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1 Introduction

Generally, plasticity problem is much more difficult to solve comparing with linear elastic
problems. Therefore, the Slip Line Field Theory, a graphical technique, is introduced to
analyze the stresses of the material undergoing plastic deformation. In a deforming material,
the directions of maximum shear stresses form the orthogonal curvatures which are called «
slip-line and S slip-line. The stress state in the solid can always determined based on sets of
these lines.

For this paper, all the contents are based on the Chapter 6.1 from Applied Mechanics of
Solid by Professor Allan F. Bowert I will summarize the contents, derive the conclusions

he omitted and re-solve the examples.

2 Assumptions

There are several assumptions for the slip line field theory:

Plane strain deformation (u3 = 0,013 = 023 = 0): The general directions of 3D
deformation is still hard to solve. Therefore, for this theory, we assume the strain on

es direction is zero.

Quasi-static loading: Quasi-static loading means the load is applied so slowly that

the strain rate is very small. Furthermore, the inertia can be neglected.

No temperature changes and body forces

The solid has perfect rigid-plastic response: For this theory, the material is



assumed to be perfect rigid-plastic which means there is no elastic behaviours happened

during this process.

3 Derivation of the Slip Line Field Theory

3.1 Stress state

From assumption, we know it is plane strain deformation which means

013 = 093 =0

1
033 = 5(011 + 092)
therefore, the stress state tensor in e; and ey directions is:

011 012 0
[0l = 001 09 0
0 0 %(U 11+ 022)
For slip line field theory, the slip lines are always parallel to the direction of maximum shear
stress as shown as Fig[l] ¢ is angle between e; and e,. Now, the stress state tensor in e,

and eg direction is:

Qi
>
(e}

olasg= |k & 0

(@)
(@)
Qi

where ¢ = 0, = %(011 + 092) and k is the yield shear stress. From the geometry of Mohr’s

circle, we have:



011 = 0 — ksin2¢

09 = 0 + kSZTL2Q5

012 = kcos2¢

Figure 1: Coordinate system of Slip lines

3.2 Hencky equations

From 2-D stress equilibrium, we know:

o111 + 0122 =10

0121+ 0222 =10
From previous result, in e; and e, direction:

o111 =0 — kSan(z)
099 = 0 + kSZTLqu

019 = kcos2¢

therefore, the stress equilibrium in e; and ey directions are:



00 _ Qk(COSQng—i + sm2gz5a%) =0

o1

a_ - () (?
Fr 62 — 2k(szn2gz§—a 11 — cos2gb—am¥2) =0
In order to get these equations. Let’s assume:

52— ( — 2k¢) = 0
%(5— +2k¢) =0

where s, and sg are coordinate system along o and 3 lines. therefore,

8_sa<0 — 2k¢) = 0xy 05, + 0xy 05,
= 005¢M + Szn(bw (1)
8901 81’2

= COSOPT 4, + SINGT 4, — 2k(cOSP * P 1, + SING * G 4,)

Jsp (0 +2k9) = Ory  Osg * Ory  0Osp
— S¢H¢M + COS¢M (2)
8x1 81'2

= —SINPT 4, + COSPT 4, + 2k(Sing * ¢ 5, + cOSP * P 1)

By relating Eq with Eq, we can get previous stress equilibrium relations in e; and e

directions.

Eq(1]) x cos¢p — Eq2)) * sing = 74, — 2k(cos2¢ * ¢ 5, + sin2¢ x ¢ z,) =0
Eq(Q) * sing + Eq(2)) * cos¢ = 74, — 2k(sin2¢ * ¢ 4, — c052¢ % ¢ 5,) = 0

Therefore, our assumption is confirmed and the hydrostatic stress and maximum shear stress

along the slip lines has relations as following, which is called Hencky equations.



o — 2k¢ = constant (« slip line)

7 + 2k¢ = constant ([ slip line)

3.3 Governing equations

For slip line field theory, we have several governing equations.

e Yield criterion

From above result, we know the stress state tensor in e; and ey direction is:

011 012 0
[U] = |0921 0929 0
0 0 Z(on+o0m)
therefore,
%(011 —022) 012 0
[S] = 012 %(022 —on) 0

we know for Von Mise yield criterion,

\V %Sijsij -Y=0= %Sijsij =Y? = 3k?

3 1 3
= 5*2*1(0'11—022)2—{—5*20%2:3]{2

therefore, we have:

1
1(0'11 — 0'22)2 + 0'%2 = ]{72



e Plastic flow rule

Since for plastic flow, we know:
E;j = )\SZJ

from this relation, we know:

Eil + Eéz = )\(SH + 512) =0

therefore,
87}1 81}2
e ) 4
8371 8562 ( )
we also know that:
ST
€11—é€x2 __ €12
o11—012 012
therefore,
avl 6112 1 81}1 8?)2
- = — —( — P _ 5
(8m1 6$2)012 2(8ZE2 + 8ZE1)<011 022) ( )

e Stress Equilibrium
Since we know for stress equilibrium in solid is following if we neglected the body force

and inertia;

90ij _
8&?]' - 0

therefore, we have last two governing equations:

80'11 80'12

(9&:1 8ZE2

=0 (6)



0099 0o o
3902 + 8x1 =0 (7)

3.4 Geiringer Equations

In order to solve the velocity field along e;, e; or e,, eg directions, We are going to do

the calculation in matrix form.

L charactenstic

V2 v @idk=tang
V;
B charactenstic
av/dk = -cot®

Figure 2: The velocity field

The governing equations —@ can be expressed in matrix form:

0q; dq;
A, 29 g 0
J 81’1 + J 81'2 0 (8)
where,
[0) 0 —2kcos2¢ —2ksin2¢ 0
v —2kcos?2 0 0 1
NI o
Vg —2ksin2¢ 0 0 0
o 0 1 0 0




0 —2ksin2¢ 2kcos2¢ 0
—2ksin2¢ 0 0 0
B —
2kcos2¢ 0 0 1
0 0 1 0

The first step to solve this equation is to find eigenvalues p and eigenvector r; that satisfy

T Aij = pri By 9)

the most straight way to find eigenvalues is to calculate

det(A-uB) =0
therefore,
0 —2k(cos2¢ — pusin2¢) —2k(sin2¢ + pcos2¢) 0
—2k(cos2¢ — pusin2 0 0 1
ApB — (cos2¢ — psin2¢)
—2k(sin2¢ + pcos2¢) 0 0 —p
0 1 —u 0

10



0 —2k(cos2¢ — pusin2¢) —2k(sin2¢ + pcos2¢)

det(A-puB) = | —2k(sin2¢ + psin2¢) 0 0 +
0 1 —u
0 —2k(cos2¢ — pusin2¢) —2k(sin2¢ + pcos2¢)
po| —2k(cos2¢ — psin2¢) 0 0
0 1 .y

= 2k(sin2¢ + pcos2¢)[2ku(cos2¢p — psin2¢) + 2k(sin2¢ + pcos2¢)]
+12k(cos2¢ — pusin2¢)[2ku(cos2¢ — usin2¢) + 2k(sin2¢ + pcos2¢)] =0

we can divide by 2ku(cos2¢ — usin2¢) + 2k(sin2¢ + pcos2¢) both sides, then we can get

following:

2k(sin2¢ + pcos2¢) + u2k(cos2¢p — psin2¢) =0

then, divide by 2kcos2¢ both sides, we have the final equations for eighenvalues u:

tan2¢(1 — p?) + 2 =0 (10)
the solutions of Eq [10] are:
= —tang
p2 = col¢

Let’s assume the eigenvector r is:

r= [rl Ty T3 7“4]

11



For eigenvalue p1; = —tang, we have:

then we have:

-2kcos2¢ry — 2ksin2¢rs = —tand(—2ksin2¢re + 2kcos2¢rs)
-2kcos2¢ry + ry = —tand(—2ksin2¢)r,
-2ksin2¢r; = —tang(2kcos2¢)ry + 1y

Ty = —tangrs
the eigenvector of above equations are:

T = [1 0 0 2]{:} or {O 1 —coto 0}
For eigenvalue s = coto, we have:

-2kcos2¢ry — 2ksin2¢rs = cotp(—2ksin2¢ry + 2kcos2¢rs)
-2kcos2¢ry + ry = cotp(—2ksin2¢)ry
-2ksin2¢r; = cotg(2kcos2¢)ry + 1y

Iy = cotors
the eigenvector of above equations are:

T={1 0 0 —2k] or {0 1 tang 0}

Relating Eq [§ and Eq [0, we can substitute A by B:

Bi(ngl + 52) =0

/ 9q; 1 g5 _
= 1+M2(\/1i#23_acj1+\/1+u2)3_acjz_0

12



Let’s assume:

Oz “

ds /1+u2
Oz _ 1
Os 1_;’_”2

then we have:
. 311 85]] 8902 8‘1]
rZBZ ( Os Ozl + Bs 8382)

8‘13 _
’L] 6 O

= r;B;
which s is direction along the slip line, and

dza _ 1

dxy iz

which means

% = tan¢ along the « slip line
2? = —cot¢ along the [ slip line
Now, we have equation:
0q;
iBij—=> =0
iR
where
0] 0 —2ksin2¢ 2kcos2¢ 0
(1 —2ksin2¢ 0 0 0
q = B =
Vg 2kcos2¢ 0 0 1
o 0 0

when p = cotp, r = [1 0 0 —2k [0 1 tang O]

when y = —tang, r = [1 00 2]{:}

13

=0

or [0 1

-coto 0]



Next, we expand the matrix calculation:

when p = cot¢ (« slip line),
;B = [0 —2ksin2¢ 2kcos2¢ — 2k O}
or ;B = {—kain%b + 2kcos2¢tang 0 0 tangb}
therefore, we have:

—2ksin2¢ %2 + 2k(cos2¢ — 1)%2 =
= sin2¢2% + (1 — c0s2¢) %2 =0
= 23m¢003¢% + 23in2¢% =0

8’01 8’02 J—
= Bs + tangbg =0
or

—2k(sin2¢ — cos?qbtcmgzﬁ)% + tanqb% =0
= —2k[(2sin¢cosp — (cos’¢ — sin’¢)tang)]3L + tanpZ = 0
= —2k(2c0s?2¢ — cos*¢ + sin%)% + g—i =0

= —2k% 4+ 92 =
when p = —tang (5 slip line),
;B = [0 —2ksin2¢ 2kcos2¢ — 2k O}
or r;B;; = [—2ksin2¢ + 2kcos2¢tang 0 0 tangb}
therefore, we have:
—2ksin2¢ %L + 2k(cos2¢ + 1)22 = 0

14



= sin?gb% — (cos2¢ + 1)% =
= 28in¢cos¢% — 2cos2¢% =0

vy vy _
= 5. cot¢88 =0

or

—2k(sin2¢ — cosZgbcotgb)% — cotqb% =0
= 2k[(2singcosp — (cos*¢ — sz’n%)cot(b)]% + cotpdZ = 0
= 2k(2c0s*¢ — cos’¢ + sin‘ﬁ)% + % =0

=2k + 22 =0

Therefore, we have following results:

For « slip line:

% +1 ngﬁ% =0
85 88 (12)
k22, 97
ds = 0Os
For § slip line:
% — cotqﬁ% =0
(98 83 (13)
21{:% + @ =0
ds  0Os

Since from the Fig[2] we know the basis transformation is:

Vg = V1COSO + V9SiNG

Vg = —U18INQ + V2c080

and

15



V] = VqC08P — VgSiNG
Vo = U SINQ + v3c05¢

therefore we have:

dvi _ dva deos¢p  dvg dsing
ds ~— ds COS¢ + Va ds ds Sln¢ U7
dvg

_ dva dsmqﬁ d'Uﬂ dcos¢
T2 = TESIng + v, + . C05¢ + vg

therefore, substitute above equation into Eq [12}

dvl + tangbd”? =0
= d“a = (cos¢ + tangsing) + va(dcos¢ + tan¢dsm¢) + v (dc°5¢tan¢ dsm"ﬁ) =0
= Do (cosp + tangsing) + va(—sing + tan(bcosqb) + vg(—singtang — cosqﬁ)% =

= dva Ugd(z) =0

and substitute above equation into Eq [13}

d’U1 dvy __
T —coto 2 =0

= va(dcoss¢ co t¢dsm¢) dvﬁ 2 (sing + cotpcosp) — (dsm‘z’ + cotqﬁdcow) =0

= Vo (—sing — cotgbcos@% — B —2(s1n¢ 4 cotgcosp) — vg(cosd — cotqﬁsmqﬁ)d—‘z’ =

dv d
5 + v a ¢ —
therefore, we have:
dUa — d(b
ds — UBds
dvg do
s~ Vags

which is known as Geiringer equation.

16



4 Examples

4.1 Simple Compression

L5
N
!

(=
H

4
i
o
& slip-line

Figure 3: Simple Compression

First example is to find P, total force per unit length acting in the solid shown as Fig [3]

At point a, we know the angle between e, and e is 45° which means

¢a:

INE

From the result of stress state in Section 3.1 we have

o1 =0 —ksin2¢ =0 — k
00 =0+ ksin2¢p = + k
019 = kcos2¢ =0
Since at point a, it’s traction free, the normal vector is on ey direction. We have following
boundary conditions:
011 012 0 0

0921 0922 1 0

17



thus,

For point b, we know the angle between e, and e; is —45°, which means:

-
o
|
|
ANE

then, by Hencky equation, for « slip line:

0, — 2k, = constant = o, — 2k,
= —k —2k% =0y — 2k(—7F)

= 0p = —k —kn
therefore, the stress state of solid is:

o1 = 0y — ksin(=5) = —kw
O99 = Op + kSZn(—%) =2k —km

012 = kcos(—%5) =0
The force per unit length, P, we have:

P+ fow O'Qle’l =0

= P = wk(r + 2)

where w 1s the width of the solid.

18



4.2 Plan Strain Extrusion

Figure 4: Plain Strain Extrusion

Second example is to find P of plain strain extrusion for tapered end. The friction is

neglected. At point a, we know the angle between e, and e; is —45° which means:

(ba:_

INE]

From the result of stress state in Section 3.1 we have

011 =0 —ksin2¢ =7 + k
022:6+k5in2¢:5—k:

019 = kcos2¢ =0

Since at point a, it’s traction free, the normal vector is on —e; direction. We have following

boundary conditions:

011 012 —1 0

0921 0922 O 0

thus,

19



0'11:5'—|—kZO

For point b, from the geometry, we know the angle between e, and e; is —75°, which means:

5
gp = —32
then, by Hencky equation, for « slip line:

04 — 2k¢, = constant = a, — 2k,
= —k+ kI =0, + k()

= 5y, = —k — Tk

Finally, the angle between slip line and C'D is 45°. Therefore, the stress state of solid is:
o =0y — ksin(}) = -2k — %

O99 = Op + ksm(%) =-Ik

019 = kcos(3) =0

From the symmetry, the stress at AB in e; direction is same as that at C'D. The height of

AB and CD are all % From force balance in e; direction we have:

ZFlz—P—f—Q*fO%O'Hd[EQ:O
= P = kH(% +2)

20



4.3 Double-notched Plate in Tension

Figure 5: Double-notched Plate in Tension

Example 3 is to find force P per unit length acting on a double-notched plate as shown

as Fig[f] At point A, from geometry we can tell:

o1 =0 — ksin(2a — %) = 0 + kcos2a
099 = 0 + ksin(2a — ) = 6 — kcos2a

ksin2a

013 = kcos(2a — )

Since at point A, it’s traction free, the normal vector of this plane is:
e
cosa

Now, we have following boundary conditions:

21



011 0192 —sina 0

091 022 cosx 0

thus,

—o18mna + opcosa = 0
= —(0 + kcos2a)sina + ksin2acosa = 0
= —osina — k(cos’a — sin*a)sina + 2ksinacos?a = ()

2a0=0

= —gsina + ksin®a + ksinacos
= —0 + k(sin*a + cos*a) = 0

=o04=k

For point B, from the geometry, we know the angle between e, and e; is 45°, which means:

I3

oy =
then, by Hencky equation, for « slip line:

0, — 2k, = constant = 7, — 2k,

=k —2k(a—T) = 55 — 2k

=0 =k —2ka+kr=k(r—2a+1)

Note: From Professor Bower’s book, the hydrostastic stress at point B is k(7 —2«). T think

it is just a typo because his final result is same as mine.

Back to calculations, we can find the stress state at point B is:
o1 = 0y — ksin(2¢p) = k(m —2a+ 1) — k = k(7 — 2a)

22



090 = 0p + ksin(2¢p) = k(m — 2+ 1) + k = k(7 — 20 + 2)
012 = kcos(2¢p) =0

From force balance in e, direction we have:

ZFQ = —P—f-anO'QQde’l =0
= P =ak(m — 2a+2)

23
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