

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of
ePUB and its many features varies across reading devices and applications. Use
your device or app settings to customize the presentation to your liking. Settings that
you can customize often include font, font size, single or double column, landscape
or portrait mode, and figures that you can click or tap to enlarge. For additional
information about the settings and features on your reading device or app, visit the
device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize
the presentation of these elements, view the eBook in single-column, landscape
mode and adjust the font size to the smallest setting. In addition to presenting code
and configurations in the reflowable text format, we have included images of the
code that mimic the presentation found in the print book; therefore, where the
reflowable format may compromise the presentation of the code listing, you will
see a “Click here to view code image” link. Click the link to view the print-fidelity
code image. To return to the previous page viewed, click the Back button on your
device or app.

2

Sams Teach Yourself Arduino™

Programming in 24 Hours

Richard Blum

800 East 96th Street, Indianapolis, Indiana, 46240 USA

3

Sams Teach Yourself Arduino™ Programming in 24 Hours
Copyright © 2015 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained
herein.

ISBN-13: 978-0-672-33712-3
ISBN-10: 0-672-337126

Library of Congress Control Number: 2013955616

Printed in the United States of America

First Printing: September 2014

Editor-in-Chief
Greg Wiegand

Executive Editor
Rick Kughen

Development Editor
Keith Cline

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Cheryl Lenser

Proofreader
Sarah Kearns

Technical Editor
Jason Foster

Publishing Coordinator

4

Kristen Watterson

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as affecting
the validity of any trademark or service mark.

Arduino is a registered trademark of Arduino and its partners.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

5

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents at a Glance

Introduction

Part I: The Arduino Programming Environment

HOUR 1 Introduction to the Arduino

2 Creating an Arduino Programming Environment

3 Using the Arduino IDE

4 Creating an Arduino Program

Part II: The C Programming Language

HOUR 5 Learning the Basics of C

6 Structured Commands

7 Programming Loops

8 Working with Strings

9 Implementing Data Structures

10 Creating Functions

11 Pointing to Data

12 Storing Data

13 Using Libraries

Part III: Arduino Applications

HOUR 14 Working with Digital Interfaces

15 Interfacing with Analog Devices

16 Adding Interrupts

17 Communicating with Devices

18 Using Sensors

19 Working with Motors

6

20 Using an LCD

21 Working with the Ethernet Shield

22 Advanced Network Programming

23 Handling Files

24 Prototyping Projects

Index

7

Table of Contents

Introduction

HOUR 1: Introduction to the Arduino
What Is an Arduino?
Introducing the Arduino Family
Exploring Arduino Shields
Summary
Workshop

HOUR 2: Creating an Arduino Programming Environment
Exploring Microcontroller Internals
Moving Beyond Machine Code
Creating Arduino Programs
Installing the Arduino IDE
Summary
Workshop

HOUR 3: Using the Arduino IDE
Overview of the IDE
Walking Through the Menus
Exploring the Toolbar
Exploring the Message Area and Console Window
Setting Up the Arduino IDE
Using the Serial Monitor
Summary
Workshop

HOUR 4: Creating an Arduino Program
Building an Arduino Sketch
Creating Your First Sketch
Interfacing with Electronic Circuits
Summary
Workshop

8

HOUR 5: Learning the Basics of C
Working with Variables
Using Operators
Exploring Arduino Functions
Summary
Workshop

HOUR 6: Structured Commands
Working with the Statement
Grouping Multiple Statements
Using Statements
Using Statements
Understanding Comparison Conditions
Creating Compound Conditions
Negating a Condition Check
Expanding with the Statement
Summary
Workshop

HOUR 7: Programming Loops
Understanding Loops
Using Loops
Using Loops
Using Loops
Using Arrays in Your Loops
Using Multiple Variables
Nesting Loops
Controlling Loops
Summary
Workshop

HOUR 8: Working with Strings
What’s a String?
Understanding C-Style Strings
Introducing the Arduino Object

9

Manipulating String Objects
Summary
Workshop

HOUR 9: Implementing Data Structures
What’s a Data Structure?
Creating Data Structures
Using Data Structures
Manipulating Data Structures
Arrays of Structures
Working with Unions
Summary
Workshop

HOUR 10: Creating Functions
Basic Function Use
Returning a Value
Passing Values to Functions
Handling Variables in Functions
Calling Functions Recursively
Summary
Workshop

HOUR 11: Pointing to Data
What Is a Pointer?
Working with Pointers
Using Special Types of Pointers
Pointer Arithmetic
Strings and Pointers
Combining Pointers and Structures
Using Pointers with Functions
Summary
Workshop

HOUR 12: Storing Data
Arduino Memory Refresher

10

Taking a Closer Look at SRAM
Creating Dynamic Variables
Using Flash to Store Data
Using the EEPROM Memory
Summary
Workshop

HOUR 13: Using Libraries
What Is a Library?
Using the Standard Libraries
Using Contributed Libraries
Creating Your Own Libraries
Summary
Workshop

HOUR 14: Working with Digital Interfaces
Digital Overview
Using Digital Outputs
Experimenting with Digital Output
Working with Digital Inputs
Experimenting with Digital Input
Summary
Workshop

HOUR 15: Interfacing with Analog Devices
Analog Overview
Working with Analog Input
Modifying the Input Result
Using Input Mapping
Changing the Reference Voltage
Analog Output
Using the Analog Output
Summary
Workshop

HOUR 16: Adding Interrupts

11

What Are Interrupts?
Types of Interrupts
Using External Interrupts
Testing External Interrupts
Using Pin Change Interrupts
Working with Timer Interrupts
Ignoring Interrupts
Summary
Workshop

HOUR 17: Communicating with Devices
Serial Communication Protocols
Using the Serial Port
Working with the SPI Port
Working with I2C
Summary
Workshop

HOUR 18: Using Sensors
Interfacing with Analog Sensors
Working with Voltage
Using a Voltage-Based Sensor
Working with Resistance Output
Using a Resistance-Based Sensor
Using Touch Sensors
Working with Touch Sensors
Summary
Workshop

HOUR 19: Working with Motors
Types of Motors
Using DC Motors
Experimenting with Motors
Using Servo Motors
Summary

12

Workshop

HOUR 20: Using an LCD
What Is an LCD?
Interfacing with LCD Devices
The LiquidCrystal Library
The LCD Shield
Summary
Workshop

HOUR 21: Working with the Ethernet Shield
Connecting the Arduino to a Network
The Ethernet Shield Library
Writing a Network Program
Summary
Workshop

HOUR 22: Advanced Network Programming
The Web Protocol
Reading Sensor Data from a Web Server
Controlling an Arduino from the Web
Summary
Workshop

HOUR 23: Handling Files
What Is an SD Card Reader?
SD Cards and the Arduino
The SD Library
Interfacing with the SD Card
Storing Sensor Data
Summary
Workshop

HOUR 24: Prototyping Projects
Determining Project Requirements
Determining Interface Requirements
Listing Components

13

Creating a Schematic
Creating the Breadboard Circuit
Designing the Sketch
Writing the Sketch
Testing the Sketch
Creating a Prototype Board
Summary
Workshop

Index

14

About the Author

Richard Blum has worked in the IT industry for more than 25 years as a network
and systems administrator, managing Microsoft, UNIX, Linux, and Novell servers
for a network with more than 3,500 users. He has developed and teaches
programming and Linux courses via the Internet to colleges and universities
worldwide. Rich has a master’s degree in management information systems from
Purdue University and is the author of several programming books, including Teach
Yourself Python Programming for the Raspberry Pi in 24 Hours (coauthored with
Christine Bresnahan, 2013, Sams Publishing), Linux Command Line and Shell
Scripting Bible (coauthored with Christine Bresnahan, 2011, Wiley), Professional
Linux Programming (coauthored with Jon Masters, 2007, Wiley), and Professional
Assembly Language (2005, Wrox). When he’s not busy being a computer nerd,
Rich enjoys spending time with his wife, Barbara, and two daughters, Katie Jane
and Jessica.

15

Dedication

To my Uncle George.

Thanks for all your mentoring and troubleshooting help in my early
electronics projects. I never would have gotten started in my career

had those projects not worked!

“Iron sharpens iron, and one man sharpens another.” —Proverbs 27:17 (ESV)

16

Acknowledgments

First, all glory and praise go to God, who through His Son, Jesus Christ, makes all
things possible and gives us the gift of eternal life.
Many thanks go to the fantastic team of people at Sams Publishing for their
outstanding work on this project. Thanks to Rick Kughen, the executive editor, for
offering us the opportunity to work on this book and keeping things on track, and to
Andrew Beaster for all his production work. I would also like to thank Carole
Jelen at Waterside Productions, Inc., for arranging this opportunity and for helping
out in my writing career.
I am indebted to the technical editor, Jason Foster, who put in many long hours
double-checking all the work and keeping the book technically accurate, all while
getting a new job, having a new baby (congrats!), and moving to a new house in
another state. His suggestions and eagle eyes have made this a much better book.
Finally I’d like to thank my wife, Barbara, and two daughters, Katie Jane and
Jessica, for their patience and support while I was writing this.

17

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.
We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.
Please note that we cannot help you with technical problems related to the topic
of this book.
When you write, please be sure to include this book’s title and author as well as
your name and email address. We will carefully review your comments and share
them with the author and editors who worked on the book.
Email: consumer@samspublishing.com
Mail: Sams Publishing
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

18

mailto:consumer@samspublishing.com

Reader Services

Visit our website and register this book at informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

19

http://informit.com/register

Introduction

Since being introduced in 2005 as a student project, the Arduino microcontroller
has quickly become a favorite of both hobbyists and professionals. It’s a popular
platform for creating many different types of automated systems—from monitoring
water levels in house plants to controlling high-level robotic systems. These days
you can find an Arduino behind lots of different electronic systems.
To control the Arduino, you need to know the Arduino programming language. The
Arduino programming language derives from the C programming language, with
some added features unique to the Arduino environment. However, beginners
sometimes find the C programming somewhat tricky to navigate.

Programming the Arduino
The goal of this book is to help guide both hobbyists and students through using the
Arduino programming language on an Arduino system. You don’t need any
programming experience to benefit from this book; I walk through all the necessary
steps to get your Arduino programs up and running.

 Part I, “The Arduino Programming Environment,” starts things out by walking
through the core Arduino system and demonstrating the process of creating an
Arduino program (called a sketch):

Hour 1, “Introduction to the Arduino,” shows the different Arduino
models currently available and describes how each differs.
Hour 2, “Creating an Arduino Programming Environment,” shows how
to load the Arduino IDE on a workstation and how to connect your
Arduino to your workstation to get your sketches running on your
Arduino.
Hour 3, “Using the Arduino IDE,” walks through all the features
available to you in the IDE.
Hour 4, “Creating an Arduino Program,” demonstrates the steps to build
an Arduino circuit, design a sketch to control the circuit, and upload the
sketch to the Arduino to run the circuit.

 Part II, “The C Programming Language,” takes an in-depth look at the features
of the C programming language that you need to know to write your Arduino
sketches:

Hour 5, “Learning the Basics of C,” shows you how to use variables and
math operators in C to manage data and implement formulas in your
Arduino sketches.
Hour 6, “Structured Commands,” shows how to add logic to your
sketches.

20

Hour 7, “Programming Loops,” demonstrates the different ways the
Arduino language allows you to iterate through data, minimizing the
amount of code you need to write.
Hour 8, “Working with Strings,” introduces the concept of storing and
working with text values in your Arduino sketches.
Hour 9, “Implementing Data Structures,” walks through more
complicated ways of handling data in sketches.
Hour 10, “Creating Functions,” provides useful tips to help minimize the
amount of repeating code in your sketches.
Hour 11, “Pointing to Data,” introduces the complex topic of using
pointers in the C language and shows how you can leverage their use in
your sketches.
Hour 12, “Storing Data,” walks you through how to use the EEPROM
storage available in the Arduino to store data between sketch runs.
Hour 13, “Using Libraries,” finishes the in-depth C language discussion
by showing how to use prebuilt libraries in your sketches and how to
create your own.

 Part III, “Arduino Applications,” walks through the details for using your
Arduino in different application environments:

Hour 14, “Working with Digital Interfaces,” shows how to read digital
sensor values and use those values in your sketch and how to output
digital values.
Hour 15, “Interfacing with Analog Devices,” shows how to read analog
sensor values and how to use pulse width modulation to emulate an
analog output voltage.
Hour 16, “Adding Interrupts,” demonstrates how to use asynchronous
programming techniques in your Arduino sketches while monitoring
sensors.
Hour 17, “Communicating with Devices,” covers the different
communications protocols built in to the Arduino, including SPI and
I2C.
Hour 18, “Using Sensors,” takes a closer look at the different types of
analog and digital sensors the Arduino supports and how to handle them
in your sketches.
Hour 19, “Working with Motors,” walks through how to control different
types of motors from your Arduino sketch.
Hour 20, “Using an LCD,” provides instructions on how to utilize digital
displays to output data from your sketch.
Hour 21, “Working with the Ethernet Shield,” discusses how to connect

21

your Arduino to a network.
Hour 22, “Implementing Advanced Ethernet Programs,” demonstrates
how to provide sensor data to remote network clients and how to control
the Arduino from a remote client.
Hour 23, “Handling Files,” shows how to use SD card interfaces found
on some Arduino shields to store data for long term.
Hour 24, “Prototyping Projects,” walks you through the process of
creating a complete Arduino project, from design to implementation.

Who Should Read This Book?
This book is aimed at readers interested in getting the most out of their Arduino
system by writing their own Arduino sketches, including these three groups:

 Students interested in an inexpensive way to learn electronics and
programming
 Hobbyists interested in monitoring and controlling digital or analog circuits
 Professionals looking for an inexpensive platform to use for application
deployment

If you are reading this book, you are not necessarily new to programming, but you
may be new to the Arduino environment and need a quick reference guide.

Conventions Used in This Book
To make your life easier, this book includes various features and conventions that
help you get the most out of this book and out of your Arduino:

Steps—Throughout the book, I’ve broken many coding tasks into easy-to-
follow step-by-step procedures.
Things you type—Whenever I suggest that you type something, what you type
appears in a bold font.
Filenames, folder names, and code—These things appear in a
font.
Commands—Commands and their syntax use bold.
Menu commands—I use the following style for all application menu
commands: Menu, Command, where Menu is the name of the menu you pull
down and Command is the name of the command you select. Here’s an
example: File, Open. This means you select the File menu and then select the
Open command.

This book also uses the following boxes to draw your attention to important or
interesting information:

22

By The Way
By the Way boxes present asides that give you more information about
the current topic. These tidbits provide extra insights that offer better
understanding of the task.

Did You Know?
Did You Know? boxes call your attention to suggestions, solutions, or
shortcuts that are often hidden, undocumented, or just extra useful.

Watch Out!
Watch Out! boxes provide cautions or warnings about actions or
mistakes that bring about data loss or other serious consequences.

23

Part I: The Arduino Programming
Environment

HOUR 1 Introduction to the Arduino
HOUR 2 Creating an Arduino Programming Environment
HOUR 3 Using the Arduino IDE
HOUR 4 Creating an Arduino Program

24

Hour 1. Introduction to the Arduino

What You’ll Learn in This Hour:
 What the Arduino is all about
 The Arduino family of microcontrollers
 What programs you can run on an Arduino

In just a short amount of time, the Arduino has taken the electronics world by storm.
The concept of an open source hardware platform for creating microcontroller
applications has sparked an interest in both hobbyists and professionals who are
looking for simple ways to control electronic projects. This hour introduces you to
the Arduino microcontroller family and walks through just what the excitement is
all about.

What Is an Arduino?
The Arduino is an open source microcontroller platform that you use for sensing
both digital and analog input signals and for sending digital and analog output
signals to control devices. That definition is quite a mouthful. Before we delve into
programming the Arduino, let’s take some time to look at what it’s all about. This
section explores just what an Arduino is and how to use it in your electronics
projects.

Arduino Is a Microcontroller
These days, just about everything has a computer built in. From toasters to
televisions, it’s hard to find a device that doesn’t have some type of computer
system controlling it.
However, the computer chip embedded in your toaster differs significantly from the
computer chip used in your workstation. Computer chips embedded in household
devices don’t need nearly as much computing power as those found in
workstations. They mostly just need to monitor a few analog or digital conditions
(such as the time or temperature) and be able to control a few devices (such as the
heating elements in the toaster or the channel to display on the television).
Because embedded computers require less processing power, it doesn’t make any
sense to use the same expensive high-powered computer chips found in
workstations in our toasters and televisions. Instead, developers use less-expensive
computer chips that have lesser processing power in those devices.
This is where microcontrollers come into play. A microcontroller is a computer
chip with minimal processing power and that often is designed for automatically
controlling some type of external device. Instead of having a large feature set and

25

lots of components squeezed into the chip, microcontrollers are designed with
simplicity in mind.
Because microcontrollers don’t need large processors, they have plenty of room on
the chip to incorporate other features that high-powered computer chips use
external circuits for. For example, most microcontrollers contain all their memory
and input/output (I/O) peripheral ports on the same chip. This provides a single
interface to all the features of the microcontroller, making it easier to incorporate
into electronic circuits. Figure 1.1 shows a block diagram of a basic
microcontroller layout.

FIGURE 1.1 Block diagram of a microcontroller.

By incorporating the processor, memory, and I/O ports onto a single chip,
microcontrollers provide a simple interface for designers to use when embedding
them into projects.

Using Open Source Hardware
If you’ve heard of the Linux operating system, you’re probably familiar with the
idea of open source software. In the world of open source software, a group of
developers release the software program code to the general public so that anyone
can make suggestions for changes and bug fixes. This often results in feature-rich
software that has fewer bugs.
The idea of open source hardware is much the same, except with using physical
hardware rather than software. With open source hardware projects, the physical
hardware that you use to control devices is open to the general public to freely use
and modify as needed.

26

The Arduino project developers have designed a full microcontroller system that
uses a standard interface to interact with external devices. The design plans and
architecture have been released to the public as open source, allowing anyone both
to use the Arduino free of charge in their own projects and to even modify the
Arduino without violating any patent or copyright laws.

Caution: Using the Arduino Name
Although the Arduino hardware is open source, the Arduino name
enjoys trademark protection. Anyone can create his or her own device
based on the Arduino hardware, but must refrain from naming it
Arduino. Only the Arduino project can use the Arduino name in
officially released versions of the Arduino project.

The next section walks through the basics of the Arduino architecture, showing just
what makes up an Arduino.

Examining the Arduino Architecture
The developers with the Arduino project have built a completely self-contained
microcontroller system on a single circuit board that you can plug into just about
any embedded system. The core of the Arduino project is the microcontroller chip
that it uses. To be able to program the Arduino, you’ll want to know a little about
what’s going on “under the hood.”

The ATmega AVR Microcontroller Family
The Arduino developers selected the Atmel ATmega AVR family of
microcontroller chips to power the Arduino. The ATmega AVR microcontroller is
an 8-bit computer that contains several features built in:

 Flash memory for storing program code statements
 Static random-access memory (SRAM) for storing program data
 Erasable electronic programmable read-only memory (EEPROM) for storing
long-term data
 Digital input and output ports
 Analog-to-digital converter (ADC) for converting analog input signals to
digital format

The ATmega AVR chip is a complete microcontroller system built in to a single
chip. That allows the Arduino developers to create a small circuit board with
minimal external components.
The Arduino series uses several different ATmega processors. Table 1.1 shows the
different ATmega processors you’ll find in Arduino units.

27

TABLE 1.1 The ATmega Processor Family

Compared to memory sizes used in workstation computers (often measured by the
gigabit), the ATmega family of microcontrollers has very limited memory.
However, the programs that you’ll need to create for a microcontroller are
considerably simpler, so most of the time you won’t have to worry about the
memory limitations.

The Arduino Layout
Another key to the Arduino is how it interfaces with external devices. The Arduino
developers created a standard interface so that other developers could easily
incorporate the Arduino directly into their projects. (This is part of the open source
hardware method.)
The Arduino uses header sockets to make the input and output pins of the ATmega
AVR chip available to external devices. Figure 1.2 shows the layout of the Arduino
Uno.

28

FIGURE 1.2 The Arduino Uno layout.

You can directly access all the microcontroller interfaces from the header sockets.
The bottom set of sockets contain the analog input interfaces and access to the
voltage and ground pins on the microcontroller. The top header socket contains the
digital I/O interfaces. The standard layout of the header sockets allows developers
to easily build plug-in devices (called shields) that interface with the Arduino.
Now that you’ve seen the basics of the Arduino, the next section takes a closer look
at the different Arduino units available. There are plenty of different Arduino units
to choose from for use in your projects, so knowing which one to use can
sometimes be confusing.

Introducing the Arduino Family
If you’ve started looking for an Arduino unit to work with, you’ve probably noticed
that there’s not just one Arduino. This section covers the history of the Arduino unit
and why so many different versions of it are available.

The History of the Arduino
Interestingly enough, the Arduino wasn’t designed by a large electronics
corporation or even by a group of computer science majors. Instead, it was
designed out of necessity by a group of students and instructors looking for a
solution to animate their art projects.

29

Modern art projects often require synchronized moving parts, which necessitates
precise automation, which in turn, requires some type of microcontroller system.
Because most art students aren’t by nature programmers, having to purchase
microcontroller chips and design electronic circuits to make them run became quite
a challenge. A group of students at the Interaction Design Institute Ivera (IDII) in
Italy worked on a project to help minimize the amount of coding art students had to
write to automate their artistic creations.
This resulted in the Wiring project, which produced a standard microcontroller
circuit board, along with a standard programming environment, called Processing.
Created in 2003, the Wiring and Processing projects gained some acceptance, but
were somewhat expensive for most students to experiment with.
After a few years of tweaking the Wiring project, in 2005 a group of designers led
by Massimo Banzi and David Cuartielles came up with the Arduino project. The
Arduino project built upon the basic features of the Wiring project, but at a lower
cost for students.
Every part of the Arduino system was designed for simplicity for nontechnical
people. The hardware interface is somewhat forgiving. For instance, if you hook up
the wrong wires to the wrong ports, you won’t usually blow up your Arduino unit.
If you do happen to manage to blow up the ATmega microcontroller chip, the
Arduino was designed to easily replace the microcontroller chip without having to
purchase an entire Arduino unit.
Likewise, the software for the Arduino was designed with nonprogrammers in
mind. In an interesting tie to the art world, programs that you create for the Arduino
are called sketches, and the folders where you store your sketches are called
sketchbooks.

Exploring the Arduino Models
Part of the open source hardware method is to provide lots of options for
developers. This allows developers to find just the right Arduino to fit into their
project. The following sections walk through the different Arduino units currently
available.

Arduino Uno
The workhorse of the Arduino family is the Uno. It’s the most popular Arduino unit
and provides the basic functionality of the ATmega AVR microcontroller within the
standard Arduino footprint.
It uses an ATmega328 microcontroller, which provides 14 digital I/O interfaces, 6
analog input interfaces, and 6 pulse-width modulation (PWM) interfaces for
controlling motors.
The Uno circuitry also contains a USB interface for communicating with
workstations as a serial communications device, a separate power jack so that you

30

can power the Arduino Uno without plugging it into a workstation, and a reset
button to restart the program running on the Arduino.
The size and layout of the Arduino Uno has been made the standard format for most
Arduino units, so just about all Arduino shields (discussed later in the “Exploring
Arduino Shields” section) fit into the header sockets of the Arduino Uno.

Tip: Following Along with the Book
All the examples in this book use the Arduino Uno unit. If you want to
follow along with the examples, ideally you should use the Arduino
Uno, although the other full-sized Arduino units would work too, but
with some modifications to the projects.

Arduino Due
The Arduino Due unit uses a more powerful 32-bit ARM Cortex-M3 CPU instead
of the standard ATmega328 microcontroller. This provides significantly more
processing power than the standard Arduino Uno.
The Due provides 54 digital I/O interfaces, 12 PWM outputs, 12 analog inputs, and
4 serial Universal Asynchronous Receiver/Transmitter (UART) interfaces. It also
provides considerably more memory, with 96KB of SRAM for data storage, and
512KB of flash memory for program code storage.
The Arduino Due uses the standard Uno header layout, but adds another header
along the right side of the unit, providing the extra interfaces. This allows you to
use most shields designed for the Uno on the Due.

Arduino Leonardo
The Arduino Leonardo uses the ATmega32u4 microcontroller, which provides 20
digital I/O interfaces, 7 PWM outputs, and 12 analog inputs. The Arduino Leonardo
has the same header layout as the Uno, with additional header sockets for the extra
interfaces.
One nice feature of the Arduino Leonardo is that it can emulate a keyboard and
mouse when connected to a workstation using the USB port. You can write code to
run on the Arduino Leonardo that sends standard keyboard or mouse signals to the
workstation for processing.

Arduino Mega
The Arduino Mega provides more interfaces than the standard Arduino Uno. It uses
an ATmega2560 microcontroller, which provides 54 digital I/O interfaces, 15
PWM outputs, 16 analog inputs, and 4 UART serial ports. You can use all the
standard Arduino shields with the Mega unit.
The Arduino Mega provides a lot more interfaces, but it comes at a cost of a larger
footprint. The Arduino Uno is a small unit that can easily fit into a project, but the

31

Arduino Mega device is considerably larger.

Arduino Micro
The Arduino Micro is a small-sized Arduino unit that provides basic
microcontroller capabilities, but in a much smaller footprint. It uses the same
ATmega32u4 microcontroller as the Lenardo, which provides 20 digital I/O
interfaces, 7 PWM outputs, and 12 analog inputs.
The selling point of the Arduino Micro is that it is only 4.8cm long and 1.77cm
wide, small enough to fit into just about any electronics project. It uses a USB port
to communicate as a serial device with workstations, or as a keyboard and mouse
emulator like the Lenardo can.
The downside to the Micro is that because of its smaller size, it doesn’t work with
the standard Arduino shields, so you can’t expand its capabilities with other
features.

Arduino Esplora
The Arduino Esplora is an attempt at creating an open source game controller. It
uses the ATmega 32u4 microcontroller just like the Lenardo and Micro do, but also
contains hardware commonly found on commercial game controllers:

 Analog joystick
 Three-axis accelerator
 Light sensor
 Temperature sensor
 Microphone
 Linear potentiometer
 Connector for an LCD display
 Buzzer
 LED lights
 Switches for up, down, left, and right

The Esplora also has a unique design to help it fit into a game controller case that
could be handheld, providing easier access to the switches and analog joystick.

Arduino Yun
The Arduino Yun is an interesting experiment in combining the hardware versatility
of an ATMega32u4 microcontroller with an Atheros microprocessor running a
Linux operating system environment. The two chips communicate with each other
directly on the Yun circuit board, so that the ATmega microcontroller can pass data
directly to the Atheros system for processing on the Linux system.
The Linux system also includes built-in Ethernet and Wi-Fi ports for external
communication, in addition to a standard USB port to run a remote serial console.

32

This is the ultimate in embedding a full Linux system with a microcontroller.

Arduino Ethernet
The Arduino Ethernet project combines the microcontroller of the Arduino Uno
with a wired Ethernet interface in one unit. This enables you to interface with the
Arduino remotely across a network to read data collected or to trigger events in the
microcontroller.

LilyPad Arduino
The Arduino LilyPad is certainly an interesting device. It was designed for the
textile arts world, embedding a microcontroller within textiles. Not only is it small,
but it’s also very thin and lightweight, perfect for sewing within just about any type
of fabric. Think of wearing a shirt with built-in LEDs that flash messages to your
friends!
One interesting feature of the LilyPad Arduino is the built-in MCP73831 LiPo
battery charging chip. This chip allows you to embed rechargeable batteries with
the device; when the unit is plugged into a USB port of a workstation, the
rechargeable batteries recharge automatically.

Examining the Arduino Uno
At the time of this writing, the Arduino Uno R3 is the current main board in the
Arduino family. It’s the most commonly used unit for interacting with projects that
require a simple microcontroller. The Uno R3 unit provides the following:

 14 digital I/O interfaces
 6 analog input interfaces
 6 PWM interfaces
 1 I2C controller interface
 1 SPI controller interface
 1 UART serial interface, connected to a USB interface

The Arduino Uno circuit board, shown back in Figure 1.2, uses the standard
Arduino header socket layout.
The bottom row of sockets contains the analog input sockets on the right, along with
sockets that provide power for external circuits on the left. Along the top of the
Arduino are the digital I/O sockets.
The digital I/O sockets have a double use. Not only are they used for digital input
or output signals, but some of them are used for secondary purposes, depending on
how you program the ATmega microcontroller:

 Digital sockets 0 and 1 are also used as the RX and TX lines for the serial
UART.
 Digital sockets 3, 5, 6, 9, 10, and 11 are used for PWM outputs.

33

 The leftmost four sockets in the top header socket row are for the SPI
controller interface.

Besides the header sockets, the Arduino Uno provides a standard USB port for
connecting the unit to a workstation. The USB port uses the UART serial interface
of the ATmega microcontroller to send data to the microcontroller. This is how you
load programs into the Arduino. You can also use the USB serial interface to view
output from the microcontroller, which comes in handy when debugging your
Arduino sketches.
The Arduino Uno also has four built-in LEDs, shown in Figure 1.3, that help you
see what’s going on in the Arduino:

 A green LED (marked ON) that indicates when the Arduino is receiving
power
 Two yellow LEDs (marked TX and RX) that indicate when the UART serial
interface is receiving or sending data
 A yellow LED (marked L) connected to digital output socket 13 that you can
control from your programs

34

FIGURE 1.3 The Arduino Uno R3 LEDs.

Finally, one new addition to the R3 version of the Arduino Uno is a Reset button,
located at the upper-left corner of the circuit board. Pressing the Reset button

35

forces the ATmega microcontroller to reboot, which reloads the program code in
memory and starts executing code from the beginning of the program.

Accessories You Might Need
Besides picking up an Arduino unit, you’ll also need to pick up a few other
components to complete your project. This section identifies the more common
parts you’ll need:

 A USB A-B cable: The Arduino USB port uses a B-type USB interface, so
you’ll need to find an A-B USB cable to connect the Arduino to your
workstation. Most printers use a B-type USB interface, so these cables aren’t
hard to find.
 An external power source: After you program your Arduino, you probably
don’t want to keep it tethered to your workstation. The Arduino Uno includes
a 2.1mm center positive power jack so that you can plug in an external power
source. This can either be an AC/DCV converter or a batter power pack that
provides 5V power.
 A breadboard: As you experiment with interfacing various electronic
components to your Arduino, a breadboard comes in handy to quickly build
connections. Once you have your circuits designed, you can purchase
prototype shields to make the interface connections more permanent (see
Hour 24, “Prototyping Projects”).
 Resistors: Resistors are used for limiting the current through a circuit,
usually to avoid burning out the microcontroller inputs or the LED outputs.
 Variable resistors: You can also use variable resistors (called
potentiometers) to adjust the voltage going into an analog input socket to
control a circuit.
 Switches: Switches allow you to provide a digital input for controlling your
programs.
 Wires: You’ll need some wires for connecting the breadboard components
together and interfacing them into the Arduino header sockets.
 Sensors: You can interface a number of both digital and analog sensors into
your Arduino. There are temperature sensors and light sensors, for instance,
that produce varying analog outputs based on the temperature or amount of
light.
 Motors: Controlling moving parts requires some type of motor. The two
main types of motors you’ll most often require are servo motors, which rotate
to a fixed position, and DC motors, which can spin at a variable rate based
on the voltage provided.

Often you can find different Arduino kits that include these parts. The Arduino
Store provides an official Arduino Starter Kit package, which includes an Arduino

36

Uno R3 unit, a USB cable, a breadboard, and parts to create 15 separate projects
(along with the tutorials on how to build them). This kit is a great way to get started
with your Arduino unit.

Exploring Arduino Shields
The beauty of using open source hardware for your project is that plenty of other
developers have already solved many of the same issues that you’ll run into and are
willing to share their solutions. The standard interface to the Arduino provides a
common way for developers to build external circuits that interface to the Arduino
and thus provide additional functionality.
These units are called shields. There are plenty of Arduino shields available for a
myriad of different projects. This section discusses a few popular shields.

Connecting with the Ethernet Shield
These days just about every project needs some type of network connectivity.
Microcontroller projects can use a network to send data to a remote monitoring
device, to allow remote connectivity to monitor data, or to just store data in a
remote location.
The Ethernet shield provides a common wired network interface to the Arduino,
along with a software library for using the network features. Figure 1.4 shows the
Ethernet shield plugged into an Arduino Uno R3 unit.

37

FIGURE 1.4 The Ethernet shield plugged into the Arduino Uno.

While the Ethernet shield plugs into the standard header sockets of the Arduino
Uno, it also has the same standard header sockets built in, so you can piggy-back
additional shields onto the Ethernet shield (so long as they don’t use the same
signals to process data).

Displaying Data with the LCD Shield
Often, instead of connecting to the Arduino unit to retrieve information, it would be
nice to just view data quickly. This is where the LCD shield comes into play.
It uses a standard LCD display to display 2 rows of 25 characters that you can
easily view as the Arduino unit is running. The LCD shield also contains five push
buttons, enabling you to control the program with basic commands.

Running Motors with the Motor Shield
A popular use for the Arduino is to control motors. Motors come in handy when
working with robotics and when making your project mobile using wheels.
Most motors require the use of PWM inputs so that you can control the speed of the

38

motor. The basic Arduino system contains six PWM outputs, enabling you to
control up to six separate motors. The motor shield expands that capability.

Developing New Projects with the Prototype Shield
If you plan on doing your own electronic circuit development, you’ll need some
type of environment to build your circuits as you experiment. The Prototype shield
provides such an environment.
The top of the Prototype shield provides access to all the Arduino header pins, so
you can connect to any pin in the ATmega microcontroller. The middle of the
Prototype shield provides standard-spaced soldering holes for connecting
electronic parts, such as resistors, sensors, diodes, and LEDs.
If you would like to experiment with your projects before soldering the components
in place, you can also use a small solderless breadboard on top of the Prototype
shield, which allows you to create temporary layouts of your electronic components
for testing, before committing them to the soldering holes.

Summary
This hour covered the basics of what the Arduino is and how you can use it in your
electronic projects. You first learned what microcontrollers are and how you can
use them to sense digital and analog inputs and to output digital signals to control
devices. The discussion then turned to the Arduino and how it uses the ATmega
AVR microcontroller along with a standard interface to receive analog and digital
signals and to send digital output signals. You then learned about the different
Arduino shields available for adding functionality to your Arduino projects, such as
connecting it to a network or using it to control motors and servos.
In the next hour, we take a closer look at what you need to start programming the
Arduino.

Workshop

Quiz
1. Which type of memory should you use to store data that you can retrieve after

the Arduino has been powered off?
A. Flash memory
B. SRAM memory
C. EEPROM memory
D. ROM memory

2. The Arduino requires a connection to a workstation to work. True or false?
3. Is Arduino shield available that allows your program to display simple

information without requiring a connection to a computer?

39

Answers
1. C. The EEPROM memory is the only data memory built in to the Arduino that

can retain data when the unit is powered off. The flash memory can also
retain information after a power off, but it’s used only to store program code,
not data.

2. False. All the Arduino models allow you to connect a battery or AC/DC
converter to run the Arduino without it being plugged into a computer.

3. Yes, the LCD shield provides a 2-row, 25-character display that your
Arduino programs can use to display simple data while running.

Q&A
Q. I’m new to electronics and don’t know what parts to get to work with

my Arduino. Are there complete kits available that include the
electronics required to run projects?

A. Yes, the Arduino project has a complete kit available that includes an
Arduino Uno along with motors, an LCD display, sensors, and a breadboard
and parts required to build 15 projects. You can find the kit, along with other
Arduino units and shields, at various online retailers, such as AdaFruit,
SparkFun, and Newark Electronics.

Q. Do you have to reprogram the Arduino each time you run it?
A. No, the Arduino stores the program in Flash memory, which retains the

program code after a power off. You only have to load your program once,
and the Arduino will retain it no matter how often you turn it on or off.

40

Hour 2. Creating an Arduino Programming
Environment

What You’ll Learn in This Hour:
 How microcontrollers work
 How microcontroller programs work
 What the Arduino Programming Language is
 How to download and install the Arduino IDE

Just having an Arduino hardware platform isn’t enough to get your projects
working. Besides the hardware, you’ll also need to write a program to tell the
Arduino hardware what to do. This hour walks through the basics of how
microcontrollers work, how they read and run programs, and how to set up an
environment to create programs for your Arduino.

Exploring Microcontroller Internals
Before you can start programming the Arduino, it helps to know a little bit about
what’s going on inside of it. At the core of all Arduino units is an ATmega AVR
series microcontroller. The programs that you write to control the Arduino must run
on the ATmega microcontroller. This section examines the layout of the ATmega
microcontroller, showing you the different components and how they interact to run
your programs.

Peeking Inside the ATmega Microcontroller
To refresh your memory from the first hour, three basic components reside inside of
a microcontroller:

 The CPU
 Memory
 The input/output (I/O) interface

Each of these components plays a different role in how the microcontroller
interfaces with your project and in how you program the microcontroller. Figure
2.1 shows the layout of these components in a microcontroller.

41

FIGURE 2.1 The ATmega microcontroller block layout.

Now let’s take some time to look inside each of these individual components and
see how they work together to run your programs.

The CPU
The CPU inside the microcontroller isn’t all that different from the CPU you would
find in your workstation computer, just a little smaller. It consists of several
common parts found in most computer systems:

 An Arithmetic Logic Unit (ALU), which performs the mathematical and
logical operations
 Data registers, which store data for processing in the ALU
 A status register, which contains the status information of the most recently
executed arithmetic instruction
 A program counter, which keeps track of the memory location of the next
instruction to run
 A stack pointer, which keeps track of the location of temporary data stored in
memory
 A controller, which handles loading program code and memory data into the
registers, ALU, and pointers

All the CPU components interact within the CPU based on a clocking signal
provided to the microcontroller. At each clock pulse, the CPU performs one
operation. The speed of the clock pulse determines how fast the CPU processes
instructions.
For example, the Arduino Uno utilizes a 16MHz clock, which provides 16 million
clock pulses per second. Most of the ATmega microcontroller CPU instructions
require only one or two clock pulses to complete, making the Arduino capable of

42

sampling inputs at a very high rate.

Memory
The Atmel ATmega microcontroller family uses what’s called the Harvard
architecture for computers. This model separates the computer memory into two
components: one memory section to store the program code, and another memory
section to store the program data.
The ATmega microcontroller family uses a separate form of memory for each type:

 Flash memory to store program code
 Static random-access memory (SRAM) to store program data

The flash memory retains data after you remove power from the microcontroller.
That way your program code stays in memory when you power off the Arduino.
When you turn the Arduino back on, it starts running your program immediately
without you having to reload it each time.
SRAM memory does not retain data when the power is off, so any data your
program stores in SRAM will be lost at power down. To compensate for that, the
ATmega microcontroller also incorporates a separate electronically erasable
programmable read-only memory (EEPROM) memory section besides the SRAM
for storing data.
The EEPROM memory can retain data after loss of power, until you manually clear
it out. It’s not as fast as the SRAM memory, so you should use it only when you
need to save data for later use.

Input/Output interface
The I/O interface allows the microcontroller to interact with the outside world.
This is what allows the ATmega controller to read analog and digital input signals
and send digital output signals back to external devices.
The ATmega controller contains a built-in analog-to-digital converter (ADC),
which converts analog input signals into a digital value that you can read from your
programs. It also contains circuitry to control the digital interface pins so that you
can use the same pins for either digital input or digital output.

Tip: Analog Output
You might have noticed that the ATmega microcontroller doesn’t have
any analog output interfaces. The reason for that is you can simulate an
analog output by using digital outputs and a technique called pulse-
width modulation (PWM). PWM sends a digital signal of a varying
duration and frequency, thus emulating an analog output signal. The
ATmega328 microcontroller used in the Arduino Uno supports six
PWM outputs.

43

All the microcontroller components work together to process input signals and
generate output signals. The CPU is what controls all the action. The next section
takes a closer look at just how the CPU functions in the microcontroller.

Programming the Microcontroller
You control what happens in the CPU using software program code. The CPU reads
the program code instructions, and then performs the specified actions one step at a
time. Each type of CPU has its own specific instructions that it understands, called
its instruction set.
The instruction set is what tells the CPU what data to retrieve and how to process
that data. This is where your programming comes in. Operations such as reading
data, performing a mathematical operation, or outputting data are defined in the
instruction set.
Because the CPU can only read and write binary data, the instruction set consists of
groups of binary data, usually consisting of 1- or 2-byte commands. These
commands are called machine code (also commonly called operation codes, or
opcodes for short). Each instruction has a specific binary code to indicate the
instruction, along with what data the instruction requires.
The ATmega AVR instruction set uses 16-bit (2-byte) instructions to control the
CPU actions. For example, the instruction to add the data values stored in registers
R1 and R2, and then place the result in register R1, looks like this:

When the CPU processes this instruction, it knows to fetch the data values from the
registers, use the ALU to add them, and then place the result back in register R1.
Knowing just what machine codes do what functions, and require what data, can be
an almost impossible task for programmers. Fortunately, there’s some help with
that, as discussed in the next section.

Moving Beyond Machine Code
Machine code is used directly by the microcontroller to process data, but it’s not
the easiest programming language for humans to read and understand. To solve that
problem, developers have created some other ways to create program code. This
section looks at those methods and explains how they can help with your Arduino
programming.

Coding with Assembly Language
Assembly language is closely related to machine code; it assigns a text mnemonic
code to represent each individual machine code instruction. The text mnemonic is
usually a short string that symbolizes the function performed (such as to add
two values). That makes writing basic microcontroller programs a lot easier.

44

For example, if you remember from the preceding section, the machine code to add
the values stored in register R1 to the value stored in register R2 and place the
result in register R1 looks like this:

However, the assembly language code for that function looks like this:

Now that makes a lot more sense for humans, and is a lot easier to remember for
coding. Each of the machine code instructions for the ATmega AVR family of
microcontrollers has an associated assembly language mnemonic. These are listed
in the AVR Instruction Set Manual, available for download from the Atmel
website.

Tip: The AVR Instruction Set
If you’re curious, you can download the complete AVR instruction set
from the Atmel website at http://www.atmel.com/images/doc0856.pdf.

The ATmega AVR series of microcontrollers (which is what the Arduino uses) has
282 separate instructions that they recognize, so there are 282 separate assembly
language mnemonics. The instructions can be broken down into six categories:

 Load data from a memory location into a register.
 Perform mathematical operations on register values.
 Compare two register values.
 Copy a register value to memory.
 Branch to another program code location.
 Interact with a digital I/O interface.

There are separate instructions for each register, each mathematical operation, and
each method for copying data to and from memory. It’s not hard to see why there are
282 separate instructions.
While the Atmel AVR assembly language is an improvement over coding machine
language, creating fancy programs for the Arduino using assembly language is still
somewhat difficult and usually left to the more advanced programmers. Fortunately
for us, there’s an even easier way to program the Arduino unit, as covered in the
next section.

45

http://www.atmel.com/images/doc0856.pdf

Making Life Easier with C
Even when using the Atmel AVR assembly language, it can still be quite the
challenge trying to remember just which of the 282 separate instructions you need
to use for any given operation. Fortunately for us, yet another level of programming
makes life much easier for programmers.
Higher-level programming languages help separate out having to know the inner
workings of the microcontroller from the programming code. Higher-level
programming languages hide most of the internal parts of the CPU operation from
the programmer, so that the programmer can concentrate on just coding.
For example, with higher-level programming languages, you can just assign
variable names for data, and the compiler converts those variable names into the
proper memory locations or registers for use with the CPU. With a higher-level
programming language, to add two numbers and place the result back into the same
location, you just write something like this:

Now that’s even better than the machine code version.
The key to using higher-level programming languages is that there must be a
compiler that can convert the user-friendly program code into the machine language
code that runs in the microcontroller. That’s done with a combination of a compiler
and a code library.
The compiler reads the higher-level programming language code and converts it
into the machine language code. Because it must generate machine language code,
the compile is specific to the underlying CPU that the program will run. Different
CPUs require different compilers.
Besides being able to convert the higher-level programming language code into
machine code, most compilers also have a set of common functions that make it
easier for the programmer to write code specific for the CPU. This is called a code
library. Again, different CPUs have different libraries to access their features.
Many different higher-level programming languages are available these days, but
the Atmel developers chose the popular C programming language as the language to
use for creating code for the AVR microcontroller family. They released a compiler
for converting C code into the AVR microcontroller machine language code, in
addition to a library of functions for interacting with the specific digital and analog
ports on the microcontroller.
When the Arduino project developers chose the ATmega microcontroller for the
project, they also wanted to make coding projects easy for nonprogrammers. To do
that, they built on to the existing Atmel C language compiler and library and created
yet another library of code specific to using the AVR microcontroller in the Arduino
environment. The next section explores both the Atmel and Arduino C language

46

libraries.

Creating Arduino Programs
Currently, two main C language libraries are available for the Arduino
environment:

 The Atmel C library
 The Arduino project library

The Atmel C library is created for using ATmega microcontrollers in general, and
the Arduino project library is created specifically for nonprogrammers to use for
the Arduino unit. This section takes a brief look at the two separate Arduino
programming environments to familiarize you with features each provides for the
Arduino programmer.

Exploring the Atmel C Library
The Atmel C environment consists of two basic packages:

 A command-line compiler environment
 A graphical front end to the compiler environment

The AVR Libc project (http://www.nongnu.org/avr-libc/) has worked on creating a
complete C language command-line compiler and library for the ATmega AVR
family of microcontrollers. It consists of three core packages:

 The avr-gcc compiler for creating the microcontroller machine code from C
language code
 The avr-libc package for providing C language libraries for the AVR
microcontroller
 The avr-binutils package for providing extra utilities for working with the C
language programs

The avr-gcc package uses the open source GNU C compiler (called gcc), and
customizes it to output the AVR machine code instruction set code used in the
ATmega microcontrollers. This is what allows you to write C programs that are
converted into the machine code that runs on the microcontroller.

Tip: The avr-gcc Package
If you’re curious, you can find a Windows version of the avr-gcc
command-line compiler in the WinAVR package at
http://winavr.sourceforge.net/.

However, these days just about every application uses a graphical interface,
including compilers. The Atmel developers have released a full integrated
development environment (IDE) package that provides a graphical windows

47

http://www.nongnu.org/avr-libc/
http://winavr.sourceforge.net/

environment for editing and compiling C programs for the AVR microcontroller.
The Atmel Studio package combines a graphical text editor for entering code with
all the word processing features you’re familiar with (such as cutting and pasting
text) with the avr-gcc compiler. It also incorporates a full C language debugger,
making it easier to debug your program code. In addition, it outputs all the error
messages generated by the microcontroller into the graphical window.
Although the Atmel C library makes programming the ATmega series of
microcontrollers easier, it’s still considered to be a tool for advanced
programmers. Instead, most Arduino beginners (and even many advanced users) use
the Arduino programming tools created by the Arduino project. The next section
walks through these.

Tip: Exploring the Atmel Studio Package
If you’re interested in exploring the Atmel Studio software, you can
find more information, including a link to download the Atmel Studio
software, at http://www.atmel.com/tools/ATMELSTUDIO.aspx.

Using the Arduino Programming Tools
One downside to the Atmel C library is that it uses generic code for interfacing
with the ATmega microcontroller. The benefit of the Arduino hardware is that it
makes accessing the specific features of the ATmega microcontroller easier, but
that’s lost if you just use the Atmel C library code.
Fortunately, the Arduino development team has helped solve that problem for us by
creating the Arduino Programming Language.

Examining the Arduino Programming Language
The Arduino developers have created a C library that contains additional functions
to help make interacting with the Arduino features much easier than coding with the
Atmel C library.
For example, to send a signal to a digital output line, you simply use the function

. To read a signal from an analog input line, you use the
function . That makes writing code for the Arduino much easier.
The Arduino developers released this customized C library along with the Atmel
avr-gcc C language compiler in a single package, called the Arduino IDE. The
Arduino IDE is a graphical interface, similar to the Atmel Studio package but not
quite as complex. Figure 2.2 shows the basic Arduino IDE window.

48

http://www.atmel.com/tools/ATMELSTUDIO.aspx

FIGURE 2.2 The Arduino IDE software package.

The IDE includes a full editor for creating your Arduino programs, a compiler to
build the finished program, and a method to upload your completed program into
the Arduino unit. Creating programs to run on the Arduino is a breeze with the
Arduino IDE.

The Arduino Shield Libraries
Besides the core Arduino C libraries, the Arduino developers have created
libraries for all the common Arduino shield devices. This allows you to easily
incorporate the features of a shield into your programs without having to write
complicated code.
Specialty libraries are available for all the popular Arduino shields, such as the
following:

 Ethernet

49

 LCD display
 Motor controller
 SD card

The Arduino IDE contains all the popular shield libraries by default, so you don’t
have to go hunting on the Internet looking for files to download. With the Arduino
IDE and the shield libraries, you can create programs for just about any Arduino
project that you’ll work on.

Installing the Arduino IDE
Unfortunately, the Arduino units don’t come with the Arduino IDE software. Before
you can get started with the Arduino IDE, you have to download it from the
Arduino website and install it on to your workstation. This section walks through
that process for each of the platforms supported by the Arduino IDE.

Downloading the Arduino IDE
The Arduino project maintains a web page specifically to support the Arduino IDE
package (http://arduino.cc/en/main/software). When you go to that site, you’ll find
links to the latest version of the Arduino IDE for three platforms:

 Windows
 OS X
 Linux

Besides packages built for these three platforms, the Arduino project also provides
the source code for the complete Arduino IDE package. So, if you’re adventurous
(and experienced in compiling programs), you can download the source code and
compile it on whatever platform you need.

Caution: Beta Software
The Arduino download web page often contains a link to a
development version of the Arduino IDE software. This is considered
beta software and therefore may contain bugs and features that don’t
work yet. For beginners, it’s usually a good idea to avoid testing beta
software until you’ve become more familiar with how the Arduino and
the Arduino IDE work.

Just click the Download link for the package you need for your development
platform. After you download the Arduino IDE package, you’re ready to install it,
as covered in the following sections for the three different environments.

50

http://arduino.cc/en/main/software

Installing for Windows
You might have noticed that there are two download versions for the Windows
platform:

 A standard Windows install file
 A zip file

The install file version contains both the Arduino IDE software and the driver files
necessary for Windows to recognize the Arduino when you connect it via a USB
cable. The installer runs a wizard, which automatically installs the software and
drivers. It is the easiest way to install the Arduino IDE environment, and is
recommended.
The zip file just contains the Arduino IDE files along with the Windows driver
files. You’ll need to install the driver files manually using the Windows Device
Manager tool.
This section walks through the installation process for both methods.

Using the Windows Installer File
When you run the Windows installer file, a wizard utility starts up, guiding you
through the software installation, as shown in Figure 2.3.

FIGURE 2.3 The Windows Arduino IDE installation wizard.

The wizard guides you through the steps for installing the Arduino IDE software.
You can accept the default folder location to install the Arduino software or change
it if you prefer to store the program files in another location.
After the software installs, the wizard installs the Arduino software drivers
necessary for Windows to interface with your Arduino.
Just follow the prompts in the wizard to complete the software and driver
installation.

51

Using the Windows Zip File
If you choose to download the Windows zip file version of the software, you’ll find
the installation a bit more complicated. The zip file contains all the same files as
the Windows installer version, but it doesn’t automatically install them.
To run the Arduino IDE, just extract the zip file contents into a folder and look for
the program file. You can create a shortcut to this file on your
desktop for easy access.
However, before you can use the Arduino IDE, you must manually install the
Windows drivers for the Arduino unit. The following steps walk through how to do
that.

 Try It Yourself: Installing the Arduino Drivers Manually
1. After unzipping the Windows zip file to a folder, plug your Arduino

unit into the USB port on your workstation.
2. The Windows USB utility will appear, but will complain that it is

unable to find the driver for the Arduino unit.
3. Open the Device Manager interface in your Windows workstation,

as shown in Figure 2.4.

FIGURE 2.4 The Windows Device Manager showing an unknown device.

4. Double-click the Unknown device entry.
5. Click the Update Driver button in the Unknown Device Properties

dialog box.
6. Select the Browse My Computer for Driver Software option.

52

7. Navigate to the folder where you unzipped the Arduino Windows
zip file in the \drivers folder.

8. Click the Install button for the Arduino USB driver dialog box.
9. The Device Manager should now show the Arduino unit listed as a

COM port on your workstation, as shown in Figure 2.5.

FIGURE 2.5 The installed Arduino USB driver COM port.

It’s a good idea to note the COM port assigned to the Arduino unit (shown as
COM3 in the Figure 2.5 example). You’ll need that information later on when you
configure the Arduino IDE software.

Installing for OS X
The OS X installation software provides only a zip file to download. Follow these
steps to get the Arduino IDE package installed in your OS X environment.

53

 Try It Yourself: Installing the Arduino IDE for OS X
1. Download the most recent release of the OS X package for the

Arduino IDE (currently the file arduino-1.0.5-macosx.zip).
2. Double-click the installation file to extract the Arduino IDE

application file.
3. Move the Arduino application file to the Applications folder on

your Mac.
After you install the Arduino IDE software, you can connect your
Arduino using a USB cable. The OS X system will automatically
recognize the Arduino as a new network interface, as shown in Figure
2.6.

FIGURE 2.6 An OS X system detecting an Arduino device.

54

Caution: Arduino Status
After you install the Arduino device in OS X, the device will appear
in a Not Configured status. Don’t worry, the Arduino will work just
fine.

Installing for Linux
The Linux installation provides for two separate zip files:

 A 32-bit version
 A 64-bit version

You’ll need to select the version appropriate for your specific Linux distribution.
Both versions are distributed as a file format, commonly called a tarball
in Linux circles.
To extract the tarball into a folder, you use the command, and add the
option to uncompress the tarball as it extracts the files:
Click here to view code image

The resulting file is the Arduino IDE executable program file. Just create a shortcut
on your desktop to the file.

Tip: Arduino and Ubuntu
The Ubuntu Linux distribution includes the Arduino IDE software in
the standard software repository. You can install the Arduino IDE
software using the standard Ubuntu Package Manager program. There
are two packages to install: arduino and arduino-core. When you
install these packages, Ubuntu automatically places a link to the
Arduino IDE software in the Unity desktop menu.

Summary
In this hour, you learned how you can write code to program the Arduino. The core
of the Arduino is the ATmega microcontroller, so the code you write must be able
to run on that system. The ATmega microcontroller uses machine language code to
handle data and interface with the input and output ports. However, you can use the
Atmel C programming language library to make coding easier. Also, the Arduino
development team has expanded on the Atmel C language and provided their own
programming environment and libraries. This makes creating code for the Arduino
much easier. You can download the Arduino IDE package from the Arduino
website for the Windows, OS X, and Linux platforms.

55

In the next hour, we take a closer look at the Arduino IDE window. You’ll learn
how to create, edit, compile, debug, and upload your Arduino programs, all from
one place!

Workshop

Quiz
1. Which part of the microcontroller performs the addition of two numbers?

A. The ALU
B. The registers
C. The memory
D. The I/O interface

2. SRAM memory stores your program data, even after you turn off the Arduino
unit. True or false?

3. Why doesn’t the Arduino have any analog output ports?

Answers
1. A. The Arithmetic Logic Unit (ALU) performs all mathematical operations

on data in the microcontroller.
2. False. The SRAM memory loses its contents when the Arduino power is off.

You must store any data you want to keep either in the EEPROM memory or
in a removable storage device, such as an SD card.

3. The Arduino uses pulse-width modulation (PWM) to simulate an analog
output signal using a digital output port. That allows you to use the digital
output ports to generate either a digital or analog output.

Q&A
Q. Can I write assembly language programs and upload them to the

Arduino?
A. Yes, you can write assembly language programs using the Arduino IDE and

compile them using the avr-gcc compiler. However, you must be careful when
doing that, because you have to keep track of the registers and memory
locations in your program!

Q. Is the Atmel Studio IDE free?
A. Yes, the Atmel Studio IDE is free software, but it’s not open source software.

56

Hour 3. Using the Arduino IDE

What You’ll Learn in This Hour:
 The Arduino IDE interface layout
 Using the features of the Arduino IDE menu bar
 Configuring the Arduino IDE to work with your Arduino
 Using the serial monitor feature in the Arduino IDE

The Arduino IDE software package makes it easier to create and work with
Arduino programs. This hour covers the different parts of the Arduino IDE
interface and how to use them to create your Arduino programs.

Overview of the IDE
The Arduino integrated development environment (IDE) itself is a Java program
that creates an editor environment for you to write, compile, and upload your
Arduino programs. Figure 3.1 shows the basic layout of the Arduino IDE interface.

57

FIGURE 3.1 The Arduino IDE main window.

The Arduino IDE interface contains five main sections:
 The menu bar
 The taskbar
 The editor window
 The message area
 The console window

Let’s walk through each of these different sections and explain what they’re for and
how to use them.

58

Walking Through the Menus
The menu bar provides access to all the features of the Arduino IDE. From here,
you can create a new program, retrieve an existing program, automatically format
your code, compile your program, and upload your program to the Arduino unit.
The following sections discuss each of the options you’ll find in the menu bar.

The File Menu
The File menu contains all the file-handling options required to load and save
sketches, along with a couple of miscellaneous options that don’t fit in any other
menu bar category. The options available under the File menu are described in the
following subsection.

New
The New option does what you’d probably expect it to do: It creates a new
Arduino sketch tab in the main window. When you select the option to create a new
sketch, the Arduino IDE automatically assigns it a name, starting with sketch_,
followed by the month and date (such as jan01), followed by a letter making the
sketch name unique. When you save the sketch, you can change this sketch name to
something that makes more sense.

Open
The Open option opens an existing sketch using the File Open dialog box of the
operating system. The Open dialog box will open in the default sketchbook folder
for your Arduino IDE (set in the Preferences option, discussed later). The File
Open dialog box allows you to navigate to another folder area if you’ve saved
sketches on a removable media device, such as a USB thumb drive.

Tip: Working with Older Sketches
Older versions of the Arduino IDE saved sketch files using a different
format and file extension name () than the 1.0 Arduino IDE
series. The 1.0 series can open the older sketch files, but when you
save the updated sketch, it will automatically convert it to the newer

 format if you set that option in the Preferences.

Sketchbook
The Sketchbook option provides a quick way to open your existing sketches. It lists
all the sketches that you’ve saved in the default sketchbook area in the Arduino
IDE. You can select the sketch to load from this listing.

59

Examples
The Examples option provides links to lots of different types of example sketches
provided by the Arduino developers. The examples are divided into different
categories, so you can quickly find an example sketch for whatever type of project
you’re working on.
When you select an example sketch, the sketch code automatically loads into the
editor window. You can then verify and upload the example sketch directly, or you
can modify the sketch code before compiling and uploading.

Caution: Modifying Example Sketches
If you modify the example sketch and try to save it, the Arduino IDE
will warn you that the example sketch is saved as a read-only file and
not let you update it. If you want to save your modifications, use File >
Save As from the menu bar to save the modified sketch as a different
filename in your standard sketchbook folder.

Close
The Close option closes out the current sketch editor window and safely closes the
sketch file. Closing the sketch will also exit the Arduino IDE interface.

Save
The Save option allows you to save a previously saved sketch in your sketchbook
area using the same filename. Be careful when using this option, as the Arduino
IDE will just overwrite the existing saved sketch and it won’t keep any past
versions automatically for you.

Save As
The Save As option allows you to save a sketch using a new filename. The Arduino
IDE saves each sketch under a separate folder under the Arduino IDE sketchbook
folder area. It saves the sketch file using the file extension.

Upload
The Upload option uploads the compiled sketch code to the Arduino unit using the
USB serial interface. Make sure that the Arduino unit is connected to the USB port
before you try to upload the sketch.

60

Upload Using Programmer
The Upload Using Programmer option is for more advanced users. The normal
Upload option uploads your sketch to a special location in the flash program
memory area on the ATmega microcontroller. The Upload Using Programmer
option writes the program to the start of the flash memory area on the ATmega
microcontroller. This requires additional coding in your sketch so that the Arduino
can boot from your program.

Tip: The Arduino Bootloader
The Arduino system adds a special bootloader program to the start of
the microcontroller’s flash memory area. The bootloader runs when
the Arduino powers on, and automatically jumps to your program
code. It makes formatting and running your Arduino code easier
because you don’t have to worry about the boot code.
However, the Arduino IDE is versatile enough to allow advanced
users to upload programs directly to the program area on the
microcontroller. When you do this, your program code is responsible
for creating a fully operational program.
Beginners are best off using the Arduino bootloader format to write
the program code. Not using the bootloader means that you need to
include more code in your Arduino program to tell the microcontroller
how to handle your program.

Page Setup
The Page Setup option allows you to define formatting options for printing your
sketch on a printer connected to your workstation.

Print
The Print option allows you to send the sketch text to a printer connected to your
workstation.

Preferences
The Preferences option displays a dialog box that contains several settings for the
Arduino IDE that you can change:

 Sketchbook Location: Sets the folder used to store sketches saved from the
Arduino IDE.
 Editor Language: Sets the default language recognized in the text editor.
 Editor Font Size: Sets the font size used in the text editor.
 Show Verbose Output: Displays more output during either compiling or
uploading. This proves handy if you run into any problems during either of

61

these processes.
 Verify Code After Upload: Verifies the machine code uploaded into the
Arduino against the code stored on the workstation.
 Use External Editor: Allows you to use a separate editor program instead
of the built-in editor in the Arduino IDE.
 Check for Updates on Startup: Connects to the main Arduino.cc website to
check for newer versions of the Arduino IDE package each time you start the
Arduino IDE.
 Update Sketch Files to New Extension on Save: If you have sketches
created using older versions of the Arduino IDE, enable this setting to
automatically save them in the new format.
 Automatically Associate .ino Files with Arduino: Allows you to double-
click sketch files from the Windows Explorer program to open them
using the Arduino IDE.

You can change these settings at any time, and they will take effect immediately in
the current Arduino IDE window.

Quit
Closes the existing sketch and exits the Arduino IDE window.

The Edit Menu
The Edit menu contains options for working with the program code text in the editor
window. The options available under the Edit menu are:

Undo
This feature enables you to take back changes that you make to the sketch code. This
returns the code to the original version.

Redo
This feature enables you to revert back to the changes you made (undoes an Undo
command).

Cut
This feature enables you to cut selected text from the sketch code to the system
Clipboard. The selected text disappears from the editor window.

Copy
This feature allows you to copy selected text from the sketch code to the system
Clipboard. With the Copy feature, the selected text remains in place in the sketch
code.

62

Copy for Forum
This interesting option is for use if you interact in the Arduino community forums. If
you post a problem in the forums, members will often ask to see your code. When
you use this feature, the Arduino IDE copies your sketch code to the Clipboard and
retains the color formatting that the editor uses to highlight Arduino functions. When
you paste the code into your forum message, it retains that formatting, making it
easier for other forum members to follow your code.

Copy as HTML
The Copy as HTML option also keeps the color and formatting features of the
editor, but embeds them as HTML code in your program code. This option comes in
handy if you want to post your sketch code onto a web page to share with others.

Caution: HTML Code in Sketches
Be careful when using this feature, because it embeds HTML tags into
your sketch code. You can’t run the code this option generates in your
Arduino IDE editor; it’s meant only for pasting into a web page HTML
document.

Paste
As you might expect, the Paste option copies any text currently in your system
Clipboard into the editor window.

Select All
Yet another common editor feature, the Select All option highlights all the text in the
editor window to use with the Copy or Cut options.

Comment/Uncomment
You use this handy feature when troubleshooting your sketch code. You can
highlight a block of code and then select this option to automatically mark the code
as commented text. The compiler ignores any commented text in the sketch code.
When you finish troubleshooting, you can highlight the commented code block and
select this option to remove the comment tags and make the code active again.

Increase Indent
This option helps format your code to make it more readable. It increases the space
used to indent code blocks, such as statements, loops, and
loops. This helps the readability of your code.

63

Decrease Indent
This option enables you to reduce the amount of space placed in front of indented
code blocks. Sometimes if code lines run too long, it helps to reduce the indentation
spaces so that the code more easily fits within the editor window.

Find
The Find option provides simple search and replace features in the editor window.
If you just want to find a specific text string in the code, enter it into the Find text
box. You can select or deselect the Ignore Case check box as required. The Wrap
Around check box helps you find longer text strings that may have wrapped around
to the next line in the editor window.
If you need to quickly replace text, such as if you’re changing a variable name in
your sketch code, you can enter the replacement text in the Replace With text box.
You can then replace a single instance of the found text, or click the Replace All
button to replace all occurrences of the text with the replacement text.

Find Next
The Find Next option finds the next occurrence of the previously submitted search
text.

Find Previous
The Find Previous option finds the previous occurrence of the previously submitted
search text.

Use Selection for Find
This option lets you control just what section of your code the Find feature looks in.
Instead of searching an entire code file, you can highlight a section of the code and
use this feature to find a text string just within the highlighted section.

The Sketch Menu
The Sketch menu provides options for working with the actual sketch code. The
following subsections describe the various options available under the Sketch
menu.

Verify/Compile
The Verify/Compile option checks the Arduino program for any syntax errors, and
then processes the code through the avr-gcc compiler to generate the ATmega
microcontroller machine code. The result of the Verify/Compile process displays in
the console window of the Arduino IDE. If any errors in the program code generate
compiler errors, the errors will appear in the console window.

64

Show Sketch Folder
The Show Sketch Folder option shows all the files stored in the folder associated
with the sketch. This comes in handy if you have multiple library files stored in the
sketch folder.

Add File
The Add File menu option enables you to add a library file to the sketch folder.

Import Library
The Import Library menu option automatically adds a C language
directive related to the specific library that you select. You can then use functions
from that library in your program code.

The Tools Menu
The Tools menu provides some miscellaneous options for your sketch environment,
as described in the following subsections.

Auto Format
The Auto Format option helps tidy up your program code by indenting lines of code
contained within a common code block, such as statements,
loops, and loops. Using the Auto Format feature helps make your program
code more readable, both for you and for anyone else reading your code.

Archive Sketch
This feature saves the sketch file as an archive file for the operating system
platform used. For Windows, this appears as a compressed folder using the zip
format. For Linux, this appears as a file.

Fix Encoding and Reload
This option is one of the more confusing options available in the Arduino IDE. If
you load a sketch file that contains non-ASCII characters, you’ll get odd-looking
characters appear in the editor window where the non-ASCII characters are
located. When you select this option, the Arduino IDE reloads the file and saves it
using UTF-8 encoding.

Serial Monitor
The Serial Monitor option enables you to interact with the serial interface on the
Arduino unit. It produces a separate window dialog box, which displays any output
text from the Arduino and allows you to enter text to send to the serial interface on
the Arduino. You must write the code in your programs to send and receive the data
using the Arduino USB serial port for this to work.

65

Board
The Board option is extremely important. You must set the Board option to the
Arduino unit that you’re using so that the Arduino IDE compiler can create the
proper machine code from your sketch code.

Serial Port
The Serial Port option selects the workstation serial port to use to upload the
compiled sketch to the Arduino unit. You must select the serial port that the Arduino
is plugged into.

Programmer
The Programmer option is for advanced users to select what version of code to
upload to the ATmega microcontroller. If you use the Arduino bootloader format
(which is recommended), you don’t need to set the Programmer option.

Burn Bootloader
This option enables you to upload the Arduino bootloader program onto a new
ATmega microcontroller. If you purchase an Arduino unit, this code is already
loaded onto the microcontroller installed in your Arduino, so you don’t need to use
this feature.
However, if you have to replace the ATmega microcontroller chip in your Arduino,
or if you purchase a new ATmega microcontroller to use in a separate breadboard
project, you must burn the bootloader program into the new microcontroller unit
before you can use the Arduino IDE program format for your sketches.

Caution: Working with the Bootloader
All the current Arduino units load the bootloader program into the
ATmega microcontroller program memory by default. If you purchase
an Arduino unit, you won’t have to worry about using the Burn
Bootloader feature. However, if you purchase a new ATmega
microcontroller to use outside of your Arduino, you may or may not
have to burn the bootloader program. Some vendors preload the
bootloader program for you, others don’t. Check with your vendor to
find out which option they use. If the bootloader isn’t burned onto the
microcontroller, your Arduino programs won’t work correctly.

The Help Menu
The Help menu provides links to help topics for the Arduino IDE. The Help menu
consists of six sections that relate to the Arduino IDE documentation:

 Getting Started
 Environment

66

 Troubleshooting
 Reference
 Find in Reference
 Frequently Asked Questions

Besides these six topics, two links provide information about the Arduino IDE:
 Visit Arduino.cc
 About Arduino

Exploring the Toolbar
If you don’t want to have to navigate your way around the menu bar to perform
functions in the Arduino, you can use a handy toolbar just under the menu bar. The
toolbar provides icons for some of the more popular menu bar functions:

 Verify (the checkmark icon): Performs the Verify/Compile option.
 Upload (the right arrow icon): Uploads the compiled sketch code to the
Arduino unit.
 New (the page icon): Opens a new sketch tab in the Arduino IDE window.
 Open (the up arrow icon): Displays the File Open dialog box that allows
you to select an existing sketch to load into the editor.
 Save (the down arrow icon): Saves the sketch code into the current sketch
filename.
 Serial monitor (the magnifying glass icon): Opens the serial monitor
window to interact with the serial port on the Arduino unit.

Now that you’ve seen the menu bar and toolbar options, the next section walks
through the basics of setting up the Arduino IDE to work with your Arduino unit.

Exploring the Message Area and Console Window
The last two sections of the Arduino IDE are provided to give you some idea of
what’s going on when you compile or upload your sketch. The message area is a
one-line section of the Arduino IDE interface that displays quick messages about
what’s happening. For example, as you compile the sketch, it shows a progress bar
indicating the progress of the compile process, as shown in Figure 3.2.

67

FIGURE 3.2 The Arduino IDE message area indicating the compile progress.

The console window often displays informational messages from the last command
you entered. For example, after a successful compile, you’ll see a message showing
how large the program is, as shown in Figure 3.3.

68

FIGURE 3.3 The Arduino IDE message window displaying the compiler result.

If there are any errors in the compiled sketch code, both the message area and the
console window will display messages pointing to the line or lines that contain the
errors.

Setting Up the Arduino IDE
You should be able to work with your Arduino IDE with most of the default
settings. However, you’ll need to check on two main things before you start
working with your Arduino unit. Follow these steps to get your Arduino IDE ready
to work with your specific Arduino unit.

 Try It Yourself: Setting Up the Arduino IDE

1. Make sure that the Arduino IDE is set for your specific Arduino
unit. Choose Tools > Board from the menu bar. This provides a list

69

of the various Arduino boards available, as shown in Figure 3.4.

FIGURE 3.4 The Arduino board options in the Arduino IDE.

2. Select the board model that you’re using to ensure the compiler
generates the proper machine code for your Arduino unit.

3. The second thing to check is the serial port. Choose Tools > Serial
Port from the menu bar. You should see a list of the available serial
ports installed on your workstation, as shown in Figure 3.5.

70

FIGURE 3.5 The serial port options for a Windows workstation.

4. The serial ports listed will depend on your workstation
configuration, and what devices you have connected to your
workstation. Select the serial port that points to your Arduino IDE.

Tip: Finding Serial Ports in Windows
With Windows, it can sometimes be tricky trying to figure out just
which serial port the Arduino unit uses. The easiest way to determine
the serial port is to open the Device Manager utility in Windows.
From the Device Manager utility, you should see a Ports section. Click
the plus sign (+) to expand that section, and it should list the COM port
the Arduino unit is assigned to.

71

Using the Serial Monitor
The serial monitor is a special feature in the Arduino IDE that can come in handy
when troubleshooting code running on your Arduino, or just for some simple
communication with the program running on the Arduino.
The serial monitor acts like a serial terminal, enabling you to send data to the
Arduino serial port and receive data back from the Arduino serial port. The serial
monitor displays the data it receives on the selected serial port in a pop-up
window.
You can activate the serial monitor feature in the Arduino IDE in three ways:

 Choose Tools > Serial Monitor from the menu bar.
 Press the Ctrl+Shift+M key combination.
 Click the serial monitor icon on the toolbar.

If you’ve selected the correct serial port for your Arduino unit, a pop-up window
will appear and connect to the serial port to communicate with the Arduino unit
serial port using the USB connection. Figure 3.6 shows the serial monitor window.

FIGURE 3.6 The serial monitor interface window.

You can enter text in the top line of the serial monitor interface and then click the
Send button to send it to the Arduino unit via the serial port. The serial monitor
window also displays any text output from the Arduino unit in a scrollable window
area.
Three setting options are available at the bottom of the serial monitor window:

 Autoscroll: Checking this option always displays the last line in the scroll

72

window. Removing the check freezes the window so that you can manually
scroll through the output.
 Newline: This option controls what type of end-of-line marking the serial
monitor sends after the text that you enter. You can choose to send no end-of-
line marking, a standard UNIX-style newline character, a carriage control
character, or a Windows-style newline and carriage control characters.
Which you select depends on how you write your Arduino sketch to look for
data.
 Baud Rate: The communications speed that the serial monitor connects to
the Arduino serial port. By default, the serial monitor will detect the baud
rate based on the function used in the sketch code.

Caution: Starting the Serial Monitor
When you start the serial monitor, it automatically sends a reboot
signal to the Arduino unit, causing it to restart the program that’s
currently loaded into the flash memory.

Summary
This hour covered the Arduino IDE user interface. You learned about each of the
menu bar and taskbar options, including how to create, save, compile, and upload
your Arduino sketches. After that, we looked at the serial monitor feature in the
Arduino IDE. The serial monitor enables you to send and receive text with the
Arduino unit using the USB serial port. This is a handy feature when you’re trying
to debug Arduino program code.
In the next hour, we create an Arduino program so that you can get a feel for the
Arduino IDE and for working with your Arduino unit.

Workshop

Quiz
1. Which tool should you use to send data to the Arduino unit?

A. Message area
B. Console window
C. Serial monitor
D. Toolbar

2. The upload icon (the right arrow icon) on the toolbar will automatically
verify and compile the sketch code before uploading it. True or false?

3. How does the Arduino IDE know what USB port to use to communicate with
the Arduino device?

73

Answers
1. C. The serial monitor enables you to send and receive data from the Arduino

unit.
2. True. Clicking the upload toolbar icon will first verify and compile the

sketch code before trying to upload it, even if you’ve already compiled the
code previously.

3. You must select the serial port (after choosing Tools > Serial Port from the
menu bar) before you try to upload your sketch code. The Arduino unit will
appear as an available serial port in the listing.

Q&A
Q. Is the Arduino IDE interface different if I load it in Windows, OS X, or

Linux?
A. No, the Arduino IDE is written using the Java programming language, and it

creates a common window interface on all three operating system platforms.
Q. Can I upload the sketch code to my Arduino unit using a wireless

connection?
A. No, at this time you can only upload the sketch code using a serial USB port

connection.
Q. Will the Arduino IDE editor window point out syntax errors in my sketch

code before I try to compile it?
A. Sometimes. The Arduino IDE editor will highlight library function names and

text that it thinks is part of a string, but it can’t pick up all syntax errors in
your code.

74

Hour 4. Creating an Arduino Program

What You’ll Learn in This Hour:
 Building an Arduino sketch
 Compiling and running a sketch
 Interfacing your Arduino to electronic circuits

Now that you’ve seen what the Arduino is and how to program it using the Arduino
IDE, it’s time to write your first program and watch it work. In this hour, you learn
how to use the Arduino IDE software package to create, compile, and upload an
Arduino program. You then learn how to interface your Arduino with external
electronic circuits to complete your Arduino projects.

Building an Arduino Sketch
Once you have your Arduino development environment set up, you’re ready to start
working on projects. This section covers the basics that you need to know to start
writing your sketches and getting them to run on your Arduino.

Examining the Arduino Program Components
When you use the Arduino IDE package, your sketches must follow a specific
coding format. This coding format differs a bit from what you see in a standard C
language program.
In a standard C language program, there’s always a function named that
defines the code that starts the program. When the CPU starts to run the program, it
begins with the code in the function.
In contrast, Arduino sketches don’t have a function in the code. The Arduino
bootloader program that’s preloaded onto the Arduino functions as the sketch’s

 function. The Arduino starts the bootloader, and the bootloader program
starts to run the code in your sketch.
The bootloader program specifically looks for two separate functions in the sketch:

The Arduino bootloader calls the function as the first thing when the
Arduino unit powers up. The code you place in the function in your sketch
only runs one time; then the bootloader moves on to the function code.
The function definition uses the standard C language format for defining
functions:

75

code lines

Just place the code you need to run at startup time inside the function code
block.
After the bootloader calls the function, it calls the function
repeatedly, until you power down the Arduino unit. The function uses the
same format as the function:

code lines

The meat of your application code will be in the function section. This is
where you place code to read sensors and send output signals to the outputs based
on events detected by the sensors. The function is a great place to initialize
input and output pins so that they’re ready when the loop runs, then the
function is where you use them.

Including Libraries
Depending on how advanced your Arduino program is, you may or may not need to
use other functions found in external library files. If you do need to use external
libraries, you first need to define them at the start of your Arduino program, using
the directive:

library

The directives will be the first lines in your sketch, before any other
code.
If you’re using a standard Arduino shield, most likely the shield library code is
already included in the Arduino IDE package. Just choose Sketch > Import Library
from the menu bar, and then select the shield that you’re using. The Arduino IDE
automatically adds the directives required to write code for the
requested shield. For example, if you select the Ethernet shield, the following lines
are imported into the sketch:

That saves a lot of time from having to go hunting around to find the libraries

76

required for a specific shield.

Creating Your First Sketch
Now that you’ve seen the basics for creating an Arduino program, let’s dive in and
create a simple sketch to get a feel for how things work.

Working with the Editor
When you open the Arduino IDE, the editor window starts a new sketch. The name
of the new sketch appears in the tab at the top of the editor window area, in the
following format:

mmmddx

where mmm is a three-letter abbreviation of the month, dd is the two-digit
numerical date, and x is a letter to make the sketch name unique for the day (for
example, sketch_jan01a).
As you type your sketch code into the editor window, the editor will color-code
different parts of the sketch code, such as making function names brown and text
strings blue. This makes it easier to pick out syntax errors, and comes in handy
when you’re trying to debug your sketch.
Now you’re ready to start coding. Listing 4.1 shows the code for the sketch0401
file that we’ll use to test things out. Enter this code into the Arduino IDE editor
window.

LISTING 4.1 The sketch0401 Code

Click here to view code image

77

You’ll learn what all these different lines of code mean as you go through the rest of
the hours, so don’t worry too much about the code for now. The main point now is
to have a sketch to practice compiling and running.
The basic idea for this code is to make the Arduino blink the L LED connected to
digital port 13 on the Arduino once per second, and also output a message to the
Arduino serial port, counting each blink.
After you enter the code into the editor window, choose File > Save As from the
menu bar to save the sketch as . Now you’re ready to verify and
compile the sketch.

Compiling the Sketch
The next step in the process is to compile the sketch code into the machine language
code that the Arduino runs.
Click the verify icon on the toolbar (the checkmark icon), or choose Sketch >
Verify/Compile from the menu bar. Figure 4.1 shows the results that you should get
if things worked correctly.

78

FIGURE 4.1 Compiling the sketch0401 code.

As shown in Figure 4.1, you should see a message in the message area that the
compile has completed, and the console window should show the final size of the
compiled machine language code that will be uploaded to the Arduino.
If you have any typos in the sketch code that cause the compile process to fail,
you’ll see an error message in the message area, as shown in Figure 4.2.

79

FIGURE 4.2 A compiler error displayed in the Arduino IDE.

The Arduino IDE also highlights the line of code that generated the error, making it
easier for you to pick out the problem. Also, a more detailed error message appears
in the console window area to help even more.
After you get the sketch to compile without any errors, the next step is to upload it
to your Arduino.

Uploading Your Sketch
The key to successfully uploading sketches to your Arduino unit is in defining how
the Arduino is connected to your workstation. Hour 3, “Using the Arduino IDE,”
walked through how to use the Tools > Serial Port menu bar option to set which
serial port your Arduino is connected to. After you set that, you should be able to
easily upload your compiled sketches.
Just click either the upload icon on the toolbar (the right arrow icon), or select File

80

> Upload from the menu bar. Before the upload starts, the Arduino IDE recompiles
the sketch code. This comes in handy when you’re just making quick changes; you
can compile and upload the new code with just one click.
When the upload starts, you should see the TX and RX LEDs on the Arduino blink,
indicating that the data transfer is in progress. When the upload completes, you
should see a message in both the Arduino IDE message area and console window
indicating that the upload was completed. If anything does go wrong, you’ll see an
error message appear in both the message area and the console window, as shown
in Figure 4.3.

FIGURE 4.3 Upload problem message in the Arduino IDE.

If all goes well, you’re ready to start running your sketch on the Arduino. The next
section shows you how.

81

Running Your Program
Now that the sketch code is uploaded onto your Arduino, you’re ready to start
running it. However, you might have noticed that once the upload process finished
in the Arduino IDE, the L and the TX LEDs on your Arduino unit already started to
blink. That’s your sketch running. When the upload process completes, the
bootloader automatically reboots the Arduino and runs your program code.
The L LED is blinking because of the function setting the
digital pin 13 first to 0 (no voltage) and then after a second, setting it to 1
(producing a 5V signal). The TX LED is blinking because the
function is sending data out the serial port.
You can view the output from the serial port on your Arduino using the serial
monitor built in to the Arduino IDE. Just choose Tools > Serial Monitor from the
menu bar, or click the serial monitor icon (the magnifying glass icon) on the toolbar.
The serial monitor window appears and displays the output received from the
Arduino, as shown in Figure 4.4.

FIGURE 4.4 Viewing the Arduino serial port output from the serial monitor.

You might have noticed that after you started the serial monitor, the blink count
output restarted back at 1. When you start serial monitor, it sends a signal to the
Arduino to reset it, which in turn runs the bootloader to reload the sketch and start
over from the beginning.
You can also manually restart a running sketch using the Reset button on the
Arduino. On the Arduino Uno R3, you’ll find the Reset button in the upper-left
corner of the circuit board. Just push the button and release it to reset the Arduino.

82

You don’t have to connect the Arduino to the USB port on your workstation for it to
run. You can run the Arduino from an external power source, as well, such as a
battery pack or AC/DC converter. Just plug the power source into the power socket
on the Arduino unit. The Arduino Uno R3 automatically detects power applied to
either the USB port or the power port and starts the bootloader program to start
your sketch.

Interfacing with Electronic Circuits
While getting your sketch uploaded to the Arduino and running is a significant
accomplishment, most likely you’ll want to do more in your Arduino projects than
just watch the L LED blink. That’s where you’ll need to incorporate some type of
external electronic circuits into your projects. This section covers the basics of
what you need to know to add external electronic circuits to your Arduino sketches.

Using the Header Sockets
The main use of the Arduino is to control external electronic circuits using the input
and output signals. To do that, you need to interface your electronic circuits with the
Arduino analog and digital signals. This is where the header sockets come into
play.
If you remember from Hour 1, “Introduction to the Arduino,” the header sockets are
the two rows of sockets at the top and bottom of the Arduino Uno circuit board.
(Some more advanced Arduino units, such as the Arduino Mega, also include a
third header socket on the right side of the board to support additional ports.)
You’ll plug your electronic circuits into the sockets to gain access to the Arduino
input and output signals, as well as the power from the Arduino.
The basic Arduino Uno unit that we’re using for our experiments uses the standard
Arduino two-row header socket format. Figure 4.5 shows the layout of the upper
and lower header sockets.

83

FIGURE 4.5 The Arduino Uno upper and lower header sockets.

The lower header socket has 13 ports on it, as described in Table 4.1.

84

TABLE 4.1 The Arduino Uno Lower Header Socket Ports

The upper header socket has 16 ports on it, as described in Table 4.2

85

TABLE 4.2 The Arduino Uno Upper Header Socket Ports

For our test sketch, we need to access the digital port 13 socket, in addition to a
GND socket, to complete the electrical connection to power our electronic devices.
To access the sockets, you can plug wires directly into the socket ports. To make it
easier, you can use jumper wires, which you can easily remove when you finish
experimenting.

Building with Breadboards
When you build an electronic circuit, the layout is usually based on a schematic
diagram that shows how the components should be connected. The schematic shows
a visual representation of which components are connected to which, using
standard symbols to represent the different components, such as resistors,
capacitors, transistors, switches, relays, sensors, and motors.
Your job is to build the electronic circuit to mimic the layout and connections
shown in the schematic diagram. In a permanent electronic circuit, you use a printed
circuit board (called PCB) to connect the components according to the schematic.
In a PCB, connections between the electronic components are etched into the PCB
using a metallic conductor. To place the electronic components onto the PCB, you
must solder the leads of the components onto the PCB.
The downside to using a PCB for your electronic project is that because it’s

86

intended to be permanent, you can’t easily make changes. Although that’s fine for
final circuits, when you’re developing a new system and experimenting with
different circuit layouts, it’s somewhat impractical to build a new PCB layout for
each test.
This is where breadboards come in handy. A breadboard provides an electronic
playground for you to connect and reconnect electronic components as you need.
Figure 4.6 shows a basic breadboard layout.

FIGURE 4.6 A basic breadboard.

Breadboards come in many different sizes and layouts, but most breadboards have
these features:

 A long series of sockets interconnected along the ends of the breadboard.
These are called buses (or sometimes rails), and are often used for the power
and ground voltages. The sockets in the bus are all interconnected to provide
easy access to power in the circuit.
 A short series of sockets (often around five) interconnected, and positioned
across a gap in the center of the breadboard. Each group of sockets is
interconnected to provide an electrical connection to the components plugged
into the same socket group. The gap allows you to plug integrated circuit
chips into the breadboard and have access to the chip leads.

The breadboard allows you to connect and reconnect your circuits as many times as
you need to experiment with your projects. Once you get your circuit working the

87

way you want, you can transfer the breadboard layout onto a PCB for a more
permanent solution.

Adding a Circuit to Your Project
Now that you’ve seen how to add external electronic circuits to your Arduino
project, let’s create a simple circuit to add to our Arduino sketch. Instead of using
the L LED on your Arduino, let’s use an external LED.
For this project, you need the following parts:

 A standard breadboard (any size)
 A standard LED (any color)
 A 1000ohm resistor (color code brown, black, red)
 Jumper wires to connect the breadboard circuit to the Arduino

The circuit uses a 1000ohm resistor to limit the voltage that flows through the LED
to help protect the LED. The LED doesn’t need the full 5V provided by the Arduino
output, so by placing a resistor in series with the LED, the resistor helps absorb
some of the voltage, leaving less for the LED. If you don’t have a 1000ohm resistor
handy, you can use any other resistor value to help lessen the voltage applied to the
LED.
Figure 4.7 shows connecting the resistor and LED to the GND and digital pin 13
ports on your Arduino Uno unit.

88

FIGURE 4.7 Circuit diagram for the sample project.

Just follow these steps to create your electronic circuit for the project.

89

 Try It Yourself: Creating the Electronic Circuit
1. Connect a jumper wire from one of the GND socket ports on the

Arduino to a socket row on the breadboard.
2. Connect a jumper wire from the digital pin 13 socket port on the

Arduino to another socket row on the breadboard (not the same as
the one you used for the GND signal).

3. Plug the LED into the breadboard so that the longer lead of the LED
is connected to the same socket row as the digital pin 13 wire and
so that the other lead is plugged into a separate socket row on the
breadboard.

Caution: Polarity in Electronic Circuits
While plugging the LED in the wrong way won’t harm the LED,
there are other electronic components that can cause damage if
plugged in the wrong way (such as transistors). Be careful when
working with electronic components that have polarity
requirements!

4. Plug the resistor so that one lead connects to the same socket row
as the short lead of the LED and so that the other lead connects to
the socket row that carries the Arduino GND signal.

Now you should be ready to test things out. Power up the Arduino, either by
connecting it to the USB port of your workstation or by connecting it to an external
power source. Because the Arduino maintains the sketch in flash memory, you don’t
need to reload your sketch; it should start running automatically.

Caution: Providing Power to the Arduino
Be careful when plugging and unplugging your Arduino if you’re using
a USB hub with other devices. Stray voltages can result that may
damage the other USB devices on the hub. It’s always a good idea to
power down your USB hub when plugging and unplugging the
Arduino.

If things are working, you should see the LED on the breadboard blink once per
second. If not, double-check your wiring to ensure that you have everything plugged
together correctly on the breadboard and that the wires are plugged into the proper
socket ports on the Arduino.

90

Tip: Using the Serial Monitor
If you connected the Arduino to the USB port on your workstation, you
can still use the serial monitor in the Arduino IDE to view the output
from the sketch. However, if you use an external power source to
power the Arduino, you won’t be able to view that output unless you
connect an external serial device to the Arduino serial ports, which
are digital ports 0 and 1 in the header sockets.

Summary
This hour walked you through your first Arduino project. First, we entered the
sketch code into the Arduino IDE editor window, then we compiled the sketch, and
finally, we uploaded the compiled sketch to the Arduino. You also saw how to use
the serial monitor feature in the Arduino IDE to monitor output from your sketch.
After that, you learned how to set up an external electronic circuit and interface it
with your Arduino.
In the next hour, we take a closer look at the actual Arduino sketch code that we’ll
be using in our projects. You’ll learn how the Arduino programming language
stores and manipulates data within our sketches.

Workshop

Quiz
1. Which function must your Arduino sketch define to run the main part of your

program code?
A.
B.
C.
D.

2. The Arduino IDE editor uses the same text color code to indicate functions
as it does regular text in the code. True or false?

3. How do you interface external electronic circuits to your Arduino?

Answers
1. B. The function contains the sketch code that continually runs while

the Arduino unit is powered on. This is where you need to place your main
sketch code.

2. False. The Arduino IDE uses brown to indicate functions used in the sketch
code, and uses blue to indicate text strings contained in the sketch code.

91

3. The Arduino header sockets are designed to easily interface external
electronic circuits with the analog and digital input and output pins on the
microcontroller.

Q&A
Q. Is there a limit to the size of the sketches I can upload to my Arduino?
A. Yes, the size of the sketch is limited by the amount of flash memory present

on your Arduino. The Arduino Uno R3 has 32KB of flash memory. When you
compile your sketch, the Arduino IDE console window will display the size
of the compiled sketch code and how much space is remaining in the flash
memory.

Q. Can I damage my Arduino by plugging in the wrong wires to the wrong
header socket ports?

A. Yes, it’s possible, but the Arduino does contain some basic protections. The
Arduino is designed with some basic voltage protection on each of the input
and output ports. If you supply too large of voltages to the ports, however,
you can risk burning out the microcontroller chip. Use caution when
connecting wires to the Arduino header sockets, and always double-check
your work before turning on the power.

Q. Is there an easy way to identify resistor values when working with
electronic circuits?

A. Yes, all resistor manufacturers use a standard resistor color code. The
resistor value and tolerance are indicated by color bands around the resistor.
To find the value of a resistor, refer to a resistor color-code chart, as shown
in the Wikipedia article on electronic color codes
(http://en.wikipedia.org/wiki/Electronic_color_code).

92

http://en.wikipedia.org/wiki/Electronic_color_code

Part II: The C Programming
Language

HOUR 5 Learning the Basics of C
HOUR 6 Structured Commands
HOUR 7 Programming Loops
HOUR 8 Working with Strings
HOUR 9 Implementing Data Structures
HOUR 10 Creating Functions
HOUR 11 Pointing to Data
HOUR 12 Storing Data
HOUR 13 Using Libraries

93

Hour 5. Learning the Basics of C

What You’ll Learn in This Hour:
 How to store your sketch data in variables
 How to use variables in mathematical operations
 How to output variable values to the Arduino serial port
 How to use some of the built-in Arduino C functions

This hour dives head first into the C programming language basics, which is the
foundation of the Arduino programming language. It first explores how to store data
in your sketches using variables. Then it discusses how to perform simple
arithmetic operations in your sketches. The hour wraps up by going through some of
the more common functions available in the standard Arduino library for you to use.

Working with Variables
If you remember from Hour 2, “Creating an Arduino Programming Environment,”
the Arduino programming language provides a user-friendly interface to write
programs for the underlying ATmega microcontroller on the Arduino. One of those
interfaces is how data is stored in memory.
Instead of having to reference specific memory locations to store your program data
(like you do in assembly language), the Arduino programming language uses simple
variables to represent memory locations for storing data. This section discusses
how to use those variables in your Arduino sketches to store and retrieve data.

Declaring Variables
Because the Arduino programming language is built on the C programming
language, it uses the standard C language format for creating and using variables. In
the C programming language, creating a variable requires two steps:

1. Declare the variable for use in the sketch.
2. Assign a data value to the variable.

When you declare a variable, the C language compiler stores the variable name,
along with some other information, in an internal table. This table allows the
compiler to know what variables the program uses and how much space in memory
they’ll require when you run the program. However, when you declare a variable,
the compiler doesn’t actually assign the variable to a specific location in the system
memory yet; that part comes later.
To declare a variable, you just define the type of data that the variable will store
and the variable name in a statement, as follows:

94

datatype variablename;

The datatype defines what type of data the variable will store. The C
programming language uses what’s called strict typing, which forces you to declare
what type of data each variable will contain. Once you declare the data type for a
variable, you can only store that type of data in the variable (more on that in the
“Understanding Data Types” section later this hour).
The variablename defines the label that you’ll use to reference that location in
memory from inside your sketch. For example, to declare a variable to hold an
integer data type, you use the following:

You have to follow a few rules when declaring C variable names:
 The variable name must contain only letters, numbers, underscores, or the
dollar sign.
 The variable name must start with a letter.
 The variable name is case sensitive.
 There is no limit to the variable name length.

Because there is no limit to the length of the variable name, it’s a good idea to use
meaningful variable names for the data in your sketch. For example, it’s better to
use variable names like , , and rather than generic names
like , , and . That makes troubleshooting code a lot easier, and it reminds you
just what each variable does if you have to come back to your sketch several
months later.
Another common practice in C coding that’s also used by the Arduino developers is
a method called camel case. Camel case combines two or more words in a variable
name, capitalizing the first letter of each word, with the exception of the first word,
as follows:

That makes it a little easier to read and recognize multiword variable names.
As you might expect, each variable name that you declare in your sketch must be
unique. You can’t declare two variables with the same name; otherwise, you’ll get
an error message in the IDE console window when you try to compile your sketch.

Defining Variable Values
The second part of the process is to assign a value to the declared variable. To
assign a value to a variable, you use the assignment operator, which in the C
language is an equal sign:

95

Tip: Terminating a Statement
In the C programming language, you must terminate most statements
with a semicolon so that the compiler knows when one statement ends
and another starts. We examine which statements don’t use the
semicolon later this hour.

This is the step that actually assigns the variable to a location in memory. The
compiler looks for an available location in memory large enough to hold the data
type and stores the assigned value to that location.
You can take a shortcut by declaring the variable and assigning it a value in one
statement:

With this method, the compiler assigns the memory location for the variable and
stores the data value in one step.

Understanding Data Types
The data type that you declare for a variable defines how large of an area of
memory the system needs to reserve to store the data. You can use many different
data types in the Arduino programming language. Table 5.1 lists the different data
types that Arduino uses to store values, how much memory space they each require,
and the maximum values they can hold.

TABLE 5.1 Arduino Data Types

The and data types store only whole number values. The and
 data types can store values that contain decimal places, such as 10.5 or –

1430.443456.

96

Caution: Integer and Floating-Point Values
Be careful when you’re working with numbers in your Arduino
sketches. When you use integer values, any mathematical operations
you use will result in an integer value. So, dividing 5 by 3 will result
in a value of 1. To retain precise results, you have to use floating-point
values.

After you define a data type for a variable, that’s the only type of data the variable
can contain. For example, once you declare a data type as

that defines the storage format the Arduino will use to store the data, and you can’t
change it. If you store an integer value of 1 in the variable, the Arduino
will still store it in floating-point format as 1.0.
Storing character data (called strings) differs a little bit in the C programming
language. When working with string values, the C language converts each character
in the string to a binary value using an encoding method, such as the ASCII code,
and then stores that value using the data type. It stores each character in the
string in sequential order in memory so that it can read the value back in the same
order to reproduce the string value. To indicate the end of the string, C places a null
character (a 0) as the last byte of the string. This is called a null-terminated string.
You’ll learn much more about how to use strings in your Arduino sketches later on
in Hour 8, “Working with Strings.”

Variable Qualifiers
You can also use variable qualifiers to modify how the compiler handles a variable
in the sketch. The variable qualifier tells the compiler that the value
assigned to the variable won’t change. These types of values are called constants.
In the Arduino programming language, it’s somewhat common practice to use all
uppercase letters for constants:

The Arduino library contains several different constants that are predefined with
values you’ll commonly use in your Arduino sketches, such as for the value
1, and for the value 0. Constants make reading the sketch code a bit easier to
follow, because you can use meaningful constant names instead of obtuse values.
The other type of variable qualifier is the keyword. The
keyword tells the compiler to not bother reserving a bit to indicate the sign of the
value; all the values stored in that variable will be positive values.
For example, by default, when you define a variable using an data type, the

97

compiler uses 16 bits (2 bytes) to store the value. However, it uses 1 bit to indicate
the sign of the value (0 for positive, or 1 for negative), leaving only 15 bits for the
actual value. Those 15 bits can only store integer values from 0 to 32,767, so the
maximum value range for a signed integer variable is –32,768 to +32,767.
When you apply the qualifier to a variable, it indicates that the value
can only be a positive number, so the compiler doesn’t need to reserve 1 bit for the
sign. This allows the compiler to use all 16 bits to store the value, so the value
range can now be from 0 to 65,535.
Table 5.2 shows the unsigned version range of different data types.

TABLE 5.2 Unsigned Data Type Value Ranges

With the qualifier, you have the ability to store some pretty large
integer numbers in your programs.

Variable Scope
The last feature of variables that you’ll need to know about is variable scope.
Variable scope defines where the variable can be used within the Arduino sketch.
There are two basic levels of variable scope:

 Local variables
 Global variables

You declare local variables inside a function, and they apply only inside that
function code block. For example, if you declare a variable inside the
function, that variable value is available only inside the function. If you try
to use the variable in the function, you’ll get an error message.
In contrast, you can use global variables anywhere in the sketch. It’s common
practice to declare global variables at the very start of your Arduino sketch, before
you define the function. That makes it easier to see all the global variables
that the sketch uses.
Once you declare a global variable, you can use it in either the or
functions, or any other functions that you create in your sketch. Each time you assign
a value to the variable, you can retrieve it from any function.

98

Using Operators
Just storing data in variables doesn’t make for very exciting programs. At some
point, you’ll want to actually do something with the data you store. This section
covers some of the operations that you can perform with your data in the Arduino
programming language.

Standard Math Operators
The most basic thing you’ll want to do is manipulate numbers, whether it’s a
counter keeping track of how many loops your sketch takes or a variable that
determines how fast the lights in your project should blink. The Arduino library
contains all the standard mathematical operators that you’re used to using from
school; it’s just that a few of them may look a little odd.
Table 5.3 lists the different math operators available in the Arduino library.

TABLE 5.3 Arduino Math Operators
You should recognize most of these operators from math class. The C programming
language also uses the asterisk for multiplication, and the forward slash for
division. The modulus operator differs a little; it returns the remainder of the
division (what we used to call the “leftover” part).
You’ll notice from the table that there are two types of AND and OR operators.
There’s a subtle difference between the bitwise and logical versions of these
operators. You use the bitwise operators in what are called binary calculations.
You use binary calculations to perform binary math using binary values.

99

The logical operators allow you to apply Boolean logic, such as combining values
using the AND operation.
To use the math operators in your Arduino programs, you just write your equations
in the right side of an assignment statement:
Click here to view code image

The compiler evaluates the mathematical expression on the right side of the
assignment statement, and then assigns the result to the variable on the left side.

Caution: Assignments Versus Equations
Don’t confuse assignment statements with mathematical equations.
With assignments, you can use the same variable on both sides of the
equal sign:

This doesn’t make any sense as a mathematical equation, but it is a
common assignment statement. The compiler retrieves the current
value stored in the variable, adds 1 to it, and then stores the
result back into the variable location.

Using Compound Operators
Compound operators create shortcuts for simple assignments that you’ll commonly
use in your Arduino sketches. For example, if you’re performing an operation on a
variable and plan on storing the result in the same variable, you don’t have to use
the long format:

Instead, you can use the associated addition compound operator:

The compound operator adds the result of the right side equation to the value of
the variable you specify on the left side, and stores the result back in the left side
variable. This feature works for all the mathematical operators used in the C
programming language.

Exploring the Order of Operations
As you might expect, C follows all the standard rules of mathematical calculations,
including the order of operations. For example, in the assignment

;

100

the compiler first performs the multiplication of 5 times 5, and then adds 2 to that
result, resulting in a final value of 27, which is assigned to the variable.
And just like in math, C allows you to change the order of operations using
parentheses:

Now the compiler first adds 2 and 5, and then multiplies the result by 5, resulting in
a value of 35.
You can nest parentheses as deep as you need in your calculations. Just be careful
to make sure that you match up all the opening and closing parentheses pairs.

Exploring Arduino Functions
The Arduino programming language also contains some standard libraries to
provide prebuilt functions for us to use. Functions are somewhat of a black box:
You send values to the function, the function performs some type of operation on the
values, and then you receive a value back from the function. (To learn more about
how to create your own functions, see Hour 10, “Creating Functions.”)
This section covers some of the standard Arduino functions that will come in handy
as you write your Arduino sketches.

Using Serial Output
Before we get too far, let’s talk about a special feature of the Arduino: the ability to
output data to an external serial device. This feature provides an easy way for us to
monitor what’s going on in our Arduino sketches, and will be invaluable to you as
you debug your sketches.
To output data to the serial port on the Arduino, you need to use the special

 class, along with its built-in functions. Hour 17, “Communicating with
Devices,” examines the Serial class in much more detail, but for now we’re just
interested in three basic functions in the class:

 initializes the serial port for input and output.
 outputs a text string to the serial port.
 outputs a text string to the serial port and terminates
it with a return and linefeed character.

You can use the and functions in
your Arduino sketches to output information from your sketch to view in the serial
monitor in the Arduino IDE. This makes for an excellent troubleshooting tool at
your disposal.

101

 Try It Yourself: Using the Serial Class Functions to Debug
Arduino Sketches

This exercise shows you how to add the and
 functions to your Arduino sketch to view

variables as your sketch runs. Just follow these steps:
1. Open the Arduino IDE, and enter this code in the editor window:

Click here to view code image

2. Save the sketch as sketch0501.
3. Compile and upload the sketch to your Arduino.
4. Open the serial monitor tool and watch the output.

The output should look something like this:
Click here to view code image

The function displays a text string, or the value of a variable,
but keeps the output cursor on the same line. The function
displays the text string or variable value, then adds the newline character to start a
new line of output.
That’s how you can add functions to your sketch to watch
the values of variables as your sketch is running on the Arduino.

102

Working with Time
With real-time applications, your sketch will often need to have some knowledge of
time. The Arduino library contains four functions that let you access time features in
the Arduino:

 delay(): Pauses the sketch for x milliseconds.
 delayMicroseconds(): Pauses the sketch for x microseconds.
 micros(): Returns the number of microseconds since the Arduino was
reset.
 millis(): Returns the number of milliseconds since the Arduino was
reset.

The and functions are handy when you
want to slow down the output, like we did in the previous example, or if you need
for your sketch to wait for a predetermined amount of time before moving on to the
next step.
The and functions enable you to take a peek at how long
the Arduino has been running your sketch. Although this is not related to the real
time of day, you can use this feature to get a feel for real time spans within your
sketch.

Performing Advanced Math
Yes, the basic math operators are useful, but your sketch might sometimes need to
use some more advanced mathematical processing. Although not quite as complete
as some programming languages, the Arduino programming language does have
some support for advanced math functions. Table 5.4 shows what advanced math
functions you have to work with in your sketches.

103

TABLE 5.4 Advanced Arduino Math Functions

You probably recognize most of these functions. The and
functions are a little odd from what you’d see in normal math libraries. They’re
mostly used when working with sensors. They allow you to keep the values
returned by the sensors within a specific range that your sketch can manage.

Generating Random Numbers
When working with sketches, you’ll often run into the situation where you need to
generate a random number. Most programming languages include a random number
generator function, and the Arduino programming language is one of them.
Two functions are available for working with random numbers:

 random([],): Returns a random number between min and max
– 1. The min parameter is optional. If you just specify one parameter, the
min parameter defaults to 0.
 randomSeed(seed): Initializes the random number generator, causing it
to restart at an arbitrary point in a random sequence.

With computers, random numbers aren’t really all that random. They produce
random sequences of repeatable numbers. You may notice if you call the

 function enough times that you’ll start repeating the same “random”
numbers.
To get around that, the function allows you to select where in the
random sequence the function starts selecting values. That helps lessen
the frequency of repeatable numbers.

104

Using Bit Manipulation
The bit manipulation group of functions in the Arduino library allows you to work
at the bit-level of values. Table 5.5 shows the bit manipulation functions available.

TABLE 5.5 The Arduino Bit Manipulation Functions
When working with sensors or multiple inputs, you’ll often need to know which
bits of a value are set. These functions help you work at the bit level with your data
values.

Summary
This hour examined the basics of handling data in Arduino sketches. It walked
through how to declare variables in your sketches and how to assign values to them.
It also discussed the C language data types and how to apply them to the data in
your sketches. You then learned about operators, and how the Arduino language
uses built-in math operators to perform standard mathematical operations on data.
The discussion then turned to some of the Arduino functions available in the
standard library. There are functions for communicating with the serial output on
the Arduino, in addition to functions for performing advanced math and time
features.
The next hour examines how to control your Arduino programs by testing data
conditions and selecting which sections of the sketch code to run.

Workshop

Quiz
1. When does the compiler assign a memory location to store a variable value?

A. When you declare the variable name
B. When you define the variable value
C. When you first run the sketch
D. When you upload the sketch

105

2. You can store a floating-point value in a variable that was previously
declared as an integer data type. True or false?

3. Which function should you use to output a variable value and start a
new line in the output?

Answers
1. B. The compiler determines the location to store a variable value in memory

when you assign a value to it in the sketch.
2. False. The Arduino programming language uses strict typing of variables.

When you declare a variable as an integer data type, the compiler only
reserves enough space in memory for that type of data; you can’t store another
data type in that variable.

3. The function allows you to output the value of a
variable to the serial port on the Arduino, and sends a newline character after
the value so that the serial monitor starts a new line in the output.

Q&A
Q. What is the largest sized floating-point value the Arduino sketch can

handle?
A. The floating-point representation of a value in the Arduino uses 4 bytes (or

32 bits) to store the value: 1 bit for the sign, 8 bits for the exponent, and 23
bits for the significand. The maximum value this can store is about 3.4 times
10 to the 38th power.

Q. Can you convert a variable from one data type to another?
A. Yes, sort of. You can use a feature called type casting to tell the Arduino to

store a value using a different data type. This is somewhat of a tricky feature
of the C programming language and can cause problems if you’re not careful
when using it.

106

Hour 6. Structured Commands

What You’ll Learn in This Hour:
 Using statements
 Adding sections
 Stringing statements together
 Testing conditions
 Using the statement

In the Arduino sketches we’ve discussed so far, the Arduino processes each
individual statement in the sketch in the order that it appears. This works out fine
for sequential operations, where you want all the operations to process in the
proper order. However, this isn’t how all sketches operate.
Many sketches require some sort of logic flow control between the statements in the
sketch. This means that the Arduino executes certain statements given one set of
circumstances, but has the ability to execute other statements given a different set of
circumstances. There is a whole class of statements that allow the Arduino to skip
over or loop through statements based on conditions of variables or values. These
statements are generally referred to as structured commands.
Quite a few structured commands are available in the Arduino programming
language, so we’ll look at them individually. In this chapter, we’ll look at the
and structured commands.

Working with the if Statement
The most basic type of structured command is the statement. The statement
in C has the following basic format:

You’ll often hear of this type of statement referred to as an statement. As
you can see, though, there’s not actually a “then” keyword in the C language version
of the statement.
C uses the line orientation to act as the “then” keyword. The Arduino evaluates the
condition in the parentheses, and then either executes the statement on the next line
if the condition returns a logic value or skips the statement on the next line if
the condition returns a logic value.
Here are a few examples to show this in action:
Click here to view code image

107

In the first example, the condition checks to see whether the variable is equal to
50. (We talk about the double equal sign in the “Understanding Comparison
Conditions” section later in this hour.) Because it is, the compiler executes the

 statement on the next line and prints the string.
Likewise, the second example checks to see whether the value stored in the
variable is less than 100. It is, and so the compiler executes the second

 statement to display the string.
However, in the third example, the value stored in the variable is not greater than
100, so the condition returns a logic value, causing the compiler to skip the
last statement.

Grouping Multiple Statements
The basic statement format allows for you to process one statement based on the
outcome of the condition. More often than not, though, you’ll want to group multiple
statements together, based on the outcome of the condition.
To group a bunch of statements together, you must enclose them within an opening
and closing brace, as follows:
Click here to view code image

In this example, the output from both print lines will appear in the serial monitor
output. All the statements between the braces are considered part of the “then”
section of the statement and are controlled by the condition.
One thing about statements is that it can get tricky trying to pick out the code
contained with the braces that’s controlled by the condition. One way to help
that is to indent the code inside the braces, as shown in the example.
You can either manually format your sketch to look like that, or you can let the
Arduino IDE help out with that. Just left-align all the code in the sketch, and then
choose Tools > Auto Format from the menu bar. The Arduino IDE will

108

automatically determine which code should be indented.

 Try It Yourself: Working with if Statements
To experiment with statements in your Arduino sketches, follow
these steps:
1. Open the Arduino IDE, and then enter this code into the editor

window:
Click here to view code image

2. Choose Tools > Auto Format from the menu bar. This will format
the code to indent the statements inside the code block.

3. Save the sketch as sketch0601.
4. To verify, compile, and upload the sketch to the Arduino, click the

upload icon on the toolbar, or choose File > Upload from the menu
bar.

5. Open the serial monitor by clicking the serial monitor icon on the
toolbar, or choose Tools > Serial Monitor from the menu bar. This
opens the serial monitor application and restarts the Arduino. You
should see the following output:

Click here to view code image

6. Change the code to set the value of to 25 in the assignment
statement, and then recompile and upload the sketch to the Arduino.

109

7. Open the serial monitor. You should now see the following output
only:

Click here to view code image

Because the new value of causes the condition to evaluate to a value, the
Arduino skips the statements inside the “then” code section, but picks up with the
next statement that’s outside of the braces.

Tip: Restarting a Sketch
Because this sketch just runs once in the function then
stops, you can rerun the sketch by pressing the Reset button on the
Arduino. For the Arduino Uno R3, that button is at the upper-left
corner of the circuit board.

Using else Statements
In the statement, you have only one option of whether to run (or not) statements.
If the condition returns a logic value, the compiler just moves on to the next
statement in the sketch. It would be nice to be able to execute an alternative set of
statements when the condition is . That’s exactly what the statement
allows us to do.
The statement provides another group of commands in the statement:
Click here to view code image

The statement after the keyword only processes when the condition is
.

Just like with the statement code block, you can use braces to combine multiple
statements in the code block:
Click here to view code image

110

You can control the output by adjusting the value you assign to the variable. When
you run the sketch as is, you’ll get this output:

If you change the value of to 50, you’ll get this output:

You can also use the Auto Format feature in the Arduino integrated development
environment (IDE) to format the code block statements and the code
block statements.

Using else if Statements
So far, you’ve seen how to control a block of statements using either the
statement or the and statements combination. That gives you quite a bit of
flexibility in controlling how your scripts work. However, there’s more!
You’ll sometimes need to compare a value against multiple ranges of conditions.
One way to solve that is to string multiple statements back to back:
Click here to view code image

111

With this format, only one of the statements will execute,
based on the value stored in the variable:

That works, but it is somewhat of an ugly way to solve the problem. Fortunately,
there’s an easier solution for us.
The C language allows you to chain statements together using the

 statement, with a catchall statement at the end. The basic format of the
 statement looks like this:

condition1
statement1

condition2
statement2

statement3

When the Arduino runs this code, it first checks the condition1 result. If that
returns a value, the Arduino runs statement1, and then exits the

 statements.
If condition1 evaluates to a value, the Arduino then checks the
condition2 result. If that returns a value, it runs statement2, and then
exits the statement.
If condition2 evaluates to a value, it runs statement3, and then
exits the statement.
Listing 6.1 shows the sketch0602 code, which is an example of how to use the

 statement in a program.

LISTING 6.1 The sketch0602 Code Example

Click here to view code image

112

When you run the sketch0602 code, only one statement
will execute, based on the value you set the variable to. By default, you’ll see
this output in the serial monitor:

This gives you complete control over just what code statements the Arduino runs in
the sketch.

Understanding Comparison Conditions
The operation of the statement revolves around the comparisons that you make.
The Arduino programming language provides quite a variety of comparison
operators that enable you to check all types of data. This section covers the
different types of comparisons you have available in your Arduino sketches.

Numeric Comparisons
The most common type of comparisons has to do with comparing numeric values.
The Arduino programming language provides a set of operators for performing
numeric comparisons in your statement conditions. Table 6.1 shows the numeric
comparison operators that the Arduino programming language supports.

TABLE 6.1 Numeric Comparison Operators

The comparison operators return a logical value if the comparison succeeds
or a logical false value if the comparison fails. For example, the statement
Click here to view code image

113

will execute the statement only if the value of the
variable is greater than or equal to the value of the variable.

Caution: The Equality Comparison Operator
Be careful with the equal comparison. If you accidentally use a single
equal sign, that becomes an assignment statement and not a
comparison. The Arduino will process the assignment and then exit
with a value every time. Most likely that’s not what you wanted
to do.

Tip: String Comparisons
Because of the odd way the Arduino programming language stores
string values, you can’t use a standard comparison operator to
compare them. Hour 8, “Working with Strings,” takes an in-depth look
at how to use some Arduino functions to compare string values in your
sketches.

Boolean Comparisons
Because the Arduino evaluates the statement condition for a logic value, testing
Boolean values is pretty easy:
Click here to view code image

Setting a variable value directly to a logical or value is pretty
straightforward. However, you can also use Boolean comparisons to test other
features of a variable.
If you set a variable to a value, the Arduino will also make a Boolean comparison:
Click here to view code image

However, if a variable contains a value of 0, it will evaluate to a Boolean
condition:

114

Click here to view code image

The comparison for the variable here will fail because the Arduino
equates the 0 assigned to the variable as a Boolean value. So,
be careful when evaluating variables for Boolean values.

Tip: Evaluating Function Results
A related feature to Boolean comparisons is the Arduino’s ability to
test the result of functions. When you run a function in C, the function
returns what’s called a return code. You can test the return code using
the statement to determine whether the function succeeded or
failed.

Creating Compound Conditions
In all the examples so far, we’ve just used one comparison check within the
condition. With the Arduino programming language, you can group multiple
comparisons together in a single statement, called a compound condition. This
section show some tricks you can use to combine more than one condition check
into a single statement.
The Arduino programming language allows you to use the logic operators (see
Hour 5, “Learning the Basics of C”) to group comparisons together. Because each
individual condition check produces a Boolean result value, the Arduino just
applies the logic operation to the condition results. The result of the logic operation
determines the result of the statement:
Click here to view code image

When you use the logic operator, both of the conditions must return a
value for the “then” statement to process. If either one fails, the Arduino will skip
the “then” code block.

115

You can also use the logical operator to compound condition checks:
Click here to view code image

In this situation, if either condition passes, the Arduino will process the “then”
statement.

Negating a Condition Check
There’s one final statement trick that C programmers like to use. Sometimes
when you’re writing statements, it comes in handy to reverse the order
of the “then” and code blocks.
This can be because one of the code blocks is longer than the other, so you want to
list the shorter one first, or it may be because the script logic makes more sense to
check for a negative condition.
You can negate the result of a condition check by using the logic operator (see
Hour 5):
Click here to view code image

The operator reverses the normal result from the equality comparison, so the
opposite action occurs from what would have happened without the operator.

Tip: Negating Conditions
You may have noticed that you can negate a condition result by either
using the operand or by using the opposite numeric operand (such
as a rather than). Both methods will produce the same result in
your Arduino sketch.

Expanding with the switch Statement
Often you’ll find yourself in a situation where you need to compare a variable
against several different possible values. One solution is to write a series of

 statements to determine what the variable value is:
Click here to view code image

116

The more options there are, the longer this code gets! Instead of writing a long
series of statements, you can use the statement:
Click here to view code image

The statement uses a standard if-then style condition to evaluate for a
result. You then use one or more statements to define possible results from
the condition. The Arduino jumps to the matching case statement in the
code, skipping over the other case statements.
However, the Arduino continues to process any code that appears after the
statement, including other statements. To avoid this, you can add the
statement to the end of the statement code block. That causes the Arduino to
jump out of the enter statement code block.
You can add a statement at the end of the statement code block.
The Arduino jumps to the statement when none of the statements
match the result.
The statement provides a cleaner way of testing a variable for multiple
values, without all the overhead of the statements.

117

Summary
This hour covered the basics of using the structured command. The
statement allows you to set up one or more condition checks on the data you use in
your Arduino sketches. You’ll find this handy when you need to program any type of
logical comparisons in your sketches. The statement by itself allows you to
execute one or more statements based on the result of a comparison test. You can
add the statement to provide an alternative group of statements to execute if
the comparison fails.
You can expand the comparisons by using one or more statements in the

 statement. Just continue stringing statements together to continue
comparing additional values.
Finally, you can use the statement with multiple statements in place
of the statements. That helps make checking multiple values in a
variable a bit easier.
The next hour walks through using loops in your Arduino sketches. You can use
loops to check multiple sensors using the same code, or you can use them to iterate
through data blocks without having to duplicate your code.

Workshop

Quiz
1. What comparison should you use to check if the value stored in the

variable is greater than or equal to 10?
A.
B.
C.
D.

2. How would you write the statement to display a message only if the value
stored in the variable is between 10 and 20 (not including those values)?

3. How would you write statements to give a game player status
messages if a guess falls within 5, 10, or 15 of the actual value?

Answers
1. C. Don’t forget to include the equal sign in the comparison operator when

you need to check whether the value is equal to or greater than the desired
value. It’s easy to forget and just use the greater-than comparator symbol.

2. You could use the following code:
Click here to view code image

118

3. You could use the following code:
Click here to view code image

Q&A
Q. Is there a limit on how many statements I can place in an if or else

code block?
A. No, you can make the code block as large as needed.
Q. Is there a limit on how many else if statements you can place in an
if statement?

A. No, you can string together as many statements to a single
statement as you need.

Q. Is there a limit to how many case statements you can place in a
switch statement?

A. No, you can use as many statements as you need in a single
statement.

Q. Do you have to have a default option in a switch statement?
A. No. If there isn’t a option, and if none of the statements

match, no code will be processed in the statement.

119

Hour 7. Programming Loops

What You’ll Learn in This Hour:
 Why we need loops
 Exploring the loop
 The loop
 Using the loop
 Controlling loops

In Hour 6, “Structured Commands,” you saw how to manipulate the flow of an
Arduino sketch by checking the values of variables using and
statements. In this hour, we look at some more structured commands that control the
flow of your Arduino sketches. You’ll learn how to loop through a set of commands
until an indicated condition has been met. This hour discusses and demonstrates the

, , and Arduino looping statements.

Understanding Loops
You’ve already seen one type of loop used by the Arduino. By default, the Arduino
program uses the function to repeat a block of code statements indefinitely.
That allows you to write an application that continues to repeat itself as long as the
power to the Arduino is on.
Sometimes, though, in your Arduino sketches you’ll find yourself needing to repeat
other operations, either until a specific condition has been met, or just repeating a
set number of times. An example of this is setting a group of digital ports for input
or output mode.
You could just write out all of the function lines individually, but that
could get cumbersome:

120

This code would certainly accomplish the task of setting all the digital ports for
input, but it sure takes a lot of code to write!
Instead of having to type out each line individually, the Arduino
programming language provides a way for you to use a single statement
and then run it multiple times for all the lines you want to initialize.
The Arduino programming language provides three types of loop statements to help
us simplify repetitive tasks like that:

 The statement
 The statement
 The statement

This hour covers each of these statements, plus a couple of other features that come
in handy when using loops. First, let’s take a look at how to use the
statement.

Using while Loops
The most basic type of loop is the statement. The statement iterates
through a block of code, as long as a specified condition evaluates to a Boolean

 value. The format of the statement is as follows:

condition
code statements

The condition in the statement uses the exact same comparison
operators that the statement uses (see Hour 6). The idea is to check the
value of a variable that is changed inside the code block. That way your
code controls exactly when the loop stops.
Let’s run a quick example that demonstrates how the statement works in an
Arduino program.

121

 Try It Yourself: Experimenting with the while Statement
In this example, you create a simple loop to display an output
line 10 times. Just follow these steps:
1. Open the Arduino IDE, and then enter this code in the editor

window:
Click here to view code image

2. Save the sketch as sketch0701.
3. Click the Upload icon on the toolbar to verify, compile, and upload

the sketch to your Arduino.
4. Open the serial monitor to view the output of your sketch.

If all goes well, you should see the output shown in Figure 7.1.

122

FIGURE 7.1 The output from the sketch0701 sketch.

The loop for the statement continues as long as the variable
value is less than 11. Once the value is 11, the statement
condition becomes , so the loop stops.

Watch Out: Endless Loops
Notice that the variable value is changed inside the loop.
This is a crucial element to using the statement. If the variable
used in the condition doesn’t change, your code will get stuck in an
endless loop and never exit!

Using do-while Loops
The statement always checks the condition first, before entering into the
loop code block statements. There may be times when you’d like to run the code
block statements first, before checking the condition. This is where the
loop statement comes in handy.
The format of the statement is as follows:

code statements
condition

When the Arduino runs the statement, it always runs the statements
inside the code block first, before evaluating the condition comparison. That means
the code is guaranteed to run at least one time, even if the condition is initially

123

. Let’s look at an example of using a statement.

 Try It Yourself: Using the do-while Loop
In this example, you create an Arduino program that uses a

 statement to loop through a series of statements a set number
of times.
1. Open the Arduino IDE, and then enter this code in the editor

window:
Click here to view code image

2. Save the sketch as sketch0702.
3. Click the Upload icon on the toolbar to verify, compile, and upload

the sketch to your Arduino.
4. Open the serial monitor to view the output of your sketch.

If all goes well, you should see the output shown in Figure 7.2.

124

FIGURE 7.2 The output from the sketch0702 sketch.

The condition specified for the statement checks to see whether the
 variable value is less than 1. Because the assignment statement sets the

initial value of the variable to 1, the very first time the condition is
checked, it returns a value. However, the loop has already run
the statements within the code block before the check, so you’ll see output in the
serial monitor.

Using for Loops
The and statements are great ways to iterate through a bunch of
data, but they can be a bit cumbersome to use. In both of those statements, you have
to make sure that you change a variable value inside the code block so that the loop
condition stops when needed.
The Arduino programming language supports an all-in-one type of looping
statement called the statement. The statement keeps track of the loop
iterations for us automatically.
Here’s the basic format of the statement:
Click here to view code image

statement1 condition statement2
code statements

The first parameter, statement1, is a C language statement that’s run before the
loop starts. Normally this statement sets the initial value of a counter used in the
loop.

125

The second parameter, condition, is the comparison that’s evaluated at the start
of each loop. As long as the condition evaluates to a value, the loop
processes the code statements inside the code block. When the condition evaluates
to a value, the Arduino drops out of the loop and continues on in the
program code.
The last parameter, statement2, is a C language statement that’s run at the end
of each loop. This is normally set to change the value of a counter used in the
comparison condition.
A simple example of a statement would look like this:

These three lines of code just replaced the functionality of having to write out all
14 lines of statements to set all the digital input lines for input. Now
that’s handy!
Here’s another example of using a statement in an Arduino program.

 Try It Yourself: Using the for Statement
Let’s use a statement to help simplify setting multiple digital
ports for input mode. Just follow these steps:
1. Open the Arduino IDE, and then enter this code in the editor

window:
Click here to view code image

2. Save the sketch as sketch0703.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor tool to view the sketch output.

126

You should see the output shown in Figure 7.3.

FIGURE 7.3 Output from running the sketch0703 sketch.

Now things are starting to get fancy. You no longer have to keep track of a separate
counter variable inside the code block; the statement does all that for you.

Using Arrays in Your Loops
As you can tell, one thing that loops are great at is processing a series of multiple
values. However, it won’t do you any good to loop through multiple values if all
the data is stored in different variables.
Fortunately, the C programming language provides a way to reference multiple
values using a single variable name, thus enabling you to easily iterate through the
different values in a loop.
This section discusses how to use array variables in your loops to help simplify
handling large amounts of data.

Creating Arrays
An array stores multiple data values of the same data type in a block of memory,
allowing you to reference the variables using the same variable name. The way it
does that is with an index value. The index value points to a specific data value
stored in the array.
The format to declare an array variable is as follows:

datatype variablename size

The datatype keyword is a standard data type used to declare the variable, such

127

as or . The size is a numeric value that indicates how many data
values of the specified data type the array will hold. Here’s an example of
declaring an array of integer values:

The statement declares an array variable called that can store up to 10
integer data values in memory. By default, the array data values are empty.
You can reference each data value location by specifying the index with the array
variable using square brackets:

These statements assign values to the first five data value locations in the
 array variable.

Watch Out: Array Indexes
Note that the first data value location in an array is assigned the index
value 0.

As with a normal variable, you can declare an array variable and assign it values in
a single statement, like this:
Click here to view code image

This statement declares the array variable to hold up to 10 integer
values, and assigns values to the first 5 data value locations (index values 0 through
4). The braces are required to indicate the values all belong to the same array.
Similarly, to retrieve a specific data value stored in the array variable, you just
reference the appropriate index location value:

The Arduino retrieves the data value stored in the specified index location and uses
it in the equation for the assignment statement.

Using Loops with Arrays
Besides just using numbers for the array index, you can also use a variable that
stores an integer value for the index value in an array:

128

Now the Arduino first retrieves the value assigned to the variable, and then
it uses that value as the index location for the array variable. It retrieves
the value stored at that data value location for the equation in the assignment
statement.
Now that you’re using a variable as the index, the next step in the process is to
change the index value in a loop so that you can iterate through all the data values
stored in an array, as shown in this code snippet:
Click here to view code image

Note that the loop counter must start with the value , since the array index
starts at 0. The condition check in the loop must also stop before you get to the
end of the array; otherwise, the program will return odd values, because it will
continue reading memory locations thinking they’re part of the array.

Determining the Size of an Array
You may run into situations where you don’t know exactly how many data values
are in an array variable but you still need to iterate through all of them. This is
where the C language function comes in handy.
The Arduino language function returns the number of bytes used to store
an object. You can use it to determine how many bytes an array variable takes in
memory, and then with a little math, you can determine just how many data values
are currently stored in the array:
Click here to view code image

The returns the number of bytes the system uses to store an integer
data type. By dividing the total size of the array by the size of a single integer value,
you can determine just how many data elements are in the array. For example, in the
previous loop example, you could use the following:
Click here to view code image

The Arduino will only iterate through the number of data elements defined for the
array. This is a common practice in the C programming world, and can save you
lots of calculations in your Arduino code.

129

Using Multiple Variables
Another trick often used in statements is the ability to track multiple counters
in a single statement. Instead of initializing just a single counter variable in the
statement, you can initialize multiple variables, separated with a comma. Likewise,
you can change the values of all those variables at the end of the loop. The format
to do that looks like this:
Click here to view code image

This statement uses two counters: the variable and the variable. At the end
of each iteration, the program increments both variables, but the condition only
checks the value of the variable to determine when to stop the loop.

Nesting Loops
Another popular use of loops is called nesting. Nesting loops is when you place
one loop inside another loop, each one controlled by a separate variable.
The trick to using inner loops is that you must complete the inner loop before you
complete the outer loop. The closing bracket for the inner loop must be contained
within the outer loop code:
Click here to view code image

If you forget to close out the inner loop, you won’t get the results that you planned.

Controlling Loops
Once you start a loop, it will usually continue until the specified condition check
becomes false. You can change that behavior using two different types of
statements:

 The statement

130

 The statement
Let’s take a look at how each of these statements works.

The break Statement
You use the statement when you need to break out of a loop before the
condition would normally stop the loop. Let’s take a look at an example of how this
works.

 Try It Yourself: Using the break Statement
The statement allows you to “jump out” of a loop before it
would normally terminate. To test that, run through this demo:
1. Open the Arduino IDE, and then enter this code in the editor

window:
Click here to view code image

2. Save the sketch as sketch0704.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor tool to view the sketch output.

You should see the output shown in Figure 7.4.

131

FIGURE 7.4 Output from running the sktech0704 sketch.

The statement terminates the loop in iteration 15, before the defined
condition for the loop was met.

The continue Statement
The statement may be a little odd to follow. Instead of telling the
Arduino to jump out of a loop, it tells the Arduino to stop processing code inside
the loop, but still jumps back to the start of the loop. That might sound somewhat
confusing, as you’d think to stop processing inside the loop you’d exit the loop (like
the statement does).
Perhaps the easiest way to follow how the statement works is to watch
it in action:

132

 Try It Yourself: Using the continue Statement
In this example, you test to see how the statement changes
the behavior inside a standard loop. Just follow these steps to run
the experiment:
1. Open the Arduino IDE, and then enter this code in the editor

window:
Click here to view code image

2. Save the sketch as sketch0705.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor tool to view the sketch output.

You should see the output shown in Figure 7.5.

133

FIGURE 7.5 Output from running the sketch0705 sketch.

The statement causes the Arduino to stop processing the code inside
the loop if the variable value is between 5 and 10, but it returns back to the start
of the loop and continues on with the loop iterations. The output in Figure 7.5
shows that the loop continues, even when the statement
processes.

Summary
This hour covered how to iterate through blocks of code multiple times. It’s
common to run into situations where you need to repeat one or more statements
multiple times with different values. By using loop statements, you can reduce the
number of statements you have to write. The loop enables you to check a
condition that determines when the loop stops. With the loop, it’s your
responsibility to make sure that the condition value changes inside the loop. The

 loop works similarly to the loop, but it checks the condition at
the end of the loop iteration rather than at the start. The loop helps simplify
things for us by providing the counter, condition check, and the statement that
modifies the counter all in one code statement.
This hour also introduced you to the idea of array variables, which allow you to
store multiple data values referenced by the same variable name but with different
indexes. These come in handy when working with loops.
In the next hour, you learn how to work with text in your Arduino programs, which
will prove handy if you’re using any type of human interface for your sketches.

134

Workshop

Quiz
1. Which loop type will always run at least one iteration of the loop code block

no matter if the condition is met?
A. The loop
B. The loop
C. The loop
D. The loop

2. With array variables, you can store multiple data values in the array and then
iterate through them using a loop. True or false?

3. How could you write a loop to iterate through values 0 through 20, skipping
over values 5 through 8 and 10 through 13?

Answers
1. The loop runs the loop code block first, before checking the

condition, so it will always run at least one iteration of the loop code block.
2. True. The array stores multiple data values in a common location in memory,

and then allows you to use a numeric index value to reference each individual
stored value. You can use a loop to iterate through the index values.

3. You can use the statement to skip over the value ranges:
Click here to view code image

Q&A
Q. What happens if I make a mistake and define a condition for a loop that

is never met?
A. Because the condition will never evaluate to a true value, the loop will never

end. This is called an infinite loop and will cause your Arduino to get stuck
in the loop forever.

Q. Is it considered bad form to use break statements in loops?

135

A. Some programmers believe that you should never use statements in
loops and that you should try to write your loops to avoid using the
statement. However, the statement is there for a reason, and you may
run into situations where it makes perfectly good sense to use it.

Q. Is there a limit to how deep I can nest loops in the Arduino code?
A. No, you can have as many nested loops as you need; however, things do start

to get somewhat confusing after a couple of layers of loops, so be careful if
you go deeper than that.

136

Hour 8. Working with Strings

What You’ll Learn in This Hour:
 What are strings?
 Handling strings with C
 The Arduino way to handle strings
 Working with strings in your programs

One of the most confusing parts of the C programming language is working with
text. Unfortunately, the C language uses a complex way of handling text, which can
be somewhat confusing to beginner programmers. Fortunately, the Arduino
developers realized that, and helped by creating some built-in string-handling
features for the Arduino programming language. This hour first takes a look at how
the C language handles strings, and then demonstrates how it’s much easier to work
with strings in the Arduino environment.

What’s a String?
Whereas computers only understand and work with numbers, humans need words to
communicate ideas. The trick to interfacing computer programs with humans is to
force the computer to produce some type of output that humans can understand.
Any time you need your program to interface with humans, you need to use some
type of text output. To do that with a computer program requires the use of the
character data type.
The character data type stores letters, numbers, and symbols as a numeric value.
The trick comes in using a standard way of mapping numeric values to language
characters. One of the more popular character mapping standards for the English-
speaking world is the ASCII format.
With ASCII, each character in the English alphabet, each numeric digit, and a
handful of special characters, are each assigned a numeric value. The computer can
interpret the ASCII number representation of the character to display the proper text
based on the value stored in memory.
To store a character in memory, you use the data type:

When you use this statement, the Arduino doesn’t store the actual letter a in
memory; it stores a numeric representation of the letter a. When you retrieve the

 variable and display it using the function, the Arduino
retrieves the numeric value, converts it to the letter a, and then displays it.

137

The next step in the process is storing words and sentences. A string value is a
series of characters put together to create a word or sentence. The Arduino stores
the multiple characters required to create the word or sentence consecutively in
memory, then retrieves them in the same order they were stored.
The problem is that the Arduino needs to know just when a string of characters that
make up the word or sentence stored in memory ends. Remember, the individual
characters are stored as just numbers, so the Arduino processor has no idea of what
number in memory represents a character and what doesn’t.
The solution is null-terminated strings. In the C programming language, when a
string value is stored in memory, a value is placed in the memory location at the
end of the characters in the string value (this is called a null value). That way, the
Arduino processor knows that when it gets to the null value, the string value is
complete.
The next section shows just how to store and work with string values using the
standard C programming language.

Understanding C-Style Strings
As you saw in the preceding section, the trick to creating strings in the C
programming language is to store a series of characters in memory and then handle
them as a single value. In Hour 7, “Programming Loops,” you were introduced to
the idea of arrays. You can use character arrays to create and work with strings in
the C programming language.
To refresh your memory, an array is a series of values of the same data type stored
in memory, all associated with the same variable name. You can reference an
individual value in the array by specifying its index value in square brackets in the
variable name:

The examples in Hour 7 only used numeric values in arrays, but you can use the
same method with character values.
This section shows you how to use the C programming method to create and work
with strings in your Arduino programs.

Creating Character Strings
A string is nothing more than an array of character values, with the last array data
value being a to indicate the null terminator. You can create a string character
array using several different formats. To define a simple string, you just create an
array with the individual letters of the string, with a null character as the last array
value:
Click here to view code image

138

Notice that each character (including the space) is defined as a separate data
element in the array. Also, note that the array size that you define must be large
enough to hold all the characters in the string plus the terminating null character
(represented using the symbol). To retrieve the stored string value, you just
reference it by its array variable name:

Although this works, it is somewhat of a hassle to have to spell out each character
in the string as a separate data element in the array. Fortunately, the C language
provides a shortcut:
Click here to view code image

The C compiler knows to create an array out of the characters listed within the
double quotes and automatically adds the terminating null character at the end of the
array. However, just as with the long format, you must declare the size of the array
to be large enough to hold all the characters plus the null character.
Some C compilers (including the one used in the Arduino) allow you to initialize a
string array without defining the size:
Click here to view code image

The compiler automatically reserves enough space in memory to hold the declared
string characters and the terminating null character.

By The Way: Strings, Characters, and Quotes
You’ll notice in the examples that I used single quotes around the
individual characters in the array, but double quotes around the full
string value. That’s a requirement for the C language, so be careful
when defining character and string values!

When you initialize the string, you can make the array size larger than the initial
string value:
Click here to view code image

That allows you to change the string value stored in the variable later on in your
sketch code to something larger.

139

Watch Out: Overflowing String Values
You must take great care when working with character arrays. The C
compiler will allow you to store a value larger than the defined array
size without generating an error message. However, the extra
characters will “overflow” into the memory location for other stored
variables, causing interesting issues with your sketch.

Finally, you can declare a character array without initializing it with a value:

This reserves 20 bytes of memory for the string value storage. The downside to just
declaring a character array is that you can’t just assign a character array value to it.
Unfortunately, the C compiler can’t determine how to store the string value in the
reserved character array. However, some common functions available in the C
language provide ways for you to manipulate existing character arrays. The next
section shows how to do that.

Working with Character Arrays
After you’ve created a character array in memory, you’ll most likely want to be
able to use it in your Arduino programs. To reference the string as a whole, you can
just use the character array variable name. Here’s an example of how to do that.

140

 Try It Yourself: Displaying a String
To display stored string values in your Arduino sketches, you can use
the standard function. Follow these steps to
test that out:
1. Open the Arduino IDE, and then enter this code in the editor

window:
Click here to view code image

2. Save the sketch as sketch0801.
3. Click the Upload icon to verify, compile, and upload the sketch to

the Arduino unit
4. Open the serial monitor tool to view the output from your sketch.

The output of the sketch should show the two strings, each string on a separate line,
as shown in Figure 8.1.

141

FIGURE 8.1 Output from running the sketch0801 code.

Once you declare the character array for the string and assign it a value, you cannot
use standard assignment statements to change the character array like you would
with numeric variables.
Instead, you have to use some of the built-in C functions designed for manipulating
string values. Table 8.1 lists the string functions that the Arduino programming
language supports.

TABLE 8.1 The Arduino String Functions
Here’s an example of using the string function to change the value stored
in a string variable in an Arduino sketch.

142

 Try It Yourself: Working with String Functions
You can manipulate string values stored in memory within your sketch
code using the standard C language functions. Follow these steps to
run this example:
1. Open the Arduino IDE, and then enter this code into the editor

window:
Click here to view code image

2. Save the sketch as sketch0802.
3. Click the Upload icon to verify, compile, and upload the sketch to

the Arduino unit
4. Open the serial monitor tool to view the output from your sketch.

The output of the sketch should show the two strings, each string on a separate line,
as shown in Figure 8.2.

143

FIGURE 8.2 Output from running the sketch0802 code.

The sketch0802 sketch uses the function to return a random number
between 0 and 100. The statement checks to see whether the number is
less than 50, and uses the function to copy a message into the
variable. This shows that you can dynamically change the value stored in a
character array in your sketch, which can come in handy.

Watch Out: Copying Strings
Be careful when using the function to copy string values into
character arrays. It’s important to remember about the character array
size limitation. If you try to copy too large of a string value, you’ll
overflow the array area in memory.

Comparing Character Arrays
One of the more popular functions you’ll need to do with character arrays is to
compare them. You do that using the function. How you use it is a little
odd, though, so let’s work through an example of using it in your Arduino sketches.
The format of the function is fairly simple:

string1 string2

What’s tricky about the function is the value that it returns:
 A if the two string values are equal
 A negative number if string1 is less than string2

144

 A positive number if string1 is greater than string2
A common mistake made by beginning C programmers is to write something like
this:
Click here to view code image

The problem with this statement is that if the two string values are equal, the
 function returns a value, which the statement interprets as a

 value! If you want to compare two character arrays for equality, you want
to use the following:
Click here to view code image

Now the Arduino will run the “then” code block if the two string values are equal.

Introducing the Arduino String Object
Working with the C language character arrays to handle text in your sketches is not
for the faint of heart. Quite a lot of things can (and often do) go wrong if you’re not
careful.
Fortunately, the Arduino developers took pity on the novice programmers that
Arduino users often are and worked hard to create an easier way to create and
work with strings in our Arduino sketches. Instead of using an array of character
values to handle strings, the Arduino developers created a robust class object that
does most of the hard work for us behind the scenes. This section shows you how to
use the object to make working with strings much easier.

The String Class
The Arduino class allows us to easily create and work with just about any
type of string value without the hassles involved with using C-style character
arrays.
The easiest way to create a object is to declare a variable using the

 data type and assign it a value:
Click here to view code image

The object also has a constructor method named that can
convert just about any data type value into a object:
Click here to view code image

145

The result of all these declaration statements is a object. The last example
defines the number base of the value used as the first parameter.
One nice feature of the class is that unlike character arrays, you can use it
in normal assignment statements:

The value stored in the object changes in the assignment statement
without you having to worry about string overflow; the Arduino takes care of that
for you. Let’s take a look at an example of using the object in an Arduino
sketch.

146

 Try It Yourself: Manipulating String Objects
In this example, you use the object to manipulate a string
value within your Arduino sketch. Just follow these steps:
1. Open the Arduino IDE, and then enter this code into the editor

window:
Click here to view code image

2. Save the code as sketch0803.
3. Click the Upload icon to verify, compile, and upload the code to

your Arduino.
4. Open the serial monitor to view the output of your sketch.

The sketch creates three objects and manipulates the values in them.
Notice in line 7 that the code replaces the value originally stored in the
variable with a longer string value without causing any overflow problems. Lines 9
and 12 demonstrate how to concatenate multiple string values into a single value.
When you open the serial monitor, you should see the output shown in Figure 8.3.

147

FIGURE 8.3 The output from the sketch0803 code.

Once you declare a object, you can use many different handy methods to
manipulate those objects. The next section shows how to do that.

Various String Object Methods
After you create a object, you can use several different methods to
retrieve information about the stored object. Table 8.2 shows these
methods.

148

TABLE 8.2 The String Object Methods
The object methods make working with strings a breeze. Remember the
ugly function we had to use with the character array method? The

149

 function solves that silliness. Here’s an example of how to use that in
your sketches:
Click here to view code image

If you run this code in your sketch, the first condition check will fail,
because the two string values aren’t exactly the same. However, using the

 function allows us to compare the string values without
regard to case. That comes in handy if you need to check answers entered by users,
such as yes/no responses to queries.

Manipulating String Objects
Besides the string methods that return answers based on the string value, a handful
of methods actually alter the existing string value stored in the object.
Table 8.3 shows the different class methods you can use to manipulate a

 object.

TABLE 8.3 The String Object Manipulation Methods

All of these functions enable you to manipulate the string value stored in a variable
by changing the characters stored in the object.

Watch Out: Replacing String Values
Be careful with the string manipulation methods, because they replace
the original string value with the result. The original string value will
be lost in the process.

To get an idea of just how this works, let’s use the method in an
example.

150

 Try It Yourself: Manipulating a String Value
This example changes the value of a string to convert the characters to
all uppercase. Just follow these steps:
1. Open the Arduino IDE, and then enter this code into the editor

window:
Click here to view code image

2. Save the file as sketch0804.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino.
4. Open the serial monitor to restart the sketch and view the output.

You should see the output shown in Figure 8.4 in your serial monitor window.

151

FIGURE 8.4 Output from the sketch0804 code.

This example demonstrates how you can manipulate a object value using
the methods in the object class.

Summary
This hour explored the world of using strings in your Arduino sketches. The C style
of strings requires that you create a character array to store the individual
characters in the string, terminated with a null character. This method can be
cumbersome to work with, and can cause problems if you’re not careful. You then
learned how to use the Arduino object to create and work with string
values. With objects, you don’t have to worry about the string size, plus
there are many more functions that allow you to easily compare and manipulate
string values, which makes working with text a lot easier.
The next hour delves into the world of data structures. Sometimes you’ll want to be
able to group data elements together as a single object, such as for storing data.
Data structures allow you to do just that.

Workshop

Quiz
1. Which class method should you use to emulate the

character array function?
A.
B.

152

C.
D.

2. The Arduino compiler won’t allow you to store more characters in a
character array than the size of the array you defined. True or false?

3. How can you check whether a user answers YES or yes to a question?

Answers
1. The method returns a if the two string values match, a

negative value if the string is smaller than the compared value, and a positive
value if the string is larger than the compared value. This behavior emulates
the function used for character arrays.

2. False. The compiler will allow you to store more characters in the array
memory location than the size you defined for the character array. The extra
characters will “overflow” into the memory location for other variables,
causing problems in your programs, so be careful.

3. Use the method to compare the answer string to a
yes string value.

Q&A
Q. Does it matter whether I use a character array or a String object in

my sketches?
A. For functional purposes, no; both methods will work the same. However,

 objects do take up more memory space than character arrays. So if
you’re writing a large sketch and are tight on memory, you might want to use
character arrays.

Q. Can I create an array of character arrays and then access each string
value separately?

A. Yes, but that requires a feature called pointers, which is discussed in Hour
11, “Pointing to Data.”

153

Hour 9. Implementing Data Structures

What You’ll Learn in This Hour:
 What data structures are
 How to create a data structure in C
 How to use data structures in your Arduino sketches
 Using data unions in your sketches

Data is the core of every Arduino sketch. Whether you’re monitoring values from
analog or digital sensors, or sending data out a network interface, data management
can be one of the biggest chores of writing sketches. The Arduino programming
language provides some level of data management features that help you organize
the data that you use in your sketches. In this hour, we explore two different data
management features: structures and unions.

What’s a Data Structure?
In Hour 5, “Learning the Basics of C,” you learned how to use variables to store
data in your Arduino sketches. Each variable stores one data value, of a specific
data type, in a predefined location in memory. Although variables are useful,
sometimes working with individual variables can get a bit complicated with large
amounts of data.
Suppose, for example, that you want to track the data from both an indoor and
outdoor temperature sensors at various times in the day. Using variables, you’d
have to create a separate variable for each temperature value at each time of the
day you want to use:

The more time samples you want to store, the more data variables you have to
create. You can see that it won’t take long before the number of variables your
sketch has to work with starts getting out of hand.
In Hour 7, “Programming Loops,” you learned how to create array variables. That
helps some, because you can at least use the same variable name to store multiple
data values. With array variables, you can store the related temperature samples in
the same array:

154

That helps cut down on the number of variables you have to work with from six to
three, but now you have to keep track of which array index represents which
temperature sensor.
Data structures allow us to define custom data types that group related data
elements together into a single object. Using a data structure, you can group the
multiple sensor values together into a single data object that your program can
handle as a single entity. Instead of referencing the individual data elements using
an index, you can use variable names to make it obvious which values are which.
This proves when storing and retrieving data in databases, files, or just in memory.
The Arduino handles data structures as a single block in memory. When you create
a data structure, the Arduino reserves space in memory based on all the data
elements contained in the data structure. Creating, storing, and reading data
structures is a simple operation that takes minimal coding effort. The next section
demonstrates how to start working with data structures.

Creating Data Structures
Before you can use a data structure in your sketch, you need to define it. To define a
data structure in the Arduino, you use the statement. The generic format
for the statement is as follows:

name
variable list

The name defines a unique name used to reference the data structure in your sketch.
The variable list is a set of variable declarations to define the variables
contained within the data structure.
Because the data structure definition is part of the variable declarations, you must
place it at the top of your Arduino sketch, either before you define the
function or inside the function. Here’s an example of a simple data structure
definition:

This data structure definition declares three variables as part of the structure:
 A character array variable to store a date value
 An integer variable to store the indoor temperature from the sensors

155

 A second integer variable to store the outdoor temperature from the sensor
Notice that you can mix and match the data types stored in a data structure. You
don’t have to use all the same data types in the structure.
This statement just defines the data structure format; it doesn’t actually
create an instance of the data structure for storing data. To do that, you need to
declare individual variables using the data structure data type:

name variable

This statement declares a variable that uses the data structure assigned to the name
structure that you defined earlier. For example:
Click here to view code image

These three statements declare three separate instances of the data
structure: , , and . All the
variables contain all the data elements defined for the data structure
and store separate values for those elements.
You can use a shortcut format to declare your sketches in one statement:
Click here to view code image

This defines the structure and assigns it to variables all at one time.

By The Way: Unnamed Data Structures
You can also define a data structure and declare variables that use the
data structure without assigning a name to the data structure:

Click here to view code image

However, if you do that, because there isn’t a data structure name
associated with the structure, you can’t declare any other variables in
the sketch with that data structure.

156

After you declare the data structure variables, you’ll want to assign values to them
and use them in your sketch. The next section covers how to do just that.

Using Data Structures
You can assign values to the individual data elements in a data structure in a couple
of different ways. One way is to set the initial values of the data elements when you
declare the structure variable:
Click here to view code image

With this format, you just define the data elements values inside an array, using
braces to create the array. When you define the array, it’s important that you list the
data values in the same order that you defined the data elements in the
declaration.
After assigning values to the data structure, you can reference the individual data
elements using this format:

structname.dataname

where structname is the data structure variable that you instantiated, and
dataname is the name of the specific data element defined in the structure. For
example, to retrieve the outdoor temperature from the morning, you use the
following:

You can use this format to both assign data values to the data elements or to retrieve
the data currently stored in the data element. For example, to retrieve the data
element values stored in the data structure, you use code like this:
Click here to view code image

The other way to assign values to data elements in a data structure is to use
separate assignment statements for each data element:
Click here to view code image

157

This example uses the function to copy a text value into the character
array, showing that you can use the data structure element anywhere you’d use a
variable.
Let’s run through a quick example of using simple data structures in an Arduino
sketch.

 Try It Yourself: Using Data Structures
In this example, you create a data structure to store multiple values to
simulate a sensor reading, and then display the data structure values in
your sketch output. To run the example, just follow these steps:
1. Open the Arduino IDE, and then enter this code in the editor

window:
Click here to view code image

2. Save the sketch as sketch0901.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor window to view the output from the sketch.

The sketch0901 sketch creates a simple data structure, instantiates it in the

158

 variable, and then assigns values to each element in the data
structure. It then outputs the values of the data structure elements using the standard

 and functions. Figure 9.1 shows the output
you should see in the serial monitor window.

FIGURE 9.1 Output from running the sketch0901 sketch.

Manipulating Data Structures
The great thing about storing data in data structures is that now you can handle the
data structure as a single object in your sketch code. For example, if you need to
copy the data values from one object to another, instead of having to
copy the individual data elements, you can copy the structure as a whole:

The Arduino knows to copy the entire data structure from the
variable memory location into the variable memory location. Here’s
an example that shows this in action.

159

 Try It Yourself: Copying Data Structures
In this example, you create a data structure, instantiate two
occurrences of the data structure, and then copy one occurrence to the
other. Here are the steps to do that:
1. Open the Arduino IDE, and then enter this code into the editor

window:
Click here to view code image

2. Save the file as sketch0902.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor to run the sketch and view the output.

The data values assigned to the data structure should be the same that
you assigned to the data structure. That shows the assignment
statement copied the full data structure. Figure 9.2 shows the output you should see
in the serial monitor.

160

FIGURE 9.2 Output from running the sketch0902 sketch.

Arrays of Structures
You’re not limited to creating a single variable data structure; you can also create
arrays of a data structure:

This creates an array of 10 instances of the data structure. You can
then reference each individual instance of the data structure using the standard array
index format:

Now you can easily create a loop to iterate through all the instances of your data
structure, just changing the index value for each instance. With this technique, you
can group as many data structure instances as you need to work with in your sketch.
Let’s go through an example that demonstrates that.

 Try It Yourself: Using Data Structure Arrays
In this example, you build a sketch that stores simulated sensor data
into an array of data structure variables. Here are the steps to follow:
1. Open the Arduino IDE, and then enter this code into the editor

161

window:
Click here to view code image

2. Save the file as sketch0903.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor to run the sketch and view the output.

Figure 9.3 shows the output that you should see in your serial monitor.

162

FIGURE 9.3 Output from the sketch0903 code.

Take some time to go over the code in the sketch0904 file; there are a few things to
look at in this example. First, the example demonstrated how to use structure
arrays, and it also used a object as part of the data structure:

Then, I used a little bit of trickery to generate a date for each sample:
Click here to view code image

Because I stored the date value as a object in the data structure, the value
assigned to it could be a structure. I took advantage of the
method to automatically convert the variable integer value into a string
value. Making it easy to incorporate the value into the sample date.
Data structures take some time to get used to, but they’re well worth the effort
because they can save you quite a bit of typing if you’re trying to work with lots of
data in your sketches.

163

Working with Unions
Thanks to the C programming language, you can use one more data trick in your
Arduino programs. Unions allow you to specify a variable that you can use to store
a single value, but as more than one data type. This might sound confusing, and it
can be somewhat odd trying to figure out just what’s going on with using unions in
your sketches.
First, let’s take a look at how to create a union:

// variable list
unionname

The variable list used in the union differs from the variable list you use in a
defining a data structure. Instead of defining multiple values, it represents the
different data types the union can use to store a single value. The Arduino creates
only a single memory location for the union, reserving only enough memory to store
the largest data type specified.
The union variable only stores one data value, using the data type of the variable
you specify. Let’s take a look at an example of using a union. In this example, we’ll
assume we have a project with two input sensors. One sensor is a digital input that
returns integer values. The other sensor is an analog input that returns floating-point
values.
To define the union, you use this format:

In this example, we don’t have to worry about storing both sensor values at the
same time; only one sensor will return a value at a time.
You can store the either the digital or analog input value using the
union variable. However, whatever one you store, you have to keep track to make
sure that you retrieve the value from the union using the same data type. For
example:
Click here to view code image

If you store the value using the union data element, you must
retrieve it using the data element. If you try to retrieve the value
using the variable, you’ll get a value, but it won’t be the correct

164

format.
The trick is that the union variable doesn’t contain two separate values; it just
points to one memory location that’s large enough to hold the largest of the defined
data types. If you store the value as an integer and try to retrieve it as a float data
type, you won’t get the correct result.
Let’s go through an example to help reinforce this.

165

 Try It Yourself: Experimenting with Unions
In this exercise, you store a value into a union that supports two data
types and then try to retrieve the value using both data types. Here are
the steps to follow for the experiment:
1. Open the Arduino IDE, and then enter this code into the editor

window:
Click here to view code image

2. Save the file as sketch0904.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor tool to run the sketch and view the output.

Figure 9.4 shows the output you should see from running the sketch0904 code.

166

FIGURE 9.4 Output from the sketch0904 code.

When you store an integer value into the union, the variable
contains the correct value. However, you can still retrieve the
variable value, but it contains an incorrect value. Likewise, when you store a float
value in the union, the variable contains the correct value, and the

 variable contains an incorrect value.
Unions can come in handy, but you have to be very careful when using them in your
Arduino sketches.

Summary
This hour covered some of the more complex data handling topics in the Arduino
programming language. Data structures allow us to group multiple variables
together into a single object that we can handle in our sketches. You can copy
structures as a single object, easily copying multiple data elements in one statement.
You can also create an array of data structures, which allows you to iterate through
all the instantiated values. This hour also discussed using unions in your Arduino
sketches. A union allows you to store multiple data types in a single memory
location, as long as you retrieve the data using the same data type as you store it.
The next hour covers how to create your own functions for your Arduino sketches.
By creating functions, you can place code that you commonly use in your sketches
in one place to help cut down on typing.

167

Workshop

Quiz
1. If you have a set of data values that you want to handle together, what’s the

best way to store them and access them in your sketch?
A. Use a union
B. Use an array
C. Use a data structure
D. Use multiple variables

2. If you store a value in a union using one data type and try to retrieve it using
another data type, you’ll get an error message. True or false?

3. How do you define an array of structures?

Answers
1. C. A data structure is designed to allow you to handle a group of variable

values as a single object in your sketches. That makes it easier to manage the
data that you have to work with.

2. False. The Arduino will retrieve the value stored in memory and try to
interpret the value using the other data type, which won’t give a meaningful
answer. Be careful when using unions; it’s easy to make a mistake.

3. When you instantiate a new structure variable, you place the size of the array
in square brackets after the array variable:

Q&A
Q. Is there a limit to how many data elements I can place in a data

structure?
A. Not in theory. You can store as many data elements in a structure as

necessary. Just remember that they each take up space in memory, and there is
a limit to how much memory is in the Arduino.

Q. Can I use a union to convert a value from one data type to another?
A. No. The Arduino doesn’t convert the data type stored in the memory location

to the type you request. It assumes that the data stored in the memory location
is in the proper format as the request and interprets it as such. If the data type
is not correct, the resulting value will be incorrect.

168

Hour 10. Creating Functions

What You’ll Learn in This Hour:
 How to create your own functions
 Retrieving data from functions
 Passing data to functions
 Using functions in your Arduino sketches

While writing Arduino sketches, you’ll often find yourself using the same code in
multiple locations. With just a small code snippet, it’s usually not that big of a deal.
However, rewriting large chunks of code multiple times in your Arduino sketches
can get tiring. Fortunately, Arduino provides a way to help you out by supporting
user-defined functions. You can encapsulate your C code into a function and then
use it as many times as you want, anywhere in your sketch. This hour discusses the
process of creating your own Arduino functions, and demonstrates how to use them
in other Arduino sketch applications.

Basic Function Use
As you start writing more complex Arduino sketches, you’ll find yourself reusing
parts of code that perform specific tasks. Sometimes it’s something simple, such as
retrieving a value from a sensor. Other times, it’s a complicated calculation used
multiple times in your sketch as part of a larger process.
In each of these situations, it can get tiresome writing the same blocks of code over
and over again in your sketch. It would be nice to just write the block of code once
and then be able to refer to that block of code anywhere in your sketch without
having to rewrite it.
Arduino provides a feature that enables you to do just that. Functions are blocks of
code that you assign a name to and then reuse anywhere in your code. Anytime you
need to use that block of code in your sketch, you simply use the function name you
assigned to it (referred to as calling the function). This section describes how to
create and use functions in your Arduino sketches.

Defining the Function
The format that you use to create a function in Arduino doesn’t use a keyword as
some other programming languages. Instead, you declare the data type that the
function returns, along with the function name with parentheses:

datatype funcname
code statements

169

The funcname defines the name of the function that you use to reference it in your
Arduino sketch. Function names follow the same rules as variable names, although
often developers like to start functions with capital letters to help differentiate them
from variables. The datatype defines the data type of the value the function
returns (more on that later).
You must surround the code statements that you include in the function with opening
and closing braces. This defines the boundaries of the code that the Arduino runs
for the function.

Watch Out: Placing the Function Definition
Make sure that you define the function outside of the and

 functions in your Arduino sketch code. If you define the function
inside another function, the inner function becomes a local function,
and you can’t use it outside of the outer function.

To create a function that doesn’t return any data values to the calling program, you
use the data type for the function definition:
Click here to view code image

After you define the function in your Arduino sketch, you’re ready to use it.

Using the Function
To use a function that you defined in your sketch, just reference it by the function
name you assigned, followed by parentheses:
Click here to view code image

When the Arduino runs the sketch and gets to the function line, it jumps to the
function code, runs it, and then returns back to the next line in main program to
continue processing. Let’s take a look at an example that demonstrates how this
works.

170

 Try It Yourself: Using Functions
For this example, you create a function in your Arduino sketch, and
then use it in the function code for the sketch. To create the
example, follow these steps:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

2. Save the sketch code as sketch1001.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Start the serial monitor to run and view the output from your sketch.

The example creates a simple function called that outputs a line of
text to the serial monitor. The setup function displays some text so that you know
that it’s starting, calls the function, and then displays some more text out so that you
know the sketch returned back to the main program. If all goes well, you should see
the output shown in Figure 10.1.

171

FIGURE 10.1 The output from the sketch1001 code.

Congratulations, you’ve just created a function. If you have to repeat a long
message in your sketch, such as help information, you can create a function to do
that, and just call the sketch every time you need the output.

Returning a Value
You can do a lot more in functions than just output text. Functions can process any
statements that the main program can. This allows you to create functions to process
repetitive data calculations, and return a result from the calculations.
To return a value from the function back to the main program, you end the function
with a statement:

value

The value can be either a constant numeric or string value, or a variable that
contains a numeric or string value. However, in either case, the data type of the
returned value must match the data type that you use to define the function:

If you use a variable to hold the returned value, you must declare the variable data
type as the same data type used to declare the function:

172

To retrieve the value returned from a function, you must assign the output of the
function to a variable in an assignment statement:

Whatever data value the function returns is assigned to the variable in your
sketch.
Let’s take a look at an example of using a return value from a function in an Arduino
program.

 Try It Yourself: Returning a Value from a Function
In this example, you create a function to perform a mathematical
operation, and then return the value back to the main program. Here
are the steps to do that:
1. Open the Arduino IDE and enter this code into the editor window:

Click here to view code image

2. Save the sketch as sketch1002.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor tool to view the output from the sketch.

This example sketch creates a simple function called , which performs a
mathematical calculation and then returns the value back to the program as an

173

integer data type. The main sketch code in the function calls the
function and assigns the returned value to the value variable. When you run this
sketch, you should get the output shown in Figure 10.2.

FIGURE 10.2 The output from running the sketch1002 code.

Returning a value from a function is handy, but you’ll usually want to be able to
perform some type of operation in the function to allow values to also be passed
into the function. The next section shows how to do that.

Passing Values to Functions
There’s just one more piece to making the most use out of functions in your Arduino
sketches. Besides returning a value from a function, you’ll most likely want to be
able to pass one or more values into the function for processing.
In the main program code, you specify the values passed to a function in what are
called arguments, specified inside the function parentheses:

The and value arguments are listed separated by a comma. If you just have
one argument to pass, you don’t use the comma.
To retrieve the arguments passed to a function, the function definition must declare
what are called parameters. You do that in the main function declaration line:
Click here to view code image

The parameter definitions define both the data type of the parameter, and a variable

174

name. The argument data values are assigned to the parameter variable names in the
same order that they’re listed in the function declaration. In this example, therefore,
the variable is assigned the value and the variable is assigned
the value inside the function code.
You can use the parameter variables inside the function just as you would any other
variable:
Click here to view code image

After you define the function with parameters, you can use the function as often as
you need in your sketch code, passing different argument values to the function to
retrieve different results. Let’s take a look at an example of doing just that.

175

 Try It Yourself: Passing Arguments to Functions
In this example, you create a function that you can use multiple times in
your Arduino sketch, passing different argument values and retrieving
different results. To try out this example, follow these steps:
1. Open the Arduino IDE and enter this code into the editor window:

Click here to view code image

2. Save the sketch as sketch1003.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor to view the output from the sketch.

The function retrieves the two parameters passed to the function, multiplies
them, and then assigns the result to the variable. The function then
uses the statement to return the result back to the calling code. The

 function code uses the function twice, with two different sets of
values. Figure 10.3 shows the result you should see in your serial monitor after
running the sketch.

176

FIGURE 10.3 The serial monitor output from running the sketch1003 code.

Now you have all the tools you need to create and run your own functions in your
Arduino sketches. You’ll want to know about just a couple of other items to help
make your life a little easier when working with functions. One of those is how to
declare variables in your sketch, which the next section discusses.

Handling Variables in Functions
One thing that causes problems for beginning sketch writers is the scope of a
variable. The scope is where the variable can be referenced within the sketch.
Variables defined in functions can have a different scope than regular variables.
That is, they can be hidden from the rest of the sketch.
Functions use two types of variables:

 Global variables
 Local variables

The following sections describe how to use both types of variables in your
functions.

Defining Global Variables
Global variables are variables that are valid anywhere within the sketch code. If
you define a global variable in the main section of your sketch, outside of the
functions, you can retrieve its value inside any function in the sketch.
Let’s take a look at a simple example of defining a global variable:
Click here to view code image

177

Notice in the sketch, the variable is defined before any of the functions are
defined. That makes it a global variable, and you can use it anywhere in the sketch
code, including the and functions.
This can be a dangerous practice, however, especially if you intend to use your
function in different sketches. The function code assumes the global variable exists,
and will fail if it doesn’t.
Another danger of using global variables is if you use a global variable inside a
function for a different purpose than what you use it outside of the function. If the
function changes the global variable value and other functions don’t expect that, it
might cause problems in your sketch. Here’s an example of this problem:
Click here to view code image

178

In this example, the and variables are defined as global variables,
and can be used in any function in the sketch. The variable was used in both
the and function, but for different purposes.
In the function, the variable is set to a static value of ; however, it’s
also used in the function as a temporary variable, changing the value for a
calculation. When the sketch cod returns back to the function, the value
stored in the variable is now different. If you run this example in the serial
monitor, you’ll get the following output:

The change made to the variable in the function affected the value in
the entire sketch, not just in the function. If you were expecting the
variable to still be set to , you’d run into a problem with your code.
If you do need to use temporary variables inside a function, there’s a better way to
do that than using global variables, as shown in the next section.

Declaring Local Variables
Instead of using global variables in functions, which run the risk of conflicting with
other functions, you can use a local variable. You declare a local variable inside
the function code itself, separate from the rest of the sketch code:

Once you declare the variable as a local variable inside the function, you
can use it only inside the function where you declare it. If you try using it in another
function, you’ll get an error:
Click here to view code image

179

Another interesting feature of local variables is that you can override a global
variable with a local variable:
Click here to view code image

In this example, the variable is declared a second time in the
function as a local variable. That makes it separate from the variable that is
declared as a global variable. Now if you run this sketch, you’ll get the following
output:

So, the original value assigned to the global variable remained intact after
the function.

Watch Out: Overriding Global Variables
You can override a global variable with a local variable, but it’s not a
good practice. When you use the same variable name for both a global
and local variable, it can make trying to follow the sketch extremely
difficult.

180

Calling Functions Recursively
One feature that local function variables provide is self-containment. A self-
contained function doesn’t use any resources outside of the function other than
whatever variables the sketch passes to it as arguments.
This feature enables the function to be called recursively, which means that the
function calls itself to reach an answer. Usually, a recursive function has a base
value that it eventually iterates down to. Many advanced mathematical algorithms
use recursion to reduce a complex equation down one level repeatedly until they
get to the level defined by the base value.
Let’s walk through an example that uses a recursive function to calculate the
factorial of a number.

 Try It Yourself: Creating a Factorial Function
A factorial of a number is the value of the preceding numbers
multiplied with the number. So, to find the factorial of 5, you perform
the following equation:

Using recursion, the equation is reduced down to the following format:

Or in English: The factorial of is equal to times the factorial of
. By definition, the factorial of 1 is 1, so that’s the base value the

recursion will stop at. This can be expressed in a simple recursive
function:

Click here to view code image

Now just follow these steps to use that function in a sketch:
1. Open the Arduino IDE and enter this code into the editor window:

Click here to view code image

181

2. Save the sketch code as sketch1004.
3. Click the Upload icon to verify, compile, and upload the sketch into

your Arduino unit.
4. Open the serial monitor to view the output of the sketch.

Figure 10.4 shows the output that you should see in the serial monitor.

182

FIGURE 10.4 Output from running the sketch1004 code.

The recursive function iterates through the function until it gets to the
base value for the factorial and then returns the final result back to the main calling
program. Because the function is completely self-contained, you can use the

 function in any sketch that requires a factorial calculation.

Summary
This hour showed how to create and use functions in your Arduino sketches. You
can define functions to help reduce the amount of coding you have to repeat in your
sketch. You can define a function to return value back to the main program, or it can
just return back with no return value. You can also pass one or more argument
values to a function to be used inside the function code.
The next hour covers one of the more complex features of C programming that you
can also use in your Arduino programs. C pointers can get confusing, but once you
get the hang of them, they can come in handy in your sketches.

Workshop

Quiz
1. Which format is correct for defining a function in an Arduino sketch?

A.
B.
C.
D.

183

2. You can use a variable name as both a global variable and a local variable
and the values will be stored in the same location. True or false?

3. What feature of functions can you use to reduce a complex formula down to
multiple iterations of decreasing complexity to return an answer?

Answers
1. D. In the Arduino programming language, you must define the data type the

function returns when you declare the function. The data type indicates
the function doesn’t return a value.

2. False. The Arduino will reserve a separate memory location for the local
variable from the global variable, and will treat the two variables as separate
objects.

3. Recursion allows a function to call itself with a subset of the equation,
reducing the problem down to a base result. Once the recursion reaches the
base result, the function returns the answers back through the iterations to
return the answer.

Q&A
Q. Can a function call other functions inside the function code?
A. Yes, you can call other functions from inside a function.
Q. Is there a limit to how many times a recursive function can call itself?
A. No, in the next hour, ion can continue on as many times as necessary. Of

course, this can lead to an endless loop of recursion, so be careful to make
sure that your recursive functions have a base value to end on.

Q. Can you write a library to store common functions and then reference
that library in any sketch?

A. Yes, this is called a function library. You’ll learn how to create and use a
function library later on in Hour 13, “Using Libraries.”

184

Hour 11. Pointing to Data

What You’ll Learn in This Hour:
 What C pointers are
 How to define a pointer in your sketch
 How to use pointers
 When to use pointers in different sketch environments

By far, one of the most complicated topics in the C programming language is data
pointers. Although it’s quite possible that you’ll never have to use them in your
sketches, data pointers can allow you to do some pretty fancy things in your
Arduino sketches, sometimes reducing the amount of code you have to write. This
hour delves into the world of C data pointers and shows how you can use them in
your Arduino sketches.

What Is a Pointer?
Hour 5, “Learning the Basics of C,” showed how to use variables in your Arduino
sketches for storing data in memory. When you define a variable in your sketch, the
Arduino system selects a location in the static random-access memory (SRAM) to
store the data value that the variable represents.
Most of the time, we don’t care where the Arduino stores the data values in
memory, just as long as it can keep track of the data for us. However, it can come in
handy knowing where in memory the Arduino stored the variable so that you can
directly access the data yourself, sometimes using less code.
To do that, the C programming language provides pointers. Pointers allow us to
take a peek under the hood and see just where the Arduino stores the data in our
sketches, and then use that information to directly access your data.
You use two operators to handle pointers in Arduino sketches:

 & (called the reference operator)
 * (called the dereference operator)

The reference operator returns the memory location where the Arduino stores a
variable value. Just place the reference operator in front of any variable to return
the memory address where the Arduino stores the variable’s value:

The variable now contains the memory address location where the Arduino
placed the test variable. The problem is that the Arduino returns the memory
address as a special value. This is where the dereference operator comes into play.

185

You use the dereference operator to identify a pointer variable used to store
memory locations:

The pointer variable now contains a value that represents the memory location
where the variable value is stored. You can display that value using the

 function just as you would any other variable value. Memory
locations are often displayed as hexadecimal values. To do that, just add the
parameter in the function:

Notice that I declared the variable using the same data type as the variable that
it points to in memory. There’s a reason for that, as discussed a little later on in this
hour. However, because of that, if you need to retrieve the memory locations of
different variables of different data types, you should use the appropriate data type
for each associated pointer:
Click here to view code image

The and variables each contain the memory address location for the
individual data variable they point to. Let’s practice handling pointers and
displaying them in the serial monitor.

186

 Try It Yourself: Finding Your Data in Memory
You can use the reference operator in your Arduino sketch to find the
memory location the Arduino uses to store a variable value. Here’s an
experiment you can run to test this:
1. Open the Arduino IDE and enter the following code into the editor

window:
Click here to view code image

2. Save the sketch as sketch1101.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor to run the sketch and view the output.

When you run sketch1101 and look at the output in the serial monitor, you’ll see the
actual memory locations where your Arduino stores each variable value. Figure
11.1 shows the output from my Arduino unit. (Your memory locations may vary
from mine.)

187

FIGURE 11.1 The output from sketch1101 showing the memory locations.

By The Way: Printing Pointers
Unfortunately, the function in the Arduino code
doesn’t support printing pointer values. To get around that, the
sketch1101 code stores the output in a character array buffer using the

 C function. The code tells the Arduino to output the
value in hexadecimal notation.

You may see that the Arduino placed the variables in sequence within the memory
area. (There should be enough separation between each location to hold the number
of bytes required for each data type: 2 bytes for the integer value, and 4 bytes for
the floating-point value.)

Working with Pointers
Now that you’ve seen the basics of how the reference and dereference operators
work, let’s take a look at how to use them in sketches. This section walks through
the details of how to use pointers in sketches.

Retrieving Data Using a Pointer
Once you have a memory location stored in a pointer variable, you can use that
information to extract the value stored at that location. You just use the dereference
operator to do that:

188

The pointer variable contains the memory address for the variable. To
retrieve the value stored at that memory location, just use the dereference operator
on the variable. The assignment statement assigns the value stored in
the memory address pointed to by the pointer variable to the variable.
The variable will now have to value .

Storing Data Using a Pointer
Likewise, you can assign a value to a memory location using the dereference
operator:

The pointer variable points to the memory location used to store the
variable value. When you assign a value to the dereferenced memory location, this
places the value into the memory location. After this code runs, the
variable will contain the value of .

Using Special Types of Pointers
You can run into a couple of special situations when using pointers. This section
walks through two situations that might seem odd but that can come in handy when
using pointers in your Arduino sketches.

Null Pointers
When you declare a pointer but don’t initialize it to a specific memory location, the
pointer may or may not have an initial value assigned to it by the Arduino. That can
cause issues in your sketch if you’re not careful. One way to avoid that is to declare
a null pointer. A null pointer is set to a value of , which doesn’t represent a valid
location in memory. You do that using the special label in C:

The value assigns a value of to the pointer as the initial value.
One benefit of initializing an empty pointer to the value is that it allows you
to easily check to see whether a pointer is in use or not in your sketch code by using
an condition check:

189

If the pointer has a value assigned to it, it returns a value from the
 condition check.

Void Pointers
Another pointer trick that can come in handy is to use the data type when
declaring a pointer:

This is called a void pointer. Because there isn’t a data type associated with the
pointer, you can use the same pointer variable for storing the memory address of
different data type variables:
Click here to view code image

You can use the void data type to represent a pointer if you’re not sure of the
specific data type of the data you need to point to. However, that does limit what
you can do with the pointer somewhat. When the Arduino knows the data type that
the pointer points to, you can use that information to perform some fancy data
manipulation. The next section shows how to do that.

Pointer Arithmetic
One popular use of pointers in the C programming language is manipulating values
stored in an array variable. If you remember from Hour 7, “Programming Loops,”
array variables store multiple data values sequentially in memory, with each
individual data value referenced using an index value. For example:
Click here to view code image

You reference a specific data value stored in the array variable using the index
value between the square brackets. The index values start at , and go to the end of
the array data values.
Because pointer variables point to locations in memory, you can use a pointer to
point to the location of the start of the array variable in memory:

190

This line uses the dereference operator to return the memory location where the
Arduino stores the first data value in the test array.
Now here’s where the data type for the pointer comes into play. If you increment the

 value by one, the Arduino actually makes it point to the next data element in
memory for that data type. Thus, if you do this:

The variable will now point to the memory location where the
array variable value is stored.
Now here’s the really cool part. The pointer arithmetic works for any data type you
use. If you create an array of float values and create a pointer to it
Click here to view code image

the pointer arithmetic increments the pointer to the next floating-point number in the
array, based on the size of the data type. So, when you use the statement

the Arduino skips to the next value stored in the array.
This feature allows you to iterate through an array of any data type without using an
array index value. Let’s go through an example of doing that in an Arduino sketch.

191

 Try It Yourself: Using Pointers with Arrays
This example uses a pointer to create an array of integer values, and
then uses the pointer to iterate through the stored values. Here are the
steps to run the example:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

2. Save the code as sketch1102.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor to run the sketch and view the output.

Figure 11.2 shows the output that you should get from running the sketch.

192

FIGURE 11.2 Output from running the sketch1102 code.

We were able to store values in the array by directly accessing the individual data
elements using the pointers. The sketch code uses one line that you may not be
familiar with:

We defined the test variable as an array, but in this statement we don’t use the index
value for the array. This format is a shortcut to using the reference operator with the
array variable:

By referencing just the array variable name without an index value, the Arduino
knows you’re referencing the memory location instead of a value in the array.

Strings and Pointers
Another popular use of pointers is working with character array string values. Just
like a numeric array, the pointer can reference the starting memory location of the
character array. You can use this for a couple of tricks.

Using Pointers for String Manipulation
First, you can use a pointer to reference the individual values in the character array
to perform operations on an individual character instead of the entire string. To
demonstrate this, let’s go through an example of using pointers to copy a character
array string one character at a time.

193

 Try It Yourself: Using Pointers to Copy a String
You can use pointers to reference individual characters within a string
value in your sketches. This example defines two strings, and then uses
two pointers to copy the characters from one array into the other.
Follow these steps to see the example in action:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

2. Save the sketch as sketch1103.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor tool to run the sketch and view the output.

The sketch uses the and pointers to directly access the individual
characters within both character arrays. In the loop, the code copies the
character from one string into the other, and then increments both pointers. Because
we know the string value terminates with a character, we just look for that
character in the condition. Figure 11.3 shows the output you should see in
the serial monitor window.

194

FIGURE 11.3 Output from copying a character array using a pointer.

Using Pointers to Reference Strings
Another popular use for pointers with strings is as a shortcut when declaring a
string value:
Click here to view code image

When you make this assignment, the Arduino knows to place the string into a
memory location as a character array, terminate it with a character, and then
assign the starting memory location to the pointer variable. You can then
refer to the string variable in your sketch to display the string:

What’s really cool is that you can then create an array of string values to use in your
sketch:
Click here to view code image

Then you can just use the index value to display the appropriate message that you
need:

This makes working with strings easier than trying to keep track of a lot of separate

195

character array variables.

Combining Pointers and Structures
One of the most complicated and often misunderstood uses of pointers is applying
them to data structures. Hour 9, “Implementing Data Structures,” showed how to
create a data structure to hold multiple data elements.
Just as with the standard data types, you can create a pointer to point to the start of
the memory location where a data structure is stored. The tricky part comes in how
to reference the individual data elements inside the data structure.
If you remember from Hour 9, normally you reference a structure data element using
the dot notation. For example:
Click here to view code image

The variable represents an instance in memory of the
 data structure, and the variable

represents an individual data value stored in the structure.
You can create a pointer to the data structure using the dereference
operator:

Now the variable points to a location in memory to store a
 data structure. To access the individual data elements inside the

structure, you could use this format:

However, the C developers decided that was a bit awkward, so they provided a
second way to access individual data elements from a data structure pointer:

The operator indicates the variable is a pointer, and that we’re
trying to access the data value of the element within the structure.
Let’s go through a simple example to demonstrate using this in a real Arduino
sketch.

196

 Try It Yourself: Using Pointers with Structures
This example demonstrates how to both store and retrieve data from a
data structure using a pointer. Just follow these steps to work out the
example:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

2. Save the sketch code as sketch1104.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor to run the sketch and view the output.

197

When the sketch code runs, you should see the output shown in Figure 11.4.

FIGURE 11.4 Using pointers with data structures.

When you define the data structure, the variable points to the
data structure instance in memory, and the variable stores a memory location
that points to the data structure.
The code retrieves the location of the variable from memory,
and assigns it to the pointer variable:

The code then uses the operator to both retrieve the data values stored in the
data structure

and to store new values into the data structure:

198

Warning: Initializing Structures Using Pointers
You can define the values of a data structure variable in the assignment
statement:

Click here to view code image

However, you can’t do that with a pointer variable. The structure
pointer variable must point to an existing instance of the data structure
in memory.

Using Pointers with Functions
One last pointer topic to cover is how to use pointers with functions. One of the
downsides to functions is that the return statement can only return one value back to
the calling sketch code. In your sketch writing, you may run into a situation where
you need to return more than one value.
One way to solve that problem is to use global variables. However, you saw in
Hour 10, “Creating Functions,” that makes the function code reliant on resources
external to the function.
Pointers help us solve that problem. When you define a function, instead of passing
arguments as values to the function, you can define the function to accept pointers
instead. The pointers point to the location in memory where the data is stored.
Because the pointer points to the memory locations, the function can directly access
the data in memory, and directly change the data in memory. Although this sounds
like it could prove dangerous, with the proper use, this can be a lifesaver in your
sketches.
Let’s take a look at an example of passing pointers to a function and see just how
that works.

199

 Try It Yourself: Passing Pointers to Functions
In this example, you define a function that accepts two pointers as
parameters. The function will calculate the addition and subtraction
results of two values and make the results of both calculations
available to the calling sketch code. Here are the steps to test this:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

2. Save the sketch code as sketch1105.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Start the serial monitor to run the sketch and view the output.

When you run the sketch, you should see the output shown in Figure 11.5.

200

FIGURE 11.5 Using pointers to pass and retrieve values from functions.

The first thing you should notice is that we passed the values to the
function as memory locations using the reference operator:

Because we’re passing the values as memory locations, we need to define the
 function parameters as pointers:

Now that the function has the memory locations of both variables, it has to handle
them as memory locations instead of data values. When we perform calculations,
we need to use the dereference operator to retrieve the data values stored in the
memory locations:

And when we return the results, we need to place those values back in the memory
locations:

Notice that the code places the addition result into the memory location passed as
the first parameter, and the subtraction result into the memory location passed as the
second parameter. When using pointers, it’s important to keep straight which
memory locations will contain which return values.

201

Warning: Returning Values in Pointers
It’s also important to remember that when using pointers to return
values from functions, the original values stored in the variables will
be overwritten by the return values. If you need to retain the original
values passed to the function, you must store them in another variable.

Summary
This hour covered the complicated topic of C data pointers. Pointers allow you to
directly access the memory location where you store data on the Arduino, which
can be a very powerful tool, but can also cause problems if you’re not careful. The
reference operator (&) allows you to retrieve the memory location where a
variable is stored in memory, and the dereference operator (*) allows you to
retrieve the value stored in a specific memory location. You must define the data
type of a pointer so that the Arduino knows what type of data the pointer points to.
That allows you to use pointer arithmetic to increase or decrease a pointer to point
to additional data elements. Finally, you saw how to use pointers to retrieve more
than one data value from a function, by passing memory locations to the function
and allowing it to alter the data stored in those memory locations.
The next hour stays on the topic of storing data in memory on the Arduino and
covers the different types of memory available and how to store your data in a
specific type of memory.

Workshop

Quiz
1. What operator would you use to find the memory location where the variable

named test is stored?
A. The dereference operator
B. The reference operator
C. The incrementor operator
D. The decrementor operator

2. The dereference operator returns the value stored at the memory location
specified by the variable. True or false?

3. How can you tell whether a pointer assignment returns a valid memory
address?

Answers
1. B. The reference operator returns the memory location where the Arduino

stores the variable.

202

2. True. The dereference operator reads the value stored in the variable and
then goes to that memory location and retrieves the value stored at that
location.

3. You can assign a value to the pointer before the assignment statement
and then check whether the pointer is still :

Click here to view code image

Q&A
Q. Is there a benefit to using pointers rather than arrays?
A. With pointers, you can use pointer arithmetic to iterate through the stored

numbers, whereas you can’t do that with an array. That may save some coding
from having to iterate through the array indexes.

Q. Is there a benefit to using arrays instead of pointers?
A. The one thing that pointers cannot do is return the number of data elements

stored in the memory block. You can use the function on an array
variable to return the number of data elements contained in the array, but that
doesn’t work with a pointer variable.

Q. So which is better, pointers or arrays?
A. Both have their use in different applications. You might find that you can use

pointers to help cut down on your code if you have to do a lot of manipulation
within the array of numbers. However, if you find yourself having to
determine the number of values stored, you’ll have to use arrays rather than
pointers.

203

Hour 12. Storing Data

What You’ll Learn in This Hour:
 How the Arduino handles data in your sketches
 How to get the most use out of Arduino memory
 How to store data long term on an Arduino

One of the challenges of programming for the Arduino is that your sketches are
limited by the resources available on the microcontroller. Nowhere is that more
evident than when you try to handle large amounts of data. Because of the limited
memory resources on the Arduino, you sometimes have to get a little creative in
how you handle the data in your sketch. This hour shows some ways to help
conserve memory in your sketches and shows how to utilize the extra EEPROM
memory to store data for long-term use.

Arduino Memory Refresher
Hour 1, “Introduction to the Arduino,” showed the basics of how the Arduino
memory structure works. The ATmega AVR microcontroller chips used in the
Arduino family have three different types of built-in memory:

 Flash
 Static random-access memory (SRAM)
 Electronically erasable programmable read-only memory (EEPROM)

The flash memory is where the Arduino stores the sketch executable code. Once
you load your sketch into flash memory, it will remain there, even after you power
off the Arduino. By default, the Arduino also installs a small bootloader program in
flash memory, which assists in loading and starting your sketch each time you
power on the Arduino.
The SRAM memory is where the Arduino stores the data used in your sketches.
This is where any variable values that you define in your sketch are stored. The
Arduino can access data in the SRAM memory area very quickly, but the downside
is that the SRAM memory loses data when you turn off the power to the Arduino.
The EEPROM memory provides a long-term data storage solution for your Arduino
sketches. Like the flash memory area, it retains any data that you store in the
memory area after you remove power from the Arduino. This provides an area
where you can store data that’s used between sessions.
However, there are a couple of limitations to utilizing the EEPROM memory area
on the Arduino. First, storing data in EEPROM is a relatively slow process,
compared to SRAM data access speeds. That can significantly slow down your

204

sketch.
The second limitation is that there are a limited number of times you can write to an
EEPROM before the stored data become unreliable. The general rule of thumb is
that after about 100,000 writes to the EEPROM, there’s no guarantee that the data
you write will get properly stored.
Table 12.1 shows the different sizes of flash, SRAM, and EEPROM available in
the different Arduino units, based on the Atmel chip that they use.

TABLE 12.1 Arduino Memory Sizes

For the standard Arduino Uno, you only have 2KB of SRAM memory to work with
in your sketches. The next section takes a closer look at how the Arduino manages
your sketch data in the SRAM memory area.

Did You Know?: External Memory
The Arduino also allows you to add external memory to your project.
The most common type of external memory to use is adding another
EEPROM chip for storing data. This can come in handy if your project
requires more data storage than what’s available on the Arduino unit.

Taking a Closer Look at SRAM
The SRAM memory is the workhorse of the Arduino. It’s where your sketch stores
all the data that it uses as it runs. The CPU in the Arduino microcontroller handles
memory management on the Arduino automatically for us, but you can use some
tricks to help it get the most out of your SRAM memory area.
The ATmega AVR microcontroller CPU utilizes a common two-tier approach to
managing the variables that you create in your sketch. This two-tier method divides
the SRAM memory into two separate areas:

 The heap data area
 The stack data area

Each of these memory data areas handle different types of data that you define in the
sketch. Figure 12.1 shows how the Arduino positions the heap and stack data areas
within SRAM.

205

FIGURE 12.1 The Arduino SRAM heap and stack data areas.

The Arduino places the heap data area at the start of the SRAM memory area, and
builds it upward, while it places the stack data area at the end of the SRAM
memory area and builds it downward. The next sections take a closer look at each
of these data areas in SRAM memory.

The Heap Data Area
The heap data area contains three different types of data that you define in your
sketches:

 Global variables
 Variables defined with the keyword
 Dynamic variables

Hour 5, “Learning the Basics of C,” discussed the first two types of data. You
define both global variables and constant variables at the beginning of your sketch,
before you define your functions. When you define global and constant variables,
the Arduino assigns them memory locations within the heap area in the lower
portion of the SRAM memory block. These variables don’t change in size, so they
always take up the same amount of space in the heap as your sketch runs.
Dynamic variables are different. They can change in size as your sketch runs,
forcing the Arduino to require more or less memory within the heap area as your

206

sketch runs.
With static variables, you declare an integer array using a specific size:

And that’s how much space in memory the Arduino assigns to the array. That space
never changes in size. You can’t store more than five values in the array; otherwise,
you’ll run into problems.

Warning: Buffer Overflow
Trying to store more data than what’s allocated in memory is called
buffer overflow. This is dangerous in that the Arduino places
variables next to each other in memory. If one variable overflows, it
changes the value in another variable, without generating an error.

With dynamic variables, you can reallocate memory assigned to an array variable.
This means you can start out defining space to reserve five values for the array, but
then later on expand that to ten values, shrink it to three values, or even remove the
variable altogether from memory. You’ll see just how to do that later on in this
hour.
Because the dynamic variables can change in size, the heap data area that stores
them can change in size. The Arduino builds the heap “upward” in memory as the
sketch requests more memory. If you remove or decrease the amount of memory
assigned to a dynamic variable, the heap data area can become fragmented, as
empty space appears within the heap memory area. The Arduino CPU attempts to
store any new data requests in the fragmented areas first before growing the heap
area.

The Stack Data Area
The stack data area is where the Arduino stores any local variables that you
declare in functions, as well as internal pointers used to keep track of functions
within the sketch. The odd thing about the stack is that the Arduino starts placing
data in the stack starting at the end of the SRAM memory area, and builds it
“downward” in memory.
When you call a function in your sketch, the Arduino stores the local variables that
the function creates at the bottom of the stack area, and then removes them when the
function finishes processing. This causes the stack area to grow and shrink
frequently as your sketch runs.
So to sum things up, the heap data area can dynamically grow upward in memory,
and the stack data area can dynamically grow downward in memory. As you can
guess, problems arise if the stack area and heap grow large enough that they meet.
This is called a memory collision, and will result in corrupt data values in memory.

207

If a collision occurs between the heap and stack data areas, you won’t get an error
message from your sketch, but you will start getting strange values in your sketch
variables. As you can imagine, this can be a dangerous situation and cause all sorts
of odd problems in your sketch.
The idea behind proper sketch data management is to try to avoid memory
collisions in SRAM memory. To do that, sometimes you have to use the other
memory areas in the Arduino to store data values to help free up space in the
SRAM memory.

Creating Dynamic Variables
The heap data area in memory allows us to create our own dynamic variables to
use in our sketches. The downside to that benefit is that you are responsible for
manually controlling the dynamic variables, the Arduino won’t do that for us.
That means you must allocate the memory to use, reallocate more memory if
required, and release the dynamic variable from memory when you’re done. If you
don’t properly follow the steps to release the memory when your sketch is done,
this will result in what’s called a memory leak.
This section walks through creating a dynamic variable in the heap memory area,
and then how to manipulate it as your sketch runs, and remove it when you’re
finished.

Defining a Dynamic Variable
The C programming language provides two functions for dynamically allocating
data for variables:

The function defines a block of memory to assign to a variable, and then
returns a void pointer to the start of the memory block. (If you remember from Hour
11, “Pointing to Data,” a void pointer doesn’t have a data type associated with it.)

By The Way: Out of Memory
If the Arduino doesn’t have enough unused SRAM memory available
to satisfy the request, it returns a pointer value. You
can easily check that using an condition check to determine
whether your sketch has used up all the memory.

As part of the function call, you must provide a single parameter that
specifies the size of the block of memory you want to try to reserve:
Click here to view code image

208

The first line simply defines a pointer for an integer value. The second line is
somewhat complicated, but is easier if you break it down into parts. First, it uses a
feature called type-casting to change the void pointer that the function
returns into an integer pointer so that you can use the standard pointer arithmetic
with it.
The parameter passed to the function uses the function to
retrieve the size of memory the system uses to store a single integer value. This
guarantees your sketch code will work correctly across multiple CPU types if
necessary. By multiplying the result of the function by 10, the
function reserves enough memory space to store 10 integer values.
The function is similar to the function, but it includes a second
parameter that specifies the number of blocks of memory to reserve:
Click here to view code image

After running these statements, the Arduino will reserve a block of memory for
storing 10 integer values and return the starting memory location in the
pointer variable. Now you can use the pointer variable just like a normal
array variable, with 10 data elements in the array. The difference is that you can
change the number of data elements assigned to the array, as the next section shows.

Altering a Dynamic Variable
After you reserve a block of memory in the SRAM heap area using the or

 functions, you can dynamically change that using the function.
The function takes two parameters, the original buffer that points to the
dynamic memory area, and the size you want for the new area:
Click here to view code image

This statement dynamically changes the variable memory block to a size
of 20 and then reassigns the pointer to the variable. Just as with the

 and functions, if the memory request fails the
function returns a pointer value.

Removing a Dynamic Variable
The downside to using dynamic variables is that it’s your responsibility to remove
them from memory when you’re done using them. If you don’t, the Arduino CPU
won’t know that they’re finished and will keep them in memory for as long as the
system is running. This is what causes memory leaks in sketches.

209

To remove a dynamic variable from the heap data area, you use the function:

After you release the memory area, you can no longer use the buffer variable in
your sketch to reference the memory location. You won’t get an error message if
you do, but it will no longer point to a reserved area in memory, and the Arduino
may well have already placed other data in the same location.

Putting It All Together
Let’s go through an example that demonstrates how to use a dynamic variable in a
sketch to see just how all of these dynamic memory functions work.

 Try It Yourself: Creating and Using Dynamic Variables
In this example, you create a dynamic array variable in the heap data
area, assign some data values to it, and then change the size of the
array so that you can assign more data values to it. To run the example,
just follow these steps:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

210

2. Save the sketch code as sketch1201.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor utility to run the sketch and view the output

in the serial monitor window.

The sketch1201 code creates a dynamic array pointer variable called that
reserves memory to store 5 integer values, stores some data in them using the

 pointer, and then uses the function to request memory to store
10 integer values and store data in them. Figure 12.2 shows the output you should
see in your serial monitor. (The memory locations may differ for your specific
Arduino unit.)

211

FIGURE 12.2 Using and to dynamically assign variables in
memory.

The sketch also creates a standard static integer array variable called test and then
displays the memory location where the Arduino stores it. This enables you to
compare the locations where the Arduino stored the static and dynamic variables.
Notice that the static variable’s memory location is higher in memory than the
dynamic variable’s location. That’s because the static variable is stored in the stack
data area, while the dynamic variable is stored in the heap data area.
The dynamic variable feature available in the heap can come in handy as you create
your sketches. For example, if you’re not sure just how many data points you’ll
retrieve from a sensor, you can dynamically alter your array to store them all on-
the-fly.

Using Flash to Store Data
As you saw in Table 12.1, the SRAM memory area on the Arduino is somewhat
limited in size. If you have to write large sketches that use lots of data, you may
bump up against the memory limit and start getting memory collisions. To help
solve this problem, you can free up some space in SRAM by utilizing the flash
memory area to store some of the sketch data values.
While the flash memory area is primarily reserved for storing your sketch code, you
can also use it to store static data values in your sketch. Because the flash memory
area is only written to when you upload your sketch code, you can’t store any data
that dynamically changes as your sketch runs, because the sketch code can’t
overwrite the flash memory area itself.
This feature can come in handy for storing constant values required in your sketch,

212

such as any text messages that you use for output. This section walks through the
steps required to store and use data in the flash memory area.

Declaring the Flash Data Types
Storing your sketch data in the flash memory area requires using some special data
types and functions built specially for the Arduino. Because these aren’t standard C
programming features, you’ll have to load a special code library file into your
sketch.
Hour 13, “Using Libraries,” discusses how to use external library files in your
sketch, but basically, all you’ll need to do to load the Arduino flash library data
types and functions is add this line to the start of your sketch:

After you load the library, you can access the special data types and functions
required to interface with flash memory. Table 12.2 shows the special data types
that you must use for storing data in the flash memory area.

TABLE 12.2 Flash Memory Data Types
At the time of this writing, there isn’t a floating-point data type that you can use to
store floating-point values in flash memory. You can only store integer and
character values.
Also, to declare a variable that should be stored in flash memory, you must add the

 keyword to the variable declaration statement, like this:
Click here to view code image

When you add the keyword to the variable declaration, it triggers the
compiler to store the variable value in flash memory. Remember, after you do that,
you cannot change the value assigned to the variable, it must remain constant.
Similarly, you can use this method to create constant a character array string value
in your sketches:
Click here to view code image

213

This can really come in handy if your sketch must store a lot of text messages for
output. By placing the string values in flash memory, you free up extra space in the
SRAM memory heap data area.
The second part of the process is accessing the data that you store in the flash
memory area. Unfortunately, that’s not as straightforward as just referencing the
variables. The next section shows how to do that.

Retrieving Data from Flash
The downside to storing data in flash memory is that you can’t access the data
directly using the standard C functions. Because the flash memory is a separate
memory space, they require special functions to access them. The pgmspace.h
library provided by AVR includes several functions that allow us to access data
stored in the Flash memory area, shown in Table 12.3.

TABLE 12.3 Functions to Access Flash Memory

The most common way to handle strings stored in flash is to copy them into a
variable stored in SRAM memory when you need to use them. That way you can
store all of the strings in flash, and only one variable in SRAM memory to use as a
buffer, like this:
Click here to view code image

You can also get fancy by creating a table of the string pointers in flash memory:
Click here to view code image

You can then use the function to read the appropriate pointer to
access the strings stored in flash memory:

214

Click here to view code image

Let’s go through an example of how to do just that.

Testing It Out
Now that you’ve seen the individual pieces required to store and retrieve data in
the flash memory area, let’s walk through an example that demonstrates how to do
that.

 Try It Yourself: Storing Strings in Flash Memory
In this example, you store a series of string values in flash memory so
that they don’t take up space in the SRAM memory area and then
create a table of pointers that your sketch code uses to access the
strings as needed. Here are the steps to create and run the demo
sketch:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

215

2. Save the sketch code as sketch1202.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Open the serial monitor to run the sketch and view the output.

The strings are defined as character arrays, except that they use the
data type. The table also uses the pointer type and contains the
pointers to each of the strings stored in the flash memory. The code uses the special

 and functions to access the strings in flash memory, using
the function to read the pointer address to use for the reference.
Figure 12.3 shows the output that you should see in the serial monitor window.

FIGURE 12.3 Storing strings in flash memory and retrieving them.

By using this method, you can store as many strings as you need in flash memory (or
at least until you run out of flash memory), saving space in SRAM memory for your
program variables.

216

Using the EEPROM Memory
The last trick to help with memory management in the Arduino is the EEPROM
memory. With EEPROM memory, you can not only store and retrieve data outside
of the SRAM memory area, but you can also do that in different runs of the sketch
code. The EEPROM memory retains the data after a reboot of the Arduino (even
after you power down the Arduino and restart it), making it ideal for storing values
that your sketches need to “remember” from one run to another.

Watch Out: Writing to EEPROM
A limitation applies to the EEPROM memory. Just like the flash
memory, it becomes unreliable after about 100,000 writes. You won’t
receive any error messages when the write data, it just may not
complete properly. Keep this in mind when writing to your EEPROM
memory area.

The following sections show how to use the Arduino EEPROM library to read and
write data to the EEPROM memory area.

Using the EEPROM Library
To use the EEPROM memory area, you must use special functions. Just as with the
code to access the flash memory area, you’ll first need to include a library file in
your sketch to use the EEPROM functions. The EEPROM library is part of the
Arduino IDE standard package, so you can include the library file in your sketch by
clicking Sketch > Import Library > EEPROM from the menu bar. This automatically
adds the line to your sketch:

After you include the standard EEPROM library file, you can use the two standard
EEPROM functions in your code:

 address —to read the data value stored at the EEPROM location
specified by address.
 address value —to read values to the EEPROM location
specified by address.

Each address value starts at 0 for the start of the EEPROM memory area, and
increases until the end of the EEPROM memory area. Depending on the Arduino
unit you have, the end value will be different. The Arduino Uno unit contains 1KB
of EEPROM memory. Because 1KB is actually 1024 bytes, the largest memory area
you can write to on the Uno is 1023. (EEPROM memory starts at address 0.)

217

Watch Out: Memory Address Wrap
Unfortunately, the Arduino will allow you to write to a memory
address larger than the amount of EEPROM memory on your Arduino
unit. If the address value is larger, the Arduino wraps around in
memory. So, if you have an Arduino Uno unit and write to memory
address 1024, the data value is stored in address 0. Be careful when
specifying the address values in your sketches!

Unfortunately, there are no automated ways to handle data stored in the EEPROM;
you must keep track of all data you store in the EEPROM manually. It can help to
draw up a memory map that diagrams what values you store where in the EEPROM
memory area.

Experimenting with the EEPROM Library
Let’s go through an example that stores values in EEPROM and then reads them
back. First, we’ll create a sketch that stores the values in the EEPROM memory
area. Follow these steps:

1. Open the Arduino IDE, and select Sketch > Import Library > EEPROM.
2. Enter this code into the editor window under the

 directive that was added by the library import:
Click here to view code image

3. Save the sketch code as sketch1203.
4. Click the Upload icon to verify, compile, and upload the sketch code to

your Arduino unit.
5. Open the serial monitor to run the sketch code and view the output.

The sketch1203 code uses the write function from the EEPROM library to store the

218

array values in the first five spaces in EEPROM memory. You should see the output
shown in Figure 12.4 in the serial monitor.

FIGURE 12.4 Storing integer values in EEPROM memory.

The next set of steps creates a second sketch to read the values that you stored in
the EEPROM memory:

1. Open the Arduino IDE and select Sketch > Import Library > EEPROM.
2. Enter this code into the editor window under the directive

that was added by the library import:
Click here to view code image

3. Save the sketch code as sketch1204.

219

4. Click the Upload icon to verify, compile, and upload the sketch code to
your Arduino unit.

5. Open the serial monitor to run the sketch and view the output.
6. Disconnect your Arduino unit so that it loses power; then reconnect it

back to your workstation.
7. Open the serial monitor again to run the sketch and view the output.

The output from the sketch1204 code should display the five data values that you
stored from the sketch1203 code (as shown in Figure 12.5), even after removing
power to the Arduino.

FIGURE 12.5 Retrieving data from the EEPROM memory area.

By The Way: Storing More Complicated Data Structures
Because the EEPROM and functions can retrieve only 1
byte of data, they’re somewhat limited in what they can store (only
values from 0 to 255). However, some enterprising Arduino users
have created a library of functions that allow you to easily store other
data types, including character arrays and data structures, using
special functions. This library is called the EEPROM Extended
library, or EEPROMex for short. Unfortunately, it’s not included as
part of the standard Arduino IDE package, so you have to download
and install it separately. You’ll learn about how to do that in the next
hour.

220

Summary
This hour focused on alternative ways to store data in your Arduino sketches. First,
it showed just how the Arduino uses the SRAM memory area to store the variables
that you declare in your sketches. After that, it showed how you can use the heap
data area in SRAM to create and use dynamic variables that can change in size as
your sketch runs. Next, it walked through how to store static values in flash memory
to help free up space in SRAM. You must use special data types and functions to
store data in the flash memory area with the program code. Finally, the hour
discussed how to use the EEPROM memory that is built in to the Arduino CPU
itself. You can use the standard EEPROM library to read and write individual bytes
of data in EEPROM. This data remains intact even after the power is removed from
the Arduino unit.
The next hour covers how to work with the different libraries available for the
Arduino and how to create your own library of functions that you can share with
others.

Workshop

Quiz
1. Where can you create dynamic variables that can change in size as you run

your Arduino sketches?
A. The SRAM stack data area
B. The flash memory area
C. The SRAM heap data area
D. The EEPROM memory area

2. Data values stored in flash are lost when power is removed from the
Arduino. True or false?

3. How do you retrieve a value stored in the EEPROM memory area?

Answers
1. C. You can create dynamic variables using the or

functions in the SRAM heap data area.
2. False. The flash memory area retains the program and data information

stored there after power is removed. When power is restored to the Arduino,
the program runs, and the data values you stored in flash will also still be
there.

3. You must use the function available in the EEPROM library
for the Arduino. You cannot use a standard C function to read or write data to
the EEPROM memory area.

221

Q&A
Q. If the EEPROM memory area on my Arduino already contains data

stored in it, can I read the data?
A. Yes, but you might not be able to make any sense out of it! You can read the

data stored in the EEPROM 1 byte at a time, but you’d have to determine if
the data stored was a character, number, or data structure. That could be close
to impossible to figure out if you weren’t the one who stored the data.

Q. Should I erase the EEPROM memory area by placing 0s (zeros) in all
the memory locations when I’m done using it?

A. It depends on the sensitivity of your data. Remember, the more you write the
EEPROM memory, the fewer times you have before it becomes unreliable. If
there isn’t a requirement to erase data from the EEPROM, I wouldn’t bother
doing it. You can overwrite old data with new data at any time.

222

Hour 13. Using Libraries

What You’ll Learn in This Hour:
 What an Arduino library is
 How to use standard Arduino libraries
 How to use contributed libraries
 Creating your own Arduino libraries

As you start writing larger Arduino sketches, you may find yourself reusing the
same pieces of code for different sketches. In Hour 10, “Creating Functions,” you
saw how to create functions to help cut down on the amount of code you had to
write for a single sketch, but if you wanted to share that code between multiple
sketches, you’d still have to copy and paste it into each sketch. This hour shows you
how to reuse functions without having to copy code by using libraries.

What Is a Library?
Libraries allow you to bundle related functions into a single file that the Arduino
IDE can compile into your sketches. By compiling the library into your sketch, you
can use any of the functions defined inside the library code anywhere in your
sketch. Instead of having to rewrite the functions in your code, you just reference
the library file from your code, and all the library functions become available.
This proves especially handy as you work with different Arduino shields. Each
shield requires its own set of functions for accessing the hardware components on
the shield, such as the network connection on the Ethernet shield, or the LCD
display on an LCD shield. By bundling functions required for each shield into a
separate library file, you can include only the libraries you need in your Arduino
sketches.
There is a standard format that all Arduino libraries must follow for them to work
correctly. The following sections discuss the standard Arduino library format.

Parts of a Library
Arduino libraries consist of two separate files:

 A header file
 A code file

The header file defines templates for any functions contained in the library. It
doesn’t contain the full code for the functions, just the template that defines the
parameters required for the function, and the data type returned by the function.
For example, to define the template for a simple addition function that requires two

223

integer parameters and returns an integer data type, the header file would contain
the following line:

This might look a little odd; the header template doesn’t define any variables for
the parameters, only the data types that are required. The compiler uses the header
to determine the format of the functions as the sketch code uses them. That way it
knows if you’re not using a library function correctly, before it tries to compile the
code.
The header file must use a .h file extension, and use the library name as its
filename. Thus, if you want to call your library mymath, the header file would be
mymath.h.
The code file in the library contains the actual code required to build the function.
We’ll take a more in-depth look at the code later on in this hour, but for now, it’s
only important to know that the code must be in C++ format. Because of that, the
file extension you must use for the code body file is .cpp. So, for the mymath
library, you must create the code file mymath.cpp.
Both files work together as the library. The header file helps the compiler know
what format the sketch must use to call the library functions. That way it can flag an
improperly used library function in your sketch code.

Library Location
The Arduino IDE must know how to access the library header and code files when
it compiles your sketch. For that, you must place the library files into a specific
folder within the Arduino IDE file structure.
The Arduino IDE stores the library files within its own Arduino folder structure.
For Windows, the Arduino IDE installs under the Program Files folder. In OS X, it
installs under the Applications/Arduino.app/Contents/Resources/Java/libraries
folder. For Linux, there isn’t a default location; the Arduino folder should be
wherever you installed the software.
Under the Arduino application folder, you should see a folder named libraries. This
is where the standard Arduino library files are stored. Each library is stored under
a separate folder, and that folder name represents the name of the library.

224

By The Way: Personal Libraries
Each user account on the workstation also has a personal library
folder where you can place libraries that only you have access to use
in the Arduino IDE. For both the Windows and OS X environments,
look under the Documents folder for your user account for the Arduino
folder. There is another library folder under there where you can store
library files.

You can take a look at what libraries are included in your Arduino environment
from the Arduino IDE menu bar. Just click the Sketch menu bar option, and then
select the Import Libraries submenu option. By default, the Arduino IDE includes
several standard libraries to support common shields that you can use with your
Arduino unit. The next section discusses how to use the standard library files in
your sketches.

Using the Standard Libraries
There are quite a few libraries that come standard with the base Arduino IDE
installation. Table 13.1 lists the libraries that you’ll find in the 1.0.5 version of the
Arduino IDE.

TABLE 13.1 The Standard Arduino Libraries
As you can see from Table 13.1, there are lots of standard libraries associated with

225

Arduino shield devices already available in the Arduino IDE. This makes working
with shields a lot easier for the beginning developer. The next sections go through
the steps you’ll need to take to use library functions in your sketches.

Defining the Library in Your Sketch
To use a library in your Arduino sketch, just click the Sketch menu option from the
menu bar, select the Import Library menu option, and then select the standard
library you want to use from the list.
When you select a library, the Arduino IDE adds a line of code to your sketch,
referencing the library header file. That line of code uses the directive
(where libraryheader is the filename of the header file for the library):

libraryheader

Once you have that line in your sketch, you can start using the functions that are
defined in the library.

Referencing the Library Functions
With the header file defined in your sketch, you can reference any of the functions
contained in the library without getting a compiler error. However, you have to tell
the compiler that the functions you’re using are from a library.
To do that, you must specify the function using the library name as part of the
function name:

Library.function

For example, to use the function from the library, you use the
following line:

It’s important to know the format for each function that you want to use in the
library. Different functions require a different number and types of parameters.
Fortunately, the Arduino developers have done an excellent job of documenting all
the standard libraries and making that documentation easily available via the web
at http://arduino.cc/en/Reference/Libraries.

Compiling the Library Functions
After you’ve created your sketch code using the library functions, you do not have
to do anything special to compile it. The header and code body files in the library
take care of all that work for us. Just click the Verify icon to verify and compile
your code, or the Upload icon to verify, compile, and upload the sketch code to
your Arduino unit.

226

http://arduino.cc/en/Reference/Libraries

 Try It Yourself: Using Libraries in Your Sketch
This example uses functions from the EEPROM standard library to
store data in the EEPROM memory area and then retrieve it. Just
follow these steps to run the experiment:
1. Open the Arduino IDE.
2. Click the Sketch option from the menu bar, select Import Library,

and then select the EEPROM entry from the list. This places the
 directive at the top of your editor window, pointing to

the EEPROM.h header file.
3. Enter the following code in the editor window, under the

 directive:
Click here to view code image

4. Save the sketch as sketch1301.
5. Click the Upload icon to verify, compile, and upload the sketch

code to your Arduino unit.
6. Open the serial monitor to run the sketch and view the output.

The first for loop uses the EEPROM.write function to store values into the first five

227

memory locations in the EEPROM memory area, and the second for loop uses the
EEPROM.read function to read those values and display them. You should see the
output shown in Figure 13.1 in your serial monitor to tell that the library code
worked properly.

FIGURE 13.1 Using the EEPROM library code to access the EEPROM memory.

Using Contributed Libraries
Besides the standard libraries that the Arduino development group provides,
Arduino users have created lots of other libraries. These are called contributed
libraries.
One place to find a wealth of contributed libraries is the Arduino Playground
website: http://playground.arduino.cc. From there, click the Libraries link on the
left-side navigation bar to view a list of all the user-contributed libraries publicly
available for the Arduino.
When you find a contributed library, you’ll need to download it to your workstation
and add it to your Arduino IDE libraries to be able to use it in your sketches.
Fortunately, the Arduino IDE provides an easy interface for adding new libraries.

Watch Out: Multi-User Environments
If you have more than one user using the Arduino IDE on a single
workstation, be careful, because the import library feature only
imports the library for the current user. If other users on the
workstation want to also use the library, they’ll have to import it
separately.

228

http://playground.arduino.cc

The following example shows the steps required to download and install the
EEPROMex extended EEPROM library.

 Try It Yourself: Adding a Contributed Library
Once you find a contributed library that you want to use, you must
install it into your Arduino IDE environment before you can use it.
Here are the steps to do that:
1. Open a browser window and navigate to the

http://playground.arduino.cc website.
2. From the main website page, click the Libraries link under the User

Code Library section of the navigation bar on the left side of the
web page. This should redirect you to this page:
http://playground.arduino.cc//Main/LibraryList.

3. From the list of available libraries, scroll down to the Storage
section and click the EEPROMex library link. This should redirect
you to this page: http://playground.arduino.cc//Code/EEPROMex.

4. Click the link to download the library. Save the library zip file on
your workstation in a location where you’ll be able to easily find it.

Watch Out: Incorrect Link
Unfortunately, at the time of this writing, the URL link to the
EEPROMex library is incorrect. Let’s hope that gets fixed soon,
but if not, the correct link is as follows:
http://thijs.elenbaas.net/downloads/?did=6

5. Close your browser window and start the Arduino IDE.
6. From the Arduino IDE, click Sketch > Import Libraries > Add

Library. This produces a navigation dialog box.
7. In the resulting dialog box, navigate to the library zip file that you

downloaded, select it, and then click the Open button.
8. The contributed library will be added to your installed libraries.

Select Sketch; then Import Libraries from the menu bar. You should
see the EEPROMex library listed under the Contributed section.

After you import the contributed library, you can use the functions defined in it
without your sketches. Just remember to import the library into your sketch before
you try to use them.

229

http://playground.arduino.cc
http://playground.arduino.cc//Main/LibraryList
http://playground.arduino.cc//Code/EEPROMex
http://thijs.elenbaas.net/downloads/?did=6

Creating Your Own Libraries
Another place where libraries can come in handy is to create your own libraries for
functions that you commonly use in your Arduino projects. That helps cut down on
the copying and retyping of code between sketches. This section walks through the
process of creating your own library, installing it into the Arduino IDE, and then
using it in your sketches.

Building Your Library
To create your own library of functions, you’ll need to create both the code file and
the header file and then bundle them together into a zip file to add to the Arduino
IDE library. It’s usually easier to create the code file first so that you know the
formats for the header file.

Creating the Code File
When you create the code file for your library, you must use a slightly different
format from what you’re used to using in your Arduino sketches. So far, we’ve been
using the C programming language format to create our sketches. To create library
files, you must use C++ programming language format.
The C++ language uses an object-oriented programming format to define code
classes. A code class bundles the variables and functions into a single class file
that is portable between programs.
To start out, your library file must have a directive to reference the
Arduino.h header file, along with an directive to reference the library
header file:

Notice that these directives don’t use the < and > symbols, but instead
use double quotes around the header file names. That’s because the header files
aren’t part of the standard library.
Next, you’ll need to define the functions in your library. The C++ format defines
class methods similar to how we defined functions (see Hour 10, “Creating
Functions”). With C++ classes, you just define the methods inside a class name in
the definition:

Classname method

For example, to define the method in your MyLib library, you use this
format:
Click here to view code image

230

You can define additional functions in the library by just adding them to the same
file. Let’s go through creating the code file to use for our MyLib library file.

 Try It Yourself: Creating a Code File
In this exercise, you create the code file for our demo library. Just
follow these steps:
1. Open a standard text editor on your system (such as Notepad in

Windows or TextEdit on OS X). We can’t use the Arduino IDE
editor because we don’t want to save the code as a sketch.

2. Enter this code into the text editor window:
Click here to view code image

3. Save the file to your desktop (or some other common folder) as
MyLib.cpp.

231

Watch Out: Text Files and Filenames
Be careful: Some text editors (such as Notepad) like to automatically
append a .txt file extension to filenames when you save them. To get
around that in Notepad, use double quotes around the filename when
you save the file. For TextEdit on OS X, use the Preferences to select
the default file type as Plain Text.

Besides defining the individual functions, the code declares an instance of the class
that can be used by the sketch:

This is what allows you to reference functions using the format in
your sketch code, instead of having to create an instance of the entire class itself.
Now that you have the code file for the library created, you can build the header
file. That’s shown in the next section.

Creating the Header File
The header file creates a template that defines the functions contained in your
library. The tricky thing is that it uses the C++ format to define a class for the
functions.
First, it uses a directive to test whether the header file is present when compiling
the library code. That uses the directive:
Click here to view code image

The directive uses a somewhat odd format to check for the
declaration. This is used in C++ programs to know when a header file has been
included in the code. If the declaration is not found the code uses the

 directive to define it, then defines the function templates. Finally, the
entire package is ended with a directive to close out the
directive block.
The code to actually define the library functions uses the identifier to
define the library class, along with the and keywords to define
public and private functions:
Click here to view code image

232

Public functions are functions that execute and return values outside of the class
definition, such as in your sketches. These are the functions you want to share from
your library in your sketches. Private functions allow you to create the “behind the
scenes” functions that your public functions use, but aren’t accessible from your
sketches.
Let’s go through the steps for creating the header file for our MyLib library
package.

 Try It Yourself: Creating the Library Code File
Let’s create a library of simple math functions that we can import into
our sketches. Follow these steps:
1. Open a standard text editor on your system (such as Notepad in

Windows or TextEdit on OS X).
2. Enter this code into the text editor window:

Click here to view code image

3. Save the file to your desktop (or some other common folder) as
MyLib.h.

Now you have both of the library files necessary to import into the Arduino IDE to
use your functions. The next step is to package them for importing.

233

Building the Zip File
The Arduino IDE imports library files as a single zip-formatted file. You can create
zip files using the Compressed Folder option in Windows and copying the
MyLib.cpp and MyLib.h files into it.
Creating the zip file on OS X is a little more involved. Here are the steps to do that:

1. Create a folder called MyLib.
2. Copy the MyLib.cpp and MyLib.h files into the MyLib folder.
3. Right-click the MyLib folder, and select Compress “MyLib” from the menu

options.
This creates a file called MyLib.zip that you can now import into your Arduino
IDE.

Installing Your Library
After you’ve created the zip file with your library files, you’re ready to install it
into the Arduino IDE.

 Try It Yourself: Installing Your Library
When you have your zip library file created, you can import it into
your Arduino IDE by following these steps:
1. Open the Arduino IDE.
2. Select Sketch from the menu bar.
3. Select Import libraries from the submenu.
4. Select Add library from the list of menu options.
5. This produces a dialog box. Navigate to the location of your library

zip file, select it, and then click the Open button.

You should now see your MyLib library appear under the list of Contributed
libraries in the Import Libraries section of the Sketch menu. You’re all set to start
coding with your new library now!

Using Your Library
Once the MyLib library file is imported into your Arduino IDE, you can use the
functions in it in any sketch that you create. Just like any other library, you’ll have
to import it into your sketch first, and then you can reference the functions that you
defined in the library using the library name, for example:

The Arduino IDE uses the template defined in the library header file to look up the
format of the function in your library to ensure that you’re using it properly.

234

Let’s test that by building a sketch that uses all the MyLib library functions.

 Try It Yourself: Using Your Library
To use your library, you need to first import it into your sketch, and
then you’re ready to use the functions. Here’s a quick example that
demonstrates how to use your new library in a sketch:
1. Open the Arduino IDE.
2. Click the Sketch option from the menu bar, then select Import

Library, and then select the MyLib entry from the list. This should
add the directive to the editor window showing your
MyLib.h header file.

By The Way: Missing Library
If you don’t see the MyLib library listed in the Imported
Libraries, double-check to make sure that there’s a MyLib folder
under the libraries section in your Arduino folder path. If not, try
to import your library file again.

3. Enter the following code into the editor window, under the
 directive:

Click here to view code image

235

4. Save the file as sketch1302.
5. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
6. Open the serial monitor to run the sketch and view the output.

The sketch code imports the MyLib library and then uses the functions defined in it.
Figure 13.2 shows the output you should see in your serial monitor window if all
went well.

FIGURE 13.2 Output from using the MyLib library in your sketch.

You should now be comfortable with using libraries in your Arduino environment.
As you go through the rest of the hours, there will be plenty of times when you’ll
need to import libraries to interact with the different shields.

Summary
This hour discussed how to use code libraries with the Arduino IDE. The Arduino
IDE comes with some popular libraries already installed, making it easier to write
code for the more popular Arduino shields. The hour also showed how to
download libraries contributed by Arduino users from the Arduino playground
website and import then into your Arduino IDE environment. You also saw how to
create your own Arduino libraries with your own functions. That provides an easy
way for you to share common code between all of your sketches without having to
do a lot of extra typing.

236

The next hour starts looking at how to interface with the different hardware
components of the Arduino, starting out with a look at how to work with the digital
interfaces.

Workshop

Quiz
1. What file extension should you use for the code file in a library package?

A. .ino
B. .zip
C. .h
D. .cpp

2. When you import a library into the Arduino IDE, it’s available for use for
anyone that uses the workstation. True or false?

3. How do you bundle the library files so that they can be imported into the
Arduino IDE?

Answers
1. D. The library code file must use the C++ code format, so it must use the

.cpp file extension. You cannot use the standard Arduino .ino sketch file
extension for code library files.

2. False. When you import a library into the Arduino IDE, it places the new
library files in the user’s local folder path. Other users on the workstation
won’t be able to access those library files. Each user who wants to use a
contributed library must import the library on their own.

3. The library files must be enclosed in a compressed folder using the zip
compression for the Arduino IDE to be able to import them.

Q&A
Q. Is there a limit to how many libraries I can include in a sketch?
A. Yes, each library takes up additional code space in flash memory when you

compile and upload your sketch. The more libraries you include, the more
room they take. Only include libraries that you know your code uses to help
save space in flash memory.

Q. Do I have to bundle my library files in a zip file to import them?
A. Yes, the import utility expects the library files to be in a zipped file.

However, you can manually create the library folder in your local Arduino
library folder and copy the files manually if you prefer not to use the Arduino
IDE import feature.

237

Part III: Arduino Applications
HOUR 14 Working with Digital Interfaces
HOUR 15 Interfacing with Analog Devices
HOUR 16 Adding Interrupts
HOUR 17 Communicating with Devices
HOUR 18 Using Sensors
HOUR 19 Working with Motors
HOUR 20 Using an LCD
HOUR 21 Working with the Ethernet Shield
HOUR 22 Advanced Network Programming
HOUR 23 Handling Files
HOUR 24 Prototyping Projects

238

Hour 14. Working with Digital Interfaces

What You’ll Learn in This Hour:
 How the Arduino handles digital signals
 How to output a digital signal from a sketch
 How to read a digital signal in a sketch
 Different ways to detect digital inputs

Now that you’ve seen the basics of the Arduino programming language, it’s time to
start digging into the code to interface with the Arduino hardware. In this hour, you
learn how to work with the digital interfaces on the Arduino, both reading digital
data from external devices and sending digital signals out to them.

Digital Overview
The primary purpose of the Arduino is to control external devices. The Arduino
provides two types of interfaces to do that:

 Analog interfaces for reading analog voltages
 Digital interfaces for reading and writing digital signals

This hour discusses the digital interfaces and focuses on the basics of how to read
digital signals sent to the interface from an external device and how to write a
digital signal to send to a device connected to an interface. In later hours, you’ll see
how to use those features to interact with specific sensors or other digital devices.
Each of the Arduino models provides a number of digital interfaces. Table 14.1
shows the number of digital interfaces available on each Arduino model.

TABLE 14.1 Arduino Digital Interfaces by Model
You can use each of the digital interfaces on the Arduino for either input or output.
A few of the digital interfaces can also be used for other purposes (such as

239

generating a pulse-width modulation signal or communicating with serial ports);
later hours cover those topics. For now, let’s just take a closer look at how to use
the digital interfaces to interact with digital signals.

The Digital Interface Layout
The standard header layout in the Arduino footprint (see Hour 1, “Introduction to
the Arduino”) provides 14 digital interfaces along the top header block of the
device, as shown in Figure 14.1.

FIGURE 14.1 Digital interfaces on the Arduino Uno.

The digital interfaces are labeled 0 through 13. This is the standard header layout
available on all Arduino devices. For the Uno and Mini devices, those are the only
digital interfaces available. For the Leonardo, Micro, and Yun models, the six
analog interfaces, labeled A0 through A5, also double as digital interfaces 14
through 20.
For the Due and Mega models, a separate dual-row header block is included along
the right side of the unit. The dual-row header block contains digital interfaces 21
through 53.

240

Setting Input or Output Modes
You can use each digital interface on the Arduino as either an input or an output, but
not both at the same time. To tell the Arduino which mode your sketch uses for a
specific digital interface, you must use the function:

pin MODE

The function requires two parameters. The pin parameter determines
the digital interface number to set. The MODE parameter determines whether the pin
operates in input or output mode. There are actually three values you can use for the
interface mode setting:

 INPUT—To set an interface for normal input mode.
 INPUT_PULLUP—To set an interface for input mode, but use an internal
pullup resistor.
 OUTPUT—To set an interface for output mode.

The mode may be a bit confusing. Each Arduino model provides
an option to activate an internal pullup resistor on each individual digital interface.
The mode value determines whether the internal pullup resistor
is activated on the digital interface or not. You’ll learn more about that later on in
this hour.
After you set the mode for the digital interface, you’re ready to start using it. The
next section discusses how to use the digital interfaces as outputs in your sketches.

Using Digital Outputs
For the output mode, your sketch can set the voltage level on each individual digital
interface to either a logic or value. You do that using the

 function:

pin value

The pin parameter value specifies the digital interface number to send the output
to. The value parameter specifies the or setting to determine the
output voltage. For example:

The value sends a +5 volt signal to the digital output on interface 10. The
Arduino generates digital signals using 40mA of current. For lower current devices,
such as LEDs, you must place a resistor (typically around 1K ohms) in the circuit
with the LED to help limit the current applied to the LED.
For high-current devices, such as motors and relays, you need to connect either a
relay or a transistor to the digital output to use as a switch to control the high-
current circuit. The transistor isolates the high-current circuit from the Arduino

241

digital interface. When the digital interface is at a voltage level, the
transistor conducts, allowing the higher-current circuit to flow. When the interface
is at a voltage level, the transistor blocks, breaking the higher-current circuit.
Figure 14.2 demonstrates these configurations.

FIGURE 14.2 Connecting high- and low-current devices to the digital interface.

When connected directly to an electronic circuit, the digital interface on the
Arduino can act as either a current source or as a current sink. When acting as a
current source, the digital interface outputs a current when set to the voltage
value. The electronic components connected to the Arduino interface must complete
the circuit by providing a ground voltage (0 volts).
When acting as a current sink, the digital interface outputs a voltage value of 0
volts, emulating a ground connection. In this case, the electronic circuit must
provide current from a voltage source of +5 volts to complete the circuit. Figure
14.3 demonstrates both of these modes.

242

FIGURE 14.3 The Arduino digital interface as a current source or current sink.

The next section demonstrates creating a sketch to show how to use the digital
output features.

Experimenting with Digital Output
Now that you’ve seen the basics of how to generate and control a digital signal
from your Arduino, let’s go through an example of using that feature with a real
electronic circuit.
For this example, you need a few electronic components:

 Three LEDs (preferably red, yellow, and green, but they can be the same
color if that’s all you have available). Many Arduino starter kits come with a
few 5mm, 30mA LEDs, and these will work just fine.
 Three 1K ohm resistors (color code brown, black, red).
 A breadboard.
 Four jumper wires.

The resistors are for limiting the current that goes through the LEDs. The Arduino
can output 40mA of current, so if you use a 30mA LED, you’ll need to place at least
a 1K ohm resistor in series with each LED so it doesn’t burn out. You can use a
larger resistor if you like; the LED will just be a little dimmer.
After you gather these components, you can start the example.

243

 Try It Yourself: Digital Traffic Signal
For this example, you create a traffic signal that your Arduino will
control using three separate digital interfaces. This project requires
building a circuit, along with coding a sketch. First, follow these steps
to build the electronic circuit:
1. Place the three LEDs on the breadboard so that the short leads are

all on the same side and that the two leads straddle the space in the
middle of the board so that they’re not connected. Place them so that
the red LED is at the top, the yellow LED in the middle, and the
green LED is at the bottom of the row.

2. Connect a 1K ohm resistor between the short lead on each LED to a
common rail area on the breadboard.

3. Connect a jumper wire from the common rail area on the
breadboard to the GND interface on the Arduino.

4. Connect a jumper wire from the green LED long lead to digital
interface 10 on the Arduino.

5. Connect a jumper wire from the yellow LED long lead to digital
interface 11 on the Arduino.

6. Connect a jumper wire from the red LED long lead to digital
interface 12 on the Arduino.

That completes the hardware circuit. Figure 14.4 shows the circuit diagram for
what you just created.

244

FIGURE 14.4 The circuit diagram for the traffic signal example.

Now you’re ready to start coding the sketch that controls the traffic signal circuit.
Just follow these steps:

1. Open the Arduino IDE on your workstation and enter this code into the editor
window:

Click here to view code image

245

2. Save the sketch as sketch1401.
3. Click the Upload icon to verify, compile, and upload the sketch code to

your Arduino unit.
4. Open the serial monitor to start the sketch and to view the output from the

sketch.
The function defines the pin modes for the three digital interfaces and sets
their default values to . This causes all the LEDs to remain off, because the
LED circuits require a signal voltage for power.
Each state of the traffic signal (stop, go, and yield) is a separate function. Each
function defines the power required to each LED for that state. (For example, in
stop mode, interface 12 is set to to power the red LED, while interfaces 10
and 11 are set to to turn off the yellow and green LEDs.) Also in each function
is a function to pause the traffic light at that state for a predetermined
amount of time, set by the value passed to the function. The global variables ,

, and contain the number of seconds for each state.
When you run the sketch, the LEDs should light up simulating a U.S.-style traffic
signal, and you should see an output log in the serial monitor window indicating
which function is running at any given time.

246

By The Way: Troubleshooting Interfaces
Using the serial monitor output is a great tool to help you troubleshoot
digital interfaces. It helps you see inside the sketch to know when
things should be happening. Once you get the traffic signal sketch
working, you can remove the function lines so
that there isn’t any logging output.

Working with Digital Inputs
For input mode, the digital interface detects a digital voltage provided by the
external electronic device using the function:

pin

The pin parameter determines which digital interface to read. The
 function returns a Boolean or value based on the input

signal, which you can compare to a 1 or 0 integer value in your code.
The digital interface can only detect binary digital signals, either a value, or
a value. For the Arduino to detect a value, the input voltage must be
between +3 and +5 volts on the digital interface. For a value, the Arduino
must detect a voltage between 0 and +2 volts.

Watch Out!: Undetermined Values
Notice that this range leaves an area between +2 and +3 volts that is
not assigned to a Boolean value. Any voltage detected by the digital
interface within that range will produce an unreliable result.

The following sections cover a couple of issues you need to be aware of when
using the digital interfaces as inputs.

Input Flapping
An issue often overlooked by novice Arduino users is input flapping. Input flapping
occurs when a digital interface is not specifically connected to a source voltage
(either +5 volts or ground). Figure 14.5 shows a circuit diagram that demonstrates
this problem.

247

FIGURE 14.5 An Arduino interface that will experience input flapping.

When the switch in Figure 14.5 is depressed, the digital interface is connected to
the ground voltage, which sets the input to a value. However, when the switch
is released, the digital interface is not connected to anything. When this happens,
the function returns an inconsistent value, often dependent on any
ambient voltage that may be present on the interface. There’s no guarantee that the
input will return a value.
To prevent input flapping, you should always apply some signal to the digital
interface at all times. You can do so in two ways:

 Connect the interface to +5 volts, called a pullup
 Connect the interface to ground, called a pulldown

In the pullup circuit, when the switch is open, the function returns
a value, and when the switch is depressed, it returns a value. The
pulldown circuit operates in the opposite way; when you depress the switch, the
interface receives a value, but is at a value otherwise. Figure 14.6
demonstrates this process.

248

FIGURE 14.6 Using pullup and pulldown circuits on a digital interface.

Setting a pullup or pulldown circuit requires a little extra work on your part.
Fortunately, another method enables you to accomplish that.

Using the Internal Pullup
Because of the importance of using a pullup or pulldown circuit, the Arduino
developers provide an internal pullup circuit for each digital interface. You can
activate the internal pullup circuit by using the label in the

 function:

The label activates an internal pullup resistor on the specified
digital interface, setting the default value to for the interface. The external
circuit connected to the digital interface must connect the interface to ground to
change the input voltage.
By using the internal pullup circuit, you don’t need to create the external pullup
circuit, thus reducing the amount of hardware you need for your projects.

Using Interface 13 as an Input
Digital interface 13 is somewhat special on all Arduino units. It has a resistor and
LED connected to it at all times, allowing you to easily monitor output from that
digital interface directly on the Arduino board. This comes in handy if you’re trying
to quickly troubleshoot a digital setting without having to connect external
hardware.

249

The downside to this is that the LED and resistor are always connected to the
interface. If you use interface 13 for input, any voltage applied to the interface will
interact with the internal resistance applied to the input circuit. This means that the
undetermined area between +2 and +3 volts becomes somewhat larger for that
digital interface. To be safe, make sure to always apply a full +5 volts for a
signal when using interface 13 for input.

Experimenting with Digital Input
Now that you’ve seen the basics of how to use digital interfaces for input, let’s go
through an example to demonstrate how that works. In this example, you add on to
the traffic signal example you created earlier in this hour. You need three more
components:

 A momentary contact switch
 A 10K ohm resistor (color code brown, black, orange)
 One jumper wire

The momentary contact switch is normally in an open state. When you press the
button, the switch makes contact and is in a closed state, connecting the two pins of
the switch to complete a circuit. When you release the button, the switch goes back
to the open state.
The Arduino Starter Kit provides small momentary contact switches that you can
plug directly into the breadboard. These work great for our breadboard examples.
You can also purchase similar switches from most electronic parts suppliers, such
as Adafruit or Newark Electronics.

 Try It Yourself: Using a Digital Input
In this example, you add a switch to your traffic signal circuit. When
the switch is held closed, the traffic signal code increases the amount
of time allotted for the green LED state. First, the steps you need to
build the circuit:
1. Place the momentary contact switch on the breadboard under the

existing LEDs so that the switch straddles the center divide of the
breadboard.

2. Connect the 10K ohm resistor so that one lead connects to one pin
of the momentary contact switch and the other lead connects to the
breadboard rail connected to the Arduino GND interface.

3. Connect the jumper wire from digital interface 8 on the Arduino to
the other pin of the momentary contact switch.

That’s all you need to add for the hardware. Now, for the code
changes, follow these steps:

250

1. Open the Arduino IDE.
2. Select File from the menu bar, and then select the sketch1401 code

to open.
3. Add the function to the bottom of the existing

sketch code:
Click here to view code image

4. Modify the function to add a statement to set the interface
mode for interface 8 to :

5. Modify the function code to add a call to the
 function at the end of the loop, and assign the

output to the go variable. Here’s what the final function code
should look like:

6. Save the sketch code as sketch1402.
7. Click the Upload icon to verify, compile, and upload the sketch

code to your Arduino unit.
8. Open the serial monitor to run the sketch and view the output.

The code uses the mode for interface 8 so that
when the switch is not pressed, the input value will be set to . When you
press the switch, the input will be set to , as the switch connects the interface
to the ground using the 10K ohm resistor. (The resistor helps prevent short-
circuiting the digital interface if something goes wrong.) The

251

function returns a different value based on whether the switch is pressed.
When you run the sketch, the default value for the variable of 6 remains for as
long as the switch is not pressed when the function runs. When
you press and hold the switch while the function runs, the value
for the variable changes to 10.
The trick is to depress the switch while the function is running. To
do that, just hold down the switch while the yellow LED is lit, and then release it
when the red LED lights. When you do that, the next iteration of the green LED will
be longer.
The output in the serial monitor will show the setting of the variable in each
loop iteration, as shown in Figure 14.7.

FIGURE 14.7 Output from controlling the traffic light using the switch.

When the switch is open, the green LED stays on for 6 seconds, but when you close
the switch during the yellow LED time, the next iteration of the green LED stays on
for 10 seconds.

Summary
This hour explored how to use the digital interfaces available on the Arduino. The
Arduino provides multiple interfaces for detecting input digital signals, and also for
generating output digital signals.
You must use the function to set the digital interface for input or output
mode. For output signals, you use the function to generate a
40mA +5 volt output signal, which can power low-current devices. You can
connect a transistor to the digital output to control higher-current devices.

252

For detecting digital input signals, you use the function. You
should always set a default value for the interface using either a pullup or pulldown
voltage. You can do that either internally using the label in the

 function or externally by using the electronic circuit. This prevents input
flapping, which will result in indeterminate values.
The next hour covers how to use the analog interfaces available on the Arduino.
They enable you to both detect analog voltages for input and even to generate
analog signals that you can use to control analog circuits, such as motors.

Workshop

Quiz
1. Which function do you use to activate the internal pullup resistor on a digital

interface?
A.
B.
C.
D.

2. If no voltage is applied to the digital interface, the function
will return a value. True or false?

3. What command should you use to set digital interface 3 to be used for input
mode and to activate the internal pullup resistor?

Answers
1. C. The function allows you to use the mode to

enable the internal pullup resistor on the specified digital interface.
2. False. If no input voltage is applied to the digital interface, the interface may

flap between a and value. You should always set an input
interface to a specific voltage, either or , at all times in your
circuits.

3.

Q&A
Q. What happens if a voltage change occurs on the digital input interface

while the sketch is doing something else and not running the
digitalRead function?

A. The function can only return the current value set on the
digital interface at the time your sketch runs it. It can’t detect whether a
voltage change occurs between the times you run the command.

Q. How can I detect whether a change occurs between when the sketch

253

runs the digitalRead function?
A. You can use interrupts to detect any changes on a digital interface. Those are

discussed in Hour 16, “Adding Interrupts.”

254

Hour 15. Interfacing with Analog Devices

What You’ll Learn in This Hour:
 How the Arduino handles analog signals
 How to read an analog signal
 How to output an analog signal
 Different ways to detect analog inputs

Besides working with digital devices, the Arduino can also interface with analog
devices. However, working with analog signals can be a bit tricky because the
digital Arduino must convert between the analog signal and digital values.
Fortunately, the Arduino developers have made things easier for us by providing a
group of simple functions to use. In this hour, you learn how to work with the
Arduino analog functions to read analog signals from the analog input interfaces on
the Arduino and how to generate analog output signals using the digital interfaces.

Analog Overview
Although microcontrollers are built around digital computers, often you’ll find
yourself having to interface with analog devices, such as controlling motors that
require an analog input voltage or reading sensors that output an analog signal.
Because of that, the Arduino developers decided to add some analog features to the
Arduino microcontroller.
Working with analog signals requires some type of converter to change the analog
signals into digital values that the microcontroller can work with, or changing
digital values produced by the microcontroller into analog voltages that the analog
devices can use. The next sections discuss how the Arduino handles analog input
and output signals.

Detecting Analog Input Signals
For working with analog input signals, the Arduino includes an analog-to-digital
converter (ADC). The ADC converts an analog input signal into a digital value.
The digital value is scaled based on the value of the analog signal. Your Arduino
sketch can read the digital value produced by the converter and use it to determine
the value of the original analog signal.
Each of the Arduino units includes an ADC for sensing analog input voltages and
converting them into digital values. Different Arduino models use different types
and sizes of ADC converters. Table 15.1 shows the number of analog interfaces
each Arduino model supports.

255

TABLE 15.1 Arduino Analog Interfaces by Model

The ADC converts the analog input voltage present on the interface to a digital
value based on a preset algorithm. The range of digital values produced by the
algorithm depends on the bits of resolution that the ADC uses.
For most Arduino models, the ADC uses a 10-bit resolution to produce the digital
value. Thus, the digital values range from 0 for an input of 0 volts, to 1023, for an
input of +5 volts. However, the Leonardo uses a 12-bit resolution ADC, which
makes the upper value 4023 for +5 volts. This provides for a more granular result
as the voltages change, allowing your sketch to detect smaller voltage changes on
the input interface.

Generating Analog Output Signals
For generating analog signals for output, the converter is called a digital-to-analog
converter (DAC). A DAC receives a digital value from the microcontroller and
converts it to an analog voltage that is used to provide power to an analog device
or circuit. The value of the analog voltage is determined by the digital value sent to
the DAC; the larger the digital value, the larger the analog output voltage.
However, DAC devices are somewhat complicated and require extra circuitry to
implement. Because of this, only one Arduino model, the Leonardo, includes an
actual DAC to output true analog signals. If you own one of the other Arduino
models, don’t fret; there’s another method for generating analog output signals.
Pulse-width modulation (PWM) simulates an analog output signal using a digital
signal. It does that by controlling the amount of time a digital output toggles
between the and values. This is called the signal duty cycle.
The length of the signal duty cycle determines the simulated analog voltage
generated by the digital interface. The longer the duty cycle, the higher the analog
voltage that it simulates. A duty cycle of 100% means that the digital output is
always at the value, which generates an output voltage of +5 volts. A signal
duty cycle of 0% means that the digital output is always at the value, which
generates an output voltage of 0 volts.

256

For values in between, the digital output toggles between the and values
to produce a simulated analog signal. For example, when the duty cycle is 50%, the

 value is applied half of the time, which simulates an analog voltage of +2.5
volts. If the duty cycle is 75%, the value is applied three-fourths of the time,
which simulates an analog voltage of +3.75 volts. Your sketch can use the duty
cycle to simulate any analog voltage level from 0 volts to +5 volts on the Arduino.

Locating the Analog Interfaces
The standard header layout in the Arduino footprint (see Hour 1, “Introduction to
the Arduino”) provides six analog input interfaces along the bottom header block of
the device, as shown in Figure 15.1.

FIGURE 15.1 Analog interfaces on the Arduino Uno.

The analog input interfaces on the Arduino are labeled A0 through A5. For the Uno
and Mini devices, those are the only analog input interfaces available. For the
Leonardo, Micro, and Yun devices, the additional analog interfaces are found on
digital interfaces 4, 6, 8, 9, 10, and 12.
The Arduino only supports PWM output on a subset of the digital interfaces. For the
Arduino Uno, digital interfaces 3, 5, 6, 9, 10, and 11 support PWM. You can tell
which digital interfaces on your specific Arduino unit support PWM by the labeling
on the unit. The PWM digital interfaces are marked on the Arduino using a tilde (~)
before the digital interface number (see Figure 15.1).

257

Working with Analog Input
The main function that you use to work with the Arduino analog input interfaces is
the function. It returns an integer value from the specified ADC
interface, which represents the analog voltage applied to the interface:

The analog interfaces use the prefix to indicate the interface (A0 through A5 on
the Uno). For most Arduino models, the function returns a digital
value from 0 to 1023. For the Leonardo, the digital value is from 0 to 4023.
Let’s go through an example to test the analog input on your Arduino unit.

258

 Try It Yourself: Detecting Analog input
In this example, you build a simple analog circuit that uses a
potentiometer to change the input voltage on the Arduino analog input.
A potentiometer is a variable resistor that you control rotating a
control arm. As you rotate the control arm, it changes the resistance
between the pins of the potentiometer. The potentiometer has three
pins. The two outer pins connect across the entire resistor in the
potentiometer, providing a constant resistance value. The inner pin
acts as a wiper; it scans across the resistor as you turn the control arm.
The resistance value between one of the outer pins and the inner pin
changes as you rotate the controller arm. The resistance generated
ranges from 0 ohms to the maximum value of the potentiometer
resistor. We’ll use this feature to change the voltage present on the
analog interface on the Arduino.
For this example, you need the following components:

 A potentiometer (any value)
 A breadboard
 Three jumper wires

Follow these steps to build the circuit for the example:
1. Plug the potentiometer into the breadboard so that the three pins are

positioned across three separate rows.
2. Connect one outer pin of the potentiometer to the +5 pin on the

Arduino header using a jumper wire.
3. Connect the other outer pin of the potentiometer to the GND pin on

the Arduino header using a jumper wire.
4. Connect the middle pin of the potentiometer to the A0 pin on the

Arduino header using a jumper wire.

This configuration allows you to change the resistance between the +5 volt source
and the A0 analog interface on the Arduino as you turn the control arm of the
potentiometer. Because the resistance changes, the amount of voltage applied to the
interface will change. Figure 15.2 shows the circuit diagram for this.

259

FIGURE 15.2 The analog input test circuit.

Next, you need to create a sketch to read the analog interface and display the
retrieved value. To do that, follow these steps:

1. Open the Arduino IDE, and then enter this code into the editor window:
Click here to view code image

2. Save the sketch as sketch1501.
3. Click the Upload icon to verify, compile, and upload the sketch code to

the Arduino unit.
4. Open the serial monitor to run the sketch and view the output.
5. As the sketch runs, rotate the potentiometer control arm and look at the

values output in the serial monitor.
I placed a function at the end of the function so that the output
doesn’t continually stream to the serial monitor. As you rotate the potentiometer
control arm, a delay will occur in the output that you see. You should see different
values appear in the serial monitor output, as shown in Figure 15.3.

260

FIGURE 15.3 The Arduino output as you change the input voltage.

When you get to one end of the control arm rotation, the value returned by the
 function should be 0, indicating that no voltage is being applied to

the analog input. When you get the opposite end of the control arm rotation, the
value should be 1023, indicating that all 5 volts are being applied to the analog
input.

Modifying the Input Result
By default, the function returns the detected voltage level as an
integer value from 0 to 1023. It’s up to your sketch to determine just what that value
means. Fortunately, you can use a couple of functions in your sketches to help
manage the values that you have to work with. This section covers those functions
and shows how to use them.

Limiting the Input Values
You may run into a situation where you don’t want your sketch to act on very low or
very high values in the analog input signal range. For example, you may need a
minimum voltage to control a motor, so your sketch needs to ignore any voltages
detected on the analog input below a set threshold value.
To do that, you can use the function:

value min max

The min and max parameters define the minimum and maximum values returned by
the function. The value parameter is the value that you want tested
by the function. If the value is lower than the min value specified,

261

the function returns the min value. Likewise, if the value is larger
than the max value specified, the function returns the max value. For
all other values between the min and max values, the function
returns the actual value.
You can test this out by adding the function to the sketch1501 code
that you used for the example:
Click here to view code image

Now as you run the program, you should see that the minimum value retrieved will
be 250 instead of 0, and the maximum value retrieved will be 750 instead of 1023.

Mapping Input Values
You may have noticed that one downside to using the function is that
it makes for a large dead area below the minimum value and above the maximum
value. For example, as you turn the potentiometer’s control arm, the output value
stays at 250 until the output actually gets above 250. This can prove impractical at
times because it makes it more difficult to scale the input device to produce
meaningful output values.
One solution to that problem is to use the function:
Click here to view code image

value fromMin fromMax toMin toMax

The function has five parameters:
 —The value to scale.
 —The minimum value in the original range.
 —The maximum value in the original range.
 —The minimum value in the mapped range.
 —The maximum value in the mapped range.

In a nutshell, the function can alter the range of a value from one scale to
another. For example, if you want to change the range of the analog input to 0
through 255 rather than 0 through 1023, you use the following:
Click here to view code image

Now as you rotate the potentiometer control arm, the output will be between 0 and

262

255. You can test this out by adding the function to the sketch1501 code that
you used for the example:
Click here to view code image

Now when you run the sketch, you’ll notice that the values don’t change as quickly
as with the wider range. However, now you don’t have a large dead spot before the
minimum value or after the maximum value.

Using Input Mapping
One nice feature of the map function is that you can restrict the final values returned
by the input to a predetermined result set. You can then use that result set in a
switch statement to run code based on a range of the input values.
This example demonstrates how to do just that.

 Try It Yourself: Mapping Input Values
You can use the function to map input values to any result set
range that you need in your application. In this example, you map the
input to one of three values (1 through 3), and then use that result to
light a specific LED.
This example uses the same potentiometer circuit you created for the
first example, plus it uses the traffic signal circuit that you used for
sketch1401 in Hour 14, “Working with Digital Interfaces.” First, build
the hardware for the example:
1. Keep the potentiometer connected to analog interface A0 that you

used for the sketch1501 circuit on the breadboard.
2. Add the traffic signal circuit that you used from sketch1401. The

final circuit diagram is shown in Figure 15.4. You can use three
different-colored LEDs, or you can use three of the same color
LED.

263

FIGURE 15.4 The complete traffic signal diagram.

The three LED’s are connected to digital interfaces 10, 11, and 12. You control
each LED using the function to provide a signal to light
the LED, or a signal to turn off the LED. The next step is to build the sketch to
control the LEDs using the potentiometer. Follow these steps for that:

1. Open the Arduino IDE, and then enter this code into the editor window:
Click here to view code image

264

2. Save the sketch code as sketch1502.
3. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit.
4. Turn the potentiometer control arm to different positions and watch the LEDs

as they light up.
As you turn the potentiometer control arm, the function returns a
different value from 0 to 1023. The function maps that result to the 1 to 3
range. The function executes the appropriate statement based on the
mapped value. Each statement runs a separate function to light one of the
three LEDs.

265

Changing the Reference Voltage
By default, the Arduino assigns the largest digital value (1023) when a +5 voltage
value is present on the analog input. This is called the reference voltage. The
digital output values are based on the percentage of the reference voltage the analog
input signal is.
The Arduino allows you to change the reference voltage to use a different scale.
Instead of 1023 being assigned to +5 volts, you can change it so the
function produces the 1023 value at +1.1 volts. You do that using the

 function:

source

The source parameter value specifies what reference to use for the analog-to-
digital conversion. You can use either a built-in internal reference source for the
Arduino, or you can use your own external reference source. This section shows
both methods for changing the reference voltage used on the Arduino.

Using an Internal Reference Voltage
The Arduino can provide a separate internal reference voltage for analog input
signals besides the default +5 volts. To do that, you specify the label
for the function:

For most Arduino models, the internal reference voltage is +1.1 volts. The Arduino
Mega model uses a separate internal reference voltage that can generate two
separate values: +1.1 or +2.56 volts. Because the Mega can generate two separate
input reference voltages, it has two separate labels:

 for the +1.1 volt reference
 for the +2.56 volt reference

When you change the reference voltage, the Arduino bases the 0 through 1023
digital value on the new reference voltage. So, when the input voltage is 1.1, it
returns a 1023 value.

Using an External Reference Voltage
You can also provide your own reference voltage for the function.
You do that by using the pin on the Arduino header. Just apply the voltage
that you want to use as the maximum value to the pin, and set the

 function to :

Now when the input analog voltage reaches the reference voltage value, the
Arduino returns a 1023 value, and scales the other voltages accordingly.

266

Watch Out!: Reference Voltage Values
The Arduino can only handle input values of +5 volts or less, so you
can’t increase the reference voltage to more than +5 volts. If you need
to detect voltages larger than +5 volts, you must use a resistor to
decrease the input voltage to within the acceptable input range for the
Arduino. Hour 18, “Using Sensors,” dives into this topic in more
detail.

Analog Output
The PWM feature on the Arduino enables you to simulate an analog output voltage
on specific digital interfaces. The function to use the PWM feature is the

:

pin dutycycle

The pin parameter specifies the digital interface number to use. You don’t need to
use the function to set the digital interface mode; the
function will do that for you automatically.
The dutycycle parameter specifies the amount of time the digital pulse is set to

. What complicates things is that the duty cycle specified for the
 function isn’t a percentage, but a value from 0 to 255. The 255

value creates a 100% duty cycle signal, generating a +5 analog voltage from the
digital interface. The values between 0 and 255 scale the analog output voltage
accordingly.

Using the Analog Output
The following example demonstrates how to use the PWM ports on an Arduino to
output an analog signal.

267

 Try It Yourself: Generating an Analog Output
In this example, you use a potentiometer to control the brightness of
two LEDs connected to PWM interfaces on the Arduino. You use the
same circuit that you built for the sketch1502 example. As it turns out,
digital interfaces 10 and 11 that we used for two of the traffic signal
interfaces also support PWM output. That means you can control the
voltage applied to them using the function.
You just need to write a sketch that reads the analog value from the
potentiometer, and then changes the output voltages on digital
interfaces 10 and 11 based on that analog voltage. Follow these steps
to do that:
1. Open the Arduino IDE, and then enter this code into the editor

window:
Click here to view code image

2. Save the sketch code as sketch1503.
3. Click the Upload icon to verify, compile, and upload the sketch

code to your Arduino unit.
4. Rotate the potentiometer control arm to change the voltage value

present on the analog input pin.

The sketch1503 code maps the input value received from the A0 analog input to the
0 through 255 range, and then uses that value as the duty cycle for the PWM signal
send out on digital interfaces 10 and 11. Notice that the duty cycle for interface 11
will be the opposite as that applied to interface 10. (When the value is 0,
interface 11 will have a duty cycle of 255.) This will cause one LED to get brighter
as the other gets dimmer, and vice versa.
As you rotate the potentiometer control arm, you should notice that the LEDs get
brighter or dimmer. At one end of the rotation, one LED should go completely out,
showing 0 volts on the analog output, and the other should go to maximum
brightness, showing +5 volts on the analog output. Then at the opposite end of the

268

rotation, the opposite lights should go out and get bright.

Summary
This hour explored how you can use the Arduino to read and generate analog
signals. The Arduino Uno supports six analog input interfaces, labeled A0 through
A5. You use the analogRead function to read values from those interfaces. The

 function returns an integer value from 0 to 1023, based on the signal
level present on the interface. You can change the range of the values using either
the or functions.
All Arduino models support generating analog output signals using pulse-width
modulation. You use the function to do that. The
function specifies the digital interface to use for the output, along with the duty
cycle, which determines the level of the analog output signal.
This next hour shows you how to use interrupts in your Arduino programs.
Interrupts enable you to interrupt your sketch whenever a signal change is detected
on an interface. Using interrupts, you don’t have to worry about constantly polling
an interface to wait for a signal change.

Workshop

Quiz
1. What function should you use to change the range of the

output?
A.
B.
C.
D.

2. The function uses a DAC on the Arduino Uno to convert the
digital value to an analog value. True or false?

3. What code would you write to remap the output of analog interface A2 to a
range of 1 to 10?

Answers
1. B. The map function allows you to map the original range of 0 to 1023 from

the output to another range.
2. False. The function uses pulse-width modulation to

simulate an analog output signal using the digital interfaces.
3. You could use the following line:

Click here to view code image

269

Q&A
Q. Can the Arduino output larger analog voltages?
A. No, the Arduino can only output +5 volts. If you need to generate larger

analog voltages, you must create an external circuit that can increase the
analog output generated by the Arduino.

Q. How much current does the Arduino generate for the output analog
signal?

A. The Arduino generates 40mA of current from the PWM signal.

270

Hour 16. Adding Interrupts

What You’ll Learn in This Hour:
 What are interrupts
 How to use external interrupts
 How to use pin change interrupts
 How to use timer interrupts

Hour 14, “Working with Digital Interfaces,” showed you the basics of how to read
data from a digital interface. Sometimes how your sketch reads data on the digital
interface can be important. You might sometimes need to detect exactly when a
specific action happens on an external circuit, such as when a sensor signal
transitions from a to a value. If your sketch just checks the interface
periodically, it may miss the transition when it happens. Fortunately, the Arduino
developers have created a way for our sketches to watch for events on digital
interfaces, and handle them when they occur. This hour discusses how to use
interrupts to watch for events and demonstrates how to use them in your sketches.

What Are Interrupts?
So far in your sketches, you’ve been writing code that checks the digital interface at
a specific time in the sketch. For example, in the traffic signal sketch in Hour 14,
the code only checks the button position after the yellow LED lights. This method of
retrieving data from an interface is called polling.
With polling, the sketch checks, or polls, a specified interface at a specific time to
see if a signal has changed values. The more times you poll the interface in your
sketch loop, the quicker the sketch can respond to a signal change on the interface.
However, a limit applies to that. Your sketch can’t poll the interface all the time; it
might have to do other things in the meantime.
A more practical way of watching for interface signal changes is to let the interface
itself tell you when the signal changes. Instead of having the sketch constantly poll
the interface looking for a signal change, you can program the sketch to interrupt
whatever it’s doing when the signal changes on the interface. This is aptly called an
interrupt.
Interrupts trigger actions based on different types of changes in the digital signal
value. You can program your sketch to watch for three basic types of signal
changes:

 Falling signal values from to
 Rising signal values from to

271

 Any type of signal change from one value to the opposite value
When the Arduino detects an interrupt, it passes control of the sketch to a special
function, called an interrupt service routine (ISR). You can code the ISR to perform
whatever actions need to happen when the interrupt triggers.
More than one type of interrupt is available on the Arduino. The next section
describes the different types and discusses when to use each type.

Types of Interrupts
The ATmega microprocessor chip used in the Arduino supports three types of
interrupts:

 External interrupts
 Pin change interrupts
 Timer interrupts

Each type of interrupt works the same way, but is generated by a different trigger in
the Arduino. This section discusses the differences between these three types of
interrupts.

External Interrupts
External interrupts are triggered by a change in a digital interface signal connected
to the Arduino. The ATmega microprocessor chip has built-in hardware support for
handling external interrupts. The hardware continually monitors the signal value
present on the digital interface and triggers the appropriate external interrupt when
it detects a signal change.
By using a hardware interface, external interrupts are very fast. As soon as the
digital interface detects the signal change, the microprocessor triggers the external
interrupt that your sketch can catch.
The hardware external interrupts are referenced separate from the digital interfaces
that they monitor. The external interrupts are named x, where x is the interrupt
number. The first external interrupt is . Those are the numbers you’ll need to
use in your sketches to reference the external interrupt to monitor.
The downside to external interrupts is that not all digital interfaces have the
hardware to generate them. Each Arduino model has a limited number of digital
interfaces that support generating external interrupts. Table 16.1 shows the digital
interface support for external interrupts on the different Arduino models.

272

TABLE 16.1 Arduino Support for External Interrupts

For example, on the Arduino Uno model, the interrupt signal monitors digital
interface 2, and the interrupt signal monitors digital interface 3. Those are
the only two digital interfaces on the Uno model that support external interrupts.
The Leonardo Arduino model can support four external interrupts, and the Mega
Arduino model can support six.
Because external interrupts are generated by the ATmega microprocessor, support
for them is already built in to the Arduino programming language. You don’t need to
load any external libraries to use external interrupts in your sketches.

Pin Change Interrupts
Pin change interrupts are software driven instead of hardware driven. The benefit
of pin change interrupts is that the Arduino generates a pin change interrupt for any
type of signal change on any interface. Although this enables you to detect signal
changes from any interrupt, there’s a catch.
The catch is that your sketch code must determine just why the pin change interrupt
was generated. It has to decode which interface generated the pin change interrupt,
and based on what type of signal change.
Fortunately for us, some Arduino developers have created the PinChangeInt library
to help out with decoding pin change interrupts that the Arduino generates. It allows
you to monitor specific interrupts and to specify the ISR the Arduino runs when the
interrupt occurs. This makes handling pin change interrupts almost as easy as
working with external interrupts.
Unfortunately, the Arduino IDE environment doesn’t install the PinChangeInt library
by default, so you’ll have to do some work to get that installed.

Timer Interrupts
The last type of interrupt that you can use in the Arduino is timer interrupts. Instead
of triggering an interrupt based on an event on a digital interface, timer interrupts
trigger an interrupt based on a timing event, sort of like an egg timer.
With timer interrupts, your sketch can define an ISR function to trigger at a preset
time in the sketch code. When the timer in the Arduino reaches that time, the
Arduino automatically triggers the ISR function and runs the function code.
Timer interrupts can come in handy if you need to perform tasks at preset times in
the sketch, such as recording a sensor value every 5 minutes. You just set a timer

273

interrupt to trigger every 5 minutes, and then set code in the ISR function to read
and record the sensor value.

Using External Interrupts
Coding external interrupts in your sketches is a fairly straightforward process. To
use external interrupts, you just need to add two things to your sketch:

 Set the external interrupt to watch
 The ISR function to run when the interrupt triggers

The first step is to define which external interrupt to watch. You do that using the
 function:

Click here to view code image

interrupt isr mode

The interrupt parameter defines the external interrupt signal to monitor. For the
Arduino Uno model, this value will be either 0 for monitoring interrupt on
digital interface 2, or 1 for monitoring interrupt digital interface 3.
The isr parameter defines the name of the ISR function the Arduino runs when the
external interrupt triggers. The Arduino halts operation in the main sketch code and
immediately jumps to the ISR function. When the ISR function finishes, the Arduino
jumps back to where it left off in the main sketch code.
The mode parameter defines the signal change that will trigger the interrupt. You
can set four types of external interrupt modes:

 RISING—Signal changes from to .
 FALLING—Signal changes from to .
 CHANGE—Any type of signal value change.
 LOW—Triggers on a signal value.

The interrupt trigger can be somewhat dangerous because it will continually
trigger as long as the interface signal is at a value, so be careful with that one.
The others are fairly self-explanatory.

274

Watch Out!: ISR Speed
You want to be aware of a few do’s and don’ts regarding the code that
you can use in an ISR function. The idea is to make the ISR code as
short and fast as possible, because the Arduino holds up all other
processing while running the ISR function. While running the ISR
function, the Arduino also ignores any other interrupts that may be
generated, so your sketch could miss other interrupts in the process.
Also, don’t use the Serial library methods to output text to the serial
monitor inside of an ISR function. The Serial library uses interrupts to
send data out the serial ports, which won’t work in the ISR function
because the Arduino ignores interrupts inside the ISR function!

When your sketch is finished monitoring external interrupts, you should use the
 function to disable them:

interrupt

Just specify the interrupt number that you previously set in the
 function to disable it.

Testing External Interrupts
Now that you’ve seen the basics on how to use external interrupts, let’s work on an
example that demonstrates using them in an Arduino sketch.

 Try It Yourself: Using External Interrupts in a Sketch
In this example, you revisit the traffic signal sketch that you created in
Hour 14 in the “Experimenting with Digital Input” section. If you
remember, sketch1402 used a switch to change the time value assigned
to the green LED state. The downside was that you had to press and
hold the switch at a specific time in the sketch for it to detect the
change.
For this example, you use an external interrupt to control the LED
timing. This allows you to press the switch at any time in the traffic
light cycle to change the green LED time allocation.
This example requires that you rebuild the traffic signal circuit used
for sketch1402 from Hour 14, but moving the switch to the digital
interface 2 pin on the Arduino to trigger the external interrupt. The
components required for the example are as follows:

 Three LEDs (one red, one yellow, and one green)
 Four 1K ohm resistors (color code brown, black, red)

275

 A momentary contact switch
 A breadboard
 Six jumper wires

First, follow these instructions for building the traffic signal hardware
required for the example:
1. Place the three LEDs on the breadboard so that the short leads are

all on the same side and that the two leads straddle the space in the
middle of the board so that they’re not connected. Place them so that
the red LED is at the top, the yellow LED in the middle, and the
green LED is at the bottom of the row.

2. Connect a 1K ohm resistor between the short lead on each LED to a
common rail area on the breadboard.

3. Connect a jumper wire from the common rail area on the
breadboard to the GND interface on the Arduino.

4. Connect a jumper wire from the green LED long lead to digital
interface 10 on the Arduino.

5. Connect a jumper wire from the yellow LED long lead to digital
interface 11 on the Arduino.

6. Connect a jumper wire from the red LED long lead to digital
interface 12 on the Arduino.

7. Place the momentary contact switch on the breadboard under the
LEDs so that the switch straddles the center divide of the
breadboard.

8. Connect a jumper wire from digital interface 2 on the Arduino to
one of the switch pins.

9. Connect the other switch pin to the GND rail on the breadboard.
10. Connect a jumper wire from the 5V pin on the Arduino to a

common rail area on the breadboard.
11. Connect a 1K ohm resistor from the row that has the left side of the

switch pin connected to digital interface 2 to the breadboard 5V
common rail area.

276

By The Way: Resistors and LEDs
The size of the resistor to use with the LEDs depends on the amount of
current the LEDs you use can handle. The Arduino outputs 40mA of
current, so for most larger electronic circuit LEDs, you need only a 1K
ohm resistor to limit the current. If you use a smaller-sized LED such
as the ones built in to the Arduino, you must use a larger-sized resistor,
such as a 10K ohm, to limit the current applied to the LED.

That completes the electronics for the circuit. Figure 16.1 shows the circuit
diagram for the completed circuit.

FIGURE 16.1 The external interrupt test circuit.

This circuit re-creates our standard traffic signal light setup using digital interfaces

277

10, 11, and 12 to control the traffic signal LEDs, plus adds a switch to digital
interface 2 to trigger the interrupt.
The switch uses a 1K ohm resistor as a pullup resistor to tie digital interface 2 to a

 signal when the switch isn’t pressed. When you press the switch, it pulls the
interface .
The circuit uses the built-in LED on digital interface 13 to monitor when the
interrupt is triggered. (Remember, you can’t use the function
inside an ISR function.) When the L led on the Arduino unit lights, the timer is set to
a 10-second interval for the green LED.
Now you’re ready to create the sketch for the example. Follow these steps to do
that:

1. Open the Arduino IDE, and then enter this code into the editor window:
Click here to view code image

278

2. Save the sketch as sketch1601.
3. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit.
4. Open the serial monitor to run the sketch and view the output.

You should recognize most of the code in this sketch from Hour 14. It creates
separate functions to control the stop, yield, and go states of the traffic signal, just
like before. However, this version uses the function to tell
the Arduino to monitor the input on digital interface pin 2 (). Digital interface
2 is wired in a pullup circuit, providing a signal value by default. When you
press the switch button, the circuit pulls the digital interface 2 pin to ground,
causing the signal to fall to a value, triggering the interrupt on

.
The function catches the falling interrupt, and runs the

 ISR function defined in the sketch. The function
changes the value of the variable, which controls how long the green LED stays
lit. It also changes the fourth LED to indicate when the variable is 10 (the LED
will light) or 6 (the LED will be off). This feature allows you to peek inside the
ISR function and easily see when it triggers.
When you run the sketch, you can press the switch button at any time in the traffic
light cycle to change the length assigned to the green LED.

279

Watch Out!: Switch Bounce
One downside to using interrupts is that they are very sensitive. Every
time the interface signal changes, it generates a new interrupt. You may
have noticed that if you’re not careful pressing the switch button, it
may trigger two or more interrupts with one press. This is called
switch bounce.
To help minimize switch bounce, place a capacitor across the two
switch pins. The capacitor stores electricity when the switch is open,
and discharges when the switch is closed. The change won’t actually
register on the digital interface until the capacitor fully discharges.
If the switch bounces while the capacitor is discharging, the discharge
will override the bounce, forcing the signal to stay . This helps
mask short switch bounces in the circuit, but it does reduce the
sensitivity of the switch.

Using Pin Change Interrupts
Thanks to the PinChangeInt library, using pin change interrupts isn’t too different
from using external interrupts. You just specify the pin number that you want to
monitor, the type of signal change you want to detect, and the ISR function to run
when the interrupts occurs.
This section shows you how to install the PinChangeInt library and use it in your
sketches.

Installing the PinChangeInt Library
The PinChangeInt library is packaged a little differently than the standard Arduino
libraries, making it a little harder to import into your Arduino IDE environment.
Here are the steps you need to follow to import the PinChangeInt library into your
Arduino IDE environment:

1. Open a browser and navigate to the PinChangeInt web page:
http://code.google.com/p/arduino-pinchangeint/.

2. Click the Downloads tab at the top of the main web page.
3. From the Downloads page, click the Download icon for the latest nonbeta

version available (at the time of this writing, version 1.72).
4. Click the Save button to download the zip file to your workstation.
5. Open the zip file on your system, and extract the PinChangeInt folder from the

zip file to a temporary location.
6. Move the PinChangeInt folder from the temporary location to the libraries

folder under your Arduino installation location (normally under the

280

http://code.google.com/p/arduino-pinchangeint/

Documents\Arduino folder for your user account in both Windows and OS
X).

7. If you have the Arduino IDE open, close it and reopen it so it can recognize
the new PinChangeInt library.

Watch Out!: Using the Import Library
Unfortunately, the PinChangeInt zip file contains three separate library
folders, so you can’t use the Arduino IDE Import Library feature
shown in Hour 13, “Using Libraries.” Instead, you have to extract the
PinChangeInt folder from the distribution zip file and manually copy it
into the libraries folder for the Arduino IDE.

The PinChangeInt library is now imported into your Arduino IDE environment.
When you go to the Import Library submenu, the PinChangeInt library should
appear under the Contributed section of the library listing.

Experimenting with Pin Change Interrupts
After importing the PinChangeInt library into your Arduino IDE environment, you
can easily use it to track interrupts on any digital interface on the Arduino. First,
you must import the library into your sketch by using the Import Library option of
the Sketch menu item. This adds a directive to your sketch:

Next, you need to set the digital interface that you want to use for the interrupt
trigger to input mode:

Finally, you use the special object that’s created in the library to
access the method. That line looks like this:
Click here to view code image

With the PinChangeInt method, you specify the pin number
of the digital interface as the first parameter, the ISR function to call as the second
parameter, and the signal change to monitor as the third parameter.
Let’s go through an example of using the PinChangeInt library in your sketch.

281

 Try It Yourself: Using the Pin Change Interrupt
You can easily convert the external interrupt example used in
sketch1601 to use a pin change interrupt. Use the circuit that you built
for the sketch1601 example, and follow these steps:
1. Open the Arduino IDE, and then open the sketch1601 sketch.
2. Select Sketch from the menu bar at the top of the Arduino IDE.
3. Select Import Library, and then select the PinChangeInt library.
4. Change the function code to look like this:

Click here to view code image

5. Save the new sketch as sketch1602.
6. Move the jumper wire from the switch that was connected to digital

interface 2 to digital interface 7.
7. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
8. Open the serial monitor to run the sketch and view the output.

The updated code sets a pin change interrupt on digital interface 7 and watches for
a falling signal change. When you press the switch, it triggers the pin change
interrupt, and changes the time allocated to the green LED in the traffic signal. Now
with pin change interrupts, you can place the switch on any digital interrupt and
monitor when it changes.

282

Working with Timer Interrupts
Timer interrupts allow you to set interrupts that trigger at a preset time period while
your sketch runs. All Arduino models include at least one timer that you can access
with your sketch code, called Timer1. The Arduino Mega model provides three
separate timers that you can use.
To access the timer, you need to use special software. Again, the Arduino
developer community has come to our rescue and has provided an easy-to-use
library for us. The Timer One library provides everything we need to utilize the
Timer1 internal timer in your Arduino unit.
This section demonstrates how to get and install the Timer One library, plus shows
an example of how to use it in your own Arduino sketches.

Downloading and Installing Timer One
Similar to the PinChangeInt library, you’ll have to go out to the Internet and
download the Timer One library to install it in your Arduino IDE environment.
Here are the steps to do that:

1. Open a browser and navigate to the Timer One Web page:
http://code.google.com/p/arduino-timerone/.

2. Click the Downloads link at the top of the web page.
3. Click the Download icon for the latest release version of the Timer One

library (called TimerOne-v9.zip at the time of this writing).
4. Save the file to a location on your workstation.
5. Open the downloaded zip file, and then extract the TimerOne-v9 folder to

a folder called TimerOne in a temporary location (you’ll have to rename
the folder to remove the dash for it to work).

6. Copy the TimerOne folder to the libraries folder in your Arduino IDE
environment.

After importing the Timer One library into your Arduino IDE, you’re ready to use it
in your sketches.

Testing Timer Interrupts
Let’s work through an example of using the Timer One library. For this example,
you create a sketch that blinks the built-in LED connected to the digital interface 13
pin on the Arduino using the Timer One library. Just follow these steps:

1. Open the Arduino IDE, click the Sketch menu bar item, and then under Import
Library, select the Timer One library.

2. Enter this code into the editor window:
Click here to view code image

283

http://code.google.com/p/arduino-timerone/

3. Save the sketch as sketch1603.
4. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit.
The sketch1603 code uses methods in the class object defined in the
Timer One library. This sketch uses two methods from that library:
Click here to view code image

time
isr

The method defines the amount of time between triggering the timer
interrupt. The time value is defined in microseconds, so to trigger the interrupt
every second, you’ll need to enter the value 1000000.
The method defines the ISR function to call when the timer
interrupt triggers.
In this example, I created an integer variable called that toggles between

 and values on each timer interrupt. When the variable is set to a
 value, the LED that is connected to digital interface 13 lights up. When the

 variable is set to a value, the LED is not lit. The timer interrupt
triggers the function every 1 second, which causes the LED to change
states every second. Feel free to change the value set for the timer interval and
watch how it changes the blink rate of the LED.

284

Ignoring Interrupts
Sometimes you might not want your sketch code interrupted by events (such as a
time-sensitive part of the sketch code). In those situations, you can disable
interrupts so that they don’t trigger the ISR function assigned to them. You do that
using the function:

As you can see, there aren’t any parameters to the function, so
you can’t disable a specific interrupt. When you run the
statement, all interrupts on the Arduino are ignored.
You can reenable interrupts when your sketch is ready to accept them again using
the function:

Again, as you can see, the function doesn’t use any parameters, so it
enables all interrupts on the Arduino.

Summary
This hour explored the world of interrupts on the Arduino. Interrupts alter the
operation of a sketch when a specified event is detected on the Arduino. You can
use three types of interrupts on the Arduino. External interrupts are built in to the
ATmega microprocessor chip and trigger an interrupt when the microprocessor
detects a signal change on a specific digital interface. Most Arduino models
support only two external interrupts.
Pin change interrupts are software generated by the microprocessor, but can be set
for any digital interface. Unfortunately the sketch must decode the cause of the pin
change interrupt, which can be tricky. The PinChangeInt library provides simple
functions for us to use to interface with pin change interrupts.
Timer interrupts allow you to set a timer to trigger an interrupt at predefined
intervals in the sketch. All Arduino models support one timer interrupt, and the
Due, Mega, and Yun models support multiple interrupts.
The next hour covers how to use serial communication techniques to help your
Arduino communicate with the outside world. The Arduino supports three different
types of serial communication protocols, as discussed in the next hour.

Workshop

Quiz
1. Which type of interrupt should you use to read a sensor value every 5

minutes in your sketch?
A. External interrupt

285

B. Pin change interrupt
C. Timer interrupt
D. Polling

2. You can use external interrupts on any digital interface on the Arduino. True
or false?

3. If you set both the and external interrupts, how can you turn off
only the interrupt and keep the interrupt active?

Answers
1. C. Timer interrupts allow us to set a predefined interval for the interrupt to

trigger an ISR function. You can then place code to read the sensor value
inside the ISR function.

2. False. Most Arduino models only support two external interrupts, on digital
pins 2 and 3.

3. You can use the function to stop receiving
interrupts for , but continue receiving interrupts for .

Q&A
Q. Can you define different ISR functions for different interrupts, or must

all the interrupts use the same ISR function?
A. You can define multiple ISR functions and assign each one to a different

interrupt.
Q. Can you change the mode of an interrupt from RISING to FALLING?
A. No, you must detach the interrupt first, and then attach a new interrupt with

the new mode.
Q. Can I use both external and pin change interrupts at the same time?
A. Yes, but be careful that you don’t assign both to the same digital interface.

286

Hour 17. Communicating with Devices

What You’ll Learn in This Hour:
 The different types of serial communication protocols
 Using the serial interface pins on the Arduino
 How the SPI interface works
 How to talk to another device using I2C

More likely than not, you’ll run into a situation where you want your Arduino to
communicate with some type of external device. Whether you’re interfacing your
Arduino with the serial monitor tool in the Arduino IDE or passing data to an LCD
controller to display information, communication is a vital part of working with the
Arduino. This hour takes a look at three common methods of communicating with an
Arduino.

Serial Communication Protocols
The basic mode of communication among Arduino devices is serial communication.
Serial communication requires a fewer number of connections between the devices
than other communication protocols (often with just two or three lines), and
provides a simple way to move data between disparate devices.
The Arduino hardware design includes three different types of serial
communication methods:

 A standard serial port
 A Serial Peripheral Interface (SPI) port
 An Inter-Integrated Circuit (I2C) port

These are all common serial communication methods used in the electronics
industry. By providing all three methods, the Arduino developers have made it easy
to connect your Arduino with just about any type of external device you’ll run into.
The Arduino IDE software even includes libraries that make it easy for you to
interface with each of these different communication methods in your sketches.
The following sections examine each of the different serial communication
methods, showing you how to use each of them in your sketches.

287

Using the Serial Port
Each Arduino model contains at least one standard serial port interface. The serial
port interface sends data as a serial sequence of bits to the remote device. Because
data is sent one bit at a time, the serial port only needs two pins to communicate—
one to send data to the remote device, and one to receive data from the remote
device.
This is the interface that the Arduino IDE software uses to transfer data into your
Arduino unit, as well as receive simple output from your Arduino unit. You can
easily adapt the standard serial interface to communicate with other serial devices
as well.

The Serial Port Interfaces
The serial interface on the Arduino uses two digital interface pins for serial
communication with external devices. By default, all Arduino models use digital
interface pins 0 and 1 to support the primary serial interface. The Arduino uses pin
0 as the receive port (called RX), and pin 1 for the transmit port (called TX).
The Arduino software names this port serial, which is also the name of the object
you use in your sketches to send and receive data using the port (such as when you
used the function in your sketches).
Because the serial interface is commonly used to transfer your sketch code into the
Arduino, to make life even easier for us the Arduino developers connected the
serial interface pins to a serial-to-USB adapter built in to the Arduino unit. This is
what allows you to plug your Arduino directly into to your workstation using a
standard USB cable.

Watch Out!: Using the USB Serial Interface
Because the USB serial interface uses digital interfaces 0 and 1, you
can’t use those interfaces in your sketches as digital inputs or outputs
once you use the function to initialize the serial
interface to output data to the serial monitor. You can use the

 function to stop the serial interface and return the
interfaces back to their normal functions.

The Arduino Due and Mega models also include three other serial port interfaces.
Digital interface pins 18 and 19 are used for the Serial1 port, pins 16 and 17 for
Serial2, and pins 14 and 15 are used for Serial3. These serial ports don’t have a
serial-to-USB adapter connected to them, so you’ll either need to provide your
own, or just use the raw serial pins in your circuits.
Because the serial ports use two separate pins to communicate, you have to be
careful how you connect the Arduino serial port to other devices. If you connect

288

your Arduino to another Arduino unit, or another type of serial device using the
serial port, remember to cross-connect the interface pins. The receive pin on the
Arduino must connect to the transmit port on the external device, and vice versa, as
shown in Figure 17.1.

FIGURE 17.1 Connecting two Arduino units using the serial interface pins.

The Arduino sends and receives serial signals using Transistor-transistor-logic
(TTL)-level voltages. This means that the 1 bit is represented by +5 volts, and a 0
bit is represented by 0 volts. Make sure that the remote device you connect to your
Arduino serial interface also supports TTL-level signaling.

Watch Out!: RS-232 Serial Interfaces
Don’t try to connect your Arduino serial port to a standard RS-232
serial interface, such as what is found in the COM ports on older
desktop workstations. The RS-232 interface standard uses +12V for
the signal, which will damage the digital interfaces on your Arduino!

The Serial Library Functions
The Serial library provides a set of functions for you to easily send and receive
data across the serial interfaces on your Arduino. You’ve already seen them in
action as we used the serial interface to send data to the serial monitor utility in the
Arduino IDE.
Not only can you send data out the serial interface, but the Serial library also
includes functions that enable you to read data received on the serial interface. This
allows you to send data from the serial monitor back into your Arduino sketch to
control things. This is a great way to push data into your sketch as it runs.
Table 17.1 shows the functions provided by the Serial library that you can use in
your sketches.

289

TABLE 17.1 The Serial Functions

You’ve already seen some of these functions in action as we worked on the
experiment sketches in the previous hours. The following sections go through a
brief rundown of the more commonly used functions that you’ll want to
use in your sketches.

Starting Communications
As you’ve already seen in our experiment sketches, to start communicating using the
serial interface, you must use the function. This function
initializes the digital interface pins for serial mode, and sets the communication
parameters that the serial interface uses:

290

rate config

The first parameter is required; it sets the speed of the data transfer in bits per
second (called the baud rate). The Arduino serial interface supports baud rates up
to 115,200 bits per second, but be careful, because using higher baud rates can
sometimes introduce errors, especially in longer connection wires. It’s common
practice to use 9600 baud to communicate with the serial monitor in the Arduino
IDE.
The second parameter is optional; it defines the data bits, parity, and stop bits of the
serial protocol. If you omit the second parameter, the serial interface uses an 8-bit
serial protocol, with no parity and 1 stop bit. This is the standard used by most
serial communications devices. If the serial device you use requires a different
setting, you can use labels to define the settings for the second parameter. For
example, to use a 7-bit protocol with even parity and 1 stop bit, you use the label

 for the second parameter.

Sending Data
Three separate functions send data to a remote device:

The function sends data as ASCII text. The ASCII format is
commonly used for displaying data, which is what the Arduino IDE serial monitor
uses. For numeric values, you can specify an optional second parameter, which
defines the numeric format to use: for output as a binary value, for
decimal format, for hexadecimal format, and for octal format. The default
is decimal format.
The function works the same as the
function, but adds the carriage return and line feed characters to the end of the
output, creating a new line in the output window.
The function allows you to send 1 byte of raw data to the remote
device, without any formatting.

Receiving Data
The serial interface on the Arduino contains a buffer, holding data as the Arduino
receives it on the pin. It can store up to 64 bytes of data, which allows you
some flexibility in how your sketch retrieves the incoming data.
Your sketch can retrieve data from the buffer 1 byte at a time using the

 function. Each time you read a byte from the buffer, the Arduino
removes it from the buffer and shifts the remaining data over.
You can also retrieve multiple bytes of data from the buffer at a time. The

291

 function lets you specify the number of bytes to extract
from the buffer and place them in an array variable in your sketch. The

 function extracts data until a character that you
specify is detected in the buffer data. That comes in handy if you send text data
using a carriage return and line feed format for each line of data.
The or functions provide ways
for you to easily retrieve integer or floating-point values that you pass into your
Arduino sketch as it runs. The next section shows an example of how to pass
numeric values to your sketch and then retrieve them using the

 function.

Testing the Serial Port
Let’s go through an example of sending data from the serial monitor to a running
sketch to demonstrate how to use the receive features of the serial interface.

 Try It Yourself: Sending Data to Your Arduino
In this experiment, you control the blink rate of an LED by sending
numeric values to your sketch using the Arduino IDE serial monitor. It
uses the built-in LED connected to digital interface pin 13 on the
Arduino, so you won’t need to build an external circuit.
Here are the steps to create the code for the experiment:
1. Open the Arduino IDE.
2. Select Sketch from the menu bar, then select Import Library, and

then select the Timer One library. (If you don’t see the Timer One
library listed, go to Hour 16, “Adding Interrupts,” to see how to add
it to the Arduino IDE library.)

3. Enter this code into the editor window:
Click here to view code image

292

4. Save the sketch code as sketch1701.
5. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
6. Open the serial monitor utility to run the sketch and view the output.

Make sure that the Line Speed drop-down box at the bottom is set
for 9600 baud, and that the Line Ending drop-down box is set to No
Line Ending.

7. In the text box at the top of the serial monitor, enter a number from 1
to 9, and then click the Send button.

8. Watch the LED blink at the rate that you specified in the serial
monitor text box. You can submit new values to watch the rate
change.

The sketch uses the function to detect when new data is
present in the serial interface buffer. It then uses the function
to retrieve the data and convert it into an integer value. The sketch then uses the
value in a timer interrupt (see Hour 16) to change how frequently the Arduino turns
the LED on and off.

293

Tip: Serial Events
Reading data from the serial interface can sometimes be tricky,
especially if you don’t know exactly when to expect the data to arrive.
Instead of using the function to poll the serial
interface for data, you can use serial events to notify your sketch when
data is present.
Incoming serial data triggers a special function named

, which you can define in your sketch. You can
include code in the function to process the data as it
comes in, and then return back to your normal sketch code, much like
the interrupts shown in Hour 16.

Working with the SPI Port
The Serial Peripheral Interface (SPI) protocol uses a synchronous serial connection
to communicate with one or more peripheral devices over a short distance. A
synchronous serial connection requires a separate clock signal to synchronize the
data transfer between devices. Many sensors use the SPI protocol to communicate
with a host system. You can use the SPI port on your Arduino to interface with those
types of sensors.
The SPI protocol uses a bus technology to share a single interface between multiple
devices. One device connected to the bus is designated as the master and controls
the operation of the bus. The other devices connected to the bus are designated as
slaves and can send or receive signals on the bus only when polled by the master
device.

Watch Out!: The Arduino and SPI Slave Mode
The Arduino hardware supports both master and slave mode in SPI,
but at the time of this writing, the Arduino library only supports
operating in master mode on the SPI bus. This means that you cannot
currently use your Arduino to communicate with other SPI master
devices, only SPI slave devices, such as sensors.

The following sections describe how to use your Arduino as an SPI master device
to communicate with SPI slave devices, such as sensors.

The SPI Interfaces
The SPI protocol uses three signals that connect to all devices in the SPI bus:

 MISO (Master In Slave Out): Line for slave sending data to the master
device.

294

 MOSI (Master Out Slave In): Line for the master device sending data to
the slave.
 SCK: A serial clock signal to synchronize the data transfer.

Besides the three bus lines, each slave device has a Slave Select (SS) pin that
connects to the master. The master must set the appropriate slave SS pin to a LOW
value when it communicates with that specific slave device. If the SS pin is set to
HIGH, the slave device ignores any data on the MOSI line.
The Arduino supports SPI signals using an interface that’s separate from the
standard header pins. All Arduino devices include a separate ICSP header on the
far-right side of the unit, as shown in Figure 17.2.

FIGURE 17.2 The ICSP header on the Arduino Uno unit.

Figure 17.3 shows the pin location for the SPI signals on the ICSP header.

295

FIGURE 17.3 The SPI signals on the ICSP header.

The Arduino Uno also provides the SPI signals on the digital interface header pins:
 SS on digital interface 10
 MOSI on digital interface 11
 MISO on digital interface 12
 SCK on digital interface 13

If you use those interfaces to support SPI communication, you can’t use them as
digital inputs or outputs.

By The Way: SPI and Digital Interfaces
When you initialize the SPI feature on the Arduino, you won’t be able
to use the digital interfaces assigned to the SPI signals as inputs or
outputs. That includes the built-in LED connected to digital interface
13.

The SPI Library Functions
The Arduino IDE software includes a separate SPI library by default. The SPI
library contains functions required to communicate with SPI slave devices using
your Arduino, but doesn’t provide any functions for the Arduino to act as a slave
device itself. Table 17.2 lists the functions available in the SPI library.

296

TABLE 17.2 SPI Functions

The SPI bus transfers data 1 byte at a time. You must use the
function to set whether the Arduino handles the byte in least-significant bit order
() or most-significant bit order ().
The function determines the clock speed set for the
SPI bus. The clock speed on the master and slave devices must match or you won’t
get the proper data synchronization. The SPI library allows you to set the SPI bus
clock speed to even number divisions of the Arduino microcontroller clock, which
is 16MHz. You specify the clock speed using labels, such as
to set the clock speed to 8MHz (half of the Arduino 16MHz clock speed), or

 to set the clock speed to 4MHZ. The parameter supports
values of 2, 4, 8, 16, 32, 64, or 128.
The function sets the clock polarity and phase used in the
SPI bus. The SPI bus can use four standard data modes. All devices on the bus must
be set to use the same mode. The values you can use are ,

, , and . You will need to consult with the
specifications for the SPI device you’re communicating with to determine the mode
it uses and set the Arduino to use the same SPI mode.
After you have all the SPI bus parameters set, you’re ready to send and receive data
on the SPI bus. The function both sends and receives a single
byte of data on the bus with one function. The function pulls the
SS interface low, so the slave device connected to that pin knows to read the data
that the Arduino sends on the bus. This means you can only communicate with one
SPI device from most Arduino models. The Arduino Due supports three SPI
interfaces, allowing you to connect up to three SPI slave devices.

297

Working with I2C
The I2C protocol was developed by the Phillips Semiconductor Corporation for
providing a communication protocol between multiple embedded electronic
devices using only a two-wire bus system. The I2C protocol is intended for very
short distances, often between devices placed on the same circuit board, but can
also be used with short distance wired connections.
To eliminate the extra slave select line, the I2C protocol uses addresses to
determine which data is intended for which device. Each slave device on the bus
has a unique address assigned to it, and only responds to data sent to its own
address, much like an Ethernet local-area network (LAN).
This section discusses the I2C support provided by the Arduino and demonstrates
how to communicate between Arduino devices using the I2C protocol.

The I2C Interface
One of the selling features of the I2C protocol is that it requires only two signals:

 Serial data line (SDA): Sends the data between devices.
 Serial clock (SCL): Provides a clock signal to synchronize the data transfer.

The single data line is used to both send and receive data, so it’s important that the
master device have full control over the bus at all times to prevent data collisions.
Slave devices can only send data when prompted by the master device.
Unfortunately, the different Arduino models provide the two I2C signals on different
interface pins, so you have to be careful when accessing the I2C signals on your
specific Arduino unit. Table 17.3 shows where to find the I2C signals on the
different Arduino models.

TABLE 17.3 I2C Interface Pins

Notice that the Uno and Ethernet models use two analog interface pins for the I2C
signals instead of digital interface pins. The Due Arduino model also supports a
second dedicated I2C interface pair. Those pins are labeled SDA1 and SCL1 on the
board.

298

The Wire Library Functions
The Wire library provides software support for using the I2C interface on the
Arduino. The Arduino IDE includes the Wire library by default, so it’s easy to use
in your sketches. The Wire library provides all the functions that you need to set up
and work with the I2C protocol in your sketches. Table 17.4 shows the functions
that are available.

TABLE 17.4 Wire Functions

Every slave device on the I2C bus requires a unique address. To communicate on
the bus as a slave device, you must assign your Arduino an address, specified in the

 function:

This statement sets the address of the Arduino to 1. Be careful when you assign an
address to your Arduino that it doesn’t conflict with the address assigned to any
other slave devices on the I2C bus. To operate as a master device, just use the

 function without specifying an address.
After the function, your Arduino can send and receive data messages from

299

other devices on the I2C bus. Sending data to a device requires three separate
statements. First, you must use the function to identify the
slave device the data is intended for. Next, you use one or more functions
to send the actual data. Finally, you use the function to tell
the slave device you’re done talking to it.
Receiving data depends on whether the Arduino is operating in master or slave
mode. If in slave mode, use the function to retrieve the data sent from the
master device on the bus. If the Arduino is operating in master mode, you need to
use the function to specify the address of the slave device to
retrieve data from.
On the surface, using the I2C protocol can look somewhat complicated, but once
you get the hang of the master and slave modes, it’s a breeze to send and receive
data. The following section goes through an example of using the I2C protocol to
communicate between two Arduino units.

Testing the I2C Interface
One great feature of the I2C bus is that you can use it to communicate between
multiple Arduino units. You can then use one Arduino as the master and connect the
others as slaves on the I2C bus. The master can request sensor data from each of the
slaves to combine readings for logging or display purposes.
If you have two Arduino units handy (they don’t have to be the same model), you
can work through this experiment.

300

 Try It Yourself: Communicating Between Arduino Units

In this experiment, you set up an I2C bus to connect two Arduino units
together so one Arduino can control the actions of another Arduino.
The master Arduino unit will listen on the serial interface for an
integer value and then pass that value to the slave Arduino using the
I2C bus, which will use it to control the blink rate of the LED on
digital interface 13.
Connecting two Arduino units sounds easy, but unfortunately you
cannot just connect the I2C pins on the Arduino units directly together.
The I2C bus protocol requires that the SDA and SCL lines be held at a
HIGH voltage level when there isn’t any data on them. To do that, you
need some equipment to set the pullup resistors:

 Two 1K-ohm resistors (color code brown, black, red)
 Eight jumper wires
 A standard breadboard

First, follow these steps to create the circuit to connect the two
Arduino units:
1. Place the two 1K-ohm resistors on the breadboard so that one lead

of each resistor connects to a common bus on the breadboard and
the other leads connect to separate rails. The rails will carry the
SDA and SCL bus signals.

2. Connect the common bus that has the two resistor leads on the
breadboard to the 5V pin on the master Arduino using a jumper
wire.

3. Connect the 5V pin of the slave Arduino to the same common bus
using a jumper wire. The two Arduino units must share the same
voltage reference for the bus signals to match.

4. Connect the GND pin of the master Arduino to the GND pin of the
slave Arduino using a jumper wire. The two Arduino units must
also share the same ground reference for the bus signals to match.

5. Connect the SDA signal pin on each Arduino (for the Uno, analog
pin A4) to one of the bus rails on the breadboard that has the 1K-
ohm resistor connected to it.

6. Connect the SCL pin on each Arduino (for the Uno, analog pin A5)
to the other rail on the breadboard that has the 1K-ohm resistor on
it.

Figure 17.4 shows the circuit diagram for this connection.

301

FIGURE 17.4 Circuit diagram for connecting the I2C bus pins on the Arduino units.

Watch Out!: Mismatched Arduinos
Be careful if you’re not using the same model of Arduino unit for both
devices. The Arduino Due model only supports 3.3 volts, so you’ll
have to use the 3.3V pin on the Arduino Uno if you want to connect it
to an Arduino Due.

Next comes the tricky part—setting up the code for the master and slave Arduino
units. Because each Arduino unit runs a different sketch, you must be careful when
you connect the Arduino IDE that you’re loading the correct sketch into the correct
Arduino.
If you connect each Arduino unit to a separate workstation, there’s no problem; you
can just open the Arduino IDE on each workstation and enter the appropriate code
for that Arduino unit. However, if you just have one workstation, you must be
careful as to which one is which when connecting the Arduino units.
The easiest way to do that is to just connect one Arduino unit at a time to the
workstation, program it, and then connect the other Arduino to program it.
First, connect the slave Arduino unit to the USB port, and then follow these steps:

1. Open the Arduino IDE.
2. Select Sketch from the menu bar, then Import library, and then select the

Wire library.
3. Select Sketch again from the menu bar, then Import Library, and then

select the Timer One library.
4. Enter this code into the editor window (the two directives

should already be present from the import):
Click here to view code image

302

5. Save the slave sketch as sketch1702.
6. Click the Upload icon to verify, compile, and upload the sketch to the slave

Arduino.
Now you’re ready to code the master Arduino unit. Disconnect the slave Arduino
from the USB interface, and plug the master Arduino unit in. Follow these steps to
code it:

1. Open the Arduino IDE.
2. Select Sketch from the menu bar, then Import Library, and then select the

Wire library.
3. Enter this code into the editor window:

Click here to view code image

303

4. Save the code as sketch1703.
5. Click the Upload icon to verify, compile, and upload the code to the

master Arduino unit.
6. Open the serial monitor to run the master program. Because you

connected the 5V and GND pins of the two Arduino units together, the
slave Arduino unit will receive power from the master Arduino unit
plugged into the USB port. It might help to press the Reset button on the
slave Arduino to ensure that it has restarted the slave sketch code
properly.

7. Enter a numeric value from 1 to 9 in the text box at the top of the serial
monitor, and click the Send button to send it to the master Arduino unit. The
LED on the slave Arduino unit should begin to blink at the rate you entered.

The master Arduino unit uses the I2C bus to communicate the integer value you
entered to the slave Arduino unit, which then uses it to set the function
interval to make the LED on digital interface 13 blink. That’s a pretty cool
experiment!

304

Summary
This hour discussed how to communicate from your Arduino with other devices
using serial protocols. The Arduino supports three separate serial protocols: the
standard serial interface, the Serial Peripheral Interface (SPI), and the Inter-
integrated Circuit (I2C) protocol. The standard serial interface uses one wire to
send and another to receive data bits. The Arduino also includes a built-in serial-
to-USB convertor that enables you to access the serial port using a USB cable. You
can access the serial port using the Serial library provided in the Arduino IDE. The
SPI protocol is available from the ICSP interface on the Arduino and uses three
wires to communicate with external devices. You use the SPI library to access
functions to send and receive data using the SPI port. Finally, the Arduino supports
the I2C protocol using two interface ports and functions from the Wire library.
In the next hour, you’ll see how to interface your Arduino with different types of
sensors for monitoring various conditions, including light, sound, and motion.

Workshop

Quiz
1. What Arduino IDE library should you use to work with the I2C interface on

the Arduino?
A. The SPI library
B. The Wire library
C. The Serial library
D. The Interrupt library

2. You can connect the Arduino serial interface directly to a standard COM
interface used in PC workstations. True or false?

3. What makes the I2C protocol different from the SPI protocol?

Answers
1. B. The Wire library contains the functions required to communicate with the

I2C interface on the Arduino.
2. False. The COM interface used in Windows workstations uses a 12V signal

reference, which is too large for the TTL-level serial port interface on the
Arduino.

3. The I2C protocol assigns unique addresses to each slave device on the bus.
The master device can communicate with a specific device by specifying its
address.

305

Q&A
Q. How many sensors can an Arduino control on a single I2C bus?
A. The I2C protocol uses 7-bit addresses for slave devices, allowing you to

assign addresses from 0 to 127. That means you can have up to 128 sensors
on a single I2C bus.

Q. When the Arduino operates as a master device in an SPI bus, how does it
communicate with more than one slave device? There’s only one SS pin
that the master can control.

A. The Arduino can use any other available digital interface port for the SS pin
to control a slave device. Just ensure that the port is held at a HIGH level by
default and that the Arduino sets it to a LOW level when trying to send data to
the slave device.

306

Hour 18. Using Sensors

What You’ll Learn in This Hour:
 The different types of analog sensors available
 How to use voltage-based sensors
 How to work with resistance-based sensors
 How touch sensors work

Working with the analog interfaces on the Arduino can be somewhat complex.
There are lots of different analog sensors out there, as well as lots of different ways
to measure the analog data they produce. This hour takes a closer look at how to
work with the different types of analog sensors that you may run into when working
with your Arduino.

Interfacing with Analog Sensors
Analog sensors are more difficult to work with than digital sensors. With digital
sensors, you only have to worry about detecting one of two possible values (a 0 or
a 1). However, analog sensors can produce an infinite number of possible output
values. The trick to working with analog sensors is in knowing what type of output
the sensor produces and decoding just what the output means.
To convey information using an analog signal, analog sensors typically change one
of three different physical electrical properties:

 Voltage
 Resistance
 Capacitance

You must know the type of analog sensor that your circuit uses to be able to
appropriately handle the analog output that it generates. Also, your sketch will need
to know how to convert the analog value to meaningful information, such as the
temperature or the brightness level.
With analog signals, your Arduino sketch will often need help from some external
electronic circuitry to change the signal the sensor produces into some type of
usable form. The combination of the electronic circuit and your sketch is what
creates the monitoring environment.
The next sections discuss how to monitor each of the three different types of analog
sensors you may have to work with.

307

Working with Voltage
Many analog sensors produce a varying voltage that represents the property they
monitor. There are different types of analog sensors that use voltage as the output
used in industry, such as the following:

 Temperature sensors
 Light sensors
 Motion sensors

With each of these sensors, the amount of temperature, light, or motion that the
sensor detects is represented by the voltage level present at the sensor output.
The good thing about using voltage-based analog sensors is that because the
Arduino analog interfaces detect changes in voltage, you often don’t need to
provide too much additional electronic circuitry to work with voltage-based
sensors. This section covers the different issues you need to consider when
working with analog voltages from sensors.

Voltage Range
The first thing to consider when working with voltage-based analog sensors is the
voltage range the sensor produces. An upper and lower limit usually applies to the
voltage that the sensor produces under the monitoring conditions. For example, the
Arduino Uno uses a 5V reference voltage, so the analog input interfaces are based
on the maximum sensor voltage being 5V.
However, not all analog sensors are based on a 5V reference voltage. You might
have to manipulate the output voltage from the sensor to be able to work with it in
the Arduino.

Watch Out!: The Arduino Due
Be careful when using the Arduino Due, Fio, and Pro; they support
only 3.3V voltage levels.

Using a Sensor That Matches the Arduino Voltage
The simplest situation is when the sensor outputs a signal that matches the voltage
the Arduino can support (3.3V for the Due, or 5V for the other models). In this case,
you can just connect the sensor output directly to the Arduino analog input interface,
as shown in Figure 18.1.

308

FIGURE 18.1 Connecting a 5V sensor to the Arduino Uno.

Notice from Figure 18.1 that you can also power the sensor directly from the
Arduino Uno 5V pin, which provides 5V of power. You will also need to connect
the ground for the sensor to the Arduino GND pin to ensure the circuit is complete.

Using Larger Voltages
If the sensor output voltage is larger than what the Arduino supports, you cannot
directly connect the sensor output to the analog input interface; otherwise, you may
damage your Arduino. Instead, you need to use what’s called a voltage divider
circuit to reduce the amount of voltage present on the analog interface.
A voltage divider is two resistors placed in series, with the output taken from the
connection between the two resistors, as shown in Figure 18.2.

309

FIGURE 18.2 Using a voltage divider on the analog input interface.

The output of the voltage divider depends on the ratio of the two resistor values.
The equation that determines the output voltage is as follows:
Click here to view code image

If both resistors in the voltage divider are the same value, the output voltage will be
one half of the sensor voltage. So, if the analog sensor has a maximum output of
10V, you can use two 1K-ohm resistors to ensure that the maximum voltage present
at the analog input is less than 5V.

Watch Out!: Common Ground
Whenever you work with a sensor that uses its own power supply,
make sure that you connect the ground from the external power supply
to the GND pin on the Arduino unit. This ensures the sensor and the
Arduino are using the same ground reference. However, don’t connect
the power pole of the external power supply to the Arduino 5V pin!

Using Smaller Voltages
The opposite of too much voltage is too little voltage to detect. If the sensor outputs
a small voltage, you can connect the sensor directly to the Arduino analog input
interface, but you may have trouble reading the changes in the output voltage. The
solution to that is to change the voltage reference that the Arduino uses to represent
the maximum output value.
To change the voltage reference, you must use the AREF input pin on the Arduino.

310

Just connect the voltage source from the sensor to the AREF pin on the Arduino, as
shown in Figure 18.3.

FIGURE 18.3 Changing the reference voltage used for the Arduino analog input.

With the new reference voltage, the Arduino changes the output range to represent
the new reference voltage instead of 5V. To get your sketch to use the new reference
voltage, you must use the function:

When you use the setting, the function bases its output
for a maximum voltage equal to the reference voltage. After you set the analog
reference voltage, the function returns the 1023 value when the
voltage on the input interface is the same as the reference voltage.

Sensitivity
Another important issue to consider is the sensor sensitivity. Your Arduino sketch
must be able to detect the changes in the voltage sent from the analog sensor, which
represent changes in the property that’s being monitored.
The Arduino Uno uses a 10-bit analog-to-digital converter (ADC), which provides
1024 separate output values based on the input voltage level. If your sensor uses 5V
as reference, that means the Arduino will produce a value of 0 when the input
voltage is 0V, and 1023 when the input voltage is 5V.
By dividing that voltage range, you’ll notice that each step in the output represents
about a 0.005V change in the input voltage, or about 5 millivolts (mV). That means
the Arduino analog input won’t be able to distinguish voltage changes less than
5mV from the sensor.
However, you may also run into the situation where the Arduino analog input may

311

be too sensitive to changes in the voltage received from the sensor. You may not
want your sketch to respond to a 5mV change in the voltage, but rather, only to
larger changes.
One solution to that problem is to remap the output range generated by the

 function to a smaller range using the function (see Hour 15,
“Interfacing with Analog Devices”). The function allows you to specify a new
range to use for the output:
Click here to view code image

This desensitizes the output from the function, providing for fewer
changes within the range of the sensor. By changing the range to 0 through 255, the
input value only changes for changes of 20mV instead of 5mV.

Converting Voltage to Something Useful
The last step in using a voltage-based sensor is to convert the voltage that the
Arduino detects to a meaningful value that represents the property that you’re
monitoring (such as the temperature of the room, or the amount of light that’s
present). Usually this requires having to do a little research on the sensor that
you’re using.
Most sensor manufacturers produce a datasheet that documents the range of output
of the sensor and the relation to the property that it measures. For example, the
TMP36 temperature sensor produces a voltage range from 0.1V for –40 degrees
Celsius to 2.0V for 150 degrees Celsius. To display the actual temperature, you’ll
need to do a little math in your Arduino sketch. According to the TMP36 datasheet,
the relation of the output voltage to the actual temperature uses this equation:
Click here to view code image

voltage

Where the voltage value is specified in millivolts.
However, before you use that equation, you must convert the integer value that the

 function returns into a millivolt value. A little bit of algebra can
help out here.
You know that for a 5000mV (5V) value span the function will
return 1024 possible values. Just use an equation to relate the actual
output value to the known voltage values, and then solve for the voltage variable:
Click here to view code image

voltage output
voltage output

Using this equation, you can take the output value you retrieve from the

312

 function and determine the voltage present at the analog input. Once
you know the voltage, you can use it to find the temperature. Or, if you prefer, you
can combine both equations into a single calculation:
Click here to view code image

output

Now you can retrieve the temperature directly from the output integer value the
 function produces. The next section walks through an example of

using this process to determine the temperature using the TMP36 temperature
sensor.

Using a Voltage-Based Sensor
This experiment uses the popular TMP36 temperature sensor to detect the
temperature and display that temperature in the serial monitor. The TMP36 sensor
is common in the Arduino world. You’ll often find it in Arduino kits, including the
official Arduino Starter Kit package. It’s also readily available for purchase from
many Arduino electronic suppliers such as Adafruit and Newark Electronics.

313

 Try It Yourself: Detecting Temperature
In this experiment, you need to connect the TMP36 directly to your
Arduino unit. The TMP36 temperature sensor has three leads: power,
ground, and the output.
You must power the sensor by connecting the power lead to a voltage
source between 2.7 and 5.5V (which makes it ideal for use with both
the 5V Arduino Uno and the 3.3V Arduino Due) and connect the
ground lead to the Arduino ground. The middle lead produces an
output voltage less than 5V, so you can connect that directly to an
analog input pin. Figure 18.4 shows the pin outputs on the TMP36
temperature sensor.

FIGURE 18.4 The TMP36 sensor pins.

Here are the steps to wiring the TMP36 sensor to your Arduino unit:
1. Place the TMP36 sensor on the breadboard so that each lead

connects to a separate rail section and that the flat side of the
TMP36 case is facing toward the left.

2. Place a jumper wire between the top lead of the TMP36 and the 5V
pin on the Arduino.

3. Place a jumper wire between the bottom lead of the TMP36 and the
GND pin on the Arduino.

4. Place a jumper wire between the middle lead of the TMP36 and the
Analog 0 pin on the Arduino.

That’s all the hardware you need to worry about for this experiment. The next step
is to create the sketch code. Just follow these steps to work on that:

1. Open the Arduino IDE and enter this code into the editor window:
Click here to view code image

314

2. Save the sketch as sketch1801.
3. Click the Upload icon to verify, compile, and upload the sketch code into

your Arduino unit.
4. Open the serial monitor to view the output from the sketch.

The output from the temperature sensor should be somewhat consistent when at
room temperature. Try placing your fingers around the sensor and see whether the
temperature rises. Then, place an ice cube in a plastic bag, and then place the bag
next to the sensor. That should lower the output generated by the sensor.

Working with Resistance Output
Instead of using a voltage output, some analog sensors change their resistance as the
characteristic they monitor changes. These types of sensors include the following:

 Thermistors: Change resistance due to temperature.
 Photoresistors: Change resistance due to light.

The problem with resistance sensors is that the Arduino analog interfaces can’t
directly detect resistance changes. This will require some extra electronic
components on your part.
The easiest way to detect a change in resistance is to convert that change to a
voltage change. You do that using our friend the voltage divider, as shown in Figure
18.5.

315

FIGURE 18.5 Using a voltage divider to detect a change in resistance.

By keeping the power source output constant, as the resistance of the sensor
changes, the voltage divider circuit changes, and the output voltage changes. The
size of resistor you need for the R1 resistor depends on the resistance range
generated by the sensor and how sensitive you want the output voltage to change.
Generally, a value between 1K and 10K ohms works just fine to create a
meaningful output voltage that you can detect in your Arduino analog input
interface.
The voltage divider will produce a varying output voltage. As the sensor resistance
value increases, the output voltage increases, and as the sensor resistance
decreases, the output voltage decreases. At that point, you can use the same sensing
tricks that you learned for working with the voltage sensors.

Using a Resistance-Based Sensor
So, the key to using resistance-based sensors is to build a voltage divider circuit to
generate the output voltage. The following experiment demonstrates how to do that
using a photoresistor to detect light levels.

316

 Try It Yourself: Building a Light Meter
In this experiment, you use a common photoresistor (also called a
photocell or a light-dependent resistor (LDR)) to detect the amount of
light in the room. Photoresistors come in many shapes and sizes. Any
type will work for this experiment.
The photoresistor uses two output leads and changes the resistance
present on those leads as the light level changes. As the amount of light
increases, the resistance of the photoresistor decreases (and vice
versa). Many standard Arduino kits come with one or more
photoresistors, including the Arduino Start Kit, and they’re also
available for purchase from the standard Arduino electronics shops.
Here are the steps for creating the Arduino light meter project. First,
you need to build the electronic circuit:
1. Place the photoresistor leads on two separate rails sections on the

breadboard.
2. Connect a 10K-ohm resistor (color code brown, black, orange) so

that one lead connects to one lead of the photoresistor and the other
lead is in another rail on the breadboard.

3. Connect the 5V pin of the Arduino to the free lead on the
photoresistor.

4. Connect the GND pin of the Arduino to the free lead on the 10K-
ohm resistor.

5. Connect the Analog 0 interface pin on the Arduino to the rail that
has both the photoresistor and 10K-ohm resistor leads.

The circuit creates a standard voltage divider, sending the output voltage to the
Analog 0 interface pin on the Arduino.
The next step is to create a sketch to read the output values. Follow these steps to
do that:

1. Open the Arduino IDE and enter this code into the editor window:
Click here to view code image

317

2. Save the sketch as sketch1802.
3. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit.
4. Open the serial monitor to run the sketch and view the output.

Check the output from the sketch using the normal room lighting, and then try
covering the photoresistor with your hand and watch the output. The sensor output
value should decrease, indicating a decrease in the voltage present at the analog
input.
As the photoresistor receives less light, the resistance value increases, causing less
voltage to be output from the voltage divider. As you increase the light on the
photoresistor, the resistance value decreases, causing more voltage to be output
from the voltage divider.

Using Touch Sensors
Touch sensors use capacitance to detect when an object is being touched. When you
touch a metal object, the natural capacitance in your body changes the capacitance
present in the object.
The problem with using touch sensors is similar to the problem we ran into with
resistance-based sensors; they both don’t directly change output voltage. However,
detecting the change in capacitance from a touch sensor is solved using an
interesting electrical property.
Capacitors store voltage. The amount of time it takes for a capacitor to fully charge
or discharge depends on the amount of resistance present in the circuit, as well as
the capacitance of the capacitor. By setting the resistor and capacitor sizes, you can
control just how quickly the capacitor charges and discharges. This is called an RC
circuit.
You can build a simple RC circuit using the capacitance detected by a touch sensor
and a resistor of a known value. Because the resistance value is known, you can
determine the capacitance value based on the time it takes for the capacitor to
charge. You can tell when a capacitor is fully charged when current starts following
past the capacitor in the circuit (until the capacitor is fully charged, no current will
flow past it).

318

So basically, detecting the capacitance change has to do with timing. Just apply a
known voltage value to one end of the RC circuit and detect how long it takes for
the same voltage to be present at the other end of the circuit. The more capacitance,
the longer it takes to detect the output voltage.
To do that, you use two digital input pins on the Arduino. (That’s right, you use
digital pins and not analog pins for this.) You set one pin as output to a HIGH value,
and then track the amount of time it takes for the other digital input pin to have a
HIGH value. The longer it takes, the more capacitance is in the circuit, and most
likely, someone is touching the sensor.

Working with Touch Sensors
Fortunately for us, some smart developers have already created an Arduino library
to easily detect the timing change between the two digital output pins for us. The
CapacitiveSensor library includes all the functions we need to build a capacitive
touch sensor project.
This experiment uses the CapacitiveSensor library to detect when a wire is
touched.

 Try It Yourself: Building a Touch Sensor
You can build a simple touch sensor using just a resistor, some wire,
and your Arduino unit. First, follow these steps to build the circuit:
1. On a breadboard, plug a 1M (mega)-ohm resistor (color code

brown, black, green) between two separate rails.
2. Use a jumper wire to connect one lead of the resistor to digital pin

7. This is the Send pin for our circuit.
3. Use a jumper wire to connect the other lead of the resistor to digital

pin 5. This is the Receive pin for our circuit.
4. Connect a wire to the rail that contains the digital pin 5 connection,

and let the other end of the wire be free.

That completes the touch sensor circuit. The free end of the wire is our sensor.
Some experiments also use aluminum foil connected to the end of the wire. Feel
free to try that as well. Figure 18.6 shows the diagram for the completed circuit.

319

FIGURE 18.6 The touch sensor circuit.

Now you’re ready to build the sketch code. Here are the steps to do that:
1. Download the CapacitiveSensor library from the link on the Arduino

Playground website (http://playground.arduino.cc//Main/CapacitiveSensor).
2. Extract the CapacitiveSensor folder from the downloaded zip file and

place it in your Arduino libraries folder, usually located in your
Documents folder for both Windows and Apple OS X systems.

3. Open the Arduino IDE, and from the menu bar, select Sketch, Import
Library, CapacitiveSensor.

4. In the IDE editor window, enter this code:
Click here to view code image

5. Save the sketch as sketch1803.
6. Click the Upload icon to verify, compile, and upload the sketch to your

320

http://playground.arduino.cc//Main/CapacitiveSensor

Arduino unit.
7. Open the serial monitor to run the sketch and view the output.

Watch the sensor values that appear in the output when the sensor wire is
untouched. Touch the end of the sensor wire and note the change in the sensor value.
Next, hold the end of the sensor wire in your fingers and note the change in the
sensor value.

Tip: Sensor Sensitivity
You may have to change the sensitivity of the sensor by changing the
resistance value of the R1 resistor in the circuit for it to detect the
touch. Higher resistance values make the sensor more sensitive to
capacitance changes on the wire.

Summary
This hour discussed how to work with different types of analog sensors in your
Arduino projects. Voltage-based sensors change the output voltage based on the
property they monitor. You may have to limit the voltage present on the Arduino
analog input pin using a voltage divider, or change the sensitivity of the input pin
using an external reference voltage and the function.
Resistance-based sensors change their resistance as the monitored property
changes. To use these types of sensors, you’ll need to create a voltage divider to
convert the resistance change to a voltage change. This chapter also covered how to
use touch sensors in your Arduino circuits. Touch sensors are based on capacitance
changes. To detect the capacitance change, you can build a simple RC circuit and
use the CapacitiveSensor library to detect the time change required to trigger a
digital input pin.
In the next hour, we’ll turn our attention to another popular Arduino circuit topic:
motors. You can use different types of motors in your Arduino projects, and you
need to know how to work with each type.

Workshop

Quiz
1. What kind of circuit should you use to decrease the voltage from the sensor?

A. A voltage divider
B. An RC circuit
C. Change the Arduino reference voltage

2. You can connect the output of a resistor-based sensor directly to the Arduino
analog interface to detect the sensor output change. True or false?

321

3. What type of circuit do touch sensors require to detect touch?

Answers
1. A. The voltage divider circuit allows you to decrease a voltage to a value

within the range required for the Arduino.
2. False. For a resistance-based sensor, you must use a voltage divider to

change the output voltage relative to the change of the sensor resistance.
3. An RC circuit provides a way to detect a change in the capacitance of a

touch sensor by measuring the amount of time it takes for the capacitor to
charge.

Q&A
Q. Can you use a voltage divider to decrease voltages generated by high-

power devices?
A. Yes, but you may lose some sensitivity. By significantly decreasing the

voltage, you won’t be able to detect small voltage changes from the original
voltage.

Q. Can the Arduino analog interface use sensors that produce AC voltages?
A. Not directly. The Arduino analog interfaces use DC voltages, so you first

have to convert the AC output voltage to a DC voltage.

322

Hour 19. Working with Motors

What You’ll Learn in This Hour:
 The different types of motors you can use
 How to control motor speed
 How to control motor direction
 How to work with servo motors

With the growing popularity of mechanical automation, at some point you may end
up working with motors in your projects. The Arduino is excellent for controlling
motors, from simple mechanical decorations to complex industrial robots. This
hour takes a closer look at how to work with the different types of motors that you
may run into when working with your Arduino projects.

Types of Motors
Plenty of different types of motors are available to work with in your Arduino
experiments. The type of motor you select usually depends on just what you need to
move and how you need to move it. The three most common that you’ll run into,
though, are as follows:

 DC motors
 Stepper motors
 Servo motors

The following sections discuss the difference between these motors in detail.

DC Motors
DC motors consist of a solid shaft with wire wrapped around it, surrounded by two
magnets. DC motors are so named because they run on direct current (DC) voltage,
which provides current to the wires wound around the shaft, which creates a
magnetic field, making the shaft rotate within the fixed magnets around the shaft.
Brushes are used to connect the wires wound around the shaft to the external
circuit. The brushes allow the shaft to rotate and still remain connected to the
electrical circuit. Because of this, you’ll often see the term DC brushed motors
used.
With DC motors, the more voltage you apply to the motor, the faster it spins, up to
the maximum voltage that the motor supports. The nice thing about DC motors is
that to get the motor to turn in the opposite direction, you just apply voltage in the
opposite polarity to the wires.

323

Stepper Motors
A stepper motor is a special application of a DC motor. Instead of rotating the shaft
at a constant speed, the stepper motor uses the electric current to rotate the shaft to
a specific location in the rotation and stop. This can control the direction an item
connected to the shaft points, such as moving a mechanical arm to a specific
position.
Stepper motors use sophisticated controllers to apply voltage to the motor in steps
to incrementally move the motor shaft through the rotation (thus the name stepper
motor). The controller determines how many steps are required to position the shaft
in the desired location. The locations are indicated by the number of degrees from a
common point in the rotation.
Because the stepper motor requires a controller, you usually need to use additional
software to communicate signals to the motor controller, telling it just where in the
rotation cycle to place the motor shaft.

Servo Motors
The problem with stepper motors is that they can get out of sync with the controller.
If something impedes the shaft’s rotation, the controller doesn’t realize the shaft
isn’t in the correct place. This can be bad for devices that require precise
positioning, such as controllers for airplane wings.
Servo motors are a specialized application of stepper motors. They solve the
positioning problem by adding a feedback system to the controller, so that the
controller knows exactly where the motor shaft is pointing at all times. By using the
feedback circuit, the controller can make on-the-fly adjustments to precisely
position the shaft, even if the shaft is impeded along the way.
Servo motors are popular for use in devices that require fine control, such as robots
and model airplanes or cars. Just as with stepper motors, servo motors require
additional software to communicate signals to the motor controller. The Arduino
library includes some libraries for working with servo motors. This allows you to
use your Arduino for many types of high-precision motor applications.

Using DC Motors
When you use your Arduino to control a DC motor, you need to become familiar
with three motor control aspects:

 Turning the motor on and off
 Controlling the motor speed
 Controlling the motor direction

This section goes through each of these three features of motors to demonstrate how
you can use your Arduino to fully control any DC motor in your project.

324

Powering the Motor
Unfortunately, most motors require more voltage and current than what the Arduino
can supply. That means you must connect the motor to an external power source to
power the motor but somehow control that circuit using the Arduino interface. To
do that, you need to use some type of relay that can separate the control signal from
the switch.
You can use a variety of relays to control a motor circuit, both physical and
electronic. For DC motors, the most popular solution is a transistor.
The transistor is a type of miniaturized relay. The transistor has three leads:

 The source, which is where you apply voltage to power the device
 The drain, which emits the voltage applied to the source
 The gate, which controls when the source and drain are connected

The gate lead behaves differently depending on the type of transistor. With an NPN-
type transistor, when you apply power to the gate lead, voltage flows from the
source lead to the drain lead of the transistor. When power is removed from the
gate, the connection between the source and drain leads is broken and current stops
flowing. With a PNP-type transistor, the opposite happens; current flows when
there isn’t a signal on the gate.
The trick to transistors is that you can use a very low voltage to control the gate but
still use a larger voltage on the source. Thus, you can use a small voltage to control
a larger voltage.
Figure 19.1 demonstrates using a transistor to control a motor circuit with your
Arduino.

325

FIGURE 19.1 Using a transistor to control a motor circuit from your Arduino.

The key to selecting the right transistor to use is to ensure that the voltage and
current rating can support the motor circuit. For most motor circuits that require
extra current, the metal-oxide-semiconductor field-effect transistor (MOSFET) is
the popular transistor to use. The MOSFET device is designed to handle higher
voltages and currents, but still can be controlled by a small gate voltage. This is
perfect for our Arduino projects.
To control the transistor from your Arduino sketch, all you need to do is connect a
digital interface to the gate on the transistor. When you set the digital interface to
HIGH, the transistor will allow current to flow through the circuit to the motor.
When you set the digital interface to LOW, the transistor will block current in the
motor circuit.

By The Way: Isolating the Arduino Pins
For very high-current motor circuits, it’s recommended to place a
resistor between the Arduino digital interface pin and the transistor
gate lead. That way, if the transistor should short out, the Arduino is
protected from the high current. For small DC motors, this isn’t
necessary.

326

Controlling Motor Speed
When the transistor is turned on by applying a voltage to the gate lead, the full
power from the motor power source is applied to the motor, making it spin at a
constant speed, based on the power source voltage.
If you remember from Hour 15, “Interfacing with Analog Devices,” the Arduino
supports a special type of digital output called a pulse-width modulation (PWM)
signal. The PWM turns the digital output on and off at a predefined interval, called
the duty cycle. You can use the PWM duty cycle to control the speed of your motor.
By applying a PWM to the gate of the transistor device, you can control how fast
the transistor gate opens and closes, which in turn controls how fast voltage is
applied to and removed from the motor. The on and off duty cycle happens so fast
that the motor appears to be running at a slower constant speed. By simply changing
the duty cycle of the PWM signal, you can change the speed of the motor.
In your Arduino sketches, you create a PWM output on a digital interface pin by
using the function:

pin dutycycle

A dutycycle value of 0 will stop the motor, and a dutycycle value of 255
will operate the motor at full speed. Any value in between will operate the motor at
a slower speed.

Controlling Motor Direction
Using PWM solves the speed problem when working with motors, but it doesn’t
solve the direction problem. The motor turns in only one direction, depending on
the polarity of the voltage applied to the motor leads. It would be somewhat
cumbersome to physically change the wires going to a motor to get it to change
directions.
There is, however, a fancy way to solve this problem, called an H-bridge. The H-
bridge is a series of transistors interconnected so that the polarity of the voltage
flow changes based on two control signals sent to the circuit. So, by using an H-
bridge, you can control the motor direction by setting the digital state of the two
control signals to determine which direction the motor operates, as shown in Table
19.1.

TABLE 19.1 H-Bridge Control Values

327

The H-bridge circuit is extremely popular in motor use, and because of that, there
are plenty of pre-built H-bridge circuits you can buy. Most H-bridges come in
integrated circuit (IC) format, so they’re easy to work with in your circuits. The
Arduino Starter Kit includes an L293D H-bridge IC, which is ideal for most low-
powered DC motors.
You control the H-bridge from your sketches by using three digital pins on the
Arduino: one to turn the motor on and off, and two to control the motor direction.
Your sketch just needs to keep track of which H-bridge control pin is connected to
which digital interface pin.

Experimenting with Motors
Now that you’ve seen the basics of using DC motors with the Arduino, let’s build
some circuits to test them. This section walks through two exercises for working
with DC motors.

Turning a Motor On and Off
For this experiment, you use a switch connected to the Arduino to control when a
motor runs or stops. The hardware part of the circuit is a little involved, so let’s go
through that first. For the exercise, you need these parts:

 A low-current DC motor, found in most electronic supply stores
 A 9-volt battery clip with leads (along with a 9V battery)
 An NPN transistor, either a standard transistor (such as type TIP120) or a
MOSFET transistor (such as type IRF510) will work for this project
 A general-purpose power diode
 A momentary contact switch
 A 1K-ohm resistor
 A 1-microfarad capacitor
 A breadboard

Figure 19.2 shows the circuit that you’ll create for this exercise.

328

FIGURE 19.2 The DC motor circuit used for this exercise.

Here are the steps to follow to build the circuit:
1. Connect a jumper wire from the 5V pin on the Arduino to a rail on the

breadboard.
2. Connect a jumper wire from the GND pin on the Arduino to another rail

on the breadboard.
3. Connect the positive lead of the 9V battery clip to a third rail on the

breadboard.
4. Connect the ground lead of the 9V battery clip to the same rail as the

GND pin from the Arduino.
5. Place the momentary contact switch in the breadboard so that it straddles

the middle of the breadboard and so that the contacts are connected to
separate rails.

329

6. Connect the 1K-ohm resistor from one switch lead to the GND rail.
7. Connect the other switch lead to the 5V rail using a jumper wire.
8. Connect a jumper wire from the switch lead that’s connected to the

resistor to the Arduino digital interface 2 pin.
9. Connect the capacitor across both leads of the switch.

10. Place the transistor in the breadboard so that each lead connects to a
separate rail and so that the flat side (or the side away from the heat sink
on a MOSFET transistor) is on the left.

11. Connect a jumper wire from the top MOSFET transistor lead to the
digital interface 3 pin on the Arduino. This is the gate lead. For standard
transistors, the gate lead is the middle lead.

12. Connect the bottom transistor lead to the GND rail. This is the source
lead, and is the same for both MOSFET and standard transistors.

13. Connect one lead from the motor to the middle lead of the MOSFET
transistor. This is the drain lead. For standard transistors, this is the top
lead.

14. Connect the other lead from the motor to the 9V rail on the breadboard
(the positive pole of the battery clip).

15. Place the diode so that the cathode lead (the end marked with the line) is
on the 9V rail on the breadboard and the anode lead connects to the
middle pin of the MOSFET transistor, or the top lead of a standard
transistor.

The motor runs from the nine-volt battery. The diode is used to prevent back
voltage generated by the motor from entering the circuit and burning out the
transistor or the battery. The capacitor is added to help prevent switch bounce.
After you’ve built the circuit, you’re ready to start coding the Arduino sketch.
Follow these steps:

1. Open the Arduino IDE, and enter this code into the editor window:
Click here to view code image

330

2. Save the sketch as sketch1901.
3. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit.
The sketch uses an external interrupt (see Hour 16, “Adding Interrupts”) triggered
by the switch to determine when power is applied to the transistor gate or not. I
also used the pin 13 LED built in to the Arduino to indicate when the circuit should
be on or off. That way you can troubleshoot things if the motor doesn’t run.

Controlling Motor Speed
This exercise uses the exact same circuit as the previous exercise, but controls the
transistor gate using a PWM generated on digital pin 3 of the Arduino. This enables
you to control the speed of the motor by changing the duty cycle of the PWM output
signal.

 Try It Yourself: Using PWM to Control a Motor
To control the motor speed this exercise uses the same external
interrupt triggered by the switch to enable one of four speed settings
for the motor. Each time you press the switch, the speed will change to
a higher value, and then the motor will stop on the fourth switch press.
Here are the steps to create the sketch:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

331

2. Save the sketch as sketch1902.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
4. Press the switch once; the motor should start at a slow speed, and

the pin 13 LED on the Arduino board should light.
5. Press the switch a second time; the motor should go a bit faster, and

the pin 13 LED should go out.
6. Press the switch a third time; the motor should go at full speed, and

the pin 13 LED should light.
7. Press the switch a fourth time; the motor should stop, and the pin 13

LED should go out.

332

Notice in the interrupt function that for each switch, press the
duty cycle used in the function changes. This is what causes the
motor to spin at a different speed. At duty cycle 0, the motor stops.

Using Servo Motors
Controlling servo motors is a bit trickier than working with DC motors. The servo
motor controller requires specialized signals to position the motor shaft.
Fortunately for us, the Arduino developers have created a prebuilt library that
makes working with servo motors a breeze. This section discusses the Servo
library, and then demonstrates how to use it in your Arduino sketches.

The Servo Library
The Servo library is installed by default in the Arduino IDE package. To use the
functions in the Servo library, you must first create a object variable in
your sketch:

After you create the object, you use the Servo library functions to connect
the object to a pin on the Arduino and send signals to the servo motor. Table 19.2
lists the functions available inside the library.

TABLE 19.2 The Servo Library Functions

Because servo motors operate as stepper motors, you can control the position of the
motor shaft by either specifying a degree in the rotation (from 0 to 180 degrees) or
as the number of microseconds the motor should step the shaft. For most
applications, just specifying the degree value is sufficient; for fine-tuning to an
exact location, however, you can use the microseconds value.
Typically, to work with the servo in your sketch, you just use three statements:

333

The first statement creates the object, the second statement attaches the
object to digital interface pin 5, and then the third statement tells the servo to rotate
the motor shaft to the 90-degree position.

Experimenting with Servos
This experiment allows you to control the position of a servo motor using a
potentiometer. As you change the potentiometer position, the shaft of the servo
motor turns to a new position.

 Try It Yourself: Positioning a Servo Motor
The Servo library in the Arduino IDE provides functions to control the
position of a servo motor by specifying a degree value. The servo
motor can position the motor shaft along a 180-degree arc.
Fortunately, the circuit for this exercise isn’t as complex as the
previous one. All you need for this circuit are the following:

 A low-power servo motor
 A 10K-ohm potentiometer
 An 100-microfarad electrolytic capacitor
 A breadboard

Most hobbyist servo motors are low powered, so you should be able
to find one that operates within the 5V power of the Arduino at any
electronic parts distributor. Also, because the servo motor runs on 5
volts, you don’t have to worry about using an external power source.
This exercise also uses a potentiometer to control the servo motor
position. You’ll link the analog input from the potentiometer to the
server output so rotating the potentiometer shaft rotates the servo
motor. The electrolytic capacitor is used to help prevent any voltage
spikes that may occur when the servo motor starts from damaging the
potentiometer or the Arduino.
Here are the steps for building the circuit required for the exercise:
1. Connect the 5V pin on the Arduino to a rail on the breadboard using

a jumper wire.
2. Connect the GND pin on the Arduino to a rail on the breadboard

using a jumper wire.
3. Connect three jumper wires to the servo motor connector.
4. Connect the jumper wire from the black servo motor lead to the

334

GND rail on the breadboard.
5. Connect the jumper wire from the red servo motor lead to the 5V

rail on the breadboard.
6. Connect the jumper wire from the white servo motor lead to the

digital interface 5 pin on the Arduino. This is the servo control
interface.

7. Place the capacitor so that the positive lead is connected to the 5V
rail and so that the other lead is connected to the GND rail.

8. Place the potentiometer on the breadboard so that the three leads
are connected to separate rails.

9. Connect one outer lead from the potentiometer to the 5V rail on the
breadboard.

10. Connect the other outer lead from the potentiometer to the GND rail
on the breadboard.

11. Connect the middle lead from the potentiometer to analog interface
0 on the Arduino.

That completes the circuit. Figure 19.3 shows a diagram of the completed circuit.

FIGURE 19.3 The servo motor circuit.

Now for coding the sketch. This exercise uses the Servo library that’s installed in
the Arduino IDE by default, so follow these steps to use it:

1. Open the Arduino IDE, select Sketch from the menu bar, and then select
Import Library, Servo.

2. Enter this code in the editor window:
Click here to view code image

335

3. Save the sketch as sketch1903.
4. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit.
5. When the sketch starts to run, slowly turn the potentiometer shaft. The servo

motor should move as you turn the shaft.
The sketch uses the function to map the 1024-value range generated by the

 function into a 180-value range used to position the servo motor.
Notice that I had to reverse the mapping to get my Arduino to move the servo shaft
in the same direction that I moved the potentiometer shaft. Depending on how you
connect your potentiometer, you may have to reverse that mapping in your setup.

By The Way: The Motor Shield
If you do a lot of work with motors, you may be interested in exploring
the Arduino Motor Shield. The Motor Shield provides a standard
interface for connecting up to two DC brushed motors and one servo
motor. It also provides feedback on the current and voltage used by the
motors in the circuit.

Summary
This hour explored the world of motors. Many applications require motors to move
mechanical parts, from building robots to automating signs. You can use your
Arduino to control both simple DC motors as well as more complicated stepping
and servo motors. You can control the speed of a DC motor by using the PWM
feature available on some of the digital interface ports. To control the direction of a
motor, you need to use an external H-bridge and control it with two digital interface
ports. For using servo motors, you need to use the Servo library, installed by
default in the Arduino IDE. You can control the exact location of the servo motor
shaft using simply commands within the Servo library.
In the next hour, you’ll learn another popular use of the Arduino: controlling LCD

336

displays. Often, you need a quick interface to see the status or change the settings in
a sketch, and connecting your Arduino to a computer using the serial monitor may
not be an option. By adding a simple LCD to your Arduino, you can easily display
short messages.

Workshop

Quiz
1. What type of motor should you use to precisely position a model airplane

wing without error?
A. Servo motor
B. Stepper motor
C. DC motor
D. AC motor

2. Can you reverse the direction of a DC motor without having to physically
reconnect it to the circuit? Yes or no.

3. What type of signal do you need to use to control the speed of a motor?

Answers
1. A. The servo motor includes circuitry to precisely control the location of the

motor shaft.
2. Yes, you can use an H-bridge circuit to control the motor direction using two

control signals.
3. By applying a pulse-width modulator (PWM) signal to the transistor gate,

you can control the speed of the motor.

Q&A
Q. Can you control more than one servo motor from the same Arduino unit?
A. Yes, you can define multiple objects in your sketch and attach each

one to a separate digital interface pin.
Q. Does the Arduino contain a library for working with stepper motors?
A. Yes, you can use the Stepper library. It’s included in the Arduino IDE

package by default.

337

Hour 20. Using an LCD

What You’ll Learn in This Hour:
 The different types of LCD devices
 How to use an LCD with your Arduino
 How to use the LCD shield

So far in our experiments, we’ve used the serial monitor output on the Arduino to
communicate information from our sketches. That’s an easy way of communicating,
but it does limit the use of the Arduino because you must have a computer
connected to display the information. You can, however, display data from your
Arduino in other ways without using a computer. One of the most popular methods
is to use LCD devices. This hour demonstrates how to use LCD devices in your
Arduino projects to output data from your sketches.

What Is an LCD?
Liquid crystal display (LCD) devices have been used by electronic devices for
years to display simple alphanumeric information. The principle behind the LCD is
to energize a series of crystals contained within a sealed enclosure to appear either
opaque or transparent against a lighted background. The crystals are arranged in a
pattern so that you can produce letters, numbers, and symbols based on which
crystals are opaque and which ones are transparent.
Many different types of LCD devices are on the market. This section discusses
some of the features that you need to be aware of as you look for LCD devices to
use in your Arduino projects.

Display Types
You can use two basic types of LCD devices in your Arduino projects:

 Alphanumeric LCD devices
 Graphical LCD devices

An alphanumeric LCD device uses a small grid of lights to display letters, numbers,
and simple symbols. The most common grid layout is a 5 × 8 grid of dots. The LCD
displays each character by turning on or off each crystal in the grid to represent the
character, as shown in Figure 20.1.

338

FIGURE 20.1 The 5 × 8 LCD grid layout displaying the letter A.

Alphanumeric LCD devices commonly include several character grids arranged in
a line so that you can display words and sentences. The most common alphanumeric
LCD devices used in the Arduino world is the 16 × 2 LCD device, which can
display two lines of 16 characters.
Graphical LCD devices use a single larger grid of individual lights to display
information. Instead of a separate grid for each character, graphical LCD devices
provide a single array of crystal dots that you must control individually.
The most common graphical grid layout that you’ll find for Arduino projects is the
128 × 64 LCD. The benefit of that layout is that you can display characters at any
resolution you prefer; you’re not limited to the 5 × 8 resolution used in
alphanumeric LCD devices. Also, you can use the 128 × 64 layout as a canvas,
creating complex drawings as well as numbers and letters.

Color Types
Besides the display type of the LCD device, you can also use different color
patterns to display the characters. The LCD device uses two light sources. One
light source is the color of the LCD crystals, and the other color is the background
light that the crystals block. This produces two different ways to color the LCD:

 A negative LCD displays characters in color on a dark background.
 A positive LCD displays dark characters on a color background.

With the negative display type, you often have a choice of which color the
characters appear in. However, you only have one color choice per LCD device.
With a positive LCD, small LEDs are used to light the background, so there are

339

often more color choices. Another advantage of using a positive LCD is the RGB
type of background; it provides three background LEDs: red, green, and blue. You
can adjust the intensity of each background light to produce just about any
background color.

Interfacing with LCD Devices
As you might guess, there are lots of individual dots to turn on and off in an LCD
device to produce output. Just trying to display a simple 16-letter sentence requires
having to control 5 × 8 × 16 = 640 separate dots.
Fortunately for us, we don’t have to worry about trying to turn individual dots on or
off to display characters. Most LCD devices used in Arduino projects include a
separate controller chip that interfaces with the LCD. That helps reduce the number
of wires we need to use to control the LCD, and makes it easier to send signals to
display characters. This section discusses how to use these types of LCD devices
with your Arduino.

LCD Device Wiring
The most popular LCD devices that you’ll find for Arduino projects use the
HD44780 controller chip to manage the LCD. That chip uses a series of 16
interface pins, shown in Table 20.1.

TABLE 20.1 The HD44780 Interface Pins

340

The 16 interface pins are usually located in the upper-left side of the LCD device.
Figure 20.2 shows an example of an LCD device that uses an HD44780 controller
chip.

341

342

FIGURE 20.2 A monochrome LCD device using the HD44780 chip.

The LCD uses long header pins that easily plug into a breadboard, or that can be
soldered into a printed circuit board. All you need to do is connect the LCD pins to
your Arduino digital interface pins.
However, you don’t need to dedicate 16 pins on your Arduino to communicate with
the HD44780 chip. The really neat thing about the HD44780 LCD controller chip is
that it can operate in two modes: 8-bit mode or 4-bit mode.
In 4-bit mode, you need to use only four data lines to send the character data, which
saves on the number of wires you need to interface from your Arduino to the chip.
All you need is six wires—data lines 4 through 7, the EN line, and the RS line.

By The Way: Multicolor Backlighting
The LCD kits that support multicolor backlights have 18 interface pins
rather than 16. Pins 16, 17, and 18 control the red, green, and blue
LEDs for the backlight color. You can control the LCD background
color by sending pulse-width modulation (PWM) signals to each of
those three pins.

Connecting the LCD to Your Arduino
One of the more complicated parts of using an LCD device is getting it wired to
your Arduino. The first part of the process is deciding just what Arduino digital
interfaces you have available to use to control the LCD. Remember, you need at
least six digital interfaces, which decreases the number of interfaces you have
available for working with sensors.
You must keep track of which digital interfaces you use for which LCD signal for
your sketches. The easiest way to do that is to create a table that maps the digital
interface ports you select to the LCD pins. Table 20.2 shows the map used for the
examples in this hour.

TABLE 20.2 Mapping Arduino Interfaces to the LCD

343

Besides these pins, you also need to connect six more pins on the LCD device:
 Pin 1 connects to ground (GND).
 Pin 2 connects to +5 volts.
 Pin 3 connects to +5 volts, but through a potentiometer.
 Pin 5 connects to ground (GND).
 Pin 15 connects to +5 volts through a resistor.
 Pin 16 connects to ground.

Pins 1 and 2 provide power to the LCD device, and pins 15 and 16 power the LED
backlight. Depending on the LCD device, you may or may not have to use a resistor
to connect pin 15 to the +5 volts. Most LED backlights don’t require the resistor,
but some do. If in doubt, go ahead and use a small resistor, such as 220 ohms to
help limit the current going to the LED backlight.
If you’re using an RGB backlight LCD, you must connect pins 16, 17, and 18 to
create the color background you want. You can connect these to PWM pins on the
Arduino to vary the voltage applied to each; those signals control what color
appears in the background.
Pin 3 controls the contrast of the LCD characters. You can place a potentiometer
between pin 3 and the +5V so that you can adjust how bright the display appears.
The size of the potentiometer doesn’t matter, but the larger the value the less
sensitive the contrast control will be.
Figure 20.3 shows the completed schematic for wiring the LCD to your Arduino.

344

FIGURE 20.3 The Arduino LCD wire schematic.

After you’ve mapped out what pins you need to connect, place the LCD connectors
in a breadboard, and use jumper wires to connect them to the proper place. It helps
to connect the Arduino +5 and GND pins to rails on the breadboard to make it
easier to connect the various LCD pins that require power or ground.
Once you have the LCD device wired to your Arduino, you’re ready to start
programming your sketches.

The LiquidCrystal Library
By now, you should expect that the resourceful developers that are part of the
Arduino community would have created a custom library for working with LCD
devices—and you’d be correct! The LiquidCrystal library, which is installed by
default in the Arduino IDE package, makes it a snap to interface with LCD devices
from your sketches.

The LiquidCrystal Functions
The LiquidCrystal library defines a series of functions that you use to output data to
the LCD. Table 20.3 describes these functions.

345

TABLE 20.3 The LiquidCrystal Library Functions
The function is a little odd in that it acts like an object-oriented
object rather than a function. You define an object of the type,
and then you can use the other library functions on that object. The next section
walks through how to do that.

Using the Library
To use the LiquidCrystal library in your Arduino shield, you first must define a

 object:
Click here to view code image

346

The variable becomes an object using the LiquidCrystal type. The parameters
of the function define the Arduino digital interface pins that you connected to the
LCD interface pins (RS, EN, D4, D5, D6, and D7). If you choose to use all eight
data lines, the first four data lines can be specified first in the data line order (RS,
EN, D0, D1, D2, D3, D4, D5, D6, D7).
After you create the object, you can use the library functions on
that object:
Click here to view code image

The function defines the columns and rows available on the device. This
sketch example uses a 16 × 2 LCD device to display two lines of 16 characters.
The sketch uses the function to move the cursor to the second line in
the LCD device before displaying the second line of text.

Watch Out!: Overflow
Notice in the second output line that I try to display more than 16
characters in the function. On a 16 × 2 display, the output line
is truncated after 16 characters. Some larger displays (such as 20 × 2)
wrap the text to the next line in the device. Be careful that you know
just how your specific LCD device operates before using it!

Using an LCD Device
Now that you’ve seen the basics of how to use an LCD device with your Arduino,
let’s go through an example.

347

 Try It Yourself: Displaying Data
This example uses an LCD device along with the LiquidCrystal library
to display the temperature detected from a TMP36 sensor (see Hour
18, “Using Sensors”).
First, connect the LCD device to your Arduino as described earlier in
the “Connecting the LCD to the Arduino” section. Then, follow these
steps to connect the temperature sensor:
1. Plug the TMP36 sensor into the breadboard so that the three leads

are connected to three separate rails. Make sure the flat side of the
sensor is facing toward your left.

2. Connect the top pin of the TMP36 sensor to the +5V rail on your
breadboard.

3. Connect the bottom pin of the TMP36 sensor to the ground rail on
your breadboard.

4. Connect the middle pin of the TMP36 sensor to the Analog 0
interface on the Arduino.

Now that you have your circuit ready, you can create the sketch. Here are the steps
to do that:

1. Open the Arduino IDE, and then click Sketch, Import Library, and then select
the LiquidCrystal library.

2. In the editor window, enter this code:
Click here to view code image

348

3. Save the sketch as sketch2001.
4. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit.
As soon as the sketch completes the upload process, your Arduino should display
the temperature in the LCD device. If you have an alternative power source for your
Arduino, disconnect the USB cable from the Arduino and plug in the alternative
power source. Your Arduino should power on and then display the temperature. Try
holding the TMP36 sensor to make the temperature rise, or try placing an ice cube
in a plastic bag next to the sensor to make the temperature fall. The LCD display
should display the updated temperature after the 5-second delay. The delay is
necessary; otherwise, the LCD output would be continually changing.

By The Way: Using the Contrast
Don’t get too discouraged if you plug everything in and nothing
appears on the LCD. Play around with the contrast potentiometer
connected to pin 3 on the LCD device. You may have to turn it all the
way to the end of the rotation before anything appears in the display.

The LCD Shield
Yet another help is the LCD shield for the Arduino. Created by the popular Adafruit
electronics company, it combines a 16 × 2 LCD device with a series of buttons that
plugs into the standard Arduino Uno shield format. Figure 20.4 shows the LCD
shield.

349

350

FIGURE 20.4 The Arduino LCD shield.

The LCD shield includes six buttons. Four buttons along the left side of the shield
are arranged to provide an up, down, left, and right interface for simple menu
control. A fifth button is set to the side of those buttons to act as a selection button,
and the sixth button is on the right side of the shield and interfaces with the Reset
pin on the Arduino (because you can’t reach the Arduino reset button with the
shield installed). Also on the shield is a potentiometer for adjusting the brightness
of the LCD.
The nice thing about the LCD shield is that instead of using six connections, it only
uses three pins to interface with the Arduino. It does that by utilizing the I2C
interface (see Hour 17, “Communicating with Devices”).
The Arduino sends data using the I2C protocol to the chip on the LCD shield, which
decodes the signals and converts them to drive the HD44780 controller chip.
This section walks through installing the LCD shield library and using it in a sketch
to display data on the LCD shield.

Downloading and Installing the Library
The LCD shield comes complete with its own library. The LCD shield library
replicates all of the features of the standard LiquidCrystal library, plus adds a
couple of customized functions specific to the shield.
To download and install the LCD shield library into your Arduino IDE
environment, follow these steps:

1. Read the instructions for downloading and installing the LCD shield library
on the Adafruit website:

Click here to view code image

2. Click the link to download the Adafruit RGB LCD shield library. This
will download the folder Adafruit-RGB-LCD-Shield-Library-master.

3. Copy the Adafruit-RGB-LCD-Shield-Library-master folder to your
Arduino libraries folder, usually located under the Documents folder for
your Windows or OS X user account.

4. Rename the folder to LCDShieldLibrary.
Now when you look in the Import Library feature in the Arduino IDE, you should
see the LCDShieldLibrary listed in the Contributed section. If so, you’re ready to
start using it.

351

The LCD Shield Library Functions
The LCD shield library uses the same format as the LiquidCrystal library, including
all the same function names. That makes migrating your application from a standard
LCD device to the LCD shield a breeze.
The only difference is in the initial object that you create. Instead of a

 object, you use the following:
Click here to view code image

After you define the object, you can use the same features as the standard
LiquidCrystal library:
Click here to view code image

The LCD shield library adds two new functions of its own:
 setBacklightColor: Sets the background color of RGB LCD devices
using standard color names.
 readButtons: Retrieves the status of all the buttons on the LCD shield.

The function makes it easy to use RGB backlit LCD
devices. You don’t have to worry about setting pin voltages on the LCD device; all
you do is specify what color you want to use for the background in the

 function. Currently, it recognizes the colors red, yellow,
green, teal, blue, violet, and white.
The function allows you to detect button presses on the LCD
shield. You can tell which button was selected by using a logical AND operation on
the output of the function, with the labels ,

, , , and :
Click here to view code image

352

By The Way: Switch Bounce
The function in the LCD shield library uses code to
eliminate switch bounce, so there’s no need for you to add that
yourself in your code.

Connecting the LCD Shield
The easiest way to use the LCD shield is to plug it directly into your Arduino. The
pin layout of the LCD shield is designed to fit exactly into the standard Arduino
Uno pin layout.
However, if you do that, you won’t have access to any of the interface pins on the
Arduino. You have two options to solve that problem:

 One option is to use a separate prototype board plugged between the Arduino
and the LCD shield. Hour 24, “Prototyping Projects,” shows how to do that.
From the prototype shield, you can pull out the pins necessary to connect the
sensor, such as the analog interface pin, and the +5V and GND pins for
powering the sensor.
 The other method is to remotely connect the LCD shield board to the
Arduino. Because the LCD shield uses the two I2C pins to communicate with
the Arduino, you only need to connect four wires (the two I2C pins, the
ground pin, and the +5V pin) between the LCD shield and the Arduino. Figure
20.5 demonstrates this.

FIGURE 20.5 Connecting the LCD shield remotely to the Arduino Uno.

The I2C pins are located in different places on the different Arduino models. The
Uno uses analog interface 4 and 5, the Mega uses digital interface pins 20 and 21,
and the Leonardo uses digital interface pins 2 and 3. The nice thing about using an
Arduino Uno is that all the pins you need are in the bottom interface of the LCD
shield. That way you don’t have to plug the entire shield into your breadboard.

353

Watch Out!: The Ground Pin
Be careful when connecting the GND pin on the LCD shield device.
The GND pin next to the 5V pin is not connected; you must use the
GND pin that’s next to the Vin pin.

After you connect the LCD shield, you’re ready to start coding. The next section
walks through an updated temperature sensor example.

Using the LCD Shield
Let’s update the temperature sensor example that we worked on earlier using the
LCD shield. Make sure that you have your LCD shield connected as shown in the
“Connecting the LCD Shield” section, and then work through this example.

 Try It Yourself: Displaying Data Using the LCD Shield
In this example, not only do you use the LCD shield to display the
temperature, but you also use two of the buttons on the shield to toggle
between displaying the temperature in Celsius and Fahrenheit.
You’ll use the same TMP36 sensor, connected to analog interface 0, as
you did before.
To create the sketch for the example, follow these steps:
1. Open the Arduino IDE, and select the Sketch menu option to import

the LCDShieldLibrary library.
2. In the editor window, add a line before the two lines:

The LCD shield library uses some special data types that require
the Wire.h library, but unfortunately at the time of this writing, the
library doesn’t automatically include that library file, so you need to
manually type it into the code.

3. In the editor window, add this code:
Click here to view code image

354

4. Save the file as sketch2002.
5. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.

When the sketch starts, it should show the temperature in Fahrenheit. Press the
Down button on the LCD shield, and the output should change to show the
temperature in Celsius. Press the Up button to change the temperature display to
Fahrenheit.

Summary
This hour showed you how to use LCD devices in your Arduino projects. You can
use a plain LCD device by connecting six wires from the Arduino to the LCD. The
EN and RS lines must be connected to digital interfaces on the Arduino, along with
four data lines D4, D5, D6, and D7. The LiquidCrystal library, which is installed
by default in the Arduino IDE, provides an easy way to send data to the LCD
device to display.

355

The hour also showed you how to use the popular LCD shield created by Adafruit.
The LCD shield can either plug directly into the Arduino Uno interfaces or you can
remotely connect it using a breadboard and jumper wires. You only need to connect
four wires: the two I2C pins, the +5 pin, and the GND pin.
The next hour explores another popular shield used in Arduino projects: the
Ethernet shield. The Ethernet shield provides an easy way to connect your Arduino
to a network to both send and receive data with other network devices.

Workshop

Quiz
1. Which Arduino library do you use to interface with an LCD device?

A. The Wire library
B. The EEPROM library
C. The LiquidCrystal library
D. The SPI library

2. The LCD shield uses six wires to interface with the Arduino. True or false?
3. What LiquidCrystal library function do you use to move the cursor to the

second line in the LCD device to display more data?

Answers
1. C. The Arduino IDE includes the LiquidCrystal library by default, which

allows you to easily interface with standard LCD devices.
2. False. The LCD shield requires only two I2C connections (the +5V

connection and a GND connection), totaling four wires.
3. The function allows us to specify the row and column location

of the cursor. The output from the print or write functions will appear at the
location of the cursor in the LCD device.

Q&A
Q. Can I use more than one LCD device on an Arduino at the same time?
A. Yes, it’s been done! Because you only need six connections to the LCD

device, you can connect two separate LCD devices directly to your Arduino
and create two separate LiquidCrystal objects, each one pointing to the
appropriate digital interface lines.
Another option that some developers have used, though, is to share the four
data lines and the RS line with multiple LCD devices. Each device then
connects to a separate digital interface for the EN signal. The LCD device
only reads the data lines when the EN signal is HIGH, so you can control
which device receives the output data by controlling which EN signal is set

356

HIGH.

357

Hour 21. Working with the Ethernet Shield

What You’ll Learn in This Hour:
 How to connect your Arduino to the network
 How to connect to remote devices
 How to allow other devices to connect to your Arduino

These days, just about everything is connected to a network. Using networks makes
it easy to query data from a centralized server and to provide data to multiple
clients. Being able to connect your Arduino to a network can open a whole new
world of possibilities with monitoring sensors. You can connect your Arduino to
Ethernet networks in a few different ways. This hour discusses these different ways
and walks through an example of providing sensor data to network clients.

Connecting the Arduino to a Network
You can connect your Arduino to Ethernet networks a few different ways. If you
already have an Arduino unit, you can use a couple of shields to easily add network
capabilities. If you’re looking to purchase a new Arduino, there’s an Arduino
model that includes a wired Ethernet connection built in. This section discusses the
different options you have available for using your Arduino on an Ethernet network.

The Ethernet Shield
If you already have an Arduino device that uses the standard Arduino pin layout,
you can use the Ethernet Shield to connect to a wired network. The Ethernet Shield
provides an RJ-45 jack for Ethernet connections, and also includes an SD card
reader to provide extra space for storing data. Figure 21.1 shows the Ethernet
Shield plugged into an Arduino Uno device.

358

FIGURE 21.1 The Ethernet Shield.

The Ethernet Shield uses the Serial Peripheral Interface (SPI) communication
protocol (see Hour 17, “Communicating with Devices”) to transfer data to the
Arduino unit. The SPI interface uses digital interface pins 10, 11, 12, and 13 on the
Arduino Uno, and pins 10, 50, 51, and 52 on the Arduino Mega unit.
A great feature of the Arduino Ethernet Shield is that it also supports the Power
over Ethernet (PoE) feature. This feature allows the Ethernet Shield to get its
power from network switches that support PoE. Therefore, if you have a PoE-
capable network switch, you can power your Arduino and the Ethernet Shield
directly from the network cable, without a separate power source.
Besides the PoE feature, the Ethernet Shield also includes pass-through header

359

pins, so you can piggy-back additional shields on top of the Ethernet Shield, and it
also has separate transmit and receive LEDs to indicate when it receives and sends
data on the network.

The WiFi Shield
The WiFi Shield is another way to provide access to Ethernet networks, using
wireless network access points. With the growing popularity of inexpensive home
wireless network access points, the WiFi Shield can provide easy network access
for your Arduino from any place. It supports both the 802.11b and 802.11g network
protocols.
The WiFi Shield also uses the standard Arduino shield pin layout, so it plugs
directly into most Arduino models. As with the Ethernet Shield, the WiFi Shield
communicates using the SPI protocol, and requires the same digital interface pins
(10, 11, 12, and 13 on the Uno; and 10, 50, 51, and 52 on the Mega). However,
besides these pins, the WiFi Shield also uses digital interface pin 7 to communicate
a handshake signal with the Arduino.
The WiFi Shield uses four LED indicators:

 Data (blue): Shows when data is being received or transmitted.
 Error (red): Indicates a communication error on the network.
 Link (green): Shows when the network connection is active.
 L9 (yellow): Connected to digital interface pin 9.

You can control the L9 LED as a status indicator from your sketch. This makes for a
handy replacement of the pin 13 LED that’s on the Arduino board, because you
won’t be able to see it with the shield plugged in.

The Arduino Ethernet Model
One Arduino model even has the Ethernet network built in to the device. The
Arduino Ethernet model includes all the features of the Ethernet Shield (including
an SD card reader), using an RJ-45 jack directly on the Arduino unit for the wired
Ethernet connection.
The Arduino Ethernet unit mimics the layout of the standard Arduino Uno device. It
includes 14 digital interface pins, but as with the Ethernet Shield, pins 10, 11, 12,
and 13 are reserved for use with the Ethernet connection, leaving only nine digital
interfaces that you can use in your sketches.
One downside to the Arduino Ethernet unit is that it doesn’t include a USB
connector to interface with your workstation. Instead, it uses a six-pin serial
interface port that requires a USB to serial adapter, which you have to purchase
separately.

360

The Ethernet Shield Library
All three Arduino networking options each have their own libraries for writing
sketches that can communicate with the network. They all contain similar functions,
so this hour does not cover all three libraries. Instead, this discussion focuses on
the functions available in the Ethernet Shield library to show you the basics of
using your Arduino on the network.
The Ethernet Shield library is installed in the Arduino integrated development
environment (IDE) by default, and consists of five different classes:

 The class, for initializing the network connection
 The class, for setting local and remote IP addresses
 The class, for connecting to servers on the network
 The class, for listening for connections from clients
 The class, for using connectionless User Datagram Protocol
(UDP) messages with other devices on the network

Each class contains methods that help you interact with other network devices from
the Ethernet Shield. The following sections show the methods contained in each
class and how to use them.

Watch Out!: Referencing the Ethernet Library
If you select the Ethernet Library from the Arduino IDE Import Library
feature, it will add directives for lots of different things,
whether you use them in your sketch or not. This can make your sketch
unnecessarily large. It’s usually best to just manually include the

 directives required for your sketch. For the examples
used in this hour, you’ll only need the following:

The Ethernet Class
The Ethernet class contains three class methods:

 begin: Initializes the network connection.
 localIP: Retrieves the IP address of the Ethernet Shield.
 maintain: Requests a renewal of a Dynamic Host Control Protocol
(DHCP) IP address.

Every sketch that uses the Ethernet Shield must use the Ethernet class
method to initialize the shield on the network. The method has one required
parameter and four optional parameters:
Click here to view code image

361

mac ip dns gateway
subnet

In Ethernet networks, every device must have a unique low-level address, called
the Media Access Control (MAC) address. The MAC address is usually expressed
as a 12-digit hexadecimal number, often using colons or dashes to separate the
numbers in pairs to make it easier to read. For example, my Arduino Ethernet
Shield MAC address is shown on the sticker as follows:

Newer Arduino Ethernet Shield devices are each assigned a unique MAC address
and have a sticker with the address on the device. Older Ethernet Shield devices
aren’t assigned a unique MAC address, so it’s up to you to assign one with the

 method. Just make sure that the address you use doesn’t match any other
devices on your network.
Besides the MAC address, to interact on the network, your Arduino device will
also need a unique IP address. The IP address identifies each network device
within a specific subnetwork.
You can assign an IP address to a network device in two different ways:

 Manually assign a static address
 Request an address from the network dynamically

The following two sections discuss how to use both types of address methods with
your Ethernet Shield.

Static Addresses
For the static address method, you’re responsible for assigning a unique IP address
to each device on your network. You do that by specifying both the MAC and IP
addresses in the method:

mac ip

You specify the MAC address using a byte array of hexadecimal values. For
example:
Click here to view code image

Unfortunately, you cannot specify the IP address as a string value. This is where the
 class comes in. The class allows you to specify an IP

address using standard decimal numbers, but converts them into the byte format
required for the method:

Besides the IP address, you may also need to assign a default router and subnet

362

mask for your Arduino device to communicate outside of your local network, and
may need to provide the IP address of the DNS server for your network:
Click here to view code image

After you define all the values, you just plug them into the method:
Click here to view code image

After you’ve assigned the IP address to the Ethernet Shield, you’re ready to start
communicating on the network.

Dynamic Addresses
The Dynamic Host Configuration Protocol (DHCP) provides a way for network
devices to obtain an IP address automatically from a network DHCP server. Most
wired and wireless home network routers include a DHCP server to assign IP
addresses to devices on the home network.
To obtain an IP address for your Arduino using DHCP, you use the function,
but only specify the MAC address for the device:
Click here to view code image

The Ethernet Shield will send a DHCP request onto the network, requesting an IP
address (and any other network information such as the DNS server and default
gateway) from the DHCP server.
When you use the method in DHCP mode, it will return a value if a
valid IP address is assigned to the Ethernet Shield, or a value if not. You
can test that in your code:
Click here to view code image

363

As shown here, you use the method to retrieve the actual address
assigned to the Ethernet Shield by the DHCP server. You’ll need that whether
you’re using your Arduino as a server device, so that you know the address for your
clients to connect to.

The EthernetClient Class
You use the class to connect to remote servers to exchange
data. The client class allows you to send data to a remote host, as well as receive
data from the remote host. The class has quite a few different
methods, as shown in Table 21.1.

TABLE 21.1 The EthernetClient Class

364

Because you need to start the connection only once, you usually connect to the
remote server within the function in your sketch. Then in the
function, you can loop between sending and receiving data, depending on what the
server requires. The function allows you to check whether the remote
host has disconnected the session, and the function allows you to
check if any data has been sent from the remote host.
A simple client connection to retrieve an FTP server welcome message from a
remote FTP server looks like this:
Click here to view code image

This code snippet uses the class to connect to the
 FTP server on the standard FTP port (21). The FTP server

365

returns a welcome message, which is received using the method and
displayed on the serial monitor. Figure 21.2 shows the output in the serial monitor
after you run this program.

FIGURE 21.2 The serial monitor output showing the returned FTP server message.

By The Way: Communicating with Servers
Network servers use standard protocols to communicate with clients.
To successfully transfer data with a server, you need to know just what
messages to send to the server and what messages to expect back. All
approved standard Internet protocols (such as FTP and HTTP) are
defined in Request For Comments (RFC) documents available on the
Internet. It’s always a good idea to study the appropriate RFC for the
type of server you need to communicate with.

The EthernetServer Class
The key to building a network server is the ability to listen for incoming connection
attempts from clients. With the Ethernet Shield library, you do that using the

 class. Table 21.2 shows the methods available in the
 class.

366

TABLE 21.2 The EthernetServer Class

To establish your Arduino as a network server device, you must complete the
following four steps:

1. Use the class to set an address on the network.
2. Use the class to create the server object.
3. Use the method of the class to listen for

incoming connections.
4. Use the method to accept an incoming

client connection and assign it to an object.
It’s common to use the function in an Arduino sketch to repeatedly check for
new connections to the server object, as your Arduino can handle more than one
client at a time. As each client connects to your server, you can assign it a new

 object.
You’ll notice that the class only contains methods for writing
data to the remote device; there aren’t any for reading data from the remote device.
The and methods are used for sending data
to all clients connected to the Arduino. For sending data to a specific client, you
use the class created for the connection:
Click here to view code image

367

The method in the class returns an
 object that represents the specific connection to the remote

client. If no incoming client connections are available, it returns a value.
The returned object persists in the sketch, so you can then use
it to receive data from the client or send data to the client.

The EthernetUDP Class
You use the and classes in standard
client/server environments where one device acts as a server, offering data, and
another device acts as a client, retrieving data. This is standard for the
Transmission Control Protocol (TCP) method of transferring data.
The UDP method of transferring data uses a connectionless protocol. No device
acts as a server or client, all devices can send data to any other device, and any
device can receive data from any other device.
The class provides methods for interacting on the network as a
UDP peer device (see Table 21.3).

TABLE 21.3 The EthernetUDP Methods

368

Because UDP sessions are connectionless, sending and receiving data with a
remote device is somewhat complicated. There isn’t a connection established to
control things, so your sketch must know when to send or receive data, and it must
keep track of which remote device the data is going to or being read from.
Because of that, the class requires a few different steps for both
sending and receiving data. To send data to a remote device using UDP, you need to
use the method, then the method, then the
method, like this:
Click here to view code image

The method specifies the IP address and port of the remote
device. That’s required for each data message you send, since a connection session
isn’t established between the two devices.
Similarly, to receive a UDP packet from a remote device, you must use this format:
Click here to view code image

The method initializes the interface to receive UDP
packets from any remote device on the network. The method
returns the number of bytes received from the remote device and ready to be read.
You must use the and methods to identify the specific
remote device that sent the packet. If there is data to be read, you can then use the

 method to retrieve the data to place in a buffer area.

369

Writing a Network Program
Let’s walk through an example of using the Ethernet library to provide the data from
a temperature sensor to remote clients on your network. We’ll use a simplified
network protocol instead of a standard Internet protocol. The Chat protocol listens
for connections from clients, and then it echoes whatever data is sent to the server
back to the client. Follow these steps to build your Chat server.

 Try It Yourself: Building a Chat Server
In this exercise, you use the Arduino Ethernet Shield, along with the
Ethernet library to create a Chat server for your network. The Chat
server will listen on the network for incoming client connections.
When a client connects, the Chat server will echo whatever data the
client sends to the server back to the client.
Here are the steps to create your Chat server:
1. Plug the Ethernet Shield into the header pins on your Arduino unit.
2. Plug the Arduino unit into the USB port on your workstation.
3. Open the Arduino IDE, and then in the editor window, enter this

code:
Click here to view code image

370

4. Save the sketch as sketch2101.
5. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino unit.
6. Open the serial monitor tool in the Arduino IDE.
7. Press the Reset button on the Ethernet Shield. That button is

connected to the Reset button on the Arduino and will restart your
sketch.

When the sketch starts, you should see the IP address assigned to your Arduino
appear in the serial monitor window. If not, make sure that the Ethernet cable is
properly connected to the Ethernet Shield port, and to your network switch or
router. Figure 21.3 shows the output from my Ethernet Shield on my network.

FIGURE 21.3 The output from the sketch2101 sketch, showing the IP address.

Next, you need to use a standard Telnet client software package to connect to your
Arduino. For OS X and Linux users, that’s easy; just open a Terminal window and
enter the command at the command prompt:

371

For Windows users, you need to download and install a graphical Telnet client. The
most popular one is the PuTTY package, at http://www.putty.org. After you’ve
installed the PuTTY package, you can set a session to connect using Telnet to port
23, specifying the IP address assigned to your Arduino.
When you connect to the Chat server, you’ll see some odd characters appear in the
serial monitor. Those are binary characters used by the Telnet software to establish
the connection. Once the connection is established, you can type characters in the
client, and they will both appear in the serial monitor window, and echo back in the
Telnet client window, as shown in Figure 21.4.

FIGURE 21.4 Output from the Chat server in the serial monitor.

You will most likely see two characters for each character that you type. One is
displayed from the telnet client, and the other is what’s returned by the chat server.
Some telnet clients allow you to turn off the character echo if it knows the
characters are being returned by the server.

Summary
This hour examined how to use the Arduino on Ethernet networks. Two shields are
available to connect the Arduino to Ethernet networks. The Ethernet Shield
connects to standard wired networks using an RJ-45 plug, and the WiFi Shield
connects to wireless networks using either the 802.11b or 802.11g protocols. You
can also use the Arduino Ethernet model, which includes the wired RJ-45 Ethernet
connector built in.
The chapter then covered how to use the Ethernet library to write sketches that
interface with other devices on the network. The class allows

372

http://www.putty.org

you to connect to remote devices, and the class allows you to
listen for connections from clients. The hour finished by showing an example of
how to write a simple server to communicate with clients on the network.
The next hour shows how to use your network capabilities to provide sensor data to
others both on your local network and around the world!

Workshop

Quiz
1. What Ethernet method should you use to assign a static IP address to your

Arduino unit?
A.
B.
C.
D.

2. The class allows you to send connectionless packets to
network devices without creating a session. True or false?

3. How do you receive data from a network client after initializing an
 object since there isn’t a method?

Answers
1. C. You use the method to define the MAC address of

the Ethernet Shield, and you can also include a static IP address.
2. True. The EthernetUDP class contains methods for sending and receiving

packets using UDP, which doesn’t create a network session to the remote
device.

3. The method returns an
 object. You then use the read method from that object to

receive data from the remote client that connected to the server.

Q&A
Q. Can I place multiple Arduino units on my local network?
A. Yes, as long as you assign each Arduino a unique MAC address and a unique

IP address.
Q. Can I use the LCD Shield with the Ethernet Shield?
A. Yes, but you may need to do some tweaking. When you plug the LCD Shield

into the Ethernet Shield, the bottom of the LCD Shield may rest on the metal
RJ-45 port on the Ethernet Shield, which can cause problems. You can
purchase header pins to use as spacers between the two shields, providing

373

enough separation for them to work. Because the LCD Shield uses Inter-
Integrated Circuit (I2C) and the Ethernet Shield uses Serial Peripheral
Interface (SPI), they won’t conflict.

374

Hour 22. Advanced Network Programming

What You’ll Learn in This Hour:
 How to create a web server on your Arduino
 Retrieving sensor data with a web browser
 Controlling an Arduino from a web browser

In the previous hour, you saw how to use the Ethernet Shield to communicate on an
Ethernet network from your Arduino device. That opens a whole new world of
ways for you to communicate with your Arduino projects. This hour expands on that
by showing how to provide sensor data to remote clients by using the Arduino as a
web server and also how to control your Arduino from a remote client.

The Web Protocol
Thanks to the World Wide Web, the Hypertext Transfer Protocol (HTTP) has
become the most popular method of transferring data on networks. Web browser
client software comes standard on just about every workstation, tablet, and
smartphone device. You can leverage that popularity with your Arduino programs
by incorporating web technology to interface with your sketches.
Before you can do that, though, you need to know a little bit about how HTTP
works. This first section walks through the basics of an HTTP session, and shows
how to transfer data using HTTP servers and clients.

HTTP Sessions
HTTP uses a client/server model for transferring data. One device acts as the
server, listening for requests from clients. Each client establishes a connection to
the server and makes a request for data, usually a data file formatted using the
Hypertext Markup Language (HTML). If the request is successful, the server sends
the requested data back to the client and closes the connection. Figure 22.1
demonstrates this process.

375

FIGURE 22.1 A typical HTTP session.

HTTP specifies how the client and server communicate with each other. The
current standard for HTTP is version 1.1, and is defined by the World Wide Web
Consortium (W3C). It specifies the exact format for each request and response
message. The client makes a specially-formatted HTTP request to ask for the data,
and the server responds with an HTTP response, along with the requested data.

The HTTP Request
The HTTP specifications define the client’s request to the server. Because HTTP is
a text-oriented protocol, the client HTTP request consists of all text, separated into
three parts:

 A request line
 Request header lines (optional)
 An empty line terminated by a carriage return-line feed combination

The combination of the request line and header lines tell the server just what data
the client wants to retrieve, along with some information about the client. Let’s take
a closer look at those parts.

The Request Line
The request line identifies the object the client is requesting from the server. It
consists of three parts:

376

 A method token
 A Universal Resource Indicator (URI) identifying the requested data
 The protocol version

The method token defines the method action performed on the specified URI. Table
22.1 lists the valid method tokens currently supported in HTTP 1.1.

TABLE 22.1 HTTP Method Tokens
The and methods allow the client to send data to the server within the
request. The method embeds the data with the URI itself, while the
method sends the data as separate messages within the HTTP session.
The URI defines the path and filename of the data file you want to retrieve. The
path is relative to the root folder of the web server.
The protocol version defines the HTTP version that the client is using.
A complete HTTP request looks something like this:

This is the text the client sends to the web server to request the file
from the root folder of the web server.

Request Headers
After the request line, the client can optionally send one or more request headers.
The request headers allow the client to send additional information about the
request, about the connection, or even about the client itself (such as identifying the
browser being used). The request header uses the following format:

header value

Each request header appears on a separate line and is terminated with a semicolon.
The end of the request header list is indicated by an empty line with a carriage
return and linefeed combination.

377

If your web client chooses to include request headers, a complete HTTP request
would look something like this:
Click here to view code image

This request asks to retrieve the file from the web server. It
identifies the client web browser as the Internet Explorer package and tells the
server to close the HTTP session connection after returning the response.

The HTTP Response
When the web server receives a request from a web client, it must formulate a
response to return. The response consists of three parts:

 The status line
 One or more response header lines (optional)
 An empty line terminated by a carriage return-line feed combination

If the request is successful, the requested data follows immediately after the HTTP
response. Just like the HTTP request, the HTTP response is a plain-text message.
Let’s take a look at the different parts of the response.

The Status Line
The status line returns the status of the request to tell the client how the server
handled it. The status consists of three parts:
Click here to view code image

version status-code description

The version returns the HTTP version the server is using (usually HTTP/1.1). The
status code and description indicate the status of the request. The status code is a
three-digit code that indicates the status of the client’s request. This allows the
client to quickly identify success or failure of the request. If the request failed, the
response code indicates a detailed reason why the request failed. There are five
categories of HTTP status codes:

 1xx: Informational messages
 2xx: Success messages
 3xx: Redirection messages
 4xx: Client-side errors
 5xx: Server-side errors

Table 22.2 shows the full list of response status codes available in HTTP 1.1.

378

379

TABLE 22.2 HTTP Response Status Codes

The status-code numbers are always the same, but the text description may change
depending on the server. Some servers provide more detail for failed requests.

The Response Header Lines
The response header lines allow the server to send additional information to the
client besides the standard response code. The HTTP 1.1 version provides for lots
of different response headers that you can use. Similar to request headers, response
headers use the following format:

header value

Each response header is on a separate line and terminated with a semicolon. The
end of the response header list is indicated by an empty line with a carriage return
and linefeed combination.
A standard HTTP response would look something like this:

380

If any data is returned as part of the response, it should follow the closing carriage
return and linefeed line of the header.
Now that you’ve seen how HTTP works, let’s take a look at using it in an Arduino
sketch to communicate with client workstations.

Reading Sensor Data from a Web Server
Currently, there isn’t a standard Arduino library available for running a web server
from your Arduino. Instead, you need to do a little coding to emulate the web server
to remote clients. However, that’s not as hard as you might think, thanks to the
simplicity of HTTP and the HTML web page markup language.
This section walks through building a web server that returns the output from a
temperature sensor using the Arduino Ethernet library to serve your sensor data on
the network.

Building the Circuit
For the circuit, you need to connect a temperature sensor to your Arduino to
provide the temperature information. In Hour 18, “Using Sensors,” we worked with
the TMP36 analog temperature sensor. The sensor provides an analog output signal
that indicates the temperature. You just need to connect that output to an analog
interface on the Arduino to process the data. Because the Ethernet Shield provides
all the interface pins from the Arduino, you can plug your circuit directly into the
Ethernet Shield interface header pins just as you would the regular Arduino
interface header pins.

381

 Try It Yourself: Analog Temperature Sensor
To set up the analog temperature sensor for the web server project,
follow these steps:
1. Place the TMP36 temperature sensor on the breadboard so that

each of the three pins is in a separate rail row. Face the sensor so
the flat edge is facing toward the left.

2. Plug the Ethernet Shield into the Arduino.
3. Connect the top pin of the TMP36 sensor to the +5 pin on the

Ethernet Shield.
4. Connect the bottom pin of the TMP36 sensor to the GND pin on the

Ethernet Shield.
5. Connect the middle pin of the TMP36 sensor to the analog interface

0 pin on the Ethernet Shield.
6. Plug a standard Ethernet network cable into the RJ-45 jack on the

Ethernet Shield.
7. Plug the other end of the Ethernet network cable into your network

switch or hub.

That’s all the hardware you need for this exercise. Next comes writing the sketch.

Writing the Sketch
To build the server, you need to use the Ethernet library, which is installed by
default in the Arduino IDE package. However, when you select the Ethernet library
from the IDE interface, it adds more directives than you need for the
sketch code, which will needlessly increase the size of your sketch when loaded on
to the Arduino. Instead, we’ll just manually add the directives to the
code. Just follow these steps:

1. Open the Arduino IDE, and enter this code into the editor window:
Click here to view code image

382

383

2. Save the sketch as sketch2201.
3. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit. (Make sure that you have the USB cable connected to your
Arduino.)

4. Open the serial monitor tool from the Arduino IDE toolbar.
5. Press the Reset button on the Ethernet Shield. This resets the Arduino,

restarting the sketch from the beginning. When the sketch starts, you should
see the IP address assigned to your Arduino from your network appear in the
serial monitor window.

Now your Arduino should be waiting for clients to connect to retrieve the
temperature from the sensor. Just open a browser in a workstation on your network
and enter the IP address of your Arduino (as shown in the serial monitor output).
That should look something like this:

You should get back a simple web page, showing the current temperature returned
by the TMP36 sensor, as shown in Figure 22.2.

FIGURE 22.2 The web page generated by the sketch.

The simplicity of this example is in the web server code. We don’t care what
request the client sends to the web server, so the sketch doesn’t bother trying to
read the received data. We just assume that if a remote client is making a request to
the web server, it wants to receive the current temperature back!
The first part of the data sent back to the client is the standard HTTP response.

384

After that, the sketch sends an HTML-formatted document that contains the data
from the temperature sensor.

Controlling an Arduino from the Web
The next step to using your Arduino on the network is the ability to control the
Arduino outputs from a web client. For this exercise, you need to read the actual
data sent by the web client, and then use that data to determine which output should
be active or inactive.
For this exercise, you control a standard three-light traffic signal from a remote
web client. When the web client connects to the Arduino, it will return a web page
with three links: one for each light. The client can click a link to turn on the
appropriate light.

Building the Circuit
First, you need to build the circuit. This section walks through what you need to set
up the traffic signal for the sketch.
For this experiment, you need a few electronic components:

 Three LEDs (preferably red, yellow, and green, but they can be the same
color if that’s all you have available)
 Three 1K-ohm resistors (color code brown, black, red)
 A breadboard
 Four jumper wires

Once you gather these components, you can start the experiment.

385

 Try It Yourself: Digital Traffic Signal
For this experiment, you create a traffic signal that your Arduino will
control using three separate digital interfaces. First, follow these steps
to build the electronic circuit:
1. Place the three LEDs on the breadboard so that the short leads are

all on the same side and so that the two leads straddle the space in
the middle of the board so that they’re not connected. Place them so
that the red LED is at the top, the yellow LED in the middle, and the
green LED is at the bottom of the row.

2. Connect a 1K-ohm resistor between the short lead on each LED to
a common rail area on the breadboard.

3. Connect a jumper wire from the common rail area on the
breadboard to the GND interface on the Arduino.

4. Connect a jumper wire from the green LED long lead to digital
interface 5 on the Arduino.

5. Connect a jumper wire from the yellow LED long lead to digital
interface 6 on the Arduino.

6. Connect a jumper wire from the red LED long lead to digital
interface 7 on the Arduino.

That completes the hardware circuit. The circuit diagram for what you just created
is shown in Figure 22.3.

386

FIGURE 22.3 The circuit diagram for the traffic signal experiment.

Now you’re ready to start coding the sketch that controls the traffic signal circuit
from the Web.

Writing the Sketch
For the sketch, you need to create a web server that can read the request sent from a
web client, parse the data sent, and activate or deactivate the appropriate LED.

 Try It Yourself: Creating the Web Server
For the web server sketch, you use the Ethernet library to listen for
client connections and then read the data sent by the client.
Unfortunately, you can only read the data 1 byte at a time. Because of
that, the sketch will need to look for a specific character sequence to
trigger which LED should light. The web server will expect the client
to send the URI as follows:

ipaddress x

Where <ipaddress> is the IP address assigned to the Arduino, and
x is the number of the LED you want to light:

 1 for the red LED
 2 for the yellow LED

387

 3 for the green LED
The question mark before the number gives us a way to parse through
the client data and know when to expect the control number to appear.
Here are the steps to create the sketch:
1. Open the Arduino IDE, and enter this code into the editor window:

Click here to view code image

388

389

2. Save the sketch as sketch2202.
3. Click the Upload icon to verify, compile, and upload the sketch to

your Arduino.
4. Make sure that the Arduino is plugged into the network, and then

open the serial monitor tool in the Arduino IDE.
5. Press the Reset button on the Ethernet Shield to reset the server.
6. Look at the serial monitor output to see the IP address assigned to

the Arduino.
7. Open a browser in a workstation on the network and connect to the

URL:

ipaddress

where <ipaddress> is the numeric IP address shown in the
serial monitor output. The 0 will not activate any of the LEDs, but
will return the web page that the sketch generates. This should
display the web page shown in Figure 22.4.

FIGURE 22.4 The main Arduino Controller web page.

8. Click one of the links to activate an LED.

When you click a link on the web page, the associated LED should light up on the
Arduino. Clicking each link in the web page sends a new request to the web server.
For example, clicking the Activate Red LED link sends the following request:

390

The sketch reads the 1 value, which triggers the switch statement to run the
 functions to activate the red LED and deactivate the yellow and

green LEDs.
Instead of using LEDs, you can connect anything to the digital interface pins, such
as motors and relays. That enables you to control just about anything from a web
client!

Summary
The Ethernet Shield for the Arduino allows you to use your Arduino as a web
server on the network. HTTP provides a simple protocol that you can easily work
with in your sketches to both send sensor data to remote clients, as well as read
requests from remote clients to change the state of interfaces on your Arduino.
Remote web clients send HTTP request messages to the Arduino, and the Arduino
sends HTTP response messages. To retrieve sensor data, just embed the sensor data
in the HTTP response, using the HTML language to format the web page output. To
control Arduino interfaces, the client must embed a command inside the HTTP
request, and the Arduino sketch much be able to decode the command in the
request.
The next hour covers another important feature in Arduino sketches: storing data.
The EEPROM included in the Arduino makes for a handy way to store data, but it’s
limited in size. To store larger amounts of data, you can use a shield that
incorporates an SD card interface. The next hour walks through just how to read
and write data using the SD card interface.

Workshop

Quiz
1. What HTTP response code indicates that the request was successfully

processed?
A. 300
B. 200
C. 500

2. You must send an HTTP header before you can send HTML data. True or
false?

3. Which method should you use to check whether the
remote client has connected to the server?

391

Answers
1. B. The HTTP server must return a 200 response code to indicate the HTTP

request was received and processed correctly.
2. True. The HTTP response requires that you send an HTTP response header

before you can send the HTML data to create the web page for the client.
3. After assigning the method output to an

 object, you can use the method to
determine whether the client is connected to the server, and the
method to determine whether there is data sent by the client.

Q&A
Q. How many digital inputs can you control on the Arduino Uno from a web

server sketch?
A. Because the Ethernet Shield requires digital interface pins 10, 11, 12, and 13

to communicate to the Arduino, you can only use pins 0 through 9 for your
sketches.

Q. Can multiple remote clients connect to the Arduino web server at the
same time?

A. Yes. The method will continue to listen for incoming
connections and will accept connections from multiple remote clients at the
same time. This requires you to be careful when controlling the Arduino from
a remote client. Remember that more than one client can connect and send
commands at the same time.

392

Hour 23. Handling Files

What You’ll Learn in This Hour:
 How to use SD cards in an Arduino
 How to use the Arduino SD library
 How to read and write files using an SD card

If you need to store data for long term on your Arduino, you have a couple of
options. The EEPROM memory can store data, but there’s a limit to how much
space is available. Another option is to use one of the shields that contains an SD
card reader, and use the SD library in Arduino to write files to it. This hour shows
you just how to do that.

What Is an SD Card Reader?
With the boom in digital camera use, the ability to store large amounts of data in a
small footprint became a necessity. One solution was the Secure Digital (SD)
memory card format. It was developed in 1999 by a consortium of digital
multimedia companies (SanDisk, Matsushita, and Toshiba) as a standard for storing
data on a nonvolatile memory card for portable devices, such as digital cameras,
mobile phones, and tablet computers. Over the years, there has been some tweaking
done to the standard, including the physical size of the cards. At the time of this
writing, there are currently three different physical sizes of SD cards:

 Standard SD (32mm × 24mm)
 MiniSD (21.5mm × 20mm)
 MicroSD (11mm × 15mm)

Most of the SD card interfaces available for the Arduino utilize the MicroSD card
size. However, most MicroSD card packs include a converter that allows you to
plug a MicroSD card into a standard SD card reader, often found on workstations
and laptops.
Besides the physical changes, as the standard matured there have also been changes
in the storage capacity of SD cards. As you can expect, the storage capacity has
greatly increased from the original standard of 1MB. Table 23.1 shows the different
capacity classes of SD cards.

393

TABLE 23.1 SD Card Capacity Classes

All SD cards are preformatted by the manufacturer using one of three Windows
disk formats. The exFAT format is a proprietary Microsoft format that has not been
released to the public at the time of this writing. Because of that, the current
Arduino SD library cannot interface with SDXC cards. That means the maximum
size of SD card you can use with your Arduino is 32GB.

Watch Out!: Reformatting SD Cards
You may be tempted to purchase an SDXC card and try to reformat it
to the FAT32 file system. Unfortunately, that technique has had mixed
results with the current Arduino SD readers and library functions.
Currently, it’s not recommended to reformat SDXC cards. Instead, use
an SDSC or SDHC card less than 32GB in size.
Also, if you must reformat an SDHC card, it’s recommended to use the
FAT16 format for cards up to 4GB in size.

The FAT16 file system format requires that you name files using the old 8.3 naming
standard: an eight-character (or less) name, followed by a period, followed by a
three-character (or less) file extension. Because of that requirement, the SD Library
handles all files using the 8.3 format, even if you’re using an SD card formatted
with the FAT32 file system format.
When purchasing an SD card, besides the physical size and the storage capacity,
there’s one other feature that you need to take into consideration. There are also
different classes of write speeds for the SD cards:

 Class 2: 2 MBps
 Class 4: 4 MBps
 Class 6: 6 MBps
 Class 10: 10 MBps

The Arduino SD card interfaces can use SD cards from any of these speed classes.

394

Watch Out!: SD Card Durability
The downside to SD cards is that they have a limited life span. The
electronics contained in the card that store the data have a limited
number of times the card can be written to, as well as how long the
data can be retained on a card. Most SD cards are manufactured to
retain data for 10 years, and can be written to about 100,000 times.
After that, the card may still work, but may become unreliable.

SD Cards and the Arduino
The great thing about using an SD card in your Arduino project is that it provides
an easy way to share data between your Arduino and a workstation. Because SD
cards use the standard Microsoft FAT16 or FAT32 file system format, you can read
and write to them from both Windows and OS X workstations (assuming your
workstation has an SD card reader).
Currently, two official Arduino shields support SD cards on the Arduino:

 Ethernet Shield
 WiFi Shield

Figure 23.1 shows the Arduino Ethernet Shield with a MicroSD card in it.

FIGURE 23.1 The Arduino Ethernet Shield with the SD card reader.

Along with those two shields, the Arduino Ethernet device also includes an SD

395

interface. All three platforms accept the MicroSD card size.
Besides the standard Arduino shields, some third-party companies have created SD
card interfaces, such as the Adafruit Data Logging Shield, the Wave Shield, and the
Micro-SD breakout board. For projects that just require a simple SD card
interface, the Micro-SD breakout board contains everything you need in one small
package.
All Arduino SD cards use the standard SPI pins to communicate with the SD card
interface. For the Arduino Uno, that’s digital pins 11, 12, and 13. For the Mega, it’s
pins 50, 51, and 52.
Besides those pins, the SD card readers also need to use an interface for the Select
pin. By default, the Uno uses digital interface 10 as the Select pin (SS) to tell the
SD card interface when the Arduino is communicating with it. However, with the
Ethernet and WiFi shields, that’s been moved to digital interface 4.

The SD Library
The Arduino IDE contains the SD library for interfacing with SD cards. You can
use this library whether you’re using an SD reader contained in a shield, a breakout
card, or the Arduino itself.
There SD library consists of two classes of methods:

 SD class: Provides access to the SD card and manipulate files and
directories on the card.
 File class: Provides access for reading and writing individual files on the
SD card.

The following sections detail the methods contained in each of these classes.

The SD Class
The class provides methods to initialize the SD card interface and for working
with files and directories from a high-level, such as opening a file or creating a
directory. Table 23.2 shows the methods that are available in the class.

396

TABLE 23.2 The SD Class Methods

You’ll need to use the method before you can do anything with the SD card.
The SD library needs to know the Arduino interface pin used to control access to
the SD card reader (called the SS pin). For most SD card interfaces, that’s pin 10,
but for the Ethernet and WiFi shields, pin 10 is used for the network connection, so
the SS pin is moved to pin 4. Just specify the pin used as the parameter to the

 method:

After initializing the SD interface, you use the method to open a specific file
for reading or writing. The method returns a file handle to refer to a specific
file. Since Arduino version 1.0, you can have multiple file handles open at the same
time.
Click here to view code image

The method must specify both the name of the file to access, and the mode to
open it (either or). After you have a file handle open,
you can interact with the file using the methods in the class.

The File Class
The class provides the methods to read data from files, write data to files
and a few methods for getting file information and handling file pointers. Table 23.3
shows these methods.

397

TABLE 23.3 The File Class Methods

The class uses the file handle that the method creates when
opening a file. That process looks like this:
Click here to view code image

The variable contains the file handle that points to the file
on the SD card. You can then use the , , or methods to
write data to the file, or the method to read data from the file.

Watch Out!: Flushing Data
When you write data to the SD card file, the Arduino library stores the
data in an output buffer. The data isn’t actually written to the file until
you use either the or methods. To prevent corruption,
be careful that you don’t remove the SD card until your sketch runs the

 method to close the file.

398

Interfacing with the SD Card
Now that you’ve seen the classes and methods that you need to work with files, it’s
time to start writing some sketches to use them. The following sections walk
through the steps you need to create, read, update, and delete files and folders on
your SD card. To run these examples, make sure that you have a formatted SD card
in your SD card reader.

Writing to Files
Thanks to the SD library, writing data to a file on an SD card from your Arduino
sketch is a simple process:
Click here to view code image

At the current time, a quirk in the SD library requires that you set digital interface
10 for output mode, even if your SD card reader doesn’t use pin 10 for the SS
interface. In this example, the sketch opens a file named test.txt on the SD card. If
the file doesn’t exist, the method creates it.
The function first opens the file, writes the sensor data to it, and then closes
the file. This helps ensure that the file is properly closed if you turn off the Arduino
between loop iterations.

399

Reading Files
Reading files from the SD card can be a little tricky. You must know what data to
expect when you read the data using your sketch. Fortunately, a few tricks can help
with that process.
One trick is to pick a standard format to save the data in the file. The most popular
way to save multiple data values in a text file is to use the comma-separated values
(CSV) format. This format separates multiple values using a comma, as follows:

Each line in the CSV file represents a separate data record, often related to a
separate reading iteration. The separate values within the data record are separated
using commas. When you read the value from your sketch, you can use standard
string functions (see Hour 8, “Working with Strings”) to separate out the different
values.
The other tricky part to this process is that the method can only read
1 byte of data at a time. You’ll need to use more of the string functions to
concatenate the data bytes to create the full string and to parse the strings into
meaningful data:
Click here to view code image

400

The sketch tries to open the test.csv file, and if successful, it reads the file 1 byte at
a time, displaying each character in the serial monitor until there is no more data in
the test.csv file to read.

Working with Folders
By default, all the files that you create on the SD card are placed in the root folder
of the drive. If you’re using the same SD card for multiple projects, of if you need
to store multiple types of data on the same SD card, you’ll want to organize the data
into folders.
The SD class provides methods for creating, listing, and deleting folders. First,
let’s go through an example of creating a couple of folders:
Click here to view code image

When the path specified in the method contains subfolders, the SD library
will create any parent folders. If you remove the SD card and place it in a
workstation or laptop SD card reader, you’ll see the test3 folder at the root level,
with the test4 folder under the test3 folder.
Now that you have some folders, here’s an example that lists the folders:
Click here to view code image

401

After you have the folders created, you can store your data files in them. To do that,
just use the folder in the filename in the method:
Click here to view code image

Notice that you use forward slashes to separate the folder name from the filename,
even though the SD card is formatted using a Windows file system.
Finally, if you want to remove folders, you use the method:

After running this example, place the SD card into a workstation or laptop SD card
reader to view the folders. You should see that the test1 folder is gone.

Storing Sensor Data
Let’s go through an example that stores data from a temperature sensor in a file on
the SD card. You can then remove the SD card from the Arduino when you’re done
and read it on a standard workstation or laptop that contains an SD card reader.

402

 Try It Yourself: Temperature Logger
In this exercise, you’ll create a sketch that polls a TMP36 temperature
sensor every minute and writes the values to an SD card. First you
need to build a quick circuit to interface the TMP36 analog
temperature sensor to the analog interface 0 pin on the Arduino:
1. Plug the TMP36 into a breadboard so that each lead is on a

separate rail, and the flat side of the TMP36 is on the left side.
2. Connect the top lead of the TMP36 to the 5V pin on the Arduino.
3. Connect the bottom lead of the TMP36 to the GND pin on the

Arduino.
4. Connect the middle lead of the TMP36 to the analog 0 interface on

the Arduino.

That’s all the hardware you need for this exercise. Next, you need to create the
sketch code to read the sensor, convert it to a temperature, and then store the value
in a data file on the SD card every minute. Just follow these steps:

1. Open the Arduino IDE, and enter this code into the editor window:
Click here to view code image

403

2. Save the sketch as sketch2301.
3. Click the Upload icon to verify, compile, and upload the sketch to your

Arduino unit.
4. Open the serial monitor, then let the sketch run for 5 or 10 minutes. Figure

23.2 shows the output you should see in the serial monitor.

FIGURE 23.2 Output from the temperature logger sketch.

5. Remove the Arduino from the power source (either the USB cable or
external power).

6. Eject the SD card from the SD card reader on the Arduino (or shield device),
and insert it into the SD card reader on a workstation or laptop.

7. View the contents of the SD card using the file browser on your OS (such as
Finder on OS X, or File Explorer on Windows).

8. Open the temp.csv file using either a text editor, or if available, a
spreadsheet application such as Excel or LibreOffice Calc. Figure 23.3

404

shows what the data looks like in Excel.

FIGURE 23.3 Viewing the temp.csv log file using Excel.

When you open the data file, you should see the sensor value.

Summary
This hour discussed how to use the SD card readers available on some shield
devices as well as the Arduino Ethernet device. You use the SD library to interface
with the SD card. The SD library allows you to both read and write to files on the
card, as well as create and remove folders.
The next hour wraps up this book by showing how to create a complete Arduino
project from start to finish. A few different steps are required to get a complete
project up and running properly. The last hour walks through all of these steps to
give you an idea of how to create your own Arduino projects.

Workshop

Quiz
1. What physical size of SD cards do most SD card readers available for the

Arduino use?
A. Standard SD
B. MiniSD
C. MicroSD

405

D. SDXC
2. Data written by the Arduino on an SD card can be read from any workstation

or laptop that supports an SD card reader. True or false?
3. What method should you always use in your sketches to ensure that the

data files aren’t corrupted if the power is lost to the Arduino?

Answers
1. The Arduino Ethernet device, as well as the Ethernet Shield and WiFi

Shield, all use the MicroSD cards for storing data.
2. True. The Arduino SD library can write data using the standard FAT16 or

FAT32 file formats, allowing them to be written on any Windows, OS X, or
Linux system.

3. You should always use the method to properly close the data files
when not in use. If the power is lost while the file is closed, you won’t lose
any data.

Q&A
Q. Can I have more than one file open on an SD card at the same time?
A. Yes. The current version of the SD library allows multiple files to be open at

the same time.
Q. Can I use a real date and time value when logging sensor data into a

data file?
A. Yes, but it’s tricky. By default, the Arduino doesn’t include a real-time clock,

but there are solutions to that. Adafruit provides a hardware real-time clock
add-on that you can add to your Arduino circuit to track the current date and
time. Also, there is a DateTime software library available for the Arduino
that can keep track of the date and time after its been set when the sketch
starts.

406

Hour 24. Prototyping Projects

What You’ll Learn in This Hour:
 How to plan your Arduino project
 How to create a schematic
 How to design your Arduino sketch
 How to build a prototype circuit

The focus of this book has been on the programming side of Arduino, but creating a
complete Arduino project takes a little more than just programming skills. As
you’ve seen throughout the previous hours, you usually need to also build an
electronic circuit to go along with your sketch code. This final hour discusses how
to plan your Arduino projects to coordinate all the hardware and software pieces
that you need to build your Arduino project.

Determining Project Requirements
The first step in any Arduino project is to create a list of the project requirements.
When you start a project, you probably have some idea of just what you want it to
do, but you might not have thought yet about just how the Arduino will do it. That’s
where project planning comes in.
Project planning consists of trying to document as many details about the project
that you can find out up front, before you dive into the coding and building
hardware. To plan out the project, you want to first ask yourself a few questions to
determine the project requirements. Common planning questions to ask include the
following:

 What types of data does the project need to monitor?
 What type of equipment does the project need to control?
 Does the sketch need to perform any calculations on the data?
 Does the project need to display any information?
 Does the data need to be saved?
 Does the project need to connect to a network?

As you think through these questions, you should start getting an idea of just what
your Arduino project will look like and what components you need to create it.

 Try It Yourself: Planning an Arduino Project
To demonstrate how to plan a project, let’s walk through the steps of
designing and building a temperature monitor. The temperature

407

monitor will allow us to preset a temperature, and then indicate if the
room temperature is too hot or too cold.
Following our project plan, we need to start asking some questions:
1. First, because we need to monitor a temperature, we need to find a

temperature sensor to use. For this project, we’ll use the TMP36
analog temperature sensor.

2. The project will need a way to set a preset temperature level. For
this project, we’ll use a potentiometer to match the analog output
voltage level of the temperature sensor for the temperature to set.

3. The project will need a way to display information to let us know
whether the room temperature is too cold or too hot. For that, we’ll
use five LEDs:

 A green LED will indicate when the temperature is within 5
degrees (plus or minus) of the preset temperature.
 Two separate yellow LEDs will show when the temperature is
between 5 and 10 degrees off (one LED for too high, and
another for too low).
 Two red LEDs to show when the temperature is more than 10
degrees too high or too low.

Figure 24.1 shows the layout of the LEDs for the project.

FIGURE 24.1 The temperature monitor project LED layout.

4. The project won’t save any data, and it won’t use the network to
communicate with any remote devices.

5. We will use the serial monitor to make sure the monitor is working
correctly while we develop the sketch, but it won’t be necessary for
when we use the monitor live in production.

Now that we’ve worked out the project planning, the next step is to determine just
what the Arduino requirements will be.

408

Determining Interface Requirements
After you determine the project requirements, the next step is to map out just what
Arduino interfaces are required. Remember, only a limited number of analog and
digital interfaces are available on the different Arduino models, so the number of
interfaces your project requires may also determine the Arduino model you need to
use (or even if you need to use more than one Arduino unit for the project). This
section discusses how to determine the interface requirements for both the analog
and digital interfaces.

Analog Interfaces
You use analog interfaces for not only analog input. On the Arduino Uno, you also
need to consider whether your project uses the I2C protocol to communicate with
other devices. If your project needs to use I2C communication (such as to display
information on an LCD shield), you’ll have two fewer analog inputs available (A4
and A5).
For this exercise project, you just need to use two analog interfaces:

 One for the temperature sensor output
 One for the potentiometer output

After you identify how many analog interfaces you need, the next step is to assign
them to interfaces. For this exercise, you use analog interface A0 for the
temperature sensor output and analog interface A1 for the potentiometer output.
That way, analog interfaces A4 and A5 will still be available if you decide to use
an LCD shield later on.

Digital Interfaces
Digital interfaces can be used for digital input, digital output, or analog output
(called pulse-width modulation (PWM), as described in Hour 19, “Working with
Motors”). You need to keep track of which digital interfaces need to operate in
which mode.
Besides those options, two digital interfaces (pin 0 and 1) can be used for the serial
output from the Arduino. If you use the serial monitor in the Arduino IDE to input or
output text, that means you can’t use digital interface pins 0 or 1.
Also, the Serial Peripheral Interface (SPI) communication uses digital interface
pins on the Arduino. If your sketch communicates with a sensor that uses SPI, you
need to know which those ports are. For the Uno and Due models, you need to
reserve digital interface pins 10, 11, 12, and 13 if you use SPI. For the Mega
model, you need to reserve digital interface pins 50, 51, 52, and 53.

409

Watch Out!: The ICSP Header
Most Arduino models also support SPI communication using the
separate in-circuit serial programming (ICSP) header. However, the
SPI pins on the digital interface are still reserved and must be avoided
if you’re using the ICSP header pins.

Besides SPI, you also need to watch for I2C communication. While the Uno model
uses analog pins for I2C, the Leonardo uses digital interface pins 2 and 3, and the
Due and Mega models use digital interface pins 20 and 21.
For this project, you need to use five digital output interfaces, one for each LED
you need to control:

 Interface 2 for the low-temp red LED
 Interface 3 for the low-temp yellow LED
 Interface 4 for the green LED
 Interface 5 for the high-temp yellow LED
 Interface 6 for the high-temp red LED

Because you use all the digital interfaces in the project for output, you don’t need to
track input or PWM interfaces. If you’re creating a more complex project that uses
those features, it may help to create a table that shows all the digital interface,
which mode they use, and what they’re connected to.

Listing Components
The next step in the project is to determine what electronic components are
required. This can consist of the following:

 Sensors
 Output devices (LEDs, LCDs)
 Switches
 Motors
 Auxiliary components (resistors, capacitors, transistors)
 Power components

It’s often the little things in a project that are overlooked and cause problems when
it’s time to build the hardware. Don’t forget the small items, such as resistors to
limit the current going through LEDs, when listing out the component requirements.
As part of the component list, I like to also include the power requirements for the
project. Some components require 5 volts to operate, whereas others require 3.3
volts. If you’re working with motors, you also need to use an external power source
to provide more voltage to run the motor, such as a 9V battery.

410

For this project, you need the components shown in Table 24.1.

TABLE 24.1 Project Components
Both the TMP36 sensor and the 1K potentiometer can use either 3.3 volts or 5 volts
to operate, which you can get directly from the Arduino, so you don’t need to worry
about any external power sources. After you determine your component list, you
can start planning how to connect them. To do that, you’ll want to create a
schematic.

Creating a Schematic
You’ll want to map out a schematic of the project hardware so that you can
determine how to connect the components. Software packages are available that
can do that for you, or you can just map out the schematic freehand. Figure 24.2
shows an example of drawing the schematic freehand.

411

FIGURE 24.2 The Temperature Monitor schematic.

When you map out the circuit schematic, make sure to cover all the connections to
the Arduino.

412

Creating the Breadboard Circuit
After you have the schematic drawn out, you can start plugging components into a
breadboard to wire the circuit. Breadboards are great tools for temporarily creating
your Arduino circuits. Because the connections are temporary, it’s easy to change
things around until you get them right.

413

 Try It Yourself: Wiring the Temperature Monitor
To create the temperature monitor circuit, follow these steps:
1. Place the five LEDs on a breadboard so that they straddle the

middle divider. Place the long lead of the LED toward the left side
of the breadboard. Line them up so that there’s a red LED at the top,
followed by a yellow LED, the green LED, the other yellow LED,
and finally, the other red LED.

2. Connect a 1K-ohm resistor from the short lead of each LED to a
common rail area on the breadboard.

3. Connect that common rail area to the GND pin on the Arduino.
4. Connect the five digital interface pins on the Arduino to the five

LEDs using the sequence:
 Interface 2 connects to the bottom red LED.
 Interface 3 connects to the bottom yellow LED.
 Interface 4 connects to the green LED.
 Interface 5 connects to the top yellow LED.
 Interface 6 connects to the top red LED.

5. Connect a wire from the 5V interface on the Arduino to another
common rail area on the breadboard.

6. Place the TMP36 sensor on the breadboard so the flat side points to
the left and so that each sensor lead is plugged into a separate rail
area.

7. Connect the top pin of the TMP36 sensor to the 5V rail.
8. Connect the bottom pin of the TMP36 sensor to the GND rail.
9. Connect the middle pin of the TMP36 sensor to the Arduino A0

interface.
10. Place the potentiometer on the breadboard so that each lead plugs

into a separate rail area.
11. Connect one outer lead of the potentiometer to the 5V rail on the

breadboard.
12. Connect the other outer lead of the potentiometer to the GND rail

on the breadboard.
13. Connect the middle lead of the potentiometer to the A1 interface on

the Arduino.

That was a lot of wires to connect! There are nine separate wires going between

414

the Arduino and the breadboard—the five digital interfaces, two analog interfaces,
the GND interface, and the 5V interface. Figure 24.3 shows how things should look.

FIGURE 24.3 The finished project wiring.

With the hardware setup complete, you can move on to working on the sketch
design.

Designing the Sketch
With the hardware complete, it’s time to turn your attention to the software that will
control the project. Just like planning out the project, you’ll want to plan out how
you want the sketch to work before you start writing any code. That will help when
it does come time to write code.
Things you need to think about while planning the sketch include the following:

 Which Arduino libraries are required
 What variables and constants you will define
 What code needs to be in the function
 What code needs to be in the function
 Whether any extra functions are required

It’s important to remember that in the Arduino, code inside the function is
only run at startup, and any code inside the function is run in a continuous
loop. If you need to initialize interface pins, serial interfaces, or the network
interface, that code goes in the function area. When you want to monitor

415

sensors, that code most often goes in the function area so that it continually
runs and updates the output with new sensor data.
For this project, you need code for the following things:

 Initialize the serial monitor
 Initialize the digital interface inputs
 Retrieve the current temperature sensor value
 Retrieve the current potentiometer value
 Compare the two values and light the appropriate LED

You’ll notice that the first two items involve initializing things: the serial monitor
and the digital interfaces. The code for those features go in the function
area because they need to run only once at the start of the sketch.
The remaining items on the list involve retrieving sensor values and producing an
output. You place the code for those features in the function area so that they
continually run. You also need to use a one second delay to pause the program
between readings. That way you won’t overrun the serial monitor with output
during the tests!
The analog temperature sensor outputs a voltage based on the temperature it
detects. To convert the voltage value to a real temperature, you need to create a
separate function to help keep those calculations out of the function area.
That’s not required, but it helps keep the sketch code from getting too cluttered.
You’ll also create a separate function to determine which LED lights to indicate the
temperature. Because that requires a lot of statements to compare the
value ranges, it will help to keep that code out of the function area as well.

Writing the Sketch
After you’ve mapped out the basic functions and features you need for your sketch,
you can start coding the sketch.

 Try It Yourself: Creating the Temperature Sensor Code
To build the temperature sensor sketch, just follow these steps:
1. Open the Arduino IDE, and enter this code:

Click here to view code image

416

417

2. Save the sketch as sketch2401.
3. Click the Upload icon to verify, compile, and upload the sketch to

the Arduino unit.

The function defines the output digital interfaces and initializes the serial
monitor port. The function retrieves the current temperature value and
converts it to a temperature using the function. Likewise, it also
retrieves the temperature setting output from the potentiometer and converts it to a
temperature as well.
Because the potentiometer can output a wider range of values than the temperature
sensor, I scaled the digital output of the potentiometer to a smaller range. That will
make the potentiometer a little less sensitive as you rotate the wiper to match the
temperature voltage output.
The function compares the sensor output to the potentiometer output,
and lights the appropriate LED. If the temperatures are within 5 degrees plus or
minus, it lights the green LED.

418

Testing the Sketch
With both the hardware and software complete, you’re ready to test the sketch.
Because the sketch outputs the sensor and potentiometer values to the serial
monitor, it’s a snap to see what’s going on.

 Try It Yourself: Viewing the Sketch Output
To run the sketch and view the output, follow these steps:
1. When you click the Upload icon in the Arduino IDE, the sketch will

start running automatically. Open the serial monitor to view the
output that’s generated from the sketch.

2. Turn the potentiometer to change the voltage output. Try to match
the setting output to the temperature output as shown in the serial
monitor. Figure 24.4 shows the output you should see.

FIGURE 24.4 The serial monitor output from testing the temperature sensor.

3. When you get the temperatures to match, you should see the green
LED light.

4. Leave the potentiometer setting alone, and then try to heat up and
cool down the temperature sensor by holding it between your
fingers and placing a bag of ice next to it.

As the sensor heats up, the top yellow and red LEDs should light in sequence. As
the sensor cools down below the preset setting, the lower yellow and red LEDs

419

should light. If you can’t get the sensor to heat up or cool down enough to test the
red LEDs, try changing the range values in the function to smaller
ranges.

Creating a Prototype Board
When you deploy your project in “real life,” you most likely won’t want to do it
using a breadboard to hold the electronic components. The breadboard connections
are temporary and may become loose over time or get accidentally pulled out.
The solution is to create a prototype circuit board that allows you to solder the
components into place. There are two ways to create a prototype circuit:

 Use a circuit board design software package to create a circuit board
 Use a prototype circuit board

This section walks through these options for creating your prototype circuit.

Using a Prototype Board
A prototype circuit board provides some level of flexibility, with a more permanent
wiring solution. It works similarly to a breadboard, by providing rails of
interconnected sockets, but it works like a circuit board, with the interconnections
being done on the circuit board by traces and the components being soldered into
place.
You can use generic prototype circuit boards for your project, but what makes
things even easier is that Adafruit created an Arduino-compatible prototype board.
The Proto Shield plugs into most Arduino models as a normal shield and provides
a simple prototype circuit board on the shield itself. Figure 24.5 shows the Proto
Shield.

420

FIGURE 24.5 The Adafruit Proto Shield.

With the Proto Shield, you can lay out the components for your project in the holes
provided in the circuit board. Note that there are several rail sections where the
holes are tied together on the circuit board. This allows you to easily share a
common connection, such as all the ground connections or all the connections that
go to the 5V pin on the Arduino.
The Proto Shield also provides all the Arduino interface pins directly on the board.
You’ll have to use small jumper wires to connect the LEDs to the digital interface
pins and the sensor and potentiometer to the analog interface pins.

421

Creating a Circuit Board
A step above using the Proto Shield is to create your own custom circuit board. The
advantage of creating your own custom circuit board is that you can place the
components as you like on the board, which makes your project look more
professional. Also, once you get your custom circuit board layout the way you want
it, you can easily send that diagram to electronic companies to mass produce your
project circuit board.
To create a circuit board from the schematic diagram requires some software.
While there are some commercial circuit board design programs available, for
hobbyists the most popular open source circuit board software is Eagle.
The Eagle package enables you to lay out your electronic components in a grid
using a graphical tool. It then connects the component leads as required to satisfy
the schematic that you provide.
After you generate the template for the circuit board, you can either print it out to
etch into a printed circuit board, or you can send the file to a company that
specializes in mass producing printed circuit boards. Many companies recognize
Eagle-formatted circuit files.

Summary
This final hour walked through how to prototype your Arduino projects to get them
ready for the real world. The first step is to plan just what you need for the project
to accomplish and determine what Arduino features and shields you need. After
planning the project, the next step is to create a parts list of the components you
need for the project. With that in hand, you can start mapping out a schematic of
how the project circuit needs to look. With your schematic complete, the next step
is to build a prototype circuit on a breadboard. After you have the circuit
completed, you’re ready to start coding. You’ll need to map out the code
requirements, and then implement them in your Arduino sketch. Finally, with your
prototype complete and working, you can move the components to a more
permanent solution, either using a Proto Shield or by building your own custom
circuit board.

Workshop

Quiz
1. What software enables you to create your own custom circuit boards that can

be used to mass produce your Arduino project?
A. The Proto Shield
B. The Arduino IDE
C. The Eagle software

422

D. The Ethernet Shield
2. When mapping out digital and analog interface requirements, you must also

think about the I2C and SPI connection requirements in your project. True or
false?

3. When designing your sketch code, how do you determine which features go
in the function and which ones go in the function?

Answers
1. The Eagle software enables you to create custom circuit board templates that

you can then use to build your own circuit board or send off to have the
circuit board mass produced.

2. True. The different Arduino models use different interfaces to implement the
I2C and SPI communication ports. You’ll need to be careful to avoid those
interfaces if your project uses those protocols.

3. Features that only need to run once to initialize values or interfaces should go
in the function. Features that need to run continuously should go in the

 function.

Q&A
Q. Shouldn’t you design the schematic circuit first before you create a

components list for the project?
A. I like to determine at least what major components are required for a project

before trying to map out the schematic. That helps me organize what the
schematic needs to look like. Most likely you’ll find you need more
components as you create the schematic, which you can then add to your
components list.

Q. Is designing an Arduino project an iterative process; do you need to
repeat any of the individual steps to get to the final design?

A. Yes, you can use an iterative process to designing an Arduino project, but
that can get tricky. Sometimes for larger projects, you can start out by
designing a stripped-down version of the project features, and then go back
and add additional features. However, that can make designing the schematic
more difficult as you need to incorporate more components as you go along.

423

Index

Symbols
& (ampersand) reference operator, 164, 170
* (asterisk) dereference operator, 164

retrieving data, 166-167
storing data, 167

-> operator, retrieving data structure values with pointers, 174-176
; (semicolon), terminating statements, 77

Numbers
-3 header socket port, 66
-5 header socket port, 66
-6 header socket port, 66
-9 header socket port, 66
-10 header socket port, 66
-11 header socket port, 66
2 header socket port, 66
3.3V header socket port, 65
4 header socket port, 66
5V header socket port, 65
7 header socket port, 66
8 header socket port, 66
12 header socket port, 66
13 header socket port, 66

A
A0 header socket port, 65
A1 header socket port, 65
A2 header socket port, 65
A3 header socket port, 65
A4 header socket port, 65
A5 header socket port, 65
abs() function, 85
accessing header sockets, 66
accessories, 17-18

424

activating serial monitor, 53
Adafruit Data Logging shield, 376
ADC (analog-to-digital converter), 25, 236
Add File option (Sketch menu), 46
addition operator, 80
advanced math functions, 85
alphanumeric LCD devices, 319-320

ALU (Arithmetic Logic Unit), 24
ampersand (&) reference operator, 164, 170
analog interfaces

input signals
detecting, 236
limiting values, 241
mapping values, 242-245, 292
potentiometer example sketch, 238-241
reference voltage changes, 245-246

layouts, 237-238
output signals, generating, 236-237, 246-247
planning, 389-390

analog output, 26
analog sensors, 287-288

resistance-based sensors, 295-297
temperature LCD display example sketch, 327-329, 333-335
temperature logging example sketch, 382-384
temperature monitor example project

analog interfaces, 389-390
breadboard circuits, 393-394
components needed, 391-392
digital interfaces, 390-391
planning, 388-389
planning sketches, 394-395
schematics, 392
testing sketches, 398-399
writing sketches, 395-398

temperature sensors for web servers, 361-364
touch sensors, 297-300
voltage-based sensors, 288-293

converting voltage values, 292-293

425

sensitivity of, 291-292
temperature detection example sketch, 293-295
voltage levels, 288-291

analogRead() function, 238, 291
analogReference() function, 245-246, 291

analog-to-digital converter (ADC), 25, 236
analogWrite() function, 246, 307
AND operator, 80, 97
architecture of Arduino, 9-11
Archive Sketch option (Tools menu), 47
Arduino

accessories, 17-18
analog interfaces. See analog interfaces
architecture, 9-11
communication between units, 280-284
controlling from web browser, 364-370
defined, 7
digital interfaces. See digital interfaces
history of, 11-12
interrupts

external interrupts, 252-253, 254-260
ignoring, 264-265
pin change interrupts, 253-254, 260-262
polling versus, 251-252
timer interrupts, 254, 262-264

memory
comparison among types, 181-182
creating dynamic variables, 185-189
EEPROM memory, 194-197
flash memory, 189-193
SRAM memory, 183-185

as microcontroller, 7-8
models. See models of Arduino
powering on/off with USB hub, 69
shields. See shields
trademark protection, 9

Arduino IDE, 31-32
console window, 49-50

426

downloading, 32-33
Edit menu commands, 44-46
editor window, 59-60
File menu commands, 40-43
Help menu commands, 48
installing

for Linux, 37
for OS X, 36-37
for Windows, 33-36

interface, 39-40
libraries, 201

compiling functions, 205
components of, 202
contributed libraries, 206-208
documentation, 205
example usage, 205-206, 212-214
including, 204
installing, 212
location, 202-203
referencing functions in, 204-205
standard libraries, list of, 203-204
troubleshooting, 213
zip file creation, 211-212

message area, 49-50
serial monitor, 52-54
setup, 51-52
shield libraries, 32
Sketch menu commands, 46
toolbar, 49
Tools menu commands, 46-48

Arduino programming language. See also C programming language
functions, 83-86

advanced math functions, 85
bit manipulation functions, 86
calling, 148-150
defining, 148
global variables, 155-156
local variables, 156-158

427

passing values to, 152-154
random number generators, 86
recursive functions, 158-160
returning values, 150-152
scope of variables, 154
Serial class, 83-84
time functions, 84-85
troubleshooting, 148
user-defined, 147

strings, 126-129
creating and manipulating, 126-128
manipulating, 130-131
String object methods, 128-129

Arduino Starter Kit, 18
AREF header socket port, 66
arguments, 152
Arithmetic Logic Unit (ALU), 24
arrays

creating, 110-111
of data structures, 140-142
defined, 120
loops, 109-112
pointer arithmetic, 168-171
sizing, 111-112, 121-122
strings, 120-126

comparing, 125-126
creating, 121-122
functions for, 122-125

ASCII format, 119, 271
assembly language, 27-28
assigning values

to data structures, 136-138
to variables, 77

assignment statements
equality comparison versus, 96
equations versus, 82

asterisk (*) dereference operator, 164
retrieving data, 166-167

428

storing data, 167
ATmega AVR microcontrollers, 9-10

components of, 23-26
CPU, 24-25
EEPROM memory, 194-197
flash memory, 189-193
I/O interface, 25-26
memory, 25
memory comparisons, 181-182
SRAM memory, 183-185

instruction set, downloading, 27
Atmel C library, 29-30
Atmel Studio package, 30
attach() function, 313
attached() function, 313
attachInterrupt() function, 254-255
Auto Format option (Tools menu), 47
autoscroll() function, 325
Autoscroll option (serial monitor), 53
available() function

Serial library, 270
Wire library, 278

available method
EthernetClient class, 343
EthernetServer class, 345
EthernetUDP class, 347
File class, 377

AVR Libc project, 29
avr-gcc package, 30

B
baud rate, 271
Baud Rate option (serial monitor), 54
begin() function

LiquidCrystal library, 325
Serial library, 83, 270-271
SPI library, 276
Wire library, 278

429

begin method
Ethernet class, 340
EthernetServer class, 345
EthernetUDP class, 347
SD class, 376

beginPacket method, 347
beginTransmission() function, 278
beta software, 33
binary calculations, 81
bit() function, 86
bit manipulation functions, 86
bitClear() function, 86
bitRead() function, 86
bitSet() function, 86
bitwise AND operator, 80
bitwise OR operator, 80
bitWrite() function, 86
blink() function, 325
blinking LED example sketch, 272-274, 280-284
Board option (Tools menu), 47
Boolean comparisons, 96-97
boolean data type, 77
Boolean logic, 81
bootloader, 42

functions in, 57-58
uploading, 48

breadboards, 17
creating circuits, 393-394
electronic circuit interfaces, 67-68

break statements, 99, 113-114
browsers, controlling Arduino from, 364-370
brushes in DC motors, 304
buffer overflow, 184
building

libraries
code file creation, 208-210
example usage, 212-214

430

header file creation, 210-211
installing, 212
zip file creation, 211-212

web servers, 361-364, 366-370
Burn Bootloader option (Tools menu), 48
byte data type, 77

C
C programming language, 28-29. See also Arduino programming language

Arduino IDE, 31-32. See also Arduino IDE
Atmel C library, 29-30
data structures, 133-134

arrays of, 140-142
assigning values, 136-138
copying, 138-140
creating, 134-136
initializing, 176

loops, 103-104
arrays, 109-112
break statements, 113-114
continue statements, 114-116
do-while statements, 106-107
endless loops, 106
multiple variables in, 112
nesting, 112-113
for statements, 107-109
while statements, 104-106

operators
compound operators, 82
math operators, 80-82
order of operations, 82

pointers, 163-166
arithmetic with arrays, 168-171
data structures and, 173-176
null pointers, 167-168
passing to functions, 176-178
printing, 166
referencing strings, 172-173

431

retrieving data, 166-167
storing data, 167
string manipulation, 171-172
void pointers, 168

shield libraries, 32
statements, terminating, 77
strings, 120-126

comparing, 125-126
creating, 121-122
functions for, 122-125

structured commands
comparisons, 95-97
compound conditions, 97
else if statements, 93-95
else statements, 92-93
grouping multiple statements, 90-92
if statements, 89-90
negating condition checks, 98
switch statements, 98-99

unions, 142-145
variables

assigning values, 77
data types, 77-78
declaring, 76-77
dynamic variables, 185-189
qualifiers, 79
scope, 80

C++ programming language, library creation
code files, creating, 208-210
header files, creating, 210-211

calculating factorials, 158-160
calling functions, 148-150, 158-160. See also referencing
calloc() function, 186-187
camel case, 77
CapacitiveSensor library, 298-300
capacitors, 297-298
capacity classes (SD cards), 374
case statements, 99

432

CHANGE external interrupt mode, 255
changing

dynamic variables, 187
reference voltages, 245-246, 290-291

char data type, 77, 79, 119-120
character arrays. See arrays, strings
charAt method, 128
chat server example sketch, 349-351
circuits. See electronic circuits
clear() function, 325
Client class. See EthernetClient class
clock speed, 25, 277
close method, 377
Close option (File menu), 42
code files in libraries, 202, 208-210
code libraries, 29
code listings. See listings
coding. See programming microcontrollers
color types (LCDs), 320-321
comma-separated values (CSV) format, 380
Comment/Uncomment option (Edit menu), 45
communication

LCD (liquid crystal display) devices, 319
Arduino interface connections, 323-325
color types, 320-321
display types, 319-320
downloading and installing LCD shield library, 330-331
interface pins, 321-323
LCD shield, 329-330
LCD shield connections, 332-333
LCD shield library functions, 331-332
LiquidCrystal library, 325-327
temperature display example sketch, 327-329, 333-335
troubleshooting, 329

serial communication protocols, 267-268
I2C (Inter-Integrated Circuit) protocol, 277-284
serial ports, 268-274

433

SPI (Serial Peripheral Interface) protocol, 274-277
compareTo method, 128
comparisons, 95-97

Boolean comparisons, 96-97
compound conditions, 97
negating condition checks, 98
numeric comparisons, 95-96
string comparisons, 96, 125-126

compilers, 28
compiling

functions in standard libraries, 205
sketches, 60-61

compound conditions, 97
compound operators, 82
concat method, 128
configuring Arduino IDE, 51-52
connect method, 343
CONNECT method token, 357
connected method, 343
connections. See also interfaces

with Ethernet shield, 18-19
with LCD devices, 323-325
with LCD shield, 332-333

console window (Arduino IDE), 49-50
const variable qualifier, 79
constants, 79

in flash memory, 190-191
memory locations, 184

constrain() function, 85, 241
continue statements, 114-116
contrast on LCD devices, 329
contributed libraries, 206-208. See also building libraries
controllers, 24
converting voltage values in analog sensors, 292-293
Copy as HTML option (Edit menu), 44
Copy for Forum option (Edit menu), 44
Copy option (Edit menu), 44

434

copying
data structures, 138-140
strings, 125, 171-172

cos() function, 85
.cpp file extension, 202
CPU

components of, 24-25
programming

assembly language, 27-28
C programming language, 28-29. See also C programming language
machine code, 26

createChar() function, 325
CSV (comma-separated values) format, 380
current sinks, digital interfaces as, 222-223
current sources, digital interfaces as, 222-223
cursor() function, 325
Cut option (Edit menu), 44

D
DAC (digital-to-analog converter), 236-237
data display with LCD shield, 19
data pointers. See pointers
data registers, 24
data structures, 133-134

arrays of, 140-142
assigning values, 136-138
copying, 138-140
creating, 134-136
initializing, 176
pointers and, 173-176

data types, 77-78, 190-191
DC motors, 303-304

direction control, 307-308
powering on/off, 305-306, 308-311
speed control, 306-307, 311-313

debugging sketches, 83. See also troubleshooting
declaring. See also defining

flash memory data types, 190-191

435

local variables, 156-158
variables, 76-77

Decrease Indent option (Edit menu), 45
decrement operator, 80
default statements, 99
#define directive, 210
defining. See also declaring

dynamic variables, 186-187
functions, 148
global variables, 155-156

delay() function, 84
delayMicroseconds() function, 84
DELETE method token, 357
dereference operators, 164

retrieving data, 166-167
storing data, 167

detach() function, 313
detachInterrupt() function, 255
DHCP (Dynamic Host Configuration Protocol), 342-343
digital interfaces

input voltage levels, 226-229
interface 13, 229
interrupts

external interrupts, 252-260
ignoring, 264-265
pin change interrupts, 253-254, 260-262
polling versus, 251-252
timer interrupts, 254, 262-264

layouts, 220-221
LCD (liquid crystal display) devices, 323-325
number of, 219-220
output voltage levels, 221-223
planning, 390-391
setting input/output modes, 221
SPI signals, 276
traffic signal example sketch, 223-226, 229-231, 364-370
troubleshooting

input voltage levels, 227

436

with serial monitor, 226
digitalRead() function, 226
digital-to-analog converter (DAC), 236-237
digitalWrite() function, 63, 221
direction of DC motors, controlling, 307-308
display() function, 325
display types (LCDs), 319-320
displaying

data with LCD shield, 19
strings, 122

division operator, 80
documentation for standard libraries, 205
double data type, 77
do-while statements, 106-107
downloading

Arduino IDE, 32-33
ATmega AVR microcontroller instruction set, 27
contributed libraries, 206-208
LCD shield library, 330-331
Timer One library, 263

drivers, installing, 34-35
Due model, 13

analog interfaces, 236
digital interfaces, 219
I2C interface pins, 278
serial port interfaces, 269
voltage levels, 288

durability of SD cards, 375
Dynamic Host Configuration Protocol (DHCP), 342-343
dynamic IP addresses, 342-343
dynamic variables, 184-189

changing, 187
defining, 186-187
example usage, 187-189
removing, 187

E
Eagle circuit board software, 400-401

437

Edit menu commands, 44-46
editor window (Arduino IDE), creating sketches, 59-60
EEPROM Extended library, 197
EEPROM library, 203
EEPROM memory, 25, 194-197

comparison with SRAM and flash memory, 181-182
example usage, 195-197
including library, 194-195
retrieving data, 196-197

EEPROMex library, 197
electronic circuits

analog sensors in, 287-288
resistance-based sensors, 295-297
temperature LCD display example sketch, 327-329, 333-335
temperature logging example sketch, 382-384
temperature sensors for web servers, 361-364
touch sensors, 297-300
voltage-based sensors, 288-295

breadboard circuits, creating, 393-394
for DC motors

powering on/off, 308-311
speed control, 311-313

interfacing with sketches, 64-69
adding to projects, 68-69
analog output generation, 246-247
blinking LED example sketch, 272-274, 280-284
breadboards, 67-68
external interrupts, 255-260
header socket usage, 64-66
input mapping, 242-245
pin change interrupts, 261-262
potentiometer example sketch, 238-241
traffic signal example sketch, 223-226, 229-231, 364-370

prototype circuit boards, creating, 399-401
for servo motors, 314-316

electronically erasable programmable read-only memory. See EEPROM
memory
else if statements, 93-95

438

else statements, 92-93
enabling external interrupts, 254-255
end() function

Serial library, 270
SPI library, 276

#endif directive, 210
endless loops, 106
endPacket method, 347
endsWith method, 128
endTransmission() function, 278
equality comparison, assignment statements versus, 96
equals method, 128
equalsIgnoreCase method, 128
equations, assignment statements versus, 82
Esplora library, 203
Esplora model, 14
Ethernet class, 340-341
Ethernet library, 203
Ethernet model, 15, 278, 339
Ethernet shield, 18-19, 337-338
Ethernet Shield library, 340

chat server example sketch, 349-351
dynamic IP addresses, 342-343
Ethernet class, 340-341
EthernetClient class, 343-345
EthernetServer class, 345-347
EthernetUDP class, 347-349
IPAddress class, 341-342

EthernetClient class, 340, 343-345
EthernetServer class, 340, 345-347
EthernetUDP class, 340, 347-349
events, serial, 274
example sketches, modifying, 41
Examples option (File menu), 41
exFAT file format, 374
exists method, 376
external interrupts, 252-253

439

enabling, 254-255
traffic signal example sketch, 255-260

external memory, 182
external power sources, 17, 69
external reference voltages, 246

F
factorials, calculating, 158-160
FALLING external interrupt mode, 254
FAT16 file format, 374
File class, 376-378
file extensions for sketches, 41
file formats for SD cards, 374
File menu commands, 40-43
files on SD cards

reading, 379-380
writing to, 379

find() function, 10
Find Next option (Edit menu), 45
Find option (Edit menu), 45
Find Previous option (Edit menu), 46
finding serial ports in Windows, 52
findUntil() function, 270
Fio model, 288
Firmata library, 203
Fix Encoding and Reload option (Tools menu), 47
flash memory, 25, 189-193

comparison with SRAM and EEPROM, 181-182
data types, 190-191
example usage, 192-193
retrieving data, 191-192

float data type, 77
floating-point values, integer values versus, 78
flow control. See loops; structured commands
flush() function, 270
flush method

EthernetClient class, 343

440

File class, 377
flushing SD card data, 378
folders on SD cards, 381-382
for statements, 107-109, 112
formatting sketches, 91
free() function, 187
functions

in Arduino, 83-86
advanced math functions, 85
bit manipulation functions, 86
calling, 148-150
defining, 148
global variables, 155-156
local variables, 156-158
passing values to, 152-154
random number generators, 86
recursive functions, 158-160
returning values, 150-152
scope of variables, 154
Serial class, 83-84
time functions, 84-85
troubleshooting, 148
user-defined, 147

in bootloader, 57-58
compiling in standard libraries, 205
in EEPROM memory, 194
for flash memory access, 191
LCD shield library, 331-332
LiquidCrystal library, 325-326
passing pointers to, 176-178
private functions, 211
public functions, 211
referencing in standard libraries, 204-205
Serial library, 269-272
Servo library, 313
SPI library, 276-277
for strings, 122-125
testing results, 97

441

Wire library, 278-280

G
gate leads in transistors, 305
GET method token, 357
getBytes method, 128
global variables, 80

defining, 155-156
memory locations, 184
overriding, 158

GND header socket ports, 65-66
graphical LCD devices, 319-320
grounding analog sensors, 290
grouping multiple statements

in else statements, 92
in if statements, 90-92

GSM library, 203

H
.h file extension, 202
hardware

external interrupts, 252-253
open source hardware, 9

H-bridges, 307-308
HD44780 controller chips, 321-322
HEAD method token, 357
header files in libraries, 202, 210-211
header sockets, 10-11

accessing, 66
electronic circuit interfaces, 64-66
on Uno R3 unit, 15-16

headers (HTTP)
request headers, 358
response header lines, 360-361

heap data area, 183-185
dynamic variables, 185-189

changing, 187
defining, 186-187

442

example usage, 187-189
removing, 187

Help menu commands, 48
highByte() function, 86
high-current devices, digital interface connections, 221-223
higher-level programming languages, 28-29
history of Arduino, 11-12
home() function, 325
HTML in sketches, 44
HTTP (Hypertext Transfer Protocol), 355

requests, 356-358
request headers, 358
request line, 357

responses, 358-361
response header lines, 360-361
status line, 358-360

sessions, 355-356

I
I2C (Inter-Integrated Circuit) protocol, 277-284

blinking LED example sketch, 280-284
interfaces, 278
Wire library functions, 278-280

ICSP (in-circuit serial programming) header, 390
IDE (integrated development environment)

Arduino IDE, 31-32
console window, 49-50
downloading, 32-33
Edit menu commands, 44-46
editor window, 59-60
File menu commands, 40-43
Help menu commands, 48
interface, 39-40
Linux installation, 37
message area, 49-50
OS X installation, 36-37
serial monitor, 52-54
setup, 51-52

443

shield libraries, 32
Sketch menu commands, 46
toolbar, 49
Tools menu commands, 46-48
Windows installation, 33-36

Atmel Studio package, 30
if statements, 89-90

compound conditions, 97
grouping multiple statements, 90-92
negating condition checks, 98

#ifndef directive, 210
ignoring interrupts, 264-265
Import Library option (Sketch menu), 46
importing. See also installing

contributed libraries, 206-208
PinChangeInt library, 260-261
Timer One library, 263

in-circuit serial programming (ICSP) header, 390
#include directive, 58-59, 204

Ethernet Shield library, 340
header files, 208

including libraries, 58-59
EEPROM memory, 194-195
standard libraries, 204

Increase Indent option (Edit menu), 45
increment operator, 80
index values (arrays), 110
indexOf method, 128
initializing data structures, 176
input flapping, 227-228
INPUT interface mode setting, 221
input mode

for analog interfaces
detecting signals, 236
limiting values, 241
mapping values, 242-245, 292
potentiometer example sketch, 238-241
reference voltage changes, 245-246

444

for digital interfaces
setting, 221
traffic signal example sketch, 229-231
voltage levels, 226-229

INPUT_PULLUP interface mode setting, 221, 228-229
installing. See also importing

Arduino IDE
for Linux, 37
for OS X, 36-37
for Windows, 33-36

drivers, 34-35
LCD shield library, 330-331
libraries, 212

instruction set, 26-27
int data type, 77, 79
integer values, floating-point values versus, 78
integrated development environment (IDE). See IDE (integrated development
environment)
interface 13 as input, 229
interfaces, 10-11. See also electronic circuits

analog interfaces. See also analog sensors
input signals, detecting, 236
layouts, 237-238
limiting input values, 241
mapping input values, 242-245, 292
output signals, generating, 236-237, 246-247
planning, 389-390
potentiometer input example sketch, 238-241
reference voltage changes, 245-246

Arduino IDE, 39-40
digital interfaces

input voltage levels, 226-229
interface 13, 229
layouts, 220-221
number of, 219-220
output voltage levels, 221-223
planning, 390-391
setting input/output modes, 221

445

traffic signal example sketch, 223-226, 229-231
troubleshooting, 226

I2C (Inter-Integrated Circuit) protocol, 278
interrupts

external interrupts, 252-260
ignoring, 264-265
pin change interrupts, 253-254, 260-262
polling versus, 251-252
timer interrupts, 254, 262-264

I/O interface, 25-26
LCD (liquid crystal display) devices

Arduino interface connections, 323-325
interface pins, 321-323
LCD shield connections, 332-333

SD cards, 375-376
serial port interfaces, 268-269
sketches with electronic circuits, 64-69

adding to projects, 68-69
breadboards, 67-68
header socket usage, 64-66

SPI (Serial Peripheral Interface) protocol, 274-276
on Uno R3 unit, 15

Inter-Integrated Circuit (I2C) protocol, 277-284
blinking LED example sketch, 280-284
interfaces, 278
Wire library functions, 278-280

internal reference voltages, 245-246
interrupt service routine (ISR), 252, 255
interrupts

external interrupts, 252-253
enabling, 254-255
traffic signal example sketch, 255-260

ignoring, 264-265
pin change interrupts, 253-254

importing PinChangeInt library, 260-261
traffic signal example sketch, 261-262

polling versus, 251-252
timer interrupts, 254

446

importing Timer One library, 263
testing, 263-264

interrupts() function, 264-265
I/O interface in ATmega AVR microcontrollers, 25-26
IOREF header socket port, 65
IP addresses

dynamic IP addresses, 342-343
static addresses, 341-342

IPAddress class, 340-342
isDirectory method, 377
ISR (interrupt service routine), 252, 255

K–L
kits, 18

lastIndexOf method, 128
LCD (liquid crystal display) devices, 319

Arduino interface connections, 323-325
color types, 320-321
display types, 319-320
interface pins, 321-323
LCD shield, 329-330

connections, 332-333
downloading and installing library, 330-331
library functions, 331-332

LiquidCrystal library
example usage, 327
functions, 325-326

temperature display example sketch, 327-329, 333-335
troubleshooting, 329

LCD shield, 19, 329-330
connections, 332-333
downloading and installing library, 330-331
library functions, 331-332
temperature display example sketch, 333-335

LDR (light-dependent resistor), 296
LEDs

resistors and, 256

447

traffic signal example sketch. See traffic signal example sketch
on Uno R3 unit, 16-17
WiFi shield, 339

left shift operator, 80
leftToRight() function, 325
legal issues, trademark protection of Arduino name, 9
length method, 128
Leonardo model, 13

analog interfaces, 236
digital interfaces, 219
external interrupts, 253
I2C interface pins, 278

libraries, 201
building

code file creation, 208-210
example usage, 212-214
header file creation, 210-211
installing, 212
zip file creation, 211-212

components of, 202
contributed libraries, 206-208
including, 58-59, 194-195
location, 202-203
standard libraries

compiling functions, 205
documentation, 205
example usage, 205-206
including, 204
list of, 203-204
referencing functions in, 204-205

troubleshooting, 213
light meter example sketch, 296-297
light sources for LCDs, 320-321
light-dependent resistor (LDR), 296
LilyPad model, 15
limiting analog input values, 241
Linux, Arduino IDE installation, 37
liquid crystal display. See LCD (liquid crystal display) devices

448

LiquidCrystal library, 203
example usage, 327
functions, 325-326
temperature display example sketch, 327-329

listings
sketch0401 code, 59
sketch0602 code, 94

local variables, 80, 156-158
localIP method, 340
location of libraries, 202-203
logic flow control. See loops; structured commands
logical AND operator, 80, 97
logical NOT operator, 80, 98
logical OR operator, 80, 97
long data type, 77, 79
loop function, 58
loops, 103-104

arrays, 109-112
break statements, 113-114
continue statements, 114-116
do-while statements, 106-107
endless loops, 106
nesting, 112-113
for statements, 107-109, 112
while statements, 104-106

LOW external interrupt mode, 255
lowByte() function, 86
low-current devices, digital interface connections, 221-223

M
MAC (Media Access Control) addresses, 341
machine code, 26
maintain method, 340
malloc() function, 186-187
map() function, 85, 242-245, 292
mapping

analog input values, 242-245, 292
LCD interface pins, 323-325

449

master mode (SPI), 274
math operators, 80-82
max() function, 85
Media Access Control (MAC) addresses, 341
Mega model, 13

analog interfaces, 236
digital interfaces, 219
external interrupts, 253
I2C interface pins, 278
serial port interfaces, 269

memory
in ATmega AVR microcontrollers, 9-10, 25

comparison among types, 181-182
creating dynamic variables, 185-189
EEPROM memory, 194-197
flash memory, 189-193
SRAM memory, 183-185

pointers. See pointers
variables. See variables

memory address wrap, 195
memory collisions, 185
memory leaks, 185
menu bar

Edit menu commands, 44-46
File menu commands, 40-43
Help menu commands, 48
Sketch menu commands, 46
Tools menu commands, 46-48

message area (Arduino IDE), 49-50
metal-oxide-semiconductor field-effect transistor (MOSFET), 306
method tokens (HTTP), 357
methods

Ethernet class, 340
EthernetClient class, 343
EthernetServer class, 345
EthernetUDP class, 347
File class, 377-378
SD class, 376-377

450

String object methods
comparison, 128-129
manipulation, 130-131

Micro model, 14
analog interfaces, 236
digital interfaces, 219

microcontrollers
ATmega AVR microcontrollers, 9-10

components of, 23-26
EEPROM memory, 194-197
flash memory, 189-193
memory comparisons, 181-182
SRAM memory, 183-185

block diagram, 8, 24
defined, 7-8
programming

Arduino programming language. See Arduino programming language
assembly language, 27-28
C programming language, 28-29. See also C programming language
machine code, 26

micros() function, 84
Micro-SD breakout board, 376
millis() function, 84
min() function, 85
Mini model

analog interfaces, 236
digital interfaces, 219

missing libraries, troubleshooting, 213
mkdir method, 376, 381
models of Arduino, 12-15

digital interfaces, number of, 219-220
Due, 13
Esplora, 14
Ethernet, 15, 339
Leonardo, 13
LilyPad, 15
Mega, 13
Micro, 14

451

Uno, 12-13, 15-17
Yun, 14-15

modifying example sketches, 41
modulus operator, 80
MOSFET (metal-oxide-semiconductor field-effect transistor), 306
motor shield, 19, 316
motors, 18

DC motors, 303-304
direction control, 307-308
powering on/off, 305-306, 308-311
speed control, 306-307, 311-313

servo motors, 304
positioning example sketch, 314-316
Servo library, 313-314

stepper motors, 304
multiple statements, grouping

in else statements, 92
in if statements, 90-92

multiple variables in for statements, 112
multiplication operator, 80
multi-user environments, 207

N
name method, 377
naming conventions

constants, 79
variables, 76-77

negating condition checks, 98
negative LCD displays, 320-321
nesting loops, 112-113
network connectivity

with Ethernet shield, 18-19, 337-338
chat server example sketch, 349-351
dynamic IP addresses, 342-343
Ethernet class, 340-341
Ethernet Shield library, 340
EthernetClient class, 343-345
EthernetServer class, 345-347

452

EthernetUDP class, 347-349
IPAddress class, 341-342

with HTTP, 355
requests, 356-358
responses, 358-361
sessions, 355-356

web browsers, controlling Arduino from, 364-370
web servers, building, 361-364
with WiFi shield, 339

New icon (toolbar), 49
New option (File menu), 40
Newline option (serial monitor), 54
noAutoscroll() function, 325
noBlink() function, 325
noCursor() function, 325
noDisplay() function, 325
nointerrupts() function, 264
NOT operator, 80, 98
NULL label, 167-168
null pointers, 167-168
null-terminated strings, 120
numeric comparisons, 95-96

O
onReceive() function, 278
onRequest() function, 278
Open icon (toolbar), 49
open method, 376, 382
Open option (File menu), 41
open source hardware, 9
openNextFile method, 377
operators

compound operators, 82
math operators, 80-82
numeric comparisons, 95
order of operations, 82
pointer operators, 164

OPTIONS method token, 357

453

OR operator, 80, 97
order of operations, 82
OS X

Arduino IDE installation, 36-37
zip file creation, 212

out of memory errors, troubleshooting, 186
OUTPUT interface mode setting, 221
output mode

for analog interfaces
generating signals, 236-237, 246-247
reference voltage changes, 245-246

for digital interfaces
setting, 221
traffic signal example sketch, 223-226
voltage levels, setting, 221-223

output of serial ports
Serial class functions, 83-84
viewing, 63

overflowing
LCD displays, 327
strings values, 122

overriding global variables, 158

P
Page Setup option (File menu), 43
parameters, 152
parseFloat() function, 270, 272
parseInt() function, 270, 272
parsePacket method, 347
passing to functions

pointers, 176-178
values, 152-154

Paste option (Edit menu), 45
PCB (printed circuit board), 67
peek() function, 270
peek method, 377
personal libraries, location of, 203
pgm_read_byte() function, 191

454

pgm_read_word() function, 191
pgmspace.h library, 191
photoresistor example sketch, 296-297
pin change interrupts, 253-254

importing PinChangeInt library, 260-261
traffic signal example sketch, 261-262

PinChangeInt library, 253, 260-261
pinMode() function, 221
planning projects, 387-389

analog interfaces, 389-390
breadboard circuits, 393-394
components needed, 391-392
digital interfaces, 390-391
schematics, 392
sketches, 394-395

PoE (Power over Ethernet), 338
pointers, 163-166

arithmetic with arrays, 168-171
data structures and, 173-176
null pointers, 167-168
passing to functions, 176-178
printing, 166
referencing strings, 172-173
retrieving data, 166-167
storing data, 167
string manipulation, 171-172
void pointers, 168

polling, interrupts versus, 251-252
ports

lower header sockets, 65
upper header socket, 66

position method, 377
positioning servo motors example sketch, 314-316
positive LCD displays, 320-321
POST method token, 357
potentiometer example sketch

input mapping, 242-245
input mode, 238-241

455

servo motors, 314-316
pow() function, 85
power, external sources, 17
Power over Ethernet (PoE), 338
powering on/off

Arduino with USB hub, 69
DC motors, 305-306, 308-311

precedence in mathematical operations, 82
Preferences option (File menu), 43
print() function

LiquidCrystal library, 325
Serial library, 63, 83, 270-271

print method
EthernetClient class, 343
EthernetServer class, 345
File class, 377

Print option (File menu), 43
printed circuit board (PCB), 67
printing pointers, 166
println() function, 83, 270-271
println method

EthernetClient class, 343
EthernetServer class, 345
File class, 377

private functions, 211
Pro model, 288
processors on ATmega AVR microcontrollers, 9-10
prog_char flash data type, 190
prog_int16_t flash data type, 190
prog_int32_t flash data type, 190
prog_uchar flash data type, 190
prog_uint16_t flash data type, 190
prog_uint32_t flash data type, 190
PROGMEM keyword, 190
program counters, 24
Programmer option (Tools menu), 47
programming microcontrollers

456

Arduino programming language. See Arduino programming language
assembly language, 27-28
C programming language, 28-29. See also C programming language
machine code, 26

programs. See sketches
project development

breadboards, creating circuits, 393-394
prototype circuit boards, creating, 399-401
with Prototype shield, 20
requirements

for analog interfaces, 389-390
components needed, 391-392
determining, 387-389
for digital interfaces, 390-391

schematics, creating, 392
sketches

planning, 394-395
testing, 398-399
writing, 395-398

prototype circuit boards, creating, 399-401
Prototype shield, 20, 399-400
public functions, 211
pulldown circuits, 228
pullup circuits, 228-229
PUT method token, 357
PuTTY package, 351
PWM (pulse-width modulation), 26, 237, 246, 306-307, 311-313

Q
qualifiers for variables, 79
Quit option (File menu), 43
quotes for characters and strings, 121

R
random() function, 86
random number generators, 86
randomSeed() function, 86
RC circuits, 298

457

read() function
EEPROM library, 194
Serial library, 270, 272
Servo library, 313
Wire library, 278

read method
EthernetClient class, 343
EthernetUDP class, 347
File class, 377

readButtons() function, 331
readBytes() function, 270, 272
readBytesUntil() function, 270, 272
reading files on SD cards, 379-380
realloc() function, 187
recursive functions, 158-160
Redo option (Edit menu), 44
reference operators, 164, 170
reference voltages, changing, 245-246, 290-291
referencing. See also calling functions

Ethernet Shield library, 340
functions in standard libraries, 204-205
strings with pointers, 172-173

reformatting SD cards, 374
relays, 305
remoteIP method, 347
remotePort method, 347
remove method, 376
removing dynamic variables, 187
replace method, 128
request headers (HTTP), 358
request line (HTTP requests), 357
requestFrom() function, 278
requests (HTTP), 356-358

request headers, 358
request line, 357

requirements, determining, 387-389
for analog interfaces, 389-390

458

components needed, 391-392
for digital interfaces, 390-391

reserve method, 128
Reset button on Uno R3 unit, 17, 92
RESET header socket port, 65
resistance-based analog sensors, 295-297
resistors, 17, 223

LEDs and, 256
in motor circuits, 306
in RC circuits, 297-298
as voltage dividers, 289-290

response header lines (HTTP), 360-361
responses (HTTP), 358-361

response header lines, 360-361
status line, 358-360

restarting sketches, 64, 92
retrieving data

from EEPROM memory, 196-197
from flash memory, 191-192
with pointers, 166-167, 173-176
with serial ports, 272

return code (functions), testing, 97
return statement, 150
returning values

from functions, 150-152
in pointers, 178

rewindDirectory method, 377
right shift operator, 80
rightToLeft() function, 325
RISING external interrupt mode, 254
rmdir method, 376, 382
Robot_Control library, 203
RS-232 serial interfaces, 269
running sketches, 63-64
RX <- 0 header socket port, 66

S
Save As option (File menu), 42

459

Save icon (toolbar), 49
Save option (File menu), 42
saving text editor files, 210
schematics, creating, 392
scope of variables, 80

in functions, 154
global variables, 155-156
local variables, 156-158

scrollDisplayLeft() function, 325
scrollDisplayRight() function, 325
SD cards

files
reading, 379-380
writing to, 379

folder organization, 381-382
interfaces, 375-376
SD library, 376-378

File class methods, 377-378
SD class methods, 376-377

specifications, 373-375
temperature logging example sketch, 382-384

SD class, 376-377
SD library, 203, 376-378

File class methods, 377-378
SD class methods, 376-377

Secure Digital. See SD cards
seek method, 377
Select All option (Edit menu), 45
semicolon (;), terminating statements, 77
sensitivity

of touch sensors, 300
of voltage-based analog sensors, 291-292

sensors, 18. See also analog sensors
Serial class functions, 83-84
serial communication protocols, 267-268

I2C (Inter-Integrated Circuit) protocol, 277-284
blinking LED example sketch, 280-284

460

interfaces, 278
Wire library functions, 278-280

serial ports, 268-274
blinking LED example sketch, 272-274
interfaces, 268-269
Serial library, 269-272

SPI (Serial Peripheral Interface) protocol, 274-277
functions, 276-277
interfaces, 274-276

serial events, 274
Serial library

functions, 269-272
interrupts in, 255

serial monitor, 52-54
with external power source, 69
viewing serial port output, 63

Serial Monitor icon (toolbar), 49
Serial Monitor option (Tools menu), 47
Serial Peripheral Interface (SPI) protocol, 274-277, 390

Ethernet shield, 338
functions, 276-277
interfaces, 274-276

Serial Port option (Tools menu), 47
serial ports, 268-274

blinking LED example sketch, 272-274
finding in Windows, 52
interfaces, 268-269
output

Serial class functions, 83-84
viewing, 63

Serial library, 269-272
serialEvent() function, 274
Server class. See EthernetServer class
server communication protocols, 345
Servo library, 203, 313-314
servo motors, 304

positioning example sketch, 314-316
Servo library, 313-314

461

setBacklightColor() function, 331
setBitOrder() function, 276-277
setCharAt method, 130
setClockDivider() function, 276-277
setCursor() function, 325
setDataMode() function, 276-277
setTimeout() function, 270
setup for Arduino IDE, 51-52
setup function, 58
shield libraries, 32. See also shields

including, 58-59
list of, 203-204

shields
defined, 18
Ethernet shield, 18-19, 337-338

chat server example sketch, 349-351
dynamic IP addresses, 342-343
Ethernet class, 340-341
Ethernet Shield library, 340
EthernetClient class, 343-345
EthernetServer class, 345-347
EthernetUDP class, 347-349
IPAddress class, 341-342

LCD shield, 19, 329-330
connections, 332-333
downloading and installing library, 330-331
library functions, 331-332
temperature display example sketch, 333-335

motor shield, 19, 316
Prototype shield, 20, 399-400
SD card support, 375-376
WiFi shield, 339

Show Sketch Folder option (Sketch menu), 46
signal duty cycle, 237
sin() function, 85
size method, 377
sizeof function, 111-112
sizing arrays, 111-112, 121-122

462

Sketch menu commands, 46
Sketchbook option (File menu), 41
sketches. See also Arduino programming language; listings

analog sensor interfaces
photoresistor example sketch, 296-297
temperature detection example sketch, 293-295
temperature LCD display example sketch, 327-329, 333-335
temperature logging example sketch, 382-384
temperature sensors for web servers, 361-364
touch sensor example sketch, 298-300

chat server example sketch, 349-351
coding format, 57-58
compiling, 60-61
DC motors

powering on/off, 308-311
speed control, 311-313

debugging, 83
editor window, 59-60
electronic circuit interfaces, 64-69

adding to projects, 68-69
analog output generation, 246-247
blinking LED example sketch, 272-274, 280-284
breadboards, 67-68
external interrupts, 255-260
header socket usage, 64-66
input mapping, 242-245
pin change interrupts, 261-262
potentiometer example sketch, 238-241
traffic signal example sketch, 223-226, 229-231, 364-370

example sketches, modifying, 41
file extensions, 41
formatting, 91
HTML in, 44
libraries, including, 58-59
planning, 394-395
restarting, 64, 92
running, 63-64
servo motors, positioning, 314-316

463

testing, 398-399
uploading, 62-63
writing, 395-398

slave mode (SPI), 274
sockets, 10-11

accessing, 66
electronic circuit interfaces, 64-66
on Uno R3 unit, 15-16

SoftwareSerial library, 203
speed of DC motors, controlling, 306-307, 311-313
SPI (Serial Peripheral Interface) protocol, 274-277, 390

Ethernet shield, 338
functions, 276-277
interfaces, 274-276

SPI library, 203, 276-277
sqrt() function, 85
SRAM memory, 25

comparison with EEPROM and flash memory, 181-182
dynamic variables, 185-189

changing, 187
defining, 186-187
example usage, 187-189
removing, 187

heap data area, 183-185
stack data area, 183-185

stack data area, 183-185
stack pointers, 24
standard libraries

compiling functions, 205
documentation, 205
example usage, 205-206
including, 204
list of, 203-204
referencing functions in, 204-205

startsWith method, 128
statements, terminating, 77
static IP addresses, 341-342
static random-access memory. See SRAM memory

464

status codes (HTTP), list of, 359
status line (HTTP responses), 358-360
status registers, 24
Stepper library, 203
stepper motors, 304
stop method

EthernetClient class, 343
EthernetUDP class, 347

storage. See also memory
SD cards

folder organization, 381-382
interfaces, 375-376
reading files, 379-380
SD library, 376-378
specifications, 373-375
temperature logging example sketch, 382-384
writing to files, 379

of strings, 78
of values with pointers, 167, 173-176

strcmp() function, 123, 125-126
strcmp_P() function, 191
strcpy() function, 123, 125, 137
strict typing, 76
String objects, 126-129

creating and manipulating, 126-128
in data structures, 142
methods

comparison, 128-129
manipulation, 130-131

strings
in Arduino programming language, 126-129

creating and manipulating, 126-128
manipulating, 130-131
String object methods, 128-129

in C programming language, 120-126
comparing, 125-126
creating, 121-122
functions for, 122-125

465

comparisons, 96
copying, 125
displaying, 122
explained, 119-120
manipulating with pointers, 171-172
referencing with pointers, 172-173
storing, 78

strlen() function, 123
strlen_P() function, 191
strstr() function, 123
struct statement, 134-136
structured commands. See also loops

comparisons, 95-97
Boolean comparisons, 96-97
compound conditions, 97
negating condition checks, 98
numeric comparisons, 95-96
string comparisons, 96

else if statements, 93-95
else statements, 92-93
if statements, 89-92
switch statements, 98-99

structures. See data structures
substring method, 128
subtraction operator, 80
switch bounce, 260, 332
switch statements, 98-99
switches, 17, 229-231

T
tan() function, 85
Telnet clients, 351
temperature detection example sketch, 293-295

for LCD displays, 327-329, 333-335
for SD cards, 382-384
for web servers, 361-364

temperature monitor example project
analog interfaces, 389-390

466

breadboard circuits, creating, 393-394
components needed, 391-392
digital interfaces, 390-391
planning, 388-389
schematics, creating, 392
sketches

planning, 394-395
testing, 398-399
writing, 395-398

terminating statements, 77
testing

function results, 97
I2C interface, 280-284
serial ports, 272-274
sketches, 398-399
timer interrupts, 263-264

text. See strings
text editor files, saving, 210
TFT library, 203
time functions, 84-85
timer interrupts, 254

importing Timer One library, 263
testing, 263-264

Timer One library, importing, 263
TMP36 sensor, 293-295, 361-364
toCharArray method, 128
toInt method, 128
toLowerCase method, 130
toolbar (Arduino IDE), 49
Tools menu commands, 46-48
touch sensors, 297-300
toUpperCase method, 130
TRACE method token, 357
trademark protection of Arduino name, 9
traffic signal example sketch

controlling from web browser, 364-370
external interrupts, 255-260

467

input mapping, 242-245
input mode, 229-231
output mode, 223-226
pin change interrupts, 261-262

transfer() function, 276-277
transistors, 305-306
Transistor-transistor-logic (TTL)-level voltages, 269
trcpy_P() function, 191
trim method, 130
troubleshooting

compiler errors, 61
debugging sketches, 83
digital interfaces

input voltage levels, 227
with serial monitor, 226

flushing SD card data, 378
functions, 148
importing PinChangeInt library, 261
LCD (liquid crystal display) devices, 329
memory

EEPROM memory, 194-195
out of memory errors, 186

missing libraries, 213
modifying example sketches, 41
switch bounce, 260

TTL (Transistor-transistor-logic)-level voltages, 269
TX -> 1 header socket port, 66
.txt file extension, 210

U
Ubuntu, Arduino IDE installation, 37
UDP (User Datagram Protocol), 347-349
Undo option (Edit menu), 44
unions, 142-145
Universal Resource Indicator (URI), 357
unnamed data structures, 136
Uno model, 12-13

analog interfaces, 236

468

digital interfaces, 219
external interrupts, 253
I2C interface pins, 278
specifications, 15-17

unsigned variable qualifier, 79
Upload icon (toolbar), 49
Upload option (File menu), 42
Upload Using Programmer option (File menu), 42
uploading

bootloader, 48
sketches, 62-63

URI (Universal Resource Indicator), 357
USB A-B cables, 17
USB hub, powering on/off Arduino, 69
USB ports on Uno R3 unit, 16
USB serial interface, 268
Use Selection for Find option (Edit menu), 46
User Datagram Protocol (UDP), 347-349
user-created libraries. See building libraries
user-defined functions, 147

calling, 148-150
defining, 148
passing values to, 152-154
recursive functions, 158-160
returning values, 150-152
scope of variables, 154

global variables, 155-156
local variables, 156-158

troubleshooting, 148

V
values

analog input values
limiting, 241
mapping, 242-245, 292

assigning
to data structures, 136-138
to variables, 77

469

passing to functions, 152-154
retrieving

from EEPROM memory, 196-197
from flash memory, 191-192
with pointers, 166-167, 173-176

returning
from functions, 150-152
in pointers, 178

storing with pointers, 167, 173-176
voltage values, converting, 292-293

variable resistors, 17
variables

arrays. See arrays
assigning values, 77
data structures. See data structures
data types, 77-78
declaring, 76-77
dynamic variables, 184-189

changing, 187
defining, 186-187
example usage, 187-189
removing, 187

in flash memory, 190-191
pointers. See pointers
qualifiers, 79
scope, 80

in functions, 154
global variables, 155-156
local variables, 156-158

unions, 142-145
viewing, 83

Verify icon (toolbar), 49
Verify/Compile option (Sketch menu), 46
viewing

serial port output, 63
variables, 83

Vin header socket port, 65
void data type, 148

470

void pointers, 168
voltage dividers, 289-290, 295-296
voltage levels

in analog sensors, 288-291
in capacitors, detecting, 297-298
for digital interfaces

in input mode, 226-229
in output mode, 221-223

reference voltages, changing, 245-246, 290-291
voltage-based analog sensors, 288-293

converting voltage values, 292-293
sensitivity of, 291-292
temperature detection example sketch, 293-295
voltage levels, 288-291

W
Wave shield, 376
web browsers, controlling Arduino from, 364-370
web servers, building, 361-364, 366-370
while statements, 104-106
Wifi library, 203
WiFi shield, 339
Windows

Arduino IDE installation, 33-36
serial ports, finding, 52
zip file creation, 211

Wire library, 203, 278-280
wires, 17
word data type, 77
write() function

EEPROM library, 194
LiquidCrystal library, 325
Serial library, 270-271
Servo library, 313
Wire library, 278

write method
EthernetClient class, 343
EthernetServer class, 345

471

EthernetUDP class, 347
File class, 377

write speeds (SD cards), 374
writeMicroseconds() function, 313
writing

to files on SD cards, 379
sketches, 395-398

Y
Yun model, 14-15

analog interfaces, 236
digital interfaces, 219

Z
zip files, creating, 211-212

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

