row specifies the value
of the input at time t(i).

The extended syntax of the lsim function is the same as that of the step function.
When lsim is used without the left-hand arguments, the Peak Response is available
from the Characteristics menu.
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EXAMPLE 3.9.3 Ramp Response with the lsim Function

■ Problem
Plot the forced response of

ẍ + 3ẋ + 5x = 10 f (t)

to a ramp input, u(t) = 1.5t , over the time interval 0 ≤ t ≤ 2.

■ Solution
We choose to generate the plot with 300 points. The MATLAB session is the following.

	t = linspace(0,2,300);

	f = 1.5*t;

	sys = tf(10, [1, 3, 5]);

	[y, t] = lsim(sys,f,t);

	plot(t,y,t,f),xlabel('t'),ylabel('x(t) and f(t)')

The plot is shown in Figure 3.9.7.

Figure 3.9.7 Ramp response
for Example 3.9.3.
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Sine Response with the lsim Command As another example, to find the response to
f (t) = 15 sin(3t), replace the second line in the previous program with f =
15*sin(3*t);.

3.10 CHAPTER REVIEW
Chapter 3 covers methods for solving ordinary differential equations. Now that you
have finished this chapter you should be able to do the following:

1. Choose and apply the separation-of-variables method, the trial-solution method, or
the Laplace transform method to obtain the solution of a differential equation model.
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2. When applying the Laplace transform method, be able to perform the appropriate
expansion and apply the appropriate transform properties to obtain the inverse
transform.

3. Identify the free, forced, transient, and steady-state components of the complete
response.

4. Evaluate the effects of impulse inputs and input derivatives on the response.
5. Obtain transfer functions from models expressed as single equations or as sets of

equations.
6. Use MATLAB to obtain partial-fraction expansions and the forced response.

Perspective on Solving Differential Equations

In this chapter we have seen several methods for solving differential equations, and it
is useful to understand the advantages of each method.

■ The trial solution method using exponential or harmonic functions is sometimes
the easiest method, especially for first- and second-order linear equations with
constant inputs.

■ Separation of variables can be used to solve some linear and nonlinear ODEs, but
the technique is limited to rather simple equations. For example, the method does
not work for the equation ẋ + g(x) = f (t), which does not separate.

■ For some equations, the separation of variables method can be used to obtain a
formal solution, but the resulting integral cannot be evaluated in terms of known
elementary functions. An example is the equation ẋ = sin t2, for which the
integral must be evaluated numerically.

■ The Laplace transform method is especially advantageous when the mathematical
model is linear, has constant coefficients, and either

1. Is of order higher than three,
2. Has a nonconstant input,
3. Has input derivatives, or
4. Consists of coupled differential equations.

■ However, the Laplace transform method cannot be used when the Laplace
transform or inverse transform either does not exist or cannot be found easily.
For example, the equation ẋ = tan t can be solved by separation of variables but
not by the Laplace transform method, because the transform of tan t does not
exist.

■ As shown in Example 3.7.6, an approximate closed-form solution can sometimes
be obtained by using a series approximation. The number of terms used in the
series determines the accuracy of the resulting solution.

When we cannot obtain a closed-form solution we must solve the differential
equation model using numerical methods, which are the subject of Chapter 5.

REFERENCE
[Kreyzig, 2006] Kreyzig, E., Advanced Engineering Mathematics, 9th ed., John Wiley and

Sons, New York, 2006.
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PROBLEMS
Section 3.1 Differential Equations

3.1 Determine whether or not the following equations are linear or nonlinear, and
state the reason for your answer.
a. y ÿ + 5ẏ + y = 0
b. ẏ + sin y = 0
c. ẏ + √

y = 0
3.2 Solve each of the following problems by separation of variables:

a. 4ẋ = 3t x(0) = 2
b. 5ẋ = 2e−4t x(0) = 3
c. 3ẍ = 5t x(0) = 2 ẋ(0) = 7
d. 4ẍ = 7e−2t x(0) = 4 ẋ(0) = 2

3.3 Solve each of the following problems by separation of variables:
a. ẋ + 5x2 = 25 x(0) = 3
b. ẋ − 4x2 = 36 x(0) = 10
c. x ẋ − 5x = 25 x(0) = 4
d. ẋ + 2e−4t x = 0 x(0) = 5

Section 3.2 Response Types and Stability

3.4 Solve each of the following problems with the trial solution method. Identify
the free, forced, transient, and steady-state responses.
a. ẍ + 8ẋ + 15x = 30 x(0) = 10 ẋ(0) = 4

b. ẍ + 10ẋ + 25x = 75 x(0) = 10 ẋ(0) = 4

c. ẍ + 25x = 100 x(0) = 10 ẋ(0) = 4

d. ẍ + 8ẋ + 65x = 130 x(0) = 10 ẋ(0) = 4

3.5 Determine whether the following models are stable, unstable, or neutrally
stable:
a. 3ẋ − 5x = 12 b. ẍ − 3ẋ − 10x = 50

c. ẍ − 6ẋ + 34x = 68 d. ẋ = 3

e. ẍ + 4x = 5 f. ẍ + 5ẋ = 7

3.6 (a) Prove that the second-order system whose characteristic polynomial is
ms2 + cs + k is stable if and only if m, c, and k have the same sign. (b) Derive
the conditions for neutral stability.

Section 3.3 The Laplace Transform Method

Note: see also the problems for Section 3.7, Additional Examples.
3.7 Derive the Laplace transform of the ramp function x(t) = mt , whose slope is

the constant m.
3.8 Extend the results of Problem 3.7 to obtain the Laplace transform of t2.
3.9 Obtain the Laplace transform of the following functions:

a. x(t) = 10 + t2

b. x(t) = 6te−5t + e−3t
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c. x(t) = te−3t sin 5t

d. x(t) =
{

0 t < 5
t − 5 t > 5

3.10 Obtain the Laplace transform of the function shown in Figure P3.10.

f(t)

5

6
14

�2
t

Figure P3.10

3.11 Use the initial and final value theorems to determine x(0+) and x(∞) for the
following transforms:

a. X (s) = 5

3s + 7
b. X (s) = 10

3s2 + 7s + 4
3.12 Obtain the inverse Laplace transform x(t) for each of the following transforms:

a. X (s) = 6

s(s + 4)

c. X (s) = 4s + 7

(s + 2)(s + 5)

e. X (s) = 3s + 2

s2(s + 5)

b. X (s) = 12s + 5

s(s + 3)

d. X (s) = 5

s2(2s + 8)

f. X (s) = 12s + 5

(s + 3)2(s + 7)

3.13 Obtain the inverse Laplace transform x(t) for each of the following transforms:

a. X (s) = 7s + 2

s2 + 6s + 34

b. X (s) = 4s + 3

s(s2 + 6s + 34)

c. X (s) = 4s + 9

(s2 + 6s + 34)(s2 + 4s + 20)

d. X (s) = 5s2 + 3s + 7

s3 + 12s2 + 44s + 48

3.14 Solve the following problems:
a. 5ẋ = 7t x(0) = 3
b. 4ẋ = 3e−5t x(0) = 4
c. 7ẍ = 4t x(0) = 3 ẋ(0) = 5
d. 3ẍ = 8e−4t x(0) = 3 ẋ(0) = 5

3.15 Solve the following problems:
a. 5ẋ + 7x = 0 x(0) = 4
b. 5ẋ + 7x = 15 x(0) = 0
c. 5ẋ + 7x = 15 x(0) = 4
d. ẋ + 7x = 4t x(0) = 5
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3.16 Solve the following problems:
a. ẍ + 10ẋ + 21x = 0 x(0) = 4 ẋ(0) = −3
b. ẍ + 14ẋ + 49x = 0 x(0) = 1 ẋ(0) = 3
c. ẍ + 14ẋ + 58x = 0 x(0) = 4 ẋ(0) = −8

3.17 Solve the following problems:
a. 3ẍ + 30ẋ + 63x = 5 x(0) = ẋ(0) = 0
b. ẍ + 14ẋ + 49x = 98 x(0) = ẋ(0) = 0
c. ẍ + 14ẋ + 58x = 174 x(0) = ẋ(0) = 0

Section 3.4 Transfer Functions

3.18 For each of the following equations, determine the transfer function X (s)/
F(s) and compute the characteristic roots:
a. 5ẋ + 7x = 15 f (t)
b. 3ẍ + 30ẋ + 63x = 5 f (t)
c. ẍ + 10ẋ + 21x = 4 f (t)
d. ẍ + 14ẋ + 49x = 7 f (t)
e. ẍ + 14ẋ + 58x = 6 ḟ (t) + 4 f (t)
f. 5ẋ + 7x = 4 ḟ (t) + 15 f (t)

3.19 Obtain the transfer functions X (s)/F(s) and Y (s)/F(s) for the following
model:

3ẋ = y ẏ = f (t) − 3y − 15x

3.20 Obtain the transfer functions X (s)/F(s) and Y (s)/F(s) for the following
model:

ẋ = −2x + 5y ẏ = f (t) − 6y − 4x

Section 3.5 Partial-Fraction Expansion

Note: see also the problems for Section 3.7, Additional Examples.
3.21 Invert the following transforms:

a.
6

s(s + 5)

c.
8s + 5

2s2 + 20s + 48

b.
4

(s + 3)(s + 8)

d.
4s + 13

s2 + 8s + 116

3.22 Invert the following transforms:

a.
3s + 2

s2(s + 10)

c.
s2 + 3s + 5

s3(s + 2)

b.
5

(s + 4)2(s + 1)

d.
s3 + s + 6

s4(s + 2)

3.23 Solve the following problems for x(t):
a. 5ẋ + 3x = 10 + t2 x(0) = 2
b. 4ẋ + 7x = 6te−5t + e−3t x(0) = 5
c. 4ẍ + 3x = te−3t sin 5t x(0) = 10 ẋ(0) = −2
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3.24 Compare the LCD method with equation (3.5.4) for obtaining the inverse
Laplace transform of

X (s) = 7s + 4

2s2 + 16s + 30

Section 3.6 The Impulse and Numerator Dynamics

3.25 Solve the following problems for x(t). Compare the values of x(0+) and x(0).
For parts (b) through (d), also compare the values of ẋ(0+) and ẋ(0).
a. 7ẋ + 5x = 4δ(t) x(0) = 3
b. 3ẍ + 30ẋ + 63x = 5δ(t) x(0) = ẋ(0) = 0
c. ẍ + 14ẋ + 49x = 3δ(t) x(0) = 2 ẋ(0) = 3
d. ẍ + 14ẋ + 58x = 4δ(t) x(0) = 4 ẋ(0) = 7

3.26 Solve the following problems for x(t). The input g(t) is a unit-step function,
g(t) = us(t). Compare the values of x(0+) and x(0). For parts (c) and (d), also
compare the values of ẋ(0+) and ẋ(0).
a. 7ẋ + 5x = 4ġ(t) x(0) = 3
b. 7ẋ + 5x = 4ġ(t) + 6g(t) x(0) = 3
c. 3ẍ + 30ẋ + 63x = 4ġ(t) x(0) = 2 ẋ(0) = 3
d. 3ẍ + 30ẋ + 63x = 4ġ(t) + 6g(t) x(0) = 4 ẋ(0) = 7

Section 3.7 Additional Examples

3.27 Solve the following problem for x(t) and y(t):

3ẋ = y x(0) = 5

ẏ = 4us(t) − 3y − 15x y(0) = 10

3.28 Solve the following problem for x(t) and y(t):

ẋ = −2x + 5y x(0) = 5

ẏ = −6y − 4x + 10us(t) y(0) = 2

3.29 Determine the general form of the solution of the following equation, where
the initial conditions y(0) and ẏ(0) have arbitrary values:

ÿ + y = e−t

3.30 a. Use the Laplace transform to obtain the form of the solution of the
following equation:

ẍ + 4x = 3t

b. Obtain the solution to the equation in part (a) for the following conditions:
x(0) = 10, x(5) = 30.

3.31 Obtain the inverse Laplace transform of

X (s) = 30(
s2 + 6s + 34

)(
s2 + 36

)
3.32 Solve the following problem for x(t):

ẍ + 12ẋ + 40x = 3 sin 5t x(0) = ẋ(0) = 0
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3.33 Obtain the inverse transform in the form x(t) = A sin(ωt + φ), where A > 0.

X (s) = 4s + 9

s2 + 25

3.34 Use the Laplace transform to solve the following problem:

ẍ + 6ẋ + 34x = 5 sin 6t x(0) = 0 ẋ(0) = 0

3.35 Express the oscillatory part of the solution of the following problem in the
form of a sine function with a phase angle:

ẍ + 12ẋ + 40x = 10 x(0) = ẋ(0) = 0

3.36 Find the steady-state difference between the input f (t) and the response x(t),
if f (t) = 6t .

ẍ + 8ẋ + x = f (t) x(0) = ẋ(0) = 0

3.37 Invert the following transform:

X (s) = 1 − e−3s

s2 + 6s + 8

3.38 Obtain the Laplace transform of the function plotted in Figure P3.38.
3.39 Obtain the Laplace transform of the function plotted in Figure P3.39.

Figure P3.38

f(t)

C

D 2D t
0

Figure P3.39

f(t)

C

D t
0

3.40 Obtain the Laplace transform of the function plotted in Figure P3.40.

Figure P3.40 f(t)

M

0

�M

T

2T

t

3.41 Obtain the response x(t) of the following model, where the input P(t) is a
rectangular pulse of height 3 and duration 5:

4ẋ + x = P(t) x(0) = 0
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3.42 The Taylor series expansion for tan t is

tan t = t + t3

3
+ 2t5

15
+ 17t7

315
+ · · · |t | <

π

2
Use the first three terms in the series to obtain an approximate closed-form
solution of the following problem over the interval 0 ≤ t ≤ 0.5:

ẋ + x = tan t x(0) = 0

Compare your answer at t = 0.5 with that obtained in Example 3.7.6, which
was obtained by using two terms in the series.

3.43 Derive the initial value theorem:

lim
s→∞ s X (s) = x(0+)

3.44 Derive the final value theorem:

lim
s→0

s X (s) = lim
t→∞ x(t)

3.45 Derive the integral property of the Laplace transform:

L
[∫ t

0
x(t) dt

]
= X (s)

s
+ 1

s

∫
x(t) dt

∣∣∣∣
t=0

Section 3.8 Partial-Fraction Expansion with MATLAB

3.46 Use MATLAB to obtain the inverse transform of the following. If the
denominator of the transform has complex roots, express x(t) in terms of a
sine and a cosine.

a. X (s) = 8s + 5

2s2 + 20s + 48

b. X (s) = 4s + 13

s2 + 8s + 116

c. X (s) = 3s + 2

s2(s + 10)

d. X (s) = s3 + s + 6

s4(s + 2)

e. X (s) = 4s + 3

s(s2 + 6s + 34)

f. X (s) = 5s2 + 3s + 7

s3 + 12s2 + 44s + 48
3.47 Use MATLAB to obtain the inverse transform of the following. If the

denominator of the transform has complex roots, express x(t) in terms of a
sine and a cosine. Hint: you will find it convenient to use the conv function
to multiply two polynomials.

a. X (s) = 5

(s + 4)2(s + 1)

b. X (s) = 4s + 9

(s2 + 6s + 34)(s2 + 4s + 20)



palm-38591 book December 17, 2008 12:1

156 CHAPTER 3 Solution Methods for Dynamic Models

Section 3.9 Transfer-Function Analysis with MATLAB

3.48 Use MATLAB to solve for and plot the unit-step response of the following
models:
a. 3ẍ + 21ẋ + 30x = f (t)
b. 5ẍ + 20ẋ + 65x = f (t)
c. 4ẍ + 32ẋ + 60x = 3 ḟ (t) + 2 f (t)

3.49 Use MATLAB to solve for and plot the unit-impulse response of the following
models:
a. 3ẍ + 21ẋ + 30x = f (t)
b. 5ẍ + 20ẋ + 65x = f (t)

3.50 Use MATLAB to solve for and plot the impulse response of the following
model, where the strength of the impulse is 5:

3ẍ + 21ẋ + 30x = f (t)

3.51 Use MATLAB to solve for and plot the step response of the following model,
where the magnitude of the step input is 5:

3ẍ + 21ẋ + 30x = f (t)

3.52 Use MATLAB to solve for and plot the response of the following models for
0 ≤ t ≤ 1.5, where the input is f (t) = 5t and the initial conditions are zero:
a. 3ẍ + 21ẋ + 30x = f (t)
b. 5ẍ + 20ẋ + 65x = f (t)
c. 4ẍ + 32ẋ + 60x = 3 ḟ (t) + 2 f (t)

3.53 Use MATLAB to solve for and plot the response of the following models for
0 ≤ t ≤ 6, where the input is f (t) = 6 cos 3t and the initial conditions are zero:
a. 3ẍ + 21ẋ + 30x = f (t)
b. 5ẍ + 20ẋ + 65x = f (t)
c. 4ẍ + 32ẋ + 60x = 3 ḟ (t) + 2 f (t)
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Model elements containing elasticity as ideal
(massless) spring elements.

2. Model elements containing damping as ideal
(massless) damper elements.

3. Obtain equations of motion for systems having
spring and damper elements.

4. Apply energy methods to obtain equations of
motion.

5. Obtain the free and forced response of mass-spring-
damper systems.

6. Utilize MATLAB to assist in the response analysis.

I n Chapter 2 we applied Newton’s laws of motion to situations in which the masses
in question are assumed to be rigid and where the object’s motion is relatively
uncomplicated, namely, simple translations and simple rotation about a single axis.

However, in many applications the mass either deforms somewhat under the action of
forces or is connected to another object by an element that deforms. Such deformable
elements exert a resisting force that is a function of displacement and are called spring
elements or elastic elements. We treat the modeling of spring elements in Section 4.1 of
this chapter, and in Section 4.2 we show how to obtain equations of motion for systems
consisting of one or more masses and one or more spring elements.

In Chapter 2 we introduced energy-based methods and the concepts of equivalent
mass and equivalent inertia, which simplify the modeling of systems having both trans-
lating and rotating components. In Section 4.3 we extend these methods and concepts
to spring elements.

157
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Velocity-dependent forces such as fluid drag are the subject of Section 4.4. Elements
exerting a resisting force that is a function of velocity are called damping or damper
elements. This section and Section 4.5 provide additional examples of how to model
systems containing mass, spring, and damping elements.

MATLAB can be used to perform some of the algebra required to obtain transfer
functions of multimass systems, and can be used to find the forced and free response.
Section 4.7 shows how this is accomplished. ■

4.1 SPRING ELEMENTS
All physical objects deform somewhat under the action of externally applied forces.
When the deformation is negligible for the purpose of the analysis, or when the cor-
responding forces are negligible, we can treat the object as a rigid body. Sometimes,
however, an elastic element is intentionally included in the system, as with a spring in
a vehicle suspension. Sometimes the element is not intended to be elastic, but deforms
anyway because it is subjected to large forces or torques. This can be the case with the
boom or cables of a large crane that lifts a heavy load. In such cases, we must include
the deformation and corresponding forces in our analysis.

The most familiar spring is probably the helical coil spring, such as those used
in vehicle suspensions and those found in retractable pens. The purpose of the spring
in both applications is to provide a restoring force. However, considerably more engi-
neering analysis is required for the vehicle spring application because the spring can
cause undesirable motion of the wheel and chassis, such as vibration. Because the pen
motion is constrained and cannot vibrate, we do not need as sophisticated an analysis
to see if the spring will work.

Many engineering applications involving elastic elements, however, do not con-
tain coil springs but rather involve the deformation of beams, cables, rods, and other
mechanical members. In this section we develop the basic elastic properties of many
of these common elements.

FORCE-DEFLECTION RELATIONS

A coil spring has a free length, denoted by L in Figure 4.1.1. The free length is the length
of the spring when no tensile or compressive forces are applied to it. When a spring
is compressed or stretched, it exerts a restoring force that opposes the compression or
extension. The general term for the spring’s compression or extension is deflection. The
greater the deflection (compression or extension), the greater the restoring force. The
simplest model of this behavior is the so-called linear force-deflection model,

f = kx (4.1.1)

where f is the restoring force, x is the compression or extension distance (the change in
length from the free length), and k is the spring constant, or stiffness, which is defined to
be always positive. Typical units for k are lb/ft and N/m. Some references, particularly
in the automotive industry, use the term spring rate instead of spring constant. Equation
(4.1.1) is commonly known as Hooke’s Law, named after Englishman Robert Hooke
(1635–1703).

Figure 4.1.1 A spring
element.

Lx

f k

When x = 0, the spring assumes its free length. We must decide whether extension
is represented by positive or negative values of x . This choice depends on the particular
application. If x > 0 corresponds to extension, then a positive value of f represents
the force of the spring pulling against whatever is causing the extension. Conversely,
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because of Newton’s law of action-reaction, the force causing the extension has the
same magnitude as f but is in the opposite direction.

The formula for a coil spring is derived in references on machine design. For
convenience, we state it here without derivation, for a spring made from round wire.

k = Gd4

64n R3

where d is the wire diameter, R is the radius of the coil, and n is the number of coils.
The shear modulus of elasticity G is a property of the wire material.

As we will see, other mechanical elements that have elasticity, such as beams, rods,
and rubber mounts, can be modeled as springs, and are usually represented pictorially
as a coil spring.

TENSILE TEST OF A ROD

A plot of the data for a tension test on a rod is given in Figure 4.1.2. The elongation
is the change in the rod’s length due to the tension force applied by the testing ma-
chine. As the tension force was increased the elongation followed the curve labeled
“Increasing.” The behavior of the elongation under decreasing tension is shown by the
curve labeled “Decreasing.” The rod was stretched beyond its elastic limit, so that a
permanent elongation remained after the tension force was removed.

For the smaller elongations the “Increasing” curve is close to a straight line with
a slope of 3500 pounds per one thousandth of an inch, or 3.5 × 106 lb/in. This line is
labeled “Linear” in the plot. If we let x represent the elongation in inches and f the
tension force in pounds, then the model f = 3.5×106x represents the elastic behavior
of the rod. We thus see that the rod’s spring constant is 3.5 × 106 lb/in.

This experiment could have been repeated using compressive instead of tensile
force. For small compressive deformations x , we would find that the deformations are
related to the compressive force f by f = kx , where k would have the same value as
before. This example indicates that mechanical elements can be described by the linear
law f = kx , for both compression and extension, as long as the deformations are not
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Figure 4.1.2 Plot of tension
test data.
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too large, that is, deformations not beyond the elastic limit. Note that the larger the
deformation, the greater the error that results from using the linear model.

ANALYTICAL DETERMINATION OF THE SPRING CONSTANT

In much engineering design work, we do not have the elements available for testing, and
thus we must be able to calculate their spring constant from the geometry and material
properties. To do this we can use results from the study of mechanics of materials.
Examples 4.1.1 and 4.1.2 show how this is accomplished.

EXAMPLE 4.1.1 Rod with Axial Loading

■ Problem
Derive the spring constant expression for a cylindrical rod subjected to an axial force (either
tensile or compressive). The rod length is L and its area is A.

■ Solution
From mechanics of materials references, for example [Roark, 2001], we obtain the force-
deflection relation of a cylindrical rod:

x = L

E A
f = 4L

π E D2
f

where x is the axial deformation of the rod, f is the applied axial force, A is the cross-sectional
area, D is the diameter, and E is the modulus of elasticity of the rod material. Rewrite this
equation as

f = E A

L
x = π E D2

4L
x

Thus we see that the spring constant is k = E A/L = π E D2/4L .
The modulus of elasticity of steel is approximately 3 × 107 lb/in.2. Thus a steel rod 20 in.

long and 1.73 in. in diameter would have a spring constant of 3.5 × 106 lb/in., the same as the
rod whose curve is plotted in Figure 4.1.2.

Beams used to support objects can act like springs when subjected to large forces.
Beams can have a variety of shapes and can be supported in a number of ways. The beam
geometry, beam material, and the method of support determine its spring constant.

EXAMPLE 4.1.2 Spring Constant of a Fixed-End Beam

■ Problem
Derive the spring constant expression of a fixed-end beam of length L , thickness h, and width
w , assuming that the force f and deflection x are at the center of the beam (Figure 4.1.3).

Figure 4.1.3 A fixed-end
beam.

L

f

x

h

w



palm-38591 book December 17, 2008 12:4

4.1 Spring Elements 161

■ Solution
The force-deflection relation of a fixed-end beam is found in mechanics of materials references.
It is

x = L3

192E IA
f

where x is the deflection in the middle of the beam, f is the force applied at the middle of the
beam, and IA is the area moment of inertia about the beam’s longitudinal axis [Roark, 2001].
The area moment IA is computed with an integral of an area element d A.

IA =
∫

r2 d A

Formulas for the area moments are available in most engineering mechanics texts. For a beam
having a rectangular cross section with a width w and thickness h, the area moment is

IA = wh3

12
Thus the force-deflection relation reduces to

x = 12L3

192Ewh3
f = L3

16Ewh3
f

The spring constant is the ratio of the applied force f to the resulting deflection x , or

k = f

x
= 16Ewh3

L3

Table 4.1.1 lists the expressions for the spring constants of several common ele-
ments. Note that two beams of identical shape and material, one a cantilever and one
fixed-end, have spring constants that differ by a factor of 64. The fixed-end beam is
thus 64 times “stiffer” than the cantilever beam! This illustrates the effect of the support
arrangement on the spring constant.

A single leaf spring is shown in Table 4.1.1. Springs for vehicle suspensions are
often constructed by strapping together several layers of such springs, as shown in
Figure 4.1.4. The value of the total spring constant depends not only on the spring
constants of the individual layers, but also on the how they are strapped together, the
method of attachment to the axle and chassis, and whether any material to reduce friction
has been placed between the layers. There is no simple formula for k that accounts for
all these variables.

Figure 4.1.4 A leaf spring.

Figure 4.1.5 Symbol for
a torsional spring element.

�
T

kT

TORSIONAL SPRING ELEMENTS

Table 4.1.2 shows a hollow cylinder subjected to a twisting torque. The resulting twist
in the cylinder is called torsion. This cylinder is an example of a torsional spring, which
resists with an opposing torque when twisted. For a torsional spring element we will
use the “curly” symbol shown in Figure 4.1.5. The spring relation for a torsional spring
is usually written as

T = kT θ (4.1.2)

where θ is the net angular twist in the element, T is the torque causing the twist, and kT

is the torsional spring constant. We assign θ = 0 at the spring position where there is
no torque in the spring. This is analogous to the free length position of a translational
spring. Note that the units of the torsional and translational spring constants are not the
same. FPS units for kT are lb-ft/rad; in SI the units are N · m/rad.
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Table 4.1.1 Spring constants of common elements.

Coil spring

2R k = Gd4

64n R3

d = wire diameter
n = number of coils

Solid rod

L

A k = E A

L

Simply supported beam

L
w

h

k = 4Ewh3

L3

Cantilever beam

L

w

h
k = Ewh3

4L3

w = beam width
h = beam thickness

Fixed-end beam

L

w

h
k = 16Ewh3

L3

Parabolic leaf spring

L

w

h

k = 2Ewh3

L3

Torsional spring constants of two elements are given in Table 4.1.2. They depend
on the geometry of the element and its material properties, namely, E and G, the shear
modulus of elasticity.

If the cylinder is solid, the formula for kT given in Table 4.1.2 becomes

kT = πG D4

32L
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Table 4.1.2 Torsional spring constants of common elements.

Coil spring

D

kT = Ed4

64nD
d = wire diameter
n = number of coils

Hollow shaft

L

D d

kT = πG(D4 − d4)

32L

Fixed end

Wheel

Suspension
arm

Frame

Torsion bar
�

�

Side view
Figure 4.1.6 A torsion-bar
suspension.

Note that a rod can be designed for axial or torsional loading, such as with a torsion-
bar vehicle suspension. Thus, there are two spring constants for rods, a translational
constant k = π E D2/4L , given previously, and a torsional constant kT . Figure 4.1.6
shows an example of a torsion-bar suspension, which was invented by Dr. Ferdinand
Porsche in the 1930s. As the ground motion pushes the wheel up, the torsion bar twists
and resists the motion.

A coil spring can also be designed for axial or torsional loading. Thus there are
two spring constants for coil springs, a translational constant k, given in Table 4.1.1,
and the torsional constant kT , given in Table 4.1.2.

SERIES AND PARALLEL SPRING ELEMENTS

In many applications, multiple spring elements are used, and in such cases we must
obtain the equivalent spring constant of the combined elements. When two springs are
connected side-by-side, as in Figure 4.1.7a, we can determine their equivalent spring
constant as follows. Assuming that the force f is applied so that both springs have the
same deflection x but different forces f1 and f2, then

x = f1

k1
= f2

k2
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Figure 4.1.7 Parallel spring elements.

(a)
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x
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f

k1 k2

x

(b)

Figure 4.1.8 Series spring elements.
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x

k2

k1

(a) (b)

If the system is in static equilibrium, then

f = f1 + f2 = k1x + k2x = (k1 + k2)x

For the equivalent system shown in part (b) of the figure, f = kex , and thus we see that
its equivalent spring constant is given by ke = k1 + k2. This formula can be extended
to the case of n springs connected side-by-side as follows:

ke =
n∑

i=1

ki (4.1.3)

When two springs are connected end-to-end, as in Figure 4.1.8a, we can deter-
mine their equivalent spring constant as follows. Assuming both springs are in static
equilibrium, then both springs are subjected to the same force f , but their deflections
f/k1 and f/k2 will not be the same unless their spring constants are equal. The total
deflection x of the system is obtained from

x = f

k1
+ f

k2
=

(
1

k1
+ 1

k2

)
f

For the equivalent system shown in part (b) of the figure, f = kex , and thus we see that
its equivalent spring constant is given by

1

ke
= 1

k1
+ 1

k2

This formula can be extended to the case of n springs connected end-to-end as follows:

1

ke
=

n∑
i=1

1

ki
(4.1.4)

The derivations of (4.1.3) and (4.1.4) assumed that the product of the spring mass
times its acceleration is zero, which means that either the system is in static equilibrium
or the spring masses are very small compared to the other masses in the system.

The symbols for springs connected end-to-end look like the symbols for electrical
resistors similarly connected. Such resistors are said to be in series and therefore,
springs connected end-to-end are sometimes said to be in series. However, the equivalent
electrical resistance is the sum of the individual resistances, whereas series springs obey
the reciprocal rule (4.1.4). This similarity in appearance of the symbols often leads
people to mistakenly add the spring constants of springs connected end-to-end, just
as series resistances are added. Springs connected side-by-side are sometimes called
parallel springs, and their spring constants should be added.

According to this usage then, parallel springs have the same deflection; series
springs experience the same force or torque.
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Spring Constant of a Stepped Shaft EXAMPLE 4.1.3

■ Problem
Determine the expression for the equivalent torsional spring constant for the stepped shaft shown
in Figure 4.1.9.

■ Solution
Each shaft sustains the same torque but has a different twist angle θ . Therefore, they are in series
so that T = kT1θ1 = kT2θ2, and the equivalent spring constant is given by

1

kTe

= 1

kT1

+ 1

kT2

where kT1 and kT2 are given in Table 4.1.2 as

kTi = Gπ D4
i

32Li
i = 1, 2

Thus

kTe = kT1 kT2

kT1 + kT2

L1 L2

D2D1

Figure 4.1.9 A stepped shaft.

Spring Constant of a Lever System EXAMPLE 4.1.4

■ Problem
Figure 4.1.10 shows a horizontal force f acting on a lever that is attached to two springs. Assume
that the resulting motion is small enough to be only horizontal and determine the expression for
the equivalent spring constant that relates the applied force f to the resulting displacement x .

■ Solution
From the triangle shown in part (b) of the figure, for small angles θ , the upper spring deflection is
x and the deflection of the lower spring is x/2. Thus the free body diagram is as shown in part (c)
of the figure. For static equilibrium, the net moment about point O must be zero. This gives

f L − kx L − k
x

2

L

2
= 0

(a) (b)

f kx

ORx
Ry

(c)

x

f

k

k

O

L
2

L
2

x

O

x
2

kx
2

Figure 4.1.10 A lever-spring
system.
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Therefore,

f = k

(
x + x

4

)
= 5

4
kx

and the equivalent spring constant is ke = 5k/4.
Note that although these two springs appear to be connected side-by-side, they are not in

parallel, because they do not have the same deflection. Thus their equivalent spring constant is
not given by the sum, 2k.

NONLINEAR SPRING ELEMENTS

Up to now we have used the linear spring model f = kx . Even though this model is
sometimes only an approximation, nevertheless it leads to differential equation models
that are linear and therefore relatively easy to solve. Sometimes, however, the use of a
nonlinear model is unavoidable. This is the case when a system is designed to utilize
two or more spring elements to achieve a spring constant that varies with the applied
load. Even if each spring element is linear, the combined system will be nonlinear.

An example of such a system is shown in Figure 4.1.11a. This is a representation
of systems used for packaging and in vehicle suspensions, for example. The two side
springs provide additional stiffness when the weight W is too heavy for the center spring.

EXAMPLE 4.1.5 Deflection of a Nonlinear System

■ Problem
Obtain the deflection of the system model shown in Figure 4.1.11a, as a function of the weight W .
Assume that each spring exerts a force that is proportional to its compression.

■ Solution
When the weight W is gently placed, it moves through a distance x before coming to rest. From
statics, we know that the weight force must balance the spring forces at this new position. Thus,

W = k1x if x < d

W = k1x + 2k2(x − d) if x ≥ d

We can solve these relations for x as follows:

x = W

k1
if x < d

x = W + 2k2d

k1 + 2k2
if x ≥ d

These relations can be used to generate the plot of x versus W , shown in part (b) of the figure.

Figure 4.1.11 A nonlinear
spring arrangement.
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(a)
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f � kx
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(b)

f f � kx
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Figure 4.1.12 Force-
deflection curves for
(a) a hardening spring and
(b) a softening spring.

The system in Example 4.1.5 consists of linear spring elements but it has a non-
linear force-deflection relation because of the way the springs are arranged. However,
most spring elements display nonlinear behavior if the deflection is large enough. Fig-
ure 4.1.12 is a plot of the force-deflection relations for three types of spring elements:
the linear spring element, a hardening spring element, and a softening spring element.
The stiffness k is the slope of the force-deflection curve and is constant for the linear
spring element. A nonlinear spring element does not have a single stiffness value be-
cause its slope is variable. For the hardening element, sometimes called a hard spring,
its slope and thus its stiffness increases with deflection. The stiffness of a softening
element, also called a soft spring, decreases with deflection.

4.2 MODELING MASS-SPRING SYSTEMS
If we assume that an object is a rigid body and if we neglect the force distribution within
the object, we can treat the object as if its mass were concentrated at its mass center.
This is the point-mass assumption, which makes it easier to obtain the translational
equations of motion, because the object’s dimensions can be ignored and all external
forces can be treated as if they acted through the mass center. If the object can rotate,
then the translational equations must be supplemented with the rotational equations of
motion, which were treated in Sections 2.2 and 2.4.

If the system cannot be modeled as a rigid body then we must develop a distributed-
parameter model that consists of a partial differential equation, which is more difficult
to solve.

REAL VERSUS IDEAL SPRING ELEMENTS

By their very nature, all real spring elements have mass and are not rigid bodies. Thus,
because it is much easier to derive an equation of motion for a rigid body than for a
distributed-mass, flexible system, the basic challenge in modeling mass-spring systems
is to first decide whether and how the system can be modeled as one or more rigid
bodies.

If the system consists of an object attached to a spring, the simplest way to do this
is to neglect the spring mass relative to the mass of the object and take the mass center
of the system to be located at the mass center of the object. This assumption is accurate
in many practical applications, but to be comfortable with this assumption you should
know the numerical values of the masses of the object and the spring element. In some
of the homework problems and some of the examples to follow, the numerical values
are not given. In such cases, unless otherwise explicitly stated, you should assume that
the spring mass can be neglected.
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Figure 4.2.1 Models of
mass-spring systems.
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In Section 4.3 we will develop a method to account for the spring mass without
the need to develop a partial differential equation model. This method will be useful
for applications where the spring mass is neither negligible nor the dominant mass in
the system.

An ideal spring element is massless. A real spring element can be represented by
an ideal element either by neglecting its mass or by including it in another mass in the
system.

EFFECT OF SPRING FREE LENGTH AND OBJECT GEOMETRY

Suppose we attach a cube of mass m and side length 2a to a linear spring of negligible
mass, and we fix the other end of the spring to a rigid support, as shown in Figure 4.2.1a.
We assume that the horizontal surface is frictionless. If the mass is homogeneous its
center of mass is at the geometric center G of the cube. The free length of the spring is
L and the mass m is in equilibrium when the spring is at its free length. The equilibrium
location of G is the point marked E . Part (b) of the figure shows the mass displaced a
distance x from the equilibrium position. In this position, the spring has been stretched a
distance x from its free length, and thus its force is kx . The free body diagram, displaying
only the horizontal force, is shown in part (c) of the figure. From this diagram we can
obtain the following equation of motion:

mẍ = −kx (4.2.1)

Note that neither the free length L nor the cube dimension a appears in the equation
of motion. These two parameters need to be known only to locate the equilibrium
position E of the mass center. Therefore we can represent the object as a point mass,
as shown in Figure 4.2.1d.

Unless otherwise specified you should assume that the objects in our diagrams can
be treated as point masses and therefore their geometric dimensions need not be known
to obtain the equation of motion. You should also assume that the location of the equi-
librium position is known. The shaded-line symbol shown in Figure 4.2.1a is used to
indicate a rigid support, such as the horizontal surface and the vertical wall, and also
to indicate the location of a fixed coordinate origin, such as the origin of x .

EFFECT OF GRAVITY

Now suppose the object slides on an inclined frictionless surface. In Figure 4.2.2a
the spring is at its free length. If we let the object slide until it reaches equilibrium
(Figure 4.2.2b), the spring stretches a distance δst , which is called the static spring
deflection. Because the mass is in equilibrium, the sum of the forces acting on it must
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Figure 4.2.2 Effect of inclination
on a mass-spring model.
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be zero. Thus, for the forces parallel to the inclined surface,

mg sin φ − kδst = 0

Figure 4.2.2c shows the object displaced a distance x from the equilibrium position.
In this position the spring has been stretched a distance x + δst from its free length, and
thus its force is k(x + δst). The free-body diagram displaying only the forces parallel
to the plane is shown in part (d) of the figure. From this diagram we can obtain the
following equation of motion:

mẍ = −k(x + δst) + mg sin φ = −kx + (mg sin φ − kδst)

Because mg sin φ = kδst the term within parentheses is zero and the equation of motion
reduces to mẍ = −kx , the same as for the system shown in Figure 4.2.1.

CHOOSING THE EQUILIBRIUM POSITION
AS COORDINATE REFERENCE

The example in Figure 4.2.2 shows that for a mass connected to a linear spring element,
the force due to gravity is canceled out of the equation of motion by the force in the
spring due to its static deflection, as long the displacement of the mass is measured from
the equilibrium position. We will refer to the spring force caused by its static deflection
as the static spring force and the spring force caused by the variable displacement x as
the dynamic spring force.

We need not choose the equilibrium location as the coordinate reference. If we
choose another coordinate, however, the corresponding equation of motion will contain
additional terms that correspond to the static forces in the system. For example, in
Figure 4.2.3a if we choose the coordinate y, the corresponding free body diagram is
shown in part (b) of the figure. The resulting equation of motion is

mÿ = −k(y − L) + mg sin φ = −ky + kL + mg sin φ

Note that kL +mg sin φ �= 0 so the static force terms do not cancel out of the equation.
The advantages of choosing the equilibrium position as the coordinate origin are

(1) that we need not specify the geometric dimensions of the mass and (2) that this
choice simplifies the equation of motion by eliminating the static forces.
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Figure 4.2.3 Choice of coordinate origin
for a mass-spring model.
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Figure 4.2.4 Static deflection in a
mass-spring system.
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Now suppose we place the mass m on a spring as shown in Figure 4.2.4a. Assume
that the mass is constrained to move in only the vertical direction. If we let the mass settle
down to its equilibrium position at E , the spring compresses an amount δst and thus
mg = kδst (Figure 4.2.4b). If the mass is displaced a distance x down from equilibrium
(Figure 4.2.4c), the resulting spring force is k(x + δst) and the resulting free body
diagram is shown in part (d) of the figure. Thus the equation of motion is

mẍ = −k(x + δst) + mg = −kx + (mg − kδst) = −kx

So the equation of motion reduces to mẍ = −kx .
In Figure 4.2.4c, we imagined the mass to be displaced downward from equilib-

rium and thus we chose the coordinate x to be positive downward. However, we are
free to imagine the mass being displaced upward; in this case, we would choose x to
be positive upward and would obtain the same equation of motion: mẍ = −kx . You
should draw the free body diagram for this case to make sure that you understand the
principles.

Figure 4.2.5 shows three situations, and the corresponding free body diagrams, that
have the same equation of motion, mẍ = −kx .

It is important to understand that any forces acting on the mass, other than grav-
ity and the spring force, are not to be included when determining the location of
the equilibrium position. For example, in Figure 4.2.6a a force f acts on the mass.
The equilibrium position E is the location of the mass at which kδst = mg sin φ when
f = 0. From the free body diagram shown in part (b), the equation of motion is mẍ =
f − kx .

The previous analysis is based on a system model that contains a linear spring and a
constant gravity force. For nonlinear spring elements, the gravity forces may or may not
appear in the equation of motion. The gravity force acts like a spring in some applications
and thus it might appear in the equation of motion. For example, the equation of
motion for a pendulum, derived in Chapter 2 for small angles, is mL2θ̈ = −mgLθ .
The gravity term is not canceled out in this equation because the effect of gravity
here is not a constant torque but rather is a torque mgLθ that is a function of the
coordinate θ .
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Figure 4.2.5 Choice of coordinate direction
for a mass-spring model.
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Figure 4.2.6 Modeling an external force
on a mass-spring system.
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Equation of Motion of a Two-Mass System EXAMPLE 4.2.1

■ Problem
Derive the equations of motion of the two-mass system shown in Figure 4.2.7a.

■ Solution
Choose the coordinates x1 and x2 as the displacements of the masses from their equilibrium
positions. In equilibrium the static forces in the springs cancel the weights of the masses. Thus
the free body diagrams showing the dynamic forces, and not the static forces, are as shown in
Figure 4.2.7b. These diagrams have been drawn with the assumption that the displacement x1

of mass m1 from its equilibrium position is greater than the displacement of m2. From these
diagrams we obtain the equations of motion:

m1 ẍ1 = f − k1(x1 − x2)

m2 ẍ2 = k1(x1 − x2) − k2x2

If we move all terms to the left side of the equal sign except for the external force f , we obtain

m1 ẍ1 + k1(x1 − x2) = f (1)

m2 ẍ2 − k1(x1 − x2) + k2x2 = 0 (2)

In drawing the free body diagrams of multimass systems, you must make an assumption
about the relative motions of each mass. For example, we could have assumed that the dis-
placement x1 of mass m1 from its equilibrium position is less than the displacement of m2.
Figure 4.2.7c shows the free body diagrams drawn for this assumption. If your assumptions are
correct, the forces shown on the diagram must be positive. Note that the directions of the forces
associated with spring k1 are the opposite of those in part (b) of the figure. You should confirm
that the diagram in part (c) results in equations of motion that are identical to equations (1)
and (2).

You must be consistent in your assumptions made about the relative motion when drawing
the free-body diagrams. A common mistake is to use one assumption to obtain the free-body
diagram for mass m1 but another assumption for mass m2.
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Figure 4.2.7 A system with
two masses.
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SOLVING THE EQUATION OF MOTION

We have seen that the equation of motion for many mass-spring systems has the form
mẍ + kx = f , where f is an applied force other than gravity and the spring force.
Suppose that the force f is zero and that we set the mass in motion at time t = 0 by pulling
it to a position x(0) and releasing it with an initial velocity ẋ(0). The solution form of
the equation can be obtained from Table 3.1.3 and is x(t) = C1 sin ωnt + C2 cos ωnt ,
where we have defined

ωn =
√

k

m
(4.2.2)

Using the initial conditions we find that the constants are C1 = ẋ(0)/ωn and C2 = x(0).
Thus the solution is

x(t) = ẋ(0)

ωn
sin ωnt + x(0) cos ωnt (4.2.3)

This solution shows that the mass oscillates about the rest position x = 0 with a
frequency of ωn = √

k/m radians per unit time. The period of the oscillation is 2π/ωn .
The frequency of oscillation ωn is called the natural frequency. The natural frequency
is greater for stiffer springs (larger k values). The amplitude of the oscillation depends
on the initial conditions x(0) and ẋ(0).

As shown in Example 3.7.3, the solution (4.2.3) can be put into the following form:

x(t) = A sin(ωnt + φ) (4.2.4)

where

sin φ = x(0)

A
cos φ = ẋ(0)

Aωn
(4.2.5)

A =
√

[x(0)]2 +
[

ẋ(0)

ωn

]2

(4.2.6)
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If f is a unit-step function, and if the initial displacement x(0) and initial velocity ẋ(0)

are zero, then you should be able to show that the unit-step response is given by

x(t) = 1

k
(1 − cos ωnt) = 1

k

[
1 + sin

(
ωnt − π

2

)]
(4.2.7)

The displacement oscillates about x = 1/k with an amplitude of 1/k and a radian
frequency ωn .

Beam Vibration EXAMPLE 4.2.2

■ Problem
The vertical motion of the mass m attached to the beam in Figure 4.2.8a can be modeled as a
mass supported by a spring, as shown in part (b) of the figure. Assume that the beam mass is
negligible compared to m so that the beam can be modeled as an ideal spring. Determine the
system’s natural frequency of oscillation.

■ Solution
The spring constant k is that of the fixed-end beam, and is found from Table 4.1.1 to be k =
16Ewh3/L3. The mass m has the same equation of motion as (4.2.1), where x is measured
from the equilibrium position of the mass. Thus, if the mass m on the beam is initially displaced
vertically, it will oscillate about its rest position with a frequency of

ωn =
√

k

m
=

√
16Ewh3

mL3

The source of disturbing forces that initiate such motion will be examined in later chapters. If
the beam mass is appreciable, then we must modify the equation of motion. We will see how to
do this in Section 4.3.

m

(a) (b)

x m

k

x Figure 4.2.8 Model of a mass
supported by a fixed-end beam.

A Torsional Spring System EXAMPLE 4.2.3

■ Problem
Consider a torsional system like that shown in Figure 4.2.9a. A cylinder having inertia I is
attached to a rod, whose torsional spring constant is kT . The angle of twist is θ . Assume that
the inertia of the rod is negligible compared to the inertia I so that the rod can be modeled as
an ideal torsional spring. Obtain the equation of motion in terms of θ and determine the natural
frequency.

■ Solution
Because the rod is modeled as an ideal torsional spring, this system is conceptually identical to
that shown in Figure 4.2.9b. The free body diagram is shown in part (c) of the figure. From this
diagram we obtain the following equation of motion.

I θ̈ = −kT θ
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Figure 4.2.9 A torsional
spring system.
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This has the same form as (4.2.1), and thus we can see immediately that the natural frequency is

ωn =
√

kT

I

If the cylinder is twisted and then released, it will oscillate about the equilibrium θ = 0 with a
frequency of

√
kT /I radians per unit time. This result assumes that the inertia of the rod is very

small compared to the inertia I of the attached cylinder. If the rod inertia is appreciable, then we
must modify the equation of motion, as will be discussed in Section 4.3.

DISPLACEMENT INPUTS AND SPRING ELEMENTS

Consider the mass-spring system and its free body diagram shown in Figure 4.2.10a.
This gives the equation of motion mẍ + kx = f . To solve this equation for x(t), we
must know the force f (t).

Now consider the system shown in Figure 4.2.10b, where we are given the dis-
placement y(t) of the left-hand end of the spring. This represents a practical application
in which a rotating cam causes the follower to move the left-hand end of the spring,
as in part (c) of the figure. If we know the cam profile and its rotational speed then
we can determine y(t). Suppose that when x = y = 0, both springs are at their free

Figure 4.2.10 Force and
displacement inputs.
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lengths. To draw the free body diagram we must make an assumption about the relative
displacements of the endpoints of the spring element. The free body diagram has been
drawn with the assumption that y > x . Here we are not given an applied force as an
input, but nevertheless we must draw the free body diagram showing the forces acting
on the mass. The force produced by the given displacement y(t) is the resulting spring
force k(y − x). The equation of motion is mẍ = k1(y − x) − k2x . Note that we must
be given y(t) to solve this equation for x(t). If we need to obtain the force acting on
the follower as a result of the motion, we must first solve for x(t) and then compute the
follower force from k1(y − x). This force is of interest to designers because it indicates
how much wear will occur on the follower surface.

When displacement inputs are given, it is important to realize that ultimately the
displacement is generated by a force (or torque) and that this force must be great enough
to generate the specified displacement in the presence of any resisting forces or system
inertia. For example, the motor driving the cam must be able to supply enough torque
to generate the motion y(t).

SIMPLE HARMONIC MOTION

From the equation of motion mẍ = −kx we can see that the acceleration is ẍ =
−kx/m = −ω2

n x . This type of motion, where the acceleration is proportional to the
displacement but opposite in sign, is called simple harmonic motion. It occurs when
the restoring force—here, the spring force—is proportional to the displacement. It is
helpful to understand the relation between the displacement, velocity, and acceleration
in simple harmonic motion. Expressions for the velocity and acceleration are obtained
by differentiating x(t), whose expression is given by (4.2.4):

ẋ(t) = Aωn cos(ωnt + φ) = Aωn sin
(

ωnt + φ + π

2

)

ẍ(t) = −Aω2
n sin(ωnt + φ) = Aω2

n sin(ωnt + φ + π)

The displacement, velocity, and acceleration all oscillate with the same frequency
ωn but they have different amplitudes and are shifted in time relative to one another.
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Figure 4.2.11 Plots of
displacement, velocity, and
acceleration for simple
harmonic motion.
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The velocity is zero when the displacement and acceleration reach their extreme values.
The sign of the acceleration is the opposite of that of the displacement, and the magnitude
of the acceleration is ω2

n times the magnitude of the displacement. These functions are
plotted in Figure 4.2.11 for the case where x(0) = 1, ẋ(0) = 0, and ωn = 2.

4.3 ENERGY METHODS
The force exerted by a spring is a conservative force. If the spring is linear, then its
resisting force is given by f = −kx and thus the potential energy of a linear spring is
given by

V (x) = 1

2
kx2 (4.3.1)

where x is the deflection from the free length of the spring.
A torsional spring exerts a moment M if it is twisted. If the spring is linear the

moment is given by M = kT θ , where θ is the twist angle. The work done by this
moment and stored as potential energy in the spring is

V (θ) =
∫ θ

0
M dθ =

∫ θ

0
kT θ dθ = 1

2
kT θ2 (4.3.2)

So the potential energy stored in a torsional spring is V (θ) = kT θ2/2.
The conservation of energy principle states that T + V = T0 + V0 = constant, where

T and V are the system’s kinetic and potential energies. For the system shown in
Figure 4.3.1a, for a frictionless surface, the principle gives

1

2
mẋ2 + 1

2
kx2 = 1

2
mẋ2

0 + 1

2
kx2

0 = constant

This relation can be rearranged as follows:
m

2

(
ẋ2 − ẋ2

0

) + k

2

(
x2 − x2

0

) = 0

which states that �T + �V = 0.
For the system shown in Figure 4.3.1b, we must include the effect of gravity, and

thus the potential energy is the sum of the spring’s potential energy Vs and the gravita-
tional potential energy Vg, which we may choose to be zero at y = 0. The conservation
of energy principle gives

T + Vg + Vs = constant

or
�T + �V = �T + �Vg + �Vs = 0

The spring is at its free length when y = 0, so we can write

1

2
mẏ2 − mgy + 1

2
ky2 = constant

Figure 4.3.1 (a) A system
having kinetic and elastic
potential energy. (b) A system
having kinetic, elastic potential,
and gravitational potential
energy.
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Note that the gravitational potential energy has a negative sign because we have selected
y to be positive downward.

The numerical value of the gravitational potential energy depends on the location
of the datum and it may be negative. We are free to select the location because only the
change in gravitational potential energy is significant. Note, however, that a spring’s
potential energy is always nonnegative and that the potential energy is positive whenever
the deflection from the free length is nonzero.

A Force Isolation System EXAMPLE 4.3.1

■ Problem
Figure 4.3.2 shows a representation of a spring system to isolate the foundation from the force
of a falling object. Suppose the weight W is dropped from a height h above the platform
attached to the center spring. Determine the maximum spring compression and the maximum
force transmitted to the foundation. The given values are k1 = 104 N/m, k2 = 1.5 × 104 N/m,
d = 0.1 m, and h = 0.5 m. Consider two cases: (a) W = 64 N and (b) W = 256 N.

Figure 4.3.2 A force-
isolation system.
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x

k1
k2k2
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■ Solution
The velocity of the weight is zero initially and also when the maximum compression is attained.
Therefore �T = 0 and we have

�T + �V = �T + �Vs + �Vg = 0

or

�Vs + �Vg = 0

That is, if the weight is dropped from a height h above the platform and if we choose the
gravitational potential energy to be zero at that height, then the maximum spring compression x
can be found by adding the change in the weight’s gravitational potential energy 0 − W (h + x) =
−W (h + x) to the change in potential energy stored in the springs. Thus

1

2
k1(x2 − 0) + [0 − W (h + x)] = 0 if x < d

which gives the following quadratic equation to solve for x :

1

2
k1x2 − W x − W h = 0 if x < d (1)

If x ≥ d, �Vs + �Vg = 0 gives

1

2
k1(x2 − 0) + 1

2
(2k2)[(x − d)2 − 0] + [0 − W (h + x)] = 0 if x ≥ d

which gives the following quadratic equation to solve for x :

(k1 + 2k2)x2 − (2W + 4k2d)x + 2k2d2 − 2W h = 0 if x ≥ d (2)

For the given values, equation (1) becomes

104x2 − 2W x − W = 0 if x < 0.1 (3)

and from equation (2),

4 × 104x2 − (2W + 6000)x + 300 − W = 0 if x ≥ 0.1 (4)
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For case (a), the positive root of equation (3) gives x = 0.0867, which is less than 0.1. So
only the middle spring is compressed, and it is compressed 0.0867 m. The resulting maximum
force on the foundation is the spring force k1x = 104(0.0867) = 867 N.

For case (b), the positive root of equation (3) gives x = 0.188, which is greater than 0.1.
So all three springs will be compressed. From equation (4),

4 × 104x2 − (512 + 6000)x + 300 − 256 = 0

which has the solutions x = 0.156 and x = 0.007. We discard the second solution because it is
less than 0.1 and thus corresponds to compression in the middle spring only. So the outer springs
will be compressed 0.156 − 0.1 = 0.056 m and the middle spring will be compressed 0.156 m.
The resulting maximum force on the foundation is the total spring force k1x + 2k2(x − 0.1) =
104(0.156) + 2(1.5 × 104)(0.156 − 0.1) = 3240 N.

OBTAINING THE EQUATION OF MOTION

In mass-spring systems with negligible friction and damping, we can often use the
principle of conservation of energy to obtain the equation of motion and, for simple
harmonic motion, to determine the frequency of vibration without obtaining the equa-
tion of motion.

EXAMPLE 4.3.2 Equation of Motion of a Mass-Spring System

■ Problem
Use the energy method to derive the equation of motion of the mass m attached to a spring and
moving in the vertical direction, as shown in Figure 4.3.3.

Figure 4.3.3 A mass-spring
system.

�st

x

L

k

m

■ Solution
With the displacement x measured from the equilibrium position, and taking the gravitational
potential energy to be zero at x = 0, the total potential energy of the system is

V = Vs + Vg = 1

2
k(x + δst )

2 − mgx = 1

2
kx2 + kδst x + 1

2
kδ2

st − mgx

Because kδst = mg the expression for V becomes

V = 1

2
kx2 + 1

2
kδ2

st

The total energy of the system is

T + V = 1

2
mẋ2 + 1

2
kx2 + 1

2
kδ2

st

From conservation of mechanical energy, T + V is constant and thus its time derivative is zero.
Therefore,

d

dt
(T + V ) = d

dt

(
1

2
mẋ2

)
+ d

dt

(
1

2
kx2

)
+ d

dt

(
1

2
kδ2

st

)
= 0

Evaluating the derivatives gives

mẋ ẍ + kx ẋ = 0

Canceling ẋ gives the equation of motion mẍ + kx = 0.
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Example 4.3.2 shows that if we can obtain the expression for the sum of the kinetic
and potential energies, T + V , the equation of motion can be found by differentiating
T + V with respect to time. Although this was a simple example, it illustrates that with
this method we need not draw the free body diagrams of every member of a multibody
system whose motion can be described by a single coordinate.

RAYLEIGH'S METHOD

We can use the principle of conservation of energy to obtain the natural frequency of a
mass-spring system if the spring is linear. This approach is sometimes useful because
it does not require that we first obtain the equation of motion.

The method was developed by Lord Rayleigh (John William Strutt) and was pre-
sented in his Theory of Sound in 1847. A modern reprint is [Rayleigh, 1945]. Rayleigh
is considered one of the founders of the study of acoustics and vibration. We illus-
trate Rayleigh’s method here for a second-order system, but it is especially useful
for estimating the lowest natural frequency of higher-order systems with several de-
grees of freedom and distributed parameter systems with an infinite number of natural
frequencies.

In simple harmonic motion, the kinetic energy is maximum and the potential energy
is minimum at the equilibrium position x = 0. When the displacement is maximum,
the potential energy is maximum but the kinetic energy is zero. From conservation of
energy,

Tmax + Vmin = Tmin + Vmax

Thus

Tmax + Vmin = 0 + Vmax

or

Tmax = Vmax − Vmin (4.3.3)

For example, for the mass-spring system oscillating vertically as shown in Fig-
ure 4.3.3, T = mẋ2/2 and V = k(x + δst)

2/2 − mgx , and from (4.3.3) we have,

Tmax = 1

2
m(ẋmax)

2 = Vmax − Vmin = 1

2
k(xmax + δst)

2 − mgxmax − 1

2
kδ2

st

or

1

2
m(ẋmax)

2 = 1

2
k(xmax)

2

where we have used the fact that kδst = mg. In simple harmonic motion |ẋmax| =
ωn|xmax|, and thus,

1

2
m(ωn|xmax|)2 = 1

2
k|xmax|2

Cancel |xmax|2 and solve for ωn to obtain ωn = √
k/m.

In this simple example, we merely obtained the expression for ωn that we already
knew. However, in other applications the expressions for T and V may be different, but
if the motion is simple harmonic, we can directly determine the natural frequency by
using the fact that |ẋmax| = ωn|xmax| to express Tmax as a function of |xmax| and then
equating Tmax to Vmax − Vmin. This approach is called Rayleigh’s method.
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EXAMPLE 4.3.3 Natural Frequency of a Suspension System

■ Problem
Figure 4.3.4 shows the suspension of one front wheel of a car in which L1 = 0.4 m and L2 = 0.6 m.
The coil spring has a spring constant of k = 3.6 × 104 N/m and the car weight associated with
that wheel is 3500 N. Determine the suspension’s natural frequency for vertical motion.

■ Solution
Imagine that the frame moves down by a distance A f , while the wheel remains stationary. Then
from similar triangles the amplitude As of the spring deflection is related to the amplitude A f

of the frame motion by As = L1 A f /L2 = 0.4A f /0.6 = 2A f /3.
Using the fact that kδst = mg, the change in potential energy can be written as

Vmax − Vmin = 1

2
k(As + δst )

2 − mg As − 1

2
kδ2

st = 1

2
k A2

s = 1

2
k

(
2

3
A f

)2

The amplitude of the velocity of the mass in simple harmonic motion is ωn A f , and thus the
maximum kinetic energy is

Tmax = 1

2
m(ωn A f )

2

From Rayleigh’s method, Tmax = Vmax − Vmin, we obtain

1

2
m(ωn A f )

2 = 1

2
k

(
2

3
A f

)2

Solving this for ωn we obtain

ωn = 2

3

√
k

m
= 2

3

√
3.6 × 104

3500/9.8
= 6.69 rad/s

Figure 4.3.4 A vehicle
suspension.

Upper control arm

Frame

Lower
control arm

Wheel L1
L2

EQUIVALENT MASS OF ELASTIC ELEMENTS

If an elastic element is represented as in Figure 4.3.5a, we assume that the mass of
the element either is negligible compared to the rest of the system’s mass or has been
included in the mass attached to the element. This included mass is called the equivalent
mass of the element. We do this so that we can obtain a lumped-parameter model of the
system. As we did with rigid-body systems in Chapter 2, we compute the equivalent
mass by using kinetic energy equivalence, because mass is associated with kinetic
energy.

Figure 4.3.5 An example of a
spring element with distributed
mass.

k

m L dy

y

x
mc

(b)(a)
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Equivalent Mass of a Rod EXAMPLE 4.3.4

■ Problem
The rod shown in Figure 4.3.5b acts like a spring when an axially applied force stretches or
compresses the rod. Determine the equivalent mass of the rod.

■ Solution
In Figure 4.3.5b, the mass of an infinitesimal element of thickness dy is dmr = ρ dy, where ρ

is the mass density per unit length of the material. Thus the kinetic energy of the element is
(dmr )ẏ2/2, and the kinetic energy of the entire rod is

KE = 1

2

∫ L

0
ẏ2 dmr = 1

2

∫ L

0
ẏ2ρ dy

If we assume that the velocity ẏ of the element is linearly proportional to its distance from the
support, then

ẏ = ẋ
y

L

where ẋ is the velocity of the end of the rod. Thus

KE = 1

2

∫ L

0

(
ẋ

y

L

)2

ρ dy = 1

2

ρ ẋ2

L2

∫ L

0
y2 dy = 1

2

ρ ẋ2

L2

y3

3

∣∣∣∣
L

0

or

KE = 1

2

ρ ẋ2

L2

L3

3
= 1

2

(
ρL

3

)
ẋ2 = 1

2

mr

3
ẋ2

because ρL = mr , the mass of the rod. For an equivalent mass me concentrated at the end of
the rod, its kinetic energy is meẋ2/2. Thus the equivalent mass of the rod is me = mr/3. So the
mass m in Figure 4.3.5a is m = mc + me = mc + mr/3.

The approach of this example can be applied to a coil spring of mass ms ; its
equivalent mass is ms/3. A similar approach using the expression for the kinetic energy
of rotation, Ir θ̇

2/2, will show that the equivalent inertia of a rod in torsion is Ir/3, where
Ir is the rod inertia.

This type of analysis can also be used to find the equivalent mass of a beam by
using the appropriate formula for the beam’s static load-deflection curve to obtain
an expression for the velocity of a beam element as a function of its distance from a
support. The derivations of such formulas are given in basic references on the mechanics
of materials and are beyond the scope of this text. The expressions for the equivalent
beam masses given in Table 4.3.1 were derived in this manner. Because the static load-
deflection curve describes the static deflection, it does not account for inertia effects,
and therefore the expressions given in Table 4.3.1 are approximations. However, they
are accurate enough for many applications.
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Table 4.3.1 Equivalent masses and inertias of common elements.

Translational systems

Nomenclature: Equivalent system
mc = concentrated mass
md = distributed mass
me = equivalent lumped mass

System model:
meẍ + kx = 0 me

k Rest
position

Massless
spring

x

Helical spring, or rod in tension/compression Cantilever beam

mc mc

md md

mcmd

me = mc + 0.23md

me = mc + md/3

Simply supported beam Fixed-end beam

mc

L�2 L�2

md
L�2 L�2

mc md

me = mc + 0.38mdme = mc + 0.50md

Rotational systems

Nomenclature: Equivalent system
Ic = concentrated inertia
Id = distributed inertia
Ie = equivalent lumped inertia

System model:
Ie θ̈ + kθ = 0

Massless
spring

Ie

k

�

Helical spring Rod in torsion

Ic

Id

�

Ic

Id

�

Ie = Ic + Id/3 Ie = Ic + Id/3
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Equivalent Mass of a Fixed-End Beam EXAMPLE 4.3.5

■ Problem
Figure 4.3.6a shows a motor mounted on a beam with two fixed-end supports. An imbalance in the
motor’s rotating mass will produce a vertical force f that oscillates at the same frequency as the
motor’s rotational speed. The resulting beam motion can be excessive if the frequency is near
the natural frequency of the beam, as we will see in a later chapter, and excessive beam motion
can eventually cause beam failure. Determine the natural frequency of the beam-motor system.

■ Solution
Treating this system as if it were a single mass located at the middle of the beam results in
the equivalent system is shown in Figure 4.3.6b, where x is the displacement of the motor
from its equilibrium position. The equivalent mass of the system is the motor mass (treated as
a concentrated mass mc) plus the equivalent mass of the beam. From Table 4.3.1, the beam’s
equivalent mass is 0.38md . Thus the system’s equivalent mass is me = mc + 0.38md .

The equivalent spring constant of the beam is found from Table 4.1.1. It is

k = 16Ewh3

L3

where h is the beam’s thickness (height) and w is its width (into the page). Thus the system model
is meẍ + kx = f where x is the vertical displacement of the beam end from its equilibrium
position. The natural frequency is ωn = √

k/me, which gives

ωn =
√

k

me
=

√
16Ewh3/L3

mc + 0.38md

(a) (b)

k

f

me

md

Motor
mc

x

Figure 4.3.6 A motor
supported by a fixed-end beam.

Torsional Vibration with Fixed Ends EXAMPLE 4.3.6

■ Problem
Figure 4.3.7a shows an inertia I1 rigidly connected to two shafts, each with inertia I2. The other
ends of the shafts are rigidly attached to the supports. The applied torque is T1. (a) Derive the

(a)

T1

I2

I1

I2

�

(b)

T1

k

k

Ie

�

(c)

T1

k�

k�

Ie

�

Figure 4.3.7 An inertia fixed
to two torsional spring
elements.
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equation of motion. (b) Calculate the system’s natural frequency if I1 is a cylinder 5 in. in diameter
and 3 in. long; the shafts are cylinders 2 in. in diameter and 6 in. long. The three cylinders are
made of steel with a shear modulus G = 1.73 × 109 lb/ft2 and a density ρ = 15.2 slug/ft3.

■ Solution
a. As in Table 4.3.1, we add one-third of each the shaft’s inertia to the inertia of the cylinder

in the middle. Thus the equivalent inertia of the system is

Ie = I1 + 2

(
1

3
I2

)

The equivalent representation is shown in part (b) of the figure, and the free body diagram
is shown in part (c) of the figure. From this we obtain the equation of motion:

Ie θ̈ = T − kθ − kθ = T − 2kθ

where from Table 4.1.2,

k = Gπ D4

32L

b. The value of k is

k = 1.73 × 109π (2/12)4

32(6/12)
= 2.62 × 105 lb-ft/rad

The moment of inertia of a cylinder of diameter D, length L , and mass density ρ is

I = 1

2
m

(
D

2

)2

= 1

2
πρL

(
D

2

)4

The moments of inertia are

I1 = π(15.2)

2

3

12

(
5

24

)4

= 1.12 × 10−2 slug-ft2

I2 = π(15.2)

2

6

12

(
2

24

)4

= 5.76 × 10−4 slug-ft2

Thus

Ie = 1.12 × 10−2 + 2

(
1

3
5.76 × 10−4

)
= 1.16 × 10−2 slug/ft2

This system’s natural frequency is
√

2k/Ie = 6720 rad/sec, or 6720/2π = 1070 cycles
per second. This gives a period of 9.35 × 10−4 sec.

4.4 DAMPING ELEMENTS
A spring element exerts a reaction force in response to a displacement, either compres-
sion or extension, of the element. On the other hand, a damping element is an element
that resists relative velocity across it. A common example of a damping element, or
damper, is a cylinder containing a fluid and a piston with one or more holes (Fig-
ure 4.4.1a). If we hold the piston rod in one hand and the cylinder in the other hand, and
move the piston and the cylinder at the same velocity, we will feel no reaction force.
However, if we move the piston and the cylinder at different velocities, we will feel a
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(a)

Wheel
motion

Frame
mount

Flow

Piston

Piston
motion

Piston
ring
seal

Cylinder
wall

(b)

Flow

Figure 4.4.1 A piston damper.

Figure 4.4.2 A pneumatic door closer.

Door
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Door frame

(a) (b)

Door frame
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Air flow during
compression

Damping
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screw
Door

attachment
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Orifices

Spring

Cylinder

Cylinder

Piston
rod

O-ring
seal

Piston

resisting force that is caused by the fluid moving through the holes from one side of
the piston to the other (Figure 4.4.1b). From this example, we can see that the resisting
force in a damper is caused by fluid friction (in this case, friction between the fluid
and the walls of the piston holes) and that the force depends on the relative velocity of
the piston and the cylinder. The faster we move the piston relative to the cylinder, the
greater is the resisting force.

A DOOR CLOSER

An example from everyday life of a device that contains a damping element as well as
a spring element is the door closer (Figure 4.4.2). In some models, the working fluid is
air, while others use a hydraulic fluid. The cylinder is attached to the door and the piston
rod is fixed to the door frame. As the door is closed, the air is forced both through the
piston holes and out past the adjustment screw, which can be used to adjust the amount
of damping resistance (a smaller passageway provides more resistance to the flow and
thus more damping force). The purpose of the spring is to close the door; if there were
no spring, the door would remain stationary because the damper does not exert any



palm-38591 book December 17, 2008 12:4

186 CHAPTER 4 Spring and Damper Elements in Mechanical Systems

Figure 4.4.3 A rotary
damper.

(a) (b)

Stator

Rotor

Frame mount

Lever

Wheel
mount

Stator Vane seals

Rotor

Flow

force unless its endpoints are moving relative to each other. The purpose of the damper
is to exert a force that prevents the door from being opened or closed too quickly (such
as may happen due to a gust of wind). If you have such a door closer, try closing the
door at different speeds and notice the change in resisting force.

A rotary or torsional damper exerts a resisting torque in response to an angular
velocity difference across it. A common example is the vane-type damper shown in
Figure 4.4.3a. The rotating part (the rotor) has vanes with holes through which the fluid
can flow. The stator is the stationary housing. This device is the basis of some door
closers in larger buildings. It is also used to provide damping of wheel motion in some
vehicle suspensions [part (b) of the figure].

SHOCK ABSORBERS

The telescopic shock absorber is used in many vehicles. A cutaway view of a typical
shock absorber is very complex but the basic principle of its operation is the damper
concept illustrated in Figure 4.4.1. The damping resistance can be designed to be
dependent on the sign of the relative velocity. For example, Figure 4.4.4 shows a piston
containing spring-loaded valves that partially block the piston passageways. If the two
spring constants are different or if the two valves have different shapes, then the flow
resistance will be dependent on the direction of motion. This design results in a force
versus velocity curve like that shown in Figure 4.4.5. During compression (as when
the wheel hits a road bump) the resisting force is different than during rebound (when
the wheel is forced back to its neutral position by the suspension spring). The resisting
force during compression should be small to prevent a large force from being transmitted
to the passenger compartment, whereas during rebound the resisting force should be
greater to prevent wheel oscillation. An aircraft application of a shock absorber is the
oleo strut, shown in Figure 4.4.6.

Figure 4.4.4 A damper
piston with spring-loaded
valves.

Piston
motion

Valves

Flow

Damping can exist whenever there is a fluid resistance force produced by a fluid
layer moving relative to a solid surface. The fluid’s viscosity produces a shear stress that
exerts a resisting force on the solid surface. Viscosity is an indication of the “stickiness”
of the fluid; molasses and oil have greater viscosities than water, for example. Other ex-
amples of damping include aerodynamic drag as, discussed in part (b) of Example 1.3.4
in Chapter 1, and hydrodynamic drag. Damping can also be caused by nonfluid effects,
such as the energy loss that occurs due to internal friction in solid but flexible materials.

Engineering systems can exhibit damping in bearings and other surfaces lubricated
to prevent wear. Damping elements can be deliberately included as part of the design.
Such is the case with shock absorbers, fluid couplings, and torque converters.
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Figure 4.4.5 Force-velocity curves for
a damper during rebound and during
compression.
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�0.1
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Figure 4.4.6 An oleo strut.
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(piston)

Air chamber

IDEAL DAMPERS

As with spring elements, real damping elements have mass, such as the masses of the
piston and the cylinder in a shock absorber. If the system consists of an object attached to
a damper (such as a vehicle chassis), a simplifying assumption is to neglect the damper
mass relative to the mass of the object and take the mass center of the system to be
located at the mass center of the object. This assumption is accurate in many practical
applications, but to be comfortable with it you should know the numerical values of
the masses of the object and the damper element. In some of the homework problems
and some of the examples to follow, the numerical values are not given. In such cases,
unless otherwise explicitly stated, you should assume that the damper mass can be
neglected. In other cases, where the piston mass and cylinder mass are substantial, for
example, the damper must be modeled as two masses, one for the piston and one for
the cylinder. An ideal damping element is one that is massless.

DAMPER REPRESENTATIONS

The dependence of the damping force on the relative velocity can be quite complicated,
and detailed analysis requires application of fluid mechanics principles. Sometimes, to
obtain a linear system model, we model the damping as a linear function of the relative
velocity. This approach enables us to obtain equations of motion that are easier to solve,
without ignoring altogether the effect of the velocity-dependent damping force. The
linear model for the damping force f as a function of the relative velocity v is

f = cv (4.4.1)

where c is the damping coefficient. The units of c are force/velocity; for example,
N · s/m or lb-sec/ft. In applying this equation to obtain free body diagrams, you must
remember that the damping force always opposes the relative velocity.

Using the methods of Chapter 7, Section 7.4, we can derive the following expression
for the damping coefficient of a piston-type damper with a single hole.

c = 8πμL

[(
D

d

)2

− 1

]2

(4.4.2)
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Figure 4.4.7 Symbols for
translational and torsional
damper elements.

v1 v2

cf

v � v1 � v2
f � cv

� � �1 � �2
T � cT�

� � �1 � �2
T � cT�

�1

�2
T

cT

�1

cT

T

(a) (b) (c)

�2

where μ is the viscosity of the fluid, L is the length of the hole through the piston, d is
the diameter of the hole, and D is the diameter of the piston. For two holes, as shown
in Figure 4.4.1, multiply the result by 2 (this is an example of two damping elements
in series; their damping coefficients add).

The symbol shown in Figure 4.4.7a is used as the general symbol for a damping
element, because it resembles the piston-cylinder device. The symbol is used even when
the damping is produced by something other than a piston and cylinder.

The linear model of a torsional damper is

T = cT ω (4.4.3)

where cT is the torsional damping coefficient, ω is the angular velocity, and T is the
torque. Torsional dampers are represented by a slightly different symbol, shown in
Figure 4.4.7b. When rotational resistance is due to viscous friction in bearings, the
bearing symbol shown in Figure 4.4.7c is often used with the symbol cT to represent
the damping. For torsional damping, the units of cT are torque/angular velocity; for
example, N · m · s/rad or lb-ft-sec/rad.

MODELING MASS-DAMPER SYSTEMS

The equations of motion for systems containing damping elements are derived as with
spring elements, except that consistent assumptions must also be made about the relative
velocities, as well as about the relative displacements, if there is a spring present.

EXAMPLE 4.4.1 Damped Motion on an Inclined Surface

■ Problem
Derive and solve the equation of motion of the block sliding on an inclined, lubricated surface
(Figure 4.4.8a). Assume that the damping force is linear. For this application the damping
coefficient c depends on the contact area of the block, the viscosity of the lubricating fluid, and
the thickness of the fluid layer.

Figure 4.4.8 A mass sliding
on a lubricated, inclined
surface.

(a) (b)

m

� g

v

mg sin �

cv

m
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■ Solution
We define v to be the velocity of the block parallel to the surface. The free body diagram,
displaying only the forces parallel to the surface, is shown in Figure 4.4.8b. Note that the
direction of the damping force must be opposite that of the velocity. The equation of motion is

mv̇ = mg sin θ − cv

Because the gravity force mg sin θ is constant, the solution is

v(t) =
[
v(0) − mg sin θ

c

]
e−ct/m + mg sin θ

c

Eventually the block will reach a constant velocity of mg sin θ/c regardless of its initial velocity.
At this velocity the damping force is great enough to equal the gravity force component. Because
e−4 = 0.02, when t = 4m/c the velocity will be approximately 98% of its final velocity. Thus a
system with a larger mass or less resistance (a smaller damping constant c) will require more
time to reach its constant velocity. This apparently unrealistic result is explained by noting that
the constant velocity attained is mg sin θ/c. Thus a system with a larger mass or a smaller c
value will attain a higher velocity, and thus should take longer to reach it.

A Wheel-Axle System with Bearing Damping EXAMPLE 4.4.2

■ Problem
Figure 4.4.9a illustrates a wheel-axle system in which the axle is supported by two sets of
bearings that produce damping. Each bearing set has a torsional damping coefficient cT . The
torque T is supplied by a motor. The force F is the friction force due to the road surface. Derive
the equation of motion.

■ Solution
Part (b) of the figure shows the free body diagram. Note that the damping torque cT ω from each
bearing set opposes the angular velocity. The inertia I is the combined inertia of the wheel and
the two shafts of the axle: I = Iw + 2Is . The equation of motion is

I ω̇ = T − RF − 2cT ω

(a)

F

�
Is

Iw

Is

cT

cT

T

R
I

cT�

cT �

�

T

F

(b)

Figure 4.4.9 A wheel-axle
system.

In a simple bearing, called a journal bearing, the axle passes through an opening
in a support. A commonly used formula for the damping coefficient of such a bearing
is Petrov’s law:

cT = π D3Lμ

4ε
(4.4.4)
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where L is the length of the opening, D is the axle diameter, and ε is the thickness of
the lubricating layer (the radial clearance between the axle and the support).

EXAMPLE 4.4.3 A Generic Mass-Spring-Damper System

■ Problem
Figure 4.4.10a represents a generic mass-spring-damper system with an external force f . Derive
its equation of motion and determine its characteristic equation.

■ Solution
The free body diagram is shown in Figure 4.4.10b. Note that because we have defined x , the
displacement from equilibrium, to be positive downward, we must take the velocity ẋ also to be
positive downward. The damper force opposes the velocity. Thus the equation of motion is

mẍ = −cẋ − k(x + δst ) + mg + f = −cẋ − kx + f

because kδst = mg. The equation can be rearranged as

mẍ + cẋ + kx = f

From this we can recognize the characteristic equation to be ms2 + cs + k = 0.

Figure 4.4.10 A mass-
spring-damper system.

x

k

m

c

f

kx cx·

m

f

(a) (b)

In Section 4.2 we solved the equation of motion for the case where there is no
damping (c = 0). Now let us investigate the effects of damping.

EXAMPLE 4.4.4 Effects of Damping

■ Problem
Suppose that for the system shown in Figure 4.4.10a the mass is m = 1 and the spring constant
is k = 16. Investigate the free response as we increase the damping for the four cases: c = 0, 4,
8, and 10. Use the initial conditions: x(0) = 1 and ẋ(0) = 0.

■ Solution
The characteristic equation is s2 + cs + 16 = 0. The roots are

s = −c ± √
c2 − 64

2

The free response can be obtained with the trial-solution method explained in Section 3.1 (see
Examples 3.2.1, 3.2.2, and 3.2.3) or with the Laplace transform method covered in Section 3.2.
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Figure 4.4.11 Free response
of a mass-spring-damper
system for several values of c .

The free responses for the given initial conditions, for each value of c, are as follows:

For c = 0 x(t) = cos 4t

For c = 4 x(t) = 1.155e−2t sin
(√

12t + 1.047
)

For c = 8 x(t) = (1 + 4t)e−4t

For c = 10 x(t) = 4

3
e−2t − 1

3
e−8t

The solutions are plotted in Figure 4.4.11. For no damping, the system is neutrally stable and
the mass oscillates with a constant amplitude and a radian frequency of

√
k/m = 4, which is the

natural frequency ωn . As the damping is increased slightly to c = 4, the system becomes stable
and the mass still oscillates but with a smaller radian frequency

(√
12 = 3.464

)
. The oscillations

die out eventually as the mass returns to rest at the equilibrium position x = 0. As the damping
is increased further to c = 8, the mass no longer oscillates because the damping force is large
enough to limit the velocity and thus the momentum of the mass to a value that prevents the
mass from overshooting the equilibrium position. For a larger value of c (c = 10), the mass takes
longer to return to equilibrium because the damping force greatly slows down the mass.

A Two-Mass System EXAMPLE 4.4.5

■ Problem
Derive the equations of motion of the two-mass system shown in Figure 4.4.12a.

■ Solution
Choose the coordinates x1 and x2 as the displacements of the masses from their equilibrium
positions. In equilibrium, the static forces in the springs cancel the weights of the masses. Note
that the dampers have no effect in equilibrium and thus do not determine the location of the
equilibrium position. Therefore the free body diagrams showing the dynamic forces, and not
the static forces, are as shown in Figure 4.4.12b. These diagrams have been drawn with the
assumption that the displacement x2 of mass m2 from its equilibrium position is greater than the
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Figure 4.4.12 A two-mass
system.

x1

m2

k2

k1

m1

c1

x2

c2

f

k2(x2 � x1) c2(x·2 � x·1)

m2

m1

k1x1 c1x·1

f

k2(x1 � x2) c2(x·1 � x·2)

m2

m1

k1x1 c1x·1

f

(a) (b) (c)

displacement of m1. Because of the dampers, an additional assumption is required concerning the
relative velocities of the masses. The diagrams in part (b) of the figure are based on the assumption
that the velocity ẋ2 of mass m2 is greater than the velocity ẋ1 of m1. If your assumptions are
correct, the force values shown on the diagram must be positive. From these diagrams we obtain
the equations of motion:

m1 ẍ1 = −k1x1 + k2(x2 − x1) − c1 ẋ1 + c2(ẋ2 − ẋ1)

m2 ẍ2 = f − k2(x2 − x1) − c2(ẋ2 − ẋ1)

If we move all terms to the left side of the equal sign except for the external force f , and collect
terms, we obtain

m1 ẍ1 + (c1 + c2)ẋ1 − c2 ẋ2 + (k1 + k2)x1 − k2x2 = 0 (1)

m2 ẍ2 − k2x1 + k2x2 − c2 ẋ1 + c2 ẋ2 = f (2)

In drawing the free body diagrams of multimass systems having springs and dampers
between the masses, you must make assumptions about the relative displacements and relative
velocities of each mass. For example, we could have assumed that the displacement x2 of mass m2

is less than the displacement of m1, and assumed that the velocity ẋ2 of mass m2 is less than the
velocity ẋ1 of m1. Figure 4.4.12c shows the free body diagrams drawn for this assumption. Note
that the directions of the forces associated with spring k2 and damper c2 are the opposite of those
in part (b) of the figure. You should confirm that the diagram in part (c) results in equations of
motion that are identical to equations (1) and (2).

You must be consistent in your assumptions made to draw the free body diagrams. A common
mistake is to use one assumption to obtain the free body diagram for mass m1 but another as-
sumption for mass m2.

MOTION INPUTS WITH DAMPING ELEMENTS

Sometimes we are given the motion, either the displacement or the velocity, of the end-
point of a damping element. For example, consider the system shown in Figure 4.4.13,
where we are given the displacement y(t) of the left-hand end of the damper. Sup-
pose that when x = 0 the spring is at its free length. Here we are not given an applied
force as an input, but nevertheless we must draw the free body diagram showing the
forces acting on the mass. To draw the free body diagram we must make an assumption
about the relative velocities of the endpoints of the damping element. The free body
diagram has been drawn with the assumption that ẏ > ẋ . The force produced by the
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m m

x
y

k c(y· � x·) kxc

Figure 4.4.13 A system with
velocity input.

given displacement y(t) is the resulting damper force c(ẏ − ẋ). The equation of motion
is mẍ = c(ẏ − ẋ) − kx , or mẍ + cẋ + kx = cẏ. Note that we must be given the velocity
ẏ, or be able to compute ẏ from y(t), to solve this equation for x(t).

When motion inputs are given, it is important to realize that ultimately such motion
is generated by a force (or torque) and that this force must be great enough to generate the
specified motion in the presence of any resisting forces or system inertia. For example,
from the principle of action and reaction, we see that the mechanism supplying the
velocity ẏ(t) must generate a force equal to the damper force c(ẏ − ẋ).

4.5 ADDITIONAL MODELING EXAMPLES
This section contains examples for additional practice in deriving equations of motion
for systems containing spring and damper elements.

A Translational System with Displacement Input EXAMPLE 4.5.1

■ Problem
Derive the equation of motion for the system shown in Figure 4.5.1a. The input is the displace-
ment y of the right-end of the spring. The output is the displacement x of the mass. The spring
is at its free length when x = y.

■ Solution
The free body diagram in Figure 4.5.1b displays only the horizontal forces, and it has been drawn
assuming that y > x . From this diagram we can obtain the equation of motion.

mẍ = k(y − x) − cẋ or mẍ + cẋ + kx = ky

(a)

m

x

c k

y

cx·
m

k(y � x)

(b)

Figure 4.5.1 A translational
system with displacement
input.

A Rotational System with Displacement Input EXAMPLE 4.5.2

■ Problem
Derive the equation of motion for the system shown in Figure 4.5.2a. The input is the angular
displacement φ of the left-end of the rod, which is modeled as a torsional spring. The output is
the angular displacement θ of the inertia I . Neglect the inertia of the rod. There is no torque in
the rod when φ = θ .
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■ Solution
The free body diagram in Figure 4.5.2b has been drawn assuming that φ > θ . From this diagram
we can obtain the equation of motion.

I θ̈ = kT (φ − θ) − cT θ̇ or I θ̈ + cT θ̇ + kT θ = kT φ

Figure 4.5.2 A rotational
system with displacement
input.

(a)

�

�

I

kT

cT

(b)

k(� � �)

cT �̇

I

Sometimes we need to determine the motion of a point in the system where there
is no mass. In such problems, it is helpful to place a “fictitious” mass at the point in
question, draw the free body diagram of the fictitious mass, and set the mass value to
zero in the resulting equation of motion. Although the same result can be obtained by
applying the principles of statics to the point in question, this method helps to organize
the process.

EXAMPLE 4.5.3 Displacement Input and Negligible System Mass

■ Problem
Obtain the equation of motion of point A for the system shown in Figure 4.5.3a. We are given
the displacement y(t). The spring is at its free length when x = y.

■ Solution
We place a fictitious mass m A at point A, and draw its free body diagram, shown in part (b)
of the figure. The diagram has been drawn with the assumption that y > x . The corresponding
equation of motion is

m Aẍ = k(y − x) − cẋ

Let m A = 0 to obtain the answer: 0 = k(y − x) − cẋ or cẋ + kx = ky. This can be solved for
x(t) if we know y(t).

Figure 4.5.3 A system with
negligible mass.

(a) (b)

k A

xy

c k(y � x) cx·
mA
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A Two-Mass System with Displacement Input EXAMPLE 4.5.4

■ Problem
Figure 4.5.4a shows a two-mass system where the displacement y(t) of the right-hand end of the
spring is a given function. The masses slide on a frictionless surface. When x1 = x2 = y = 0,
the springs are at their free lengths. Derive the equations of motion.

■ Solution
The free body diagrams shown in part (b) of the figure display only the horizontal forces, and
they were drawn with the assumptions that y > x2 > x1. These diagrams give the equations of
motion:

m1 ẍ1 = k1(x2 − x1)

m2 ẍ2 = −k1(x2 − x1) + k2(y − x2)

(a)

m2m1

x2 yx1

k1 k2

(b)

k1(x2 � x1) k2(y � x2)m2m1

Figure 4.5.4 A two-mass
system with displacement
input.

A Two-Inertia System with Angular Displacement Input EXAMPLE 4.5.5

■ Problem
Figure 4.5.5a shows a system with two inertia elements and two torsional dampers. The left-hand
end of the shaft is twisted by the angular displacement φ, which is a specified function of time.
The shaft has a torsional spring constant kT and negligible inertia. The equilibrium position
corresponds to φ = θ1 = θ2 = 0. Derive the equations of motion.

■ Solution
From the free body diagrams in part (b) of the figure, which are drawn for φ > θ1 > θ2 and
θ̇1 > θ̇2, we obtain

I1θ̈1 = kT (φ − θ1) − cT1(θ̇1 − θ̇2)

I2θ̈2 = cT1(θ̇1 − θ̇2) − cT2 θ̇2

(a)

I1kT

I2

cT1

cT2

�2

�1
�

I1

I2

kT (� � �1)

cT1
(�

·
1 � �

·
2)

cT1
(�

·
1 � �

·
2)

cT2
�
·
2

(b)

Figure 4.5.5 A system with
two inertias.
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EXAMPLE 4.5.6 A Single-Inertia Fluid-Clutch Model

■ Problem
Figure 4.5.6a shows a driving disk rotating at a specified speed ωd . There is a viscous fluid layer
between this disk and the driven disk whose inertia plus that of the shaft is I1. Through the action
of the viscous damping, the rotation of the driving disk causes the driven disk to rotate, and this
rotation is opposed by the torque T1, which is due to whatever load is being driven. This model
represents the situation in a fluid clutch, which avoids the wear and shock that occurs in friction
clutches. (a) Derive a model for the speed ω1. (b) Find the speed ω1(t) for the case where the
load torque T1 = 0 and the speed ωd is a step function of magnitude 
d .

■ Solution
a. Lacking a more detailed model of the fluid forces in the viscous fluid layer, we will assume

that the effect can be modeled as a massless rotational damper obeying the linear damping
law. Thus we will model the system as shown in Figure 4.5.6b. The given input variable is
the velocity ωd .

To draw the free body diagram of I1, note that the viscous fluid layer opposes any
velocity difference across it. The torque that it exerts as a result has a magnitude
cT |ωd − ω1| and acts in the direction that will reduce the speed difference. Figure 4.5.6c
shows the free body diagram, which is drawn assuming that ωd > ω1. The equation of
motion is

I1ω̇1 = cT (ωd − ω1) − T1

b. If ωd is a step function of magnitude 
d , and if T1 = 0, the solution for ω(t) can be found
from Table 3.1.3. It is

ω1(t) = 
d − [ω1(0) − 
d ]e−cT t/I1 (1)

This shows that the speed ω1 will eventually equal 
d as t → ∞. If the inertia I1 is
initially rotating in the direction opposite to that of ωd , it eventually reverses direction.
When t = 4I1/cT , the magnitude of the difference, |ω1(t) − 
d |, is only 2% of the initial
magnitude |ω1(0) − 
d |.

The model derived in this example is a first-order model, and it is based on the
assumption that the torque on the driving shaft is high enough to drive the disk on that side
at the specified speed ωd , regardless of the effects of the damping and the inertia of the
driven side. If this is not true, then the model derived in Example 4.5.7 is a better model.

Figure 4.5.6 A single-inertia model of a fluid
clutch.

(a)

�d

Driving side

Driven side

�1

T1

I1

cT

�d

�1

�1

I1

(b)

�1

cT(�d � �1)

�1

I1

(c)



palm-38591 book December 17, 2008 12:4

4.5 Additional Modeling Examples 197

A Two-Inertia Fluid-Clutch Model EXAMPLE 4.5.7

■ Problem
Figure 4.5.7a is a fluid clutch model that can be used when the torque on the driving shaft is not
sufficient to drive the disk on that side at the specified speed ωd . To account for this situation,
we must include the inertia of the driving side in the model. Assume that the torques Td and T1

are specified functions of time. (a) Derive the equations of motion for the speeds ωd and ω1.
(b) Obtain the transfer functions 
1(s)/T1(s) and 
1(s)/Td(s). (c) Obtain the expression for the
response ω1(t) if the initial conditions are zero, T1 = 0, and Td is a step function of magnitude M .

■ Solution
a. We can model this system with two inertias, as shown in Figure 4.5.7b. The damper torque

acts to reduce the difference between the speeds ω1 and ωd . The free body diagrams in
Figure 4.5.7c are drawn for the case where ωd > ω1, and we can obtain the following
equations of motion from them:

Id ω̇d = Td − cT (ωd − ω1)

I1ω̇1 = −T1 + cT (ωd − ω1)

b. Applying the Laplace transform to the equations of motion with zero initial conditions, we
obtain

(Ids + cT )
d(s) − cT 
1(s) = Td(s)

−cT 
d(s) + (I1s + cT )
1(s) = −T1(s)

Eliminating 
d(s) from these equations and solving for 
1(s), we obtain


1(s) = cT

s(I1 Ids + cT I1 + cT Id)
Td(s) − Ids + cT

s(I1 Ids + cT I1 + cT Id)
T1(s)

Thus, the two transfer functions are


1(s)

Td(s)
= cT

s(I1 Ids + cT I1 + cT Id)


1(s)

T1(s)
= − Ids + cT

s(I1 Ids + cT I1 + cT Id)

c. Setting T1(s) = 0 and Td(s) = M/s gives


1(s) = cT

s(I1 Ids + cT I1 + cT Id)

M

s
= b

s(s + a)

M

s

Figure 4.5.7 A two-inertia model of a fluid
clutch.
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where

a = cT I1 + cT Id

I1 Id
b = cT

I1 Id

A partial fraction expansion gives


1(s) = bM

a

[
1

s2
− 1

as
+ 1

a(s + a)

]
The corresponding response is

ω1(t) = bM

a

(
t − 1

a
+ 1

a
e−at

)
The time constant is τ = 1/a. For t > 4/a approximately, the speed increases linearly with
time.

EXAMPLE 4.5.8 The Quarter-Car Model

■ Problem
The quarter-car model of a vehicle suspension is shown in Figure 4.5.8a. In this simplified
model, the masses of the wheel, tire, and axle are neglected, and the mass m represents one-
fourth of the vehicle mass. The spring constant k models the elasticity of both the tire and the
suspension spring. The damping constant c models the shock absorber. The equilibrium position
of m when y = 0 is x = 0. The road surface displacement y(t) can be derived from the road
surface profile and the car’s speed. Derive the equation of motion of m with y(t) as the input,
and obtain the transfer function.

■ Solution
Figure 4.5.8b shows the free body diagram, which is drawn assuming that ẏ > ẋ and that y > x .
Only the dynamic spring force is shown because the static spring force is canceled by the gravity
force. From this free body diagram we obtain the equation of motion:

mẍ = c(ẏ − ẋ) + k(y − x) or mẍ + cẋ + kx = cẏ + ky

The transfer function is found by applying the Laplace transform to the equation, with the
initial conditions set to zero:

ms2 X (s) + cs X (s) + k X (s) = csY (s) + kY (s)

from which we obtain
X (s)

Y (s)
= cs + k

ms2 + cs + k

Figure 4.5.8 A quarter-car
model with a single mass. m

x

k c

Body

Suspension

y
Road

(a)

m

k(y � x) c(y· � x·)

(b)

Datum level
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A Quarter-Car Model with Two-Masses EXAMPLE 4.5.9

■ Problem
The suspension model shown in Figure 4.5.9 includes the mass of the wheel-tire-axle assembly.
The mass m1 is one-fourth the mass of the car body, and m2 is the mass of the wheel-tire-axle
assembly. The spring constant k1 represents the suspension’s elasticity, and k2 represents the
tire’s elasticity. Derive the equations of motion for m1 and m2 in terms of the displacements
from equilibrium, x1 and x2.

■ Solution
Assuming that x2 > x1, ẋ2 > ẋ1, and y > x2, we obtain the free body diagram shown. The equation
of motion for mass m1 is

m1 ẍ1 = c1(ẋ2 − ẋ1) + k1(x2 − x1)

For mass m2,

m2 ẍ2 = −c1(ẋ2 − ẋ1) − k1(x2 − x1) + k2(y − x2)

k1(x2 � x1)

k2(y � x2)

c1(x·2 � x·1)

(a) (b)

m1

m2

k2

y

Wheel

Road

m1

m2
x2

x1

k1
c1

Body

Suspension

Datum level

Figure 4.5.9 A quarter-car
model with two masses.

Figure 4.5.10 A pendulum
with a concentrated mass.

g

L

�

m

In Chapter 2 we derived the following equation of motion of a pendulum whose
mass is concentrated a distance L from the pivot point (see Figure 4.5.10).

L θ̈ = −g sin θ

We also obtained the following linear model that is approximately correct when the
pendulum is hanging nearly vertical at θ = 0.

L θ̈ = −gθ

To obtain this model we used the small-angle approximation sin θ ≈ θ . Because the
characteristic roots of the model are imaginary (s = ± j

√
g/L), the equilibrium position

at θ = 0 is neutrally stable. Because this conclusion is based on the approximate model,
we cannot use this model to predict what will happen if the mass is displaced far from
θ = 0. On the other hand, if we move the mass exactly to θ = 180◦ common sense tells
us that it will stay there, but if it is slightly disturbed the mass will fall. Thus we can
see that the equilibrium position at θ = 180◦ is unstable.
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Let us now see how the stability properties are affected if we introduce stiffness
and damping into the system.

EXAMPLE 4.5.10 Stability of an Inverted Pendulum

■ Problem
Determine the effects of stiffness and damping on the stability properties of an inverted pendulum
(Figure 4.5.11a). Assume that the angle φ is small.

■ Solution
Note that for small values of φ the motion of the attachment point of the spring and damper is
approximately horizontal; its displacement is L1φ and its velocity is L1φ̇. The free body diagram
is shown in Figure 4.5.11b. Note that the moment arm of the spring and damper forces is L1.
From the diagram we can write the equation of motion.

IO φ̈ = MO or mL2φ̈ = mgLφ − L1(cL1φ̇) − L1(kL1φ)

or

mL2φ̈ + cL2
1φ̇ + (

kL2
1 − mgL

)
φ = 0

which has the form

φ̈ + aφ̇ + bφ = 0 a = cL2
1

mL2
b = kL2

1 − mgL

mL2

From the results of Problem 3.6 in Chapter 3, the system will be stable if both a and b are
positive.

Note that a cannot be negative for physically realistic values of the other parameters, but it
can be zero if there is no damping (c = 0). Thus we conclude that some damping is necessary
for the system to be stable.

However, b can be positive, negative, or zero depending on the relative values of kL2
1 and

mgL2. If b < 0 the system is unstable (b < 0 if kL2
1 < mgL). This indicates that the torque

from the spring is not great enough to overcome the torque due to gravity, and thus the mass
will fall. We cannot tell how far it will fall because eventually φ will become so large that the
approximation sin φ ≈ φ will no longer be accurate and thus the linear model will be useless.

If c = 0 and b = 0, the two roots are both zero, which indicates neutral stability. If slightly
displaced with zero initial velocity, the mass will remain in that position. If c = 0 but b > 0, the
two roots are imaginary (s = ± j

√
b) and thus the system is neutrally stable. If slightly displaced,

the mass will oscillate about φ = 0 with a constant amplitude.

Figure 4.5.11 A pendulum
with a damper and spring
element.
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STEP RESPONSE WITH AN INPUT DERIVATIVE

The following first-order model (4.5.1) contains an input derivative, and so we must be
careful in modeling the input and in solving for the response.

mv̇ + cv = b ḟ (t) + f (t) (4.5.1)

The transfer function is

V (s)

F(s)
= bs + 1

ms + c
(4.5.2)

Thus we see that the presence of an input derivative is indicated by an s term in
the numerator. This presence is called “numerator dynamics.” In mechanical systems,
numerator dynamics occurs when a displacement input acts directly on a damper.

An example of a device having numerator dynamics is shown in Figure 4.5.12.
From the free body diagram,

c(ẏ − ẋ) + k1(y − x) − k2x = 0

or

cẋ + (k1 + k2)x = cẏ + k1 y

Its transfer function is

X (s)

Y (s)
= cs + k1

cs + k1 + k2

Constant Inputs versus Step Inputs Note that a step function changes value at t = 0.
Thus it is not a constant. If, however, the input f in (4.5.1) is a constant F for −∞ ≤
t ≤ ∞, then ḟ = 0 for −∞ ≤ t ≤ ∞, and the existence of the input derivative in the
model does not affect the response, because the model reduces to mv̇ + cv = f (t).
Thus, with vss = F/c and τ = m/c, we have

v(t) = v(0)e−t/τ + vss(1 − e−t/τ ) (4.5.3)

If, however, the input is a step function, then we cannot use (4.5.3). In this case,
we can use the Laplace transform to derive the response. Assuming that f (t) is a step
function of magnitude F , we obtain from (4.5.1)

m[sV (s) − v(0)] + cV (s) = b[s F(s) − f (0)] + F(s) = b
[

s
F

s
− f (0)

]
+ F

s

With f (0) = 0 we obtain

V (s) = mv(0)

ms + c
+ bF

ms + c
+ F

s(ms + c)

k2

k1

cy

x

(a) (b)

k1(y � x) � c( ẏ � ẋ) k2x

x Figure 4.5.12 A device
having numerator dynamics.
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The inverse transform gives

v(t) = v(0)e−ct/m + bF

m
e−ct/m + F

c
(1 − e−ct/m) (4.5.4)

Comparing this with (4.5.3) we see that the effect of the term b ḟ (t) is to increase the
initial value of v(t) by the amount bF/m.

Of course, no physical variable can be discontinuous, and therefore the step function
is only an approximate description of an input that changes quickly. For example, the
displacement y(t) in Figure 4.5.12a must be continuous. With some models, a step
input may produce a physically unrealistic discontinuity in the response. An example
is given by (4.5.4), where v(t) is discontinuous at t = 0. Taking the limit of v(t) as
t → 0+, we find that v(0+) = v(0) + bF/m.

The reason for using a step function is to reduce the complexity of the mathematics
required to find the response. The following example illustrates this.

EXAMPLE 4.5.11 An Approximation to the Step Function

■ Problem
Consider the following model:

v̇ + 10v = ḟ + f (1)

where f (t) is the input and v(0) = 0.

a. Obtain the expression for the unit-step response.
b. Obtain the response to the input f (t) = 1 − e−100t and compare with the results of part (a).

■ Solution
a. Comparing equation (1) with (4.5.1), we see that m = 1, c = 10, and b = 1. Thus, from

(4.5.3),

v(t) = 0.1 + 0.9e−10t (2)

Note that this equation gives v(0+) = 1. Thus, for this model, the effect of the step input
acting on the input derivative ḟ creates an instantaneous jump in the value of v at t = 0
from v(0) = 0 to v(0+) = 1.

b. The function f (t) = 1 − e−100t is plotted in the top graph of Figure 4.5.13. It resembles a
step function except that it is continuous. The corresponding response is obtained as
follows:

V (s) = s + 1

s + 10

100

s(s + 100)
= 0.1

s
− 1.1

s + 100
+ 1

s + 10

This gives

v(t) = 0.1 − 1.1e−100t + e−10t (3)

This response gives v(0+) = 0 and is plotted along with the step response in the bottom
graph of Figure 4.5.13. This response resembles the step response except for the latter’s
unrealistic discontinuity at t = 0. The response curves are very close for t > 0.1.

Although the response for the approximate step function was easily obtained in this
example, this might not be true for higher-order models. In such cases, the approximation
introduced by using the step function might be justified to obtain an expression for the
response.
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Figure 4.5.13 Response v(t)
to the approximate step
function f (t) = 1 − e−100t and
to a unit step function.

There will be cases, such as with nonlinear models containing input derivatives,
where the Laplace transform cannot be used to find the response. In such cases we
must use an approximate method or a numerical method. Input derivatives with step
inputs, however, are difficult to handle numerically. In such cases the approximate step
function 1 − e−t/τ and its derivative e−t/τ /τ can be used to obtain the response. For
this approximate method to work, the value of τ must be chosen to be much smaller
than the estimated response time of the system. An example of such an application
is the system shown in Figure 4.5.12a if one or both spring elements are nonlinear. For
example, if the force-displacement relation of the leftmost spring is a cubic function,
then the equation of motion is

c(ẏ − ẋ) + k11(y − x) + k12(y − x)3 − k2x = 0

which is nonlinear, and therefore not solvable with the Laplace transform. This equation
must be solved numerically, and so using a pure step function for y(t) gives no advantage
and may cause numerical difficulties. The use of MATLAB to solve such an equation
is discussed in Section 5.3.

Damper Location and Numerator Dynamics EXAMPLE 4.5.12

■ Problem
By obtaining the equations of motion and the transfer functions of the two systems shown in
Figure 4.5.14, investigate the effect of the location of the damper on the step response of the
system. The displacement y(t) is a given function. Obtain the unit-step response for each system
for the specific case m = 1, c = 6, and k = 8, with zero initial conditions.

■ Solution
For the system in part (a) of the figure, mẍ + cẋ + kx = cẏ + ky and thus,

X (s)

Y (s)
= cs + k

ms2 + cs + k
(1)

Therefore this system has numerator dynamics.
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Figure 4.5.14 Effect of
damper location on numerator
dynamics.
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For the system in part (b), mẍ + cẋ + kx = ky and thus,

X (s)

Y (s)
= k

ms2 + cs + k
(2)

Therefore this system does not have numerator dynamics. Both systems have the same charac-
teristic equation.

Substituting the given values into equation (1), using Y (s) = 1/s and performing a partial-
fraction expansion, we obtain

X (s) = 6s + 8

s(s2 + 6s + 8)
= 1

s
+ 1

s + 2
− 2

s + 4

The response is

x(t) = 1 + e−2t − 2e−4t

For equation (2),

X (s) = 8

s(s2 + 6s + 8)
= 1

s
− 2

s + 2
+ 1

s + 4

The response is

x(t) = 1 − 2e−2t + e−4t

The responses are shown in Figure 4.5.15. Curve (a) corresponds to equation (1), which
has numerator dynamics. Curve (b) corresponds to the system without numerator dynamics,
equation (2). The numerator dynamics causes an overshoot in the response but does not affect

Figure 4.5.15 Effect of
numerator dynamics on step
response.
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the steady-state response. Thus, the damper location can affect the response. But the damper
location does not affect the time constants, because both systems have the same characteristic
roots. Thus, they take about the same length of time to approach steady state.

4.6 COLLISIONS AND IMPULSE RESPONSE
An input that changes at a constant rate is modeled by the ramp function. The step
function models an input that rapidly reaches a constant value, while the rectangu-
lar pulse function models a constant input that is suddenly removed. The impulsive
function—called an impulse—is similar to the pulse function, but it models an input
that is suddenly applied and removed after a very short (infinitesimal) time.

The strength of an impulsive input is the area under its curve. The Dirac delta
function δ(t) is an impulsive function with a strength equal to unity. Thus,∫ 0+

0
δ(t) dt = 1

The Dirac function is an analytically convenient approximation of an input applied for
only a very short time, such as the interaction force between two colliding objects. It
is also useful for estimating the system’s parameters experimentally and for analyzing
the effect of differentiating a step or any other discontinuous input function.

The response to an impulsive input is called the impulse response. In particular, the
response to δ(t) is called the unit impulse response. Note that the system transfer func-
tion T (s) is the Laplace transform of the unit impulse response, because L[δ(t)] = 1.
That is, if X (s) = T (s)F(s) and if f (t) = δ(t), then F(s) = 1 and X (s) = T (s). There-
fore, if we can obtain the transform of the response x(t) to an impulse of strength A,
then we can determine the transfer function from T (s) = X (s)/A. This relation has
some applications in determining the transfer function from the measured response.

INITIAL CONDITIONS AND IMPULSE RESPONSE

The given initial conditions x(0), ẋ(0), . . . , for the dependent variable x(t), represent
the situation at the start of the process and are the result of any inputs applied prior
to t = 0. The effects of any inputs starting at t = 0 are not felt by the system until
an infinitesimal time later, at t = 0+. For some models, x(t) and its derivatives do
not change between t = 0 and t = 0+, and thus the solution x(t) obtained from the
differential equation will match the given initial conditions when the solution x(t) and
its derivatives are evaluated at t = 0. The results obtained from the initial value theorem
will also match the given initial conditions.

However, for some other models, x(0) �= x(0+), or ẋ(0) �= ẋ(0+), and so forth for
the higher derivatives of x(t), depending on the type of input. The initial value theorem
gives the value at t = 0+, which for these responses is not necessarily equal to the
value at t = 0. In these cases the solution of the differential equation is correct only
for t > 0. This phenomenon occurs in models having impulsive inputs and in models
containing derivatives of a discontinuous input.

For example, in Chapter 3 we found that an impulsive input applied to a first-order
system will instantaneously change the value of x so that x(0) �= x(0+). For a second-
order system, however, we found that such an input changes the values only of the
derivative, so that x(0) = x(0+) but ẋ(0) �= ẋ(0+). In keeping with our interpretation
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of the initial conditions, we consider the function δ(t) to start at time t = 0 and finish
at t = 0+, with its effects first felt at t = 0+.

Of course, a pure impulsive input does not exist in nature, and, for analytical
convenience, we often model as impulsive an input that has a duration that is short
compared to the response time of the system.

An example of a force often modeled as impulsive is the force generated when two
objects collide. Recall that when Newton’s law of motion mv̇ = f (t) is integrated over
time, we obtain the impulse-momentum principle for a system having constant mass:

mv(t) − mv(0) =
∫ t

0
f (u) du (4.6.1)

This states that the change in momentum mv equals the time integral of the applied
force f (t). In the terminology of mechanics, the force integral—the area under the
force-time curve—is called the linear impulse. The linear impulse is the strength of an
impulsive force, but a force need not be impulsive to produce a linear impulse.

If f (t) is an impulsive input of strength A, that is, if f (t) = Aδ(t), then

mv(0+) − mv(0) =
∫ 0+

0
Aδ(u) du = A

∫ 0+

0
δ(u) du = A (4.6.2)

since the area under the δ(t) curve is 1. So the change in momentum equals the strength
of the impulsive force.

In practice, the strength is often all we can determine about an input modeled as
impulsive. Sometimes we need not determine the input characteristics at all, as the next
example illustrates.

EXAMPLE 4.6.1 Inelastic Collision

■ Problem
Suppose a mass m1 = m moving with a speed v1 becomes embedded in mass m2 after striking
it (Figure 4.6.1). Suppose m2 = 10m. Determine the expression for the displacement x(t) after
the collision.

■ Solution
If we take the entire system to consist of both masses, then the force of collision is internal to
the system. Because the displacement of m2 immediately after the collision will be small, we
may neglect the spring force initially. Thus, the external force f (t) in (4.6.1) is zero, and we
have

(m + 10m)v(0+) − [mv1 + 10m(0)] = 0

or

v(0+) = mv1

11m
= 1

11
v1

Figure 4.6.1 Inelastic
collision.

m2

x

k
m1 v1

The equation of motion for the combined mass is 11mẍ + kx = 0. We can solve it for
t ≥ 0+ by using the initial conditions at t = 0+; namely, x(0+) = 0 and ẋ(0+) = v(0+). The
solution is

x(t) = v(0+)

ωn
sin ωnt = v1

11

√
11m

k
sin

√
k

11m
t

Note that it was unnecessary to determine the impulsive collision force. Note also that this force
did not change x initially; it changed only ẋ .



palm-38591 book December 17, 2008 12:4

4.6 Collisions and Impulse Response 207

m2

v2v1

m1

Before

m2

v4v3

m1

After

(a) (b)

Figure 4.6.2 Two colliding
masses.

Consider the two colliding masses shown in Figure 4.6.2. Part (a) shows the sit-
uation before collision, and part (b) shows the situation after collision. When the two
masses are treated as a single system, no external force is applied to the system, and
(4.6.1) shows that the momentum is conserved, so that

m1v1 + m2v2 = m1v3 + m2v4

or

m1(v1 − v3) = −m2(v2 − v4) (4.6.3)

If the collision is perfectly elastic, kinetic energy is conserved, so that

1

2
m1v

2
1 + 1

2
m2v

2
2 = 1

2
m1v

2
3 + 1

2
m2v

2
4

or
1

2
m1

(
v2

1 − v2
3

) = −1

2
m2

(
v2

2 − v2
4

)
(4.6.4)

Using the algebraic identities:

v2
1 − v2

3 = (v1 − v3)(v1 + v3)

v2
2 − v2

4 = (v2 − v4)(v2 + v4)

we can write (4.6.4) as

1

2
m1(v1 − v3)(v1 + v3) = −1

2
m2(v2 − v4)(v2 + v4) (4.6.5)

Divide (4.6.5) by (4.6.3) to obtain

v1 + v3 = v2 + v4 or v1 − v2 = v4 − v3 (4.6.6)

This relation says that in a perfectly elastic collision the relative velocity of the masses
changes sign but its magnitude remains the same.

The most common application is where we know v1 and mass m2 is initially
stationary, so that v2 = 0. In this case, we can solve (4.6.3) and (4.6.6) for the velocities
after collision as follows:

v3 = m1 − m2

m1 + m2
v1 v4 = 2m1

m1 + m2
v1 (4.6.7)

Perfectly Elastic Collision EXAMPLE 4.6.2

■ Problem
Consider again the system treated in Example 4.6.1, and shown again in Figure 4.6.3a. Sup-
pose now that the mass m1 = m moving with a speed v1 rebounds from the mass m2 = 10m
after striking it. Assume that the collision is perfectly elastic. Determine the expression for the
displacement x(t) after the collision.
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Figure 4.6.3 Perfectly elastic
collision.

(a) (b)

f(t) m2
k

m1m2

x

k
m1 v1

■ Solution
For a perfectly elastic collision, the velocity v3 of the mass m after the collision is given
by (4.6.7).

v3 = m1 − m2

m1 + m2
v1 = m − 10m

m + 10m
v1 = − 9

11
v1

Thus the change in the momentum of m is

m

(
− 9

11
v1

)
− mv1 =

∫ 0+

0
f (t) dt

Thus the linear impulse applied to the mass m during the collision is∫ 0+

0
f (t) dt = −20

11
mv1

From Newton’s law of action and reaction (Figure 4.6.3b), we see that the linear impulse applied
to the 10m mass is +20mv1/11, and thus its equation of motion is

10mẍ + kx = 20

11
mv1δ(t)

We can solve this equation for t > 0 using the initial conditions x(0) = 0 and ẋ(0) = 0. The
Laplace transform gives

(
10ms2 + k

)
X (s) = 20

11
mv1

X (s) = 20mv1/11

10ms2 + k
= 2v1

11

1

s2 + k/10m

Thus

x(t) = 2v1

11

√
10m

k
sin

√
k

10m
t

This gives ẋ(0+) = 2v1/11, which is identical to the solution for v4 from (4.6.7), as it should be.

4.7 MATLAB APPLICATIONS
We have seen how the residue function can be used to obtain the coefficients of
a partial-fraction expansion. In addition, with the conv function, which multiplies
polynomials, you can use MATLAB to perform some of the algebra to obtain a closed-
form expression for the response.

MATLAB has the step and impulse functions to compute the step and impulse
responses from the transfer functions. However, MATLAB does not have a function
for computing the free response from a transfer function model. We now show how to
use MATLAB to obtain the free response.
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Obtaining the Free Response with the step Function EXAMPLE 4.7.1

■ Problem
Use the MATLAB step function to obtain a plot of the free response of the following model,
where x(0) = 4 and ẋ(0) = 2.

5ẍ + 3ẋ + 10x = 0

■ Solution
Applying the Laplace transform gives

(5s2 + 3s + 10)X (s) = 20s + 22

or

X (s) = 20s + 22

5s2 + 3s + 10

If we multiply the numerator and denominator by s, we obtain

X (s) = 20s2 + 22s

5s2 + 3s + 10

1

s
= T (s)

1

s

Thus we may compute the free response by using the step function with the transfer function

T (s) = 20s2 + 22s

5s2 + 3s + 10

The MATLAB program is

sys = tf([20, 22, 0],[5, 3, 10]);

step(sys)

Determining the Free Response with MATLAB EXAMPLE 4.7.2

■ Problem
For the system shown in Figure 4.7.1, suppose that m1 = m2 = 1, c1 = 2, c2 = 3, k1 = 1, and
k2 = 4. a) Obtain the plot of the unit-step response of x2 for zero initial conditions. b) Use two
methods with MATLAB to obtain the free response for x1(t), for the initial conditions x1(0) = 3,
ẋ1(0) = 2, x2(0) = 1, and ẋ2(0) = 4.

■ Solution
The equations of motion are given by equations (1) and (2) of Example 4.4.5. With the given
parameter values, they become

ẍ1 + 5ẋ1 + 5x1 − 3ẋ2 − 4x2 = 0

ẍ2 + 3ẋ2 + 4x2 − 3ẋ1 − 4x1 = f (t)

Figure 4.7.1 A two-mass
system.

m2

k2

k1

m1

c2

f

x1

c1

x2Because we need to find the free response, we must now keep the initial conditions in the analysis.
So, transforming the equations with the given initial conditions gives

s2 X1(s) − sx1(0) − ẋ1(0) + 5[s X1(s) − x1(0)] + 5X1(s) − 3[s X2(s) − x2(0)] − 4X2(s) = 0

s2 X2(s) − sx2(0) − ẋ2(0) + 3[s X2(s) − x2(0)] + 4X2(s) − 3[s X1(s) − x1(0)] − 4X1(s) = F(s)
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Collecting terms results in

(s2 + 5s + 5)X1(s) − (3s + 4)X2(s) = x1(0)s + ẋ1(0) + 5x1(0) − 3x2(0) = I1(s) (1)

−(3s + 4)X1(s) + (s2 + 3s + 4)X2(s) = x2(0)s + ẋ2(0) + 3x2(0) − 3x1(0) = I2(s) + F(s) (2)

where the terms due to the initial conditions are denoted by I1(s) and I2(s).

I1(s) = x1(0)s + ẋ1(0) + 5x1(0) − 3x2(0)

I2(s) = x2(0)s + ẋ2(0) + 3x2(0) − 3x1(0)

Equations (1) and (2) are two algebraic equations in two unknowns. Their solution can be
obtained in several ways, but the most general method for our purposes is to solve them using
determinants (this is known as Cramer’s method ).

The determinant of the left-hand side of the equations (1) and (2) is

D(s) =
∣∣∣∣(s2 + 5s + 5) −(3s + 4)

−(3s + 4) (s2 + 3s + 4)

∣∣∣∣
= (s2 + 5s + 5)(s2 + 3s + 4) − (3s + 4)2

The solutions for X1(s) and X2(s) can be expressed as

X1(s) = D1(s)

D(s)
X2(s) = D2(s)

D(s)

where

D1(s) =
∣∣∣∣ I1(s) −(3s + 4)

I2(s) + F(s) (s2 + 3s + 4)

∣∣∣∣
= (s2 + 3s + 4)I1(s) + (3s + 4)I2(s) + (3s + 4)F(s)

D2(s) =
∣∣∣∣(s2 + 5s + 5) I1(s)

−(3s + 4) I2(s) + F(s)

∣∣∣∣
= (s2 + 5s + 5)I2(s) + (3s + 4)I1(s) + (s2 + 5s + 5)F(s)

a. The transter functions for the input f (t) are found by setting I1(s) = I2(s) = 0 in D1(s)
and D2(s):

X1(s)

F(s)
= D1(s)

D(s)
= 3s + 4

D(s)

X2(s)

F(s)
= D2(s)

D(s)
= s2 + 5s + 5

D(s)

The unit-step response for x2 is plotted with the following MATLAB program.

D = conv([1,5,5], [1,3,4])-conv([0,3,4], [0,3,4]);

x2 = tf([1,5,5],D);

step(x2)

b. Using the technique introduced in Example 4.7.1, we multiply the numerator of X1(s)
by s. The following MATLAB program performs the calculations. Note that the
multiplication by s is accomplished by appending a 0 to the polynomials used to compute
D1 (with F(s) = 0).

% Specify the initial conditions.

x10 = 3; x1d0 = 2; x20 = 1; x2d0 = 4;

% Form the initial-condition arrays.

I1 = [x10,x1d0+5*x10-3*x20]; I2 = [x20,x2d0+3*x20-3*x10];
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% Form the determinant D1.

D1 = conv([1,3,4,0],I1)+conv([0,3,4,0],I2);

% Form the determinant D.

D = conv([1,5,5],[1,3,4])-conv([0,3,4],[0,3,4]);

sys = tf(D1,D);

step(sys)

The first method gives the response plot but not the closed-form solution. The following
method gives the closed-form solution for the free response.

The characteristic roots can be found with the following MATLAB file.

% Find the roots.

D = conv([1,5,5],[1,3,4])-conv([0,3,4],[0,3,4]);

R = roots(D)

The roots are −5.6773, −1.3775, and −0.4726 ± 0.5368 j .
Note that if all the characteristic roots are distinct, the partial fraction expansion gives

the following solution form, even if the roots are complex.

x1(t) =
4∑

i=1

ri e
pi t

where the ri are the residues of the partial-fraction expansion and the pi are the poles (the
roots). So if the roots are all distinct, we can use the following MATLAB file to perform
the rest of the algebra.

% Specify the initial conditions.

x10 = 3; x1d0 = 2; x20 = 1; x2d0 = 4;

% Form the initial-condition vectors.

I1 = [x10,x1d0+5*x10-3*x20]; I2 = [x20,x2d0+3*x20-3*x10];

% Form the determinant D1.

D1 = conv([1,3,4],I1)+conv([0,3,4],I2);

% Compute the partial fraction expansion.

[r,p,K] = residue(D1,D);

% Use 5 time constants to estimate the simulation time.

tmax = floor(-5/max(real(p)));

t = (0:tmax/500:tmax);

% Evaluate the time functions.

x1 = real(r(1)*exp(p(1)*t)+r(2)*exp(p(2)*t)+...

r(3)*exp(p(3)*t)+r(4)*exp(p(4)*t));

plot(t,x1),xlabel('t'),ylabel('x 1')

Although in the expression for x1 the imaginary parts should cancel, giving a real result,
we use the real function because numerical round-off errors can produce a small
imaginary part. The plot is shown in Figure 4.7.2. We can use a similar approach to
plot x2(t).

If a closed-form expression for the free response is required, you can use the roots
(the poles) in the array p and the expansion coefficients (the residues) in the array r. If
the roots are complex, you can use the Euler identities e jx = cos x ± j sin x with the
expansion coefficients to obtain the solution, as shown in Section 3.7 in Chapter 3. Here
the residues corresponding in order to the four roots given already are −0.3554, 3.7527,
and −0.1987 ± 4.6238 j .
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Figure 4.7.2 Plot of the free
response for Example 4.7.2.
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4.8 CHAPTER REVIEW
This chapter showed how to model elements containing elasticity or damping as ideal
(massless) spring or ideal damper elements. Spring elements exert a resisting force that
is a function of the relative displacement (compression or extension) of the element’s
endpoints. A damper element exerts a force that depends on the relative velocity of
its endpoints. Through many examples we also saw how to obtain the equations of
motion of systems containing spring and damper elements. We extended energy-based
methods and the concepts of equivalent mass and equivalent inertia to include spring
elements.

In general, a spring element exerts a restoring force that causes the system to
oscillate, while a damper element acts to prevent oscillations. We analyzed this behavior
by solving the equations of motion using the analysis techniques developed in Chapter 3.
These techniques can be applied to models of single-mass systems, which can be
reduced to a single second-order equation, or to models of multimass systems that may
consist of coupled second-order equations.

The algebra and computations required to analyze system response are naturally
more difficult for multimass systems, but MATLAB can assist in the analysis. It can be
used to perform some of the algebra required to obtain transfer functions and to find
the response.

Now that you have finished this chapter, you should be able to

1. Model elements containing elasticity as ideal (massless) spring elements.
2. Model elements containing damping as ideal (massless) damper elements.
3. Obtain equations of motion for systems having spring and damper elements.
4. Apply energy methods to obtain equations of motion.
5. Obtain the free and forced response of mass-spring-damper systems.
6. Utilize MATLAB to assist in the response analysis.



palm-38591 book December 17, 2008 12:4

Problems 213

REFERENCES
[Rayleigh, 1945] J. W. S. Rayleigh, The Theory of Sound, Vols. 1 and 2, Dover Publications,

New York, 1945.
[Roark, 2001] R. J. Roark, R. G. Budynas, and W. C. Young, Roark’s Formulas for Stress and

Strain, 7th ed., McGraw-Hill, New York, 2001.

PROBLEMS
Section 4.1 Spring Elements

4.1 Compute the translational spring constant of a particular steel helical coil
spring, of the type used in automotive suspensions. The coil has six turns. The
coil diameter is 4 in., and the wire diameter is 0.5 in. For the shear modulus,
use G = 1.7 × 109 lb/ft2.

4.2 In the spring arrangement shown in Figure P4.2, the displacement x is caused
by the applied force f . Assuming the system is in static equilibrium, sketch the
plot of f versus x . Determine the equivalent spring constant ke for this
arrangement, where f = kex .

4.3 In the arrangement shown in Figure P4.3, a cable is attached to the end of a
cantilever beam. We will model the cable as a rod. Denote the translational
spring constant of the beam by kb, and the translational spring constant of the
cable by kc. The displacement x is caused by the applied force f .
a. Are the two springs in series or in parallel?
b. What is the equivalent spring constant for this arrangement?

Figure P4.2

f

x

k1

k1

k2

Figure P4.3

f

x

Figure P4.4

f

�

L1 L3

L2

k1

k2x

4.4 In the spring arrangement shown in Figure P4.4, the displacement x is caused
by the applied force f . Assuming the system is in static equilibrium when
x = 0 and that the angle θ is small, determine the equivalent spring constant
ke for this arrangement, where f = kex .

4.5 The two stepped solid cylinders in Figure P4.5 consist of the same material and
have an axial force f applied to them. Determine the equivalent translational
spring constant for this arrangement. (Hint: Are the two springs in series or in
parallel?)

4.6 A table with four identical legs supports a vertical force. The solid cylindrical
legs are made of metal with E = 2 × 1011 N/m2. The legs are 1 m in length
and 0.03 m in diameter. Compute the equivalent spring constant due to the
legs, assuming the table top is rigid.
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Figure P4.5
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Figure P4.7
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4.7 The beam shown in Figure P4.7 has been stiffened by the addition of a spring
support. The steel beam is 3 ft long, 1 in thick, and 1 ft wide, and its mass is
3.8 slugs. The mass m is 40 slugs. Neglecting the mass of the beam,
a. Compute the spring constant k necessary to reduce the static deflection to

one-half its original value before the spring k was added.
b. Compute the natural frequency ωn of the combined system.

4.8 Determine the equivalent spring constant of the arrangement shown
in Figure P4.8. All the springs have the same spring constant k.

4.9 Compute the equivalent torsional spring constant of the stepped shaft
arrangement shown in Figure P4.9. For the shaft material, G = 8 × 1010 N/m2.

4.10 Plot the spring force felt by the mass shown in Figure P4.10 as a function of
the displacement x . When x = 0, spring 1 is at its free length. Spring 2 is at its
free length in the configuration shown.

Figure P4.9

D1
D1� 0.4 m
d1 � 0.3 m
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Figure P4.10
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Section 4.2 Modeling Mass-Spring Systems

Note: see also the problems for Section 4.5: Additional Modeling Examples.
4.11 For each of the systems shown in Figure P4.11, the input is the force f and

the outputs are the displacements x1 and x2 of the masses. The equilibrium
positions with f = 0 correspond to x1 = x2 = 0. Neglect any friction between
the masses and the surface. Derive the equations of motion of the systems.

4.12 The mass m in Figure P4.12 is attached to a rigid lever having negligible mass
and negligible friction in the pivot. The input is the displacement x . When x
and θ are zero, the springs are at their free length. Assuming that θ is small,
derive the equation of motion for θ with x as the input.

4.13 In the pulley system shown in Figure P4.13, the input is the applied force f ,
and the output is the displacement x . Assume the pulley masses are negligible
and derive the equation of motion.

4.14 Figure P4.14 illustrates a cylindrical buoy floating in water with a mass
density ρ. Assume that the center of mass of the buoy is deep enough so that
the buoy motion is primarily vertical. The buoy mass is m and the diameter
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(c)
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is D. Archimedes’ principle states that the buoyancy force acting on a floating
object equals the weight of the liquid displaced by the object. (a) Derive the
equation of motion in terms of the variable x , which is the displacement from
the equilibrium position. (b) Obtain the expression for the buoy’s natural
frequency. (c) Compute the period of oscillation if the buoy diameter is 2 ft
and the buoy weighs 1000 lb. Take the mass density of fresh water to be
ρ = 1.94 slug/ft3.

4.15 Figure P4.15 shows the cross-sectional view of a ship undergoing rolling motion.
Archimedes’ principle states that the buoyancy force B acting on a floating
object equals the weight of the liquid displaced by the object. The metacenter
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M is the intersection point of the line of action of the buoyancy force and the
ship’s centerline. The distance h of M from the mass center G is called the
metacentric height. (a) Obtain the equation of motion describing the ship’s
rolling motion in terms of the angle θ . (b) The given parameters are the ship’s
weight W , its metacentric height h, and its moment of inertia I about the center
of gravity. Obtain an expression for the natural frequency of the rolling motion.

4.16 In the system shown in Figure P4.16, the input is the angular displacement φ

of the end of the shaft, and the output is the angular displacement θ of the
inertia I . The shafts have torsional stiffnesses k1 and k2. The equilibrium
position corresponds to φ = θ = 0. Derive the equation of motion and find the
transfer function �(s)/(s).

4.17 In Figure P4.17, assume that the cylinder rolls without slipping. The spring is
at its free length when x and y are zero. (a) Derive the equation of motion in
terms of x , with y(t) as the input. (b) Suppose that m = 10 kg, R = 0.3 m,
k = 1000 N/m, and that y(t) is a unit-step function. Solve for x(t) if
x(0) = ẋ(0) = 0.

4.18 In Figure P4.18 when x1 = x2 = 0 the springs are at their free lengths. Derive
the equations of motion.

Figure P4.16
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x

y

R
m

k

�

Figure P4.18
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4.19 In Figure P4.19 model the three shafts as massless torsional springs. When
θ1 = θ2 = 0 the springs are at their free lengths. Derive the equations of
motion with the torque T2 as the input.

4.20 In Figure P4.20 when θ1 = θ2 = 0 the spring is at its free length. Derive the
equations of motion, assuming small angles.

Figure P4.19
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4.21 Consider the torsion-bar suspension shown in Figure 4.1.6. Assume that the
torsion bar is a steel rod with a length of 4 ft and diameter 1.5 in. The wheel
weighs 40 lb and the suspension arm is 2 ft long. Neglect the masses of the
torsion bar and the suspension arm, and calculate the natural frequency of the
system. Use G = 1.7 × 109 lb/ft2.

Section 4.3 Energy Methods

4.22 For Figure P4.22, assume that the cylinder rolls without slipping and use
conservation of energy to derive the equation of motion in terms of x .

4.23 For Figure P4.23, the equilibrium position corresponds to x = 0. Neglect the
masses of the pulleys and assume that the cable is inextensible, and use
conservation of energy to derive the equation of motion in terms of x .

4.24 For Figure P4.24, the equilibrium position corresponds to x = 0. Neglect the
masses of the pulleys and assume that the cable is inextensible, and use
conservation of energy to derive the equation of motion in terms of x .

4.25 Use the Rayleigh method to obtain an expression for the natural frequency of
the system shown in Figure P4.25. The equilibrium position corresponds to
x = 0.

4.26 For Figure P4.26, assume that the cylinder rolls without slipping and use the
Rayleigh method to obtain an expression for the natural frequency of the
system. The equilibrium position corresponds to x = 0.

4.27 Use the Rayleigh method to obtain an expression for the natural frequency of
the system shown in Figure P4.27. The equilibrium position corresponds to
x = 0.
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Figure P4.28
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4.28 Figure P4.28 shows an engine valve driven by an overhead camshaft. The
rocker arm pivots about the fixed point O and the inertia of the arm about this
point is Ir . The valve mass is mv and the spring mass is ms ; its spring constant
is ks . Let fc denote the force exerted on the rocker arm by the camshaft.
Assuming that θ(t) and its time derivatives are known (from the cam profile
and the cam speed), derive a dynamic model that can be used to solve for the
cam force fc(t). (This information is needed to predict the amount of wear on
the cam surface.)

4.29 The vibration of a motor mounted on the end of a cantilever beam can be
modeled as a mass-spring system. The motor weighs 30 lb, and the beam
weighs 7 lb. When the motor is placed on the beam, it causes an additional
static deflection of 0.8 in. Find the equivalent mass m and equivalent spring
constant k.

4.30 The vibration of a motor mounted in the middle of a fixed-end beam can be
modeled as a mass-spring system. The motor mass is 40 kg, and the beam
mass is 13 kg. When the motor is placed on the beam, it causes an additional
static deflection of 3 mm. Find the equivalent mass m and equivalent spring
constant k.

4.31 The static deflection of a cantilever beam is described by

xy = P

6E IA
y2(3L − y)

where P is the load applied at the end of the beam, and xy is the vertical
deflection at a point a distance y from the support (Figure P4.31). Obtain an
expression for an equivalent mass located at the end of the beam.

4.32 Figure P4.32 shows a winch supported by a cantilever beam at the stern of a
ship. The mass of the winch is mw , the mass of the beam plus winch bracket
and motor is mb. The object hoisted by the winch has a mass mh ; the wire rope
mass mr is assumed to be negligible compared to the other masses. Find the
equation of motion for the vertical motion x1 of the winch: (a) assuming that
the rope does not stretch and (b) assuming that the rope stretches and has a
spring constant kr .
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Figure P4.32

Section 4.4 Damping Elements

4.33 A 50-kg block is placed on an inclined plane whose angle with the horizontal
is 25◦. The viscous friction coefficient between the block and the plane is
c = 6 N · s/m. (a) Derive the equation of motion. (b) Solve the equation of
motion for the speed v(t) of the block, assuming that the block is initially
given a speed of 5 m/s. (c) Find the steady-state speed of the block and
estimate the time required to reach that speed. (d) Discuss the effect of the
initial velocity of the steady-state speed.

4.34 A certain mass-spring-damper system has the following equation of motion.

40ẍ + cẋ + 1200x = f (t)

Suppose that the initial conditions are zero and that the applied force f (t) is a
step function of magnitude 5000. Solve for x(t) for the following two cases:
(a) c = 680 and (b) c = 400.

4.35 For each of the systems shown in Figure P4.35, the input is the force f and
the outputs are the displacements x1 and x2 of the masses. The equilibrium
positions with f = 0 correspond to x1 = x2 = 0. Neglect any friction between
the masses and the surface. Derive the equations of motion of the systems.

kc

x1 x2 x1 x2

x1 x2 x1 x2

m2m1 f

(a)

k
m2m1

c
f

(b)

k2

c

m2 fm1

(c)

c2

k2

c1

k1k1 m1 m2 f

(d)

Figure P4.35

4.36 In Figure P4.36 a motor supplies a torque T to turn a drum of radius R and
inertia I about its axis of rotation. The rotating drum lifts a mass m by means
of a cable that wraps around the drum. The drum’s speed is ω. Viscous
torsional damping cT exists in the drum shaft. Neglect the mass of the cable.
(a) Obtain the equation of motion with the torque T as the input and the vertical
speed v of the mass as the output. (b) Suppose that m = 40 kg, R = 0.2 m,
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I = 0.8 kg · m2, and cT = 0.1 N · m · s. Find the speed v(t) if the system is
initially at rest and the torque T is a step function of magnitude 300 N · m.

Figure P4.36
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g

v
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I

4.37 Derive the equation of motion for the lever system shown in Figure P4.37, with
the force f as the input and the angle θ as the output. The position θ = 0
corresponds to the equilibrium position when f = 0. The lever has an inertia I
about the pivot. Assume small displacements.

4.38 In the system shown in Figure P4.38, the input is the displacement y and the
output is the displacement x of the mass m. The equilibrium position
corresponds to x = y = 0. Neglect any friction between the mass and the
surface. Derive the equation of motion and find the transfer function
X (s)/Y (s).
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4.39 Figure P4.39a shows a Houdaille damper, which is a device attached to an
engine crankshaft to reduce vibrations. The damper has an inertia Id that is free
to rotate within an enclosure filled with viscous fluid. The inertia Ip is the
inertia of the fan-belt pulley. Modeling the crankshaft as a torsional spring kT ,
the damper system can be modeled as shown in part (b) of the figure. Derive
the equation of motion with the angular displacements θp and θd as the outputs
and the crankshaft angular displacement φ as the input.

Figure P4.39
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Section 4.5 Additional Modeling Examples

4.40 The mass m in Figure P4.40 is attached to a rigid rod having an inertia I about
the pivot and negligible pivot friction. The input is the displacement z. When
z = θ = 0, the spring is at its free length. Assuming that θ is small, derive the
equation of motion for θ with z as the input.
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4.41 In the system shown in Figure P4.41, the input is the force f and the output is
the displacement xA of point A. When x = xA the spring is at its free length.
Derive the equation of motion.

Figure P4.41

x xA

k A c
m

f

Figure P4.42
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4.42 In the system shown in Figure P4.42, the input is the displacement y and the
output is the displacement x . When x = y = 0 the springs are at their free
lengths. Derive the equation of motion.

4.43 Figure P4.43 shows a rack-and-pinion gear in which a damping force and a
spring force act against the rack. Develop the equivalent rotational model of
the system with the applied torque T as the input variable and the angular
displacement θ is the output variable. Neglect any twist in the shaft.

Figure P4.43
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4.44 Figure P4.44 shows a drive train with a spur-gear pair. The first shaft turns
N times faster than the second shaft. Develop a model of the system including
the elasticity of the second shaft. Assume the first shaft is rigid, and neglect the
gear and shaft masses. The input is the applied torque T1. The outputs are the
angles θ1 and θ3.

4.45 Assuming that θ is small, derive the equations of motion of the systems
shown in parts (a) and (b) of Figure P4.45. When θ = 0 the systems are in
equilibrium. Are the systems stable, neutrally stable, or unstable?

4.46 Assuming that θ is small, derive the equation of motion of the pendulum
shown in Figure P4.46. The pendulum is in equilibrium when θ = 0. Is the
system stable, neutrally stable, or unstable?

4.47 Assuming that θ is small, derive the equation of motion of the pendulum
shown in Figure P4.47. The input is y(t) and the output is θ . The equilibrium
corresponds to y = θ = 0, when the springs are at their free lengths. The rod
inertia about the pivot is I .

4.48 Figure P4.48 shows a quarter-car model that includes the mass of the seats
(including passengers). The constants k3 and c3 represent the stiffness and
damping in the seat supports. Derive the equations of motion of this system.
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The input is the road displacement y(t). The displacements are measured from
equilibrium.

Section 4.6 Collisions and Impulse Response

4.49 Suppose a mass m moving with a speed v1 becomes embedded in mass m2

after striking it (Figure 4.6.1). Suppose m2 = 5m. Determine the expression
for the displacement x(t) after the collision.

4.50 Consider the system shown in Figure 4.6.3. Suppose that the mass m moving
with a speed v1 rebounds from the mass m2 = 5m after striking it. Assume that
the collision is perfectly elastic. Determine the expression for the displacement
x(t) after the collision.

Section 4.7 MATLAB Applications

4.51 (a) Obtain the equations of motion of the system shown in Figure P4.51.
The masses are m1 = 20 kg and m2 = 60 kg. The spring constants are
k1 = 3 × 104 N/m and k2 = 6 × 104 N/m. (b) Obtain the transfer functions
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Figure P4.51
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X1(s)/F(s) and X2(s)/F(s). (c) Obtain the unit-step response of x1 for
zero initial conditions.

4.52 (a) Obtain the equations of motion of the system shown in Figure P4.19.
(b) Suppose the inertias are I1 = I and I2 = 2I and the torsional spring
constants are k1 = k2 = k3 = k. Obtain the transfer functions �1(s)/T2(s) and
�2(s)/T2(s) in terms of I and k. (c) Suppose that I = 10 and k = 60. Obtain
the unit-impulse response of θ1 for zero initial conditions.

4.53 Refer to part (a) of Problem 4.51. Use MATLAB to obtain the transfer
functions X1(s)/F(s) and X2(s)/F(s). Compare your answers with those
found in part (b) of Problem 4.51.

4.54 Refer to Problem 4.52. Use MATLAB to obtain the transfer functions �1(s)/
T2(s) and �2(s)/T2(s) for the values I1 = 10, I2 = 20, and k1 = k2 = k3 = 60.
Compare your answers with those found in part (b) of Problem 4.52.

4.55 (a) Obtain the equations of motion of the system shown in Figure P4.20.
Assume small angles. The spring is at its free length when θ1 = θ2 = 0.
(b) For the values m1 = 1 kg, m2 = 4 kg, k = 10 N/m, L1 = 2 m, and
L2 = 5 m, use MATLAB to plot the free response of θ1 if θ1(0) = 0.1 rad
and θ̇1(0) = θ̇2(0) = θ2(0) = 0.

4.56 (a) Obtain the equations of motion of the system shown in Figure P4.56.
(b) Suppose that the masses are m1 = 1 kg, m2 = 2 kg, and the spring constants
are k1 = k2 = k3 = 1.6 × 104 N/m. Use MATLAB to obtain the plot of the free
response of x1. Use x1(0) = 0.1 m, x2(0) = ẋ1(0) = ẋ2(0) = 0.
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be
able to

1. Convert a differential equation model into
state-variable form.

2. Express a linear state-variable model in the standard
vector-matrix form.

3. Apply the ss, ssdata, tfdata, char, eig, and
initial functions to analyze linear models.

4. Use the MATLAB ode functions to solve
differential equations.

5. Use Simulink to create simulations of dynamic
models.

D ynamic models derived from basic physical principles can appear in several
forms:

1. As a single equation (which is called the reduced form),
2. As a set of coupled first-order equations (which is called the Cauchy or state-

variable form), and
3. As a set of coupled higher-order equations.

In Chapters 3 and 4 we analyzed the response of a single equation, such as
mẍ + cẋ + kx = f (t), and sets of coupled first-order equations, such as ẋ = −5x +7y,
ẏ = 3x − 9y + f (t), by first obtaining the transfer functions and then using the transfer
functions to obtain a single, but higher-order equation. We also obtained the response
of models that consist of a set of coupled higher-order equations.

224
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Each form has its own advantages and disadvantages. We can convert one form
into another, with differing degrees of difficulty. In addition, if the model is linear, we
can convert any of these forms into the transfer function form or a vector-matrix form,
each of which has its own advantages.

In Section 5.1, we introduce the state-variable model form. An advantage of the
state-variable form is that it enables us to express a linear model of any order in a
standard and compact way that is useful for analysis and software applications.

MATLAB has a number of useful functions that are based on the state-variable
model form. These functions are covered in Sections 5.2 and 5.3. Section 5.2 deals
with linear models. While the analysis methods of the previous chapters are limited to
linear models, the state-variable form is also useful for solving nonlinear equations. It
is not always possible or convenient to obtain the closed-form solution of a differen-
tial equation, and this is usually true for nonlinear equations. Section 5.3 introduces
MATLAB functions that are useful for solving nonlinear differential equations.

Section 5.4 introduces Simulink, which provides a graphical user interface for
solving differential equations. It is especially useful for solving problems containing
nonlinear features such as Coulomb friction, saturation, and dead zones, because these
features are very difficult to program with traditional programming methods. In addi-
tion, its graphical interface might be preferred by some users to the more traditional
programming methods offered by the MATLAB solvers covered in Sections 5.2 and
5.3. In Section 5.4 we begin with solving linear equations so that we can check the
results with the analytical solution. Section 5.5 covers Simulink methods for nonlinear
equations. ■

5.1 STATE-VARIABLE MODELS
Models that consist of coupled first-order differential equations are said to be in state-
variable form. This form, which is also called the Cauchy form, has an advantage
over the reduced form, which consists of a single, higher-order equation, because it
allows a linear model to be expressed in a standard and compact way that is useful
for analysis and for software applications. This representation makes use of vector and
matrix notation. In this section, we will show how to obtain a model in state-variable
form and how to express state-variable models in vector-matrix notation. In Section 5.2
we show how to use this notation with MATLAB.

Consider the second-order equation

5ÿ + 7ẏ + 4y = f (t)

Solve it for the highest derivative:

ÿ = 1

5
f (t) − 4

5
y − 7

5
ẏ

Now define two new variables, x1 and x2, as follows: x1 = y and x2 = ẏ. This implies
that ẋ1 = x2 and

ẋ2 = 1

5
f (t) − 4

5
x1 − 7

5
x2

These two equations, called the state equations, are the state-variable form of the model,
and the variables x1 and x2 are called the state variables.
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The general mass-spring-damper model has the following form:

mẍ + cẋ + kx = f (5.1.1)

If we define new variables x1 and x2 such that

x1 = x x2 = ẋ

these imply that

ẋ1 = x2 (5.1.2)

Then we can write the model (5.1.1) as: mẋ2 + cx2 + kx1 = f . Next solve for ẋ2:

ẋ2 = 1

m
( f − kx1 − cx2) (5.1.3)

Equations (5.1.2) and (5.1.3) constitute a state-variable model corresponding to the
reduced model (5.1.1). The variables x1 and x2 are the state variables.

If (5.1.1) represents a mass-spring-damper system, the state-variable x1 describes
the system’s potential energy kx2

1/2, which is due to the spring, and the state-variable
x2 describes the system’s kinetic energy mx2

2/2, which is due to the mass. Although
here we have derived the state variable model from the reduced form, state-variable
models can be derived from basic physical principles. Choosing as state variables those
variables that describe the types of energy in the system sometimes helps to derive
the model (note that k and m are also needed to describe the energies, but these are
parameters, not variables).

The choice of state variables is not unique, but the choice must result in a set of first-
order differential equations. For example, we could have chosen the state variables to
be z1 = x and z2 = mẋ , which is the system’s momentum. In this case the state-variable
model would be

ż1 = 1

m
z2

ż2 = f − c

m
z2 − kz1

EXAMPLE 5.1.1 State-Variable Model of a Two-Mass System

Figure 5.1.1 A two-mass
system.

m2

k2

k1

m1

c2

x1

c1

x2

f

■ Problem
Consider the two-mass system discussed in Example 4.4.5 of Chapter 4 (and shown again
in Figure 5.1.1). Suppose the parameter values are m1 = 5, m2 = 3, c1 = 4, c2 = 8, k1 = 1, and
k2 = 4. The equations of motion are

5ẍ1 + 12ẋ1 + 5x1 − 8ẋ2 − 4x2 = 0 (1)

3ẍ2 + 8ẋ2 + 4x2 − 8ẋ1 − 4x1 = f (t) (2)

Put these equations into state-variable form.

■ Solution
Using the system’s potential and kinetic energies as a guide, we see that the displacements x1 and
x2 describe the system’s potential energy and that the velocities ẋ1 and ẋ2 describe the system’s
kinetic energy. That is

PE = 1

2
k1x2

1 + 1

2
k2(x1 − x2)

2
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and

KE = 1

2
m1 ẋ2

1 + 1

2
m2 ẋ2

2

This indicates that we need four state variables. (Another way to see that we need four variables
is to note that the model consists of two coupled second-order equations, and thus is effectively
a fourth-order model.) Thus, we can choose the state variables z1, z2, z3, and z4 to be

z1 = x1 z2 = ẋ1 z3 = x2 z4 = ẋ2 (3)

These definitions imply that ż1 = z2 and ż3 = z4, which are two of the state equations. The
remaining two equations can be found by solving equations (1) and (2) for ẍ1 and ẍ2, noting
that ẍ1 = ż2 and ẍ2 = ż4, and using the substitutions given by equation (3).

ż2 = 1

5
(−12z2 − 5z1 + 8z4 + 4z3)

ż4 = 1

3
[−8z4 − 4z3 + 8z2 + 4z1 + f (t)]

Note that the left-hand sides of the state equations must contain only the first-order derivative
of each state variable. This is why we divided by 5 and 3, respectively. Note also that the right-
hand sides must not contain any derivatives of the state variables. For example, we should not use
the substitution ż1 for ẋ1, but rather should substitute z2 for ẋ1. Failure to observe this restriction
is a common mistake.

Now list the four state equations in ascending order according to their left-hand sides, after
rearranging the right-hand sides so that the state variables appear in ascending order from left
to right.

ż1 = z2 (4)

ż2 = 1

5
(−5z1 − 12z2 + 4z3 + 8z4) (5)

ż3 = z4 (6)

ż4 = 1

3
[4z1 + 8z2 − 4z3 − 8z4 + f (t)] (7)

These are the state equations in standard form.
Note that because the potential energy is a function of the difference x1 − x2, another

possible choice of state variables is z1 = x1, z2 = ẋ1, z3 = x1 − x2, and z4 = ẋ2.

VECTOR-MATRIX FORM OF STATE-VARIABLE MODELS

Vector-matrix notation enables us to represent multiple equations as a single matrix
equation. For example, consider the following set of linear algebraic equations.

2x1 + 9x2 = 5 (5.1.4)

3x1 − 4x2 = 7 (5.1.5)

The term matrix refers to an array with more than one column and more than one
row. A column vector is an array having only one column. A row vector has only one
row. A matrix is an arrangement of numbers and is not the same as a determinant,
which can be reduced to a single number. Multiplication of a matrix having two rows
and two columns (a (2×2) matrix) by a column vector having two rows and one column
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(a (2 × 1) vector) is defined as follows:[
a11 a12

a21 a22

] [
x1

x2

]
=

[
a11x1 + a12x2

a21x1 + a22x2

]
(5.1.6)

This definition is easily extended to matrices having more than two rows or two
columns. In general, the result of multiplying an (n × n) matrix by an (n × 1) vector is
an (n × 1) vector. This definition of vector-matrix multiplication requires that the matrix
have as many columns as the vector has rows. The order of the multiplication cannot
be reversed (vector-matrix multiplication does not have the commutative property).

Two vectors are equal if all their respective elements are equal. Thus we can
represent the set (5.1.4) and (5.1.5) as follows:[

2 9
3 −4

] [
x1

x2

]
=

[
5
7

]
(5.1.7)

We usually represent matrices and vectors in boldface type, with matrices usually
in upper case letters and vectors in lowercase, but this is not required. Thus we can
represent the set (5.1.7) in the following compact form.

Ax = b (5.1.8)

where we have defined the following matrices and vectors:

A =
[

2 9
3 −4

]
x =

[
x1

x2

]
b =

[
5
7

]

The matrix A corresponds in an ordered fashion to the coefficients of x1 and x2 in
(5.1.4) and (5.1.5). Note that the first row in A consists of the coefficients of x1 and
x2 on the left-hand side of (5.1.4), and the second row contains the coefficients on the
left-hand side of (5.1.5). The vector x contains the variables x1 and x2, and the vector b
contains the right-hand sides of (5.1.4) and (5.1.5).

EXAMPLE 5.1.2 Vector-Matrix Form of a Single-Mass Model

■ Problem
Express the mass-spring-damper model (5.1.2) and (5.1.3) as a single vector-matrix equation.
These equations are

ẋ1 = x2

ẋ2 = 1

m
f (t) − k

m
x1 − c

m
x2

■ Solution
The equations can be written as one equation as follows:

[
ẋ1

ẋ2

]
=

⎡
⎣ 0 1

− k

m
− c

m

⎤
⎦[

x1

x2

]
+

⎡
⎣ 0

1

m

⎤
⎦ f (t)

In compact form this is

ẋ = Ax + B f (t)
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where

A =
⎡
⎣ 0 1

− k

m
− c

m

⎤
⎦ B =

⎡
⎣ 0

1

m

⎤
⎦ x =

[
x1

x2

]

Vector-Matrix Form of the Two-Mass Model EXAMPLE 5.1.3

■ Problem
Express the state-variable model of Example 5.1.1 in vector-matrix form. The model is

ż1 = z2

ż2 = 1

5
(−5z1 − 12z2 + 4z3 + 8z4)

ż3 = z4

ż4 = 1

3
[4z1 + 8z2 − 4z3 − 8z4 + f (t)]

■ Solution
In vector-matrix form these equations are

ż = Az + B f (t)

where

A =

⎡
⎢⎢⎣

0 1 0 0
−1 − 12

5
4
5

8
5

0 0 0 1
4
3

8
3 − 4

3 − 8
3

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

0
0
0
1
3

⎤
⎥⎥⎦

and

z =

⎡
⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎦

STANDARD FORM OF THE STATE EQUATION

We may use any symbols we choose for the state variables and the input function,
although the common choice is xi for the state variables and ui for the input functions.
The standard vector-matrix form of the state equations, where the number of state
variables is n and the number of inputs is m, is

ẋ = Ax + Bu (5.1.9)

where the vectors x and u are column vectors containing the state variables and the
inputs, if any. The dimensions are as follows:

■ The state vector x is a column vector having n rows.
■ The system matrix A is a square matrix having n rows and n columns.
■ The input vector u is a column vector having m rows.
■ The control or input matrix B has n rows and m columns.
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In our examples thus far there has been only one input, and for such cases the input
vector u reduces to a scalar u. The standard form, however, allows for more than one
input function. Such would be the case in the two-mass model if external forces f1 and
f2 are applied to the masses.

THE OUTPUT EQUATION

Some software packages and some design methods require you to define an output
vector, usually denoted by y. The output vector contains the variables that are of interest
for the particular problem at hand. These variables are not necessarily the state variables,
but might be some combination of the state variables and the inputs. For example, in
the mass-spring model, we might be interested in the total force f − kx − cẋ acting on
the mass, and in the momentum mẋ . In this case, the output vector has two elements.
If the state variables are x1 = x and x2 = ẋ , the output vector is

y =
[

y1

y2

]
=

[
f − kx − cẋ

mẋ

]
=

[
f − kx1 − cx2

mx2

]
or

y =
[

y1

y2

]
=

[−k −c
0 m

] [
x1

x2

]
+

[
1
0

]
f = Cx + D f

where

C =
[−k −c

0 m

]
and

D =
[

1
0

]
This is an example of the general form: y = Cx + Du.

The standard vector-matrix form of the output equation, where the number of
outputs is p, the number of state variables is n, and the number of inputs is m, is

y = Cx + Du (5.1.10)

where the vector y contains the output variables. The dimensions are as follows:

■ The output vector y is a column vector having p rows.
■ The state output matrix C has p rows and n columns.
■ The control output matrix D has p rows and m columns.

The matrices C and D can always be found whenever the chosen output vector y is
a linear combination of the state variables and the inputs. However, if the output is a
nonlinear function, then the standard form (5.1.10) does not apply. This would be the
case, for example, if the output is chosen to be the system’s kinetic energy: KE = mx2

2/2.

EXAMPLE 5.1.4 The Output Equation for a Two-Mass Model

■ Problem
Consider the two-mass model of Example 5.1.1.

a) Suppose the outputs are x1 and x2. Determine the output matrices C and D. b) Suppose
the outputs are (x2 − x1), ẋ2, and f . Determine the output matrices C and D.
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■ Solution
a. In terms of the z vector, z1 = x1 and z3 = x2. We can express the output vector y as

follows.

y =
[

z1

z3

]
=

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ f

Thus

C =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ D =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

b. Here the outputs are y1 = x2 − x1 = z3 − z1, y2 = ẋ2 = z4, and y3 = f . Thus we can
express the output vector as follows:

y =
⎡
⎣ z3 − z1

z4

f

⎤
⎦ =

⎡
⎣−1 0 1 0

0 0 0 1
0 0 0 0

⎤
⎦

⎡
⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎦ +

⎡
⎣ 0

0
1

⎤
⎦ f

Thus

C =
⎡
⎣−1 0 1 0

0 0 0 1
0 0 0 0

⎤
⎦ D =

⎡
⎣ 0

0
1

⎤
⎦

MODEL FORMS HAVING NUMERATOR DYNAMICS

Note that if you only need to obtain the free response, then the presence of input
derivatives or numerator dynamics in the model is irrelevant. For example, the free
response of the model

5
d3 y

dt3
+ 3

d2 y

dt2
+ 7

dy

dt
+ 6y = 4

d f

dt
+ 9 f (t)

is identical to the free response of the model

5
d3 y

dt3
+ 3

d2 y

dt2
+ 7

dy

dt
+ 6y = 0

which does not have any inputs. A state-variable model for this equation is easily found
to be

x1 = y x2 = ẏ x3 = ÿ

ẋ1 = x2 ẋ2 = x3 ẋ3 = − 6
5 x1 − 7

5 x2 − 3
5 x3

The free response of this model can be easily found with the MATLAB initial
function to be introduced in the next section.

For some applications you need to obtain a state-variable model in the standard
form. However, in the standard state-variable form ẋ = Ax + Bu there is no derivative
of the input u. When the model has numerator dynamics or input derivatives, the
state variables are not so easy to identify. When there are no numerator dynamics you
can always obtain a state-variable model in standard form from a transfer-function
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or reduced-form model whose dependent variable is x by defining x1 = x , x2 = ẋ ,
x3 = ẍ , and so forth. This was the procedure followed previously. Note that the initial
conditions x1(0), x2(0), and x3(0) are easily obtained from the given conditions x(0),
ẋ(0), and ẍ(0); that is, x1(0) = x(0), x2(0) = ẋ(0), and x3(0) = ẍ(0). However, when
numerator dynamics are present, a different technique must be used, and the initial
conditions are not as easily related to the state variables.

We now give two examples of how to obtain a state-variable model when numerator
dynamics exists.

EXAMPLE 5.1.5 Numerator Dynamics in a First-Order System

■ Problem
Consider the transfer function model

Z(s)

U (s)
= 5s + 3

s + 2
(1)

This corresponds to the equation

ż + 2z = 5u̇ + 3u (2)

Note that this equation is not in the standard form ż = Az + Bu because of the input derivative u̇.
Demonstrate two ways of converting this model to a state-variable model in standard form.

■ Solution
a. One way of obtaining the state-variable model is to divide the numerator and denominator

of equation (1) by s.

Z(s)

U (s)
= 5 + 3/s

1 + 2/s
(3)

The objective is to obtain a 1 in the denominator, which is then used to isolate Z(s) as
follows:

Z(s) = −2

s
Z(s) + 5U (s) + 3

s
U (s)

= 1

s
[3U (s) − 2Z(s)] + 5U (s)

The term within square brackets multiplying 1/s is the input to an integrator, and the
integrator’s output can be selected as a state-variable x . Thus,

Z(s) = X (s) + 5U (s)

where

X (s) = 1

s
[3U (s) − 2Z(s)] = 1

s
{3U (s) − 2 [X (s) + 5U (s)]}

= 1

s
[−2X (s) − 7U (s)]

This gives

ẋ = −2x − 7u (4)

with the output equation

z = x + 5u (5)
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This fits the standard form (5.1.9) and (5.1.10), with A = −2, B = −7, y = z, C = 1, and
D = 5.

Presumably we are given the initial condition z(0), but to solve equation (4) we need
x(0). This can be obtained by solving equation (5) for x , x = z − 5u, and evaluating it at
t = 0: x(0) = z(0) − 5u(0). We see that x(0) = z(0) if u(0) = 0.

b. Another way is to write equation (1) as

Z(s) = (5s + 3)
U (s)

s + 2
(6)

and define the state-variable x as follows:

X (s) = U (s)

s + 2
(7)

Thus,

s X (s) = −2X (s) + U (s) (8)

and the state equation is

ẋ = −2x + u (9)

To find the output equation, note that

Z(s) = (5s + 3)
U (s)

s + 2
= (5s + 3)X (s) = 5s X (s) + 3X (s)

Using equation (8) we have

Z(s) = 5[−2X (s) + U (s)] + 3X (s) = −7X (s) + 5U (s)

and thus the output equation is

z = −7x + 5u (10)

The initial condition x(0) is found from equation (10) to be x(0) = [5u(0) − z(0)]/7 =
−z(0)/7 if u(0) = 0.

Although the model consisting of equations (9) and (10) looks different than that
given by equations (4) and (5), they are both in the standard form and are equivalent,
because they were derived from the same transfer function.

This example points out that there is no unique way to derive a state-variable model
from a transfer function. It is important to keep this in mind because the state-variable
model obtained from the MATLAB ssdata(sys) function, to be introduced in the next
section, might not be the one you expect. The state-variable model given by MATLAB is
ẋ = −2x + 2u, z = −3.5x + 5u. These values correspond to equation (1) being written as

Z(s) = 5s + 3

s + 2
U (s) = (2.5s + 1.5)

[
2U (s)

s + 2

]
and defining x as the term within the square brackets; that is,

X (s) = 2U (s)

s + 2

The order of the system, and therefore the number of state variables required, can
be found by examining the denominator of the transfer function. If the denominator
polynomial is of order n, then n state variables are required. Frequently a convenient
choice is to select the state variables as the outputs of integrations (1/s), as was done
in Example 5.1.5.
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EXAMPLE 5.1.6 Numerator Dynamics in a Second-Order System

■ Problem
Obtain a state-variable model for

X (s)

U (s)
= 4s + 7

5s2 + 4s + 7
(1)

Relate the initial conditions for the state variables to the given initial conditions x(0) and ẋ(0).

■ Solution
Divide by 5s2 to obtain a 1 in the denominator.

X (s)

U (s)
=

7
5 s−2 + 4

5 s−1

1 + 4
5 s−1 + 7

5 s−2

Use the 1 in the denominator to solve for X (s).

X (s) =
(

7

5
s−2 + 4

5
s−1

)
U (s) −

(
4

5
s−1 + 7

5
s−2

)
X (s)

= 1

s

{
−4

5
X (s) + 4

5
U (s) + 1

s

[
7

5
U (s) − 7

5
X (s)

]}
(2)

This equation shows that X (s) is the output of an integration. Thus x can be chosen as a state-
variable x1. Thus,

X1(s) = X (s)

The term within square brackets in (2) is the input to an integration, and thus the second state
variable can be chosen as

X2(s) = 1

s

[
7

5
U (s) − 7

5
X (s)

]
= 1

s

[
7

5
U (s) − 7

5
X1(s)

]
(3)

Then from equation (2)

X1(s) = 1

s

[
−4

5
X1(s) + 4

5
U (s) + X2(s)

]
(4)

The state equations are found from (3) and (4).

ẋ1 = −4

5
x1 + x2 + 4

5
u (5)

ẋ2 = −7

5
x1 + 7

5
u (6)

and the output equation is x = x1. The matrices of the standard form are

A =
[
− 4

5 1

− 7
5 0

]
B =

[
4
5
7
5

]

C = [1 0] D = [0]

Note that the state variables obtained by this technique do not always have straightforward
physical interpretations. If the model mẍ + cẋ + kx = cu̇ + ku represents a mass-spring-damper
system with a displacement input u with m = 5, c = 4, k = 7, the variable x2 is the integral of
the spring force k(u − x), divided by the mass m. Thus, x2 is the acceleration of the mass due
to this force. Sometimes convenient physical interpretations of the state variables are sacrificed
to obtain special forms of the state equations that are useful for analytical purposes.
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Table 5.1.1 A state-variable form for numerator dynamics.

Transfer function model:
Y (s)

U (s)
= βnsn + βn−1sn−1 + · · · + β1s + β0

sn + αn−1sn−1 + · · · + α1s + α0
State-variable model:

ẋ1 = γn−1u − αn−1x1 + x2

ẋ2 = γn−2u − αn−2x1 + x3
.
.
.
ẋ j = γn− j u − αn− j x1 + x j+1, j = 1, 2, . . . , n − 1
.
.
.
ẋ n = γ0u − α0x1

y = βnu + x1

where
γi = βi − αiβn

Usual case: If u(0) = u̇(0) = · · · = 0, then
xi (0) = y(i−1)(0) + αn−1 y(i−2)(0) + · · · + αn−i+1 y(0)

i = 1, 2, . . . , n

where y(i)(0) = di y

dt i

∣∣∣∣
t=0

Using equations (5) and (6), we need to relate the values of x1(0) and x2(0) to x(0) and
ẋ(0). Because x1 was defined to be x1 = x , we see that x1(0) = x(0). To find x2(0), we solve
the first state equation, equation (5), for x2.

x2 = ẋ1 + 4

5
(x1 − u)

This gives

x2(0) = ẋ1(0) + 4

5
[x1(0) − u(0)] = ẋ(0) + 4

5
[x(0) − u(0)]

Thus if u(0) = 0,

x2(0) = ẋ(0) + 4

5
x(0)

The method of the previous example can be extended to the general case where the
transfer function is

Y (s)

U (s)
= βnsn + βn−1sn−1 + · · · + β1s + β0

sn + αn−1sn−1 + · · · + α1s + α0
(5.1.11)

The results are shown in Table 5.1.1. The details of the derivation are given in [Palm,
1986].

TRANSFER-FUNCTION VERSUS STATE-VARIABLE MODELS

The decision whether to use a reduced-form model (which is equivalent to a transfer-
function model) or a state-variable model depends on many factors, including personal
preference. In fact, for many applications both models are equally effective and equally
easy to use. Application of basic physical principles sometimes directly results in a
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state-variable model. An example is the following two-inertia fluid-clutch model de-
rived in Example 4.5.7 in Chapter 4.

Id ω̇d = Td − c(ωd − ω1)

I1ω̇1 = −T1 + c(ωd − ω1)

The state and input vectors are

x =
[
ωd

ω1

]
u =

[
Td

T1

]

The system and input matrices are

A =

⎡
⎢⎢⎢⎣
− c

Id

c

Id

c

I1
− c

I1

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

1

Id
0

0 − 1

I1

⎤
⎥⎥⎥⎦

For example, this form of the model is easier to use if you need to obtain only numerical
values or a plot of the step response, because you can directly use the MATLAB function
step(A,B,C,D), to be introduced in Section 5.2. However, if you need to obtain the
step response as a function, it might be easier to convert the model to transfer function
form and then use the Laplace transform to obtain the desired function. To obtain the
transfer function from the state-variable model, you may use the MATLAB function
tf(sys), as shown in Section 5.2.

The MATLAB functions cited require that all the model parameters have specified
numerical values. If, however, you need to examine the effects of a system parameter,
say the damping coefficient c in the clutch model, then it is perhaps preferable to convert
the model to transfer function form. In this form, you can examine the effect of c on
system response by examining numerator dynamics and the characteristic equation.
You can also use the initial- and final-value theorems to investigate the response.

5.2 STATE-VARIABLE METHODS WITH MATLAB
The MATLAB step, impulse, and lsim functions, treated in Section 3.9, can also
be used with state-variable models. However, the initial function, which computes
the free response, can be used only with a state-variable model. MATLAB also provides
functions for converting models between the state-variable and transfer function forms.

Recall that to create an LTI object from the reduced form

5ẍ + 7ẋ + 4x = f (t) (5.2.1)

or the transfer function form
X (s)

F(s)
= 1

5s2 + 7s + 4
(5.2.2)

you use the tf(num,den) function by typing:

�sys1 = tf(1, [5, 7, 4]);

The result, sys1, is the LTI object that describes the system in the transfer function
form.
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The LTI object sys2 in transfer function form for the equation

8
d3x

dt3
− 3

d2x

dt2
+ 5

dx

dt
+ 6x = 4

d2 f

dt2
+ 3

d f

dt
+ 5 f (5.2.3)

is created by typing

�sys2 = tf([4, 3, 5],[8, -3, 5, 6]);

LTI OBJECTS AND THE ss(A,B,C,D) FUNCTION

To create an LTI object from a state model, you use the ss(A,B,C,D) function,
where ss stands for state space. The matrix arguments of the function are the matrices
in the following standard form of a state model:

ẋ = Ax + Bu (5.2.4)

y = Cx + Du (5.2.5)

where x is the vector of state variables, u is the vector of input functions, and y is the
vector of output variables. For example, to create an LTI object in state-model form for
the system described by

ẋ1 = x2

ẋ2 = 1

5
f (t) − 4

5
x1 − 7

5
x2

where x1 is the desired output, you type

�A = [0, 1; -4/5, -7/5];
�B = [0; 1/5];
�C = [1, 0];
�D = 0;
�sys3 = ss(A,B,C,D);

THE ss(sys) AND ssdata(sys) FUNCTIONS

An LTI object defined using the tf function can be used to obtain an equivalent state
model description of the system. To create a state model for the system described by the
LTI object sys1 created previously in transfer function form, you type ss(sys1).
You will then see the resulting A, B, C, and D matrices on the screen. To extract and
save the matrices as A1, B1, C1, and D1 (to avoid overwriting the matrices from the
second example here), use the ssdata function as follows.

�[A1, B1, C1, D1] = ssdata(sys1);

The results are

A1 =
[−1.4 −0.8

1 0

]

B1 =
[

0.5
0

]

C1 = [0 0.4]

D1 = [ 0 ]
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which correspond to the state equations:

ẋ1 = −1.4x1 − 0.8x2 + 0.5 f (t)

ẋ2 = x1

and the output equation y = 0.4x2.

RELATING STATE VARIABLES TO THE ORIGINAL VARIABLES

When using ssdata to convert a transfer function form into a state model, note that
the output y will be a scalar that is identical to the solution variable of the reduced
form; in this case the solution variable of (5.2.1) is the variable x . To interpret the state
model, we need to relate its state variables x1 and x2 to x . The values of the matrices C1
and D1 tell us that the output variable is y = 0.4x2. Because the output y is the same
as x , we then see that x2 = x/0.4 = 2.5x . The other state-variable x1 is related to x2

by the second state equation ẋ2 = x1. Thus, x1 = 2.5ẋ .

THE tfdata FUNCTION

To create a transfer function description of the systemsys3, previously created from the
state model, you type tfsys3 = tf(sys3);. To extract and save the coefficients
of the transfer function, use the tfdata function as follows.

�[num, den] = tfdata(tfsys3, 'v');

The optional parameter 'v' tells MATLAB to return the coefficients as vectors if there
is only one transfer function; otherwise, they are returned as cell arrays.

For this example, the vectors returned are num = [0, 0, 0.2] and den =
[1, 1.4, 0.8]. This corresponds to the transfer function

X (s)

F(s)
= 0.2

s2 + 1.4s + 0.8
= 1

5s2 + 7s + 4

which is the correct transfer function, as seen from (5.2.2).

EXAMPLE 5.2.1 Transfer Functions of a Two-Mass System

■ Problem
Obtain the transfer functions X1(s)/F(s) and X2(s)/F(s) of the state-variable model obtained
in Example 5.1.3. The matrices and state vector of the model are

A =

⎡
⎢⎢⎢⎣

0 1 0 0
−1 − 12

5
4
5

8
5

0 0 0 1
4
3

8
3 − 4

3 − 8
3

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎣

0
0
0
1
3

⎤
⎥⎥⎦

and

z =

⎡
⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎦
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■ Solution
Because we want the transfer functions for x1 and x2 (which are the same as z1 and z3), we must
define the C and D matrices to indicate that z1 and z3 are the output variables y1 and y2. Thus,

C =
[

1 0 0 0
0 0 1 0

]
D =

[
0
0

]

The MATLAB program is as follows.

A = [0, 1, 0, 0; -1, -12/5, 4/5, 8/5;...

0, 0, 0, 1; 4/3, 8/3, -4/3, -8/3];

B = [0; 0; 0; 1/3];

C = [1, 0, 0, 0; 0, 0, 1, 0]; D = [0; 0]

sys4 = ss(A, B, C, D);

tfsys4 = tf(sys4)

The results displayed on the screen are labeled #1 and #2. These correspond to the first and
second transfer functions in order. The answers are

X1(s)

F(s)
= 0.5333s + 0.2667

s4 + 5.067s3 + 4.467s2 + 1.6s + 0.2667

X2(s)

F(s)
= 0.3333s2 + 0.8s + 0.3333

s4 + 5.067s3 + 4.467s2 + 1.6s + 0.2667

Table 5.2.1 summarizes these functions.

LINEAR ODE SOLVERS

The Control System Toolbox provides several solvers for linear models. These solvers
are categorized by the type of input function they can accept: zero input, impulse input,
step input, and a general input function.

Table 5.2.1 LTI object functions.

Command Description

sys = ss(A, B, C, D) Creates an LTI object in state-space form, where the matrices A,
B, C, and D correspond to those in the model ẋ = Ax + Bu,
y = Cx + Du.

[A, B, C, D] = ssdata(sys) Extracts the matrices A, B, C, and D of the LTI object sys,
corresponding to those in the model ẋ = Ax + Bu, y = Cx + Du.

sys = tf(num,den) Creates an LTI object in transfer function form, where the vector
num is the vector of coefficients of the transfer function
numerator, arranged in descending order, and den is the vector of
coefficients of the denominator, also arranged in descending
order.

sys2=tf(sys1) Creates the transfer function model sys2 from the state model
sys1.

sys1=ss(sys2) Creates the state model sys1 from the transfer function model
sys2.

[num, den] = tfdata(sys, 'v') Extracts the coefficients of the numerator and denominator of the
transfer function model sys. When the optional parameter 'v'
is used, if there is only one transfer function, the coefficients are
returned as vectors rather than as cell arrays.
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THE initial FUNCTION

The initial function computes and plots the free response of a state model. This
is sometimes called the initial condition response or the undriven response in the
MATLAB documentation. The basic syntax is initial(sys,x0), where sys is
the LTI object in state variable form, and x0 is the initial condition vector. The time
span and number of solution points are chosen automatically.

EXAMPLE 5.2.2 Free Response of the Two-Mass Model

■ Problem
Compute the free response x1(t) of the state model derived in Example 5.1.3, for x1(0) = 5,
ẋ1(0) = −3, x2(0) = 4, and ẋ2(0) = 2. The model is

ż1 = z2

ż2 = 1

5
(−5z1 − 12z2 + 4z3 + 8z4)

ż3 = z4

ż4 = 1

3
[4z1 + 8z2 − 4z3 − 8z4 + f (t)]

or

ż = Az + B f (t)

where

A =

⎡
⎢⎢⎢⎣

0 1 0 0
−1 − 12

5
4
5

8
5

0 0 0 1
4
3

8
3 − 4

3 − 8
3

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎣

0
0
0
1
3

⎤
⎥⎥⎦

and

z =

⎡
⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎦

■ Solution
We must first relate the initial conditions given in terms of the original variables to the state vari-
ables. From the definition of the state vector z, we see that z1(0) = x1(0) = 5, z2(0) = ẋ1(0) = −3,
z3(0) = x2(0) = 4, and z4(0) = ẋ2(0) = 2. Next we must define the model in state-variable form.
The system sys4 created in Example 5.2.1 specified two outputs, x1 and x2. Because we want
to obtain only one output here (x1), we must create a new state model using the same values for
the A and B matrices, but now using

C = [
1 0 0 0

]
D = [0]

The MATLAB program is as follows.

A = [0, 1, 0, 0; -1, -12/5, 4/5, 8/5;...

0, 0, 0, 1; 4/3, 8/3, -4/3, -8/3];

B = [0; 0; 0; 1/3];

C = [1, 0, 0, 0]; D = [0];
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sys5 = ss(A, B, C, D);

initial(sys5, [5, -3, 4, 2])

The plot of x1(t) will be displayed on the screen.

To specify the final timetfinal, use the syntaxinitial(sys,x0,tfinal).
To specify a vector of times of the formt = (0:dt:tfinal), at which to obtain the
solution, use the syntax initial(sys,x0,t). When called with left-hand argu-
ments, as [y, t, x] = initial(sys,x0, ...), the function returns the out-
put responsey, the time vectort used for the simulation, and the state vectorx evaluated
at those times. The columns of the matrices y and x are the outputs and the states, re-
spectively. The number of rows in y and x equals length(t). No plot is drawn. The
syntax initial(sys1,sys2, ...,x0,t) plots the free response of multiple
LTI systems on a single plot. The time vector t is optional. You can specify line color,
line style, and marker for each system; for example, initial(sys1,'r',sys2,
'y--',sys3,'gx',x0).

THE impulse, step, AND lsim FUNCTIONS

You may use the impulse, step, and lsim functions with state-variable models
the same way they are used with transfer function models. However, when used with
state-variable models, there are some additional features available, which we illus-
trate with the step function. When called with left-hand arguments, as [y, t] =
step(sys, ...), the function returns the output response y and the time vector
t used for the simulation. No plot is drawn. The array y is (p × q × m), where p
is length(t), q is the number of outputs, and m is the number of inputs. To ob-
tain the state vector solution for state-space models, use the syntax [y, t, x] =
step(sys, ...).

To use the lsim function for nonzero initial conditions with a state-space model,
use the syntax lsim(sys,u,t,x0). The initial condition vector x0 is needed only
if the initial conditions are nonzero.

OBTAINING THE CHARACTERISTIC POLYNOMIAL

The MATLAB command poly can find the characteristic polynomial that corresponds
to a specified state matrix A. For example, the matrix A given in Example 5.1.2 is,
for m = 1, c = 5, k = 6,

A =
[

0 1
−6 −5

]
(5.2.6)

The coefficients of its characteristic polynomial are found by typing

�A = [0, 1; -6, -5];
�poly(A)

MATLAB returns the answer [1, 5, 6], which corresponds to the polynomial s2 +
5s + 6. The roots function can be used to compute the characteristic roots; for
example, roots(poly(A)), which gives the roots [-2, -3].

MATLAB provides the eig function to compute the characteristic roots without
obtaining the characteristic polynomial, when the model is given in the state-variable
form. Its syntax is eig(A). (The function’s name is an abbreviation of eigenvalue,
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which is another name for characteristic root.) For example, typing eig([0, 1;
-6, -5]) returns the roots [-2, -3].

5.3 THE MATLAB ode FUNCTIONS
Appendix D on the text website is an introduction to numerical methods for solving
differential equations. The algorithms presented there are simplified versions of the
ones used by MATLAB and Simulink, but an understanding of these methods will
improve your understanding of these two programs. However, it is not necessary to
have mastered Appendix D to use the MATLAB ode functions for many applications.

MATLAB provides functions called solvers, that implement several numerical
solution methods. The ode15s and ode45 solvers are sufficient to solve the problems
encountered in this text. It is recommended that you try ode45 first. If the equation
proves difficult to solve (as indicated by a lengthy solution time or by a warning or
error message), then use ode15s.

SOLVER SYNTAX

We begin our coverage with several examples of solving first-order equations. Solution
of higher-order equations is covered later in this section. When used to solve the equation
ẏ = f (t, y), the basic syntax is (using ode45 as the example):

[t,y] = ode45(@ydot, tspan, y0)

where ydot is the name of the function file whose inputs must be t and y, and whose
output must be a column vector representing dy/dt ; that is, f (t, y). The number of
rows in this column vector must equal the order of the equation. The syntax for the
other solvers is identical. Use the MATLAB Editor to create and save the file ydot.

The vector tspan contains the starting and ending values of the independent
variable t , and optionally, any intermediate values of t where the solution is desired.
For example, if no intermediate values are specified,tspan is[t0, tfinal], where
t0 andtfinal are the desired starting and ending values of the independent parameter
t . As another example, using tspan = [0, 5, 10] forces MATLAB to find the
solution at t = 5. You can solve equations backward in time by specifying t0 to the
greater than tfinal.

The parameter y0 is the initial value y(t0). The function file must have two input
arguments, t and y, even for equations where f (t, y) is not an explicit function of t .
You need not use array operations in the function file because the ODE solvers call the
file with scalar values for the arguments.

As a first example of using a solver, let us solve an equation whose solution is
known in closed form, so that we can make sure we are using the method correctly. We
can also assess the performance of theode45 solver when applied to find an oscillating
solution, which can be difficult to obtain numerically.

EXAMPLE 5.3.1 MATLAB Solution of ẏ = sin t

■ Problem
Use the ode45 solver for the problem

ẏ = sin t y(0) = 0

for 0 ≤ t ≤ 4π . The exact solution is y(t) = 1 − cos t .
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■ Solution
Create and save the following function file. Name it sinefn.m.

function ydot = sinefn(t,y)

ydot = sin(t);

Use the following script file to compute the solution.

[t, y] = ode45(@sinefn, [0, 4*pi], 0);

y_exact = 1 - cos(t);

plot(t,y,'o',t,y_exact),xlabel('t'),ylabel('y(t)'),...
axis([0 4*pi -0.5 2.5])

Figure 5.3.1 shows that the solution generated by ode45 is correct.

0 2 4 6 8 10 12
–0.5

0

0.5

1

1.5

2

2.5

t

y
(t

)

Figure 5.3.1 MATLAB
(ode45) and exact solutions
of ẏ = sin t , y (0) = 0.

The main application of numerical methods is to solve equations for which a
closed-form solution cannot be obtained. The next example shows such an application.

A Rocket-Propelled Sled EXAMPLE 5.3.2

■ Problem
A rocket-propelled sled on a track is represented in Figure 5.3.2 as a mass m with an applied
force f that represents the rocket thrust. The rocket thrust initially is horizontal, but the engine
accidentally pivots during firing and rotates with an angular acceleration of θ̈ = π/50 rad/s.
Compute the sled’s velocity v for 0 ≤ t ≤ 6 if v(0) = 0. The rocket thrust is 4000 N and the
sled mass is 450 kg.

■ Solution
The sled’s equation of motion is 450v̇ = 4000 cos θ(t). To obtain θ(t), note that

θ̇ =
∫ t

0
θ̈ dt = π

50
t
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Figure 5.3.2 A rocket-
propelled sled.

v

f
�

m

and

θ =
∫ t

0
θ̇ dt =

∫ t

0

π

50
t dt = π

100
t2

Thus the equation of motion becomes

v̇ = 80

9
cos

(
π

100
t2

)
(1)

The solution is formally given by

v(t) = 80

9

∫ t

0
cos

(
π

100
t2

)
dt

Unfortunately, no closed-form solution is available for the integral, which is called Fresnel’s
cosine integral. The value of the integral has been tabulated numerically, but we will use a
MATLAB ODE solver to obtain the solution.

First create the following user-defined function file, which is based on equation (1).

function vdot = sled(t,v)

vdot = 80*cos(pi*t^2/100)/9;

As a check on our results, we will use the solution for θ = 0 as a comparison. The equation
of motion for this case is v̇ = 80/9, which gives v(t) = 80t/9. The following session solves the
equation and plots the two solutions, which are shown in Figure 5.3.3.

[t,v] = ode45(@sled,[0 6],0);

plot(t,v,t,(80*t/9)),xlabel('t (s)'),...
ylabel('v (m/s)'),gtext('\theta = 0'),gtext('\theta \neq 0')

Figure 5.3.3 Speed response
of the sled for θ = 0 and θ �= 0.

0 1 2 3 4 5 6
0

10

20

30

40

50

60

t (s)

v
(t

) 
(m

/s
)

� = 0

� ≠ 0



palm-38591 book December 17, 2008 12:11

5.3 The MATLAB ode Functions 245

We can make two observations that help us determine whether or not our numerical solution
is correct. From the plot we see that the solution for θ �= 0 is almost identical to the solution
for θ = 0, for small values of θ . This is correct because cos θ ≈ 1 for small values of θ . As θ

increases, we would expect the velocity to be smaller than the velocity for θ = 0 because the
horizontal component of the thrust is smaller. The plot confirms this.

EXTENSION TO HIGHER ORDER EQUATIONS

To use the ODE solvers to solve an equation of order two or greater, you must first
write the equation in state-variable form, as a set of first-order equations, and then
create a function file that computes the derivatives of the state variables. Consider the
second-order equation 5ÿ + 7ẏ + 4y = f (t). Define the variables, x1 = y and x2 = ẏ.
The state-variable form is

ẋ1 = x2 (5.3.1)

ẋ2 = 1

5
f (t) − 4

5
x1 − 7

5
x2 (5.3.2)

Now write a function file that computes the values of ẋ1 and ẋ2 and stores them in
a column vector. To do this, we must first have a function specified for f (t). Suppose
that f (t) = sin t . Then the required file is

function xdot = example1(t,x)
% Computes derivatives of two equations
xdot(1) = x(2);
xdot(2) = (1/5)*(sin(t)-4*x(1)-7*x(2));
xdot = [xdot(1); xdot(2)];

Note that xdot(1) represents ẋ1, xdot(2) represents ẋ2, x(1) represents x1, and
x(2) represents x2. Once you become familiar with the notation for the state-variable
form, you will see that the preceding code could be replaced with the following shorter
form.

function xdot = example1(t,x)
% Computes derivatives of two equations
xdot = [x(2); (1/5)*(sin(t)-4*x(1)-7*x(2))];

Suppose we want to solve (5.3.1) and (5.3.2) for 0 ≤ t ≤ 6 with the initial condi-
tions y(0) = x1(0) = 3 and ẏ(0) = x2(0) = 9. Then the initial condition for the vector
x is [3, 9]. To use ode45, you type

[t, x] = ode45(@example1, [0, 6], [3, 9]);

Each row in the vector x corresponds to a time returned in the column vector t. If you
type plot(t,x), you will obtain a plot of both x1 and x2 versus t . Note that x is a
matrix with two columns; the first column contains the values of x1 at the various times
generated by the solver. The second column contains the values of x2. Thus, to plot
only x1, type plot(t,x(:,1)).

When solving nonlinear equations, sometimes it is possible to check the numerical
results by using an approximation that reduces the equation to a linear one. Exam-
ple 5.3.3 illustrates such an approach with a second-order equation.
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EXAMPLE 5.3.3 A Nonlinear Pendulum Model

■ Problem
By studying the dynamics of a pendulum like that shown in Figure 5.3.4, we can better understand
the dynamics of machines such as a robot arm. The pendulum shown consists of a concentrated
mass m attached to a rod whose mass is small compared to m. The rod’s length is L . The equation
of motion for this pendulum is

θ̈ + g

L
sin θ = 0 (1)

Suppose that L = 1 m and g = 9.81 m/s2. Use MATLAB to solve this equation for θ(t) for two
cases: θ(0) = 0.5 rad, and θ(0) = 0.8π rad. In both cases θ̇ (0) = 0. Discuss how to check the
accuracy of the results.

Figure 5.3.4 A pendulum.

g

L

�

m

■ Solution
If we use the small angle approximation sin ≈ θ , the equation becomes

θ̈ + g

L
θ = 0 (2)

which is linear and has the solution:

θ(t) = θ(0) cos

√
g

L
t (3)

Thus the amplitude of oscillation is θ(0) and the period is P = 2π
√

L/g = 2 s. We can use this
information to select a final time, and to check our numerical results.

First rewrite the pendulum equation (1) as two first order equations. To do this, let x1 = θ

and x2 = θ̇ . Thus

ẋ1 = θ̇ = x2

ẋ2 = θ̈ = − g

L
sin x1 = −9.81 sin x1

The following function file is based on the last two equations. Remember that the output
xdot must be a column vector.

function xdot = pendulum(t,x)

xdot = [x(2); -9.81*sin(x(1))];

The function file is called as follows. The vectors ta and xa contain the results for the case
where θ(0) = 0.5. The vectors tb and xb contain the results for θ(0) = 0.8π .

[ta, xa] = ode45(@pendulum, [0, 5], [0.5, 0]);

[tb, xb] = ode45(@pendulum, [0, 5], [0.8*pi, 0]);

plot(ta,xa(:,1),tb,xb(:,1)),xlabel('Time (s)'),...
ylabel('Angle (rad)'),gtext('Case 1'),gtext('Case 2')

The results are shown in Figure 5.3.5. The amplitude remains constant, as predicted by the
small angle analysis, and the period for the case where θ(0) = 0.5 is a little larger than 2 s, the
value predicted by the small angle analysis. So we can place some confidence in the numerical
procedure. For the case where θ(0) = 0.8π , the period of the numerical solution is about 3.3 s.
This illustrates an important property of nonlinear differential equations. The free response of
a linear equation has the same period for any initial conditions; however, the form of the free
response of a nonlinear equation often depends on the particular values of the initial conditions.
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Figure 5.3.5 The pendulum
angle as a function of time for
two starting positions.

In the previous example, the values of g and L did not appear in the function
pendulum(t,x). Now suppose you want to obtain the pendulum response for dif-
ferent lengths L or different gravitational accelerations g. You could use the global
command to declare g and L as global variables, or you could pass parameter values
through an argument list in the ode45 function; but starting with MATLAB 7, the
preferred method is to use a nested function. Nested functions are discussed in [Palm,
2005] and [Palm, 2009]. The following program shows how this is done.

function pendula
g = 9.81; L = 0.75; % First case.
tfinal = 6*pi*sqrt(L/g); % Approximately 3 periods.
[t1, x1] = ode45(@pendulum, [0,tfinal], [0.4, 0]);
%
g = 1.63; L = 2.5; % Second case.
tfinal = 6*pi*sqrt(L/g); % Approximately 3 periods.
[t2, x2] = ode45(@pendulum, [0,tfinal], [0.2, 0]);
plot(t1, x1(:,1), t2, x2(:,1)), ...

xlabel ('time (s)'), ylabel ('\theta (rad)')
% Nested function.

function xdot = pendulum(t,x)
xdot = [x(2);-(g/L)*sin(x(1))];
end

end

MATRIX METHODS

We can use matrix operations to reduce the number of lines to be typed in the derivative
function file. For example, consider the mass-spring-damper model mÿ + cẏ + ky =
f (t). This can be put into state-variable form by letting x1 = y and x2 = ẏ. This gives

ẋ1 = x2

ẋ2 = 1

m
f (t) − k

m
x1 − c

m
x2
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This can be written as one matrix equation as follows.[
ẋ1

ẋ2

]
=

⎡
⎣ 0 1

− k

m
− c

m

⎤
⎦ [

x1

x2

]
+

⎡
⎣ 0

1

m

⎤
⎦ f (t)

In compact form this is ẋ = Ax + B f (t), where

A =
⎡
⎣ 0 1

− k

m
− c

m

⎤
⎦ B =

⎡
⎣ 0

1

m

⎤
⎦ x =

[
x1

x2

]

The following function file shows how to use matrix operations. In this example,
m = 1, c = 2, k = 5, and the applied force f is a constant equal to 10.

function xdot = msd(t,x)
% Function file for mass with spring and damping.
% Position is first variable, velocity is second variable.
m = 1; c = 2; k = 5; f = 10;
A = [0, 1;-k/m, -c/m];
B = [0; 1/m];
xdot = A*x+B*f;

Note that the output xdot will be a column vector because of the definition of matrix-
vector multiplication. The characteristic roots are the roots of ms2 + cs + k = s2 +
2s + 5 = 0, and are s = −1 ± 2 j . The time constant is 1, and the steady state response
will thus be reached after t = 4. The period of oscillation will be π . Thus if we choose
a final time of 5 we will see the entire response. If the initial conditions are x1(0) = 0,
x2(0) = 0, the solver is called as follows:

[t, x] = ode45(@msd, [0, 5], [0, 0]);
plot(t,x),xlabel('Time (s)'),...

ylabel('Displacement (m) and Velocity (m/s)'),...
gtext('Displacement'), gtext('Velocity')

The result is shown in Figure 5.3.6.
Table 5.3.1 summarizes the basic syntax of the ODE solvers.

Figure 5.3.6 Displacement
and velocity of the mass as
functions of time.
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Table 5.3.1 Basic Syntax of ODE solvers

[t, y] = ode45(@ydot, tspan, y0)
Solves the vector differential equation ẏ = f(t, y) specified in the function file ydot, whose
inputs must be t and y, and whose output must be a column vector representing dy/dt ; that
is, f(t, y). The number of rows in this column vector must equal the order of the equation.
The vector tspan contains the starting and ending values of the independent variable t , and
optionally, any intermediate values of t where the solution is desired. The vector y0 contains
the initial values y(t0). The function file must have the two input arguments, t and y, even for
equations where f(t, y) is not an explicit function of t .
The basic syntax for the other solvers is identical to that of ode45.

5.4 SIMULINK AND LINEAR MODELS
Simulink is built on top of MATLAB, so you must have MATLAB to use Simulink. It
is included in the Student Edition of MATLAB and is also available separately from
The MathWorks, Inc. It provides a graphical user interface that uses various types of
elements called blocks to create a simulation of a dynamic system; that is, a system that
can be modeled with differential or difference equations whose independent variable is
time. For example, one block type is a multiplier, another performs a sum, and another is
an integrator. Its graphical interface enables you to position the blocks, resize them, label
them, specify block parameters, and interconnect the blocks to describe complicated
systems for simulation.

Type simulink in the MATLAB Command window to start Simulink. The
Simulink Library Browser window opens. See Figure 5.4.1. To create a new model,
click on the icon that resembles a clean sheet of paper, or select New from the File menu
in the Browser. A new Untitled window opens for you to create the model. To select a
block from the Library Browser, double-click on the appropriate library category and a
list of blocks within that category then appears, as shown in Figure 5.4.1. Figure 5.4.1
shows the result of double-clicking on the Continuous library, then clicking on the In-
tegrator block. Click on the block name or icon, hold the mouse button down, drag the
block to the new model window, and release the button. Note that when you click on the
block name in the Library Browser, a brief description of the block’s function appears
at the bottom of the Browser. You can access help for that block by right-clicking on
its name or icon, and selecting Help from the drop-down menu.

Simulink model files have the extension .mdl. Use the File menu in the model
window to Open, Close, and Save model files. To print the block diagram of the model,
select Print on the File menu. Use the Edit menu to copy, cut and paste blocks. You
can also use the mouse for these operations. For example, to delete a block, click on it
and press the Delete key.

Getting started with Simulink is best done through examples, which we now present.

SIMULATION DIAGRAMS

You construct Simulink models by constructing a diagram that shows the elements of
the problem to be solved. Such diagrams are called simulation diagrams. Consider the
equation ẏ = 10 f (t). Its solution can be represented symbolically as

y(t) =
∫

10 f (t) dt

which can be thought of as two steps, using an intermediate variable x :

x(t) = 10 f (t) and y(t) =
∫

x(t) dt
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Figure 5.4.1 The Simulink
Library Browser.

Figure 5.4.2 Simulation
diagrams for ẏ = 10 f (t).

(a) (b)

10
f (t)

∫
x(t) y(t) 1

s10
f x y

This solution can be represented graphically by the simulation diagram shown in Fig-
ure 5.4.2a. The arrows represent the variables y, x , and f . The blocks represent cause-
and-effect processes. Thus, the block containing the number 10 represents the process
x(t) = 10 f (t), where f (t) is the cause (the input) and x(t) represents the effect (the
output). This type of block is called a multiplier or gain block.

The block containing the integral sign
∫

represents the integration process y(t) =∫
x(t) dt , where x(t) is the cause (the input) and y(t) represents the effect (the output).

This type of block is called an integrator block.
There is some variation in the notation and symbols used in simulation diagrams.

Part (b) of Figure 5.4.2 shows one variation. Instead of being represented by a box, the
multiplication process is now represented by a triangle like that used to represent an
electrical amplifier, hence the name gain block.
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(a)

��
zx

y

��

(b)

1
s

10

yf Figure 5.4.3 (a) The summer
element. (b) Simulation
diagram for ẏ = f (t) − 10y .

In addition, the integration symbol in the integrator block has been replaced by
the symbol 1/s, which represents integration in Laplace transform notation. Thus the
equation ẏ = 10 f (t) is represented by sy = 10 f , and the solution is represented as

y = 10 f

s
or as the two equations

x = 10 f and y = 1

s
x

Another element used in simulation diagrams is the summer that, despite its name,
is used to subtract as well as to sum variables. Its symbol is shown in Figure 5.4.3a. The
symbol represents the equation z = x − y. Note that a plus or minus sign is required
for each input arrow.

The summer symbol can be used to represent the equation ẏ = f (t) − 10y, which
can be expressed as

y(t) =
∫

[ f (t) − 10y] dt

or as

y = 1

s
( f − 10y)

You should study the simulation diagram shown in part (b) of Figure 5.4.3 to confirm
that it represents this equation.

Figure 5.4.2b forms the basis for developing a Simulink model to solve the equation
ẏ = f (t).

Simulink Solution of ẏ = 10 sin t EXAMPLE 5.4.1

■ Problem
Let us use Simulink to solve the following problem for 0 ≤ t ≤ 13.

dy

dt
= 10 sin t y(0) = 0

The exact solution is y(t) = 10(1 − cos t).

■ Solution
To construct the simulation, do the following steps. Refer to Figure 5.4.4.

1. Start Simulink and open a new model window as described previously.
2. Select and place in the new window the Sine Wave block from the Sources category.

Double-click on it to open the Block Parameters window, and make sure the Amplitude is
set to 1, the Bias to 0, the Frequency to 1, the Phase to 0, and the Sample time to 0. Then
click OK.

3. Select and place the Gain block from the Math category, double-click on it, and set the
Gain Value to 10 in the Block Parameters window. Then click OK. Note that the value 10
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Figure 5.4.4 Simulink model
for ẏ = 10 sin t .

ScopeIntegratorSine Wave Gain

10
1
s

then appears in the triangle. To make the number more visible, click on the block, and drag
one of the corners to expand the block so that all the text is visible.

4. Select and place the Integrator block from the Continuous category, double-click on it to
obtain the Block Parameters window, and set the Initial Condition to 0 [this is because
y(0) = 0]. Then click OK.

5. Select and place the Scope block from the Sinks category.
6. Once the blocks have been placed as shown in Figure 5.5.4, connect the input port on each

block to the outport port on the preceding block. To do this, move the cursor to an input
port or an output port; the cursor will change to a cross. Hold the mouse button down, and
drag the cursor to a port on another block. When you release the mouse button, Simulink
will connect them with an arrow pointing at the input port. Your model should now look
like that shown in Figure 5.5.4.

7. Click on the Simulation menu, and click the Configuration Parameters item. Click on
the Solver tab, and enter 13 for the Stop time. Make sure the Start time is 0. Then click OK.

8. Run the simulation by clicking on the Simulation menu, and then clicking the Start item.
You can also start the simulation by clicking on the Start icon on the toolbar (this is the
black triangle).

9. You will hear a bell sound when the simulation is finished. Then double-click on the Scope
block and then click on the binoculars icon in the Scope display to enable autoscaling.
You should see an oscillating curve with an amplitude of 10 and a period of 2π . The
independent variable in the Scope block is time t ; the input to the block is the dependent
variable y. This completes the simulation.

To have Simulink automatically connect two blocks, select the source block, hold
down the Ctrl key, and left-click on the destination block. Simulink provides easy ways
to connect multiple blocks and lines; see the help for more information.

Note that blocks have a Block Parameters window that opens when you double-
click on the block. This window contains several items, the number and nature of which
depend on the specific type of block. In general, you can use the default values of these
parameters, except where we have explicitly indicated that they should be changed.
You can always click on Help within the Block Parameters window to obtain more
information.

When you click Apply in the Block Parameters window, any parameter changes
immediately take effect and the window remains open. If you click Close, the changes
take effect and the window closes.

Note that most blocks have default labels. You can edit text associated with a block
by clicking on the text and making the changes. You can save the Simulink model as
an .mdl file by selecting Save from the File menu in Simulink. The model file can
then be reloaded at a later time. You can also print the diagram by selecting Print on
the File menu.

The Scope block is useful for examining the solution, but if you want to obtain a
labeled and printed plot you can use the To Workspace block, which is described in the
next example.
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Exporting to the MATLAB Workspace EXAMPLE 5.4.2

■ Problem
We now demonstrate how to export the results of the simulation to the MATLAB workspace,
where they can be plotted or analyzed with any of the MATLAB functions.

■ Solution
Modify the Simulink model constructed in Example 5.4.1 as follows. Refer to Figure 5.4.5.

1. Delete the arrow connecting the Scope block by clicking on it and pressing the Delete key.
Delete the Scope block in the same way.

2. Select and place the To Workspace block from the Sinks category and the Clock block
from the Sources category.

3. Select and place the Mux block from the Signal Routing category, double-click on it, and
set the Number of inputs to 2. Click OK. (The name “Mux” is an abbreviation for
“multiplexer,” which is an electrical device for transmitting several signals.)

4. Connect the top input port of the Mux block to the output port of the Integrator block. Then
use the same technique to connect the bottom input port of the Mux block to the outport
port of the Clock block. Your model should now look like that shown in Figure 5.4.5.

5. Double-click on the To Workspace block. You can specify any variable name you want as
the output; the default is simout. Change its name to y. The output variable y will have
as many rows as there are simulation time steps, and as many columns as there are inputs
to the block. The second column in our simulation will be time, because of the way we
have connected the Clock to the second input port of the Mux. Specify the Save Format as
Array. Use the default values for the other parameters (these should be inf, 1, and -1 for
Maximum number of rows, Decimation, and Sample Time, respectively). Click on OK.

6. After running the simulation, you can use the MATLAB plotting commands from the
Command window to plot the columns of y (or simout in general). To plot y(t), type in
the MATLAB Command window:

�plot(y(:,2),y(:,1)),xlabel('t'),ylabel('y')

To WorkspaceClock

y

IntegratorSine Wave Gain

10
1
s

Figure 5.4.5 Simulink model
using the Clock and To
Workspace block.

Simulink can be configured to put the time variabletout into the MATLAB workspace
automatically when using the To Workspace block. This is done with the Data
Import/Export menu item under Configuration parameters on the Simulation menu.
The alternative is to use the Clock block to put tout into the workspace. The Clock
block has one parameter, Decimation. If this parameter is set to 1, the Clock will output
every time step; if set to 10, the Clock will output every 10 time steps, and so on.

Simulink Model for ẏ = −10y + f (t) EXAMPLE 5.4.3

■ Problem
Construct a Simulink model to solve

ẏ = −10y + f (t) y(0) = 1
where f (t) = 2 sin 4t , for 0 ≤ t ≤ 3.
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Figure 5.4.6 Simulink model
for ẏ = −10y + f (t).
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■ Solution
To construct the simulation, do the following steps.

1. You can use the model shown in Figure 5.4.4 by rearranging the blocks as shown in
Figure 5.4.6. You will need to add a Sum block.

2. Select the Sum block from the Math operations library and place it as shown in the
simulation diagram. Its default setting adds two input signals. To change this, double-click
on the block, and in the List of Signs window, type | + −. The signs are ordered
counterclockwise from the top. The symbol | is a spacer indicating here that the top port
is to be empty.

3. To reverse the direction of the gain block, right-click on the block, select Format from the
pop-up menu, and select Flip Block.

4. When you connect the negative input port of the Sum block to the output port of the Gain
block, Simulink will attempt to draw the shortest line. To obtain the more standard
appearance shown in Figure 5.4.6, first extend the line vertically down from the Sum input
port. Release the mouse button and then click on the end of the line and attach it to the
Gain block. The result will be a line with a right angle. Do the same to connect the input of
the Gain to the arrow connecting the Integrator and the Scope. A small dot appears to
indicate that the lines have been successfully connected. This point is called a takeoff point
because it takes the value of the variable represented by the arrow (here, the variable y)
and makes that value available to another block.

5. Select Configuration Parameters from the Simulation menu, and set the Stop time to 3.
Then click OK.

6. Run the simulation as before and observe the results in the Scope.

SIMULATING STATE VARIABLE MODELS

State variable models, unlike transfer function models, can have more than one input
and more than one output. Simulink has the State-Space block that represents the linear
state variable model ẋ = Ax + Bu, y = Cx + Du. The vector u represents the inputs,
and the vector y represents the outputs. Thus when connecting inputs to the State-Space
block, care must be taken to connect them in the proper order. Similar care must be
taken when connecting the block’s outputs to another block. The following example
illustrates how this is done.

EXAMPLE 5.4.4 Simulink Model of a Two-Mass System

■ Problem
The state-variable model of the two-mass system discussed in Example 5.1.3 is

ż = Az + B f (t)
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Step ScopeState-Space

x' = Ax+Bu
y = Cx+Du

Figure 5.4.7 Simulink model
containing the State-Space
block and the Step block.

where

A =

⎡
⎢⎢⎢⎣
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5
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⎤
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z =

⎡
⎢⎢⎣
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z3
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⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎦

Develop a Simulink model to plot the unit-step response of the variables x1 and x2 with the
initial conditions x1(0) = 0.2, ẋ1(0) = 0, x2(0) = 0.5, and ẋ2(0) = 0.

■ Solution
First select appropriate values for the matrices in the output equation y = Cz + D f (t). Since
we want to plot x1 and x2, which are z1 and z3, we choose C and D as follows.

C =
[

1 0 0 0
0 0 1 0

]
D =

[
0
0

]
To create this simulation, obtain a new model window. Then do the following to create the

model shown in Figure 5.4.7.

1. Select and place in the new window the Step block from the sources category. Double-
click on it to obtain the Block Parameters window, and set the Step time to 0, the Initial
and Final values to 0 and 1, and the Sample time to 0. Click OK.

2. Select and place the State-Space block. Double-click on it, and enter [0, 1, 0, 0;
-1, -12/5, 4/5, 8/5; 0, 0, 0, 1; 4/3, 8/3, -4/3, -8/3] for A,
[0; 0; 0; 1/3] for B, [1, 0, 0, 0; 0, 0, 1, 0] for C, and [0; 0] for
D. Then enter [0.2; 0; 0.5; 0] for the initial conditions. Click OK. Note that the
dimension of the matrix B tells Simulink that there is one input. The dimensions of the
matrices C and D tell Simulink that there are two outputs.

3. Select and place the Scope block.
4. Once the blocks have been placed, connect the input port on each block to the outport port

on the preceding block as shown in the figure.
5. Experiment with different values of the Stop time until the Scope shows that the steady-

state response has been reached. For this application, a Stop time of 25 is satisfactory. The
plots of both x1 and x2 will appear in the Scope.

5.5 SIMULINK AND NONLINEAR MODELS
Unlike linear models, closed-form solutions are not available for most nonlinear differ-
ential equations, and we must therefore solve such equations numerically. Piecewise-
linear models are actually nonlinear, although they may appear to be linear. They are
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composed of linear models that take effect when certain conditions are satisfied. The
effect of switching back and forth between these linear models makes the overall model
nonlinear. An example of such a model is a mass attached to a spring and sliding on a
horizontal surface with Coulomb friction. The model is

mẍ + kx = f (t) − μmg if ẋ ≥ 0

mẍ + kx = f (t) + μmg if ẋ < 0

These two linear equations can be expressed as the single, nonlinear equation

mẍ + kx = f (t) − μmg sign(ẋ) where sign(ẋ) =
{+1 if ẋ ≥ 0

−1 if ẋ < 0

Solution of linear or nonlinear models that contain piecewise-linear functions is
very tedious to program. However, Simulink has built-in blocks that represent many
of the commonly-found functions such as Coulomb friction. Therefore Simulink is
especially useful for such applications.

EXAMPLE 5.5.1 Simulink Model of a Rocket-Propelled Sled

■ Problem
A rocket-propelled sled on a track is represented in Figure 5.5.1 as a mass m with an applied
force f that represents the rocket thrust. The rocket thrust initially is horizontal, but the engine
accidentally pivots during firing and rotates with an angular acceleration of θ̈ = π/50 rad/s.
Compute the sled’s velocity v for 0 ≤ t ≤ 10 if v(0) = 0. The rocket thrust is 4000 N and the
sled mass is 450 kg.

The sled’s equation of motion was derived in Example 5.3.2 and is

v̇ = 80

9
cos

(
π

100
t2

)
(1)

The solution is formally given by

v(t) = 80

9

∫ t

0
cos

(
π

100
t2

)
dt

Unfortunately, no closed-form solution is available for the integral, which is called Fresnel’s
cosine integral. The value of the integral has been tabulated numerically, but we will use Simulink
to obtain the solution.

a. Create a Simulink model to solve this problem for 0 ≤ t ≤ 10 s.
b. Now suppose that the engine angle is limited by a mechanical stop to 60◦, which is

60π/180 rad. Create a Simulink model to solve the problem.

■ Solution
a. There are several ways to create the input function θ = (π/100)t2. Here we note that

θ̈ = π/50 rad/s and that

θ̇ =
∫ t

0
θ̈ dt = π

50
t



palm-38591 book December 17, 2008 12:11

5.5 Simulink and Nonlinear Models 257

Figure 5.5.1 A rocket- propelled sled.
v

f
�

m

Figure 5.5.2 Simulation model for
v = (80/9) cos (π t2/100).
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Figure 5.5.3 Simulink model
for v = (80/9) cos(π t2/100).
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Figure 5.5.4 Simulink model
for v = (80/9) cos (π t2/100)
with a Saturation block.

and

θ =
∫ t

0
θ̇ dt = π

100
t2

Thus we can create θ(t) by integrating the constant θ̈ = π/50 twice. The simulation
diagram is shown in Figure 5.5.2. This diagram is used to create the corresponding
Simulink model shown in Figure 5.5.3.

There are two new blocks in this model. The Constant block is in the Sources library.
After placing it, double click on it and type pi/50 in its Constant Value window.

The Trigonometric function block is in the Math Operations library. After placing it,
double click on it and select cos in its Function window.

Set the Stop Time to 10, run the simulation, and examine the results in the Scope.
b. Modify the model in Figure 5.5.3 as follows to obtain the model shown in Figure 5.5.4.

We use the Saturation block in the Discontinuities library to limit the range of θ to
60π/180 rad. After placing the block as shown in Figure 5.5.4, double-click on it and type
60*pi/180 in its Upper Limit window. Then type 0 or any negative value in its Lower
Limit window.

Enter and connect the remaining elements as shown, and run the simulation. The
upper Constant block and Integrator block are used to generate the solution when the
engine angle is θ = 0, as a check on our results. [The equation of motion for θ = 0 is
v̇ = 80/9, which gives v(t) = 80t/9.]

If you prefer, you can substitute a To Workspace block for the Scope. Then you can
plot the results in MATLAB. The resulting plot is shown in Figure 5.5.5.
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Figure 5.5.5 Speed response
of the sled for θ = 0 and θ �= 0.
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SIMULATING TRANSFER FUNCTION MODELS

The equation of motion of a mass-spring-damper system is

mÿ + cẏ + ky = f (t) (5.5.1)

Simulink can accept a system description in transfer function form and in state-variable
form. If the mass-spring system is subjected to a sinusoidal forcing function f (t), it is
easy to use the MATLAB commands presented thus far to solve and plot the response
y(t). However, suppose that the force f (t) is created by applying a sinusoidal input
voltage to a hydraulic piston that has a dead-zone nonlinearity. This means that the piston
does not generate a force until the input voltage exceeds a certain magnitude, and thus
the system model is piecewise linear. A graph of a particular dead-zone nonlinearity
is shown in Figure 5.5.6. When the input (the independent variable on the graph) is

Figure 5.5.6 A dead-zone
nonlinearity.
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between −0.5 and 0.5, the output is zero. When the input is greater than or equal to the
upper limit of 0.5, the output is the input minus the upper limit. When the input is less
than or equal to the lower limit of −0.5, the output is the input minus the lower limit.
In this example, the dead zone is symmetric about 0, but it need not be in general.

Simulations with dead zone nonlinearities are somewhat tedious to program in
MATLAB, but are easily done in Simulink. Example 5.5.2 illustrates how it is done.

A Simulink Model of Response with a Dead Zone EXAMPLE 5.5.2

■ Problem
Create and run a Simulink simulation of a mass-spring-damper system (5.5.1) using the parameter
values m = 1, c = 2, and k = 4. The forcing function is the function f (t) = sin 1.4t . The system
has the dead-zone nonlinearity shown in Figure 5.5.6.

■ Solution
To construct the simulation, do the following steps.

1. Start Simulink and open a new model window as described previously.
2. Select and place in the new window the Sine Wave block from the Sources category.

Double-click on it, and set the Amplitude to 1, the Bias to 0, the Frequency to 1.4, the
Phase to 0, and the Sample time to 0. Click OK.

3. Select and place the Dead Zone block from the Discontinuities category, double-click on
it, and set the Start of dead zone to −0.5 and the End of dead zone to 0.5. Click OK.

4. Select and place the Transfer Fcn block from the Continuous category, double-click on it,
and set the Numerator to [1] and the Denominator to [1, 2, 4]. Click OK.

5. Select and place the Scope block from the Sinks category.
6. Once the blocks have been placed, connect the input port on each block to the outport port

on the preceding block. Your model should now look like that shown in Figure 5.5.7.
7. Click on the Simulation menu, then click the Configuration Parameters item. Click on

the Solver tab, and enter 10 for the Stop time. Make sure the Start time is 0. Then click OK.
8. Run the simulation by clicking on the Simulation menu, and then clicking the Start item.
9. You will hear a bell sound when the simulation is finished. Then double-click on the Scope

block and then click on the binoculars icon in the Scope display to enable autoscaling.
You should see an oscillating curve.

It is informative to plot both the input and the output of the Transfer Fcn block versus time
on the same graph. To do this,

1. Delete the arrow connecting the Scope block to the Transfer Fcn block. Do this by clicking
on the arrow line and then pressing the Delete key.

2. Select and place the Mux block from the Signal Routing category, double-click on it, and
set the Number of inputs to 2. Click Apply, then OK.

3. Connect the top input port of the Mux block to the output port of the Transfer Fcn block.
Then use the same technique to connect the bottom input port of the Mux block to the
arrow from the outport port of the Dead Zone block. Just remember to start with the input
port. Simulink will sense the arrow automatically and make the connection. Your model
should now look like that shown in Figure 5.5.8.

Sine Wave Dead Zone Scope

1
s2+2s+4

Transfer Fcn

Figure 5.5.7 The Simulink
model of dead-zone response.



palm-38591 book December 17, 2008 12:11

260 CHAPTER 5 State-Variable Models and Simulation Methods

Figure 5.5.8 Modification of
the dead-zone model to
include a Mux block. Sine Wave Dead Zone

Scope

1
s2+2s+4

Transfer Fcn

Figure 5.5.9 The response of
the dead-zone model.

Figure 5.5.10 Modification of
the dead-zone model to
export variables to the
MATLAB workspace.

Sine Wave Dead Zone

Scope

1
s2+2s+4

Transfer Fcn 1

1
s2+2s+4

Transfer Fcn 2

To WorkspaceMux 2

Mux 1

Clock

simout

4. Set the Stop time to 10, run the simulation as before, and bring up the Scope display. You
should see what is shown in Figure 5.5.9. This plot shows the effect of the dead zone on
the sine wave.

You can bring the simulation results into the MATLAB workspace by using the To Workspace
block. For example, suppose we want to examine the effects of the dead zone by comparing the
response of the system with and without a dead zone. We can do this with the model shown in
Figure 5.5.10. To create this model,

1. Copy the Transfer Fcn block by right-clicking on it, holding down the mouse button, and
dragging the block copy to a new location. Then release the button. Copy the Mux block in
the same way.
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2. Double-click on the first Mux block and change the number of its inputs to 3.
3. In the usual way, select and place the To Workspace block from the Sinks category and the

Clock box from the Sources category. Double-click on the To Workspace block. You can
specify any variable name you want as the output; the default is simout. Change its name
to y. The output variable y will have as many rows as there are simulation time steps, and
as many columns as there are inputs to the block. The fourth column in our simulation will
be time, because of the way we have connected the Clock to the second Mux. Specify the
save format as Array. Use the default values for the other parameters (these should be
inf, 1, and -1 for Maximum number of rows, Decimation, and Sample Time,
respectively). Click on OK.

4. Connect the blocks as shown, and run the simulation.
5. You can use the MATLAB plotting commands from the Command window to plot the

columns of y; for example, to plot the response of the two systems and the output of the
Dead Zone block versus time, type

�plot(y(:,4),y(:,1),y(:,4),y(:,2),y(:,4),y(:,3))

Nonlinear models cannot be put into transfer function form or the state-variable
form ẋ = Ax + Bu. However, they can be solved in Simulink. Example 5.5.3 shows
how this can be done.

Simulink Model of a Nonlinear Pendulum EXAMPLE 5.5.3

■ Problem
The pendulum shown in Figure 5.5.11 has the following nonlinear equation of motion, if there
is viscous friction in the pivot and if there is an applied moment M(t) about the pivot.

I θ̈ + cθ̇ + mgL sin θ = M(t) (1)

where I is the mass moment of inertia about the pivot. Create a Simulink model for this system
for the case where I = 4, mgL = 10, c = 0.8, and M(t) is a square wave with an amplitude of 3
and a frequency of 0.5 Hz. Assume that the initial conditions are θ(0) = π/4 rad and θ̇ (0) = 0.

Figure 5.5.11 A pendulum.

g

L

�

m
■ Solution
To simulate this model in Simulink, define a set of variables that lets you rewrite the equation
as two first-order equations. Thus let ω = θ̇ . Then the model can be written as

θ̇ = ω

ω̇ = 1

I
[−cω − mgL sin θ + M(t)] = 0.25 [−0.8ω − 10 sin θ + M(t)]

Integrate both sides of each equation over time to obtain

θ =
∫

ω dt

ω = 0.25

∫
[−0.8ω − 10 sin θ + M(t)] dt

We will introduce four new blocks to create this simulation. Obtain a new model window and
do the following.

1. Select and place in the new window the Integrator block from the Continuous category,
and change its label to Integrator 1 as shown in Figure 5.5.12. You can edit text
associated with a block by clicking on the text and making the changes. Double-click on
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Figure 5.5.12 Simulink model
of a nonlinear pendulum.

Scope

Fcn

10*sin(u)

Integrator 1 Integrator 21/I

0.25

c

0.8

––
+

Signal
Generator

1
s

1
s

the block to obtain the Block Parameters window, and set the Initial condition to 0 [this is
the initial condition θ̇ (0) = 0]. Click OK.

2. Copy the Integrator block to the location shown and change its label to Integrator 2. Set
its initial condition to π/4 by typing pi/4 in the Block Parameters window. This is the
initial condition θ(0) = π/4.

3. Select and place a Gain block from the Math Operations category, double-click on it, and
set the Gain value to 0.25. Click OK. Change its label to 1/I. Then click on the block,
and drag one of the corners to expand the box so that all the text is visible.

4. Copy the Gain box, change its label to c, and place it as shown in Figure 5.5.12.
Double-click on it, and set the Gain value to 0.8. Click OK. To flip the box left to
right, right-click on it, select Format, and select Flip Block.

5. Select and place the Scope block from the Sinks category.
6. For the term 10 sin θ , we cannot use the Trig function block in the Math Operations

category without using a separate gain block to multiply the sin θ by 10. Instead we will
use the Fcn block under the User-Defined Functions category (Fcn stands for function).
Select and place this block as shown. Double-click on it, and type 10*sin(u) in the
expression window. This block uses the variable u to represent the input to the block.
Click OK. Then flip the block.

7. Select and place the Sum block from the Math Operations category. Double-click on it,
and select round for the Icon shape. In the List of signs window, type + − −. Click OK.

8. Select and place the Signal Generator block from the Sources category. Double-click on
it, select square wave for the Wave form, 3 for the Amplitude, and 0.5 for the Frequency,
and Hertz for the Units. Click OK.

9. Once the blocks have been placed, connect arrows as shown in the figure.
10. Set the Stop time to 10, run the simulation, and examine the plot of θ(t) in the Scope.

This completes the simulation.

In the Configuration Parameters submenu under the Simulation menu, you can
select the ODE solver to use by clicking on the Solver tab. The default is ode45.

Problems involving nonlinear functions such as the saturation block are much
easier to solve with Simulink. In later chapters we will discover other nonlinear blocks
and other advantages to using Simulink. There are menu items in the model window
we have not discussed. However, the ones we have discussed are the most important
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ones for getting started. We have introduced just a few of the blocks available within
Simulink and we will introduce more in later chapters. In addition, some blocks have
additional properties that we have not mentioned. However, the examples given here
will help you get started in exploring the other features of Simulink. Consult the online
help for information about these items.

5.6 CHAPTER REVIEW
The state-variable model form, which can be expressed as a vector-matrix equation, is
a concise representation that is useful for analytical purposes and for writing general-
purpose computer programs. Section 5.1 shows how to convert models into state-
variable form.

In theory it is possible to use the Laplace transform to obtain the closed-form
solution of a linear constant-coefficient differential equation if the input function is
not too complicated. However, the Laplace transform method cannot be used when the
Laplace transform or inverse transform either does not exist or cannot be found easily, as
is the case with higher-order models. The reasons include the large amount of algebra
required and the need to solve the characteristic equation numerically (closed-form
solutions for polynomial roots do not exist for polynomials of order five and higher).
Therefore, in this chapter we introduced several types of numerical methods for solving
differential equations.

Section 5.2 focuses on MATLAB functions for solving linear state-variable models.
These are the ss, ssdata, tfdata, step, impulse, lsim, initial, char, and
eig functions. Section 5.3 treats the MATLAB ode functions, which are useful for
solving both linear and nonlinear equations.

Section 5.4 introduces Simulink, which provides a graphical user interface for solv-
ing differential equations. It includes many program blocks and features that enable
you to create simulations that are otherwise difficult to program in MATLAB. Sec-
tion 5.4 treats applications to linear systems, while Section 5.5 treats nonlinear system
applications.

Now that you have finished this chapter, you should be able to

1. Convert a differential equation model into state-variable form.
2. Express a linear state-variable model in the standard vector-matrix form.
3. Apply the ss, ssdata, tfdata, char, eig, and initial functions to

analyze linear models.
4. Use the MATLAB ode functions to solve linear and nonlinear differential

equations.
5. Use Simulink to create simulations of linear and nonlinear models expressed

either as differential equations or, if linear, as transfer functions.
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PROBLEMS
Section 5.1 State-Variable Models

5.1 Obtain the state model for the reduced-form model 5ẍ + 7ẋ + 4x = f (t).
5.2 Obtain the state model for the reduced-form model

2
d3 y

dt3
+ 5

d2 y

dt2
+ 4

dy

dt
+ 7y = f (t)

5.3 Obtain the state model for the reduced-form model 2ẍ + 5ẋ + 4x = 4y(t).
5.4 Obtain the state model for the transfer-function model

Y (s)

F(s)
= 6

3s2 + 6s + 10

5.5 Obtain the state model for the two-mass system discussed in Example 4.2.1.
The equations of motion are

m1 ẍ1 + k1(x1 − x2) = f (t)

m2 ẍ2 − k1(x1 − x2) + k2x2 = 0

5.6 Obtain the state model for the two-mass system discussed in Example 4.4.5.
The equations of motion for specific values of the spring and damping
constants are

10ẍ1 + 8ẋ1 − 5ẋ2 + 40x1 − 25x2 = 0

5ẍ2 − 25x1 + 25x2 − 5ẋ1 + 5ẋ2 = f (t)

5.7 Put the following model in standard state-variable form and obtain the
expressions for the matrices A, B, C, and D. The output is x .

2ẍ + 5ẋ + 4x = 4y(t)

5.8 Given the state-variable model

ẋ1 = −5x1 + 3x2 + 2u1

ẋ2 = −4x2 + 6u2

and the output equations

y1 = x1 + 3x2 + 2u1

y2 = x2

obtain the expressions for the matrices A, B, C, and D.
5.9 Given the following state-variable models, obtain the expressions for the

matrices A, B, C, and D for the given inputs and outputs.
a. The outputs are x1 and x2; the input is u.

ẋ1 = −5x1 + 3x2

ẋ2 = x1 − 4x2 + 5u

b. The output is x1; the inputs are u1 and u2.

ẋ1 = −5x1 + 3x2 + 4u1

ẋ2 = x1 − 4x2 + 5u2
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5.10 Obtain the expressions for the matrices A, B, C, and D for the state-variable
model you obtained in Problem 5.6. The outputs are x1 and x2.

5.11 The transfer function of a certain system is
Y (s)

F(s)
= 6s + 7

s + 3
Use two methods to obtain a state-variable model in standard form. For each
model, relate the initial value of the state-variable to the given initial value y(0).

5.12 The transfer function of a certain system is
Y (s)

F(s)
= s + 2

s2 + 4s + 3
Use two methods to obtain a state-variable model in standard form. For each
model, relate the initial values of the state variables to the given initial values
y(0) and ẏ(0).

Section 5.2 State-Variable Methods with MATLAB

5.13 Use MATLAB to create a state-variable model; obtain the expressions for the
matrices A, B, C, and D, and then find the transfer functions of the following
models, for the given inputs and outputs.
a. The outputs are x1 and x2; the input is u.

ẋ1 = −5x1 + 3x2

ẋ2 = x1 − 4x2 + 5u

b. The output is x1; the inputs are u1 and u2.

ẋ1 = −5x1 + 3x2 + 4u1

ẋ2 = x1 − 4x2 + 5u2

5.14 Use MATLAB to obtain a state model for the following equations; obtain the
expressions for the matrices A, B, C, and D. In both cases, the input is f (t);
the output is y.
a.

2
d3 y

dt3
+ 5

d2 y

dt2
+ 4

dy

dt
+ 7y = f (t)

b.
Y (s)

F(s)
= 6

3s2 + 6s + 10

5.15 Use MATLAB to obtain a state-variable model for the following transfer
functions.
a.

Y (s)

F(s)
= 6s + 7

s + 3
b.

Y (s)

F(s)
= s + 2

s2 + 4s + 3

5.16 For the following model the output is x1 and the input is f (t).

ẋ1 = −5x1 + 3x2

ẋ2 = x1 − 4x2 + 5 f (t)
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a. Use MATLAB to compute and plot the free response for x1(0) = 3, and
x2(0) = 5.

b. Use MATLAB to compute and plot the unit-step response for zero initial
conditions.

c. Use MATLAB to compute and plot the response for zero initial conditions
with the input f (t) = 3 sin 10π t , for 0 ≤ t ≤ 2.

5.17 Given the state-variable model

ẋ1 = −5x1 + 3x2 + 2u1

ẋ2 = −4x2 + 6u2

and the output equations

y1 = x1 + 3x2 + 2u1

y2 = x2

Use MATLAB to find the characteristic polynomial and the characteristic roots.
5.18 The equations of motion for the two-mass, quarter-car model of a suspension

system given in Example 4.5.9 are

m1 ẍ1 = c1(ẋ2 − ẋ1) + k1(x2 − x1)

m2 ẍ2 = −c1(ẋ2 − ẋ1) − k1(x2 − x1) + k2(y − x2)

Suppose the coefficient values are: m1 = 240 kg, m2 = 36 kg, k1 =
1.6 × 104 N/m, k2 = 1.6 × 105 N/m, c1 = 98 N · s/m.
a. Use MATLAB to create a state model. The input is y(t); the outputs are

x1 and x2.
b. Use MATLAB to compute and plot the response of x1 and x2 if the input

y(t) is a unit impulse and the initial conditions are zero.
c. Use MATLAB to find the characteristic polynomial and the characteristic

roots.
d. Use MATLAB to obtain the transfer functions X1(s)/Y (s) and

X2(s)/Y (s).
5.19 A representation of a car’s suspension suitable for modeling the bounce and

pitch motions is shown in Figure P5.19, which is a side view of the vehicle’s
body showing the front and rear suspensions. Assume that the car’s motion is
constrained to a vertical translation x of the mass center and rotation θ about a
single axis which is perpendicular to the page. The body’s mass is m and its

Figure P5.19
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moment of inertia about the mass center is IG . As usual, x and θ are the
displacements from the equilibrium position corresponding to y1 = y2 = 0.
The displacements y1(t) and y2(t) can be found knowing the vehicle’s speed
and the road surface profile.
a. Assume that x and θ are small, and derive the equations of motion for the

bounce motion x and pitch motion θ .
b. For the values k1 = 1100 lb/ft, k2 = 1525 lb/ft, c1 = c2 = 4 lb-sec/ft,

L1 = 4.8 ft, L2 = 3.6 ft, m = 50 slugs, and IG = 1000 slug-ft2, use
MATLAB to obtain a state-variable model in standard form.

c. Use MATLAB to obtain and plot the solution for x(t) and θ(t) when
y1 = 0 and y2 is a unit impulse. The initial conditions are zero.

Section 5.3 The MATLAB ode Functions

5.20 a. Use a MATLAB ode function to solve the following equation for
0 ≤ t ≤ 12. Plot the solution.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

5.21 a. Use a MATLAB ode function to solve the following equation for
0 ≤ t ≤ 1. Plot the solution.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution to check the accuracy of the numerical
method.

5.22 a. Use a MATLAB ode function to solve the following equation for
0 ≤ t ≤ 1. Plot the solution.

ẏ + 3y = 5e4t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

5.23 a. Use a MATLAB ode function to solve the following nonlinear equation
for 0 ≤ t ≤ 4. Plot the solution.

ẏ + sin y = 0 y(0) = 0.1 (1)

b. For small angles, sin y ≈ y. Use this fact to obtain a linear equation that
approximates equation (1). Use the closed-form solution of this linear
equation to check the output of your program.

5.24 Sometimes it is tedious to obtain a solution of a linear equation, especially if
all we need is a plot of the solution. In such cases, a numerical method might
be preferred. Use a MATLAB ode function to solve the following equation for
0 ≤ t ≤ 7. Plot the solution.

ẏ + 2y = f (t) y(0) = 2

where

f (t) =
⎧⎨
⎩

3t for 0 ≤ t ≤ 2
6 for 2 ≤ t ≤ 5
−3(t − 5) + 6 for 5 ≤ t ≤ 7
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5.25 A certain jet-powered ground vehicle is subjected to a nonlinear drag force. Its
equation of motion, in British units, is

50v̇ = f − (20v + 0.05v2)

Use a numerical method to solve for and plot the vehicle’s speed as a function
of time if the jet’s force is constant at 8000 lb and the vehicle starts from rest.

5.26 The following model describes a mass supported by a nonlinear, hardening
spring. The units are SI. Use g = 9.81 m/s2.

5ÿ = 5g − (900y + 1700y3)

Suppose that ẏ(0) = 0. Use a numerical method to solve for and plot
the solution for two different initial conditions: (1) y(0) = 0.06 and (2)
y(0) = 0.1.

5.27 Van der Pol’s equation is a nonlinear model for some oscillatory processes. It is

ÿ − b(1 − y2)ẏ + y = 0

Use a numerical method to solve for and plot the solution for the following
cases:
1. b = 0.1, y(0) = ẏ(0) = 1, 0 ≤ t ≤ 25
2. b = 0.1, y(0) = ẏ(0) = 3, 0 ≤ t ≤ 25
3. b = 3, y(0) = ẏ(0) = 1, 0 ≤ t ≤ 25

5.28 Van der Pol’s equation is

ÿ − b(1 − y2)ẏ + y = 0

This equation can be difficult to solve for large values of the parameter b.
Compare the performance of a nonstiff solver (such as ode45) with that of a
more accurate solver (such as ode15s). Use b = 1000 and 0 ≤ t ≤ 3000,
with the initial conditions y(0) = 2 and ẏ(0) = 0.

5.29 The equation of motion for a pendulum whose base is accelerating horizontally
with an acceleration a(t) is

L θ̈ + g sin θ = a(t) cos θ

Suppose that g = 9.81 m/s2, L = 1 m, and θ̇ (0) = 0. Solve for and plot θ(t)
for 0 ≤ t ≤ 10 s for the following three cases.
a. The acceleration is constant: a = 5 m/s2, and θ(0) = 0.5 rad.
b. The acceleration is constant: a = 5 m/s2, and θ(0) = 3 rad.
c. The acceleration is linear with time: a = 0.5t m/s2, and θ(0) = 3 rad.

5.30 Suppose the spring in Figure 4.5.14 is nonlinear and is described by the cubic
force-displacement relation. The equation of motion is

mẍ = c(ẏ − ẋ) + k1(y − x) + k2(y − x)3

where m = 100, c = 600, k1 = 8000, and k2 = 24000. Approximate the
unit-step input y(t) with y(t) = 1 − e−t/τ , where τ is chosen to be small
compared to the period and time constant of the model when the cubic term is
neglected. Use MATLAB to plot the forced response x(t).
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Section 5.4 Simulink and Linear Models

5.31 Create a Simulink model to plot the solution of the following equation for
0 ≤ t ≤ 6.

10ÿ = 7 sin 4t + 5 cos 3t y(0) = 4 ẏ(0) = 1

5.32 A projectile is launched with a velocity of 100 m/s at an angle of 30◦ above the
horizontal. Create a Simulink model to solve the projectile’s equations of
motion, where x and y are the horizontal and vertical displacements of the
projectile.

ẍ = 0 x(0) = 0 ẋ(0) = 100 cos 30◦

ÿ = −g y(0) = 0 ẏ(0) = 100 sin 30◦

Use the model to plot the projectile’s trajectory y versus x for 0 ≤ t≤ 10 s.
5.33 In Example 3.7.5 in Chapter 3 we obtained an approximate solution of the

following problem, which has no analytical solution even though it is linear.

ẋ + x = tan t x(0) = 0

The approximate solution, which is less accurate for large values of t , is

x(t) = 1

3
t3 − t2 + 3t − 3 + 3e−t

Create a Simulink model to solve this problem and compare its solution with
the approximate solution over the range 0 ≤ t ≤ 1.

5.34 Construct a Simulink model to plot the solution of the following equation for
0 ≤ t ≤ 10.

15ẋ + 5x = 4us(t) − 4us(t − 2) x(0) = 2

Section 5.5 Simulink and Nonlinear Models

5.35 Use the Transfer Function block to construct a Simulink model to plot the
solution of the following equation for 0 ≤ t ≤ 4.

2ẍ + 12ẋ + 10x2 = 5us(t) − 5us(t − 2) x(0) = ẋ(0) = 0

5.36 Construct a Simulink model to plot the solution of the following equation for
0 ≤ t ≤ 4.

2ẍ + 12ẋ + 10x2 = 5 sin 0.8t x(0) = ẋ(0) = 0

5.37 Use the Saturation block to create a Simulink model to plot the solution of the
following equation for 0 ≤ t ≤ 6.

3ẏ + y = f (t) y(0) = 2

where

f (t) =
⎧⎨
⎩

8 if 10 sin 3t > 8
−8 if 10 sin 3t < −8

10 sin 3t otherwise

5.38 Construct a Simulink model of the following problem.

5ẋ + sin x = f (t) x(0) = 0
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The forcing function is

f (t) =
⎧⎨
⎩

−5 if g(t) ≤ −5
g(t) if −5 ≤ g(t) ≤ 5
5 if g(t) ≥ 5

where g(t) = 10 sin 4t .
5.39 Create a Simulink model to plot the solution of the following equation for

0 ≤ t ≤ 3.

ẋ + 10x2 = 2 sin 4t x(0) = 1

5.40 Construct a Simulink model of the following problem.

10ẋ + sin x = f (t) x(0) = 0

The forcing function is f (t) = sin 2t . The system has the dead-zone
nonlinearity shown in Figure 5.5.6.

5.41 The following model describes a mass supported by a nonlinear, hardening
spring. The units are SI. Use g = 9.81 m/s2.

5ÿ = 5g − (900y + 1700y3) y(0) = 0.5 ẏ(0) = 0.

Create a Simulink model to plot the solution for 0 ≤ t ≤ 2.
5.42 Consider the system for lifting a mast, discussed in Example 2.2.4 in Chapter 2

and shown again in Figure P5.42. The 70-ft-long mast weighs 500 lb. The
winch applies a force f = 380 lb to the cable. The mast is supported initially
at an angle of θ = 30◦, and the cable at A is initially horizontal. The equation
of motion of the mast is

25,400 θ̈ = −17,500 cos θ + 626,000

Q
sin(1.33 + θ)

where

Q =
√

2020 + 1650 cos(1.33 + θ)

Create and run a Simulink model to solve for and plot θ(t) for θ(t) ≤ π/2 rad.
5.43 A certain mass, m = 2 kg, moves on a surface inclined at an angle φ = 30◦

above the horizontal. Its initial velocity is v(0) = 3 m/s up the incline. An
external force of f1 = 5 N acts on it parallel to and up the incline. The
coefficient of dynamic friction is μd = 0.5. Use the Coulomb Friction block or
the Sign block and create a Simulink model to solve for the velocity of the
mass until the mass comes to rest. Use the model to determine the time at
which the mass comes to rest.

Figure P5.42

W � 5�

L � 40�

H � 20�

D
d

A

O

380 lb

30°
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5.44 If a mass-spring system has Coulomb friction on the horizontal surface rather
than viscous friction, its equation of motion is

mÿ = −ky + f (t) − μmg if ẏ ≥ 0

mÿ = −ky + f (t) + μmg if ẏ < 0

where μ is the coefficient of friction. Develop a Simulink model for the case
where m = 1 kg, k = 5 N/m, μ = 0.4, and g = 9.8 m/s2. Run the simulation
for two cases: (a) the applied force f (t) is a step function with a magnitude of
10 N, and (b) the applied force is sinusoidal: f (t) = 10 sin 2.5t .
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Develop models of electrical circuits. This includes

Application of Kirchhoff’s voltage and current
laws, and
Use of loop analysis.

2. Obtain circuit models in transfer-function and
state-variable form.

3. Apply impedance methods to obtain models of
circuits and amplifiers.

4. Apply Newton’s laws, electrical circuit laws, and
electromagnetic principles to develop models of
electromechanical systems, including dc motors and
sensors.

5. Assess the performance of motors and amplifiers.

6. Apply MATLAB and Simulink to analyze models
of circuits and electromechanical systems in state-
variable and transfer function form.

T he majority of engineering systems now have at least one electrical subsystem.
This may be a power supply, sensor, motor, controller, or an acoustic device
such as a speaker. So an understanding of electrical systems is essential to

understanding the behavior of many systems.
Section 6.1 introduces the basic physics, common elements, and terminology of

electrical circuits and treats the two main physical laws needed to develop circuit
models. These are Kirchhoff’s current and voltage laws. Section 6.2 is an extensive
collection of circuit examples that emphasize resistance networks and circuits having
one or two capacitors or inductors.

272
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Impedance, a generalization of the electrical resistance concept, is covered in Sec-
tion 6.3. This concept enables you to derive circuit models more easily, especially
for more complex circuits, and is especially useful for obtaining models of circuits
containing operational amplifiers.

The principles of direct-current (dc) motors are established in Section 6.4, and
these principles are used to develop transfer function and state-variable models of mo-
tors. Section 6.5 examines some practical considerations in motor modeling, including
methods for assessing the performance of motors and amplifiers. In Section 6.6, these
principles are extended to other electromechanical devices such as sensors and speak-
ers. Many of the systems treated in this chapter are more easily designed with computer
simulation, and Sections 6.7 and 6.8 show how to apply MATLAB and Simulink in
electromechanical systems analysis. ■

6.1 ELECTRICAL ELEMENTS
Voltage and current are the primary variables used to describe a circuit’s behavior.
Current is the flow of electrons. It is the time rate of change of electrons passing through
a defined area, such as the cross section of a wire. Because electrons are negatively
charged, the positive direction of current flow is opposite to that of the electron flow.
The mathematical description of the relation between the number of electrons (called
charge Q) and current i is

i = d Q

dt
or Q(t) =

∫
i dt

The unit of charge is the coulomb (C), and the unit of current is the ampere (A), which is
one coulomb per second. These units, and the others we will use for electrical systems,
are the same in both the SI and FPS systems.

Energy is required to move a charge between two points in a circuit. The work per
unit charge required to do this is called voltage. The unit of voltage is the volt (V), which
is defined to be one joule per coulomb. The voltage difference between two points in a
circuit is a measure of the energy required to move charge from one point to the other.

The sign of voltage difference is important. Figure 6.1.1a shows a battery connected
to a lightbulb. The electrons in the wire are attracted to the battery’s positive terminal;
thus the positive direction of current is clockwise, as indicated by the arrow. Because the
battery supplies energy to move electrons and the lightbulb dissipates energy (through
light and heat), the sign of voltage difference across the battery is the opposite of the
sign of the voltage difference across the lightbulb. This is indicated by the + and −
signs in the diagram. Although the charge flows counterclockwise, we can think of a
positive current flowing clockwise. This current picks up energy as it passes through
the battery from the negative to the positive terminal. As it flows through the lightbulb,
the current loses energy; this is indicated by the + and − signs above and below the
bulb.

�

�

�

�

(a)

i
�

�

�

�

vs

i

(b)

Rvs

Figure 6.1.1 (a) A
battery-lightbulb circuit.
(b) Circuit diagram
representation of the
battery-lightbulb circuit
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The bulb current depends on the voltage difference and the bulb’s material proper-
ties, which resist the current and cause the energy loss. When a current flows through
wire or other circuit elements, it encounters resistance. Sometimes this resistance is de-
sirable and intentionally introduced; sometimes not. A resistor is an element designed
to provide resistance. Most resistors are designed to have a linear relation between
the current passing through them and the voltage difference across them. This linear
relation is Ohm’s law. It states that

v = i R

where i is the current, v is the voltage difference, and R is the resistance. The unit of
resistance is the ohm (�), which is one volt per ampere.

Figure 6.1.1b shows a voltage source, such as a battery, connected to a resistor.
Because of conservation of energy, the voltage increase vs supplied by the source must
equal the voltage drop i R across the resistor. Thus the model of this circuit is vs = i R.
If we know the voltage and the resistance, we can calculate the current that must be
supplied by the source as follows: i = vs/R.

ACTIVE AND PASSIVE ELEMENTS

Circuit elements may be classified as active or passive. Passive elements such as
resistors, capacitors, and inductors are not sources of energy, although the latter two
can store it temporarily. Elements that provide energy are sources, and elements that
dissipate energy are loads.

The active elements are energy sources that drive the system. There are several
types available; for example, chemical (batteries), mechanical (generators), thermal
(thermocouples), and optical (solar cells). Active elements are modeled as either ideal
voltage sources or ideal current sources. Their circuit symbols are given in Table 6.1.1.

Table 6.1.1 Electrical quantities.

Quantity Units Circuit symbol

Voltage volt (V) Voltage
Source

�

�
v

Charge coulomb (C) = N · m/V

Current ampere (A) = C/s Current
Source i

Resistance ohm (�) = V/A R

Capacitance farad (F) = C/V C

Inductance henry (H) = V · s/A L

Battery — �

�

Ground —

Terminals (input or output) —
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An ideal voltage source supplies the desired voltage no matter how much current is
drawn by the loading circuit. An ideal current source supplies whatever current is
needed by the loading circuit. Obviously no real source behaves exactly this way. For
example, battery voltage drops because of heat produced as current is drawn from the
battery. If the current is small the battery can be treated as an ideal voltage source. If not,
the battery is frequently modeled as an ideal voltage source plus an internal resistance
whose value can be obtained from the voltage-current curve for the battery.

Power P is work done per unit time, so the power generated by an active element,
or the power dissipated or stored by a passive element, can be calculated as follows:

power = work

time
= work

unit charge

charge

time
= voltage × current

Thus the power generated, dissipated, or stored by a circuit element equals the product
of the voltage difference across the element and the current flowing through the element.
That is, P = iv. The unit of power in the SI system is one joule per second, which is
defined to be a watt (W).

If the element is a linear resistor, the power dissipated is given by

P = iv = i2 R = v2

R
The appropriate form to use depends on which two of the three quantities i , v, and R
are known.

MODELING CIRCUITS

The dynamics of physical systems result from the transfer, loss, and storage of mass
or energy. A basic law used to model electrical systems is conservation of charge, also
known as Kirchhoff’s current law. Another basic law is conservation of energy. In
electrical systems, conservation of energy is commonly known as Kirchhoff’s voltage
law, which states that the algebraic sum of the voltages around a closed circuit or loop
must be zero. These physical laws alone do not provide enough information to write the
equations that describe the system. Three more types of information must be provided;
the four requirements are

1. The appropriate physical laws, such as conservation of charge and energy.
2. Empirically based descriptions, called constitutive relations, for some or all of the

system elements.
3. The specific way the system elements are arranged or connected.
4. Any relationships due to integral causality, such as the relation between charge

and current, Q = ∫
i dt .

The voltage-current relation for a resistor, v = i R, is an example of an
empirically based description of a system element, the third type of required infor-
mation. This type of description is an algebraic relation not derivable from a basic
physical law. Rather, the relation is obtained from a series of measurements. For ex-
ample, if we apply a range of currents to a resistor, then measure the resulting voltage
difference for each current, we would find that the voltage is directly proportional to
the applied current. The constant of proportionality is the resistance R, and we can
determine its value from the test results.

Knowledge of the elements’ arrangement is important because it is possible to
connect two elements in more than one way. For example, two resistors can be connected
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differently to form two different circuits (Figures 6.1.2 and 6.1.3); the models are
different for each circuit. We can use the voltage-current relation for a resistor along
with conservation of charge and conservation of energy to obtain the models.

Figure 6.1.2 Series resistors.

�

�

�

�
vs

v1

�

�

v2

i

R1

R2

Figure 6.1.3 Parallel
resistors.

�

�

vs

i

i1 i2

R1 R2

SERIES RESISTANCES

For Figure 6.1.2, conservation of charge implies that the current is the same through
each resistor. When traversing the loop clockwise, a voltage increase occurs when we
traverse the source vs , and a voltage decrease occurs when we traverse each resistor.
Assign a positive sign to a voltage increase, and a negative sign to a voltage decrease.
Then Kirchhoff’s voltage law gives

vs − v1 − v2 = vs − i R1 − i R2 = 0

or

vs = (R1 + R2)i (6.1.1)

Thus, the supply voltage vs must equal the sum of the voltages across the two resistors.
Equation (6.1.1) is an illustration of the series resistance law. If the same current

passes through two or more electrical elements, those elements are said to be in series,
and the series resistance law states that they are equivalent to a single resistance R that
is the sum of the individual resistances. Thus the circuit in Figure 6.1.2 can be modeled
as the simpler circuit in Figure 6.1.1b.

Because i = vs/(R1 + R2) in Figure 6.1.2,

v1 = R1i =
(

R1

R1 + R2

)
vs (6.1.2)

v2 = R2i =
(

R2

R1 + R2

)
vs (6.1.3)

These equations express the voltage-divider rule. They show that

v1

v2
= R1

R2
(6.1.4)

This rule is useful for reducing a circuit with many resistors to an equivalent circuit
containing one resistor.

PARALLEL RESISTANCES

For Figure 6.1.3, conservation of charge gives i = i1 + i2. From Kirchhoff’s voltage
law we see that the voltage across each resistor must be vs , and thus, i1 = vs/R1 and
i2 = vs/R2. Combining these three relations gives

i = i1 + i2 = vs

R1
+ vs

R2

Solve for i to obtain

i =
(

1

R1
+ 1

R2

)
vs (6.1.5)

Equation (6.1.5) is an illustration of the parallel resistance law. If the same voltage
difference exists across two or more electrical elements, those elements are said to be
in parallel. For two resistors in parallel, the parallel resistance law states that they are
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equivalent to a single resistance R given by

1

R
= 1

R1
+ 1

R2
(6.1.6)

Thus, the circuit in Figure 6.1.3 can be modeled as the simpler circuit in Figure 6.1.1b.
This formula can be extended to more than two resistors.

Note that

i1 =
(

R2

R1 + R2

)
i (6.1.7)

i2 =
(

R1

R1 + R2

)
i (6.1.8)

These equations express the current-divider rule. They show that

i1

i2
= R2

R1
(6.1.9)

The current-divider rule can be used to find the equivalent resistance of a circuit with
many resistors.

NONLINEAR RESISTANCES

Not all resistance elements have the linear voltage-current relation v = i R. An example
of a specific diode’s voltage-current relationship found from experiments is

i = 0.16(e0.12v − 1)

For low voltages, we can approximate this curve with a straight line whose slope equals
the derivative di/dv at v = 0.

di

dv

∣∣∣∣
v=0

= 0.16
(
0.12e0.12v

)∣∣
v=0 = 0.0192

Thus, for small voltages, i = 0.0192v, and the resistance is R = 1/0.0192 = 52 �.

CAPACITANCE

A capacitor is designed to store charge. The capacitance C of a capacitor is a measure
of how much charge can be stored for a given voltage difference across the element.
Capacitance thus has the units of charge per volt. This unit is named the farad (F).

For a capacitor, Q = ∫
i dt , where Q is the charge on the capacitor, and i is

the current passing through the capacitor. The constitutive relation for a capacitor is
v = Q/C, where v is the voltage across the capacitor. Combining these two relations
gives

v = 1

C

∫
i dt = 1

C

∫ t

0
i dt + Q0

C

where Q0 is the initial charge on the capacitor at time t = 0. In derivative form, this
relation is expressed as

i = C
dv

dt
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INDUCTANCE

A magnetic field (a flux) surrounds a moving charge or current. If the conductor of the
current is coiled, the flux created by the current in one loop affects the adjacent loops.
This flux is proportional to the time integral of the applied voltage, and the current is
proportional to the flux. The constitutive relation for an inductor is φ = Li , where L is
the inductance and φ is the flux across the inductor.

The integral causality relation between flux and voltage is

φ =
∫

v dt

Combining the two preceding expressions for φ gives the voltage-current relation for
the inductor

i = 1

L

∫
v dt

which is equivalent to

v = L
di

dt

The unit of inductance is the henry (H), which is one volt-second per ampere.

POWER AND ENERGY

The power dissipated by or stored by an electrical element is the product of its current
and the voltage across it: P = iv. Capacitors and inductors store electrical energy as
stored charge and in a magnetic field, respectively. The energy E stored in a capacitor
can be found as follows:

E =
∫

P dt =
∫

iv dt =
∫ (

C
dv

dt

)
v dt = C

∫
v dv = 1

2
Cv2

Similarly, the energy E stored in an inductor is

E =
∫

P dt =
∫

iv dt =
∫

i
(

L
di

dt

)
dt = L

∫
i di = 1

2
Li2

Table 6.1.2 summarizes the voltage-current relations and the energy expressions
for resistance, capacitance, and inductance elements.

Table 6.1.2 Voltage-current and energy relations for circuit
elements.

Resistance: v = i R P = Ri2 = v2

R

Capacitance: v = 1

C

∫ t

0

i dt + Q0

C
E = 1

2
Cv2

Inductance: v = L
di

dt
E = 1

2
Li2
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6.2 CIRCUIT EXAMPLES
The examples in this section illustrate how to apply the basic circuit principles intro-
duced in Section 6.1.

Current and Power in a Resistance Circuit EXAMPLE 6.2.1

■ Problem
For the circuit shown in Figure 6.2.1, the applied voltage is vs = 6 V and the resistance is
R = 10 �. Determine the current and the power that must be produced by the power supply.

■ Solution
The current is found from i = vs/R = 6/10 = 0.6 A. The power is computed from P =
v2

s /R = 62/10 = 3.6 W. Note that we can also compute the power from P = ivs .

Figure 6.2.1 A simple
resistance circuit.

�

�

�

�

vs

i

R

A Summing Circuit EXAMPLE 6.2.2

■ Problem
Figure 6.2.2 shows a circuit for summing the voltages v1 and v2 to produce v3. Derive the
expression for v3 as a function of v1 and v2, for the case where R1 = R2 = 10 �, and R3 = 20 �.

Figure 6.2.2 A summing
circuit.

i2

i1

�

�

�

�

v1

v3
v2

i3

R2

R1

R3

■ Solution
Define the currents shown in the diagram. The voltage-current relation for each resistor gives

i1 = v1 − v3

R1

i2 = v2 − v3

R2

i3 = v3

R3

There is no capacitance in the circuit. Therefore, no charge can be stored anywhere in the circuit.
Thus conservation of charge gives i3 = i1 + i2. Substituting the expressions for the currents into
this equation, we obtain

v3

R3
= v1 − v3

R1
+ v2 − v3

R2

which gives

v3 = 0.4(v1 + v2)

Thus, v3 is proportional to the sum of v1 and v2. This is true in general only if R1 = R2.

Application of the Voltage-Divider Rule EXAMPLE 6.2.3

■ Problem
Consider the circuit shown in Figure 6.2.3. Obtain the voltage vo as a function of the applied
voltage vs by applying the voltage-divider rule. Use the values R1 = 5 �, R2 = 10 �, R3 = 6 �,
and R4 = 2 �.
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Figure 6.2.3 A resistance
network with two loops.

�

�

�

�

vs vo

i2

i1 i3

R1 R3

R2 R4

A

Figure 6.2.4 Application of the
voltage-divider rule.

�

�

vs

vA

vo

5 �

10 � 2 �

6 �

(a)

�

�

vs

vA5 �

10 � 8 �

(b)

 �
9
40

vA

�

�

vs

5 �

(c)

■ Solution
Let vA be the voltage at the node shown in Figure 6.2.4a. The voltage-divider rule applied to
resistors R3 and R4 gives

vo = R4

R3 + R4
vA = 2

6 + 2
vA = 1

4
vA (1)

Because resistors R3 and R4 are in series, we can add their values to obtain their equivalent
resistance Rs = 2 + 6 = 8 �. The equivalent circuit is shown in Figure 6.2.4b.

Resistors Rs and R2 are parallel, so we can combine their values to obtain their equivalent
resistance Rp as follows:

1

Rp
= 1

10
+ 1

8
= 9

40

Thus, Rp = 40/9. The equivalent circuit is shown in Figure 6.2.4c.
Finally, we apply the voltage-divider rule again to obtain

vA = 40/9

5 + 40/9
vs = 8

17
vs (2)

Using (1) and (2) we obtain

vo = 1

4
vA = 1

4

(
8

17

)
vs = 2

17
vs

A potentiometer is a resistance with a sliding electrical pick-off (Figure 6.2.5a).
Thus the resistance R1 between the sliding contact and ground is a function of the
distance x of the contact from the end of the potentiometer. Potentiometers, commonly
called pots, are used as linear and angular position sensors. The volume control knob
on some radios is a potentiometer that is used to adjust the voltage to the speakers.
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(a)

vo

V

L

x

(b)

V
�

�
vo

R2

R1

Figure 6.2.5 A translational
(linear) potentiometer.

Potentiometers EXAMPLE 6.2.4

■ Problem
Assuming the potentiometer resistance R1 is proportional to x , derive the expression for the
output voltage vo as a function of x .

■ Solution
The length of the pot is L and its total resistance is R1 + R2. Figure 6.2.5b shows the circuit
diagram of the system. From the voltage-divider rule,

vo = R1

R1 + R2
V (1)

Because the resistance R1 proportional to x ,

R1 = (R1 + R2)

(
x

L

)
Substituting this into equation (1) gives

vo = x

L
V = K x

where K = V/L is the gain of the pot.

Figure 6.2.6 A rotational
potentiometer.

� �max

vo

V

The voltage source for the pot can be a battery or it can be a power supply.
A rotational potentiometer is shown in Figure 6.2.6. Following a similar procedure

we can show that if the resistance is proportional to θ , then

vo = θ

θmax
V = K θ

where K = V/θmax.

Maximum Power Transfer in a Speaker-Amplifier System EXAMPLE 6.2.5

■ Problem
A common example of an electrical system is an amplifier and a speaker. The load is the
speaker, which requires current from the amplifier in order to produce sound. In Figure 6.2.7a
the resistance RL is that of the load. Part (b) of the figure shows the circuit representation of the
system. The source supplies a voltage vS and a current iS , and has its own internal resistance
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Figure 6.2.7 (a) An
amplifier-speaker system.
(b) Circuit representation with
a voltage source and a resistive
load.

(a)

Power Source
(e.g., an amplifier)

Load
(e.g., a speaker)

RL

(b)

Source Load

RS

RL
�

�

vS

�

�

vL

iS

RS . For optimum efficiency, we want to maximize the power supplied to the speaker, for given
values of vS and RS . Determine the value of RL to maximize the power transfer to the load.

■ Solution
The required model should describe the power supplied to the speaker in terms of vS , RS , and
RL . From Kirchhoff’s voltage law,

vs − iS RS − iS RL = 0

We want to find vL in terms of vS . From the voltage-divider rule,

vL = RL

RS + RL
vS

The power consumed by the load is PL = i2
S RL = v2

L/RL . Using the relation between vL and
vS we can express PL in terms of vS as

PL = RL

(RS + RL)2
v2

S

To maximize PL for a fixed value of vS , we must choose RL to maximize the ratio

r = RL

(RS + RL)2

The maximum of r occurs where dr/d RL = 0.

dr

d RL
= (RS + RL)2 − 2RL(RS + RL)

(RS + RL)4
= 0

This is true if RL = RS . Thus to maximize the power to the load we should choose the load
resistance RL to be equal to the source resistance RS . This result for a resistance circuit is a
special case of the more general result known as impedance matching.
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A Feedback Amplifier EXAMPLE 6.2.6

■ Problem
Early in the twentieth century engineers struggled to design vacuum-tube amplifiers whose
gain remained constant at a predictable value. The gain is the ratio of the output voltage to the
input voltage. The vacuum-tube gain G can be made large but is somewhat unpredictable and
unreliable due to heat effects and manufacturing variations. A solution to the problem is shown
in Figure 6.2.8. Derive the input-output relation for vo as a function of vi . Investigate the case
where the gain G is very large.

Figure 6.2.8 A feedback
amplifier.

vi

R1

R2

voG

■ Solution
Part of the voltage drop across the resistors is used to raise the ground level at the amplifier input,
so the input voltage to the amplifier is vi − R2vo/(R1 + R2). Thus the amplifier’s output is

vo = G

(
vi − R2

R1 + R2
vo

)
Solve for vo:

vo = G

1 + G R2/(R1 + R2)
vi

If G R2/(R1 + R2) � 1, then

vo ≈ R1 + R2

R2
vi

Presumably, the resistor values are sufficiently accurate and constant enough to allow the gain
(R1 + R2)/R2 to be predictable and reliable.

LOOP CURRENTS

Sometimes the circuit equations can be simplified by using the concept of a loop current,
which is a current identified with a specific loop in the circuit. A loop current is not
necessarily an actual current. If an element is part of two or more loops, the actual current
through the element is the algebraic sum of the loop currents. Use of loop currents
usually reduces the number of unknowns to be found, although when deriving the
circuit equations you must be careful to use the proper algebraic sum for each element.

Analysis with Loop Currents EXAMPLE 6.2.7

■ Problem
We are given the values of the voltages and the resistances for the circuit in Figure 6.2.9a. (a)
Solve for the currents i1, i2, and i3 passing through the three resistors. (b) Use the loop-current
method to solve for the currents.

�

�

�

�

v2v1

i2

i1

R1 R3

R2

(a)

iA iB

�

�

�

�

R1 R3

R2

(b)

i3
v2v1

Figure 6.2.9 Example of loop
analysis.
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■ Solution
a. Applying Kirchhoff’s voltage law to the left-hand loop gives

v1 − R1i1 − R2i2 = 0

For the right-hand loop,

v2 − R2i2 + i3 R3 = 0

From conservation of charge, i1 = i2 + i3. These are three equations in three unknowns.
Their solution is

i1 = (R2 + R3)v1 − R2v2

R1 R2 + R1 R3 + R2 R3

i2 = R3v1 + R1v2

R1 R2 + R1 R3 + R2 R3
(1)

i3 = R2v1 − (R1 + R2)v2

R1 R2 + R1 R3 + R2 R3

b. Define the loop currents i A and iB positive clockwise, as shown in Figure 6.2.9b. Note that
there is a voltage drop R2i A across R2 due to i A and a voltage increase R2iB due to iB .
Applying Kirchhoff’s voltage law to the left-hand loop gives

v1 − R1i A − R2i A + R2iB = 0

For the right-hand loop,

v2 + R3iB + R2iB − R2i A = 0

Now we have only two equations to solve. Their solution is

iA = (R2 + R3)v1 − R2v2

R1 R2 + R1 R3 + R2 R3
(2)

iB = R2v1 − (R1 + R2)v2

R1 R2 + R1 R3 + R2 R3
(3)

The current i1 through R1 is the same as i A, and the current i3 through R3 is the same as iB .
The current i2 through R2 is i2 = i A − iB , which gives expression (1) when expressions (2)
and (3) are substituted.

CAPACITANCE AND INDUCTANCE IN CIRCUITS

Examples 6.2.8 through 6.2.13 illustrate how models are developed for circuits con-
taining capacitors or inductors.

EXAMPLE 6.2.8 Series RC Circuit

■ Problem
The resistor and capacitor in the circuit shown in Figure 6.2.10 are said to be in series because
the same current flows through them. Obtain the model of the capacitor voltage v1. Assume that
the supply voltage vs is known.
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■ Solution
From Kirchhoff’s voltage law, vs − Ri − v1 = 0. This gives

i = 1

R
(vs − v1) (1)

For the capacitor,

v1 = 1

C

∫ t

0
i dt + Q0

C

Differentiate this with respect to t to obtain

dv1

dt
= 1

C
i

Then substitute for i from (1):

dv1

dt
= 1

RC
(vs − v1)

This the required model. It is often expressed in the following rearranged form:

RC
dv1

dt
+ v1 = vs (2)

Figure 6.2.10 A series RC
Circuit.

�

�

v1vs

i

R

C

Pulse Response of a Series RC Circuit EXAMPLE 6.2.9

■ Problem
A rectangular pulse input is a positive step function that lasts a duration D. One way of producing
a step voltage input is to use a switch like that shown in Figure 6.2.11a. The battery voltage V
is constant and the switch is initially closed at point B. At t = 0 the switch is suddenly moved
from point B to point A. Then at t = D the switch is suddenly moved back to point B. Obtain
the expression for the capacitor voltage v1(t) assuming that v1(0) = 0.

■ Solution
When at t = 0 the switch is suddenly moved from point B to point A, the circuit is identical to
that shown in Figure 6.2.10 with vs = V , and its model is

RC
dv1

dt
+ v1 = V (1)

The input voltage is a step function of magnitude V . Using the methods of Chapter 3, we can
obtain the following solution for v1 as a function of time. Since v1(0) = 0, the solution is the
forced response.

v1(t) = V
(
1 − e−t/RC

)
(2)

When the switch is moved back to point B at time t = D, the circuit is equivalent to that
shown in Figure 6.2.11b, whose model is equation (1) with V = 0.

v1

RA

�

�

CB

(a) (b)

v1

R

CV

Figure 6.2.11 (a) Series RC
circuit with a switch.
(b) Circuit with switch in
position B .
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Figure 6.2.12 Pulse response
of a series RC circuit.

t

0
0 D D � 4RC

v1(D)

v1(t)

0.02v1(D)

The solution of this equation for t ≥ D is simply the free response with the initial condition
v1(D), whose expression can be obtained from equation (2).

v1(t) = v1(D)e−(t−D)/RC = V
(
1 − e−D/RC

)
e−(t−D)/RC

The solution is sketched in Figure 6.2.12.

EXAMPLE 6.2.10 Series RCL Circuit

■ Problem
The resistor, inductor, and capacitor in the circuit shown in Figure 6.2.13 are in series because
the same current flows through them. Obtain the model of the capacitor voltage v1 with the
supply voltage vs as the input.

Figure 6.2.13 A series RCL
circuit.

v1

R

L

C

�

�

vs

i

■ Solution
From Kirchhoff’s voltage law,

vs − Ri − L
di

dt
− v1 = 0 (1)

For the capacitor,

v1 = 1

C

∫ t

0
i dt

Differentiate this with respect to t to obtain

i = C
dv1

dt

and substitute this for i in (1):

vs − RC
dv1

dt
− LC

d2v1

dt2
− v1 = 0
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This is the required model. It can be expressed in the following form:

LC
d2v1

dt2
+ RC

dv1

dt
+ v1 = vs (2)

Parallel RL Circuit EXAMPLE 6.2.11

■ Problem
The resistor and inductor in the circuit shown in Figure 6.2.14 are said to be in parallel because
they have the same voltage v1 across them. Obtain the model of the current i2 passing through
the inductor. Assume that the supply current is is known.

Figure 6.2.14 A parallel RL
circuit.

v1R L

i1

is

i2
■ Solution
The currents i1 and i2 are defined in the figure. Then,

v1 = L
di2

dt
= Ri1 (1)

From conservation of charge, i1 + i2 = is . Thus, i1 = is − i2. Substitute this expression into (1)
to obtain

L
di2

dt
= R(is − i2)

This is the required model. It can be rearranged as follows:

L

R

di2

dt
+ i2 = is (2)

Analysis of a Telegraph Line EXAMPLE 6.2.12

■ Problem
Figure 6.2.15 shows a circuit representation of a telegraph line. The resistance R is the line
resistance and L is the inductance of the solenoid that activates the receiver’s clicker. The switch
represents the operator’s key. Assume that when sending a “dot,” the key is closed for 0.1 s.
Using the values R = 20 � and L = 4 H, obtain the expression for the current i(t) passing
through the solenoid.

Figure 6.2.15 Circuit
representation of a telegraph
line.

R

12v L
�

�
i

■ Solution
From the voltage law we have

L
di

dt
+ Ri = vi (t) (1)

where vi (t) represents the input voltage due to the switch and the 12-V supply. We could model
vi (t) as a rectangular pulse of height 12 V and duration 0.1 s, but the differential equation (1)
is easier to solve if we model vi (t) as an impulsive input of strength 12(0.1) = 1.2 V · s. This
model can be justified by the fact that the circuit time constant, L/R = 4/20 = 0.2, is greater
than the duration of vi (t). Thus we model vi (t) as vi (t) = 1.2δ(t). The Laplace transform of
equation (1) with i(0) = 0 gives

(4s + 20)I (s) = 1.2 or I (s) = 1.2

4s + 20
= 0.3

s + 5

This gives the solution

i(t) = 0.3e−5t A
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Note that this solution gives i(0+) = 0.3, whereas i(0) = 0. The difference is due to the
impulsive input.

EXAMPLE 6.2.13 An RLC Circuit with Two Input Voltages

■ Problem
The RLC circuit shown in Figure 6.2.16 has two input voltages. Obtain the differential equation
model for the current i3.

Figure 6.2.16 An RLC circuit
with two voltage sources.

�

�

�

�

v1 v2

i1 i2

i3

R C

L

■ Solution
Applying Kirchhoff’s voltage law to the left-hand loop gives

v1 − Ri1 − L
di3

dt
= 0 (1)

For the right-hand loop,

v2 − 1

C

∫
i2 dt − L

di3

dt
= 0

Differentiate this equation with respect to t :

dv2

dt
− 1

C
i2 − L

d2i3

dt2
= 0 (2)

From conservation of charge,

i3 = i1 + i2 (3)

These are three equations in the three unknowns i1, i2, and i3. To eliminate i1 and i2, solve
equation (1) for i1

i1 = 1

R

(
v1 − L

di3

dt

)
(4)

In equation (2), substitute for i2 from equation (3):

dv2

dt
− 1

C
(i3 − i1) − L

d2i3

dt2
= 0

Now substitute for i1 from equation (4):

dv2

dt
− 1

C
i3 + 1

C

[
1

R

(
v1 − L

di3

dt

)]
− L

d2i3

dt2
= 0

Rearrange this equation to obtain the answer:

LRC
d2i3

dt2
+ L

di3

dt
+ Ri3 = v1 + RC

dv2

dt
(5)

STATE-VARIABLE MODELS OF CIRCUITS

The presence of several current and voltage variables in a circuit can sometimes lead
to difficulty in identifying the appropriate variables to use for expressing the circuit
model. Use of state variables can often reduce this confusion. To choose a proper set
of state variables, identify where the energy is stored in the system. The variables that
describe the stored energy are appropriate choices for state variables.
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State-Variable Model of a Series RLC Circuit EXAMPLE 6.2.14

■ Problem
Consider the series RLC circuit shown in Figure 6.2.17. Choose a suitable set of state variables,
and obtain the state variable model of the circuit in matrix form. The input is the voltage vs .

�

�

vs

R L

i

C v1

Figure 6.2.17 Series RLC
circuit.

■ Solution
In this circuit the energy is stored in the capacitor and in the inductor. The energy stored in the
capacitor is Cv2

1/2 and the energy stored in the inductor is Li2/2. Thus a suitable choice of state
variables is v1 and i .

From Kirchhoff’s voltage law,

vs − Ri − L
di

dt
− v1 = 0

Solve this for di/dt :

di

dt
= 1

L
vs − 1

L
v1 − R

L
i

This is the first state equation.
Now find an equation for dv1/dt . From the capacitor relation,

v1 = 1

C

∫
i dt

Differentiating gives the second state equation.

dv1

dt
= 1

C
i

The two state equations can be expressed in matrix form as follows.⎡
⎢⎣

di

dt
dv1

dt

⎤
⎥⎦ =

⎡
⎢⎣− R

L
− 1

L
1

C
0

⎤
⎥⎦

[
i
v1

]
+

⎡
⎣ 1

L
0

⎤
⎦ vs

6.3 IMPEDANCE AND AMPLIFIERS
The Laplace transform and the transfer function concept enable us to deal with alge-
braic equations rather than differential equations, and thus ease the task of analyzing
circuit models. This section illustrates why this is so, and introduces a related concept,
impedance, which is simply the transfer function between voltage and current.

Coupled RC Loops EXAMPLE 6.3.1

■ Problem
Determine the transfer function Vo(s)/Vs(s) of the circuit shown in Figure 6.3.1.



palm-38591 book December 17, 2008 12:13

290 CHAPTER 6 Electrical and Electromechanical Systems

Figure 6.3.1 Coupled RC
loops.

�

�

vs

i2

i1 R Rv1

C C
i3

vo

■ Solution
The energy in this circuit is stored in the two capacitors. Because the energy stored in a capacitor
is expressed by Cv2/2, appropriate choices for the state variables are the voltages v1 and vo. The
capacitance relations are

dvo

dt
= i3

C

dv1

dt
= i2

C
(1)

For the right-hand loop,

i3 = v1 − vo

R
(2)

From equation (1)

dvo

dt
= 1

RC
(v1 − vo) (3)

For the left-hand loop,

i1 = vs − v1

R
(4)

From conservation of charge and equations (2) and (4),

i2 = i1 − i3 = vs − v1

R
− v1 − vo

R
= 1

R
(vs − 2v1 + vo) (5)

Using this with equation (2) gives

dv1

dt
= 1

RC
(vs − 2v1 + vo) (6)

Equations (3) and (6) are the state equations. To obtain the transfer function Vo(s)/Vs(s),
transform these equations for zero initial conditions to obtain

sVo(s) = 1

RC
[V1(s) − Vo(s)]

sV1(s) = 1

RC
[Vs(s) − 2V1(s) + Vo(s)]

Eliminating V1(s) from these two equations gives the transfer function

Vo(s)

Vs(s)
= 1

R2C2s2 + 3RCs + 1
(7)

IMPEDANCE

We have seen that a resistance resists or “impedes” the flow of current. The correspond-
ing relation is v/ i = R. Capacitance and inductance elements also impede the flow of
current. In electrical systems an impedance is a generalization of the resistance concept
and is defined as the ratio of a voltage transform V (s) to a current transform I (s) and
thus implies a current source. A standard symbol for impedance is Z(s). Thus

Z(s) = V (s)

I (s)
(6.3.1)
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The impedance of a resistor is its resistance R. The impedances of the other two
common electrical elements are found as follows. For a capacitor,

v(t) = 1

C

∫ t

0
i dt

or V (s) = I (s)/C(s). The impedance of a capacitor is thus

Z(s) = 1

Cs
(6.3.2)

For an inductor,

v(t) = L
di

dt
or V (s) = Ls I (s). Thus the impedance of an inductor is

Z(s) = Ls (6.3.3)

SERIES AND PARALLEL IMPEDANCES

The concept of impedance is useful because the impedances of individual elements
can be combined with series and parallel laws to find the impedance at any point in
the system. The laws for combining series or parallel impedances are extensions to
the dynamic case of the laws governing series and parallel resistance elements. Two
impedances are in series if they have the same current. If so, the total impedance is the
sum of the individual impedances.

Z(s) = Z1(s) + Z2(s)

For example, a resistor R and capacitor C in series, as shown in Figure 6.3.2a, have the
equivalent impedance

Z(s) = R + 1

Cs
= RCs + 1

Cs
Thus the relation between the current i flowing through them and the total voltage drop
v across them is

V (s)

I (s)
= Z(s) = RCs + 1

Cs
and the differential equation model is

C
dv

dt
= RC

di

dt
+ i(t)

If the impedances have the same voltage difference across them, they are in parallel,
and their impedances combine by the reciprocal rule

1

Z(s)
= 1

Z1(s)
+ 1

Z2(s)

(b)(a)

R

C

�

�

v

i

�

�

R Cv

i Figure 6.3.2 Series and
parallel RC circuits.
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where Z(s) is the total equivalent impedance. If a resistor R and capacitor C are in
parallel, as shown in Figure 6.3.2b, their equivalent total impedance Z(s) is found from

1

Z(s)
= 1

1/Cs
+ 1

R

or

Z(s) = R

RCs + 1

Thus the relation between the total current i and the voltage drop v across them is

V (s)

I (s)
= Z(s) = R

RCs + 1

and the differential equation model is

RC
dv

dt
+ v = Ri(t)

EXAMPLE 6.3.2 Circuit Analysis Using Impedance

■ Problem
For the circuit shown in Figure 6.3.3a, determine the transfer function between the input voltage
vs and the output voltage vo.

■ Solution
Note that R and C are in parallel. Therefore their equivalent impedance Z(s) is found from

1

Z(s)
= 1

1/Cs
+ 1

R

or

Z(s) = R

RCs + 1

An impedance representation of the equivalent circuit is shown in Figure 6.3.3b. In this represen-
tation we may think of the impedance as a simple resistance, provided we express the relations
in Laplace transform notation. Kirchhoff’s voltage law gives

Vs(s) − R1 I (s) − Z(s)I (s) = 0

The output voltage is related to the current by Vo(s) = Z(s)I (s). Eliminating I (s) from these
two relations gives

Vs(s) − R1
Vo(s)

Z(s)
− Vo(s) = 0

Figure 6.3.3 Circuit analysis
using impedance.

�

�

vs vo

R1

R C

�

�

vs vo

i R1

(a) (b)

i

Z(s)
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which yields the desired transfer function:

Vo(s)

Vs(s)
= Z(s)

R1 + Z(s)
= R

R R1Cs + R + R1

This network is a first-order system whose time constant is

τ = R R1

R + R1

If the voltage output is measured at the terminals to which the driving current
is applied, the impedance so obtained is the driving-point or input impedance. If the
voltage is measured at another place in the circuit, the impedance obtained is a trans-
fer impedance (because the effect of the input current has been transferred to another
point). Sometimes the term admittance is used. This is the reciprocal of impedance,
and it is an indication of to what extent a circuit “admits” current flow.

ISOLATION AMPLIFIERS

A voltage-isolation amplifier is designed to produce an output voltage that is propor-
tional to the input voltage. It is intended to boost the electrical signal from a low-power
source. Therefore, the amplifier requires an external power source, which is not usually
shown in the circuit diagrams. We will not be concerned with the internal design details
of amplifiers, but we need to understand their effects on any circuit in which they are
used.

Such an amplifier may be considered to be a voltage source if it does not affect the
behavior of the source circuit that is attached to the amplifier input terminals, and if
the amplifier is capable of providing the voltage independently of the particular circuit
(the “load”) attached to amplifier output terminals.

Consider the system in Figure 6.3.4. The internal impedances of the amplifier at
its input and output terminals are Zi (s) and Zo(s), respectively. The impedance of the
source circuit is Zs(s) and the impedance of the load is ZL(s). A simple circuit analysis
will reveal that

Vs(s) − I1(s)Zs(s) − Vi (s) = 0

and I1(s) = Vi (s)/Zi (s). Thus, if Zi (s) is large, the current i1 drawn by the amplifier
will be small. Therefore, if the input impedance Zi (s) is large, the amplifier does not
affect the current i1, and thus the amplifier does not affect the behavior of the source
circuit. In addition, if Zi (s) is large,

Vi (s) = Zi (s)

Zi (s) + Zs(s)
Vs(s) ≈ Vs(s)

So we conclude that a voltage-isolation amplifier must have a high input impedance.

�

�

i1
Zs(s)

Zi(s)vs vi

Source

Amplifier

vL

�

�

Zo(s)

ZL(s)Gvi

Load

io
Figure 6.3.4 Input and output
impedance in an amplifier.
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Figure 6.3.5 An op-amp
multiplier.

(a) (b)

v1
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Rf

�

�

�

�

vi vo
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i2

i3Ri

Rf

�

�
�

�

vi

vo

v1

i1

i2

G

i3

�Gv1

Denote the amplifier’s voltage gain as G. This means that the amplifier’s output
voltage vo is vo = Gvi . For the load circuit,

GVi (s) − Io(s)Zo(s) − Io(s)ZL(s) = 0

Thus

Io(s) = GVi (s)

Zo(s) + ZL(s)
and

VL(s) = ZL(s)Io(s) = ZL(s)

Zo(s) + ZL(s)
GVo(s)

Thus, if Zo(s) is small, vL ≈ Gvo. So if the amplifier output impedance is small the
voltage vL delivered to the load is independent of the load.

A similar analysis applies to a current amplifier, which provides a current propor-
tional to its input signal regardless of the load. Thus such an amplifier acts as a current
source.

OPERATIONAL AMPLIFIERS

A modern version of the feedback amplifier discussed in Example 6.2.6 is the opera-
tional amplifier (op amp), which is a voltage amplifier with a very large gain G (greater
than 105). The op amp has a large input impedance so it draws a negligible current.
The op amp is an integrated circuit chip that contains many transistors, capacitors, and
resistors and has several external terminals. We can attach two resistors in series with
and parallel to the op amp, as shown in Figure 6.3.5a. This circuit diagram does not
show all of the op amp’s external terminals; for example, some terminals are needed
to power the device and to provide constant bias voltages. Our diagram shows only
two pairs of terminals: the input terminals intended for time-varying input signals and
the output terminals. A plus sign or a minus sign on an input terminal denotes it as a
noninverting terminal or an inverting terminal, respectively.

Op amps are widely used in instruments and control systems for multiplying,
integrating, and differentiating signals.

EXAMPLE 6.3.3 Op-Amp Multiplier

■ Problem
Determine the relation between the input voltage vi and the output voltage vo of the op-amp
circuit shown in Figure 6.3.5a. Assume that the op amp has the following properties:

1. The op-amp gain G is very large,
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2. vo = −Gv1; and
3. The op-amp input impedance is very large, and thus the current i3 drawn by the op amp is

very small.

■ Solution
Because the current i3 drawn by the op amp is very small, the input terminal pair can be
represented as an open circuit, as in Figure 6.3.5b. The voltage-current relation for each resistor
gives

i1 = vi − v1

R1

and

i2 = v1 − vo

R2

From conservation of charge, i1 = i2 + i3. However, from property 3, i3 ≈ 0, which implies that
i1 ≈ i2. Thus,

vi − v1

R1
= v1 − vo

R2

From property 1, v1 = −vo/G. Substitute this into the preceeding equation:

vi

R1
+ vo

R1G
= − vo

R1G
− vo

R2

Because G is very large, the terms containing G in the denominator are very small, and we
obtain

vi

R1
= − vo

R2

Solve for vo:

vo = − R2

R1
vi (1)

This circuit can be used to multiply a voltage by the factor R2/R1, and is called an op-amp
multiplier. Note that this circuit inverts the sign of the input voltage.

Resistors usually can be made so that their resistance values are known with sufficient
accuracy and are constant enough to allow the gain R2/R1 to be predictable and reliable.

GENERAL OP-AMP INPUT-OUTPUT RELATION

We can use the impedance concept to simplify the process of obtaining a model of
an op-amp circuit. A circuit diagram of the op amp with general feedback and input
elements Z f (s) and Zi (s) is shown in Figure 6.3.6a. A similar but simplified form is
given in part (b). The impedance Zi (s) of the input elements is defined such that

Vi (s) − V1(s) = Zi (s)I1(s)

For the feedback elements,

V1(s) − Vo(s) = Z f (s)I2(s)

The high internal impedance of the op amp implies that i1 ≈ 0, and thus i1 ≈ i2.
The final relation we need is the amplifier relation vo = −Gv1 or

Vo(s) = −GV1(s) (6.3.4)
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Figure 6.3.6 General circuit
representation of an op-amp
system.

Zi(s)
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�
�

�

vi
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v1

i1

i2
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vi vo
Zi(s)

Zf (s)

Figure 6.3.7 An op-amp
multiplier with an inverter.
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Rf

Ri vo

R

R

InverterMultiplier

When the preceding relations are used to eliminate I1(s) and I2(s), the result is

V1(s) = Z f (s)

Z f (s) + Zi (s)
Vi (s) + Zi (s)

Z f (s) + Zi (s)
Vo(s)

Using (6.3.4) to eliminate V1(s), the transfer function between Vi (s) and Vo(s) is found
to be

Vo(s)

Vi (s)
= − Z f (s)

Z f (s) + Zi (s)

G

1 + G H(s)

where

H(s) = Zi (s)

Z f (s) + Zi (s)

Because G is a very large number, |G H(s)| � 1, and we obtain

Vo(s)

Vi (s)
≈ − Z f (s)

Zi (s)
(6.3.5)

This is the transfer function model for op-amp circuits.
An op-amp multiplier is created by using two resistors as shown in Figure 6.3.5a,

where Zi (s) = Ri and Z f (s) = R f . Thus,

Vo(s)

Vi (s)
≈ − R f

Ri

The gain of this multiplier is R f /Ri , with a sign reversal. In some applications, we want
to eliminate the sign reversal. We can do this by using an inverter, which is a multiplier
having equal resistances. Using an inverter in series with the multiplier, as shown in
Figure 6.3.7, eliminates the overall sign reversal.

EXAMPLE 6.3.4 Integration with Op Amps

■ Problem
Determine the transfer function Vo(s)/Vi (s) of the circuit shown in Figure 6.3.8.
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■ Solution
The impedance of a capacitor is 1/Cs. Thus, the transfer function of the circuit is found from
(6.3.5) with Zi (s) = R and Z f (s) = 1/Cs. It is

Vo(s)

Vi (s)
= − Z f (s)

Zi (s)
= − 1

RCs

Thus in the time domain, the circuit model is

vo = − 1

RC

∫ t

0
vi dt (1)

Thus the circuit integrates the input voltage, reverses its sign, and divides it by RC . It is called
an op-amp integrator, and is used in many devices for computing, signal generation, and control,
some of which will be analyzed in later chapters.

Figure 6.3.8 An op-amp
integrator.

C

vi R vo

Differentiation with Op Amps EXAMPLE 6.3.5

■ Problem
Design an op-amp circuit that differentiates the input voltage.

■ Solution
In theory, a differentiator can be created by interchanging the resistance and capacitance in the
integrator circuit. The result is shown in Figure 6.3.9, where Zi (s) = 1/Cs and Z f (s) = R. The
input-output relation for this ideal differentiator is

Vo(s)

Vi (s)
= − Z f (s)

Zi (s)
= −RCs

The model in the time domain is

vo(t) = −RC
dvi (t)

dt

The difficulty with this design is that no electrical signal is “pure.” Contamination always
exists as a result of voltage spikes, ripple, and other transients generally categorized as “noise.”
These high-frequency signals have large slopes compared with the more slowly varying primary
signal, and thus they will dominate the output of the differentiator. Example 8.1.5 in Chapter 8
shows an improved differentiator design that does not have this limitation.

Figure 6.3.9 An op-amp
differentiator.

Cvi

R
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6.4 ELECTRIC MOTORS
Electromechanical systems consist of an electrical subsystem and a mechanical subsys-
tem with mass and possibly elasticity and damping. In some devices, such as motors and
speakers, the mass is driven by a force generated by the electrical subsystem. In other
devices, such as microphones, the motion of the mass generates a voltage or current
in the electrical subsystem. Thus, we must apply electrical principles and Newton’s
laws to develop a model of an electromechanical system. Often the forces and torques
are generated electromagnetically, but other methods are used as well; for example,
piezoelectric devices contain crystals that generate forces when a voltage is applied to
them.

In this section and Section 6.5 we treat electric motors. In Section 6.6 we treat
other electromechanical devices.



palm-38591 book December 17, 2008 12:13

298 CHAPTER 6 Electrical and Electromechanical Systems

MAGNETIC COUPLING

The majority of electromechanical devices utilize a magnetic field. Two basic principles
apply to a conductor, such as a wire, carrying a current within a magnetic field: (1) a
force is exerted on the conductor by the field and (2) if the conductor moves relative to
the field, the field induces a voltage in the conductor that opposes the voltage producing
the current. In many applications, the following model relates the force f to the current i :

f = BLi (6.4.1)

where B is the flux density of the field and L is the length of the conductor. In SI the
units of B are webers per square meter (Wb/m2). The direction of the force, which is
perpendicular to the conductor and the field, can be found with the right-hand rule.
Sweep the fingers from the positive current direction to the positive field direction; the
thumb will point in the positive force direction. Equation (6.4.1) is a special case of
the more general physical principle. It applies to two commonly found situations: (1)
straight conductors that are perpendicular to a uniform magnetic field and (2) circular
conductors in a radial field.

When the directions of the field, the conductor, and its velocity are mutually per-
pendicular, the second principle can be expressed as

vb = BLv (6.4.2)

where vb is the voltage induced in the conductor by its velocity v in the field. Again
using the right-hand rule, we find the positive direction of the current induced by vb

by sweeping the fingers from the positive direction of v to the positive direction of the
field.

Figure 6.4.1 Electromagnetic
interaction between electrical
and mechanical subsystems.
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The two principles and the expressions (6.4.1) and (6.4.2) can be represented
graphically as in Figure 6.4.1. The circuit represents the electrical behavior of the
conductor and the mass m represents the mass of the conductor and any attached mass.
The power generated by the circuit is vbi . The power applied to the mass m by the force
f is f v. Neglecting any energy loss due to resistance in the conductor or friction or
damping acting on the mass, we see that no power will be lost between the electrical
subsystem and the mechanical subsystem, and thus,

vbi = f v = BLiv

from which we obtain (6.4.2). In addition, from Newton’s law,

mv̇ = f = BLi

The basic principles underlying the operation of electric motors can be best under-
stood by first considering a simpler device called the D’Arsonval meter, named after its
inventor. The device is also known as a galvanometer.

THE D'ARSONVAL METER

A D’Arsonval meter can be used to measure current (Figure 6.4.2a). The current to be
measured is passed through a coil to which a pointer is attached. The coil is positioned
within a magnetic field and is wrapped around an iron core to strengthen the effects
of the field. The core thus acts like an inductor. The interaction between the current
and the field produces a torque that tends to rotate the coil and pointer. This rotation is
opposed by a torsional spring of stiffness kT .
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Figure 6.4.2 (a) D'Arsonval
meter. (b) Circuit model.

A Model of the D'Arsonval Meter EXAMPLE 6.4.1

■ Problem
Derive a model of a D’Arsonval meter in terms of the coil angular displacement θ and the coil
current i . The input is the applied voltage vi . Discuss the case where there are n coils around the
core.

■ Solution
Let the length of one side of the coil be L/2 and its radius be r . Then the torque T acting on
both sides of the coil due to the magnetic field B is

T = f r =
(

2B
L

2
i

)
r = (BLr)i

If a torsional viscous damping torque cθ̇ , for example, due to air resistance or damping in the
bearings, also acts on the core shaft as it rotates, the equation of motion of the core/coil unit is

I
d2θ

dt2
+ c

dθ

dt
+ kT θ = T = (BLr)i (1)

where I is the inertia of the core/coil unit.
The rotation of the coil induces a voltage vb in the coil that is proportional to the coil’s

linear velocity v such that vb = BLv. The linear velocity is related to the coil’s angular velocity
θ̇ by v = r θ̇ . Thus,

vb = BLv = BLr
dθ

dt
The coil circuit is represented in part (b) of Figure 6.4.2, where R represents the resistance of
the wire in the coil. Kirchhoff’s voltage law applied to the coil circuit gives

vi − L
di

dt
− Ri − vb = 0

or

L
di

dt
+ Ri + BLr

dθ

dt
= vi (2)

The model consists of equations (1) and (2). Note that the system model is third order.
If there are n coils, the resulting torque expression is T = n(BLr)i and the induced voltage

expression is vb = nBLr θ̇ . Thus equations (1) and (2) become

I
d2θ

dt2
+ c

dθ

dt
+ kT θ = n(BLr)i (3)

L
di

dt
+ Ri + nBLr

dθ

dt
= vi (4)
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Note that if the applied voltage vi is constant, the system will reach a steady-state in which
the pointer comes to rest. At steady-state, θ̇ = di/dt = 0, and equation (4) gives

i = vi

R

and equation (3) gives

θ = nBLri

kT
= nBLrvi

RkT

This equation can be used to calibrate the device by relating the pointer displacement θ to either
the measured current i or the measured voltage vi .

DC MOTORS

There are many types of electric motors, but the two main categories are direct current
(dc) motors and alternating current (ac) motors. Within the dc motor category there
are the armature-controlled motor and the field-controlled motor.

The basic elements of a motor, like that shown in Figure 6.4.3, are the stator, the
rotor, the armature, and the commutator. The stator is stationary and provides the mag-
netic field. The rotor is an iron core that is supported by bearings and is free to rotate.
The coils are attached to the rotor, and the combined unit is called the armature. A
dc motor operates on the same principles as a D’Arsonval meter, but the design of a
practical dc motor requires the solution of the problems caused by the fact that the coils
must be free to rotate continually. As a coil rotates through 180◦ the torque will reverse
direction unless the current can be made to reverse direction also. In addition, a means
must be found to maintain electrical contact between the rotating coil and the power
supply leads. A solution is provided by the commutator, which is a pair of electrically
conducting, spring-loaded carbon sticks (called brushes) that slide on the armature and
transfer power to the coil contacts.

The stator may be a permanent magnet or an electromagnet with its own separate
power supply, which creates additional cost. It is now possible to manufacture perma-
nent magnets of high field intensity and armatures of low inertia so that permanent-
magnet motors with a high torque-to-inertia ratio are now available.

Figure 6.4.3 Cutaway view of
a permanent magnet motor.

Power
supply

Stator (magnet)

Armature winding

Commutator

Brush

Rotor

Bearing



palm-38591 book December 17, 2008 12:13

6.4 Electric Motors 301

ia

�

�

vb

Ra La

Armature circuit

if
Lf

Rf

Field circuit

TL

I
c

T �

�

�

va

Figure 6.4.4 Diagram of an
armature-controlled dc motor.

MODEL OF AN ARMATURE-CONTROLLED DC MOTOR

We now develop a model for the armature-controlled motor shown in Figure 6.4.4. The
armature voltage va is the input, and the armature current ia and motor speed ω are the
outputs.

The electrical subsystems of the motor can be represented by the armature circuit
and the field circuit in Figure 6.4.4. In a permanent-magnet motor, the field circuit is
replaced by the magnet. The mechanical subsystem consists of the inertia I and the
damping c. The inertia is due to the load inertia as well as the armature inertia. Damping
can be present because of shaft bearings or load damping, such as with a fan or pump.
The external torque TL represents an additional torque acting on the load, other than
the damping torque. The load torque TL opposes the motor torque in most applications,
so we have shown it acting in the direction opposite that of T . However, sometimes
the load torque assists the motor. For example, if the load is the wheel of a vehicle,
then TL could be the torque produced by gravity as the vehicle ascends or descends a
hill. When descending, the load torque assists the motor, and in such a case we would
reverse the direction of TL shown in Figure 6.4.4.

The motor produces a torque T that is proportional to the armature current ia . This
relation can be derived by noting that the force on the armature due to the magnetic field
is, from (6.4.1), f = nBLia , where n is the number of armature coils. If the armature
radius is r , then the torque on the armature is

T = (nBLia)r = (nBLr)ia = KT ia (6.4.3)

where KT = nBLr is the motor’s torque constant. This relation can be used by motor
designers to determine the effect of changing the number of coils, the field strength, or
the armature geometry. The user of such motors (as opposed to the motor’s designer)
can obtain values of KT for a specific motor from the manufacturer’s literature.

As we have seen, the motion of a current-carrying conductor in a field produces
a voltage in the conductor that opposes the current. This voltage in the armature is
called the back emf (for electromotive force, an older term for voltage). Its magnitude
is proportional to the speed. The coils’ linear velocity v is related to their angular
velocity by v = rω. Thus, from (6.4.2),

vb = nBLv = (nBLr)ω = Kbω (6.4.4)

where Kb = nBLr is the motor’s back emf constant, and is sometimes called the
voltage constant. Note that the expressions for KT and Kb are identical and thus, KT
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and Kb have the same numerical value if expressed in the same units. For this reason,
motor manufacturers usually do not give values for Kb.

The back emf is a voltage drop in the armature circuit. Thus, Kirchhoff’s voltage
law gives

va − Raia − La
dia

dt
− Kbω = 0 (6.4.5)

From Newton’s law applied to the inertia I ,

I
dω

dt
= T − cω − TL = KT ia − cω − TL (6.4.6)

Equations (6.4.5) and (6.4.6) constitute the system model.

Motor Transfer Functions Normally we are interested in both the motor speed ω and
the current ia . The two inputs are the applied voltage va and the load torque TL . Thus
there are four transfer functions for the motor, one transfer function for each input-
output pair. We can obtain these transfer functions by transforming (6.4.5) and (6.4.6)
and solving for Ia(s) and �(s). The result for the output Ia(s) is

Ia(s)

Va(s)
= I s + c

La I s2 + (Ra I + cLa) s + cRa + Kb KT
(6.4.7)

Ia(s)

TL(s)
= Kb

La I s2 + (Ra I + cLa) s + cRa + Kb KT
(6.4.8)

For the output �(s),

�(s)

Va(s)
= KT

La I s2 + (Ra I + cLa) s + cRa + Kb KT
(6.4.9)

�(s)

TL(s)
= − Las + Ra

La I s2 + (Ra I + cLa) s + cRa + Kb KT
(6.4.10)

The denominator is the same in each of the motor’s four transfer functions. It is
the characteristic polynomial and it gives the characteristic equation:

La I s2 + (Ra I + cLa) s + cRa + Kb KT = 0 (6.4.11)

Note that Ia(s)/Va(s) and �(s)/TL(s) have numerator dynamics. This can cause
a large overshoot in ia if va is a step function, and a large overshoot in ω if TL is a step
function.

State-Variable Form of the Motor Model Equations (6.4.5) and (6.4.6) can be put
into state variable form by isolating the derivatives of the state variables ia and ω. The
state equations thus obtained are the following.

dia

dt
= 1

La
(va − Raia − Kbω) (6.4.12)

dω

dt
= 1

I
(KT ia − cω − TL) (6.4.13)

Note that these state variables describe the energies Li2
a/2 and Iω2/2 stored in the

system.
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Figure 6.4.5 Diagram of a
field-controlled dc motor.

FIELD-CONTROLLED MOTORS

Another way to control a dc motor is to keep the armature current constant while
adjusting the voltage applied to the field windings to vary the intensity of the magnetic
field surrounding the armature (see Figure 6.4.5). Thus, unlike permanent-magnet mo-
tors, field-controlled motors require two power supplies, one for the armature circuit
and one for the field circuit. They also require a control circuit to maintain a constant
armature current in the presence of the back emf, which varies with motor speed and
field strength.

In general, the field strength B is a nonlinear function of the field current i f and can
be expressed as B(i f ). Thus, if the armature radius is r , the torque on the armature is

T = nB(i f )Liar = (nLria)B(i f ) = T (i f )

and we see that the motor torque is also a nonlinear function of i f . Often the linear
approximation T −Tr = KT (i f −i f r ) is used, where Tr and i f r are the torque and current
values at a reference operating equilibrium, and the torque constant KT is the slope of the
T (i f ) curve at the reference condition. In the rest of our development, we will assume
that Tr = i f r = 0 to simplify the discussion. Thus we will use the relation T = KT i f .

Model of a Field-Controlled dc Motor EXAMPLE 6.4.2

■ Problem
Develop a model of the field-controlled motor shown in Figure 6.4.5.

■ Solution
The voltage v f is applied to the field circuit, whose inductance and resistance are L f and R f .
No back emf exists in the field circuit because it does not move within the field, and Kirchhoff’s
voltage law applied to the field circuit gives

v f = R f i f + L f
di f

dt
(1)

For the inertia I ,

I
dω

dt
= T − cω − TL = KT i f − cω − TL (2)

where TL is the load torque. These two equations form the motor model.
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6.5 ANALYSIS OF MOTOR PERFORMANCE
We now use the transfer function model of an armature-controlled dc motor to inves-
tigate the performance of such motors. The transfer functions given by (6.4.7) through
(6.4.10) are repeated here.

Ia(s)

Va(s)
= I s + c

La I s2 + (Ra I + cLa) s + cRa + Kb KT
(6.5.1)

Ia(s)

TL(s)
= Kb

La I s2 + (Ra I + cLa) s + cRa + Kb KT
(6.5.2)

�(s)

Va(s)
= KT

La I s2 + (Ra I + cLa) s + cRa + Kb KT
(6.5.3)

�(s)

TL(s)
= − Las + Ra

La I s2 + (Ra I + cLa) s + cRa + Kb KT
(6.5.4)

STEADY-STATE MOTOR RESPONSE

The steady-state operating conditions can be obtained by applying the final value the-
orem to the transfer functions. If va and TL are step functions of magnitude Va and TL ,
respectively, then the steady-state current and speed are

ia = cVa + KbTL

cRa + Kb KT
(6.5.5)

ω = KT Va − RaTL

cRa + Kb KT
(6.5.6)

Thus an increased load torque leads to an increased current and a decreased speed, as
would be expected. From equation (6.5.6) the steady-state speed is often plotted versus
TL for different values of the applied voltage Va . This plot is known as the load-speed
curve of the motor. For a given value of Va , it gives the maximum load torque the motor
can handle at a specified speed.

The no-load speed is the motor speed when the load torque is zero. Setting TL = 0
in (6.5.6) gives ω = KT Va/(cRa + Kb KT ). This is the highest motor speed for a given
applied voltage. The corresponding no-load current required can be found by setting
TL = 0 in (6.5.5). It is ia = cVa/(cRa + Kb KT ).

The stall torque is the value of the load torque that produces zero motor speed.
Setting ω = 0 in (6.5.6) gives the stall torque: TL = KT Va/Ra . The corresponding stall
current can be found by substituting this value into (6.5.5).

EXAMPLE 6.5.1 No-Load Speed and Stall Torque

■ Problem
The parameter values for a certain motor are

KT = Kb = 0.05 N · m/A

c = 10−4 N · m · s/rad Ra = 0.5 �

The manufacturer’s data states that the motor’s maximum speed is 3000 rpm, and the maximum
armature current it can withstand without demagnetizing is 30 A.
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Compute the no-load speed, the no-load current, and the stall torque. Determine whether
the motor can be used with an applied voltage of va = 10 V.

■ Solution
For va = 10 V, (6.5.5) and (6.5.6) give

ia = 0.392 + 19.61TL A ω = 196.1 − 196.1TL rad/s

The no-load speed is found from the second equation with TL = 0. It is 196.1 rad/s, or 1872
rpm, which is less than the maximum speed of 3000 rpm. The corresponding no-load current is
ia = 0.392 A, which is less than the maximum allowable current of 30 A. The no-load current is
required to provide a motor torque KT ia to cancel the damping torque cω.

The stall torque is found by setting ω = 0. It is TL = 1 N · m. The corresponding stall current
is ia = 20 A, which is less than the maximum allowable current.

MOTOR DYNAMIC RESPONSE

The steady-state relations are often used because they are algebraic relations and thus
are easier to use than the motor differential equations. However, they can be misleading.
Because Ia(s)/Va(s) and �(s)/TL(s) have numerator dynamics, the actual maximum
current required and the actual maximum speed attained might be quite different than
their steady-state values. Example 6.5.2 illustrates this effect.

Response of an Armature-Controlled dc Motor EXAMPLE 6.5.2

■ Problem
The parameter values for a certain motor are

KT = Kb = 0.05 N · m/A

c = 10−4 N · m · s/rad Ra = 0.5 �

La = 2 × 10−3 H I = 9 × 10−5 kg · m2

where I includes the inertia of the armature and that of the load. The load torque TL is zero.
Obtain the step response of ia(t) and ω(t) if the applied voltage is va = 10 V.

■ Solution
Substituting the given parameter values into (6.5.1) and (6.5.3), gives

Ia(s)

Va(s)
= 9 × 10−5s + 10−4

18 × 10−8s2 + 4.52 × 10−5s + 2.55 × 10−3

�(s)

Va(s)
= 0.05

18 × 10−8s2 + 4.52 × 10−5s + 2.55 × 10−3

If va is a step function of magnitude 10 V,

Ia(s) = 5 × 103s + 5.555 × 104

s(s + 165.52)(s + 85.59)
= C1

s
+ C2

s + 165.52
+ C3

s + 85.59

�(s) = 2.777 × 106

s(s + 165.52)(s + 85.59)
= D1

s
+ D2

s + 165.52
+ D3

s + 85.59
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Figure 6.5.1 Step response
of an armature-controlled dc
motor.
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Evaluating the partial-fraction coefficients by hand or with MATLAB, as described in
Chapter 3, we obtain

ia(t) = 0.39 − 61e−165.52t + 61.74e−85.59t

ω(t) = 196.1 + 210−165.52t − 406e−85.59t

The plots are shown in Figure 6.5.1. Note the large overshoot in ia , which is caused by the
numerator dynamics. The plot shows that the steady-state calculation of ia = 0.39 A greatly
underestimates the maximum required current, which is approximately 15 A.

In practice, of course, a pure step input is impossible, and thus the required current will not
be as high as 15 A. The real input would take some time to reach 10 V. The response to such
an input is more easily investigated by computer simulation, so we will return to this topic in
Section 6.7.

THE EFFECT OF ARMATURE INDUCTANCE

If we set La = 0, the second-order motor model reduces to a first-order model, which
is easier to use. For this reason, even though La must be nonzero for physical reasons,
you often see La treated as negligible. Another reason La is sometimes neglected is
that it is difficult to calculate or to measure. The following discussion shows why you
must be careful in using this approximation.

Consider the motor of Example 6.5.2. Suppose the combined inertia of the armature
and load is I = 3×10−5 kg · m2. The roots of the characteristic equation are the complex
pair s = −126.7 ± 162.3 j , which correspond to an oscillatory response that reaches
steady state after approximately 4/126.7 = 0.032 s. If we neglect the inductance and set
La = 0 in (6.4.11), we obtain the first-order equation 1.5×10−5s +0.00255 = 0, which
has the single root s = −170. Thus, the La = 0 approximation incorrectly predicts a
nonoscillatory response that reaches steady state after approximately 4/170 = 0.024 s,
which differs by 25% from the correct value.
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If instead the inertia is larger, say I = 9 × 10−5, (6.4.11) gives the real roots
s = −165.5 and −85.6, which corresponds to a nonoscillatory response that reaches
steady state after approximately 4/85.6 = 0.047 s. Setting La = 0 in (6.4.11) gives the
single root s = −56.7, which correctly predicts a nonoscillatory response but implies
that steady state is reached after approximately 4/56.7 = 0.071 s, which differs by 51%
from the correct value.

We conclude from this example that you should be careful in using the approx-
imation La = 0, although one sees it in common use. With La �= 0 the characteristic
equation and the motor differential equations are still only second order and thus are
manageable. So this approximation really is not needed here. However, models of some
types of control systems are third order or higher if the La = 0 approximation is not
used, as we will see in Chapter 10. In such cases the mathematics becomes much more
difficult, and so the approximation is used to reduce the order of the equations. In such
cases, the correct, nonzero value of La is used in computer simulation studies to assess
accuracy of the predictions obtained from the lower-order model.

DETERMINING MOTOR PARAMETERS

Motor parameter values can often be obtained from the manufacturer. If not, they must
be either calculated or measured. Calculating KT and Kb for an existing motor from the
formula nBLr is not always practical because the value of the magnetic field parameter
B might be difficult to determine. An approximate value of the armature inertia Ia

can be calculated from the formula for the inertia of a cylinder using the density of
iron, assuming that the length and radius are available. The inertia can be measured by
suspending it with a metal wire and measuring the torsional oscillation frequency fn Hz
as the armature twists on the wire. The inertia can be calculated from Ia = kT /(2π fn)

2,
where kT is the torsional spring constant of the wire.

Some parameters can be measured with static (steady-state) tests. By slowly
increasing the load torque TL until the motor stalls and measuring the resulting stall
current, we can compute KT from KT = TL/ ia . Knowing the voltage Va , we can com-
pute the armature resistance from Ra = Va/ ia . By measuring the no-load speed ω and
the resulting current ia , and knowing Va , Ra , and KT , we can compute c from the
steady-state relations (6.5.5) and (6.5.6) with TL = 0.

Much of the viscous damping in the motor is due to air drag as the armature
rotates. Drag force is a nonlinear function of speed, and so the linear relation cω is an
approximation. Therefore the value of c might be different at lower speeds. However,
most of the damping in a given application might be due to whatever load the motor
is driving (examples include pumps and fans), and so the motor’s damping might be
small enough to be ignored. Then the damping constant c will need to be measured at
the load or calculated from a model of the load.

Because c is difficult to determine precisely, its value is rarely reported by motor
manufacturers. However, in motors with good bearings the damping can be slight and
is often taken to be zero (perhaps this is why its value is rarely reported!).

The inductance La can be difficult to determine because it involves the rate dia/dt
and thus requires a dynamic test. Special instruments such as an impedance meter can
be used to measure La . As we have discussed, the inductance La is often assumed
to be very small and therefore is often taken to be zero. This is sometimes a good
approximation, but not always.
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Units for KT and Kb The units of KT and Kb can be a source of confusion. In manu-
facturer’s data the units of KT are often different than those of Kb. We have seen that
the formula for KT (KT = nBLr ) is identical to that for Kb. Therefore, the units and
numerical values will be identical if a consistent set of units is used in the formula.
From the definition of KT , we see the units in SI to be:

[KT ] = [T ]

[ia]
= N · m

A
Similarly, from the definition of Kb, we see the units in SI to be:

[Kb] = [vb]

[ω]
= V

1/s
= V · s

These units are equivalent to one another because 1 V = 1 W/A. Thus, 1 V · s = 1
(W/A) · s = 1 N · m/A. So KT and Kb have the same units and numerical values when
SI is used.

However, while values of Kb are usually reported in SI as V · s, values of KT are
sometimes reported in non-SI units. For example, KT is often reported in FPS units as
lb-ft/A. If so, the numerical values of Kb and KT will not be the same. The difference
corresponds to using SI units in the formula for Kb and non-SI units in the formula for
KT .

If no value for Kb is reported and KT is reported in FPS units as lb-ft/A, the value
of Kb in SI units can be obtained from the relation Kb = 1.3558KT . This relation is
derived in one of the homework problems.

THE TRAPEZOIDAL PROFILE AND MOTION CONTROL

In many motion-control applications we want to accelerate the system to a desired
speed and run it at that speed for some time before decelerating to a stop, as illustrated
by the trapezoidal speed profile shown in Figure 6.5.2. The constant-speed phase of the
profile is called the slew phase. An example requiring a slew phase of specified duration
and speed is a conveyor system in a manufacturing line, in which the item being worked
on must move at a constant speed for a specified time while some process is applied,
such as painting or welding. The speed profile can be specified in terms of rotational
motor speed ω or in terms of the translational speed v of a load.

In other applications, the duration and speed of the slew phase is not specified, but
we want the system to move (or rotate) a specified distance (or angle) by the end of
one cycle. An example of this is a robot arm link that must move through a specified
angle. The acceleration and deceleration times, and the duration and speed of the slew
phase must be computed to achieve the desired distance or angle. Often the profile is
followed by a zero-speed phase to enable the motor to cool before beginning the next
cycle.

Figure 6.5.2 Trapezoidal
speed profile.
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The profile in Figure 6.5.2 assumes that the system begins and ends at rest. Note
also that t f − t2 must equal t1.

MOTOR AND AMPLIFIER PERFORMANCE

We will treat motor control in Chapters 10, 11, and 12, but for now we develop methods
to determine whether or not a specified motor and amplifier are capable of delivering
the required performance. In evaluating the performance of a motion-control system,
the following are important:

■ Energy consumption per cycle, E . This is the sum of the energy loss in the motor
resistance and in the damping. Thus the energy loss per cycle is

E =
∫ t f

0
Ri2(t) dt +

∫ t f

0
cω2(t) dt (6.5.7)

where t f is the duration of the cycle and ω is the speed of the system at the
location of the damping.

■ Maximum required current and motor torque, imax and Tmax. Motor current must
be limited to prevent damage to the motor. In addition, the amplifier has an upper
limit on the current it can supply. Because T = i/KT , the motor torque is limited
by the available current. The profile cannot require more current or torque than is
available.

■ Maximum required motor speed, ωmax. Motor manufacturers state a limit on
motor speed to prevent damage to the motor.

■ Maximum required voltage, vmax. Amplifiers have an upper limit on the voltage
they can deliver.

■ Average required current and motor torque, irms and Trms. Most amplifiers and
motors have a rated continuous current and a rated continuous torque. These
specify the current and torque that can be supplied for a long period of time. If the
profile requires an average current or average torque greater than the rated values,
the amplifier or motor can be damaged, often by overheating. The rated values are
less than the maximum values. The average usually stated is the rms average,
which stands for root mean square. For torque, it is calculated as follows:

Trms =
√

1

t f

∫ t f

0
T 2(t) dt (6.5.8)

with a similar expression used for irms. Thus the rms average gives equal weight
to positive and negative values. Note that irms = Trms/KT .

■ Maximum speed error: This is the maximum difference between the desired
speed given by the profile and the actual speed.

■ Average speed error: The average speed error is commonly computed as the rms
value.

■ Displacement error: For applications requiring motion through a specified
displacement (distance or angle), this error is the difference between the specified
displacement and the actual displacement.

■ System response time: The system must be able to respond fast enough to follow
the profile. For a quick check, if the system’s largest time constant is greater than
one-fourth of the profile’s ramp time t1, then the system is not fast enough.
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Not all these criteria are important for every application. For example, the speed errors
probably are not relevant for applications requiring motion through a specified distance
or angle. Energy consumption may not be important where a single cycle is to be
performed, but for applications where the cycle is performed repeatedly, the energy
consumption per cycle will probably be important.

In the following we assume that the damping constant c is zero. This is often a good
assumption for well-designed electromechanical systems used for motion control. By
modifying (6.4.5) and (6.4.6) to account for a speed reduction ratio of N , we obtain the
following motor model. See Figure 6.4.4.

v = Ri + L
di

dt
+ Kbω (6.5.9)

I
dω

dt
= KT i − Td (6.5.10)

We have omitted the subscripts on v, i , R, and L to simplify the notation. The speed ω

is the motor speed. The load speed is ωL = ω/N . The torque Td opposing the motor
torque T is due to the torque TL acting on the load, where Td = TL/N . The inertia I
includes the motor inertia Im and the load inertia IL reflected to the motor shaft. Thus
I = Im + IL/N 2.

Energy Loss With c = 0, the expression for the energy loss per cycle becomes

E =
∫ t f

0
Ri2(t) dt = R

∫ t f

0

(
I ω̇ + Td

KT

)2

dt

where (6.5.10) has been used to substitute for i . Assuming that Td is constant, and
expanding this expression we obtain

E = RI 2

K 2
T

∫ t f

0
ω̇2 dt + 2RI Td

K 2
T

∫ t f

0
ω̇ dt + RT 2

d

K 2
T

∫ t f

0
dt

With the assumption that the motion begins and ends at rest so that ω(0) = ω(t f ), the
second integral is zero. Thus

E = RI 2

K 2
T

∫ t f

0
ω̇2 dt + RT 2

d t f

K 2
T

(6.5.11)

Note that the first term on the right depends on the profile, while the second term
depends on the disturbance torque Td .

Maximum Motor Speed We now evaluate the integral in (6.5.11) for the trapezoidal
profile, which is specified in terms of the motor speed ω(t). If the load speed ωL(t) is
specified instead, we can find ω(t) from NωL(t). The total angular displacement is the
area under the trapezoidal profile shown in Figure 6.5.2. Assuming that θ(0) = 0, and
because t f − t2 = t1, we have

θ(t f ) = θ f =
∫ t f

0
ω dt = 2

(
1

2
ωmaxt1

)
+ ωmax(t2 − t1) = ωmaxt2

Thus

ωmax = θ f

t2
(6.5.12)

So if we specify the displacement θ f and the time t2, the maximum required speed is
determined from this equation.
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For 0 ≤ t ≤ t1, the acceleration ω̇ is ωmax/t1 = θ f /t1t2, after using (6.5.12). For
t1 < t < t2, ω̇ = 0, and for t2 ≤ t ≤ t f , ω̇ = −ωmax/t1 = −θ f /t1t2. Therefore,∫ t f

0
ω̇2 dt =

∫ t1

0

(
θ f

t1t2

)2

dt +
∫ t2

t1
0 dt +

∫ t f

t2

(
− θ f

t1t2

)2

dt

=
(

θ f

t1t2

)2

(t1 + t f − t2) =
(

θ f

t1t2

)2

2t1

since t f − t2 = t1. Therefore, expression (6.5.11) becomes

E = RI 2

K 2
T

[(
θ f

t1t2

)2

2t1

]
+ RT 2

d t f

K 2
T

or

E = R

K 2
T

(
2I 2θ2

f

t1t2
2

+ T 2
d t f

)
(6.5.13)

Maximum Motor Torque The maximum required acceleration for the trapezoidal
profile is

αmax = ωmax

t1
= θ f

t1t2
(6.5.14)

Using (6.5.10) and the fact that the motor torque is T = KT i , we have

T = KT i = I
dω

dt
+ Td = Iα + Td (6.5.15)

Thus the maximum required motor torque is

Tmax = Iαmax + Td = I
ωmax

t1
+ Td = I

θ f

t1t2
+ Td (6.5.16)

RMS Motor Torque The rms torque is calculated from (6.5.8), using (6.5.15):

T 2
rms = 1

t f

∫ t f

0
T 2(t) dt = 1

t f

∫ t f

0
(Iα + Td)

2 dt

or

T 2
rms = 1

t f

[∫ t1

0
(Iαmax + Td)

2 dt +
∫ t2

t1
(0 + Td)

2 dt +
∫ t f

t2
(−Iαmax + Td)

2 dt
]

This reduces to

T 2
rms = 1

t f

[
2I 2α2

maxt1 + T 2
d (t1 + t2)

]
or, since αmax = θ f /t1t2 and t1 + t2 = t f ,

Trms =
√

2I 2θ2
f

t f t1t2
2

+ T 2
d (6.5.17)

These equations are summarized in Table 6.5.1. They are used to compute the motor
requirements for the trapezoidal speed profile. To determine whether a given motor will
be satisfactory, the calculated values of ωmax, Tmax, and Trms are compared with the motor
manufacturer’s data on maximum speed, peak torque, and rated continuous torque.
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Table 6.5.1 Motor/amplifier requirements for trapezoidal
speed profile.

Profile times t1, t2, t f See Figure 6.5.2
Motor displacement θ f = area under speed profile
Load torque felt at motor Td

Motor requirements

Energy consumption/cycle E = R

K 2
T

(
2I 2θ 2

f

t1t2
2

+ T 2
d t f

)

Maximum speed ωmax = θ f

t2

Maximum torque Tmax = I
θ f

t1t2
+ Td

rms torque Trms =
√

2I 2θ2
f

t f t1t2
2

+ T 2
d

Amplifier requirements

Maximum current imax = Tmax

KT

rms current irms = Trms

KT

Maximum voltage vmax = Rimax + Kbωmax

Amplifier Requirements We now derive expressions for the amplifier requirements
to drive a specific motor through a given profile. Using the motor current equation
i = T/KT , we see that the maximum current and the rms current required are

imax = Tmax

KT
(6.5.18)

irms = Trms

KT
(6.5.19)

The motor voltage equation is

v = Ri + L
di

dt
+ Kbω

Divide by R:
v

R
= i + L

R

di

dt
+ Kb

R
ω

If the electrical time constant L/R is very small, we can neglect the second term on the
right to obtain

v

R
= i + Kb

R
ω

which gives v = Ri +Kbω. Thus the maximum voltage required is given approximately
by

vmax = Rimax + Kbωmax (6.5.20)

These equations are summarized in Table 6.5.1. They are used to compute the
amplifier requirements for the trapezoidal speed profile. To determine whether a given
amplifier will be satisfactory, the calculated values of imax, irms, and vmax are compared
with the amplifier manufacturer’s data on peak current, rated continuous current, and
maximum voltage.
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Calculating Motor-Amplifier Requirements EXAMPLE 6.5.3

■ Problem
The trapezoidal profile requirements for a specific application are given in the following table,
along with the load and motor data. Determine the motor and amplifier requirements.

Profile data
Cycle times t1 = 0.2 s, t2 = 0.4 s, t f = 0.6 s

Load data
Inertia IL = 4 × 10−3 kg · m2 Displacement θL f = 10π rad
Torque TL = 0.1 N · m Reduction ratio N = 2

Motor data
Resistance R = 2 � Torque constant KT = 0.3 N · m/A
Inductance L = 3 × 10−3 H Damping c = 0
Inertia Im = 10−3 kg · m2

Time constants 1.56 × 10−3 s and 0.043 s

■ Solution
The total inertia I is the sum of the motor inertia and the reflected load inertia. Thus,

I = Im + IL

N 2
= 10−3 + 4 × 10−3

22
= 2 × 10−3 kg · m2

Because the reduction ratio is N = 2, the required motor displacement is NθL f = 2(10π) =
20π rad, and the load torque as felt at the motor shaft is Td = TL/N = 0.1/2 = 0.05 N · m.

The motor’s energy consumption per cycle is found from (6.5.13).

E = 2

(0.3)2

[
2(4 × 10−6)(20π)2

0.2(0.4)2
+ (0.05)20.6

]
= 22 J/cycle

The power consumption is 22/t f = 37 J/s, or 37 W.
Equation (6.5.12) shows that the maximum speed for the trapezoidal profile is

ωmax = θ f

t2
= 50π rad/s

which is 50π(60)/(2π) = 1500 rpm. So the motor’s maximum permissible speed must be greater
than 1500 rpm.

The rms torque is found from (6.5.17) to be

Trms =
√

2(4 × 10−6)(20π)2

0.6(0.2)(0.4)2
+ (0.05)2 = 1.28 N · m

Use (6.5.16) to compute the maximum required torque.

Tmax = 2 × 10−3(20π)

0.2(0.4)
+ 0.05 = 1.57 + 0.05 = 1.62 N · m

Note that the load torque contributes little to Tmax. Most of the required torque is needed to
accelerate the inertia.

The system time constants are obtained from the roots of (6.4.11), which are s =
−643 and s = −23.3. The system must be fast enough to respond to the profile command.
Its largest time constant, 1/23.3 = 0.043 s, is less than one-fourth of the ramp time t1 = 0.2, so
the system is fast enough.



palm-38591 book December 17, 2008 12:13

314 CHAPTER 6 Electrical and Electromechanical Systems

The amplifier requirements are calculated as follows. Note that because the motor data is
given in SI units, Kb = KT = 0.3. From (6.5.18), (6.5.19), and (6.5.20),

imax = 1.62

0.3
= 5.4 A

irms = 1.28

0.3
= 4.27 A

vmax = 2(5.4) + 0.3(50π) = 10.8 + 47.1 = 57.9 V

Note that most of the required voltage is needed to oppose the back emf.

The preceding analysis neglected the damping constant c and assumed that the term
(L/R)di/dt is very small. If these conditions are not satisfied in a given application,
the performance evaluation is best done by computer solution. A MATLAB example
is given in Section 6.7.

6.6 SENSORS AND ELECTROACOUSTIC DEVICES
In this section, we consider two common sensors: the tachometer for measuring velocity
and the accelerometer, which can be used to measure either acceleration or displace-
ment. In addition, some electroacoustic devices, such as microphones and speakers, are
based on the electromagnetic principles explained in Section 6.4.

A TACHOMETER

There are many devices available to measure linear and rotational velocity. One such
device can be constructed in a manner similar to a motor. However, instead of applying
an input voltage, we use the load torque as the input. Consider the circuit equation for
an armature-controlled motor:

va − ia Ra − La
dia

dt
− Kbω = 0

With the tachometer there is no applied voltage va . Thus, with va = 0, at steady-state,
when the derivative dia/dt = 0, this equation becomes

−ia Ra − Kbω = 0

The voltage ia Ra across the resistor is thus given by ia Ra = Kbω. If we denote this
voltage by vt , we see that

vt = Kbω

If we measure the voltage vt we can use it to determine the velocity ω.

AN ACCELEROMETER

Figure 6.6.1 illustrates the construction of an electromechanical accelerometer or a
seismograph. A mass m, often called the seismic mass or the proof mass, is supported
in a case by two springs. Its motion, which is damped by a fluid within the case, is
measured by a potentiometer and amplifier. The displacement z of the case is its dis-
placement relative to an inertial reference. With proper selection of m, c, and k, the
device can be used either as a vibrometer to measure the amplitude of a sinusoidal
displacement z = A sin ωt , or as an accelerometer to measure the amplitude of the ac-
celeration z̈ = −Aω2 sin ωt . When used to measure ground motion from an earthquake,
for example, the instrument is commonly referred to as a seismograph.

The mass displacement x is defined relative to an inertial reference, with x = 0
corresponding to the equilibrium position of m when z = 0. With the potentiometer
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Figure 6.6.1
An accelerometer.

arrangement shown, the voltage v is proportional to the relative displacement y between
the case and the mass m, where y = x − z. So the measured voltage is v = K y.

We model the system as a mass-spring-damper system. Newton’s law gives

mẍ = −c(ẋ − ż) − k

2
(x − z) − k

2
(x − z)

Substituting y for x − z, we obtain

mÿ + cẏ + ky = −mz̈ (6.6.1)

The transfer function between the input z and the output y is

Y (s)

Z(s)
= −ms2

ms2 + cs + k
(6.6.2)

In Chapter 8 we will investigate the response of such a system to a sinusoidal input.
We will see that depending of the selection of m, c, and k, the displacement y, and
therefore the output voltage v, can be used to indicate either the acceleration z̈ or the
displacement z. A relatively smaller mass is used for an accelerometer, and relatively
stiffer springs are used for a seismograph.

Other principles can be used to construct an accelerometer. For example, some
accelerometers utilize piezoelectric crystals, whose electrical output is a function of
pressure. A coil and magnet can be used instead of the potentiometer to measure the
displacement of the mass.

STRAIN GAGE ACCELEROMETERS

Figure 6.6.1 illustrates the general principle of an accelerometer, but there are many
types of accelerometers based on that principle but that use different technology. An
example is an accelerometer based on a strain gage. In this case, the spring element in
Figure 6.6.1 is replaced by a cantilever beam. The strain gage measures the beam strain,
which is proportional to the inertia force, which depends on the acceleration. Since the
voltage output from the gage is proportional to the strain, we see that the voltage is also
proportional to the acceleration.

PIEZOELECTRIC DEVICES

The piezoelectric effect refers to the property of crystals and some ceramics to generate
an electric potential in response to an applied force. In crystals, the force causes an
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electric charge across the crystal lattice. This charge produces a voltage across the
crystal. This effect is reversible so that a force is produced when a voltage is applied.
Thus a piezoelectric element can be used as a force sensor or as an actuator.

Many sensors and actuators are based on the piezoelectric effect. They are used to
measure force, pressure, acceleration, or strain. Their large modulus of elasticity means
that they show almost no deflection under load, are very rugged, and are very linear
over a wide range of input values. They are also not affected by electromagnetic fields
and radiation. However, their small deflection means they cannot be used to measure
forces that are truly static.

In piezoelectric accelerometers, a seismic mass like the mass m shown in Fig-
ure 6.6.1 is attached to the piezoelectric element. The piezoelectric element acts like
the spring element in Figure 6.6.1, exerting a voltage comparable to the voltage v shown
in that figure.

Piezoelectric elements are becoming more widely used because of their low cost
and small size, not only as accelerometers, but also as pressure and force sensors, gy-
roscopes, and positioning systems. Some applications include: motion stabilization
systems for cameras and orientation and acceleration measurement in game con-
trollers. Because of their small deflection, piezoelectric elements are also used in
nano-positioning systems.

ELECTROACOUSTIC DEVICES

Speakers and microphones are common examples of a class of electromechanical de-
vices called electroacoustic. There are other speakers and microphones that use different
principles, such as a capacitance microphone, but we will focus on those devices that
utilize a magnet, a coil, and a cone. A speaker converts electrical energy into mechanical
energy (sound waves) by causing the coil to move the cone. On the other hand, a mi-
crophone converts the mechanical energy in sound into electrical energy by moving the
cone, thus producing a voltage and current in the coil. Here we consider the operation of
a speaker. The model for a microphone is treated in the problems at the end of the chapter.

The operation of a speaker is illustrated by Figure 6.6.2. A stereo or radio amplifier
produces a current in a coil that is attached to a diaphragm in the cone. This causes

Figure 6.6.2 A speaker.
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the coil and diaphragm to move relative to the permanent magnet. The motion of the
diaphragm produces air pressure waves, which is sound.

An Electromagnetic Speaker EXAMPLE 6.6.1

■ Problem
Develop a model of the electromagnetic speaker shown in Figure 6.6.2, and obtain the transfer
function relating the diaphragm displacement x to the applied voltage v.

■ Solution
Figure 6.6.3a shows a simplified model of the mechanical subsystem, along with its free body
diagram. The mass m represents the combined mass of the diaphragm and the coil. The spring
constant k and damping constant c depend on the material properties of the diaphragm. The
force f is the magnetic force, which is related to the coil current i by (6.4.1), f = nBLi , where
n is the number of turns in the coil. Let K f = nBL . From Newton’s law

m
d2x

dt2
= −c

dx

dt
− kx + K f i (1)

Figure 6.6.3b shows the electrical subsystem. The coil’s inductance and resistance are L and
R. The coil experiences a back emf because it is a current conductor moving in a magnetic field.
This back emf is given by Kbẋ . The voltage v is the signal from the amplifier. From Kirchhoff’s
voltage law,

v = L
di

dt
+ Ri + Kb

dx

dt
(2)

The speaker model consists of equations (1) and (2).
Transforming equation (1) and solving for X (s) gives

X (s) = K f

ms2 + cs + k
I (s)

Transforming equation (2) and solving for I (s) gives

I (s) = 1

Ls + R
[V (s) − Kbs X (s)]

Eliminating I (s) from the previous two equations, we obtain the desired transfer function.

X (s)

V (s)
= K f

mLs3 + (cL + m R)s2 + (kL + cR + K f Kb)s + k R
(3)

i

�

�

v
�

�

vb

R L

(b)(a)

m

x

k f � Kf i

c

Figure 6.6.3 Models of the
mechanical and electrical
subsystems of a speaker.

6.7 MATLAB APPLICATIONS
In this section, we illustrate how to use the lsim and step functions with motor
models in transfer function form and state-variable form. We also show how to use the
ode solvers to obtain the response of a nonlinear system.
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STEP RESPONSE FROM TRANSFER FUNCTIONS

The following transfer functions of an armature controlled motor were developed in
Section 6.4.

Ia(s)

V (s)
= I s + c

La I s2 + (Ra I + cLa)s + cRa + Kb KT

�(s)

V (s)
= KT

La I s2 + (Ra I + cLa)s + cRa + Kb KT

where the input is the armature voltage v(t).
The following program contains the motor parameters. When this is executed, the

values of the parameters will be available in the MATLAB workspace, for use by our
other programs. The use of such a program is good practice, because it enables you to
develop modular programs that do not depend on a specific set of parameters. To investi-
gate another motor having different parameter values, simply edit the following program
and run it. We declare the parameters to be global so they can be accessed by the user-
defined functionnlmotor, which is used in our second example. The parameter values
are those of Example 6.5.2. We use Im and cm to represent the inertia and damping of
the motor, so that we can later distinguish them from the inertia and damping of the load.

% Program motor_par.m (Motor parameters in SI units)
global KT Kb La Ra Im cm
KT = 0.05;Kb = KT;
La = 2e-3;Ra = 0.5;
Im = 9e-5;cm = 1e-4;

The following program creates the LTI models based on the motor transfer
functions.

% Program motor_tf.m (Transfer functions for voltage input)
I = Im;
c = cm;
% current:
current = tf([I,c],[La*I,Ra*I+c*La,c*Ra+Kb*KT]);
% speed:
speed = tf(KT,[La*I,Ra*I+c*La,c*Ra+Kb*KT]);

The next program computes and plots the step response for an input of 10 V. Note
that since step gives the unit step response, we must multiply the response by 10.
This is done in the plot functions.

% Program motor_step.m (Motor step response)
motor_par
motor_tf
[current, tc] = step(current);
[speed, ts] = step(speed);
subplot(2,1,1),plot(tc,10*current),...

xlabel('t (s)'),ylabel('Current (A)')
subplot(2,1,2),plot(ts,10*speed),...

xlabel('t (s)'),ylabel('Speed (rad/s)')

The result is shown in Figure 6.7.1.
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Figure 6.7.1 Motor step
response.

MODIFIED STEP RESPONSE

In Example 6.5.2 we noted that the large current response is due partly to the step
input acting on the numerator dynamics of the transfer function Ia(s)/V (s). A more
realistic model of a suddenly applied voltage input is v(t) = 10(1 − e−t/τ ), where τ is
no larger than the system’s dominant time constant. The following program computes
motor response to this modified step input for τ = 0.01 s.

% Program motor_mod (Motor response with modified step)
motor_par
motor_tf
mod_step

where program mod_step is

% Program mod_step.m
% Motor simulation with modified step input
t = (0:0.0001:0.07);
v = 10*(1-exp(-t/0.01));
ia = lsim(current,v,t);
plot(t,ia,t,v)

The plot is shown in Figure 6.7.2. Note that the maximum current is now less than the
15 A that results from a pure step input.

STEP RESPONSE FROM STATE-VARIABLE MODEL

We now use the state variable model of the motor to plot the step response. The following
model was developed in Section 6.4.

dia

dt
= v − ia Ra − Kbω

La
(6.7.1)

dω

dt
= KT ia − cω − Td

I
(6.7.2)
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Figure 6.7.2 Motor response
to a modified step input.
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This model is in state-variable form, where the state variables are the armature current
ia and the speed ω. The inputs are the applied voltage v and the load torque TL , which
is reflected through the gear ratio N to produce Td = TL/N . In this case the appropriate
state and input matrices are (see Section 5.1 for a discussion of the standard matrix-
vector form of a state-variable model).

A =
[−Ra/La −Kb/La

KT /I −c/I

]
B =

[
1/La 0
0 −1/(N I )

]

where the state vector and input vector are

x =
[
ia

ω

]
u =

[
v

TL

]

Choosing the outputs to be ia and ω, we use the following output matrices.

C =
[

1 0
0 1

]
D =

[
0 0
0 0

]

The following program contains the parameter values for the load.

% load_par.m Load parameters.
IL = 0;
cL = 0;
N = 1;
TL = 0;

These particular values match those of Example 6.5.2, in which there is no reducer, no
load torque, no load damping, and no load inertia. This program, however, is useful for
solving the general problem where a reducer and a load are present.

The following program computes reflected inertia and damping, the matrices for
the motor model, and the state space model sysmotor. When this is executed the
matrices and state space model will be available in the MATLAB workspace. Note that
the inertia I and damping c depend on both the motor and the load.
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% motor_mat.m Motor state matrices.
I = Im +IL/N^2;
c = cm + cL/N^2;
A = [-Ra/La,-Kb/La;KT/I,-c/I;];
B = [1/La,0;0, -1/(N*I)];
C = [1,0;0,1];
D = [0,0;0,0];
sysmotor = ss(A,B,C,D);

The following program computes and plots the response due to a step voltage of
magnitude 10 v, with the load torque TL equal to zero.

% state_step.m (Motor step response with state model)
motor_par
load_par
motor_mat
[y, t] = step(sysmotor);
subplot(2,1,1),plot(t,10*y(:,1)),...

xlabel('t (s)'),ylabel('Current (A)')
subplot(2,1,2),plot(t,10*y(:,2)),...

xlabel('t (s)'),ylabel('Speed (rad/s)')

The resulting plot looks like Figure 6.7.1.

TRAPEZOIDAL RESPONSE

Suppose the applied voltage is the following trapezoidal function, which is shown in
Figure 6.7.3 for the case where vmax = 20 V, t1 = 0.3 s, t2 = 0.9 s, t f = 1.2 s,
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Figure 6.7.3 Trapezoidal
voltage profile.
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and t3 = 1.5 s.

v(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vmax

t1
t 0 ≤ t ≤ t1

vmax t1 < t < t2

vmax

t1
(t f − t) t2 ≤ t ≤ t f

0 t f < t ≤ t3

The following program creates the voltage array v.

% Program trapezoid.m (Trapezoidal voltage profile)
t1 = 0.3; t2 = 0.9; tfinal = 1.2; t3 = 1.5;
v_max = 20;
dt = t3/1000;
t = (0:dt:t3);
for k = 1:1001

if t(k) <= t1
v(k) = (v_max/t1)*t(k);

elseif t(k) <= t2
v(k) = v_max;

elseif t(k) <= tfinal
v(k) = (v_max/t1)*(tfinal-t(k));

else
v(k) = 0;

end
end

The next program computes the performance measures relating to energy con-
sumption, maximum current, voltage, and torque required and rms current and torque.
It uses the trapz function, which computes an integral with the trapezoidal rule. Note
that this program does not use the formulas in Table 6.5.1 which represent a simplified
case, but rather it computes the measures directly from the computed response.

% Program performance.m
% Computes motor performance measures.
ia = y(:,1);
speed = y(:,2);
E = trapz(t,Ra*ia.^2)+trapz(t,c*speed.^2)
i_max = max(ia)
i_rms = sqrt(trapz(t,ia.^2)/t3)
T_max = KT*i_max
T_rms = KT*i_rms
speed_max = max(speed);
v_max = Ra*i_max+Kb*speed_max

The next program uses performance and trapezoid to compute the
response.

% Program trapresp.m (Motor trapezoidal response)
motor_par
load_par
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Figure 6.7.4 Motor response
to a trapezoidal voltage profile.

motor_mat
trapezoid
u = [v', TL*ones(size(v'))];
y = lsim(sysmotor,u,t);
subplot(2,1,1),plot(t,y(:,1)),...

xlabel('t (s)'),ylabel('Current (A)')
subplot(2,1,2),plot(t,y(:,2)),...

xlabel('t (s)'),ylabel('Speed (rad/s)')
performance

The resulting plot is shown in Figure 6.7.4. The computed performance measures are

E = 14.12 J/cycle imax =3.09 A irms =1.56 A

Tmax = 0.15 N · m Trms =0.08 N · m vmax =21.15 V

ωmax = 392 rad/s

Note that the computed value of vmax is different than that computed from the formula
vmax = Rimax + Kbωmax because this formula neglects the electrical time constant L/R.

NONLINEAR DAMPING

In Chapter 4 we saw that the force or torque due to viscous friction is sometimes a
nonlinear function of the speed. Let us investigate the effects of a nonlinear damp-
ing torque cN ω2 on the speed and current, for a step input voltage. Suppose that
cN = 5 × 10−6 N · m · s2/rad2 and suppose that we are interested in the speed range
from 0 to 2000 rpm. The plot of the nonlinear damping torque is shown in Figure 6.7.5.
As discussed in Chapter 1, a linear approximation that gives an overestimate of the
damping torque is the straight line shown on the plot. The coefficient for the linear
model is c = 10−3 N · m · s/rad.
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Figure 6.7.5 Linear and
nonlinear models of damping
force.
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The current equation is given by (6.7.1). The nonlinear motor equation is a modi-
fication of (6.7.2) with Td = 0:

dω

dt
= KT ia − cN ω2

I
(6.7.3)

To use one of the ode solvers we must first create a function file that computes the
derivatives dia/dt and dω/dt . This file is based on (6.7.1) and (6.7.3). The current is
x(1) and the speed is x(2).

function xdot = nlmotor(t,x)
% nonlinear damping in motor.
global KT Kb La Ra I cN v
xdot = [(-Ra*x(1)-Kb*x(2)+v)/La; (KT*x(1)-cN*x(2).^2)/I];

Note that the use of global in the program motor_par enables the parameters to
be accessed by the function nlmotor.

The following program computes the step response of the linear and nonlinear
models for an applied voltage of 10 V. Note that because we have changed the value of
the motor damping cm from that originally used in motor_par, we must type cm =
1e-3 after running motor_par but before running motor_mat. Because step
gives the unit-step response, we must multiply its result by v = 10 V. Note that the
output order of the linear solvers lsim and step is [y, t], whereas for the ode
solvers the order is [t, y].

Program motor.m (Computes response for nonlinear damping)
clear
global I cN v
motor_par
load_par
cm = 1e-3;
motor_mat
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Figure 6.7.6 Motor response
with linear and nonlinear
damping.

cN = 5e-6; v = 10;
[y1, t1]= step(sysmotor);
y1 = v*y1;
speed = (0:2000)*(2*pi)/60;
[t2, y2] = ode23(@nlmotor, [0, 0.05], [0, 0]);
subplot(2,1,1), plot(t2,y2(:,1),'--',t1,y1(:,1)),...

ylabel('i_a(t) (A)'),...
axis([0 0.05 0 20]), gtext('Linear'),gtext('Nonlinear'),

subplot(2,1,2), ...
plot(t2,y2(:,2)*60/(2*pi),'--',t1,y1(:,2)*60/(2*pi)),...
xlabel('t (s)'),axis([0 0.05 0 2000]),...
ylabel('\omega(t) (rpm)'),gtext('Linear'),...
gtext('Nonlinear')

The resulting plots are shown in Figure 6.7.6. Note that the current of the linear
model is greater than that of the nonlinear model but its speed is less. This is because
the linear damping model used here overestimates the damping torque.

6.8 SIMULINK APPLICATIONS
Simulink is especially useful for obtaining the response of systems to input functions
that are more complicated than step, impulse, ramp, or sine functions. Simulink is also
helpful for computing the response of systems that contain nonlinear elements whose
behavior is difficult to analyze by hand and tedious to program in MATLAB. In this
section, we use several electrical systems to illustrate how to accomplish this.

SIMULATION WITH A PULSE INPUT

Example 6.2.9 derived an expression for the pulse response of a series RC circuit. To
derive the response expression when the input is a series of pulses is, however, much
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more difficult. We can use Simulink to find the response rather easily. We will introduce
another block, the Pulse Generator block, to accomplish this. The Pulse Generator block
is in the Sources library.

We will first use a single pulse of amplitude 12 V and duration 0.02 s as an input
to check the results with the plot shown in Figure 6.2.11, using the values R = 104 �

and C = 10−6 F. Thus the transfer function for the circuit is

Vo(s)

Vi (s)
= 1

RCs + 1
= 1

0.01s + 1

After placing the blocks as shown in Figure 6.8.1 and entering the coefficients of the
transfer function, double-click on the Pulse Generator block and set the Amplitude to
12, the Period to 1, the Pulse Width to 2%, and the Phase Delay to 0. Use the default
value, Time-based, for the Pulse type. Set the Save format for the Simout block to
Array. Set the Stop time to 0.1 under the Simulation menu. The output of the program
when plotted should look like Figure 6.8.2 after being enhanced with the Plot Editor.
Compare the plot of the output voltage with Figure 6.2.12.

Figure 6.8.1 Simulink model
using the Pulse Generator
block. Pulse 

Generator

Scope1

Scope

1
0.01s+1

Transfer Fcn

To Workspace

simout

Figure 6.8.2 RC circuit
response to a pulse input.
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To obtain the response for a series of pulses of amplitude 12 V, of duration 0.005
s, and period 0.02 s, double-click on the Pulse Generator block and change the Period
to 0.02, and the Pulse width to 25%. The output of the program when plotted should
look like Figure 6.8.3 after being enhanced with the Plot Editor.

TORQUE LIMITATION IN MOTORS

In Section 6.5 we saw that motors have a maximum available torque. We can use
Simulink to examine the effects of torque limits on the step response. The Simulink
diagram in Figure 6.8.4 is based on the following equations.

�(s) = 1

Ims + cm
[T (s) − Td(s)]

T (s) = KT Ia(s) = KT
1

Las + Ra
Va(s)

Va(s) = V (s) − Kb�(s)
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Figure 6.8.3 RC circuit
response to a series of pulses.
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Figure 6.8.4 Simulink model
of a torque-limited motor.
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Figure 6.8.5 Response of a
torque-limited motor.
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It uses two features we have not yet seen. These are the Constant block, labeled Distur-
bance Torque, and the use of variables as coefficients in a block. The Constant block
gives a fixed constant input for all time, whereas the Step block can be set to switch on
at a specified time.

The blocks labeled Electrical and Mechanical are Transfer Fcn blocks. The Torque
Constant and Back Emf blocks are Gain blocks. After placing the blocks as shown, enter
the denominator of the Electrical block as [La, Ra] and the denominator of the Me-
chanical block as[Im, cm]. Similarly, set the gains toKT andKb, and set the constant
in the Disturbance Torque block toTd. Note that these parameters do not yet have values.

Next set the lower and upper limits in the Saturation block to −0.4 and 0.4, respec-
tively, to limit the motor torque to ±0.4 N · m. Set the Step Time of the Step block to 0
and the Final Value to 10, which corresponds to a 10 V input. Then, in the MATLAB
Command window, run the program motor_par described in Section 6.7. This will
set the values of all the parameters except for the torque Td , which can be set to 0.01
N · m by typing Td = 0.01 in the Command window. Then run the Simulink model.

The results can be plotted as shown in Figure 6.8.5. Note that the motor torque is
limited, and this limits the slope of the speed curve. You can check the effects of this
limitation by setting larger limits (say ±1 N · m) in the Saturation block. If the torque
were not limited, it would reach a peak value of about 0.8 N · m, and the speed would
approach its steady-state value faster.

Note that it would be difficult to use the State Space block to simulate torque
limitation. As we will see many more times, each model form—state variable and
transfer function—have their own advantages.

6.9 CHAPTER REVIEW
This chapter introduced the basic physics, common elements, and terminology of elec-
tric circuits, and treated the two main physical laws needed to develop circuit models.
These are Kirchhoff’s current and voltage laws. Impedance, which is a generalization
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of the electrical resistance concept, enables you to derive circuit models more easily,
especially for more complex circuits, and is especially useful for obtaining models of
circuits containing operational amplifiers. The principles of electromechanical devices,
of which direct-current (dc) motors are the most important example, were extended to
other electromechanical devices such as sensors and speakers.

Some of the systems treated in this chapter are more easily analyzed with computer
simulation, and the chapter showed how to apply MATLAB and Simulink to analyze
electromechanical systems.

Now that you have finished this chapter, you should be able to

■ Develop models of electrical circuits. This includes

Application of Kirchhoff’s voltage and current laws,
Application of the voltage- and current-divider rules,
Use of loop analysis,
Selection of appropriate state variables, and
Use of impedance.

■ Apply impedance methods to obtain models of op-amp systems.
■ Apply Newton’s laws, electrical circuit laws, and electromagnetic principles to

develop models of electromechanical systems.
■ Analyze the performance of motors and amplifiers in motion control systems.
■ Apply MATLAB and Simulink to analyze models of circuits and

electromechanical systems in state-variable and transfer function form.

PROBLEMS
Section 6.1 Electrical Elements

6.1 Determine the equivalent resistance Re of the circuit shown in Figure P6.1,
such that vs = Rei . All the resistors are identical and have the resistance R.

6.2 Determine the voltage v1 in terms of the supply voltage vs for the circuit shown
in Figure P6.2.

6.3 The Wheatstone bridge, like that shown in Figure P6.3, is used for various
measurements. For example, a strain gage sensor utilizes the fact that the
resistance of wire changes when deformed. If the sensor is one resistance leg
of the bridge, then the deformation can be determined from the voltage v1.
Determine the relation between the voltage v1 and the supply voltage vs .

Figure P6.1
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Section 6.2 Circuit Examples

6.4 The power supply of the circuit shown in Figure P6.4 supplies a voltage of 9 V.
Compute the current i and the power P that must be supplied.
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6.5 Obtain the model of the voltage v1, given the current is , for the circuit shown in
Figure P6.5.

6.6 (a) Obtain the model of the voltage vo, given the supply voltage vs , for the
circuit shown in Figure P6.6. (b) Suppose vs(t) = V us(t). Obtain the
expressions for the free and forced responses for vo(t).

6.7 (a) Obtain the model of the voltage vo, given the supply voltage vs , for the
circuit shown in Figure P6.7. (b) Suppose vs(t) = V us(t). Obtain the
expressions for the free and forced responses for vo(t).

6.8 (a) Obtain the model of the voltage vo, given the supply voltage vs , for the
circuit shown in Figure P6.8. (b) Suppose vs(t) = V us(t). Obtain the
expressions for the free and forced responses for vo(t).

6.9 (a) The circuit shown in Figure P6.9 is a model of a solenoid, such as that used
to engage the gear of a car’s starter motor to the engine’s flywheel. The
solenoid is constructed by winding wire around an iron core to make an
electromagnet. The resistance R is that of the wire, and the inductance L is due
to the electromagnetic effect. When the supply voltage vs is turned on, the
resulting current activates the magnet, which moves the starter gear. Obtain the
model of the current i given the supply voltage vs . (b) Suppose vs(t) = V us(t)
and i(0) = 0. Obtain the expression for the response for i(t).

Figure P6.7
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6.10 The resistance of a telegraph line is R = 10 �, and the solenoid inductance is
L = 5 H. Assume that when sending a “dash,” a voltage of 12 V is applied
while the key is closed for 0.3 s. Obtain the expression for the current i(t)
passing through the solenoid. (See Figure 6.2.15)

6.11 Obtain the model of the voltage vo, given the supply voltage vs , for the circuit
shown in Figure P6.11.

6.12 Obtain the model of the voltage vo, given the supply voltage vs , for the circuit
shown in Figure P6.12.

6.13 Obtain the model of the current i , given the supply voltage vs , for the circuit
shown in Figure P6.13.
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6.14 Obtain the model of the voltage vo, given the supply current is , for the circuit
shown in Figure P6.14.

6.15 Obtain the model of the currents i1, i2, and i3, given the input voltages v1 and
v2, for the circuit shown in Figure P6.15.
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6.16 Obtain the model of the currents i1, i2, and the voltage v3, given the input
voltages v1 and v2, for the circuit shown in Figure P6.16.

Figure P6.16
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6.17 For the circuit shown in Figure P6.14, determine a suitable set of state
variables, and obtain the state equations.

6.18 For the circuit shown in Figure P6.15, determine a suitable set of state
variables, and obtain the state equations.

6.19 For the circuit shown in Figure P6.16, determine a suitable set of state
variables, and obtain the state equations.

Section 6.3 Impedance and Amplifiers

6.20 Use the impedance method to obtain the transfer function Vo(s)/Vs(s) for the
circuit shown in Figure P6.20.

6.21 Use the impedance method to obtain the transfer function I (s)/Vs(s) for the
circuit shown in Figure P6.21.

6.22 Use the impedance method to obtain the transfer function Vo(s)/Vs(s) for the
circuit shown in Figure P6.22.

6.23 Use the impedance method to obtain the transfer function Vo(s)/Is(s) for the
circuit shown in Figure P6.23.
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Figure P6.20
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6.24 Use the impedance method to obtain the transfer function Vo(s)/Vs(s) for the
circuit shown in Figure P6.24.

6.25 Use the impedance method to obtain the transfer function Vo(s)/Vs(s) for the
circuit shown in Figure P6.25.

6.26 Use the impedance method to obtain the transfer function Vo(s)/Vs(s) for the
circuit shown in Figure P6.26.
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6.27 Obtain the transfer function Vo(s)/Vi (s) for the op-amp system shown in
Figure P6.27.

6.28 Obtain the transfer function Vo(s)/Vi (s) for the op-amp system shown in
Figure P6.28.
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6.29 Obtain the transfer function Vo(s)/Vi (s) for the op-amp system shown in
Figure P6.29.

6.30 Obtain the transfer function Vo(s)/Vi (s) for the op-amp system shown in
Figure P6.30.

6.31 Obtain the transfer function Vo(s)/Vi (s) for the op-amp system shown in
Figure P6.31.
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Section 6.4 Electric Motors

6.32 (a) Obtain the transfer function 
(s)/Vi (s) for the D’Arsonval meter. (b) Use
the final value theorem to obtain the expression for the steady-state value of the
angle θ if the applied voltage vi is a step function.

6.33 (a) Obtain the transfer function �(s)/TL(s) for the field-controlled motor of
Example 6.4.2. (b) Modify the field-controlled motor model in Example 6.4.2
so that the output is the angular displacement θ , rather than the speed ω, where
ω = θ̇ . Obtain the transfer functions 
(s)/V f (s) and 
(s)/TL(s).

6.34 Modify the motor model given in Example 6.4.2 to account for a gear pair
between the motor shaft and the load. The ratio of motor speed to load speed
ωL is N . The motor inertia is Im and the motor damping is cm . The load inertia
is IL and the load damping is cL . The load torque TL acts directly on the load
inertia. Obtain the transfer functions �L(s)/V f (s) and �L(s)/TL(s).

6.35 The derivation of the field-controlled motor model in Section 6.4 neglected the
elasticity of the motor-load shaft. Figure P6.35 shows a model that includes
this elasticity, denoted by its equivalent torsional spring constant kT . The
motor inertia is I1, and the load inertia is I2. Derive the differential equation
model with θ2 as output and v f as input.
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Rf

�

�
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�1

I1
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c

Figure P6.35
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Figure P6.36

�

�

Rf

Lf

if

Generator

vf

�

�

�

�
vb

Ra La

Motor

va

ia

Engine

TL

I
c

T �

6.36 Figure P6.36 is the circuit diagram of a speed-control system in which the dc
motor voltage va is supplied by a generator driven by an engine. This system
has been used on locomotives whose diesel engine operates most efficiently at
one speed. The efficiency of the electric motor is not as sensitive to speed and
thus can be used to drive the locomotive at various speeds. The motor voltage
va is varied by changing the generator input voltage v f . The voltage va is
related to the generator field current i f by va = K f i f .

Derive the system model relating the output speed ω to the voltage v f , and
obtain the transfer function �(s)/V f (s).

Section 6.5 Analysis of Motor Performance

6.37 The parameter values for a certain armature-controlled motor are

KT = Kb = 0.2 N · m/A

c = 5 × 10−4 N · m · s/rad Ra = 0.8 �

The manufacturer’s data states that the motor’s maximum speed is 3500 rpm, and
the maximum armature current it can withstand without demagnetizing is 40 A.

Compute the no-load speed, the no-load current, and the stall torque.
Determine whether the motor can be used with an applied voltage of va = 15 V.

6.38 The parameter values for a certain armature-controlled motor are

KT = Kb = 0.05 N · m/A

Ra = 0.8 �

La = 3 × 10−3 H I = 8 × 10−5 kg · m2

where I includes the inertia of the armature and that of the load. Investigate the
effect of the damping constant c on the motor’s characteristic roots and on its
response to a step voltage input. Use the following values of c (in N · m · s/rad):
c = 0, c = 0.01, and c = 0.1. For each case, estimate how long the motor’s
speed will take to become constant, and discuss whether or not the speed will
oscillate before it becomes constant.

6.39 The parameter values for a certain armature-controlled motor are

KT = Kb = 0.2 N · m/A

c = 5 × 10−4 N · m · s/rad Ra = 0.8 �

La = 4 × 10−3 H I = 5 × 10−4 kg · m2

where c and I include the effect of the load.
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a. Obtain the step response of ia(t) and ω(t) if the applied voltage is
va = 10 V.

b. Obtain the step response of ia(t) and ω(t) if the load torque is TL =
0.2 N · m.

6.40 The following measurements were performed on a permanent magnet motor
when the applied voltage was va = 20 V. The measured stall current was 25 A.
The no-load speed was 2400 rpm and the no-load current was 0.6 A. Estimate
the values of Kb, KT , Ra , and c.

6.41 A single link of a robot arm is shown in Figure P6.41. The arm mass is m and
its center of mass is located a distance L from the joint, which is driven by a
motor torque Tm through spur gears. Suppose that the equivalent inertia felt at
the motor shaft is 0.215 kg · m2. As the arm rotates, the effect of the arm weight
generates an opposing torque that depends on the arm angle, and is therefore
nonlinear. For this problem, however, assume that the effect of the opposing
torque is a constant 4.2 N · m at the motor shaft. Neglect damping in the
system. It is desired to have the motor shaft rotate through 3π/4 rad in a total
time of 2 s, using a trapezoidal speed profile with t1 = 0.3 s and t2 = 1.7 s.

The given motor parameters are Ra = 4 �, La = 3 × 10−3 H, and
KT = 0.3 N · m/A. Compute the energy consumption per cycle; the maximum
required torque, current, and voltage; the rms torque; and the rms current.

Figure P6.41
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6.42 A conveyor drive system to produce translation of the load is shown in
Figure P6.42. Suppose that the equivalent inertia felt at the motor shaft is
0.05 kg · m2, and that the effect of Coulomb friction in the system produces an
opposing torque of 3.6 N · m at the motor shaft. Neglect damping in the system.
It is desired to have the motor shaft rotate through 11 revolutions in a total time
of 3 s, using a trapezoidal speed profile with t1 = 0.5 s and t2 = 2.5 s.
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The given motor parameters are Ra = 3 �, La = 4 × 10−3 H, and
KT = 0.4N · m/A. Compute the energy consumption per cycle; the maximum
required torque, current, and voltage; the rms torque; and the rms current.

Section 6.6 Sensors and Electroacoustic Devices

6.43 Consider the accelerometer model in Section 6.6. Its transfer function can be
expressed as

Y (s)

Z(s)
= − s2

s2 + (c/m)s + k/m

Suppose that the input displacement is z(t) = 10 sin 120t mm. Consider two
cases, in SI units: (a) k/m = 100 and c/m = 18 and (b) k/m = 106 and
c/m = 1800. Obtain the steady-state response y(t) for each case. By
comparing the amplitude of y(t) with the amplitudes of z(t) and z̈(t),
determine which case can be used as a vibrometer (to measure displacement)
and which can be used as an accelerometer (to measure acceleration).

6.44 An electromagnetic microphone has a construction similar to that of the
speaker shown in Figure 6.6.2, except that there is no applied voltage and the
sound waves are incoming rather than outgoing. They exert a force fs on the
diaphragm whose mass is m, damping is c, and stiffness is k. Develop a model
of the microphone, whose input is fs and output is the current i in the coil.

6.45 Consider the speaker model developed in Example 6.6.1. The model, whose
transfer function is given by equation (3) in that example, is third order and
therefore we cannot obtain a useful expression for the characteristic roots.
Sometimes inductance L and damping c are small enough to be ignored. If
L = 0, the model becomes second order. (a) Obtain the transfer function
X (s)/V (s) for the case where L = c = 0, and obtain the expressions for the
two roots. (b) Compare the results with the third-order case where

m = 0.002 kg k = 4 × 105 N/m

K f = 16 N/A Kb = 13 V · s/m

R = 12 � L = 10−3 H

c = 0

Section 6.7 MATLAB Applications

6.46 The parameter values for a certain armature-controlled motor are

KT = Kb = 0.2 N · m/A

c = 5 × 10−4 N · m · s/rad Ra = 0.8 �

La = 4 × 10−3 H I = 5 × 10−4 kg · m2

where c and I include the effect of the load. The load torque is zero.
Use MATLAB to obtain a plot of the step response of ia(t) and ω(t) if the

applied voltage is va = 10 V. Determine the peak value of ia(t).
6.47 Consider the motor whose parameters are given in Problem 6.46. Use

MATLAB to obtain a plot of the response of ia(t) and ω(t) if the applied
voltage is the modified step va(t) = 10(1 − e−100t) V. Determine the peak
value of ia(t).
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6.48 Consider the circuit shown in Figure P6.48. The parameter values are
R = 103 �, C = 2 × 10−6 F, and L = 2 × 10−3 H. The voltage v1 is a step
input of magnitude 5 V, and the voltage v2 is sinusoidal with frequency of
60 Hz and an amplitude of 4 V. The initial conditions are zero. Use MATLAB
to obtain a plot of the current response i3(t).

Figure P6.48
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6.49 The parameter values for a certain armature-controlled motor are

KT = Kb = 0.2 N · m/A

c = 3 × 10−4 N · m · s/rad Ra = 0.8 �

La = 4 × 10−3 H I = 4 × 10−4 kg · m2

The system uses a gear reducer with a reduction ratio of 3:1. The load inertia is
10−3 kg · m2, the load torque is 0.04 N · m, and the load damping constant is
1.8 × 10−3 N · m · s/rad.

Use MATLAB to obtain a plot of the step response of ia(t) and ω(t) if the
applied voltage is va = 20 V. Determine the peak value of ia(t).

6.50 The parameter values for a certain armature-controlled motor are

KT = Kb = 0.05 N · m/A

c = 0 Ra = 0.8 �

La = 3 × 10−3 H I = 8 × 10−5 kg · m2

where I includes the inertia of the armature and that of the load. The load
torque is zero. The applied voltage is a trapezoidal function defined as follows.

v(t) =

⎧⎪⎪⎨
⎪⎪⎩

60t 0 ≤ t ≤ 0.5
30 0.5 < t < 2
60(2.5 − t) 2 ≤ t ≤ 2.5
0 2.5 < t ≤ 4

a. Use MATLAB to obtain of plot of the response of ia(t) and ω(t).
b. Compute the energy consumption per cycle; the maximum required

torque, current, and voltage; the rms torque; and the rms current.
6.51 A single link of a robot arm is shown in Figure P6.41. The arm mass is m and

its center of mass is located a distance L from the joint, which is driven by a
motor torque Tm through spur gears. Suppose that the equivalent inertia felt at
the motor shaft is 0.215 kg · m2. As the arm rotates, the effect of the arm
weight generates an opposing torque that depends on the arm angle, and is
therefore nonlinear. The effect of the opposing torque at the motor shaft is
4.2 sin θ N · m. Neglect damping in the system. It is desired to have the motor
shaft rotate through 3π/4 rad in a total time of 2 s, using a trapezoidal speed
profile with t1 = 0.3 s and t2 = 1.7 s.

The given motor parameters are Ra = 4 �, La = 3 × 10−3 H, and
KT = 0.3 N · m/A. Use MATLAB to obtain of plot of the response of the
motor current and the motor speed.

Section 6.8 Simulink Applications

6.52 Consider the circuit shown in Figure P6.48. The parameter values are
R = 104 �, C = 2 × 10−6 F, and L = 2 × 10−3 H. The voltage v1 is a single
pulse of magnitude 5 V and duration 0.05 s, and the voltage v2 is sinusoidal
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with frequency of 60 Hz and an amplitude of 4 V. The initial conditions are
zero. Use Simulink to obtain a plot of the current response i3(t).

6.53 Consider the circuit shown in Figure P6.53. The parameter values are
R = 2 × 104 � and C = 3 × 10−6 F. The voltage vs is vs(t) =
12us(t) + 3 sin 120π t V. The initial conditions are zero. Use Simulink
to obtain a plot of the responses vo(t) and v1(t).

Figure P6.53
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6.54 The parameter values for a certain armature-controlled motor are

KT = Kb = 0.2 N · m/A

c = 5 × 10−4 N · m · s/rad Ra = 0.8 �

La = 4 × 10−3 H I = 5 × 10−4 kg · m2

where c and I include the effect of the load. The load torque is zero.
a. Use Simulink to obtain a plot of the step response of the motor torque and

speed if the applied voltage is va = 10 V. Determine the peak value of the
motor torque.

b. Now suppose that the motor torque is limited to one-half the peak value
found in part (a). Use Simulink to obtain a plot of the step response of the
motor torque and speed if the applied voltage is va = 10 V.

6.55 The parameter values for a certain armature-controlled motor are

KT = Kb = 0.05 N · m/A

c = 0 Ra = 0.8 �

La = 3 × 10−3 H I = 8 × 10−5 kg · m2

where I includes the inertia of the armature and that of the load. The load
torque is zero. The applied voltage is a trapezoidal function defined as follows.

v(t) =

⎧⎪⎪⎨
⎪⎪⎩

60t 0 ≤ t ≤ 0.5
30 0.5 < t < 2
60(2.5 − t) 2 ≤ t ≤ 2.5
0 2.5 < t ≤ 4

A trapezoidal profile can be created by adding and subtracting ramp
functions starting at different times. Use several Ramp source blocks and Sum
blocks in Simulink to create the trapezoidal input. Obtain a plot of the response
of ia(t) and ω(t).
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Apply the conservation of mass principle to model
simple hydraulic and pneumatic systems.

2. Determine the appropriate resistance relation to use
for laminar, turbulent, and orifice flow.

3. Develop a dynamic model of hydraulic and
pneumatic systems containing one or more fluid
containers.

4. Determine the appropriate thermal resistance
relation to use for conduction, convection, and
radiation heat transfer.

5. Develop a model of a thermal process having one or
more thermal storage compartments.

6. Apply MATLAB and Simulink to solve fluid and
thermal system models.

Afluid system uses one or more fluids to achieve its purpose. The dampers, shock
absorbers, and door closer we saw in Chapter 4 are examples of fluid systems
because they depend on the viscous nature of a fluid to provide damping. A

fluid might be either a liquid or a gas. Part I of this chapter concerns the study of
fluid systems, which can be divided into hydraulics and pneumatics. Hydraulics is
the study of systems in which the fluid is incompressible, that is, its density stays
approximately constant over a range of pressures. Pneumatics is the study of systems in
which the fluid is compressible. Hydraulics and pneumatics share a common modeling

339
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principle: conservation of mass. It will form the basis of all our models of such systems.
Modeling pneumatic systems also requires application of thermodynamics, because the
temperature and density of a gas can change when its pressure changes.

Thus pneumatics provides a bridge to the treatment of thermal systems, which is
the subject of Part II of the chapter. Thermal systems are systems that operate due to
temperature differences. They thus involve the flow and storage of thermal energy, or
heat, and conservation of heat energy forms the basis of our thermal models.

Part III illustrates applications of MATLAB and Simulink to fluid and thermal
systems.

Fluid and thermal systems are more complicated than most electrical and mechan-
ical systems. While, for example, there are formulas available to compute the spring
constant of typical elastic elements, few formulas are available for the coefficients that
will appear in our fluid and thermal models, and the coefficients’ values often must
be determined experimentally. For this reason, the methods for developing models
from data, covered in Chapter 1, are most important for modeling fluid and thermal
systems. ■

PART I. FLUID SYSTEMS
In addition to providing damping, other applications of fluid systems include actua-
tors and processes that involve mixing, heating, and cooling of fluids. Active vehicle
suspensions use hydraulic and pneumatic actuators to provide forces that supplement
the passive spring and damping elements. Water supply, waste treatment, and other
chemical processing applications are examples of a general category of fluid systems
called liquid-level systems, because they involve regulating the volumes, and therefore
the levels of liquids in containers such as tanks.

Because all real fluids are compressible to some extent, incompressibility is an
approximation. But this approximation is usually sufficiently accurate for most liquids
under typical conditions, and it results in a simpler model of the system. For this reason
we will begin our study of fluid systems with hydraulics.

7.1 CONSERVATION OF MASS
We will avoid complex system models by describing only the gross system behavior
instead of the details of the fluid motion patterns. The study of such motion belongs to
the specialized subject of fluid mechanics and will not be treated here.

For incompressible fluids, conservation of mass is equivalent to conservation of
volume, because the fluid density is constant. If we know the mass density ρ and the
volume flow rate, we can compute the mass flow rate. That is, qm = ρqv , where qm

and qv are the mass and volume flow rates. The FPS and SI units for mass flow rate
are slug/sec and kg/s, respectively. The units for volume rates are ft3/sec and m3/s,
respectively. Other common units for volume are the U.S. gallon, which is 0.13368 ft3,
and the liter, which is 0.001 m3.

DENSITY AND PRESSURE

The units for mass density are slug/ft3 and kg/m3. Sometimes one encounters weight
density, whose common symbol is γ . Its units are lb/ft3 or N/m3, and it is related to
the mass density as γ = ρg, where g is the acceleration due to gravity. The mass
density of fresh water near room temperature is 1.94 slug/ft3, or 1000 kg/m3. The mass
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density of air at sea level and near room temperature is approximately 0.0023 slug/ft3 or
1.185 kg/m3.

Pressure is the force per unit area that is exerted by the fluid. The FPS and SI units
of pressure are lb/ft2 and the Pascal (1 Pa = 1 N/m2), respectively. Another common
unit is psi (lb/in.2). At sea level near room temperature, atmospheric pressure, usually
abbreviated pa , is 14.7 psi (2117 lb/ft2) or 1.0133×105 Pa. Gage pressure is the pressure
difference between the absolute pressure and atmospheric pressure, and is often abbre-
viated as psig. For example, 3 psig is 17.7 psi absolute (which is abbreviated as psia).

Hydrostatic pressure is the pressure that exists in a fluid at rest. It is caused by the
weight of the fluid. For example, the hydrostatic pressure at the bottom of a column of
fluid of height h is ρgh. If the atmospheric pressure above the column of liquid is pa ,
then the total pressure at the bottom of the column is ρgh + pa .

A Hydraulic Brake System EXAMPLE 7.1.1

■ Problem
Figure 7.1.1 is a representation of a hydraulic brake system. The piston in the master cylinder
moves in response to the foot pedal. The resulting motion of the piston in the slave cylinder
causes the brake pad to be pressed against the brake drum with a force f3. Obtain the expression
for the force f3 with the force f1 as the input. The force f1 depends on the force f4 applied by the
driver’s foot. The precise relation between f1 and f4 depends on the geometry of the pedal arm.

■ Solution
The forces are related to the pressures and the piston areas as follows: f1 = p1 A1 and f2 = p2 A2.
Assuming the system is in static equilibrium after the brake pedal has been pushed, we see that
p1 = p2 + ρgh, where h is the height between points 1 and 2. Thus, if h is small, that is, if
the pressure ρgh is negligible compared to p2, then p1 = f1/A1 = p2 = f2/A2. The forces are
therefore related as f2 = f1 A2/A1, and if the area A2 of the slave piston is greater than the area
A1 of the master piston, the force f2 will be greater than the force f1. So we see that this system
serves to amplify the pedal force.

The force f3 can be obtained from the lever relation f3 = f2 L1/L2, assuming static
equilibrium or negligible lever inertia.

Master cylinder

Pivot

Brake
pedal

Slave cylinder

Pivot

Drum

Brake
pad

x1
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p2
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x2
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L2
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Figure 7.1.1 A hydraulic
brake system.
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The tradeoff for force amplification is that the master piston must move a distance greater
than that of the slave piston. We may see this effect by equating the fluid volume displaced by
each piston.

volume = A1x1 = A2x2

Thus x2 = x1 A1/A2, and so x2 < x1 if A1 < A2.

Conservation of mass can be stated as follows. For a container holding a mass of
fluid m, the time rate of change ṁ of mass in the container must equal the total mass
inflow rate minus the total mass outflow rate. That is,

ṁ = qmi − qmo (7.1.1)

where qmi is the mass inflow rate and qmo is the mass outflow rate.
The fluid mass m is related to the container volume V by m = ρV . For an incom-

pressible fluid, ρ is constant, and thus ṁ = ρV̇ . Let qvi and qvo be the total volume inflow
and outflow rates. Thus, qmi = ρqvi , and qmo = ρqvo. Substituting these relationships
into (7.1.1) gives

ρV̇ = ρqvi − ρqvo

Cancel ρ to obtain

V̇ = qvi − qvo (7.1.2)

This is a statement of conservation of volume for the fluid, and it is equivalent to
conservation of mass, equation (7.1.1), when the fluid is incompressible.

EXAMPLE 7.1.2 A Water Supply Tank

■ Problem
Water is pumped as needed at the mass flow rate qmo(t) from the tank shown in Figure 7.1.2a.
Replacement water is pumped from a well at the mass flow rate qmi (t). Determine the water
height h(t), assuming that the tank is cylindrical with a cross section A.

Figure 7.1.2 A water supply tank.
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■ Solution
We model the system as shown in part (b) of the figure. The volume of water in the tank is Ah,
and therefore the mass of water in the tank is ρ Ah, where ρ is the mass density of water. From
conservation of mass, we have

d

dt
(ρ Ah) = qmi (t) − qmo(t)

Since ρ and A are constant, we have

ρ A
dh

dt
= qmi (t) − qmo(t)

which can be integrated as follows:

h(t) = h(0) + 1

ρ A

∫ t

0
[qmi (u) − qmo(u)] du

Once we know the flow rates, we can evaluate the integral.

A common hydraulic actuator is the piston-and-cylinder actuator used on many
types of heavy equipment, such as the backhoe shown in Figure 7.1.3. When the operator
moves a handle, hydraulic fluid under high pressure is sent through the line to the
cylinder. The fluid acts on the piston within the cylinder and produces a force that is
equal to the pressure times the piston area. This large force moves the linkage. Example
7.1.3 develops a simple model of such a device.

Piston
rod

Cylinder

Operator
controls

Hydraulic
lines

Figure 7.1.3 A backhoe.

A Hydraulic Cylinder EXAMPLE 7.1.3

■ Problem
Figure 7.1.4a shows a cylinder and piston connected to a load mass m, which slides on a
frictionless surface. Part (b) of the figure shows the piston rod connected to a rack-and-pinion
gear. The pressures p1 and p2 are applied to each side of the piston by two pumps. Assume the
piston rod diameter is small compared to the piston area, so the effective piston area A is the
same on both sides of the piston. Assume also that the piston and rod mass have been lumped
into m and that any friction is negligible. (a) Develop a model of the motion of the displacement
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Figure 7.1.4 A hydraulic
cylinder for (a) translating a
mass and for (b) rotating
a pinion gear.

� � x
R

p1 p2

mA

x

(a)

RI
�x

Rack

Pinion

m

(b)

A

p1 p2

x of the mass in part (a) of the figure, assuming that p1 and p2 are given functions of time.
Also, obtain the expression for the mass flow rate that must be delivered or absorbed by the two
pumps. (b) Develop a model of the displacement x in part (b) of the figure. The inertia of the
pinion and the load connected to the pinion is I .

■ Solution
a. Assuming that p1 > p2, the net force acting on the piston and mass m is (p1 − p2)A, and

thus from Newton’s law,

mẍ = (p1 − p2)A

Because p1 and p2 are given functions of time, we can integrate this equation once to
obtain the velocity:

ẋ(t) = ẋ(0) + A

m

∫ t

0
[p1(u) − p2(u)] du

The rate at which fluid volume is swept out by the piston is Aẋ , and thus if ẋ > 0, the
pump providing pressure p1 must supply fluid at the mass rate ρ Aẋ , and the pump
providing pressure p2 must absorb fluid at the same mass rate.

b. Because we want an expression for the displacement x , we obtain an expression for the
equivalent mass of the rack, pinion, and load. The kinetic energy of the system is

KE = 1

2
mẋ2 + 1

2
I θ̇2 = 1

2

(
m + I

R2

)
ẋ2

because Rθ̇ = ẋ .
Thus the equivalent mass is

me = m + I

R2

The required model can now be obtained by replacing m with me in the model developed
in part (a).

EXAMPLE 7.1.4 A Mixing Process

■ Problem
A mixing tank is shown in Figure 7.1.5. Pure water flows into the tank of volume V = 600 m3

at the constant volume rate of 5 m3/s. A solution with a salt concentration of si kg/m3 flows
into the tank at a constant volume rate of 2 m3/s. Assume that the solution in the tank is well
mixed so that the salt concentration in the tank is uniform. Assume also that the salt dissolves
completely so that the volume of the mixture remains the same. The salt concentration so kg/m3

in the outflow is the same as the concentration in the tank. The input is the concentration si (t),
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Solution si

so

Water

Mixer

V � 600 m3

5 m3/s

qvo

2 m3/s Figure 7.1.5 A mixing
process.

whose value may change during the process, thus changing the value of so. Obtain a dynamic
model of the concentration so.

■ Solution
Two mass species are conserved here: water mass and salt mass. The tank is always full, so the
mass of water mw in the tank is constant, and thus conservation of water mass gives

dmw

dt
= 5ρw + 2ρw − ρw qvo = 0

where ρw is the mass density of fresh water, and qvo is the volume outflow rate of the mixed
solution. This equation gives qvo = 5 + 2 = 7 m3/s.

The salt mass in the tank is soV , and conservation of salt mass gives

d

dt
(soV ) = 0(5) + 2si − soqvo = 2si − 7so

or, with V = 600,

600
dso

dt
= 2si − 7so (1)

This is the model. The time constant for the mixing process is 600/7 = 85.7 s. Thus, if si is
initially zero and then becomes a nonzero constant value S, the salt concentration in the outflow
will eventually become constant at the value 2S/7 after approximately 4(85.7) = 343 s.

7.2 FLUID CAPACITANCE
Sometimes it is very useful to think of fluid systems in terms of electrical circuits.
Table 7.2.1 gives the fluid quantity, its common nomenclature, its linear relation, and
its analogous electrical property. Fluid resistance is the relation between pressure and
mass flow rate. Fluid capacitance is the relation between pressure and stored mass.

We will concentrate on fluid resistance and capacitance. Fluid resistance relates to
energy dissipation while fluid capacitance relates to potential energy. Fluid inertance
relates to fluid acceleration and kinetic energy.

Fluid systems obey two laws that are analogous to Kirchhoff’s current and voltage
laws; these laws are the continuity and the compatibility laws. The continuity law is
simply a statement of conservation of fluid mass. This says that the total mass flow into
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Table 7.2.1 Analogous fluid and electrical quantities.

Fluid quantity Electrical quantity

Fluid mass, m Charge, Q
Mass flow rate, qm Current, i
Pressure, p Voltage, v
Fluid linear resistance, R Electrical resistance, R

R = p/qm R = v/ i
Fluid capacitance, C Electrical capacitance, C

C = m/p C = Q/v
Fluid inertance, I Electrical inductance, L

I = p/(dqm/dt) L = v/(di/dt)

a junction must equal the total flow out of the junction. This is analogous to Kirchhoff’s
current law. Flow through two rigid pipes joined together to make one pipe is an example
where this applies. If, however, the flow is through flexible tubes that can expand and
contract under pressure, then the outflow rate is not the sum of the inflow rates. This
is an example where fluid mass can accumulate within the system and is analogous to
having a capacitor in an electrical circuit.

The compatibility law is analogous to Kirchhoff’s voltage law, which states that the
sum of signed voltage differences around a closed loop must be zero. It is an expression
of conservation of energy. The compatibility law states that the sum of signed pressure
differences around a closed loop must be zero.

FLUID SYMBOLS AND SOURCES

Figure 7.2.1 shows the commonly used symbols for fluid system elements. The
resistance symbol is used to represent both linear and nonlinear fixed resistances, for
example, due to pipe flow, orifice flow, or a restriction. A valve that can be manually
adjusted, such as a faucet, is a variable resistance and has a slightly different symbol.
An actuated valve, driven, for example, by an electric motor or a pneumatic device, has
a different symbol. Such valves are usually operated under computer control.

Just as there are ideal voltage and current sources in electrical systems, so we use
ideal pressure and flow sources in our fluid system models. An ideal pressure source
is capable of supplying the specified pressure at any flow rate. An ideal flow source is
capable of supplying the specified flow.

These ideal sources are approximations to real devices such as pumps. For example,
Figure 7.2.2 shows the steady-state flow-pressure relation for a centrifugal pump, where
qm is the mass flow rate produced by the pump when the pressure difference across the
pump is �p. When the outlet pressure is greater than the inlet pressure, �p > 0. Such

Figure 7.2.1 Fluid system
symbols.

qs

Ideal flow
source

Ideal pressure
source

p1 p2

ps � p2 � p1

Actuated
valve

Manually
adjusted valve

Resistance

Pump

ps



palm-38591 book December 17, 2008 12:18

7.2 Fluid Capacitance 347

s1

s2

s3

qm

�p

Figure 7.2.2 Steady-state
flow-pressure relation for a
centrifugal pump.

m

mr

pr p

C

1

Figure 7.2.3 General fluid
capacitance relation and its
linear approximation.

curves depend on the pump speed, labeled s1, s2, and so on in the figure. To determine
the operating condition of the pump for a given speed, we need another relation between
qm and �p. This relation depends on the load connected to the pump outlet. We will
see how such a relation is obtained in Example 7.4.8 in Section 7.4.

CAPACITANCE RELATIONS

Fluid capacitance is the relation between stored fluid mass and the resulting pressure
caused by the stored mass. Figure 7.2.3 illustrates this relation, which holds for both
pneumatic and hydraulic systems. At a particular reference point (pr , mr ) the slope
is C , where

C = dm

dp

∣∣∣∣
p=pr

(7.2.1)

Thus, fluid capacitance C is the ratio of the change in stored mass to the change in
pressure.
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EXAMPLE 7.2.1 Capacitance of a Storage Tank

■ Problem
Consider the tank shown in Figure 7.2.4. Assume that the sides are vertical so that the cross-
sectional area A is constant. This is the case, for example, with a cylindrical tank whose horizontal
cross section is circular, or with a tank having vertical sides and a rectangular horizontal cross
section. Derive the expression for the tank’s capacitance.

■ Solution
Because the tank’s sides are vertical, the liquid height h is related to m, the liquid mass in the
tank, by m = ρ Ah. The total pressure at the bottom of the tank is ρgh + pa , but the pressure due
only to the stored fluid mass is p = ρgh. We can therefore express the pressure as a function of
the mass m stored in the tank as p = mg/A.

Thus,

m = p A

g

and the capacitance of the tank is given by

C = dm

dp
= A

g

Figure 7.2.4 Capacitance of a
storage tank.

pa

hh

A A

(a) (b)

h

p
A

When the container does not have vertical sides, such as the one shown in Fig-
ure 7.2.5, the cross-sectional area A is a function of the liquid height h, and the relations
between m and h and between p and m are nonlinear. In such cases, there is no single
value for the container’s capacitance. The fluid mass stored in the container is

m = ρV = ρ

∫ h

0
A(x)dx,

which gives

dm

dh
= ρ A

Figure 7.2.5 A storage tank
of arbitrary shape.

Ah

qmi qmo
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For such a container, conservation of mass gives

dm

dt
= qmi − qmo (7.2.2)

but

dm

dt
= dm

dp

dp

dt
= C

dp

dt

Thus

C
dp

dt
= dm

dt
= qmi − qmo (7.2.3)

Also

dm

dt
= dm

dh

dh

dt
= ρ A

dh

dt

So

ρ A
dh

dt
= qmi − qmo (7.2.4)

Equations (7.2.2), (7.2.3), and (7.2.4) are alternative, but equivalent, hydraulic
models of a container of fluid. They suggest that either pressure p, mass m, or height h
can be chosen as the model’s variable. These variables are all indicators of the system’s
potential energy, and as such any one can be chosen as a state variable. If the container’s
cross-sectional area is constant, then V = Ah and thus the liquid volume V can also
be used as the model variable.

Capacitance of a V-Shaped Trough EXAMPLE 7.2.2

■ Problem
(a) Derive the capacitance of the V-shaped trough shown in Figure 7.2.6a. (b) Use the capacitance
to derive the dynamic models for the bottom pressure p and the height h. The mass inflow rate
is qmi (t), and there is no outflow.

■ Solution
a. From part (b) of the figure, D = 2h tan θ , and the vertical cross-sectional area of the liquid

is h D/2. Thus the fluid mass is given by

m = ρV = ρ

(
1

2
h D

)
L = (ρL tan θ)h2

(a) (b)

D

h 2�

A

h 2�

L

Figure 7.2.6 A V-shaped
trough.
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But p = ρgh and thus,

m = (ρL tan θ)

(
p

ρg

)2

=
(

L tan θ

ρg2

)
p2

From the definition of capacitance,

C = dm

dp
=

(
2L tan θ

ρg2

)
p

b. From (7.2.3) with qmo = 0, C ṗ = qmi , or(
2L tan θ

ρg2

)
p

dp

dt
= qmi

which is a nonlinear equation because of the product p ṗ. We can obtain the model for the
height by substituting h = p/ρg. The result is

(2ρL tan θ)h
dh

dt
= qmi

7.3 FLUID RESISTANCE
Fluid meets resistance when flowing through a conduit such as a pipe, through a com-
ponent such as a valve, or even through a simple opening or orifice, such as a hole. We
now consider appropriate models for each type of resistance.

The mass flow rate qm through a resistance is related to the pressure difference p
across the resistance. This relation, p = f (qm), is illustrated in general by Figure 7.3.1.
We define the fluid resistance R as

R = dp

dqm

∣∣∣∣
q=qmr

(7.3.1)

Thus the resistance is the slope of the p versus qm curve at some reference flow rate
qmr and reference pressure pr . The values of qmr and pr depend on the particular
application.

In a limited number of cases, such as pipe flow under certain conditions, the relation
of p versus qm is linear so that p = Rqm , or

qm = p

R
(7.3.2)

In some cases a formula is available to compute the numerical value of R.

Figure 7.3.1 General fluid
resistance relation and its
linear approximations.

p

pr

Rr

�p

�qm

qmr qm

1
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In some other applications the relation is a square-root relation.

qm =
√

p

R1
(7.3.3)

We usually must determine the value of R1 empirically.
If we need to obtain an approximate linear model, we can linearize the expression

p = f (qm) near a reference operating point (qmr , pr ) as follows:

p = pr +
(

dp

dqm

)
r
(qm − qmr ) = pr + Rr (qm − qmr ) (7.3.4)

where Rr is the linearized resistance at the reference condition (qmr , pr ).
Note that the symbol dp represents an infinitesimal change in the variable p. We

will use the symbol δp to represent a small but finite change in p. The symbol δp is
called a deviation variable because it often represents a small deviation in p from some
reference value pr . Thus, δp = p − pr .

In terms of the deviation variables δqm = qm − qmr and δp = p − pr , we can
rewrite (7.3.4) as

δp =
(

dp

dqm

)
r
δqm = Rrδqm (7.3.5)

or

δqm = 1

Rr
δp

For the relation (7.3.3), p = R1q2
m and

Rr =
(

dp

dqm

)
r

= 2R1qmr

Thus, since qmr = √
pr/R1,

δp = Rrδqm = 2R1

√
pr

R1
δqm = 2

√
R1 prδqm

or

δqm = 1

2
√

R1 pr
δp (7.3.6)

When only the curve of p versus qm is available, we can obtain a linearized model by
graphically computing the slope S of the tangent line that passes through the reference
point (qmr , pr ). The equivalent, linearized resistance Rr is the slope S.

The resistance symbol shown in Figure 7.3.2 represents all types of fluid resistance,
whether linear or not. Although the symbol looks like a valve, it can represent fluid
resistance due to other causes, such as pipe wall friction and orifices.

As with electrical resistances, linear fluid resistance elements obey the series and
parallel combination rules. These are illustrated in Figure 7.3.2. Series fluid resistances
carry the same flow rate; parallel fluid resistances have the same pressure difference
across them.

LAMINAR PIPE RESISTANCE

Fluid motion is generally divided into two types: laminar flow and turbulent flow.
Laminar flow can be described as “smooth” in the sense that the average fluid particle
velocity is the same as the actual particle velocity. If the flow is “rough,” the average
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Figure 7.3.2 Combination of
(a) series resistances and
(b) parallel resistances.

1  �  � R
1
R1

1
R2

(a)

R1

p1 p2 p3

R2 qm

R � R1 � R2

p1 p3

Rqmqm

qm � qm1
 � qm2

R1

R2

qmqm

qm1

qm2

R

qm

(b)

particle velocity will be less than the actual particle velocity, because the fluid particles
meander while moving downstream. This is turbulent flow. You can see the difference
between laminar and turbulent flow by slightly opening a faucet; the flow will be smooth.
As you open the faucet more, eventually the flow becomes rough.

If the pipe flow is laminar, the linear relation (7.3.2) applies. The laminar resistance
for a level pipe of diameter D and length L is given by the Hagen-Poiseuille formula

R = 128μL

πρD4
(7.3.7)

where μ is the fluid viscosity. The viscosity is a measure of the “stickiness” of the fluid.
Thus molasses has a higher value of μ than that of water.

Not all pipe flow is laminar. A useful criterion for predicting the existence of
laminar flow is the Reynolds number Ne, the ratio of the fluid’s inertial forces to the
viscosity forces. For a circular pipe,

Ne = ρvD

μ
(7.3.8)

where v = qv/(π D2/4), the average fluid velocity. For Ne > 2300 the flow is often
turbulent, while for Ne < 2300 laminar flow usually exists. The precise value of Ne

above which the flow becomes turbulent depends on, for example, the flow conditions
at the pipe inlet. However, the criterion is useful as a rule of thumb.

The resistance formula (7.3.7) applies only if the so-called “entrance length” Le,
which is the distance from the pipe entrance beyond which the velocity profile no
longer changes with increasing distance, is much less than 0.06DNe. Because laminar
flow can be expected only if Ne < 2300, Le might be as long as 138 pipe diameters.
Of course, for small Reynolds numbers, Le is shorter. The smaller Le is relative to the
pipe length, the more reliable will be our resistance calculations.

SYSTEM MODELS

In liquid-level systems such as shown in Figure 7.3.3, energy is stored in two ways:
as potential energy in the mass of liquid in the tank, and as kinetic energy in the mass
of liquid flowing in the pipe. In many systems, the mass of the liquid in the pipes is
small compared to the liquid mass in the tanks. If the mass of liquid in a pipe is small
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h

qmi

qmo

pa

paRA

Figure 7.3.3 A liquid-level
system with a flow source.

enough or is flowing at a small enough velocity, the kinetic energy contained in it will
be negligible compared to the potential energy stored in the liquid in the tank. If the
kinetic energy of the liquid is significant, more advanced fluid-flow theory is required.
This is usually not the case for the scope of applications considered here.

Liquid-Level System with a Flow Source EXAMPLE 7.3.1

■ Problem
The cylindrical tank shown in Figure 7.3.3 has a bottom area A. The mass inflow rate from
the flow source is qmi (t), a given function of time. The outlet resistance is linear and the outlet
discharges to atmospheric pressure pa . Develop a model of the liquid height h.

■ Solution
The total mass in the tank is m = ρ Ah, and from conservation of mass

dm

dt
= ρ A

dh

dt
= qmi − qmo (1)

since ρ and A are constants. Because the outlet resistance is linear,

qmo = 1

R
[(ρgh + pa) − pa] = 1

R
ρgh

Substituting this into equation (1) gives the desired model:

ρ A
dh

dt
= qmi − ρg

R
h (2)

The time constant is τ = R A/g.

Figure 7.3.4 Electric circuit
analogous to the hydraulic
system shown in Figure 7.3.3.

vR Cis

Some engineers are helped by thinking of a fluid system in terms of an analogous
electric circuit, in which pressure difference plays the role of voltage difference, and
mass flow rate is analogous to current. A fluid resistance resists flow just as an electrical
resistor resists current. A fluid capacitance stores fluid mass just as an electrical capacitor
stores charge. Figure 7.3.4 shows an electric circuit that is analogous to the tank system
of Figure 7.3.3. The circuit model is

C
dv

dt
= is − 1

R
v

The input current is is analogous to the inflow rate qmi , the voltage v across the capacitor
is analogous to the fluid pressure ρgh, and the electrical capacitance C is analogous to
the fluid capacitance A/g. It is a matter of personal opinion as to whether such analogies
help to understand the dynamics of fluid systems, and you should decide for yourself.
Always keep in mind, however, that we should not get too dependent on analogies for
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Figure 7.3.5 Derivation of
Torricelli's principle.

m

m

h

PE � mgh,  KE � 0

AoPE � 0, KE � m v
2 

2 

developing models, because they might not always properly represent the underlying
physics of the original system.

TORRICELLI'S PRINCIPLE

An orifice can simply be a hole in the side of a tank or it can be a passage in a valve. We
saw an example of orifice flow in Example 1.5.2 in Chapter 1, in which we analyzed
the flow rate of water through a small hole in the side of a plastic milk bottle. We found
that the fitted function is f = 9.4h0.558, where f is the outflow rate in ml/s and the water
height h is in centimeters. It turns out that the empirically determined exponent 0.558
is close to its theoretical value of 0.5, as we will now demonstrate.

Around 1640 Torricelli discovered that the flow rate through an orifice is propor-
tional to the square root of the pressure difference. This observation can be simply
derived by considering a mass m of fluid a height h above the orifice (see Figure 7.3.5).
The potential energy of the mass is mgh. As the mass falls toward the orifice its
potential energy is converted to kinetic energy mv2/2. If all the potential energy is
converted to kinetic energy at the orifice, then mgh = mv2/2, and the maximum speed
the fluid mass can attain through the orifice is v = √

2gh. Because the pressure drop
across the orifice is p = ρgh, we can express the maximum speed as v = √

2p/ρ.
Thus the mass flow rate qm through the orifice of area Ao can be no greater than
Aoρv = Aoρ

√
2p/ρ = Ao

√
2pρ. The actual flow rate will be less than this value

because of friction effects. To account for these frictional effects, we introduce a factor
Cd as follows:

qm = Cd Ao

√
2pρ (7.3.9)

The factor Cd is the discharge coefficient, which must lie in the range 0 < Cd ≤ 1. A
typical value for water is 0.6.

Because p = ρgh, (7.3.9) can be expressed in terms of the volume flow rate qv

and the height h as follows:

qv = (
Cd Ao

√
2g

)
h0.5

Thus the theoretical value of the exponent (0.5) is close to the value obtained in the
bottle experiment.

Equation (7.3.9) depends on the orifice area being small enough so that the pressure
variation over the orifice area is negligible compared to the average pressure at the
orifice. For a liquid-level system with a circular orifice, this implies that the liquid
height above the orifice must be large compared to the orifice diameter.
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The orifice relation (7.3.9) can be rearranged in the form of (7.3.3).

qm = Cd Ao

√
2ρ

√
p =

√
p

Ro
(7.3.10)

where the orifice resistance is defined as

Ro = 1

2ρC2
d A2

o

(7.3.11)

Liquid-Level System with an Orifice EXAMPLE 7.3.2

■ Problem
The cylindrical tank shown in Figure 7.3.6 has a circular bottom area A. The volume inflow rate
from the flow source is qvi (t), a given function of time. The orifice in the side wall has an area
Ao and discharges to atmospheric pressure pa . Develop a model of the liquid height h, assuming
that h1 > L .

■ Solution
From conservation of mass and the orifice flow relation (7.3.9), we obtain

ρ A
dh

dt
= ρqvi − Cd Ao

√
2pρ

where p = ρgh. Thus the model becomes

A
dh

dt
= qvi − Cd Ao

√
2gh

Note that the height L does not enter the model. It serves only to relate h1 to h.

h1
h

LA

pa

qvi
Figure 7.3.6 A liquid-level
system with an orifice.

TURBULENT AND COMPONENT RESISTANCE

For us, the practical importance of the difference between laminar and turbulent flow
lies in the fact that laminar flow can be described by the linear relation (7.3.2), while
turbulent flow is described by the nonlinear relation (7.3.3). Components, such as
valves, elbow bends, couplings, porous plugs, and changes in flow area resist flow
and usually induce turbulent flow at typical pressures, and (7.3.3) is often used to
model them. Experimentally determined values of R are available for common types
of components.

7.4 DYNAMIC MODELS OF HYDRAULIC SYSTEMS
In this section we consider a number of hydraulic system examples dealing with liquid-
level systems, dampers, actuators, pumps, and nonlinear systems.



palm-38591 book December 17, 2008 12:18

356 CHAPTER 7 Fluid and Thermal Systems

EXAMPLE 7.4.1 Liquid-Level System with a Pressure Source

■ Problem
The tank shown in cross section in Figure 7.4.1 has a bottom area A. A pressure source ps is
connected through a linear resistance to the bottom of the tank, where ps(t) is a given function
of time. The outlet resistance is linear and the outlet discharges to atmospheric pressure pa .
Develop a model of the liquid height h.

■ Solution
The total mass in the tank is m = ρ Ah, and from conservation of mass

dm

dt
= ρ A

dh

dt
= qmi − qmo (1)

since ρ and A are constants. Because the outlet resistance is linear,

qmo = 1

R2
[(ρgh + pa) − pa] = ρgh

R2

The mass inflow rate is

qmi = 1

R1
[(ps + pa) − (ρgh + pa)] = 1

R1
(ps − ρgh)

Substituting these expressions into equation (1) gives the desired model:

ρ A
dh

dt
= 1

R1
(ps − ρgh) − ρg

R2
h

which can be rearranged as

ρ A
dh

dt
= 1

R1
ps − ρg

(
1

R1
+ 1

R2

)
h = 1

R1
ps − ρg

R1 + R2

R1 R2
h

The time constant is τ = R1 R2 A/g(R1 + R2).

Figure 7.4.1 A liquid-level
system with a pressure source.

R2R1

pa
pa

h

A

pa

ps

EXAMPLE 7.4.2 Water Tank Model

■ Problem
In the water tower model developed in Example 7.1.2, the input was the specified flow rate qmi .
We now treat the more realistic case in which the input is a pressure source such as a pump.
Figure 7.4.2 is a representation of the situation. The linear resistance R represents the pipe
resistance lumped at the outlet of the pressure source. The bottom of the water tank is a height
L above the pressure source. Develop a model of the water height h with the supply pressure ps

and the flow rate qmo(t) as the inputs.

■ Solution
The mass flow rate into the bottom of the tank is

qmi = 1

R
{(ps + pa) − [ρg(h + L) + pa]} = 1

R
[ps − ρg(h + L)]
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From conservation of mass,

d

dt
(ρ Ah) = qmi − qmo(t) = 1

R
[ps − ρg(h + L)] − qmo(t)

Because ρ and A are constants, the model can be written as

ρ A
dh

dt
= 1

R
[ps − ρg(h + L)] − qmo(t)

h

L

A

pspa qmoR

Figure 7.4.2 A water tank
model.

When a fluid system contains more than one capacitance, you should apply the con-
servation of mass principle to each capacitance, and then use the appropriate resistance
relations to couple the resulting equations. To do this you must assume that some pres-
sures or liquid heights are greater than others and assign the positive-flow directions
accordingly. If you are consistent, the mathematics will handle the reversals of flow
direction automatically.

Two Connected Tanks EXAMPLE 7.4.3

■ Problem
The cylindrical tanks shown in Figure 7.4.3a have bottom areas A1 and A2. The mass inflow
rate qmi (t) from the flow source is a given function of time. The resistances are linear and the
outlet discharges to atmospheric pressure pa . (a) Develop a model of the liquid heights h1 and

(a)

R2R1

qmi

h1 h2 A2
A1

(b)

v1 v2

R2 C2

R1 i1

i2

C1 is

Figure 7.4.3 (a) Two
connected tanks.
(b) Analogous electric circuit.
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h2. (b) Suppose the resistances are equal: R1 = R2 = R, and the areas are A1 = A and A2 = 3A.
Obtain the transfer function H1(s)/Qmi (s). (c) Use the transfer function to solve for the steady-
state response for h1 if the inflow rate qmi is a unit-step function, and estimate how long it will
take to reach steady state. Is it possible for liquid heights to oscillate in the step response?

■ Solution
a. Assume that h1 > h2 so that the mass flow rate qm1 is positive if flowing from tank 1 to

tank 2. Conservation of mass applied to tank 1 gives

ρ A1ḣ1 = −qm1 = −ρg

R1
(h1 − h2)

For tank 2,

ρ A2ḣ2 = qmi + qm1 − qmo = qmi + qm1 − ρg

R2
h2

Canceling ρ where possible, we obtain the desired model.

A1ḣ1 = − g

R1
(h1 − h2) (1)

ρ A2ḣ2 = qmi + ρg

R1
(h1 − h2) − ρg

R2
h2 (2)

b. Substituting R1 = R2 = R, A1 = A, and A2 = 3A into the differential equations and
dividing by A, and letting B = g/R A we obtain

ḣ1 = −B(h1 − h2)

3ḣ2 = qmi

ρ A
+ B(h1 − h2) − Bh2 = qmi

ρ A
+ Bh1 − 2Bh2

Apply the Laplace transform of each equation, assuming zero initial conditions, and
collect terms to obtain

(s + B)H1(s) − B H2(s) = 0 (3)

−B H1(s) + (3s + 2B)H2(s) = 1

ρ A
Qmi (s) (4)

Solve equation (3) for H2(s), substitute the expression into equation (4), and solve for
H1(s) to obtain

H1(s)

Qmi (s)
= RB2/ρg

3s2 + 5Bs + B2
(5)

c. The characteristic equation is 3s2 + 5Bs + B2 = 0 and has the two real roots

s = −5 ± √
13

6
B = −1.43B, −0.232B

Thus the system is stable, and there will be a constant steady-state response to a step input.
The step response cannot oscillate because both roots are real. The steady-state height can
be obtained by applying the final value theorem to equation (5) with Qmi (s) = 1/s.

h1ss = lim
s→0

s H1(s) = lim
s→0

s
RB2/ρg

3s2 + 5Bs + B2

1

s
= R

ρg

The time constants are

τ1 = 1

1.43B
= 0.699

B
τ2 = 1

0.232B
= 4.32

B
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The largest time constant is τ2 and thus it will take a time equal to approximately
4τ2 = 17.2/B to reach steady state.

Figure 7.4.3b shows an electrical circuit that is analogous to the hydraulic system
shown in part (a) of the figure. The currents is , i1, and i2 are analogous to the mass flow
rates qmi , qm1 , and qmo. The voltages v1 and v2 are analogous to the pressures ρgh1 and
ρgh2, and the capacitances C1 and C2 are analogous to the fluid capacitances A1/g and
A2/g.

HYDRAULIC DAMPERS

Dampers oppose a velocity difference across them, and thus they are used to limit
velocities. The most common application of dampers is in vehicle shock absorbers.

Linear Damper EXAMPLE 7.4.4

■ Problem
A damper exerts a force as a result of a velocity difference across it. Figure 7.4.4 shows the
principle used in automotive shock absorbers. A piston of diameter W and thickness L has a
cylindrical hole of diameter D. The piston rod extends out of the housing, which is sealed and
filled with a viscous incompressible fluid. Assuming that the flow through the hole is laminar
and that the entrance length Le is small compared to L , develop a model of the relation between
the applied force f and ẋ , the relative velocity between the piston and the cylinder.

■ Solution
Assume that the rod’s cross-sectional area and the hole area π(D/2)2 are small compared to the
piston area A. Let m be the combined mass of the piston and rod. Then the force f acting on the
piston rod creates a pressure difference (p1 − p2) across the piston such that

mÿ = f − A(p1 − p2) (1)

If the mass m or the acceleration ÿ is small, then mÿ ≈ 0, and we obtain

f = A(p1 − p2) (2)

For laminar flow through the hole,

qv = 1

ρ
qm = 1

ρR
(p1 − p2) (3)

The volume flow rate qv is the rate at which the piston sweeps out volume as it moves, and can
be expressed as

qv = A(ẏ − ż) = Aẋ (4)

L

f

A
D

p2 p1
W

z·

y·

x· � y· � z· Figure 7.4.4 A damper.
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because the fluid is incompressible. Combining equations (2), (3), and (4), we obtain

f = A(ρR Aẋ) = ρR A2 ẋ = cẋ

where the damping coefficient c is given by c = ρR A2. From the Hagen-Poiseuille formula
(7.3.7) for a cylindrical conduit,

R = 128μL

πρD4

and thus the damping coefficient can be expressed as

c = 128μL A2

π D4

The approximation mÿ ≈ 0 is commonly used for hydraulic systems to simplify the resulting
model. To see the effect of this approximation, use instead equation (1) with equations (3) and
(4) to obtain

qv = 1

ρR
(p1 − p2) = 1

ρR A
( f − mÿ) = Aẋ

Thus,

f = mÿ + ρR A2 ẋ

Therefore, if mÿ cannot be neglected, the damper force is a function of the absolute acceleration
as well as the relative velocity.

HYDRAULIC ACTUATORS

Hydraulic actuators are widely used with high pressures to obtain high forces for
moving large loads or achieving high accelerations. The working fluid may be liquid,
as is commonly found with construction machinery, or it may be air, as with the air
cylinder-piston units frequently used in manufacturing and parts-handling equipment.

EXAMPLE 7.4.5 Hydraulic Piston and Load

■ Problem
Figure 7.4.5 shows a double-acting piston and cylinder. The device moves the load mass m in
response to the pressure sources p1 and p2. Assume the fluid is incompressible, the resistances
are linear, and the piston mass is included in m. Derive the equation of motion for m.

Figure 7.4.5 A double-acting
piston and cylinder.

m
pa

pa

p2

p1 p3 p4

x

R1

R2A
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■ Solution
Define the pressures p3 and p4 to be the pressures on the left- and right-hand sides of the piston.
The mass flow rates through the resistances are

qm1 = 1

R1
(p1 + pa − p3) (1)

qm2 = 1

R2
(p4 − p2 − pa) (2)

From conservation of mass, qm1 = qm2 and qm1 = ρ Aẋ . Combining these four equations we
obtain

p1 + pa − p3 = R1ρ Aẋ (3)

p4 − p2 − pa = R2ρ Aẋ (4)

Adding equations (3) and (4) gives

p4 − p3 = p2 − p1 + (R1 + R2)ρ Aẋ (5)

From Newton’s law,

mẍ = A(p3 − p4) (6)

Substitute equation (5) into (6) to obtain the desired model:

mẍ + (R1 + R2)ρ A2 ẋ = A(p1 − p2) (7)

Note that if the resistances are zero, the ẋ term disappears, and we obtain

mẍ = A(p1 − p2)

which is identical to the model derived in part (a) of Example 7.1.3.

Hydraulic Piston with Negligible Load EXAMPLE 7.4.6

■ Problem
Develop a model for the motion of the load mass m in Figure 7.4.5, assuming that the product
of the load mass m and the load acceleration ẍ is very small.

■ Solution
If mẍ is very small, from equation (7) of Example 7.4.5, we obtain the model

(R1 + R2)ρ A2 ẋ = A(p1 − p2)

which can be expressed as

ẋ = p1 − p2

(R1 + R2)ρ A
(1)

From this we see that if p1 − p2 is constant, the mass velocity ẋ will also be constant.
The implications of the approximation mẍ = 0 can be seen from Newton’s law:

mẍ = A(p3 − p4) (2)

If mẍ = 0, equation (2) implies that p3 = p4; that is, the pressure is the same on both sides of
the piston. From this we can see that the pressure difference across the piston is produced by a
large load mass or a large load acceleration. The modeling implication of this fact is that if we
neglect the load mass or the load acceleration, we can develop a simpler model of a hydraulic
system—a model based only on conservation of mass and not on Newton’s law. The resulting
model will be first order rather than second order.
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EXAMPLE 7.4.7 Hydraulic Motor

■ Problem
A hydraulic motor is shown in Figure 7.4.6. The pilot valve controls the flow rate of the hydraulic
fluid from the supply to the cylinder. When the pilot valve is moved to the right of its neutral
position, the fluid enters the right-hand piston chamber and pushes the piston to the left. The fluid
displaced by this motion exits through the left-hand drain port. The action is reversed for a pilot
valve displacement to the left. Both return lines are connected to a sump from which a pump draws
fluid to deliver to the supply line. Derive a model of the system assuming that mẍ is negligible.

■ Solution
Let y denote the displacement of the pilot valve from its neutral position, and x the displacement
of the load from its last position before the start of the motion. Note that a positive value of x
(to the left) results from a positive value of y (to the right). The flow through the cylinder port
uncovered by the pilot valve can be treated as flow through an orifice. Let �p be the pressure
drop across the orifice. Thus, from (7.3.9) with p replaced by �p, the volume flow rate through
the cylinder port is given by

qv = 1

ρ
qm = 1

ρ
Cd Ao

√
2�pρ = Cd Ao

√
2�p/ρ (1)

where Ao is the uncovered area of the port, Cd is the discharge coefficient, and ρ is the mass
density of the fluid. The area Ao is approximately equal to y D, where D is the port depth (into
the page). If Cd , ρ, �p, and D are taken to be constant, equation (1) can be written as

qv = Cd Dy
√

2�p/ρ = By (2)

where B = Cd D
√

2�p/ρ.
Assuming that the rod’s area is small compared to the piston area, the piston areas on the

left and right sides are equal to A. The rate at which the piston pushes fluid out of the cylinder
is A dx/dt . Conservation of volume requires the volume flow rate into the cylinder be equal to
the volume flow rate out. Therefore,

qv = A
dx

dt
(3)

Figure 7.4.6 A hydraulic
motor.
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pspa

p2

p1

pa

pa

Figure 7.4.7 Pressures in a
hydraulic motor.

Combining the last two equations gives the model for the servomotor:

dx

dt
= B

A
y (4)

This model predicts a constant piston velocity dx/dt if the pilot valve position y is held fixed.
The pressure drop �p can be determined as follows. We assume that because of geometric

symmetry, the pressure drop is the same across both the inlet and outlet valves. From Figure 7.4.7
we see that

�p = (ps + pa) − p1 = p2 − pa

and thus

p1 − p2 = ps − 2�p (5)

where p1 and p2 are the pressures on either side of the piston. The force on the piston is
A(p1 − p2), and from Newton’s law, mẍ = A(p1 − p2). Using the approximation mẍ = 0, we
see that p1 = p2, and thus equation (5) shows that �p = ps/2. Therefore B = Cd D

√
ps/ρ.

Equation (4) is accurate for many applications, but for high accelerations or large loads,
this model must be modified because it neglects the effects of the inertia of the load and piston
on the pressures on each side of the piston.

PUMP MODELS

Pump behavior, especially dynamic response, can be quite complicated and difficult
to model. At our level of treatment, we will confine ourselves to obtaining linearized
models based on the steady-state performance curves. Typical performance curves for
a centrifugal pump are shown in Figure 7.4.8a, which relates the mass flow rate qm

through the pump to the pressure increase �p in going from the pump inlet to its outlet,
for a given pump speed s j . For a given speed and given equilibrium values (qm)e and
(�p)e, we can obtain a linearized description as shown in part (b) of the figure. This
linearized model consists of a straight line tangent to the pump curve at the equilibrium
point, and can be expressed as

δqm = −1

r
δ(�p)

where δqm and δ(�p) are the deviations of qm and �p from their equilibrium values.
Thus, δqm = qm − (qm)e and δ(�p) = �p − (�p)e.

Identification of the equilibrium values depends on the load connected downstream
of the pump. Once this load is known, the resulting equilibrium flow rate of the system
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Figure 7.4.8 (a) Performance
curves for a centrifugal pump.
(b) Linearized model.

s1

s2

s3

qm

�p

(a)

Pump curve

(�p)e

(b)

�p

qm

(qm)e

�qm � � r
1 �(�p) 

can be found as a function of �p. When this function is graphed on the same plot as
the pump curve, the intersection of the two curves will establish the equilibrium point.
The required procedure is illustrated by the following example.

EXAMPLE 7.4.8 A Liquid-Level System with a Pump

■ Problem
Figure 7.4.9 shows a liquid-level system with a pump input and a drain whose linear resistance
is R2. The inlet from the pump to the tank has a linear resistance R1. Obtain a linearized model
of the liquid height h.
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R2

pa

pa

qm2

R1p1

qm1

h
A

pa

Figure 7.4.9 A liquid-level
system with a pump.

■ Solution
Let �p = p1 − pa . Denote the mass flow rates through each resistance as qm1 and qm2 . These
flow rates are

qm1 = 1

R1
(p1 − ρgh − pa) = 1

R1
(�p − ρgh) (1)

qm2 = 1

R2
(ρgh + pa − pa) = 1

R2
ρgh (2)

From conservation of mass,

ρ A
dh

dt
= qm1 − qm2 = 1

R1
(�p − ρgh) − 1

R2
ρgh (3)

At equilibrium, qm1 = qm2 , so from equation (3),

1

R1
(�p − ρgh) = 1

R2
ρgh

which gives

ρgh = R2

R1 + R2
�p (4)

Substituting this into expression (2) we obtain an expression for the equilibrium value of the
flow rate qm2 as a function of �p:

qm2 = 1

R1 + R2
�p (5)

This is simply an expression of the series resistance law, which applies here because ḣ = 0 at
equilibrium and thus the same flow occurs through R1 and R2.

When equation (5) is plotted on the same plot as the pump curve, as in Figure 7.4.10, the
intersection gives the equilibrium values of qm1 and �p. A straight line tangent to the pump
curve and having the slope −1/r then gives the linearized model:

δqm1 = −1

r
δ(�p) (6)

where δqm1 and δ(�p) are the deviations from the equilibrium values.
From equation (4),

�p = R1 + R2

R2
ρgh

and thus

δ(�p) = R1 + R2

R2
ρg δh
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Figure 7.4.10 Graphical
solution of the pump model.
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(�p)e �p

qm
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and from equation (6),

δqm1 = −1

r
δ(�p) = −1

r

R1 + R2

R2
ρg δh (7)

The linearized form of equation (3) is

ρ A
d

dt
δh = δqm1 − δqm2

From equations (2) and (7),

ρ A
d

dt
δh = −1

r

R1 + R2

R2
ρg δh − ρg

R2
δh

or

A
d

dt
δh = −

(
1

r

R1 + R2

R2
+ 1

R2

)
g δh

This is the linearized model, and it is of the form

d

dt
δh = −b δh

where

b =
(

1

r

R1 + R2

R2
+ 1

R2

)
g

A

The equation has the solution δh(t) = δh(0)e−bt . Thus if additional liquid is added to or taken
from the tank so that δh(0) �= 0, the liquid height will eventually return to its equilibrium value.
The time to return is indicated by the time constant, which is 1/b.

NONLINEAR SYSTEMS

Common causes of nonlinearities in hydraulic system models are a nonlinear resistance
relation, such as due to orifice flow or turbulent flow, or a nonlinear capacitance relation,
such as a tank with a variable cross section. If the liquid height is relatively constant, say
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because of a liquid-level controller, we can analyze the system by linearizing the model.
In cases where the height varies considerably, we must solve the nonlinear equation
numerically.

Liquid-Level System with an Orifice EXAMPLE 7.4.9

■ Problem
Consider the liquid-level system with an orifice, treated in Example 7.3.2. The model is

A
dh

dt
= qvi − qv0 = qvi − Cd Ao

√
2gh

Consider the case where A = 2 ft2 and Cd Ao
√

2g = 6. Estimate the system’s time constant for
two cases: (i) the inflow rate is held constant at qvi = 12 ft3/sec and (ii) the inflow rate is held
constant at qvi = 24 ft3/sec.

■ Solution
Substituting the given values, we obtain

2
dh

dt
= qvi − qv0 = qvi − 6

√
h (1)

When the inflow rate is held constant at the value qve, the liquid height reaches an equilibrium
value he that can be found from the preceding equation by setting dh/dt equal to zero. This
gives 36he = q2

ve.
The two cases of interest to us are (i) he = (12)2/36 = 4 ft and (ii) he = (24)2/36 = 16

ft. Figure 7.4.11 is a plot of the flow rate 6
√

h through the orifice as a function of the height h.
The two points corresponding to he = 4 and he = 16 are indicated on the plot.

In Figure 7.4.11 two straight lines are shown, each passing through one of the points of
interest (he = 4 and he = 16), and having a slope equal to the slope of the curve at that point.
The general equation for these lines is

qvo = 6
√

h = 6
√

he +
(

dqvo

dh

)
e

(h − he) = 6
√

he + 3h−1/2
e (h − he)

6�h

6� h � 12 �  (h � 4)3
2

6� h � 24 �  (h � 16)3
4

0
0
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h
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Figure 7.4.11 Linearized
approximations of the
resistance relation.
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Substitute this into equation (1) to obtain

2
dh

dt
= qvi − 6

√
he − 3h−1/2

e (h − he) = qvi − 3
√

he − 3h−1/2
e h

The time constant of this linearized model is 2
√

he/3, and is 4/3 sec for he = 4 and is 8/3 sec
for he = 16. Thus, if the input rate qvi is changed slightly from its equilibrium value of qvi = 12,
the liquid height will take about 4(4/3) or 16/3 sec to reach its new height.

If the input rate qvi is changed slightly from its value of qvi = 24, the liquid height will
take about 4(8/3) or 32/3 seconds to reach its new height.

Note that the model’s time constant depends on the particular equilibrium solution chosen for
the linearization. Because the straight line is an approximation to the 6

√
h curve, we cannot use

the linearized models to make predictions about the system’s behavior far from the equilibrium
point. However, despite this limitation, a linearized model is useful for designing a flow control
system to keep the height near some desired value. If the control system works properly, the
height will stay near the equilibrium value, and the linearized model will be accurate.

FLUID INERTANCE

We have defined fluid inertance I as

I = p

dqm/dt

which is the ratio of the pressure difference over the rate of change of the mass flow
rate. The inertance is the change in pressure required to produce a unit rate of change in
mass flow rate. Thus inertance relates to fluid acceleration and kinetic energy, which are
often negligible either because the moving fluid mass is small or because it is moving
at a steady rate. There are, however, some cases where inertance may be significant.
The effect known as water hammer is due partly to inertance. Also, as we will see in the
following example, inertance can be significant in conduits that are long or that have
small cross sections.

EXAMPLE 7.4.10 Calculation of Inertance

■ Problem
Consider fluid flow (either liquid or gas) in a nonaccelerating pipe (Figure 7.4.12). Derive the
expression for the inertance of a slug of fluid of length L .

Figure 7.4.12 Derivation of
pipe inertance expression.

A

L

p2 p1

v qm
■ Solution
The mass of the slug is ρ AL , where ρ is the fluid mass density. The net force acting on the slug
due to the pressures p1 and p2 is A(p2 − p1). Applying Newton’s law to the slug, we have

ρ AL
dv

dt
= A(p2 − p1)

where v is the fluid velocity. The velocity v is related to the mass flow rate qm by ρ Av = qm .
Using this to substitute for v, we obtain

L
dqm

dt
= A(p2 − p1)

or

L

A

dqm

dt
= p2 − p1
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With p = p2 − p1, we obtain

L

A
= p

dqm/dt

Thus, from the definition of inertance I ,

I = L

A

Note that the inertance is larger for longer pipes and for pipes with smaller cross section.

The significance of inertance in a given application is often difficult to assess. Often
a model is developed by ignoring inertance effects at first, and then, if possible, the
model is verified by experiment to see if the neglected inertance is significant.

7.5 PNEUMATIC SYSTEMS
The working medium in a pneumatic device is a compressible fluid, most commonly
air. The availability of air is an advantage for pneumatic devices, because it can be
exhausted to the atmosphere at the end of the device’s work cycle, thus eliminating the
need for return lines. On the other hand, because of the compressibility of the working
fluid, the response of pneumatic systems can be slower and more oscillatory than that
of hydraulic systems.

Because the kinetic energy of a gas is usually negligible, the inertance relation is
not usually needed to develop a model. Instead, capacitance and resistance elements
form the basis of most pneumatic system models.

Temperature, pressure, volume, and mass are functionally related for a gas. The
model most often used to describe this relationship is the perfect gas law, which is a
good model of gas behavior under normal pressures and temperatures. The law states
that

pV = m RgT (7.5.1)

where p is the absolute pressure of the gas with volume V , m is the mass, T is its
absolute temperature, and Rg is the gas constant that depends on the particular type of
gas. The values of Rg for air are 1715 ft-lb/slug-◦R and 287 N · m/kg · K.

If heat is added to a gas from its surroundings, some of this heat can do external
work on its surroundings, and the rest can increase the internal energy of the gas by
raising its temperature. The specific heat of a substance at a specified temperature is the
ratio of two heat values, the amount of heat needed to raise the temperature of a unit
mass of the substance by 1◦ divided by the heat needed to raise a unit mass of water 1◦
at the specified temperature. Because the pressure and volume of a gas can change as its
temperature changes, two specific heats are defined for a gas: one at constant pressure
(cp), and one at constant volume (cv).

The amount of energy needed to raise the temperature of 1 kg of water from 14.5◦C
to 15.5◦C is 4186 J. In the British Engineering system, the British thermal unit (BTU)
can be considered to be the energy needed to raise 1 pound of water (1/32.174 of a
slug in mass units) 1 degree Fahrenheit.

The perfect gas law enables us to solve for one of the variables p, V , m, or T
if the other three are given. Additional information is usually available in the form
of a pressure-volume or “process” relation. The following process models are com-
monly used, where the subscripts 1 and 2 refer to the start and the end of the process,
respectively. We assume the mass m of the gas is constant.
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1. Constant-Pressure Process (p1 = p2). The perfect gas law thus implies that
V2/V1 = T2/T1. If the gas receives heat from the surroundings, some of it raises
the temperature and some expands the volume.

2. Constant-Volume Process (V1 = V2). Here, p2/p1 = T2/T1. When heat is added
to the gas, it merely raises the temperature because no external work is done in a
constant-volume process.

3. Constant-Temperature Process (an isothermal process) (T1 = T2). Thus,
p2/p1 = V1/V2. Any added heat does not increase the internal energy of the gas
because of the constant temperature. It only does external work.

4. Reversible Adiabatic (Isentropic) Process. This process is described by the
relation

p1V γ
1 = p2V γ

2 (7.5.2)

where γ = cp/cv . Adiabatic means that no heat is transferred to or from the gas.
Reversible means the gas and its surroundings can be returned to their original
thermodynamic conditions. Because no heat is transferred, any external work
done by the gas changes its internal energy by the same amount. Thus its
temperature changes; that is,

W = mcv(T1 − T2)

where W is the external work. The work W is positive if work is done on the
surroundings.

5. Polytropic Process. A process can be more accurately modeled by properly
choosing the exponent n in the polytropic process

p
(

V

m

)n

= constant

If the mass m is constant, this general process reduces to the previous processes if
n is chosen as 0, ∞, 1, and γ , respectively, and if the perfect gas law is used.

PNEUMATIC CAPACITANCE

Fluid capacitance is the relation between stored mass and pressure. Specifically, fluid
capacitance C is the ratio of the change in stored mass to the change in pressure, or

C = dm

dp
(7.5.3)

For a container of constant volume V with a gas density ρ, m = ρV , and the
capacitance equation may be written as

C = d(ρV )

dp
= V

dρ

dp
(7.5.4)

If the gas undergoes a polytropic process,

p
(

V

m

)n

= p

ρn
= constant (7.5.5)

Differentiating this expression gives

dρ

dp
= ρ

np
= m

npV
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For a perfect gas, this shows the capacitance of the container to be

C = mV

npV
= V

n RgT
(7.5.6)

Note that the same container can have a different capacitance for different expansion
processes, temperatures, and gases, because C depends on n, T , and Rg.

Capacitance of an Air Cylinder EXAMPLE 7.5.1

■ Problem
Obtain the capacitance of air in a rigid cylinder of volume 0.03 m3, if the cylinder is filled by an
isothermal process. Assume the air is initially at room temperature, 293 K.

■ Solution
The filling of the cylinder can be modeled as an isothermal process if it occurs slowly enough
to allow heat transfer to occur between the air and its surroundings. In this case, n = 1 in the
polytropic process equation, and from (7.5.6) we obtain,

C = 0.03

1(287)(293)
= 3.57 × 10−7 kg · m2/N

Pressurizing an Air Cylinder EXAMPLE 7.5.2

■ Problem
Air at temperature T passes through a valve into a rigid cylinder of volume V , as shown
in Figure 7.5.1. The mass flow rate through the valve depends on the pressure difference
�p = pi − p, and is given by an experimentally determined function:

qmi = f (�p) (1)

Develop a dynamic model of the gage pressure p in the container as a function of the input
pressure pi . Assume the filling process is isothermal.

■ Solution
From conservation of mass, the rate of mass increase in the container equals the mass flow rate
through the valve. Thus, if pi − p > 0, from equation (1)

dm

dt
= qmi = f (�p)

But
dm

dt
= dm

dp

dp

dt
= C

dp

dt

pa pi

p

RV
Air

temperature, T

Volume V
Figure 7.5.1 Pressurizing an
air cylinder.
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and thus,

C
dp

dt
= f (�p) = f (pi − p) (2)

where the capacitance C is given by (7.5.6) with n = 1.

C = V

RgT

If the function f is nonlinear, then the dynamic model is nonlinear.

PART II. THERMAL SYSTEMS
A thermal system is one in which energy is stored and transferred as thermal energy,
commonly called heat. Although heat energy can play a role in pneumatic systems, we
chose to treat pneumatic systems primarily as fluid systems because their dynamics is
largely governed by fluid capacitance and fluid resistance. Examples of thermal systems
include heating and cooling systems in buildings and mixing processes where heat must
be added or removed to maintain an optimal reaction temperature.

Thermal systems operate because of temperature differences, as heat energy flows
from an object with the higher temperature to an object with the lower temperature.
Just as conservation of mass, fluid resistance, and fluid capacitance form the basis of
fluid system models, so conservation of heat energy forms the basis of thermal system
models, along with the concepts of thermal resistance and thermal capacitance. Thus,
it is natural to study thermal systems along with fluid systems. We will see that thermal
systems are also analogous to electric circuits, where conservation of charge plays
the same role as conservation of heat, and voltage difference plays the same role as
temperature difference.

7.6 THERMAL CAPACITANCE
For a mass m whose specific heat is cp, the amount of heat energy E stored in the object
at a temperature T is

E = mcp(T − Tr ) (7.6.1)

where Tr is an arbitrarily selected reference temperature. As with gravitational potential
energy, which is computed relative to an arbitrary height hr as mg(h − hr ), we can
select the reference temperature Tr for convenience. This is because only the change
in stored heat energy affects the dynamics of a thermal system, just as only the change
in gravitational potential energy affects the dynamics of a mechanical system.

Thermal capacitance relates an object’s temperature to the amount of heat energy
stored. It is defined as

C = d E

dT
(7.6.2)

where E is the stored heat energy. If the temperature range is wide enough, cp might
vary considerably with temperature. However, if cp is not a function of temperature,
from (7.6.1) we have

C = mcp = ρV cp (7.6.3)
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where ρ and V are the density and the volume of the mass m. The thermal capacitance
C can be interpreted as the amount of heat energy required to raise the temperature of
the object by 1◦. Thus, in SI, the units of C are J/◦C or J/K. The FPS units of C are
ft-lb/◦F. Another common unit for C is BTU/◦F.

The concept of thermal capacitance applies to fluids as well as solids. For example,
at room temperature and atmospheric pressure, the ratio of the specific heat of water
to that of air is 4.16. Thus, for the same mass of air and water, to raise the water
temperature by 1◦ requires 4.16 times more energy than for air.

Temperature Dynamics of a Mixing Process EXAMPLE 7.6.1

■ Problem
Liquid at a temperature Ti is pumped into a mixing tank at a constant volume flow rate qv

(Figure 7.6.1). The container walls are perfectly insulated so that no heat escapes through them.
The container volume is V , and the liquid within is well mixed so that its temperature throughout
is T . The liquid’s specific heat and mass density are cp and ρ. Develop a model for the temperature
T as a function of time, with Ti as the input.

■ Solution
The amount of heat energy in the tank liquid is ρcpV (T − Tr ), where Tr is an arbitrarily selected
reference temperature. From conservation of energy,

d
[
ρcpV (T − Tr )

]
dt

= heat rate in − heat rate out (1)

Liquid mass is flowing into the tank at the rate ṁ = ρqv . Thus heat energy is flowing into the
tank at the rate

heat rate in = ṁcp(Ti − Tr ) = ρqvcp(Ti − Tr )

Similarly,

heat rate out = ρqvcp(T − Tr )

Therefore, from equation (1), since ρ, cp, V , and Tr are constants,

ρcpV
dT

dt
= ρqvcp(Ti − Tr ) − ρqvcp(T − Tr ) = ρqvcp(Ti − T )

Cancel ρcp and rearrange to obtain

V

qv

dT

dt
+ T = Ti

T

Ti

V

T

Figure 7.6.1 Temperature
dynamics of a mixing process.
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Note that Tr , ρ, and cp do not appear in the final model form, so their specific numerical values
are irrelevant to the problem. The system’s time constant is V/qv , and thus the liquid temperature
T changes slowly if the tank volume V is large or if the inflow rate qv is small, which agrees
with our intuition.

7.7 THERMAL RESISTANCE
Heat energy is conserved, and thus heat in thermal system analysis plays the same role
as charge in electrical systems. The flow of heat, called heat transfer, causes a change in
an object’s temperature. Heat transfer between two objects is caused by a difference
in their temperatures. Thus temperature difference in thermal systems plays the same
role as voltage difference in electrical systems, and so we utilize the concept of thermal
resistance in a manner similar to electrical resistance.

CONDUCTION, CONVECTION, AND RADIATION

Heat transfer can occur by one or more modes: conduction, convection, and radiation,
as illustrated by Figure 7.7.1. Temperature is a measure of the amount of heat energy
in an object. Heat energy and thus temperature can be thought of as due to the kinetic
energy of vibrating molecules. A higher temperature is an indication of higher molecule
vibration velocity. Heat transfer by conduction occurs by diffusion of heat through a
substance. This diffusion occurs by molecules transferring some of their kinetic energy
to adjacent, slower molecules.

The mechanism for convection is due to fluid transport. This effect can be seen in
boiling water and in thermal air currents. Convection also occurs within a fluid at the
boundary of the fluid and a solid surface whose temperature is different from that of
the fluid. Convective heat transfer might be due to forced convection, such as when a
fluid is pumped past a surface, or natural (free) convection, which is caused by motion
produced by density differences in the fluid.

Heat transfer by radiation occurs through infrared waves. Heat lamps are common
examples of this type of transfer. Heating by solar radiation is another example.

NEWTON'S LAW OF COOLING

Newton’s law of cooling is a linear model for heat flow rate as a function of temperature
difference. The law, which is used for both convection and conduction models, is
expressed as

qh = 1

R
�T (7.7.1)

where qh is the heat flow rate, R is the thermal resistance, and �T is the temperature
difference. In SI, qh has the units of J/s, which is a watt (W). In the FPS system, the

Figure 7.7.1 Modes of heat
transfer.

Conduction

Radiation
Convection

ToT
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units of qh are ft-lb/sec, but BTU/hr is also commonly used. For thermal resistance R
the SI units are ◦C/W, and the FPS units are ◦F-sec/ft-lb.

For conduction through material of thickness L , an approximate formula for the
conductive resistance is

R = L

k A
(7.7.2)

so that

qh = k A

L
�T (7.7.3)

where k is the thermal conductivity of the material and A is the surface area.
If convection occurs, we might need to analyze the system as a fluid as well as

a thermal system. Fortunately many analytical and empirical results are available for
common situations, and we can use them to obtain the necessary coefficients for our
models. The thermal resistance for convection occurring at the boundary of a fluid and
a solid is given by

R = 1

h A
(7.7.4)

so that

qh = h A�T (7.7.5)

where h is the so-called film coefficient or convection coefficient of the fluid-solid
interface and A is the involved surface area. The film coefficient might be a complicated
function of the fluid flow characteristics. For many cases of practical importance, the
coefficient has been determined to acceptable accuracy, but a presentation of the results
is lengthy and beyond the scope of this work. Standard references on heat transfer
contain this information for many cases [Çengel, 2001].

When two bodies are in visual contact, radiation heat transfer occurs through a
mutual exchange of heat energy by emission and absorption. Thermal radiation, such
as solar energy, produces heat when it strikes a surface capable of absorbing it. The
radiation can also be reflected or refracted, and all three mechanisms can occur at a
single surface. A net exchange of heat energy occurs from the warmer to the colder
body. The rate of this exchange depends on material properties and geometric factors
affecting the relative visibility and the amount of surface area involved. The net heat
transfer rate depends on the difference of the body temperatures raised to the fourth
power (a consequence of the so-called Stefan-Boltzmann law).

qh = β
(
T 4

1 − T 4
2

)
(7.7.6)

The absolute body temperatures are T1 and T2, and β is a factor incorporating the other
effects. Determining β, like the convection coefficient, is too involved to consider here,
but many results are available in the literature.

The radiation model is nonlinear, and therefore we cannot define a specific thermal
resistance. However, we can use a linearized model if the temperature change is not too
large. Note that linear thermal resistance is a special case of the more general definition
of thermal resistance:

R = 1

dqh/dT
(7.7.7)
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Figure 7.7.2 (a) Conductive
heat transfer through a plate.
(b) Thermal model.
(c) Analogous electric circuit.

(c)
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For example, suppose that T2 is constant. Then from (7.7.6) and (7.7.7),

R = 1

dqh/dT1
= 1

4βT 3
1

When this is evaluated at a specific temperature T1, we can obtain a specific value for
the linearized radiation resistance.

HEAT TRANSFER THROUGH A PLATE

Consider a solid plate or wall of thickness L , as shown in cross section in Figure 7.7.2(a).
The temperatures of the objects (either solid or fluid) on each side of the plate are T1

and T2. If T1 > T2, heat will flow from the left side to the right side. The temperatures
T1 and T2 of the adjacent objects will remain constant if the objects are large enough.
(One can easily visualize this with a building; the outside air temperature is not af-
fected significantly by heat transfer through the building walls because the mass of the
atmosphere is so large.)

If the plate material is homogeneous, eventually the temperature distribution in
the plate will look like that shown in part (b) of the figure. This is the steady-state
temperature distribution. Fourier’s law of heat conduction states that the heat transfer
rate per unit area within a homogeneous substance is directly proportional to the negative
temperature gradient. The proportionality constant is the thermal conductivity k. For the
case shown in Figure 7.7.2(b), the negative gradient is (T1 −T2)/L , and the heat transfer
rate is thus

qh = k A(T1 − T2)

L
where A is the plate area in question. Comparing this with (7.7.1) shows that the thermal
resistance is given by (7.7.2), with �T = T1 − T2.

Under transient conditions the temperature profile is not linear and must be obtained
by solving a partial differential equation (a so-called distributed-parameter model). To
obtain an ordinary differential equation (a lumped-parameter model), which is easier to
solve, we must select a point in the plate and use its temperature as the representative
temperature of the object. Under steady-state conditions, the average temperature is at
the center, and so for this reason we select as an educated guess the center temperature
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as the representative temperature for the transient calculations. We therefore consider
the entire mass m of the plate to be concentrated (“lumped”) at the plate centerline,
and consider conductive heat transfer to occur over a path of length L/2 between
temperature T1 and temperature T . Thus, the thermal resistance for this path is

R1 = L/2

k A
Similarly, for the path from T to T2, the thermal resistance is R2 = (L/2)/(k A). These
resistances and the lumped mass m are represented in Figure 7.7.2b.

From Figure 7.7.2b we can derive the following model by applying conservation
of heat energy. Assuming that T1 > T > T2, we obtain

mcp
dT

dt
= q1 − q2 = 1

R1
(T1 − T ) − 1

R2
(T − T2) (7.7.8)

The thermal capacitance is C = mcp.
This system is analogous to the circuit shown in Figure 7.7.2c, where the voltages

v, v1, and v2 are analogous to the temperatures T , T1, and T2. Note that the current
i1 is analogous to the heat flow rate into the mass m through the left-hand conductive
path, and that current i2 is analogous to the heat flow rate out of the mass m through
the right-hand conductive path. The current i3 is the net current into the capacitance
(i3 = i1 − i2) and increases the voltage v. The current i3 is analogous to the net heat
flow rate into the mass m, which increases the mass temperature T .

SERIES AND PARALLEL THERMAL RESISTANCES

Suppose the capacitance C in the circuit in Figure 7.7.2c is zero. This is equivalent to
removing the capacitance to obtain the circuit shown in Figure 7.7.3a, and we can see
immediately that the two resistances are in series. Therefore they can be combined by
the series law: R = R1 + R2 to obtain the equivalent circuit shown in part (b) of the
figure.

By analogy we would expect that thermal resistances would obey the same series
law as electrical resistances. If the plate mass m is very small, its thermal capacitance
C is also very small. In this case, the mass absorbs a negligible amount of heat energy,
so the heat flow rate q1 through the left-hand conductive path must equal the rate q2

through the right-hand path. That is, if C = 0,

q1 = 1

R1
(T1 − T ) = q2 = 1

R2
(T − T2) (7.7.9)

The solution of these equations is

T = R2T1 + R1T2

R1 + R2

q1 = q2 = T1 − T2

R1 + R2
= T1 − T2

R

The latter solution shows that the resistances R1 and R2 are equivalent to the single
resistance R = R1 + R2, which is the series resistance law.

Thus thermal resistances are in series if they pass the same heat flow rate; if so,
they are equivalent to a single resistance equal to the sum of the individual resistances.
It can also be shown that thermal resistances are in parallel if they have the tem-
perature difference; if so, they are equivalent to a single resistance calculated by the
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Figure 7.7.3 (a) Conductive
heat transfer through a plate
with negligible capacitance.
(b) Analogous circuit.
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Figure 7.7.4 (a) Convective
and conductive heat transfer
through a plate with negligible
capacitance. (b) Thermal
model.
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We have seen that the resistances R1 and R2 in Figure 7.7.2b are in series if C = 0.
This can occur if the mass m is negligible or if the value of cp is so small that the
product mcp is negligible. However, by examining the left-hand side of (7.7.8), we see
that q1 = q2 if either C = 0 or dT/dt = 0. Thus we conclude that the series resistance law
also applies under steady-state conditions, where dT/dt = 0. So if C = 0 or dT/dt = 0
for the plate shown in Figure 7.7.2a, it can be represented as a pure conductive resistance
of zero mass, as shown in Figure 7.7.4a, where R = R1 + R2.

If convection occurs on both sides of the plate, the convective resistances Rc1 and
Rc2 are in series with the conductive resistance R, and the total resistance is given by
R + Rc1 + Rc2 , as shown in part (b) of the figure.

In practice, to obtain a simpler model, the series resistance formula is sometimes
used even in applications where the thermal capacitance is not small or where transient
conditions exist, but you must be aware that the formula is an approximation in those
situations.

EXAMPLE 7.7.1 Thermal Resistance of Building Wall

■ Problem
Engineers must be able to predict the rate of heat loss through a building wall to determine
the heating system’s requirements. The wall cross section shown in Figure 7.7.5 consists of
four layers: an inner layer of plaster/lathe 10 mm thick, a layer of fiberglass insulation 125 mm
thick, a layer of wood 60 mm thick, and an outer layer of brick 50 mm thick. For the given
materials, the resistances for a wall area of 1 m2 are R1 = 0.036, R2 = 4.01, R3 = 0.408, and
R4 = 0.038◦C/W.

Suppose that Ti = 20◦C and To = −10◦C. (a) Compute the total wall resistance for 1 m2 of
wall area, and compute the heat loss rate if the wall’s area is 3 m by 5 m. (b) Find the temperatures
T1, T2, and T3, assuming steady-state conditions.
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(a)

(b)

Ti T1 T2 T3 To

Ti T1 T2 T3

R1 R2 R3 R4

To

Inside
Air

Lathe Insulation Wood Brick

Outside
Air

Figure 7.7.5 Heat transfer
through a wall with four layers.

■ Solution
a. The series resistance law gives

R = R1 + R2 + R3 + R4 = 0.036 + 4.01 + 0.408 + 0.038 = 4.492◦C/W

which is the total resistance for 1 m2 of wall area. The wall area is 3(5) = 15 m2, and thus
the total heat loss is

qh = 15
1

R
(Ti − To) = 15

1

4.492
(20 + 10) = 100.2 W

This is the heat rate that must be supplied by the building’s heating system to maintain the
inside temperature at 20◦C, if the outside temperature is −10◦C.

b. If we assume that the inner and outer temperatures Ti and To have remained constant for
some time, then the heat flow rate through each layer is the same, qh . Applying
conservation of energy gives the following equations.

qh = 1

R1
(Ti − T1) = 1

R2
(T1 − T2) = 1

R3
(T2 − T3) = 1

R4
(T3 − To)

The last three equations can be rearranged as follows:

(R1 + R2)T1 − R1T2 = R2Ti

R3T1 − (R2 + R3)T2 + R2T3 = 0

−R4T2 + (R3 + R4)T3 = R3To

For the given values of Ti and To, the solution to these equations is T1 = 19.7596,
T2 = −7.0214, and T3 = −9.7462◦C.

Parallel Resistances EXAMPLE 7.7.2

■ Problem
A certain wall section is composed of a 15 cm by 15 cm glass block 8 cm thick. Surrounding the
block is a 50 cm by 50 cm brick section, which is also 8 cm thick (see Figure 7.7.6). The thermal
conductivity of the glass is k = 0.81 W/m ·◦C. For the brick, k = 0.45 W/m ·◦C. (a) Determine
the thermal resistance of the wall section. (b) Compute the heat flow rate through (1) the glass,
(2) the brick, and (3) the wall if the temperature difference across the wall is 30◦C.
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Figure 7.7.6 An example of
parallel thermal resistances.

Glass
block

Brick

■ Solution
a. The resistances are found from (7.7.2):

R = L

k A

For the glass,

R1 = 0.08

0.81(0.15)2
= 4.39

For the brick,

R2 = 0.08

0.45
[
(0.5)2 − (0.15)2

] = 0.781

Because the temperature difference is the same across both the glass and the brick, the
resistances are in parallel, and thus their total resistance is given by

1

R
= 1

R1
+ 1

R2
= 0.228 + 1.28 = 1.51

or R = 0.633◦C/W.
b. The heat flow through the glass is

q1 = 1

R1
�T = 1

4.39
30 = 6.83 W

The heat flow through the brick is

q2 = 1

R2
�T = 1

0.781
30 = 38.4 W

Thus the total heat flow through the wall section is

qh = q1 + q2 = 45.2 W

This rate could also have been calculated from the total resistance as follows:

qh = 1

R
�T = 1

0.663
30 = 45.2 W
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Radial Conductive Resistance EXAMPLE 7.7.3

■ Problem
Consider a cylindrical tube whose inner and outer radii are ri and ro. Heat flow in the tube wall
can occur in the axial direction along the length of the tube and in the radial direction. If the tube
surface is insulated, there will be no radial heat flow, and the heat flow in the axial direction is
given by

qh = k A

L
�T

where L is the length of the tube, �T is the temperature difference between the ends a distance
L apart, and A is area of the solid cross section (see Figure 7.7.7a).

If only the ends of the tube are insulated, then the heat flow will be entirely radial. Derive
an expression for the conductive resistance in the radial direction.

■ Solution
As shown in Figure 7.7.7b the inner and outer temperatures are Ti and To, and are assumed to be
constant along the length L of the tube. As shown in part (c) of the figure, from Fourier’s law, the
heat flow rate per unit area through an element of thickness dr is proportional to the negative of
the temperature gradient dT/dr . Thus, assuming that the temperature inside the tube wall does
not change with time, the heat flow rate qh out of the section of thickness dr is the same as the
heat flow into the section. Therefore,

qh

2πr L
= −k

dT

dr
Thus,

qh = −k
dT

dr
2πr L = −2π Lk

dT

dr/r
or ∫ ro

ri

qh
dr

r
= −2π Lk

∫ To

Ti

dT

Because qh is constant, the integration yields

qh ln
ro

ri
= −2π Lk(To − Ti )

or

qh = 2π Lk

ln (ro/ri )
(Ti − To)

The radial resistance is thus given by

R = ln (ro/ri )

2π Lk
(1)

(a) (c)

LA

ro

ri

(b)

ro
To

ri

Ti

dr

r ri
roro

Figure 7.7.7 Radial
conductive heat transfer.
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EXAMPLE 7.7.4 Heat Loss from Water in a Pipe

■ Problem
Water at 120◦F flows in a copper pipe 6 ft long, whose inner and outer radii are 1/4 in. and 3/8 in.
The temperature of the surrounding air is 70◦F. Compute the heat loss rate from the water to the
air in the radial direction. Use the following values. For copper, k = 50 lb/sec-◦F. The convection
coefficient at the inner surface between the water and the copper is hi = 16 lb/sec-ft-◦F. The
convection coefficient at the outer surface between the air and the copper is ho = 1.1 lb/sec-ft-◦F.

■ Solution
Assuming that the temperature inside the pipe wall does not change with time, then the same
heat flow rate occurs in the inner and outer convection layers and in the pipe wall. Thus the three
resistances are in series and we can add them to obtain the total resistance. The inner and outer
surface areas are

Ai = 2πri L = 2π

(
1

4

)(
1

12

)
6 = 0.785 ft2

Ao = 2πro L = 2π

(
3

8

)(
1

12

)
6 = 1.178 ft2

The inner convective resistance is

Ri = 1

hi Ai
= 1

16(0.785)
= 0.08

sec-◦F

ft-lb

Ro = 1

ho Ao
= 1

1.1(1.178)
= 0.77

sec-◦F

ft-lb

The conductive resistance of the pipe wall is

Rc = ln
(

ro
ri

)
2π Lk

=
ln

( 3/8
1/4

)
2π(6)(50)

= 2.15 × 10−4 sec-◦F

ft-lb

Thus the total resistance is

R = Ri + Rc + Ro = 0.08 + 2.15 × 10−4 + 0.77 = 0.85
sec-◦F

ft-lb

The heat loss from the pipe, assuming that the water temperature is a constant 120◦ along the
length of the pipe, is

qh = 1

R
�T = 1

0.85
(120 − 70) = 59

ft-lb

sec

To investigate the assumption that the water temperature is constant, compute the thermal
energy E of the water in the pipe, using the mass density ρ = 1.94 slug/ft3 and cp = 25,000
ft-lb/slug-◦F:

E = mcpTi = (
πr2

i Lρ
)
cpTi = 47,624 ft-lb

Assuming that the water flows at 1 ft/sec, a slug of water will be in the pipe for 6 sec. During
that time it will lose 59(6) = 354 ft-lb of heat. Because this amount is very small compared to
E , our assumption that the water temperature is constant is confirmed.
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7.8 DYNAMIC MODELS OF THERMAL SYSTEMS
In this section, we discuss how to obtain lumped-parameter (ordinary differential equa-
tion) models of thermal systems containing one or more thermal capacitances, and how
to obtain the value of thermal resistance experimentally.

Heat transfer occurs between two objects, but it will also occur within an object
if the temperature varies with location in the object. To obtain an ordinary differential
equation model of the temperature dynamics of an object, we must be able to assign
a single temperature that is representative of the object. Sometimes it is difficult to
assign such a representative temperature to a body or fluid because of its complex
shape or motion and the resulting complex distribution of temperature throughout the
object. When a single representative temperature cannot be assigned, several coupled
lumped-parameter models or even a distributed-parameter model will be required.

THE BIOT CRITERION

For solid bodies immersed in a fluid, a useful criterion for determining the validity of
the uniform-temperature assumption is based on the Biot number, defined as

NB = hL

k
(7.8.1)

where L is a representative dimension of the object, which is usually taken to be the
ratio of the volume to the surface area of the body. For example, the ratio L for a
sphere of radius r is (4/3)πr3/4πr2 = r/3. If the shape of the body resembles a plate,
cylinder, or sphere, it is common practice to consider the object to have a single uniform
temperature if NB is small. Often, if NB < 0.1, the temperature is taken to be uniform.
The accuracy of this approximation improves if the inputs vary slowly.

The Biot number is the ratio of the convective heat transfer rate to the conductive
rate. This can be seen by expressing NB for a plate of thickness L as follows, using
(7.7.1) through (7.7.3):

NB = qconvection

qconduction
= h A�T

k A�T/L
= hL

k

So the Biot criterion reflects the fact that if the conductive heat transfer rate is large
relative to the convective rate, any temperature changes due to conduction within the
object will occur relatively rapidly, and thus the object’s temperature will become
uniform relatively quickly.

Calculation of the ratio L depends on the surface area that is exposed to convec-
tion. For example, a cube of side length d has a value of L = d3/(6d2) = d/6 if all
six sides are exposed to convection, whereas if four sides are insulated, the value is
L = d3/(2d2) = d/2.

Quenching with Constant Bath Temperature EXAMPLE 7.8.1

■ Problem
Hardness and other properties of metal can be improved by the rapid cooling that occurs during
quenching, a process in which a heated object is placed into a liquid bath (see Figure 7.8.1).
Consider a lead cube with a side length of d = 20 mm. The cube is immersed in an oil bath for
which h = 200 W/(m2 · ◦C). The oil temperature is Tb.
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Figure 7.8.1 Quenching with
a constant bath temperature.

T
Tb

Thermal conductivity varies as function of temperature, but for lead the variation is relatively
small (k for lead varies from 35.5 W/m · ◦C at 0◦C to 31.2 W/m · ◦C at 327◦C). The density of
lead is 1.134 × 104 kg/m3. Take the specific heat of lead to be 129 J/kg · ◦C.

(a) Show that temperature of the cube can be considered uniform; and (b) develop a model
of the cube’s temperature as a function of the liquid temperature Tb, which is assumed to be
known.

■ Solution
a. The ratio of volume of the cube to its surface area is

L = d3

6d2
= d

6
= 0.02

6
and using an average value of 34 W/m · ◦C for k, we compute the Biot number to be

NB = 200(0.02)

34(6)
= 0.02

which is much less than 0.1. According to the Biot criterion, we may treat the cube as a
lumped-parameter system with a single uniform temperature, denoted T .

b. If we assume that T > Tb, then the heat flows from the cube to the liquid, and from
conservation of energy we obtain

C
dT

dt
= − 1

R
(T − Tb) (1)

When deriving thermal system models, you must make an assumption about the relative
values of the temperatures, and assign the heat flow direction consistent with that
assumption. The specific assumption does not matter as long as you are consistent. Thus,
although the bath temperature will be less than the cube temperature in the quenching
application, you may still assume that Tb > T and arrive at the correct model as long as
you assign the heat flow direction to be into the cube. However, when making such
assumptions, your physical insight is improved if you assume the most likely situation; the
nature of the quenching process means that T > Tb, so this is the logical assumption to use.

The thermal capacitance of the cube is computed as

C = mcp = ρV cp = 1.134 × 104(0.02)3(129) = 11.7 J/◦C

The thermal resistance R is due to convection, and is

R = 1

h A
= 1

200(6)(0.02)2
= 2.08◦C · s/J

Thus the model is

11.7
dT

dt
= − 1

2.08
(T − Tb)

or

24.4
dT

dt
+ T = Tb
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The time constant is τ = RC = 24.4 s. If the bath is large enough so that the cube’s
energy does not appreciably affect the bath temperature Tb, then when the cube is dropped
into the bath, the temperature Tb acts like a step input. The cube’s temperature will reach
the temperature Tb in approximately 4τ = 98 s.

Figure 7.8.2 shows a circuit that is analogous to the thermal model of the quenching
process. The voltages v and vb are analogous to the temperatures T and Tb. The circuit
model is

C
dv

dt
= 1

R
(vb − v)

Figure 7.8.2 Electric circuit
analogous to quenching with a
constant bath temperature.

�

�

R

vb

v

C
MULTIPLE THERMAL CAPACITANCES

When it is not possible to identify one representative temperature for a system, you must
identify a representative temperature for each distinct thermal capacitance. Then, after
identifying the resistance paths between each capacitance, apply conservation of heat
energy to each capacitance. In doing so, you must arbitrarily but consistently assume that
some temperatures are greater than others, to assign directions to the resulting heat flows.
The order of the resulting model equals the number of representative temperatures.

Quenching with Variable Bath Temperature EXAMPLE 7.8.2

■ Problem
Consider the quenching process treated in Example 7.8.1. If the thermal capacitance of the liquid
bath is not large, the heat energy transferred from the cube will change the bath temperature, and
we will need a model to describe its dynamics. Consider the representation shown in Figure 7.8.3.
The temperature outside the bath is To, which is assumed to be known. The convective resistance
between the cube and the bath is R1, and the combined convective/conductive resistance of the
container wall and the liquid surface is R2. The capacitances of the cube and the liquid bath are
C and Cb, respectively.

a. Derive a model of the cube temperature and the bath temperature assuming that the bath
loses no heat to the surroundings (that is, R2 = ∞).

b. Obtain the model’s characteristic roots and the form of the response.

Figure 7.8.3 Quenching with
a variable bath temperature.

T

Cb Tb

ToR1 R2

C

■ Solution
a. Assume that T > Tb. Then the heat flow is out of the cube and into the bath. From

conservation of energy for the cube,

C
dT

dt
= − 1

R1
(T − Tb) (1)

and for the bath,

Cb
dTb

dt
= 1

R1
(T − Tb) (2)

Equations (1) and (2) are the desired model. Note that the heat flow rate in equation (2)
must have a sign opposite to that in equation (1) because the heat flow out of the cube must
be the same as the heat flow into the bath.
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b. Applying the Laplace transform to equations (1) and (2) with zero initial conditions, we
obtain

(R1Cs + 1)T (s) − Tb(s) = 0 (3)

(R1Cbs + 1)Tb(s) − T (s) = 0 (4)

Solving equation (3) for Tb(s) and substituting into equation (4) gives

[(R1Cbs + 1)(R1Cs + 1) − 1]T (s) = 0

from which we obtain

R2
1CbCs2 + R1(C + Cb)s = 0

So the characteristic roots are

s = 0, s = −C + Cb

R1CCb

Because equations (3) and (4) are homogeneous, the form of the response is

T (t) = A1e0t + B1e−t/τ = A1 + B1e−t/τ τ = R1CCb

C + Cb

Tb(t) = A2e0t + B2e−t/τ = A2 + B2e−t/τ

where the constants A1, A2, B1, and B2 depend on the initial conditions. The two
temperatures become constant after approximately 4τ . Note that T (t) → A1 and
Tb(t) → A2 as t → ∞. From physical insight we know that T and Tb will become equal
as t → ∞. Therefore, A2 = A1.

The final value of the temperatures, A1, can be easily found from physical reasoning
using conservation of energy. The initial energy in the system consisting of the cube and
the bath is the thermal energy in both; namely, CT (0) + CbTb(0). The final energy is
expressed as C A1 + Cb A1, and is the same as the initial energy. Thus,

CT (0) + CbTb(0) = C A1 + Cb A1 or A1 = CT (0) + CbTb(0)

C + Cb
= A2

Note also that T (0) = A1 + B1, and Tb(0) = A2 + B2. Thus, B1 = T (0) − A1 and
B2 = Tb(0) − A2.

Figure 7.8.4 shows an electric circuit that is analogous to the quenching system of
Figure 7.8.3 with R2 = ∞. The voltages v and vb are analogous to the temperatures T
and Tb.

Figure 7.8.4 Electric circuit
analogous to quenching with a
variable bath temperature and
infinite container resistance.

R1
vb v

CCb
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Quenching with Heat Loss to the Surroundings EXAMPLE 7.8.3

■ Problem
Consider the quenching process treated in the previous example (Figure 7.8.3). (a) Derive a
model of the cube temperature and the bath temperature assuming R2 is finite. (b) Obtain the
model’s characteristic roots and the form of the response of T (t), assuming that the surrounding
temperature To is constant.

■ Solution
a. If R2 is finite, then we must now account for the heat flow into or out of the container.

Assume that T > Tb > To. Then the heat flows from the cube into the bath and then into
the surroundings. From conservation of energy,

C
dT

dt
= − 1

R1
(T − Tb) (1)

and

Cb
dTb

dt
= 1

R1
(T − Tb) − 1

R2
(Tb − To) (2)

Equations (1) and (2) are the desired model.
b. Applying the Laplace transform with zero initial conditions, we obtain

(R1Cs + 1)T (s) − Tb(s) = 0 (3)

(R1 R2Cbs + R1 + R2)Tb(s) − R2T (s) = R1To (4)

Solving equation (3) for Tb(s) and substituting into equation (4) gives the transfer function

T (s)

To(s)
= 1

R1 R2CbCs2 + [(R1 + R2)C + R2Cb] s + 1
(5)

The denominator gives the characteristic equation

R1 R2CbCs2 + [(R1 + R2)C + R2Cb] s + 1 = 0

So there will be two nonzero characteristic roots. If these roots are real, say s = −1/τ1 and
s = −1/τ2, and if To is constant, the response will have the form

T (t) = Ae−t/τ1 + Be−t/τ2 + D

where the constants A and B depend on the initial conditions. Note that T (t) → D as
t → ∞. Applying the final value theorem to equation (5) gives T (∞) = To and thus
D = To. We could have also obtained this result through physical reasoning.

Figure 7.8.5 shows an electric circuit that is analogous to the quenching system of
Figure 7.8.3 with R2 finite.

�

�

R2

vo Cb

R1
v

vb

C

Figure 7.8.5 Electric circuit
analogous to quenching with a
variable bath temperature and
finite container resistance.
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EXPERIMENTAL DETERMINATION OF THERMAL RESISTANCE

The mass density ρ, the specific heat cp, and the thermal conductivity k are accu-
rately known for most materials, and thus we can obtain accurate values of the thermal
capacitance C , and also of the conductive resistance L/k A, especially if the thermal ca-
pacitance of the conducting element is small. However, determination of the convective
resistance is difficult to do analytically, and we must usually resort to experimentally
determined values. In some cases, we may not be able to distinguish between the
effects of conduction, convection, and radiation heat transfer, and the resulting model
will contain a thermal resistance that expresses the aggregated effects.

EXAMPLE 7.8.4 Temperature Dynamics of a Cooling Object

■ Problem
Consider the experiment with a cooling cup of water described in Example 1.5.1 in Chapter 1.
Water of volume 250 ml in a glass measuring cup was allowed to cool after being heated to
204◦F. The surrounding air temperature was 70◦F. The measured water temperature at various
times is given in the table in Example 1.5.1. From that data we derived the following model of
the water temperature as a function of time.

T = 129e−0.0007t + 70 (1)

where T is in ◦F and time t is in seconds. Estimate the thermal resistance of this system.

Figure 7.8.6 Generic
representation of a thermal
system having a single
capacitance and a single
resistance.

T

R

To

c

■ Solution
We model the cup and water as the object shown in Figure 7.8.6. We assume that convection
has mixed the water well so that the water has the same temperature throughout. Let R be the
aggregated thermal resistance due to the combined effects of (1) conduction through the sides
and bottom of the cup, (2) convection from the water surface and from the sides of the cup into
the air, and (3) radiation from the water to the surroundings. Assume that the air temperature To

is constant and select it as the reference temperature. The heat energy in the water is

E = ρV cp(T − To)

From conservation of heat energy

d E

dt
= − 1

R
(T − To)

or, since ρ, V , cp, and To are constant,

ρV cp
dT

dt
= − 1

R
(T − To)

The water’s thermal capacitance is C = ρV cp and the model can be expressed as

RC
dT

dt
+ T = To (2)

The model’s complete response is

T (t) = T (0)e−t/RC + (
1 − e−t/RC

)
To = [T (0) − To]e−t/RC + To

Comparing this with equation (1), we see that

RC = 1

0.0007
= 1429 sec
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or

R = 1429

C

◦F

ft-lb

where C = ρV cp. Because the temperature data was given in ◦F, we must convert the volume of
250 ml to ft3. Note that V = 250 ml = 2.5 × 10−4 m3, so that V = 2.5 × 10−4(3.28 ft/m)3m3 =
8.82×10−3 ft3. Using the values at room temperature for water, we have ρ = 1.942 slug/ft3, cp =
25,000 ft-lb/slug-◦F, and thus C = 423 ft-lb-sec/◦F. Therefore the aggregated thermal resis-
tance is

R = 1429

C
= 3.37

◦F

ft-lb

The usefulness of this result is that this value of R can be used to predict the temperature
dynamics of the water/cup system under somewhat different conditions. For example, we can
use it to estimate the temperature of a different amount of water if we also know how much the
surface area changes. This is because the thermal resistance is inversely proportional to area, as
can be seen from (7.7.2) and (7.7.4). Suppose we double the water volume to 500 ml, so that
the new value of the thermal capacitance becomes C = 2(423) = 846 ft-lb-sec/◦F. Suppose the
surface area of the new volume is 5/3 that of the smaller volume. Then we estimate the new
value of R to be R = (3/5)(3.37) = 2.02◦F/ft-lb. Thus the model of the new water mass is given
by equation (2) with RC = (2.02)(846) = 1709 sec.

Temperature Sensor Response EXAMPLE 7.8.5

■ Problem
A thermocouple can be used to measure temperature. The electrical resistance of the device
is a function of the temperature of the surrounding fluid. By calibrating the thermocouple and
measuring its resistance, we can determine the temperature. Because the thermocouple has mass,
it has thermal capacitance, and thus its temperature change (and electrical resistance change)
will lag behind any change in the fluid temperature.

Estimate the response time of a thermocouple suddenly immersed in a fluid. Model the
device as a sphere of copper constantin alloy, whose diameter is 2 mm, and whose properties
are ρ = 8920 kg/m3, k = 19 W/m ·◦C, and cp = 362 J/kg ·◦C. Take the convection coefficient to
be h = 200 W/m3.

■ Solution
First compute the Biot number NB to see if a lumped-parameter model is sufficient. For a sphere
of radius r ,

L = V

A
= (4/3)πr3

4πr2
= r

3
= 0.001

3
= 3.33 × 10−4

The Biot number is

NB = hL

k
= 200(3.33 × 10−4)

19
= 0.0035

which is much less than 0.1. So we can use a lumped-parameter model.
Applying conservation of heat energy to the sphere, we obtain the model:

cpρV
dT

dt
= h A(To − T )
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where T is the temperature of the sphere and To is the fluid temperature. The time constant of
this model is

τ = cpρ

h

V

A
= 362(8920)

200
3.33 × 10−4 = 5.38 s

The thermocouple temperature will reach 98% of the fluid temperature within 4τ = 21.5 s.

EXAMPLE 7.8.6 State-Variable Model of Wall Temperature Dynamics

■ Problem
Consider the wall shown in cross section in Figure 7.7.5 and treated in Example 7.7.1. In that
example the thermal capacitances of the layers were neglected. We now want to develop a model
that includes their effects. Neglect any convective resistance on the inside and outside surfaces.

■ Solution
We lump each thermal mass at the centerline of its respective layer and assign half of the layer’s
thermal resistance to the heat flow path on the left and half to the path on the right side of the
lumped mass. The representation is shown in Figure 7.8.7a. Let

Ra = R1

2
Rb = R1

2
+ R2

2

Rc = R2

2
+ R3

2
Rd = R3

2
+ R4

2
Re = R4

2
An equivalent electrical circuit is shown in part (b) for those who benefit from such an analogy.

For thermal capacitance C1, conservation of energy gives

C1
dT1

dt
= Ti − T1

Ra
− T1 − T2

Rb

For C2,

C2
dT2

dt
= T1 − T2

Rb
− T2 − T3

Rc

For C3,

C3
dT3

dt
= T2 − T3

Rc
− T3 − T4

Rd

Figure 7.8.7 (a) A wall model with four
capacitances. (b) Analogous electric circuit.
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Finally, for C4,

C4
dT4

dt
= T3 − T4

Rd
− T4 − T0

Re

These four equations may be put into state variable form as follows.

dT
dt

= AT + Bu

where

T =

⎡
⎢⎢⎣

T1

T2

T3

T4

⎤
⎥⎥⎦ u =

[
Ti

To

]

A =

⎡
⎢⎢⎣

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34

0 0 a43 a44

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

b11 0
0 0
0 0
0 b42

⎤
⎥⎥⎦

where

a11 = − Ra + Rb

C1 Ra Rb
a12 = 1

C1 Rb

a21 = 1

C2 Rb
a22 = − Rb + Rc

C2 Rb Rc
a23 = 1

C2 Rc

a32 = 1

C3 Rc
a33 = − Rc + Rd

C3 Rc Rd
a34 = 1

C3 Rd

a43 = 1

C4 Rd
a44 = − Rd + Re

C4 Rd Re

b11 = 1

C1 Ra
b42 = 1

C4 Re

In Section 7.9 we will use MATLAB to solve these equations.

PART III. MATLAB AND SIMULINK APPLICATIONS
Sections 7.9 and 7.10 show how MATLAB and Simulink can be used to solve problems
involving fluid and thermal systems.

7.9 MATLAB APPLICATIONS
Fluid and thermal system models are often nonlinear. When a differential equation is
nonlinear, we often have no analytical solution to use for checking our numerical re-
sults. In such cases, we can use our physical insight to guard against grossly incorrect
results. We can also check the equation singularities that might affect the numerical
procedure. Finally, we can sometimes use an approximation to replace the nonlinear
equation with a linear one that can be solved analytically. Although the linear approxi-
mation does not give the exact answer, it can be used to see if our numerical answer is
“in the ball park.” Example 7.9.1 illustrates this approach.
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Lumped-parameter models of thermal systems often need several lumped masses in
order to represent the dynamics well. This requires a higher-order model that is difficult
to solve in closed form and must be solved numerically. Such models naturally occur in
state-variable form and are therefore easily handled with the MATLAB state-variable
functions. Example 7.9.2 deals with heat transfer through a multilayered wall. It shows
how to obtain the response of a state-variable model that is subjected to two different
inputs and whose initial conditions are nonzero.

EXAMPLE 7.9.1 Liquid Height in a Spherical Tank

■ Problem
Figure 7.9.1 shows a spherical tank for storing water. The tank is filled through a hole in the
top and drained through a hole in the bottom. The following model for the liquid height h is
developed in the Problems 7.38 and 7.39.

π(2Rh − h2)
dh

dt
= −Cd Ao

√
2gh (1)

For water, Cd = 0.6 is a common value.
Use MATLAB to solve this equation to determine how long it will take for the tank to empty

if the initial height is 9 ft. The tank has a radius of R = 5 ft and has a 1-in.-diameter hole in the
bottom. Use g = 32.2 ft/sec2. Discuss how to check the solution.

Figure 7.9.1 Draining of a
spherical tank.

r

h

■ Solution
With Cd = 0.6, R = 5, g = 32.2, and Ao = π(1/24)2, equation (1) becomes

dh

dt
= −0.0334

√
h

10h − h2
(2)

We can use our physical insight to guard against grossly incorrect results. We can also check the
preceding expression for dh/dt for singularities. The denominator does not become zero unless
h = 0 or h = 10, which correspond to a completely empty and a completely full tank. So we will
avoid singularities if 0 < h(0) < 10.

We can use the following approximation to estimate the time to empty. Replace h on
the right side of equation (2) with its average value, namely, (9 − 0)/2 = 4.5 feet. This gives
dh/dt = −0.00286, whose solution is h(t) = h(0)−0.00286t = 9−0.00286t . According to this
equation, if h(0) = 9, the tank will be empty at t = 9/0.00286 = 3147 sec, or 52 min. We will
use this value as a “reality check” on our answer.

The function file based on this equation is

function hdot = height(t,h)

hdot = -(0.0334*sqrt(h))/(10*h-h^2);

The file is called as follows, using the ode45 solver.

[t, h] = ode45(@height, [0, 2475], 9);

plot(t,h),xlabel('Time (sec)'),ylabel('Height (ft)')

The resulting plot is shown in Figure 7.9.2. Note how the height changes more rapidly when the
tank is nearly full or nearly empty. This is to be expected because of the effects of the tank’s
shape. The tank empties in 2475 sec, or 41 min. This value is not grossly different from our
rough estimate of 52 min, so we should feel comfortable accepting the numerical results.

The value of the final time of 2475 sec was found by increasing the final time until the plot
showed that the height became zero. You could use a while loop to do this, by increasing the
final time in the loop while calling ode45 repeatedly.
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Figure 7.9.2 Plot of liquid
height in a draining spherical
tank.

Heat Transfer Through a Wall EXAMPLE 7.9.2

■ Problem
Consider the wall cross section shown in Figure 7.9.3. The temperature model was developed
in Example 7.8.6. Use the following values and plot the temperatures versus time for the case
where the inside temperature is constant at Ti = 20◦C and the outside temperature To decreases
linearly from 5◦C to −10◦C in 1 h. The initial wall temperatures are 10◦C.

The resistance values in ◦C/W are

Ra = 0.018 Rb = 2.023 Rc = 2.204

Rd = 0.223 Re = 0.019

The capacitance values in J/◦C are

C1 = 8720 C2 = 6210

C3 = 6637 C4 = 2.08 × 104

■ Solution
The model was developed in Example 7.8.6.

The given information shows that the outside temperature is described by

To(t) = 5 − 15t 0 ≤ t ≤ 3600 s

Ti T1 T2 T3 To

Inside
Air

Lathe Insulation Wood Brick

Outside
Air

Figure 7.9.3 Heat transfer
through a wall with four layers.
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The following MATLAB program creates the required plots. Recall that the total response
is the sum of the forced and the free responses.

% htwall.m Heat transfer thru a multilayer wall.

% Resistance and capacitance data.

Ra = 0.018; Rb = 2.023; Rc = 2.204; Rd = 0.223; Re = 0.019;

C1 = 8720; C2 = 6210; C3 = 6637; C4 = 20800;

% Compute the matrix coefficients.

a11 = -(Ra+Rb)/(C1*Ra*Rb); a12 = 1/(C1*Rb);

a21 = 1/(C2*Rb); a22 = -(Rb+Rc)/(C2*Rb*Rc); a23 = 1/(C2*Rc);

a32 = 1/(C3*Rc); a33 = -(Rc+Rd)/(C3*Rc*Rd); a34 = 1/(C3*Rd);

a43 = 1/(C4*Rd); a44 = -(Rd+Re)/(C4*Rd*Re);

b11 = 1/(C1*Ra); b42 = 1/(C4*Re);

% Define the A and B matrices.

A = [a11,a12,0,0; a21,a22,a23,0; 0,a32,a33,a34; 0,0,a43,a44];

B = [b11,0; 0,0; 0,0; 0,b42];

% Define the C and D matrices.

% The outputs are the four wall temperatures.

C = eye(4);

D = zeros(size(B));

% Create the LTI model.

sys = ss(A,B,C,D);

% Create the time vector for 1 hour (3600 seconds).

t = (0:1:3600);

% Create the input vector.

u = [20*ones(size(t));(5-15*ones(size(t)).*t/3600)];

% Compute the forced response.

[yforced,t] = lsim(sys,u,t);

% Compute the free response.

[yfree,t] = initial(sys,[10,10,10,10],t);

% Plot the response along with the outside temperature.

plot(t,yforced+yfree,t,u(2,:))

% Compute the time constants.

tau =(-1./real(eig(A)))/60

The plot is shown in Figure 7.9.4. Note how T1 follows the inside temperature, while T4 follows
the outside temperature, as expected. The time constants are 2.6, 6, 24, and 117 min.

From the plot note that T1 reaches steady state in less than 1000 s, but the dominant
time constant is 117 min, or 7020 s. The discrepancy is explained by examining the transfer
functions for numerator dynamics. After running htwall, which puts the matrices A and B in
the workspace, the following MATLAB session can be used to obtain the transfer functions for
T1 and T2. The C and D matrices need to be replaced to obtain only T1 and T2 as the outputs.

	C1 = [1,0,0,0]; D1=[0,0];

	sys1 = ss(A,B,C1,D1);

	C2 = [0,1,0,0]; D2 = [0,0];

	sys2 = ss(A,B,C2,D2);

	tf1 = tf(sys1)

	tf2 = tf(sys2)
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Figure 7.9.4 Wall
temperatures as functions
of time.

This session produces four transfer functions. Two of them are

T1(s)

Ti (s)
= 6.371 × 10−3s3 + 2.321 × 10−5s2 + 1.545 × 10−8s + 1.758 × 10−12

P(s)

T2(s)

Ti (s)
= 5.071 × 10−7s2 + 1.77 × 10−9s + 9.622 × 10−13

P(s)

where the denominator is

P(s) = s4 + 0.01007s3 + 2.583 × 10−5s2 + 1.585 × 10−8s + 1.765 × 10−12

The transfer function T1(s)/Ti (s) has higher order numerator dynamics than T2(s)/Ti (s). This
accounts for the faster response of T1.

7.10 SIMULINK APPLICATIONS
One potential disadvantage of a graphical interface such as Simulink is that to simu-
late a complex system, the diagram can become rather large, and therefore somewhat
cumbersome. Simulink, however, provides for the creation of subsystem blocks, which
play a role analogous to subprograms in a programming language. A subsystem block
is actually a Simulink program represented by a single block. A subsystem block, once
created, can be used in other Simulink programs. In this section, we introduce sub-
system blocks, and also show how to use the Relay block, which is an example of
something that is tedious to program in MATLAB. We also introduce the Fcn block.

SUBSYSTEM BLOCKS

You can create a subsystem block in one of two ways, by dragging the Subsystem block
from the block library to the model window, or by first creating a Simulink model and
then “encapsulating” it within a bounding box. We will illustrate the latter method.
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We will create a subsystem block for the liquid-level system shown in Figure 7.10.1,
in which the resistances are nonlinear and obey the following signed-square-root
relation:

q = 1

R
SSR(�p)

where q is the mass flow rate, R is the resistance, �p is the pressure difference across
the resistance, and

SSR(u) =
{√

u if u ≥ 0
−√|u| if u < 0

Note that we can express the SSR(u) function in MATLAB as follows: sgn(u)*
sqrt(abs(u)).

The model of the system in Figure 7.10.1 is the following:

ρ A
dh

dt
= q + 1

Rl
SSR(pl − p) − 1

Rr
SSR(p − pr )

where pl and pr are the gage pressures at the left and right-hand sides, A is the bottom
area, q is a mass flow rate, and p = ρgh. Note that the atmospheric pressure pa cancels
out of the model because of the use of gage pressure.

First construct the Simulink model shown in Figure 7.10.2. The oval blocks are
input and outport ports (In 1 and Out 1), which are available in the Ports and Subsystems
library. When entering the gains in each of the four Gain blocks, note that you can use
MATLAB variables and expressions. Before running the program we will assign values
to these variables in the MATLAB Command window. Enter the gains for the four Gain

Figure 7.10.1 A liquid-level
system.

pa pa
pl

Rl Rr

pr

h

q

p
A

Figure 7.10.2 Simulink model of the system
shown in Figure 7.10.1.
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blocks using the expressions shown in the block. You may also use a variable as the
Initial condition of the Integrator block. Name this variable h0.

The SSR blocks are examples of the Fcn block in the User-Defined Functions
Library. Double-click on the block and enter the MATLAB expression sgn(u)*
sqrt(abs(u)). Note that the Fcn block requires you to use the variable u. The
output of the Fcn block must be a scalar, as is the case here, and you cannot perform
matrix operations in the Fcn block, but these also are not needed here. (Alternatives
to the Fcn block are the Math Function block and the MATLAB Fcn block, which are
discussed in Section 8.8.) Save the model and give it a name, such as Tank.

Now create a “bounding box” surrounding the diagram. Do this by placing the
mouse cursor in the upper left, holding the mouse button down, and dragging the ex-
panding box to the lower right to enclose the entire diagram. Then choose Create
Subsystem from the Edit menu. Simulink will then replace the diagram with a single
block having as many input and output ports as required, and will assign default names.
You can resize the block to make the labels readable (see Figure 7.10.3). You can view
or edit the subsystem by double-clicking on it.

Suppose we want to create a simulation of the system shown in Figure 7.10.4, where
the mass inflow rate q1 is a step function. To do this, create the Simulink model shown
in Figure 7.10.5. The square blocks are Constant blocks from the Sources library. These
give constant inputs. The larger rectangular blocks are two subsystem blocks of the type
just created. To insert them into the model, first open the Tank subsystem model, select
Copy from the Edit menu, then paste it twice into the new model window. Connect the
input and output ports and edit the labels as shown. Then double-click on the Tank 1
subsystem block, set the gain l/R_l equal to 0, the gain 1/R_r equal to 1/R_1, and
the gain 1/rho*A equal to 1/rho*A_1. Set the Initial condition of the integrator to
h10. Note that setting the gain l/R_l equal to 0 is equivalent to R_l = ∞, which
represents the fact that there is no inlet on the left-hand side.

Then double-click on the Tank 2 subsystem block, set the gain l/R_l equal to
1/R_1, the gain1/R_r equal to1/R_2, and the gain1/rho*A equal to1/rho*A_2.
Set the Initial condition of the integrator to h20. For the Step block, set the Step time
to 0, the Initial value to 0, the Final value to the variable q_1, and the Sample time to
0. Save the model using a name other than Tank.

1

2

3
2

1Left Pressure
Bottom 
Pressure

Liquid 
Height

Right Pressure

Mass Flow Input

Left Pressure
Bottom Pressure

Right Pressure

Mass Flow Input
Liquid Height

Subsystem

Figure 7.10.3 The Subsystem
block.

h1

h2

R1 R2

q1

A1 A2

Figure 7.10.4 A liquid-level
system with two tanks.



palm-38591 book December 17, 2008 12:18

398 CHAPTER 7 Fluid and Thermal Systems

Figure 7.10.5 Simulink model
of the system shown in Figure
7.10.4.
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Figure 7.10.6 The relay
function. (a) The case where
On > Off. (b) The case where
On < Off.
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Before running the model, in the Command window assign numerical values to
the variables. As an example, you may type the following values for water, in U.S.
Customary units, in the Command window.

	A_1 = 2;A_2 = 5;rho = 1.94;g = 32.2;
	R_1 = 20;R_2 = 50;q_1 = 0.3;h10 = 1;h20 = 10;

After selecting a simulation Stop time, you may run the simulation. The Scope will
display the plots of the heights h1 and h2 versus time.

SIMULATION OF THERMAL SYSTEMS

Home heating systems are controlled by a thermostat, which measures the room tem-
perature and compares it with the desired temperature set by the user. Suppose the user
selects 70◦F. A typical thermostat would switch the heating system on whenever the
inside temperature drops below 69◦ and switch the system off whenever the tempera-
ture is above 71◦. The 2◦ temperature difference is the thermostat’s band, and different
thermostat models might use a different value for the band.

The thermostat is an example of a relay. The Simulink Relay block in the Discon-
tinuities library is an example of something that is tedious to program in MATLAB
but is easy to implement in Simulink. Figure 7.10.6a is a graph of the logic of a relay.
The relay switches the output between two specified values, named On and Off in the
figure. Simulink calls these values Output when on and Output when off. When the
relay output is On, it remains On until the input drops below the value of the Switch off
point parameter, named SwOff in the figure. When the relay output is Off, it remains Off
until the input exceeds the value of the Switch on point parameter, named SwOn in the
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figure. The Switch on point parameter value must be greater than or equal to the Switch
off point value. Note that the value of Off need not be zero. Note also that the value of Off
need not be less than the value of On. As we will see in Example 7.10.1, it is sometimes
necessary to use this case. The case where Off > On is shown in Figure 7.10.6b.

Thermostatic Control of Temperature EXAMPLE 7.10.1

■ Problem
(a) Develop a Simulink model of a thermostatic control system in which the temperature model is

RC
dT

dt
+ T = Rq + Ta(t)

where T is the room air temperature in ◦F, Ta is the ambient (outside) air temperature in ◦F,
time t is measured in hours, q is the input from the heating system in ft-lb/hr, R is the thermal
resistance, and C is the thermal capacitance. The thermostat switches q on at the value qmax

whenever the temperature drops below 69◦, and switches q to q = 0 whenever the temperature
is above 71◦. The value of qmax indicates the heat output of the heating system.

Run the simulation for the case where T (0) = 70◦ and Ta(t) = 50 + 10 sin(π t/12). Use
the values R = 5 × 10−5 ◦F-hr/lb-ft and C = 4 × 104 lb-ft/◦F. Plot the temperatures T and
Ta versus t on the same graph, for 0 ≤ t ≤ 24 hr. Do this for two cases: qmax = 4 × 105 and
qmax = 8 × 105 lb-ft/hr. Investigate the effectiveness of each case. (b) The integral of q over
time is the energy used. Plot

∫
q dt versus t and determine how much energy is used in 24 hr

for the case where qmax = 8 × 105.

■ Solution
The model can be arranged as follows:

dT

dt
= 1

RC
[Rq + Ta(t) − T ]

The Simulink model is shown in Figure 7.10.7, where 1/RC = 0.5 and the gain labeled R has
the value R = 5 × 10−5, which is entered as 5e-5. The output of the Relay block is q(t). The
input Ta(t) is produced with the Sine block. For the Sine block, set the Amplitude to 10,
the Bias to 50, the Frequency to pi/12, the Phase to 0, and the Sample time to 0. The
second Integrator block and Scope 2 were included to compute and display

∫
q dt versus t .

For the Relay block, set the Switch on point to 71, the Switch off point to 69, the Output
when on to 0, and the Output when off to the variable qmax. This corresponds to Figure 7.10.6a.
Set the simulation stop time to 24.

1
s

1
s

Sine Wave

Integrator 1

IntegratorRelay R 1/RC

Scope 2

Scope 1
5e-5 0.5+–

+

Figure 7.10.7 Simulink model
of a temperature control
system.
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You can set the value of qmax by editing the Relay block or by setting its value in the
MATLAB Command window before running the simulation, for example, by typing qmax =
4e+5 before the first simulation.

The simulation results show that when qmax = 4 × 105, the system is unable to keep the
temperature from falling below 69◦. When qmax = 8 × 105, the temperature stays within the
desired band. The plot of

∫
q dt versus t for this case shows that the energy used at the end of

24 hr is 9.6158 × 106 ft-lb. This value can be obtained by exporting the output of the second
integrator to the workspace.

7.11 CHAPTER REVIEW
Part I of this chapter treated fluid systems, which can be divided into hydraulics and
pneumatics. Hydraulics is the study of systems in which the fluid is incompressible;
that is, its density stays approximately constant over a range of pressures. Pneumatics
is the study of systems in which the fluid is compressible. Hydraulics and pneumatics
share a common modeling principle: conservation of mass. It forms the basis of all our
models of such systems.

Modeling pneumatic systems also requires application of thermodynamics, because
the temperature of a gas can change when its pressure changes. Thus pneumatics
provides a bridge to the treatment of thermal systems, which is the subject of Part II of
the chapter. Thermal systems are systems that operate due to temperature differences.
They thus involve the flow and storage of heat energy, and conservation of heat energy
forms the basis of our thermal models.

Now that you have finished this chapter, you should be able to

1. Apply conservation of mass to model simple hydraulic and pneumatic systems.
2. Derive expressions for the capacitance of simple hydraulic and pneumatic

systems.
3. Determine the appropriate resistance relation to use for laminar, turbulent, and

orifice flow.
4. Develop a dynamic model of hydraulic and pneumatic systems containing one or

more capacitances.
5. Determine the appropriate thermal resistance relation to use for conduction,

convection, and radiation heat transfer.
6. Develop a model of a thermal process having one or more thermal storage

compartments.
7. Apply MATLAB and Simulink to solve fluid and thermal system models.

REFERENCE
[Çengel, 2001] Y. A. Çengel and R. H. Turner, Fundamentals of Thermal-Fluid Sciences,

McGraw-Hill, NY, 2001.

PROBLEMS
Section 7.1 Conservation of Mass

7.1 For the hydraulic system shown in Figure P7.1, given A1 = 10 in.2, A2 =
30 in.2, and mg = 60 lb, find the force f1 required to lift the mass m a distance
x2 = 6 in. Also find the distance x1 and the work done by the force f1.
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Figure P7.1
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x1

A2
x2

Figure P7.4
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7.2 Refer to the water storage and supply system shown in Figure 7.1.2. The
cylindrical tank has a radius of 11 ft, and the water height is initially 5 ft. Find
the water height after 5 hr if 1000 gallons per minute are pumped out of the
well and 800 gallons per minute are withdrawn from the tank. Note that
1 gallon is 0.13368 ft3.

7.3 Consider the piston and mass shown in Figure 7.1.4a. Suppose there is dry
friction acting between the mass m and the surface. Find the minimum area A
of the piston required to move the mass against the friction force μmg, where
μ = 0.6, mg = 1000 N, p1 = 3 × 105 Pa, and p2 = 105 Pa.

7.4 In Figure P7.4 the piston of area A is connected to the axle of the cylinder of
radius R, mass m, and inertia I about its center. Given p1 − p2 = 3 × 105 Pa,
A = 0.005 m2, R = 0.4 m, m = 100 kg, and I = 7 kg · m2, determine the
angular velocity ω(t) of the cylinder assuming that it starts from rest.

7.5 Refer to Figure 7.1.4a, and suppose that p1 − p2 = 10 lb/in.2, A = 3 in.2, and
mg = 600 lb. If the mass starts from rest at x(0) = 0, how far will it move in
0.5 sec, and how much hydraulic fluid will be displaced?

7.6 Pure water flows into a mixing tank of volume V = 300 m3 at the constant
volume rate of 10 m3/s. A solution with a salt concentration of si kg/m3 flows
into the tank at a constant volume rate of 2 m3/s. Assume that the solution in
the tank is well mixed so that the salt concentration in the tank is uniform.
Assume also that the salt dissolves completely so that the volume of the
mixture remains the same. The salt concentration so kg/m3 in the outflow is the
same as the concentration in the tank. The input is the concentration si (t),
whose value may change during the process, thus changing the value of so.
Obtain a dynamic model of the concentration so.

7.7 Consider the mixing tank treated in Problem 7.6. Generalize the model to the
case where the tank’s volume is V m3. For quality control purposes, we want
to adjust the output concentration so by adjusting the input concentration si .
How much volume should the tank have so that the change in so lags behind
the change in si by no more than 20 s?

Section 7.2 Fluid Capacitance

7.8 Derive the expression for the fluid capacitance of the cylindrical tank shown in
Figure P7.8.

7.9 Derive the expression for the capacitance of the container shown in
Figure P7.9.
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Figure P7.8
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7.10 Consider the cylindrical tank shown in Figure P7.8. Derive the dynamic model
of the height h, assuming that the input mass flow rate is qm(t).

7.11 Consider the tank shown in Figure P7.9. Derive the dynamic model of the
height h, assuming that the input mass flow rate is qm(t).

Section 7.3 Fluid Resistance

7.12 Air flows in a certain cylindrical pipe 1 m long with an inside diameter of
1 mm. The pressure difference between the ends of the pipe is 0.1 atm.
Compute the laminar resistance, the Reynolds number, the entrance length, and
the mass flow rate. Comment on the accuracy of the resistance calculation. For
air use μ = 1.58 × 10−5 N · s/m2 and ρ = 1.2885 kg/m3.

7.13 Derive the expression for the linearized resistance due to orifice flow near a
reference height hr .

7.14 Consider the cylindrical container treated in Example 7.3.1. Suppose the
outlet flow is turbulent. Derive the dynamic model of the system (a) in terms
of the gage pressure p at the bottom of the tank and (b) in terms of the
height h.

7.15 A certain tank has a bottom area A = 20 m2. The liquid level in the tank is
initially 5 m. When the outlet is opened, it takes 200 s to empty by 98%.
a. Estimate the value of the linear resistance R.
b. Find the steady-state height if the inflow is q = 3 m3/s.

7.16 A certain tank has a circular bottom area A = 20 ft2. It is drained by a pipe
whose linear resistance is R = 150 m−1sec−1. The tank contains water whose
mass density is 1.94 slug/ft3.
a. Estimate how long it will take for the tank to empty if the water height is

initially 30 ft.
b. Suppose we dump water into the tank at a rate of 0.1 ft3/sec. If the tank is

initially empty and the outlet pipe remains open, find the steady-state
height and the time to reach one-third that height, and estimate how long it
will take to reach the steady-state height.

7.17 The water inflow rate to a certain tank was kept constant until the water height
above the orifice outlet reached a constant level. The inflow rate was then
measured, and the process repeated for a larger inflow rate. The data are given
in the table. Find the effective area Cd Ao for the tank’s outlet orifice.
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Inflow rate (liters/min) Liquid height (cm)

98 30
93 27
91 24
86 21
81 18
75 15
68 12
63 9
56 6
49 3

7.18 In the system shown in Figure P7.18, a component such as a valve has been
inserted between the two lengths of pipe. Assume that turbulent flow exists
throughout the system. Use the resistance relation 7.3.3. (a) Find the total
turbulent resistance. (b) Develop a model for the behavior of the liquid height
h, with the mass flow rate qmi as the input.

h

qmi

A R2

R1 R3

Figure P7.18

7.19 The cylindrical tank shown in Figure 7.3.3 has a circular bottom area A. The
mass inflow rate from the flow source is qmi (t), a given function of time. The
flow through the outlet is turbulent, and the outlet discharges to atmospheric
pressure pa . Develop a model of the liquid height h.

Section 7.4 Dynamic Models of Hydraulic Systems

7.20 In the liquid level system shown in Figure P7.20, the resistances R1 and R2 are
linear, and the input is the pressure source ps . Obtain the differential equation
model for the height h, assuming that h > D.

pspa R1

h
D

A

R2

qmi

Figure P7.20

7.21 The water height in a certain tank was measured at several times with no inflow
applied. See Figure 7.3.3. Assume that laminar flow exists in the outlet pipe.
The data are given in the table. The tank’s bottom area is A = 6 ft2.
a. Estimate the laminar resistance R.
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b. Suppose the initial height is known to be exactly 20.2 ft. How does this
change the results of part (a)?

Time (sec) Height (ft)

0 20.2
300 17.26
600 14.6
900 12.4

1200 10.4
1500 9.0
1800 7.6
2100 6.4
2400 5.4

7.22 Derive the model for the system shown in Figure P7.22. The flow rate qmi is a
mass flow rate and the resistances are linear.

Figure P7.22
qmi

R1A1

h2

h1

A2 R2

7.23 (a) Develop a model of the two liquid heights in the system shown in
Figure P7.23. The inflow rate qmi (t) is a mass flow rate. (b) Using the values
R1 = R, R2 = 3R, A1 = A, and A2 = 4A, find the transfer function
H2(s)/Qmi (s).

Figure P7.23

h1

h2

A1 A2

qmi

R1 R2

7.24 Consider Example 7.4.3. Suppose that R1 = R, R2 = 3R, A1 = A, and
A2 = 2A. Find the transfer function H1(s)/Qmi (s) and the characteristic roots.

7.25 Design a piston-type damper using an oil with a viscosity at 20◦C of μ =
0.9 kg/(m · s). The desired damping coefficient is 2000 N · s/m. See
Figure 7.4.4.

7.26 For the damper shown in Figure 7.4.4, assume that the flow through the hole is
turbulent, and neglect the term mÿ. Develop a model of the relation between
the force f and ẋ , the relative velocity between the piston and the cylinder.
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7.27 An electric motor is sometimes used to move the spool valve of a hydraulic
motor. In Figure P7.27 the force f is due to an electric motor acting through
a rack-and-pinion gear. Develop a model of the system with the load
displacement y as the output and the force f as the input. Consider two cases:
(a) m1 = 0 and (b) m1 �= 0.

k2

c2

y

x

m2 m3

m1m1

k1

c1

f

Figure P7.27

7.28 In Figure P7.28 the piston of area A is connected to the axle of the cylinder of
radius R, mass m, and inertia I about its center. Develop a dynamic model of
the axle’s translation x , with the pressures p1 and p2 as the inputs.

x

Rpa R1

pa

R2

p1

p2

Figure P7.28

7.29 Figure P7.29 shows a pendulum driven by a hydraulic piston. Assuming small
angles θ and a concentrated mass m a distance L1 from the pivot, derive the
equation of motion with the pressures p1 and p2 as inputs.

7.30 Figure P7.30 shows an example of a hydraulic accumulator, which is a device
for reducing pressure fluctuations in a hydraulic line or pipe. The fluid density
is ρ, the plate mass is m, and the plate area is A. Develop a dynamic model of
the pressure p with the pressures p1 and p2 as the given inputs. Assume that
mẍ of the plate is small, and that the hydrostatic pressure ρgh is small.

7.31 Design a hydraulic accumulator of the type shown in Figure P7.30. The liquid
volume in the accumulator should increase by 30 in.3 when the pressure p
increases by 1.5 lb/in.2. Determine suitable values for the plate area A and the
spring constant k.

7.32 Consider the liquid-level system treated in Example 7.4.8 and shown in
Figure 7.4.9. The pump curve and the line for the steady-state flow through
both valves are shown in Figure P7.32. It is known that the bottom area of the
tank is 2 m2 and the outlet resistance is R2 = 400 1/(m · s). (a) Compute the
pump resistance R1 and the steady-state height. (b) Derive a linearized
dynamic model of the height deviation δh in the tank.
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Figure P7.29
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7.33 Consider the V-shaped container treated in Example 7.2.2, whose cross section
is shown in Figure P7.33. The outlet resistance is linear. Derive the dynamic
model of the height h.

7.34 Consider the V-shaped container treated in Example 7.2.2, whose cross section
is shown in Figure P7.34. The outlet is an orifice of area Ao and discharge
coefficient Cd . Derive the dynamic model of the height h.

7.35 Consider the cylindrical container treated in Problem 7.8. In Figure P7.35 the
tank is shown with a valve outlet at the bottom of the tank. Assume that the
flow through the valve is turbulent with a resistance R. Derive the dynamic
model of the height h.
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Figure P7.33
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7.36 A certain tank contains water whose mass density is 1.94 slug/ft3. The tank’s
circular bottom area is A = 100 ft2. It is drained by an orifice in the bottom.
The effective cross-sectional area of the orifice is Cd Ao = 0.5 ft2. A pipe
dumps water into the tank at the volume flow rate qv .
a. Derive the model for the tank’s height h with the input qv .
b. Compute the steady-state height if the input flow rate is qv = 5 ft3/sec.
c. Estimate the tank’s time constant when the height is near the steady-state

height.
7.37 (a) Derive the expression for the fluid capacitance of the conical tank shown in

Figure P7.37. The cone angle θ is a constant and should appear in your answer
as a parameter. (b) Derive the dynamic model of the liquid height h. The mass
inflow rate is qmi (t). The resistance R is linear.

Figure P7.37

h

R
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7.38 (a) Determine the capacitance of a spherical tank of radius R, shown in
Figure P7.38. (b) Obtain a model of the pressure at the bottom of the tank,
given the mass flow rate qmi .

R

h p

(a) (b)

R

r

R

2r

dh

qmi

h

R � h R � h

Figure P7.38 A spherical
tank.

7.39 Obtain the dynamic model of the liquid height h in a spherical tank of radius
R, shown in Figure P7.39. The mass inflow rate through the top opening is qmi

and the orifice resistance is Ro.

Figure P7.39 A spherical
tank with an orifice resistance.

R

h

qmi

Section 7.5 Pneumatic Systems

7.40 A rigid container has a volume of 20 ft3. The air inside is initially at 70◦F. Find
the pneumatic capacitance of the container for an isothermal process.

7.41 Consider the pneumatic system treated in Example 7.5.2. Derive the linearized
model for the case where pi < p.
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7.42 Figure P7.42 shows two rigid tanks whose pneumatic capacitances are C1 and
C2. The variables δpi , δp1, and δp2 are small deviations around a reference
steady-state pressure pss . The pneumatic lines have linearized resistances R1

and R2. Assume an isothermal process. Derive a model of the pressures δp1

and δp2 with δpi as the input.

Figure P7.42

R1

p1

C1 p2

C2

pa
pi

R2

Section 7.6 Thermal Capacitance

7.43 (a) Compute the thermal capacitance of 250 ml of water, for which ρ =
1000 kg/m3 and cp = 4.18 × 103 J/kg · ◦C. Note that 1 ml = 10−6 m3. (b) How
much energy does it take to raise the water temperature from room temperature
(20◦C) to 99◦C (just below boiling).

7.44 A certain room measures 15 ft by 10 ft by 8 ft. (a) Compute the thermal
capacitance of the room air using cp = 6.012 × 103 ft-lb/slug-◦F and
ρ = 0.0023 slug/ft3. (b) How much energy is required to raise the air
temperature from 68◦F to 72◦F, neglecting heat transfer to the walls, floor, and
ceiling?

7.45 Liquid initially at 20◦C is pumped into a mixing tank at a constant volume
flow rate of 0.5 m3/s. See Figure 7.6.1. At time t = 0 the temperature of the
incoming liquid suddenly is changed to 80◦C. The tank walls are perfectly
insulated. The tank volume is 12 m3, and the liquid within is well-mixed so
that its temperature is uniform throughout, and denoted by T . The liquid’s
specific heat and mass density are cp and ρ. Given that T (0) = 20◦C, develop
and solve a dynamic model for the temperature T as a function of time.

Section 7.7 Thermal Resistance

7.46 The copper shaft shown in Figure P7.46 consists of two cylinders with the
following dimensions: L1 = 10 mm, L2 = 5 mm, D1 = 2 mm, and D2 =
1.5 mm. The shaft is insulated around its circumference so that heat transfer
occurs only in the axial direction. (a) Compute the thermal resistance of each
section of the shaft and of the total shaft. Use the following value for the
conductivity of copper: k = 400 W/m · ◦C. (b) Compute the heat flow rate in
the axial direction if the temperature difference across the endpoints of the
shaft is 30◦C.

Figure P7.46

D1 D2

L1 L2



palm-38591 book December 17, 2008 12:18

Problems 409

7.47 A certain radiator wall is made of copper with a conductivity k = 47 lb/sec-◦F
at 212◦F. The wall is 3/16 in. thick and has circulating water on one side with a
convection coefficient h1 = 85 lb/sec-ft-◦F. A fan blows air over the other side,
which has a convection coefficient h2 = 15 lb/sec-ft-◦F. Find the thermal
resistance of the radiator on a square foot basis.

7.48 A particular house wall consists of three layers and has a surface area of 30 m2.
The inside layer is 10 mm thick and made of plaster board with a thermal
conductivity of k = 0.2 W/(m · ◦C). The middle layer is made of fiberglass
insulation with k = 0.04 W/(m · ◦C). The outside layer is 20 mm thick and
made of wood siding with k = 0.1 W/(m · ◦C). The inside temperature is 20◦C,
and the convection coefficient for the inside wall surface is hi = 40
W/(m2 · ◦C). The convection coefficient for the outside wall surface is ho =
70 W/(m2 · ◦C). How thick must the insulation layer be so that the heat loss is
no greater than 400 W if the outside temperature is −20◦C?

7.49 A certain wall section is composed of a 12 in. by 12 in. brick area 4 in. thick.
Surrounding the brick is a 36 in. by 36 in. concrete section, which is also
4 in. thick. The thermal conductivity of the brick is k = 0.086 lb/sec-◦F.
For the concrete, k = 0.02 lb/sec-◦F. (a) Determine the thermal resistance of
the wall section. (b) Compute the heat flow rate through (1) the concrete,
(2) the brick, and (3) the wall section if the temperature difference across the
wall is 40◦F.

7.50 Water at 120◦F flows in an iron pipe 10 ft long, whose inner and outer radii
are 1/2 in. and 3/4 in. The temperature of the surrounding air is 70◦F.
(a) Assuming that the water temperature remains constant along the length of
the pipe, compute the heat loss rate from the water to the air in the radial
direction, using the following values. For iron, k = 10.1 lb/sec-◦F. The
convection coefficient at the inner surface between the water and the iron is
hi = 16 lb/sec-ft-◦F. The convection coefficient at the outer surface between
the air and the iron is ho = 1.1 lb/sec-ft-◦F. (b) Suppose the water is flowing at
0.5 ft/sec. Check the validity of the constant-temperature assumption. For
water, ρ = 1.94 slug/ft3 and cp = 25,000 ft-lb/slug-◦F.

Section 7.8 Dynamic Models of Thermal Systems

7.51 Consider the water pipe treated in Example 7.7.4. Suppose now that the water
is not flowing. The water is initially at 120◦F. The copper pipe is 6 ft long, with
inner and outer radii of 1/4 in. and 3/8 in. The temperature of the surrounding
air is constant at 70◦F. Neglect heat loss from the ends of the pipe, and use
the following values. For copper, k = 50 lb/sec-◦F. The convection coefficient
at the inner surface between the water and the copper is now different because
the water is standing. Use hi = 6 lb/sec-ft-◦F. The convection coefficient at
the outer surface between the air and the copper is ho = 1.1 lb/sec-ft-◦F.
Develop and solve a dynamic model of the water temperature T (t) as a
function of time.

7.52 A steel tank filled with water has a volume of 1000 ft3. Near room temperature,
the specific heat for water is c = 25,000 ft-lb/slug-◦F, and its mass density is
ρ = 1.94 slug/ft3.
a. Compute the thermal capacitance C1 of the water in the tank.
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b. Denote the total thermal resistance (convective and conductive) of the
tank’s steel wall by R1. The temperature of the air surrounding the tank is
To. The tank’s water temperature is T1. Assume that the thermal
capacitance of the steel wall is negligible. Derive the differential equation
model for the water’s temperature, with To as the input.

7.53 Consider the tank of water discussed in Problem 7.52. A test was performed in
which the surrounding air temperature To was held constant at 70◦F. The tank’s
water temperature was heated to 90◦ and then allowed to cool. The following
data show the tank’s water temperature as a function of time. Use these data to
estimate the value of the thermal resistance R1.

Time t (sec) Water temperature T 1 (◦F)

0 90
500 82

1000 77
1500 75
2000 73
2500 72
3000 71
4000 70

7.54 The oven shown in Figure P7.54 has a heating element with appreciable
capacitance C1. The other capacitance is that of the oven air C2. The
corresponding temperatures are T1 and T2, and the outside temperature is To.
The thermal resistance of the heater-air interface is R1; that of the oven wall is
R2. Develop a model for T1 and T2, with input qi , the heat flow rate delivered
to the heater mass.

7.55 A simplified representation of the temperature dynamics of two adjacent
masses is shown in Figure P7.55. The mass with capacitance C2 is perfectly
insulated on all sides except one, which has a convective resistance R2. The
thermal capacitances of the masses are C1 and C2, and their representative
uniform temperatures are T1 and T2. The thermal capacitance of the
surroundings is very large and the temperature is To. (a) Develop a model of
the behavior of T1 and T2. (b) Discuss what happens if the thermal capacitance
C2 is very small.

Figure P7.54

Oven air

Heating
element

T2 C2

R1
R2
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T1 C1

Figure P7.55
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T2 T1
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7.56 A metal sphere 25 mm in diameter was heated to 95◦C, and then suspended
in air at 22◦C. The mass density of the metal is 7920 kg/m3, its specific heat
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at 30◦C is cp = 500 J/(kg · ◦C), and its thermal conductivity at 30◦C is
400 W/(m · ◦C). The following sphere temperature data were measured as the
sphere cooled.

t (s) T (◦C) t (s) T (◦C) t (s) T (◦C)

0 95 120 85 540 67
15 93 135 84 600 65
30 92 180 82 660 62
45 90 240 79 720 61
60 89 300 76 780 59
75 88 360 73 840 57
90 87 420 71 900 56

105 86 480 69 960 54

a. Assume that the sphere’s heat loss rate is due entirely to convection.
Estimate the convection coefficient h.

b. Compute the Biot number and discuss the accuracy of the
lumped-parameter model used in part (a).

c. Discuss whether some of the heat loss rate could be due to radiation. Give
a numerical reason for your answer.

7.57 A copper sphere is to be quenched in an oil bath whose temperature is 50◦C.
The sphere’s radius is 30 mm, and the convection coefficient is h =
300 W/(m2 · ◦C). Assume the sphere and the oil properties are constant. These
properties are given in the following table. The sphere’s initial temperature is
400◦C.

Property Sphere Oil

Density ρ (kg/m3) 8900 7900
Specific heat cp J/(kg · ◦C) 385 400
Thermal conductivity k [W/(m · ◦C)] 400 —

Assume that the volume of the oil bath is large enough so that its
temperature does not change when the sphere is immersed in the bath. Obtain
the dynamic model of the sphere’s temperature T . How long will it take for T
to reach 130◦C?

7.58 Consider the quenching process discussed in Problem 7.57. Suppose the oil
bath volume is 0.1 m3. Neglect any heat loss to the surroundings and develop a
dynamic model of the sphere’s temperature and the bath temperature. How
long will it take for the sphere temperature to reach 130◦C?

Section 7.9 MATLAB Applications

7.59 Consider Example 7.7.1. The MATLAB left division operator can be used to
solve the set of linear algebraic equations AT = b as follows: T = A\b. Use
this method to write a script file to solve for the three steady-state temperatures
T1, T2, and T3, given values for the resistances and the temperatures Ti and To.
Use the results of Example 7.7.1 to test your file.
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Figure P7.60
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7.60 Fluid flows in pipe networks can be analyzed in a manner similar to that used
for electric resistance networks. Figure P7.60a shows a network with three
pipes, which is analogous to the electrical network shown in part (b) of the
figure. The volume flow rates in the pipes are q1, q2, and q3. The pressures at
the pipe ends are pa , pb, and pc. The pressure at the junction is p1.
a. Assuming that the linear resistance relation applies, we have

q1 = 1

R1
(pa − p1)

Obtain the equations for q2 and q3.
b. Note that conservation of mass gives q1 = q2 + q3. Set up the equations in

a matrix form Aq = b suitable for solving for the three flow rates q1, q2,
and q3, and the pressure p1, given the values of the pressures pa , pb, and
pc, and the values of the resistances R1, R2, and R3. Find the expressions
for matrix A and the column vector b.

c. Use MATLAB to solve the matrix equations obtained in part (b) for the
case: pa = 30 psi, pb = 25 psi, and pc = 20 psi. Use the resistance values
R1 = 10,000, R2 = R3 = 14,000 1/(ft-sec). These values correspond to
fuel oil flowing through pipes 2 ft long, with 2 in. and 1.4 in. diameters,
respectively. The units of the answers should be ft3/sec for the flow rates,
and lb/ft2 for pressure.

7.61 The equation describing the water height h in a spherical tank with a drain at
the bottom is

π(2rh − h2)
dh

dt
= −Cd Ao

√
2gh

Suppose the tank’s radius is r = 3 m and that the circular drain hole has a
radius of 2 cm. Assume that Cd = 0.5, and that the initial water height is
h(0) = 5 m. Use g = 9.81 m/s2.
a. Use an approximation to estimate how long it takes for the tank to empty.
b. Use MATLAB to solve the nonlinear equation and plot the water height as

a function of time until h(t) is not quite zero.



palm-38591 book December 17, 2008 12:18

Problems 413

7.62 The following equation describes a certain dilution process, where y(t) is the
concentration of salt in a tank of fresh water to which salt brine is being added.

dy

dt
+ 2

10 + 2t
y = 4

Suppose that y(0) = 0.
a. Use MATLAB to solve this equation for y(t) and to plot y(t) for

0 ≤ t ≤ 10.
b. Check your results by using an approximation that converts the differential

equation into one having constant coefficients.
7.63 A tank having vertical sides and a bottom area of 100 ft2 is used to store water.

To fill the tank, water is pumped into the top at the rate given in the following
table. Use MATLAB to solve for and plot the water height h(t) for
0 ≤ t ≤ 10 min.

Time (min) 0 1 2 3 4 5 6 7 8 9 10

Flow Rate (ft3/min) 0 80 130 150 150 160 165 170 160 140 120

7.64 A cone-shaped paper drinking cup (like the kind used at water fountains) has a
radius R and a height H . If the water height in the cup is h, the water volume is
given by

V = 1

3
π

(
R

H

)2

h3

Suppose that the cup’s dimensions are R = 1.5 in. and H = 4 in.
a. If the flow rate from the fountain into the cup is 2 in.3/sec, use MATLAB

to determine how long will it take to fill the cup to the brim.
b. If the flow rate from the fountain into the cup is given by

2(1 − e−2t) in.3/sec, use MATLAB to determine how long will it take to
fill the cup to the brim.

Section 7.10 Simulink Applications

7.65 Refer to Figure 7.10.1. Assume that the resistances obey the linear relation, so
that the mass flow ql through the left-hand resistance is ql = (pl − p)/Rl , with
a similar linear relation for the right-hand resistance.
a. Create a Simulink subsystem block for this element.
b. Use the subsystem block to create a Simulink model of the system

discussed in Example 7.4.3 and shown in Figure 7.4.3a. Assume that the
mass inflow rate qmi is a step function.

c. Use the Simulink model to obtain plots of h1(t) and h2(t) for the
following parameter values: A1 = 2 m2, A2 = 5 m2, R1 = 400 1/(m · s),
R2 = 600 1/(m · s), ρ = 1000 kg/m3, qmi = 50 kg/s, h1(0) = 1.5 m, and
h2(0) = 0.5 m.

7.66 Use Simulink to solve Problem 7.61(b).
7.67 Use Simulink to solve Problem 7.63.
7.68 Use Simulink to solve Problem 7.64. Plot h(t) for both parts (a) and (b).
7.69 Refer to Example 7.10.1. Use the simulation with q = 8 × 105 to compare the

energy consumption and the thermostat cycling frequency for the two
temperature bands (69◦, 71◦) and (68◦, 72◦).
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7.70 Consider the liquid-level system shown in Figure 7.3.3. Suppose that the
height h is controlled by using a relay to switch the flow rate qmi between the
values 0 and 50 kg/s. The flow rate is switched on when the height is less than
4.5 m and is switched off when the height reaches 5.5 m. Create a Simulink
model for this application using the values A = 2 m2, R = 400 1/(m · s),
ρ = 1000 kg/m3, and h(0) = 1 m. Obtain a plot of h(t).
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Sketch frequency response plots for a given transfer
function, and use the plots or the transfer function to
determine the steady-state response to a sinusoidal
input.

2. Compute the frequencies at which resonance
occurs, and determine a system’s bandwidth.

3. Analyze vibration isolation systems and the effects
of base motion and rotating unbalance.

4. Determine the steady-state response to a periodic
input, given the Fourier series description of the
input.

5. Estimate the form of a transfer function and its
parameter values, given frequency response data.

6. Use MATLAB as an aid in the preceding tasks.

T he term frequency response refers to how a system responds to a periodic input,
such as a sinusoid. An input f (t) is periodic with a period P if f (t + P) =
f (t) for all values of time t , where P is a constant called the period. Periodic

inputs are commonly found in many applications. The most common perhaps is ac
voltage, which is sinusoidal. For the common ac frequency of 60 Hz, the period is
P = 1/60 s. Rotating unbalanced machinery produces periodic forces on the supporting
structures, internal combustion engines produce a periodic torque, and reciprocating
pumps produce hydraulic and pneumatic pressures that are periodic.

Frequency response analysis focuses on harmonic inputs, such as sines and cosines.
A sine function has the form A sin ωt , where A is its amplitude and ω is its frequency
in radians per unit time. Note that a cosine is simply a sine shifted by 90◦ or π/2 rad, as

415
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cos ωt = sin(ωt + π/2). Not all periodic inputs are sinusoidal or cosinusoidal, but an
important result of mathematics, called the Fourier series, enables us to represent a
periodic function as the sum of a constant term plus a series of cosine and sine terms of
different frequencies and amplitudes. Thus we will be able to apply the results of this
chapter to any such periodic input.

The transfer function is central to understanding and applying frequency response
methods. The transfer function enables us to obtain a concise graphical description
of a system’s frequency response. This graphical description is called a frequency
response plot. We analyze the response of first-order systems to sinusoidal inputs in
Section 8.1. In Section 8.2 we generalize the method to higher-order systems. Sec-
tion 8.3 discusses several phenomena and applications of frequency response, including
beating, resonance, the effect of base motion and rotating unbalance, and instrument
design.

In Section 8.4 we introduce the important concept of bandwidth, which enables us
to develop a concise quantitative description of a system’s frequency response, much
like the time constant characterizes the step response. This section also shows how to
analyze the response due to general periodic inputs that can be described with a Fourier
series.

Experiments involving frequency response can often be used to determine the form
of the transfer function of a system and to estimate the numerical values of the parame-
ters in the transfer function. Section 8.5 gives some examples of this process. MATLAB
has several useful functions for obtaining and for analyzing frequency response. These
are treated in Section 8.6. ■

8.1 FREQUENCY RESPONSE
OF FIRST-ORDER SYSTEMS

In this chapter we will frequently need to obtain the magnitude and angle of complex
numbers. A complex number N can be represented in rectangular form as N = x + j y,
where x is the real part and y is the imaginary part. The number can be plotted in two
dimensions with x as the abscissa (on the horizontal axis) and y as the ordinate (on the
vertical axis). We can think of the number as a two-dimensional vector whose head is
at the point (x, y) and whose tail is at the origin. The vector length is the magnitude M
of the number and the vector angle φ is measured counterclockwise from the positive
real axis. In this form, the magnitude and angle of the number can be calculated from
|N | = √

x2 + y2. The complex conjugate of N is x − y j . See Figure 8.1.1a.
Another form is the complex exponential form:

N = Me jφ = M(cos φ + j sin φ)

Note that the complex conjugate of N is Me− jφ .

PRODUCTS AND RATIOS OF COMPLEX NUMBERS

The complex exponential form can be used to show that the magnitude and angle of
a number consisting of products and ratios of complex numbers N1, N2, . . . , can be
calculated as follows.

N = N1 N2

N3 N4
= M1e jφ1 M2e jφ2

M3e jφ3 M4e jφ4
= M1 M2

M3 M4
e j (φ1+φ2−φ3−φ4)
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Thus N = |N |e jφ , where

|N | = M1 M2

M3 M4
φ = φ1 + φ2 − φ3 − φ4

So the magnitudes combine as products and ratios, and the angles combine as sums
and differences.

For example, consider the number

N = −2 − 5 j

3 + 4 j

The magnitude of N can be calculated by computing the ratio of the magnitudes of the
numerator and denominator, as follows:

|N | =
∣∣∣∣−2 − 5 j

3 + 4 j

∣∣∣∣ = |−2 − 5 j |
|3 + 4 j | =

√
(−2)2 + (−5)2
√

32 + 42
=

√
29

5

The angle of N , denoted by � N , is the difference between the angle of the numerator
and the angle of the denominator. These angles are shown in Figure 8.1.1b, which is a
vector representation of the complex numbers in the numerator and denominator. From
this diagram we can see that the angles are given by

� (−2 − 5 j) = 180◦ + tan−1 5

2
= 180◦ + 68◦ = 248◦

� (3 + 4 j) = tan−1 4

3
= 53◦

Thus

� N = 248◦ − 53◦ = 195◦

and

N =
√

29

5
� 195◦ =

√
29

5
(cos 195◦ + j sin 195◦) = −1.04 + 0.28 j

Imaginary

Real

x � yj

x � yj

y

M

M

x

�y

�

��

(a) (b)

Imaginary

Real

3 � 4 j

�2 � 5 j
�5

4

3

53�

248�

�2

Figure 8.1.1 Vector
representation of complex
numbers.
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COMPLEX NUMBERS AS FUNCTIONS OF FREQUENCY

In our applications in this chapter, complex numbers will be functions of a frequency
ω, as for example,

N = −2 − j5ω

3 + j4ω

but the same methods apply for obtaining the magnitude and the angle of N, which will
then be functions of ω. Thus,

|N | =
√

22 + 52ω2
√

32 + 42ω2
=

√
4 + 25ω2

√
9 + 16ω2

φ = � N = � (−2 − j5ω) − � (3 + j4ω)

= 180◦ + tan−1
(

5ω

2

)
− tan−1

(
4ω

3

)

Once a value is given for ω, we can compute |N | and φ.

FREQUENCY RESPONSE PROPERTIES

The methods of this chapter pertain to any stable, linear, time-invariant (LTI) system.
The basic frequency response property of such systems is summarized in Table 8.1.1
and Figure 8.1.2. Any linear, time-invariant system, stable or not, has a transfer function,
say T (s). If a sinusoidal input of frequency ω is applied to such a system, and if the
system is stable, the transient response eventually disappears, leaving a steady-state
response that is sinusoidal with the same frequency ω as the input, but with a different
amplitude and shifted in time relative to the input.

To prove this result, suppose the system transfer function T (s) is of order n, the
output is x(t), and the input is f (t) = A sin ωt . Then

X (s) = F(s)T (s) = Aω

s2 + ω2
T (s)

Table 8.1.1 Frequency response of a stable LTI system.

The transfer function T (s) with s replaced by jω is called the frequency transfer function.
Therefore, the frequency transfer function is a complex function of ω, and it has a magnitude and
an angle, just as any complex number. If the system is stable, the magnitude M of the frequency
transfer function T ( jω) is the ratio of the sinusoidal steady-state output amplitude over a sinusoidal
input amplitude. The phase shift of the steady-state output relative to the input is the angle of
T ( jω). Thus, denoting the input by A sin ωt and the steady-state output by B sin(ωt + φ), we have

|T ( jω)| = B

A
≡ M(ω) (1)

φ(ω) = � T ( jω) (2)

B = AM(ω) (3)

where |T ( jω)| and � T ( jω) denote the magnitude and angle of the complex number T ( jω).
Because of equation (1), M is called the amplitude ratio or the magnitude ratio.

These results are illustrated in Figure 8.1.2.
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M � �T( j�)� � 

� � � T( j�)

B
A

A sin �t B sin(�t � �)

Stable, linear
system

Sinusoidal
input

Steady-state
response

T(s)

Im

Re

M

T( j�)

�

Figure 8.1.2 Frequency
response of a stable linear
system.

which can be expressed as a partial-fraction expansion.

Aω

s2 + ω2
T (s) = C1

s + jω
+ C2

s − jω
+ · · ·

The factors containing s + jω and s − jω correspond to the term s2 + ω2, while the
remaining terms in the expansion correspond to the factors introduced by the denomi-
nator of T (s). If the system is stable, all these factors will be negative or have negative
real parts. Thus the response will have the form

x(t) = C1e− jωt + C2e jωt +
m∑

i=1

Di e
−αi t sin(βi t + φi ) +

n∑
i=m+1

Di e
−αi t

where the roots of T (s) are si = −αi ± βi j for i = 1, . . . , m and si = −αi for
i = 1 + m, . . . , n. The steady-state response is thus given by

xss(t) = C1e− jωt + C2e jωt

We can evaluate C1 and C2 as follows. Note that T ( jω) = |T ( jω)|e jφ , where
φ = � T ( jω).

C1 = T (s)
Aω

s2 + ω2
(s + jω)

∣∣∣∣
s=− jω

= − A

2 j
T (− jω) = − A

2 j
|T ( jω)|e− jφ

C2 = T (s)
Aω

s2 + ω2
(s − jω)

∣∣∣∣
s= jω

= A

2 j
T ( jω) = A

2 j
|T ( jω)|e jφ

The steady-state response can thus be expressed as

xss(t) = − A

2 j
|T ( jω)|e− jφe− jωt + A

2 j
|T ( jω)|e jφe jωt

= |T ( jω)|A e j (ωt+φ) − e− j (ωt+φ)

2 j

or

xss(t) = |T ( jω)|A sin(ωt + φ)

because

e j (ωt+φ) − e− j (ωt+φ)

2 j
= sin(ωt + φ)

Thus at steady state, the output amplitude is |T ( jω)|A and the phase shift is φ =
� T ( jω).

A numerical example will help to clarify these concepts.
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FREQUENCY RESPONSE OF τ ẏ + y = f (t)

We can generalize the results of Example 8.1.1 as follows. Consider the linear model
having a time constant τ .

τ ẏ + y = f (t) (8.1.1)

The transfer function is

T (s) = Y (s)

F(s)
= 1

τ s + 1
(8.1.2)

If the input is sinusoidal, f (t) = A sin ωt , the response is

y(t) = Aωτ

1 + ω2τ 2

(
e−t/τ − cos ωt + 1

ωτ
sin ωt

)
(8.1.3)

For t ≥ 4τ , the transient response has essentially disappeared, and we can express the
steady-state response as

yss(t) = A

1 + ω2τ 2
(sin ωt − ωτ cos ωt) = B sin(ωt + φ) (8.1.4)

where we have used the identity

B sin(ωt + φ) = B cos φ sin ωt + B sin φ cos ωt

Comparing this with (8.1.3), and noting that A, τ , and ω are positive, we see that

B cos φ = A

1 + ω2τ 2
> 0

B sin φ = − Aωτ

1 + ω2τ 2
< 0

Using the identity, cos2 φ + sin2 φ = 1, we obtain

B2 = (
B cos φ

)2 + (
B sin φ

)2 =
(

Aωτ

1 + ω2τ 2

)2

+
(

A

1 + ω2τ 2

)2

or

B2 = A2

1 + ω2τ 2

These equations allow for two solutions for B and φ. One solution corresponds to
B > 0 and the other to B < 0. Either solution is acceptable, but if we think of B as an
amplitude of oscillation, then the B > 0 solution is more appropriate. If we choose the
solution where B > 0, then cos φ > 0 and sin φ < 0, which means that φ is in the fourth
quadrant. Thus,

B = + A√
1 + ω2τ 2

and the amplitude ratio M = B/A is

M = B

A
= 1√

1 + ω2τ 2
(8.1.5)

The phase angle is

φ = tan−1 sin φ

cos φ
= tan−1(−ωτ) = − tan−1(ωτ) (8.1.6)
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Table 8.1.2 Frequency response of the model τ ẏ + y = f (t).

M = |Y |
|F | = 1√

1 + ω2τ 2
(1)

φ = − tan−1(ωτ) (2)

Thus the steady-state response is sinusoidal with the same frequency ω as the input,
and its amplitude decreases as ω increases. The response is retarded in phase relative
to the input, and this retardation increases with the frequency ω.

RESULTS FROM THE TRANSFER FUNCTION

If we substitute s = jω into the transfer function (8.1.2), we obtain

T ( jω) = 1

1 + jωτ

The magnitude is

|T ( jω)| =
∣∣∣∣ 1

1 + jωτ

∣∣∣∣ = 1√
1 + ω2τ 2

and the angle is

φ = � T ( jω) = −� (1 + jωτ) = − tan−1(ωτ)

These results are summarized in Table 8.1.2 and are identical to (8.1.5) and (8.1.6),
thus proving the results of Table 8.1.1 for the model τ ẏ + y = f (t).

Frequency Response of a Mass with Damping EXAMPLE 8.1.1

■ Problem
Consider a mass subjected to a sinusoidal applied force f (t). The mass is m = 0.2 kg and
the damping constant is c = 1 N · s/m. If v is the speed of the mass, then the equation of
motion is 0.2v̇ + v = f (t) where f (t) = sin ωt and ω is the oscillation frequency of the
applied force. The initial speed is v(0) = 0. Find the total response for two cases: (a) ω = 15
rad/s and (b) ω = 60 rad/s.

■ Solution
This equation is of the form of (8.1.1) with τ = 0.2 and y = v. From (8.1.3) the response is

v(t) = 0.2ω

1 + (0.2)2ω2

(
e−5t − cos ωt + 1

0.2ω
sin ωt

)

The transient response contains the exponential e−5t , which is essentially zero for t > 4/5 s.
The steady-state response is

vss(t) = 0.2ω

1 + (0.2)2ω2

(
− cos ωt + 1

0.2ω
sin ωt

)
= 1√

1 + (0.2)2ω2
sin(ωt + φ)

where from (8.1.6), φ = − tan−1(0.2ω).
The steady-state response can be seen to oscillate at the input frequency ω with an amplitude

of 1/
√

1 + 0.04ω2, and a phase shift of φ relative to the input. Since the phase shift is negative,
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Figure 8.1.3 Response of the
model 0.2v̇ + v = sin ωt :
(a) ω = 15 and (b) ω = 60.
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a peak in the input is followed by a peak in the response a time |φ|/ω later. If φ is in radians and
ω is in radians per second, the time shift |φ|/ω will be in seconds.

Figure 8.1.3(a) shows the total response for the case where ω = 15. Part (b) shows the case
where ω = 60. Note that the transient response has in both cases essentially disappeared by
t = 4/5 as predicted. Note also that the amplitude of the response is much smaller at the higher
frequency. This is because the inertia of the mass prevents it from reacting to a rapidly changing
input. Although the time shift is also smaller at the higher frequency, this does not indicate a
faster response, because the peak attained is much smaller.
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Circuit Response to a Step-Plus-Cosine Input EXAMPLE 8.1.2

■ Problem
The model of the voltage v2 across the capacitor in a series RC circuit having an input voltage
v1 is

RC
dv2

dt
+ v2 = v1(t)

Suppose that RC = 0.02 s and that the applied voltage consists of a step function plus a cosine
function: v1(t) = 5us(t) + 3 cos 80t . Obtain the circuit’s steady-state response.

■ Solution
We can apply the principle of superposition here to separate the effects of the step input from
those of the cosine input. Note that if only a step voltage of 5 were applied, the steady-state
response to the step would be 5 (this can be shown by setting dv2/dt = 0 in the model to see that
v2 = v1 at steady state). Next find the steady-state response due to the cosine function 3 cos 80t .
To do this, we can use the same formulas developed for the amplitude and phase shift due to a
sine function, but express the response in terms of a cosine function. From (8.1.5) and (8.1.6)
with A = 3,

B = AM = 3√
1 + (80)2(0.02)2

= 1.59

φ = − tan−1[(80)(0.02)] = − tan−1(1.6) = −1.012 rad

The steady-state response is v2(t) = 5+1.59 cos(80t −1.012). Thus at steady state, the voltage
oscillates about the mean value 5 V with an amplitude of 1.59 and a frequency of 80 rad/s.

THE LOGARITHMIC PLOTS

Inspecting (8.1.5) reveals that the steady-state amplitude of the output decreases as
the frequency of the input increases. The larger τ is, the faster the output amplitude
decreases with frequency. At a high frequency, the system’s “inertia” prevents it from
closely following the input. The larger τ is, the more sluggish is the system response.
This also produces an increasing phase lag as ω increases. Figure 8.1.4 shows the
magnitude ratio and phase curves for two values of τ . In both cases, the magnitude
ratio is close to 1 at low frequencies and approaches 0 as the frequency increases.
The rate of decrease is greater for systems having larger time constants. The phase
angle is close to 0 at low frequencies and approaches −90◦ as the frequency increases.

Logarithmic scales are usually used to plot the frequency response curves. There
are two reasons for using logarithmic scales. The curves of M and φ versus ω can
be sketched more easily if logarithmic axes are used because they enable us to add or
subtract the magnitude plots of simple transfer functions to sketch the plot for a transfer
function composed of the product and ratio of simpler ones. Logarithmic scales also can
display a wider variation in numerical values. When plotted using logarithmic scales,
the frequency response plots are frequently called Bode plots, after H. W. Bode, who
applied these techniques to the design of amplifiers.

Keep in mind the following basic properties of logarithms:

log (xy) = log x + log y log
(

x

y

)
= log x − log y

log xn = n log x
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Figure 8.1.4 Magnitude ratio
and phase angle of the model
τ ẏ + y = f (t) for τ = 2 and
τ = 20.
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When using logarithmic scales the amplitude ratio M is specified in decibel units,
denoted dB. (The decibel is named for Alexander Graham Bell.) The relationship
between a number M and its decibel equivalent m is

m = 10 log M2 = 20 log M dB (8.1.7)

where the logarithm is to the base 10. For example, the M = 10 corresponds to 20 dB;
the M = 1 corresponds to 0 dB; numbers less than 1 have negative decibel values. It
is common practice to plot m(ω) in decibels versus log ω. For easy reference, φ(ω) is
also plotted versus log ω, and it is common practice to plot φ in degrees.

LOGARITHMIC PLOT FOR τ ẏ + y = f (t)

From equation (1) of Table 8.1.2,

M = 1√
1 + ω2τ 2

(8.1.8)

So we have

m(ω) = 20 log
1√

1 + τ 2ω2

= 20 log(1) − 10 log(1 + τ 2ω2)

= −10 log(1 + τ 2ω2) (8.1.9)

Figure 8.1.5 shows the logarithmic plots for the two systems whose plots with rectilinear
axes were given in Figure 8.1.4. Note that the shape of the m versus log ω curve is
very different from the shape of the M versus ω curve. The logarithmic plots can be
confusing for beginners; take time to study them. Remember that m = 0 corresponds to
a magnitude ratio of M = 1. Positive values of m correspond to M > 1, which means
that the system amplifies the input. Negative values of m correspond to M < 1, which
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Figure 8.1.5 Semilog plots of
log magnitude ratio and phase
angle of the model τ ẏ + y =
f (t) for τ = 2 and τ = 20.

means the system attenuates the input. When you need to obtain values of M from a
plot of m versus log ω, use the relation

M = 10m/20 (8.1.10)

For example, m = 50 corresponds to M = 316.2; m = −15 corresponds to M =
0.1778; and m = −3.01 corresponds to M = 1/

√
2 = 0.7071.

To sketch the logarithmic plot of m versus log ω, we approximate m(ω) in three
frequency ranges. For τω � 1, 1 + τ 2ω2 ≈ 1, and (8.1.9) gives

m(ω) ≈ −10 log 1 = 0 (8.1.11)

For τω 	 1, 1 + τ 2ω2 ≈ τ 2ω2, and (8.1.9) gives

m(ω) ≈ −10 log τ 2ω2 = −20 log τω = −20 log τ − 20 log ω (8.1.12)

This gives a straight line versus log ω. This line is the high-frequency asymptote. Its
slope is −20 dB/decade, where a decade is any 10 : 1 frequency range. At ω = 1/τ ,
(8.1.12) gives m(ω) = 0. This is useful for plotting purposes but does not represent
the true value of m at that point because (8.1.12) was derived assuming τω 	 1. For
ω = 1/τ , (8.1.9) gives m(ω) = −10 log 2 = −3.01. Thus, at ω = 1/τ , m(ω) is
3.01 dB below the low-frequency asymptote given by (8.1.11). The low-frequency and
high-frequency asymptotes meet at ω = 1/τ , which is the breakpoint frequency. It is
also called the corner frequency. The plot is shown in Figure 8.1.6 (upper plot).

The phase angle is given by φ = − tan−1(ωτ), and the curve of φ versus ω is con-
structed as follows. For ωτ � 1, this equation gives φ(ω) ≈ tan−1(0) = 0◦. For ωτ = 1,
φ(ω) = − tan−1(1) = −45◦, and for ωτ 	 1, φ(ω) ≈ − tan−1(∞) = −90◦. Because the
phase angle is negative, the output “lags” behind the input sine wave. Such a system
is called a lag system. The φ(ω) curves are easily sketched using these facts and are
shown in Figure 8.1.6 (lower plot).
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Figure 8.1.6 Asymptotes and
corner frequency ω = 1/τ of
the model 1/(τ s + 1).
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EXAMPLE 8.1.3 A Low-Pass Filter

■ Problem
A series RC circuit is shown in Figure 8.1.7, where the input is the voltage vs and the output is
the voltage vo. The two amplifiers serve to isolate the circuit from the loading effects of adjacent
elements. Describe its frequency response characteristics.

■ Solution
The circuit model obtained in Chapter 3 has the following transfer function.

T (s) = Vo(s)

Vs(s)
= 1

RCs + 1

Comparing this with the transfer function given by (8.1.2), 1/(τ s + 1), we see that τ = RC .
Thus the breakpoint frequency is 1/τ = 1/RC . This means that the circuit filters out sinusoidal
voltage inputs whose frequency is higher than 1/RC , and the higher the frequency, the greater
is the filtering. Inputs having frequencies lower than 1/RC pass through the circuit with almost
no loss of amplitude and with little phase shift. This is because T ( jω) ≈ 1 and φ ≈ 0 for
ω < 1/RC . The circuit is called a low-pass filter for this reason. It can be used to filter out
unwanted high-frequency components of the input voltage, such as 60-Hz interference from
nearby ac equipment.

Figure 8.1.7 Series RC circuit
configured as a low-pass filter.

�

�

vs vo

R

C
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A High-Pass Filter EXAMPLE 8.1.4

■ Problem
Consider the series RC circuit shown in Figure 8.1.8, where the output voltage is taken to be
across the resistor. The input is the voltage vs and the output is the voltage vo. Obtain the circuit’s
frequency response plots, and interpret the circuit’s effect on the input.

■ Solution
The input impedance between the voltage vs and the current i is found from the series law.

Vs(s)

I (s)
= R + 1

Cs

Thus,

Vo(s) = I (s)R = Vs(s)

R + 1/Cs
R = RCs

RCs + 1
Vs(s)

The transfer function is

T (s) = Vo(s)

Vs(s)
= RCs

RCs + 1
= τ s

τ s + 1

where τ = RC .
The frequency transfer function and magnitude ratio are

T ( jω) = τω j

1 + τω j

M =
∣∣∣∣ τω j

1 + τω j

∣∣∣∣ = τω√
1 + (τω)2

m(ω) = 20 log |τ | + 20 log | jω| − 20 log |1 + τω j |
= 20 log |τ | + 20 log ω − 20 log

√
1 + (τω)2

= 20 log |τ | + 20 log ω − 10 log
[
1 + (τω)2

]
At frequencies where ω � 1/τ , the last term on the right is negligible, and thus the low-frequency
asymptote is described by

m(ω) = 20 log |τ | + 20 log ω, ω � 1

τ

It can be sketched by noting that it has a slope of 20 dB/decade and it passes through the point
m = 0, ω = 1/τ . The asymptote is shown by the dashed line in Figure 8.1.9 (upper plot). At
high frequencies where ω 	 1/τ , the slope of −20 due to the term τ s + 1 in the denominator

�

�

vovs

C

R

Figure 8.1.8 Series RC circuit
configured as a high-pass filter.
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Figure 8.1.9 Asymptotes and
corner frequency ω = 1/τ of
the model τ s/(τ s + 1).
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cancels the slope of +20 due to the term s in the numerator. Therefore, at high frequencies,
m(ω) has a slope of approximately zero, and

m(ω) ≈ 20 log |τ | + 20 log ω − 20 log |τω|

= 20 log |τ | + 20 log ω − 20 log |τ | − 20 log ω = 0 for ω 	 1

τ

At ω = 1/τ , the denominator term τ s + 1 contributes −3 dB. The composite curve for
m(ω) is obtained by “blending” the low-frequency and high-frequency asymptotes through this
point, as shown in Figure 8.1.9 (upper plot). A similar technique can be used to sketch φ(ω).

The phase angle is

φ(ω) = � τ + � ( jω) − � (1 + τω j) = 0◦ + 90◦ − tan−1(ωτ)

For ω � 1/τ , the low-frequency asymptote is φ(ω) ≈ 90◦ − tan−1(0) = 90◦. For ω = 1/τ ,
φ(ω) = 90◦ − tan−1(1) = 45◦. For ω 	 1/τ , the high-frequency asymptote is φ(ω) ≈
90◦ − tan−1(∞) = 90◦ − 90◦ = 0◦. The result is sketched in Figure 8.1.9 (lower plot).

The log magnitude plot shows that the circuit passes signals with frequencies above ω = 1/τ

with little attenuation, and thus it is called a high-pass filter. It is used to remove dc and low-
frequency components from a signal. This is desirable when we wish to study high-frequency
components whose small amplitudes would be indiscernible in the presence of large-amplitude,
low-frequency components. Such a circuit is incorporated into oscilloscopes for this reason. The
voltage scale can then be selected so that the signal components to be studied will fill the screen.

EXAMPLE 8.1.5 Frequency Response of a Differentiating Circuit

■ Problem
The op-amp differentiator analyzed in Chapter 6 and shown in Figure 8.1.10a has the transfer
function

Vo(s)

Vs(s)
= −RCs
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Figure 8.1.10 (a) Op-amp
differentiator. (b) Modified
op-amp differentiator.

It is susceptible to high-frequency noise, because the derivative of a rapidly changing signal is
difficult to compute and produces an exaggerated output. In practice, this problem is often solved
by filtering out high-frequency signals either with a low-pass filter inserted in series with the
differentiator or by using a redesigned differentiator, such as the one shown in Figure 8.1.10b.
Its transfer function is

Vo(s)

Vs(s)
= − RCs

R1Cs + 1

Analyze its frequency response characteristics.

■ Solution
Note that if a circuit is a pure differentiator, then vo = v̇s , or

Vo(s)

Vs(s)
= s

So the slope of m(ω) curve for a pure differentiator is 20 dB/decade. The transfer function of
the redesigned differentiator can be rearranged as follows:

Vo(s)

Vs(s)
= − RCs

R1Cs + 1
= − R

R1

R1Cs

R1Cs + 1

Thus, the frequency response plot of this transfer function is similar to that of the high-pass
filter shown in Figure 8.1.9 (upper plot) with τ = R1C , except for the factor −R/R1. We will
neglect the factor −1, which can be eliminated by using a series inverter. The circuit’s corner
frequency is ωc = 1/R1C , and the circuit acts like the ideal differentiator for frequencies up to
about ω = 1/R1C . For higher frequencies, the magnitude ratio curve has zero slope rather than
the 20 dB/decade slope required for differentiation, and thus the circuit does not differentiate the
high-frequency signals, but merely amplifies them with a gain of R/R1. Because the amplitudes
of noisy high-frequency signals are generally small, this amplification effect is negligible. For
ω < 1/R1C , the circuit’s gain is RC . Thus, after choosing a convenient value for C , the two
resistors are selected as follows: R1 is used to set the cutoff frequency 1/R1C , and R is used to
set the gain RC .

A COMMON FORM HAVING NUMERATOR DYNAMICS

Another example of numerator dynamics is the transfer function

T (s) = K
τ1s + 1

τ2s + 1
(8.1.13)

An example of this form is the transfer function of the lead compensator circuit analyzed
in Chapter 6, and shown again in Figure 8.1.11a. Its transfer function is

T (s) = Vo(s)

Vs(s)
= R1 R2Cs + R2

R1 R2Cs + R1 + R2
(8.1.14)
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Figure 8.1.11 Electrical and
mechanical examples having
the transfer function form
K(τ1s + 1)/(τ2s + 1).

vovs R2

C

R1

(a)

�

�

(b)

k2

x

k1

c

y

which can be rearranged as (8.1.13) where

τ1 = R1C τ2 = R1 R2C

R1 + R2
K = τ2

τ1
(8.1.15)

A mechanical example of this form is shown in Figure 8.1.11b. The equation of
motion is

cẋ + (k1 + k2)x = cẏ + k1 y

With y as the input, the transfer function is

T (s) = X (s)

Y (s)
= cs + k1

cs + k1 + k2
(8.1.16)

which can be rearranged as (8.1.13), where

τ1 = c

k1
τ2 = c

k1 + k2
K = τ2

τ1
(8.1.17)

EXAMPLE 8.1.6 A Model with Numerator Dynamics

■ Problem
Find the steady-state response of the following system:

ẏ + 5y = 4ġ + 12g

if the input is g(t) = 20 sin 4t .

■ Solution
First obtain the transfer function.

T (s) = Y (s)

G(s)
= 4s + 12

s + 5
= 4

s + 3

s + 5

Here ω = 4, so we substitute s = 4 j to obtain

T ( jω) = 4
3 + jω

5 + jω
= 4

3 + 4 j

5 + 4 j

Then,

M = |T ( jω)| = 4
|3 + 4 j |
|5 + 4 j | = 4

√
32 + 42

√
52 + 42

= 3.123
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The phase angle is found as follows:

φ = � T ( jω) = �
(

4
3 + jω

5 + jω

)
= � 4 + � (3 + jω) − � (5 + jω)

= 0◦ + tan−1 ω

3
− tan−1 ω

5

Substitute ω = 4 to obtain

φ = tan−1 4

3
− tan−1 4

5
= 0.253 rad

Thus the steady-state response is

yss(t) = 20M sin(4t + φ) = 62.46 sin(4t + 0.253)

Substituting s = jω into the transfer function (8.1.13) gives

T ( jω) = K
τ1ω j + 1

τ2ω j + 1
(8.1.18)

Thus,

M(ω) = |K |
√

(τ1ω)2 + 1√
(τ2ω)2 + 1

m(ω) = 20 log |K | + 10 log [(τ1ω)2 + 1] − 10 log [(τ2ω)2 + 1] (8.1.19)

Thus, the plot of m(ω) can be obtained by subtracting the plot of τ2s + 1 from that of
τ1s + 1. The scale is then adjusted by 20 log |K |. The sketches in Figure 8.1.12 are for
K = 1, so that 20 log K = 0.

The term τ1s + 1 causes the curve to break upward at ω = 1/τ1. The term τ2s + 1
causes the curve to break downward at ω = 1/τ2. If 1/τ1 > 1/τ2, the composite curve
looks like Figure 8.1.12a, and the system is a low-pass filter. If 1/τ1 < 1/τ2, it is a
high-pass filter (Figure 8.1.12b). The plots of m(ω) were obtained by using only the
asymptotes of the terms τ1s + 1 and τ2s + 1 without using the 3-dB corrections at the
corner frequencies 1/τ1, and 1/τ2. This sketching technique enables the designer to
understand the system’s general behavior quickly.

From (8.1.18), the phase angle is

φ(ω) = � K + � (τ1ω j + 1) − � (τ2ω j + 1)

= � K + tan−1(τ1ω) − tan−1(τ2ω) (8.1.20)

where � K = 0 if K > 0. The plot can be found by combining the plots of φ(ω) for K ,
τ1s + 1, and τ2s + 1, using the low-frequency, corner frequency, and high-frequency
values of 0◦, 45◦, and 90◦ for the terms of the form τ s +1, supplemented by evaluations
of (8.1.20) in the region between the corner frequencies. This sketching technique is
more accurate when the corner frequencies are far apart.
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Figure 8.1.12 The log
magnitude plots for the
transfer function form
(τ1s + 1)/(τ2s + 1) for
(a) τ1 < τ2 and (b) τ1 > τ2. 0
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8.2 FREQUENCY RESPONSE
OF HIGHER-ORDER SYSTEMS

The results of Section 8.1 can be easily extended to a stable, invariant, linear system of
any order. The general form of a transfer function is

T (s) = K
N1(s)N2(s) . . .

D1(s)D2(s) . . .
(8.2.1)
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where K is a constant real number. In general, if a complex number T ( jω) consists of
products and ratios of complex factors, such that

T ( jω) = K
N1( jω)N2( jω) . . .

D1( jω)D2( jω) . . .
(8.2.2)

where K is constant and real, then from the properties of complex numbers

|T ( jω)| = |K ||N1( jω)||N2( jω)| . . .
|D1( jω)||D2( jω)| . . . (8.2.3)

In decibel units, this implies that

m(ω) = 20 log |T ( jω)|
= 20 log |K | + 20 log |N1( jω)| + 20 log |N2( jω)| + · · ·

− 20 log |D1( jω)| − 20 log |D2( jω)| − · · · (8.2.4)

That is, when expressed in logarithmic units, multiplicative factors in the numerator of
the transfer function are summed, while those in the denominator are subtracted. We
can use this principle graphically to add or subtract the contribution of each term in the
transfer function to obtain the plot for the overall system transfer function.

For the form (8.2.1), the phase angle is

φ( jω) = � T ( jω) = � K + � N1( jω) + � N2( jω) + · · ·
−� D1( jω) − D2( jω) − · · · (8.2.5)

The phase angles of multiplicative factors in the numerator are summed, while those
in the denominator are subtracted. This enables us to build the composite phase angle
plot from the plots for each factor.

COMMON TRANSFER FUNCTION FACTORS

Most transfer functions occur in the form given by (8.2.1). In addition, the factors
Ni (s) and Di (s) usually take the forms shown in Table 8.2.1. We have already obtained
the frequency response plots for form 3, which is called a lead term because φ > 0.
The effect of a multiplicative constant K , which is form 1, is to shift the m curve up
by 20 log |K |. If K > 0, the phase plot is unchanged because the angle of a positive
number is 0◦. If K < 0, the phase plot is shifted down by 180◦ because the angle of a
negative number is −180◦.

We will now develop the plots for form 2. Form 4 will be treated later in this section.
For form 2

T (s) = sn (8.2.6)

Table 8.2.1 Common factors in the transfer function form: T (s) = K
N1(s)N2(s) . . .

D1(s)D2(s) . . .
.

Factor Ni (s) or Di (s)

1. Constant, K
2. sn

3. τ s + 1

4. s2 + 2ζωns + ω2
n =

[(
s

ωn

)2

+ 2ζ
s

ωn
+ 1

]
ω2

n , ζ < 1
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we have

m = 20 log | jω|n = 20n log | jω| = 20n log ω (8.2.7)

φ = � ( jω)n = n � ( jω) = n90◦ (8.2.8)

So the slope of the m curve is constant at 20n dB/decade.
Consider a second-order system whose transfer function is

T (s) = K

s(τ s + 1)
(8.2.9)

An example is the displacement of a mass with a damper but no spring. If the applied
force is f (t), the equation of motion is mẍ + cẋ = f (t) or

m

c
ẍ + ẋ = 1

c
f (t)

Thus

T (s) = X (s)

F(s)
= 1/c

s[(m/c)s + 1]

Thus K = 1/c and τ = m/c.
The three basic forms in this transfer function are K , s, and τ s + 1. Because the s

term is in the denominator, it shifts the composite m curve upward for ω < 1 and shifts
it down for ω > 1. The composite m curve follows that of the s term until ω ≈ 1/τ ,
when the (τ s + 1) term begins to have an effect. For ω > 1/τ , the composite slope is
−40 dB/decade. The s term contributes a constant −90◦ to the φ curve. The results are
shown in Figure 8.2.1.

Figure 8.2.1 Semilog plots of
log magnitude ratio and phase
angle of the model 1/s(τ s + 1).
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TWO REAL ROOTS

The denominator of a second-order transfer function with two real roots can be written
as the product of two first-order factors like form 3. For example,

T (s) = 1

2s2 + 14s + 20
= 1

2(s + 2)(s + 5)
= 0.05

(0.5s + 1)(0.2s + 1)

where the time constants are τ1 = 0.5 and τ2 = 0.2.
Consider the second-order model

mẍ + cẋ + kx = f (t)

Its transfer function is

T (s) = X (s)

F(s)
= 1

ms2 + cs + k
(8.2.10)

If the system is overdamped, both roots are real and distinct, and we can write T (s) as

T (s) = 1/k

(m/k)s2 + (c/k)s + 1
= 1/k

(τ1s + 1)(τ2s + 1)
(8.2.11)

where τ1 and τ2 are the time constants of the roots.
Substitute s = jω into (8.2.11).

T ( jω) = 1/k

(τ1 jω + 1)(τ2 jω + 1)

The magnitude ratio is

M(ω) = |T ( jω)| = |1/k|
|τ1 jω + 1||τ2 jω + 1|

Thus

m(ω) = 20 log M(ω) = 20 log
∣∣∣∣1

k

∣∣∣∣ − 20 log |τ1ω j + 1|
− 20 log |τ2ω j + 1| (8.2.12)

The phase angle is

φ(ω) = � 1

k
− � (τ1ω j + 1) − � (τ2ω j + 1) (8.2.13)

The magnitude ratio plot in decibels consists of a constant term, 20 log |1/k|, minus
the sum of the plots for two first-order lead terms. Assume that τ1 > τ2. Then for
1/τ1 < ω < 1/τ2, the slope is approximately −20 dB/decade. For ω > 1/τ2, the con-
tribution of the term (τ2ω j + 1) becomes significant. This causes the slope to decrease
by an additional 20 dB/decade, to produce a net slope of −40 dB/decade for ω > 1/τ2.
The rest of the plot can be sketched as before. The result is shown in Figure 8.2.2 (upper
plot) for k = 1. The phase angle plot shown in Figure 8.2.2 (lower plot) is produced in
a similar manner by using (8.2.13). Note that if k > 0, � (1/k) = 0◦.

TWO COMPLEX ROOTS

We now consider the underdamped case of a second-order system that has two complex
roots.
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Figure 8.2.2 Semilog plots
of log magnitude ratio and
phase angle of the model
1/(τ1s + 1)(τ2s + 1).

–80

–60

–40

–20

0

log �
m

 (
dB

)

–180

–135

–90

–45

0

�
 (

de
gr

ee
s)

� = 1/�1 � = 1/�2

log �
� = 1/�1 � = 1/�2

EXAMPLE 8.2.1 Response with Two Complex Roots

■ Problem
The model of a certain system is

6ẍ + 12ẋ + 174x = 15 f (t)

a. Obtain its steady-state response for f (t) = 5 sin 7t .
b. Obtain the expressions for m(ω) and φ(ω).

■ Solution
a. The system’s transfer function is

T (s) = X (s)

F(s)
= 15

6s2 + 12s + 174

Substitute s = 7 j .

T (7 j) = 15

−6(7)2 + 12(7 j) + 174
= 15

−120 + 84 j

Then

M = |T (7 j)| = 15√
(120)2 + (84)2

= 0.1024

The phase angle is

φ = � T (7 j) = � (15) − � (−120 + 84 j) = 0◦ − � (−120 + 84 j)

Noting that � (−120 + 84 j) is in the second quadrant, we obtain

φ = −
[
π + tan−1

(−84

120

)]
= −2.531 rad

Thus the steady-state response is

xss(t) = 5M sin(7t + φ) = 0.512 sin(7t − 2.531)
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Figure 8.2.3 Semilog plots
of log magnitude ratio and
phase angle of the model
15/(6s2 + 12s + 174).

b. Replacing s with jω gives

T ( jω) = 15

−6ω2 + 12ω j + 174

Thus,

M(ω) = 15√
(174 − 6ω2)2 + 144ω2

and

m(ω) = 20 log 15 − 10 log
[(

174 − 6ω2
)2 + 144ω2

]
φ(ω) = � (15) − �

[(
174 − 6ω2

) + 12ω j
]

=

⎧⎪⎨
⎪⎩

− tan−1 12ω

174 − 6ω2
if 174 − 6ω2 > 0

tan−1 12ω

6ω2 − 174
− 180◦ if 174 − 6ω2 < 0

The plots are shown in Figure 8.2.3.

If the transfer function
X (s)

F(s)
= 1

ms2 + cs + k

has complex conjugate roots, it can be expressed as form 4 in Table 8.2.1 as follows:

T (s) = k X (s)

F(s)
= 1

(m/k)s2 + (c/k)s + 1
= 1

(s/ωn)2 + 2ζ(s/ωn) + 1

where we have defined ωn = √
k/m and ζ = c/2

√
mk, which is called the damping

ratio. The roots can be expressed in terms of these parameters as

s = −ζωn ± jωn

√
1 − ζ 2
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The roots are complex if ζ < 1. Thus T (s) becomes

T (s) = k X (s)

F(s)
= ω2

n

s2 + 2ζωns + ω2
n

(8.2.14)

For most applications of interest here, the quadratic factor given by form 4 in
Table 8.2.1 occurs in the denominator; therefore, we will develop the results assuming
this will be the case. If a quadratic factor is found in the numerator, its values of m(ω)

and φ(ω) are the negative of those to be derived next.
Replacing s with jω gives

T ( jω) = 1

( jω/ωn)2 + (2ζ/ωn) jω + 1
= 1

1 − (ω/ωn)2 + (2ζω/ωn) j
(8.2.15)

To simplify the following expressions, define the following frequency ratio:

r = ω

ωn
(8.2.16)

Thus the transfer function can be expressed as

T (r) = 1

1 − r2 + 2ζr j
(8.2.17)

The magnitude ratio is

M = 1

|1 − r2 + 2ζr j | = 1√
(1 − r2)2 + (2ζr)2

(8.2.18)

The log magnitude ratio is

m = 20 log
∣∣∣∣ 1

1 − r2 + 2ζr j

∣∣∣∣
= −20 log

√
(1 − r2)2 + (2ζr)2

= −10 log
[
(1 − r2)2 + (2ζr)2] (8.2.19)

The asymptotic approximations are as follows. For r � 1 (that is, for ω � ωn),
m ≈ −20 log 1 = 0. For r 	 1 (that is, for ω 	 ωn),

m ≈ −20 log
√

r4 + 4ζ 2r2

≈ −20 log
√

r4

= −40 log r

Thus, at low frequencies where ω � ωn , the curve is horizontal at m = 0, while for high
frequencies ω 	 ωn where r 	 1, the curve has a slope of −40 dB/decade, just as in the
overdamped case (Figure 8.2.4a). The high-frequency and low-frequency asymptotes
intersect at the corner frequency ω = ωn .

The phase angle plot can be obtained in a similar manner (Figure 8.4.2b). From
the additive property for angles, we see that for (8.2.17),

φ = −� (1 − r2 + 2ζr j)

Thus

φ = − tan−1
(

2ζr

1 − r2

)



palm-38591 book December 17, 2008 12:24

8.2 Frequency Response of Higher-Order Systems 439

10–1 100 101
–40

–30

–20

–10

0

10

20

30
� = 0.01

� = 0.1

� = 0.5

� = 0.7

� = 1

�/�n

m
 (

dB
)

(a)

–180

–135

–90

–45

0
� = 0.01

� = 0.1

� = 0.5

� = 0.7

� = 1

�
 (

de
gr

ee
s)

10–1 100 101

�/�n

(b)

Figure 8.2.4 Semilog plots
of log magnitude ratio and
phase angle of the model
ω

2
n/(s2 + 2ζωn s + ω

2
n ).

where φ is in the third or fourth quadrant. For r � 1, φ ≈ 0◦. For r 	 1, φ ≈ −180◦.
At ω = ωn, φ = −90◦ independently of ζ . The curve is skew-symmetric about the
inflection point at φ = −90◦ for all values of ζ .

RESONANCE

The complex roots case differs from the real roots case in the vicinity of the corner
frequency. To see this, note that M given by (8.2.18) has a maximum value when the



palm-38591 book December 17, 2008 12:24

440 CHAPTER 8 System Analysis in the Frequency Domain

denominator has a minimum. Setting the derivative of the denominator with respect to r
equal to zero shows that the maximum M occurs at r = √

1 − 2ζ 2, which corresponds
to the frequency ω = ωn

√
1 − 2ζ 2. This frequency is the resonant frequency ωr .

The peak of M exists only when the term under the radical is positive; that is, when
ζ ≤ 0.707. Thus, the resonant frequency is given by

ωr = ωn

√
1 − 2ζ 2 0 ≤ ζ ≤ 0.707 (8.2.20)

The peak, or resonant, value of M , denoted by Mr , is found by substituting
r = √

1 − 2ζ 2 into the expression (8.2.18) for M . This gives

Mr = 1

2ζ
√

1 − ζ 2
0 ≤ ζ ≤ 0.707 (8.2.21)

If ζ > 0.707, no peak exists, and the maximum value of M occurs at ω = 0 where
M = 1. Note that as ζ → 0, ωr → ωn , and Mr → ∞. For an undamped system, the
roots are purely imaginary, ζ = 0, and the resonant frequency is the natural frequency
ωn . These formulas are summarized in Table 8.2.2.

Resonance occurs when the input frequency is close to the resonant frequency of
the system. If the damping is small, the output amplitude will continue to increase
until either the linear model is no longer accurate or the system fails. When φ is near
−90◦; the velocity ẋ is in phase with the input. This causes the large amplitude. Circuit
designers take advantage of resonance by designing amplification circuits whose natural
frequency is close to the frequency of a signal they want to amplify (such as the signal
from a radio station). Designers of structural systems and suspensions try to avoid
resonance because of the damage or discomfort that large motions can produce.

In Figure 8.2.4a, the correction to the asymptotic approximations in the vicinity of
the corner frequency depends on the value of ζ . The peak value in decibels is

mr = 20 log Mr = −20 log
(
2ζ

√
1 − ζ 2

)
(8.2.22)

At the resonant frequency ωr , the phase angle is

φ|
r=

√
1−2ζ 2 = − tan−1

√
1 − 2ζ 2

ζ
(8.2.23)

When r = 1 (at ω = ωn),

m|r=1 = −20 log 2ζ (8.2.24)

Once you understand how each of the forms shown in Table 8.2.1 contributes to
the magnitude and phase plots, you can quickly determine the effects of each term in a
more complicated transfer function.

Table 8.2.2 Frequency response of a second-order system.

Model: T (s) = ω2
n

s2 + 2ζωns + ω2
n

Resonant frequency: ωr = ωn

√
1 − 2ζ 2 0 ≤ ζ ≤ 0.707

Resonant response: Mr = 1

2ζ
√

1 − ζ 2
0 ≤ ζ ≤ 0.707

mr = −20 log
(

2ζ
√

1 − ζ 2
)

0 ≤ ζ ≤ 0.707

φr = −tan−1

√
1 − 2ζ 2

ζ
0 ≤ ζ ≤ 0.707
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A Fourth-Order Model EXAMPLE 8.2.2

■ Problem
Determine the effect of the parameter τ of the magnitude plot of the following transfer function.
Assume that time is measured in seconds.

T (s) = τ s + 1

s4 + 40.8s3 + 8337s2 + 4.1184 × 104 + 5.184 × 105

Is it possible to choose a value for τ to increase the gain at low frequencies?

■ Solution
First determine the roots of the denominator. They are

s = −2.4 ± 7.632 j −18 ± 88.10 j

For the first root pair,

ζ = cos

[
tan−1

(
7.632

2.4

)]
= 0.3 ωn =

√
2.42 + 7.6322 = 8

Similarly, for the second pair,

ζ = cos

[
tan−1

(
88.1

18

)]
= 0.2 ωn =

√
182 + 88.12 = 90

Thus, T (s) can be expressed in factored form as

T (s) = τ s + 1

(s2 + 4.8s + 64)(s2 + 36s + 8100)

The model has two resonant frequencies corresponding to the two root pairs. These frequencies
are

ωr1 = ωn

√
1 − 2ζ 2 = 8

√
1 − 0.18 = 7.24 rad/s

ωr2 = ωn

√
1 − 2ζ 2 = 90

√
1 − 0.08 = 86.3 rad/s

Because ζ is small for each factor, we can expect a resonant peak at these frequencies. However,
we cannot use the formula (8.2.22) to calculate mr at each peak because it applies only to a
second-order system. Each quadratic term contributes −40 dB/decade to the composite slope
at high frequencies. The numerator term contributes a slope of +20 dB/decade at frequencies
above 1/τ . So the composite curve will have a slope of 20 − 2(40) = −60 dB/decade at high
frequencies.

The numerator term causes the m curve to break upward at ω = 1/τ . If 1/τ is less than
ωr1 , the m curve will break upward before the −40 dB/decade slope of the first quadratic term
takes effect. Figure 8.2.5 shows the m plot for three cases, including the case where τ = 1.25,
which corresponds to a corner frequency of ω = 1/τ = 0.8. As compared with the case
having no numerator dynamics (τ = 0), the choice of τ = 1.25 can be seen to raise the
magnitude. For example, at ω = 7.24 rad/s, the resonant peaks for the two cases are −109 dB
(M = 3.55 × 10−6) for τ = 0, and −89.6 (M = 3.31 × 10−5) for τ = 1.25. The amplitude
ratio is 3.31 × 10−5/3.55 × 10−6 = 9.34 times larger for τ = 1.25.

Using a value of 1/τ that is larger than the smallest resonant frequency will not increase the
amplitude ratio because the −40 dB/decade slope from the first quadratic term will take effect
before the +20 dB/decade slope of the numerator term makes its contribution. An example of
this is shown in Figure 8.2.5 for τ = 0.0125 s, which corresponds to a corner frequency of
1/τ = 80 rad/s.
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Figure 8.2.5 Log magnitude
ratio plot of a fourth-order
model.
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8.3 FREQUENCY RESPONSE EXAMPLES
In this section we present more examples illustrating the concepts and applications of
frequency response.

THE NEUTRALLY STABLE CASE

While all real systems will have some damping, it is instructive and useful to obtain some
results for the undamped case, where c = ζ = 0. This is because the mathematical
results for the undamped case are more easily derived and analyzed, and they give
insight into the behavior of many real systems that have a small amount of damping.

If the model is stable, the free response term disappears in time. The results derived
in Section 8.2 therefore must be reexamined for the case where there is no damping
because this is not a stable case (it is neutrally stable). In this case, the magnitude
and phase angle of the transfer function do not give the entire steady-state response.
The free response for the undamped equation mẍ + kx = F sin ωt is found with the
Laplace transform as follows:

(ms2 + k)X free(s) − mẋ(0) − msx(0) = 0

X free(s) = mẋ(0) + msx(0)

ms2 + k
= ẋ(0) + sx(0)

s2 + ω2
n

Thus,

xfree(t) = ẋ(0)

ωn
sin ωnt + x(0) cos ωnt

The forced response is found as follows:

(ms2 + k)X forced(s) = Fω

s2 + ω2

X forced(s) = 1

m

Fω(
s2 + ω2

n

)
(s2 + ω2)
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Assuming that ω �= ωn , the partial fraction expansion is

X forced(s) = Fω

m
(
ω2 − ω2

n

) (
ωn

s2 + ω2
n

− ωn

ω

ω

s2 + ω2

)

Thus the forced response is

xforced(t) = Fω

m
(
ω2 − ω2

n

) (
sin ωnt − ωn

ω
sin ωt

)

or, with r = ω/ωn ,

xforced(t) = − Fr

k(1 − r2)
sin ωnt + F

k(1 − r2)
sin ωt

Thus the total response is

x(t) =
[

ẋ(0)

ωn
− F

k

r

1 − r2

]
sin ωnt + x(0) cos ωnt + F

k

1

1 − r2
sin ωt (8.3.1)

There is no transient response here; the entire solution is the steady-state response.

BEATING

We may examine the effects of the forcing function independently of the effects of
the initial conditions by setting x(0) = ẋ(0) = 0 in (8.3.1). The result is the forced
response:

x(t) = F

k

1

1 − r2
(sin ωt − r sin ωnt) (8.3.2)

When the forcing frequency ω is substantially different than the natural frequency
ωn , the forced response looks somewhat like Figure 8.3.1 and consists of a higher-
frequency oscillation superimposed on a lower-frequency oscillation.
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Figure 8.3.1 Response
when the forcing frequency is
substantially different from
the natural frequency.
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If the forcing frequency ω is close to the natural frequency ωn , then r ≈ 1 and the
forced response (8.3.2) can be expressed as follows:

x(t) = F

k

1

1 − r2
(sin ωt − sin ωnt) = F

m

1

ω2
n − ω2

(sin ωt − sin ωnt)

Using the identity

2 sin
1

2
(A − B) cos

1

2
(A + B) = sin A − sin B

we see that

2 sin
ω − ωn

2
t cos

ω + ωn

2
t = sin ωt − sin ωnt

Thus the forced response is given by

x(t) =
(

2F

m

1

ω2
n − ω2

sin
ω − ωn

2
t
)

cos
ω + ωn

2
t (8.3.3)

This can be interpreted as a cosine with a frequency (ω + ωn)/2 and a time-varying
amplitude of

2F

m

1

ω2
n − ω2

sin
ω − ωn

2
t

The amplitude varies sinusoidally with the frequency (ω − ωn)/2, which is lower than
the frequency of the cosine. The response thus looks like Figure 8.3.2. This behavior,
in which the amplitude increases and decreases periodically, is called beating. The beat
period is the time between the occurrence of zeros in x(t) and thus is given by the
half-period of the sine wave, which is 2π/|ω − ωn|. The vibration period is the period
of the cosine wave, 4π/(ω + ωn).

Figure 8.3.2 Beating
response when the forcing
frequency is close to the
natural frequency.

0 5 10 15 20 25 30 35 40 45 50
–3

–2

–1

0

1

2

3

t

x(
t)



palm-38591 book December 17, 2008 12:24

8.3 Frequency Response Examples 445

RESPONSE AT RESONANCE

Equation (8.2.18) shows that when ζ = 0 the amplitude of the steady-state response
becomes infinite when r = 1; that is, when the forcing frequency ω equals the natural
frequency ωn . The phase shift φ is exactly −90 degrees at this frequency.

To obtain the expression for x(t) at resonance, we use (8.3.2) to compute the limit
of x(t) as r → 1 after replacing ω in x(t) using the relation ω = ωnr . We must use
l’Hôpital’s rule to compute the limit.

x(t) = lim
r→1

F

k

1

1 − r2
(sin ωnr t − r sin ωnt)

= F

k
lim
r→1

d(sin ωnr t − r sin ωnt)/dr

d(1 − r2)/dr

= F

k
lim
r→1

ωnt cos ωnr t − sin ωnt

−2r

= Fωn

2k

(
sin ωnt

ωn
− t cos ωnt

)
(8.3.4)

The plot is shown in Figure 8.3.3 for the case m = 4, c = 0, k = 36, and F = 10.
The amplitude increases linearly with time. The behavior for lightly damped systems
is similar except that the amplitude does not become infinite. Figure 8.3.4 shows the
damped case: m = 4, c = 4, k = 36, and F = 10.

For large amplitudes, the linear model on which this analysis is based will no
longer be accurate. In addition, all physical systems have some damping, so c will
never be exactly zero, and the response amplitude will never be infinite. The important
point, however, is that the amplitude might be large enough to damage the system or
cause some other undesirable result. At resonance the output amplitude will continue
to increase until either the linear model is no longer accurate or the system fails.
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Figure 8.3.3 Response near
resonance for an undamped
system.
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RESONANCE AND TRANSIENT RESPONSE

Although the analysis in Section 8.2 was a steady-state analysis and assumed that the
forcing frequency ω is constant, resonance can still occur in transient processes if the
input varies slowly enough to allow the steady-state response to begin to appear. For ex-
ample, resonance can be a problem even if a machine’s operating speed is well above its
resonant frequency, because the machine’s speed must pass through the resonant fre-
quency at startup. If the machine’s speed does not pass through the resonant frequency
quickly enough, high amplitude oscillations will result. Figure 8.3.5 shows the transient
response of the model

4ẍ + 3ẋ + 100x = 295 sin[ω(t)t]

Figure 8.3.4 Response near
resonance for a damped
system.
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Figure 8.3.5 Transient
response when an increasing
forcing frequency passes
through the resonant
frequency.
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where the frequency ω(t) increases linearly with time, as ω(t) = 0.7t . Thus the
frequency passes through the resonant frequency of this model, which is ωr = 4.97, at
t = 7.1 s. The plot shows the large oscillations that occur as the input frequency passes
close to the resonant frequency.

BASE MOTION AND TRANSMISSIBILITY

Figure 8.3.6 Base excitation.

x

y

k

m

c

Machine

Base

The motion of the mass shown in Figure 8.3.6 is produced by the motion y(t) of
the base. This system is a model of many common displacement isolation systems.
Assuming that the mass displacement x is measured from the rest position of the mass
when y = 0, the weight mg is canceled by the static spring force. The force transmitted
to the mass by the spring and damper is denoted ft and is given by

ft = c(ẏ − ẋ) + k(y − x) (8.3.5)

This gives the following equation of motion:

mẍ = ft = c(ẏ − ẋ) + k(y − x)

or

mẍ + cẋ + kx = cẏ + ky (8.3.6)

The transfer function is
X (s)

Y (s)
= cs + k

ms2 + cs + k
(8.3.7)

This transfer function is called the displacement transmissibility and can be used to
analyze the effects of the base motion y(t) on x(t), the motion of the mass. Notice that
this transfer function has numerator dynamics, so its frequency response plots will be
different than those of the transfer function 1/(ms2 + cs + k), which was studied in
Section 8.2.

From (8.3.5)

Ft(s) = (cs + k) [Y (s) − X (s)] (8.3.8)

Substituting for X (s) from (8.3.7) gives

Ft(s) = (cs + k)

[
Y (s) − cs + k

ms2 + cs + k
Y (s)

]
= (cs + k)

ms2

ms2 + cs + k
Y (s)

Thus, the second desired ratio is

Ft(s)

Y (s)
= (cs + k)

ms2

ms2 + cs + k
(8.3.9)

Figure 8.3.7 Single-mass
suspension model.
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This is the ratio of the transmitted force to the base motion. It is customary to use
instead the ratio Ft(s)/kY (s), which is a dimensionless quantity representing how the
base displacement y affects the force transmitted to the mass. Thus,

Ft(s)

kY (s)
= cs + k

k

ms2

ms2 + cs + k
(8.3.10)

The ratio Ft(s)/kY (s) is called the force transmissibility. It can be used to compute the
transmitted force ft(t) that results from a specified base motion y(t).

An example of base excitation occurs when a car drives over a rough road.
Figure 8.3.7 shows a quarter-car representation, where the stiffness k is the series
combination of the tire and suspension stiffnesses. The equation of motion is given by
(8.3.6). Although road surfaces are not truly sinusoidal in shape, we can nevertheless
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use a sinusoidal profile to obtain an approximate evaluation of the performance of the
suspension at various speeds.

EXAMPLE 8.3.1 Vehicle Suspension Response

■ Problem
Suppose the road profile is given (in feet) by y(t) = 0.05 sin ωt , where the amplitude of variation
of the road surface is 0.05 ft and the frequency ω depends on the vehicle’s speed and the road
profile’s period. Suppose the period of the road surface is 30 ft. Compute the steady-state motion
amplitude and the force transmitted to the chassis, for a car traveling at a speed of 30 mi/hr. The
car weighs 3200 lb. The effective stiffness, which is a series combination of the tire stiffness and
the suspension stiffness, is k = 3000 lb/ft. The damping is c = 300 lb-sec/ft.

■ Solution
For a period of 30 ft and a vehicle speed of 30 mi/hr, the frequency ω is

ω =
(

5280

30

)(
1

3600

)
(2π)30 = 9.215 rad/sec

For the car weighing 3200 lb, the quarter-car mass is m = 800/32.2 slug. From (8.3.7) with
s = jω = 9.215 j ,

|X |
|Y | =

√
k2 + (cω)2√

(k − mω2)2 + (cω)2
= 1.405

Thus the displacement amplitude is |X | = 0.05(1.405) = 0.07 ft.
The transmitted force is obtained from (8.3.9).

|Ft |
|Y | =

√
k2 + (cω)2

mω2√
(k − mω2)2 + (cω)2

= 2960

Thus the magnitude of the transmitted force is |Ft | = 0.05(2960) = 148 lb.

ROTATING UNBALANCE

A common cause of sinusoidal forcing in machines is the unbalance that exists to some
extent in every rotating machine. The unbalance is caused by the fact that the center of
mass of the rotating part does not coincide with the center of rotation. Let m be the total
mass of the machine and let mu be the rotating mass causing the unbalance. Consider
the entire unbalanced mass mu to be lumped at its center of mass, a distance ε from the
center of rotation. This distance is the eccentricity. Figure 8.3.8a shows this situation.
The main mass is thus (m −mu) and is assumed to be constrained to allow only vertical
motion. The motion of the unbalanced mass mu will consist of the vector combination
of its motion relative to the main mass (m − mu) and the motion of the main mass. For
a constant speed of rotation ω, the rotation produces a radial acceleration of mu equal
to εω2. This causes a force to be exerted on the bearings at the center of rotation. This
force has a magnitude muεω

2 and is directed radially outward. The vertical component
of this rotating unbalance force is, from Figure 8.3.8b,

fr = muεω
2 sin ωt (8.3.11)
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Figure 8.3.8 (a) A machine
having rotating unbalance.
(b) Vector components of the
rotating unbalance force.

In many situations involving an unbalanced machine, we are interested in the force
that is transmitted to the base or foundation. The equation of motion of a mass-spring-
damper system, like that shown in Figure 8.3.8a, with an applied force fr (t) is

mẍ + cẋ + kx = fr (t) (8.3.12)

where x is the displacement of the mass from its rest position. The force transmitted to
the foundation is the sum of the spring and damper forces, and is given by

ft = kx + cẋ (8.3.13)

The force transmissibility of this system is the ratio Ft(s)/Fr (s), which represents the
ratio of the force ft transmitted to the foundation by the applied force fr . The most
common case of such an applied force is the rotating unbalance force. From (8.3.11),
we see that the amplitude Fr of the rotating unbalance force is

Fr = muεω
2 (8.3.14)

The transfer function of (8.3.12) is

X (s)

Fr (s)
= 1

ms2 + cs + k
(8.3.15)

From (8.3.13),

Ft(s) = (k + cs)X (s) (8.3.16)

Substituting X (s) from (8.3.15) into (8.3.16) gives the force transmissibility:

Ft(s)

Fr (s)
= k + cs

ms2 + cs + k
(8.3.17)

Foundation Force Due to Rotating Unbalance EXAMPLE 8.3.2

■ Problem
A system having a rotating unbalance, like that shown in Figure 8.3.8, has a total mass of
m = 20 kg, an unbalanced mass of mu = 0.05 kg, and an eccentricity of ε = 0.01 m. The
machine rotates at 1150 rpm. Its vibration isolator has a stiffness of k = 2 × 104 N/m. Compute
the force transmitted to the foundation if the isolator’s damping ratio is ζ = 0.5.
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■ Solution
First convert the machine’s speed to radians per second.

ω = 1150 rpm = 1150(2π)

60
= 120 rad/s

Then,

muεω
2 = 0.05(0.01)(120)2 = 7.25 N

Since the damping ratio is defined as

ζ = c

2
√

mk

the damping constant can be obtained from

c = 2ζ
√

mk = 632 N · s/m

We can calculate the amplitude of the steady-state transmitted force from (8.3.17).

|Ft | = |Fr |
∣∣∣∣ k + cω j

k − mω2 + cω j

∣∣∣∣ = muεω
2

√
k2 + (cω)2√

(k − mω2)2 + (cω)2
= 2 N

INSTRUMENT DESIGN

When no s term occurs in the numerator of a transfer function, its magnitude ratio
is small at high frequencies. On the other hand, introducing numerator dynamics can
produce a large magnitude ratio at high frequencies. This effect can be used to advantage
in instrument design, for example. The instrument shown in Figure 8.3.9 illustrates this
point. With proper selection of the natural frequency of the device, it can be used either as
a vibrometer to measure the amplitude of a sinusoidal input displacement z = Az sin ωt ,
or an accelerometer to measure the amplitude of the acceleration z̈ = −Azω

2 sin ωt .
When used to measure ground motion from an earthquake, for example, the instrument
is commonly referred to as a seismograph.

The model was obtained in Section 6.6 and is

T (s) = Y (s)

Z(s)
= −ms2

ms2 + cs + k
= −s2/ω2

n

s2/ω2
n + 2ζ s/ωn + 1

(8.3.18)

Figure 8.3.9
An accelerometer.
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where y(t) is the output displacement, which is measured from the voltage v(t). At
steady state, y(t) = Ay sin(ωt + φ).

The numerator N (s) = −s2/ω2
n gives the following contribution to the log mag-

nitude ratio:

20 log |N ( jω)| = 20 log

∣∣∣∣∣
(

jω

ωn

)2
∣∣∣∣∣ = 40 log

ω

ωn
(8.3.19)

This term contributes 0 dB to the net curve at the corner frequency ω = ωn , and it
increases the slope by 40 dB/decade over all frequencies. Thus, at low frequencies, the
slope of m(ω) corresponding to (8.3.18) is 40 dB/decade, and at high frequencies, the
slope is zero. The plot is sketched in Figure 8.3.10.

For the device to act like a vibrometer, this plot shows that the device’s natural
frequency ωn must be selected so that ω 	 ωn , where ω is the oscillation frequency of
the displacement to be measured. For ω 	 ωn ,

|T ( jω)| ≈ 40 log
ω

ωn
− 40 log

ω

ωn
= 0 dB

and thus Ay ≈ Az as desired. This is because the mass m cannot respond to high-
frequency input displacements. Its displacement x therefore remains approximately
constant, and the motion z directly indicates the motion y. To design a vibrometer
having specific characteristics, we must know the lower bound of the input displacement
frequency ω. The frequency ωn = √

k/m is then made much smaller than this bound by
selecting a large mass and a soft spring (small k). However, these choices are governed
by constraints on the allowable deflection. For example, a very soft spring will have a
large distance between the free length and the equilibrium positions.

An accelerometer can be obtained by using the lower end of the frequency range;
that is, selecting ωn 	 ω, or equivalently, for s near zero, (8.3.18) gives

T (s) ≈ − s2

ω2
n

= Y (s)

Z(s)
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Figure 8.3.10 Frequency
response of an accelerometer.
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or

Y (s) ≈ − 1

ω2
n

s2 Z(s)

The term s2 Z(s) represents the transform of z̈ so the output of the accelerometer is

Ay ≈ 1

ω2
n

|z̈| = ω2

ω2
n

Az

With ωn chosen large (using a small mass and a stiff spring), the input acceleration
amplitude ω2 Az can be determined from Ay .

PHYSICAL INTERPRETATION OF THE PHASE PLOT
Figure 8.3.11 Two-mass
suspension model.
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The phase angle plot can give useful information about the motion of the system relative
to the input, or the motion of the constituent masses relative to each other. Consider the
following two-mass suspension model analyzed in Example 4.5.9 and shown again in
Figure 8.3.11. The equations of motion are

m1 ẍ1 = c1(ẋ2 − ẋ1) + k1(x2 − x1)

m2 ẍ2 = −c1(ẋ2 − ẋ1) − k1(x2 − x1) + k2(y − x2)

We will use the following numerical values: m1 = 250 kg, m2 = 40 kg, k1 = 1.5 ×
104 N/m, k2 = 1.5 × 105 N/m, and c1 = 1917 N · s/m. The transfer functions for these
values are

X1(s)

Y (s)
= (0.2876s + 2.25)105

s4 + 55.6s3 + 4185s2 + 43.14 × 104s + 2.75 × 105

X2(s)

Y (s)
= (0.0375s2 + 0.2876s + 2.25)105

s4 + 55.6s3 + 4185s2 + 4.314 × 104s + 2.75 × 105

The frequency response plots (obtained with MATLAB, as described in Section 8.6) are
shown in Figure 8.3.12. Recall that the input frequency ω in rad/s depends on the period
P (in meters) of the road surface and on the vehicle speed v in m/s, as ω = 2πv/P .
The amplitude plot shows that the chassis amplitude is at most 10% greater than the
road motion at low frequencies, where M ≈ 1.1. At higher frequencies the chassis
motion is well isolated from the road motion because M < 0.5 at those frequencies.
On the other hand, the wheel amplitude is 50% greater than the road motion when
ω ≈ 50 rad/s.

The relative motion of the chassis, wheel, and road can be determined from the
phase plot. For example, at ω = 60, the wheel motion and the chassis motion lag behind
the road’s sinusoidal motion by 90◦ and 180◦, respectively. Thus at this frequency, the
chassis motion is in the opposite direction of the ground motion and it lags the wheel
motion by 90◦. Such information is useful to designers for understanding the suspension
behavior.
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Figure 8.3.12 Frequency
response of a two-mass
suspension model.

8.4 FILTERING PROPERTIES OF DYNAMIC SYSTEMS
We have seen how a low-pass filter responds more to sinusoidal inputs having low
frequencies. Similarly, a high-pass filter responds more to high-frequency inputs, while
a band-pass filter responds to inputs having a frequency in the midrange. While the term
“filter” is normally used to refer to electrical circuits, we may think of other system
types as filters. For example, a mass-spring-damper system having a large damping
ratio will act like a low-pass filter. If such a system represents a vehicle suspension, the
passenger compartment will undergo negligible motion when the vehicle moves with
high speed over closely spaced road surface variations.

It is useful to have a specific measure of the range of forcing frequencies to which
a system is especially responsive. This single measure may be used as a design speci-
fication. The most common such measure is the bandwidth. It is commonly defined as
the range of frequencies over which the power transmitted or dissipated by the system
is no less than one-half of the peak power. For many systems the power transmitted or
dissipated is proportional to M2, where M is the magnitude of the frequency transfer
function. For example, the power dissipated by a damper is proportional to the square
of the amplitude of the velocity difference across the damper endpoints.

Thus, the bandwidth is commonly defined as the range of frequencies (ω1, ω2) over
which

M2(ω1) ≤ M2
peak

2
≥ M2(ω2)

or, equivalently,

M(ω1) ≤ Mpeak√
2

≥ M(ω2) (8.4.1)

For this reason, the lower and upper bandwidth points are called the “half-power”
points.
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EXAMPLE 8.4.1 Bandwidth of a First-Order Model

■ Problem
Consider the model τ v̇ + v = f (t), for which

M = V

F
= 1√

1 + ω2τ 2

Obtain an expression for the bandwidth in terms of τ and interpret its significance.

■ Solution
The peak in M occurs at ω = 0 and is Mpeak = 1. Thus ω1 = 0 and ω2 is found from (8.4.1) as
follows:

Mpeak√
2

= 1√
2

= M(ω2) = 1√
1 + ω2

2τ
2

This gives ω2 = 1/τ . Thus the bandwidth of the model τ v̇+v = f (t) is the range of frequencies
(0, 1/τ).

Because a small time constant indicates a fast system, the bandwidth is another measure of
the speed of response. So the faster the system, the larger the bandwidth, and some engineers
describe a system’s response speed in terms of its bandwidth rather than in terms of its time
constant. However, for other models, the relation between the time constant and the bandwidth
is not always so simple, as we will see.

When expressed in decibel units, m = 20 log M , the bandwidth points are those
points on the m curve that lie 3 dB below the peak value of m (because 20 log(1/

√
2) =

−3 dB). For this reason, the bandwidth points are sometimes called the “3 dB” points.

EXAMPLE 8.4.2 Bandwidth of a Second-Order Model

■ Problem
Determine the expression for the bandwidth of the second-order model mẍ + cẋ + kx = f (t).

■ Solution
For this model, the amplitude ratio M = X/F is

M = 1

k

1√
(1 − r2)2 + (2ζr)2

(1)

where r = ω/ωn = ω
√

m/k. The peak value of M , denoted Mr , occurs when 0 ≤ ζ ≤ 0.707
and r =

√
1 − 2ζ 2, and is

Mr = 1

k

1

2ζ
√

1 − ζ 2

The value of r that makes M(ω) = Mr/
√

2 is found from

1

k

1√
(1 − r2)2 + (2ζr)2

= 1√
2

(
1

k

1

2ζ
√

1 − ζ 2

)

This can be solved for r by squaring both sides and rearranging to obtain

r4 + (
4ζ 2 − 2

)
r2 + 1 − 8ζ 2 + 8ζ 4 = 0
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The solution is

r =
√

1 − 2ζ 2 ± 2ζ
√

1 − ζ 2 (2)

If two positive, real solutions r1 and r2 of this equation exist, we can obtain the lower and upper
bandwidth frequencies from ω1 = r1ωn and ω2 = r2ωn . If one solution for r is imaginary and
the other solution is positive, the lower bandwidth frequency is ω1 = 0 and the upper frequency
ω2 is obtained from the positive solution. This occurs when ζ > 0.382. So, two half-power
points exist only if 0 ≤ ζ ≤ 0.382.

Figure 8.4.1 shows several cases that can occur with various other models. In
part (a) of the figure, the peak Mr is large enough so that Mr/

√
2 > M(0), and thus

the lower bandwidth frequency ω1 exists and is greater than zero. Such a system is
called a band-pass system. Part (b) shows the plot of a low-pass system, for which
M(0) > Mr/

√
2, so that ω1 = 0. This occurs for the model mẍ + cẋ + kx = f (t)

when ζ > 0.382. Part (c) shows a case where the upper bandwidth frequency is infinite.
Such a system is called a high-pass system because it responds more to high-frequency
inputs. Part (d) shows a magnitude ratio plot with two peaks. This can occur only with
a model of fourth or higher order. Depending on the exact shape of the plot, such a
system can have two bandwidths, one for each peak.

ALTERNATIVE DEFINITION OF BANDWIDTH

In the definition of bandwidth specified by (8.4.1), the power transmitted by an input
having a frequency outside the bandwidth is less than one-half the power transmitted by
an input whose frequency corresponds to Mpeak, assuming that both inputs have the same
amplitude. However, often the amplitudes of low-frequency forcing functions are larger
than those of high-frequency inputs, so the low-frequency inputs might account for more
power. Thus inputs whose frequencies lie below the lower bandwidth frequency ω1
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Figure 8.4.2 Two definitions
of bandwidth.
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may contribute significantly to the response, and cannot be neglected. Because of this,
a modified definition of bandwidth is sometimes used. With this alternative definition
of bandwidth, the lower bandwidth frequency ω1 is assumed to be zero and the upper
bandwidth frequency ω2 is defined to be that frequency at which the power is one-half
of the power at zero frequency (see Figure 8.4.2).

The two definitions give the same bandwidth for those systems whose peak value
of M is M(0). For some systems, however, this alternative definition of bandwidth
cannot be applied.1 For example, with the transfer function of a high-pass filter,

T (s) = τ s

τ s + 1

the value of M(0) is zero and thus M(0) is not the peak value of M . In fact, m(0) = −∞
(see Figure 8.1.9). On the other hand, the bandwidth definition (8.4.1) gives the filter
bandwidth to be 1/τ ≤ ω ≤ ∞, which is a useful and physically meaningful result.
Therefore, unless explicitly stated otherwise, we will use the bandwidth definition
specified by (8.4.1).

EARPHONE FREQUENCY RESPONSE AND HUMAN HEARING

The peak in the frequency response curve is not always used as a measure of system
performance. For example, earphones should be designed so that the magnitude ratio
is 1 (m = 0 dB) over the entire range of frequencies detectable by the human ear. This
range is normally from about 20 Hz to 20,000 Hz. Consequently, a measure of earphone
performance is the amount of deviation of its m curve from 0 dB over this frequency
range.

Often earphone response is considered acceptable if its m curve deviates from the
0 db line by no more than ±3 dB. Figure 8.4.3 shows an experimentally determined
frequency response curve of a particular earphone supplied with a handheld music
player. We see that the earphone amplifies signals in the 20–400 Hz and the 5,000–
8,000 Hz ranges, whereas it attenuates most signals above 9,000 Hz.

1The MATLAB function bandwidth uses this alternative definition and thus can give meaningless results.
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Figure 8.4.3 Frequency
response of an earphone.

Thus, this earphone distorts bass and treble tones but reproduces well tones in the
mid-range of frequencies.

Superposition and Forced Response EXAMPLE 8.4.3

■ Problem
The model of a series RC circuit is

RC v̇ + v = vs

Suppose the input voltage is the following sum of a constant and two sine waves.

vs(t) = 10 + 5 sin t + 3 sin 6t

Obtain the expression for the steady-state response if the time constant is τ = RC = 0.5 s.

■ Solution
The total forced response at steady state is the sum of the steady-state forced responses due to
each of the three terms in vs(t). For the constant term, 10, the steady-state response is v = 10.
The magnitude ratio and phase angle for this model are

M(ω) = 1√
1 + τ 2ω2

= 1√
1 + 0.25ω2

φ(ω) = − tan−1(τω) = − tan−1(0.5ω)

For the input term 5 sin t , ω = 1, M(1) = 1/
√

1.25 = 2/
√

5, and φ(1) = − tan−1(0.5) =
−0.464 rad. For the input term 3 sin 6t , ω = 6, M(6) = 1/

√
10, and φ(6) = − tan−1(3) =

−1.25 rad. Thus the steady-state response is

vss(t) = 10 + 5M(1) sin[t + φ(1)] + 3M(6) sin[6t + φ(6)]

= 10 + 10√
5

sin(t − 0.464) + 3√
10

sin(6t − 1.25)

= 10 + 4.47 sin(t − 0.464) + 0.948 sin(6t − 1.25)
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Figure 8.4.4 Steady-state
response of 0.5v̇ + v =
10 + 5 sin t + 3 sin 6t .
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Note that the amplitude of the last sine term is much less than that of the first sine term, whose
amplitude is smaller than the constant term 10. The circuit does not filter the constant term at
all, filters the lower-frequency term somewhat, and heavily filters the higher frequency term.
Figure 8.4.4 shows the input and the response.

RESPONSE TO GENERAL PERIODIC INPUTS

The application of the sinusoidal input response is not limited to cases involving a
single sinusoidal input. A basic theorem of analysis states that under some assumptions,
which are generally satisfied in most practical applications, any periodic function can be
expressed by a constant term plus an infinite series of sines and cosines with increasing
frequencies. This theorem is the Fourier theorem, and its associated series is the Fourier
series. The series has the form

f (t) = a0

2
+ a1 cos

(
π t

p

)
+ a2 cos

(
2π t

p

)
+ · · ·

+ b1 sin
(

π t

p

)
+ b2 sin

(
2π t

p

)
+ · · · (8.4.2)

where f (t) is the periodic function and p is the half-period of f (t). The constants
ai and bi are determined by integration formulas applied to f (t). These formulas are
given in Appendix B.

We have seen in Example 8.4.3 how to determine the steady-state response of a
linear system when subjected to an input that is a constant, a sine, or a cosine. When the
input f (t) is periodic and expressed in the form of (8.4.2), the superposition principle
states that the complete steady-state response is the sum of the steady-state responses
due to each term in (8.4.2). Although this is an infinite series, in practice we have to
deal with only a few of its terms, because those terms whose frequencies lie outside the
system’s bandwidth can be neglected as a result of the filtering property of the system.



palm-38591 book December 17, 2008 12:24

8.4 Filtering Properties of Dynamic Systems 459

Response to Nonsinusoidal Inputs EXAMPLE 8.4.4

■ Problem
An engine valve train can be modeled as an equivalent mass, equivalent damping, and two
stiffnesses, one due to the valve spring and one due to the elasticity of the push rod (Figure 8.4.5).
The equation of motion is

Io

a2
ẍ + ce ẋ +

(
k1 + k2

a2

b2

)
x = a

b
k2 y(t)

The input displacement y(t) is determined by the shape and rotational speed of the cam.
Suppose the input is as shown in Figure 8.4.6a. Determine the steady-state response of the model
for the following parameter values:

ẍ + 20ẋ + 625x = 600y(t)

Valve
spring

Cam

Push rodValve

Rocker
arm

b
O

a

x

y

Figure 8.4.5 A valve system.
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Figure 8.4.6 (a) Half-sine
function. (b) Fourier series
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■ Solution
The transfer function is

T (s) = X (s)

Y (s)
= 600

s2 + 20s + 625
and

T ( jω) = 600

625 − ω2 + 20ω j

M(ω) = 600√(
625 − ω2

)2 + 400ω2

(1)

φ(ω) = − tan−1 20ω

625 − ω2
(2)

The Fourier series’ representation of y(t) can be determined from the formulas in
Appendix B, and is

y(t) = A0 + A1 sin ω1t + A2 cos ω2t + A3 cos ω3t + A4 cos ω4t + · · ·

= 0.02

[
1

π
+ 1

2
sin 2π t − 2

π

(
cos 4π t

1(3)
+ cos 8π t

3(5)
+ cos 12π t

5(7)
+ · · ·

)]
(3)

Figure 8.4.6b is a plot of equation (3) including only those series terms shown. The plot
illustrates how well the Fourier series represents the input function.

The steady-state response will have the form

x(t) = B0 + B1 sin(ω1t +φ1)+ B2 cos(ω2t +φ2)+ B3 cos(ω3t +φ3)+ B4 cos(ω4t +φ4)+· · ·
where

Bi = Ai Mi (4)

Note that the amplitudes Mi and phases φi of the response due to cosine inputs are computed
just as for a sine input.

Using equation (2) of Example 8.4.2, we obtain one positive solution, r = 1.187, and
one imaginary solution. Thus, the lower bandwidth frequency is 0, and the upper frequency is
ω2 = 1.187

√
625 = 29.7 rad/sec. Because the bandwidth is from 0 to 29.7 rad/sec, the only

series terms in y(t) lying within the bandwidth are the constant term (whose frequency is 0),
and the sin 2π t , cos 4π t , and cos 8π t terms, whose frequencies are 6.28, 12.6, and 25.1 rad/sec,
respectively. To demonstrate the filtering property of the system, however, we also compute the
effect of the first term lying outside the bandwidth. This is the cos 12π t term, whose frequency
is 37.7 rad/sec. The following table was computed using equations (1), (2), (3), and (4).

i ωi Ai Mi Bi φi

0 0 0.006366 0.96 0.006112 0
1 2π 0.01 1.001913 0.010019 −0.211411
2 4π −0.004244 1.1312 −0.004801 −0.493642
3 8π −0.000849 1.193557 −0.001013 −1.584035
4 12π −0.000364 0.547162 −0.000199 −2.383436

Using this table we can express the steady-state response as follows:

x(t) = 0.006112 + 0.010019 sin(2π t − 0.211411)

− 0.004801 cos(4π t − 0.493642) − 0.001013 cos(8π t − 1.584035)

− 0.000199 cos(12π t − 2.383436)
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Figure 8.4.7 Steady-state
response to a half-sine input.

The input and the response are plotted in Figure 8.4.7. The difference between the input and
output results from the resistive or lag effect of the system, not from the omission of the higher-
order terms in the series. To see this, note that A4 is 43% of A3 but B4 is only 20% of B3. The
decreasing amplitude of the higher-order terms in the series for y(t), when combined with the
filtering property of the system, enables us to truncate the series when the desired accuracy has
been achieved.

8.5 SYSTEM IDENTIFICATION FROM
FREQUENCY RESPONSE

In cases where a transfer function or differential equation model is difficult to derive
from general principles, or where the model’s coefficient values are unknown, often an
experimentally obtained frequency response plot can be used to determine the form of
an appropriate model and the values of the model’s coefficients.

TEST PROCEDURES

Often a sinusoidal input is easier to apply to a system than a step input, because many
devices, such as ac circuits and rotating machines, naturally produce a sinusoidal sig-
nal or motion. If a suitable apparatus can be devised to provide a sinusoidal input of
adjustable frequency, then the system’s output amplitude and phase shift relative to the
input can be measured for various input frequencies. When these data are plotted on
the logarithmic plot for a sufficient frequency range, the form of the model can often
be determined. This procedure is easiest for systems with electrical inputs and out-
puts, because for these systems, variable-frequency oscillators and frequency response
analyzers are commonly available. Some of these can automatically sweep through
a range of frequencies and plot the decibel and phase angle data. For nonelectrical
outputs, such as a displacement, a suitable transducer can be used to produce an elec-
trical measurement that can be analyzed.
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Another advantage of frequency response tests is that they can often be applied
to a system or process without interrupting its normal operations. A small-amplitude
sinusoidal test signal is superimposed on the operating inputs, and the sinusoidal com-
ponent of the output having the input’s frequency is subtracted from the output mea-
surements. Specialized computer algorithms and test equipment are available for this
purpose.

USE OF ASYMPTOTES AND CORNER FREQUENCIES

When using frequency response data for identification, it is important to understand
how to reconstruct a transfer function form from the asymptotes and corner frequencies.
The slopes of the asymptotes can be used to determine the orders of the numerator and
the denominator. The corner frequencies can be used to estimate time constants and
natural frequencies.

All real data will have some “scatter,” and thus a perfect model fit will not be
practical. However, to illustrate the methods clearly, in the following examples we use
data that have very little scatter, and thus the derived models are unambiguous.

EXAMPLE 8.5.1 Identifying a First-Order System

■ Problem
An input vs(t) = 5 sin ωt V was applied to a certain electrical system for various values of the
frequency ω, and the amplitude |vo| of the steady-state output was recorded. The data are shown
in the first two columns of the following table. Determine the transfer function.

ω (rad/s) |vo| (V) |vo|/5 20 log (|vo|/5)

1 10.95 2.19 6.81
2 10.67 2.13 6.57
3 10.3 2.06 6.28
4 9.84 1.97 5.89
5 9.33 1.87 5.44

6 8.80 1.76 4.91
7 8.28 1.66 4.40
8 7.782 1.56 3.86
9 7.31 1.46 3.29

10 6.87 1.37 2.73

15 5.18 1.04 0.34
20 4.09 0.82 −1.72
30 2.83 0.57 −4.88
40 2.16 0.43 −7.33
50 1.74 0.35 −9.12

60 1.45 0.29 −10.75
70 1.25 0.25 −12.04
80 1.10 0.22 −13.15
90 0.97 0.19 −14.43

100 0.88 0.18 −14.89

■ Solution
First divide the output amplitude |vo| by the amplitude of the input. The result is given in the third
column. This is the amplitude ratio M . Next convert this data to decibels using the conversion
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m = 20 log M . This is the fourth column. The plot of m versus ω is shown by the small circles
in Figure 8.5.1.

After drawing the asymptotes shown by the dashed lines, we first note that the data has a
low-frequency asymptote of zero slope, and a high-frequency asymptote of slope −20 dB/decade.

This suggests a model of the form

T (s) = K

τ s + 1

In decibel units,

m = 20 log K − 10 log(τ 2ω2 + 1)

The corner frequency ω = 1/τ occurs where m is 3 dB below the peak value of 6.81. From the
plot or the data we can see that the corner frequency is ω = 8 rad/s. Thus τ = 1/8 s.

At low frequencies, ω � 1/τ and m ≈ 20 log K . From the plot, at low frequency, m =
6.81 dB. Thus 6.81 = 20 log K , which gives

K = 106.81/20 = 2.19

Thus the estimated model is

Vo(s)

Vs(s)
= 2.19

1
8 s + 1

Another first-order model form is

Vo(s)

Vs(s)
= K

τ1s + 1

τ2s + 1

Because the high-frequency asymptote of this model has zero slope, it cannot describe the given
data.



palm-38591 book December 17, 2008 12:24

464 CHAPTER 8 System Analysis in the Frequency Domain

EXAMPLE 8.5.2 Identifying a Second-Order System

■ Problem
Measured response data are shown by the small circles in Figure 8.5.2. Determine the transfer
function.

■ Solution
After drawing the asymptotes shown by the dashed lines, we first note that the data have a low-
frequency asymptote of zero slope, and a high-frequency asymptote of slope −40 dB/decade.
This suggests a second-order model without numerator dynamics, either of the form having real
roots:

T (s) = K

(τ1s + 1)(τ2s + 1)

or the form having complex roots:

T (s) = K

s2 + 2ζωns + ω2
n

However, the peak in the data eliminates the form having real roots.
At low frequencies, m ≈ 20 log K . From the plot, at low frequencies, m = 75 dB. Thus

75 = 20 log K , which gives

K = 1075/20 = 5623

The peak is estimated to be 83 dB. From Table 8.2.1 the peak when K = 1 is given by
mr = −20 log(2ζ

√
1 − ζ 2). Thus with K = 5623 the formula for the peak becomes

mr = 20 log 5623 − 20 log
(

2ζ
√

1 − ζ 2
)

or

83 = 75 − 20 log
(

2ζ
√

1 − ζ 2
)

Figure 8.5.2 Frequency
response data for
Example 8.5.2.
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Thus,

log
(

2ζ
√

1 − ζ 2
)

= 75 − 83

20
= −0.4

and

2ζ
√

1 − ζ 2 = 10−0.4

Solve for ζ by squaring both sides.

4ζ 2
(
1 − ζ 2

) = 10−0.8

4ζ 4 − 4ζ 2 + 10−0.8 = 0

This gives ζ 2 = 0.9587 and 0.0413. The positive solutions are ζ = 0.98 and 0.2. Because there
is a resonance peak in the data, the first solution is not valid, and we obtain ζ = 0.2.

Knowing ζ , we can now estimate ωn from the peak frequency, which is estimated to be
ωr = 70 rad/s. Thus from Table 8.2.1, ωr = ωn

√
1 − 2ζ 2, or

70 = ωn

√
1 − 2(0.2)2

This gives ωn = 73 rad/s.
Thus, the estimated model is

T (s) = 5623

s2 + 29.2s + 5329

Application of the Phase Plot EXAMPLE 8.5.3

■ Problem
Consider the experimentally determined plots shown in Figure 8.5.3. Determine the forms of
the transfer function.
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Figure 8.5.3 Frequency
response data for
Example 8.5.3.
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■ Solution
At low frequencies both magnitude curves start at 0 dB and have zero slope. Therefore, the
numerator of both transfer functions is 1 at low frequencies. Both magnitudes drop by 3 dB near
ω = 8 rad/s, and both phase curves pass near −45◦ near ω = 8 rad/s. Thus, we conclude that
each transfer function has a denominator term τ s + 1 where τ = 1/8 s, approximately.

The high-frequency slope of curve B is −20 dB/decade, and thus we conclude that its
transfer function is

TB(s) = 1
1
8 s + 1

The high-frequency slope of curve A is steeper, and thus we conclude that its transfer
function has another denominator term that contributes to the slope at high frequencies. This is
more apparent in the phase plot, where φB becomes horizontal but φA appears to be heading
toward −180◦. Thus we suspect that its transfer function has the form

TA(s) = 1(
1
8 s + 1

)
(τ2s + 1)

but we cannot confirm this or determine the value of τ2 without data at frequencies higher than
102 rad/s.

8.6 FREQUENCY RESPONSE ANALYSIS
USING MATLAB

The logarithmic frequency response plots are sometimes called “Bode” plots, and are
named after H. W. Bode, who developed frequency response methods for electronic
circuit design. MATLAB provides the bode, bodemag, evalfr, and freresp
functions to compute and plot frequency response. These functions are available in the
Control Systems Toolbox.

THE bode FUNCTION

Thebode function generates frequency response plots. Thebodemag(sys) function
plots the magnitude only. The basic syntax of thebode function isbode(sys), where
sys is an LTI system model. Such a model can be created with thetf function or thess
function. In this basic syntax thebode function produces a screen plot of the logarithmic
magnitude ratio m and the phase angle φ versus ω. Note that the phase angle is plotted
in degrees, not radians. MATLAB uses the corner frequencies of the numerator and
denominator of the transfer function to automatically select an appropriate frequency
range for the plots. For example, to obtain the plots for the transfer function

T (s) = 70

3s2 + 4s + 192
(8.6.1)

the session is

	sys = tf(70,[3, 4, 192]);
	bode(sys)

Figure 8.6.1 shows the plots you will see on the screen.
If you created the LTI model from a state variable model that has more than one

input or more than one output, then the bode function will display a series of plots,
one pair for each input-output combination.
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Figure 8.6.1 Plots produced
with the MATLAB bode
function.

SPECIFYING THE FREQUENCY RANGE

To specify a set of frequencies rather than letting MATLAB select them, you can use
the syntax bode(sys,w), where w is a vector containing the desired frequencies. The
frequencies must be specified in radians per unit time (for example, radians/second).
For example, you might want to examine more closely the peak in the m curve near
the resonant frequency of (8.6.1). To see 401 regularly spaced points on the curve for
7 ≤ ω ≤ 9, the session is

	sys = tf(70,[3, 4, 192]);
	w = (7:0.005:9);
	bode(sys,w)

To obtain 401 points in the range 7 ≤ ω ≤ 9 that are logarithmically spaced, type
instead w = logspace(log10(7),log10(9),401).

If you want to specify just the lower and upper frequencies wmin and wmax, and
let MATLAB select the spacing, generate the vector w by typing w = {7, 9}.

A variation is the following: [mag, phase, w] = bode(sys). This form
returns the magnitude ratio M , the phase angle φ, and the frequencies ω in the arrays
mag, phase, and w, but does not display a plot. It is very important to note that the
array mag contains the ratio M , and not the logarithmic ratio m. Note also that the
array phase contains the phase angle in degrees, not radians. However, the vector w
contains the frequencies in radians per unit time. The frequencies in the vector w are
the frequencies automatically selected by MATLAB. If you want to use your own set
of frequencies, use the syntax: [mag, phase] = bode(sys,w). The extended
syntax of the bodemag function is similar.

These two forms are useful when you want to save the frequency response cal-
culations generated by the bode function. You can use the arrays mag, phase, and
w for further analysis, or to generate plots that you can format as you want. If you
do this note that the variables mag and phase are returned as 1 × 1 × n arrays. To
collapse the values into a 1 × n array suitable for plotting, type mag = mag(:) and
phase = phase(:).
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For example, to plot M versus ω for (8.6.1) using 401 regularly spaced points over
the range 7 ≤ ω ≤ 9, the session is

	sys = tf(70,[3, 4, 192]);
	w = (7:0.005:9);
	[mag] = bode(sys,w); mag = mag(:);
	plot(w,mag),xlabel('\omega (rad/sec)'),ylabel('M')

Note that the phase array need not be generated if you are not going to use it.
To plot the logarithmic magnitude ratio m versus log ω, using the frequencies

generated by MATLAB, the session is

	sys = tf(70,[3, 4, 192]);
	[mag, phase, w] = bode(sys); mag = mag(:);
	semilogx(w,20*log10(mag)),grid,...
	xlabel('\omega (rad/sec)'),ylabel('m (dB)')

Note that you must use the decibel conversion m = 20 log M .
Both the bodemag and the bode functions can be used to obtain the curves

for several transfer functions on the same plot by using the syntax bode(sys1,
sys2, ...) or bodemag(sys1, sys2, ...).

OBTAINING INFORMATION FROM THE PLOT

Once the plot is displayed on the screen, right-clicking on it brings up a menu. One
choice on the menu is “Characteristics.” Left-clicking on this choice brings up a sub-
menu, one of whose choices is “Peak Response.” When this is selected the peak of the
magnitude curve is identified with a dot, and the corresponding frequency is displayed.
Left-clicking on the curve enables you to trace the curve with the cursor while the
coordinates are displayed. With this method you can determine the bandwidth. For
the transfer function (8.6.1), with the plot covering the frequency range 7 ≤ ω ≤ 9,
the peak is found to be m = 6.83 dB at ω = 7.94 rad/sec, and the lower and upper
bandwidth frequencies are found to be 7.25 and 8.59 rad/sec.

THE evalfr FUNCTION

The evalfr function stands for “evaluation of frequency response.” It computes the
complex value of a transfer function at a specified value of s. For example, to compute
the value of T (s) given by (8.6.1) at s = 6 j , and find its magnitude and phase angle,
the session is

	fr = evalfr(sys,6j);
	mag = abs(fr);
	ang = angle(fr);

The results are fr = 0.7704 − 0.2201 j , mag = 0.8013, and phase = −0.2783 rad.

THE freqresp FUNCTION

The evalfr function can be used to evaluate sys at one frequency only. For
a vector of frequencies, use the freqresp function, whose syntax is fr =
freqresp(sys,w), where w is a vector of frequencies, which must be in
radians/unit time.
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The following MATLAB script file calculates the coefficients and phase angles of
the steady-state response described in Example 8.4.4.

sys1 = tf(600, [1, 20, 625]);
w = [0, 2*pi, 4*pi, 8*pi, 12*pi];
A = 0.02*[1/pi, 1/2, -2/(3*pi), -2/(3*5*pi), -2/(5*7*pi)];
fr = freqresp(sys1,w);
M = abs(fr);
B = A.*M(:)'
ph = angle(fr(:))

The results are shown in the table in Example 8.4.4.

8.7 CHAPTER REVIEW
The frequency response of a system describes its steady-state behavior resulting from
periodic inputs. This chapter demonstrates the usefulness of the transfer function for
understanding and analyzing a system’s frequency response.

A sinusoidal input applied to a stable linear system produces a steady-state sinu-
soidal output of the same frequency, but with a different amplitude and a phase shift.
The frequency transfer function is the transfer function with the Laplace variable s
replaced by jω, where ω is the input frequency. The magnitude M of the frequency
transfer function is the amplitude ratio between the input and output, and its argument
is the phase shift φ. Both are functions of ω and usually plotted against log ω, with M
expressed in decibels as m = 20 log M . The logarithmic plots can be sketched by using
low- and high-frequency asymptotes intersecting at the corner frequencies.

Most transfer functions consist of a combination of the following terms: K , s,
τ s +1, and s2 +2ζωns +ω2

n , so we analyzed the frequency response of each term. The
composite frequency response plot consists of the sum of the plots of the numerator
terms minus the sum of the plots of the denominator terms.

Important engineering applications of frequency response covered in this chapter
are an understanding of resonance and the design of isolators to minimize the trans-
mission of motion between a base and a machine or to minimize the effects of rotating
unbalance on a supporting structure.

The bandwidth measures the filtering property of the system. This concept can be
used with the Fourier series representation of a periodic function, which is an infinite
series, by eliminating those terms that lie outside the bandwidth. The truncated series
can be used to compute the response to a general periodic input.

The form of the transfer function and an estimate of the numerical values of the
parameters can often be obtained from experiments involving frequency response.

The MATLAB Control Systems toolbox provides the bode, bodemag, evalfr,
and freresp functions, which are useful for frequency response analysis.

Now that you have finished this chapter, you should be able to

1. Sketch frequency response plots using asymptotes, and use the plots or the
frequency transfer function to determine the steady-state output amplitude and
phase that results from a sinusoidal input.

2. Compute resonance frequencies and bandwidth.
3. Analyze vibration isolation systems and the effects of base motion and rotating

unbalance.
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4. Determine the steady-state response to a periodic input, given the Fourier series
description of the input.

5. Estimate the form of a transfer function and its parameter values, given frequency
response data.

6. Use MATLAB as an aid in the preceding tasks.

PROBLEMS
Section 8.1 Frequency Response of First-Order Systems

8.1 Use the following transfer functions to find the steady-state response yss(t) to
the given input function f (t).

a. T (s) = Y (s)

F(s)
= 25

14s + 18
, f (t) = 15 sin 1.5t

b. T (s) = Y (s)

F(s)
= 15s

3s + 4
, f (t) = 5 sin 2t

c. T (s) = Y (s)

F(s)
= s + 50

s + 150
, f (t) = 3 sin 100t

d. T (s) = Y (s)

F(s)
= 33

200

s + 100

s + 33
, f (t) = 8 sin 50t

8.2 Use asymptotic approximations to sketch the frequency response plots for the
following transfer functions.

a. T (s) = 15

6s + 2

b. T (s) = 9s

8s + 4

c. T (s) = 6
14s + 7

10s + 2
8.3 Figure P8.3 is a representation of the effects of the tide on a small body of water

connected to the ocean by a channel. Assume that the ocean height hi varies
sinusoidally with a period of 12 hr with an amplitude of 3 ft about a mean height
of 10 ft. If the observed amplitude of variation of h is 2 ft, determine the time
constant of the system and the time lag between a peak in hi and a peak in h.

Figure P8.3

h A
hi

R Ocean

8.4 A single-room building has four identical exterior walls, 5 m wide by 3 m high,
with a perfectly insulated roof and floor. The thermal resistance of the walls is
R = 4.5 × 10−3 K/W · m2. Taking the only significant thermal capacitance to be
the room air, obtain the expression for the steady-state room air temperature if
the outside air temperature varies sinusoidally about 15◦C with an amplitude of
5◦ and a period of 24 h. The specific heat and density of air at these conditions
are cp = 1004 J/kg · K and ρ = 1.289 kg/m3.
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8.5 For the rotational system shown in Figure P8.5, I = 2 kg · m2 and c = 4
N · m · s/rad. Obtain the transfer function �(s)/T (s), and derive the expression
for the steady-state speed ωss(t) if the applied torque in N · m is given by

T (t) = 30 + 5 sin 3t + 2 cos 5t

8.6 For the system shown in Figure P8.6, the bottom area is A = 4π ft2 and the
linear resistance is R = 1500 sec−1ft−1. Suppose the volume inflow rate is

qvi (t) = 0.2 + 0.1 sin 0.002t ft3/sec

Obtain the expression for the steady-state height hss(t). Compute the lag in
seconds between a peak in qvi (t) and a peak in hss(t).

Figure P8.5

I
c

T �

Figure P8.6

qvi

RA
h

8.7 For the circuit shown in Figure 8.1.11a, can values be found for R1, R2, and C
to make a low-pass filter? Prove your answer mathematically.

Section 8.2 Frequency Response of Higher-Order Systems

8.8 Use the following transfer functions to find the steady-state response yss(t) to
the given input function f (t).

a. T (s) = Y (s)

F(s)
= 10

(10s + 1)(4s + 1)
, f (t) = 10 sin 0.2t

b. T (s) = Y (s)

F(s)
= 1

2s2 + 20s + 200
, f (t) = 16 sin 5t

8.9 Use the following transfer functions to find the steady-state response yss(t) to
the given input function f (t).

a. T (s) = Y (s)

F(s)
= 8

s(s2 + 10s + 100)
, f (t) = 6 sin 9t

b. T (s) = Y (s)

F(s)
= 10

s2(s + 1)
, f (t) = 9 sin 2t

c. T (s) = Y (s)

F(s)
= s

(2s + 1)(5s + 1)
, f (t) = 9 sin 0.7t

d. T (s) = Y (s)

F(s)
= s2

(2s + 1)(5s + 1)
, f (t) = 9 sin 0.7t
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8.10 The model of a certain mass-spring-damper system is

10ẍ + cẋ + 20x = f (t)

Determine its resonant frequency ωr and its peak magnitude Mr if (a) ζ = 0.1
and (b) ζ = 0.3.

8.11 The model of a certain mass-spring-damper system is

10ẍ + cẋ + 20x = f (t)

How large must the damping constant c be so that the maximum steady-state
amplitude of x is no greater than 3, if the input is f (t) = 11 sin ωt , for an
arbitrary value of ω?

8.12 The model of a certain mass-spring-damper system is

13ẍ + 2ẋ + kx = 10 sin ωt

Determine the value of k required so that the maximum response occurs at
ω = 4 rad/sec. Obtain the steady-state response at that frequency.

8.13 Determine the resonant frequencies of the following models.

a. T (s) = 7

s(s2 + 6s + 58)

b. T (s) = 7

(3s2 + 18s + 174)(2s2 + 8s + 58)

8.14 For the circuit shown in Figure P8.14, L = 0.1 H, C = 10−6 F, and R = 100 �.
Obtain the transfer functions I3(s)/V1(s) and I3(s)/V2(s). Using asymptotic
approximations, sketch the m curves for each transfer function and discuss
how the circuit acts on each input voltage (does it act like a low-pass filter, a
high-pass filter, or other?).

Figure P8.14
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�

�

�

v1 v2

i1 i2

i3

R C

L
8.15 (a) For the system shown in Figure P8.15, m = 1 kg and k = 600 N/m. Derive

the expression for the peak amplitude ratio Mr and resonant frequency ωr , and
discuss the effect of the damping c on Mr and on ωr . (b) Extend the derivation
of the expressions for Mr and ωr to the case where the values of m, c, and k are
arbitrary.

Figure P8.15

c

k

m
x

y

8.16 For the RLC circuit shown in Figure P8.16, C = 10−5 F and L = 5 × 10−3 H.
Consider two cases: (a) R = 10 � and (b) R = 1000 �. Obtain the transfer
function Vo(s)/Vs(s) and the log magnitude plot for each case. Discuss how
the value of R affects the filtering characteristics of the system.

8.17 A model of a fluid clutch is shown in Figure P8.17. Using the values
I1 = I2 = 0.02 kg · m2, c1 = 0.04 N · m · s/rad, and c2 = 0.02 N · m · s/rad,
obtain the transfer function �2(s)/T1(s), and derive the expression for the

Figure P8.16
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�
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Figure P8.17
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steady-state speed ω2(t) if the applied torque in N · m is given by

T1(t) = 4 + 2 sin 1.5t + 0.9 sin 2t

Section 8.3 Frequency Response Examples

8.18 Determine the beat period and the vibration period of the model
3ẍ + 75x = 7 sin 5.2t

8.19 Resonance will produce large vibration amplitudes, which can lead to system
failure. For a system described by the model

ẍ + 64x = 0.2 sin ωt
where x is in feet, how long will it take before |x | exceeds 0.1 ft, if the forcing
frequency ω is close to the natural frequency?

8.20 A certain system having a rotating unbalance, like that shown in Figure 8.3.8,
has a total mass of m = 15 kg, an unbalanced mass of mu = 0.1 kg, and an
eccentricity of ε = 0.02 m. The machine rotates at 3400 rpm. Its vibration
isolator has a stiffness of k = 104 N/m. Compute the force transmitted to the
foundation if the isolator’s damping ratio is ζ = 0.707.

8.21 A device of mass m = 500 kg used for machining must not have an amplitude
of vibration greater than 2 mm due to the floor vibration caused by nearby
machinery. The isolation system has the values k = 5 × 105 N/m and
c = 1600 N · s/m (see Figure P8.21). What is the maximum amplitude of the
floor vibration that can be tolerated?

Figure P8.21

x

y

k

m

c

Machine

Base

8.22 The quarter-car weight of a certain vehicle is 625 lb and the weight of the
associated wheel and axle is 190 lb. The suspension stiffness is 8000 lb/ft and
the tire stiffness is 10,000 lb/ft. If the amplitude of variation of the road surface
is 0.25 ft with a period of 20 ft, determine the critical (resonant) speeds of this
vehicle.

8.23 A motor of mass 50 kg is supported at the end of a steel cantilever beam of length
2 m, width 0.3 m, and thickness 0.03 m. The rotating unbalance of the motor
is muε = 0.02 kg · m. Including the effect of the beam mass, determine the
steady-state amplitude of motion of the motor if the motor speed is 3400 rpm.

8.24 A motor of mass 50 kg is supported in the middle of the doubly clamped steel
beam of length 2 m. The rotating unbalance of the motor is muε = 0.02 kg · m
and the motor speed is 3400 rpm. Including the effect of the beam mass,
determine the required width and thickness of the beam so that the steady-state
amplitude of motion of the motor is no greater than 0.01 m.

8.25 A certain factory contains a heavy rotating machine that causes the factory floor
to vibrate. We want to operate another piece of equipment nearby and we
measure the amplitude of the floor’s motion at that point to be 0.01 m. The mass
of the equipment is 1500 kg and its support has a stiffness of k = 2 × 104 N/m
and a damping ratio of ζ = 0.04. Calculate the maximum force that will be
transmitted to the equipment at resonance.

8.26 An electronics module inside an aircraft must be mounted on an elastic pad to
protect it from vibration of the airframe. The largest amplitude vibration
produced by the airframe’s motion has a frequency of 40 cycles per second. The
module weighs 200 N, and its amplitude of motion is limited to 0.003 m
because of space. Neglect damping and calculate the percent of the airframe’s
motion transmitted to the module.
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8.27 An electronics module used to control a large crane must be isolated from the
crane’s motion. The module weighs 2 lb. (a) Design an isolator so that no more
than 10% of the crane’s motion amplitude is transmitted to the module. The
crane’s vibration frequency is 3000 rpm. (b) What percentage of the crane’s
motion will be transmitted to the module if the crane’s frequency can be
anywhere between 2500 and 3500 rpm?

8.28 A certain pump weighs 50 lb and has a rotating unbalance. The unbalanced
weight is 0.05 lb and has an eccentricity of 0.1 in. The pump rotates at
1000 rpm. Its vibration isolator has a stiffness of k = 500 lb/ft. Compute the
force transmitted to the foundation if the isolator’s damping ratio is (a) ζ = 0.05
and (b) ζ = 0.7.

8.29 To calculate the effects of rotating unbalance, we need to know the value of the
product muε, where m is the unbalanced mass and ε is the eccentricity. These
two quantities are sometimes difficult to calculate separately, but sometimes an
experiment can be performed to estimate the product muε. An experiment was
performed on a particular rotating machine whose mass is 75 kg. The machine’s
support has negligible damping and a stiffness of k = 2500 N/m. When the
machine operates at 200 rpm, the measured force transmitted to the foundation
was 15 N. Estimate the value of muε.

8.30 Design a vibrometer having a mass of 0.1 kg, to measure displacements having
a frequency near 200 Hz.

Section 8.4 Filtering Properties of Dynamic Systems

8.31 A certain mass is driven by base excitation through a spring (see Figure P8.31).
Its parameter values are m = 200 kg, c = 2000 N · s/m, and k = 2 × 104 N/m.
Determine its resonant frequency ωr , its resonance peak Mr , and its bandwidth.

Figure P8.31

c

k

m
x

yBase

8.32 A certain series RLC circuit has the following transfer function.

T (s) = I (s)

V (s)
= Cs

LCs2 + RCs + 1

Suppose that L = 300 H, R = 104 �, and C = 10−6 F. Find the bandwidth of
this system.

8.33 Obtain the expressions for the bandwidths of the two circuits shown in
Figure P8.33.

8.34 For the circuit shown in Figure P8.34, L = 0.1 H and C = 10−6 F. Investigate
the effect of the resistance R on the bandwidth, resonant frequency, and
resonant peak over the range 100 ≤ R ≤ 1000 �.

Figure P8.33
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Figure P8.35

8.35 The voltage shown in Figure P8.35 is produced by applying a sinusoidal voltage
to a full wave rectifier. The Fourier series approximation to this function is

vs(t) = 20

π
− 40

π

[
cos 240π t

1(3)
+ cos 480π t

3(5)
+ cos 720π t

5(7)
+ · · ·

]

Suppose this voltage is applied to a series RC circuit whose transfer function is

Vo(s)

Vs(s)
= 1

RCs + 1

where R = 600 � and C = 10−6 F. Keeping only those terms in the Fourier
series whose frequencies lie within the circuit’s bandwidth, obtain the
expression for the steady-state voltage vo(t).

8.36 The voltage shown in Figure P8.36 is called a square wave. The Fourier series
approximation to this function is

vs(t) = 5
[

1 + 4

π

(
sin 120π t

1
+ sin 360π t

3
+ sin 600π t

5
+ · · ·

)]

Suppose this voltage is applied to a series RC circuit whose transfer function is

Vo(s)

Vs(s)
= 1

RCs + 1

where R = 103 � and C = 10−6 F. Keeping only those terms in the Fourier
series whose frequencies lie within the circuit’s bandwidth, obtain the
expression for the steady-state voltage vo(t).

8.37 The displacement shown in Figure P8.37a is produced by the cam shown in
part (b) of the figure. The Fourier series approximation to this function is

y(t) = 1

20π

[
π − 2

(
sin 10π t

1
+ sin 20π t

2
+ sin 30π t

3
+ · · ·

)]
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Figure P8.36
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Figure P8.37

0 0.2 0.4 0.6
0

0.1

t (sec)

y
(t

) 
(m

)

(b)

For the values m = 1 kg, c = 98 N · s/m, and k = 4900 N/m, keeping only those
terms in the Fourier series whose frequencies lie within the system’s bandwidth,
obtain the expression for the steady-state displacement x(t).

8.38 Given the model

0.5ẏ + 5y = f (t)

with the following Fourier series representation of the input

f (t) = sin 4t + 4 sin 8t + 0.04 sin 12t + 0.06 sin 16t + · · ·
Find the steady-state response yss(t) by considering only those components of
the f (t) expansion that lie within the bandwidth of the system.
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8.39 A mass-spring-damper system is described by the model

mẍ + cẋ + kx = f (t)

where m = 0.25 slug, c = 2 lb-sec/ft, k = 25 lb/ft, and f (t) (lb) is the
externally applied force shown in Figure P8.39. The forcing function can be
expanded in a Fourier series as follows:

f (t) = −
(

sin 3t + 1

3
sin 9t + 1

5
sin 15t + 1

7
sin 21t + · · · + 1

n
sin 3nt ± · · ·

)
n odd

Find an approximate description of the output xss(t) at steady state, using only
those input components that lie within the bandwidth.

f (t)

t

�0.25�

0.33� 0.66� 0.99� 1.32�

0.25�

Figure P8.39

Section 8.5 System Identification from Frequency Response

8.40 An input vs(t) = 20 sin ωt V was applied to a certain electrical system for
various values of the frequency ω, and the amplitude |vo| of the steady-state
output was recorded. The data are shown in the following table. Determine the
transfer function Vo(s)/Vs(s).

ω (rad/s) |vo| (V)

0.1 5.48
0.2 5.34
0.3 5.15
0.4 4.92
0.5 4.67

0.6 4.40
0.7 4.14
0.8 3.89
0.9 3.67
1 3.20

1.5 2.59
2 2.05
3 1.42
4 1.08
5 0.87

6 0.73
7 0.63

8.41 An input f (t) = 15 sin ωt N was applied to a certain mechanical system for
various values of the frequency ω, and the amplitude |x | of the steady-state



palm-38591 book December 17, 2008 12:24

478 CHAPTER 8 System Analysis in the Frequency Domain

output was recorded. The data are shown in the following table. Determine the
transfer function X (s)/F(s).

ω (rad/s) |x| (mm)

0.1 209
0.4 52
0.7 28
1 19
2 7
4 2
6 1

8.42 The following data were taken by driving a machine on its support with a
rotating unbalance force at various frequencies. The machine’s mass is 50 kg,
but the stiffness and damping in the support are unknown. The frequency of the
driving force is f Hz. The measured steady-state displacement of the machine
is |x | mm. Estimate the stiffness and damping in the support.

f (Hz) |x| (mm) f (Hz) |x| (mm)

0.2 2 3.8 26
1 4 4 22
2 8 5 16
2.6 24 6 14
2.8 36 7 12
3 50 8 12
3.4 36 9 12
3.6 30 10 10

Section 8.6 Frequency Response Analysis Using MATLAB

8.43 For the system shown in Figure P8.43, m1 = m2, k1 = k2, and k1/m1 =
64 N/(m · kg). Obtain the transfer function X1(s)/Y (s) and its Bode plots.
Identify the resonant frequencies and bandwidth.

8.44 For the system shown in Figure P8.44, I1 = I2, cT1 = cT2 , cT1/I1 =
0.1 rad−1· s−1, and kT /I1 = 1 s−2. Obtain the transfer function �1(s)/(s)
and its Bode plots. Identify the resonant frequencies and bandwidth.

Figure P8.43
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x2 yx1

k1 k2

Figure P8.44
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8.45 A certain mass is driven by base excitation through a spring (see Figure P8.31).
Its parameter values are m = 50 kg, c = 200 N · s/m, and k = 5000 N/m.
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Determine its resonant frequency ωr , its resonance peak Mr , and the lower and
upper bandwidth frequencies.

8.46 The transfer functions for an armature-controlled dc motor with the speed as the
output are

�(s)

V (s)
= KT

(I s + c)(Ls + R) + Kb KT

�(s)

Td(s)
= − Ls + R

(I s + c)(Ls + R) + Kb KT

A certain motor has the following parameter values:

KT = 0.04 N · m/A Kb = 0.04 V · s/rad

c = 7 × 10−5 N · m · s/rad R = 0.6 �

L = 0.1 H Im = 2 × 10−5 kg · m2

IL = 4 × 10−5 kg · m2

where Im is the motor’s inertia and IL is the load inertia. Thus I = Im + IL .
Obtain the frequency response plots for both transfer functions. Determine the
bandwidth and resonance frequency, if any.

8.47 The transfer function of the speaker model derived in Chapter 6 is, for c = 0,

X (s)

V (s)
= K f

mLs3 + m Rs2 + (kL + K f Kb)s + k R

where x is the diaphragm’s displacement and v is the applied voltage. A certain
speaker has the following parameter values:

m = 0.002 kg k = 106 N/m

K f = 20 N/A Kb = 15 V · s/m

R = 10 � L = 10−3 H

Obtain the speaker’s frequency response plots. Determine the speaker’s
bandwidth and resonant frequency, if any.

8.48 The following is a two-mass model of a vehicle suspension.

m1 ẍ1 + c1 ẋ1 + k1x1 − c1 ẋ2 − k1x2 = 0

m2 ẍ2 + c1 ẋ2 + (k1 + k2)x2 − c1 ẋ1 − k1x1 = k2 y

Mass m1 is one-fourth the mass of the car body, and m2 is the mass of the
wheel-tire-axle assembly. Spring constant k1 represents the suspension’s
elasticity, and k2 represents the tire’s elasticity. The input is the road surface
displacement y. A certain vehicle has the following parameter values:

m1 = 250 kg k1 = 1.5 × 104 N/m

m2 = 40 kg k2 = 1.5 × 105 N/m

c1 = 1000 N · m/s c2 = 0

(a) Obtain the suspension’s frequency response plots. Determine the bandwidth
and resonant frequencies, if any. (b) If the road surface is approximately
sinusoidal with a period of 10 m, at what speeds will the car mass experience the
greatest oscillation amplitude?
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Obtain and interpret the free, step, ramp, and
impulse response of linear models.

2. Compute and use the time constant τ , the undamped
natural frequency ωn , and other parameters to
describe and assess system response.

3. Use time-domain response data to estimate
coefficient values in dynamic models.

4. Interpret and draw block diagrams, given a system’s
equations or transfer functions.

5. Use Simulink to simulate nonlinear systems and
systems with inputs more complicated than the
impulse, step, and ramp functions.

N ow that we have seen how to model the various types of physical systems
(mechanical, electrical, fluid, and thermal), it is appropriate at this point to pull
together our modeling knowledge and our analytical and computer solution

methods. The purpose of this chapter is to integrate this knowledge with emphasis on
understanding system behavior in the time domain, in particular, the transient response,
as opposed to the steady-state frequency response.

The forcing functions commonly used to model real inputs or to test a system’s
response in the time domain are the impulse, the step, and the ramp functions. The
impulse models a suddenly applied and suddenly removed input. The step function
models a suddenly applied input that remains constant. The ramp models an input that
is changing at a constant rate. In this chapter we will summarize the response of systems
subjected to these inputs.

480
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The transfer function and the characteristic polynomial are the principal tools for
analyzing linear system response, and so it is now appropriate to review these concepts.
Consider the following general form of a single, constant-coefficient, linear ordinary
differential equation:

an
dn y

dtn
+ an−1

dn−1 y

dtn−1
+ · · · + a1

dy

dt
+ a0 y

= bm
dm f

dtm
+ bm−1

dm−1 f

dtm−1
+ · · · + b1

d f

dt
+ b0 f

where an �= 0 and m ≤ n. The response (the output) is y(t), and f (t) is the forcing
function (the input). From the initial value properties of the Laplace transform, we
have L(ẏ) = sY (s) − y(0), L(ÿ) = s2Y (s) − sy(0) − ẏ(0), etc. In our applications, the
initial values (at t = 0) of the input f (t) and its derivatives are zero; thusL( ḟ ) = s F(s),
L( f̈ ) = s2 F(s), etc. Applying the Laplace transform to the differential equation
gives

Y (s) = I (s)

D(s)
+ (bmsm + bm−1sm−1 + · · · + b1s + b0)F(s)

D(s)

= Yfree(s) + Yforced(s)

where D(s) = ansn + an−1sn−1 + · · · + a1s + a0. The characteristic polynomial is the
polynomial D(s). The term I (s) contains the initial response values y(0), ẏ(0), . . . .

We see that the response is the sum of the free response, which is independent of
the input, and the forced response, which is independent of the initial values of y and
its derivatives. The system transfer function T (s) is given by T (s) = Yforced(s)/F(s);
that is,

T (s) = bmsm + bm−1sm−1 + · · · + b1s + b0

ansn + an−1sn−1 + · · · + a1s + a0

Sections 9.1 and 9.2 summarize the response of first- and second-order systems.
We review the concepts of the time constant τ and the undamped natural frequency
ωn . These parameters help to describe the speed and the oscillation characteristics of
the response. In Section 9.3 we will introduce additional parameters that are useful for
describing and for specifying the response.

Response prediction cannot be precisely made unless we have numerical values
for the model’s coefficients, and Section 9.4 shows how measurements of the response
as a function of time can be used to obtain such values.

Section 9.5 introduces block diagrams, which are based on the transfer function
concept. The block diagram is a way of representing the dynamics of a system in
graphical form. These diagrams will be used often in subsequent chapters to describe
dynamic systems, and they also assist in developing Simulink models. Section 9.6 gives
several examples of the application of block diagram models.

Section 9.7 shows how to use MATLAB to compute transient response characteris-
tics and to do block-diagram algebra. Finally, Section 9.8 introduces several Simulink
blocks that are useful for simulating nonlinear systems or systems with complicated
inputs. ■
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9.1 RESPONSE OF FIRST-ORDER SYSTEMS
We now summarize the response of first-order systems to step and ramp inputs. The
free response of a model is its solution in the absence of an input. We have seen that
the free response of the model

mv̇ + cv = f (t) (9.1.1)

is

v(t) = v(0)e−ct/m (9.1.2)

where v(0) is the initial value of the response v(t), and m and c are constants. When
c/m < 0 the solution grows exponentially; this is the unstable case. If c/m = 0, the
model is neutrally stable, and v(t) = v(0). If c/m is positive, the model is stable, and
the solution decays exponentially.

THE TIME CONSTANT

For the stable case, we introduced a new parameter τ with the definition

τ = m

c
(9.1.3)

The free response can be written as

v(t) = v(0)e−t/τ (9.1.4)

and is illustrated in Figure 9.1.1.
The new parameter τ has units of time and is the model’s time constant. It gives

a convenient measure of the exponential decay curve. After a time equal to one time
constant has elapsed, v has decayed to 37% of its initial value. We can also say that v

has decayed by 63%. At t = 4τ , v(t) has decayed to 2% of its initial value. At t = 5τ ,
v(t) has decayed to 1% of its initial value.

Figure 9.1.1 The free
response v(t) = v(0)e−t/τ .
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t

�
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Figure 9.1.2 First-
order systems having
the model form
a ẏ + by = f (t).
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c
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τ = m

c

(b)

I
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I
dω
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(c)
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R

C
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+ v = vs

τ = RC

(d)

h

qv

A R

AR
dh

dt
+ gh = Rqv

τ = AR

g

(e)

T
Tb

mcp R
dT

dt
+ T = Tb

τ = mcp R

Figure 9.1.2 shows some systems whose models have the same form as that of
(9.1.1); namely, a ẏ + by = f (t). This can be rewritten as

a

b
ẏ + y = 1

b
f (t)

In this form, the time constant may be identified as τ = a/b. This form can be used to
determine the time constant expressions for each of the systems shown in Figure 9.1.2.

STEP RESPONSE OF A FIRST-ORDER MODEL

The step response of the model mv̇ + cv = f is

v(t) = v(0)e−ct/m︸ ︷︷ ︸
Free response

+ F

c

(
1 − e−ct/m)

︸ ︷︷ ︸
Forced response

(9.1.5)

where F is the magnitude of the step input. Note that the response is the sum of the
free and the forced responses.
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Figure 9.1.3 The response
v(t) = F (1 − e−t/τ )/c .
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c

0
0 6�

v (t)

The time constant is useful also for analyzing the response when the forcing func-
tion is a step. We can express the solution in terms of the time constant τ by substituting
c/m = 1/τ to obtain

v(t) = v(0)e−t/τ + F

c

(
1 − e−t/τ ) = v(0)e−t/τ + vss

(
1 − e−t/τ ) (9.1.6)

where vss = F/c. The solution approaches the constant value F/c as t → ∞. This is
called the steady-state response, denoted vss .

The response is plotted in Figure 9.1.3 for v(0) = 0. At t = τ , the response is 63%
of the steady-state value. At t = 4τ , the response is 98% of the steady-state value, and
at t = 5τ , it is 99% of steady state. Thus, because the difference between 98% and 99%
is so small, for most engineering purposes we can say that v(t) reaches steady state at
t = 4τ , although mathematically, steady state is not reached until t = ∞.

If v(0) �= 0, the response is shifted by v(0)e−t/τ . At t = τ , 37% of the difference
between the initial value v(0) and the steady-state value remains. At t = 4τ , only 2%
of this difference remains.

Table 9.1.1 summarizes the response of the model mẏ + cy = r(t).

Table 9.1.1 Free, step, and ramp
response of τ ẏ + y = r (t).

Free response [r(t) = 0]
y(t) = y(0)e−t/τ

y(τ ) ≈ 0.37y(0)

y(4τ) ≈ 0.02y(0)

Step response [r(t) = Rus(t), y(0) = 0]
y(t) = R(1 − e−t/τ )

y(∞) = yss = R
y(τ ) ≈ 0.63yss

y(4τ) ≈ 0.98yss

Ramp response [r(t) = mt , y(0) = 0]
y(t) = m(t − τ + τe−t/τ )
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Figure 9.1.4 Step response
for two values of c .

RESPONSE TIME AND THE TIME CONSTANT

When using the time constant to compare the response times of two models subjected
to a step input, the comparison should be done only for systems whose steady-state
responses are identical. Note that because τ = m/c, a small value of the damping
constant c produces a large time constant, which indicates a sluggish system. The
result is counter to our intuition, which tells us that a small amount of damping should
correspond to a system with a fast response. This counterintuitive result is explained by
noting that a larger steady-state response F/c results from a smaller damping constant.
Thus, for a large value of c, even though the time constant is smaller, the steady-state
response is smaller, and thus it takes less time to reach a specific steady-state value.
This is illustrated in Figure 9.1.4 for v(0) = 0 with two values of c.

THE STEP FUNCTION APPROXIMATION

The step function is an approximate description of an input that can be switched on in
a time interval that is very short compared to the time constant of the system. A good
example of a step input is the voltage applied to a circuit due to the sudden closure of
a switch.

In some applications, however, it may not be clear whether a step function is a good
model of the input. For example, we might model rocket thrust as a step function if it
reaches a constant value quickly compared to the vehicle’s time constant. Solid-rocket
thrust as a function of time depends on the cross-sectional shape of the solid fuel. The
propellant grain shape called rod-and-tube was designed to give a constant thrust by
keeping the total burning area approximately constant. The step function is a good
model for this case if the time to reach constant thrust is short compared to the vehicle
time constant (Figure 9.1.5a). For a propellant grain having a tubular cross-section, the
fuel burns from the inside to the outside (Figure 9.1.5b). The increasing burning area
produces a thrust that increases with time. A step function usually would not be used
to model the thrust, unless we needed a quick, very approximate answer, in which case
we would take the average thrust as the step magnitude.
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Figure 9.1.5 Solid fuel rocket
thrust as a function of time.

Thrust

Time

Thrust

Time
Tubular

Rod-and-Tube

(a)

(b)

EXAMPLE 9.1.1 Speed Response of a Rotational System

■ Problem
A certain rotational system has an inertia I = 50 kg · m2 and a viscous damping constant
c = 10 N · m · s/rad. The torque T (t) is applied by an electric motor (Figure 9.1.6a). From
the free body diagram shown in part (b) of the figure, the equation of motion is

50
dω

dt
+ 10ω = T (t) = K f i f (1)

The model of the motor’s field current i f in amperes is

0.001
di f

dt
+ 5i f = v(t) (2)

where v(t) is the voltage applied to the motor. The motor torque constant is KT =25 N ·m/A.
Suppose the applied voltage is 10 V. Determine the steady-state speed of the inertia and

estimate the time required to reach that speed.

■ Solution
From equation (2) we see that the time constant of the motor circuit is 0.001/5 =
2 × 10−4 s. Thus the current will reach a steady-state value of 10/5 = 2 A in approximately
4(2 × 10−4) = 8 × 10−4 s. The resulting steady-state torque is KT (2) = 25(2) = 50 N · m.

From equation (1) we find the time constant of the rotational system to be 50/10 = 5 s. Since
this is much larger than the time constant of the circuit (2 × 10−4 s), we conclude that the motor
torque may be modeled as a step function. The magnitude of the step function is 50 N · m. The
steady-state speed is ω = 50/10 = 5 rad/s, and therefore it will take approximately 4(5) = 20 s
to reach this speed.
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Figure 9.1.6 A rotational
system.

STEP INPUTS VERSUS CONSTANT INPUTS

Consider the two input functions shown in Figure 9.1.7. The one shown in part (a) is
constant, whereas in part (b) the input is a step function. For the constant input, the
derivative is always zero, but for the step input the derivative is an impulse function,
which is infinite at t = 0 and zero elsewhere. So if we are interested in finding the
response of a model only for t ≥ 0, then we can conclude that it does not matter whether
we model the input as a constant or as a step, as long as the model does not contain
any time derivatives of the input.

If the model contains input derivatives, then we must be careful in how we model
the input and in how we solve for the response. For example, if the input is the thrust
of a rocket engine that is turned on at t = 0, a step function model of the thrust is
appropriate. If the input, however, is a gravity force, which is always present, then a
step function model is not appropriate. This distinction needs to be made only if the
model has input derivatives.

The source of the initial value of the response depends on the form of the input.
If the input is a constant, then we may take the initial value to be due to the effect of
the input prior to t = 0. If the input is a step whose value is zero for t < 0, then the
initial value must have been caused by some other agent or process not described by
the model.

Although we have made a distinction between constant inputs and step inputs, we
will follow common practice and call the response due to either type of input the “step”
response.

STEP RESPONSE WITH AN INPUT DERIVATIVE

The general form of the first-order linear model is

mv̇ + cv = b ḟ (t) + f (t) (9.1.7)

whose transfer function is of the form

V (s)

F(s)
= bs + 1

ms + c
(9.1.8)

(a)

f (t)

t

f (t)

(b)

t

Figure 9.1.7 (a) Constant
input. (b) Step input.
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The presence of an input derivative is indicated by an s in the numerator of the transfer
function. Such a transfer function is said to have numerator dynamics.

If f (t) is a step function of magnitude F , then F(s) = F/s and f (0) = 0, and
(9.1.8) gives

V (s) = mv(0) + bF

ms + c
+ F

s(ms + c)

which gives

v(t) =
[
v(0) + bF

m

]
e−ct/m + F

c

(
1 − e−ct/m)

(9.1.9)

Comparing this with (9.1.6), we see that the effect of the b ḟ term is to increase the
effective initial value of v(t) by the amount bF/m.

IMPULSE RESPONSE

The impulse response of mv̇ + cv = f (t) is found as follows, where A is the impulse
strength, or the area under the impulse versus time curve.

msV (s) − mv(0) + cV (s) = A

V (s) = mv(0) + A

ms + c
= v(0) + A/m

s + c/m

v(t) =
[
v(0) + A

m

]
e−ct/m (9.1.10)

We can see that the effect of the impulse is to increase the effective initial condition
by A/m.

Because ḟ (t) is undefined if f (t) is an impulse, we do not consider the
impulse response of the equation mv̇ + cv = f (t) + b ḟ (t).

RAMP RESPONSE AND THE TIME CONSTANT

We can obtain the response of the general equation τ v̇ + v = f (t) to the ramp input
f (t) = mt as follows. Setting v(0) = 0 and transforming the equation with F(s) =
m/s2 gives

τ sV (s) + V (s) = F(s) = m

s2

or

V (s) = m

s2(τ s + 1)
= m

s2
− mτ

s
+ mτ

s + 1/τ

The inverse transforms give

v(t) = m(t − τ) + mτe−t/τ

The response is in steady state after approximately t = 4τ . At steady state, v(t) =
m(t − τ), so the response is parallel to the input but lags behind it by a time τ (Fig-
ure 9.1.8).

Obtaining the ramp response can be tedious for higher-order systems, but some-
times we only need to find the steady-state difference between the input and the output.
This can be done easily with the final value theorem, as is illustrated by Example 9.1.2.
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Figure 9.1.8 Ramp input and
ramp response of the model
τ v· + v = f (t).

The Final Value Theorem and Ramp Response EXAMPLE 9.1.2

■ Problem
Obtain the steady-state difference f (∞) − v(∞) between the input and output of the following
model: τ v̇ + v = b f (t), where b is a constant and f (t) = mt . Assume that v(0) = 0 and that
the model is stable (τ > 0).

■ Solution
The transform of the response is

V (s) = b

τ s + 1
F(s) = b

τ s + 1

m

s2

Use this with the final value theorem to find the steady-state difference:

f (∞) − v(∞) = lim
s→0

[s F(s)] − lim
s→0

[sV (s)] = lim
s→0

s[F(s) − V (s)]

= lim
s→0

s

(
m

s2
− b

τ s + 1

m

s2

)

= lim
s→0

m

s

(
τ s + 1 − b

τ s + 1

)

=
{∞ b �= 1

mτ b = 1

Thus, the steady-state difference is infinite unless b = 1. Both the input and output approach
straight lines at steady state. The preceding result shows that the lines diverge unless b = 1. If
b = 1, the lines are a vertical distance mτ apart. This is the case shown in Figure 9.1.8.
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9.2 RESPONSE OF SECOND-ORDER SYSTEMS
The equations of motion of many systems containing mass, spring, and damping
elements have the form

mẍ + cẋ + kx = f (t) (9.2.1)

where f (t) is the input. Its transfer function is

X (s)

F(s)
= 1

ms2 + cs + k
(9.2.2)

Figure 9.2.1 shows examples of other types of systems that have the same model form.
The solution of this equation, and therefore the form of the free and forced responses,
depends on the values of the two characteristic roots, obtained from the characteristic

Figure 9.2.1 Some second-order systems.
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R A
dh2

dt
+ g(h2 − h1) + gh2 = 0
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= R2T + R1To
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equation ms2 + cs + k = 0. Recall from the discussion in Chapter 3 that this model is
stable if both of its roots are real and negative or if the roots are complex with negative
real parts. This is true if m, c, and k have the same sign.

A related model form is

mẍ + cẋ + kx = aġ(t) + bg(t) (9.2.3)

where g(t) is the input. Its transfer function is

X (s)

G(s)
= as + b

ms2 + cs + k
(9.2.4)

So this model has numerator dynamics. It is important to understand that the input
does not affect the characteristic equation, and therefore does not affect the stability
of the model or its free response. Thus (9.2.1) and (9.2.3) have the same stability
characteristics and the same free response, because they have the same characteristic
equation, ms2 + cs + k = 0.

The formulas to be developed in this section are based on the transfer function
model form. Models in state variable form can always be reduced to transfer function
form. For example, consider the model of an armature-controlled dc motor, developed
in Section 6.4.

La
dia

dt
= va − ia Ra − Kbω (9.2.5)

I
dω

dt
= KT ia − cω − TL (9.2.6)

This is a second-order linear model and it can be reduced to the forms of (9.2.2) and
(9.2.4), as shown in Section 6.4. The results are

�(s)

Va(s)
= KT

La I s2 + (Ra I + cLa)s + cRa + Kb KT
(9.2.7)

which has the form of (9.2.2), and

Ia(s)

Va(s)
= I s + c

La I s2 + (Ra I + cLa)s + cRa + Kb KT
(9.2.8)

which has the form of (9.2.4).

UNDAMPED RESPONSE

Consider the undamped systems shown in Figure 9.2.2. They all have the same model
form: mẍ + kx = f (t). In the first system, suppose f (t) = 0 and we set the mass
in motion at time t = 0 by pulling it to a position x(0) and releasing it with an initial
velocity ẋ(0). From Case 3 in Table 9.2.1, the response has the form x(t) = C1 sin ωnt +
C2 cos ωnt , where we have defined

ωn =
√

k

m
(9.2.9)

Using the initial conditions we find that the constants are C1 = ẋ(0)/ωn and C2 = x(0).
Thus the solution is

x(t) = ẋ(0)

ωn
sin ωnt + x(0) cos ωnt (9.2.10)

This solution shows that the mass oscillates about the rest position x = 0 with a
frequency of ωn = √

k/m radians per unit time. The period of the oscillation is 2π/ωn .
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Figure 9.2.2 Examples
of undamped systems.
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Table 9.2.1 Solution forms for the free response of a second-order model.

Equation Solution form

ẍ + aẋ + bx = 0 b �= 0
1. (a2 > 4b) distinct, real roots: s1, s2 1. x(t) = C1es1t + C2es2t

2. (a2 = 4b) repeated, real roots: s1, s1 2. x(t) = (C1 + tC2)es1t

3. (a = 0, b > 0) imaginary roots: s = ± jω 3. x(t) = C1 sin ωt + C2 cos ωt
ω = √

b
4. (a �= 0, a2 < 4b) complex roots: s = r ± jω 4. x(t) = ert (C1 sin ωt + C2 cos ωt)

r = −a/2, ω = √
4b − a2/2

The frequency of oscillation ωn is called the natural frequency. The natural frequency
is greater for stiffer springs (larger k values). The amplitude of the oscillation depends
on the initial conditions x(0) and ẋ(0).

Damping is present in the model mẍ + cẋ + kx = f (t) if c �= 0. If so, Cases 1,
2, and 4 in Table 9.2.1 summarize the free response forms. See Example 4.4.4 for
specific examples of the damped free response. Figure 9.2.3 shows the free response
for four values of c, with m = 1, k = 16, x(0) = 1, and ẋ(0) = 0. For no damping,
the system is neutrally stable and the mass oscillates with a constant amplitude and a
radian frequency of

√
k/m = 4, which is the natural frequency ωn . As the damping is

increased slightly to c = 4, the system becomes stable and the mass still oscillates but
with a smaller radian frequency (

√
12 = 3.464). The oscillations die out eventually as

the mass returns to rest at the equilibrium position x = 0. As the damping is increased
further to c = 8, the mass no longer oscillates because the damping force is large enough
to limit the velocity and thus the momentum of the mass to a value that prevents the
mass from overshooting the equilibrium position. For a larger value of c (c = 10), the
mass takes longer to return to equilibrium because the damping force greatly slows
down the mass.
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Figure 9.2.3 Responses for
four values of c .

EFFECT OF ROOT LOCATION

Figure 9.2.4 shows how the location of the characteristic roots in the complex plane
affects the free response. The real part of the root is plotted on the horizontal axis, and
the imaginary part is plotted on the vertical axis. Because the roots are conjugate, we
show only the upper root. Using the results we have found in earlier chapters, we see
that

1. Unstable behavior occurs when the root lies to the right of the imaginary axis.
2. Neutrally stable behavior occurs when the root lies on the imaginary axis.
3. The response oscillates only when the root has a nonzero imaginary part.
4. The greater the imaginary part, the higher the frequency of the oscillation.
5. The farther to the left the root lies, the faster the response decays.

The characteristic equation of the model (9.2.1) is

ms2 + cs + k = 0 (9.2.11)

Its roots are

s = −c ± √
c2 − 4mk

2m
= r ± jω (9.2.12)

where r and ω denote the real and imaginary parts of the roots.

THE DAMPING RATIO

A second-order system’s free response for the stable case can be conveniently charac-
terized by the damping ratio ζ (sometimes called the damping factor). For the charac-
teristic equation (9.2.11), the damping ratio is defined as

ζ = c

2
√

mk
(9.2.13)
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Figure 9.2.4 Effect of root
location on the free response.
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s � �b � �a s � �a � 0 s � r � 0s � 0

This definition is not arbitrary but is based on the way the roots change from real to
complex as the value of c is changed; that is, from (9.2.12) we see that three cases can
occur:

1. The Critically Damped Case: Repeated roots occur if c2 − 4mk = 0; that is, if
c = 2

√
mk. This value of the damping constant is the critical damping constant

cc, and when c has this value the system is said to be critically damped.
2. The Overdamped Case: If c > cc = 2

√
mk, two real distinct roots exist, and the

system is overdamped.
3. The Underdamped Case: If c < cc = 2

√
mk, complex roots occur, and the

system is underdamped.

The damping ratio is thus seen to be the ratio of the actual damping constant c to the
critical value cc. Note that

1. For a critically damped system, ζ = 1.
2. Exponential behavior occurs if ζ > 1 (the overdamped case).
3. Oscillations exist when ζ < 1 (the underdamped case).

For an unstable system the damping ratio is meaningless and therefore not defined. For
example, the equation 3s2 −5s +4 = 0 is unstable, and we do not compute its damping
ratio, which would be negative if you used (9.2.13).
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The damping ratio can be used as a quick check for oscillatory behavior. For
example, the model whose characteristic equation is s2 + 5ds + 4d2 = 0 is stable if
d > 0 and it has the following damping ratio.

ζ = 5d

2
√

4d2
= 5

4
> 1

Because ζ > 1, no oscillations can occur in the system’s free response regardless of the
value of d and regardless of the initial conditions.

The motor transfer function (9.2.7) is repeated here.

�(s)

Va(s)
= KT

La I s2 + (Ra I + cLa)s + cRa + Kb KT

The denominator of this model has the standard form ms2 + cs + k, and thus the
damping ratio of the motor model is, from (9.2.13),

ζ = Ra I + cLa

2
√

La I (Rac + Kb KT )

Even if the damping constant c is zero, the damping ratio is still nonzero because of
the term Ra I .

NATURAL AND DAMPED FREQUENCIES OF OSCILLATION

The roots of (9.2.11) are purely imaginary when there is no damping. The imaginary
part and the frequency of oscillation for this case is the undamped natural frequency
ωn = √

k/m.
We can write the characteristic equation in terms of the parameters ζ and ωn . First

divide (9.2.11) by m and use the fact that ω2
n = k/m and that

2ζωn = 2
(

c

2
√

mk

) ⎛
⎝

√
k

m

⎞
⎠ = c

m

The characteristic equation becomes

s2 + 2ζωns + ω2
n = 0 (9.2.14)

and the roots are

s = −ζωn ± jωn

√
1 − ζ 2 (9.2.15)

The frequency of oscillation is ωn

√
1 − ζ 2 and is called the damped natural fre-

quency, or simply the damped frequency, to distinguish it from the undamped natural
frequency ωn . We will denote the damped frequency by ωd .

ωd = ωn

√
1 − ζ 2 (9.2.16)

The frequencies ωn and ωd have meaning only for the underdamped case (ζ < 1). For
this case (9.2.16) shows that ωd < ωn . Thus the damped frequency is always less than
the undamped frequency.
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Table 9.2.2 Free response of mx·· + c ẋ + kx = f (t) for the stable case.

Characteristic roots s = −c ± √
c2 − 4mk

2m

Undamped natural frequency ωn =
√

k

m

Damping ratio ζ = c

2
√

km

Damped natural frequency ωd = ωn

√
1 − ζ 2

Overdamped case (ζ > 1) Distinct, real roots: s = −r1, s = −r2 (r1 �= r2)

x(t) = A1e−r1t + A2e−r2t

A1 = ẋ(0) + r2x(0)

r2 − r1

A2 = −r1x(0) − ẋ(0)

r2 − r1
= x(0) − A1

Critically damped case (ζ = 1) Repeated roots: s = −r1, s = −r1

x(t) = (A1 + A2t) e−r1t

A1 = x(0)

A2 = ẋ(0) + r1x(0)

Underdamped case (0 ≤ ζ < 1) Complex conjugate roots: s = −a ± jb, b > 0

x(t) = De−at sin(bt + φ)

D = +1

b

√
[bx(0)]2 + [ẋ(0) + ax(0)]2

sin φ = x(0)

D
cos φ = ẋ(0) + ax(0)

bD
Alternative form for 0 ≤ ζ < 1 x(t) = e−ζωn t [A sin ωd t + x(0) cos ωd t]

A = ζ√
1 − ζ 2

x(0) + 1

ωd
ẋ(0)

TIME CONSTANT

Comparison of (9.2.12) with (9.2.15) shows that r = −ζωn and ω = ωn

√
1 − ζ 2.

Because the time constant τ is −1/r , we have

τ = 1

ζωn
(9.2.17)

Remember that this formula applies only if ζ ≤ 1 (otherwise,
√

1 − ζ 2 is imaginary).
Table 9.2.2 summarizes the free response of the stable, linear, second-order model

in terms of the parameters ζ, ωn , and ωd . Table 9.2.3 summarizes the formulas for these
parameters.

GRAPHICAL INTERPRETATION

The preceding relations can be represented graphically by plotting the location of the
roots (9.2.15) in the complex plane (Figure 9.2.5). The parameters ζ , ωn , ωd , and τ are
normally used to describe stable systems only, and so we will assume for now that all
the roots lie to the left of the imaginary axis (in the “left half-plane”).
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Table 9.2.3 Response parameters for second-order systems.

Model mẍ + cẋ + kx = f (t)
m, c, k constant

Characteristic Equation ms2 + cs + k = 0

1. Roots s = −c ± √
c2 − 4mk

2m
2. Stability Property Stable if and only if both

roots have negative real
parts. This occurs if and
only if m, c, and k
have the same sign.

3. Alternative forms for underdamped systems
Characteristic Equation: s2 + 2ζωns + ω2

n = 0

Roots: s = −ζωn ± jωn

√
1 − ζ 2

4. Damping ratio or damping factor ζ = c

2
√

mk

5. Undamped natural frequency ωn =
√

k

m

6. Damped natural frequency ωd = ωn

√
1 − ζ 2

7. Time constant τ = 2m/c = 1/ζωn if ζ ≤ 1

�d � �n
�1 � �2

s � ���n � �d j

� � cos � � cos �tan�1(��d)� 

���n
1��

�n

�

Re

Im Figure 9.2.5 Graphical
interpretation of the
parameters ζ , τ , ωn , and ωd .

The lengths of two sides of the right triangle shown in Figure 9.2.5 are ζωn and
ωn

√
1 − ζ 2. Thus the hypotenuse is of length ωn . It makes an angle θ with the negative

real axis, and

cos θ = ζ (9.2.18)

Therefore all roots lying on the circumference of a given circle centered on the origin
are associated with the same undamped natural frequency ωn . From (9.2.18) we see that
all roots lying on the same line passing through the origin are associated with the same
damping ratio. The limiting values of ζ correspond to the imaginary axis (ζ = 0) and
the negative real axis (ζ = 1). Roots lying on a given line parallel to the real axis all give
the same damped natural frequency. All roots lying on a line parallel to the imaginary
axis have the same time constant. The farther to the left this line is, the smaller the time
constant.
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9.3 DESCRIPTION AND SPECIFICATION
OF STEP RESPONSE

We can express the free response and the step response of the underdamped second-
order model mẍ + cẋ + kx = f (t) in terms of the parameters ζ and ωn as follows. The
form of the free response is

x(t) = Be−ζωn t sin(ωd t + φ) (9.3.1)

where B and φ depend on the initial conditions x(0) and ẋ(0). The unit step response
for zero initial conditions is

x(t) = 1

k

[
1√

1 − ζ 2
e−ζωn t sin

(
ωn

√
1 − ζ 2t + φ

) + 1

]
(9.3.2)

where

φ = tan−1

(√
1 − ζ 2

ζ

)
+ π (9.3.3)

Because ζ > 0, φ lies in the third quadrant. Table 9.3.1 gives the step response in terms
of ζ and ωn for the underdamped, critically damped, and overdamped cases.

The free response for ẋ(0) = 0 and the step response for x(0) = ẋ(0) = 0 of the
second-order model mẍ + cẋ + kx = f (t) are illustrated in Figures 9.3.1 and 9.3.2 for
several values of the damping ratio ζ . Note that the response axis has been normalized
by k and the time axis has been normalized by ωn = √

k/m. Thus a variation of ζ

should be interpreted as a variation of c, and not of k or m. When ζ > 1, the response is

Table 9.3.1 Unit step response of a stable second-order model.

Model: mẍ + cẋ + kx = us(t)

Initial conditions: x(0) = ẋ(0) = 0

Characteristic roots: s = −c ± √
c2 − 4mk

2m
= −r1, −r2

1. Overdamped case (ζ > 1): distinct, real roots: r1 �= r2

x(t) = A1e−r1t + A2e−r2t + 1

k
= 1

k

(
r2

r1 − r2
e−r1t − r1

r1 − r2
e−r2t + 1

)
2. Critically damped case (ζ = 1): repeated, real roots: r1 = r2

x(t) = (A1 + A2t)e−r1t + 1

k
= 1

k
[(−r1t − 1)e−r1t + 1]

3. Underdamped case (0 ≤ ζ < 1): complex roots: s = −ζωn ± jωn

√
1 − ζ 2

x(t) = Be−t/τ sin
(
ωn

√
1 − ζ 2t + φ

) + 1

k

= 1

k

[
1√

1 − ζ 2
e−ζωn t sin

(
ωn

√
1 − ζ 2t + φ

) + 1

]

φ = tan−1

(√
1 − ζ 2

ζ

)
+ π (third quadrant)

Time constant: τ = 1/ζωn
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Figure 9.3.1 Free response
of second-order systems for
various values of ζ .
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Figure 9.3.2 Step response
of second-order systems for
various values of ζ .

sluggish and does not overshoot the steady-state value. As ζ is decreased, the speed of
response increases. The critically damped case ζ = 1 is the case in which the steady-
state value is reached most quickly but without oscillation. As ζ is decreased below
1, the response overshoots and oscillates about the final value. The smaller ζ is, the
larger the overshoot, and the longer it takes for the oscillations to die out. There are
design applications in which we wish the response to be near its final value as quickly
as possible, with some oscillation tolerated. This corresponds to a value of ζ slightly
less than 1. The value ζ = 0.707 is a common choice for such applications. As ζ is
decreased to zero (the undamped case), the oscillations never die out.
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DESCRIPTION OF STEP RESPONSE

Suppose you obtained the response plot shown in Figure 9.3.3 either from a measured
response or from a computer simulation. Suppose also that you want to describe the
plot to someone over the phone (assuming you cannot send them the plot!). You would
say that x(t) starts at 0 and rises to the steady-state value of x = 100 mm. It oscillates
briefly around the steady-state value (there are about two oscillations with a period of
about 6.6 s). The first oscillation has the largest peak, which is 37 mm and occurs at
t = 3.3 s. You might also note that the response reaches 50% of the steady-state value in
1.2 s, and it first reaches 100% of the steady-state value in 2 s. Note that, depending on
the resolution of the plot, you might not be able to determine the time for the response
to reach the steady state, so this time estimate might be subject to great error.

The parameters we have just used to describe the plot not only are the standard
ways of describing step response, but also are the standard ways of specifying desired
performance. These transient-response specifications are illustrated in Figure 9.3.4.
Note that the response need not be that of a second-order system. The maximum or
peak overshoot Mp is the maximum deviation of the output x above its steady-state
value xss . It is sometimes expressed as a percentage of the final value and denoted M%.
Because the maximum overshoot increases with decreasing ζ , it is sometimes used
as an indicator of the relative stability of the system. The peak time tp is the time at
which the maximum overshoot occurs. The settling time ts is the time required for the
oscillations to stay within some specified small percentage of the final value. The most
common values used are 2% and 5%. If the final value of the response differs from
some desired value, a steady-state error exists.

The rise time tr can be defined as the time required for the output to rise from 0%
to 100% of its final value. However, no agreement exists on this definition. Sometimes,
the rise time is taken to be the time required for the response to rise from 10% to 90%
of the final value. Finally, the delay time td is the time required for the response to reach
50% of its final value.

Figure 9.3.3 Underdamped
step response.
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Figure 9.3.4 Transient-
response specifications.

Except for the settling time, these parameters are relatively easy to obtain from an
experimentally determined step-response plot. They can also be determined in analytical
form for a second-order model, whose underdamped step response is given by (9.3.2)
and (9.3.3).

MAXIMUM OVERSHOOT

Setting the derivative of (9.3.2) equal to zero gives expressions for both the maximum
overshoot and the peak time tp. After some trigonometric manipulation, the result is

dx

dt
= 1

k

(
ωn√

1 − ζ 2
e−ζωn t sin ωn

√
1 − ζ 2t

)
= 0

For t < ∞, this gives

ωn

√
1 − ζ 2t = nπ n = 0, 1, 2, . . .

The times at which extreme values of the oscillations occur are thus

t = nπ

ωn

√
1 − ζ 2

(9.3.4)

The odd values of n give the times of overshoots, and the even values correspond to the
times of undershoots. The maximum overshoot occurs when n = 1. Thus,

tp = π

ωn

√
1 − ζ 2

(9.3.5)

The magnitudes |xn| of the overshoots and undershoots are found by substituting (9.3.4)
into (9.3.2). After some manipulation, the result is

|xn| = 1

k

[
1 + (−1)n−1e−nπζ/

√
1−ζ 2

]
(9.3.6)
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The largest value |xn| occurs when n = 1. Thus the maximum overshoot Mp is found
when n = 1. It is

Mp = xmax − xss = 1

k
e−πζ/

√
1−ζ 2

(9.3.7)

The preceding expressions show that the maximum overshoot and the peak time are
functions of only the damping ratio ζ for a second-order system. The percent maximum
overshoot M% is

M% = xmax − xss

xss
100 = 100e−πζ/

√
1−ζ 2

(9.3.8)

Frequently we need to compute the damping ratio from a measured value of
the maximum overshoot. In this case, we can solve (9.3.8) for ζ as follows. Let
R = ln 100/M%. Then (9.3.8) gives

ζ = R√
π2 + R2

R = ln
100

M%
(9.3.9)

RISE TIME

To obtain the expression for the 100% rise time tr , set x = xss = 1/k in (9.3.2) to
obtain

e−ζωn t sin
(
ωn

√
1 − ζ 2t + φ

) = 0

This implies that for t < ∞,

ωn

√
1 − ζ 2t + φ = nπ n = 0, 1, 2, . . . (9.3.10)

For tr > 0, n = 2, because φ is in the third quadrant. Thus,

tr = 2π − φ

ωn

√
1 − ζ 2

(9.3.11)

where φ is given by (9.3.3). The rise time is inversely proportional to the natural
frequency ωn for a given value of ζ .

SETTLING TIME

To express the settling time in terms of the parameters ζ and ωn , we can use the fact that
the exponential term in the solution (9.3.2) provides the envelopes of the oscillations.
The time constant of these envelopes is 1/ζωn , and thus the 2% settling time ts is

ts = 4

ζωn
(9.3.12)

DELAY TIME

An exact analytical expression for the delay time is difficult to obtain, but we can obtain
an approximate expression as follows. Set x = 0.5xss = 0.5/k in (9.3.2) to obtain

e−ζωn t sin
(
ωn

√
1 − ζ 2t + φ

) = −0.5
√

1 − ζ 2 (9.3.13)
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where φ is given by (9.3.3). For a given ζ and ωn , td can be obtained by a numerical
procedure, using the following straight-line approximation as a starting guess:

td ≈ 1 + 0.7ζ

ωn
(9.3.14)

Table 9.3.2 summarizes these formulas. Figure 9.3.5 shows the plots of the maximum
percent overshoot, the peak time, and the 100% rise time as functions of ζ . In Section 9.5
we will see how these formulas can be used with experimentally determined response
plots to estimate the parameters m, c, and k. In Chapters 10, 11, and 12, we will use
these specifications to describe the desired performance of control systems.

Table 9.3.2 Step response specifications for the underdamped
model mẍ + c ẋ + kx = f .

Maximum percent overshoot M% = 100e−πζ/
√

1−ζ 2

ζ = R√
π2 + R2

, R = ln
100

M%

Peak time tp = π

ωn

√
1 − ζ 2

Delay time td ≈ 1 + 0.7ζ

ωn

100% rise time tr = 2π − φ

ωn

√
1 − ζ 2

φ = tan−1

(√
1 − ζ 2

ζ

)
+ π
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Figure 9.3.5 (Continued )

0 0.1 0.2 0.3 0.4 0.5

(c)

0.6 0.7 0.8 0.9 1
0

3

6

9

12

15

�

�
n
t r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

3

6

9

12

15

�

�
n
t p

(b)

Figure 9.3.6 illustrates the effect of root location on decay rate, peak time, and
overshoot. In part (a) of the figure, we see that roots lying on the same vertical line
have the same decay rate because they have the same time constant. Part (b) shows that
roots lying on the same horizontal line have the same oscillation frequency, period, and
peak time. Part (c) of the figure shows that roots lying on the same radial line have the
same damping ratio and therefore the same maximum percent overshoot M%. You can
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Models A and B have the same real part, the same time constant, and the same decay time.

Models A and B have the same imaginary part, the same period, and the same peak time.

Models A, B, and C have the same damping ratio and the same overshoot.

Figure 9.3.6 Effect of root
location on decay rate, peak
time, and overshoot.

see this from the M% formula, (9.3.8), which is a function of ζ only. Roots lying on
the same horizontal line have the same damped frequency ωd , and therefore have the
same peak time tp. This is true because tp = π/ωn

√
1 − ζ 2, ωd = ωn

√
1 − ζ 2, and

therefore, tp = π/ωd . Thus if ωd is constant, so is tp.

NUMERATOR DYNAMICS AND SECOND-ORDER
SYSTEM RESPONSE

Be aware that the preceding analysis is based on the model mẍ + cẋ + kx = f , which
does not have numerator dynamics. The presence of numerator dynamics can change
the system behavior quite a bit, decreasing the response time and producing overshoots
or undershoots in the response.

For the model mẍ + cẋ + kx = aġ(t) + bg(t), the effect on the step response of
the numerator dynamics coefficient a is to change the formulas for the constants A1

and A2 in Table 9.3.1 for the real roots cases, and the formulas for the amplitude B and
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angle φ for the complex roots case. These formulas are too cumbersome to be of use,
so we do not list them.

For example, consider the two systems shown in Figure 9.3.7 for m = 1, c = 6,
and k = 8. The model for part (a) of the figure is ẍ + 6ẋ + 8x = 6ẏ(t) + 8y(t), and
the unit-step response is obtained from the Laplace transform.

X (s) = 6s + 8

s(s2 + 6s + 8)
= 1

s
+ 1

s + 2
− 2

s + 4

Thus

x(t) = 1 + e−2t − 2e−4t (9.3.15)

The model for part (b) of the figure is ẍ + 6ẋ + 8x = 8y(t), and the unit-step response
is given by

X (s) = 8

s(s2 + 6s + 8)
= 1

s
− 2

s + 2
+ 1

s + 4

x(t) = 1 − 2e−2t + e−4t (9.3.16)

The responses are shown in Figure 9.3.8. Curve (1) corresponds to the case with nu-
merator dynamics. We see that the numerator dynamics produces a smaller 10%–90%
rise time, and causes an overshoot here, even though ζ > 1.

Figure 9.3.7 Effect of damper
location on numerator
dynamics.
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IMPULSE RESPONSE OF SECOND ORDER SYSTEMS

The impulse response of mẍ + cẋ + kx = f (t) is found as follows, where A is the
impulse strength.

m
[
s2 X (s) − sx(0) − ẋ(0)

] + c [s X (s) − x(0)] + k X (s) = A

X (s) = msx(0) + A + mẋ(0) + cx(0)

ms2 + cs + k

Thus we see that the impulse has the effect of an additional initial velocity A/m.
That is, the impulse has changed the momentum mẋ(0) by the amount A.

9.4 PARAMETER ESTIMATION IN THE TIME DOMAIN
The response calculations developed in the preceding sections cannot be used to make
predictions about system behavior unless we have numerical values for the parameters
in the model, such as values for m, c, and k in the model mẍ + cẋ + kx = f (t). In
Chapter 1 we introduced some methods for estimating parameter values. In this section,
we introduce additional methods, which are based on the response solutions of first-
and second-order models.

USING THE FREE RESPONSE OF THE FIRST-ORDER MODEL

The free and the step response can be used to estimate one or more of the parameters
of a dynamic model. For example, consider the first-order model

m
dv

dt
+ cv = f (t) (9.4.1)

where f (t) is the input. The time constant is τ = m/c, and the free response is

v(t) = v(0)e−t/τ (9.4.2)

If we take the natural logarithm of both sides we obtain

ln v(t) = ln v(0) − t

τ

By defining V (t) = ln v(t), we can transform this equation into the equation of a
straight line, as follows:

V (t) = V (0) − t

τ
(9.4.3)

This describes a straight line in terms of V (t) and t . Its slope is −1/τ and its intercept
is V (0). These quantities may be estimated by drawing a straight line through the
tranformed data points [V (ti ), ti ] if the scatter in the data is not too large. Otherwise
we can use the least-squares method to estimate the parameters.

If the measurement of v(0) is subject to random measurement error, then V (0) is
not known precisely, and we can use the least squares method to compute estimates of
the coefficients τ and V (0). Using the least-squares equations (1.5.1) and (1.5.2) from
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Chapter 1 for a first-order polynomial, we can derive the following equations:

−1

τ

n∑
i=1

t2
i + V (0)

n∑
i=1

ti =
n∑

i=1

Vi ti (9.4.4)

−1

τ

n∑
i=1

ti + V (0)n =
n∑

i=1

Vi (9.4.5)

These are two linear algebraic equations, which can be solved for τ and V (0).
On the other hand, in many applications the starting value v(0) can be mea-

sured without significant error. In this case, we can transform the data by using z(t) =
V (t) − V (0) so that the model (9.4.3) becomes z(t) = −t/τ , which is a linear equa-
tion constrained to pass through the origin. We can then use (1.5.3) from Chapter 1,
expressed here as

−1

τ

n∑
i=1

t2
i =

n∑
i=1

ti zi (9.4.6)

to find the time constant τ .

EXAMPLE 9.4.1 Estimating Capacitance from the Free Response

■ Problem
Commercially available resistors are marked with a color code that indicates their resistance
value. Suppose that the resistance in the circuit of Figure 9.4.1a is 105 �. A voltage is applied
to the circuit for t < 0 and then is suddenly removed at time t = 0. The voltage across the
capacitor as measured by a data acquisition system is plotted in part (b) of the figure and is given
in the following table. Use the data to estimate the value of the capacitance C .

Time t (s) Voltage vC (V)

0 5
0.25 3.3
0.5 2.2
0.75 1.4
1 0.9
1.25 0.6
1.5 0.4
1.75 0.3
2 0.2

■ Solution
The circuit model may be derived from Kirchhoff’s voltage law, which gives

vs = Ri + vC or i = vs − vC

R
(1)

For the capacitor we have

vC = 1

C

∫
i dt or

dvC

dt
= i

C
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(a)

vC

R

Cvs

�

� i

Figure 9.4.1 An RC circuit.
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Substituting from equation (1) gives the circuit model.

dvC

dt
= vs − vC

RC
or RC

dvC

dt
+ vC = vs

The free response has the form

vC (t) = vC (0)e−t/RC = vC (0)e−t/τ

where the time constant is τ = RC . Taking the natural logarithm of both sides gives

ln vC (t) = ln vC (0) − t

τ
(2)

When the logarithmic transformation is applied to the original data, we obtain the following table.

Time t (s) ln vC

0 1.609
0.25 1.194
0.5 0.789
0.75 0.337
1 −0.105
1.25 −0.511
1.5 −0.916
1.75 −1.204
2 −1.609

These transformed data are plotted in Figure 9.4.1c. Note that the data lie close to a straight
line, which is given by ln vC = −1.621t + 1.574. This line was found with the least-squares
method, but a similar line could have been obtained by using a straightedge to draw a line through
the data. The least-squares method is required when there is considerable scatter in the data.

Comparing the equation for the line with equation (2), we obtain ln vC (0) = 1.574,
which gives vC (0) = 4.825, and 1/τ = 1.621, which gives τ = 0.617. Because we know that
R = 105 �, we obtain C = τ/R = 0.617/105 = 6.17 × 10−6 F.

EXAMPLE 9.4.2 Temperature Dynamics

■ Problem
The temperature of liquid cooling in a porcelain mug at room temperature (68◦F) was measured
at various times. The data are given below.

Time t (sec) Temperature T (◦F)

0 145
620 130

2266 103
3482 90

Develop a model of the liquid temperature as a function of time, and use it to estimate how long
it takes the temperature to reach 120◦F.

■ Solution
We will model the liquid as a single lumped thermal mass with a representative temperature T .
From conservation of heat energy we have

d E

dt
= − T − To

R
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where E is the heat energy in the liquid, To = 68◦F is the temperature of the air surrounding the
cup, and R is the total thermal resistance of the cup. We have E = mcp(T − To) = C(T − To),
where m is the liquid mass, cp is its specific heat, and C = mcp is the thermal capacitance.
Assuming that m, cp, and To are constant, we obtain

C
dT

dt
= − T − To

R

If we let 	T = T − To and note that

d(	T )

dt
= dT

dt

we obtain

RC
d(	T )

dt
+ 	T = 0 (1)

The time constant is τ = RC , and the solution has the form

	T (t) = 	T (0)e−t/τ

Thus,

ln 	T (t) = ln 	T (0) − t

τ
(2)

The transformed data ln 	T (t) are plotted in Figure 9.4.2a. Because they fall near a straight line,
we can use equation (2) to fit the data. The values obtained are ln 	T (0) = 4.35 and τ = 2792
sec. This gives 	T (0) = 77◦F. Thus the model is

T (t) = 68 + 77e−t/2792 (3)

The computed time to reach 120◦F is

t = −2792 ln
120 − 68

77
= 1112 sec

The plot of equation (3), along with the data and the estimated point (1112, 120) marked with a
“+” sign, is shown in part (b) of Figure 9.4.2. Because the graph of our model lies near the data
points, we can treat its prediction of 1112 sec with some confidence.

USING THE STEP RESPONSE OF THE FIRST-ORDER MODEL

The free response of the model mv̇ + cv = f (t) enables us to estimate τ , but does not
give enough information to find both m and c separately. However, we may use the step
response if available. The step response of (9.4.1) for a step input of magnitude F is

v(t) =
[
v(0) − F

c

]
e−t/τ + F

c
(9.4.7)

Assume that we know F and v(0) accurately and that we can measure the step response
long enough to estimate accurately the steady-state response vss . Then we can compute c
from the steady-state response vss = F/c; that is, c = F/vss . To estimate m we
rearrange the step response (9.4.7) as follows, using the fact that F/c = vss .

ln
[

v(t) − vss

v(0) − vss

]
= − t

τ
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Figure 9.4.2 Temperature
data. (a) Plot of transformed
data. (b) Plot of the fitted
equation.
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Transform the data v(t) using

z(t) = ln
[

v(t) − vss

v(0) − vss

]
(9.4.8)

This gives the zero-intercept, linear model: z(t) = −t/τ , and we can use (9.4.6) to find
τ . Assuming we have calculated c from the steady-state response, we can find m from
m = cτ .
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PARAMETER ESTIMATION FOR THE SECOND-ORDER MODEL

Depending on the available experimental method, we can use either the free or the step
response formulas to estimate the parameters of a second-order model.

Estimating Mass, Stiffness, and Damping from the Step Response EXAMPLE 9.4.3

■ Problem
Figure 9.4.3 shows the response of a system to a step input of magnitude 6×103 N. The equation
of motion is

mẍ + cẋ + kx = f (t)

Estimate the values of m, c, and k.

■ Solution
From the graph we see that the steady-state response is xss = 6 cm. At steady state, xss = fss/k,
and thus k = 6 × 103/6 × 10−2 = 105 N/m.

The peak value from the plot is x = 8.1 cm, so the maximum percent overshoot is M% =
[(8.1 − 6)/6]100 = 35%. From Table 9.3.2, we can compute the damping ratio as follows:

R = ln
100

35
= 1.0498 ζ = R√

π2 + R2
= 0.32

The peak occurs at tp = 0.32 s. From Table 9.3.2,

tp = 0.32 = π

ωn

√
1 − ζ 2

= 3.316

ωn

Thus, ω2
n = 107 and

m = k

ω2
n

= 105

107
= 930 kg
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Figure 9.4.3 Measured step
response.
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From the expression for the damping ratio,

ζ = c

2
√

mk
= c

2
√

930(105)
= 0.32

Thus c = 6170 N · s/m, and the model is

930ẍ + 6170ẋ + 105x = f (t)

THE LOGARITHMIC DECREMENT

Usually the damping coefficient c is the parameter most difficult to estimate. Mass m
and stiffness k can be measured with static tests, but measuring damping requires a
dynamic test. If the system exists and dynamic testing can be done with it, then the
logarithmic decrement provides a good way to estimate the damping ratio ζ , from which
we can compute c (c = 2ζ

√
mk). To see how this is done, use the form s = −ζωn ±ωd j

for the characteristic roots, and write the free response for the underdamped case as
follows:

x(t) = Be−ζωn t sin(ωd t + φ) (9.4.9)

The frequency of the oscillation is ωd , and thus the period P is P = 2π/ωd . The
logarithmic decrement δ is defined as the natural logarithm of the ratio of two successive
amplitudes; that is,

δ = ln
x(t)

x(t + P)
(9.4.10)

Using (9.4.9) this becomes

δ = ln
Be−ζωn t sin(ωd t + φ)

Be−ζωn(t+P) sin(ωd t + ωd P + φ)
(9.4.11)

Note that e−ζωn(t+P) = e−ζωn t e−ζωn P . In addition, becauseωd P = 2π and sin(θ+2π) =
sin θ , sin(ωd t + ωd P + φ) = sin(ωd t + φ), and (9.4.11) becomes

δ = ln eζωn P = ζωn P

Because P = 2π/ωd = 2π/ωn

√
1 − ζ 2, we have

δ = 2πζ√
1 − ζ 2

(9.4.12)

We can solve this for ζ to obtain

ζ = δ√
4π2 + δ2

(9.4.13)

If we have a plot of x(t) from a test, we can measure two values x at two times t
and t + P . These values can be measured at two successive peaks in x . The x values
are then substituted into (9.4.10) to compute δ. Equation (9.4.13) gives the value of ζ,

from which we compute c = 2ζ
√

mk.
The plot of x(t) will contain some measurement error, and for this reason, the

preceding method is usually modified to use measurements of two peaks n cycles apart
(Figure 9.4.4). Let the peak values be denoted B1, B2, etc. and note that

ln
(

B1

B2

B2

B3

B3

B4
· · · Bn

Bn+1

)
= ln

(
B1

Bn+1

)
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Time
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Figure 9.4.4 Terminology for
logarithmic decrement.

or

ln
B1

B2
+ ln

B2

B3
+ ln

B3

B4
· · · ln

Bn

Bn+1
= ln

B1

Bn+1

Thus

δ + δ + δ + · · · + δ = nδ = ln
B1

Bn+1

or

δ = 1

n
ln

B1

Bn+1
(9.4.14)

We normally take the first peak to be B1, because this is the highest peak and least
subject to measurement error, but this is not required. The above formula applies to any
two points n cycles apart.

Estimating Damping and Stiffness EXAMPLE 9.4.4

■ Problem
Measurement of the free response of a certain system whose mass is 500 kg shows that after six
cycles the amplitude of the displacement is 10% of the first amplitude. Also, the time for these
six cycles to occur was measured to be 30 s. Estimate the system’s damping c and stiffness k.

■ Solution
From the given data, n = 6 and B7/B1 = 0.1. Thus, from (9.4.14),

δ = 1

6
ln

(
B1

B7

)
= 1

6
ln 10 = 2.302

6
= 0.384

From (9.4.13),

ζ = 0.384√
4π2 + (0.384)2

= 0.066

Because the measured time for six cycles was 30 s, the period P is P = 30/6 = 5 s. Thus
ωd = 2π/P = 2π/5. The damped frequency is related to the undamped frequency as

ωd = 2π

5
= ωn

√
1 − ζ 2 = ωn

√
1 − (0.066)2

Thus, ωn = 1.26 and

k = mω2
n = 500(1.26)2 = 794 N/m

The damping constant is calculated as follows:

c = 2ζ
√

mk = 2(0.066)
√

500(794) = 83.2 N · s/m
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9.5 INTRODUCTION TO BLOCK DIAGRAMS
We can use the transfer functions of a model to construct a visual representation of the
dynamics of the model. Such a representation is a block diagram. Block diagrams can
be used to describe how system components interact with each other. Unlike a hardware
schematic diagram, which shows the physical connections, the block diagram shows
the cause and effect relations between the components, and thus helps us to understand
the system’s dynamics.

Block diagrams can also be used to obtain transfer functions for a given system,
for cases where the describing differential equations are not given. In addition, block
diagrams can be used to develop simulation diagrams for use with computer tools such
as Simulink.

BLOCK DIAGRAM SYMBOLS

Block diagrams are constructed from the four basic symbols shown in Figure 9.5.1:

1. The arrow, which is used to represent a variable and the direction of the cause-
and-effect relation;

2. The block, which is used to represent the input-output relation of a transfer
function;

3. The circle, generically called a summer, which represents addition as well as
subtraction, depending on the sign associated with the variable’s arrow; and

4. The takeoff point, which is used to obtain the value of a variable from its arrow,
for use in another part of the diagram.

The takeoff point does not modify the value of a variable; a variable has the same value
along the entire length of an arrow until it is modified by a circle or a block. You may
think of a takeoff point as the tip of a voltmeter probe used to measure a voltage at a
point on a wire. If the voltmeter is well-designed, it will not change the value of the
voltage it is measuring.

SOME SIMPLE BLOCK DIAGRAMS

The simplest block diagram is shown in Figure 9.5.1b. Inside the block is the system
transfer function T (s). The arrow going into the block represents the transform of the
input, F(s); the arrow coming out of the block represents the transform of the output,
X (s). Thus, the block diagram is a graphical representation of the cause-and-effect
relations operating in a particular system. A specific case is shown in Figure 9.5.2a
in which the constant transfer function K represents multiplication and the block is
called a multiplier or a gain block. The corresponding equation in the time domain
is x(t) = K f (t). Another simple case is shown in Figure 9.5.2b in which the transfer
function 1/s represents integration. The corresponding equation in the time domain
is x(t) = ∫

f (t) dt . Thus, such a block is called an integrator. Note that this relation
corresponds to the differential equation ẋ = f (t).

Figure 9.5.1 The four basic
symbols used in block diagrams.

X(s) � T(s)F(s)

(b)(a)

X(s) F(s)
T(s)

X(s) Z(s)

�

Y(s)
Z(s) � X(s) � Y(s)

(c)

X(s)

X(s)

(d)

X(s) �
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Figure 9.5.2 Two types of blocks.
(a) Multiplier. (b) Integrator.

(a) (b)

F(s) X(s)
K

F(s) X(s)1
s

Figure 9.5.3 Diagrams representing the
equation ẋ + 7x = f (t).

(a) (b)

F(s) X(s)1
s � 7

�

X(s)F(s) � 1
s

7

EQUIVALENT BLOCK DIAGRAMS

Figure 9.5.3 shows how more than one diagram can represent the same model, which
in this case is ẋ + 7x = f (t). The transfer function is X (s)/F(s) = 1/(s + 7), and the
corresponding diagram is shown in part (a) of the figure. However, we can rearrange
the equation as follows:

ẋ = f (t) − 7x or x =
∫

[ f (t) − 7x] dt

which gives

X (s) = 1

s
[F(s) − 7X (s)]

In this arrangement the equation corresponds to the diagram shown in part (b) of the
figure. Note the use of the takeoff point to feed the variable X (s) to the multiplier.
The circle symbol is used to represent addition of the variable F(s) and subtraction of
7X (s). The diagram shows how ẋ , the rate of change of x , is affected by x itself. This
is shown by the path from X (s) through the multiplier block to the summer, which
changes the sign of 7X (s). This path is called a negative feedback path or a negative
feedback loop.

SERIES ELEMENTS AND FEEDBACK LOOPS

Figure 9.5.4 shows two common forms found in block diagrams. In part (a) the two
blocks are said to be in series. It is equivalent to the diagram in part (b) because we
may write

B(s) = T1(s)F(s) X (s) = T2(s)B(s)

These can be combined algebraically by eliminating B(s) to obtain X (s) = T1(s)
T2(s)F(s). Note that block diagrams obey the rules of algebra. Therefore, any re-
arrangement permitted by the rules of algebra is a valid diagram.

(b)

T1(s)T2(s)
F(s) X(s)

(a)

G(s)
1 � G(s)H(s)

F(s) X(s)

(d)(c)

T1(s)
F(s) B(s) X(s)

T2(s)

�
G(s)

H(s)

F(s) A(s)

B(s)

� X(s)

Figure 9.5.4 (a) and
(b) Simplification of series
blocks. (c) and
(d) Simplification of a
feedback loop.



palm-38591 book December 17, 2008 12:29

518 CHAPTER 9 Transient Response and Block Diagram Models

Figure 9.5.4c shows a negative feedback loop. From the diagram, we can obtain
the following.

A(s) = F(s) − B(s) B(s) = H(s)X (s) X (s) = G(s)A(s)

We can eliminate A(s) and B(s) to obtain

X (s) = G(s)

1 + G(s)H(s)
F(s) (9.5.1)

This is a useful formula for simplifying a feedback loop to a single block.

REARRANGING BLOCK DIAGRAMS

Now consider the second-order model ẍ + 7ẋ + 10x = f (t). The transfer function is
X (s)/F(s) = 1/(s2 + 7s + 10), and the simplest diagram for this model is shown in
Figure 9.5.5a. However, to show how x and ẋ affect the dynamics of the system, we
can construct a diagram that contains the appropriate feedback paths for x and ẋ . To
do this, rearrange the equation by solving for the highest derivative.

ẍ = f (t) − 7ẋ − 10x
The transformed equation is

X (s) = 1

s

(
1

s
{F(s) − 7[s X (s)] − 10X (s)}

)

With this arrangement we can construct the diagram shown in Figure 9.5.5b. Recall
that s X (s) represents ẋ . The term within the pair of curly braces is the output of the
summer and the input to the leftmost integrator. The output of this integrator is shown
within the outermost pair of parentheses and is the input to the rightmost integrator.

We may use two summers instead of one, and rearrange the diagram as shown in
Figure 9.5.5c. This form shows more clearly the negative feedback loop associated with
the derivative ẋ . Referring to Figure 9.5.3, we see that we may replace this inner loop
with its equivalent transfer function 1/(s + 7). The result is shown in Figure 9.5.5d,
which displays only the feedback loop associated with x .

Figure 9.5.5 Diagrams representing
the equation ẍ + 7ẋ + 10x = f (t).

(a)

1
s2 � 7s �10

F(s) X(s)

(b)

� �

sX(s)F(s) � 1
s

1
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X(s)

(c)

� �

�F(s) � 1
s

1
s

7
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X(s)

(d)

�
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s

10

1
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Two important points can be drawn from these examples.

1. More than one correct diagram can be drawn for a given equation; the desired
form of the diagram depends on what information we want to display.

2. The form of the resulting diagram depends on how the equation is arranged. A
useful procedure for constructing block diagrams is to first solve for the highest
derivative of the dependent variable; the terms on the right side of the resulting
equation represent the input to an integrator block.

It is important to understand that the block diagram is a “picture” of the algebraic
relations obtained by applying the Laplace transform to the differential equations,
assuming that the initial conditions are zero. Therefore, a number of different diagrams
can be constructed for a given set of equations and they will all be valid as long as the
algebraic relations are correctly represented.

Figure 9.5.6 gives more insight into how to modify diagrams. In part (a), if we
follow the “flow” of the variable F(s) through the original diagram on the left, it has
been multiplied by T1(s)T3(s) before reaching the output X (s). In the diagram on the
right, the same operations act on F(s), although in a different order. The same can be
said about the flow of the input G(s) through both diagrams. Algebraically, moving the
summer is equivalent to applying the distributive law of multiplication, as shown in the
following equation:

X (s) = T3(s)[T1(s)F(s) + T2(s)G(s)] = T3(s)T1(s)F(s) + T3(s)T2(s)G(s)

So the diagram on the right is equivalent to the one on the left.
A similar technique can be applied to part (b) of Figure 9.5.6 by following the

flow of the input F(s) to each output. The lefthand and righthand figures are equivalent

Figure 9.5.6 (a) Relocating a summer.
(b) Relocating a take-off point.

(a)

(b)

T1(s)
F(s) X(s) X(s)

T3(s)

T2(s)

G(s)

� �

T1(s)
F(s) X(s)

T3(s)

T2(s)

Y(s)

T1(s)
F(s)

T3(s)

T2(s)T3(s)

G(s)

��

T1(s)
F(s) X(s)

T3(s)

Y(s)

T2(s)
T3(s)
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because each results in the same input-output equations. For the figure on the left,

X (s) = T3(s)T1(s)F(s) Y (s) = T2(s)T1(s)F(s)

For the figure on the right,

X (s) = T3(s)T1(s)F(s) Y (s) = T2(s)

T3(s)
T3(s)T1(s)F(s) = T2(s)T1(s)F(s)

Rearranging diagrams sometimes simplifies the process of obtaining the transfer
functions. When doing so, following the flow of a variable helps to avoid mistakes.

Block diagrams are especially useful when the model consists of more than one
differential equation or has more than one input or output. For example, consider the
model

ẋ = −3y + f (t) ẏ = −5y + 4x + g(t)

which has two inputs, f (t) and g(t). Suppose we are interested in the variable y as the
output. Then the diagram in Figure 9.5.7a is appropriate. Notice that it shows how y
affects itself through the feedback loop with the gain of 3, by first affecting x .

Usually we try to place the output variable on the right side of the diagram, with its
arrow pointing to the right. We try to place one input on the left side with its arrow point
to the right, with a second input, if any, placed at the top of the diagram. The diagram
shown in Figure 9.5.7a follows these conventions, which have been established to make
it easier for others to interpret your diagrams. Just as in the English language we read
from left to right, so the main “flow” of the cause and effect in a diagram (from input
to output) should be from left to right if possible.

If instead, we choose the output to be x , then Figure 9.5.7b is more appropriate.

TRANSFER FUNCTIONS FROM BLOCK DIAGRAMS

Sometimes we are given a block diagram and asked to find either the system’s transfer
function or its differential equation. There are several ways to approach such a problem;
the appropriate method depends partly on the form of the diagram and partly on personal
preference. The following examples illustrate the process.

Figure 9.5.7 A diagram with
two inputs.

(a)
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Y(s)�F(s) X(s) 1
s

� 1
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�G(s)
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1
s

� 1
s
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3
X(s)
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Series Blocks and Loop Reduction EXAMPLE 9.5.1

■ Problem
Determine the transfer function X (s)/F(s) for the system whose diagram is shown in Fig-
ure 9.5.8a.

■ Solution
When two blocks are connected by an arrow, they can be combined into a single block that
contains the product of their transfer functions. The result is shown in part (b) of the figure. This
property, which is called the series or cascade property, is easily demonstrated. In terms of the
variables X (s), Y (s), and Z(s) shown in the diagram, we can write

X (s) = 1

s + 12
Y (s) Y (s) = 1

s + 6
Z(s)

Eliminating Y (s) we obtain

X (s) = 1

s + 6

1

s + 12
Z(s)

This gives the diagram in part (b) of the figure. So we see that combining two blocks in series
is equivalent to eliminating the intermediate variable Y (s) algebraically.

To find the transfer function X (s)/F(s), we can write the following equations based on the
diagram in part (b) of the figure:

X (s) = 1

(s + 6)(s + 12)
Z(s) Z(s) = F(s) − 8X (s)

Eliminating Z(s) from these equations gives the transfer function

X (s)

F(s)
= 1

s2 + 18s + 80

(b)

1
(s � 6)(s � 12)

X(s)

�

Z(s)F(s) �

8

(a)

X(s)

�

Z(s) 1
s � 6

1
s � 12

Y(s)F(s) �

8

Figure 9.5.8 An example of
series combination and loop
reduction.

Using Integrator Outputs EXAMPLE 9.5.2

■ Problem
Determine the model for the output x for the system whose diagram is shown in Figure 9.5.9.

�

F(s) � �W(s) Y(s)1
s

G(s)

�� 1
s

�

3

4

7
X(s)

Figure 9.5.9 Diagram for
Example 9.5.2.
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■ Solution
The input to an integrator block 1/s is the time derivative of the output. Thus, by examining the
inputs to the two integrators shown in the diagram we can immediately write the time-domain
equations as follows.

ẋ = g(t) + y ẏ = 7w − 3x w = f (t) − 4x

We can eliminate the variable w from the last two equations to obtain ẏ = 7 f (t) − 31x . Thus,
the model in differential equation form is

ẋ = g(t) + y ẏ = 7 f (t) − 31x

To obtain the model in transfer function form we first transform the equations.

s X (s) = G(s) + Y (s) sY (s) = 7F(s) − 31X (s)

Then we eliminate Y (s) algebraically to obtain

X (s) = 7

s2 + 31
F(s) + s

s2 + 31
G(s)

There are two transfer functions, one for each input-output pair. They are

X (s)

F(s)
= 7

s2 + 31

X (s)

G(s)
= s

s2 + 31

Sometimes, we need to obtain the expressions not for just the output variables,
but also for some internal variables. The following example illustrates the required
method.

EXAMPLE 9.5.3 Deriving Expressions for Internal Variables

■ Problem
Derive the expressions for C(s), E(s), and M(s) in terms of R(s) and D(s) for the diagram in
Figure 9.5.10.

■ Solution
Start from the right-hand side of the diagram and work back to the left until all blocks and
comparators are accounted for. This gives

C(s) = 7

s + 3
[M(s) − D(s)] (1)

M(s) = K

4s + 1
E(s) (2)

E(s) = R(s) − C(s) (3)

Figure 9.5.10 Block diagram
for Example 9.5.3.

1
4s � 1

7
s � 3K

� �

D(s)

E(s) M(s)R(s) �

�

C(s)
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Multiply both sides of equation (1) by s + 3 to clear fractions, and substitute M(s) and
E(s) from equations (2) and (3).

(s + 3)C(s) = 7M(s) − 7D(s)

= 7
K

4s + 1
E(s) − 7D(s) = 7K

4s + 1
[R(s) − C(s)] − 7D(s)

Multiply both sides by 4s + 1 to clear fractions, and solve for C(s) to obtain:

C(s) = 7K

4s2 + 13s + 3 + 7K
R(s) − 7(4s + 1)

4s2 + 13s + 3 + 7K
D(s) (4)

The characteristic polynomial is found from the denominator of either transfer function. It is
4s2 + 13s + 3 + 7K .

The equation for E(s) is

E(s) = R(s) − C(s)

= R(s) − 7K

4s2 + 13s + 3 + 7K
R(s) + 7(4s + 1)

4s2 + 13s + 3 + 7K
D(s)

= 4s2 + 13s + 3

4s2 + 13s + 3 + 7K
R(s) + 7(4s + 1)

4s2 + 13s + 3 + 7K
D(s)

Because 4s2 + 13s + 3 can be factored as (4s + 1)(s + 3), the equation for M(s) can be
expressed as

M(s) = K

4s + 1
E(s)

= K

4s + 1

[
(4s + 1)(s + 3)

4s2 + 13s + 3 + 7K
R(s) + 7(4s + 1)

4s2 + 13s + 3 + 7K
D(s)

]

= K (s + 3)

4s2 + 13s + 3 + 7K
R(s) + 7K

4s2 + 13s + 3 + 7K
D(s)

Note the cancellation of the term 4s + 1. You should always look for such cancellations.
Otherwise, the denominator of the transfer functions can appear to be of higher order than the
characteristic polynomial.

9.6 MODELING SYSTEMS WITH BLOCK DIAGRAMS
One application of transfer functions is to provide a graphical representation of the
system’s dynamics in the form of a block diagram that illustrates the cause-and-effect
relations operating in a particular system. The algebraic representation of the system’s
equations in terms of transfer functions enables easier manipulation for analysis and
design purposes, and the graphical representation allows the engineer to see the inter-
action between the system’s components.

OP-AMP CIRCUITS

A block diagram helps to represent the function of op amp circuits. The multiplier
circuit treated in Chapter 6 consists of a feedback resistor and an input resistor. The
multiplier can be modified to act as an adder (Figure 9.6.1a). Its block diagram is shown
in Figure 9.6.1b. The output relation for the adder is

vo =
(

R3

R1
v1 + R3

R2
v2

)
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Figure 9.6.1 An op-amp
adder. (a) Circuit. (b) Block
diagram.

(a)

v2 R2

vi

R3

R1 vo

R

R

(b)

V1(s) �

�

Multiplier

Inverter

V2(s)

�1
Vo(s)

�1
R3
R1

R3
R2

Figure 9.6.2 An op-amp
subtractor. (a) Circuit. (b)
Block diagram.

(a)

v2

R2

v1

R

R vo

R3

R1

R3
R1

R3
R2

�1 �1
V1(s) Vo(s)

V2(s)

�

�
Inverter

Multiplier

(b)

The multiplier can be modified to act as a subtractor if the inverter is used at the
input v1 (Figure 9.6.2a). Its block diagram is shown in Figure 9.6.2b. The output relation
for the subtractor is

vo =
(

R3

R1
v1 − R3

R2
v2

)

We can make a comparator by selecting R1 = R2 = R3, in which case

vo = v1 − v2

In Chapter 10 we will see how this is used in a control system.
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Figure 9.6.3 A feedback amplifier.

vi

R1

R2

voG

Figure 9.6.4 Block diagram of a
feedback amplifier.

R2
R1

Vo(s)Vi(s) �

�
G

Figure 9.6.5 An RLC circuit with
two voltage sources.

�

�

�

�

v1 v2

i1 i2

i3

R C

L

Figure 9.6.6 Block diagram of an RLC circuit
with two voltage sources.

1
LRCs2 � Ls � R

I3(s)V1(s)

V2(s)

� �

RCs

FEEDBACK AMPLIFIER

The equation for the feedback amplifier discussed in Example 6.2.6 and shown again
in Figure 9.6.3 is

vo = G (vi − R2vo/R1)

The block diagram of this device is given in Figure 9.6.4. It shows the presence and
action of the negative feedback loop, by which the output voltage vo is used to modify
the behavior of the device.

CIRCUIT MODELS

The following model of the circuit shown in Figure 9.6.5 was derived in Example 6.2.13.

L RC
d2i3

dt2
+ L

di3

dt
+ Ri3 = v1 + RC

dv2

dt
The transfer function for the two inputs v1 and v2 are

I3(s)

V1(s)
= 1

L RCs2 + Ls + R

I3(s)

V2(s)
= RCs

L RCs2 + Ls + R

Figure 9.6.6 shows the corresponding block diagram.

Two Coupled RC Loops EXAMPLE 9.6.1

■ Problem
Draw the block diagram for the circuit shown in Figure 9.6.7. This circuit was analyzed in
Example 6.3.1. The input is vs and the output is vo.
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Figure 9.6.7 Coupled RC
loops.

�

�

vs

i2

i1 R Rv1

C C
i3

vo

■ Solution
From equation (6) in Example 6.3.1

dv1

dt
= 1

RC
(vs − 2v1 + vo)

This gives

(RCs + 2)V1(s) = Vs(s) + Vo(s)

or

V1(s) = 1

RCs + 2
[Vs(s) + Vo(s)] (1)

From equation (3) in Example 6.3.1

dvo

dt
= 1

RC
(v1 − vo)

This gives

(RCs + 1)V1(s) = V1(s)

or

V0(s) = 1

RCs + 1
V1(s) (2)

Equations (1) and (2) form the basis of the block diagram shown in Figure 9.6.8. The diagram
can be reduced to find the transfer function, which is

Vo(s)

Vs(s)
= 1

R2C2s2 + 3RCs + 1

Figure 9.6.8 Block diagrams of coupled
RC loops.

1
R

1
R

1
Cs

1
Cs

1
RCs � 2

1
RCs � 1

Vs(s) Vo(s)I2(s) I3(s)V1(s)

2

� �

�

�

��

(a)

(b)

Vo(s)V1(s)Vs(s) �

�
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V(s)U(s) W(s)
T1(s) T2(s)

Figure 9.6.9 Block diagram
of two series elements.

LOADING EFFECTS AND BLOCK DIAGRAMS

Suppose two elements whose individual transfer functions are T1(s) and T2(s) are
physically connected end-to-end so that the output of the lefthand element becomes the
input to the righthand element. We can represent this connection by the block diagram
shown in Figure 9.6.9, only if the output w of the righthand element does not affect the
inputs u and v or the behavior of the lefthand element. If it does, the righthand element
is said to “load” the lefthand element. The following example illustrates this point.

Two Uncoupled RC Loops EXAMPLE 9.6.2

■ Problem
The circuit shown in Figure 9.6.10a consists of two series RC circuits wired so that the output
voltage of the first circuit is the input voltage to an isolation amplifier. The output voltage of the
amplifier is the input voltage to the second RC circuit. The amplifier has a voltage gain G; that
is, v2(t) = Gv1(t). Derive the transfer function Vo(s)/Vs(s) for this circuit, and for the case
G = 1 compare it with the transfer function of the circuit shown in Figure 9.6.7.

■ Solution
The amplifier isolates the first RC loop from the effects of the second loop; that is, the amplifier
prevents the voltage v1 from being affected by the second RC loop. This in effect creates two
separate loops with an intermediate voltage source v2 = GV1, as shown in Figure 9.6.10b. Thus,
using the results from Example 6.2.8 for the lefthand RC loop, we obtain

V1(s)

Vs(s)
= 1

RCs + 1

For the righthand RC loop,

Vo(s)

V2(s)
= 1

RCs + 1

For the amplifier with gain G,

V2(s) = GV1(s)

Figure 9.6.10 Two RC loops with an
isolation amplifier.

�

�

vs vov1 v2C CG

R
R

(a)

v1

�

�

vs C

R

vo

�

vs C

R

�

�

Gv1

(b)
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Figure 9.6.11 Block diagrams of two RC
loops with an isolation amplifier.

G
(RCs � 1)(RCs � 1)

1
RCs � 1

1
RCs � 1

G
Vs(s) Vo(s)Vo(s)V2(s)V1(s)Vs(s)

(a) (b)

To obtain the transfer function Vo(s)/Vs(s), eliminate the variables V1(s) and V2(s) from these
equations as follows:

Vo(s)

Vs(s)
= Vo(s)

V2(s)

V2(s)

V1(s)

V1(s)

Vs(s)
= 1

RCs + 1
G

1

RCs + 1
= G

R2C2s2 + 2RCs + 1
(1)

This procedure is described graphically by the block diagram shown in Figure 9.6.11a. The three
blocks can be combined into one block as shown in part (b) of the figure.

The transfer function of the circuit shown in Figure 9.6.7 was derived in Example 9.6.2.
It is

Vo(s)

Vs(s)
= 1

R2C2s2 + 3RCs + 1
(2)

Note that it is not the same as the transfer function given by equation (1) with G = 1.
A common mistake is to obtain the transfer function of physical elements connected end-

to-end by multiplying their transfer functions. This is equivalent to treating them as independent
devices, which they may not be if each device “loads” the adjacent device. Here the “device” is
an RC loop, and we have seen that in Figure 9.6.7 the righthand loop “loads” the lefthand loop,
thus changing the current and voltage in that loop. An isolation amplifier prevents a loop from
loading an adjacent loop, and when such amplifiers are used, we may multiply the loop transfer
functions to obtain the overall transfer function.

This mistake is sometimes made when drawing block diagrams. The circuit of Figure 9.6.10
can be represented by the block diagram of Figure 9.6.11, where the transfer function of each
block can be multiplied to obtain the overall transfer function Vo(s)/Vi (s). However, the circuit
of Figure 9.6.7 cannot be represented by a simple series of blocks because the output voltage
vo affects the voltage v1. To show this effect requires a feedback loop, as shown previously in
Figure 9.6.8.

In general, even though elements are physically connected end-to-end, we cannot represent
them by a series of blocks if the output of one element affects its input or the behavior of any
preceding elements.

ARMATURE-CONTROLLED MOTOR

The equations of an armature-controlled dc motor were derived in Section 6.4. They
are (6.4.5) and (6.4.6) and are repeated here.

va − Raia − La
dia

dt
− Kbω = 0 (9.6.1)

I
dω

dt
= KT ia − cω − TL (9.6.2)

Figure 9.6.12 is a block diagram of an armature-controlled motor with motor speed
as the output. The equations used to obtain the diagram can be obtained by transforming
the motor equations using zero initial conditions. Solve (9.6.1) for Ia(s).

Ia(s) = 1

Las + Ra
[Va(s) − Kb�(s)] (9.6.3)
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1
Las � Ra

1
Is � c

KT

Kb

Va(s) Ia(s)

TL(s)

T(s) 	(s)�

�

� �

Figure 9.6.12 Block diagram
of an armature-controlled dc
motor.

This equation is the basis for the left half of the diagram. Now solve (9.6.2) for �(s):

�(s) = 1

I s + c
[KT Ia(s) − TL(s)] (9.6.4)

This equation is the basis for the right half of the diagram.
The diagram shows how the back emf acts as a negative feedback loop to slow

down the motor’s speed. It also shows that the dynamics of the motor are affected
by the dynamics of the armature circuit, whose time constant is La/Ra , and by the
dynamics of the mechanical subsystem, whose time constant is I/c.

FIELD-CONTROLLED MOTOR

The following equations of a field-controlled dc motor were derived in Section 6.4,
Example 6.4.2.

v f = R f i f + L f
di f

dt
= 0 (9.6.5)

I
dω

dt
= KT i f − cω − TL (9.6.6)

The block diagram of a field-controlled motor is shown in Figure 9.6.13. To see
how it was obtained, take the transform of (9.6.5) with zero initial conditions, and solve
for I f (s) to obtain

I f (s) = 1

L f s + R f
V f (s) (9.6.7)

This equation was used to obtain the left side of the block diagram. Take the transform
of (9.6.6) with zero initial conditions and solve for �(s) to obtain

�(s) = 1

I s + c

[
KT I f (s) − TL(s)

]
This equation was used to obtain the right side of the block diagram. Note that this
motor has no feedback loop because it does not have back emf.

From (9.6.7) we see that the transfer function for the field current is

I f (s)

V f (s)
= 1

L f s + R f
(9.6.8)

1
Lf s � Rf

1
Is � c

KT

Vf (s) If (s)

TL(s)

T(s) 	(s)� �

Figure 9.6.13 Block diagram
of a field-controlled dc motor.
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The characteristic root is s = −R f /L f , and the time constant is L f /R f . Thus, if
v f (t) is a step function, the field current will take approximately 4L f /R f to reach the
constant value of i f = v f /R f . Note that, unlike the armature-controlled motor, the
current in the field-controlled motor is not affected by the load torque TL , because there
is no feedback loop due to back emf.

From the block diagram we can easily obtain the transfer functions for the speed.
Setting TL(s) = 0 temporarily and using the series law for diagram reduction, we find
that

�(s)

V f (s)
= KT /R f c

(
L f

R f
s + 1)( I

c s + 1)
(9.6.9)

The characteristic roots are s = −R f /L f and s = −c/I , which are real. So the speed
ω will not oscillate if the applied voltage v f is a step function. Its response time is
governed by the larger of the two time constants, I/c and L f /R f , which are due to
the mechanical and electrical subsystems respectively. In most cases, the largest time
constant is I/c. The real roots are due to the fact that the current equation (9.6.5) does
not contain the speed ω, and thus is not coupled to the speed equation (9.6.6).

Setting V (s) = 0 in the block diagram, we obtain

�(s)

TL(s)
= − 1

I s + c
(9.6.10)

The time constant is I/c.
If the time constant of the electrical subsystem is small compared to that of the

mechanical subsystem, the speed response can be approximately described by the first-
order model

�(s)

V f (s)
= KT /R f c

I
c s + 1

= KT /R f

I s + c
,

L f

R f
<<

I

c
(9.6.11)

where the motor torque is now given approximately by

T (s) = KT

R f
V f (s) (9.6.12)

BLOCK DIAGRAMS OF LIQUID-LEVEL SYSTEMS

The importance of the nonloading assumption is easily seen by examining some liquid-
level systems. The single capacitance system shown in Figure 9.6.14a is analogous to
a single RC loop. If q and qo are volume flow rates, then the model is

A
dh

dt
= q − g

R
h

Figure 9.6.14 Block diagrams
for a single-capacitance fluid
system. a) Liquid-level system
showing the volume flow rates
q and qo . b) Block diagram
with height h as output. c)
Block diagram with height qo

as output.

q

qo
R

Ah

(b)(a) (c)

Q(s) H(s)R
RAs � g

Q(s) Qo(s)g
RAs � g
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and the transfer function for the height h as the output is
H(s)

Q(s)
= R

R As + g
(9.6.13)

The transfer function for the volume flow rate qo = gh/R as the output is
Qo(s)

Q(s)
= g

R As + g
(9.6.14)

The corresponding block diagrams are shown in Figures 9.6.14b and 9.6.14c.
Now consider the two-capacitance system shown in Figure 9.6.15a. This is analo-

gous to the two uncoupled RC loops shown in Figure 9.6.10a because the height h1 and
the volume flow rate q1 are not affected by the height h2. Thus we may represent the
system by connecting two block diagrams of the types shown in 9.6.14b and 9.6.14c.
The result is shown in Figure 9.6.15b.

Next consider the two-capacitance system shown in Figure 9.6.16a. This is analo-
gous to the two coupled RC loops shown in Figure 9.6.7 because the height h1 and the
volume flow rate q1 are affected by the height h2. The equations are

A1
h1

dt
= q − q1

q1 = g

R1
(h1 − h2)

A2
h2

dt
= q1 − g

R2
h2

Transformed, these become

H1(s) = 1

A1s
[Q(s) − Q1(s)]

Q1(s) = g

R1
[H1(s) − H2(s)]

H2(s) = R2

R2 A2s + g
Q1(s)

(a)

(b)

Q(s) g
R1A1s � g

Q1(s) H2(s)R2
R2A2s � g

q1

qo
R2

h2 A2

q

R1

h1 A1

Figure 9.6.15 Block diagram
for an unconnected,
double-capacitance fluid
system. a) Liquid-level system
showing the volume flow rates
q , q1, and qo . b) Block diagram
with the height h2 as output.
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Figure 9.6.16 Block diagram
for a connected,
double-capacitance fluid
system. a) Liquid-level system
showing the volume flow rates
q , q1, and qo . b) Block diagram
with the height h2 as output.

(a)

q

qo
q1

h1
h2

(b)

1
A1s

R2
R2A2s � g

H2(s)�

�

�Q(s)
Q1(s)

H1(s) g
R1

�

A2A1 R1 R2

These latter three equations form the basis of the diagram shown in Figure 9.6.16b.
Such a diagram will be useful for designing a system to control the heights h1 or h2.
This will be covered in Chapter 10.

9.7 MATLAB APPLICATIONS
MATLAB has several features for determining response characteristics, such as peak
time and maximum overshoot, as well as functions for doing block-diagram algebra.

COMPUTING RESPONSE CHARACTERISTICS WITH MATLAB

When the step(sys) function puts a plot on the screen, you may use the plot to
calculate the settling time, the 10% to 90% rise time, the maximum overshoot, and
the peak time by right-clicking anywhere within the plot area. This brings up a menu.
Choose “Characteristics” to obtain a submenu that contains the response characteristics.
When you select a specific characteristic, say “Peak Response,” MATLAB puts a large
dot on the peak and displays dashed lines indicating the value of the overshoot and the
peak time. Move the cursor over this dot to see a display of the values. You can use the
other solvers in the same way, although the menu choices may be different. For example,
peak response and settling time are available when you use the impulse(sys)
function, but not the rise time.

You can read values off the curve by placing the cursor on the curve at the desired
point. You can also move the cursor along the curve and read the values as they change.

BLOCK DIAGRAM ALGEBRA USING MATLAB

MATLAB can be used to perform block diagram algebra if all the gains and transfer
function coefficients have numerical values. You can combine blocks in series or in
feedback loops using the series and feedback functions to obtain the transfer
function and the state-space model.

If the LTI models sys1 and sys2 represent blocks in series, their combined
transfer function can be obtained by typing sys3 = series(sys1,sys2). A
simple gain need not be converted to a LTI model, and does not require the series



palm-38591 book December 17, 2008 12:29

9.8 Simulink Applications 533

function. For example, if the first system is a simple gain K , use the multiplication
symbol * and type sys3 = K*sys2.

If the LTI model sys2 is in a negative feedback loop around the LTI model
sys1, then type sys3 = feedback(sys1,sys2) to obtain the LTI model of
the closed-loop system. If the feedback loop is positive, use the syntax sys3 =
feedback(sys1,sys2,+1).

You can extract the numerator and denominator of the closed-loop transfer function
by typing [num,den] = tfdata(sys3,'v'). You can then find the characteris-
tic roots by typing roots(den).

9.8 SIMULINK APPLICATIONS
As we have seen throughout our study, linear or linearized models are useful for pre-
dicting the behavior of dynamic systems because powerful analytical techniques are
available for such models, especially when the inputs are relatively simple functions
such as the impulse, step, ramp, and sine. Often in the design of an engineering sys-
tem, however, we must eventually deal with nonlinearities in the system and with more
complicated inputs such as trapezoidal functions, and this must often be done with
simulation. In this section, we introduce four additional Simulink elements that enable
us to model a wide range of nonlinearities and input functions.

VEHICLE SUSPENSION RESPONSE

As our example, we will use the single-mass suspension model shown in Figure 9.8.1,
where the spring and damper elements have the nonlinear models shown in Figures 9.8.2
and 9.8.3. These models represent a hardening spring and a degressive damper. In
addition, the damper model is asymmetric. It represents a damper whose damping
during rebound is higher than during jounce (to minimize the force transmitted to the
passenger compartment when the vehicle strikes a bump). The bump is represented
by the trapezoidal function y(t) shown in Figure 9.8.4. This function corresponds
approximately to a vehicle traveling at 30 mi/h over a 0.2-m-high road surface elevation
48 m long.

The system model from Newton’s law is

mẍ = fs + fd (9.8.1)

where m = 400 kg, fs is the nonlinear spring function shown in Figure 9.8.2, and fd is
the nonlinear damper function shown in Figure 9.8.3. The corresponding simulation
diagram is shown in Figure 9.8.5.

m
x

k c

Body

Suspension

y
Road

(a)

m

fs fd

(b)

Datum level

Figure 9.8.1 Single-mass
suspension model.
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Figure 9.8.2 Hardening
spring model.

�0.5 �0.3 500

4500

Spring force (N)
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�4500
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Figure 9.8.3 Degressive
damper model.
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Figure 9.8.6 Simulink diagram for
the suspension model.
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This diagram shows that we need to compute ẏ. Because Simulink uses numeri-
cal and not analytical methods, it computes derivatives only approximately, using the
Derivative block, which is in the Continuous library. We must keep this in mind when
using rapidly changing or discontinuous inputs. The Derivative block has no settings,
so merely place it in the Simulink diagram as shown in Figure 9.8.6.

Next place the Signal Builder block, which is in the Sources library, then double-
click on it. A plot window appears that enables you to place points to define the
input function. Follow the directions in the window to create the function shown in
Figure 9.8.4. The spring function fs is created with the Lookup Table block, which
is in the Lookup Tables library. After placing it, double-click on it and enter [-0.5,
-0.1, 0, 0.1, 0.5] for the Vector of input values and [-4500,
-500, 0, 500, 4500] for the Vector of output values. Use the default
settings for the remaining parameters.

Place the two integrators as shown, and make sure the initial values are set to 0. Then
place the Gain block and set its gain to 1/400. The To Workspace block and the Clock
will enable us to plot x(t) and y(t)− x(t) versus t in the MATLAB Command window.

CREATING FUNCTIONS

In Section 7.10 we used the Fcn block to implement the signed square-root function.
We cannot use this block for the damper function shown in Figure 9.8.3 because we
must write a user-defined function to describe it. This function is as follows.

function f = damper(v)
if v <= 0

f = -800*(abs(v)).^(0.6);
else

f = 200*v.^(0.6);
end
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Figure 9.8.7 Response plot
for the suspension model.
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Create and save this function file. After placing the MATLAB Function block, double-
click on it and enter its name damper. Make sure Output dimensions is set to
-1 and the Output signal type is set to auto.

The Fcn, MATLAB Function, Math Function, and S-Function blocks can be used
to implement functions, but each has its advantages and limitations. The Fcn block can
contain an expression, as we saw in Section 7.10, but its output must be a scalar, and it
cannot call a function file. The MATLAB Function block is slower than the Fcn block,
but its output can be an array and it can call a function file. The Math Function block
can produce an array output but it is limited to a single MATLAB function and cannot
use an expression or call a file. The S-Function block provides more advanced features,
such as the ability to use C language code.

The Simulink model when completed should look like Figure 9.8.6. After running
it, you can plot the response x(t) in the Command window as follows:


x = simout(:,1);

t = simout(:,3);

plot(t,x),grid,xlabel('t (s)'),ylabel('x (m)')

The result is shown in Figure 9.8.7. The maximum overshoot is seen to be (0.26−0.2) =
0.06 m, but the maximum undershoot is seen to be much greater, −0.168 m.

9.9 CHAPTER REVIEW
This chapter emphasizes understanding system behavior in the time domain. The forcing
functions commonly used to model real inputs or to test a system’s response in the
time domain are the impulse, the step, and the ramp functions. The impulse models a
suddenly applied and suddenly removed input. The step function models a suddenly
applied input that remains constant. The ramp models an input that is changing at a
constant rate.

Sections 9.1 and 9.2 treated the response of first- and second-order systems. The
time constant τ , the damping ratio ζ, and the undamped natural frequency ωn are
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important for assessing system response. In Section 9.3 we introduced the concepts of
maximum overshoot Mp, peak time tp, delay time td , rise time tr , and settling time ts .
These are useful for describing and for specifying the step response.

Response prediction cannot be made unless we have numerical values for the
model’s coefficients, and Section 9.4 treated parameter estimation in the time domain.

Section 9.5 introduced block diagrams, which are useful for understanding how
subsystems interact with one another. Section 9.6 presented a variety of applications of
block diagram models.

Section 9.7 showed how to use MATLAB to determine transient response char-
acteristics and how to do block diagram algebra with MATLAB. Finally, Section 9.8
introduced several Simulink blocks that are useful for simulating nonlinear systems or
systems with complicated inputs.

Now that you have completed Chapter 9, you should be able to do the following:

1. Obtain and interpret the free, step, ramp, and impulse response of linear models.
2. Compute and apply the time constant τ, the damping ratio ζ, and the undamped

natural frequency ωn to assess system response.
3. Compute and apply maximum overshoot Mp, peak time tp, delay time td , rise

time tr , and settling time ts to describe and assess system response.
4. Use time-domain response data to estimate coefficients in dynamic models.
5. Interpret and draw block diagrams, given a system’s equations or transfer

functions.
6. Use MATLAB to determine transient response characteristics and to do block

diagram algebra.
7. Use Simulink to simulate nonlinear systems and systems with complicated inputs.

PROBLEMS
Section 9.1 Response of First-Order Systems

9.1 A rocket sled has the following equation of motion: 6v̇ = 2700 − 24v. How
long must the rocket fire before the sled travels 2000 m? The sled starts from
rest.

9.2 Suppose the rocket motor in Problem 9.1 takes 0.04 s to reach a constant thrust
of 2700 N. Is a step function a good representation of this input? Support your
answer with a calculation.

9.3 For each of the following models, obtain the free response and the time
constant, if any.
a. 16ẋ + 14x = 0, x(0) = 6
b. 12ẋ + 5x = 15, x(0) = 3
c. 13ẋ + 6x = 0, x(0) = −2
d. 7ẋ − 5x = 0, x(0) = 9

9.4 For the model 2ẋ + x = 10 f (t),
a. If x(0) = 0 and f (t) is a unit step, what is the steady-state response xss?

How long does it take before 98% of the difference between x(0) and xss

is eliminated?
b. Repeat part (a) with x(0) = 5.
c. Repeat part (a) with x(0) = 0 and f (t) = 20us(t).
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9.5 Obtain the steady-state response of each of the following models, and estimate
how long it will take the response to reach steady-state.
a. 6ẋ + 5x = 20us(t), x(0) = 0
b. 6ẋ + 5x = 20us(t), x(0) = 1
c. 13ẋ − 6x = 18us(t), x(0) = −2

9.6 Obtain the total response of the following models.
a. 6ẋ + 5x = 20us(t), x(0) = 0
b. 6ẋ + 5x = 20us(t), x(0) = 1
c. 13ẋ − 6x = 18us(t), x(0) = −2

9.7 A certain rotational system has the equation of motion

100
dω

dt
+ 5ω = T (t)

where T (t) is the torque applied by an electric motor, as shown in Figure 9.1.6.
The model of the motor’s field current i f in amperes is

0.002
di f

dt
+ 4i f = v(t)

where v(t) is the voltage applied to the motor. The motor torque constant is
KT = 15 N · m/A. Suppose the applied voltage is 12us(t) V. Determine the
steady-state speed of the inertia and estimate the time required to reach that
speed.

9.8 The RC circuit shown in Figure 9.1.2c has the parameter values R = 3 × 106 �

and C = 1 μF. If the inital capacitor voltage is 6 V and the applied voltage is
vs(t) = 12us(t), obtain the expression for the capacitor voltage response v(t).

9.9 The liquid-level system shown in Figure 9.1.2d has the parameter values
A = 50 ft2 and R = 60 ft−1sec−1. If the inflow rate is qv(t) = 10us(t) ft3/sec,
and the initial height is 2 ft, how long will it take for the height to reach 15 ft?

9.10 The immersed object shown in Figure 9.1.2e is steel and has a mass of 100 kg
and a specific heat of cp = 500 J/kg · ◦C. Assume the thermal resistance is
R = 0.09◦C · s/J. The inital temperature of the object is 20◦ when it is
dropped into a large bath of temperature 80◦C. Obtain the expression for the
temperature T (t) of the object after it is dropped into the bath.

9.11 Compare the responses of 2v̇ + v = ġ(t) + g(t) and 2v̇ + v = g(t) if
g(t) = 10us(t) and v(0) = 5.

9.12 Compare the responses of 5v̇ + v = ġ + g and 5v̇ + v = g for t ≥ 0 if
v(0) = 5 and g = 10 for −∞ ≤ t ≤ ∞.

9.13 Consider the following model:

6v̇ + 3v = ġ(t) + g(t)

where v(0) = 0.
a. Obtain the response v(t) if g(t) = us(t).
b. Obtain the response v(t) to the approximate step input g(t) = 1 − e−5t

and compare with the results of part (a).
9.14 Obtain the response of the model 2v̇ + v = f (t), where f (t) is an impulse of

strength 5 and v(0) = 3.
9.15 Obtain the response of the model 2v̇ + v = f (t), where f (t) = 5t and

v(0) = 0. Identify the transient and steady-state responses.
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9.16 Obtain the response of the model 9v̇ + 3v = f (t), where f (t) = 7t and
v(0) = 0. Is steady-state response parallel to f (t)?

Section 9.2 Response of Second-Order Systems

9.17 Obtain the oscillation frequency and amplitude of the response of the model
3ẍ + 12x = 0 for (a) x(0) = 5 and ẋ(0) = 0 and (b) x(0) = 0 and ẋ(0) = 5.

9.18 Obtain the response of the following models with the initial conditions:
x(0) = 0 and ẋ(0) = 1.
a. ẍ + 4ẋ + 8x = 0
b. ẍ + 8ẋ + 12x = 0
c. ẍ + 4ẋ + 4x = 0

9.19 Obtain the response of the following models with zero initial conditions:
a. ẍ + 4ẋ + 8x = 2us(t)
b. ẍ + 8ẋ + 12x = 2us(t)
c. ẍ + 4ẋ + 4x = 2us(t)

9.20 Obtain the response of the following models with the initial conditions:
x(0) = 1 and ẋ(0) = −1.
a. 3ẍ + 21ẋ + 30x = 0
b. 5ẍ + 20ẋ + 20x = 0
c. 2ẍ + 8ẋ + 58x = 0

9.21 Obtain the unit-step response of the following models with zero initial
conditions:
a. 3ẍ + 21ẋ + 30x = f (t)
b. 5ẍ + 20ẋ + 20x = f (t)
c. 2ẍ + 8ẋ + 58x = f (t)

9.22 Find the response for the following models. The initial conditions are zero.
a. 3ẍ + 21ẋ + 30x = 4t
b. 5ẍ + 20ẋ + 20x = 7t
c. 2ẍ + 8ẋ + 58x = 5t

9.23 Suppose the input f (t) to the following model is a ramp function: f (t) = at .
Assuming that the model is stable, for what values of a, m, c, and k will the
steady-state response be parallel to the input? For this case, what is the
steady-state difference between the input and the response?

mẍ + cẋ + kx = f (t)

9.24 If applicable, compute ζ , τ , ωn , and ωd for the following roots, and find the
corresponding characteristic polynomial.
1. s = −2 ± 6 j
2. s = 1 ± 5 j
3. s = −10, −10
4. s = −10

9.25 If applicable, compute ζ , τ , ωn , and ωd for the dominant root in each of the
following sets of characteristic roots.
1. s = −2, −3 ± j
2. s = −3, −2 ± 2 j
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9.26 A certain fourth-order model has the roots

s = −2 ± 4 j, −10 ± 7 j

Identify the dominant roots and use them to estimate the system’s time
constant, damping ratio, and oscillation frequency.

9.27 Given the model

ẍ − (μ + 2)ẋ + (2μ + 5)x = 0

a. Find the values of the parameter μ for which the system is
1. Stable
2. Neutrally stable
3. Unstable

b. For the stable case, for what values of μ is the system
1. Underdamped?
2. Overdamped?

9.28 The characteristic equation of a certain system is 3s2 + cs + 27 = 0. Obtain
the free response for the following values of damping: c = 0, 9, 18, and 22.
Use the initial conditions x(0) = 1 and ẋ(0) = 0.

9.29 The characteristic equation of a certain system is 4s2 + 6ds + 25d2 = 0,
where d is a constant. (a) For what values of d is the system stable? (b) Is
there a value of d for which the free response will consist of decaying
oscillations?

9.30 The characteristic equation of a certain system is s2 + 6bs + 5b − 10 = 0,
where b is a constant. (a) For what values of b is the system stable? (b) Is there
a value of b for which the free response will consist of decaying oscillations?

9.31 A certain system has two coupled subsystems. One subsystem is a rotational
system with the equation of motion:

50
dω

dt
+ 10ω = T (t)

where T (t) is the torque applied by an electric motor, Figure 9.1.6. The
second subsystem is a field-controlled motor. The model of the motor’s field
current i f in amperes is

0.001
di f

dt
+ 5i f = v(t)

where v(t) is the voltage applied to the motor. The motor torque constant is
KT = 25 N · m/A. Obtain the damping ratio ζ , time constants, and undamped
natural frequency ωn of the combined system.

9.32 A certain armature-controlled dc motor has the characteristic equation

La I s2 + (Ra I + cLa)s + cRa + Kb KT = 0

Using the following parameter values:

Kb = KT = 0.1 N · m/A I = 6 × 10−5 kg · m2

Ra = 0.6 � La = 4 × 10−3 H

obtain the expressions for the damping ratio ζ and undamped natural
frequency ωn in terms of the damping c. Assuming that ζ < 1, obtain the
expression for the time constant.
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9.33 Obtain the response for the model ẍ + 5ẋ + 4x = ẏ + 3y if y(t) is a unit-step
function and the initial conditions are zero.

9.34 Obtain the response for the model ẍ + 4ẋ + 85x = ẏ + 3y if y(t) is a unit-step
function and the initial conditions are zero.

9.35 Obtain the response for the model ẍ + 5ẋ + 4x = 3y if y(t) is an impulse of
strength 5 and the initial conditions are zero.

Section 9.3 Description and Specification of Step Response

9.36 Compute the maximum percent overshoot, the maximum overshoot, the peak
time, the 100% rise time, the delay time, and the 2% settling time for the
following model. The initial conditions are zero. Time is measured in seconds.

ẍ + 4ẋ + 8x = 2us(t)

9.37 A certain system is described by the model

ẍ + cẋ + 4x = us(t)

Set the value of the damping constant c so that both of the following
specifications are satisfied. Give priority to the overshoot specification. If both
cannot be satisfied, state the reason. Time is measured in seconds.
1. Maximum percent overshoot should be as small as possible and no greater

than 20%.
2. 100% rise time should be as small as possible and no greater than 3 s.

9.38 A certain system is described by the model

9ẍ + cẋ + 4x = us(t)

Set the value of the damping constant c so that both of the following
specifications are satisfied. Give priority to the overshoot specification. If both
cannot be satisfied, state the reason. Time is measured in seconds.
1. Maximum percent overshoot should be as small as possible and no greater

than 20%.
2. 100% rise time should be as small as possible and no greater than 3 s.

9.39 Derive the fact that the peak time is the same for all characteristic roots having
the same imaginary part.

9.40 For the two systems shown in Figure 9.3.7, the displacement y(t) is a given
input function. Obtain the response for each system if y(t) = us(t) and m = 3,
c = 18, and k = 10, with zero initial conditions.

9.41 For the two systems shown in Figure 9.3.7, the displacement y(t) is a given
input function. Suppose that y(t) = us(t) and m = 3, c = 18, and k = 10,
with zero initial conditions. Use MATLAB to evaluate the 2% settling time, the
10% to 90% rise time, the maximum overshoot, and the peak time.

Section 9.4 Parameter Estimation in the Time Domain

9.42 Suppose that the resistance in the circuit of Figure 9.4.1a is 3 × 106 �.
A voltage is applied to the circuit and then is suddenly removed at time t = 0.
The measured voltage across the capacitor is given in the following table. Use
the data to estimate the value of the capacitance C .
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Time t (s) Voltage vC (V)

0 12.0
2 11.2
4 10.5
6 9.8
8 9.2

10 8.6
12 8.0
14 7.5
16 7.0
18 6.6
20 6.2

9.43 The temperature of liquid cooling in a cup at room temperature (68◦F) was
measured at various times. The data are given next.

Time t (sec) Temperature T (◦F)

0 178
500 150

1000 124
1500 110
2000 97
2500 90
3000 82

Develop a model of the liquid temperature as a function of time, and use it to
estimate how long it will take the temperature to reach 135◦F.

9.44 Figure P9.44 shows the response of a system to a step input of magnitude
1000 N. The equation of motion is mẍ + cẋ + kx = f (t). Estimate the values
of m, c, and k.

Figure P9.44
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9.45 A mass-spring-damper system has a mass of 100 kg. Its free response
amplitude decays such that the amplitude of the 30th cycle is 20% of the
amplitude of the 1st cycle. It takes 60 s to complete 30 cycles. Estimate the
damping constant c and the spring constant k.

Section 9.5 Introduction to Block Diagrams

9.46 Obtain the transfer function X (s)/F(s) from the block diagram shown in
Figure P9.46.

Figure P9.46

� �

X(s)�F(s) 1
s

�
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9.47 Obtain the transfer function X (s)/F(s) from the block diagram shown in
Figure P9.47.

9.48 Obtain the transfer function X (s)/F(s) from the block diagram shown in
Figure P9.48.

G(s)

�

�

�

X(s)�F(s) 1
s

� 1
s

8

4

6

Figure P9.48

9.49 Draw a block diagram for the following equation. The output is X (s); the
inputs are F(s) and G(s).

5ẍ + 3ẋ + 7x = 10 f (t) − 4g(t)

9.50 Draw a block diagram for the following model. The output is X (s); the inputs
are F(s) and G(s). Indicate the location of Y (s) on the diagram.

ẋ = y − 5x + g(t) ẏ = 10 f (t) − 30x

9.51 Referring to Figure P9.51, derive the expressions for the variables C(s), E(s),
and M(s) in terms of R(s) and D(s).

D(s)

�

� C(s)�R(s) E(s) M(s) 1
7s � 1

� 1
3s � 1

10 � 4s

Figure P9.51
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9.52 Referring to Figure P9.52, derive the expressions for the variables C(s), E(s),
and M(s) in terms of R(s) and D(s).

Figure P9.52 D(s)

�

� C(s)�R(s) E(s) M(s) 1
3s � 2

� 6
s

10

�

� 1
4s � 1

Section 9.6 Modeling Systems with Block Diagrams

9.53 Draw a block diagram of the circuit shown in Figure P9.53. The inputs are v1

and v2. The output is i2.

Figure P9.53
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9.54 Draw a block diagram of the circuit shown in Figure P9.54. The inputs are v1

and v2. The output is v3.

Figure P9.54
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9.55 Modify the motor block diagram shown in Figure 9.6.13 to account for a gear
pair between the motor shaft and the load. The ratio of motor speed to load
speed ωL is N . The motor inertia is Im and the motor damping is cm . The load
inertia is IL and the load damping is cL . The load torque acts directly on the
load inertia.

Section 9.8 Simulink Applications

9.56 Redo the Simulink suspension model developed in Section 9.8, using the
spring relation and input function shown in Figure P9.56, and the following
damper relation.

fd(v) =
{−500|v|1.2 v ≤ 0

50v1.2 v > 0

Use the simulation to plot the response. Evaluate the overshoot and
undershoot.
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Figure P9.56

(a)

�0.25 �0.15 500

1300

3000

Spring force (N)

Deflection
y � x (m)

�3000

�500

�1300

0.15 0.25 4.154.00.15

y(t)
(m)

0.3

0
0

t (s)

(b)

9.57 Consider the system shown in Figure P9.57. The equations of motion are

m1 ẍ1 + (c1 + c2)ẋ1 + (k1 + k2)x1 − c2 ẋ2 − k2x2 = 0

m2 ẍ2 + c2 ẋ2 + k2x2 − c2 ẋ1 − k2x1 = f (t)

Suppose that m1 = m2 = 1, c1 = 3, c2 = 1, k1 = 1, and k2 = 4.
a. Develop a Simulink simulation of this system. In doing this, consider

whether to use a state-variable representation or a transfer function
representation of the model.

b. Use the Simulink program to plot the response x1(t) for the following input.
The initial conditions are zero.

f (t) =

⎧⎪⎨
⎪⎩

t 0 ≤ t ≤ 1

2 − t 1 < t < 2

0 t ≥ 2

k2

c2

x2

c1

k1m2 m1
f (t)

x1
Figure P9.57
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Model common control system components.

2. Select an appropriate control algorithm of the PID
type or one of its variations, for a given application
and for given steady-state and transient performance
specifications.

3. Analyze the performance of a control algorithm
using transfer functions, block diagrams, and
computer methods, in light of given performance
specifications.

4. Use MATLAB and Simulink to analyze and
simulate control systems.

Amajor application of the methods of system dynamics is the design of control
systems. In this chapter we introduce the basic concepts of feedback control and
show how to model control systems so that we can analyze their performance.

To this end we will use many of the modeling and analysis techniques developed in
earlier chapters.

Section 10.1 introduces the concept of feedback control, also called closed-loop
control. Control system terminology is covered in Section 10.2, and Section 10.3 shows
how the various components in control systems are modeled. The most common control
algorithm is the so-called PID algorithm, which is introduced in Section 10.4. A general
control system analysis procedure is presented in Section 10.5.

The performance of PID control and variations of it are analyzed in Sections 10.6
and 10.7 for a variety of system models. Additional examples showing specific
applications are covered in Section 10.8. Computer analysis and simulation of control
systems are the topics of Sections 10.9 and 10.10, which use MATLAB and Simulink,
respectively. Section 10.11 summarizes the major topics of the chapter. ■

546
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10.1 CLOSED-LOOP CONTROL
A common example of a control system is a timer used to turn room lights on and off.
Such a control system is called an open-loop system because it does not use a sensor
to alter its behavior. If a light sensor is used to adjust the timing, the system would be
closed-loop. The term derives from the block diagram of such a system, in which the
sensor measurement is represented by a feedback loop.

While open-loop systems have their applications and can be used to supplement
closed-loop systems, the emphasis in this text is on closed-loop control, because of the
numerous and great advantages afforded by the use of a sensor to measure the output
of the object or process to be controlled.

OPEN-LOOP CONTROL

Consider the liquid-level system shown in Figure 10.1.1a. Its model is

R Aḣ + gh = Rqc(t) + Rqd(t)

where qc(t) is a volume flow rate that is under our control, and the disturbance qd(t)
is a volume flow rate that is not under our control and is somewhat unpredictable. The
tank’s bottom area is A and the outlet resistance is R.

The block diagram is shown in Figure 10.1.1b. Note that

H(s)

Qc(s)
= R

R As + g
(10.1.1)

Suppose we want to control the rate qc so that the liquid height h(t) is some specified
or requested function of time, hr (t). A control valve used for this purpose is illustrated
in Figure 10.1.2. The valve opening and therefore the flow rate are controlled by the
current-to-pressure transducer that regulates the air pressure applied to the valve.

Assuming that 1) we know the value of g accurately, 2) qd = 0, and 3) we have
estimates Ae and Re of the area A and resistance R, we can calculate the required flow
rate qc from the model as follows:

qc(t) = Aeḣr + g

Re
hr (10.1.2)

R
RAs � g

ReAes � g
Re

(c)

Hr(s)
TankValveController

� �

Qc(s)

Qd(s)

H(s)
Gv(s)

R
RAs � g

(b)

� �Qc(s) H(s)

Qd(s)

Tank
hr h

qc qd

(a)

A R

Figure 10.1.1 Open-loop
control of a liquid-level system.
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Figure 10.1.2 A pneumatic
control valve.
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Diaphragm

Return
spring

Valve

The transfer function of this algorithm is

Qc(s)

Hr (s)
= Re Aes + g

Re
(10.1.3)

Note that (10.1.3) is the inverse of (10.1.1) with Re and Ae replacing R and A. This
scheme is illustrated in Figure 10.1.1c. If we assume that the valve instantaneously
gives the flow rate qc(t) calculated and commanded by the controller, then Gv(s) = 1.

If we substitute (10.1.3) into (10.1.1), we obtain

H(s) = Qc(s)
R

R As + g
= Re Aes + g

Re

R

R As + g
Hr (s) (10.1.4)

Now if our estimates Re and Ae are exact, then Ae = A, Re = R, and (10.1.4) becomes

H(s) = R As + g

R

R

R As + g
Hr (s) = 1Hr (s)

This implies that the actual height h(t) will equal the desired height hr (t). In practice,
there are several reasons why this approach can fail:

1. We rarely would have exact values for Ae and Re.
2. The controller, which is the physical device making the calculation required by

(10.1.2) cannot compute the derivative ḣr exactly. This is true for any type of
controller, whether it be an analog controller, composed of op amps, for example,
or a digital computer.

3. The model (10.1.1) only approximately describes the real system, which may be
nonlinear, for example.

4. This scheme will not work whenever the disturbance flow qd is present.

This example illustrates the difficulties with using open-loop control.

CLOSED-LOOP CONTROL

Suppose we use a sensor to measure the liquid height h and compare the measured height
with the desired height hr , as shown in Figure 10.1.3. The error signal, e = hr − h, is
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R
RAs � g

ReAes � g
Re

Tank

Height
sensor

Open-loop
controller

� �

Qc(s)

Qd(s)

1

Valve

Feedback
controller

E(s)Hr(s) � ��

�

H(s)
Gc(s)

1

Figure 10.1.3 Feedforward
compensation for a liquid-level
controller.

used to adjust the signal going to the valve that produces the flow rate qc. This part of
the controller is the feedback, or closed-loop controller. The total signal to the valve is
the sum of this signal and the signal produced by the open-loop part of the controller.
We may thus think of the feedback controller as providing a correction to the open-
loop calculation. This correction, which is based on the measured height, enables the
controller to adjust for inaccuracies in the model or in the estimates Ae and Re, and for
changes caused by the disturbance flow qd . The proper design of the algorithm used in
the feedback controller is the major topic of this chapter and Chapters 11 and 12.

The use of open-loop control in this manner is called feedforward compensation
of the command input. It has gained renewed interest since the advent of computer
control systems. It is based on the principle that if there are no disturbances, you can
effectively control a system if you have an accurate enough model of it. Some modern
systems are so complex that a simple differential equation model cannot be obtained
that completely describes their behavior. Computer simulation models, however, can
often be developed to describe such plants. These models can then be used as command
compensation in control systems having digital computers.

For example, computers can store lookup tables that can be used to control systems
that are difficult to model entirely with differential equations and analytical functions.
Figure 10.1.4 shows a fuel control system designed for an internal combustion engine.

Engine
dynamics

Speed
sensor

Torque
disturbance

Engine
speed

Open-loop
controller

Control
computer

Qc(s)

Feedback
controller

Calculation
of estimated

fuel flow
rateRequested

engine speed
E(s)�r(s) � ��

�

�(s)
Gc(s) Fuel

pump

Figure 10.1.4 Use of
feedforward compensation in a
fuel control system.
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The fuel flow rate required to achieve a desired speed depends in a complicated way on
the desired speed and other variables. This dependence was measured in engine tests
and was summarized in a table stored in the control computer. This table is used to
estimate the required fuel flow rate. A feedback control algorithm is used to adjust the
flow rate estimate based on the speed error (because the lookup table model will not be
exact) and to counteract the effects of disturbances such as a load torque on the engine.

For now, we will concentrate on how to analyze the performance of a feedback
control algorithm. Section 10.8 discusses feedforward compensation in more detail.

10.2 CONTROL SYSTEM TERMINOLOGY
Figure 10.2.1 is a block diagram that represents the structure of many, but not all,
feedback control systems. To simplify the example, we have not included feedforward
compensation.

The feedback controller can be thought of as a logic element that compares the
command signal with the measurement of the output and decides what should be done.
The control logic elements produce the control signal, which is sent to the actuator or
final control element. This is the device that develops enough torque, pressure, heat,
etc., to influence the elements under control.

The object to be controlled is the plant. The manipulated variable is generated by
the final control elements for this purpose. In the liquid-level control system treated
in Section 10.1, the manipulated variable is the flow rate qc, the plant is the tank of
liquid, and the actuator is the control valve. To make a human analogy, the brain is the
controller; the arm, hand, and whatever is being held in the hand is the plant; and the
arm muscle is the actuator. The eye plays the role of the sensing element.

The sensor transfer function is H(s). Note that if the sensor gives error-free
measurements instantaneously, then H(s) = 1. This implies that the sensor responds
quickly compared to the rest of the system (i.e., its time constant is small compared to
the other time constants of the system).

The disturbance input also acts on the plant. This is an input over which the designer
has no control, and perhaps for which little information is available about the magnitude,
functional form, or time of occurrence. The disturbance can be a random input, such as
wind gusts on a radar antenna, or deterministic, such as Coulomb friction effects. In the
latter case, we can include the friction force in the system model by using a nominal
value for the coefficient of friction. The disturbance input would then be the deviation
of the friction force from this estimated value and would represent the uncertainty in
our estimate. The command transfer function is C(s)/R(s). The disturbance transfer
function is C(s)/D(s).

Figure 10.2.1 Control
system terminology.

�
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10.3 MODELING CONTROL SYSTEMS
Modeling the control system with all its components is the first step in the design
process. The key to successful design often lies in the engineer’s ability to develop a
model that describes the important behavior of the system without including so much
detail that the required mathematical analysis is cumbersome. In this section, we show
some examples of how such modeling is accomplished.

MODELING ACTUATOR AND SENSOR RESPONSE

Every actuator and every sensor requires time to respond to its input. However, if
actuator and sensor response times are small compared to the response times of the
controller and the plant, then we usually model the actuator and the sensor with constant
gains. The purpose of this approximation is to reduce the order of the system and thus
simplify the required mathematics.

Consider the control system shown in Figure 10.3.1a. The controller transfer func-
tion is a constant, K p called the proportional gain. The control signal f (t) is propor-
tional to the error signal e(t), as f (t) = K pe(t). The actuator and the sensor have both
been modeled as first-order systems having the time constants τa and τs . The command
transfer function for this system is

C(s)

R(s)
= K P Ka K (τss + 1)

(τas + 1)(τ s + 1)(τss + 1) + Ks K P Ka K

We thus see that the system model is third order.
The sensor gain Ks will be unity if the sensor gives an accurate measurement. If

the sensor time constant τs is very small compared to that of the plant, τ , then we can
set τs = 0 and approximate the sensor transfer function as a simple gain of 1. We will
usually use this sensor model.

Similarly, if the actuator time constant τa is very small compared to that of the plant,
then we may set τa = 0 and approximate the actuator transfer function as a simple gain
Ka , which may be absorbed into the proportional gain, as shown in Figure 10.3.1(b).
The command transfer function of this simplified model is

C(s)

R(s)
= K P Ka K

τ s + 1 + K P Ka K

which is first order and therefore much easier to analyze.

Figure 10.3.1 (a) A feedback control
system. (b) Approximate model obtained by
neglecting the time constants of the sensor
and actuator.
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� �
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KPKa
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�s � 1
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R(s) �
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C(s)
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In most cases, the sensor time constant is the smallest of the three, so we will usually
neglect it in our examples. The actuator time constant may not always be negligible,
however. Quite often in our examples we assume that the actuator gain Ka is 1 and do
not show its block to simplify the examples. In these cases, the hidden block has units
that convert the controller output (e.g., volts) to the actuator output (e.g., force). If the
actuator gain is not 1 in practice, it can be absorbed into the controller gain.

EXAMPLE 10.3.1 Effect of Gain on Modeling Approximations

■ Problem
For the system shown in Figure 10.3.2a the plant time constant is 2 and the nominal value of
the actuator time constant is τa = 0.02. Investigate the effects of neglecting this time constant
as the gain K P is increased.

Figure 10.3.2 Effects of
neglecting the actuator time
constant.

1
�as � 1

KP
1

2s � 1
R(s) �

�

C(s)

■ Solution
If we set τa = 0, there is one characteristic root, which is s = −(1+ K P)/2. As K P is increased,
the root remains real and moves to the left of s = −0.5. The predicted step response will not
oscillate.

If we set τa = 0.02, there are two characteristic roots and the characteristic equation is
0.04s2 + 2.02s + 1 + K P = 0.

s = −50.5 ±
√

2450.25 − 100K p

As K P is increased, the dominant root is real and moves to the left of s = −0.5, just as it does
with the approximate model. But for K P > 24.5, ζ < 1, the roots are complex, the response
will oscillate, and so the behavior of the approximate model with τa = 0 does not resemble the
behavior of the more accurate model with τa = 0.02.

Note that as we increase K P , the dominant time constant decreases and becomes closer to
τa , and the response oscillates. Thus the approximate model becomes less accurate.

In general, as we increase the gain in a system to obtain a small dominant time
constant, any neglected time constants become more significant and should be included
in the model. Doing this, however, increases the order of the model and the complexity
of the required mathematics. So, in practice, the control engineer begins the design of a
system by neglecting the smaller time constants, just as we neglected the actuator time
constant τa in Example 10.3.1. Once a preliminary design has been made, the more
accurate model is used to refine the design and check the effect of the approximations,
including the effect of high gain, often by simulation if the model is highly detailed.

MODELING DISTURBANCES

The disturbance inputs experienced by real systems are usually not simple or deter-
ministic functions of time like steps, ramps, and sine waves. In fact, we often do not
know the exact functional form of the disturbance. It is often a random function, such
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as the disturbance torque due to wind gusts. The analysis of random inputs is beyond
the scope of this text. However, the frequency response plot of the disturbance transfer
function is often very useful for evaluating the effects of a disturbance. Although such
a plot describes only the steady-state response for sinusoidal and cosinusoidal inputs,
periodic disturbance inputs can be represented as a sum of sines and cosines, as we saw
in Chapter 8. In addition, measurements of an actual disturbance can be analyzed to
determine its frequency content. If these frequencies lie outside the bandwidth of the
disturbance transfer function, then we may conclude that the control system adequately
handles the disturbance.

Some system inputs may or may not be treated as a disturbance, depending on
whether or not they are known. The following example illustrates this.

Controlling a Thermal Process EXAMPLE 10.3.2

■ Problem
The inside temperature T of the oven shown in Figure 10.3.3a is to be controlled. The oven wall
has a thermal resistance R. The only significant thermal capacitance is that of the oven contents,
C . The air temperature outside the oven is To. The heater supplies a heat flow rate q.

A power amplifier supplies current to the resistance-type heater. The amplifier inputs are
the voltage from the command potentiometer, which represents the desired value Tr of the

Figure 10.3.3 (a) An oven temperature
control system. (b) Model of the control
system if To is a known constant temperature.
(c) Outside temperature To modeled as a
disturbance.
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temperature T , and the voltage from the temperature sensor. These voltages are vr = Kr Tr and
vs = Ks T , respectively.

Develop a model of the system.

■ Solution
Using the methods of Section 7.8, the model of the plant is found to be

C
dT

dt
= q − 1

R
(T − To)

We should choose the scale factor of the potentiometer so that Kr = Ks . This means that
the voltage difference vr − vs will be proportional to the temperature difference Tr − T , as
vr − vs = Ks(Tr − T ). The heat flow rate q from the heater is equal to Ka(vr − vs), where Ka

is the amplifier gain. Thus the system model is

C
dT

dt
= q − 1

R
(T − To) = Ka Ks(Tr − T ) − 1

R
(T − To) (1)

If To is a known constant value, then we can define two new variables x and xr such that

x = T − To xr = Tr − To

Then T = x + To and Tr = xr + To. Substitution of these into the system model gives

C
dx

dt
= Ka Ks(xr − x) − 1

R
x

The corresponding block diagram is shown in part (b) of the figure. The effect of the new variables
x and xr is to remove To from the equation model and the block diagram, thus simplifying both.

If, however, the outside temperature To fluctuates in an unknown manner, then it is a
disturbance. In this case, the variable transformation x = T − To is useless because we would
not know the value of To. The system model is equation (1) and its block diagram is shown in
part (c) of the figure. We will analyze the performance of this system later in this chapter.

MODELING DC MOTOR CONTROL

DC motors are frequently used in motion control applications. In such applications, we
need to control either the speed or the position of a load. Figure 10.3.4 is a schematic
diagram of a system for controlling the rotational speed of a load. Applications of such
a system include electric-vehicle speed control, tape drives, conveyor belts, robot arms,
and mobile robots. The load speed is sensed by a tachometer. The tachometer outputs
a voltage that is proportional to its angular velocity; thus vtach = KtachωL , where ωL is
the load velocity. The figure shows the tachometer connected to the load shaft; if this
is not possible, then a gear pair or similar connection can be used.

Somehow the system must be given the desired load speed. Here we assume that
an operator turns a rotary potentiometer to the desired speed marked on a calibrated
dial face. Thus the potentiometer produces a voltage Kd Kpotωr that is proportional to
the desired load speed ωr , where Kd is the dial factor and Kpot is the potentiometer
gain.

An op-amp system consisting of a comparator and a multiplier computes the dif-
ference between the potentiometer voltage and the tachometer voltage and multiplies
this difference by a gain K1, whose value we must set. The voltage output from the
multiplier is connected to the input of a power amplifier. This amplifier is used to boost
the current in the signal to provide enough power to drive the motor. Thus we assume
that the amplifier can provide whatever current is needed by the motor. The amplifier
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Figure 10.3.4 A speed
control system.

also increases the voltage by the gain Ka . The diagram does not show the external
power connections required to drive the op amp and the potentiometer.

The voltage difference ve is given by

ve = Kd Kpotωr − KtachωL

where ωr is the desired value of the load speed. This is sometimes called the requested
or commanded speed. It is important to understand that the voltage difference ve must
be proportional to the speed error ωr − ωL . Therefore, we must set the dial factor Kd

so that Kd Kpot = Ktach. If we do this, then ve = Ktach(ωr − ωL) as required. (Note that
it is easier to set Kd by calibrating the dial face than it is to find a potentiometer or
tachometer with the necessary gain.)

Reflecting the load and tachometer inertias and the load damping back to the motor
shaft using the concepts of Chapter 2, we obtain the following equivalent inertia and
damping values:

Ie = Im + IL + It

N 2
ce = c

N 2

where Im is the motor inertia, IL is the load inertia, It is the tachometer inertia, and c is
the torsional viscous damping constant acting on the load shaft. Here, N is the gear ratio
(N = ωm/ωL , where ωm is the motor speed). Thus, the dynamics of the mechanical
subsystem are described by

Ie
dωm

dt
= Tm − TL

N
− ceωm

Thus,

�m(s) = 1

Ies + ce

[
Tm(s) − TL(s)

N

]

Use of a Field-Controlled Motor EXAMPLE 10.3.3

■ Problem
Assuming that the motor is field-controlled, draw the block diagram of the speed-control system
shown in Figure 10.3.4 and obtain its command and disturbance transfer functions.
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Figure 10.3.5 Block diagram of a speed
control system using a field-controlled motor.

1
L fs � Rf

1
Ies � ce

1
N

1
N

K1
� �

KaKpot

Ktach
Ktach

Vtach

Vm If Tm

TL

Kd KT
�r �L

�m�

�
Dial

�pot

Pot Amplifier

■ Solution
A field-controlled motor is controlled by varying the field current i f while keeping the armature
current constant. Figure 10.3.5 shows the block diagram of a proportional control system for
controlling the speed of such a motor and was obtained by modifying the motor diagram in
Figure 9.6.13 in Chapter 9.

The transfer functions can be obtained either by reducing the block diagram or by trans-
forming the equations and eliminating all variables except the inputs and output. Recalling that
Kd Kpot = Ktach, we can write the following equation from the diagram

Vm(s) = K1 Ka Ktach[�r (s) − �L(s)]

From the diagram we can see that the motor torque is given by

Tm(s) = KT

L f s + R f
Vm(s)

Finally, we have �L(s) = �m(s)/N . We obtain the transfer functions by eliminating Vm(s),
Tm(s), and �m(s) from these equations. Let

K P = Ktach K1 Ka (1)

Using the parameter K P , the diagram can be simplified as shown in Figure 10.3.6. The transfer
functions are

�L(s)

�r (s)
= K P KT

N L f Ies2 + N (R f Ie + ce L f )s + Nce R f + K P KT
(2)

�L(s)

TL(s)
= − (L f s + R f )/N

N L f Ies2 + N (R f Ie + ce L f )s + Nce R f + K P KT
(3)

EXAMPLE 10.3.4 Approximate First-Order Model

■ Problem
Derive the transfer functions of the system shown in Figure 10.3.6 for the case where the field
time constant L f /R f is small.

■ Solution
If TL = 0, Figure 10.3.6 shows that the transfer function �m(s)/Vm(s) is

�m(s)

Vm(s)
= KT

(L f s + R f )(Ies + ce)
= KT /R f ce

(τ f s + 1)(τms + 1)
(1)
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Figure 10.3.6 Simplified
block diagram of a speed
control system using a
field-controlled motor.

where τ f = L f /R f , which is called the field time constant, and τm = Ie/ce, which is the me-
chanical time constant. Quite often τ f � τm , in which case equation (1) reduces to a first-order
model:

�m(s)

Vm(s)
= KT /R f ce

τms + 1
= KT /R f

Ies + ce

The approximation τ f � τm is equivalent to setting L f = 0. If this approximation is valid,
equations (1) and (2) of Example 10.3.3 reduce to the following first-order models:

�L(s)

�r (s)
= K P KT

N R f Ies + Nce R f + K P KT

�L(s)

TL(s)
= − R f /N

N R f Ies + Nce R f + K P KT

These correspond to the block diagram shown in Figure 10.3.7a. Moving the factor 1/N gives
the diagram shown in part (b). Note that we may thus absorb the factor N KT /R f into the

Figure 10.3.7 Model simplification for a
speed control system with negligible field time
constant.
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controller gain K P . Part (c) shows the case where the control algorithm is some arbitrary transfer
function Gc(s), where I = N 2 Ie and c = N 2ce. We will use this simplified diagram quite often
in discussing the use of various control algorithms in Sections 10.6 and 10.7.

EXAMPLE 10.3.5 Use of an Armature-Controlled Motor

■ Problem
Assuming that the motor is armature-controlled, draw the block diagram of the speed-control
system shown in Figure 10.3.4 and obtain its transfer functions.

■ Solution
The system inputs are the desired or required value ωr of the load speed ωL and the load torque
TL . The block diagram is shown in Figure 10.3.8 and was obtained by modifying the motor
diagram in Figure 9.6.12 in Chapter 9.

The transfer functions can be obtained either by reducing the block diagram or by trans-
forming the equations and eliminating all variables except the inputs and the output. The latter
method is perhaps the easier one when the diagram has multiple inputs and loops containing
comparators within them. Recalling that Kd Kpot = Ktach, we can write the following equation
from the diagram

Vm(s) = Ktach K1 Ka[�r (s) − �L(s)]

From the diagram we see that the motor torque is given by

Tm(s) = KT

Las + Ra
[Vm(s) − Kb�m(s)]

Finally, we have �L(s) = �m(s)/N .

Figure 10.3.8 Block diagram of a speed
control system using an armature-controlled
motor.
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Figure 10.3.9 Simplified
block diagram of a speed
control system using an
armature-controlled motor.

Using algebra to eliminate Vm(s), Tm(s), and �m(s) from these equations, we obtain the
following transfer functions. To simplify the expressions, we have defined a new constant K P =
K1 Ka Ktach.

�L(s)

�r (s)
= K P KT

D(s)
(1)

�L(s)

TL(s)
= − (Las + Ra)/N

D(s)
(2)

where the denominator is

D(s) = N La Ies2 + N (Ra Ie + ce La)s + N Race + N KT Kb + K P KT (3)

Using the parameter K P , the block diagram can be simplified as shown in Figure 10.3.9. These
transfer functions can be analyzed to determine whether or not the system is able to control the
speed successfully and to determine an appropriate value for the gain K1. Such analysis would
consider the system’s stability, steady-state error, and transient response. We will illustrate this
analysis in Sections 10.6, 10.7, and 10.8.

Effect of Negligible Armature Time Constant EXAMPLE 10.3.6

■ Problem
Derive the transfer functions for the case where the armature time constant La/Ra is small.

■ Solution
If TL = 0, we obtain Figure 10.3.10a. We can reduce the inner loop containing Kb to obtain
part (b) of the figure. Setting La = 0 we obtain the diagram in part (c). Part (d) is obtained by
replacing K P with the arbitrary controller transfer function Gc(s) and defining

I = N Ra Ie

KT

c = N
Race + KT Kb

KT

The block diagram in part (d) is obviously a simpler representation than the diagram in part (a).
This simplified diagram will help us to demonstrate the use of various control algorithms in
Sections 10.6 and 10.7. Note that it does not include the disturbance. To analyze the disturbance
response, we need to use the diagram in Figure 10.3.9 or the disturbance transfer function given
by equations (2) and (3) in Example 10.3.5.
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Figure 10.3.10 Model
simplification for a speed
control system with negligible
armature time constant.
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EXAMPLE 10.3.7 Controlling the Speed of a Conveyor

■ Problem
A conveyor drive system to produce translation of the load is shown in Figure 10.3.11. To
translate the load a specified distance, the drive wheels must rotate through a required angle, and
this can be accomplished by controlling the speed, often with a trapezoidal speed profile. The
equivalent inertia of the load and all the drive components felt at the motor shaft is Ie. The effect
of Coulomb friction in the system produces an opposing torque TFe at the motor shaft, and the
damping in the system is negligible. Develop the block diagram of a proportional control system
using an armature-controlled motor for this application. Assume that the drive wheel speed ωL

is measured by a tachometer and that the motor speed ωm is related to the drive wheel speed by
ωm = NωL , where N is the speed ratio due to the reducer and the chain drive.

■ Solution
The dynamics of the mechanical subsystem are described by

Ie
dωm

dt
= T − TFe (1)

where the motor torque is T = KT ia . The system is like that shown in Figure 10.3.4. The block
diagram can be obtained by modifying Figure 10.3.8 using equation (1) and collecting the various
gains into one gain: K P = Ktach K1 Ka . The resulting diagram is shown in Figure 10.3.12.
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Tachometer

Drive shaft

Sprocket 1

Sprocket 2

Reducer

Motor

Drive wheels

Drive chains

Load

Chain

Figure 10.3.11 A conveyor
system.

Figure 10.3.12 Block diagram of a speed
control system for a conveyor.
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Controlling the Position of a Robot Arm Link EXAMPLE 10.3.8

■ Problem
The drive system for one link of a robot arm is illustrated in Figure 10.3.13. The equivalent
inertia of the link and all the drive components felt at the motor shaft is Ie. Gravity produces an
opposing torque that is proportional to sin θ but which we model as a constant torque Td felt at
the motor shaft (this is a good approximation if the change in θ is small). Neglect friction and
damping in the system. Develop the block diagram of a proportional control system using an
armature-controlled motor for this application. Assume that motor rotation angle θm is measured
by a sensor and is related to the arm rotation angle θ by θm = Nθ , where N is the gear ratio.

■ Solution
The dynamics of the mechanical subsystem are described by

Ie
d2θm

dt2
= T − 1

N
Td (1)

where the motor torque is T = KT ia . The system is like that shown in Figure 10.3.4. The block
diagram can be obtained by modifying Figure 10.3.8 using equation (1) and collecting the various
gains into one gain: K P = Ktach K1 Ka . The resulting diagram is shown in Figure 10.3.14. Note
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Figure 10.3.13 A robot arm
link.
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Figure 10.3.14 Block diagram of a position
control system for a robot arm link.
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that the system actually controls the motor rotation angle, so the arm angle command θr must
be converted to the motor angle command θmr .

CURRENT AND TORQUE LIMITATIONS

Obviously there is a limit to how large we can make the gain K P . The limit depends on
the power available in the actuator system, which consists of the motor and the power
amplifier.

In practice, because the motor torque depends on the armature current, as Tm =
KT ia , the maximum torque available is limited by the armature current. This current is
limited by two factors: (1) the maximum current the armature can withstand without
demagnetizing and (2) the maximum current available from the power supply (these
values should be given by the motor and power supply manufacturers). Think of your
household electrical outlets. If an outlet is protected by a 15-A circuit breaker (to prevent
a fire hazard), then it can supply no more than 15 A. Example 10.8.6 in Section 10.8
examines the current requirements of this control system in more detail.

To guard against demagnetization and power supply damage, some amplifiers have
built-in current overload protection. The engineer should be aware of this protection,
because it will change the dynamics of the system. When too much current is called
for, the amplifier will supply a constant current, and therefore the motor torque will be
constant, until the controller calls for less than the maximum allowable current. The
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effect on the system’s dynamics is best studied with numerical methods, which we will
demonstrate with Simulink in Section 10.10.

DIGITAL CONTROL SYSTEMS

In many modern control systems, a digital computer, rather than an op amp, performs
the calculations required to implement the control algorithm.

An analog signal is one that is continuous in both time and amplitude. Given a
large enough plot of a signal y(t), we can theoretically obtain a value of y from the plot
for any value of t over its plotted range. Thus, both y and t have an infinite number of
values. Digital computers, however, can handle mathematical relations and operations
only when expressed as a finite set of numbers rather than as infinite-valued functions.
Thus, any continuous measurement signal must be converted into a set of pulses by
sampling—the process by which a continuous-time variable is measured at distinct,
separated instants a time T apart. The interval T is called the sampling period. The
sampling frequency is 1/T .

The sampled sequence of measurements is rounded off to one of a finite number
of levels for storage in the computer memory. This process is called quantization. A
digital signal is one that is quantized in both time and amplitude. For the computer to
do calculations, the quantized amplitude must be assigned a binary value. This process
is called coding.

So the process of converting an analog signal into computer-usable form consists
of sampling, quantization, and coding. A device for doing this is called an analog-to-
digital converter (abbreviated A/D converter or ADC).

It is necessary to convert binary outputs from the digital device into a form usable
by the hardware being controlled. A digital-to-analog converter (abbreviated D/A con-
verter or DAC) performs this function. A common mathematical algorithm used in a
D/A converter is the zero-order hold (ZOH). The binary form of the output from the
digital device is first converted to a sequence of short-duration voltage pulses. However,
it is usually not possible to drive a load, such as a motor, with short pulses. To deliver
sufficient energy, the pulse amplitude might have to be so large that it is infeasible to be
generated. Also, large-voltage pulses might saturate or even damage the system being
driven. The solution to this problem is to smooth the output pulses to produce a signal in
analog form. The simplest way of converting a pulse sequence into a continuous signal
is to hold the value of the pulse until the next one arrives. A device called a zero-order
hold accomplishes this task.

DIGITAL CONTROL STRUCTURES

There are two types of applications of digital computers to control problems. The first
is supervisory control, where analog controllers are directly involved with the plant to
be controlled, while the digital computer provides command signals to the controllers.
If this were the case for the system shown in Figure 10.3.4, the op-amp comparator
and multiplier would still be present, but the command input ωr would be provided by
the computer through a D/A converter, instead of by the potentiometer. In the second
application, direct digital control (DDC), the digital device acts at the lowest levels of
the system, replacing the op-amp comparator and multiplier, in direct control of the
amplifier-motor system.

Figure 10.3.15 shows two possible structures of a single-loop DDC controller. In
both structures, the computer with its internal clock drives the D/A and A/D converters.
It compares the command signals with the feedback signals and generates the control
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Figure 10.3.15 Possible structures for
digital control systems.
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signals to be sent to the D/A and eventually to the actuator. These control signals are
computed from the control algorithm stored in the memory. In part (a) of the figure, the
feedback signal is an analog signal (from an analog sensor such as a tachometer), which
must be fed to an ADC. To convert the controller shown in Figure 10.3.4 to such a system,
we must replace the op-amp comparator and multiplier with a computer and DAC, and
use an ADC on the tachometer signal. An alternative is shown in Figure 10.3.15b,
which illustrates the use of a digital sensor (such as an optical encoder), whose signal
can be communicated directly to the computer without using an ADC. If we retain the
potentiometer, we must use an ADC on its voltage signal. An alternative is to replace
the potentiometer with a command entered into the computer, perhaps via a keyboard.

PULSE-WIDTH MODULATION

The voltage output of the zero-order hold is constant over the sampling interval T
but varies in amplitude over successive sampling intervals. The task of providing a
variable-amplitude voltage can be somewhat difficult because of the dynamics caused
by the motor inductance. Instead of varying the amplitude, an alternative to the zero-
order hold is to output a constant voltage but vary the amount of time the voltage is
applied over the sampling interval. This is the basis of pulse-width modulation (PWM).
Because it requires only a voltage source that can be switched between two constant
values, say vmin = 0 and vmax = V , pulse-width modulation is particularly well suited
for use with digital computers. If we consider the voltage vc computed from the control
algorithm to be the average required voltage over the interval T , then the pulse time ti
can be calculated from

ti = vc

V
T

For the modulated voltage to be fully equivalent to vc, ti should be calculated so that
the pulse of duration ti delivers the same power as vc over the interval T . However, this
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is difficult to calculate because of the dynamics of the circuit. The formula for ti can
be extended to include the case where vmin < 0 (negative voltage is required to slow
down or reverse the motor’s speed). Note that it is possible for the computed value of
ti to be greater than T . This unacceptable condition may occur if the control gains are
too large.

10.4 THE PID CONTROL ALGORITHM
The control element is designed to act on the error signal to produce the control signal.
The logic that is used for this purpose is also called the control law, the control action, or
the control algorithm. A nonzero error signal results from either a change in command
or a disturbance. The general function of the controller is to keep the controlled variable
near its desired value when these occur. More specifically, the control objectives might
be stated as follows:

1. Minimize the steady-state error.
2. Minimize the settling time.
3. Achieve other transient specifications, such as minimizing the overshoot.

In practice, the design specifications for a controller are more detailed. For example,
the bandwidth might also be specified along with a safety margin for stability. We never
know the numerical values of the system’s parameters with true certainty, and some
controller designs can be more sensitive to such parameter uncertainties than other
designs. So a parameter sensitivity specification might also be included.

TWO-POSITION CONTROL

Two-position control action is the most familiar type perhaps because of its use in home
thermostats. The control output takes on one of two values. A special case is an on-off
controller, in which the controller output is either on or off. Such is the case with a ther-
mostatically controlled heating system, in which the heater or furnace is turned on and
off. If the outside conditions (temperature, wind, solar insolation, etc.) were predictable,
we could design a building heating system that would operate continuously to supply
heat at a predetermined rate just large enough to replace the heat lost to the outside
environment. Of course, the real world does not behave so predictably, so we must use a
feedback controller to adjust the heat output according to the actual room temperature.

A common example illustrates how the capacitance of the plant affects the suit-
ability of on-off control. Regulation of the temperature of shower water by using on-off
control of the hot water valve will obviously be unsuitable, but it is acceptable for a
bath, because the thermal capacitance of the bath water is greater than that of the shower
water.

Two-position control is acceptable for many applications in which the requirements
are not too severe. In the home heating application, two-position control is acceptable
because the typical 2◦F temperature gap is hardly detectable by the occupants. In situ-
ations requiring finer control, however, use of two-position control results in frequent
switching of the actuator, which shortens its life span and might waste energy.

PROPORTIONAL CONTROL

We have already seen proportional control, in which the control signal is proportional
to the error. Referring to Figure 10.2.1, the transfer function of proportional control



palm-38591 book December 17, 2008 12:36

566 CHAPTER 10 Introduction to Feedback Control Systems

action is Gc(s) = K P , and the controller output is given by

F(s) = Gc(s)E(s) = K P E(s) (10.4.1)

Sometimes the term “proportional band” is used in industrial controllers, rather than
“proportional gain.” The percent change in error needed to move the actuator full scale
is the proportional band. It is related to the gain as follows:

proportional band (%) = 100

K P
(10.4.2)

Thus, a gain K P = 1 corresponds to a band of 100%. A gain K P = 2 corresponds to a
band of 50%.

Figure 10.4.1 Op-amp
implementation of
proportional action.
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Figure 10.4.1 illustrates a proportional controller using an op amp, where the
proportional gain is K P = R f /Ri . Figure 10.4.2a is a diagram of a system using pro-
portional control, and part (b) of the figure is a circuit diagram showing how op amps
can be used to create the controller. An op amp adder with an inverter in the feedback
loop implements the comparator. Each op amp inverts its input signal. So the voltage
vr is inverted twice before entering the power amplifier, and there is no net change of
sign. Similarly, the sensor voltage is inverted three times, for one net sign change, as
required by the minus sign of the comparator.

Figure 10.4.2 (a) Block
diagram representation of a
proportional control system.
(b) Op-amp implementation of
a proportional controller.
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EXAMPLE 10.4.1 Hydraulic Implementation of Proportional Control

■ Problem
Figure 10.4.3 shows a hydraulic implementation of proportional action to control the angle of
an aircraft rudder, elevator, or aileron (see [Cannon, 1967]). The input motion y is produced by
the motion of the pilot’s control stick acting through cables. Analyze its motion assuming that
the rudder inertia is small, and show that the system gives proportional action.
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Figure 10.4.3 Hydraulic
implementation of a
proportional controller for
an aerodynamic surface.

■ Solution
When the input motion y occurs, the beam pivots about its lower end. For small motions x = L3θ

and the beam geometry is such that

z = L1 + L2

L2
y − L1

L2
x (1)

The proof of this equation for small angular motions is as follows. First, suppose that x is fixed
to be 0. Then from similar triangles,

z

L1 + L2
= y

L2
or z = (L1 + L2)

y

L2

Now suppose that y is fixed to be 0. From similar triangles,
z

L1
= − x

L2
or z = −L1

x

L2

Since the general motion is the superposition of the two individual motions, adding these two
relations gives equation (1).

For the servomotor, as shown in Example 7.4.7, if the rudder inertia is small,

X (s)

Z(s)
= C1

As

These equations give the following transfer function.

�(s)

Y (s)
= L1 + L2

L1 L3

1

τ s + 1

where

τ = L2 A

L1C1

If the servomotor gain C1/A is large, then τ ≈ 0, and the transfer function becomes

�(s)

Y (s)
= L1 + L2

L1 L3
≡ K P

Thus the system implements proportional control with proportional gain K P if the motion y
represents the error signal and θ represents the controller output.

INTEGRAL CONTROL ACTION

We will see that sometimes proportional control results in the system reaching an
equilibrium in which the control signal no longer changes, thus allowing a constant
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error to exist. If the controller is modified to produce an increasing signal as long as
the error is nonzero, the error might be eliminated. This is the principle of integral
control action, also called reset action. In this mode, the control signal is proportional
to the integral of the error. In the terminology of Figure 10.2.1, this corresponds to a
controller transfer function of Gc(s) = KI /s, or

F(s) = Gc(s)E(s) = K I

s
E(s)

where K I is called the integral gain. In the time domain, the relation is

f (t) = K I

∫ t

0
e(t) dt (10.4.3)

if f (0) = 0. In this form, it can be seen that if the error signal e(t) remains positive,
the integration will theoretically produce an infinite value of f (t). This implies that
special care must be taken to reinitialize the controller.

The integral term does not react instantaneously to the error signal but continues
to correct, which tends to cause oscillations if the designer does not take this effect into
account.

When integral and proportional actions are combined, we obtain the PI control
algorithm:

f (t) = K Pe(t) + K I

∫ t

0
e(t) dt (10.4.4)

or

F(s) =
(

K P + K I

s

)
E(s) (10.4.5)

Figure 10.4.4 Op-amp
implementation of PI action.
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An op-amp implementation of PI action is shown in Figure 10.4.4. With three
component values to be chosen, normally the capacitance value is selected first, and
the two resistances computed from the desired gain values, using the equations given
in the figure.

EXAMPLE 10.4.2 Hydraulic Implementation of PI Control

■ Problem
Figure 10.4.5 shows a hydraulic system whose input is the motion y. Show that this system
implements PI action, if the inertia of the load is small.

Figure 10.4.5 Hydraulic
implementation of PI action.
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■ Solution
For small motions,

z = L2

L1 + L2
y − L1

L1 + L2
w

A force balance at the bottom of the beam gives

cẇ + kw = cẋ

For the servomotor, if the load inertia is small
X (s)

Z(s)
= C1

As
If

C1

A
�

∣∣∣∣ (L1 + L2)(cω j + k)

cL1

∣∣∣∣
for ω lying within the operating range of frequencies, then these equations may be combined to
yield

X (s)

Y (s)
= L2

L1

(
1 + k

cs

)
= K P + K I

s
where

K P = L2

L1
K I = L2

L1

k

c

DERIVATIVE CONTROL ACTION

Integral action produces a control signal even after the error has vanished, and this
tends to cause oscillations. This suggests that the controller should be made aware that
the error is approaching zero. One way to accomplish this is to design the controller to
react to the rate of change of the error. This is the basis of derivative control action, in
which the controller transfer function is Gc(s) = K Ds and

F(s) = Gc(s)E(s) = K Ds E(s) (10.4.6)

where K D is the derivative gain. This algorithm is also called rate action. It is used to
damp out oscillations.

The output of derivative control action depends on the error rate, and thus should
never be used alone because it will produce zero output even if the error is large but
constant. When used with proportional action, the following PD control algorithm
results.

f (t) = K Pe(t) + K D
de

dt
(10.4.7)

or

F(s) = (K P + K Ds)E(s) (10.4.8)

An op-amp implementation of PD action is shown in Figure 10.4.6, where αTD should
be chosen to be small.

PID ACTION

When integral and derivative action are used with proportional action, we obtain the fol-
lowing proportional-plus-integral-plus-derivative control algorithm, abbreviated PID.

F(s) =
(

K P + K I

s
+ K Ds

)
E(s) = K P

(
1 + 1

TI s
+ TDs

)
E(s) (10.4.9)
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Figure 10.4.6 Op-amp implementation of
PD action.
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Figure 10.4.7 Op-amp implementation of
PID action.
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This is called a three-mode controller. Some industrial controllers are programmed not
in terms of K I and K D , but in terms of the reset time TI and the rate time TD , defined
as follows:

TI = K P

K I
(10.4.10)

TD = K D

K P
(10.4.11)

The reset time is the time required for the integral action signal to equal that of the
proportional term if a constant error exists (a hypothetical situation). The reciprocal
of reset time is expressed as repeats per minute and is the frequency with which the
integral action repeats the proportional correction signal.

Proportional action is frequently used, but integral or derivative action might or
might not be used, depending on the application. An op-amp implementation of PID
action is shown in Figure 10.4.7, where β R1C1 should be chosen to be small.

The typical effects of P, I, and D action on a system’s step response are illustrated in
Figure 10.4.8, which shows the response to a unit-step command (with no disturbance)

Figure 10.4.8 Typical step
response of P, PI, and PID
control systems.
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Table 10.4.1 Comparison of control actions.

Control action Advantages Disadvantages

On-Off Simple to implement. Cannot achieve small error
without excessive oscillation.

Proportional Simple to implement. Allows steady-state error.
Improves response time.

Integral Reduces steady-state error. Increases system order, creating
potential for overshoot,
oscillations, and instability.

Derivative Reduces oscillations. Amplifies noise in
Improves response time. measurement signals.

Feedforward Reduces command input Depends on accurate system
compensation error. model.
Disturbance Reduces disturbance error. Depends on accurate system
compensation model. Depends on usable

measurement of the disturbance.

of three systems having the same plant but using P, PI, and PID control, respectively. The
response with P control is nonoscillatory and reasonably fast, but it allows a nonzero
steady-state error to exist. When I action is added, the response under PI control becomes
oscillatory with a large overshoot, but the steady-state error is now zero. When D action
is added, the response under PID control has fewer oscillations and a smaller overshoot,
and the steady-state error remains zero. In general, but not always, as control action
is changed from P to PI to PID, first, the steady-state error is eliminated, and then
the oscillations and settling time are reduced. Note that D action can never change a
constant steady-state error, because it produces no output for a constant error.

Table 10.4.1 gives a comparison of the various control actions.
Proportional, integral, and derivative actions and their various combinations are

not the only control laws possible, but they are the most common. It has been estimated
that most controllers have PI or PID as their basic control action, and these actions will
remain for some time the standard against which any new designs must compete.

DIGITAL CONTROL ALGORITHMS

The analog PID control algorithm

f (t) = K Pe(t) + K I

∫ t

0
e(t) dt + K D

de

dt
(10.4.12)

cannot be implemented directly in a digital controller because digital hardware, which is
limited to arithmetic operations, cannot perform differentiation and integration. Rather,
the algorithm must first be converted to a difference equation. There are several fi-
nite difference equivalents used for integral and derivative action. A commonly used
form is

f (tk) = K Pe(tk) + K I T
k∑

i=0

e(ti ) + K D

T
[e(tk) − e(tk−1)] (10.4.13)

where f (tk) and e(tk) are the control and error signals at time tk = kT , and T is the
sampling period. The integral has been replaced with a sum of the areas of rectangles
of width T . The derivative has been replaced with a simple difference expression.

The algorithm (10.4.13) is the position version of the PID control law. The in-
cremental or velocity version of the algorithm determines the change in the control
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signal: f (tk) − f (tk−1). To obtain it, decrement k by 1 in (10.4.13) and subtract the
resulting equation from (10.4.13). This gives

f (tk) − f (tk−1) = K P [e(tk) − e(tk−1)] + K I T e(tk)

+ K D

T
[e(tk) − 2e(tk−1) + e(tk−2)] (10.4.14)

Suppose that the control signal f (k) is a valve position. The position version of the
algorithm is so named because it specifies the valve position directly as a function of
the error signal. The incremental algorithm, on the other hand, specifies the change in
valve position. The incremental version has the advantage that the valve will maintain
its last position in the event of failure or shutdown of the control computer. Also, the
valve will not “saturate” at start-up if the controller is not matched to the current valve
position. In addition to having these safety features, the incremental algorithm is also
well suited for use with incremental output devices, such as stepper motors.

These approximations for derivative and integral actions are the simplest, but are
useful for introducing the concept of a digital control algorithm. Many other, more
accurate approximations have been implemented in controllers. These are discussed in
more advanced references dealing with digital control.

Throughout this chapter and the next we will concentrate on the analog version of
the PID algorithm, but this does not prevent these results from being applied in a digital
controller. The important point to keep in mind when doing so is the sampling rate of
the controller. For a very fast sampling rate, the sampling time T is very small, and
the finite difference approximations for the derivative and the integral approach their
analog counterparts. That is,

lim
T →0

T
k∑

i=0

e(ti ) →
∫ t

0
e(t) dt

and

lim
T →0

e(tk) − e(tk−1)

T
→ de

dt
Thus, if we assume that the sampling time is small enough, the gains computed for the
analog PID algorithm can also be used for digital control.

10.5 CONTROL SYSTEM ANALYSIS
In this section we outline the approach to selecting an appropriate control algorithm and
computing its gain values. Central to this process is an understanding of the system’s
transient and steady-state behavior, especially with regard to the effect of the command
and disturbance inputs on the error.

SOURCES OF SYSTEM ERRORS

We have seen that the error e(t) in a control system is the difference between the
command input r(t) and the controlled variable c(t); that is, e(t) = r(t) − c(t). The
error is obviously a function of time, and when designing a control system we might
specify and examine the peak error, the settling time for the error, and the steady-state
error, for example. For a system having a command input and a disturbance input, the
error is the sum of the errors caused by the command and the disturbance. These errors
are called the command error and the disturbance error. Figure 10.5.1 illustrates the
two types of error for the case where both the command and the disturbance are step
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Table 10.5.1 The final value theorem.

1. General Case: If T (s) is the transfer function and R(s) is the input, the output is
C(s) = T (s)R(s). The steady-state value css is given by

css = lim
s→0

sC(s) = lim
s→0

sT (s)R(s)

if all the roots of the denominator of sT (s)R(s) have negative real parts.
2. Step Inputs: If R(s) represents a step of magnitude M , then R(s) = M/s and

css = lim
s→0

s
M

s
T (s) = M lim

s→0
T (s) = MT (0)

only if all the roots of the denominator of T (s) have negative real parts; that is, if T (s)
represents a stable system.

3. Ramp Inputs: The transformed error given by E(s) = R(s) − C(s) has the steady-state
value given by

ess = lim
s→0

s[R(s) − C(s)] = lim
s→0

s R(s)[1 − T (s)]

if all the roots of the denominator of s R(s)[1 − T (s)] have negative real parts. If R(s)
represents a ramp of slope m, then R(s) = m/s2 and

ess = lim
s→0

s
m

s2
[1 − T (s)] = lim

s→0

m

s
[1 − T (s)]

Figure 10.5.2 Ramp
responses of three control
systems.
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if all the roots of the denominator of s R(s)[1 − T (s)] have negative real parts. If R(s)
represents a ramp of slope m, then R(s) = m/s2 and

ess = lim
s→0

s
m

s2
[1 − T (s)] = lim

s→0

m

s
[1 − T (s)] (10.5.4)

A similar procedure can be used for the disturbance input. This result is summarized
in Table 10.5.1.

Control systems are never expected to respond to a pure ramp command or ramp
disturbance, because no real input increases indefinitely. A ramp command function,
however, is a good test of a control system’s ability to follow a constantly changing
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Figure 10.5.3 A trapezoidal
commanded-speed profile.

command. Although the ramp function continues to increase without limit, in practice
we are interested in the system’s response only up to the time the transient response
disappears. The reason for this is illustrated by Figure 10.5.3, which shows a command
input called the trapezoidal profile. This is a typical command to speed control sys-
tems; it represents the desired speed in many positioning system applications such as
tape drives, conveyor drives, and robotic systems. For example, when controlling the
rotational speed of a motor, in order to bring the load up to some desired speed ωs ,
called the slew speed, as quickly as possible, the drive motor should accelerate at its
maximum acceleration αmax, which is limited by the maximum available motor torque.
The motor then decelerates to bring the load to rest. To follow such a command input,
the controller must be able to deal with both step and ramp commands.

DESIGN INFORMATION

When designing a control system, the control systems engineer is usually given the
following information.

1. Usually the plant is given, and cannot be changed. The engineer might be given a
model of the plant and the actuator, or might be expected to develop a model.

2. Usually the physical type of controller (electronic, pneumatic, hydraulic, or
digital) and the actuator type (electric, pneumatic, or hydraulic) is specified, or
the choice will be obvious from the application.

3. The command and disturbance inputs might be specified, or the engineer might
be expected to develop suitable test inputs based on the application. Step
functions are the principal test inputs, because they are the most common and
perhaps represent the severest test of system performance. Ramp, trapezoidal, and
sinusoidal test inputs are also employed. The type to use should be made clear in
the design specifications.

CONTROL SYSTEM DESIGN PROCEDURE

In general, the design steps are as follows:

1. Based on the system model and the performance specifications, choose a control
action and obtain the output, error, and actuator equations.

2. Analyze the system for stability. If it cannot be made stable, stop and try a
different control action.

3. If it can be made stable, determine the constraints on the control gains to achieve
stability.

4. Using the given command and disturbance input functions (step, ramp, etc.),
evaluate the steady-state response. This usually can be done quickly with the final
value theorem. Determine the constraints on the gains to satisfy the steady-state
specifications.
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Figure 10.5.1 Illustration of
steady-state command error
and disturbance error.

functions, with the command input applied at t = 0 and the disturbance acting at time
t = t1. We wish the controlled variable to be equal to the command; that is, we want
c = r . In this figure, it is assumed that the effect of the disturbance is to decrease the
controlled variable, whereas in some systems it may increase the controlled variable.

STEP INPUTS AND THE FINAL VALUE THEOREM

Calculation of the steady-state response due to a step input is simple if the system is
stable. Let T (s) denote the command transfer function, so that C(s) = T (s)R(s). The
steady-state output is obtained from the final value theorem.

css = lim
s→0

sC(s) = lim
s→0

sT (s)R(s) (10.5.1)

If R(s) represents a step of magnitude M , then R(s) = M/s and

css = lim
s→0

s
M

s
T (s) = M lim

s→0
T (s) (10.5.2)

The theorem applies only if the all the roots of the denominator of T (s) have negative
real parts; that is, if T (s) represents a stable system. Stated simply, this result says the
steady-state response of a stable system to a step input of magnitude M is MT (0). A
similar procedure can be used for the disturbance input. This result is summarized in
Table 10.5.1.

RAMP INPUTS

Step inputs are not the only input types to be considered when designing control systems.
Ramps, parabolas, and sine functions are also commonly used. Figure 10.5.2 shows
some possible responses to a ramp input. For curve (a) the controlled variable continues
to deviate from the ramp command, and thus the steady-state command error is infinite.
For curve (b) the controlled variable eventually becomes parallel to the ramp command,
and thus the steady-state command error is constant but nonzero. For curve (c) the
controlled variable eventually becomes equal to the ramp command, and thus the steady-
state command error is zero.

Because the output due to a ramp input eventually becomes infinite, the final value
theorem gives no useful information when applied to the output equation. Rather, the
theorem is applied to the error equation to obtain the steady-state error. Let T (s)
denote the command transfer function, so that C(s) = T (s)R(s). The transformed
error is given by E(s) = R(s) − C(s), and thus the steady-state error is obtained from

ess = lim
s→0

s[R(s) − C(s)] = lim
s→0

s R(s)[1 − T (s)] (10.5.3)
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5. Evaluate the transient performance in light of the transient specifications, using
the given input functions. These specifications often are stated in terms of the
desired dominant time constant and damping ratio, but they can be given in terms
of overshoot, rise time, settling time, or bandwidth, for example. If the model of
the closed-loop system is third order or higher, then we have no formulas to use
for time constant, damping ratio, rise time, settling time, or bandwidth, and a
trial-and-error approach must be used. This situation is explored in Chapter 11.

6. Evaluate other specifications, such as limits on the maximum available actuator
output, and redesign if necessary.

SOME USEFUL RESULTS

Some formulas from earlier chapters particularly useful for computing control system
gains are summarized in Table 10.5.2. Table 10.5.3 summarizes a quick way to de-
termine the stability of a model without the need to solve for the roots. These results
are obtained with the method developed by Routh and Hurwitz, which is discussed in

Table 10.5.2 Useful results for second-order systems.

1. Model: mẍ + cẋ + kx = f (t)
2. Transfer function:

X (s)

F(s)
= 1

ms2 + cs + k

3. Characteristic equation: ms2 + cs + k = 0
4. Characteristic roots:

s = −c ± √
c2 − 4mk

2m

5. Damping ratio and undamped natural frequency:

ζ = c

2
√

mk
ωn =

√
k

m

6. Time constant: If ζ ≤ 1,

τ = 2m

c

If ζ > 1, the dominant (larger) time constant is

τ1 = 2m

c − √
c2 − 4mk

and the secondary (smaller) time constant is

τ2 = 2m

c + √
c2 − 4mk

7. Maximum percent overshoot and peak time:

M% = 100e−πζ/
√

1−ζ 2
tp = π

ωn

√
1 − ζ 2

8. The complex root pair s = −a ± bj corresponds to the characteristic equation

(s + a)2 + b2 = 0

9. The value ζ = 0.707 corresponds to a root pair having equal real and imaginary parts:
s = −a ± aj .
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Table 10.5.3 Routh-Hurwitz stability conditions.

1. Second-Order: a2s2 + a1s + a0 = 0
Stable if and only if a2, a1, and a0 all have the same sign.

2. Third-Order: a3s3 + a2s2 + a1s + a0 = 0
Assuming a3 > 0, stable if and only if a2, a1, and a0 are all positive and a2a1 > a3a0.

3. Fourth-Order: a4s4 + a3s3 + a2s2 + a1s + a0 = 0
Assuming a4 > 0, stable if and only if a3, a2, a1, and a0 are all positive, a2a3 > a1a4, and

a1(a2a3 − a1a4) − a0a2
3 > 0

detail in texts devoted to control theory and is applicable to a model of any order. We
state the results for second-, third-, and fourth-order models only, because we will not
use higher-order models in this text.

10.6 CONTROLLING FIRST-ORDER PLANTS
The success of a chosen control action depends partly on the form of the plant transfer
function. In this section and Sections 10.7 and 10.8, we show how to apply the design
steps listed in Section 10.5 to various plant models. It is important to realize that the
mathematical results of these examples can be used to design a control system for any
plant having the same transfer function form. For example, the plant transfer function
for the liquid-level system considered in Section 10.1 (Figure 10.1.1c) is

G p(s) = R

R As + g
= 1

As + g/R

while the plant transfer function for the oven heating system (Figure 10.3.3b) is

G p(s) = R

RCs + 1
= 1

Cs + 1/R

Both transfer functions are first order with no numerator dynamics and have the form

G p(s) = 1

I s + c

which is the plant transfer function for a speed control system (Figures 10.3.7b and
10.3.10d). Therefore the results of the following example may be applied to design the
liquid-level system, the heating system, and the speed control system.

Proportional Control of a First-Order Plant EXAMPLE 10.6.1

■ Problem
Consider proportional control of the first-order plant whose transfer function is 1/(I s + c). This
can represent a rotational system whose model is I ω̇ + cω = T − Td , where the controlled
variable is the speed ω, the actuator torque is T , and the disturbance torque is Td . To illustrate
the methods simply, we will assume that the actuator has a gain of 1 and has an instantaneous
response. This implies that the actuator transfer function is Ga(s) = 1. The block diagram is
shown in Figure 10.6.1. Discuss the effect of the value of K P on the system performance when
the inputs are step functions.
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Figure 10.6.1 P control of a
first-order plant.

1
Is � c

�

�

�T(s)E(s) �(s)��r(s)

Td(s)

KP

■ Solution
The transfer functions are

�(s)

�r (s)
= K P

I s + c + K P
(1)

�(s)

Td(s)
= −1

I s + c + K P
(2)

Steady-State Errors: For a unit-step command, �r (s) = 1/s, the speed approaches the
steady-state value

ωss = lim
s→0

s
K P

I s + c + K P

1

s
= K P

c + K P
< 1

Thus, the steady-state speed is less than the desired value of 1, but it might be close enough if the
damping c is small. The time required to reach this value is approximately four time constants,
or 4τ = 4I/(c + K P).

It is impossible for any control system to have a disturbance response that is zero for all
time, because it takes time for any system to respond to the disturbance. In many applications,
we are satisfied if the disturbance response is zero at steady state. In other applications, we might
tolerate a small nonzero disturbance response. The performance specifications should indicate
what is required for the design.

The response due to a unit-step disturbance, Td(s) = 1/s, is found from equation (2).

�(s) = −1

I s + c + K P

1

s

The steady-state response to the disturbance is found with the final value theorem to be
−1/(c + K P). If (c + K P) is large, this response will be small. Note that this is the speed
change caused by the disturbance, and is thus the disturbance error.

Frequency Response: The disturbance transfer function has the form of a low-pass filter
whose low-frequency gain is 1/(c+K P), and whose bandwidth is 1/τ = (c+K P)/I . Increasing
the gain K P will increase the bandwidth, thus making the system sensitive to higher-frequency
disturbances.

Actuator Requirements: It is important to predict what the actuator requirements will be.
In the absence of a disturbance, the expression for the motor torque T can be found from the
block diagram and equation (1). It is

T (s) = K P [�r (s) − �(s)] = K P

(
1 − K P

I s + c + K P

)
�r (s)

or

T (s) = K P
I s + c

I s + c + K P
�r (s)

If the commanded speed is a unit step, the torque response can be found from a partial fraction
expansion to be

T (t) = K P

c + K P

[
c + K P e−(c+K P )t/I

]
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Thus the torque decays exponentially to the value cK P/(c + K P). The maximum torque occurs
at t = 0 and is T (0) = K P . Thus the larger the gain K P , the more torque is required. To speed
up the system (by reducing τ ) or to reduce the steady-state error, we must increase K P and
therefore must increase the available torque. This has implications for the size and cost of the
motor that must be used.

Summary: The performance of proportional control action thus far can be summarized as
follows. For the first-order plant 1/(I s + c), whose inputs are step functions,

1. The response to the command input never reaches the desired value if there is damping
(c 
= 0), although it can be made arbitrarily close to the desired value by choosing the gain
K P large enough.

2. The response to the command input approaches its final value without oscillation. The
time to reach this value is inversely proportional to K P .

3. The steady-state disturbance error is inversely proportional to the gain K P even if there is
no damping.

4. For a step command input of magnitude M , the maximum required motor torque occurs at
t = 0 and equals M K P . To reduce the time constant or the errors, we must increase K P

and thus the maximum available torque.

The chief disadvantage of proportional control action is that it results in steady-
state errors. It can be used only when the gain can be made large enough to reduce
errors and reduce the time constant without requiring too large an actuator output. It
can be augmented with feedforward command compensation to reduce the command
error. An advantage to proportional control action is that the control signal responds to
the error instantaneously (in theory at least) and does not cause oscillations.

Response of a Proportional Control System EXAMPLE 10.6.2

■ Problem
Suppose the plant shown in Figure 10.6.1 has the parameter values I = 5 and c = 2 in a
consistent set of units in which time is measured in seconds. (a) Determine the smallest value of
the gain K P required so that the steady-state command error will be no greater than 0.05 rad/s
if ωr is a unit-step input. Evaluate the resulting time constant and the steady-state disturbance
error for a unit-step disturbance. (b) Obtain the steady-state error due to a unit-ramp command.

■ Solution
a. The error equation is

E(s) = �r (s) − �(s)

=
(

1 − K P

5s + 2 + K P

)
�r (s) + 1

5s + 2 + K P
Td(s)

=
(

5s + 2

5s + 2 + K P

)
�r (s) + 1

5s + 2 + K P
Td(s)

The steady-state command error for a unit-step command with no disturbance is

ess = lim
s→0

s

(
5s + 2

5s + 2 + K P

)
1

s
= 2

2 + K P
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The error will be 0.05 rad/s if K P = 38. The time constant for this value of K P is

τ = I

c + K P
= 5

2 + K P
= 1

8
s

The steady-state error due to a unit-step disturbance is

ess = lim
s→0

s

(
1

5s + 2 + K P

)
1

s
= 1

2 + K P
= 1

40
= 0.025 rad/s

If both inputs are applied, the total steady-state error will be

ess = 0.05 + 0.025 = 0.075 rad/s

and the steady-state speed will be

ωss = 1 − 0.075 = 0.925 rad/s

Note that we can make the command error, the disturbance error, and the time constant
smaller only by making K P larger than 38, but this increases the maximum required torque
and probably the cost of the system.

b. Using �r (s) = 1/s2 with the final value theorem, we find the steady-state command
error is

ess = lim
s→0

s

(
5s + 2

5s + 40

)
1

s2
= ∞

The speed ω(t) never catches up with the command input ωr (t), and the steady-state error
is infinite.

The speed control system with P action is a first-order system and thus cannot
oscillate with step inputs. Integral control action often eliminates steady-state error but
it always raises the order of the system by one, thus resulting in a higher-order system
more likely to oscillate. The logical choice is to combine the two actions and use PI
control.

EXAMPLE 10.6.3 Computing PI Gains

■ Problem
A PI control system is shown in Figure 10.6.2. Suppose the plant has the parameter values I = 5
and c = 2. The dominant time constant is specified to be 0.5 s.

a. Compute the required values for K P and K I for each of the following three cases:
(1) ζ = 0.707, (2) ζ = 1, and (3) The secondary time constant must be 0.05 s.

Evaluate the steady-state command error and the steady-state disturbance error for
each case given that both the command input ωr (t) and the disturbance Td(t) are unit-step
functions.

b. Plot the output response ω(t) and the actuator response T (t) for each case, given that the
command input ωr (t) is a unit-step function and the disturbance Td(t) is zero.

Figure 10.6.2 PI control of a
first-order plant.
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c. Evaluate the steady-state command error for each case given that the command input ωr (t)
is a unit-ramp function and the disturbance Td(t) is zero.

d. Evaluate the frequency response characteristics of the disturbance transfer function.

■ Solution
From the block diagram we obtain the following output, error, and actuator equations.

�(s) = K P s + K I

5s2 + (2 + K P)s + K I
�r (s) − s

5s2 + (2 + K P)s + K I
Td(s) (1)

E(s) = 5s2 + 2s

5s2 + (2 + K P)s + K I
�r (s) + s

5s2 + (2 + K P)s + K I
Td(s) (2)

T (s) = (K P s + K I )(5s + 2)

5s2 + (2 + K P)s + K I
�r (s) + K P s + K I

5s2 + (2 + K P)s + K I
Td(s) (3)

The characteristic equation is

5s2 + (2 + K P)s + K I = 0 (4)

and its roots are

s = −(2 + K P) ±
√

(2 + K P)2 − 20K I

10

The Routh-Hurwitz condition shows the system is stable if 2 + K P > 0 and K I > 0.
Applying the final value theorem to the error equation (2) with �r (s) = 1/s and Td(s) = 0
gives

ess = lim
s→0

s E(s) = lim
s→0

s
5s2 + 2s

5s2 + (2 + K P)s + K I

1

s
= 0

if the system is stable. Thus the system has zero command error for a step command.
Applying the final value theorem to the error equation (2) with �r (s) = 0 and Td(s) = 1/s

gives

ess = lim
s→0

s E(s) = lim
s→0

s
s

5s2 + (2 + K P)s + K I

1

s
= 0

if the system is stable. Thus the system has zero disturbance error for a step disturbance.
The damping ratio is

ζ = 2 + K P

2
√

5K I

The presence of K I enables the damping ratio to be selected without fixing the value of the
dominant time constant. For example, if the system is underdamped or critically damped, the
time constant is

τ = 10

2 + K P
(if ζ ≤ 1)

The gain K P can be picked to obtain the desired time constant, while K I is used to set the
damping ratio. Complete description of the transient response requires the numerator dynamics
present in the transfer functions to be accounted for.

a. Case 1: If ζ < 1, the real part of the roots is −(2 + K P)/10, and thus the time constant is

τ = 10

2 + K P
= 0.5 sec
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which gives K P = 18. The damping ratio of equation (4) is

ζ = 2 + K P

2
√

5K I
= 0.707

Using K P = 18 and squaring both sides gives

202

4(5K I )
= (0.707)2 = 0.5

Solve for K I to obtain K I = 40.
Case 2: If ζ = 1, the roots of equation (4) are both equal to −(2 + K P)/10, and

thus the time constant is

τ = 10

2 + K P
= 0.5

which gives K P = 18. Using this value in the damping ratio of equation (4), we have

ζ = 2 + K P

2
√

5K I
= 10√

5K I
= 1

Squaring both sides gives

102

5K I
= 1

Solve for KI to obtain K I = 20.
Case 3: Since ζ > 1 in this case, the expressions for the time constants of

equation (4) are too complicated to be useful. The easier approach is to express the desired
characteristic equation in factored form. The desired time constants are 0.5 s and 0.05 s,
which correspond to the roots s = −2 and s = −20. The desired characteristic equation
may thus be expressed as

(s + 2)(s + 20) = s2 + 22s + 40 = 0

To compare this with equation (4) we must multiply by 5 to obtain

5s2 + 110s + 200 = 0

Comparison of this with equation (4) shows that K I = 200 and 2 + K P = 110, which
gives K P = 108. These gain values give a damping ratio of ζ = 110/2

√
1000 = 1.74.

b. The plots can be easily obtained with MATLAB using the tf and step functions applied
to equations (1) and (3). The plots are shown in Figures 10.6.3 and 10.6.4. The design
having the shortest rise time and shortest settling time is case 3 with ζ = 1.74. It also has
the smallest overshoot. That case, however, requires the greatest output from the actuator,
as seen in Figure 10.6.4. The maximum torque values for each case are 18, 18, and 108,
respectively.

c. Applying the final value theorem to the error equation (2) with �r (s) = 1/s2 and
Td(s) = 0 gives

ess = lim
s→0

s E(s) = lim
s→0

s
5s2 + 2s

5s2 + (2 + K P)s + K I

1

s2
= 2

K I

Thus the steady-state ramp command error is nonzero and is different for each of the three
cases. It is the smallest for case 3 because that case has the largest value of K I .
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Figure 10.6.3 Step command
response of a PI control
system.
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Figure 10.6.4 Actuator
response of a PI control
system.

The following table summarizes the results.

Case K P KI ζ Maximum torque Ramp command error

1 18 40 0.707 18 0.05
2 18 20 1 18 0.1
3 108 200 1.74 108 0.005

d. The disturbance frequency response plot for each case is shown in Figure 10.6.5.
The bandwidths for each case are slightly different, but the disturbance amplification for
case 3 is much smaller than for the other two cases. The peak values are −26.02, −26.02, and
−40.85 dB, respectively. These correspond to magnitude ratios of 0.05, 0.05, and 0.0091.
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Figure 10.6.5 Frequency
response of a PI control
system.
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EXAMPLE 10.6.4 Use of Internal Feedback

■ Problem
Suppose the plant to be controlled is

G p(s) = 1

I s + c

where I = 5 and c = 2. Figure 10.6.6 shows a proposed alternative to PI control for this plant. It
uses an internal feedback loop to adjust the output of the controller. The dominant time constant
is specified to be 0.5 s.

a. Compute the required values for K2 and K I for each of the following three cases:
(1) ζ = 0.707, (2) ζ = 1, and (3) the secondary time constant must be 0.05 s.

Evaluate the steady-state command error and the steady-state disturbance error for
each case given that both the command input ωr (t) and the disturbance Td(t) are unit-step
functions.

b. Plot the output response ω(t) and the actuator response T (t) for each case, given that the
command input ωr (t) is a unit-step function and the disturbance Td(t) is zero.

c. Evaluate the steady-state command error for each case given that the command input ωr (t)
is a unit-ramp function and the disturbance Td(t) is zero.

d. Evaluate the frequency response characteristics of the disturbance transfer function.

Figure 10.6.6 I action with
an internal feedback loop.

1
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s

� �
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Td(s)
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■ Solution
a. From the figure, we obtain the output equation as follows:

�(s) = 1

5s + 2
[T (s) − Td(s)] (1)

T (s) = K I

s
E(s) − K2�(s) (2)

E(s) = �r (s) − �(s) (3)

Substituting equations (2) and (3) into equation (1) and multiplying both sides by 5s + 2
gives

(5s + 2)�(s) = T (s) − Td(s) = K I

s
[�r (s) − �(s)] − K2�(s) − Td(s)

Solve for �(s):

�(s) = K I

5s2 + (2 + K2)s + K I
�r (s) − s

5s2 + (2 + K P)s + K I
Td(s) (4)

For the error equation,

E(s) = �r (s) − �(s)

= �r (s) − K I

5s2 + (2 + K2)s + K I
�r (s) + s

5s2 + (2 + K P)s + K I
Td(s)

Solve for E(s):

E(s) = 5s2 + (2 + K2)s

5s2 + (2 + K2)s + K I
�r (s) + s

5s2 + (2 + K2)s + K I
Td(s) (5)

For the actuator equation,

T (s) = KI

s
E(s) − K2�(s) = K I

s
[�r (s) − �(s)] − K2�(s)

Solve for T (s):

T (s) = (5s + 2)K I

5s2 + (2 + K2)s + K I
�r (s) + K2s + K I

5s2 + (2 + K2)s + K I
Td(s) (6)

The characteristic equation is

5s2 + (2 + K2)s + K I = 0 (4)

This has the same form as equation (4) of Example 10.6.3 with K2 replacing K P .
Therefore, the gain values obtained in that example can be used here. This gives the gain
values shown in the following table.

Maximum Ramp command
Case K2 KI ζ torque error

1 18 40 0.707 7.23 0.5
2 18 20 1 4.29 1
3 108 200 1.74 8.06 5.5

Although the denominators in this example are the same as those in Example 10.6.3,
the numerators are different. Applying the final value theorem to the error equation (5)
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with �r (s) = 1/s and Td(s) = 0 gives

ess = lim
s→0

s E(s) = lim
s→0

s
5s2 + (2 + K2)s

5s2 + (2 + K2)s + K I

1

s
= 0

for all three cases. Thus the system has zero command error for a step command.
Applying the final value theorem to the error equation (5) with �r (s) = 0 and

Td(s) = 1/s gives

ess = lim
s→0

s E(s) = lim
s→0

s
s

5s2 + (2 + K2)s + K I

1

s
= 0

for all three cases. Thus the system has zero disturbance error for a step disturbance.
b. The plots can be easily obtained with MATLAB using the tf and step functions applied

to equations (1) and (3). The plots are shown in Figures 10.6.7 and 10.6.8. The rise times

Figure 10.6.7 Step command
response of I action with
internal feedback.
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Figure 10.6.8 Actuator
response of I action with
internal feedback.
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are much longer than for PI control, but the overshoots are much smaller. The peak torque
required is 7.23, 4.29, and 8.06 for cases 1, 2, and 3, respectively. These are much less than
the peak torque required with PI control.

c. Applying the final value theorem to the error equation (5) with �r (s) = 1/s2 and
Td(s) = 0 gives

ess = lim
s→0

s E(s) = lim
s→0

s
5s2 + (2 + K2)s

5s2 + (2 + K2)s + K I

1

s2
= 2 + K2

K I

Thus the ramp command error is different for each of the three cases and much larger than
for PI action.

d. The disturbance response of this system is identical to that of the PI controller because
they both have the same disturbance transfer function.

10.7 CONTROLLING SECOND-ORDER PLANTS
We now investigate how to control a second-order plant. An example of a general form
of a second-order plant without numerator dynamics is given by a rotational system of
inertia I , damping c, and torsional elasticity k, whose output is angular position θ and
whose inputs are the actuator torque T and a disturbance torque Td . The equation of
motion is

I θ̈ + cθ̇ + kθ = T (t) − Td(t)

The plant transfer function is

G p(s) = 1

I s2 + cs + k

This plant is stable if I , c, and k have the same sign. If there is no elasticity, the plant’s
transfer function is 1/s(I s + c), which is neutrally stable because of the root at s = 0.

The following examples deal with a neutrally stable plant. Applications involving
a plant of the form 1/(I s2 + cs + k) are treated in the chapter problems.

PD Control of a Neutrally Stable Second-Order Plant EXAMPLE 10.7.1

■ Problem
PD control of a neutrally stable second-order plant is shown in Figure 10.7.1. Investigate its
performance for step and ramp inputs for c ≥ 0.

1
s(Is � c)

KP � KDs
�

�

�T(s)E(s) �(s)��r(s)

Td(s) Figure 10.7.1 PD control of
a second-order plant.
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■ Solution
The output equation is

�(s) = K P + K Ds

I s2 + (c + K D)s + K P
�r (s) − 1

I s2 + (c + K D)s + K P
Td(s)

The characteristic polynomial is I s2 + (c + K D)s + K P , and the system is stable if c + K D > 0
and if K P > 0. For unit-step inputs, the steady-state command response is K P/K P = 1, which
is perfect, and the disturbance response is −1/K P . The damping ratio is

ζ = c + K D

2
√

I K P

If ζ ≤ 1, the time constant is given by

τ = 2I

c + K D

For P control (with K D = 0), ζ = c/2
√

I K P . Thus, introducing rate action allows the propor-
tional gain K P to be selected large to reduce the steady-state disturbance response, while K D

can be used to achieve an acceptable damping ratio. The rate action also helps to stabilize the
system by adding damping (if c = 0, the system with P control is not stable).

EXAMPLE 10.7.2 Design of a PD Control System

■ Problem
For the system shown in Figure 10.7.1, we are given that I = 10 and c = 2. The dominant time
constant τ is specified to be 2 s, and the damping ratio is specified to be ζ = 1.

a. Compute the required values for K P and K D . Evaluate the steady-state command error and
the steady-state disturbance error given that both the command input �r (t) and the
disturbance Td(t) are unit-step functions.

b. Evaluate the steady-state command error for each case given that the command input
�r (t) is a unit-ramp function and the disturbance Td(t) is zero.

c. Evaluate the frequency response characteristics of the disturbance transfer function.
d. Discuss the actuator output as a function of time when the command input �r (t) is a

unit-step function and the disturbance Td(t) is zero.

■ Solution
a. From the figure we obtain the following output, error, and actuator equations.

�(s) = K P + K Ds

10s2 + (2 + K D)s + K P
�r (s) − 1

10s2 + (2 + K D)s + K P
Td(s) (1)

E(s) = 10s2 + 2s

10s2 + (2 + K D)s + K P
�r (s) + 1

10s2 + (2 + K D)s + K P
Td(s) (2)

T (s) = (10s2 + 2s)(K P + K Ds)

10s2 + (2 + K D)s + K P
�r (s) + K Ds + K P

10s2 + (2 + K D)s + K P
Td(s) (3)

The characteristic equation is

10s2 + (2 + K D)s + K P = 0

and the damping ratio is

ζ = 2 + K D

2
√

10K P
= 1 (4)
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Since ζ = 1, the expression for the time constant is

τ = 20

2 + K D
= 2 sec

which gives K D = 8. Using this value in equation (4) gives

2 + 8

2
√

10K P
= 1

which gives K P = 2.5.
Applying the final value theorem to the error equation (2) with �r (s) = 1/s and

Td(s) = 0 gives

ess = lim
s→0

s E(s) = lim
s→0

s
10s2 + 2s

10s2 + (2 + K D)s + K P

1

s
= 0

Thus the system has zero command error for a step command.
Applying the final value theorem to the error equation (2) with �r (s) = 0 and

Td(s) = 1/s gives

ess = lim
s→0

s E(s) = lim
s→0

s
1

10s2 + (2 + K D)s + K P

1

s
= 1

K P
= 1

2.5
= 0.4 rad

Thus the system has a nonzero disturbance error for a step disturbance.
b. Applying the final value theorem to the error equation (2) with �r (s) = 1/s2 and

Td(s) = 0 gives

ess = lim
s→0

s E(s) = lim
s→0

s
10s2 + 2s

10s2 + (2 + K D)s + K P

1

s2
= 2

K P
= 0.8 rad

Thus the ramp command error is nonzero.
c. The disturbance transfer function is

�r (s)

Td(s)
= − 1

10s2 + (2 + K D)s + K P
= − 1

10s2 + 10s + 2.5

Its bandwidth is the frequency range 0 ≤ ω ≤ 0.32 rad/s. Its low-frequency gain is
1/2.5 = 0.4 or 20 log 0.4 = −7.86 dB. Thus the system will not respond very much to
disturbances that have a frequency content higher than 0.32 rad/s.

d. Substituting the values of K P and K D into the actuator equation (3) and using
�r (s) = 1/s and Td(s) = 0, we obtain

T (s) = (10s2 + 2s)(8s + 2.5)

10s2 + 10s + 2.5

1

s
= 80s2 + 41s + 5

10s2 + 10s + 2.5
(5)

Because the orders of the numerator and denominator are equal, this can be expressed as

T (s) = C1 + C2s + C3

10s2 + 10s + 2.5

which may be arranged as a single fraction as follows.

T (s) = 10C1s2 + (10C1 + C2)s + 2.5C1 + C3

10s2 + 10s + 2.5
(6)

Comparing the numerators of equations (5) and (6), we find that C1 = 8, C2 = −39, and
C3 = −15, so that

T (s) = 8 − 39s + 15

10s2 + 10s + 2.5
= 8 − 3.9s + 1.5

(s + 0.5)2
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This could also have been obtained with synthetic division. Using the inverse transform we
obtain

T (t) = 8δ(t) − 3.9e−0.5t + 0.45te−0.5t

where δ(t) is the unit impulse function. Therefore, the actuator output predicted by the
model will contain an impulse of strength 8 at t = 0. Of course, this is impossible
physically, and so we must view these results with skepticism. The impulse is caused by
the derivative term K Ds in the control algorithm.

D ACTION AND STEP INPUTS

D action can be used to improve the system’s speed of response, but it is best to avoid
using it in the main controller if an equivalent effect can be obtained with a compensator
elsewhere in the system. When a change in command input occurs, the error signal and
therefore the controller are instantaneously affected. If the change is sudden, as with a
step input, the physical limitations of the differentiating device mean that an accurate
derivative is not computed, and the actual performance of the system will be degraded
relative to the ideal performance predicted by the mathematical model.

In addition, as seen in Example 10.7.2, with a step command, the D action calls for
an impulse in the actuator output, which is physically impossible. Note that in Example
10.7.2 a step disturbance does not produce an impulse in the actuator output because
the disturbance passes through the plant’s transfer function before entering the control
action block via the feedback loop. Because the plant’s transfer function contains an
integration process, its output will not include an impulse. In conclusion, we must be
careful in interpreting the transient response of a system containing a perfect model
of a physical or numerical differentiator, whenever a step function is applied to such a
differentiator model.

We have seen some devices, such as op-amp circuits, for differentiating the error
signal, but it is impossible to construct a differentiating device that performs perfectly.
Therefore, the interpretation of the step response must be considered with care. Note
that this caution is not necessary in interpreting the step response of a controller with
numerator dynamics due to I action, because in that case a step input is not applied to
a differentiator.

If D action is required, a good design practice is to place the differentiator at
a point in the loop where the signals are more slowly varying. Then the behavior
of the differentiator will more closely correspond to its behavior as predicted by the
mathematical model. A frequent choice for a differentiator location is in a feedback loop.
The output is usually the result of several integrations and therefore will exhibit behavior
that is smoothed and slowly varying with respect to the other signals in the system.
A common example of this approach is in position control. In addition to the position
sensor, a velocity sensor such as a tachometer is used to provide an internal feedback
loop. In Example 10.7.3 we will see how this scheme gives the equivalent of derivative
action without producing numerator dynamics or an impulse in the actuator output.

EXAMPLE 10.7.3 Velocity Feedback Compensation

■ Problem
Consider the system shown in Figure 10.7.2 where I = 10 and c = 2. The output of the feedback
sensor, which measures the rate of change ω = θ̇ of the output, is multiplied by the gain K2,
whose value must be selected. Analyze the system and compare its performance with that of PD
control for the specifications τ = 2 s and ζ = 1.



palm-38591 book December 17, 2008 12:36

10.7 Controlling Second-Order Plants 591

1
Is � c

K2

KP
1
s

� �

� T(s)E(s) �(s)�(s)��r(s) ��

Td(s) Figure 10.7.2 P action with
rate feedback.

■ Solution
The output equation is

�(s) = K P

10s2 + (2 + K2)s + K P
�r (s) − 1

10s2 + (2 + K2)s + K P
Td(s)

Note that this command transfer function does not possess numerator dynamics, unlike the PD
system. The disturbance transfer function is identical to that of the PD system.

The error equation is

E(s) = 10s2 + (2 + K2)s

10s2 + (2 + K2)s + K P
�r (s) + 1

10s2 + (2 + K2)s + K P
Td(s)

The actuator equation is

T (s) = K P(10s2 + 2s)

10s2 + (2 + K2)s + K P
�r (s) + K2s + K P

10s2 + (2 + K2)s + K P
Td(s)

The characteristic equation is the same as that for PD control with K2 replacing K D , so we may
use the results of Example 10.7.2 to obtain K P = 2.5 and K2 = 8. The numerators of some of
the transfer functions differ from those of PD control, however.

Applying the final value theorem to the error equation with �r (s) = 1/s and Td(s) = 0
gives ess = 0. Thus the system has zero command error for a step command. With �r (s) = 0
and Td(s) = 1/s we obtain

ess = lim
s→0

s E(s) = lim
s→0

s
1

10s2 + (2 + K2)s + K P

1

s
= 1

K P
= 0.4 rad

Thus the system has the same nonzero disturbance error as PD control for a step disturbance.
For a ramp command, the error equation with �r (s) = 1/s2 and Td(s) = 0 gives

ess = lim
s→0

s E(s) = lim
s→0

s
10s2 + (2 + K2)s

10s2 + (2 + K2)s + K P

1

s2
= 2 + K2

K P
= 4 rad

Thus the ramp command error is greater than with the PD control system.
The actuator equation with �r (s) = 1/s and Td(s) = 0 gives

T (s) = K P(10s + 2)

10s2 + (2 + K2)s + K P
= 2.5s + 0.5

(s + 0.5)2

Following the same procedure used in Example 10.7.2, we obtain

T (t) = (2.5 − 0.75t)e−0.5t

The actuator output does not contain an impulse, as opposed to the result for PD control.

I action might be included when we need to reduce or eliminate steady-state error.
However, this results in a third-order model to analyze. For such models we do not have
convenient formulas to use for overshoot, and for the time constant, damping ratio, and
natural frequency of the dominant roots.
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EXAMPLE 10.7.4 PID Control of a Neutrally Stable Second-Order Plant

■ Problem
The designs in Examples 10.7.1 and 10.7.3 have a non-zero-error for a step disturbance. We
now add integral action to the design in Example 10.7.1. The resulting PID control of a neutrally
stable second-order plant is shown in Figure 10.7.3. Suppose that I = 10 and c = 2. The
performance specifications require that τ = 2 s and ζ = 0.707. Compute the gain values, and
discuss the system’s frequency response to a disturbance.

■ Solution
The output equation is

�(s) = K Ds2 + K P s + KI

10s3 + (2 + K D)s2 + K P s + K I
�r (s) − s

10s3 + (2 + K D)s2 + K P s + KI
Td(s)

The characteristic polynomial is 10s3+(2+K D)s2+K P s+K I and system is stable if 2+K D > 0,
K P > 0, and K I > 0, and if

(2 + K D)K P − 10K I > 0

Recall that for PI control, K P needs to be large to achieve stability. The presence of K D relaxes
this requirement somewhat.

The steady-state errors are zero for step inputs, and the transient response can be improved
relative to that of PD action, because three of the coefficients of the characteristic equation can
be selected.

Because this system is third order, we do not have formulas to use for the damping ratio and
the time constant. In addition, we must interpret the specifications to apply to the dominant root
or root pair, and must choose the secondary root somewhat arbitrarily. The values ζ = 0.707
and τ = 2 s correspond to the dominant root pair s = −0.5 ± 0.5 j . The third root must be
less than −0.5 so that it will not be dominant. We arbitrarily select the third root to be s = −5.
We can later investigate other choices (this is done in one of the chapter problems). These three
roots correspond to the polynomial equation

(s + 5)
[
(s + 0.5)2 + (0.5)2

] = (s + 5)
(
s2 + s + 0.5

) = s3 + 6s2 + 5.5s + 2.5 = 0

To compare this with the system’s characteristic equation, we multiply it by 10.

10s3 + 60s2 + 55s + 25 = 0

Compare this with the system’s characteristic equation:

10s3 + (2 + K D)s2 + K P s + K I

Thus, K P = 55, K I = 25, and 2+ K D = 60, or K D = 58. The response to a unit-step command
is shown in Figure 10.7.4. The overshoot is 10.3% and the 2% settling time is 2.89 s. This is
quite less than the settling time of 8 s predicted from the dominant time constant of 2 s. The
difference is due to the first- and second-order numerator dynamics of the transfer function.

Figure 10.7.3 PID control of
a second-order plant.

1
s(Is � c)KP �  � KDs
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s

�

�
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Figure 10.7.5 Frequency
response of a PID control
system.

The resulting disturbance transfer function for this system is

�(s)

Td(s)
= −s

10s3 + 60s2 + 55s + 25

The frequency response plot is shown in Figure 10.7.5. It shows that the system attenuates distur-
bance inputs by a factor of m = −34.1 dB or more. This corresponds to an amplitude reduction
of M = 10−34.1/20 = 0.02. The system rejects by an even greater amount any disturbances whose
frequencies are outside the bandwidth of 0.363 ≤ ω ≤ 1.33 rad/s. Compare this performance
with the PD control system of Example 10.7.2, which does not have as great an attenuation.
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Because of the D action, a step command input to a PID controller will cause an
impulse in the actuator response, and we must therefore exercise caution in interpreting
the transient response due to step commands. The use of an internal feedback loop
(velocity feedback compensation) avoids this difficulty.

EXAMPLE 10.7.5 Velocity Feedback with a Second-Order Plant

■ Problem
Note that the gains K P and K D produce numerator dynamics in the command transfer function of
Example 10.7.4 and that the K D term produces an unrealistic impulse in the torque T (t) when the
command is a step function. We can eliminate the numerator dynamics by measuring the angular
velocity ω and using this measurement to modify the output of the controller. This replaces the
derivative action. The proportional action is preserved by using an additional internal-feedback
loop with the measurement of θ . The diagram is shown in Figure 10.7.6. Compare its performance
with the PID system of Example 10.7.4 using the same performance specifications.

■ Solution
Starting from the output �(s) and working to the left, we can write

�(s) = 1

s(10s + 2)
[T (s) − Td(s)] (1)

T (s) = K I

s
[�r (s) − �(s)] − K1�(s) − K2�(s) (2)

Noting that �(s) = s�(s), we can substitute T (s) from equation (2) into equation (1). After
some algebra, we obtain

�(s) = KI

10s3 + (2 + K2)s2 + K1s + K I
�r (s) − s

10s3 + (2 + K2)s2 + K1s + K I
Td(s)

The denominator of the transfer functions is identical to that of Example 10.7.4, with K1

replacing K P and K2 replacing K D . Thus we can use the results of that example to show that
K1 = 55, K2 = 58, and K I = 25. The command transfer function now has no numerator
dynamics, and the disturbance transfer function is identical to that of Example 10.7.4.

The response to a unit-step command is shown in Figure 10.7.7. The maximum overshoot
is 4% as compared to 10.3% for Example 10.7.4. However, the 2% settling time is now longer
(t = 8.64 versus t = 2.89).

The big difference between the two designs is the maximum torque required. The design
of Example 10.7.4 results in a physically unrealistic impulse in T (t) at t = 0. It is shown in one
of the chapter problems that the peak in T (t) for the present design is only 25.

This design uses an extra sensor, a tachometer to measure the velocity. However, this can
be replaced by a differentiation operation acting on the measurement of θ .

Figure 10.7.6 Velocity
feedback with integral control
for a second-order plant. 1
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1
s

� �

� T(s) �(s)E(s) �(s)��r(s) ��

Td(s)

K1

�

�KI
s



palm-38591 book December 17, 2008 12:36

10.8 Additional Examples 595

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

�
(t

)
Figure 10.7.7 Unit step
command response for
Example 10.7.5.

10.8 ADDITIONAL EXAMPLES

PD Control EXAMPLE 10.8.1

■ Problem
Compute the values of the PD control gains for the system shown in Figure 10.8.1 to meet the
following specifications for unit-step inputs:

1. The closed-loop time constant τ should be 0.5 s.
2. The damping ratio ζ should be no less than 0.707.
3. The steady-state command error should be zero.
4. The magnitude of the steady-state disturbance error should be as small as possible, as

long as the first three specifications are satisfied.

■ Solution
The error equation is

E(s) = 4s2 + 3s

4s2 + (3 + K D)s + K P
R(s) + 1

4s2 + (3 + K D)s + K P
D(s)

The characteristic equation is 4s2 + (3 + K D)s + K P = 0. Since ζ < 1 we may express τ as

τ = 8

3 + K D
= 0.5 s

1
s(4s � 3)

KP � KDs
�

�

�E(s) C(s)�R(s)

D(s) Figure 10.8.1 PD control of
a second-order plant.
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which gives K D = 13. With this value for K D , the expression for ζ becomes

ζ = 3 + K D

2
√

4K P
= 16

2
√

4K P
= 4√

K P

From the error equation we see that the steady-state command error is 0, and the steady-state
disturbance error is 1/K P . Thus to minimize the error, we should make K P as large as possible,
as long as we keep ζ ≥ 0.707. Thus we set ζ = 0.707 to obtain

ζ = 4√
K P

= 0.707

This gives K P = 32. So the solution is K D = 13 and K P = 32.

EXAMPLE 10.8.2 Velocity Feedback

■ Problem
Determine the values of the gains in the system shown in Figure 10.8.2 to satisfy the following
specifications for unit-step inputs, and compute the maximum percent overshoot.

1. The closed-loop time constant τ should be no greater than 0.05 s.
2. The steady-state command error should be zero.
3. The steady-state disturbance error should be no greater than 0.001.
4. To minimize cost, the gains should be as small as possible as long as the first three

specifications are satisfied.

■ Solution
The error equation is

E(s) = s2 + (10 + K2)s

s2 + (10 + K2)s + K P
R(s) + 1

s2 + (10 + K2)s + K P
D(s)

For unit-step inputs, the steady-state command error is 0 and the steady-state disturbance error
is 1/K P . Thus to satisfy the third specification, K P may be no less than 103.

Assuming that ζ ≤ 1, the expression for the time constant is

τ = 2

10 + K2

To minimize K2 we must set τ equal to its largest permissible value, 0.05 s. This gives K2 = 30.
Thus the tentative solution is K P = 1000 and K2 = 30, which is valid if ζ ≤ 1. So we must
check ζ :

ζ = 10 + K2

2
√

K P
= 0.632

Thus the solution is valid.

Figure 10.8.2 P action with
internal feedback.

1
s � 10

K2

KP
1
s

�

�

�

� E(s) C(s)R(s) ��

D(s)
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The resulting overshoot is

M% = 100e−πζ/
√

1−ζ 2 = 7.7%

Control of an Unstable System EXAMPLE 10.8.3

■ Problem
It is desired to stabilize the unstable plant shown in Figure 10.8.3 so that the time constant and
damping ratio of the dominant root are τ = 0.1 sec and ζ = 0.707.

a. It is desired to have zero steady-state command error for a unit-step input. Determine the
required values of the PID gains.

b. Since D action and I action increase the overshoot, can we eliminate them and still satisfy
the specifications?

■ Solution
a. With PID action the error equation is

E(s) = s3 − 4s

s3 + K Ds2 + (K P − 4)s + K I
R(s)

This shows that if the system is stable, the steady-state command error is zero for a
unit-step input. The characteristic equation is

s3 + K Ds2 + (K P − 4)s + K I = 0 (1)

The Routh-Hurwitz criterion shows that the system is stable if and only if K D > 0,
K I > 0, K P > 4, and K D(K P − 4) > K I . Note that we can place all three roots where
we want because the last three coefficients are independent functions of the gains. The
specifications require that the dominant roots be s = −10 ± 10 j . Choosing the third
root to lie to the left, say at s = −20, the characteristic equation must be

(s + 20)
[
(s + 10)2 + 102

] = s3 + 40s2 + 600s + 4000 = 0

Comparing this with equation (1) shows that K D = 40, K P = 604, and K I = 4000.
b. If K D = 0 there will be no s2 term in the characteristic polynomial, and thus the system

will be unstable. So D action is needed for stability.
If we use P and D action but not I action, then setting K I = 0 gives the error equation

E(s) = s2 − 4

s2 + K Ds + K P − 4
R(s)

The system is stable if and only if K D > 0 and K P > 4. If so, the steady-state command
error for a unit-step input is

ess = − 4

K P − 4
= 4

4 − K P
, K P > 4

The error is nonzero for finite values of K P , so I action is needed.

1
s2 � 4KP �  � KDs

KI
s�

C(s)�R(s) Figure 10.8.3 PID control of
an unstable plant.
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To achieve the desired roots s = −10 ± 10 j with PD action requires that K D = 20
and K P = 204. The resulting steady-state error is −1/150. The negative error means that
the steady-state response is 1 + 1/150, which is above the desired value of 1.

Simulation of the PID and PD designs shows that the PID system has an overshoot of
24.6% while the overshoot of the PD system is 20%, but it has nonzero steady-state error.

EXAMPLE 10.8.4 Vehicle Stabilization

■ Problem
Figure 10.8.4 illustrates a vehicle moving through the atmosphere in a horizontal plane. The
vehicle attitude θ is inherently unstable because the aerodynamic forces do not act through the
mass center G. Instead they act through point P , the center of pressure, thus creating a net
moment that tends to rotate the vehicle in the positive θ direction.

We want to control the attitude by controlling the elevator angle φ, which exerts a torque
T = Bφ about G, where B is a known positive constant. The equation of motion is

I θ̈ − LCnθ = T

where I is the inertia, Cn is the normal-force coefficient, and L is the distance between G and P .
Develop a control algorithm to control φ to stabilize the vehicle.

■ Solution
This problem is different than Example 10.8.3 because the desired value of the output θ is zero.
Thus the command transfer function has no use here because the command input is zero. It is
typical of many control applications where we simply need to stabilize the system to make the
output zero. Instead of using the transfer function, we will work directly with the equation of
motion.

Substituting T = Bφ into the equation of motion gives

I θ̈ − LCnθ = Bφ (1)

Stability requires an equation of the form

I θ̈ + cθ̇ + kθ = 0

where c and k must be positive. From this we see that stability requires that a θ̇ term be present.
This suggests that the control algorithm must include D action, K D θ̇ . For the coefficient of θ to
be positive, we need P action, K Pθ . Thus the control algorithm should be

φ = −K Pθ − K D θ̇

Substituting this into equation (1) and rearranging gives

I θ̈ + BK D θ̇ + (BK P − LCn)θ = 0

which will be stable if K D > 0 and BK P > LCn . The gains K P and K D can be selected to give
the desired time constant and damping ratio.

Figure 10.8.4 Vehicle
attitude stabilization.

L

P
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G
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A Liquid-Level Control System EXAMPLE 10.8.5

■ Problem
Design a control system to keep the height h2 in Figure 10.8.5 near a desired value by controlling
the volume inflow rate q1. The volume flow rate qd is a disturbance. Assume that sensors are
available to measure both heights h1 and h2. Use the following numerical values:

A1 = 1 A2 = 2

α1 = R1

g
= 4 α2 = R2

g
= 1

We require zero steady-state command error for a step input. The dominant time constant must
be 2 sec to achieve a 2% settling time of approximately 8 sec, and the damping ratio of the
dominant roots must be ζ = 0.707.

Propose a control structure, compute the required gain values, and evaluate the resulting
steady-state disturbance error if qd is a unit step.

■ Solution
Using a method similar to that of Example 7.4.3, we find that the model for tank 1 is

ρ A1ḣ1 = ρq1 − ρg

R1
h1

The model for tank 2 is

ρ A2ḣ2 = ρqd + ρg

R1
h1 − ρg

R2
h2

The mass density ρ cancels out of the equations, and they can be rearranged as

R1

g
A1ḣ1 = R1

g
q1 − h1

R1

g

R2

g
A2ḣ2 = R1

g

R2

g
qd + R2

g
h1 − R1

g
h2

Using the definitions of α1 and α2, these equations can be expressed as

α1 A1ḣ1 = α1q1 − h1

α1α2 A2ḣ2 = α1α2qd + α2h1 − α1h2

Figure 10.8.6a shows the block diagram of these equations. Combining the two inner loops
gives the diagram shown in part (b).

R1

q1

qd
h1A1

R2h2
A2

Figure 10.8.5 Liquid-level
control.
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Figure 10.8.6 Model
simplification for a liquid-level
system.

1
�1�2A2s

1
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�1�2
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�1
�1A1s � 1

��H1(s) 1
�1�2A2s � �1

H2(s)Q1(s)

�1�2

�2

(a)

(b)

Figure 10.8.7 Block diagram of a liquid-level
control system using two feedback loops.

�1
�1A1s � 1

K1K2

KI
s

�2
�1�2A2s � �1

�

�

Q1(s) H1(s) H2(s)� �
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H2r(s)

Qd(s)

�

�

�1

More than one control structure can be used to solve this problem, but because measurements
of h1 and h2 are available, we choose to use two feedback loops based on these measurements.
In addition, the requirement for zero steady-state error suggests that the main controller use
integral action. The result is shown in Figure 10.8.7.

Using the given parameter values, the command transfer function is found to be

H2(s)

H2r (s)
= K I

8s3 + (6 + 8K1)s2 + (1 + 4K1 + K2)s + K I
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For a step command input, the final value theorem shows that h2ss = h2r for any stable values
of the gains. To satisfy the transient response requirement, the dominant roots must be s =
−0.5 ± 0.5 j . The third root should be chosen to lie to the left of these roots. Arbitrarily choosing
s = −5 we can express the characteristic equation as

8
{[

(s + 0.5)2 + (0.5)2
]
(s + 5)

} = 8s3 + 48s2 + 44s + 20 = 0

Comparing the coefficients with those of the denominator of the transfer function, we obtain

6 + 8K1 = 48 1 + 4K1 + K2 = 44 K I = 20

which gives K I = 20, K1 = 21/4, and K2 = 22. Simulation shows that the unit-step response
has a 2% settling time of 8.64 sec, which is close to the value of 8 sec predicted from the dominant
roots. The difference is due to the existence of a third root.

The disturbance transfer function is

H2(s)

Qd(s)
= 4s2 + (1 + 4K1)s

8s3 + (6 + 8K1)s2 + (1 + 4K1 + K2)s + K I

and so the steady-state disturbance error for a unit step is 0.

The Effect of Gain on Current Demand EXAMPLE 10.8.6

■ Problem
The block diagram of a speed control system is shown in Figure 10.8.8. Determine (a) the transfer
functions of the current and (b) obtain the current response to a step input of magnitude 104.7
rad/s (1000 rpm), using the parameter values given below.

■ Solution
(a) After some algebra we obtain the equation for the motor torque from the block diagram.

KT = Kb = 0.04 N · m/A N = 1.5 K P = 0.63

Ie = 1.802 × 10−3 kg · m2 ce = 4.444 × 10−4 N · m · s/rad

Ra = 0.6 � La = 2 × 10−3 H

KT
Las � Ra

1
Ies � ce

1
N

1
N

Kb

KP
� �Vm Tm

TL

�r �L�m

�

�

�

�

Figure 10.8.8 A speed
control system.
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Tm(s) = N K P KT
La Ies2 + (Ra Ie + ce La)s + Race

(Las + Ra)D(s)
�r (s)

+ KT (K P + N Kb)/N

D(s)
TL(s) (1)

where

D(s) = N La Ies2 + N (Ra Ie + ce La)s + N Race + N KT Kb + K P KT

The current is found from

Ia(s) = 1

KT
Tm(s)

Equation (1) should raise our suspicions because the denominators of the two transfer
functions Tm(s)/�r (s) and Tm(s)/TL(s) differ by the factor Las + Ra . Always keeping in mind
the physics of the problem, we observe that there are only two ways energy can be stored in this
system (as electromagnetic energy in the inductor La and as kinetic energy in the inertia Ie),
so the system model should be second order. However, the denominator of the transfer function
Tm(s)/�r (s) appears to be third order. The only way the denominators could be the same is if
the term Las + Ra is canceled by an identical term in the numerator. If this is the case we could
express the numerator as

(as + b)(Las + Ra) = aLas2 + (bLa + a Ra)s + bRa

Comparing the coefficients with those of the numerator of equation (1), we see that a = Ie and
b = ce. Thus, our suspicion is confirmed, and we may write equation (1) as

Tm(s) = N K P KT (Ies + ce)

D(s)
�r (s) + KT (K P + N Kb)/N

D(s)
TL(s)

Another way to detect the cancellation of the factor Las + Ra is to obtain the partial-
fraction expansion for either the free or forced response. The expansion coefficient (the residue)
corresponding to the factor s + Ra/La would be zero and thus this factor has no influence on the
response. A zero residue indicates that a denominator factor has been canceled by a numerator
factor.

(b) Use the transfer function Ia(s)/�r (s) with �r (s) = 104.7/s to compute the required
armature current as a function of time. This can be done analytically, using the methods of Chap-
ter 3, or numerically, using the methods of Chapter 5. The result is shown in Figure 10.8.9. The
plot shows that the motor will require 96 A! This is a large value, as most motors with similar
parameter values have a demagnetization current of less than 50 A. We can reduce the maxi-
mum current by accepting a steady-state speed error greater than 10%, by using a smaller value
for K P . For example, a speed error of 20% with K P = 0.28 results in a maximum current
of 45 A.

One way to reduce the maximum required current is to use a speed command that increases
slowly, such as a ramp function. The step and impulse functions are the most severe inputs that
can be applied to a system, because they change their value instantaneously. In many systems
it is physically difficult to apply such an input, but these functions are often used in analysis
because they result in simpler mathematics.

Suppose K P = 0.63, which corresponds to a 10% speed error. Consider the command input
ωr that is a ramp for 0 ≤ t ≤ t1, and for t > t1 is a constant value of 104.7 rad/s (1000 rpm),
the desired speed. By experimenting with the value of the time t1 while examining the resulting
maximum current, we can arrive at a value for t1 that results in a maximum current of less than
a desired value. The result for t1 = 0.5 s is shown in Figure 10.8.10, which can be obtained with
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Figure 10.8.9 Current
response of a speed control
system.
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Figure 10.8.10 Control
system response with a
modified ramp input.

MATLAB. The top graph shows the current and the bottom graph shows the modified-ramp
command input and the resulting load speed (assuming that TL = 0). The speed reaches its
steady-state value in about 0.6 s, as compared to 0.054 s for the step input. Now, however, the
maximum current is 14 A, which is much less than the 96 A required for the step command
input.

We mentioned that current limitation can change the dynamics of the system.
Figure 10.8.11 was obtained with the Simulink model to be discussed in Section 10.10.
The figure shows the effect of a built-in current limiter of 20 A on the step response of
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Figure 10.8.11 Control
system step response with a
current limiter.
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our control system with K P = 0.63. The speed response without a limiter is shown for
comparison. The action of the limiter slows the speed response.

EXAMPLE 10.8.7 Current Control in Motors

■ Problem
Controlling the torque of an armature-controlled motor is complicated by the existence of the
back emf. For this reason some amplifiers have a built-in current controller that can accept a
commanded torque from the main controller. The current controller senses the armature current
and adjusts the armature voltage to produce the current required to obtain the desired torque. The
block diagram of such a system is given in Figure 10.8.12, where ir is the commanded current
and G(s) is the transfer function of the current controller. The current controller uses a feedback
measurement of the current ia , compares it with the desired current value ir , and outputs the
armature voltage va . Investigate the requirements on G(s) to accomplish this.

■ Solution
We obtain the transfer function �(s)/Ir (s) as follows. From Figure 10.8.12 with TL(s) = 0,

�(s) = KT

I s + c
Ia(s)

Figure 10.8.12 A system for controlling
current in a motor.

1
Las � Ra

1
Is � cG(s)

� �

Ia(s)

TL(s)

Ir(s) Va(s)� �

Kb

KT
�

� �(s)
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KtachK1 Kc
KT

Is � c

Vc(s) Ir(s)�r(s)

�

� �(s) Figure 10.8.13 A
proportional control system
using current control.

and

Ia(s) = 1

Las + Ra
{G(s) [Ir (s) − Ia(s)] − Kb�(s)}

Eliminating Ia(s) from these equations gives

�(s)

Ir (s)
= KT G(s)

La I s2 + As + B + G(s)(I s + c)
(1)

where A = cLa + Ra I and B = Rac + KT Kb.
Suppose that G(s) = K , a constant. Then, as K → ∞,

�(s)

Ir (s)
→ KT

I s + c
(2)

In this case, we can draw the diagram shown in Figure 10.8.13, where Kc is a constant that
converts the voltage command vc from the speed controller into a current command for the
current controller. The value of the proportional gain in this system is K P = Ktach K1 Kc and the
value of the product K1 Kc can be determined from K1 Kc = K P/Ktach.

In the general case where G(s) is a function of s, if G(s) is “large enough,” we obtain
the same result. Although the meaning of “large enough” may not be clear for a function of s,
you can convince yourself of this result by trying a specific function for G(s). For example, the
transfer function for PID action is

G(s) = K Ds2 + K P s + K I

s

Substituting this into equation (1) and letting the gains K D , K P , and KI approach infinity, we
obtain equation (2).

An Active Suspension EXAMPLE 10.8.8

■ Problem
Active suspensions are now appearing more frequently in new cars. An active suspension sup-
plements the car’s passive suspension system that consists of springs and shock absorbers. An
electric motor, a hydraulic servomotor or pneumatic cylinder is mounted either in parallel or in
series with the spring and shock absorber. The actuator is under computer control so that its force
can be adjusted to apply more force in response to varying conditions, for example to maintain
traction during turns or to compensate for increased passenger and cargo weight.

Figure 10.8.14 illustrates the principle for a single-mass, quarter-car suspension model.
The servomotor is shown in parallel with the spring and damper. Assume that the servomotor
force is proportional to the chassis displacement x and the chassis velocity ẋ , so that f =
−K P x − K D ẋ . The gains can be adjusted by the computer to achieve desirable response under
different conditions.

Determine the values of the gains to achieve a damping ratio of ζ = 0.707 and an undamped
natural frequency of ωn = 5 rad/s. Use the nominal values m = 275 kg, c = 1768 N · s/m, and
k = 6250 N/m.
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Figure 10.8.14 An active
suspension system.

k(y � x) f c(y· � x·)k c

f

x
m m

y

■ Solution
The equation of motion is

mẍ = k(y − x) + c(ẏ − ẋ) + f = k(y − x) + c(ẏ − ẋ) − K P x − K D ẋ

or

mẍ + (c + K D)ẋ + (k + K P)x = cẏ + ky

From this equation we see that this active suspension, which implements PD control action,
supplements the damping and stiffness of the passive suspension.

Using the given parameter values, we have

ζ = c + K D

2
√

m(k + K P)
= 1768 + K D

2
√

275(6250 + K P)
= 0.707

ωn =
√

k + K P

m
=

√
6250 + K P

275
= 5 rad/s

Solving the latter equation for K P gives K P = 625 N/m. Substitute this value into the equation
for ζ and solve to obtain K D = 176 N · s/m.

EXAMPLE 10.8.9 Feedforward Compensation with Proportional Control

■ Problem
Consider the liquid-level system shown in Figure 10.1.1a, with the controller diagram given by
Figure 10.1.3. Suppose we make the feedback control adjustment proportional to the error e =
hr −h, so that Gc(s) = K P , where K P is the proportional gain. This scheme is called feedforward
compensation with proportional control. The resulting diagram is shown in Figure 10.8.15. The
controlled flow rate is

qc = Aeḣr + g

Re
hr + K P(hr − h)

Investigate the stability, speed of response, and error response of this system, assuming that
hr and qd are step functions. Determine the value of K P required to achieve a specified 2%
settling time ts .

■ Solution
First obtain the equation for the output H(s). From the block diagram,

H(s) = R

R As + g

{
Qd(s) + Re Aes + g

Re
Hr (s) + K P [Hr (s) − H(s)]

}
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R
RAs � g

Re

ReAes � g

� �

Qc(s)

Qd(s)

E(s)Hr(s) � ��

�

H(s)
KP

Figure 10.8.15 Proportional
control with feedforward
compensation for a liquid-level
controller.

The solution for H(s) is

H(s) = (R/Re)(Re Aes + g) + RK P

R As + g + RK P
Hr (s) + R

R As + g + RK P
Qd(s) (1)

Note that if Re = R and Ae = A,

H(s) = Hr (s) + R

R As + g + RK P
Qd(s)

which means the system will have zero error if there is no disturbance. Thus the good feature of
open-loop control has been preserved.

The characteristic equation, given by the denominators, is R As + g + RK P = 0, which
has the root

s = − g + RK P

R A

Since R A > 0 the system is stable as long as g + RK P > 0; that is, if K P > −g/R. The time
constant of the closed-loop system is

τ = R A

g + RK P

and the 2% settling time is 4τ . So the required value for K P is

K P = 4A

ts
− g

R

We note that accurate calculation of the derivative ḣr is often difficult to achieve.
This can limit the applicability of the feedforward method.

GENERAL FORM OF FEEDFORWARD
COMMAND COMPENSATION

The concept of feedforward command compensation can be generalized as follows. The
system is shown in Figure 10.8.16. The open-loop control transfer function is G f (s),
which is called the compensator transfer function. The output equation is

C(s) = G p(s)[Ga(s){G f (s)R(s) + Gc(s)[R(s) − C(s)]} + D(s)]

= G p(s)Ga(s)G f (s)R(s) + G p(s)Ga(s)Gc(s)R(s)

− G p(s)Ga(s)Gc(s)C(s) + G p(s)D(s)

Solve for C(s):

C(s) = G p(s)Ga(s)G f (s) + G p(s)Ga(s)Gc(s)

1 + G p(s)Ga(s)Gc(s)
R(s) + G p(s)

1 + G p(s)Ga(s)Gc(s)
D(s)
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In the absence of a disturbance, the output C(s) will exactly equal the command input
R(s) if C(s)/R(s) = 1. This will be true if

C(s)

R(s)
= G p(s)Ga(s)G f (s) + G p(s)Ga(s)Gc(s)

1 + G p(s)Ga(s)Gc(s)
= 1

This equation will be satisfied if

G f (s) = 1

G p(s)Ga(s)
(10.8.1)

This expresses the general principle of feedforward compensation of the command;
namely, in the absence of a disturbance, the output will follow the command exactly
if G f (s) = 1/G p(s)Ga(s). Note that this says that the compensator transfer function
should be the reciprocal of the transfer function encountered as the compensated signal
flows from the compensator to the output C(s).

Of course, this startling principle is a mathematical result only. In practice we do not
have exact models of the plant and the actuator, and we cannot build a compensator to
have the exact transfer function specified by G f (s). If the compensator is implemented
in analog form, the hardware (electronic, pneumatic, or hydraulic) cannot be designed
to give the desired expression for G f (s) exactly. If implemented in digital form as
a computer algorithm, the algorithm can reproduce the transfer function G f (s) only
approximately because of quantization and sampling effects. Finally, the command
compensator cannot deal with the effects of a disturbance. For that we always need
the main controller block Gc(s) and feedback loop shown in Figure 10.8.16. The
compensator is used merely to augment the feedback controller.

DISTURBANCE COMPENSATION

Suppose that we can measure the disturbance d(t). If so, we can use the measure-
ment to improve the performance of a control system. This technique is called
disturbance compensation. The arrangement is shown in Figure 10.8.17, in which the
feedforward compensation has been omitted to simplify the discussion. The transfer
function Gd(s) represents a mathematical operation acting on the measurement of d(t).
We now determine what Gd(s) should be.

Figure 10.8.16 General
structure of feedforward
compensation.

� �

D(s)

E(s)R(s) � ��

�

C(s)
Gc(s) Ga(s) Gp(s)

Gf (s)

Figure 10.8.17 General
structure of disturbance
compensation.

� �

D(s)

E(s)R(s) � ��

�

C(s)
Gc(s) Ga(s) Gp

Gd(s)
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From the block diagram we can write

C(s) = G p(s)[Ga(s){Gd(s)D(s) + Gc(s)[R(s) − C(s)]} + D(s)]

Collecting terms gives

C(s) = G p(s){[Ga(s)Gd(s) + 1]D(s) + Gc(s)[R(s) − C(s)]}
Note that D(s) will not appear in the equation if Ga(s)Gd(s) + 1 = 0. Thus, if

Gd(s) = − 1

Ga(s)
(10.8.2)

the disturbance will be canceled by the compensator Gd(s) and will not affect the
output c(t). To see this, follow the flow of D(s) to the output C(s) in Figure 10.8.17.

Of course, this tidy result is difficult to achieve in practice because (1) the dis-
turbance might not be measurable or the measurement might be noisy, and (2) the
operation specified by Gd(s) might be difficult to implement in hardware or software.

In many of the examples to follow in this chapter and the next two, we will not
use feedforward compensation or disturbance compensation to simplify the discussion,
so that we can concentrate on the design of the main feedback controller. They can,
however, be included if the limitations discussed earlier are not too severe. As illustrated
by Figure 10.1.4, the calculations required to implement feedforward and disturbance
compensation are easier to do if a digital computer is used as the controller.

10.9 MATLAB APPLICATIONS
The MATLAB functions tf, step, lsim, bode, and bodemag provide a powerful
set of tools for analyzing the performance of control systems. All of these functions
have extended syntax that was covered in earlier chapters. Here we will focus on their
application to control system analysis. Recall that when these functions display a plot,
you can right-click on the plot to determine characteristics such as maximum overshoot,
peak time, settling time, and peak response. Left-clicking on the curve lets you move
the cursor along the curve to identify coordinates.

THE tf AND step FUNCTIONS

Thetf function creates an LTI object in transfer function form, using the numerator and
denominator expressed as arrays. The step function displays the unit-step response.
The command transfer function in Example 10.7.4 is

�(s)

�r (s)
= K Ds2 + K Ps + K I

10s3 + (2 + K D)s2 + K Ps + K I

Using the gain values K P = 55, K I = 25, and K D = 58, the unit-step response shown
in Figure 10.7.4 was obtained with the following M-file:

KP = 55; KI = 25; KD = 58;
sys1 = tf([KD, KP, KI],[10, 2+KD, KP, KI]);
step(sys1)

The resulting plot was then edited with the Plot Editor to produce the figure.
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THE bode AND bodemag FUNCTIONS

The bode function displays the plots of the magnitude ratio in decibels and the phase
angle in degrees. The bodemag function does not display the phase plot. The distur-
bance transfer function in Example 10.7.4 is

�(s)

Td(s)
= − s

10s3 + (2 + K D)s2 + K Ps + K I

Using the gain values K P = 55, K I = 25, and K D = 58, the frequency response plot
shown in Figure 10.7.5 was obtained with the following M-file:

KP = 55; KI = 25; KD = 58;
sys2 = tf([-1, 0],[10, 2+KD, KP, KI]);
bodemag(sys2)

The resulting plot was then edited with the Plot Editor to produce the figure.

THE lsim FUNCTION

The lsim function displays the response of a linear model to a user-defined input. This
function is useful for computing the ramp response. For example, the following M-file
plots the error response to a ramp command of slope 6, for a PI control system whose
gains are K P = 18 and K I = 40. This system was analyzed in Example 10.6.3. The
error transfer function is

E(s)

�r (s)
= 5s2 + 2s

5s2 + (2 + K P)s + K I

The M-file is

KP = 18; KI = 40;
sys3 = tf([5, 2, 0],[5, 2+KP, KI]);
t = (0:0.01:2);
omr = 6*t;
lsim(sys3, omr, t)

The lsim function plots the input omr as well as the response.

TRAPEZOIDAL RESPONSE

The response of a control system to a trapezoidal command input is easily found with
MATLAB. If the profile and the transfer functions are defined in their own programs,
we can use a modular approach that gives us the ability to examine different command
inputs and different systems easily. The following example illustrates this approach.

EXAMPLE 10.9.1 Simulation with a Trapezoidal Profile

■ Problem
Consider the P, PI, and modified I control systems discussed in Examples 10.6.2, 10.6.3, and
10.6.4. The plant transfer function is 1/(I s+c), where I = 5 and c = 2. This plant can represent
an inertia whose rotational velocity is the output and whose input is a torque. So the control
systems are examples of speed controllers.

Investigate the performance of these systems for the trapezoidal command input shown in
Figure 10.9.1. Use the parameter values I = 5 and c = 2.
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Figure 10.9.1 A trapezoidal
command profile.

■ Solution
The transfer functions and parameters for these three control systems are shown in Table 10.9.1.

We can use the expressions in Table 10.9.1 to compute the gain values required to achieve
a time constant of τ = 1 and a steady-state error ess = 0.2 for a unit-ramp command. Because
the slope of the profile is 10/3, this will give a steady-state error of 0.2(10/3) = 5/3. The
following table shows the results.

P K P = 3 —
PI K P = 8 K I = 10
Modified I K2 = 8 K I = 50

Table 10.9.1 P, PI, and Modified I Control Systems

Reference: Examples 10.6.2, 10.6.3, and 10.6.4

P PI Modified I

Command transfer function �(s)/�r (s)
K P

5s + 2 + K P

K P s + K I

5s2 + (2 + K P)s + K I

K I

5s2 + (2 + K2)s + K I

Disturbance transfer function �(s)/Td(s) − 1

5s + 2 + K P
− s

5s2 + (2 + K P)s + K I
− s

5s2 + (2 + K2)s + K I

Actuator transfer function T (s)/Td(s) K P
5s + 2

5s + 2 + K P

(K P s + K I )(5s + 2)

5s2 + (2 + K P)s + K I

(5s + 2)K I

5s2 + (2 + K2)s + K I

Steady-state unit-ramp error ess
1

2 + K P

2

K I

2 + K2

K I

Time constant τ
5

2 + K P

10

2 + K P
if ζ ≤ 1

10

2 + K2
if ζ ≤ 1

Damping ratio ζ —
2 + K P

2
√

5K I

2 + K2

2
√

5K I
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Table 10.9.2 Transfer function files

% command tf.m
% Create the command transfer functions.
sysa = tf(KPa,[5, 2+KPa]);
sysb = tf([KPb, KIb],[5, 2+KPb, KIb]);
sysc = tf(KIc,[5, 2+K2, KIc]);

% actuator tf.m
% Create the actuator transfer functions.
sysaACT = tf(KPa*[5, 2],[5, 2+KPa]);
sysbACT = tf(conv([KPb, KIb],[5, 2]),[5, 2+KPb, KIb]);
syscACT = tf(KIc*[5, 2],[5, 2+K2, KIc]);

% dist tf.m
% Create the disturbance transfer functions.
sysaDIS = tf(-1, [5, 2+KPa]);
sysbDIS = tf(-[1, 0],[5, 2+KPb, KIb]);
syscDIS = tf(-[1, 0],[5, 2+K2, KIc]);

The following file sets the gain values for the three systems. System a is the P control
system, system b is the PI system, and system c is the modified I system.

% gains.m

% Sets the gains.

% P control (system a):

KPa = 3;

% PI control (system b):

KPb = 8;KIb = 10;

% I action modified with velocity feedback (system c):

K2 = 8;KIc = 50;

After running the program gains.m, the files shown in Table 10.9.2 are used to create the
command, disturbance, and actuator transfer functions given in Table 10.9.1.

The trapezoidal command input shown in Figure 10.9.1 can be created with the following
script file.

% trap.m

% A specific trapezoidal profile

t = (0:0.01:12);

for k = 1:length(t)

if t(k) <= 3

r(k) = (10/3)*t(k);

elseif t(k) <= 6

r(k) = 10;

elseif t(k) <= 9

r(k) = 30-(10/3)*t(k);

else

r(k) = 0;

end

end

After running trap.m and one of the transfer function programs given in Table 10.9.2, the
files shown in Table 10.9.3 are used to compute and plot the command, disturbance, and actuator
responses.
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Table 10.9.3 Solution and plotting files

% plot command.m
% Obtain and plot the command response.
ya = lsim(sysa,r,t);
yb = lsim(sysb,r,t);
yc = lsim(sysc,r,t);
plot(t,ya,t,yb,t,yc,'--',t,r)

% plot actuator.m
% Obtain and plot the actuator repsonse.
yaACT = lsim(sysaACT,r,t);
ybACT = lsim(sysbACT,r,t);
ycACT = lsim(syscACT,r,t);
plot(t,yaACT,t,ybACT,t,ycACT,'--')

% plot dist.m
% Add the disturbance response to the command response
% and plot the total response.
ya = lsim(sysa,r,t);
yb = lsim(sysb,r,t);
yc = lsim(sysc,r,t);
disturbance = 20*t;
yaDIS = lsim(sysaDIS,disturbance,t);
ybDIS = lsim(sysbDIS,disturbance,t);
ycDIS = lsim(syscDIS,disturbance,t);
plot(t,ya+yaDIS,t,yb+ybDIS,t,yc+ycDIS,'--',t,r)

For example, to create the plot shown in Figure 10.9.2, use the M-file:

gains

command_tf
trap

plot_command

Notice that the P control system does not follow the trapezoidal profile very well. (Figure 10.9.2
was enhanced using the Plot Editor.)
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Figure 10.9.2 System
response to a trapezoidal
command.
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Figure 10.9.3 System
response to a trapezoidal
command. Here the gain of the
P control system has been
increased.
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Figure 10.9.4 Actuator
response to a trapezoidal
command.
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The performance of the P control system can be improved by increasing the gain. For
example, to use K P = 50, change KPa to 50 in gains.m and run the following M-file. Note
that we need not run trap.m again unless we cleared the variables.

gains

command_tf
plot_command

The result is shown in Figure 10.9.3. Now the P control follows the trapezoidal profile much
better.
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Figure 10.9.5 Response to a
ramp disturbance.

The actuator response is found by running the M-file:

actuator_tf
plot_actuator

The result is shown in Figure 10.9.4.
Finally, let us see how well the systems do with a ramp disturbance Td = 20t . Run the

following M-file.

dist_tf
plot_dist

The total response is shown in Figure 10.9.5. Both PI and P control have difficulty following the
profile, but the modified I system does rather well.

Using the approach outlined in Section 6.7 of Chapter 6, we can also use MATLAB
to evaluate the performance specifications discussed in Section 6.5 for a trapezoidal
command input. These specifications include the maximum torque, rms torque, and
maximum velocity required by the control system to follow the profile.

10.10 SIMULINK APPLICATIONS
Simulink cannot be used to investigate control system performance until a preliminary
analysis has developed a system model, selected a control algorithm, and computed a set
of gain values. Once this has been done, however, Simulink can be used to investigate
aspects of the design that are not easily analyzed with closed-form solution methods.
These aspects include

1. The effects of unmodeled sensor, actuator, and plant dynamics. Often we neglect
actuator time constants and smaller plant time constants in order to obtain a
low-order model of the system.

2. Nonlinear dynamics, such as discontinuities (e.g., two-position control) and
actuator saturation.
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3. Input functions more complicated than simple steps, ramps, and sinusoids. These
include trapezoidal commands and random disturbances.

EXAMPLE 10.10.1 Control of a Liquid-Level System

■ Problem
As an example, consider the liquid-level control system developed in Example 10.8.5, whose
block diagram is shown in Figure 10.8.7. The analysis in that example ignored the obvious
fact that the control flow rate q1 can never be negative! For some initial heights, a simulation
would show that q1(t) takes on negative values. Create a Simulink model using the numerical
parameters and control gains given in that example, except for the integral gain K I . The model
should prevent q1 from becoming negative. Investigate the response with this limitation.

■ Solution
We can use the Saturation block to prevent the control flow rate q1 from becoming negative
in the simulation. The Simulink model is shown in Figure 10.10.1. It can be easily con-
structed from the block diagram, with some rearrangement to allow for placement of the Mux.
Note that we have not used a Saturation block to prevent the liquid heights from being nega-
tive, because the physics used to develop the differential equation models prevents this from
happening.

We have introduced a new block in this model. In Simulink this block is called the “Transfer
Fcn (with initial outputs),” to distinguish it from the Transfer Fcn block we have used earlier.
With this new block we can set the initial value of the block output. In our model, this corresponds
to the initial liquid heights in the tanks. This feature thus provides a useful improvement over
traditional transfer function analysis, in which initial conditions are set to zero.

Figure 10.10.1 Simulink model of a
liquid-level control system.

K1

K222

4

50
s

To Workspace

Mux

simout

Step
Command

Step
Disturbance

Gain

I Control

4
4s + 1
Tank 1

1
8s + 4
Tank 2Saturation

+– +– +– ++

21/4
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Figure 10.10.2 Flow rate and
liquid height responses.

The new block is equivalent to adding the free response to the block output, with all the
block’s state variables set to zero except for the output variable. The new block also lets you
assign an initial value to the block input, but we will not use this feature and so will leave the
initial input set to 0 in the Block parameters window.

The steady-state error due to a ramp command for this system was shown to be ess = 44/K I ,
so to decrease this error, in our simulation we will use a larger integral gain, say, K I = 50. This
makes the system faster and more oscillatory, and this means that the commanded control flow
q1 will more likely be computed to be negative.

The simulation used a step command of magnitude 5 starting at t = 0 and a step disturbance
of magnitude 3 starting at t = 20. The saturation limits were 0 and 100. The initial heights were
set to h1 = 2 and h2 = 1.

The results are shown in Figure 10.10.2. Note that sometimes the control flow q1 is zero.
Were it not for the Saturation block, the flow would become negative. The MATLAB M-file
used to produce this plot is the following. The plot was then modified with the Plot Editor.

subplot(3,1,1),plot(tout,simout(:,1))

subplot(3,1,2),plot(tout,simout(:,2))

subplot(3,1,3),plot(tout,simout(:,3))

Current Saturation in a Motor Control System EXAMPLE 10.10.2

■ Problem
The block diagram of a proportional control system was given in Figure 10.3.9 and is shown here
in modified form as Figure 10.10.3. Create a Simulink model to investigate the effects of current
saturation, using the parameter values given in Example 10.8.6 and a step-command input of
magnitude 104.7 rad/s (which corresponds to 1000 rpm). Assume that the current is limited to
±20 A.
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Figure 10.10.3 Block
diagram of a speed control
system.
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Figure 10.10.4 Simulink model of a speed
control system with a current limiter.
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■ Solution
To investigate the effects of current saturation we need to place a Saturation block between the
circuit transfer function 1/(Las + Ra) and the mechanical subsystem that includes the torque
constant KT . The limits on the Saturation block were set to −20 and 20. The result is the Simulink
model shown in Figure 10.10.4. Because we are not interested in the load torque TL here, we
have omitted it from the diagram for simplicity. Gains of 2π/60 and 60/2π are used to convert
from rpm to rad/s for the input, and from rad/s to rpm for the output. Set the Save Format to Array
in the Block Parameters window of the To Workspace block. The data fed to the To Workspace
block are used in MATLAB to create the plots shown in Figure 10.8.11.

We will use variables for the parameters in the simulation. In the Electrical block, set the
numerator to 1 and the denominator to [La Ra]. In the Mechanical block, set the numerator
to [KT] and the denominator to [Ie ce]. Set the gain to KP in the Controller block. In the
block labeled Kb, set the gain to Kb, and in the block labeled 1/N set the gain to 1/N. Before
running the simulation, type the following in the Command window to set the values of the
parameters.

�KT = 0.04; Kb = KT; Ra = 0.6; La = 2e-3;

�Ie = 1.802e-3; ce = 4.444e-4;

�N = 1.5; KP = 0.63;

The To Workspace block puts the time variable tout and the array simout in the
MATLAB workspace. The first column of simout contains the current, and the second col-
umn contains the speed in rpm. To plot the current response, in the Command window type
plot(tout,simout(:,1)). Type plot(tout,simout(:,2)) to obtain a plot of the
speed. The plots are shown in Figure 10.8.11.
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The model in Example 10.10.1 implements proportional control. To examine PID
control in general, replace the Controller gain block in Figure 10.10.4 with the PID
Controller block. This block enables you to specify the proportional, integral, and
derivative gains.

10.11 CHAPTER REVIEW
This chapter introduced the basic concepts of feedback control. It showed how to model
control system components and analyze control system performance.

When designing a control system, the control systems engineer is usually given the
plant, the actuator, and the physical type of controller (electronic, pneumatic, hydraulic,
or digital), and often is expected to develop a model of these components. The command
and disturbance inputs might be specified, or the engineer might be expected to develop
suitable test inputs based on the application. Step functions are the principal test inputs,
because they are the most common and perhaps represent the severest test of system
performance. Ramp, trapezoidal, and sinusoidal test inputs are also employed. The type
to use should be made clear in the design specifications.

The engineer then proceeds to design the control system. Based on the system
model and the performance specifications, a control action is chosen, and the output,
error, and actuator equations are derived. These are then analyzed for stability. If the
system cannot be made stable with a gain change, a different control action is tried.
Using the given command and disturbance input functions (step, ramp, etc.), the steady-
state response is evaluated with the final value theorem. Any constraints on the gain
values required to satisfy the steady-state specifications are then determined.

The transient performance is then evaluated in light of the transient specifications,
using the given input functions. These specifications often are stated in terms of the
desired dominant time constant and damping ratio, but they can also be given in terms
of overshoot, rise time, settling time, or bandwidth, for example. Other specifications,
such as limits on the maximum available actuator output, are evaluated, and the system
redesigned if necessary.

Now that you have finished this chapter you should be able to do the following:

1. Model common control system components.
2. Select an appropriate control algorithm of the PID type or one of its variations,

for a given application and for given steady-state and transient performance
specifications.

3. Analyze the performance of a control algorithm using transfer functions, block
diagrams, and computer methods.

4. Compute the gain values to meet the specifications.
5. Use MATLAB and Simulink to analyze and simulate control systems.

REFERENCE
[Cannon, 1967] R. H. Cannon, Jr., Dynamics of Physical Systems, McGraw-Hill, New York,

1967.

PROBLEMS
Section 10.1 Closed-Loop Control

10.1 Discuss whether or not the following devices and processes are open-loop
or closed-loop. If they are closed-loop, identify the sensing mechanism.
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a. A traffic light.
b. A washing machine.
c. A toaster.
d. Cruise control.
e. An aircraft autopilot.
f. Temperature regulation in the human body.

10.2 Draw the block diagram of a system using proportional control and
feedforward command compensation, for the plant 1/(4s2 + 6s + 3).
Determine the transfer function of the compensator. Discuss any practical
limitations to its use.

10.3 Investigate the performance of proportional control using feedforward
command compensation with a constant gain K f and disturbance
compensation with a constant gain Kd , applied to the plant 10/s. Set the gains
to achieve a closed-loop time constant of τ = 2 and zero steady-state error for
a step command and a step disturbance.

Section 10.2 Control System Terminology

10.4 Derive the output C(s), error E(s), and actuator M(s) equations for the
diagram in Figure P10.4, and obtain the characteristic polynomial.

Figure P10.4

K 4
3s � 1

6
15s � 2

� �

D(s)

E(s) F(s) M(s)R(s) �

�

C(s)

Section 10.3 Modeling Control Systems

10.5 For the system shown in Figure P10.5, the plant time constant is 5 and the
nominal value of the actuator time constant is τa = 0.05. Investigate the effects
of neglecting this time constant as the gain K P is increased.

Figure P10.5 1
�as � 1

1
5s � 1

KP
R(s) �

�

C(s)

10.6 In Figure P10.6, the block is pulled up the incline by the tension force f in the
inextensible cable. The motor torque T is controlled to regulate the speed v of
the block to obtain some desired speed vr . The precise value of the friction
coefficient μ is unknown, as is the slope angle α, so we model them as a
disturbance. Neglect all masses and inertias in the system except for the block
mass m. Also neglect the field time constant of the field-controlled motor.
Feedback of the block speed v is provided by a sensor that measures the pulley
rotational speed ω, which is directly related to v by v = Rω.
a. Obtain the equation of motion of the block speed v, with the voltage vm ,

friction force F = μmg cos α, and the weight component Wx = mg sin α

as the inputs.
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Figure P10.6

b. Draw a block diagram representing the control system, with the command
input vr , the output v, and the disturbance D = F + Wx . Model the speed
sensor as directly sensing the speed ω. Show the necessary transfer
functions for each block in the diagram.

c. Obtain the output, error, and torque transfer functions from the block
diagram.

10.7 The diagram in Figure P10.7 shows a system for controlling the angular
position of a load, such as an antenna. There is no disturbance.
a. Draw the block diagram of a system using proportional control, similar to

that shown in Figure 10.3.9 except that the command and the output are
angular positions. Assume that the motor is armature-controlled and that

�2 � �1
1
2

� � �2
1
3

Shaft 2:
inertia I2

Feedback
pot

Motor

vm

Shaft 1:
inertia I1

Shaft 3:
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3:1

2:1
�2

�1

�

�

Load

Figure P10.7
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its armature time constant is negligible. Let the inertia Ie be the equivalent
inertia of the entire system, as felt on the motor shaft, and let Ne be the
equivalent gear ratio of the entire system, as felt on the motor shaft. Show
the necessary transfer functions for each block.

b. Determine the value for Ne, and determine Ie as a function of the inertias
I1, I2, and I3.

Section 10.4 The PID Control Algorithm

10.8 In the following controller transfer function, identify the values of K P , K I ,
K P , TI , and TD .

Gc(s) = F(s)

E(s)
= 15s2 + 6s + 4

s

10.9 Determine the resistance values required to obtain an op-amp PI controller
with K P = 4 and K I = 0.08. Use a 1-μF capacitor.

10.10 a. Determine the resistance values to obtain an op-amp PD controller with
K P = 2, TD = 2 s. The circuit should limit frequencies above 5 rad/s. Use
a 1-μF capacitor.

b. Plot the frequency response of the circuit.
10.11 a. Determine the resistance values to obtain an op-amp PID controller with

K P = 10, K I = 1.4, and K D = 4. The circuit should limit frequencies
above 100 rad/s. Take one capacitance to be 1 μF.

b. Plot the frequency response of the circuit.

Section 10.5 Control System Analysis

10.12 Obtain the steady-state response, if any, of the following models for the given
input. If it is not possible to determine the response, state the reason.

a. Y (s)

F(s)
= 6

7s + 3
f (t) = 14us(t)

b. Y (s)

F(s)
= 7s − 3

10s2 + 6s + 9
f (t) = 5us(t)

c. Y (s)

F(s)
= 3s + 5

s2 − 9
f (t) = 12us(t)

d. Y (s)

F(s)
= 4s + 3

s2 + 2s − 7
f (t) = 8us(t)

10.13 For the following models, the error signal is defined as e(t) = r(t) − c(t).
Obtain the steady-state error, if any, for the given input. If it is not possible to
determine the response, state the reason.

a. C(s)

R(s)
= 1

3s + 1
r(t) = 6t

b. C(s)

R(s)
= 5

3s + 1
r(t) = 6t
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c.
C(s)

R(s)
= 4

3s2 + 5s + 4
r(t) = 12t

d.
C(s)

R(s)
= 10

2s2 + 4s + 5
f (t) = 8t

10.14 Given the model

3ẍ − (3b + 6)ẋ + (6b + 15)x = 0

a. Find the values of the parameter b for which the system is
1. Stable.
2. Neutrally stable.
3. Unstable.

b. For the stable case, for what values of b is the system
1. Underdamped?
2. Overdamped?

10.15 A certain system has the characteristic equation s3 + 9s2 + 26s + K = 0. Find
the range of K values for which the system will be stable.

10.16 For the characteristic equation s3 + 9s2 + 26s + K = 0, use the
Routh-Hurwitz criterion to compute the range of K values required so that
the dominant time constant is no larger than 1/2.

10.17 For the following characteristic equations, use the Routh-Hurwitz criterion to
determine the range of K values for which the system is stable, where a and b
are assumed to be known.
a. 2s3 + 2as2 + K s + b = 0
b. 5s3 + 5as2 + bs + 5K = 0
c. 4s3 + 12s2 + 12s + 4 + K = 0

10.18 The parameter values for a certain armature-controlled motor, load, and
tachometer are

KT = Kb = 0.2 N · m/A
cm = 5 × 10−4 N · m · s/rad cL = 2 × 10−3

Ra = 0.8 � La = 4 × 10−3 H
Im = 5 × 10−4 It = 10−4 IL = 5 × 10−3 kg · m2

N = 2 Ka = 10 V/V
Ktach = 20 V · s/rad Kpot = 10 V/rad Kd = 2 rad/(rad/s)

For the control system whose block diagram is given by Figure 10.3.9,
determine the value of the proportional gain K P required for the load speed to
be within 10% of the desired speed of 2000 rpm at steady state, and use the
characteristic roots to evaluate the resulting transient response. For this value
of K P , evaluate the resulting steady-state deviation of the load speed caused
by a load torque TL = 0.2 N · m.

Section 10.6 Controlling First-Order Plants

10.19 Suppose the plant shown in Figure 10.6.1 has the parameter values I = 2 and
c = 3. Find the smallest value of the gain K P required so that the steady-state
offset error will be no greater than 0.2 if ωr is a unit-step input. Evaluate the
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resulting time constant and steady-state response due to the disturbance if Td is
also a unit step.

10.20 Suppose the plant shown in Figure 10.6.1 has the parameter values I = 2 and
c = 3. The command input and the disturbance are unit-ramp functions.
Evaluate the response of the proportional controller with K P = 12.

10.21 For the control system shown in Figure 10.6.2, I = 20, and suppose that only I
action is used, so that K P = 0. The performance specifications require the
steady-state errors due to step command and disturbance inputs to be zero.
Find the required gain value K I so that ζ = 1. Evaluate the resulting time
constant. Do this for each of the following values of c:
a. c = 10
b. c = 0.2

10.22 Suppose that I = c = 4 for the PI controller shown in Figure 10.6.2. The
performance specifications require that τ = 0.2. (a) Compute the required gain
values for each of the following cases.
1. ζ = 0.707
2. ζ = 1
3. A root separation factor of 10
(b) Use a computer method to plot the unit-step command responses for each
of the cases in part (a). Compare the performance of each case.

10.23 For the designs obtained in part (a) of Problem 10.22, use a computer method
to plot the actuator torque versus time. Compare the peak torque values for
each case.

10.24 For the designs found in part (a) of Problem 10.22, evaluate the steady-state
error due to a unit-ramp command and due to a unit-ramp disturbance.

10.25 Consider the PI speed control system shown in Figure 10.6.2, where
I = c = 2. The desired time constant is τ = 0.1. (a) Compute the required
values of the gains for the following three sets of root locations.
1. s = −10, −8 (root separation factor is 10/8 = 1.25)
2. s = −10, −20 (root separation factor is 2)
3. s = −10, −50 (root separation factor is 5)
(b) Use a computer method to plot the response of the speed ω(t) for a
unit-step command for each of the cases in part (a). Discuss the effects of the
root separation factor on the rise time, the overshoot, and the maximum
required torque.

10.26 Suppose that I = c = 4 for the I controller with internal feedback shown in
Figure 10.6.6. The performance specifications require that τ = 0.2.
(a) Compute the required gain values for each of the following cases.
1. ζ = 0.707
2. ζ = 1
3. A root separation factor of 10
(b) Use a computer method to plot the unit-step command responses for each
of the cases in part (a). Compare the performance of each case.

10.27 For the designs obtained in part (a) of Problem 10.26, use a computer method
to plot the actuator torque versus time. Compare the peak torque values for
each case.
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10.28 For the designs found in part (a) of Problem 10.26, evaluate the steady-state
error due to a unit-ramp command and due to a unit-ramp disturbance.

10.29 Consider the speed control system using I control with internal feedback
shown in Figure 10.6.6, where I = c = 2. The desired time constant is
τ = 0.1.
a. Compute the required values of the gains for the following three sets of

root locations.
1. s = −10, −8 (root separation factor is 10/8 = 1.25)
2. s = −10, −20 (root separation factor is 2)
3. s = −10, −50 (root separation factor is 5)

b. Use a computer method to plot the response of the speed ω(t) for a
unit-step command for each of the cases in part (a). Discuss the effects of
the root separation factor on the rise time, the overshoot, and the
maximum required torque.

10.30 Modify the diagram shown in Figure P10.30 to include feedforward command
compensation with a constant compensator gain K f . Determine whether such
compensation can eliminate steady-state error for step and ramp commands.

KP �
KI
s

1
Is � c

��

D(s)

R(s) E(s) M(s) C(s)

�

�

Figure P10.30

Section 10.7 Controlling Second-Order Plants

10.31 Consider the PD control system shown in Figure 10.7.1. Suppose that I = 20
and c = 10. The specifications require the steady-state error due to a unit-step
command to be zero and the steady-state error due to a unit-step disturbance to
be no greater than 0.1 in magnitude. In addition, we require that ζ = 0.707.

Compute the required values of the gains, and evaluate the resulting time
constant.

10.32 Suppose that I = 10 and c = 3 in the PD control system shown in
Figure 10.7.1. The performance specifications require that τ = 1 and
ζ = 0.707. Compute the required gain values.

10.33 Figure 10.7.2 shows a system using proportional control with velocity
feedback. Suppose that I = 20 and c = 10. The specifications require the
steady-state error due to a unit-step command to be zero and the steady-state
error due to a unit-step disturbance to be no greater than 0.1 in magnitude. In
addition, we require that the time constant be τ = 0.1. Compute the required
values of the gains and evaluate the resulting damping ratio.

10.34 For the system discussed in Problem 10.32,
a. Use a computer method to plot the output θ(t) and the actuator response

T (t) for a unit-ramp command input.
b. Use a computer method to plot the disturbance frequency response.

Determine the peak response and the bandwidth.
10.35 Suppose that I = 10 and c = 3 for the PID control system shown in

Figure 10.7.3. The performance specifications require that τ = 1 and
ζ = 0.707.
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a. Compute the required gain values.
b. Use a computer method to plot the disturbance frequency response.

Determine the peak response and the bandwidth.
10.36 Consider the PD control system shown in Figure 10.7.1. Suppose that I = 20

and c = 10. The specifications require the steady-state error due to a unit-step
command to be zero and the steady-state error due to a unit-step disturbance to
be no greater than 0.1 in magnitude. In addition, we require that the time
constant be τ = 0.1.

Compute the required values of the gains, and evaluate the resulting
damping ratio.

10.37 Modify the PD system diagram shown in Figure 10.7.1 to include feedforward
compensation with a compensator gain of K f . Determine whether such
compensation can reduce the steady-state error for step and ramp
commands.

10.38 Consider a plant whose transfer function is 1/(20s + 0.2). The performance
specifications are
1. The magnitude of the steady-state command error must be no more than

0.01 for a unit-ramp command.
2. The damping ratio must be unity.
3. The dominant time constant must be no greater than 0.1.
a. Select a control algorithm to meet the first specification, and compute the

required values of its gains. What is the damping ratio that results? What is
the time constant?

b. Select a control algorithm to meet the first two specifications, and compute
the required values of its gains. Evaluate the resulting time constant.

c. Select a control algorithm to meet all three specifications.
10.39 For the system shown in Figure 10.7.1, I = c = 1. Derive the expressions for

the steady-state errors due to a unit-ramp command and to a unit-ramp
disturbance.

10.40 For the PD control system shown in Figure 10.7.1, I = c = 2. Compute the
values of the gains K P and K D to meet all of the following specifications:
1. No steady-state error with a step input
2. A damping ratio of 0.9
3. A dominant time constant of 1

10.41 Consider the PID position control system shown in Figure 10.7.3, where
I = 10 and c = 2. The desired time constant is τ = 2.
a. Compute the required values of the gains for the following two sets of root

locations.
1. s = −0.5, s = −5 ± 5 j
2. s = −0.5, s = −1, s = −2.

b. For both cases, use a computer method to plot the command response to a
unit step. Discuss the effects of the root separation factor on the response.
Compare the results with those of Example 10.7.4, where the roots are
s = −5 and s = −0.5 ± 0.5 j .

c. For both cases, use a computer method to plot the disturbance frequency
response. Discuss the effects of the root separation factor on the frequency
response. Compare the results with those of Example 10.7.4.
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10.42 Derive the expression for T (s) in Figure 10.7.6. Using the values given and
computed in Example 10.7.5, use MATLAB to plot T (t) for a unit-step
command input. Determine the maximum value of T (t).

10.43 Integral control of the plant

G p(s) = 3

5s + 1

results in a system that is too oscillatory. Will D action improve this
situation?

10.44 Modify the system diagram shown in Figure P10.44 to include feedforward
compensation with a compensator gain K f . Determine whether such
compensation can reduce the steady-state error for step and ramp commands.

1
s(Is � c)

KP

��

D(s)

R(s) E(s) M(s) C(s)

�

�

Figure P10.44

Section 10.8 Additional Examples

10.45 We need to stabilize the plant 3/(s2 − 4) with a feedback controller. The
closed-loop system should have a damping ratio of ζ = 0.707 and a
dominant time constant τ = 0.1.
a. Use PD control and compute the required values of the gains.
b. Use P control with rate feedback and compute the required values of the

gains.
c. Compare the unit-step command responses of the two designs.

10.46 The system shown in Figure P10.46 represents the problem of stabilizing the
attitude of a rocket during takeoff or controlling the balance of a personal
transporter. The applied force f represents that from the side thrusters of the
rocket or the tangential force on the transporter wheels. For small angles,
Newton’s law for the system reduces to

M L θ̈ − (M + m)gθ = f

where f is the control variable. Design a control law to maintain θ near zero.
The specifications are ζ = 0.707 and a 2% settling time of 8 sec. The parameter
values are M = 40 slugs, m = 8 slugs, L = 20 ft, and g = 32.2 ft/sec2.

Figure P10.46

M

�

f

L

m

10.47 Figure P10.47 shows PD control applied to an unstable plant. The gains have
been computed so that the damping ratio is ζ = 0.707 and the time constant is
2.5 sec, assuming that the transfer functions of the actuator and the feedback
sensor are unity. Suppose that the actuator has the transfer function

Ga(s) = 1

τ s + 1

This lag in the response of the actuator might affect the system’s stability, its
overshoot in response to a step input, or its 2% settling time.
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Figure P10.47
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Controller Actuator Plant

a. What effect does this lag have on the system’s performance if τ = 0.1 sec?
b. What effect does this lag have on the system’s performance if τ = 1 sec?

10.48 Figure P10.48 shows PD control applied to an unstable plant. The gains have
been computed so that the damping ratio is ζ = 0.707 and the time constant is
2.5 sec, assuming that the transfer functions of the actuator and the feedback
sensor are unity. Suppose that the feedback sensor has the transfer function

Gs(s) = 1

τ s + 1

This lag in the response of the feedback elements might affect the system’s
stability, its overshoot in response to a step input, or its 2% settling time.
a. What effect does this lag have on the system’s performance if τ = 0.1 sec?
b. What effect does this have on the system’s performance if τ = 1 sec?

Figure P10.48
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10.49 Figure P10.49 shows a proposed scheme for controlling the position of a
mechanical system such as a link in a robot arm. It uses two feedback
loops—one for position and one for velocity—and a feedforward compensator
transfer function s2.
a. Suppose that the estimates of the mass, damping, and stiffness are accurate

so that me = m, ce = c, and ke = k. Derive the expressions for the transfer
functions X (s)/Xr (s) and X (s)/Fd(s). How well does this control scheme
work? Obtain the expressions for the PID gains to achieve a damping ratio
of ζ = 1 and a closed-loop time constant of specified value τd .

b. Discuss any practical limitations to this scheme.

10.50 Refer to Figure 10.3.9, which shows a speed control system using an
armature-controlled dc motor. The motor has the following parameter values.

Kb = 0.199 V-sec/rad Ra = 0.43 �

KT = 0.14 lb-ft/A ce = 3.6 × 10−4 lb-ft-sec/rad
Ie = 2.08 × 10−3 slug-ft2 La = 2.1 × 10−3 H
N = 1

a. Compute the time constants of the plant transfer function �L(s)/Vm(s).
b. Modify Figure 10.3.9 to use PI control instead of P control. Compute the

PI control gains required to give a response having a dominant time
constant of no less than 0.05 sec and a dominant damping ratio in the
range 0.5 ≤ ζ ≤ 1.
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Figure P10.49
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Section 10.9 MATLAB Applications

10.51 Using the value of KP computed in Problem 10.18, obtain a plot of the current
versus time for a step-command input of 209.4 rad/s (2000 rpm).

10.52 Consider Example 10.6.3. Modify the diagram in Figure 10.6.2 to show an
actuator transfer function T (s)/M(s) = 1/(0.1s + 1). Use the same gain
values computed for the three cases in that example.
a. Use MATLAB to plot the command response and the actuator response to

a unit-step command. Identify the peak actuator values for each case.
b. Use MATLAB to plot the disturbance frequency response.
c. Compare the results in parts (a) and (b) with those of Example 10.6.3.

10.53 Consider Example 10.6.3. Use the same gain values computed for the three
cases in that example.
a. Use MATLAB to plot the command response and the actuator response to

the modified unit-step command r(t) = 1 − e−20t . Identify the peak
actuator values for each case.

b. Compare the results in part (a) with those of Example 10.6.3.
10.54 Consider Example 10.6.4. Modify the diagram in Figure 10.6.6 to show an

actuator transfer function T (s)/M(s) = 1/(0.1s + 1). Use the same gain
values computed for the three cases in that example.
a. Use MATLAB to plot the command response and the actuator response to

a unit-step command. Identify the peak actuator values for each case.
b. Use MATLAB to plot the disturbance frequency response.
c. Compare the results in parts (a) and (b) with those of Example 10.6.4.

10.55 Figure P10.7 shows a system for controlling the angular position of a load,
such as an antenna. Figure P10.55 shows the block diagram for PD control of
this system using a field-controlled motor. Use the following values:

Ka = 1 V/V R = 0.3 � KT = 0.6 N · m/A
Kpot = 2 V/rad I1 = 0.01 kg · m2

I2 = 5 × 10−4 kg · m2 I3 = 0.2 kg · m2

The inertia Ie in the block diagram is the equivalent inertia of the entire
system, as felt on the motor shaft.
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Figure P10.55
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a. Assume that the motor inductance is very small and set L = 0. Compute
Ie, obtain the transfer function �(s)/�r (s), and compute the values of the
control gains K P and Kd to meet the following specifications: ζ = 1 and
τ = 0.5 s.

b. Use the MATLAB tf function to create the model sys1 from this
transfer function.

c. Using the values of K P and Kd computed in part (a), and the value
L = 0.015 H, obtain the transfer function �(s)/�r (s) and use the
MATLAB tf function to create the model sys2 from this transfer
function.

d. Use the MATLAB step(sys1,sys2) function to plot the unit step
response of both transfer functions. Right-click on the plots to obtain the
maximum percent overshoot and settling time for each. How close are the
two responses? What is the effect of neglecting the inductance?

10.56 Consider the P, PI, and modified I control systems discussed in
Examples 10.6.2, 10.6.3, and 10.6.4. The plant transfer function is 1/(I s + c),
where I = 10 and c = 3. Investigate the performance of these systems for a
trapezoidal command input having a slew speed of 1 rad/s, an acceleration time
of 4 s, a slew time of 6 s, a deceleration time of 4 s, and a rest time of 5 s.

10.57 A speed control system using an armature-controlled motor with proportional
control action was discussed in Section 10.3. Its block diagram is shown in
Figure 10.3.8 with a simplified version given in Figure 10.3.9. The given
parameter values for a certain motor, load, and tachometer are

KT = Kb = 0.04 N · m/A
cm = 0 cL = 10−3 N · m · s/rad
Ra = 0.6 � La = 2 × 10−3 H
Im = 2 × 10−5 It = 10−5 IL = 4 × 10−3 kg · m2

N = 1.5 Ka = 5 V/V
Ktach = 10 V/(rad/s) Kpot = 5 V/rad Kd = 2 rad/(rad/s)

where the subscript m refers to the motor, L refers to the load, and t refers to
the tachometer. (a) Determine the value of the proportional gain K P required
for the load speed to be within 10% of the desired speed of 1000 rpm at
steady-state, and plot the resulting transient response. (b) For this value of
K P , plot the resulting deviation of the load speed caused by a load torque
TL = 1 N · m.
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10.58 Consider the control system of Problem 10.57. Use MATLAB to evaluate the
following performance measures: energy consumption, maximum current,
maximum speed error, rms current, and rms speed error.

Section 10.10 Simulink Applications

10.59 Consider Example 10.6.3. Use the diagram in Figure 10.6.2 to create a
Simulink model. Modify the model to use an actuator saturation with the limits
0 and 20. Use the same gain values computed in that example for the three
cases.
a. Plot the command response and the actuator response to a unit-step

command.
b. Compare the results in part (a) with those of Example 10.6.3.

10.60 Consider Example 10.7.4. Use the diagram in Figure 10.7.3 to create a
Simulink model using the same gain values computed in that example. Set the
initial position to 3. Plot the command response to a unit-step command and
compare the results with those of Example 10.7.4.

10.61 Consider Example 10.7.4. Use the diagram in Figure 10.7.3 to create a
Simulink model. Modify the model to use an actuator saturation with the limits
0 and 20. Use the same gain values computed in that example.
a. Plot the command response and the actuator response to a unit-step

command.
b. Compare the results in part (a) with those of Example 10.7.4.

10.62 Consider Example 10.7.4. Use the diagram in Figure 10.7.3 to create a
Simulink model. Modify the model to use an actuator transfer function
Ga(s) = 1/(0.2s + 1). Use the same gain values computed in that example.
a. Plot the command response and the actuator response to a unit-step

command.
b. Compare the command response with that of Example 10.7.4.

10.63 Refer to Figure 10.3.9, which shows a speed control system using an
armature-controlled dc motor. The motor has the following parameter values.
Create a Simulink model by modifying Figure 10.3.9 to use PI control instead
of P control. Use the PI control gains computed in Problem 10.50 part (b).

Kb = 0.199 V-sec/rad Ra = 0.43 �

KT = 0.14 lb-ft/A ce = 3.6 × 10−4 lb-ft-sec/rad
Ie = 2.08 × 10−3 slug-ft2 La = 2.1 × 10−3 H
N = 1

a. Run the simulation using a unit-step command starting at t = 0 and a
unit-step disturbance starting at t = 4 sec. Plot the speed and the motor
current versus time.

b. Run the simulation for 0 ≤ t ≤ 2 sec using a unit-ramp command. Plot the
speed error and the motor current versus time.

10.64 For the system in Problem 10.63 part (a), create a Simulink model that has a
current limiter of ±10 A. Run the simulation for a step-command input of
104.7 rad/s (1000 rpm). Plot the current and the speed.
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Sketch the root locus plot for lower-order models,
and use MATLAB to obtain the plot for
higher-order models.

2. Interpret and use the root locus plot to determine the
location of dominant roots and roots having desired
properties such as damping ratio and time constant.

3. Determine the major features of a root locus plot,
and use it to assess the effectiveness of a proposed
control scheme.

4. Design a controller incorporating state-variable
feedback.

5. Use the Ziegler-Nichols methods to design
controllers.

6. Design a control system to avoid actuator saturation.

7. Apply MATLAB and Simulink to analyze and
design control systems using the concepts presented
in this chapter.

C hapter 10 introduced the basic concepts of feedback control. It showed how
to choose an appropriate control action for a first- or second-order plant, and
how to compute the control gains required to meet a simple set of performance

specifications. This chapter shows how the root locus plot can be used to develop a
more systematic approach to designing a control system. Such an approach is usually
needed when the plant order is greater than two or where it is not clear how to select
the gains to meet the performance specifications.

632



palm-38591 book December 17, 2008 12:41

11.1 Root Locus Plots 633

Section 11.1 introduces the root locus plot. Section 11.2 illustrates this approach
using the root locus plot to design PID controllers. When PID control action fails to yield
the desired performance, it must be either modified or replaced by an entirely different
control scheme. Inserting an additional control element in one or more feedback loops
within the main controller is called feedback compensation.

In Chapter 10 we illustrated the use of P action with rate feedback to replace PD
control. This eliminated the numerator dynamics and the resulting overshoot. State-
variable feedback is a generalization of that technique and uses some or all of the
system’s state variables to modify the control signal. With state-variable feedback, we
have a better chance of placing the characteristic roots of the closed-loop system in
locations that will give desirable performance. This topic is treated in Section 11.3.

In many applications, especially in process control involving thermodynamic, fluid,
or chemical processes, a transfer function model of the plant is not available, and
the gains must be computed from experimentally determined response data or from
computer simulations of the plant. Often the gain values computed in a preliminary
analysis do not yield the desired performance, and their values must be adjusted either
in simulation or with the actual controller hardware. This process is called tuning.
Tuning is discussed in Section 11.4.

Assumptions made to obtain a linear model can have a significant effect on the
controller’s performance. Using high gain values tends to drive the control elements
to such an extent that they overload or “saturate” and thus exhibit nonlinear behavior.
Design concepts that avoid these unwanted effects are covered in Section 11.5.

Root locus plots for simple systems can be sketched by hand with the aid of a calcu-
lator. If these plots are to be used for higher-order systems, however, the use of computer
methods is highly recommended. The MATLAB rlocus, rltool, and sisotool
functions make it easy to view the root locus and transient response plots to see the
effect of changing parameter values. These methods are discussed in Section 11.6.

Simulink provides a quick and easy way of simulating systems having nonlinear
or discontinuous elements such as the saturation nonlinearity. The Simulink features
relevant to the topics of this chapter are summarized in Section 11.7.

Section 11.8 provides a review of the chapter’s main concepts. ■

11.1 ROOT LOCUS PLOTS
As shown in Figure 11.1.1, a graphical display of the characteristic root locations gives
insight into the system response. A root locus plot is a plot of the location of the
characteristic roots as a parameter value is varied. Such a plot gives an overview of how
the response will change if the parameter value is changed. Root locus plots were used
widely in engineering design well before digital computers became available, but the
usefulness of the root locus has been enhanced by programs such as MATLAB, which
can quickly generate the plots. In this section, we will present some simple second-
order system plots that can be sketched by hand to illustrate the concept. This section
shows how to sketch plots for higher-order systems. In Section 11.6 we will show how
to use MATLAB to generate the plots.

VARYING THE SPRING CONSTANT

In this section we will consider several examples where the characteristic equation has
the form

ms2 + cs + k = 0 (11.1.1)
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Figure 11.1.1 Graphical
interpretation of the
parameters ζ , τ , ωn , and ωd . �d � �n

�1 � �2

s � ���n � �d j
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Figure 11.1.2 Plot of the
roots of the equation
2s2 + 8s + k = 0 as k varies
through positive values.
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(a) (b)

We will consider, in order, the effects of varying first the spring constant k, then the
damping constant c, and finally the mass m.

Suppose that m = 2 and c = 8 and that we wish to display the root locations as
k varies. In this case, the characteristic equation becomes 2s2 + 8s + k = 0. The roots
are found from the quadratic formula

s = −8 ± √
64 − 8k

4
(11.1.2)

It is easily seen that if k < 8, the roots are real and distinct. They are repeated if k = 8
and complex conjugates if k > 8. By repeatedly evaluating (11.1.2) for various values
of k ≥ 0, the root locations can be plotted with dots in the s plane as in Figure 11.1.2a.
Noting the general trend of the dots, we can connect them with solid lines to produce
the plot in part (b) of the figure. The spacing of the dots is uneven but corresponds to an
even spacing in the k values. By convention, the root locations corresponding to k = 0
are denoted by a cross (×). These locations are s = 0 and s = −4. The arrows on the
plot indicate the direction of root movement as k increases.

The plot shows that if k ≥ 0, we cannot achieve a dominant time constant any
smaller than 1/2 by changing k. If k < 8, the dominant root lies between s = 0 and
s = −2, and thus the dominant time constant is never less than 1/2. If k ≥ 8, the time
constant is always 1/2. This illustrates the type of insight that can be obtained from the
root locus plot.

The root locus plot gives us a picture of the roots’ behavior as one parameter is
varied. It thus enables us to obtain a more general understanding of how the system’s
response changes as a result of a change in that parameter. The plot is useful in system
design where we need to select a value of the parameter to obtain a desired response.
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VARYING THE DAMPING CONSTANT

Suppose that m = 2 and k = 8, and that we wish to display the root locations as c
varies. In this case, the characteristic equation becomes 2s2 + cs + 8 = 0. The roots
are found from the quadratic formula

s = −c ± √
c2 − 64

4
(11.1.3)

When c = 0, the roots are s = ± j2, and we mark these locations on the plot with
a ×. By evaluating and plotting the roots for many values of c, and connecting the
points with a solid line, we obtain the plot shown in Figure 11.1.3. We find that as
c is increased through large values, one root moves to the left, while the other root
gradually approaches the origin s = 0. This can be proved analytically by taking the
limit of (11.1.3) as c → ∞; we find that one root approaches 0 and the other root
approaches s = −∞. By convention, the root location corresponding to an infinite
value of the parameter is denoted by a circle (©).

When c = 8, both roots are s = −2. Recall that ωn is the radius of a circle centered
at the origin. From the plot it is easily seen that for c < 8, the roots are complex and
that ωn = 2 (because the plot is a circle of radius 2 centered at the origin). For c > 8,
the roots are real and distinct, and the plot shows that the dominant root is always no
less than −2, and thus the dominant time constant is always ≥ 1/2. Thus, as long as
c ≥ 0, we cannot reduce the dominant time constant below 1/2 by changing c.

In this example, the characteristic equation can be expressed as

s2 + 4 + c

2
s = 0

which is a special case of the more general form in terms of the variable parameter μ.

s2 + βs + γ + μ(s + α) = 0 (11.1.4)

where β = 0, γ = 4, α = 0, and μ = c/2. When μ = 0, s2 + βs + γ = 0, and thus
the starting points of the root locus, denoted by crosses (×), are given by

s = −β ± √
β2 − 4γ

2
These can be real or complex numbers, depending on the values of β and γ . It can
be shown that as μ → ∞, one root of (11.1.4) approaches s = −α and the other root
approaches s = −∞.

A simple geometric analysis will show that off the real axis the root locus of
(11.1.4) in terms of the variable parameter μ is a circle centered at s = −α and having a

(a) (b)
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�

�

Im

2

�2

�2 Re

�

�

Im

2

�2

Figure 11.1.3 Plot of the
roots of the equation
2s2 + cs + 8 = 0 as c varies
through positive values.
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radius of

R =
√

α2 + γ − αβ (11.1.5)

To prove this, substitute s = x + j y into (11.1.4), and separate the real and imaginary
parts to obtain

x2 − y2 + βx + γ + μ(x + α) + j y(2x + β + μ) = 0 + j0

Thus, for the real part,

x2 − y2 + βx + γ + μ(x + α) = 0

and for the imaginary part,

y(2x + β + μ) = 0

Since y �= 0 in general, the second equation gives 2x + β + μ = 0, or μ = −2x − β.
When this is substituted into the first equation we obtain

(x + α)2 + y2 = α2 + γ − αβ (11.1.6)

which is the equation of the circle just described.

EXAMPLE 11.1.1 Root Locus of a Motor Model

■ Problem
Sketch the root locus of the armature-controlled dc motor model in terms of the damping constant
c, and evaluate the effect on the motor time constant. The characteristic equation is

La I s2 + (Ra I + cLa)s + cRa + Kb KT = 0

Use the following parameter values:

Kb = KT = 0.05 N · m/A I = 9 × 10−5 kg · m2

Ra = 0.5 � La = 2 × 10−3 H

■ Solution
Substituting the given values gives

1.8 × 10−7s2 + (4.5 × 10−5 + 2 × 10−3c)s + 0.5c + 2.5 × 10−3 = 0

Dividing by the highest coefficient and factoring out c gives the standard form (11.1.4):

s2 + 250s + 5 × 105

36
+ 105c

9
(s + 250) = 0

where α = β = 250, γ = (5/36) × 105, and μ = 105c/9. From the results of (11.1.5) and
(11.1.6) we see that the root locus is a circle centered at s = −250 with a radius of 118. See
Figure 11.1.4. The starting points with c = 0 are at s = −83 and s = −167. As c → ∞ one
root approaches s = −250 and the other root approaches s = −∞.

The plot illustrates the sometimes counterintuitive behavior of dynamic systems. One would
think that increasing the damping c would increase the time constant and thus slow the response.
However, as c is increased up to the value where the two roots meet at s = −368, the domi-
nant time constant decreases, and we see that the smallest possible dominant time constant is
τ = 1/368.
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Figure 11.1.4 (a) Root locus
plot of the motor model
discussed in Example 11.1.1.
(b) Line of minimum damping
ratio.

It is instructive to see how this plot can be used to determine the minimum damping ratio the
motor can have. The line corresponding to the minimum damping ratio is tangent to the circle,
as shown in Figure 11.1.4b. From the triangle shown, we see that

θ = sin−1 118

250
= 0.49 rad

Thus the minimum damping ratio is ζ = cos θ = 0.88.

VARYING THE MASS

Now suppose that c = 8 and k = 6 and we want to investigate the effects of varying
the mass m. The characteristic equation becomes ms2 + 8s + 6 = 0, and the quadratic
formula gives

s = −8 ± √
64 − 24m

2m
We immediately see that a problem arises if we try to examine the effects of varying
the mass starting with m = 0, because m is in the denominator. In fact, if m = 0,
the equation is no longer second order and the quadratic formula no longer applies.
So we conclude that we must be careful when varying the leading coefficient in the
characteristic equation, because the equation order will change.

Instead, suppose we examine the effects of varying the mass for m ≥ 2. For this
case the equation always remains second order. When m = 2, the two roots are s = −1
and s = −3, and these starting points are marked in Figure 11.1.5. As m → ∞, the
quadratic formula shows that both roots approach s = 0, and we mark this point with
a small circle. By repeated evaluation of the quadratic formula for different m values,
we obtain the plot shown in Figure 11.1.5. The locus off the real axis is a circle.

From the plot we see that as m is increased from m = 2, the two roots are real
and approach one another, meeting at s = −1.5 when m = 8/3. For m > 8/3, the roots

Re
��

Im

�1�3
s � �1.5

Figure 11.1.5 Plot of the
roots of the equation
ms2 + 8s + 6 = 0 for m ≥ 2.
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become complex and move to the right. Thus the smallest dominant time constant
the model can have is τ = 1/1.5 = 2/3 and the largest possible undamped natural
frequency is ωn = 1.5, which occurs when m = 8/3.

Let μ be the relative deviation of m from its nominal value of 2, that is let
μ = (m − 2)/2. Make the substitution m = 2μ + 2 to obtain (2μ + 2)s2 + 8s + 6 =
0 or

s2 + 4s + 3 + μs2 = 0

where μ ≥ 0. This equation is a special case of the more general form

s2 + βs + γ + μ(s + α)(s + δ) = 0 (11.1.7)

The root locus properties of this form can be developed as done with (11.1.4).
The examples in this section were second-order equations, for which a closed-form

solution for the roots is available. For higher-order equations, however, a computer
method is needed to obtain the root locus plot, and a MATLAB method is presented in
Section 11.6.

11.2 DESIGN USING THE ROOT LOCUS PLOT
We now illustrate how to use the root locus plot to design control systems. The root
locus plot is a plot of the location of the characteristic roots in terms of some system
parameter, such as the proportional gain. Each path on the plot corresponds to one root
of the characteristic equation. These paths are referred to as the loci or branches.

Although formulas exist for computing the roots of third- and fourth-order polyno-
mials, their complexity is such that they do not generate much insight into the system’s
behavior. The Routh-Hurwitz criterion is useful for stability analysis, but it cannot
give a complete picture of the transient response. The theory of polynomial equations,
however, is sufficiently well developed to enable us to develop guides for sketching the
general behavior of the roots without actually solving for them in many cases. These
guides are useful and often even sufficient to make design decisions, and they also
should be kept in mind when checking and interpreting a computer-generated plot.

The root locus design method is widely used, but when it was first proposed by
Walter Evans in the 1940s [Evans, 1948] however, his paper was rejected for publi-
cation because the reviewers thought it not useful enough to merit publication!1 For
aeronautical applications, see [Abzug, 1997].

TERMINOLOGY

The general form of an equation whose roots can be studied by the root locus method is

D(s) + K N (s) = 0 (11.2.1)

where K is the parameter to be varied, and D(s) and N (s) are polynomials in s with
constant coefficients. We consider the case K ≥ 0 and later extend the results to K ≤ 0.
The guides to be developed for plotting the root locus require that the coefficients of
the highest powers of s in both N (s) and D(s) are normalized to unity. The multipliers
required to do this are absorbed into the parameter to be varied. The result is K .

1The author is grateful to Professors Thomas Kurfess and Mark Nagurka for this information.
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For example, consider the variation of the parameter a in the equation 6s2 +13as +
5 = 0. This can be written as

s2 + 5

6
+ 13a

6
s = 0

From (11.2.1), we see that D(s) = s2 + 5/6, N (s) = s, and K = 13a/6. The root locus
plot would be made in terms of the parameter K and the values for a recovered from
a = 6K/13.

Another standard form of the problem is obtained by rewriting (11.2.1) as

1 + K P(s) = 0 (11.2.2)

where

P(s) = N (s)

D(s)
(11.2.3)

The roots of N (s) = 0 are called the zeros of the problem. The name refers to the
fact that they are the finite values of s that make P(s) zero. The roots of D(s) = 0 are
the poles. They are the finite values of s that make P(s) become infinite. We see that
when K = 0, the roots of (11.2.1) are the poles. To see what happens as K → ∞,
write (11.2.2) as

1

K
+ N (s)

D(s)
= 0

When K → ∞, 1/K → 0, and the equation becomes N (s)/D(s) = 0. This is equiva-
lent to N (s) = 0, because we assume there are no poles at infinity. This shows that the
roots of (11.2.1) approach the zeros as K → ∞.

A single-loop control system is shown in Figure 11.2.1. The transfer function is

T (s) = C(s)

R(s)
= G(s)

1 + G(s)H(s)
(11.2.4)

The open-loop transfer function of this system is G(s)H(s) and so named because it
is the transfer function relating the feedback signal B(s) to the input R(s) if the loop is
“opened” or broken at B(s). That is, B(s) = G(s)H(s)R(s). The closed-loop transfer
function is T (s) given by (11.2.4).

The root locus form of the characteristic equation for a single-loop system is easily
obtained from the equation 1 + G(s)H(s) = 0 if the variable parameter of interest is
a multiplicative factor in G(s)H(s). The poles and zeros of the problem are also the
poles and zeros of G(s)H(s). Thus, the terms open-loop poles and open-loop zeros
are often used for the poles and zeros on the root locus plot. The closed-loop poles are
the characteristic roots, because they are the finite values of s that make the closed-loop
transfer function become infinite.

�
G(s)

H(s)

R(s)

B(s)

� C(s) Figure 11.2.1 A single-loop
control system.
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EXAMPLE 11.2.1 Obtaining the Root Locus Equation

■ Problem
Obtain the root locus equations for the systems shown in Figure 11.2.2, where the variable
parameter of interest is the proportional gain K P . In parts (b) and (c) assume that TI and TD are
known constants.

Figure 11.2.2 Block diagrams for
Example 11.2.1.

(b)(a)

3s � 12
7KP�1 �     

 
�TIs

1 C(s)

�

R(s) �5s � 15
4s2 � 32s � 128

KP
C(s)

�

R(s) �

(c)

5
3s2 � 18s � 24

KP(1 � TDs)
C(s)

�

R(s) �

4s � 1
7

■ Solution
a. From the diagram in part (a) of Figure 11.2.2,

1 + G(s)H(s) = 1 + K P(5s + 15)

4s2 + 32s + 128
= 0

Factor out 5K P from the numerator and 4 from the denominator so that the highest
coefficients will be 1. This gives

1 + 5K P

4

s + 3

s2 + 8s + 32
= 0

So the root locus parameter K is K = 5K P/4. The zero is s = −3 and the poles are
s = −4 ± 4 j .

b. From the diagram in part (b) of Figure 11.2.2,

1 + G(s)H(s) = 1 + 7K P(1 + 1/TI s)

3s + 12
= 0

Multiply top and bottom by s, and factor out 7K P from the numerator and 3 from the
denominator. This gives

1 + 7K P

3

s + 1/TI

s(s + 4)
= 0

The root locus parameter K is K = 7K P/3. The zero is s = −1/TI and the poles are
s = 0 and s = −4.

c. From the diagram in part (c) of Figure 11.2.2,

1 + G(s)H(s) = 1 + 7(5)K P(1 + TDs)

(3s2 + 18s + 24)(4s + 1)
= 0
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Factor out 7(5)K P TD from the numerator and 3(4) from the denominator so that the
highest coefficients will be 1. This gives

1 + 35K P TD

12

s + 1/TD

(s2 + 6s + 8)(s + 0.25)
= 0

So the root locus parameter K is K = 35K P TD/12. The zero is s = −1/TD and the poles
are s = −0.25, s = −2, and s = −4.

From these examples we conclude that

1. P action never produces an open-loop pole or zero.
2. PD action produces an open-loop zero at s = −1/TD .
3. I action produces an open-loop pole at s = 0.
4. PI action produces an open-loop pole at s = 0 and an open-loop zero at

s = −1/TI .
5. PID action produces an open-loop pole at s = 0 and two open-loop zeros, which

may be real or complex, depending on the values of TI and TD .

If the variable parameter of interest is not a multiplicative factor in G(s)H(s), you
must obtain the characteristic equation from the denominator of the closed-loop transfer
function and isolate the parameter to express the equation in the standard form. For
example, with H(s) = 1, PI control of the plant 1/(4s + c) leads to the characteristic
equation 4s2 + (c + K P)s + K I = 0. If c = 4, the gain values required to give
critical damping with a time constant of 0.2 are K P = 36 and KI = 100. Now if the
value of the damping c is uncertain, we may use the root locus to assess the effects of
this uncertainty on the control system performance. The characteristic equation can be
expressed as 4s2 + (c + 36)s + 100 = 0, which in standard form becomes

1 + c

4

s

s2 + 9s + 25
= 0

The root locus parameter K is K = c/4. The zero is s = 0, and the poles are s =
−4.5 ± 2.179 j .

ANGLE AND MAGNITUDE CRITERIA

The general problem in the form (11.1.2) can be written as

K P(s) = −1 (11.2.5)

From this, we see that two requirements must be met if s is to be a root of this equation,
which is a statement of equality between two complex numbers, K P(s) and −1. Recall
that a complex number may be expressed as a magnitude and an angle. Thus, for two
complex numbers to be equal, their magnitudes must be equal and their angles must
also be equal. Applying this insight to (11.2.5) we obtain the following magnitude and
angle criteria, respectively.

|K P(s)| = 1 (11.2.6)

� K P(s) = � (−1) = (2n + 1)180◦, n = 0, 1, 2, 3, . . . (11.2.7)
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Figure 11.2.3 Vector
addition and vector
representation of complex
numbers.

Im

Re

s

s

s � a

(�a)�a

For now, we consider only K ≥ 0. Thus, |K | = K and � K = 0◦, so that (11.2.6)
becomes

K = 1

|P(s)| = |D(s)|
|N (s)| (11.2.8)

From Figure 11.2.3, we see that the property of vector addition gives


s = (
−→−a) + (

−−−→
s + a)

From this we deduce that the vector (
−−−→
s + a), which represents the complex number

s + a, has its head at the point s and its tail at −a. This information is useful for
applying (11.2.8), which can be stated as

K = product of the magnitudes of vectors from poles to point s

product of the magnitudes of vectors from zeros to point s
(11.2.9)

because the magnitude of a complex number is the length of its corresponding vector,
and the magnitude of a product of complex numbers is the product of the magnitudes.
Note that the point s must be on the root locus.

For example, consider the equation

1 + K
s + 4

s
[
(s + 3)2 + 22

] = 0

The zero is s = −4 and the poles are s = 0 and s = −3 ± 2 j . The root locus plot is
shown in Figure 11.2.4a. Suppose we want to determine the value of K that puts one
root at s = −2. Part (b) of the figure shows the vectors drawn from the poles and zero
to the point s = −2. Then

K = |
s||−−−−−−→
s + 3 − 2 j ||−−−−−−→

s + 3 + 2 j |
|−−→
s + 4|

From trigonometry we can compute the length of each vector to be

|
s| = 2 |−−→
s + 4| = 2

|−−−−−−→
s + 3 − 2 j | = |−−−−−−→

s + 3 + 2 j | = √
5

Thus

K = 2(
√

5)(
√

5)

2
= 5

That is, if K = 5, one root is s = −2. Note that we could have obtained this result
more easily by substituting s = −2 into the characteristic equation, but we will see
that the vector interpretation is also useful.
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Figure 11.2.4 (a) Root locus for the
open-loop transfer function
(s + 4)/s

[
(s + 3)2 + 22

]
. (b) Vector

calculation of the value of K corresponding
to s = −2.
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Because the angle of a product of complex numbers is the sum of their angles, we
have, because K is real and positive,

� K P(s) = � K + � P(s) = 0◦ + � P(s) = � P(s)

Equation (11.2.7) implies that

� P(s) = � N (s) − � D(s) = (2n + 1)180◦, n = 0, 1, 2, 3, . . . (11.2.10)

Expressed in terms of vectors, this equation states that the sum of the angles of the
vectors from the zeros to the point s minus the sum of the angles of the vectors from
the poles to the point s must equal (2n + 1)180◦ if the point s lies on the root locus.
This interpretation is useful for checking to see if a specific point is on the locus. For
example, referring to Figure 11.2.4b,

� N (s) − � D(s) = 0◦ − 180◦ −
[

360◦ − tan−1
(

2

1

)]
− tan−1

(
2

1

)
= −540◦

which is equivalent to 180◦. So the point s = −2 lies on the root locus.
Equations (11.2.8) and (11.2.10) are the only conditions that every point on the

root locus must satisfy. It is interesting to note that the angle criterion (11.2.10) does
not contain K . Thus the shape of the root locus plot is determined entirely by the angle
criterion (11.2.10). All of the plotting guides to follow, except two, are the result of this
single condition. The magnitude criterion (11.2.8) is used only to obtain the associated
value of K for a designated point s on the root locus.
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ROOT LOCUS SKETCHING GUIDES

Let us collect the insights generated thus far and formalize them as guides for sketching
the root locus where K ≥ 0. First note that the root locus plot is symmetric about the real
axis because complex roots occur only in conjugate pairs if the polynomial coefficients
are real.

If you will be using the root locus plot for graphical calculations, such as measuring
an angle to compute a damping ratio, the real and imaginary axes must have the same
scale so that the angles will not be distorted. You can force MATLAB to use equal
scales with the axis equal command.

We next note some facts that are obvious when we consider the general root locus
equation

1 + K P(s) = 1 + K
N (s)

D(s)
= 0 (11.2.11)

Assumption: We assume that the order of N (s) is no greater than the order of
D(s).

The reason for this assumption will become clear shortly.

Guide 1: The number of paths equals the number of poles of P(s).

This tells us how many paths we must account for. The proof uses the form 1 +
K N (s)/D(s) = 0. If the order of D(s) is greater than or equal to that of N (s), then the
order of the equation, and thus the number of roots, is determined by D(s). The order
of D(s), however, equals the number of poles of P(s).

Guide 2: The paths start at the poles of P(s) with K = 0.

When K = 0, (11.2.11) shows that the roots are given by D(s) = 0; in other
words, by the poles.

Guide 3: The paths terminate with K = ∞ either at the zeros of P(s) or by
leaving the plot.

When K → ∞, there are only two ways that (11.2.11) can be satisfied. The first
requires that N (s) → 0; that is, that s approach a zero of P(s). If N (s) does not
approach zero as K → ∞, then D(s) must approach infinity, which can occur only if
s → ∞.

Variation of the Leading Coefficient Be careful when using the root locus where
the variable parameter is the coefficient of the highest power of s in the characteristic
equation. For example, consider the second-order equation ms2 + s + 8 = 0. When
m = 0, the equation is s + 8 = 0, which is first order. The sketching guides to follow
assume that the order of the equation remains the same as the parameter varies from 0
through positive values, and so we cannot use these guides to obtain the root locus plot
of this second-order equation with m as the parameter.

If we put ms2 + s + 8 = 0 into standard form we obtain

1 + m
s2

s + 8
= 0 (11.2.12)

Thus, K = m. Note that the order of the numerator is greater than the order of the
denominator. This indicates that the order of the equation will be different for K = 0
than for K > 0, and so the guides will be invalid.
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Thoughtless application of guides 1, 2, and 3 results in a contradiction when applied
to (11.2.12). Guides 1 and 2 state that there is one path and it starts at s = −8, but guide 3
says that two termination points exist because there are two zeros. The contradiction
arises because the order of the numerator is greater than that of the denominator. When
m > 0, there are two roots; when m = 0, there is only one.

Order of N(s) and D(s) We therefore assume that the order of N (s), the numerator of
P(s), is no greater than the order of D(s), the denominator of P(s). Even if you do not
use the following guides to obtain a root locus plot, but instead use a computer program,
such as MATLAB, you should avoid equations where the order of the numerator is
greater than that of the denominator.

Variation of the leading coefficient can be studied if the order of the equation
remains the same throughout the variation. For example, with (11.2.12), if the nominal
value of m is 0.5, let � = m − 0.5, and express the equation as (0.5 + �)s2 + s +
8 = 0 or

1 + �

0.5

s2

s2 + 2s + 16
= 0

Then K = �/0.5. The guides for K ≥ 0 can now be applied without any difficulty if
we wish to study the effects of m varying above the nominal value of 0.5.

Root Locus Paths on the Real Axis The next guide is one of the most useful. Its proof
is lengthy so we will omit it. For proof of this and other guides, see [Cannon, 1967].

Guide 4: The root locus exists on the real axis only to the left of an odd number
of real poles and/or real zeros. The numbering system is as follows. The real pole
or real zero that lies the farthest to the right is number 1; the next real pole or zero
is number 2; etc. If real poles or real zeros are identical, number each one.

Note that this guide implies that the locus cannot exist on the real axis to the right of
an odd numbered real pole or real zero.

Some examples of the application of this guide are shown in Figure 11.2.5, which
does not show the root locus off the real axis.

12 4 3 2 1345

1234

1 5 4 3 2 1

23 1

23

�� � � � �

�

���

� � � � �

�

�

Figure 11.2.5 Examples of
the application of guide 4. The
root loci off the real axis are
not shown.
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It is impossible for two root paths to coincide over any finite length (but they can
cross). So two roots approaching each other on the real axis must leave the real axis at
the point where they collide (called the breakaway point), and they must do this in a
way that is symmetric about the real axis. This means that if one path breaks up from
the real axis, the other path must break down.

Look for breakaway points where the root locus lies between two real poles, but
they may occur at other locations. To compute the location of a breakaway point, note
that the paths approach each other as K increases. Thus, at the breakaway point, K
attains the relative maximum value it has on the real axis in the vicinity of the breakaway
point. The value of s corresponding to the breakaway point can be found by computing
d K/ds from the characteristic equation, setting d K/ds = 0, and solving for the value
of s. In general, multiple solutions will occur. The extraneous ones can be discarded
with a knowledge of the location of the locus on the real axis from guide 4. Thus the
second derivative often need not be computed to distinguish between a minimum and
a maximum.

A path can also enter the real axis, and the point at which this occurs is called
the breakin point. If we increase K after the path has entered the real axis, the path
continues along the real axis. Thus, at a breakin point, K attains the relative minimum
value it has on the real axis in the vicinity of the breakin point. Look for breakin points
where the root locus lies between two real zeros or between a real zero and s = ±∞,
but they may occur at other locations. The location of the breakin point is determined
from d K/ds = 0 in exactly the same manner as for a breakaway point. Although the
method is the same, no difficulty is encountered in identifying the type of point, because
this is usually obvious once the first four guides have been applied.

It is possible to have multiple breakaway or breakin points. This is why we speak
of K attaining a relative or local maximum or minimum value only in the vicinity of
each such point. Thus we have guide 5.

Guide 5: The locations of breakaway and breakin points are found by
determining where the parameter K attains a local maximum or minimum.

Example 11.2.2 illustrates how to find breakaway and breakin points.

Root Locus Paths Off the Real Axis The vector properties of complex numbers can
be used to help understand how the root locus behaves off the real axis.

As K → ∞, the paths approach a zero or the roots become infinite, which means
that the paths exit the plot. To see what happens in this case, consider Figure 11.2.6,
which is sketched for a case having three poles and one zero. The vectors from the

Figure 11.2.6 Illustration of
guide 6.
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�
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poles and zero to a point on the locus at infinity are parallel and make the same angle θ

with the real axis. If we let p and z denote the number of poles and zeros, respectively,
the angle criterion states that

P(s) = zθ − pθ = (2n + 1)180◦, n = 0, 1, 2, 3, . . .

Solving for θ , we obtain

θ = (2n + 1)180◦

z − p
n = 0, 1, 2, 3, . . .

This is equivalent to

θ = (2n + 1)180◦

p − z
n = 0, 1, 2, 3, . . .

This leads to guide 6.

Guide 6: The paths that do not terminate at a zero approach infinity along
asymptotes. The angles that the asymptotes make with the real axis are found
from

θ = (2n + 1)180◦

p − z
n = 0, 1, 2, 3, . . . (11.2.13)

where n is chosen successively as n = 0, 1, 2, 3, . . . , until enough angles have
been found.

Figure 11.2.7 shows the most commonly found patterns for asymptotes.
Unless θ is 0◦ or 180◦, the asymptotes cannot be drawn until we know where

they intersect the real axis. This is given by guide 7. The proof follows from the angle
criterion, but is detailed (see [Cannon, 1967]).

Guide 7: The asymptotes intersect the real axis at the common point s = σ

given by

σ =
∑

sp − ∑
sz

p − z
(11.2.14)

where
∑

sp and
∑

sz are the algebraic sums of the values of the poles and zeros.

Note that this guide states that all the asymptotes intersect at the same point.

Determination of Instability Some systems become unstable for certain values of
the parameter K . This occurs if any path crosses the imaginary axis into the right
half-plane. The value of K at which this happens can be determined from the Routh-
Hurwitz criterion. Often, however, the substitution s = jω into the polynomial equation
of interest is quicker and gives the crossing location as well as the value of K . This
leads to guide 8.

135�

�135�
�45�

45�

�90�

90�

�60�

60��180��180�

p � z � 1 p � z � 2 p � z � 3 p � z � 4 Figure 11.2.7 Common
patterns for asymptotes.
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Guide 8: The points at which the paths cross the imaginary axis and the
associated values of K can be found by substituting s = jω into the characteristic
equation.

The solution for the frequency ω is called the crossover frequency, and the points
s = ± jω are called the crossover points. Examples 11.2.2 and 11.2.4 illustrate the
procedure for computing the crossover points.

In many applications, it is not necessary to determine the precise location of the
locus off the real axis, and the first eight guides are often quite sufficient for obtaining
ample information about the system’s behavior. When more accuracy is required, a
computer program such as MATLAB can be used.

Locus Behavior Near Complex Poles and Zeros Sometimes it is helpful to know the
direction in which the locus leaves a complex pole (called the angle of departure) and
the direction in which it terminates at a complex zero (called the angle of arrival). To
determine these angles, we again call on the angle criterion.

Guide 9: Angles of departure and angles of arrival are determined by choosing an
arbitrary point infinitesimally close to the pole or zero in question and applying
the angle criterion

� N (s) − � D(s) = (2n + 1)180◦ (11.2.15)

Locating All the Roots The following guide comes from the theory of polynomial
equations.

Guide 10: For the polynomial equation

sn + an−1sn−1 + · · · + a1s + a0 = 0 (11.2.16)

the sum of the roots r1, r2, . . . , rn is

r1 + r2 + · · · + rn = −an−1 (11.2.17)

Note that the coefficient of sn is unity.

This guide is useful for determining the location of the remaining roots once some roots
have been found.

Determining the Value of K Once the root locus is drawn, the magnitude criterion
can be used to compute the value of K associated with a particular point on the locus.
If the polynomial is written as D(s) + K N (s) = 0, the magnitude criterion for K ≥ 0
states that

K = |D(s)|
|N (s)| (11.2.18)

Table 11.2.1 summarizes the procedure for sketching a root locus plot, and for
obtaining information from it. Figures 11.2.8 through 11.2.12 display a number of
possible root locus plots for second- and third-order equations. Figure 11.2.8 shows
six of the possible plots for second-order equations. Note that you can recover the
characteristic equation from the values of the poles and zeros.

Most of the root locus plots in this chapter were generated with MATLAB. At this
time, MATLAB users may wish to study Section 11.6. Users of other software should
consult the appropriate software documentation.
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Table 11.2.1 Root locus sketching procedure for K ≥ 0.

Procedure step Appropriate guide or equation

1. Express the characteristic equation ■ 1 + K P(s) = 0 where P(s) = N (s)/D(s), K ≥ 0
in the standard form. ■ Highest coefficients of N (s) and D(s) must be 1.

■ The order of N (s) must be no greater than the order
of D(s).

2. Determine the poles and zeros. ■ Solve D(s) = 0 for the poles.
■ Solve N (s) = 0 for the zeros.
■ p = number of poles. z = number of zeros.

3. Plot the poles with × and the zeros ■ The number of paths equals the number of poles.
with ©.
Use same scale on both axes. ■ The zeros are termination points for z paths.
Locus is symmetric about the real axis. ■ The remaining p − z paths leave the plot.

4. Sketch the root locus on the real axis. ■ The locus lies only to the left of odd-numbered real
poles and/or real zeros.

5. Determine any breakaway and breakin ■ Solve
d K

ds
= −d P(s)

ds
= 0 for s.

points.

6. If p > z, compute the angles and ■ θ = (2n + 1)180◦

p − z
n = 0, 1, 2, 3, . . .

intersection point of the asymptotes.

■ σ =
∑

sp − ∑
sz

p − z

7. Determine any crossover points. ■ Substitute s = jω into the characteristic equation,
separate the real and imaginary parts, and solve for
ω and K , or

■ use the Routh-Hurwitz criterion to find K , then
solve for the characteristic roots.

8. Determine any angles of departure from ■ Apply � N (s) − � D(s) = (2n + 1)180◦

complex poles, and any angles of arrival n = 0, 1, 2, 3, . . . , where s is the pole or zero
at complex zeros. location.

9. Determine the value of K at any desired ■ Use the magnitude criterion:
root location sd .

Kd = |D(sd)|
|N (sd)|

10. Locate remaining roots corresponding ■ Use the fact that −an−1 is the sum of the roots of the
to Kd . equation

sn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0 = 0

Figure 11.2.9 shows four of the possible plots for third-order equations having no
zeros. Note that part (d) has a breakin point even though it does not have a zero, and a
breakaway point even though there is only one real pole.

Figure 11.2.10 shows four of the possible plots for third-order equations having
one zero. Note that part (d) has both a breakin and a breakaway point between the zero
and the pole.

Figure 11.2.11 shows two of the possible plots for third-order equations having
complex poles and one zero. Note that part (b) has both a breakin and a breakaway
point between the zero and the real pole.

Figure 11.2.12 shows three of the possible plots for third-order equations having
two zeros. Note that part (a) has multiple crossover points. Note that part (c) has both
a breakin and a breakaway point between the real pole and s = −∞.

Note that these figures do not show all of the possible root locus plots for second-
and third-order equations.
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Figure 11.2.8 Root locus plots for some
second-order equations.
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Figure 11.2.9 Root locus plots for some
third-order equations with no zeros.
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THE COMPLEMENTARY ROOT LOCUS

The development of the plotting guides was based on the angle and magnitude criteria,
under the assumption that the parameter K is positive or zero. The corresponding root
locus is called the primary root locus. There are applications, however, where we cannot
formulate the problem such that K ≥ 0. This occurs with some plant models that have
negative coefficients. For example, proportional control with the plant

G p(s) = −s + 5

s(s + 8)
(11.2.19)

results in the following root locus equation.

1 + K
s − 5

s(s + 8)
= 0 (11.2.20)

where K = −K P . Thus to investigate the root locus for positive values of K P , we must
let K vary through negative values.
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Figure 11.2.10 Root locus plots for some
third-order equations having real poles and
one zero.
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The guides for the complementary root locus of the equation

1 + K
N (s)

D(s)
= 0 K ≤ 0 (11.2.21)

are found from the same criteria, repeated here.∣∣∣∣K N (s)

D(s)

∣∣∣∣ = 1 (11.2.22)

� K + � N (s) − � D(s) = � (−1) = (2n + 1)180◦ (11.2.23)

If K ≤ 0, (11.1.22) becomes −K |P(s)| = 1 or

K = − 1

|P(s)| (11.2.24)

Thus, the same scaling procedure is used, with a sign reversal included.



palm-38591 book December 17, 2008 12:41

11.2 Design Using the Root Locus Plot 653

Figure 11.2.11 Root locus plots for some
third-order equations having complex poles
and one zero.
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If K ≤ 0, then � K = (2k + 1)180◦, and (11.2.23) becomes

(2k + 1)180◦ + � N (s) − � D(s) = (2n + 1)180◦

which reduces to

� N (s) − � D(s) = (2n + 1)180◦ − (2k + 1)180◦ = m360◦ m = 0, 1, 2, 3, . . .

(11.2.25)

The guides for the complementary locus are identical to those for the primary locus
except for guides 4 and 6, which we renumber as 4a and 6a.

Guide 4a The locus exists in a section on the real axis only if the number of real
poles and/or zeros to the right of the section is even; furthermore, it must exist
there. The number zero is taken to be even. In other words, the complementary
locus exists on the real axis wherever the primary locus does not exist.
Guide 6a The paths that do not terminate at a zero leave the plot and approach
asymptotes. The asymptotic angles relative to the positive real axis are found from

θ = m360◦

z − p
m = 0, 1, 2, 3 . . . (11.2.26)

where z and p are the number of zeros and poles and m is increased until enough
angles have been found.

Note that the extraneous roots found when looking for breakaway and breakin
points on the primary locus are the breakaway or breakin points on the complementary
locus. Note also that the intersection point of the asymptotes is the same for the primary
and the complementary loci. When determining the angles of arrival and departure for
the complementary locus, be sure to use (11.2.25).

These guides can be used to show that the root locus of (11.2.20) is a circle of
radius 8.06 centered on the zero at s = 5.
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Figure 11.2.12 Root locus plots for some
third-order equations having two zeros.
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ROOT LOCUS EXAMPLES

EXAMPLE 11.2.2 Two Real Poles, One Zero

■ Problem
Sketch the root locus of the equation

s2 + (K − 4)s + 6K = 0

■ Solution
In the standard form the equation is

1 + K
s + 6

s(s − 4)
= 0 (1)

The poles are s = 0 and s = 4. The zero is s = −6. Thus, there are two paths. One starts at
s = 0 and the other at s = 4, with K = 0. One path terminates at s = −6, while the other must
leave the plot as K → ∞.
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Guide 4 shows that the locus exists on the real axis between s = 0 and s = 4 and to the
left of s = −6. Therefore, the two paths must break away from the real axis between s = 0 and
s = 4. From the location of the termination point at s = −6, we know that the locus must return
to the real axis somewhere to the left of s = −6.

The breakaway and breakin points are found as follows. Solve equation (1) for K , compute
d K/ds, and solve d K/ds = 0.

K = − s(s − 4)

s + 6

d K

ds
= − (s + 6)(2s − 4) − s(s − 4)

(s + 6)2
= 0

This is satisfied for finite s if the numerator is zero. Thus s2 + 12s − 24 = 0. The candidates
are s = 1.75 and s = −13.7.

There is no need to check for a minimum or a maximum of K , because we know from
guide 4 that the breakaway point must be s = 1.75 and the breakin point must be s = −13.7.

The crossover point is found by substituting s = jω into equation (1), and collecting real
and imaginary parts. This gives

6K − ω2 + (K − 4)ω j = 0

Both the real and imaginary parts must be zero, so we have 6K −ω2 = 0 and (K −4)ω = 0. The
latter equation gives either ω = 0, which corresponds to the pole at s = 0, or K = 4. Substituting
this value into the equation for the real part gives 6(4) − ω2 = 0, or ω = ±√

24 = ±4.9. This
gives the crossover points, which are s = ±4.9 j when K = 4. The system is unstable for
0 ≤ K < 4, and neutrally stable if K = 4.

This leaves only the shape of the locus off the real axis to be determined. For equations of
order higher than two the locus does not have a simple shape, but for second-order equations it is
often a circle. We note here that the breakaway and breakin points are symmetrically placed with
a distance of 7.75 from the zero at s = −6. The simplest way for this to occur is with a circle of
radius 7.75 centered at the zero. Another confirmation of this is the fact that the crossover points
are a distance

√
62 + 4.92 = 7.75 from the zero. The root locus is shown in Figure 11.2.13a.

Figure 11.2.13 (a) Root locus for
Example 11.2.2. (b) Plot of the gain K versus
real values of s .
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Part (b) of the figure shows the variation in K as s varies through real values. Note that K reaches
a relative minimum at a breakin point and a relative maximum at a breakaway point. The plot
for 0 ≤ s ≤ 4 has been expanded to show the variation more clearly.

Elementary geometry can be used to show that the root locus of the equation

(s + b)(s + c) + K (s + a) = 0 (11.2.27)

is a circle centered on the zero at s = −a if c is positive and a > b > c. The radius of
the circle can be determined once the breakaway and breakin points are found.

EXAMPLE 11.2.3 PD Control

■ Problem
The equation of motion of an object rotating under an applied torque T is I θ̈ = T . Use PD
action to control this system. Assume that I = 1 and TD = 2. Determine the gain values (a) to
achieve the smallest possible dominant time constant and (b) to achieve a damping ratio of 0.707.
(c) Compare the step responses of the two designs.

■ Solution
The plant is

G p(s) = (s)

T (s)
= 1

s2

The controller transfer function for PD action is

Gc(s) = K Ds + K P = K P(TDs + 1) = K P TD

(
s + 1

TD

)
The root locus equation is 1 + Gc(s)G p(s) = 0, or

1 + K P TD
s + 1/TD

s2
= 0

Thus PD action places a zero on the root locus plot at s = −1/TD . There are two poles at s = 0.

a. The root locus is a circle centered at the zero (Figure 11.2.14). Its radius is the distance
from the zero to the poles and is 1/TD . Thus the breakin point is at s = −2/TD . This point
represents the smallest possible dominant time constant, which is τ = TD/2 = 2/2 = 1.
The characteristic equation is

s2 + K P TDs + K P = 0

Figure 11.2.14 Root locus
for Example 11.2.3.
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At the breakin point, ζ = 1, where

ζ = K P TD

2
√

K P
= 1

This gives K P = 4/T 2
D = 4/4 = 1 at the breakin point. This is the gain value that will give

the smallest time constant for the given value of TD .
b. From the root locus plot we see that ζ = 0.707 corresponds to the top of the circle where

s = (−1 + j)/TD . At this point,

ζ = K P TD

2
√

K P
= 0.707

This gives K P = 2/T 2
D = 2/4 = 0.5 for ζ = 0.707.

c. For TD = 2 and K P = 1, the command transfer function is
C(s)

R(s)
= 2s + 1

s2 + 2s + 1
With TD = 2 and K P = 0.5, the command transfer function is

C(s)

R(s)
= s + 0.5

s2 + s + 0.5

The step response for K P = 1 has an overshoot of 13.5% and a settling time of 5.39. The
step response for K P = 0.5 has an overshoot of 20.8% and a settling time of 6.82. So K P = 1
gives better response.

Three Poles, No Zero EXAMPLE 11.2.4

■ Problem
Sketch the root locus plots of the equations

1 + K
1

s[(s + 2)2 + 4]
= 0 (1)

1 + K
1

s[(s + 2)2 + 1]
= 0 (2)

■ Solution
For equation (1) the poles are s = 0 and s = −2 ± 2 j . Thus, there are three paths. One starts
at s = 0 and the other two at s = −2 ± 2 j , with K = 0. Because there is no zero, all three
paths must leave the plot, approaching asymptotes as K → ∞. Because there are three more
poles than zeros, the asymptotes make angles of ±60◦ and 180◦ with the positive real axis. The
asymptotes intersect the real axis at

σ =
∑

sp − ∑
sz

p − z
= 0 − 2 + 2 j − 2 − 2 j

3 − 0
= −4

3

The crossover points are found from the characteristic equation

s
[
(s + 2)2 + 4

] + K = s3 + 4s2 + 8s + K = 0

with s = jω. This gives

− jω3 − 4ω2 + 8 jω + K = 0

or

K − 4ω2 = 0

ω(8 − ω2) = 0

Thus the crossover points are given by ω = ±√
8 = ±2.83, where K = 4(ω2) = 32.
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Figure 11.2.15 Root locus
for the open-loop transfer
function 1/s
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To examine for breakaway and breakin points, solve equation (1) for K , obtain d K/ds, and
solve d K/ds = 0 for s.

K = −(
s3 + 4s2 + 8s

)
d K

ds
= −(

3s2 + 8s + 8
) = 0

The solutions are s = −1.33 ± 0.942 j . Since these are complex, there are no breakaway or
breakin points. The root locus is shown in Figure 11.2.15 and can be generated with the MATLAB
rlocus function. Note that MATLAB does not display the asymptotes, so Figure 11.2.15 was
edited to show the asymptotes.

For equation (2) the poles are s = 0 and s = −2 ± j . The asymptotes are ±60◦ and 180◦.
The asymptotes intersect the real axis at

σ =
∑

sp − ∑
sz

p − z
= 0 − 2 + j − 2 − j

3 − 0
= −4

3

The crossover points are found from the characteristic equation

s
[
(s + 2)2 + 1

] + K = s3 + 4s2 + 5s + K = 0

with s = jω. This gives ω = ±√
5 = ±2.24 where K = 4(5) = 20.

Because equations (1) and (2) are so similar, after sketching the locus for equation (1),
however, we may be lulled into not looking for breakaway or breakin points. Equation (2) gives

K = −(s3 + 4s2 + 5s) (3)

d K

ds
= −(3s2 + 8s + 5) = 0

The solutions are s = −1.67 and s = −1. So there are breakaway or breakin points for this
equation! The corresponding values of K are found from equation (3). For s = −1.67, K = 1.85,
and for s = −1, K = 2. Computing d2 K/ds2 for each solution identifies the nature of each point.

d2 K

ds2
= − (6s + 8) =

{
2.02 > 0 for s = −1.67
−2 < 0 for s = −1
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Figure 11.2.16 Root locus
for the open-loop transfer
function 1/s[(s + 2)2 + 1].

Thus s = −1.67 is a breakin point and s = −1 is a breakaway point. The root locus is shown
in Figure 11.2.16.

Two Complex Poles, Two Complex Zeros EXAMPLE 11.2.5

■ Problem
Sketch the root locus plots of the equation

1 + K
(s + 4)2 + 9

[(s + 1)2 + 1])
= 0 (1)

■ Solution
The poles are s = −1 ± j , so there are two paths. The zeros are s = −4 ± 3 j . Both paths must
end at the zeros, so we need not look for asymptotes. Checking in the usual way for breakaway,
breakin, and crossover points shows there are none.

The angles of arrival and departure are found as follows. Figure 11.2.17 shows the test
points placed near the pole or zero in question, in order to calculate the vector angles. We use
the general root locus equation

� N (s) − � D(s) = (2n + 1)180◦ n = 0, 1, 2, 3, . . .

The angle of departure φ is found from part (a) of the figure.

φ + 90◦ − φ1 − φ2 = (2n + 1)180◦

where φ1 = 360 − tan−1(2/3) = 326◦ and φ2 = tan−1(4/3) = 53◦. Thus

φ = φ1 + φ2 − 90◦ + (2n + 1)180◦ = 289◦ + (2n + 1)180◦

Choosing n = 0 gives φ = 469◦, which is equivalent to 469 − 360 = 109◦.
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Figure 11.2.17
(a) Calculation of the
departure angle.
(b) Calculation of the arrival
angle.
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Figure 11.2.18 Root locus
for Example 11.2.5.
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The angle of arrival φ is found from part (b) of the figure.

φ + 90◦ − φ2 − φ1 = (2n + 1)180◦

where φ1 = 180 − tan−1(2/3) = 146◦ and φ2 = 180◦ − tan−1(4/3) = 127◦. Thus

φ = φ1 + φ2 − 90◦ + (2n + 1)180◦ = 183◦ + (2n + 1)180◦

Choosing n = 0 gives φ = 363◦, which is equivalent to 3◦. Choosing n = 1 gives φ = 723◦,
which is equivalent to 3◦.

These angles of departure and arrival indicate that the root locus will pass above the 45◦

line, and thus it is possible to obtain a value for K to achieve ζ ≤ 0.707. The root locus is shown
in Figure 11.2.18.
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Control of the Plant 1/(s + 3)(s + 5) EXAMPLE 11.2.6

■ Problem
Design a control algorithm for the plant

G p(s) = 1

(s + 3)(s + 5)

The dominant time constant must be no greater than 0.5 and the steady-state error for a step
command must be zero.

■ Solution
a. Proportional Action: With P action the command transfer function is

C(s)

R(s)
= K P

s2 + 8s + 15 + K P

The root locus equation is

1 + K P
1

(s + 3)(s + 5)
= 0

Figure 11.2.19 shows the root locus plot, from which we can tell that the smallest possible
time constant is τ = 1/4. Therefore the time constant specification can be satisfied.

The steady-state response for a unit step command, however, is css = K P/(15 + K P).
Thus the error is ess = 1 − css = 15/(15 + K P), which cannot be made zero.

b. I Action: I action tends to eliminate steady-state error. The command transfer function is

C(s)

R(s)
= KI

s3 + 8s2 + 15s + K I

The steady-state response for a unit-step command is css = K I /K I = 1, and so the error is
zero. The root locus equation is

1 + K I
1

s(s + 3)(s + 5)
= 0
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Figure 11.2.19 Root locus
for the open-loop transfer
function 1/(s + 3)(s + 5).
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Figure 11.2.20 Root locus
for the open-loop transfer
function 1/s(s + 3)(s + 5).
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The breakaway point is found from

d K I

ds
= −(

3s2 + 16s + 15
) = 0

or s = −1.21 and s = −4.12. The root locus does not exist at s = −4.12 for KI ≥ 0, so
the breakaway point must be at s = −1.21.

Figure 11.2.20 shows the root locus plot, from which we can tell that the smallest
possible time constant occurs at the breakaway point and is τ = 1/1.21 = 0.836.
Therefore the time constant specification cannot be satisfied. Note also that the system can
now be unstable, whereas with P action it is always stable.

c. PI Action: With PI action the command transfer function is

C(s)

R(s)
= K P s + K I

s3 + 8s2 + (15 + K P)s + K I

The steady-state response for a unit step command is css = K I /K I = 1, and so the error is
zero. Expressing the integral gain as K I = K P/TI , the root locus equation may be
expressed as

1 + K P
s + 1/TI

s(s + 3)(s + 5)
= 0

The root locus parameter K is seen to be K P . We now have two parameters to select: K P

and TI . The usual procedure is to use a trial value for TI , obtain the root locus, and use it to
set the gain K P . Note that the value of 1/TI determines the location of the zero.

If we place the zero between the poles of the plant, we obtain a root locus plot like
that shown in Figure 11.2.21. The particular plot shown corresponds to the choice
1/TI = 3.5. The dominant time constant at the breakaway point is 1/1.8 = 0.556, which
is larger than required, so we must use a gain value somewhat greater than 4.07. The larger
the gain, the smaller will be the damping ratio. Because the ±90◦ asymptotes intersect the
real axis at σ = −2.25, the smallest possible dominant time constant is 1/2.25 = 0.444,
but this requires an infinite gain value. So a time constant of 0.5 can be achieved. By using
MATLAB the necessary gain was found to be K = 8.11. This puts the dominant roots at
s = −2 ± 1.76 j , for which ζ = 0.75. The third root is s = −3.99.
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Figure 11.2.21 Root locus
for the open-loop transfer
function (s + 3.5)/

s(s + 3)(s + 5).
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Figure 11.2.22 Root locus
for the open-loop transfer
function (s + 2.5)/s(s + 3)

(s + 5).

The placement of the zero at −3.5 was arbitrary. Normally with this design process,
the designer experiments with the placement of the zero to see how it affects other aspects
of the performance, such as overshoot and maximum actuator output, for example. The
MATLAB interface rltool enables you to move the poles and zeros and see the effect
on the root locus. It also enables you to compute the resulting step response.

If we place the zero to the right of the pole at s = −3, we obtain a root locus plot like
that shown in Figure 11.2.22. The particular plot shown corresponds to the choice
1/TI = 2.5. The dominant root path is now always real. The dominant root is −2 when
K = 12. The other roots are s = −3 ± 2.45 j . These are somewhat close to the dominant
root, so they might influence the response significantly.

Simulation of the two PI designs for a step command shows that their responses are
very similar. The design with the zero at −3.5 has a 3.3% overshoot with a settling time of
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2.16. The design with the zero at −2.5 has no perceptible oscillation, no overshoot, and a
settling time of 1.29. Thus its response is better, but it requires a larger gain, and other
aspects of its performance should be checked before accepting it as the final design.

EXAMPLE 11.2.7 Tracking the Dominant Roots

■ Problem
A significant application of the root locus plot is to keep track of the dominant roots. Consider
the design of a control algorithm for the plant

G p(s) = 1

s2 + 6s + 13

It is required to have zero steady-state error for a step command. Discuss the design of the control
algorithm with respect to (a) achieving a desired damping ratio of ζ = 0.707 and (b) minimizing
the time constant.

■ Solution
We rule out P action because of the error requirement. Using PI action gives the command
transfer function

C(s)

R(s)
= K P s + K I

s3 + 6s2 + (13 + K P)s + K I

The steady-state response for a unit step command is css = K I /K I = 1, and so the error is zero.
The root locus equation is

1 + K P
s + 1/TI

s3 + 6s2 + 13s
= 0

The plot is shown in Figure 11.2.23 for the trial value of 1/TI = 4. The solution for ζ = 0.707 is
shown in the figure and requires a gain of K = K P = 3.81. This solution, however, corresponds
to the secondary root. The dominant root for K = 3.81 is at s = −1.53.

Figure 11.2.24 shows what happens if we forego the damping ratio requirement and instead
try to minimize the time constant. For small values of K , the dominant root is real. As we
increase K , the real root moves to the left and the complex roots move to the right and eventually

Figure 11.2.23 Root locus
for the open-loop transfer
function (s + 4)/(s3 + 6s2 +
13s) with the design solution
ζ = 0.707.
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Figure 11.2.24 Root locus
for the open-loop transfer
function (s + 4)/(s3 + 6s2 +
13s) with the design solution
minimizing the time constant.

become dominant as K is increased. The smallest possible dominant time constant occurs when
the real parts of all the roots are equal. To determine when this occurs, we can use guide 10.
With 1/TI = 4, the characteristic equation is s3 + 6s2 + (13 + K P)s + 4K P = 0. If all three
roots have the same real part −a, and the two complex roots have the imaginary part b, then the
three roots are s = −a and s = −a ± bj . From guide 10, the sum of the roots must be −6, so
we have

−6 = −a − a + bj − a − bj = −3a

or a = 2. Substituting s = −2 into the characteristic equation gives K P = 5. Thus, when
K P < 5, the dominant root is real. When K P > 5, the dominant roots are complex. The smallest
possible dominant time constant is 1/2.

11.3 STATE-VARIABLE FEEDBACK
In some examples in Chapter 10 we used an internal feedback loop to improve the
response of a system. One example is the use of P action with rate feedback in addition
to position feedback to replace PD control. This eliminated the numerator dynamics and
the resulting overshoot. State-variable feedback is a generalization of that technique
and uses some or all of the system’s state variables to modify the control signal. With
state-variable feedback, we have a better chance of placing the characteristic roots of the
closed-loop system in locations that will give desirable performance. In our examples,
we will assume that all of the state variables are measurable or at least derivable from
other information. For example, a position signal can theoretically be passed through
a differentiator to obtain the velocity if a tachometer cannot be used.

Motor Control Using State-Variable Feedback EXAMPLE 11.3.1

■ Problem
Consider PD action (Figure 11.3.1a) and state-variable feedback (Figure 11.3.1b) used to control
the angular displacement of a dc motor. For the state-variable feedback, the state variables are θ ,
ω, and the motor current i , and the controller uses P action. Compare the performance of these
two systems.
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Figure 11.3.1 (a) Position
control of a motor using PD
action. (b) Position control of a
motor using state-variable
feedback.
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■ Solution
Consider PD control first (Figure 11.3.1a). The closed-loop transfer function is

(s)

r (s)
= KT (K P + K Ds)

L I s3 + I Rs2 + KT K Ds + KT K P

The system is stable if I RKT K D > I L KT K P ; that is, if K P/K D < R/L . Note that the coeffi-
cient of s2 is unaffected by the control gains, so it might not be possible to select these gains to
achieve the desired transient response. That is, since the highest coefficient L I is fixed and we
cannot set the values of the last three coefficients, we cannot specify the locations of the three
roots, in general.

Now, consider P action with state-variable feedback (Figure 11.3.1b). The transfer function
can be obtained by successively reducing the inner loops of the diagram. The result is

(s)

r (s)
= K1 KT

L I s3 + I (R + K3)s2 + KT K2s + KT K1

There are no numerator dynamics and the system is stable if (R + K3)K2 > L K1. The coefficient
of s2 is now affected by the gains, as are the coefficient of s and the constant term. We therefore
have more influence over the transient behavior by feeding back all the state variables.

If the current is not fed back, K3 = 0, and the s2 coefficient is again beyond our influence.
The system is unstable if no velocity feedback is used (if K2 = 0).

If the system is stable, the steady-state error is 0 for a step command and is K2/K1 for a
unit ramp.

Suppose we require the roots to be s = −1± j and −5. These correspond to the polynomial
s3 + 7s2 + 12s + 10. Divide the denominator of the transfer function by L I to obtain

s3 + R + K3

L
s2 + KT K2

L I
s + KT K1

L I

Comparing the coefficients of these two polynomials, we obtain K1 = 10L I/KT , K2 =
12L I/KT , and K3 = 7L − R. Given values for KT , L , R, and I , the next step in the design
process would be to determine whether the required motor torque KT i exceeds the maximum
available torque, whose value depends on the specific motor and can be obtained from the mo-
tor manufacturer. Because the system is third order, determination of the maximum required
torque is best done by simulation. Simulink can be used for this purpose, as demonstrated in
Section 11.7.
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Integral Control with State-Variable Feedback EXAMPLE 11.3.2

■ Problem
A type-1 system requires no additional integrations to obtain a zero steady-state error for a step
command. P action with state-variable feedback, however, will not give a zero error for a step
disturbance, even though the plant in the previous example is a type 1 system. Therefore, we
replace the P action with the integral controller shown in Figure 11.3.2. Evaluate its performance
when enhanced with state-variable feedback.

Figure 11.3.2 Integral control using
state-variable feedback.
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■ Solution
The output equation obtained from the diagram is

(s) = KT K I

L I s4 + I (R + K3)s3 + KT K2s2 + KT K1s + KT K I
r (s)

− s(Ls + R + K3)

L I s4 + I (R + K3)s3 + KT K2s2 + KT K1s + KT K I
Td(s)

From this we see that if the system is stable, the steady-state error for a step disturbance is zero.
Using the Routh-Hurwitz results of Table 10.5.3, and assuming the gains and parameters

are positive, we see that the system is stable if and only if

KT K1[KT K2 I (R + K3) − KT K1 L I ] − KT K I [I (R + K3)]
2 > 0

which reduces to

K1 K2 KT (R + K3) − I K I (R + K3)
2 − L KT K 2

1 > 0

This shows that if K1 = 0 or if K2 = 0, the system is unstable. Thus, the position θ must be
fed back in the inner loop as well as in the outer loop. Now, however, with integral control as
opposed to proportional control, the gain K3 is not required for stability.

In general, the form of state-variable feedback using P action is

f (t) = K1[r(t) − x1] − K2x2 − K3x3 − · · · (11.3.1)
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where r(t) is the command input and f (t) is the controller output. If I action is used
instead, the form is

f (t) = K I

∫
[r(t) − x1] dt − K1x1 − K2x2 − K3x3 − · · · (11.3.2)

CHOICE OF FEEDBACK VARIABLES

With the motor example, the choice of state variables and measured quantities is perhaps
obvious. This might not always be the case. Consider the plant

C(s)

F(s)
= 1

s(s2 + 8s + 15)
(11.3.3)

where f (t) is the controller output (the actuating variable) and c(t) is the output to be
controlled. The differential equation is

d3c

dt3
+ 8

d2c

dt2
+ 15

dc

dt
= f (t)

A logical choice for state variables is x1 = c, x2 = ċ, and x3 = c̈. The state equations
are

ẋ1 = x2 ẋ2 = x3 ẋ3 = f (t) − 15x2 − 8x3

With proportional control and state-variable feedback, these equations lead to the dia-
gram shown in Figure 11.3.3. This assumes that we can measure or compute c(t), ċ(t),
and c̈(t).

Since this is a type 1 plant, I action is not needed to eliminate the steady-state error
for a step command. This can be confirmed from the transfer function.

C(s)

R(s)
= K1

s3 + (8 + K3)s2 + (15 + K2)s + K1

Note that the last three coefficients of the denominator can be independently set with
the three gains. This means that we can place the roots anywhere.

Some choices of root locations can result in very large gain values, which might
cause very large actuator outputs. Such designs might also be very sensitive to slight
changes or uncertainties in the plant parameters or control gains. Simulation is recom-
mended before accepting the design.

The diagram in Figure 11.3.3 implies that we can measure the state variables.
The diagram in Figure 11.3.4 shows the controller for the case where we compute x2

Figure 11.3.3 State-variable feedback for
the plant 1/(s3 + 8s2 + 15s).

1
s

1
s

K1

K3

K2

1
s � 8

R(s) F(s) X3(s) X2(s) C(s) � X1(s)

� �

� �

�

�� �

15
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1
s(s � 3)(s � 5)

R(s) F(s)

� �

� �

�

� C(s) � X1(s)

X3(s)

X2(s)

Figure 11.3.4 An equivalent
representation of Figure 11.3.3.

Figure 11.3.5 Integral control with
state-variable feedback for the plant
1/(s3 + 8s2 + 15s).

1
s3 � 8s2 � 15s

KI
s

K3

K2

s2

s

K1

R(s)

D(s)

C(s)

� �

� �

�

�

�

�� �

K3s2 � K2s � K1

KI
s

1
s(s � 3)(s � 5)

R(s)

D(s)

C(s)

� �

� � ��

Figure 11.3.6 An equivalent
representation of Figure 11.3.5.

and x3 from ċ and c̈, respectively. Even if we can measure the state variables, this
representation has the advantage of making it easier to obtain the transfer functions,
especially if there is a disturbance (Figure 11.3.5). With it we can easily combine the
loops as in Figure 11.3.6 and obtain the following output equation.

C(s) = KI

s4 + (8 + K3)s3 + (15 + K2)s2 + K1s + K I
R(s)

− s

s4 + (8 + K3)s3 + (15 + K2)s2 + K1s + K I
D(s)
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Figure 11.3.7 Alternative
choice of state variables for
the plant 1/(s3 + 8s2 + 15s).

1
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To place the roots at s = −6 ± 6 j , s = −7, and s = −8, the characteristic polynomial
must be s4 + 27s3 + 308s2 + 1752s + 4032. This requires the gains to be K1 = 1752,
K2 = 293, K3 = 19, and K I = 4032.

There are other choices for state variables for (11.3.3). For example, because we
can factor the plant model as

C(s)

F(s)
= 1

s

1

s + 5

1

s + 3

we can choose

X1(s) = C(s) X2(s) = 1

s + 5
X3(s) X3(s) = 1

s + 3
F(s)

The corresponding diagram using P action is given in Figure 11.3.7. This choice of
state variables, however, might or might not correspond to measurable variables.

ROOT LOCUS ANALYSIS

The root locus plot and Bode plot are useful for analyzing the choice of root locations
and the resulting gains. For example, suppose we want to analyze the effect of the
integral gain K I for the system shown on Figure 11.3.5. The root locus equation is

1 + K I
1

s[s3 + (8 + K3)s2 + (15 + K2)s + K1]
= 0

With the gain values given previously, this becomes

1 + K I
1

s(s3 + 27s2 + 308s + 1752)
= 0

There are no zeros and the poles are s = −13.91, s = −6.54 ± 9.12 j , and s = 0.
The root locus is shown in Figure 11.3.8. Increasing K I moves the two secondary roots
even farther to the left, but the dominant roots move to the right. This increases the
dominant time constant above 1/6 and increases ζ above 0.707. The dominant time
constant cannot be reduced much smaller than 1/6 by decreasing K I , because one of
the real roots moves to the right and becomes the dominant root. This occurs when
K I ≈ 3950 and the real root is s = −5.93. Thus we cannot make the dominant time
constant less than 1/5.93 = 0.169 by adjusting KI .

MATRIX METHODS

For higher-order models the algebra required to obtain the characteristic equation can
be time-consuming. Just as we use computer methods to obtain the response of such
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Figure 11.3.8 Root locus
plot for the system shown in
Figure 11.3.5 for variable K I .

models, rather than spending time to obtain closed-form solutions, we also may use
computer methods to determine the gain values required to place the roots at the desired
locations. MATLAB provides the acker function for this purpose. It is named for
J. Ackermann, who developed the algorithm. The function requires the matrices of the
state-variable model.

Consider the model

ẋ1 = −x1 + x2 + f ẋ2 = x1 − 2x2 (11.3.4)

With P action, the control algorithm is

f (t) = K1[r(t) − x1] − K2x2

The acker function requires the A and B matrices of the model (see Chapter 5 for
more discussion of these matrices). For this model,

A =
[−1 1

1 −2

]
B =

[
1
0

]
The syntax of the acker function is K = acker(A,B,p), where p is the array

containing the desired closed-loop roots and K is the array of gains K1, K2, . . . returned
by the function. Suppose we want to place the roots at s = −5 and s = −20. The script
file is

A = [-1, 1; 1, -2]; B = [1; 0];
K = acker(A,B,[-5, -20])

The answer given is K = [22, 55]. Thus the control law is f (t) = 22[r(t)− x1] −
55x2.

If I action is to be used, the form is

f (t) = K I

∫
[r(t) − x1] dt − K1x1 − K2x2 − K3x3 − · · ·

and we need to augment the state variable model with an additional state variable. This
state, denoted w , is defined to be the output of the integrator. That is,

w =
∫

[r(t) − x1] dt (11.3.5)
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This implies that

ẇ = r(t) − x1 (11.3.6)

which gives an additional state equation that is appended to the first n equations.
The control algorithm is then expressed as

f (t) = −K1x1 − K2x2 − K3x3 − · · · − (−K I w)

Thus we see that the negative of the integral gain corresponds to the gain for the last
state variable. So the array K returned by the acker function must be interpreted as
K = [K1, K2, K3, . . . , −K I ].

Using I action with the model (11.3.4), we obtain the state equations

ẋ1 = −x1 + x2 + f ẋ2 = x1 − 2x2 ẇ = r(t) − x1

So the new state variable is x3 = w , and the new matrices are

A =
⎡
⎣−1 1 0

1 −2 0
−1 0 0

⎤
⎦ B =

⎡
⎣ 1

0
0

⎤
⎦

To place the roots at s = −1, s = −2, and s = −2, the script file is

A = [-1, 1, 0; 1, -2, 0; -1, 0, 0]; B = [1; 0; 0];
K = acker(A,B,[-1, -2, -2])

The answer given is K = [2, -1, -2], which corresponds to the gains K1 = 2,
K2 = −1, and K I = 2. Thus the control law is

f (t) = 2
∫

[r(t) − x1] dt − 2x1 + x2

CONTROLLABILITY WITH LINEAR STATE FEEDBACK

We have noted that an advantage of state-variable feedback is that it enables us to place
the roots where we want. This is not always possible, however. Consider the following
model.

ẋ1 = −2x1 + f ẋ2 = x1 − x2 − f

where

A =
[−2 0

1 −1

]
B =

[
1

−1

]

Using P action, the control law is f (t) = K1[r(t) − x1] − K2x2. Substituting this into
the state equations and rearranging gives

ẋ1 = (−2 − K1)x1 − K2x2 + K1r(t) ẋ2 = (1 + K1)x1 + (K2 − 1)x2 − K1r(t)

Using the Laplace transform with zero initial conditions gives

(s + 2 + K1)X1(s) + K2 X2(s) = K1 R(s)

−(1 + K1)X1(s) + (s + 1 − K2)X2(s) = −K1 R(s)

The determinant of these equations gives the characteristic equation

s2 + (3 + K1 − K2)s + 2 + K1 − K2 = 0

Letting b = K1 − K2 gives s2 + (3 + b)s + 2 + b = 0, and we thus see that the equa-
tion has only one parameter! Therefore, we cannot specify both roots in general.
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Such systems where we cannot specify all the roots by using linear state-variable
feedback are said to be “uncontrollable” with linear state feedback. This means that we
cannot control the response of every state variable. The acker function will not work
for such systems, and gives a warning to that effect.

There are advanced methods for determining whether or not a system is control-
lable, but for our purposes, the warning issued by the acker function is sufficient.

Design of an Active Suspension EXAMPLE 11.3.3

■ Problem
Active suspensions are now used in many vehicles to improve the performance under a variety
of conditions. The control gains can be changed according to conditions to provide improved
response, whereas with traditional spring-damper systems, the system response depends on the
spring and damping constants, which are fixed. Figure 11.3.9 illustrates an active suspension for
the quarter car model. An electrohydraulic actuator between the chassis and the wheel assembly
provides a force that acts on both and is under feedback control. The system model is

m1 ẍ1 = k1(y − x1) − k2(x1 − x2) − c(ẋ1 − ẋ2) − f

m2 ẍ2 = k2(x1 − x2) + c(ẋ1 − ẋ2) + f

Figure 11.3.9 An active
suspension.

k1

y

m2

f

f
m1

x1

x2

k2 c

The given parameter values are m1 = 36 kg, m2 = 240 kg, k1 = 1.6×105 N/m, k2 = 8000 N/m,
and c = 50 N · s/m.

a. Put the model into state variable form.
b. Assume that we can measure all four state variables, and use P action with state-variable

feedback. In the original passive suspension system, k2 = 1.6 × 104 N/m and
c = 98 N · m/s, which resulted in characteristic roots at s = −1.397 ± 69.94 j ,
s = −0.168 ± 7.779 j . Compute the values of the feedback gains so that the closed-loop
roots will be near those of the passive system.

■ Solution
a. Let the state variables be

z1 = x1 z2 = ẋ1 z3 = x2 z4 = ẋ2

The input is f . The state equations are

ż1 = z2 ż2 = 1

m1
[k1 y − (k1 + k2)z1 − cz2 + k2z3 + cz4 − f ]

ż3 = z4 ż4 = 1

m2
[k2z1 + cz2 − k2z3 − cz4 + f ]

where the disturbance input is the road displacement y. The matrices are

A =

⎡
⎢⎢⎣

0 1 0 0
− k1+k2

m1
− c

m1

k2
m1

c
m1

0 0 0 1
k2
m2

c
m2

− k2
m2

− c
m2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−4667 −1.389 222.2 1.389

0 0 0 1
33.33 0.2083 −33.33 −0.2083

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0
− 1

m1

0
1

m2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
−0.0278

0
0.0042

⎤
⎥⎥⎦
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b. The MATLAB script file is

A = [0, 1, 0, 0; -4667, -1.389, 222.2, 1.389;...
0, 0, 0, 1; 33.33, 0.2083, -33.23, -0.2083];

B = [0; -0.0278; 0; 0.0042];
p = [-1.397+69.94j, -1.397-69.94j, -0.168+7.779j,

-0.168-7.779j];
K = acker(A,B,p)

The result is K = [-7963, -48, 7934, 47.5]. For this application, r(t) = 0, and
the control algorithm is f (t) = K1(0 − x1) − K2x2 − K3x3 − K4x4 = 7963x1 + 48x2 −
7934x3 − 47.5x4.

11.4 TUNING CONTROLLERS
Thus far we have seen several methods for computing appropriate gain values for
the controller. In practice, however, the gains should be varied or adjusted from their
computed values to determine how sensitive is the performance to the specific gain
values. This process is part of “tuning the controller,” and it is often possible to improve
the performance in this way. Tuning also means computing a preliminary set of gain
values based on experiments with the plant.

Before computers became available for simulation, controller tuning meant collect-
ing plant response data and adjusting the gains of an analog controller “in the field” with
the controller installed and connected to the plant. Tuning is still done this way with
both analog and digital controllers, but it is not always possible to do so for safety or cost
reasons. For example, one would not tune the autopilot of a spacecraft during launch!

Now, with computer simulation, it is easier to investigate how a change in gain
values or other parameter values will affect the system performance.

THE ZIEGLER-NICHOLS METHODS

Some processes, particularly those involving thermal processes, fluid flow, or chemical
reactions, are very difficult to model, especially with linear differential equations. In
such applications, if we can do experiments with the plant, there are guidelines available
for obtaining preliminary values of the controller gains. These values can then be
adjusted by tuning.

The most commonly used methods are those developed by Ziegler and Nichols.
They have proved so useful that they are still in use 60 years after their development
in the early 1940s. Other methods have been developed; see for example [Seborg,
1989]. Ziegler and Nichols developed two methods. The first method requires the
open-loop step response of the plant, while the second method uses the results of
experiments performed with the controller already installed. While primarily intended
for use with systems for which no analytical model is available, the methods are also
helpful sometimes even when a model can be developed, as we will demonstrate.

From a number of experiments and analysis, Ziegler and Nichols found that con-
trollers adjusted according to the following methods usually had a step response that was
oscillatory but with enough damping so that the second overshoot was less than 25%
of the first (peak) overshoot. This is the quarter-decay criterion, and it is sometimes
used as a specification.
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PROCESS REACTION METHOD

The first method, the process reaction method, relies on the fact that many processes
have an open-loop unit-step response like that shown in Figure 11.4.1. This process
signature is characterized by two parameters, R and L . The constant R is the slope
of a line tangent to the steepest part of the response curve, and the constant L is the
time at which this line intersects the time axis. Note that first- and second-order linear
systems without dead time do not yield positive values for L , and so the method cannot
be applied to such systems. Linear systems of third order and higher, with sufficient
damping, do yield such a response, however. If so, the Ziegler-Nichols process reaction
method recommends the controller gains given in Table 11.4.1.

Note that the table expresses the gains in terms of the reset time TI and the derivative
time TD . The relation between the two forms of the PID control law is

G(s) = K P + K I

s
+ K Ds = K P

(
1 + 1

TI s
+ TDs

)
(11.4.1)

Thus, K I = K P/TI and K D = K P TD . Many industrial controllers require you to enter
values for K P , TI , and TD , rather than values for K I and K D . Some controllers require
the value of 1/TI , which is called the reset rate.

Note that the process reaction method assumes that the response data is from a unit-
step input and that the output starts from zero. In practice, this is sometimes difficult to

Time
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Figure 11.4.1 Open-loop
step response of a process.

Table 11.4.1 The Ziegler-Nichols settings.

Controller transfer function

G(s) = K P + KI

s
+ K Ds or G(s) = K P

(
1 + 1

TI s
+ TDs

)

K I = K P

TI
K D = TD K P

Control Mode Process Reaction Method Ultimate Cycle Method

P control K P = 1/RL K P = 0.5K Pu

PI control K P = 0.9/RL K P = 0.45K Pu

TI = 3.3L TI = 0.83Pu

PID control K P = 1.2/RL K P = 0.6K Pu

TI = 2L TI = 0.5Pu

TD = 0.5L TD = 0.125Pu
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do. If the response data ci (t) starts at a nonzero value c0, subtract it from the other data
to obtain xi (t) = ci (t) − c0. Then, if the input has a magnitude M , divide the shifted
data by M to obtain yi (t) = xi (t)/M . The modified data yi (t) is then used with the
Ziegler-Nichols process reaction method. This technique assumes that the process is
linear and thus scalable, but it might not be in practice.

It might be difficult to identify the maximum slope R by looking at a plot of the
data, and therefore also difficult to estimate L . A polynomial curve fit of the modified
data yi (t) can be used to obtain R and L as follows. After obtaining the curve fit pn(t)
of order n, differentiate it with respect to t to obtain dpn(t)/dt = pn−1(t), which is a
polynomial one order lower than pn(t). Determine the maximum value of pn−1(t) and
the time tmax at which the maximum occurs, either by plotting pn−1(t), by calculus, or
with the MATLAB max function. The maximum gives the value of R, which can be
used along with tmax to construct a straight line of slope R passing through the point
[pn(tmax), tmax]. The intersection of this line with the t axis gives L . See Section 11.6.

ULTIMATE-CYCLE METHOD

The ultimate-cycle method of Ziegler and Nichols uses experiments with the controller
in place. All control modes except proportional are turned off, and the process is started
with the proportional gain K P set at a low value. The gain is slowly increased until the
process output starts to show sustained oscillations. The period of these oscillations is
called the ultimate period, and is denoted by Pu . Let the proportional gain setting at this
condition be denoted by K Pu , which is called the ultimate gain. The Ziegler-Nichols
recommendations are given in Table 11.4.1 in terms of these parameters.

The proportional gain is lower for PI control than for P control and higher for PID
control, because I action increases the order of the system, which tends to destabilize
it; thus, a lower gain is needed. On the other hand, D action tends to stabilize the
system; therefore, the proportional gain can be increased without degrading the stability
characteristics. Because the settings were developed for typical cases out of many types
of processes, final tuning of the gains by simulation or in the field is usually necessary.

Sometimes the Ziegler-Nichols methods can be applied to an analytical model.
Example 11.4.1 shows how this is done with the ultimate-cycle method.

EXAMPLE 11.4.1 Ultimate-Cycle Method with a Third-Order Plant

■ Problem
Use the ultimate-cycle method to obtain the gains for (a) P action, (b) PI action, and (c) PID
action. Analyze the unit-step response of each design. The plant is

G p(s) = 10

2s3 + 12s2 + 22s + 12

■ Solution
The ultimate-cycle method starts by using proportional action only. The transfer function for P
action with this plant is

C(s)

R(s)
= 10K P

2s3 + 12s2 + 22s + 12 + 10K P

The characteristic equation is

2s3 + 12s2 + 22s + 12 + 10K P = 0 (1)
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To apply the ultimate-cycle method, we must first find the ultimate period Pu and the associated
gain K Pu . To do this analytically, we note that sustained oscillations occur when a pair of roots
is purely imaginary and the rest of the roots have negative real parts. To find when this occurs,
set s = jωu , where ωu is the as-yet-unknown frequency of oscillation. Then s2 = −ω2

u and
s3 = − jω3

u . Substituting these into the characteristic equation we obtain

−2 jω3
u − 12ω2

u + 22 jωu + 12 + 10K Pu = 0

Collect the real and imaginary parts.(
12 + 10K Pu − 12ω2

u

) + j
(−2ω3

u + 22ωu

) = 0

To satisfy this equation, both the real and imaginary terms must be zero. So we obtain two
equations to solve for the two unknowns ωu and K Pu . These are

12 + 10K Pu − 12ω2
u = 0 (2)

−2ω3
u + 22ωu = 0

The latter equation yields the nonoscillatory solution ωu = 0 as well as the one of interest—
namely,

ωu = ±
√

11 = ±3.317

Substituting this into equation (2), we see that the ultimate gain is K Pu = 12. The ultimate
period is

Pu = 2π

ωu
= 2π√

11
= 1.89

For sustained oscillations to occur, as required by the ultimate-cycle method, the third root
must be negative. The first two roots are s1 = jωu and s2 = − jωu . The third root can be
determined from guide 10 of the root locus guides. Dividing equation (1) by 2 gives

s3 + 6s2 + 11s + 6 + 5K P = 0

Guide 10 says that the sum of the three roots must be −6. Thus,

+ jωu − jωu + r3 = −6

which gives r3 = −6. Since r3 < 0, the assumption of neutral stability is justified. Thus the
solutions for ωu and K Pu are valid and can be used with Table 11.4.1 to compute the PID gains.

We obtain the following results. For P action, K P = 0.5K Pu = 6. For PI action,

K P = 0.45K Pu = 5.4 TI = 0.83Pu = 1.57 K I = K P

TI
= 3.44

For PID action,

K P = 0.6K Pu = 7.2 TI = 0.5Pu = 0.947 K I = K P

TI
= 7.62

TD = 0.125Pu = 0.236 K D = K P TD = 1.7

The closed-loop transfer function for P action is

C(s)

R(s)
= 60

2s3 + 12s2 + 22s + 72
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For PI action,

C(s)

R(s)
= 54s + 34.4

2s4 + 12s3 + 22s2 + 66s + 34.4

For PID action,

C(s)

R(s)
= 17s2 + 72s + 76.2

2s4 + 12s3 + 39s2 + 84s + 76.2

The unit-step responses are shown in Figure 11.4.2. Note the improvement as the control
action is changed from P to PI to PID. First, the steady-state error is eliminated, and then the
oscillations and settling time are reduced.

Figure 11.4.2 Unit-step responses of the
controllers obtained in Example 11.4.1.
(a) P action. (b) PI action. (c) PID action.
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Note that this analysis uses only proportional control, but the gains for other control
laws can be computed with these results. The power of the method is shown by the
fact that we did not have to solve for the roots of a cubic or quartic equation. Note also
that I action applied to this system would result in a fourth-order system to analyze—a
difficult task—were it not for the Ziegler-Nichols method.

The Ziegler-Nichols methods are used to obtain gain values that are “in the ball-
park.” The engineer can use these values as a starting point for tuning the gains to obtain
improved performance.

Tuning a PID Controller EXAMPLE 11.4.2

■ Problem
Consider the PID controller designed in Example 11.4.1. Use the root locus plot to adjust the
gains to reduce the overshoot.

■ Solution
The closed-loop transfer function for PID control of this plant is

C(s)

R(s)
= 10K Ds2 + 10K P s + 10K I

2s4 + 12s3 + (22 + 10K D)s2 + (12 + 10K P)s + 10K I

When the controller transfer function is expressed in the form

G(s) = K P

(
1 + 1

TI s
+ TDs

)
we can see that changing the proportional gain K P changes the proportional, integral, and
derivative gains by the same factor. For PID action, the Ziegler-Nichols settings give the following
values of K D and K I in terms of K P .

K D = TD K P = 0.236K P K I = K P

TI
= K P

0.947
= 1.056K P

Thus, we can express the characteristic equation as

2s4 + 12s3 + (22 + 2.36K P)s2 + (12 + 10K P)s + 10.56K P = 0

and the root locus equation in terms of the parameter K P is

1 + 1.18K P
s2 + 4.24s + 4.47

s(s3 + 6s2 + 11s + 6)
= 0

Thus the root locus parameter is K = 1.18K P .
The root locus plot is shown in Figure 11.4.3. When K P has the value recommended

by the Ziegler-Nichols method, K P = 7.2, the roots are s = −0.77 ± 2.67 j , s = −1.98,
and s = −2.48. The dominant root is marked on the root locus, and has a time constant of
τ = 1/0.77 = 1.3 and a small damping ratio of ζ = 0.28. The root locus shows that decreasing
K P from 7.2 increases the time constant slightly to τ = 1/0.523 = 1.9 but increases the damping
ratio quite a bit. Thus the system will respond somewhat more slowly, but the overshoot should
be greatly reduced to perhaps none at all.

The root locus shows that we can improve the response by decreasing K P until the dominant
root has a damping ratio of 1. This occurs at the breakaway point (s = −0.523) and requires that
K P = 0.306, K D = TD K P = 0.236(0.306) = 0.070, K I = K P/TI = K P/0.947 = 0.323.
The improved step response, marked “Tuned,” is shown in Figure 11.4.4, along with the response
obtained with the Ziegler-Nichols settings, marked “Original.”
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Figure 11.4.3 Root locus
plot for Example 11.4.2.
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Figure 11.4.4 Unit-step
responses for Example 11.4.2.

0 2 4 6 8 10 12
0

0.5

1

1.5

t

c
(t

)

Original

Tuned 

11.5 SATURATION AND RESET WINDUP
We have seen that a motor-amplifier combination can produce a torque proportional to
the input voltage over only a limited range. No amplifier can supply an infinite current,
and there is a maximum current that the motor can withstand without overheating
or demagnetizing. Thus, there is a maximum torque the motor can produce in either
direction (clockwise or counterclockwise). Whenever an actuator reaches its limit, it is
said to be saturated. When the controller commands the actuator to produce an output
greater than its limit, the actuator is said to be overdriven.
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Figure 11.5.1 Saturation
nonlinearity.

A graph of the saturation nonlinearity is shown in Figure 11.5.1, where m(t) is the
actuator response and f (t) is the commanded value of m(t) generated by the controller.

For the motor, the graph of the saturation nonlinearity is symmetric, so mmin =
−mmax, but this is not always the case. An example is a flow control valve. Once it is
fully open, the flow rate m(t) cannot be made greater without increasing the supply
pressure. Of course, no flow occurs when the valve is fully closed, so mmin = 0. Note,
however, that even if the nonlinearity is nonsymmetric, its slope is always 1 because
m(t) = f (t) when there is no saturation.

The possibility of actuator saturation must be considered when designing control
systems, otherwise the mathematical model can predict unrealistic results. For example,
we can use the closed-loop transfer function to select gain values to achieve a desired set-
tling time, but the real system will respond slower than predicted if the actuator saturates.

RESET WINDUP

Any controller with integral action can exhibit the phenomenon called reset windup or
integrator buildup when overdriven, if it is not properly designed.

Consider the PI-control law.

m(t) = K pe(t) + K I

∫ t

0
e(t) dt (11.5.1)

For a step command input, the proportional term responds instantly and causes satu-
ration immediately if the command input is large enough. The integral term, however,
does not respond as quickly. It integrates the error signal and can cause saturation some
time later if the error remains large for a long enough time. As the error decreases, the
proportional term no longer causes saturation. The integral term, however, continues
to increase as long as the error has not changed sign, and thus the manipulated variable
remains saturated. Even though the output is near its desired value, the manipulated
variable remains saturated until sometime after the error has reversed sign. The result
can be a large overshoot in the response of the controlled variable.

Consider the PI control system shown in Figure 11.5.2. Suppose the plant is
G p(s) = 1/4s. To obtain a time constant of τ = 1.5 and a damping ratio of ζ = 1,
we compute the gains to be K P = 16/3 and K I = 16/9. Ignoring any limits on actu-
ator output, we predict the unit-step response to be that of the curve labeled “Unlim-
ited” shown in Figure 11.5.3. Now suppose that the actuator limits are mmax = 1 and
mmin = −1. Simulation, using Simulink for example, gives the curve labeled “Actuator
Limited.” Clearly the overshoot is much greater and the response time is longer.
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Figure 11.5.2 PI control with
saturation nonlinearity.
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Figure 11.5.3 Effects of
actuator saturation on step
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To see what is happening, consider Figure 11.5.4. The actuator output is plotted
along with the output of the I action and the error, e(t) = 1 − c(t). For zero initial con-
ditions, the error is initially e(0) = 1 − 0 = 1, and the actuator immediately saturates
because the proportional term is K Pe = 16/3 > 1. In the saturated mode, m(t) = 1,
ċ(t) = m(t)/4 = 1/4, c(t) = t/4, and e(t) = 1 − t/4, until f < 1. Note that the error
eventually changes sign, which means that the output c is now larger than the desired
value, but the I action term keeps the system saturated until some time later. This is
what causes the overshoot often observed due to reset windup.

SELECTING GAINS TO AVOID SATURATION

Consider again the PI control system shown in Figure 11.5.2 for an arbitrary plant.
If the maximum step command is rmax and if the output c is zero at startup at t = 0,
then the output f I of the integral term is zero and the output of the proportional term
is fP = K P [rmax − c(0)] = K Prmax. Then the maximum value K P can have without
overdriving the actuator is

K P = mmax

rmax
(11.5.2)

This analysis does not account for the possibility that the integral term might cause
saturation at some later time, but (11.5.2) provides a starting point for the design.
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Figure 11.5.4 Effects of reset
windup.

Computing K P in this way removes some flexibility from the design. Suppose the
plant is G p(s) = 1/(I s + c). In the linear (unsaturated) region, the transfer function is

C(s)

R(s)
= K Ps + K I

I s2 + (c + K P)s + K I

With K P fixed from (11.5.2), the only remaining design variable is K I , for which the
root locus equation is

1 + K I

I

1

s[s + (c + K P)/I ]
= 0

The poles are s = 0 and s = −(c+ K P)/I . The ±90◦ asymptotes intersect the real axis
at the breakaway point at s = −(c + K P)/2I , and thus the smallest possible dominant
time constant is τ = 2I/(c + K P).

If we again consider the plant G p(s) = 1/4s with rmax = mmax = 1, then I = 4,
c = 0, and K P = 1 from (11.5.2). The smallest possible dominant time constant is
τ = 8. So we see that our earlier design with τ = 1.5 was unrealistic and will cause
saturation. With K P = 1, any choice of ζ ≤ 1 will give a time constant of 8. Choosing
ζ = 1 requires that KI = 1/16. Figures 11.5.5 and 11.5.6 compare the two designs.
With this choice of gains, no reset windup occurs, the actuator is not overdriven, and the
overshoot is much less than before. However, the response now takes longer to settle
down to its steady-state value.

To decide which response is optimal, the designer must look more closely at the
requirements for the particular application. In many systems, the occurrence of satu-
ration and response overshoot indicates that the system is using more energy than is
necessary to accomplish the task.

Reset windup can be prevented by selecting the gains so that saturation will never
occur. This requires knowledge of the maximum input magnitude that the system will
encounter. In a PI controller, any saturation initially caused by the proportional term is
easy to predict, because it responds instantly to the error. The integral term might cause
saturation also, but at a later time, because its output requires time to accumulate.
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Figure 11.5.5 Response of
two PI control systems.
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Figure 11.5.6 Actuator
response of two PI control
systems.
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OTHER CONTROL STRUCTURES

Control structures other than the classic PID structure sometimes can be used to reduce
the problems associated with actuator saturation and reset windup. One of these is the
use of an internal feedback loop in conjunction with the main controller, which uses I
action (Figure 11.5.7). In Chapter 10 we saw that such an arrangement requires a much
smaller actuator output at the cost of a slightly longer response time.

For the plant G p(s) = 1/I s with a step command and ζ = 1, we can obtain
the analytical solution for the actuator output m(t). From this we can determine that
m(t) reaches a maximum of rmax K2/5.44 at t = 2I/K2. Thus to avoid overdriving the
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Figure 11.5.7 Use of internal
feedback to avoid saturation.
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PI control and I action with
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actuator, the gain K2 should be chosen to be no larger than

K2 = 5.44
mmax

rmax
(11.5.3)

To obtain ζ = 1 requires that the integral gain be

K I = K 2
2

4I
= 29.6

4I

(
mmax

rmax

)2

(11.5.4)

Suppose the plant is G p(s) = 1/4s with rmax = mmax = 1. Then K2 = 5.44
and K I = 29.6/16 = 1.85. Figures 11.5.8 and 11.5.9 show the output and the actuator
response for this design and the PI design using K P = 1 and K I = 1/16. It is apparent
that the system with internal feedback gives a better response without demanding more
from the actuator. Further analysis, however, should be done to compare the two designs’
responses to a disturbance and to other inputs such as ramps. This comparison is given
in [Palm, 2000] and [Phelan, 1977].

AN ANTI-WINDUP SYSTEM

It is sometimes impossible to compute the gains to avoid reset windup and saturation
because either the input magnitudes are not known well enough in advance or because
the required mathematics is too cumbersome. There are some designs, however, that act
to prevent reset windup. One of these anti-windup designs is shown in Figure 11.5.10
[Franklin, 1994]. It consists of a feedback loop with a gain K A around the integrator.
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Figure 11.5.9 Actuator
responses for PI control and I
action with internal feedback.
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The actuator output is M(s). Its output commanded by the controller is F(s). When
the actuator is not saturated, m = f and the comparator in the feedback loop produces
a zero output. Thus the loop has no effect. When the actuator is saturated, however, so
that m = mmax but f > mmax, a positive signal is fed by the comparator to the gain
K A, which decreases the signal to the integrator. Thus, the integrator output begins to
decrease, causing the actuator to become unsaturated.

Note that the P action bypasses the inner feedback loop, so the proportional signal
is unaffected by the anti-windup loop. The gain K A should be chosen large enough
to allow the loop to follow changes in the error signal. Figure 11.5.11 compares the
response of this system using K P = K I = 16 and K A = 10 for the plant G p(s) = 1/4s
with mmax = rmax = 1 to the response of the classic PI controller using K P = K I = 16.
Note that the anti-windup system does not prevent the actuator from being overdriven,
but it does eliminate reset windup that causes overshoot.

Limits on the actuator output obviously can prevent us from achieving the desired
response time. We can, however, reduce the effects of saturation by choosing gains
that prevent it and reset windup, by choosing alternative control structures that place
less demand on the actuator, or by using a control structure that prevents reset windup.
For plants other than first order, the mathematics required to analyze such designs is
formidable, so the design approach is to assume the system is operating in the linear
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region, and compute the response for the most severe inputs expected. Then simulation
is used to check for saturation, and the gains are adjusted to prevent it. Because of the
saturation nonlinearity, Simulink is well suited for such simulations.

11.6 MATLAB APPLICATIONS
We have already seen many of the MATLAB features that are particularly helpful for
doing the design tasks described in this chapter. These include the transfer function and
state-variable functions, such as tf and ss; the transient response functions step and
lsim; and the frequency response function bode. In Section 11.3 we introduced the
acker function, which is used to compute the state-variable feedback gains.

The polynomial regression tools, including polyfit, which were introduced
in Chapter 1, are useful for applying the Ziegler-Nichols process reaction method
discussed in Section 11.4.

This section introduces the MATLAB functions relevant to this chapter.

ROOT LOCUS ANALYSIS WITH MATLAB

The MATLAB Control System toolbox provides several useful commands for produc-
ing root locus plots and for extracting information from them. The basic function is
rlocus(sys), which displays the root locus. Additional commands are available for
enhancing the plot and for obtaining root locations and gain values from the plot.

The function rlocus(sys) computes and displays the root locus plot for the
equation

D(s) + K N (s) = 0 (11.6.1)

where sys corresponds to the transfer function N (s)/D(s) and the parameter K varies
from 0 through a large positive value determined by MATLAB. The order of N (s) must
be no greater than the order of D(s). It is recommended that the highest coefficients in
N (s) and D(s) both be unity so that the values of K displayed by MATLAB will be
interpreted correctly.
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Figure 11.6.1 Root locus
plot of 2s2 + cs + 8 = 0.
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MATLAB refers to the parameter K as the “gain.” The starting points of the roots
corresponding to K = 0 are called the “poles” and are marked with a cross (×). These
are the roots of D(s) = 0. The finite termination points that the roots approach as
K → ∞ are called the “zeros” and are marked with a circle

(©)
. These are the roots

of N (s) = 0.
You should use equal scaling on the real and imaginary axes so that circular root

loci will display as circles and so that the angle θ associated with the damping ratio,
ζ = cos θ , can be properly interpreted. This can be done by including the command
axis equal after the rlocus function.

The plot shown in Figure 11.1.3b corresponds to the characteristic equation 2s2 +
cs + 8 = 0. This may be put into the standard form (11.6.1) by rewriting it as

s2 + 4 + c

2
s = 0

where K = c/2, D(s) = s2 + 4, and N (s) = s. The poles are s = ± j2. The zero is
s = 0. To obtain this root locus plot, the session is

�sys1 = tf([1,0],[1,0,4]);
�rlocus(sys1),axis equal

Note that the numerator must be expressed as [1, 0] because the numerator polyno-
mial is actually s + 0. The result is shown in Figure 11.6.1.

PLACING A (ζ, ωn) GRID

The sgrid command superimposes an s plane grid of constant ζ and constant ωn lines
on the root locus plot. This grid is useful for locating roots that satisfy performance spec-
ifications stated in terms of ζ and ωn. The alternate syntax sgrid(zeta,omega)
superimposes an s plane grid of constant ζ and constant ωn lines on the root locus plot,
using the values contained in the vectors zeta and omega.
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Suppose we want to see if any dominant roots of the following equation have
damping ratios in the range 0.5 ≤ ζ ≤ 0.707, and undamped natural frequencies in the
range 0.5 ≤ ωn ≤ 0.75.

s3 + 3s2 + 2s + K = 0

The required session is

�sys2 = tf(1,[1,3,2,0]);
�rlocus(sys2),sgrid([0.5,0.707],[0.5,0.75]),axis equal

You may use empty brackets if you want to omit either lines of constant ζ or lines of
constant ωn . For example, to see just the damping ratio lines corresponding to ζ = 0.5
and ζ = 0.707, you would use the form sgrid([0.5,0.707],[]).

OBTAINING INFORMATION FROM THE PLOT

Once the plot is displayed you can pick a point from this plot to find the gain K required
to achieve ζ and ωn values in the desired range. To do this you can use the rlocfind
function discussed later in this section, or you can place the cursor on the plot at the
desired point. Left click to display the root value (although labeled “pole,” this is not the
same as the starting points marked by ×). The gain value, the damping ratio (labeled
“damping”), the percent overshoot, and the undamped natural frequency ωn (labeled
“frequency”) are also displayed. You can move the cursor along the plot and view the
updated values. Right-clicking anywhere within the plot area brings up a menu that
enables the plot to be edited.

Note that the percent overshoot value displayed on the screen with this method is
computed from the formula for M% given in Table 9.3.2, and thus it does not include
the effects of numerator dynamics on the overshoot.

You can use this method to see how sensitive the root location is to a change in the
value of the gain K . Sometimes it is inadvisable to design a critically damped system,
which corresponds to two or more equal, real roots, because such designs can be very
sensitive to parameter variation and parameter uncertainty. Near such roots, a slight
change in the gain K can cause a large change in the root location.

An alternate syntax to obtain the root values for specified values of K is r =
rlocus(sys,K). This returns the root locations in the vector r corresponding to the
user-specified vector of gain values K. The matrix r has length(K) columns and its
j th column contains the roots for the gain value K(j). No plot is displayed.

MATLAB provides the rlocfind function to obtain information about roots
and gain values from the plot on the screen. The syntax [K,r] = rlocfind(sys)
enables you to use a cursor to obtain the value of the gain K corresponding to a specified
point on a root locus plot. The vector r contains the roots corresponding to this gain
value. The advantage of usingrlocfind is that it returns all the roots for a given value
of K , whereas left-clicking on the curve shows only some of the roots. The rlocfind
function, which must follow the rlocus command, generates a cursor on the screen
and waits for the user to press the mouse button after positioning the cursor over the
desired point on the locus. Once the button is pressed, you will see on the screen the
coordinates of the selected point, the gain value at that point, the roots closest to that
point, and the other roots that correspond to the gain value.

For example, the following session displays the root locus with a grid line corre-
sponding to ζ = 0.707. This enables us to use the cursor to find the dominant roots
that have a damping ratio of ζ = 0.707 and the corresponding gain value K .
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�sys3 = tf(1,[1,3,2,0]);
�rlocus(sys3),axis equal,sgrid(0.707,[]),...

[K,r] = rlocfind(sys3)

The dominant roots selected this way will not have a damping ratio of ζ = 0.707 exactly,
because you cannot position the cursor exactly at the intersection of the locus and the
ζ = 0.707 line. To reduce this inaccuracy, you can enlarge the plot by enabling the Edit
Plot button and clicking the magnifying glass icon on the menu bar of the figure window.

Another syntax is [K,r] = rlocfind(sys,p), which computes a root locus
gain K for each desired root location specified in the vector p (or a gain for which one
of the closed-loop roots is near the desired location). The j th entry in the vector K is
the computed gain for the root location r(j). The j th column of the matrix r contains
the resulting closed loop roots.

The real power of the root locus method only becomes apparent when it is applied
to a model higher than second-order, as in the following example.

Therlocus function is especially useful for applications in this chapter where the
model is third order or higher, because simple expressions for the time constant, damp-
ing ratio, overshoot, etc. are not available to assist in setting the gains. The root locus
plot is useful for analyzing the effects on the roots of changing a control system gain. It
is also helpful for understanding how the uncertainty in a parameter value will affect the
performance of the control system. We now give two examples of these applications.
More applications of the root locus for control system design are given in Chapter 12.

EXAMPLE 11.6.1 Varying the Integral Gain

■ Problem
The characteristic equation of the liquid-level control system of Example 10.8.5 is

8s3 + (6 + 8K1)s
2 + (1 + 4K1 + K2)s + K I = 0

In that example, the gain values were selected to give the characteristic roots s = −0.5 ± 0.5 j
and s = −5. The gain values are K1 = 21/4, K2 = 22, and K I = 20. Investigate the effects on
the roots and on the steady-state ramp-command error of changing the value of K I .

■ Solution
The steady-state error for a unit-ramp command is ess = 44/K I , and thus its nominal value for
K I = 20 is ess = 44/20 = 2.2.

Substituting K1 = 21/4 and K2 = 22 into the characteristic equation gives

8s3 + 48s2 + 44s + K I = 0

With the Routh-Hurwitz condition we immediately see that the system is unstable if 48(44) <

8K I ; that is, if K I > 264.
Rearranging the characteristic equation into the standard root-locus form, we have

1 + KI

8

1

s3 + 6s2 + 5.5s
= 0

With the highest coefficients normalized to unity, the root locus gain is K = K I /8. The poles
are the roots of the denominator, which are s = 0, −1.129, −4.87. There are no zeros because
the numerator is a constant.

The MATLAB session is

>>sys = tf(1, [1, 6, 5.5, 0]);

>>rlocus(sys)
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Figure 11.6.2 Root locus
plot for Example 11.6.1.

The root locus plot is shown in Figure 11.6.2. The Plot Editor has been used to annotate the plot.
The locations of the roots when K I = 20 have been marked. We see that as K I is increased the
system becomes unstable when the dominant roots cross the imaginary axis and move into the
right-half plane, but we knew this from the Routh-Hurwitz condition.

However, the plot also tells us that as KI is increased above 20, the dominant roots move up
and to the right and the third root moves to the left. Thus the damping ratio decreases (increasing
the overshoot), the oscillation frequency increases, and the dominant time constant increases
so the response becomes slower—all undesirable effects—but the ramp error becomes smaller.
The plot also shows that the third root is never the dominant root.

As K I is decreased, the dominant root eventually becomes real. The damping ratio of the
dominant root is 1 when the two roots are real and equal. Use the cursor to move along the
curve to the point where the two roots meet and read the corresponding gain displayed in the box
that appears. At this point s = −0.502 and the gain is K = 1.38, which corresponds to
K I = 8K = 11.04. (Root locations are very sensitive to the gain near points where two roots
are equal, so these values are approximate.) Thus for KI < 11.04 the dominant root is real
and moves to the right as KI is further decreased. We see, therefore, that the smallest possible
dominant time constant for the given values of K1 and K2 occurs when K I = 11.04 and is
τ = 1/0.502 = 1.99. For this value, the ramp error is 44/11.04 = 3.99.

In conclusion, the root locus plot shows that the designer must choose between a faster
system by using KI = 11.04 or minimizing the ramp error 44/KI but at the cost of a very
oscillatory system that is approaching instability. This insight could not have been obtained
without the root locus plot.

Uncertainty in the Damping Constant EXAMPLE 11.6.2

■ Problem
The characteristic equation for PI control of the plant 1/(10s2 + cs) is

10s3 + cs2 + K P s + K I = 0

Some discussion was devoted to the effect of uncertainty in value of the damping c on the
effectiveness of the control system. If c = 80 and if the gains are K P = 240 and K I = 320, the
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Figure 11.6.3 Root locus
plot for Example 11.6.2.
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roots are s = −2 ± 2 j and s = −4. Suppose that c = 80 is just a rough estimate. Investigate
the effects of having a different value of c.

■ Solution
Substituting the gains K P = 240 and K I = 320 into the characteristic equation gives

10s3 + cs2 + 240s + 320 = 0

With the Routh-Hurwitz condition we immediately see that the system is unstable if 240c <

10(320); that is, if c < 13.33.
Rearranging this equation into the standard root-locus form, we have

1 + c

10

s2

s3 + 24s + 32
= 0

With the highest coefficients normalized to unity, the root locus gain is K = c/10. The poles
are the roots of the denominator, which are s = 0.626 ± 5.02 j and s = −1.25. There are two
zeros, which are the roots of the numerator. They are both at s = 0.

The MATLAB session is

>>sys = tf([1, 0, 0],[1, 0, 24, 32]);

>>rlocus(sys)

The root locus plot is shown in Figure 11.6.3. The Plot Editor has been used to annotate the plot.
The locations of the roots when c = 80 have been marked. We see that as c is decreased, the
system becomes unstable when the dominant roots cross the imaginary axis and move into the
right-half plane, but we knew this from the Routh-Hurwitz condition.

Remember we have no influence over the value of c. If c < 80, the dominant time constant
is smaller, and the smallest possible dominant time constant occurs when the dominant root path
is the farthest to the left. This occurs at s = −2.25 ± 2.67 j when the root locus gain is near
K = 7.1, which was determined by moving the cursor along the plot. The smallest possible
dominant time constant is τ = 1/2.25 = 0.44. This gain value corresponds to c = 10K = 71.
Thus, regardless of the value of c, the time constant will be no less than 0.44.
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THE rltool, ltitool, AND ltiview FUNCTIONS

The MATLAB Control System Toolbox also contains the Root Locus Tool, which
is a graphical interface for interacting with the root locus plot. You activate it by
typing rltool. It enables you to interactively design a control system using the root
locus technique. The ltitool and ltiview functions activate other interfaces for
interacting with the frequency response and step response plots, for example. Detailed
information on their use is available with the MATLAB online help feature.

FITTING DATA FOR THE PROCESS REACTION METHOD

When applying the Ziegler-Nichols process reaction method, it is usually difficult
to determine the slope R and intercept L from a plot of the data. As described in
Section 11.4, a procedure using polynomial regression can be applied to compute R
and L . The following script file illustrates the procedure for the unit-step open-loop
response of a hypothetical thermal process.

% Times at which measurements were made (minutes).
td = (0:1:12);
% Measured Temperatures (deg C).
yd = [0, 3, 10, 20, 37, 53, 63, 77, 83, 87, 90, 93, 93];
% Fit a 5th order polynomial to the data.
coef = polyfit(td,yd,5);
% Evaluate the polynomial at a large number of points.
dt = 0.01; t = (0:dt:12); y = polyval(coef,t)’;
% Find the coefficients of the polynomial’s derivative.
coef2 = [5*coef(1), 4*coef(2), 3*coef(3), 2*coef(4), coef(5)];
% der is the derivative polynomial.
der = polyval(coef2,t)’;
% Find the maximum slope R, and ...

the time tmax at which it occurs.
[R,i] = max(der); tmax = i*dt;
% Compute the temperature where the slope is the maximum.
ymax = y(i);
% Compute the intercept L on the time axis.
L = (R*tmax-ymax)/R;
disp(R),disp(L)
% Compute Gains For PID Control
KP = 1.2/(R*L)
KI = KP/(2*L)
KD = 0.5*L*KP

The results are R = 14.8433, L = 1.5417, K P = 0.0524, K I = 0.0170, and K D =
0.0404. The controller transfer function is

Gc(s) = 0.0404s2 + 0.0524s + 0.017

s
(11.6.1)

11.7 SIMULINK APPLICATIONS
This section contains a number of the chapter’s applications that can benefit from the
capabilities of Simulink.
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AN ANTI-WINDUP SYSTEM

The anti-windup design shown in Figure 11.5.10 is a good example of a system that
is easy to simulate in Simulink. The Simulink model shown in Figure 11.7.1 can be
developed directly from the block diagram in Figure 11.5.10, and it was obtained with
the parameter values given in Section 11.5. Figure 11.5.11 was obtained with this model,
and the value of K A = 10 was obtained from simulations.

THE RATE-LIMITER ELEMENT

In addition to being limited by saturation, some actuators have limits on how fast they
can react. This limitation is independent of the time constant of the actuator, and might
be due to deliberate restrictions placed on the unit by its manufacturer. An example is
a flow control valve whose rate of opening and closing is controlled by a “rate limiter.”
Simulink has such a block, and it can be used in series with the Saturation block to
model the valve behavior.

Consider the model of the height h of liquid in a tank, whose input is a flow rate
qi . For specific parameter values, such a model has the form

H(s)

Qi (s)
= 2

5s + 1
A Simulink model is shown in Figure 11.7.2 for a specific PI controller whose gains are
K P = 4 and K I = 5/4. Suppose that the minimum and maximum flow rates available

Figure 11.7.1 Simulink model of an
anti-windup system.
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Figure 11.7.2 Application of
the Rate Limiter block.
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from the valve are 0 and 2. These are the limits for the Saturation block. The model
enables us to experiment with the lower and upper limits of the Rate Limiter block to
see its effect on the system performance.

11.8 CHAPTER REVIEW
This chapter shows how to use the root locus plot to design control systems. This type
of plot enables a systematic design approach, by showing the effects of pole and zero
placement on the transient response and stability.

Section 11.1 introduced the root locus plot. Section 11.2 illustrates the use of the
root locus plot to design PID controllers. When PID control action fails to yield the
desired performance, it must be either modified or replaced by an entirely different
control scheme.

State-variable feedback, treated in Section 11.3, is a generalization of rate feedback
that uses some or all of the system’s state variables to modify the control signal.
This eliminates numerator dynamics and the resulting overshoot. With state-variable
feedback, we have a better chance of placing the characteristic roots of the closed-loop
system in locations that will give desirable performance.

In many applications, especially in process control involving thermodynamic, fluid,
or chemical processes, a transfer function model of the plant is not available, and the
gains must be computed from experimentally determined open-loop response data or
from computer simulations of the plant. In addition, the computed gain values some-
times do not yield the desired performance, and their values must be adjusted either in
simulation or with the actual controller hardware. This process is called tuning and is
discussed in Section 11.4.

Using high gain values tends to drive the control elements to such an extent that
they overload or “saturate” and thus exhibit nonlinear behavior. Controllers having I
action can exhibit reset windup, which can cause overshoot and saturation. Designs
that avoid these unwanted effects are covered in Section 11.5.

Root locus plots for simple systems can be sketched by hand with the aid of a
calculator. If these methods are to be used for higher-order systems, however, the
use of computer methods is highly recommended. The MATLAB rlocus, rltool,
and sisotool functions make it easy to view the root locus and transient response
plots to see the effect of changing parameter values. These methods are reviewed in
Section 11.6.

When dealing with systems having nonlinear, discontinuous elements such as the
saturation nonlinearity, or dead-time elements, Simulink provides a quick and easy way
of simulating such systems. The Simulink features relevant to the topics of this chapter
are summarized in Section 11.7.

Now that you have finished this chapter, you should be able to

1. Sketch a root locus plot.
2. Determine the major features of a root locus plot, and use it to assess the results

of pole and zero placement.
3. Design a controller incorporating state-variable feedback.
4. Use the Ziegler-Nichols methods to design controllers.
5. Design a control system to avoid actuator saturation.
6. Apply MATLAB and Simulink to analyze and design control systems using the

concepts presented in this chapter.
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PROBLEMS
Section 11.1 Root Locus Plots

11.1 Sketch the root locus plot of 3s2 + 12s + k = 0 for k ≥ 0. What is the smallest
possible dominant time constant, and what value of k gives this time constant?

11.2 Sketch the root locus plot of 3s2 + cs + 12 = 0 for c ≥ 0. What is the smallest
possible dominant time constant, and what value of c gives this time constant?
What is the value of ωn if ζ < 1?

11.3 Sketch the root locus of the armature-controlled dc motor model in terms of
the damping constant c, and evaluate the effect on the motor time constant. The
characteristic equation is

La I s2 + (Ra I + cLa)s + cRa + Kb KT = 0

Use the following parameter values:

Kb = KT = 0.1 N · m/A I = 12 × 10−5 kg · m2

Ra = 2 � La = 3 × 10−3 H

11.4 Sketch the root locus plot of ms2 + 12s + 10 = 0 for m ≥ 2. What is the
smallest possible dominant time constant, and what value of m gives this time
constant?

Section 11.2 Design Using the Root Locus Plot

11.5 In the following equations, identify the root locus plotting parameter K and its
range in terms of the parameter p, where p ≥ 0.
a. 6s2 + 8s + 3p = 0
b. 3s2 + (6 + p)s + 5 + 2p = 0
c. 4s3 + 4ps2 + 2s + p = 0
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11.6 Consider a unity feedback system with the plant G p(s) and the controller
Gc(s). PID control action is applied to the plant

G p(s) = s + 10

(s + 1)(s + 2)

The PID controller has the transfer function

Gc(s) = K P

(
1 + 1

TI s
+ TDs

)

Use the values TI = 0.2 and TD = 0.5.
a. Identify the open-loop poles and zeros.
b. Identify the root locus parameter K in terms of K P .
c. Identify the closed-loop poles and zeros for the case K P = 10.

11.7 In parts (a) through (f), sketch the root locus plot for the given characteristic
equation for K ≥ 0.
a. s(s + 5) + K = 0
b. s(s + 7)(s + 9) + K = 0
c. s2 + 3s + 5 + K (s + 3) = 0
d. s(s + 4) + K (s + 5) = 0
e. s(s2 + 3s + 5) + K = 0
f. s(s + 3)(s + 7) + K (s + 4) = 0

11.8 PID control action is applied to the plant

G p(s) = s + 10

(s + 2)(s + 5)

The PID controller has the transfer function

Gc(s) = K P

(
1 + 1

TI s
+ TDs

)

Use the values TI = 0.2 and TD = 0.5. Plot the root locus with the
proportional gain K P as the parameter.

11.9 Consider the following equation where the parameter p is nonnegative.

4s3 + (25 + 5p)s2 + (16 + 30p)s + 40p = 0

a. Put the equation in standard root locus form and define a suitable root
locus parameter K in terms of the parameter p.

b. Obtain the poles and zeros, and sketch the root locus plot.
11.10 In the following equation, K ≥ 0.

s2(s + 9) + K (s + 1) = 0

a. Obtain the root locus plot.
b. Obtain the value of K at the breakaway point, and obtain the third root for

this value of K .
c. What is the smallest possible dominant time constant for this equation?

11.11 Consider the following equation where the parameter K is nonnegative.

(2s + 5)(2s2 + 14s + 49) + K s(2s + 1)(2s + 3) = 0

a. Determine the poles and zeros, and sketch the root locus plot.
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b. Use the plot to set the value of K required to give a dominant time constant
of τ = 0.5. Obtain the three roots corresponding to this value of K .

11.12 In the following equations, identify the root locus plotting parameter K and its
range in terms of the parameter p, where p ≥ 0.
a. 9s3 + 6s2 − 5ps + 2 = 0
b. 4s3 − ps2 + 2s + 7 = 0
c. s2 + (3 − p)s + 4 + 4p = 0

11.13 In parts (a) through (f), Obtain the root locus plot for K ≤ 0 for the given
characteristic equation.
a. s(s + 5) + K = 0
b. s2 + 3s + 3 + K (s + 3) = 0
c. s(s2 + 3s + 3) + K = 0
d. s(s + 5)(s + 7) + K = 0
e. s(s + 3) + K (s + 4) = 0
f. s(s + 6) + K (s − 4) = 0

11.14 The plant transfer function for a particular process is

G p(s) = 8 − s

s2 + 2s + 3

We wish to investigate the use of proportional control action with this plant.
a. Obtain the root locus and determine the range of values of the proportional

gain K P for which the system is stable.
b. Determine the value of K P required to give a time constant of τ = 2/3.
c. Plot the unit step response of the plant for K P = 1. A process containing a

negative sign in the numerator of its transfer function is called a “reverse
reaction” process. What is the effect of the negative sign in the numerator
of G p(s)?

11.15 The plant transfer function for a particular process is

G p(s) = 26 + s − 2s2

s(s + 2)(s + 3)

We wish to investigate the use of proportional control action with this plant.
a. Obtain the root locus and determine the range of values of the proportional

gain K P for which the system is stable.
b. Determine the value of K P required to give ζ = 1.
c. Plot the unit step response of the plant. What is the effect of the negative

sign in the numerator of G p(s)?
11.16 Control of the attitude θ of a missile by controlling the fin angle φ, as shown in

Figure P11.16, involves controlling an inherently unstable plant. Consider the
specific plant transfer function

G p(s) = (s)

�(s)
= 1

s2 − 5

a. Determine the PD control gains so that the steady-state error for a step
command is zero, the closed-loop damping ratio is 0.707, and the
dominant closed-loop time constant is 0.1.
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Figure P11.16

b. Use the root locus to evaluate the performance of the resulting controller in
light of the specifications ζ = 0.707 and τ = 0.1 if the plant transfer
function G p(s) has an uncertainty � due to fuel consumption, where

G p(s) = 1

s2 − 5 − �
, 0 ≤ � ≤ 1

11.17 The use of a motor to control the rotational displacement of an inertia I is
shown in Figure P11.17. The open-loop transfer function of the plant for a
specific application is

G p(s) = 6

s(2s + 2)(3s + 24)

a. Use the root locus plot to show that it is not possible with proportional
control to achieve a dominant time constant of less than 2.07 sec for this
plant.

b. Use PD control to improve the response, so that the dominant time constant
is 0.5 sec or less and the damping ratio is 0.707 or greater. To do this, first
select a suitable value for TD , then plot the locus with K P as the variable.

Figure P11.17
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11.18 Proportional control action applied to the heat flow rate qi can be used to
control the temperature of the oven shown in Figure P11.18. Consider the
specific plant

G p(s) = T1(s)

Qi (s)
= s + 10

s2 + 5s + 6

Oven air

Heating
element

T2 C2

R1
R2

Toqo

qi

q1

T1 C1

Figure P11.18
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Use the root locus plot to obtain the smallest damping ratio this system can
have. Obtain the value of the proportional gain K P required to minimize the
dominant time constant with ζ = 0.707, and determine this time constant.

11.19 Proportional control action applied to the flow rate qmi can be used to control
the liquid height, as shown in Figure P11.19. Consider the specific plant

G p(s) = H2(s)

Qmi (s)
= 5(s + 4)

(s + 3)(s + p)

The proportional gain is K P = 2. The likely value of p is p = 7, but it is
known that p might be greater than 7. Use the root locus plot to investigate the
roots of the system for p ≥ 7.

Figure P11.19

R2R1

qmi

h1 h2 A2
A1

11.20 Proportional control action applied to the flow rate qmi can be used to control
the liquid height of the system shown in Figure P11.20. Consider the specific
plant

G p(s) = H2(s)

Qmi (s)
= 1

s2 + 3s + 2

Use the root locus plot to design a PI controller for this system to minimize the
dominant time constant, with a damping ratio of ζ = 0.707.

11.21 Design a PID controller applied to the motor torque T to control the robot arm
angle θ shown in Figure P11.21. Consider the specific plant

G p(s) = (s)

T (s)
= 4

3s2 + 3

The dominant closed-loop roots must have ζ = 0.5 and a time constant of 1.
11.22 a) The equations of motion of the inverted pendulum model were derived in

Example 2.4.4 in Chapter 2. Linearize these equations about φ = 0, assuming
that φ̇ is very small. b) Obtain the linearized equations for the following
values: M = 10 kg, m = 50 kg, L = 1 m, I = 0, and g = 9.81 m/s2. c) Use
the linearized model developed in part (b) to design a PID controller to
stabilize the pendulum angle near φ = 0. It is required that the 2% settling
time be no greater that 4 s and that the response be nonoscillatory. This means
that the dominant root should be real and no greater than −1. No restriction is
placed on the motion of the base. Assume that only φ and φ̇ can be measured.
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Figure P11.20
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Figure P11.21
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Section 11.3 State-Variable Feedback

11.23 A certain field-controlled dc motor with load has the following parameter
values.

L = 2 × 10−3 H R = 0.6 �

KT = 0.04 N · m/A c = 0
I = 6 × 10−5 kg · m2

Compute the gains for a state variable feedback controller using P action to
control the motor’s angular position. The desired dominant time constant is
0.5 s. The secondary roots should have a time constant of 0.05 s and a damping
ratio of ζ = 0.707.

11.24 In Figure P11.24 the input u is an acceleration provided by the control system
and applied in the horizontal direction to the lower end of the rod. The
horizontal displacement of the lower end is y. The linearized form of Newton’s
law for small angles gives

mL θ̈ = mgθ − mu

Figure P11.24

mg

L

u

y

�

m

a. Put this model into state variable form by letting x1 = θ and x2 = θ̇ .
b. Construct a state variable feedback controller by letting u = k1x1 + k2x2.

Over what ranges of values of k1 and k2 will the controller stabilize the
system? What does this formulation imply about the displacement y?

11.25 Figure 11.3.9 illustrates an active suspension for the quarter car model. An
electrohydraulic actuator between the chassis and the wheel assembly
provides a force that acts on both and is under feedback control. The system
model is

m1 ẍ1 = k1(y − x1) − k2(x1 − x2) − c(ẋ1 − ẋ2) − f

m2 ẍ2 = k2(x1 − x2) + c(ẋ1 − ẋ2) + f

The given parameter values are m1 = 50 kg, m2 = 250 kg, k1 = 1.5 ×
105 N/m, k2 = 1.2 × 104 N/m, and c = 100 N · s/m.
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a. Put the model into state variable form.
b. Assume that we can measure all four state variables, and use P action with

state-variable feedback. In the original passive suspension system,
k2 = 1.6 × 104 N/m and c = 98 N · m/s, which resulted in characteristic
roots at s = −1.397 ± 69.94 j , s = −0.168 ± 7.779 j . Compute the values
of the feedback gains so that the closed-loop roots will be near those of the
passive system.

11.26 Figure P11.26a is the circuit diagram of a speed-control system in which the dc
motor voltage va is supplied by a generator driven by an engine. This system
has been used on locomotives whose diesel engine operates most efficiently at
one speed. The efficiency of the electric motor is not so sensitive to speed and
thus can be used to drive the locomotive at various speeds. The motor voltage
va is varied by changing the generator input voltage v f . The voltage va is
related to the generator field current i f by va = K f i f .

Figure P11.26b is a diagram of a feedback system for controlling the speed
by measuring it with a tachometer and varying the voltage v f . Use the
following values in SI units.

L f = 0.2 R f = 2 Kt = 1
La = 0.2 Ra = 1 Kb = KT = 0.5
K f = 50 I = 10 c = 20

Figure P11.26

(a)

Rf

Lf

if

Generator

�

�

�

�
vb

Ra La

Motor

va

ia

Engine

TL

I
c

T �

�

�

vf

Command
potentiometer

Controller

Generator

(b)

Motor Load

Tachometer
Kt

TL

�



palm-38591 book December 17, 2008 12:41

Problems 703

a. Develop a state variable model of the plant that includes the generator, the
motor, and the load. Include the load torque TL as a disturbance.

b. Develop a proportional controller assuming all the state variables can be
measured. Analyze its steady-state error for a step command input and for
a step disturbance.

11.27 The following equations are the model of the roll dynamics of a missile
([Bryson, 1975]). See Figure P11.27.

δ̇ = u

ω̇ = −1

τ
ω + b

τ
δ

φ̇ = ω

where δ = aileron deflection
b = aileron effectiveness constant
u = command signal to the aileron actuator
φ = roll angle, ω = roll rate

�

��

Figure P11.27

Using the specific values b = 10 s−1 and τ = 1 s, and assuming that the state
variables δ, ω, and φ can be measured, develop a linear state-feedback
controller to keep φ near 0. The dominant roots should be s = −10 ± 10 j , and
the third root should be s = −20.

11.28 Many winding applications in the paper, wire, and plastic industries require a
control system to maintain proper tension. Figure P11.28 shows such a system
winding paper onto a roll. The paper tension must be held constant to prevent
internal stresses that will damage the paper. The pinch rollers are driven at a
speed required to produce a paper speed vp at the rollers. The paper speed as it
approaches the roll is vr . The paper tension changes as the radius of the roll
changes or as the speed of the pinch rollers change. The paper has an elastic
constant k so that the rate of change of tension is

dT

dt
= k(vr − vp)
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Figure P11.28
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For a paper thickness d, the rate of change of the roll radius is

d R

dt
= d

2
W

The inertia of the windup roll is I = ρπW R4/2, where ρ is the paper mass
density and W is the width of the roll. So R and I are functions of time.

The viscous damping constant for the roll is c. For the armature-controlled
motor driving the windup roll, neglect its viscous damping and armature
inertia.
a. Assuming that the paper thickness is small enough so that Ṙ ≈ 0 for a

short time, develop a state-variable model with the motor voltage e and the
paper speed vp as the inputs.

b. Modify the model developed in part (a) to account for R and I being
functions of time.

11.29 An electro-hydraulic positioning system is shown in Figure P11.29. Use the
following values.

Ka = 10 V/A K1 = 10−2 in./V
K2 = 3 × 105 sec−3 K3 = 20 V/in.
ζ = 0.8 ωn = 100 rad/sec τ = 0.01 sec

a. Develop a state-variable model of the plant with the controller current ic as
the input and the displacement y as the output.

b. Assuming that proportional control is used so that Gc(s) = K P , develop a
state model of the system with yr as the input and y as the output. Draw
the root locus and use it to determine whether or not the system can be
made stable with an appropriate choice for the value of K P .

11.30 a) The equations of motion of the inverted pendulum model were derived in
Example 2.4.4 in Chapter 2. Linearize these equations about φ = 0, assuming
that φ̇ is very small. b) Obtain the linearized equations for the following
values: M = 10 kg, m = 50 kg, L = 1 m, I = 0, and g = 9.81 m/s2. c) Use
the linearized model developed in part (b) to design a state variable feedback
controller to stabilize the pendulum angle near φ = 0. It is required that the 2%
settling time be no greater that 4 s and that the response be nonoscillatory. This
means that the dominant root should be real and no greater than −1. No
restriction is placed on the motion of the base. Assume that φ, φ̇, x , and ẋ can
be measured.
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Section 11.4 Tuning Controllers

Note: See the problems for Section 11.6 for problems dealing with the process
reaction method.
11.31 Use of a motor to control the position of a certain load having inertia, damping,

and elasticity gives the following plant transfer function. See Figure P11.31.

G p(s) = (s)

V (s)
= 0.5

(s2 + s + 1)(s + 0.5)

a. Use the ultimate cycle method to compute the controller gains for P, PI,
and PID control.

b. Plot and compare the unit-step responses for the three designs obtained in
(a). If the PID response is unsatisfactory, tune the gains to improve the
performance.

11.32 Figure P11.32 shows an electrohydraulic position control system whose plant
transfer function for a specific system is

G p(s) = Y (s)

F(s)
= 5

2s3 + 10s2 + 2s + 4
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Figure P11.31

Load

Motor
�

v

Figure P11.32

k2

c2

y
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m2 m3

m1m1

k1

c1

f

a. Use the ultimate cycle method to design P, PI, and PID controllers.
b. Plot and compare the unit-step responses for the three designs obtained in

(a). If the PID response is unsatisfactory, tune the gains to improve the
performance.

11.33 A certain plant has the transfer function

G p(s) = 4p

(s2 + 4ζ s + 4)(s + p)

where the nominal values of ζ and p are ζ = 0.5 and p = 1.
a. Use Ziegler-Nichols tuning to compute the PID gains. Obtain the resulting

closed-loop characteristic roots.
b. Use the root locus to determine the effect of a variation in the parameter p

over the range 0.4 ≤ ζ ≤ 0.6.
c. Use the root locus to determine the effect of a variation in the parameter p

over the range 0.5 ≤ p ≤ 1.5.

11.34 The plant transfer function of the system in Figure P11.34 for a specific case is

G p(s) = 8

(2s + 2)(s + 2)(4s + 12)

Figure P11.34
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a. Use the ultimate cycle method to compute the PID gains.
b. Plot the unit-step response. If the response is unsatisfactory, use the root

locus plot to explain the result, and try to improve the response by tuning
the gains.

Section 11.5 Saturation and Reset Windup

11.35 Consider the PI-control system shown in Figure P11.35 where I = 5 and
c = 0. It is desired to obtain a closed-loop system having ζ = 1 and τ = 0.1.
Let mmax = 20 and rmax = 2. Obtain K P and K I .

KP � 
KI
s

1
Is � c

R(s) M(s)E(s) F(s)

�

� C(s)
m

f

Figure P11.35

11.36 Consider the PI-control system shown in Figure P11.35 where I = 10 and
c = 20. It is desired to obtain a closed-loop system having ζ = 1 and τ = 0.1.
a. Obtain the required values of K P and K I , neglecting any saturation of the

control elements.
b. Let mmax = rmax = 1. Obtain K P and K I .
c. Compare the unit-step response of the two designs.

11.37 Consider the PI-control system shown in Figure P11.35 where I = 7 and
c = 5. It is desired to obtain a closed-loop system having ζ = 1 and τ = 0.2.
Let mmax = 20 and rmax = 5. Obtain K P and K I .

11.38 a. Design a PI and an I controller with internal feedback for the plant
G p(s) = 1/4s. See Figure P11.38. We are given that mmax = 6 and
rmax = 3. Set ζ = 1.

b. Evaluate the unit-step response of each design.
c. Evaluate the unit-ramp response of each design.

(a)

Gp(s)
R(s)

M(s)
E(s) F(s)

�

� ��

� �

C(s)

D(s)

m

f

(b)

C(s)
Gp(s) KI

s
R(s)

M(s)
F(s)

�

�

�

�

D(s)

m

f

 K2

KP � 
KI
s

Figure P11.38
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11.39 Compare the performance of the critically damped controllers shown in
Figure P11.38 with the plant G p(s) = 1/I s having the following inputs:
a. A unit-ramp disturbance
b. A sinusoidal disturbance
c. A sinusoidal command input

Section 11.6 MATLAB Applications

11.40 The following table gives the measured open-loop response of a system to a
unit-step input. Use the process reaction method to find the controller gains for
P, PI, and PID control.

Time (min) Response

0 0
0.5 4
1.0 20
1.5 32
2.0 56
2.5 84
3.0 116
3.5 140
4.0 160
4.5 172
5.0 184
5.5 190
6.0 194
7.0 196

11.41 A liquid in an industrial process must be heated with a heat exchanger through
which steam passes. The exit temperature of the liquid is controlled by
adjusting the rate of flow of steam through the heat exchanger with the control
valve. An open-loop test was performed in which the steam pressure was
suddenly changed from 15 to 18 psi above atmospheric pressure. The exit
temperature data are shown in the following table. Use the Ziegler-Nichols
process reaction method to compute the PID gains.

Time (min) Temperature (◦F)

0 156
1 157
2 159
3 162
4 167
5 172
6 175
7 179
8 181
9 182

10 183
11 184
12 184

11.42 Use MATLAB to obtain the root locus plot of 5s2 + cs + 45 = 0 for c ≥ 0.
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11.43 Use MATLAB to obtain the root locus plot of the system shown in
Figure P11.43 in terms of the variable k ≥ 0. Use the values m = 4 and c = 8.
What is the smallest possible dominant time constant and the associated value
of k?

11.44 Use MATLAB to obtain the root locus plot of the system shown in
Figure P11.43 in terms of the variable c ≥ 0. Use the values m = 4 and
k = 64. What is the smallest possible dominant time constant and the
associated value of c?

11.45 Use MATLAB to obtain the root locus plot of the system shown in
Figure P11.45 in terms of the variable k2 ≥ 0. Use the values m = 2, c = 8,
and k1 = 26. What is the value of k2 required to give ζ = 0.707?

Figure P11.43

x

k

m

c

f

Figure P11.45

k1

k2
c

x

m

y

Figure P11.46

k

c2

c1

x

m

vi

11.46 Use MATLAB to obtain the root locus plot of the system shown in
Figure P11.46 in terms of the variable c2 ≥ 0. Use the values m = 2, c1 = 8,
and k = 26. What is the smallest possible dominant time constant and the
associated value of c2?

11.47 Use MATLAB to obtain the root locus plot of s3 + 13s2 + 52s + 60 + K = 0
for K ≥ 0. Is it possible for any dominant roots of this equation to have a
damping ratio in the range 0.5 ≤ ζ ≤ 0.707 and an undamped natural
frequency in the range 3 ≤ ωn ≤ 5?

11.48 (a) Use MATLAB to obtain the root locus plot of 2s3 + 12s2 + 16s + K = 0
for K ≥ 0. (b) Obtain the value of K required to give a dominant root pair
having ζ = 0.707. (c) For this value of K , obtain the unit-step response and
the maximum overshoot, and evaluate the effects of the secondary root. The
closed-loop transfer function is K/(2s3 + 12s2 + 16s + K ).

11.49 Use MATLAB to obtain the root locus of the armature-controlled dc motor
model in terms of the damping constant c, and evaluate the effect on the motor
time constant. The characteristic equation is

La I s2 + (Ra I + cLa)s + cRa + Kb KT = 0
Use the following parameter values:

Kb = KT = 0.1 N · m/A I = 4 × 10−5 kg · m2

Ra = 2 � La = 3 × 10−3 H
11.50 Consider the two-mass model shown in Figure P11.50. Use the following

numerical values: m1 = m2 = 1, k1 = 1, k2 = 4, and c2 = 8.
a. Use MATLAB to obtain the root locus plot in terms of the parameter c1.
b. Use the root locus plot to determine the value of c1 required to give

a dominant root pair having a damping ratio of ζ = 0.707.
c. Use the root locus plot to determine the value of c1 required to give a

dominant root that is real and has a time constant equal to 4.



palm-38591 book December 17, 2008 12:41

710 CHAPTER 11 Control System Design and the Root Locus Plot

Figure P11.50

k2

c2

x2

c1

k1m2 m1
f (t)

x1

d. Using the value of c1 found in part (c), obtain a plot of the unit-step
response.

11.51 In parts (a) through (f), use MATLAB to obtain the root locus plot for the
given characteristic equation for K ≥ 0.
a. s(s + 5) + K = 0
b. s(s + 7)(s + 9) + K = 0
c. s2 + 3s + 5 + K (s + 3) = 0
d. s(s + 4) + K (s + 5) = 0
e. s(s2 + 3s + 5) + K = 0
f. s(s + 3)(s + 7) + K (s + 4) = 0

11.52 In parts (a) through (f), use MATLAB to obtain the root locus plot for K ≤ 0
for the given characteristic equation.
a. s(s + 5) + K = 0
b. s2 + 3s + 3 + K (s + 3) = 0
c. s(s2 + 3s + 3) + K = 0
d. s(s + 5)(s + 7) + K = 0
e. s(s + 3) + K (s + 4) = 0
f. s(s + 6) + K (s − 4) = 0

11.53 Consider the equation

s3 + 10s2 + 24s + K = 0

a. Use MATLAB to obtain the value of K required to give dominant roots
with ζ = 0.707. Obtain the three roots corresponding to this value of K .

b. Use MATLAB to obtain the value of K required to give a dominant time
constant of τ = 2/3. Obtain the three roots corresponding to this value
of K .

11.54 Consider the equation

s3 + 9s2 + (8 + K )s + 2K = 0

a. Use MATLAB to obtain the value of K required to put the dominant root
at the breakaway point. Obtain the three roots corresponding to this value
of K .

b. Investigate the sensitivity of the dominant root when K varies by ±10%
about the value found in part (a).

11.55 Consider the equation

s3 + 9s2 + (8 + K )s + 2K = 0

Use the sgrid function to determine if it is possible to obtain a dominant root
having a damping ratio in the range 0.5 ≤ ζ ≤ 0.707. If so, use MATLAB to
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obtain the value of K required to give the largest possible value of ζ in the
range 0.5 ≤ ζ ≤ 0.707.

11.56 Consider the equation

s3 + 10s2 + 24s + K = 0

Use the sgrid function to determine if it is possible to obtain a dominant root
having a damping ratio in the range 0.5 ≤ ζ ≤ 0.707, and an undamped natural
frequency in the range 2 ≤ ωn ≤ 3. If so, use MATLAB to obtain the value of
K required to give the largest possible value of ζωn in the ranges stated.

11.57 In Example 10.7.4 the steady-state error for a unit-ramp disturbance is 1/K I .
For the gains computed in that example, this error is 1/25. We want to see if
we can make this error smaller by increasing K I . Using the values given for
K P and K D in that example, obtain a root locus plot with K I as the variable.
Discuss what happens to the damping ratio and time constant of the dominant
root as K I is increased.

11.58 In Example 10.8.3 the steady-state error for a unit-ramp command is −4/K I .
For the gains computed in that example, this error is 1/1000. We want to see if
we can make this error smaller by increasing K I . Using the values given for
K P and K D in that example, obtain a root locus plot with K I as the variable.
Discuss what happens to the damping ratio and time constant of the dominant
root as K I is increased.

Section 11.7 Simulink Applications

11.59 With the PI gains set to K P = 6 and K I = 50 for the plant

G p(s) = 1

s + 4

the time constant is τ = 0.2 and the damping ratio is ζ = 0.707.
a. Suppose the actuator saturation limits are ±5. Construct a Simulink model

to simulate this system with a unit-step command. Use it to plot the output
response, the error signal, the actuator output, and the outputs of the
proportional term and the integral term versus time.

b. Construct a Simulink model of an anti-windup system for this application.
Use it to select an appropriate value for K A and to plot the output response
and the actuator output versus time.

11.60 With the PI gains set to K P = 6 and K I = 50 for the plant

G p(s) = 1

s + 4

the time constant is τ = 0.2 and the damping ratio is ζ = 0.707. Suppose there
is a rate limiter of ±0.1 between the controller and the plant. Construct a
Simulink model of the system and use it to determine the effect of the limiter
on the speed of response of the system. Use a unit-step command.

11.61 A certain dc motor has the following parameter values:

L = 2 × 10−3 H R = 0.6 �

KT = 0.04 N · m/A c = 0
I = 6 × 10−5 kg · m2
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Figure P11.61
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Figure P11.61 shows an integral controller using state-variable feedback to
control the motor’s angular position.
a. Compute the gains to give a dominant time constant of 0.5 s. The

secondary roots should have a time constant of 0.05 s and a damping ratio
of ζ = 0.707. The fourth root should be s = −20.

b. Construct a Simulink model of the system and use it to plot the response of
the system to a step disturbance of magnitude 0.1.

c. Suppose the motor current is limited to ±2 A. Modify the Simulink model
to include this saturation, and use the model to obtain plots of the
responses to a unit-step command and a step disturbance of magnitude 0.1.
Discuss the results.

11.62 Consider the liquid-level controller designed in Example 10.10.1, whose
Simulink diagram is shown in Figure 10.10.1. Modify the model to include a
Rate Limiter block to limit the rate of q1, in front of the Saturation block. The
limits on the rate should be ±20. Use this model to obtain plots of the response
of the height h2 to a unit-step command and a unit-step disturbance. Compare
these responses to those found in Example 10.10.1.
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able
to do the following:

1. Design a series compensator using either the root
locus or the frequency response plot.

2. Use the open-loop frequency response plot to
design a controller.

3. Analyze the effect of time delays on system
response.

4. Apply MATLAB and Simulink to the methods of
this chapter.

S ection 12.1 shows how to use the open-loop frequency response plots to design
PID controllers and series compensators. It also introduces some additional per-
formance criteria: the phase and gain margins, and the static error coefficients.

The frequency response plots of the system’s open-loop transfer function contain much
information about the behavior of the closed-loop system. These plots are easily gener-
ated even for high-order systems, and they enable the proper control gain to be selected
simply by adjusting the scale factor on the plot. The technique is especially useful,
because it does not require the values of the characteristic roots. This is helpful for
analyzing high-order systems and systems with dead time. The latter are especially
difficult to treat by analysis of the characteristic roots, because they possess an infinite
number of roots. ■

713
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12.1 SERIES COMPENSATION
If implemented in hardware, a series compensator is a physical device that is inserted in
the control system at the output of the controller (see Figure 12.1.1). If implemented in
software in a digital control system, the series compensator is an algorithm that creates
the equivalent of a transfer function inserted in series with the transfer function of the
main control algorithm. Series compensation is particularly well suited for design with
the root locus or with the open-loop Bode plots. Usually, the system is first analyzed
with only proportional control action included. The series compensator is then added
to meet the performance specifications.

We may think of I action and D action as forms of series compensation. P ac-
tion compensated with D action gives the transfer function K P(1 + TDs). The term
(1 + TDs) can be considered as a series compensator to the proportional controller.
The D action adds an open-loop zero at s = −1/TD . The PI control algorithm is
described by

F(s)

E(s)
= K P

(
1 + 1

TI s

)
E(s) = K P

s

(
s + 1

TI

)

The integral action can thus be considered to add an open-loop pole at s = 0 and a zero
at s = −1/TI .

Three other commonly used series compensators are the lead, the lag, and the
lag-lead compensators. Their names derive from the change they produce in the sys-
tem phase angle, which we will discuss with Bode plot design in Section 12.2. These
compensators can be easily realized with passive electrical RC networks or with active
circuits using op amps. Devices using springs and dampers can implement these com-
pensators mechanically. Many commercially available digital control packages include
these compensators as a choice of control action; some in fact do not implement PID
action, but use exclusively the lead, lag, and lag-lead compensators, which they call the
“filter.” We will see how they can be made to emulate PID action.

The transfer functions of the lead and the lag compensators have the form

Gc(s) = K
s + a

s + b
(12.1.1)

For a lead compensator, a < b, whereas for a lag compensator, a > b. The transfer
function of the lag-lead compensator has the form

Gc(s) = K
s + a

s + b

s + c

s + d
(12.1.2)

It is useful to compare these compensators with PID control (Table 12.1.1). First
note that I action and D action always require an active circuit unless the control
algorithm is being implemented in software as part of a digital control system. On the
other hand, the lead, lag, and lag-lead compensators can be implemented with passive
circuits.

Figure 12.1.1 Structure of
a system with series
compensation.

�
Gm(s)

R(s)
Gc(s)

D(s)

�
Gp(s)

� � C(s)

Main
controller

Compensator Plant
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Table 12.1.1 Comparison of PID, lead, lag, and lag-lead compensators.

Compensator Application Transfer function Advantages and limitations

P Basis for all K P 1. Often results in nonzero
control action steady-state error.

2. Easily implemented in
electrical and
nonelectrical systems.

PI Reduces steady-state K P + K I

s
1. Increases system order by 1.

error 2. Requires active circuit.
3. May increase overshoot.

PD Improves transient K P + K Ds 1. Requires active circuit.
response 2. May increase overshoot.

3. May cause noise.
4. Better implemented

by rate feedback.

PID Reduces error and K P + K I

s
+ K Ds Same as PI and PD.

improves transient
response

Lead Improves transient K
s + a

s + b
(a < b) 1. Active circuit not required.

response 2. Increases system order by 1
if no cancellation.

Lag Reduces steady-state K
s + c

s + d
(c > d) 1. Active circuit not required.

error 2. Increases system order by 1
if no cancellation.

Lag-Lead Reduces error and K
s + a

s + b

s + c

s + d
1. Same as lead and lag.

improves transient
response

Another implementation problem with I action K I /s is that it is difficult to construct
a circuit that gives a pole at s = 0, and usually the circuit transfer function is an
approximation that has a negative pole close to the origin. Note that PI action can be
approximated with the lag compensator by choosing b to be close to 0.

Physical devices implementing D action are prone to amplify noise in the signals
because their response is designed to be proportional to the rate of change of the input
signal. The op-amp circuit for PD action presented in Chapter 10 was designed not to
give pure PD action at higher frequencies for this reason. As we also saw in Chapter
10, theoretical models of D action produce an impulse in response to a step command,
which is physically impossible. For these reasons, you should consider implementing
the equivalent of D action by using rate feedback if possible. In such an arrangement,
the derivative is computed for signals that are more slowly varying than the command
input.

HARDWARE IMPLEMENTATION

A variety of lead, lag, and lag-lead compensator circuits have been developed, and three
passive circuits are shown in Figures 12.1.2, 12.1.3, and 12.1.4.

When used as series compensators, the circuits shown must see a small impedance
at the source (vi ) and a large impedance at the load (vo). Sometimes isolating amplifiers
are inserted to ensure the validity of this assumption. Taking these impedances to be
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Figure 12.1.2 Passive lead
compensator circuit.

R2

R1

C

vi vo

Figure 12.1.3 Passive lag
compensator circuit.

vovi

R1

R2

C

Figure 12.1.4 Passive lag-lead
compensator circuit.

R1

C1 vovi

R2

C

zero and infinity, respectively, we can derive the transfer functions with the methods in
Chapter 6. For the lead compensator (Figure 12.1.2).

Vo(s)

Vi (s)
= R2 + R1 R2Cs

R1 + R2 + R1 R2Cs
= 1

μ1

1 + μ1T1s

1 + T1s
= s + 1/μ1T1

s + 1/T1
(12.1.3)

where

μ1 = R1 + R2

R2
> 1 (12.1.4)

T1 = R1 R2

R1 + R2
C (12.1.5)

Note that the circuit would be useless as a series compensator without the resistance
R1 because it would not pass dc signals. Comparing (12.1.1) with (12.1.3), we see that
K = 1, a = 1/μ1T1, and b = 1/T1. Note that the pole and zero are separated by the
factor μ1, so that b = μ1a.

For the lag compensator (Figure 12.1.3),

Vo(s)

Vi (s)
= 1 + R2Cs

1 + (R1 + R2)Cs
= 1 + μ2T2s

1 + T2s
= μ2

s + 1/μ2T2

s + 1/T2
(12.1.6)

where

μ2 = R2

R1 + R2
< 1 (12.1.7)

T2 = (R1 + R2)C (12.1.8)

Comparing (12.1.1) with (12.1.6), we see that a = 1/μ2T2, b = 1/T2, and K = μ2,
which gives a low-frequency gain. Note that the pole and zero are separated by the
factor μ2, so that b = μ2a.

Lag and lead compensators placed in series give the transfer function

Vo(s)

Vi (s)
=

(
s + 1/μ1T1

s + 1/T1

)
μ2

(
s + 1/μ2T2

s + 1/T2

)
(12.1.9)

A simpler approach is to use the single network shown in Figure 12.1.4. With the usual
impedance assumptions, we obtain

Vo(s)

Vi (s)
= 1 + (R1C1 + R2C2)s + R1C1 R2C2s2

1 + (R1C1 + R1C2 + R2C2)s + R1C1 R2C2s2

=
(

s + 1/μ3T3

s + 1/T3

)(
s + 1/μ4T4

s + 1/T4

)
(12.1.10)
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vi vo
R3

R4R2
R1

C1

C2 Figure 12.1.5 Active circuit
for lead or lag compensation.

where

μ3T3 = R1C1 μ3 > 1 (12.1.11)

μ4T4 = R2C2 (12.1.12)

T3 + T4 = R1C1 + R1C2 + R2C2 (12.1.13)

μ4 = 1

μ3
(12.1.14)

Equations (12.1.11) through (12.1.13) contain four unknowns: R1, R2, C1, and C2.
Once an analysis has determined values for T3, T4, μ3, and μ4, a convenient value
for either C1 or C2 can be selected, and the equations solved for the three remaining
unknowns.

An active circuit for lead or lag compensation is shown in Figure 12.1.5. Using the
methods of Chapter 6, we can derive the following transfer function for the circuit:

Vo(s)

Vi (s)
=

(
R2 R4

R1 R3

)
R1C1s + 1

R2C2s + 1
=

(
R4C1

R3C2

)
s + 1/R1C1

s + 1/R2C2
(12.1.15)

or

Vo(s)

Vi (s)
= Kc

s + 1/μ5T5

s + 1/T5
(12.1.16)

where

T5 = R2C2 (12.1.17)

μ5 = R1C1

R2C2
(12.1.18)

Kc = R4C1

R3C2
(12.1.19)

The circuit is a lead compensator if R1C1 > R2C2. It is a lag compensator if
R1C1 < R2C2. Note that the passive lag compensator circuit has a low frequency gain
of 1, whereas the op-amp compensator has a gain Kc.

An active circuit for lag-lead compensation is shown in Figure 12.1.6. Its transfer
function is

Vo(s)

Vi (s)
= R4 R6

R3 R5

[
(R1 + R3)C1s + 1

R1C1s + 1

] [
R2C2s + 1

(R2 + R4)C2s + 1

]
(12.1.20)

or

Vo(s)

Vi (s)
= Kc

(s + 1/μ6T6)(s + 1/μ7T7)

(s + 1/T6)(s + 1/T7)
(12.1.21)
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Figure 12.1.6 Active circuit
for lag-lead compensation.

vi vo
R5

R4 R6

R2

R1 C1

R3

C2

where

T6 = R1C1 (12.1.22)

T7 = (R2 + R4)C2 (12.1.23)

μ6 = R1 + R3

R1
> 1 (12.1.24)

μ7 = R2

R2 + R4
< 1 (12.1.25)

Kc = R2 R4 R6

R1 R3 R5

(
R1 + R3

R2 + R4

)
(12.1.26)

The circuit has a low frequency gain of R4 R6/R3 R5.

COMPENSATOR DESIGN BY ROOT PLACEMENT

Sometimes we have the flexibility of designing the compensator simply by specifying all
the root locations. This can be done for an nth-order system if the last n −1 coefficients
of the characteristic equation are independent functions of the gains.

EXAMPLE 12.1.1 Lead and PID Compensation for the Plant 1/s2

■ Problem
The equation of motion of an object in pure rotation is I θ̈ = T −Td , where I is the inertia, T is the
torque applied by the controller to control the angular position θ , and Td is a disturbance torque.
Consider the case shown in Figure 12.1.7, where I = 1. Design lead and PID compensators
for this system. The specifications are that the closed-loop system must have a dominant time
constant no greater than 0.5 and a damping ratio no less than 0.707. Evaluate the resulting
steady-state error for unit-step and unit-ramp commands and disturbances.

Figure 12.1.7 Control of a
rotating object.

Gc(s)
Is2
1

�

�R(s) E(s)

D(s)

� � C(s)
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■ Solution
Using a lead compensator with P action gives the command transfer function

C(s)

R(s)
= K P(s + a)

s3 + bs2 + K P s + aK P

Values must be obtained for three parameters: K P , a, and b. Note that we can select any three
closed-loop roots we want because K P , a, and b can be selected to obtain any values for the
last three coefficients of the characteristic polynomial. That is, if the desired polynomial is
s3 + a2s2 + a1s + a0, then we select b = a2, K P = a1, and a = a0/K P . Note, however, that if b
is chosen small to emulate integral action, then we lose the flexibility to choose all three roots.
In that case, a root locus analysis could be used to set the values of K P and a.

With the PID compensator, the command transfer function is

C(s)

R(s)
= K Ds2 + K P s + K I

s3 + K Ds2 + K P s + K I

Values must be obtained for three parameters: K D , K P , and K I . We can select any three closed-
loop roots we want because these gains can be selected independently as follows. For the desired
polynomial s3 + a2s2 + a1s + a0, we select K D = a2, K P = a1, and K I = a0.

So both designs can meet the given specifications for the transient response. The error
transfer functions are given in the following Table 12.1.2. From these we can evaluate the

Table 12.1.2 Comparison of lead and PID compensators for the plant 1/s2.

Compensator P Action with lead PID

Gc(s) K P
s + a

s + b

K Ds2 + K P s + K I

s

C(s)

R(s)

K P(s + a)

s3 + bs2 + K P s + aK P

K Ds2 + K P s + K I

s3 + K Ds2 + K P s + K I

E(s)

R(s)

s3 + bs2

s3 + bs2 + K P s + aK P

s3

s3 + K Ds2 + K P s + K I

E(s)

D(s)

s + b

s3 + bs2 + K P s + aK P

s

s3 + K Ds2 + K P s + K I

Steady-state error
Step command 0 0
Ramp command 0 0

Step disturbance
b

aK P
0

Ramp disturbance ∞ 1

K I

Roots s = −2, s = −2 ± 2 j s = −2, s = −2 ± 2 j
Gains K P = 16, a = 1, b = 6 K P = 16, KI = 16, K D = 6
Steady-state error

Step disturbance
3

8
0

Ramp disturbance ∞ 1

16

Step response
Overshoot 32.8% 26.1%
Peak time 1.1 0.58
Settling time 2.43 2.49
10%–90% rise time 0.417 0.201
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Figure 12.1.8 Step command
response for Example 12.1.1.
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Figure 12.1.9 Ramp
response for Example 12.1.1.
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steady-state error for each design. Those errors are also given in the table. We see that the lead
compensator does not do as well as the PID in rejecting the disturbance. Its response to a step
disturbance can be made small by choosing b small, but, as we have seen, we then lose the
flexibility to choose all three roots.

The two transient response specifications are satisfied by choosing the roots to be s = −2
and s = −2 ± 2 j . This gives the polynomial

(s + 2)
[
(s + 2)2 + 22

] = s3 + 6s2 + 16s + 16

For the lead compensator, this gives K P = 16, a = 1, and b = 6. For the PID compensator,
this gives K P = 16, K I = 16, K D = 6. The numerical results for these values are given in the
table. Figures 12.1.8, 12.1.9, and 12.1.10 show the step command response, the ramp command
response, and the step disturbance error, respectively.
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Figure 12.1.10 Step
disturbance error for
Example 12.1.1.

The PID has a smaller overshoot but a faster rise time. Because of this and its smaller errors,
the performance of PID is better than the lead compensator in this example, assuming that the
pole at s = 0 in the PID can be implemented physically or in a digital controller.

ROOT LOCUS DESIGN OF COMPENSATORS

The series compensators’ usefulness can be briefly described as follows. When used
in series with a proportional gain K P , the lead compensator enables an increase in the
speed of response. On the other hand, the lag compensator is used when the speed of
response and damping of the closed-loop system are satisfactory, but the steady-state
error is too large. As you might expect, the lag-lead compensator is used when both the
transient and steady-state performance must be improved.

When the performance specifications, such as required time constant, damping
ratio, and so forth are given in terms of root locations, but not all the root locations
are known or can be freely specified, the root locus method is the preferred way of
designing the compensator.

LEAD COMPENSATORS

The effects of the compensator in terms of time domain specifications (the charac-
teristic roots) can be shown with the root locus plot. Consider the second-order plant
1/(s + α)(s + β) with the distinct real roots s = −α, −β. The root locus for this
system with proportional control is shown in Figure 12.1.11a. The smallest dominant
time constant obtainable is τ1, marked in the figure. With lead compensation, the root
locus becomes that shown in Figure 12.1.11b. The pole and zero introduced by the com-
pensator reshape the locus so that a smaller dominant time constant can be obtained.
This is done by choosing the proportional gain high enough to place the roots close to
the asymptotes.
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Figure 12.1.11 (a) Root
locus for proportional control
of the plant 1/(s + α)(s + β).
(b) Root locus for lead
compensation of the plant
1/(s + α)(s + β). 1

�T
1
T

(a) (b)

Im Im

Re Re

1��1

��������
� � �� �

� �

Designing a lead compensator with the root locus is done as follows.

1. From the time domain specifications (time constant, damping ratio, etc.),
determine the required locations of the dominant closed-loop poles.

2. From the root locus plot of the uncompensated system, determine whether or
not the desired closed-loop poles can be obtained by adjusting the open-loop
gain. If not, determine the net angle associated with the desired closed-loop
pole by drawing vectors to this pole from the open-loop poles and zeros. The
difference between this angle and −180◦ is the angle deficiency.

3. Locate the pole and zero of the compensator so that they will contribute the angle
required to eliminate the deficiency. A method for doing this is presented in
Example 12.1.2.

4. Compute the required value of the open-loop gain from the root locus plot.
5. Check the design to see if the specifications are met. If not, adjust the locations

of the compensator’s pole and zero.

EXAMPLE 12.1.2 Root Locus Design of a Lead Compensator

■ Problem
Consider the system shown in Figure 12.1.12a. The root locus plot with Gc(s) = 1 is given
in Figure 12.1.12b. The transient specifications require that ζ = 0.707 with a time constant of
τ = 0.2. No steady-state error specifications are given. This information implies that the closed-
loop poles should be at s = −5 ± 5 j . This performance cannot be obtained with a gain change
in the present system. Design a lead compensator to meet the specifications.

■ Solution
From (12.1.3), the open-loop transfer function of the compensated system can be expressed as

K P Gc(s)G p(s) = K P
s + a

s + b

1

s(s + 5)
= K P

s + 1/μT

s + 1/T

1

s(s + 5)
(1)

We must pull the original locus to the left, so we place the pole and zero to the left of the pole
at s = −5. Drawing vectors from the poles and zeros to the desired root location, we obtain
Figure 12.1.12c. The angle of the uncompensated system at the desired root location is

�
∣∣∣∣ 1

s(s + 5)

∣∣∣∣
s=−5+5 j

= −90◦ − 135◦ = −225◦
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Figure 12.1.12 (a) System
for Example 12.1.2. (b) Root
locus plot for proportional
control. (c) Geometry of the
lead-compensated root locus.
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Thus, the angle deficiency is −225◦ + 180◦ = −45◦, and the difference between the angle
contributions of the pole and zero of the compensator must be 45◦. We therefore need a lead
compensator to increase the phase angle by 45◦. This is the angle θ shown in the apex of the
triangle in the figure.

Because β = α + 45◦, simple trigonometry applied to Figure 12.1.12c gives the required
value for T . The tangents of α and β are

tan α = 5

1/T − 5
= 5T

1 − 5T

tan β = 5

1/μT − 5
= 5μT

1 − 5μT
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Figure 12.1.13 Root locus of
the lead-compensated system
of Example 12.1.2.
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From the identity for the tangent of a sum, we have

tan β = tan(α + 45◦) = tan α + tan 45◦

1 − tan α tan 45◦

Eliminating α and β yields

50μT 2 − 10μT + 1 = 0 (2)

Because the inverse of μ appears in the numerator of the transfer function (1), we should
select its value to be as small as possible in order to minimize the additional amount of gain
required to cancel its effect. Keeping physical realizability in mind, we choose μ = 5. This
gives

250T 2 − 50T + 1 = 0

which has the solutions T = 0.1775 and T = 0.0225. The first solution results in the pole lying
to the left of s = −5 and the zero lying to the right of s = −5, which contradicts the assumed
geometry. So we use T = 0.0225. This puts the compensator pole at s = −44.4, and the zero
at s = −8.89.

The open-loop transfer function of the compensated system is

K P Gc(s)G p(s) = K P(s + 8.89)

s(s + 44.4)(s + 5)

Its root locus is shown in Figure 12.1.13. From this, the gain K P required to place the roots
at s = −5 ± 5 j is K P = 227. The third root is far to the left at s = −39.3 for this value of
K P , so its effect on the transient behavior is probably slight. This can be checked by analysis or
simulation before the design is made final.

The unit-step response is shown in Figure 12.1.14. The overshoot is 7.7% with a peak time
of 0.47 and a settling time of 0.75.

From (12.1.4) and (12.1.5), the resistances required with a 1-μF capacitance are R1 =
112.5 k� and R2 = 28.1 k�.
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Figure 12.1.14 Unit-step
response of the
lead-compensated system of
Example 12.1.2.

This design procedure does not always give a root locus like Figure 12.1.1b. For
example, in Example 12.1.2, the choice of μ = 10, rather than 5, results in the following
solution of equation (2): T = 0.1894 and T = 0.0106. The latter solution puts the pole
at −94.72 and the zero at −9.472. These result in the root locus shown in Figure 12.1.15.
The solution giving ζ = 0.707 and τ = 0.2 corresponds to K P = 474 with the roots
at s = −5 ± 5 j and s = −89.72. The step response has an overshoot of 7.1%, a peak
time of 0.475, and a settling time of 0.753.

LAG COMPENSATORS

Consider proportional control of the plant 1/(s + α)(s + β). Its root locus plot is
shown in Figure 12.1.16a. Suppose that the desired damping ratio ζ and desired time
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Figure 12.1.15 Another
design solution for
Example 12.1.2.
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Figure 12.1.16 (a) Root
locus for proportional control
of the plant 1/(s + α)(s + β).
(b) Root locus for lag
compensation of the plant
1/(s + α)(s + β).
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constant τ are obtainable with a proportional gain of K P1 but the resulting steady-state
error αβ/(αβ + K P1) for a step input is too large. We need to increase the gain while
preserving the desired damping ratio and time constant. With the lag compensator, the
root locus is as shown in Figure 12.1.16b. By considering specific numerical values,
we can show that for the compensated system, roots with a damping ratio ζ1 correspond
to a high value of the proportional gain. Call this value K P2 . Thus, K P2 > K P1 , and the
steady-state error will be reduced.

The effect of the lag compensator on the time constant can be seen as follows. The
open-loop transfer function is

K P Gc(s)G p(s) = μK P(s + 1/μT )

(s + α)(s + β)(s + 1/T )
(12.1.27)

If the value of T is chosen large enough, the pole at s = −1/T in (12.1.27) is approx-
imately cancelled by the zero at s = −1/μT and the open-loop transfer function is
given approximately by

K P Gc(s)G p(s) = μK P

(s + α)(s + β)
(12.1.28)

Thus, the system’s response is governed approximately by the complex roots corre-
sponding to the gain value K P2 . By comparing Figure 12.1.16a with 12.1.16b, we see
that the compensation leaves the time constant relatively unchanged. From (12.1.28),
it can be seen that because μ < 1, K P can be selected as the larger value K P2 . The ratio
of K P1 to K P2 is approximately given by the parameter μ.

Design by pole-zero cancellation can be difficult to accomplish, because a response
pattern of the system is essentially ignored. The pattern corresponds to the behavior
generated by the cancelled pole and zero, and this response can be shown to be beyond
the influence of the controller. In this example, the cancelled pole gives a stable response,
because it lies in the left-hand plane. However, another input not modeled here, such as
a disturbance, might excite the response and cause unexpected behavior. The designer
should therefore proceed with caution. None of the physical parameters of the system
are known exactly, so exact pole-zero cancellation is not possible. A root locus study
of the effects of parameter uncertainty and a simulation study of the response are often
advised before the design is accepted as final.

Based on this example, we can outline an approach to the design of a lag compen-
sator with the root locus as follows:

1. From the root locus of the uncompensated system, determine the gain K P1 to
place the roots at the locations required to meet the transient performance
specifications.
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2. Let K P2 denote the value of the gain required to achieve the desired steady-state
performance. The parameter μ is the ratio of these two gain values
μ = K P1/K P2 < 1.

3. The value of T is then chosen large so that the compensator’s pole and zero
are close to the imaginary axis. This placement should be made so that the
compensated locus is relatively unchanged in the vicinity of the desired
closed-loop poles. This will be true if the angle contribution of the lag
compensator is close to zero.

4. Locate the desired closed-loop poles on the compensated locus and set the
open-loop gain so that the dominant roots are at this location (neglecting the
existence of the compensator’s pole and zero).

5. Check the design to see if the specifications are met. If not, adjust the locations of
the compensator’s pole and zero.

Root Locus Design of a Lag Compensator EXAMPLE 12.1.3

■ Problem
Consider the system shown in Figure 12.1.17a. Suppose that we require a time constant of 0.4
and a damping ratio of ζ = 0.707. These correspond to the roots s = −2.5 ± 2.5 j , which are
obtainable with K P = 12.5. The steady-state error for a unit ramp command is 0.4, however,
which is considered too large. Design a compensator to reduce the error to 0.1.

KP Gc(s) 1
s(s � 5)
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R(s)

D(s)

� � � C(s)

(a)

Figure 12.1.17 (a) System
for Example 12.1.3. (b) Root
locus plot of the
lag-compensated system.

–5 –4.5 –4 –3.5 –3 –2.5 –2 –1.5 –1 –0.5 0
–3

–2

–1

0

1

2

3

Real Axis

(b)

Im
ag

in
ar

y 
A

xi
s

0.707 Desired
Root

0.707 



palm-38591 book December 17, 2008 12:47

728 CHAPTER 12 Compensator Design and the Bode Plot

■ Solution
A lag compensator is indicated, because the transient response is acceptable but the steady-state
error is too large. The gain K P required to achieve the desired transient performance has already
been established as K P1 = 12.5. The second step is to determine the value of the parameter μ.
For this system, the steady-state ramp error is ess = 5/K P , and K P2 is the value of K P that gives
ess = 0.1. Thus, K P2 = 5/0.1 = 50, and the parameter μ = K P/K P2 = 12.5/50 = 0.25. The
compensator’s pole and zero must be placed close to the imaginary axis, with the ratio of their
distances being 1/0.25 = 4. Noting that the plant has a pole at s = −5, we select locations well
to the right of this pole, say, at s = −0.01 and s = −0.04 for the pole and zero, respectively.
This gives T = 100.

The open-loop transfer function of the compensated system is thus

K P Gc(s)G p(s) = 0.25K P(s + 0.04)

s(s + 5)(s + 0.01)

The root locus is shown in Figure 12.1.17b, where we have offset the pole and zero to make
them visible. For the desired damping ratio of 0.707, the root locus shows that two roots are
at s = −2.5 ± 2.5 j if 0.25K P = 12.7, or K P = 12.7/0.25 = 50.8. The dominant root is at
s = −0.0405, but its effect is diminished by the zero at s = −0.04. The steady-state error is
thus ess = 0.098 and less than the required value of 0.1.

The step response of the final design has an overshoot of 5.75%, a peak time of tp = 1.27,
and a settling time of 1.89. With T = 100 and the capacitance C = 1 μF, (12.1.7) and (12.1.8)
give R1 = 7.5 k� and R2 = 2.5 k�.

DESIGN OF LAG-LEAD COMPENSATORS

The lead and lag compensators are complementary to each other in that one improves the
transient performance while the other improves steady-state performance. In situations
where one of these fails to produce a satisfactory design, a lag-lead compensator can
be tried.

The root locus approach to designing a lag-lead compensator is a combination of
the approaches used for the lead and lag compensators.

1. Evaluate the uncompensated system by determining the desired locations of the
dominant closed-loop poles from the transient performance specifications.

2. Improve the transient performance with a lead compensator. Calculate the phase
angle deficiency of the uncompensated system. This deficiency must be supplied
by the lead compensator.

3. Evaluate the steady-state error and if necessary, improve the steady-state
performance with a lag compensator.

4. Evaluate the transient performance to see if the specifications are satisfied.
5. Evaluate the hardware requirements and check realizability.

EXAMPLE 12.1.4 Design of a Lag-Lead Compensator

■ Problem
The problem is to design a lag-lead compensator for the plant shown in Figure 12.1.18a. The
specifications are

1. Damping ratio of the dominant roots should be ζ = 0.707.
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Figure 12.1.18 (a) System
for Example 12.1.4. (b) Root
locus plot of the
uncompensated system.
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2. The time constant of the dominant roots should be no greater than 0.5.
3. The steady-state error for a unit-ramp disturbance should be no greater than 0.1.

The first two specifications will be satisfied with a dominant root pair s = −2 ± 2 j , but other
roots are possible.

■ Solution
Step 1: Evaluate the uncompensated system. The root locus equation for the uncompensated
system using P action is

1 + K P
1

s(s + 3)(s + 5)
= 0

Figure 12.1.18b shows the root locus plot. From this plot we determine that K P = 13.6 will give
a dominant root pair of s = −1.08 ± 1.08 j , for which ζ = 0.707. The time constant is 0.93 and
the unit-ramp disturbance error is 1.03, so the uncompensated system does not meet the second
and third specifications.

Table 12.1.3 summarizes the various designs.
Step 2: Improve the transient performance with a lead compensator. The form of the lead
compensator is

Gc(s) = s + a

s + b

If we can cancel the plant pole at s = −3, the root locus will be shifted to the left, closer to
the desired roots at s = −2 ± 2 j . Thus, we place the compensator zero at s = −3 and choose
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Table 12.1.3 Design of a lag-lead compensator for the plant 1/s(s + 3)(s + 5).

Design Uncompensated Lead compensated Lag-Lead compensated

Open-loop transfer function
K P

s(s + 3)(s + 5)

K P

(s + 11.9)s(s + 5)

K P(s + 0.0578)

(s + 0.01)(s + 11.9)s(s + 5)

Dominant roots s = −1.08 ± 1.08 j s = −2 ± 2 j s = −1.9 ± 1.9 j
K P 13.6 103 101
ζ 0.707 0.707 0.707
τ 0.93 0.5 0.526
Steady-state ramp error 1.03 0.578 0.1

a = 3. The location of the compensator pole s = −b is found from the geometry shown in
Figure 12.1.19a. From the angle criterion

� N (s) − � D(s) = (2n + 1)180◦ n = 0, 1, 2, 3, . . .

we have

−θ − 33.6◦ − 135◦ = (2n + 1)180◦

which gives θ = (2n + 1)180◦ − 168.6◦ = 11.4◦ by choosing n = 0. From the figure,

tan θ = tan 11.4◦ = 0.202 = 2

b − 2

which gives b = 11.9. Thus the open-loop transfer function of the lead-compensated system is

K P Gc(s)G p(s) = K P(s + 3)

(s + 11.9)s(s + 3)(s + 5)
= K P

(s + 11.9)s(s + 5)

The root locus plot for this system is shown in Figure 12.1.19b. From it we determine that a gain
of K P = 103 will give dominant roots at the desired location of s = −2 ± 2 j . Thus, this design
meets the first two specifications. The ramp error, however, is 0.578, which is still too large.
Step 3: Improve the steady-state performance with a lag compensator. The form of the lag-lead
compensator is

K P Gc(s) = K P
s + 3

s + 11.9

s + c

s + d

We place the pole of the lag compensator close to the origin and choose d = 0.01. The zero is
separated from the pole by the ratio of the current steady-state error to the desired error; that is,
c = (0.578/0.1)d = 0.0578. Thus, the open-loop transfer function of the lag-lead system is

K P Gc(s)G p(s) = K P(s + 0.0578)

(s + 0.01)(s + 11.9)s(s + 5)

Part of the root locus plot for this system is shown in Figure 12.1.20, and it is very similar to the
plot of the lead-compensated system. From it we determine that a gain of K P = 101 will give
dominant roots at s = −1.9 ± 1.9 j , which is close to the desired location of s = −2 ± 2 j . The
time constant is 0.526, which is slightly larger than desired. The ramp error, however, is 0.1,
which is exactly what was specified.

Further analysis of the root locus shown in Figure 12.1.20 reveals that we can obtain a time
constant of 0.5 with a gain of K P = 96, but the damping ratio would be ζ = 0.743.
Step 4: Evaluate the transient performance. Simulation of the final design using K P = 101
shows that the step response is satisfactory. The ramp response, however, reveals something
perhaps unexpected (Figure 12.1.21). While the steady-state error is as predicted, the time to
reach steady state is much longer than expected from the time constant of 0.526. The effect is due
to the small root at s = −0.0595, which is actually the dominant root and has a time constant
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Figure 12.1.19 (a) Geometry of the
lead-compensated root locus for
Example 12.1.4. (b) Root locus plot of the
lead-compensated system.
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plot of the lag-lead system (the
pole at −11.9 is not shown).

of 1/0.0595 = 16.8. Figure 12.1.22 is an enlarged view of the root locus near the origin. It
shows the dominant root path that ends at the zero at s = −0.0578.

This example shows the importance of checking any design with simulation before pro-
ceeding further.
Step 5: Evaluate the hardware requirements. Before implementing this design in hardware, we
should check to see if it is possible to set the poles and zeros of the compensator as accurately



palm-38591 book December 17, 2008 12:47

732 CHAPTER 12 Compensator Design and the Bode Plot

Figure 12.1.21 Error
response to a unit-ramp
disturbance for the lag-lead
system of Example 12.1.4.
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Figure 12.1.22 Enlarged
view of the root locus for
Example 12.1.4.
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as indicated by our calculations. In particular, we should check the feasibility of obtaining the
small values, namely, d = 0.01 and c = 0.0578.

You should also realize that it is physically impossible to set the lead compensator zero to
cancel exactly the plant pole at s = −3. Further simulation should be done to check the effects
of a not being exactly equal to 3.

We note in passing that the pole at s = −3 is not canceled in the disturbance transfer
function, which is a fifth-order model.

SYSTEM TYPE AND STEADY-STATE ERROR

Consider a single-loop system whose open-loop transfer function is G(s)H(s). The
error signal is related to the input as follows:

E(s) = 1

1 + G(s)H(s)
R(s)

A system is of type n if G(s)H(s) can be written as s−n F(s). We can relate the steady-
state error to the type number for various kinds of command inputs. Assuming that the
final value theorem can be applied, the steady-state error is

ess = lim
s→0

s R(s)

1 + G(s)H(s)



palm-38591 book December 17, 2008 12:47

12.2 Design Using the Bode Plot 733

Table 12.1.4 Type number and steady-state error

Steady-state error

Input Type 0 Type 1 Type 2

Unit step 1/s 1/(1 + C0) 0 0
Unit ramp 1/s2 ∞ 1/C1 0
Unit parabola 1/s3 ∞ ∞ 1/C2

The static error coefficient Ci is defined as

Ci = lim
s→0

si G(s)H(s) i = 0, 1, 2, . . . (12.1.29)

Often the steady-state performance specifications are given in terms of the static error
coefficients. If the input is a unit step, we obtain the steady-state error

ess = lim
s→0

1

1 + G(s)H(s)
= 1

1 + C p

where

C p = lim
s→0

G(s)H(s) = C0 (12.1.30)

The constant C p is the static position error coefficient. The name derives from servo-
mechanism applications in which the output is a position. The larger C p is, the smaller
the error, and a unity-feedback system will have a nonzero steady-state error if no
integration occurs in the forward path.

The static velocity error coefficient is obtained for a unit-ramp input as follows:

ess = lim
s→0

s

1 + G(s)H(s)

1

s2
= 1

Cv

where the velocity coefficient is

Cv = lim
s→0

sG(s)H(s) = C1 (12.1.31)

Note that the error here is not an error in velocity, but a position error that results when
a unit-ramp input is applied. For type 0 systems, Cv = 0; for type 1 systems, Cv is finite
but nonzero; for type 2 and higher, Cv = ∞. Thus, to eliminate the steady-state error
in a unity feedback system with a ramp input, at least two integrations are required in
the forward loop. For a type 1 system with unity feedback, the output velocity at steady
state equals that of the input (the slope of the ramp), but an error exists between the
desired and the actual positions. These results are summarized in Table 12.1.4.

12.2 DESIGN USING THE BODE PLOT
In comparison to using the root locus plot, there are several advantages to designing
a system using the open-loop frequency response. Frequency response data are often
easier to obtain experimentally, which is useful when it is difficult to develop a transfer
function model of the plant and actuators from basic principles. The method is also
easier to use for systems with dead-time elements, which we will see in this section.
Finally, this technique is sometimes useful for examining response and instability in
nonlinear systems. This topic is rather specialized and is treated in more advanced
control system texts.
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Figure 12.2.1 A single-loop
control system.
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Figure 12.2.2 (a) Definition
of gain and phase margins on
the open-loop Bode plots.
(b) Plots for an unstable
system.
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PHASE AND GAIN MARGINS

It is possible to determine the stability and transient response characteristics of a closed-
loop system from the frequency response characteristics of the open-loop system. Re-
ferring to Figure 12.2.1, we define the gain crossover frequency ωg to be the frequency
at which the magnitude ratio (called the “gain”) of G( jω)H( jω) is 1, which corre-
sponds to 0 dB. The phase margin (PM) is defined to be the difference between the
phase angle at the frequency ωg and −180◦. Thus

phase margin (PM) = � [G( jωg)H( jωg)] + 180◦ (12.2.1)

The phase crossover frequency ωp is the frequency at which the phase angle is
−180◦. The gain margin (GM) is the difference in decibels between the unity gain
condition (0 dB) and the value of |G H | in dB at the phase crossover frequency. Thus,

gain margin (GM) = 0 − |G( jωp)H( jωp)| = −|G( jωp)H( jωp)| dB (12.2.2)

These definitions are illustrated on the Bode plots of the open-loop transfer function
shown in Figure 12.2.2a. Note that GM is positive when measured down, but PM is
positive when measured up.

In many applications, the plant has no poles in the right-half plane, and control algo-
rithms typically do not have such poles, so for many applications the open-loop transfer
function G(s)H(s) has no such poles. If the open-loop transfer function G(s)H(s) has
no poles in the right-half plane, then the closed-loop system is stable if and only if the
phase and gain margins are both positive. We will not prove this statement, but it has
long been well established. The situation shown in Figure 12.2.2a thus corresponds to
a stable system. Figure 12.2.2b represents an unstable system that lacks positive gain
and phase margins.

The phase and gain margins are often used as safety margins in the design specifi-
cations. A typical set of such specifications is:

gain margin ≥ 8 dB and phase margin ≥ 30◦ (12.2.3)
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Another common set of specifications is

gain margin ≥ 6 dB and phase margin ≥ 40◦ (12.2.4)

In most situations, only one of these equalities can be met, and the other margin is
allowed to be greater than its minimum value. It is not desirable to make the margins
too large, because this might result in a sluggish system or one with a large steady-state
error.

PHASE MARGIN VERSUS DAMPING RATIO

It is sometimes useful to be able to translate time-domain performance specifications,
such as damping ratio or overshoot, into frequency-domain specifications, such as phase
or gain margin. The open-loop transfer function

G(s) = ω2
n

s(s + 2ζωn)
(12.2.5)

in a unity-feedback system results in the following closed-loop transfer function.

T (s) = G(s)

1 + G(s)
= ω2

n

s2 + 2ζωns + ω2
n

(12.2.6)

which has the characteristic roots s = −ζωn ± ωn j
√

1 − ζ 2. These roots describe the
dominant root pair of a higher-order system having complex dominant roots. Thus, if
we can relate the phase margin of G(s) to either ζ or ωn or both, then we can derive an
approximate expression for the phase margin of a higher-order system having complex
dominant roots.

It is shown in one of the chapter’s homework problems that the phase margin of
G(s) given by (12.2.5) is

PM = tan−1 2ζ√
−2ζ 2 + √

1 + 4ζ 4
(12.2.7)

We saw in Chapter 9 that the maximum percent overshoot is the following function
of ζ .

M% = 100e−πζ/
√

1−ζ 2
(12.2.8)

So a 10% maximum overshoot corresponds to ζ = 0.59, and from (12.2.7), the phase
margin is 59◦. Consider, for example, a third-order system having the dominant roots
s = −5 ± 6.84 j and the secondary root s = −10. The damping ratio of the dominant
roots is ζ = 0.59, and thus from (12.2.7) we can estimate the phase margin of this third
order system to be 59◦. The accuracy of (12.2.7) obviously depends on the separation
between the dominant roots and the secondary roots.

BODE PLOT DESIGN FOR PID CONTROL

When using the open-loop frequency response method, it is convenient to write the PID
algorithm with the proportional gain factored out, as

F(s) = K P

(
1 + 1

TI s
+ TDs

)
E(s) (12.2.9)

The proportional gain is selected last, because it simply moves the gain curve up or
down without affecting the phase curve, and thus can be used to adjust the gain curve
until the specifications for the gain and phase margins are satisfied.
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Figure 12.2.3 (a) Bode plots for PD action.
(b) Bode plots for PI action.
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D action affects both the phase and gain curves. The increase in phase margin due
to the positive phase angle introduced by D action is partly negated by the derivative
gain, which reduces the gain margin. Increasing the derivative gain increases the speed
of response, makes the system more stable, and enables a larger proportional gain to
be used to improve the system performance. However, if the phase curve is too steep
near −180◦, it is difficult to use D action to improve the performance.

I action affects both the gain and phase curves. It can be used to increase the open-
loop gain at low frequencies. However, it lowers the phase crossover frequency ωp and
thus reduces some of the benefits provided by D action. If required, the D action term
is usually designed first, followed by I action and P action, respectively.

The PD algorithm is

F(s) = K P(1 + TDs)E(s) (12.2.10)

The term (1 + TDs) can be considered as a series compensator to the proportional
controller. Its Bode plots are shown in Figure 12.2.3a. From these, it can be seen that
the usefulness of D action is that it adds phase shift at higher frequencies. It is thus said
to give phase “lead.” However, it also increases the gain at these frequencies, because
the derivative term gives more response for rapidly changing signals.

The PI control algorithm is

F(s) = K P

s

(
s + 1

TI

)
E(s) = K P

TI s
(TI s + 1) E(s) (12.2.11)

The Bode plots are shown in Figure 12.2.3b. PI action adds gain at the lower frequencies
but decreases the phase.

DESIGN APPROACH WITH THE BODE PLOT

Classical design methods based on the Bode plots obviously have a large component of
trial and error because usually both the phase and gain curves must be manipulated to
achieve an acceptable design. Given the same set of specifications, two designers can
use these methods and arrive at different designs. An experienced designer, however,
can often obtain a good design quickly with these techniques. Using a computer-plotting
routine greatly speeds up the design process.

It is difficult to state a rigid set of rules to follow for designing a series compen-
sator because of the variety of specifications and plant types that occur. However, the
following considerations should be kept in mind.

1. To minimize the steady-state error, the open-loop gain should be kept as high as
possible in the low-frequency range of the Bode plot.
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2. At intermediate frequencies (near the gain crossover frequency), a slope of
−20 dB/decade in the gain curve will help to provide an adequate phase margin.

3. At high frequencies, small gain is desirable to attenuate high-frequency
disturbances, such as electronic noise, or mechanical vibrations induced by gear
teeth, shaft elasticity, or hydraulic and pneumatic pressure fluctuations, and so
forth.

Design of an Integral Control System EXAMPLE 12.2.1

■ Problem
For the integral control system shown in Figure 12.2.4a, the parameter values are A = 0.02,
τ1 = 0.01 sec, and τ2 = 0.02 sec. Adjust the integral gain to obtain an overshoot of no more
than 10%.

KI
s

A
(�1s � 1)(�2s � 1)

R(s) �

�

C(s)

(a)

Figure 12.2.4 (a) An integral
control system. (b) Bode plots
for K I = 50.
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■ Solution
For the given values, the open-loop transfer function is

G(s) = 0.02K I
1

s(0.01s + 1)(0.02s + 1)
(1)
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For an overshoot of 10%, assuming that the dominant roots of the final design are a complex
pair, the damping ratio must be

ζ = − ln 0.1√
π2 + ln2 0.1

= 0.59

Using (12.2.7), we compute the required phase margin as follows, again assuming that the
dominant roots of the final design are a complex pair.

PM = tan−1 1.1823√−0.6989 + 1.22
= tan−1 1.6378 = 59◦

The next step is to draw the open-loop Bode plots for an arbitrary value of K I , say K I = 50,
which gives 0.02K I = 1. The Bode plots are shown in Figure 12.2.4b. The gain margin is 44 dB
and the phase margin is 88◦ (these values can be determined easily with the MATLAB margin
function; see Section 12.3). To achieve a phase margin of 59◦, the phase curve must cross
59◦ − 180◦ = −121◦ at the new gain crossover frequency. By moving the cursor along the
MATLAB plot, we can see that the phase equals −121◦ at ω = 18.8 rad/sec, which must be the
new gain crossover frequency. To achieve this, the gain curve must be shifted up by 26.2 dB,
which is accomplished by changing the value of K I from K I = 50 to KI = 50(1026.2/20) = 1021.
This value gives a gain margin of 17.3 dB and a phase margin of 59◦.

The final step is to check the results by simulation. The closed-loop transfer function is

T (s) = 1021(0.02)

0.0002s3 + 0.03s2 + s + 1021(0.02)

The step response has an overshoot of 9%, less than required, and a 2% settling time of 0.208 sec.
The closed-loop roots are s = −114 and s = −18±23.9 j , so the assumption regarding complex
dominant roots is correct.

Note that, although positive phase and gain margins are required for stability, large values
of phase and gain margin may degrade performance. For example, with KI = 50, the gain
margin is 44 dB and the phase margin is 88◦, but the closed-loop system has a 2% settling time
of 3.82 sec, which is 18 times larger than with K I = 1021. So large margins may give sluggish
response.

Example 12.2.1 can also be solved with the root locus plot. From equation (1), the
root locus equation is

1 + K
1

s(s + 100)(s + 50)
= 0

where K = 100K I . Figure 12.2.5 shows the plot with the ζ = 0.59 line indicated. The
intersection of this line with the locus occurs where K = 1.10 × 105, which corresponds
to K I = 1010. This is essentially the same value of K I computed with the Bode plots,
considering the limits of graphical accuracy.

Some designers prefer the root locus method over the Bode method. However,
sometimes the system model is given in the form of experimentally determined open-
loop frequency response curves or, as the next example shows, the model contains dead
time. In such cases, the Bode plot approach is much more convenient to use.

DEAD-TIME ELEMENTS

Dead time is a time delay between an action and its effect. It occurs, for example, when
a fluid flows through a pipe. Suppose the fluid velocity v is constant with time. The
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Figure 12.2.5 Root locus
plot for Example 12.2.1.
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Figure 12.2.6 (a) A
dead-time element. (b) Block
diagram of a dead-time
element.

pipe length is L , so it takes a time D = L/v for the fluid to move from one end to
the other. Let x1(t) denote the incoming fluid temperature and x2(t) the temperature
of the fluid leaving the pipe. Suppose that the temperature of the incoming fluid sud-
denly increases at time t1. If this is modeled as a step function, the result is shown in
Figure 12.2.6a. If no heat energy is lost, then x2(t), the temperature at the output, is
x1(t − D). Thus, a time D later, the output temperature suddenly increases.

A similar effect occurs for any change in x1(t), not just for a step change. In general,
we can write x2(t) = x1(t − D). The shifting property of the Laplace transform can be
used to determine the response of a system with dead time. From the shifting theorem,

X2(s) = e−Ds X1(s) (12.2.12)

This result is shown in block diagram form in Figure 12.2.6b.
Dead time can be described as a “pure” time delay, in which no response at all

occurs for a time D, as opposed to the time lag associated with the time constant of a
response, for which x2(t) = (1 − e−t/τ )x1(t).

Some systems have an unavoidable time delay in the signal flow between com-
ponents (Figure 12.2.7). The delay often results from the physical separation of the
components and typically occurs as a delay D1 between a change in the manipulated
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Figure 12.2.7 A system
having dead-time elements in
the forward path and in the
feedback loop.
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R(s) C(s)
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variable and its effect on the plant, or as a delay D2 in the measurement of the output.
Another, perhaps unexpected, source of dead time is the computation time required for
a digital control computer to calculate the control algorithm. This can be a significant
dead time in systems using inexpensive and slower microprocessors. It can be modeled
as the delay D1 between the controller and the actuator.

The presence of dead time means that the system does not have a characteristic
equation of finite order. In fact, there are an infinite number of characteristic roots for a
system with dead time. This can be seen by noting that the term e−Ds can be expanded
in an infinite series as

e−Ds = 1

eDs
= 1

1 + Ds + (D2s2/2) + · · · (12.2.13)

For example, if D1 = 5, D2 = 0, Gc(s) = K P , and G p(s) = 1/(s+4) in Figure 12.2.7,
the closed-loop transfer function is

C(s)

R(s)
= K Pe−5s

s + 4 + K Pe−5s

The characteristic equation is s + 4 + K Pe−5s = 0, which is a transcendental equation
having an infinite number of roots.

The open-loop Bode plots are particularly useful for systems with dead-time ele-
ments. A delay in either the manipulated variable or the measurement will result in an
open-loop transfer function of the form

G(s)H(s) = e−Ds P(s) (12.2.14)

For this case,

|G( jω)H( jω)| = |P( jω)|∣∣e− jωD
∣∣ = |P( jω)| (12.2.15)

because ∣∣e− jωD
∣∣ = |cos ωD − j sin ωD| =

√
cos2 ωD + (−sin ωD)2 = 1

The dead time therefore does not affect the open-loop gain curve. This makes the
analysis of its effects easier to accomplish with the open-loop frequency response plot.

However,

� [G( jω)H( jω)] = � [P( jω)e− jωD] = � P( jω) + � e− jωD

= � P( jω) − ωD (12.2.16)

where the angles are in radians and ω is the radian frequency. Thus, the dead time
decreases the phase proportionally to the frequency ω.

The following example shows how these methods can be applied to a system
containing dead time, whose plant transfer function cannot be obtained analytically.
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A Control System with Dead Time EXAMPLE 12.2.2

■ Problem
The frequency response for a particular plant G p(s) was determined experimentally, and the
results are shown in Figure 12.2.8a, where the gain curve is denoted by m1. It is intended to use
proportional control for this plant with a unity feedback loop, as shown in Figure 12.2.8b. It is
known that there will be dead time D between the controller action and its effect on the plant.

a. Design the controller to achieve the specifications given by GM ≥ 8 dB and PM ≥ 30◦ if
D = 0.

b. How large can the dead time be before the system becomes unstable?
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Figure 12.2.8 (a) Measured
frequency response of a plant.
(b) A proportional control
system having dead time.
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■ Solution
a. First neglect the dead time and design the controller. With D = 0, the open-loop transfer

function is K P G p(s). The plot in Figure 12.2.8a, which is for K P = 1, shows that the
phase margin is 87◦ and the gain margin is 25 dB. Increasing K P above unity affects only
the gain curve. This curve can be raised by 25 − 8 = 17 dB without violating the
specifications given for PM and GM. Thus, for GM = 8 dB, K P must be such that
20 log K P = 17, or K P = 1017/20 = 7.08. With this value of K P , the phase margin
becomes 56◦, and the new gain crossover frequency is ωg = 0.41 rad/sec. This can be seen
by translating the gain curve upward by 17 dB. The new gain curve is labeled m2 on
the plot.
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b. The dead time affects only the phase curve, and stability requires that the phase margin be
positive. This occurs only if the dead time’s contribution to the phase curve at the new gain
crossover frequency is greater than −56◦. The stability requirement thus is

0.41D ≤ (56◦)
π

180◦ rad

or

D ≤ 2.38 sec

By affecting the phase curve, however, the dead time changes the phase crossover
frequency, and thus changes the gain margin. If we subtract 2.38ω from the phase curve
shown in the plot, and recompute the margins, we find that the gain margin is now slightly
negative. If we reduce D somewhat, we will obtain positive or zero margins. By trial and
error, the value D = 2.1 gives a slightly positive GM and PM = 0. So the stability limit is
D ≤ 2.1 sec.

BODE DESIGN OF COMPENSATORS

In addition to shaping the gain curve, the phase curve must often be shaped by means
of a series compensator in order to achieve phase and gain margin specifications, for
example. The PID-type compensators do not always have sufficient flexibility to do this,
because they have only an s term in the denominator, but the lead and lag compensators
often do have enough flexibility.

The Bode plots of the lead and lag compensators are shown in Figures 12.2.9
and 12.2.10. When used in series with a proportional gain K P , the lead compensator
increases the phase angle and thus increases the phase margin. This enables the gain
K P/μ to be made larger than is possible without the compensator. The result is an
increase in the closed-loop bandwidth and an increase in the speed of response.

On the other hand, the lag compensator is used when the speed of response and
damping of the closed-loop system are satisfactory, but the steady-state error is too

Figure 12.2.9 Bode plots of a
lead compensator.
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Figure 12.2.11 Bode plots of a lag-lead
compensator.
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large. The lag compensator enables the gain to be increased without substantially
changing the resonance frequency ωr , and the resonance peak m p of the closed-loop
system.

The Bode plots for the lag-lead compensator are shown in Figure 12.2.11 for
T2 > μ2T2 > μ1T1 > T1. The maximum phase shift φm occurs at ωm1 = 1/T1

√
μ1,

and the attenuation at this frequency is equal in magnitude but opposite in sign to that
of the lead compensator alone. Thus, the lag-lead compensator can be more effective
than the lead compensator. The plots also show that the compensator affects the gain
and phase in only the intermediate frequency range from ω = 1/T2 to 1/T1.

DESIGN OF LEAD COMPENSATORS

The lead compensator has the transfer function

Gc(s) = s + 1/μT

s + 1/T

For any particular value of the parameter μ > 1, the lead compensator can provide a
maximum phase lead φm (see Figure 12.2.9). This value, and the frequency ωm at which
it occurs, can be found as a function of μ and T from the Bode plot. The frequency ωm

is the geometric mean of the two corner frequencies of the compensator. Thus,

ωm = 1

T
√

μ
(12.2.17)

By evaluating the phase angle of the compensator at this frequency, we can show that

sin φm = μ − 1

μ + 1
(12.2.18)

or

μ = 1 + sin φm

1 − sin φm
(12.2.19)

These relations are useful in designing a lead compensator with the Bode plot.
We assume that the specifications include requirements for phase and gain margin

as well as for the allowable steady-state error. The purpose of the lead compensator is to
use the maximum phase lead of the compensator to increase the phase of the open-loop
system near the gain crossover frequency while not changing the gain curve near that
frequency. This is usually not entirely possible, because the gain crossover frequency
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is increased in the process, and a compromise must be sought between the resulting
increase in bandwidth and the desired values of the phase and gain margins.

A suggested design method is the following:

1. Set the gain K P of the uncompensated system to meet the steady-state error
requirement.

2. Determine the phase and gain margins of the uncompensated system from the
Bode plot, and estimate the amount of phase lead φ required to achieve the
margin specifications. The extra phase lead required can be used to estimate the
value for φm to be provided by the compensator. Thus, μ can be found from
(12.2.19).

3. Choose T so that ωm from (12.2.17) is located at the gain crossover frequency of
the compensated system. One way of doing this is to find the frequency at which
the gain of the uncompensated system equals −20 log

√
μ. Choose this

frequency to be the new gain crossover frequency. This frequency corresponds to
the frequency ωm at which φm occurs.

4. Construct the Bode plot of the compensated system to see if the specifications
have been met. If not, the choice for φm needs to be evaluated and the process
repeated. It is possible that a solution does not exist.

The attempt to design a lead compensator can be unsuccessful if the required value
of μ is too large. This can occur with plants that are not stable or have a low relative
stability with a rapidly decreasing phase curve near the gain crossover frequency. In
the former case, the extra phase lead required can be too large. In the latter case,
the phase angle at the compensated gain crossover frequency is much less than at the
uncompensated gain crossover. Thus, the extra phase required can be excessive. The
difficulty with a large value of μ is that the resistance and capacitance values that result
might be incompatible or impossible to obtain physically. The usual range for μ is
1 < μ < 20. Additional phase lead can sometimes be obtained by cascading more than
one lead compensator.

In spite of these potential difficulties, the lead compensator has a record of many
successful applications.

EXAMPLE 12.2.3 Bode Design of a Lead Compensator

■ Problem
The system shown in Figure 12.2.12a has an acceptable steady-state error of 0.01 for a unit-ramp
command if the gain is set to K P = 500 and Gc(s) = 1. If this is done, however, the transient
performance is lightly damped and thus unsatisfactory. Design a compensator to give a gain
margin of at least 8 dB and a phase margin of at least 30◦.

■ Solution
The Bode plot of the open-loop uncompensated system with K P = 500 is shown in Fig-
ure 12.2.12b. The phase margin is 12.8◦, and the gain margin is infinite, because the phase
curve never falls below −180◦. Thus, 30◦ − 12.8◦ = 17.2◦ must be added to the phase curve
to meet the specifications, so we try a lead compensator. Instead of using the compensator to
add the 17.2◦, we will try to add something more, say 20◦, because this method is approximate.
From (12.2.19), we have

μ = 1 + sin φm

1 − sin φm
= 1 + sin 20◦

1 − sin 20◦ = 2.04
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KP Gc(s) 1
s(s � 5)

�

R(s)

D(s)

� � � C(s)

(a)

Figure 12.2.12 (a) System
for Example 12.2.3. (b) Bode
plots of the uncompensated
system with K P = 500.
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From step 3, we compute

−20 log
√

μ = −3.096 dB

From the plot we determine that the open-loop gain of the uncompensated system is −3.096 dB
at approximately 26.5 rad/sec. Take this frequency to be ωm , and solve for T from (12.2.17):

T = 1

26.5
√

2.04
= 0.0264

These values of μ and T give a compensator with the transfer function

Gc(s) = s + 1/μT

s + 1/T
= s + 18.55

s + 37.88
= 0.4897

0.0539s + 1

0.0264s + 1

The open-loop transfer function of the compensated system is

K P Gc(s)G(s)H(s) = 0.4897K P
0.0539s + 1

0.0264s + 1

1

s(s + 5)

The original choice of K P = 500 no longer gives required error because the compensator intro-
duces the factor 0.4897. Thus, we must choose K P = 500/0.4897 = 1021 to achieve an error of
0.01. With this value of K P , the Bode plot of the compensated system is shown in Figure 12.2.13.
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Figure 12.2.13 Bode plots of
the compensated system.
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The phase margin is 30.7◦, which slightly exceeds the requirement, and the gain margin is still
infinite, so the specifications have been met. Now you see why we added some extra phase angle.
This illustrates the trial-and-error nature of this method. The guides listed in the design steps are
based on approximations of the real phase and gain curves of the compensator.

DESIGN OF LAG COMPENSATORS

If μ < 1, the following transfer function represents a lag compensator.

Gc(s) = μ
s + 1/μT

s + 1/T

Lag compensation uses the high-frequency attenuation of the compensator to keep
the phase curve unchanged near the gain crossover frequency while this frequency is
lowered. A suggested design procedure is the following:

1. Set the open-loop gain K P of the uncompensated system to meet the steady-state
error requirements.

2. Construct the Bode plots for the uncompensated system, and determine the
frequency at which the phase curve has the desired phase margin. Determine the
number of decibels required at this frequency to lower the gain curve to 0 dB. Let
this amount be m ′ > 0 dB and this frequency be ω′

g. Then μ is found from

μ = 10−m ′/20 (12.2.20)

3. The first two steps alter the phase curve. However, this curve will not be changed
appreciably near ω′

g if T is chosen so that ω′
g 
 1/μT . A good choice is to place

the frequency 1/μT one decade below ω′
g. Any larger separation might result in

a system with a slow response.
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4. Construct the Bode plots of the compensated system to see if all the specifications
are met. If not, choose another value for T and repeat the process.

As with lead compensation, this procedure is one of trial and error and might not work.
The physical elements must be realizable, so a common range for μ is 0.05 < μ < 1.
The compensator introduces a lag angle that is not accounted for in the preceding
procedure. To account for this effect, the designer might add 5◦ to 10◦ to the specified
phase margin before starting the design process.

Bode Design of a Lag Compensator EXAMPLE 12.2.4

■ Problem
Consider the system shown in Figure 12.2.14a. When K P = 12.5 and Gc(s) = 1, the charac-
teristic roots are s = −2.5 ± 2.5 j . Suppose that the transient response given by these roots is
acceptable, but we want the steady-state error due to a ramp input to be no greater than 0.01.
Setting K P = 500 will accomplish this but will alter the transient performance by giving lightly
damped roots at s = −2.5 ± 22.22 j , for which ζ = 0.118. Design a compensator to improve
the system so that the error will be no greater than 0.01, PM ≥ 30◦, and GM ≥ 8 dB.

KP Gc(s) 1
s(s � 5)

�

R(s)

D(s)

� � � C(s)

(a)

Figure 12.2.14 (a) System for
Example 12.2.4. (b) Bode plots
of the compensated system.
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■ Solution
A lag compensator is indicated because the transient response is satisfactory. Set K P = 500 to
achieve the desired error and construct the Bode plots for the uncompensated open-loop system
using K P = 500. The plot is the same as Figure 12.2.12b. Keeping in mind the lag introduced
by the compensator, we attempt to achieve a phase margin of 35◦ rather than the required 30◦.

From the plot we determine that the uncompensated system would have a phase margin of
35◦ if the gain crossover occurs at ω = 7.2. Thus, ω′

g = 7.2. The gain at this frequency is 18 dB,
so m ′ = 18, and from (12.2.20),

μ = 10−18/20 = 0.126

For step 3, we choose T to place ω = 1/μT one decade below ω = 7.2. Thus, 1/μT = 0.72,
which gives T = 11.023. The lag compensator that results is

Gc(s) = 0.126
s + 0.72

s + 0.0907

The open-loop transfer function of the compensated system is

K P Gc(s)G(s)H(s) = 0.126
s + 0.72

s + 0.0907

K P

s(s + 5)

With K P = 500/0.126 = 3970, the ramp error is the required value of 0.01. The resulting Bode
plots are given in Figure 12.2.14b. The phase margin is 29.7◦, which is approximately 30◦, and
the gain margin is infinite, so the specifications have essentially been met.

At a quick glance it might appear that Examples 12.2.3 and 12.2.4 are concerned
with solving the same problem; namely, compensate the plant 1/s(s + 5) so that the
ramp error is 0.01, PM ≥ 30◦, and GM ≥ 8 dB. This, however, is not the case. The
difference lies in what is taken as satisfactory in the performance of the uncompensated
system and what must be improved. In Example 12.2.3, the transient response resulting
from the gain K P = 500 needed to obtain a ramp error of 0.01 was judged to be
poor, and the lead compensator was used to improve the transient performance. In
Example 12.2.4, acceptable transient response was obtained when K P = 12.5, but the
steady-state error was then unacceptable, and a lag compensator was therefore used.

Another way to view the differences between the two examples is to note that the
compensation in Example 12.2.3 was obtained by shifting the phase curve, whereas in
Example 12.2.4 it was obtained by shifting the gain curve.

12.3 MATLAB APPLICATIONS
In addtion to the bode function, MATLAB provides the margin function that com-
putes the phase and gain margins. As we will see, the tf function can accept models
with dead time, and MATLAB also provides the pade function for analyzing such
models.

THE margin FUNCTION

A relevant function we have not yet introduced is the margin function. The mar-
gin(sys) function plots the open-loop Bode plots with the gain and phase margins
marked with a vertical line, and their values displayed at the top of the plot, along with
the values of the crossover frequencies.

The syntax [GM,PM,wg,wp] = margin(sys) computes the gain margin
GM in absolute units, the phase margin PM in degrees, and wg, wp, which are the
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crossover frequencies ωg and ωp. To obtain the gain margin in decibels, use GMdB =
20*log10(GM). If there are several crossover points, margin returns the smallest
margins (the gain margin nearest to 0 dB and the phase margin nearest to 0◦).

The syntax [GM,PM,wg,wp] = margin(mag,phase,w) derives the gain
and phase margins from the magnitude, phase, and frequency structures mag, phase,
andwproduced by thebode function. Interpolation is performed between the frequency
points to estimate the values.

MODELS WITH DEAD TIME

To create a transfer function model having dead time D at its input, use the 'iodelay'
property with the tf function as follows:

sys = tf(num,den,'iodelay',D)

For example, to create the model

e−2s 5

s2 + 4s + 2

type sys = tf(5,[1,4,2],'iodelay',2).
The feedback function cannot accept time-delay models, but bode, margin,

step, and others will. For example, to determine the margins for the previous
model having dead time, type [GM,PM,wg,wp] = margin(sys). This gener-
ates a warning that the system is unstable, and returns the values: GM = 0.7795, PM =
−47.4843◦, ωg = 0.9325 rad/sec, and ωp = 1.2449 rad/sec. To obtain GM in dB, type
20*log10(GM). The answer is −2.1634 dB.

Dead time in a system can cause oscillatory behavior or even instability in a system
that is nonoscillatory and stable without dead time. For example, proportional control
of the plant 1/(s +4) using K P = 9 gives the closed-loop transfer function 9/(s +13),
which is stable and has a nonoscillatory step response. If there is dead time between
the plant and the controller, then the open-loop transfer function is

e−Ds 9

s + 4
To obtain the closed-loop transfer function, note that the feedback function

does not support dead time models (at this time), so we must first convert the dead-
time model into discrete-time form. The function c2d, which stands for “continuous
to discrete,” converts a continuous-time model to discrete-time form. The syntax is
sysd = c2d(sysc,T,method), where sysc is the continuous-time model,
sysd is the discrete-time model, T is the sample time, and method is a string speci-
fying the method to be used. The default is 'zoh' when method is omitted. This uses
the zero-order hold method discussed in Chapter 10, Section 10.3.

To generate and compare the step responses of the models with and without dead
time, use the following script file. The sample time T should be chosen to be a small
fraction of the smallest estimated time constant of the closed-loop system. Here we use
T = 0.01.

KP = 9;
sysA = tf(KP,[1,4],’iodelay’,0.5);
sysB = c2d(sysA,0.01);
sysC = feedback(sysB,1);
sysD = tf(KP,[1, 4]);
sysE = feedback(sysD,1);
step(sysC,sysE,3)
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Figure 12.3.1 (a) A control
system having dead time
between the controller and the
plant. (b) Responses of systems
with and without dead time
between the controller and the
plant. The response with a
dead time of 0.5 sec was
obtained with a discrete-time
approximation of the
dead-time element.
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The step response is shown in Figure 12.3.1 after being edited with the Plot Editor.
Note that the dead time of D = 0.5 makes the system unstable and oscillatory.

MATLAB also provides the pade function for analyzing dead-time systems. The
Pade approximation to the dead-time element is

e−s D = 1

[1 + (Ds/n)]n

The approximation improves as n becomes larger. The syntax [num,den] =
pade(D,n) returns the nth order transfer function approximation of the dead time
transfer function e−Ds . For example, suppose the dead time is D = 0.5. The third-
order Pade approximation obtained with[num,den] = pade(0.5, 3) isnum =
[-1, 24, -240, 960] and den = [1, 24, 240, 960], which correspond to

e−0.5s ≈ −s3 + 24s2 − 240s + 960

s3 + 24s2 + 240s + 960

This approximation can then be converted to an LTI model, which can then be used
with the MATLAB LTI functions. For example, the transfer function and step response
of a proportional control system with the plant 1/(s +4) with K P = 9 and a time-delay
of 0.5 sec between the controller and the plant can be obtained with the following
script file.

KP = 9;
[num,den] = pade(0.5, 3);
sys1 = tf(num,den);
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Figure 12.3.2 Comparison of
the response computed with
the Pade and the discrete-time
approximations of a 0.5-sec
time delay.

sys2 = tf(KP,[1, 4]);
sys3 = series(sys1,sys2);
sys4 = feedback(sys3,1);
step(sys4)

Figure 12.3.2 compares the step response using the third-order Pade approximation with
that obtained by the discrete-time approximation. If more accuracy is needed, a higher-
order approximation should be used. The advantage of using the Pade approximation
is that it produces a continuous-time transfer function that, unlike the discrete-time
approximation, can always be used with other continuous-time models. Its disadvantage
is that it might produce very high-order models with resulting numerical inaccuracy.

SIMULATING THE PROCESS REACTION METHOD

Once the gains have been computed from the Ziegler-Nichols process reaction method, it
is difficult to tune the controller by simulation because a transfer function or differential
equation model of the plant is not available. Often, however, a model having a dead
time can be used as an approximation. From a plot of the data given in Section 11.6,
the steady-state response is 93, and we estimate that the settling time of the process is
12 − L = 12 − 1.5 = 10.5 min, and thus the time constant is τ = 10.5/4 = 2.63 min.
Thus, a possible model for a transfer function description of the plant is

G p(s) = e−Ls 93

τ s + 1
(12.3.1)

The step response of this model, however, has an infinite slope at t = L . Perhaps a
better model is

G p(s) = e−Ls 93

ms2 + cs + 1
(12.3.2)

After some experimentation, we find that a good approximation is given by the second
model with ζ = 0.707 and τ = 2.63, which give m = 3.44 and c = 2.61. Figure 12.3.3
shows the response of this model and the original response data.
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Figure 12.3.3 Open-loop
response data and its
dead-time approximation.
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The methods of this section can then be used to obtain the closed-loop transfer
function for simulation and tuning of the control gains. Another way to do this is to use
Simulink. We will show how this is done in Section 12.4.

12.4 SIMULINK APPLICATIONS
Simulink is especially well suited to analyzing models with dead time. This section
illustrates some of these applications.

SIMULATION OF SYSTEMS WITH DEAD TIME

Systems having dead-time elements are easily simulated in Simulink. The block im-
plementing the dead-time transfer function e−Ds is called the “Transport Delay” block.
Figure 12.4.1 shows a Simulink model for proportional control of the plant 1/(s + 4)

using K P = 9. This system was analyzed in Section 12.3, with the response shown in
Figure 12.3.1 for a dead time of D = 0.5 s. You will see this response in the Scope
block of the Simulink model.

PROCESS REACTION SIMULATION

In Section 12.3 we found that a good model of the measured open-loop response is

G p(s) = e−1.5s 93

3.44s2 + 2.61s + 1

Figure 12.4.1 Simulink model
using a Transport Delay block.

1
s � 4
Plant ScopeStep

Command
Proportional

Control
Transport

Delay

+– 9
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93
3.44s2 � 2.61s � 1

PID

Transfer Fcn ScopeStep PID
Controller

Transport
Delay

+–

Figure 12.4.2 Illustration of
the use of the PID Controller
block.

Figure 12.4.2 shows a Simulink model incorporating this model of the plant in a PID
control system. The delay in the Transport Delay block has been set to 1.5.

The new block in this model is the PID Controller block. It is useful because if we
were to implement the PID controller with a Transfer Function block, we would get
an error message warning that the order of the numerator must be no greater than the
order of the denominator. This is caused by the term K Ds2 in the numerator. The PID
block is specifically designed to handle this situation.

Simulation of the model using the gain values K P = 0.0524, K I = 0.0170, and
K D = 0.0404 computed from the Ziegler-Nichols process reaction method shows that
the system is unstable. Further simulations show that it can be made stable by reducing
the gains. A set giving good response is found to be one-fourth of the previous gain
values; namely, K P = 0.0524/4, K I = 0.017/4, and K D = 0.0404/4.

12.5 CHAPTER REVIEW
Series compensation involves inserting an additional control element in series with the
main controller. Section 12.1 discusses several types of series compensators, the lead,
lag, and lag-lead, and shows how to use the root locus to design them. Compensation
often leads to a satisfactory design if the PID action is capable of satisfying most but
not all of the performance specifications.

Section 12.2 shows how to use the open-loop frequency response plots to design PID
controllers and series compensators using the phase and gain margins and the static error
coefficients. The frequency response plots of the system’s open-loop transfer function
are easily generated even for high-order systems, and they enable the proper control
gain to be selected simply by adjusting the scale factor on the plot. The technique is
especially useful for analyzing systems with dead time.

Now that you have finished this chapter, you should be able to do the following.

1. Use the open-loop frequency response with phase and gain margin specifications
to design a controller.

2. Design a series compensator using either root locus or frequency response
methods.

3. Apply MATLAB and Simulink with the methods of this chapter.

PROBLEMS
Section 12.1 Series Compensation

12.1 Control of the attitude θ of a missile by controlling the fin angle φ, as shown in
Figure P12.1, involves controlling an inherently unstable plant. Consider the
specific plant transfer function

G p(s) = �(s)

�(s)
= 1

5s2 − 6
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Figure P12.1
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Design a PD compensator for this plant. The dominant roots of the closed loop
system must have ζ = 0.707 and ωn = 0.5.

12.2 Figure P12.2 shows a pneumatic positioning system, where the displacement x
is controlled by varying the pneumatic pressure p1. Assume that the pressure
p2 is constant, and consider the specific plant

G p(s) = X (s)

P1(s)
= K

s2 + 2s

With K = 4, the damping ratio is ζ = 0.5, the natural frequency is ωn =
2 rad/s, and the steady-state ramp error is 0.5.
a. Design an electrical compensator to obtain ωn = 4 while keeping ζ = 0.5.

Obtain the compensator’s resistances if C = 1 μF.
b. Suppose that with K = 4, the original system gives a satisfactory transient

response, but the ramp error must be decreased to 0.05. Design a
compensator to do this.

Figure P12.2
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pa

pa
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p1 p3 p4

x

R1
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12.3 It is desired to control the angular displacement θ of a space vehicle by
controlling the applied torque T supplied by thrusters (Figure P12.3). The
plant model is

G p(s) = �(s)

T (s)
= 5

s2

Design a compensator for this plant. The system must have a settling time no
greater than 4 sec and a steady-state error of zero for a step command, and the
dominant roots of the closed-loop system must have ζ ≥ 0.45.

Figure P12.3

T

�

12.4 When proportional control is applied to the following plant using a gain of
K P = 1, the closed-loop roots are satisfactory, but the static velocity error
coefficient must be increased to Cv = 5/sec.

G p(s) = 1

s3 + 3s2 + 2s
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Design a compensator for this plant that keeps the closed-loop roots near their
original locations but increases Cv to 5.

12.5 The speed ω1 of the load is to be controlled with the torque Td acting through a
fluid coupling (Figure P12.5). Design a compensator for the specific plant

G p(s) = �1(s)

Td(s)
= 1

s2 + s

The static velocity error coefficient must be Cv = 10/sec, the dominant roots of
the closed-loop system must have ζ = 0.5 and ωn = 2.

�d
Td

Id

Driving side

Driven side

�1

T1

I1

Figure P12.5

12.6 The block diagram of a speed control system is shown in Figure P12.6. For a
particular system with proportional control, G1(s) = K P , the open-loop
transfer function is

G(s) = K P

s(s + 2)

With K P = 4, the damping ratio is ζ = 0.5, the natural frequency is ωn =
2 rad/sec, and Cv = 2/sec. Design a compensator that will give a static velocity
error coefficient of Cv = 20/sec, a phase margin of at least 40◦, and a gain
margin of at least 6 dB.

1
Is � c

KT
Ls � R

G1(s)
�r(s)

T(s)

Td(s)

E(s) �(s)

�

� � �

Controller Motor

Figure P12.6

12.7 The block diagram of a position control system is shown in Figure P12.7. For a
particular system with proportional control, G1(s) = K P , the open-loop
transfer function is

G(s) = 2.5K P

s(s + 2)(0.25s + 2)

Design a compensator to give s = −2 ± j2
√

3 and Cv = 80/sec.
12.8 It is desired to control the angular displacement θ of a space vehicle by

controlling the applied torque T supplied by thrusters (Figure P12.8a). The
plant model is

G p(s) = �(s)

T (s)
= 10

s2
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Figure P12.7
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Figure P12.8

(a)

T

�

(b)

�
Gc(s)

�r(s) � �(s)T(s)

1
0.1s � 1

10
s2

Sensor

The feedback sensor that measures the displacement has a time constant of
0.1 sec (Figure P12.8b). Design a compensator so that the closed loop system
will have a time constant of 1 sec and a damping ratio of 0.5.

12.9 The plant transfer function for the angular displacement θ of an inertia I
subjected to a control torque T is (see Figure P12.8a)

G p(s) = �(s)

T (s)
= 1

I s2

Suppose that I = 5 and that the output of the controller is the torque T . Use
the root locus to investigate whether or not a controller transfer function of the
following form will give a settling time of no more than 2 sec and an overshoot
of no more than 5%.

Gc(s) = K
s + a

s + b

Obtain suitable values of K , a, and b. What happens if we try to “cancel” one
of the poles at the origin by placing the zero very close to the origin?

12.10 Consider a plant whose open-loop transfer function is

G(s)H(s) = 1

s
[
(s + 2)2 + 9

]
The complex poles near the origin give only slightly damped oscillations that
are considered undesirable. Insert a gain Kc and a compensator Gc(s) in series
to speed up the closed-loop response of the system. Consider the following for
Gc(s):
a. The lead compensator
b. The lag compensator
c. The so-called reverse-action compensator

Gc(s) = 1 − T1s

T2s + 1
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Obtain the root locus plots for the compensated system using each
compensator. Use the compensator gain Kc as the locus parameter.
Without computing specific values for the compensator parameters,
determine which compensator gives the best response.

12.11 a) The equations of motion of the inverted pendulum model were derived in
Example 2.4.4 in Chapter 2. Linearize these equations about φ = 0, assuming
that φ̇ is very small. b) Obtain the linearized equations for the following
values: M = 10 kg, m = 50 kg, L = 1 m, I = 0, and g = 9.81 m/s2. c) Use
the linearized model developed in part (b) to design a series compensator to
stabilize the pendulum angle near φ = 0. It is required that the 2% settling
time be no greater that 4 s and that the response be nonoscillatory. This means
that the dominant root should be real and no greater than −1. No restriction is
placed on the motion of the base. Assume that only φ can be measured.

Section 12.2 Design Using the Bode Plot

12.12 A certain unity feedback system has the following open-loop system transfer
function.

G(s) = 5K

s3 + 6s2 + 5s

Obtain the Bode plots and compute the phase and gain margins for
a. K = 2
b. K = 20
c. Use the Bode plots to determine the upper limit on K for the system to be

stable. Which is the limiting factor: the phase margin or the gain margin?
12.13 Figure P12.13 shows a pneumatic positioning system, where the displacement

x is controlled by controlling the applied pneumatic pressure p1. Assume that
the pressure p2 is constant, and consider the specific plant

G p(s) = X (s)

P1(s)
= 1

100s2 + s

with the following series PD compensator is used to control the pressure.

Gc(s) = 2 + 19s

Obtain the Bode plots for this system, and determine the phase and gain
margins.

m
pa

pa

p2

p1 p3 p4

x

R1

R2A

Figure P12.13
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12.14 The height h2 in Figure P12.14 can be controlled by adjusting the flow rate q1.
Consider the specific plant

G p(s) = H2(s)

Q1(s)
= 25

5s2 + 6s + 5

with the following series PI compensator is used to control it.

Gc(s) = 7s + 64

s

Obtain the Bode plots for this system, and determine the phase and gain
margins.

Figure P12.14

R1

q1

qd
h1A1

R2h2
A2

12.15 Rolling motion of a ship can be reduced by using feedback control to vary the
angle of the stabilizer fins, much like ailerons are used to control aircraft roll.
Figure P12.15 is the block diagram of a roll control system in which the roll
angle is measured and used with proportional control action. Determine the
phase and gain margins of the system if (a) K P = 1, (b) K P = 10, and
(c) K P = 100. Determine the stability properties for each case. If the system is
unstable, what effect will this have on the ship roll?

Figure P12.15

�
KP

�r(s) �(s)Vm(s)� �(s)0.1
0.2s � 1

10
s2 � s � 10

1

Controller
Voltage

Actuator
Ship

roll dynamics

Fin
angle

Roll
angle

Roll angle
sensor

12.16 The open-loop transfer function of a certain unity feedback system is

G(s) = K
10s + 1

2s3 + 3s2 + s

Compute the value of the gain K so that the phase margin will be 60◦.
12.17 The following transfer functions are the forward transfer function G(s) and

the feedback transfer function H(s) for a system whose closed-loop transfer



palm-38591 book December 17, 2008 12:47

Problems 759

function is

G(s)

1 + G(s)H(s)

For each case determine the system type number, the static position and
velocity coefficients, and the steady-state errors for unit-step and unit-ramp
inputs.

a. G(s)H(s) = 20

s

b. G(s)H(s) = 20

5s + 1

c. G(s)H(s) = 7

s2

12.18 Remote control of systems over great distance, such as required with robot
space probes, may involve relatively large time delays in sending commands
and receiving data from the probe. Consider a specific system using
proportional control, where the total dead time is D = D1 + D2 = 100 sec
(Figure P12.18). The plant is

G p(s) = 1

100s + 1

How large can the gain K P be without the system being unstable?

�
KP

R(s)
e�D1s

e�D2s

�
Gp(s)

C(s) Figure P12.18

12.19 Hot-air heating control systems for large buildings may involve significant
dead time if there is a large distance between the furnace and the room being
heated (Figure P12.19). Proportional control applied to the specific plant

G p(s) = 1

0.1s + 1

has the gain K P = 10. The time units are minutes. How large can the dead
time D between the controller and the plant be if the phase margin must be no
less than 40◦?

12.20 The block diagram of a position control system is shown in Figure P12.20.
Design a compensator for the particular plant

G p(s) = 1

s(s2 + 3s + 2)

so that the static velocity error coefficient will be Cv = 5/sec, the gain margin
will be no less than 10 dB, and the phase margin no less than 40◦.
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Figure P12.19
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Figure P12.20
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12.21 The speed ω2 of the load is to be controlled with the torque T acting through a
fluid coupling (see Figure P12.5). Design a compensator for the specific plant

G p(s) = �2(s)

T (s)
= 4

s2 + 2s

so that the static velocity error coefficient will be Cv = 20/sec, the gain margin
will be no less than 10 dB, and the phase margin no less than 50◦.

12.22 Design a compensator for the plant

G p(s) = 2

s2 + 2s

so that the static velocity error coefficient will be Cv = 20/sec and the phase
margin at least 45◦.

12.23 Figure P12.2 shows a pneumatic positioning system, where the displacement x
is controlled by controlling the applied pneumatic pressure p1. Assume that the
pressure p2 is constant, and consider the specific plant

G p(s) = X (s)

P1(s)
= 1

s2 + s
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Design a compensator for the plant so that Cv = 20/sec, the gain margin will
be no less than 10 dB, and the phase margin no less than 50◦.

12.24 The block diagram of a position control system is shown in Figure P12.7.
Design a compensator for the particular plant

G p(s) = 5

s(s + 5)(s + 1)

that will give a static velocity error coefficient of Cv = 50/sec and closed loop
roots with a damping ratio of ζ = 0.5.

12.25 The block diagram of a position control system is shown in Figure P12.7.
Design a compensator for the particular plant

G p(s) = 1

s(s2 + 3s + 2)

so that the static velocity error coefficient will be Cv = 10/sec, the gain margin
will be no less than 10 dB, and the phase margin no less than 50◦.

12.26 Consider a unity-feedback system having the open-loop transfer function

G(s) = ω2
n

s(s + 2ζωn)

Derive the following expression for this system’s phase margin.

PM = tan−1 2ζ√
−2ζ 2 + √

1 + 4ζ 4

12.27 Two independent feedback control systems are needed to position the pen of a
flatbed x-y plotter. Consider only the control system for the x axis. An optical
encoder provides feedback of the pen’s location. Assume that the dynamics of
the motor and pen assembly are described by the following plant transfer
function.

G p(s) = X (s)

V (s)
= 0.005

s(0.1s + 1)(0.001s + 1)

where x is the pen location in meters and v is the motor voltage. Design a
compensator to achieve zero steady-state error for a step input and a 2%
settling time of no more than 1 s, with an overshoot of no more than 4%.

12.28 Automatic guided vehicles are used in factories and warehouses to transport
materials. They require a guide path in the floor and a control system for
sensing the guide path and adjusting the steering wheels. Figure P12.28 is a
block diagram of such a control system. Obtain the transfer function Gc(s)
so that the step response has an overshoot no greater than 20% with a 2%
settling time of no more than 1 s, and a steady-state unit-ramp error of no
more than 0.1 m.
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Figure P12.28
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Section 12.3 MATLAB Applications

12.29 With the PI gains set to K P = 6 and K I = 50 for the plant

G p(s) = 1

s + 4
the time constant is τ = 0.2 and the damping ratio is ζ = 0.707.
a. Compute the gain and phase margins.
b. Suppose there is dead time D = 0.1 between the controller and the plant.

Compute the gain and phase margins, and plot the unit-step response.
c. How large can the dead time be without the system becoming unstable?

12.30 In Example 12.1.4 a lag-lead compensator was designed by canceling the plant
pole at s = −3 with a compensator zero. Suppose the plant model is slightly
inaccurate and the plant pole is really at s = −3.2. Evaluate the resulting
unit-step response and unit-ramp response in terms of the performance
specifications.

Section 12.4 Simulink Applications

12.31 Refer to Example 12.1.1, in which a PID controller was designed to control
the plant 1/s2. Using the gain values calculated in that example, construct a
Simulink model of the system using the PID controller block and including the
disturbance torque shown in Figure 12.1.7. Use the model to obtain plots of the
responses to a unit-step command and a unit-step disturbance.
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CHAPTER OBJECTIVES

When you have finished this chapter, you should be able to

1. Analyze the performance of spring and damping
elements for isolating a mass from base excitation.

2. Analyze the performance of spring and damping
elements for minimizing transmission of force
caused by rotating unbalance.

3. Design a vibration absorber.

4. Analyze the modal behavior of systems having
multiple degrees of freedom.

5. Design an elementary active vibration control
system.

6. Analyze nonlinear vibration response using
numerical methods.

A s we have seen many times, the transfer function method enables us to model
dynamic elements with an algebraic description and provides a concise graph-
ical description of a system’s frequency response, which characterizes the re-

sponse to periodic inputs. In this chapter we treat four important vibration applications
of transfer functions and frequency response. Section 13.1 covers a common source of
vibration, that due to motion of the supporting structure; this is called base excitation.
Section 13.2 treats another common source of vibration, that due to rotating unbalance,
which occurs when the center of mass of a rotating machine does not coincide with the
center of rotation. The section discusses how to design spring and damping elements for
minimizing the transmission of force to a supporting structure from a machine having
rotating unbalance. This topic is called vibration isolation. Section 13.3 shows how to
reduce the vibration amplitude of a machine by using a dynamic vibration absorber,
which consists of an attached stiffness and mass whose motion “absorbs” the vibration.

763
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Systems having multiple degrees of freedom, such as multiple masses connected
by elastic or damping elements, can exhibit complicated behavior. Their free response
is the sum of certain behavior patterns called modes. In Section 13.4 we will see how
the mode concept helps us to understand a system’s response.

The vibration isolators and absorbers treated in Section 13.2 and 13.3 are passive
systems. Section 13.5 introduces active systems that use actuators and sensors to con-
trol vibration. Section 13.6 illustrates the differences between the responses of linear
and nonlinear models. Section 13.7 shows how the root locus plot can be useful in
vibrations analysis. ■

13.1 BASE EXCITATION
The most common sources of inputs to vibrating systems are motion of a base support
(called base excitation or sometimes seismic excitation) and rotating unbalance. We
treat base excitation in this section and rotating unbalance in Section 13.2.

A common example of base excitation is caused by a vehicle’s motion along a
bumpy road surface. This motion produces a displacement input to the suspension sys-
tem via the wheels. The primary purpose of a vehicle suspension is to maintain tire
contact with the road surface, and the secondary purpose is to minimize the motion
and force transmitted to the passenger compartment. The suspension is an example of
a vibration isolation system designed isolate the source of vibration from other parts
of the machine or structure. In addition to metal springs and hydraulic dampers, vibra-
tion isolators consisting of highly damped materials like rubber provide stiffness and
damping between the source of vibration and the object to be protected. For example,
the rubber motor mounts of an automobile engine are used to isolate the automobile’s
frame from the effects of the motor’s rotating unbalance. Cork, felt, and pneumatic
springs are also used as isolators.

Sometimes we want to reduce the effects of a force transmitted to the supporting
structure, and sometimes we want to reduce the output displacement caused by an input
displacement. Thus we speak of force isolation and displacement isolation. We begin
our study of isolation system design by analyzing the displacement transmitted through
base motion.

DISPLACEMENT TRANSMISSIBILITY

Figure 13.1.1 Base
excitation where the motion
y (t) of the base produces the
motion x (t) of the mass m.

x

y

k

m

c

Machine

Base

The motion of the mass shown in Figure 13.1.1 is produced by the motion y(t) of
the base. This system is a model of many common displacement isolation systems.
Assuming that the mass displacement x is measured from the rest position of the mass
when y = 0, the weight mg is canceled by the static spring force. The force transmitted
to the mass by the spring and damper is denoted ft and is given by

ft = c(ẏ − ẋ) + k(y − x) (13.1.1)

This gives the following equation of motion.

mẍ = ft = c(ẏ − ẋ) + k(y − x)

or

mẍ + cẋ + kx = cẏ + ky (13.1.2)
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The transfer function is

X (s)

Y (s)
= cs + k

ms2 + cs + k
(13.1.3)

This transfer function is called the displacement transmissibility and can be used to
analyze the effects of the base motion y(t) on x(t), the motion of the mass. Notice that
this transfer function has numerator dynamics, so its frequency response plots will be
different than those of the transfer function 1/(ms2 + cs + k), which was studied in
Chapter 8.

FORCE TRANSMISSIBILITY

From (13.1.1)

Ft(s) = (cs + k) [Y (s) − X (s)] (13.1.4)

Substituting for X (s) from (13.1.3) gives

Ft(s) = (cs + k)

[
Y (s) − cs + k

ms2 + cs + k
Y (s)

]
= (cs + k)

ms2

ms2 + cs + k
Y (s)

Thus, the second desired ratio is

Ft(s)

Y (s)
= (cs + k)

ms2

ms2 + cs + k
(13.1.5)

This is the ratio of the transmitted force to the base motion. It is customary to use
instead the ratio Ft(s)/kY (s), which is a dimensionless quantity representing how the
base displacement y affects the force transmitted to the mass. Thus,

Ft(s)

kY (s)
= cs + k

k

ms2

ms2 + cs + k
(13.1.6)

The ratio Ft(s)/kY (s) is called the force transmissibility. It can be used to compute the
transmitted force ft(t) that results from a specified base motion y(t).

We can express the transmissibility relations in terms of the damping ratio ζ and
the natural frequency ωn . Recall that ω2

n = k/m and ζ = c/2
√

km, which can be
manipulated to show that c/m = 2ζωn . Divide the numerator and denominator of
(13.1.3) by m:

X (s)

Y (s)
= (c/m)s + k/m

s2 + (c/m)s + k/m
= 2ζωns + ω2

n

s2 + 2ζωns + ω2
n

(13.1.7)

Similarly, we can express the force transmissibility in terms of ζ and ωn by dividing
the numerator and denominator of (13.1.6) by m as follows:

Ft(s)

kY (s)
= (c/m)s + k/m

k

ms2

s2 + (c/m)s + k/m
= 2ζωns + ω2

n

ω2
n

s2

s2 + 2ζωns + ω2
n

(13.1.8)

A common application of the transmissibility expressions is to analyze the steady-
state response x(t) = X sin(ωt + φ) of a sinusoidal input y(t) = Y sin ωt , having
an amplitude Y and frequency ω. In this case, we can derive the expressions for the
frequency transfer functions by substituting s = jω into (13.1.7) and (13.1.8). The
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result for (13.1.7) is

X ( jω)

Y ( jω)
= 2ζωnω j + ω2

n

−ω2 + 2ζωnω j + ω2
n

Dividing the numerator and denominator by ω2
n gives

X ( jω)

Y ( jω)
= 2ζ(ω/ωn) j + 1

1 − ω2/ω2
n + 2ζ(ω/ωn) j

= 2ζr j + 1

1 − r2 + 2ζr j

where the frequency ratio is r = ω/ωn .
The magnitude of the transmissibility is∣∣∣∣ X ( jω)

Y ( jω)

∣∣∣∣ = X

Y
=

√
4ζ 2r2 + 1

(1 − r2)2 + 4ζ 2r2
(13.1.9)

This expression can be used to calculate the amplitude X of the steady-state motion
caused by a sinusoidal input displacement of amplitude Y.

Similarly, we can express the frequency transfer function for the force transmissi-
bility as follows. From (13.1.8) with s = jω,

Ft( jω)

kY ( jω)
= 2ζωnω j + ω2

n

ω2
n

−ω2

−ω2 + 2ζωnω j + ω2
n

= (2ζr j + 1)
−r2

1 − r2 + 2ζr j

and thus ∣∣∣∣ Ft( jω)

kY ( jω)

∣∣∣∣ = Ft

kY
= r2

√
4ζ 2r2 + 1

(1 − r2)2 + 4ζ 2r2
(13.1.10)

This expression can be used to calculate the steady-state amplitude Ft of the transmitted
force caused by a sinusoidal input displacement of amplitude Y. Comparing (13.1.9)
and (13.1.10) we see that

Ft

kY
= r2 X

Y
(13.1.11)

and

Ft = r2k X (13.1.12)

These relations enable us to calculate Ft/kY and Ft easily if we have previously
computed X/Y and X .

TRANSMISSIBILITY PLOTS

It is instructive to plot X/Y and Ft/kY versus the frequency ratio r , for various values of
the damping ratio ζ . These plots are shown in Figures 13.1.2 and 13.1.3. Consider first
the displacement transmissibility plot in Figure 13.1.2. When r is near 1, the forcing
frequency ω is near the system’s resonance frequency, and the curve is at a maximum.
This means that the maximum base motion is transferred to the mass when r is near 1.
Note also that the transmissibility can be greater than 1, which indicates that the base
motion can be amplified. In fact, the transmissibility is greater than 1 if r <

√
2, and is

less than 1 when r ≥ √
2. If r ≥ √

2, the displacement transmissibility decreases as r
is increased. Note also that for a specific value of r , the transmissibility decreases as ζ

is increased, if r ≤ √
2.

Figure 13.1.3 shows the plots of Ft/kY versus r , for several values of ζ. When
r ≥ √

2, the force transmissibility does not necessarily decrease as r is increased. For
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Figure 13.1.2 Displacement
transmissibility versus r for
base excitation.
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Figure 13.1.3 Force
transmissibility versus r for
base excitation.

example, if ζ = 1, the force transmissibility increases with r . If ζ is small, say ζ = 0.1,
the force transmissibility decreases with r , if r ≥ √

2. This is in contrast with the
behavior of the displacement transmissibility, which always decreases with r for any
value of ζ , as long as r ≥ √

2.
The formulas and plots for force and displacement transmissibility can be used

to design isolators to protect objects from unwanted vibration. The plots of X/Y and
Ft/Y versus r show that the values of X/Y and Ft/Y are very sensitive to the value
of ζ when r is near 1. Therefore, because the value of c is usually difficult to estimate
from data, and thus ζ is difficult to compute accurately, you should be careful in using
the formulas for X/Y and Ft/Y to design isolators when r is near 1.
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Table 13.1.1 Transmissibility formulas for base excitation.

Model
mẍ + cẋ + kx = cẏ + ky y(t) = Y sin ωt

ζ = c

2
√

mk
ωn =

√
k

m
r = ω

ωn

Steady-state response

x(t) = X sin(ωt + φ)

Displacement transmissibility

X

Y
=

√
4ζ 2r 2 + 1

(1 − r 2)2 + 4ζ 2r 2

Force transmissibility

Ft

kY
= r 2 X

Y

Table 13.1.1 summarizes these results.

Figure 13.1.4 Quarter-car,
rigid-tire model of a vehicle
suspension.

m
x

k c

y

Road
surface

Chassis

Tire

An example of base excitation occurs when a car drives over a rough road.
Figure 13.1.4 shows a quarter-car representation, where the stiffness k is the series
combination of the tire and suspension stiffnesses. The equation of motion is given by
(13.1.2). Although road surfaces are not truly sinusoidal in shape, we can nevertheless
use a sinusoidal profile to obtain an approximate evaluation of the performance of the
suspension at various speeds.

EXAMPLE 13.1.1 Vehicle Suspension Response

■ Problem
Suppose the road profile is given (in feet) by y(t) = 0.05 sin ωt , where the amplitude of variation
of the road surface is 0.05 ft, and the frequency ω depends on the vehicle’s speed and the road
profile’s period. Suppose the period of the road surface is 30 ft. Compute the steady-state motion
amplitude and the force transmitted to the chassis, for a car traveling at speeds of 30 and 60 mph.
The car weighs 3200 lb. The effective stiffness, which is a series combination of the tire stiffness
and the suspension stiffness, is k = 3000 lb/ft. The damping is c = 300 lb-sec/ft.

■ Solution
For a period of 30 feet and a vehicle speed of v (mi/hr), the frequency ω is

ω =
(

5280

30

)(
1

3600

)
(2π) v = 0.3072v rad/sec

Thus, ω = 0.3072(30) = 9.215 rad/sec for v = 30 mi/hr, and ω = 18.43 rad/sec for v =
60 mi/hr.

For the car weighing 3200 lb, the quarter-car mass is m = 800/32.2 slug. Its natural fre-
quency is ωn =

√
k/m =

√
3000/(800/32.2) = 10.99 rad/sec. Its frequency ratio at 30 mi/hr

is r = ω/ωn = 9.215/10.99 = 0.839, and at 60 mi/hr it is r = 1.68. Its damping ratio is

ζ = 300

2
√

3000(800/32.2)
= 0.549
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Now substitute these values of r and ζ and Y = 0.05 ft into the following expressions,
obtained from (13.1.9) and (13.1.12).

X = Y

√
1 + 4ζ 2r2

(1 − r2)2 + 4ζ 2r2

Ft = r2k X

This gives the following table.

v (mi/hr) r X(ft) Ft (lb)

30 0.839 0.072 148
60 1.68 0.041 342

Note that the motion amplitude is smaller at the higher speed because r > 1.4 at this speed.
Examine Figure 13.1.2 to understand why this occurs.

13.2 ROTATING UNBALANCE
A common cause of sinusoidal forcing in machines is the unbalance that exists to some
extent in every rotating machine. The unbalance is caused by the fact that the center
of mass of the rotating part does not coincide with the center of rotation. Let m be the
total mass of the machine and mu the rotating mass causing the unbalance. Consider
the entire unbalanced mass mu to be lumped at its center of mass, a distance ε from the
center of rotation. This distance is the eccentricity. Figure 13.2.1a shows this situation.
The main mass is thus (m −mu) and is assumed to be constrained to allow only vertical
motion. The motion of the unbalanced mass m will consist of the vector combination
of its motion relative to the main mass (m − mu) and the motion of the main mass. For
a constant speed of rotation ω, the rotation produces a radial acceleration of mu equal
to εω2. This causes a force to be exerted on the bearings at the center of rotation. This
force has a magnitude muεω

2 and is directed radially outward. The vertical component
of this rotating unbalance force is, from Figure 13.2.1b,

fr = muεω
2 sin ωt (13.2.1)

(a)

mu

m � mu

�
�

k c

x

mu��2
mu��2 sin �t

mu��2 cos �t

�t

(b)

Figure 13.2.1 A machine
having rotating unbalance.
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VIBRATION ISOLATION AND ROTATING UNBALANCE

In many situations involving an unbalanced machine, we are interested in the force
that is transmitted to the base or foundation. The equation of motion of a mass-spring-
damper system, like that shown in Figure 13.2.1a, with an applied force fr (t) is

mẍ + cẋ + kx = fr (t) (13.2.2)

where x is the displacement of the mass from its rest position. The force transmitted to
the foundation is the sum of the spring and damper forces, and is given by

ft = kx + cẋ (13.2.3)

The force transmissibility of this system is the ratio Ft(s)/Fr (s), which represents the
ratio of the force ft transmitted to the foundation to the applied force fr . The most
common case of such an applied force is the rotating unbalance force. From (13.2.1),
we see that the amplitude Fr of the rotating unbalance force is

Fr = muεω
2 (13.2.4)

The transfer function is
X (s)

Fr (s)
= 1

ms2 + cs + k
(13.2.5)

Thus,

X ( jω)

Fr ( jω)
= 1

k − mω2 + cω j

and from (13.2.4),

X ( jω) = muεω
2

k − mω2 + cω j

Divide the numerator and denominator by the mass m and use the fact that ωn = √
k/m,

c/m = 2ζωn , and r = ω/ωn to obtain

X ( jω) = 1

m

muεr2

1 − r2 + 2ζr j

and

X = |X ( jω)| = muε

m

r2√
(1 − r2)2 + (2ζr)2

(13.2.6)

FORCE TRANSMISSIBILITY

From (13.2.3),

Ft(s) = (k + cs)X (s) (13.2.7)

Substituting X (s) from (13.2.5) into (13.2.7) gives

Ft(s) = k + cs

ms2 + cs + k
Fr (s)

Thus the force transmissibility is

Ft(s)

Fr (s)
= k + cs

ms2 + cs + k
(13.2.8)
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The frequency transfer function is

Ft( jω)

Fr ( jω)
= k + cω j

−mω2 + cω j + k

from which we obtain
Ft( jω)

Fr ( jω)
= 1 + 2ζ(ω/ωn) j

1 − ω2/ω2
n + 2ζ(ω/ωn) j

= 1 + 2ζr j

1 − r2 + 2ζr j

The magnitude of this expression is∣∣∣∣ Ft( jω)

Fr ( jω)

∣∣∣∣ = Ft

Fr
=

√
1 + 4ζ 2r2

(1 − r2)2 + 4ζ 2r2
(13.2.9)

This is the force transmissibility expression for a sinusoidal applied force. It is the
ratio of the amplitude Ft of the transmitted force to the steady-state amplitude Fr of the
applied force. In what follows, we will use the symbol Tr to represent the transmissibility
ratio Ft/Fr . Thus,

Tr = Ft

Fr
=

√
1 + 4ζ 2r2

(1 − r2)2 + 4ζ 2r2
(13.2.10)

Note that although the expression for force transmissibility given by (13.2.10) is iden-
tical to that of displacement transmissibility X/Y , given by (13.1.9), the expressions
arise from different physical applications.

FORCE TRANSMISSIBILITY PLOT

The force transmissibility Tr is plotted versus the frequency ratio r in Figure 13.2.2,
for several values of ζ. Note that all the curves pass through the point Tr = 1, r = √

2.
To obtain good vibration isolation, that is, to decrease the force transmitted to the
foundation, we need to make Tr small. Near resonance, when r is near 1, Tr is highly
dependent on the value of ζ . When r <

√
2, increasing ζ will decrease Tr and thus

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

� = 0.1

� = 0.3

� = 0.5

� = 1

F
or

ce
 tr

an
sm

is
si

bi
lit

y 
F

t/
F

Frequency ratio r = �/�n

Figure 13.2.2 Force
transmissibility versus r for
force excitation.



palm-38591 book December 17, 2008 12:51

772 CHAPTER 13 Vibration Applications

Table 13.2.1 Formulas for rotating unbalance.

Model
mẍ + cẋ + kx = muεω

2 sin ωt = Fr sin ωt

mu = unbalanced mass ε = eccentricity

ζ = c

2
√

mk
ωn =

√
k

m
r = ω

ωn

Displacement

X = muε

m

r 2√
(1 − r 2)2 + (2ζr)2

Force transmissibility

Tr = Ft

Fr
=

√
1 + 4ζ 2r 2

(1 − r 2)2 + 4ζ 2r 2

improve the vibration isolation. For r ≥ √
2, Tr is not so highly dependent on ζ , and

Tr decreases as ζ decreases. Thus, for r ≥ √
2, we can improve the vibration isolation

by decreasing ζ . We want to have some damping, however, because when the machine
is started, its speed increases from zero and eventually passes through the resonance
region near r = 1, and large forces can result if the machine’s speed does not pass
through the resonance region quickly enough. Some damping helps to limit the force
buildup near resonance.

If the applied force is due to rotating unbalance and has an amplitude Fr = muεω
2,

we can solve (13.2.10) for the amplitude of the transmitted force as follows:

Ft = muεω
2

√
1 + 4ζ 2r2

(1 − r2)2 + 4ζ 2r2
(13.2.11)

Table 13.2.1 summarizes these results.

EXAMPLE 13.2.1 Foundation Force Due to Rotating Unbalance

■ Problem
A system having a rotating unbalance, like that shown in Figure 13.2.1, has a total mass of
m = 20 kg, an unbalanced mass of mu = 0.05 kg, and an eccentricity of ε = 0.01 m. The
machine rotates at 1150 rpm. Its vibration isolator has a stiffness of k = 2×104 N/m. Compute the
force transmitted to the foundation if the isolator’s damping ratio is (a) ζ = 0.1 and (b) ζ = 0.5.

■ Solution
First convert the machine’s speed to radians per second.

ω = 1150 rpm = 1150(2π)

60
= 120 rad/s

Then

muεω
2 = 0.05(0.01)(120)2 = 7.25 N

and the frequency ratio is

r = ω

ωn
= ω√

k/m
= 120√

2 × 104/20
= 3.81
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We can calculate the transmissibility ratio from (13.2.10).

Tr =
√

1 + 58.1ζ 2

182.7 + 58.1ζ 2

The force transmitted to the foundation is

Ft = muεω
2Tr = 7.25Tr

a. If ζ = 0.1, Tr = 0.093 and Ft = 7.25(0.093) = 0.67 N.
b. If ζ = 0.5, Tr = 0.28 and Ft = 7.25(0.28) = 2 N. The more highly damped isolator in

this case transmits more force to the foundation because r >
√

2.

If r ≥ √
2 and if ζ is small, then the formula (13.2.10) for Tr can be replaced with

the approximate formula

Tr = 1

r2 − 1
(13.2.12)

The approximate formula can be easily solved for r as a function of Tr , as follows:

r2 = 1 + Tr

Tr
(13.2.13)

Isolation of a Motor EXAMPLE 13.2.2

■ Problem
Often motors are mounted to a base with an isolator consisting of an elastic pad. The pad serves
to reduce the motor’s rotating unbalance force transmitted to the base. A particular motor weighs
10 lb and runs at 3200 rpm. Neglect damping in the pad and calculate the pad stiffness required
to provide a 90% reduction in the force transmitted from the motor to the base.

■ Solution
A 90% force reduction corresponds to a transmissibility ratio of Tr = 0.1. Using the approximate
formula (13.2.13), we obtain

r2 = 1 + Tr

Tr
= 1.1

0.1
= 11

From the definition of r and the fact that ωn = √
k/m, we have,

r2 = ω2

ω2
n

= ω2 m

k

Thus,

k = ω2

r2
m = [3200(2π)/60]2

11

10

32.2
= 3170 lb/ft

Shaft Design with Rotating Unbalance EXAMPLE 13.2.3

■ Problem
Rotating machines such as pumps and fans must have their shafts supported by bearings, and
often are enclosed in a housing. Suppose that the rotor (the rotating element) of a specific machine
has mass of 300 kg and a measured unbalance of muε = 0.5 kg · m. The machine will be run at
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a speed of 3500 rpm, and there is a clearance of 2 mm between the shaft and the housing. The
shaft length from the bearings is L = 0.05 m. Assuming the shaft is steel, compute the minimum
required shaft diameter. Model the shaft as a cantilever beam supported by the bearings, and
neglect any damping in the system.

■ Solution
First convert the speed into rad/s: 3500 rpm = 3500(2π)/60 = 367 rad/s. From (13.2.6) with
ζ = 0,

X = muε

m

r2

|1 − r2|
We are given that m = 300 kg. With muε = 0.5 and X = 0.002 m, we have

0.002 = 0.5

300

r2

|1 − r2|
Solve this for r2 assuming that r2 > 1:

0.002 = 0.5

300

r2

r2 − 1

which gives r2 = 6 and thus

ω2
n = ω2

r2
= (367)2

6
= 2.2387 × 104

But ω2
n = k/m = k/300. Thus k = 300(2.2387 × 104) = 6.716 × 106 N/m.

From the formula for a cantilever spring,

k = 3E IA

L3

where the area moment of inertia for a cylinder is IA = πd4/64. Solving for the diameter d in
terms of k, we obtain

d4 = 64kL3

3π E
= 64(6.716 × 106)(0.05)3

3π(2.07 × 1011)
= 2.75 × 10−8

which gives a minimum shaft diameter of d = 12.9 mm.

ISOLATOR DESIGN

Commercially available isolators consist of a mount and an elastic material. In vibration
isolator design, we use the formulas in Table 13.2.1 to compute the required values for
the material’s damping c and stiffness k. Designing the isolator also must take into
account any requirements or constraints on size, shape, and weight imposed on the
mount by the particular application. The designer then must look at vendor catalogs
for existing mounts and materials that have values of c and k near the required values.
If none can be found, there is often enough latitude to recompute another set of c
and k values (that is, usually there will be more than one isolator design that will
meet the specifications). Of course, other factors normally considered in engineering
design, such as cost, ease of installation, reliability, and availability, must also be
considered.

The transmissibility formulas in Table 13.2.1 assume that the input (either force or
displacement) is sinusoidal and that the motion has reached steady state. In many appli-
cations, such as with vehicle suspensions, the input does not have a constant frequency,
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and might even be somewhat random. In light of this, the forcing frequency used for
the analysis can be chosen to represent a bound on the range of actual frequencies to be
encountered, or might represent the frequency of the input that has the greatest effect
on the system (for example, the one that has the largest amplitude). Often the engineer
must design an isolator to provide isolation over a range of frequencies, and in such
cases, the analysis must consider the isolator’s performance of a range of frequency
ratios r .

Applications where the input is not random but not sinusoidal must be handled
with more advanced methods based on transient response analysis. Sometimes the
transient requirements conflict with the steady-state requirements. For example, with
base excitation where the base motion is a step function (a suddenly applied constant
displacement), the isolator must provide protection over a wide range of frequencies,
whereas to protect against sinusoidal inputs the isolator’s stiffness and damping are
chosen to give a small ζ and r >

√
2. Thus, we often find that an isolator that provides

good protection against sinusoidal inputs will often provide poor protection against
sudden transient inputs (called shocks) and vice versa.

Usually the mass is specified by the machine or object we are trying to isolate, and
we choose the isolator’s stiffness so that r >

√
2. If that is difficult to do, noting that

r = ω
√

m/k, we see that adding mass to the machine increases r and thus can enable
an acceptable design to be achieved.

13.3 VIBRATION ABSORBERS
A vibration absorber is used to reduce vibration amplitude in situations where the
disturbance has a constant frequency. Vibration absorbers are often found on devices
that run at constant speed. These include saws, sanders, shavers, and devices powered
by ac motors, because such motors are usually designed to operate at constant speed.

The absorber is a device consisting of another mass and stiffness element, which are
attached to the main mass to be protected from vibration. The new system consisting of
the main mass and the absorber mass has a fourth-order model, and thus the new system
has two natural frequencies. If we know the frequency of the disturbing input and the
natural frequency of the original system, we can select values for the absorber’s mass
and stiffness so that the motion of the original mass is very small, which means that its
kinetic and potential energies will be small. To achieve this small motion, the energy
delivered to the system by the disturbing input must be “absorbed” by the absorber’s
mass and stiffness. Thus the resulting absorber motion may be large. Because the
principle of the absorber depends on the absorber’s motion, such devices are sometimes
called dynamic vibration absorbers. Another term for vibration absorber is a tuned mass
damper.

EXAMPLES OF VIBRATION ABSORBERS

Figure 13.3.1 illustrates a vibration absorber that is used on some passenger cars to
reduce the vibration of the exhaust pipe. It consists of a cantilever beam about 3 inches
long and clamped to the pipe. The cylinder at the beam end is the absorber mass.

Power lines and structural cables often have vibration absorbers, called Stockbridge
dampers, that are shaped somewhat like elongated dumbbells (Figure 13.3.2). These
protect the lines and cables from excessive vibration caused by the wind. Wind blowing
across the cables produces shedding vortices that cause the cables to vibrate.
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Figure 13.3.1 Vibration absorber for a
tailpipe.

m2

k2
�

Tail pipe

Absorber mass

Absorber
spring element

Figure 13.3.2 A Stockbridge damper.

Cable

Figure 13.3.3 Vibration
absorber for a tall building.

Many modern buildings and bridges have vibration absorbers to counteract the
effects of wind and earthquakes. These are quite large; for example, the one in the
Citicorp building in New York City uses a 400-ton concrete block that is allowed to slide
horizontally on an oil bearings (see Figure 13.3.3). The tower has a natural frequency
0.15 Hz. The springs were designed to allow the mass to move up to 55 inches.

Some bridges and buildings use a pendulum damper. The designer must properly
select the pendulum inertia and the pendulum length. The Taipei 101, located in Taipei,
Taiwan, has 101 floors and a tuned mass damper weighing 728 tons. It consists of a
steel sphere suspended as a pendulum from the 92nd to the 88th floor.

Other vibration absorber designs are being developed. For example, a liquid column
damper is used in the Comcast Center in Philadelphia. It consists of two columns filled
with water and connected at their bases. As the building sways, one water column
rises and the other falls as the water moves between the two columns (think of water
“sloshing” in a trough).

Design of vibration absorbers remains an exciting field, especially because of the
new capabilities provided by computer control (see Section 13.5). In this section, we
present the fundamentals of the basic absorber design.

ABSORBER ANALYSIS

Figure 13.3.4 illustrates a simple vibration absorber. The absorber consists of a mass m2

and stiffness element k2 that are connected to the main mass m1. The disturbing input



palm-38591 book December 17, 2008 12:51

13.3 Vibration Absorbers 777

k1
2

k1
2m2

m1

x1

x2
k2

Absorber

Main
mass

f Figure 13.3.4 A system
containing a vibration absorber.

is the applied force f (t), which might be due to a rotating unbalance, for example. The
equations of motion for the system are

m1 ẍ1 = −k1x1 − k2(x1 − x2) + f

m2 ẍ2 = k2(x1 − x2)

where x1 and x2 are measured from the rest positions of the masses. Applying the
Laplace transform with zero initial conditions, and collecting the X1(s) and X2(s)
terms, gives (

m1s2 + k1 + k2
)

X1(s) − k2 X2(s) = F(s)

−k2 X1(s) + (
m2s2 + k2

)
X2(s) = 0

Solve the second equation for X2(s) and substitute the result into the first equation to
eliminate X2(s). Then solve for the transfer function T1(s) = X1(s)/F(s) to obtain

T1(s) = X1(s)

F(s)
= m2s2 + k2(

m1s2 + k1 + k2
)(

m2s2 + k2
) − k2

2

(13.3.1)

Similarly, solve for the transfer function T2(s) = X2(s)/F(s) to obtain

T2(s) = X2(s)

F(s)
= k2(

m1s2 + k1 + k2
)(

m2s2 + k2
) − k2

2

(13.3.2)

If the applied force f (t) is sinusoidal with a frequency ω, we can apply the fre-
quency transfer functions to design a vibration absorber. These transfer functions are
obtained by substituting s = jω into the transfer functions T1(s) and T2(s) to obtain

T1( jω) = k2 − m2ω
2

(k1 + k2 − m1ω2)(k2 − m2ω2) − k2
2

= 1

k1

1 − (m2/k2)ω
2[

1 + k2/k1 − (
m1/k1

)
ω2

][
1 − (

m2/k2
)
ω2

] − k2/k1

Define the frequency ratios r1 and r2 to be

r1 = ω

ωn1

= ω√
k1/m1

(13.3.3)

r2 = ω

ωn2

= ω√
k2/m2

(13.3.4)
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Then we can write T1( jω) as follows:

T1( jω) = 1

k1

1 − r2
2(

1 + k2/k1 − r2
1

)(
1 − r2

2

) − k2/k1
(13.3.5)

Similarly we obtain

T2( jω) = k2

(k1 + k2 − m1ω2)(k2 − m2ω2) − k2
2

= 1

k1

1(
1 + k2/k1 − r2

1

)(
1 − r2

2

) − k2/k1
(13.3.6)

Define

b = ωn2

ωn1

μ = m2

m1

and note that

k2

k1
= m2

m1

m1

k1

k2

m2
= μ

(
ωn2

ωn1

)2

= μb2

and

r2
1 =

(
ω

ωn1

)2

=
(

ωn2

ωn1

ω

ωn2

)2

= b2r2
2

Thus, T1( jω) and T2( jω) become

T1( jω) = 1

k1

1 − r2
2(

1 + μb2 − b2r2
2

)(
1 − r2

2

) − μb2

= 1

k1

1 − r2
2

b2r4
2 − [

1 + (1 + μ)b2
]
r2

2 + 1
(13.3.7)

T2( jω) = 1

k1

1

b2r4
2 − [

1 + (1 + μ)b2
]
r2

2 + 1
(13.3.8)

Note that there are no imaginary terms in these expressions because there is no damping
in the model. Thus, both frequency transfer functions are real numbers.

ABSORBER DESIGN METHOD

Because X1(s) = T1(s)F(s), we have X1( jω) = T1( jω)F( jω). Therefore, if the
applied force is f (t) = F sin ωt , the steady-state motion of mass m1 will be given by
x1(t) = X1 sin(ωt + φ1), where

X1 = |T1( jω)| F

For m1 to be motionless requires that X1 = 0, which can be achieved if |T1( jω)| = 0.
From (13.3.7) we see that |T1( jω)| = 0 if 1 − r2

2 = 0, which implies that r2 = ±1.
Because r2 cannot be negative by definition, we see that the absorber design equation
is given by r2 = 1; that is,

r2 = ω

ωn2

= 1 (13.3.9)
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or

ωn2 =
√

k2

m2
= ω (13.3.10)

Thus, the mass m1 will be motionless if we select an absorber having the same natural
frequency ωn2 as the frequency ω of the applied force. If this is done, the absorber is
said to be “tuned” to the input frequency.

If r2 = 1, the expression (13.3.8) for T2( jω) becomes

T2( jω) = 1

k1

1

b2 − 1 − (1 + μ)b2 + 1
= − 1

k2

Thus, if the absorber is designed so that r2 = 1, then

X2( jω) = − 1

k2
F( jω) (13.3.11)

and the amplitude of the absorber’s motion will be

X2 = |X2( jω)| = 1

k2
F (13.3.12)

Thus the absorber’s motion at steady state will be

x2(t) = X2 sin(ωt + φ2) = F

k2
sin(ωt + π) = − F

k2
sin ωt

If r2 = 1, then X1 = 0. Thus we can see that the absorber’s spring force acting on the
main mass is

k2(x2 − x1) = k2x2 = −F sin ωt (13.3.13)

Thus, if the absorber is tuned to the input frequency and its motion has reached steady
state, the force acting on the absorber’s mass has the same magnitude F as the applied
force but is in the opposite direction. This causes the net force acting on the main mass
to be zero; therefore, it does not move.

Equation (13.3.12) shows that in practice, the allowable clearance for the absorber’s
motion X2 puts a limit on the allowable range of the absorber’s stiffness k2. Note also
that the absorber’s stiffness element k2 must be able to support the force F and the
compression or extension X2 it causes.

The absorber design formulas are summarized in Table 13.3.1.

Table 13.3.1 Design formulas for absorber design.

Definitions
F sin ωt = force to be suppressed

m2 = absorber mass

k2 = absorber stiffness

X2 = allowable clearance for the absorber motion

Design Equations

k2 = F

X2

m2 = k2

ω2
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EXAMPLE 13.3.1 Design of a Vibration Absorber

■ Problem
A certain machine with supports has a measured natural frequency of 5 Hz. The machine will
be subjected to a rotating unbalance force having an amplitude of 2 lb and a frequency of 4 Hz.
Design a dynamic vibration absorber for this machine. The available clearance for the absorber’s
motion is 0.5 in.

■ Solution
The frequency of the applied force is ω = 2π(4) = 8π rad/sec. The absorber’s design requires
that ωn2 = ω = 8π . Thus

ωn2 =
√

k2

m2
= 8π

Solve for the mass:

m2 = k2

64π2

The maximum allowable clearance is 0.5 in. = 1/24 ft. Using (13.3.12), we obtain

1

24
= F

k2
= 2

k2

or k2 = 48 lb/ft. Thus, the absorber’s mass must be

m2 = k2

64π2
= 48

64π2
= 0.076 slug

Successful application of a vibration absorber depends on the disturbing frequency
being known and constant. If the absorber’s natural frequency is not exactly equal
to the input frequency, the main mass will oscillate, and the amplitude of oscillation
depends on the difference between the input frequency and the absorber’s frequency.
Another difficulty with absorber design is that the combined system now has two natural
frequencies. If the input frequency is close to one of the natural frequencies, resonance
will occur. Finally, the model used here does not include damping. If appreciable
damping is present, motion of the main mass may not be small. It is advisable to perform
a sensitivity analysis of the combined system to determine the effects of uncertainty in
the input frequency.

EXAMPLE 13.3.2 Sensitivity Analysis of Absorber Design

Suppose the main mass in the system in Example 13.3.1 has the value m1 = 0.8 slug. Evaluate
the sensitivity of the absorber design to variations in the input frequency.

■ Solution
The absorber values from the previous example are k2 = 48 lb/ft and m2 = 0.076 slug. The
natural frequency of the machine with its supports, in radians per second, is ωn1 = 2π(5) =
10π rad/sec. Thus, the stiffness is

k1 = ω2
n1

m1 = (10π)20.8 = 790 lb/ft



palm-38591 book December 17, 2008 12:51

13.3 Vibration Absorbers 781

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20
X

1/
m

�
 (s

lu
g–1

)

� (rad/sec)

Figure 13.3.5 Frequency
response of a vibration
absorber.

and

r1 = ω

ωn1

= ω

10π

r2 = ω

ωn2

= ω

8π

Substituting these values into (13.3.5) with F = mεω2, we obtain

X1

mε
=

∣∣∣∣ ω2(1 − ω2/64π2)

(1.061 − ω2/100π2)(1 − ω2/64π2) − 0.061

∣∣∣∣ 1

790

Figure 13.3.5 shows a plot of X1/mε versus ω. The plot shows that resonance occurs when
the input frequency ω is near one of the two natural frequencies, which can be found from the
roots of the denominator of X1/mε. These frequencies are 23.54 and 33.53 rad/sec. The plot
indicates the sensitivity of the design to changes in ω. From this plot, we can see that the motion
amplitude of the main mass will be large if the input frequency is less than approximately 95%
of its design value of 8π = 25.13 rad/sec.

DAMPING IN VIBRATION ABSORBERS

The analysis in this section is based on a model with no damping. This has two im-
plications. First of all, the equations X1 = |T1(iω)|F and X2 = |T2(iω)|F are strictly
true only if the system is stable and at steady state. Because our absorber model has no
damping, it is not stable, but is neutrally stable. Nevertheless, these equations are widely
used because the inclusion of damping complicates the mathematics. The assumption
made is that in practice every real system will have some damping. In addition, the
transient response has not been accounted for, and this could affect the acceptability of
absorber design.

The second implication is that the existence of damping in the real system could
also affect the acceptability of absorber design. There has been much analysis of the
design of absorbers with damping intentionally added, but this is a very complicated
topic, and the results are not easily presented in a concise form.
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Figure 13.3.6 Response of an undamped
vibration absorber.
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To show the effects of damping, we now include a damper between the mass m1

and the support. The transfer functions are

X1(s)

F(s)
= m2s2 + k2

(m1s2 + cs + k1 + k2)(m2s2 + k2) − k2
2

(13.3.14)

X2(s)

F(s)
= k2

(m1s2 + cs + k1 + k2)(m2s2 + k2) − k2
2

(13.3.15)

Let us use the values calculated in Examples 13.3.1 and 13.3.2. These are m1 = 0.8
slug, m2 = 0.076 slug, k1 = 790 lb/ft, and k2 = 48 lb/ft. The forcing function is
f (t) = 2 sin 8π t . The response without damping (c = 0), is shown in Figure 13.3.6.
Note that beating occurs and so the masses do not oscillate at a single frequency, the
frequency of the forcing function. This is due to the two natural frequencies, which are
23.54 and 33.53 rad/s. Note that the amplitude of the main mass m1 is not zero, and the
amplitude of the absorber mass m2 is greater than the allowable clearance of 0.042 ft
(0.5 in.), so we have obtained results different than those predicted by the steady-state
analysis. The reason is that the steady-state analysis is based on the undamped model,
which is neutrally stable.
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Figure 13.3.7 Response of a damped
vibration absorber.
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If we add damping, say c = 10 lb·sec/ft, the total response is like that shown in
Figure 13.3.7. Now we see that the absorber is oscillating at the forcing frequency, and
its amplitude at steady state is 0.042 ft as predicted. The main mass is motionless at
steady state, also as predicted.

From Figure 13.3.7, you might erroneously conclude that damping is causing the
main mass m1 to be motionless at steady state, but this is not true. Figure 13.3.8 shows
the response for the case with damping, but where the absorber mass is one-fourth of
its design value. Now we see that the main mass is not motionless but oscillates with
an amplitude of approximately 0.005 ft.

13.4 MODES OF VIBRATING SYSTEMS
Systems having multiple degrees of freedom, such as multiple masses connected by
elastic or damping elements, can exhibit complicated behavior. Their free response is
the sum of certain behavior patterns called modes. Knowledge of these modes enables
us to understand better the response of such systems.

Consider an undamped two-mass system like that shown in Figure 13.4.1, where x1

and x2 are the displacements of the masses. The characteristic roots will be imaginary;
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Figure 13.3.8 Response of a damped
vibration absorber having a nonoptimal mass
value.
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Figure 13.4.1 A vibrating
system.
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s = ± jb1 and s = ± jb2. The free response for x1 has the form

x1(t) = A11e jb1t + A12e− jb1t + A13e jb2t + A14e− jb2t

where A11 and A12 are complex conjugates, as are A13 and A14. Thus the imaginary
parts in the expression for x1(t) will cancel, leaving x1(t) to be real. This expression
can be put into the form

x1(t) = B1 sin(b1t + φ1) + B2 sin(b2t + φ2) (13.4.1)

Similarly, the response of x2 has the form

x2(t) = r1 B1 sin(b1t + φ3) + r2 B2 sin(b2t + φ4) (13.4.2)



palm-38591 book December 17, 2008 12:51

13.4 Modes of Vibrating Systems 785

where r1 and r2 are called the mode ratios for the first and second modes. The first
mode is a motion in which x2(t) = r1x1(t). In the second mode, x2(t) = r2x1(t). The
displacement in each mode is sinusoidal with a fixed amplitude. From (13.4.1) and
(13.4.2), we see that the complete motion in general is a linear combination of the two
modes.

The velocity in each mode is cosinusoidal and easily found from the displacements.
For example, if the velocity of the first mass is v1 = ẋ1, then from (13.4.1),

v1 = ẋ1 = b1 B1 cos(b1t + φ1) + b2 B2 cos(b2t + φ2)

Even though this is a fourth-order system, we need be concerned with only two modes—
the modes dealing with displacements. The other two modes describe the velocities,
which in an undamped vibrating system are easily found, as already shown.

When there is no damping in the model, it is easier to perform the modal analysis
using the second-order reduced model for each mass in the system. The undamped
model can be arranged so that the mode ratios are real and are ratios of displacements
only, and thus are easier to interpret. This is one reason why damping is often neglected
when making a modal analysis of a vibratory system. If the damping is slight, the
characteristic roots and modes will be almost the same as those of the undamped model.
Even if the damping is not small, the insight gained from the undamped analysis is often
quite useful for design purposes. If damping is to be accounted for in the modal analysis,
the state variable form is easier to use.

Modes of Two Masses in Translation EXAMPLE 13.4.1

■ Problem
Find and interpret the mode ratios for the system shown in Figure 13.4.1, for the case m1 =
m2 = m, k1 = k3 = k, and k2 = 2k.

■ Solution
The equations of motions for the system are

m1 ẍ1 = −k1x1 − k2(x1 − x2)

m2 ẍ2 = k2(x1 − x2) − k3x2

Substitute x1(t) = A1est and x2(t) = A2est into the preceding differential equations, cancel the
est terms, and collect the coefficients of A1 and A2 to obtain(

m1s2 + k1 + k2

)
A1 − k2 A2 = 0 (1)

−k2 A1 + (
m2s2 + k2 + k3

)
A2 = 0 (2)

To have nonzero solutions for A1 and A2, the determinant of the above equations must be zero.
Thus, ∣∣∣∣ m1s2 + k1 + k2 −k2

−k2 m2s2 + k2 + k3

∣∣∣∣ = 0

Expanding this determinant gives(
m1s2 + k1 + k2

)(
m2s2 + k2 + k3

) − k2
2 = 0 (3)

Using m1 = m2 = m, k1 = k3 = k, and k2 = 2k, we obtain(
ms2 + 3k

)2 − 4k2 = 0
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or

m2s4 + 6kms2 + 5k2 = 0

This can be simplified to

s4 + 6αs2 + 5α2 = 0

where α = k/m.
This polynomial has four roots because it is fourth order. We can solve it for s2 using the

quadratic formula because it is quadratic in s2 (there is no s term or s3 term). To see why this is
true, let u = s2. Then the preceding equation becomes

u2 + 6αu + 5α2 = 0 (4)

which has the solutions u = −α and u = −5α. Thus s = ± j
√

α and s = ± j
√

5α. The two
modal frequencies are thus ω1 = √

α and ω2 = √
5α.

The mode ratio can be found from either equation (1) or (2). Choosing the former, we obtain

A1

A2
= 2k

ms2 + 3k
= 2α

s2 + 3α

The mode ratio A1/A2 can be thought of as the ratio of the amplitudes of x1 and x2 in that mode.
For the first mode, s2 = −α and A1/A2 = 1. For the second mode, s2 = −5α and A1/A2 = −1.
Thus, in mode 1 the masses move in the same direction with the same amplitude. This oscillation
has a frequency of ω1 =

√
k/m. In mode 2, the masses move in the opposite direction but with

the same amplitude. This oscillation has a higher frequency of ω2 =
√

5k/m.
The specific motion depends on the initial conditions, and in general is a combination of

both modes. If the masses are initially displaced an equal distance in the same direction and then
released, only the first mode will be stimulated. Only the second mode will be stimulated if the
masses are initially displaced an equal distance but in opposite directions.

For the system treated in Example 13.4.1, the modes were symmetric because the
system is symmetric about its middle. In general, this is not the case, however.

EXAMPLE 13.4.2 Nonsymmetric Modes

■ Problem
Find and interpret the mode ratios for the system shown in Figure 13.4.1, for the case m1 = m,
m2 = 3m, k1 = k, and k2 = k3 = 2k.

■ Solution
For this case, equation (3) in Example 13.4.1 becomes

3u2 + 13αu + 8α2 = 0

where u = s2 and α = k/m. From the quadratic formula we obtain u = −0.743α and u =
−3.591α. Thus the two modal frequencies are ω1 = √

0.743α = 0.862
√

k/m and ω2 =√
3.591α = 1.89

√
k/m. From equation (1) of Example 13.4.1 the mode ratios are computed as

A1

A2
= 2α

s2 + 3α
= 0.886
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for mode 1, and

A1

A2
= 2α

s2 + 3α
= −3.39

for mode 2.
Thus in mode 1 the masses move in the same direction with the amplitude of mass m1 equal

to 0.886 times the amplitude of mass m2. This oscillation has a frequency of ω1 = 0.862
√

k/m.
In mode 2, the masses move in the opposite direction with amplitude of mass m1 equal to 3.39
times the amplitude of mass m2. This oscillation has a higher frequency of ω2 = 1.89

√
k/m.

To stimulate the first mode, displace mass m1 0.866 times the initial displacement of mass
m2, in the same direction. To stimulate the second mode, displace mass m1 3.39 times the initial
displacement of mass m2, but in the opposite direction.

In practice, we usually need not solve for the mode amplitudes in terms of the
initial conditions, because sufficient insight for design purposes can be gained from the
mode ratios alone.

MODES OF A SYSTEM IN ROTATION AND TRANSLATION

The mode concept is also useful for understanding the motion of systems having more
than one degree of freedom, for example, combined rotation and translation. A repre-
sentation of a vehicle suspension suitable for modeling the vehicle’s bounce and pitch
motions is shown in Figure 13.4.2a, which is a side view of the vehicle’s body showing
the front and rear suspensions. Assume that the car’s motion is constrained to a vertical
translation x of the mass center and rotation θ about a single axis that is perpendicular
to the page. The body’s mass is m and its moment of inertia about the mass center is IG .
As usual, x and θ are the displacements from the equilibrium position corresponding
to y1 = y2 = 0. The displacements y1(t) and y2(t) can be found knowing the vehicle’s
speed and the road surface profile.

Assuming that x and θ are small, we can derive the equations of motion for the
bounce motion x and pitch motion θ as follows. The small displacement assumption
implies that the suspension forces are nearly perpendicular to the centerline of the mass
m, and thus are nearly vertical (see Figure 13.4.2b). To draw the free body diagram,

Figure 13.4.2 (a) Simple model of vehicle
bounce and pitch. (b) Free body diagram.
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assume arbitrarily that

y1 > x − L1θ

y2 > x + L2θ

The force equation in the vertical direction gives

mẍ = k1(y1 − x + L1θ) + k2(y2 − x − L2θ) (13.4.3)

The moment equation is

IG θ̈ = −k1(y1 − x + L1θ)L1 + k2(y2 − x − L2θ)L2 (13.4.4)

We can set the inputs y1(t) and y2(t) to zero because we need only the free response
to find the modes. Make the substitutions x(t) = A1est and θ(t) = A2est into the
preceding differential equations, cancel the est terms, and collect the coefficients of A1

and A2 to obtain

(ms2 + k1 + k2)A1 + (k2L2 − k1L1)A2 = 0 (13.4.5)

(k2L2 − k1L1)A1 + (
IGs2 + k1L2

1 + k2L2
2

)
A2 = 0 (13.4.6)

To have nonzero solutions for A1 and A2, the determinant of the above equations must
be zero. Thus ∣∣∣∣∣ ms2 + k1 + k2 (k2L2 − k1L1)

(k2L2 − k1L1) IGs2 + k1L2
1 + k2L2

2

∣∣∣∣∣ = 0

Expanding this determinant gives

(ms2 + k1 + k2)
(

IGs2 + k1L2
1 + k2L2

2

) + (k2L2 − k1L1)
2 = 0 (13.4.7)

or

m IGs4 + [
m

(
k1L2

1 + k2L2
2

) + IG(k1 + k2)
]
s2 + k1k2(L1 + L2)

2 = 0 (13.4.8)

This polynomial has four roots but is quadratic in s2.

EXAMPLE 13.4.3 Pitch and Bounce Modes of a Vehicle

■ Problem
Determine the mode shapes and mode frequencies of the vehicle shown in Figure 13.4.2.

■ Solution
The mode ratio can be found from either (13.4.5) or (13.4.6). Choosing the former, we obtain

A1

A2
= k1 L1 − k2 L2

ms2 + k1 + k2
(1)

The mode ratio A1/A2 can be thought of as the ratio of the amplitudes of x and θ in that mode.
From Figure 13.4.3a we find that

tan θ = x

D

and for small angles θ ,

D ≈ x

θ
= A1

A2
(2)
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Figure 13.4.3 (a) Node location. (b) Bounce
center. (c) Pitch center.
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The distance D locates a point called a “node” or “motion center” at which no motion occurs (that
is, a passenger located at a node would not move if the vehicle were moving in the corresponding
mode). Thus, there are two nodes, one for each mode.

Equation (1) shows that A1, the amplitude of x , will be zero if

k1 L1 − k2 L2 = 0 (3)

In this case, equation (2) shows that D = 0. Thus, no coupling exists between the bounce motion
x and the pitch motion θ , and the node for each mode is at the mass center. As we will discuss
shortly, this condition will result in poor ride quality. Note also, that if equation (3) is satisfied,
the characteristic equation (13.4.7) can be factored as follows:

(ms2 + k1 + k2)
(

IGs2 + k1 L2
1 + k2 L2

2

) = 0

or

ms2 + k1 + k2 = 0 (4)

IGs2 + k1 L2
1 + k2 L2

2 = 0 (5)

Each of these equations has a pair of imaginary roots. Thus both modes are oscillatory, and the
modal frequencies are

ω1 =
√

k1 + k2

m

ω2 =
√

k1 L2
1 + k2 L2

2

IG

Locating Node Points EXAMPLE 13.4.4

■ Problem
Evaluate the mode shapes and mode frequencies of the vehicle shown in Figure 13.4.2 for the
case: k1 = 1.6 × 104 N/m, k2 = 2.5 × 104 N/m, L1 = 1.5 m, L2 = 1.1 m, m = 730 kg, and
IG = 1350 kg · m2.
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■ Solution
Dividing the characteristic equation (13.4.8) by m IG and using the given values for the constants,
we obtain

s4 + 105.24s2 + 2744 = 0

The quadratic formula gives the roots s2 = −57.61, −47.63. Thus, the four characteristic roots
are

s = ±7.59 j, ±6.901 j

These correspond to frequencies of 1.21 Hz and 1.1 Hz.
The mode ratio can be found from equation (1) of Example 13.4.3.

A1

A2
= x

θ
= −3500

730s2 + 4.1 × 104
(1)

For mode 1 (s2 = −57.61),

x

θ
= −3500

730(−57.61) + 4.1 × 104
= 3.32 m

Thus the node is located 3.32 m behind the mass center. Because this node is so far from the
mass center, the motion in this mode is predominantly a bounce motion, and this node is called
the “bounce center”(see Figure 13.4.3b).

For mode 2 (s2 = −47.63),

x

θ
= −3500

730(−47.63) + 4.1 × 104
= −0.562 m

This node is located 0.562 m ahead of the mass center (because x/θ < 0). Because this node is
close to the mass center, the motion in this mode is predominantly a pitching motion, and this
node is called the “pitch center” (see Figure 13.4.3c).

EXAMPLE 13.4.5 Sensitivity of Node Location

■ Problem
For the vehicle in Example 13.4.4, investigate the sensitivity of the bounce and pitch node
location to uncertainty in the parameter values.

■ Solution
Rearrange the mode ratio expression to obtain

A1

A2
= x

θ
= k1 L1 − k2 L2

m

1

ω2
1 − ω2

where we have defined ω2 = −s2, and ω1 as the natural frequency of a concentrated mass m
attached to two springs k1 and k2:

ω1 =
√

k1 + k2

m

The value of ω2 = −s2 is obtained from the characteristic equation. If ω2 is close to ω2
1, then

the denominator of x/θ will be very small, and x/θ will be very large. In addition, any slight
change in the values of ω2

1 or ω2 due to changes in the parameters k1, k2, L1, L2, m, or IG will
cause large changes in the value of x/θ and thus large changes in the node location. In Example
13.4.4, ω2

1 = 4.1 × 104/730 = 56.16. One of the roots gives s2 = −57.61, which is close to
−56.16. Thus we can expect large changes in the node location if slightly different parameter
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values are used. The other root gives s2 = −47.63, which is not as close to −56.16; thus, the
corresponding node location will not be as sensitive.

If it is important to have a reliable prediction for the node location, the parameters must be
selected—usually by trial and error—so that ω2 is not close to ω2

1.

PLACING THE BOUNCE AND PITCH CENTERS

In the 1930s Maurice Olley discovered that the best road vehicle ride is obtained by
placing the bounce center behind the rear axle and the pitch center near the front
axle. This is accomplished by designing the front suspension to have a lower natural
frequency than the rear suspension, and is true because bounce motion is less annoying
than pitch motion. Since road excitation affects the front wheels first, a lower front
suspension natural frequency will tend to induce bounce rather than pitch.

Olley developed other rules of thumb, which are still used today [Gillespie, 1992].

1. If the front-rear weight distribution is approximately equal, the front suspension
should have a 30% lower ride rate than the rear, or the spring center should be at
least 6.5% of the wheelbase behind the center of gravity. (The spring center is the
point at which an applied vertical force will produce only vertical displacement.)
When the spring center is at the center of gravity, there is no coupling between
the bounce and pitch motion, and poor ride quality results because the total
motion is irregular.

2. The bounce frequency should be within 20% of the pitch frequency. Otherwise
the superposition of the two modes will result in irregular, annoying motions. The
roll frequency should be close to the bounce and pitch frequencies for the same
reason.

3. The bounce and pitch frequencies should be kept as low as possible (≤1.3 Hz if
possible), consistent with any upper limit on static deflection. This is because the
most severe road acceleration inputs occur at higher frequencies.

EFFECTIVE STIFFNESS AND SUSPENSION DESIGN

Figure 13.4.4 Quarter-car
model including wheel-tire
mass.
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The primary purpose of a road vehicle’s suspension is to keep the tires in contact with the
road. The secondary purpose is to give the passengers a smooth ride. Proper design of
the wheel suspension provides the primary source of isolation from the road roughness.
The quarter-car model is the basis for the suspension system’s design. Referring to
Figure 13.4.4, the ride rate ke is the effective stiffness of the suspension spring and the
tire stiffness, neglecting the wheel mass m2. Thus, ke = k1k2/(k1 + k2). If m2 � m1,
the suspension system’s undamped natural frequency is approximately ωn = √

ke/m1

and its damping ratio is ζ = c1/2
√

kem1. Most modern cars have a suspension damping
ratio ζ between 0.2 and 0.4, and thus their damped natural frequency ωd is very close
to ωn .

The suspension’s static deflection due to the weight m1g is 	 = m1g/ke, and thus
	 = m1g/m1ω

2
n = g/ω2

n . A natural frequency of 1 Hz (ωn = 2π rad/sec) is considered
to be a design optimum for highway vehicles, and this corresponds to a static deflection
of 	 = 9.8 in. For a vehicle weighing 3200 lb, this deflection requires an effective
stiffness of ke = m1g/	 = 0.25(3200)(9.8) = 81.6 lb/in. With a tire stiffness of
k2 = 1200 lb/in., the supension stiffness must be k1 = kek2/(k2 − ke) = 87.6 lb/in.
[Gillespie, 1992].
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13.5 ACTIVE VIBRATION CONTROL
Sophisticated actuators and sensors, and miniaturized, low-cost computers have greatly
increased the number of applications for active control of vibration. The core of an
active vibration controller is typically a microprocessor-based system with analog-to-
digital converters to process sensor inputs and digital-to-analog converters to convert
the microprocessor’s output commands into signals to the actuator (Figure 13.5.1). The
term active originates from the fact that such systems require an active power source.

The actuator applies a force to the mass whose vibration is to be reduced. The sensor
measures the motion of the mass (either its displacement, velocity, or acceleration,
depending on the application). The control algorithm programmed in the computer
uses these measurements to decide how much force should be applied.

The vibration isolators and vibration absorbers treated in Sections 13.1 through 13.3
have the disadvantage of working only at certain frequencies, because their stiffness
and damping—and in the case of vibration absorbers, their mass—are fixed and cannot
be changed without replacing the appropriate component. Another advantage of active
vibration control systems is that they can change the effective stiffness and damping
without adding much weight. Because such systems require a power source, many
are designed to be fail-safe. For example, a fail-safe damper provides the minimum
required damping in the event of a power supply or computer system failure.

Several terms are used to describe active vibration control systems. Structures such
as buildings, bridges, aircraft cabins, and aircraft wings containing such systems are
called smart or intelligent structures. Structural materials having the controller embed-
ded in them are called smart materials. Smart dampers and active shock absorbers are
dampers that can change their damping properties under computer control.

APPLICATIONS OF ACTIVE VIBRATION CONTROL

Examples of current applications of this technology include

■ Reduction of building sway caused by wind and seismic waves using hybrid mass
dampers that apply a controlled force to a large movable weight. Recall that the
vibration absorbers we have thus far seen are limited because they must be
designed for a known, fixed frequency.

■ Active suspensions in motor vehicles.
■ Reduction of aircraft cabin noise by reducing the vibration of the large panels of

thin metal that form the cabin walls.
■ Piezoelectric devices installed on the trailing edge of helicopter blades to dampen

vibrations.

Figure 13.5.1 Active
suspension system for one
wheel of a vehicle.
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■ Reduction of tabletop vibrations to the level necessary for precision
manufacturing, such as the manufacture of semiconductors.

■ Damping out floor vibrations with an electromagnetic shaker.
■ Smart skis that dampen vibrations.
■ Active dampers in bicycles.
■ Vibration-dampening devices embedded in sporting equipment such as tennis

racquets, snowboards, baseball bats, and golf clubs.
■ Active stiffness control in running shoes.

ACTUATORS FOR ACTIVE VIBRATION CONTROL

Piezoelectric materials can convert electrical current into motion, and vice versa (see
Section 6.6). They change shape when an electric current passes through them, and
generate an electric signal when they flex. Thus they can be used as actuators, to create
force or motion, and as sensors, to sense motion. Other materials used for high-precision
actuation include electrostrictive and magnetostrictive materials, which are similar to
piezoelectric materials. These are ferromagnetic materials that expand or contract when
subjected to an electric or a magnetic field.

A magneto-rheological fluid changes its viscosity when subjected to a magnetic
field. The viscosity of such fluids can be changed from that of water to that of pudding
in milliseconds. Some engineering development has been done with using so-called
magneto-rheological fluid dampers for smart dampers. Such actuators cannot provide
enough force for larger applications, such as vehicle suspensions and control of building
motions. In building applications, hydraulic cylinders are usually used. Active vehi-
cle suspensions use hydraulic devices, electric motors, and magneto-rheological fluid
dampers.

Some active systems using accelerometers and piezoelectric actuators are employed
to isolate precision microlithography, metrology, and inspection equipment in advanced
semiconductor factories to cancel motion caused by floor motion. In these processes, a
silicon wafer must be positioned relative to optical or other components by placing the
wafer on a heavy or fast-moving stage that can cause the entire system to vibrate. The
resulting small motion of several millimeters may still be larger than the resolution of
the instrument, which may be as small as 1 nm.

ELEMENTARY CONTROL THEORY FOR ACTIVE
VIBRATION CONTROL

Consider the system shown in Figure 13.5.1. We wish to control the vibration of the
mass m with the actuator that applies a force f to the mass. The force fe(t) is disturbance
force such as that caused by rotating unbalance. The equation of motion is

mẍ + cẋ + kx = f (t) + fe(t) (13.5.1)

Assume we have a sensor that measures the displacement x and the velocity ẋ of the
mass. A computer takes these measurements in real time, computes the required force
f necessary to control the motion, and commands the actuator to supply that amount of
force. The stiffness k and damping c are either inherently part of the system structure
or are inserted to provide for fail-safe operation.

If we program the computer to control the force f in a manner that is proportional
to x and to ẋ , then the control algorithm is

f (t) = −K P x − K Dẋ (13.5.2)
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where K P and K D are constants whose value must be determined by the designer
and programmed into the computer. In control system terminology, these constants are
called the proportional and derivative gains (see Chapter 10). Substituting (13.5.2) into
(13.5.1) and collecting terms gives

mẍ + (c + K D) ẋ + (k + K P) x = fe(t) (13.5.3)

We immediately see that the gain K P acts like an artificial stiffness and the gain K D

like an artificial damper. Thus we can change the effectiveness stiffness and damping
by properly selecting the gains.

For example, the effective damping ratio is

ζ = c + K D

2
√

m(k + K P)
(13.5.4)

and the effective natural frequency is

ωn =
√

k + K P

m
(13.5.5)

If ζ ≤ 1, then the time constant is

τ = 2m

c + K P
(13.5.6)

So if we know m, c, and k, we can compute the values of K P and K D to achieve desired
values of ζ , ωn , or τ . Note that the gains need not be positive. If the effective stiffness
or damping needs to be smaller than k or c, then the gains will be negative.

The success of this scheme depends on several factors:

■ The ability of the sensors to provide accurate measurements of x and ẋ in real
time. Noise in the measured signal will degrade the system performance. Some
systems do not measure the velocity but rather differentiate the x measurement.
This will increase the noise in the signal representing ẋ .

■ The ability of the computer to perform the necessary calculations in real time.
Although microprocessor speed is continually increasing, some microprocessors
may not be fast enough for certain applications.

■ The ability of the actuator to provide the needed force level. All actuators have a
limit on the force they can generate. This limitation frequently gets lost in the
mathematics of the design, and must be considered when setting the desired
values of ζ , ωn , or τ . If the magnitudes of the gains K P and K D are too large, the
actuator might not be able to provide the expected force.

CONTROL OF MULTI-MASS SYSTEMS

Figure 13.5.2 illustrates the principle of an active suspension for one wheel. An actuator
located between the wheel (mass m1) and the chassis (mass m2) supplies force f to
both the wheel and the chassis. This force supplements the passive spring k2 and passive
damper c. The tire stiffness is k1. If we choose the control the force f so that it imitates
a spring and damper, like the PD control, then the control algorithm is

f = K P(x1 − x2) + K D(ẋ1 − ẋ2)

Figure 13.5.2 An active
suspension.
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This requires measurements of the relative displacement x1−x2 and the relative velocity
ẋ1 − ẋ2. If this is substituted into the equations of motion, theoretically we can compute
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values for K P and K D to achieve a desired set of characteristic roots corresponding
to desired damping ratios, natural frequencies, and time constants. The difficulty with
this approach is that there will be four roots, because this is a fourth order system, and
so we cannot expect to be able to specify all four roots by choosing the values of only
two gains.

Another approach is to use measurements of all four variables: x1, x2, ẋ1, and ẋ2,
and the control algorithm is called state variable feedback (see Chapter 11).

f = K1x1 + K2x2 + K3 ẋ1 + K4 ẋ2

We now have four gains to select in order to place the four roots where desired. It turns
out that this is not always possible and that the mathematics required to solve for the
gain values is quite difficult. In practice, solution algorithms provided by MATLAB
will do this (see the acker function in Chapter 11).

EXAMPLES OF CURRENT APPLICATIONS

Active Suspensions Traditional vehicle suspensions with fixed springs and dampers
cannot provide both the smooth ride of a luxury car and the precise handling of a
sports car, but, with an active suspension, such a goal is closer to being realized. Versions
of active suspensions have been available since the 1990s. As of 2008, however, there
is no truly active suspension available commercially. The most sophisticated system
currently available, made by Delphi, uses a damper filled with a magneto-rheological
fluid. The system uses a controlled magnetic field that can change the viscosity 1000
times a second.

Under development by the Bose Corp. since 1980, another system uses speaker-coil
technology to drive linear electrical motors attached to each wheel. Such motors produce
translation rather than rotation, and so imitate the forces provided by springs and
dampers. One of the challenges is to develop control algorithms that provide effective
coordination of all four wheel subsystems. This is necessary for proper vehicle control
in sharp turns and sudden stops, for example.

The sports industry has developed a number of applications for active vibration
control. These include skis, bike suspensions, and running shoes.

Skis Skis can vibrate excessively at high speeds, on hard snow, and on rough terrain.
This vibration decreases the contact area between the ski edge and the snow surface
and results in a reduced ability of the skier to control the motion. Smart skis designed
to keep the edge of the ski in contact with the snow have been developed by the K2
Corp and by Head. Because tests indicated that most vibrations are concentrated near
the ski binding and propagate outwards to the rest of the ski, a piezoelectric ceramic
plate is mounted in front of the ski binding. When current is applied to the element it
flexes and applies force to the ski to change its shape. As the ski flexes, it generates
electricity to power the system.

Bikes Piezoelectric materials have been used to develop a smart bicycle shock ab-
sorber to assist in keeping the wheel in contact with the ground and to minimize the
force transmitted to the rider. Some bikes have suspensions in both the front and the
rear, but the control of the front suspension is more critical. The front suspension con-
sists of a pair of telescoping cylinders—called fork tubes—that contain springs and
dampers. These can be arranged in parallel, series, or any desired combination. The
system monitors the position and velocity of the piston inside the fluid-filled cylinder
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using a magnet attached to the piston and a sensor that detects the flux density of the
magnetic field and converts it to a voltage.

Compression damping helps to control the rate of shock compression. Too much
compression damping will transmit a large force to the rider, but too little compression
damping will cause the shock to bottom out quickly. The smart shock absorber auto-
matically adjusts compression damping with varying trail conditions, by commanding
a piezoelectric bypass valve to open or close, thus increasing or decreasing the fluid
resistance. To do this, some designs use a main hydraulic flow path (for fail-safe op-
eration) and a by-pass flow path that is normally closed by a flexible cantilever beam
that acts like a flapper valve. An element consisting of layers of piezoelectric ceramic
wafers is bonded to the beam. These layers expand when an electric current is applied.
When a current is applied to the piezoelectric element by the controller, the beam
flexes and opens an additional hydraulic flow path to reduce the resistance. The beam
displacement can be controlled in increments to provide fine control of the damping.

Running Shoes In 2005 Adidas introduced a running shoe that uses active stiffness
control with a battery-powered microprocessor and motor. The motor turns a gear
train and shaft whose rotation changes the tension of cables in the base of the shoe.
The system uses a magnetic sensor to measure the shoe compression. Based on this
measurement, the microprocessor commands the motor and adjusts the shoe stiffness
before the shoe strikes the ground again.

The number of applications continues to grow and now includes tennis rackets and
other sports equipment.

13.6 NONLINEAR VIBRATION
Nonlinear model response differs significantly from that of linear models in several
ways. Here we give a brief overview of these differences. The most direct way of
dealing with a nonlinear model is to linearize it about a reference equilibrium. If the
motion does not take the system too far from the equilibrium, then the linearized analysis
can provide useful results, especially an estimate of the frequency of vibration. As we
will see, the natural frequency of a nonlinear model depends on the specific equilibrium.

LINEARIZATION AND SPRING CONSTANTS

Elastic elements that are extended or compressed beyond their linear range are often
described by the following nonlinear model (see Figure 13.6.1).

mÿ = − f (y) + mg = −(k1 y + k2 y3) + mg (13.6.1)

where f (y) = k1 y + k2 y3 is the spring force and y is the spring’s displacement from
its free length. When the mass is in equilibrium at the position y = yr , then ÿr = 0,
and the previous equation becomes

k1 yr + k2 y3
r − mg = 0 (13.6.2)

This can be solved for yr .

Figure 13.6.1 Generic
representation of a
mass-spring system.

m
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Evaluating (13.6.1) at the equilibrium point gives

mÿr = 0 = − f (yr ) + mg (13.6.3)



palm-38591 book December 17, 2008 12:51

13.6 Nonlinear Vibration 797

To linearize (13.6.1), we expand f (y) in a Taylor series, keeping only the linear term,
and subtract (13.6.3) from (13.6.1) to obtain

m (ÿ − 0) = f (yr ) − f (y)

= f (yr ) −
[

f (yr ) +
(

d f

dy

)
r
(y − yr )

]

= −
(

d f

dy

)
r
(y − yr )

Let x = y − yr , where x denotes the displacement of the mass from its equilibrium
position. Substituting x = y − yr and ẍ = ÿ − ÿr = ÿ yields

mẍ = −
(

d f

dy

)
r

x (13.6.4)

For the linear spring relation f = kx , the equation of motion is mẍ = −kx .
Comparing this with (13.6.4) we see that

k =
(

d f

dy

)
r

(13.6.5)

The important result of this analysis is that the value of the linearized spring constant
k is the slope of the spring force curve f (y) at the equilibrium position yr .

Linearizing a Nonlinear Spring Model EXAMPLE 13.6.1

■ Problem
Suppose a particular nonlinear spring is described by (13.6.1) with k1 = 1400 N/m and k2 =
13000 N/m3. Determine its equivalent linear spring constant k for the two equilibrium positions
corresponding to the following masses:

a. m = 4 kg
b. m = 14 kg

In addition, find the linearized equations for motion for each equilibrium.

■ Solution
The first step is to determine the equilibrium positions for each mass. With m = 4 in (13.6.2),
the only real root of this cubic equation is yr = 0.0278 m. With m = 14 in (13.6.2), the only
real root is yr = 0.091 m. Note that f (yr ) = mg, and that

k =
(

d f

dy

)
r

= k1 + 3k2 y2
r = 1400 + 39 000y2

r

The equivalent linear spring constant k is the slope m of the curve f (y) near the specific
equilibrium point. Thus, the linearized spring constants for each equilibrium are:

a. For yr = 0.0278, k = 1430 N/m
b. For yr = 0.091, k = 1723 N/m

The linearized equations of motion, which are accurate only near their respective equilibrium
points, are found from mẍ + kx = 0. They are

a. For yr = 0.0278, x = y − 0.0278, 4ẍ + 1430x = 0, and ωn = 18.91 rad/s.
b. For yr = 0.091, x = y − 0.091, 14ẍ + 1723x = 0, and ωn = 11.09 rad/s.
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Note that in each case, the mass oscillates about the specific equilibrium position. The oscillation
frequency is different for each equilibrium.

In addition to linearized models, some mathematical results are available for ap-
proximate solutions to nonlinear equations of motion, but coverage of the methods used
to obtain these results is beyond the scope of our study. The following examples serve
as a guide to what to look for when using computer solution methods.

A STATIC MODEL

First consider the simple, static model

x(t) = f 2(t) = [sin ω1t + sin ω2t]2

where x(t) is the response and f (t) is the forcing function. Expanding the right-hand
side gives

x(t) = sin2 ω1t + 2 sin ω1t sin ω2t + sin2 ω2t

= 1 − 1

2
cos 2ω1t + cos(ω1 − ω2)t − cos(ω1 + ω2)t − 1

2
cos 2ω2t

Whereas the input contains only two frequencies, the response contains four frequen-
cies, all different than the input frequencies. Also, the response is not a linear combi-
nation of the two input terms. In general, the principle of superposition does not apply
to nonlinear models.

A DYNAMIC MODEL

One consequence of the superposition property of linear dynamic models is that their
solutions consist of the sum of two terms: the free response, which is that part attributable
to the initial conditions, and the forced response, which is due to the forcing function or
input. The entire solution is called the complete or total response. This property enables
us to find the solution for the free response separately from the solution for the forced
response. The free response is independent of the forced response, and vice versa. If
we need to find the total response, we simply add the free and the forced responses.

Another consequence of the superposition property is that the responses due to
more than one input can be separated.

Few nonlinear models have closed-form solutions, but we can illustrate some of
their properties by considering the following first-order model. The equation of motion
of a mass m subjected to a square-law damping force and a constant force f is mv̇ =
f − qv2, where v is the velocity of the mass and q is a constant. Let the initial speed
v(0) at time t = 0 be denoted v0.

Separation of variables can be used to obtain the following solution where
α = √

f/q.

v(t) = α
a + be−ct

a − be−ct
(13.6.6)

where a = v0
√

q + √
f , b = v0

√
q − √

f , and c = 2αq/m. This solution is valid if
v2

0 �= α2 and if f �= 0. Now consider these special cases:

1. If v2
0 = α2 = f/q, then we can show that v(t) remains constant at v0.
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2. If v0 = 0, the solution reduces to

v(t) = α
1 − e−ct

1 + e−ct
(13.6.7)

3. If f = 0 the solution can be found using separation of variables as follows.

v(t) = mv0

m + qv0t
(13.6.8)

Note that the form of (13.6.8) is different than that of the general case (13.6.6), where
f �= 0. Note also that we cannot obtain the total response (13.6.6) for f �= 0, v0 �= 0
by adding the forced response (13.6.7) (where f �= 0 and v0 = 0) to the free response
(13.6.8) (where f = 0 and v0 �= 0). We usually cannot obtain the total response of a
nonlinear differential equation by superimposing the free and the forced responses.

LINEARIZED STABILITY ANALYSIS OF DUFFING'S EQUATION

A common model of a nonlinear spring is

fs(y) = k1 y + k3 y3 (13.6.9)

which represents a hardening spring if k3 > 0 and a softening spring if k3 < 0. For a
mass-spring-damper system with such a spring and an applied force f (t), the equation
of motion is

mÿ + cẏ + k1 y + k3 y3 = f (t) (13.6.10)

When f (t) is a cosine function, this equation is called Duffing’s equation. Its charac-
teristics have been extensively studied, but a closed-form solution is not available (for
details, consult [Harris, 2002] or [Greenberg, 1998]).

If f is a constant, fo, there can possibly be three equilibrium positions for the mass
m, which are the solutions of the equation

k1 ye + k3 y3
e = fo (13.6.11)

where ye denotes an equilibrium solution of this equation. We can linearize the equation
of motion about such an equilibrium by linearizing the cubic term y3 using a truncated
Taylor series of y3 about the point ye, as follows.

mÿ + cẏ + k1 y + k3

⎡
⎣y3

e + ∂y3

∂y

∣∣∣∣∣
y=ye

(y − ye)

⎤
⎦ = f (t) = fo + u(t)

where u(t) = f (t) − fo is the deviation in f (t) from its reference value fo. The
equation of motion becomes

mÿ + cẏ + k1 y + k3
[
y3

e + 3y2
e (y − ye)

] = fo + u(t)

If we define x to the deviation of y from equilibrium, x = y − ye, then ẋ = ẏ, ẍ = ÿ,
and

mẍ + cẋ + k1(x + ye) + k3
[
y3

e + 3y2
e x

] = fo + u(t)

In light of (13.6.11), this becomes

mẍ + cẋ + (
k1 + 3k3 y2

e

)
x = u(t)
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The characteristic equation is

ms2 + cs + k1 + 3k3 y2
e = 0 (13.6.12)

The equilibrium will be stable in a linearized sense (that is, locally stable) if both roots
have negative real parts. This occurs if m, c, and k1 + 3k3 y2

e all have the same sign.
Assuming, of course that m > 0 and c > 0, local stability therefore requires that
k1 + k3 y2

e > 0. Because y2
e > 0, we see that the equilibrium of a hardening spring is

locally stable, while that of a softening spring can be either locally unstable or locally
stable, depending of the values of k1 and k3.

Since the stability analysis was based on a linearized model, which assumes that
y is ”close“ to ye, its conclusions are valid only for local stability characteristics. It is
possible that the system with either a hardening or a softening spring may be globally
stable or globally unstable.

For example, consider the case where fo = 0. Then the equilibria are found from
(13.6.11) to be ye = 0 and ye = ±√−k1/k3. Assuming that k1 > 0,

■ The only real-valued equilibrium is ye = 0 if k3 > 0.
■ If k3 < 0 there are three real-valued equilibria.
■ For ye = 0, (13.6.12) becomes ms2 + cs + k1 = 0, which represents a locally

stable equilibrium regardless of the sign of k3.
■ For y2

e = −k1/k3, (13.6.12) becomes ms2 + cs − 2k1 = 0, which represents a
locally unstable equilibrium regardless of the sign of k3.

Consider the case where fo = 0, m = 1, c = 2, and k1 = 2. We choose this
overdamped case so that the resulting plots will be easier to understand compared to
plots showing many oscillations.

1. Suppose that k3 = −1. The equilibria are ye = 0, ye = +√
2, and ye = −√

2.
Figure 13.6.2 shows the numerical solution of the nonlinear model (13.6.10). For
all six cases, ẏ(0) = 0. Curves a and b result from the initial conditions y(0) = 1
and y(0) = −1, respectively. They both approach the equilibrium at ye = 0, thus

Figure 13.6.2 Free response
of Duffing's equation for
various initial conditions.
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Figure 13.6.3 Response of
linearized Duffing's equation
for two initial conditions.

verifying the stability prediction based on the linearized equation. Curves c and d
result from the initial conditions y(0) = 1.42 and y(0) = 1.41, respectively,
which are slightly above and slightly below the equilibrium at

√
2 = 1.414.

Curve d approaches the equilibrium at ye = 0, but curve c approaches ∞ and
thus displays unstable behavior. These results show how an equilibrium of a
nonlinear model can be stable for some initial conditions, but unstable for others.
Similar results are observed with the equilibrium at −√

2.
2. Figure 13.6.3 shows the responses of the model linearized about ye = √

2, for the
initial conditions y(0) = 1.42 and y(0) = 1.41, respectively. Both responses
display unstable behavior, as predicted by the linearized model. The nonlinear
model, however, is stable for y(0) = 1.41, as seen with curve d in Figure 13.6.2.
This result shows how the linearized model can give erroneous results if y is not
close to ye.

FREE RESPONSE OF A NONLINEAR SYSTEM

Suppose that f (t) = 0 in (13.6.10) and that m = 1, c = 0, k1 = 2, and k3 = 0.1.
Figure 13.6.4 shows the numerical solutions for ẏ(0) = 0 and two values of y(0):
y(0) = 1 and y(0) = 30. Although it is difficult to tell from the plots, neither response
is a pure harmonic. Each response, however, contains a single harmonic that dominates
the response. For y(0) = 1, the dominant radian frequency is approximately 1.8. For
y(0) = 30, the dominant radian frequency is approximately 8. We thus conclude that
it is possible for the oscillation frequency of the free response of a nonlinear system to
be dependent on the specific initial conditions. This result stands in great contrast to
the free response of linear systems, whose oscillation frequency depends only on the
values of the system parameters and not on the initial conditions.

HARMONIC RESPONSE OF DUFFING'S EQUATION

Suppose that f (t) = Fo cos ωt in (13.6.10) and that m = 1, c = 0, k1 = 2, and
k3 = 0.1. Figure 13.6.5 shows the response for y(0) = ẏ(0) = 0 and ω = 2. Although
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Figure 13.6.4 Free response
of Duffing's equation for two
initial conditions.
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Figure 13.6.5 Harmonic
response of Duffing's equation.
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it is difficult to tell from the plot, the response contains two dominant harmonics, with
radian frequencies of approximately 1.6 and 6.4. We thus conclude that it is possible
for the oscillation frequency of the forced harmonic response of a nonlinear system to
contain multiple frequencies that are different than the forcing frequency. We should
have expected this after studying the response of the model x(t) = f 2(t). Recall that
the harmonic response of a linear system has only one frequency, which is the same as
that of the forcing function.

Duffing’s equation has other unusual response characteristics, including something
called the jump phenomenon, in which the response frequency suddenly jumps from
one value to another if the forcing frequency gradually changes. This is discussed in
the specialized literature; for example, see [Harris, 2002] or [Greenberg, 1998]).
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PHASE PLANE PLOTS AND LIMIT CYCLES

The phase plane plot is a plot of one state variable, usually velocity, versus another vari-
able, usually displacement. Such a plot provides a concise description of the response.
Figure 13.6.6 shows the phase plane plots of the free response of two second-order
models of the form mẍ + cẋ + kx = 0, one with medium damping and one with light
damping, using the initial conditions x(0) = 1, ẋ(0) = 0. The greater the damping, the
faster the response spirals into the equilibrium point at x = ẋ = 0. The phase plane
plot of the free response of an undamped system never reaches the point (0, 0), but
is a single ellipse passing through the initial condition point. The phase plane plot of
the free response of an overdamped system does not spiral but heads directly for the
point (0, 0).

The phase plane plot of some nonlinear models displays a limit cycle, which closed
curve that represents a dynamic equilibrium. Limit cycles can be stable or unstable,
and they can be stable for initial conditions within the closed curve and unstable for
initial conditions outside the curve, or vice versa. Van der Pol’s equation is a famous

Figure 13.6.6 Phase plane plots of a second
order model with medium damping and light
damping.
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Figure 13.6.7 Limit cycle
behavior of Van der Pol's
equation for μ = 1 and two
initial conditions.
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equation in vibration that displays limit cycles.

ÿ − μ(1 − y2)ẏ + y = 0 μ > 0 (13.6.13)

Figure 13.6.7 shows a limit cycle for Van der Pol’s equation with μ = 1. The response
is shown for two sets of initial conditions, one inside and one outside the limit cycle.
These are marked A and B in the figure. In each case the response approaches the
limit cycle, which indicates, but does not prove, that the limit cycle is bilaterally stable.
Analysis of limit cycles is an advanced topic, but you should be aware of their existence.
One of the classic works on the subject of nonlinear vibration is [Minorsky, 1962].

SUMMARY OF NONLINEAR RESPONSE CHARACTERISTICS

In general, nonlinear models display the following phenomena.

1. Because the principle of superposition does not apply to nonlinear models, we
cannot separate the effects of the initial conditions from the forced response, and
we cannot decompose the forced response into a sum of terms, each
corresponding to a term in the forcing function.

2. In a linear model, response characteristics such as stability, natural frequency, and
logarithmic decrement depend only on the numerical values of the mass,
damping, and stiffness parameters. This is not true with nonlinear models, for
which the response characteristics depend also on the initial conditions.

3. Nonlinear models can resonate at frequencies that are different than the forcing
frequency.

4. Linear models can have only one equilibrium point, and there is no distinction
between local and global stability for such a point. Nonlinear models can have
multiple equilibria, each of which can be a) globally stable, b) globally unstable,
c) locally stable but globally unstable, or d) locally unstable but globally stable.

5. Nonlinear models can have limit cycles, but linear models cannot.
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13.7 MATLAB APPLICATIONS
Although the root locus plot has been applied mostly to control system design, it is a
very useful but unappreciated method for vibration analysis.

Root Locus of a Suspension Model EXAMPLE 13.7.1

■ Problem
Consider the two-mass suspension model developed in Example 4.5.9 in Chapter 4, and shown
again in Figure 13.7.1. The equations of motion are

m1 ẍ1 = c1(ẋ2 − ẋ1) + k1(x2 − x1)

m2 ẍ2 = −c1(ẋ2 − ẋ1) − k1(x2 − x1) + k2(y − x2)

Figure 13.7.1 Two-mass
suspension model.
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We will use the following numerical values: m1 = 250 kg, m2 = 40 kg, k1 = 1.5 × 104 N/m,
and k2 = 1.5 × 105 N/m.

a. Use the root locus plot to determine the value of the damping c1 required to give a
dominant root pair having a damping ratio of ζ = 0.707.

b. Using the value of c1 found in part (a), obtain a plot of the unit-step response.

■ Solution
a. Transforming the equations of motion using zero initial conditions and rearranging gives(

m1s2 + c1s + k1

)
X1(s) − (c1s + k1)X2(s) = 0

−(c1s + k1)X1(s) + (
m2s2 + c1s + k1 + k2

)
X2(s) = k2Y (s)

We can find the characteristic polynomial and the transfer functions by using the
determinant method.

D3(s) =
∣∣∣∣
(
m1s2 + c1s + k1

) −(c1s + k1)

−(c1s + k1)
(
m2s2 + c1s + k1 + k2

)∣∣∣∣
= (

m1s2 + c1s + k1

)(
m2s2 + c1s + k1 + k2

) − (
c1s + k1

)2

The transfer functions for X1(s) and X2(s) with Y (s) as the input can be expressed as

X1(s)

Y (s)
= D1(s)

D3(s)

X2(s)

Y (s)
= D2(s)

D3(s)

where

D1(s) =
∣∣∣∣ 0 −(c1s + k1)

k2

(
m2s2 + c1s + k1 + k2

)∣∣∣∣
= k2(c1s + k1)

D2(s) =
∣∣∣∣
(
m1s2 + c1s + k1

)
0

−(c1s + k1) k2

∣∣∣∣
= k2

(
m1s2 + c1s + k1

)
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Now substitute the given values of m1, m2, k1, and k2 into D(s) to obtain the root
locus equation.

D3(s) = (
250s2 + c1s + 15 000

)(
40s2 + c1s + 165 000

) − (c1s + 15 000)2

Factoring out c1 and rearranging into the standard root-locus form (13.7.1) so that the
highest coefficients of N (s) and D(s) are unity, we obtain

s4 + 4185s2 + 2.25 × 105 + K
(
s3 + 775.86s

) = 0

where the root locus parameter K is related to c1 as K = 0.029c1. The MATLAB session
for obtaining the root locus plot is as follows:

	sys4 = tf([1, 0, 775.86,0],[1,0,4185,0,2.25*10^5]);
	rlocus(sys4),axis equal,sgrid(0.707,[])

The root locus plot is shown in Figure 13.7.2.
Using the magnifying glass tool to expand the plot, and clicking on the intersection

of the suspected dominant root path with the ζ = 0.707 line, we find that the dominant
root pair is s = −5.53 ± 5.53 j , with a gain of K = 55.6. Using the command r =
rlocus(sys4,K), we find that the other roots are at s = −22.2 ± 56 j , and thus the
first root pair is dominant. So to achieve a dominant root pair having a damping ratio
of ζ = 0.707, we must set c1 to be c1 = K/0.029 = 1917 N · s/m.

b. Using c = 1917 and the other parameter values, we find that

D3(s) = 250(40)
[
s4 + 4185s2 + 2.25 × 105 + K

(
s3 + 775.86s

)]
X1(s)

Y (s)
= 1.5 × 105

(
1917s + 1.5 × 104

)
D3(s)

X2(s)

Y (s)
= 1.5 × 105

(
250s2 + 1917s + 1.5 × 104

)
D3(s)

Figure 13.7.2 Root locus
plot for Example 13.7.1.
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Figure 13.7.3 Step response
for Example 13.7.1.

We continue the previous session as follows, using K = 55.6.

	[num, den] = tfdata(sys4,'v');
	D3 = 250*40*(den+55.6*num);

	sysx1 = tf(150000*[1917,15000],D3);

	sysx2 = tf(150000*[250,1917,15000],D3);

	step(sysx1,'-',sysx2,'--')

The plot is shown in Figure 13.7.3. By right clicking on the plot and selecting the
“Characteristics” menu, we find that for x1(t), the peak response is 11% at t = 0.357 s
and the settling time is 0.655 s. For x2(t), the peak response is 21% at t = 0.051 s and
the settling time is 0.494 s.

The response characteristics computed from the dominant root pair s =
−5.53 ± 5.53 j using the formulas given in Table 9.3.2 for the second-order model without
numerator dynamics are a peak response of 4.3% at t = 0.568 s and a settling time of
0.723 s. The difference between these results is due to the fact that the present model is
fourth order and also has numerator dynamics.

13.8 CHAPTER REVIEW
This chapter treated four important vibration applications of transfer functions and
frequency response. A common cause of vibration, base excitation, is due to motion of
the supporting structure. Rotating unbalance, which occurs when the center of mass of
a rotating machine does not coincide with the center of rotation, is another common
vibration source. The chapter showed how to analyze and design vibration isolators for
minimizing the transmission of force to a supporting structure from a machine having
rotating unbalance. Reduction of vibration amplitude can also be accomplished with
a dynamic vibration absorber, which consists of an attached stiffness and mass whose
motion “absorbs” the vibration.

The free response of linear multi-degree of freedom systems is the linear combina-
tion of the modes. The extent to which a particular mode appears in the free response
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depends on the initial conditions. In addition, certain forcing functions can excite a
particular mode. The mode concept sometimes enables us to simplify the model so that
we can use it for design purposes. This was illustrated for vehicle suspension design.

Passive isolators and absorbers are being replaced by active vibration control sys-
tems in many applications. Designing such systems requires knowledge of control
theory.

Analysis methods for nonlinear models are limited, and such models often must
be analyzed by numerical simulation. Nonlinear response differs quite a bit from that
of linear models, and it is important to recognize these differences.

Now that you have finished this chapter, you should be able to

1. Analyze the performance of spring and damping elements for isolating a mass
from base excitation.

2. Analyze the performance of spring and damping elements for minimizing the
force transmission due to rotating unbalance.

3. Design a vibration absorber.
4. Obtain a description of a multi-degree of freedom system in terms of its modes.
5. Select the spring and damping constants for a basic vehicle suspension.
6. Analyze the effectiveness of active vibration control systems.
7. Describe the differences between linear and nonlinear responses.
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PROBLEMS
Section 13.1 Base Excitation

13.1 The 0.5-kg mass shown in Figure P13.1 is attached to the frame with a spring
of stiffness k = 500 N/m. Neglect the spring weight and any damping. The
frame oscillates vertically with an amplitude of 4 mm at a frequency of 3 Hz.
Compute the steady-state amplitude of motion of the mass.

13.2 A quarter-car representation of a certain car has a stiffness k = 2000 lb/ft,
which is the series combination of the tire stiffness and suspension stiffness,
and a damping constant of c = 360 lb-sec/ft. The car weighs 2000 lb. Suppose
the road profile is given (in feet) by y(t) = 0.03 sin ωt , where the amplitude

Figure P13.1

m
x

k
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of variation of the road surface is 0.03 ft, and the frequency ω depends on the
vehicle’s speed and the road profile’s period. Suppose the period of the road
surface is 20 ft. Compute the steady-state motion amplitude and the force
transmitted to the chassis, if the car is traveling at speeds of 20 and 50 mi/hr.

13.3 A certain factory contains a heavy rotating machine that causes the factory
floor to vibrate. We want to operate another piece of equipment nearby and we
measure the amplitude of the floor’s motion at that point to be 0.01 m. The
mass of the equipment is 1500 kg and its support has a stiffness of
k = 2 × 104 N/m and a damping ratio of ζ = 0.04. Calculate the maximum
force that will be transmitted to the equipment at resonance.

13.4 An electronics module inside an aircraft must be mounted on an elastic pad to
protect it from vibration of the airframe. The largest amplitude vibration
produced by the airframe’s motion has a frequency of 40 Hz. The module
weighs 200 N, and its amplitude of motion is limited to 0.003 m to save space.
Neglect damping and calculate the percent of the airframe’s motion transmitted
to the module.

13.5 An electronics module used to control a large crane must be isolated from the
crane’s motion. The module weighs 2 lb. (a) Design an isolator so that no more
than 10% of the crane’s motion amplitude is transmitted to the module. The
crane’s vibration frequency is 3000 rpm. (b) What percentage of the crane’s
motion will be transmitted to the module if the crane’s frequency can be
anywhere between 2500 and 3500 rpm?

13.6 An instrument weighing 5 lb is mounted on the housing of a pump that rotates
at 30 rpm. The amplitude of motion of the housing is 0.003 ft. We want no
more than 10% of the housing’s motion to be transmitted to the instrument.
Design a suitable isolator having negligible damping. Compute the force
transmitted to the instrument.

13.7 Figure P13.7 shows a system being driven by base excitation through a
damping element. Assume that the base displacement is sinusoidal:
y(t) = Y sin ωt .
a. Derive the expression for X , the steady-state amplitude of motion of the

mass m.
b. Derive the expression for Ft , the steady-state amplitude of the force

transmitted to the support.

Figure P13.7

m
x

k

Base y

c13.8 Consider the vehicle suspension problem in Example 13.1.1. Investigate the
choice of the damping constant c so that the displacement transmissibility
X/Y is as small as possible for the case where the speed gives a frequency
ratio of r = 2. Do this by trying different values for the damping ratio ζ .
Investigate your design’s sensitivity to a ±20% variation in r .

13.9 Consider the vehicle suspension problem in Example 13.1.1. Suppose the
amplitude of variation of the road surface is 5/8 in. Determine a set of values
for the suspension’s stiffness k and damping c so that the force transmitted to
the chassis will be as small as possible at 40 mi/hr. For your design, calculate
the transmitted force at 40 mi/hr.

Section 13.2 Rotating Unbalance

13.10 Alternating-current motors are often designed to run at a constant speed,
typically either 1750 or 3500 rpm. One such motor for a power tool weighs
20 lb and is to be mounted at the end of a steel cantilever beam. Static-force
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calculations and space considerations suggest that a beam 6 in. long, 4 in.
wide, and 3/8 in. thick would be suitable. Use E = 3 × 107 psi for the
modulus of elasticity of steel. Use ρ = 15.2 slug/ft3 for the density of steel.
The rotating part of the motor weighs 1 lb and has an eccentricity of 0.01 ft.
(This distance can be determined by standard balancing methods or applying
the analysis in this example in reverse, using a vibration test.) The damping
ratio for such beams is difficult to determine but is usually very small, say,
ζ ≤ 0.1. Estimate the amplitude of vibration of the beam at steady state.
Consider both speeds.

13.11 When a certain motor is started, it is noticed that its supporting frame begins to
resonate when the motor speed passes through 900 rpm. At the operating speed
of 1750 rpm the support oscillates with an amplitude of 8 mm. Determine the
amplitude that would result at 1750 rpm if the support were replaced with one
having one-half the stiffness.

13.12 A 500-lb motor is supported by an elastic pad that deflects 0.25 in. when the
motor is placed on it. When the motor operates at 1750 rpm, it oscillates with
an amplitude of 0.1 in. Suppose a 1500-lb platform is placed between the
motor and the pad. Compute the oscillation amplitude that would result at
1750 rpm.

13.13 A certain pump weighs 50 lb and has a rotating unbalance. The unbalanced
weight is 0.05 lb and has an eccentricity of 0.1 in. The pump rotates at
1000 rpm. Its vibration isolator has a stiffness of k = 500 lb/ft. Compute the
force transmitted to the foundation if the isolator’s damping ratio is
(a) ζ = 0.05 and (b) ζ = 0.7.

13.14 To calculate the effects of rotating unbalance, we need to know the value of the
product muε, where mu is the unbalanced mass and ε is the eccentricity. These
two quantities are sometimes difficult to calculate separately, but sometimes an
experiment can be performed to estimate the product muε. An experiment was
performed on a particular rotating machine whose mass is 75 kg. The
machine’s support has negligible damping and a stiffness of k = 2500 N/m.
When the machine operates at 200 rpm, the measured force transmitted to the
foundation was 15 N. Estimate the value of muε.

13.15 A computer disk drive is mounted to the computer’s chassis with an isolator
consisting of an elastic pad. The disk drive motor weighs 3 kg and runs at 3000
rpm. Calculate the pad stiffness required to provide a 90% reduction in the
force transmitted from the motor to the chassis.

13.16 Figure P13.16 shows a motor mounted on four springs (the second pair of
springs is behind the front pair and is not visible). Each spring has a stiffness
k = 2000 N/m. The distance D is 0.2 m. The inertia of the motor is I =
0.2 kg · m2; its mass is m = 25 kg, and its speed is 1750 rpm. Because the motor

Figure P13.16 D
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mounts allow the motor to vibrate both vertically and rotationally, the system
has a vertical force transmissibility Ft/F and a torque transmissibility Tt/T ,
where F is the vertical unbalance force and T is the torque due to the unbalance.

Neglect damping in the system and obtain the vertical force
transmissibility Ft/F and the torque transmissibility Tt/T .

Section 13.3 Vibration Absorbers

13.17 A motor mounted on a cantilever beam weighs 20 lb and runs at the constant
speed of 3500 rpm. The steel beam is 6 in. long, 4 in. wide, and 3/8 in. thick.
The unbalanced part of the motor weighs 1 lb and has an eccentricity of 0.01 ft.
The damping in the beam is very slight. Design a vibration absorber for this
system. The available clearance for the absorber’s motion is 0.25 in. Use
E = 3 × 107 psi for the modulus of elasticity of steel. Use ρ = 15.2 slug/ft3

for the density of steel.
13.18 A motor mounted on a beam vibrates too much when it runs at a speed of

6000 rpm. At that speed the measured force produced on the beam is 60 lb.
Design a vibration absorber to attach to the beam. Because of space
limitations, the absorber’s mass cannot have an amplitude of motion greater
than 0.08 in.

13.19 The supporting table of a radial saw weighs 160 lb. When the saw operates at
200 rpm it transmits a force of 4 lb to the table. Design a vibration absorber to
be attached underneath the table. The absorber’s mass cannot vibrate with an
amplitude greater than 1 in.

13.20 A certain machine of mass 8 kg with supports has an experimentally
determined natural frequency of 6 Hz. It will be subjected to a rotating
unbalance force with an amplitude of 50 N and a frequency of 4 Hz.
a. Design a vibration absorber for this machine. The available clearance for

the absorber’s motion is 0.1 m.
b. Let x1 be the vertical displacement of the machine. The amplitude of the

rotating unbalance force is muεω
2. Plot X1/muε versus the frequency ω,

and use the plot to discuss the sensitivity of the absorber to changes in the
frequency ω.

13.21 The operating speed range of a certain motor is from 1500 to 3000 rpm. The
motor and its mount vibrate excessively at 2100 rpm. When a vibration
absorber weighing 5 lb and tuned to 2100 rpm was attached to the motor,
resonance occurred at 1545 and 2850 rpm. Design a more effective absorber
that will yield resonant frequencies outside the operating speed range of the
motor.

13.22 Figure P13.22 shows another type of vibration absorber that uses only mass
and damping, and not stiffness, to reduce vibration. The main mass is m1 and
the absorber’s mass is m2. Suppose the applied force f (t) is sinusoidal.
a. Derive the expressions for X1( jω)/F( jω) and X2( jω)/F( jω).
b. Use these expressions to discuss the selection of values for m2 and c to

minimize the motion of mass m1. To aid in your discussion, plot k X1/F
versus ω/

√
k/m1 for several values of ζ = c/2

√
km1.

13.23 Figure P13.23 shows another type of vibration absorber that uses mass,
stiffness, and damping to reduce vibration. The damping can be used to reduce
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Figure P13.22
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the amplitude of motion near resonance. The main mass is m1 and the
absorber’s mass is m2. Suppose the applied force f (t) is sinusoidal.
a. Derive the expressions for X1( jω)/F( jω) and X2( jω)/F( jω).
b. Use these expressions to discuss the selection of values for m2, k2, and c to

minimize the motion of mass m1. To aid in your discussion, plot k1 X1/F
versus ω/

√
k1/m1 for several values of ζ = c/2

√
k1m1.

Section 13.4 Modes of Vibrating Systems

13.24 Find and interpret the mode ratios for the system shown in Figure P13.24. The
masses are m1 = 10 kg and m2 = 30 kg. The spring constants are
k1 = 104 N/m and k2 = 2 × 104 N/m.

13.25 Find and interpret the mode ratios for the coupled pendulum system shown in
Figure P13.25. Use the values m1 = 1, m2 = 4, L1 = 2, L2 = 5, and k = 2.

13.26 Find and interpret the mode ratios for the torsional system shown in
Figure P13.26. Use the values I1 = 1, I2 = 5, k1 = 1, and k2 = 3.

13.27 Find and interpret the mode ratios for the system shown in Figure P13.27.
13.28 For the roll-pitch vehicle model described in Example 13.4.2, the suspension

stiffnesses are to be changed to k1 = 1.95 × 104 N/m and k2 = 2.3 × 104 N/m.
Find the natural frequencies the mode ratios, and the node locations.

13.29 A particular road vehicle weighs 4000 lb. Using the quarter-car model,
determine a suitable value for the suspension stiffness, assuming that the tire
stiffness is 1300 lb/in.

Figure P13.24
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Figure P13.26
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13.30 The vehicle model shown in Figure 13.4.2(a) has the following parameter
values: weight = 4800 lb, IG = 1800 slug-ft2, L1 = 3.5 ft, and L2 = 2.5 ft.
Design the front and rear suspension stiffnesses to achieve good ride quality.

Section 13.5 Active Vibration Control

13.31 A 125-kg machine has a passive isolation system for which c = 5000 N·m/s
and k = 7 × 106 N/m. The rotating unbalance force has an amplitude of 100 N
with a frequency of 2500 rpm. The resonant frequency of this system is 216
rad/s and is close the frequency of the disturbance. In addition, the damping
ratio is small (ζ = 0.08). Assuming that c and k cannot be changed, calculate
the control gains required to give a damping ratio of ζ = 0.5 and a resonant
frequency of 100 rad/s, well below the disturbance frequency.

13.32 A 20-kg machine has a passive isolation system whose damping ratio is 0.28
and whose undamped natural frequency is 13.2 rad/s. Assuming that the
passive system remains in place, calculate the control gains required to give a
damping ratio of ζ = 0.707 and a resonant frequency of 141 rad/s.

13.33 With the increased availability of powered wheelchairs, improved suspension
designs are required for safety and comfort. One chair uses an active
suspension like the one shown in Figure P13.33 for each driving wheel.

cs
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kt
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Figure P13.33
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An actuator exerts a force f between the tire and the vehicle. Assuming that
the control algorithm is such that

f = −K P(xs − xw ) − K D(ẋs − ẋw )

derive the equations of motion of the system, neglecting the tire mass and tire
damping.

Section 13.6 Nonlinear Vibration

13.34 The following model describes a mass supported by a nonlinear spring. The
units are SI, so g = 9.81 m/s2.

5ÿ = 5g − (
900y + 1700y3)

a. Find the equilibrium position yr , obtain a linearized model using the
equilibrium as the reference operating condition, and compute the
oscillation frequency of the linearized model.

b. Find the free response of the linearized model in terms of x(t) = y(t) − yr ,
for the initial conditions: x(0) = 0.002 m and ẋ(0) = 0.005 m/s.

13.35 The following is a model of the velocity of an object subjected to cubic
damping.

m
dv

dt
= −cv3

Suppose that m = 1 and c = 4. Obtain the solution in terms of the initial
condition v(0).

13.36 Find the equilibria of equation (13.6.10) for m = 1, c = 12, k1 = 16, and
k3 = −4, and use a numerical method to solve and plot the solution for
ẏ(0) = 0 and four values of y(0): ±1, ±1.9, and ±2.1. Compare the results
with the stability properties predicted from the linearized model.

13.37 Use a numerical method to compute and plot the free response of equation
(13.6.10) for m = 1, c = 0, k1 = 2, and k3 = 0.1, for ẏ(0) = 0 and two initial
conditions: y(0) = 10 and y(0) = 40. Compare the results with those shown in
Figure 13.6.4. How does the initial condition affect the frequency of the
response?

13.38 Plot the phase plane plots for the following equations and the initial conditions:
x(0) = 1, ẋ(0) = 0.
a. ẍ + 0.1ẋ + 2x = 0
b. ẍ + 2ẋ + 2x = 0
c. ẍ + 4ẋ + 2x = 0

13.39 Plot the phase plane plot for the following equation with the initial conditions:
y(0) = 1, ẏ(0) = 0.

ÿ + 2ẏ + 2y + 3y3 = 0

13.40 Plot the phase plane plot and identify the limit cycle for Van der Pol’s equation
(13.6.13) with μ = 5 and the initial conditions: y(0) = 1, ẏ(0) = 0.
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AA P P E N D I X

Guide to Selected MATLAB
Commands and Functions

T his appendix is a guide to those MATLAB commands and functions that are par-
ticularly useful for the system dynamics methods covered in this text. For more

information, in the Command window type help topic, where topic is the name
of the command or function. ■

Operators and special characters

Item Description

+ Plus. Addition operator.
- Minus. Subtraction operator.
* Scalar and matrix multiplication operator.
.* Array multiplication operator.
^ Scalar and matrix exponentiation operator.
.̂ Array exponentiation operator.
\ Left division operator.
/ Right division operator.
.\ Array left division operator.
./ Array right division operator.
: Colon. Generates regularly spaced elements

and represents an entire row or column.
() Parentheses. Encloses function arguments and

array indices; overrides precedence.
[ ] Brackets. Encloses array elements.
{ } Braces. Encloses cell elements.
. Decimal point.
... Ellipsis. Line continuation operator.
, Comma. Separates statements and

elements in a row of an array.
; Semicolon. Separates columns in an array

and suppresses line feeds.
% Percent sign. Designates a comment

and specifies formatting.
' Quote sign and transpose operator.
.' Nonconjugated transpose operator.
= Assignment (replacement) operator.

815
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Logical and relational operators.

Item Description

== Relational operator: equal to.
~= Relational operator: not equal to.
< Relational operator: less than.
<= Relational operator: less than or equal to.
> Relational operator: greater than.
>= Relational operator: greater than or equal to.
& Logical operator: AND
| Logical operator: OR
~ Logical operator: NOT

Special variables and constants.

Item Description

ans Most recent answer.
eps Accuracy of floating point precision.
i,j The imaginary unit

√−1.
Inf Infinity.
NaN Undefined numerical result (Not a Number).
pi The number π .

Commands for managing a session.

Item Description

clc Clears Command window.
clear Removes variables from memory.
doc Displays documentation.
exist Checks for existence of file or variable.
global Declares variables to be global.
help Searches for a help topic.
helpwin Displays help text in the Help Browser.
lookfor Searches help entries for a keyword.
quit Stops MATLAB.
who Lists current variables.
whos Lists detailed information about current variables.

System and file commands.

Item Description

cd Changes current directory.
dir Lists all files in current directory.
load Loads workspace variables from a file.
path Displays search path.
pwd Displays current directory.
save Saves workspace variables in a file.
type Displays contents of a file.
what Lists all MATLAB files.
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Input/output commands.

Item Description

disp Displays contents of an array or string.
format Controls screen display format.
input Displays prompts and waits for input.
menu Displays a menu of choices.
; Suppresses screen printing.

Some numeric display formats.

Item Description

format long Sixteen decimal digits.
format long e Scientific notation with sixteen digits plus

exponent.
format short Four decimal digits (the default).
format short e Scientific notation with five digits plus

exponent.

Array functions.

Item Description

det Computes determinant of an array.
eig Computes the eigenvalues of a matrix.
eye Creates the identity matrix.
find Finds indices of nonzero elements.
length Computes number of elements in an array.
linspace Creates a regularly spaced array.
logspace Creates a logarithmically spaced array.
max Returns largest element in an array.
min Returns smallest element in an array.
ones Creates an array of ones.
size Computes array size.
sort Sorts each array column.
sum Sums each array column.
zeros Creates an array of zeros.

Exponential and logarithmic functions.

Item Description

exp(x) Exponential, ex .
log(x) Natural logarithm, ln x .
log10(x) Common (base 10) logarithm, log x = log10 x .
sqrt(x) Square root,

√
x .

Complex functions.

Item Description

abs(x) Absolute value, |x |.
angle(x) Angle of a complex number x .
conj(x) Complex conjugate of x .
imag(x) Imaginary part of a complex number x .
real(x) Real part of a complex number x .
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Numeric functions.

Item Description

ceil Rounds to the nearest integer toward ∞.
fix Rounds to the nearest integer toward zero.
floor Rounds to the nearest integer toward −∞.
round Rounds toward the nearest integer.
sign Signum function.

Trigonometric functions.

Item Description

acos(x) Inverse cosine, arccos x = cos−1 x .
acot(x) Inverse cotangent, arccot x = cot−1 x .
acsc(x) Inverse cosecant, arccsc x = csc−1 x .
asec(x) Inverse secant, arcsec x = sec−1 x .
asin(x) Inverse sine, arcsin x = sin−1 x .
atan(x) Inverse tangent, arctan x = tan−1 x .
atan2(y,x) Four quadrant inverse tangent.
cos(x) Cosine, cos x .
cot(x) Cotangent, cot x .
csc(x) Cosecant, csc x .
sec(x) Secant, sec x .
sin(x) Sine, sin x .
tan(x) Tangent, tan x .

Hyperbolic functions.

Item Description

acosh(x) Inverse hyperbolic cosine, cosh−1 x .
acoth(x) Inverse hyperbolic cotangent, coth−1 x .
acsch(x) Inverse hyperbolic cosecant, csch−1x .
asech(x) Inverse hyperbolic secant, sech−1x .
asinh(x) Inverse hyperbolic sine, sinh−1 x .
atanh(x) Inverse hyperbolic tangent, tanh−1 x .
cosh(x) Hyperbolic cosine, cosh x .
coth(x) Hyperbolic cotangent, cosh x/ sinh x .
csch(x) Hyperbolic cosecant, 1/ sinh x .
sech(x) Hyperbolic secant, 1/ cosh x .
sinh(x) Hyperbolic sine, sinh x .
tanh(x) Hyperbolic tangent, sinh x/ cosh x .

Polynomial functions.

Item Description

conv Computes product of two polynomials.
deconv Computes ratio of polynomials.
poly(r) Computes coefficients of polynomial whose roots are given in the vector r.
poly(A) Computes coefficients of the characteristic polynomial corresponding

to the matrix A.
polyfit Fits a polynomial to data.
polyval Evaluates a polynomial at specified values of its independent variable.
residue Computes residues, poles, and direct term of a partial fraction expansion.
roots Computes polynomial roots.
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Logical functions.

Item Description

any True if any elements are nonzero.
all True if all elements are nonzero.
find Finds indices of nonzero elements.
finite True if elements are finite.
isnan True if elements are undefined.
isinf True if elements are infinite.
isempty True if array is empty.
isreal True if all elements are real.
logical Converts numeric values to logical values.
xor Exclusive or.

Miscellaneous mathematical functions.

Item Description

cross Cross product.
dot Dot product.
fminbnd Finds minimum of single-variable function.
fminsearch Finds minimum of multivariable function.
function Creates a user-defined function.
fzero Finds zero of single-variable function.
mean Calculates the mean value.
std Calculates the standard deviation.
trapz Numerical integration with the trapezoidal rule.

Two-dimensional plotting commands.

Item Description

axes Creates axes objects.
axis Sets axis limits.
fplot Intelligent plotting of functions.
ginput Reads coordinates of cursor position.
grid Displays gridlines.
gtext Enables label placement with mouse.
hold off Releases a prior hold on command.
hold on Holds current graph to enable subsequent plotting.
legend Enables legend placement with mouse.
loglog Creates log-log plot.
plot Generates xy plot.
polar Creates polar plot.
print Prints plot or saves plot to a file.
refresh Redraws current figure window.
semilogx Creates semilog plot (logarithmic abscissa).
semilogy Creates semilog plot (logarithmic ordinate).
set Specifies properties of objects, such as axes.
subplot Creates plots in subwindows.
text Places a string in a figure.
title Puts text at top of plot.
xlabel Adds text label to abscissa (the x axis).
ylabel Adds text label to ordinate (the y axis).
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Program flow control.

Item Description

break Terminates execution of a loop.
case Provides alternate execution paths within switch structure.
continue Passes control to the next iteration of a for or while loop.
else Delineates alternate block of statements.
elseif Conditionally executes statements.
end Terminates for, while, and if statements.
for Repeat statements a specific number of times.
if Execute statements conditionally.
otherwise Provides optional control within a switch structure.
pause Causes the program to stop and wait for a key press before continuing.
switch Directs program execution by comparing input with case expressions.
while Repeats statements an indefinite number of times.

LTI model functions.

Item Description

damp Computes the characteristic roots, damping ratio, and damped
oscillation frequency of complex roots.

ltimodels Gives help about LTI models.
ltiprops Gives help about LTI model properties.
ltiview Interface for analyzing time and frequency response.
ord2 Creates a state-space or transfer function representation

of a second-order system from its natural frequency and
damping ratio.

ss Creates an LTI model in state-space form.
ss2tf Converts from state-space to transfer function form.
ss2zp Converts from state-space to zero-pole form.
ssdata Extracts state-space matrices from an LTI model.
tf Creates an LTI model in transfer function form.
tf2ss Converts from transfer function form to state-space form.
tf2zp Converts from transfer function form to zero-pole form.
tfdata Extracts equation coefficients from an LTI model.
zp2tf Converts from zero-pole form to transfer function form.
zpk Creates an LTI model from its poles, zeros, and gain.
zpkdata Returns the poles, zeros, and gain of an LTI model.

Equation solvers.

Command Description

impulse Computes and plots the impulse response of the LTI model sys.
initial Computes and plots the free response of an LTI model

given in state-model form.
lsim Computes and plots the response of an LTI object

to a defined input function of time.
ode23 Solves linear and nonlinear differential equations.
ode45 Solves linear and nonlinear differential equations.
step Computes and plots the step response of an LTI object.
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Predefined input functions.

Command Description

gensig Generates a periodic sine, square, or pulse input
having a specified period.

stepfun Generates a step function input.

Frequency response functions.

Command Description

bode Computes the magnitude ratio and phase angle of an LTI model and
displays the Bode plots.

bodemag Computes the magnitude ratio of an LTI model and displays the
magnitude plot.

evalfr Evaluates a transfer function model at a specified value of s.
freqresp Computes the frequency response of an LTI model at multiple

specified frequencies.
margin Computes phase and gain margins of an LTI model and displays the

Bode plots.

Root locus functions.

Command Description

pole Computes the poles of an LTI model.
pzmap Computes the poles and zeros of an LTI model.
rlocfind Enables use of the cursor to select the gain from a specified point on a root

locus plot.
rlocus Computes and displays the root locus plot.
rltool Starts the root locus GUI interface.
sgrid Superimposes a grid of constant ζ and constant ωn lines on the root locus plot.
zero Computes the zeros of an LTI model.

Control system functions.

Command Description

acker Uses Ackermann’s method to compute the feedback gain matrix for a
single-input system to place the closed-loop poles at specified locations.

c2d Converts a continuous-time model into a discrete-time model using a
zero-order hold on the inputs, with a specified sampling time.

feedback Creates an LTI model from two subsystems connected with a feedback loop.
ltiview Starts the LTI viewer.
pade Pade approximation to the transfer function of the dead time element.
parallel Creates an LTI model from two subsystems connected in parallel.
series Creates an LTI model from two subsystems connected in series.
sisotool Graphical user interface for designing single-input/single-output

compensators.
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Fourier Series

T he Fourier series is used to represent a periodic function as a sum of sines,
cosines, and a constant. When used with the principle of superposition, which
lets you obtain the total response as the sum of the individual responses, the

Fourier series enables you to obtain the response of a linear system to any periodic
function. All that is needed is the system response to a sine, a cosine, and a constant
input. Although the Fourier series is an infinite series, in practice it can be truncated to
a small number of terms whose frequencies lie within the bandwidth of the system.

If a function f (t) is periodic with period P , then f (t + P) = f (t). The Fourier
series for this function defined on the interval t1 ≤ t ≤ t1 + P , where t1 and P are
constants and P > 0, is

f (t) = a0

2
+

∞∑
n=1

(
an cos

2nπ t

P
+ bn sin

2nπ t

P

)

where

an = 2

P

∫ t1+P

t1
f (t) cos

2nπ t

P
dt n = 0, 1, 2, . . .

bn = 2

P

∫ t1+P

t1
f (t) sin

2nπ t

P
dt n = 1, 2, 3, . . .

If f (t) is defined outside the specified interval [t1, t1 + P] by a periodic extension
of period P , and if f (t) and d f/dt are piecewise continuous, then the Fourier series
converges to f (t) if t is a point of continuity, and to the average value [ f (t+)+ f (t−)]/2
otherwise.

As an example, consider the train of unit pulses of width π and alternating in sign,
as shown in Figure B.1. The function is described by

f (t) =
{

1 0 < t < π

−1 π < t < 2π

The period is P = 2π , and we can take the constant t1 to be 0. Using a table of integrals,
we find that

an = 0 for all n

bn = 4

nπ
for n odd

bn = 0 for n even
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Figure B.1 The function used
for the Fourier series example.

The Fourier series is

f (t) = 4

π

(
sin t

1
+ sin 3t

3
+ sin 5t

5
+ · · ·

)
In general, the constant term a0 and the cosine terms will not appear in the series

if the function is odd; that is, if f (−t) = − f (t). If the function is even, then f (−t) =
f (t), and no sine terms will appear in the series.
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T his appendix provides a “quick start” introduction to MATLAB. You should be
familiar with Sections C.1 and C.2 before attempting to cover the MATLAB ma-

terial in the main body of this text. Sections C.3 and C.4 are useful for more exten-
sive applications such as projects and some of the homework exercises. The extensive
MATLAB help system discussed in Section C.5 can be used to obtain more detailed
information and more examples. Other sources are [Palm, 2005] and [Palm, 2008].

Appendix A is a guide to the MATLAB commands and functions that are relevant
to the system dynamics methods used in this text. To obtain more information about
a specific command or function, in the Command window type help topic, where
topic is the name of the command or function. For more information on MATLAB
help, type help help.

MATLAB has a number of “add-on” software modules, called toolboxes, that
perform more specialized computations. These can be purchased separately, but all
require the “core” MATLAB program to be used. This text uses some features of the
core MATLAB program, the Control Systems toolbox, and Simulink, which requires
MATLAB to run. ■

1
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C.1 MATLAB INTERACTIVE SESSIONS
You can use MATLAB in interactive mode to obtain an immediate response to each
command as it is typed, or you can run MATLAB programs stored in files. We discuss
the interactive mode in this section and program files in Section C.3.

TYPEFACE CONVENTIONS

We usetypewriter font to represent MATLAB commands, any text that you type
in the computer, and any MATLAB responses that appear on the screen; for example,
y = 6*x. Variables in normal mathematics text appear in italics; for example, y = 6x .
We use boldface type for three purposes: to represent vectors and matrices in normal
mathematics text (for example, Ax = b), to represent a key on the keyboard (for
example, Enter), and to represent the name of a screen menu or an item that appears in
such a menu (for example, File). It is assumed that you press the Enter key after you
type a command. We do not show this action with a separate symbol.

USER INTERFACE

To start MATLAB on a Windows system, double-click on the MATLAB icon. You will
then see the MATLAB Desktop. The Desktop manages the Command window and a
Help Browser, as well as other tools. The default appearance of the Desktop consists
of three windows. These are the Current Directory window, the Command History
window, and the Documents window. The Command History window displays your
previous commands for quick reference. The Current Directory window provides easy
access to program files and to the Array Editor. Underneath the Documents window is
the Workspace Browser, which enables you to examine your variables. Across the top
of the Desktop are a row of menu names and a row of icons called the “toolbar.”

You use the Command window to communicate with the MATLAB program,
by typing instructions of various types called commands, functions, and statements. To
simplify the discussion, we will just call the instructions by the generic name commands.
In the Windows operating system the professional version of MATLAB displays a
prompt (�) to indicate that it is ready to receive instructions. Other MATLAB versions,
such as the student version, might use a different prompt. You can quit MATLAB by
typing quit. On Windows systems you can also click on the File menu, and then click
on Exit Matlab.

The Workspace Browser can be accessed by clicking on its tab at the bottom of
the Current Directory window. You can use this window to determine the type, size,
and values of all the variables you create. The Command History window shows all the
previous keystrokes you entered in the Command window. You can alter the appearance
of the Desktop if you wish. To eliminate a window, click on its Close Window button
(×) in its upper right-hand corner.

ENTERING COMMANDS AND EXPRESSIONS

After you type a command, press Enter to execute it. For example, to divide 8 by 10,
type 8/10 and press Enter (the symbol / is the MATLAB symbol for division). Your
entry and the MATLAB response looks like the following on the screen (we call this
interaction between you and MATLAB an interactive session, or simply a session).

>>8/10
ans =

0.8000
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MATLAB has assigned the answer to a variable called ans, which is an abbrevi-
ation for answer. You can use the variable ans for further calculations; for example,
using the MATLAB symbol for multiplication (*):

>>5*ans
ans =

4.0000

Note that the variable ans now has the value 4.
MATLAB uses high precision for its computations, but by default it usually displays

its results using four decimal places. This is called the short format. This default
can be changed by using the format command. MATLAB uses the notation e to
represent exponentiation to a power of ten; for example, MATLAB displays the number
5.316 × 102 as 5.316e+02.

Because MATLAB retains your previous keystrokes in a “command file,” you can
use the up arrow key ↑ to scroll back through the commands. Press the key once to see
the previous entry, twice to see the entry before that, and so on. Use the down arrow key
↓ to scroll forward through the commands. When you find the line you want, you can
edit it using the left and right arrow keys ← and →, and the Back Space and Delete
keys. Press the Enter key to execute the command.

VARIABLES

A variable in MATLAB is a symbol used to contain a value. You can use variables to
write mathematical expressions and assign the result to a variable of your own choosing,
say r, as follows:

>>r=8/10
r =

0.8000

You can put spaces in the line to improve its readability; for example, you can put a
space before and after the = sign if you want. MATLAB ignores these spaces when
making its calculations.

A semicolon at the end of a line suppresses printing the results to the screen. Even
if you suppress the display with the semicolon, MATLAB still retains the variable’s
value. You can put several commands on the same line if you separate them with a
comma—if you want to see the results of the previous command—or semicolon if you
want to suppress the display. If you need to type a long line, you can use an ellipsis, by
typing three periods, to delay execution.

The term workspace refers to the names and values of any variables in use in the
current work session. Variable names must begin with a letter and must contain less than
32 characters; the rest of the name can contain letters, digits, and underscore characters.
MATLAB is case-sensitive. Thus the following names represent five different variables:
speed, Speed, SPEED, Speed 1, and Speed 2.

MATLAB retains the last value of a variable until you clear its value or quit
MATLAB. You can use the clear command to remove the values of all variables
from memory, or you can use the form clear var1 var2 to clear the variables
named var1 and var2. The effect of the clc command is different; it clears the
Command window of everything in the window display, but the variables retain their
values.
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You can type the name of a variable and press Enter to see its current value. If the
variable does not have a value (i.e., if it does not exist), you will see an error message.
You can also use the exist command. Type exist('x') to see if the variable x is
in use. If a 1 is returned, the variable exists; a 0 indicates that it does not exist. The
who command lists the names of all the variables in memory, but does not give their
values. The form who var1 var2 restricts the display to the variables specified.
The wildcard character * can be used to display variables that match a pattern. For
instance, who A* finds all variables in the current workspace that start with A. The
whos command lists the variable names and their sizes, and indicates whether or not
they have nonzero imaginary parts.

SCALAR ARITHMETIC

A scalar is a single number and a scalar variable is a variable that is used to contain
a single number. MATLAB uses the symbols + - * / ^ for addition, subtraction,
multiplication, division, and exponentiation (power) of scalars. For example, typing
x = 8 + 3*5 returns the answer x = 23. Typing 2^3-10 returns the answer
ans = -2. The forward slash / represents right division, which is the normal di-
vision operator familiar to you. Typing 15/3 returns the result ans = 5. MATLAB
has another division operator, called left division, which is denoted by the backslash \.
The left division operator is useful for solving sets of linear algebraic equations.

The mathematical operations represented by the symbols + - * / \ and ^
follow a set of rules called precedence. Mathematical expressions are evaluated starting
from the left, with the exponentiation operation having the highest order of precedence,
followed by multiplication and division with equal precedence, followed by addition
and subtraction with equal precedence. Parentheses can be used to alter this order.
Evaluation begins with the innermost pair of parentheses, and proceeds outward. Note
the effect of precedence in the following session.

>>3*4^2 - 12 - 8/4*2 + 8 + 3*5
ans =

55
>>3*(4^2) - 12 - 8/(4*2) + (8 + 3)*5
ans =

90
>>3*(4^2) + 5 + 27^1/3 + 32^0.2
ans =

64
>>(3*4)^2 + 5 + 27^(1/3) + 32^(0.2)
ans =

154

To avoid mistakes, you should feel free to insert parentheses wherever you are unsure
of the effect precedence will have on the calculation.

THE ASSIGNMENT OPERATOR

The = sign in MATLAB is the called the assignment operator or replacement operator.
It works differently than the equals sign you are familiar with from mathematics. When
you type x = 3, you tell MATLAB to assign the value 3 to the variable x. This usage
is no different than in mathematics. However, in MATLAB we can also type something
like this: x = x + 2. This tells MATLAB to add 2 to the current value of x, and to
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replace the current value ofxwith this new value. Ifx originally had the value 3, its new
value would be 5. This usage of the = operator is different than its use in mathematics.
For example, the mathematics equation x = x + 2 is invalid because it implies that
0 = 2 (subtract x from both sides of the equation to see this).

The variable on the left-hand side of the = operator is replaced by the value
generated by the right-hand side. Thus, one variable, and only one variable, must be on
the left-hand side of the= operator. Thus, in MATLAB you cannot type6 = x. Another
consequence of this restriction is that you cannot write in MATLAB expressions like
x + 2 = 20. The corresponding equation x + 2 = 20 is acceptable in algebra, and
has the solution x = 18, but MATLAB cannot solve such an equation without additional
commands that are available in the Symbolic Math toolbox.

Another restriction is that the right-hand side of the = operator must have a com-
putable value. For example, if the variable y has not been assigned a value, then typing
x = 5 + y will generate an error message in MATLAB.

C.2 COMPUTING WITH MATLAB
MATLAB has several predefined special constants. The symbol Inf stands for ∞,
which in practice means a number so large that MATLAB cannot represent it. For
example, typing 5/0 will generate the answer Inf. The symbol NaN stands for “Not
a Number.” It indicates an undefined numerical result such as that obtained by typing
0/0. The symbol eps is the smallest number which, when added to 1 by the computer,
creates a number greater than 1. It is used as an indicator of the accuracy of computations.
The symbol pi represents the number π = 3.14159 . . . . The symbols i and j denote
the imaginary unit, where i = j = √−1. They are used to create and represent complex
numbers, such as x = 5 + 8i.

COMPLEX NUMBER ALGEBRA

MATLAB handles complex number algebra automatically. It accepts both i and j to
designate the imaginary part, but it displays imaginary parts using i only. For example,
the number c1 = 1−2i is entered as follows: c1 = 1-2i. Note that an asterisk is not
needed between i or j and a number, although it is required with a variable, such as
c2 = 5 - i*c1. This can cause errors if you are not careful. For example, the
expressions y = 7/2*i and x = 7/2i give two different results: y = (7/2)i =
3.5i and x = 7/(2i) = −3.5i .

Addition, subtraction, multiplication, and division of complex numbers are easily
done. For example,

>>s = 3+7i;w = 5-9i;
>>w+s
ans =

8.0000 - 2.0000i
>>w*s
ans =

78.0000 + 8.0000i
>>w/s
ans =

-0.8276 - 1.0690i
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BUILT-IN FUNCTIONS

MATLAB has hundreds of built-in functions. One of these is the square root function,
sqrt. A pair of parentheses is used after the function’s name to enclose the value—
called the function’s argument—that is operated on by the function. For example, to
compute the square root of 9, you type sqrt(9). To compute sin x , where x has a
value in radians, you type sin(x). To compute cos x , type cos(x). The exponential
function ex is computed from exp(x). The natural logarithm, ln x , is computed by
typinglog(x). You compute the base 10 logarithm by typinglog10(x). The inverse
sine, or arcsine, is obtained by typing asin(x). It returns an answer in radians, not
degrees. Appendix A lists the available elementary functions. Type help elfun to
obtain more information.

The difference between a function and a command or a statement is that functions
have their arguments enclosed in parentheses. For example, to compute sin 2 using
the sin function, you type sin(2). Commands, such as clear, need not have
arguments, but if they do, they are not enclosed in parentheses; for example, clear
x. Statements cannot have arguments; for example, clc and quit are statements.

ARRAYS

One of the strengths of MATLAB is its ability to handle collections of numbers, called
arrays, as if they were a single variable. A numerical array is an ordered collection of
numbers (a set of numbers arranged in a specific order). An example of an array is one
that contains the numbers 0, 1, 3, and 6 in that order. We can use square brackets to
define the variable x to contain this collection by typing x = [0, 1, 3, 6]. The
elements of the array must be separated by commas or spaces. Note that the variable y
defined as y = [6, 3, 1, 0] is not the same as x because the order is different.

We can add the two arrays x and y to produce another array z by typing the single
line z = x + y. To compute z, MATLAB adds all the corresponding numbers in x
and y to produce z. The resulting array z is [6, 4, 4, 6].

Array addition and subtraction require that both arrays have the same size. The
only exception to this in MATLAB occurs when we add or subtract a scalar to or
from an array. In this case, the scalar is added or subtracted from each element in
the array. For example, if x = [0, 1, 3, 6], typing v = x + 2 gives v =
[2, 3, 5, 8].

Arrays that display on the screen as a single row of numbers with more than one
column are called row arrays. You can create column arrays, which have more than
one row, by using a semicolon to separate the rows. So, for example, [3, 7, 2] is
not the same array as [3; 7; 2].

CREATING AND ACCESSING ARRAYS

To create an array having many entries, you need not type all the numbers if they are
regularly spaced. Instead, you type the first number, the spacing, and the last number,
separated by colons. For example, the numbers 0, 0.1, 0.2, . . . , 10 can be assigned
to the variable u by typing u = [0:0.1:10]; to create a row array having 101
elements. Use the transpose operator ' to convert a row array into a column array, and
vice versa.

You can see all the values in u by typing u after the prompt or, for example, you
can see the seventh value by typing u(7). The number 7 is called an array index,
because it points to a particular element in the array. For example, typing u(7) gives
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ans = 0.6000. You can use the length function to determine how many values
are in an array. For example, typing m = length(u) gives m = 101.

One advantage of MATLAB is that it can operate on arrays with a single command.
For example, to compute w = 5 sin u for u = 0, 0.1, 0.2, . . . , 10, the session is

>>u = [0:0.1:10]; w = 5*sin(u);

or more compactly,

>>w = sin([0:0.1:10]);

This single line computes the formula w = 5 sin u 101 times, once for each value
in the array u, to produce an array w that has 101 values. To achieve this result with
conventional programming languages requires that a loop be written.

MATRICES

A matrix is a two-dimensional array; that is, one that has multiple rows and multiple
columns. One way to create a matrix is to type each row as a row array (with its elements
separated by a comma or a space) followed by a semicolon except for the last row. The
semicolon serves to separate the rows. For example, to create the matrix

A =
[

4 7
9 2

]
the session is

>>A = [4, 7; 9, 2];

To access the element of a matrix in row r and column c, type A(r,c). For
example, typing A(2,1) returns the value 9. Note that the row number comes first.

Matrix addition, subtraction, and multiplication by a scalar follow the same rules
as for row and column arrays.

ARRAY MULTIPLICATION

Multiplication of arrays by a scalar is easily understood. For example, to double each
element of the array r = [3, 5, 2], you type v = 2*r to obtain v = [6, 10,
4]. Similarly, multiplying a matrix A by a scalar w produces a matrix whose elements
are the elements of A multiplied by w . However, multiplication of two arrays is not so
straightforward. In fact, there are two definitions of multiplication used by MATLAB:
(1) array multiplication and (2) matrix multiplication.

To compute the matrix product AB you typeA*B. The resulting matrix is computed
using the standard rules of matrix multiplication. However, typing A.*B produces a
different matrix, in which each element is the product of the two corresponding elements
in A and B. This form is called array or element-by-element multiplication. Note that
.* is one symbol.

To illustrate the difference between the two types of multiplication, consider this
table, which gives the speed of an aircraft on each leg of a certain trip, and the time
spent on each leg.

Leg

1 2 3 4

Speed (mi /hr) 200 250 400 300
Time (hr) 2 5 3 4
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We can define a row array s containing the speeds and a row array t containing
the times for each leg. Thus s = [200, 250, 400, 300] and t = [2, 5,
3, 4]. To find the miles traveled on each leg, we multiply the speed by the time. To
do this we use the multiplication s.*t to produce the row array whose elements are
the products of the corresponding elements in s and t. This process is illustrated as
follows.

s.*t = [200(2), 250(5), 400(3), 300(4)] = [400, 1250, 1200, 1200]

The resulting array contains the miles traveled by the aircraft on each leg of the trip.
To find only the total miles traveled, we can use matrix multiplication s*t', where

the ' denotes the transpose operation (note that the operator .* is not used here). The
transpose converts the row array t into a column array. This product gives the sum of
the individual element products; that is

s*t' = [200(2) + 250(5) + 400(3) + 300(4)] = 4050

The complete session to perform these calculations is

>>s = [200, 250, 400, 300];
>>t = [2, 5, 3, 4];
>>miles per leg = s.*t
miles per leg =

400 1250 1200 1200
>>total miles = s*t'
total miles =

4050

ARRAY DIVISION AND EXPONENTIATION

Array division, also called element-by-element division, is defined similarly to array
multiplication, except of course that the elements of one array are divided by the
elements of the other array. Both arrays must have the same size. The symbol for array
right division is ./. For example, if x = [8, 12, 15] and y = [-2, 6, 5]
then z = x./y gives z = [-4, 2, 3].

In MATLAB not only can we can raise arrays to powers, but we can also raise scalars
and arrays to array powers. To perform exponentiation on an element-by-element basis,
we must use the .^ symbol. For example, if x = [3, 5, 8], then typing x.^3
produces the array [33, 53, 83] = [27, 125, 512].

We can raise a scalar to an array power. For example, if p = [2, 4, 5], then
typing 3.^p produces the array [32, 34, 35] = [9, 81, 243]. This illustrates a common
situation where it helps to remember that .^ is a single symbol; the dot in 3.^p is
not a decimal point associated with the number 3. Thus 3.^p gives the same result as
3..^p or as (3).^p.

POLYNOMIAL ROOTS

We can describe a polynomial in MATLAB with an array whose elements are the poly-
nomial’s coefficients, starting with the coefficient of the highest power. For example,
the polynomial 4x3 − 8x2 + 7x − 5 would be represented by the array [4, -8, 7,
-5]. Polynomial roots can be found with theroots(a) function, where a is the poly-
nomial’s coefficient array. The result is a column array that contains the polynomial’s
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roots. For example, to find the roots of x3 − 7x2 + 40x − 34 = 0, the session is

>>roots([1,-7,40,-34])
ans =

3.0000 + 5.000i
3.0000 - 5.000i
1.0000

The roots are x = 3 ± 5i and x = 1.
The poly(r) function computes the coefficients of the polynomial whose roots

are specified by the array r. The result is a row array that contains the polynomial’s
coefficients. To find the polynomial whose roots are 1 and 3 ± 5i , the session is

>>poly([1,3+5i,3-5i])
ans =

1.0000 -7.0000 40.0000 -34.0000

Thus, the polynomial is x3 − 7x2 + 40x − 34.

POLYNOMIAL ALGEBRA

You can do polynomial algebra with MATLAB. To add two polynomials, add the
arrays that describe their coefficients. If the polynomials are of different degrees, add
zeroes to the coefficient array of the lower-degree polynomial. For example, consider
f (x) = 9x3 − 5x2 + 3x + 7, whose coefficient array is f = [9, -5, 3, 7], and
g(x) = 6x2 − x + 2, whose coefficient array is g = [6, -1, 2]. The degree
of g(x) is one less that of f (x). Therefore, to add f (x) and g(x), we append one
0 to g to “fool” MATLAB into thinking g(x) is a third-degree polynomial. That is,
we type g = [0 g] to obtain [0, 6, -1, 2] for g. This represents g(x) =
0x3 + 6x2 − x + 2. To add the polynomials, type h = f + g. The result is h = [9,
1, 2, 9], which corresponds to h(x) = 9x3 + x2 + 2x + 9. Subtraction is done in
a similar way.

To multiply a polynomial by a scalar, simply multiply the coefficient array by that
scalar. For example, 5h(x) is obtained from 5*h, where h = [45, 5, 10, 45].

Multiplication of polynomials by hand can be tedious, and polynomial division
is even more so, but these operations are easily done with MATLAB. Use the conv
command to multiply polynomials (it stands for “convolve”), and use the deconv
command to perform synthetic division (deconv stands for “deconvolve”).

Consider the product

f (x)g(x) = (9x3 −5x2 +3x +7)(6x2 −x +2) = 54x5 −39x4 +41x3 +29x2 −x +14

Dividing f (x) by g(x) using synthetic division gives a quotient of

f (x)

g(x)
= 9x3 − 5x2 + 3x + 7

6x2 − x + 2
= 1.5x − 0.5833

with a remainder of −0.5833x + 8.1667. The MATLAB session to perform these
operations is

>>f = [9, -5, 3, 7]; g = [6, -1, 2];
>>product = conv(f,g)
product =

54 -39 41 29 -1 14
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>>[quotient, remainder] = deconv(f,g)
quotient =

1.5 -0.5833
remainder =

0 0 -0.5833 8.1667

The conv and deconv commands do not require that the polynomials have the same
degree.

The polyval function is useful for plotting polynomials, and is discussed later.
Roots of functions other than polynomials can be obtained with the fzero function.
Type help fzero for more information.

PLOTTING WITH MATLAB

MATLAB contains many powerful functions and commands for easily creating plots
of several different types, such as rectilinear, logarithmic, surface, and contour plots,
for example. To plot the function y = sin 2x for 0 ≤ x ≤ 10, we choose an increment
of 0.01 to generate a large number of x values in order to produce a smooth curve. The
function plot(x,y) generates a plot with the x values on the horizontal axis (the
abscissa) and the y values on the vertical axis (the ordinate). The session is

>>x = [0:0.01:10]; y = sin(2*x);
>>plot(x,y),xlabel('x'),ylabel('sin(2x)')

The xlabel function places the text in single quotes as a label on the horizontal axis.
Theylabel function performs a similar function for the vertical axis. The plot appears
on the screen in a graphics window. If a hard copy of the plot is desired, the plot can
be printed by selecting Print from the File menu on the graphics window. The window
can be closed by selecting Close on the File menu in the graphics window. You will
then be returned to the prompt in the Command window.

Other useful plotting functions are title and gtext. These functions place text
on the plot. Both accept text within parentheses and single quotes, as with the xlabel
function. The title function places the text at the top of the plot; the gtext function
places the text at the point on the plot where the cursor is located when you click the
left mouse button.

Sometimes it is useful or necessary to obtain the coordinates of a point on a plotted
curve. The function ginput can be used for this purpose. Place it at the end of all
the plot and plot formatting statements, so that the plot will be in its final form. The
command [x,y] = ginput(n) gets n points and returns the x and y coordinates
in the vectors x and y, which have a length n. Position the cursor using a mouse, and
press the mouse button. The returned coordinates have the same scale as the coordinates
on the plot.

In cases where you are plotting data, as opposed to functions, you should use
data markers to plot each data point (unless there are very many data points). To
mark each point with a plus sign +, the required syntax for the plot function is
plot(x,y,'+'). You can connect the data points with lines if you wish. In that case,
you must plot the data twice, once with a data marker, and once without a marker. For
example, suppose the data for the independent variable is x = [15:2:23] and the
dependent variable values are y = [20, 50, 60, 90, 70]. To plot the y data
with plus signs connected by straight lines, type plot(x,y,'+',x,y). Other data
markers are available. Type help plot for information about other markers.
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MULTIPLE PLOTS

You can create multiple plots—called overlay plots—by including another set or sets
of values in the plot function. For example, to plot the functions y = 2

√
x and

z = 4 sin 3x for 0 ≤ x ≤ 5 on the same plot, the session is

>>x = [0:0.01:5]; y = 2*sqrt(x); z = 4*sin(3*x);
>>plot(x,y,x,z),xlabel('x'),gtext('y'),gtext('z')

After the plot appears on the screen, the program waits for you to position the cursor
and click the mouse button, once for each gtext function used. Although MATLAB
displays different colors for each curve, if you are going to print the plot on a black-
and-white printer, you should label each curve so that you know which curve represents
y and which curve represents z. One way of doing this is to use the gtext function
to place the labels y and z next to the appropriate curves, as shown in the preceding
session. Another way is to use the legend function. The plotting functions xlabel,
ylabel, title, and gtext must be placed after the plot function and separated
by commas.

You can also distinguish curves from one another by using different line types
for each curve. For example, to plot the z curve using a dashed line, replace the
plot(x,y,x,z) function in the preceding session with plot(x,y,x,z,'--').
Other line types can be used. Type help plot for information about these line types.

You can use the subplot function to create multiple but separate plots in the
same figure window (and on the same printed page). The subplot function creates
a rectangular tiling having r rows and c columns of “panes,” each containing a plot.
The syntax is subplot(r,c,n), where n denotes the pane number currently being
plotted. For example, to plot y and z created in the previous session as two separate
plots, with the plot of y above the plot of z, the session is

>>subplot(2,1,1),plot(x,y),xlabel('x'),ylabel('y')
>>subplot(2,1,2),plot(x,z),xlabel('x'),ylabel('z')

PLOTTING POLYNOMIALS

The polyval(a,x) function evaluates a polynomial at specified values of its inde-
pendent variable x. The polynomial’s coefficient array is a. The result is the same size
as x. The polyval function is very useful for plotting polynomials. To do this you
should define an array that contains many values of the independent variable x in order
to obtain a smooth plot. For example, to plot the polynomial f (x) = 9x3 −5x2 +3x +7
for −2 ≤ x ≤ 5, the session is

>>a = [9,-5,3,7]; x = [-2:0.01:5];
>>f = polyval(a,x);
>>plot(x,f),xlabel('x'),ylabel('f(x)'),grid

The grid command puts grid lines on the plot.

THE PLOT EDITOR

The aforementioned plot formatting commands are useful when you want to generate
plots automatically with a program file. This is most convenient when you need to
make many plots of similar type. If you need a small number of plots, you can use the
Plot Editor to place text, lines, and arrows on the plot. Once the plot is displayed, click
on the northwest-facing arrow to start the Plot Editor mode. This mode enables you to
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edit the plot elements by double-clicking on an element, such as an axis or a plotted
curve. To insert an axis label or to change the limits or scale, double-click on any axis,
then select the tab of the desired axis, enter its label, and change its scale and limits, if
desired.

Click on the Data Cursor button to use the mouse to extract coordinates from a plot-
ted curve. Click on the Show Plot Tools button to display the Figure Palette. This palette
enables you to add elements such as arrows, text, rectangles, and ellipses to the plot.

C.3 WORKING WITH FILES
MATLAB uses several types of files that enable you to save programs, data, and user-
defined functions. MATLAB program files and function files are saved with the exten-
sion ‘.m’, and thus are called M-files. Files are stored in directories, which are called
folders on some computer systems. Directories can have subdirectories below them.
The path tells us and MATLAB how to find a particular file.

THE SEARCH PATH

Suppose you have saved the program file problem6.m in the directory \homework
on a disk that you insert in drive a:. The path for this file is a:\homework. As
MATLAB is normally installed, when you type problem6 in the Command window,

1. MATLAB first checks to see if problem6 is a variable and if so, displays its
value.

2. If not, MATLAB then checks to see if problem6 is one of its own built-in
commands, and executes it if it is.

3. If not, MATLAB then looks in the current directory for a program file named
problem6.m and executes problem6 if it finds it.

4. If not, MATLAB then searches the directories in its search path, in order, for
problem6.m and then executes it if found.

You can display the MATLAB search path by typing path. If problem6.m is on
the disk only and if directory a:\homework is not in the search path, MATLAB will
not find the file and will generate an error message, unless you tell it where to look.
You can do this by typing cd a:\homework, which stands for “change directory
to a:\homework.” This will change the current directory to a:\homework and force
MATLAB to look in that directory to find your file. The general syntax of this command
is cd dirname, where dirname is the full path to the directory. The main directory
on the disk is a:, so if your file is in the main directory, be sure to include the colon,
and type cd a:.

You can determine the current directory (the one where MATLAB looks for your
file) by typing pwd. To see a list of all the files in the current directory, type dir. To see
the files in the directorydirname, typedir dirname. Thewhat command displays
a list of the MATLAB-specific files in the current directory. The what dirname
command does the same for the directory dirname.

SCRIPT FILES AND THE EDITOR/DEBUGGER

In addition to using the interactive mode, in which all commands are entered directly
in the Command window, you can also perform operations by running a MATLAB
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program stored in script file. This type of file has MATLAB commands in it, so that
when you run such a file it is equivalent to typing all the commands—one at a time—at
the Command window prompt. You can run the file by typing its name at the Command
window prompt. When the problem requires many commands, or has arrays with many
elements, or you need to repeat a set of commands several times, it is more convenient
to use a script file. If you need to access the same set of data frequently, you can store
the data in an array within a script file.

You write and save MATLAB programs in M-files, which have the extension ‘.m’;
for example, program1.m. You execute a script file at the Command window prompt
by typing its name without the extension ‘.m’. Another type of M-file is a function file,
which is useful when you need to repeat the operation of a set of commands. You can
create your own function files; at the end of this section we discuss how to do this.

The symbol % designates a comment, which is not executed by MATLAB. Com-
ments are put in script files for the purpose of documenting the file. The comment
symbol may be put anywhere in the line. MATLAB ignores everything to the right of
the % symbol. A very simple example of a script file is shown next. It computes the sine
of the square root of several numbers and displays the results on the screen.

% Program example1.m
% This program computes the sine of the square root,
% and displays the result.
x = sqrt([3:2:11]);
y = sin(x)

To create this new M-file in the MS Windows environment, in the Command
window select New from the File menu, then select M-file. You will then see a new
edit window. This is the Editor/Debugger window. Type in the file as just shown. You
can use the keyboard and the Edit menu in the Editor/Debugger as you would in most
word processors to create and edit the file. When finished, select Save from the File
menu in the Editor/Debugger. In the dialog box that appears, replace the default name
provided (usually named Untitled) with the name example1, and click on Save.
The Editor/Debugger will automatically provide the extension ‘.m’ and save the file
in the MATLAB current directory, which for now we will assume to be on the hard
drive.

Once the file has been saved, in the MATLAB Command window type the script
file’s name example1 to execute the program. You should see displayed in the Com-
mand window the computed values of the array y = 0.9870 0.7867 0.4758
0.1411 -0.1741.

Keep in mind the following when using script files:

1. The name of a script file must follow the MATLAB convention for naming
variables; that is, the name must begin with a letter, and may include digits and
the underscore character, up to 31 characters.

2. Recall that typing a variable’s name at the Command window prompt causes
MATLAB to display the value of that variable. Thus, do not give a script file the
same name as a variable it computes, because MATLAB will not be able to
execute that script file more than once, unless you clear the variable.

3. Do not give a script file the same name as a MATLAB command or function.
You can check to see if a command, function, or file name already exists by
using the exist command.
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4. You can use the type command to view an M-file without opening it with a text
editor. For example, to view the file example1, the command is type
example1.

INPUT AND OUTPUT FOR SCRIPT FILES

You can use thedisp function to display the value of a variable from within a script file.
For example, type disp(x) to display the value of x. You can also display messages
with the disp function. Type disp('text') to display the message enclosed within
single quotes. The input function displays a prompt and assigns an entered value to a
variable. The syntax is x = input('Enter a value for x:'). The function
displays the message within the single quotes and assigns the value typed at the keyboard
to the variable x. Of course, any variable name and any text message can be used.

DEBUGGING PROGRAMS

Debugging a program is the process of finding and removing the “bugs,” or errors, in a
program. Such errors usually fall into one of two categories: (1) Syntax errors such as
omitting a parenthesis or comma, or spelling a command name incorrectly. MATLAB
usually detects the more obvious errors and displays a message describing the error and
its location. (2) Errors due to an incorrect mathematical procedure. These are called
runtime errors. They do not necessarily occur every time the program is executed; their
occurrence often depends on the particular input data. A common example is division
by zero.

The MATLAB error messages usually enable you to find syntax errors. However,
runtime errors are more difficult to locate. To locate such an error, try the following:
(1) Test your program with a simple version of the problem, whose answers can be
checked by hand calculations. (2) Display any intermediate calculations by removing
semicolons at the end of statements. (3) Use the debugging features of the Editor/
Debugger. However, one of advantages of MATLAB is that it requires relatively simple
programs to accomplish many types of tasks. Thus, you probably will not need to use
the Debugger for most of the problems encountered in this text.

USER-DEFINED FUNCTIONS

Another type of M-file is a function file. Unlike a script file, all the variables in a function
file are local, which means their values are available only within the function. Function
files are useful when you need to repeat a set of commands several times. The first line
in a function file must begin with a function definition line that has a list of inputs and
outputs. This line distinguishes a function M-file from a script M-file. Its syntax is as
follows:

function [output variables]=function name(input variables)

Note that the output variables are enclosed in square brackets while the input variables
must be enclosed with parentheses. The function name must be the same as the
filename in which it is saved (with the .m extension). That is, if we name a function
drop, it must be saved in the file drop.m. The function is “called” by typing its name
(e.g., drop) at the command line. The word function in the function definition line
must be lower case.
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The following examples show permissible variations in the format of the function
line. The differences depend on whether there is no output, a single output, or multiple
outputs.

Function definition line File name

1. function [area square] = square(side); square.m
2. function area square = square(side); square.m
3. function [volume box] = box(height,width,length); box.m
4. function [area circle,circumf] = circle(radius); circle.m
5. function sqplot(side); sqplot.m

Example 1 is a function with one input and one output. The square brackets are
optional when there is only one output (see Example 2). Example 3 has one output
and three inputs. Example 4 has two outputs and one input. Example 5 has no output
variable (an example of this would be a function that generates a plot). In such cases,
the equals sign should be omitted.

Comment lines starting with the % sign may be put anywhere. However, it is
important to note that all comment lines immediately following the function definition
line are displayed by MATLAB ifhelp is used to obtain information about the function.
The first comment line can be accessed by the lookfor command, which is discussed
in Section C.5.

Both built-in and user-defined functions can be called either with the output vari-
ables explicitly specified, as with the previous Examples 1 through 4, or without
any output variables specified. For example, we can call the function square as
follows: square(side) if we are not interested in accessing its output variable
area square (the function might perform some other operation that we want to oc-
cur, such as displaying a result). Note that if the semicolon is omitted at the end of the
function call statement, the first variable in the output variable list will be displayed
using the default variable name ans.

For example, the following function, called drop, computes a falling object’s
velocity and distance dropped. The input variables are the acceleration g, the initial
velocity v0, and the elapsed time t . Note that we must use the element-by-element
operations for any operations involving function inputs that are arrays. Here we antic-
ipate that t will be an array, so we use the element-by-element operator (.^).

function [dist,vel] = drop(g,vO,t);
% Computes velocity and distance of a dropped object.
% The distance and velocity are computed as functions
% of g, the initial velocity vO, and the time t.
vel = g*t + vO;
dist = 0.5*g*t.^2 + vO*t;

The following examples show various ways the function drop can be called.

1. The variable names used in the function definition may, but need not, be used
when the function is called. For example, consider the session:

>>a = 32.2;
>>initial speed = 10;
>>time = 5;
>>[feet dropped,speed] = drop(a,initial speed,time)
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2. The input variables need not be assigned values outside the function prior to the
function call. For example,

>>[feet dropped,speed] = drop(32.2,10,5)

3. The inputs and outputs may be arrays. For example,

>>[feet dropped,speed] = drop(32.2,10,[0:1:5])

produces the arrays feet dropped and speed each with six values, corresponding
to the six values of time in the array time.

Some of the MATLAB commands act on functions, so if the function of interest
is not a simple function, you must define the function in an M-file to use one of
these commands. For example, we can use the fzero function to find the zero of
a function of a single variable, which we denote by x. One form of its syntax is
fzero('function', x0), where function is a string containing the name of
the function. The fzero function returns a value of x that is near x0. It identifies only
points where the function crosses the x axis, not points where the function just touches
the axis. If y = x + 2e−x − 3, define the following function file:

function y = f1(x)
y = x + 2*exp(-x) - 3;

To find the zero near x = 3, type x = fzero('f1',3). The returned answer is
x = 2.8887.

The fminbnd function can be used to find the minimum of a function of a single
variable, which we denote by x. One form of its syntax is fminbnd('function',
x1, x2), where function is a string containing the name of the function. The
fminbnd function returns a value of x that minimizes the function in the interval
x1 ≤ x ≤ x2. For example, if y = 1 − xe−x , define the following function file:

function y = f2(x)
y = 1-x.*exp(-x);

To find the value of x that gives a minimum for 0 ≤ x ≤ 5, typex=fmin('f2',0,5).
The returned answer is x = 1. To find the minimum value of y, type y = f2(x). The
result is y = 0.6321.

C.4 LOGICAL OPERATORS AND LOOPS
MATLAB has relational operators, logical operators, and conditional statements that
enable you to write decision-making programs whose operations depend on the results
of calculations made by the program. MATLAB also has two types of loop structures for
performing calculations repeatedly a specified number of times or until some condition
is satisfied.

RELATIONAL OPERATORS

MATLAB has six relational operators to make comparisons between arrays. These
operators are shown in Table C.4.1. Note that the “equal to” operator consists of two
= signs, not a single = sign as you might expect. The single = sign is the assignment
operator in MATLAB. The result of a comparison using the relational operators is either
a 0 (if the comparison is false), or a 1 (if the comparison is true), and the result can be
used as a variable.
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Table C.4.1 Relational operators.

Relational operator Meaning

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
~= not equal to

Table C.4.2 Logical operators.

Operator Name Definition

~ NOT ~A returns an array the same dimension as A, which has 1’s where A
is 0, and 0’s where A is nonzero.

& AND A & B returns an array the same dimension as A and B, which has 1’s
where both A and B have nonzero elements, and 0’s where either A
or B is zero.

| OR A|B returns an array the same dimension as A and B, which has 1’s
where at least one element in A or B is nonzero, and 0’s where A and
B are both zero.

For example, ifx = 2 andy = 5, typingz = x < y returns the valuez = 1,
because x is less than y. Typing u = x==y returns the value u = 0 because x does
not equal y. To make the statements more readable, we can group the operations using
parentheses. For example, z = (x < y) and u = (x==y). Note, however, that
the variables z and u are logical variables, as opposed to numeric variables. A logical
variable may take on only the logical values, true or false. These values are represented
by 1 and 0, but they should not be used for numerical calculations. For example, typing
b = sin(z) generates an error message. This distinction is discussed in more detail
in the subsection “Logical Arrays.”

When used to compare arrays, the relational operators compare the arrays on an
element-by-element basis. The arrays being compared must have the same size. The
only exception occurs when we compare an array to a scalar. In that case, all the
elements of the array are compared to the scalar. For example, suppose that x =
[6, 3, 9] and y = [14, 2, 9]. Then typing z = (x < y) gives the result
z = [1, 0, 0]. Typing z = (x == y) gives the result z = [0, 0, 1].
Typing z = (x > 8) gives z = [0, 0, 1].

The relational operators can be used for array addressing. For example, with x =
[6, 3, 9, 11] and y = [14, 2, 9, 13], typing z = x(x < y) finds all
the elements in x that are less than the corresponding elements in y. The result is the
array z = [6, 11].

LOGICAL OPERATORS

MATLAB has three logical operators, which are sometimes called Boolean operators
(see Table C.4.2). These operators perform element-by-element operations. With the
exception of the NOT operator (~ ), they have a lower precedence than the arithmetic
and relational operators (see Table C.4.3). The NOT symbol is called the tilde.

The NOT operation ~A returns an array of the same dimension as A, having 1’s
where A is 0, and 0’s where A is nonzero. For example, if x = [6, 3, 9] and y =
[14, 2, 9], then the statement z = ~x returns the array z = [0, 0, 0], and
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Table C.4.3 Order of precedence for operator types.

Precedence Operator type

First Parentheses, evaluated starting with the innermost pair.
Second Arithmetic operators and NOT (~ ), evaluated from left to right.
Third Relational operators, evaluated from left to right.
Fourth Logical AND.
Fifth Logical OR.

the statement z = ~x > y returns the result z = [0, 0, 0]. The later statement
is equivalent to z = (~x) > y, whereas z = ~(x > y) gives the result z =
[1, 0, 1]. This is equivalent to z = (x <= y).

The & and | operators compare two arrays of the same dimension. The only
exception, as with the relational operators, is that an array can be compared to a scalar.
The AND operator & returns 1’s where both A and B have nonzero elements, and
0’s where any element of A or B is zero. The expression z = 0&3 returns z = 0,
z = 2&3 returns z = 1, z = 0&0 returns z = 0, and z = [5, -3, 0, 0]&
[2, 4, 0, 5] returnsz = [1, 1, 0, 0]. Because of operator precedence,z =
1&2 + 3 is equivalent to z = 1&(2 + 3), which returns z = 1. Similarly, z =
5 < 6&1 is equivalent to z = (5 < 6)&1, which returns z = 1.

Let x = [6, 3, 9] and y = [14, 2, 9], and let a = [4, 3, 12].
The expression

(x > y) & a

gives z = [0, 1, 0], and the expression

z = (x > y) & (x > a)

returns the result z = [0, 0, 0].
Be careful when using the logical operators with inequalities. For example, note

that ~(x > y) is equivalent to y >= x. It is not equivalent to y > x. As another
example, the relation 5 < x < 10 must be written as

(5 < x) & (x < 10)

in MATLAB.
The OR operator | returns 1’s where at least one of A and B has nonzero ele-

ments, and 0’s where both A and B are zero. The expression z = 0|3 returns z =
1, the expression z = 0|0 returns z = 0, and the expression

z = [5, -3, 0, 0]|[2, 4, 0, 5]

returns z = [1, 1, 0, 1]. Because of operator precedence, the expression z =
3 < 5|4 == 7 is equivalent to z = (3 < 5)|(4 == 7), which returns
z = 1. Similarly, the expression z = 1|0 & 1 is equivalent to z = (1|0)&1,
which returns z = 1, while the expression z = 1|0 & 0 returns z = 0, and the
expression z = 0 & 0|1 returns z = 1.

Because of the precedence of the NOT operator the statement z = ~3 == 7|4
== 6 returns the result z = 0, which is equivalent to z = ((~3)==7)|(4==6).

Table C.4.4 is a so-called truth table that defines the operations of the logical
operators, where “true” is equivalent to 1, and “false” is equivalent to 0. Let x and y
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Table C.4.4 Truth table for logical operators.

x y ~x x|y x&y

true true false true true
true false false true false
false true true true false
false false true false false

represent the first two columns of the truth table in terms of 1’s and 0’s. The following
MATLAB session generates the truth table in terms of 1’s and 0’s.

>> x = [1, 1, 0, 0]′; y = [1, 0, 1, 0]′;
>> Truth Table = [x,y,~x,x|y,x&y]
Truth Table =

1 1 0 1 1
1 0 0 1 0
0 1 1 1 0
0 0 1 0 0

THE find FUNCTION

The find function is very useful for creating decision-making programs, especially
when combined with the relational and logical operators. The function find(x) com-
putes an array containing the indices of the nonzero elements of the arrayx. For example,
consider the session

>>x = [-2, 0, 4]; y = find(x)
y =

1 3

The resulting array y = [1, 3] indicates that the first and third elements of x are
nonzero. Note that the find function returns the indices, and not the values. In the
following session, note the difference between the result obtained by x(x<y) and the
result obtained by find(x < y).

>>x = [6, 3, 9, 11];y = [14, 2, 9, 13];
>>values = x(x < y)
values =

6 11
>>indices = find(x < y)
indices =

1 4

Thus, there are two values in the array x that are less than the corresponding values in
the array y. They are the first and fourth values, which are 6 and 11.

The logical operators can be used with the find function. For example, consider
the session

>>x = [5, -3, 0, 0, 8]; y = [2, 4, 0, 5, 7];
>>z = find(x & y)
z =

1 2 5
>>values = y(x & y)
values =

2 4 7
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The array obtained with the find function, z = [1, 2, 5], indicates that the
first, second, and fifth elements of x and y are both nonzero. The array values =
[2, 4, 7], which is obtained from y(x & y), shows that there are three nonzero
values in y that correspond to nonzero values in x. These are 2, 4, and 7, the first,
second, and fifth values.

LOGICAL ARRAYS

Logical variables can have only the values 1 (true) and 0 (false), and a logical array
contains logical values. However, just because an array contains only 0’s and 1’s, it is
not necessarily a logical array. For example, in the following session k and w appear
the same, but k is a logical array and w is a numeric array, and thus an error message
is issued.

>> x = [-2:2]
x =

-2 -1 0 1 2
>> k = (abs(x)>1)
k =

1 0 0 0 1
>> z = x(k)
z =

-2 2
>> w = [1,0,0,0,1];
>> v = x(w)
??? Subscript indices must either be real positive...

integers or logicals.

Logical arrays can be created with the relational and logical operators and with
the logical function. The logical function returns an array that can be used for
logical indexing and logical tests. Typing B = logical(A), where A is a numeric
array, returns the logical array B. So to correct the error in the previous session, you
can type instead w = logical([1,0,0,0,1]).

You can use thedouble function to convert a logical array to an array of numerical
0’s and 1’s of class double. For example, x = (5>3); y = double(x);. In
addition, most arithmetic operations convert a logical array to a double array.

ACCESSING ARRAYS

Typing A(B), where B is a logical array of the same size as A, returns the values of A
at the indices where B is nonzero. Given A = [5,6,7;8,9,10;11,12,13] and
B = logical(eye(3)), we can extract the diagonal elements of A by typing C =
A(B) to obtain C = [5;9;13]. Specifying array subscripts with logical arrays
extracts the elements that correspond to the true (1) elements in the logical array.

Note, however, that using the numeric arrayeye(3), asC = A(eye(3)) results
in an error message because the elements of eye(3) do not correspond to locations
in A. If the numeric array values correspond to valid locations, you may use a numeric
array to extract the elements. For example, to extract the diagonal elements of A with
a numeric array, type C = A([1,5,9]).

CONDITIONAL STATEMENTS

The MATLAB conditional statements enable us to write programs that make decisions.
Conditional statements contain one or more of the if, else, and elseif statements.
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The end statement is used to denote the end of a conditional statement. These condi-
tional statements read somewhat like their English language equivalents. For example,
suppose that x is a scalar, and that we want to compute y = √

x only if x ≥ 0. In
English, we could specify this as: “If x is greater than or equal to zero, compute y from
y = √

x , otherwise, do nothing.” The if statement in the next script file accomplishes
this in MATLAB, assuming that the variable x already has a scalar value.

if x >= 0
y = sqrt(x)

end

If x is negative, the program takes no action.
When more than one action must occur as a result of a decision, we can use

the else and elseif statements. The statements after the else are executed if
all the preceding if and elseif expressions are false. The general form of the if
statement is

if logical expression
statement group 1

elseif logical expression
statement group 2

else
statement group 3

end

There can be more than oneelseif statement. Theelse andelseif statements can
be omitted if not required. However, if both are used, the else statement must come
after the elseif statements to take care of all conditions that might be unaccounted
for.

Suppose that we want to compute y from y = √
x for x ≥ 0, and y = −√−x for

x < 0. The next script file will calculate y, assuming that the variable x already has a
scalar value.

if x >= 0
y = sqrt(x)

else
y = -sqrt(-x)

end

As another example, suppose that we want to compute y such that y = 0 if x < 0,
y = 10x if 0 ≤ x < 25, and y = 50

√
x if x ≥ 25. The next script file will compute y,

assuming that the variable x already has a scalar value.

if x >= 25
y = 50*sqrt(x)

elseif x >= 0
y = 10*x

else
y = 0

end

Note that the elseif statement does not require a separate end statement.
When the test, if logical expression, is performed, where the logical expression

may be an array, the test returns a value of true only if all the elements of the logical
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expression are true! For example, if we fail to grasp this, the following statements do
not perform the way we might expect.

x = [4, -9, 25];
if x < 0

disp('Some of the elements of x are negative.')
else

y = sqrt(x)
end

When this program is run it gives the resulty = 2, 0 + 3.000i, 5. The program
does not compute the square root of each element in x in sequence. Instead it tests
the truth of the relation x < 0. The test if x < 0 returns a false value because
it generates the vector [0, 1, 0]. Compare the last program with the following
statements:

x=[4, -9, 25];
if x >= 0

y = sqrt(x)
else

disp('Some of the elements of x are negative.')
end

When executed, it produces the result: Some of the elements of x are
negative.The difference is due to the different conditional statements used. Here the
test, if x < 0, is true, whereas the test, if x >= 0, returns a false value because
x >= 0 returns the vector [1, 0, 1].

Conditional structures can be nested; that is, one structure can contain another
structure.

THE for LOOP

A loop is a structure for repeating a calculation a number of times. Each repetition of the
loop is a pass. There are two types of explicit loops in MATLAB: the for loop, which
is used when the number of passes is known or can be computed ahead of time, and the
while loop, which is used when the looping process must terminate when a specified
condition is satisfied, and thus the number of passes is not known or computable in
advance.

A simple example of a for loop is

m = 0;
x(1) = 10;
for k = 2:3:11

m = m+1;
x(m+1) = x(m) + k^2;

end

The loop variable k is initially assigned the value 2. During each successive pass
through the loop k is incremented by 3, and x is calculated until k exceeds 11. Thus, k
takes on the values 2, 5, 8, and 11. The variable m indicates the index of the array x. The
program then continues to execute any statements following the end statement. When
the loop is finished the array xwill have the values x(1)=14, x(2)=39, x(3)=103,
x(4)=224. The name of the loop variable need not be k.
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Note the following rules when using for loops with the loop variable expression
k = m:s:n:

1. The step value s can be negative. For example, k = 10:-2:4 produces k = 10,
8, 6, 4.

2. If s is omitted, the step value defaults to 1.
3. If s is positive, the loop will not be executed if m is greater than n.
4. If s is negative, the loop will not be executed if m is less than n.
5. If m equals n, the loop will be executed only once.
6. If the step value s is not an integer, roundoff errors can cause the loop to execute

a different number of passes than intended.

You should not alter the value of the loop variable k within the statements. Doing so
can cause unpredictable results.

THE while LOOP

Thewhile loop is used in cases where the looping process must terminate when a spec-
ified condition is satisfied, and thus the number of passes is not known or computable
in advance. The basic structure of a while loop is the following.

while logical expression
statement group

end

MATLAB first tests the truth of the logical expression, which must contain a loop
variable. If the logical expression is true, the statements in the statement group will be
executed. For the while loop to function properly, the following two conditions are
required:

1. The loop variable must have a value before the while statement is executed.
2. The loop variable must be changed somehow by the statements in the statement

group.

The statements in the statement group are executed once during each pass, using the
current value of the loop variable. The looping continues until the logical expression is
false.

A simple example of a while loop is

x = 5; k = 0;
while x < 25

k = k + 1;
y(k) = 3*x;
x = 2*x - 1;

end

The loop variable x is initially assigned the value 5, and it has this value until the
statement x = 2*x - 1 is encountered the first time. Its value then changes to 9.
Before each pass through the loop, x is checked to see if its value is less than 25. If so,
the pass is made. If not, the loop is skipped and the program continues to execute any
statements following the end statement. The variable x takes on the values 9, 17, and
33 within the loop. The resulting array y contains the values y(1) = 15, y(2) =
27, and y(3) = 51.
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Every for and while statement must be matched by an accompanying end
statement. As with conditional statements, loops can be nested.

C.5 THE MATLAB HELP SYSTEM
Two principal ways to obtain more information about MATLAB commands and features
are to use the help commands in the Command window and to access the Help Browser.
The help commands can be used to display syntax information for a specified topic in
the Command window. The Help Browser is a graphical user interface for searching
and viewing documentation. For additional help, you can run demos, contact technical
support, search documentation for other MathWorks products, view a list of other books,
and participate in a newsgroup.

HELP COMMANDS

Four MATLAB commands are useful for obtaining online information about MATLAB
topics.

■ Typing help topic displays in the Command window a description of the
specified topic.

■ Typing helpwin topic displays the help text for the specified topic inside
the Help Browser window.

■ Typing lookfor topic displays in the Command window a brief description
for all items whose description includes the specified keyword topic.

■ Typing doc topic opens the Help Browser to the reference page for the
specified topic, providing a description, additional remarks, and examples.

The help command is the basic way to determine the syntax of a particular
command, function, or statement. For example, typing help log10 produces the
following display:

LOG10 Common (base 10) logarithm.
LOG10(X) is the base 10 logarithm of the elements of X.
Complex results are produced if X is not positive.

See also LOG, LOG2, EXP, LOGM.

Note that the display describes what the function does, warns about any unexpected
results if nonstandard argument values are used, and directs the user to other related
functions.

All the MATLAB functions are organized into groups, and the MATLAB directory
structure is based on this grouping. For instance, all elementary mathematical functions
such as log10 reside in the elfun directory, and the polynomial functions reside in
the polyfun directory. To list the names of all the functions in that directory, with a
brief description of each, type help polyfun. If you are unsure of what directory to
search, type help to obtain a list all the directories, with a description of the function
category each represents.

Typing helpwin topic displays the help text for the specified topic inside
the Help Browser window. Links are created to functions referenced in the “See also”
line of the help text. You can also access the Help Window by selecting the Help option
under the Help menu, or by clicking the question mark button on the toolbar.
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The lookfor command enables you to search for topics based on a keyword. It
searches through the first line of help text, which is known as the H1 line, for each
MATLAB function, and returns all the H1 lines containing a specified keyword. For
example, MATLAB does not have a function named sine. So the response from help
sine is sine.m not found. However, typing lookfor sine produces over a
dozen matches, depending on which toolboxes you have installed. For example, some
of the matches you will see are

ACOS Inverse cosine.
ACOSH Inverse hyperbolic cosine.
ASIN Inverse sine.
ASINH Inverse hyperbolic sine.
COS Cosine.
COSH Hyperbolic cosine.
SIN Sine.
SINH Hyperbolic sine.

From this list you can find the correct name for the sine function. Note that all words
containing sine are returned, such as cosine. Adding -all to the lookfor command
searches the entire help entry, not just the H1 line.

Typing doc topic displays the documentation for the topic in the Help Browser.
For example, typingdoc step displays information about the functionstep. Typing
doc toolbox displays the documentation road map page for the specified toolbox.
For example, typing doc control displays information about the Control Systems
toolbox.

THE HELP BROWSER

To open the Help Browser, select Matlab Help from the Help menu on the Desktop, or
click the question mark button in the toolbar. The Help Browser contains two window
“panes”: the Help Navigator pane and the Display pane. The Help Navigator contains
four tabs:

■ Contents: a contents listing tab,
■ Index: a global index tab,
■ Search: a search tab having a find function and full text search features, and
■ Demos: a tab for running built-in demonstrations of various MATLAB features.

Use the tabs in the Help Navigator to find documentation, which can then be viewed in
the Display pane.

While viewing a page of documentation, you can scroll to see contents not currently
visible in the window and navigate page by page forward or backward by clicking on
the appropriate arrows.

Click the Contents tab in the Help Navigator to list the titles and table of contents for
all product documentation. Click on an item to select it. The first page of that document
appears in the display pane. The Contents pane is synchronized with the Display pane
so that the item selected in the Contents pane always matches the documentation
appearing in the Display pane.

Click the Index tab in the Help Navigator pane to find specific index entries (key-
words) from all of your MathWorks documentation. Type a word or words in the “Search
index for” box. As you type, the index displays matching entries. Click on an entry to
display the corresponding documentation page.
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Click the Search tab in the Help Navigator pane to find all MATLAB documents
containing a specified phrase. Type the phrase in the “Search for” box. Then click the
Go button. The list of documents and the heading under which the phrase is found in
that document then appear in the Help Navigator pane. Select an entry from the list of
results to view that document in the Display pane.

MATHWORKS WEBSITE

The MathWorks maintains a very useful website that you can use to ask questions, make
suggestions, and report possible bugs. You can also search for solutions by querying
an up-to-date database of technical support information. You can access the website by
clicking on Web Resources under the Help menu in the Desktop.
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PROBLEMS
C.1 Assuming that the variables a, b, c, d, and f are scalars, write MATLAB

statements to compute and display the following expressions. Test your
statements for the values a = 1.12, b = 2.34, c = 0.72, d = 0.81, and
f = 19.83.

x = 1 + a

b
+ c

f 2
s = b − a

d − c

r = 1

1/a + 1/b + 1/c + 1/d
y = ab

1

c

f 2

2

C.2 Suppose that x = −7 − 5 j and y = 4 + 3 j . Use MATLAB to compute
a. x + y b. xy c. x/y d. 3

2 j e. 3
2 j

C.3 Suppose x takes on the values x = 1, 1.2, 1.4, . . . , 5. Use MATLAB to
compute the array y that results from the function y = 7 sin(4x). Use
MATLAB to determine how many elements are in the array y, and the value
of the third element in the array y.

C.4 The following table shows the hourly wages, hours worked, and output
(number of widgets produced) in 1 week for five widget makers.

Worker

1 2 3 4 5

Hourly wage ($) 5 5.50 6.50 6 6.25
Hours worked 40 43 37 50 45
Output (widgets) 1000 1100 1000 1200 1100

Use MATLAB to answer these questions:
a. How much did each worker earn in the week?
b. What is the total salary amount paid out?
c. How many widgets were made?
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d. What is the average cost to produce one widget?
e. How many hours does it take to produce one widget, on average?
f. Assuming that the output of each worker has the same quality, which

worker is the most efficient? Which is the least efficient?
C.5 Write a MATLAB assignment statement for each of the following functions,

assuming that w , x , y, and z are vector quantities of equal length, and that c
and d are scalars.

f = 1√
(2πc)/x

E = x + w/(y + z)

x + w/(y − z)

A = e−c/(2x)

(ln y)
√

dz
S = x(2.15 + 0.35y)1.8

z(1 − x)y

C.6 The following tables show the costs associated with a certain product, and the
production volume for the four quarters of the business year. Use MATLAB to
find (a) the quarterly costs for materials, labor, and transportation; (b) the total
material, labor, and transportation costs for the year; and (c) the total quarterly
costs.

Unit product costs
(

$ × 103
)

Product Materials Labor Transportation

1 7 3 2
2 3 1 3
3 9 4 5
4 2 5 4
5 6 2 1

Quarterly production volume

Product First quarter Second quarter Third quarter Fourth quarter

1 16 14 10 12
2 12 15 11 13
3 8 9 7 11
4 14 13 15 17
5 13 16 12 18

C.7 Use MATLAB to find the roots of 13s3 + 182s2 − 184s + 2503 = 0, and use
poly to confirm your answer.

C.8 Use MATLAB to find the roots of the polynomial 36s3 + 12s2 − 5s + 10. Use
the polyval function to verify the solution.

C.9 Use MATLAB to find the polynomial whose roots are 3 ± 6 j , 8, 8, and 20.
Use MATLAB to confirm your answer.

C.10 Use MATLAB to find the following product:(
10s3 − 9s2 − 6s + 12

)(
5s3 − 4s2 − 12s + 8

)
C.11 Use MATLAB to find the quotient and remainder of

14s3 − 6s2 + 3s + 9

5s2 + 7s − 4
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C.12 Use MATLAB to plot the functions u = 2 log10 (60x + 1) and v = 3 cos(6x)

over the interval 0 ≤ x ≤ 2. Properly label the plot and each curve. The
variables u and v represent speed in miles per hour; the variable x represents
distance in miles.

C.13 Use MATLAB to plot the polynomials y = 3x4 − 6x3 + 8x2 + 4x + 90 and
z = 3x3 + 5x2 − 8x + 70 over the interval −3 ≤ x ≤ 3. Properly label the
plot and each curve. The variables y and z represent current in milliamps; the
variable x represents voltage in volts.

C.14 Write a script file using conditional statements to evaluate the following
function, assuming that the scalar variable x has a value. The function is
y = ex+1 for x < −1, y = 2 + cos(πx) for −1 ≤ x < 5, and
y = 10(x − 5) + 1 for x ≥ 5. Use your file to evaluate y for x = −5, x = 3,
and x = 15, and check the results by hand.

C.15 Suppose that x = [-15,-8,9,8,5] and y = [-20,12,-4,8,9].
What is the result of the following operations? Determine the answers by
hand, and then use MATLAB to check your answers.
a. z = (x < y)

b. z = (x > y)

c. z = (x ~= y)

d. z = (x == y)

e. z = (y > -4)

C.16 The given arrays price A, price B and price C contain the price in
dollars of three stocks over ten days.
a. Use MATLAB to determine how many days the price of stock A was

above both the price of stock B and the price of stock C.
b. Use MATLAB to determine how many days the price of stock A was

above either the price of stock B or the price of stock C.
c. Use MATLAB to determine how many days the price of stock A was

above either the price of stock B or the price of stock C, but not both.

price A = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]
price B = [22, 17, 20, 19, 24, 18, 16, 25, 28, 27]
price C = [17, 13, 22, 23, 19, 17, 20, 21, 24, 28]

C.17 The price, in dollars, of a certain stock over a ten day period is given in the
following array.

price = [19, 18, 22, 21, 25, 19, 17, 21, 27, 29]

Suppose you owned 1000 shares at the start of the ten day period, and you
bought 100 shares every day the price was below $20, and sold 100 shares
every day the price was above $25. Use MATLAB to compute (a) the amount
you spent in buying shares, (b) the amount you received from the sale of
shares, (c) the total number of shares you own after the tenth day, and (d) the
net increase in the worth of your portfolio of stock.

C.18 Use a for loop to determine the sum of the first 10 terms in the series 5k3,
k = 1, 2, 3, . . . , 10.

C.19 Use a while loop to determine how many terms in the series 2k ,
k = 1, 2, 3, . . . , are required for the sum of the terms to exceed 2000. What is
the sum for this number of terms?
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C.20 One bank pays 5.5% annual interest, while a second bank pays 4.5% annual
interest. Determine how much longer it will take to accumulate at least
$50,000 in the second bank account if you deposit $1000 initially, and $1000
at the end of each year.

C.21 Given a number x and the quadrant q (q = 1, 2, 3, 4), write a program to
compute sin−1(x) in degrees, taking into account the quadrant. The program
should display an error message if |x | > 1.

C.22 The function y = 1 + e−0.2x sin(x + 2) has two minimum points in the
interval 0 < x < 10. Create a user-defined function and use the fminbnd
function to find the values of x and y at each minimum.

C.23 An object thrown vertically with a speed v0 will reach a height h at time t ,
where

h = v0t − 1

2
gt2

Write and test a function that computes the time t required to reach a specified
height h, for a given value of v0. The function’s inputs should be h, v0, and g.
Test your function for the case where h = 100 m, v0 = 50 m/s, and g =
9.81 m/s2. Interpret both answers.
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D.2 Programming Numerical Methods
in MATLAB 11

Problems 15

D.1 INTRODUCTION TO NUMERICAL ALGORITHMS
Numerical methods for solving differential equations can be applied to both linear and
nonlinear models, although their primary application is to nonlinear models. A nonlinear
ordinary differential equation can be recognized by the fact that the dependent variable
or its derivatives appears raised to a power or in a transcendental function. For example,
the following equations are nonlinear.

y ÿ + 5ẏ + y = 0 ẏ + sin y = 0 ẏ + √
y = 0

The algorithms presented here are simplified versions of the ones used by MATLAB
and Simulink, and so an understanding of these methods will improve your understand-
ing of these two programs. The numerical solution algorithms used by the MATLAB
ODE solvers are very complicated. Therefore, we will limit our coverage to simple
algorithms so that we can highlight the important issues to be considered when using
numerical methods.

Numerical methods require that the derivatives in the model be described by finite-
difference expressions, and that the resulting difference equations be solved in a step-
by-step procedure. The issues related to these methods are

■ What finite-difference expressions provide the best approximations for
derivatives?

■ What are the effects of step size used to obtain the approximations?
■ What are the effects of roundoff error when solving the finite-difference

equations?

1
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We will explore these issues and make you aware of some pitfalls that can be
encountered. Such difficulties are more likely to occur when the solution is rapidly
changing with time, and can happen if the step size is not small compared to the
smallest time constant of the system or the smallest oscillation period.

TEST CASES

We now develop three test cases, whose solution can be found analytically, to use for
checking the results of our numerical methods.

1. The following equation is used to illustrate the effect of step size relative to the
system time constant, which is τ = 1/10.

dy

dt
+ 10y = 0 y(0) = 2

The solution is y(t) = 2e−10t .
2. The following equation is used to illustrate the effect of step size relative to the

solution’s oscillation period.

dy

dt
= sin ωt y(0) = y0

The solution is

y(t) = y0 + 1 − cos ωt

ω

and the period is 2π/ω.
3. A stiff differential equation is one whose response changes rapidly over a time

scale that is short compared to the time scale over which we are interested in the
solution. For this reason, stiff equations present a challenge to solve numerically.
The following equation has such characteristics.

ẏ + y = 0.001e10t y(0) = 10

The solution is

y(t) = 10e−t + 0.001

11

(
e10t − e−t)

That part of the response due to the term e−t is approximately 10 at t = 0 and
decays quickly (it is approximately 0.2 at t = 4). However, the term due to e10t

is 9.09 × 10−5 at t = 0 but grows at a fast rate (it is 2.14 × 1013 at t = 4!). Thus
it would be difficult for a plot to show the solution accurately over the range
0 ≤ t ≤ 4. More importantly, a numerical solver would need a very small step
size to compute the rapid changes due to the e10t term, much smaller than the step
size required to compute the slower response due to the e−t term. The result can
be a large accumulated error because of the small step size combined with the
large number of steps required to obtain the full solution.

THE EULER METHOD

The essence of a numerical method is to convert the differential equation into a differ-
ence equation that can be programmed on a calculator or digital computer. Numerical
algorithms differ partly as a result of the specific procedure used to obtain the difference
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equations. In general, as the accuracy of the approximation is increased, so is the com-
plexity of the programming involved. It is important to understand the concept of “step
size” and its effects on solution accuracy. To provide a simple introduction to these
issues, we begin with the simplest numerical method, the Euler method.

Consider the equation

dy

dt
= f (t, y) (D.1.1)

where f (t, y) is a known function. From the definition of the derivative,

dy

dt
= lim

�t→0

y(t + �t) − y(t)

�t

If the time increment �t is chosen small enough, the derivative can be replaced by the
approximate expression

dy

dt
≈ y(t + �t) − y(t)

�t
(D.1.2)

Assume that the right-hand side of (D.1.1) remains constant over the time interval
(t, t + �t), and replace (D.1.1) by the following approximation:

y(t + �t) − y(t)

�t
= f (t, y)

or

y(t + �t) = y(t) + f (t, y)�t (D.1.3)

The smaller �t is, the more accurate are our two assumptions leading to (D.1.3). This
technique for replacing a differential equation with a difference equation is the Euler
method. The increment �t is called the step size.

A more concise representation is obtained by using the following notation:

yk = y(tk) yk+1 = y(tk+1) = y(tk + �t)

where tk+1 = tk + �t . In this notation, the Euler algorithm (D.1.3) is expressed as

yk+1 = yk + f (tk, yk)�t (D.1.4)

The Euler Method and a Decaying Solution EXAMPLE D.1.1

■ Problem
Use the Euler method to solve our first test case,

dy

dt
+ 10y = 0 y(0) = 2

which has the exact solution y(t) = 2e−10t . Use a step size of �t = 0.02, which is one-fifth of
the time constant.

■ Solution
Here f (t, y) = −10y. Thus the Euler algorithm (D.1.4) in this case becomes

yk+1 = yk − (10yk)�t

or

yk+1 = yk − (10yk)0.02 = 0.8yk
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We show the computations for the first few steps, using four significant figures. The exact value,
obtained from y(t) = 2e−10t , and the percent error are shown in the following table.

Step Numerical solution Exact solution Percent error

k = 0 y1 = 0.8y0 = 1.6 1.637 2.3%
k = 1 y2 = 0.8y1 = 1.28 1.341 4.5%
k = 2 y3 = 0.8y2 = 1.024 1.098 6.7%
k = 3 y4 = 0.8y3 = 0.8192 0.8987 8.8%
k = 4 y5 = 0.8y4 = 0.6554 0.7358 10.9%
k = 5 y6 = 0.8y5 = 0.5243 0.6024 13%

Notice how the percent error grows with each step. This is because the calculated result
from the previous step is not exact. The numerical and exact solutions are shown in Figure D.1.1,
where the numerical solution is shown by the small circles and the exact solution is shown by
the solid curve.

Another observation here is that the step size should be much smaller than the time con-
stant τ . A commonly used rule of thumb is that �t ≤ τ/20.

Figure D.1.1 Euler and exact
solutions of ẏ + 10y = 0,
y (0) = 2.
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Roundoff Error There is another reason why the error increases with the number of
steps. If we had retained six significant figures instead of four, we would have obtained
y5 = 0.65536 and y6 = 0.524288. Even though computers can retain many more
than four significant figures, nevertheless, they cannot represent numbers with infinite
accuracy. Thus, the calculated solution obtained by computer at each step is in effect
rounded off to a finite number of significant figures. This rounded number is then used
in the calculations for the next step, and so on, just as we rounded the value of y5 to
0.6554 before using it to compute y6. Therefore, the error in the numerical solution will
increase with the number of steps required to obtain the solution.

Thus, because roundoff error increases with each step, there is a trade-off between
using a step size small enough to obtain an accurate solution yet not so small that many
steps are required to obtain the solution.
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Numerical methods have their greatest errors when trying to obtain solutions that
are rapidly changing. The difficulties caused by an oscillating solution are illustrated
in the following example.

The Euler Method and an Oscillating Solution EXAMPLE D.1.2

■ Problem
Consider the following equation, which is our second test case.

ẏ = sin t

for y(0) = 0 and 0 ≤ t ≤ 4π . The exact solution is y(t) = 1 − cos t and its period is 2π . Solve
this equation with Euler’s method.

■ Solution
We choose a step size equal to one-thirteenth of the period, or �t = 2π/13, so that we can
compare the answer with that obtained by a method to be introduced later. The Euler algorithm
(D.1.4) becomes

yk+1 = yk + (sin tk)
2π

13
For successive values of k = 0, 1, 2, . . . , we have tk = 0, 2π/13, 4π/13, . . . . Retaining four
significant figures, we have

y1 = y0 + (sin t0)
2π

13
= 0 + (sin 0)

2π

13
= 0

y2 = y1 + (sin t1)
2π

13
= 0 +

(
sin

2π

13

)
2π

13
= 0.2246

y3 = y2 + (sin t2)
2π

13
= 0.2246 +

(
sin

4π

13

)
2π

13
= 0.6224

and so on. The numerical and exact solutions are shown in Figure D.1.2, where the numerical
solution is shown by the small circles and the exact solution is shown by the solid curve. There
is noticeable error, especially near the peaks and valleys, where the solution is rapidly changing.

0 2 4 6 8 10 12

0

0.5

1

1.5

2

t

y

Exact

Numerical

Figure D.1.2 Euler and exact
solutions of ẏ = sin t ,
y (0) = 0.
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The accuracy of the Euler method can be improved by using a smaller step size.
However, very small step sizes require longer run times and can result in a large ac-
cumulated error due to roundoff effects. So we seek better algorithms to use for more
challenging applications.

PREDICTOR-CORRECTOR METHODS

We now consider predictor-corrector methods, which serve as the basis for many
powerful algorithms. The Euler method can have a serious deficiency in problems
where the variables are rapidly changing, because the method assumes the variables
are constant over the time interval �t . One way of improving the method is to use a
better approximation to the right-hand side of the equation

dy

dt
= f (t, y) (D.1.5)

The Euler approximation is

y(tk+1) = y(tk) + �t f [tk, y(tk)] (D.1.6)

Suppose instead we use the average of the right-hand side of (D.1.5) on the interval
(tk, tk+1). This gives

y(tk+1) = y(tk) + �t

2
( fk + fk+1) (D.1.7)

where

fk = f [tk, y(tk)] (D.1.8)

with a similar definition for fk+1. Equation (D.1.7) is equivalent to integrating (D.1.5)
with the trapezoidal rule, whereas the Euler method is equivalent to integrating with
the rectangular rule (see Figure D.1.3).

The difficulty with (D.1.7) is that fk+1 cannot be evaluated until y(tk+1) is known,
but this is precisely the quantity being sought. A way out of this difficulty is to use
the Euler formula (D.1.6) to obtain a preliminary estimate of y(tk+1). This estimate
is then used to compute fk+1 for the use in (D.1.7) to obtain the required value of
y(tk+1).

Figure D.1.3
Illustration of numerical
integration by (a) the
rectangular rule and (b) the
trapezoidal rule.

(a) (b)

Rectangular

a b
x

y

y = f(x)

Trapezoidal

x

y

y = f(x)

a b
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The notation can be changed to clarify the method. Let h = �t and yk = y(tk), and
let xk+1 be the estimate of y(tk+1) obtained from the Euler formula (D.1.6). Then, by
omitting the tk notation from the other equations, we obtain the following description
of the predictor-corrector process:

Euler predictor: xk+1 = yk + h f (tk, yk) (D.1.9)

Trapezoidal corrector: yk+1 = yk + h

2
[ f (tk, yk) + f (tk+1, xk+1)] (D.1.10)

This version of a predictor-corrector algorithm is sometimes called the modified-Euler
method. However, note that any algorithm can be tried as a predictor or a corrector.
Thus many other methods can also be classified as predictor-corrector.

The Modified-Euler Method and a Decaying Solution EXAMPLE D.1.3

■ Problem
Use the modified-Euler method to solve our first test case:

ẏ = −10y y(0) = 2

for 0 ≤ t ≤ 0.5. The exact solution is y(t) = 2e−10t .

■ Solution
To illustrate the effect of the step size on the solution’s accuracy, we use a step size h = 0.02,
the same size used with the Euler method. The modified-Euler algorithm for this case has the
following form.

xk+1 = yk + h(−10yk) = (1 − 10h)yk = 0.8yk

yk+1 = yk + h

2
(−10yk − 10xk+1) = 0.9yk − 0.1xk+1
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Figure D.1.4 Modified-Euler
and exact solutions of
ẏ + 10y = 0, y (0) = 2.
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The following table shows the numerical and exact solutions, rounded to four significant figures,
and the percent error, for a few steps.

Step Numerical solution Exact solution Percent error

k = 0 x1 = 0.8y0 = 1.6
y1 = 0.9y0 − 0.1x1 = 1.64 1.637 0.2%

k = 1 x2 = 0.8y1 = 1.312
y2 = 0.9y1 − 0.1x2 = 1.3448 1.341 0.3%

k = 2 x3 = 0.8y2 = 1.07584
y3 = 0.9y2 − 0.1x3 = 1.102736 1.098 0.4%

There is less error than with the Euler method using the same step size. Figure D.1.4 shows
the results, with the numerical solution shown by the small circles and the exact solution by the
solid line.

The modified-Euler method is a special case of the Runge-Kutta family of algo-
rithms, to be discussed next. For purposes of comparison with the Runge-Kutta methods,
we can express the modified-Euler method as follows:

yk+1 = yk + 1

2
(g1 + g2) (D.1.11)

g1 = h f (tk, yk) (D.1.12)

g2 = h f (tk + h, yk + g1) (D.1.13)

RUNGE-KUTTA METHODS

The Taylor series representation forms the basis of several methods for solving differ-
ential equations, including the Runge-Kutta methods. The Taylor series may be used
to represent the solution y(t + h) in terms of y(t) and its derivatives, as follows:

y(t + h) = y(t) + h ẏ(t) + 1

2
h2 ÿ(t) + · · · (D.1.14)

The number of terms kept in the series determines its accuracy. The required derivatives
are calculated from the differential equation. If these derivatives can be found, (D.1.14)
can be used to march forward in time. In practice, the high-order derivatives can be
difficult to calculate, and the series (D.1.14) is truncated at some term. The Runge-Kutta
methods were developed because of the difficulty in computing the derivatives. These
methods use several evaluations of the function f (t, y) in a way that approximates the
Taylor series. The number of terms in the series that is duplicated determines the order
of the Runge-Kutta method. Thus, a fourth-order Runge-Kutta algorithm duplicates the
Taylor series through the term involving h4.

SECOND-ORDER RUNGE-KUTTA METHODS

The second-order Runge-Kutta methods express yk+1 as

yk+1 = yk + w1g1 + w2g2 (D.1.15)

where w1 and w2 are constant weighting factors, and

g1 = h f (tk, yk) (D.1.16)

g2 = h f (tk + αh, yk + βh fk) (D.1.17)
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The family of second-order Runge-Kutta algorithms is categorized by the parameters
α, β, w1, and w2. To duplicate the Taylor series through the h2 term, these coefficients
must satisfy the following:

w1 + w2 = 1 w1α = 1

2
w2β = 1

2
(D.1.18)

Thus one of the parameters can be chosen independently.
The modified-Euler algorithm, (D.1.11) through (D.1.13), is thus seen to be a

second-order Runge-Kutta algorithm with α = β = 1 and w1 = w2 = 1/2.

FOURTH-ORDER RUNGE-KUTTA METHODS

The family of fourth-order Runge-Kutta algorithms expresses yk+1 as

yk+1 = yk + w1g1 + w2g2 + w3g3 + w4g4 (D.1.19)

where g1 = h f (tk, yk)

g2 = h f (tk + α1h, yk + α1g1)

g3 = h f [tk + α2h, yk + β2g2 + (α2 − β2)g1]
g4 = h f [tk + α3h, yk + β3g2 + γ3g3 + (α3 − β3 − γ3)g1]

(D.1.20)

Comparison with the Taylor series yields eight equations for the 10 parameters. Thus,
two parameters can be chosen in light of other considerations. A number of different
choices have been used. For example, the classical Runge-Kutta method, which reduces
to Simpson’s rule for integration if f (t, y) is a function of only t , uses the following
set of parameters.

w1 = w4 = 1
6 w2 = w3 = 1

3

α1 = α2 = 1
2 β2 = 1

2

γ3 = α3 = 1 β3 = 0

(D.1.21)

The Runge-Kutta algorithms are very tedious to compute by hand, so we not show
the steps involved in Examples D.1.4 and D.1.5. The algorithms are easily programmed,
however. The MATLAB programs for these examples, using the parameter values for
the classical fourth-order Runge-Kutta algorithm, are given in Section D.2.

Runge-Kutta Method for an Oscillating Solution EXAMPLE D.1.4

■ Problem
Illustrate how the fourth-order Runge-Kutta method works with an oscillating solution by using
the method to solve our second test case:

ẏ = sin t y(0) = 0

for 0 ≤ t ≤ 4π . Use the parameter values given by (D.1.21).

■ Solution
To compare the results with those obtained with the Euler method, we will use the same step
size �t = 2π/13. The results are shown in Figure D.1.5, with the numerical solution shown by
the small circles and the exact solution by the solid line. There is much less error than with the
Euler method using the same step size.
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Figure D.1.5 Fourth-order
Runge-Kutta and exact
solutions of ẏ = sin t ,
y (0) = 0.
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EXAMPLE D.1.5 Runge-Kutta Method for a Stiff Equation

■ Problem
Our third test case is an example of an equation that requires a step size small enough to solve
for the rapid changes in the solution, but for which many steps are needed to obtain the solution
over the longer time interval. Thus an accurate numerical algorithm is needed to prevent large
errors from accumulating. The problem is

ẏ + y = 0.001e10t y(0) = 10

The closed form solution is

y(t) = 10e−t + 0.001

11
(e10t − e−t )

Compare this solution with that obtained with the fourth-order Runge-Kutta using the parameter
values given by (D.1.21).

■ Solution
The following table gives the results for every twentieth step, along with the exact solution, to
11 decimal places. The numerical solution is correct to seven or more significant figures, which
is quite good considering the wide range of values of y.

t Exact solution Numerical solution

0.2 8.18790483308 8.18790483325
0.4 6.70810299036 6.70810299083
0.6 5.52474181384 5.52474181600
0.8 44.76424497372 44.76424498796
1.0 5.68116694947 5.68116705275
1.2 17.80780486683 17.80780562797
1.4 111.79360941831 111.79361504050
1.6 809.84717596280 809.84721750362
1.8 5970.74107724873 5970.74138419445
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Programming these algorithms is a very good way to improve your understanding
of them. Examples of MATLAB programs that generated the data and the plots in this
section are given in Section D.2.

D.2 PROGRAMMING NUMERICAL METHODS
IN MATLAB

In this section, we first show how to program the Euler, modified-Euler, and Runge-
Kutta methods in MATLAB. Although MATLAB has built-in solvers, learning to pro-
gram such algorithms will improve your understanding of these methods.

PROGRAMMING THE EULER METHOD

The Euler algorithm for the equation ẏ = f (t, y) is

yk+1 = yk + f (tk, yk)�t

where tk+1 = tk + �t .
This equation can be applied successively at the times tk , for example, by putting

it in a for loop in a MATLAB program.

The Euler Method for ẏ = −10y EXAMPLE D.2.1

■ Problem
Use the Euler method to solve our first test case:

ẏ = −10y y(0) = 2

■ Solution
The following script file solves the problem and plots the solution over the range 0 ≤ t ≤ 0.5.
The exact solution is y(t) = 2e−10t . For comparison purposes, we use the same step size as in
Example D.1.1, which is �t = 0.02.

delta = 0.02; y(1) = 2;

k = 0;

for time = [delta:delta:0.5]

k = k + 1;

y(k+1) = y(k) - 10*y(k)*delta;

end

t = [0:delta: 0.5];

y exact = 2*exp(-10*t);

plot(t,y,'o',t,y exact),xlabel('t'),ylabel('y')

Figure D.1.1 in Section D.1 shows the results. The numerical solution is shown by the small
circles. The exact solution is shown by the solid line. There is some noticeable error. If we had
used a step size equal to 0.005, for example, the error would not be noticeable on the plot.

PROGRAMMING THE MODIFIED-EULER METHOD

The modified-Euler algorithm for the equation ẏ = f (t, y) is

Euler predictor: xk+1 = yk + h f (tk, yk)

Trapezoidal corrector: yk+1 = yk + h

2
[ f (tk, yk) + f (tk+1, xk+1)]
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EXAMPLE D.2.2 The Modified-Euler Method for ẏ = −10y

■ Problem
Use the modified-Euler method to solve our first test case:

ẏ = −10y y(0) = 2

■ Solution
The following script file solves the problem and plots the solution over the range 0 ≤ t ≤ 0.5.
The exact solution is y(t) = 2e−10t . We use a step size �t = 0.02 to compare the results with
those of the Euler method.

delta = 0.02; y(1) = 2;

k = 0;

for time = [delta:delta: 0.5]

k = k + 1;

x(k+1) = y(k) - 10*delta*y(k);

y(k+1) = y(k) - 10*(delta/2)*(y(k) + x(k+1));

end

t = [0:delta:0.5];

y exact = 2*exp(-10*t);

plot(t,y,'o',t,y exact),xlabel('t'),ylabel('y')

Figure D.1.4 in Section D.1 shows the results, with the numerical solution shown by the small
circles and the exact solution by the solid line. There is less error than with the Euler method
using the same step size.

PROGRAMMING THE RUNGE-KUTTA METHOD

The fourth-order Runge-Kutta algorithm is

yk+1 = yk + w1g1 + w2g2 + w3g3 + w4g4

where

g1 = h f (tk, yk)

g2 = h f (tk + α1h, yk + α1g1)

g3 = h f [tk + α2h, yk + β2g2 + (α2 − β2)g1]

g4 = h f [tk + α3h, yk + β3g2 + γ3g3 + (α3 − β3 − γ3)g1]

We will use the parameters for the classical Runge-Kutta method, which are

w1 = w4 = 1
6 w2 = w3 = 1

3

α1 = α2 = 1
2 β2 = 1

2

γ3 = α3 = 1 β3 = 0
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The Runge-Kutta Method for an Oscillating Solution EXAMPLE D.2.3

■ Problem
Use the fourth-order Runge-Kutta method to solve our second test case:

ẏ = sin t y(0) = 0

0 ≤ t ≤ 4π . The exact solution is y(t) = 1 − cos t .

■ Solution
Here f (t, y) = sin t and thus is not a function of y. Therefore, the β and γ parameters are not
needed for this problem and the gi functions are

g1 = h sin(tk)

g2 = h sin(tk + α1h)

g3 = h sin(tk + α2h)

g4 = h sin(tk + α3h)

We use a step size equal to one-thirteenth of the period, or �t = 2π/13, so that we can
compare the results with those obtained from the modified-Euler method. The following script
file implements the method:

h = 2*pi/13;

w1 = 1/6; w2 = 1/3; w3 = 1/3; w4 = 1/6;

a1 = 1/2; a2 = 1/2; a3 = 1;

tk = 0;

% Set the initial condition.

y(1) = 0;

% Set the upper limit on the number of steps.

tf = 4*pi;

klimit = round(tf/h)-1;

for k = 0:klimit

tk = k*h;

g1 = h*sin(tk);

g2 = h*sin(tk+a1*h);

g3 = h*sin(tk+a2*h);

g4 = h*sin(tk+a3*h);

m = k+1;

y(m+1) = y(m)+w1*g1+w2*g2+w3*g3+w4*g4;

end

t = [0:h:(klimit+1)*h];

% Compute the exact solution.

te = [0:0.01:tf];

ye = 1-cos(te);

plot(te,ye,t,y,'o'),xlabel('t'),ylabel('y'),axis([0 tf 0 2])

Figure D.1.5 in Section D.1 shows the results, with the numerical solution shown by the
small circles and the exact solution by the solid line. There is less error than with the modified-
Euler method using the same step size.
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EXAMPLE D.2.4 The Runge-Kutta Method for a Stiff Equation

■ Problem
Use the fourth-order Runge-Kutta method to solve our third test case:

ẏ + y = 0.001e10t y(0) = 10

for 0 ≤ t ≤ 1.8. The exact solution is

y(t) = 10e−t + 0.001

11

(
e10t − e−t

)
■ Solution
Here f (t, y) = −y + 0.001e10t and it is helpful to write a user-defined function file for f (t, y).
This file is

function ydot = stiff(t,y)

ydot = 0.001*exp(10*t)-y;

We try a step size of h = 0.01. The script file is

h = 0.01; tk = 0;

w1 = 1/6; w2 = 1/3; w3 = 1/3; w4 = 1/6;

a1 = 1/2; a2 = 1/2; a3 = 1;

b2 = 1/2; b3 = 0; gam3 = 1;

% Set the initial condition.

y(1) = 10;

% Set the upper limit on the number of steps.

tf = 1.8;

klimit = round(tf/h)-1;

for k = 0:klimit

tk = k*h;

yk = y(k+1);

g1 = h*stiff(tk,yk);

g2 = h*stiff(tk+a1*h,yk+a1*g1);

g3 = h*stiff(tk+a2*h,yk+b2*g2+(a2-b2)*g1);

g4 = h*stiff(tk+a3*h,yk+b3*g2+gam3*g3+(a3-b3-gam3)*g1);

m = k+1;

y(m+1) = y(m)+w1*g1+w2*g2+w3*g3+w4*g4;

end

% Compute the exact solution.

te = [0:0.01:tf];

ye = 10*exp(-te)+(0.001/11)*(exp(10*te)-exp(-te));

% Plot every 20th point of the numerical solution.

kp = 0;

for k = 1:20:klimit+1

kp = kp+1;

yp(kp) = y(k);

end

% Compute times for numerical solution, every 20th point.

tp = [0:20*h:tf];

plot(te,ye,tp,yp,'o'),xlabel('t'),ylabel('y')
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Figure D.2.1 Fourth-order
Runge-Kutta and exact
solutions of ẏ + y = 0.001e10t ,
y (0) = 10.

Figure D.2.1 shows the results, with the numerical solution shown for every 20 steps by the
small circles and the exact solution by the solid line. Notice the wide range of values for y, and
yet the results are very accurate.

PROBLEMS
Section D.1 Introduction to Numerical Algorithms

D.1 a. Use the Euler method with a step size of �t = 0.02 to solve the following
equation for five steps, using four significant figures.

ẏ + 5y = 0 y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.2 a. Use the Euler method with a step size of �t = 0.3 to solve the following
equation for five steps, using four significant figures.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.3 a. Use the Euler method with a step size of �t = 0.1 to solve the following
equation for five steps, using four significant figures.

ẏ = 6 sin 3t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.4 a. Use the Euler method with a step size of �t = 0.025 to solve the
following equation for five steps, using four significant figures.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution to check the accuracy of the numerical
method.
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D.5 a. Use the Euler method with a step size of �t = 0.01 to solve the following
equation for five steps, using four significant figures.

ẏ + 3y = 5e4t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.6 a. Use the modified-Euler method with a step size of �t = 0.02 to solve
the following equation for five steps, using four significant figures.

ẏ + 5y = 0 y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.7 a. Use the modified-Euler method with a step size of �t = 0.03 to solve
the following equation for five steps, using four significant figures.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.8 a. Use the modified-Euler method with a step size of �t = 0.1 to solve
the following equation for five steps, using four significant figures.

ẏ = 6 sin 3t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.9 a. Use the modified-Euler method with a step size of �t = 0.025 to solve
the following equation for five steps, using four significant figures.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.10 a. Use the modified-Euler method with a step size of �t = 0.01 to solve
the following equation for five steps, using four significant figures.

ẏ + 3y = 5e4t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

Section D.2 Programming Numerical Methods in MATLAB

D.11 Consider the system for lifting a mast, discussed in Example 2.2.4 in
Chapter 2. The 70-ft-long mast weighs 500 lb. The winch applies a force
f = 380 lb to the cable. The mast is supported initially at an angle of 30◦, and
the cable at A is initially horizontal. The equation of motion of the mast is

25,400 θ̈ = −17,500 cos θ + 626,000

Q
sin(1.33 + θ)

where

Q =
√

2020 + 1650 cos(1.33 + θ)

Use a numerical method to solve for and plot θ(t) for θ(t) ≤ π/2 rad.
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D.12 a. Program the Euler method and use the program to solve the following
equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.02.

ẏ + 5y = 0 y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.13 a. Program the Euler method and use the program to solve the following
equation for 0 ≤ t ≤ 12. Use a step size of �t = 0.3.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.14 a. Program the Euler method and use the program to solve the following
equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.025.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution check the accuracy of the numerical method.
D.15 a. Program the modified-Euler method and use the program to solve the

following equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.02.

ẏ + 5y = 0 y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.16 a. Program the modified-Euler method and use the program to solve the
following equation for 0 ≤ t ≤ 12. Use a step size of �t = 0.3.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

D.17 a. Program the modified-Euler method and use the program to solve
the following equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.025.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution check the accuracy of the numerical method.
D.18 a. Program the fourth-order Runge-Kutta method and use the program to

solve the following equation for 0 ≤ t ≤ 12. Use a step size of �t = 0.3.

ẏ = cos t y(0) = 6

b. Use the closed-form solution check the accuracy of the numerical method.
D.19 a. Program the fourth-order Runge-Kutta method and use the program to

solve the following equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.01.

ẏ + 3y = 5e4t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.
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A
active network An electrical network that has its own energy

source.
actuator The “muscle” in a control system; the device that

provides the power, force, heat, etc.
analog signal A signal that has an infinite number of possible

values at an infinite number of possible times.
analog-to-digital converter (ADC or A/D) A device that

converts an analog signal to a digital signal.
angle of arrival The angle at which the root locus approaches

a complex zero.
angle of departure The angle at which the root locus leaves

a complex pole.
asymptote (a) On root locus plots, the line approached by a

root locus path as the root locus parameter approaches infin-
ity. (b) On Bode plots, the lines describing the low-frequency
and high-frequency approximations of the magnitude and
phase.

B
back emf A voltage that is generated by a motor armature’s

speed and that opposes the supply voltage applied to the
armature.

bandwidth The frequency range over which the logarithmic
magnitude ratio is within 3 dB of its peak value.

break frequency See corner frequency.
breakaway point A point where a root locus path leaves the

real axis.
breakin point A point where a root locus path enters the real

axis.
Bode plots The plots of the logarithmic magnitude ratio and

phase angle of a frequency transfer function versus the log-
arithm of frequency.

C
characteristic equation The equation obtained by equating

to zero the denominator of the transfer function.
closed-loop system A system that uses feedback.
compensation The use of an additional device or algorithm

to supplement the main controller.
corner frequency The frequency at which the asymptotic

approximation of the frequency response changes slope.
critical damping The value of the damping constant that

forms the boundary between oscillatory and nonoscillatory
response.

current source A power supply that provides the required
current, regardless of the load.

D
damping constant The constant, equal to the applied force

(or torque) divided by the resulting velocity, that expresses
the resistance of a damping element.

damping ratio The ratio of the actual damping value to the
critical damping value.

dead time The time between an action and the response, dur-
ing which time no response occurs.

decade A range of frequencies separated by a factor of 10.
decibel (dB) The logarithmic unit for gain.
delay time The time required for the response to first reach

50% of its steady-state value.
digital-to-analog converter (DAC or D/A) A device that

converts a digital signal to an analog signal.
digital signal A signal that is quantized in time and

amplitude.
disturbance An unwanted or unpredictable input.
dominant root The root or root pair that has the largest time

constant.

E
equilibrium A state of no change.
equivalent inertia The inertia of a fictitious single-inertia

system that has the same kinetic energy as the real
system.

equivalent mass The mass of a fictitious single-mass system
that has the same kinetic energy as the real system.

error signal The difference between the desired output value
and the actual output value.

F
feedback compensation The use of an additional device or

algorithm in a feedback loop around the main controller to
supplement the main controller.

feedback signal The measured system output.
feedforward compensation The use of an additional device

or algorithm to supplement the main controller by acting on
the command input and feeding the result forward to modify
the output of the main controller.

final value theorem A mathematical method, based on the
Laplace transform, for computing the steady-state value of
a time function.

824



palm-38591 book December 17, 2008 12:57

Glossary 825

fluid capacitance A constant that relates the fluid mass stored
in a container to the resulting pressure.

fluid resistance A constant that relates the pressure drop to
the flow rate.

forced response That part of the response due to the input.
Fourier series A representation of a periodic function in

terms of a constant plus the sum of sines and cosines of
different frequencies.

free response That part of the response due to the initial
conditions.

frequency response The steady-state response of a stable
system to a sinusoidal input.

frequency transfer function The transfer function with the
Laplace variable s replaced with jω.

G
gage pressure Pressure measured relative to atmospheric

pressure.
gain margin The difference in decibels between 0 dB

and the open-loop gain at the frequency where the phase
equals −180◦.

H
hydraulic capacitance The fluid capacitance of a hydraulic

element.
hydraulic resistance The fluid resistance of a hydraulic

element.
hydraulic system A system that operates with an incompress-

ible fluid.

I
impedance For an electrical device, the ratio of the Laplace

transform of the voltage across the device to the Laplace
transform of the current through the device.

impulse In mathematics, the Dirac delta function. A model of
an input that has a large amplitude but a very short duration.

initial value theorem A mathematical method, based on the
Laplace transform, for computing the initial value of a time
function.

K
Kirchhoff’s current law The sum of currents at a node equals

zero.
Kirchhoff’s voltage law The sum of voltages around a closed

loop equals zero.

L
lag compensation A device or algorithm, used in series with

the main controller, that provides a negative phase shift and
attenuated gain over the desired frequency range.

Laplace transform An integral transformation that converts
a time-domain function into an algebraic function of the
Laplace variable s.

lead compensation A device or algorithm, used in series with
the main controller, that provides a positive phase shift over
the desired frequency range.

lead-lag compensation A device or algorithm, used in series
with the main controller, that is equivalent to lead compen-
sation and lag compensation in series.

linear system A system that satisfies the superposition
property.

linearization The process of replacing a nonlinear expres-
sion with a linear one that is approximately correct near a
reference state of the system.

logarithmic plots See Bode plots.

M
maximum overshoot The difference between the peak re-

sponse and the steady-state response.
mode A fundamental behavior pattern of a dynamic system.

N
natural frequency See undamped natural frequency.
negative feedback A feedback signal that is subtracted from

the input.
Newton’s second law States, in its simplest form, that the

mass times the acceleration equals the sum of the forces.
numerator dynamics The presence of an s term in the numer-

ator of a transfer function. Indicates that the system responds
to the derivative of the input.

O
Ohm’s law The electrical resistance equals the ratio of volt-

age to current.
open-loop control system A control system that does not use

feedback.
operational amplifier (op amp) An electrical amplifier hav-

ing a very high gain, a very high input impedance, and a very
low output impedance.

P
partial-fraction expansion A representation of the ratio of

two polynomials as a sum of simpler terms involving the
factors of the denominator.

passive network An electrical network that only stores or
dissipates energy.

peak time The time at which the maximum overshoot occurs.
phase margin The difference in degrees between −180◦ and

the open-loop phase at the frequency where the logarithmic
gain equals 0 dB.

PID controller A device or algorithm used as the main con-
troller to give an output that is a sum of terms proportional
to the error, the integral of the error, and the derivative of the
error.

plant The device or process to be controlled.
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pneumatic capacitance The fluid capacitance of a pneumatic
element.

pneumatic resistance The fluid resistance of a pneumatic
element.

pneumatic system A system that operates with a compress-
ible fluid.

positive feedback A feedback signal that is added to the
input.

pulse width modulation (PWM) A control technique that
varies the time duration of controller output pulses as a func-
tion of the error.

R
ramp function A time function whose slope is constant.
resonant frequency The frequency at which the frequency

response magnitude is a maximum.
reset windup In a control system using integral action, the

tendency of that action to continue increasing its output even
while the error is decreasing.

rise time The time required for the response to first reach
100% of its steady-state value.

root locus The paths traced by the characteristic roots as a
parameter is varied.

Routh-Hurwitz criterion A test applied to the characteris-
tic polynomial to determine whether or not the system is
stable.

S
saturation Occurs when the actuator output reaches its max-

imum or minimum possible value.
settling time The time required for the response to settle to

within a certain percent (usually 2% or 5%) of its steady-
state value.

specifications A set of statements that describe the perfor-
mance requirements of a system.

spring constant The constant, equal to the applied force (or
torque) divided by the resulting deflection, that expresses
the stiffness of an elastic element.

stable equilibrium An equilibrium state to which the system
state returns and remains when disturbed.

stable system A system that possesses a stable equilibrium.
stability test A linear system is stable if its characteristic roots

all have negative real parts.
state variables A set of variables that completely describe a

system.
state variable feedback A control scheme that uses measure-

ments of all the state variables.
steady-state error The error remaining after the transient

response has disappeared.
step function In mathematics, a time function whose value

instantaneously changes from one constant value to another.

Used as a model of an input that changes rapidly from one
constant value (usually zero) to another constant value.

system A set of elements connected to achieve a common
purpose.

T
tachometer A generator that produces a voltage proportional

to its rotational speed.
thermal capacitance A constant that relates heat stored in a

mass to the temperature of the mass.
thermal resistance A constant that relates heat flow rate to

temperature difference.
thermal system A system whose dynamics are governed by

temperature difference and the flow of heat energy.
time constant A measure of exponential decay. After an

elapsed time equal to one time constant, the response is
approximately 37% of its initial value.

time delay See dead time.
transducer A sensing device that converts a signal from one

form to another, which is usually a voltage or a current.
transfer function The ratio of the Laplace transform of the

forced response to the Laplace transform of the input.
transient response That part of the response that disappears

with time.
tuning The process of setting or adjusting control-system

gains.
type number The number of poles at the origin in the

forward-path transfer function.

U
undamped natural frequency The oscillation frequency

of the free response of an undamped second-order linear
system.

V
vibration absorber A device that uses a mass and an elastic

element to reduce the displacement of an object.
vibration isolator A device that uses elastic and damping

elements to reduce the force or displacement transmitted to
the object being isolated.

voltage source A power supply that provides the required
voltage, regardless of the load.

Z
zero-order hold (ZOH) The staircase approximation method

used by some digital-to-analog converters to produce an
analog output.

Ziegler-Nichols guidelines Two sets of guidelines, the pro-
cess reaction method and the ultimate cycle method, used
for control-system tuning.
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A
Absolute pressure, 341
Absorber design method, 778
Accelerometer, 314
Ackermann, J., 671
Active elements, 274
Active suspension system, 7, 673. See also Vehicle

suspension system
Actuator, 550
Actuator saturation, 680
A/D converter (ADC), 563
Admittance, 293
Ampere, 214, 224
Amplifier

current, 294
feedback, 283
isolation, 293
op amp, 294
speak-amplifier system, 281

Amplitude, 415
Amplitude ratio, 418
Analog PID control algorithm, 572
Analog signal, 563
Analogous fluid and electrical quantities, 346
Analog-to-digital converter, 563
Angle deficiency, 722
Anti-windup system, 686, 694
Archimedes’ principle, 215
Armature, 300
Armature inductance, 304
Armature inertia, 301
Armature-controlled dc motor, 301
Asymptote, 462, 647

B
Back emf, 301
Band-pass filter, 453
Bandwidth, 453

alternate definition, 455
MATLAB function, 456n

Base excitation, 764
Base motion and transmissibility, 447
Beam

equivalent mass and inertia, 182, 183
spring constant, 162

Beam deflection, 9
Beam vibration, 173
Beat period, 444
Beating, 443
Belt drive, 59
Biot criterion, 383
Biot number, 383
Block diagram, 516

feedback loop, 517
gain block, 516
integrator, 516

loading effects, 527
loop reduction, 521
modeling systems with, 523
rearranging, 518
series blocks, 518
symbols, 516
transfer function, 520

Block diagram algebra (MATLAB), 532
Bode, H. W., 423
Bode plot, 423
Bode plot design, 715

compensators, 713
dead time elements, 738
design approach, 736
gain margin, 734
phase margin, 734
PID control, 735
root locus method, compared, 722, 738

Bounce center, 790
Bounce frequency, 791
Breakpoint frequency, 425
British Engineering system, 7
British thermal unit (Btu), 8

C
Calculator

polynomial roots, 86
simultaneous linear algebraic equations, 121

Capacitance, 345, 347
electrical, 274, 277
estimating, 508
fluid, 345
hydraulic system, 345, 347
pneumatic, 370
thermal, 372

Capacitor, 278
Cascade property, 521
Cauchy form, 225. See also State-variable

models
Celsius, 8
Characteristic equation, 84
Characteristic polynomial, 241
Characteristic root, 84
Charge, 273, 274
Closed-loop control, 547
Closed-loop poles, 640
Closed-loop transfer function, 640
Coding, 563
Coefficient of determination, 28
Coefficient of friction, 46
Coil spring, 159, 163
Collisions, 205
Column vector, 227
Command error, 572
Commutator, 300
Compatibility law, 345
Compensation. See Series compensation

Complementary root locus, 651
Complete (total) response, 93
Complex numbers, 85

complex exponential form, 416
as functions of frequency, 418
products/ratios, 416
rectangular form, 416
vector addition/representation, 417

Compressible fluid, 339
Conduction, 374
Conductive resistance, 375
Conservation of charge, 275
Conservation of energy, 176
Conservation of mass, 340
Conservation of mechanical energy, 44
Conservative force, 44
Constant-coefficient differential equation, 82
Constant-pressure process, 369
Constant-temperature process, 369
Constant-volume process, 369
Constitutive relations, 275
Continuity law, 345
Control action, 565
Control algorithm, 565
Control law, 565
Control output matrix, 231
Control system, 5

active vibration control, 792
closed-loop control, 547
compensator, 607
control algorithm, 565
derivative control action, 569
digital control algorithms, 572
disturbance compensator, 609
errors, 573
feedforward command compensation, 608
feedforward compensation, 549
final value theorem, use of, 573, 574
first-order plants, 577
gains, 551
integral control action, 567
modeling, 551
on-off controller, 565
open-loop control, 547
PD control, 567
PI control, 568
PID control algorithm, 569
proportional control, 551, 565
pulse width modulation (PWM), 564
ramp inputs, 574
Routh-Hurwitz stability conditions, 577
second-order plants, 587
step inputs, 573
terminology, 550
three-mode controller. See PID control algorithm
two-position control, 565
velocity feedback, 590

827



palm-38591 book December 17, 2008 11:0

828 Index

Control system design, 575. See also Control
system

anti-windup system, 686, 694
Bode plot design, 715. See also Bode

plot design
comparison of control actions, 571
design information, 575
design steps, 575
process reaction method, 675, 693
reset windup, 680
root locus plot, 632–696. See also Root

locus plot
saturation, 680
series compensation. See Series

compensation
state-variable feedback, 665. See also

State-variable feedback
tuning controllers, 674
ultimate cycle method, 676
Ziegler-Nichols methods, 674

Convection, 374
Convection coefficient, 375
Corner frequency, 425
Coulomb, 273, 274
Coulomb friction, 46
cps, 9
Cramer’s method, 210
Critical damping constant, 44
Critically damped case, 494
Current, 274
Current amplifier, 294
Current-divider rule, 277
Cycles per second (cps), 9

D
D action, 569
D/A converter (DAC), 563
Damped natural frequency, 495
Damper, 184. See also Damping
Damping, 184

damper representations, 188
defined, 184
degressive damper model, 533
door closer, 185
effects of damping, 190
estimating, 515
hydraulic dampers, 359
ideal dampers, 187
inclined surface, 188
mass-damper systems, 188
mass-spring-damper system, 190
motion inputs, 192, 195
nonlinear, 533
numerator dynamics, 201
Petrov’s law, 189
shock absorber, 186
torsional, 186
in vibration absorbers, 781

Damping coefficient, 188
Damping factor, 493, 497
Damping ratio, 493, 497
D’Arsonval meter, 298
dB, 424
DC motors, 300
DDC, 563

Dead time, 738
block diagram, 739
in control systems, 740
MATLAB, applications of, 749
Simulink, applications of, 752

Dead zone nonlinearity, 258
Decade, 425
Decibel (dB), 424
Definitions (glossary), 824–826
Degressive damper model, 533
Delay time, 500, 503
Derivative control action, 569
Derivative gain, 569
Derivative property, 104, 108
Deviation variable, 351
Differential equations, 81

classification, 81
homogeneous/nonhomogeneous, 81
initial conditions, 81
linear/nonlinear, 81
order, 82
separation of variables, 82
trial-solution method, 83. See also Trial-solution

method
Differentiating circuit, 428
Differentiation with op amps, 297
Digital control algorithms, 571
Digital control structures, 563
Digital signal, 563
Digital-to-analog converter, 563
Dirac delta function, 129
Direct digital control (DDC), 563
Direct term, 140
Discharge coefficient, 354
Displacement input, 174, 193–199

and damping elements, 192
fictitious mass, 194
negligible system mass, 194
rotational system, 193
translational system, 193
and spring elements, 174
two-inertia system, 195
two-mass system, 195

Displacement isolation, 765
Displacement transmissibility, 447, 765
Distributed-parameter model, 376
Disturbance compensation, 609
Disturbance error, 572
Dominant root, 95

tracking, 664
Dominant time constant, 95
Dominant-root approximation, 95
Door closer, 185
Drag coefficient, 14
Drag force, 14
Dry friction force, 46
Duffing’s equation, 799, 801
Dynamic element, 3
Dynamic friction, 46
Dynamic friction coefficient, 46
Dynamic models

defined, 80
filtering properties, 453
forms, 224

Dynamic system, 4
Dynamic vibration absorbers, 775

E
Eccentricity, 449
Elasticity element. See Spring elements
Electric motors, 297

analysis of motor performance, 304
armature inductance, 306
armature-controlled dc motor, 301, 528
block diagrams, 528, 529
D’Arsonval meter, 298
dc motors, 300
field-controlled dc motor, 303, 529
magnetic coupling, 298
MATLAB, applications of, 317
motor dynamic response, 305
motor parameters, 307
motor transfer functions, 302
motor-amplifier performance, 309
permanent-magnet motor, 300
speed control system, 555
state-variable form, 302
steady-state motor response, 304
torque limitation in motors, 327
trapezoidal profile/motion control, 308

Electrical systems
active/passive elements, 274
capacitance, 274, 277
circuit symbols, 274
current-divider rule, 277
electrical quantities, 274
impedance, 290
inductance, 274, 278
Kirchhoff’s current law, 275
Kirchhoff’s voltage law, 275
nonlinear resistances, 277
op amp, 294
parallel resistances, 276
resistance, 274, 275
series resistance, 276
voltage-divider rule, 276

Electroacoustic devices, 316
Electromagnetic speaker, 317
Electromechanical systems

accelerometer, 314
electroacoustic devices, 316
motors. See Electric motors
sensors, 314
speakers/microphones, 317
tachometer, 314

Energy
kinetic, 44
potential, 44
power, 278
rotational motion, 51

Engineering problem solving steps, 4
Entrance length, 352
Equilibrium, 100
Equivalent mass and inertia

beam, 181
belt drive, 59
coil spring, 181
elastic elements, 180
fixed-end beam, 183
mechanical drives, 57
rack-and-pinion gear, 58
rod, 181
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spur gears, 57
vehicle on incline, 55

Equivalent spring constant. See Spring constant
Error signal, 548, 550
Euler identities, 88
Euler, Léonard, 101
Evans, Walter, 638
Exponential function, 88
Extrapolation, 10

F
Fahrenheit, 8
Farad, 274
Feedback amplifier, 283
Feedback control. See Control system
Feedback loop, 517
Feedback variables, choice of, 668
Feedforward command compensation, 608
Feedforward compensation, 549
Fictitious mass, 194
Field-controlled dc motor, 303
Film coefficient, 375
Filtering properties, 453
Final control element, 550
First-order systems. See Response of first-order

systems
Fitting models to scattered data, 23

constraining a coefficient, 27
fitting data with power function, 26
fitting linear function to power function, 29
fitting power function with known exponent, 27
general linear case, 25
least-squares method, 23, 29
point constraint, 27
quality of curve fit, 28

Fluid capacitance, 345
Fluid clutch, 196, 197
Fluid drag, 14
Fluid inertance, 345, 368
Fluid quantities, 346
Fluid resistance, 345
Fluid systems

analogous fluid/electrical quantities, 346
capacitance, 345, 347
compatibility law, 345
conservation of mass, 340
continuity law, 345
density, 340
deviation variables, 351
hydraulic systems, 355
hydraulics, 339
inertance, 345, 368
laminar pipe resistance, 351
liquid-level system. See Liquid-level system
MATLAB, applications of, 391
mixing process, 344
nonlinear resistance, 366
nonlinear system models, 351
pneumatic systems, 369
resistance, 345, 350
Simulink, applications of, 395
sources, 346
symbols, 346
Torricelli’s principle, 354
turbulent and component resistance, 355

Fluid-clutch model
single-inertia, 196
two-inertia, 197

Foot, 8
Foot-pound (ft-lb), 8
Foot-pound-second (FPS) system, 7
Force isolation, 764
Force transmissibility, 447, 765
Forced response, 93, 97
Force-deflection (cantilever support beam), 9
Fourier series, 416, 458, Appendix B
Fourier theorem, 458
Fourier’s law of heat conduction, 376
FPS units, 7
Free length, 158
Free response, 93, 97, 110

first-order systems, 93, 482, 484
of nonlinear systems, 801
second-order systems, 95, 96, 127, 492
with MATLAB, 208

Frequency
bounce, 791
breakpoint, 425
corner, 425
damped natural, 462
gain crossover, 734
natural, 172
phase crossover, 734
pitch, 791
radian, 9
response, 415
transfer function, 416
units, 9

Frequency response analysis,
amplitude ratio, 418
bandwidth, 453, 455, 456
beating, 443
Bode plots, 423
filtering properties, 453
Fourier series, 458
frequency transfer function, 416
general periodic inputs, 458
high-pass filter, 427
instrument design, 450
logarithmic plots, 423
low-pass filter, 426
MATLAB, applications of, 466
resonance, 439
rotating unbalance, 448
system identification, 461
transfer function, 418

Frequency transfer function, 418
Fresnel’s cosine integral, 244
Friction

Coulomb, 46
dynamic, 46
equation of motion, 46
motion, inclined plane, 47
static, 46

ft-lb, 8
Function

Dirac delta function, 129
exponential, 88
MATLAB. See MATLAB commands/functions

in Appendix A
ramp, 111

rectangular pulse, 137
shifted step, 106
step, 103
transfer. See Transfer function
unit-step, 103

Function identification and parameter
estimation, 15

definitions, 15
obtaining the coefficients, 18
steps in process, 17

Function linearization, 11

G
Gage pressure, 341
Gain, 283, 551
Gain crossover frequency, 734
Gain margin (GM), 734
Gallon, 381
Galvanometer, 299
Gears, inertia, 57
General periodic inputs, response to, 458
General planar motion, 61

force equations, 61
moment equations, 62
sliding vs. rolling motion, 62

Generic mass-spring-damper system, 190
Globally unstable, 100
Glossary, 824-826
GM (gain margin), 734
Gyroscope, 67

H
Hagen-Poiseuille formula, 352
Hardening spring, 167
Hardening spring model, 534
Heat transfer

modes of, 374
through plate, 376

Helical coil spring, 156, 163
Henry, 274
Hertz (Hz), 8
High-pass filter, 426
Horsepower, 8
Hydraulic accumulator, 405
Hydraulic actuator, 360
Hydraulic capacitance. See Fluid capacitance.
Hydraulic cylinder, 343
Hydraulic dampers, 359
Hydraulic implementation

PI control, 568
proportional control, 566

Hydraulic motor, 362
Hydraulic resistance. See Fluid resistance.
Hydraulics, 339
Hydrostatic pressure, 341
Hz, 9

I
Ideal current source, 274
Ideal dampers, 181
Ideal flow source, 346
Ideal pressure source, 346
Ideal voltage source, 274
Identification. See System identification
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Impedance, 289, 290
driving-point, 293
input, 293
isolation amplifier, 293
output, 293
parallel, 291
series, 291
transfer, 293

Impulse, 128
unit, 129

Impulse response, 205
collisions, 295
first-order model, 129
impulse-momentum principle, 206
linear impulse, 206
MATLAB, applications of, 208
second-order model, 130

Incompressible fluid, 339
Incremental version of PID control law, 571
Inductance, 274, 278
Inelastic collision, 206
Inertance, 345, 361
Inertia. See also Equivalent mass

and inertia
common elements, 49
definition, 48

Initial condition, 81
Initial value theorem, 108
Input, 2
Input derivative. See Numerator dynamics
Input matrix, 229
Input terminal, 293
Input vector, 229
Input-output relation, 2
Integral causality, 3
Integral control action, 567
Integral control with state-variable

feedback, 667
Integral property, 155
Integration with op amps, 296
Integrator block, 249
Integrator buildup, 681
Interpolation, 10
Inverse Laplace transform, 101. See also

Partial-fraction expansion
Inverter, 296
Inverting terminal, 294
Inverting the Laplace transform, 101. See also

Partial-fraction expansion
Isolation amplifier, 293
Isolator design, 764, 770

J
Joule, 8
Journal bearing, 189

K
Kelvin, 8
Kilogram, 8
Kinetic energy (KE), 44
Kinetic energy equivalence, 55
Kinetic friction, 46
Kirchhoff’s current law, 275
Kirchhoff’s voltage law, 275

L
Lag compensator, 715

active circuit, 717
Bode plot design, 746
passive circuit, 716
root locus design, 725
transfer function, 715
when used, 721

Lag-lead compensator, 715
active circuit, 718
passive circuit, 716
root locus design, 722, 728
transfer function, 715
when used, 721

Laminar flow, 351
Laminar pipe resistance, 351
Laplace transform, 101

derivative property, 108
final value theorem, 108
initial value theorem, 108
integral property, 155
inverse transform, 101
inverting the transform, 101. See also

Partial-fraction expansion
linearity property, 103
of common functions, 102
one-sided transform, 101
pairs, 102
properties, 104
shifting along the s-axis, 105
shifting along the t-axis, 107
time-shifting property, 107

Lead compensator, 715
active circuit, 717
Bode plot design, 743
passive circuit, 716
and PID control, 719
root locus design, 721
transfer function, 715
when used, 721

Leaf spring, 161
Least-squares method, 23

integral form, 29
MATLAB, applications of, 29

Limit cycle, 803
Linear differential equations, 81
Linear force-deflection model, 159
Linear impulse, 206
Linear models, 9

linearization, 11
Linear state feedback. See State-variable

feedback
Linearity property, 103
Linearization

defined, 11
pneumatic systems, 351
pump models, 363
sine function, 11
and spring constants, 796
square-root model, 13

Liquid-level system, 340
open-loop control, 547

Liter, 340
Load torque, 301
Load-speed curve, 304
Locally stable, 100

Loci, 638
Logarithmic decrement, 514
Logarithm, notation for, 32
Logarithmic plots, 423
Loop analysis, 284
Loop current, 283
Loop reduction, 521
Low-pass filter, 426
LTI object, 142
Lumped-parameter model, 376

M
Magnetic coupling, 298
Magnitude ratio, 418
Manipulated variable, 550
Mass moment of inertia. See Inertia
Mass-spring-damper system, 190
Mass-spring systems, 167

displacement inputs and spring elements, 174
effect of gravity, 169
equation of motion, 172
equilibrium position, 169
real vs. ideal spring elements, 167
simple harmonic action, 175
spring free length/object geometry, 159
step response, 173
torsional spring system, 174

MATLAB commands/functions. See Appendix A
Matrix methods, 247
Maximum motor speed, 310
Maximum motor torque, 311
Maximum overshoot. See also Overshoot

defined, 500
MATLAB, calculated by, 532
percent, 502
and root location, 504

Maximum required current, 309
Maximum required motor speed, 309
Maximum required motor torque, 309
Maximum required voltage, 309
Maximum speed error, 309
Mechanical energy, 44
Meter, 8
Methodology

computer solution, 7
control system design, 575
engineering problem solving, 4
function identification, 15

Metric system, 7
Microphone, 298
Mixing process, 345
Modeling

approximations, effect of gain on, 552
control systems, 551
defined, 4

Modeling control systems, 551
Modes of vibrating systems, 783

bounce center, 790
bounce frequency, 791
bounce mode, 788
modes/mode ratios, 785
node location, 789
pitch center, 790
pitch frequency, 791
pitch mode, 788
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Modulus of elasticity, 159, 160
Moment equations, 62
Motion center, 789
Motor

dc, 300
electric. See Electric motors
hydraulic, 362

Motor block diagram, 528, 529
Motor control using state-variable feedback, 666
Motor parameters, 307
Motor-amplifier performance, 309
Multiplier, 294, 516

N
Natural frequency, 173, 493
Negative feedback loop, 517
Negative feedback path, 517
Neutral stability, 97
Newton’s law of cooling, 425
Newton’s laws for plane motion, 61
Newton’s laws of motion, 43
No-load current, 304
No-load speed, 304
Node, 789
Nonhomogeneous equation, 81
Noninverting terminal, 294
Nonlinear equations, 81
Nonlinear resistances, 277, 351
Nonlinear damping, 533
Nonlinear response characteristics, 804
Nonlinear spring elements, 166
Nonlinear vibration, 796
Numerator dynamics, 128, 132

effect of damper location, 203
first-order model, 132
second-order model/system, 133
state-variable form, 225
step response, 201
transfer function model, 132

O
ODE, 81. See also Differential equations
ODE solvers, 142
Ohm, 274
Ohm’s law, 274
Olley, Maurice, 791
One-sided transform, 101
On-off controller, 565
Op amp. See Operational amplifier (op amp)
Open-loop control, 547
Open-loop poles, 640
Open-loop zeros, 640
Operational amplifier (op amp), 294

adder, 524
comparator, 524
differentiation, 297
input-output relation, 296
integration, 296
multiplier, 294
proportional controller, 566
PD controller, 570
PI controller, 568
PID controller, 570
subtractor, 514

Order (equation), 82

Ordinary differential equation (ODE), 81.
See also Differential equations

Orifice flow, 21, 346
Orifice resistance, 346
Oscillation units, 9
Output, 2
Output vector, 229
Overdamped case, 594
Overdriven, 680
Overshoot, 134

peak. See Maximum overshoot

P
Parabolic leaf spring, 162
Parallel fluid resistances, 351
Parallel impedances, 291
Parallel resistances, 276
Parallel spring elements, 164
Parallel-axis theorem, 48
Parameter estimation. See also System

Identification
defined, 15
function identification, 15

Partial differential equation, 376
Partial-fraction expansion, 118
Particle, 43
Passive elements, 274

Passive lag compensator circuit, 716
Passive lag-lead compensator circuit, 716
Passive lead compensator circuit, 716

PE (potential energy), 44
Peak overshoot. See Maximum overshoot
Peak time, 500, 503

MATLAB, calculated by, 532
and root location, 505

Pendulum
concentrated mass, 199
inverted, stability of, 200
nonlinear model (MATLAB), 243
nonlinear model (Simulink), 255
rob-and-bob, 49
illustration of stability properties, 200

Percent maximum overshoot, 502.
See also Maximum overshoot

Perfectly elastic collision, 207
Period, 415
Periodic inputs, 415
Permanent magnet motor, 300
Personal transporter, 67
Petrov’s law, 189
Phase crossover frequency, 734
Phase margin (PM), 734

versus damping ratio, 735
Phase plane plot, 803
Proportional control algorithm, 565
PD control algorithm, 569
PI control algorithm, 568
PID control algorithm, 569
Piecewise-linear models, 255
Piezoelectric devices, 315
Piston damper, 185
Pitch center, 790
Pitch frequency, 791
Plane motion methods, 61. See also General

planar motion

Plant, 530
PM (phase margin), 734
Pneumatic control valve, 548
Pneumatic door closer, 185
Pneumatic system, 369
Pneumatics, 339
Point mass assumption, 44
Poles, 640
Polytropic process, 370
Porsche, Ferdinand, 163
Position version of PID control law, 571
Potential energy (PE), 44
Potentiometer, 280, 281
Pound, 8
Power

defined, 275
electrical, 275
unit, 275

Pressure, 341
Primary root locus, 652
Process reaction method, 675, 751
Proof mass, 314
Proportional control algorithm, 551, 565
Proportional gain, 551
Proportional-integral-derivative control (PID)

algorithm, 569
Pulley dynamics, 51
Pulley-cable kinematics, 54
Pulse function, 107, 137
Pulse-width modulation (PWM), 564
Pump models, 363
Pure rolling motion, 63
Pure sliding motion, 63
PWM, 564

Q
Quadratic formula, 85
Quality of curve fit, 28
Quarter-car model.

single mass, 196
two masses, 197

Quarter-decay criterion, 674
Quenching, 383

R
Rack-and-pinion gear, 58
Radian frequency, 9
Radiation, 374
Ramp function, 111
Ramp response

first-order equation, 111, 123
and MATLAB, 148
steady-state, 489

Rankine, 8
Rate action, 569
Rate time, 570
Rated continuous current, 309
Rated continuous torque, 309
Rate-limiter element, 694
Rayleigh’s method, 179
Reciprocal rule, 292
Rectangular form (complex number), 416
Rectangular pulse function, 107
Reduced-form model, 224, 225
Reset action, 568
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Reset time, 570
Reset windup, 680
Residuals, 23
Residues, 140
Resistance,

conductive, 374
electrical, 274, 275
fluid, 345, 350
laminar pipe, 351
orifice, 355
parallel resistance law, 276, 377
radial conductive, 381
series resistance law, 276, 377
thermal, 374, 377, 388
turbulent and component, 355

Resistor, 274
Resonance, 439
Response

complete (total), 93
first-order systems. See Response of first-order

systems
forced, 93
frequency, 418
general periodic inputs, 458
impulse. See Impulse response
initial conditions, 81
ramp. See Ramp response
resonance, at, 445
second-order systems. See Response of

second-order systems
steady-state ramp, 488, 574
step. See Step response
total, 93
transient, 93
types, 93
unit impulse, 102, 129

Response of first-order systems, 482
free response, 93, 482, 484
impulse response, 488
input derivative, 487
ramp response, 488
step function approximation, 485
step response, 483
step vs. constant inputs, 487
time constant, 482

Response of second-order systems, 490
dominant-root approximation, 95
effect of root location, 493
free response, 95, 96, 127, 491
graphical interpretation, 496
response parameters, 497
root location, 494
solution forms, 492
step response, 498
time constant, 496
undamped/damped natural frequency, 493
underdamped response, 491

Reverse-action compensator, 756
Reversible adiabatic (isentropic) process, 370
Revolutions per minute (rpm), 9
Reynolds number, 352
Ride rate, 791
Rise time, 500, 503

MATLAB, calculated by, 533
RMS average, 309
RMS motor torque, 309

Robot arm, 5, 59, 89
Rod

equivalent mass and inertia, 181
spring constant, 162
tensile test, 159

Rolling vs. sliding motion, 62
Root locus plot

angle/magnitude criteria, 641
complementary root locus, 651
design using, 638
lag compensator, 725
lag-lead compensator, 728
lead compensator, 721
MATLAB, applications of, 688
primary root locus, 652
root locus equation, 644
sketching guides, 644
sketching procedure, 649
state-variable feedback, 670
terminology, 639
tracking dominant roots, 664

Rotary damper, 186
Rotating unbalance, 448, 769
Rotation about fixed axis, 48
Rotational potentiometer, 281
Rotor, 300
Routh-Hurwitz stability conditions, 577
Row vector, 227
rpm, 9
r-squared value, 28

S
Sampling, 563
Sampling period, 563
Saturation, 680
Saturation nonlinearity, 681
Second-order systems. See Response of

second-order systems
Secondary roots, 95
Seismic mass, 314
Seismograph, 314
Sensitivity analysis of absorber design, 780
Sensor transfer function, 550
Sensors, 314
Series blocks, 417
Series compensation, 714

active circuits, 717, 718
compensators, compared, 715
design by root placement, 718
hardware implementation, 715, 717, 718
lag compensator, 715. See also main entry under

Lag compensator
Lag-lead compensator, 715. See also main entry

under Lag-lead compensator
lead compensator, 715. See also main entry

under Lead compensator
passive circuits, 716
reverse action compensator, 756
root locus design, 722, 725
when used, 721

Series fluid resistances, 351
Series impedance, 291
Series resistance law, 276
Series solution method, 138
Series spring elements, 276

Series thermal resistance, 377
Settling time, 143, 500, 503

MATLAB, calculated by, 533
Shear modulus of elasticity, 159
Shifted step function, 106
Shifting along the s-axis, 105
Shifting along the t-axis, 107
Shock absorbers, 186
Shocks, 775
SI units, 7
Simple harmonic motion, 175
Simulation diagrams, 250. See also

Block diagram
Simulink

anti-windup system, 694
Block Parameters window, 252
blocks, 249
Clock, 253
connecting two blocks, 252
Constant block, 257
Coulomb friction, 256
current saturation in motor control

system, 617
dead time, 738
dead zone nonlinearity, 258
Derivative block, 535
exporting to MATLAB workspace, 253
Fcn block, 259
file extension, 249
function, 536
Gain block, 250
Integrator block, 261
Library Browser, 250
linear models, 249
Look-up Table block, 535
Math Function block, 537
Multiplier block, 250
Mux block, 253
nonlinear models, 255
piecewise-linear models, 255
Pulse Generator block, 326
Rate-limiter block, 694
Relay block, 395, 398
response with dead zone, 259
Saturation block, 257
saving, 252
Scope block, 252
Signal Builder block, 535
Signal generator block, 262
simulation diagrams, 249. See also

Block diagram
Source catgory, 251
starting, 248
state variable models, 245
subsystem blocks, 396
Sum block, 254
To Workspace block, 253
torque limitation in motors, 327
Transfer Fcn block, 259
Transfer Fcn (with initial inputs) block, 616
Transport Delay Block, 752
trapezoidal profile, 533

Simultaneous linear algebraic equations, 121
Sinusoidal inputs, 415
Slew phase, 308
Sliding friction, 46
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Sliding vs. rolling motion, 62
Slug, 7
Small-angle approximation, 200
Softening spring, 167
Source, 252
Speaker, 281, 316
Specific heat, 369
Speed control system, 550, 555

armature-controlled motor, 558
conveyor system, 561
field-controlled motor, 556

Spring center, 791
Spring constant

analytical determination of, 160
defined, 159
linear force-deflection model, 167
of common elements, 162
parallel and series spring elements, 164
torsional, 161

Spring elements, 158. See also
Spring constant

Spring rate, 159
Spur gears, 57
Stability, 92, 97, 100

definitions, 97
equilibrium, 100
linear models, 99
neutral, 99
second-order system, 150
surface illustration, 100

Stall current, 304
Stall torque, 304
State equations, 225
State output matrix, 231
State variables, 225
State vector, 229
State-variable feedback, 665

active suspension system, 673
controllability, 672
feedback variables, choice of, 668
integral control, 667
matrix methods, 670
motor control, 665
root locus analysis, 670

State-variable models, 225
MATLAB, applications of, 237
numerator dynamics, 231, 235
output equation, 229
Simulink, applications of, 254
standard form of state equation, 230
transfer function models, compared, 237
vector-matrix form, 230

Static deflection, 181, 791
Static element, 3
Static error coefficient, 733
Static friction, 46
Static friction coefficient, 46
Static position error coefficient, 733
Static system, 3
Static velocity error coefficient, 733
Stator, 186
Steady-state command error, 573
Steady-state disturbance error, 573
Steady-state error, 570
Steady-state ramp response, 574
Steady-state response, 97

Stefan-Boltzmann law, 375
Step function, 103
Step response

approximation, 202
delay time, 500, 503
description of, 500
first-order equation, 110, 483, 512
mass-spring system, 173
MATLAB, applications of, 208, 505, 525
maximum overshoot, 500, 501
numerator dynamics, 201, 487
P, PI, PID control systems, 573
peak time, 500, 503
rise time, 500, 503
second-order model, 173, 203, 498
settling time, 500, 503
Simulink, applications of, 255
transient-response specifications, 500
two-mass system, 209

Stiction, 46
Stiffness, 158

estimating, 515
Strain gage sensor, 315
Strength (pulse), 128
Summing circuit, 279
Superposition property, 93
Supervisory control, 563
Suspension system. See Vehicle suspension system
Symbols

block diagram, 516
circuit, 274
damper, 188
fluid, 346
simulation diagram, 250

System, 2
System dynamics, 4
System identification,

first-order system, 462
from frequency response, 462
phase plot, 465
second-order system, 464
test procedures, 461

System matrix, 230
System type, 732
Système International d’Unités (SI), 7, 8
Systems analysis in frequency domain.

See Frequency response analysis

T
Tachometer, 314
Takeoff point, 516
Taylor series, 139
Temperature, units, 8
Temperature dynamics, 383, 510

cooling object, 388
mixing process, 373
quenching, 383
sensor response, 389
state-variable model, 390
of water, 26, 388

Thermal capacitance, 374
Thermal resistance, 374
Thermal systems, 340

Biot criterion, 383
capacitance, 372

conduction, 374
conductivity, 375
convection, 374
defined, 340
dynamic models, 383
Fourier’s law, 376
MATLAB, applications of, 383
Newton’s law of cooling, 374
quenching, 383
radial conductive resistance, 381
radiation, 374
resistance, 374
Simulink, applications of, 398
temperature dynamics. See Temperature

dynamics
Thermocouple, 389
Thermostat, 399
3-dB points, 454
Three-mode controller. See PID

control algorithm
Time constant, 88, 93

and complex roots, 96
bandwidth, 454
dominant, 95
first-order systems, 93, 482
ramp response, 488
second-order systems, 95, 497
settling time, 503

Time-shifting property, 107
Torque, 48
Torque constant, 301
Torque limitation in motors, 327
Torricelli’s principle, 354
Torsional damper, 186, 188
Torsional damping coefficient, 188
Torsional spring, 161
Torsional spring constant, 161
Torsion-bar suspension, 163
Total response, 93, 97
Transfer function, 115

block diagrams, 520
and characteristic roots, 116
compensator, 715
coupled RC loops, 525
dc motor, 302
frequency, 418
lag compensator, 715
lead compensator, 715
lead-lag compensator, 715
MATLAB, applications of, 142
multiple inputs and outputs, 116
numerator dynamics, 132
system of equations, 117
and ODE, 116
two-mass system, 210
uses, 116
Simulink, applications of, 258

Transient response, 93, 97
Translational motion, 43
Translational (linear) potentiometer, 281
Transmissibility,

base excitation, 764
base motion, 447
displacement, 447, 764
force, 447, 765, 770
rotating unbalance, 447
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Trapezoidal profile, 308
MATLAB, programmed in, 321
motion control, 308
Simulink, programmed in, 533

Trial-solution method, 83
summary, 106–107
when used, 107, 173

Tuning controllers, 674
Turbulent and component resistance, 355
Turbulent flow, 351
Two-position control, 565
Type n system, 732

U
Ultimate gain, 676
Ultimate period, 676
Ultimate-cycle method, 676
Undamped natural frequency. See Natural

frequency
Underdamped case, 494
Unit conversion factors, 8
Unit impulse, 129
Units

back emf constant, 301, 308
capacitance, 274
charge, 274
current, 274
FPS, 7
heat flow rate, 374
inductance, 274
mass density, 340
mass flow rate, 340
oscillation, 9
power, 275

pressure, 341
resistance, 274
SI, 7
temperature, 8
thermal capacitance, 373
thermal resistance, 375
torque constant, 301, 308
torsional damping, 188
torsional/translational spring constants, 161
voltage, 274
volume, 340
volume rate, 340
weight density, 340

Unit-step function, 102, 103, 107, 116, 132
Unstable system, 97
U.S. customary system, 7
U.S. gallon, 340

V
Van der Pol’s equation, 803
Vane-type damper, 186
Variable-coefficient differential equation, 82
Vector-matrix multiplication, 228
Vehicle dynamics, 5

base excitation, 768
incline, 55, 63
maximum acceleration, 66
pitch/bounce center, 790
pitch/bounce frequency, 791
shock absorber, 186
suspension system. See Vehicle suspension

system
Vehicle suspension system

active suspension system, 673

diagram, 5
frequency response, 448
natural frequency, 180
quarter-car model, 196
response, 832
root locus analysis of, 805
Simulink, applications of, 532
single-mass system, 196
vibration isolation system, as, 828

Velocity feedback, 590
Velocity feedback compensation, 594
Velocity version of PID control law, 571
Vibration absorbers, 775
Vibration isolation system, 764, 770
Vibration period, 444
Vibrometer, 314
Voltage, 273, 274
Voltage-divider rule, 276

W
Watt, 8
Weber, 298
Weight density, 340
Wheatstone bridge, 329
Work, 44

Z
Zero-order hold (ZOH), 563
Ziegler-Nichols methods, 674

MATLAB, applications of, 693
process reaction method, 675, 751
ultimate-cycle method, 676
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Table 3.1.3 Solution forms.

Equation Solution form

First order: ẋ + ax = b a �= 0 x(t) = b

a
+ Ce−at

Second order: ẍ + aẋ + bx = c b �= 0

1. (a2 > 4b) distinct, real roots: s1, s2 x(t) = C1es1t + C2es2t + c

b

2. (a2 = 4b) repeated, real roots: s1, s1 x(t) = (C1 + tC2)e
s1t + c

b

3. (a = 0, b > 0) imaginary roots: s = ± jω, x(t) = C1 sin ωt + C2 cos ωt + c

b
ω = √

b

4. (a �= 0, a2 < 4b) complex roots: s = σ ± jω, x(t) = eσ t (C1 sin ωt + C2 cos ωt) + c

b
σ = −a/2, ω = √

4b − a2/2

Table 3.3.1 Table of Laplace transform pairs.

X (s) x( t), t ≥ 0

1. 1 δ(t), unit impulse

2.
1

s
us(t), unit step

3.
c

s
constant, c

4.
e−s D

s
us(t − D), shifted unit step

5.
n!

sn+1
tn

6.
1

s + a
e−at

7.
1

(s + a)n

1

(n − 1)!
tn−1e−at

8.
b

s2 + b2
sin bt

9.
s

s2 + b2
cos bt

10.
b

(s + a)2 + b2
e−at sin bt

11.
s + a

(s + a)2 + b2
e−at cos bt

12.
a

s(s + a)
1 − e−at

13.
1

(s + a)(s + b)

1

b − a

(
e−at − e−bt

)
14.

s + p

(s + a)(s + b)

1

b − a

[
(p − a)e−at − (p − b)e−bt

]
15.

1

(s + a)(s + b)(s + c)

e−at

(b − a)(c − a)
+ e−bt

(c − b)(a − b)
+ e−ct

(a − c)(b − c)

16.
s + p

(s + a)(s + b)(s + c)

(p − a)e−at

(b − a)(c − a)
+ (p − b)e−bt

(c − b)(a − b)
+ (p − c)e−ct

(a − c)(b − c)

Table 9.1.1 Free, step, and ramp
response of τ ẏ + y = r (t).

Free response [r(t) = 0]
y(t) = y(0)e−t/τ

y(τ ) ≈ 0.37y(0)

y(4τ) ≈ 0.02y(0)

Step response [r(t) = Rus(t), y(0) = 0]
y(t) = R(1 − e−t/τ )

y(∞) = yss = R
y(τ ) ≈ 0.63yss

y(4τ) ≈ 0.98yss

Ramp response [r(t) = mt , y(0) = 0]
y(t) = m(t − τ + τe−t/τ )

Table 3.1.2 The exponential function.

Taylor series

ex = 1 + x + x2

2
+ x3

6
+ · · · + xn

n!
+ · · ·

Euler’s identities

e jθ = cos θ + j sin θ

e− jθ = cos θ − j sin θ

Limits
lim

x→∞
xe−x = 0 if x is real.

lim
t→∞

e−st = 0 if the real part of s is positive.

If a is real and positive,
e−at < 0.02 if t > 4/a.
e−at < 0.01 if t > 5/a.
The time constant is τ = 1/a.

2
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Table 9.3.1 Unit step response of a stable second-order model.

Model: mẍ + cẋ + kx = us(t)

Initial conditions: x(0) = ẋ(0) = 0

Characteristic roots: s = −c ± √
c2 − 4mk

2m
= −r1, −r2

1. Overdamped case (ζ > 1): distinct, real roots: r1 �= r2

x(t) = A1e−r1t + A2e−r2t + 1

k
= 1

k

(
r2

r1 − r2
e−r1t − r1

r1 − r2
e−r2t + 1

)
2. Critically damped case (ζ = 1): repeated, real roots: r1 = r2

x(t) = (A1 + A2t)e−r1t + 1

k
= 1

k
[(−r1t − 1)e−r1t + 1]

3. Underdamped case (0 ≤ ζ < 1): complex roots: s = −ζωn ± jωn

√
1 − ζ 2

x(t) = Be−t/τ sin
(
ωn

√
1 − ζ 2t + φ

) + 1

k

= 1

k

[
1√

1 − ζ 2
e−ζωn t sin

(
ωn

√
1 − ζ 2t + φ

) + 1

]

φ = tan−1

(√
1 − ζ 2

ζ

)
+ π (third quadrant)

Time constant: τ = 1/ζωn

Table 10.5.3 Routh-Hurwitz stability conditions.

1. Second-Order: a2s2 + a1s + a0 = 0
Stable if and only if a2, a1, and a0 all have the same sign.

2. Third-Order: a3s3 + a2s2 + a1s + a0 = 0
Assuming a3 > 0, stable if and only if a2, a1, and a0 are all positive and a2a1 > a3a0.

3. Fourth-Order: a4s4 + a3s3 + a2s2 + a1s + a0 = 0
Assuming a4 > 0, stable if and only if a3, a2, a1, and a0 are all positive, a2a3 > a1a4, and

a1(a2a3 − a1a4) − a0a2
3 > 0

(b)

T1(s)T2(s)
F(s) X(s)

(a)

G(s)
1 � G(s)H(s)

F(s) X(s)

(d)(c)

T1(s)
F(s) B(s) X(s)

T2(s)

�
G(s)

H(s)

F(s) A(s)

B(s)

� X(s)

Figure 9.5.4 (a) and
(b) Simplification of series
blocks. (c) and
(d) Simplification of a
feedback loop.

3
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Table 10.5.2 Useful results for second-order systems.

1. Model: mẍ + cẋ + kx = f (t)
2. Transfer function:

X (s)

F(s)
= 1

ms2 + cs + k

3. Characteristic equation: ms2 + cs + k = 0
4. Characteristic roots:

s = −c ± √
c2 − 4mk

2m

5. Damping ratio and undamped natural frequency:

ζ = c

2
√

mk
ωn =

√
k

m

6. Time constant: If ζ ≤ 1,

τ = 2m

c

If ζ > 1, the dominant (larger) time constant is

τ1 = 2m

c − √
c2 − 4mk

and the secondary (smaller) time constant is

τ2 = 2m

c + √
c2 − 4mk

7. Maximum percent overshoot and peak time:

M% = 100e−πζ/
√

1−ζ 2
tp = π

ωn

√
1 − ζ 2

8. The complex root pair s = −a ± bj corresponds to the characteristic equation

(s + a)2 + b2 = 0

9. The value ζ = 0.707 corresponds to a root pair having equal real and imaginary parts:
s = −a ± aj .

Figure 9.2.5 Graphical
interpretation of the
parameters ζ , τ , ωn , and ωd .

�d � �n
�1 � �2

s � ���n � �d j

� � cos � � cos �tan�1(��d)� 

���n
1��

�n

�

Re

Im

2
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M � �T( j�)� � 

� � � T( j�)

B
A

A sin �t B sin(�t � �)

Stable, linear
system

Sinusoidal
input

Steady-state
response

T(s)

Im

Re

M

T( j�)

�

Figure 8.1.2 Frequency
response of a stable linear
system.

Table 8.1.2 Frequency response of the model τ ẏ + y = f (t).

M = |Y |
|F | = 1√

1 + ω2τ 2
(1)

φ = − tan−1(ωτ) (2)

Table 8.2.2 Frequency response of a second-order system.

Model: T (s) = ω2
n

s2 + 2ζωns + ω2
n

Resonant frequency: ωr = ωn

√
1 − 2ζ 2 0 ≤ ζ ≤ 0.707

Resonant response: Mr = 1

2ζ
√

1 − ζ 2
0 ≤ ζ ≤ 0.707

mr = −20 log
(

2ζ
√

1 − ζ 2
)

0 ≤ ζ ≤ 0.707

φr = −tan−1

√
1 − 2ζ 2

ζ
0 ≤ ζ ≤ 0.707

10–1 100 101
–40

–30

–20

–10

0

10

20

30
� = 0.01

� = 0.1

� = 0.5

� = 0.7

� = 1

�/�n

m
 (

dB
)

Figure 8.2.4 Semilog plot
of log magnitude ratio of the
model ω

2
n/(s2 + 2ζωn s + ω

2
n ).
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